The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

THE PSION SIBO HARDWARE DEVELOPMENT KIT

Version 1.00

May 26 1995

Revision 1.00 Page i

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

(c) Copyright Psion PLC 1990-93

All rights reserved. This manual and the programs referred to herein are copyrighted works of Psion
PLC, London, England. Reproduction in whole or part, including utilisation in machines capable of
reproduction or retrieval, without express written permission of Psion PLC, is prohibited. Reverse
engineering is also prohibited.

The information in this document is subject to change without notice.

Psion and the Psion logo are registered trademarks, and Psion, Psion MC, Psion HC, Psion Series 3,
Psion Series 3a and Psion Workabout are trademarks of Psion PLC.

TopSpeed is a registered trademark of Clarion Software Corporation. Intel 8086 and 80286 are
registered trademarks of Intel Corporation. 1BM, IBM XT and IBM AT are registered trademarks of
International Business Machines Corp. Microsoft and MS-DOS are registered trademarks of
Microsoft Corporation. Apple and Macintosh are registered trademarks of Digital Equipment
Corporation. Brief is a registered trademark of Underware Inc. Psion PLC acknowledges that some
other names referred to are registered trademarks.

Revision 1.00

Page ii

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

Contents

IO {11 oo [11ed £ o] o TP PR PR 1

2. SYSTEIM OVEIVIBW ...ttt ettt ettt ettt ettt ettt ettt e ab e e e st e e st e e sbe e e bt e ekt e e ebe e e ebeeesbbe e embeesnbeeeneeeanes 2

3. Hardware Overview 4
The Psion SIBO serial protocol TSSOSO ST OR RSP PRSPPI 4
Psion ASICs and What they d0..........ccceeeerienieenienieeniesieeseseeneees .4
TNEEITUDLS ..ot .5
The current range of Psion peripheral SO OO USSP OO PO OO PP ORTORRORROO 5

4. The Psion SIBO Serial Protocolc.ccccoeeviieennen ..6

Hardware Interface .
The Physical layer ..
The Transport layer

5. MEChANICAI OVEIVIBW ..ottt ettt et e abe e enes
The Psion Series 3/3a range
The PSION WOTKaDOUL..........c..cociiiirinisesescssse i
The Psion HC range

B. ASIC 4 et e ettt e e bbr e e e e bbt e e e anbnt e e e anrreaaaa
ASICA AQArESSING ANA IMIOAES ...t caeeeaeests ettt bbbt b bbb £ s b £ s b £ b £ s E £ 8 £ 8 b £ 8 £ s £ R £ bbbt s bbbttt 25
Reset and configuration.. 26
AASICA PIN-OUL ...ttt 27

7.ASICS............... .. 29
AASICE IMIOUES. ...t 29

Reset and configuration..
ASIC5 Pin-out

8. EXAMPIE PEFIPNEIAIS. ... ettt nae e 33
The ASIC4 Example Interface Board...........cooevieerieeniirniinnsiensieensinens
The Psion 3-Link b 35

9. Device Driver OVEIVIEW..........cooevvvveeiiiieiieiieeeeeeeeee . 37

TITEFOOUCTION ..ttt s8££ 888888 £ 88 E 8 b £ 8 Eh £ s £ o bR bbbttt 37
Device Names . 38
Loadable LOGICal DEVICE DIIVET STFUCTUIEc..c.euiueuieeeireeriaeeriseesiseesiseestsess et ses s es bbb st s bbb bbbt n e n s 39

Mandatory LDD Functions
Interrupts and Interrupt Service Routines
Loadable PhySiCal DEVICE DIIVET SETUCIUIEc.euiueeieeeieeerieeereseesiseesesessssessssesesesssse s s b ese bbb o8 eb bbb bbbt st st sae b s ettt essees 48

10. ASIC4/ASIC5 Based Device Drivers
Introduction
SIBO Hardware Expansion Channels
Talkingto ASICAcovvviininns
ASIC4 Registers..... .
TAIKING 10 ASICD ...ttt £ £ E b £ £ x££ s b4 £ £ b4 £ b 4R b £ e bbb b e b b e b b e b e sttt enas
ASICS5 Registers
Communicating with ASIC4
Sending and Receiving data using ASIC4..
Obtaining and using @ Channel.............cooeienirninneee s
Controlling ASIC5's UART
Hold and RESUMES..........cuiiirinissisessiseseissssiseesnes
Example Device Drivers....

11. An Example Device Driver for ASIC4: AAEXIF.LDD.

TITEFOOUCTION ..t 8 £ 8 e 8 b8 £ 8 £ h b8 b £ 8 £ b b £ b £ o bbbttt st st 64
Code Structure

Mandatory LDD Functions .66
The Non-Mandatory LDD FUNCLIONS.......c..c.cuiueuieeeieeenieeeniseensseessseesssesssseesssessssessssessssessssesassessssesassenns .70
The handling of synchronous and asynchronous 1/0............cciiieninnneeeeeeeneen .71
Interrupts and Interrupt Service Routines.......... .73

Other important local device driver functions
Structures and Include files

12. An Example Device Driver for ASIC5: SYSSASS5.PDD......c.cccceviieiieiiiie e 77
TITEFOOUCTION ..ttt s8££ 8 8888 £ 884 £ 8 £ b £ b £ ottt a bt s et nrees 77
THE LDD-PDD INEITACE. ... cvueeeuiuetiueiiaeisiseeseseisesetseseesesebsese b esesseseseesebeeseeeeseseeseeeesebeesebeesebeEaeb e e e b e e aeE e e aeEeEaeb b e b e b e b b aebebaebeb e b e b s as et ensbenas 77
€00 SEIUCKUE ... ettt bbbttt
The PDD Function:

13. Debugging and Testing DeVICE DIIVEISccuiiiiiiiiiiiiieeiee et 82
INErOAUCEION ..o
Debugging TEChNIQUES........c.cuvuivreireeiirineirineieens
Further Testing Strategies .
MEMOTY TESHINGcveviereiieiiieiniieeneieseeeseeesseeseieens

APPENDIX: Source Code Files
AUEXIF.ASIM ...ttt e a2 e 2 a8 a8 2222 a4 a8 a8 222 e £ a4 a8 a8 et e e e A e R e R 2Rt e e A e R SR e R4 n e £ A e A e R 2R e £ e A e A e RS A e R A e A e R et et e A eE e R et et et eRen et et etenene s
SYS$AS5.ASM
Assembler Macros

Revision 1.00 Page iii

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

1. INTRODUCTION

This document is intended to provide guidance to anyone wishing to construct peripherals for the
Psion SIBO (sixteen bit organiser) range of computers. It describes in detail all aspects of Psion
peripheral hardware development and the structure of the software required to drive such peripherals.
It is the aim of this document to aid third party development engineers in producing production ready
peripherals for any of the following Psion products: Series 3/3a, Workabout, HC and HCDOS.
Mechanical and plastic moulding information and information on how to develop production test
equipment is therefore also included. The emphasis throughout is on the two key Psion peripheral
chips ASIC4 and ASIC5. Detailed information regarding their functionality is provided. The
structure of Psion hardware device drivers is examined both in general outline and then with regard to
two specific examples whose source code is provided in the appendix to this document. It has been
assumed that the reader has some knowledge of a Psion computer such as the Series 3/3a and an
understanding of how such a machine is programmed. A good understanding of electronics, the C
programming language and 8086 assembler is also assumed.

Due to the continuous nature of development, information in this manual may change without notice.

Developers are advised to contact Psion Support to confirm critical details prior to committing
products to manufacture.

Revision 1.00 Page 1 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

2. SYSTEM OVERVIEW

All present Psion computers are based around the proprietary SIBO architecture. A SIBO machine is
a battery-powered, 8086-based, computer system. SIBO stands for Sixteen Bit Organiser. The
architecture has been designed with the size, weight and power consumption of computers designed
for the portable environment in mind. The key components of the SIBO architecture are:

e An 8086 class processor .

* A sophisticated power management system that selectively powers subsystems under software
control.

* Asynchronous, high speed, serial protocol (the Psion SIBO serial interface) for communication
between a machine and its peripherals.

e Solid State Disks (SSDs) that provide fast, low-power, silicon-based mass storage with no
moving parts.

. Hardware protection of the system from aberrant software processes (trapping of out of range
addressing and a watch-dog timer on interrupts being disabled).

. Real-time clock.

. ROM-resident system software.

e Graphics LCD display.

e Atouch sensitive digitising pad that provides a pointing device (only available on some models).

. ISDN-8bit standard combo sound system (only available on some models).

The SIBO architecture has primarily been implemented in custom ICs called ASICs. At the time of
writing there are ten different SIBO ASICs. Some of these ASICs have been designed for use inside
peripherals and these will discussed in detail throughout this document. All SIBO ASICs have been
implemented in surface mount packages and are based on a static CMOS technology. Current SIBO
products in the MC, HC and Series 3 range are based on the same three principal chips. These are
the V30H (an 8086-compatible processor) and two Psion custom chips known as ASIC1 and ASIC2.
Later SIBO products including the Series 3a and Workabout have these three devices integrated into a
single Psion custom chip known as ASIC9. The V30H is an enhanced 16-bit CMOS version of the
8088 found in the original IBM PC. It is software compatible with the 8088. The V30H is a fully
static design which means that all the internal storage elements (i.e. its registers) are made from static
rather than dynamic storage components. This in turn means that there is no minimum clock speed
required to refresh the storage elements and the system clock can be stopped at any time with no loss
of internal state. This technique is used extensively in the SIBO architecture to save power while the
processor is idle (i.e. waiting for an event).

The Psion SIBO serial protocol is a proprietary synchronous two wire serial standard by which host
Psion handhelds communicate with external devices. These devices will typically be Memory Packs
(usually referred to as Solid State Disks or SSDs), RS232 and Centronics printer interfaces, fax
modems, bar-code scanners, and so on. The SIBO architecture provides for two basic forms of
expansion device, namely the extended internal expansion connection (as with SSDs) and the reduced
external expansion connection (the 6-pin S3a serial port or the 11-pin LIF connector). The MC and
HC range of computers have two SSD ports and two separate independent single row 25-way
extended internal expansion ports. These ports have in addition to a Psion SIBO Channel, direct,
parallel 1/0 from the processor. Direct connection to these machines 7.2 volt battery is included to
support high power peripherals such as Printers and Barcode readers. The Series 3 range of
computers have two ports for SSDs and a single, reduced, 6-pin expansion port, which provides only a
Psion SIBO serial channel and limited power (<25mA). The Psion Workabout has two SSD ports,
two internal expansion points, and one external expansion port. The single external expansion port
uses an 11-pin Low Insertion Force (LIF) socket which provides a Psion SIBO channel, 25mA of
current and additional lines required for detecting the presence of the Workabout cradle. Each
internal expansion port consists of a single row 26-way connector carrying two high speed serial
ports.

Revision 1.00 Page 2 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

A range of Psion peripherals have been produced for connection to the Psion handhelds outlined
above. These peripherals currently incorporate one of two custom integrated circuits (ASIC4 and
ASICb) that convert SIBO serial protocol signals to data bus TTL level voltages which enable
memory and memory-mapped peripherals to be addressed. ASIC4 is used in SSDs and for memory-
mapped peripherals. A typical ASIC4 peripheral for a Psion S3a would consist of an ASIC4
connected to port C of the host machine and a peripheral chip/device mapped into ASIC4's addressing
space. ASIC5 is a general purpose 1/0 chip with a UART on board that can be run in several
different modes. For example ASIC5 can be used for MCRs (magnetic card readers) or Centronics
interfaces thereby simplifying peripheral design. Psion extended internal expansion ports carries an
active low interrupt input line to the host controller circuitry. The reduced external expansion ports
has an active high interrupt input line. The function of the interrupt can thus be programmed into the
host machine's ASIC1 or ASIC9.

The low-level programming interface to a Psion handheld peripheral is encapsulated within an
appropriate device driver. Psion device drivers are written in 8086 assembler and follow a prescribed
pattern outlined later in this document. The construction of a peripheral and the coding of its
complimentary device driver enable the developer to access its functionality through the means of
library calls in a C program. Examples of such calls are p_I oadl dd(), p_open() and p_cl ose().
1/0 requests are routed through the device driver's strategy vector which maps to the PLIB p_i ow()
call. The device driver is built using the Borland Turbo Assembler and resides in a single code
segment. The device driver can be stored in either RAM or a ROM on board the peripheral or can be
supplied on an SSD (solid state disk).

Revision 1.00 Page 3 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

3. HARDWARE OVERVIEW

The Psion SIBO serial protocol

The Psion SIBO serial protocol is a general purpose method of bi-directional serial data transfer. It
has been designed for synchronous communication between a host controlling device and a number of
slave devices. On a hardware level, the SIBO serial protocol is implemented through Psion ASICs.
The controlling device must contain an ASIC2 (or ASIC9) and the slave devices an ASIC4 or ASICS.
The various Psion ASICs are described in more detail below.

The synchronous SIBO serial protocol interface consists of 2 wires:

CLK - Aclock output from the controller to the slaves. Nominally 3.84 MHz.

DATA - A bi-directional synchronous data line.

The data is transferred using a series of 12 bit frames including 8 data bits each. This equates to a
theoretical maximum data transfer rate of approximately 312 Kbytes/second. Other bits of the frame
contain control information. The "system" is generically defined by 2 protocol layers, namely the
Physical layer and the Transport layer. These layers are described in detail in the next chapter.

Psion ASICs and what they do

ASIC stands for Application Specific Integrated Circuit and as previously indicated, these devices are
widely used within Psion hardware. Summaries of the functionality of each ASIC that is relevant to
peripheral development are presented below:

ASIC1: ASIC1 is the main system controller chip for the SIBO architecture. It connects directly to
the 8086-based processor (i.e. the V30H) controlling all bus cycles to and from the processor. This
configuration effectively forms a micro-controller like device that executes 8086 instruction codes.
ASIC 1 is made up of a number of functional blocks including a bus controller, a programmable
timer, an eight input interrupt controller, an LCD controller and the memory decoding circuitry.

ASIC2: ASIC2 is the peripheral controller chip for the SIBO architecture. It contains the system
clock oscillator and controls switching between the standby and operating states. ASIC2 provides an
interface to the power supply, keyboard, buzzer and SSDs. ASIC 2 includes the eight-channel SIBO
serial protocol controller and provides interface circuitry to both the reduced external and extended
internal peripheral expansion ports.

ASIC4: ASIC4 is a serial protocol slave IC for addressing memory and general memory-mapped
peripherals. It is used in SSDs to convert SIBO serial protocol signals into addresses within the
memory range of the memory pack. ASIC4 was designed to be a cut-down version of ASIC5 which
was the original SIBO serial protocol slave chip.

ASICS5: ASICS is a general purpose I/O chip with a built-in UART that can be set to run in a number
of different modes thereby simplifying the task of peripheral design. For example, it is possible to set
up ASIC5 to run as a Centronics parallel port interface, an 8-bit parallel 1/O port, a serial bar code
controller or a serial RS232 converter.

ASIC9: ASIC9 is a composite chip comprising of a V30H processor, ASIC1, ASIC2 and general 1/0
and PSU control logic all on one IC. ASIC9 thus integrates all the digital logic required to produce a
SIBO architecture computer less the memory onto one chip. ASIC9 has a few additional features
such as an extra free-running clock (FRC) and a codec interface for sound.

Revision 1.00 Page 4 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

Interrupts

Psion peripherals usually incorporate some circuitry to generate hardware interrupts. Both reduced
external expansion ports (such as the LIF connector on the Workabout or the 6-pin serial port
connector on the S3a) and extended internal expansion ports (such as the two single row 25-way HC
connectors) carry an interrupt line. This is an active high input to the host machine's interrupt
controller circuitry which resides on the logical equivalent of ASIC1. The OS intercepts all interrupts
and can be requested to call a particular function within a controlling device driver. Eight hardware
interrupts are supported by SIBO hardware. IRQO is the highest priority and IRQ7 the lowest. All
interrupts are level triggered and must be serviced in the following order:

» Device asserts the appropriate interrupt request line.

e The interrupt controller unit within either ASIC2 or ASIC9 places onto the data bus the vector of
the highest priority device with an interrupt pending. This enables the CPU to jump to the
correct interrupt service routine code.

« During the interrupt service routine, the software clears the interrupt line by some action specific
to the device.

* The interrupt service routine then informs the interrupt controller that the interrupt has been
cleared by writing to the non-specific end of interrupt (NSEOI) location.

« Ifanother interrupt is pending then go back to the second step.

With 8086-based processors, it is not possible to have nested interrupts.

The current range of Psion peripherals

There are currently a number of Psion peripherals in use and some of the key ones are outlined below
in order to provide the developer with a feel for peripheral design issues:

SSDs: Solid State Disks (or Memory Packs) use a built-in ASIC4 to decode SIBO serial protocol
signals into memory addresses within the memory range of the SSD.

Psion 3-link: The 3-link translates the high speed SIBO serial protocol channel on the S3a 6-pin
reduced external expansion socket into a serial RS232 format. This enables the host machine to
communicate with a PC for example by means of connecting the 3-link unit from the handheld's 6-pin
port to the PC's COM1 or COM2 port. The 3-link contains an ASIC5 which uses its on-board UART
to convert SIBO serial protocol signals to RS232 format TTL level voltages.

The HC Printer: The HC Printer translates SIBO serial protocol signals transmitted across the single
row 25-way extended internal expansion socket of the host HC into a parallel 8-bit format that is
compatible with the universal Centronics printer interface standard. The HC Printer unit contains an
ASICS running in Centronics interface mode which acts as the serial protocol slave and requires a
small number of support chips.

Psion 3-Fax: The 3-Fax contains an ASIC4 and a memory-mapped modem chip set which permits the
host machine to transmit (but not receive) fax messages.

Barcode: The Psion Barcode reader employs an ASIC5 running in serial mode to read the data
received from the barcode decoder chip into a SIBO serial protocol format that can be transmitted to
the host ASIC2/ASICO.

Workabout RS232 Interface: This peripheral connects to the single row 26-way extended internal
expansion port of the Workabout. It incorporates an ASIC5 running in its default mode to translate
SIBO serial protocol signals into a TTL level (+/-5v) serial RS232 format using ASIC5's on-board
UART. The TTL level RS232 signals are converted into the standard EIA format (+/-12v) before
coming out on the conventional RS232 9-pin D-type connector.

Revision 1.00 Page 5 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

4. THE PSION SIBO SERIAL PROTOCOL

Introduction

The Psion SIBO serial protocol is a proprietary standard for bi-directional serial data transfer between

a controlling device and a number of slave devices. The synchronous interface consists of 2 wires

CLK and DATA as mentioned earlier:

CLK - Aclock output from the controller to the slaves. Nominally 3.84 Mhz for memory

interfaces or 1.536.Mhz continuous for peripherals.

DATA - A bi-directional synchronous data line.

The data is transferred using a series of 12 bit frames including 8 data bits each. This equates to a

theoretical maximum data transfer rate of approximately 312 Kbytes/second. Other bits of the frame

contain control information. The "system" is generically defined by 2 protocol layers:-

» The Physical layer defining the hardware interface and frame structure.

» The Transport layer defines system control and register transfers between the controller and the
slaves.

Using this system, a large number of higher level implementations can be defined. In normal use the

controller will communicate to slaves in a point to point configuration. Multidrop configurations with

a number of slaves attached to one channel of the controller are also supported.

As indicated in the previous chapter, the SIBO serial protocol controller circuitry resides in either an
ASIC2 or an ASIC9 depending on the particular Psion hardware platform. The S3a and Workabout
employ ASIC9 whereas the HC, MC and S3 use ASIC2.

Hardware Interface

As indicated above, the SIBO serial protocol consists of two lines that switch at 5V CMOS voltage
levels:

Clock Line

This line is used to synchronously clock data between the controller and slaves. It is always output
from the controller circuitry that resides in ASIC2/ASIC9. The clock should only be active during the
transfer of data or when the serial channel is continuous clocking mode (used by ASIC5). At all other
times it is tri-state pulled low.

Clock Timing Parameters

Symbol Parameter Min Typ Max Units
Tckh Width of Clock High 65 130 - nSec
Tckl Width of Clock Low 130 130 - nSec
Tcyc Cycle time of clock 195 260 - nSec
Fck Clock Frequency 3.84 5.12 MHz
Data Line

This is a bi-directional line used to transfer data synchronously between the controller and slaves.
The direction of the data line is not determined by the physical layer but by the control information in
the transport layer. This is described in the next section. When no data transfers are in progress the
data line is always set to input on both the controller and slaves. This line is pulled low. Data is
changed on the falling edge of clock by the transmit device and latched into the receiving device on
the rising edge of the clock.

Revision 1.00 Page 6 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

The Physical layer

This section specifies the low level protocol of the SIBO serial protocol. The physical layer protocol
consists of a series of 12 bit frames. There are four types of frames:-

Null frames - Transmitted by controller to synchronise slaves.

Control frames - Control information transmitted by controller to slaves.

Data output frames - Data frame transmitted by controller to slaves.

Data input frames - Data frame received by controller from a slave.

Frame structure

All 12 bit frames have the following structure:-

Bit 0 1 2 3 4 5 6 7 8 9 10 11

Name ST CTL 11 DO D1 D2 D3 D4 D5 D6 D7 12

ST Start bit. This bit goes high to indicate the start of a valid frame.
CTL Control bit. When low indicates this is a control frame. High indicates a data frame.

11 Idle bit. Used to turn around direction of data line. Normally Low.
D0-D7 Data bits.

12 Idle bit. Used to turn around direction of data line. Normally low.
Null Frame

This is a special frame transmitted by the controller to ensure all slaves are synchronised. It is
generated by transmitting 12 clock pulses with the data line set to input. Since the data line is pulled
low this results in 12 zeroes being transmitted.

Control frame

This frame is transmitted from the controller to one or more slaves. The data line is an output from
the controller throughout the whole frame. The bits in the frame have the following value in a control
frame:

ST Start bit. This bit goes high to indicate the start of a valid frame.
CTL Control bit. Low to indicate this is a control frame.

11 Idle bit Set low.

D0-D7 Data bits. 8 bits of control information.

12 Idle bit Set low.

Data Output Frame

This frame is transmitted from the controller to one or more slaves. The data line is an output from
the controller throughout the whole frame. The bits in the frame have the following value in a data
output frame:

ST Start bit. This bit goes high to indicate the start of a valid frame.
CTL Control bit. High to indicate this is a data frame.

11 Idle bit Set low.

DO0-D7 Data bits. 8 bits of transmitted data.

12 Idle bit Set low.

Data Input Frame

This frame is received by the controller from a slave. The data line is an output from the controller
for cycles 1 and 2 and input to the controller for cycles 4 to 11. The bits in the frame have the
following value in a data input frame:

ST Start bit. Output from controller. This bit goes high to indicate the start of a valid
frame.

CTL Control bit. Output from controller. High to indicate this is a data frame.

11 Idle bit. Used to turn around direction of data line. Both controller and slave

should tri-state the data line during this bit. This bit should be low due to pull

down resistor on data line. The controller changes the data line from output to

Revision 1.00 Page 7 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

input at the end of cycle 2. The slave changes the data line from input to
output at the start of cycle 4.

DO0-D7 Data bits. Output from slave 8 bits of data transmitted by slave. Controller sets data
line to input during these bits.

12 Idle bit. Used to turn around direction of data line. Both controller and slave

should tri-state the data line during this bit. Should be low due to pull down

resistor on data line. The slave changes data line from output to input at the end of
cycle 11.

Data line direction

The following table summarises the direction of the data line.

CONTROLLER SLAVE
Condition CK DATA CK DATA
Outside Frame T | | |
Null frame @) | | |
Control Frame @) @) | |
Data output from controller 0] 0] | |
Data input to controller:-
Cycles 1-2 O O | |
Cycle 3 @) | | |
Cycles 4-11 O | | @)
Cycle 12 @) | | |
Key T Tri-state
| Input
O Output

The Transport layer

This section specifies the transport level protocol that operates above the SIBO serial communication
physical layer. The transport layer protocol controls the serial communication between the SIBO
Protocol Controller (SPC) and a number of SIBO Protocol Slave (SPS) devices. The following rules
apply:-

1) The interface is controlled by the writing of control bytes from the controller to the slaves. Control
bytes cannot be written by the slaves.

Unsolicited data cannot be sent from the slave to the controller.

2) The controlling device contains two registers to communicate to the slaves. These are the control
register (byte, write only) and the Data register (byte or word, read/write).

Control bytes are transmitted to the slaves by writing to the control register.

The format of the control byte is as follows:-

Bit 7 6 5 4 3 2 1 0

Name S X X X X X X X

The control word can have 2 distinct formats depending on the setting of bit 7 the Select (S) bit:-
Select = 0 This is the slave select mode. This mode is for selecting, deselecting and resetting slaves.
Select = 1 This is the slave control mode. This mode is for communicating with a slave which has
been previously selected using the select slave command.

Revision 1.00 Page 8 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

Slave select mode

The format of the slave select byte is as follows:-

Bit 7 6 5 4 3 2 1 0
Name O R | | | | | |
Key:-

R single reset bit.

I 6 bit 1D field.

The 6 bit ID field is a property only of the slave. No slave may have an ID of zero, hence there can be
63 different slaves connected to one controller. The reset bit (R) controls whether the slave(s) are
selected or reset. If R = 0 slave(s) are reset, R = 1 slave(s) are selected. Slave select control bytes can
be summarised by the following table:-

S R ID Description

0 0 0 Reset all slaves

0 0 XX<>0 Reset specific slave with ID = xx

0 1 0 Deselect slave (does not reset slave)

0 1 XX<>0 Select slave with ID=xx and read slave info (see below).

The Reset function is dependant on the slave. It would normally put the slave into a known passive
reset state.

Select Slave with ID=xx (5=0,R=1)

This is a special command that causes a slave with ID=xx to transmit to the controller an 8 bit
information field. This field depends entirely on the slave but must be non zero. A reply of 0
indicates that there is no slave of the requested 1D present.

Slave control mode

This mode is for communicating with a slave which has been previously selected using the select
slave command described above.
The format of the control word in slave select mode is as follows:-

Bit 7 6 5 4 3 2 1 0

Name 1 RW B/W S/M X X X X

Key

R/W Read/write select. 0 = write, 1 = read

B/W Data transfer size. 0 = 1 byte transfer, 1 = word (2 byte transfer).
S/IM Single/Multi transfer mode. 0 = single, 1 = multibyte.

XXXX = 4 bits of data to slave.

Note the meaning of the 4 bits of data (XXXX) is entirely dependent on the slave.

The settings of R/W,B/W,S/M bits in the control word determine the size, type and direction of
subsequent data transfers in the following manner:-

Revision 1.00 Page 9 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

RIW B/W SIM

0 0 0 write a single byte to slave

0 0 1 write a number of single bytes to slave

0 1 0 write a byte pair to slave (not implemented)

0 1 1 write a number of byte pairs to slave (not implemented)

1 0 0 read a single byte from slave

1 0 1 read a number of single bytes from slave

1 1 0 read a byte pair from slave (not implemented)

1 1 1 read a number of byte pairs from slave (not implemented)

Write a single byte

This command readies the currently selected slave to receive a byte of data and sets up the controller
so that the next byte (or the LSB of a word) written to its data register will be transmitted to that
slave. Anything further written to the controller's data register will have no effect.

Write a number of single bytes

This command readies the currently selected slave to receive a number of sequential bytes of data.
The slave will expect to receive data bytes until another control byte is received. The controller is set
up so that the next byte (or the LSB of a word) written to its data register will be transmitted to that
slave. All subsequent bytes written to the controller's data register will be transmitted to the slave.
This will continue until another byte is written to the controller's control register.

Write a byte pair

This command readies the currently selected slave to receive two bytes of data and sets up the
controller so that the next word written to its data register will be transmitted to that slave (LSB first).
Anything further written to the controller's data register will have no effect.

Write a number of byte pairs

This command readies the currently selected slave to receive a number of sequential byte pairs of
data. The slave will expect to receive byte pairs until another control byte is received. The controller
is set up so that the next word written to its data register will be transmitted to that slave (LSB first).
All subsequent words written to the controller's data register will be transmitted to the slave. This
will continue until another byte is written to the controller's control register.

Read a single byte

This command triggers a byte to be transmitted from the selected slave to the controller. This byte
can then be read from the LSB of the controller's data register. Further reads of the controller's data
register will return the same data but have no effect on the protocol.

Read a number of single bytes

This command triggers a byte to be transmitted from the selected slave to the controller. This byte
can then be read from the LSB of the data register. This read will trigger the next byte to be
transmitted to the data register of the controller. All subsequent reads of the controller's data register
will trigger further bytes to be transmitted to the controller. This will continue until another byte is
written to the controller's control register.

Read a byte pair

This command triggers a byte pair to be transmitted from the selected slave to the controller. This
word can then be read from the controller's data register. Further reads of the controller's data
register will return the same data but have no effect on the protocol.

Read a number of byte pairs

This command triggers a byte pair to be transmitted from the selected slave to the controller. This
word can then be read from the controller's data register. This read will trigger the next byte pair to

Revision 1.00 Page 10 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

be transmitted to the data register of the controller. All subsequent reads of the controller's data
register will trigger further byte pairs to be transmitted to the controller. This will continue until
another byte is written to the controller's control register.

Timing
The time taken for commands to be processed and data sent is shown below. The time is given in

SIBO pack protocol clock cycles. The length of a clock cycle is nominally 260 nanoseconds for a
clock frequency of 3.84 MHz.

Receive and process the control byte 12 cycles
Byte transfer to or from slave 12 cycles
Byte pair transfer to or from slave 24 cycles

When writing to the controller's data and control registers the following rules apply:-

« After writing to the control register there must be a delay of at least 12 cycles before the data
register is accessed or another control word is written.

» Toread a word from the data register after the command to read byte pair is issued there must a
delay of at least 12 (for control byte)+24 (for the byte pair transfer)= 36 cycles.

« To perform a multiple byte pair write there must be a delay of at least 12 cycles after the
command is written to the control register before the first word can be written to the data register
and a delay of at least 24 cycles between subsequent writes to the data register.

States

A slave can be in one of 5 states. Note a control byte can be received and interpreted at any time.
1) Waiting to receive a data byte or control byte

2) Waiting to receive a data byte pair or control byte

3) Waiting to transmit a data byte or control byte

4) Waiting to transmit a data byte pair or control byte

5) Waiting to receive control byte only

Revision 1.00 Page 11 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

5. MECHANICAL OVERVIEW

This section will contain information regarding mechanical and plastic moulding for Series 3/3a,
Workabout and HC machines that is deemed to be of especial importance to developers who are
considering producing peripherals for these particular Psion platforms.

The Psion Series 3/3arange

S3a/Series 3 Reduced External Expansion Port

The Psion Series 3/S3a personal digital assistants have two SSD slots and provide access to external
peripheral units through a single reduced internal expansion port, port C, on the left edge of the
machine. The reduced external serial interface expansion port from the Series 3/3a forms six wires.
The purpose of each is described in the table below. In addition to data, clock and power an active
high interrupt line is provided. This allows the peripheral device to generate an interrupt within the
host series 3/3a. The level of interrupt that is generated depends on both the machine and the
expansion port that is used. Either ASIC4 or ASIC5 can act as the other end of the Psion Serial
Interface. With exception of the interrupt line all used signals should be connected directly to the
appropriate pins on ASIC4/5.

[Pin | Name | Description | Connect to |
1 MSD Data line ASIC4/5 SDAT
2 MCLK Serial clock ASIC4/5 SCLK
3 Ve +5 volt supply Ve
4 GND Signal ground GND
5 SSD/INT Interrupt line Interrupt source/GND
6 SCK/EXON [Not used in this scenario | Do not Connect

Signal Definition

MSD and MCLK form a single master SIBO serial protocol channel. This is normally channel 7 on a
Series 3 and channel 5 on an S3a. The serial channel clock can be continuously enabled to provide a
free running clock for expansion devices. The frequency is fixed at 1.536MHz regardless of the
system clock frequency. SDKS/INT and SCK/EXON are both dual function pins. SDKS and SCK
form a single slave SIBO serial protocol channel. This can be combined with MSD and MCLK to
form a bi-directional high speed data link. SDS/INT can also be used to as an active high interrupt
input. The function of SDS/INT can be programmed in ASIC2 or ASIC9. A rising edge on the
SCK/EXON input will bring the system out of the standby state into the operating state. VCC isa +5
volt supply that is switched off when the system is in the standby state and is switched on when the
system is in the operating or idle state. The maximum current that can be drawn is 25mA. Opening
the pack doors on either an S3a or a Workabout will cut power to external peripherals.

Physical Connector

The reduced expansion port is made up of a 6-way two row connector spaced on a 2x3 way 0.1 inch
pitch. The diagram below shows the physical connector numbering:

Revision 1.00 Page 12 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

2- 4- 6-
1- 3- 5-
S —

Looking into Series 3 7/ 3a

The male plug is connected to a 0.5m long plastic moulded 3-link cable assembly (part no. 25020013)
which is terminated in a six-pin in-line connector which connects to a 6-way 1.5mm pitch transition
header (part no. 47000106).

The Psion Workabout

The Workabout Expansion Interfaces

The Psion Workabout provides a rugged and easy-to-use computer system for a wide range of mobile
corporate needs. The machine can be readily adapted to support various peripheral units such as
barcode scanners and modems attached to the expansion ports. The Workabout has a 26-way
extended internal expansion interface and a special 11-pin reduced external expansion interface.

Workabout Extended Internal Expansion Interface

The pin-out of the Workabout 26-way internal Torson connector is outlined below:

Torson 26 way connector pin Workabout Signal name
1 GND
2 NICD (not used)
3 RUN
4 Vh (not used)
5 Vcel
6 Vcce2
7 CODEN (not used)
8 AMPEN (not used)
9 VOLO (not used)
10 VOL1 (not used)
11 SCK (not used)
12 SYNC (not used)
13 SIN (not used)
14 SOUT (not used)
15 ESDOE (not used)
16 SCK2
17 SD2
18 EINT1 (active low)
19 SCK3
20 SD3
21 EINT2 (active low)
22 THM (not used)
23 VIN (not used)
24 EXON
25 N/C
26 GND

Revision 1.00 Page 13 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

e Vccl is 3.0V nominal power supply. Current available from Workabout is limited to 100mA.

e Vce2 is 5V nominal power supply. Current available from Workabout is limited to 200mA.

* RUN is low when powered down and high when powered up. It is used to power down or reset
the peripheral module.

e SCK2 and SCK3 are serial data clocks. The clocks are left running continuously at 1.536MHz
when the serial port is in use. They are used to clock the UART in ASIC5 in the RS232 AT/TTL
and AT/Barcode modules respectively.

* SD2 and SD3 are hi-directional serial data lines used in the RS232 AT/TTL and AT/Barcode
modules respectively.

e EINT1 and EINT2 are active low signals for interrupt input.

« EXON is an active high signal used to turn on the Workabout.

« All of the above logic signals are at 3.0V or 3.3V levels, depending upon the logic supply Vccl.

» Lines currently described as unused relate to a yet unspecified codec interface.

Workabout Reduced External Expansion Interface

For the Workabout reduced external expansion interface, a new 11-pin Low Insertion Force (LIF)
connector has been designed for connecting the computer to the Cradle System. The computer
mounted male LIF may be weather proofed, the cable mounted female LIF cannot. Currently the LIF
connector cover can be moulded with a polarising pin in one of two positions. The facility exists to
manufacture the cover with the polarising pin in two more positions, giving four possible variants. If
more than four versions are required it is possible to have the cover and the socket bezel moulded in a
range of colours to differentiate between variants. The polarising options are presented below:

Pin numbers
Ist [GROUND 9
2nd C—] SIGNALS 2,3,4,5,8,10
3rd ——] POWER 1,6,7,11

The step arrangement of the LIF Connector pins

e |

[OO0]

POOOO®

5 2 3 2 1

Cable mounted LIF (Female plug) Computer mounted LIF (Male socket)

Revision 1.00 Page 14 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

Cable mounted LIF (Female plug) Computer mounted LIF (Male socket)

Type A and Type B polarisation of the LIF Connector

Revision 1.00 Page 15 of 115 pages

The Psion SIBO Hardware Development Kit

Pin Definition for LIF - PFS Connector
LIF Connector Polarisation Type B

Psion PLC (c) May 1995

Pin Pin Name Wire Colour Contact Direction Standard Function Cradle usage
No Gauge (Cradle's
perspective)

1 LCA 7/0.1 Brown third Input Local® Computer Active. High when the Used as an enable for the cradle
computer is on. (The Workabout can source resident Xmod 5V supply.
100mA from this pin and the HC/HCDOS
5mA to power remote circuitry)

2 EXON 7/0.1 Blue second Output EXternal switch ON, active high (+5V). May be asserted by a cradle resident
Asserted by a remote? device to switch on Xmod.
the computer.

3 INT 7/0.1 Orange second Output INTerrupt to computer, active high (+5V). May be asserted by a cradle resident

Xmod.

4 THM 7/0.1 Yellow second Input Battery thermistor terminal. Allows remote? Standard function
sensing of the battery temperature.

5 DLA 7/0.1 Green second Output Disconnect Local® ASIC, active high (+5V). Asserted by the Cradle ASIC,
(does not apply to Workabout). When this connects the cradle resident Xmod to
signal is asserted the serial channel is the serial channel.
disconnected from the local® ASIC4/5 in the
HC resident Xmod (if present) and instead
connected to a remote ASIC4/5 (if present).

6 BAT 28 SWG Red third Output +ve battery terminal (1 amp) Standard function

7 Vin 28 SWG Black third Output Power supply to computer (+10V) Standard function

8 SCLK 7/0.1 Grey second Input Serial channel CLocK. Standard function

9 GND 28 SWG White first - Power, signal ground and -ve battery Standard function
terminal (1 amp)

10 SDATA 7/0.1 Violet second Bi-directional Serial channel DATA. Standard function

11 STATUS 7/0.1 Pink third Output STATUS. Connected to a pull-up resistor to Driven low by an open collector driver
allow connection to an open-collector/drain when LCA is high and the cradle is
driver. Normal usage is: low indicates the powered-up to allow the computer to
presence of a remote? device. sense whether or not the cradle is

connected.
LIF Connector Polarisation Type A
Pin Pin Wire Colour Contact Direction Function
No Name Gauge (Computer's
perspective)

1 DCD 7/0.1 Brown third Input RS232 signal

2 RX 7/0.1 Blue second Input RS232 signal

3 TX 7/0.1 Orange second Output RS232 signal

4 THERM 7/0.1 Yellow second - Battery thermistor terminal

5 DTR 7/0.1 Green second Output RS232 signal

6 VBAT 28 SWG Red third - +ve battery terminal

7 VIN 28 SWG Black third Input Power supply to computer

8 DSR 7/0.1 Grey second Input RS232 signal

9 GND 28 SWG White first - Power, signal ground and -ve battery terminal

10 RTS 7/0.1 Violet second Output RS232 signal

11 CTS 7/0.1 Pink third Input RS232 signal

Definitions

Computer HC, HCDOS or Workabout

Cradle resident Xmod Expansion module fitted to the cradle, may or may not be present.

HC resident Xmod Expansion module fitted to the HC, which contains the cradle interface and possibly another peripheral.
HC peripheral A peripheral, located in the HC resident Xmod which is connected to the same serial channel as the cradle.
Cradle ASIC An ASIC5 located on the main cradle PCB which remains connected to the serial channel

irrespective of the state of DLA.

1. Theterm "local computer" implies the computer local to the LIF connector, i.e. the HC, HCDOS or Workabout, as opposed to
a "remote" computer which might be connected via a cradle resident Xmod for example.

2. The term "remote" implies something on the other side of the LIF connector to the computer.

3. The term "local" implies something on the computer side of the LIF connector including devices on an HC resident Xmod.

Revision 1.00

Page 16 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

Exploded view of the Psion Workabout

Below is an exploded view of a complete Psion Workabout showing part numbers for various
components and illustrating the positioning of the expansion interfaces.

o
<)
i o
& £ 8
IS S 2
— a o °
@ 8.—4 - E
2 A g
g < = g
- T o @ 'y >
] o z
3 2
4
s 3
3 S
= 8
O o
5
5 4
3 3
e g -
T & 5 o
[
g <
&
3 g g
S i=
s S = 8
g 5
> 2 ;
- g 2 3
o 8 3 8
R /5 f%
3
3 3
w
8 3
s 8
5 8 s
i ° g
s 3 i gz 3
8 4 & o > «
© o — o g -
- 8 g 8 5
z 38 8 : 8 g
ER - s S 2
o 3 4 [R
g g =g -t -
8 o & 8 8 3 3 <
> o
S z 3
5 a0 o
< g 5 s 3
s 8 s 9
< & 3
q 3
A S
2 £ 8 -]
2 8 & 2 3
z 3
5 3
>
z
2—4
3
g 3
>
z S -
3
5 4 EI
2 &
2 s 8
~ e o
5 4
-
g 3
E g
©
g 4
g 3
5 <
&
g 8
8
g 8
o 3
o o
§ 8
b
w o D
8 8
g -
> E T
3 g
8 g9
3
8 5 9
23
3 8
g S
R
58
5
>
3 o
£ 3 - 3
), @ 3 >
o @ 3 b
2 g hd 3
8 ~ 8
S . = 8
5 5 T S
5 & 2 5 &
5 8 5 < 8
3 & e I 5
X
g 5
S o
- & 3
=) S
g i=
S o
x 4 - oS -
2 3 5 3
& 3 s 9 3 3 8 3
s 9 IS 2 g q 8
@ wu - © o -4 ©
8 g s g
c
§ = 85 & 7
b 5 >
g 2 2 3
a E
& 5
-
5 8
3 5
2 7z 3
- SD
3
5 -
= 53 0®

Revision 1.00 Page 17 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

The Psion HC range

HC Extended Internal Expansion Port

The Psion HC range of computers are intended to provide a rugged and powerful mobile computer
system for a wide variety of demanding application requirements. As part of its adaptability, every
element of the hardware is configurable from the plug-in SSDs to the expansion ports for peripheral
devices such as bar code scanners, modems and magnetic card readers. There are two independent
extended internal expansion ports at either end of an HC unit. The top port is termed the "A" port
and the bottom one the "B" port. Each expansion port provides direct 1/0 with the processor, a SIBO
serial channel, and connection to the power supply. It allows for higher powered expansion devices to
be added by including a direct connection to the main 7.2 volt battery.

Physical Connector

The expansion port is made up of a 25 way single row connector spaced on a 0.1 inch pitch. The 26th
position is a polarising key and should be left blank. The correct mating connector on the expansion
device is made up from a number of Molex C-Grid series 90148 connectors. Pins 1 and 2 are ground
and should have there own connector placed nearer the board edge to ensure the ground connection is
made first when the expansion device is inserted. The required connectors are Molex 90148-1102 for
the GND contacts and Molex 90148-1123 for the signal contacts. The diagram below shows the
physical position of the connectors.

BN [

] gEi1ds—-1102 —HE==__1
Bo1 : EXPANSION DEVICE

L L)
olmlmluc\mbump
DD
i}
i

-

o
b
=]
3

COMPONENT SIDE

b
S

921458-1123

ol

oo}~
<
AT
cH
T A

NJm
-
z
5
o

ool

3
I
auunry
X
ol
Z|

25

b
Iﬂm i)
<
a
o
0

CSPACE >
| rﬂ

SIBO COMPUTER

Revision 1.00 Page 18 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

Signal definition

The following table defines the 25 way expansion connector:-

Pin No. Name Sig. type Comments

1 GND Power Should mate first when device inserted

2 GND Power Should mate first when device inserted

3 ADO B CMOS 8 bit multiplexed address and data bus pulled low with 100 K resistors
4 AD1 B CMOS

5 AD2 B CMOS

6 AD3 B CMOS

7 AD4 B CMOS

8 AD5 B CMOS

9 AD6 B CMOS

10 AD7 B CMOS

11 ALE O CMOS Address latch enable - high when valid address on AD0-AD7

12 IOWR O CMOS 1/0 write strobe - active high, data valid on falling edge of IOWR

13 IORD O CMOS 1/0 read strobe - high when device can place valid data on ADO-AD7
14 EES O CMOS External Expansion Select - high during I/O cycles to expansion device
15 SCLX T CMOS 512 KHz SCL signal for SLD bus - usually Hi-Z and pulled low

16 DNC N/A For future expansion - do not use.

17 THERMResistor Connected to thermistor (bottom slot only - top slot DNC)

18 VB1 Battery Connected to the internal NiCd battery (bottom slot only - top slot DNC)
19 Vsup Power Unregulated battery voltage - present all the time

20 INTR 1 CMOS Active high interrupt input

21 _EXON I CMOS Active low input pulled up to Vccl - pull low to switch machine on
22 SD B CMOS SIBO serial protocol data line - pulled low

23 SCLK T CMOS SIBO serial protocol clock line - Hi-Z in standby needs a pull down
24 GND Power

25 Vce2 Power +5 volt supply, switched off in standby. Max current available = 50 mA
DNC (Do Not Connect) indicates that the pin should not be connected. The signal types are:-

O CMOS CMOS output to the expansion device.

B CMOS CMOS bi-directional line to the expansion device.

T CMOS CMOS tri-state output to the expansion device.

I CMOS CMOS input from the expansion device.

All the CMOS signals including the ADO-AD7 bus are buffered from the main system busses and so
present a load of one HC series logic gate.

Direct I/O

Expansion devices can be connected to direct processor 1/0 space using the following signals; ADO-
AD7, ALE, IOWR, IORD, EES and INTR.

ADO-ADY is the least significant half of the multiplexed address and data bus, this means that up to
128 1/0 addresses are available for each expansion device. As only the least significant half of the
bus is available and no bus conversion is done only even addresses can be used.

ALE must be used to latch the address from ADO-AD7 for devices that require a stable address. The
address is valid on the falling edge of ALE. Note that AO will always be low for valid writes to the
expansion device and as such should not be used as an address line, Al should be used as the lowest
order address line. AQ can be used as an additional enable signal to stop odd 1/0 accesses disturbing
the expansion device.

EES is the External Expansion Select and is high during all 1/O accesses to the expansion device, i.e.

for 1/0O reads and writes to address range 100 to 1FF hex. for expansion port 1, and 200 to 2FF for
expansion port 2.

Revision 1.00 Page 19 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

IOWR is an active high signal which is high during all 1/O write bus cycles. The data on ADO-AD7
is guaranteed to be stable before the rising edge of IOWR and after the falling edge of IOWR. 10RD
is an active high signal which is high during all I/O read bus cycles. The AD0-AD7 bus is
guaranteed to be tri-state before the rising edge of IORD and after the falling edge of IORD. The
expansion device must present valid data on the bus when IORD is high, see the timing details below.

INTR is an active high interrupt input to ASIC1. T his can be used as a directly readable bit or as a
dedicated interrupt input. It must not be driven high when the system is in the standby state as this
input is pulled down and will cause excessive standby current consumption. The diagram below
shows the timing of the I/O write and read cycles.

I/0 WRITE CYCLE

ADZ—-ADT VALTD QDDQXXXXX VALID WRITE DATA >—
ALE / \

EES Tadste ’:E:‘Tat:ﬂ'-\lt:i’:E

TOWR {

I/0 RERD CYCLE

-

Tudste ‘ Tudhld

AD@—-ADT YVALID ADDR VALID READ DATA p——
ALE / \

Tadst |4 Tadhld
EES U /

IORD / AN

‘ Thatd Trdste ‘ Trdhld

Symbol Parameter Min Typ Max Units
Tadstp Address set up time 60 100 370 nSec
Tadhld Address hold time 50 80 - nSec
Twadstp Write data set up time 260 390 - nSec
Twrcyc Write cycle pulse width 260 390 780 nSec
Twdhld Write data hold time 80 150 - nSec
Thztd Time from Hi-Z to data active 0 - 240 nSec
Trdcyc Read cycle pulse width 340 520 1040 nSec
Trdstp Read data set up time 130 - - nSec
Trdhld Read data hold time 0 - - nSec

Note the typical values given are for an HC with a system oscillator of 7.68 MHz.

The SIBO serial channel

A single SIBO serial protocol channel is provided on each expansion port. Expansion port 1 is
connected to serial channel 5, expansion port 2 is connected to serial channel 6. The serial channel
clock can be continuously enabled to provide a free running clock for expansion devices. The
frequency is fixed at 1.536 MHz regardless of the system clock frequency. This frequency is a
multiple of the SLD clock rate and of all normal RS232 baud rates.

High Speed Side Port

Port C on an HC houses an 8-pin in-line connector that allows access to a high speed SIBO serial
interface. This interface is currently used only by the HC cradle peripheral. Its pin-out is outlined in
the table overleaf:

Revision 1.00 Page 20 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

Pin Signal Type Description

1 SDS/INT In/Out Fast Serial Data (Slave)/External interrupt
2 GND Power GND connection

3 SCKS/EXON Output Fast Serial Clock (Slave)/External Power-on
4 SCK7 Output Serial Data Clock

5 VSLED Power External DC supply to HC

6 SD7 In/Out Bi-directional Serial Data line - Side port C
7 VFC Power Battery VB2 (for charging battery pack)

8 TSEN Input Battery temperature sensor

Power supplies

Two power supplies are available for expansion devices these are Vcc2 and Vsup. Vcc2 is a +5 volt
supply that is derived from Vsup. Vcc2 is switched off when the system is in the standby state and is
switched on when the operating or idle state is entered. Each expansion device can draw up to 50 mA
from Vcc2. If an expansion device requires more than 50 mA or cannot be powered down when the
system is in the standby state the Vsup power supply must be used. Vsup is the unregulated supply
directly from the main system batteries or from the DC jack input. It will be in the range 5.5 to 12
volts under normal conditions. To use Vsup the expansion device must regulate Vsup to 5 volts with
a low drop-out linear regulator. Care must be taken to not be active and driving any signals high
when the system is in the standby state as Vsup is always present. This can be achieved either in
software or by using VVcc2 as a signal indicating the active state.

Mechanical Information

Mechanical details regarding the numerous build variants and accessories that currently exist for the
HC are presented overleaf. The peripheral expansion boards for these build variants are housed in a
special plastic casing that can be machined to hold the requisite connectors. In the matrix, a ¢
indicates that the relevant combination of HC and accessory are compatible and an X indicates that
the combination is not compatible. Following the build variant table are two diagrams that display
exploded views of the HC expansion connector and the HC Expansion Board complete with part
numbers and dimensions.

Revision 1.00 Page 21 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

Build Variants HC HC HC HC HCR FAST
100 110 120 | DOS | 400 | CHARGER

With EL Backlighting o

Without EL Backlighting . . . X X

Industrial X

Non-Industrial . . . X X

Keypad Variants

53 Key A/N UK 2401-0026 . . . X X
A/N European 2401-0051 . . . X .
A/N Scandinavian 2401-0050 . . . X X
Numeric only UK 2401-0046 . . . X X
DOS Keypad 2401-0147 X X X . X
53 Key A/N USA 2400-0026 X X X X .
HC Expansion Modules
) RS232 / Parallel (Printer) 1502-0001
e) 25 way D type (F) + 9 way Mini DIN
Certified FCC Class B / Passed VDE Class B
[: RS232/TTL ° ° . . ° °
oG o= 1502-0039 (IP64), 1502-0040 (NON IP64)
9 way D type (F) + 9 way D type (M)
Passed FCC Class B / Passed EN55022 Class B
] UK Modem (Asic 8) 1502-0010 . . . X . .
= RJ 11 connector
BABT Approved in UK, BS6301 (Safety)
Barcode Only . . . X . X

HP Wand HBCS-A207 + Plug + EXMOD 1502-0020
Wand Welch Allen + Plug + EXMOD 1502-0021
FCC Class A/ Passed VDE Class B

RS232 / Barcode 1502-0044 ° ° . . ° °
9 way D type Quick Loc(F) + 9 way D type (M)
Complies with FCC Class A

MCR / Scanner / RS232 1502-0003 . . . X . .
Scanner NipDenso + Plug 1502-0022
Scanner DigVision + Plug 1502-0023
Magnetic Card Reader + Plug 1502-0024
Certified FCC Class B / Passed VDE Class B

) LIF / RS232 (Under development) X X
o= 9 way D type (M) + 9 way LIF- PFS (M)
LIF/TTL (Under development) X X
9 way D type (F) + 9 way LIF- PFS (M)
LIF / BARCODE 1502-0043 X
9 way D type Quick Loc(F) + 9 way LIF- PFS (M)

[:l Vehicle / TTL X

9 way D type (F) + 9 way LIF- RS232 (M)

16550 RS232 / TTL (Under development) X
9 way D type (F) + 9 way D type (M)
Complies with FCC Class A

Printer (High Res.) 1502-0037 X .

Laser Scanner 1503-0012 X

Fast Charger Variants

Fast Charger with Holster (Due Jan 95) X
Fast Charger without Holster (Due Jan 95) X

Additional Accessories
Nicad Battery Pack 500 mA 1503-0005 e | o | o | o | x |

Revision 1.00 Page 22 of 115 pages

Psion PLC (c) May 1995

Expansion Module Exploded Assembly Drawing

The Psion SIBO Hardware Development Kit
Corporate Hand Held (CHH)

(10¥18) 5500-2079
(M3BNNN LYvd ¥3LIND 0STY) (AFYO) £000—2079
YNY18 NOISNYdX3 138v1

(430) 2000-2058
WSO 1Z0d WWIXZTH MINDS

(1ov18) 9107-2018
(A349) 91012018
INIGINOW ¥3LNO NOISNYAX3 LS HHO

(ov1g) §102-2018
(A349) Sl01-2c018
ONITTINON 3NNI NOISNYdX3 HHO

6000-00¥¢
YNV 80d

SNOISNINIO 431LND
ANVTE NOISNVAX3 138V

70-g
AR

Page 23 of 115 pages

Revision 1.00

Psion PLC (c) May 1995

The Psion SIBO Hardware Development Kit

Qg NOISd veel Q 031600 0N Aldvd GalHl v 0L O3SOTISIC 38 LON AVW INISNOD NILLI¥A H§0Idd SiT LOOHLTM ONY D7d NOISd 40 AJd3d0dd 3HL S1 INIWAOD0 IWILNICISNGD STHL
i A
SHIVA NOISNYAX3 OH 171V &d04 03d41N03
NOILYWSOAINT IHL SMOHS DONIMVAO SIHL

8¥dy ¥ZL 140 Xv4
0081 80C 1L 3L

z
9
=
104 Him =2
noovon IR =
1S 1¥NOJYVH 61-LL S
d Notsd llead [
= ~
| | | Tor v LHOI3H [NINOdWOD v 55
s3ow] oo | osse]| s> | AL XYW ONIMOHS 371408d L
- >
Q3WIS FSIMYIHLD SSTINT SIONVITI0L cey el >
=z
5 g3
s %
R i A B[
ssni ol | 1 ge
216 [219 [¥ NOISNIWI]] ~ o
T3AN3LX3 | QAVANYLS | | L

Page 24 of 115 pages

Yoy 1800 NI JI .
JWOS ION 0d JdNDD AN
38 04 T3LON3A v3dy
(SO4 2> ONDIIVAL ANY
2oy WON3 3393 34 0L v3aw
: - SO4 2> SININDJWOD ANY
St caz 21
WON4 3394 36 0L v3av
ATTPI0T NOLLO1ELS 38 66€2 CAVM 92 TW1O0L) S§OLIINNDD
@swoce @ SHeAs 8rios XdW a/ Gl ce
| ——— W7 A a4 [e e e e T e S —— .. R 777777 e E— 1
| 3 A |
g ,] ,
it |] © |
a o
> | ol =] |
.]
z | 2 2 |
= " |] o |
o v I b 0| 0| 0| v I E
o Y8 - . ololwlg @ —e—— e
[s) 7 & b O D[O] O 7 0
" I =] ” I
| 4 & |
+ + © 7
” ; ®p ,
I] © I
| E |
| 3 |
O _—— H B e —— T
S¥3
5B NI
581 SL0d
SHILT B3
e YT "
49313 34 0L 4300V Y3y 26/1V/ER|
£5< 0L O30y SITH nOuwag [26/11/57) 3
‘ | §
06/20/42) Bl
@0 X570 ‘ n
0300y S0 MOLITANDD dad
J——— wersare0 ¥
FINVHD [319 ks El Z El 2 € = T

Revision 1.00

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

6. ASIC 4

What is ASIC 4?

ASIC4 is custom integrated circuit designed for use in Memory Packs (called SSDs) and peripheral
devices. Its primary purpose is to convert the PSION Serial protocol into the signals required to
address memory and memory-mapped peripherals. A typical Series 3/3a ASIC4 peripheral will
consist of an ASIC4 connected to port C of the host machine and a peripheral chip/device mapped
into ASIC4's addressing space. An example could be an ASIC4 connected to a simple 1k memory
device:

Chip select

I N2

Address

ASIC4 Memory

Serial link

To write a value, <v>, to address <addr >, the appropriate control codes must be sent along the port
C Psion Serial link to assert <addr > on ASIC4's address outputs and <v> on ASIC4's data outputs.

ASIC4 Addressing and Modes

ASIC4 has an 8 bit data bus and a 28 bit address bus. Also provided are eight chip select lines that
form selectable addressing blocks each of a size defined by software. The default is 32Kbyte/block.
The filing system will set this to the appropriate size while accessing memory in the upper portion of
the address space.

ASIC4 has two basic modes of operation, namely ASIC5 Compatibility (or SSD) mode and ASIC4
Extended mode. To select the mode, ASIC4 must be selected with an appropriate ID. This is
achieved by writing a SIBO serial protocol slave control frame, as detailed in chapter four, to the
ASIC prior to sending any read or write requests. After sending this frame, the so-called Info Byte is
read off the data bus. Details concerning the meaning of the various Info Byte bits are provided in the
following section. In the case of SSD mode, the ID is 2 and for ASIC4 Extended mode, the ID is 6.

Putting ASIC4 into SSD mode makes the chip compatible with all current versions of existing SSD
software in production by Psion including all HC, series 3/3a and MC software. In this mode, ASIC4
mimics an ASIC5 in pack mode (see next chapter). This is because ASIC4 was originally designed to
be a cut-down version of ASIC5 and so from the outset it was necessary to make previously existing
ASICS software run on the new chip. The maximum address space in SSD mode is 21 address bits
and 4 chip selects (which comes to 4 x 2Mb). In ASIC4 Extended mode, ASIC4 is capable of
addressing up to 28 address bits (256Mb). In this mode, in addition to the Info Byte, a further 4 bits
of information can be elicited from the state of the address lines A27-A24 during reset. Of these bits,
the state of A27 (bit M) determines whether ASIC4 is going to be used as a standard SSD (M=0) or in
a mixed mode (M=1) comprising of memory devices and peripherals. It is only the latter case which
is of interest to the potential developer since this is the mode intended specifically for peripheral type
expansion. In mixed mode ASIC4's address space is split into two equal halves. The lower half of
the addressing range is set aside for memory-mapped peripherals and can be used for any purpose.
The upper portion of the address space is reserved for pure memory. The Series 3/3a, Workabout and

Revision 1.00 Page 25 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

HC filing system is able to use this memory (which does not have to be present) as an additional
storage medium. Typically it will be a ROM containing the software that controls the peripheral. On
reset, configuration data is supplied to ASIC4 on its data bus lines which the filing system can read
in order to determine what form of and how much memory it has available in this upper region.

In mixed mode chip selects are split into four selectable peripheral blocks and four selectable memory
blocks. CS0-CS3 are for peripheral access. CS4-CS7 select memory devices one to four. This set-up
is illustrated below:

CS0 Peripherals
CS1
CS2
CS3
Total |
Addressing _| ~ S
Range CS54 Memory
(256Mb) CS5
CS6
CS7

Reset and configuration

As indicated earlier, in mixed mode, following a reset or power up ASIC4 will read the form in which
to configure itself from the data on data lines DO-D7 (the Info Byte) and address lines A24, A25, A26,
A27 (most significant nibble of the Extended Info Byte). The table below shows the meaning of each
of these lines during reset.

[A27 | A26 | A25 [A24 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | DO |

[M | Peripheral Id Code | Memory Type | No.devices | Memory Size |
1 Don't care, some 000 RAM 00 1device [000 Nomemory
codes arereserved. | 001 TypelFlash |01 2 001 32Kbyte
000 Noperipheral | 010 Type2Flash |10 3 010 64Kbyte
001 T3Link 110 ROM 114 011 128Kbyte
010 3Fax 100 256Kbyte
Contact Psion for 101 512Kbyte
an official code. 110 1Mbyte

Pull up, pull down resisters would usually be used to place these lines in the desired state on reset.
High value resisters of typically 100k would be used to allow ASIC4 and bus devices to drive these
lines to other levels during normal operation.

ASIC4 should be powered from its host Series 3/3a/HC. High current peripheral chips or volatile
memories should have their own supply. Whenever the Series 3/3a/HC is powered down, has its
batteries removed, or has it's pack doors open, any attached ASIC4 will be powered down and reset
upon resumption of power. Taking the 3Fax as an example with one Read Only Memory device of
512k the required configuration is:

Revision 1.00 Page 26 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

ASIC4 Pin-out

Pin No Pin Name
50 DO
49 D1
48 D2
47 D3
46 D4
45 D5
44 D6
43 D7
13 A0
12 Al
11 A2

8 A3

7 Ad

6 Ab

5 A6

4 A7

3 A8

2 A9

1 Al10
64 All
63 Al2
62 Al3
61 Al4
60 Al5
29 Al6
28 Al7
27 Al8
25 Al9
24 A20
23 A21
22 A22
21 A23
20 A24
19 A25
18 A26
17 A27
37 CS0
36 Cs1
35 CS2
34 CS3
33 CSs4
32 CSh
31 CS6
30 Cs7
16 OE
14 WR
15 VPS
39 POR
40 SCLK
38 SDAT
59 SDIR
51 LBO
56 MCSD
52 INO
53 IN1
54 IN2
55 X2D2
57 ATST
10 VDD
42 VDD
9 GND
26 GND
41 GND
58 GND
Revision 1.00

Direction
110
110
110
110
110
110
1/0
110

O0O00000000OO00O0OO0OOOOOOOOOOO

OO0OO0OO0OO0OO000O0

o

- - - —-——0O0

PWR
PWR
PWR
PWR
PWR
PWR

Pin Description

Databus

Databus

Databus

Databus

Databus

Databus

Databus

Databus

Address bus - register ATO

Address bus - register ATO

Address bus - register ATO

Address bus - register ATO

Address bus - register ATO

Address bus - register ATO

Address bus - register ATO

Address bus - register ATO

Address bus - register AT1

Address bus - register AT1

Address bus - register AT1

Address bus - register AT1

Address bus - register AT1

Address bus - register AT1

Address bus - register AT1

Address bus - register AT1

Address bus - register AT2

Address bus - register AT2

Address bus - register AT2

Address bus - register AT2

Address bus - register AT2

Address bus - register AT2

Address bus - register AT2

Address bus - register AT2/Oscillator Output in PSRAM Mode
Address bus - register AT3 Inputs to set device size on reset
Address bus - register AT3 Inputs to set device size on reset
Address bus - register AT3 Inputs to set device size on reset
Address bus - register AT3 Inputs to set device size on reset
Device chip selects

Device chip selects

Device chip selects

Device chip selects

Device chip selects

Device chip selects

Device chip selects

Device chip selects

Output Enable/Refresh in PSRAM Mode

Write pulse

VPP control

Reset input

Serial clock input

Serial Data input

Protocol Direction indication Bit

Low Battery detect driver output (Open drain)

PSRAM Mode Select

General Purpose inputs

General Purpose inputs

General Purpose inputs/Refresh Disable in PSRAM Mode
Oscillator Input for PSRAM Mode

Test input (pull high to put device into address test mode)
Power inputs

Power inputs

Ground

Ground

Ground

Ground

Page 27 of 115 pages

The Psion SIBO Hardware Development Kit

A1l Al12 Al13 Al4 A15 SDIR GND ATST PS OSCIN IN2 IN1 INO LBO DO

A10

A9

A8

A7

A6

A5

A4

A3

GND

VDD

A2

Al

A27 A26 A25 A24 A23 A22 A21 A20 Al19 GND Al8 Al7 Al6 CS7 CS6 CS5

Revision 1.00

63

62

61

60

oscouTt

59

58 56 55 54 53 52 51

Diagram of ASIC4 Pin-out (NEC)

D2

D3

D4

D5

D6

D7

VDD

GND

SCLK

POR

SDAT

Cso

Cs1

Cs2

Cs3

Cs4

Psion PLC (c) May 1995

Page 28 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

7. ASIC 5

What is ASIC 5?

ASICS is custom integrated circuit designed for use in Memory Packs (called SSDs) and peripheral
devices. ASICS5 provides three primary functions. A built in UART provides for serial
communication at baud rates of up to 48000 baud. General purpose I/O pins provide for a wide range
of control and communication applications. Finally ASIC5 provides address and data lines for access
to memory devices and memory mapped peripherals. A typical ASIC5 peripheral such as the 3Link
consists of an ASIC5 connected to port C of a series 3/3a, a ROM memory device mapped into
ASICS5's addressing space and line drivers to convert the UART signals from ASICS into standard
RS232 levels.

Chip select

Address

ASIC5 Memory

RS232 Line Drivers

Psion Serial link

ASIC5 Modes

ASICS can operate in two modes. In pack mode ASIC5 generates all the address, data, and control
signals necessary to access memory devices. No peripheral functions are available in this mode. In
peripheral mode ASIC5 has only limited memory address capabilities as some or all address and
control lines are reused for 1/0 purposes. ASICS is placed into peripheral mode by setting the
peripheral bit in ASIC5's PBMODE register.

ASIC5 as a UART

ASICS contains a full function UART which supports baud rates of up to 48000 bits per second. In
order to use ASIC5 as a UART, ASIC5 must be placed into peripheral mode. In this mode the input
signals PAQO, PA1, PA2, PA3 become the UART inputs RX, CTS, DSR, and DCD respectively. The
output signals PDO, PD1, PD2 become the UART signals TX, RTS, and DTR. Serial data is
transmitted from the TX line. Incoming serial data is received by the RX line. RTS and DTR can be
used for handshaking or as general purpose outputs and need to be set high or low explicitly by
software. CTS, DSR, and DCD can be used for handshaking or as general purpose inputs.

The Psion SIBO serial link which connects ASIC5 to a host computer is a two wire interface
consisting of a data and a clock line. ASIC5 generates it's baud rate clocks from this clock line.
Under normal operation, clock pulses along a Psion SIBO serial link only accompany data frames. To
be able to generate baud rate clocks ASIC5 requires a steady clock from the Hosts Psion port. To
facilitate this, Psion serial links can be put into a mode called continuous clocking where clock pulses
are generated regardless of whether there is any actual data to be transferred. Continuous clocking

Revision 1.00 Page 29 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

increases power consumption and Psion serial links should not be left in this mode unnecessarily.
The UART portion of ASICS is capable of generating interrupts when characters are received, when
the transmitter is awaiting a character to send and when there is a change of state on the handshaking
lines. ASIC5 has only one, active high, interrupt line. This line is shared between these interrupt
sources. When an interrupt is generated it is the responsibility of software to determine the cause of
the interrupt.

A character to be transmitted should be written to the Transmitter Holding Register where ASIC5 will
convert it to serial form for transmission. The register will be emptied once the character has been
transmitted. ASIC5 contains no internal buffering. The Transmitter Holding Register must be empty
before writing a character to it. The state of the Transmitter Holding Register is reflected in the
Transmitter Empty bit in the UART status register. Enabling the Transmitting Holding Register
interrupt will cause ASIC5 to generate an interrupt every time that the Transmitting Holding Register
becomes empty. Reading the UART Status Register will clear the interrupt. Received characters are
copied into the Receive Character Register. If the Receive Character Interrupt is enabled, ASIC5
generates an interrupt on each character received. If the character is received in error due either
parity, framing or overrun errors, appropriate bits in the UART Status Register are set to reflect this.

ASICS5 for parallel I/O

Lines PAO-PAY form a general purpose, non latched, 8 bit input/output port. All access to this port
take a total of twelve clock cycles. The clock is generated from the Psion Serial Link. Actual
memory access cycles only last for one clock cycle. Twelve cycles are required because data being
sent or received needs to be converted to or from the Psion serial format. Because of the conversion
read accesses occur on the third cycle, write cycles on the twelfth. This is usually of no real
consequence to the peripheral designer

In peripheral mode CSO will be taken low for one clock period each time Port A is accessed. Data
outputted from this port will remain valid for only the period that CSO is low. In pack mode Port A
forms the data bus in memory mapped systems. A read from or write to Port A in this mode will
result in one of the lines CS0-CS3, being taken low for one clock period. The line which will be
taken low will depend on the address being generated for the access. During read cycles OE line will
be taken low and remain so for 10 cycles. Data present on PAO-PA7 must remain stable for the last
nine cycles. During write cycles the WR_B line will be taken low for the second half of the cycle over
which one of CS0-CS3 is low. If port B is set to counter mode, accessing port A will result in the
counter being incremented upon completion of the access.

ASICS can be programmed to generate an interrupt whenever the state of line PA4 changes. Reading
port A will clear this interrupt. One use of PA4 is as the BUSY line in a Centronics port
implementation.

The Lines PB0-PB7 can be programmed to operate in four different modes. Two of these modes are
for testing purposes and will not be discussed further. In latched mode, data written to the Port B
resister is latched onto the Lines PBO-PB7 and will remain there until a following write to Port B or a
reset condition occurs. In counter mode, the binary value on lines PB0-PB7 is incremented following
any access to port A. With ASICS5 in pack mode lines PBO-PB7 form the address lines AQ-A7.
Placing port B into counter mode allows 256 consecutive memory locations to be read without need to
set-up the address of each access.

Lines PDO-PD?7 are general purpose outputs. In pack mode these form the address lines A8-A15. In
peripheral mode lines PDO, PD1, PD2 become UART outputs.

Lines PC0O-PC4 in pack mode form the address lines A16-A20. In peripheral mode lines PC4 and
PC7 become inverted inputs and can be used as edge triggered interrupt lines. PC5 becomes the
interrupt output line. PC6 becomes a general purpose latched output. PCO-PC3 become a dual
synchronous serial port for use in magnetic card systems.

Revision 1.00 Page 30 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

ASIC5 for Barcodes

Psion barcode peripherals use the UART functionality of ASIC5 to receive data from a dedicated
barcode scanner IC.

ASIC5 for Card readers

Magnetic card readers generate clocked serial data. ASIC5 contains two synchronous serial ports for
connection to card readers or other peripherals which generate clocked serial data.

Reset and configuration

Following a reset or power up ASIC5 will read the form in which to configure itself from the data on
data lines PAO-PA7. Line PC6 is used to select whether ASICS5 is to operate in pack or peripheral
mode. The table below shows the meaning of each of these lines during reset. In peripheral mode
lines PAO-PAY should be set to give an indication of the type peripheral the ASIC5 is forming.
combinations of types can be used.

[PC6 | PA7 | PA6 | PA5 | PA4 | PA3 | PA2 | PAL | PAO |
[Pack Mode | Memory Type | No.devices | Memory Size |
1 000 RAM 00 1device [000 No memory
001 TypelFlash |01 2 001 32Kbyte
010 Type2Flash |10 3 010 64Kbyte
110 ROM 114 011 128Kbyte
111 Write protect 100 256Kbyte
101 512Kbyte
110 1Mbyte
[Peripheral Mode | Type |
0 X X0 X X X X 1 RS232 port
X X 0 X X X 1 X Centronics (Parallel) port
XX0XX1XX
XX0X1XXX
X X 00 X X X X Barcode reader
X X 01X X X X USA modem
X 10X X X X X Modem
1 XO0OX X X X X RS232 TTL

Pull up, pull down resisters would usually be used to place these lines in the desired state on reset.
High value resisters of typically 100k would be used to allow ASIC5 and bus devices to drive these
lines to other levels during normal operation.

ASIC5 should be powered from its host Series 3/3a, Workabout or HC. High current peripheral chips
or volatile memories should have their own supply. Whenever the Series 3/3a/HC is powered down,
has its batteries removed or has its pack doors open, any attached ASIC5 will be powered down and
will be reset upon resumption of power.

Revision 1.00 Page 31 of 115 pages

The Psion SIBO Hardware Development Kit

ASIC5 Pin-out

A9 A10 All Al2 Al13 NC Al4 Al5 DO D1 D2

39 38 37 36

A8 D3
AT D4
A6 D5
A5 D6
A4 D7
VvCC GND
A3 SCLK
A2 POR
Al SDAT
A0 Cso
GND Cs1

15 16 17 18 19 20

WR VPS OE A20 Al19 NC Al8 Al7 Al6 CS3 CS2

ASIC 5 current pin-out (T1 version CF30179)

Revision 1.00

Psion PLC (c) May 1995

Page 32 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

8. EXAMPLE PERIPHERALS

The ASIC4 Example Interface Board

The ASIC4 Example Interface Board detailed in this chapter is intended to provide the developer with
a simple example of a Psion ASIC4 peripheral. To this end, the actual practical usefulness of the
hardware is of secondary importance. In fact, the board essentially consists of eight LEDs connected
via some latches to an ASIC4. Using a device driver, the host machine is able to control the status of
the LEDs. Specifically, the board translates SIBO serial protocol signals into a parallel 8-way data
bus format that can be used to set the various 74HC series latches and gates. It is intended that the
board can be readily adapted to run on all currently available Psion machines. The only physical
change that need be made concerns connection to the host machine's external expansion interface.

In the following circuit, an eight-bit tri-state data buffer, U3, and an eight-bit output data latch, U5,
are commoned together to the eight LEDs thereby enabling their status to be sensed and set. In
addition, a facility for generating hardware interrupts is provided by means of a suitably connected
switch, S1, and a third eight-way buffer, U4. U4 is the interrupt switch status buffer. It holds the
values of the two input switches S2 and S3 which are read as part of the interrupt service routine.
Depending on the value of the switch positions, a different response can be output to the LEDs from
the set buffer, U5. One of the D-type flip-flops in U6 is used to latch hardware interrupt signals into
the INT line (pin 5) of the reduced external expansion interface connector. On completion of the
interrupt routine code, it is necessary to reset this flip-flop and hence the interrupt hardware by means
of a write to address A1. Address decoding is provided by two 2-to-4 decoders on chip U1 paralleled
to address lines AQ and Al. A circuit diagram of the ASIC4 Example Interface Board is presented
overleaf for the case of a host S3a.

Note that it is possible to construct this circuit with or without the compiled driver code in an on-
board ROM. The developer merely has to set the resistors on the three data bus lines DO-D2 such that
the corresponding info byte conveys the appropriate information. The meaning of the various bits in
an ASIC4 info byte was discussed earlier in chapter 6. If a ROM is to be used, then the info byte read
off DO-D7 on reset should include bits 001 on lines D2-DO0. This requires the R1/R2 optional resistor
to be connected to Vcc. If a ROM is not used, as was the case with the constructed test circuit, the
data bus lines D2-DO0 should be set to 000. This is done by choosing the resistors connected to ground
from the three R1/R2, R3/R4 and R5/R6 pairs.

Revision 1.00 Page 33 of 115 pages

Psion PLC (c) May 1995

Page 34 of 115 pages

1.00

1Sion

VDD
veo oty weo weo
=3
cs co c1o |+ ci1 For 128K Bute ROM fit cption resistors R1, R4, RS, R8 and R1D RLrrz
i0on 10on 100N 10uF./6W3 For no ROM fit option resistors RZ, R4, Ré Do z
H vDD
aND GND aND aND
L
=
R3 /R4
oD WCT GND
H Ica 1cs _ H o1 2 ¢ 100K
+—42] voo a0 2 {ao voo [5254
bo £ oD AL a1 wDD oo
= oo AZ AZ oo
DL EX] o1 A3 AZ o1 4 Lx 1
DZ a5 ; 5 DZ
D2 ag ag pz 15 E
bz 37 b3 AS AS o3 voe
D3 4 4 GND
DS 321 04 ' AE oa 4
R22 i3 a3a | DS ar e oS 5} =
hez] 231 pg as £ as D& De
2] o7 a9 £ as o7 RS/RE
cso ALD Z 1 nio _ .- = ¢ 100K
cSL ALl ALL zT
a cSs2 ALz = AlZ —
= CS3E ALlE El Al3E E
= 2lcsa ala a14 N
Shom £léss ais Aals 1
1]lcse alk 55 A1E aND
n 21és7 a1z e Mw e
(a} arn 2iE Als A1S/FGH o
|z 5 £ oE AL AL3UFP
i b E e = uTE, AzQ TER—IME ROM
11 5 wee
LK ao SDIR AZZ2 T DD
e 2CLK Aazs B ook RiZ R2/R10
L @ SDAT A24
el ghar aza 100K RiZ 2
T 7aHcT4a noRL 8zZ TO0K R1a 1
Iz 100K R1S T R
. ¥ZDZ AZT
fEcy N2~ GND ﬁ_w
R24 Z1INL éND =i
1 100R IND GND
A LBo GND
v AEICA
GND v
RZ3 GND
LooR RZ7 D4
PO AR
wee 470 LED GND
CONNL RZE DS
T = =28 An
sb7 Do 1S z Fo PO
SCH7T T 1%l 1A1 = = a0 470 LED GMND
SD5 TNT Uin 1 Lo livz 1az E = a1 Ao LE
ScRS/EXON B5— 2 13 1ivs 1a3 EZ E= az . An
Vec a vo De 12]1iva la3 ;5 E2 B2 2143
GND 2 B vl D3 _2]3v1 Zzai (11 E3 E2 Iz laa avn VD ano
CON COMMS CONN vz =]2¥2 zZAz 7 =N wee R3O o7
a3 2 zv: zaz L 12] ce g ex A
=S Zva zAa a7
L 470 LED GND
12 Bis mwmx R=7 R31 =)
uza 100K E4 AR
OE 1 Uea TAHczaa FANCETE
2 IGRD 470 LED GND
oS50 2 TAHCOS R332 [FE
ua PS [et
TAAC 2 15 L4l
T tri 1Al 470 LED GND
1vz 1Az
uiE n 14 irz 1Az R3Z DOiO
13 [0 oo biZ 1z | 1¥3 183 [An
WR a %o 28 vipid Hevt 281 5= sz 470 LED GND
& IowR 15 TE RS T ZvE ZhEzae INFUT 1 INFUT O R34 D1l
& w3 p2- £ 2vE za3 L Sam
= 2 1zva zaa L Bz
TA4HC 139
TAHCIZ2 470 LED GHND
TEE 51 wee
wee o o T e aND DATA OUTFUT
R ueH| Interrupt Sk
s =
e B D CC 1993 PSION PLC
ADDRESS R./W FUNC = Interrust In .
AT a R EUNG o rite to latoh cLK FILE : \CONHLNDRAFTNAIEXAHPL . SCH
GND 1 bl Clear Interrust elg £ R2S DRAWN PocLg
1 R Resd =tstus 100K PCE REY : O
Status Bit Func TaHCT4 Title
a Input O
2 Ineut O 1 L ASIC4 Ewamele IF
i-5 Not Used aND GND Eiz=[focument Mumbsr REV
: Interrurt Line = 2 0. =
7 Interrurt Latch : -
EERTH FEril 19, 1S9S[Sheet T or T

The Psion SIBO Hardware Development Ki

Rev

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

The Psion 3-Link

The Psion 3-Link is an ASIC5-based peripheral that enables the user to transform SIBO serial
protocol signals into RS232 format data so that a host Psion machine can communicate with a PC or
printer. The diagram below shows the schematic of a TTL level RS232 based expansion device. The
interface is based around ASIC5 and allows the standard RS232 device driver contained in EPOC to
be used.

Transistor Q1 provides a switched power rail for any other expansion device. This rail will
automatically be switched off when the RS232 port is closed. D1 is required to isolate the supply so
that the external device does not back power the SIBO computer when it enters the standby state. If
the additional device does not require a supply or only uses a few microamps then Q1 and D1 can be
omitted. Vcc and the supply for the expansion device can be directly connected to Vcc2.

If CMOS level RS232 signals are required then IC1 can be replaced with a 74HC244 device. If
inverted sense RS232 signals are required, 1C1 can be replaced with a 74HC241 device.

The diagram overleaf shows the circuitry for an ASIC5-based 3-link with ROM.

Revision 1.00 Page 35 of 115 pages

Psion PLC (c) May 1995

The Psion SIBO Hardware Development Ki

wee
R19
I3 vee 100K
64/128K PROM SITE T
H
v oo HE 2
¢ oipid 1
oz H= =
o= 2 E:
oa 12 3
os (A2 =
D& [= =
o7 (2L
weo weo
I.0. = OSH
u} wee
1 H 0 0o
3 we |20 1
= 1 by =
WEF =
3 R =L by =
= 3 o _l+ e cé c7
= ala] = 10uF.25v \4) 100n \4) 100n
& .
aND W
aND
Ica
21p1 a1
a1
e R
vee elos o3 <z
a3 + 10uF 25V
rd o= 13
D4 @a ca
aa
1240 17 N
apciz SKT1 CASE
10uF 25w
It TAACTS 2 GND SKT1
a0 FAD 2 DIR 14 rRLSD-DCD|
A1 E 1 RTS 5
a1 PAL = 2 FERRES I [=q e
HE paz (53 E | 2d Tx
=3 ZFs= PAT (22 = o mx] 3] oTr
FE4 Fad END
AT e T 5 v 4 LS [=
PEE PAS Ed osR
AE = s = = GND FTel] BoR
a7 3 E] I = c1s)
FET FAT cTs
15 FT eI
1 Foo pco (22 vee
A 44 | by POl 25 SIEC RSE3Z CONNECTOR
CEL 22 'Poz PCZ
CEEE az Ri7 10Ok 1 N
Biz i Fis 10K 100K o Mex=241 GND
Bls 30 dciolciilcizicl3|cls
30 ppg Pég
aid 2 Foe PCE
A1E il _ ﬁ_n GND tn [1m |1n [1m |1n
100R R4 25 | op aND
100R RS 120, GND GND GND GND GND
2B FoR o
= Ne N
ca —=2 I NE o
100pF =
weo asics |B -
GND
aND aND R7
R1 100R
100K SHi
o |
(=1 SW SPDT
weo 100n
CONNL
507 &N
SCKT e ez
SDSZINT Copyright (C) Psiom FLC 1991
seRssE T Fil CONHMW DRAFT RS23IZ.S5CH
wee b2 ile name: .
YNE B 100R 5 L, oK s e
CON COMMS CONN R20 BZIX24—Cav7 FCE Rew 1.4
100K Titie
HR
aND Rew 1.2 Move SD (pin 25 IC2) from pin 23 to 21 of IC1 _ CONSUMER RSZI2 EXPANSION
Rew 1.3 Alter RL? from 100K to 10K Eizc [pocument Nomber REV
Rew 1.4 Added ClO—C14 \
Rew 1.5 Mowed C3 to CLK Lnput GND GND B FEho-0oes L5
Gat=: Jume 10, 1953he=t T o7 T

Page 36 of 115 pages

ision 1.00

Rev

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

9. DEVICE DRIVER OVERVIEW

Introduction

Once a piece of peripheral hardware has been designed the appropriate software must be written to
control it. All hardware on Series 3/3a, Workabout and HC machines is controlled by logical and
physical device drivers. These act as the logical low-level software interface between a piece of
hardware and an application that uses it. The remainder of this document is concerned with the
methods by which a device driver is able to communicate with and thereby control an ASIC4 or
ASIC5-based peripheral.

APPLICATION SOFTW ARE

+

Psion C PLIB callinterface

|
LOGICALDEVICE DRIVER
I
PHYSICAL DEVICE DRIVER

~>

PHYSICALHARDW ARE

This chapter is intended to guide the programmer through the central issues involved in writing
device drivers for peripherals that attach to the family of Psion host machines based around the
proprietary Slxteen-Bit Organiser (SIBO) architecture. The purpose of a device driver is to abstract
away the hardware details required to conduct communication between a peripheral and a software
application that uses that peripheral. The device driver therefore performs the logical processing
required to translate low level hardware instructions into high level application services. Psion device
drivers are written in 8086 assembler and following convention are divided into a logical layer
residing over a physical layer. A physical device driver (PDD) contains the code required for talking
directly with the hardware device and provides a set of low level hardware specific services. A logical
device driver (LDD) performs the logical processing that transforms these low level services into the
high level services used by an application. This two-layer nature of device drivers at Psion can be
illustrated by the following example. An application using the serial driver decides that it requires
RTS/CTS handshaking. It calls an LDD which decides whether or not a line should be driven. If the
answer is yes, the LDD calls the appropriate PDD and asks for a particular line to be driven to a
specific state. The PDD duly carries out the requested service. Psion SIBO machines often use the
same LDD with a PDD written specifically for each version of the hardware device. In such a
situation, splitting the device driver is highly desirable. In the example given above, however, the
LDD could have talked directly with the hardware negating the requirement for a separate PDD.
Similarly, most external peripherals would normally use an LDD.

An LDD must provide a minimum of eight functions for use by the operating system. The functions
are passed to the OS via a table of function offsets (referred to as the vector function table). These
functions are mandatory. Similarly, a PDD must provide two functions for use by the operating
system and may provide more if required. An LDD will usually provide further services/functions for
use by an application. The form these take is dependent on the LDD requirements and the functions
supplied by the associated PDD(s).

Revision 1.00 Page 37 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

Psion SIBO machines are supplied with a set of resident device drivers built into the ROM each of
which can be replaced with an installable device driver having the same name. Installable device
drivers can also be added to increase the number of available device drivers. Installing a device driver
is carried out dynamically without resetting the machine (this is not the case with many operating
systems).

Device Names and Channels

The name of a device driver is the mechanism by which an application can obtain a channel to that
device driver. A logical device driver name always has three characters followed by a colon. For
example, "TTY: " is the serial LDD. This name is required to uniquely identify the LDD to the EPOC
OS when attempting to open a channel on it. A physical device driver name always has the three
characters of its owning LDD followed by a period, a further three characters and a colon. For
example "TTY. UAR" is the ASIC5 UART driver and "TTY. SRX" is the 16450/16550 driver. The first
three characters of a PDD name are the name of the LDD to which the PDD belongs. The second set
of three characters uniquely identify the PDD. Thus in the above examples, both PDDs belong to the
"TTY: " LDD.

A channel can be opened on an LDD by calling the PLIB library function p_open. EPOC uses the
driver name passed through an application p_open call to invoke the 1 oOpen operating system
service. This service in turn calls the associated driver 'open vector' which can decide whether or not
to open a channel on the driver. The assembled ASIC4 Example Interface Board logical device
driver, AAEXIF.LDD, for example, has the three-character device name "LED" so a channel with its
handle in pcb may be obtained on it by means of the following call:

p_open(&pch, "LED:", -1)

In this call, the third argument refers to the open mode and a value of -1 indicates that the mode
parameter is to be ignored. To obtain a channel on a PDD, an application should call the DevOpenPDD
OS service. Typically, only LDDs open PDDs though the p_open library function can be used to open
a PDD indirectly as illustrated in the following example:

p_open(&pch, "TTY.UAR ", -1)

For a device driver configuration consisting of an LDD and a PDD, the application will usually open
a channel to the LDD only: the LDD as part of its initialisation would open a channel to the required
PDD. If an LDD requires a PDD and none is specified, it is up to the LDD to either fail the open
request or hunt for a loaded PDD that it can use. An LDD uses the DevFi nd OS service to search for
a PDD as for instance in the case of the "TTY: " device.

A device driver may be capable of supporting more than one open expansion channel at a time. In
order to distinguish the channels, a qualifier can be added to the open request as part of the device
name. It is then up to the device driver to specify the format of the qualifier. By convention,
channels are allocated a single character sequentially from the character 'A’. For example, the
parallel port driver can support two open channel, 'A" and 'B'. The LDD requires one of these
qualifiers in order to open a parallel driver channel:

p_open(&pch, "PAR A", -1)
p_open(&pch, "PAR B', -1)

The number of channels that can be thus supported will in general be dependent on the host SIBO
hardware. In the case of the serial port on the S3a, for instance, only one SIBO channel can
legitimately be opened corresponding to expansion port C. With the Workabout and HC, however, it
is possible to open up to three separate SIBO channels on ports A through to C where A refers to the
top port of the host machine, B to the bottom port and C to the side (or cradle) port.

LDDs have been designed to be accessed via the 1/0 system. 1/O requests on the opened channel will
reach the 'strategy vector' of the device driver. PDDs have been designed to be accessed by an LDD

Revision 1.00 Page 38 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

either via far calls or the DevVect or OS system service. Once a channel has been obtained on a
device driver, the operating system can send it events not sent to other applications. Examples are
events generated by the machine being switched on or off, memory segments being moved about and
the owning application being panicked. The EPOC OS can handle a maximum of 32 device drivers
on a Series3 machine and 48 on other machines.

Loadable Logical Device Driver Structure

Common features of the structure of loadable LDDs

All loadable LDDs must conform to the following rules:

* There must be a single code segment and no data segments. The code segment is encapsulated in
the assembler .asm file by calls to the CodeSeg and EndCodeSeg defines respectively.

* The code segment must begin with a LibEnt structure which indicates the LDD name or
signature which is used to identify the driver when trying to open and close channels.

* There must be at least eight supported functions which are listed in the LibEnt struc.

LibEnt Structure

The first field of the LibEnt structure consists of a two-byte signature containing the define

'LDDSi gnat ur e' or 'PDDSi gnat ur e' in the case of a PDD. The remaining fields consist of an eight
byte name which holds the device driver name stored as a zero terminated string (note that the
trailing colon is omitted), a two byte vector count which must be at least eight and a vector table
listing the supported device driver functions. The relevant code in the case of a hypothetical DevFunc
LDD (DEVFUNC.LDD) with the device name of "TES: " is listed below:

CodeSeg

Pr ocBegi n@ DevFuncLDD

dw LDDSi gnat ur e
db 'TES' ,0,0,0,0,0
dw (Vect or End- Vector)/ 2
Vector:
dw DevFuncl nst al |
dw DevFuncRenove
dw DevFuncHol d
dw DevFuncResune ; Mandatory LDD vectors
dw DevFuncReset ; must be in this order
dw DevFuncUnits
dw DevFuncQOpen
dw DevFuncSt r at egy
Vect or Handl er:
dw DevFuncHandl er ; Optional LDD vectors
I nt erruptVectors:
dw DevFuncTi ckl nt
Vect or End:

ProcEnd nor et
The vector table contains the offsets within the device drivers code segment for the functions required

by the EPOC operating system which must be entered in the order shown. Note that in this
document, the terms vector and function are used interchangeably.

Mandatory LDD Functions

All LDDs must support the following eight functions:

* DevFunclnstall called on device installation

* DevFuncRenove called on device removal

* DevFuncHol d called to temporarily disable the driver

* DevFuncResune called to enable the driver after it has been temporarily disabled

Revision 1.00 Page 39 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

* DevFuncReset called when an application terminates without closing the channel
e DevFuncUnits called to query the number of supported units (i.e. channels)

e DevFuncQOpen called to open a channel to an LDD

e DevFuncStrat egy called to access the driver's functionality from the 1/O system

All of the eight mandatory routines pointed at by the function vector table will be called FAR by the
operating system and should therefore use a FAR return machine code instruction to return control
back to the OS. Since the FAR return address is to the OS it does not matter if the OS moves memory
whilst code in the LDD is being executed: the OS cannot move its own code.

DevFuncinstall

This function is called by the operating system when the device driver is loaded in order to initialise
any internal variables. It should not be called directly by an application process. The Devl nst al |
operating system service will cause this function to be called. Applications should not call this service
directly and should call instead the DevLoadLDD Service.

An installable device driver may have the same name as a resident device driver. When the operating
system loads a device driver, it places it at the end of the device driver table. The operating system
will search this table for the appropriate device driver when it wishes to establish a channel. The
search starts at the end and thus will locate the most recently installed device driver (if any) or if not,
the resident driver. By this mechanism an installable driver can replace any resident driver.

When called, the DS and ES segment registers are in an unknown state. The device driver should
take whatever steps necessary to obtain direct addressability to its data. For loadable device drivers
this involves setting the DS and ES registers to the CS register or more commonly just using the CS
override. The operating system will not move memory whilst in this function, thus the normal rules
governing DS and ES may be ignored. All operating system services may be called, except those
concerning file or device access.

PASSED

No values are passed to the install vector.

RETURN

If the installation was successful, return with the carry flag clear.

If the installation failed, return with the carry flag set and the error number in the AL register.
PANIC

The install vector must not panic: it will cause an operating system kernel fault if it does.
PRESERVE

The SS, SP and BP registers must be preserved by the install function.

DevFuncRemove

This function will be called by the operating system when the device driver is requested to be
unloaded. It should not be called directly by an application process. The DevRenove operating system
service will cause this function to be called. Applications should not call this directly, they should use
the DevDel et e service. Before the remove function is requested, the device driver will have received
a hold request. Thus devices will only ever be removed when in a held state. If the device driver is
currently busy serving a client, the remove request should return an error. Note that all resident
device drivers will return an error since there is no mechanism by which they can be re-installed.

When called, the DS and ES segment registers are in an unknown state; the device driver should take
whatever steps necessary to obtain direct addressability to its data. For loadable device drivers this
involves setting the DS and ES registers to the CS register. The operating system will not move
memory whilst in this function, thus the normal rules governing DS and ES may be ignored. All
operating system services may be called inside the remove vector, except those concerning file or
device access.

PASSED

No values are passed to the remove vector.

RETURN

If the remove was successful, return with the carry flag clear.

If the remove failed, return with the carry flag set and the error number in the AL register.

Revision 1.00 Page 40 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

PANIC

The remove vector must not panic: it will cause an operating system kernel fault if it does.
PRESERVE

The SS, SP and BP registers must be preserved by the remove vector.

DevFuncHold

This vector will be called by the operating system when a logical device driver is requested to be held.
The hold vector is called in the context of the operating system so DS and ES are not available. The
DevHol d operating system service will cause this vector to be called. Applications should not call this
service. Physical device drivers cannot invoke holds and resumes. The operating system will call the
hold vector under three conditions:

» Device memory segments are about to be moved.

* The machine is about to switch off due to the auto switch off time-out or user request, it
enters the standby state.

* The machine is about to switch off due to the power source being removed.

It should be noted that holds and resumes are called on a per driver basis and so the corresponding
driver code must deal with all the currently open channels. In all cases the device driver must
respond to the request as quickly as possible. It must also ensure that ALL interrupts from the
hardware device that it is driving are disabled. Device memory segments can only be moved if an
installable device driver is being installed or removed. If the LDD uses an attached PDD and uses the
faster FAR call mechanism to call the PDD strategy vector, the PDD strategy vector address will
potentially move, thus the FAR address will be wrong. This address can be resolved in the resume
vector. The LDD must not call the PDD between a hold and resume. Typically, the device driver
only needs to disable its interrupts. When a resume occurs, the device driver should continue as
though nothing had happened.

If the machine is about to switch off due to the auto switch off or user request mechanisms (enter the
standby state), the device driver should make an orderly shut down of the device such that the state
before the shut down can be recovered when the system powers up again. The device driver should
also attempt to ensure that no data is lost. For example, in the serial driver the current state of the
hardware handshaking lines should be noted so that each state can be restored on power up. For this
type of power down the hold vector is allowed to take a significant length of time to shut down a
device. For example in a serial driver the hold vector should wait until the remote end stops
transmitting data after any hardware handshaking has been applied. Of course, the time taken should
be kept to a minimum: in the case of the serial driver above the time is roughly equivalent to 3
character transmission times. When a resume occurs the device driver should continue as though
nothing had happened.

If the machine is about to switch off due to the power source being removed, the device driver should
reset the device in the minimum possible time: no attempt should be made to perform an orderly shut-
down. The device driver is not expected to be able to recover the hardware state. When a resume
occurs, the device driver would typically fail any outstanding application requests. If the hold vector
takes too long the voltage will fall below the threshold to hold the state of the internal RAM. If this
occurs the machine will perform a warm re-boot when powering up, all data in the internal memory
of the machine will be lost including the device driver code! On power fail there is about 2ms
available to power down all devices.

On a power failure hold, the operating system will already have sent a 'reset’ to all the SIBO serial
channels. Any device drivers using these channels need only record the hold reason for the resume
vector. Any other peripherals should be designed to allow a power fail mechanism with the minimum
amount of code. It must be noted that the power fail type hold can occur whilst the device driver is in
the memory move hold state. In this case, the device driver will receive two hold requests before
seeing a resume request. A device driver must be capable of handling this. In this case, the device
driver will also receive two resume requests. A device driver will not get a power fail hold whilst in

Revision 1.00 Page 41 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

power down hold. A call to the hold vector will always be followed by a call to the resume vector
(except when a device is requested to be removed).

Note that with the Series 3a and Workabout, there is an additional case when hold and resume must
be invoked and that is on opening/closing of the pack doors. In this case, the LDD must generate its
own Hold and Resume. This situation is examined in more depth in the context of the specific
example drivers presented later in this document.

When called, the DS and ES segment registers are in an unknown state; the device driver should take
whatever steps necessary to obtain direct addressability to its data. For loadable device drivers this
involves setting the DS and ES registers to the CS register. The device driver should not call any
operating system services in the hold vector code due to the time taken, especially on power failure.
PASSED

The AH register takes one of the following

* DevHol dNor mal Device memory is about to be moved.
e DevHol dPower Down The system is about to enter the standby state.
* DevHol dPower Fai | The system has lost its power supply.
RETURN
None.
PANIC

The hold vector must not panic: it will cause an operating system kernel fault if it does.
PRESERVE
The SS, SP and BP registers must be preserved by the hold vector.

DevFuncResume

This vector will be called by the operating system when the device driver is requested to be resumed.
The resume vector is called in the context of the operating system. The DevResune operating system
service will cause this vector to be called. Applications should not call this service. The resume
vector will be called either when memory has finished being moved or when the machine powers back
up. In both cases the hold vector will have been called before this vector is called. The device driver
is expected to recover from the previous hold request (except power fail) and resume any 1/O that was
suspended. If the device driver has an interrupt service routine, it should reset the interrupt service
routine's address since the device driver may have moved in memory; its absolute segment address
will be different.

If the hold was a device memory segment move type hold, interrupts should be re-enabled. If the
LDD uses an attached PDD and uses the FAR call mechanism to access the PDD strategy vector, the
address of the PDD should be reset by using the DevGet PDDAddr ess operating system service before
enabling interrupts. Typically, the PDD will have a call back to the LDD and it needs to be informed
of the change of address of the LDD call back function, the LDD-PDD interface definition should
allow such a function request.

If the hold was a power down type hold, the resume vector needs to power up the peripheral and set it
to the state that it was in before the power down occurred. If this is not possible or data has been lost,
the device driver should inform any outstanding requests of this fact. It is also possible that the
hardware device that the driver is associated with has been removed. The driver should be able to
handle this properly. If the device driver is expected to generate events due to an external state
change, the driver should check the external state and generate appropriate events. For example, the
serial driver may be requested to inform an application when the DTR line changes state. The remote
end may have changed the state of DTR whilst the driver is held.

If the hold was a power failure type hold, the resume vector should power up the peripheral and put it

into a known state, preferably the state that the application software thinks that the device is in and
fail any outstanding requests as data is quite likely to have been lost.

Revision 1.00 Page 42 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

When called, the DS and ES segment registers are in an unknown state. The device driver should
take whatever steps necessary to obtain direct addressability to its data. For loadable device drivers
this involves setting the DS and ES registers to the CS register. All operating system services may be
called, except those concerning file or device access.

PASSED

None

RETURN

None.

PANIC

The resume vector must not panic, it will cause an operating system kernel fault if it does.
PRESERVE

The SS, SP and BP registers must be preserved by the resume vector.

DevFuncReset

This function will be called by the operating system when the device driver is requested to reset a
channel. The reset function is called in the context of the operating system so DS and ES are not
available. The device driver must request that the operating system call the reset function. This is
achieved by calling the |1 oRequest Reset system service, usually in the open vector. To cancel this
request, the device driver should call the 1 oRequest Reset Cancel system service. The cancel service
is usually called as part of the close functionality in the strategy vector. The reset vector will be called
when the operating system is tidying up resources owned by a process that has terminated. If a
process terminated before it closed the device driver channel and no reset service is requested, that
channel would remain allocated; no process will ever close the channel. The reset vector allows a
device driver to reset itself and allow the channel to be opened again. Any data required to perform
the reset must be stored in the device driver. The data space belonging to the process that originally
opened the channel has been returned to the operating system memory pool and is no longer valid. If
a device driver can handle multiple channels then the data passed to the | oRequest Reset System
service should identify the channel. This data will be passed in the CX register to the reset vector.
The device driver should only have a reset request outstanding with the operating system while a
process has a channel open.

When called, the DS and ES segment registers are in an unknown state; the device driver should take
whatever steps necessary to obtain direct addressability to its data. For loadable device drivers this
involves setting the DS and ES registers to the CS register or using CS override. All operating system
services may be called, except those concerning file or device access.

PASSED

This function is passed data in the CX register that the device driver requested it be sent to determine
which channel should be reset.

RETURN

None.

PANIC

The reset vector must not panic; it will cause an operating system kernel fault if it does.

PRESERVE

The SS, SP and BP registers must be preserved by the reset vector.

DevFuncUnits

This function will be called by the operating system when the device driver is requested to report the
number of units (i.e. channels) the device driver can support. This function is called in the context of
the operating system. The operating system places no significance on the number of channels a
device driver can support. It is primarily used for informational purposes. An application may use
the number of units to attempt to open any available channel on that device driver.

When called, the DS and ES segment registers are in an unknown state; the device driver should take
whatever steps necessary to obtain direct addressability to its data. For loadable device drivers this
involves setting the DS and ES registers to the CS register. All operating system services may be
called, except those concerning file or device access.

PASSED

Revision 1.00 Page 43 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

None.

RETURN

The AX register should contain the number of channels supported. If a device driver can support
multiple channels (limited only by memory constraints) then the driver may return -1. A serial device
driver, for example, might only support two channels (TTY: Aand TTY: B) whereas the file device
driver can open an unlimited number of files.

PANIC

The channels units vector must not panic; it will cause an operating system kernel fault if it does.
PRESERVE

The SS, SP and BP registers must be preserved by the units vector.

DevFuncOpen

This function will be called by the operating system when a channel to the device driver is required to
be opened. This function is called in the context of the process that called the 1 oOpen system service.
This means that DS and ES point to the application data space. The device driver is passed two
parameters, its device handle and a pointer to an OpenEnt structure. The device handle is the entry in
the system device table of this device driver. The device driver is required to place this handle in the
ChanLi bHandl e field of the ChanEnt structure which must be allocated in the user's data space. The
operating system uses the device handle to route any 1/0 requests on the opened channel to the correct
device driver.

The OpenEnt structure contains three fields, QpenNanmePt r, OpenMode and CpenChan.

The openNanept r field contains a pointer to the character that exists after the device name as passed
to the | oopen system service. For example, if the | oOpen service was passed a name of PAR: A, the
OpenNamePt r field would point to the colon. If the 1 oOpen service was passed a name of TTY. AS5: B
the openNanePt r field would point to the full stop. The device driver should process the name
appropriately, opening the correct PDD as required.

The openMbde field contains the mode for opening the device driver. The available modes are
specified by the device driver writers. For example, a combined Xmodem and Ymodem device driver
could use the mode to specify whether the Xmodem or the Ymodem protocol is to be used.

The openchan field contains the 1/0 channel handle of the device that this driver is required to
‘attach’ to. Attached device drivers are dealt with later in the chapter.

The code in a device driver open vector tends to follow a very similar pattern. This is demonstrated
by the following code fragments and associated comments. The first stage is to allocate some data
space in the calling process' heap space. This will contain the 1/0 channel control block:

nov cx, (size DeviceEnt)

HeapAl | ocat eCel |

jc noMenory

nov bx, ax ; cell handle

If the device driver requires a WaitHandler (described later):

nov al, (VectorHandl er-Vector)/2
| oAddHand! er

jc endFr eeMenory

nov [bx].DriverHandl er, ax

If the device driver's DevFuncReset vector is required to be called:

push bx

nov cX, Channel | ndi cat or ; uni que per channel
nov bx, dx ; the device handl e
| oRequest Reset

pop bx ; restore alloc cell

The chanEnt field of the Dri ver Ent structure must be initialised:

nov [bx].Driverlo.ChanNext, bx
nov [bx].Driverlo.ChanSi gnature, |oChanSignature
nov [bx].Driverlo. ChanLi bHandl e, dx

The chanNext field is used by attached drivers and will usually be set to be the allocated cell handle
of the device driver being opened. The | oFuncAttach and | oFuncDet ach functions manipulate these
fields. The I/O system uses this field to direct the 1/O request to the correct driver.

Revision 1.00 Page 44 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

The chansi gnat ur e field is checked by the operating system during any /O requests for the value

I oChansSi gnat ur e. If it does not contain that value, the process calling the 1/0 service will be
panicked for having passed an invalid 1/0O channel handle.

The chanLi bHandl e field is used by the operating system to route an application's 1/O request to this
device. The 1/O request will call the DevFuncsSt r at egy Vvector of the device driver.

If the driver is an attached driver the following is required:

nov cx, bx ; allocated channe

nmov bx, [si].OQpenChan ; channel attaching to
nmov al, | oFuncAttach ; return in BX the
| oWt hWai t ; channel attached to

Finally, if the channel has been successfully opened:

clc ; Opened Ok

ret ; return BX and DX
The error recovery code typically follows the following pattern:

endFr eeReset :

push ax
push bx
nov cx, Channel | ndi cat or
nov bx, dx
| oRequest Reset Cancel
pop bx
pop ax
endFr eeHandl er:
push ax
push bx

nov bx, [bx].DriverHandl er
| oRenmoveHandl| er

pop bx
pop ax
endFr eeMenory:
push ax
HeapFr eeCel
pop ax
stc
noMenory:
ret

If a device driver supports a fixed number of channels, it typically contains static control blocks. In
order to determine if a requested channel is currently open, a field should be interrogated. The device
driver should ensure that interrupts are disabled during this sort of check since a context switch could
occur and another process request the opening of the same channel. This is the classic 'test and set’
problem encountered in multi-tasking environments.

When called, the DS and ES segment registers point to the data segment of the application process
attempting to open a device channel. The application should ensure that the DS and ES segment
registers do in fact point to its data segment. The device driver must obey the normal rules
concerning segment register manipulation. The DS and ES segment registers can be reloaded if
required from the I nt Ent structure pointed at by the BP register. All operating system services may
be called.

PASSED

DX contains the device handle of the device driver.

Sl is a pointer to the OpenEnt structure

BP is a pointer to the I nt Ent structure.

RETURN

If the channel open was successful, return with the carry flag clear and the BX register containing the
open channel.

If the open failed, return with the carry flag set and the error number in the AL register.

PANIC

The open vector can panic; it will cause the process requesting the device open to terminate. It is
however more usual to return an error to the calling process.

PRESERVE

The DS, ES, SS, SP, BP and DX registers must be preserved by the open vector.

Revision 1.00 Page 45 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

DevFuncStrategy

When an application makes an 1/O request on the opened device driver channel the request is routed
to this vector by the operating system. A device driver defines the set of functions that it supports.
These typically include | oFuncSet , | oFuncSense, | oFuncRead, | oFuncW it e and | oFuncd ose. A
device driver does not have to support any particular function, as it is a matter of design between a
device driver writer and application writer as to what functions and associated parameters are
provided. To obtain the power of attached device drivers, however, it is recommended that the device
driver use the system defines with their appropriate functionality, for example, the | oFuncWi te
function number should always be associated with writing data.

The strategy function is passed the channel handle as allocated in the open vector in the BX register.
This typically contains control information concerning the current state of the 1/0O channel.

The SI register contains a pointer to a RqEnt structure. This structure contains four fields,

RgFuncti on, RgSt at usPt r, RgALPt r and RgA2Pt r .

The RgFunct i on field contains the function number as passed to the | ow t hwai t (or

I oAsynchr onous) /O request by the application. If a device driver does not support the specified
function, it should pass the request on to its 'parent' device driver.

The RgSt at us pointer contains a pointer to a memory location in the application process's data space
that receives the 1/O requests completion status. The device driver must set this memory location to
the value Pendi ngEr r whilst the 1/0 request is outstanding and a completion code when the 1/0
request completes. An 1/O request may complete within the strategy vector or it may complete some
time in the future, presumably from some interrupt.

The RgALPt r and RgA2Pt r fields contain the argument 1 and 2 parameters as passed to the

I oWt hwai t (or I oAsynchronous) system services. The device driver is free to specify what these
parameters are (if any).

The operating system defines a set of common function numbers used by device drivers referred to as
the | oFuncXxX set of defines. By convention, a device driver should select from this list, particularly
if some of the more advanced features of the 1/0O system are to be used, such as attached device
drivers. The more common defines are listed below:

e | oFuncRead ; read from the device.

e |oFuncWite ; write to the device.

* loFuncd ose ; close device channel.

* loFuncCancel ; cancel an 1/0O request.

e | oFuncSet ; set driver characteristics.

* loFuncSense ; sense driver characteristics.
e | oFuncFl ush ; flush any buffers.

The PLIB library functions p_read, p_wri t e and p_cl ose will call the device driver with the
| oFuncRead, | oFuncW i t e and | oFuncd ose function numbers. Thus, if the device driver chooses
an alternative function number set, an application will not be able to use the supplied library
functions. All resident device drivers obey the following conventions:
» A cancel request will cancel any outstanding requests. A cancel request will not return any
error.

* Aclose request will ensure that any outstanding requests are completed before closing the
channel. A close request will not return any error.

* Only one request of a particular type can be outstanding at any one time. If a second request
is made the device driver will panic the calling application.

Any functions that the strategy function does not support should be passed on to the next driver down
the driver hierarchy. If the driver is a root driver (attached driver), this is achieved using the | oRoot

Revision 1.00 Page 46 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

(1 oSuper)system service. If the requested function is not supported by any driver, the operating
system will return a Not Suppor t ed error.

When called, the DS and ES segment registers point to the data segment of the application process
making the 1/O function request. The application should ensure that the DS and ES segment registers
do in fact point to its data segment. The device driver must obey the normal rules concerning
segment register manipulation. The DS and ES segment registers can be reloaded if required from
the I nt Ent structure pointed at by the BP register. All operating system services may be called.
PASSED

BX contains the allocated channel control block.

DX contains the device handle of the device driver.

Sl is a pointer to the RqEnt structure.

BP is a pointer to the I nt Ent structure.

RETURN

If the function request is successful, the strategy vector should return with carry clear. A request
typically causes some I/O. If the 1/O is completed by the strategy vector (i.e. the request is for a
synchronous function such as close), the completion status should be written back to the RqSt at usPt r
location and the 1/0 semaphore signalled (using the I oSi gnal system service). If the request has not
yet completed (i.e. the request is for an asynchronous function), the RqSt at usPt r location should
contain the value Pendi ngEr r and the 1/0 semaphore should not be signalled.

If the function request failed the strategy vector should return with carry set and the error code in AL.
In this case, typically no 1/O requests will be completed.

PANIC

The strategy vector can panic; it will cause the process making the 1/0 request to terminate. In most
cases it is usual to return an error to the calling process. A major exception to this is if the calling
process makes an 1/0 request of the same type as one that is currently outstanding and the device
driver only supports one 1/O request of a particular type at a time; by convention the device driver
should panic the calling process with the Pani cI oPendi ng panic code.

PRESERVE

The DS, ES, SS, SP and BP registers must be preserved by the strategy vector.

Interrupts and Interrupt Service Routines

Device drivers that talk to hardware tend to have interrupt service routines associated with them,
especially if they are receiving data from an external source. The EPOC operating system provides a
framework within which an interrupt service routine can be written relatively easily. An interrupt
service routine is a code section that is called by the OS in response to a particular hardware event.
As indicated in the Hardware Overview, the SIBO architecture allows for eight independent hardware
interrupt sources, some of which are pre-allocated to system components. The operating system
provides the GenSet Revect or service to allow a device driver to install an interrupt service routine
for any of the eight hardware interrupt sources. This call passes the interrupt vector (the address of
the interrupt service routine) and the interrupt number (which is dependent on the host hardware) to
the OS so that it knows where to jump to when the interrupt occurs. A device driver should use this
system service and not poke directly into the 8086 interrupt vector table. The address passed to the
GenSet Revect or service is not written into the interrupt vector table but to an internal table. After
invoking this service, the desired interrupts must be masked in by writing the appropriate mask to the
mask register. Initially, of the eight interrupt sources, only the tick interrupt is masked in.

When an interrupt occurs, the microprocessor could be running any currently active process. The OS
handles the servicing of interrupts by building a mandatory operating system call frame. All CPU
registers are preserved on route. The interrupt service routine is then called as a FAR routine. Since
the operating system preserves all registers the interrupt service routine is free to use any register. As
with all interrupt service routines various rules apply:

* Interrupt service routines should execute as fast as possible. Operating system interrupt
service routines are tuned to last no longer than one millisecond.

Revision 1.00 Page 47 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

« Typically, interrupt service routines do not enable interrupts unless the routine can handle re-
entrancy.

» Interrupt service routines run in the context of whatever process is running at the time of the
interrupt. An interrupt service routine should not attempt to obtain admissibility to the
process that opened the channel but access the internal driver space only which in general is
its own code space.

* An interrupt service routine must not directly cause the OS to reschedule the running process
as this would significantly delay its completion. It must use the loSignalByPidNoReSched System
service in order to indicate to the handler that an event has occurred to the owning process.
The handler function of the device driver must pick up the event and inform the owning
process.

* An interrupt service routine should return with the carry flag clear if it requires a reschedule
to occur (it has called loSignalByPidNoReSched) otherwise return with the carry flag set. This
will cause the operating system to reschedule if the internal state allows such an action
otherwise the reschedule request is effectively queued until such time that the operating
system can reschedule.

At some stage during the course of an interrupt service routine, it is necessary to clear the interrupt
line with some hardware-specific action. Then the interrupt controller inside the host ASIC1 or
ASIC9 has to be cleared with a write to the NonSpecificEoi location. To remove the interrupt service
routine address, the operating system service GenReset Revect or should be used. This will reset the
internal table entry to the default held in the ROM. Additionally, the interrupt mask should be reset
to the original value.

Device Driver 1/0 Semaphore Wait Handlers

An LDD may nominate one of its functions to be called by the operating system every time the 1/0
semaphore of the process that opened the channel is signalled. The nominated function, known as the
wait handler, will only be called if the application is waiting for an outstanding I/O request to
complete. For well written applications this is practically all the time. By convention the vector table
entry after the mandatory vectors contains the handler vector. A handler routine is similar to an
interrupt service routine in that it appears to run ‘from nowhere'. Comparing handlers and interrupt
services routines shows that:

« A handler will always run in the context of the process that has opened a channel. An
interrupt service routine will run in the context of whatever process happens to be running at
the time of the interrupt.

« A handler can access the data space of the process that opened the channel. The interrupt
service routine must not. An interrupt service routine should only access the data space in
the driver which is usually its own CS space.

« A handler can cause a reschedule. An interrupt service routine must not cause a reschedule.
If it did, the interrupt would not be fully serviced (the rest of the interrupt service routine
would not be executed until a reschedule back to the process running at the time of the
interrupt, which may not happen for a significant length of time). The interrupt service
routine must only use the 1 0Si gnal ByPi dNoReSched to signal the channel owner.

The handler is the mechanism by which hardware interrupt events can be filtered through to the
process using the 1/0 channel. Typically, it is in the handler code that the I oSi gnal signifying
completion of an asynchronous 1/0 request is invoked.

Loadable Physical Device Driver Structure

A loadable PDD must obey the following rules:
* There must be a single code segment and no data segments.

Revision 1.00 Page 48 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

* The code segment must start with a Li bEnt structure.
e There must be at least two supported functions, with typically a further two defined.

Single Code Segment

A PDD must be written to contain any internal variables within its own code segment. Typically,
these variables are only concerned with unit (i.e. channel) allocation and hardware state. Data space
for a particular open channel can be allocated in the heap space of the process that opens the device.
This data space will however disappear if the process terminates, thus any variables required for
‘freeing’ the hardware after a process terminates must exist in the code space of the device driver.

The LibEnt Structure

A Li bEnt structure has the following format:
e Atwo byte signature

e An eight byte name
* Atwo byte vector count
* A vector table

The two byte signature should contain the 'PDDSignature’ define. The eight byte name contains a
zero terminated name, being that of the device driver. Note that there is no trailing colon. The two
byte vector count contains the number of vectors that follow immediately after the count. There
should be at least two. For example:

dw PDDSi gnat ur e ; Its an PDD driver
db 'DVR. HW', 0 ;. Nanme of the driver
dw (Vect or End- Vector)/2 ; Number of vectors
Vect or
dw Dvrinstall ; Install vector
dw Dvr Renove ;. Renove vector
Vect or End:

Most PDDs also define a further two vectors:
dw Dvr Open ; Open Vector
dw Dvr St r at egy ; Strategy vector

The table of vectors is a table of offsets within the device drivers code segment of the routines that
implement the required functionality. The vector table must have the entries in the order shown in
the example.

Mandatory PDD functions

All PDDs must support the following two functions:
e DevFunclnstal | PDD called on device installation.

¢ DevFuncRenovePDD called on device removal.

Most PDDs will support the following two additional functions:
* DevFuncCpenPDD called to open a PDD.

e DevFuncStrat egyPDD called to provide PDD functionality.

All of the routines pointed at by the function vector table will be called FAR by the operating system
and should consequently use a FAR return machine code instruction to return back to the operating
system. Since the FAR return address is to the operating system, it does not matter if the operating
system moves memory whilst code in the LDD is being executed; the operating system cannot move.

DevFuncinstallPDD

This vector will be called by the operating system when the device driver is loaded to initialise any of
its internal variables. The install vector is called in the context of the operating system and not the
process that is loading the device driver. The Devl nst al | operating system service will cause this

Revision 1.00 Page 49 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

vector to be called. Applications should not call this directly, they should use the DevLoadPDD
service.

An installable device driver may have the same name as a currently installed device driver. When
installed, the driver is added to the end of the device driver table. When a channel to a device driver
is being established by the operating system, it searches the device table from the end first, thus the
latest installed device driver with the required name will be asked first for a channel. So as with
LDDs by this mechanism installable device drivers can replace any of the resident drivers.

When called, the DS and ES segment registers are in an unknown state. The device driver should
take whatever steps necessary to obtain direct addressability to its data. For loadable device drivers
this involves setting the DS and ES registers to the CS register. The operating system will not move
memory whilst in this function, thus the normal rules governing DS and ES may be ignored. All
operating system services may be called except those concerning file or device access.

PASSED

No values are passed to the install vector.

RETURN

If the installation was successful, return with the carry flag clear.

If the installation failed, return with the carry flag set and the error number in the AL register.
PANIC

The install vector must not panic; it will cause an operating system kernel fault if it does.
PRESERVE

The SS, SP and BP registers must be preserved by the install vector.

DevFuncRemovePDD

This vector will be called by the operating system when the device driver is requested to be unloaded.
The remove vector is called in the context of the operating system and not the process that requests
the unload. The DevRenove operating system service will cause this vector to be called. Applications
should not call this service directly; instead, they should call the DevDel et e service. Before the
remove function is requested, the operating system will send a DevFuncHol d request to all LDDs.
The LDD is responsible for ensuring that no activity will occur during the remove. Note that any
device driver that handles hardware interrupts must contain an LDD since only LDDs receive a hold
request. If the device driver is currently busy serving a client, the remove request should return an
error. All resident device drivers will return an error since there is no mechanism by which they can
be re-installed.

When called, the DS and ES segment registers are in an unknown state; the device driver should take
whatever steps necessary to obtain direct addressability to its data. For loadable device drivers this
involves setting the DS and ES registers to the CS register. The operating system will not move
memory whilst in this function, thus the normal rules governing DS and ES may be ignored. All
operating system services may be called except those concerning file or device access.

PASSED

No values are passed to the remove vector.

RETURN

If the remove was successful, return with the carry flag clear.

If the remove failed, return with the carry flag set and the error number in the AL register.

PANIC

The remove vector must not panic; it will cause an operating system kernel fault if it does.
PRESERVE

The SS, SP and BP registers must be preserved by the remove vector.

DevFuncOpenPDD

This function is defined as a convenience function for the LDD-PDD interface. When an application

opens a channel to an LDD, it normally uses the | oOpen system service. If the name specifies, or the

LDD requires, a PDD then it needs to open a channel to a PDD. The DevOpenPDD system service will
call this PDD vector to establish a channel. The LDD now has a choice of calling a PDD vector using
the DevVect or system service or calling the fourth vector in the vector table directly. The fourth

Revision 1.00 Page 50 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

vector is assumed to be a strategy vector to which any parameters as required by the LDD-PDD
interface can be passed. The FAR address of the strategy vector is returned by the

DevGet PDDAddr ess. When an LDD receives a DevFuncResune it should call DevGet PDDAddr ess
again to ensure that if the PDD has moved the LDD still has its correct address. As a design, a PDD
could provide many vectors, one for each required function. The LDD would then use the DevVect or
system service to access each of these functions. The DevGet PDDAddr ess will only return the FAR
address of the fourth vector.

When called, the DS and ES segment registers point to the data segment of the application process
making the open function request. The application should ensure that this is indeed the case. The
device driver must obey the normal rules concerning segment register manipulation. All operating
system services may be called.

PASSED

The BX register contains a pointer to the PDD unit name. The pointer passed to the DevOpenPDD
service is used to find the PDD device to open. The BX register is loaded with a pointer to the
trailing colon (if any) in the PDD unit name. For example if the name "TTY. AS5: A" was passed to
the DevOpenPDD service, BX would contain a pointer to : A upon calling the open vector.
RETURN

If the open was successful, return with the carry flag clear.

If the open failed, return with the carry flag set and the error number in the AL register.

PANIC

The open vector can panic; it will cause the process requesting the device open to terminate. It is
however more usual to return an error to the calling process.

PRESERVE

The SS, SP and BP registers must be preserved by the open vector.

DevFuncStrategyPDD

This function is defined as a convenience function for the LDD-PDD interface. Typically, all
application function requests are routed through the strategy vector. To speed the calling interface,
the DevGet PDDAddr ess operating system function will return a FAR address of this vector. The
device driver writer defines all the functions and return values as required.

When called, the DS and ES segment registers point to the data segment of the application process
making the function request. The application should ensure that the DS and ES segment registers do
in fact point to its data segment. The device driver must obey the normal rules concerning segment
register manipulation. All operating system services may be called.

PASSED

The parameters passed are defined by the device driver write.

RETURN

All returns are defined by the device driver writer.

PANIC

The strategy vector can panic; it will cause the process requesting the function to terminate. It is
however more usual to return an error to the calling process.

PRESERVE

Which registers are preserved is defined by the device driver writer.

Revision 1.00 Page 51 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

10. ASIC4/ASIC5 BASED DEVICE DRIVERS

Introduction

This chapter describes the rules and problems involved in writing a device driver that controls some
form of ASIC4 or ASIC5 based hardware. Details concerning the internal organisation of these
ASICs were presented earlier in chapters 6 and 7. The emphasis is on their use for Series 3a
applications, though most issues that will be discussed also apply to the Series 3, MC and HC range of
Psion products.

In addition to the eight mandatory functions already detailed in the Device Driver Overview chapter,
an LDD will usually provide additional functionality in the form of further vector table entries
dependent upon the requirements of its application. Wherever possible, these functions should make
use of the various pre-defined system defines for services such as reading (p_r ead) and writing
(p_wri te)etc. Itshould be noted that there is no particular requirement to implement a device
driver as a separate PDD and LDD and in the case of the example logical device driver
A4EXIF.LDD, the approach taken is to incorporate both aspects into the one LDD.

SIBO Hardware Expansion Channels

The number of SIBO expansion channels supported by the host machine will vary according to the
particular Psion hardware present. So that a single device driver may be compiled for the different
host machine possibilities, a number of build flags can be used to set various constants within the
include files. The hardware options are outlined in the table below:

SIBO Machine Flags | Number of SIBO serial channels supported Machine Build Flag
Consumer (S3a) Refers to S3a with ASIC9 only. Supports 1 SIBO channel BUI LDSB

(A)
Corporate (HC) ASIC1/2 only. Supports 3 SIBO channels (A, B, C) BUI LDCH
Workabout ASIC9 only. Supports 3 SIBO channels (A, B, C) BU LDSC
s3 Refers to s3 with ASIC1 only. Supports 1 SIBO channel (A) | BUI LDHH
Other SIBO machines | ASIC9 or ASIC1/2 they support 2 SIBO channels (A, B) machine-dependent

It should be noted that Psion device drivers should be designed to be easily adapted from machine to
machine. For a well-written driver, the only change that needs to be made in adapting it for use on
another Psion machine is the alteration of the build flag at the start of the code. This flag indicates to
the compiler which SIBO machine flags as well as other variables should be set for the host machine.
The four most important SIBO machine variables are the channel interrupt mask, the channel
interrupt number, the channel interrupt vector and the hardware SIBO channel. The channel
interrupt mask is an eight bit value or'd with the contents of either A1l nt er r upt Mask or

A9BI nt er r upt Mask (the mask registers) to initiate interrupts on the relevant channel depending on
whether the interrupt controller resides in ASIC1 or ASIC9. If this mask is then used in a

HaGet Channel call, any hardware interrupts on the selected expansion channel will be directed to the
appropriately coded interrupt service routine. The channel interrupt mask is also required in the
subsequent HwrFr eeChannel OS service call and when stopping hardware interrupts. The channel
interrupt number is a sixteen-bit quantity required by the GenSet Revect or and GenReset Revect or
OS system services to indicate to the OS which default interrupt service routine is to be replaced by
the suitably coded device driver interrupt vector. The channel interrupt vector is a sixteen-bit
pointer to the location of that interrupt vector in the device driver code. Finally, the hardware SIBO
channel is used by the HuSel ect Channel OS service to direct any SIBO serial control or data frames

Revision 1.00 Page 52 of 115 pages

The Psion SIBO Hardware Development Kit

Psion PLC (c) May 1995

along the appropriate channel. The situation regarding the value of these variables for the expansion
ports on all current SIBO platforms is illustrated in the table overleaf:

Interrupt Masks

mask ASMExpIntB
(Expansion Port B)
mask A9MSlave

(Expansion Port C)

mask ExplntRightB
(Expansion Port B)
mask Asic2Int

(Expansion Port C)

mask ExplntRightB
(Expansion Port B)

SIBO Flags Consumer (S3a) |Corporate or Corporate (HC)[MC Consumer
\Workabout (Series3)

Expansion 1 3 3 2 1

Channels

Controller ASIC |ASIC9 IASIC9 IASIC2 IASIC2 IASIC2

IMask Regi ster JA9BInterruptMaskRW |A9BInterruptMaskRW |AllnterruptMask AllnterruptMask AllnterruptMask

Channel mask A9MSlave mask ASMExpIntA mask ExplntLeftA |mask ExplntLeftA mask Asic2Int
(Port C) (Expansion Port A) (Expansion Port A) |(Expansion Port A) |(Expansion Port C)

Ptr

Channel HwlIrg2Revector HwlIrg4Revector HwlIrg3Revector HwlIrg3Revector HwlIrg4Revector
HwlIrg5Revector HwlIrg2Revector HwlIrg2Revector
’I\Inte I‘tl)‘upt HwIrg2Revector HwIrg4Revector
umbers
Channel IntVecO IntVecO IntVecO IntVecO IntVecO
(Int. Routine code at this|IntVecl IntVecl IntVecl
Interrupt Vector label) IntVec2 IntVec2

Channel
Hardware Select

SelectChannel5

SelectChannel3
SelectChannel4
SelectChannel5

ExpChannelLeftA
ExpChannelRightB
SelectChannel7

ExpChannelLeftA
ExpChannelRightB

SelectChannel7

Talking to ASIC4

All communication to an ASIC4 is via a Psion Serial Link. As explained in the chapter on the SIBO
serial protocol, two forms of data can be sent and received along this channel. These are control and
data bytes. Control bytes give specific instructions to ASIC4 and data bytes can either be data sent to
or from ASIC4 or data given to or taken from peripheral chips in ASIC4's address space. Sending
and receiving control and data frames down a Psion Serial Channel from a Series 3/HC host is simply
a matter of IN and OUT instructions to various fixed 1/O addresses. Various assembler macros have
been set up to ease this task and provide machine independence and they are detailed in the appendix.

These include:

SCONTOUT
SDATAI N
SDATAQUT

XNOP
SBUSY

Wait a short while
Wait while the Psion Serial Link is busy

Output the control byte held in the AL register
Input a byte of data and place it in AL
Output the data byte in the AL register

Once a piece of peripheral hardware has been designed the appropriate software must be written to
control it. All hardware devices on Series 3/3a, Workabout and HC machines are controlled by device
drivers. These act as an interface between a piece of hardware and an application that uses it. The
following section goes into further detail regarding the methods by which a device driver is able to
communicate with and thereby control an ASIC4 and ASIC5 based peripheral.

ASIC4 Registers

ASICA4 has eight registers and their functions in mixed (i.e. peripheral) mode are outlined below:

Register 0: This register is the read/write Data Register that controls the data lines DO-D7 which are
normally in tri-state mode. Data written to the Data Register is output on DO-D7 during a write cycle
and data input to the DO-D7 may be read from the register during a read cycle. On reset, this register
holds the Info Byte and its bits have the following meanings:

Revision 1.00

Page 53 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

Bit No. D7 D6 D5 D4 D3 D2 D1 DO
D D D N N § S S

D D D Device type

0 0 O RAM SSD

0 0 1 Intel Flash type 1

0 1 0 Intel Flash type 2

0 1 1 TBS

1 0 O TBS

1 0 1 TBS

1 1 o0 Read only SSD (ROM OTP etc.)
1 1 1 Hardware Write protected SSD
N N Number of devices

0 0 1

0 1 2

1 0 3

1 1 4

S § S Device Size

0 0 O Illegal (Indicates no SSD present)
0 0 1 32Kbyte

0 1 0 64Kbyte

0 1 1 128Kbyte

1 0 O 256Kbyte

1 0 1 512Kbyte

1 1 0 1Mbyte

1 1 1 2Mbyte

Register 1: This register is both a read and write register. In read mode, it is termed the Input
Register. The eight bits of this register are then defined as follows:

7 6 5 4 3 2 1 0
M De Ne Se X2 In2 Inl In0

The Se, De and Ne bits hold, on reset, the Extended Info Byte which is used in ASIC4 Extended mode
to define the type of peripheral device as explained later in the section on ASIC4 reset and
configuration and outlined below:

M De Ne Se

1 0 0 O No peripheral devices

1 0 0 1 Turbo RS232 serial (16550)

1 0 1 o0 3Fax

1 0 1 1 T.B.S.

1 1 0 0 T.BS

1 1 0 1 T.B.S.

1 1 1 0 T.BS

1 1 1 1 Extended info contained in ROM.

The X2 bit sets the state of the X2D2 input which is used to indicate whether the device size is
correct. In M=0 mixed mode, the X2 bit must be low. Inputs In0-In2 hold the current status of the
three correspondingly named general input lines to ASICA4.

In write mode, Register 1 is termed the Device Size Register where bits 3-0 (S3-S0) map to the
settings of the decoder inputs (and hence the peripheral device size) as follows overleaf:

Revision 1.00 Page 54 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

Size Register Decoder Inputs Device Size (bytes)
S3 S2 S1 SO DCODC1DC2

0O 0 0 O Al5 Al6 Al7 32k

0 0 0 1 Al5 Al6 Al7 32k

0O 0 1 0 Al6 Al7 Al8 64k

0O 0 1 1 Al7 A18 Al19 128k
0 1 0 O Al18 A19 A20 256k
0 1 0 1 Al19 A20 A21 512k
0 1 1 0 A20 A21 A22 M

0o 1 1 1 A21 A22 A23 2M

1 0 0 O A22 A23 A24 4M

1 0 0 1 A23 A24 A25 8M

1 0 1 o0 A24 A25 A26 16M

1 0 1 1 A25 A26 A27 32M

1 1 0 O A26 A27 0 64M

1 1 0 1 A27 0 O 128M
1 1 1 o0 0 0 O 256M
1 1 1 1 0 0 O Not Used

This register defaults to 0x0f on reset (i.e. not used).

Register 2: A write to this register , the Address Increment Register, will increment the addresses
A0-A3.

Register3: This register is the write-only Address Register which controls all 28 address lines (AO-
A27) directly and the eight chip selects (CS0-CS7) indirectly. The address register is written to in
multi-transfer mode LSByte (ATO) first. There can be up to four bytes written:

Byte Address lines
ATO A0 - A7
AT1 A8 - Al5
AT2 Al6 - A23
AT3 A24 - A27

When the first byte is written, all the higher address lines (A8-A27) are reset to 0. Bits 4-6 of AT3
may be used by the internal address decoder to control the CS outputs CS0-CS3 if appropriate. On
reset, all bits of this register are cleared.

Register 4, 5 and 6: Not implemented.
Register 7: This register is the write only ASIC4 Control Register and holds the following bits:

Bit: 7 6 5 4 3 2 1 0
Label: LBO TSTA LT™M VPS EDA CSS WRS OES

Setting the LBO and VPS bits causes the corresponding lines on ASIC4 to be set high enabling them
to be used as general purpose outputs for peripheral development. OES and WRS control R/W
accesses.

Additional ASIC4 Signals

In0, In1, In2 are general purpose digital inputs. LBO, VPS are general purpose digital outputs. OE,
WR control Read/Write bus accesses. MCSD, X2D2 should be tied to ground via a 100k resister.
POR is the reset line.

Revision 1.00 Page 55 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

Talking to ASIC5

The Psion serial protocol was designed to allow many different peripheral ASICs to lie on the same
serial channel. Before software can communicate with an ASIC5 it must first be selected. ASIC5
must be selected in different ways depending on whether it has been configured (in hardware) to
operate in either Pack or Peripheral mode. In addition to selecting ASIC5 when it is first used,
ASIC5 must be re-selected whenever a hold and resume is generated due to power down, pack doors
opening or when the peripheral is inserted or removed. ASIC5 will always respond to a select with a
byte indicating what type of peripheral or pack it is. If there is no ASIC5 connected to the Psion
serial link there will obviously be no response (zero is returned) and software must then take the
appropriate action. To select a peripheral mode ASICS5 the following code can be used:

HwNul | Fr ame

nov al, (Serial Sel ect or Asic5Nornalld)
SBUSY

SCONTOUT

XNOP

SBUSY

SDATAI N

t est al , al

je NoASI C5Per i pher al Qut Ther e

To select a pack mode ASICS the following code can be used.

HwNul | Fr ame

nov al, (Serial Sel ect or Asic5Packld)
SBUSY

SCONTOUT

XNOP

SBUSY

SDATAI N

t est al , al

je NoASI C5PackCQut Ther e

Note that an ASIC4 can pretend to be an ASIC5 in pack mode and will respond appropriately.

ASIC5 Registers

ASICS has sixteen internal registers. To read or write from an ASIC5 register takes two steps. First
a control byte must be sent along the Psion serial link to select which register. This should be
followed by a read or write of the appropriate data value. The sixteen registers are listed in the table
below. Some can be read and written to and some are read or write only.

Register | Read/Write Function
0 R/IW Port A read and write data
1 R/IW Port B read and write data
2 R/IW Port B control
3 W Port D and C write data
4 ? Not used
5 7 Not used
6 RIW Interrupt Mask read and write
7 R/IW Interrupt/Control resister
8 RIW UART Status/UART Control register
9 RIW UART Receive/UART transmit holding register
10 w UART Baud rate LSB
11 w UART Baud rate MSB
12 RIW Synchronous Port1 read/Port1 and 2 reset
13 R Barcode read data
14 R Synchronous Port2 read
15 ? Not used

Revision 1.00 Page 56 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

Reading from the Port A register causes ASIC5 to generate a memory access cycle. The value read
from port A will be the value retrieved from any attached memory or memory mapped peripheral.
Writing to Port A will cause ASICS5 to generate a write cycle and write the supplied value to attached
memory. In both cases the address used for the access will depend on ASIC5's mode and the
configuration of ports B, C, and D. If the UART is enabled (Bit O of the port B mode register)
memory cannot be accessed because port A lines are reused.

Writing to port B will cause the value written to be latched onto the output lines PBO-PB7 (which
form address lines AO-A7 for memory access cycles). Reading from this register will return the last
value written.

Writing to the port B mode controls various aspects of ASIC5 behaviour. The table below indicates
the meanings of each bit in the register. When set to operate in counter mode the value output on
lines PBO-PB7 can be incremented by reading from the port B mode register, post-incremented by
reading or writing to the port A register or cleared to zero by writing to the Port D and C register.

Bit Function
0 0, Memory mode. 1, Peripheral mode -enables UART
1 Port B mode, see table below
2 Port B mode, see table below
3 0, Normal mode. 1, Test mode
4 Not Used
5 Not Used
6 Not Used
7 Not Used
Bit2 Bitl Mode
0 0 Counter mode
0 1 Latch mode
1 0 Baud rate out on port B
1 1 Test bus output on port B

When ASICS is in pack mode the first write to the port D and C register will be latched onto lines
PDO-PD7. In multiwrite mode the second and subsequent data writes will be latched onto port C with
the following bits in the register forming the following functions.

The bit SELO and SEL1 determine which chip select is used when a memory access cycle is generated

Data bit Pin Function
0 PCO Al6
1 PC1 Al7
2 PC3 Al8
3 PC4 Al19
4 PC5 A20
5 ? Not used
6 - SELO
7 - SEL1

by accessing port A. CS0-CS3 are selected as follows.

Revision 1.00

SEL1 SELO CS
0 0 CS0
0 1 Cs1
1 0 CS2
1 1 CS3

Page 57 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

In peripheral mode a write to the port D and C register will latch the value written onto lines PD1-
PD7. In peripheral mode the line PDO forms the UART TX line. Setting bit zero in the port C and D
register therefore has no effect.

ASICS is capable of generating an interrupt due to various external events. The interrupt mask
register is used to select which events will generate an interrupt. Writing to the interrupt mask
register will set the mask to the value written. Reading the interrupt mask register will return the
current mask. The meanings of each bit in this register is given in the table below. Setting an
appropriate bit to 1 will enable that events interrupt, clearing to 0 will stop that event from causing an
interrupt. On reset all events are disabled.

Bit Source Event

0 UART UART character received

1 UART UART transmitter empty

2 UART, change on PA1-PA3 | UART error or modem line status change
3 PC7 Barcode switch/general interrupt

4 SR Synchronous portl character received

5 SR Synchronous port2 character received

6 PC4 Barcode data/general interrupt

7 PA4 Centronics busy low/general interrupt

When an interrupt occurs reading the Interrupt Status register will indicate the source of the interrupt.
The meaning of each bit corresponds directly to each bit in the interrupt mask (see table above). A
high bit indicates an active interrupt event.

Reading the Barcode data register returns a byte representing the states of the following lines.

us]
=

Line
PC4
PC7
PB2
PB3
PB4
PB5
PB6
PB7

N[O |wIN|F|IO

Communicating with ASIC4

ASICA4 is capable of operating in several modes. Attached peripherals can contain an ASIC5 chip
instead of an ASIC4. Before talking to an ASIC4 you must first ensure that there is an ASIC4 at the
end of your serial link and you must set ASIC4 into the correct operating mode. You must do this
when the channel is first obtained to ensure you have the right peripheral to start with, and also
whenever you get a Hold and Resume due to a power down, Pack doors opening, or the peripheral
being removed. You should also check the peripherals ID to check what peripheral it is. The user is
more than likely to pull out your 1/O port and replace it with a 3Fax in mid operation. You select
ASIC4 in the correct mode by sending a special control code. If there is an ASIC4 out there it will
respond by sending back a non zero value. The peripherals ID can be read back from ASIC4's info
register. This register also returns the state of the input lines INO, IN1, IN2. The coding example
below shows how ASIC4 can be checked for, selected and the peripheral 1D checked:

HamNul | Fr anme

nmov al , (Serial Sel ect or Asic4ld) ; First look for an
SBUSY ;. ASIC4 at the other
SCONTQUT ;. end of the link
XNOP

Revision 1.00 Page 58 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

SBUSY
SDATAI N
t est al , al
je NoANnASI C4l sl t AnASI C5
nov al , (Serial ReadSi ngl e or A4l nfoR) ; Now see if we
SBUSY ; have the right
SCONTOUT ; peri pheral
XNOP
SBUSY
SDATAI N ;. Mask out the unwant ed
and al , 0f Oh . bits
cnp al , PERI PHERAL_I D ;. check for correct ID
j ne | sASI C4But Not Ri ght Per i pher al ; Got our peripheral
clc ; Connection Ckay!
ret
| sASI C4But Not Ri ght Peri pheral : ; I's an ASIC4 but not
popf ; the right peripheral
stc ;. Connection Fail ed!
ret
NoANnASI C41 sl t AnASI C5: ; No ASIC4
nov al, (Serial Sel ect or Asic5Nornalld)
SBUSY ; Coul d have been an
SCONTOUT ; ASIC5 so try to put
XNOP stc ; back in the
ri ght node
ret ; Connection Failed

Bits in ASIC4’s info register have the following definitions:

1 | IDmsb | ID | IDIsb | [IN2 | Nt | N0 |

Sending and Receiving data using ASIC4

All ASIC4 peripherals are memory mapped into that ASIC's address space. To access a peripheral or
a particular peripheral's register the ASIC must first be told to set its address bus to the appropriate
location. Once it has been informed of the address which it is to access that location can be read from
or written to as many times as required. The value to be written is held in the data register. To read
or write to another location the address that the ASIC is accessing must be changed. To read from a
random address within the ASIC's address space the sequence would be:

1) Send a control code to inform the ASIC that it is to set its address bus to the following address.

2) Send the address to position to.

3) Send a control frame to inform the ASIC that we wish to read from this address.

4) Read back the byte.

To write a random value to and address within the ASIC's address space the sequence would be:

1) Send a control code to inform the ASIC that it is to set its address bus to the following address.
2) Send the address to position to.

3) Send a control frame to inform the ASIC that we wish to write to this address.

4) Send the byte.

Overleaf are two 8086 assembler functions Input and Output which read from or write to an address
within the ASIC's address space. These functions only give access to the bottom 256 addresses. For
peripheral devices this is usually more than adequate. Interrupts should always be off during calls to
these functions to prevent the S3/S3a/HC from multitasking. Note that in the following routines,
A4Addr ess and A4Dat a refer to the value of the respective ASIC4 registers. Seri al Wit eSi ngl e has
the value corresponding to a single frame write in the SIBO serial protocol format. These system
defines can be found in the important include files ospack.inc and ossibo.inc.

Pr ocBegi n@ Qut put

; Qut put byte to ASI C4-based peri pheral
; IN. DL holds the hardware address ASIC4 is to wite to

Revision 1.00 Page 59 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

; AL holds the byte to be output to that address

push ax

nov al,(Serial WiteSingle or A4Address) ; CTRL=Wite to A4 address
reg

SBUSY

SCONTQUT :Send this control
frame

nmov al, dl ; DATA=Har dwar e addr ess

SBUSY

SDATAQUT :Send this data
frame

nov al,(Serial WiteSingle or AdData) ; CTRL=Witing data
now

SBUSY

SCONTQUT :Send this control
frame

pop ax ; DATA=Data to wite

SBUSY

SDATAQUT :Send this data
frame

ret

ProcEnd noret

ProcBegi n@ | nput
; I nput byte from ASI C4- based peri pheral
; IN: DL holds the hardware address ASIC4 is to read from
; QUT: AL holds the value read fromthat address

nov al,(Serial WiteSingle or A4Address) ; CTRL=Wite to A4 address
reg

SBUSY

SCONTQUT :Send this control
frame

nov al , dl ; DATA=Har dwar e addr ess

SBUSY

SDATAQUT :Send this data
frame

nov al , (Seri al ReadSi ngl e or A4Dat a) ; CTRL=Readi ng dat a
now

SBUSY

SCONTOQUT ; Send above
control franme

SBUSY

XNOP

SDATAI N ; Recei ve data frane

ret ;AL hol ds the data

ProcEnd noret

Obtaining and using a channel

The s3/S3a/HC have three Psion serial links. Only one of these channels can be selected for
communication at any one time. Two of these channels form the SSD slots. The third forms the
expansion port. Before a device driver is able to talk to a peripheral it must both own and have this
third channel selected. Many device drivers can exist in memory and more than one may access the
peripheral. To prevent multiple access to a single peripheral a device driver must first own a serial
channel before it is free to communicate to the ASIC4/5 peripheral at the end of it. To check if a
channel is free and then reserve it call the operating system function HwGet Channel . This will return
with carry clear if the attempt to capture the channel was successful, carry set otherwise.

nov al , I nt errupt MaskFor Desi r edChannel
HwGet Channel
jc Coul dnt Get TheChannel

Obtaining the desired channel will usually be performed by a device drivers open vector. Open
should fail if the channel is unavailable. If a device drivers takes possession of a channel it is its duty

Revision 1.00 Page 60 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

to free it again once it is finished. This would normally be done when the device drivers is closed and
is performed by the operating system function HwFr eeChannel .

nov al , I nt errupt MaskFor Desi r edChannel
HwFr eeChannel

As illustrated in the above table, on a series 3a the interrupt mask for the expansion port (Port C) is
defined by A9nBI ave, on a series 3 Asi c21 nt. Interrupts are IRQ2 and IRQ4 respectively. Only one
serial link can ever be selected at one moment in time. Selecting a particular channel means that you
are unable to speak to another without selecting it instead. To select a channel the operating system
call HwSel ect Channel is used.

nmov al , Sel ect For Desi r edChannel
HwSel ect Channel
push ax

HwSel ect Channel will return in al the channel that was previously selected. Device drivers should
select the correct channel on entry to any vector or interrupt service routine that needs to
communicate down that channel. On exit the previously selected channel should be restored.
Between the time when the channel is first selected and when the old channel is restored multitasking
should be disabled. this will usually mean switching off interrupts. Because of the watchdog timer,
interrupts cannot be left off for an indeterminate length of time. Communications down channels
therefore will usually be restricted to short bursts. For the expansion port the channel to select on an
S3a is defined by Sel ect Channel 5 on an S3 Sel ect Channel 7.

pushf

cli

nov al , Sel ect Channel 5
hwSel ect Channel

push ax

nov dl , Addr essOf | nput Buf f er

call I nput

nov dl , Addr essOf Qut put Buf f er
call Qut put

pop ax

hwSel ect Channel

popf

Controlling ASIC5's UART

Before data can be sent or received from ASIC5's UART continuous clocking from the host must be
enabled and a baud rate selected. The UART must be enabled by setting bit 0 in the port B mode
register. The selected baud rate value is related to the result of dividing the required baud rate into
the input clock frequency from the host of 1.536 MHz. The value generated from the equation given
below forms a sixteen bit word. ASIC5 has two registers for selecting the baud rate. Register 10
should contain the least significant byte and register 11 the most significant byte of the calculated
word value. The table below lists the divisor values for some of the more commonly required baud
rates:

Divisor = 1-(96000/Desired Baud Rate)

Baud Rate Divisor -Decimal Divisor -Hexadecimal
48000 -1 ffff
32000 -2 fffe
19200 -4 fffc
9600 -9 fff7
7200 -12 fff4
4800 -19 ffed

Revision 1.00 Page 61 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

3600 -26 ffe6
2400 -39 ffd9
2000 -48 ffd0
1800 -52 ffcc
1200 -79 ffbl
600 -159 6l
300 -319 fecl
200 -480 fe20
150 -639 fd81
134 -715 fd35
110 -872 fc98
75 -1279 fh01
50 -1919 881

The format of data communicated, stop bits, data bits, parity checking, is controlled by writing to the
UART status/control Register. Bits in the UART status/control register have the following meanings:

Bit Function: Read Function: Write

0 State of the CTS line (PA1) Generate break character

1 State of the DSR line (PA2) Character length 1 (see table below)
2 State of the DCD line (PA3) Character length 2 (see table below)
3 Transmitter buffer empty Parity enabled if set

4 Transmitter Busy Odd parity if set, even if clear

5 Receive data waiting Set for two stop bits, clear for one

6 Overrun or framing error Not used

7 Parity error Not used

A character to be transmitted should be written to the Transmitter Holding Register where ASIC5 will
convert it to serial form for transmission. The register will be emptied once the character has been
transmitted. ASIC5 contains no internal buffering. The Transmitter Holding Register must be empty
before writing a character to it. The state of the Transmitter Holding Register is reflected in the
Transmitter Empty bit in the UART status register. Enabling the Transmitting Holding Register
interrupt will cause ASIC5 to generate an interrupt every time that the Transmitting Holding Register
becomes empty. Reading the UART Status Register will clear the interrupt. Received characters are
copied into the Receive Character Register. If the Receive Character Interrupt is enabled ASIC5
generates an interrupt on each character received. If the character is received in error due either
parity, framing or overrun errors, appropriate bits in the UART Status Register are set to reflect this.

Hold and Resumes

There are three types of hold and resume. The first occurs when memory is being moved. An LDDs
hold and resume vectors will always be called when this occurs. The second is a On/Off Hold and
resume. An LDD will always be held and resumed when this occurs although it is not guaranteed that
power will have been restored to the expansion ports when the resume is issued. The third type
occurs when one of the pack doors is opened or a peripheral inserted. Only certain internal LDDs
receive a Hold and Resume under these circumstances. Any loaded LDD will definitely not receive a
Hold or Resume. To get around these problem, the TCk: device driver is used to provide a regular
call to a routine within your driver. This call monitors the power to the expansion port and issues its
own holds and resumes as appropriate. Holds and resumes can become nested and the whole situation
can become rather complicated. The correct procedure for dealing with holds and resumes for an
ASICA4 peripheral device driver (LDD) is given below.

When a hold is received through the normal route the channel is marked as being under a normal
hold. If the polling routine sees that the power has vanished and the channel is not already under a

Revision 1.00 Page 62 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

normal hold then it holds the channel and marks it as being under a special hold. If a normal resume
is issued channel can be resumed but only if power is present. If power is not present then the
channel is marked as being under a special hold and the resume is put off. If the polling routine sees
that the power is present and that the channel is under a special hold then it should resume the
channel.

Alternatively of course each time you read and write to your peripheral you could do a quick pre-
check to see if the hardware is available and set-up correctly. This would dispense with the need to
handle power up/down or pack door holds and resumes. You would still have to start and stop
interrupts though when appropriate.

Example Device Drivers

An example device driver which will control the ASIC4 Example Interface Board described earlier
can be found in the file AdEXIF.ASM. The device driver is a fully comprehensive multi-channel
implementation. It supports all the mandatory logical device driver functions. Open will fail if the
Interface Board hardware is not present. It has an interrupt service routine and handles Holds and
Resumes correctly in all the distinct cases outlined earlier. In addition, asynchronous reads of the
LED status are possible so a special routine to handle this case, the Wait Handler, is included. The
driver has been made as fully comprehensive as possible both in terms of functionality and the choice
of host machine. To this end, the code given can be compiled for the entire range of Psion machines
simply by changing the appropriate machine Build Flag at the head of the file which then causes the
correct interrupt masks to be selected for the machine. Chapter 11 of this document details the
structure of AAEXIF.LDD a logical device driver constructed for the ASIC4 Example Interface Board.

Chapter 12 details the functionality of a physical device driver for the ASIC5-based Psion 3-link
peripheral that enables the host hardware to communicate with a PC by converting SIBO serial
protocol signals into RS232 signals. Once again, this driver contains various build flags to facilitate
conditional compilation. Common interrupt routine code is included and the LDD-PDD interface is
specified.

The source code for both A4EXIF.LDD and SYS$AS5.PDD is presented in the appendix to this
document.

Revision 1.00 Page 63 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

11. AN EXAMPLE DEVICE DRIVER FOR ASIC4:
A4EXIF.LDD

Introduction

In this chapter, the functionality and code structure an example installable logical device driver,
A4EXIF.LDD, is presented in some depth. Circuit details of the corresponding Psion peripheral for
this driver, the ASIC4 Example Interface board, were outlined in chapter 8. A4EXIF.LDD enables
software written using the Psion SDK to communicate with the prototype ASIC4 Example Interface
board through means of standard PLIB calls such as'p_open'and 'p_wri t €. The description of
A4EXIF.LDD is intended to provide a clear insight into the generalised structure of logical device
drivers for peripherals based around the SIBO architecture. To this end the actual usefulness of the
combined hardware-driver interface is of secondary importance. As shown earlier, the ASIC4
Interface Board translates SIBO serial protocol signals into a parallel 8-way data bus format which
can be used to set various 74HC series latches and gates. An eight-bit buffer and latch are commoned
to eight LEDs. The latch is write-only and is used for setting the state of the LEDs. The buffer is
read-only and is used to sense the state of the LEDs. In addition, a facility for generating hardware
interrupts is provided by means of a suitably connected switch and third 8-way buffer (the status
buffer). Address decoding is provided by two 2-to-4 decoders attached to address lines A0 and Al.

Code Structure

Loading A4EXIF.LDD and Device Names

A4EXIF.LDD is loaded into the RAM of the host machine by means of the following PLIB call in the
application code:

p_l oadl dd(" A4EXI F. LDD");

The name of a device driver is the mechanism by which an application can obtain a channel to that
device driver. LDDs all have three character names which are stored in the second field of the
driver's LibEnt structure followed by a colon. This name is required to uniquely identify the LDD to
the OS when attempting to open a channel on it. The A4EXIF LDD has the three character name
"LED" so a channel with its handle in pcb may be obtained on it by means of the following call:

p_open(&pch, "LED: ", -1);

EPOC used the driver name in the p_open call to invoke the | oOpen system service which in turn
invokes the Open vector on the associated device driver.

The Single Code Segment and Data Storage

As indicated earlier, loadable Psion device drivers have a single code segment and no data segment.
Data associated with the driver is stored in one of two distinct ways dependent on its nature. Global
data associated with the driver is stored in its code segment. Examples of such data are the channel
interrupt masks and numbers have to be visible to all processes that may be using A4EXIF.LDD.
Data local to the application invoking the driver, however, is stored in the heap space of that
application. An example in A4EXIF.LDD would be the pointers to the open channel strategy vector
parameters.

The overall structure of the code segment is typical of Psion logical device drivers. The code segment
begins with a CodeSeg directive followed by the LibEnt structure which defines the mandatory device
driver functions as well as two non-mandatory ones. These are the Wait Handler and the replacement

Revision 1.00 Page 64 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

Tick Interrupt Vector. Before entering the code for these functions, all global variables are declared
in what is termed the device driver's internal data space. Following the code for the Lib Ent functions
comes the code for all the local driver functions. After these are the EndCodeSeg and end A4Exi f LDD
directives.

Channel Status Ent and Open Channel Control Block

At the head of the driver's assembler source file AAEXIF.ASM, various constants, compiler defines
and type definitions are listed. It is here that templates are declared for the global structures that hold
the key driver variables. In view of the above discussion, most device drivers employ at least one
globally defined structure to hold the various important flags and masks that relate to the status of
each separate channel on that driver. In the case of AAEXIF.LDD, two different structure types are
employed, namely A4ExifStatusEnt and A4ExIfEnt. The former is referred to in this chapter as the
StatusEnt struc and is instantiated later on in the device driver code segment with each separate
permissible channel of the main Psion host machines being assigned its own StatusEnt struc. A
channel's StatusEnt struc is generally accessed through CS:DI and holds important channel-related
information such as the A4Exi f Channel Open and A4Exi f Channel Runni ng flags and the channel
interrupt masks and interrupt numbers. The StatusEnt structure resides in the driver code segment
whereas the A4EXIfEnt struc is held in the heap space of the application invoking the driver and so is
accessed through DS:BX. The A4EXIfEnt structure contains a number of variables that are logically
associated with a successfully opened channel and as such should be distinguished from the StatusEnt
variables. An A4EXifEnt struc instantiated by invoking the device driver's open vector is referred to
as the open channel control block and it is generally accessed through DS:BX.

The layout of both the StatusEnt struc and the A4ExifEnt open channel control block struc are
presented later in this chapter along with various other important pre-defined structs that were used in
the construction of AAEXIF.LDD. Both of these structures were extensively used in the coding of the
LDD functions described in the following pages.

SIBO hardware and conditional compilation

The number of expansion channels supported by a host SIBO machine is dependent on the hardware.
In the case of the S3a, only one SIBO channel can legitimately be opened corresponding to expansion
port A. With the HC and Workabout, it is possible to open up to three separate SIBO channels on
ports A through to C. In AAEXIF.LDD, a global constant nunber of channel s is set at the start of the
device driver code segment to indicate the number of serial SIBO channels supported by the different
machines. This will vary according to the Psion hardware present and in order to aid conditional
compilation of the AAEXIF driver for the different host machine possibilities, a number of build flags
can be used to set various constants within the include files. The hardware options with regard to
these flags were outlined in the previous chapter.

It should be noted that Psion device drivers should be designed to be easily adapted from machine to
machine. With the A4EXIF driver, for instance, the only change that needs to be made in adapting it
for use on another Psion machine is the alteration of the build flag at the start of the code segment.
This flag indicates to the compiler which SIBO machine flags as well as other variables should be set.
The SIBO machine flags are in turn used later in the code segment header to set the global

nunber of channel s variable mentioned above. For example, in AAEXIF.LDD, we have the
following:

if Corporate or Workabout
nunber of channel s equ 3
el se

endi f

This type of code is used extensively in the conditional instantiation of A4ExifStatusEnts in the
device driver's internal data space. Here different interrupt masks and SIBO channels are invoked for
the different machines according to the host controller ASIC. For instance, in the case of a consumer
(S3a), the hardware interrupt mask corresponding to expansion port C on an ASIC9 is mask
A9MSlave and the interrupt number is Hwirg2Revector. On an Workabout, the masks for expansion

Revision 1.00 Page 65 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

ports A, B and C are AAMExpIntA, ASMExpIntB and A9MSlave respectively. The corresponding
interrupt numbers are Hwlrg4Revector, Hwirg5Revector and Hwirg2Revector. This conditional
compilation code in A4EXIF.LDD outlined here is worthy of some study because it encapsulates all
the information regarding masks and SIBO hardware channels required by the prospective developer
interested in constructing a multi-platform Psion peripheral and driver.

Mandatory LDD Functions

The eight mandatory LDD functions are the Install, Remove, Hold, Resume, Reset, Units, Open and
Strategy and they are all discussed in the context of the example device driver AAEXIF.LDD below.

A4ExifInstall
IN: No values are passed to the install vector.
OUT: If successful return with carry clear.
If installation unsuccessful, return with the carry flag set and error number in the
AL register.

PRESERVE: SS, SP and BP

The install vector is called by the operating system when the device driver is loaded in order to
initialise any internal variables. It should not be called directly by an application process but invoked
indirectly by a 'p_I oadl dd(" A4EXI F. LDD") ' call. Typically at this stage the various open channel
flags would be initialised to zero but in the case of the AAEXIF.LDD, this has already been done in
the appropriate A4ExifStatusEnt struc headers. As a result, the install vector merely clears the carry
flag and returns.

A4EXxifRemove

IN: No values are passed to the remove vector
OUT: If successful return with carry clear.
If installation unsuccessful, return with carry set and error number in the AL
register.
PRESERVE: SS, SP and BP

The remove vector is called by the operating system whenever the device driver is requested to be
unloaded which is usually indirectly as the result of a call to 'p_devdel (" LED', E_LDD)". ROM-
resident drivers cannot be deleted so any attempt to invoke this vector on them will result in an error
being returned. The code for the remove vector checks to see that all the device driver channels are
closed and returns carry clear if this is the case. In the case of AAEXIF.LDD, a closed channel will
hold a zero in its corresponding StatusEnt open channel flag. If any of the open channel flags is non-
zero then the carry flag is set before returning indicating that an attempt has been made to unload a
device driver that still holds at least one open channel. In the case of AAEXIF.LDD, the

nunber of channel s flag is used as a loop counter for the different hardware channel possibilities in a
similar manner to the corresponding code in the open vector.

A4ExifHold
IN: AH register holds one of the following values:

DevHol dNor mal , DevHol dPower Down Or DevHol dPower Fai |
OUT: None

PRESERVE: SS, SP and BP

The hold vector is called by the operating system whenever the device driver is requested to be held.
This can occur as a result of three conditions which result in the three different possibilities for the
value held in AH:

1. Device memory segments about to be moved. AH holds DevHol dNor mal .

Revision 1.00 Page 66 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

2. Machine about to switch off due to power-save time-out or the off switch being pressed. AH holds
DevHol dPower Down.

3. Machine about to switch off due to power source being removed or the batteries failing. AH holds
DevHol dPower Fai | .

The hold vector code must be able to conduct a rapid shut down of the device driver because in the
case of DevHol dPower Fai | , the driver may only have a couple of ms before internal voltages fall to an
unworkable level. The EPOC OS automatically handles the three cases highlighted above but in
Series 3a machines and the Workabout, in addition to these there is another situation that requires the
invocation of the hold vector, namely the opening/closing of the SSD pack doors on an S3a or
Workabout. This is an action which can only be detected by means of software polling which requires
the setting up of the ROM-resident "Tck: " device driver so that the door status can be checked each
system tick (i.e. 32 times a second). The section on A4ExifTickInt provides a more detailed outline of
the TCK interrupt code required to handle pack door opening and closing. It is this latter routine that
polls for the open or closed status of the host machine doors, setting the global Hol dFl ag accordingly.
The Hold vector code thus includes a check on the status of the Hol dFI ag and is generally optimised
to be as efficient as possible. An outline of the structure of A4ExifHold presented below. It follows
the pattern for a typical device driver:

» Check the state of the global Hol dFI ag.

« If the flag is non-zero, then the driver is already held and the function returns without taking
any further action.

« Ifthe Hol dFI ag is zero, then the function checks the status of all the channels that the driver
is permitted to open. If any of these channels have their open channel flags cleared, it is not
necessary to do anything as part of the process of holding the channel. Only in the case when
the flags are set is the 'St opChannel Runni ng' function invoked. As with the similar loop in
the Reset vector, the global nunber of channel s is used as the loop counter as each of the
possible channels has to be checked.

A4EXxifResume

IN: None
OUT: None
PRESERVE: SS, SP and BP

The resume vector is called by the operating system to restart a held device driver. Resume will be
called after a hold caused by any of the four possibilities indicated above in the section on A4ExifHold
but it should be noted that in some cases, ASIC4 will only be switched on after the call to resume.
The device driver is expected to recover from the previous hold and resume any suspended 1/0O except
in the case of power failure where the resume vector ought to power up the peripheral and put it into a
known state indicating to the user that data may have been lost. The resume vector will also have to
handle the reinstallation of any interrupt service routines by checking the status of the open channel
flag.

» Check the state of the global Hol dFI ag.

» Ifthe flag is zero, then the driver has already resumed so return without further action.

» If the flag is non-zero, then check the door status of the host machine with a call to the OS
HaGet SsdDat a service. If the doors are open, then set Hol dFl ag to 2 to signal this position
to the driver. If the doors are closed, then nunber of channel s is used as a loop counter while
the open channel flags of each of the permissible channels for the host hardware are checked.
Only if these flags are set is the 'St ar t TheChannel Runni ng' function invoked.

A4EXxifReset

IN: BX holds the device driver device handle

CX holds user specified channel identification data. In this case, holds the address
of the status struc identifying the open channel to be reset.
OUT: None

Revision 1.00 Page 67 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

PRESERVE: SS, SP and BP

The reset vector enables a device driver to reset itself when the application which owns the device
driver terminates abnormally before closing one or more open channels on that driver. The vector is
only invoked by the operating system if it has been primed by means of a call to the | oRequest Reset
operating system service in the open vector. Such a call must be balanced by a corresponding call to
I oRequest Reset Cancel in the close function code of the strategy vector. Registers BX and CX are
required to be set up by the user prior to invocation of either of these services. BX should contain the
device driver handle which is passed through DX in the open vector. CX should hold any suitable
open channel identification data that can be accessed in the driver's internal data space (i.e. through
CS:DI). In the case of AdEXIF.LDD, this information is the address of the channel StatusEnt
structure. If a device driver is only capable of opening one channel, then it is irrelevant what CX
holds. A reset should only be outstanding while some process has a channel open on the device
driver. The format of A4ExifReset is similar to that of a typical reset vector and can be summarised
as follows:

* Move the address of the channel status Ent from CX into DI.

e Check the value of the corresponding cs:[di].A4ExifChannelOpen flag.

« If channel is not open to reset, then return from the vector otherwise call
'St opTheChannel Runni ng' and use HwFr eeChannel to release the SIBO serial channel. Set
the ChannelOpen flag to zero.

A4EXxifUnits
IN: None
OUT: AX holds the number of channels supported.

PRESERVE: SS, SP and BP

The A4ExifUnits function is called by the operating system when the device driver is requested to
report the number of units (or channels) that it can support. This is primarily useful for purposes of
information.

A4ExifOpen

IN: DX contains the device handle of the device driver
Sl is a pointer to an OpenEnt struc
BP is a pointer to an IntEnt struc
DS, ES point to the application process's data segment
OUT: If successful return with carry clear and the address of the open channel in BX.
i.e. BX holds the address of an A4ExifEnt struc which contains various fields of
information concerning the open channel.
If installation unsuccessful, return with carry set and error number in the AL
register.
PRESERVE: DS, ES, SS, SP, BP and DX

The open vector is called by the operating system when a channel to the device driver is required to be
opened. The device handle, which is passed through DX, is used by the operating system to route any
1/0 requests on the opened channel to the correct device driver. An LDD must place this handle in
the ChanLibHandle field of the ChanEnt struc of the open channel structure allocated within the
application's data segment. In the case of AAEXIF.LDD, this structure is the A4EXIfEnt struc
described in the Appendix to this document. The open vector of a device driver runs in the context of
the process that has called p_open to open a serial port on that device driver.

The OpenEnt struc consists of three fields , OpenNamePtr, OpenMode and OpenChan. The
OpenNamePtr points to the character immediately following the device name as passed in the
p_open call. For instance, in the case of AAEXIF.LDD, the OpenNamePtr would point to the colon
after LED in the name "LED: ". The OpenMode field contains the mode for opening the device driver

Revision 1.00 Page 68 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

which is not used in this example. The OpenChan field holds the 1/0 channel handle of the device
that the driver is required to 'attach’ to. Attached drivers add functionality to, or replace, a service
provided by an underlying device driver. The IntEnt struc pointed to by BP can be used to reload the
various segment registers if their contents have been altered. The A4EXxifEnt struc requires further
elaboration. It consists of four fields: A4Exiflo, Ad4ExifHandlerPtr, A4ExifStatusPtr and
AALEXIfALPtr. A4ExifHandlerPtr contains a handle to the driver's WaitHandler, A4ExifHandler.
This is the routine required to handle the completion of asynchronous 1/0 requests and is described in
more detail later on in this chapter. Of the remaining fields, A4ExifStatusPtr holds the location of the
completion status word for 1/0 requests and A4ExifA1Ptr is a user-defined parameter. These two
values are passed to the strategy vector through the RqEnt structure. A4Exiflo is itself a ChanEnt
struc with sub fields ChanSignature, ChanNext and ChanLibHandle. After initialisation of this
structure, [bx].A4Exiflo.ChanSignature must hold 'l oChansSi gnat ur e’ and
[bx].AdExiflo.ChanLibHandle holds the handle to the device driver (stored in DX). Both of these
values are again required by the strategy vector. The [bx].A4Exiflo.ChanNext field is used by
attached drivers and is set to O for root drivers like A4EXIF.LDD.

The code in an open vector follows a similar pattern in many LDDs and is presented in outline form
below:

» Determine the channel to be opened using the pointer to the device name held in
[si].OpenNamePtr.

« If OK, disable interrupts and invoke the OS HaGet Channel call.

* If OK, then set A4ExifChannelOpen flag to non-zero.

* In order to poll for door-opening and closing, it is necessary to open a "TcK: " channel at this
stage and initialise it by means of using the OS 1 oW t hvaai t Service to call the TickInt vector
on each system tick.

* Re-enable interrupts and set up the calling process id using the Procl d service.

* Check for the presence of the required hardware. If present return with carry clear.

» Allocate space in calling process' heap (i.e. the application data space) to contain the 1/0
channel control block (an A4EXIfEnt struc in the case of AAEXIF.LDD) and set its base
address to BX (thus BX holds the address of the open channel control block).

« If OK, install the device driver Wait Handler using the | oAddHandl er system service. A
Wait Handler is required only if there are any asynchronous 1/O requests to be handled.

* If OK, initialise the fields inside the 1/0 channel control block that were outlined above.

* Invoke | oRequest Reset System service to handle unexpected termination of main program
by invoking the driver's Reset vector.

» Before leaving the Open vector, if the call succeeded, BX must hold the open channel control
block handle.

A4EXxifStrategy

IN: BX holds the allocated channel control block initialised in the open vector
DX contains device handle of the device driver in the case of an LDD
Sl is pointer to RgENt struc
BP is pointer to IntEnt struc
DS, ES point to data segment of application making the 1/O function request

OUT: If successful return with carry clear. Furthermore, in this case, if the strategy
vector is meant to complete the 1/0 request (as is the case with loClose for
instance) then the completion status should be written back to RqStatusPtr location
and the 1/0 semaphore signalled by calling I oSi gnal . If the I/O request is not completed
by the strategy vector (as is the case with the asynchronous functions | oFuncRead
and I oFuncW i t) then Pendi ngEr r should be written back to the location pointed to by

RqStatusPtr and the 1/0 semaphore should not be signalled.

If installation unsuccessful, return with carry set and error number in the AL
register.
PRESERVE: DS, ES, SS, SP and BP

Revision 1.00 Page 69 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

When an application makes a 1/0 request on the opened device driver channel, the request is routed
to this vector by the operating system. A device driver defines the set of strategy functions that it
supports such as | oFuncSet , | oFuncSense, | oFuncW it e and | oFuncd ose. The functions of a
device driver are usually dependent on its purpose and there is no requirement to support any
particular function. The ordering of these functions in the strategy vector table is defined in p_file.h
and presented in AAEXIF.ASM.

The SI register contains a pointer to an RgEnt struc which consists of four fields: RgFunction,
RqStatusPtr, RgA1Ptr and RgA2Ptr. RgFunction contains the function number passed to the 1/0
request by the application. In the device driver strategy vector code, the value held in RgFunction is
compared against the supported function numbers held in 1 oFuncd ose, | oFuncRead etc. If the
function number is not one of those supported then a call to | oRoot is necessary in the case of a root
device driver such as AAEXIF.LDD. 1 oRoot chains the I/O request through to the operating system
which runs some default code to handle it. RqStatusPtr is a pointer to a memory location in the
application data space which holds the value of the 1/0 request's completion status word. While a
request is outstanding, this value is set to Pendi ngErr and only when it completes does a completion
code get written to this location. 1/O requests can complete within the strategy vector or later after an
interrupt. Often as is the case with A4EXIF.LDD, only a single request of any one kind can be
outstanding at any time otherwise the application is panicked. RgA1Ptr and RqA2Ptr hold the values
of two parameters that are passed to the | oAsynchr onous EPOC service. Each synchronous strategy
function has a similar pattern with explicit 1/0 being conducted whilst interrupts are disabled and a
completed request being signalled with an OS | oSi gnal call prior to exit from the function. This call
signals to the OS the completion of the particular 1/0 request entailed by the function call. The
situation with regard to the one asynchronous strategy function is somewhat more complicated and is
dealt with in greater detail in a later section.

The structure of the strategy vector of AAEXIF.ASM is outlined below:

« Determine the strategy function number using [si].RqFunction and compare with the below:

* IOFUNCREAD: Asynchronous read of latches U4 and U3. Panic if [bx].A4ExifStatusPtr 1=
0. Update [bx].A4ExifALPtr and [bx].A4ExifStatusPtr with [si].RgAL1Ptr and
[si].RgStatusPtr respectively as the locations to be accessed on receipt of interrupt. Move
Pendi ngEr r into the location pointed to by [bx].A4ExifStatusPtr to signal that the request is
awaiting completion. Allow handler to be enabled through the | oEnabl eHandl er OS call
and exit without signalling completion of the request.

* IOFUNCWRITE: Identical behaviour to that of I OFUNCSET which it calls.

« IOFUNCCANCEL: Used to cancel any pending asynchronous reads. This involves
disabling the wait handler, consuming any stray signal from the interrupt routine by means of
an OS | owai t For Si gnal call and then storing Cancel Err in the channel 1/O request status
word.

* IOFUNCCLOSE: Close down the TCK channel and remove handler. Disable interrupts
and HwFr eeChannel setting A4ExifPid to 0 before re-enabling interrupts. Invoke
| oRequest Reset Cancel System service and HeapFr eeCel | . Signal completion of 1/0
request by calling I oSi gnal System service.

* IOFUNCSENSE: Reads the status and LED bytes from latches U4 and U3 respectively
storing the results at the addresses pointed to by RgA1Ptr and RqA2Ptr.

* IOFUNCSET: Sets latch U5 to contain the value pointed to by the sole argument in the

call to P_FSENSE.

If not supported then call | oRoot System service.

The Non-Mandatory LDD Functions

The eight functions described above must be supported by all device driver. Typical Psion LDDs
employ at least two other LDD functions. The first of these is a pseudo-interrupt routine which is
invoked by the OS on each system tick. In A4EXIF.LDD, this function is represented by
A4EXxifTickInt and an outline of its purpose was presented earlier in the discussion on holding and

Revision 1.00 Page 70 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

resuming device drivers. As was indicated then, the minimum functionality required by this routine
is to poll the status of the host machine doors and if appropriate call the driver's Hold and Resume
vectors. If in addition the LDD is intended to service any asynchronous 1/0 requests, a wait handler
and common interrupt service routine are required. With A4EXIF.LDD, these two additional
functions are represented by A4ExifHandler and Comint respectively. The former function
constitutes the second of the additional LDD functions as can be seen by examining the LibEnt
structure for AAEXIF.LDD. The latter function is set up so that it replaces the default interrupt
service routine code invoked by the OS on the receipt of hardware interrupts on the peripheral's SIBO
channels. A4ExifHandler is invoked by the OS every time the 1/0 semaphore of the process that
opened the channel is signalled with through an 1 oSi gnal ByPi dNoResched call indicating that an
interrupt has been received and an outstanding 1/O request has completed. The function of the wait
handler is to deal with 1/0 semaphore signalling and to update the appropriate open channel control
block field variables. The common interrupt service routine code in ComInt cannot do this because it
is not permitted to access the application data space. This in turn is because the routine runs in the
context of the process which was running when the interrupt occurred. A4ExifTickint, the wait
handler and the common interrupt service routine for A4EXIF.LDD as well further details as to how
the latter two interact to handle asynchronous 1/O requests are described below.

A4EXifTickInt

As was explained earlier in discussing the A4ExifHold vector, it is necessary to utilise the "Tck: ™
system tick device driver in order to handle the particular case of invoking a hold on A4AEXIF.LDD
when the host machine SSD pack doors are opened. Such an action automatically causes power to be
removed from any peripherals. The TCK driver is opened via an OS | oopen call in the A4ExifOpen
vector which returns with carry clear and a non-zero handle in AX if successful. In this case, the

I oW t hwai t function is called to request an synchronous 1/O service from the TCK driver. Prior to
this call, the service number requested is held in AL and the 1/O handle procured from the previous
call to I oOpen is loaded into BX. The interrupt number of the tick poll routine, A4ExifTickint, is
loaded into CX so that as its parent driver is invoked on each system tick, the OS enters this vector.
The reason the TicklInt routine is required in A4EXIF.LDD is solely to handle the problem of
recognising a sudden removal of power from the host machine. The OS has no way of testing for this
condition other than polling its global 'Door St at us' variable every system tick and taking the
requisite course of action. As such, the outline of the code for the tick poll routine which is required
in all Psion LDDs can be presented below. This outline should be carefully compared with the
structure of the Hold and Resume vectors shown earlier in order to see how they interact:

* Check the current status of doors which is held in SI.
« If DoorlsOpen then if global Hol dFl ag is zero, force a call to A4ExifHold, set Hol dFl ag to 2
and return far
else do a far ret
» Else if DoorlsClosed then
if global Hol dFI ag is 2, force a call to A4ExifResume and return far
else do a far ret

It should be emphasised that A4AExifTickint is only a pseudo interrupt service routine in that it does
not preserve the status of the registers which is something that the device driver writer must
undertake to ensure is done explicitly.

The handling of synchronous and asynchronous 1/O

The provision of synchronous and asynchronous /O services are an important aspect of writing any
device driver. In the case of Psion drivers, all such services are the provided through the Strategy
vector which is typically preceded by a Strategy Vector Table listing the complete set of 1/O services
that can be invoked on the driver. The strategy vector table for A4EXIF.LDD is presented below to
provide an indication as to the kind of service routines that can be written:

St r at egyVect or Tabl e | abel wor d

Revision 1.00 Page 71 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

dw of fset A4Exi f Def aul t ; Strat egyPani ¢

dw of fset A4EXi f Read ; StrategyRead (function define is P_FREAD)

dw of fset MExifWite ;StrategyWite (function define is P_FWRI TE)
dw of fset A4ExifC ose ; StrategyC ose (function define is P_FCLOSE)
dw of fset A4EXxi f Cancel ; StrategyCancel (function define is P_FCANCEL)

dw of fset A4Exi f Def aul t ; StrategyAttach

dw of fset A4Exi f Def aul t ; Strat egyDet ach

dw of fset A4EXi f Set ;StrategySet (function define is P_FSET)

dw of fset A4Exi f Sense ; StrategySense (function define is P_FSENSE)

Both synchronous and asynchronous 1/O requests can be made on the driver through means of the
PLIB 'p_i ow(pcb, <f unc>, &A1, &A2) ' call where pcb is the open channel handle, <f unc> is one of
the above function defines and Al and A2 are two optional parameters required for the servicing of
the request. The routing of an 1/O request to the correct service code is done by the common code at
the head of the strategy vector. Each time this vector is entered, BX holds the address of the open
channel control block, DX the device handle of the device driver and Sl a pointer to the strategy
RqEnNt struc used by the OS to follow the course of the I/O request. Using this information, it is
possible to access all the relevant flags in the channel StatusEnt by moving [bx].A4ExifStatusEntPtr
into DI. This leaves us with the open channel control block in DS:BX and the channel StatusEnt in
CS:Dl.

Armed with the above information, it is possible to outline the general pattern of both synchronous
and asynchronous I/O requests at an OS level. The case of synchronous requests is particularly
straightforward since the servicing of the request can be completed entirely within the relevant
strategy vector table function. It should be emphasised that in the outline presented below, disabling
and re-enabling of interrupts only actually has to be done around any 1/0.

SYNCHRONQUS |/ O REQUEST STRATEGY VECTOR TABLE FUNCTI ON

pushf
cli ;Disable interrupts
< request service code > ; Rel evant synchr. 1/ 0O processing

Exi t Wt hConpl et i onSt at usZer o:
< set I/Orequest status word to zero >

1 0Si gnal ;Signals conpletion of 1/Oto OS
Xor ax, ax

cle ;Tells OS that strategy exited OK
popf ; Re-enabl e interrupts

ret
ProcEnd nor et

Note that in the above outline, the single I oSi gnal call is made after completion of the 1/O request in
order to signal this fact to the OS. The situation is somewhat more complicated in the case of an
asynchronous request because the 1/0 request strategy vector table function has to interact with both a
wait handler function and an interrupt service routine. Of the 1/O request services outlined above for
A4EXIF.LDD, only one, namely A4ExifRead, is asynchronous and it serves as a good illustration of
the nature of programming for asynchroneity. The steps taken in the A4ExifRead vector are outlined
below:

e Set the Channel ReadConpl et ed flag to O (stored in cs:[di].A4ExifChanReadCompleted)
» If the address of the 1/O request status word is non-zero then panic (i.e. there is an
outstanding read request)

» Update the open channel control block variables using the RqEnt struc

e Load I/O request status word with Pendi ngErr

« Enable the wait handler by using the | oEnabl eHandl er OS service
The read request is now in a pending state waiting for completion via receipt of a hardware interrupt.
When such an interrupt is received, the OS switches into the appropriately configured common
interrupt routine Comint. Here, the Channel ReadConpl et ed flag is set to indicate to the handler that
the read request has completed. An I oSi gnal ByPi dNoReSched OS service call is also made to
indicate to the OS that an as yet unspecified 1/0 request has terminated. This signal is consumed by
the OS which means that at this stage, an |1 oSi gnal for completion of the original asynchronous
request has yet to be made. The interrupt service routine exits after sensing the status and LED byte
values from the ASIC4 Example Interface Board and loading the appropriate response bytes into the
relevant locations in the device driver code segment. More details as to the functionality of the
interrupt service routine are provided in the section on interrupts. The OS now invokes all the
currently active wait handlers in order to determine which application is responsible for consuming

Revision 1.00 Page 72 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

the completed read. The wait handler code includes the all-important | oSi gnal call that indicates to
the OS that the original asynchronous read request has finally been accounted for. Receipt of this
signal by the OS constitutes completion of the request. The outline code for the A4EXIF.LDD wait
handler A4ExifHandler is outlined in the next section.

A4ExifHandler

A WaitHandler is a special function of the LDD which is nominated to be called by the operating
system every time the 1/0O semaphore of the process that opened the channel is signalled. 1t will only
actually be called if the application is already waiting for an outstanding 1/O request to complete (i.e.
while the application is hung in p_i owai t). The handler function is the means by which hardware
interrupts can be filtered through to the process which opened the I/O channel since it permits the
rescheduling of processes.

The WaitHandler is invoked in the open vector by using the | oAddHandl er system service. When an
application makes an 1/O request, the 1/0O semaphore is signalled and the operating system calls the
Wait Handler function while the application is waiting for the request to complete. The wait handler
returns with CLC if no outstanding request has completed. Otherwise the wait handler returns with
STC and zero in AL. The wait handler can include within it synchronous 1/0 requests to cancel or
use up signals but it is not entered recursively (i.e. re-enterently) by the operating system. A wait
handler is best viewed as a necessary requirement in dealing with the 1/0 semaphore signalling which
cannot entirely be addressed in the appropriate interrupt service routine because the latter is not able
to access the open channel's control block.

Interrupts and Interrupt Service Routines

The SIBO architecture allows for eight separate hardware interrupt sources. The EPOC operating
system provides a GenSet Revect or service to enable a device driver to install an interrupt service
routine for any of these eight interrupt sources. When an interrupt occurs, the operating system
preserves the state of all the registers before calling the appropriately-installed interrupt service
routine. As a result of this, the interrupt service routine is free to employ any register it sees fit to use.
A few important points ought to be made concerning the code within an interrupt service routine:

On an 8086 processor, interrupts cannot be nested so their is no requirement to disable

interrupts whilst inside the interrupt service routine.

» Interrupt service routines should operate as fast as possible. In general, operating system
service routines are tuned to be of less than 1ms duration.

* Interrupt service routines run in the context of the process that was running at the time of the
interrupt and should access only the device driver data space which, as with A4AEXIF.LDD,
typically resides in its own CS space.

» Interrupt service routines should not cause a process rescheduling. To indicate that an event

has occurred to the interrupted process, the | 0Si gnal By Pi dNoResched system service

should be called. If a call is made to this service, the interrupt service routine should exit
with CLC otherwise it returns with STC.

The interrupt routines called require knowledge as to the particular hardware SIBO channel being
used by the driver at the time an interrupt occurs. This information is passed through to the

GenSet Revect or function in Startinterrupts by loading the address of the appropriate I nt Vec routine
from the A4ExifChannellntVec field of the channel StatusEnt struc. As a result, when an interrupt
occurs, the currently loaded 1 nt Vec routine is invoked. All the I nt Vec routines reload DI with the
appropriate address of the channel StatusEnt in the device driver code segment before falling through
to the common interrupt routine service code held in Comint.

Comint

Revision 1.00 Page 73 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

The common interrupt service routine code resides in the Comlint vector. The structure of this code is
presented below. It should be emphasised that no data in the application data space and hence in the
open channel control block can be accessed from Comint. This explains why it is necessary for the
OS to invoke a wait handler to clean up after the interrupt service routine code for a particular
asynchronous 1/0 request has been run.

e Check the value held in the ChanReadConpl et ed flag

« If this value is 2 then we do not have an asynchronous read completed but rather the
interrupt line has been pulled low outside of an asynchronous 1/O request.

e If this value is 1 then we have an asynchronous 1/O request completed and so
I 0Si gnal ByPi dNoResched must be invoked to signal to the OS that a read has completed.

* In both cases, sense the status and LED bytes from the Example Interface hardware and load
these values in the device driver's code segment A4ExifStatusEnt struc.

» There are four possibilities of status byte corresponding to the four combinations offered by
the two input switches, S1 and S2. These are used to output one of four separate LED bytes
to the LEDs.

* A write to A1NonSpecificEoi register (or A9BNonSpecificEoiW in the case of an ASIC9
machine) must be done prior to exiting to let the OS know that the installed interrupt service
routine has terminated.

Other important local device driver functions

The functions presented in this section are local to A4EXIF.LDD and perform various important tasks
relating to the peripheral hardware such as groping the hardware and setting interrupts running.
Since these tasks have to be undertaken by most device drivers, the relevant functions are outlined in
greater detail.

A4ExifCheckHardwarePresent

Every Psion device driver has a characteristic '‘CheckHardwarePresent' or 'GropeHardware" function
that usually involves checking for the presence of the required peripheral device by means of
comparing a couple of ASIC4 identification bytes returned by the peripheral in response to a SIBO
serial protocol identification message with the expected answers. The specific value of the InfoByte is
unimportant as long as a "test al, al " call is made which will always return a non-zero answer if
ASIC4 is present. In that case, the extended info byte should be tested for against what is expected
from address lines A23-A27.

Psion Workabout/HC machines have three physical serial links and two of these are accessed via the
SSD slots. The third link corresponds to the serial expansion port. In order for a driver to talk to a
peripheral connected to this port, it must specifically select this serial link. In order to prevent
multiple access to a single peripheral, it is necessary in the first instance to check whether the serial
channel is free or not. A call to the operating system function HanGet Channel with the appropriate
interrupt mask in AL returns with CLC if the channel was captured successfully. Logically this call
should be made in the Open vector but since it can only sensibly be made after the hardware has been
successfully located it can be placed at the end of the GropeHardware function. A corresponding call
to HwFr eeChannel must be made when closing the channel. To actually select a channel prior to
communication along it, a call to HwSel ect Channel is necessary.

A4ExifStartChannelRunning

This function is called at the end of the Open vector to set the ASIC4 Example Interface hardware
running. It can also be invoked by the Hold vector. The function first checks the status of the global
StatusEnt Channel Runni ng flag. If this flag is clear, CheckHardware is called to determine whether
the hardware is still connected and then Startinterrupts is called before the Channel Runni ng flag is

Revision 1.00 Page 74 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

set to indicate that the channel hardware has been started. The function returns with CLC on
successful completion or with STC if no hardware was located.

A4ExifStopChannelRunning

This function simply clears the Channel Runni ng flag if set and calls Stoplnterrupts unless the
channel already has its Channel Runni ng flag clear. The StopChannelRunning function will be called
by Strategy vector when trying to close a channel and can also be called by the Resume vector.

A4ExifStartinterrupts

StartInterrupts is called whenever a call is made to StartChannelRunning. At the heart of the
function is a call to the OS GenSet Revect or function which is used to install a specified interrupt
service routine in the place of the default routine held in the interrupt vector table. GenSet Revect or
is called with the interrupt vector number of the service to be replaced in AX and the offset and code
segment of the replacement interrupt vector service in BX and CX respectively. BX is loaded from
the ChannelIntVec field of the channel StatusEnt which holds the name of the specific interrupt
service routine code (i.e. IntVecO, IntVecl etc.). The latter functions set up the appropriate channel-
specific variables before falling through to the common Comint routine. The channel interrupt mask
which is machine and channel dependent is written to the appropriate register on the host ASIC. In
the case of ASIC9, this register will be A9BInterruptMaskRW. For ASIC1 it will be
AllnterruptMask.

A4EXxifStoplInterrupts

StoplInterrupts reinstalls the original interrupt service routine by invoking the GenReset Revect or OS
system service and signalling the interrupt mask to the corresponding host ASIC register.

Structures and Include files

Epocdef.inc and device driver strucs

Epocdef.inc is an important header file that contains the definitions of various strucs extensively used
in the construction of device drivers. It also contains the definitions of all the OS error values such as
Devi ceErr and NameErr that are used in A4AEXIF.LDD to communicate an error to the application
via AX. Listed below and overleaf are the key strucs defined in Epocdef.inc that were used in the
coding of AAEXIF.LDD.

Li bEnt struc Start of device driver

Li bSi gnat ure dw ?

Li bl nfo dw ?

Li bCount dw ?

Li bBase dw ?

Li bEnt ends

OpenEnt struc Pointed to by SI in Open vector
OpenNamePt r dw ?

Openhbde dw ?

OpenChan dw ?

OpenEnt ends

ChanEnt struc Used in open channel control bl ock
ChanSi gnat ure dw ?

ChanNext dw ?

ChanLi bHandl e dw ?

ChanEnt ends

IntEnt struc Pointed to by BP in Open and Strategy vectors
I nt Frane dw ?

I nt BP dw ?

Int ES dw ?

I nt DS dw ?

Revision 1.00 Page 75 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

I nt PC dw ?

IntCS dw ?

I nt FLAGS dw ?

IntEnt struc ends

RgEnt struc Pointed to by SI in strategy vector
RgFuncti on dw ?

RgAL1Pt r dw ?

RgA2Pt r dw ?

RgSt at usPtr dw ?

RgEnt struc ends

A4EXIF channel strucs

These are defined at the start of the A4EXIF.LDD code segment. The open channel control block is
held in a structure of type A4ExIfEnt and is allocated space from the heap of the process invoking the
device driver's open vector. As such, it cannot be accessed from the Hold, Resume and Reset vectors
or from the interrupt service routine, Comint. The channel StatusEnt holds various key channel
related flags. Each hardware channel has its own StatusEnt which is instantiated in a header in the
device driver code segment following the LibEnt structure. This header block is usually held in
CS:DI which is how the StatusEnt variables are accessed. The structure of both A4EXIF channel
strucs is shown below:

AAEXi f Ent struc OPEN CHANNEL CONTROL BLOCK
Adxiflo ChanEnt <>

A4Exi f Handl er Ptr dw ? Pointer to the Wait Handl er

A4EXi f St at us dw ? Address of 1/0O request status word
AAEXi f ALPt r dw ? Pointer to first argument

AAEXi f A2Pt r dw ? Pointer to second argunent

A4EXxi f St at usEnt Pt r dw ? Poi nter to channel's StatusEnt

A4Exi f Ti ckHandl e dw ? Handl e to the TCK device channel
A4Exi f Ent ends

A4EXi f St at useEnt struc CHANNEL STATUS_ENT

A4EXi f Channel Pi d db ? Process id of process hol ding
channel open

A4EXi f Channel Open db ? I's the channel open or not?

A4EXi f Channel Runni ng db ? I's the channel running?

A4EXi f ChanReadConpl et ed db ? Flag used to indicate to handl er
when

A4EXi f Channel | nt Mask db ? Cont ai ns the HWchannel interrupt mask
A4EXi f Channel | nt Num db ? Hol ds no. of interrupt vector to be
repl aced

A4EXi f Channel Sel ect db ? SI BO channel select flag

A4EXi f Channel Dumy db ? Spar e

A4EXi f Channel | nt Vec dw ? Hol ds repl acenent int. vector routine
nane

AAEXi f St at useEnt ends

Ossibo.inc and Ospack.inc

Ossibo.inc is an important header file that contains the defines for all the ASIC2 and ASIC9 register
addresses. Ospack.inc contains similar information but for ASICA4.

Revision 1.00 Page 76 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

12. AN EXAMPLE DEVICE DRIVER FOR ASICS5:
SYS$AS5.PDD

Introduction

In this chapter, the functionality and code structure an example installable physical device driver,
SYS$AS5.PDD, is presented in some depth. Circuit details of the corresponding Psion peripheral for
this driver, the Psion 3-link, were outlined in chapter 8. SYS$AS5.PDD enables software written
using the Psion SDK to communicate with the 3-link peripheral through means of standard PLIB
calls such as 'p_open' and 'p_write'. This peripheral incorporates an ASIC5 as the SIBO serial
protocol slave device. As explained earlier in chapter 7, ASIC5 has an on-board 16550 UART which
means that it can be used in conjunction with the standard serial LDD provided an appropriate PDD
is loaded. SYS$ASS is a PDD intended for this purpose and its description in this chapter provides a
clear insight into the generalised structure and construction of physical device drivers for peripherals
based around the SIBO architecture.

The LDD-PDD interface

All Psion device drivers have a LibEnt structure at the head of their code segment which includes a
vector table defining the functionality of the driver. In the case of SYS$ASS, four vectors are defined.
These are: Install, Remove, Open and Strategy. The structure of the first three of these are fixed for
most device drivers but the fourth can be specified in any way. This fourth vector defines the LDD-
PDD interface and is constructed to allow the two drivers to best communicate with each other. In the
case of serial PDDs, the approach taken is modelled on the LDD strategy vector with the
corresponding strategy vector table and function numbers. This is a logical choice but it is important
to emphasise that the LDD-PDD interface is completely user-definable and that the approach
described in this chapter is optional.

The key feature of any LDD-PDD interface is that the LDD must have no explicit concept of
hardware. In the case of the serial LDD, for instance, it knows that it has a serial port that it can read
data bytes from or write data bytes to but it is ignorant of the explicit implementation of the hardware
at this port. That aspect is handled by the corresponding PDD which handles all the specifics of data
byte 1/0O. In the case of an application writing a buffer to the serial port by means of a

p_i ow(P_FWRI TE. . . .) call, for instance, the LDD will first copy the data in the application's DS into
a local CS buffer. It will then call the PDD to indicate that it intends to start sending data bytes when
the PDD is ready to start receiving. When the PDD is ready to commence sending a byte out of the
serial port, it calls a function (TransmitByte) in the LDD. This function reads the next byte to be
transmitted from its local buffer and hands it to the PDD. The PDD duly transmits the byte and again
calls TransmitByte until all the bytes are completed. The LDD then sends a special 'NothingToSend'
signal to the PDD which indicates that transmission is finished. The LDD also sends an

| 0Si gnal ByPi dNoResched which causes its wait handler to be invoked by the OS. In this way, the

I 0Si gnal that signifies completion of the original write request is invoked by the LDD. Note that the
LDD has no concept of interrupts, merely of sending a byte at a time and registering completion or
otherwise of 1/0 requests. Futhermore, the PDD never takes the initiative from the LDD and merely
undertakes one function at a time before returning control back to the LDD. The LDD-PDD interface
is examined in greater depth later in this chapter when the structure of the PDD strategy vector is
presented.

Revision 1.00 Page 77 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

Code Structure

Device Names and Loading SYS$AS5.PDD

SYS$AS5.PDD is loaded into the RAM of the host machine by means of the following PLIB call in
the application code:

p_| oadl dd(" SYS$AS5. PDD") ;

The name of a device driver is the mechanism by which an application can obtain a channel to that
device driver. LDDs all have three character names followed by a period, a further three characters
and a colon. The first three characters of a PDD name are the name of the LDD to which the PDD
belongs. The second set of three characters uniquely identify the PDD. The device name is required
to uniquely identify the LDD to the OS when attempting to open a channel on it. The SYS$AS5 PDD
belongs to the "TTY:" LDD. Its name as defined in its LibEnt structure is 'TTY.SR5". Thus a
channel with its handle in pcb may be obtained on it at the application level by means of the
following call:

p_open(&pch, "TTY. SR5: A", -1);

The qualifier after the colon indicates that the driver can support more than one channel. Channels
are allocated a single character sequentially from the character 'A" up to the character 'C'. The
number of channels that can be supported in this way is dependent upon the host hardware. Only one
expansion port can be opened on the S3a for instance whereas three are possible on the Workabout
and HC. EPOC uses the driver name in the p_open call to invoke the | oOpen system service which in
turn invokes the Open vector on the associated device driver.

The Single Code Segment and Data Storage

All data associated with a physical device driver must be stored in its code segment. Examples of
such data are the channel interrupt masks and numbers that have to be visible to all processes that
may be using SYS$AS5.PDD.

The overall structure of the code segment is typical of Psion physical device drivers. The segment
begins with a CodeSeg directive followed by the LibEnt structure which defines all the device driver
functions. Before entering the code for these functions, all global variables are declared in the
internal (CS) data space. Following the code for the LibEnt functions comes the code for all the local
driver functions, After these are the EndCodeSeg and end OsAs5PDD directives.

The Channel struct and A5Ent struct

At the head of the driver's assembler source file, SYS$AS5.ASM, various constants, compiler defines
and types are listed. It is here that templates are declared for the global structures that hold the key
driver variables. in the case of SYS$ASS5, one main structure, the Sr5ChannelStruct, is employed to
hold the various important flags and masks that relate to the status of each separate channel on the
driver. This structure is termed the Channel struct and its fields are filled in during the course of
running the PDD install and open vectors. Whenever the serial LDD invokes one of the PDD
functions, the application must ensure that CS holds the address of the PDD's code segment which is
where the Channel struc resides. The channel's Channel struct is usually accessed through DI or BX
depending on preference. Its layout is presented later in this chapter along with other important
defines that were used in the construction of SYS$AS5.PDD.

SIBO hardware and conditional compilation

As indicated previously, the number of expansion channels supported by a host Psion machine is
dependent on the hardware. In the case of the S3a, only one SIBO channel can legitimately be
opened corresponding to expansion port A. With the HC and the Workabout, it is possible to open up
to three separate SIBO channels on ports A through to C. SYS$AS5.PDD is constructed to enable it
to run on any host Psion platform. In its internal data space, the various hardware options for the
SIBO channels, interrupt masks and interrupt numbers are coded in a large if statement thereby

Revision 1.00 Page 78 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

permitting conditional compilation of the driver for the required host hardware. The only change that
need be made in adapting it for use on another Psion machine is the alteration of the build flag at the
start of the code segment. This flag indicates to the compiler which SIBO machine flags as well as
other variables should be set. The conditional compilation table outlined here is worthy of some study
because it encapsulates all the information regarding masks and SIBO hardware channels required by
the prospective developer interested in constructing a multi-platform peripheral and accompanying
PDD.

The PDD Functions

OsASSInstall
IN: Nothing
OUT: If successful, return with carry clear
If installation unsuccessful, return with the carry flag set and error number in the
AL register

PRESERVE: SS, SP, BP

The install vector is called by the parent LDD whenever the PDD is required to be loaded. It cannot
be called directly be an application only indirectly through the LDD in its Install vector. The install
vector is called in the context of the OS with DS and ES in an unknown state. Memory will not be
moved while in this function so the normal rules governing the use of ES and DS may be ignored.

OsAS5Remove

IN: Nothing
OUT: If successful, return with carry clear

If installation unsuccessful, return with the carry flag set and error number in the
AL register

PRESERVE: SS, SP, BP

The remove vector is called by the parent LDD whenever the PDD is required to be unloaded. It
cannot be called directly by an application and only indirectly through the LDD in its Remove vector.
The remove vector is called in the context of the OS with DS and ES in an unknown state. Memory
will not be moved while in this function so the normal rules governing the use of ES and DS may be
ignored.

OsAS50pen
IN: SS:SI points to the OpenEnt structure
ES, DS point to the DS of the application process.
OUT: If successful, return with carry clear and control block in BX
If installation unsuccessful, return with the carry flag set and error number in the
AL register

PRESERVE: SS, SP, BP

The open vector is called by the parent LDD whenever a channel to the PDD is required to be opened.
It cannot be called directly by an application and is typically invoked in the higher level LDD Open
vector code by means of the DevOpenPDD OS system call. On invoking the open vector, Sl points to
the OpenEnt structure which contains three fields, namely OpenNamePtr, OpenMode and OpenChan.
The OpenNamePtr points to the qualifier immediately following the device name in the call to
p_open. In the case of SYS$ASS, for instance, the OpenNamePtr would point to the ‘A" in the name
"TTY. SR5: A". This corresponds to an attempt to open the first hardware SIBO channel on the host
machine which if successful will leave the address of the Chan0 Sr5ChannelStruct in BX. The PDD
open vector finally includes a call to the OS service HaGet Channel to obtain the requested SIBO
channel.

Revision 1.00 Page 79 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

The order of action undertaken by the parent serial LDD's open vector is generally fairly complicated
and includes various calls to the PDD strategy vector routines. The situation is outlined overleaf:

e Ensure that the LDD itself can be opened.

« Call the PDD open vector using the OS DevOpenPDD OS call.

e If successful, call the OS service DevGet PDDAddr ess Which returns the full segment:offset
address of the PDD's fourth strategy vector in BX:AX. These values are loaded into the
dword Channel struct field SerialPDDEntry.

* Invoke the PDD strategy Open and SetHandlerCS functions to set up offsets and segments
respectively to locations in the LDD above.

* Invoke strategy Set to initialise the transmission baud rate.

* Invoke strategy Start to set-up and then enable interrupts

Once the DevGetPDDAddress service has been used to load the LDD's SerialPDDEntry field, it may
be used to load in the address of any of the PDD's strategy functions. The DevGetPDDAddress OS
call invoked in the LDD open vector must also be invoked in the LDD resume vector code since
memory may have been moved while the LDD was held. The PDD is ignorant of such activity since
the serial LDD is responsible for handling all holds and resumes.

OsASSHStrategy
IN: AX holds the vector number
ES, DS point to the DS of the application process.
OUT: If successful, return with carry clear and control block in BX
If installation unsuccessful, return with the carry flag set and error number in the
AL register

PRESERVE: SS, SP, BP

The strategy functions are invoked directly from the various serial LDD vectors to provide hardware-
specific services. For instance, in order to set up the baud rate, it is necessary to invoke strategy Set.
The strategy vector table for OsAS5Strategy is presented below and then the functionality of the
important component vectors is outlined:

AS5St rat egyJunpTabl e | abel word

dw of fset AS5Qpen ; Load Handl er offsets

dw of fset AS5C ose ; Close the channel

dw of fset AS5Start ;Start the channel

dw of fset AS5St op ; Stop the channel

dw of f set AS5Set ;Set the channel status

dw of f set AS5Sense : Return channel status
dw of f set AS5Cont r ol ;Drive the handshaking |ines
dw of fset AS5Enquire :Returns baud rate

dw of fset AS5Enabl e ; Begi n sendi ng out put
dw of f set AS5Set Handl er CS ; Load Handl er segments

Open and SetHandlerCS go together and are invoked from the LDD open and resume vector code.
Both are required to let the PDD know the address at which its LDD resides. The four full addresses
passed through to Open and SetHandlerCS are of the LDD's control block and the LDD Statusint,
Recvint and XmitInt vectors. Close is called in order to close an opened channel. Start and Stop are
used to enable/disable interrupts and are invoked from the LDD open, hold/resume and set vectors.
The order of action in the PDD Start vector is as follows:
* Initialise PDD variables
e Check H/W present
+ Start the hardware running. In the case of SYS$ASS, part of this process involves starting a
continuous clock from the host controller ASIC in order to trigger the UART clock on the 3-
link's ASICS. In addition to this clock, the RTS and DTR lines must be driven low.
o Start interrupts.
The common interrupt service routine code resides in the PDD Comlnt function. This code is patched
into the interrupt vector via the GenSetRevector system service. The interrupt mask contains bits to

Revision 1.00 Page 80 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

generate the following interrupts: Receive character, Ready to send next character and Modem line
change character. In SYS$ASS, all three interrupts are enabled in Start. It is important to realise
that after masking in these bits, a Ready to send next character interrupt is almost immediately
generated so the corresponding Comlint code must be able to handle this.

CheckHardwarePresent

This non-mandatory function is called from the Open vector and follows the lines of previously
discussed CheckHardwarePresent code. After checking for an ASICS at the end of the serial link, the
function returns with the carry flag clear if one is found. If a non-zero info byte is returned with an
Asic5Normalld, then various other IDs are tried (Asic4ld, Asic8ld, Asic5Packld) before returning
with the carry flag set.

CheckHardwarePresentFromStart

This is a non-mandatory function called only from the PDD Start vector. After checking that we have
an ASICS5 at the end of the SIBO channel, the function sets the S PERIPHERALMODE bit of the
A5PortBMode register. This then puts ASIC5 into UART mode.

Comint

The common interrupt routine code is entered with DI holding the address of the appropriate channel
struct. ASIC5's control register (A5CtrIReg) is read first to determine which interrupt has occurred.
The byte read from the register is compared against S_ MDINT (Modem lines interrupt), S_RXINT
(Receive character interrupt) and S_TXINT (Transmit interrupt). The code to handle each of these
cases is then entered prior to returning control back to the LDD via the Channel struct fields that were
filled by a previous LDD calls to the PDD strategy Open and SetHandlersCS vectors. The LDD has
no knowledge of interrupts and the purpose of Comint is therefore to hide the hardware details of
handling interrupts from the LDD. Once the interrupt has been serviced, a write is made to
A9IBNonSpecificEoiW in the case of ASIC9 or A1NonSpecificEoi for an ASIC1/ASIC2 based system
to indicate to the OS that the interrupt has been serviced.

Revision 1.00 Page 81 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

13. DEBUGGING AND TESTING DEVICE DRIVERS

Introduction

This chapter will detail the techniques that can be used by the developer to first debug and then test
device drivers. The emphasis will be on the software methods such as:
e Good use of variables. e.g. Starting all the fields in the CS Channel Status structure with
CsS.
» Debugging by eye. Even more important with regard to device drivers.
» Using SDBG. The pitfalls and benefits. Working your way around the strategy vector calls
with SDBG.
» Construction of C test harness programs. Catching all the error flags that can be returned by
device driver functions.
e The comprehensive memory check program mem.c.

Debugging Techniques

A Psion device driver is written in 8086 assembler as an asm file and built using the Borland Turbo
Assembler compiler. The subsequent debugging process centres around the construction of an
appropriate PLIB test harness. The purpose of a test harness is to check a number of the device driver
vectors to ensure that they do not return errors or cause panics. The majority of PLIB calls that would
be used in this context return a negative integer that is used to ascertain the cause of the problem in
the corresponding device driver vector. The code below, for instance, would be used to test the install,
open, strategy close and remove vectors of the A4EXIF LDD:

GLDEF_C VO D nai n(VO D)

{
VA D *serH;

INT ret;
if ((ret=p_l oadl dd("A4EXI F. LDD")) <0)
{

p_printf("Error %l on p_loadl dd",ret);

p_getch();
p_exit(0);

el se

p_printf("Successfully | oaded A4EXIF. LDD");
if ((ret=p_open(&serH "LED:", -1))<0)

{

p_printf("Error %l on p_open",ret);
p_getch();
}

el se

p_printf("Successfully opened LED: channel");
p_cl ose(serH);

p_printf("Successfully closed LED: channel");
}

p_devdel ("LED', E_LDD);

p_getch();
p_exit(0);

Revision 1.00 Page 82 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

If as often happens at this stage, a bug in the device driver causes the test harness program to crash, it
is necessary to debug the driver code either by eye or using SDBG. Debugging by eye should always
be the first resort, however, whenever the bug can be readily pinned down to a particular vector.
Things to look out for include:

* An unbalanced stack: Check that the number of ‘pushes' equals the number of 'pops' in the
appropriate vector code.

* Addressing the wrong location: Ensure that all the Channel status fields (stored in CS) are
offset using the correct register and that that register holds the right value. The following
code for instance requires DI to hold the address of the channel status struct prior to

invocation:
nmov al, cs:[di].Channel QpenFl ag

« Consistency: With regard to the last point, it is important to be consistent if possible and try
and use the same register (i.e. DI) to hold the channel status structure. A different one
(usually BX) should also be used to hold the address of the open channel control block.

» Trashing BX and DI: If these registers are used in the vector code for anything other than
addressing, check that their value is not being trashed by the operation.

Debugging using SDBG is an extension of debugging by eye. The SIBO debugger allows the
programmer to trace through the driver's source code instruction by instruction and observe the
contents of the CPU registers in the process. In this way it is possible to discover any discrepancies in
terms of the values stored in the various registers. Furthermore, tracing with SDBG will enable the
user to pinpoint the source of panics. The first objective of the device driver debugging process
should be to get the code outlined on the previous page to work OK.

Further Testing Strategies

Once installing, opening, closing and unloading are dealt with, a test harness can be expanded to
include p_i owor p_i oc calls which map onto the LDD's strategy vector. At this stage, SDBG is
particularly useful for testing purposes as breakpoints can be set and jumped to. In this way for any
p_i oc(serH, <func>, &er St at, &A1, &A2) call, the contents of the status word, ser St at , and the A1
and A2 parameters can be tracked through the LDD's strategy vector. The value held by the status
word at the end of a particular strategy call is the value returned by the corresponding PLIB

p_i ow/p_i oc call. Thus negative errors within the strategy code can be picked up by the test harness.
A good test harness should be able to catch all the possible errors and at the least invoke p_pri ntf to
let the user know when one of them is returned. The file p_file.h contains a list of all the current
return error values and the corresponding PLIB level error name. The entry for Pendi ngEr r, for
instance is as follows:

#def i ne Pendi ngErr (-46)
#def i ne E_FI LE_PENDI NG Pendi ngErr

In order to induce the return of these error values it is necessary to extend the basic test harness
outline to allow the user to undertake various pathological actions. For instance, the harness may
include code that tries to open a channel twice which should result in I nUseEr r being invoked. By
such means it is possible to ensure that a driver is not only operating as it should in normal
circumstances but returning the correct error value when relevant.

Memory Testing

The final process that should be undertaken to fully test a device driver consists of the construction of
an appropriate memory test harness. Three functions are presented on the next two pages which
provide the core of such a comprehensive memory test program. The first function, CheckMemory,
uses the PLIB routines p_al | spc and p_sgf r ee to print out the current free bytes on the heap and the
number of free segments in the host RAM. This function can be invoked after installing, opening,
closing or removing a device driver to ensure that memory is not going to 'alloc heaven'. The
GobbleMemory function is first used to determine the amount of free memory available in segments

Revision 1.00 Page 83 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

through calling p_sgfree. The PLIB p_sgcr eat e function is then invoked to create a new segment,
"Test", that consists of all of this free memory. Finally, the p_sgcopyt o PLIB function is called to fill
"Test" with 0x55's. By using up all free memory in this way, it is possible to use segment "Test" to
determine whether a particular driver vector is writing to the wrong location. TestGobble, presented
overleaf, is the third function outlined. It uses the PLIB function p_sgcopyfr to check the values of
the bytes in the segment "Test". If any of the 0x55's have been overwritten then we know that we
have a problem. These three functions should be incorporated within the standard test harness
functions already presented in this chapter. In this way, it is possible to generate a powerful generic
test program that can be used as the basis for all device driver testing.

LOCAL_C VA D CheckMenory(VO D)
{

VO D *Heap;

I NT fbytes;

f byt es=p_al | spc(&Heap);

p_printf("Free Heap Menory =>% bytes", f bytes);
p_printf("Free Segnents =>%l", p_sgfree());
p_getch();

}

/**/

LOCAL_C VO D Gobbl eMenory(VA D)
{

U NT nPar as, segSi ze;

INT j;

LONG pos, i ;

UBYTE buf [256] ;

p_printf(" System RAM size
p_printf("lInternal RAM usage
nPar as=p_sgfree();
p_printf("Amunt of free RAM = %", nPar as) ;
segH=p_sgcreate("Test", nParas, E_ SEGVENT_HI GH) ;
if (segH

p_printf("Created segnent \"test\"");

{

p_printf("Error in creating segnent");
p_getch();
p_exit(0);
}
segSi ze=p_sgsi ze(segH) ;
p_printf("Size of segnent is %l", segSi ze);
p_printf("ln 16-byte paragraphs");
p_sl eep(5L);
for (j=0;j<16;]j++)
buf [j] =0x55;

%", p_getran());
%", p_sgrandi sk());

el se

i =0;
whil e (i<segSize)

{

pos=i *16;

if (p_sgcopyto(segH, pos, &uf[0], 16) <0)
{

p_printf("Failed on p_sgcopy");
p_printf("%",i);
p_getch();

) }

| ++;

}
p_printf("Test segnent full of Ox55s");

p_getch();
}

/**/

Revision 1.00 Page 84 of 115 pages

The Psion SIBO Hardware Development Kit

LOCAL_C VO D Test Gobbl e(VO D)

{

U NT segCount;
UBYTE buf [16];
INT i;

segCount =0;
p_printf("Checking segnent integrity ...");
for (segCount=0; segCount<p_sgsize(segH); segCount ++)

{

if (p_sgcopyfr(segH, segCount *16, &uf [0], 16) <0)
p_printf("Error in segnent");

el se

{
for (i=0;i<16;i++)
if (buf[i]!=0x55)
{
p_printf("OVERWRI TE ERROR! ") ;

p_printf("Segnment count=%l", segCount);
p_printf("Byte count=%",i);

}

}
p_printf("Test segnent OK");
p_printf("Heap integrity checks OK");

p_al |l chk(44);

p_printf("lIf get here, heap OK");
p_getch();

}

/**/

Revision 1.00

Psion PLC (c) May 1995

Page 85 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

APPENDIX: SOURCE CODE FILES

A4EXIF.ASM

title AEXIF -- Exanple ASIC4 Interface device driver
subttl Copyright (c) Psion PLC (1994)
name AAEXI F

VER DATE BY DESCRI PTI ON

: 1.00F 26/1/95 Ml Working Versi on

BUI LDSB=1 ; S3a build environnent (channel s=1)
S3c=0 ; Need to specify no s3c

; BUI LDSC=1 ; S3¢c build environnent (channel s=3)
; BUI LDCH=1 ; HC buil d environment (channel s=3)
; BUl LDHH=1 ; S3 build environment (channel s=1)

include ..\inc\epoc.inc
include ..\inc\epoclib.inc
include ..\inc\epocsibo.inc
i ncl ude ossibo.inc

i ncl ude ospack.inc

; Exanpl e Logi cal Device Driver for prototype LED-ASIC4 Interface
; circuit for Corporate/S3C/ Consuner serial port.
; Witten by Mal Dec 1994/Jan 1995.

AAEXI F CONSTANTS AND TYPES

are conpiler directives used by the TCEP assenbl er

The followi ng constants and type definitions
: when it is creating the LDD.

if Consuner

nunber of channel s equ 1
el se
if Corporate or S3c
nurber of channel s equ 3
el se
nurber of channel s equ 2
endi f
endi f

; Channel StatusEnt bl ock accessed through CS: DI
A4EXi f St at usEnt struc

A4EXi f CSProcessl d dw ? ; Channel parent process id

A4Exi f CSChannel Open db ? ; Channel open flag

A4Exi f CSChannel Runni ng db ? ; Channel hardware running
flag

A4Exi f CSChanReadConpl et ed db ? ; Channel request conpl eted
flag

A4Exi f CSChannel | nt Mask db ? ; Channel interrupt mask

A4Exi f CSChannel | nt Num db ? ; Channel interrupt nunber

A4EXi f CSChannel Sel ect db ? ; SI BO Channel sel ect

A4EXi f CSChannel | nt Vec dw ? ; Channel int vector nunber

A4EXi f CSTi ckHandl e dw ? ; TCK channel handl e

A4EXxi f CSA1Val ue db ? ; Channel strategy Al paraneter

A4EXi f CSA2Val ue db ? ; Channel strategy A2 paraneter

A4EXi f St at usEnt ends

; Open Channel Control block accessed through DS: BX
A4EXi f Ent struc

A4Exi f DSI o ChanEnt <> ; Open channel control bl ock Ent
A4EXxi f DSHandl er Pt r dw ? ; Cant touch when under
A4EXi f DSSt at usPt r dw ? ; Hol d, Resune, Reset or
A4EXi f DSALPt r dw ? ;interrupt routine
AA4EXi f DSA2Pt r dw ?
A4EXi f DSSt at usént Pt r dw ?
A4EXi f Ent ends
AAPERI PH_MASK equ Of Oh ; 11110000b

Revision 1.00 Page 86 of 115 pages

The Psion SIBO Hardware Development Kit

EXTENDED_| NFO_BYTE
US_ENABLE_ON
US_ENABLE_OFF

; Latch addresses for reading/witing

U5QUTPUT_LATCH

U3l NPUT_BUFFER

W STATUS_BUFFER
cs: [di].AdExi f CsAlVal uef or

| NTERRUPT_LATCH

; Status byte nasks
S2S3_ON
S2S3_OFF
S2_ONLY
S3_ONLY
| NTERRUPT_STATUS_MASK

; LED bytes

BOTTOM LEDS_ON
ZERO BYTE

dgroup group stack

equ
equ
equ

equ
equ
equ

equ

equ
equ
equ
equ
equ

equ
equ
equ
equ
equ

090h
080h
000h

00000000b
00000000b
00000001b

00000001b

00000011b
00000000b
00000001b
00000010b
00000011b

01010101b
10101010b
11110000b
00001111b
00h

assune ds: dgroup, es: dgroup, ss: dgroup

CodeSeg

; AAEXI F ENTRY TABLE

Pr ocBegi n@ A4Exi f LDD

dw LDDSi gnat ure
db 'LED,0,0,0,0,0
dw (Vect or End- Vector) /2
Vect or:
dw A4EXi flnstall
dw A4EXi f Renove
dw A4EXi f Hol d
dw A4EXi f Resune
dw A4EXi f Reset
dw AdEXi fUnits
dw A4Exi f Open
dw A4EXi f Strat egy
Vect or Handl er:
dw A4EXi f Handl er
if Asic9
I nterrupt Vectors:
dw A4EXi f Ti ckl nt
endi f
Vect or End:

AAEXI F | NTERNAL DATA SPACE

the 'cs:' prefix.

if Asic9
if Consuner

Channel 0 A4EXi f St at usEnt <0, 0, 0, 0, mask

A9MS| ave, HM r g2Revect or, Sel ect Channel 5, | nt VecO, 0, 0>

el se
if Corporate or S3c

Channel 0 A4EXi f St at usEnt <0, 0, 0, 0, mask

A9MEXpIl nt A, HwW r g4Revect or, Sel ect Channel 3, | nt VecO, 0, 0>
Channel 1 A4EXi f St at usEnt <0, 0, 0, 0, nask

A9MEXpl nt B, HW r g5Revect or, Sel ect Channel 4, | nt Vec1, 0, 0>
Channel 2 A4EXi f St at usEnt <0, 0, 0, 0, nask

A9MS| ave, HM r g2Revect or, Sel ect Channel 5, | nt Vec2, 0, 0>

Revision 1.00

Device Driver global variables follow.
These variables reside in the code segment
and as such can al ways be accessed with

; Sets LBO for
; Desel ects LBO for

Psion PLC (c) May 1995

latch Us

03

; Selects A0 for witing
; Sel ects A0 for reading

; readi ng

;Selects Al for witing

Page 87 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

el se
Channel 0 A4EXi f St at usEnt <0, 0, 0, 0, nask
A9MEXpl nt A, HwW r g4Revect or, Sel ect Channel 3, | nt VecO, 0, 0>
Channel 1 A4EXi f St at usEnt <0, 0, 0, 0, nask
A9MEXpl nt B, HW r g5Revect or, Sel ect Channel 4, | nt Vec1, 0, 0>
endi f
endi f
el se
if Consuner
Channel 0 A4EXi f St at usEnt <0, 0, 0, 0, nask
Asi c2l nt, HM r g4Revect or, Sel ect Channel 7, | nt VecO, 0, 0>
el se
if Corporate
Channel 0 A4EXi f St at usEnt <0, 0, 0, 0, nask
Expl nt Left A, HM r g3Revect or, ExpChannel Left A, | nt VecO, 0, 0>
Channel 1 A4EXi f St at usEnt <0, 0, 0, 0, nask
Expl nt Ri ght B, HM r q2Revect or, ExpChannel Ri ght B, | nt Vec1, 0, 0>
Channel 2 A4EXi f St at usEnt <0, 0, 0, 0, nask
Asi c2l nt, HM r g4Revect or, Sel ect Channel 7, | nt Vec2, 0, 0>
el se
Channel 0 A4EXi f St at usEnt <0, 0, 0, 0, nask
Expl nt Left A, HM r g3Revect or, ExpChannel Left A, | nt VecO, 0, 0>
Channel 1 A4EXi f St at usEnt <0, 0, 0, 0, nask
Expl nt Ri ght B, HM r g2Revect or , ExpChannel Ri ght B, | nt Vec1, 0, 0>
endi f
endi f
endi f
Hol dFl ag db 0 ; Hol d/ Resure fl ag
Swi t chSt at us db ? ; Hol ds the masked status byte from U4 after
interrupt
ProcEnd nor et
ProcBegi n@ A4Exi fInstall, far
Installs the device driver.
; Invoked after a PLIB 'p_l oadl dd("A4EXIF.LDD")' call to load the LDD
; Al of the fields inside the CS control blocks are prel oaded
; with the correct values at install tine. Install therefore does
; not do any work.
; I'N:
; Not hi ng
; QUT:
; Carry Clear - driver successfully installed
‘ clc ; The Channel Open fields are set to zero
ret ;in the rel evant Channel St atuskEnt headers
ProcEnd nor et
ProcBegi n@ A4Exi f Renpve, f ar
Renoves the device driver.
; Invoked after a PLIB 'p_devdel ("LED',E_LDD)' call to unload the
; devi ce driver.
; A device driver cannot be renoved if any of its channels
; are still open.
; I'N:
; Not hi ng
; QUT:
; Carry clear - successfully renpved
; Carry set - renove failed, error number in AL
‘ nov cx, nunberof channel s ; Check that each
nmv di, offset Channel O ; channel is closed
xor ax, ax
CheckAl | Channel sCl osedLoop:
cnp cs: [di].AdExi f CSChannel Open, al ; Closed channels wll
j ne WeHaveAChannel OpenSoFai | ;have the value 0 in
add di, (size A4Exif StatusEnt) ;their Channel Open

Revision 1.00 Page 88 of 115 pages

The Psion SIBO Hardware Development Kit

| oop CheckAl | Channel sCl osedLoop

jmp Fi ni shedCkay
WeHaveAChannel OpenSoFai |

nov al, InUseErr

stc

ret
Fi ni shedOkay:

clc

ret

ProcEnd nor et

ProcBegi n@ A4Exi f Hol d, f ar

; This will
; it sees that the doors have been opened and our periphera
; | ost power.
; I'N:
; Reason for the hold in AH
; ouT
; Not hi ng

nmov cx, 1

xchg cl, Hol dFl ag

cnp cl, O

jne Al readyHel d
A4Hol dFr onili ck

nmv cx, nunberof channel s

nmov di, offset Channel 0

Hol dAl | TheChannel sLoop

cnp cs: [di].AdExi f CSChannel Open, 0
je Dont Hol dBecauseNot Open
push cX
cal | St opTheChannel Runni ng
pop cX
Dont Hol dBecauseNot Open:
add di, (size A4Exif StatusEnt)
| oop Hol dAl | TheChannel sLoop
Al r eadyHel d:
ret

ProcEnd nor et

ProcBegi n@ A4Exi f Resune, f ar

Call ed by the operating systemwhen it

I'N:
Not hi ng
auT
Not hi ng
xor CX, CX
xchg cl, Hol dFl ag
cnp cl, O
je Al r eadyResuned

if Asic9
GenDat aSegnent
HwCet SsdDat a

nmov bx, ax
cnp es: [bx] . SsdDoor St at us, Door Open
je Door sAr eCpen
endi f
AdResuneFr onili ck
nmov cx, nunber of channel s
nmov di, offset Channel 0

ResumeAl | TheChannel sLoop

cnp cs: [di].AdExi f CSChannel Open, 0
je Dont ResunmeBecauseNot Open

push cX

cal | St art TheChannel Runni ng

pop cX

Dont ResuneBecauseNot Open:
add di, (size A4Exif StatusEnt)
| oop ResumeAl | TheChannel sLoop
Al r eadyResuned:

Revision 1.00

Psion PLC (c) May 1995

;flags

;Fail if not al

; ¢l osed

Cal l ed by the operating system whenever the device driver is
bei ng nmoved or the machine is powering down.
al so be called by our pack door polling function when

has

;Hol d can be call ed
;when the driver is
;under a hold so
;re-entrancy bl ocking

;is required

; Loop because Hol d
;must stop all the

; channel s

;1s the channel open?
;1f it is then stop

;all interrupts

has finished noving the
device driver in nenory or when the nmachine is swtching back on

Al so called by our door polling routine when it sees that the doors
have been closed and we can resunme communi cation with our peripheral

;Block in case of re-entrancy

; Check to see if the pack
;doors are still closed

; Loop because resune nust
;restart each open channe

;1s the channel open?

Page 89 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

ret

Door sAr eOpen:

nmov Hol dFl ag, 2
ret
ProcEnd nor et

ProcBegi n@ A4Exi f Reset , far

Cal | ed when an application which opened a channel term nates without
cl osing the device driver.
A device driver, for each open channel, has to request that the
operating systemcalls this function when the application
term nates abnormally (ie w thout closing an open channel).
Reset can supply one piece of identifying data which will be
passed in CX. This would usually be the channel's nunber or CS
control block pointer.
Reset just needs to clear interrupts, hardware reservations, and free
the channel. Any allocated space will be cleaned up for you by the CS.
I'N:

The device driver's handle in BX

The address of the status struc identifying the channel in CX

QUT:
Not hi ng

nov di, cx

cnp cs: [di].AdExi f CSChannel Open, 0

je Not OpenToReset

cal | St opTheChannel Runni ng ;Stop interrupts

nmv al, cs:[di].AdExifCSChannel | nt Mask ; Free the reserved

HwFr eeChannel ; har dwar e

nmv cs: [di].AdExi f CSChannel Open, 0 ; The channel is now
Not OpenToReset : ;free

ret

ProcEnd nor et

ProcBegi n@ A4Exi fUnits, far

Called to find how many open channels the driver will support

In:
Not hi ng
Qut :
The total nunber of channels supported in AX
nmv ax, nunberof channel s
ret

ProcEnd nor et

ProcBegi n@ A4Exi f Open, f ar

Opens a device driver channel.
Invoked after the PLIB call 'p_open(&appHandle,"LED:*",-1)'to open a
channel to the device driver.

In:

CS device handl e of the device driver in DX

Pointer to the OpenEnt struc in Sl

Pointer to the IntEnt struc in BP

DS, ES, SS point to the applications data space
Qut:

Carry clear - BX holds the address of the open channel

Carry set - AL holds the error nunber
cld ;Interrupts off to
pushf ;prevent multiple apps
cli ;calling open
nmov si, [si].OpenNanePtr ; simul taneously
nmov al, [si+1]
Char ToFol dedChar ; Read the unit no.
cnp al, "A ;part of device nane
jib OpenNaneEr r ;to find which channel
sub al, "A ;to open. eg "LED: A"
cnp al , nunberof channel s
jae OpenNaneEr r
xor ah, ah
push dx ; Map the channel no.
nmov dx, (size A4Exif StatusEnt) ;to a channel control
mul dx ;block in our CS
pop dx ; space

Revision 1.00 Page 90 of 115 pages

The Psion SIBO Hardware Development Kit

nov di, ax

add di, offset Channel O

cnp cs: [di].AdExi f CSChannel Open, 0
je Get ATi ckChanne

popf

nmov ax, AlreadyOpenErr

jmp Channel Al r eadyOpen
Get ATi ckChannel

nmov cs:[di].AdExi f CSChannel Open, 1
nmov cs: [di].AdExi f CSChannel Runni ng, 0
popf
ife Asic9
jmp Get Har dwar eChanne
el se
push ax
nmv ax, ((':'" shl 8)+ K')
push ax
nmov ax, (("C shl 8)+T)
push ax
nmov bx, sp
| oOpen
jnc Got ATi ckChanne
add sp, 6
nmov ax, LockedErr
jmp OpenFai | ed
Got ATi ckChannel
add sp, 6
nmov cs:[di].AdExif CSTi ckHandl e, ax
push dx
nmov bx, ax
nmov ax, loFuncStart
nmov cx, 1
push cX
push cX
push dx
nmov cx, (InterruptVectors-Vector)/2
push cX
nov CX, Sp
| oWt hWai t
add sp, 8
pop dx
jmp Get Har dwar eChanne
endi f
OpenNameErr:
popf
nmov ax, NameErr

jmp Channel Al r eadyQpen
Get Har dwar eChannel

nmv al, cs:[di].AdExifCSChannel | nt Mask
HwCet Channe

jnc CheckHar dwar eNowThat SI BOChannel | sOpen
nmov ax, InUseErr

jmp FreeTckAndExi t
Fr eeTckAndChannel Har dwar e

nmov al, cs:[di].AdExifCSChannel | nt Mask
HwFr eeChanne
nmov ax, DeviceErr
FreeTckAndExi t
if Asic9
push ax
nmv bx, cs:[di].Ad4ExifCSTi ckHandl e
| oCl ose
pop ax
endi f
OpenFai | ed:
nmv cs: [di].AdExi f CSChannel Open, O
Channel Al r eadyOpen:
stc
OpenExi t
ret
CheckHar dwar eNowThat SI BOChannel | sOpen:
Procld
nmov cs:[di].AdExif CSProcessld, ax
nmov cs: [di].AdExi f CSChanReadConpl eted, 0
cal | CheckHar dwar ePr esent
jc Fr eeTckAndChannel Har dwar e
nmov cX, (size A4ExifEnt)
HeapAl | ocat eCel
jc Fr eeTckAndChannel Har dwar e
nov bx, ax
Revision 1.00

Psion PLC (c) May 1995

;Offset in DI

; Check to see if
;channel is already
; open

;Obtain a TCK channel so
;we can poll the door state

;1 f HC, we don't need
;to set up the TCK
;routine

;Try to open "TCK: "
;channel with "TCK: "
;string on stack

; TCK will call our
;door-pol ling function
;32 tines a second

;Start our

; door-pol ling function
;running by starting
;the "TCK: " channe

; Frequency 1 tick
;Data irrel evant
;Handl e to driver

; TCK function to cal

; Check the hardware
;is avail able then

;reserve it
;Returns with carry
;clear if OK

;Set up the calling
; process I D

;Returns with carry
;clear if successfu
;Allocate a contro
;block in our app's
; data space

Page 91 of 115 pages

The Psion SIBO Hardware Development Kit

Psion PLC (c) May 1995

push bx ; 1 oAddHandl er trashes BX
nmov al, (VectorHandl er-Vector)/2 ; Set up our wait handl er
| oAddHandl er ; Leaves the address of
pop bx ;handler in AX
jnc Got Handl er
push ax ;1f no handler, open fails
HeapFr eeCel |
pop ax
jmp Fr eeTckAndChannel Har dwar e
Got Handl er:
nmov [bx] . AAExi f DSSt at usént Ptr, di
nmov [bx] . A4Exi f DSHandl er Ptr, ax
nmov [bx] . AdExi f DSSt at usPtr, 0
nmov [bx] . AAExi f DSI 0. ChanNext, bx
nmv [bx] . AAExi f DSl 0. ChanSi gnat ure, |oChanSi gnature
nmv [bx] . AAExi f DSl 0. ChanLi bHandl e, dx
nmov cx, di ; 1 oRequest Reset t akes
xchg bx, dx ;the device handle in
| oRequest Reset ; BX and the channel
xchg bx, dx ;handle in CX
xor ax, ax
cal | St art TheChannel Runni ng
Ret ur nCLC:
clc
ret
Pr ocEnd
if Asic9

ProcBegi n@ A4Exi f Ti ckl nt, far

This function is called by the tick handler on every tick of
the system cl ock. This happens 32 tines a second.
The operating systemw |l call a device driver to hold when nenory is

bei ng noved and when the nmachine is being powered down. It will not
call the device driver when the pack doors are opened.
Opening the pack doors will cause power to the peripheral to be cut,

and therefore the driver needs to be held in the way it would be if
the machi ne powered down. Only for Asic9 based nachi nes.
This function checks the state of the doors on every tick and calls

Hol d and resune when it sees the status of the doors change.
I'N:
The state of the door in SI
QUT:
Not hi ng
cnp si, Door Open ;1s the door open
je TheDoor | sOpen ;or closed?
cnp Hol dFl ag, 2 ; Cl osed Door, Hol dFl ag=2
je NeedToDoTheResune ;means we do a resune
ret ; Cl osed Door, Hol dFl ag! =2
NeedToDoTheHol d:
nmov Hol dFl ag, 2
jmp A4Hol dFr onili ck
NeedToDoTheResune:
nmov Hol dFl ag, O

jmp A4ResuneFr ontli ck
TheDoor | sOpen:

xor ax, ax
cnp Hol dFl ag, al
je NeedToDoTheHol d
ret
ProcEnd nor et
endi f
ProcBegi n@ A4Exi f Handl er, f ar
; When an application is waiting within an iowait and a signal is
; generated then before passing that signal to the application the
; OS first runs any wait handl ers belonging to the device driver
; channel s that the application has open.
; The interrupt routine can generate a signal but cannot fill in any
; status words or pass val ues back to the application because the
; applications DS space is not available. The handl er can consune a
; signal generated by an interrupt and then fill any status words
; before re-signalling the application. A handler always has access
; to the application's DS space. The wait handl er can consune the
; signal which is then no | onger passed back to the application.
; I'N:
Revision 1.00 Page 92 of 115 pages

The Psion SIBO Hardware Development Kit

Pointer to our control

Psion PLC (c) May 1995

bl ock in applications DS space in BX
DS, ES, SS point at application's data space

; QUT:
; Carry clear - do not consune the signal, signal not for us
; Carry set - consune the signal, re-enable handler if AL
; non-zero el se don't re-enable handler if AL=0.
cld
pushf
cli
nmov di, [bx].A4ExifDSStatusEntPtr ;1s the signal for us?
cnp cs: [di].AdExi f CSChanReadConpl eted, 1
jne Exi t Handl er Si gnal Not For Us ;1f it is, copy
nmov cs: [di].AdExi f CSChanReadConpl eted, 0 ;the values read in
nmov al, cs:[di].AdExifCSAlval ue ;the interrupt
nmov ah, cs:[di].AdExif CSA2Val ue ;routine back to
nmov di, [bx].AdExifDSALPtr ;the application
nmov [di], al ; Asynchronous read
nmov di, [bx].AdExifDSA2Ptr ; has been conpl et ed
nmov [di], ah
xor di, di
xchg [bx] . AAExi f DSSt at usPtr, di ;Clear the status
nmov word ptr [di], O ;wor d
popf
|1 0Si gnal
xor ax, ax
stc ; STC and AL! =0 =>
ret ;consune signal and
Exi t Handl er Si gnal Not For Us: ;don't re-enable
popf ; handl er
clc
ret
ProcEnd
Strat egyVect or Tabl e | abel wor d
dw of fset A4Exi f Defaul t ; Strat egyPani c
dw of f set A4AExi f Read ; St rat egyRead i e P_FREAD
dw of fset MExifWite ;StrategyWite ie P_FWRI TE
dw of fset A4ExifC ose ; StrategyC ose ie P_FCLOSE
dw of f set A4Exi f Cancel ; Strat egyCancel i e P_FCANCEL
dw of fset A4Exi f Defaul t ; StrategyAttach
dw of fset A4Exi f Defaul t ; Strat egyDet ach
dw of f set A4EXi f Set ; St rat egySet ie P_FSET
dw of f set A4EXi f Sense ; Strat egySense i e P_FSENSE

ProcBegi n@ A4Exi f Strat egy, far

t he device driver.

the action is conplete,

Calls to this funcion froman owning application wll
the form p_ioc(pch, func, &St at, &A1, &A2) ;

The strategy function is called with a functi on nunber specifying
the action which the driver is to take,
and two argunments Al and A2.
Al strategy functions nust conplete with a signal
Functions can be asynchronous and need not conplete inediately.

sonewhere to signal

Cal l ed by the operating systemwhen an |/ O request is made on

usual 'y take

a status word to fill when

to the application.

bl ock in the applications DS in BX

conpl eti on

; Get the function nunber

; DX hol ds the first argument
; for conveni ence

; Status word hol ds

; E_FI LE_PENDI NG

;Jump to required function
;with our CS control block

;pointer in DI

I'N:
Poi nter to our control
Devi ce driver handle in DX
Pointer to the RgEnt struct in Sl
Pointer to a IntEnt struct in BP
DS, ES, SS point at the applications data space
QuUT:
Ret urned val ue in AX
Must call | oSignal
of the 1/0O request.
nmov ax, [si].RgFunction
nmov dx, [si].RqAlPtr
nmov di, [si].RqStatusPtr
nmov word ptr [di], PendingErr
shl ax, 1
nmov di, ax
push Strat egyVect or Tabl e[di]
nmov di, [bx].Ad4ExifDSStatusEntPtr
retn
A4EXxi f Def aul t:
| oRoot
Revision 1.00

Page 93 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

Exi t Still Pendi ng:

ret
Exi t Wt hConpl eti onSt at usZer o:

xor ax, ax ; Conmon exit points
Exi t Wt hQt her Conpl eti onSt at us:

nmov di, [si].RqStatusPtr

nmov word ptr [di], ax

| 0Si gnal

xor ax, ax

clc

ret

ProcEnd nor et

STRATEGY VECTOR TABLE FUNCTI ONS

;TN
; DX holds the pointer to the first argunent in "p_iow(...)" call
; BX hol ds the address of the open channel control bl ock
; CS: DI holds the address of status struc identifying the open channel
ProcBegi n@ A4Exi f Read, f ar
; Strategy vector table function that handl es asynchronous byte reads
; fromthe LEDs and sw tches.
; The corresponding PLIB call is p_ioc(pch, P_FREAD, &St at, &Ar g1, &Ar g2) ;
; The request is conpleted when the interrupt routine signals the
; handl er which in turn signals the application passing back the val ues
; read at the time of the interrupt through the AlPtr and A2Ptr.
; I'N:
; Pointer to control block in applications data space in BX
; Pointer to control block in our CS space in DI
; Al (pointer to Argl) in DX
; QUT:
; Junps to common exit point
; Panics if multiple requests
cnp [bx] . AAExi f DSSt at usPtr, 0 ;Panic if we al ready
jne Pani cPendi ng ;have an 1/ O read request
pushf ; pendi ng on the channel
cli ;Disable interrupts
nmov cs: [di].AdExi f CSChanReadConpl et ed, 2
nmov ax, [si].RqAlPtr
nmov [bx] . AAExi f DSA1Ptr, ax ;Store the locations to
nmov ax, [si].RqgA2Ptr ;put the data when we get it
nmov [bx] . AAExi f DSA2Ptr, ax
nmov di, [si].RqStatusPtr
nmov [bx] . AAExi f DSSt at usPtr, di ;DI hol ds the address
nmov word ptr [di], PendingErr ;of status word and we
popf ;signal that we are waiting
nmov bx, [bx].A4ExifDSHandl er Pt r ;for conpletion of read
nmov cl, 1
| oEnabl eHandl er ; Enabl e Wait Handl er
jmp short ExitStill Pending ; No | 0Signal because
Pani cPendi ng: ;we are still waiting
nmov al, Pani cl oPendi ng
ProcPani c

ProcEnd nor et

ProcBegi n@ A4AExi fWite, far

This function sets the state of the LEDs.

It conpletes inmediately after setting the state as it has nothing
to wait for.

Wite is the sane as set.

I'N:
Pointer to control block in applications data space in BX
Pointer to control block in our CS space in DI
Al in DX
QUT:
Junps to Set

jmp Wit eAndSet AreTheSane
ProcEnd nor et

ProcBegi n@ A4Exi f C ose, f ar

Revision 1.00 Page 94 of 115 pages

The Psion SIBO Hardware Development Kit

Handl es the request to close a channel.
called by the PLIB call

; I N:
; Pointer to contro
; Pointer to contro
; ouT
; Junps to common exit point
cal | St opTheChannel Runni ng
if Asic9
push bx
nmov bx, cs:[di].AdExifCSTi ckHandl e
| oCl ose
pop bx
endi f
push bx
nmov ax, [bx].Ad4ExifDSlo. ChanLi bHandl e
push ax
nmov bx, [bx].A4ExifDSHandl er Pt r
| oRenpveHandl er
cnp cs:[di].AdExi f CSChanReadConpl et ed

je NoSi gnal ToConsumeFr om nt er r upt
| oWai t For Si gnal
NoSi gnal ToConsumeFr om nt er r upt

pop bx

nov cx, di

| oRequest Reset Cance

pop bx

HeapFr eeCel

nmv al, cs:[di].AdExifCSChannel | nt Mask
HwFr eeChanne

nmov cs:[di].AdExi f CSChannel Open, 0
jmp Exi t Wt hConpl eti onSt at usZer o

ProcEnd nor et

ProcBegi n@ A4Exi f Cancel , f ar

0

1

Psion PLC (c) May 1995

p_i ow(pch, P_FCLOSE) or p_cl ose(pch)

bl ock in applications data space in BX
bl ock in our CS space in D

;Stop interrupts

; Close down the
;"TCK: " channe

; Renove the wait
; handl er

;1f the interrupt
;has signalled the
;handl er we need to
;consune its signal
;now t he handl er

; has been renoved

; No | onger need reset
; Free our contro
;block in app's DS

; To signal conpletion
;of close request

bl ock in applications data space in BX
bl ock in our CS space in D

; Check that there is

;a request pendi ng

; Disabl e Wait Handl er

; Cancel any pendi ng asynchronous read
; Called by the PLIB function p_i owm pcb, P_FCANCEL)
; In:
; Pointer to contro
; Pointer to contro
; Qut
; Junps to common exit point
pushf
cl
cnp [bx] . AAExi f DSSt at usPtr, 0
je Not hi ngToCance
push bx
nmov bx, [bx].A4ExifDSHandl er Pt r
sub cl, cl
| oEnabl eHandl er
pop bx
cnp cs:[di].AdExi f CSChanReadConpl et ed
jne NoSi gnal Fr om nt er r upt

| oWai t For Si gnal
NoSi gnal Fr om nt er r upt

nmv cs:[di].AdExi f CSChanReadConpl et ed
xor di, di
xchg di, [bx].AdExifDSStatusPtr
nmov word ptr [di], Cancel Err
| 0Si gha
Not hi ngToCancel
popf
jmp Exi t Wt hConpl eti onSt at usZer o

ProcEnd nor et

ProcBegi n@ A4Exi f Set, far

Wite a value to the LED latch
Can be called by the PLIB cal
is an unsigned byte

Wite is the sane as set

I'N:
Pointer to contro
Pointer to contro
Al (pointer to Argl) in DX
Revision 1.00

0

p_i ow(pch, P_FSET, &Ar g1)

; To consume any stray
;signal fromthe
;interrupt routine

; To signal conpletion
;of the outstanding
;async read request
;Signal to p_waitstat

; To signal conpletion
;of the cancel request

where Al

bl ock in applications data space in BX
bl ock in our CS space in D

Page 95 of 115 pages

The Psion SIBO Hardware Development Kit

; QUT:
; Junps to common exit point

Wi t eAndSet Ar eTheSane:

pushf

cl

nmov al, cs:[di].AdExifCSChannel Sel ect
HwSel ect Channe

push ax

nov bx, dx

nov dl, USOUTPUT_LATCH

nmov al, [bx]

cal | Qut put Byt e

pop ax

HwSel ect Channe

popf

jmp Exi t Wt hConpl eti onSt at usZer o

ProcEnd nor et

Pr ocBegi n@ A4Exi f Sense, f ar

Reads the state of the LEDS and Swi tches.

Where Argl and Arg2 are unsigned bytes.

Psion PLC (c) May 1995

; Sel ect our SIBO
;serial channel
; Store ol d channel

; DX (now BX) points
;to the value to
;output to our

; peri pheral

;Return ol d channel

; To signal conpletion
;of set request

Can be called fromPLIB using p_i o pch, P_FSENSE, &Ar g1, &Ar g2)

; Sel ect our SIBO
;serial channel
; Store ol d channel

; DX (now BX) points
;to the variable in
;which to place the
;value read from W,
; BX now points to

;the variable in

;which to place the
;value read from U3.

;Return ol d channel

; In:
; Pointer to control block in applications data space in BX
; Pointer to control block in our CS space in Di
; Al (pointer to Argl) in DX
; Qut
; Junps to common exit point
pushf
cl
nmv al, cs:[di].AdExifCSChannel Sel ect
HwSel ect Channe
push ax
nov bx, dx
nov dl, U4STATUS_ BUFFER
cal | I nput Byt e
nmv [bx], a
nmv bx, [si].RqA2Ptr
nov dl, U3l NPUT_BUFFER
cal | I nput Byt e
nmov [bx], a
pop ax
HwSel ect Channe
popf
jmp Exi t Wt hConpl eti onSt at usZer o

ProcEnd nor et

; LOCAL DEVI CE DRI VER FUNCTI ONS

ProcBegi n@ | nput Byt e

|
I'N:

AL hol ds the val ue to output

nmov al, (Serial WiteSingle or A4Address)
SBUSY

SCONTOUT

nmov al, dl

SBUSY

SDATAQUT

nmov al, (Serial ReadSingle or AdData)
SBUSY

SCONTOUT

SBUSY

SDATAI N

ret

ProcEnd nor et

ProcBegi n@ CQut put Byt e

; To signal conpletion
;of a sense request

nterrupts nust be off prior to the call to this function.

DL has address to which Asic4 is to wite

; Interrupts nust be off prior to the call to this function.

Revision 1.00

Page 96 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

DL has address to which Asic4 is to wite
AL has the value to output

push ax
nmov al, (Serial WiteSingle or A4Address)

nmov al, (SerialWiteSingle or AdData)

ret
ProcEnd nor et

ProcBegi n@ | nt VecO, f ar

Interrupt on serial channel O
Calls Comint with channel control block pointer in D

nmov di, offset Channel 0
jmp Coml nt
ProcEnd nor et

if Corporate or S3c
ProcBegi n@ | nt Vec1, far

Interrupt on serial channell
Calls Comint with channel control block pointer in D

nmov di, offset Channel 1
jmp Coml nt
ProcEnd nor et

ProcBegi n@ | nt Vec2, far

Interrupt on serial channel 2
Calls Comint with channel control block pointer in D

nmov di, offset Channel 2
; FALL THROUCH
ProcEnd nor et
endi f
ProcBegi n@ Comi nt, f ar
; The common interrupt service routine code.
; When an interrupt occurs, the first task is to read the status
; buffer of latch W4. The subsequent action is dependent on the
; postion of switches S1 and S2. For the purposes of this exanple,
; the four posibilities for the switch values correspond somewhat
; arbitrarily to four different byte values that are witten to U5.
; in the 8086, interrupts cannot occur while in an interrupt routine.
; If an asynchronous read is pending then the handler is signalled.
; I'N:
; Channel 's CS based control block pointer in Dl
cnp cs: [di].AdExi f CSChanReadConpl et ed, 2 ;Only if 2 do we have
jne Not Asynchr onousRead ;asynch read conpl et ed
nmov cs:[di].AdExi f CSChanReadConpl eted, 1
nmov bx, cs:[di].A4ExifCSProcessld ; Signal s conpletion
| 0Si gnal ByPi dNoReSched ;of read to OS so as
Not Asynchr onousRead: ;to invoke handl er
nmov al, cs:[di].AdExifCSChannel Sel ect
HwSel ect Channel
push ax
nov dl, U3l NPUT_BUFFER
cal | I nput Byt e
nmov cs:[di].AdExi f CSA2Val ue, al ; LED byte
nov dl, U4STATUS BUFFER

Revision 1.00 Page 97 of 115 pages

The Psion SIBO Hardware Development Kit

cal | I nput Byt e

nmov cs:[di].AdExi f CSAlVal ue, al
and al , | NTERRUPT_STATUS_MASK
xchg al, SwitchStatus

cnp Swi tchSt atus, S2S3_ON

je Al | LEDsOn

cnp Swi t chSt atus, S2S3_OFF

je Al LEDsC f

cnp Swi tchStatus, S2_ONLY

je TopLEDsOn

cnp Swi tchStatus, S3_ONLY

je Bot t omLEDsOn

ErrorlnSw t chSt at usByt e:

Psion PLC (c) May 1995

; Status byte

;S2 and S3 on => turn
;on alternate LEDs
;S2 and S3 of f => not
;the alternate LEDs
;S2 on, S3 off => turn
;on top four LEDs

;S3 on, S2 off => turn
;on bottom four LEDs

jmp Cl ear I nt errupt AndReschedul e
Al | LEDsOn:
nmv al, SOVE_LEDS ON
jmp Qut put LEDByt e
Al | LEDsOf f :
nov al, SOVE_LEDS OFF
jmp Qut put LEDByt e
TopLEDsOn:
nmv al, TOP_LEDS ON
jmp Qut put LEDByt e
Bot t onLEDsOn:
nov al, BOTTOM LEDS ON
CQut put LEDByt e:
nov dl, USOUTPUT_LATCH
cal | Qut put Byt e
Cl ear I nt errupt AndReschedul e:
nmov dl, | NTERRUPT_LATCH
cal | Qut put Byt e
if Asi c9 ;A wite to this location
out A9BNonSpeci fi cEoi W al ;inforns the interrupt
el se ;control ler that the
out AlNonSpeci fi cEoi, al ;installed interrupt
endi f ;service routine has
pop ax ; finished
HwSel ect Channel
cle ; Reschedul e i f necessary
ret
ProcEnd nor et
ProcBegin@ Startlnterrupts
; Start interrupts assuming interrupts are
; off prior to call.
; The EPOC GenSet Revector service |oads in
; a user-specified interrupt service routine
; | ocated at the address given in cx:bx
; (segnent cx, offset bx) for the interrupt
; vector nunber given in AL. Note that the
; vari abl e A4Exi f CSChannel | nt Vec hol ds the
; name of the appropriate required interrupt
; vector routine for the channel.
; I'N:
; Qur CS control block pointer in D
; QUT:
; Not hi ng
nmv al, cs:[di].Ad4ExifCSChannel | nt Num ;Get the OS to call
nmov cX, €S ;the function in
push bx ; CS: BX every tine
nmov bx, cs:[di].A4ExifCSChannel | nt Vec ;that the interrupt
GenSet Revect or ; whose nunber is in
pop bx ; AL occurs
ife Asic9
in al, All nterrupt Mask
or al, cs:[di].AdExifCSChannel | nt Mask ; Set the mask
out All nt errupt Mask, al ;location so as
;interrupt
el se ;to enabl e that
in al, A9BI nt errupt MaskRW ;interrupt
or al, cs:[di].AdExifCSChannel | nt Mask
out A9BI nt er r upt MaskRW al
endi f
ret
ProcEnd nor et
Revision 1.00

Page 98 of 115 pages

The Psion SIBO Hardware Development Kit

ProcBegi n@ St opl nterrupts

Stop interrupts assuming that interrupts are off

The EPCC GenReset Revector OS service

repl aces the previously | oaded user-specified
interrupt service routine with the original
routine and interrupt mask for the vector

: N
I

Psion PLC (c) May 1995

; Di sabl e the
;interrupt

; Return the interrupt
;vector to the OS
; defaul t

nothing to do

0

;Switch on the
;output latch U5

; by asserting

;the ASIC4 LBO line
;(LBO is inverted)

; Clear any pendi ng
;interrupt on the
; peri pheral

; Preset the LEDs
;to all off

given in AL.
Qur CS control block pointer in D
QUT:
Not hi ng
fe Asic9
in al, Allnterrupt Mask
nmv ah, cs:[di].AdExifCSChannel | nt Mask
not ah
and al, ah
out All nt errupt Mask, al
el se
in al , A9BI nt errupt MaskRW
nmov ah, cs:[di].AdExifCSChannel | nt Mask
not ah
and al, ah
out A9BI nt er r upt MaskRW al
endi f
nmov al, cs:[di].AdExifCSChannel | nt Num
GenReset Revect or
ret
ProcEnd nor et
ProcBegi n@ St art TheChannel Runni ng
; Starts the hardware and interrupts going
; If the hardware is aready running then there is
; Must check that the hardware has not vani shed before restarting it
; I'N:
; Qur CS control block pointer in D
; QUT:
; Not hi ng
pushf
cli
cnp byte ptr cs:[di].A4Exi f CSChannel Runni ng,
jne Channel Al r eadyRunni ng
cal | CheckHar dwar ePr esent
jc Har dwar eNot Pr esent
nmov al, cs:[di].AdExifCSChannel Sel ect
HwSel ect Channel
push ax
nmov al, (Serial WiteSingle or AdControl)
SBUSY
SCONTOUT
nmov al, U5_ENABLE ON
SBUSY
SDATAOUT
xor ax, ax
nmov dl, | NTERRUPT_LATCH
cal | Qut put Byt e
nov dl, USOUTPUT_LATCH
cal | Qut put Byt e
pop ax
HwSel ect Channel
cal | Startinterrupts
nmv cs: [di].AdExi f CSChannel Runni ng, 1
Channel Al r eadyRunni ng:
popf
clc
ret
Har dwar eNot Pr esent :
popf
stc
ret
ProcEnd nor et
Pr ocBegi n@ St opTheChannel Runni ng
Revision 1.00

Page 99 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

Stops the hardware and interrupts
Checks to see if the hardware is really running to start with

; I N:
; Qur CS control block pointer in D
; QUT:
; Not hi ng
pushf
cli
cnp byte ptr cs:[di].A4Exi f CSChannel Runni ng, 0
je Channel Not Runni ng
nmov al, cs:[di].AdExifCSChannel Sel ect
HwSel ect Channel
push ax
nmov al, (Serial WiteSingle or AdControl)
SBUSY
SCONTOUT
nmov al, US_ENABLE OFF
SBUSY
SDATAQUT
xor ax, ax
nov dl, USOUTPUT_LATCH
cal | Qut put Byt e
pop ax
HwSel ect Channel
cal | Stoplnterrupts
nmov cs: [di].AdExi f CSChannel Runni ng, 0
Channel Not Runni ng:
popf
ret

ProcEnd nor et

Pr ocBegi n@ CheckHar dwar ePr esent

Used to determ ne whether the correct hardware is present
on the successfully procured serial channel.

; I'N:
; CS control block pointer in DI
; QUT:
; Carry clear - correct hardware is there
; Carry set - wrong or no hardware
pushf
cli ; Sel ect the correct
nmov al, cs:[di].AdExifCSChannel Sel ect ; SI BO channel that
HwSel ect Channel ;the peripheral is
push ax ;attached to
Hw\ul | Fr ane
nmov al, (Serial Sel ect or Asic4ld)
SBUSY ;First ook for an
SCONTOUT ; ASIC4 at the other
XNOP ;end of the link
SBUSY
SDATAI N ;1 f the returned
t est al , al ;value is non-zero
je Connect i onFai | edA4Not Pr esent ;we have an ASI C4
nmov al , (Serial ReadSi ngl e or A4l nfoR)
SBUSY ; Now see if we have
SCONTOUT ;the right peripheral
XNOP ; XNOP al | ows the busy
SBUSY ;signal to cone
SDATAI N ;through for the wait
and al, A4PERI PH_MASK
cnp al , EXTENDED | NFO BYTE ; Mask out the bottom
jne Connecti onFai | ed ;four bits as the
pop ax ;upper four contain
HwSel ect Channel ;the peripheral ID
popf
clc ;1f it is our hardware
ret ;exit with carry clear
Connect i onFai | edA4Not Present :
nmov al, (Serial Sel ect or Asic5Normalld) ;1ts not an ASIC4
SBUSY ; peri pheral
SCONTOUT ; By selecting a non
XNOP ; ASI C4 as an ASI C4,
SDATAI N ;we effectively
t est al , al ; di sabl e whatever is

Revision 1.00 Page 100 of 115 pages

The Psion SIBO Hardware Development Kit

jne Connecti onFai |l ed

nmov al, (Serial Sel ect or Asic5Packld)

t est al, al
jne Connecti onFai | ed

nmov al, (Serial Sel ect or Asic8ld)

SDATAI N
Connecti onFai |l ed

pop ax

HwSel ect Channe

popf

stc

ret

ProcEnd nor et

EndCodeSeg

stack segnent stack para 'data
stack ends

end A4Exi fLDD

Revision 1.00

Psion PLC (c) May 1995

;out there so we do

;a select for al

;possibilities so
;that we don't end
;up disabling
;anything that we
;can't control

; Modem chip id

Page 101 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

SYS$AS5.ASM

title AS5PDD Epoc Serial physical device driver for the 16550
subttl Copyright Psion PLC 1993
name SYS$AS5

; VERSI ON DATE DESCRI PTI ON
; 1.0 08/12/94 Initial version
; Witten by Jason Decenber 1994

; Serial Driver for Epoc based around ASI C5

Sr5S3 = 0
Sr5S3a = 1
i fdef BUI LDS3
Sr5S3 = 1
Sr5S3a = 0
BUI LDHH equ 1
endi f

if Sr5S3a
BUI LDSB equ 1
endi f

nclude ..\inc\epoc.inc

ncl ude ..\inc\epocser.inc
nclude ..\inc\epoclib.inc
ncl ude ..\inc\epocsibo.inc
ncl ude ..\srcs\ossibo.inc
ncl ude ..\srcs\ospack.inc

Sr5Channel Struct struc

Sr50pen db ? ; I's the channel open
Sr5Ctrl db ? ; State of control lines
Sr 51 nt Vect or db ? ; The Vector nunber
Sr 5Channel db ? ; Which channel are we
Sr 5Mask db ? ;I nterrupt Mask
Sr 5Runni ng db ? ; Are we running
Sr 51 nt Rout i neVec dw ? ; Vector to Interrupt
Sr 5Baud dw ? ; The baud rate
Sr5LddDat a dw ? ; Info fromLdd above
Sr5St at usl nt dd ? ; Vectors in serial
Sr 5Recvl nt dd ? ; Above to be called
Sr5Xmit | nt dd ? ;. On input/output
Sr5C ockEnabl e db ? ; Reason to stop
Sr5Theli nes db ? ; State of the nodemlines
Sr5Channel Struct ends
A5Ent struc ; ASIC5 Read/ Wite
A5Port A db ? ; Port ARW
A5Port B db ? ; Port BRW
A5Por t BMbde db ? ;I nc/ Mbde
A5Por t D db ? ; Port CD Wite only
A5Swi pel db ?
A5Swi pe2 db ?
A5] nt Mask db ? ; Interrupt mask RIW
A5Ctr| Reg db ? ; IntType/ Ctrl register
A5USR db ? ; UART Status/Ctrl
A5RHR db ? ; Receivel/ Transmi t
A5BDLSB db ? ; Baud Rate wite only
A5BDMSB db ? ; Baud Rate wite only
A5MCR1Eoi db ? ; MCR shift register
A5MCRPr esent Eoi db ? ; Barcode datad& nts
A5MCR2EOi db ?
A5DUMWYF db ?
A5Ent ends
if Consuner
Number O Channel s equ 1 ; S3 Single Channel
el se
Number OfF Channel s equ 3 ; HC, S3C Three Channel
endi f
CsActivityMeter equ 158ch ; Activity Channel
St opTi neQut equ 1000 ; ~1s (1000ms) wait
S _RS2320N equ 00000001b ; RS232 on

Revision 1.00 Page 102 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

S RSTTLON equ 00000100b ; Line drivers on

S _CENTON equ 00010000b ; Line drivers enable
S_RXENB equ 00000001b ; Receive interrupt on
S _TXENB equ 00000010b ; Transmit interrupt on
S _TXEMPTY equ 00010000b ; transmit buffer enpty

S _RXI NT equ 00000001b ; Receive interrupt?

S _TXI NT equ 00000010b ; transmit interrupt?

S_MDI NT equ 00000100b ; Modem status interrupt

S CTS equ 00000001b ; CTS

S RTS equ 00000010b ; RTS

S_DCD equ 00000100b ; DCD

S _DSR equ 00000010b ; DCR

S DIR equ 00000100b ; DTIR

OVERRUN_ERROR equ 01000000b ; Character overrun

PARI TY_ERROR equ 10000000b ; Parity error

S_PERI PHERALMODE equ 00000011b ; ASI C5 RS232 node

S UART_OFF equ 00000010b ; ASIC5 peripheral node

dgroup group stack
assune ds: dgroup, es: dgroup, ss: dgroup

CodeSeg

Pr ocBegi n@ Os AS5PDD

dw PDDSi gnat ure

db "TTY.SR5', 0

dw (Vect or End- Vector)/ 2

Vector:

dw GsAS5l nst al |

dw GCsAS5Renpve

dw Cs AS50pen

dw OsAS5St r at egy

Vect or End:

BaudRat eTabl e dw -077fh, - 04ff h, - 0368h, - 02cch, - 027f h, - 013f h
dw - 009f h, - 004f h, - 0035h, - 0030h, - 0027h, - 0019h
dw -0013h, - 000ch, - 0009h, - 0004h

Dat aBi t sTabl e db 0,2,4,6 ; 5,6,7,8 bits per char frane

ParityTabl e db 08h, 18h, Oh, Oh ; Even, Odd, Mar k, Space parity

Chan0 Sr 5Channel St ruct <>

Chanl Sr 5Channel St ruct <>

Chan2 Sr 5Channel St ruct <>

if Consuner
if Asic9

Set upTabl e dw of fset AS5Int1l
db HwM r g2Revect or, mask A9MS| ave
db Sel ect Channel 5, (mask A9MCl ockEnabl e5 shr 8)

el se

Set upTabl e dw of fset AS5Int1l
db HwM r g4Revect or, mask Asi c2I nt
db Sel ect Channel 7, (mask C ockEnabl e7 shr 8)

endi f
el se
if Asic9

Set upTabl e dw of fset AS5Int1l
db HwM r g4Revect or, mask A9MExpl nt A
db Sel ect Channel 3, (mask A9MCl ockEnabl e3 shr 8)
dw of fset AS5Int 2
db HwM r g5Revect or, mask A9MExpl nt B
db Sel ect Channel 4, (mask A9MCl ockEnabl e4 shr 8)
dw of fset AS5Int3
db HwM r g2Revect or, mask A9MS| ave
db Sel ect Channel 5, (mask A9MCl ockEnabl e5 shr 8)

el se

Set upTabl e dw of fset AS5Int1l
db HM r q3Revect or, mask Expl nt Left A
db ExpChannel Left A, (mask Cl ockEnabl e6 shr 8)
dw of fset AS5Int2
db HwM r g2Revect or, mask Expl nt Ri ght B
db ExpChannel Ri ght B, (mask Cl ockEnabl e5 shr 8)
dw of fset AS5Int3
db HwM r g4Revect or, mask Asi c2Int
db Sel ect Channel 7, (mask C ockEnabl e7 shr 8)

endi f
endi f

ProcEnd nor et

Revision 1.00 Page 103 of 115 pages

The Psion SIBO Hardware Development Kit

Reset Al |

ProcBegi n@ OsAS5l nstal |, far

Install the device driver
Qut: Carry clear -happy to install

Al | Channel sCkay:

Got Chan:

Revision

cld

nov cx, Number O Channel s
nmov di, offset ChanO

nmov si, offset SetupTable
pushf

cl

push ds

nov ax, cs

nov ds, ax

Channel sLoop

nmv [di].Sr50pen, O

| odsw

nmv [di]. Sr51ntRouti neVec, ax
| odsb

nmov [di].Sr5IntVector, a

| odsb

nmov [di].Sr5Mask, a

| odsb

nmov [di].Sr5Channel, a

| odsb

nmov [di].Sr5C ockEnabl e, al
add di, size Sr5Channel Struct
| oop Reset Al | Channel sLoop
pop ds

popf

clc

ret

ProcEnd nor et

Pr ocBegi n@ OGsAS5Renove, f ar

Renove the device driver
Qut: Carry clear -happy to renove

Carry set -we have an open channe
xor ax, ax
or al , Chan0. Sr5Q0pen
or al , Chanl. Sr5Q0pen
or al , Chan2. Sr5Q0pen
jz Al | Channel sCkay
nmov ax, InUseErr
stc
ret

ProcEnd nor et

ProcBegi n@ OsAS5Q(pen, f ar

Open a serial channe

In: SS:Sl is a pointer to the open Ent

Qut: Carry clear, control block in BX
Carry set, error in AX

cld

nmv si, [si].OpenNanePtr

nmv al, [si+1]

Char ToFol dedChar

cnp al, 'A

jb Error | nOpen

sub al, "A

cnp al, Nunmber O Channel s

jae Error |l nOpen

xor ah, ah

nmov bx, offset ChanO

cnp al, 1

jb Got Chan

nov bx, offset Chan2

ja Got Chan

nov bx, offset Chanl

nov al, 1

1.00

Psion PLC (c) May 1995

Cl ear the channels
and set up fixed
paraneters such
as the interrupt
vectors and masks
for each channe

Channel not open
Set the interrupt
handl er to cal
Whi ch I nterrupt

Mask for that
interrupt

Wi ch Psion seria
channel

Baud rate cl ocking
enabl e

; Returns with
; Carry clear

and cant

Structure

be renoved

If we have a
channel Still open
then return a can't
do error else
conpl et e okay

Open the channe
Get the channe
Make Upper Case

I ndi cator which is
Part of the nane
Shoul d be A B, C

What Channel are
We Openni ng
Pointer to Contro
Bl ock in bx

Page 104 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

xchg al, cs:[bx].Sr50pen

cnp al, 0 ; Now try to Open
je OkayToOpen ; That channel
Cant Open:
nmov ax, InUseErr
Cant OpenDi ff Err:
stc
ret
Error | nOpen:
nmov ax, NameErr
stc
ret
OkayToOpen:
xor al, al
nmv cs: [bx]. Sr5Runni ng, al
nmv cs: [bx]. Sr5ThelLi nes, al
nmov cs:[bx].sSr5Ctrl, al
nmov al, cs:[bx].Sr5Mask
HwCet Channel
jc Cant OpenSod ose ; Check that we have
cal | CheckHar dwar ePr esent ; The right Hardware
jnc OpenedCkay
nmov al, cs:[bx].Sr5Mask
HwFr eeChannel
Cant OpenSod ose:
nmov cs:[bx].Sr50pen, O
nov ax, DeviceErr
jmp short Cant OpenDi ffErr ; Return with the
OpenedCkay: ; Offset of our
xor ax, ax ; Control Block
ret ;o In bx
ProcEnd nor et
AS5St rat egyJunpTabl e | abel word
dw of f set AS5Qpen ; Load Handl er offsets
dw of fset AS5Cl ose ; Close the channel
dw of fset AS5Start ; Start the
channel
dw of fset AS5St op ; Stop the channel
dw of f set AS5Set ; Does not hi ng
dw of fset AS5Sense ; Returns chan status
dw of f set AS5Cont r ol ; Drive the lines
dw of fset AS5Enquire ; Returns baud rate
dw of f set ASG5Enabl e ; Begin Qutput
dw of f set AS5Set Handl er CS ; Get Handl er segments

ProcBegi n@ OsAS5St r at egy, f ar

Strategy functions entry point

Warni ng! This can be called fromwi thin Interrupt

In: vector nunber in AX + various data in other registers
DS is OsDataG oup (and MJST be preserved)

Qut: DI is pointer to control block
a d channel and flags on stack

cld

nmov bx, sp

nmv bx, ss:[bx+4]

nmov bl, cs:[bx].Sr5Channel ; Select the correct
xchg bx, ax ; Qutput channe
pushf ; Then Call the right
cli ; Function to dea
HwSel ect Channel ; Wth the strategy
nmv ah, bh ; request

xor bh, bh

push ax ; Interrupts off
nmov ax, di ; and flags are on
nmov di, sp ; the stack

nmov di, ss:[di+8]

jmp AS5St r at egyJunpTabl e[bx]
ProcEnd nor et

Pr ocBegi n@ AS50pen, f ar

A d channel and flags on the stack, interrupts off

nmv cs:[di]. Sr5Lddbata, cx ; Load the offsets of
nmov word ptr cs:[di].Sr5Statuslnt, ax ; the data send and

Revision 1.00 Page 105 of 115 pages

The Psion SIBO Hardware Development Kit

nmov word ptr cs:[di].Sr5Recvint, si

nmov word ptr cs:[di].Sr5Xmtlnt, dx ;
xor dx, dx ;
pop ax ;
HwSel ect Channel ;
popf ;
ret

ProcEnd nor et

ProcBegi n@ AS5CI ose, far

; A d channel and flags on the stack,

and cs:[di].Sr50pen, O ;
nmov al, cs:[di].Sr5Mask ;
HwFr eeChannel ;
pop ax ;
HwSel ect Channel ;
popf ;

ret
ProcEnd nor et

ProcBegi n@ AS5St art, far

; A d channel and flags on the stack,

cal | CheckHar dwar eFr onSt ar t
nov dx, 0
jc Cant St art Sonet hi ngWhi chl snt Ther e

if Asi c9
in ax, A9WContr ol Ext r aRW ;
or ah, cs:[di].Sr50 ockEnabl e ;
out A9WCont r ol Ext raRW ax

el se
nmov al, cs:[di].Sr50 ockEnabl e
HwSet A2Cont rol 2Bits

endi f
nmv al, SerialWiteSingle or ASUSR ;
SBUSY ;
SCONTOUT ;
nmov al, cs:[di].Sr5Ctrl
SBUSY
SDATAOUT
nmov al, SerialWiteSingle or A5BDLSB
SBUSY
SCONTOUT
nmv al, byte ptr cs:[di].Sr5Baud
SBUSY
SDATAQUT
nmov al, Serial WiteSingle or ASBDMSB
SBUSY
SCONTOUT
nmv al, byte ptr cs:[di+1]. Sr5Baud
SBUSY
SDATAQUT
cal | Get Thel nt err upt ;
xor CX, CX ;
cal | DriveRts ;
nmv al, SerialWiteSingle or A5Ctrl Reg ;
SBUSY
SCONTOUT
nmov al, (S_CENTON or S _RS2320N or S _RSTTLON)
SBUSY
SDATAQUT ;
nmov cx, 8 ; 8 ns ;
pop dx ;
cal | i t Ti mer
push dx
nmv ah, (S_RXENB or S _TXENB or S_MDI NT) ;
cal | Enabl eThel nt er r upt
nmov cs:[di].Sr5Running, 1
nov bx, Asic5Serial Current
HwSet PCur r ent
cal | St at us

Revision 1.00

interrupts off

interrupts off

Psion PLC (c) May 1995

; receive routines in
the Ldd above us

DX=0 -We don't support
power nmanagenent
Return the old

channel

Cl ose the Channel
Free up our channel
And the Hardware
Channel

Return the old
channel

Start the S3s cl ock
Cener at or

Set the baud rate
and ot her
characteristics

Get the interrupt
and cl ear down

the RTS line (DTR
stays at the state
it was set)

Switch on the line
drivers and wait
for themto power up

Start all interrupts

Page 106 of 115 pages

The Psion SIBO Hardware Development Kit

Cant St art Sonet hi ngWhi chl snt Ther e:

pop ax
HwSel ect Channel
popf

ret

ProcEnd nor et

ProcBegi n@ AS5St op, f ar

; A d channel and flags on the stack,

Psion PLC (c) May 1995

; Return the old
channel

interrupts off

; Clear the state of
the nodem i nes

; Stop all of the

; interrupts

; Turn off baud rate
; clocking fromthe
; S3/3a

; Stop the drivers
; and stuff

; clear S_CENTON,
; S_RS2320N, S _RSTTLON

; Return the old
;. channel

xor CX, CX
cal | DriveRts
nmov al, Serial ReadSi ngl e or A5I nt Mask
SBUSY
SCONTOUT
XNOP
SBUSY
SDATAI N
and al, not (S_TXENB or S _RXENB or S_MNDI NT)
nmov ah, al
nmov al, Serial WiteSingle or A5IntMsk
SBUSY
SCONTOUT
nmov al, ah
SBUSY
SDATAQUT
pop dx
cnp dh, DevHol dPower Fai |
je Dont St opHar dwar e
cnp cs:[di].Sr5Running, 1
jne Dont Wi t
nmov cx, StopTi nmeCut
jmp short Conpar eNow
Wi t For Enpty:
cal | Ti ckTi mer
Conpar eNow.
nmov al, Serial ReadSi ngl e or A5USR
SBUSY
SCONTOUT
XNOP
SBUSY
SDATAI N
t est al, S _TXEMPTY
| oopne Wit For Enpty
Dont Wi t :
cnp bh, DevHol dNor mal
je Dont St opHar dwar e
if Asi c9
nmov cl, cs:[di].Sr50 ockEnabl e
not cl
in ax, A9WContr ol Ext r aRW
and ah, cl
out A9WCont r ol Ext raRW ax
el se
nmov al, cs:[di].Sr50 ockEnabl e
HwCl ear A2Control 2Bits
endi f
nmov al, SerialWiteSingle or A5Ctrl Reg
SBUSY
SCONTOUT
sub al, al
SBUSY
SDATAOUT
Dont St opHar dwar e:
nmov al, dl
HwSel ect Channel
popf
xor bx, bx
HwSet PCur r ent
ret
ProcEnd nor et
ProcBegi n@ AS5Set , f ar
; A d channel and flags on the stack, interrupts off
Revision 1.00

Page 107 of 115 pages

The Psion SIBO Hardware Development Kit

; In: Information required is on the stack
pop ax
HwSel ect Channel
popf
nmov ah, ss:[si]. Serial Char Thaud
cnp ah, ss:[si]. Serial Char Rbaud
jnz Error | nSet
cnp ah, P_BAUD 50
jb Error | nSet
cnp ah, P_BAUD 19200
ja Error | nSet
Got TheSpeci al Baud:
dec ah
nmov cl, ss:[si].Serial CharFrane
nmov al, ss:[si].Serial CharParity
dec al
xor ch, ch
push bx
t est cl, P_TWOSTOP
jz Onl yOneSt opBi t
or ch, 020h
Onl yOneSt opBi t:
t est cl, P_PARITY
jz NoParity
nmov bx, offset ParityTable
x| at cs:[ParityTabl €]
or ch, al
NoPari ty:
nmov bx, offset DataBitsTable
and cl, P_DATA FRM
nov al, cl
x| at cs: [Dat aBi t sTabl e]
or ch, al
nov bx, offset BaudRateTabl e
nov al, ah
xor ah, ah
shl ax, 1
add bx, ax
nmv ax, cs:[bx]
pop bx
nmv cs:[di].Sr5Crl, ch
nmov cs:[di]. Sr5Baud, ax
xor al, al
ret
ErrorlnSet:
nmov al , Not Support edErr
stc
ret

ProcEnd nor et

ProcBegi n@ AS5Sense, f ar

; A d channel and flags on the stack, interrupts off

Psion PLC (c) May 1995

Return the old
channel

Set the Reci eve,
Transmt characteristics

First set the Baud
Rat e

Then the nunber of

Stop bits

The Parity

And finally the
Nunmber of data bits
Per frame

; Qut: The state of the DCD, CTS,DSR |ines returned in DX

call St at us
pop ax
HwSel ect Channel
popf

ret

ProcEnd nor et

ProcBegi n@ St at us

; Qut: State of nodemlines in DX

nmov al, Serial ReadSi ngl e or A5USR

and al, (S_CTS or S DSR or S _DCD)
xor al, (S_CTS or S _DSR or S _DCD)
xor ah, ah

Revision 1.00

Return the old
channel

Get the current
Modem st at us
Lines and return
Wth the result
I'n dx

Get the lines we want
Invert signals

Page 108 of 115 pages

The Psion SIBO Hardware Development Kit

nmov dx, ax
ret
ProcEnd nor et

ProcBegi n@ AS5Control , far

; A d channel and flags on the stack,
; In: Lines to drive and state to drive themin DX

nmov cl, di
t est dh, P_SRCTRL_DTR
jz Dri veRt sNow
call DriveDtr
pop ax
HwSel ect Channe
popf
ret

Dri veRt sNow:
call DriveRts
pop ax
HwSel ect Channe
popf
ret

ProcEnd nor et

ProcBegi n@Dri veDtr

nmov ah, S DTR
jmp short DriveTheLine
ProcEnd nor et

ProcBegi n@DriveRts

nmv ah, S RTS
Dri veThelLi ne:
nmov al, SerialWiteSingle or A5PortD
SBUSY
SCONTOUT
nmov al, cs:[di].Sr5TheLines
t est cl, cl
jz Cl ear Li ne
or al, ah
jmp DoTheCQut put
Cl ear Li ne:
not ah
and al, ah
DoTheCut put :
nmov cs:[di]. Sr5Theli nes, al
SBUSY
SDATAQUT
ret

ProcEnd nor et

ProcBegi n@ AS5Enqui re, f ar

; A d channel and flags on the stack,

interrupts off

Psion PLC (c) May 1995

Set the state of one
of the nodem Lines
DHis the line to
Drive and DL is the

; Stateto drive it to

interrupts off

Return the old
channel

Return the old
channel

Set/ Reset the DTR
Li ne

Set/ Reset RTS

Common code to set
and reset either
line while
preserving the
states of the other
lines

; Qut: DX, AX are the supported baud rates AX for 50 to 19200 DX for above

; CX says what data bits, parity,

etc we support

pop ax ; Return the old
HwSel ect Channel ;. channel
popf
if Asi c9
mv ax, -1
el se
nmov ax, 07fffh
endi f
xor dx, dx
nmov cx, (Offffh AND (NOT (P_SRINQ SPLIT OR P_SRI NQ PARSPACE OR

P_SRI NQ_PARMARK)))
ret
ProcEnd nor et

Pr ocBegi n@ AS5Enabl e, f ar

Revision 1.00

Page 109 of 115 pages

The Psion SIBO Hardware Development Kit

; A d channel and flags on the stack,

nov ah, S_TXENB

cal | Enabl eThel nt er r upt
pop ax

HwSel ect Channel

popf

ret

ProcEnd nor et

Pr ocBegi n@ AS5Set Handl er CS, f ar

; A d channel and flags on the stack,
; CX is CS of above LDD

nmov word ptr cs:[di].(Sr5Statuslnt+2),
nmov word ptr cs:[di].(Sr5Recvlnt+2),
nmov word ptr cs:[di].(Sr5Xmtlnt+2), cx
pop ax

HwSel ect Channel

popf

ret

ProcEnd nor et

ProcBegi n@ AS5I nt 3, far

nmov di, offset Chan2
nmov ax, PortCActive
jmp Coml nt

ProcEnd nor et

ProcBegi n@ AS5I nt 2, far

nmov di, offset Chanl
nmov ax, PortBActive
jmp Coml nt

ProcEnd nor et

ProcBegi n@ AS5I nt 1, far

nmov di, of fset ChanO

nmov ax, Port AActi ve
; FALL THROUGH

ProcEnd nor et

ProcBegi n@ Com nt, f ar

The common interrupt handl er
DS points to OS data space
DI is our control block

AX is the Active channel

if S3b or S3c
or ds: [OsActivityMeter], ax
endi f
nmov al, cs:[di].Sr5Channel
HwSel ect Channel
push ax
nmov bx, cs:[di].Sr5LddDat a
Thel nt er r upt Loop:
nmov al, Serial ReadSingle or A5Ctrl Reg
SBUSY
SCONTOUT
XNOP
SBUSY
SDATAI N
t est al, al
je Not hi ngToDo
HaveWeGot AMbdentt at usLi nel nt errupt:
t est al, S _MDINT
jz HaveWeGot AReci evel nt er rupt
nmov al, Serial ReadSi ngl e or A5USR
SBUSY
SCONTOUT
Revision 1.00

Psion PLC (c) May 1995

interrupts off

Begi n Qut put by
enabling transmt
interrupts
Return the old
channel

interrupts off

Load t he Segnent
W thin which the
The Ldd above us
Return the old
channel

Resi des

Channel
vect or
Junps to Comi nt

3 interrupt

Channel
vect or
Junps to Comi nt

2 interrupt

Channel
vect or
Fall's through
to Com nt

1 interrupt

Set active state

Sel ect our
channel

Data for LDD above
in bx

Fi nd out what
caused the
interrupt

Page 110 of 115 pages

The Psion SIBO Hardware Development Kit

Psion PLC (c) May 1995

; Somet hi ng has been
; recieved in error

; Establish the error

; Get the character
; in question

XNOP
SBUSY
SDATAI N
t est al, (OVERRUN_ERRCR or PARI TY_ERROR)
jz Mbdenst at usl nterrupt Only
push ax
nov ah, SERPARI TY_ERR
t est al, PARI TY_ERROR
jnz | sAPari tyError
nov ah, SEROVERRUN_ERR
| sAParityError:
nmov al, Serial ReadSi ngl e or A5RHR
SBUSY
SCONTOUT
XNOP
SBUSY
SDATAI N
push di
cal | dword ptr cs:[di].Sr5Recvlnt
pop di
pop ax

Mbdenst at usl nterrupt Only:

and ax, (S_CTS or S_DSR or S _DCD)
xor al, (S_CTS or S _DSR or S _DCD)
nov dx, ax

push di

cal | dword ptr cs:[di].Sr5Statuslnt
pop di

jmp short Thel nterruptLoop
HaveWeGot AReci evel nterrupt:

; invert signals

; AX has character received

Resced if neccessary

; disable TX interrupts

t est al, S RXINT
jz HaveWeGot ATransmi t | nt errupt
nmov al, Serial ReadSi ngl e or A5RHR
SBUSY
SCONTOUT
XNOP
SBUSY
SDATAI N
xor ah, ah
push di
cal | dword ptr cs:[di].Sr5Recvlnt
pop di
jmp short Thel nterruptLoop
HaveWeGot ATransmi t | nterrupt:
t est al, S _TXINT
jz Not hi ngToDo
push di
cal | dword ptr cs:[di].Sr5Xmtlnt
pop di
t est ax, ax ; -1 if disable
js Di sabl eTransnmitints
nov ah, al
nmov al, SerialWiteSingle or ASRHR
SBUSY
SCONTOUT
nmov al, ah
SBUSY
SDATAQUT
jmp Thel nt er r upt Loop
Not hi ngToDo:
if Asi c9
out A9BNonSpeci fi cEoi W al
el se
out AlNonSpeci fi cEoi, al
endi f
pop ax
HwSel ect Channel
clc ;
ret
Di sabl eTransmitints:
nmov al, Serial ReadSi ngl e or A5l nt Mask
SBUSY
SCONTOUT
XNOP
SBUSY
SDATAI N
and al, not S_TXENB
nov ah, al
nmv al, SerialWiteSingle or A5IntMsk
SBUSY
Revision 1.00

Page 111 of 115 pages

The Psion SIBO Hardware Development Kit

SCONTOUT

nov al, ah

SBUSY

SDATAQUT

jmp Thel nt err upt Loop

ProcEnd nor et

Pr ocBegi n@ Get Thel nt er r upt

nmov al, cs:[di].Sr5lntVector

nmov cX, €S

nmv bx, cs:[di]. Sr5IntRoutineVec
GenSet Revect or

ret

ProcEnd nor et

Pr ocBegi n@ Enabl eThel nt er r upt

Psion PLC (c) May 1995

Load the address of
the appropriate

; interrupt routine
; into the correct
; vector

; Set the nask
; to enable Interrupts

; Stop interrupts
; from Asich

; Stop Interrupts

; By clearing the
; Mask and resetting
; The Vector

nmov al, Serial ReadSi ngl e or A5l nt Mask
SBUSY
SCONTOUT
XNOP
SBUSY
SDATAI N
or ah, al
nmov al, SerialWiteSingle or A5IntMsk
SBUSY
SCONTOUT
nmov al, ah
SBUSY
SDATAQUT
if Asi c9
in al , A9BI nt er r upt MaskRW
or al, cs:[di].Sr5Mask
out A9BI nt er r upt MaskRW al
el se
in al, All nterrupt Mask
or al, cs:[di].Sr5Mask
out All nt errupt Mask, al
endi f
ret
ProcEnd nor et
ProcBegi n@ St opl nterrupts
nmov al, Serial ReadSi ngl e or A5I nt Mask
SBUSY
SCONTOUT
XNOP
SBUSY
SDATAI N
and al, not (S_RXENB or S _TXENB or S_MNDI NT)
nov ah, al
nmv al, Serial WiteSingle or A5IntMsk
SBUSY
SCONTOUT
nmov al, ah
SBUSY
SDATAOUT
nmov ah, cs:[di]. Sr5Mask
not ah
if Asi c9
in al , A9BI nt er r upt MaskRW
and al , ah
out A9BI nt er r upt MaskRW al
el se
in al, All nterrupt Mask
and al , ah
out All nt errupt Mask, al
endi f
nmov al, cs:[di].Sr5lntVector
GenReset Revect or
ret
Revision 1.00

Page 112 of 115 pages

The Psion SIBO Hardware Development Kit

ProcEnd nor et

Pr ocBegi n@ CheckHar dwar ePr esent

pushf

cli

nmv al, cs:[bx].Sr5Channel

HwSel ect Channel

Hw\ul | Fr ane

nmv al, (Serial Sel ect or Asic5Normalld)
SBUSY

t est al , al
je Connecti onFai |l ed
Got Connecti on:
popf
clc
ret
Connecti onFai | ed:
nmov al, Serial Sel ect or Asic4dld

t est al, al
jne Connecti onFai | edExi t
nmov al, Serial Sel ect or Asic8ld

t est al, al
jne Connecti onFai | edExi t
nmov al, Serial Sel ect or Asic5Packld

SDATAI N
ConnectionFai | edExi t:

popf

stc

ret

ProcEnd nor et

Pr ocBegi n@ CheckHar dwar eFr onSt ar t

pushf

Hw\ul | Fr ane

nmv al, (Serial Sel ect or Asic5Normalld)
SBUSY

SCONTOUT

XNOP

SBUSY

SDATAI N

t est al , al

je Connecti onFai |l ed

t est al, mask A5Mul ti Drop
jne Connecti onFai | edExi t
popf

nmov al, Serial WiteSingle or A5PortBMde
SBUSY

SCONTOUT

nov al, S_PERI PHERALMODE
SBUSY

SDATAQUT

clc

ret

ProcEnd nor et

ProcBegi n@ Wi t Ti nmer

Revision 1.00

Psion PLC (c) May 1995

; Check that the
; Harware is there
; And that it is what
; It should be
; First look for An
; ASIC4 at the other
; End of the link

; Asicd Id
; Modemchip Id

; Asicbpack Id

; Check that the

; Harware is there
; First look for An
; ASIC5 at the other
; End of the link

; I'f not a 3link or

; if in multidrop

; nmode then we are
; in trouble

; Put the 3Link in
; peripheral node

Page 113 of 115 pages

The Psion SIBO Hardware Development Kit

; In: CX nunber of ns to wait for
; Channel store in DL
; Qut: Channel store in DL
inc cx
Wi t Ti ckLoop:
call Ti ckTi mer
| oop Wi t Ti ckLoop
ret
Pr ocEnd

ProcBegi n@ Ti ckTi mer

Uses writes down our channel
Must
for 1/1000 of a second and nmay be
Channel Store in/out in DL

nmov al, di
HwSel ect Channel
nmov ah, al
pushf
sti
push
nov
Wi t er Loop:
pushf
cli
out Reset Wat chDog, al
nmov al, ah
HwSel ect Channel
nmov dl, al
nmov al,
SBUSY

CX

cx, 12

nmov al, di

HwSel ect Channel
nmov ah, al

popf
| oop
pop

popf
nmov al, ah
HwSel ect Channel
nmov dl, al

ret

Pr ocEnd

Wi t er Loop
cX

EndCodeSeg

st ack
st ack

segnent stack para 'data'
ends

end GsAS5PDD

Revision 1.00

Psion PLC (c) May 1995

Wait for a given
Number of ns

Pl us one to guarantee
That at |east cx nms
Go by

to sinmulate tick timer waits
allow interrupts so other things can run -we will

be here

called many tinmes

(Serial WiteSingle or 0) ;

; Return the old

;. channel
1ms
128 frames =1ns
about 12 tines

; round the | oop

; Get Correct channel
Do a wite to

nowher e and

wast e sone tine

Do it eight tinmes

Return the old
channel

Page 114 of 115 pages

The Psion SIBO Hardware Development Kit Psion PLC (c) May 1995

Assembler Macros

Excerpts from the include file ossibo.inc.

if ASICl
SCONTOUT macr o
out A2Seri al Control, al
endm
SDATAQUT macr o
out A2Seri al Data, al
endm
SBUSY nmcro
wai t
endm
SREAD nmacro _REG
nmov al, Serial ReadSi ngle or _REG
out A2Seri al Control, al
nop
SBUSY
in al, A2Seri al Data
endm
SREADM macro _REG
nmov al, Serial ReadMulti or _REG
out A2Seri al Control, al
nop
SBUSY
in al, A2Seri al Dat a
endm
SWRI TE macro _REG _VAL
nmov al, Serial WiteSingle or _REG
out A2Seri al Control, al
SBUSY
nmov al, _VAL
out A2Seri al Data, al
endm
SWRI TEMnmacro _REG _VAL
nmov al, SerialWiteMulti, _REG
out A2Seri al Control, al
SBUSY
nmov al, _VAL
out A2Seri al Data, al
endm
endi f
if ASI C9
SCONTOUT macr o
out A9BSeri al Control W al
endm
SDATAQUT macr o
out A9BSer i al Dat aRW al
endm
SDATAI N nmacr o
in al , A9BSeri al Dat aRW
endm
SBUSY nmcro
endm
SREAD nmacro _REG
nmov al, Serial ReadSi ngle or _REG
out A9BSeri al Control W al
in al , A9BSeri al Dat aRW
endm
SREADM macro _REG
nmov al, Serial ReadMulti or _REG
out A9BSeri al Control W al
in al , A9BSeri al Dat aRW
endm
SWRI TE macro _REG _VAL
nmov al, Serial WiteSingle or _REG
out A9BSeri al Control W al
nmov al, _VAL
out A9BSer i al Dat aRW al
endm
SWRI TEMnmacro _REG _VAL
nmov al, SerialWiteMulti or _REG
out A9BSeri al Control W al
nmov al, _VAL
out A9BSer i al Dat aRW al
endm
endi f

Revision 1.00 Page 115 of 115 pages

	THE PSION SIBO HARDWARE DEVELOPMENT KIT
	Contents
	1. INTRODUCTION
	2. SYSTEM OVERVIEW
	3. HARDWARE OVERVIEW
	The Psion SIBO serial protocol
	Psion ASICs and what they do
	Interrupts
	The current range of Psion peripherals

	4. THE PSION SIBO SERIAL PROTOCOL
	Introduction
	Hardware Interface
	The Physical layer
	The Transport layer

	5. MECHANICAL OVERVIEW
	The Psion Series 3/3a range
	The Psion Workabout
	The Psion HC range

	6. ASIC 4
	What is ASIC 4?
	ASIC4 Addressing and Modes
	Reset and configuration
	ASIC4 Pin-out

	7. ASIC 5
	What is ASIC 5?
	ASIC5 Modes
	Reset and configuration
	ASIC5 Pin-out

	8. EXAMPLE PERIPHERALS
	The ASIC4 Example Interface Board
	The Psion 3-Link

	9. DEVICE DRIVER OVERVIEW
	Introduction
	Device Names and Channels
	Loadable Logical Device Driver Structure
	Mandatory LDD Functions
	Interrupts and Interrupt Service Routines
	Loadable Physical Device Driver Structure

	10. ASIC4/ASIC5 BASED DEVICE DRIVERS
	Introduction
	SIBO Hardware Expansion Channels
	Talking to ASIC4
	ASIC4 Registers
	Talking to ASIC5
	ASIC5 Registers
	Communicating with ASIC4
	Sending and Receiving data using ASIC4
	Obtaining and using a channel
	Controlling ASIC5's UART
	Hold and Resumes
	Example Device Drivers

	11. AN EXAMPLE DEVICE DRIVER FOR ASIC4: A4EXIF.LDD
	Introduction
	Code Structure
	Mandatory LDD Functions
	The Non-Mandatory LDD Functions
	The handling of synchronous and asynchronous I/O
	Interrupts and Interrupt Service Routines
	Other important local device driver functions
	Structures and Include files

	12. AN EXAMPLE DEVICE DRIVER FOR ASIC5: SYS$AS5.PDD
	Introduction
	The LDD-PDD interface
	Code Structure
	The PDD Functions

	13. DEBUGGING AND TESTING DEVICE DRIVERS
	Introduction
	Debugging Techniques
	Further Testing Strategies
	Memory Testing

	APPENDIX: SOURCE CODE FILES
	A4EXIF.ASM
	SYS$AS5.ASM
	Assembler Macros

