
w
	

Mrs
rMICRI$OFTMOON= M~

is

Microsoft,
Pascal Compiler
for the MS-DOS,. Operating System

User's Guide

Microsoft Corporation

Information in this document is subject to change without notice and
does not represent a commitment on the part of Microsoft Corporation .
The software described in this document is furnished under a license
agreement or nondisclosure agreement . The software may be used or
copied only in accordance with the terms of that agreement . It is against
the law to copy Microsoft Pascal on magnetic tape, disk, or any other
medium for any purpose other than the purchaser's personal use .

Copyright Microsoft Corporation, 1981, 1982, 1983, 1 .984, 1985

If you have comments about the software or this manual, complete the
Software Problem Report at the back of this manual and return it to
Microsoft Corporation .

Microsoft, the Microsoft logo, and MS are registered trademarks of Microsoft
Corporation .
MS-DOS is a trademark of Microsoft Corporation .
CP/M and CP/M-86 are registered trademarks, and CPiM-80 is a trademark of
Digital Research, Inc .
INTEL is a registered trademark of Intel Corporation .

Document Number 8511 L-330-05
Part Number 020-014-026

About the Microsoft Pascal Compiler

Microsoft - Pascal, also called MS,,.. -Pascal, is a highly extended,
portable version of the Pascal language . Compatible with the
International Standards Organization (ISO) proposed standard,
its extensions facilitate systems programming as well as applica-
tions programming.

You can use Microsoft Pascal at the ISO standard level for trans-
porting programs to and from other machines. Or, to make full
use of the capabilities of a specific computer, you can make your
programs more efficient by using the language at its extend or
system levels .

The Microsoft Pascal Compiler generates native machine code ;
many other Pascal compilers for microcomputers produce inter-
mediate p-code. Programs compiled to native code execute much
faster than those compiled to p-code. Thus, with MS-Pascal, you
get the programming advantages of a high-level language with-
out sacrificing execution speed . Because of many low-level
escapes to the machine level, programs written in MS-Pascal are
often comparable in speed to programs written in assembly
language .

The MS-Pascal Compiler also generates code for fast numeric
processing in the 8087 processing environment and provides
8087 emulation in the system software package .

System Requirements

The Microsoft Pascal Compiler can be used with any computer
that has one disk drive and a minimum of 140K random access
memory available after the operating system is loaded . (The
Microsoft Disk Operating System utility CHKDSK will tell you
how much RAM is available .)

We recommend at least two drives, however, for easier operation .
The compiler can successfully take advantage of at least 196K
RAM. Your machine should run MS-DOSIM .

This implementation of the Microsoft Pascal Compiler can take
advantage of, but does not require, an INTEL® 8087 numeric
coprocessor .

Two versions of Microsoft LINK are available for your use . They
are LINK.EXE (the default linker) and LINK .V2 (the optional
MS-DOS 2.0 linker which supports pathnames and overlays) .
You must use either one or the other to link your program
modules (see Chapter 4, "Options for Compiling and Linking") .
Microsoft LINK is the standard MS-DOS linking utility .

How to Use These Manuals

Documentation for the Microsoft Pascal Compiler is provided in
two binders containing the two manuals described below :

Microsoft Pascal Compiler User's Guide
This manual provides an introduction to compilation and
linking, a sample session, and a technical reference for the
Microsoft Pascal Compiler .

Microsoft Pascal Reference Manual
This manual describes the syntax and use of the Micro-
soft Pascal language . With the exceptions noted in Appen-
dix B, "Version Specifics," of the User's Guide and any
recent changes described in the README file (if pres-
ent), this is the language supported by the Microsoft Pas-
cal Compiler.

Microsoft LIB Library Manager Reference Manual
This manual explains how to use Microsoft LIB to create,
organize and maintain runtime libraries .

Microsoft Pascal Quick Reference Guide
This guide briefly lists reference information, such as the
definitions of intrinsic functions and the syntax of Micro-
soft Pascal statements .

The following descriptive devices are used throughout these
manuals to emphasize elements of the text. Descriptions of
Microsoft Pascal syntax requirements can be found in Chapter 3,
"Notation" of the Microsoft Pascal Reference Manual .

CAPS

	

Capitalized text indicates statements, files, or
commands. The text is capitalized only to empha-
size procedures, files, compilands, or objects that
the user may encounter . Microsoft Pascal is not
case sensitive. Small capital letters indicate that
you must press a key named by the text ; for
example, "press the RETURN key.'

Italics

	

Italics indicate user-supplied data, for example,
filenames, variable names, and array names .

. . .

	

Ellipses indicate that an entry may be repeated
as many times as needed or desired .

All other punctuation, such as commas, colons, slash marks,
parentheses, and equal signs, must be entered exactly as shown .

c

Contents

1 Introduction to
the Microsoft Pascal Compiler 1

1 .1 How to Use This Guide 3
1 .2 System Software 4
1 .3 Learning More About Pascal 6

2 Getting Started 7

2 .1 Preliminary Procedures 9
2 .2 Program Development 11
2 .3 Vocabulary 15

3 A Sample Session 19

3 .1 Creating a Microsoft Pascal Source File 22
3 .2 Compiling Your Microsoft Pascal Program 2 2
3 .3 Linking Your Microsoft Pascal Program 27
3 .4 Executing Your Microsoft Pascal Program 30

4 Options for Compiling and Linking 33

4 .1 MS-DOS 2 .0 File System Library 35
4.2 Alternative Linkers
4.3 Precision of Basic Numeric

35
Types 36

4.4 Floating-Point
4 .5 Changing the

Options
Default

37
Math Library 38

4.6 End Cases for Compilation and Execution 38

5 More About Compiling 39

5 .1 Files Written by the Compiler 41
5 .2 Filename Conventions 43
5.3 Starting the Compiler 47
5.4 Pass One Compiler Switches 50

Contents

6 More About Linking 53

6 .1 Files Read by the Linker

	

5 5
6.2 Files Written by the Linker

	

60
6.3 The Overlay Linker

	

62
6.4 Linker Switches

	

64

7 Using a Batch Command File 67

8 Compiling and Linking Large Programs 69
8.1 Avoiding Limits on Code Size

	

71
8.2 Avoiding Limits on Data Size

	

71
8.3 Working With Limits

on Compile Time Memory 77
8.4 Working With Limits on Disk Memory 79
8.5 Minimizing Load Module Size

	

84

9 Using Assembly Language Routines 87

9.1 Calling Conventions

	

89
9.2 Internal Representations of Data Types

	

92
9.3 Interfacing to

Assembly Language Routines 96

10 Advanced Topics

	

101

10.1 The Structure of the Co'pfiler

	

103
10.2 An Overview of the File System

	

108
10.3 Runtime Architecture

	

112
10.4 Floating-Point Operations

	

128
10.5 MS-DOS 2.0 Issues

	

133

Contents

Index 279

Appendices 135

A

B

C

Differences Between
Versions 3.2 and 3.3

	

137

Version Specifics

	

159

Customizing i8087 Interrupts 167

D Exception Handling for 8087 Math 171

E Mixed-Language Programming 179

F Error Messages 221

Figures

The Structure of the
Microsoft Pascal Compiler

	

103
Figure 10.2 The Unit U Interface

	

110
Figure 10.3 Memory Organization

	

115
Figure 10.4 Microsoft Pascal Program Structure

Figure 10.1

119

7

C

Figure 2.1 Program Development 13
Figure 9.1 Contents of the Frame 90
Figure 9.2 Stack Before Transfer to ADD 97
Figure 9.3 One-Byte Return Value 99
Figure 9.4 Two-Byte Return Value 99
Figure 9.5 Four-Byte Return Value 100

C

Tables

Table 2.1

Table 3.1

Table 5.1

Table 5 .2

Table 6.1

Table 6.2

Table 10.1

Table 10.2

Table 10.3

Table A.1

Table E .1

Table E .2

Table E .3

Table E .4

Table E .5

Table E .6

Table E .7

Table E .8

Table E .9

A Suggested Disk Setup

	

10

Files Used
by the Microsoft Pascal Compiler

	

27

Filenames Assigned by the Compiler

	

45

Command Line Switches 51

Linker Defaults

	

57

Microsoft LINK Switches

	

65

Unit Identifier Suffixes

	

113

Error Code Classification

	

125

Runtime Values in BRTEQQ 126

Share and Access Values

	

145

Specifying Calling Conventions

	

184

Passing Parameters
With C Calling Conventions

	

185

Passing Parameters With
Pascal Calling Conventions

	

187

Passing Parameters With
FORTRAN Calling Conventions 187

Equivalent Data Types: Integers

	

200

Equivalent Data Types :
Boolean and Character

	

203

Equivalent Data Types: Reals

	

205

String and Array Types

	

207

Equivalent Data Types: Strings

	

207

vii

Tables

Table E .1 o Equivalent Data Types: Pointers

	

210

Table E .11 Equivalent Data Types: Arrays

	

213

Table E .12 Equivalent Data Types :
Super Array Pointers

	

214

Table E.13 Equivalent Data Types: Complex Numbers

Table E .14 Equivalent Data Types: LOGICAL Values

Table F,1 How Errors are Numbered

	

223

viii

215

216

C

Update:
Microsoft Pascal 3 .3

This update notice lists changes that have been made for version
3.3 of Microsoft Pascal, and tells where you can find more infor-
mation about these changes .

Appendix A of the Microsoft Pascal Compiler User's Guide des-
cribes features of version 3.3 that are different from version 3 .2 .
The Microsoft Pascal User's Guide and the Microsoft Pascal
Reference Manual for version 3.2 still apply to version 3 .3, except
for corrections, changes, and additions described in Appendix A .

Most of the changes made for version 3 .3 make it easier to com-
municate with programs written in other languages, especially C .
Mixed-language programming is discussed in Appendix E, "Mixed-
Language Programming."

The following items have been added :

new predefined types

	

ADSFUNC and ADSPROC
(Section A.2)
INTEGERC (Section A.5)

new attributes

	

C (Section A.6) and VARYING
(Section A.7)

new enumerated types

	

sharemodes (Section A .3.1)
accessmodes (Section A.3.2), and
lockmodes (Section A.4 }

new procedure

	

locking (Section A.4)

Also

•

	

There is a new version of the linker, Microsoft LINK 3 .01 .
In LINK 3.01, two new switches allow you to set the
maximum number of segments and to use DOS conven-
tions for the order of segments (Sections A .10.1 and
A.10.2) . Also, the default for the overlay interrupt number
has been changed from CD (hexadecimal) to 3F .

x

•

	

There is one correction to the language, involving preced-
ence when using the ADS and ADR operators (Section
A.1) .

•

	

You need no longer assign a name to a file before using
reset or rewrite . A temporary file name is assumed, as if
you had specified

assign (file, char(O)) .

•

	

Path names are allowed in compiler directives .
•

	

If you use $decmath+ in your source code, you must link
with the library DECMATH .LIB .

The package contents have been changed :

•

	

All disks are now double-sided and double-density .
•

	

The library manager LIB .EXE has been added . Refer to
the Microsoft LIB Reference Manual for information on
LIB .

•

	

The link map files for the libraries (PASCAL .MAP,
MATH . MAP, 8087 . MAP, DE C MATH .MAP, and
A LTM ATH.MAP) are no longer included . Now that
Microsoft LIB is included with Microsoft Pascal, you
can create these link map files yourself, as described in
Section A.9, "Creating Link Map Files with Microsoft
LIB."

•

	

The files DOS2PAS.LIB and DDS2PAS .MAP are no
longer included .

•

	

DOS 2.0 support is now the default, so these files are not
necessary. Note that DOS 1 .0 is no longer supported .
Version 3.3 of the Microsoft Pascal Compiler, and pro-
grams compiled by it, will not run under DOS 1 .0 .

•

	

ENTX6L.ASM is not included .

The initialization and termination systems have been
changed, so this file is no longer necessary . All initiali-
zation is handled automatically .

C

Chapter 1
Introduction to
the Microsoft Pascal Compiler

1 .1 How to Use This Guide

	

3
1.2 System Software

	

4
1.3 Learning More About Pascal

	

6

C

The Microsoft Pascal Compiler, version 3 .20, implemented for
the Microsoft Disk Operating System, MS-DOS, version 1 .25,
accepts programs written according to the ISO standard (Level 0)
and the ANSI-IEEE standard . It also accepts those written in
the full Microsoft Pascal language as described in the May 1983
release of the Microsoft Pascal Reference Manual .

If you compile your programs with the default compiler options
and link them with the standard libraries, PASCAL .LIB and
MATH.LIB, they will run under both MS-DOS version 1 .0 and
version 2 .0. If you have an 8087 installed in your machine, your
programs will use it to improve the speed of real arithmetic . If
you don't have an 8087 installed, your programs will run
perfectly well and give the same results .

Additional benefits of the Microsoft Pascal Compiler are :

A double precision option for real number calculations in
IEEE floating-point format.
Support for linking of 8086 assembly language, Microsoft
Pascal, and Microsoft FORTRAN programs .

Extensive program development through support of
SUPS RARRAYS, flow control, separately compiled UNITS,
variable length strings, the address types, constants and
functions of ARRAY and RECORD types, and other develop-
ment features .

1.1 How to Use This Guide

The Microsoft Pascal Compiler User's Guide describes the
operation of the Microsoft Pascal Compiler, from the most
rudimentary procedures to more advanced topics that may be of
interest only to experienced programmers . This document
assumes that you have a working knowledge of both the
Microsoft Pascal language and MS-DOS .

The Microsoft Pascal Compiler User's Guide also describes the
compiling and linking options that give you the flexibility of
customizing your own programs according to your requirements
for portability and performance . See Chapter 4, "Options for

3

Introduction

Microsoft Pascal Compiler User's Guide

Compiling and Linking," for a summary of these options . The
Microsoft Pascal Compiler offers a wealth of options for
developing your programs .

For a list of the differences between Microsoft Pascal Versions 3 .3
and 3.2, see Appendix A, "Differences Between Versions 3 .2 and
3.3."

The initial chapters (Chapters 1 through 6) should be read in their
entirety by the first-time user of the Microsoft Pascal Compiler .
Included in this material are the procedures you should perform
before compiling and linking your first program, a description of
the process of program development, and a step-by-step walk-
through of each of the procedures that follow the writing of a
program: compiling, linking, and running.

The remaining chapters (Chapters 7 through 10) provide informa-
tion about using a batch command file, compiling and linking
large programs, and using assembly language routines . They also
provide additional technical information on compiler structure,
the Microsoft Pascal file system, floating-point issues, and
runtime architecture .

Included in the appendix material are the version specifics of the
Microsoft Pascal Compiler for MS-DOS, some of the attributes of
the 8087 numeric coprocessor, information on Mixed Language
programming, and the list of error messages .

1.2 System Software

The Microsoft Pascal Compiler software package includes two or
more disks which contain the following files :

File

	

Contents

PASI .EXE

	

Pass one of the Microsoft Pascal
Compiler

PAS2.EXE

	

Pass two of the Microsoft Pascal
Compiler

4

PAS3.EXE

PASCAL.LIB
LIB.EXE
MATH.LIB

8087.LIB

DECMATH.LIB

ALTMATH.LIB

LINK. EXE
NULE6.OBJ
FINU

FINK

SORT. PAS
PRIMES.PAS
README

Introduction

Pass three of the Microsoft Pascal
Compiler
The runtime library
Microsoft Library Manager file
The default floating-point package
library contained in PASCAL.LIB
An auxiliary library for use with pro-
grams that are to run only on machines
with the 8087 coprocessor installed and
whose size you wish to reduce
An auxiliary library containing deci-
mal floating-point support routines
An auxiliary library containing high-
speed floating-point support routines
Default version of Microsoft LINK
The dummy error system
Declarations of low-level file system
routines (the Unit U interface)
Declaration of the generic file control
block type, FCBFQQ
Bubble sort demonstration program
Prime number generator program
If present, contains information that is
more up to date than the documentation
contained in these manuals

5

Microsoft Pascal Compiler User's Guide

1 .3 Learning More About Pascal

The manuals in this package provide complete reference
information for your implementation of the Microsoft Pascal
Compiler. They do not, however, teach you how to write pro-
grams in Pascal . If you are new to Pascal or need help in learning
to program, we suggest you read any of the following books :

Findlay, W ., and D. F. Watt. Pascal : An Introduction to
Methodical Programming . London: Pittman, 1978 .
Holt, Richard C ., and J . N . P. Hume . Programming Standard
Pascal. Reston, Va . : Reston Publishing Company, 1980 .
Jensen, Kathleen, and Niklaus Wirth . Pascal User Manual
and Report, New York: Springer-Verlag, 1978 .
Koffman, E . B . Problem Solving and Structured
Programming in Pascal . Reading, Mass . : Addison-Wesley
Publishing Company, 1981 .

Schneider, G. M., S. W. Weinhart, and D. M. Perlman . An
Introduction to Programming and Problem . Solving With
Pascal . 2d ed. New York: John Wiley & Sons, 1982 .

6

Chapter 2

Getting Started

2 .1 Preliminary Procedures

	

9
2.1 .1

	

Backing Up Your System Files

	

9
2.1 .2

	

Setting Up Your System Disks

	

9
2.1 .3

	

If You Have an 8087 Coprocessor

	

10
2.2 Program Development

	

11
2.3 Vocabulary

	

15

7

i

C

l

This chapter provides a brief review of the procedures, terms, and
concepts involved in developing Microsoft Pascal programs on
your microcomputer .

2.1 Preliminary Procedures

This section describes several preliminary procedures, some of
which are required and some of which are highly recommended
before you begin the sample session or compile any programs of
your own. If you are unfamiliar with any of the MS-DOS
procedures mentioned, consult your MS DOS User's Guide for
instructions .

2.1 .1 Backing Up Your System Files

This step is optional but highly recommended .

The first thing you should do when you have unwrapped your
system disks is to make copies to work with, saving the original
disks for future backup . Make the copies using the COPY or
DISKCOPY utilities supplied with MS-DOS .

2.1 .2 Setting Up Your System Disks

This step is recommended .

Before you begin compiling and linking a program, we
recommend that you check the contents of each disk. You may
wish to copy some files from one system disk to another to set up
a working arrangement that is convenient for you .

And, in order to avoid continual reprompting from the system to
reload certain MS-DOS files, you may also wish to set up your
system disks as shown in Table 2 .1 . This setup assumes you have
two 160K disk drives available .

9

Getting Started

Microsoft Pascal Compiler User's Guide

Table 2 .1
A Suggested Disk Setup

Disk

	

Contents

1

	

COMMAND.COM
text editort
miscellaneous utilitiestt
PASI.EXE

2

	

COMMAND.COM
PAS2.EXE
PAS3.EXE

3

	

COMMAND.COM
PASCAL.LIB
LINK.EXE

t Any text editor that fits .
tt MS-DOS utilities to set up printer, clear screen, sort

directory, etc .

For most implementations, you can copy the necessary MS-DOS
files by formatting the blank disks with the /S switch and then
copying the appropriate files to each disk . If you do not format
disks with the IS switch, the compiler may prompt you to reinsert
your MS-DOS disk after each step .

2.1 .3 If You Have an 8087 Coprocessor

This step may be required if you have an 8087 coprocessor . The
auxiliary library, 8087.LIB, supports a particular arrangement of
8086/8087/8088 hardware. Specifically, it expects that i8087
interrupts will be directed through to the 8086/8088 via the
8086/8088 interrupt vector 2 (NM I), without the intervention of
an 8259 interrupt controller or its equivalent .

Check to see if your hardware configuration meets any of the
following criteria :

1 . It uses an 8087 interrupt vector number other than 2 .
2 . It uses an 8259 interrupt controller .
3 . The 8087 shares interrupts with another device on the

same vector .

10

Getting Started

If any of these criteria is true for your computer system, you
must read Appendix C, "Customizing i8087 Interrupts," and
customize the runtime library as described there .

2.2 Program Development

This section provides a short introduction to program
development, a multistep process which includes first writing the
program, and then compiling, linking, and executing it. For a
brief explanation of terms that may be unfamiliar, see Section
2.3, "Vocabulary."

A microprocessor can execute only its own machine instructions ;
it cannot execute source program statements directly . Therefore,
before you run a program, some type of translation of the
statements in your program to the machine language of your
microprocessor must occur .

Compilers and interpreters are two types of programs that
perform this translation . Depending on the language you are
using, either or both types of translation may be available to you.
MS-Pascal is a compiled language.

A compiler translates a source program and creates a new file
called an object file. The object file contains relocatable machine
code that can be placed and run at different absolute locations in
memory .

Compilation also associates memory addresses with variables
and with the targets of GOTO statements, so that lists of
variables or of labels do not have to be searched during execution
of your program.

Many compilers, including the MS-Pascal Compiler, are what are
called "optimizing" compilers . During optimization, the compiler
reorders expressions and eliminates common subexpressions,
either to increase speed of execution or to decrease program size .
These factors combine to measurably increase the execution
speed of your program .

11

Microsoft Pascal Compiler User's Guide

The MS-Pascal Compiler has a three-part structure . The first two
parts, pass one and pass two, together carry out the optimization
and create the object code. Pass three is an optional step that
creates an object code listing . Compiling is described in greater
detail in Section 3 .2, "Compiling Your Microsoft Pascal
Program," and in Chapter 5, "More About Compiling ."

Before a successfully compiled program can be executed, it must
be linked. Linking is the process in which MS-LINK computes
absolute offset addresses for routines and variables in relocatable
object modules and then resolves all external references by
searching the runtime libraries . The linker saves your program on
disk as an executable file, ready to run .

You may, at linktime, link more than one object module, as well
as routines written in assembly language or other high-level
languages and routines in other libraries . Linking is described in
greater detail in Section 3 .3, "Linking Your Microsoft Pascal
Program," and in Chapter 6, " More About Linking."

Figure 2.1 illustrates the entire program development process .
The paragraphs following the figure describe the process in more
detail .

12

l

MS-Pascal source

I
MS-Pascal
Compiler

1
yes * errors?

pas.OBJ

	

Runtime

	

asm.OBJ
files)

	

library

	

files)

MS-LINK
Linker

1
pas.EXE file

I
Run pas. EXE

l

MS-Macro source

1
MS-Macro
Assembler

Iferrors?

J

yes

	

errors? -* no
Figure 2.1 . Program Development

-+ yes

Getting Started

J

1

3 .

4.

5 .

13

Microsoft Pascal Compiler User's Guide

14

1 . Create and edit the MS-Pascal (and MS-Macro) source
file .
Program development begins when you write an MS-
Pascal program; any general purpose text editor will
serve. Use a text editor also to write any assembly
language routines you may plan to include .

2. Compile the program with $debug+ . Assemble the
assembler source, if any .

Note

when your program has been successfully compiled,
remove the $debug+ metacommand and recompile to
enhance your program's execution time .

Once you have written a program, compile it with the
MS-Pascal Compiler. The compiler flags all syntax and
logic errors as it reads your source file . Use the error-
checking switches or their corresponding metacommands
(described in Section 5.4, "Pass One Compiler Switches")
to generate diagnostic calls for all runtime errors . If com-
pilation is successful, the compiler creates a relocatable
object file .
If you have written your own assembly language routines
I for example, to increase the speed of execution of a
particular algorithm), assemble those routines with the
Microsoft Macro Assembler, MS-Macro.
(You may have received MS-Macro as part of the utility
package that came with your computer system . I f not, it
is available separately from your software dealer .)

3 . Link compiled (and assembled) OBJ files with the
runtime libraries .
A compiled (or assembled) object file is not executable
and must be linked with the runtime library,
PASCAL.LIB, using either LINK .EXE or LINK.V2.
Separately compiled Microsoft FORTRAN subroutines
can also be linked to your program at this time .

Note

Auxiliary math runtime libraries and the MS-DOS file
system library, DOS2PAS.LIB, may also be linked . For
more details, see Section 6 .1 .1 .2, "Auxiliary Libraries ."

4 . Run EXE file .
The linker links all modules needed by your program and
produces as output an executable object file with EXE
as the extension . This file can be executed by simply
typing its filename .

5 . Recompile, relink, and rerun with $debug- .
Repeat this process until your program has been
successfully compiled, linked, and run without errors .
Then recompile, relink, and rerun it without the runtime
error-checking switches, to reduce the amount of time
and space required . Chapter 8, "Compiling and Linking
Large Programs," discusses how to work within various
physical limits you may encounter in compiling, linking,
and executing a program .

2.3 Vocabulary

This section reviews some of the vocabulary that is commonly
used in discussing the steps in program development . The
definitions given are intended primarily for use with this manual.
Thus, neither the individual definition nor the list of terms is
comprehensive .

An MS-Pascal program is more commonly called a "source
program" or "source file." The source file is the input file to the
compiler and must be in ASCII format. The compiler translates
this source and creates, as output, a new file called a "relocatable
object file." The source and object files generally have the default
extensions . PAS and OBJ, respectively . After the source code
has been compiled, the object file(s) must be linked with the
runtime libraries to produce an executable program or run file .
The run file has the extension EXE .

15

Getting Started

Microsoft Pascal Compiler User's Guide

Some other terms you should know are related to stages in the
development and execution of a compiled program. These stages
are:

1 . Compile time
The time during which the compiler is executing and
during which it compiles an MS-Pascal source file and
creates a relocatable object file .

2. Linktime
The time during which the linker is executing and during
which it links together relocatable object files and library
files .

3 . Runtime

The time during which a compiled and linked program is
executing. By convention, runtime refers to the execution
time of your program and not to the execution time of the
compiler or the linker.

The following terms pertain to the linking process and the
runtime libraries :

1 . Module
A general term for a discrete unit of code. There are
several types of modules, including relocatable and
executable modules . (Furthermore, in the MS-Pascal
language, "module" has a specific meaning as one type of
MS-Pascal compiland . See the Microsoft Pascal
Reference Manual for details . In this User's Guide, we
use the term "module" in its general sense, unless
otherwise specified .)
The object files created by the compiler are said to be
"relocatable," that is, they do not contain absolute
addresses. Linking produces an "executable" module,
that is, one that contains the necessary addresses to
proceed with loading and running the program .

2 . Routine
Code, residing in a module, that represents a particular
procedure or function . More than one routine may reside
in a module.

16

Getting Started

3 . External reference
A variable or routine in one module that is referred to by
a routine in another module .
The variable or routine is often said to be "defined" or
"public" in the module in which it resides .
The linker tries to resolve external references by
searching for the declaration of each such reference in
other modules . If such a declaration is found, the module
in which it resides is selected to be part of the executable
module (if it is not already selected) and becomes part of
your executable file. These other modules are usually
library modules in the runtime library .

If the variable or routine is found, the address associated
with it is substituted for the reference in the first module,
which is then said to be "bound ." When a variable is not
found, it is said to be "undefined" or "unresolved ."

4 . Relocatable module

The module's code can be loaded and run at different
locations in memory . Relocatable modules contain
routines and variables represented as offsets relative to
the start of the module . These routines and variables are
said to be at "relative" offset addresses. When the
module is processed by the linker, an address is
associated with the start of the module .
The linker then computes an absolute offset address that
is equal to the associated address plus the relative offset
for each routine or variable . These new computed values
become the absolute offset addresses that are used in the
executable file . Compiled object files and library files are
all relocatable modules .

These offset addresses are still relative to a "segment,"
which corresponds to an 8086 segment register. Segment
addresses are not defined by the linker; rather, they are
computed when your program is actually loaded prior to
execution .

5 . Runtime libraries
Contain the runtime routines needed to implement the
Microsoft Pascal language. A library module usually
corresponds to a feature or subfeature of the MS-Pascal
language .

17

C

Chapter 3
A Sample Session

19

3.1 Creating a
Microsoft Pascal Source File 22

3 .2 Compiling Your
Microsoft Pascal Program 22

3.2 .1 Pass One 23
3.2 .2 Pass Two 25
3 .2 .3 Pass Three 26
3 .3 Linking Your

Microsoft Pascal Program 27
3.4 Executing Your

Microsoft Pascal Program 30

I

A Sample Session

This chapter provides step-by-step instructions for compiling and
linking an MS-Pascal program. We strongly recommend that you
compile the sample program before compiling any of your own
MS-Pascal programs .

If you enter commands exactly as described, you should have a
successful session. If a problem does arise, check to see that you
have correctly carried out all of the required procedures described
in Section 2 .1, "Preliminary Procedures," and carefully redo each
step in the sample session up to the point where you had trouble .

Creating an executable MS-Pascal program involves the
following steps :

Compiler passes one and two are required. You need to run pass
three only if you need or want an object listing (as in this sample
session) .

The sample session makes the following assumptions :

1 . You have completed the necessary preliminary
procedures .

2 . You have two disk drives (A: and B:) .

3 . The sample program is already debugged, so that it will
compile, link, and execute successfully .

4 . An object listing is required, therefore all three passes of
the compiler will be run .

5 . No compiler or linker switches will be used .
6 . There are no problems with data, code, or memory limits .

21

1 . Write and save an MS-Pascal source file .

2 . Compile your program with the MS-Pascal Compiler .

3 .

a. Start pass one and enter your filenames in response
to the prompts .

b. Run pass two of the compiler .
c . Run pass three of the compiler . (This step is optional .)

Link your object file to the MS-Pascal runtime libraries.

4 . Execute (i.e., run) your program .

Microsoft Pascal Compiler User's Guide

These complexities are discussed in Chapter 5, "More About
Compiling," Chapter 6, "More About Linking," and Chapter 8,
"Compiling and Linking Large Programs," and are referred to as
appropriate in the following sample session .

If the files required for successive steps in the process are not on
the same disk as one another, you will have to exchange disks
between steps . For example, if PAS 1. E XE and PA S2 . E XE are
not on the same disk, you will have to remove the first disk after
completing pass one and replace it with the disk containing
PAS2.EXE. Similarly, if the linker or the library file is on a
different disk than pass three, you will have to insert the proper
system disk before running MS-LINK .

3.1 Creating a Microsoft Pascal Source File

Turn on your computer and load MS-DOS. Insert an empty work
disk in drive B : . Log onto drive B :; this makes B : the default
drive.

You can create MS-Pascal programs with any available text
editor. The source file should, in most cases, have the .PAS
extension. For this sample session, we will use the program
named SORT.PAS, which came with the system software .

Copy SO RT. PAS to drive B :, which is where it would be if it were
your own program.

3.2 Compiling Your
Microsoft Pascal Program

As mentioned previously, compiling a program is either a two or
a three-step process, depending on whether or not you choose to
produce an object code listing . For the sample session, we will run
all three passes .

22

3.2.1 Pass One

Insert the disk containing PASI .EXE in drive A:. In response to
the operating system prompt, type :

A:PAS1

This command starts pass one of the MS-Pascal Compiler .

The compiler prints a header that includes the date and version
number, then prompts you for four filenames :

1 . your source filename
2 . an object filename
3 . a source listing filename
4 . an object listing filename

Respond to the prompts as described in the following
paragraphs . For additional information about the files
themselves, see Chapter 5, "More about Compiling."

Pressing the RETURN (or ENTER) key is assumed at the end of
every line you enter in response to a prompt. Only if this is the
only response required is RETURN shown .

1 . Source file
The first prompt is for the name of the file that contains
your MS-Pascal source program :

Source filename [.PAS] :
The prompt reminds you that . PAS is the default
extension for the source filename . Unless the extension is
something other than PAS, you may omit it when you
type in the filename .
For now, type SORT (to indicate that the source file is
B: SORT. PAS) .

2 . Object file
The second prompt is for the name of the relocatable
object file, which will be created during pass two:

Object filename [SORT.OBJ] :

23

A Sample Session

Microsoft Pascal Compiler User's Guide

24

The name in brackets is the name the compiler will give to
the object file if you simply press the RETURN key at this
point. The filename is taken from the source filename you
gave in response to the first prompt; the OBJ extension
is the standard extension for object files .
For now, either type SORT or press the RETURN key .

3 . Source listing file
The third prompt is for the name of the source listing file,
created during pass one :

Source listing [NUL.LST] :

As before, the prompt shows the default . Because the
source listing is not required for linking and executing a
program, it defaults to the null file ; that is, if you press
the RETURN key, the source listing will be sent to the null
file, NUL .
However, if you enter any part of a file specification, the
default extension is .LST, the default device is the
currently logged drive, and the filename defaults to the
name given for the source file.
For this session, assume that you want to send the source
listing file to the terminal screen . Therefore, type USER
in response to the source listing prompt . (Typing CON
has essentially the same effect ; see Section 5 .2,
"Filename Conventions," for further information .)

4 . Object listing file
The final prompt is for the object listing file, to be created
during pass three:

Object listing [NUL.COD] :

The null file is the default for the object listing, as it is for
the source listing . If you press the RETURN key, no
intermediate files will be saved and you won't be able to
run pass three. However, the same default naming rules
apply here as elsewhere ; if you enter any part of a file
specification, the default extension is COD, the default
device is the currently logged drive, and the filename is
the source filename .

For now, type USER (or CON) to request that the object
listing be displayed on your terminal screen when you run
pass three.

Pass One

	

No Errors Detected .

Pass One

	

2 Warnings Detected .
Pass One

	

3 Errors Detected .

A Sample Session

Compilation begins as soon as you have responded to all four
prompts. The source listing is displayed on your screen, as
requested. When pass one is complete, you should see the
following message on your terminal screen :

If the compiler had detected errors during compilation, messages
like the following would appear instead :

The error and warning messages would appear in the source
listing as it comes on your screen .

1 . Errors are mistakes that prevent a program from running
correctly.

2 . Warnings indicate a variety of conditions, none of which
will prevent the program from running, but which may
reflect poor programming practice or produce invalid
results .

See Appendix F, "Error Messages," for a complete listing of
messages and information about how to correct the errors in your
program .

Pass one creates two intermediate files, PASIBF .SYM and
PASI B F. B I N. The compiler saves these two files on the default
drive for use during pass two .

If there are errors, the two intermediate files are deleted and the
remaining passes cannot be run . If pass one generates only
warning messages, you can still run passes two and three, but
you should go back and correct the source file at some point .

3.2 .2 Pass Two

Remove the disk containing PASI .EXE from drive A: and insert
the disk containing PAS2.EXE. You won't need to do this if
PAS2.EXE is on the same disk as PASI .EXE.

25

Microsoft Pascal Compiler User's Guide

Start pass two by typing :

A: PAS2

Pass two does not ordinarily prompt you for any input . However,
it does perform the following actions :

1 . It reads the intermediate files PASIBF .SYM and
PASIBF.BIN created in pass one .

2 . It writes the object file .
3 . It deletes the intermediate files created in pass one .
4 . It writes two new intermediate files, PASIBF .TMP and

PASIBF.BID, for use in pass three. These files are
written to the currently logged drive .

When you are compiling your own programs, the last step
described varies, depending on your response to the object listing
prompt. If, as for this sample session, you plan to run pass three,
pass two writes the two intermediate files. I f in pass one you do
not request an object listing, pass two writes and later deletes
just one new intermediate file, PA S I B F . TM P .

When pass two is complete, a message like the following prints
on your screen:

Code Area Size = # 05EC (1516)
Cons Area Size = # 00 E6 (230)
Data Area Size = # 0264 (612)

Pass Two

	

No Errors Detected .

The first three lines indicate, first in hexadecimal and then in
decimal notation, the amount of space taken up by executable
code (Code), constants (Cons), and variables (Data) . The message
concerning the number of errors refers to pass two only, not to
the entire compilation .

3.2.3 Pass Three

Remove the disk containing PAS2 .EXE from drive A: and insert
the disk containing PAS3.EXE. You won't need to do this if
PAS3.EXE is on the same disk as PAS2.EXE.

26

Start pass three by typing :

A:PAS3

PAS3.EXE does not prompt you for any input. It reads
PASIBF.TMP and PASIBF .OID, the intermediate files created
during pass two, and, because of your earlier response to the
object listing prompt, writes the object code listing to your
screen .

When pass three is complete, the two intermediate files are
deleted. If, after requesting an object listing, you choose not to
run pass three, you should delete these files yourself (to save
space). Table 3.1 is a summary of the files read and written by
each of the three passes of the compiler during this sample
session .

Table 3 .1
Files Used by the Microsoft Pascal Compiler

A Sample Session

See Chapter 5, "More About Compiling," for details about
compiler switches and other ways of responding to the compiler
prompts .

3.3 Linking Your Microsoft Pascal Program

Now you are ready to link your program with one of the two
versions of MS-LINK provided with the Microsoft Pascal
Compiler version 3.20. Linking converts the relocatable object

27

Pass Reads Writes Deletes

1 SORT. PAS USE R.LST
PASIBF.SYM
PASIBF.BIN

2 PASIBF.SYM SORT.OBJ PASIBF.SYM
PASIBF.BIN PASIBF.OID PASIBF.BIN

PASIBF.TMP
3 PASIBF.OID USER.COD PASIBF.OID

PASIBF.TMP PASIBF.TMP

Microsoft Pascal Compiler User's Guide

file into an executable program by assigning absolute addresses
and setting up calls to the runtime libraries .

Remove the disk containing PAS3 .EXE from drive A : and insert
the disk containing LINK.EXE. You won't need to do this if the
linker is on the same disk as PAS3 .EXE .

Start the linker by typing :

A:LINK

The linker displays a header and then, like the front end of the
compiler, gives a series of four prompts to which you must
respond before linking begins . The linker prompts for the
following information :

1 . the name of your relocatable object file(s)
2 . the name you wish to give to the executable program
3 . the name you wish to give to the linker listing
4 . the location of the runtime library

Each of these prompts is discussed briefly in the following
paragraphs and in somewhat more detail in Chapter 6, "More
About Linking." For complete information on MS-LINK, see
your MS-DOS manual .

After the first of the four linker prompts appears on the screen,
remove the disk containing LINK . E X E and insert the disk
containing PASCAL . LIB. You won't need to do this if the linker
and the runtime library are on the same disk .

28

Note
Prompting specific to LI NK . V 2, the optional linker, is
discussed in detail in Section 6 .1 .2, "Linking Libraries ."
Included in that discussion are details concerning the overlay
manager of the optional linker .

A Sample Session

1 . Object modules prompt

The first prompt is for the name of your relocatable
object file (or files) :

Object Modules [.OBJJ:
Like the compiler prompts, the linker prompts always
give certain defaults . Here, the prompt indicates that
.OBJ is the default extension for any file(s) you name .
Type SORT, and the file SORT.OBJ, created during
compilation, will be linked with PASCAL .LIB during the
linking process . If, for any reason, the object file does not
have the extension OBJ, you must give the file
specification in full .

2 . Run file prompt
The second prompt is for the the name of the run file, the
file created by the linker that will contain your executable
program :

Run File [SORT .EXE] :

The default filename is taken from your response to the
first linker prompt; the EXE extension identifies an
executable file. To accept the default filename, simply
press the RETURN key .

3 . Linker listing file prompt

The third prompt is for the linker listing file, sometimes
called the linker map :

List File [NUL . MAP] :

As the prompt indicates, the default for the list file is the
NUL file, that is, no file at all . For now, simply press the
RETURN key to accept this default.
If, when linking your own programs, you wish to see the
list file at your screen (console), without having it written
to a disk file, type CON in response to the list file prompt .
(The linker does not recognize USER as a name for your
screen .)
If you want the linker map written to a disk file, respond
to this prompt with a name for the file .

29

Microsoft Pascal Compiler User's Guide

30

4 . Runtime libraries prompt
The last linker prompt is for the location of the runtime
libraries :

Libraries [.LIB] :
Here, to indicate that PASCAL.LIB is found on drive A :,
you should simply type :

A :
If PASCAL.LIB is not already on the disk in drive A :,
you will have to exchange disks before linking can
proceed .

After you have responded to the last of the four prompts,
MS-LINK links your program, SORT . O BJ, with the necessary
modules in the MS-Pascal runtime library, A : PASCAL. L I B. This
linking process creates an executable file, named SORT .E XE, on
the default drive .

3.4 Executing Your
Microsoft Pascal Program

When linking is complete, the operating system prompt returns .
To run the sample program, just type :

SORT

This command directs MS-DOS to load the executable file
SORT.EXE, fix segment addresses to their absolute value (based
on the address at which the file is loaded), and start execution .

Assuming the program runs correctly, which it should, you will
see displayed on the screen first an unsorted list of numbers and
then the same list in sorted order .

This concludes the sample session . Additional information on
compiling and on linking is provided in Chapter 5, "More About
Compiling," and Chapter 6, "More About Linking," respectively .
The following program shows a log of the entire sample session,
including prompts, your responses (shown in italics and small
capital letters), and files written to the terminal screen .

A > B:
•

	

> A:PAS1
Source filename [.PAS]:SORT
Object filename [SORT.PAS]:RETURN
Source listing [NUL .LST]:USER
Object listing [N U L.COD]:USER

[Source listing display]

Pass One

	

No Errors Detected .

•

	

> A:PAS2

Code Area Size = # 65EC (1516)
Cons Area Size = # 00 E6 (230)
Data Area Size = # 0264 (612)

Pass Two

	

No Errors Detected .

•

	

> A:PAS3

[Object listing display]

•

	

> A:LINK
Object modules [.OBJ]:SORT
Run file [SORT.EXE]:RETURN
List map [NUL.MAP}:RETURN
Libraries [. LI B]:A :

•

	

> SORT

[Program display]

A Sample Session

31

(

C

Chapter 4
Options for

33

Compiling and Linking

4 .1 MS-DOS 2.0 File System Library

	

35
4.2 Alternative Linkers

	

3 5
4.3 Precision of Basic Numeric Types 36
4 .4 Floating-Point Options

	

3 7
4.5 Changing the Default Math Library

	

38
4.6 End Cases

for Compilation and Execution

	

38

C

(1

C

Options for Compiling and Linking

This chapter contains descriptions of optional libraries and
compiler features that are available to the users of Microsoft
Pascal for customizing the performance of executable programs .
We recommend, however, that you start by using the compiler
with its defaults, particularly if you are inexperienced with
Pascal.

4.1 MS-DOS 2.0 File System Library

When you specify DOS2 PAS. L I B at linktime, it will automat-
ically replace the standard file system in the runtime library,
PASCAL.LIB, with the MS-DOS 2 .0 file system . This will not be
true if you are specifying PASCAL .LIB explicitly and have not
specified DOS2 PAS. L I B before PASCAL. LIB in the list of
libraries to be searched by the linker.

Note

Programs linked with DOS2PAS .LIB will not run under
MS-DOS 1 .25. An error message, "Incorrect DOS version"
will be returned by the operating system .

4.2 Alternative Linkers

Two versions of the Microsoft LINK utility are provided with
this version of Microsoft Pascal . The first, named LI NK . E XE is
the most current linker for MS-DOS versions 1 .25 and earlier . It
will run under MS-DOS 2 .0 but cannot accept pathnames or
subdirectories. The other version is named LINK.V2. It accepts
pathnames and will run only on MS-DOS 2 .0 .

You must use either LI NK.EKE or LINK.V2 to link your
program because earlier versions of the MS-DOS linker lack some
of the internal features necessary for support of this version of
Microsoft Pascal .

35

Microsoft Pascal Compiler User's Guide

LI N K. E XE and LI NK . V 2 search libraries based on the contents
of a library list. This list i s derived from your command line
specifications and the search directives produced by the
compiler. If, after all the libraries have been searched, at least one
reference has been resolved, the linkers will repeat the search and
attempt to resolve the other references . Previous versions of the
linker searched each library only once .

Rename LINK-V2 to be an EXE file, if you want to use it at
linktime. See Section 6 .1 .2, "Linking Libraries," for command-
line and prompting information .

Note
If you use the earlier versions of Microsoft LINK, an
otherwise accurate program may produce linker error
messages and not execute properly .

For more information about LINK.V2, see Section 6 .3, "The
Overlay Linker."

4.3 Precision of Basic Numeric Types

In Microsoft Pascal, the basic INTEGER type is, by default,
equivalent to the Microsoft Pascal type INTE GE R2 which is a
16-bit, two's complement integer . The basic REAL type is
similarly equivalent to a REAL4 which is a four-byte real
number.

You can use the $integer: n metacommand with (n=4) to change
the default and make INTEGER equivalent to I NTE GE R4 (but
note the restrictions on I NTE GE R4) . You can use the $real:n
metacommand with (n=8) to make the REAL type equivalent to
REAL8. Note that the default, which is equivalent to [$real :4
$integer:21, will result in the fastest and smallest code .

36

4.4 Floating-Point Options

You can use metacommands and alternative libraries to change
the way floating-point operations are carried out . (For more
details, see Section 10 .4, "Floating-Point Operations .") The
options are :

Options for Compiling and Linking

8087LIB / $floatcalls-

I f you know that all machines on which you will be running your
program will have an 8087 installed, you can use 8087 .LIB to
reduce its size . You can reduce its size still further and improve
its performance by compiling with the $floatcalls- meta-
command.

Alternate Math Option

If performance on machines without 8087s installed is an over-
riding concern, and you do not care if your program does not
exploit an 8087 if it is installed, and if you do not require the full
power of the proposed IEEE floating-point standard, you can use
the fast math package by linking with ALTMATH .LIB .

Decimal Math Option

Microsoft Pascal supports an alternative floating-point format in
which decimal floating-point numbers up to 14 digits and within
a limited exponent range can be represented exactly . The results
of the operations on the numbers in this format are also
represented exactly if they are in the allowable range . This option
is particularly useful in business and financial applications where
exact results are important .

You select the decimal format by using the $decmath meta-
command in all of your program units that use floating-point.
You must link with DECMATH .LIB to support this format .

37

Microsoft Pascal Compiler User's Guide

Note

Decimal floating-point and IEEE floating-point are not
compatible .

4.5 Changing the Default Math Library

The default math library is contained in MATH .LIB . You can make
either DECMATH .LIB, 8087.LIB, or ALTMATH .LIB the default by
naming the one you want to be MATH .LIB .

4.6 End Cases
for Compilation and Execution

The Microsoft Pascal Compiler can create several versions of
your executable program . Here are some "best case" combina-
tions of Microsoft Pascal options for particular processor
configurations .

1 . Fastest: (with 8087)
To get the best possible performance if you have an 8087,
use the $floatcalls- metacommand and ($integer:2
$real:4 ((the default) and link with 8087. LI B . This will
also be the smallest version of your program .

2. Fastest: (without 8087)

To get the best possible performance without an 8087,
use I $integer:2 $real:41 metacommands and link with
ALTMATH.LIB .

3 . Most portable, most consistent :
If you want your program to run on any environment and
to give the most accurate results possible, use the default
compiler and library options. You can also compile using
the $floatcalls- metacommand and reduce the size of
your program without affecting the results .

38

Chapter 5

More About Compiling

5 .1 Files Written by the Compiler

	

41

5.1 .1
5 .1 .2
5 .1 .3
5 .1 .4
5 .2 Filename Conventions

	

43
5.3 Starting the Compiler

	

47
5.3.1

	

Giving No Parameters on
the Command Line 47

5 .3 .2

	

Giving All Parameters on
the Command Line 48

5 .3 .3

	

Giving Some Parameters on
the Command Line 49

5 .4 Pass One Compiler Switches

	

50

39

The Object File

	

41
The Source Listing File 41
The Object Listing File 42
The Intermediate Files 42

C

More About Compiling

This chapter provides additional procedural information on the
compiler, supplementing the discussion in Section 3 .2,
"Compiling Your Microsoft Pascal Program ." For a more
technical discussion of the compiler, see Section 10 .1, "The
Structure of the Compiler ."

5.1 Files Written by the Compiler

In addition to creating several intermediate files, which it later
reads and deletes, the compiler writes one required file and two
optional files that represent your program in various ways . The
object file is the one permanent file that must be created . The
source listing and object listing files are optional ; you may
request that either or both of these be displayed or printed
instead of being written to a disk file.

5.1.1 The Object File

The object file is written to disk after the completion of pass two
of the compiler. It is a relocatable module, which contains relative
rather than absolute addresses . Normally created with the . OBJ
extension, the object module must be linked with the MS-Pascal
runtime libraries to create an executable module containing
absolute addresses .

5.1 .2 The Source Listing File

The source listing file is a line-by-line account of the source file(s),
with page headings and messages . Each line is preceded by a
number that is referred to by any error messages that pertain to
that source line .

Compiler error messages, shown in the source listing, are also
displayed on your terminal screen. See Appendix H, "Messages,"
in the Microsoft Pascal Reference Manual for a list and
explanation of all error messages .

If you include files in the compilation with the $include
metacommand, these files are also shown in the source listing.

41

Microsoft Pascal Compiler User's Guide

Both the $include metacommand and the source listing are
discussed in the Microsoft Pascal Reference Manual . See Section
18.3, "Source File Control," for information on $include ; see
Section 18 .4, "Listing File Control," for a description of
metacommands that control listing file format ; see Section 18 .5,
"Listing File Format," for a discussion of features of the listing
file .

The various flags, level numbers, error message indicators, and
symbol tables make the source listing useful for error checking
and debugging. Many programmers prefer a printout of the
source listing file rather than of the source file itself as a working
copy of the program .

5.1 .3 The Object Listing File

The object listing file, a symbolic, assembler-like listing of the
object code, lists addresses relative to the start of the program or
module. Absolute addresses are not determined until the object
file itself is linked with the runtime libraries .

The object listing file is used less often than the source listing
file, but may be a useful tool during program development :

1 . You can look at it simply to see what code the compiler
generates and to familiarize yourself with it .

2 . You can check to see whether a different construct or
assembly language would improve program efficiency .

3 . You can use it as a guide when debugging your program
with the MS-DOS DEBUG utility .

5.1.4 The Intermediate Files

Pass one creates two intermediate files, PAS I B F . SYM and
PAS I B F . B I N . These two intermediate files are always written to
the default drive .

Pass two reads and then deletes PA S I B F . SYM and
PASIBF.BIN. Pass two itself creates one or two new
intermediate files, depending on whether or not you've requested
an object listing . If, as for the sample session, you plan to run
pass three to produce the object listing, pass two writes the two
intermediate files, PASIBF.TMP and PASIBF .OID .

42

If in pass one you do not request an object listing, pass two
writes and later deletes just one new intermediate file,
PASIBF.TMP.

PAS2.EXE assumes that the intermediate files created in pass
one are on the default drive. If you have switched disks so that
they are on another drive, you must indicate their location on the
command that starts pass two. For example :

A:PAS2 AIPA USE

More About Compiling

The "A" immediately following the command tells the compiler
that PAS I B F . B I N and PAS I B F. SYM are on drive A:, instead of
the default drive B : . The "/PAUSE"' tells the compiler to pause
before continuing so that you can insert the disk that contains
them into drive A : .

After pausing, pass two prompts as follows :

Press the ENTER key to begin pass two .

When you have inserted the new disk in drive A :, press the
RETURN key and the compiler proceeds with pass two .

PASIBF.TMP and PASIBF.OID are deleted from the default
drive during pass three. If you change your mind after requesting
an object listing file and decide not to run pass three, be sure to
delete these files to recover the space on your disk .

If you have a disk "drive" that is implemented with random
access memory (or other faster file device), instead of an actual
disk, this is a good location for intermediate files . Since they are
processed twice each, first written and then read, compilation is
faster if these files are written to such a fast access device .

5.2 Filename Conventions

when you start up the compiler, it prompts you for the names of
four files: your source file, the object file, the source listing file,
and the object listing file. The only one of these names you must
supply is the source filename .

43

Microsoft Pascal Compiler User's Guide

This section describes how the compiler constructs the remaining
filenames from the source filename and how you can override
these defaults .

A complete filename specification under MS-DOS has three
parts:

1 . Device name
The name of the disk drive where the file is or will be . On
a single-drive machine, all device names default to A : . On
multidrive machines, if you do not specify a device, the
compiler assumes the currently logged drive .

2 . Filename
The name you give to a file . Consult your operating
system manual for any limitations on assigning
filenames .

3 . Filename extension
Added to the filename for further identification of the file .
The extension consists of up to three alphanumeric char-
acters and must be preceded by a period . Although you
may give any extension to a filename, the MS-Pascal
Compiler and MS-LINK recognize and assign certain con-
ventional filename extensions by default, as shown in the
following list:

Filename Extension Function of File

•

	

PAS MS-Pascal source file
.FOR

	

MS-FORTRAN source file
.OBJ

	

Relocatable object file
•

	

LST Source listing file
.COD

	

Object listing file
.ASM

	

Assembler source file
.MAP

	

Linker map file
.LIB

	

Library files
.EXE

	

Run file

I f you give unique extensions to your filenames, you must include
the extension as part of the filename in response to a prompt . If
you do not specify an extension, the MS-Pascal Compiler supplies
one o f those shown in Table 5 .1 .

44

Table 5.1
Filenames Assigned by the Compiler

More About Compiling

Full Filename

dev : filename. PAS
dev:filename.OBJ
dev:NUL.LST
dev: N UL.COD

Table 5.1 also shows the default filenames supplied by the
compiler if you give a name for the source file and then press the
RETURN key in response to each of the remaining compiler
prompts .

The device "dev:" is the currently logged drive . Even if you
specify a device in the source filename, the remaining file
specifications will default to the currently logged drive . You
must explicitly specify the name of another drive if that is where
you want a particular file to go .

The NUL file is equivalent to creating no file at all; thus, by
default, the compiler creates neither a source listing file nor an
object listing file . If, in response to either of the last two prompts,
you enter any part of a file specification, the remaining parts
default as follows :

Source listing

	

dev: filename . LST
Object listing

	

dev:filename.COD

Neither listing file is created unless you explicitly request it . If
you specify any non-null file for the object listing, pass two leaves
PASIBF.TMP and PASIBF.OID, the input files for pass three,
on your work disk until you delete them, either explicitly or by
running pass three .

I f you want to send either listing file to your screen or console,
use one of the special filenames USER or CON. USER is
recognized only by MS-Pascal (and MS-FORTRAN) and writes to
the screen immediately as the listing is created. CON is
recognized by all MS-DOS programs, but saves the screen output
and writes it in blocks of 512 bytes .

45

File Device Extension

Source file dev: .PAS
Object file dev: OBJ
Source listing dev: LST
Object listing dev: . COD

Microsoft Pascal Compiler User's Guide

The general rules for filenames may be summarized as follows :

1 . All lowercase letters in filenames are changed into
uppercase letters . For example, the following three names
are all considered equivalent to ABCDE .FGH :

abode. fgh AbCdE. FgH A BCDE. fgh

2 . To enter a filename that has no extension in response to a
prompt, type the name followed by a period .
For example, typing ABC in response to the source
filename prompt gives a filename of ABC. PAS; typing
ABC. instructs the compiler to accept ABC, with no
extension, as the name .

3 . Leading and trailing spaces are permitted . Therefore, the
following is an acceptable response to the prompt for the
source filename:

ABC
The filename itself must not contain spaces .

4 . You may override any defaults by typing all or part of the
name instead of pressing the RETURN key. For example, if
the currently logged drive is B : and you want the object
file to be written to the disk in drive A :, type A: in
response to the following prompt :

Object Filename [ABC.OBJ] :
This results in a full filename of A :ABC.OBJ for the
object file .

5 . Listing files default to null . However, if you specify any
part of a legal filename, the default changes so that the
compiler creates a filename with the same default rules
that apply to the source and object files . Specifically, if
you give a drive or extension, the base name is the base
name of the source file. For example, typing B : in
response to the object listing prompt gives a filename of
B:ABC.COD.

6 . Typing a semicolon after the source filename or in
response to any of the later prompts tells the compiler to
assign the default filenames to all remaining files . This is
the quickest way to start the compiler (if you don't need
either of the listing files) . For example, typing ABC; in

46

More About Compiling

response to the source file prompt eliminates the remain-

ing prompts and results in the following filenames :

Source file B:ABC. PAS

Object file B:ABC.OBJ

Source listing B:NUL.LST

Object listing B:NUL.COD

You may not enter a semicolon to specify a source file,

since the source file has no default filename.

5.3 Starting the Compiler

You can start the MS-Pascal Compiler in one of three ways :

1 . You can let the compiler prompt you for each of the three

filenames (as in the sample session) .

2. You can give all four filenames on the command line .

3. You can give some of the filenames on the command line

and let the compiler prompt you for the rest .

Each of these methods is discussed in the following sections . The

second method, giving all four filenames on the command line, is

particularly useful when you plan to use a batch command file .

See Chapter 7, "Using a Batch Command File," for information .

5.3.1 Giving No Parameters on the Command Line

To start the compiler without giving any of the necessary

parameters (filenames) on the command line, simply type the

following
:

A :PAS1

As in the sample session, the compiler prompts you for each of

the four filenames that it needs . A typical session might look like

this (your responses are shown in italics and small capital letters) :

47

Microsoft Pascal Compiler User's Guide

This sequence of responses would give you an object file called
B:MYFILE .OBJ, a source listing file called B :MYFILE .LST,
and no object listing file .

Note
Pressing the RETURN key means that you accept the default
filename shown in brackets ; giving any part of a file specifica-
tion creates a file with the same default rules that apply to
other files .

5.3.2 Giving All Parameters on the Command Line

Instead of letting the compiler prompt you for each of the four
filenames in turn, you may implicitly or explicitly give all four
names on the same command line with which you start the
compiler. This eliminates prompting for the filenames and is
particularly useful when you are using the MS-DOS batch file
facility. See Chapter 7, "Using a Batch Command File," for
information on creating a batch command file for use with the
compiler .

The general form of the command line that includes all of the
compiler parameters is as follows :

The same default naming conventions apply here as when you are
prompted for the filenames .

You must separate each filename with a comma; spaces are
optional. Put a semicolon at the end of the line to indicate that
you do not want additional prompting .

If you omit a filename after a comma, the file by default is given
the same filename as the source, the default device designation,

48

Source filename [. PAS]:M YFILE
Object filename [MYFILE .OBJ]:RETURN
Source listing [NUL.LST]:MYF/LE
Object listing [NUL.COD]:RETURN

A:PAST source, object, sourcelis t, objectlis t ;

and the default extension . Thus, these two command lines are
equivalent :

A:PAS1 DATABASE,DATABASE,DATABASE,DATABASE;
A:PAS 1 DATABASE,,, ;

Both result in the following four filenames being assigned :

Source file

	

B:DATABASE .PAS
Object file

	

B:DATABASE .OBJ
Source listing

	

B:DATABASE .LST
Object listing

	

B:DATABASE .COD

If you want the normal defaults, with NUL listing files, use the
semicolon (;) following the source filename . Thus, these command
lines are equivalent :

A:PAS 1 YC YC, YC YO, N UL, N UL ;
A:PAST YCYO;

More About Compiling

You may include spaces before or after filenames, but not within
them. The command line may also include switches, described in
Section 5 .4, "Pass One Compiler Switches," anywhere that
spaces can go .

5 .3.3 Giving Some Parameters on the Command Line

You may also start the compiler by giving one or more of the
required filenames on the command line and letting the compiler
prompt you for the rest . This feature of the compiler makes it
relatively failsafe to use .

For example, if you give only the names of the source file and the
object file on the command line, the compiler will prompt you for
the names of the source listing and the object listing (your
responses are shown in italics and small capital letters) :

B > A:PAS 1 TEST, TES T
Source listing [NUL.CCD]:TEST
Object listing [NUL .COD]:RETURN

49

Microsoft Pascal Compiler User's Guide

This sequence of responses results in the following filenames :

Source file

	

B:TEST.PAS
Object file

	

B:TEST.OBJ
Source listing

	

B:TE ST. L ST
Object listing

	

B:NUL.COD

5.4 Pass One Compiler Switches

By adding switches to the command line when you start pass one
of the compiler, or to your response to any of the pass one
prompts, you can direct the MS-Pascal Compiler to perform
additional or alternate functions . The switch tells the compiler to
"switch on" a special function or to alter a normal compiler
function. More than one switch may be used, but each must begin
with a slash (/) . Do not confuse these switches with the linker
switches, which are discussed in Section 6 .4, "Linker Switches ."

Switches affect the entire compilation and may be placed
anywhere that spaces may go. You may enter them either on the
command line or in response to compiler prompts . Table 5.2
shows the compiler switches that are currently available to you,
the default position of the switch, and the corresponding
metacommand .

50

Table 5.2

Command Line Switches

Action

More About Compiling

Checks for array index values
in range, including super
array indices
Directs the compiler to use the
decimal math routines in the
auxiliary math runtime
library, DECMATH .LIB
Switches on all debugging
switches
Generates procedure entry
and exit calls for debugger
Checks for use of uninitialized
values
Generates line number calls
for debugger
Checks for mathematical
errors such as overflow and
division by zero
Checks for dereferencing of
any pointers that are NIL
Switches off all debugging
switches
Checks for subrange validity
including assignments
Checks for stack overflow at
procedure or function entry
Checks tag fields in variant
records

Since all of the pass one switches correspond to MS-Pascal
metacommands, you can achieve the same effect either by using
the metacommand in the source file or by giving the command as
a switch to the compiler. However, any instruction given as a
metacommand in the source file overrides the corresponding
switch given at compile time .

51

Switch Default Metacommand

IA off $indexck

I C off $decmath

/D off $debug

/E off $entry

/I off $initck

IL off $line

/M off $mathck

IN off $nilck

IQ off $debug

/R off $rangeck

/S off $stackck

IT off $tagck

Microsoft Pascal Compiler User's Guide

The MS-Pascal metalanguage is discussed in detail in Chapter 18,
"Microsoft Pascal Metacommands," of the Microsoft Pascal
Reference Manual . The two switches, ID and /Q, are equivalent to
the $debug+ and $debug- metacommands, respectively, except
that they also turn on and off $entry and $line .

Several of the switches correspond to runtime error checking
metacommands that end with the letters "CK". Because of the
way these switches are implemented, turning one off does not
guarantee that the check will never be performed ; it only means
that no extra effort will be spent to perform the check.

Important
One strong caution should be observed . Error-checking
switches and their corresponding metacommands cause a
significant increase in the volume of code generated . You may
wish to use them in the early stages of program development,
then recompile your program without them to reduce your
program's code size and decrease its execution time .

The following sample command lines and responses illustrate the
use of compiler switches (your responses are shown in italics) :

This turns on $indexck :

B > A.PAS1 1A DEMO,,,NUL

This turns on all of the switches :

B > A:PAS1 DEMO,,,ID

This sequence first turns all switches off,
$mathck and $indexck, and later $initck :

52

B > A :PAS 1 DEMO/Q
Object filename [DEMO .OBJ]:/M/A
Source listing [NUL.LST]:DEMO
Object listing [NUL .COD]:1 /

and then turns on

Chapter 6
More About Linking

53

6 .1 Files Read by the Linker

	

55
6.1 .1 Object Modules

	

55
6.1 .1 .1 Standard Runtime Libraries 57
6 .1 .1 .2 Auxiliary Libraries

	

58
6.1 .2 Linking Libraries

	

59
6.2 Files Written by the Linker 60
6 .2 .1 The Run File

	

61
6.2.2 The Linker Listing File 61
6 .2 .3 VM.TMP 62
6.3 The Overlay Linker

	

62
6.3.1 Restrictions

	

63
6.3.2 Overlay Manager Prompts 64
6 .4 Linker Switches

	

64

This chapter provides an overview of what you will see on your
screen when you start LINK .EXE, the default version of
Microsoft LINK . Included in this overview is a description of the

	standard runtime libraries and the auxiliary libraries provided
with this version of the Microsoft Pascal Compiler . Also included
is a discussion of the optional version of Microsoft LINK,
LI N K. V 2, which accepts pathnames and overlays .

6.1 Files Read by the Linker

A successful Microsoft Pascal compilation produces a relocatable
object file . Linking, the next step in program development, is the
process of converting one or more relocatable object files into an
executable program .

6.1 .1 Object Modules

Object files can come from any of the following sources :

1 . Microsoft Pascal compilands (programs, modules, or
units)

2 . Microsoft FORTRAN compilands (programs, subrou-
tines, or functions)

3 . user code in other high-level languages
4. assembly language routines

5. routines in standard runtime library modules that
support facilities such as error handling, heap variable
allocation, or input/output

Interfacing to Microsoft FORTRAN routines is quite straight-
forward. The Microsoft FORTRAN procedure or function must
be external in the Microsoft Pascal source code, and all
parameters must be VARS or CON STS. For other languages, see
the appropriate reference and user manuals .

You may need to write assembly language interface routines to
translate from the Microsoft Pascal or Microsoft FORTRAN

55

More About Linking

Microsoft Pascal Compiler User's Guide

calling convention or function return to the one used by that
language. Whatever the language, it must be able to produce
linkable object modules . For information on linking assembly
languages routines, see Chapter 9, "Using Assembly Language
Routines." For further information on Microsoft LINK, see the
appropriate chapter in your MS-DOS manual .

The ability to link together programs, units, and modules of
Microsoft Pascal source code, as well as assembly language and
library routines, allows you to develop a program incrementally .
Separate compilation and later linking of separate parts of a
program not only reduces the need for continual recompilation, it
also allows you to create programs larger than 64K bytes of code .
See Chapter 8, "Compiling and Linking Large Programs," for
more information .

For now, assume that you have created a program that uses one
Microsoft Pascal unit and one Microsoft Pascal module and also
contains two assembly language external procedures . Assume
further that these files have already been compiled or, in the case
of the assembly language routines, already assembled and that
the files thus created are the following :

PROG.OBJ
UNIT.OBJ
MODU.OBJ
ASMI .OBJ
ASM2.OBJ

To link these all together, first start the linker by typing the
following :

A :LINK

Like the compiler, the linker gives a sequence of four prompts .
Before linking can proceed, you must explicitly or implicitly
supply the following pieces of information:

1 . the name(s) of the object modules to be linked
2 . the name to be given to the executable run file
3 . the linker listing file
4 . the names of any libraries to be searched (other than

PASCAL. LIB)

56

As with the compiler, responses to all except the first prompt
may be supplied by defaults .

In response to the first linker prompt, enter the names of the
object files, separated by plus signs as shown :

PROG+UNIT+MODU+ASM1+ASM2

The first object file listed must be a Microsoft Pascal program,
module, or unit, although it need not be the main program . Do
not put any assembly language module first ; doing so may result
in segments being ordered incorrectly . After the initial Microsoft
Pascal object file, you may list the other modules, units, or
assembly language routines in any order .

Note

Typing a semicolon at any point in the prompting session
after you have specified the object files that you wish to link,
tells the linker to omit the remaining prompts and to supply
defaults for all remaining parameters (see Table 6 .1 that
follows) .

Table 6.1
Linker Defaults

Prompt

	

Default Response

Object modules

	

None
Run file

	

prog.EXE
List map

	

NUL.MAP (i .e ., no map)
Libraries

	

PASCAL.LIB

6.1 .1 .1 Standard Runtime Libraries

A runtime library contains runtime routines that are required
during linking to resolve references made during compilation .
(See Section 10 .3 .1, "Runtime Routines," for a complete list .) It

57

More About Linking

Microsoft Pascal Compiler User's Guide

also may contain fixups used in floating-point instructions . (See
Section 10 .4.1, "The $floatcalls- Option," for details .)

Microsoft Pascal causes the linker to search for the runtime
libraries PASCAL. LIB and M ATH . LIB which are supplied with
the compiler and contain the standard runtime modules for
Pascal. MATH .LIB contains the default floating-point math
package. See Chapter 10, "Advanced Topics," for more details
about these elements of M ATH . L I B .

If you don't use any real numbers in your programs, MATH .LIB
is not required at linktime . But if you have unresolved references
when you link, the linker will request MATH .LIB to satisfy
them. You can also change the default math package by
renaming MATH.LIB and naming the library of your choice to
be `MATH .LIB . 7

6.1.1.2 Auxiliary Libraries

You may wish the linker to search additional libraries at runtime .
The auxiliary libraries supplied with Microsoft Pascal are :

1 . ALTMATH.LIB which contains a high speed floating-
point package

2 . 8087.LIB which contains `stubs' for the floating-point
package

3. DECMATH.LIB which contains decimal floating-point
support routines

4 . DCS2PAS.LIB which contains the MS-DOS 2 .0
input/output system .

58

Note

The auxiliary math libraries completely replace MATH .LIB
and can be specified before or after an explicit reference to
PA SCA L. L I B . I f you specify them first, the automatic
search for MATH.LIB will be suppressed. You must not
specify more than one math library explicitly .
DOS2PAS.LIB replaces the equivalent part of PASCAL.LIB
and must be searched before PASCAL.LIB. This will occur
automatically unless you are specifying PASCAL .LIB
explicitly . In this case, DOS2PAS.LIB must come before
PASCAL.LIB in the list of libraries supplied to the linker .

6.1.2 Linking Libraries

To produce a library search using the LI NIA . E XE prompts, you
specify the desired library at the "Libraries" prompt . For
example, if you wanted PASCAL . L IB to be searched, you would
enter Pascal. lib in the sequence of prompts ;

Object Modules [.CBJ]:your modules
Run File [SORT .EXE]:RETURN
List File [NUL .MAP]:RETURN
Libraries [.LIB]:pascaLlib

More About Linking

On the command line, it would look as shown here :

A > LINK your modules ,,,pascal.lib

I f PA SCAL. L I B or any library that you have specified cannot be
found, the following message will appear on your screen :

Cannot find library filename.lib
Enter new library spec :

Switch disks if necessary, and then type the name of the library
that you wish to be searched. I f instead you want linking to
proceed without a library search, respond by pressing the
RETURN key.

You can achieve the same effect by using the linker option
switch, NODE FAULTLIBRARYSEARCH, to override the

59

Microsoft Pascal Compiler User's Guide

automatic search for PASCAL .LIB . However, this will produce
unresolved reference error messages unless you replace every
required runtime routine with a routine of your own .

To instruct the linker to search other libraries (for example,
FORTRAN.LIB) as well as PASCAL .LIB, give the library
names, separated by plus signs, in response to the final linker
prompt,

Libraries [.LJB]:pascal.lib+fortran.lib+stat.lib

See your MSDOS User's Guide for complete information on
using different libraries with Microsoft LINK . Because a library
is read twice by the linker, this file is also a good candidate for a
file to put on a RAM-based disk drive or other fast file device .

I f you are using L I N K . E XE , you may specify just the drive, or
just the library filename, or both the drive and the filename . I f
you are using LINK-V2, you may specify the library filename in a
path (drive: \ pathname \ filename and extension) . For example,
if you want the standard runtime library, PASCAL .LIB, you
respond,

A > LINK your modules,,, \ pascal

The linker will look for PASCAL .LIB in the PASCAL directory
on drive A : . I f you respond,

Note

60

A > LINK your modules,,, \pascal \ too \

the linker will look for FOOL I B .

You cannot specify a pathname with the default linker,
LINK.EXE .

6.2 Files Written by the Linker

The primary output of the linking process is an executable run
file. You may also request a linker map or listing file, which

serves much the same purpose as the compiler listing files . The
linker, if need be, also writes and later deletes one temporary file .

6.2.1 The Run File

The run file produced by the linker is your executable program .

The default filename, given in brackets as part of the prompt, is
taken from the name of the first module listed in response to the
first prompt. To accept this prompt, press the RETURN key. To
specify another run filename, type in the name you want . All run
files receive the extension EXE .

The linker ordinarily saves the run file, with the extension .EXE,
on the disk in the default drive . To specify another drive, which
may be necessary if your program is large, type a drive name or
drive name and pathname for LINK .V2 in response to the run file
prompt .

6.2.2 The Linker Listing File

The link map, also called the linker listing file, shows the
addresses, relative to the start of the run module, for every code
or data segment in your program . If you request it, with the
/MAP switch, the linker map can also include all PUBLIC
variables. See Section 6 .4, "Linker Switches," for information on
the /MAP switch .

The link map defaults to the NUL file, unless you specifically
request that it be printed, displayed on the screen, or saved on
disk. In the early stages of program development, you may find it
useful to inspect the linker map in these two instances:

1 . when using the debugger to set breakpoints and locate
routines and variables

2 . to find out why a load module is so large (for example,
what routines are loaded, how big they are, and what's in
them)

As the prompt indicates, the default for the linker map is the
NUL file, that is, no file at all . Press the RETURN key to accept
this default. If you wish to see the linker map but not have it

61

More About Linking

Microsoft Pascal Compiler User's Guide

written to a disk file, type CON in response to the list file prompt .
(The special filename USER is not recognized by the linker .) If
you want the file written to disk, give a device or filename .

6.2.3 VM.TMP

Linking begins after you have responded to all of the linker
prompts. I f the linker needs more memory space to link your
program than is available, it will create a file called VM .TMP on
the disk in the default drive and will display a message like the
following:

VM.TMP has been created .
Do not change disk in drive B : .

If the additional space is used up or if you remove the disk that
contains VM .TMP before linking is complete, the linker will
terminate .

If the linker is terminated with a CTRL-C, use the MS-DOS
command DIR to check the contents of your disk to make sure
that VM.TMP has been deleted . Then, to make sure the space has
been released, use the C H KD S K program (supplied with MS-
DOS). CHKDSK will reclaim any available space from unclosed
files and tell you the total amount of available space on the disk .

6.3 The Overlay Linker

You can direct the MS-DOS 2.0 version of the linker (named
L I N K. V 2) to create an overlayed version of your program . This
means that parts of your program will only be loaded if and when
they are needed, and will share the same space in memory . Your
program will be smaller as a result, but will usually run more
slowly because of the time needed to read and reread the code into
memory.

Provided your modules obey the restrictions described below, all
you have to do is specify the overlay structure to the linker .
Loading of the overlays is automatic . You specify overlays in the
list of modules that you submit to the linker by enclosing them in

62

More About Linking

parentheses. Each parenthetical list represents one overlay . For
example, in the following response to the OBJECT MODULES
prompt,

OBJECT MODULES [.OBJ] : a + (rb + c) + (e + f) + g + (i + i)

elements (b + c), (e+ f) and (i + j) are overlays . The remaining
modules and any drawn from the runtime libraries, make up the
resident part of your program, or "root" . Overlays are loaded
into the same region of memory, so only one can be resident at a
time. Duplicate names in different overlays are not supported, so
each module can occur only once in a program .

The linker will replace calls from the "root" to an overlay and
calls from an overlay to another overlay with an interrupt
(followed by module identification and offset .) The interrupt is,
by default, number #CD. If this conflicts with another use of this
interrupt number in your program, you can specify another using
the /OV E RLAY I NTE RRU PT switch. This switch takes a
numeric parameter.

6.3.1 Restrictions

The name for the overlays is appended to the EXE file, and the
name of this file is encoded into the program so the overlay
manager can access it . If, when the program is initiated, the
overlay manager cannot find the EXE file (perhaps you have
renamed it or it is not in a directory specified by the path
environment variable), then the linker will prompt you for a new
name .

You can only overlay modules to which control is transferred and
returned by a standard 8086 long (segmented) call/return
instruction. This will always be true for Pascal and FORTRAN
modules (although you should not attempt to overlay any of the
modules in the standard runtime libraries) . An exception is a
function or a procedure parameter . In this case, the actual
parameter (the function or procedure that you specify as the
parameter) must either be in the same overlay in which the
parameter is used to call it, or in the "root". You cannot use long
jumps or indirect calls to pass control to an overlay .

63

Microsoft Pascal Compiler User's Guide

6.3.2 Overlay Manager Prompts

Suppose that B: is the default drive ; then in the following
example,

Cannot find PAYROLL .EXE
Please enter new program spec : \ employee \ data

the response " \ employee \ data \ " causes the overlay manager
to look for \ employee \ data \ payroll .exe on drive B : .

Now, suppose that it becomes necessary to change the disk in
drive B : . If the overlay manager needs to swap overlays, it will
find that PAYROLL .EXE is no longer on drive B :, and will give
the following message,

Please put diskette containing B : \ employee \ data \ payroll .exe
i n drive B: and strike any key when ready .

After the overlay has been read from the disk, the overlay
manager will give the following message,

Please restore the original diskette .
Strike any key when ready .

6.4 Linker Switches

After any of the linker prompts, you may give one or more linker
switches. Table 6.2 summarizes the linker switches you may use
with Microsoft Pascal . See your MS-DOS manual for more infor-
mation on linker switches and when and how to use them .

64

Table 6.2
Microsoft LINK Switches

Switch

	

Action

/DSALLOCATE

/LINENUMBERS

/MAP

More About Linking

/CPARMAXALLOC:NNNN
By default, the cparMaxAlloc field (at offset #OC)
in the EXE header (see Chapter 5 in the MS-DOS
2.0 Programmer's Reference) is set to 65535 . This
switch allows you to set the value to any number
between 1 and 65535 ; if the value you specify is
less than the computed value of cparMinAlloc, the
linker will use the value of cparMinAlloc (at offset
#OA) instead . If you are running programs under
MS-DOS 1 .25, you should not use this switch .

Loads data at the high end of the data segment .
For Microsoft Pascal and Microsoft FORTRAN
programs, this switch is required and supplied
automatically by the compiler .

Includes source listing line numbers and
associated addresses in the linker listing, which
allows you to correlate machine addresses with
source lines when debugging. This correlation is
also available on the object listing .

Includes all EXTERN and PUBLIC variables in
the linker list file .

/NODE FAULTLIBRARYSEARCH
Tells the linker not to automatically search
PASCAL.LIB .

/NOGROUPASSOCIATION
I f you are using L I NK . V 2 and find that you must
link in an old Microsoft Pascal/ FORTRAN library,
you must use this switch. This option causes
LINK.V2 to initiate the addressing scheme of
linkers delivered with MS-Pascal versions 3 .14 and
earlier.

/NOI G NORECASE
By default, "FOO", "foo", and "Foo" are treated
by the linker as being equivalent . I f
/NOIGNORECASE is specified, then they are all
different symbols .

65

Microsoft Pascal Compiler User's Guide

Table 6.2 (continued)

Switch

	

Action

/OVERLAYINTERRUPT:NN NN
By default, the interrupt number used for passing
control to overlays is CD hexadecimal . The overlay
interrupt switch allows the user to select a
different interrupt number. NNNN can be any of
the following:
•

	

A decimal number from 0 to 255 (numbers that
conflict with MS-DOS interrupts are not
prevented, but their use is inadvisable .)

•

	

An octal number from 0 to 377 . A number is
interpreted as octal if it starts with a zero, e.g .,
10 is 10 decimal but 010 is 8 decimal .

•

	

A hexadecimal number from 0 to FF. A number
is interpreted as hexadecimal if it starts with
"Ox" . Thus, 10 is ten decimal, 010 is 8 decimal,
and Ox 10 is 16 decimal .

/PAUSE
Tells Microsoft LINK to display the following
message :

About to generate EXE file
Change disks < p ress RETU R N

You may then change disks before the linker
continues .

66

As with all linker switches, a unique abbreviation of the switch
name is acceptable in place of the whole name .

The /PAUSE switch is particularly useful for linking large
programs, since it allows you to switch disks before writing the
run file . However, if a VM .TMP file is created, you must not
switch the disk in the default drive .

Note
For Microsoft Pascal and Microsoft FORTRAN programs,
do not use either of the additional linker switches /HIGH or
/STACK .

Chapter 7
Using a Batch Command File

MS-DOS allows you to create a batch file for executing a series of
commands . Creating and using batch command files is described
fully in your MS-DOS manual . This chapter provides a brief
description of command files in the context of compiling, linking,
and running an MS-Pascal program .

A batch command file is a text file of lines that are MS-DOS
commands. If a batch file is open when MS-DOS is ready to
process a command, the next line in the file becomes the
command line. After processing all batch command lines (or if
batch processing is otherwise terminated), MS-DOS goes back to
reading command lines from the screen .

Batch file lines cannot be read by the compiler, the linker, or a
user program. Thus, you cannot put responses to filename
prompts, $inconst values, or the like in a batch file . All compiler
parameters must be given on the command line, as described in
Section 5 .3.2, "Giving All Parameters on the Command Line ."

The batch file may contain dummy parameters that you replace
with actual parameters when you invoke it . The symbol % 1 refers
to the first parameter on the line, %2 to the second parameter,
and so on. The limit is %9. A batch command file must have the
extension BAT and should be kept on either the program disk or
the utility disk .

The PAUSE command, followed by the text of the prompt, tells
the operating system to pause, display a prompt (which you have
defined), and wait for some further input before continuing .

If your program is already debugged and you are making only
minor changes to it, you can speed up the compilation process by
creating a batch file that issues the compile, link, and run
commands .

For example, use the line editor in MS-DOS to create the
following batch file, COLIGO .BAT:

67

Microsoft Pascal Compiler User's Guide

A: PAS1 %% ;
PAUSE. . . I f no errors, insert PAS2 disk i n drive A :
A: PAS2
PAUSE. . .Insert runtime libraries disk in drive A :
A:LINK %1 ;

To execute this file, type :

COLIGO SORT

68

SORT is the name of the source program you want to compile,
link, and run .

1 . The first line of the batch file runs pass one of the
compiler .

2 . The second line generates a pause and prompts you to
insert the pass two disk .

3 . The third line runs pass two .

4 . The fourth line generates a pause and prompts you to
insert the runtime library .

5 . The fifth line links the object file .
6 . The sixth line runs the executable file .

A BAT file is only executed if there is neither a COM file or EXE
file with the same name. Thus, if you keep your source file and
BAT file on the same disk, they should have different filenames .

For more information about batch command files, see your
MS-DOS manual .

Chapter 8
Compiling and
Linking Large Programs

8 .3 .2

	

Complex Expressions

	

78
8.4 Working With Limits

§.4 .4

	

A Complex Example

	

83
8.5 Minimizing Load Module Size

	

84
8.5.1

	

I/O

	

85
8.5.2

	

Runtime Error Handling

	

86
8.5.3

	

Error Checking

	

86

69

8 .1 Avoiding Limits on Code Size 71
8.2 Avoiding Limits on Data Size 71
8 .2 .1 Long Heap Allocation

	

73
8.2.2 Allocating Dynamic Arrays

on the Long Heap 75
8 .3 Working With Limits

on Compile Time Memory 77
8 .3 .1 Identifiers

	

77

on Disk Memory 79
8.4 .1 Pass One 79
8 .4 .2 Pass Two 81
8.4 .3 Linking 82

(

(

Compiling and Linking Large Programs

occasionally, you may find that a large program exceeds one or
more physical limits on the size of program the compiler, the
linker, or your machine can handle . This chapter describes some
ways to avoid or work within such limits .

S.1 Avoiding Limits on Code Size

The upper limit on the size of code that can be generated at once
by the MS-Pascal Compiler is 64K bytes . However, since you can
compile any number of compilands separately and link them
together later, the real program size limit is not 64K but the
amount of memory available .

For example, you can separately compile six different compilands
of 50K bytes each. Linking them together produces a program
with a total of 300K bytes of code .

In practice, a source file large enough to generate 64K bytes of
code would be thousands of lines long, and unwieldy both to edit
and to maintain . A better practice is to break a large program
into MS-Pascal modules and units to better structure the
development and maintenance process . As always, there is a
tradeoff between size and speed . Procedure and function calls
within a module to routines without the PUBLIC attribute are
somewhat faster, since intrasegment calls, which run faster, are
generated rather than intersegment calls .

Finally, if your program is still too big, you should consider
devising an overlaying scheme . See Section 6 .3, "The Overlay
Linker," for details .

8.2 Avoiding Limits on Data Size

Data includes your main variables, the stack, and the heap .
MS-Pascal operates with data in two regions of memory :

1 . the default data segment

2 . the segmented data space

71

Microsoft Pascal Compiler User's Guide

The upper limit on the amount of data that can reside in the
default data segment is also 64K bytes . You can go beyond this
limit by taking advantage of the ability to place certain kinds of
data outside the default data segment, using ADS variables, the
long heap allocator (HESM), VARS and CONSTS parameters,
and segmented ORIGIN variables .

The default data segment normally holds the following :

1 . all statically allocated variables
2. constants that reside in memory
3. heap variables
4. the stack, which holds parameters, return addresses,

stack variables, etc .

The segmented data space includes the entire 8086 address space,
including the default data segment . See the appropriate chapters
in the Microsoft Pascal Reference Manual for a discussion of
these MS-Pascal features .

Although operations with data in the default data segment are
more efficient (i .e., generate less code and run faster) than those
with data that may be in any other segment, almost all MS-
Pascal operations work equally well on data outside the default
data segment. Only in the following cases must data reside in the
default data segment :

1 . file variables
2. the LSTRING parameters to ENCODE and DECODE
3. all parameters to RE ADSE T

To allocate data outside the default data segment, you can use
the long heap allocator which works in a similar way to NEW and
DISPOSE. If you wish to make static allocation of data outside
of the default data segment, you must go outside the MS-Pascal
system itself. If you already know the address of free blocks of
memory on your computer, you can use these addresses in a
segmented ORIGIN attribute or assign them to an ADS
variable. Otherwise, you can get the addresses of free memory
from MS-DOS, using a process (described in item 4 in Section
B.1, "Implementation Additions") to get a pair of ADS variables
to the lower and upper bounds of available memory .

72

Compiling and Linking Large Programs

Many applications use a large block of memory for primary data,
as well as various other variables to control access and
processing of this data. For example, a text editor will have a
work area; a data base system will have a data area (or index
area); and so on. This large block can be managed outside the
default data segment with ADS variables .

In the default data segment, the heap and the stack grow toward
each other. Heap allocation will attempt to use existing disposed
blocks in the heap itself, before growing into memory shared with
the stack . As a part of this process, adjacent disposed blocks are
merged, and free blocks at the end of the heap become available to
the stack . However, only heap allocation (i .e., NEW or ALLHQQ)
releases free heap blocks to the stack . Therefore, it you are run-
ning out of stack after a number of DISPOSE operations, make
the following call:

EVAL (ALLHQQ (65534)) ;

ALLHQQ should be declared as an external function, like this :

FUNCTION ALLHQQ (SIZE:WORD); WORD ; EXTERN

8.2.1 Long Heap Allocation

A "long" heap module, HESM (segmented addresses), has been
provided with this release of Pascal . The module assumes that all
memory from the top of DGROUP to the bottom of MS-DOS is
available to the long heap allocator.

Four library procedures (system extensions) have been provided
that allow the user to access segmented memory beyond the
default DGROUP data segment ASSUMED by the MS-Pascal
runtime. The routines assume that all memory beyond DGROUP
has been allocated to the user by the MS-DOS loader . Requests to
the ALLMQQ and GETMQQ routines may be up to 64K .

You can use one of the following four routines to allocate and free
up to 64K bytes of memory at a time . The amount of memory
actually reserved is always a unit number of 16-byte paragraphs .
These routines are at the system level of extension .

Allocate block of "wants" bytes .1
FUNCTION ALLMQQ (wants : word) : adsmem ;

73

Microsoft Pascal Compiler User's Guide

I Free a block . No error handling . 1
FUNCTION FREMQQ (block : adsmem) : word ;

l Call ALLMQQ, check for error retu rns .l
FUNCTION GETMQQ (wants : word) : adsmem ;

Call FREMQQ, check for error returns .l
PROCEDURE DISMQQ (block : adsmem);

Procedure ALLMQQ allocates segmented memory blocks . (No
single block may be greater than 64K bytes .) Function FREMQQ
frees a segmented block of memory ; returns 0 if no errors
encountered, nonzero otherwise . Function GETMQQ performs an
ALLMQQ with error checking. Procedure D I SMQQ performs a
FRE MQQ with error checking.

If the space above DGROUP is exhausted using ALLMQQ,
blocks of memory are allocated by ALLMQQ from the "small"
unsegmented heap between the end of program space and the
user stack. Thus, ALLMQQ can utilize all of the available user
memory on 8086 based machines .

In the above routines the parameter "wants" is the size in bytes
of the desired memory request and the parameter "block" is a
segmented address. ALLMQQ(w).r will be (0) if a block of the
correct size cannot be found and (1) if the segmented address
space has been corrupted .

Unlike allocating with NEW, the compiler cannot check that
sufficient bytes are allocated to contain the variable you are
going to reference. This is the responsibility of your program .

For variables of fixed size including variant records, you can use
the SIZEOF function . You must use ADS variables to reference
the allocated variable, so be careful when you assign one ADS
variable to another, since there is no type checking on such
assignments .

This means that you could accidentally retype the variable to one
that is longer than the space allocated. If you reference parts of
the variable for which no memory is assigned, you will get
unpredictable results . If you assign to those same parts, you may
get serious and, occasionally, catastrophic errors .

74

Compiling and Linking Large Programs

8.2.2 Allocating Dynamic Arrays on the Long Heap

While you can use S I ZE O F and appropriately typed variables
(with care) to reference fixed size variables correctly, SIZE OF is
less effective if you want to allocate arrays whose bounds are to
be fixed at runtime. (Unlike NEW, you cannot use a pointer to
supertype, since pointers cannot reference the long heap .)

However, you can achieve the effect of "dynamic" bounds, by
declaring your address type as if it referenced an array with fixed
bounds greater than the maximum you would have allocated if
you were using NEW .

In any particular instance, you allocate memory only for the
array elements you require for that instance . To be safe (at least
when you are developing your program), you should explicitly
check index values against the value you used to allocate the
array, before using them to reference the array .

The following example illustrates how to use the long heap
allocator and includes an appropriate test on the index .

PROGRAM LONGALLOCATION ;

CONST
M AX I N D EX = 4000 ;

TYPE
MAXARRAY = ARRAY [1 . . MAXI N DEX] OF RECORD

i : integer;
j : real

END;
ADSARRAY = ADS OF MAXARRAY ;
REKORD = RECORD

CASE INTEGER OF
0 : ();
1 : (b : byte) ;
2 : (i4 : integer4)
END ;

ADSREKORD = ADS OF REKORD ;

VAR
w : word ;
r : rekord ;
rp : adsrekord ;
ap : adsarray;

75

Microsoft Pascal Compiler User's Guide

76

#Allocate a block of "wants" bytes#
FUNCTION ALLMQQ (wants : word) : adsmem; extern ;

I Free a previously allocated block (no error handling)l
FUNCTION FREMQQ (block : adsmem) : word ; extern ;

#Call ALLMQQ, and check for error returnsl
FUNCTION GETMQQ (wants : word) : adsmem; extern ;

#Call FREMQQ, and check for error returnsl
PROCEDURE DISMQQ (block : adsmem); extern ;

PROCEDURE P (U : INTEGER) ;
BEGIN
W : = 20;
AP : ALLMQQ (SIZEOF (AP [1J) * W) ;
You must not use an index greater than wl
RP : = ALLMQQ (SIZEOF (R, 2)) ;
IF U > ORD(W) THEN ABORT

('ARRAY BOUND EXCEEDED', WRD(U), W) ;
A P [U] .1 : = 5 ;
#

	

. . .l

#

	

. .

	

.#

DISMQQ (AP) ;
DISMQQ (RP)

END ;
BEGIN
P (9) ;
END .

8.3 Working With Limits
on Compile Time Memory

During compilation, large programs are most often limited in the
number of identifiers in any one source file. They are occasionally
limited by the complexity of the program itself . If one of these
limits is reached, you will see the following error message :

Compiler Out Of Memory

There is no particular limit on the number of bytes in a source file .
The number of lines is limited to 32767, but in practice, any
source file this big will run into other limits first .

8.3 .1 Identifiers

Pass one of the compiler can handle a maximum of about a
thousand identifiers visible at any one time. This assumes a 64K
default data segment (i .e., about 160K of memory total) ; it also
assumes that most of your identifiers are seven characters or
shorter and are not PUBLIC or EXTERN.

Once a procedure or function is compiled, its local identifiers can
be released to provide room for new ones. Several methods of
reducing the number of identifiers in a program are described in
the following paragraphs .

1 . Break your program into modules or units .

The best way to reduce the number of identifiers is to
break up your program into modules or units. When
dividing your application into pieces, one guiding
principle is to minimize the number of shared (i .e .,
PUBLIC and EXTERN) identifiers . This not only is good
programming practice, it makes compilation easier .

Breaking up a program may force you to choose between
a shared variable and a shared procedure or function .
Usually a shared procedure or function is "cleaner" ; it is
easier to trace the use of a procedure than the use of a
variable, for example . However, a shared variable is
usually more efficient in terms of memory required and
number of identifiers used .

77

Compiling and Linking Large Programs

Microsoft Pascal Compiler User's Guide

2 . Simplify your identifiers .

Although it reduces the readability of a program (since
naming something is a more readable way of referring to
it than giving an arbitrary number), you may simplify
your identifiers by replacing names with numbers. If
necessary, any of the following may help :
a. Change enumerated types into WORD types and use

numbers instead of identifiers .
b. Use constant literals instead of constant identifiers .
c . Combine related procedures and functions into single

ones, with a parameter indicating the type of call .
d. Combine variables into an array and refer to the

variables using constant array indices .

A special caution is required regarding interfaces . When an
interface USES another interface, it must import all identifiers in
the other interface. To do this, the other interface must have been
declared, so now its identifiers occur twice . If a third interface
USES both of the first two, the first interface's identifiers occur
three times and the second interface's identifiers occur twice, and
so on. This is an easy way to run out of identifiers!

The only reason an interface needs to USE another interface is to
import identifiers for types ; an interface has no use for variables,
procedures, and functions . You can declare a single interface with
global types; this is the only interface used by other interfaces .
Once compilation gets past the USES clause in the PROGRAM,
MODULE, or IMPLEMENTATION, many of these "extra"
identifiers are removed.

8.3.2 Complex Expressions

It is also possible to run out of memory in pass one with any of
the following :

1 . a very complex statement or expression (i .e., one that is
very deeply nested)

2 . a large number of error messages
3 . a large number of structured constants, including string

constants

78

r

Compiling and Linking Large Programs

You may be able to change literal strings and other structured
constants into EXTERN RE ADO NLY variables which get
initialized (as PUBLIC variables) in another module .

Usually, if a program gets through pass one without running out
of memory, it will get through pass two. The major exception
occurs with complex basic blocks, as in either of the following :

1 . sequences of statements with no labels or other breaks

2 . sequences of statements containing very long
expressions or parameter lists (especially a WRITE or
W R ITE LN procedure call with many expressions)

If pass two runs out of memory, it displays the following
message :

Compiler Out Of Memory

The error message will give a line number reference . If there is a
particularly long expression or parameter list near this line,
break it up by assigning parts of the expression to local variables
(or using multiple WRITE calls) . If this does not work, add labels
to statements to break the basic block.

8.4 Working With Limits on Disk Memory

Another type of limit you may encounter is in the number of disk
drives on your computer or the maximum file size on one disk . As
with other limits, there are several possible solutions .

The simplest method of avoiding these limits is to first load a
compiler pass, then switch disks and run the pass .

8 .4.1 Pass One

For PASI .EXE, just type PAS1 (or dev:PAS1, if necessary) to
load pass one. When the "Source File" prompt appears, you can
remove the disk containing PAS 1, E XE . I f you have a single-
drive system, replace the system disk with the disk containing
your source file. PAS1 will write its intermediate files on the
same disk .

79

Microsoft Pascal Compiler User's Guide

If you have a two-drive system, insert your source file in the
nondefault drive. Since the intermediate files are always written
to the default drive, you will need to give an explicit device (i .e .,
drive) letter for your source file . Typically, a source listing file
would go on the same drive as the source .

If your source file will not fit on one disk, you can break it into
pieces and use the $include metacommand to compile the pieces
as a group . One way to do this is to create a master file with lines
such as :

i $message : `insert B : P1 . PAS'
$inconst :P1 $incIude :`B :P1 .PAS'j

I $message : `insert B : P2 . PAS'
$inconst :P2 $incIude :`B:P2.PAS'#

$message :`insert B : P3 . PAS'
$inconst :P3 $include :'B:P3.PAS'j

The $inconst metacommand makes the compiler pause while you
switch disks. These $include metacommands can also be simply
typed at your screen. Just give USER as the name of your source
file, and type your $include metacommands directly, one per line .
You will need to type CONTROL-Z (end-of-file) to end the
compilation .

If your source file doesn't fit on one disk, your source listing file
will not fit either, so you will need to send it directly to the
printer . If you think you could get a listing file on the disk, except
that the source and intermediate (PAS I B F) files take up too
much room, include a line like the following near the start of your
source file:

I$inconst:ZERROR1 CONST ERROR = 1 DIV ZERROR ;

I f you respond with 0 to the " I nconst ZE RRO R" prompt, you
will get a compiler error . The compiler error stops the writing of
the intermediate files, which will leave room on the disk for your
listing. However, then you will have to run the front end twice,
once to generate intermediate files for pass two and once for the
listing.

Another way to control a large listing file is use of the $list
metacommand. Turn off generation of listing code with the
$list- metacommand, and then use the pair of metacommands,
$list+ and $list-, to bracket only those portions of the program
for which you want a source listing .

80

8.4.2 Pass Two

Two command line parameters available with pass two can help
you with disk limitations .

1 . You can indicate a drive letter on which your input
intermediate files, PASIBF .SYM and PASIBF .BIN, can
be found .

2 . The /PAUSE switch tells pass two to pause while you
remove the disk containing PAS2 .EXE and insert some
other disk .

For example, if you have a single-drive system, insert your
PAS2.EXE disk and type PAS2 IPA USE. After PAS2.EXE is
loaded, you will see the message :

Compiling and Linking Large Programs

Press ENTER or RETURN to begin pass two .

Take out the PAS2.EXE disk and insert the disk with the
intermediate file from pass one. Now press ENTER or RETURN and
pass two will run .

If you have two drives, but you run out of disk memory when
executing pass two, you need to have the input intermediate files
PASIBF .SYM and PASIBF .BIN on one drive and
PASIBF.TMP on the other drive (also PASIBF .GID if you are
making an object listing file) .

The PASIBF.TMP file (and the PASIBF.GID file used in pass
three) are always written to the default drive .

Give pass two a drive letter to specify the drive containing the
PASIBF.SYM and PASIBF .BIN files ; for example, PAS2 B.
Normally you will also need the pause command ; for example,
PAS2 BIPA USE. Pass two will respond with a message like the
following :

PAS! BF .SYM and PAST B F . B I N are on B :

This message is followed by the pause prompt :

Press ENTER key to begin pass two

81

Microsoft Pascal Compiler User's Guide

When you run pass two with the PASIBF files on two disks, the
object file should usually go on the same disk as PASIBF .TMP
(and PASIBF.OID); that is, in the default drive . If it doesn't
quite fit, and you are making an object listing file, you could
compile your program twice, once without the object listing but
with the object file itself, and once with an object listing but with
NUL used for the object file .

8.4.3 Linking

If you are making a large program with small disks (or only one
disk drive), you may run into similar problems when you link
your program . Since you can split your program into pieces and
compile them separately, but you must link the entire program at
one time, you may run into disk limitations in the linker but not
the compiler .

The linker will prompt you for any object files and/or libraries it
cannot find, so you can swap in the correct disk and continue
linking. Also, the /PAUSE switch makes the linker wait after
linking but before writing the run (EXE) file, so you can create a
run file that fills an entire disk . However, creation of the virtual
file VM.TMP and the link map limit the amount of disk swapping
you can do .

On a single-drive system :

1 . Load the linker by typing LINK.
2 . Remove the disk containing LI NK. E XE and insert the

disk containing your object file(s) and, if there is room,
any libraries .

3 . Respond normally to the linker prompts, except to
include the /PAUSE switch with the run file if you want
the run file on another disk .

Unless all object files, libraries, and the run file will fit on one
disk, you must not write the linker listing to a disk file . Instead,
send the linker map to NUL, CON, or directly to your printer .
Since the map is written at various points in the linking process,
you cannot swap the disk on which the map is written .

The linker will prompt you when it needs an object file, a library
file, or is about to write the run file; exchange disks as necessary

82

Compiling and Linking Large Programs

when this happens. If the linker gives a message that it is
creating VM.TMP, its virtual memory file, you cannot switch
disks anymore, so you may not be able to link without more
memory or a second disk drive .

With two disk drives, you can devote one drive (the default) to the
VM.TMP file (and to the linker map, if you want one) . Use the
other drive for your object files, libraries, and run file (using the
/PAUSE switch). With this method, you can link very large
programs .

The linker makes two passes through the object files and
libraries: one to build a symbol table and allocate memory, and
one to actually build the run file . This means you will insert a disk
containing object files or libraries twice, and finally insert the
disk that will receive your run file.

8.4.4 A Complex Example

The following example illustrates compiling and linking a very
large program . The example assumes that the machine has two
drives and that the programmer doesn't want any of the listing
files .

Pass one

1 . Log onto drive B : .
2 . Insert the disk containing PAS 1 . E XE in drive A:, type

A:PAS1, and wait for the "Source File" prompt .
3 . Remove the disk containing PAS 1 . E XE from drive A:

and insert the disk containing the source file,
LARGE.PAS.

4 . Respond to the "Source File" prompt with
A:LARGE,A:LARGE, and wait for pass one to run .

Pass two

1 . Log onto drive A : . Remove the source disk from A : .
2 . Insert the disk containing PAS2 .EXE in A:, type PAS2

B/PA USE and wait for the pass two prompt .
3 . Remove the disk containing PAS2 .EXE from A : . Insert

an empty disk (to which the object file will be written) .

83

Microsoft Pascal Compiler User's Guide

4 . Respond to the pass two prompt by pressing the RETURN
key and wait for pass two to run .

5 . Remove the disk containing the object file from A : .

Linking

1 . Log onto drive B: (which contains a now-empty disk) .
2 . Insert LINK.EXE in A :; type A:LINK and wait for the

"Object Modules" prompt .
3 . Remove the disk containing LINK.EXE from A: and

insert the disk containing the object file(s) .
4 . Respond to the "object Modules" prompt by typing

A:LARGE (plus any other object files) .
5 . Respond to the "Run File" prompt by typing

LARGEIRA USE.
6 . Respond to the "List File" prompt by pressing the

RETURN key, or type B:LARGE to get a linker map .
7 . Respond to the "Libraries" prompt by pressing the

RETURN key or with a library name (the library must be
on A:) .

8. Wait for the linker to run, swapping the A : disk after
prompts as necessary .

8.5 Minimizing Load Module Size

Some MS-Pascal load modules can be reduced in size by
eliminating runtime modules your program doesn't use .
Reductions can be made in several areas :

1 . I/O
2. runtime error handling
3 . error checking

84

8.5.1 I/o

Compiling and Linking Large Programs

Because most MS-Pascal programs perform I/O, they require
linking to the MS-Pascal file system in the runtime library .
However, some programs do not perform I/O and others perform
I/D by directly calling the MS-Pascal Unit U file routines or
calling operating system I/O routines . For more information on
Unit U, see Section 10 .2, "An Overview of the File System ."

Nonetheless, all programs include calls to INIFQQ and
ENDYQQ, the procedures that initialize and terminate the file
system. These calls increase the size of the load module by linking
and loading routines that may never be used .

I f a program doesn't need the file system routines, you can
eliminate unnecessary file support by declaring dummy I N I FQQ
and ENDYQQ subroutines in your program, as follows :

PROCEDURE INIFQQ [PUBLIC] ;
BEGIN
END ;

PROCEDURE ENDYQQ [PUBLIC] ;
BEGIN
END ;

The linker will still load the Unit U procedures necessary to
access the terminal (INIUQQ, ENDUQQ, PTYUQQ, PLYUQQ,
and GTYUQQ), so that the runtime system can write any
runtime error messages .

However, if you do include the dummy procedures shown and the
linker produces any error messages for global names that end
with the "FQQ" or "UQQ" suffix, your program requires the file
system and the process described above will not work. The most
common ones would be NEWFQQ, the file variable initializer,
and BUFFQQ, the lazy evaluation evaluator .

On the other hand, if your program doesn't require the 1/0-
handling procedures called by Unit U, you can use the dummy
file NULF.OBJ instead. NULF.OBJ contains the dummy
subroutines for I N I FQQ and ENDYQQ, as well as dummies for
INIUQQ and ENDUQQ.

85

Microsoft Pascal Compiler User's Guide

8.5.2 Runtime Error Handling

If runtime error handling is not required, the load module can be
further reduced in size by eliminating the error message module
and replacing it with the null object module, NULE6 .GBJ .
NULE6.OBJ provides for simple termination of a program if an
error occurs .

I N UXQQ, the unit initialization helper, also resides in the error
unit. I f you want to replace error handling with N U LE 6, you
must do any unit initialization yourself and remove the keyword
BEGIN from all the interfaces in your source program .

8.5.3 Error Checking

Compiling and linking a program with the error-checking
switches or metacommands on may generate up to 40 percent
more code (or even more with $line+) than with these switches or
metacommands off. Therefore, after a program has been success-
fully compiled, linked, and run, turn the error-checking switches
off and do the entire process again to create a program that will
run considerably faster .

86

Chapter 9

Using Assembly
Language Routines

9 .1 Calling Conventions

	

89
9.2 Internal Representations of Data Types

	

92
9.3 Interfacing to

Assembly Language Routines 96

87

l

Using Assembly Language Routines

After describing the MS-Pascal calling conventions and internal
representations of data types, this chapter shows how to
interface 8086 assembly language routines to MS-Pascal
compilands. The information in this chapter is not required for
most MS-Pascal programs and is intended primarily for the
advanced programmer who is familiar with the following
material:

1 . The EXTERN directive . (See Chapter 14, "Introduction
to Procedures and Functions," of the Microsoft Pascal
Reference Manual .)

2 . Procedure and function parameters . (See Chapter 14,
"Introduction to Procedures and Functions," of the
Microsoft Pascal Reference Manual .)

3 . MS-Macro Assembler. See your MS-DOS manual .

9.1 Calling Conventions

At runtime, each active procedure or function has a "frame"
allocated on the stack. The frame contains the data shown in
Figure 9.1 .

89

Microsoft Pascal Compiler User's Guide

Framepointer

	

30

90

t For statement functions .
t t For all other procedures .

Figure 9.1. Contents of the Frame

The framepointer points at the saved caller framepointer, below
the return address, and is used to access frame data . A procedure
or function nested within another procedure or function has an
upper framepointer, so it can access variables in the statically
enclosing frame .

The following takes place during a procedure or function call :

1 . The caller saves any registers it needs (except the
framepointer) .

2. The caller pushes parameters in the same order as they
are declared in the source and then performs the call .

3. The called routine pushes the old framepointer, sets up
its new framepointer, and allocates any other stack
locations needed. It also checks for adequate stack space
if $ stackck was on .

To return to the calling routine, the called routine restores the
caller's framepointer, releases the entire frame (including

Parameters

Two-byte address of long
function return value, if any

Upper framepointer,
if any. Two-byte
return address t

Four-byte
return address tt

Saved caller framepointer

Short function return value, if any

Local data and temporaries

PUSH

	

BP
MOV

	

BP,SP
body of routinel
MOV

	

SP,BP
POP

	

BP
RET

	

PARAMETERSIZE

Using Assembly Language Routines

parameters), and returns. Not all of these steps need necessarily
be taken in an assembly language routine. You must only ensure
that the framepointer is not modified and that the entire frame,
including all parameters, is popped off the stack before returning .
For information on the assembly language interface, see Section
9 .3, "Interfacing to Assembly Language Routines ."

The standard entry and exit sequences (with $stackck-) are as
follows :

A function always returns its value in registers . For real types,
structured types, and pointers to super arrays, regardless of
length, the caller allocates a temporary frame for the result and
passes the offset address to the function like a parameter . When
the called routine returns, it places the address back in the
normal return register (AX) .

8086 and 8088 microprocessors perform a long call if the called
routine is PUBLIC or EXTERN . In all other cases, they perform
a short call.

The called routine must save the BP register, which contains the
MS-Pascal framepointer, as well as save the DS segment register.
The SS register is used by interrupt routines, both user-declared
and 8087 support, to locate the default data segment, and so
must not be changed (at least, if interrupts are enabled) . Other
registers (FLAGS, AX, BX, CX, DX, SI, DI, and ES) need not be
saved.

Functions return a one-byte value in AL, a two-byte value in
AX, and a four-byte value in DX :AX (high part:low part, or
segment: offset) .

91

Microsoft Pascal Compiler User's Guide

9.2 Internal Representations of Data Types

This section describes the internal representation of MS-Pascal
data types. Programmers who use both MS-Pascal and MS-
FORTRAN should pay particular attention to the data type and
parameter passing differences when passing data between the
two languages. For internal representations of MS-FORTRAN
data types, see the Microsoft FORTRAN Compiler User's Guide .

1 . INTEGER and WORD
INTEGER values are 16-bit two's complement numbers,
but a subrange requiring 8 bits or less (i .e ., in the range
-127 through 127) is allocated an 8-bit byte . WORD
values are 16-bit unsigned numbers, but a WORD
subrange in the range 0 through 255 is allocated an 8-bit
byte. For 16-bit INTEGER and WORD values, the least
significant byte has the lower, even address .

2 . INTEG E R4 and REAL
I NTE GE R4 values are 32-bit two's complement
numbers, with the least significant byte at the lowest,
even address and more significant bytes at increasing
addresses. There are no subranges for INTEGER4 (as
there are for INTE GE R2) .
IEEE 4-byte real numbers have a sign bit, 8-bit excess
127 binary exponent, and a 24-bit mantissa . The
mantissa represents a number between 1 .0 and 2 .0. Since
the high-order bit of the mantissa is always 1, it is not
stored in the number . This representation gives an
exponent range of 10**38 and 7 digits of precision. The
maximum real number is normally 1 .701411E 38 .
IEEE 8-byte real numbers have a similar format, except
that the exponent is 11-bits excess 1023, and the
mantissa has 52 bits (plus the implied high-order 1 bit) .
(This gives an exponent range of 10**306 and 15 digits of
precision.)
In either case, a number with an exponent of all zeros is
considered zero. An exponent of all ones is a flag for an
invalid real number, or NAN ("Not A Number") .

92

Using Assembly Language Routines

3 . Single and Double DECIMAL floating-point
Decimal floating-point numbers consist of a byte
containing a sign bit and a 7-bit exponent in excess 64
notation followed by a mantissa consisting of 6 (single)
and 14 (double) binary coded decimal digits packed two to
a byte. (If the exponent byte is zero, the number is zero .)
The allowable ranges of numbers are,
single

	

+.1E-63 to + .999999E63
- .1E-63 to - .999999E63

double

	

+.1E -63 to + .99999999999999E63
-AE-63 to -.99999999999999E63

4 . CHAR, BOOLEAN, and enumerated types
CHAR values and BOOLEAN values take 8 bits. CHAR
values correspond to the ASCII collating sequence . For
BOOLEAN values, FALSE is 0 and TRUE is 1 . The low-
order bit (bit 0) is generally used to check this value . Bits
1 through 7 are presumed to be 0 .
Enumerated values take 8 bits if 256 or fewer values are
declared; otherwise 16 bits are declared . Values are
assigned starting at 0 . Subrange values take either 8 or
16 bits .

5 . Reference types
Pointer values currently take 16 bits . A pointer is an
offset within the current default data segment . Other
representations, such as an offset from an address kept in
a global variable or an address divided by a power of two,
may be used in the future. A pointer to a super array type
is followed by the bounds (see item number 6 of this list),
increasing the length of the pointer value (DS/SS) .
AD R and ADS are offset addresses and segmented
addresses, respectively . For segmented addresses, the
offset is the lower address, and the segment follows.
The heap contains heap blocks, which may be allocated or
free. A heap block contains a header WORD, with a 15-bit
length (in WORDs) and the lower-order bit, which is I for
free blocks and 0 for allocated blocks. The starting and
ending heap addresses are WORD variables in B E G HQQ
and E NDHQQ .

93

Microsoft Pascal Compiler User's Guide

94

6 . Procedural and functional parameters
Procedural parameters contain a reference to the
procedure or function's location along with a reference to
the "upper framepointer" (a list of stack frames of
statically enclosing routines) . The parameter always
contains two words, in one of two formats . In the first
format, the first word contains the actual routine's
address (a local code segment offset), and the second word
contains the upper framepointer . The upper framepointer
is zero if the actual routine is not nested in a procedure or
function and, therefore, the routine has no upper
framepointer .

In the second format, used for segmented address
targets, the first word is zero and the second word
contains a data segment offset address . This is an offset
to two words in the constant area that contain the seg-
mented address of the actual routine . There is never an
upper framepointer in this case .

7 . Super arrays

A super array type's representation is similar whether it
is a reference parameter or the referent of a pointer. First
comes the address (reference parameter) or pointer value,
which is either 2 or 4 bytes long . Following the address
are the upper bounds, which are signed or unsigned 16-bit
quantities. The bounds occur in the same order as they
are declared. A pointer value to a super array type i s
normally longer than other pointers, since the upper
bounds are included.

8 . Sets

The number of bytes allocated for a SET is :
(ORD (upperbound) DIV 16) * 2 + 2

This is always an even number from 2 to 32 bytes . For
example,

SET OF "A' . .'Z'

requires 12 bytes . Internally, a set consists of an array of
bits, with one bit for every possible ORD value from 0 to
the upper bound. Bits in a byte are accessed starting with
the most significant bit . The occurrence of a given ORD
value as an element of a set implies the bit is 1, and the

Using Assembly Language Routines

byte and bit position of a given ORD value of any set is
the same. For example, the ORD value of `A' is 65, and
the second bit (i .e., 2#01000000) of the ninth byte in a set
is 1 if `A' is in the set .

9 . Files

A FILE type in a program i s a record called a file control
block (of type FCBFQQ) in the file unit . The initial
portion of the FCBFQQ record is standard for all files,
but the remainder is available for use by the particular
target file system. The end of the FCB contains the
current buffer variable. The internal form of a file varies
depending on the target file system . Under MS-DOS,
ASCII files consist of lines followed by a carriage return
and linefeed pair, which together are a "line marker ."
MS-DOS binary files are simply a stream of bytes .

10. Structures

For arrays and records, the internal form is comprised of
the internal forms of the components, in the same order
a s in the declaration. Arrays, records, variants, sets, and
files always start on a word boundary . In any case,
variables cannot be allocated more than MAXWORD
(64K) bytes .
A PACKED type has the same representation as an
unpacked one.

A variable or component 16 bits or larger is always
aligned on a word boundary; therefore, it always has an
even byte address . The only exception is when explicit
field offsets are given by the user in a program .
An 8-bit variable is also aligned on a word boundary, but
an 8-bit component of a structure (array or record) is
aligned on a byte boundary, which can be at an even or
odd address. Currently, an array of 8-bit values starts on
a word boundary . (This may change in future versions of
MS-Pascal .)

Some variables are initialized automatically, whether they reside
in fixed memory, on the stack, or on the heap .

1 . Files (FCB FQQ records) are initialized by calling
NEWFQQ, by passing the size of a text file line buffer or

95

Microsoft Pascal Compiler User's Guide

binary file component, and by passing a Boolean flag
value to indicate whether the file is a textfile .

2 . I f $initck is on, INTEGER values and their 2-byte
subranges are initialized to 16#8000, 1-byte INTEGER
subranges to 16#80, IEEE REAL values to 16#FFFF,
and pointers to 16#0001 . The following variables are
never initialized by $initck, however :
a . variables found in a VALUE section
b. variant fields in a record
c . super arrays allocated on the heap

The compiler generates the extra code necessary to initialize
stack and heap variables .

9.3 Interfacing to
Assembly Language Routines

In general, interfaced procedures and functions are declared
EXTERN in the MS-Pascal source . When an EXTERN
procedure or function is called, actual parameters are pushed on
the stack in the order in which they are declared . If a parameter is
a value parameter, an actual value is pushed on the stack .

If a parameter is a VAR or CONST reference parameter, the
address of the variable is pushed on the stack . Only the two-byte
offset is pushed, and not the segment . The offset is within the
default data segment, DS (where SS = DS) .

In contrast, a VARS or CONSTS parameter includes both a two-
byte segment and a two-byte offset, with the segment pushed
first .

Super array reference parameters include their upper bounds,
pushed as value parameters before the address is pushed . For
multidimensional super arrays, bounds are pushed in reverse
order (i .e ., the last flexible bound is pushed first) .

For some functions, a final, hidden offset address for the return
value temporary variable is pushed last .

96

After all parameters have been pushed, the return address for
PUBLIC and EXTERN procedures is pushed by a far call
instruction. The return address is segmented, so the segment is
pushed first, followed by the offset . This is the general starting
state of the stack for any assembly language routine that wishes
to access parameters. For example, assume that you have created
and compiled the following program, which contains the
EXTERN function ADD :

PROGRAM ASM_I NTE RFACE (INPUT, OUTPUT) ;
VAR I, TOTAL : INTEGER ;
FUNCTION ADD (VAR A : INTEGER ; B : INTEGER):

INTEGER; EXTERN ;
BEGIN

EN D .

1 := 10 ;
TOTAL : = ADD (1, 15) ;
W RITE LN (OUTPUT, TOTAL)

When the program executes the ADD function at runtime, it sets
up the stack as shown in Figure 9 .2 .

Higher
addresses

SID

	

3
Stack
grows
downward

Using Assembly Language Routines

Parameter 1

Parameter 2

Return address

Figure 9.2. Stack Before Transfer to ADD

97

r IMN

DS offset high

DS offset low

Integer high

Integer low

Segment high

Segment low

Offset high

Offset low
.J

Microsoft Pascal Compiler User's Guide

Before you could run such a program, however, you would have
to link it to a routine that implements the ADD function .
Implementation of ADD in assembly language might look like
this :

DATA

	

SEGMENT PUBLIC

	

`DATA'
;PUBLIC and EXTERN data
;declarations go here .

DATA

	

ENDS
DGROUP GROUP DATA

ASSUME CS : ADDS,DS : DGROUP,SS : DGROUP

ADDS

	

SEGMENT `CODE'
PUBLIC

	

ADD
ADD

	

PROC FAR
PUSH BP

	

;Save framepointer on stack
MOV BP,SP

	

;Address parameters
MOV AX,6[BP]

	

;AX : = value of B
MOV BX,8[B P]

	

;BX : = address of A
ADD AX,[BX]

	

;AX : = integer A + integer B
POP BP

	

;Restore framepoi nter
R ET 4

	

;Return, pop 4 bytes
ADD

	

ENDP
ADDS

	

ENDS
END

Remember that when an EXTERN procedure or function is
called at runtime, parameters are pushed on the stack. An
assembly language routine must rely on these pushed parameters
being in a certain sequence and format . I t must also remove all
parameters from the stack before returning .

Assembly language routines must save and restore the B P and
DS registers. They must not even modify the SS register .
However, the remaining registers (FLAGS, AX, BX, CX, DX, SI,
DI, and ES) can be changed by the assembly language routines as
needed .

If the routine is a function, the return value is placed in registers .
If the return value is a one-byte value, it is placed in the AL
register, as shown in Figure 9 .3. AH need not be set .

98

C

00000000 Low byte
J

AH

AH

AL

Using Assembly Language Routines

Single byte return value

Figure 9.3. One-Byte Return Value

If the return value is a two-byte value, the returned value is
placed in the AX register pair, high byte in AH and low byte in
AL, as shown in Figure 9 .4 .

High byte Low byte

AL

Single word return value

Figure 9 .4. Two-Byte Return Value

I f the return value i s a four-byte value, the high part (or segment)
of the return value is placed in the DX register and the low part
(or offset) in the AX register . (This is sometimes shown as
DX:AX.) Note that this only applies to INTE GE R4 and ADS
types .

Since MS-Pascal permits structured values to be retrieved by a
function, it is possible for the return value's size in bytes to be
extremely large . Therefore, for all function returns of any real or
structured type (RE AL4, RE AL8, array, record, or set) or of a
pointer to a super array type, the compiler allocates its own
temporary variable . This occurs even if the size of the return
value is 1, 2, or 4 bytes. The address of this temporary variable is
pushed on the stack after all parameters, just before the return
address is pushed, as shown in Figure 9 .5. (This address is an
offset, and therefore only one word is pushed .)

99

Microsoft Pascal Compiler User's Guide

100

Higher

addresses

SP
Stack
grows
downward

Address of structure

Return address

Figure 9.5. Four-Byte Return Value

On exit from the function, the address of this temporary variable
should be placed in the AX register in lieu of the full structure .
This address is simply an offset returned in the AX register .

You may wish to pass data using PUBLIC and EXTERN
variables instead of parameters. If so, these variable declarations
go into a segment named DATA with class name `DATA', in
group DG ROUP. It is important that you give the correct
segment, class, and group names, as shown in the last example .

Other parameters

DS offset high

DS offset low

Segment high

Segment low

offset high

Offset low

Chapter 10
Advanced Topics

10.1 The Structure of the Compiler

	

103
10.1 .1

	

The Front End

	

105
10.1 .2

	

The Back End

	

106
10.1 .2 .1

	

Pass Two

	

106
10.1 .2 .2

	

Pass Three

	

108
10.2 An Overview of the File System

	

108
10.3 Runtime Architecture

	

112
10.3 .1

	

Runtime Routines

	

112
10.3 .2

	

Memory Organization

	

113
10.3 .3

	

Initialization and Termination

	

117
10.3 .3 .1

	

Machine Level Initialization

	

120
10.3 .3 .2

	

Program Level Initialization

	

121
10.3 .3 .3

	

Unit Level Initialization

	

122
10.3 .3 .4

	

Program Termination

	

123
10.3 .4

	

Error Handling

	

124
10.3 .4 .1

	

Machine Error Context

	

126
10.3 .4 .2

	

Source Error Context

	

127
10.4 Floating-Point Operations

	

128
10.4.1

	

The $floatcalls- Option

	

129
10.4 .2

	

The Alternate Math Package

	

130
10.4 .3

	

No Emulation Option

	

131
10.4 .4

	

Decimal Math Option

	

131

101

102

10.4 .5 Loading the Emulator
Kernel Transcendentals 132

10.5 MS-DOS 2.0 Issues

	

133
10.5 .1 Interface to

MS-DOS 2.0 File System 133
10.5 .2 Exit Status Available

to MS-DOS 2.0

	

134

This chapter contains advanced technical information that will
be of interest primarily to experienced programmers . Since
Microsoft Pascal and Microsoft FORTRAN (but not
FORTRAN-80) have the same compiler back end, and share a
common file and runtime system, much of the information that
follows refers to both languages. Differences, where they exist,
are noted .

10.1 The Structure of the Compiler

The compiler is divided into three phases, or passes, each of
which performs a specific part of the compilation process . Figure
10.1 illustrates the basic structure of the compiler and its
relationship to the files that it reads and writes .

Advanced Topics

o. Objectlist

Figure 10.1. The Structure of the Microsoft Pascal Compiler

103

The Compiler

	

Files

1
Pass One

Scanner Source
Front Low-level utilities s • Sourcelist
end Middle-level utilities 	-r (code

High-level utilities Symtab

Pass Two

Optimizer
Code generator Bincod
Link text emitter 1

Object
Back
end Symtab

Pass Three I
Object code lister

Microsoft Pascal Compiler User's Guide

Pass one, which normally corresponds to a file named
PAS 1 . E XE, constitutes the front end of the compiler and
performs the following actions :

1 . reads the source program
2 . compiles the source into an intermediate form
3 . writes the source listing file
4 . writes the symbol table file
5 . writes the intermediate code file

Passes two and three (PAS2.EXE and PAS3 .EXE) together
make up the back end, which does the following :

1 . optimizes the intermediate code

2 . generates target code from intermediate code
3 . writes and reads the intermediate binary file
4 . writes the object (link text) file
5 . writes the object listing file

Both the front and back end of the compiler are written in
Microsoft Pascal, in a source format that can be transformed into
either relatively standard Pascal or into system level Microsoft
Pascal. For information on these levels, see the Microsoft Pascal
Reference Manual.

All intermediate files contain MS-Pascal records . The front and
back ends include a common constant and type definition file
called PASCOM, which defines the intermediate code and symbol
table types. The back ends use a similar file for the intermediate
binary file definition . Formatted dump programs for all
intermediate files and object files are av ailable for special
purpose debugging .

104

Advanced Topics

The symbol table record is relatively complex, with a variant for
every kind of identifier (assorted data types, variables,
procedures and functions) . The intermediate code (or Icode)
record contains an Icode number, opcode, and up to four
arguments; an argument can be the Icode number of another
Icode to represent expressions in tree form, or something else
(such as a symbol table reference, constant, or length) . The
intermediate binary code record contains several variants for
absolute code or data bytes, public or external references, label
references and definitions, etc .

10.1.1 The Front End

The Microsoft Pascal front end can be divided into several parts:

1 . the scanner
2 . low-level utilities

3 . intermediate-level utilities for identifiers, symbols,
Icodes, memory allocation, and type compatibility

4 . high-level routines for processing procedure and function
calls, expressions, statements, and declarations

The front end is driven by recursive descent syntax analysis,
using a set of procedures such as EXPR (for expressions),
STATE M T (for statements), and TYPE DE C (for type declara-
tions) .

The front end maintains a "current" symbol and a "lookahead"
symbol. While not necessary for parsing correct programs, these
symbols are useful for error recovery . Syntax errors are
processed by a procedure that forces the current symbol to one of
a set of symbols legal at a given point . I f the current symbol is
wrong, but the following one is correct, the current symbol is
deleted. In all cases the correct symbol is inserted if possible .
However, common substitution mistakes, such as confusing (=)
and (:=), cause only a warning message to be given during
compilation.

105

Microsoft Pascal Compiler User's Guide

The scanner is relatively large, since it must process meta-
language and produce a listing with error messages, data about
variables, and other information for the user .

Intermediate code is written to the Icode file on disk as soon as it
is generated: there is no reason to keep it in memory . The symbol
table is built as a binary tree of identifiers with pointers to
semantic records. At the end of each block, all new semantic
records are written to the symbol table file . When an error is
detected, all writing to intermediate files stops, since the code
may not be acceptable to the back end . Detecting a warning,
rather than an error, does not invalidate the intermediate files .

10.1 .2 The Back End

Of the separate passes that make up the back end of the compiler,
pass two is required while pass three is optional. Pass two
produces the object file, while pass three produces the object
listing .

10.1 .2.1 Pass Two

The optimizer reads the interpass files in the following order : first
the symbol table for a block is read ; then the intermediate code
for the block. Optimization is performed on each "basic block,"
that is, each block of intermediate code up to the first internal or
user label or up to a fixed maximum number of Icodes, whichever
comes first .

Within this block, the optimizer can reorder and condense
expressions so long as the intent of the programmer is preserved .
For instance, in the following program fragment, the array
address A [J, K] need be calculated only once.

A [J 9 K] : = A [J 7 K] + 1 ;
#J := J - 1 ;1
IF A [J, K] = MAX THEN PUNT ;

However, if the preceding program fragment is rewritten to
include the assignment to J, shown in the fragment as a
comment, the array address in the IF statement must be
partially recalculated .

106

This optimization is called common subexpression elimination .
The optimizer also reorders expressions so that the most
complicated parts are done first, when more registers for
temporary values are available. It also does several other
optimizations, such as :

1 . constant folding not done by the front end

2 . strength reduction (changing multiplications and
divisions into shifts when possible)

3 . peephole optimization (removing additions of zero,
multiplications by one, and changing A := A + 1 to an
internal increment memory Icode)

The optimizer works by building a tree out of the intermediate
codes for each statement and then transforming the list of
statement trees .

There are seven internal passes per basic block:

1 . statement tree construction from the Icode stream
2 . preliminary transformations to set address/value flags

3 . length checks and type coercions

4 . constant and address folding, and expression reordering
5 . peephole optimization and strength reduction

6 . machine-dependent transformations

7 . common subexpression elimination

Finally, the optimizer calls the code generator to translate the
basic block from tree form to target machine code .

The code generator must translate these trees into actual
machine code. It uses a series of templates to generate more
efficient code for special cases . For example, there is a series of
templates for the addition operator . The first template checks for
an addition of the constant one . If this addition is found, the
template generates an increment instruction . If the template
does not find an addition of one, then it gives up, and the next
template gets control and checks for an addition of any constant .
If this is found, the second template generates an add immediate
instruction.

107

Advanced Topics

Microsoft Pascal Compiler User's Guide

The final template in the series must handle the general case . It
moves the operands into registers (by recursively calling the code
generator itself), then generates an add register instruction .
There is a series of templates for every operation . The code
generator must also keep track of register contents, and several
memory segment addresses (code, static variables, constant data,
etc .). The code generator also allocates any needed temporary
variables .

The code generator writes a file of binary intermediate code
(B I NCOD), which contains actual byte values for machine
instructions, symbolic references to external routines and
variables, and other kinds of data . A final internal pass reads the
B I NCOD file and writes the object code file .

10 .1 .2.2 Pass Three

This short pass reads both the B I NCOD file, described in the
previous section, and a version of the symbol table file as updated
by the optimizer and code generator . Using the data in these files,
it writes the generated code in an assembler-like format . t

10.2 An Overview of the File System

Since Microsoft Pascal and Microsoft FORTRAN share the same
file system, this section includes references to differences
between the two, wherever they exist . Microsoft Pascal and
Microsoft FORTRAN are designed to be easily interfaced to
existing operating systems . The standard interface has two
parts:

1 . a file control block (FCB) declaration
2 . a set of procedures and functions, called Unit U, that are

called from Microsoft Pascal or Microsoft FORTRAN at
runtime to perform input and output

t For more information about the compiler, especially the back end, see the
article "Native-code Compilers are Portable and Fast" (James G . Letwin and
Andrea C. Lewis, Electronic Design, May 14, 1981) .

108

Advanced Topics

This interface supports three access methods : TERMINAL,
SEQUENTIAL, and DIRECT .

Each file has an associated FCB (file control block) . The FCB
record type begins with a number of standard fields that are
independent of the operating system . Following these standard
fields are fields such as channel numbers, buffers, and other data,
that are dependent on the operating system .

The advanced Microsoft Pascal user can access FCB fields
directly, as explained in Chapter 8, "Files," of the Microsoft
Pascal Reference Manual . There is no standard way to access
FCB fields within Microsoft FORTRAN .

Both Microsoft Pascal and Microsoft FORTRAN have two
special file control blocks that correspond to the keyboard and
the screen of your terminal. These two file control blocks are
always available. In MS-Pascal, they are the predeclared files
INPUT and OUTPUT (which you can reassign and generally
treat like any other files); in MS-FORTRAN, they are unit
number 0 (or *) and accessed through a variable TRMVQQ,
declared as follows:

VAR TRMVQQ : ARRAY [BOOLEAN] OF ADR OF FCBFQQ ;

The false element references the output file ; the true element
references the input file .

For Microsoft Pascal files, each FCB ends with the buffer
variable that contains the current file component . This means
that the length of an FCB in Microsoft Pascal is the length of its
fixed portion plus the length of the buffer variable. Microsoft
FORTRAN files do not require buffer variables, so all are of a
fixed length .

File control blocks always reside in the default data segment, so
they can be referenced with the offset (ADR) addresses instead of
the segmented (ADS) addresses .

Microsoft Pascal file variables can occur :

1 . in static memory
2 . on the stack as local variables
3 . in the heap as heap variables

109

Microsoft Pascal Compiler User's Guide

In Microsoft Pascal, generated code initializes file control blocks
when they are allocated and CLOSEs them when they are
deallocated . FORTRAN files are allocated during OPEN and
deallocated during CLOSE or at program termination .

The manner of allocation and deallocation depends on the
operating system. For example, a fixed number of file "slots"
may be available, or the routines for Microsoft Pascal heap
allocation may be used . In both Microsoft Pascal and Microsoft
FORTRAN, an FCB can be created or destroyed, but never
moved or copied .

The Microsoft Pascal Compiler must know enough about an FCB
to allocate one. Thus, it needs to know the length of an FCB less
the length of its buffer variable .

The Microsoft FORTRAN Compiler itself does not allocate files,
so it doesn't need to know the length of an FCB .

Unit U refers to the target operating system interface routines .
The file routines specific to MS-Pascal are called Unit F ; the file
routines specific to Microsoft FORTRAN are called Unit V . Code
generated by the compiler of either language contains calls to
Unit F (Microsoft Pascal) or Unit V (Microsoft FORTRAN),
which in turn call Unit U routines . This relationship is shown
schematically in Figure 10 .2 .

Microsoft

	

Microsoft
Pascal Compiler -~ Code

	

Code F--- FORTRAN Compiler

110

Unit F

Unit U

Unit V

Figure 10.2. The Unit U Interface

Advanced Topics

The file system uses the following naming convention for public
linker names :

1 . All linker globals are six alphabetic characters, ending
with QQ. (This helps to avoid conflicts with program
global names.)

2 . The fourth letter indicates a general class, where :

a. xxxFQQ is part of the generic Microsoft Pascal file
unit .

b . xxxVQQ is part of the generic Microsoft
FORTRAN file unit .

c . xxxUQQ is part of the operating system interface
unit .

File system error conditions may be detected at the lower Unit U
level, detected at the higher Unit F or V level, or undetected .
When a Unit U routine detects an error, it sets an appropriate
flag in the FCB and returns to the calling Unit F or V routine .
When Unit F or V detects an error or discovers Unit U has
detected one, it takes one of two possible actions :

1 . An immediate runtime error message is generated and
the program terminates .

2 . Unit F or V returns to the calling program if error
trapping has been set (in Microsoft Pascal with the
TRAP flag, in Microsoft FORTRAN with the ERR=nnn
or IOSTAT=var clauses) .

Units F and V will not pass a file with an error condition to a Unit
U routine. For some access methods, certain file operations may
lead to an undetected error, such as reading past the end of a
record (this condition has undefined results) . Runtime errors that
cause a program to terminate use the standard error-handling
system, which gives the context of the error and provides entry
to the target debugging system.

The distributed implementation of the Microsoft Pascal Compiler
includes the following three source files :

1 . FINU contains procedure and function headers for all
Unit U routines.

ill

Microsoft Pascal Compiler User's Guide

2 . FINK contains the common FCB declarations for all
MS-Pascal systems, along with the declaration of the
FILEMODES type .

3 . FINKxx contains the FCB declarations as extended for
use in a particular environment . For the MS-DOS version
1 .0 environment, the name is FINKXM . For the MS-DOS
2.0 environment, the name is FI NKXU . (These exten-
sions are currently the same for MS-DOS, CP/M-80, . , and
CP/M-86® environments .)

The Microsoft Pascal Compiler runtime package supports MS-
DOS 1 .0 (2.0 compatible) I/O . A library named DOS2PAS .LIB is
supplied with the Pascal Compiler . When this library is linked
with a Pascal program, the program will use MS-DOS 2 .0 I/O. In
particular, the 2 .0 MS-DOS Pascal I/O system takes advantage
of pathnames and file handles .

10.3 Runtime Architecture

This section describes several topics related to the runtime
structure of Microsoft Pascal and Microsoft FORTRAN, with
mention of the languages' differences where they exist .

10.3.1 Runtime Routines

Microsoft Pascal and Microsoft FORTRAN runtime entry points
and variables conform to the same naming convention : all names
are six characters, and the last three are a unit identification
letter followed by the letters "QQ " . Table 10 .1 shows the current
unit identifier suffixes .

112

Table 10.1

Unit Identifier Suffixes

Suffix

	

Unit Function

A Q Q

	

Complex real
B Q Q

	

Compile time utilities
C Q Q

	

Encode, decode
D Q Q

	

Double precision real
•

	

Q Q Error handling
F Q Q

	

Microsoft Pascal file system
GQ Q

	

Generated code helpers
HQ Q

	

Heap allocator
I Q Q

	

Generated code helpers
J Q Q

	

Generated code helpers
R Q Q

	

FCB definition
L Q Q

	

STRING, LSTRI NG
MQQ

	

Reserved
N Q Q

	

Long integer
O Q Q

	

Other miscellaneous routines
•

	

Q Q Pcode interpreter
Q Q Q

	

Reserved
RQ Q

	

Real (single precision)
•

	

Q Q Set operations
T Q Q

	

$floatcalls interface
UQQ

	

Operating system file system
V Q Q

	

Microsoft FORTRAN file system
WQQ

	

Reserved
X Q Q

	

Initialize/terminate
Y Q Q

	

Special utilities
Z Q Q

	

Reserved

10.3.2 Memory Organization

Memory on the 8086 is divided into segments, each containing up
to 64K bytes. The relocatable object format and Microsoft LINK
also put segments into classes and groups . All segments with the
same class name are loaded next to each other. All segments with
the same group name must reside in one area up to 64K long ; that
is, all segments in a group can be accessed with one 8086 segment
register .

Microsoft Pascal and Microsoft FORTRAN both define a single
group, named D G ROU P, which i s addressed using the D S or SS
segment register. Normally, DS and SS contain the same value,
although DS may be changed temporarily to some other segment

113

Advanced Topics

Microsoft Pascal Compiler User's Guide

and changed back again. SS is never changed ; its segment
registers always contain abstract "segment values" and the
contents are never examined or operated on . This provides
compatibility with the Intel 80286 processor . Long addresses,
such as MS-Pascal ADS variables or MS-FORTRAN named
common blocks, use the E S segment register for addressing .

Memory is allocated within DGROUP for all static variables,
constants which reside in memory, the stack, the heap, and the
segmented addresses of Microsoft FORTRAN blank common
and named common blocks . The blank and named common blocks
themselves reside in their own segments, not in DGROUP .

Memory in DGROUP is allocated from the top down ; that is, the
highest addressed byte has DGROUP offset 65535, and the
lowest allocated byte has some positive offset . This allocation
means offset zero in DGROUP may address a byte in the code
portion of memory, in the operating system below the code, or
even below absolute memory address zero (in the latter case the
values in DS and SS are "negative"),

DGROUP has two parts :

1 . a variable length lower portion containing the heap and
the stack

2 . a fixed length upper portion containing static variables,
constants, and the addresses for blank common and
named common, and other data segments

After your program is loaded, during initialization (in E NTX6L),
the fixed upper portion is moved upward as much as possible to
make room for the lower portion. If there is enough memory,
DGROUP is expanded to the full 64K bytes ; if there is not
enough for this, it is expanded as much as possible .

Figure 10.3 illustrates memory organization . The paragraphs
following the figure describe memory contents, starting at the
bottom (address zero), when a Microsoft Pascal or Microsoft
FORTRAN program is running . Addresses are shown in
segment: offset" form.

114

L

Top (highest address)

MS-DOS code for COMMAND (may be overlapped)

DS offset >= 00

Code segments (user and library routines)

MS-DOS code and data (fixed)

Bottom (address 0:00)

Figure 10 .3. Memory Organization

1 . 0000:0000
The beginning of memory on an 8086 system contains
interrupt vectors, which are segmented addresses .
Usually the first 32 to 64 are reserved for the operating
system. Following these vectors is the resident portion of
the operating system (MS-DOS in this case) .
MS-DOS provides for loading additional code above it,
which remains resident and is considered part of the
operating system as well . Examples of resident addi-

115

Advanced Topics

(Unused memory)

HIMEM segment Class HIMEM
< name > segment(s) Class COMMON
COMMQQ segment Class COMMON

DS

	

65536offset

CONST segment Class CONST
COMADS segment Class COMADS
DATA segment Class DATA
STACK segment Class STACK
MEMORY segment Class MEMORY
HEAP segment Class MEMORY

Microsoft Pascal Compiler User's Guide

116

tional code are special device drivers for peripherals, a
print spooler, or the debugger .

2 . BASE:0000
Here, BASE means the starting location for loaded
programs, sometimes called the transient program area .
When you invoke a Microsoft Pascal or Microsoft
FORTRAN program, loading begins here . The beginning
of your program contains the code portion, with one or
more code segments. These code segments are in the
same order as the object modules given to the linker,
followed by object modules loaded from libraries .

3 . DGROUP:LO
Next comes the DG ROUP data area, containing the
following :

Segment

	

Class

	

Description

HEAP

	

MEMORY Pointer variables, some files
MEMORY MEMORY (not used, Intel compatible)
STACK

	

STACK

	

Frame variables and data
DATA

	

DATA

	

Static variables
COMADS COMADS Address of named commons
CONST

	

CONST

	

Constant data
The stack and the heap grow toward each other, the stack
downward and the heap upward .

4 . DGROUP:TOP
Here TOP means 64K bytes (4K paragraphs) above
DG ROUP:oooo (i .e., just past the end of DGROUP) .
Microsoft FORTRAN blank and named common blocks
and other data segments generated for FORTRAN start
here. Named common has a segment name as declared in
the Microsoft FORTRAN program as the common block
name, and the class name COMMON. Each blank and
named common block has one segmented (ADS) address
in the COMADS segment in DG RoUP. All references to
common block component variables use offsets from this
address .

5 . HIMEM:0000
The segment named HIMEM (class HIMEM) gives the
highest used location in the program . The segment itself

contains no data, but its address is used during
initialization. Available memory starts here and can be
accessed with Microsoft Pascal ADS variables .

6 . COMMAND

MS-DOS keeps its command processor (the part of itself
which does COPY, D I R, and other resident commands) in
the highest location in memory possible . Your Microsoft
Pascal or Microsoft FORTRAN program may need this
memory area in order to run. If so, the command
processor is overwritten with program data . When your
program finishes, the command processor is reloaded
from the file COMAND.COM on the default drive .
In some circumstances, the check may result in a
message appearing on your screen telling you to insert a
disk that contains the appropriate file, COMAND.COM.
You can avoid this delay by making sure that
COMAND.COM is on the disk in the default drive when
the program ends .

10.3.3 Initialization and Termination

Every executable file contains one, and only one, starting
address. As a rule, when MS-Pascal or MS-FORTRAN object
modules are involved, this starting address is at the entry point
BE GXQQ in the module E NTX . For some versions, the name
E NTX may be appended with other letters. However, the name
of the module always begins with the four letters "ENTX" . An
MS-Pascal or MS-FORTRAN program (as opposed to a module
or implementation) has a starting address at the entry point
ENTGQQ. BEGXQQ calls E NTGQQ .

The following discussion assumes that an MS-Pascal or MS-
FORTRAN main program along with other object modules is
loaded and executed . However, you can also link a main program
in assembly or some other language with other object modules in
Microsoft Pascal or Microsoft FORTRAN . In this case, some of
the initialization and termination done by the E NTX module may
need to be done elsewhere .

117

Advanced Topics

Microsoft Pascal Compiler User's Guide

When a program is linked with the runtime library and execution
begins, several levels of initialization are required . The levels are
the following:

1 . machine level initialization

2 . program level initialization

3 . unit level initialization

The general scheme is shown in Figure 10 .4 .

118

ENTX module

BEGXQQ :

	

Set stackpointer, framepointer
Initialize PUBLIC variables
Set machine-dependent flags,

registers, and other values
Call INIX87
Call INIUQQ
Call BEGOQQ
Call ENTGQQ l Execute programs

EN DXQQ :

	

tTerminations come here]
Call EN DOQQ
Cal I EN DYQQ
Call EN DUQQ
Call EN DX87
Exit to operating system

INTR Module

INIX87 :

	

Real processor initialization
EN DX87 :

	

Real processor termination

Advanced Topics

Unit U

INIUQQ :

	

Operating system specific file unit initialization
ENDUQQ:

	

Operating system specific file unit termination

MISO Module

BEGOQQ :

	

(Other user initialization)
ENDOQQ :

	

(Other user termination)

Program Module

ENTGQQ:

	

Call INIFQQ
If $entry on, CALL ENTEQQ
Initialize static data
Initialize units
FOR program parameters DO
Call PPMFQQ

Execute program
If $entry on, CALL EXTEQQ

Figure 10.4. Microsoft Pascal Program Structure

119

Microsoft Pascal Compiler User's Guide

10.3.3.1 Machine Level Initialization

The entry point of an MS-Pascal load module is the routine
BE G XQQ, in the module E NTX. (The module may also be called
E NTX8, E NTX6M, etc .) . B E G XQQ does the following :

1 . It moves constant and static variables upward (as
described at the end of the introduction to this chapter),
creating a gap for the stack and the heap. I t sets the
stackpointer to the top of this area . The initial
stackpointer is put into PUBLIC variable STKBQQ and
is used to restore the stackpointer after an interprocedure
GOTO to the main program .

2 . I t sets the framepointer to zero .

3 . It initializes a number of PUBLIC variables to zero or
NIL. These include:
RE SE QQ, machine error context
CSXEQQ, source error context list header
PNUXQQ, initialized unit list header
HDRFQQ, MS-Pascal open file list header
HDRVQQ, MS-FORTRAN open file list header

4. It sets machine-dependent registers, flags, and other
values .

5 . It sets the heap control variables . B E G HQQ and
CURHQQ are set to the lowest address for the heap ; the
word at this address is set to a heap block header for a
free block the length of the initial heap . E NDHQQ is set
to the address of the first word after the heap . The stack
and the heap grow together, and the PUBLIC variable
STKHQQ is set to the lowest legal stack address
(ENDHQQ, plus a safety gap) .

6 . It calls INIX87, the real processor initializer, indirectly
through segment E I NQQQ. This routine initializes an
8087 or sets 8087 emulator interrupt vectors, as
appropriate.

7 . It calls INIUQQ, the file unit initializer specific to the
operating system. If the file unit is not used and you
don't want it loaded, a dummy INIUQQ routine that just
returns must be loaded .

120

8 . It calls BEGOQQ, the escape initializer . In a normal load
module, an empty BE G OQQ that only returns is
included . However, this call provides an escape
mechanism for any other initialization. For example, it
could initialize tables for an interrupt driven profiler or a
runtime debugger .

9 . I t calls ENTGQQ, the entry point of your Microsoft
Pascal program.

10.3.3.2 Program Level Initialization

Your main program continues the initialization process . First,
the language-specific file system is called, INIFQQ for MS-
Pascal or INIVQQ for MS-FORTRAN . Both are parameterless
procedures .

If the main program is in Microsoft Pascal, and MS-FORTRAN
file routines will be used, you must call INIVQQ to initialize the
MS-FORTRAN file system. If the main program is in Microsoft
FORTRAN, and MS-Pascal file routines will be used, you must
call INIFQQ to initialize the MS-Pascal file system .

MS-Pascal main programs automatically call INIFQQ ; MS-
FORTRAN main programs automatically call INIVQQ . To avoid
loading the file system, you must provide an empty procedure to
satisfy one or both of these calls .

After file initialization, ENTEQQ is called to set the source error
context (but only if $entry is on during compilation) . Next, each
file at the program level gets an initialization call to NEWFQQ .

After static data initialization comes unit initialization . Every
USES clause in the source, including those in INTE RFACE s,
generates a call to the initialization code for the unit .

Units may or may not contain initialization code. If the interface
contains a trailing pair of BEGIN and END statements, then
initialization code in the implementation is presumed . Units are
initialized in the order that the USES clauses are encountered .

Finally, any program parameters are read or otherwise initial-
ized, and your program begins . Program parameters are set in
one of a number of ways, depending on the target operating
system. In general, except for INPUT and OUTPUT, PPMFQQ

121

Advanced Topics

Microsoft Pascal Compiler User's Guide

is called for each parameter to set the parameter's string value as
the next line in the file INPUT. Then one of the READFN
routines "reads" and decodes the value, assigning it to the
parameter. The parameter's identifier is passed to PPMFQQ for
use as a prompt . PPMFQQ first calls PPMUQQ to get the text of
any command line parameter or other parameters specific to the
operating system . If PPMUQQ returns an error, then PPM FQQ
does the prompting and reads the response directly .

10.3.3 .3 Unit Level Initialization

Unit initialization is much like user program initialization. The
following actions occur :

1 . error context initialization if $entry metacommand was
on during compilation

2 . variable (file) initialization
3 . unit initialization for USES clause
4 . user's unit initialization

Calls to initialize a unit may come from more than one unit . The
unit interface has a version number, and each initialization call
must check that the version number in effect when the unit was
used in another compilation is the same as the version number in
effect when the unit implementation itself was compiled . Except
for this, unit initialization calls after the first one should have no
effect; i .e., a unit's initialization code should be executed only
once. Both version-number checking and single, initial-code
execution are handled with code automatically generated at the
start of the body of the unit . This has the effect of:

IF INUXQQ (USEVERSION, OWNVERSICN, INITREC, UNITID)
THEN RETURN

The interface version number used by the compiland using the
interface is always passed as a value parameter to the implemen-
tation initialization code . This is passed as "useversion" to
INUXQQ. The interface version number in the implementation
itself is passed as "ownversion" to INUXQQ. INUXQQ
generates an error if the two are unequal.

INUXQQ also maintains a list of initi alized units. INUXQQ
returns true if the unit is found in the list, or else puts the unit in

122

the list and returns false . The list header is PNUXQQ. A list
entry passed to INUXQQ as "initrec" is initialized to the address
of the unit's identifier (unitid), plus a pointer to the next entry .

User modules (and uninitialized implementations of units) may
have initialization code, much like a program and unit implemen-
tation's initialization code, but without user initialization code or
INUXQQ calls .

The initialization call for a module or uninitialized unit cannot be
issued automatically . When the module is compiled, a warning is
given if an initialization call will be required (i.e., if there are any
files declared or USES clauses) . To initialize a module, declare the
module name as an external procedure and call it at the beginning
of the program .

10.3.3 .4 Program Termination

Program termination occurs in one of three ways :

1 . The program may terminate normally, in which case the
main program returns to BE GXQQ, at the location
named ENDXQQ .

2 . The program may terminate because of an error
condition, either with a user call to ABORT or a runtime
call to an error handling routine . In either case, an error
message, error code, and error status are passed to
E M SEQQ, which does whatever error handling it can and
calls ENDXQQ .

3 . ENDXQQ can be declared in an external procedure and
called directly .

ENDXQQ first calls ENDOQQ, the escape terminator, which
normally just returns to ENDXQQ . Then ENDXQQ calls
ENDYQQ, the generic file system terminator. ENDYQQ closes
all open MS-Pascal and MS-FORTRAN files, using the file list
headers HDRFQQ and HDRVQQ. ENDXQQ calls ENDUQQ,
the file unit terminator that is operating system specific . Finally,
ENDXQQ calls ENDX87 to terminate the real number processor
(8087 or emulator) indirectly through segment EINQQQ . As with
INIUQQ, INIFQQ, and INIVQQ, if your program requires no file
handling, you will need to declare empty parameterless
procedures for ENDYQQ and ENDUQQ . The main initialization

123

Advanced Topics

Microsoft Pascal Compiler User's Guide

and termination routines are in module ENTX . Procedures for
BEGOQQ and ENDOQQ are in module MISO . ENDYQQ is in
module E NDY .

10.3.4 Error Handling

Runtime errors are detected in one of four ways :

1 . The user program calls EMSEQQ (i .e ., ABORT).

2 . A runtime routine calls E M SE QQ .

3 . An error checking routine in the error module calls
EMSEQQ.

4 . An internal helper routine calls an error message routine
in the error unit that, in turn, calls E M SE QQ .

Handling an error detected at runtime usually involves
identifying the type and location of the error and then
terminating the program. The error type has three components :

1 . a message
2 . an error number

3 . an error status

In Microsoft Pascal, the message describes the error, and the
number can be used to look up more information (see Appendix
H, "Messages," in the Microsoft Pascal Reference Manual) . In
Microsoft FORTRAN, the message describes the error, and the
number can be used to look up more information (see Appendix C,
"Error Messages," in the Microsoft FORTRAN Reference
Manual) . In Microsoft FORTRAN, the error status value is used
for special purposes and has no significance for the user . In
Microsoft Pascal, the error status value is undefined, although
for file system errors it may be an operating system return code .
However, the error status value may also be used for other
special purposes. Table 10 .2 shows the general scheme for error
code numbering.

124

Table 10.2
Error Code Classification

Range

1- 999
1000-1099
1100-1199
1200-1299
1300-1999
2000-2049
2050-2099
2100-2149
2150-2199
2200-2399
2400-2449
2450-2499
2500-2999

Classification

An error location has two parts :

1 . the machine error context
2. the source program context

The machine error context is the program counter, stackpointer,
and framepointer at the point of the error . The program counter
i s always the address following a call to a runtime routine (e.g., a
return address). The source program context is optional ; it is
controlled by metacommands . If the $entry metacommand is on,
the program context consists of :

1 . the source filename of the compiland containing the error
2. the name of the routine in which the error occurred

(program, unit, module, procedure, or function)
3. the line number of the routine in the listing file
4. the page number of the routine in the listing file

If the $line metacommand is also on, the line number of the
statement containing the error is also given . Setting $line also
sets $entry .

125

Reserved for user ABORT calls
Unit U file system errors
Unit F file system errors
Unit V file system errors
Reserved
Heap, stack, memory
Ordinal and long integer arithmetic
Real and double real arithmetic
Structures, sets and strings
Reserved
Pcode interpreter
Other internal errors
Reserved

Advanced Topics

Microsoft Pascal Compiler User's Guide

10.3 .4 .1 Machine Error Context

Runtime routines are compiled by default with the $runtime
metacommand set . This causes special calls to be generated at
the entry and exit points of each runtime routine. The entry call
saves the context at the point where a runtime routine is called
by the user program . This context consists of the framepointer,
stackpointer, and program counter. As a consequence of this
saving of context, if an error occurs in a runtime routine, the error
location is always in the user program. This is true even if
runtime routines call other runtime routines . The exit call that is
generated restores the context. The runtime entry helper,
B RTE QQ, uses the runtime values shown in Table 10 .3 .

Table 10.3
Runtime Values in BRTEQQ

Value

	

Description

RESEQQ

	

Stackpointer
RE FEQQ

	

Framepointer
RE PE QQ

	

Program counter offset
RECEQQ

	

Program counter segment

The first thing that B RTE QQ does is examine RE SE QQ . If this
value is not zero, the current runtime routine was called from
another runtime routine and the error context has already been
set, so it just returns. If RESEQQ is zero, however, the error
context must be saved . The caller's stackpointer is determined
from the current framepointer and stored in RE SEQQ . The
address of the caller's saved framepointer and return address
(program counter) in the frame is determined . Then the caller's
framepointer is saved in REFEQQ . The caller's program counter
(i .e ., BRTEQQ's caller's return address) is saved : the offset in
RE PE QQ and the segment (if any) in RE CE QQ .

The runtime exit helper, E RTE QQ, has no parameters . It deter-
mines the caller's stackpointer (again, from the framepointer) and
compares it against RESEQQ. If these values are equal, the
original runtime routine called by your program is returning, so
RE SE QQ is set back to zero .

126

l
10.3 .4.2 Source Error Context

Advanced Topics

EMSEQQ uses RESEQQ, REFEQQ, REPEQQ, and RECEQQ
to display the machine error context .

Giving the source error context involves extra overhead, since
source location data must be included in the object code in some
form. Currently, this is done with calls which set the current
source context as it occurs . These calls can also be used to break
program execution as part of the debug process. The overhead of
source location data, especially line number calls, can be signifi-
cant. Routine entry and exit calls, while requiring more overhead,
are much less frequent, so the overhead is less .

The procedure entry call to ENTEQQ passes two VAR para-
meters: the first is an LSTRI N G containing the source filename ;
the second is a record that contains the following :

1 . the line number of the procedure (a WORD)
2 . the page number of the procedure (a WORD)
3 . the procedure or function identifier (an LSTRING)

The filename is that of the compiland source (e.g., the main
source filename, not the names of any $include files). The
procedure identifier is the full identifier used in the source, not
the linker name . If one name is given in an INTERFACE and
another in a USES clause, the USES identifier is used. The line
and page are those designated by the procedure header .

Entry and exit calls are also generated for the main program, unit
initialization, and module initialization, in which case the
identifier is the program, unit, or module .

The procedure exit call to EXTEQQ does not pass any para-
meters. It pops the current source routine context off a stack
maintained in the heap .

The line number call to LNTEQQ passes a line number as a value
parameter. The current line number is kept in the PUBLIC
variable CLNEQQ . Since the current routine is always available
(because $line implies $entry), the compiland source filename and
routine containing the line are available along with the line
number. Line number calls are generated just before the code in

127

Microsoft Pascal Compiler User's Guide

the first statement on a source line. The statement can, of course,
be part of a larger statement . The $line+ metacommand should
be placed at least a couple of symbols before the start of the first
statement intended for a line number call ($line- also takes
effect "early") .

Most of the error handling routines are in modules E RRE and
PASE. The source error context entry points ENTEQQ,
E XTE QQ, and LNTE QQ are in the debug module, DE B E .

10.4 Floating-Point Operations

By default, the Microsoft Pascal Compiler generates calls to a
real number math package to carry out floating-point operations.
This gives the best tradeoff between runtime performance, code
size, and flexibility. The real number math package is provided in
the standard floating-point runtime library, MATH .LIB . It
performs floating-point arithmetic according to the proposed
IEEE real math standard, using an 80-bit internal form, irrespec-
tive of the precision of the operands .

The real math package is also compatible with the 8087 numeric
coprocessor. When you run your program on a machine with an
8087 installed, the real math package, which "emulates" the
8087, automatically uses the processor to carry out the arith-
metic. This compatibility means that your programs will give the
same, very accurate, results whether they run on a machine with
an 8087 installed or in another processing environment . (In cases
where the real math package is emulating the 8087, some tran-
scendental functions may give different results, but the differ-
ences are very slight .)

Microsoft Pascal also provides options that allow you to tailor
your program for performance and size on specific system
configurations . Specifically, you can choose to have in-line 8087
instructions generated to perform floating-point operations, you
can select a math package optimized for performance but which
gives less accurate results, or you can eliminate the math
package altogether if you know an 8087 will always be present
when your program will be run .

Don't forget that using these options will affect the portability of
your program and the consistency of its results .

128

Advanced Topics

10.4.1 The $floatcalls- Option

The $floatcalls- metacommand directs the compiler to generate
in-line instruction "skeletons" for floating-point operations .
With $floatcalls- in your source code and the standard version
of MATH.LIB linked into your program, fixups in MATH-LIB
will cause the linker to transform the in-line instruction skeletons
into software interrupts and control information . The interrupts
and control information will be fielded at execution time by an
emulator (software math package) .

When you run your program, the first time each such interrupt is
executed, the emulator gets control . If you have an 8087
coprocessor installed, the emulator will overwrite the interrupt
and control information with the equivalent 8087 instruction and
re-execute it. This and all subsequent executions of the
instruction will be carried out by the 8087 . If you do not have an
8087, the emulator will use the control information to carry out a
software equivalent of 8087 instruction processing . This will
occur every time the instruction is executed.

The in-line instructions typically require half as much code as the
equivalent call sequence and also permit additional optimizations
to be performed. Otherwise, nonfloating-point operations are
unaffected, and the total reduction in code size will usually be
between 10 and 30 per cent .

$floatcalls- provides the most efficient execution if you have an
8087 installed. However, if you do not, the interrupt mechanism
and processing of control information that occurs every time an
instruction is emulated is time-consuming and imposes a consid-
erable overhead on the fundamental arithmetic operations . The
overhead may be up to 25 percent on the simpler instructions (for
example, FADD), but for the same reasons that reduced the
impact of this option on code size, you should expect the overall
overhead to be somewhat less than this, depending on the mix of
instructions .

The basic operations are, in fact, carried out by the same code
that supports the calls to the emulator and using this option will
have no effect on your program's results . Also, you can freely mix
modules compiled with $floatcalls- with those compiled with the
default option. You can even use a second metacommand,
$floatcalls +, to switch between modes within the same module or
even subroutine . However, this practice might not take effect

129

Microsoft Pascal Compiler User's Guide

exactly where you specified it, because optimizations may group
statements or reorder code .

Important
You cannot use this option in any modules that will be
linked with the fast math pack ALTMATH .LIB. You will
get linker errors if you try .

10.4.2 The Alternate Math Package

The IEEE math standard as supported by the emulator is
complicated, and the emulator, as a result, will contribute about
6.5K bytes to your program. Also, arithmetic to 80-bit precision
is much more time-consuming than the minimum required to
provide reasonable accuracy for 32-bit or even 64-bit floating-
point numbers .

If you do not require consistency with the 8087, or if the speed of
your program is more important than accuracy, you can use the
"Alternate Math Package" (AltMath Pack) . This is a traditional
floating-point support package. Its interface is compatible with
the $floatcalls interface to the emulator, but it is optimized for
speed. The results of your calculations will be less accurate,
particularly for single precision arithmetic, and will, in general,
be slightly different than those produced using the 8087 or the
emulator. However, basic operations will be typically at least
twice as fast, and if you don't have an 8087, programs that do a
lot of floating-point arithmetic will run much faster .

The AltMath Pack assumes a much simpler model for floating-
point arithmetic than the IEEE standard, although the external
binary representation of real values is the same . For example, all
overflow, divide-by-zero, and other exceptions that would result
in a NAN ("Not A Number") error message in the IEEE model,
will cause an error exit in the AltMath Pack model . Also, unlike
the 8087 and emulator models that assume (and support) an
infinite stack, the AltMath Pack assumes a fixed stack with a
limited number of entries . This means that highly recursive
functions may overflow the stack and generate an error .

130

10.4.4 Decimal Math Option

Microsoft Pascal supports an alternative floating-point format in

which decimal floating-point numbers up to 14 digits and within

a limited exponent range can be represented exactly. The results

of the operations on the numbers in this format are also

Advanced Topics

You select the A1tMath Pack by linking with the library

ALTMATH.LIB, which is provided with the compiler. This

library contains only the AltMath Pack, and the remainder of the

runtime is obtained from PA SC AL. L I B . See Section 6 .1 .2,
"Linking Libraries, " for a review of the procedure for linking

auxiliary libraries. The following examples are equivalent :

A > LINK your module,,,altma th

A > LINK your module,,,altmath + pascal

10.4.3 No Emulation option

As mentioned above, the emulator contributes about 6 .5K bytes

to the size of your program . If you have an 8087 installed, its only

purpose is to translate your emulated instructions into actual

8087 instructions. You eliminate the emulator altogether if you

know that your program will only run on machines that have an

8087.

You do this by linking in the object module 8087.LIB, provided

with the compiler . This replaces the emulator and fixes up the in-

line instruction skeletons to actual 8087 instructions at linktime .

$floatcalls interfaces are provided which use the 8087 to carry

out the operation, so that you can use 8087-LIB whether or not

you have used $floatcalls .

Note

You cannot use 8087 .LIB and ALTMATH.LIB in the same

program .

131

Microsoft Pascal Compiler User's Guide

represented exactly if they are in the allowable range . This option
is particularly useful in business and financial applications where
exact results are important .

You select the decimal format by using the $decmath meta-
command in all of your program units that use floating-point .
You must link with DE CM ATH .LIB to support this format .

Note
Decimal floating-point and IEEE floating-point are not
compatible.

10.4.5 Loading the Emulator
Kernel Transcendentals

The emulator is capable of emulating 8087 transcendental
functions. However, if you write functions in 8087 assembly
language that use 8087 transcendental instructions, the emulator
is not guaranteed to be present . To ensure that the emulator will
be loaded with your program, you must add the following
segment and variable to your assembly code .

DATA SEGMENT PUBLIC `DATA'
EXTRN TUGRQQ : WORD
DATA ENDS

The above lines need not be added to assembly code if calls are
made to the library transcendental intrinsics .

In addition to the above precaution, assembly language
programs containing 8087 instructions and intending to use the
emulator library must be assembled with the most recent version
of the Microsoft Macro Assembler using the assembler's "/E"
switch .

132

10.5 MS-DOS 2.0 Issues

This version of the Microsoft Pascal Compiler is essentially an
MS-DOS 1 .25 compiler. This means that Microsoft Pascal and
programs compiled by it, will run on both versions of MS-DOS,
but cannot take advantage of MS-DOS 2 .0 features such as
pathnames .

However, if you know that your program (not compiler) will only
be required to run under MS-DOS 2 .0, you can link with the
special version of the Pascal file system, DOS2 PAS. LIB, which
contains the interface to MS-DOS 2 .0 file system . The modules
contained in DOS2 PAS. L I B provide the interface described in
Section 10.2, "An Overview of the File System," of this User's
Guide.

10.5.1 Interface to MS-DOS 2.0 File System

However, an additional interface is provided to allow the
MS-DOS 2.0 "handle" of a Pascal file to be obtained . (A handle is
an integer value recognized by the operating system as
representing a file.) The function :

FUNCTION H DLUQQ (VAR F : FCBFQQ) : INTEGER;

Incorrect DOS version

when run on earlier versions of MS-DOS .

Advanced Topics

returns the MS-DOS 2 .0 file handle for a Pascal file . Consult the
Microsoft Pascal Reference Manual, Sections 8.6, "File I/O :
Extend Level," and 8.7, "File I/O : System Level," and the
version specific interface unit, FINKXM, on your disk for the
definition of FCBFQQ .

Programs linked with DO S2 PAS . L I B, will give the runtime
message

133

Microsoft, Pascal Compiler User's Guide

10.5.2 Exit Status Available To MS-DOS 2 .0

The compiler supplies an exit status to MS-DOS 2.0 that can be
accessed via the "IF E RRO RLE V E L n " batch command. The
values returned by the compiler are :

n Value Meaning

0

	

No warnings for errors issued
2

	

Warnings were issued
4

	

Fatal errors encountered

The user can set the global word DOSEQQ (defined in module
E NTX) to any error code desired. For example,

PROGRAM FOO ;
VAR DOSEQQ [EXTERN] : WORD ;
BEGIN

Set DOSEQQ to 0, i .e. No errors encountered-1
DOS EQQ : = 0
EN D .

The value of DOSEQQ is passed to MS-DOS and this becomes
the argument to E RRORLE VE L .

134

Appendices

135

A

B

C

Differences Between
Versions 3.2 and 3.3

	

137

Version specifics

	

159

Customizing i8087 Interrupts 167

D Exception Handling for 8087 Math 171

E Mixed-Language Programming 179

F Error Messages

	

221

C

l

Appendix A
Differences Between
Versions 3.2 and 3.3

A.1 Using ADS and
ADR With Expressions

	

139
A.2 Addressing Procedures and Functions

(ADSPROC and ADSFUNC) 140
A.3 File Sharing

	

141
A.3 .1

	

Sharemodes

	

142
A.3 .2

	

Accessmodes

	

143
A.4 File Locking

	

146
A.5 Using the C "int" Type

(INTEGERC) 147
A.6 Using C Calling Conventions

(C attribute)

	

148
A.7 Using a Variable Number

of Arguments (VARYING attribute)

	

148
A.8 Compatibility with Version 3.2

	

149
A.9 Creating Link Map

Files with Microsoft LIB

	

150
A.10 Changes to the Linker

	

150
A.10 .1

	

Setting the
Maximum Number of Segments 151

A.10 .2

	

Using DOS Segment Order

	

152

137

Microsoft Pascal Compiler User's Guide

138

A.11 Modifying Executable Files
With EXEPACK and EXEMOD 152

A.11 .1 The EXEPACK Utility 153
A.11 .2 The EXEMOD Utility 154
A.12 The Microsoft

Pascal Memory Model 155

A.1 Using ADS and
ADR With Expressions

The ADS operator gives the full address (segment selector and
offset) of the object to which it is applied . ADR gives the offset
only. Version 3 .2 used an incorrect interpretation of precedence
when these operators were used to address expressions . Version 3.3
uses the correct interpretation, which is described in the Microsoft
Pascal Reference Manual. The ADS and ADR operators are of the
same precedence as the NOT operator, and are of higher pre-
cedence than the other Pascal operators .

If you have existing programs that use the incorrect precedence
used in version 3 .2, you must correct those programs if you want
to compile them with version 3 . 3. For example, in version 3 .3,

ADS a + b

is interpreted as

(ADS a) + b

Differences Between Versions 3.2 and 3 .3

(because the ADS operator is of higher precedence than the +
operator) and will not compile . You cannot add b to the address of
a .

Version 3.2 interpreted

ADS a + b

as

ADS (a + b)

(incorrectly giving the addition operator higher precedence) which
does compile . You can take the address of (a + b) .

If you have existing programs that take the address of an expres-
sion with either ADS or ADR, your program may not compile
with version 3 .3 of the Microsoft Pascal Compiler. If so, put
parentheses around those expressions .

139

Microsoft Pascal Compiler User's Guide

The expressions

ADS a

and

ADS (a)

where a is a function, represent different values . The first expres-
sion evaluates to the address of the function (see the new prede-
fined type ADSFUNC in Section A.2), and the second evaluates
to the address of the result of the expression (the address of the
value returned when a is called) .

A2 Addressing Procedures and Functions
(ADSPROC and ADSFUNC)

The ADS operator can now be applied to procedures and func-
tions, as well as to variables . When ADS is applied to a procedure,
it produces a value of the predefined type ADSPROC. When it is
applied to a function, it produces a value of the predefined type
ADSFUNC. ADSPROC and ADSFUNC are similar in concept
to ADSMEM .

ADSPROC and ADSFUNC can be used to declare variables or
formal parameters. To call a procedure or function with these
variables or parameters, you must pass their value to an external,
non-Pascal routine and then call that routine. Note that ADSPROC
and ADSFUNC are compatible with C function pointers ; Pascal
procedure parameters are not .

As with other address types, there is no type checking on assign-
ments to ADSPROC or ADSFUNC. The compiler does not make
sure that a function or procedure is being assigned or that the
formal parameters are appropriate . You can also freely assign to
and from other address types .

140

Example

This example could be used to communicate with a c routine that
calls the routine af, then calls the routine ap with the result .

program p(output) ;
procedure cproc (ap : adsproc ; af: adsfunc) [c] extern ;

procedure pproc (i : integer) ;
begin

writel n ('C integer =', i) ;
end ;

function pfunc :integer ;
var

is integer ;
begin

readin (i) ;
pfunc := i ;

end ;

begin
cproc (pproc, pfunc) ;

end .

A.3 File Sharing

In systems that use networking, more than one program can
attempt to access the same file at the same time. Two new fields
in the file control block, share and access, allow you to control
access to files . These fields have the new predefined enumerated
types sharemodes and accessmodes, respectively . The value of
access determines how the first process to open a file can use that
file . You can choose to be able to read the file, write to the file, or
do both. The value of share determines how subsequent processes
are allowed to access the file (while that file is still open) . You can
choose to allow subsequent processes to read the file, write to the
file, do both, or do neither. You can also choose not to allow any
processes, including the process which originally opened the file,
to open the file (while the file is still open) .

Differences Between Versions 3.2 and 3 .3

141

Microsoft Pascal Compiler User's Guide

A.3.1 S haremode s
To control how other processes may access a file that you are
opening, set the share field in the file control block. This field has
the new predefined enumerated type sharemodes . For example,

share:sharemodes

The sharemodes type is defined as follows :

TYPE
sharemodes = (sm_COMPAT, {compatibility model

sm_DENYRW, [deny read/write model
sm_DENYWR, {deny write model
sm_DENYRD, {deny read model
sm_DENYNONE{deny none model

The sharemode values are

sm_COMPAT

	

Compatibility mode
This is the default .

142

When a file is open in compatibility
mode, the original USER (the process
that opened the file) may open the file
in compatibility mode any number of
times. No other USER may open the
file.
A file that is already open in a mode
other than compatibility mode cannot
be opened in compatibility mode.

sm_DENYRW

	

Deny read/write mode
While a file is open in deny read/write
mode, no process may open the file .

var
f:text ;

f .share;=sm_COMPAT ;
assign(f	} ;
reset(f) ;

Differences Between Versions 3.2 and 3 .3

sm_DENYWR

	

Deny write mode
while a file is open in deny write mode,
no process may open the file with write
access . Other processes can open the
file with read access .

sm DENYRD

	

Deny read mode
while a file is open in deny read mode,
no process may open the file with read
access. Other processes can open the
file with write access .

sm I)ENYNDNE Deny none mode
while a file is open in deny none mode,
any process may open the file in any
mode (except compatibility mode) .

As with filename assignments, the share value must be set before
the file is opened with reset or rewrite. For example,

If you change share, you must reset or rewrite the file before
accessing the file again .

A.3.2 Accessmodes

The predefined type accessmode specifies the type of access the
original process (the process that initially opened the file) will be
making to a file. You specify accessmode by setting the value of
the access field in the file variable .

Accessmode is defined as

TYPE
access mode= (am_read,am_write,am_readwrite)

143

Microsoft Pascal Compiler User's Guide

The accessmode values are

var f : text ;
f .share := sm_DENYRW ;
f.access := am_readwrite ;
assign(f	} ;
rewrite(f) ;

am-read

	

The process can read the file .
am write

	

The process can write to the file .
am`readwrite

	

The process can read and write to the
file .

The following example opens a file with share equal to
sm_DENYRW and access equal to readwrite :

If you open a file without assigning to access, the Pascal runtime
system always attempts to open with an access value of am__
readwrite . If the open fails, the runtime system will try to open
the file again, first using am-write, then using am-read . Note
that this is not the same as specifying access=am_readwrite . If
you specify access= am_readwrite, and the file cannot be opened
with both read and write access, the open will fail . The default
behavior is most flexible .

While am_readwrite is an appropriate default for single program
environments, it is not always the best choice if a file will be
shared. For example, suppose several processes want to read a
file, and ensure that no process updates the file while they are
reading it. The first process can open the file with share=sm

r,denywr, and default to access=am_readwrite . The share value
will prevent other processes from writing to the file, and the
access value will allow the first process to read the file . But no
other process will be able to open that file with share=sm_denywr
because the original process has access to writing to the file.
However, if the first process opens the file with share= sm_denywr,
and access=am_read, any number of processes may also open
the file with share=sm_denywr and access=am read .

144

Table A.1 indicates the restrictions placed on opening a file that
has already been opened with a particular value of share and
access .

Table A.1
Share and Access Values

A File Opened With These
Values of share and access :

sm_COMPAT
by original process
only

am read

sm DENYNDNE
sm_DENYNONE
sm DENYWR

am-write

	

sm-DENYNONE
sm DENYRD

sm DENYRD

	

am readwrite sm DENYNDNE
am-read

	

sm-DENYNONE
sm DENYWR
sm_DENYNONE
sm DENYRD

srn DENYNDNE am readwrite sm DENYNDNE

am write

Differences Between Versions 3 .2 and 3 .3

am read

	

sm DENYNDNE

Can Subsequently be opened
(by any process, unless noted)
With These Values of share
and access :

share =

sm DENYWR

am-write

	

sm-DENYNONE
sm DENYRD

access=

am_readwrite
am _read
am _write

cannot be subsequently opened

am read
am read

am read

am write
am write

am write

am readwrite
amTread
am write
am _read write
am read
am write
am_readwrite
am_read
am write

145

share= access=

sm_COMPAT am readwrite
am-read
am-write

srn DENYRW am_readwrite
am read
am write

sm DENYWR am readwrite

Microsoft Pascal Compiler User's Guide

If, for example, a file is opened with share = sm_DENYWR and
access = am-READ, that file can also be opened with share equal
to either sm_DENYNONE or sm_DENYWR, and access equal
to am WRITE .

A.4 File Locking

A new procedure and ordinal type have been defined that allow
you to lock a specific range of records in a DIRECT mode file,
preventing access by other processes in a networked system . The
procedure locking is defined as

PROCEDURE locking (VAR f : FCBFQQ ;
MODE: lockmodes; M,N : INTEGER4) ;

The parameters are

M

	

An integer expression that is the number of
the first record to be locked . If M is zero (0),
the next record (the one which a sequential
read, such as GET, would read) will be locked .

N

	

An integer expression that is the number of
records to be locked . If N is zero (0), one
record is locked .

The type lockmodes is defined as

TYPE
Iockmodes = (Im_unlck, Im_lock, lm_nblck, Im_rlck, Im nbrlck) ;

The acceptable values of lockmodes are

lm_nblck

	

Non-blocking lock
Lock the specified region (N records, start-
ing at record M) . If any is already locked by
a different process, give an error . This is the
default .

146

Differences Between Versions 3 .2 and 3 .3

lm_unlck

	

Unlock
Unlock the specified region (N records, start-
ing at record M)

lm lock

	

Lock
Lock the specified region (N records, start-
ing at record M). Wait for any part of the
region locked by a different process to become
available.

im rick

	

Read lock
Same as lm_lock, except locks for write
access only .

lm_nbrlck

	

Non-blocking read lock
Same as lm_nblck, except locks for write
access only .

The following example opens a DIRECT access file with share
equal to sm_DENYNONE, locks two records starting at record
1, then unlocks them :

type info=record . . .end ;
var f : file of info ;
f.mode :=DIRECT;
f.share:=sm_DEN YN ONE;
assign(f, . . .) ;
reset(f) ;
locking(f,Im lock,1,2) ;
get(f) ;
Iocking(f,Im_unlck,1 ,2) ;

A.5 Using the C "int" Type
(INTEGERC)

Microsoft Pascal Version 3 .3 supports a predefined type called
INTEGERC. For a given processor and operating system, vari-
ables with the type INTEGERC are equivalent to variables with
the C "int" type as defined by the Microsoft C Compiler for the
same system. For the 8086 family of microprocessors, INTEGERC
is equivalent to INTEGER2 .

147

Microsoft Pascal Compiler User's Guide

A.6 Using C Calling Conventions
(C attribute)

You can use Microsoft C calling and external naming conventions
for a particular procedure by specifying the C attribute in the
procedure declaration . It has the same syntax as the PUBLIC
attribute. For example, in the statement

PROCEDURE myproc [public,c] ;

myproc is a public procedure that uses C calling conventions .
Calling conventions are discussed in Appendix E, "Mixed-
Language Programming ."

A.7 Using a Variable Number
of Arguments (VARYING attribute)

VARYING can be specified with the C attribute . It means that
the number of actual arguments may be different from the number
of formal arguments. Actual arguments for which a formal argu-
ment is defined must follow the type rules . Actual arguments for
which there are no formal arguments defined are assumed to be
passed by value, with no type coercions . Note that a subprogram
written in Pascal can only access arguments that are formally
defined, so the latter case does not apply .

When writing a Pascal procedure with the VARYING attribute,
make sure your code does not execute references to arguments
that are not passed in the call, or you will get undefined results .
This usually means that you must tell the procedure which argu-
ments were passed (usually by making one of the arguments
describe the others) .

Note that the FORTRAN/Pascal calling sequence cannot sup-
port varying numbers of arguments ; this attribute will not work
unless you have also specified the C attribute on the subprogram .

148

Differences Between Versions 3 .2 and 3 .3

A.8 Compatibility with Version 3 .2

Apart from the changes identified in the previous sections, pro-
grams that compiled correctly with version 3 .2 should compile
correctly with version 3 .3 .

Object modules compiled with versions 3 .2 and 3.3 can be linked
together. However, your main program should be compiled with
version 3.3 . If you have existing assembly-language source files
that rearrange memory from the default, they may have to be
modified because the memory model has been changed . Refer to
Section A.12, "The Microsoft Pascal Memory Model," for infor-
mation on assembly-language programs.

The only change in the way the compiler is invoked is that file
names are no longer changed to uppercase before being passed to
the operating system . This has no effect on the behavior of the
compiler because MS-DOS is not case sensitive .

If your source files are very large, this version may no longer
compile them. The compiler now uses a fixed stack internally, and
highly nested recursions (such as unusually long expressions)
may cause stack overflow . The fixed stack also reduces the amount
of memory available to contain symbol table entries. However,
the Pascal compiler makes more efficient use of memory for sym-
bol tables than did version 3 .2 .

The memory allocation is preset to 6144 (6k) bytes . You can use
the utility EXEMOD, as described in Section A .11 .2, "The
EXEMOD Utility," to change the allocation .

The intermediate files produced by the first two passes of the
compiler (PASIBF .BIN, PASIBF.SYM, PASIBF.TMP, and
PASI BF.OI D) are about one third the size of those produced by
version 3.2 .

149

Microsoft Pascal Compiler User's Guide

A.9 Creating Link Map
Files With Microsoft LIB

Now that Microsoft LIB is included with Microsoft Pascal, you
can create link map files . Therefore, the MAP files for each
library are no longer included . To create a .MAP file, follow these
steps:

1 . Enter
LIB

2 . You receive the "Library name:" prompt. Enter the name
of the library (PASCAL, MATH, 8087, DECMATH, or
ALTMATH) .

3 . You then receive the "Operations :" prompt . Press return .
4 . You receive the "List file :" prompt. Enter the name of the

library, followed by the ".MAP" extension .

For example, to create a MAP file for the MATH library, you
would use a procedure of the following type :

LIB
Library name: MATH
Operations :
Listing file: MATH.MAP

You can create the same file (MATH .MAP) by entering the com-
mand line

LIB MATH,MATH .MAP

A.10 Changes to the Linker

Version 3.3 of Microsoft Pascal comes with a new version of
LINK: Version 3 .01 . Version 3.01 has two new switches which
allow you to set the maximum number of segments and use the
DOS segment ordering convention . Sections A.10 .1 and A.10.2
explain these new switches .

150

Also, the default for the overlay interrupt number has been changed
from CD to 3F .

A.10 .1 Setting the
Maximum Number of Segments

Syntax

/SEGMENTS: number

The /SEGMENTS option directs LINK to process no more than
number segments per program . LINK displays an error message
and stops if it encounters more than the given limit . The option is
used to override the default limit of 128 segments .

The number can be any integer value in the range 1 to 1024 . It
must be a decimal, octal, or hexadecimal number . Octal numbers
must have a leading zero. Hexadecimal numbers must start with"0x . "

If /SEGMENTS is not given, LINK allocates enough memory
space to process up to 128 segments . If a program has more than
128 segments, set the segment limit higher to increase the number
of segments LINK can process .

Minimum abbreviation : /SE

Example

LINK file.obj/SE:lo,file .exe,, ;

This example sets the segment limit to 10 .

Differences Between Versions 3.2 and 3 .3

LINK moda+modb,run/SEGMENTS :Oxff,ab .map, ;

This example sets the segment limit to 255 (FFH) .

LINK startup+file,file/SE :030,, ;

This example sets the segment limit to 24 (30 octal) .

151

Microsoft Pascal Compiler User's Guide

A.10.2 Using DOS Segment Order

Syntax

/DOSSEG

The /DOSSEG option causes LINK to arrange all segments in
the executable file according to the MS-DOS segment ordering
convention . This convention has the following rules :

1 . All segments having the class name, "CODE," are placed
at the beginning of the executable file .

2. Any segments that do not belong to the group named
"DGROUP" are placed immediately after the "CODE"
segments .

3 . All segments belonging to "DGROUP" are placed at the
end of the file .

Minimum abbreviation : /DO

Example

LINK start+test/DOSSEG,test„math+common

This command causes LINK to create an executable file, named
"file.exe," whose segments are arranged according to the MS-DOS
segment ordering convention . The segments in the object files
"start.obj" and "test-obi," and any segments copied from the
libraries "math .lib" and "common .lib" are arranged in the order
specified above.

A.11 Modifying Executable Files
With EXEPACK and EXEMOD

The EXEPACK and EXEMOD utilities (supplied with your com-
piler software) allow you to modify an executable program file .
The EXEPACK utility "compresses" the executable file by re-
moving sequences of null characters from the file and by optimiz-
ing the relocation table. Using EXEPACK, you can significantly
reduce the size of the executable file and the time required for
loading .

152

The EXEMOD utility allows you to examine file header informa-
tion, such as the size of the file and the number of relocation
entries in the relocation table, and allows you to modify the initial
stack pointer and maximum and minimum allocation values . The
program assumes that you are familiar with the fields and format
of the file header. See your Microsoft MS-DOS Programmer's
Reference Manual for details.

The following sections explain how to invoke and pass arguments
to the EXEPACK and EXEMOD programs .

A.11 .1 The EXEPACK Utility
Command

EXEPACK executable-file output-file

The output-file must have a different name than the executable-
file .

You can also use EXEPACK by specifying a new linker switch,
/EXEPACK.

Syntax

/EXEPACK

The /EXEPACK option has the same effect as the EXEPACK
utility. The / E X E PAC K option directs the linker to remove
sequences of null bytes (00 hexadecimal) before the linker outputs
an .EXE file .

Minimum abbreviation: /E

Example

LINK fiIe .obj/EXEPACK,fiIe.exe,, ;

LINK file .obj,file .exe/E;

LINK file/E ;

Differences Between Versions 3 .2 and 3 .3

These examples all produce .EXE files (file)exe) with sequences of
null bytes removed .

153

Microsoft Pascal Compiler User's Guide

The EXEPACK utility reduces the size and loading time of an
executable file by removing sequences of null characters from the
given executable-file and optimizing the relocation table. The
compressed file is written to the output file, and the original file is
not modified .

The EXEPACK utility produces self-explanatory error messages
if it is unable to compress the given file . For a listing of these
messages, see Appendix F, "Error Messages ."

A.11 The EXEMOD Utility
Command

EXEMOD executable-file [/stack n] [/min n] [/max n]

The EXEMOD utility modifies fields in the header according to
instructions given on the command line . To display the header
fields without modifying them, give the executable-file without
any options .

The options are shown with the forward slash (/) option charac-
ter, but a hyphen (-) may be used instead if you prefer. They can be
given in either uppercase or lowercase . The options have the
effects listed below .

Option

	

Effect

/stack n

	

Sets the initial SP (stack pointer) value to n,
where n is a hexadecimal value in bytes . The
minimum allocation value is adjusted upward if
necessary. There is no default for n .

/min n

	

Sets the minimum allocation value to n, where n
is a hexadecimal value in paragraphs . The actual
value set may be different from the requested
value if adjustments are necessary to accommo-
date the stack. There is no default for n .

/max n

	

Sets the maximum allocation to n, where n is a
hexadecimal value in paragraphs. The maximum
allocation value must be greater than or equal to
the minimum allocation value . There is no de-
fault for n .

154

Notice that the modifications you can make with the /stack and
/ max options can also be made by relinking the program with the
corresponding linker options (/STACK and /CPARMAXALLOC) .
The advantage of the EXEMOD utility is that it modifies the
executable file directly, without requiring the program to be
relinked .

The ExE M O D program produces self-explanatory error messages
when it is unable to carry out the given instructions . For a listing
of these messages, see Appendix F, "Error Messages ."

Warning
The /stack option can only be used on programs compiled
with the Microsoft C Compiler Version 3 .0 or later, the Micro-
soft Pascal Compiler Version 3 .3 or later, or the Microsoft
FORTRAN Compiler Version 3 .3 or later. Use of the /stack
option with other programs may cause the program to fail .

A. 12 The Microsoft
Pascal Memory Model

The memory model has been changed for version 3 .3. If you use
assembly language with Microsoft Pascal, you may have to mod-
ify your code.

The following illustration shows a summary of the memory model .

User programs can declare any additional segments they need, as
long as they use the class names defined here to ensure they are
loaded in the proper place in memory . (Only advanced users will
ever need to do this.) The compiler often generates additional
segments of the classes defined here for its own purposes .

155

Differences Between Versions 3.2 and 3 .3

Microsoft Pascal Compiler User's Guide

Logical Segment

The following example is a Pascal routine that calls a routine
written in assembly language for the 8086 . The assembly-language
routine adds real numbers . Note that to assemble this example,
you need the Microsoft Macro Assembler version 1 .25 or higher .
This example should be assembled with the /E switch, which
directs the assembler to generate 8087/80287 instructions that
are compatible with the emulator. If you have version 3 .0 or later
of the Microsoft Macro Assembler, you should also specify the
/MX switch, which tells the assembler to preserve lower case
letters in public and external symbols when the object file is
written .

Assume the following Pascal program has been compiled :

PROGRAM example2(input, output) ;
VAR

r: REAL ;
total : REAL ;

FUNCTION RADD (a,b: REAL) : REAL ;
EXTERN ;

BEGIN
r := 10 .0 ;
total := RADD(15 .0,r) ;
WRITELN (total)

END .

156

Name Class

low addresses

high addresses

Code Segments (may be
many physical segments)

module CODE

C ETEXT ENDCODE

Far Data Segments (may
be many physical
segments

--FL7ATA

a

FAR DATA

l

_FBSS FAR BSS

DGROUP
Segment (one physical
segment, with increasing
offsets)

.

NULL BEGDATA

-DATA DATA

CONST CONST

_BSS BSS

STACK
1

STACK

1'

S P_>

Differences Between Versions 3 .2 and 3 .3

Note that R and the constant 15 .0 will be passed by value . At
runtime, just before the transfer to the function RADD, the stack
would be in the following form (each box contains one byte) :

Stack grows downward

} Argument 1 =
constant 15.0

Argument 2
10.0 (value of variable R)

Argument 3
address of function
return value

} Return address

The following assembly-language subroutine implements the real
add function, RADD . Notice that this example uses an in-line
version of the entry code and exit code . The entry and exit se-
quences make sure that any virtual memory accessed in the frame
of a routine is actually mapped to physical memory .

The entry code also verifies that the runtime stack is large enough
for the local variables needed by the routine .

Note that the function return value is in the location specified by
BP+6.

157

Most Significant Byte
y

{
Least Significant Byte

Most Significant Byte
I

	

M

1

Least Significant Byte

Offset High

Offset Low

Segment High

Segment Low

Offset High

Offset Low

Microsoft Pascal Compiler User's Guide

Note also that whenever the return value for a function is returned
in a temporary variable created by the caller (rather than in
registers), AX must be set to the two-byte offset address of this
temporary variable by the function before it returns to the caller .
In the following example, this is done by the mov ax, di instruction
just before the standard exit sequence :

extrn __chkstk :far

	

;

DATA segment public 'DATA'
; if your routine needs static data, declare it here

DATA ends

DGROUPgroup __DATA

RADD_TEXT segment 'CODE'

assume cs:RADD_TEXT,ds:DGROUP,ss:DGROUP

public RADD
RADD

	

proc far

Begin standard entry sequence
inc by

	

; mark stack frame as a "far call" frame
push by

	

; save old frame pointer
mov bp,sp

	

; set up new frame pointer
mov a x,0

	

; set AX to tot . # bytes for local vars
call

	

chkstk ; reserve space on stack for local vars
push di

	

; save C register variables (si and di)
push si
End standard entry sequence

fld dword ptr [bp+12] ; push 1st param on 80287 stack

fld dword ptr [bp+8] ; push 2nd param on 80287 stack

faddp st(1),st

	

; add top two items on 80827 stack

mov di,[bp+6] ; di = addr of function return var
fstp dword ptr [di] ; store result in funs . ret . var
fwait
mov ax, di

	

; return address of result variable

Begin standard exit sequence
pop si

	

; restore C register variables
pop di
mov sp,bp

	

; recover space used by local variables
pop by

	

; restore old frame pointer
dec by

	

; restore low bit (used as frame marker)
End standard exit sequence

ret 10

	

; return and recover space i n parameters

RADD

	

endp

RADD TEXT ends

end

158

Appendix B
Version Specifics

B.1 Implementation Additions

	

161
B.2 Implementation Restrictions

	

165
B.3 Unimplemented Features

	

166

159

Version Specifics

Microsoft Pascal has been implemented for a number of different
microcomputer operating systems. This appendix describes the
current implementation of the MS-Pascal language for MS-DOS .
It discusses additions and restrictions to the language described
in the current Microsoft Pascal Reference Manual, and identifies
features of MS-Pascal that are not yet implemented .

For changes and additions to the MS-Pascal Compiler or
language that may have been made after publication of this
User's Guide and companion reference manual, see the
README.DOC file, if present, provided on disk with the system
files .

B.1 Implementation Additions

The following additions have been made to the language
described in the May 1983 release of the Microsoft Pascal
Reference Manual.

1 . The following function can be declared EXTERN :
FUNCTION DOSXQQ

(COMMAND. PARAMETER : WORD) : BYTE;

This function invokes the operating system, passing a
command in the AH register and an additional parameter
in the DX register . The BYTE function return value is
identical to the value returned by the operating system in
AL, the accumulator .
The PUBLIC variables CRCXQQ and CRDXQQ contain
the values of the CX and DX registers after the call . The
value of CRCXQQ is also loaded into CX before the call .
Several operating system functions are particularly
useful :

a . DOSXQQ (1, 0) ;

Returns the next character typed . If no character has
been typed, DOSXQQ waits for input. The ASCII
value of the typed character is returned, and the
typed character is echoed on the terminal screen .

161

Microsoft Pascal Compiler User's Guide

162

b. DOSXQQ (2, WRD ('x')),

Outputs the character `x' to your terminal . The
function return value should be ignored. The
CONTROL-S and CONTROL-Q commands to stop and
start scrolling, and the CONTROL-P command to
toggle the printer, are executed if entered. Tabs are
expanded .

c . DOSXQQ (6, 255) ;
Returns the next character typed on the keyboard, or
zero, if no character has been typed . CONTROL-S,
CONTROL-Q, and CONTROL-P are not treated specially .
The character typed is not echoed on the terminal
screen .

d. DOSXQQ (6, WRD ('x')) ;

Outputs the character `x' to your terminal . This is the
same as DOSXQQ (2, W RD ('x')), above, except that
CONTROL-S, CONTROL-Q, and CONTROL-P are not
treated specially . The function return value should be
ignored in this case .

e . DOSXQQ (11, O) ;

Returns screen status. The value 255 is returned if a
character has been typed, a 0 is returned if a
character has not been typed . This function is used to
check for a keypress condition without actually
reading the character .

f. DOSXQQ (13, O) ;
This function is not necessary in MS-DOS, but is
provided for compatibility with other operating
systems (CPIM® and CPIM-86®), where this function
resets disk tables .

2 . The following MS-Pascal filenames are available to
indicate devices :

Name

	

Description

	

MS-DOS Code

USER

	

Console

	

1, 2, and 6
LINE

	

Auxiliary input

	

31 4
Special MS-DOS filenames, like CON and NUL, are also
available (see your MS-DOS manual for details) .
HoWever, using CON for the terminal causes buffering of

Version Specifics

input and output data and precludes interactive input
and output. The filename USER should be used instead .

3 . Program parameters are available . When a program
starts, there is a prompt for every program parameter .
You may also give program parameters on the command
line with which you invoke the program. If a program
requires more parameters than appear on the command
line, the remaining parameters are prompted for .
For example, assume that you want to execute the
following program :

PROGRAM DEMO (INFILE, OUTFILE, P1, P2, P3) ;
VAR INFILE, OUTFILE : TEXT ;

P1, P2, P3 : INTEGER ;
BEGIN

END .

From the command line, you could run this program as
follows :

A: DEMO DATA 1 .FIL DA TA2.FIL 7 8 123

If you give only the first parameter on the command line,
the compiler will proceed to prompt you as follows (your
responses are shown in italics) :

A:DEMO DATA 1 .FIL
OUTFILE:DA TA2. FIL 7
P2:8
P3:123

An LSTRING parameter value of NULL cannot be read
from the command line and is assumed to be missing.
You can enter it by pressing the RETURN key in response
to the prompt .

4 . The PUBLIC variable CESXQQ, containing the segment
register value for the start of the MS-DOS data area, is
available. This allows you to reference the command line,
as shown :

VAR MSDATA : ADS OF LSTRING (80);
CESXQQ [EXTERN] : WORD;

BEGIN
MSDATA.S : = CESXQQ; MSDATA.R : = 128
J MSDATA now contains the command I ine .4

END;

163

Microsoft Pascal Compiler User's Guide

164

The MS-DOS data area also contains, at offset 2, the
upper memory limit, expressed as the segment (i .e .,
paragraph) address of the first byte after available
memory. The lower memory segment address is simply
4K paragraphs (i .e., 64K bytes) above the default data
segment. For example:

VAR LOMADS, HIMADS, MSDATA : ADS OF WORD;
CESXQQ [EXTERN] : WORD;

BEGIN
LOMADS : = ADS LOMADS;
LOMADS.S : = LOMADS.S + 4096 ;
LOMADS.R : = 0 ;
I LOMADS is first available address .l

MSDATA.S : = CESXQQ; MSDATA .R : = 2;
HIMADS .S : = MSDATA ; HIMADS .R : = 0
I HIMADS is first unavailable address .#

END;

5. TIME, TICS, and DATE are supported for MS-DOS
systems with clocks . TICS returns hundredths of
seconds .

6 . Real number conversion utilities .
Releases of MS-Pascal starting with 3 .0 use the IEEE
real number format. Releases of MS-Pascal earlier than
3.0 used the Microsoft real number format. The two
formats are not compatible . However, if you need to
convert real numbers from one format to the other, you
may do so with the following library routines :
a . Single Precision Reals

Microsoft to IEEE format
PROCEDURE M21SQQ (vars rms, rieee : real4)

IEEE to Microsoft format

PROCEDURE I2MSQQ (vars rieee, rms : real4)

RM S and RI E E E are real numbers in Microsoft
format and in IEEE format, respectively .

b. Double Precision Reals
Microsoft to IEEE format

PROCEDURE M21 DQQ (vars dms, dieee : real8)

L

IEEE to Microsoft format
PROCEDURE I2MDQQ (vars dieee, dms : real8)

DM S and D IE E E are real numbers in Microsoft
format and in IEEE format, respectively.

7 . Bankers' rounding is used when truncating real numbers
that end with .5; that is, odd numbers are rounded up to
an even integer, even numbers are rounded down to an
even integer. For example :

TRUNC (4.5) = 4
TRU NC (207.5) = 208

B.2 Implementation Restrictions

The following restrictions apply to this implementation of
MS-Pascal :

1 . Identifiers can have up to 31 characters . Longer
identifiers are truncated .

2 . Numeric constants can have up to 31 characters . Like
identifiers, numeric constants longer than 31 characters
are truncated.

3 . The PORT attribute for variables is identical to the
ORIGIN attribute. I t does not use I/O port addresses .

4 . The maximum level to which procedures can be statically
nested is 15. Dynamic nesting of procedures is limited by
the size of the stack .

5 . The FORTRAN attribute does nothing. MS-Pascal and
MS-FORTRAN share the same code generator and
calling sequence . MS-FORTRAN parameters are always
passed as MS-Pascal VARS parameters .

6 . $simple currently turns off common subexpression
optimization. $size and $speed turn it back on (and have
no other effect) .

165

Version Specifics

Microsoft Pascal Compiler User's Guide

B,3 Unimplemented Features

The following MS-Pascal features are not presently implemented,
or are implemented only as discussed below :

1 . OTHERWISE is not accepted in RECORD declarations .
2 . Code is generated for PURE functions, but no checking is

done.
3 . The extend level operators SHL, SHR, and ISR are not

available .
4 . No checking is done for invalid GOTOs and uninitialized

REAL values .
5 . READ, READLN, and DECODE cannot have M and N

parameters .
6 . Enumerated I/O, permitting the reading and writing of

enumerated constants as strings, is not available .
7 . The metacommands $tagck, $standard, $extend, and

$system can be given, but have no effect .
8 . The $inconst metacommand does not accept string

constants .

166

Appendix C
Customizing 18087 Interrupts

This appendix describes how to customize the i8087 interrupts on
your computer system . Before proceeding, you should be familiar
with the following :

1 . the Intel publication, iAPX 86120, 88120 Numeric
Supplement

2 . MS-Macro, the Microsoft Macro Assembler

3 . DEBUG, the MS-DOS debugger utility

In addition, we recommend that you make backup copies of any
of the disks you plan to modify .

To change the way the runtime library processes interrupts, you
must use the MS-DOS debugger DEBUG (or a similar utility) .
Although this utility is intended primarily for debugging
assembly language programs, you can also use it to alter the
binary contents of any file . You will use this second capability of
DEBUG to customize 8087.LIB and MATH.LIB for a particular
hardware configuration .

8087 .LIB, the 8087 version of the runtime library, contains the
following assembly language structure:

i8087control STRUC

i8087control ENDS

This structure defines the default control values used by the
runtime library to handle 8087 interrupts . Each of the elements
of the structure is described briefly below :

167

LABX87
EOIX87
P RTX87
SH RX87
I NTX87

DB
DB
D B
DB
DB

` < 8087 x' ;48-bit tag
0

	

;EOI instruction
o
o
2

;i8259 port number
;Shared interrupt device
;i8087 interrupt vector #

I NTOFFSET DW 0

Microsoft Pascal Compiler User's Guide

1 . LABX87
A string label . LABX87 exists solely to locate the other
structure fields in the executable binaries and libraries .

2 . EOIX87
The hexadecimal value of the i8259 "end of interrupt"
instruction for a particular implementation . To the 8087
interrupt handler supplied by Microsoft, any nonzero
value of this byte indicates the presence of an i8259
interrupt controller.

3 . PRTX87
The control port number associated with an i8259, if
present .

4 . SHRX87
If nonzero, an indication that the i8087 shares its
interrupt vector with another device . In such a case,
when the 8087 interrupt handler supplied by Microsoft
determines that an interrupt it receives is not an 8087
interrupt, it passes control to the other interrupt device .

5 . I NTX87
The interrupt vector number to which the 8087 is
connected .

Depending on the setup of your computer system, any or all (or
none) of the last four items may require changing . Specifically,
you must alter this structure if your hardware configuration
meets any of the following criteria :

1 . It uses an 8087 interrupt vector number other than 2 .
2 . It uses an 8259 interrupt controller .

3 . The 8087 shares interrupts with another device on the
same vector.

The example on the following pages demonstrates how to change
all of the interrupt parameters on the 8087 . In the example, the
following specific changes are made :

1 . The 8087 interrupt control block is altered to set EOIX87
to 255 decimal, thus informing the software that an i8259
exists and that its EOI instruction is 255 .

168

Customizing 18087 Interrupts

2 . The i8259 should issue its EOI request through port
number 254 (PRTX87) .

3 . The nonzero value of SHRX87 indicates that the 8087
shares its interrupts with another device .

4 . The interrupt vector number of the i8087 is changed to 4 .

These values are used merely for the purpose of this sample
session. Consult your hardware manual for the values required
for your computer system .

For the sake of brevity and clarity, not all of the screen display
issued by the debugger is shown in the example, only the parts
that apply specifically to this procedure . Also, on most screens,
the information shown in lines 4, 7, 8, and 10 will run to 80
columns on an 80-column screen.

Numbers 1 through 13 at the left-hand margin of the sample
session do not appear on the screen ; rather, they refer to the
corresponding numbered comments on the page following the
sample session. See your MS-DOS manual for complete details on
using DEBUG .

Sample DEBUG Session to Customize i8087 Interrupts :

1 .

2 . >debug b:8087-lib

3 . DEBUG-86 version 2 .10

4 . >r
AX=0000 BX=0001 CX=B800 DX=0000
SP=FFEE BP=0000 SI=0000

	

DI=0000
DS=OAF9 ES=OAF9 SS=oAF9 CS=OAF9
IP=0100 NV UP DI PL NZ NA PC NC
OAF9*0100 FO

	

LOCK
OAF9:0101 FD

	

STD

5. >s ds:100 Iefff `8087>'

6 . OAF9:2370

7 . >d af9:2370
OAF9:2370 38 30 38 37 3E 00 00 00

	

8087> . . .
02 00 00 F8 A9 D F 00 02

	

. . .x

169

Microsoft Pascal Compiler User's Guide

8 . >d af9:2375
OAF9:2375 00 00 00-02 00 00 F8 A0

	

. x
DF 00 02

9 . >e af9:2375
OAF9:2375 00 .ff OO .fe 00.1
OA F9:2378 02 .4

10. >d af9:2375
OA F9:2375 F F FE 01-04 00 00 F8 A0

D F 00 02

Comments for Sample DEBUG Session

170

. X

1 . MS-DOS prompt .
2. Call DEBUG with 8087 .LIB .
3. DEBUG utility prompt .
4 . Instruct debugger to show 8086 registers .
5 . Instruct debugger to search efff bytes beginning at

DS:100 for the string `8087 > ' .
6 . String found at OAF9 :2370 .
7 . Instruct debugger to display the string .
8. Advance to the beginning of the `i8087control' structure .
9. Instruct the debugger to make the following alterations :

EDIX87 to FF hex, 255 decimal
PRTX87 to FE hex, 254 decimal
SHRX87 to 1 hex
INTX87 to 4

10. Instruct the debugger to display any changes .
11 . Write any changes to the source file .
12. Stop the debugger .
13 . MS-DOS prompt returns .

Appendix D
Exception Handling
for 8087 Math

D.1 Processing Environment Control

	

174
D.1.1

	

The STATUS Word 174
D . 1 .2 The CONTROL Word 174
D.2 Reading and Setting STATUS

and CONTROL Values 176
D.3 Formats for Status

and CONTROL Words 177

171

(

Exception Handling for 8087 Math

The five exceptions to floating-point arithmetic that are required
by the IEEE standard are supported by the 8087 coprocessor and
the real math support routines . Those which would result in a
NAN ("Not A Number") error message when enabled, are
enabled by default . The others are disabled . They are not affected
by the $debug metacommand but are controlled by a STATUS
word and a CONTROL word .

The following list contains the five exceptions and their default
and alternate actions:

1 . Invalid Operation-Any operation with a NAN, square
root(-1), 0*INF, etc .
Default action. Enabled, gives runtime error 2136
Alternate action. Disabled, returns a NAN

2 . Divide by zero-r/0 .0
Default action . Enabled, gives runtime error 2100
Alternate action. Disabled, returns a properly

signed INF (infinity)

3 . Overflow-Operation results in a number greater than
maximum representable number .
Default action. Enabled, gives runtime error 2101
Alternate action . Disabled, returns INF

4 . Underflow- Operation results in a number smaller than
smallest valid representable number .

Default action. Disabled, returns zero
Alternate action. Enabled, gives runtime error 2135

5 . Precision--Occurs whenever a result is subject to
rounding error .

Default action. Disabled, returns properly
rounded result

Alternate action . Enabled, gives runtime error 2139

173

Microsoft Pascal Compiler User's Guide

D.1 Processing Environment Control

Two memory locations control the 8086 and the 8087 processors .
These are called the STATUS word and CONTROL word . The
effect of these memory locations is discussed in the following
sections .

D.1 .1 The STATUS Word

When one of the exceptional conditions occurs, the appropriate
bit in the STATUS word is set . This flag will remain set to
indicate that the exception occurred until cleared by the user . If
you set the bit in the CONTROL word relating to a given
exception, that exception is masked and the operation proceeds
with a supplied default. If the bit is unset, any exception of that
type generates an error message, halts the operation, and your
program will stop. In either case the exception is ORed into the
STATUS word.

D.1 .2 The CONTROL Word

In addition to masking exceptional conditions, the CONTROL
word is also used to set modes for the internal arithmetic required
by the IEEE standard . These are :

Rounding Control

Round to nearest (or even), Up, Down, or Chop

Precision Control

Determines at which bit of the mantissa rounding should take
place (24, 53, or 64) . Note all results are done to 64 bits regardless
of the precision control . It only affects the rounding in the
internal form . On storage any result is again rounded to the
storage precision .

174

Infinity Control

Affine mode is the familar + and - INF style of arithmetic .
Projective mode i s a mode where + and - INF are considered to
be the same number. The principal effect is to change the nature
of comparisons . (Projective INF does not compare with anything
but itself.)

The CONTROL word defaults are currently :

Infinity control = affine
Rounding control = near
Precision control = 64 bits
Interrupt-enable mask = unmasked
Precision mask = masked
Under flow mask = masked
Overflow mask = unmasked
Zerodivide mask = unmasked
Denormalized operand mask = unmasked
Invalid operation mask = unmasked

Special exception handling routines handle stack exceptions and
denormal propagation. For these routines to work correctly, the
8087 CONTROL word and auxiliary variables need to be set up
as done by LCWRQQ. Use LCWRQQ to revise the 8087
CONTROL word.

Exception Handling for 8087 Math

Important
Do not alter the 8087 CONTROL word with an FLDCW
instruction when using the 8087 with a Microsoft language .

Since the denormal exception is not a part of the IEEE standard,
LCWRQQ always alters the user's parameter word to unmask
denormals and thus handle them with the Microsoft exception
handler. The user cannot affect the handling of denormals with
LCWRQQ.

Since stack overflow and underflow are indicated by the 8087
with an invalid exception, the invalid exception bit is also always
unmasked by LCWRQQ . However, when an invalid exception
occurs and it is not stack overflow or underflow, then the invalid

175

Microsoft Pascal Compiler User's Guide

exception bit of the user's control word input to LCWRQQ
controls the handling of the exception .

The following list of control words defines the masking settings
for the overflow, zerodivide, and invalid operation exceptions
that are associated with several optional control words . Control
word 4914 specifies the default masking settings that are
customary during 8087 operations .

D.2 Reading and Setting STATUS
and CONTROL Values

The values of the STATUS word and CONTROL word can be
read and set using the following procedures and functions :

The procedure LCWRQQ loads the 8087 CONTROL word .

PROCEDURE LCWRQQ (consts w : word);

The function SCWRQQ stores the 8087 CONTROL word .

FUNCTION SCWRQQ : word ;

The function SSWRQQ stores the 8087 STATUS word .

FUNCTION SSW RQQ : word ;

If you disable the exceptions listed at the beginning of this
appendix, you will either get NAN, Infinite, or Indefinite values
in your variables . If you print such a value, the output field will
contain NAN, INF, or IND padded with periods to the field
width. If the output field has less than three spaces, only periods
will be printed .

176

Control word

	

Overflow

	

Zerodivide Invalid

4914 = 1332h unmasked

	

unmasked unmasked
4915 = 1333h unmasked

	

unmasked masked
4918 = 1336h

	

unmasked

	

masked unmasked
4919 = 1337h

	

maskedunmasked masked
4922 = 133Ah masked unmasked unmasked
4923 = 133Bh masked unmasked masked
4926 = 133Eh masked

	

masked unmasked
4927 = 133Fh

	

masked

	

masked masked

D.3 Formats for STATUS
and CONTROL Words

The bit locations for storing the cumulative record of exceptions
are defined in the diagrams that follow .

00 = 24 bits of mantissa
01 = (reserved)
10 = 5:3 bits of mantissa
11 = 64 hits of mantissa

Exception Handling for 8087 Math

177

15
STATUS

	

hi byte

Precision Exception
Underflow Exception
Overflow Exception
Zero Divide Exception
Invalid Exception

8
unused

7
I

6 5
I

	

I PE
4
UE

3
JOE I

2
ZE

1
`

0
I IE

(All other bits unused, may be either

CONTROL 15 14 13 12 11-10
RCI

1 or

9-8
PCI

0)

7 6
I

5 4
IPMIUMJOMJZMI

3 2 1 0
I IMI1 1ICI

-J(a)

	

Infinity Control
(b) Round Control
(c)

	

Precision Control

Precision Mask
Underflow Mask
Overflow Mask
Zero Divide Mask
Invalid Mask

(All other bits unused, may be either 1 or 0)

(a)

	

Infinity

(b) Round

Control

or even
(toward -INF)

0 = Projective
1 = Affine
Control
00 = Round nearest
01 = Round down
10 = Round up (toward +INS')
11 = Chop (Truncate toward 0)

(c)

	

Precision Control

C

(

C

Appendix E
Mixed-Language
Programming

179

E.1 Memory Models

	

182

E.2 Choosing a Calling Convention 182

E.2.1 Passing Parameters
by Reference or Value 184

E.2.2 Using Varying
Numbers of Parameters 189

E.3 Naming Conventions 189
E.4 Writing Interfaces

to Pascal or C from FORTRAN 191

E.5 Calling Procedures in
Pascal or C from FORTRAN 193

E.6 Writing Interfaces
to FORTRAN or C from Pascal 194

E.7 Calling Procedures in
FORTRAN or C from Pascal 194

E.8 Writing Interfaces
to FORTRAN or Pascal from C

	

195

E.9 Calling Procedures in
FORTRAN or Pascal from C 197

Microsoft Pascal Compiler User's Guide

•

	

.10 Data Types 197
•

	

.10 .1 Integers 197
E .10 .2

	

Boolean and Character

	

202
•

	

.10.3 Real Numbers 203
•

	

.10 .4 Passing Strings 205
•

	

.10 .4 .1 Passing FORTRAN
Strings to C or Pascal

	

208
•

	

.10 .4 .2 Passing Pascal Strings
to C and FORTRAN 208

E .10.4 .3

	

Passing C Strings
to Pascal and FORTRAN 209

•

	

.10.5 Pointers 209
•

	

.10.6 Arrays, Superarrays
and Huge Arrays

	

211
E.10 .7

	

Records and Structs

	

214
E.10 .8

	

Procedural Parameters

	

217
E.10.8.1

	

Return Values

	

217
E.11 Sharing Data

	

217
E.12 Input and Output

	

219
•

	

.13 Compiling and Linking 219
•

	

.14 Error Messages 220

180

Mixed-Language Programming

Microsoft FORTRAN and Pascal (versions 3.3 or later) and
Microsoft C (version 3.0 or later) provide support for programmers
who use more than one of these languages . The information in
this appendix is not required for most programs .

No to
Microsoft C for XENIX does not include the fortran and pascal
keywords, which are described later in this document . You
cannot call FORTRAN and Pascal from the XENIX version
of C unless you use the C calling conventions .
(FORTRAN and C programmers, please note : Throughout
this section, the terms procedure and parameter are used
instead of subroutine or function and argument . This is the
terminology used in Pascal .)

Mixed-language programming offers several advantages :

1 . You can use libraries of procedures written in different
languages .
For example, you can access the Microsoft C library from
programs written in FORTRAN or Pascal . There are also
many proprietary libraries available for use with Micro-
soft FORTRAN, which you can access from Microsoft
Pascal and C .
To use a library written for a particular language, you
must have the library supplied with that language's com-
piler. To use a proprietary FORTRAN library from C, for
example, you need the library supplied with the FORTRAN
compiler, as well as the proprietary library itself. This is
because programs written in Microsoft Pascal, C, or
FORTRAN contain calls to their respective runtime
libraries .

2 . You can use features not available in your language .
It is hard to write bit manipulation procedures in
FORTRAN, for example, but it is easy in C or Pascal .
Also, some interfaces, such as those that use C or Pascal
structures, are not compatible with FORTRAN .

181

Microsoft Pascal Compiler User's Guide

3. If you write your own libraries, you can now produce one

library that is compatible with all three languages .

Of course, to ensure compatibility, you must pay close

attention to the guidelines given in this section. Remember

that users also need the runtime library provided with the

language in which your library is written, as mentioned

in point one .

E.1 Memory Models

If you use C procedures in mixed-language programming

•

	

You must compile your C code with the large model switch .

The current versions of Pascal and FORTRAN do not

offer a choice of memory models ; they are only compatible

with large model C .

You must use the large model C library .

Some components of the C library are referenced from the

other languages' libraries . If you use the library for the

wrong memory model these interfaces will be incorrect .

E.2 Choosing a Calling Convention

FORTRAN, Pascal, and C each have conventions for passing

parameters.

The languages differ first in the order in which parameters are

pushed on the stack. Microsoft Pascal and FORTRAN push param-

eters on the stack in the order in which they appear in the proce-

dure declaration. C pushes its parameters in the reverse order .

182

I

Mixed-Language Programming

The languages also differ in whether code telling how to restore
the stack when a procedure returns is in the calling procedure or
in the called procedure. In the FORTRAN/Pascal convention,
this code is in the called procedure ; in the C language, this code
follows the procedure call .

The FORTRAN/Pascal convention is slightly faster and produces
less code. The C convention allows you to use a varying number of
parameters (because the first parameter is always the last one
pushed, it is always on top of the stack, and always has the same
address relative to the start of the frame) . These conventions are
incompatible .

Finally, the languages differ in what parameters they pass by
reference and by value. Section E .2 .1, "Passing Parameters by
Reference or Value," discusses these differences .

If you control both the calling and the called code, you can choose
which calling convention to use . If you intend to pass varying
numbers of parameters, you must use the C calling convention .
For more information, see Section E .2 .2, "Using Varying Numbers
of Parameters ." Otherwise, you may want to use the convention
of the language that you use most often, so that you can usually
use the default calling convention .

To make calls from one language to another, you must tell the
compiler which convention to use . Microsoft C, Pascal, and
FORTRAN all provide ways of specifying which convention you
are using, both when you call an external procedure and when you
define a public procedure . Table E .1 indicates how to specify
calling conventions from each language .

183

Microsoft Pascal Compiler User's Guide

Table E .1

Specifying Calling Conventions

When Calling From
This Language :

To Use C Calling Conventions :

Pascal

FORTRAN

C

To Use FORTRAN Calling Conventions :

Pascal

	

FORTRAN attribute
on procedure declaration
default
fo rt ran keyword on
procedure declaration

FORTRAN
C

To Use Pascal Calling Conventions :

Pascal
FORTRAN

C

E.2 .1 Passing Parameters
by Reference or Value

When a parameter is passed by reference, the address of the
parameter is passed . Procedures access the parameter's value
through the address; any changes to the parameter affect the
stored value. When a parameter is passed by value, a copy of the
parameter is placed on the stack when the procedure is called . The
procedure can change the value of the parameter without affect-
ing the original value from which the copy was taken .

For each parameter, you must decide whether to pass by value or
by reference . If you pass by reference, you also have to choose
whether to pass a long address (segment and offset) or a short
address (offset only) .

184

Use These
Attributes/Keywords :

C attribute on procedure
declaration
C attribute on
INTERFACE statement
default

default
PASCAL attribute on
INTERFACE statement
pascal keyword on
procedure declaration

If the called procedure needs to change the actual value in the
variable as a way of returning a result, you have to pass by
reference. Passing by value protects against accidental updating
and, for variables smaller than about four bytes, can be more
efficient .

The following list describes the defaults for each language :

•

	

FORTRAN passes all parameters by reference (including
constants and expressions), but passing by value can be
specified. If a procedure is given the C or Pascal attribute,
the default is changed : all parameters for that procedure
are passed by value unless otherwise specified .

•

	

C always passes arrays by reference, and passes all other
parameters by value. In C, you can pass pointers as
parameters; the procedure can use the pointers to modify
stored values, producing the same effect as passing by
reference .

•

	

Pascal passes by value, but passing by reference can be
specified .

If you do not choose the default case, you have to specify certain
keywords, attributes, or pointer types . These will vary, according
to the calling conventions you are using . See Tables E .2 through
E .4

If you are passing parameters when using C calling conventions,
use the constructs described in Table E .2 when declaring
parameters .

Table E .2
Passing Parameters With C Calling Conventions

Mixed-Language Programming

185

Parameter C Pascal FORTRAN

long address pointer to VARS REFERENCE attribute
type keyword

short address near pointer VAR REFERENCE,NEAR
to type keyword attributes

value default default default

Microsoft Pascal Compiler User's Guide

For example, assume that you are using the C calling conven-
tions. Table E .1 shows what attributes and keywords are neces-
sary to use the C calling conventions . When calling from Pascal,
specify the C attribute on the procedure declaration . When call-
ing from FORTRAN, specify the C attribute on the INTERFACE
statement. When calling from C, the C calling conventions are the
default .

Now, assume that you want to pass an integer parameter, x, using
a long address . Compatibility of data types is discussed in Sec-
tion E .10; for now, assume that the C int type, the Pascal integer
type, and the FORTRAN INTEGER type are equivalent . Table
E.2 shows that when declaring the parameter x in your C proce-
dure, you should use a pointer (a far pointer, the default) of the
appropriate type (in this case, int) . The C declaration is

int *x ;

When declaring the parameter x in your Pascal procedure, use the
VARS keyword4

VA RS x : I NTEG ER ;

For the FORTRAN procedure, specify the reference attribute

INTEGER X[REFERENCE]

If you want to pass using a short address instead, the appropriate
declarations are

int near *x ;

VA R x : I NTEG ER ;

INTEGER X[REFERENCE,NEAR]

You follow the same steps when declaring parameters even if you
are using other calling conventions . If you are passing parameters
using Pascal or FORTRAN calling conventions, use the constructs
described in Tables E .3 and E .4 when declaring parameters .

186

Mixed-Language Programming

Table E .3
Passing Parameters With Pascal Calling Conventions

Table E .4
Passing Parameters With FORTRAN Calling Conventions

If you are not writing both the called procedure and the calling
procedure, you must pass the parameter as declared in the exist-
ing procedure's definition . If you are not experienced with the
language you are accessing, it is not always easy to determine if a
parameter is being passed by value or by reference . The following
lists indicate how to tell the difference .

The following kinds of parameters are passed by value :

•

	

In Pascal, any parameter declared, except VAR, CONST,
VARS, and C ONSTS parameters

•

	

In C, any parameter declared except arrays
•

	

In FORTRAN, a parameter that is declared with the
VALUE attribute

•

	

In FORTRAN, a parameter in a procedure when that
procedure is declared with the C or Pascal attribute (unless
the REFERENCE attribute is specified)

187

Parameter C Pascal FORTRAN

long address

short address

value

pointer to
type
near pointer
to type
default

VARS
keyword
VAR
keyword
default

REFERENCE attribute

REFERENCE, NEAR
attributes
default

Parameter C Pascal FORTRAN

long address

short address

value

pointer to
type
near pointer
to type
default

VARS
keyword
VAR
keyword
default

default

NEAR attribute

VALUE attribute

Microsoft Pascal Compiler User's Guide

The following kinds of parameters are passed by reference with a
short (two-byte, offset only) address :

•

	

In Pascal, a formal parameter declared as VAR or CON ST .
•

	

In Pascal, a variable that is passed by passing a pointer
to that variable . The pointer itself is passed by value. (It is
not recommended that you use pointers in this way ; the
correspondence between pointers and machine addresses
is implementation dependent .)

•

	

In Pascal, a variable that is passed by passing ADR
variable . The address itself (as with pointers) is passed
by value .

•

	

In C, a parameter that is passed by passing a near pointer
to the parameter . (The pointer is passed by value .)

•

	

In C, an array declared with the keyword near .
•

	

In FORTRAN, in procedures without the C or PASCAL
attributes, a parameter with the NEAR attribute .

•

	

In FORTRAN, in procedures with the C or PASCAL attri-
butes, a parameter with the NEAR and REFERENCE
attributes .

•

	

In FORTRAN, a variable that is passed by short address
by taking LOCNEAR(variable), then passing the result
as an INTEGER*2, by value.

The following kinds of parameters are passed by reference with a
long (4-byte, segmented) address :

•

	

In Pascal, ADS variable. (The address is passed by value .)
•

	

In Pascal, parameters declared with the VARS or CON STS
keywords.

•

	

In C, a parameter passed by passing a far pointer to the
parameter. (The pointer is passed by value.) Note that in
large-model C, far pointers are the default pointer type.

•

	

In C, arrays not declared with the keyword near.
•

	

In FORTRAN, any parameter of a FORTRAN-protocol
routine except those declared with the NEAR or VALUE
attributes .

•

	

In FORTRAN, a variable passed by long address by
taking LO C(variable) or LOC FAR(varia ble), then pass-
ing the result as an INTEGER*4, by value .

188

Mixed-Language Programming

E.2.2 Using Varying Numbers of Parameters
If you are going to use varying numbers of parameters:

•

	

The number of actual parameters must be less than or
equal to the number of formal parameters (if the called
procedure is written in FORTRAN or Pascal) .
There is no easy way in Pascal and FORTRAN to access
parameters that have not been formally defined . However,
you may use the VARYING attribute to pass fewer argu-
ments than are defined .

•

	

You must use the C and VARYING attributes on your
FORTRAN INTERFACE statement or Pascal procedure
declaration .
The VARYING attribute tells the FORTRAN or Pascal
compiler not to check if there are more or fewer actual
parameters than formal parameters . However, actual
parameters for which a formal parameter is specified will
be checked for type compatibility according to the usual
rules of the calling procedure's language .

E.3 Naming Conventions

If you follow these two rules, the Microsoft Pascal, FORTRAN,
and C compilers handle all the necessary adjustments in names :

1 . If you are using any FORTRAN routines, all identifiers
(names) should be six characters or less in length .

2 . Avoid using uppercase characters in C identifiers . If you
must use uppercase characters, specify IGNORECASE
when you link, and don't use any other identifiers that
have the same spelling as the uppercase or mixed-case C
identifier. (For example, if one C identifier is AnExample,
don't use anexample, ANEXAMPLE, or AnExAmP1E as
identifiers .)

If you cannot follow those two rules, you must make certain
adjustments yourself. The remainder of this section explains the
default naming conventions of each language, and how certain

189

Microsoft Pascal Compiler User's Guide

attributes and keywords affect those naming conventions . This
information should allow you to solve any special problems in
naming .

In all three languages, names appear differently in the object and
source files . There are three differences in the naming conven-
tions used by the three languages :

Case

	

In FORTRAN and Pascal, any lowercase
letters in a public identifier are changed to
uppercase before the name is inserted in the
object file. By default, no such transforma-
tion is done on C names, but at link time you
can specify that case distinctions are to be
ignored .

Length

	

In FORTRAN, by default, names are trun-
cated to six significant characters .

Underscores

	

In C, public names are always prefixed with
an underscore character (_) before they are
inserted in the object file .

These differences in naming conventions mean that default
FORTRAN and Pascal public names will not correspond to default
C public names . Certain attributes and keywords can help you
make names correspond .

If you specify the C attribute on

•

	

the name of a public or external procedure or data object
in Pascal

•

	

the name of a procedure, interface or named common
block in FORTRAN

the name is changed to lowercase and a leading underscore is
added. FORTRAN identifiers will still be truncated to six charac-
ters. To specify a longer name, or to specify external C routines
that have uppercase letters in their identifiers, you can use the
ALIAS in FORTRAN. There is no ALIAS feature in Pascal ; to
refer to a C object with uppercase letters in its identifier, you
must link with the IGNORE CASE option, and all your C identifi-
ers must have unique spellings .

190

Mixed-Language Programming

I f you use the pasca I or fort ran keywords in C, the name is changed
to uppercase and the leading underscore is deleted from the name .
All such names must have unique spellings .

Note that in FORTRAN, if an INTERFACE and the subprogram
referred to in that INTERFACE are in the same unit of compila-
tion, the same names must be used for parameters in each . Error
87 is generated if you violate this rule.

E.4 Writing Interfaces
to Pascal or C from FORTRAN

To declare external procedures in C or Pascal from FORTRAN,
FORTRAN provides the INTERFACE statement .

Suppose, for example, that you want to access the procedure time
in the C library. There are three basic steps to follow :

The final step, calling the C procedure, is described in Section E .5 .

For this example, the declaration of the C procedure time looks
like this :

long time (tioc)
long *tloc ;

The first step in building the INTERFACE is to determine what
attributes and type to use for the procedure . First, determine what
FORTRAN type is equivalent to the type of the procedure time .
The first word in the C procedure declaration, long time (tloc) ;

191

1 . Find
2 . Build

the declaration of the C procedure
an INTERFACE program unit

the procedure•

	

Determine the attributes and type for
•

	

Determine the attributes and types for the parame-
ters

3 . Add the INTERFACE to the program

Microsoft Pascal Compiler User's Guide

shows that time has type long . Referring to the "Signed Four-
Byte Integers" section of Table E .5, you can see that the FOR-
TRAN INTEGER*4 type is equivalent to the C long type . This
gives enough information to write

Second, decide which calling convention to use . Since you have no
control over the C procedure, you must use the calling conventions
that it uses. To specify the C calling conventions, use the C
attribute as follows :

192

INTERFACE TO INTEGER*4 FUNCTION TIME

INTERFACE TO INTEGER*4 FUNCTION TIME[C]

Now, determine what attributes and data types to use for the
parameters. In this case, there is j us t one parameter, tioc. You can
write

INTERFACE TO INTEGER*4 FUNCTION TIME[C]
+(TLOC)

However, note that in the second line of the C procedure declara-
tion, tloc is preceded by an asterisk, indicating that a pointer is
being passed . You can pass a pointer from FORTRAN using the
LOCFAR or LOC procedures, or you can pass the argument itself
by reference . For now, assume that you want to pass by reference .
FORTRAN normally defaults to passing by reference, but the
procedure TIME is qualified by the C attribute, so TLOC will
default to being passed by value . To specify passing by reference,
add the REFERENCE attribute

INTERFACE TO INTEGER*4 FUNCTION TIME[C]
+(TLOC[REFERENCE])

The type of the parameter tioc is indicated by the first word in the
second line of the C procedure declaration, long * floc . Since the
FORTRAN INTEGER*4 type is equivalent to the C long type,
you can finish the INTERFACE unit as follows :

INTERFACE TO INTEGER*4 FUNCTION TIME[C]
+(TLOC[REFERENCE])
INTEGER*4 TLOC
END

Mixed-Language Programming

If you decide to pass a pointer to TLOC, instead of passing it by
reference, you proceed, in the same manner, to this point

INTERFACE TO INTEGER*4 FUNCTION TIME[C]
+(TLOC)

Pointers are passed by value so do not specify the REFERENCE
attribute. Since pointers are normally 4-byte segmented addresses,
the result of LOC is a 4-byte integer, and therefore you must
declare the parameter TLOC to be a 4-byte integer .

INTERFACE TO INTEGER*4 FUNCTION TIME[C]
+(TLOC)
INTEGER*4 TLOC
END

Step number three, adding the INTERFACE unit to your pro-
gram, is identical for both cases . The only rule to follow is that the
INTERFACE must occur before any references to the procedure
are made. It is usually easiest to put all INTERFACES at the
beginning of the compiland .

The final step, calling the procedure, is different for the REFER-
ENCE and pointer cases, as described in the next section .

E.5 Calling Procedures in
Pascal or C from FORTRAN

Once you have declared a procedure, you can call it in your
program just as if it were in the same language as your calling
procedure. Note that when calling from FORTRAN, you must
always declare the procedure in the program units which use it .

For the example discussed in Section E .4, start writing the calling
routine like this

SUBROUTINE CLOCK
INTEGER*4 TIME
INTEGER*4 TLOC

Don't forget to declare the procedure, as in the line INTEGER *4
TIME above .

193

Microsoft Pascal Compiler User's Guide

Now, if you passed TLO C by reference, you can complete the call
as follows :

SUBROUTINE CLOCK
INTEGER*4 TIME
INTEGER *4 TLOC
WRITE (*,*) TIME (TLOC)
END

If you passed a pointer, your procedure call looks like this :

SUBROUTINE CLOCK
INTEGER*4 TIME
INTEGER*4 TLOC
WRITE(*,*) TIME(LOC(TLOC))
END

You could substitute the LO CFAR procedure for the LO C proce-
dure. In this implementation they are identical .

Note that if time were a subroutine instead of a function, you
could call that subroutine with the FORTRAN CALL statement .

E.6 Writing Interfaces
to FORTRAN or C from Pascal

From Pascal, attach the fortran or c attribute to an EXTERN
procedure declaration to interface with procedures written in
FORTRAN or C .

E.7 Calling Procedures in
FORTRAN or C from Pascal

Once you have declared a procedure, you can call it in your
program just as if it were in the same language as your main
program .

194

Mixed-Language Programming

For example, the following Pascal program fragment calls time,
passing tloc by reference :

FUNCTION time (VARS tioc:INTEGER4):INTEGER4[C] ;EXTERN ;
PROCEDURE clock ;

VAR tloc: INTEGER4 ;
BEGIN

WRITELN (time(tloc))
END ;

If you pass a pointer by value, the program fragment looks like
this:

FUNCTION time (tloc :ADSM EM):INTEGER4 [C] ; EXTERN :
PROCEDURE clock ;

VAR tloc: I NTEG ER4 ;
BEGIN

WRITELN (ti me(ADS tloc))
END ;

E.8 Writing Interfaces
to FORTRAN or Pascal from C

From C, u se the f o rt ra n and pasca I keywords to declare procedures
written in or compatible with FORTRAN and Pascal . These
keywords imply changes in external naming, calling conventions,
and return variable conventions . You may need to specify a par-
ticular option when compiling to enable these keywords ; refer to
your Microsoft C User's Guide for more information .

You declare FORTRAN and Pascal procedures in the same man-
ner as C procedures: you specify the procedure identifier, the
return type, and the type and number of parameters to the proce-
dure. (See the Microsoft C Language Reference for a complete
discussion of the syntax of procedure declarations .)

195

Microsoft Pascal Compiler User's Guide

The following additional rules apply when you use the fort ran and
Pascal keywords :

1 . Whenever a fortran or Pascal keyword is used in a declara-
tion, the types of parameters must be declared with a
parameter type list .

2. The fortran and Pascal keywords modify the item imme-
diately to the right in a declaration .

3. The special near and far keywords can be used with the
fortran and Pascal keywords in declarations. The sequen-
ces far fortran and fortran far are equivalent .

Complex declarators are allowed in Pascal and fortran declarations,
just as in C procedure declarations . The following examples illus-
trate the syntax of Pascal and fortran declarations . For more on
declarators, see the Microsoft C Language Reference .

Examples

1 . short Pascal thing(short, short) ;

2. long (Pascal *thing)(void) ;

3. short near Pascal thing(short) ;

4. short Pascal near thing(short) ;

Example 1 declares thing to be a Pascal procedure taking two
short parameters and returning a short value .

In Example 2, thing is declared as a pointer to a Pascal procedure
that takes no parameters and returns a long value . Note that void
is used to indicate that there i s no return value .

Examples 3 and 4 are equivalent. Both declare thing to be a near
Pascal procedure. The procedure takes one short parameter and
returns a short value .

196

c

E.9 Calling Procedures in
FORTRAN or Pascal from C

To call a Pascal or FORTRAN procedure from C, you must declare
that procedure external . For example

extern void fortran m(long) ;

Note that void is used to indicate that there are no parameters .

Once you have declared a procedure, you can call it in your
program just as if the procedure were in C .

E.10 Data Types

FORTRAN, Pascal, and C each have a variety of data types .
Some are completely compatible, others require manipulation to
work between languages .

E.10.1 Integers
In C, any integral parameters shorter than an int (such as char)
are converted to i nt type before being passed by value. Unsigned
integral types shorter than an unsigned int (such as unsigned char }
are converted to unsigned int type .

To ensure that your FORTRAN or Pascal routine handles C
parameters correctly, you have two options :

1 . You can allow for the C conversions when you declare
parameters to the FORTRAN or Pascal procedure . This
means, for example, that all integer parameters must be
declared to have the size corresponding to a C i nt, or long
i n t, for integer parameters larger than an int .

197

Mixed-Language Programming

Microsoft Pascal Compiler User's Guide

2 . You can pass pointers to the parameters instead of the
values themselves (passing by reference) . In the FOR-
TRAN or Pascal routine, declare the passed parameters
as a pointer to or reference parameter of the appropriate
type, then use the pointer to access the value indirectly .

Also, note that the C i nt type is machine specific . For the 8086
family of microprocessors, the C int type is equivalent to the
following types :

•

	

INTEGER2 in Pascal
•

	

INTEGER*2 in FORTRAN
•

	

INTEGERC in Pascal
•

	

INTEGER[C] in FORTRAN

For any given processor and operating system, variables defined
with the last two types are equivalent to variables of the C i nt type
as defined by the Microsoft C Compiler for the same system . The
last two types are therefore more portable than the first two .

Table E.5 shows integer data types and their equivalents in Pascal,
C, and FORTRAN .

Using the Equivalent Data Types Tables

To use Tables E .5 through E .14 to pass parameters, you also have
to refer back to Tables E .2 through E .4 .

For example, suppose that you want to pass an INTEGER*2
variable from FORTRAN to C . First, you have to choose a calling
convention, as explained in Section E .2, "Choosing a Calling
Convention," Assume that you want to use the C calling conven-
tions. Refer to Table E .2, "Passing Parameters With C Calling
Conventions."

Second, decide whether to pass the parameter by reference or by
value. Assume that you want to pass the parameter by reference,
using a short address. Table E .2 shows that you use the REFER-
ENCE and NEAR attributes in FORTRAN, and a near pointer of
the appropriate type in C .

198

INTEGER*2 X [REFERENCE, NEAR]

short near * x

Mixed-Language Programming

Third, determine what data type in C is equivalent to the
INTEGER*2 type in FORTRAN . Find the "Equivalent Data
Types" table that lists integers : Table E .5. Look for the part of the
table that lists signed, two-byte integers . Note that INTEGER*2
is listed as an appropriate FORTRAN data type . Check the
"Notes" column to see if there is anything to watch out for when
using INTEGER*2 .

Now, look at the "C" row . You can choose between short and int,
but the Notes column shows that i n t is machine-dependent . For
maximum portability, choose the C short type . Finally, applying
the appropriate attributes and keywords to the data types

in a FORTRAN INTERFACE declared with the C attribute is
equivalent to a C parameter declared with

Note that using a REFERENCE parameter in FORTRAN cor-
responds to using a pointer type in C .

199

Microsoft Pascal Compiler User's Guide

Table E .5
Equivalent Data Types : Integers

Signed One-Byte Integers

Language

	

Data Type

	

Notes

Pascal

	

x:sint

C

	

char x

	

when passed by reference

FORTRAN

	

none

Unsigned One-Byte Integers

Language

	

Data Type

	

Notes

Pascal

	

x: byte

x:a . .b

	

for a >=-127 and b <=127

struct I

	

when passed by value
char x ; j x

x: wrd(a) . . wrd(b)

	

for 0 <= a <= b
for b <= 255

x:(a,b, . .n)

	

for ord (n) <256

C

	

unsigned char x

	

when passed by reference

FORTRAN

	

CHARACTER*1 X FORTRAN has no
unsigned types so you
must use CHARACTER*1,
and use the ICHAR and
CHAR functions to
transfer values . Do not
pass negative values .

200

struct

	

when passed by value
unsigned char x ;1 x

Table E .5 (continued)

Signed Two-Byte Integers

Language

	

Data Type

	

Notes

Pascal

	

x:integer2

x: integerc

C

	

short x

FORTRAN

	

INTEGER*2 X

Pascal

	

x:word

x:integer

	

if $INTEGER:2 (the
default) is in effect

int x

	

machine-dependent

INTEGER[C] X

Unsigned Two-Byte Integers

Language

	

Data Type

	

Notes

C

	

unsigned short x

INTEGER X

	

if $STORAGE :2 is in
effect

x: wrd(a) . . wrd(b)

	

for b >255

Mixed-Language Programming

x: (a, b, . . n.)

	

for ord (n) >255

unsigned int x

	

machine-dependent

FORTRAN

	

INTEGER*2 X

	

FORTRAN has no
unsigned types so you
must use INTEGER*2. Do
not pass negative values
or values greater than
32767. Note that many
unsigned operations can
be safely performed on
INTEGER*2 values .

201

Microsoft Pascal Compiler User's Guide

Table E.5 (continued)

Signed Four-Byte Integers

Language

	

Data Type

	

Notes

Pascal

	

x:i nteger4

C

	

long x

FORTRAN

	

INTEGER*4 X

202

x:integer

	

if $INTEGER:4 is in effect

INTEGER X

	

if $STORAGE :4 (the
default) is in effect

C also has unsigned 4-byte integers . FORTRAN and Pascal do
not. However, many unsigned arithmetic operations can be per-
formed on signed variables, and will yield correct results . This
level of type equivalence may be sufficient for some applications .

E.10.2 Boolean and Character
For Pascal Boolean values, the integer one (1) means true . Zero
(0) means false .

Table E .6 shows how Boolean and character types are represented
in Pascal, C, and FORTRAN .

Table E .6
Equivalent Data Types: Boolean and Character

Boolean

Language

	

Data Type

	

Notes

Pascal

	

x: Boolean

C

	

unsigned char x

FORTRAN

	

CHARACTER*1 X

	

Use as for unsigned one-
byte integers; 1 = false
and 0 = true. FORTRAN
LOGICAL types are not
equivalent. See Table E .14
for FORTRAN LOGICAL
types .

Character

Language

	

Data Type

	

Notes

Pascal

	

x: char

C

	

unsigned char x

FORTRAN

	

CHARACTER X

E.10,3 Real Numbers

C passes all real parameters by value and as double precision
values. To ensure that your FORTRAN or Pascal routine handles
C parameters correctly, you have three options:

1 . You can allow for the C conversions when you declare
parameters to the FORTRAN or Pascal procedure . This
means that you must declare all floating-point parame-
ters as double-precision parameters (REAL*8 in FOR-
TRAN, real8 in Pascal), and specify the VALUE attri-
bute in FORTRAN .

203

Mixed-Language Programming

Microsoft Pascal Compiler User's Guide

2 . You can pass pointers to the parameters instead of the
values themselves. In the FORTRAN or Pascal routine,
declare the passed parameters as a pointer to the appro-
priate type, then dereference the pointer to access the value.

3 . To avoid expansion of a float value to a double, you can
pass the value as a structure . The members of structures
do not undergo type conversion when the structure is
passed as a parameter. For example, the declaration

struct fptype (float a ;{ arg ;

defines a structure variable, arg, with a single float mem-
ber. The structure variable arg can then be passed as a
parameter. Passing such a struct as a parameter in C is
equivalent to pushing a REAL*4 in FORTRAN (except
that FORTRAN normally passes by reference) or a rea14
value in Pascal .

Floating-point values returned to C from Pascal or FORTRAN
are handled as structured values .

Table E .7 shows equivalent real types in Pascal, C, and FOR-
TRAN.

204

Table E,7
Equivalent Data Types : Reals

Single Precision Real Numbers

Language

	

Data Type

	

Notes

Pascal

	

x: real4

C

	

float x

FORTRAN

	

REAL X

REAL*4 X

Double Precision Real Numbers

Language

	

Data Type

	

Notes

Pascal

	

x:real8

C

	

double x

FORTRAN

	

REAL*8 X or
DOUBLE PRECI-
SION X

E.10.4 Passing Strings

Pascal, FORTRAN and C each store character strings in memory
in a different way . In order to pass strings from one language to
another, you must give the computer the appropriate information
about how the string is set up .

205

Mixed-Language Programming

x:real

	

if $real:4 (the default)
is in effect

struct {

	

when passed by value
float x ; { x

x : real

	

if $real:8 is in effect

Microsoft Pascal Compiler User's Guide

C strings are considered arrays of characters . The null (zero-value)
character marks the end of the string and is the last character of
the array. For example, the string

String of text .

is indicated in C as

unsigned char str[]="String of text ."

This is stored in memory as a 16-byte array : 15 bytes of signifi-
cant text (i.e., the string itself) and 1 null character that marks
the end of the string:

t r i n 9
.
0 f

T
t e x t

FORTRAN strings do not have delimiters in memory . The length
of the string is determined in advance. The above string is writ-
ten in FORTRAN as

STR='String of text .'

It is stored in memory as 15 bytes of text :

t r i n 9 0 f t e x t

Pascal has two forms of string: a fixed-length string type,
STRING, which is the same as the FORTRAN string type, and a
variable-length string type, LSTRING . Using LSTRING, the
above string is designated as follows :

VAR STR : LSTRING(15) ;
STR :_ 'String of text .' ;

It is stored in memory as 16 bytes . The first byte indicates the
number of bytes allocated in memory for the string, the remaining
15 are the string itself :

15 I S I t r
r

I
r

n 0 f t
r

e
i

x t
f

Table E .8 summarizes how each language handles string and
array types. Where a is a constant, each type occupies a bytes .

206

C

Table E.8
String and Array Types

Language

	

Type

Pascal

	

c:STRING(a)
c:ARRAY[I . .a] OF CHAR ;
c:LSTRING(a-1) ;

FORTRAN CHARACTER*a C
CHARACTER*1 C(a)

C

	

unsigned char c[a]
struct cstr j unsigned char c[a] ; j c

Table E .9 shows equivalent string types in each language .

Table E .9
Equivalent Data Types: Strings

Language

	

Data Type

	

Notes

Pascal

	

x:array[l . .n] of char

char x[n];

Mixed-Language Programming

FORTRAN

	

CHARACTER*n x

	

Not equivalent in future
releases of FORTRAN .
Not recommended .

INTEGER x ((n + 1)/2) Can be equivalenced to a
CHARACTER variable
to allow access to
individual bytes . This
option will be equivalent
in future releases, as well
as in the present release .

207

Microsoft Pascal Compiler User's Guide

The following sections explain how to pass strings from one
language to another .

E.10.4.1 Passing FORTRAN Strings to C or Pascal

FORTRAN strings have the same format in memory as Pascal
STRING s, so you may pass them directly .

To pass FORTRAN strings to C, use the new C string feature .
When a standard FORTRAN string constant is followed by the
character C, that string is then interpreted as a C string constant .
A null character is automatically appended to the end of the
string, and backslashes (\) are treated as escapes . See the Micro-
soft FORTRAN Compiler User's Guide for information on the
new C string feature .

Note
In subsequent releases of Microsoft FORTRAN, strings will
be passed differently . In Version 3.3 and all earlier versions,
the length of a string is not passed with the string . In later
versions, the length of a string will be passed with the string
as a super array type . These two methods are incompatible .
If you are calling FORTRAN from C or Pascal and you are
using strings, your calling code may have to be changed for a
later version of Microsoft FORTRAN .

E .10.4.2 Passing Pascal Strings to C and FORTRAN

Since Pascal STRINGs and FORTRAN strings have the same
format in memory, you may pass them directly .

To pass Pascal STRING types to C, use concatenation to add an
extra null byte to the end of the string. For example, if "strg" is a
variable of type STRING, the null byte can be added as follows :

strg :"String of text."*CHR(O) ;

208

Then "strg" can be passed to any C function that expects a string
argument.

To pass LSTRINGs to C and FORTRAN, you must convert them
to STRINGs and handle the length byte yourself .

E .10.4.3 Passing C Strings to Pascal and FORTRAN

To FORTRAN and Pascal, C strings are just arrays. When pass-
ing C strings to Pascal and FORTRAN, allow room for the null
byte at the end of the string .

E.10.5 Pointers

Table E .10 shows equivalent pointer types for each language .

When using procedure pointers and calling a FORTRAN or Pas-
cal routine from C with the C calling convention, use this syntax
to declare the procedure pointers in the argument declaration
section of your C procedure :

Mixed-Language Programming

returntype (* x)(types-list)

The returntype is the C type of the return value . The types-list is
given with the same syntax used to declare the argument list of a
pascal or fortran routine from C. When using the Pascal calling
convention, use the syntax

returntype (pascal * x)(types-list)

And when using the FORTRAN calling convention, use the syntax

returntype (fortran * x)(types-list)

For example, you could pass a Pascal ADSPROC to this C routine :

f(x)
short (pascal * x) (short) ;

In this example, x is a pointer to a pasta l routine that takes a short
and returns a short.

209

Microsoft Pascal Compiler User's Guide

Table E .10

Equivalent Data Types: Pointers

210

Near Pointers

Language Data Type Notes

Pascal x: ^t machine-dependent

ADRt

C tnear * x

FORTRAN T OBJECT
INTEGER*2 X
X=LOCNEAR(OBJECT)

Far Pointers

Language Data Type Notes

Pascal ADS t

C t* x

tfar*x

FORTRAN T OBJECT
INTEGER*4 X
X=LOC(OBJECT)

T OBJECT
INTEGER*4 X
X=LOCFAR(OBJECT)

Table E.10 (continued)

Procedure Pointers

Language Data Type

	

Notes

Pascal

	

x:adsproc

	

You must declare the procedure
public so that the ADS operator

x: adsfunc

	

can get a far address . The com-
piler gives near addresses for
local routines .

C

	

t (*x) (}

Mixed-Language Programming

FORTRAN T PRO C

	

EXTERNAL must be used if the
EXTERNAL PROC procedure name is used other
INTEGER*4 X

	

than to invoke the function (in
X =LOC(PROC)

	

this example, the address of the
procedure is taken) . Otherwise,

T PROC

	

FORTRAN will create a new
EXTERNAL PROC variable (with the same name)
INTEGER*4 X

	

and take the address of that
X=LO C FAR(PRO C) variable, rather than of the

procedure.

E.10.6 Arrays, Superarrays and Huge Arrays

FORTRAN arrays are allocated in column order. A(2,1), for exam-
ple, is followed by A(3,1) . C and Pascal arrays are allocated in row
order. A(2,1), for example, is followed by A(2,2) .

The lower bound of indices to a C array is always zero . For
FORTRAN, it is always one, and for Pascal it can be any value .

211

Microsoft Pascal Compiler User's Guide

For example, if you define a C array x[0][3], an equivalent array in
FORTRAN would be X(3,6) . An equivalent Pascal array would be
x:array[O . .5,0 . .2]. If you specify element x[5,0] in Pascal, or ele-
ment x[5][0] in C, the equivalent FORTRAN element is X(1,6) .

Or, if you define a Pascal array like this :

x:array[2 . .6,2 . .3] of integer2

the equivalent FORTRAN array is

INTEGER*2 X(2,5)

and the equivalent C array is

short x[5][2]

FORTRAN large arrays (arrays specified with the HUGE attri-
bute or the $LARGE metacommand) cannot be used from Pascal
or C .

In C, arrays are always passed by reference. If, from FORTRAN,
you use the C attribute, arrays are passed by value, like C structs .
That is, the entire array is laid out on the stack . To pass an array
as an array (from FORTRAN to C), you must use the REFER-
ENCE attribute, or pass the result of LOC, LOCNEAR, or
LOCFAR.

Table E .11 shows equivalent array types for Pascal, C, and
FORTRAN.

212

Table E.11
Equivalent Data Types : Arrays

Arrays: When Lower Bound of Pascal Array = 0

Language

	

Data Type

	

Notes

Pascal

	

x: array [0j,0-.m] of
type

C

	

type x[j+1][m+1]

	

when passed by
reference

FORTRAN

	

type x(m+l,j+1)

Mixed-Language Programming

struct f

	

when passed by
type x[j+1][m+1];} x

	

value

Arrays: When Lower Bound of Pascal Array is Non-Zero

Language

	

Data Type

	

Notes

Pascal

	

x: array [i.]j, k . . m] of
type

C

	

type x[j-i+1][m-k+1]

	

when passed by
reference

FORTRAN

	

type x(m-k+I,j-i+1)

struct I

	

when passed by
type x[j-i+1][m-k+1];l x

	

value

A super array pointer is a near pointer to the start of an array,
followed by the upper bounds (in the same order as they are
declared) . Table E .12 indicates how to specify a super array
pointer from each language .

213

Microsoft Pascal Compiler User's Guide

Table E .12
Equivalent Data Types : Super Array Pointers

Super Array Pointers

Language Data Type

	

Notes

Pascal

	

type v=super array
of type

x:-"v

C

	

struct I type near * ptr ;

	

Set a equal to (1 st-
short a;

	

dimension-of target -1 } .
short b; l x :

FORTRAN none

E.10.7 Records and Structs

Pascal record types and C structs correspond fairly well . Variant
records are more difficult, but can be used if you declare the tag
field as a structure member, then build a union of all the variant
parts .

In FORTRAN you can simulate a single instance of a record by
using EQUIVALENCE, but there is no way to replicate the
instance or apply such a structure to a parameter . If the record or
struct contains only fields of the same size, you can use an array .
Otherwise, you need to define an equivalence "group" with vari-
ables equivalenced so that they map on to the appropriate ele-
ments of the struct. If the whole structure is less than 127 bytes
long, you can use a character variable to represent the whole
structure . This means that you can assign a parameter with a
single statement . This approach results in inefficient code and
programs that are difficult to follow . It is recommended that you
use Pascal and C to write interface procedures where possible .
These could, for example, translate the structure into separate
variables and scalars which are easier to use with FORTRAN .

214

Set b equal to (2nd-
dimension-of-target - 1 } .

c

Note that you cannot pass a Pascal set type to FORTRAN .

Table E .13
Equivalent Data Types: Complex Numbers

Single Precision Complex Numbers

Language

	

Data Type

	

Notes

Pascal

	

x: record
re, im:real;
end;

C

	

struct complex8 }
float re,im ;} x

FORTRAN

	

COMPLEX X

Double Precision Complex Numbers

Mixed-Language Programming

Pascal records and C structs can also be used to pass FORTRAN
logical values. For FORTRAN logical values, the integer one (1)
means true. Zero (0) means false . Table E .14 gives examples of
passing FORTRAN logical values .

215

Language Data Type

	

Notes

Pascal x: record
re, i m : real8 ;
end;

C struct complex 16 }
double re,im;} x

FORTRAN COMPLEX*16 X

Microsoft Pascal Compiler User's Guide

Table E .14
Equivalent Data Types: LOGICAL Values

Two-Byte LOGICAL Values

Language

	

Data Type

	

Notes

Pascal

	

x: record
logical : boolean ;
pad: array [0 . .o] of byte;
end;

C

	

struct I
char logical ;
char pad[1] ;
I X ;

FORTRAN

	

LOGICAL*2 X

Four-Byte LOGICAL Values

LOGICAL

	

If $STORAGE :2 is
in effect

Language

	

Data Type

	

Notes

Pascal

	

x: record
logical : Boolean ;
pad: array [O . .2] of byte ;
end ;

C

	

struct I
char logical ;
char pad[3];
I X ;

FORTRAN

	

LOGICAL*4 X

216

l

E.10.8 Procedural Parameters

Formal procedural arguments in Pascal and FORTRAN are com-
patible. They are not compatible with procedure pointers in C .

However, Pascal and FORTRAN procedure arguments can be
represented by a C struct that mimics the Pascal/FORTRAN
sequence.

If you are calling C from Pascal or FORTRAN, it is recommended
that you use C procedure pointers. If you want to pass a procedure
to a Pascal or FORTRAN procedure, you must use Pascal argu-
ments, since neither Pascal nor FORTRAN can call through
procedure pointers. See Table E . 10 for equivalent procedure pointer
types .

E .10.8.1 Return Values

FORTRAN and Pascal routines can return values to a C pro-
gram. For the C program to handle the return values correctly, the
programmer must understand the correspondence between data
types in the different languages .

The C compiler performs conversions on return values before they
are actually returned to the calling procedure . These conversions
are the same as those given for parameters . Integral values shorter
than an int are expanded to int size, and float values are converted
to double . These types are discussed in Sections E .10.1, "Integers,"
and E.10.3, "Real Numbers."

The C compiler detects structured return values that are 4 bytes
or less in length and returns them as integers of the appropriate
size .

E.11 Sharing Data

Pascal and C can refer to each other's public data items, as long
as you specify appropriate attributes to use the correct naming
conventions and keywords to ensure correct storage allocation .
(All Pascal static variables should be declared with the near
keyword in C .) FORTRAN COMMON blocks are public data
areas and can be referenced as external data objects in C and

217

Mixed-Language Programming

Microsoft Pascal Compiler User's Guide

Pascal. You can use the COMMON block names as the names of
struct variables in C or record variables in Pascal, for example . To
access a common block from Pascal, however, the common block
must have the NEAR attribute . Blank common has the public
name COMMQQ. FORTRAN cannot access C data objects .

Alternatively, you can use the LOC procedures in FORTRAN to
give the address of a common block, pass the address to a C or
Pascal procedure, then use that address from C or Pascal . For
example:

218

INTERFACE TO SUBROUTINE CFUNC[C] (EXTP)
INTEL ER *4 EXTP
END
COMMON/EXT/1,J
CALL CFUNC (LOC(l))

END
void cfunc (ext)
struct {Tong i, j ;] *ext

ext->i = ext ->j ;
I

or

C When you have several common blocks to set up

SUBROUTINE SETADS (ADSEXT, ADSPAR, ADSBL)
INTEGER*4 ADSEXT,ADSPAR,ADSBL
COMMONIEXT/II
COMMON/PAR/12
COMMON 13
ADSEXT=LOCFAR (I l)
ADSPAR=LOCFAR(12)
ADSBL=LOCFAR(13)
END

l

E .12 Input and Output

A given file can be opened by only one language at a time, except
the standard output channel when that channel refers to the
terminal. In this case, each FORTRAN WRITE statement that
refers to the terminal should be followed by

WRITE(*,*)

Mixed-Language Programming

if there is a possibility that a C or Pascal routine might write to
the terminal immediately thereafter . This will clear the carriage
control character.

E.13 Compiling and Linking

The order in which modules are linked is important . You must
make sure that you link them as follows :

1 . If you are linking with the C floating point library, it
must be specified first .

2 . If you are using Pascal or FORTRAN, their math libraries
must be specified second . The math libraries for Pascal
and FORTRAN are identical, and need be specified only
once when you are mixing Pascal and FORTRAN .

3. If you are using Pascal or FORTRAN, their language
libraries must be specified third .

4 . If you are using the C language library it must be speci-
fied last .

219

Microsoft Pascal Compiler User's Guide

E.14 Error Messages

Errors that occur during compile time are generated by the com-
piler for the language in which the error occurs . Most runtime
errors come from the language in which the part of the program
causing the error was written. However, floating point errors
may come from any of the languages which were used in the
program . For Pascal and FORTRAN, these errors are identical .
However, for C, the messages are slightly different, and there is
no message number.

220

Appendix F
Error Messages

221

F.1 How the Compiler
Handles Error Locations 223

F.1 .1

	

Source Program Context 224
F.1 .2

	

Machine Error Context 224
F.1 .3

	

How Source Program
Context is Handled 226

F.2 Compile Time Error Messages 227
F.3 Compiler Back End Errors

	

256
F.4 Runtime File

System Errors (1000-1199)

	

257
F.4 .1

	

Operating System
Runtime Errors (1000-1099) 259

F.4 .2

	

Microsoft Pascal
File System Errors (1100-1199) 260

F.4.3

	

Other Runtime Errors (2000-2999) 261
F.4 .4

	

Memory Errors (2000-2049) 262
F.4 .5

	

Ordinal Arithmetic
Errors (2050-2099) 263

F.4.6 Type REAL
Arithmetic Errors (2100-2149) 265

F.4.7

	

Structured Type Errors (2150-2199) 267
F.4 .8 INTEGER4 Errors (2200-2249) 267
F.4 .9

	

Other Errors (2400-2999)

	

268

Microsoft Pascal Compiler User's Guide

222

F.5 Unnumbered Error Messages 268
F.6 Linker Error Messages

	

269
F.7 EXEPACK Error Messages 276
F.8 EXEMOD Error Messages 277

t

This appendix explains what happens when errors occur, and
lists the error messages generated by the compiler, the linker,
EXEMOD, and EXEPACK.

Error messages are organized by where they occur . The following
table shows how error messages are numbered :

Table F.1

How Errors are Numbered

Error Code Type of Error

1-899
900-999

1000-1099
1200-1299
1300-1999
2000-2049
2050-2099
2100-2149
2150-2199
2200-2399
2400-2449
2450-2499
2500-2999

Front end errors
Back end errors
Unit U file system errors
Unit V file system errors
Reserved
Heap, stack, memory
Ordinal and long integer arithmetic
Real and double real arithmetic
Structures, sets, and strings
Reserved
Pcode interpreter
Other internal errors
Reserved

Error Messages

Some errors are unnumbered . These errors occur during linking,
or during use of EXEMOD and EXEPACK, and are listed in the
sections "Unnumbered Errors," "Linker Errors," "EXEPACK
Errors," and "EXEMOD Errors ."

F.1 How the Compiler
Handles Error Locations

This section describes two ways the compiler displays informa-
tion about error locations .

223

Microsoft Pascal Compiler User's Guide

F.1 .1 Source Program Context
If an error occurs during compile time, the error number, source
line number, and sometimes the text of the source line containing
the error are printed on your screen (and in your source listing
file, if you have requested one) . If the $debug+ metacommand is
present, additional information, called the source program con-
text appears, including

1 . the source filename of the compiland containing the error
2 . the name of the procedure or function containing the error
3 . the listing line number of the first line of the statement

containing the error

You can also get this information for errors that occur during
runtime, but only if you compiled the program with the $debug+
metacommand. If you compiled without the $debug+ metacom-
mand and errors occur during runtime, the filename and line
number will not be be printed on your screen .

Giving the source program context during runtime involves extra
overhead, since source location data must be included in the
object code in some form . This is done with calls that set the
current source context as it occurs. The overhead of source loca-
tion data, especially line number calls, can be significant. Section
F.1 .3, "How Source Program Context is Handled," explains how
the compiler provides this information .

F.1.2 Machine Error Context
There is another way of determining where an error occurred,
called the machine error context . This information is provided in
most runtime error messages . The machine error context is always
available, but to use this information you must access certain
global variables .

224

The machine error context is made up of

1 . the program counter (PC) at the point of the error
2 . the stack segment (SS) at the point of the error
3 . the framepointer (FP) at the point of the error
4 . the stackpointer (SP) at the point of the error

For runtime errors, this information will be printed on your screen
in this format :

? Error: Data format error in file -
Error Code 1233, Status ONE

PC = OOOC: 0006; SS = 0047, FP = 003F, SP = 1 C1 C

The values of PC, SS, FP, and SP are in hexadecimal .

The machine error context does not indicate the location of errors
within runtime routines . If an error is in a runtime routine, the
machine error context indicates where the user program called the
runtime routine or routines . The program counter is always the
address following a call to a runtime routine (a return address) .

You can usually use the program counter (PC) value along with a
link map file to find the routine in which the error occurred . Read
the addresses in the section of the link map file that is sorted by
address until you find a pair that brackets the PC value . The first
address of the pair should be the name of the routine that was
executing when the error occurred . This does not work for rou-
tines that don't have public names . Sometimes the stack segment
(SS) and stackpointer (SP) values are useful in determining if
there has been a stack overflow . Check the link map file (or use a
debugger); if SP is close to or below the location of the label

Error Messages

"" end", there was probably a stack overflow .

225

Microsoft Pascal Compiler User's Guide

The variables that contain the machine error context are used by
the runtime entry helper, BRTEQQ, as follows :

This variable:

	

Contains:

RESEQQ

	

Stackpointer
REFEQQ

	

Framepointer
RE PE fl Q

	

Program counter offset
RECEQQ

	

Program counter segment

F.1 .3 How Source Program
Context is Handled

This information is not necessary for most Microsoft Pascal
programmers. It is provided for advanced programmers because
it can be useful for machine-language debugging or for writing
specialized debugging aids .

The routine E M S E Q Q is called when an error i s detected during
runtime. The source program context entry points are ENTEQQ,
EXTEQQ, and LNTEQQ: they are in the debug module, DEBE .

The procedure entry call to ENTEQQ passes two VAR parame-
ters: the first is an LSTRING containing the source filename ; the
second is a record that contains

1 . the line number of the procedure (a WORD)
2 . the page number of the procedure (a WORD)
3 . the subroutine or function name (an LSTRING)

The filename is that of the compiland (the main source filename,
not the names of any $include files). The procedure name is the
full name used in the source, not the linker name . The line number
is the first executable statement in the procedure . Entry and exit
calls are also generated for the main program, in which case the
name is the program name .

The procedure exit call to EXTEQQ passes no parameters . It
pops the current source routine context off a stack maintained in
the heap .

226

The line number call to LNTEQQ passes a line number as a value
parameter. The current line number is kept in the PUBLIC varia-
ble CLNEQQ . Since the current routine is always available, the
compiland source filename and routine containing the line are
available along with the line number . Line number calls are gener-
ated just before the code in the first statement on a source line .
The statement can, of course, be part of a larger statement .

F.2 Compile Time Error Messages

This section lists, in numerical order, all of the numbered mes-
sages issued by the Microsoft Pascal Compiler .

Error and warning messages consist of a number and a message .
Most messages appear with a row of dashes and an arrow that
points to the location of the error ; messages 128, 129, and 130
appear after the body of the routine in which they occur .

If the word "Warning" appears before a message, the interme-
diate code files produced by the compiler are correct. A warning is
an error that the compiler attempts to correct so that the compiled
source may run correctly. Common errors that generate warnings
include substitution mistakes, such as using a colon (:) instead of
an equal sign (=), and syntax errors like using a semicolon (;)
before an ELSE . The condition that produced the message is not
severe, but is considered unsafe . If you get a warning message,
you should correct the source file; otherwise you will get the same
warning message every time you compile .

Errors are conditions in the program that the compiler cannot
correct. The compiler recovers from most errors and continues the
compilation, but the object file will not be correct. There are a few
errors (called "panic" errors) from which the compiler cannot
recover . When a panic error is detected the compiler displays the
following message:

Compiler Cannot Continue!

and lists the rest of the program without compiling it. Writing to
intermediate files stops and the intermediate files are discarded .
Errors 900 through 904 also cause immediate termination .

227

Error Messages

Microsoft Pascal Compiler User's Guide

The compiler also makes a number of internal consistency checks .
These checks should always be correct and never give an internal
error. When internal errors occur, the error messages have the
following format:

Error: Compiler Internal Error

or

*** Internal Error NNN

NNN is the internal error number, which ranges from 1 to 999 .
There is little you can do when an internal error occurs, except
report it to Microsoft and perhaps modify your program near the
line where the error occurred .

The following list includes the error number and message, and a
brief explanation of the condition that generates the message:

Code Message

101 Invalid Line Number
There are more than 32767 lines in the source file

102 Line Too Long Truncated
There are more than 142 characters in the line .

103 Identifier Too Long Truncated
An identifier is longer than 32 characters, and has been
truncated.

104 Number Too Long Truncated
A numeric constant is longer than 32 characters and has
been truncated .

105 End Of String Not Found
The line ended before the closing quotation mark was
found .

228

Error Messages

106 Assumed String
The compiler encountered double quotation marks
(") or back quotation marks (') and assumed that they
enclosed a string. Use single quotation marks (') instead .

107 Unexpected End Of File
While scanning, the compiler found an unexpected end of
file in a number, metacommand, or other illegal location .

108 Meta Command Expected Command Ignored
The compiler found a dollar sign ($) at the start of a
comment, but no metacommand identifier .

109 Unknown Meta Command Ignored
The compiler found a metacommand identifier that it
didn't recognize or that is invalid in this version of Micro-
soft Pascal .

110 Constant Identifier Unknown Or Invalid
Assumed Zero
The constant identifier following a metacommand is un-
known (as in $debug:A) or of the wrong type . The com-
piler has replaced the unknown or incorrect value with
zero.

112 Invalid Numeric Constant Assumed Zero
The constant following a metacommand was a numeric
constant (e.g ., $debug: 123456) that has the wrong format
or is out of range. The compiler has replaced the incorrect
value with zero .

113 Invalid Meta Value Assumed Zero
The value following a metacommand is neither a constant
nor an identifier . The compiler has replaced the incorrect
value with zero .

229

Microsoft Pascal Compiler User's Guide

114 Invalid Meta Command
The compiler expected but did not find one of the follow-
ing after a metacommand : +, -, or : . The compiler has
ignored the metacommand .

115 Wrong Type Value For Meta Command Skipped
The value following the metacommand was an integer,
but should have been a string (or vice versa) . The com-
piler ignored the metacommand .

116 Meta Value Out Of Range Skipped
The integer value given for the $linesize metacommand
was below 16 or above 16 0 . Or, "n" is neither 4 nor 8 for
$real:n, nor 2 for $integer . In any of these cases, the
compiler ignores the metacommand.

117

	

File Identifier Too Long Skipped
The string value given for the filename in an $include
metacommand was longer than 96 characters . The com-
piler ignored the metacommand.

118 Too Many File Levels
There are too many nested levels of files brought in by
the $include metacommand. The $include metacommand
is ignored .

119

	

Invalid Initialize Metacommand
A $pop metacommand has no corresponding $push meta-
command .

120 CONST Identifier Expected
The compiler didn't find an identifier following an
$inconst metacommand . The $inconst metacommand is
ignored .

121 Invalid INPUT Number Assumed Zero
The user input invoked by $inconst was invalid and is
assumed to be zero .

230

Error Messages

122 Invalid Meta Command Skipped
The compiler found an $if metacommand but no subse-
quent $then or $else . The compiler ignores the $if com-
mand .

123 Unexpected Meta Command Skipped
The compiler found a $then metacommand unrelated to
any $if metacommand . The $then command is ignored .

124 Unexpected Meta Command
The compiler found a metacommand not enclosed in com-
ment delimiters, but processed it anyway .

126 Invalid Real Constant
The compiler found a type real constant with a leading or
a trailing decimal point . The constant's value is accepted
anyway .

127 Invalid Character Skipped
The compiler found a character in the source file that is
not acceptable in program text .

128 Forward Proc Missing: procedure
The compiler found a procedure or function declared
FORWARD but couldn't find the procedure or function
itself.

129 Label Not Encountered : label
The compiler couldn't find any use of a label declared in a
LABEL section .

130 Program Parameter Bad : parameter
The compiler encountered a program parameter that was
never declared or has an unacceptable type .

133 Type Size Overflow
The data type declared implies a structure bigger than
the maximum of 65534 bytes .

231

Microsoft Pascal Compiler User's Guide

134 Constant Memory Overflow
Constant memory allocation has exceeded the maximum
of 65534 bytes .

135 Static Memory Overflow
Static memory allocation has exceeded the maximum of
65534 bytes .

136 Stack Memory Overflow
Stack frame memory allocation has exceeded the maxi-
mum of 65534 bytes .

137 Integer Constant Overflow
The value of a type INTEGER, signed constant expres-
sion is out of range .

138 Word Constant Overflow
The value of a type WORD constant or other unsigned
constant expression is out of range .

139 Value Not In Range For Record
In a structured constant, or in the long form of the NEW
procedure, DISPOSE procedure, the SIZEOF function,
or other application, the record tag value is not in the
range of the variant.

140 Too Many Compiler Labels
Your program is too big . You must break your program
into smaller pieces .

141

	

Compiler
This message should never appear . If it does, please
report the condition to Microsoft Corporation .

142 Too Many Identifier Levels
The identifier scope level exceeds 15 . This is a "panic"
error from which the compiler cannot recover . The rest of
the file is not compiled .

232

c

143 Compiler
This message should never appear . If it does, please
report the condition to Microsoft Corporation .

144 Compiler
This message should never appear . If it does, please
report the condition to Microsoft Corporation .

145

	

Identifier Already Declared
The compiler found an identifier declared more than once
in a given scope level .

146 Unexpected End O f File
while parsing, the compiler found an end-of-file in the
wrong place, for example in a statement or declaration .

147 : Assumed =
The compiler found a colon where there should have been
an equal sign and proceeded as if the correct symbol were
present .

148 = Assumed
The compiler found an equal sign where it expected a
colon and proceeded as if the correct symbol were pres-
ent .

149 := Assumed =
The compiler found a colon followed by an equal sign
where it expected an equal sign only and proceeded as if
the correct symbol were present .

150 = Assumed :_
The compiler found an equal sign where it expected a
colon followed by an equal sign and proceeded as if the
correct symbol were present .

233

Error Messages

Microsoft Pascal Compiler User's Guide

151

	

1 Assumed
The compiler found a left bracket where it expected a left
parenthesis and proceeded as if the correct symbol were
present .

152 (Assumed [
The compiler found a left parenthesis where it expected a
left bracket and proceeded as if the correct symbol were
present .

153) Assumed]
The compiler found a right parenthesis where it ex-
pected a right bracket and proceeded as if the correct
symbol were present .

154 1 Assumed)
The compiler found a right bracket where it expected a
right parenthesis and proceeded as if the correct symbol
were present .

155

	

; Assumed,
The compiler found a semicolon where it expected a com-
ma and proceeded as if the correct symbol were present .

156

	

, Assumed ;
The compiler found a comma where it expected a semi-
colon and proceeded as if the correct symbol were
present .

162

	

Insert Symbol
The compiler didn't find a symbol it expected, but pro-
ceeded as if it were present. This message should not
occur; it is a minor compiler error . If it does, please report
it to Microsoft Corporation .

163

	

Insert ,
The compiler didn't find a comma where it expected one,
but proceeded as if it were present .

234

Error Messages

164

	

Insert ;

The compiler didn't find a semicolon where it expected
one, but proceeded as if it were present .

165

	

Insert =
The compiler didn't find an equal sign where it expected
one, but proceeded as if it were present .

166

	

Insert :=

The compiler didn't find a colon followed by an equal
sign where it expected one, but proceeded as if it were
present.

167 Insert O F

The compiler didn't find an O F where it expected one, but
proceeded as if it were present .

168

	

Insert]
The compiler didn't find a right bracket where it expected
one, but proceeded as if it were present .

169

	

Insert)
The compiler didn't find a right parenthesis where it
expected one, but proceeded as if it were present .

170

	

Insert[
The compiler didn't find a left bracket where it expected
one, but proceeded as if it were present .

171

	

Insert
The compiler didn't find a left parenthesis where it ex-
pected one, but proceeded as if it were present .

172 Insert DO
The compiler didn't find a DO where it expected one, but
proceeded as if it were present .

173

	

Insert

The compiler didn't find a colon where it expected one,
but proceeded as if it were present.

235

Microsoft Pascal Compiler User's Guide

174

	

Insert .
The compiler didn't find a period where it expected one,
but proceeded as if it were present .

175

	

Insert . .
The compiler didn't find a double period where it expected
one, but proceeded as if it were present .

176 Insert END
The compiler didn't find an END where it expected one,
but proceeded as if it were present .

177

	

Insert TO
The compiler didn't find a TO where it expected one, but
proceeded as if it were present .

178 Insert THEN
The compiler didn't find a THEN where it expected one,
but proceeded as if it were present .

179

	

Insert
The compiler didn't find an asterisk where it expected
one, but proceeded as if it were present .

185 Invalid Symbol Begin Skip
The compiler found a symbol it expected, but only after
some other invalid symbols . The invalid symbols were
skipped, beginning at the point where message 185 ap-
pears and ending where message 186 appears .

186 End Skip
The compiler found a symbol it expected, but only after
some other invalid symbols. The invalid symbols were
skipped, beginning at the point where message 185 ap-
pears and ending where message 186 appears .

187 End Skip
This message marks the end of skipped source text for
any message that ended with the phrase "Begin Skip,"
except message 185 .

236

Error Messages

188 Section Or Expression Too Long

Try rearranging the program or breaking up expressions

with assignments to intermediate values .

189 Invalid Set Operator Or Function

Your source file includes an incorrect use of a set operator

or function (for example, attempting to use the MOD

operator or the ODD function with sets) .

190 Invalid Real Operator Or Function

Your source file includes an incorrect use of an operator

or function on a REAL value (for example, MOD operator

or ODD function with reals) .

191 Invalid Value Type For Operator Or Function

For example, MOD operator or ODD function with enu-

merated type.

195 Compiler

This message should never appear. If it does, please

report the condition to Microsoft Corporation .

196 Zero Size Value

Your source file includes the empty record "RECORD

END" as if it had a size .

197 Compiler

This message should never appear. If it does, please

report the condition to Microsoft Corporation .

198 Constant Expression Value Out Of Range

The value of a constant expression is out of range in an

array index, subrange assignment, or other subrange.

199 Integer Type Not Compatible With Word Type

An expression tries to mix INTEGER and WORD type

values. This error indicates confusing signed and un-

signed arithmetic; either change the positive signed value

to unsigned with WRD () or change the unsigned value

(MAXINT) to signed with ORD (} .

237

Microsoft Pascal Compiler User's Guide

201 Types Not Assignment Compatible
You have attempted to use incompatible types in an
assignment statement or value parameter . See the Micro-
soft Pascal Reference Manual for type compatibility rules .

202 Types Not Compatible In Expression
You have attempted to mix incompatible types in an
expression . See the Microsoft Pascal Reference Manual
for type compatibility rules .

203 Not Array Begin Skip
A variable followed by a left bracket (or parenthesis) is
not an array . The compiler skipped from here to where
message 187 appears .

204 Invalid Ordinal Expression Assumed Integer Zero
The expression has the wrong type or a type that is not
ordinal . The compiler assumed the value of the expres-
sion to be zero .

205 Invalid Use of PACKED Components
A component of a PACKED structure has no address (it
may not be on a byte boundary) and cannot be passed by
reference.

206 Not Record Field Ignored
A variable followed by a period is not a record, address,
or file, and was ignored by the compiler .

207

	

Invalid Field
A valid field name does not follow a record variable and a
period, and was ignored by the compiler .

208 File Dereference Considered Harmful
This message appears when you are using a file buffer as
a reference parameter to a procedure, a function, or as a
record in a WITH statement. When the compiler calcu-
lates the address of a file buffer variable, it cannot do the
special actions normally done with buffer variables (i,e .,
lazy evaluation for textfiles, or concurrency for binary

238

Error Messages

files) . If the file position changes, the buffer variable at
this address may not be valid, thus such a practice is
considered harmful .

209 Cannot Dereference Value
The variable followed by an arrow is not a pointer, ad-
dress, or file; therefore the compiler cannot dereference
the value pointed to .

210 Invalid Segment Address
A variable resides at a segmented address, but a default
segment address is needed . You may need to make a local
copy of the variable .

211

	

Ordinal Expression Invalid Or Not Constant
The compiler found an invalid or nonconstant expression
where it expected a constant ordinal expression .

214 Out of Range For Set 255 Assumed
The compiler found an element of a set constant whose
ordinal value exceeded 255 and assumed a value of 255 .

215 Type Too Long Or Contains File Begin Skip
The compiler found a structured constant that either
exceeds 255 bytes or contains a FILE or LSTRING type .

216 Extra Array Components Ignored
The compiler found an array constant that had too many
components for the array type . The excess components
were ignored .

217 Extra Record Components Ignored
The compiler found a record constant that had too many
components for the record type. The excess components
were ignored .

218 Constant Value Expected Zero Assumed
The compiler found a nonconstant value in a structured
constant and assumed its value was zero .

239

Microsoft Pascal Compiler User's Guide

220 Compiler
This message should never appear . If it does, please
report the condition to Microsoft Corporation .

221 Components Expected For Type
The compiler found too few components for the type of a
structured constant .

222 Overflow 255 Components In String Constant
The compiler found a string constant that exceeded 255
bytes .

223 Use NULL
Use the predeclared constant NULL instead of two quota-
tion marks .

224 Cannot Assign With Supertype Lstring
A super array LSTRING cannot be the source or the
target of an assignment .

225 String Expression Not Constant
String concatenation with the asterisk applies only to
constants .

226 String Expected Character 255 Assumed
The compiler found a string constant with no characters,
perhaps the result of using NULL, and assumed the
value CHR(255) .

227 Invalid Address Of Function
An assignment or other address reference to the function
value is not within the scope of the function . Or, RESULT
is used outside the scope of the function .

228 Cannot Assign To Variable
Assignment to READONLY, CONST, or FOR control
variables is not permitted .

240

Error Messages

230 Unknown Identifier Assumed Integer Begin Skip
The compiler found an unknown identifier, for which it
requires an address, and has skipped to a comma, semi-
colon, or right parenthesis .

231 VAR Parameter Or WITH Record Assumed
Integer Begin Skip
The compiler found an invalid symbol where it requires
an address, and has skipped to a comma, semicolon, or
right parenthesis .

232 Cannot Assign To Type
The target of an assignment is a file or cannot be as-
signed for some other reason .

233 Invalid Procedure Or Function Parameter
Begin Skip
The compiler found an incorrect use of an intrinsic pro-
cedure or function . The error could be one of the following :
1 . The first parameter of NEW or DISPOSE is not a

pointer variable.
2 . The record tag value of a NEW, DISPOSE, or

SIZEOF couldn't be found .
3 . The super array in a NEW, DISPOSE, or SIZEOF

had too many bounds .
4. The super array in a NEW, DISPOSE, or SIZEOF

had too few bounds .
5. The super array for a NEW or SIZEOF has been

given no bounds .
6 . You attempted to use a WRD or ORD function on a

value not of an ordinal type .
7 . You attempted to use the LOWER or UPPER func-

tions on an invalid value or type .
8 . You attempted to use PACK or UNPACK on a super

array or file, or an array that is or is not packed as
expected .

9. The first parameter for a RETYPE is not a type
identifier .

241

Microsoft Pascal Compiler User's Guide

10. The parameter for a RESULT function is not a func-
tion identifier .

11 . You attempted to use an intrinsic procedure or func-
tion not available in this version of Microsoft Pascal .

12. The ORD or WRD of an INTEGER4 value is out of
range.

13. The parameter given for HIWORD or LOWORD is
not an ordinal or INTEGER4 .

234 Type Invalid Assumed Integer
The parameter given to READ, WRITE, ENCODE, or
DECODE is not of type INTEGER, WORD, INTEGER4,
REAL, BOOLEAN, enumerated, a pointer ; or, the param-
eter given for a READ or WRITE is not of type CHAR,
STRING, LSTRING ; or, the parameter for a READFN
is not of one of these types or type FILE . The compiler
assumed it to be of type INTEGER . This error also
occurs if a program parameter does not have a readable
type, in which case the error occurs at the keyword
BEGIN for the main program .

235 Assumed File INPUT
Because the first parameter for a READFN is not a file,
INPUT is assumed .

236 Invalid Segment For File
File parameters must always reside in the default seg-
ment.

237 Assumed INPUT
INPUT was not given as a program parameter and has
been assumed .

238 Assumed OUTPUT
OUTPUT was not given as a program parameter and
has been assumed .

239 Not Lstring Or Invalid Segment
The target of a READSET, ENCODE, or DECODE must
be an LSTRING in the default segment . One or both of
these conditions is missing .

242

Error Messages

242 File Parameter Expected Begin Skip

The READSET procedure expects, but cannot find, a

textfile parameter. The compiler ignored the procedure

and resumed where message 187 appears .

243 Character Set Expected

The READSET procedure expects, but cannot find, a

SET OF CHAR parameter .

244 Unexpected Parameter Begin Skip

The compiler found more than one parameter given for

an EOF, EOLN, or PAGE, and ignored the extra one .

245 Not Text File

You attempted to use an EOLN, PAGE, READLN, or

WRITELN on a file that is not a textfile .

248 Size Not Identical

The RETYPE function may not work as intended, since

the parameters given are of unequal length .

249 Procedural Type Parameter List Not Compatible

The parameter lists for formal and actual procedure param-

eters are not compatible . That is, the number of parame-

ters, the function result type, a parameter type, or attri-

butes are different .

250 Cannot Use Procedure With Attribute

You attempted to call a procedure with the attribute

INTERRUPT, directly or in directly. INTERRUPT does

not allow this .

251 Unexpected Parameter Begin Skip

The compiler found a left parenthesis, indicating a proce-

dure or function, but no parameters, and has skipped to

where message 187 appears .

252 Cannot Use Procedure Or Function As Parameter

You attempted to pass an intrinsic procedure or function

as a parameter, which is not permitted .

243

Microsoft Pascal Compiler User's Guide

253 Parameter Not Procedure Or Function Begin Skip
The compiler expected, but cannot find, a procedural
parameter here, and has skipped to where message 187
appears .

254 Supertype Array Parameter Not Compatible
The actual parameter given is not of the same type or is
not derived from the same super type as the formal param-
eter.

255 Compiler
This message should never appear . If it does, please
report the condition to Microsoft Corporation .

256 VAR Or CONST Parameter Types Not Identical
The actual and formal reference parameter types are not
identical, as they must be .

257 Parameter List Size Wrong Begin Skip
The compiler found too many or too few parameters in a
list. If too many, the excess parameters were skipped .

258 Invalid Procedural Parameter To EXTERN
A procedure or function that is neither PUBLIC nor
EXTERN is being passed as a parameter to a procedure
or function declared EXTERN. (The compiler invokes the
actual procedure or function with intrasegment calls,
and so cannot pass them to an external code segment .)

259 Invalid Set Constant For Type
The set is not constant, base types are not identical, or
the constant is too big .

260 Unknown Identifier In Expression Assumed Zero
The identifier in an expression is undefined or possibly
misspelled .

261 Identifier Wrong In Expression Assumed Zero
The identifier in an expression is incorrect (e.g., file type
identifier) and was assumed to be zero .

244

Error Messages

262 Assumed Parameter Index Or Field Begin Skip
After error 260 or 261, anything in parentheses or square
brackets, or a dot followed by an identifier, is skipped .

265 Invalid Numeric Constant Assumed Zero
There is a decode error in an assumed INTEGER or
INTEGER4 literal constant ; the number may be too big,
or contain invalid characters . The incorrect constant was
assumed to be zero .

267 Invalid Real Numeric Constant
There is a decode error in an assumed type REAL literal
constant; the number may be too big, or contain invalid
characters .

268 Cannot Begin Expression Skipped
The compiler found an illegal symbol at the beginning of
an expression and deleted the symbol .

269 Cannot Begin Expression Assumed Zero
At the beginning of an expression the compiler found a
symbol that is permitted within an expression, but not at
the beginning (a floating-point number beginning with a
. instead of a 0, for example) . The compiler placed a 0
before the symbol .

270 Constant Overflow
The divisor in a DIV or MOD function is the constant
zero (INTEGER or WORD), which is not permitted .

272 Word Constant Overflow
A WORD constant minus a WORD constant gave a nega-
tive result. A WORD constant is always a positive value .

275 Invalid Range
The lower bound of a subrange is greater than the upper
bound (e.g ., 2 . .1) .

276 CASE Constant Expected
The compiler expects, but cannot find, a constant value
for a CASE statement or record variant .

245

Microsoft Pascal Compiler User's Guide

277 Value Already In Use
In a CASE statement or record variant, the value was
already assigned (as in CASE 1 . .3 : XXX; 2: YYY; END) .

279 Label Expected
The compiler expects, but cannot find, a label .

280 Invalid Integer Label
A label uses nondecimal notation (e.g., 8_ 77), which is
not allowed .

281 Label Assumed Declared
The compiler found a label that did not appear in the
LABEL section .

283 Expression Not Boolean Type
The expression following an IF, WHILE, or UNTIL state-
ment must be BOOLEAN .

284 Skip To End Of Statement
The compiler found, and skipped, an unexpected ELSE
or UNTIL clause .

285 Compiler
This message should never appear . If it does, please
report the condition to Microsoft Corporation .

286

	

; Ignored
The compiler found, and ignored, a semicolon before an
ELSE statement . (The semicolon is not required in this
case.)

288 : Skipped
The compiler found, and ignored, a colon after an OTH-
ERWISE statement. (The colon is not required in this
case .)

289 Variable Expected For FOR Statement Begin Skip
The compiler expected, but couldn't find, a variable iden-
tifier after a FOR statement and skipped to where mes-
sage 187 appears .

246

Error Messages

291 FOR Variable Not Ordinal Or
Static Or Declared In Procedure
The compiler found an incorrect control variable in a
FOR statement. Control variables may not be any of the
following :
1 . type REAL, INTEG ER4, or another non-ordinal type
2. the component of an array, record, or file type
3. the referent of a pointer type or address type
4 . in the stack or heap, unless locally declared
5. nonlocally declared, unless in static memory
6 . a reference parameter (VAR or VARS parameter)
7 . a variable with a segmented ORIGIN attribute

292 Skip To :=
The compiler expected, but could not find, an assignment
in a FOR statement, and skipped to the next :_

293 GOTO Invalid
The GOTO or label involves an invalid GOTO statement
or a nonexistent label .

294 GOTO Considered Harmful
If the $goto metacommand is on, the compiler found a
GOTO statement .

296 Label Not Loop Label
The label after a BREAK or CYCLE statement is not a
loop label (i.e., does not label a FOR, WHILE, or REPEAT
statement) .

297 Not In Loop
The compiler found a BREAK or CYCLE statement out-
side a FOR, WHILE, or REPEAT statement .

298 Record Expected Begin Skip
The compiler expected, but could not find, a record varia-
ble in a WITH statement and skipped to where message
187 appears .

247

Microsoft Pascal Compiler User's Guide

300 Label Already In Use Previous Use Ignored
The compiler found a label that had already been used
and ignored the previous use .

301 Invalid Use Of Procedure Or Function Parameter
The compiler found a procedure parameter used as a
function or a function parameter used as a procedure .

303 Unknown Identifier Skip Statement
The compiler found an undefined (or possibly misspelled)
identifier at the beginning of a statement and ignored the
entire statement .

304

	

Invalid Identifier Skip Statement
The compiler found an incorrect identifier at the begin-
ning of a statement (e . g ., file type identifier) and ignored
the entire statement .

305 Statement Not Expected
The compiler found a MODULE or uninitialized
IMPLEMENTATION with a body enclosed with the
reserved words BEGIN and END .

306 Function Assignment Not Found
The compiler expects, but cannot find, an assignment of
the value of a function somewhere in its body .

307 Unexpected END Skipped
The compiler found, and ignored, an END without a
matching BEGIN, CASE, or RECORD .

308 Compiler
This message should never appear . If it does, please
report the condition to Microsoft Corporation .

309

	

Attribute Invalid
The compiler found an attribute valid only for procedures
and functions given to a variable, an attribute valid only
for a variable given to a procedure or function, or an
invalid mix of attributes (e.g ., PUBLIC and EXTERN) .

248

Error Messages

310

	

Attribute Expected
The compiler expected, but could not find, a valid attri-
bute following the left bracket .

311

	

Skip To Identifier
The compiler skipped an invalid (i .e ., unexpected) symbol
to get to the identifier that follows .

312

	

Identifier Expected
The compiler expected, but could not find, a list of identi-
fiers .

314

	

Identifier Expected Skip To ;
The compiler expected, but could not find, the declara-
tion of a new identifier, and skipped to the next semi-
colon .

315 Type Unknown Or Invalid Assumed Integer
Begin Skip
The return type for a parameter or function is incorrect ;
that is, it is not an identifier or is undeclared, or the value
parameter or function value is a file or super array . The
compiler assumed the type is INTEGER and skipped to
where message 187 appears .

316

	

Identifier Expected
The compiler expects, but cannot find, an identifier after
the word PROCEDURE or FUNCTION in parameter
list .

318

	

Compiler
This message should never appear. If it does, please
report the condition to Microsoft Corporation .

319 Compiler
This message should never appear . If it does, please
report the condition to Microsoft Corporation .

249

Microsoft Pascal Compiler User's Guide

320 Previous Forward Skip Parameter List
The compiler found a definition of a FORWARD (or
INTERFACE) procedure or function that unnecessarily
repeats the parameter list and function return type .

321 Not EXTERN
The compiler found a procedure or function with the
ORIGIN attribute but missing the required EXTERN
attribute .

322 Invalid Attribute With Function Or Parameter
The compiler found an incorrectly used INTERRUPT
procedure, that is, one that has parameters or is a func-
tion .

323 Invalid Attribute In Procedure Or Function
The compiler found a nested procedure or function that
has attributes or is declared EXTERN . Neither of these
conditions is permitted .

324 Compiler
This message should never appear . If it does, please
report the condition to Microsoft Corporation .

325 Already Forward
You attempted to use FORWARD twice for the same
procedure or function .

326 Identifier Expected For Procedure Or Function
The compiler expects, but cannot find, an identifier fol-
lowing the keywords PROCEDURE or FUNCTION .

327 Invalid Symbol Skipped
The compiler found, and ignored, a FORWARD or
EXTERN directive in an interface .

328 EXTERN Invalid With Attribute
The compiler found an EXTERN procedure also declared
PUBLIC. This is not permitted .

250

Error Messages

329 Ordinal Type Identifier Expected Integer
Assumed Begin Skip
The compiler expected, but could not find, an ordinal
type identifier for a record tag type . It skipped what was
given in the source file and assumed type INTEGER .

330 Contains File Cannot Initialize
You have used a file in a record variant. This is allowed,
but considered unsafe, and is not initialized automati-
cally with the usual NEWFQQ call .

331 Type Identifier Expected Assumed Character
The compiler expects, but cannot find, an ordinal type
identifier. It assumes that what it does find is of type
CHAR.

333 Not Supertype Assumed String
The compiler found what looks like a super array type
designator . However, the type identifier is not for a super
array type, so the compiler assumed it to be of the super
array type STRING .

334 Type Expected Integer Assumed
The compiler expected, but could not find, a type clause
or type identifier and assumed the expected type to be
type INTEGER .

335 Out Of Range 255 For Lstring
The compiler found an LSTRING designator whose up-
per bound exceeds 255 .

336 Cannot Use Supertype Use Designator
A super array type can be used only as a reference param-
eter or a pointer referent. Other variables cannot be given
a super array type. Use a super array designator .

337 Supertype Designator Not Found
The compiler expected, but could not find, a super array
designator that gives the upper bounds of the super array .

251

Microsoft Pascal Compiler User's Guide

338

	

Contains File Cannot Initialize
The compiler found a super array of a file type . While
allowed, this is considered unsafe and is not initialized
automatically with the usual NEWFQQ call .

339 Supertype Not Array Skip To ; Assumed Integer
The compiler expected, but could not find, the keyword
ARRAY following SUPER in a type clause . It assumed
that the type is INTEGER and skipped to the next semi-
colon .

340 Invalid Set Range Integer Zero To 255 Assumed
The compiler found an invalid range for the base type of a
set and assumed it to be of type INTEGER with a range
from zero to 255 .

341

	

File Contains File
The compiler found, but does not permit, a file type that
contains a file type, either directly or indirectly .

342 PACKED Identifier Invalid Ignored
The compiler expected, but could not find, one of words
ARRAY, RECORD, SET, or FILE following the reserved
word PACKED . A type identifier following PACKED is
not permitted .

343 Unexpected PACKED
The compiler found the keyword PACKED applied to a
nonstructured type .

345 Skip To ;
The compiler expected, but could not find, a semicolon at
the end of a declaration which is not at the end of the line .
It assumed the next semicolon is the end of the declara-
tion .

346

	

Insert ;
The compiler expected, but could not find, a semicolon at
the end of the declaration which coincides with the end of
a line. It inserted a semicolon where it expected to find
one.

252

Error Messages

347 Cannot Use Value Section With ROM Memory
If the $rom metacommand is on, your program may not
contain a VALUE section .

348 UNIT Procedure Or Function Invalid EXTERN
A required EXTERN declaration occurs later than it
should in an IMPLEMENTATION . Any interface proce-
dures and functions not implemented must be declared
EXTERN at the beginning .

350 Not Array Begin Skip
In a VALUE section, the variable followed by a left
bracket is not an array .

351 Not Record Begin Skip
The variable followed by a period, in a VALUE section, is
not a record type .

352

	

Invalid Field
Within a VALUE section, the identifier assumed to be a
field is not in the record .

353 Constant Value Expected
Within a VALUE section, a variable has been initialized
to something other than a constant .

354 Not Assignment Operator Skip To ;
Within a VALUE section, the assignment operator is
missing.

355

	

Cannot Initialize Identifier Skip To ;
Within a VALUE section, there is a symbol that is not a
variable declared at this level in fixed (STATIC) memory .
Or, it has an illegal ORIGIN or EXTERN attribute.

356 Cannot Use Value Section
A VALUE section has been incorrectly included in the
INTERFACE, rather than in the IMPLEMENTATION .

253

Microsoft Pascal Compiler User's Guide

357 Unknown Forward Pointer Type Assumed
Integer
The identifier for the referent of a reference type declared
earlier in this TYPE (or VAR) section was never declared
itself.

358 Pointer Type Assumed Forward
The TYPE section includes a pointer or address type for
which the referent type was already declared in an enclos-
ing scope. Since the identifier for the referent type was
declared again later in the same TYPE section, the com-
piler used the second definition . In the following example
the forward type, REAL, is used :

PROGRAM outside ;
TYPE a = WORD ;
PROCEDURE b ;
TYPE c= a ;
a = REAL;

359 Cannot Use Label Section
The compiler found a LABEL section incorrectly included
in an INTERFACE, rather than in an IMPLEMENTA-
TION .

360 Forward Pointer To Supertype
The referent of a reference type declared in this TYPE
section is a super array type. The declaration of the super
array type doesn't occur until after the reference .

361 Constant Expression Expected Zero Assumed
An expression in a CONST section is not a constant .

362

	

Attribute Invalid
A VAR section mixes incorrectly the PUBLIC or ORIGIN
attribute with EXTERN . Or, ORIGIN appears in attri-
bute brackets after the keyword VAR .

364

	

Contains File Initialize Module
The compiler found an uninitialized file variable in a
module. You must call the module as a parameterless
procedure to initialize the files .

254

Error Messages

365

	

Origin Variable Contains File Cannot Initialize
The compiler found an uninitialized file variable with the
ORIGIN attribute . Since ORIGIN variables are never
initialized, you must initialize this file yourself.

366 UNIT Identifier Expected Skip To ;
The compiler expects, but cannot find, an identifier after
the keyword USES .

367

	

Initialize Module To Initialize UNIT
You must call the module as a procedure in order to
initialize it (a USES clause triggers a unit initialization
call) .

368 Identifier List Too Long Extra Assumed Integer
In a USES clause with a list of identifiers, the compiler
found more identifiers in the list than are constituents of
the interface. The extra ones are assumed to be type
identifiers identical to INTEGER .

369 End Of UNIT Identifier List Ignored
In a USES clause with a list of identifiers, the compiler
found fewer identifiers in the list than are constituents of
the interface . The remaining interface constituents are
not provided as part of the USES clause .

371 UNIT Identifier Expected
An identifier is missing after the phrase "INTERFACE ;
UNIT."

372 Compiler
Compiler expects, but cannot find, the keyword UNIT in
an INTERFACE .

373 Identifier In UNIT List Not Declared
One of the identifiers in the interface UNIT list was not
declared in the body of the interface .

255

Microsoft Pascal Compiler User's Guide

374 Program Identifier Expected
An identifier is missing after the keyword PROGRAM
or MODULE. This is a "panic" error from which the
compiler cannot recover. The rest of the file is not com-
piled .

375 UNIT Identifier Expected
The unit identifier is missing after the phrase "IMPLE-
MENTATION OF ." This is a "panic" error from which
the compiler cannot recover . The rest of the file is not
compiled.

376 Program Not Found
The compiler expects, but cannot find, one of the reserved
words PROGRAM, MODULE, or IMPLEMENTATION
OF. This is a "panic" error from which the compiler
cannot recover. The rest of the file is not compiled . (This
error can occur if the source file is not a Microsoft Pascal
compiland .)

377 File End Expected Skip To End
The compiler found additional source text after what ap-
peared to be the end and ignored everything after that
point.

378 Program Not Found
The compiler expected, but could not find, the main body
of a compiland, or the final END .

F.3 Compiler Back End Errors

The following errors cause immediate termination of the compila-
tion. No object file is created . The main source of these errors is
user error from either the optimizer or the code generator .

900 Attempt to divide by zero .
For example you attempted A DIV 0 .

256

901 Overflow during integer constant folding .
For example, you attempted MAXINT + A + MAXINT .

902 Expression too complex/Too many internal labels .
Try breaking up expression with intermediate value
assigns .

903 Too many procedures and/or functions .
Try breaking up compiland into modules or units .

904

	

Range error (number too large to fit into target) .

F.4 Runtime File
System Errors (1000-1199)

File system error codes range from 1000 to 1199 . Error codes go
into the ERRC field of the file control block . Codes from 1000 to
1099 designate errors (from Unit U) that are specific to your
operating system, while those codes from 1100 to 1199 identify
Pascal file system errors (from Unit F) .

File system errors all have the format

error type error in file filename

followed by the error code, and in some versions an error status,
which is an operating system error return word . The error type
codes, based on the ERRS field of the file control block, are :

Code Message

1

	

Hard Data
Hard data error (parity, CRC, check sum, etc .) .

2

	

Device Name
Invalid unit/device/volume name, format, or number .

3

	

Operation
Invalid operation : GET if EOF, RESET a printer, etc .

257

Error Messages

Microsoft Pascal Compiler User's Guide

4

	

File System
File system internal error, ERRS > 15, etc .

Device Offline
Unit/device/volume no longer available .

6

	

Lost File
File itself no longer available .

7

	

File Name
Invalid syntax, name too long, no temporary names, etc .

8

	

Device Full
Disk full, directory full, all channels allocated .

9

	

Unknown Device
Unit/device/volume not found .

10

	

File Not Found
File itself not found .

11

	

Protected File
Duplicate filename; write-protected .

12

	

File In Use
File in use, concurrency lock, already open .

13

	

File Not Open
File closed, I/o to unopen FCB .

14

	

Data Format
Data format error, decode error, range error .

15

	

Line Too Long
Buffer overflow, line too long .

258

F.4.1 Operating System
Runtime Errors (1000-1099)

Errors 1000 through 1048 are specific to the MS-DOS operating
system :

Code Message

1000 Write error when writing end of file
1002 Filename extension with more than 3

characters .
1003 Error during creation of new file (disk or

directory full.)
1004

	

Error during open of existing file (file not
found.)

1005 Filename with more than 8 characters, or zero
characters

1007 Total filename length over 21 characters .
1008 Write error when advancing to next record.
1009

	

File too big (over 65535 logical sectors) .
1010 Write error when seeking to direct record .
1011

	

Attempt to open a random file to a nondisk
device

1027 Filename error
1028 Device full error
1030 File system
1031 Operation
1032 File not found
1033 File not found
1034 File system
1035 Protected file
1036 File system
1037 File system
1038 File system

Error Messages

259

Microsoft Pascal Compiler User's Guide

1039 File system
1040 File system
1041 Data format
1042 File system
1043 Data format
1044 File system
1045 Unknown Device
1046 File system
1047 File system
1048 File system

F.4.2 Microsoft Pascal
File System Errors (1100-1199)

Code Message

1100 ASSIGN or READFN of filename to open file
This error is only caught for textfiles .

1101

	

Reference to buffer variable of closed textfile
1102 Textfile READ or WRITE call to closed file
1103 READ when EOF is true (SEQUENTIAL mode)
1104 READ to REWRITE file, or WRITE to RESET

file (SEQUENTIAL mode)
1105

	

EOF call to closed file
1106

	

GET call to closed file
1107 GET call when EOF is true (SEQUENTIAL

mode)
1108 GET call to REWRITE file (SEQUENTIAL

mode)
1109

	

PUT call to closed file
1110 PUT call to RESET file (SEQUENTIAL mode)
1111

	

Line too long in DIRECT textile

260

Error Messages

1112 Decode error in textfile READ BOOLEAN
1113 Value out of range in textfile READ CHAR
1114 Decode error in textfile READ INTEGER
1115

	

Decode error in textfile READ SINT (integer
subrange)

1116 Decode error in textfile READ REAL
1117 LSTRING target not big enough in READSET
1118 Decode error in textfile READ WORD
1119 Decode error in textfile READ BYTE (word

subrange)
1120

	

SEEK call to closed file
1121 SEEKK call to file not in DIRECT mode
1122

	

Encode error (field width > 255) in textfile
WRITE BOOLEAN

1123

	

Encode error (field width > 255) in textfile
WRITE INTEGER

1124

	

Encode error (field width > 255) in textfile
WRITE REAL

1125

	

Encode error (field width > 255) in textfile
WRITE WORD

1126

	

Decode error (field width > 255) in textfile
READ INTEGER4

1127

	

Encode error (field width > 255) in textfile
WRITE INTEGER4

F.4.3 Other Runtime Errors (2000-2999)
Nonfile system error codes range from 2000 to 2999 . In some
cases, metacommands control whether or not the compiler checks
for the error. In other cases, the compiler always checks . The list
below indicates which, if any, metacommand controls the error
checking .

261

Microsoft Pascal Compiler User's Guide

F.4.4 Memory Errors (2000-2049)
Code Message

2000 Stack Overflow
The stack (frame) ran out of memory while calling a pro-
cedure or function. This condition is checked if the $stackck
metacommand is on, and may be checked in some other
cases .

2001 No Room In Heap
The heap ran out of room for a new variable during the
NEW (GETHQQ) procedure .

2002

	

Heap I s Invalid
During the NEW (GETHQQ) procedure, the allocation
algorithm discovered the heap structure is corrupt .

2003 Heap Allocator Interrupted
An interrupt procedure interrupted NEW (GETHQQ)
and did a NEW call itself. The heap allocator modifies
the heap, so it is a critical section . This error is not caught
in this version .

2004

	

Allocation Internal Error
There was an unexpected error return when GETHQQ
was requesting additional heap space from the operating
system. Please report occurrences of this error to Micro-
soft Corporation .

2031

	

NIL Pointer Reference
DISPOSE or $nilck+ found a pointer with a NIL (i .e., 0)
value .

2032

	

Uninitialized Pointer
DISPOSE or $nilck+ found an uninitialized (value 1)
pointer. This occurs only if the metacommand $initck is
on .

262

2033 Invalid Pointer Range
DISPOSE or $nilck+ found a pointer that does not point
into the heap or is otherwise invalid . (It may have
pointed to a disposed block that was removed from the
heap and given back to the system .)

2034 Pointer To Disposed Var
DISPOSE or $nilck+ found a pointer to a heap block
that has been disposed . Calling DISPOSE twice for the
same variable is invalid .

2035 Long DISPOSE Sizes Unequal
In a long form of DISPOSE, the actual length of the
variable did not equal the length based on the tag values
given .

F.4 .5 Ordinal Arithmetic Errors (2959-2999)
Code Message

2050 No CASE Value Matches Selector
In a CASE statement without an OTHERWISE clause,
none of the branch statements had a CASE constant
value equal to the selector expression value . This error is
checked only if the $rangeck metacommand is on .

2051 Unsigned Divide By Zero
A WORD value was divided by zero. This error is checked
only if the $mathck metacommand is on .

2052 Signed Divide By Zero
An INTEGER value was divided by zero. This error is
checked only if the $mathck metacommand is on .

2053 Unsigned Math Overflow
A WORD result is outside the range zero to MAXWORD .
This error i s checked only i f the $mathck metacomm and
is on .

263

Error Messages

Microsoft Pascal Compiler User's Guide

2054 Signed Math Overflow
An INTEGER result is outside the range from -MAX-
INT to +MAXINT . This error is checked only if the
$mathck metacommand is on .

2055 Unsigned Value Out Of Range
The source value for assignment or value parameter is
out of range for the target value . The target may be a
subrange of WORD (including BYTE), or CHAR, or an
enumerated type . This error can also occur in SUCC
and PRED functions and when the length of an
LSTRING is assigned . All of these conditions are
checked if the $rangeck metacommand is on .
The error also occurs when an array index is out of
bounds and the array has an unsigned index type . This
condition is checked when the $indexck metacommand
is on .

2056 Signed Value Out O f Range
This error is similar to message 2055, but applies to the
INTEGER type and its subranges .

2057 Uninitialized 16 Bit Integer Used
Either an INTE GE R or 16-bit INTEGER subrange var-
iable is used without being assigned first, or such a
variable has the invalid value of -32768. This condition
is checked if the $initck metacommand is on .

2058 Uninitialized 8 Bit Integer Used
Either a SINT or 8-bit INTEGER subrange variable is
used without being assigned first, or such a variable
has the invalid value of -128 . This condition is checked
if the $initck metacommand is on .

2084 Integer Zero To Negative Power
There was an attempt to raise zero to a negative power .

2 64

F.4.6 Type REAL
Arithmetic Errors (2100-2149)

Code Message

2100 REAL Divide By Zero
A REAL value is divided by zero.

2101 REAL Math Overflow
A REAL value is too large for representation.

2102 SIN or COS Argument Range
The parameter for a SIN or COS function is too large to
yield a meaningful result .

2103 EXP Argument Range
The parameter for an EXP function is too large to yield a
result that fits in representation .

2104 SQRT of Negative Argument
The parameter for a square root function is less than zero .

2105 LN of Non-Positive Argument
The parameter of a natural log function is less than or
equal to zero .

2106 TRUNC/ROUND Argument Range
The REAL parameter of a TRUNC, TRUNC4, ROUND,
or ROUND4 function is outside the range of INTEGERs .

2131 Arctan Argument 0
The parameter for a TANRQQ function is so small that
the result is invalid .

2132 Arcsin or Arccos of REAL > 1 .0
The parameter of an ASNRQQ or ACSRQQ function is
greater than one .

265

Error Messages

Microsoft Pascal Compiler User's Guide

2133 Negative Real To Real Power
The first argument of an PRDRQQ or PRSRQQ func-
tion is less than zero .

2134 Real Zero To Negative Power
There was an attempt to raise zero to a negative power
in one of the functions PISRQQ, PIDRQQ, PRDRQQ,
or PRSRQQ .

2135 REAL Math Underflow
The significance of a REAL expression has been reduced
to zero .

2136

	

REAL Indefinite (Uninitialized Or Previous Error)
The REAL value called "infinity" was encountered .
This may occur if the $initck metacommand is on and
an uninitialized REAL value is used, or if a previous
error set a variable to indefinite as part of its masked
error response .

2137

	

Missing Arithmetic Processor
You linked your program with the runtime library in-
tended for use with the 80287 numeric coprocessor, but
there is no coprocessor on your system . Relink your
program with the runtime library that emulates floating-
point arithmetic .

2138 REAL IEEE Denormal Detected
A very small real number was generated and may no
longer be valid due to loss of significance .

2139 REAL Precision Loss
An arithmetic operation on the 80287 numeric copro-
cessor has generated a loss of numeric precision in the
result of an operation .

2140 REAL Arithmetic Processor Instruction
Illegal Or Not Emulated
An attempt was made to execute an illegal arithmetic
coprocessor instruction, or the floating-point emulator
cannot emulate a legal coprocessor instruction .

266

Error Messages

2145 Real Stack Overflow
Using the alternate math package and expression, too
many real operands were encountered .

F.4 .7 Structured Type Errors (2150-2199)

Code Message

2150 String Too Long in COPYSTR
The source string for a COPYSTR intrinsic function is
too large for the target string .

2151

	

Lstring Too Long In Intrinsic Procedure
The target LSTRING is too small in an INSERT,
DELETE, CONCAT, or COPYLST intrinsic procedure .

2180 Set Element Greater Than 255
The value in a constructed set exceeds the maximum of
255 .

2181 Set Element Out of Range
The value in a set assignment or set value parameter is
too large for the target set . This error is caught only if the
$rangeck metacommand is on .

F.4.8 INTEGER4 Errors (2200-2249)
Code Message

2200 Long Integer Divide By Zero
An INTEGER4 value is divided by zero .

2201 Long Integer Math Overflow
An INTEGER4 value is too large for representation .

2234 Long Integer Zero To Negative Power
There was an attempt to raise zero to a negative power .

267

Microsoft Pascal Compiler User's Guide

F.4 .9 Other Errors (2400-2999)
Code Message

2450 Unit Version Number Mismatch
During unit initialization, the user (contains the USES
clause) and implementation of an interface were discov-
ered to have been compiled with unequal interface ver-
sion numbers .

F.5 Unnumbered Error Messages

Compiler Cannot Continue
This error occurs under the following circumstances :

•

	

There are more errors than the number set by the $errors
metacommand .

•

	

An end-of file occurs when not expected .
•

	

Identifier scopes are nested too deeply .
•

	

The compiler cannot find the keyword PROGRAM,
MODULE, or IMPLEMENTATION .

•

	

The compiler cannot find the PROGRAM, MODULE, or
IMPLEMENTATION identifier .

•

	

A file system error occurs . File system error messages
include the filename and one of the following phrases :

HARD DATA

	

(check sum error)
DISK FULL

	

(disk is full)
FILE ACCESS

	

(file not found)
FILE SYSTEM

	

(other or internal error)

Error: Compiler Internal Error
This error signifies a serious problem with the compiler . This
message should never occur; if it does please report it to
Microsoft Corporation . There isn't much you can do if this
error occurs except perhaps modify your program near the
line where the error occurred .

268

Error: Compiler Out of Memory
This error usually occurs when too many identifiers have
been declared . Refer to Section 3.2, "Working With Large
Programs" for suggestions on how to avoid this problem .

F.6 Linker Error Messages

This section lists the error messages that can occur when linking
programs. The messages are in alphabetical order.

About to generate EXE file . Change diskette in drive A :
and press ENTER .

This message appears before the .ExE has been written if the
/P switch is given. Insert diskette that the .ExE file is to be
written to into the specified drive (Drive A, for example) .

Ambiguous switch error: 'x'
You did not enter a correct switch name after the switch
indicator'/' . For example, the command

A>LINK /N main ;

will generate this error. LINK will abort .

Attempt to put segment name in more than one group in
file filename

A segment was declared to be a member of two different
groups. Correct the source and recreate the object files .

Cannot find library : filename.lib. Enter new file spec :
The linker cannot find filename .lib and is requesting a new
file name or a new path specification or both . Respond to the
prompt with a new filename or a new path specification .

Cannot open list file
The directory or disk is full . Make space on the disk or in the
directory .

2 69

Error Messages

Microsoft Pascal Compiler User's Guide

Cannot open response file
You named a response file the linker cannot open . You have
probably made a typing mistake .

Cannot nest response files
You named another response file in the response file. Fix the
file and relink .

Cannot open run file
The directory or disk is full . Make space on the disk or in the
directory .

Cannot open temporary file
The directory or disk is full . Make space on the disk or in the
directory.

Cannot reopen list file
You did not replace the original disk when prompted to . Re-
start the linker .

Data record too large
The LE DATA record (in an object module) contains more
than 1024 bytes of data. This is a translator error . Note the
translator (compiler or assembler) that produced the incorrect
object module and the circumstances under which it was
produced, and report the information to Microsoft Corpora-
tion .

Dup record too large
The LIDATA record (in an object module) contains more than
512 bytes of data . Most likely, an assembly module contains a
struc definition that is very complex, or a series of deeply
nested DUP statements (e.g . ARRAY db 10 dup (11 dup (12
dup (13 dup (. . .))))) . Simplify the module and reassemble it .

filename is not a valid library
The file specified as a library is invalid . LINK will abort .

270

Fixup overflow near num in segment name in
filename(name) offset num

Some possible causes of this message are :

1 . A group is larger than 64K bytes
2. Your program contains an intersegment short jump or

intersegment short call
3. You have a data item whose name conflicts with that of a

subroutine in a library included in the link, and
4 . You have an E XTRN declaration inside the body of a

segment, for example :

CODE

	

segment public 'code'
extrn

	

main :far
start

	

proc

	

far
call

	

main
ret

start

	

endp
CODE

	

ends

The following construction is preferred :

extrn

	

main :far
CODE

	

segment public 'code'
start

	

proc

	

far
call

	

main
ret

start

	

end p
CODE

	

ends

Revise the source and recreate the object file .

Incorrect DOS version, use DOS 2 .0 or later
LINK runs only on MS-DOS Version 2 .0 or higher. Restart
your system using the correct MS-DOS version and try link-
ing again .

Insufficient stack space
There is not enough memory to run the linker .

271

Error Messages

Microsoft Pascal Compiler User's Guide

Interrupt number exceeds 255
You have specified a number greater than 255 after the
/OVERLAYINTERRUPT switch . Try again with a number
in the range 4 to 255 .

Invalid numeric switch specification
You have probably made a typographical error when you
entered a value for one of the linker switches, such as entering
a character string for a switch that requires a numeric value .
LINK will abort .

Invalid object module
one of the object modules is invalid. Try recompiling. I f the
error persists, contact Microsoft Corporation .

Nested left parentheses
You have probably made a typing mistake while specifying
the contents of an overlay on the command line .

No object modules specified
You didn't give the linker an object file name .

Out of space on list file
The disk on which the list file is being written is full . Free
more space on the disk and try again .

Out of space on run file
The disk on which the .E XE file is being written is full . Free
more space on the disk and try again .

Out of space on scratch file
The disk in the default drive is full . Delete some files on that
disk, or replace with another disk, and restart the linker .

Overlay manager symbol already defined : name
You have defined a symbol name that conflicts with one of the
special overlay manager names . Change the symbol name
and relink .

272

Error Messages

Please replace original disk in drive A : and press
ENTER.

This message appears after the .EXE file has been written if
the / P switch is used . Insert the disk with the list file so that it
can be reopened .

Relocation table overflow
You have more than 16384 long calls, long jumps or other long
pointers in your program . First try turning debugging off,
then try rewriting the program, replacing long references
with short references where possible . Then recreate the object
module.

Segment limit set too high
Using the /SEGMENTS switch, you set the limit too high .
LINK will abort .

Segment limit too high
There is not enough memory for the linker to allocate tables to
describe the number of segments requested (either the value
specified with /SEGMENTS or the default: 128) . Either try
the link again using /SEGMENTS to select a smaller number
of segments (e.g . 64, if the default were used previously) or
free some memory .

Segment size exceeds 64K
You have a small model program with more than 64K bytes of
code.

Stack size exceeds 65536 bytes
The size specified for the stack with the /STACK switch is
more than 65536 bytes .

Symbol table overflow
Your program has more than 256K of symbolic information
(Publics, extrns, segments, groups, classes, files, etc) . Com-
bine modules and/or segments and recreate the object files .
Eliminate as many public symbols as possible .

273

Microsoft Pascal Compiler User's Guide

Terminated by user
You entered Ctrl-C while the linker was executing .

Too many external symbols in one module
Your object module specified more than the allowed number
of external symbols. Break up the module .

Too many group-, segment-, and class-names
in one module

Your program contains too many group, segment, and class
names. Reduce the number of groups, segments, or classes
and recreate the object files .

Too many groups
Your program defines more than nine groups . Reduce the
number of groups .

Too many GRPDEFs in one module
LINK encountered more than nine G RPD E Fs in a single
module. Reduce the number of GRPDEFs or split up the
module .

Too many libraries
You tried to link with more than 16 libraries . Combine libraries
or link modules that require fewer libraries .

Too many overlays
Your program defines more than 63 overlays . Reduce the
number of overlays .

Too many segments
Your program has too many segments . Relink using the
/SEGMENTS switch with an appropriate number of seg-
ments specified .

Too many segments in one module
Your object module has more than 255 segments . Split the
modules or combine segments .

2 74

Error Messages

Unexpected end-of-file on library
The disk containing the library has probably been removed .
Try again after inserting the disk that contains the library .

Unexpected end-of-file on scratch file
The disk containing VM.TMP was removed . Replace it and
restart the linker .

Unmatched left parenthesis
You have made a typing mistake while specifying the con-
tents of an overlay on the command line .

Unmatched right parenthesis
You have made a typing mistake while specifying the con-
tents of an overlay on the command line .

Unrecognized switch error : 'filename'
You entered an unrecognized character after the switch indica-
tor'/', such as :

A>LI N K /ABCDEF main ;

LINK will abort .

V M.TM P is an illegal file name and has been ignored
You have used VM .TMP as an object file name . Rename the
file and link again .

Warning: no stack segment
Your program contains no segment of combine-type stack .

Warning: too many local symbols
You have asked for a sorted listing of local symbols in the list
file, but there are too many symbols to sort . The linker will
produce an unsorted listing of the local symbols .

275

Microsoft Pascal Compiler User's Guide

Warning: too many public symbols
You have asked for a sorted listing of public symbols in the
list file, but there are too many symbols to sort . The linker
will produce an unsorted listing of the public symbols .

F.7 EXEPACK Error Messages

filen me : No such file or directory
The given file can't be found .

filename: Permission denied
You tried to use the EXEPACK utility on a read-only file .

can't change load-high program
When the minimum allocation value and the maximum alloca-
tion value are both zero, the file cannot be compressed .

error reading relocation table
The file cannot be compressed because the relocation table
cannot be found or is invalid .

invalid . EXE file (actual length < reported)
The second and third fields in the header indicated a file size
greater than the actual size .

invalid .EKE format (bad header)
The given file is not an executable file or has an invalid file
header.

out of memory
There is not enough memory for the EXEPACK utility to
operate.

too many segments in relocation table
The given file is too large to be compressed in the available
system memory.

276

usage: exepack infile [outfile]
You mistyped the command .

You may also encounter MS-DOS error messages if the EXEPACK
program cannot read, write to, or create a file .

F.8 EXEMOD Error Messages

filename: No such file or directory
The given file cannot be found .

filename: Permission denied
The given file is read-only .

can't change load-high program
When the minimum allocation value and the maximum allo-
cation value are both zero, the file cannot be modified .

file not .EXE:filenacme
EXEMOD automatically appends the .EXE extension to any
filename without an extension. In this case, no file with the
given name and an EXE extension could be found .

invalid EXE file (actual length < reported)
The second and third fields in the file header indicate a file
size greater than the actual size .

invalid .EXE file (bad header)
Your executable file is not in the correct format .

min > max (correcting max)
If the minimum allocation value is greater than the maximum
allocation value, the maximum allocation value is adjusted .
(Note: this is a warning message only; the modification is still
performed.)

277

Error Messages

Microsoft Pascal Compiler User's Guide

min > stack (correcting min)
If the minimum allocation value is not enough to accommo-
date the stack (either the original stack request or the modi-
fied request), the minimum allocation value is adjusted . (Note:
this is a warning message only; the modification is still per-
formed.)

usage: exemod file [-/h] [-/stack n] [-/max n] [-/min n]
You mistyped the command .

The EXEMOD utility also produces error messages when the file
header is not in recognizable " .EXE" format, or if errors occur in
reading or writing to a file .

278

Index

$debug, 14, 15, 51
$decmath, 37
$entry, 51, 125
$floatcalls+, 129
$floatcalls-, 37, 38, 129
$include, 80
$inconst, 80
$indexck, 51
$initck, 51, 96
$integer, 36, 38
$line, 51, 125
$line+, 86, 128
$line-, 128
$list, 80
$mathck, 51
$nilck, 51
$rangeck, 51
$real, 36, 38
$runtime, 126
$simple, 165
$size, 165
$speed, 165
$stackck, 51

/C PARMAXALLGC, 65
/DSALLOCATE, 65
/HIGH, 66
/LINENUMBERS, 65
/MAP, 61, 65
/NODEFAULTLIBRARY-

SEARCH, 59,65
/NOGROUPASSOCIATION, 65
/NOIGNORECASE, 65
/OVERLAYINTERRUPT, 63,

66
/PAUSE, 66, 81,82
/STACK, 66

8086 assembly language, 3, 89
8087 coprocessor, 10, 129
8087. LIB, 5, 37 9 58 1 131

ADS and ADR
with expressions, 139

ADSFUNC, 140
ADSPROC, 140
Accessmodes, 143
Address space, 72
Addresses

offset, 17, 93, 109
segmented, 93, 109

Allocation to long heap, 73
Alternate math package, 130
ALTMATH.LIB, 5, 37, 58,130
Arrays, 211
ASCII

collating sequence, 93
files, 95
value, 161

Assembler, 14
Assembly language
data placement, 98
interface, 55, 96
routines, 55, 89, 96

Back end, 103, 104,106
Backing up files, 9
Batch command file, 67
BEGOQQ, 121
BEGXQQ, 117, 120
BINCOD, 108
Blocks

allocated/free, 93
basic, 106

279

Index

Blocks continued
complex basic, 79
file control 95, 108
named common, 114

Bound variable, 17
BOOLEAN values, 93, 96
BRTEQQ, 126
Buffer variables, 109
Buffering of I/O data, 162
Byte boundary, 95

Calling conventions, 56, 89,
148, 182

Calls
line number, 127
long, 91
procedure/function, 90
short, 91

CESXQQ, 163
CHAR representation, 93
Command processor, 117
Common block, 114, 116
Compatibility with Version 3 .2,

149
Compile time, defined, 16

error messages, 227
Compiler

allocation of FCB, 112
as translator, 15
back end, 104, 106
back end errors, 256
flags, calls, 14
front end, 104, 105
optimization, 11
package, 4
passes. See Pass one, Pass

two, Pass three.
starting, 47-50
structure, 103
temporary variables, 99

Compiler invocation
with all parameters, 48
with some parameters, 49
without parameters, 47

Compiler pass one, 23
Compiler pass two, 25
Compiler pass three, 26
Compiling a program, 22

280

Compiling large programs, 71
CONTROL word, 174
COPY, 9

Data
internal representation, 92
size limits, 71
types, 92, 197

DATE, 144
Debugging, 104, 116, 127, 167,

169
Decimal math option, 131
DECMATH.LIB, 5, 37, 58,132
Default data segment, 71
Default drive, 22, 43, 147
Default file specifications, 44
Device drivers, 116
Device name, 44
DGROUP, 113,114
Disk
backup copies, 9
drives, 21
exchanging, 22, 43, 82
formatting, 10
limits, 71-73, 79
memory, 43, 79
set up, 10

DOS segment order, 152
DOS2PAS.LIB, 35, 58,133
DOSXQQ, 161-162
Dummy subroutines, 85
Dump programs, 104
Dynamic nesting, 165

ENDYQQ, 85, 119
ENDOQQ, 119
ENTGQQ, 117,119
EXEMOD
error messages, 277
utility, 154

EXEPACK
error messages, 276
utility, 153

E XTE Q Q, 128
Enumerated type

representation, 93

Error
checking, 86
codes, 125
compiler, 80
conditions, 111
handling, 86, 124
linker, 159
location, 125
machine context, 125
messages, 25, 221
runtime, 86, 124
source context, 125
syntax, 105
trapping, 111

Escape initializer, 121
Escape terminator, 123
EXE file, 15,61
Executable module, defined, 16
Expressions, complex, 78
Extensions, filename, 44
EXTERN keyword, 96
External reference, 17

False element, 109
Fields, accessing, 109
File control block, 95, 108
File locking, 146
File sharing, 141
File system, 108

errors, 260
File unit initializers, 120, 121
Filenames

construction of, 44
conventions, 43
default, 48
extensions, 44
general rules, 46
prompts, 23
special, 162
USER, 45, 162

Files
backup copies, 9
batch command, 67
compiler created, 16, 41
control block, 95, 108
function, 44
how initialized, 95
intermediate, 41, 42, 104

Index

Files continued
internal form of, 95
linker, 15
linker listing, 29, 61
linker read, 55
linker written, 60
MS-DOS binary, 95
naming . See Filenames .
NUL or null, 24, 45, 49, 61
source, 15
source listing, 41
variables, 72, 109

Floating-point, 128
Formatting, 10
FORTRAN, and MS-Pascal,

55, 109
Framepointer, 120
Front end of the compiler, 104,

105
Function return, 56, 98

Generic file system terminator,
123

Hardware configuration, 10
Heap, 71, 73, 93, 96, 109

Icode, 105, 106
Identifiers, 77,105, 165
Implementation

additions, 161
restrictions, 165
unimplemented features, 166

INIFQQ, 85
INIUQQ, 120
INI x87, 120
Initialization and termination,

117
Initialization

machine level, 120
module, 123
program level, 121
unit level, 122

Integer type
internal representation, 92
precision, 36

281

Index

INTEGER2, 92
INTEGER4, 92

errors, 267
INTEGERC, 147
Intel

80286 processor, 114
8087 coprocessor, 10, 129
8087 interrupts, 167

Interface
caution, 78
statements in, 121

Interfaces
writing, 191, 194, 195

Interfacing
to assembly language, 96
to MS-FORTRAN, 55

Intermediate code, 105, 106
Internal representations
BOOLEAN, 93
CHAR, 93
enumerated types, 93
functional parameters, 94
INTEGER, 92
pointers, 93
REAL, 92
WORD, 92

Interpreter, 11
Interrupt vectors, 115, 167
Interrupts

emulator, 129
i8087, 10, 167

Keypress condition check, 162

Libraries, auxiliary
808 7 . LI B, 5, 37, 58,131
ALTMATH.LIB, 5, 37, 58,

130
DECMATH.LIB, 5, 37, 58,

132
DOS2PAS.LIB, 35, 58, 133

Libraries, standard runtime
MATH.LIB, 3, 51 58
PASCAL.LIB, 3, 5, 58
renaming, 58
search, 36, 58

282

Limits
on code size, 71
compile time memory, 77
complex expressions, 78
on data size, 71
on disk memory, 79
identifiers, 77
microprocessors, 11
physical, 71

Line marker, 95
LINK.E KE, default linker, 5,

35,55t 59
LINK. V2, overlay linker, 5, 35,

62
Linktime, defined, 16
Linker

changes, 150
defaults, 57
error messages, 36, 269
listing file (map), 61
prompts, 56, 59
public names, 111
switches, 64

Linking
defined, 12
general discussion, 55
instructions, 21
large programs, 71, 82, 83
map, 61, 150
object files . See Files .
overlays, 62, 63
prompts, 56
sample session, 27
using pathnames, 60
without library search, 59
with runtime library, 57, 118

List headers, 123
Load module, 84
Locking, 146
Long calls, 91
Long heap allocation, 73
Lookahead symbol, 105

Machine error context, 224
Mantissa, 92
Map linker, 61, 82
MATH.LIB, 3, 5, 58

MAXWORD, 95
Memory

accessed, 117
allocation, 114
blocks, 73
errors, 262
limits, 77, 79
linking, 71
models, 155, 182
organization, 113
running out, 78

Messages
error and warning, 25, 221
linker, 269

Microsoft Macro Assembler, 13,
89

Minimizing load module size, 84
Mixed-Language programming,

179
errors, 220

Module
defined, 16
initialization, 123
load, 84
object, 29, 55, 84
relocatable, 16
runtime, 58

MS-DOS
execution, 30
exit status, 134
file handle, 133
files, 9, 10, 95
function codes, 162
pathnames, 60
procedures, 9

Naming Conventions, 189
NAN, 92
Nesting, 165
NUL or null file, 24, 45, 49, 61
NULL object module, 86
NULL string, 163
Numeric constant length, 165

Index

Object
code lister, 27
file, 14, 15, 16, 23, 26, 28,

41 9 55, 108
listing file, 45
modules, 29, 55, 84

Offset addresses, 17, 93, 109
Operating System Runtime

Errors, 259
Optimization, 11, 106
Ordinal Arithmetic Errors, 263
ORIGIN, 145
Overhead, 127
Overlay linker . See LINK.V2 .
Overlays, linking, 62, 63

Package contents,
software, 4-6

PACKED type, 95
Parameters

available program, 163
batch file, 67
command line, 81
dummy, 67
interrupt, changing, 168
procedural/functional, 94, 96,
217

program, how set, 121
pushed, 96
reference, VAR or CONST, 96
starting compiler with, 48

PASCAL.LIB, 5,58
PASCOM, 104
Pass one, 23, 42, 79, 83, 104
Pass two, 25, 42, 81, 83, 104,

106
Pass three, 26, 42, 104, 108
Pathnames, system, 35, 60
Pointer, 93, 94, 209
PORT, 145
PPMFQQ, 121
PPMUQQ, 122
Preliminary procedures, 9

283

Index

Program
compiling, 22
context, 125
counter, 125
development, 11, 21
examples, 21, 83
execution, 30, 38
initialization, 121
large, 71, 82
linked with runtime library,

118
linking, 12, 27
parameters, 121, 163
process outlined, 13-15
source, 68
termination, 111, 123

Prompts, 4 7
Public linker names, 111

QQ naming convention, 111

Random access memory, 43
Real type

arithmetic errors, 265
internal representation, 92
precision, 36, 164

Real numbers
conversion utilities, 164
format, 92

REAL, 92
Records, 214
Recursive descent, 105
Reference types, 93
Relocatable module, 16
Relocatable object file, defined,

17
RESEQQ, 126
Return value, size, 98
Renaming, 58
Routine

defined, 16
errors in, 124
runtime, 17, 55, 112, 124
Unit U, 110

Run file, 61

284

Runtime
architecture, 112
defined, 17
entry helper, 126
error handling, 86, 124
errors, 86, 124, 257
exit helper, 126
routines, 17, 55, 112, 124
structure, 119
termination, 123

Runtime libraries, 14, 17, 21, 28,
30, 57

Scanner, 105
Search, library, 56-60
Segment, 113, 115, 116
Segment register, 114
Segmented addresses, 93
Sets, 94
Sharemodes, 142
Software, 4-6
Source file. See Files .
Source listing. See Files .
Source program, 15
Source program context, 224
Stack, 71, 73, 96, 97
Stackpointer, 120
Static data initialization, 121
Static nesting, 165
STATUS word, 176, 177
Strength reduction, 107
Strings

passing, 205, 208, 209
Structs, 214
Structure of the compiler, 108
Structured Type Errors, 267
Subexpression, elimination, 107
Subroutines
dummy, 85
FORTRAN, 14

Super arrays, 3, 94
Switches

error checking, 52, 86
linker, 64
map, 61
pass one compiler, 50

Syntax ar_ alysis, 105
Symbol table, 104

Templates, 107
Termination, 117,123
TICS, 164
TIME, 164
Transient program area, 116
TRAP, 111
Trees, 105, 106,107
TRMVQQ, 109
True element, 109
Truncating real numbers, 165

Undefined variable, 17
Unimplemented features, 166
Unit F, 110, 111
Unit identifiers, 112
Unit initialization, 122
Unit U, 85, 108, 110, 111
Unit V, 110, 111
Unresolved variable, 17
User unit initialization, 122

Variables
bound, 17
buffer, 109
file, 72,109
heap, 72
heap control, 120
initialization, 95
public, 120
temporary, 99
undefined, 17
unresolved, 17

VARYING, 148
Vectors

emulator interrupt, 120
interrupt, 115

Version number, 122
Vocabulary, 15

Warning messages, 25
WORD, 92
Word boundary, 95

Index

285

Microsoft® LIB
Library Manager

Reference Manual

Microsoft Corporation

Information in this document is subject to change without notice and
does not represent a commitment on the part of Microsoft Corporation .
The software described in this document is furnished under a license
agreement or nondisclosure agreement. The software may be used or
copied only in accordance with the terms of the agreement . It is
against the law to copy this software on magnetic tape, disk, or any
other medium for any purpose other than the purchaser's personal
use .

Copyright Microsoft Corporation, 1984, 1985

If you have comments about the software or this manual, complete the
Software Problem Report at the back of this manual and return it to
Microsoft Corporation .

Microsoft, the Microsoft logo, MS, and XENIX are registered trademarks of
Microsoft Corporation
MS-DOS is a trademark of Microsoft Corporation

INTEL is a registered trademark of Intel Corporation

Document Number 8440-300-00

Contents

3.10 LIB Error Messages

	

26

Index 29

1

2

Introduction

Manual

LIB

1

Libraries
Operation

3
5

6

1 .1 About
1 .2 Managing
1 .3 Overview

This

of

Running LIB 9

2.1 Library Name
2.2 Operations Prompt
2.3 List File Prompt
2.4 Output Library
2.5 Using the Command
2.6 Using a Response
2.7 Extending Lines
2.8 Terminating
2.9 Selecting Default

the

Prompt

Prompt

File

Library

12
14

Line

17
Session

11

15

16
15

18

Responses to Prompts 18

3 Library Tasks

	

19

3 .1 Creating a Library File

	

21
3.2 Modifying a Library File

	

21
3.3 Adding Library Modules

	

22
3.4 Deleting Library Modules

	

23
3.5 Extracting Library Modules

	

23
3.6 Combining Libraries 24
3 .7 Creating a Cross-Reference Listing 24
3 .8 Performing Consistency Checks 25
3 .9 Setting the Library Page Size 25

(

Chapter 1
Introduction

1

1 .1 About This Manual 3

1 .2 Managing Libraries 5

1 .3 Overview of LIB Operation

	

6

C

1 .1 About This Manual

This manual describes the Microsoft® LIB Library Manager .
This utility enables you to create and maintain your own
libraries of useful functions . You can use these libraries to
customize the runtime support available to your programs .

Notational Conventions

The following notational conventions are used throughout this
manual :

italics

	

Italics mark the places in command
line and option specifications and in
the text where specific terms appear
in an actual command . For
example, in

I W number

/ D identifier[= [string]]

Introduction

number is italicized to indicate that
this is a general form for the /W
option. In an actual command, the
user supplies a particular number
for the placeholder number.

Italics are also used when referring
to specific identifiers supplied for
functions, variables, types, and
labels .
Occasionally, italics are used to
emphasize particular words in the
text.

brackets []

	

Brackets enclose optional fields in
command line and option specifica-
tions. For example, in

the brackets around the phrase "-
[string]" indicate that you are not

3

Microsoft LIB Reference Manual

4

"Quotation marks"

required to supply this phrase when
you use the /D option. Furthermore,
within this phrase, string is enclosed
in brackets. Thus, when you give an
equal sign (=), the string is
optional . Notice, however, that you
may not give a string without first
giving the equal sign .

ellipses . . .

	

Ellipses following an item indicate
that more items having the same
form may appear. For example, in

L I B library [I pagesize] operations . .

the ellipses indicate that one or
more operations are allowed .

CAPITALS

	

Capital letters are used for the
names of files, directories, environ-
ment variables, and manifest con-
stants and macros . Commands
typed at the MS TM-DOS level are
also capitalized .

SMALL CAPITALS

	

Small capital letters are used for the
names of keys and key sequences,
such as RETURN and CONTROL-C .

Quotation marks set off terms
defined in the text. For example,
the term "module" appears in quota-
tion marks the first time it is
defined .
Quotation marks are also used to set
off program fragments and to refer
to command line prompts .

programming

	

Programming examples are displayed
e x a m P 1 e 5

	

without proportional spacing so that
they look like the programs you create
with a text editor .

1 .2 Managing Libraries

The Microsoft LIB Library Manager is a utility designed to
help you create, organize, and maintain runtime libraries .
Runtime libraries are collections of compiled or assembled
functions that provide a common set of useful routines . Any
program can call a runtime routine, exactly as if the function
were included in the program . The program is linked with the
runtime library file and the call to the runtime routine is
resolved by finding the routine in the library file .

Runtime libraries are created by combining separately com-
piled object files into one library file. Library files are usually
identified by their " .LIB" extension, although other extensions
are allowed .

In addition to accepting MS-DOS rM object files and library files,
Microsoft LIB accepts 286 XENIX TM archives and INTELe-style
libraries. You can add the contents of a 286 XENIX archive or
an INTEL-style library to an MS-DOS library by using the
append operator (+) .

Once an object file is incorporated into a library, it becomes an
object "module." LIB makes a distinction between object files
and object modules : an object "file" exists as an independent
file while an object "module" is part of a larger library file . An
object file can have a full pathname, including a drive designa-
tion, directory pathname, and filename extension (usually
".OBJ") . Object modules have just a name . For example,
"B: \RUNISORT.OBJ" is an object filename, while "SORT" is
the corresponding object module name .

Using LIB, you can create a new library file, add object files to
an existing library, delete library modules, replace library
modules, and create object files from library modules . LIB also
lets you combine the contents of two libraries into one library
file .

Introduction

5

Microsoft LIB Reference Manual

The command syntax is straightforward, and LIB prompts you
for responses . Once you have learned how LIB works and what
its prompts mean, you can use one of the alternate methods of
invoking LIB, described in Sections 2.5, "Using the Command
Line," and 2 .6, "Using a Response File ." These alternatives let
you give LIB commands without waiting for the LIB prompts .

1 .3 Overview of LIB Operation

You can perform a number of library management functions
with Microsoft LIB . LIB can

•

	

Create a library file
•

	

Delete modules
•

	

Extract a module and place it in a separate object file
•

	

Extract a module and delete it
•

	

Append an object file as a module of a library, or
append the contents of a library

•

	

Replace a module in the library file with a new module
•

	

Produce a listing of all public symbols in the library
modules

For each library session, LIB first reads and interprets the
user's commands. It determines whether a new library is being
created or an existing library is being examined or modified .

Deletion and extraction commands (if any) are the first com-
mands processed . LIB does not actually delete modules from
the existing file . Instead, it marks the selected modules for
deletion, creates a new library file, and copies only the modules
not marked for deletion into the new library file .

Next, LIB processes any addition commands . Like deletions,
additions are not performed on the original library file .
Instead, the additional modules are appended to the new
library file . (If there were no deletion or extraction commands,
a new library file is created in the addition stage by copying
the original library file .)

6

As LIB carries out these commands, it reads the object modules
in the library, checks them for validity, and gathers the infor-
mation necessary to build a library index and a listing file . The
library index is used by the linker to search the library .

The listing file contains a list of all public symbols in the index
and the names of the modules in which they are defined . LIB
produces the listing file only if you ask for it during the library
session .

LIB never makes changes to the original library ; it copies the
library and makes changes to the copy. Thus, when you ter-
minate LIB for any reason, you do not lose your original file .
It also means that when you run LIB, enough space must be
available on your disk for both the original library file and the
copy .

When you modify a library file, LIB gives you the option of
specifying a different name for the file containing the modifica-
tions. If you use this option, the modified library is stored
under the name you give, and the original, unmodified version
is preserved under its own name . If you choose not to give a
new name, LIB gives the modified file the original library
name, but keeps a backup copy of the original library file .
This copy has the extension " .BAIL" instead of ".LIB" .

Example

LIB LANG HEAP+HEAP ;

This command first deletes the library module HEAP from the
library file LANGLIB, then adds the file HEAP.GBJ as the
last module in the library . The same command could be given
as

LIB LANG+HEAP HEAP ;

The effect is the same because delete operations are always
carried out before append operations, regardless of the order of
the operations in the command line . This order of execution
prevents confusion in LIB when a new version of a module
replaces an old version in the library file .

Introduction

Microsoft LIB Reference Manual

After the library is modified, the modified file is written back
to LANG.LIB. A copy of the original LANG .LIB is stored in
LANG.BAK .

8

Chapter 2
Running LIB

9

2 .1 Library Name Prompt 11
2 .2 Operations Prompt

	

12
2.3 List File Prompt

	

14
2.4 Output Library Prompt 15
2.5 Using the Command Line 15
2 .6 Using a Response File 16
2 .7 Extending Lines

	

17
2.8 Terminating the Library Session 18
2 .9 Selecting Default

Responses to Prompts

	

18

(

LIB requires two types of input : a command to start LIB and
responses to command prompts . Start LIB at the MS-DOS com-
mand level by typing

LIH

LIB prompts you for the input it needs by displaying the fol-
lowing four messages, one at a time . LIB waits for you to
respond to each prompt, then prints the next prompt .

Library name :
Operati0n5 :
List file :
Output library :

Running LIB

The responses you can make to each prompt are described in
Sections 2 .1 through 2 .4 .

Once you understand the LIB prompts and operations, you may
want to use one of the two alternate methods of running LIB .
The command line method lets you type all commands, options,
and filenames on the line used to start LIB . With the response
file method, you create a file that contains all the necessar -
commands, then tell LIB where to find that file .

Both of the alternate methods require that you understand
how LIB works and what your responses to its prompts mean .
For this reason it is recommended that you allow LIB to
prompt you for responses until you are comfortable with its
commands and operations .

2.1 Library Name Prompt

At the "Library name" prompt, give the name of the library
file you want . Usually library files are named with the ".LIB"
extension . You can omit the " .LIB" extension when you give
the library filename since LIB assumes that the filename
extension is " .LIB" .

11

Microsoft LIB Reference Manual

If your library file does not have the " .LIB" extension, be sure
to include the extension when you give the library filename .
Otherwise, LIB cannot find the file .

Pathnames are allowed with the library filename, so you can
give LIB the pathname of a library file in another directory or
on another disk .

Because LIB manages only one library file at a time, only one
filename is allowed in response to this prompt. There is no
default response, so LIB produces an error message if you do
not give a filename .

If you give the name of a library file that does not exist, LIB
displays the prompt

Library f le does not exist .

	

Create?

Type "y" (yes) to create the library file . If you answer "n" no),,
LIB returns control to the MS-DOS level .

If you type a library filename and follow it immediately with a
semicolon (. ;), LIB performs only a consistency check on the
given library . A consistency check tells you whether all the
modules in the library are in usable form. LIB prints a mes-
sage only if it finds an invalid object module ; no message
appears if all modules are intact .

You can also set the library page size following this prompt .
See Section 3 .9, "Setting the Library Page Size," for details .

2.2 Operations Prompt

Following the "Operations" prompt, you can type one of the
command symbols for manipulating modules (+ , - , - + , -,
- *) followed immediately (no space) by the module name or
the object filename . You can specify more than one operation
following this prompt, in any order . The default for the
"Operations" prompt is no changes .

12

When you have a large number of modules or files to manipu-
late (more than can be typed on one line), type an ampersand
(&) as the last symbol on the line, immediately before the car-
riage return . The ampersand must follow a filename ; you can-
not give an operator as the last character on a line to be con-
tinued. The ampersand causes LIB to repeat the "Operations"
prompt, allowing you to specify more operations and names .

The following list describes the command symbols and their
meanings and uses :

Command
Symbol

	

Meaning and Use

+

	

The plus sign appends an object file as the
last module in the library file. Give the
name of the object file immediately after
the plus sign. You can use pathnames for
the object file. LIB automatically supplies
the ".OBJ" extension, so you can omit the
extension from the object filename .
You can also use the plus sign to combine
two libraries . When you give a library
name after the plus sign, a copy of the con-
tents of the given library is added to the
library file being modified . You must
include the " .LIB" extension when you give
a library filename. Otherwise, LIB uses the
default ".OBJ" extension when it looks for
the file .

The minus sign deletes a module from the
library file . Give the name of the module to
be deleted immediately after the minus
sign. A module name has no pathname and
no extension .

+

	

Type a minus sign followed by a plus sign
to replace a module in the library. Give the
name of the module to be replaced after the
replacement symbol . Module names have
no pathnames and no extensions .
To replace a module, LIB first deletes the
given module, then appends the object file

Running LIB

13

Microsoft LIB Reference Manual

14

2.3 List File Prompt

After the "List file" prompt, you can give a filename for a
cross-reference listing file . You can specify a full pathname for
the listing file to cause it to be created outside your current
working directory . You can give the listing file any name and
any extension . LIB does not supply a default extension if you
omit the extension .

A cross-reference listing file contains two lists . The first is an
alphabetical listing of all external (public) symbols in the
library. Each symbol name is followed by the name of the
module in which it is referenced .

The second list is a list of the modules in the library. Under
each module name is an alphabetical listing of the public

having the same name as the module . The
object file is assumed to have an ".OBJ"
extension and to reside in the current work-
ing directory .

Type an asterisk followed by a module
name to copy a module from the library file
into an object file of the same name . The
module remains in the library file . When
LIB copies the module to an object file, it
adds the " .OBJ" extension and the drive
designation and pathname of the current
working directory to the module name to
form a complete object filename . You can-
not override the ".OBJ" extension, drive
designation, or pathname given to the object
file, but you can later rename the file or
copy it to whatever location you like .

Use the minus sign followed by an asterisk
to move an object module from the library
file to an object file . This operation is
equivalent to copying the module to an
object file, as described above, then deleting
the module from the library .

symbols referenced in that module . The default when you omit
the response to this prompt is the special filename NUL.,
which tells LIB not to create a listing file .

2.4 Output Library Prompt

After the "Output library" prompt, you can give the name of a
new library file to create with the specified modifications . The
default is the current library filename ; the original, unmodified
library is saved in a library file with the same name but with a" BAK" extension replacing the " .LIB" extension. This prompt
appears only if you specify modifications to the library follow-
ing the "Operations" prompt .

2.5 Using the Command Line

The command line method of starting LIB has the form

Running LIB

LIB library [I pagesize] [;] operations . . . [, listing, newlibrary]

The entries following LIB are responses to the LIB command
prompts .

The library entry, with the optional (pagesize specification,
corresponds to the "Library name" prompt . If you want LIB to
perform a consistency check on the library, follow the library
entry with a semicolon (;) .

The operations entries are any of the operations allowed follow-
ing the "Operations" prompt. The listing entry, if you include
it, tells LIB to create a listing file with the given name . The
newl i brary entry, if it appears, is the name of the revised
library .

If you want to create a cross-reference listing, the name of the
listing file must be separated from the last operations entry by
a comma. If you give a filename in the new library field, the
library name must be separated from the listing filename or
the last operations entry by a comma .

15

Microsoft LIB Reference Manual

You can use a semicolon after any entry but the first to tell
LIB to use the default responses for the remaining entries .
The semicolon should be the last character on the command
line .

Examples

1 .

	

LIB LANG+HEAP ;

2 .

	

LIB C ;

3 .

	

LIB LANG,LCROSS .PUB

The first command instructs LIB to replace the HEAP module
in the library LANG-LIB . LIB first deletes the HEAP module
in the library, then appends the object file HEAP .OBJ as a
new module in the library . The semicolon command symbol at
the end of the command line tells LIB to use the default
responses for the remaining prompts . This means that no list-
ing file is created and that the changes are written back to the
original library file instead of creating a new library file .

The second command causes LIB to perform a consistency
check of the library file C .LIB . No other action is performed .
If LIB displays any consistency errors it finds and returns to
the operating system level . The third command tells LIB to
perform a consistency check of the library file LANG .LIB, then
output a cross-reference listing file named LCROSS .PUB .

2.6 Using a Response File

The command to start LIB with a response file has the form

L I B @response-file

The response-file field is the name of a response file . The
response-file name may be qualified with a drive and directory
specification to name a response file from a directory other
than the current working directory .

16

Before you use this method you must set up a response file con-
taining answers to the LIB prompts . This method lets you con-
duct the library session without typing responses at the key-
board .

A response file has one text line for each prompt . Responses
must appear in the same order as the command prompts
appear. Use command symbols in the response file the same
way you would for responses typed on the keyboard .

When you run LIB with a response file, the prompts are
displayed along with the responses from the response file . If
the response file does not contain answers for all the prompts,
LIB uses the default responses .

Example

SLIBC
+CURSOR+HEAP HEAP*FOIBLES
CROSSLST

Running LIB

This response file causes LIB to delete the module HEAP from
the SLIBO . LIB library file ; extract the module FOIBLES and
place it in an object file named FOIBLES .OBJ; and then
append the object files CURSOR.OBJ and HEAP.OBJ as the
last two modules in the library . Finally, LIB creates a cross-
reference file named OROSSLST .

2.7 Extending Lines

If you have many operations to perform during a library ses-
sion, use the ampersand (&) command symbol to extend the
operations line. Give the ampersand symbol after an object
module or object filename ; do not put the ampersand between
an operations symbol and a name .

If you use the ampersand with the prompt method of invoking
LIB, the ampersand will cause the "Operations" prompt to be
repeated, allowing you to type in more operations . With the
response file method, you can use the ampersand at the end of
a line and then continue typing operations on the next line .

17

Microsoft LIB Reference Manual

2.8 Terminating the Library Session

At any time, you can use CONTROL-C to terminate a library ses-
sion. If you type an incorrect response, such as a wrong or
incorrectly spelled filename or module name, you must enter
CONTROL-C to exit LIB . You can then restart the program .

2.9 Selecting Default
Responses to Prompts

After any entry but the first, use a single semicolon (;) followed
immediately by a carriage return to select default responses to
the remaining prompts. You can use the semicolon command
symbol with the command line and response file methods of
invoking LIB, but it is not really necessary, since LIB supplies
the default responses wherever you omit responses .

The default response for the "Operations" prompt is no opera
tion. The library file is unchanged .

The default response for the "List file" prompt is the special
filename NUL ., which tells LIB not to create a listing file .

The default response for the "Output library" file is the current
library name. This prompt appears only if you specify at least
one operation following the "operations" prompt .

18

Chapter 3
Library Tasks

3 .1
3 .2
3 .3
3 .4
3 .5
3 .6
3 .7
3 .8
3 .9
3 .10

Creating a Library File

	

21
Modifying a Library File

	

21
Adding Library Modules

	

22
Deleting Library Modules

	

23
Extracting Library Modules

	

23
Combining Libraries

	

24
Creating a Cross-Reference Listing

	

24
Performing Consistency Checks

	

25
Setting the Library Page Size

	

25
LIB Error Messages

	

26

19

(

(

Library file does not exist .

	

Create?

Library Tasks

This section summarizes the library management tasks you
can perform with LIB .

3.1 Creating a Library File

To create a new library file, simply give the name of the
library file you want to create following the "Library name"
prompt. LIB supplies the " .LIB" extension .

The name of the new library must not be the name of an exist-
ing file, or else LIB will assume you want to modify the exist-
ing file. When you give the name of a library file that does not
currently exist, LIB displays the following prompt .

Type "yes" to create the file, "no" to terminate the library ses-
sion .

You can specify a page size for the library when you create it .
The default page size is 16 bytes. See Section 3 .9, "Setting the
Library Page Size," for a discussion of this option .

Once you have given the name of the new library file, you can
insert object modules into the library by using the add opera-
tion (+) following the "Operations" prompt . You can also add
the contents of another library if you wish . These options are
discussed in Sections 3 .3, "Adding Library Modules," and 3 .6,
"Combining Libraries ."

3.2 Modifying a Library File

You can modify an existing library file by giving the name of
the library file following the "Library name" prompt . All
operations you specify following the "Operations" prompt are
performed on that library .

21

Microsoft LIB Reference Manual

However, LIB lets you keep both the unmodified library file
and the newly modified version, if you like . You can do this by
giving the name of a new library file following the "Output
library" prompt. The modified library file is stored under the
new library filename, while the original library file is
preserved unchanged .

If you don't give a filename following the "Output library"
prompt, the modified version of the library file replaces the ori-
ginal library file . Even in this case, LIB saves the original,
unmodified library file . The unmodified library file has the
extension " .BAK" instead of ".LIB" . Thus, at the end of the
session you have two library files : the modified version with
the ".LIB" extension and the original, unmodified version with
the " .BAK" extension .

3.3 Adding Library Modules

Use the plus sign (+) following the "Operations" prompt to add
an object module to a library . Give the name of the object file
to be added, without the " .OBJ" extension, immediately after
the plus sign .

LIB strips the drive designation and the extension from the
object file specification, leaving only the basename . This
becomes the name of the object module in the library . For
example, if the object file B : \ CURSOR.OBJ is added to a
library file, the name of the corresponding object module is
"CURSOR" .

Object modules are always added to the end of a library file .

22

3.4 Deleting Library Modules

Use the minus sign (-) following the "Operations" prompt to
delete an object module from a library . Give the name of the
module to be deleted immediately after the minus sign . A
module name has no pathname and no extension ; it is simply a
name, like "CURSOR"' .

Replacing Library Modules

Use a minus sign followed by a plus sign (- +) to replace a
module in the library. Give the name of the module to be
replaced after the replacement symbol (- +). Remember that
module names have no pathnames and no extensions .

To replace a module, LIB first deletes the given module, then
appends the object file having the same name as the module .
The object file is assumed to have an " .OBJ" extension and to
reside in the current working directory .

3.5 Extracting Library Modules

Use an asterisk (*) followed by a module name to copy a
module from the library file into an object file of the same
name. The module remains in the library file . When LIB
copies the module to an object file, it adds the " .OBJ" extension
and the drive designation and pathname of the current work-
ing directory to the module name to form a complete object
filename. You cannot override the " .OBJ" extension, drive
designation, or pathname given to the object file, but you can
later rename the file or copy it to whatever location you like .

Use the minus sign followed by an asterisk (- *) to move an
object module from the library file to an object file . This opera-
tion is equivalent to copying the module to an object file, as
described above, then deleting the module from the library .

Library Tasks

23

Microsoft LIB Reference Manual

3.6 Combining Libraries

You can add the contents of one library to another by using the
plus sign (+) with a library filename instead of an object
filename. Following the "Operations" prompt, give the plus
sign (+) followed by the name of the library whose contents
you wish to add to the library being modified . When you use
this option you must include the " .LIB" extension of the library
filename. Otherwise, LIB assumes that the file is an object file
and looks for the file with an " .OBJ" extension .

In addition to allowing MS-DOS libraries as input, LIB also
accepts 286 XENIX archives and Intel-format libraries . Thus,
you can use LIB to convert libraries from either of these for-
mats to the Microsoft format .

LIB adds the modules of the library to the end of the library
being modified . Notice that the added library still exists as an
independent library . LIB copies the modules without deleting
them.

Once you have added the contents of a library or libraries, you
can save the new, combined library under a new name by giv-
ing a new name following the "Output library" prompt . If you
omit the "Output library" response, LIB saves the combined
library under the name of the original library being modified .

3.7 Creating a Cross-Reference Listing

Create a cross-reference listing by giving a name for the listing
file following the "List file" prompt. If you omit the response
to this prompt, LIB uses the special filename NUL ., which
means that no listing file is created .

You can give the listing file any name and any extension . You
can specify a full pathname, including drive designation, for
the listing file to cause it to be created outside your current
working directory. LIB does not supply a default extension if
you omit the extension .

24

Library Tasks

A cross-reference listing file contains two lists. The first is an
alphabetical listing of all public symbols in the library . Each
symbol name is followed by the name of the module in which it
is referenced .

The second list is an alphabetical list of the modules in the
library . Under each module name is an alphabetical listing of
the public symbols referenced in that module .

3.8 Performing Consistency Checks

When you give just a library name followed by a semicolon fol-
lowing the "Library name" prompt, LIB performs a consistency
check, displaying messages about any errors it finds . No
changes are made to the library . This option is not usually
necessary, since LIB automatically checks object files for con-
sistency before adding them to the library .

To produce a cross-reference listing along with a consistency
check, use the command line method of invoking LIB . Give
the library name followed by a semicolon, then give the name
of the listing file . LIB performs the consistency check and then
creates the cross-reference listing .

3.9 Setting the Library Page Size

The page size of a library affects the alignment of modules
stored in the library . Modules in the library are aligned so
that they always start at a position that is a multiple of n
bytes from the beginning of the file . The value of n is the page
size . The default page size is 16 for a new library or the
current page size for an existing library .

Because of the indexing technique used by LIB, a library with
a large page size can hold more modules than a library with a
smaller page size. However, for each module in the library, an
average of nl2 bytes of storage space is wasted (where n is the
page size). In most cases, a small page size is advantageous,
and you are advised to use the smallest page size possible .

25

Microsoft LIB Reference Manual

To set the library page size, add a page size option after the
library filename following the "Library name" prompt :

library /pages i z e : n

The value of n is the new page size . It must be a power of 2
and must fall between 16 and 32,768 .

3.10 LIB Error Messages

The following are Microsoft LIB error messages :

symbol is a multiply defined PUBLIC . Proceed?
Cause: Two modules define the same public symbol . You
are asked to confirm the removal of the definition of the
old symbol .
Cure: Remove the PUBLIC declaration from one of the
object modules and recompile or reassemble . If you respond
No, the library will be left i n an indeterminate state .

Allocate error on VM.TMP

Out of disk space

Cannot create extract file
No room in directory for extract file

Cannot create list file
No room in directory for library file

Cannot nest response file
(it filespec in response (or indirect) file

Microsoft LIB cannot open VM.TMP
There is no room for VM.TMP in disk directory

26

l

Cannot write library file
Out of disk space

Close error on extract file
Out of disk space

Error: An internal error has occurred
Contact Microsoft Corporation

Fatal Error: Cannot open input file
You mistyped an object filename

Fatal Error: Module is not in the library
You tried to delete a module that is not in the library

Input file read error
Bad object module or faulty disk

Invalid object module/library
Bad object module and/or library

Library Disk is full
No more room on disk

Listing file write error
Out of disk space

No library file specified
No response to Library File : prompt

Read error on VM.TMP
Disk not ready for read

Symbol table capacity exceeded
Too many public symbols (about 30K chars in symbols)

Library Tasks

27

Microsoft LIB Reference Manual

Too many object modules
More than 500 object modules

Too many public symbols
1024 public symbols maximum

Write error on library/extract file
Out of disk space

Write error on VM.TMP
Out of disk space

28

Index

& (ampersand), 13, 17
.BAK, 7
.LIB, 5, 11
.OBJ, 5
(semicolon), 12, 16, 18

Aborting, 18
Adding library modules, 22
Ampersand (&), 13, 17

Brackets, use of, 3

Capital letters, small, 4
Capitals, use of, 4
Combining libraries, 24
Command characters . See

Command symbols
Command line, 15
Command prompts

library file, 11
default, 12

list file, 14, 15, 25
new library, 15
pagesize option, 12

Command symbols, 12
asterisk (*), 12, 14, 23
example, 17

minus (-), 12, 13, 23
minus-asterisk (- *), 12, 14,

23
minus-plus (- +), 12, 13, 23
plus (+), 12, 13, 21, 22, 24

example, 7, 16, 17
Commands, notational

conventions, 4
Consistency check, 12, 15, 25

Continuing lines, 13, 16, 17

Conventions, notational, 3
Creating a cross-reference

listing, 24
Creating a library file, 21

Defaults
to prompts, 18

Deleting library modules, 23
Directory names, notational

conventions, 4

Ellipses, use of, 4
Environment variable names,

notational conventions, 4
Error messages, 26
Exiting, 18
Extending lines, 13, 16, 17
Extensions

.BAK, 7

.LIB, 5, 11

.DBJ, 5
Extracting library modules, 23

Filenames, notational
conventions, 4

Functions, 6

Identifiers, notational
conventions, 3

Italics, use of, 3

Key sequences, notational
conventions, 4

29

Index

Library file
combining, 24
command prompt, 11
creating, 21
modifying, 21

Library manager, 5
error messages, 26

Library modules
adding, 22
deleting, 23
extracting, 23
replacing, 23

Library name
command prompt

default, 12
Library page size

setting, 25
List file
command prompt, 14, 15, 25
contents, 7

Listings
cross-reference

creating, 24

Macros, notational conventions,
4

Manifest constants, notational
conventions, 4

Modifying library file, 21

Notational conventions, 3
NUL., 15

Object file, 5
Object module, 5
Operations prompt, 12

default, 12
Optional fields, notational

conventions, 3
Order of operations, 6
Output library
command prompt, 15

Overview, 3
Overview of LIB Operation, 6

30

Pagesize option, 12
setting, 25

Pathnames, 12
Pathnames, notational

conventions, 4
Product names, notational

conventions, 4
Program fragments, notational

conventions, 4
Programming examples,

notational conventions, 4
Prompts, 11
Prompts, notational

conventions, 4
Prompts

defaults, 18

Quotation marks, use of, 4

Replacing library modules, 23
Response file, 16
Runtime libraries, 5

Semicolon (;), 12, 16, 18
Setting library page size, 25
Small capitals, use of 4
Starting LIB

methods, 11
responding to prompts, 11
response file, 11, 16
using command line, 11, 15

Stopping, 18
Syntax conventions .
See Notational conventions

Terminating, 18

Uppercase letters, use of, 4
Utilities

library manager, 5

- command symbol, 12, 13
- + command symbol, 12, 13,

23
- * command symbol, 12, 14, 23
command symbol, 12, 14, 23
example, 17

Index

31

(

MICROSOFT
10700 Northup Way, Bellevue, WA 98004

Name	

Street	

City	 State	Zip

Phone	 Date	

Instructions

Use this form to report software bugs, documentation errors, or suggested
enhancements . Mail the form to Microsoft .

Category

Microsoft Product	

Rev.	 Registration #	

Operating System

Rev.	 Supplier	

Other Software Used	

Rev.	 Supplier	

Hardware Description

Manufacturer _	CPU	 Memory	KB

Disk Size	" Density:

	

Sides :

Single .		Single	

Double	 Double	

Peripherals

Software
Problem Report

	Software Problem		Documentation Problem

	Software Enhancement

	

(Document #	

	Other

Software Description

Problem Description

Describe the problem . (Also describe how to reproduce it, and your
diagnosis and suggested correction .) Attach a listing if available .

Microsoft Use Only

Tech Support		Date Received	

Routing Code	

Report Number	

Action Taken :

Date Resolved	

MICROSOFT

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45
	page 46
	page 47
	page 48
	page 49
	page 50
	page 51
	page 52
	page 53
	page 54
	page 55
	page 56
	page 57
	page 58
	page 59
	page 60
	page 61
	page 62
	page 63
	page 64
	page 65
	page 66
	page 67
	page 68
	page 69
	page 70
	page 71
	page 72
	page 73
	page 74
	page 75
	page 76
	page 77
	page 78
	page 79
	page 80
	page 81
	page 82
	page 83
	page 84
	page 85
	page 86
	page 87
	page 88
	page 89
	page 90
	page 91
	page 92
	page 93
	page 94
	page 95
	page 96
	page 97
	page 98
	page 99
	page 100
	page 101
	page 102
	page 103
	page 104
	page 105
	page 106
	page 107
	page 108
	page 109
	page 110
	page 111
	page 112
	page 113
	page 114
	page 115
	page 116
	page 117
	page 118
	page 119
	page 120
	page 121
	page 122
	page 123
	page 124
	page 125
	page 126
	page 127
	page 128
	page 129
	page 130
	page 131
	page 132
	page 133
	page 134
	page 135
	page 136
	page 137
	page 138
	page 139
	page 140
	page 141
	page 142
	page 143
	page 144
	page 145
	page 146
	page 147
	page 148
	page 149
	page 150
	page 151
	page 152
	page 153
	page 154
	page 155
	page 156
	page 157
	page 158
	page 159
	page 160
	page 161
	page 162
	page 163
	page 164
	page 165
	page 166
	page 167
	page 168
	page 169
	page 170
	page 171
	page 172
	page 173
	page 174
	page 175
	page 176
	page 177
	page 178
	page 179
	page 180
	page 181
	page 182
	page 183
	page 184
	page 185
	page 186
	page 187
	page 188
	page 189
	page 190
	page 191
	page 192
	page 193
	page 194
	page 195
	page 196
	page 197
	page 198
	page 199
	page 200
	page 201
	page 202
	page 203
	page 204
	page 205
	page 206
	page 207
	page 208
	page 209
	page 210
	page 211
	page 212
	page 213
	page 214
	page 215
	page 216
	page 217
	page 218
	page 219
	page 220
	page 221
	page 222
	page 223
	page 224
	page 225
	page 226
	page 227
	page 228
	page 229
	page 230
	page 231
	page 232
	page 233
	page 234
	page 235
	page 236
	page 237
	page 238
	page 239
	page 240
	page 241
	page 242
	page 243
	page 244
	page 245
	page 246
	page 247
	page 248
	page 249
	page 250
	page 251
	page 252
	page 253
	page 254
	page 255
	page 256
	page 257
	page 258
	page 259
	page 260
	page 261
	page 262
	page 263
	page 264
	page 265
	page 266
	page 267
	page 268
	page 269
	page 270
	page 271
	page 272
	page 273
	page 274
	page 275
	page 276
	page 277
	page 278
	page 279
	page 280
	page 281
	page 282
	page 283
	page 284
	page 285
	page 286
	page 287
	page 288
	page 289
	page 290
	page 291
	page 292
	page 293
	page 294
	page 295
	page 296
	page 297
	page 298
	page 299
	page 300
	page 301
	page 302
	page 303
	page 304
	page 305
	page 306
	page 307
	page 308
	page 309
	page 310
	page 311
	page 312
	page 313
	page 314
	page 315
	page 316
	page 317
	page 318
	page 319
	page 320
	page 321
	page 322
	page 323
	page 324
	page 325
	page 326
	page 327
	page 328
	page 329
	page 330
	page 331
	page 332
	page 333
	page 334
	page 335
	page 336
	page 337
	page 338
	page 339
	page 340

