

Programming Psion
Computers

by

Leigh Edwards

Programming Psion Computers

Copyright ©1997, 1998, 1999 Leigh Edwards

This book and all program code contained within, is supplied in the belief that the contents
are correct and operate as specified, but the author and EMCC shall not be liable in any
circumstances whatsoever for any direct or indirect loss or damage to property incurred or
suffered by the customer or any other person as a result of any fault or defect in the
information contained herein.

The moral right of the author has been asserted.

All rights reserved. Reproduction of this book in whole or in part, including utilisation in
machines capable of reproduction or retrieval, is prohibited without the express written
permission of EMCC.

Many of the utility programs and larger code examples provided on disk are expressly
covered by embedded shareware or copyright notices. Please do respect the copyrights of
others. Since shareware is not freeware, please register any software that states it is
shareware, if you intend to use it beyond a reasonable evaluation period.

The information in this book or supplied on disk is subject to change without notice.

ISBN 0 9530663 0 4
Published by:
 EMCC Software Limited
 108 Manchester Road, Carrington, Manchester, M31 4BD, UK
 Tel +44 (0) 161 777 9700, Fax +44 (0) 161 777 9909
 E-mail info@emccsoft.com
 www.emccsoft.com

First printed October 1997, first reprint May 1998, second reprint January 1999, fourth
reprint in Acrobat PDF form only June 2002.

Psion and the Psion logo are registered trademarks, and Psion Series 3, Psion Series 3a,
Psion Series 3c, Psion Siena, Psion Series 5, Psion 3Link, SIBO, EPOC16 and EPOC32
are trademarks of Psion PLC. TopSpeed is a registered trademark of TopSpeed
Corporation. IBM and IBM PC are registered trademarks of International Business
Machines Corp. Microsoft, Microsoft Windows, Microsoft Word and MS-DOS are
registered trademarks of Microsoft Corporation. Apple and Macintosh are registered
trademarks of Apple Computer Inc.

EMCC acknowledges that some other names referred to are registered trademarks, and are
given for information purposes only without commercial interests.

Table of Contents

1 INTRODUCTION 1-1
Purpose and scope 1-2
Shareware, freeware and copyrights 1-3
Using this book 1-3
Terms used 1-3
Loading the disk information 1-4
Finding disk-based information 1-4
Other sources of information 1-5
Disclaimer 1-5

2 DEVELOPMENT OPTIONS 2-1
Introduction 2-1
Platforms, overview 2-1

SIBO system exclusively 2-2
DOS based Psion emulators 2-2
PC with a linked SIBO system 2-3

Language options 2-3
Assembly language 2-3
C programming 2-4
OPL 2-4
OVAL 2-4
Macros 2-4

Use of memory 2-5
Portability and re-use of source code 2-5
A typical development cycle 2-6
Languages and platforms, in detail 2-7

Assembly language options 2-7
C programming 2-8
OPL 2-11
OVAL 2-14
Macros 2-14

3 FUNDAMENTAL CONCEPTS 3-1
Introduction 3-1
SIBO architecture 3-2

Key components of SIBO systems 3-2

ASICs 3-2
Processor 3-3
Interrupts 3-3
Memory protection 3-3
Auto-switch-off 3-4
Storage capabilities 3-4
Display screens 3-7
Sound hardware 3-8
System time and date 3-9
External communication 3-9

The EPOC16 operating system 3-10
Key features 3-10
EPOC versions 3-11
The system screen 3-11
Processes and priorities 3-12
Processes, clients and servers 3-12
Processes, foreground and background 3-13
Events, an introduction 3-13
Multi-tasking and multi-threading 3-14
Applications 3-14
Memory 3-14
Inter-process communications (IPCS) 3-15
Files 3-15
I/O (input/output) system 3-16

4 PROCESSES, MEMORY AND 4-1
Processes 4-1

Process priorities 4-1
Semaphores 4-2
Asynchronous versus synchronous services 4-2
System processes 4-4
Process IDs and process control block 4-5
Process queues 4-5
Process names 4-6
Processes and auto-switch-off 4-7

Memory 4-9
Magic (or reserved) static variables 4-11
Re-entrant processes and functions 4-12
Shared code segments 4-12
Environment variables 4-13

Applications 4-14

Application types 4-14
Public name 4-19
Default extension 4-19
Default path 4-20
Icons 4-20
Help and other program resources 4-20
Aliasing applications 4-21
Application command lines 4-22
Messages from the system screen 4-27
Client server services 4-28
Inter-process communications (IPCS) 4-29

Errors 4-32
Fatal errors 4-32

5 USER INTERFACE 5-1
Application design 5-1

Interface style 5-1
Interface elements 5-1

Synchronous or asynchronous design 5-2
Keyboard input 5-2

Diamond key 5-3
Menus 5-3
Windows 5-4
Dialogs 5-4

Alerts 5-5
Input focus 5-6

Modal and non modal behaviour 5-6
System messages 5-6

Switch files messages 5-6
Shutdown & foreground/background changes 5-6
System messages - failure to respond 5-7

Application files 5-7
Location and naming 5-7
Change of files 5-8

Icons 5-9
Graphics 5-10

Screen sizes and compatibility 5-11
Bitmaps 5-11
Screen drawing, re-drawing and memory 5-13
Cursors 5-13

Sprites 5-13
Fonts 5-14

Status windows 5-15
Compatibility mode status window 5-16

Printing 5-16
Sound 5-16
Resource files 5-17

User help information 5-17
Multi-lingual applications 5-18

Co-operating programs 5-19
Bring or link paste 5-19
Attached applications 5-19
Running other programs 5-19

Aliasing applications 5-20

6 FILES IN EPOC16 6-1
Introduction 6-1
File specifications 6-1

File name selectors and editors 6-2
File name parsing 6-2
File name extensions, standard 6-3
Wildcards 6-3

Directories 6-4
Directory names, standard 6-4

General file management 6-5
The file server 6-5

Installable file systems and remote file access 6-5
File operations - asynchronous 6-6

File types and formats in EPOC16 6-7
Psion application file formats 6-7
Binary files 6-7
Text files 6-8
Binary or text file I/O 6-8
Database files 6-11

SSDs and robust applications 6-14
Flash friendly applications 6-14

7 I/O SYSTEM 7-1
Introduction 7-1
I/O devices 7-1

Device drivers 7-2
Using the I/O system 7-2

Handles 7-3
I/O functions 7-3
Closing the channel 7-4
Avoiding I/O errors 7-4
Synchronous I/O 7-4
Asynchronous I/O 7-5
Console services 7-8
File services 7-9
Parallel port 7-9
Serial port 7-9
Xmodem and Ymodem transfers 7-10
Link and NCP 7-10
Sound 7-10
Timers and processes 7-11
Alarms 7-13
World database 7-14
Infrared communications 7-15

Device drivers, in more detail 7-16
External device drivers 7-17
Writing device drivers 7-17

8 OPL PROGRAMMING 8-1
Introduction 8-1

OPL manuals 8-1
SIBO based development 8-2

SIBO with OPP/OPPDBG 8-2
PC based development 8-3

DOS based development 8-4
DOS based SIBO emulator 8-6
OPLCS Windows editor 8-6

ODE 8-7
ODE with OPP 8-8

The Psion SIBO OPL16 SDK 8-8
OPL16 SDK manuals 8-9

Source code protection 8-13
Anti-Revtran strategies 8-14

9 OPL REFERENCE 9-1
Introduction 9-1

Functions, commands and procedures 9-2
Notation used 9-2

Program control 9-4
Procedures 9-4
Program settings 9-7
Loops, branches and jumps 9-8
Error handling 9-13

Screen and keyboard control 9-17
Files 9-28

File management 9-28
Directory management 9-33
Database files 9-34
OPL program modules 9-48
OPL procedure cacheing 9-50
Dynamic library (DYL) handling 9-52

Memory management 9-54
Variable declaration 9-54
Memory, dynamic allocation 9-57
Memory, addresses & pointer arithmetic 9-59
Memory, reading and writing 9-60
Machine code calls 9-63
Operating system calls 9-64

Printing 9-66
Numeric functions 9-68

Trigonometric functions 9-68
General numeric functions 9-70
Statistical numeric functions 9-72
Numeric conversion 9-75

String handling 9-80
Date and time 9-84
Sound 9-89
Graphics 9-90

Window and bitmap manipulation 9-90
Window and bitmap characteristics 9-96
Window and bitmap information 9-100
Graphics ‘cursor’ positioning 9-103
Graphics text 9-104
Graphics drawing commands 9-106
Graphics sprites 9-124

Menus 9-126

Dialogs 9-132
Screen messages 9-145
OPL applications (OPAs) 9-146
Event handling 9-152
Status windows 9-156
I/O operations on files and devices 9-159
Object handling 9-167

10 OPL16 TECHNIQUES 10-1
Introduction to PPCOPL16 10-1

Techniques covered 10-1
Source files 10-3
Executable files 10-3
Language text 10-4
Structure overview 10-4
Initialisation in detail 10-5
Events and user input 10-9
Application functions 10-10

11 C PROGRAMMING 11-1
Introduction 11-1
ROM-resident libraries 11-1

C libraries 11-2
Object-oriented libraries 11-2

Psion SIBO C SDK 11-3
SIBO C SDK software 11-3
SIBO C SDK documentation 11-3
The development process 11-11
Programming options 11-12
Code and data size limits 11-16
Directories in the C SDK 11-18
Examples on disk 11-23

12 OVAL PROGRAMMING 12-1
Introduction 12-1
Developing in OVAL 12-1

OVAL platform 12-2
OVAL and events 12-2
OVAL IDE 12-2
Running applications 12-9
Manuals and documentation 12-10

Support 12-11
OVAL IDE examples 12-11
Examples on disk 12-12
Developing new OVAL controls 12-12

13 SERIES 5 13-1
Hardware 13-1

ARM processor and sub-systems 13-2
Hardware block diagram 13-4
Memory and storage 13-5
Screen 13-6
User input 13-6
Audio 13-8
Communications 13-9

Software 13-10
System interface 13-10
Series 5 applications 13-11

EPOC32 13-18
Threads and processes 13-19
The base 13-20
Support services 13-22
EIKON 13-31
EPOC32 variants 13-32
Software development 13-34

14 OPL32 TECHNIQUES 14-1
Introduction 14-1
OPL, the changes 14-1

Keywords removed 14-2
Keywords added 14-3
Keywords amended 14-4
OPA header changes 14-5
Toolbars 14-6
Graphics 14-6
Databases 14-7
Application help 14-7
OPXs 14-8
Series 5 OPL source files 14-10

Introduction to PPCOPL32 14-11
Techniques covered 14-12
Source files 14-13

Structure overview 14-13
Processing in detail 14-15
Events and user input 14-18
Menu options 14-21
Support procedures 14-26

15 PROGRAMMING TECHNIQUES 15-1
Application files 15-1

File formats, EPOC16 15-1
File formats, EPOC32 15-2
Agenda files 15-3
Database files 15-3
Word files 15-4
Spreadsheet files 15-5
Text files 15-5

Sound 15-5
Bitmaps, icons and fonts 15-8

Bitmap files, EPOC16 15-8
Bitmap files, EPOC32 15-9
Fonts 15-12

Resource/help files 15-15
Advantages of resource files 15-15
Resource/help definition files 15-16
Resource/help file utilities, EPOC16 15-17
Resource file utilities, EPOC32 15-17
Help file utilities, EPOC32 15-17

Printing 15-18
WDR printing, EPOC16 15-18

Miscellaneous topics 15-19
Country specific information 15-19
Using libraries and other programs 15-20
Supplementary SIBO SDKs 15-21
Aliasing applications, EPOC16 15-22
Object-oriented programming (OOP) 15-26

16 ERRORS AND DEBUGGING 16-1
Introduction 16-1
Avoiding errors 16-1

Programming errors 16-1
Design errors 16-3
System related errors 16-6

Handling errors 16-7
Error codes 16-8

Fatal errors 16-8
OPL errors 16-9
OVAL errors 16-10
C errors 16-10

Debugging, an overview 16-10
OPL 16-10
OVAL 16-11
C 16-11
Spy, EPOC16 16-11
Spy, EPOC32 16-12

Testing 16-12
Automatic test system (ATS) 16-13

17 DISTRIBUTING YOUR 17-1
Introduction 17-1
Application style guides 17-1
Distribution options 17-2
Distribution methods 17-4

SSDs 17-4
Floppy disk 17-5
Packaging and manuals 17-6
Psion Software and Accessories catalogue 17-6

18 LINKING TO A PC OR PRINTER 18-1
Introduction 18-1
PC link hardware 18-1

PC 3Link cable, S3/3a 18-1
PC link cable, S3c, Siena and S5 18-2
PC to Psion infrared link 18-2
PC to HC connection 18-3
PC to Workabout connection 18-3

PC link software 18-4
Slink 18-4
MCLink 18-4
RCom 18-4
ODE link 18-5
OVAL link 18-5
SIBO C debugging link 18-5
PsiWin 18-6

Printing via a PC 18-7
MCPrint and RPrint 18-7
PsiWin 1.x, Psion Print 18-7
PsiWin 2, printing 18-8
Infrared printing, via a PC 18-8

Printing directly from a Psion system 18-8
Serial printing 18-8
Parallel printing 18-9
File printing 18-10
Infrared printing 18-11

19 DISK CONTENTS 19-1
Problem solving 19-1
OPL examples 19-2
C examples 19-8
OVAL examples 19-11
Assembler examples 19-13
Macro systems 19-13
Utility software & support files 19-14
General Utilities 19-18
Disk index 19-19

20 CONTACTS AND SOURCES 20-1
Psion 20-1

Psion Software and UIDs 20-1
EPOC World subscriptions 20-1
Psion’s key web sites 20-2
Psion UK VADs 20-2
Psion International Contacts 20-2
Psion distributors and retailers 20-5

Getting ‘On-line’ 20-6
On-line sources 20-6
Key programmers’ web sites 20-7
E-mail addresses 20-8

Acknowledgements and credits 20-8

APPENDIX 1
Panic numbers, EPOC16 1

Panics, operating system 1
Panics, window server 3

Panics, object oriented programming (SIBO) 4
OPL errors 6

OPL errors, general (-1 to -25) 6
OPL errors, file and device (-32 to -69) 7
OPL errors, translator (-70 to -95) 8
OPL errors, specific (-96 to -120) 9
OPL32 errors (-121 to –126) 10

OVAL errors 10
Magic (reserved) static variables 16
Language and country data 19

Get machine language code 19
Get O/S error text 20
Get O/S message text 21
Get country-dependent data 22

EPOC16 identifiers 23
EPOC16 Environment variables 23
Utility programs, SIBO C SDK V2.20 29
File types, by extension 31
Special Keys 33
Glossary of terms 34

INDEX 1
CD-ROM REQUEST FORM 1
FILES ON OTHER MEDIA 3
PALMTOP MAGAZINE 5
THE 3-LIB SHAREWARE LIBRARY 7

This work is dedicated to Anne, my wife, critic
and friend.

Introduction 1-1

1 Introduction
The Psion range of handheld (or palmtop) computers are deceptively powerful and
sophisticated systems. A number of key design elements have been responsible for their
remarkable popularity and rise to dominance in world markets. One of the most significant
features incorporated from the outset is OPL, the in-built BASIC-like programming
language. This programmability has been supplemented by the availability of professional
quality Software Development Kits (SDKs) from Psion PLC. External SDKs from Psion
and programming utilities from third party developers have encouraged users and software
houses alike to develop numerous additional applications. An enormous range of freeware,
shareware, and commercial applications now exist, thus extending the capabilities of the
systems way beyond the range of the excellent built in application programs provided by
Psion.

As the Psion range increased and matured the number of options for software development
became larger, and the amount of information available to the programmer grew to
bewildering proportions. Much of this information has been provided by Psion in various
ways. For example, in official documents such as the Psion SDK manuals and
programming guides, or in electronic form via a number of on-line support forums (e.g.
CIX and CompuServe). In addition a huge amount of knowledge, hard won experience and
example code has generously been placed into the public domain by a wide variety of
enthusiastic and talented individuals.

During my efforts to become reasonably proficient at writing commercial software for the
Psion range I have made use of most of the aforementioned sources of information,
including solving a good many problems the hard way. In pouring over the huge mass of
information available it was evident that the level of detail, clarity and accessibility varied
widely depending on the source and the experience of the contributor. This book
represents a serious attempt to provide a comprehensive, up-to-date guide to all of the
main options for programming Psion systems. To pass on as much of the key information
as possible, adding clarity where required, and give others the benefits of some of my own
labours. One of the main motivations for writing this book was that when I started out I
would have given my right arm for such a guide.

It is intended to keep this publication current and relevant to future developments from
Psion and third party utility developers. If you have any constructive contributions or
corrections to this work I would be very grateful to receive them, ideally by e-mail - see
the contacts section. All significant contributors will be credited, at least, and may even
receive a free copy of a revised edition.

Finally, I am grateful to many people, too many to mention them all here, so in the
‘Contacts and Sources’ chapter I have acknowledged as many of the key individuals as I
can, my apologies to anyone I may have missed.

1-2 Introduction

Purpose and scope
• All of the key methods of writing software for the Psion range of handheld computers

are described, i.e. the various languages, development environments and utilities for
programmers. The principle focus will be on programming the Series 3, 3a/c and
Siena, with references to the Workabout and HC industrial hand held range where
appropriate. Additional chapters have been included to describe the newly released
Series 5 and the options for programming.

• Covers all of the methods for producing and testing of application programs, either
exclusively on the Psion or in conjunction with an IBM compatible PC, i.e. each of
the programming languages, software development kits (SDKs) or utility programs.

• Covers a wide range of programming topics and techniques that add professional
features to your programmes, and can be difficult or time consuming to acquire.

• Describes the main features of each of the key utilities and supplementary SDKs
available, to assist the programmer in producing, testing and distributing all types of
applications.

• A wide range of miscellaneous programming related topics e.g. getting help from
Psion or from the ‘on-line’ community, up-to-date sources of utilities and example
code, file formats for the built in applications etc.

• Includes a PC compatible CD-ROM that contains numerous code examples in OPL,
C, OVAL, Macro and some Assembler, including many complete applications.
Virtually all of the current freeware and shareware utilities for programmers are
supplied for you to use or to evaluate. Numerous additional documents and
information files are supplied on disk, and all materials have been meticulously
catalogued and indexed.

• This book should be of assistance to all levels of programmer, but it does not aim
teach programming for absolute beginners, nor does it attempt to replace all of the
detailed information provided in the various language specific manuals. Instead the
emphasis is on essential or important concepts and techniques, either because they are
unique to the Psion environment or difficult to master. Other topics are included
because they are not otherwise well documented, or because they ensure that
programs remain consistent with the Psion application ‘house style’.

Introduction 1-3

Shareware, freeware and copyrights
Many of the utility programs and larger code examples provided here are expressly
covered by embedded Shareware or Copyright notices. See the ‘Distributing Your
Software’ chapter for the principles behind shareware and freeware. Please do respect the
Copyrights of others. Since shareware is not freeware, please register any software that
states that it is shareware, if you intend to use it beyond a reasonable evaluation period. If
you are unsure, and the developers contact details are included, please check directly with
the author. Wherever possible all sources have been acknowledged. Please encourage all
contributors, in particular authors of freeware and shareware, with constructive comments
or even praise — it will almost certainly be well received.

Using this book
A comprehensive table of contents and index are provided, which should allow the reader
to answer specific questions as required. All of the additional information and examples
provided on the accompanying CD-ROM is extensively cross-referenced in a specific disk
index at the end of the ‘Disk Contents’ chapter.

It is almost certainly unnecessary to read this book from beginning to end, that is a task
reserved for proof-readers and truly dedicated Psion fanatics. However, if you are
inexperienced in programming for the Psion range or are considering producing programs
for distribution, then close study of the first few chapters is strongly recommended.
Particular emphasis should be placed on the ‘Fundamental Concepts’ and ‘Applications,
Process and Memory’ chapters. Once these chapters have been absorbed you should be
well positioned to decide which programming language and development environment is
most suited. The appropriate design architecture needed for your particular application
should also be somewhat clearer.

Terms used
The majority of handheld systems currently available from Psion use the same hardware
architecture, and are collectively known as SIxteen Bit Organisers, or SIBO systems. This
term will be used throughout the rest of this book, unless it is necessary to refer to specific
details of a particular model. In addition, the term Psion Series 3 range, Series 3 or just S3
can be taken to refer to all models in the Series 3 range, exclusions to this will be stated
explicitly. Wherever the term EPOC16 is used it refers to operating system of the SIBO
range.

The terms Series 5 or S5 refer to the new 32-bit ARM based systems, and EPOC32 refers
to the new 32-bit operating system used on the Series 5.

1-4 Introduction

All references to a PC should be taken as referring to an IBM PC compatible. Where PC
based software etc. is referred to it will be made clear at the time whether it runs under
DOS, Microsoft Windows, both DOS and Windows, or another Operating System.

Since the major software development environments are currently all PC-hosted links to
other personal computers, such as Amiga, Atari, Macintosh etc. although acknowledged as
possible, are not discussed further.

All references to a PC linked to a SIBO or EPOC32 system should be taken to be via the
hardware and associated software methods as supplied by Psion.

Occasionally terms such as E_MAX_PROCESSES will be encountered, they are identifier
names which Psion use in their SDKs to refer to constants and standard values e.g. those
associated with the operating system. The corresponding numeric values of all such
identifiers referred to will either be explicitly stated in the text or will be listed in the
Appendix.

To avoid repetitive definitions of specific or technical terms a glossary is provided at the
back of the book.

Loading the disk information
Since the disk supplied is in PC compatible format you will need access to a suitable PC to
make full use of the information provided. Files on disk are grouped together into specific
directories and sub-directories. Groups of related files may also be provided, in the same
directory, as compressed archives or .ZIP files. All archive files have been ‘unzipped’, but
the original archive files are provided as well for convenience. ‘Zipped’ archives can be
decompressed using one of the UNZIP programs also located on the disk.

If the CD-ROM was not supplied at the time you purchased this book please request it,
free of charge, using the order form supplied inside the back cover.

For an additional charge, to cover the cost of the media and postage, the software and files
can be supplied on other PC compatible media, please refer to the order form inside the
back cover.

Finding disk-based information
As stated above, the files and information on disk are cross-referenced in a specific index
to a high level of detail. Reference to the specific disk index in the chapter ‘Disk Contents’
should allow you to easily locate the file(s) containing the information or example(s) you
require. If you still cannot find the specific item you are searching for, a ‘Grep’ type search
program is also included in the GREPFV10 directory of the disk. Grep programs will do a
specific text search through sets of selected files (as specified in the program command
line). See the GREPFV10 directory on disk for further details.

Introduction 1-5

Other sources of information
In bringing together much of the information, snippets of code, full program examples,
Freeware and Shareware supplied on the disk, I have used many on-line sources such as
CIX (Compulink Information eXchange), CompuServe and numerous FTP and Web sites
on the Internet. In the Contacts and Sources section I have included details of these
sources to enable an interested reader to make contact with other like-minded individuals,
to search out additional information and to keep the supplied materials up-to-date.

Disclaimer
While every effort has been made to ensure that the information and materials supplied are
accurate and free from defects of any kind, you use the information in this book and in the
supplementary materials entirely at your own risk. The author and publisher cannot accept
any responsibility for any loss or damage that might be incurred as a result of its use.

1-6 Introduction

Development Options 2-1

2 Development Options

Introduction
If you are new to Psion programming or perhaps starting a large new project, you will have
to decide which development platform to use. You may wish to develop your software
exclusively on the Psion, on a PC linked to a Psion system, or choose the platform
depending on where you are at the time.

For larger projects, PC-based development is recommended, linked to a Psion for
evaluation and testing purposes. Using a PC with a Psion ensures that virtually all of the
options for software development are available to you. When you’re away from base you
can still use a Psion system to test the application or specific routines, or even edit sections
of source code.

If you don’t have access to an IBM compatible PC, or are such a fan of the Psion that you
can’t bear to use anything else, then your options for choice of language and development
environment are considerably more restricted. See the text files in the PSIONFAQ
directory on disk for information on options for non PC-based development.

Platforms, overview
The current SIBO development platforms are outlined below. More detailed descriptions
of the various platforms, languages and software development environments are provided
later in this chapter. Software development options for the new EPOC32 based Series 5 are
discussed in the ‘Series 5’ chapter.

When discussing development issues that involve an attached PC, this book will focus on
the use of an IBM PC compatible computer. I risk offending those people who prefer
alternative computers as their development system. However, since the PC is the platform
preferred by Psion Software PLC, and all of the major development environments are
designed for this platform, I feel the limitation is reasonable. A considerable amount of
information on the use of alternative computer platforms is provided in the Psionfaq files
supplied on disk – see the PSIONFAQ directory.

2-2 Development Options

Notes:
Whatever platform you choose, use of an external power supply for the Psion is highly
recommended. There is a particularly high drain on the internal batteries during external
communications e.g. to a PC or printer.

For details of how to obtain software development kits and other programming related
supplies see the ‘Contacts and Sources’ chapter.

SIBO system exclusively
It is possible to produce sophisticated OPL programs using just the SIBO machine itself,
especially with the OPP pre-processor, covered later. However, apart from the difficulties
of working with a small keyboard and screen, this method severely limits your options, and
it is not ideal for larger projects. The OPL translation process can be very slow with big
source files, although they can be broken up and translated as smaller units. Use of
memory can be very efficient since individual translated modules can be loaded and
unloaded as required at run time. For security you will need some form of external backup
facilities, such as the Cyclone floppy disk unit (from Purple Software Ltd) or Flash RAM,
to protect against accidental loss or damage.

It is not possible to develop OVAL (Object-based Visual Application Language)
applications on the Series 3c or Workabout alone.

Writing in ‘C’ or Assembly Language (8086 machine code) is also possible (although in a
somewhat limited manner), using the appropriate third party software (supplied on disk) -
see later sections for specific details.

DOS based Psion emulators
Psion have released DOS based SIBO emulators for the Series 3, Series 3a, Siena and the
Workabout; they can be very useful for PC hosted software development, but only for
limited testing. Access to an appropriate Psion system is essential for thorough testing of
applications.

All of the emulators were released by Psion into the public domain on the understanding
that they are used ‘as is’, and they will not be supported by Psion. Copies of the S3a,
Siena and Workabout emulators are included on the disk, on the same unsupported basis.

Note:
If you make use of the SIBO emulators and experience difficulties or have questions,
please do not contact Psion technical support – see the ‘Contacts and Sources’ chapter for
potential sources of assistance.

Development Options 2-3

PC with a linked SIBO system
If you intend to use the SIBO OPL or C SDKs from Psion, use of a PC linked to a SIBO
system is mandatory. Similarly, if you wish to use ODE (the OPL Development
Environment) or OVAL (Object-based Visual Application Language), you will need a
Windows based PC linked to a SIBO system. ODE and OVAL will also run under other
PC-based operating systems - see later. However, when away from home or the office it is
obviously possible to write sections of code on the SIBO system itself, for transfer back to
the PC when back at base.

Language options
An overview of the language choices is given here, more detail is provided later in the
chapter. Beyond your chosen language, further decisions have to be made on the design
approach and which development environment to use. A detailed comparison of the
various options within each language is given later in this chapter.

The language choice depends upon many factors including previous experience, the
development platform you have available, the requirements of the application, the
expected processing demands, your objectives in writing the code and even on your target
audience.

In order of increasing level, the choices are Assembler (machine code), C, OPL and
OVAL. As in many areas of expertise, there is a lot of unnecessary rivalry and snobbery
associated with the various programming languages. It is not my intention here to become
embroiled with any of that nonsense. The ‘levels’ given here are purely in terms of the
level of abstraction they provide away from the inner workings of the system. In other
words, approximately how many lines of source code it takes to achieve some arbitrary
result e.g. presenting a bordered window to display information, and receive input from a
user.

Here are some probable reasons for making a particular language selection:

Assembly language
• Out of individual enthusiasm or for experience in (8086 family) processor level

instructions.
• The need for highest possible processing speed. Typically for small sections of an

application, written at a higher level, which have been found (or estimated) to be
highly processor intensive and there is a need to optimise them.

• The desired result cannot be achieved in any other way, e.g. writing device drivers.

2-4 Development Options

C programming
• Previous programming experience in C.
• Availability of existing C source code.
• Desire for portability of C source code to other platforms.
• Processing speed.
• Complexity or requirements of the user interface (Psion SIBO OOP C).
• Multiple events have to be handled.

OPL
• No access to a PC.
• Modest project, with no significant processing demands.
• Previous programming experience in BASIC or similar language.
• Speed and flexibility (platform) of development.
• Ease of development and prototyping.

OVAL
• Previous programming experience in Visual BASIC.
• Portability of code from SIBO to Visual BASIC on the PC and vice versa.
• Speed of development.
• Ease of development.
• Project involves Series 3c to PC transfer of data or information.
• Multiple events have to be handled.
• The application is intended for the Series 3c or Workabout (later models).

Macros
• To automate repetitive tasks on the Psion.
• To automate existing applications.
• Speed of development.
• Ease of development.
• Previous programming experience in OPL.

Development Options 2-5

Use of memory
On the 16-bit SIBO systems, programs are limited to approximately 64K of memory for
code, and slightly less than that for data. At first this may seem to be a severe limitation to
the production of sophisticated applications, but there are a number of mitigating factors.

Many facilities, provided by the system, enable the production of slick and efficient user
interfaces, whilst minimising the code required from the programmer. For example, menu
handling and user input via dialogs is very easily achieved, since the system does most of
the hard work, based on information supplied by the application.

Languages such as OPL and OVAL provide excellent facilities for modularising programs.
Thus an application is not required to have all of its code in memory at once. Some
extremely large applications, with a wide range of functionality, have been produced in
OPL.

Modularising programs written in C is possible although it is considerably more complex
and can be somewhat limiting. Two main options exist: have more than one process
running and use inter-process communications between them, make use of dynamic
libraries (DYLs) that are akin to DLLs in Window. However, producing DYLs requires the
use of object oriented programming (OOP) techniques, and the use of static data (and
certain data types) is not allowed in DYLs.

Use of EPOC32 as the basis of the 32-bit Series 5 system removes the 64K limits on code
and data.

Portability and re-use of source code
Once you commit to using a particular language and development environment you are
likely to generate a large amount of program source code and supporting information.
Changing your decision later can involve considerable effort if you wish to make use of
the program code and algorithms in another language. Moving program code from one
system to another, or converting code into another language is often referred to as
‘porting’.

Re-using sections of code and useful algorithms can save considerable time and increase
the reliability of your programs. Here are a couple of simple techniques that can make life
a lot easier if you intend to re-use or port program code.

• Don’t put large amounts of code in monolithic blocks. Instead, split your programs
down into small modular units that do specific tasks. For example, making use of
small procedures and calling them with parameters will make your code more general
purpose. Once a group of procedures have been thoroughly tested they can be used
with confidence in other programs.

2-6 Development Options

• Separate a large program into blocks with specific tasks, and avoid mixing code with
related but separate purposes. For example, in a game, keep the code that calculates
the computer's next move quite separate from the code that displays the move.
Similarly, keep the code which handles aspects of the user interface, such as key
presses, menus and help etc. separate from the code that redraws the game board.

User interface code and screen display procedures are some of the most difficult to re-use.
It is usually relatively easy to port the code that forms the ‘engine’ of an application, e.g.
that calculates the best move in a game of Chess. It is usually much more difficult to port
code that forms a major part of the user interface.

In order to get the best out of the Psion environment (particularly in terms of the user
interface and asynchronous operation) it may be necessary to adopt an approach that
significantly reduces the portability of the code produced. However by careful design and
modular programming the effort involved in moving code between languages, to new
models or even additional platforms, will be kept to a minimum.

A typical development cycle
With software projects of significant size or complexity, careful design and specification
before any code is produced will usually bring significant rewards. Time spent on design
will normally drastically reduce the overall time to produce the code. A clear specification
can form the basis of an agreement with a customer and will allow a number of
programmers to collaborate successfully on a large project. Re-coding because of an
unsatisfactory approach is avoided; performance issues and serious bugs can be
minimised.

Once the program specification is clear, a typical PC / Psion based development cycle
might involve the following stages:

• Production and editing of program code.
• Pre-processing of code (if any - see OPLLINT, AKA, OPP etc.).
• Translation or compilation and linking of source code into executable files.
• Transfer of the application code and other associated files from the PC to the SIBO

via a suitable link cable.
• Running and testing of routines or the whole application on the SIBO system.
• Modification or extension of code on the PC, and so on.

The chapter ‘Linking to a PC or Printer’ discusses the various options for connecting
Psion systems to a PC, and the methods available for printing from a Psion computer.

Development Options 2-7

Languages and platforms, in detail
Detailed coverage is provided here on the main programming options for EPOC16 based
SIBO systems. Development options relevant to the EPOC32 based Series 5 systems are
discussed in the ‘Series 5’ chapter.

Assembly language options
Apart from enthusiasts who wish to program in assembly language for its own sake, the
commonest reasons for resorting to machine level code are:

• The need for highest possible processing speed. Typically for small sections of an
application, written at a higher level, which have been found (or estimated) to be
highly processor intensive, and there is a need to optimise them.

• The desired result cannot be achieved in other way, e.g. writing device drivers.

If you wish to produce an application (for SIBO) entirely in assembly language it will be
necessary to understand the EPOC16 operating system in considerable detail. And, to
achieve even a modest level of functionality it will be necessary to make extensive use of
operating system calls. Most of the key principles behind EPOC16 are discussed in the
‘Fundamental Concepts’, ‘Processes, Memory and Applications’ chapters, and extensive
information on operating system calls is provided on disk.

Four main (and one minor) options exist for working in assembly language for SIBO
systems:

TopSpeed assembler and linker
Available separately from TopSpeed Corporation or as supplied with the Psion SIBO C
SDK professional edition. These tools are PC DOS based. Assembler source code,
produced with a selected editor, is assembled and linked to produce an executable that has
to be transferred to a SIBO system for testing.

Borland assembler and linker
Programmers who wish to write their own LDD device drivers will need to use assembly
language. An interface section in assembly language is essential for device drivers. The
assembler code may just provide an appropriate interface to other more extensive code,
which could be written in assembly language or in C.

Example device drivers, with assembly language and C source code, are provided with
Psion’s SIBO C SDK. The recommended development tools for building the device
drivers are the PC DOS based assembler and linker from Borland International. The
Borland Turbo Assembler (TASM.EXE) and Turbo Linker (TLINK.EXE), required to
build the example drivers, have to be purchased separately; they are not supplied as part of
the SIBO C SDK from Psion.

2-8 Development Options

S3Asm
S3Asm is a Psion hosted editor and assembler for 8086 class processors, it is suitable for
S3a/c systems (and possibly the Siena). S3Asm is shareware and is supplied on disk – see
the S3ASM2 directory.

Machine code book
A fourth option for machine level programming is available in the form of a book plus
software. A book entitled ‘Machine Code Programming on the Psion Series 3a & 3’, by
John Farrant, explains how to program in 8086 machine code and assembly language.
Published by Kuma Books Ltd (ISBN 0-7457-0299-6), the package includes a functional
two-pass assembler with text editor and debugger. The Assembler etc. are provided as
source listings (in OPL) within the text of the book, although an option to buy the source
code on floppy disk is available in the back of the book.

CPOC Assembler
A fifth option for assembly language programmers is to use the Assembler supplied with
the CPOC C development system. The CPOC assembler is not designed as a stand-alone
program, it has to be used in conjunction with the CPOC ‘front end’.

The whole CPOC system, as it currently stands, is provided on disk – see the CPOCALL
directory and sub-directories.

C programming
Four options exist for C programmers.

• The CPOC shareware development system, for direct use on a SIBO system.
• The Small C compiler, for direct use on a SIBO system.
• Use a PC based compiler and convert to Psion format with PLINK
• The PC hosted SIBO C SDK from Psion.

Although, for serious/commercial development in C, the only viable option is to use the
Psion SIBO C SDK.

CPOC
CPOC is a SIBO hosted C development system that is still being developed. The authors
state that they intend to produce a full C development system that can be used to edit and
build functioning programs entirely on a Psion system. Some of the components of the
CPOC system are not yet functional.

The whole CPOC system, as it currently stands, is provided on disk – see the CPOCALL
directory and sub-directories.

Development Options 2-9

S3C111
S3C111 is a SIBO hosted C development system that is complete but very limited; it is
based on a public domain SmallC compiler adapted for the Psion Series 3 and 3a/c (and is
probably suitable for the Siena). The author states that the S3C111 system can be used to
edit and build functioning programs entirely on a Psion system.

The whole S3C111 system is provided on disk – see the S3C111 directory.

PLINK
Code in C compiled with the Microsoft C compiler (or others) can be converted with the
PLINK cross-linker to Psion format, which may then be run from inside an OPL program;
useful for speeding up time critical sections of an OPL program.

The PLINK cross-linker is provided on disk – see the PLINK directory.

SIBO C SDK options
At the time of going to press the current version of the Psion SIBO C SDK is 2.20, and
three variants are available:

• The documentation only version, useful for system related information and details of
EPOC system calls. The TopSpeed Corporation C compiler, etc. must be purchased
separately before applications can be produced.

• The standard version is a fully usable version including documentation, plus the
TopSpeed Corporation C compiler and linker.

• The professional version is as per the standard version, plus the source code for the
CLIB library and the TopSpeed Corporation assembler.

SIBO C SDK documentation edition
The documentation variant contains:

• Four A4 sized volumes, divided into nineteen manuals comprising two hundred
chapters (see the ‘C Programming’ chapter for further details).

• The Psion software environment, including libraries, header files and associated
software tools.

• A range of example applications and program source code demonstrating the various
programming options.

2-10 Development Options

SIBO C SDK standard edition
In addition to the material supplied in the documentation variant, the standard variant has:

• The TopSpeed Corporation C compiler and library.
• The TopSpeed Corporation multi-window editor and project system.

The standard SDK variant contains everything necessary to develop sophisticated SIBO
applications in C. The TopSpeed C components may be used independently of the Psion C
SDK components to write DOS based programs to run on a PC.

SIBO C SDK professional edition
In addition to the material in the standard variant, the professional variant has:

• The TopSpeed TechKit, including the TopSpeed assembler.
• The TopSpeed C library source, containing the source code (both C and assembler) for

the C library that is supplied with the compiler.
• The Psion SIBO CLIB C library source.

Development Options 2-11

OPL
A bewildering array of development options and utilities are now available to OPL
developers. Options for the main code development process are described here; see the
‘OPL Programming’ chapter for more details.

OPL development
option

Description Requirements

SIBO based
development.

Editing, OPL pre-
processing, translation
and testing on a Psion
system.

Target SIBO system and an
optional OPL pre-processor.

PC DOS SIBO
emulator based
development.

Editing, pre-processing,
translation and
provisional testing
within a DOS based
SIBO emulator.

A DOS based PC, the target SIBO
system emulator and an optional
OPL pre-processor.

PC DOS based
development.

Editing, OPL pre-
processing and
translation.

A DOS based PC, the target SIBO
system, a link cable and file
transfer software. An appropriate
PC DOS based OPL translator
and an optional OPL pre-
processor.

PC Windows
based
development.

Editing, OPL pre-
processing and
translation.

A Windows based PC, the target
SIBO system, a link cable and file
transfer software. An appropriate
OPL translator and an optional
OPL pre-processor.

ODE
The OPL Development Environment (ODE) is an excellent Windows-hosted Integrated
Development Environment (IDE) that includes:

• A project manager.
• A powerful multi-file source code editor with coloured syntax highlighting.
• OPLLINT, a code checking utility.
• OPL translators suitable for the S3, S3a/c, Siena, Workabout and HC.
• Powerful context sensitive help that calls on a full OPL reference library.
• PC to SIBO communications capability via a suitable link cable (not provided).

2-12 Development Options

ODE requires a 386 CPU (or better) based PC compatible and will run under Windows
3.1, 3.11, 95 and NT3.5 or higher, OS/2 or Warp. It requires a VGA display with 4 MB of
RAM and 2 MB or more of disk space.

ODE is available as a product in its own right; it is also supplied as part of version 3.0 of
the SIBO OPL SDK. ODE is an extremely good development environment for SIBO
systems, and is excellent value for money.

SIBO OPL SDK
The current version of the Psion SIBO OPL SDK is version 3.0; it provides all the tools
and information necessary to develop sophisticated OPL language applications for Psion
SIBO-based systems.

The SIBO OPL SDK contains:

• Two A4 size volumes, comprising thirteen manuals (see the ‘OPL Programming’
chapter for further details).

• The Psion OPL software environment, including libraries, header files, macro files and
utility software.

• A range of example program source code.
• Includes ODE (OPL Development Environment), a Windows PC based Integrated

Development Environment.

For serious / commercial development in OPL, purchase of the Psion SIBO OPL SDK is
highly recommended.

OPL translators
Psion have produced a range of PC hosted OPL translators for all SIBO systems. The
translators are able to pre-process and translate OPL source code into a form suitable for
execution on the target SIBO system or DOS based emulator.

All of the available OPL translators are supplied as part of ODE and the SIBO OPL SDK
produced by Psion.

The S3tran and S3atran OPL translators are provided on disk – see the OPLTRAN
directory.

OPL pre-processors
On a SIBO system, OPL has a number of flaws that can limit its flexibility or allow errors
to go undiscovered. A number of OPL pre-processors are available that can significantly
improve the usability of the language and eliminate common disastrous errors.

All OPL programmers should seriously consider using a pre-processor. In particular,
OPLLINT should be used to check your code before any significant application testing is
done.

Development Options 2-13

OPLLINT
An invaluable DOS utility from Psion for checking the syntax and use of variables and
procedures, in an OPL program.

OPLLINT is provided on disk – see the OPLLINT directory.

OPP
A SIBO or DOS hosted pre-processor that adds various C-like features to OPL, such as
#defines, #includes, 2D arrays and much more. OPP is an excellent OPL programmers’
utility for extending the language using operating system calls, and preparing for
debugging OPL programs with OPPDBG.

OPP is provided on disk – see the OPP16F directory.

AKA
An excellent DOS hosted utility, AKA is an OPL programmers’ tool that will shorten
variable and procedure names, reduce the size of OPO or OPA programs, and speed them
up slightly.

AKA is provided on disk – see the AKA230 directory.

OPL debugger
Until the arrival of OPPDBG, there was no easy way of debugging OPL code at runtime.
OPPDBG provides an excellent OPL programmers’ source level debugging utility.
However, OPPDBG relies on use of the OPP pre-processor from the same author.

OPPDBG is provided on disk – see the OPPDBG11 directory.

OPLCS editor
OPLCS, short for OPL Code Studio, is a PC Windows based OPL code editor and
template-based code generator.

OPLCS is provided on disk – see the OPLCS directory.

Please note:
OPP, OPPDBG, and OPLCS are Shareware programs, so please register any software that
you decide to use. Individuals may use AKA free of charge, but commercial users must
register it as Shareware.

2-14 Development Options

OVAL
In brief, OVAL is Visual Basic for the Psion; ‘Object-based’ just refers to the way of
working when developing an application. OVAL is code-compatible with Microsoft
Visual Basic, it includes over thirty controls that are specially designed for building Psion
applications, and takes full advantage of the EPOC operating system. Experienced Visual
Basic programmers should be quickly up-to-speed with OVAL.

Developing in OVAL is done in a Windows-based Integrated Development Environment:
it features an intelligent source code editor, code translators for Psion computers and over
30 application controls. Developers design applications graphically in the Windows IDE,
and test them using a suitable SIBO system computer connected via a serial link cable.

To run OVAL applications, a SIBO system with the OVAL run-time interpreter in ROM
(Read Only Memory) is required. Currently, the only systems with OVAL in ROM are the
Psion 3c, and recent versions of its industrial relative the Workabout.

Due to its size, the OVAL runtime engine is not included in the Siena ROM, nor can it be
loaded on to earlier machines. OVAL is also absent from the DOS based SIBO emulators
and the new Series 5 system.

Developing in OVAL requires a PC-compatible computer with: 80386 or better CPU, a
colour VGA display, 4 MB RAM or more (8MB recommended), 2 MB disk space or more
and a serial link connection (e.g. 3Link cable, PsiWin etc.). The OVAL IDE will run under
the following operating systems: Windows 3.1 or higher, Windows 95, Windows NT 3.5
or higher, OS/2 2.1 or higher. It is not possible to develop OVAL applications directly on
the Series 3c, Workabout or DOS based emulators.

OVAL applications can be distributed, to suitably equipped users, by the usual methods.

Macros
Three options for Macro based automation / programming currently exist for SIBO
systems (Non currently exist for the Series 5).

MACSYS
MACSYS is a Freeware Macro system that allows automation of most common Psion
tasks. It can record and play back a sequence of keystrokes, but MACSYS macros are
actually full OPL programs, and can use all the power available to the system. MACSYS is
a little tricky to master, but the effort can be very rewarding.

The complete MACSYS system is supplied on disk with several example Macros – see the
MACSYS directory.

Development Options 2-15

KMAC
Is a keystroke Macro record and play back system written in C, and all necessary
executable files and full source files are supplied. KMAC can be used as supplied, or used
from within programs written in OPL or C. Complete examples are provided that
demonstrate the use of KMAC by C or OPL applications; full source is supplied in C and
OPL.

The complete KMAC system is supplied on disk with example Macros – see the KMAC
directory.

ATS based macros
Starting with the Series 3a, the ATS (Automatic Test System) system was introduced to
assist with automated testing of HWIM C applications. Although the process which
controls the ATS sequence does not have to be an HWIM application, the process which is
being controlled by ATS does have to be a standard HWIM application (or one which
mimics the support for ATS).

The ATS system is discussed in more detail in the ‘Errors and Debugging’ chapter, but is
covered in depth in the ‘Object Oriented Programming Guide’ manual in SIBO C SDK.
An example ATS based Macro recording and playback system is provided with the SIBO
C SDK. See the OODOC201 directory on disk.

2-16 Development Options

Fundamental Concepts 3-1

3 Fundamental Concepts

Introduction
With any good idea or exciting new programming project, it’s always tempting to dive
straight in and produce some actual code; only bothering to read the manuals when you are
stuck, or need to look something up. Much of this book can be treated as a resource, to be
used only when you need to refer to a particular technique, or solve a programming
problem. However, the effort of reading the chapters covering some of the fundamental
concepts should repay itself many times over. Not all of the concepts covered will be
relevant to all readers. Some more advanced topics may be skipped and returned to as
needed, but an understanding of a large proportion of the material presented in this chapter
will be of value to all programmers. For example, programming at the client server level
will not concern most OPL programmers, but an understanding of the concepts, and how it
is used by EPOC16 may be advantageous.

Languages like OPL and OVAL have the distinct advantage of insulating the programmer
from the finer details of the operating system. However in order to achieve some of the
more advanced results, say in OPL, it may be necessary to use operating system or library
function calls. In these circumstances, a more detailed understanding of the concepts
behind the calls will make life easier, particularly when problems are experienced.

Wherever possible this chapter will describe key concepts, whilst deliberately staying away
from example code. Illustrating a concept to an OPL programmer in terms of code written
in C for example, or vice versa, may only serve to confuse. Addressing the specifics of
each programming concept or technique will be left to the chapters on each language.
However to ensure that each topic is covered in sufficient depth this chapter was written
from a general C programming perspective.

When programming in any new environment there is always a learning process to go
through, a significant part of that process is to absorb the ‘standard’ approach to
application design in the new environment. One of the most fundamental design issues in
the Psion environment is the choice of synchronous versus asynchronous handling of
events, such as key presses and general program input/output (I/O). Most programmers
like to build on what they have done before and typically will aim to accumulate code that
is designed to be reusable, or easily adapted for future uses. A particularly useful section of
code to develop and re-use is a basic application framework or template (to handle tasks
such as responding to special keys, menus and general I/O). Therefore, I recommend close
study of the associated concepts, and of as much example code as possible (in your chosen
language) before making a decision about a synchronous/asynchronous design approach.

Fundamental Concepts 3-2

SIBO architecture
The Series 3 family and Siena handheld computers are all based on the proprietary Psion
SIBO (or SIxteen Bit Organiser) architecture, as are the industrial handheld products such
as the Workabout and HC ranges.

The new Series 5 systems have a completely new architecture and operating system, see
the ‘Series 5’ chapter for details.

Key components of SIBO systems
• An 8086 class processor.
• A sophisticated power management system that selectively powers subsystems under

control of the operating system.
• A synchronous, high speed, serial protocol for communication between a machine and

its peripherals.
• Solid state disks (SSDs) that provide fast mass storage without moving parts.
• Hardware protection of the system from aberrant software processes (Trapping of out

of range memory addressing and a watch-dog timer that prevents interrupts being
disabled for too long.)

• A real-time clock.
• ROM based system software and applications.
• Graphics LCD display.
• A pointing device (e.g. a mouse pad - on some models only e.g. MC).
• Eight-bit digital sound system (on some models only) e.g. 3a upwards.

The SIBO architecture is physically implemented using a V30H (8086 compatible)
processor and custom made integrated circuits called ASICs (Application Specific
Integrated Circuits). It is possible, although rarely necessary, to interact with the SIBO
hardware system via certain of the ASIC chips, as described the ‘Hardware Reference’
manual of the Psion SIBO C SDK.

ASICs
The Psion SIBO architecture is unique and very compact because of the use of custom
chips called ASICs (Application Specific Integrated Circuits, again all in CMOS). Various
ASIC chips handle everything except computation, and provide control over system
hardware such as the keyboard, LCD screen, memory, sound, real time clock, peripherals
such as SSDs and the serial port etc.

Specialist functions such as auto-switch-off are provided by the ASICs, including one of
the most important, hardware memory protection. If a program goes completely ape and
attempts to tramp all over areas of memory that it shouldn't have access to, it will be

Fundamental Concepts 3-3

stopped in its tracks by the ASIC hardware. Hardware memory protection is one of the
reasons for the above average reliability of Psion handheld computers.

Some ASICs (e.g. ASIC 5) are used in external interfaces and devices such as SSDs. Over
time there have been at least ten ASICs. The circuitry became even more closely integrated
with the introduction of ASIC 9, this was a composite chip combining a number of the
other ASICs including the V30H processor itself!

Processor
The system is sixteen bit, fully 8086 processor instruction set compatible, but the NEC
V30H processor used in the Series 3 family has additional instructions available.
Approximately 40% higher performance may be expected from the V30H compared to an
8086 chip due to internal design optimisation of the V30H processor. Implemented as an
entirely static CMOS (Complimentary Metal Oxide Silicon) design, the processor has no
minimum clock speed, therefore the processor clock can be stopped at any time without
loss of its internal state. This feature is used extensively as part of the SIBO power saving
strategy during periods when the processor is idle (i.e. waiting for an event).

Interrupts
The 8086 class processors have two types of interrupt, software interrupts and hardware
interrupts. A vector or jump table at the bottom of memory is used by the processor to look
up the address of code designed to handle each type of interrupt. The vector table can
contain up to 256 entries each of which is 4 bytes long. The first 33 entries (0 -32) are
used for special system and error handling purposes. Interrupts from 33 to 255 are used for
the INT xx trap instructions, that are used by EPOC16 to provide the operating system
service functions (EPOC16 O/S calls).

A hardware interrupt is a special kind used by peripherals and system hardware (at the
electronic level) to signal the processor directly that an event has occurred and must be
attended to. For example, the processor is physically signalled, or interrupted, 32 times per
second to generate the so called system ticks. Other hardware interrupts may be generated
by I/O devices, such as the RS-232 port, to indicate that data has arrived etc.

Memory protection
Special hardware protects the rest of the system from bugged software that tries to write
outside of its own allocated data segment. It is possible for a process to modify memory
outside of its own data segment, for example by disabling interrupts. However, if a process
leaves interrupts disabled for more than 24 system ticks (three quarters of a second) the
watch-dog timer hardware will detect this, and the process will be aborted (panicked - see
errors later) by the operating system.

Fundamental Concepts 3-4

Auto-switch-off
The hardware system (e.g. the processor, communications links and peripherals such as
storage devices etc.) is interrupt driven to provide a system capable of operating in a multi-
tasking mode and should never lose data. To save battery power the SIBO system is
designed to shut itself off when certain key activities (e.g. a user key press) have not
occurred for a pre-set time.

To make sure that an application does not inadvertently disable the auto switch off
mechanism it is necessary to follow a set of programming guidelines for handling events
such as key presses - see 'Processes and auto-switch off' in the 'Process, Memory and
Applications' chapter.

Storage capabilities
Up to 1Mbyte of memory may be addressed directly on 8086 class processors. In SIBO
machines, depending on the model, all or part of this address range may be used. This is
why only 512K of memory is available for all running programs, and that any additional
memory is allocated to internal disk space.

RAM
The internal memory capacity varies depending on the model. The original Series 3 had
128K or 256K of RAM, the Series 3a offered 256K or 512K and this was later changed to
512K, 1MB or 2MB. The Siena has 512K or 1MB and the 3c has 1MB or 2MB.

On all models the internal RAM memory above 512K is not available as process space i.e.
for program code or data, it is reserved for use as internal RAM drive space.

ROM
ROM sizes again vary depending on the model and system options supplied e.g. the Spell
checker / thesaurus application and dictionaries were added to the ROM on the larger 3a
models (the 1 MB and 2MB RAM variants) available in the UK and US. With the
introduction of the Series 3c, with the Oval run-time interpreter included, the ROM was
increased to 2MB.

SSDs and files
SIBO machines have 1 to 3 storage drives, depending on the model. All models have a
Drive M: , the non removable internal disk, that is actually a section of the internal system
memory configured as a RAM drive.

Fundamental Concepts 3-5

Additional plug in Solid State Disk (SSDs) units are available, and are so-called because
they are based on silicon memory with no moving parts. A variety of SSD types and
capacities are available. Sizes range from 128K bytes to 8Mb and beyond.

To reduce the entry level cost, the Siena has only the internal RAM drive, it does not have
an integral SSD slot. Although, an external SSD drive is an optional extra and connects via
the side mounted port.

The different types of removable SSD (in order of decreasing unit cost) are:

• Static RAM with integral Lithium battery
• Flash EPROM
• Solo - one-time-programmable ROM
• PSRAMs Pseudo Static RAM
• Masked ROM

An SSD drive can physically and logically mount any type of SSD unit.

SSD interface
The physical interface between an SSD and the drive has only 6 connectors (4 for power,
and 2 for data). The 2 data connections are an instance of a high speed serial channel, it is
a fundamental part of the SIBO hardware architecture, implemented in custom ASIC chips
and can be used to communicate with other peripherals.

The high speed serial channel is driven synchronously by a clock which normally runs at
3.84 MHz, giving a data transfer speed comparable to hard disks on PCs, but without any
latency for the drive head to position to the required track. Writing to a Flash SSD is
slower because of the time taken to program the EPROM and, in this case, the speed of
writing is approaching twice as fast as writing to a typical floppy disk on a PC.

RAM SSDs
RAM SSDs use static RAM backed up by an integral Lithium battery. While the RAM
SSD is inserted in an SSD drive, it draws current from the SIBO machine. When the SSD
is removed, it relies on its internal battery to maintain its data. Only on later versions of
RAM SSD's is it possible to programmatically determine the status of the internal backup
battery.

The allocation of the space for directories and files on a RAM SSD is block structured -
identical to that used on PC hard disks and floppy disks. Just like floppy disks on a PC,
there is a limit to the number of files that may appear in the root directory (where this limit
includes directory files). This root directory limit does not limit the number of files that
can be stored on a RAM SSD since any number of files may be stored in sub-directories.

The format function automatically allocates the capacity of the root directory as a function
of the capacity of the SSD. The number of files that may appear in the root directory
depends on SSD size, as follows:

Fundamental Concepts 3-6

Max files in
root

RAM SSD size

16 <128K
32 128K
48 256K
64 512K

128 1M
256 2M
384 4M
512 6M
512 8M

Flash SSDs
Flash SSDs use Flash EPROM chips in which all the data bits are initially set. A particular
bit may be cleared by programming but it can not be set again unless all the bits on the
chip are set (by erasing the chip). Unlike older generation EPROMs, Flash EPROMs are
erased electrically (rather than by exposure to UV light). The speed with which Flash can
be programmed is also substantially faster than the old UV erasable EPROMs. A Flash
SSDs may be erased in its SSD drive by formatting.

Since Flash memory does not require a battery to maintain it, the data on a Flash SSD is
very secure - more so than on RAM SSDs or magnetic media. Flash memory is also
cheaper than RAM.

Files stored on Flash RAM cannot be compressed, whereas those on the internal drive or
on SRAM devices can be compressed in situ to recover the space used by deleted records
or files.

Flash SSDs are particularly attractive for storing program files, read-only data (say for
data-referral applications), for securely storing logged data in the field and for archiving
data. The storage of files on a Flash SSD is very different from that used on RAM SSDs.
The scheme is not at all block structured, but is based on linked variable length records.
All this is hidden from the caller and the logical interface to a file on a Flash SSD is the
same as for a file on a RAM SSD (or any other medium).

On a Flash SSD, there is no limit on the number of files or directories in the root directory.
You will also find that it is possible to fit slightly more data on a freshly formatted Flash
SSD than on a RAM SSD of the same nominal capacity. This is due to the fact that files
are allocated space in multiples of whole blocks on a RAM SSD, whereas Flash files are
stored in exactly sized variable length records.

Fundamental Concepts 3-7

Solo and ROM SSDs
Solo SSDs (one-time-programmable ROMs) and masked ROMs are used by software
publishers to distribute their products and as their names suggest cannot be reformatted
once written to (see the chapter on 'Distributing Your Software' for more details).

PSRAM SSDs
PSRAMs are industrial products and are not recommended for use with the S3a S3c or
Siena. PSRAMs are available with capacities of 512K, 1MB and 2MBytes. Power
consumption is slightly higher than SRAM during read and write operations, but is a lot
higher when the machine is switched on because of the refresh oscillator needed to
maintain the memory (up to 1/3 rd more power) also a lot more power is needed when the
machine is off to maintain the memory. A backup lithium cell has only around 400 hours
(17 days) if a PSRAM is taken out of a machine.

SSDs and robust programs
Mass storage devices such as SRAM and Flash RAM can be removed, changed or
repositioned at will by the user. Robust programs should be designed to cope with such
eventualities without crashing.

Display screens
Depending on the model of SIBO system, the size and resolution of the screen and the
availability of a grey plane may vary. The original Series 3 has a screen resolution of 240
pixels wide by 80 pixels deep with no grey plane. With the 3a, the screen was made
physically larger, the resolution was doubled to 480 by 160 and a grey plane was added.
On the 3c the screen size and resolution are the same as the 3a, but variants with
backlighting became available, initially only for US models.

On the Siena the screen size and resolution was reduced to 240 by 160 (also with a grey
plane) to accommodate a numeric keypad. Backlighting is not available for the Siena.

The grey plane can be considered to be a layer between a top ‘black’ layer and a bottom
‘white or blank’ layer. If a pixel in the top layer is ‘on’ then a black pixel will be visible. If
the same black pixel is ‘off’, but the grey pixel underneath it is ‘on’, then a grey pixel will
be shown. If both the black and grey pixels are ‘off’ then a white or blank pixel will result.
Black pixels that are ‘on’ will always obscure the equivalent grey pixel underneath, i.e. in
order for a grey pixel to be visible the corresponding black pixel must be off.
Programmatic methods for determining the type and resolution of the screen available are
described in the relevant language chapters. To help maintain compatibility between newer
and older models with lower resolution screens a ‘compatibility’ mode may be provided.

Fundamental Concepts 3-8

LCD screens

Model Resolution in
pixels

Pixel pitch
in mm

Pixel size
in mm

Screen size
in mm

Planes Backlit

HC 160x80 0.34x0.43 0.31x0.40 54.4x34.4 Black
only

yes

WA 240x100 0.26x0.30 0.23x0.27 62.4x30.0 Black
& Grey

yes

S3 240x80 0.38x0.43 0.35x0.40 92.4x34.4 Black
only

no

Siena 240x160 0.25x0.25 0.23x0.23 60.0x40.0 Black
& Grey

no

S3a 480x160 0.26x0.26 0.20x0.20 124.8x41.5 Black
& Grey

no

S3c 480x160 0.26x0.26 0.20x0.20 124.8x41.5 Black
& Grey

yes

Sound hardware
The Series 3, Siena, Series 3a and 3c have varying internal audio hardware and therefore
provide distinct sets of sound services, an overview is given here.

Sound on the Siena
The Siena has only a piezoelectric buzzer and so is restricted to emitting warning beeps
and other simple sounds, it does not have a speaker or microphone and cannot record or
play digital sounds.

Sound on the Series 3
The Series 3 has a piezoelectric buzzer and a loudspeaker, but it can emit only piezo-
electric buzzer sounds, DTMF dialling tones, and simple alarm sounds. However, by
loading a suitable device driver, such as SNDFRC.LDD which drives the speaker, the
machine can also be made to emit sequences of musical notes of variable duration, thus
greatly extending its sound capabilities (SNDFRC.LDD is supplied with the SIBO C
SDK).

Sound on the Series 3a/c
The Series 3a/c have both a loudspeaker and a microphone, but do not have a piezo-
electric buzzer. The Series 3a/c produce buzzer sounds via a piezo buzzer emulation using

Fundamental Concepts 3-9

the speaker which takes more power to drive. Considerably greater sound capabilities are
available on the Series 3a/c. In addition to emitting buzzer sounds, DTMF dialling tones
and simple alarm sounds, the Series 3a and 3c can play two sequences of musical notes
simultaneously, and can play and record compressed digital sound files (WVE files).

Sound on the HC
The HC has a piezoelectric buzzer, amplifier driven loudspeaker and microphone - see
Sound on the Series 3a/c above.

Sound on the Workabout
The Workabout has only a piezoelectric buzzer and so is restricted to emitting warning
beeps and other simple sounds, it does not have a speaker or microphone and cannot
record or play digital sounds.

System time and date
The system time is stored (in a 32 bit unsigned ULONG value) as the number of seconds
since 00:00:00, January 1, 1970 (compatible with UNIX system time). Obviously the
system time will eventually overflow, but not until approximately 136 years after 1970,
sometime in the year 2106. A range of system functions are available for accessing the
components of the time and date (e.g. year, month, day, hour, minute and second etc.) and
for converting between different representations of the date and time.

External communication
All SIBO computers have the ability to connect with external devices such as printers,
modems or other computers. Connection methods vary depending on the model and nature
of the external device. For example to connect a Series 3c or Siena to another computer, a
custom RS232 serial port and cable is used, the Series 3 and 3a are connected through a
high speed SIBO serial port via an appropriate conversion device incorporated into the
cable. The HC and Workabout industrial handheld units have a variety of connection ports
and cables, they can also be connected to external devices through cradles or docking
stations.

Opening a channel to the TTY: device provides access to a fully interrupt driven RS-232
serial port. The Siena and Series 3 family recognise only one serial port i.e. the TTY:A
port, which supports read / write operations for data, and sensing / setting operations for
the serial port parameters and control lines.

A new ASIC, called the CONDOR chip, was introduced with the Series 3c and Siena for
serial communications. The new chip, combined with a modifed ROM routines, enabled
serial port speeds up to 57.6K baud on the Series 3c (19.2K baud on the Siena).

Fundamental Concepts 3-10

Opening a channel to the PAR: device provides access to a centronics parallel port,
incorporated into a special cable, and is used for printing (see the notes below). The Series
3 family and Siena recognise only one parallel port i.e. the PAR:A port, which is a write
only device and does not support read operations.

Bi-directional infrared communications became possible with the introduction of the
Series 3c and Siena models. The new CONDOR ASIC described above also handles the
serial infrared link. At the time of going to print (September 1997) only Psion to Psion
infrared transfers, or infrared printing are possible with suitably IrDA enabled systems. An
infrared Psion to PC link has yet to become available as a standard option.

Note:
Problems may be experienced when opening the PAR: device (i.e. the parallel device
driver) for printing, for example on the Series 3c or Siena. If you experience an error of the
type ‘Device not present’ it may be necessary to print using the TTY: device instead, even
though a parallel cable is being used - see the text file ‘FORUM06.TXT’ lines 841-1405 in
the \ONLINE directory on disk.

The infrared protocols used on the Series 3c and Siena have changed on the Series 5 and
data transfers from SIBO to Series 5 are not possible using the standard system software).

The EPOC16 operating system
All applications software on the Siena and Series 3 family of personal organiser run under
the control of EPOC16, a 16 bit Operating System which is proprietary to Psion. All other
hand held products such as the Workabout and HC ranges from Psion also use EPOC16.
The name EPOC is not an acronym, but is a short form of epoch, a name that was intended
to reflect the dramatic change from an eight to a sixteen bit operating system that the
original grey Psion organiser II used.

Key features
• Pre-emptive multitasking
• MS-DOS compatible file systems
• Installable file systems, including remote file access
• Asynchronous services
• Support for client server services
• A comprehensive I/O (Input / Output) system with many built in I/O devices
• Dynamically loadable device drivers
• Re-entrant function library
• Multiple processes of the same program share a single copy of the executable code.
• Support for a proprietary Object Oriented Programming (OOP) system
• Re-entrant dynamic link libraries.

Fundamental Concepts 3-11

EPOC versions

EPOC16
There have been several versions of the 16 bit EPOC operating system during the life of
the Series 3 range. The version on any particular machine can be obtained by the user from
the system screen, or programatically (by an EPOC16 call or using a PLIB library function
from within a C program). Similar facilities are available to determine the ROM (Read
Only Memory) version, since the Operating System is never released on its own, EPOC16
is always supplied with a number of other files built into the ROM.

Since the machines are sold widely internationally there are also language variants of the
ROM (currently around 22 types, see the Appendix for a list). The language of a particular
machine can be obtained by specific system calls (examples of these calls are given under
the appropriate language section).

An MS-DOS version of EPOC16 is also available to allow the full emulation of the Siena
and Series 3/3a on a PC. Copies of the 3a and Siena emulators are supplied on disk.

During the development of EPOC16 and related ROM based facilities, a number of bugs
have arisen and in many cases have been fixed, changes in the functionality provided have
occurred, some of which are relevant to the programmer. Wherever possible the impact of
bugs or changes will be given in the appropriate section.

EPOC32
A new version of EPOC lies at the heart of the newly released Psion Series 5. EPOC32 is a
32-bit operating system developed for high performance products such as high-end
palmtops, communicators and smart phones, and is covered in more detail in the ‘Series 5’
chapter.

The system screen
On a Siena or Series 3 the system screen (also known the Shell Application, SYS$SHLL)
is the supervisor process that provides the user interface to the system, and control over the
applications running in the system. All of the built-in applications and other suitably
constructed third party application programs should communicate with the system screen
task for the following reasons:

To display the name, in bold, of any file currently open in the file list under the programs
icon, in the system screen.

To ensure that the file name is also displayed in any status window that may be showing.

On receiving a ‘Shut down’ request from the system screen, an application can close itself
down tidily, saving any changes to file as appropriate. Alternatively, applications can be

Fundamental Concepts 3-12

requested to ‘Switch files’, i.e. to create a new file or change the file the application is
currently operating with.

Applications use two mechanisms to communicate their preferences to the system screen
concerning any file switching, as well as the name of the file they may currently be using:

During compilation or translation, data is included in the application's .APP or .OPA file;
this data may include whether the application is file-based (see Application types later) and
if so the default extension of any files to be used, plus the default directory for such files.

Other data is passed in the ‘Command line’ when the application is started, and this is
written to various ‘EPOC16 reserved (or magic) static variables’, these include the full
path name of any file currently in use by the application (see EPOC16 magic statics later).

Processes and priorities
A process is a running program. EPOC16 is a single-user multi-tasking operating system
that rapidly switches contexts between a number of independent processes - creating, at
times, the illusion of multiple processes running in parallel. When there is more than one
process that is ready to run EPOC16 runs the process with the highest priority. If there is
more than one ready process with the same highest priority, they take it in turns to run
every four system ticks. The initial process priority is normally taken from a value stored
in the program file or image, but it may subsequently be changed.

Processes, clients and servers
EPOC16 is a single user, multi-tasking operating system so all active applications with a
user interface must share the same screen and keyboard. A ‘server’ process, called the
window server (SYS$WSRV), that runs under EPOC16 provides ‘client’ processes with
shared access to the screen, keyboard and any other user interface devices (e.g. pointing
device) that may be present.

Using a server process to share a common resource between a number of clients is a
common technique in multi-tasking environments. Another example is the file server, a
high priority system process (with process name SYS$FSRV) that performs all file related
operations on behalf of ‘client’ processes i.e. application programs.

The EPOC16 operating system has a number of design features which support client /
server relationships.

Fundamental Concepts 3-13

Processes, foreground and background
At any moment only one client of the window server can be in the foreground, i.e.
receiving keyboard input from the user, all other clients are queued in the background. The
window of the foreground client is the window that is currently visible, those of the
background clients are said to be ‘behind’ the foreground client window.

When a process starts it normally would come into the foreground (although it is possible
to start up a program in the background). Programs can put themselves (or other clients)
into the background, or bring themselves (or others) into the foreground. Key press
information is not normally received by background programs, but they can opt to capture
specific keys by special means.

Events, an introduction
Events significant to EPOC16 are generated by the following occurrences:

• Menu hot key press by the user
• Other key presses of significance to the particular application such as cursor keys etc.
• System screen messages such as ‘switch files’ or ‘close down’
• System messages such as foreground background changes
• System switch on or off etc.

For each client, the Windows Server keeps a queue of events that inform the client of user
input and other events. The different types of window server events include:

• Key presses
• Foreground/background changes
• Window redraw events
• Mouse events (if the machine has a pointing device)

Other possible events might include:

• Data arriving from a serial port
• The expiry of a timer or an alarm
• Change of system date
• A process which is ready to run

A program which can react to and process such events, whilst remaining responsive to the
user, who may wish to interrupt a process, must be specifically structured to do so and
must make use of the asynchronous services provided by EPOC16.

Fundamental Concepts 3-14

Multi-tasking and multi-threading
Since under EPOC16, its is possible to have several programs apparently running at the
same time, each of which may be required to respond to a number of different types of
event, it is important to clarify the differences between multi-tasking and multi-threading:

Multi-tasking involves two (or more) different processes; multi-threading involves two (or
more) event sources within one process.

EPOC16 takes care of multi-tasking automatically, on behalf of applications; multi-
threading requires conscious effort from an application designer.

Multi-tasking is pre-emptive in that a process with a higher priority that is ready to run will
always displace a lower priority process that is running.

Multi-threading is non pre-emptive in that an event source with a higher priority may have
to wait until a lower priority event source voluntarily releases the processor (gives up the
CPU), before it is able to run, since prioritisation of event sources within a multi-threaded
application is handled by the application itself. An example might be a game which is
currently calculating its next move and a higher priority timer process elapses. Unless the
move calculation thread (typically a procedure) voluntarily gives up CPU occasionally, the
thread that handles the elapsed timer will not have chance to run.

For complex applications which may involve responding to a number of different event
sources, a program designer may decide to use a multi-threaded approach and will
therefore be responsible for controlling the priority and activity of each possible thread,
usually by using asynchronous requests (see the Applications, Processes and Memory
chapter). An alternative approach might be to have a main program that initiates a number
of other sub-processes which are responsible for specific tasks. The main program and its
sub-processes could use a mechanism such as inter-process messaging to pass signals and
information between themselves.

Applications
Executable files exist in several forms: .OPO and .OPA from OPL, .IMG from C or
Assembler and .APP from C or Oval. An application (.APP or .OPA) is mainly
distinguished from an executable file (.IMG or .OPO) by being installable onto the system
screen and having an icon. Applications programs can also be of a variety of types e.g. File
based or not file based, and with or without a user interface.

Memory
As processes are created and destroyed, EPOC16 is free to move code and data segments
around as necessary, without needing any co-operation from active application programs.
Programmers do not need to worry about this, it will have no direct effects on their code or
data segments. EPOC16 makes extensive use of the V30H (8086) segment registers (CS,

Fundamental Concepts 3-15

DS, SS and ES) in its highly efficient manipulation of memory. All programs in the
EPOC16 environment must not normally make use of the segment registers.

This limitation restricts C programmers to exclusive use of the small programming model.
It is also the reason for the exclusive use of the Topspeed C Compiler that generates pure
small model code (which most other compilers do not), that is guaranteed not to use the
segment registers.

All programs are limited to code and data segments of 64K (less 32 bytes for data). In the
EPOC16 environment this is not as limiting as it may first appear. For programs which
require more memory for code or data there are many options and work-arounds that are
discussed in the chapters on specific programming languages.

On 8086 class processors up to 1Mb of memory may be addressed directly. On SIBO
machines, depending on the model, all or part of this address range may be used. The
contents of the internal RAM drive will survive a system reset, most application crashes
and even some system crashes. If a hard reset is performed the system will revert to its
original state before the batteries were inserted, and all data on the internal RAM drive will
be lost. On SIBO systems with more than 512K of RAM, the additional RAM is not
available for use by program code or data segments, it is allocated to internal RAM drive
space. On a system with more than 512K of memory e.g. a 2M byte machine, the whole of
the first 512K of memory will be available for programs and their data. Only when the
upper 1.5 M bytes allocated to RAM disk becomes full will the RAM disk space begin to
encroach on the 512K of program memory.

Inter-process communications (IPCS)
Any process can send a message to another process, as long as the target process has
prepared itself to receive messages by initialising the messaging system provided by
EPOC16. The inter-process communication or messaging system was designed to closely
follow the I/O System (see later) in terms of its range of synchronous and asynchronous
services, i.e. the methods of signalling, use of semaphores and status words. The
similarities of operation enable the inter-mingling of asynchronous I/O and asynchronous
inter-process messaging.

Files
EPOC16 is said to have a MS-DOS compatible file system, what this means in practise is
that it uses the same type of root directory \ sub-directory tree structure, and the same type
of file naming convention i.e. the familiar 8.3 or nnnnnnnn.xxx file naming system. Where
the file name can be up to eight characters, with an optional period separator, plus an
optional file name extension of up to three characters. To accommodate the concepts of
‘Installable file systems’ and ‘Remote file access’ EPOC16 also uses node names to
specify the location of a filing system.

Fundamental Concepts 3-16

File specifications
A full EPOC16 file specification has the form <node><device><dir><name><ext> where:

<node> is the file system node e.g. LOC:: in this case referring to local storage on the
Psion itself.

<device> is the drive or device name e.g. A: for drive A
<dir> is the directory path e.g. \APP\DOCS\
<name> is the file name e.g. DESIGN
<ext> is the file name extension e.g. .TXT

An example of a complete file specification is:

LOC::A:\APP\DOCS\DESIGN.TXT

Getting suitable filenames is kept simple for the user and for programmers by making use
of one of two types of filename specifier, i.e. File Name Selectors and File Name Editors,
see the ‘Files in EPOC16’ chapter.

I/O (input/output) system
A comprehensive input/output (I/O) system is supported by EPOC16, which includes
many hardware devices and some software sub-systems. A programmer must (directly or
indirectly) use the I/O system to do general file handling, or to interact with various
devices and systems within the SIBO environment.

Device drivers
The I/O system is implemented using software interfaces called device drivers, designed to
isolate programmers from the details of any underlying hardware, e.g. to print to the
parallel port a programmer will open a channel to the PAR: device (see note in the
‘External communication’ section earlier). EPOC16 hides the complexity of the process
from the programmer by means of a suitable device driver. Though the exact
implementation of the parallel port hardware may differ across SIBO machines, it will
have no effect on the code of an application program. Differences in SIBO hardware are
accommodated by using different device drivers for different Psion models.

Processes, Memory and Applications 4-1

4 Processes, Memory and
Applications

Processes
A process is a running program, normally created by loading a program image file (also
called an executable) from the system screen, or via an operating system call such as the
PLIB C library call p_execc. After loading the program, the process creator normally
calls p_presume to start the process running.

EPOC16 is a single-user multi-tasking operating system that rapidly switches contexts
between a number of independent processes - creating, at times, the illusion of multiple
processes running in parallel. The maximum number of processes that may exist in a SIBO
system is E_MAX_PROCESSES (i.e. 24 on the Series 3 family).

Process priorities
When there is more than one process that is ready to run, the operating system runs the
process with the highest priority (an unsigned byte value in the range 1 to 255). Lower
priority processes are blocked indefinitely. If there is more than one ready process, with
the same highest priority, they take it in turn to run every four system ticks.

Applications should set their priority in the range E_MIN_PRIORITY (i.e. 64) to
E_MAX_PRIORITY (i.e. 192) inclusive (the operating system reserves the values outside
this range). OPL and OVAL programmers do not normally have to concern themselves
directly with process priorities.

The initial process priority is normally taken from a value stored in the program file or
image (and is generated by the tool used to build the image) but it may subsequently be
changed. (E.g. using the PLIB function p_setpri, p_getpri returns the priority of a
process).

Interactive application processes that are clients of the window server are normally created
at the priority E_PRIORITY_FORE (i.e. 128) and subsequently leave it to the window
server to change their priority depending on whether the process is receiving user input or
not.

4-2 Processes, Memory and Applications

The supervisor runs at priority 248 and the file server at priority 240. A hardware interrupt
runs at the same priority as the process it interrupts. Critical sections of interrupt code are
protected by switching off pre-emption.

Semaphores
Semaphores are indicator flags, created and used by EPOC16 to synchronise co-operating
processes (where, in this context, a process includes a hardware interrupt). There are three
common uses:

• Synchronising access to a shared resource e.g. a storage device.
• Synchronising supplier-consumer relationships e.g. a semaphore associated with a

pool of data in a shared data segment.
• Synchronising the completion of asynchronous requests (see later)

The semaphores used by EPOC16 are counting semaphores, having a signed value that can
be incremented and decremented via operating system calls or library functions. A
semaphore with a negative value implies that a process must wait for the completion of
some other event, such as the freeing of a shared resource. The mechanism by which a
process waits on a semaphore is part of the overall management of process scheduling.

Asynchronous versus synchronous services
Many system services are implemented in two steps:

• Make the service request.
• Wait for the requested operation to complete - i.e. the waiting process is suspended.

In most cases, as well as providing functions for each step, the system provides a function
containing both the above steps. Such combined functions are called ‘synchronous’
because they automatically cause the requesting process to wait until the operation has
completed, i.e. they synchronise it. Functions which queue service requests without
waiting for their completion are called ‘asynchronous’ functions.

Applications use asynchronous requests in situations like the following:

• Make service request A
• Make service request B
• Wait for either of the requested operations to complete - whilst possibly doing some

other processing, whilst waiting for one or more of the service requests to complete.

Processes wait for the completion of asynchronous requests by waiting on their I/O
semaphore, where each request is associated with a status word - a static variable (or value
from the heap) for each request, that is used to indicate the current status of the request
that was made. After making one or more asynchronous requests, a process makes an O/S
call (e.g. PLIB function p_iowait) to wait on the I/O semaphore for one of the requests to
complete. A typical application process spends most of its time waiting on its I/O
semaphore. For example, an interactive application process that is waiting for user input

Processes, Memory and Applications 4-3

from the window server is waiting on the I/O semaphore. When the request completes a
value will be written into the status word associated with the request that has completed.

The I/O semaphore
When a process is created, the system automatically creates an I/O semaphore on its behalf
(a more descriptive name would be the asynchronous request semaphore). Although this
semaphore is used for I/O operations, it is used in general for asynchronous requests of
other types. The I/O semaphores are stored in the private data space of the operating
system, (they can be viewed using the SIBO debugger or the Spy application - discussed
elsewhere).

At any particular moment only one process is actually running. When a re-schedule occurs,
EPOC16 runs the process with the highest priority that is ready to run. If there is only one
ready process at the highest priority it will continue to run indefinitely (and any lower
priority processes, that are ready, will wait indefinitely). Pre-emptive multi-tasking means
that the running process may be replaced at any time - it does not have to make a system
call to yield the processor. A process that becomes ready will immediately run if it has the
highest priority.

Therefore it is possible for a process to run for as long as it wants to, and in practice this
often happens. However, many events can cause a re-schedule in which the current process
is pre-empted, by a higher priority process, without completing its course.

Such events include:

• The fourth consecutive system tick.
• A semaphore being signalled (e.g. as a result of user input) which releases a higher

priority waiting process.
• The expiry of a higher priority process in the timer DELTA queue.
• The current process may, by its own action, cause itself to be pre-empted by:
• Signalling the I/O semaphore of a higher priority process (by calling

p_iosignalbypid or, for example, by sending it an inter-process message)
• Releasing a higher priority process from the SUSPENDED state (e.g. after loading

another process from an image)
• Raising the priority of another process.
• By lowering its’ own priority.

If there is more than one ready process with the highest priority, then each process is made
current for a fixed time period (4 system ticks), after which the operating system makes the
next process of that priority current in what is called a ‘round robin’ fashion. On a SIBO
machine, the system ‘ticks’ 32 times a second.

Because EPOC16 is a single-user system, the current process is comparatively rarely
switched out by the system tick. It is more likely to stop running because an event occurred
that made a higher priority process become ready, or because the current process
voluntarily gave up its ready status to wait for an event to occur.

4-4 Processes, Memory and Applications

In EPOC16, a process consists of at least the following:

• A process control block (described below).
• A data segment, containing the processor stack, static variables and the heap.
• A primary code segment (which is shared if there are one or more other processes of

the same program).
• An I/O semaphore (see later).

On SIBO machines, a process that tries to write to a memory segment other than its own
data segment is halted with panic number 60. See the end of this chapter for an explanation
of panics. (Certain system functions explicitly allow inter-process data transfers - see
‘Inter-Process Communication’ in the ‘Programming Techniques’ chapter.)

A code segment may exist in ROM or it may be loaded into a RAM segment from an
executable file. A process may acquire other resources during its lifetime - for example,
I/O channels or additional code segments. The system automatically releases owned
resources such as memory segments, I/O channels and semaphores when a process
terminates. Server processes are also designed to clean up client resources when a client
process terminates.

System processes
When the operating system initialises itself, it creates a number of system processes, some
of which are essential to the operation of EPOC16. After a system reset on a typical
machine running EPOC16, the system processes (by process name) are:
SYS$NULL.$01 The zero priority null process runs when no other process is ready to

run and switches the machine off (to reduce power consumption)
after a period of inactivity.

SYS$MANG.$02 The supervisor has a higher priority than any other process (248) and
performs many critical system functions including memory segment
moving and resource clean-up when a process terminates.

SYS$FSRV.$03 The file server has the second highest priority (240) and performs all
file related operations, including loading a program image to create a
process. The file server creates the SYS$WSRV process during start
up.

SYS$WSRV.$04 The window server (priority 190) provides shared access to the
screen, keyboard and, if present, a pointing device (e.g. a mouse).
The window server creates the SYS$SHLL process during start up.

SYS$SHLL.$05 The shell process (priority 112) provides a user interface that allows
other processes to be started.

TIME.$06 The time process (priority 144) provides all of the alarm services on
the Series 3, Siena and Workabout systems.

The extension of the process name (e.g. .$01) gives the process number (assigned by the
operating system). The structure of process names is described later in this chapter.

Processes, Memory and Applications 4-5

Operating System functions are available to change a process name, change a process
priority and suspend a process (all of these will fail if they are applied to SYS$NULL,
SYS$MANG and SYS$FSRV).

(On systems with a digitiser or mouse, the window server creates a subsidiary process,
sharing its data segment, to draw the mouse icon. In EPOC16, a subsidiary process that
shares the data segment of its owner is called a ‘task’, and the window server pointer task
has a name such as SYS$WSRV.@05.

The notifier service, p_notify may be provided by the window server itself or it may be
provided by a client of the window server. If a separate notifier exists, it has a process
name such as SYS$NTFY.$07.)

Process IDs and process control block
Each process is identified by its process ID - a positive 16-bit number containing two bit
fields:

The least significant 12 bits is the offset of the process control block in the operating
system data segment (also called the process slot).

The most significant 4 bits contains a value in the range 0-7 (note that a valid process ID is
positive). This value is incremented modulo 8 each time a process slot is re-used so that an
invalid process ID may be rejected if the process being referred to has already terminated.

EPOC16 O/S calls (and C functions such as PLIB p_getpid) are available to return the
process ID of the caller, or in fact the ID of any other process. If a system function is
passed a process ID that is zero or negative, or in which the least significant 12 bits is
outside the range of the process table, the caller is panicked with panic number 7 (invalid
process ID).

Process queues
In EPOC16 a process that is not the current process is either suspended or it is held in one
of three doubly linked queues i.e. READY, SEMAPHORE or DELTA.

Processes in the READY queue are ordered by the process priority. On a re-schedule, the
process at the high priority end of the ready queue runs. If there is more than one ready
process at the highest priority, they take it in turns to run every 4 system ticks.

For each semaphore created by processes in the system there is a SEMAPHORE queue. This
queue may be empty, or may contain one or more processes in a first-in, first-out order. If
the decremented semaphore is negative, the calling process is placed at the end of the
appropriate semaphore queue. When that semaphore is subsequently incremented, the
process at the head of the semaphore queue is either made current (if it has the highest
priority) or it is inserted into the READY queue (after any processes of equal priority).

4-6 Processes, Memory and Applications

The time DELTA queue is a special kind of doubly-linked queue. It stores the time interval,
in system ticks, between timer entries. The single (possibly empty) time DELTA queue
contains both processes and timer device entries. The processes are waiting for a relative
or an absolute time i.e. for a specific time period to elapse or for a particular time and date
to arrive. The timer device entries are associated with processes that have requested an
asynchronous timer. The head of the queue has its DELTA time decremented on every
system tick, and is removed when it reaches zero or negative. If it is a process, it is inserted
into the READY queue. If it is a timer device entry, the associated process I/O semaphore is
signalled.

Process names
A process name has the following form:
<name><ext>

Where the <name> component contains between one and eight characters and the <ext>
component consists of a period, a $ and a two digit number of the form 01, 02, 03 This
number gives the index (starting from 1) of the process slot.

If the process is a task (i.e. a subsidiary process that shares the same data segment), the $ is
replaced by a @ where (except for the @) the process name is otherwise the same as the
creator of the task.

The maximum length of a process name is E_MAX_NAME (i.e. 12), excluding the zero
terminator (buffers normally allow E_MAX_NAME+2 bytes to include the zero terminator,
and to keep following variables on an even address).

When a process is created by loading an image, the process is created with a <name> taken
from the file name of the image. For example, if a program called
LOC::\B:\UTILS\SORT.IMG is loaded twice the process names might be:

SORT.$07
SORT.$11

The <ext> component of a process name guarantees that the process name is unique. Note
that the process data segments are given the same unique names, but that data segment
names are held independently of the process name.

To convert a process name into a process ID, you use an O/S call (or C library function
e.g. PLIB p_pidfind). Since a program cannot anticipate the <ext> component, wild
card characters are allowed in a match string. When there is the prospect of more than one
process of the same <name> (because a program was loaded more than once), another
system service (e.g. PLIB p_pfind) may be used to get the process IDs of all instances.

Processes, Memory and Applications 4-7

Processes and auto-switch-off
By default the Siena and Series 3 family auto-switch-off period is set to 300 seconds,
system services are available to read (sense), set and disable auto-switch-off e.g. when a
mains adapter is connected. It's the zero priority null process (SYS$NULL) which
automatically switches the machine off, after the system has been inactive for the auto-
switch-off period, to reduce power consumption.

Inactivity counter resets
It may be desirable to have a program running continuously that could contain some
regular activity that keeps resetting the inactivity counter of the system. For example, a
continuously running clock program might use a repeatedly re-started short interval
relative timer. Such programs should not be allowed to stop the system from automatically
switching off in the absence of any significant activity. Even if the user was to turn the
computer off explicitly, an alarm ringing at some stage would start the program running
again, and if the user is not at hand to notice the alarm, the result may be flattened batteries
- regardless of the auto-switch-off setting.

Such processes can be marked, via a system service, as not being significant when it comes
to determining what constitutes activity. For example the addition of a call to the PLIB
function p_unmarka (or the EPOC16 O/S call GenMarkNonActive) will mark the
program as apparently inactive and will prevent any activity within the program from
resetting the system inactivity counter, resulting in a much more socially responsible
program.

SYS$NULL does not get to run
Similarly, situations may arise where the null process does not get an opportunity to run if
any other applications are continually running, i.e. the priority of SYS$NULL is lower than
that of any other process. Such applications may have to assume responsibility for
allowing the machine to switch off, by calling an appropriate EPOC16 system service, e.g.
to call the PLIB function p_allowoff from time to time. By doing so, an application
assumes responsibility for performing the auto-switch-off that would otherwise be done by
SYS$NULL, if it had an opportunity to run.

A real-life example of such an event source would be a re-calculation computation in a
spreadsheet, or a reformatting calculation in a word processor. Also a long file operation,
such as building the index of a DBF file, should also be broken up into chunks, so
allowing the application the chance to respond to other event sources in the meantime.
Finally, a game may think indefinitely until such time as it is told to stop.

Programs, which are usually waiting for user input followed by a brief period of
processing, will not normally have to worry about these problems.

4-8 Processes, Memory and Applications

Idle objects
In applications that handle multiple events, for example, by using asynchronous requests
in a fixed order of priority, it is normal practise to put a compute intensive task such as a
spreadsheet re-calculation at a low priority position, to avoid the program from becoming
unresponsive. The calculation task is considered to be an event source in its own right, i.e.
given an opportunity it is always ready to take CPU. Event sources such as this are
sometimes referred to as idle objects. This, slightly confusing term, refers to the fact that it
will only get a chance to run when the application is otherwise idle, since other event
sources are higher in the priority chain. For example, if the application is busy responding
to user key presses or other I/O events, it is not idle, and so any idle object e.g. re-
calculation has no opportunity to run. Again a process such as a re-calculation should not
be allowed to occur as one long uninterrupted task, ideally it should be broken up into
sections, with periodic voluntarily returns to the main event processing loop.

Sub-process priorities
Another side-effect of continuous activity is that other processes of lower priority will be
locked out. So, consider a program that has launched sub-processes, and is itself about to
become compute intensive for an extended period. If it is required that the sub-processes
should continue to have an opportunity to run then it is worth considering lowering the
priority of the main process (e.g. to 0x70 - using the PLIB call p_setpri, where the
default is 0x80).

Idle object or sub-process
For larger or more complex applications where a compute-intensive task will occur, the
decision to assign it to an idle object within the application, or to a sub-process of the main
application has to be made. A number of the following factors may be relevant:

A sub-process will allows a total combined data space greater than 64k.

Fragmentation of the heap is not such a problem for a sub-process since the entire heap
will disappear when the sub-process terminates. Whereas for an idle object any heap
fragmentation it creates affects the main application.

An idle object is much more tightly bound to the main program than is a sub-process, and
communications between the main program and a sub-process have to be more formal. For
example, the main process has to check for the existence of the sub-process that may have
failed due to an error condition.

An idle object has access to the main application’s windows, this is not true for a sub-
process.

Processes, Memory and Applications 4-9

Memory
As processes are created and destroyed, EPOC16 is free to move code and data segments
around as necessary, without needing any co-operation from active application programs.
Programmers do not need to worry about this, it will have no direct effect on their code or
data segments. EPOC16 makes extensive use of the V30H (8086) segment registers (CS,
DS, SS and ES) in its highly efficient manipulation of memory. All programs in the
EPOC16 environment must not normally make use of the segment registers.

This limitation restricts C programmers to exclusive use of the small programming model.
It is also the reason for the exclusive use of the Topspeed C Compiler that generates pure
small model code (which most other compilers do not), that is guaranteed not to use the
segment registers.

For Assembler programmers the use of these segment registers is rarely necessary and is
obviously very risky. They can only be changed safely by disabling interrupts, otherwise
unpredictable and catastrophic effects will result.

OPL and OVAL programmers are largely insulated from detailed considerations of
memory usage, unless the program is large or dynamic memory allocation is necessary
using functions such as ALLOC.

All programs are limited to code and data segments of 64K (less 32 bytes for data). In the
EPOC16 environment this is not as limiting as it may first appear. For programs which
require more memory for code or data there are many options and work-arounds that are
discussed in the chapters on specific programming languages.

On 8086 class processors up to 1Mb of memory may be addressed directly. On SIBO
machines, depending on the model, all or part of this address range may be used, where the
available memory (from address zero to 0xfffff) is allocated as follows:

• 1K bytes of interrupt vectors as required by the 8086 architecture.
• The screen bit-map (small display models).
• Operating System data space.
• Allocated memory segments (including application code segments, process data

segments and device driver segments).
• Unallocated memory
• The internal RAM drive (LOC::M:).
• Environment variables (up to 4K bytes).
• Any portion of the 1Mb that is not used.
• The screen bit-map (large display models).
• The system ROM.

The contents of the internal RAM drive and the environment variables will survive a
system reset (unless a hard reset is performed) and most system crashes. On models with
more than 512K of RAM, the additional RAM is not available for use by program code or
data segments, it is available as extra internal RAM drive space (accessed by memory bank
switching techniques).

4-10 Processes, Memory and Applications

Memory that is dynamically allocated is organised into four main sections:

 Memory segments
 Unallocated memory
 RAM drive (M:)
 Environment variables

The system maintains all of the unallocated memory in a single chunk - between the
allocated memory segments and the memory used by LOC::M:. This means that memory
segments have to be moved as a result of other segments being created, deleted or having
their size changed. Although application code segments and process data segments can and
do move at any time while an application process is running, the operating system
automatically adjusts the 8086 segment registers (CS, DS, SS and ES) to follow any
movement without explicit support from the application - as discussed above.

When a process is created, a process specific data segment is also created. When that
process is running application code, the 8086 DS, SS and ES registers point to the start of
the data segment which can not be greater than 0xffe0 bytes long.

The data segment for each process contains (from low to high address):

• The reserved (magic) static variables (0x40 bytes).
• The floating point emulator data space (0x200 bytes from offset 0x100).
• The processor stack.
• Initialised static variables.
• Un-initialised static variables.
• The process heap.

The size of the processor stack is typically in the range 2K to 8K, but it can be varied (e.g.
in C by using a different start up modules). Note that the stack size includes the 64 bytes of
reserved (magic) static variables and the floating-point emulator data space.

All of the reserved static variables are initialised to zero, except for the word at address
zero, which is initialised to 0xDEAD and is otherwise unused. Despite their name, the un-
initialised static variables are also initialised to zero.

The bytes in the stack area are initialised to 0xff. The number of 0xff bytes from address
0x40 in the process data segment measures the number of spare bytes on the stack,
provided the program is not using the floating point emulator. If the program is using the
floating point emulator, the lowest point the stack should legitimately reach is 0x300.

The process heap contains dynamic data structures that are created and destroyed within
the lifetime of the process. The heap is placed at the end of the process data segment so
that it can be expanded (by expanding the process data segment). Since the data segment is
limited to 0xffe0 bytes, the maximum heap size is somewhat smaller than 64K, depending
on the size of the stack and the space taken by the static variables.

Processes, Memory and Applications 4-11

Magic (or reserved) static variables
The reserved statics (commonly referred to as magic statics) are variables with fixed,
known, addresses, existing in the process data space (i.e. a unique set for each process
which exist during the lifetime of the process) between addresses 0x00 and 0x40. They are
'magic' in the sense that they are accessible from all parts of the process code, even from
dynamic library code (which does not have any data space and therefore may not,
normally, access statics).

Some of these variables are used by EPOC16 to manage the process, others are used by
system code, such as the window server and the graphics user interface libraries. The
specific usage differs depending on the model of SIBO machine.

The remaining reserved statics are freely available for use by the process code. A common
use is to provide access from dynamic library code to application-specific data, without the
need for it to be passed in function parameters. These locations can also be used by an
OPL program as temporary storage e.g. for passing back additional values from function
calls. A full list of the reserved statics is given in Appendix.

0x22
DatProcessNamePtr

System user interface library code assumes that this location
contains either NULL or a pointer to a zero terminated string
that the application wishes to be displayed as its name.

0x24 DatCommandPtr This location contains a pointer, set up by the operating
system. It points to an alloc cell that contains the full path
name, as a zero terminated string, of the .IMG or .APP file
from which the process was loaded. Immediately following
the zero terminator, the alloc cell contains leading byte
counted initial command line data.

0x28 DatApp1
0x2a DatApp2
0x2c DatApp3
0x2e DatApp4
0x30 DatApp5
0x32 DatApp6
0x34 DatApp7

These 7 ‘word’ size memory locations exist for each program
and are free for application code to use, i.e. 14 bytes in total.
They are accessible from anywhere in the applications code
(including a DYL library which otherwise cannot have static
data).

0x38 DatGate System user interface library code may assume that this
location contains an object handle. This is a handle to the
Gate Object and can be use by OPL programs to set the Help
file name, for access to the printer set up dialogs etc. see the
OPL Programming Chapter for more details.

0x3a DatLocked System user interface library code may assume that this
location contains a flag indicating whether the application is
capable of receiving termination or switch files messages.

0x3c
DatStatusNamePtr

System user interface library code may assume that this
location contains a pointer to a zero terminated string that
will appear in a status window.

0x3e
DatUsedPathNamePtr

System user interface library code may assume that this
location contains a pointer to a fully parsed file name.

4-12 Processes, Memory and Applications

The values of the EPOC16 reserved statics DatProcessNamePtr, DatLocked,
DatStatusNamePtr, and DatUsedPathNamePtr all have special significance for Siena
and Series 3 applications. The values of these variables for different applications are read
at various times by the system screen and also by the window server.

An application that fails to write suitable data to these statics may find that:

• An incorrect name is displayed in any status window shown in the application
• Instances of the application are shown in the wrong file list in the system screen
• Shut down or switch files messages arrive at inopportune moments from the system

screen (see below for more on these messages)
• Assigning an application button to the application in the system screen has no effect.

In general, applications should write to these reserved statics:

• On initialisation (after having analysed the contents of their command line)
• Whenever a new file is opened
• Whenever the application is about to go ‘busy’ over an extended period of time.

There are routines in the HWIF and HWIM libraries, and functions in OVAL and OPL
that assist with keeping these reserved statics up to date.

For more detail see 'Application command lines' later in this chapter.

(While debugging an application written in C using the SIBO Debugger, the values of
reserved statics can be determined by using the ‘Magic Statics’ menu command.)

Re-entrant processes and functions
For efficient memory usage, system code and library function code is re-entrant, i.e. only
one copy of the code is loaded, but more than one process may (apparently) be using it
concurrently. Each separate program/process has its own unique data segment, but they all
may share the same system or function code segment. The multi-tasking nature of EPOC16
gives the illusion of several processes running at the same time, in fact only one process
will actually be using the code at any particular moment in time.

Shared code segments
When a second or subsequent ‘copy’ of the same program is loaded, the existing code
segment (which has segment name <name>.$SC) is shared and is not loaded again from
the program image file (however, a new set of initialised static data values are loaded into
a new process data segment for the new ‘copy’ of the program). The system checks that the
existing code segment matches the code in the image file. It compares the checksum of the
process control block with the checksum stored in the image header (the checksum in the
image header is also used to ensure the integrity of the code when it is first loaded). If the
checksums do not match, the load fails. It follows that you cannot run different programs
with the same name (or different versions of the same program - i.e. the version number
that is stored in the executable file) at the same time.

Processes, Memory and Applications 4-13

Environment variables
The system allocates up to 4K bytes for environment variables at the high address end of
the system RAM. Environment variables are available to all processes and can be created,
deleted, read and set via a number of system services. Environment variables do have a
number of valuable attributes but they are a scarce resource and should be used sparingly.

They exist beyond the lifetime of a process and so maybe useful for saving and restoring
program settings between separate instances of the program. Hence it is not necessary to
use a file if only a small amount of information is to be saved when a program is closed
down. They are available to any process and can therefore be used as a simple mechanism
for passing a limited amount of information between separate processes.

An environment variable consists of:

a name of up to E_MAX_ENV_SIZE (i.e. 16) bytes containing any byte except '*'
or '?'

a value of up to P_ENVMAX-1 (i.e 256) bytes with no restriction on the content

Each environment variable is stored as two successive leading byte count strings (BCS).

Types of environment variable
There are two types of environment variable:

Those with names and values that are both zero terminated strings (ZTSs) i.e. C type
strings.

Those whose name or value are other than a ZTS, i.e. contain binary data.

There are also two sets of system service routines for manipulating them - see the
appropriate language chapters for examples.

Environment variables can be a powerful programming resource whilst being, at the same
time, potentially troublesome. They consume space in a special RAM segment devoted to
them - the more environment variables are created (and the larger these are), the greater the
chance becomes of other applications failing to work properly, e.g. by not being able to
create environment variables as required. Excessive use of environment variables may
generate an out of memory condition, either because their own specific area has been
exhausted or because the system in general has run out. A file should be used instead if an
application wishes to save a large amount of data between invocations.

Naming of environment variables
Name conflicts are possible - data stored in an environment variable by one application
may get obliterated by another application, storing different data to an identically named
variable.

Psion have reserved the use of the '$' character for use in the names of environment
variables that are created and manipulated by Psion system software. All external

4-14 Processes, Memory and Applications

applications should completely avoid using environment variables with '$' characters in
their names - unless they first secure the agreement of Psion. Environment variables can of
course have ‘simple’ names, such as ‘table’ and ‘list’, but names such as these are
likely to increase the chance of name clashes. It is probably better to use more cryptic
names e.g. perhaps based on a derivation of the application name.

System environment variables
A list of all the main Psion system and application environment variables and their
functions is given in the Appendix.

Applications
Executable files exist in several forms: .OPO and .OPA from OPL, .IMG from C or
Assembler and .APP from C or OVAL. An application (.APP or .OPA) is mainly
distinguished from an executable file (.IMG or .OPO) by: being installable onto the system
screen and by having an icon.

Applications programs can also be of a variety of types e.g. File based or not file based,
and with or without a user interface. All of the various types, the methods by which they
communicate with the system screen and the methods of execution are discussed next. This
section is rather long and a little complicated but it is an important one to master.

Application types
There are five types of OPAs and APPs:

OPA
Type

APP
Type

Example
Application

Behaviour

0 0 Calc Does not use files i.e. will have no file list when
installed in the system screen - instead there will be
only one entry, giving the Public Name of the
application. Type 0 applications can have only one
copy running at any one time.

1

n/a Similar to type 0 but uses only one file with the same
name as the OPA.

2 2 World More than one file may exist, but only one may be in
use (in bold) at one time. Used to restrict a file based
application such that only one copy can run at any
one time. Selecting a new file from the list under the
icon will send a switch file message to the program
which should close the current file and open the new
one.

Processes, Memory and Applications 4-15

3 3 Agenda, Data,
Sheet, Word
etc.

More than one file and any number may be open (in
bold) at once i.e. If a new file is selected from the list
one of the running instances should change to this
file. More than one instance of the program may be
created (Shift Enter) each with a unique file.

4

4

RunOpl Many files can be used, and any number may be in
use at once. A new instance of the application is run
each time a new file is selected. A type of 4 means
that the application will have a file list in the system
screen, but will never be sent Switch File
instructions: however, it should read the command
line on its start up.

 5

RunImg The application is a pure file list application i.e. not a
real application at all, but just an icon to group
together various applications or utility programs.

Notes:
Initially, the Public Name (see below) appears under the icon. For a file based application,
highlighting this name and pressing enter will use a file of this name (if no file exists, the
program has the responsibility to create it).

With types 0 - 2 only one instance of the program can be running at any time, whereas
types 3 and 4 allow more than one file to be in used at once, but a separate instance of the
program will be run for each file.

Types 2, 3 and 4 allow you to create lists of files below the icon, either from within the
program itself e.g. by selecting an option from a file menu, or possibly by using the new
file option from the system screen.

A user may stop a running application by selecting an emboldened file from the system
screen icon list and pressing the delete key. A shut down message (see later) will be sent to
the application which should detect the event, save and close any files in use, then exit.

An application's behaviour may be further controlled by adding in additional modifier
values to the type number. The type modifiers are described below.

OPL applications
A simple OPL program will generate a corresponding .OPO file when it is translated. On
SIBO systems, .OPO files have to be located in an OPO directory to ensure that they
appear on the system screen, under the bubble shaped RunOPL icon.

If the .OPO file is not located in an .OPO directory then from the RunOPL icon:
• Press TAB while the highlight is under the RunOPL icon
• Navigate with the file selector until the program file is selected
• Press ENTER to start the selected program.

Sophisticated OPO programs can be created, but they cannot be installed on the system
screen, will not receive system messages and do not have icons.

4-16 Processes, Memory and Applications

An OPL Application has an APP...ENDA header, and when translated will generate a
.OPA file containing an embedded icon, plus other essential information to allow it to be
installed in the system screen. OPAs are almost exactly equivalent to APP files produced
in C or by OVAL (APP files are discussed later).

Non trivial OPL programs, intended for distribution, would normally be of the OPA type.
However, OPL applications impose some additional responsibilities on the program
designer with respect to the handling of events and system messages - see the ‘OPL16
Techniques’ chapter for more details.

An OPL16 application source differs from a OPO source file in that it begins with a header
of the form:
APP Example
 TYPE 3
 PATH “\EXAMPLE”
 EXT “EXA”
 ICON “\OPD\EXAMPLE.PIC”
ENDA

Where:
APP gives the Public Name of the application, TYPE specifies the OPA type (see above),
PATH gives any default file path, EXT specifies the default filename extension, and ICON
supplies the name and location of a suitable icon file. Once translated, the icon .PIC file is
embedded into the .OPA file and so does not have to be supplied separately.

In OPL16, the behaviour of an application can be further modified by adding additional
values to the type number, as follows:

OPA Type number, plus Effect
$1000 Forces the use of a 48x48 pixel, black and grey icon.
$8000 Disables the ‘New file’ option from the system screen.
$4000 Stops the system screen from terminating the OPA – do

not use this unless the reason is compelling.
$100 Allows the system screen to terminate the OPA, without

sending it a ‘shutdown message’, i.e. ‘X’ (see ‘Command
line processing’ later).

Adding in the additional values to the type number must not be done in the form of an
expression, the values be a constant. For example in the PPCOPL16 application the OPA
type is given as $1002, to specify a file based application, with only one file in use at a
time and to use the 48x48 black and grey icon.

Note:
OPL32 application headers differ from those in OPL16 and the differences are detailed in
the ‘OPL32 Techniques’ chapter.

Processes, Memory and Applications 4-17

C and Assembler programs - IMG and APPs
The system screen usually expects to install .APP files or .OPA files, it will also list all of
the .IMG programs under the RunImg icon, provided that the .IMG executable files are
located in a top level \IMG directory. You may need to install the RunImg icon, using
Psion J, from the system screen.

If the .IMG file is not located in an .IMG directory then from the RunImg icon:
• Press TAB while the highlight is under the RunImg icon
• Navigate with the file selector until the program file is selected
• Press ENTER to start the selected program.

However, a program run via RunImg will receive no special command line from the
system screen, nor will it receive any shut down or switch file messages from the system
screen (these messages are discussed later). IMG files do not have an icon and so cannot
be installed on the system screen. Applications run via RunImg display an empty icon in
any Status Window used.

Add files
By convention an .APP file for a C application contains one or more so-called ‘add-files’
embedded within it, in addition to the core .IMG file itself. Add files include:

A .PIC file providing the icon for the application (.PIC file or a .FON file).

A .RSC or .RZC file providing the resource file for the application.

A .SHD file providing the shell data for the application.

Any add-files would normally be added into the .IMG file automatically during the full
‘make’ process.

Once built, the icon .PIC file is embedded into the .APP file and does not need to be
supplied as a separate file. To be installed on the system screen a .APP file must contain a
suitable icon.

Four add file slots are available, and in most cases at least one add-file slot will be free for
use for an application specific file. Building additional files into the .APP file diminishes
the chance of a user copying the .APP file from one SSD to another and neglecting to copy
a vital associated file at the same time. For example, a program that uses special fonts
many bind the special font file into the application file.

The .SHD file is a binary file that contains the Public Name of the application, the
application’s ‘type’ number and modifiers; for file-based applications it can specify any
default file path, default file name extension and the name of a suitable icon file.

4-18 Processes, Memory and Applications

The application's behaviour may be further modified, by adding one or more of the
following values to the ‘type’ number:

$8000 Prevents switch-file messages of the Create sort being sent to the
application i.e. ‘New file’ option from the system screen.

$4000 Prevents the application being sent shutdown messages - this will also
prevent the application being Killed from the system screen – do not use
this unless the reason is compelling. (The Spy application released as part
of the SDK will terminate such an application)

$2000 Indicates that the application's .MS file contains public names for more
than one different language version.

$1000 Indicates that the .PIC file contains a 48 by 48 Series 3a/c icon (preceded
by a 24 by 24 icon if the application is to run on the Series 3 as well as
the Series 3a/c). The Series 3 does not recognise this flag and will simply
read the 24 by 24 icon if present.

$100 Allows the system screen to terminate the APP, without sending it
a ‘shutdown message’. So, for example, pressing DELETE will act as
‘Kill application’. The Series 3 does not recognise this flag.

$80 On selecting "Create new list" from the System Screen, the resulting
dialog box will contain an extra line, for specifying Text editor or Word
processor type. The Series 3 does not recognise this flag.

The .SHD file is a binary file made from a .MS text file using the makeshd.exe utility
program provided in the C SDK.

The first line in a .MS file has general form:

<Name>[<.EXT>]

With the extension .EXT only being present for file-based applications. In that case, .EXT
defines the default extension for the application. In all cases, Name is the so-called public
name of the application. This must be a valid file name, that is, it must start with a letter
and not exceed eight characters.

The second line in a .MS file gives the default directory for an application. This can be left
blank for non file-based applications. For example, the .MS file for the built-in Time
application could be:
Time

8000

With the second line left blank.

The third line in a .MS file gives the ‘type’ number of the application.

An .MS file can have fourth, fifth, sixth ... lines, but only if $2000 has been added to the
application type, so that the application has multi-lingual shell data.

Processes, Memory and Applications 4-19

Suppose the Data application were to be translated into French, German, and Italian, and
that its public names in these languages were to be Fiche, Daten, and Archivi, respectively.
In that case, an appropriate .MS file would be as follows:

Data.DBF
\DAT\
2003
01Data
02Fiche
03Daten
05Archivi

A final step is to rename the .IMG file containing the add-files to have a .APP file name
extension.

OVAL applications
OVAL generates fully-fledged applications that have icons and are installed on to the
system screen. They can only be run on systems that have the OVAL run-time interpreter
and support files available in ROM. All of the properties of an OVAL application,
including the application type, the icon and other .PIC files, resource files etc. are
specified as options and file names etc. within the OVAL integrated development
environment. When the OVAL application is generated all of the options specified are
included as part of the .APP file building process.

Public name
The significance of the Public Name of an application is as follows:

This is the name by which the system screen refers to the application, e.g. when allowing
an application button to be assigned to the application.

This name will be displayed in the file list for the application, in the system screen, when
files have not yet been created and the list would otherwise be empty.

The Public Name of an application must be a valid 8.3 format filename, i.e.
FILENAME.EXT with no embedded spaces.

Default extension
The significance of the default extension for a file-based application is as follows:

Files will be shown in the file list for the application in the system screen only if their
extension matches the default (with the exception that files are always shown - in bold - if
they are currently the open file of an application)

The system screen will pass the specified default extension to the application as part of its
command line (see later), when it is started.

4-20 Processes, Memory and Applications

Typically, applications will use filename selectors in dialogs which hide extensions
matching the default (e.g. showing Example rather than Example.exa), and may even omit
other files from the initial list presented.

Default path
Files will be shown in the file list (under the applications icon) in the system screen only if
they are located in a directory whose name exactly matches the default path. An exception
is that files are always shown (in bold) if they are currently the file that an application has
open (e.g the user may have opened a file located in a directory not matching the default
path). Default paths for applications are usually top level, as in \EXA. However, they can
equally well be sub-directories, as in \EXA\PRIVATE, with the limitation that the total
length cannot exceed 20 characters.

Icons
Application icons are bitmap files which have been attached to the executable file, such as
Example.pic used in the OPA header above, and may be produced by a variety of means:

• Using one of the many Shareware or Freeware programs available such as Psicon or
Draw284 included on the disks.

• Using the Iconed or Iconeda applications that are part of the Psion C SDK.
• Using the window server tool wspcx.exe on the .PCX output of a PC program such as

Windows Paintbrush.

Icons are covered in more depth in the ‘User Interface’ chapter, information on the format
of .PIC files is discussed in the ‘Utilities and Support Files’ chapter.

Help and other program resources
All program text, menu strings, help text and other constant data can be assembled into a
program resource script file (.RSS) that is then processed into a 'compiled' (.RSC) or
'compiled and compressed' (.RZC) resource format. Applications can then load text and
other information from the resource file as needed, using a unique identifier allocated to
each piece of text or data item. A considerable number of advantages arise out of using
resource files, including saving memory and simplifying the production of multi lingual
applications. Implementing program help, and considerations for multi-lingual
applications are covered in more detail in the ‘User Interface’ chapter. Producing and
using resource files is described in the ‘Programming Techniques’ chapter.

Processes, Memory and Applications 4-21

Aliasing applications
Some file-based applications may acquire very large file lists. It may be desirable to
separate a long file list into two or more separate lists, for example using the Word
application you may wish to have all letters in one file list, all reports in another etc.
Separate file lists for the same application could be distinguished on the system screen by
having distinct icons, and different application buttons could be used to cycle round
running instances of these tasks.

Going further, it may be desirable for the behaviour of an application to alter, depending
on which type of file is open. For example, the behaviour of the built-in text editor is
different for .WRD files (when the application is seen as Word) from .OPL files (when the
application is seen as the OPL programming editor). Jotter, the note taking application on
the S3c and Siena is in fact just an alias of the Data application.

The concept of aliasing an application is designed to meet these requirements. For each
new file list required, an alias file (.ALS file) should be installed in the system screen. In
practice the user can do this on the Series 3a/c or Siena using the ‘Create new list’ item
from the ‘Special’ menu. Broadly speaking, the contents of a .ALS file match those of a
shell data file (or .SHD file): the Public Name, default extension, and default directory are
all defined, as well as the application type number. However, the .ALS file goes beyond
the .SHD file in that it also specifies:

• The name of the application that is being aliased
• Optionally, some alias information that the system screen should pass to the

application when it is run, via the command line, to configure its behaviour in some
special way.

Active and passive aliasing
In theory, all applications are capable of being aliased, without them needing to make any
specific provision for this possibility. This is known as passive aliasing.

Other applications pay explicit attention to any alias information that may be passed to
them on their command lines, and adjust their behaviour according to the contents of this
information. This is known as active aliasing. An example of active aliasing is that of the
built-in text editor, as described next. (Jotter on the Series 3c and Siena is an alias of the
Data application.)

Any other program that supports active aliasing is free to interpret alias information passed
to it in any way that it wishes. There is no obligation to mimic the detailed rules obeyed by
the text editor. Parts of the mechanism of aliasing rely on the application paying suitable
attention to the details of the command line passed to it. Failure to do this will diminish
the effect. Thus even passive aliasing relies on some co-operation from the application
being aliased. This is just one reason why all serious applications should analyse the
command line passed to them, as part of their initialisation procedures. There are routines
in both the HWIF library, the HWIM.DYL , OVAL and in OPL to assist with analysing the
command line.

4-22 Processes, Memory and Applications

Application command lines
Considering the nature of the user interface presented by the system screen the concept of
a command line may seem inappropriate at first. However applications launched from the
system screen do in fact receive a command line when they are started up, and
subsequently may receive messages and new command line information during their
lifetime.

The command line communicates the following information to an application that is about
to start:

• The public name of the application.
• The default extension for any files used.
• The full path name of any file to open.
• If this file should be opened or created anew.
• Any alias information specified in an alias file.
• Exceptionally, whether the application is to connect to the window server in the

background.

When a program starts, its command line is placed in an allocated cell within the heap of
the application, the address of this cell is written to the EPOC16 reserved static
DatCommandPtr.

The command line for any EPOC16 program always starts with a zero-terminated string
containing the full path name of the process being run, the byte immediately after this
gives the length of any following data. Ordinarily, when referring to ‘the command line’, it
is this following data that you should have in mind.

For example, suppose the user presses TAB inside the OPL edit file list in the system
screen, navigates using the file selector to loc::m:\dat\data.dbf, and then presses ENTER.
The full command line passed to the chosen application (actually an alias of Word) is as
follows:
ROM::WORD.APP<0><29>OProgram<0>.OPL OROPO<0>LOC::M:\DAT\DATA.DBF<0>

The <29> immediately following the zero at the end of the first zero terminated string
indicates that the remainder of the command line is 0x29 (41 decimal) bytes long - as is
indeed the case when counting all bytes including the terminating zeros, space and point
characters but not < or >.

The next byte after this is the command byte:

'O' used for a file-based application to indicate that a named file is to be opened

'C' used for a file-based application to indicate that a named file is to be created

'D' means the application is to connect to the window server in background.

'Z' is used for starting an attached application.

(A command byte of 'D' typically arises for the built-in applications. When it does arise,
it is handled automatically by code in HWIM.DYL, which silently translates it into one of

Processes, Memory and Applications 4-23

the other two cases. A command byte of 'Z' prevents the HWIM application manager
from parsing the following command line data. Commands ‘Z’ and ‘D’ are not considered
again)

After the command byte, there is a zero-terminated string giving the Public Name of the
application, followed by another zero-terminated string, containing both the default
extension and (if present) the alias information. The alias information, if present, is
separated from the default extension by a space. Finally another zero-terminated string
gives the full path name of the file to open or create.

In the above example:

• The command byte of the application is 'O’
• The Public Name of the application is ‘Program’.
• The default extension is ‘.OPL’
• The alias information is ‘OROPO’
• The name of the file to open is ‘LOC::M:\DAT\DATA.DBF’.

In summary, the format of the command line of an application is as follows:
<cmdbyte><PName><0>[<defextn>[<space><aliasinfo>]<0><fullpath><0>]

There are routines in the HWIF and HWIM libraries, and functions in OVAL and OPL
that assist with analysing the command line.

From command line to magic (reserved) statics
DatProcessNamePtr (0x22)

This static is read by the system screen to determine which file lists a running application
(in bold) should be placed into. It is also read by the window server when deciding which
action to take when an application button is pressed. Finally, it is read by the system screen
in response to any ‘Quit application’ menu commands, to determine how to implement this
request (i.e. how much co-operation the system screen might expect from the application).

System screen file lists
The file lists in the system screen are built as follows:

For each list, the set of all eligible files is compiled; these will all be displayed in normal
type. The file list is found for each running application by reading the value of
DatProcessNamePtr for each active application. The name of any file that the
application currently has open is found by reading the value of DatUsedPathNamePtr
and possibly also reading the value of DatProcessNamePtr. If this name matches any
entry in the file list, that entry is removed (so that it is no longer displayed) and the name
of the open file is added to the list, in bold.

Obviously, the lists will be misleading if the running application is assigned to the wrong
list. Assigning a running application to a particular file list is straightforward. The
preferred Public Name of the application is read from DatProcessNamePtr, if this

4-24 Processes, Memory and Applications

matches the Public Name of any existing file list, the application is assigned to that list
otherwise, the application is assigned to the RunImg list.

To prevent the display of private system processes within the system screen file lists,
entries starting with Sys$ are never displayed in a file list, similarly the name Link is never
displayed in the RunImg list. Files with the ‘hidden’ attribute set are never displayed in a
system screen file list - unless the file is open within an application (in which case it will
be displayed in bold). To check for the existence of hidden files or files starting with Sys$
in a directory, the TAB key should be used to enter ‘directory’ mode of the system screen.
It is also possible to task to an application whose open file starts with Sys$ by repeatedly
pressing the SHIFT+SYSTEM key combination, which tasks round all running applications
(that are clients of the window server).

Assigning application buttons
Suppose that the user has installed the Spy application (see later), and has assigned the
application button CONTROL+WORD to it. The system screen updates a data structure that
associates each of the possible application buttons to Public Names of applications (e.g. 14
buttons on the Series 3). The address of this data structure, within the system screen data
space, is known to the window server (in fact it is kept at DatApp1 in the window servers
own data segment).

When the user presses CONTROL+WORD the following happens:

The window server consults this data structure to determine the Public Name that is
currently associated with this application button.

It next checks whether the Public Name of the current foreground application matches
Spy, reading the Public Name from DatProcessNamePtr. If so, this application is sent a
special key-press event, with key code value equal to W_KEY_MODE (as defined in
WSKEYS.H) - unless the SHIFT modifier is also held down, in which case the algorithm
continues as follows.

The clients of the window server are scanned in current task order, to see whether any can
be found with the required Public Name, if one is found it is made the foreground task.
Failing this a message is sent to the system screen to position the file list to the application
that has the given Public Name. If no such file list exists, the system screen beeps and
gives a suitable error message.

The main point is that, the Public Name of the application has to be written to
DatProcessNamePtr.

Incidentally, it is now clear why pressing the CONTROL+SYSTEM key (assigned to
RunImg), or any other application button assigned to a pure file list application, often fails
to have the desired effect (of bringing to foreground a running application listed in the
relevant file list). The point is that these applications are generally run without any
command line being passed to them, so they cannot set up a suitable value at
DatProcessNamePtr merely by analysing their command lines.

Processes, Memory and Applications 4-25

Also note that the assigned buttons differ in one aspect of their behaviour, depending on
the machine used. Consider an application, the built-in database for example, that is
currently running in the foreground. On the Series 3, pressing the Data button would
change the application from search mode into change mode, and on a second press, back
into search mode. On the Series 3a pressing the Data button has no effect when there is
currently only one copy of the application running. However when multiple copies are
running, then pressing the Data button has the effect of sequentially bringing each copy
into foreground - simultaneously holding down the shift key reverses the order of bringing
into foreground.

DatUsedPathNamePtr (0x3e)
The EPOC16 reserved static DatUsedPathNamePtr is read solely by the system screen,
which assumes that if it is non-null for an application, DatUsedPathNamePtr points to a
full path specification of the file currently open in the application. As described above in
the section on DatProcessNamePtr, these filenames are used when generating the file
lists in the system screen:

• Any open file matching an entry in the non-bold section of the file list replaces that
entry

• The filename is parsed/rearranged, e.g. from the form LOC::A:\WRD\SHOPPING.WRD
into Shopping[A].

In case DatUsedPathNamePtr is null, the value of the string at DatProcessNamePtr (if
any) is used instead: failing that, the process name (as returned by the PLIB function call
p_pname) is used.

Initially, the name of the open file is part of the command line. However, when this has to
be changed - either as a result of an Open or Save as command inside the application, or in
response to a switch file request from the system screen - a new buffer has to be used for
this purpose. (The command line buffer is sized to precisely the right length needed for
the initial file.)

Typically, file-based applications will maintain a permanent buffer (or string), of length
P_FNAMESIZE (128 bytes), to store any change in the name of the file open. Once the
new name has been copied into this buffer, a function call, such as the HWIF function
hSetUpStatusNames or HWIM or AM_NEW_FILENAME method or the OPL SETNAME
command, should be used to adjust all EPOC16 statics as appropriate, including
DatUsedPathNamePtr.

DatStatusNamePtr (0x3c)
The EPOC16 reserved static DatStatusNamePtr is used to determine which text string
should be displayed as the name of the application in any Status Window shown for that
application.

If non-zero, this is assumed to point to a string giving the text to use, with the text being
clipped at the first dot encountered, and in any case after eight characters. The text is also
converted into standard capitalised form. Thus if DatStatusNamePtr points to
"DIARY.AGN", the text ‘Diary’ will be displayed in the Status Window. On the Siena only
four characters of the application name can be displayed because of the reduced size of the
status window.

4-26 Processes, Memory and Applications

The rules for what text to display when DatStatusNamePtr is null are the same as those
employed when DatUsedPathNamePtr is null (see above).

DatLocked (0x3a)
The user may attempt to terminate an application, using the ‘Exit application’ command in
the system screen or by pressing ‘Delete’ when the cursor is over the name in bold. Or the
user may try to change the current application file, by pressing ‘Enter’ on another entry in
the file list for that application.

In either case, the system screen checks the value of the EPOC16 reserved static
DatLocked for that application. If this is non-zero, a message ‘Application is busy’ is
displayed, and the user's request is refused.

Applications may enter a state in which they are unable to respond to such requests from
the system screen. In such case the application should explicitly set DatLocked to TRUE;
OPL programmers should use the LOCK keyword. It is good programming practice to set
DatLocked back to FALSE again as soon as possible afterwards; in OPL by using UNLOCK.

As mentioned earlier in this chapter, an application should normally analyse its command
line on start-up, and should write various values from this command line into EPOC16
reserved statics as a result.

Applications that disregard their command lines
Simple applications - especially those that are not file based - have no need to pay any
attention to the command line passed to them by the system screen. In this case, the
various relevant EPOC16 statics are left at their default (zero) values. This fact is picked
up by the system screen and by other parts of the operating system, with the following
results:

• The name displayed in any status window and in the file list in the system screen is
just that of the application .APP or .OPA file

• If the user requests the application to be shut down, from the system screen, the
application is shut down by EPOC16, without the application itself being informed of
this fact (just as if the user had selected the 'Kill' option in the system screen).

If an application needs to do its own clean up processing in response to a shut down
request issued by the user in the system screen, it must analyse its command line during its
initialisation, this is true even if the application is not file-based.

One final drawback of an application not processing its command line is that users will be
unable to assign application buttons with any effect on that application. Suppose a user
assigns control+world to a version of the Spy application, for example, that fails to
write anything suitable to DatProcessNamePtr. If the user subsequently presses the key
combination control+world, the Spy application will fail to be brought into foreground
- thus spoiling the whole purpose of assigning the application button.

Processes, Memory and Applications 4-27

Messages from the system screen

Shut down messages
Applications can receive shut down messages from the system screen, as an instruction to
quit and close down tidily, saving any changes to file as required. These messages can
arise when the user presses DELETE after highlighting a running task in the system screen.
However, as mentioned above, if the application has set its DatLocked to TRUE, the
system screen instead presents an ‘Application is busy’ message.

Incidentally, applications are sent shut down messages only if they have a non-zero value
of DatProcessNamePtr. The system screen assumes that any application that has left this
EPOC16 reserved static at its default (zero) value is unlikely to be prepared to respond to
shut down messages. In that case, the system screen instead calls p_pterminate to
terminate the application.

Finally, note that any application which has $4000 included in its application type number
will never be sent a shut down message from the system screen; instead, the system screen
will display the message ‘Cannot quit application’ - see the appropriate language chapter.

Switch files messages
Applications can receive switch files messages from the system screen, as an instruction to
close their existing open file, and to open or create another one. These messages can arise
when the user presses ENTER after highlighting a file within that application's file list in
the system screen.

Receiving system screen messages
There are two main aspects to applications receiving a shut down or switch files message
from the system screen:

• The application must include an event handling mechanism to receive notification that
a message from the system screen has been sent to it.

• The application calls a system function (e.g. the window server function
wGetCommand, or the OPL c$=CMD$(x%) function, or the OVAL Command$
functions) to determine the contents of the message.

In turn, the initial notification can be received in either of two ways, depending on whether
the application is receiving events from the window server directly (by calling wGetEvent
or a variant), or as ‘extended key presses’ via the console device (as occurs for example in
HWIF and OPL programs). In either case, the initial event prompts the application to call
wGetCommand, to obtain the so-called ‘new command line’ giving more details about the
event.

4-28 Processes, Memory and Applications

New command lines from the system screen
The parameter passed to wGetCommand (see above) must be the address of a buffer having
at least P_FNAMESIZE (128) bytes. The new command line is written into this buffer.

The first byte of the new command line will be one of 'X', 'O', or 'C':

'X' means the command is a shut down message

'O' means the command is a Switch files message, with a specified file to be opened

'C' means the command is a Switch files message, with a specified file to be created.

In the case of Switch files messages, the remainder of the new command line gives the full
path name of the file to open or create.

For OPL programmers one of the aforementioned c$=CMD$(x%) variants may be used to
get the appropriate components of new command line. OVAL programmers use the
Command$ functions.

At the time of writing, the command byte is restricted to one of the three values given
above. It is possible, however, that some future application might send messages to other
applications having different command bytes. In order to be future proof, an application
should test explicitly for all expected values of the command byte and should just ignore
values other than those expected i.e. should not generate an error on receipt of an
unexpected value.

(Note: A new option ‘U’ is now available on Series 5 – see GETCMD$ in the ‘OPL
Reference’ chapter).

Client server services
The client - server concept is used quite extensively within EPOC16. For example a
‘server’ process called the window server (SYS$WSRV) provides its ‘client’ processes
with shared access to the screen, keyboard and any other user interface devices (e.g.
pointing device) that may be present. Using a ‘server’ process to share a common resource
between a number of clients is a common technique in multi-tasking environments.

The EPOC16 operating system has a number of design features which support client server
relationships e.g. Inter-process messaging in EPOC16 is designed for the efficient
implementation of client-server relationships where a particular server may have multiple
clients.

EPOC16 starts up with three multi-client servers:

• The supervisor, which performs critical system functions and provides shared access
to memory via the memory segment allocator.

• The file server, that provides shared access to file storage devices.
• The window server, that provides shared access to the screen, keyboard and, if

present, a pointing device.

Processes, Memory and Applications 4-29

A server may also be a client of another server. For example, the window server is a client
of the file server (since, for example, it loads bitmap files) and all processes are implicitly
clients of the Supervisor.

In order that the relative priorities of client processes have their intended effect, a multi-
client server process should run at a higher priority than any of its clients. A client's
priority is effectively lowered to that of the server while waiting for completion of a
service provided by a low priority server.

Inter-process communications (IPCS)
Any process can send a message to another process, as long as the target process has
prepared itself to receive messages by initialising the messaging system provided by
EPOC16. The inter-process communication or messaging system was designed to closely
follow the I/O System (see later) in terms of its range of synchronous and asynchronous
services, i.e. the methods of signalling, use of semaphores and status words. The
similarities of operation enable the inter-mingling of asynchronous I/O and asynchronous
inter-process messaging.

In the descriptions of object oriented programming in this book and in documentation
from Psion, the concept of sending messages to objects is often referred to, this should not
be confused with inter-process messaging. In OOP terminology, sending a message to an
object just refers to a convention for calling a specific C function that belongs to a
particular class of object.

Servers and clients communicate via inter-process messages, and a range of synchronous
and asynchronous system services are available to facilitate the receipt and sending of such
messages (e.g. via the PLIB function library or as EPOC16 O/S calls). A server process,
for example, that wishes to receive messages from client processes would make
appropriate system calls to initiate the message system. A server process is usually passive
and waits to receive messages from clients, it would not normally initiate a transaction
itself by sending a message to a client.

Link paste
An example of another very specific use of inter-process messaging is the ‘Link Paste’ or
‘Bring’ capabilities of many of the built-in applications. Data that is highlighted in one
application can be brought or pasted into another application, where the user has invoked a
‘Bring’ command, see the ‘Programming Techniques’ chapter for further details.

Attached applications
The ability of one application to make use of the functionality of another was introduced
with the (OOP) object libraries included in the Series 3a ROM. Only one example of this
exists to-date in the built-in applications i.e. where the Agenda application and the Word
application co-operate in the production and editing of memos associated with Agenda
entries. Agenda starts the Word process as an attached application using a specially

4-30 Processes, Memory and Applications

modified command byte and line (see Series 3 Command Line above) that contains
information such as the process ID of the initiating process, and typically pointers to data
items for passing back results. The two applications can then conduct further
communications via inter-process messaging if required, see the ‘Programming
Techniques’ chapter for further details.

Automatic test system (ATS)
Starting with the 3a, the ATS system was introduced to assist with automated testing of
HWIM (OOP) applications. Although the process which controls the ATS sequence does
not have to be an HWIM application, the process which is being controlled by ATS does
have to be a standard HWIM application (or one which mimics the support for ATS).
Inter-process messaging is used to implement the ATS mechanism and message types
include; sending, receiving and recording key presses, running dialogs etc.

ATS can be used for a number of purposes including the following:

• Testing an application by running a pre-determined sequence of operations, such as
displaying all the text strings and dialogs belonging to a program, to check the
suitability of the resource files contents.

• Producing a rolling demonstration of one or more applications.
• Macro recording and playback.
• Controlling attached applications.

All HWIM applications from the 3a onwards support the receipt of inter-process
messaging as standard and are also initialised so that they can be detected as being able to
support ATS - see above. See the ‘Errors and Debugging’ chapter for further details of
ATS.

Message slots
An EPOC16 process can open only one message channel for receiving inter-process
messages, but messages may arrive from a number of sources. Initialising the message
system involves setting up a number of ‘message slots’ (from the heap) each of which
contains a message header (see E_MESSAGE struct as described below) followed by a fixed
length buffer. The length and expected structure of the data in the buffer following the
message header is defined by the receiver of the message (e.g. the server), and is normally
limited to a few words. For example, the file server and the supervisor both use 8 bytes.
Note that the sender (i.e. the client) does not control the length of the message sent (a later
version of a server could increase the message length to provide additional services while
maintaining upward compatibility).
typedef struct message
 {
 struct message *next;
 unsigned char *status;
 unsigned int type;
 int pid;
 } E_MESSAGE;

Processes, Memory and Applications 4-31

When a message from the sender (client) arrives, the message is copied into a previously
free message slot, which is also placed in the receiver's message queue. The allocated
message slot will contain the message type (as specified by the sender) and the process ID
of the sender, followed by the number of bytes of data from the sender (as specified when
the process was initiated). Other fields in the E_MESSAGE header are used internally by the
message system. It is up to the receiver to act on the message (asynchronously or
synchronously), and free up the message slot after processing the message.

The server always removes messages from the front of the queue. Arriving messages are
normally inserted at the end of the queue but if the client's priority is 0x80 or more, the
arriving message is inserted at the front, overtaking any existing messages, regardless of
their sender’s priority.

If it is necessary to send more than the small amount of information allowed for by the
message length, the message should contain the address of a buffer followed by the length.
The server would then copy the data from the client's data segment (e.g. using PLIB
function p_pcpyfr which copies data between processes without interruption). A message
may also contain the address or addresses of buffers to receive data from the server when
the service has been completed. (e.g. the server could use PLIB function p_pcpyto to
copy the data to the client's data segment, which copies data between processes without
interruption).

When the message has been processed, the server frees the message slot and may also
write back a completion status value and signal the sender's I/O semaphore (if a system
function call requiring acknowledgement was used). It is usual for servers to request to be
informed of the termination of a client (e.g. by calling PLIB function p_logon).

System services are available to allow client process to request a service of the server by
sending it typed fixed length messages. If the server does not have any empty message
slots, the message sending service waits on a mutual exclusion semaphore until a message
slot becomes free. It can therefore be blocked indefinitely, even if the systems service is
asynchronous. Multi-client servers avoid this prospect by allocating a slot for each
potential client (by allocating say E_MAX_PROCESSES (i.e 24) minus the number of known
processes).

Clients need to know the process ID of the server they wish to use. This may be achieved
by a number of means: via a system service call specifying the process name (e.g. using
PLIB function p_pidfind, for multi-client servers); the client knows the process ID
because it created the server process itself; the server created the client and passed its
process ID as a parameter during the creation step. For multi-client servers, the client will
typically send an opening message to connect to the server.

Synchronous or asynchronous messaging
A client process that sends messages synchronously is effectively suspended from the
moment it calls the message sending service, until the server completes processing the
message. If completion by the server is dependent on an external event, such as the expiry
of a timer or the arrival of serial data, the client may be suspended indefinitely. If the client
must remain responsive to other events, such as user input, this will be unacceptable

4-32 Processes, Memory and Applications

behaviour so the client should use asynchronous messaging. Suppose a client needs to use
asynchronous messaging because completion of the processing of the message may be
delayed indefinitely by an external event. This implies that the server itself must respond
to at least two events (the receipt of a message and the external event) and so must also
handle events asynchronously.

A server does not normally have a user interface, so if its only task is to receive and
process messages from clients, then synchronous server code may be perfectly acceptable.
The server is effectively suspended until a message is received and returns to the
suspended state as soon as it has finished processing the message. If the server also has to
respond to other events, such as the expiry of a timer, then the receipt of messages must be
handled asynchronously.

Errors
EPOC16 is a robust and well protected environment, but errors due to mistakes, design
oversights, errors in program code or unexpected user actions are an unfortunate fact of
life for software developers. An overview of error reporting is given here, but strategies for
avoiding errors and for debugging programs are covered in the chapter on ‘Errors and
Debugging’.

Fatal errors

Panics
When EPOC16 detects a condition that it determines could have only arisen from a
bugged application, it will terminate or panic the process in question. An error code called
a panic number in the range 0 - 255 will be reported to the user. See the ‘Errors and
Debugging’ chapter for an overview of panic codes and the Appendix for a complete list of
individual panic numbers and their meanings.

OPL
The OPL run-time environment is well protected and panics are rarely generated. Many,
but not all, structural and syntax errors are detected by the OPL translator, fatal errors
during run-time are usually trapped by the OPL interpreter. See the ‘Errors and
Debugging’ chapter for details of how to avoid and detect OPL errors. See the Appendix
for a complete list of the OPL run-time and OPL translator error codes and their meanings.

OVAL
The OVAL run-time environment is well protected and panics should be rare. Many
structural and syntax errors are detected by the OVAL translator. Fatal errors during

Processes, Memory and Applications 4-33

run-time should be trapped by the OVAL interpreter. See the ‘Errors and Debugging’
chapter for details of how to avoid and detect OVAL errors. See the Appendix for a
complete list of the OVAL run-time and OVAL translator error codes and their meanings.

4-34 Processes, Memory and Applications

User Interface 5-1

5 User Interface

Application design
Careful design is essential for programs of significant size or complexity, and the time
spent planning will normally more than repay itself by dramatically reducing the time
needed to produce reliable code. Once the purpose and requirements of the application are
clear, it is necessary to decide which language and programming techniques are
appropriate. This chapter discusses the key user interface issues in a language independent
way, specific examples are provided in appropriate language chapters.

While much of this chapter is also relevant to Series 5, please refer to the ‘Series 5’
chapter for changes in user interface considerations for EPOC32 systems.

Interface style
Consistency of user interface style between different applications is very important to
users, and it should also be important to the application designer who wishes to succeed.
Study the built in applications carefully, and do not depart from their normal style unless
there is an overwhelming reason to do so. Dramatically varying the way your application
appears and reacts to the user will risk alienating them, and may encourage them to use a
competitors product instead. See the document ‘check.doc’ on disk for additional
information from Psion on the style and norms expected of Series 3a/c and Siena
applications.

Interface elements
Most applications of reasonable complexity that present a user interface are structured in a
similar way. They have a main information display window, a main loop that handles user
key presses and presents a menu driven interface. Information entered by a user is
normally done via dialogs and/or edit windows.

Any application of reasonable complexity, which has a user interface, will normally
provide the following interface elements and user features:

• Keystroke handling and data entry.
• A menu handler, with accelerator or ‘hot-key' shortcuts.
• Program help information.

5-2 User Interface

• System screen and system message handling.
• At least one window for display of prompts and information.
• Additional dialog windows to receive user input, display messages and modify

program options or settings.

This list is not meant to be exhaustive, but represents a likely minimum for an application
to be distributed to others.

The first four items in the above list can be considered to be various types of key press e.g.
in OPL or HWIF programs. Messages received from the system screen are translated (via
the console device) and can be detected by testing for special key codes. (Object oriented
programs using the HWIM library receive and process specific messages sent by the
window server).

Programs that have other sources of input/output (I/O), but are required to be continually
responsive to key presses and other event sources, such as elapsed timers, must adopt an
asynchronous design approach for capturing and processing events.

Synchronous or asynchronous design
In the example just outlined, a straightforward synchronous design approach is all that is
required. But, if the application has to respond to user input and other event types such as
serial data transfers, expiry of timers etc., then an asynchronous approach is required.

Designing a program which handles its I/O asynchronously is more difficult, and may be
unnecessary for applications which have only one type of event source such as key presses,
or that are never compute bound for long periods. However, if a range of applications is to
be developed then designing the basic reusable application framework to operate
asynchronously will probably reap rewards later on. Both synchronous and asynchronous
I/O techniques are covered in the relevant language chapters.

Example application frameworks of both types can be found on disk, along with a number
of text documents which discuss the language statements and techniques in detail.
Asynchronous versus synchronous principles is covered in more detail in the chapter
‘Processes, Memory and Applications’.

Keyboard input
In all cases it is the window server that handles key presses and routes them to an
application, normally the foreground application.

Calling any synchronous input functions such as INPUT, GET or GETEVENT in OPL or the
C (PLIB) function p_getch will effectively suspend a program. An application will
remain unresponsive to other events or special key presses, such as shut down messages
from the system screen, until the input function is satisfied. Programs which use such

User Interface 5-3

function calls, but are designed normally to respond to special events such as shut down
messages, should surround such synchronous calls with the appropriate lock and unlock
functions, to inform the system that they are currently unable to respond.

For example in OPL the LOCK and UNLOCK statements should be used, in C the reserved
(or magic) static DatLocked should be set to true. Applications marked as locked will
then be reported as ‘busy’ if sent a shut down message (this does not affect the kill
application command for example under Apps from the system menu).

Many programmatic methods exist for reading key presses, even for scanning the keyboard
directly, many of these are covered in the chapters on specific programming languages.

Diamond key
Beginning with the Series 3a, the diamond key was introduced to allow applications that
have more than one operating mode to switch modes easily e.g. see the built in Data and
Agenda applications. Such an application needs to include a check for the diamond key
press in its main event-processing loop. Some applications may allow the user to select
which modes are to be included in the selection cycle. If a status window (see below) is
displayed, the list of operating modes can be used to replace the program icon with a
diamond symbol placed next to the current program mode in the list.

Menus
Creating and handling user menus is a relatively painless task for the programmer, since
the main part of the menu handling code is incorporated into the EPOC16 system. All the
programmer has to do is to provide the menu data, call the appropriate system services or
language statement and test for relevant key presses (HWIM based C handles even more of
the menu processing automatically).

All menu options (commands) must have an associated accelerator or hot key short cut. On
the original Series 3 the twenty six lowercase letter keys and the arithmetic operator keys
can be used as menu accelerators i.e. a-z plus +, -, * and / (these may differ on some non
English keyboards). Starting with the 3a, the uppercase letters also became available along
with the ability to group related menu items together by grey underlining (grey does not
need to enabled on the main application window for this to work). Using keys other than
those specified above, as accelerators is not recommended and programmers should be
particularly careful to avoid duplication of accelerator keys. See the Multi lingual
applications section later for comments on choosing accelerator keys.

5-4 User Interface

Windows
A typical application with a user interface will normally have one main window - the
parent window- to act as the main information display for the user. In the handheld SIBO
systems, only the windows of the foreground process are visible. Windows are rectangular
display areas that are created in terms of screen co-ordinates or pixels. Windows can be
created in hierarchies or trees, with parent windows having child windows, which
themselves may be parents to other windows and so on. Child windows are created relative
(in terms of positioning) to their parent window and are clipped to the boundaries of their
parent window. For example a child window may be created larger than its parent, but the
visible portion of the child will be limited by the boundaries of the parent window. This
can be very useful for creating scrolling effects.

For applications that are to run on a range of SIBO machines, with different screen
dimensions and resolutions, there are a number of important design factors that must be
taken into consideration, see the ‘Graphics’ section below.

Dialogs
A typical dialog is a modal pop up window that is used to get information or choices from
a user. Modal and non modal behaviour is described later. A dialog can have a title and a
number of data entry fields (or controls) which can accept specific types of data entry. For
example:

• Choice lists
• Action lists of buttons
• Plain text items
• Numeric editors
• Floating point editors
• Date editor
• Time editors
• Text editors - scrolling and non scrolling
• Secret data input fields - e.g. for passwords
• Filename editors or selectors

Dialogs are very flexible objects with a wide range of options and configurable items. For
example initial values can be given to items in a dialog and upper and lower limits can be
placed on numeric values etc. The list of options is far too great to cover here, but it is
worth detailing the differences between dialogs created by OPL or HWIF based C
programs and the increased range of options available to the HWIM based C programmer.
Dialogs produced by OPL and HWIF programs are essentially the same in terms of what is
possible.

User Interface 5-5

HWIM programmers have the following additional facilities:

• Sub-dialogs
• Numeric range editor
• Unsigned integer editor
• Signed integer editor
• Latitude and Longitude editor controls
• Application specific controls can be created.
• A wide range of system supplied dialogs with defined behaviour.
• The contents of dialogs (and menus) can be changed dynamically.
• Locking and dimming of dialog items
• Program activity can continue while a dialog (or menu) is displayed.

Dynamic dialog boxes where the number of controls and their contents change depending
on what has been entered already, allow consistency and dependency checks to be carried
out before the dialog is allowed to complete, thus creating a more sophisticated interaction
with the user. For examples of this type of dynamic dialog box see the built-in Agenda
application, in particular the dialogs for creating new Agenda entries and setting repeats.

When a menu, dialog or help screen is active (displayed) in an OPL or HWIF application
the program is unable to process other non key press events, such as the expiry of a timer,
system shut down messages, link paste requests etc. until the dialog or menu is completed.
This is not the case in HWIM or Oval programs. Oval programs are also able to create
dynamic dialogs.

Programmers working with HWIF based C can gain access to some of the above HWIM
dialog features - see the section ‘HWIF with some OOP’ in the ‘C Programming’ chapter
for more details.

Alerts
Occasionally an application must get a response from the user before any other processing
takes place. For example, when dealing with certain kinds of recoverable error (such as an
SSD removed while a file is still open) it may be desirable to lock the application into the
foreground, and get an appropriate action or response from the user. One way to achieve
this is by using the wSystemModal(0) function from the window server library (WLIB).
To cancel this state, the program must call wCancelSystemModal. However, alerts
provide a simple way to achieve this behaviour, they are a special kind of dialog provided
by the system.

Dialogs are normally completed by pressing the Enter key to confirm the information
typed, or the Esc key to cancel the dialog. Alerts are a simple form of dialog that allows a
number of lines of text to be displayed, and to get an appropriate response from the user to
a limited set of options. For example: An alert can be used to display a simple message
such as ‘Are you sure?’, and show a choice of two keys such as ‘Y’ and ‘N’ that may be
selected. An alert can also display a number of lines of text (e.g. up to 4 on a 3a/c) and
present three options for the user that are placed above three buttons such as Esc, Space
and Enter.

5-6 User Interface

Input focus
If there is more than one window or dialog displayed, and the program is ready to receive
user input, then only one window or dialog control can have the ‘focus’. The object that
currently has the ‘focus’ is the window or object (e.g. part of a dialog) or menu which is
currently responding to user input.

Modal and non modal behaviour
A window or dialog is said to be modal if it requires a suitable input or response from the
user before the window or dialog will close or is allowed to lose the input focus. For
example modal behaviour is useful when a choice of actions is required from the user to
deal with a problem or error condition. While a modal window or dialog is visible the user
can only interact with the application via that window or dialog, see ‘Alerts’ above.

Typical non-modal behaviour is illustrated by a situation where more than one window is
displayed but the user is free to move the focus between them at will, by means of the
cursor or tab keys. The ‘find’ mode of the built in Data application is a typical example of
such non-modal window behaviour.

System messages
As discussed in the ‘Applications, Processes and Memory’ chapter, applications should be
designed to receive system messages such as switch files and the shut down command,
also intercept the command line information and react appropriately.

Switch files messages
Applications can receive switch files messages from the system screen, as an instruction to
close the existing open file, and to open or create another one. These messages can arise
when the user presses ENTER after highlighting a file within that application's file list in
the system screen, see the 'Application file changes' section below for all of the possible
options.

Shutdown & foreground/background changes
The very nature of shut down messages implies that the application is currently in the
background. For design reasons it may be desirable to ask the user to confirm that the
application should be shut down, or to ask whether the current file should be saved. In
such cases it will be necessary to force the application into the foreground, this is done

User Interface 5-7

using a window server function, examples are provided on disk and are described in the
appropriate language chapters.

System messages - failure to respond
When a menu, dialog or help screen is active (displayed) in an OPL or HWIF C
application, the program is unable to process other non-key press events until the dialog or
menu is completed. For example, the program cannot respond to, the expiry of a timer, a
system shutdown message, a link paste (bring) request etc. This is not the case with OVAL
or HWIM C applications. (In the case of link paste servers, it is assumed that link paste
IPC messages do not remain unacknowledged since the client application may hang.)

Application files
An application is responsible for ensuring that its files, directories and sub-directories exist
and, if necessary, for creating them.

Location and naming
Standard directory names are normally used for specific file types e.g. applications are
usually placed in a first level \APP directory, digital sound files are usually placed in a
\WVE directory etc. An application’s own files however, would normally be placed in a
specific program directory, usually having the same name as the application and located
directly underneath the \APP directory.

For example, an application called Planner.app, which uses files with a default file
extension of .PLN could locate its files in a directory such as \APP\PLANNER\ and would
specify the directory path as its default.

Although it is possible to use the standard directories for other files of standard types that
belong to the example application Planner, e.g. bitmaps (.PIC files), it often more
convenient to store them along with the application specific files. In this way they are
logically located, and are less likely to be misplaced or deleted and thus cause ‘file not
found’ errors.

See the chapter ‘Files in EPOC16’ for more details on standard directory names and file
name extensions.

5-8 User Interface

Change of files
The current file that an application is using may be determined, or may change, for the
following reasons:

From the system screen, when the application is not running
a. The user highlights an exiting file name under the application's icon and presses

Enter.
b. The user highlights any file under the application's icon and selects File New from the

system menu.

From the system screen when the application is currently running
c. The user highlights a file name under the application's icon, which is not the current

file, and presses Enter.
d. The user highlights a file name under the application's icon, which is the currently

active file, and presses Delete.
e. The user selects Exit application (or Exit all applications) from the system menu.
f. The user 'kills' the application from the system menu.

From within the application itself
g. The user selects an option from the application's own menu to open a different file,

which already exists.
h. The user selects an option from the application's own menu to create a new file.
i. The user selects an option from the application's own menu to exit the application.
j. The user selects an option from the application's own menu to close the current file,

but remain in the application.

Option j conflicts with the normal behaviour of SIBO file based applications, and is not
usually offered as an option.

A file based application must take steps to intercept messages from the system screen in
order to react appropriately to the actions detailed above, however, if the application has
set its DatLocked to TRUE (or used the OPL LOCK statement), the system screen presents
an 'Application is busy' message instead.

Switch file messages will only ever be sent to applications with basic type number 2 or 3.
Applications whose type numbers include $8000 can receive switch file messages of the
Open sort, but not of the Create sort.

For most of the options above, it is the responsibility of the programmer to determine what
action is taken in response to the event types outlined. The exact behaviour of an
application should depend upon the application type number and its purpose. In some
cases the program designer may choose not to offer certain file options, and may have no
control over certain event types e.g. the kill application options, where the operating
system will not inform the application about its impending demise.

It is necessary to keep the system screen informed in the event of changes to the current
application file, i.e. by updating the magic statics variable by using the appropriate

User Interface 5-9

language function calls. For example in OPL you would use the SETNAME n$ command
when the file in use changes. In the system screen the file under the program icon which is
currently emboldened would then change to the new file name.

On exiting, or on receipt of a shut down message (see options d, e and i above), an
application would normally save its current file before closing down.

Note:
One important note, on program files, worthy of mention is that many applications have a
‘Save as’ option on their file menu. In SIBO systems the ‘standard’ response to selecting
this option is to ask the user for a new name, and to save a copy of the current file under
the new name, while the application continues to work with the original file. In many other
systems, including the Series 5, the ‘standard’ behaviour differs in that on using ‘Save as’
the application will switch to using the new file, having saved and closed the original file.

Icons
Icons are initially produced as bitmap files that are bound to the executable file when it is
translated or compiled. Icons may be produced by a variety of means:

• Using one of the many Shareware or Freeware programs available such as Psicon or
Draw284, included on the disks.

• Using the Iconed or Iconeda applications that are part of the Psion C SDK.
• Using the Window Server tool wspcx.exe on the .PCX output of a PC program such

as Windows Paintbrush.

An icon (.PIC) file can contain:

• A 24x24 bitmap for a Series 3 icon.
• two 48x48 bitmaps for icons from the Siena and Series 3a onwards - the first and

second bitmaps in the icon .PIC file specify the black and grey planes respectively.
• A 24x24 bitmap for a Series 3 icon followed by two 48x48 bitmaps for a Series 3a

icon.
• If an OPA or APP (series 3a onwards) has a 48 x 48 black / grey icon then $1000

should be added into the application TYPE number, see the ‘Applications, Processes
and Memory’ chapter for a discussion of application types.

For example, for an OPA header:
APP Example
 TYPE 3
 PATH “\EXAMPLE”
 EXT “EXA”
 ICON “\OPD\EXAMPLE.PIC”
ENDA

5-10 User Interface

The TYPE statement would become:
APP Example
 TYPE $1003
 PATH “\EXAMPLE”
 EXT “EXA”
 ICON “\OPD\EXAMPLE.PIC”
ENDA

If $1000 is not added and the application is installed on a 3a or above then a scaled up 24
x 24 icon will be used (as per the original series 3 icon).

If no extension is given in the icon file name then .PIC is assumed. If an icon is not
provided for an OPA it will be shown on the system screen with a standard OPA icon. The
system screen will refuse to install an APP file that does not contain an icon.

It's also possible to attach many other bitmap files to the icon .PIC file and read in the
appropriate bitmaps in as needed during program execution, see the ‘Programming
Techniques’ chapter for details of WSPCX.EXE and for information on the format of .PIC
files.

After compilation/translation a copy of the icon is bound into the application. The icon
.PIC file need not be loaded on to the Psion for it to be visible when the program is
installed. See the section below on ‘Status windows’ for details of the display of program
icons in status windows.

Graphics
Windows can be created to be of a specific size and at a particular position in terms of
horizontal and vertical pixels. They can be created with or without a grey plane and to be
initially visible or invisible.

The visibility of a window may be changed as required. It can be useful to make a window
invisible while modifying its contents, only making it visible again when the update is
complete. Numerous facilities exist (e.g. in OPL, C and OVAL) for drawing lines, borders,
setting and clearing pixels and copying areas of one window to another or between
bitmaps and windows or vice versa, and the various options are described in the ‘OPL16
Techniques’ chapter.

Collectively windows and bitmaps (see later) are referred to as drawables, each of which
has a unique identifier. In OPL the default window is always identified as number 1, the
other drawables have unique identifying numbers, which are allocated when they are
created or loaded. A total of eight simultaneous drawables are supported by OPL16, i.e.
the total number of bitmaps and windows (in OPL32 the limit is 64).

A discussion of different techniques used for graphics manipulation can be found in the
‘OPL16 Techniques’ chapter.

User Interface 5-11

Screen sizes and compatibility
All original Series 3 applications are fully compatible with the Series 3a/c and Workabout.
These machines automatically recognise such applications and run them in compatibility
mode (via the window server) - both the icon, as displayed on the system screen, and the
main display are expanded linearly by a factor of two in each dimension. On the Siena,
Workabout and the Series 3a/c, compatibility mode consists of borders left across the top
and bottom of the screen to restrict the area to 240x80 pixels.

Applications written in C that wish to use the full screen capabilities of the Series 3a or 3c
must explicitly turn off the compatibility mode by calling the window server
wCompatibilityMode function. In OPL applications this is taken care of automatically
by using the appropriate OPL translator.

An application can identify which model it is running on using an EPOC16 O/S call
GenLcdType or PLIB function p_getlcd and using the value returned to determine the
screen resolution. In OPL, getting dimensions of the default window with the gHEIGHT
and gWIDTH functions can be used as a clue to the machine type, see the ‘OPL16
Techniques’ chapter for more details.

It is quite feasible, although possibly more difficult, to write applications that run on the
whole SIBO range using the screen of each machine to the full. However, care should be
taken to ensure that such an application does not use any machine specific features e.g. the
grey plane when running on a Series 3 or enhanced sound capabilities on a Siena.

In addition to scaling the size of windows to be appropriate for each SIBO machine,
consideration should also be given to the width of all textual information, for example:

• The combined length of menu titles and menu item strings.
• The width of dialog titles and prompt strings.
• The width of program related help text.
• The effects of language translation on the length of text.

It is wise not to make screen text layouts too cramped in the primary language, and it's
better to dynamically calculate various screen positions and dimensions at run time rather
than hard code them in. Particularly if the application is to be multi lingual, - see the
‘Resource files’ section later.

The various screen sizes, resolutions and availability of a grey plane are discussed in the
‘Fundamental Concepts’ chapter.

Bitmaps
In addition to windows, EPOC16 supports structures called bitmaps. The concepts behind
bitmaps can seem a little confusing at first, but for graphics programming it is essential to
master them. The following is not meant an exhaustive description of bitmaps, but should
illustrate most of the key concepts (see also Sprites below).

5-12 User Interface

Bitmaps are just two-dimensional arrays of pixels (held in memory), any of which may be
either on or off. They can be treated as off screen windows but with only one plane. Like
windows, they are rectangular objects created in terms of ‘x’ and ‘y’ co-ordinates, and are
also referred to as drawables because, like windows, they can also be drawn to.

Bitmaps are not visible until they are copied into a current window. When held in memory
bitmaps have only one plane, i.e. they cannot have a grey plane. This is source of
considerable confusion, probably due to references to bitmap files, such as icon files,
which apparently contain both black and grey bitmaps. In fact, all this means is that there
are two bitmaps in the file, and when the system loads the icon, one bitmap will be copied
into the black plane of the window and the other will be copied into the grey plane.

In OPL the plane to be used e.g. for the bitmap copy command is selected using gGREY.
Also, the nature of the copy process can be changed so that each pixel copied from the
bitmap to the display has a particular effect i.e. it sets, clears, inverts or replaces the
corresponding pixel in the plane of the window.

Once a bitmap is created, and drawn to by setting or re-setting its pixels, it can be saved to
a bitmap file, retrieved from a file or copied into an area of a window. Bitmap files, or a
collection of bitmaps in one file, can be appended to an OPA or APP file (e.g. including
the program icon) to reduce the number of files included in the set that makes up a
complete application. The relevant bitmaps can then be loaded as required from a
combined bitmap file or from the OPA or APP file, see the relevant programming
language chapter. For details of how to create, convert and combine bitmaps see the
‘Programming Techniques’ chapter.

Even though the boundary defined for a bitmap is rectangular, any shape or pattern of bits
can be created within that area to produce more complex shapes. By default all pixels are
off when a bitmap is first created, but bits may be set or re-set using a number of graphics
drawing commands as required. For more complex shapes it is normal to use a graphics
drawing program, e.g. Draw284 (see the ‘Disk Contents’ chapter) to create the desired
shapes and then save them to bitmap files. At run-time the bitmaps can be loaded into
memory and used as required.

A bitmap (or a rectangular section of it) can be copied into a window to create the pattern
required on screen. Normally, a bitmap is copied into the required plane i.e. black, grey if
available or sometimes both. So, even though bitmaps themselves only have one plane,
they can be used to affect either the black plane or the grey plane in a window. Therefore,
if grey is used in an application it may be necessary to use more than one bitmap to create
the desired effect in a section of the display.

Finally, each pixel in the bitmap can be made to affect a corresponding pixel in the
destination area (and plane) to which it is copied, in one of several ways, i.e. replace, set,
clear or invert. For example with replace mode, every pixel in the section of the bitmap
copied, would replace each of the corresponding pixels in the display. Whereas set mode,
would take each pixel in the bitmap that was ‘on’ and set the corresponding pixel in the
display to ‘on’. Any bitmap pixels that were not ‘on’ would have no effect on the
corresponding display pixels.

User Interface 5-13

Screen drawing, re-drawing and memory
There is only one physical display screen, but windows may overlap, menus appear and
disappear, dialog boxes come and go, so the screen has to be re-drawn after such changes.
For programmers working in OPL and C programmers working in HWIF re-drawing is
taken care of automatically. In OPL and HWIF, and optionally in OVAL, this is done with
windows that have backup bitmaps that are managed automatically.

Whilst having the clear advantage of being simpler for the programmer, using backup
bitmaps does slow down screen displays slightly and consumes much more memory, since
all drawing processes and display information is duplicated. For example: on a Series 3a/c
using a full size window (480 x 160 pixels) with grey enabled, two backup bitmaps are
needed (one for each plane) consuming an extra 19200 bytes of memory. In many cases by
careful selection of window dimensions and selective use of grey these disadvantageous
effects can be minimised. However, since it is possible to create windows that are much
bigger than the actual display area the problems may become very significant. For
example, an application that used a scrolling view of a large map could easily run out of
available memory.

Using C it is possible to create windows without backup bitmaps, but the process of
redrawing areas which have been overwritten may have to be handled by the programmer
explicitly. Adopting an HWIM C design approach for the map example described above
would avoid the memory problem.

When a program starts its default window usually occupies the whole screen. It's always a
good idea to reduce the memory used by windows, by making them only as big as
required.

You can consider the default window as having two components, a graphics window with
a slightly smaller text window inside it. To write to the text window you use statements
such as FONT and PRINT, but you can only use one font on screen at once. A much more
flexible approach is to ignore the text window and use the graphics window instead, for
example in OPL by using statements such as gFONT, gPRINT and gPRINTB etc.

Cursors
Non destructive text or graphics cursors can be created. System supplied cursors can be
off, on and flashing or on but not flashing. For special cursors and cursor shapes see the
sections on bitmaps and sprites.

Sprites
To fully comprehend sprites you should have a clear understanding of bitmaps and screen
display planes, see Bitmaps above. Sprites were introduced with the Series 3a (version 4 of
the window server). A sprite is a graphic object of variable size and shape that can be
attached to a window, but does not disturb the underlying display and instead appears to

5-14 User Interface

‘float’ above it. Sprites can be animated and managed automatically by the window server,
which is responsible for maintaining the contents of the display underneath it. They can be
of any shape, of variable size and animated without affecting the rest of the display.

A sprite consists of one to thirteen bitmap sets. If animation is not required then only one
bitmap set is needed. Each set consists of up to six bitmaps, each of which must be the
same size. In each set of six bitmaps the first three control the appearance of the black
plane and next three bitmaps control the grey plane. e.g. considering the black plane, the
first of the three bitmaps specifies which pixels should be set, the second bitmap specifies
which pixels should be cleared and the third bitmap determines which pixels are to be
inverted. The next group of three (out of the six in the set) control the pixels to set, clear
and invert in the grey plane. Within any set you only have to supply a bitmap where you
wish to affect the characteristic of the particular display plane i.e. some of the bitmaps in a
set can be empty.

If a sequence of bitmaps sets is used (i.e. up to thirteen), then each set may vary in size
from each other, but all bitmaps within any particular set must be of the same size. In use,
each bitmap in a set of six will be drawn to the screen at the same time, at a specified
position, and will remain displayed for a specified duration. If a sequence of bitmaps is
used, then each set will be displayed in a cycle for the specified duration, and optionally at
a specified pixel offset from the notional position thus creating the apparent movement.

Only one sprite can exist for each client of the window server at any particular time (i.e.
one sprite per process), but different individual sprites can be created and destroyed as
required.

(Using Psion C it is also possible to create animation on any SIBO system by attaching a
sequence of up to twelve bitmaps to a window, the reader is referred to the window server
manual of C SDK documentation.)

Fonts

ROM based fonts
The various SIBO systems provide a variety of ROM based text fonts i.e. built in fonts. On
the original Series 3 there are three ROM based fonts, with the 3a this was increased to
thirteen. Each font has an identifying number that specifies the typeface and size (in
pixels) of the characters in the font set. All characters in a font set are of the same height
but may have either a constant width (mono spaced font) or variable width (proportional
font) which will depend upon the specific character displayed.

The default font or 'system font' for the Series 3 is stored in the environment variable
$WS_SF (i.e. font 1), from the 3a onwards various fonts are used by the system for different
purposes - the list is held in $WS_FNTS.

See the ‘Programming Techniques’ chapter for specific details of the available fonts.

User Interface 5-15

Font files
An application that requires custom fonts can load them from font files that may contain
one or more font sets. Font files typically have a .FON file name extension.

Custom fonts
A text font is in fact a set of up to 256 pixel patterns, each of which defines a symbol, an
alphanumeric character or graphic. New fonts may be defined in a text font sources file
(typically with a .FSC extension) which are used with the PC based font compiler
wsfcomp.exe , to produce a .FON file containing one or more font sets. A SIBO font
compiler and example font source filer are supplied on disk - see the \WSFCOMP
directory.

Status windows
On the Siena, Series 3 range and Workabout the window server supports two kinds of
status window, temporary or permanent. A typical permanent Status Window can be seen
on the Series 3 range by pressing Ctrl+Menu from the system screen. From the 3a onwards
a status window can be re-sized. Repeatedly pressing Ctrl+Menu will cycle through: full
size, small and no status window. A temporary status window (if temporary status
windows are enabled) can be viewed as a transient pop up window by pressing
Psion+Menu at any point, it will remain in front of the clients existing windows for
approximately 2.5 seconds. On the Siena only one size of status window is available.

While enabled, the window server maintains a permanent status window to the right of the
screen and behind existing windows. If the main window of an application occupies the
whole of the screen it will obscure any permanent Status Window which may be enabled.
In other words the Status Window will be hidden behind the applications window. If an
application is to support a permanent status window, it should be ‘tiled’ with the main top-
level window, i.e. the width of the main window should be reduced from the right hand
side by an appropriate amount to allow the current status window to be seen. See the
‘OPL16 Techniques’ chapter for an example.

Any other windows you create may also obscure a status window that is open. If you think
of open windows as a series of layers, one above the other, then any permanent status
window is always positioned as the lowest layer, and so it will always be obscured if any
other windows occupy the same ‘x,y’ co-ordinates.

If a large status window is displayed, for example on a Series 3a/c, the program icon is
usually displayed at the top, although this can be disabled or changed to show the current
operating mode of the program (diamond list). Many of the ‘built-in’ Applications have
different ‘modes’ of operation, the precise definition being dependent on the application.
As well as using menu options and ‘hot’ keys to switch between the different modes, an
application can set the diamond key to cycle around some or all of them - see the Data or
Agenda applications for examples of diamond lists. Changing the status window display in

5-16 User Interface

this way (from the 3a onwards) can be done in C programs using window server functions,
in OPL by specific language keywords and in OVAL programs by language statements and
by changing items of property.

Note that the Workabout status window does not display either the application's icon or a
list of modes, the Siena only has a narrow status window and the HC does not have a
status window.

Compatibility mode status window
In version 4 of the window server (3a onwards), applications on the S3a/c and Workabout
can run in S3 compatibility mode. This allows an application to have the ‘look’ and ‘feel’
of the same application running on a S3. On the S3a/c, this is achieved by doubling up the
pixels. For example, a line that is 10 x 1 pixels on the S3 will be drawn 20 x 2 pixels on
the S3a/c and should ‘look’ the same. On the Workabout, applications running in
compatibility mode will normally exactly match the S3 appearance.

If an application is running in compatibility mode on the S3a/c or Workabout, then a call
to the window server wsEnable function creates a compatibility mode status window that
looks and behaves like an S3 status window. Alternatively, the version 4 function
wStatusWindow can be used to create a compatibility status window.

Printing
To allow user flexibility in choice of printer model, printer settings (such as page size,
margins headers etc.) and print device configuration (e.g. via serial, parallel, infrared or to
a file) an application should provide access to the standard Print Set Up dialog. After
invoking the print set up dialog, an application is not normally required to keep a record of
the selections or changes made by the user, ROM-based system code will take care of this
(the choices are actually held in environment variables - see the Appendix for details).

However it is the responsibility of an application to obtain, and to record, information
about the users detailed printing requirement (usually via a dialog), for example to confirm
that printing is definitely required, to select what should be printed and possibly the way in
which it should be done.

Sound
On SIBO systems the sound production and recording capabilities vary quite widely
depending on the model, these differences are discussed in the ‘Fundamental Concepts’
chapter.

User Interface 5-17

Depending upon the purpose of an application and decisions made during the design
process sound may play no part in the user interface, or may be a fundamental part of the
functionality of the application.

Where sound is not fundamental to the purpose of the program, e.g. it is just used to
provide warning beeps etc. it is advisable to provide a user option to disable the program
sound, even though disabling all sound may be possible as a system wide option.

All Series 3 and HC models have an internal amplifier driven loudspeaker that can be
driven by the SND: device driver. On the original Series 3 the sound driver is limited to
providing DTMF dialling tones or simple alarm sounds.

Enhanced hardware and software included in the Series 3a and 3c enable the built-in SND:
device driver to simultaneously play two tunes on the built-in speaker. Although the sound
quality is not as high as with digital sound files, the memory requirements are much less.
For example to play a tune lasting six seconds would require a digital sound file of size
49,184 bytes. A comparable figure using the SND: device driver would be less than 1 Kb.

The 3a and 3c models also include a microphone and can record sounds into compressed
digital sound (.WVE) files which can be replayed. Note that digital sounds cannot be
recorded to Flash SSDs although once copied to a Flash SSD they can be played back.

If digital sound files are played, say as part of a game, the absence of the appropriate sound
files should not cause a run time failure. Digital sound files can require a considerable
amount of storage space and consume much more battery current when played; the user
should retain the option to disable their use or even to delete them. In particular, the Siena
and Workabout are restricted to emitting warning beeps and other simple sounds, they do
not have speakers or microphones and cannot record or play digital sounds.

See the ‘Programming Techniques’ and ‘I/O System’ chapters for specific details of using
the various sound production and recording services.

Resource files
Applications with a user interface have to present prompt strings, menu tiles/items, dialog
title/descriptions, user help and other text based information to the user. Embedding this
type of information directly in the code as literal strings is generally considered not ideal
practice, even when the application is intended to be mono-lingual. Several distinct
advantages can be derived form using resource files, they are described in the chapter on
‘Programming Techniques’.

User help information
Providing ‘on line’ application help to users, possibly even context sensitive help, has
become the norm for applications of any reasonable sophistication. Users have come to
expect specific guidance in response to pressing the Help key on a Siena or Series 3 (Shift

5-18 User Interface

Esc on the Workabout). As a program designer you obviously have to detect the help key
press itself, but providing appropriate help text etc could be done in any number of ways.
As usual there is a ‘standard’ way of doing this, i.e. by including the help information in
the program resource file, see the ‘Programming Techniques’ chapter for more details on
implementing program help.

Multi-lingual applications
For multi lingual applications the help information and all other program text will have to
be provided in all supported languages. Using resource files allows all of the language
specific information to be separated out from the program code, thus making the
translation process easier and modular. Examples of loading language specific information
are covered in the appropriate programming language chapters.

Care has to be taken to consider the effects of translation on text string lengths and hence
on program buffer sizes, on screen layouts, menu text, button text, dialogs and help
window widths, see also the Graphics section above.

Keyboards and menu accelerators
The set of possible menu accelerators may vary from language to language due to the
keyboard changing.

All languages must support the 30 accelerators 'a' through 'z', together with '+', '-', '*', and
'/’. Exceptions to this are French, Spanish and Belgian which uses the French keyboard:

• French replaces '/' with '?'
• Spanish replaces '*' with '>' and '/' with 'ñ'.

Applications that fail to take account of these differences when they are translated into
another language will find they end up carrying a ‘lame’ accelerator. The accelerator will
be visible on the menu, but there may be no way for the user to press the required key
combination.

Note: It is very important to avoid duplicating an accelerator key for more than one menu
item, the system has no way of detecting this and it can lead to unexpected and confusing
behaviour.

On the Series 3a/c, Siena and Workabout the uppercase alpha characters may also be used
i.e. A through Z, giving a total of 56 possible accelerator keys.

In choosing accelerator keys it is advisable to study those used by the built in applications,
and where possible use the same hot key for an identical (or very similar) menu option in
your own application. Unshifted accelerator keys should be used, preferably corresponding
to the first letter of the menu item, although this is not always possible. If the first
lowercase letter cannot be used it may be appropriate to use the shifted uppercase letter. If
the first letter is not available in either form then the second letter of the menu item may be
a suitable alternative.

User Interface 5-19

If the application has a ‘diamond’ menu, then shifted accelerator keys should be used by
convention, and where possible the keys used should match the first letter of the items
shown in the status window diamond list.

In translating an application into another language it will be necessary to change many of
the accelerator keys. Using specific program resource files to hold all of the accelerator
keys and all other menu text makes life much easier for the programmer and the translator
alike.

Co-operating programs
As previously discussed in the ‘Process, Memory and Application’ chapter, EPOC16
provides many facilities in support of inter-process communications (IPCS) or messaging
between programs. IPCS is used by the built in applications to implement ‘Bring’ i.e.
highlighting and pasting information from one application into another and to allow one
application to make use of the functions provided by another e.g. Agenda uses Word for
memo editing. Application programmers may also make use of the IPCS services to
provide similar functionality or for other purposes.

Bring or link paste
An example of a very specific use of inter-process messaging is the ‘Link Paste or Bring’
capabilities of many of the built-in applications, where data that is highlighted in one
application can be brought or pasted into another application, where the user has invoked a
‘Bring’ command. See the ‘Programming Techniques’ chapter for further details.

Attached applications
The ability of one application to make use of the functionality of another was introduced
with the (OOP) object libraries included in the Series 3a ROM. Only one example of this
exists to-date in the built-in applications i.e. where the Agenda application and the Word
application co-operate in the production and editing of memos associated with Agenda
entries. Agenda starts the Word program as an attached application, using a specially
modified command byte and command line. Additional information is supplied in the
command line, such as the process ID of the initiating process and pointers to data items
for passing back results. The two applications can then conduct further communications
via inter-process messaging if required.

Running other programs
Occasionally it may be desirable to have your application run another program in response
to the needs of the user, or to avoid duplicating functionality provided elsewhere, and then
return to your program when the user has completed their task. This can be achieved
without any real difficulty and is covered in the ‘Programming Techniques’ chapter.

5-20 User Interface

Aliasing applications
Some file-based applications may end up with large file lists. It may be desirable to
separate a file list into two or more separate lists, for example: with the Word application,
all correspondence could go in one file list, all the chapters of your novel in another, and
so on. These file lists could be distinguished, on the System Screen, by having distinct
icons, and different application buttons could be used to cycle round running instances of
these tasks.

Going further, it may be desirable for the behaviour of the application to alter, depending
on which type of file is open. For example, the behaviour of the built-in text editor is
different for .WRD files (when the application is seen as Word) from .OPL files (when the
application is seen as Prog).

The concept of aliasing an application is designed to meet these requirements. For each
new file list required, an alias file (.ALS file) should be installed in the system screen. In
practice the user can do this on the Series 3a/c or Siena using the ‘Create new list’ item
from the ‘Special’ menu. Aliasing is covered in more detail in the ‘Programming
Techniques’ chapter.

Files in EPOC16 6-1

6 Files in EPOC16

Introduction
EPOC16 is said to have an MS-DOS compatible file system. What this means in practice
is that it uses the same type of root directory \ sub-directory tree structure and the same
type of file naming convention. File names can be up to eight characters, with an optional
period separator, plus a file name extension of up to three characters i.e. the familiar 8.3 or
nnnnnnnn.xxx file naming system.

To accommodate the concepts of ‘Installable file systems’ and ‘Remote file access’
EPOC16 also uses node names to specify the location of a filing system.

File specifications
A full EPOC16 file specification has the form <node><device><dir><name><ext>
where:

<node> is the file system node e.g. LOC:: in this case referring to local storage
on the Psion itself.

<device> is the drive or device name e.g. A: for drive A
<dir> is the directory path e.g. \APP\DOCS\
<name> is the file name e.g. DESIGN
<ext> is the file name extension e.g. .TXT

An example of a complete file specification is:

LOC::A:\APP\DOCS\DESIGN.TXT

Note:
File specifications can be in upper or lower case, or a mixture.

Getting suitable filenames is kept simple for the user and for programmers by making use
of one of two types of filename specifier, i.e. File Name Selectors and File Name Editors.

6-2 Files in EPOC16

File name selectors and editors
Access to file name selectors and file name editors is provided as part of the EPOC16
operating system and OPL, C and OVAL provide methods to invoke them.

In a dialog box a file name selector can constrain the user by only allowing the selection of
a file name from those that already exist, as appropriate for commands such as Open or
Merge.

File name editors allow the user to type in the name of a file that may or may not already
exist, as appropriate for commands such as ‘Save as’ and ‘New’.

With either method a user can bring up a full file list by pressing the Tab key, or
Control+Tab for more detailed file system navigation. In both cases, a disk selector is
presented to allow the user to select the appropriate drive and directory. Using a file name
selector or editor allows ROM based code to handle the selection of a filename and path.

File name parsing
File name parsing functions are available in C and OPL and will supply any file
specification information that is missing or not explicitly supplied by the user. Parsing is
also useful where you want to avoid making any assumptions about the syntax of the file
specification e.g. when full files names may involve remote filing system nodes etc. The
current node, drive and default directory are used to fill in the blanks if the file name
information supplied to the parse function is incomplete. Applications usually specify their
default directory path and file name extension as part of the program source code or build
information. When the program is compiled or translated, the file specification details
become available to the operating system and hence to the parsing functions.

Parse functions can also provide easy access to the component parts of a file specification
see the PARSE$ function in the OPL programming section for an example.

OVAL does not have a parse function, the FileSelector and FileNamEditor control
property settings determine the final composition of the file specification.

Note:
At least 128 bytes of storage space should be allocated for each file specification in your
program.

Files in EPOC16 6-3

File name extensions, standard
A number of standard filename extensions may be used by the internal applications
provided by Psion, and are recognised by the system:

.AGN Agenda files

.APP Applications which are installable e.g. have icons

.DBF Database files

.DBS .DBS database sever files

.IMG Programs – will be listed under the Runimg icon

.JOT Jotter data files

.O Word template files

.ODB Application specific data files

.OPL OPL program source files

.OPO Translated OPL programs – will be listed under the Runopl icon

.PIC Bitmap files

.SPR Spreadsheet files

.WDR Printer drivers

.WLD World database files

.WRD Word document files

.WVE Digital sound files

Other file name extensions may of course be used, it is up to the program designer. See the
‘User Interface’ chapter for general principles of locating and naming of application
specific files and directories.

Wildcards
When searching for a file or files, parts of the file name or extension can be replaced with
wildcards i.e.

 Use * to replace zero or more characters.

 Use ? to replace individual characters.

Thus, a file search for .DBF will find all files with the .DBF file name extension, whatever
the name. BG*.DBF will find all files beginning with BG and ending with DBF. Using
*LES.DBF will match all DBF file name ending in LES e.g. SALES.DBF and
TRIBBLES.DBF. The last example differs from wildcard searches on MS-DOS based
systems where the characters in the name following the * are lost, and so the search would
effectively find all files matching *.DBF.

A search for .D?? will find all files where ‘D’ is the first character of the file name
extension.

Wild cards can only be used as components of file names, not directory names.

6-4 Files in EPOC16

Directories
In contrast to file selectors on other systems, those on SIBO systems such as the Siena and
Series 3 family allow users to specify paths that do not yet exist. This can happen fairly
commonly, for example as follows:

1. The user inserts a brand new SSD into drive A
2. A ‘Save as’ or ‘New file’ menu option is selected
3. The user adjusts the disk selector to drive A: and hence the new disk
4. The user types e.g. ‘Design’ into the filename editor

Assuming the default directory for the application is \DOC\ and the default file name
extension is .TXT, the filename returned to the application (after internal parsing) would
be: LOC::A:\DOC\DESIGN.TXT even though the directory \DOC\ does not currently exist
on the disk in the A: drive. It is the responsibility of application programs to test for such
conditions and to create the required directories.

Directory names, standard
A number of standard first level directories may be used by the internal applications
provided by Psion, and are recognised by the system and by the applications i.e.

\AGN Agenda files
\APP Applications which are installable e.g. have icons
\DAT .DBF database files
\DBS .DBS database server files
\GPK Games pack settings files
\IMG Programs – will be listed under the Runimg icon
\JOT Jotter data files
\OPD Application specific data files and bitmaps
\OPL OPL program source files
\OPO Translated OPL programs – will be listed under the Runopl icon
\SPR Spreadsheet files
\WDR Printer drivers, Word templates and spell checker dictionaries.
\WLD World database files
\WRD Word document files
\WVE Digital sound files

Other directory names may of course be used, it is up to the program designer. See the
‘User Interface’ chapter for general principles of locating and naming of application
specific files and directories.

Files in EPOC16 6-5

General file management
EPOC16 provides a wide range of functions and services for the general management of
files and directories. Access to file management facilities is fairly straight forward, but
varies considerably depending upon the programming language you are using.

In C, OPL and OVAL keywords are available to:
• Get lists of file and directory names
• Test for the existence of a specific file or directory
• Copy, delete or rename files
• Create or remove directories
• Change the current path i.e. node, drive and directory
• Compress database files to remove all records marked as deleted

In C and OVAL, functions are available to:
• Get and set file attributes
• Get file information such as size, date and time
• Find the amount of internal memory available

In C and OPL, functions are available to:
• Find the free disk space. Although strangely, the OPL SPACE function can only be

used in association with an open database file.

The file server
The file server is a high priority system process (with process name SYS$FSRV) that
performs all file related operations on behalf of ‘client’ processes. An application process
must connect to the file server before using its services, this is normally taken care of by
the program start up code. (For example in C, the start up module is the code that precedes
the main() function, and is supplied as standard for use with the PLIB library). Most
applications need the services of the file server, and the overhead of automatically
connecting to the file server by default is modest.

Installable file systems and remote file access
The file server supports multiple installable file systems or nodes. To-date three file
systems have been implemented on the Siena and Series 3:

LOC:: The local filing system with devices M: (the internal RAM drive) and SSD
drives A:, B:

6-6 Files in EPOC16

REM:: The remote filing system, available while the file server is connected to a remote
file server. The structure of the filing system depends upon what the remote
system is. If the remote system is a PC or another SIBO machine, the structure is
the same as for LOC::. Remote file servers have been implemented for PCs
running DOS or MS Windows and the Apple Macintosh.

ROM:: The ROM filing system, used to access ROM-based files. This filing system is
not normally visible to the user and does not support devices or directories.

SSDs are driven by the LOC:: file system using a number of subsidiary physical device
drivers (PDDs) handling the different SSD types and the internal M: device i.e.

LOC.TY0 the RAM SSD PDD

LOC.TY1 the Flash SSD PDD

LOC.TYM the internal RAM (M:) PDD

As previously stated, the devices and directory structures within the LOC:: file system are
compatible with the MSDOS filing system.

SSD drive doors have switches that keep the file server informed of possible SSD
removals and insertions. After an SSD drive door has been opened and closed, the file
server checks each drive to see if it contains a new SSD. When the file server detects a new
SSD, it automatically mounts it.

File operations - asynchronous
The file server is essentially asynchronous in its operations, and most system service
functions for the filing system are provided in both asynchronous and synchronous forms.
Because the file server has a higher priority than any of its clients, any operation that does
not wait for a slow external device will have completed by the time an asynchronous
request has returned. This includes any operation on the ROM:: file system or where the
LOC:: file system accesses SSDs or the internal RAM drive (M:). However, when accessing
the REM:: file system where the connection is via an RS232 cable, any asynchronous
request is almost certain to return before the operation is complete.

Although, in practice, most file operations complete in a fraction of a second, a particular
file request may take an extended time. For example, a read of 60K bytes from a REM:: file,
connected over a 9600 baud serial link, would take around a minute. However, a request
will never take an indefinite time to complete (as, for example, a write to the parallel port
can do when the printer is off line). For these reasons, the file server does not actively
support a cancel I/O request service, because the file may be left in an indeterminate state
if a partially completed write operation is cancelled.

Files in EPOC16 6-7

File types and formats in EPOC16

Psion application file formats
Apart from ASCII text files and .RTF files, the file formats used by the built-in
applications such as Word and Sheet are proprietary to Psion. Some of the Psion
applications do provide options to import data in other formats, or to save their data in
formats other than their normal standard. For example, the Data application can export a
database file (in .dbf format) to records in a text file, with delimiters (such as commas)
between the record fields. Similarly Data can import (or merge in) database records from
text files that have field delimiters.

Conversion of file formats
An increasing number of applications with in built file conversion facilities are appearing,
both from Psion and from third party software companies. A prime example of file format
conversions is demonstrated by the Psiwin application suite from Psion which has file
conversion to and from Psion’s proprietary file types to and from the formats for major PC
based applications, such as Microsoft Word, Excel, Schedule+, WordPerfect, Lotus 123,
Organiser etc. See the ‘Linking to a PC or Printer’ chapter for more details of PsiWin.

More file converters are appearing with time, but Psion have provided a set of guidelines
for programmers who wish to produce additional file format converters for use with
PsiWin (version 1.x), see the ‘Programming Techniques’ chapter.

For information on file formats and conversion between file formats see the ‘Programming
Techniques’ chapter.

Binary files
A binary file is one where the bytes in the file are not treated with any special significance
or interpretation by the EPOC16 filing system. Applications manipulating binary files are
free to treat the bytes of data read or written in any way they choose. If the content of the
file has any internal structure, then it is a format designated by the application designer. In
OPL or C programs, data from binary files may be read or written in blocks of up to 16K
bytes. In OVAL programs, it is possible to read up to 65534 bytes at a time. Text files may
be treated as binary files, but it is more usual to open the file for I/O in text mode – see
below.

6-8 Files in EPOC16

Text files
Text files under EPOC16 follow broadly the same format conventions as in many other
systems. For example, PC DOS text files are record based files, with each record
terminated by a CR/LF sequence - a carriage return code (CR, decimal 13) followed by a
line feed code (LF, decimal 10). The end of file (EOF) may optionally be marked by a
SUB code (SUB, decimal 26), although this is becoming less common on systems that
record the logical file length.

Text files can be treated as flat binary files, where the programmer takes care of all bytes in
the data stream, including the record terminator sequences (e.g. CR/LF). However, it more
usual to make use of the support provided by EPOC16 for handling individual text
records. In the latter case, the terminating sequences are hidden from the programmer, who
just reads and writes text records of up to 256 bytes in length (255 bytes if holding records
in OPL strings).

Since text files are record based, and the length of any given record can vary, it is not
possible to delete individual text records or replace amended records in their original
positions. New text records are always appended to the end of a file. The simplest solution
to modifying a section of text embedded within a file is by reading, amending and re-
writing the whole file. Thus, applications that involve writing data to text files are
potentially non flash-friendly (see later).

Binary or text file I/O
The specific details of reading or writing to a binary file or a text file depend upon the
language used, and is covered in more detail elsewhere. However, many of the general
principles of file I/O are independent of the language and so are discussed here.

Note:
Access to Psion database files (.DBF format) is quite different to general file I/O, and is
handled through specific database functions, an overview of which is given later.

All general file handling is done via the I/O system using the FIL: device driver, although
references to the FIL: device are not usually made explicitly, and it is largely hidden from
the programmer. Opening a channel to the FIL: device provides access to file operations.
Application processes must connect to the file server before they can use its services.
However this is normally taken care of by the program start up code, and is normally
included automatically i.e. in OPL, OVAL, or C programs that use PLIB (see the file
server section earlier in this chapter).

Before the file I/O functions can be used, it is necessary to open a channel to the file. For
example, with a call to a system service function e.g. the OPL keyword IOOPEN, the PLIB
C function p_open or the OVAL Open statement.

Files in EPOC16 6-9

Open modes
Files can be opened for access in one of three modes:

• Binary data is accessed as a sequence of bytes with no apparent structure.
• Random data is treated as a series of fixed length records.
• Sequential variable length records, typically for text files.

Files can be opened for read only or shared access, read and write access or append mode.
In C or OPL, opening a file as unique will create a new file with a unique name, which can
be very useful for creating temporary working files.

Attempting to open a file that does not exist will create it, unless the file is being opened in
shared or read only mode, in which case an error will be generated.

Note:
Once a file is open, references to the open file channel are made using the file identifier or
handle. See the ‘I/O System’ chapter for more a detailed discussion of I/O function
numbers, handles and error values.

Reading and writing
Data can be read from and written to the file using functions such as the OPL functions
IOREAD() and IOWRITE() or the C functions p_read() and p_write(). In OVAL,
reading and writing to the file is achieved via specific keywords such as GET, PUT,
INPUT and PRINT, depending on the type of data and the file mode.

Flushing file buffers
To optimise file I/O speed, data to be written to text files is buffered in memory until a
defined block size is reached. An I/O request such as:
r% = IOW(handle%, FFLUSH, #0, #0) REM FFLUSH = 9

may be used to force the text to be written to the file, say just before a file is closed. This
has the advantage of detecting, and being able to recover from, any file errors that would
not be possible after using IOCLOSE.

Flushing of file buffers is only relevant to text files opened for update, and should be used
sparingly to avoid reductions in performance and undue fragmentation of Flash SSDs.

Data for binary files is not buffered, so the FFLUSH operation is not normally used, with
the exception that it also causes the file modification details (date and time) to be written,
for both text and binary files.

6-10 Files in EPOC16

Positioning within a file
When a file is opened for random access, the current position in the file for the next read
or write operation can be set, e.g. in OPL with the IOSEEK() function. In OVAL, the
current position can be set and sensed using the Seek() function; the Loc() function
returns the most recent seek position of the file.

Setting a new end of file
For binary stream files it is possible to truncate, extend or reserve space in a file using the
FSETEOF function e.g.
r% = IOW(handle%, FSETEOF, nEOF&, #0) REM FSETEOF = 11

Where the variable nEOF& specifies the new end of file (i.e. the offset in bytes). If the
value of nEOF& is beyond the current end of file it will be extended, and shortened if it is
within the current end of file.

Closing
Once the interaction is finished, the I/O channel to the file is closed using an appropriate
function call, e.g. using the OPL function IOCLOSE(), PLIB function p_close() or Close
in OVAL. It is good practice to close a file as soon as it is no longer being accessed.
Unless there are specific reasons to the contrary, it is advisable not to keep files
permanently open. It is better to close a file as soon as possible, re-opening it again each
time it is needed. Closing a file releases memory and other resources back to the system.

Avoiding file I/O errors
General file I/O may seem complex at first, but in practice it is not; more details are
provided elsewhere in the book and example code is provided on disk; see the main index
and the disk specific index in the ‘Disk Contents’ chapter. A couple of important points
should be noted however. The file handle or identifier is the vital link to any particular
open file and it should not be ‘lost’ by over writing it, or by holding it in a local variable
and then referring to it outside of the scope of the procedure that declared the variable.
Always design your programs to handle errors that may arise during file handling. For
example with OPL, the I/O functions such as IOREAD(), IOWRITE() do not generate errors
that can be caught using the TRAP or ONERROR statements. Virtually all of the OPL I/O
keywords return a value, if the return value from the I/O call is negative, an error has
occurred. Additional code should be included to examine the return value for error
conditions, and act accordingly. A full list of possible error codes is given in the
Appendix.

Files in EPOC16 6-11

Database files

Psion .DBF files
Database files created by the built in applications (such as ‘Data’) consist of individual
records, which may be split into sub-records called fields. Such files are manipulated by
adding, deleting and updating individual records, unlike applications such as Word which
read and write whole files at once. This behaviour ensures that DBF files are Flash-
friendly (see below), but it also has a number of other consequences to the programmer:

• New records are always appended to the end of the file.
• Deleted records are only marked as deleted, and the space they used will not be

recovered until the whole file is compressed.
• Updating the contents of a record actually results (automatically) in the modified

record being written to the end of the file as a new record, and the old record is
marked as deleted.

• Keeping records in a particular order (e.g. sorted) is not a trivial problem.

Thus, even though it is possible to ‘position the current record pointer’ so that it is
pointing at a specific record number in the file, you cannot rely on using record numbers to
keep track of a specific data record after changes have been made to the file. This is not
normally a significant problem since the EPOC16 DBF database services do provide
excellent searching facilities. Programmers who wish to use an equivalent to record
numbers should include a field to act as a record number field, or another unique
identifier, in each data record and maintain it within the application code. The identifier
field may then be used with the DBF search facilities to read records in the required way.

Database files may be created and manipulated by the built in ‘Data’ application, or via
your own application code, in C, OPL or OVAL, by making use of the .DBF service
functions provided. OVAL programmers have automatic access to the database server
(DBS) functions that are discussed later in this chapter.

Records produced by the Psion ‘Data’ application are limited, in that only string fields are
used. However, database files produced by other applications may use field types of
integer, long integer, floating point and string.

For a more detailed discussion of the .DBF file format see the ‘Programming Techniques’
chapter.

Maximum records
The maximum number of records that can be handled by the standard .DBF functions is
65,534.

6-12 Files in EPOC16

Database compression
In OPL programs, if a DBF file is located on the internal RAM drive or on a RAM SSD it
is compressed by default when the file is closed, or if a user invokes a ‘Compress’ option
provided by the application. In other words, all of the space used by the deleted records
will be recovered. Applications written in C have to explicitly specify the file compress
action.

It is not possible to compress a .DBF file stored on Flash RAM automatically in this way.
Database files on Flash RAM can be compressed by using a ‘File - Save as’ option or by
using a .DBF services compress function, to ‘copy’ the .DBF file under another name (or
with the same name, but in a new location). All of the ‘deleted’ records will be removed
during the ‘Save as’ or compress process, whereas a simple copy operation will copy all
data including the records marked as deleted.

ISAM database files
The ISAM (Indexed Sequential Access Method) library is a set of functions for efficient
access and indexing of .DBF database files. Such files consist of multiple records
containing one or more structured fields; they can be created, maintained and accessed
from OPL and C programs on the S3, S3a/c, Siena, HC and Workabout. The ISAM library
is supplied in the form of a dynamic library i.e. ISAM.DYL.

OVAL applications cannot use the ISAM library; it uses the more recent DBS database
format instead.

The ISAM library uses B-tree index files to provide rapid indexed and sequential access to
DBF files. It is the most widely used form of index file simply because it is the most
efficient general method of accessing database files. B-tree index files minimise the
number of disk accesses per retrieval. In general B-tree index files should not be
constructed or maintained on a Flash SSD (but index files can be read from a Flash SSD).

The ISAM library functions provide the following:

• Fast record retrieval on a key. For example, a DBF file can be searched for all records
containing the key ‘Smith’.

• Very little degradation of the speed of retrieval occurs as the number of records
increases.

• Sequential access to records that are ordered by the key (i.e. next, back, first and last).
• The ability to see a selection of the records in the file (by constructing a selective or

sparse index).
• Access to record fields with automatic conversion from numbers to text (and vice-

versa) if required.
• Powerful key definitions based on combinations of up to eight fields, giving highly

ordered access.
• The opening multiple (up to 31) index files for a DBF file at any one time. For

example, a DBF file containing customer details can have two indexes, one for
searching on customer occupation and related details and the other for searching on
customer location and related details.

Files in EPOC16 6-13

• The adding, erasing, and updating of records with the appropriate updating of all
associated index files carried out automatically.

Field types
The following field types are available:

BYTE, UBYTE, WORD, UWORD, LONG, ULONG, DOUBLE, STRING.

However, if compatibility with existing OPL or PLIB DBF functions is required, the field
types must be restricted to:

WORD, LONG, DOUBLE, STRING

Maximum records
The maximum number of records that can be handled by the standard .DBF functions is
65,534. However, in ISAM the maximum number of database records is 2,147,483,647.
The ISAM library and example code in C and OPL is supplied on disk.

DBS database files
DBS is a Database server from Psion that allows access to dBase III and IV format files in
addition to the usual Psion DBF files. DBS is the replacement for the ISAM library, and
runs on the Series 3, Series 3a/c, Siena, HC and Workabout.

DBS is a database server (a separate process on the Psion), with full multi-client support,
including simultaneous access to the same data and index files, which ISAM does not
provide. DBS has extended the ISAM functionality by adding:

• Database level support.
• Index tracking.
• Multiple record buffers on the same table, with record locking during editing.
• DynaViews, which give a filtered and/or sorted view of records in a table.
• Extra field flags.
• Three new field types: Date, Logical and LongBinary (LongBinary not currently

supported by Psion DBF).
• Text based expressions can be used with DBS to specify filters and sorting.

Because DBS is a separate process, each function call has the overhead of an inter-process
message, but DBS is mostly faster (particularly at indexing) than ISAM. However, field
data access is slower using DBS than ISAM.

The DBS server is ‘built in’ to OVAL, but the DBS tools are provided by Psion free of
charge to allow the same functionality from both C and OPL programs. The Psion
Database Server tools (DBS_105) are provided on disk, but are subject to certain license
conditions – see the license.txt file included. Other documentation describing how to
use DBS is included with the server software, along with example code in C and OPL.

All DBS files should be located in a \DBS directory i.e. off the root directory of a drive.

DBS cannot read index files written by ISAM.

6-14 Files in EPOC16

dBase files
Although the dBase file format is not ideal for handheld machines, DBS supports it so that
data can be used directly from PC based applications without having to be first translated
into Psion DBF format.

Data files in dBase format tend to be 2-3 times bigger than an equivalent Psion DBF data
file and dBase indexes can also be up to 2 times larger than Psion ones (depends very
much on the sorting key). Text based fixed-width format field types are used by dBase for
all field types, this makes the data access slower than .DBF field access. Because of other
overheads, this is most noticeable when indexing a table, when using dBase format files
can be 2-3 times slower than using the Psion .DBF format files.

SSDs and robust applications
Mass storage devices such as SRAM and Flash RAM can be removed, changed or
repositioned at will by the user. SSD drive doors have switches that keep the file server
informed of possible SSD changes. Robust programs are designed to cope with such
eventualities without crashing.

In general, the filing system is robust and reasonably secure, as illustrated by the
following:

The RAM SSD physical device driver (PDD) on the LOC:: file system (see File
specifications above) does not buffer written data. This protects the integrity of the SSD
contents from being corrupted by crashes (application or system) that may occur while
files are open, or by the removal of the SSD while files are open on it. Similarly, the data
in each write to a file on a Flash SSD is written straight to the SSD, i.e. it is not buffered
(This may not be the case for text files, which are handled by a layer over the FIL: device.
The buffering of such files is thus outside the file server's control). However, in the
interests of efficient storage, the record just written is kept open for as long as possible -
until the file channel is closed, flushed or until a write to another file on the same SSD
occurs. File date and time stamps are not written until the file channel is flushed or closed.
If the SSD is removed or the machine resets while there is an open file channel with an
write outstanding, the record is closed when the file is next accessed (the file is then also
stamped with the current date and time).

Flash friendly applications
The Flash filing system is designed such that the logical interface to files on a Flash SSD
(whether reading or writing) is entirely equivalent to that on other devices (RAM SSD,
hard disk etc.). However, when overwriting or when deleting a file, space is consumed and
is not recovered until the Flash SSD is next formatted.

Files in EPOC16 6-15

Note also that renaming a file, setting the date and time or setting the file attributes all use
up additional space and can therefore fail through lack of remaining capacity. However,
deleting a file does not consume any further space.

Storage space on Flash RAM devices can only be recovered by reformatting the whole
device, so applications such as Word Processors and Spreadsheets which usually re-write
the whole file on update should avoid using Flash devices. File based applications such as
Databases etc. which operate on a record by record basis can use Flash RAM without a
significant problem. However, space used by records that have been deleted or updated
(which typically involves the addition of a new record and deletion of the old) will not be
recoverable until a reformat is performed. Files stored on Flash RAM cannot be
compressed, whereas those on the internal drive or on SRAM devices can be compressed
in situ to recover the space used by deleted records.

Flash SSDs are particularly attractive for storing program files, read-only data (say for
data-referral applications), for securely storing logged data in the field and for archiving
data. The storage of files on a Flash SSD is very different from that used on RAM SSDs.
The scheme is not at all block structured, but is based on linked variable length records.
All this is hidden from the caller and the logical interface to a file on a Flash SSD is the
same as for a file on a RAM SSD (or any other medium).

On a Flash SSD, there is no limit on the number of files or directories in the root directory.
You will also find that it is possible to fit slightly more data on a freshly formatted Flash
SSD than on a RAM SSD of the same nominal capacity. This is due to the fact that files
are allocated space in multiples of whole blocks on a RAM SSD whereas Flash files are
stored in exactly sized variable length records.

6-16 Files in EPOC16

I/O System 7-1

7 I/O System

Introduction
A programmer must use the input/output (I/O) system (directly or indirectly) to do general
file handling, or to interact with various devices and systems within the SIBO
environment. A comprehensive I/O system is supported by EPOC16, which includes many
hardware devices and some software sub-systems. For example, to print to the parallel port
a programmer would open a channel to the PAR: device.

Note, this chapter covers the principles of device I/O. To simplify the description of I/O
processing and signalling, the OPL function names and terms will be used; although C and
OVAL programmers will have no problems in recognising the equivalent terms and
function names.

The principles of general file I/O are covered in the chapter – ‘Files in EPOC16’.

I/O devices
CON: for access to basic screen and keyboard services
FIL: for operating on files
PAR: for accessing the parallel port
TTY: for access to an RS232 serial port
XMD: for access to the Xmodem or Ymodem serial data transfer protocols
NCP: for establishing a link to a remote system
SND: for access to sound via a loudspeaker - for non-digital sounds
TIM: for using an asynchronous timer
ALM: for setting Alarms
FRC: the free running counter – e.g. for use as a high-resolution timer
WLD: to access the built-in World application database
SIR: for low level to access the serial infrared port.
AIR: for protocol controlled access to the serial infrared port
IRP: for infrared printing port services e.g. point and shoot printing.

Listed above is a comprehensive, although not exhaustive, list of the I/O devices in a SIBO
system. Other I/O devices may be used for interaction with additional peripherals, such as
bar code readers, docking stations (e.g. for the Workabout and HC systems) or even

7-2 I/O System

software services such as the DBS database server (described in the ‘Files in EPOC16’
chapter).

Some of the devices in the list above are included for completeness, e.g. the FIL: device,
since file operations are not normally done explicitly by direct reference to this device.

More detailed descriptions of the I/O devices listed above are provided later in this
chapter, and example code is supplied on disk to demonstrate a wide range of interactions
with most of the devices. See the index for references to the relevant example file names.

Device drivers
The I/O system is implemented in EPOC16 using software interfaces called device drivers,
that are designed to isolate the programmer from the details of any underlying hardware.
Thus, although the exact implementation of the parallel port hardware may differ across
SIBO machines, it will have no effect on the code of an application program. Differences
in SIBO hardware are accommodated by using different device drivers for different Psion
models.

To use I/O devices it is not necessary to understand the details of the associated device
drivers, you just need to know the name of the device and the functions that it provides.

For those who wish to know more about device drivers, or even how to produce their own,
more detail is provided at the end of this chapter.

Using the I/O system
Device I/O may seem complex at first but in practise it is not; more specific details are
provided elsewhere, and example code for a number of common I/O tasks is provided on
disk.

Before the functions of an I/O device can be used it is necessary to get a handle or
identifier for the device. Unless a ‘standard’ handle exists for the device, a channel must
be opened to the device with a call to a system service function (e.g. the OPL keyword
IOOPEN() or the PLIB p_open() function).

If the I/O device is not recognised as valid, the system will pass the open call on to the file
server to see if the device specified was a file name. Setting the mode parameter to –1 in
the function call to open the device will prevent this behaviour. For example in OPL:
IOOPEN(handle%, name$, -1) REM open a device not a file

In OVAL, many of the I/O devices in the system, such as the serial port, are used via
specific OVAL controls. Opening a channel to a device is done through the Open method
of the DeviceIO control and a number of I/O related methods are available to interact with
the device.

I/O System 7-3

Handles
Opening a channel to a device or file will return a handle or identifier; all further
references to the channel are then made using the handle.

In OPL, the console device may be referred to using a handle of –2, and a handle of –1 can
be used to refer to the last device channel that was opened with LOPEN. (Note: Do not use
handles of –2 or –1 if you are using the I/O macros in the OPL SDK.)

I/O functions
Specific functions or actions of the I/O device are accessed via synchronous functions such
as IOW() or asynchronous I/O service functions such as IOC() or IOA(). These functions
make various types of request on the I/O channel. For example, to read from or write to the
device.

The particular I/O function requested is specified by a function number parameter. Some
I/O functions are specific to a particular device, for example FSEEK, which sets the file
position on an open file channel. Some I/O functions apply to more than one device,
including:

Function ID Value Action
FREAD 1 Read data from a channel
FWRITE 2 Write data to a channel
FCLOSE 3 Close a channel
FCANCEL 4 Cancel outstanding asynchronous request on

a channel
FSET 7 Set channel characteristics
FSENSE 8 Sense channel characteristics
FFLUSH 9 Flush out the data buffers

In OPL the most commonly used I/O functions are supported by their own synchronous
convenience functions as follows:

IOCLOSE i.e. IOW(FCLOSE)
IOREAD i.e. IOW(FREAD)
IOWRITE i.e. IOW(FWRITE)
IOSEEK i.e. IOW(FSEEK)

The functions IOCLOSE, IOREAD and IOWRITE are used with many devices.

The function IOCLOSE (or p_close() in C) is applicable to all devices; IOSEEK only
applies to open files, and is described in the ‘Files in EPOC16’ chapter.

7-4 I/O System

Closing the channel
Once the interaction is finished, the I/O channel to the device is closed using an
appropriate function call e.g. the OPL function IOCLOSE(), PLIB function p_close() or
Close in OVAL. It is good practice to close the I/O channel as soon as it is no longer being
accessed. Closing a channel will release memory and other resources back to the system.

Avoiding I/O errors
The device handle is the vital link to any particular I/O channel. A handle may be ‘lost’ by
overwriting it, or by holding it in a local variable and then trying to refer to it outside of
the scope of the procedure that declared the variable.

Always design your programs to handle errors that may arise during I/O device handling.
For example with OPL the I/O functions such as IOW(), IOC() do not generate errors that
can be caught using the TRAP or ONERROR statements. Virtually all of the OPL I/O
keywords return a value. If the return value is negative, an error has occurred. Additional
code should be included to examine the return value for error conditions and act
accordingly. A full list of possible error codes is given in the Appendix.

Synchronous I/O
Synchronous I/O, using a function such as IOW() (or p_iow() in C), is relatively simple.
However, if you are planning to use asynchronous device I/O, and particularly if multiple
I/O requests are to be made, it is essential to understand I/O semaphores, status words and
the differences between synchronous and asynchronous operations.

Some I/O system services are implemented in two steps:

1. Make the service request.
2. Wait for the requested operation to complete - i.e. the waiting process is suspended.

In most cases, as well as providing functions for each step, the system provides a function
containing both the above steps. Such combined functions are called synchronous, because
they automatically cause the requesting process to wait until the operation has completed,
i.e. they synchronise it.

Note:
If you only intend to make synchronous I/O calls (i.e. using functions such as IOW() or
p_iow()), then matters are usually much simpler, and you don’t have to worry about I/O
semaphores and status words.

I/O System 7-5

Asynchronous I/O
For asynchronous I/O, always use functions calls of the type IOC() or its equivalent
p_ioc(), unless it is absolutely necessary to test for the successful start of the I/O request.
Functions such as IOC() assume that the I/O request will start correctly, but will still
return an error condition if it did not start or fails to complete.

Functions that queue multiple service requests, without waiting for their completion, are
called asynchronous functions.

Applications use asynchronous requests in situations like the following:

1. Make service request A
2. Make service request B
3. Wait for either of the requested operations to complete - whilst possibly doing some

other processing, while waiting for one or more of the service requests to complete.

Processes wait for the completion of asynchronous requests by waiting on their I/O
semaphore. Each request has an associated with a status word - a static variable (or value
from the heap) that is used to indicate the current status of the request that was made.

Semaphores and status words
Semaphores are indicator flags created and used by EPOC16 to synchronise co-operating
processes; they have three common uses:

• Synchronising access to a shared resource e.g. a storage device.
• Synchronising supplier-consumer relationships e.g. a semaphore associated with a

pool of data in a shared data segment.
• Synchronising the completion of asynchronous requests.

The semaphores used by EPOC16 are counting semaphores, having a signed value that can
be incremented and decremented via operating system calls or functions. A semaphore
with a negative value implies that a process must wait for the completion of some other
event, such as the freeing of a shared resource. The mechanism by which a process waits
on a semaphore is part of the overall management of process scheduling.

I/O Semaphores
When a process is created, the system creates a single I/O semaphore on its behalf, initially
with a value of zero. Although this semaphore is used for I/O operations, it is used in
general for asynchronous requests of other types. The I/O semaphores for all processes are
stored in the private data space of the operating system, (they can be viewed using the
SIBO debugger or the Spy application - discussed elsewhere).

After making one or more asynchronous requests, for example using IOC() or IOA() in
OPL, a program could call IOWAIT (in C the PLIB function p_iowait() would be used)
to wait for one or more of the I/O requests to complete.

7-6 I/O System

In fact, a typical application process spends most of its time waiting on its I/O semaphore.
For example, an interactive application process that is waiting for user input is waiting on
its I/O semaphore.

Each call to the IOWAIT function (or PLIB p_iowait()) decrements the I/O semaphore
and suspends the process. The call to IOWAIT will return when any outstanding
asynchronous request completes, and so it may return immediately. A negative value for an
I/O semaphore means that the process is waiting on one or more I/O requests. A call to
IOWAIT will only return when the I/O semaphore is non-negative i.e. when something has
happened.

When asynchronous I/O requests complete, the system signals the event by incrementing
the I/O semaphore for the process. Therefore, if you are making more than one I/O request,
it is essential to check the status word associated with each I/O request to ensure that it
was one of your requests that completed.

I/O status words
Each asynchronous request will have its own status word that must remain available to the
to the I/O function (usually by declaring it as a global variable). When any particular I/O
request completes, a value will be written into the status word associated with that request.
Status words are used to indicate the current state of the request, or the result of a
completed I/O request.

While the I/O request is still pending i.e. before the call to IOWAIT has returned, a negative
value for a status word indicates that request is still outstanding.

When a call to IOWAIT has returned, the status word for each outstanding I/O request
should be examined (this is sometimes called polling). If the status word for a particular
I/O request has the value E_FILE_PENDING (i.e. -46), then that request has not completed,
and it may be another of the outstanding requests that has completed. Any other negative
value indicates that an error has occurred, whereas a zero or positive value indicates it
completed successfully.

Note:
If you are only making one asynchronous I/O request at a time, use IOWAITSTAT instead
of IOWAIT, since a call to IOWAITSTAT will only return when the I/O request associated
with the specific status word completes.

Once an asynchronous I/O request has completed, and a status word with an appropriate
value has been detected, the ‘on completion code’ is then executed. The order in which the
various status words are examined, and therefore acted upon, will determine the order of
priority associated with the various I/O requests.

When the processing of a completed I/O request is done, it is usual to re-queue the I/O
request and call IOWAIT again, to wait for the next completion. For example, to wait for
the receipt of more data from a serial port, or for the next key press etc.

Always be sure not to re-queue the same I/O request again unless the status word indicates
it has definitely completed. Making a new I/O request while a previous one on the same
status word is still pending will almost certainly cause the program to be panicked.

I/O System 7-7

However, some drivers will allow both a read and a write request to be pending at the
same time, the serial port (TTY:) for example.

If none of the status words correspond to one of the outstanding I/O requests, then the
return from IOWAIT was a ‘false alarm’ for your purposes. Such a program would usually
loop round and call IOWAIT again. This of course, will decrement the I/O semaphore
again, potentially raising a ‘stray signal’. If so, you must keep a count of each time IOWAIT
returned on a ‘false alarm’ (i.e. due to other functions completing and signalling, outside
of your code).

When one of the status words finally shows that IOWAIT returned due to an I/O request
made by your program, IOSIGNAL (p_iosignal() in C) must then be called once for
each of the other ‘false alarm’ returns. This will correctly increment the I/O semaphore to
replace each of the decrement signals caused by any repeated ‘false alarm’ calls to
IOWAIT.

Cancelling an asynchronous request
Most asynchronous request operations have a corresponding cancel function, and the
following principles are applicable:

• The cancel function will only precipitate the completion of the I/O request.
• It may be too late to cancel the I/O operation, it may have already completed before

the cancel function was processed.
• In either case, the completion of the I/O request must still be ‘processed’, since the

I/O semaphore will have been signalled.

The I/O request can be cancelled with a call such as:

IOW(handle%, FCANCEL, #0, #0), where FCANCEL = 4. With the Series 3, 3a/c,
Siena or Workabout the IOCANCEL(handle%) function could be used.

If the I/O request has already completed the cancel function will do nothing; otherwise it
will only precipitate the completion of the I/O request, but with the status word set to
E_FILE_CANCEL (i.e. -48).

Important note:
To ensure any stray I/O signal is ‘used up’, a call should be made to:

IOWAITSTAT handle% (or p_waitstat(&handle)) immediately following the call to
cancel.

I/O and compute intensive processes
An alternative strategy, to making asynchronous I/O requests and then waiting for a return
from IOWAIT, could be to make the I/O requests and then go round in a loop testing
(polling) the value of the corresponding status words. However, in a multi-tasking
environment this is usually considered anti-social, because it can hog a lot of processor
bandwidth.

7-8 I/O System

In some situations it may be desirable to remain responsive to user key presses, whilst
continuing to do some other compute intensive task, for example calculating the next move
in a game. In the situation just described, a looping and polling design may be more
appropriate.

If this approach is used, you need to be aware that in some cases asynchronous requests
are completed by functions known as wait handlers. Therefore, it is necessary to call
IOYIELD before each poll of the status word, to give any wait handlers a chance to run.

Wait handlers are functions that process the completion of asynchronous requests from
within IOWAIT (or IOWAITSTAT). Any active wait handlers are called just before IOWAIT
would have otherwise returned.

While an application performs a computationally intensive task that takes an extended
time, it should call IOYIELD, because wait handlers are only called when the process calls
IOWAIT or IOWAITSTAT. The IOYIELD function is effectively a combination call to
IOSIGNAL, followed by a call to IOWAIT. Thus, IOYIELD allows any wait handlers to
run.

For example:
...
IOA(handle%,func%,stat%,#pBuf%,len%)
DO
 nextmove: /* calculate part of next game move */
 /* this task must not be continuous, */
 /* i.e. it should be broken up into sections */
 /* so IOYIELD gets to run quite often */
 IOYIELD /* allow any I/O wait handlers to run */
UNTIL stat%<>E_FILE_PENDING
...

In example above, completion of the I/O function is indicated by the status word becoming
zero or positive. Remember that the I/O semaphore will have been incremented, so it is
obligatory to ‘use up’ that signal by calling IOWAIT, to avoid a ‘stray signal’ later.

Console services
The CON: device provides a basic set of screen and keyboard handling services, e.g. for
simple character based C or assembler applications. Programs written in OPL, HWIF C,
HWIM C and Oval spare the programmer from any need to make direct use of the console
CON: device. In I/O calls made to the console device from an OPL program, a handle of –2
can be used as the default.

(A C program that makes use of the CLIB start up module will automatically open a
channel to the CON: device. This is not the case if the PLIB start up module is used, but the
first PLIB console I/O function call that is made will automatically open a channel, if one
is not already open. A process that attempts to explicitly open a console channel when it
already has a channel open will be panicked - see the ‘Errors and Debugging’ chapter).

I/O System 7-9

File services
All general file handling is done via the I/O system using the FIL: device driver, although
references to the FIL: device are not usually made explicitly, and are largely hidden from
the programmer. Opening a channel to the FIL: device provides access to file operations.
Application processes must connect to the file server before they can use its services.
However, this is normally taken care of by the program start up code and is included
automatically, i.e. in OPL, OVAL, or C programs that use PLIB. See the chapter entitled
‘Files in EPOC\16’ for more details on general file I/O.

Parallel port
Opening a channel to the PAR: device provides access to a centronics parallel port,
normally just used for printing. The Siena and Series 3 family recognise only one parallel
port i.e. the PAR:A port, which is a write only device and does not support read operations.
Other SIBO machines may support more than one parallel port e.g. PAR:B or PAR:C in
addition to PAR:A.

In OPL, it is more usual to interact with the parallel port using the synchronous keywords
such as LOPEN, LCLOSE and LPRINT. If the PAR: device port has been ‘opened’ with
LOPEN, a handle of –1 may then be used in any subsequent I/O requests made with
functions such as IOW(). However, if the port is opened with IOOPEN, then the handle
returned by that call should be used for all subsequent I/O service calls.

See Infrared communications later for details of printing via the infrared port.

Serial port
Opening a channel to the TTY: device provides access to a fully interrupt-driven RS-232
serial port. The Siena and Series 3 family recognise only one serial port i.e. the TTY:A
port, which supports read / write operations for data, and sensing / setting operations for
the serial port parameters and control lines. Other SIBO systems, such as the HC and
Workabout, may support more than one serial port e.g. TTY:B or TTY:C in addition to
TTY:A.

In OPL, it is more usual to interact with the serial port using the synchronous keywords
such as LOPEN, LCLOSE and LPRINT. If the TTY: device port has been ‘opened’ with
LOPEN, a handle of –1 may then be used in any subsequent I/O requests made with
functions such as IOW(). However, if the port is opened with IOOPEN, then the handle
returned by that call should be used for all subsequent I/O service calls.

See Infrared communications later for details of sending data via the serial infrared device.

7-10 I/O System

Xmodem and Ymodem transfers
The XMD: device driver supports the industry standard Xmodem and Ymodem serial data
transfer protocols, for transfer of data (files) between similar or dissimilar computers.
Applications that intend to use the file transfer I/O services must first open a channel to the
XMD: device driver. (The XMD: driver is an example of an attached device driver that
automatically makes use of the serial port device driver to which it attaches.)

Link and NCP
The Link application is the process that controls the connection of a SIBO system to a
remote system such as a PC. The Link application has no visible user interface. On the
Series 3 family, Siena and Workabout the user is able to turn the link on or off, as well as
setting up link parameters such as the baud rate, from a remote link option on the system
screen ‘Special’ menu. The Link and SYS$NCP processes are started and stopped by the
system process (SYS$MANG) in accordance with the user settings. Link monitors changes in
the SYS$NCP process, and sets up the remote filing system once a connection is
established.

It is the SYS$NCP process that actually handles the details of the communication at the
Psion end, and provides the NCP: device driver functions to the applications programmer.
The SYS$NCP process establishes the remote connection and manages the data transfer. It
is Link processes (one at each end) that (via SYS$RFSV processes) create a client server
type connection between the local file system (i.e. the Psion) and the remote file system
(e.g. a PC). Applications which require to make use of the NCP: I/O services must first
open a channel to the NCP: device driver. A document (called NCP.DOC) is provided on
disk which give more details on Link and NCP.

Sound
Different SIBO systems have varying internal sound hardware and therefore provide
distinct sets of sound services. Producing sound via a buzzer or via the SND: driver is
described here. Recording and playback of digital sounds is described in the
‘Programming Techniques’ chapter.

Sound mechanisms
In all cases, sounds produced by the buzzer (or buzzer emulation) are generated via the
PLIB p_sound function, the GenSound OS call, the OPL BEEP function or the Oval Beep
function.

Sounds made via a speaker (if fitted), such as DTMF dialling tones and some alarm
sounds, are controlled via I/O functions using the SND: device driver.

I/O System 7-11

Playing and recording of digital sound files (.WVE files) is achieved using appropriate
O/S calls or PLIB C function calls.

Sound example code, in OPL and C, is provided on disk, see the disk index in the ‘Disk
Contents’ chapter.

Alarm sounds
When setting an alarm on the Series 3a/c, there are five standard alarm sounds available
(apart from silent), i.e. rings, chimes, fanfare, soft bell and church bell. Rings and chimes
are two standard sounds produced using I/O calls to the SND: device, the other three
sounds are produced by playing digital sound files. The ‘standard’ alarm sound .WVE files
are in ROM and have the names SYS$AL01.WVE, SYS$AL02.WVE and SYS$AL03.WVE.
An example OPL program (ALARMSND.OPL) is supplied on disk to demonstrate playing
both types of sound. See the Alarms section below for details of how to set alarms from
your own programs.

Dialling (DTMF) sounds
Dialling tones are produced using I/O calls to the SND: device. An example OPL program
(DTMF.OPL) is supplied on disk that demonstrates generating DTMF dialling sounds on
Series 3, 3a or 3c machines.

Timers and processes
A process can be suspended because it is waiting for a timer to elapse, or it may still be
active and operating asynchronously but is ready for its I/O semaphore to be signalled
when a timer device entry elapses. The timer entries are held in the time DELTA queue -
see the ‘Processes, Memory and Applications’ chapter.

Two types of timer are supported by EPOC16, using the TIM: device driver:

Absolute timers
• Expiry times are specified as a specific number of seconds after time 00:00:00 on

January 1, 1970.
• When an absolute timer elapses, a SIBO machine that is currently off, will switch on

again.
• Putting the system time forward may cause an absolute timer to expire.
• They are used for alarms in the Agenda and Time applications - see Alarms below.

7-12 I/O System

Relative timers
• Expiry times are specified as a time interval (in number of system ticks), relative to

the system time, at the moment it is queued. Since they are stored as a signed 32 long
integer they have a range of approximately 2.1 years (at the SIBO rate of 32 ticks per
second).

• If the SIBO machine is turned off, any relative timers effectively stop running so they
cannot switch the machine on.

• Altering the system time has no effect on the expiry time.
• Relative timers with intervals less than the auto-switch-off time can stop the system

switching off - see ‘Processes and auto-switch-off’ in the ‘Processes, Memory and
Applications’ chapter.

Asynchronous and synchronous timers
Synchronous timers will wait until the specified time period elapses before returning to the
calling program. The synchronous function IOW() can be used on an open channel to the
TIM: device to set a timer. However, it is simpler and more reliable to use the OPL PAUSE
command, or the PLIB C functions such as p_sleep, p_sleepa and p_sleept; all are
examples of synchronous timer functions.

Asynchronous I/O calls to set timers (e.g. with IOC() or IOA()) will return immediately.
Other processing may then be done, such as queuing other asynchronous requests, before
using IOWAIT to wait for the completion of one of the requests.

Timer functions
To use a timer (e.g. in OPL) you first open a channel to the TIM: device e.g.
r% = IOOPEN(handle%, “TIM:”, -1)

Then make an I/O request (e.g. IOW(), IOC() or IOA()) to call one of the following
functions:

Function ID Value Action
FRELATIVE 1 Set a relative timer
FABSOLUTE 2 Set an absolute timer
FCANCEL 4 Cancel a timer e.g. IOW(handle%,

FCANCEL)

By opening a new device channel for each timer required, it is possible to have many
timers running.

In OVAL, a timer control can be used to signal your program each time a set time interval
elapses. The timer control has a resolution of 1/10th of a second, so the shortest time
interval that is allowed is 100 milliseconds. Specifying a time interval of less than 1/10th of
second will generate an error 380.

To close the timer channel you would use, IOCLOSE(handle%).

I/O System 7-13

Free running counter (FRC)
For programmers who need access to a high-resolution timer, a device driver for a built-in
free running counter (FRC) became available with Series 3a and Workabout systems (i.e.
it is not available on the HC or Series 3).

The FRC: device has a resolution of 1/1024 seconds, and is accurate to 2.6 seconds per
month. Applications should only make use of the FRC if they need a resolution of 1/32
seconds or greater. The FRC should only be used for as long is it absolutely necessary,
since the it can only support one process at any one time. A relative or absolute timer
should be used instead of the FRC: device unless a very high resolution is mandatory e.g.
for an application such a stopwatch. Example programs that demonstrate the FRC: device
are provided on disk.

Alarms
Timers are an integral part of EPOC16. However, all alarm services, a specific use of
timers, are provided by the built-in ‘Time’ application on the Siena and Series 3 systems,
rather than having alarms as an fundamental part of EPOC16. Alarm services are accessed
by opening an I/O channel to the ALM: device driver and using an I/O request (such as
IOW(), IOC() or IOA()) to set the properties.

Alarms may have the following properties:

• An absolute time for the alarm.
• An optional message to be displayed.
• For timed alarms, an actual appointment time to be shown
• For alarms on the 3a/c and Siena, an alarm sound (which may be silent)

A process setting an alarm may request a timed or an un-timed alarm – this may seem a
little confusing at first. The only difference between an un-timed and a timed alarm is that
a timed alarm can display the ‘time due’, in addition to the day and month information. So
a timed alarm can give advanced warning of the actual time at which something is due.

All alarms have an absolute time in the future at which they should expire. If a program
sets an alarm but terminates before it expires, the alarm remains in effect, and is referred to
as orphaned.

A zero terminated (ZTS) text message of up to 64 characters can be attached to an alarm
on a Series 3 system. With alarms from the Series 3a onwards, the message can be up to
160 characters long, and can have a sound associated with them. Sounds can be rings,
chimes, silent or a digital sound file, including one of the ROM based alarm sounds; for
more details see the section on Alarm sounds earlier.

7-14 I/O System

Alarm functions
Function ID Value Action
A_FTIMED 1 Series 3 timed alarm
A_FUNTIMED 2 Series 3 un-timed alarm
A_FTIMED_X 10 Series 3a/c or Siena timed alarm
A_FUNTIMED_X 11 Series 3a/c or Siena un-timed alarm
FCANCEL 4 Cancel an alarm e.g. IOW(handle%,

FCANCEL,#0,#0)

With a Series 3a system or later, all of the alarm functions above may be used. With an
original Series 3 system, only the first two types of alarm function can be used.

The structure of the data passed to the alarm device driver will depend upon whether it is a
for an alarm on a Series 3 or on a Series 3a or later. A number of OPL programs (e.g.
AALARMA.OPL and EX_ALARM.OPL) are supplied on disk to demonstrate setting
alarms with messages and sounds, and give details of the data structures needed.

World database
Applications can have access to the information held on a large number of countries and
many of their major cities, that is contained in the database of the built-in World
application.

The data is in a ROM based file with the name ROM::WORLD.WLD, unless the ROM is a
multi-lingual ROM - see later. By default, a WORLD.WLD extension file will be created
to hold updated information such as new cities and changes to countries. The additional
files should contain a maximum of 32 entries each to maintain optimum access efficiency.
New World extension files, with different names, may have been created by the user to
hold new of updated information. The World database server will read these files, and the
data the extension file contains will override that in the main World file. The data in the
main World database file is held in compressed form. Opening a channel to the WLD:
device driver allows an application to access and update the information held. Applications
are able to set the current home city and the current default country.

Information in the World database includes:

For each country
• National telephone dialling codes.
• International prefix dialling code.
• National prefixes for long distance calls.

For each city
• Time deviation from GMT.
• The zone for day light saving time (DST).
• Sunset and sunrise times calculated and returned as local time.
• Latitude, longitude and the co-ordinates of the city on the world map.

I/O System 7-15

A number of OPL examples are provided on disk, they illustrate access to the data in the
World database. Of particular interest are FDIAL.OPL and FDIAL.TXT which
demonstrate getting country specific dialling information. The file WLD.TXT contains the
I/O function numbers and details of the data structures used when making requests on the
WLD: device.

In a multi-lingual ROM, there will be multiple world data files. The English data will be in
ROM::WORLD.WLD, and the other languages in files with names of the form
ROM::WORLD._xx, where xx is replaced by the language number. For example, a French
world data file would have the name ROM::WORLD._02, a Dutch data file would be
called ROM::WORLD._18. A full list of the country codes is provided in the Appendix.

Infrared communications
A bi-directional infrared communications port was introduced with the Series 3c and
Siena, access to the infrared services is provided through the following I/O devices:

SIR: Gives low level access to the serial infrared port.
AIR: Provides protocol controlled access to the serial infrared port.
IRP: For infrared printing port services e.g. point and shoot printing.

Infrared printing support is provided to applications via the IRP: I/O device (using the
IRLPT.LDD device driver), in a similar way to printing via the PAR: parallel port device.

IRP uses the AccessIR API services, which is a protocol controlled link mechanism
provided by Psion, over the top of the IrDA (Infrared Data Association) standards.
AccessIR provides a higher level link designed to simplify the connection of IrDA enabled
devices e.g. printers, PCs or other Psion computers. The AccessIR API is used via the
AIR: I/O device, and itself makes use of the low-level SIR: I/O device to talk to the
infrared hardware.

Device drivers are provided in the Series 3c and Siena for SIR:, but the drivers for the
IRP: and the AIR: I/O device (ACCESSIR.LDD) are only provided in the Series 3c, they
are not present in the Siena ROM. On the Siena the drivers for IRP: and AIR: have to be
installed and loaded into memory as required. The IR device drivers required for the Siena
are supplied on disk, see the SIEIRPR directory and the notes below.

The SIR: I/O device also handles the 'beaming' function for transmission and receipt of
data and files between Psion IrDA capable machines. An example program is provided on
disk that demonstrates Serial infrared (via SIR:) chat between two people typing on two
systems see IRCHAT.OPL.

Another demonstration program IRCOPY.OPL will receive a file transmitted via infrared
from another system.

An alternative method is available for infrared communications that uses the IrMUX API,
where communication between the application and the IrMUX API is via IPCS (Inter
Process Communications). IrMUX is more flexible than AccessIR but more complex to
use and is designed to be used by programmers using HWIM C.

7-16 I/O System

Note:
The infrared protocols used on the Series 3c and Siena are different to those used on the
Series 5. Data transfer between SIBO and Series 5 systems is not possible with the
standard system software.

The Siena infrared printer drivers are provided on the supplied disk. They are installed as
follows:

Copy accessx.ldd, irlpt.ldd and loadlpt.img into the img directory of your machine. You
must be create this directory if it does not already exist. 'Loadlpt' should appear under the
IMG icon in the System screen. Run the Loadlpt program by highlighting it and pressing
'Enter'. Follow the program instructions to install the infrared drivers. It is not necessary to
keep the loader program (loadlpt.img) on the Siena once it has been run, although you will
need to run it again if the machine is ever reset.

After installation infrared printing will be possible from any printing enabled Siena
application. To print using infrared: select the 'Print setup' menu option within an
application, and tab through the range of devices until "Infrared" appears. Still within the
print set-up dialog, select the correct printer model and align the Siena with the printer's IR
port, then select 'Print' to start IrDA printing.

Device drivers, in more detail
The I/O system is implemented using software interfaces called device drivers, which are
designed to isolate the programmer from the details of any underlying hardware.

In EPOC16, device drivers are usually implemented as two layers; the logical device driver
(LDD) layer with which the programmer interfaces and is hardware independent; and the
physical device drivers (PDDs) which are hardware dependent.

An LDD may make use of several PDDs that are hardware specific. For example, to open a
file the programmer will interface with the FIL: LDD, which will use an appropriate PDD
for access to Flash SSDs, RAM SSDs or Internal RAM disk files etc. Exactly which PDD
is used is transparent to the programmer.

By layering the device driver system, it is possible to present the same interface (via a
common LDD) to the programmer; even though the exact implementation of a hardware
device may differ across SIBO machines. (The differences are accommodated by using
different PDDs for different models.)

EPOC16 supports the concept of attached device drivers, where a device driver attaches
itself to another device driver and makes use of its functionality. For example, the XMD
driver makes use of the serial port driver TTY: in order to provide Xmodem and Ymodem
data transfers.

Some device drivers do not access hardware at all, but the driver mechanisms are used to
add additional functionality to the system. For example, the standard C floating point

I/O System 7-17

library is implemented as a device driver, and the interface to the DBS database library is
via an LDD.

External device drivers
Many device drivers are ‘internal’, i.e. they are built into the ROM. For example, the
RS232 LDD and its PDD are in ROM, but other ‘external’ device drivers may have to be
loaded from a file e.g. a bar code reader device driver. Such dynamically loadable and
removable device drivers are a key feature of EPOC16, and system service functions are
provided to load and delete (unload from memory) external LDDs and PDDs.

When a channel is opened to a device driver, a loaded (external) device driver will be used
in preference to any existing (internal) device driver of the same name. Hence, it is
possible to write replacement device drivers for those provided as standard - see Writing
device drivers below.

Writing device drivers
Programmers who wish to write their own LDD device drivers will need to use assembly
language. A small section of assembler code may just provide an appropriate interface to
other more extensive code, which may be written in assembly language or in C.

Example device drivers, with assembly language and C source, are provided with Psion’s
EPOC16 C SDK; although it is necessary to have the Borland Turbo Assembler
(TASM.EXE), and the Turbo Linker (TLINK.EXE) to re-build the drivers from the source
code.

7-18 I/O System

OPL Programming 8-1

8 OPL Programming

Introduction
Programmers working in OPL have the widest range of platform choices for developing
applications. An outline of the options is given in the ‘Platforms’ chapter; here each of the
options are described in more detail, including some ‘how to’ information.

Comments are given on the advantages and disadvantages of each way of working, plus
more details of the software and documentation supplied. For example, the Psion SIBO
OPL SDK is described in considerable a detail.

OPL has evolved considerably with each generation of systems from Psion, to become
powerful and flexible programming tool that still remains easy to use. Evidence of the
growth in power can be seen from the ROM space the language requires. On the Organiser
II it took a mere 8K, 19K on the HC, 23K on the Series 3, 29K on the Workabout, S3a/c
and Siena. A major change occurred in OPL as implemented on Psion Series 5 systems
and it has now grown to occupy 140K of ROM memory.

OPL on 16-bit SIBO machines will be referred to as OPL16 (or SIBO OPL), on the 32-bit
Series 5 systems it will be called OPL32. A detailed description of the entire OPL
language is given in the ‘OPL Reference’ chapter.

Examples of more advanced OPL16 techniques are covered in the ‘OPL16 Techniques’
chapter using a full application as an example.

Differences between OPL16 and OPL32, and programming for Series 5 are discussed in
the ‘OPL32 Techniques’ chapter. In addition the chapter contains a detailed description of
a full Series 5 example application in OPL32.

You will find a wide range of OPL programming examples on disk. The examples vary:
There are countless small snippets of OPL code to demonstrate a specific technique. Some
are complete OPL applications. Some are very sophisticated combination examples that
call the operating system or even sections of code written in C. All of the examples are
described and indexed in the ‘Disk Contents’ chapter.

OPL manuals
In the past Psion supplied a printed copy of the OPL programming manual with each
‘consumer’ machine. When it became apparent that most users made no use of their OPL
manual, Psion stopped supplying it by default in the UK. Printed copies of the Series 3a

8-2 OPL Programming

OPL programming manual can be purchased from Psion for around £10. Psion also put the
text of the Series 3a OPL manual into the public domain (whilst retaining the copyright); it
is supplied in its complete form on disk – see the OPLMAN directory.

For Siena, Series 3c and Series 5 programmers the latest OPL programming manual is
available for download from the Psion PLC Website. An edition of the manual in
Microsoft Word format, obtained in June 97, is available on disk - see the OPLMAN32
directory.

Note:
You are referred to the Psion Website for the latest version of all documentation and
examples originating from Psion – see the ‘Contacts and Sources’ chapter for access
details.

Purchasers of the Series 5 system are supplied with the OPL32 manual on the PsiWin 2.0
(Explorer) CD-ROM.

SIBO based development
As stated elsewhere you can develop software using a SIBO system exclusively, and many
successful Freeware and Shareware authors do just that. Some very sophisticated
applications have been produced entirely on Psion computers.

Using the built in OPL editor/translation system is so straight forward that I will not waste
words describing the process (see the text files in the OPLMAN directory for details),
other than to stress the need for making regular backup copies of your source code and
related files. Be sure to backup any files from the internal RAM drive to Flash or RAM
SSDs, or a PC if you have one, especially if you make calls to the operating system or to
sections of assembler code. A severe crash and reset, although rare, could wipe out weeks
of hard work.

SIBO with OPP/OPPDBG
OPP and OPPDBG are shareware products from Andy Clarkson. OPP is a sophisticated
OPL development system that provides alternative programming editors, adds new
capability to the OPL editing / translation process, extends the OPL syntax and hides the
complexity of operating system calls. Use of OPP also enables (optional) debugging of
OPL programs at the source code level via OPPDBG - see later.

After OPP is installed a programmer works with the OPP editor (actually an alias of Word)
to produce program source code files, with a filename extension of OPP. Similarly, an
OPH editor is used to produce header files with an OPH extension. A new #include
instruction allows references in OPP program files to the OPH files. During the OPP
translation process the OPH files are opened, and the contents treated as though they were
part of the source file in which they are ‘included’. Header files are extremely useful for

OPL Programming 8-3

defining constants and macros (via #define) and for ‘including’ standard sections of
macro/library code.

Working with OPP on a SIBO system is almost exactly like using the built in OPL editor
and translator, but with greatly increased functionality. For example, the system allows
definition of C-like data structures and language extensions such as 2D arrays. A huge
number of pre-defined OPH include files are supplied which provide simple access to
virtually all of the EPOC16 system calls.

OPP also has an option to make translated programs less prone to reverse translation by
the REVTRAN program (see the REVTRAN directory on disk).

OPP is an excellent and very impressive system, I am only aware of two slight
disadvantages associated with its use. The first and most important is that it makes
programs OPP specific and dependent. Porting OPP code to new Psion machines may be
more difficult, and will rely on the author of OPP being willing and able (dependent on
Psion) to port it to any new systems. A second minor disadvantage is the lack of an outline
view in the OPP and OPH editors.

The OPP pre-processor is also available in DOS form – see later under ‘PC based
development’.

OPPDBG
A run-time source level OPL debugger that can display the lines of OPL code currently
being executed and enables ‘break points’ to be set at specific points of interest in the
code. OPP allows examination / changing of local variables in the running program; it
depends upon the use of OPP.

Both OPP and OPPDBG are provided on disk for your evaluation – see OPP16f and
OPPDBG11.

Please note:
OPP and OPPDBG are shareware programs, if you decide to use them please register
them.

PC based development
The basis for PC based OPL development is:

• A PC running either DOS or Windows
• The target SIBO computer, or DOS based emulator
• A SIBO to PC link and PC based software (see the chapter ‘Linking to a PC or

Printer’)
• An external power supply for the Psion computer
• Your chosen PC based development tools – discussed below

8-4 OPL Programming

DOS based development

Editing
Since SIBO OPL source code is just plain ASCII text, you may use the text or
programmers editor of your choice. One point is worth noting here: be careful about the
size of your source files if you wish to be able move source code back and forth between
the PC and a SIBO system. The SIBO based OPL (or OPP) program editors (which are
aliases of Word) are limited to files of around 40K bytes or less.

After producing the OPL code it is translated using one of the PC hosted translators.
Testing may be done using a DOS based emulator or using a SIBO system, after transfer of
the OPO or OPA executable to the target system.

Translation
PC based translation of OPL to SIBO executable code is via one of the machine specific
translators produced by Psion. PC hosted OPL translators exist for:

Series 3 S3TRAN.EXE
Series 3a/c + Siena S3ATRAN.EXE
Workabout WATRAN.EXE
HC HCTRAN.EXE
(MC MCTRAN.EXE)

Production of an executable from OPL source files is done using an appropriate translator
from the DOS prompt, with file names and control parameters on the command line. More
usually, translation is done from a batch file containing instructions to translate a number
of related source files. The translators are capable of pre-processing OPL source files to an
intermediate source code form, which are given a .PRP file extension. Pre-processing
resolves and incorporates all of the ‘include’ file information and any ‘defined’
information. It can be useful to pre-process the files as a pre-check before final translation.
Pre-processed files are used as input to AKA, the variable and procedure name compactor,
described later.

‘C’ style comments may be used as an alternative to using the REM statement. Text between
the pre-processor comment delimiters /* and */ is treated as comment text. Comments of
this type can extend over several lines, for example:

/*
 Multi-line Comment
 Stripped out by pre-processor
*/

Note that ‘C’ style comments cannot be nested, so that the pre-processors will not allow
the following:

/*
PRINT "Press any key" :g%=get /* more comments */
*/

OPL Programming 8-5

The translators described above accommodate the development and changes that have
occurred in OPL with time, and are supplied as part of the SIBO OPL SDK and ODE
available from Psion. In fact, ODE uses the translators listed above; they are run from
within Windows in DOS session hidden from the user – sometimes this is responsible for
misleading or missing error messages in ODE.

Two of the translators (S3TRAN and S3ATRAN) were placed into the public domain
some years ago and are provided on disk – see the OPLTRAN directory.

Note:
Although translators such as S3ATRAN can handle much bigger source files than on a
SIBO system (over 120K), there are limits on the amount of code, and in particular symbol
information, they can handle.

OPLLINT
OPLLINT is a tool to check OPL source code for common problems such as variables that
are not initialised or referenced, procedures that are never called, code that is never
executed, and global variable clashes. One of the most insidious sources of errors in OPL
programs comes from undefined variables, usually they are only detected at run-time (and
therefore may be a long time in showing themselves). Undefined variable errors arise from
the failure of the OPL translator to check that each variable, as used in a section of code,
has a corresponding Local or Global declaration statement. However, this type of error,
plus others, can be eliminated by the use of the DOS based OPLLINT program from
Psion. OPLLINT is supplied with the SIBO OPL SDK and ODE.

OPLLINIT has been put into the public domain and is provided on disk – see the
OPLLINT directory.

DOS based OPP
The OPP pre-processor is also available in DOS form, it can be used in combination with a
SIBO computer, a DOS based emulator or even in combination with ODE - the Windows
hosted development environment. Use of the DOS version of OPP requires the availability
of DOS based OPL translators such as S3ATRAN – see translation above. A more detailed
description of OPP is given earlier.

OPP is provided on disk for your evaluation –see OPP16f.

Please note:
OPP is Shareware, if you decide to use it please register it.

AKA
AKA (Also Known As) is an excellent DOS hosted utility by David Palmer. It is an OPL
programmers’ tool that will shorten variable and procedure names, reduce the final size of
OPO or OPA program, and speed them up slightly. Use of AKA requires the availability of
DOS based OPL translators such as S3ATRAN – see translation above. AKA has the

8-6 OPL Programming

added advantage of also making OPL programs less understandable if reverse translated
with the REVTRAN program (see the REVTRAN directory).

AKA is provided on disk – see the AKA230 directory.

Please note:
For personal use AKA is Freeware, used for commercial purposes or for personal gain it is
Shareware, if you decide to use it for business use please register it.

DOS based SIBO emulator
The SIBO emulators from Psion, such the Series 3a emulator, provide a facsimile of the
SIBO machine running under a DOS implementation of the EPOC16 operating system. An
IBM compatible PC is needed, with at least 4 Mbytes of memory and a 386 processor or
better. They were designed as in house development tools to enable software authors to
develop and test programs more quickly and conveniently than on a real machine. Psion
released them on an unsupported royalty free basis, and as such you should not contact
Psion with questions regarding the emulators.

SIBO emulators will not run under Windows 3.x, Windows 95, OS/2, NT, or under most
DOS emulation’s running on non-PC machines. The emulators use DPMI to access the
required amount of memory, and DOS boxes in windows do not support DPMI to the
extent required. Applications installed during an emulation session will not remain
installed on the system screen. Each time emulator is started it is equivalent to a hard reset
of a real SIBO system. However the Macsys macro system can be used to re-install other
applications required.

The Series 3a emulator will not record sound and, because of hardware differences, they
do not support some low level operating system calls such as the GetScanCodes call (as
documented in the OPL manual). Caution is also required because certain tests conducted
while running under emulator, e.g. for machine type or screen size, do not conform to the
values that would be returned on a SIBO machine.

Notes:
For more convenient OPL editing a large screen format can be used with the emulators by
modifying the settings in the HHSERVER.PAR file supplied with the system. Change the
line beginning with SERVER_PARAMS to:
SERVER_PARAMS –X640 –Y480 –D

The OPL pre-processor and debugging utilities OPP / OPPDBG described earlier can be
used under the DOS SIBO emulators.

OPLCS Windows editor
OPLCS, short for OPL Code Studio, is a PC Windows based OPL code editor and
template based code generator by Jonathan Fisher. Production of executable code OPLCS
requires the availability of DOS based OPL translators such as S3ATRAN – see translation

OPL Programming 8-7

above. For PC to SIBO system communication and file transfers OPLCS relies upon other
software such as Psiman which is part of the PsiWin package from Psion.

OPLCS is provided on disk – see the OPLCS directory.

Please note:
OPLCS is a Shareware program, please register it if you decide to use it.

ODE
The OPL Development Environment (ODE) is an excellent MS Windows hosted
Integrated Development Environment (IDE) from Psion that includes:

• A project manager.
• A powerful multi-file source code editor with coloured syntax highlighting.
• Source code for a range of illustrative OPL examples, including an excellent

asynchronous application framework.
• OPLLINT, an OPL source-code checking utility.
• OPL translators suitable for the S3, S3a/c, Siena, Workabout and HC.
• A set of utility programs for sound and graphics file conversions, plus a font compiler

for producing custom font sets.
• Powerful context sensitive help that calls on a full OPL reference library.
• PC to SIBO communications capability – (a link cable is not included).

You start writing a new program in ODE by creating a new project file, adding source files
and other application related files as they are created. Editing is done through a remarkably
good multi-window editor that has many powerful features – such as an outline view of
program procedures, colour syntax highlighting and an excellent multi-file text search
facility. A useful text search and replace option is available, but I found that using the
‘replace all’ option would crash the ODE system.

Data files associated with the application can also form part of the project information, and
files may be flagged for transfer to the SIBO system. The project file tracking system will
update all files on the SIBO machine, replacing them with their more up-to-date PC
versions as required. Additional information and code macros can be ‘#included’ from
other source files. Constants with long identifier names may be ‘#defined’ and conditional
translation is supported.

When you wish to test the code, the build options can be configured to translate all the
source files, run the OPLLINT checker, transfer the executables and related files to the
SIBO system and start up the application on the machine.

A number of example projects are supplied to demonstrate the use of the ODE project
system as well as a range of programming techniques.

The OPL source code checker OPLLINT supplied with ODE can optionally be integrated
into the project build process. Other DOS based utilities provided for sound file

8-8 OPL Programming

conversions, font-file compilation and bitmap conversion are run from the DOS command
line.

Printed documentation supplied with ODE is minimal, but extensive ‘online’ help is
provided as Windows help files. A particularly useful feature is the language-related help.
If you need to check the syntax / parameter details for an OPL statement, position the
cursor over the keyword in question and press ‘F1’. A help file will open at the point that
gives details of the keyword or function under the cursor.

ODE is available as a product in its own right; it is also supplied as part of version 3.0 of
the SIBO OPL SDK – see below for details. ODE is an extremely good development
environment for SIBO systems, and is excellent value for money.

ODE with OPP
The OPP pre-processor system (DOS version) described above may be easily integrated
into the Psion ODE development system. Although, inclusion of OPP within the ODE
build process requires the OPLLINT utility to be disabled.

The Psion SIBO OPL16 SDK
The OPL16 SDK provides the richest source of information and software available for the
development of OPL applications for Psion SIBO-based systems. Purchase of the SIBO
OPL SDK is highly recommended for all serious / commercial OPL developers.

Version 3.0 of the SIBO OPL16 SDK contains:

• ODE (OPL Development Environment) a Windows PC based Integrated
Development Environment – see details of ODE above.

• Two A4 size volumes, comprising thirteen manuals (see below for further details).
• The Psion OPL software environment, including OPL libraries, header files, macro

files, device drivers and a range of utility software.
• A wide range of example source code.
• OPL translators suitable for the S3, S3a/c, Siena, Workabout, HC and MC systems.
• OPLLINT, an OPL source-code checking utility.
• A SIBO database file of the OPL language keywords and syntax.
• A comprehensive set of utility programs including: Sound and graphics file

converters; database/text file converters; a printer driver compiler; a TLV file editor
and a font compiler for producing custom font sets.

• RCom and RPrint, PC DOS to SIBO communications and printing utilities – (a link
cable is not included).

• Flash and RAM SSD utilities.

OPL Programming 8-9

Note:
There is one strange omission from the SIBO OPL SDK, the resource compiler
(Rcomp.exe) and its associated documentation is not included, however, it has been put
into the public domain by Psion - see the HELPKIT directory on disk.

OPL16 SDK manuals
The OPL16 SDK documentation (version 3.0) consists of thirteen manuals, in two
volumes that cover a wide range of features of the SIBO architecture and development
system.

Getting Started
• SDK registration and support
• SDK contents and hardware requirements
• Installation and PC directory structure
• ODE and non ODE based development
• Linking a PC to a SIBO system
• A hello world example

SIBO Programmers Reference
• Describes the SIBO family of computers
• Solid state disks
• The basic software and terms explained
• Support for remote file access
• Connecting to other computers
• Technical specifications

HC Programmers Reference
This manual contains information that is specific to the development of applications for
the rugged and highly configurable HC range of hand-held computers. The topics
discussed include:

• Introduction to the HC concept
• The HC command shell
• The HC in a Cradle or Docking Station
• Customising the HC ROM
• Technical specifications for the HC and its peripherals

Series 3 Programmers Reference
This manual contains information that is specific to the Series 3 and Series 3a palmtop
computers. The topics discussed include:

• Introduction to the Series 3 range

8-10 OPL Programming

• Connecting to other computers
• The Series 3 user interface
• Series 3 programming overview – OPAs Vs OPOs
• Communicating with the System Screen - including the differences between file-

based and non-file based applications
• The receipt by applications of Shut-down and Switch-files messages, and the

modification of an application's behaviour by means of the technique of aliasing,
• Technical specifications for the Series 3 and its peripherals.

Workabout Programmers Reference
This manual contains information that is specific to the Workabout handheld computer
and its peripherals. It describes the principal features of the Workabout and the various
user interfaces that are available to the developer.

• Introduction to the Workabout software and hardware
• Connecting to other computers
• Customising the Workabout
• The Workabout command processor
• The Workabout docking station
• Workabout software development
• Technical specifications for the Workabout and its peripherals
• The Workabout command processor Vs HC command processor Vs MS-DOS

OPL Programming Guide
The OPL Programming Guide describes program development in OPL for all SIBO
machines, including advice on writing machine-independent programs.

• Introduction to OPL
• OPL program development
• Variables, constants and expressions
• Loops and branches
• Calling procedures
• Errors and error handling
• Data file handling
• Operators and logical expressions
• Graphics, fonts and sprites
• Menus, dialog boxes, shadowed boxes and status windows
• Asynchronous requests and semaphores
• Devices and the I/O system
• General file handling
• Time, timers and dates
• OPL applications - OPAs
• Miscellaneous advanced topics
• Debugging OPL programs

OPL Programming 8-11

OPL Library
This manual documents the supplied library procedures and macros; provided to facilitate
development and cover most areas of programming. Source code for all of the library code
and macros is included on disk.

• Introduction and overview
• File and directory handling
• Serial communication
• Processes and inter-process messaging
• Window server
• Link handling
• General utilities
• Recording and playback of sounds
• Development tools
• Menu handling
• Device handling
• Bar-code device driver
• Environment variables

OPL Language Reference
A comprehensive alphabetic listing of all OPL keywords, a keyword summary, listed by
task, and an OPL quick reference guide. Appendices cover printing from OPL, and
character codes and fonts.

• Overview of functions and commands
• OPL summary, listed by task
• OPL alphabetic listing
• OPL quick reference
• OPL different implementations
• Character codes and fonts
• Printing from OPL

OPL Technical Reference
The OPL Technical Reference manual describes the technical aspects of the
implementation of OPL for the SIBO range of computers. Topics include:

• Introduction and OPL translator
• Operation of the OPL translator
• The OPL runtime interpreter mechanism
• Optimising for speed
• Variables and constant storage
• Database files
• Graphics implementation

8-12 OPL Programming

Tools Reference
A full description of the software tools supplied with the OPL SDK. The tools include:

• OPL pre-processing translators SIBO machines
• The OPLLINT source-code checking tool
• PC linking and printing with RCom and RPrint
• PC linking and printing with MCLink, SLink and MCPrint
• PsiWin file transfer and conversion
• Window server and PCX converter
• Printer driver compiler
• Font compiler
• Database file to text and text to database conversion utilities
• File editor / dumping
• OPL SIBO reference database and Windows help files
• Sound file conversion

EPOC16 O/S System Services
Provides a complete description of the software interrupt interface to ROM-based system
services, classified into 21 areas of functionality.

An appendix lists the services both alphabetically, by service name, and numerically, by
interrupt and function number. This will be of particular interest to programmers who wish
to use EPOC16 calls and to assembly language programmers.

• Introduction to O/S calls
• Segmented memory management
• Heap memory management
• Semaphore management
• Message management
• Dynamic Library, category and object management
• Device management
• Input / output management
• File management
• Process management
• Date and time management
• Conversion management
• Long integer management
• Floating point number handling
• Floating point function interface
• Character management
• Buffer management
• String management
• General management
• Database file management

OPL Programming 8-13

• Hardware management
• EPOC interrupt function numbers, alpha and numeric listings

I/O Devices Reference
Describes the I/O device drivers that have been written by Psion. The description of each
driver includes a full explanation of the services that it supports, together with example
code.

• Introduction to devices and drivers
• Console
• Parallel port
• Serial port
• Sound
• Xmodem and Ymodem
• Cradle and docking station
• Magnetic card reader
• Bar-code reader
• HC Intelligent bar code reader / RS232 port
• HC Printer

Hardware Reference
The Hardware Reference manual contains a description of the SIBO computer hardware,
including the principal chip-set, expansion ports and the SIBO serial protocol.

• The principal chip set
• The SIBO serial protocol
• The SIBO expansion ports

Source code protection
Revtran is a reverse translator for OPL16 programs. Written by Mike Rudin, it turns OPO
or OPA modules back into OPL source code, although original local variable names will
be lost and substituted with generated names. This application allows programmers to see
how others have implemented their programs, and may give valuable insight into useful
programming techniques.

Revtran is supplied on disk, but please note that you should not use it to circumvent
protection mechanisms; to avoid paying shareware fees; to steal complete programs; or to
do anything illegal or anti-social.

Some OPL programs are protected against reverse translation. The author of REVTRAN
gives some hints protecting programs from reverse translation in the manual; these
suggestions are detailed below along with some additional options.

8-14 OPL Programming

Anti-Revtran strategies
To make a reverse translated program less readable, modify all procedure and global
variable names to make them meaningless. This can be done before translation, or using a
program such as AKA. After translation it is possible to replace alphabetic characters in
names with non-printing control characters for greater obscurity.

Replace some non-executed parts of the translated program with garbage by using a binary
file editor on the OPA or OPO file, so that a reverse-translator such as Revtran will stop or
crash. A dedicated hacker will be able to overcome this, although possibly only after
considerable effort.

For example,
GOTO SKIP
 PRINT ”NO REVTRAN” REM code never executed
SKIP::

or
IF 1 > 2
 a$=”NO REVTRAN” REM should never get here!
ENDIF

Filling the “NO REVTRAN” string and the byte immediately before it with garbage values
will stop Revtran in its tracks.

Find some limit or bug in Revtran, and include code that crashes Revtran by exploiting it.
This is unreliable, as a future version of Revtran may have bugs fixed, and there are other
reverse-translation tools.

Build your program using OPP and set the option to include anti-Revtran information in
the translated program.

Use a program such as OPLprot or Norev14 to protect the translated program. OPLprot is
available from Marco Aicardi – see the ‘Contacts and Sources’ chapter. Norev14 is
supplied on disk for information, but it is Shareware and is effectively disabled until you
have registered it with Raymond Stone the author.

OPL Reference 9-1

9 OPL Reference

Introduction
All of the OPL functions and commands are described in detail; they are grouped by the
nature of their task or function. Occasional items may be repeated if they are associated
with more than one function.

The OPL language has gone through a number of developments and enhancements during
its lifetime. Also, implementation of OPL on different Psion computers can also vary.

All of the OPL functions and commands in this chapter are labelled to indicate which
Psion machines they apply to. If a keyword or command is not labelled with the identifier
of the machine you are working with then it does not apply.

A major change occurred in OPL as implemented on Psion Series 5 systems. OPL on 16-
bit SIBO machines will be referred to as OPL16 (or SIBO OPL) and OPL on the 32-bit
Series 5 systems will be called OPL32.

On Series 5 systems some aspects of OPL16 have gone, some new features have been
added, and the syntax of some language statements has changed due to extra options, or
the effects of 32-bit addressing. For example, the CALL function is not available in
OPL32 since direct calls to the operating system have gone. (Most operating system calls
have been replaced by language extensions called OPXs – see the ‘OPL32 Techniques’
chapter for more details of OPXs).

Syntax differences may exist between OPL16 and OPL32 implementations of the same
command or function; wherever this occurs it will be clearly indicated, occasionally a
separate description will be provided.

Where necessary brief OPL examples are given, however, error-handling code is not
usually included to keep the examples short and simple. For reliable programs it is always
advisable to include code that tests for errors, attempts to recover or closes down
gracefully – for more details see the ‘Errors and Debugging’ chapter.

Use the main index to locate specific OPL keywords and commands alphabetically. All of
the OPL keywords in the index and are also listed alphabetically under the heading ‘OPL
statement’. The general category or task to which groups of OPL keywords belong can be
found under the heading ‘OPL’.

Note: OPL SDKs
A number of OPL keywords described in this chapter are not available on the HC, e.g.
MENU, mCARD etc. However most, if not all, of the missing functionality is provided via

9-2 OPL Reference

OPL library procedures supplied with the Psion SIBO OPL SDK. A wide range of
additional functionality is provided via the SIBO OPL SDK library procedures and
macros, as outlined in the ‘OPL Programming’ chapter.

It is recommended that all commercial OPL programmers should invest in a copy of the
relevant OPL SDK (SIBO or EPOC32) from Psion.

Functions, commands and procedures
OPL functions are so called because they return a value, e.g.
 s = SIN(angle)

Returns the sine of angle (in radians) to the variable s.

OPL commands carry out a specific task e.g.
 CLS

Clears the text screen, CLS takes no arguments.

Or
 AT x%,y%

Positions the cursor in the text window. The AT command takes two arguments to position
the cursor at x% characters across and y% lines down the screen.

Arguments are any values required as part of a command or function call. Parameters are
values passed to a procedure. In programming related text the terms ‘arguments’ and
‘parameters’ are often used interchangeably.

OPL procedures are sections of OPL code that you define; they can take a number of
parameters and may return a single numeric or string value.

Notation used
For each command or function, all of the alternative options are given, where necessary
the alternatives are marked which are only applicable to a particular machine or version of
OPL.

Commands and functions can be entered in any combination of lower and upper case,
except where clearly stated to the contrary.

Commands must be separated from their parameters by inserting a space character. Each
parameter must be separated from the next by a comma (,).

Function keywords are followed immediately by an opening bracket ‘(‘. Parameters must
be separated from each other by a comma and the list of function parameters must be
terminated with a closing bracket ‘)’.

OPL Reference 9-3

Default values may be assumed if some parameters are not supplied. Default values for
particular commands and functions are given in the individual command/function
descriptions that follow.

Note: 'var' variables and # prefixes
If a parameter is preceded by 'var' you don’t need to type in 'var', it just indicates that a
local or global variable must be used and not a constant. When you see 'var' the address of
the variable is passed (see BYREF below), not the value held (it happens automatically,
you don't have to use ADDR).

However, if you already hold the address of the variable, you can add a '#' prefix to a 'var'
argument, this tells OPL that the expression following is the address to be used, not a
variable whose address is to be taken.

Single elements of arrays may also be used for parameters labelled as ‘var’, but not
database field variables or procedure parameters.

Note: BYREF
BYREF, is used to indicate that variables are passed by reference (typically to an OPX
procedure) i.e. to pass the address of the variable to allow the called procedure to modify
the variable’s contents.

Note: OPL32 constants
OPL32 allows the inclusion of header files, and many useful OPL32 related constants are
provided with the Series 5 in a ROM based header file named CONST.OPH. Many of the
‘standard’ constants are used in the OPL32 examples given here - see the ‘OPL32
Techniques’ chapter for details of using and reading this file.

9-4 OPL Reference

Program control

Procedures
PROC...ENDP Define the start and end of a procedure.
#INCLUDE Include other files into an OPL16 source file.

DOS based OPL translators only.
#DEFINE....
#UNDEF

Define a symbolic name for a constant value OPL16. Also undefine a
symbol.
DOS based OPL translators only.

#IFNDEF...
#ELSE...
#ENDIF

Test for previous definition of a symbol
Take alternative action
End test clause
DOS based OPL translators only.

CONST Declare a constant with global scope – OPL32
INCLUDE Include other files into an OPL32 source file.
DECLARE OPX Used in OPX header files to define its name etc. OPL32

Notes:
OPL32 see DECLARE EXTERNAL and EXTERNAL for detecting procedures called before
they have been defined.

PROC .. ENDP S3, S3a/c, Siena, S5, WA, HC
PROC pname:
...
ENDP

The PROC keyword declares the beginning of a new procedure, ENDP defines its end, and
the pname: parameter defines its name. In OPL16, procedure names can be up to 8
characters long, including any variable type specifier. In OPL32, names of procedures can
be up to 32 characters long, including any variable type specifier.

#INCLUDE S3, S3a/c, Siena, WA, HC
#INCLUDE <extras.oph>
#INCLUDE “\opl\mystuff\extras.oph”

Used with the DOS based OPL translators only.

Causes the specified text file to be read in, as if it were part of the file ‘including’ it. The
included file may contain definitions for symbolic names and their values, using the
#DEFINE statement, or even additional OPL code.

Including a file is logically identical to replacing the #INCLUDE statement with the file’s
contents.

OPL Reference 9-5

If the filename is specified inside angle brackets (e.g. <extras.oph>) the header file will
be read from the include directory specified with the –i flag on the translator command
line.

If the filename is specified in quotes (e.g. “extras.oph”) the header file will be read
from the current directory, unless a path is specified (e.g.
“\opl\mystuff\extras.oph”), where the file will be read from the exact location
given.

See #DEFINE, #IFNDEF and the ‘OPL16 Techniques’ chapter for more details.

#DEFINE S3, S3a/c, Siena, WA, HC
#DEFINE symbolicname value

Used with the DOS based OPL translators only.

A pre-processor directive, that will substitute the defined symbol with its assigned value
wherever the symbol occurs. A number of values are usually #DEFINEd in a separate file,
and the file is #included in an OPL source file (this must be before the point at which the
symbols are used). For example:
#DEFINE Days_in_Week 7

Previously defined symbols may be ‘undefined’ with #UNDEF statements. For example:
#UNDEF Days_in_Week

See #INCLUDE, #IFNDEF and the ‘OPL16 Techniques’ chapter for more details.

#IFNDEF S3, S3a/c, Siena, WA, HC
#IFNDEF symbolicname

#ELSE

#ENDIF

Used with the DOS based OPL translators only.

A pre-processor directive, that will test for the existence of the defined symbol and take
some action if not true, and optionally #ELSE some alternative action. For example:
#IFNDEF English_Ver
 #INCLUDE <English.oph>
#ELSE
 #INCLUDE “\opl\French\French.oph”
#ENDIF

See #INCLUDE, #DEFINE.

9-6 OPL Reference

CONST S5
CONST KConstantName=value

Declares constants that are treated as literal values, and are not stored as data. CONST
declarations must be made outside any procedure, usually at the beginning of the module.
KConstantName uses the normal type-specifiers (%, &, $ or non for floating-point values)
as for variables. CONST values have global scope, and are not overridden by local or global
variables with the same name: in fact the translator will not allow the declaration of a local
or global variable with the same name. By convention, all constants are usually named
with a leading K to distinguish them from variables.

Note that it is not possible to define constants with values -32768 (for integers) and
-214748648 (for long integers) in decimal notation, but hexadecimal notation may be
used instead (i.e. values of $8000 and &80000000 respectively).

See INCLUDE, EXTERNAL and the ‘OPL32 Techniques’ chapter for more details.

INCLUDE S5
INCLUDE file$

Includes a file, file$, which may contain CONST definitions, prototypes for OPX
procedures and prototypes for module procedures. The included file may not include
module procedures themselves. Procedure and OPX procedure prototypes allow the
translator to check parameters and coerce numeric parameters (that are not passed by
reference) to the required type.

Including a file is logically identical to replacing the INCLUDE statement with the file’s
contents.

The filename of the header may or may not include a path. If it does include a path, then
OPL will only scan the specified folder for the file. However, the default path for INLCUDE
is \System\Opl\, so when INCLUDE is called without specifying a path, OPL looks for
the file firstly in the current folder and then in \System\Opl\ in all drives from Y: to A:
and then in Z:, excluding any remote drives.

Note:
Individual INCLUDE statements are needed in all program modules (loaded with LOADM)
where the CONST and prototype information is used, not just in the main program module.

See CONST, EXTERNAL and the ‘OPL32 Techniques’ chapter for more details.

DECLARE OPX S5
DECLARE OPX opxname,opxUid&,opxVersion&

 ...

END DECLARE

OPL Reference 9-7

Declares an OPX. opxname is the name of the OPX, opxUid& its UID and opxVersion&
its version number. Declarations of the OPX’s procedures should be made inside this
structure.

See the ‘OPL32 Techniques’ chapter for more details.

Program settings
SETFLAGS Change the behaviour of a running program
CLEARFLAGS Clear flags set to affect the behaviour of a running program

SETFLAGS S5
SETFLAGS flags&

Sets flags to produce various effects when running programs. Use CLEARFLAGS to clear
any flags which have been set. The effects that can be achieved are as follows:

flags& effect
1 Restricts the memory available to your application to 64K, emulating SIBO

systems. Should only be used, if required, at the beginning of a program.
Changing this setting repeatedly will have unpredictable effects.

2 Enables auto-compaction on closing databases. This can be slow, but it is
advisable to use this setting when lots of changes have been made to a
database.

4 Enables raising of overflow errors when floating-point values are greater
than or equal to 1.0E+100 in magnitude, instead of allowing 3-digit
exponents (for backwards compatibility).

65536
or

&10000

Enables GETEVENT, GETEVENT32 and GETEVENT32A to return the event code
$403 to ev&(1) when the machine switches on.

By default these flags are cleared.

See also GETEVENT32, CLEARFLAGS.

CLEARFLAGS S5
CLEARFLAGS flags&

Clears the flags given in flags& if they have previously been set by SETFLAGS, returning
to the default.

See SETFLAGS.

9-8 OPL Reference

Loops, branches and jumps

DO...UNTIL

WHILE...ENDW

Repeat a set of instructions:
until a condition is true
while a condition is true

BREAK

CONTINUE
Break to the end of a repeating set of instructions
Continue at the start of a repeating set of instructions

IF...ELSEIF...ELSE...ENDIF Perform instructions according conditional tests
GOTO Go to a specified label
VECTOR...ENDV Jump to one of a list of labels
@ operator Call a procedure according to the name in a string

expression.
RETURN To the calling procedure
STOP Stop the program

DO...UNTIL S3, S3a/c, Siena, S5, WA, HC
DO
 statement
 statement
 .
 .
UNTIL condition

DO causes the set of statements which follow it to execute repeatedly until the condition
specified by UNTIL is met, in which case execution continues from the statement following
UNTIL. Each DO must have a matching UNTIL to end the loop. This type of loop construct
will always execute the statements in between the DO and UNTIL at least once.

If the tested condition is never met, the program will loop forever.
If the limit of eight DO… UNTIL levels of nesting is exceeded a ‘too complex’ error will be
generated.

See BREAK and CONTINUE.

WHILE...ENDWH S3, S3a/c, Siena, S5, WA, HC
WHILE condition
 ..
 ..
 ..
ENDWH

Loop, and repeatedly perform the set of instructions between the WHILE and the ENDWH
statements, as long as the expression condition returns logical TRUE - non-zero.

OPL Reference 9-9

If expression is not true (zero or FALSE), the program jumps to the statement after the
ENDWH statement. Each WHILE must be closed with a matching ENDWH.

If the tested condition is never met, the program will loop forever.
If the limit of eight WHILE… ENDWH levels of nesting is exceeded a ‘too complex’ error will
be generated.

See BREAK and CONTINUE.

BREAK S3, S3a/c, Siena, S5, WA, HC
BREAK

Exit from a program DO...UNTIL loop or a WHILE...ENDWH loop to exit the loop and
immediately execute the line following the UNTIL or ENDWH statement.

For example:
DO

 ...

 IF a=b

 BREAK REM break out of loop to x%=3 statement

 ENDIF

 ...

UNTIL KEY

x%=3

...

CONTINUE S3, S3a/c, Siena, S5, WA, HC
CONTINUE

Jump to the test condition of a program loop, i.e. go immediately to the UNTIL...
statement of a DO...UNTIL loop, or to the WHILE... statement of a WHILE...ENDWH
loop.

For example:

DO
 ...
 ...
 IF a<3.5
 CONTINUE REM continue loop at UNTIL
 ENDIF
 ...
 ...
UNTIL a>b

9-10 OPL Reference

IF...ENDIF S3, S3a/c, Siena, S5, WA, HC
IF condition1
 ...
ELSEIF condition2
 ...
ELSE
 ...
ENDIF

Control the execution of program statements depending on one or more specified
conditions. The program executes one of the following, depending on which condition (if
any) is true:

• The statements following the IF condition.
or

• The statements following one of the ELSEIF conditions. There may be any
number of ELSEIF statements, including none at all.

or
• The statements following ELSE (or, if there is no ELSE, nothing at all). There

may be either one ELSE statement or none.
After the ENDIF statement, execution of following statements continues as normal.
IF, ELSEIF, ELSE and ENDIF must be in that order.
Every IF statement must be matched with an ENDIF.

IF...ENDIF constructs may be nested inside others, for example:
IF condition1
 ...
ELSE
 IF condition2
 ...
 ENDIF
 ...
ENDIF

If the limit of eight IF… ENDIF levels of nesting is exceeded a ‘too complex’ error will be
generated.

GOTO S3, S3a/c, Siena, S5, WA, HC
GOTO label or GOTO label::
..
..
label::

Goes to the line following the label:: and continues from there.

OPL Reference 9-11

 The label:

• must be in the current procedure
• must start with a letter and end with a double colon, although the double colon is

not necessary in the GOTO statement
• may be up to 8 characters long excluding the colons in OPL16 or 32 characters

in OPL32

VECTOR S3, S3a/c, Siena, S5, WA, HC
VECTOR index%
 label1,label2,...
 labelN
ENDV

Jump to a label in a list, depending on the value of index%.

The VECTOR and ENDV statements enclose a list of names of labels, where the labels
themselves appear elsewhere in the same procedure. The list may spread over several lines,
with a comma separating consecutive names in any one line. The last name in a line should
not have a following comma.

VECTOR index% jumps to the label corresponding to number index% in the list that
follows - if index% is 1 this will be the label matching the first name in the list, and so on.

If index% is not in the range 1 to N, where N is the number of labels, the program
continues with the statement after the ENDV statement.

Using VECTOR...ENDV can avoid the need to write a very long IF...ENDIF constructs,
with ELSEIF used many times.

For example:
...
VECTOR p%
 FUNCA,FUNCX
 FUNCR
ENDV
PRINT "p% was not 1/2/3" :GET :GOTO end
FUNCA::
PRINT "p% was 1" :GET :GOTO end
FUNCX::
PRINT "p% was 2" :GET :GOTO end
FUNCR::
PRINT "p% was 3" :GET :GOTO end
...
end::
...

9-12 OPL Reference

Here, if p% is 1, VECTOR jumps to the label FUNCA::. If it is 2, it jumps to FUNCX::, and if
3, to FUNCR::. If p% is any other value, the program continues with the statement after the
ENDV statement.

Problems with VECTOR (HC and Series 3 only)
The VECTOR command leaves two spurious bytes on the runtime stack if the index is out of
range, causing unpredictable problems in certain circumstances. This problem applies to
the HC and Series 3 only. A workaround is provided in the Psion SIBO OPL SDK.

@ operator S3, S3a/c, Siena, S5, WA, HC
r% = @%(procn$):(parameters)

Call a procedure by name, where a string expression holds the procedure name. This
allows a program to ‘derive’ the name of a procedure to call under particular
circumstances.

Use an @ symbol, optionally followed by a character to show what type of value is
returned. For example, use a % character to return an integer value. The following
examples show the four types of value that can be returned:

r% = @%(procn$):(parameters) for integer
r& = @&(procn$):(parameters) for long integer
r$ = @$(procn$):(parameters) for string
r = @(procn$):(parameters) for floating-point

For example, if procn$ = “myproc” then:

 r$ = @$(procn$):(a$,b$) REM is equivalent to
 r$ = myproc$:(a$,b$)

Upper or lower case characters can be used (the case is ignored), and the string expression
must not include the symbol for the return type (i.e. %, & or $).

RETURN S3, S3a/c, Siena, S5, WA, HC
RETURN
RETURN variable

Terminate the execution of a procedure and return control to the point where that
procedure was called (ENDP does this automatically).

RETURN variable, in addition to returning control to the calling procedure, passes the
value of variable back to the calling procedure. The variable may be of any type and
may be an array element, for example RETURN x%(3). Only one value may be returned.

RETURN on its own, and the default return through ENDP, causes the procedure to return
the value 0 or a null string ("").

OPL Reference 9-13

For example:

PROC price:
 LOCAL x
 PRINT "Enter price:",
 INPUT x
 x=vat:(x)
 PRINT x
 GET
ENDP

PROC vat:(exclude)
 RETURN exclude+17.5%
ENDP

STOP S3, S3a/c, Siena, S5, WA, HC
STOP

Terminates the running program as soon as the command is encountered.

Note:
In OPL32 STOP may not be used during an OPX callback; if it is used it will raise a ‘STOP
used in callback’ error.

Error handling
ERR

ERR$

ERRX$

After an error, get the error number
 error message
 extended error message – OPL32

ONERR Declare or remove an error-handler
RAISE Raise an error
TRAP Let the program continue after an error
REM

or /* */
Put an explanatory comment in your program
with DOS based translators

ERR S3, S3a/c, Siena, S5, WA, HC
error% = ERR

Return the number of the last error that occurred or 0 if no error had occurred.

For example:
...
PRINT "Enter age in years>",
DO
 TRAP INPUT age%
 IF ERR=-1
 PRINT "Number please>",
 ENDIF
UNTIL ERR=0
...

9-14 OPL Reference

To clear the value of ERR on the SIBO, you can do the following,
ONERR e0
RAISE 0

e0::
ONERR OFF

In OPL32 you can set the value returned by ERR to 0 (or any other value) by using:

TRAP RAISE 0.

See also: ERR$, ERRX$.

ERR$ S3, S3a/c, Siena, S5, WA, HC
error$ = ERR$(error%)

Return the error message for the specified error code, error%.
ERR$(ERR) gives the message for the last error which occurred.

For example:
...
TRAP OPEN "B:\FILE",A,field1$
IF ERR
 PRINT ERR$(ERR)
 RETURN
ENDIF
...

ERRX$ S5
x$ = ERRX$

Returns the current extended error message (when an error has been trapped), e.g.

‘Error in MODULE\PROCEDURE,EXTERN1,EXTERN2,...’

would be presented in an Alert dialog if such an error had not been trapped. Allows the list
of missing externals, missing procedure names, etc. to be found when an error is trapped
by a handler.

Return the number of the last error that occurred or 0 if no error had occurred.
See also: ERR, ERR$.

ONERR S3, S3a/c, Siena, S5, WA, HC
ONERR label or ONERR label::
..
..
ONERR OFF
...

The ONERR label instruction establishes an error handler in a procedure.

OPL Reference 9-15

Normally when an error occurs the program is halted with an error message. If an error
handler is declared with ONERR then an error will cause the program to jump to label::
instead. The code following label:: can then find out the error code and handle matters
appropriately.

The label may be up to 8 characters long in OPL16 (32 in OPL32), starting with a letter. It
ends in a double colon (::), although the colons are not needed in the ONERR statement.

ONERR OFF disables the ONERR command, so that any errors occurring after the ONERR
OFF statement no longer jump to the label.

It is advisable to use the command ONERR OFF immediately after the label. This is to
prevent an error in the error handling code causing an infinite loop.

For example:
 ONERR argerr
 PRINT SQR(-1) REM error handled
argerr::
 ONERR OFF

The ONERR command has a lower priority than TRAP. In other words, a TRAPped command
will not trigger the error handler, but any others will.

The following example uses RAISE to forcibly invoke the error handler installed with
ONERR.

PROC test:
ONERR errh::
 PRINT "Error occurs here"
 RAISE -1 REM General failure
 REM this line will never be reached

errh::
 PRINT "Error handling code"
ENDP

RAISE S3, S3a/c, Siena, S5, WA, HC
RAISE error%

Raise an error.

The error raised is error number error%. This may be one of the errors listed in the error
handling chapter, or a new error number defined by the programmer.

The error is handled by the error processing mechanism currently in use - either OPL's
own, which stops the program and displays an error message, or the ONERR handler if
ONERR is on.

9-16 OPL Reference

TRAP S3, S3a/c, Siena, S5, WA, HC
TRAP command

Trap errors from a command. The TRAP command may precede any of these commands:

Data file commands
APPEND, UPDATE, COMPRESS, DELETE,BACK, NEXT, LAST, FIRST, POSITION,USE,
CREATE, OPEN, OPENR, CLOSE. Also with OPL32 MODIFY, INSERT, PUT,
CANCEL.

File and device commands
COPY, ERASE, RENAME,LOPEN, LCLOSE,LOADM, UNLOADM, CACHE

Directory commands
MKDIR, RMDIR

Data entry commands
EDIT, INPUT

Graphics commands
gSAVEBIT, gCLOSE, gUSE, gUNLOADFONT, gFONT, gPATT, gCOPY

For example, TRAP DELETE "fred.txt".

Any error resulting from the execution of the associated command will be trapped.
Program execution will continue at the statement after the TRAP statement, but ERR will be
set to the error code.

TRAP has a higher priority than any ONERR that has been set.

In OPL32 you can set the value returned by ERR to 0 (or any other value) by using:

TRAP RAISE x% REM Sets the value of ERR to x% and clears the trap flag.

REM S3, S3a/c, Siena, S5, WA, HC
REM comment

Designate text as a program comment.
The REM keyword precedes a remark included to explain how a program works. All text
after the REM up to the end of the line is ignored.
If REM follows a statement on the same line it need only be preceded by a space, not a
space and a colon.

For example:
INPUT a
b=a*.175 REM b = VAT

The REM keyword may also be used to temporarily disable a program statement during
debugging.

OPL Reference 9-17

Note:
If you are using the DOS based translators (e.g. in ODE) you may also use ‘C’ style
comments of the form: /* useful remarks go here */

For example:
INPUT a
b=a*.175 /* b=VAT */

Comments of this type may span multiple lines, but cannot be nested.

Screen and keyboard control
SCREEN Set the size and position of the text window
CLS Clear the text window
SCREENINFO Get text window information
FONT Set text window font
STYLE Set text window character style
gUPDATE Control when the window server updates the screen
AT Position the cursor
CURSOR ON/OFF Display or hide the cursor
EDIT Display a string to be edited and get a value from the keyboard
INPUT Get a value from the keyboard
PRINT Display text, numbers etc.
PAUSE For a number of 1/20ths of seconds

GET

GET$

Wait until a key is pressed and return the key pressed
 - as a character code
 - as a character string

GETEVENT For key press events see the section on Event handling later.

KEY

KEY$

GET

GET$

Find out which key was pressed, if any
 - as a character code (no pause)
 - as a character string (no pause)
 - as a character code (pause for keypress)
 - as a character string (pause for keypress)

KMOD Find out what combination of key modifiers was pressed
ESCAPE OFF

ESCAPE ON
Disable or enable PSION-ESC from quitting a running program

OFF Turn the Psion off

SCREEN S3, S3a/c, Siena, S5, WA, HC
SCREEN width%,height%
SCREEN width%,height%,xchar%,ychar%

Changes the size of the window in which text is displayed using PRINT, AT etc.

9-18 OPL Reference

The arguments xchar% and ychar% specify the character position of the top left corner. If
these arguments are not supplied, the text window is centred in the screen.

An OPL program can initially display text to the whole screen.

CLS S3, S3a/c, Siena, S5, WA, HC
CLS

Clears the contents of the text window.
The cursor is moved to the beginning of the top line. If you have used CURSOR OFF the
cursor is still positioned there, but is not displayed.

SCREENINFO S3a/c, Siena, S5, WA
SCREENINFO var info%()

Get information about the text window.

This information is useful when doing PRINT commands, etc.

This keyword allows you to mix text and graphics. It is required because while the default
window (ID 1) is the same size as the physical screen, the text window is slightly smaller
and is centred in the default window. The gaps of a few pixels around the text screen,
referred to as the left margin and top margin, depend upon the font in use.

On return, the array info%(), which must have at least 10 elements, contains the
following information for OPL16 and OPL32:

Info%(1) Left margin in pixels
Info%(2) Top margin in pixels
Info%(3) Text window width in character units
Info%(4) Text window height in character units
Info%(5) Reserved (window server id for default window)

In OPL16
Info%(6) Font id (as set by FONT)
Info%(7) Pixel width of text window character cell
Info%(8) Pixel height of text window line
Info%(9) Reserved
Info%(10) Reserved

In OPL32 font ID is a 32-bit integer and therefore will not fit into a single element of
info%(). Hence, the least significant 16 bits of the font ID are returned to info%(9) and
the most significant 16 bits to info%(10).

Info%(6) unused
Info%(7) Pixel width of text window character cell
Info%(8) Pixel height of text window line
Info%(9) Least significant 16 bits of the font ID
Info%(10) Most significant 16 bits of the font ID

OPL Reference 9-19

Note:
Initially SCREENINFO returns the values for the initial text screen. Subsequently any
keyword that changes the size of the text screen font, such as FONT, will change some of
these values and SCREENINFO should therefore be called again.

FONT S3a/c, Siena, S5, WA
FONT font%,style%

FONT font&,style% - in OPL32

Set the font and style for the default text window.
FONT clears the screen and automatically resizes the text window and the default graphics
windows to the maximum size, excluding any status window. On SIBO systems it should
be called after enabling a status window, because the new size of the text and graphics
windows depends on the size of the status window.

Note:
FONT -$3fff,0 leaves the current font and style, it just adjusts the window sizes and
clears them.

The font number, font% or font&, is the same as for gFONT, and the style, style%, is the
same as for gSTYLE.
The table below lists the fonts provided in the system ROMs, (and in Series 3 ROM,
though FONT is not available on that machine – see below).

Note:
Fonts on the Series 5 are identified by a 32-bit UID, rather than by a 16-bit value
representing the font position in the ROM as on SIBO systems. However, OPL32 does
provide some mapping where possible between OPL16 font IDs and Series 5 OPL32 font
UIDs. A full list of the Series 5 fonts is provided in a ROM based header file
CONST.OPH, see the ‘OPL32 Techniques’ chapter for details of using and reading this
file.

In the table below, Swiss and Arial refer to fonts without serifs while Roman and Times
fonts either have serifs (e.g. font 6) or are in a style designed for serifs, but are too small to
show them (e.g. font 5 on the Series 3c). Courier is a mono-spaced font, i.e. has characters
that are all the same width (and have their pixel size as width x height). With proportional
fonts, each character can have a different width.

Fonts 1 to 3 are the Series 3 fonts, and are used when running in compatibility mode on
the Series 3a/c, Siena and Workabout. Initially font 4 is used on the text screen of the
Series 3a/c and Siena, Courier 11 is used on the Series 5.

9-20 OPL Reference

Font Name Pixels WxH
or H only

System Name
Series 5 only

Pixels
WxH or
H only

1 Series 3 normal 8 S3, S3a/c, Siena, WA N/A
2 Series 3 bold 8 S3, S3a/c, Siena, WA N/A
3 Series 3 digits 6x6 S3, S3a/c, Siena, WA N/A
4 Mono 8x8 S3a/c, Siena, WA Courier 8
5 Roman 8 S3a/c, Siena, WA Times 8
6 Roman 11 S3a/c, Siena, WA Times 11
7 Roman 13 S3a/c, Siena, WA Times 13
8 Roman 16 S3a/c, Siena, WA Times 15
9 Swiss 8 S3a/c, Siena, WA Arial 8

10 Swiss 11 S3a/c, Siena, WA Arial 11
11 Swiss 13 S3a/c, Siena, WA Arial 13
12 Swiss 16 S3a/c, Siena, WA Arial 15
13 Mono 6x6 S3a/c, Siena, WA Tiny (mono) 3x4

The font style can be modified according to the following table.

style% effect OPL32 constant
0 normal style KgStyleNormal%

1 Bold KgStyleBold%

2 Underlined KgStyleUnder%

4 Inverse KgStyleInverse%

8 double height KgStyleDoubleHeight%

16 Mono KgStyleMonoFont%

32 Italic KgStyleItalic%

These styles can be combined by ORing their values together for example, to set underlined
and double height and Times Roman 8 point, use:

FONT 5, 2 OR 8

Alternatively add the style% values together. For example, to set bold underlined and
double height use:

FONT 5,11 (as 1+2+8=11)

To change fonts on a Series 3 the IOW function can be used.
See also STYLE, gFONT and gSTYLE.

STYLE S3a/c, Siena, S5, WA
STYLE style%

Set the text window character style.
The style% argument can be 2 for underlined, or 4 for inverse.

OPL Reference 9-21

gUPDATE S3, S3a/c, Siena, S5, WA, HC
gUPDATE ON
gUPDATE OFF
gUPDATE

Update the screen, or switch screen-updating on/off.

The screen of the Psion in OPL is, by default, updated whenever anything is drawn to it.

The gUPDATE OFF command switches off this feature. Drawing commands are buffered
and the screen is automatically updated only when the command buffer is full, or when a
screen or keyboard function that has to return a value immediately is called. The screen
will be updated as few times as possible (though some keywords will always cause an
update).

Switching updating off can result in a considerable speed improvement in some cases, for
example, where a program contains sequences of graphics commands. In such a case, each
sequence should be followed by gUPDATE. It is certainly advantageous to use gUPDATE
OFF when about to write exclusively to bitmaps. An update can be forced at any time by
using the gUPDATE command on its own, and gUPDATE ON returns to normal screen
updating.

The gUPDATE command affects anything that displays to the screen. If a program uses a lot
of PRINT commands, gUPDATE OFF may make a significant difference in speed.

Note:
With gUPDATE OFF, the buffering of graphics commands may delay the detection of
runtime errors, thus causing the location of such errors to be incorrectly reported. For this
reason, gUPDATE OFF is best used in the final stages of program development, and even
then you may have to remove it to locate some errors.

AT S3, S3a/c, Siena, S5, WA, HC
AT indent%,rowsdown%

Position the cursor at indent% characters across the text window and rowsdown% rows
down.
The command AT(1,1) always moves to the top left corner of the text window. Initially
the text window is the full size of the screen. The size and position of the text window is
changed using the SCREEN command.

A common use of AT is to display strings at particular positions in the text window, for
example:

AT 5,10
PRINT "Fixed message"

9-22 OPL Reference

• PRINT statements without an AT display at the left edge of the window on the line
below the last PRINT statement (unless you use ',' or ';') and strings displayed at the
top of the window eventually scroll off as more strings are displayed at the bottom of
the window.

• Strings always overwrite anything that is on the screen - they do not cause things
below them on the screen to scroll down.

For example:
PROC records:
LOCAL k%
OPEN "M:\ODB\CLIENTS.ODB",A,nm$,tl$
DO
 CLS
 AT 1,7
 PRINT "Press a key to"
 PRINT "step to next record"
 PRINT or Q to quit"
 AT 2,3 :PRINT A.nm$
 AT 2,4 :PRINT A.tl$
 NEXT
 IF EOF
 AT 1,6 : PRINT "End of file"
 FIRST
 ENDIF
 k% = GET
UNTIL k% = %Q OR k% = %q
CLOSE
ENDP

CURSOR S3, S3a/c, Siena, S5, WA, HC
CURSOR OFF
CURSOR ON
CURSOR winId% HC,S3
CURSOR winId%,ascent%,width%,height% HC,S3
CURSOR winId%,ascent%,width%,height%,type% S3a/c, Siena, S5, WA
CURSOR ON switches the text cursor on at the current cursor position. Initially no cursor is
displayed.

You can switch on a graphics cursor in a window by following CURSOR with the ID of the
window, winId%. This replaces any text cursor. At the same time, you can also specify the
cursor's shape, and its position relative to the baseline of text.

The ascent% argument is the ascent - the number of pixels (-128 to 127) by which the top
of the cursor should be above the baseline of the current font.

The height% and width% arguments (both from 0 to 255) are the cursor's height and
width.

An error is raised if winId% specifies a bitmap rather than a window.

OPL Reference 9-23

If you do not specify these three parameters, the following default values are used:

 ascent% = font ascent
 height% = font height
 width% = 2

If type% is given (S3a/c, Siena, S5, WA) it can have the following effects:

type% cursor type
1 obloid (not S5)
2 not flashing
4 grey

The values can be added together to combine effects, e.g. if type% is 6 a grey non-flashing
cursor is drawn.

The instruction CURSOR OFF switches off any cursor.

For a text cursor see also AT. For a graphics cursor see also gAT, gX, gY.

EDIT S3, S3a/c, Siena, S5, WA, HC
EDIT string_variable$
EDIT log.field$

Display a string variable that the user can edit directly on the screen. All the usual editing
keys are available - the arrow keys move along the line, Esc clears the line, and so on.
When the user has finished editing, Enter is pressed to confirm the changes. If Enter is
pressed before any changes have been made, then the string will be unaltered.

If EDIT is used in conjunction with a PRINT statement, a comma should be used at the end
of the PRINT statement, so that the string to be edited appears on the same line as the
displayed string), e.g.:

PRINT "Edit address:",
EDIT A.address$

TRAP EDIT
If the Esc key is pressed while no text is on the input line, the 'Escape key pressed' error
(number -114) will be returned by ERR - provided that the EDIT has been trapped, using
TRAP EDIT. This feature can used to allow the user to press the Esc key to abandon
editing a string.

INPUT S3, S3a/c, Siena, S5, WA, HC
INPUT variable
INPUT log.field

Wait for a value to be entered at the keyboard, and then assign the value entered to a
variable or data file field. The value can be edited as it is typed in. All the usual editing
keys are available - the arrow keys move along the line, ESC key clears the line and so on.

9-24 OPL Reference

If inappropriate input is entered (for example, a string when the input was to be assigned to
an integer variable) a '?' is displayed and a new value can be entered. (See also the
following description of TRAP INPUT).
The INPUT command is usually used in conjunction with a PRINT statement:

PROC temp:
LOCAL cent
DO
 PRINT "Temperature? "
 PRINT " (centigrade)";
 INPUT cent
 PRINT "That's ";32+cent*9/5,"fahrenheit."
 GET
UNTIL 0
ENDP

Note:
The ';' at the end of the PRINT statement, so that the cursor waiting for input appears on
the same line as the message.

TRAP INPUT
If a bad value is entered (for example "abc" for a%) in response to a TRAP INPUT, the '?' is
not displayed. Instead, the value of the variable is unchanged, the appropriate error
condition is set and control passes on to the next line of the procedure.
The error number of any error that has occurred can be found by calling the ERR function.
For example, if the ESC key is pressed while no text is on the input line, the 'Escape key
pressed' error (number -114) will be returned by ERR (provided that the INPUT has been
trapped). This feature could be used to allow someone to press the ESC key to avoid
inputting a value.
See also EDIT. This works in a similar way to INPUT, except that it displays a string to be
edited and then assigns it to a variable or field. It can only be used with strings. Use
dEDIT, for editable string input in a dialog.

PRINT S3, S3a/c, Siena, S5, WA, HC
PRINT list

Display the results of a list of expressions in the OPL text window.
The list can be punctuated in one of these ways:

• Items separated by commas are printed with a space between them.
• Items separated by semicolons are printed with no space between them.
• Each PRINT statement prints on a new line, unless the preceding PRINT ended with a

semicolon or comma.
There can be as many items as needed in the list. A single PRINT on its own just moves to
the next line.

For example, on 1st January 1990:
PRINT "TODAY is",
PRINT DAY;".";"MONTH;".";YEAR

OPL Reference 9-25

would display:
TODAY is 1.1.1990.

Furthermore:
PRINT 1 displays 1
PRINT "Hello" displays Hello
PRINT "Number",1 displays Number 1
Use LPRINT to print to an attached device, such as a printer, or to a file.
The output from the PRINT command is governed by the text attributes set by FONT and
STYLE.

PAUSE S3, S3a/c, Siena, S5, WA, HC
PAUSE timcode%

Pause the program for a certain time, (or until a key is pressed), depending on the value of
timcode%:

timcode% action
0 wait for a key to be pressed

+ve pause for timcode% twentieths of a second
-ve pause for timcode% twentieths of a second, or until a key is pressed.

So PAUSE 100 would make the program pause for 5 seconds (i.e. 100/20) , and PAUSE -
100 would make the program pause for 5 seconds, or until a key is pressed.

If timcode% is 0 or negative, a following GET, GET$, KEY, KEY$, etc. will return the key
press which terminated the pause. To discard this key press, if it is not required, clear the
buffer after the PAUSE with a single KEY function:

PAUSE 0 :KEY

GET S3, S3a/c, Siena, S5, WA, HC
keycode% = GET

Wait for a key to be pressed and return the character code for that key.
For example, if the 'A' key is pressed with Caps Lock off, the integer returned is 97 (a), or
65 (A) is returned if 'A' was pressed with the Shift key down.
See also KMOD for modifier key testing e.g., Shift, Ctrl etc.

GET$ S3, S3a/c, Siena, S5, WA, HC
keypress$ = GET$

Wait until a key is pressed and then return which key was pressed, as a string. For
example, if the 'A' key is pressed in lower case mode, the string returned is "a".
See also KMOD for modifier key testing e.g., Shift, Ctrl etc.

9-26 OPL Reference

KEY S3, S3a/c, Siena, S5, WA, HC
keycode% = KEY

Returns the character code of the last key pressed, if there has been one since last calling
one of the keyboard functions INPUT, EDIT, GET, GET$, KEY, KEY$ or GETEVENT,
(and the menu and dialog input handling keywords).
If no key has been pressed, zero is returned.
See KMOD to check whether modifier keys (Shift, Ctrl, Psion or Caps Lock) were used.
This command does not wait for a key to be pressed, unlike GET.

KEY$ S3, S3a/c, Siena, S5, WA, HC
k$ = KEY$

Returns the last key pressed as a string, if there has been a keypress since last calling one
of the keyboard functions INPUT, EDIT, GET, GET$, KEY, KEY$ or GETEVENT, (and
the menu and dialog input handling keywords).
If no key has been pressed, a null string ("") is returned.
See KMOD to check whether modifier keys (Shift, Ctrl, Psion or Caps Lock) were used.
This command does not wait for a key to be pressed, unlike GET$.

KMOD S3, S3a/c, Siena, S5, WA, HC
modcode% = KMOD

Return a code representing the state of the modifier keys (whether they were pressed or
not) at the time of the last keyboard access, (such as a GET or a KEY function).
The modifiers have these codes:

Key state decimal hex OPL32 constant
Shift key down 2 $2 KkmodShift%

Control key down (not HC) 4 $4 KkmodControl%

Psion key down – SIBO only 8 $8 KkmodPsion%

Caps Lock on 16 $10 KkmodCaps%

Fn down – Series 5 only 128 $80 KkmodFn%

If there was no modifier, the function returns 0. If a combination of modifiers was pressed,
the sum of their codes is returned - for example 26 is returned if Psion (8) and Shift (2)
were pressed, and Caps Lock was on (16).
The KMOD function should only be used immediately after a KEY, KEY$, GET or GET$
statement.
The value returned by KMOD has one binary bit set for each modifier key used. To see
which modifier keys were held down the bits that are set can be tested using the logical
operator AND on the value returned by KMOD.

OPL Reference 9-27

For example:
PROC modifier:
 LOCAL k%,mod%
 PRINT "Press a key"
 k% = GET
 CLS
 mod% = KMOD
 PRINT "You pressed",k%,"with"
 IF mod% = 0
 PRINT "no modifier"
 ENDIF
 IF mod% AND 2
 PRINT "Shift down"
 ENDIF
 IF mod% AND 4
 PRINT "Control down"
 ENDIF
 IF mod% AND 8
 PRINT "Psion down"
 ENDIF
 IF mod% AND 16
 PRINT "Caps Lock on"
 ENDIF
ENDP

If KMOD returns 24 (i.e. 16+8) to mod%, the expression mod% AND 8 returns 8, that is
logical TRUE, so "Psion down" is displayed; mod% AND 2 returns 0, so "Shift down" is not
displayed.

ESCAPE OFF/ON S3, S3a/c, Siena, S5, WA, HC
ESCAPE OFF
ESCAPE ON

Stop Psion-Esc being used to break out of the program when it is running, (ESCAPE OFF).
The ESCAPE ON command re-enables this feature.
ESCAPE OFF takes effect only in the program in which it occurs. The Psion-Esc hotkey is
automatically enabled again when you run another program.
Note:
If your program enters a loop that has no logical exit, and ESCAPE OFF has been used, you
cannot exit the program. You can terminate the OPL process from the Command Processor
(HC/WA), if it is running. Alternatively you can terminate the OPL process from the
System Screen (S3, S3a/c, Siena, WA), or by going to the filename under the RunOPL
icon and pressing Delete, (however, if LOCK ON has been used, this will not work). The
Ctrl-Psion-Shift-K key combination may also be used. On the Series 5 the process can be
ended from the task list.

9-28 OPL Reference

OFF S3, S3a/c, Siena, S5, WA, HC
OFF
OFF seconds%

Switch the Psion off.

When the machine is switched on again, the statement following the OFF command is
executed, for example:

OFF :PRINT "Back on again"

By specifying an integer, seconds%, between 3 and 16383, the machine can be switched
off for that number of seconds and then automatically turns back on and continues with the
next line of the program (16383 seconds is about 4½ hours). The machine can be turned
on before the expiry of this period with a normal switch-on keypress.

On the Series 5 the minimum time to switch off is 5 seconds. EPOC32 also prevents
switch off if there's an absolute timer outstanding and due to go off in less than 5 seconds.

Warning:
Take care with the use of the OFF command. If, due to a programming mistake, a program
uses OFF in a loop, the user may find it impossible to switch the Psion back on, and may
have to reset the computer.
The OFF command is fairly brutal. Don't use it if there could be other processes running
which aren't expecting the computer to suddenly or repeatedly switch off. This is almost
always the case, so use OFF with care.

Files

File management
COPY Copy files
DELETE Delete files
RENAME Rename files
EXIST Check if certain files exist
DIR$ Find out what files exist
PARSE$ Generate a full filename specification and get information on the

components
SPACE Find out how much free space there is on a device

OPL Reference 9-29

COPY S3, S3a/c, Siena, S5, WA, HC
COPY source$,dest$

Copy the file source$, which may be of any type, to the file dest$. Any existing file with
the name dest$ is deleted. You can copy from one device to another.
Use the appropriate file extensions to indicate the type of file, and wild cards if you wish
to copy more than one file at a time:
• If source$ contains wild cards, dest$ must not specify a filename, just the device and

directory to which the files are to be copied under their original names.
• You must specify either an explicit extension or the wild card extension .* on the first

(source) filename.

To copy all the OPL files from the root directory of a: to b:\backup\, for example:

COPY "A:*.OPL","B:\BACKUP\"

On Series 5 if source$ contains wildcards, dest$ may specify either a filename similarly
containing wildcards or just the device and directory to which the files are to be copied
under their original names.
Example: To copy all the files from internal memory (in \OPL) to D:\ME\:

COPY “C:\OPL*”,“D:\ME\”

See COMPRESS for more control over copying Data files. If you use COPY to copy a data
file, erased records are always copied and you cannot append to another data file.

Note:
Remember the final backslash on the directory name.

DELETE S3, S3a/c, Siena, S5, WA, HC
DELETE file$

Deletes any type of file.

You can use wild cards - for example, to delete all the OPL files in A:\
DELETE "A:*.OPL" REM SIBO
DELETE "C:\OPL*" REM EPOC32

See DELETE under Data files for deleting a table from an OPL32 database.

9-30 OPL Reference

RENAME S3, S3a/c, Siena, S5, WA, HC
RENAME file1$,file2$
Renames file1$ to file2$.
Any type of file can be renamed, but the names may not include wild cards.
Renaming across directories, for example:

RENAME "\dat\x.odb","\n\x.odb"

is valid. If you're renaming across directories, you can leave out the destination filename.
The source filename will be used by default.

For example:
PRINT "Old name:" :INPUT a$
PRINT "New name:" :INPUT b$
RENAME a$,b$

EXIST S3, S3a/c, Siena, S5, WA, HC
e% = EXIST(filename$)

Check to see that a file or directory exists – see note below.
Returns -1 (true) if the file exists and 0 (false) if it doesn't.

Use this function when creating a file to check that a file of the same name does not
already exist, or when opening a file to check that it has already been created:

...
IF NOT EXIST("CLIENTS")
 CREATE "CLIENTS",A,nm$
ELSE
 OPEN "CLIENTS",A,nm$
ENDIF
...

Note:
Always include the file extension in the file name – a default extension of .ODB is
assumed by OPL16.

If testing for the existence of a directory you may need to append a period to the end of the
name, e.g. dirnam$ + “.” to prevent the above behaviour interfering with the
directory test. The need for the trailing “.” in directory names appears to have been
eliminated in later versions of OPL16 and in OPL32.

DIR$ S3, S3a/c, Siena, S5, WA, HC
file$ = DIR$(spec$) then
file$ = DIR$("")

Lists filenames, including subdirectory names, matching a file specification. You can
include wild cards in the file specification. If spec$ is just a directory name, include the

OPL Reference 9-31

final path delimiter on the end - for example, "M:\TEMP\" with trailing backslash on a
DOS-type filing system, such as the Series 3a. Use the function like this:

• DIR$(spec$) returns the name of the first file matching the file specification.
• DIR$("") then returns the name of the second file in the directory.
• DIR$("") again returns the third, and so on.
• When there are no more matching files in the directory, DIR$("") returns a null

string.

In OPL16, to list all the .DBF files in M:\DAT\, for example:
PROC dir:
 LOCAL d$(128)
 d$=DIR$("M:\DAT*.DBF")
 WHILE d$<>""
 PRINT d$
 d$=DIR$("")
 ENDWH
 GET
ENDP

In OPL32, to list all the files whose names begin with A in C:\ME\
PROC dir:

LOCAL d$(255)
d$=DIR$(“C:\ME\A*”)
WHILE d$<>“”

PRINT d$
d$=DIR$(“”)

ENDWH
GET

ENDP

PARSE$ S3, S3a/c, Siena, S5, WA, HC
p$ = PARSE$(file$,rel$,var off%())

Return a full file specification from the filename file$.
Any missing information is filled in from rel$.
The offsets to the various file specification components in the returned string are returned
in off%() which must be declared with at least 6 integers:

off%(1) Filing system offset (1 always)
off%(2) device offset
off%(3) path offset
off%(4) filename offset
off%(5) file extension offset
off%(6) flags for wild cards in the returned string

For example on SIBO, after this call:

p$=PARSE$("datafile", "B:\", off%())

9-32 OPL Reference

the string p$ might be set to LOC::B:\datafile.dat. The contents of off%(4) in this
case would be 9, because the filename starts at character position 9 in p$.

The flag values in off%(6) are given below.

Off%(6) Meaning
0 no wild cards
1 wildcard in filename
2 wildcard in file extension
3 wildcard in both

If rel$ is not itself a complete file specification, the current filing system, device and or
path are used as necessary to fill in the missing parts. It is essential that file$ and rel$
should be separate string variables.

As a further SIBO example:

p$=PARSE$("NEW","LOC::M:\ODB*.ODB",offsets%())sets p$ to
"LOC::M:\ODB\NEW.ODB" and offsets%() to (1,6,8,13,16,0).

Note that the filename extension is considered to start at, and include, the full stop.

In OPL32 for example:
p$=PARSE$(“NEW”,“C:\Documents*.MBM”,x%())sets p$ to
C:\Documents\NEW.MBM and x%() to (1,1,3,14,17,0).

SPACE S3, S3a/c, Siena, S5, WA, HC
bytes& = SPACE

Return the number of free bytes on the device on which the current (open) data file is held.

For example:
PROC stock:
OPEN "C:\stock",A,a$,b%
WHILE 1
 PRINT "Item name:";
 INPUT A.a$
 PRINT "Number:";
 INPUT A.b%
 IF RECSIZE>SPACE
 PRINT "Disk full"
 CLOSE
 BREAK
 ELSE
 APPEND
 ENDIF
ENDWH
ENDP

Problems with SPACE (S3, HC)
There are two problems with the SPACE function.

OPL Reference 9-33

The SPACE function returns the space on the device last used for OPEN or CREATE, rather
than the space on the device associated with the current file. In other words, the USE
command does not change the device interrogated by the SPACE function.

The SPACE function cannot be used to sense the space on a remote computer that uses a
filing system requiring more than 8 characters to specify the filing system and device. For
example, SPACE would fail on a Macintosh device called REM::HD40.

Directory management
MKDIR Create directory
RMDIR Remove directory
SETPATH Set current directory
EXIST See General file management above

MKDIR S3, S3a/c, Siena, S5, WA, HC
MKDIR dir$

Create a new directory.
For example, MKDIR "M:\MINE\TEMP" creates the directory m:\mine\temp, also creating
m:\mine if it does not already exist. Use "C:\MINE\TEMP" on Series 5.

RMDIR S3, S3a/c, Siena, S5, WA, HC
RMDIR dir$

Remove the directory specified by dir$.
If the directory is not empty, it is not removed and an error is raised.

SETPATH S3, S3a/c, Siena, S5, WA, HC
SETPATH path$

Set the current directory for file access.

For example:
in OPL16, SETPATH "A:\docs\"
in OPL32, SETPATH "C:\docs\"

The LOADM command continues to use the directory of the initial module, but all other file
access will be to the new directory.

Note:
Remember the final backslash on the directory name.

9-34 OPL Reference

Database files
CREATE Create a new data file

OPEN,OPL16

OPEN,OPL32

OPENR

Open a data file
to read or write data
to read or write data
read only

USE Use a different data file that has already been opened
COMPRESS Copy a data file, optionally appending to another data file

and removing erased records
APPEND Make a new record
UPDATE Change a record

FIND

FINDFIELD

Search for records containing a certain string
 - simple search
 - controlled search

ERASE Erase a record

FIRST

LAST

NEXT

BACK

POSITION

Move to a different record in a file
 - first record
 - last record
 - next record
 - previous record
 - a specific record

COUNT Count the records
CLOSE Close a data file
EOF Detects the end of file has been reached
ODBINFO Get database information
POS Get current record number
RECSIZE Get the current record size in bytes
 New OPL32 database keywords – see notes below
DELETE Delete a table from a data file
INSERT Insert a new blank record into a database.
MODIFY Modify the current record without moving it.
PUT Makes the database changes permanent.
CANCEL Discards database changes made
BOOKMARK Puts a bookmark at the current record
GOTOMARK Make bookmarked record current
KILLMARK Remove a bookmark from a record
BEGINTRANS Begins a transaction on the current database
COMMITTRANS Commits the database transactions
INTRANS Finds out if the current view is in a transaction
ROLLBACK Cancels transaction(s) on the current view
COMPACT Compacts the database file

OPL Reference 9-35

Notes:
For general file operations (I/O) on text or binary type files, see the later section on ‘I/O
operations on files and devices’.

A number of new of new database keywords have been added to OPL32. On the Series 5,
INSERT, PUT and CANCEL should be used in preference to APPEND and UPDATE,
although APPEND and UPDATE are still supported.

Additionally, OPL32 has a database OPX that provides considerably more database
functionality – see the ‘OPL32 Techniques’ chapter for more details.

CREATE, OPL16 S3, S3a/c, Siena, S5, WA, HC
CREATE file$,ID,field1,field2,...

• Creates a data file called file$.
• If you don't give a file extension, the default extension .ODB will be used. The file

name may be a full file specification up to 128 characters long.
• The file may have up to 32 fields, as specified by field1,field2,...

and field names may be up to 8 letters/numbers. If viewed in the Data application
(Series 3, 3a/c, Siena and Workabout), field1 starts on the top line of the window,
field2 is below it, etc.

• Variable-naming rules apply also to the field names field1,field2... in that the type of
the field is indicated by a suffix character. For example:

• CREATE "myfile", A, name$, age%, nhsno&, addr$

• Note that string fields are automatically 255 characters long, so no size need be
specified in brackets after a string field.

• The ID argument specifies the logical file identifier - A, B, C or D. This is used as
an abbreviation for the file name when you use other data file commands such as USE.

Immediately after the CREATE statement, the file is open at the first record and can be
accessed.

For example:
CREATE "M:\CLIENTS",B,NAME$,PHONE$

would create a data file in the internal RAM drive, with the name clients.odb and the
logical file ID of B.

CREATE, OPL32 S5
CREATE tableSpec$,ID,f1,f2,...

Creates a table in a database. The database is also created if necessary. Immediately after
calling CREATE, the file and view (or table) is open and ready for access.

tableSpec$ contains the database filename and optionally a table name and the field
names to be created within that table. For example:
CREATE "clients FIELDS name(40), tel TO phone", D, n$, t$

9-36 OPL Reference

The filename is clients. The table to be created within the file is phone. The comma-
separated list, between the keywords FIELDS and TO, specifies the field names whose
types are specified by the field handles (i.e. n$, t$). The name field has a length of 40
bytes, as specified within the brackets that follow it. The tel field has the default length of
255 bytes. This mechanism is necessary for creating some indexes.

• The filename may be a full file specification of up to 255 characters. A field name may
be up to a maximum of 64 characters long. Text fields have a default length of 255
bytes.

• ID specifies the logical file identifier A to Z. This is used as an abbreviation for the
file name when using other data file commands such as USE.

SIBO compatibility
As in OPL16, the table specification may contain just the filename. In this case the table
name will default to Table1 and the field names will be derived from the handles: “$”
replaced by “s”, “%” by “i”, and “&” by “a”. E.g. n$ becomes ns. Knowing this allow
views to be opened on tables (called Table1) that were created with the OPL16 method.
However, it would be better to create the fields with proper names in the first place.
For example:
CREATE "clients",A,n$,t%,d&

is a short version of
CREATE "clients FIELDS ns,ti,da TO Table1",A,n$,t%,d&

both creating Table1. The database clients is also created if it does not exist already.

OPEN, OPL16 S3, S3a/c, Siena, S5, WA, HC
OPEN file$,ID,field1,field2...

Opens an existing data file called file$.

The file is given the logical file name ID. The opened file is then referred to within the
program by its logical name (A, B, C or D).

The fields are given the names field1, field2..., etc. Variable-naming rules apply to
these field names, in that the type of the field is indicated by a suffix character. For
example:

OPEN "myfile", A, name$, age%, nhsno&, addr$

Note that string fields are automatically 255 characters long, so no size need be specified
in brackets after a string field.

Field names need not be supplied for trailing fields that are not accessed by the program. It
is allowable to specify field names for all the leading fields only - up to and including the
last one that needs to be updated or appended. Up to 4 files can be open at once on SIBO
systems.

OPL Reference 9-37

For example:

OPEN "M:\CLIENTS",A,name$,addr$,credit&

OPEN, OPL32 S5
OPEN query$,ID,field1,field2...

Opens an existing table (or a ‘view’ of a table) from an existing database, giving it the
logical view name ID and handles for the fields field1, field2..., etc. ID can be any
letter in the range A to Z (i.e. up to 26 files open concurrently). query$ specifies the
database file, the required table and fields to be selected.

For example:
OPEN "clients SELECT name, tel FROM phone",D,n$,t$

The database name here is clients and the table name is phone. The field names are
enclosed by the keywords SELECT and FROM and their types should correspond with the
list of handles (i.e. n$ indicates that the name field is a string).

Replacing the list of field names with * selects all the fields from the table.

query$ is also used to specify an ordered view and if a suitable index has been created,
then it will be used. For example:

OPEN “people SELECT name,number FROM phoneBook ORDER BY name
ASC, number DESC”,G,n$,num%

would open a view with name fields in ascending alphabetical order and if any names were
the same then the number field would be used to order these records in descending
numerical order.

SIBO compatibility
As in OPL16, query$ may contain just the filename. In this case a table with the default
name Table1 would be opened if it exists. The field names would then be unimportant, as
access will be given to as many fields as there are supplied handles. The type indicators on
the field handles must match the types of the fields.

OPENR S3, S3a/c, Siena, S5, WA, HC
OPENR file$,ID,field1,field2.. OPL16
OPENR query$,ID,field1,field2.. OPL32
This command works exactly like OPEN except that the opened file is read-only; OPL may
not APPEND, UPDATE or PUT the records it contains.
Using OPENR, however, means that two or more separate programs, running at the same
time, can share the same file.

9-38 OPL Reference

USE S3, S3a/c, Siena, S5, WA, HC
USE ID

In OPL16, selects the data file with the ID A, B, C or D.

In OPL32, selects the data file with the ID A - Z.

The file must previously have been opened with OPEN, OPENR or CREATE and not yet be
closed. All of the record handling commands (such as POSITION, UPDATE, and
GOTOMARK, INSERT, MODIFY, CANCEL, and PUT in OPL32) then operate on this file.

COMPRESS S3, S3a/c, Siena, WA, HC
COMPRESS source$,dest$

Copy data file source$ to another data file dest$. If dest$ already exists, the records in
source$ are appended to the end of dest$.
Erased records are not copied. This makes COMPRESS particularly useful when copying
from a Flash SSD. Note: the space used by erased records on a RAM SSD or in internal
memory is automatically freed when you close the file.
If you want source$ to replace dest$ rather than appending to it, use:

TRAP DELETE dest$

before the COMPRESS statement.
You can use wild cards if you wish to copy more than one file at a time. But if the first
name contains any wild cards, the second name must not include a filename, just the
device and directory to which the files are to be copied under their original names.

To copy all the OPL data files from the root directory of a: to b:\backup\, for example:
COMPRESS "A:*.ODB","B:\BACKUP\"

Notes:
Remember the final backslash on the directory name.

In OPL32, COMPRESS has been replaced with COMPACT. Where possible the new
database keywords in OPL32 should be used in preference to some of those in OPL16. See
also SETFLAGS for details of how to set auto-compaction on closing files.
In OPL16, to disable the compress feature and optimise the speed of closing files use:
P%=PEEKW($1C)+$1E

POKEW p%,PEEKW(p%) OR 1

To re-enable compression on closing files use:
P%=PEEKW($1C)+$1E

POKEW p%,PEEKW(p%) AND $FFFE

OPL Reference 9-39

APPEND S3, S3a/c, Siena, S5, WA, HC
APPEND

Add a new record to the end of the current data file (without affecting the current record).
The record added is made from the current values of the field variables A.field1$,
A.field2$, and so on, of the current data file. If a field has not been assigned a value:

• zero will be assigned to it if it is a numeric field
• a null string will be assigned if it is a string field.
For example:

PROC add:
 OPEN "M:\add",A,f1$,f2$,f3$
 PRINT "ADD NEW RECORD"
 PRINT "Enter name:",
 INPUT A.f1$
 PRINT "Enter street:",
 INPUT A.f2$
 PRINT "Enter town:",
 INPUT A.f3$
 APPEND
 CLOSE
ENDP

To overwrite the current record with new field values, use UPDATE.

Note:
In OPL32 the new database keywords should be used in preference to APPEND.

UPDATE S3, S3a/c, Siena, S5, WA, HC
UPDATE

Erases the current record in the current data file and saves the current field values as a new
record at the end of the file. This record, now the last in the file, remains the current
record.
For example:

A.count=129
A.name$="Brown"
UPDATE

Use APPEND to save the current field values as a new record.
Note:
In OPL32 the new database keywords should be used in preference to UPDATE. Using
UPDATE may produce a lot of erased records. COMPACT should be used to remove them, or
alternatively use SETFLAGS to set auto-compaction on.

Problems with UPDATE (S3, HC)
UPDATE can cause a subsequent POSITION call to go to the wrong record in some
circumstances. A workaround is to use POSITION 1 after every call to UPDATE. You may

9-40 OPL Reference

need to use POS to save the current position before using UPDATE so that you can restore
that position after the POSITION 1 call.

FIND S3, S3a/c, Siena, S5, WA, HC
record% = FIND(string$)

Search the current data file for a record in which any string field matches string$. The
search starts from the current record, so use NEXT to progress to subsequent records. FIND
makes the next record containing string$ the current record and returns the number of
the record found, (or zero if not found). The search is case-independent.
The following wild cards may be included:

? matches any single character

* matches any group of characters.
So to find a record with a field containing both Dr and either BROWN or BRAUN, use:

F% = FIND("*DR*BR??N*")

FIND("BROWN") will find only those records with a field consisting solely of the string
BROWN.
FIND may only be used to search string fields.

Problems with FIND (S5)
On early versions of the Series 5 FIND may cause a 'User error 23' if used on a database
with more than 16 fields.
Workaround
Use FINDFIELD instead which does not seem to suffer from this problem.

FINDFIELD S3a/c, Siena, S5, WA
record% = FINDFIELD(string$,start%,no%,flags%)

Find a string in specified fields of a data file, make the record with this string the current
record, and return the number of this record or zero if not found.
The string to look for is string$, as for FIND.
The number of the string field to start looking in is start% (1 for the first string field).
The number of string fields to search in is no%, (starting from the string field specified by
the start%). If you want to search in all fields, use start%=1 and for no% use the number
of fields you used in the OPEN/CREATE command.

OPL Reference 9-41

The type of search is defined by the code in flags%, which adds together two values:
0 for a case independent match, where capitals and lower-case letters match
16 for a case dependent match.
0 to search backwards from the current record.
1 to search forwards from the current record.
2 to search backwards from the end of the file.
3 to search forwards from the start of the file.

For example, if a file is opened with:

OPEN "fred",a,i1%,s1$,i2%,i3%,s2$,s3$

Then the command:
FINDFIELD("x",1,2,1)

tries to find the string "x" in the two fields s1$ and s2$.

Problems with FINDFIELD (S3a)
You may experience a number of problems using FINDFIELD when the command fails to
find a match on searching backwards. You are advised therefore not to use FINDFIELD
when this condition could occur.
On failing to find when searching backwards, FINDFIELD discards the first record in its
internal buffer, so that a call to FIRST always causes all fields to be empty (in the case of
strings) or zero (in the case of numeric fields).
On failing to find when searching backwards, FINDFIELD does not, as expected, return 0.
Instead it positions to the first record and returns 1.
FINDFIELD does a FIND in some cases.

Workaround
Before each call to FINDFIELD you should have the following line:

POKEB PEEKW($1c)+7,0

ERASE S3, S3a/c, Siena, S5, WA, HC
ERASE

Erase the current record in the current file.
The next record is then current. If the erased record was the last record in a file, then
following this command all fields in the current record will be 0 or null strings, and EOF
will return true.

Problems with ERASE (S3, HC)
ERASE causes a subsequent POSITION call to go to the wrong record in some
circumstances. A workaround is to use POSITION 1 after every call to ERASE. You may
need to use POS to save the current position before using ERASE so that you can restore
that position after the POSITION 1 call.

9-42 OPL Reference

FIRST S3, S3a/c, Siena, S5, WA, HC
FIRST

Position to the first record in the current data file.

LAST S3, S3a/c, Siena, S5, WA, HC
LAST

Positions to the last record in a data file.

NEXT S3, S3a/c, Siena, S5, WA, HC
NEXT

Position to the next record in the current data file, and make it current. If NEXT is used
after the end of a file has been reached, no error is reported but the current record is null
and the EOF function returns true.

BACK S3, S3a/c, Siena, S5, WA, HC
BACK

Make the previous record in the current data file the current record. If the current record is
the first record in the file, then the current record does not change.

POSITION S3, S3a/c, Siena, S5, WA, HC
POSITION record%

Makes record number record% the current record in the current data file. If record% is
greater than the number of records in the file then the EOF function will return true.
Makes record number record% the current record in the current view.
On the Series 5, by using bookmarks and editing the same table via different views,
positional accuracy can be lost and POSITION x% could access the wrong record.
Accuracy can be restored by using FIRST or LAST on the current view. POS and POSITION
still exist mainly for reasons of SIBO compatibility and it is better to use bookmarks
instead on the Series 5.
IN OPL32, see BOOKMARK, GOTOMARK, KILLMARK.

Problems with POSITION (S3, HC)
ERASE and UPDATE can cause a subsequent POSITION call to go to the wrong record in
some circumstances. A workaround is to use POSITION 1 after every call to ERASE or
UPDATE. You may need to use POS to save the current position before using ERASE so that
you can restore that position after the POSITION 1 call.

OPL Reference 9-43

COUNT S3, S3a/c, Siena, S5, WA, HC
reccnt% = COUNT

Return the number of records in the current data file. This number will be 0 if the file is
empty.
In OPL32 trying to count the number of records in a view while updating the view will
raise an ‘Incompatible update mode’ error (This will occur between assignment and
APPEND / UPDATE or between MODIFY / INSERT and PUT).

CLOSE S3, S3a/c, Siena, S5, WA, HC
CLOSE

In OPL16 close the current data file (that is, the one that has been CREATEd or OPENed and
most recently USEd).
In OPL32 close the current view on a database. If there are no other views open on the
database then the database itself will be closed.
If some records have been deleted using ERASE, CLOSE recovers the memory taken up by
the erased records, (provided that the file is held either in the internal memory drive m: or
on a SIBO RAM SSD or a S5 Compact Flash disk).
Note:
To disable this feature on SIBO and optimise the speed of closing files use:
P%=PEEKW($1C)+$1E
POKEW p%,PEEKW(p%) OR 1

To re-enable compression on closing files use:
P%=PEEKW($1C)+$1E

POKEW p%,PEEKW(p%) AND $FFFE

In OPL32 see SETFLAGS for details of how to set auto-compaction on closing files.

EOF S3, S3a/c, Siena, S5, WA, HC
end% = EOF

Find out whether the end of a file has been reached. Returns -1 (true) if the end of the file
has been reached, or 0 (false) if it hasn't.
When reading records from a file, you should test whether there are still records left to
read, otherwise you may get an error.

9-44 OPL Reference

For example:
PROC eoftest:
OPEN "myfile",A,a$,b%
DO
 PRINT A.a$
 PRINT A.b%
 NEXT
 PAUSE -40
UNTIL EOF
PRINT "The last record"
GET
RETURN
ENDP

ODBINFO S3a/c, Siena, WA
ODBINFO var info%()

Get DBF database information; returns pointers to logical file data blocks. This keyword is
provided for advanced use only. It facilitates the use of OS and CALL to access data file
interrupt functions not accessible with OPL keywords.

The info%() array must have four elements. Pointers to data blocks for each of the four
data files with logical names A, B, C and D are returned in this array.

Take extreme care not to corrupt these blocks of memory, as they are the actual data
structures used by the OPL runtime interpreter.

A data block which has no open file using it has zero in the first two bytes.

Otherwise, the block of data for each file has the following structure, giving the offset to
each component from the start of the block and with offset 0 for the 1st byte of the block:

Offset Bytes Description
0 2 DBF system's file control block (handle) or zero if file not open.
2 2 Offset in the record buffer to the current record.
4 2 Pointer to the field name buffer.
6 2 Number of fields.
8 2 Pointer to start of record buffer.

10 2 Length of a NULL record.
12 1 Non-zero if all fields are text.
13 1 Non-zero for read-only file.
14 1 Non-zero if record has been copied down.
15 1 Number of text fields.
16 2 Pointer to device name.

POS S3, S3a/c, Siena, S5, WA, HC
record% = POS

In OPL16, returns the number of the current record in the current data file. The first record
in a data file is 1, the second 2 and so on.

OPL Reference 9-45

In OPL32, POS returns the number of the current record in the current view. It is better to
use bookmarks instead of POS on the Series 5.

On SIBO systems, a file can have up to 65534 records. However POS returns an integer
and integers can only be in the range -32768 to +32767. Record numbers above 32767 are
therefore returned as follows:

record value returned by POS
32767 32767
32768 -32768
32769 -32767
32770 -32766
. .
. .
65534 -2

To print record numbers, the following could be used:
...
IF POS<0
 PRINT 65536+POS
ELSE
 PRINT POS
ENDIF
...

In OPL32 the number of the current record may be greater than or equal to 65535 and
hence values may need to be truncated to fit into p%, giving inaccurate results. It is better
to use bookmarks when dealing with a large number of records. Note, however, that
the value returned by POS can become inaccurate if used in conjunction with bookmarks
and multiple views on a table. The accuracy can be restored by using FIRST or LAST on
the current view.

In OPL2 see BOOKMARK, GOTOMARK, KILLMARK.

RECSIZE S3, S3a/c, Siena, WA, HC
bytes% = RECSIZE

Return the number of bytes occupied by the current record. This function may be used, for
example, to check that a record may have data added to it without overstepping the 1022-
character limit:

PROC rectest:
LOCAL name$(20)
OPEN "M:\odb\name",A,name$,a$,b$,c$,d$
PRINT "Enter name:",
INPUT name$
IF RECSIZE<=(1022-LEN(name$))
 A.name$=name$
 APPEND
ELSE
 PRINT "Won't fit in record"
ENDIF
ENDP

9-46 OPL Reference

Note:
RECSIZE is not supported in OPL32. Where possible the new database keywords in
OPL32 should be used in preference to some of those in OPL16.

Problems with RECSIZE (S3, HC)
RECSIZE sometimes does not return the correct value.
Workaround
When the record contains a string field, assign it to itself. For example:

a.a$=a.a$

This forces RECSIZE to produce the correct result.

DELETE S5
DELETE dbase$,table$

This deletes the table, table$, from the database, dbase$. All views of the database, and
hence the database itself, must be closed.

INSERT S5
INSERT

Inserts a new, blank record into the current view of a database. The fields can then be
assigned to before using PUT or CANCEL.

MODIFY S5
MODIFY

Allows the current record of a view to be modified without moving the record. The fields
can then be assigned to before using PUT or CANCEL.

PUT S5
PUT

Marks the end of a database’s INSERT or MODIFY phase and makes the changes
permanent.

See INSERT, MODIFY, CANCEL.

CANCEL S5
CANCEL

Marks the end of a database’s INSERT or MODIFY phase and discards the changes made
during that phase.

OPL Reference 9-47

BOOKMARK S5
b%=BOOKMARK

Puts a bookmark at the current record of the current database view. The value returned can
be used in GOTOMARK to make the record current again. Use KILLMARK to delete the
bookmark.

GOTOMARK S5
GOTOMARK b%

Makes the record with bookmark b%, as returned by BOOKMARK, the current record. b%
must be a bookmark in the current view.

KILLMARK S5
KILLMARK b%

Removes the bookmark b%, which has previously been returned by BOOKMARK, from the
current view of a database.

See BOOKMARK, GOTOMARK.

BEGINTRANS S5
BEGINTRANS

Begins a transaction on the current OPL32 database; allow changes to a database to be
committed in stages. Once a transaction has been started on a view (or table) then all
database keywords will function as usual, but the changes to that view will not be made
until COMMITTRANS is used.

See also COMMITTRANS, ROLLBACK, INTRANS.

COMMITTRANS S5
COMMITTRANS

Commits the OPL32 database transactions on the current view.

See also BEGINTRANS, ROLLBACK, INTRANS.

INTRANS S5
i&=INTRANS

Finds out whether the current view is in a transaction. Returns -1 if it is in a transaction or
0 if it is not.

See also BEGINTRANS.

9-48 OPL Reference

ROLLBACK S5
ROLLBACK

Cancels the current transaction on the current view. Changes made to the database with
respect to this particular view since BEGINTRANS was called will be discarded.

See also BEGINTRANS, COMMITTRANS.

COMPACT S5
COMPACT file$

Compacts the database file$, rewriting the file in place. All views on the database and
the hence the file itself should be closed before calling this command. This should not be
done too often since it uses considerable processor power.

Compaction can also be done automatically on closing a file by setting the appropriate flag
using SETFLAGS.

OPL program modules
LOADM Load an OPL module so you can use the procedures in it
UNLOADM Remove a module from memory

LOADM S3, S3a/c, Siena, S5, WA, HC
LOADM module$

Load a translated OPL module file so that procedures in that module can be called. The
module$ argument is a string containing the name of the OPO file.

Until a module has been loaded with LOADM, calling a procedure in that module will give
an error.

In OPL16, the default directory for LOADM is that of the top-level module which is
automatically loaded (the directory of the initial running program, or the one specified by
an OPA application.). It is not affected by the SETPATH command. The default file name
extension is .OPO. Specify the full file name only where necessary.

In OPL32, LOADM uses the folder of the top-level module. It is not affected by the
SETPATH command. Once LOADM has been called, procedures loaded stay in memory
until the module is unloaded, so significantly more memory can be used than on SIBO,
where procedures are unloaded when the cache is full (or on return if caching is not used).

Notes:
Up to eight modules can be in memory at any one time; that includes the main program
module. An error will occur on trying to LOADM a ninth module. Hence, in addition to the

OPL Reference 9-49

main program module, you may use LOADM seven times before having to use UNLOADM to
remove a module from memory in order to load another one.

LOADM loads an index table containing the names and file addresses of the procedures; it
does not load the whole module. The file is then left open. Each procedure is loaded only
when it is called.

When a procedure is called, OPL searches the module indexes for the procedure name in
the order that modules were LOADMed.

With OPLLINT, you are strongly advised to specify the module name for LOADM as a
literal string rather than as a string expression or variable. This allows OPLLINT to check
the procedures in the named module.

For example:

LOADM "A:\RP\NEWMODUL"
LOADM "FILEH" REM in same directory as top-level module

UNLOADM S3, S3a/c, Siena, S5, WA, HC
UNLOADM module$

Remove from memory the OPL module module$, previously loaded with LOADM. The
UNLOADM command also removes all procedures in the module from the cache. The
module$ argument is a string containing the name of the translated module.

In OPL16 the extension .OPO is assumed, and need not be included.

In OPL32, once LOADM has been called, procedures loaded stay in memory until the
module is unloaded, so significantly more memory can be used than on SIBO, where
procedures are unloaded when the cache is full (or on return if caching is not used).

The procedures in an unloaded module cannot then be called by another procedure.

Note:
It is considered bad practice to unload a module containing procedures that are still
running - e.g. for a procedure to unload its own module.

Problems with UNLOADM (S3, S3a, HC)
The statement:

UNLOADM ""

Will unload the top-level module rather than raising an error.

9-50 OPL Reference

OPL procedure cacheing
CACHE Set up a procedure cache, or enable/disable procedure cacheing
CACHETIDY Remove returned procedures from a cache
CACHEHDR Read cache index header
CACHEREC Read cache index record

Note:
Cache commands are not available on the Series 5 since procedure cacheing is automatic
in OPL32.

CACHE S3a/c, Siena, WA
CACHE ON
CACHE init%,max%
CACHE OFF

Create a procedure cache of a specified initial number of bytes init% which may grow up
to the maximum size max%. You should usually TRAP this.

The minimum cache size is 2000 bytes, which is used if any lower value is specified. If the
maximum size specified is less than the initial size, the maximum is set to the initial size.
The maximum cache size cannot be changed once the cache has been created and an error
is returned if you attempt to do so. Once a cache has been created, CACHE OFF prevents
further cacheing, although the cache is still searched when calling subsequent procedures.
CACHE ON may then be used to re-enable cacheing.

You can specify init% and max% up to 32,767 bytes, although this limit can be exceeded
if you use hexadecimal, as in this example:

CACHE $9000,$9000

Note:
You cannot exceed the total memory limit of each process.

CACHEHDR S3a/c, Siena, WA
CACHEHDR ADDR(hdr%())

Read the procedure cache header record.

The cache index begins with a header, then has one index record for each procedure
cached. The CACHEHDR command reads the header into array hdr%(), which must have at
least 11 integer elements:

Element Contents
hdr%(1) Current address of the cache itself.
hdr%(2) Number of procedures currently cached.
hdr%(3) Maximum size of the cache in bytes.
hdr%(4) Current size of the cache in bytes.

OPL Reference 9-51

hdr%(5) Number of free bytes in the cache.
hdr%(6) Total number of bytes in cached procedures that can be freed (i.e. not

running).
hdr%(7) Offset from the start of the cache index to the first free index record.
hdr%(8) Offset from start of cache index to most recently used procedure's

record; zero if none.
hdr%(9) Offset from start of cache index to least recently used procedure's

record; zero if none.
hdr%(10) Address of the cache index, or zero if no cache created yet.
hdr%(11) Non-zero if cacheing is on, and zero if it is off.

All offsets mentioned give the number of bytes from the start of the index to the procedure
record specified.

If no cache has yet been created, hdr%(10)=0 and the other data read is meaningless.

Note:
Any information returned is liable to change whenever a procedure is called, so you cannot
save these values over a procedure call.

CACHEREC S3a/c, Siena, WA
CACHEREC ADDR(rec%()),offset%

Read the cache index record at offset offset% into array rec%().

The array must have at least 18 integer elements.

This is an advanced command, intended for use during program development only.

Element Contents
rec%(1) Offset to less recently used procedure's record or zero if on LRU.
rec%(2) Offset to more recently used procedure's record or zero if on MRU.
rec%(3) Usage count - zero if not running.
rec%(4) Offset in cache itself to descriptor for building the procedure

frame.
rec%(5) Offset in cache itself to translated code for the procedure.
rec%(6) Offset in cache itself to the end of the translated code for the

procedure.
rec%(7) Number of bytes used by the procedure in the cache itself.
rec%(8-15) Leading byte counted procedure name, followed by some private

data.
rec%(16) Address of the procedure's leading byte counted module name.
rec%(17) Address of the cache index, or zero if no cache created yet.
rec%(18) Non-zero if cacheing is on, and zero if it is off.

Alternatively offset%=0 specifies the most recently used (MRU) procedure's record, if
any, and offset%<0 the least recently used procedure (LRU) procedure's record, if any.

For a free index record only rec%(1) is significant, giving the offset of the next free index
record.

9-52 OPL Reference

The data returned by CACHEREC is meaningless if no cache exists (in which case
rec%(17)=0) or if there are no procedures cached yet, (when hdr%(8)=0 as returned by
CACHEHDR).

Note:
Any information returned is liable to change whenever a procedure is called, so you cannot
save these values over a procedure call.

The index records for cached procedures form a doubly-linked list, starting from first the
most recently used procedure (MRU), then from the least recently used procedure (LRU).
A further singly linked list gives the offsets to free index records.

CACHETIDY S3a/c, Siena, WA
CACHETIDY

Remove from the cache any procedures that have returned to their callers.

This might be called after performing a large, self-contained action in the program that
required many procedures.

Note:
A procedure that has returned is automatically removed from the cache if you unload the
module it is in.

Dynamic library (DYL) handling
LOADLIB Load (and optionally link) a DYL
LINKLIB Link a DYL
UNLOADLIB Unload a DYL
FINDLIB Get a DYL category handle for a DYL category name

Note:
Dynamic libraries are not available on the Series 5 - see the section on OPL extensions,
i.e. OPXs in the ‘OPL32 Techniques’ chapter.

LOADLIB S3a/c, Siena, WA
ret% = LOADLIB(var cathand%,name$,link%)

Load and optionally link a DYL, name$, that is not in the ROM.

If successful, this writes the category handle to cathand% and returns zero. The DYL is
shared in memory if already loaded by another process. The link% argument specifies if
the loaded library is to be linked immediately after loading:

0 do not link
1 Link

OPL Reference 9-53

LINKLIB S3a/c, Siena, WA
LINKLIB cathand%

Link any libraries that have been loaded using LOADLIB.

UNLOADLIB S3a/c, Siena, WA
ret% = UNLOADLIB(var cathand%)

Unload a DYL from memory. If successful, returns zero. The category handle (cathand%),
is that returned by LOADLIB.

FINDLIB S3a/c, Siena, WA
ret% = FINDLIB(var cathand%,catname$)

Find the DYL category catname$ (including .DYL extension) in the ROM. On success
return zero and write the category handle to cathand%.

To get the handle of a RAM-based DYL, use LOADLIB, to guarantee that the DYL
remains loaded in RAM. FINDLIB will get the handle of a RAM-based DYL but does not
keep it in RAM.

9-54 OPL Reference

Memory management

GLOBAL

LOCAL

Declare variables
 - global
 - local

CONST Declare a constant with global scope – OPL32
DECLARE EXTERNAL Allow detection of undefined variables or procedures – OPL32
EXTERNAL Declares variables or procedures as external – OPL32
ALLOC Allocate a heap cell
FREEALLOC Free an allocated heap cell
REALLOC Change the size of an allocated a heap cell
ADJUSTALLOC Insert or delete a section of an allocated heap cell
LENALLOC Get the length of an allocated heap cell
ADDR Address of a variable in memory
BYREF Pass a variable to an OPX by reference – OPL32
UADD Addition to a pointer - add an integer value
USUB Subtraction from a pointer - subtract an integer value
POKE commands Store a value in a specific place in memory
PEEK commands Find out the value stored at a certain place in memory
USR and USR$ Machine code calls
OS and CALL Operating system calls

Variable declaration

GLOBAL S3, S3a/c, Siena, S5, WA, HC
GLOBAL variables

Declare variables to be used in the current procedure, in any procedures called by the
current procedure, or procedures called by those procedures. In contrast, LOCAL
declaration sets up variables that can only be used in the current procedure.

The variables may be of 4 types, depending on the symbol their name ends with:

• Variable names not ending with $ % & or ()are floating-point variables, for example
price, x.

• Those ending with a % are integer variables, for example x%, sales92%.
• Those ending with an & are long integer variables, for example x&, sales92&.
• Those ending with a $ are string variables. String variable names must be followed by

the maximum length of the string in brackets, - for example names$(12), a$(3).

Array variables have a number immediately following them in brackets which specifies the
number of elements in the array. Array variables may of any type described above, for
example: GLOBAL x(6),y%(5),f$(5,12),z&(3)

OPL Reference 9-55

When declaring string arrays, two numbers must be supplied, enclosed in brackets. The
first declares the number of elements, the second declares the maximum length of each
element. For example surname$(5,8) declares five elements, each up to 8 characters
long.

OPL16 variable names may be any combination of up to 8 numbers and alphabetic letters.
They must start with a letter. The length includes the % & or $ sign, but not the () in
string and array variables.

OPL32 variable names may be any combination of up to 32 numbers, alphabetic letters
and the underscore character. They must start with a letter or an underscore. The length
includes the %, & or $ sign, but not the () in string and array variables.

The case (upper or lower) of characters in variable names is ignored.

More than one GLOBAL or LOCAL statement may be used, but they must be on separate
lines, after the procedure name and before any executable code.

LOCAL S3, S3a/c, Siena, S5, WA, HC
LOCAL variables

Declare variables that can be referenced only in the current procedure.

Any procedure may create a variable with the same name as one declared elsewhere by
means of LOCAL. Use GLOBAL to declare variables that may be referenced in all called
procedures.

The naming and types of LOCAL variables are as for GLOBAL variables above.

CONST S5
CONST KConstantName=value

Declares constants that are treated as literal values, and are not stored as data. CONST
declarations must be made outside any procedure, usually at the beginning of the module.
KConstantName uses the normal type-specifiers (%, &, $ or non for floating-point values)
as for variables. CONST values have global scope, and are not overridden by local or global
variables with the same name: in fact the translator will not allow the declaration of a local
or global variable with the same name. By convention, all constants are usually named
with a leading K to distinguish them from variables.

Note: that it is not possible to define constants with values -32768 (for integers) and
-214748648 (for long integers) in decimal notation, but hexadecimal notation may be
used instead (i.e. values of $8000 and &80000000 respectively).

See INCLUDE, EXTERNAL and the ‘OPL32 Techniques’ chapter for more details.

9-56 OPL Reference

DECLARE EXTERNAL S5
DECLARE EXTERNAL

Causes the OPL32 translator to report an error if any variables or procedures are used
before they are declared. It should be used at the beginning of the module to which it
applies, before the first procedure. It is useful for detecting ‘Undefined externals’ errors at
translate-time rather than at runtime.

For example, without ‘DECLARE EXTERNAL’, the following example code would raise an
error, “Undefined externals, i ” at run-time. Including the declaration as shown ensures the
error is detected at translate-time.
DECLARE EXTERNAL
PROC main:

LOCAL i%
i%=10
PRINT i REM i used by mistake instead of i%
GET

ENDP

If DECLARE EXTERNAL is used, all subsequent variables and procedures used in the
module will have to be declared using EXTERNAL. See EXTERNAL.

EXTERNAL S5
EXTERNAL variable REM must be used inside each procedure body
EXTERNAL prototype REM must be used outside of any procedure body

Required if DECLARE EXTERNAL is specified in the module.

The first version above declares a variable as external. For variables you must use
EXTERNAL inside the body of each procedure that uses that variable, in similar way to the
use of LOCAL and GLOBAL statements. For example:
DECLARE EXTERNAL
EXTERNAL myProc:

PROC main:
 GLOBAL var%
 ...
 myProc:
 PRINT var%
ENDP

PROC myProc:
 EXTERNAL var%
 var%=1
ENDP

The second version above declares the prototype of a procedure (prototype includes the
final : and the argument list). The procedure may then be referred to before it is defined.
This allows the procedures parameters to be type-checked at translate-time rather than at

OPL Reference 9-57

runtime, and also provides the necessary information for the translator to coerce
(automatically convert) numeric argument types.

A header file should be ‘included’ that declares prototypes of all the procedures. The
header file is ‘included’ at the beginning of the module that defines the declared
procedures, it is also be ‘included’ in any other modules that call the procedures.
DECLARE EXTERNAL is used at the beginning of modules that ‘include’ the header file
so that the translator can ensure that the procedures are called with correct parameter types
or types which can be coerced.

For example:
DECLARE EXTERNAL
EXTERNAL myProc%:(i%,l&)
REM or INCLUDE “myproc.oph” that defines all your procedures

PROC test:

LOCAL i%,j%,s$(10)

REM j% is coerced to a long integer as specified by the
prototype.
myProc%:(i%,j%)

REM translator ‘Type mismatch’ error:
REM string can’t be coerced to numeric type
myProc%:(i%,s$)

REM wrong argument count gives translator error
myProc%:(i%)

ENDP

PROC myProc%:(i%,l&)

REM Translator checks consistency with prototype above
...

ENDP

See also DECLARE EXTERNAL.

Memory, dynamic allocation

ALLOC S3a/c, Siena, S5, WA
pcell% = ALLOC(size%)
pcell& = ALLOC(size&) in OPL32

Allocates a cell on the heap of the specified size in bytes, (size% or size&). A pointer to
the cell is returned or zero if there is not enough memory. Note that the new cell is not
initialised.
The number of bytes allocated is restricted to 64K in OPL16.

In OPL32 this restriction is removed and therefore the return type must be a long integer.
Also cells are allocated lengths that are the smallest multiple of four greater than the size

9-58 OPL Reference

requested. An error will be raised if the cell address argument is not in the range known by
the heap.

In OPL32 cells are allocated lengths that are the smallest multiple of four greater than the
size requested. An error will be raised if the cell address argument is not in the range
known by the heap.

FREEALLOC S3a/c, Siena, S5, WA
FREEALLOC pcell%
FREEALLOC pcell& in OPL32

Free a previously allocated heap cell at pcell% or pcell&.
The number of bytes allocated is restricted to 64K in OPL16. In OPL32 this restriction is
removed and therefore the input type must be a long integer.

See also SETFLAGS if you require the 64K limit to be enforced on the Series 5. If the flag
is set to restrict the limit, pcell& is guaranteed to fit into a short integer.

REALLOC S3a/c, Siena, S5, WA
pcelln% = REALLOC(pcell%,size%)
pcelln& = REALLOC(pcell&,size&) in OPL32

Change the size of a previously allocated cell at pcell% (pcell&) to size% (size&),
returning the new cell address or zero if there is not enough memory. If out of memory, the
old cell at pcell% (pcell&) is left as it was. If the size of pcell% (pcell&) is being
decreased, pcell% (pcell&) and pcelln% (pcelln&) will be the same.

In OPL32 cells are allocated lengths that are the smallest multiple of four greater than the
size requested. An error will be raised if the cell address argument is not in the range
known by the heap.

ADJUSTALLOC S3a/c, Siena, S5, WA
pcelln% = ADJUSTALLOC(pcell%,offset%,amount%)
pcelln& = ADJUSTALLOC(pcell&,offset&,amount&) in OPL32

Open or close a gap in a memory cell.
The gap is at offset offset% (offset&) within the allocated cell pcell% (pcell&). The
offset is zero for the first byte in the cell. The gap is opened if the amount (amount% or
amount&) is positive, and closed if it is negative. The function returns the new cell address
in pcelln% (pcelln&), or zero if out of memory.
The number of bytes allocated is restricted to 64K in OPL16.

In OPL32 this restriction is removed and therefore the return type must be a long integer.
Also cells are allocated lengths that are the smallest multiple of four greater than the size
requested. An error will be raised if the cell address argument is not in the range known by
the heap.

OPL Reference 9-59

LENALLOC S3a/c, Siena, S5, WA
lencell% = LENALLOC(pcell%)
lencell& = LENALLOC(pcell&) in OPL32

Return the length of the previously allocated heap cell at pcell% (pcell&).

In OPL32 cells are allocated lengths that are the smallest multiple of four greater than the
size requested. An error will be raised if the cell address argument is not in the range
known by the heap.

Memory, addresses & pointer arithmetic
Note:
UADD and USUB should not be used for pointer arithmetic in OPL32 unless SETFLAGS
has been used to enforce the 64K memory limit. Long integer arithmetic should be used
for pointer arithmetic on the Series 5.

ADDR S3, S3a/c, Siena, S5, WA, HC
pvar% = ADDR(variable)
pvar& = ADDR(variable) in OPL32

Return the address at which the variable is stored in memory.
The values of different types of variables are stored in bytes starting at ADDR(variable).
See the PEEK functions for details.
The ADDR function may be used to find the address of the first element in an array, as in
ADDR(x%()). It is also possible to find the address of a specific element of the array, for
example ADDR(x%(2)).
This command is principally useful for passing variables to procedures that need to modify
them. To pass a variable by reference rather than by value, you need to pass a pointer -
ADDR returns a pointer to its argument.
In the case of strings, the address pointed to by pvar% holds the length-byte prefix.
See SETFLAGS for enforcing the 64K limit on the Series 5.
See also UADD and USUB, and the PEEK functions.

BYREF S5
BYREF variable

BYREF, is used to indicate that variable will be passed by reference (typically to an OPX
procedure) i.e. to pass the address of the variable to allow the called procedure to modify
the variables contents.

9-60 OPL Reference

UADD S3a/c, Siena, WA
i% = UADD(val1%,val2%)

Add val1% and val2%, as if both were unsigned integers with values from 0 to 65535.
Using this function prevents integer overflow for pointer arithmetic, e.g.:

UADD(ADDR(text$),1)

should be used instead of
ADDR(text$)+1

One argument would normally be a pointer and the other an offset expression.
See also USUB and ADDR.

USUB S3a/c, Siena, WA
i% = USUB(val1%, val2%)

Subtract val2% from val1%, as if both were unsigned integers with values from 0 to
65535.
Using this function prevents integer overflow for pointer arithmetic, e.g.:

USUB(ADDR(text$),1)

should be used instead of
ADDR(text$)-1

One argument would normally be a pointer and the other an offset expression.
See also UADD and ADDR.

Memory, reading and writing
The various POKE commands are able to store different data types into memory locations,
usually into a memory location of a previously declared variable.

Note:
Casual use of the POKE commands can result in the loss of data in the Psion.

The various PEEK commands are able to read different data types from memory locations,
usually from the location of a previously declared variable. See the corresponding PEEK
functions for more details of how the different variable types are stored in memory.

The ADDR function is used to find out the address of a particular variable in memory, it
may also be used to find the address of the first element in an array, as in ADDR(x%()). It
is additionally possible to find the address of a specific element of the array, for example
ADDR(x%(2)).

OPL Reference 9-61

POKEB S3, S3a/c, Siena, S5, WA, HC
POKEB address%,intv%
POKEB address&,intv% - in OPL32

Store the integer value intv% (less than 256) in the single byte at address% or
address&.

POKEF S3, S3a/c, Siena, S5, WA, HC
POKEF address%,floatv
POKEF address&,floatv - in OPL32

Store the floating-point value floatv in bytes starting at address% or address&.

POKEL S3, S3a/c, Siena, S5, WA, HC
POKEL address%,long&
POKEL address&,long& - in OPL32

Store the long-integer long& in bytes starting at address% or address&.

POKEW S3, S3a/c, Siena, S5, WA, HC
POKEW address%,int%
POKEW address&,int% - in OPL32

Store the integer int% across two consecutive bytes, with the least significant byte in the
lower address, that is address% or address&.

POKE$ S3, S3a/c, Siena, S5, WA, HC
POKE$ address%,string$
POKE$ address&,string$ - in OPL32

Store the string string$ in bytes starting at address% or address&.

PEEKB S3, S3a/c, Siena, S5, WA, HC
intval% = PEEKB(address%)
intval% = PEEKB(address&) - in OPL32

Return the integer value of the byte at address% or address&.

9-62 OPL Reference

PEEKF S3, S3a/c, Siena, S5, WA, HC
float = PEEKF(address%)
float = PEEKF(address&) - in OPL32

Return the floating-point value at address% or address&.

Floating-point numbers are stored in IEEE format for doubles, across eight bytes. PEEKF
automatically reads all eight bytes and returns the number as a floating-point value. For
example, if var=1.3 then PEEKF(ADDR(var)) returns 1.3.

PEEKL S3, S3a/c, Siena, S5, WA, HC
long& = PEEKL(address%)
long& = PEEKL(address&) - in OPL32

Return the long integer value at address% or address&.
Long integers are stored in four bytes, the least significant first and the most significant
last, for example:
 $01 $00 $00 $00 = 1
 $00 $00 $01 $00 = 65536

PEEKW S3, S3a/c, Siena, S5, WA, HC
int% = PEEKW(address%)
int% = PEEKW(address&) - in OPL32

Return the integer at address% or address&.

Integers are stored in two bytes, the first of which is the least significant, so that:
 $01 $00 = 1
 $00 $01 = 256

The ADDR function returns the address of the first (least significant) byte.

PEEK$ S3, S3a/c, Siena, S5, WA, HC
string$ = PEEK$(address%)
string$ = PEEK$(address&) - in OPL32

Return the string at address% or address&.

For example, if var$="ABC", then PEEK$(ADDR(var$)) would return the string "ABC".

Strings are stored as one character per byte, with a leading byte containing the string
length e.g. the length byte is 3 in the example below. Each letter is stored as its character
code (that is, A is stored as 65, B as 66, and so on). Thus:

12 3 65 66 67

OPL Reference 9-63

represents the string "ABC".

The byte value prior to the length byte, i.e. 12 is the maximum declared size of the string.
For example in:
LOCAL var$(12)

Note:
ADDR(var$) returns the address of the length byte and USUB(ADDR(vars$),1) gives the
address of the maximum string length.

Machine code calls
USR Call a machine code routine returning an integer
USR$ Call a machine code routine returning a string

Notes:
The OPL16 machine code keywords are no longer supported in OPL32, they have been
replaced by OPL extensions called OPXs.

Casual use of these functions can result in the loss of data in the Psion.

USR S3, S3a/c, Siena, WA, HC
u% = USR(addr%,ax%,bx%,cx%,dx%)

Execute machine code written by the developer, returning an integer.

The USR code (i.e. the assembler code written by the developer) must return with a far
RET, otherwise the program will crash.

The values of ax%,bx%... are passed to the AX,BX,... 8086 registers. The microprocessor
then executes the machine code starting at addr%. At the end of the routine, the value in
the AX register is passed back to u%.

This example shows a simple operation with a far RET:
PROC trivial:
 LOCAL triv%(2),u%,ax%
 triv%(1)=$c032 REM xor al,al
 triv%(2)=$cb REM retf
 ax%=$1ab
 u%=USR(ADDR(triv%()),ax%,0,0,0)
 REM returns(ax% AND $FF00)
 PRINT u% REM displays 256 ($100)
 GET
ENDP

See also USR$, ADDR, PEEK commands, POKE commands, OS, CALL.

9-64 OPL Reference

USR$ S3, S3a/c, Siena, WA, HC
u$ = USR$(addr%,ax%,bx%,cx%,dx%)

Execute machine code written by the developer, returning a string.

The USR$ code written by the developer must return with a far RET, otherwise the
program will crash.

The values of ax%, bx%, cx% and dx% are passed to the AX, BX, CX and DX 8086 registers.
The microprocessor then executes the machine code starting at addr%. At the end of the
routine, the value in the AX register must point to a length-byte preceded string. This string
is then copied to u$.

See USR for an example. See also ADDR, PEEK commands, POKE commands, OS, CALL.

Operating system calls
OS Call a system interrupt number returning all registers and flags
CALL Call a system interrupt number returning AX only

OS S3, S3a/c, Siena, WA, HC
flags% = OS(inter%,pRegIn%)
flags% = OS(inter%,pRegIn%,pRegOut%)

Calls the Operating System interrupt number inter%, reading the values of all returned
8086 registers and flags.

The CALL function, although simpler to use, does not allow the AL register to be passed
and returns only the AX register. This makes it suitable only for certain interrupts. For
instance, CALL is not suitable for calling any interrupt that can return the CARRY flag set on
error.

The input registers are passed at the address pRegIn%. The output registers are passed at
the address pRegOut% if supplied, otherwise they are returned at address pRegIn%. Both
addresses can be of an array, or of six consecutive integers.

Register values are stored sequentially as 6 integers and represent the registers in this
order: AX, BX, CX, DX, SI, and DI. The interrupt's function number, if required, is
passed in register AH.

The output array must be large enough to store the 6 integers in all cases irrespective of the
interrupt being called. The pRegIn% and pRegOut% arguments can point to the same
memory location. The value returned by OS is the 8086 flags register.

OPL Reference 9-65

The Carry flag which is relevant in most cases, is in bit 0 of the returned value, so the
expression:

flags% AND 1

will be non-zero if Carry is set. Similarly the Zero flag is in bit 6 (flags% AND 64), the
Sign flag in bit 7 (flags% AND 128), and the Overflow flag in bit 10 (flags% AND 1024).
Error codes are returned where appropriate in the 8-bit AL register - the high-byte AH
register is not defined on error. To extend the negative error code from AL into AH, use the
expression:

AX OR $FF00

For example, to find the number of days in the month in a given year, call EPOC16 O/S
System Service TimDaysInMonth, which is function number 8 of interrupt $89 (which is
the TimManager interrupt):

PROC dim%:
 LOCAL ax%,bx%,cx%,dx%,si%,di% REM this order is essential
 LOCAL flags% REM returned 8086 flags
 LOCAL m%,y%
 PRINT "Month (1-12)>", :INPUT m%
 PRINT "Year (1900+)>", :INPUT y%
 cx%=y%-1900 REM CL register,year
 POKEB ADDR(cx%)+1,m%-1 REM CH register,month
 ax%=$0800 REM AH=8 for TimDaysInMonth
 flags%=OS($89,ADDR(ax%)) REM $89 for TimManager
 IF flags% AND 1 REM carry set?
 PRINT ERR$(ax% OR $ff00) REM AL=error;extend to integer
 ELSE
 PRINT ax%,"days in",MONTH$(m%),y%
 ENDIF
 GET
ENDP

See also CALL.

Using OS with OPLLINT
The OS keyword requires that CPU registers (AX, BX, CX, DX, SI or DI) are passed as
variables. Although these registers must be declared - for example:

LOCAL ax%,bx%,cx%,dx%,si%,di%

not all of them may be in use in any one particular line of code. OPLLINT will warn you
about, for example:

flags%=OS(140,addr(ax%))

because the variables bx%, cx%, dx%, si% and di% are not referenced. The way around this
is to fool OPLLINT into thinking the variables have been used, with a piece of code such
as:

#ifdef _OPLLINT
 bx%=cx%=dx%=si%=di%=ax%
#endif

9-66 OPL Reference

CALL S3, S3a/c, Siena, WA, HC
err% = CALL(service%,bx%,cx%,dx%,si%,di%)

Make an Operating System call from an OPL program.
The CALL command returns the 8086 AX register only, and is therefore suitable only for
O/S services that do not return errors (or any flags or registers that you are interested in).
Furthermore, the AL register cannot be set for CALL. The alternative OPL function OS
overcomes these difficulties, but is more complicated to use.
The interrupt number itself is the least significant byte of service%. The AH value (the
sub-function number) is the most significant byte of service%. The values of the other
arguments are passed to the corresponding 8086 registers.
The Call function should not be used if:

• You need the return values of other registers than AX.
• Errors are flagged with Carry.
• You need the return values of other flags
• You need to pass the AL register.

Problems with CALL (S3, HC)
The CALL function does not support setting the AL register. Certain system services
require that AL be set to 0, so CALL cannot be used for them.
Workaround
The AL register happens to be copied from the low byte of the SI register. This is now
guaranteed for future versions of OPL on the 8086. This workaround can only be used
when the system service does not require the SI register itself to be passed.

Printing
LOPEN Prepare a device or file to print to
LCLOSE Close the print device or file opened with LOPEN
LPRINT Print to an attached device or file

LOPEN S3, S3a/c, Siena, S5, WA, HC
LOPEN port$
LOPEN file$

Open the port or file to which LPRINTs are to be sent.

No LPRINTs can be sent until a port or file has been LOPENed.

You can open any of these devices:

OPL Reference 9-67

• The parallel port, with either LOPEN "PAR:A" (or LOPEN "PAR:B" if the Psion has
this port).

• The serial port, with either LOPEN "TTY:A" (or LOPEN "TTY:B" if the Psion has this
port).

• A file on the Psion or an attached computer. LOPEN the file name, e.g. on a PC:
 LOPEN "REM::C:\BAK\MEMO.TXT"
or on an Apple Macintosh:
 LOPEN "REM::HD40:MY BAK:MEMO5"

Any existing file of the same name will be overwritten when you print to it.

Only one device may be open at any one time. Use LCLOSE to close the device (if left open
it is closed automatically when a program finishes running).

Note:
All the I/O calls, e.g. IOW() can be passed a handle of -1 to use the LOPENed device, for
example:
 IOW(-1,FREAD,...)

LCLOSE S3, S3a/c, Siena, S5, WA, HC
LCLOSE

Close the device or file opened with LOPEN. The device or file is also closed automatically
when a program ends.

LPRINT S3, S3a/c, Siena, S5, WA, HC
LPRINT list

Prints a list of items, in the same way as PRINT, except that the data is sent to the file or
device most recently opened with LOPEN.

The list of items may be quoted strings, variables, or the evaluated results of expressions.
The punctuation of the LPRINT statement (commas, semi-colons and new lines)
determines the layout of the printed text, in the same way as PRINT statements.

An error is raised if no device has been opened with LOPEN.

9-68 OPL Reference

Numeric functions

Trigonometric functions
COS, SIN, TAN,
ACOS, ASIN, ATAN

Cosine, Sine, Tangent,
Arccosine, Arcsine, Arctangent
Note: All trig function arguments are in radians

RAD
DEG

Convert angles - from degrees to radians
 - from radians to degrees

COS S3, S3a/c, Siena, S5, WA, HC
cosine = COS(radians)

Return the cosine of radians, an angle in radians.

SIN S3, S3a/c, Siena, S5, WA, HC
sine = SIN(radians)

Return the sine of radians, an angle expressed in radians.

TAN S3, S3a/c, Siena, S5, WA, HC
tangent = TAN(radians)

Return the tangent of radians, an angle expressed in radians.

ACOS function S3, S3a/c, Siena, S5, WA, HC
radians = ACOS(x)

Return the arc cosine, or inverse cosine (COS-1) of x.

The value of x must be in the range -1 to +1. The number returned is an angle in radians.

ASIN S3, S3a/c, Siena, S5, WA, HC
radians = ASIN(x)

Return the arc sine, or inverse sine (SIN-1) of x.
The value of x must be in the range -1 to +1. The number returned is an angle in radians.

OPL Reference 9-69

ATAN S3, S3a/c, Siena, S5, WA, HC
radians = ATAN(x)

Return the arc tangent, or inverse tangent (TAN-1) of x.
The number returned is an angle in radians.

RAD S3, S3a/c, Siena, S5, WA, HC
radians = RAD(degrees)

Convert from degrees to radians.
All the trigonometric functions assume angles are specified in radians, but it may be more
convenient to enter angles in degrees and then convert with RAD. For example:

PROC xcosine:
 LOCAL angle
 PRINT "Enter angle in degrees:";
 INPUT angle
 PRINT "COS of",angle,"degrees is",
 angle=RAD(angle)
 PRINT COS(angle)
 GET
ENDP

The formula used is (PI*x)/180.

To convert from radians to degrees use DEG.

DEG S3, S3a/c, Siena, S5, WA, HC
degrees = DEG(radians)

Converts from radians to degrees.
Returns radians, an angle in radians, as a number of degrees, degrees. The formula
used is:

radians*180/PI

All the trigonometric functions (SIN, COS, etc.) work in radians, not degrees. You can
use DEG to convert an angle returned by a trigonometric function back to degrees. For
example:

PROC xarctan:
 LOCAL arg,angle
 PRINT "Enter argument:";
 INPUT arg
 PRINT "ARCTAN of",arg,"is"
 angle=ATAN(arg)
 PRINT angle,"radians"
 PRINT DEG(angle),"degrees"
 GET
ENDP

To convert from degrees to radians, use RAD.

9-70 OPL Reference

General numeric functions
EXP Raise the number e to a power
LN

LOG
Logarithms - natural (base e)
 - decimal (base 10)

PI Pi as a constant (π)
SQR Square root

RND

RANDOMIZE

Use random numbers
 - generate a random floating point number (0 ≤ x <1)
 - set a seed for random number generation

EXP S3, S3a/c, Siena, S5, WA, HC
e = EXP(x)

Returns ex - that is, the value of the arithmetic constant e (2.71828...) raised to the power
of x.

LN S3, S3a/c, Siena, S5, WA, HC
a = LN(x)

Return the natural (base e) logarithm of x. Use LOG to return the base 10 logarithm of a
number.

LOG S3, S3a/c, Siena, S5, WA, HC
a = LOG(x)

Return the base 10 logarithm of x. Use LN to find the base e (natural) logarithm.

PI S3, S3a/c, Siena, S5, WA, HC
p = PI

Return the value of π (3.14159265358979...).

SQR S3, S3a/c, Siena, S5, WA, HC
s = SQR(x)

Returns the square root of x, which must be greater than or equal to zero.

OPL Reference 9-71

RND S3, S3a/c, Siena, S5, WA, HC
random = RND

Return a random floating-point number in the range 0 (inclusive) to 1 (exclusive).
To produce random numbers between 1 and n - e.g. between 1 and 6 for a dice - use the
following statement: f%=1+INT(RND*n)
The RND function produces a different random number every time it is called within a
program. A fixed sequence can be generated by using RANDOMIZE. Alternatively,
RANDOMIZE could be supplied with an argument generated from, for example, MINUTE and
SECOND to seed the sequence differently each time.

For example:
PROC rndvals:
LOCAL i%
PRINT "Random test values are:"
DO
 PRINT RND
 i%=i%+1
 GET
UNTIL i%=10
ENDP

Note:
In OPL32 (very early versions on the Series 5) the first call to RND produced an
unreliable value. Workaround – call the RANDOMISE function to set the random seed
(usually during program initialisation) and immediately follow it with a call to RND to
dump the first value. For example:

RANDOMISE second+1+minute+1+hour+1
RND

RANDOMIZE S3, S3a/c, Siena, S5, WA, HC
RANDOMIZE seed&

Set the 'seed' (start-value) for RND to seed&.

Successive calls of the RND function produce a sequence of pseudo-random numbers. If
RANDOMIZE is used to set the seed back to what it was at the beginning of the sequence,
the same sequence will be repeated.

To seed the sequence differently each time, you could begin by using RANDOMIZE with an
argument generated from MINUTE and SECOND. In a game program you would typically use
RANDOMIZE in this way, but only once, e.g. when the game first initialises.

The same set of 'random' values might be needed to test new versions of a procedure. To
do this, precede the set of RND statements with the statement RANDOMIZE value&. Then to
repeat the sequence, use RANDOMIZE value& again, using the same value.

9-72 OPL Reference

For example:

PROC seq:
LOCAL g$(1)

WHILE 1
 PRINT "S: set seed to 1"
 PRINT "Q: quit"
 PRINT "other key: continue"
 g$=UPPER$(GET$)
 IF g$="Q"
 BREAK
 IF g$="S"
 PRINT "Setting seed to 1"
 RANDOMIZE 1
 PRINT "First random no:"
 ELSE
 PRINT "Next random no:"
 ENDIF
 PRINT RND
ENDWH
ENDP

See also RND.

Statistical numeric functions
MAX Find the greatest value in the list
MIN Find the smallest value in the list
MEAN Average the list
SUM Add up the list
STD Find the standard deviation
VAR Find the variance

MAX S3, S3a/c, Siena, S5, WA, HC
m = MAX(list_of_numbers)
m = MAX(array(),count%)

Return the greatest of a list of numeric items.

The list can be either:
• A list of variables, values and expressions, separated by commas
or
• The elements of a floating point array

When operating on an array, the first argument must be the array name followed by (). The
second argument count%, separated from the first by a comma, is the number of array
elements you wish to operate on - for example m=MAX(arr(),3) would return the value
of the largest of elements arr(1), arr(2) and arr(3).

OPL Reference 9-73

MIN S3, S3a/c, Siena, S5, WA, HC
m = MIN(list_of_numbers)
m = MIN(array(),count%)

Return the smallest of a list of numeric items.

The list can be either:

• List of variables, values and expressions, separated by commas
or
• The elements of a floating point array.

When operating on an array, the first argument must be the array name followed by (). The
second argument count%, separated from the first by a comma, is the number of array
elements you wish to operate on - for example m=MIN(arr(),3) would return the
minimum of elements arr(1), arr(2) and arr(3).

MEAN S3, S3a/c, Siena, S5, WA, HC
m = MEAN(list_of_numbers)
m = MEAN(array(),count%)

Return the arithmetic mean (average) of a list of numeric items.
The list can be either:
• A list of variables, values and expressions, separated by commas
or
• The elements of a floating point array.

When operating on an array, the first argument must be the array name followed by (). The
second argument count%, separated from the first by a comma, is the number of array
elements you wish to operate on - for example m=MEAN(arr(),3) would return the
average of elements arr(1), arr(2) and arr(3).

This example displays 15.0:

arr(1) = 10
arr(2) = 15
arr(3) = 20
PRINT MEAN(arr(),3)

9-74 OPL Reference

SUM S3, S3a/c, Siena, S5, WA, HC
s = SUM(list_of_numbers)
s = SUM(array(),count%)

Return the sum of a list of numeric items.
The list can be either:
• A list of variables, values and expressions, separated by commas
or
• The elements of a floating point array.

When operating on an array, the first argument must be the array name followed by (). The
second argument count%, separated from the first by a comma, is the number of array
elements you wish to operate on - for example m=SUM(arr(),3) would return the sum of
elements arr(1), arr(2) and arr(3).

STD S3, S3a/c, Siena, S5, WA, HC
s = STD(list_of_numbers)
s = STD(array(),count%)

Return the sample standard deviation of a list of numeric items. The list can be either:

• A list of variables, values and expressions, separated by commas
or
• The elements of a floating point array.

When operating on an array, the first argument must be the array name followed by (). The
second argument count%, separated from the first by a comma, is the number of array
elements you wish to operate on - for example m=STD(arr(),3) would return the
standard deviation of elements arr(1), arr(2) and arr(3).
This function gives the sample standard deviation using the formula:

 SQR(∑((xi-(∑xi/count%))
2/(count%-1))

where count% is the number of elements in the list. To convert to population standard
deviation, multiply the result by SQR((count%-1)/count%).

VAR S3, S3a/c, Siena, S5, WA, HC
v = VAR(list)
v = VAR(array(),count%)

Return the sample variance of a list of numeric items. The list can be either:

• A list of variables, values and expressions, separated by commas
or
• The elements of a floating point array.

OPL Reference 9-75

When operating on an array, the first argument must be the array name followed by (). The
second argument count%, separated from the first by a comma, is the number of array
elements you wish to operate on - for example m=VAR(arr(),3) would return the
variance of elements arr(1), arr(2) and arr(3).

This function gives the sample variance, using the formula:

∑(xi-(∑xi/count%))2/(count%-1)

where n is the number of elements in the list.

To convert to population variance, multiply the result by (count%-1)/count%.

Numeric conversion

ABS

IABS

Convert negative number to positive
 - floating point or integer, returning a floating point
 - integer or long integer, returning a long integer

INT

INTF

Take floating point number, removing any fractional part
 - returning a long integer
 - returning a floating point number

FLT Convert an integer into floating-point
HEX$ Convert an integer into hexadecimal string

FIX$

GEN$

NUM$

SCI$

Convert a number into a string (with controlled justification)
 - fixed decimal places/maximum length
 - fixed maximum length
 - as a rounded integer, fixed maximum length
 - scientific format, fixed decimal place /maximum length

ABS function S3, S3a/c, Siena, S5, WA, HC
absval = ABS(float)

Return the absolute value of a floating-point expression. That is, negative numbers are
converted to positive.

For example, ABS(-10.099) returns 10.099.

If x is an integer, no error is returned, but the result will is converted to floating point. For
example ABS(-6) returns 6.0.

Use IABS to return the absolute value as a long integer.

9-76 OPL Reference

IABS S3, S3a/c, Siena, S5, WA, HC
i& = IABS(x&)

Return the absolute value of an integer or long integer expression x&. That is, negative
numbers are converted to positive.
For example IABS(-10) returns 10.
See also ABS, which returns the absolute value as a floating-point value.

INT S3, S3a/c, Siena, S5, WA, HC
integer& = INT(x)

Returns the integer (in other words the whole number part) of the floating-point expression
x. The number is returned as a long integer.
Positive numbers are rounded down, and negative numbers are rounded up. This may be
undesirable - for example INT(-5.9) returns -5 and INT(2.9) returns 2. If you want to
round a number to the nearest integer, add 0.5 to it (or subtract 0.5 if it is negative) before
you use INT.
See also INTF.

INTF S3, S3a/c, Siena, S5, WA, HC
float = INTF(x)

Used in the same way as the INT function, but the value returned is a floating-point
number. This may be needed in cases where a calculation is required to have an integer
result, but the value could exceed the Psion's normal range for integers.
For example, INTF(1234567890123.4) returns 1234567890123.0
See also INT.

FLT S3, S3a/c, Siena, S5, WA, HC
float = FLT(x&)

Convert an integer expression (either integer or long integer) into a floating-point number.
For example:

PROC gamma:(v)
 LOCAL c
 c = 3E8
 RETURN 1/SQR(1-(v*v)/(c*c))
ENDP

OPL Reference 9-77

This procedure could be called as:

gamma:(FLT(a%))

to pass it the value of an integer variable without having first to assign the integer value to
a floating point variable.

See also INT and INTF.

HEX$ S3, S3a/c, Siena, S5, WA, HC
h$ = HEX$(x&)

Return a string containing the hexadecimal (base 16) representation of integer or long
integer x&.

For example HEX$(255) returns the string "FF".

Notes:
To enter integer hexadecimal constants (16 bit) put a $ in front of them. For example $FF
is 255 in decimal. (Don't confuse this use of $ with string variable names).

To enter long integer hexadecimal constants (32 bit) put an & in front of them. For
example &FFFFF is 1048575 in decimal, and &10000 is 65536. Counting in hexadecimal
is as follows:

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 ...

The hexadecimal digit A stands for decimal 10, B for decimal 11, C for decimal 12 ... up to
F for decimal 15. After F comes 10, which is equivalent to decimal 16. To understand
numbers greater than hexadecimal 10, again compare hexadecimals with decimals.
Conventional algebraic notation is used for the following examples - 102 means 10x10, 103
means 10x10x10 and so on.

253 in decimal is: (2x102)+(5x101)+(3x100) - that is:

(2x100)+(5x10)+(3x1) in other words: 200+50+3.

By analogy, &253 in hexadecimal is:
(&2x162)+(&5x161)+(&3x160)
= (2x256)+(5x16)+(3x1)
= 512+80+3
= 595 in decimal.

Similarly, &A6B in hexadecimal is:
 (&Ax162)+(&6x161)+(&Bx160)
= (10x256)+(6x16)+(11x1)
= 2560+96+11
= 2667 in decimal.

9-78 OPL Reference

You may also find this table useful for converting between hex and decimal:

hex. decimal
 &1 1 = 160
 &10 16 = 161
 &100 256 = 162
&1000 4096 = 163

For example,

&20F9 is (2x&1000)+(0x&100)+(15x&10)+9 which in decimal is
(2x4096)+(0x256)+(15x16)+9 = 8441.

All hexadecimal constants are either of type integer (if preceded by $) or of type long (if
preceded by &). So, arithmetic operations involving hexadecimal numbers behave in the
usual way. For example, &3/&2 returns 1, &3/2.0 returns 1.5, 3/$2 returns 1.

FIX$ S3, S3a/c, Siena, S5, WA, HC
float$ = FIX$(number,places%,width%)

Return a string representation of a number, number, to places% decimal places. The
string will be up to width% characters long.

For example

f$=FIX$(123.456,2,7)

returns the string "123.46" in f$.

If width% is negative the string is right-justified, for example:

FIX$(1,2,-6) returns " 1.00" where there are two spaces to the left of the 1.

If width% is positive the string is left-justified, for example FIX$(1,2,6) returns "1.00".

If the number x will not fit in the width specified by width%, then the string will contain
asterisks, for example:

FIX$(256.99,2,4) returns "****".

See also GEN$, NUM$ and SCI$.

OPL Reference 9-79

GEN$ S3, S3a/c, Siena, S5, WA, HC
number$ = GEN$(number,width%)

Return a string representation of a number, (number). The string will be up to length%
characters long.

For example GEN$(123.456,7) returns "123.456" and GEN$(243,5) returns "243".
Also:

• If length% is negative then the string is right-justified, for example GEN$(1,-6)
returns " 1" where there are five spaces to the left of the 1.

• If length% is positive then the string is left-justified, (no spaces are added), for
example GEN$(1,6) returns "1".

• If the number (number) will not fit in the width specified by length%, then the
returned string will just be length% asterisks, for example GEN$(256.99,4) returns
"****".

See also FIX$, NUM$ and SCI$.

NUM$ S3, S3a/c, Siena, S5, WA, HC
n$ = NUM$(x,length%)

Return a string representation of the integer part of the floating-point number x, rounded
to the nearest whole number.

The string will be length% characters wide:

• If length% is negative then the string is right-justified, for example NUM$(1.9,-3)
returns " 2" where there are two spaces to the left of the 2.

• If length% is positive then the string is left-justified, for example NUM$(-3.7,3)
returns "-4".

• If the string returned to n$ will not fit in the width specified by length%, then the
string will just contain asterisks, for example NUM$(256.99,2) returns "**".

See also FIX$, GEN$ and SCI$.

SCI$ S3, S3a/c, Siena, S5, WA, HC
s$ = SCI$(number,places%,length%)

Return a string representation of the floating point expression number in scientific format,
to places% decimal places in a string length% characters long. If length% is negative
then the string is right-justified.

For example:
SCI$(123456,2,8) returns "1.23E+05"
SCI$(1,2,8) returns "1.00E+00"
SCI$(1234567,2,-9) returns " 1.23E+06"

9-80 OPL Reference

If the number does not fit in the width specified then the returned string contains asterisks.
SCI$(1234567,1,6) returns "******"

See also FIX$, GEN$, and NUM$.

String handling

LEFT$

MID$

RIGHT$

Get characters from a string
 - from the left
 - from the middle
 - from the right

REPT$ Repeat a string
LOWER$ Convert a string to all lower case
UPPER$ Convert a string to all upper case
LEN Return the length of a string
ASC Return the character code of the first character of a string
LOC Locate a string is within another string

VAL

EVAL

Convert a string into a number
- string contains no functions/operators
- string contains functions/operators

CHR$ Get the character with a certain character code

LEFT$ S3, S3a/c, Siena, S5, WA, HC
leftchr$ = LEFT$(string$,length%)

Return the leftmost length% characters from the string string$.

For example if filen$ has the value "mydoc.txt", then b$=LEFT$(filen$,5) assigns
"mydoc" to b$.

See also MID$ and RIGHT$.

MID$ S3, S3a/c, Siena, S5, WA, HC
m$ = MID$(string$,start_position%,length%)

Return a string comprising length% characters of string$, starting with the character at
position start_position%.

E.g. MID$("mydoc.txt",6,4) would return the string ".txt".

See also LEFT$ and RIGHT$.

OPL Reference 9-81

RIGHT$ S3, S3a/c, Siena, S5, WA, HC
r$ = RIGHT$(string$,length%)

Return the rightmost length% characters of string$.

For example:
PRINT "Enter name/reference",
INPUT c$
ref$=RIGHT$(c$,4)
name$=LEFT$(c$,LEN(c$)-4)

See also LEFT$ and MID$.

REPT$ S3, S3a/c, Siena, S5, WA, HC
r$ = REPT$(string$,repeats%)

Return a string comprising of repeats% repetitions of string$.

E.g. if string$="ex" then r$=REPT$(string$,5) returns "exexexexex".

LOWER$ S3, S3a/c, Siena, S5, WA, HC
l$ = LOWER$(string$)

Convert any upper case characters in the string string$ to lower-case and returns the
completely lower-case string.

E.g. LOWER$("PRICE") returns the string "price".

Use UPPER$ to convert a string to upper case.

UPPER$ S3, S3a/c, Siena, S5, WA, HC
u$ = UPPER$(string$)

Converts any lower case characters in string$ to upper-case, and returns the completely
upper-case string. For example UPPER$("price") returns PRICE.

For example:
...
PRINT "Y to continue"
PRINT "or N to stop."
g$=UPPER$(GET$)
IF g$="Y"
 nextproc:
ELSEIF g$="N"
 RETURN
ENDIF
...

Use LOWER$ to convert to lower case.

9-82 OPL Reference

LEN S3, S3a/c, Siena, S5, WA, HC
length% = LEN(string$)

Return the number of characters in string$.

E.g. if addr$ has the value "10 Downing Street" then LEN(address$) returns 17.

This function could be used, for example, to check that a data file string field is not empty
before displaying it:

IF LEN(A.client$)
 PRINT A.client$
ENDIF

ASC S3, S3a/c, Siena, S5, WA, HC
chcode% = ASC(a$)

Return the character code of the first character of a$. If a$ is a null string ("") ASC returns
the value 0. For example, ASC("hello") returns 104, the code for 'h'.
Alternatively, use a statement such as: A%=%char to find the code for char - e.g. %X for
'X'.

LOC S3, S3a/c, Siena, S5, WA, HC
pos% = LOC(string$,search$)

Return an integer showing the position in string$ where search$ occurs.
Zero is returned if search$ doesn't occur in string$. The search is case insensitive.

For example:
LOC("STANDING","AND")

would return the value 3, because the sub-string "AND" starts at the third character of the
string "STANDING".

VAL S3, S3a/c, Siena, S5, WA, HC
v = VAL(nstring$)

Return the floating-point number corresponding to a numeric string.

The string must be a valid number - that is, not "5.6.7" or "196f", nor expressions like
"45.6*3.1". But scientific notation, such as "1.3E10", is valid.

For example: VAL("470.0") returns 470.0.

See EVAL for evaluating expressions.

OPL Reference 9-83

EVAL S3, S3a/c, Siena, S5, WA, HC
float = EVAL(expr$)

Evaluate the mathematical string expression expr$ and return the floating-point result.
The expr$ argument may include any mathematical function or operator
(e.g. sin(x)/(2**3)). Note that floating-point arithmetic is always performed.
For example:

DO
 AT 10,5 : print "Calc:"
 TRAP INPUT n$
 IF ERR
 BREAK
 ENDIF
 AT 10,7
 ONERR badExp
 PRINT "Res=";EVAL(n$)
 ONERR OFF
 CONTINUE
badExp::
 ONERR OFF
 PRINT "Bad expression"
UNTIL 0 REM Loop forever

Note:
In OPL32, EVAL runs in the “context” of the current procedure, so globals and externals
can be used in expr$, procedures in loaded modules can be called and the current values
of gX and gY, can be used etc. LOCAL variables cannot be used in expr$.

See also VAL.

CHR$ S3, S3a/c, Siena, S5, WA, HC
char$ = CHR$(chrcode%)

Return the character with character code chrcode%. This function may be used to display
characters not easily available from the keyboard. For example, the instruction:

PRINT CHR$(150) REM displays: û

Similarly the instruction:

PRINT CHR$(174) REM displays: ®

9-84 OPL Reference

Date and time
DATIM$ Get the current date and time as a string
SECOND, MINUTE, HOUR Get the current time components
DAY, MONTH, YEAR Get the current date components
DAYS Get the number of days between two dates
DOW

WEEK
Return what day of the week,
or what week number, a certain date falls in

MONTH$ Return the month name for a month number
DAYNAME$ Return the day name for a day of the week number
DATETOSECS

SECSTODATE
Convert between time formats

DAYSTODATE Convert number of days since 1/1/1900 to date string – OPL32

Note:
In OPL32 a Date OPX provides a large set of procedures for manipulating dates and for
accurate timing. See the ‘OPL32 techniques’ chapter for more details.

DATIM$ S3, S3a/c, Siena, S5, WA, HC
datetim$ = DATIM$

Return the current date and time from the system clock as a string.

For example:

"Tue 26 May 1992 13:01:44"

The string returned always has this format - 3 mixed case characters for the day, then a
space, then 2 digits for the day of the month, and so on.

See also DAY, MONTH, YEAR, SECOND, MINUTE, HOUR, DOW, gCLOCK.

SECOND S3, S3a/c, Siena, S5, WA, HC
secs% = SECOND

Return the current ‘seconds’ component of the time from the system clock (0 to 59).

E.g. at 6:00:33, SECOND returns 33.

See also DAY, MONTH, YEAR, MINUTE, HOUR, DOW, gCLOCK.

MINUTE S3, S3a/c, Siena, S5, WA, HC
minutes% = MINUTE

Return the current minute number from the system clock (0 to 59).

OPL Reference 9-85

E.g. at 8.54 am, MINUTE returns 54.

See also DAY, MONTH, YEAR, SECOND, HOUR, DOW and gCLOCK for drawing an on-screen
clock.

HOUR S3, S3a/c, Siena, S5, WA, HC
h% = HOUR

Return the number of the current hour from the system clock as an integer between 0 and
23.
For example, at 8.54 am HOUR returns 8.
See also, DAY, DATETOSECS, SECSTODATE, MONTH, YEAR, SECOND, MINUTE, DOW, gCLOCK.

DAY S3, S3a/c, Siena, S5, WA, HC
daymth% = DAY

Return the current day of the month (1 to 31) from the system clock. For example, on the
23rd April 1996 DAY returns 23.

See also MONTH, YEAR, SECOND, MINUTE, HOUR, DOW, gCLOCK.

MONTH S3, S3a/c, Siena, S5, WA, HC
mthnum% = MONTH

Returns the current month from the system clock as an integer between 1 and 12. E.g. on
12th March 1990, MONTH returns 3.

OPL32 constant value
Kjanuary% 1
Kfebruary% 2
Kmarch% 3
Kapril% 4
Kmay% 5
Kjune% 6
Kjuly% 7
Kaugust% 8
Kseptember% 9
Koctober% 10
Knovember% 11
Kdecember% 12

See also DAY, YEAR, SECOND, MINUTE, HOUR, DOW.

9-86 OPL Reference

YEAR S3, S3a/c, Siena, S5, WA, HC
yearnum% = YEAR

Return the current year as an integer between 1900 and 2155 from the system clock. For
example, on 9th April 1996, y%=YEAR assigns 1996 to y%.

See also DAY, MONTH, SECOND, MINUTE, HOUR, DOW, gCLOCK.

DAYS S3, S3a/c, Siena, S5, WA, HC
days& = DAYS(day%,month%,year%)

Return the number of days since 01/01/1900. For example, to find out the number of days
between two dates:

PROC deadline:
 LOCAL a%,b%,c%,deadlin&
 LOCAL today&,togo%
 PRINT "Day? (1-31)"
 INPUT a%
 PRINT "Month?"
 PRINT "(1-12)"
 INPUT b%
 PRINT "Year?(19??)"
 INPUT c%
 deadlin&=DAYS(a%,b%,1900+c%)
 today&=DAYS(DAY,MONTH,YEAR)
 togo%=deadlin&-today&
 PRINT togo%,"days to go"
 GET
ENDP

See also dDATE, SECSTODATE.

DOW S3, S3a/c, Siena, S5, WA, HC
daynum% = DOW(day%,month%,year%)

Returns the day of the week number, 1 for Monday to 7 for Sunday, - given the date.

The day% argument must be between 1 and 31, month% from 1 to 12 and year% from
1900 to 2155.

For example:

D% = DOW(26,5,1996)

returns 7, meaning Sunday.

OPL Reference 9-87

OPL32 constant value
KMonday% 1
KTuesday% 2
KWednesday% 3
KThursday% 4
KFriday% 5
KSaturday% 6
KSunday% 7

See also DAY, MONTH, YEAR, SECOND, MINUTE, HOUR, gCLOCK.

WEEK S3, S3a/c, Siena, S5, WA, HC
weeknum% = WEEK(day%,month%,year%)

Return the week number in which the specified day falls, as an integer between 1 and 53.
The day% argument must be between 1 and 31, month% between 1 and 12, and year%
between 1900 and 2155.
For example on the 9th February 1995, w%=WEEK(9,2,1995) returns 6 in w%.
Each week is taken to begin on the 'Start of week' day, as specified in the Time application.
On machines without a Time application, Monday is taken to be the start of the week by
default. When a year begins on a different day, it counts as week 1 if there are four or more
days before the next week starts, (i.e. the first Thursday of each year is in week 1).
See also DAY, MONTH, YEAR, DAYS, DATIM$.

MONTH$ S3, S3a/c, Siena, S5, WA, HC
mthname$ = MONTH$(mthnum%)

Convert mthnum%, a number from 1 to 12, to the month name, expressed as a three-letter
mixed case string. For example

MONTH$(1) returns the string "Jan".

See also MONTH, DATIM$.

9-88 OPL Reference

DAYNAME$ S3, S3a/c, Siena, S5, WA, HC
day$ = DAYNAME$(daynum%)

Convert daynum%, a number from 1 to 7, to the day of the week, expressed as a three letter
string. E.g. d$ = DAYNAME$(1) returns "Mon".

For example:
PROC Birthday:
 LOCAL d&,m&,y&,dWk%
 DO
 dINIT
 dTEXT "","Date of birth",2
 dTEXT "","eg 23 12 1963",$202
 dLONG d&,"Day",1,31
 dLONG m&,"Month",1,12
 dLONG y&,"Year",1900,2155
 IF DIALOG=0 :BREAK :ENDIF
 dWk%=DOW(d&,m&,y&)
 CLS :PRINT DAYNAME$(dWk%),
 PRINT d&,m&,y&
 dINIT
 dTEXT "","Again?",$202
 dBUTTONS "No",%N,"Yes",%Y
 UNTIL DIALOG<>%y
ENDP

See also DOW, DAY, DATIM$.

DATETOSECS S3, S3a/c, Siena, S5, WA, HC
Secs& = DATETOSECS(year%,month%,day%,hour%,minute%,second%)

Return the number of seconds since 00:00 on 1 January 1970 at the date/time specified.
Raises an error for dates before 1 January 1970.

The value returned is an unsigned integer. (Values up to +2,147,483,647, which is
03:14:07 on 19/1/2038, are returned as expected. Those from +2,147,483,648 upwards are
returned as negative numbers starting from -2,147,483,648 and increasing towards 0.)

See also SECSTODATE, HOUR, MINUTE, SECOND, DAYS, dDATE.

SECSTODATE S3, S3a/c, Siena, S5, WA, HC
SECSTODATE s&,var year%,var month%,var day%,var hour%,var
minute%,var second%,var yearday%

Set the variables, (year%, month%, day%, hour%, minute%, second%), to the date and
time corresponding to s&. The s& argument is expressed as the number of seconds since
00:00 on 1 January 1970.

The yearday% variable is set to the day in the year (1-366).

OPL Reference 9-89

The s& argument is an unsigned long integer. To use values greater than +2,147,483,647,
subtract 4,294,967,296 from the value.

See also DATETOSECS, HOUR, MINUTE, SECOND, dDATE, DAYS.

DAYSTODATE S5
DAYSTODATE days&,year%,month%,day%

This converts days&, the number of days since 1/1/1900, to the corresponding date,
returning the day of the month to day%, the month to month% and the year to year%. This
is useful for converting the value set by dDATE, which also gives days since 1/1/1900.

Sound
BEEP Sound the buzzer

BEEP S3, S3a/c, Siena, S5, WA, HC
BEEP duration%,pitch%

Sound the buzzer. The beep lasts for duration%/32 seconds.

For a one second long beep make duration% = 32. The maximum is 3840 (2 minutes).
The pitch (frequency) of the beep is 512/(pitch%+1) KHz. The command:

BEEP 5,300

gives a short, comfortably pitched, beep.

If time% is made negative, BEEP first checks whether the sound system is in use (perhaps
by another OPL program) and returns if it is. Otherwise, BEEP waits until the sound system
is free. The following example gives a scale from middle C:

PROC scale:
LOCAL freq
LOCAL n%
REM n% is key relative to middle A
n%=3 REM start at middle C
WHILE n%<16
 freq=440*2**(n%/12.0)
 REM middle A = frequency 440Hz
 BEEP 8,512000/freq-1.0
 n%=n%+1
 IF n%=4 OR n%=6 OR n%=9 OR n%=11 OR n%=13
 n%=n%+1 REM 1 extra for semi-tone
 ENDIF
ENDWH
ENDP

9-90 OPL Reference

If the batteries are low on a Series 5, BEEP may not produce the desired effect, the buzzer
will be used instead and it produces a higher pitched sound. Buzzer sounds are generated
using extra circuitry, via the same speaker, but with less drain on the batteries.

Alternatively, sound the buzzer with this statement: PRINT CHR$(7). On SIBO this beeps
at a fixed pitch for a fixed length of time, whereas on Series 5 it produces a click.

Graphics

Window and bitmap manipulation
gCREATE Create a window
gSETWIN Change size and position of window
gORDER Set order to show windows
gRANK Get order in which a window is shown
gVISIBLE ON Make window visible
gVISIBLE OFF Make window invisible

gORIGINX

gORIGINY

Get screen position of a window
 - gap between left of screen and left of window
 - gap between top of screen and top of window

gCREATEBIT Create a bitmap
gLOADBIT Load a bitmap from file
gSAVEBIT Save window/bitmap to bitmap file
gCLOSE Close window/bitmap
gUSE Set which window/bitmap to use

DEFAULTWIN

gGREY

Control the use of grey / colour mode
 - in the default window
 - in the current window

gCREATE S3, S3a/c, Siena, S5, WA, HC
id% = gCREATE(xpos%,ypos%,width%,height%,vis%) – OPL16 or OPL32
id% = gCREATE(xpos%,ypos%,width%,height%,vis%,grey%) OPL16
id% = gCREATE(xpos%,ypos%,width%,height%,vis%,flags%)- OPL32

Create a window with specified screen position (xpos%,ypos%), and dimensions (width%,
height%) and make it both current and foreground. Set the current graphics cursor
position to 0,0, its top left corner. If vis% is 1, the window will be visible immediately; if
0, it will be invisible (see gVISIBLE).
Returns id% (2 to 8 in OPL16, 2-64 in OPL32), the drawable ID, which identifies this
window for other keywords (the default window is 1). Note that in OPL32 63 windows
may be open at any time and it is recommended that you use many small windows rather
than a few large ones.

OPL Reference 9-91

In OPL16, if grey% is not given or is 0, the window will not have a grey plane. If grey%
is 1, it will have one.
In OPL32, flags% specifies the graphics mode to use and shadowing on the window. By
default the graphics mode is 2-colour and there is no shadow. The least significant 4 bits of
flags% gives the colour-mode as before 0 (2 colour-mode), 1 (4 colour-mode), 2 (16
colour-mode). The next 4 bits may be set to specify the shadowing on the window. If 0, the
window has no shadow. The next 4 bits give the shadow height relative to the window
behind it (a height of N units gives a shadow of N×2 pixels).

The components of the flags% argument are most easily specified as a combination of
hexadecimal digits. For example:

flags% description
$412 16 colour-mode ($2), shadowed window ($1), with height 4 units ($4)

above the previous window with a shadow of 8 pixels.
$010 2 colour-mode (black and white) shadowed window at the same height as

the previous window.
$101 4 colour mode window with no shadow (height ignored if shadow

disabled).
$111 4 colour mode window with shadow of 1 unit above window behind, i.e. 2

pixel shadow.

See also gCLOSE, gGREY, DEFAULTWIN, gUSE, gORDER

Problems with gCREATE (S3a)
When a window is created, its grey flag is sometimes erroneously set. If the window was
created with a black plane only, this causes problems when you call gFONT, gSTYLE,
gTMODE or gGMODE. Workaround - as soon as you create the window, use gGREY 0 to
clear the grey setting.

gSETWIN S3, S3a/c, Siena, S5, WA, HC
gSETWIN xpos%,ypos%,width%,height%
gSETWIN xpos%,ypos%

Change the position and, optionally, the size of the current window. Raises an error if the
current drawable is a bitmap. The current cursor position is unaffected.

If this command is used on the default window, the SCREEN command must be used to
ensure that the area in which PRINT commands display text is wholly contained within the
default window.

gORDER S3, S3a/c, Siena, S5, WA, HC
gORDER winId%,rank%

Set the window specified by the window ID winId% to the selected
foreground/background position (rank%), and redraw the screen. Position 1 is the

9-92 OPL Reference

foreground window, position 2 is next, and so on. Any position greater than the number of
windows is interpreted as specifying the end of the list. Raises an error if winId% is a
bitmap.

On creation, a window is at position 1 in the list.

Note: This only affects overlapping windows in the running OPL program and cannot
be used to move the program to foreground.

See also gRANK, gUSE.

gRANK S3, S3a/c, Siena, S5, WA, HC
rank% = gRANK

Return the current windows foreground/background position (that is the rank), from 1 to 8.
The rank is 1 for the foreground window. Raises an error if the current drawable is a
bitmap.
See also gORDER.

gVISIBLE ON/OFF S3, S3a/c, Siena, S5, WA, HC
gVISIBLE ON
gVISIBLE OFF

Make current window visible or invisible. Raises an error if the current drawable is a
bitmap.

gORIGINX S3, S3a/c, Siena, S5, WA, HC
leftgap% = gORIGINX

Return the gap in pixels between the left side of the screen and the left side of the current
window. A negative value is returned if the left side of the window is to the left of the
screen. Raises an error if the current drawable is a bitmap.

See also gORIGINY.

gORIGINY S3, S3a/c, Siena, S5, WA, HC
topgap% = gORIGINY

Return the gap in pixels between the top of the screen and the top of the current window.
A negative value is returned if the top of the window is above the top of the screen. Raises
an error if the current drawable is a bitmap.

See also gORIGINX.

OPL Reference 9-93

gCREATEBIT S3, S3a/c, Siena, S5, WA, HC
id% = gCREATEBIT(width%,height%) – OPL16 and OPL32
id% = gCREATEBIT(width%,height%,mode%) – OPL32

Create a bitmap with specified dimensions width% and height%, and makes it the current
drawable. Sets the current graphics cursor position to 0,0, its top left corner. Returns id%,
the drawable ID, that identifies this bitmap for other keywords.
In OPL32 gCREATEBIT may be used with an optional third parameter which specifies the
graphics mode of the bitmap to be created. The values of these are as given in gCREATE.
By default the graphics mode of a bitmap is 2-colour.
See also gCLOSE, gLOADBIT, gSAVEBIT, gUSE.

gLOADBIT S3, S3a/c, Siena, S5, WA, HC
id% = gLOADBIT(name$,write%,index%)
id% = gLOADBIT(name$,write%)
id% = gLOADBIT(name$)

Load a bitmap from the named bitmap file and makes it the current drawable. Sets the
current graphics cursor position to 0,0, the top left corner. Returns id% that identifies the
drawable for other keywords.
In OPL16, if name$ has no file extension, .PIC is used.
In OPL32 gLOADBIT does not add a default filename extension to the input argument
name.

Note than on the Series 5, gLOADBIT loads EPOC32 picture files, in the same file format
that is saved by gSAVEBIT. EPOC32 picture files can also be generated by exporting files
created by the Sketch application. These are called multi-bitmap files (MBMs), though
often containing just one bitmap as in the case of gSAVEBIT or Sketch files, and usually
have an .MBM extension.
The bitmap is kept as a local copy in memory.
The optional write% argument specifies read/write access to the bitmap:

write%=0 For read-only access. Attempts to write to the bitmap in memory will
be ignored, but the bitmap can be used by other programs without
using more memory.

write%=1 Allows writing to and re-saving the bitmap; the default case.

For bitmap files that contain more than one bitmap, index% specifies which one to load.
For the first bitmap, use index%=0; the default value.

In OPL16, bitmap files saved from an in memory bitmap with gSAVEBIT have only one
bitmap. Saving a bitmap from a window with a grey plane will save two bitmaps, black
with index%=0 and grey with index%=1.

See also gCLOSE.

9-94 OPL Reference

gSAVEBIT S3, S3a/c, Siena, S5, WA, HC
gSAVEBIT name$,width%,height%
gSAVEBIT name$

Save the current drawable as the named bitmap file. If width% and height% are given,
then only the rectangle of that size (in pixels) from the current cursor is copied.
In OPL16, if name$ has no filename extension, .PIC is used. Saving a window to file that
includes grey will save both planes to the file, black bitmap first followed by grey.
OPL32 does not supply a default file name extension, but the convension is to use a
.MBM filename extension.
See also gLOADBIT, gCREATEBIT.

gCLOSE S3, S3a/c, Siena, S5, WA, HC
gCLOSE drawid%

Close the specified drawable (identified by its ID number, drawid%) that was previously
opened by gCREATE, gCREATEBIT or gOPENBIT. If you close the current drawable, the
default window (ID=1) becomes current. An error is raised if you try to close the default
window.
On the HC, Series 3 and Series 3a, prior to using gCLOSE, you should:

• Close any clock that is open in the window.
• Set gGREY 0 if the window has a grey plane.

See also gCREATE, gCREATEBIT or gOPENBIT.

gUSE S3, S3a/c, Siena, S5, WA, HC
gUSE drawid%

Make the drawable drawid% current. Graphics drawing commands will now use this
drawable. The gUSE command does not bring the drawable to foreground (use gORDER 0
for this).

DEFAULTWIN S3a/c, Siena, S5, WA
DEFAULTWIN grmode%

Change the default window (ID=1) to enable or disable the use of grey on SIBO or change
the colour mode on Series 5.

In OPL16 grey cannot be used initially in the default window.

grmode%=1 enables the use of grey.
grmode%=0 disables the use of grey.

OPL Reference 9-95

A side-effect of DEFAULTWIN is to clear the default window.

Using grey does use more memory than using only black.

If you need to use grey you are advised to call DEFAULTWIN once only at the start of the
program. If it fails with an 'Out of memory' error, the program can then exit cleanly
without losing vital information.

In OPL32 the default window uses 4-colour mode initially.

grmode%=0 changes to 2-colour mode (results in a mapping of greys to white or black)
grmode%=1 just clears the screen, leaving the window in 4-colour mode.
grmode%=2 changes to 16-colour mode.

Using DEFAULTWIN with either of these values also clears the screen to ensure
compatibility with SIBO.

Using 4-colour mode uses more power than using 2-colour mode and 16-colour mode uses
even more.

See also gGREY, gCREATE and , gCOLOR.

gGREY S3a/c, Siena, S5, WA
gGREY mode%

In OPL16, controls whether all subsequent graphics drawing and graphics text in the
current window draw to the black plane, the grey plane, or both. The gGREY command
cannot be used with bitmaps (i.e. in memory as opposed to bitmap files), because they
have only one plane. It is helpful to think of the black plane being in front of the grey
plane, so a pixel set in both planes will appear black. To enable the use of grey in the
default window (ID=1) use DEFAULTWIN 1 at the start of your program. If grey is required
in other windows you must create the windows with a grey plane using gCREATE.

In OPL32, gGREY changes the pen colour between black and light grey (i.e. equivalent to
the effect of using gCOLOR $aa,$aa,$aa).

All subsequent graphics drawing is determined by the value of mode%:

mode% OPL16 - plane(s) drawn to OPL32 – pen colour
0 Black plane only (the default) Black pen
1 Grey plane only Light grey pen
2 Both planes Black – and all other values of mode%

See also DEFAULTWIN and gCREATE.

9-96 OPL Reference

Window and bitmap characteristics
gLOADFONT, OPL16

gLOADFONT, OPL32

gUNLOADFONT

Load and unload user-defined fonts

gFONT Set font to use
gSTYLE Set style of text
gGMODE Set graphics mode
gTMODE Set text mode

gLOADFONT, OPL16 S3, S3a/c, Siena, WA, HC
fontId%=gLOADFONT(name$)

Load the user-defined font name$. Returns a font ID number, which can be used with
gFONT to make the current drawable use that font. If name$ does not contain a file
extension, .FON is used.
gFONT itself is very efficient, so all required fonts should normally be loaded at the start of
the program.
Note that built-in Psion fonts in ROM are automatically available, and do not need to be
loaded.
Also see gUNLOADFONT, gFONT.

gLOADFONT, OPL32 S5
fileId%=gLOADFONT(filename$)

Loads the user-defined fonts in the file filename$ and returns the fileId%, which is
only used with gUNLOADFONT. The built-in Psion fonts in ROM are automatically
available, and do not need to be loaded.
A maximum of 16 font files may be loaded simultaneously. A set of published font UIDs
are supplied with font files to enable the use of the loaded fonts with gFONT. Typically the
UIDs are included from a header file e.g. CONST.OPH. For example:

fileId%=gLOADFONT(“Music1”)
gFONT KMusic1Font1&
...
gUNLOADFONT fileId%

gFONT itself is very efficient, so all required fonts should normally be loaded at the start of
the program.
Also see gUNLOADFONT, gFONT.

OPL Reference 9-97

gUNLOADFONT S3, S3a/c, Siena, S5, WA, HC
gUNLOADFONT fontId% - OPL16
gUNLOADFONT fileId% - OPL32

Unload a user-defined font that was previously loaded using gLOADFONT. Raises an error
if the font has not been loaded. The built-in Psion fonts are not held in memory and cannot
be unloaded.

See also gLOADFONT.

gFONT S3, S3a/c, Siena, S5, WA, HC
gFONT fontId%
gFONT fontId& - in OPL32

Set the font for the current drawable to fontId% or fontId&. The font may be one of the
predefined fonts in the ROM or a user-defined font. User-defined fonts must first be
loaded by gLOADFONT, which returns the font ID needed for gFONT.

Font numbering is different on the HC from that on the Series 3 family, Siena and
Workabout. The HC fonts are listed below.

Font Name Pixel WxH
or H only

System

1 HC standard font 15 HC
2 HC small font 11 HC
3 HC Mono 6x8 HC
4 HC Mono 2 font 7x10 HC
5 Series 3 normal 8 HC
6 Series 3 bold 8 HC

In the table below, Swiss and Arial refer to fonts without serifs while Roman and Times
fonts either have serifs (e.g. font 6) or are in a style designed for serifs, but are too small to
show them (e.g. font 5 on the Series 3c). Courier is a mono-spaced font, i.e. has characters
that are all the same width (and have their pixel size as width x height). With proportional
fonts, each character can have a different width.

Fonts 1 to 3 are the Series 3 fonts, and are used when running in compatibility mode on
the Series 3a/c, Siena and Workabout.

Initially font 4 is used on the text screen of the Series 3a/c and Siena, Courier 11 is used
on the Series 5.

9-98 OPL Reference

Font Name Pixels
WxH or
H only

System Name
Series 5 only

Pixels
WxH or
H only

1 Series 3 normal 8 S3, S3a/c, Siena, WA N/A
2 Series 3 bold 8 S3, S3a/c, Siena, WA N/A
3 Series 3 digits 6x6 S3, S3a/c, Siena, WA N/A
4 Mono 8x8 S3a/c, Siena, WA Courier 8
5 Roman 8 S3a/c, Siena, WA Times 8
6 Roman 11 S3a/c, Siena, WA Times 11
7 Roman 13 S3a/c, Siena, WA Times 13
8 Roman 16 S3a/c, Siena, WA Times 15
9 Swiss 8 S3a/c, Siena, WA Arial 8
10 Swiss 11 S3a/c, Siena, WA Arial 11
11 Swiss 13 S3a/c, Siena, WA Arial 13
12 Swiss 16 S3a/c, Siena, WA Arial 15
13 Mono 6x6 S3a/c, Siena, WA Tiny (mono) 3x4

The special font number $9a is set aside to give a machine's default graphics font; this is
the font used initially for graphics text. The actual font may vary from machine to machine
- e.g. it is font 1 on the Series 3 and font 11 on the Series 3a. The default font is 11 (Swiss
13) for the Series 3c, and 12 (Arial 15) for the Series 5. So gFONT 12 or gFONT &9a
both set the Series 5 standard font, which gPRINT normally uses. (gFONT 11 or $9a on
the Series 3a/c or Siena)

Note:
Fonts on the Series 5 are identified by a 32-bit UID, rather than by a 16-bit value
representing the font position in the ROM as on SIBO systems. However OPL32 does
provide some mapping where possible between OPL16 font IDs and Series 5 OPL32 font
UIDs. A full list of the Series 5 font IDs is provided in a ROM based header file
CONST.OPH, – see the ‘OPL32 Techniques’ chapter for details of using and reading this
file.

See also gLOADFONT, gSTYLE and FONT.

gSTYLE S3, S3a/c, Siena, S5, WA, HC
gSTYLE style%

Set the style of text displayed in subsequent gPRINT, gPRINTB, gXPRINT and
gPRINTCLIP commands on the current drawable.

style% effect OPL32 constant
0 Normal style KgStyleNormal%
1 Bold KgStyleBold%
2 Underlined KgStyleUnder%
4 Inverse KgStyleInverse%
8 Double height KgStyleDoubleHeight%

16 Monospaced KgStyleMonoFont%

32 Italic KgStyleItalic%

OPL Reference 9-99

These styles can be combined by ORing their symbolically defined constants - for example,
to set underlined and double height, use:

gSTYLE 2 or 8

Alternatively add the style% values together. For example, to set bold underlined and
double height use:

gSTYLE 11 (as 1+2+8=11)

Note that the Series 3 fonts 1 and 2 (see gFONT) are the normal and bold font versions of
each other and bold i.e., style%=1 should not be used with them. Also mono i.e., style%=1
was designed for use with these two proportional fonts to change them to monospaced
fonts algorithmically.

This command does not affect non-graphic commands, like PRINT.

See also gFONT, gTMODE.

gGMODE S3, S3a/c, Siena, S5, WA, HC
gGMODE mode%

Set the graphics mode for the current drawable. This sets the effect of all subsequent
drawing commands - gLINEBY, gBOX, etc. - on the current drawable.

mode% pixels will be :
0 Set
1 Cleared
2 Inverted

By default, the drawing commands set the pixels in the drawable. Use gGMODE to change
this. For example, if you have drawn a black background, you can draw a white box
outline inside it with either:

...
gGMODE 1
gBOX
...

or:
...
gGMODE 2
gBOX
...

See also gBOX, gTMODE, gFILL

9-100 OPL Reference

gTMODE S3, S3a/c, Siena, S5, WA, HC
gTMODE mode%

Set the mode in which text is displayed for the current drawable. Subsequent gPRINT and
gPRINTCLIP commands will draw in this mode.

mode% pixels will be:
0 Set
1 Cleared
2 Inverted
3 Replaced

Before the first use of gTMODE in a program, mode% = 0, i.e. set. Graphics text commands
cause a pixel to be set in the drawable for each dot in a character.

When mode% is 1 or 2, graphics text commands cause a pixel to be cleared (or inverted) for
each dot in a character. When mode% is 3, entire character 'boxes' are displayed in the
drawable; character pixels are set, and the background 'box' is cleared.

This command does not affect GIPRINT, gPRINTB, gXPRINT and the non-graphics
commands, like PRINT.

See also gMODE, gSTYLE, gFONT.

Window and bitmap information
gIDENTITY Get identity of current window/bitmap

gX

gY

Get graphics cursor position
 - x position
 - y position

gWIDTH

gHEIGHT
Get width or height of window/bitmap

gINFO Get general information about current drawable – OPL16
gINFO32 Get general information about current drawable – OPL32

Note:
If used on the default window at program start up, gWIDTH and gHEIGHT can give useful
information about the particular machine that a program is running on. E.g. a Siena would
return values of 240 and 160 pixels repectively.

gIDENTITY S3, S3a/c, Siena, S5, WA, HC
drawid% = gIDENTITY

Return the ID of the current drawable. The default window has ID=1.

OPL Reference 9-101

gWIDTH S3, S3a/c, Siena, S5, WA, HC
width% = gWIDTH

Returns the width of the current drawable.

gHEIGHT S3, S3a/c, Siena, S5, WA, HC
height% = gHEIGHT

Return the height of the current drawable.

gINFO S3, S3a/c, Siena, WA, HC
gINFO var i%()

Gets general information about the current drawable and about the graphics cursor
(whichever window it is in). See gINFO32 for OPL32.

The information is returned in the array i%() which must be at least 32 integers long. The
information is about the drawable in its current state, so e.g. the font information is for the
current font in the current style.

The following information is returned:

i%(1) lowest character in font (changed when gFONT is used)
i%(2) highest character in font (changed when gFONT is used)
i%(3) height of font (changed when gFONT is used)
i%(4) descent of font (changed when gFONT is used)
i%(5) ascent of font (changed when gFONT is used)
i%(6) width of zero character (changed when gFONT is used)
i%(7) maximum character width (changed when gFONT is used)
i%(8) flags for font (see below, changed when gFONT is used)
i%(9-17) name of font (see below, set by gFONT)
i%(18) current graphics mode (set by gGMODE)
i%(19) current text mode (set by gTMODE)
i%(20) current style (set by gSTYLE)
i%(21) cursor state (ON=1,OFF=0, set by CURSOR ON/OFF)
i%(22) ID of the window containing the cursor (-1 for text cursor)
i%(23) cursor width (set by CURSOR)
i%(24) cursor height (set by CURSOR)
i%(25) cursor ascent (set by CURSOR)
i%(26) cursor x position in window
i%(27) cursor y position in window
i%(28) 1 if drawable is a bitmap
i%(29) cursor effects (S3a/c, Siena, WA only, set by CURSOR)
i%(30) gGREY settings (S3a/c, Siena, WA only)
i%(31) reserved (window server ID of drawable)
i%(32) Reserved

9-102 OPL Reference

If the cursor state if OFF, (i%(21)=0), or is a text cursor (i%(22)=-1), then i%(23) to
i%(27) and i%(29) should be ignored. If the cursor state is ON, (i%(21)=1), it is visible
in the window identified by i%(22).

Array element i%(29) has bit 0 set (i%(29) AND 1) if the cursor is obloid, bit 1 set
(i%(29) AND 2) if not flashing, and bit 2 set (i%(29) AND 4) if grey.

i%(8) contains certain flags that can optionally be stored in the font by its designer. There
is therefore no guarantee that these flags are meaningful. If the font designer has followed
the conventions for the flags, then i%(8) specifies a combination of the following font
characteristics:

1 Standard ASCII character set (32-126)
2 Contains Code Page 850 character set (128-255)
4 Font is bold
8 Font is italic
16 Font is serifed
32 Font is monospaced (S3/S3a/WA)
$8000 Font is stored expanded for quick drawing (S3a/c, Siena, WA)

Use PEEK$(ADDR(i%(9))) to read the name of the font as a string.

See also gGMODE, gTMODE, gSTYLE, gGREY.

gINFO32 S5
gINFO32 var i&()

Gets general information about the current drawable and about the graphics cursor
(whichever window it is in). This replaces gINFO because the information returned has
changed. i&() must have 48 elements. The same information is returned to the array
elements as for gINFO except for the following,

I&(1) reserved
I&(2) reserved
I&(9) the font UID as used in gFONT
I&(10-17) unused
I&(30) graphics colour-mode of current window
i&(31) gCOLOR red% of foreground
i&(32) gCOLOR green% of foreground
i&(33) gCOLOR blue% of foreground
i&(34) gCOLOR red% of background
i&(35) gCOLOR green% of background
i&(36) gCOLOR blue% of background
I&(37-48) elements 37 to 48 are currently unused

Additionally note that on the Series 5, i&(8)=2 means that Code Page 1252 is used
(rather than Code Page 850) and also that there is no obloid cursor, so bit 0 will never be
set in i&(29).

See also gINFO, gFONT, gCOLOR, gCREATE.

OPL Reference 9-103

Graphics ‘cursor’ positioning
gAT Set absolute graphics cursor position
gMOVE Move graphics cursor
gX

gY
Get current graphics cursor position

gAT S3, S3a/c, Siena, S5, WA, HC
gAT xpos%,ypos%

Set the graphics cursor position for the current window, using absolute co-ordinates.
gAT 0,0 sets the cursor position to the top left of the current drawable.
See also gMOVE.

gMOVE S3, S3a/c, Siena, S5, WA, HC
gMOVE dx%,dy%

Moves the current graphics cursor position dx% to the right and dy% down, in the current
drawable. Negative dx% and dy% move left and up respectively.

See also gAT.

gX S3, S3a/c, Siena, S5, WA, HC
xpos% = gX

Returns the current x position, the offset from the left side of the current drawable.

gY S3, S3a/c, Siena, S5, WA, HC
ypos% = gY

Returns the current y position, the offset from the top of the current drawable.

9-104 OPL Reference

Graphics text
gPRINT Display a list of expressions
gPRINTCLIP Display text neatly clipped in rectangle
gPRINTB Clear a box and display text within it
gTWIDTH Get width of text
gXPRINT Display text neatly underlined/highlighted

gPRINT S3, S3a/c, Siena, S5, WA, HC
gPRINT list

Display a list of expressions at the current graphics cursor position in the current drawable.
All variable types are formatted as for PRINT. Unlike PRINT, gPRINT does not end by
moving to a new line. A comma between expressions is still displayed as a space, but a
semi-colon has no effect. Without a list of expressions, gPRINT does nothing.

Text displayed with gPRINT will be shown in the current text mode (as set by gTMODE)
and font (as set by gFONT).

See also gPRINTB, gPRINTCLIP, gTWIDTH, gXPRINT, GIPRINT.

gPRINTCLIP S3, S3a/c, Siena, S5, WA, HC
dischrs% = gPRINTCLIP(text$,width%)

Display text$ at the current graphics cursor position, displaying only as many characters
as will fit inside width% pixels. Returns the number of characters displayed.

See also gPRINT, gPRINTB, gTWIDTH, gXPRINT, GIPRINT, gTMODE.

gPRINTB S3, S3a/c, Siena, S5, WA, HC
gPRINTB text$,width%
gPRINTB text$,width%,align%
gPRINTB text$,width%,align%,top%
gPRINTB text$,width%,align%,top%,bottom%
gPRINTB text$,width%,align%,top%,bottom%,margin%

Display text text$ in a cleared box of width width% pixels. The current graphics cursor
position is used for the left side of the box and for the baseline of the text.

The align% argument controls the alignment of the text in the box:

align% effect
1 right aligned
2 left aligned
3 centred.

OPL Reference 9-105

The top% and bottom% arguments are the clearances (in pixels) from the text to the top
and bottom of the box. Together with the current font size, they control the height of the
box. An error is raised if top% plus the font ascent is greater than 255.

The margin% argument controls the margins:

alignment margin%
Left The offset (in pixels) from the left of the box to the start of the text
Right The offset (in pixels) from the right of the box to the end of the text
Centred The offset (in pixels) from the left or right of the box to the region in

which to centre, with positive margin% meaning left and negative
meaning right.

If values are not supplied for some arguments, the following defaults are used:
align% left
top% 0
bottom% 0
margin% 0

gPRINTB is not affected by the text mode set using gTMODE.

See also gPRINT, gPRINTCLIP, gTWIDTH, gXPRINT.

gTWIDTH S3, S3a/c, Siena, S5, WA, HC
width% = gTWIDTH(text$)

Return the width in pixels of text$ for the current font and style.

See also gPRINT, gPRINTB, gPRINTCLIP, gXPRINT.

gXPRINT S3, S3a/c, Siena, S5, WA, HC
gXPRINT string$,flags%

Display string$ at the current graphics cursor position in the current drawable, with
precise highlighting or underlining. The current font and style are still used, even if the
style itself is inverse or underlined. Text mode 3 (replace) is used - both set and cleared
pixels in the text are drawn.
The flags% argument has the following effect:

flags% effect
0 Normal, as with gPRINT
1 Inverse
2 Inverse, rounded (corner pixels not inverse)
3 Inverse, thin
4 Inverse, thin, rounded (corner pixels not inverse)
5 Underlined
6 Thin, underlined

9-106 OPL Reference

Where lines of text are separated by a single pixel, the thin options maintain the separation
between lines.

The gXPRINT command does not support the display of a list of expressions of various
types - use NUM$, GEN$, FIX$ and SCI$ to convert numbers to strings first. The
gXPRINT command is not affected by the current text mode set using gTMODE.
See also gPRINT.

Graphics drawing commands
gCLS Clear current window/bitmap
GLINEBY

gLINETO
Draw a line - relative to the current cursor position
 - to a specific point

gBOX Draw a box
gBORDER

gXBORDER

Draw borders

gPOLY Draw a set of lines
gFILL Fill a rectangle
gINVERT Invert the pixels in a rectangle
gPATT Fill a rectangle with a pattern
gCOLOR Set pen drawing colour – white, black or grey level - OPL32
gSETPENWIDTH Set pen drawing width in pixels
gCOPY Copy a rectangle
gPEEKLINE Read a horizontal line from a window/bitmap/screen
gSCROLL Scroll a window/bitmap (also see gSETWIN)
gBUTTON Draw a 3-D button/key
gDRAWOBJECT Draw a lozenge
gCIRCLE Draw a circle – OPL32
gELLIPSE Draw an ellipse – OPL32
gCLOCK Display or remove a running clock – see variants

gCLS S3, S3a/c, Siena, S5, WA, HC
gCLS

Clear the whole of the current drawable and set the current graphics cursor position to 0,0
i.e., the top left corner.

gLINEBY S3, S3a/c, Siena, S5, WA, HC
gLINEBY dx%,dy%

Draw a line from the current graphics cursor position to the point dx% to the right and dy%
down in the current mode. Negative dx% and dy% mean left and up respectively. The
current cursor position moves to the end of the line drawn.

OPL Reference 9-107

The Series 5 never draws the end point, so for gLINEBY dx%,dy%, point
gX+dx%,gY+dy% is not drawn. However, OPL32 specially plots the point when the start
and end-point coincide.

gLINEBY 0,0 plots (sets) the pixel at the current cursor position.

See also gLINETO, gPOLY.

gLINETO S3, S3a/c, Siena, S5, WA, HC
gLINETO xpos%,ypos%

Draw a line from the current graphics cursor position to the point xpos%,ypos%. The
current cursor position moves to xpos%,ypos%.

For horizontal lines in OPL16, the line includes the pixel with the lower x co-ordinate and
excludes the pixel with the higher x co-ordinate. Similarly for vertical lines, the line
includes the pixel with the lower y co-ordinate and excludes the pixel with the higher y co-
ordinate. For oblique lines (where the x and y co-ordinates change), the line is drawn
minus one or both end points.

The Series 5 never draws the end point, so for gLINETO dx%,dy%, point x%,y% is not
drawn. However, OPL32 specially plots the point when the start and end-point coincide.

To plot a single point, use gLINETO gX,gY (or gLINEBY 0,0).

See also gLINEBY, gPOLY.

gBOX S3, S3a/c, Siena, S5, WA, HC
gBOX width%,height%

Draw a box from the current graphics cursor position to the pixel width% to the right and
height% down. The current cursor position is unaffected.
See also gBORDER, and gXBORDER.

gBORDER S3, S3a/c, Siena, S5, WA, HC
gBORDER flags%
gBORDER flags%,width%,height%

Draw a one-pixel wide border around the edge of the current drawable. If width% and
height% are supplied, a border shape of this size is drawn, with the top left corner at the
current cursor position for graphics. If they are not supplied, the border is drawn around
the whole of the current drawable.

9-108 OPL Reference

The flags% parameter controls three attributes of the border - a shadow to the right and
beneath, a one-pixel gap all around, and the type of corners used:

flags% effect OPL32 constant
1 single pixel shadow KbordSglShadow%
2 gap for single pixel shadow KbordSglGap%
3 double pixel shadow KbordDblShadow%
4 gap for double pixel shadow KbordDblGap%

$100 one-pixel gap all around KbordGapAllRound%
$200 more rounded corners KbordRoundCorners%

Flag values may be combined to control the three different effects. For example, for
rounded corners and a gap for a double pixel shadow, use: flags%=$204.

Set flags%=0 for no shadow, no gap and sharper corners.
To de-emphasise a previously emphasised border, for example, use gBORDER with the
shadow turned off:

gBORDER 3 REM show border
GET
gBORDER 4 REM border off

Shadows on Series 5 windows will not show in the same way as shadows on other objects
such as dialogs and menu panes. To display such shadows on a window, you must specify
them when using gCREATE. Hence you should use gCREATE (and gXBORDER) in preference
to gBORDER on the Series 5.

See also gBOX and gXBORDER.

OPL Reference 9-109

gXBORDER S3a/c, Siena, S5, WA
gXBORDER type%,flags%,width%,height%
gXBORDER type%,flags%

Draws a border in the current drawable of a specified type. The border fits inside a
rectangle of the specified dimensions (width%, height%), or has the size of the current
drawable if no dimensions are specified. Two types of border are available:

type% description
0 For drawing the Series 3 type border. flags% are as for gBORDER.
1 For drawing the Series 3a/c, Siena and Workabout 3-D grey and black

border. A shadow or a gap for a shadow is always assumed.
flags%=1,2,3,4 are as for gBORDER.
When the shadow is enabled (1 or 3) only the grey and black parts of the
border are drawn; you should pre-clear the background for the white parts.
When the shadow is disabled (2 or 4) the outer and inner border lines are
drawn, but the areas covered by grey/black when the shadow is enabled are
now cleared. This allows a shadow to be turned off simply by calling
gXBORDER again.

2 For Series 5 type borders.

The following values of flags% apply to Series 5 border types:

flags% effect
0 none
$01 single black
$42 shallow sunken
$44 deep sunken
$54 deep sunken with outline
$82 shallow raised
$84 deep raised
$94 deep raised with outline
$22 vertical bar
$2a horizontal bar

The following values of flags% apply to all border types:

flags% effect OPL32 constant
0 normal corners

Add $100 leave 1 pixel gap around the border. KbordGapAllRound%
Add $200 more rounded corners KbordRoundCorners%
Add $400 lose a single pixel at each corner of the

rectangle, making it look slightly
rounded.

KbordLosePixel%

If both $400 and $200 are mistakenly supplied, $200 has priority. On SIBO systems an
error is raised if the current window has no grey plane.

See also gBORDER.

9-110 OPL Reference

gPOLY S3, S3a/c, Siena, S5, WA, HC
gPOLY a%()

Draw a sequence of lines as defined by the array a%(). The command is equivalent to gAT
followed by multiple gLINEBY and gMOVE commands, but it is quicker and more efficient.

The array is set up as follows:
a%(1) starting x position
a%(2) starting y position
a%(3) number of pairs of offsets
a%(4) dx1%
a%(5) dy1%
a%(6) dx2%
a%(7) dy2% etc.

Elements a%(4) onwards specify pairs of offsets and the operation to be performed. Each
pair specifies the amount by which to move. Positive dx% and dy% values indicate to the
right and down respectively: negative values indicate to the left and up.

The dx% value also indicates the operation:

• to draw a line, multiply the corresponding dx% by 2
• to move by an amount, multiply the corresponding dx% by 2 and add 1
The current graphics cursor position is left at the start x, y position.
For example, to draw two horizontal lines 50 pixels long and 30 pixels apart starting at
position 20,10:

a%(1)=20 : a%(2)=10 REM start x,y
a%(3)=3 REM 3 operations
a%(4)=50*2 : a%(5)= 0 REM draw right 50
a%(6)=0*2+1 : a%(7)=30 REM move down 30
a%(8)=-50*2 : a%(9)= 0 REM draw left 50
gPOLY a%()

gFILL S3, S3a/c, Siena, S5, WA, HC
gFILL width%,height%,mode%

Fill the rectangle of the specified dimensions (width%, height%) from the current
graphics cursor position, according to the graphics mode (mode%) specified. The current
cursor position is unaffected.

mode% pixels are:
0 set
1 cleared
2 inverted

See also gBOX, gPATT.

OPL Reference 9-111

gINVERT S3, S3a/c, Siena, S5, WA, HC
gINVERT width%,height%

Invert the rectangle width% to the right and height% down from the current graphics
cursor position, except for the four corner pixels.

gPATT S3, S3a/c, Siena, S5, WA, HC
gPATT pattid%,width%,height%,mode%

Fill the rectangle of the specified size from the current graphics cursor position, with
repetitions of the drawable pattid%. Set pattid%=-1 to use a pre-defined grey pattern.
As with gCOPY, this command can copy both set and clear pixels, so the same modes are
available as when displaying text:

mode% pixels are:
0 set
1 cleared
2 inverted
3 replaced

If mode% is 3, the entire source drawable is copied, with set and clear pixels. For mode%
values of 0, 1 and 2 only the pixels which are set in the pattern are acted on.

The cursor position is unaffected.
In OPL16, gPATT is affected by the setting of gGREY (in the current window) in the same
way as gCOPY:

gGREY effect
0 copies black to black
1 copies grey to grey, or black to grey if source is black only
2 copies grey to grey and black to black, or black to both if source is black

only.

See also gFILL.

gCOLOR S5
gCOLOR red%,green%,blue%

Sets the pen colour of the current window. The red%,green%,blue% values specify a
colour which will be mapped to white, black or one of the greys on non-colour screens.
Note that if the values of red%, green% and blue% are equal, then a pure grey results,
ranging from black (0) to white (255). The exact effect will depend upon the grey levels
set when the window is created. For example:
gCOLOR 0,0,0 REM now draw in solid black

9-112 OPL Reference

gSETPENWIDTH S5
gSETPENWIDTH width%

Sets the pen drawing width in the current drawable to width% pixels. The valid range is
from 0 to 32767. A value of 2 gives a distinct line. Touching a single point on the screen
with a value of 10 will give an approximately round spot.

gCOPY S3, S3a/c, Siena, S5, WA, HC
gCOPY drawid%,xpos%,ypos%,width%,height%,mode%

Copy a rectangle of the specified dimensions (width%,height%) from the point
xpos%,ypos% in drawable drawid%, to the current cursor position for graphics in the
current drawable. As this command can copy both set and clear pixels, the same modes are
available as when displaying text.

mode% pixels are:
0 set
1 cleared
2 inverted
3 replaced

Replace copies the entire rectangle, with set and clear pixels. The other modes act only on
set pixels in the source pattern.

The current cursor position is not affected in either drawable.

For the Series 3a/c, Siena, Series 5 and Workabout, gCOPY is affected by the setting of
gGREY (in the current window) as follows:
gGREY effect
0 copies black to black
1 copies grey to grey, or black to grey if source is black only
2 copies grey to grey and black to black, or black to both if source is black only.

Note:
On the Series 5, it is inadvisable to use gCOPY to copy from windows as it is very slow. It
should only be used for copying from bitmaps to windows or other bitmaps.

See also gSCROLL.

gPEEKLINE S3, S3a/c, Siena, S5, WA, HC
gPEEKLINE drawid%,xpos%,ypos%,var data%(),width%
gPEEKLINE drawid%,xpos%,ypos%,var data%(),width%,mode% - OPL32

Read a horizontal line from the drawable drawid%, starting at xpos%,ypos%, with
width% specifying the number of pixels to be read. The leftmost 16 pixels are read into
data%(1), with the first pixel read into the least significant bit. The array data%() must

OPL Reference 9-113

be long enough to hold the data. The number of integers required is given by the (integer
division) formula (length%+15)/16.

On SIBO systems if drawid% is set to 0, the whole screen itself is read, not any particular
window, and if $8000 is added to drawid%, the grey plane (not the black plane) will be
peeked. The $8000 option will raise an ‘invalid arguments error’ in OPL32.
If width% is not a multiple of 16, data%() will contain some random values. For
example, if width% is 1, as in this case:

gPEEKLINE drawid%,xpos%,ypos%,data%(),1

bit 0 of data%(1) will be meaningful, and the other 15 bits will not.
In OPL32, gPEEKLINE has an extra optional parameter mode% to specify the colour mode:

mode% colour mode colour of pixel which sets bits
-1 black and white black
 0 black and white white
 1 4-colour mode white
 2 16-colour mode white

The default mode% is -1. For 4 and 16-colour modes, 2 and 4 bits per pixel respectively
are used. This is to enable the colour of the pixel to be ascertained from the bits that are
set. White results in all 2 or 4 bits being set, while black sets none of them. For example,
in a 4-colour window, with the colour set by
gCOLOR 16,16,16

a pixel of a line would peek as 0001 in binary. Similarly, a pixel of a line with the colour
set to
gCOLOR 80,80,80

would result in the value 0101 in binary when peeked.

Note:
If the optional parameter mode% is used on the Series 5, the array size allowed must be
adjusted accordingly: it must be at least twice as long as the array needed for black and
white if the line you wish to peek in 4-colour mode and four times as long in 16-colour
mode.

gSCROLL S3, S3a/c, Siena, S5, WA, HC
gSCROLL dx%,dy%
gSCROLL dx%,dy%,xpos%,ypos%,width%,height%

Scroll the pixels within the current drawable by offset dx%,dy%. Positive dx%,dy%
indicate right and down respectively. The drawable itself does not change position and the
current cursor position is unaffected.
If a rectangle within the current drawable is specified, at xpos%,ypos% with dimensions
width%,height%, (in pixels), only this rectangle is scrolled.

9-114 OPL Reference

The gSCROLL command may be viewed as providing the capability to move a rectangle to
a new position within the same drawable. The region "left behind" by the scroll is cleared,
so if you are using gSCROLL to perform vertical text scrolling for example, you must
display the appropriate line in the cleared region yourself.
If there is only a small amount of text in a window it may be more appropriate to use
gSETWIN to move the whole window, containing all the text, up and down relative to the
screen.
Pixels that scroll off the screen are lost. If you want to be able to scroll back, use gSETWIN.
See also gSETWIN.

gBUTTON S3a/c, Siena, S5, WA
gBUTTON text$,ty%,width%,height%,st%

in OPL32

gBUTTON text$,ty%,width%,height%,st%,bitmapId&
gBUTTON text$,ty%,width%,height%,st%,bitmapId&,maskId&
gBUTTON text$,ty%,width%,height%,st%,bitmapId&,maskId&,layout%

Draw a 3-D black and grey button.
This is a key, not an application button. It is drawn at the current position in a rectangle of
size width%, and height%, which fully encloses the button in all its states. The label
text$ specifies up to 64 characters to be drawn in the button in the current font and style.
You must ensure that the text will fit in the button.
To draw a Series 3 style button use ty%=0, to draw a Series 3a/c type button use ty%=1,
use ty%=2 for a Series 5 type button.
The meaning of st% varies according to ty%:

button
type

ty% OPL32
constant

button state st
%

OPL32 constant

S3 style 0 KButtS3% raised button 0 KbuttS3Raised%

S3 style 0 KButtS3% depressed (flat)
button.

1 KbuttS3Pressed%

S3a/c style 1 KButtS3a% raised button 0 KbuttS3aRaised%

S3a/c style 1 KButtS3a% semi-depressed
(flat) button

1 KbuttS3aSemiPressed%

S3a/c style 1 KButtS3a% fully-depressed
(sunken) button.

2 KbuttS3aSunken%

S5 style 2 KButtS5% raised button 0 KbuttS5Raised%

S5 style 2 KButtS5% semi-depressed
(flat) button

1 KbuttS5SemiPressed%

S5 style 2 KButtS5% fully-depressed
(sunken) button

2 KbuttS5Sunken%

On SIBO systems an error is raised if the current window has no grey plane.

OPL Reference 9-115

On the Series 5, there is added support so that bitmaps may be used on buttons. Three
extra optional arguments can be passed which give the bitmap ID, the mask ID and the
layout for the button respectively. maskId% can be 0 to specify no mask.

The following constants should be used for layout% to specify relative positions of the
text and icon on a button,

position of text layout%

right 0

bottom 1

top 2

left 3

The following constants can be added to the values above to specify how a button’s excess
space is to be allocated,

share 0

to text $10

to picture $20

When the layout is such that the text is at the top or the bottom, then text and picture are
centred vertically and horizontally in the space allotted to them. If the layout has text to the
left or right, then the text is left aligned in the space allotted to it and the picture is right or
left aligned respectively. Both text and picture are centred vertically in this case.

Examples:

layout% description
$13 a button with text on the left and left aligned in any excess space.
$20 a button with text on the right and the picture left aligned in any

excess space.
$10 a standard toolbar button, putting the text on the right.

For a picture only with no text use text$=“”.

An ‘Invalid arguments’ error is raised if you use the ID of a window with gBUTTON.
Read-only bitmaps may also be loaded using the Bitmap OPX. See the ‘OPL32
Techniques’ chapter for more details using OPX’s.

gDRAWOBJECT S3a/c, Siena, WA
gDRAWOBJECT type%,flags%,width%,height%

Draw the scalable graphics object specified by type%, scaled to fit in the rectangle with
top left at the current graphics cursor position and with the specified dimensions width%
and height%.
There is only one object type (set type%=0) a 'lozenge'. This is a 3-D rounded box lit from
the top left, with a shadow at bottom right and a grey body.

9-116 OPL Reference

The flags% argument specifies the corner roundness:
flags% effect

0 For normal roundness
1 For more rounded
2 For a single pixel removed from each corner.

An error is raised if the current window has no grey plane.

gCIRCLE S5
gCIRCLE radius%
gCIRCLE radius%,fill%

Draws a circle with the centre at the current position in the current drawable. If the value
of radius% is negative then no circle is drawn.

If fill% is supplied and if fill%<>0 then the circle is filled with the current pen colour.

See gELLIPSE, gCOLOR.

gELLIPSE S5
gELLIPSE hRadius%,vRadius%
gELLIPSE hRadius%,vRadius%,fill%

Draws an ellipse with the centre at the current position in the current drawable. hRadius%
is the horizontal distance in pixels from the centre of the ellipse to the left (and right) of
the ellipse. vRadius% is the vertical distance from the centre of the ellipse to the top (and
bottom). If the length of either radius is less than zero, then no ellipse is drawn.

If fill% is supplied and if fill%<>0 then the ellipse is filled with the current pen colour.

See gCIRCLE, gCOLOR.

gCLOCK See machine variants below
See machine specific sections for the exact syntax.
Display or remove a running clock showing the system time. The clock is drawn at the
current graphics cursor position in the current window. Only one clock may be displayed
in each window. In order to replace a clock with a new type, you first need to call gCLOCK
OFF.
The mode% argument controls the type of clock.
The offset% argument specifies an offset in minutes from the system time to the
displayed time. This allows you to display a clock showing a time other than the system
time (e.g. the time in another country).
The defaults are: mode% = 1, and offset% = 0.

OPL Reference 9-117

Notes:
Do not use gSCROLL to scroll the region containing a clock. When the time is updated, the
old position would be used. The whole window may, however, be moved using gSETWIN.

On systems with a grey plane it is possible to draw clocks that include grey in windows
created without a grey plane.

gCLOCK S3 and HC
gCLOCK ON,mode%
gCLOCK ON,mode%,offset%
gCLOCK OFF

mode% clock type
1 Small digital
2 Medium, system setting
3 Medium, analog
4 Medium, digital
5 Large, analog

The clock type (analog or digital) may be set for the system. This system setting can then
be used by all programs run on the Psion by using mode%=2

The above values may be ORed with a combination of:

$10 To include a display of the date on small and medium clocks only. The date
is displayed to the left of the current graphics cursor position on a digital
clock.

$20 To include a display of seconds on small and large clocks only.
$40 To show am/pm on medium clocks only.

For example:

gCLOCK ON,$10 or $20 or 1

specifies a small digital clock, showing both date and seconds, and:

gCLOCK ON,$20 or 5

is a large analog clock with a moving second hand.

9-118 OPL Reference

gCLOCK S3a/c, Siena and WA
gCLOCK ON
gCLOCK ON,mode%
gCLOCK ON,mode%,offset%
gCLOCK ON,mode%,offset%,format$
gCLOCK ON,mode%,offset%,format$,font%
gCLOCK ON,mode%,offset%,format$,font%,style%
gCLOCK OFF

The gCLOCK command for the Series 3a/c, Siena and Workabout has extended mode%
values and further arguments. The format$, font% and style% arguments are used for
formatted digital clocks only, as described below.

Modes 1 to 5 (as for S3 and HC above) are provided for HC and Series 3 compatibility,
and produce HC/Series 3 clocks. Other values are:

mode% clock type
6 Black and grey medium, system setting
7 Black and grey medium, analog
8 Second type medium, digital
9 Black and grey extra large
10 Formatted digital (described below)

You can OR the value with any of these:
$10 Shows the date in all except the extra large and formatted clocks
$20 Shows seconds in small digital, large analog, black and grey medium

analog and extra large clocks
$40 Shows am/pm in small digital and black medium clocks only.
$80 Specifies that a clock is to be drawn in the grey plane (only for clocks

that do not contain both black and grey, i.e. all except the black and grey,
medium, analog clock and the extra large clock).

Digital clocks display in 24-hour or 12-hour mode according to the system-wide setting,
e.g. in Time. The 'am/pm' flag ($40) can be used with digital clocks in 12-hour mode, and
with medium analog clocks.

The default font for gCLOCK is the system font (value $9a). The default style is normal (0).

For the formatted digital clock (mode%=10), you may optionally specify font% and
style% with values as for gFONT and gSTYLE. A format string (up to 255 characters long)
specifies how the clock is to be displayed. The format string contains a number of format
specifiers in the form of a % followed by a letter. (Upper or lower case may be used.) For
example, %H means "hours" and %T means "minutes";

Thus, at 11:05 pm:
gCLOCK ON,10,0,"h:%H, m:%T"

displays a running clock as:
h:23, m:05

OPL Reference 9-119

To make each item as abbreviated as possible, you can use a * after the %. For example,
"%*T" at 11:05 pm abbreviates '05' to '5'.
In the following list of specifiers, those which produce numbers will do so without any
leading zero if you use %* instead of %. Other abbreviations are given in brackets as
appropriate:

specifier displays abbreviated display
%% Inserts a % character. none
%* Abbreviate next item, e.g. %*1. Omits leading

zeros, or truncates names to three characters.
none

%: and
%/

Time and date separators, as set in the system none

%A 'am' or 'pm' text 1st letter only
%D Day number as two digits, 01-31 no leading zero
%W Week number as two digits, 01-53 no leading zero
%M Month number as two digits, 01-12 no leading zero
%E Day name 1st 3 characters
%N Month name 1st 3 characters
%H Hour in 24-hour, 00-23 no leading zero
%I Hour in 12-hour format, 01-12 no leading zero
%S Seconds, 00-59 no leading zero
%T Minutes, 00-59 no leading zero
%X Suffix string for day number, e.g. '1st', '2nd' none
%Y Year as a four digits two digits - no

century

specifier displays
%1 First item of the date format as per the system format settings, as a

number
%2 Second item of the date format as per the system format settings, as a

number
%3 Third item of the date format as per the system format settings, as a

number
%4 Day or month number, i.e. the first item as per the system format settings.
%5 Day or month number, i.e. the second item as per the system format

settings.

specifier effect
%G Toggles the day whether its %1, %2,%3,%4 or %5 between long form and

abbreviation.
%P Toggles the month whether its %1, %2,%3,%4 or %5 between long form

and abbreviation.
%U Toggles the year whether its %1, %2,or %3 between long form and

abbreviation.
%F Toggles days between numeric and name formats.
%O Toggles months between numeric and name formats.
%L Toggles the suffix on a day number whether its %1, %2,%3,%4 or %5.

9-120 OPL Reference

If the system settings are for 12 hour format %6 sets the hour and %7 set am or pm. If the
settings are for 24 hour format %6 sets the hour and %7 has no effect.

So the format string "%1%/%2%/%3" automatically generates a clock with day, month and
year in the order as set in the system settings. "%4%/%5" gives a clock with just day and
month in selected order. Similarly, "%6%:%T%:%S%7" gives a clock with hour, minute and
second automatically conforming to the system configuration.

Note that for those specifiers that toggle between two different options (e.g. %F), the state
of toggle is remembered only within one format string and not from one string to the next.
In other words the toggle state is restored to the default setting when displaying a new
clock.

As a final example, assuming that the system setting is for 'Day/month/year' date format,
'am-pm' time format and ':' time separator and that the time is 11:30:05 pm on 9th March
1996:

"%G%L%P%O%*E, %1 %2 %3 %6%:%T:%S%"

generates:
Sat, 9th Mar 1996 11:30:05pm

With the same set-up, except for 'Month/day/year' date format in '24-hour' mode, the same
string generates:

Sat, Mar 9th 1996 23:30:05

Problems with gCLOCK (S3, S3a, HC)
OPL can raise a runtime error in gCLOCK because it mistakenly thinks that a window
already has a clock. The problem derives from the fact that, when a window with a clock in
it is closed, the "slot" which that window occupied retains the clock data. When another
window is opened using that slot, OPL believes a clock is still present and will therefore
raise an error when gCLOCK is called. To avoid the problem always use gCLOCK OFF to
remove the clock before closing a window that has a clock.

See also DAY, MONTH, YEAR, SECOND, MINUTE, HOUR, DATIM$, DAYS, DOW.

OPL Reference 9-121

gCLOCK S5
gCLOCK ON
gCLOCK ON,mode%
gCLOCK ON,mode%,offset&
gCLOCK ON,mode%,offset&,format$
gCLOCK ON,mode%,offset&,format$,font&
gCLOCK ON,mode%,offset&,format$,font&,style%
gCLOCK OFF

Modes 1 to 5 (as for S3 and HC above) are no longer available and mode 10 has been
replaced with a richer mode 11. An offset& of up to a whole day can be specified.

mode% clock type
6 Black and grey medium, system setting
7 Black and grey medium, analog
8 Second type medium, digital, automatically displays of day of week and

day of month below the time
9 Black and grey extra large, automatically displays a second hand
11 Formatted digital (described below) replaces mode%=10 in OPL16.

You can OR the value of mode% with:
$100 To allow offset& to be specified in seconds

The values $10, $20, $40 and $80 used with mode% in OPL16 (see above) are no longer
supported.

format effect
%% Insert a single % character in the string
%* Abbreviate following item, e.g. %*1. Omits leading zeros, or truncates

names to three characters.
%:n Insert a system time separator character. n is an integer between zero

and three that indicates which time separator character is to be used. For
European time settings, only n=1 and n=2 are used, giving the
hours/minutes separator and minutes/seconds separator respectively.

%/n Insert a system date separator character. n is an integer between zero and
three that indicates which date separator character is to be used. For
European time settings, only n=1 and n=2 are used, giving the
day/month separator and month/year separator respectively.

%1 Insert the first component of a three component date (i.e. day, month and
year) where the order of the components is determined by the system
settings. The possibilities are: dd/mm/yyyy, (European), mm/dd/yyyy
(American), yyyy/mm/dd (Japanese).

%2 Insert the second component of a three component date where the order
has been determined by the system settings. See %1.

%3 Insert the third component of a three component date where the order has
been determined by the system settings. See %1.

9-122 OPL Reference

format effect
%4 Insert the first component of a two component date (i.e. day and month

only) where the order has been determined by system settings. The
possibilities are: dd/mm, (European), mm/dd (American), mm/dd
(Japanese).

%5 Insert the second component of a two component date where the order
has been determined by the system settings. See %4.

%A Insert am or pm according to the current language and time of day. Text
is printed even if 24 hour clock is in use. May be placed before or after
the time, and a trailing or leading space as appropriate will be added. The
abbreviated version (%*A) removes this space. Optionally, a minus or
plus sign may be inserted between the % and the A. This operates as
follows: %-A causes am/pm text to be inserted only if the system setting
of the am/pm symbol position is set to display before the time. Similarly,
%+A causes am/pm text to be inserted only if the system setting of the
am/pm symbol is set to display after the time. No am/pm text will be
inserted before the time if a + is inserted in the string. For example you
could use, “%-A%H%:1%T%+A” to insert the am/pm symbol either
before or after the time, according to the system setting. %+A and %-A
cannot be abbreviated.

%B As %A, except that the am/pm text is only inserted if the system clock
setting is 12 hour. (This should be used in conjunction with %J.)

%D Insert the two-digit day number in month (in conjunction with %1 etc.).
%E Insert the day name. Abbreviation is language specific (3 letters in

English).
%F Use this at the beginning of a format string to make the date/time

formatting independent of the system setting. This fixes the order of the
following day/month/year component(s) in their given order, removing
the need to use %1 to %5, allowing individual components of the date to
be printed.

%H Insert the two-digit hour component of the time in 24 hour clock format.
%I Insert the two-digit hour component of the time in 12 hour clock format.

Any leading zero is automatically suppressed, regardless of whether an
asterisk is inserted or not.

%J Insert the two-digit hour component of time in either 12 or 24 hour clock
format depending on the corresponding system setting. When the clock
has been set to 12 hour format, the hour’s leading zero is automatically
suppressed regardless of whether an asterisk has been inserted between
the % and J.

%M Insert the two-digit month number (in conjunction with %1 etc.).
%N Insert the month name (in conjunction with %1 etc.). When using system

settings (i.e. not using %F) this causes all months following %N in the
string to be written in words. When using fixed format (i.e. when using
%F) %N may be used alone to insert a month name. Abbreviation is
language specific (3 letters in English).

%S Insert the two-digit second component of the time.

OPL Reference 9-123

format effect
%T Insert the two-digit minute component of the time.
%W Insert the two-digit week number in year, counting the first (part) week

as week 1.
%X Insert the date suffix. When using system settings (i.e. not using %F), this

causes a suffix to be put on any date following %X in the string. When
using fixed format (i.e. using %F), %X following any date appends a
suffix for that particular date. Cannot be abbreviated.

%Y Insert the four digit year number (in conjunction with %1 etc.). The
abbreviation is the last two digits of the year.

%Z Insert the three digit day number in year.

Example format strings are as follows:

The example used is 1:30:05 pm on Wednesday, 1st January 1997, with the system setting
of European dates and with am/pm after the time:

“%-A%I:%T:%S%+A” will print the time in 12 hour clock, including seconds, with the
am/pm either inserted before or after the time, depending on the system setting. So the
example time would appear as, 1:30:05 pm.

“%F%E %*D%X %N %Y” will print the day of the week followed by the date with suffix, the
month as a word and the year. For example, Wednesday 1st January 1997.

“%E %D%X%N%Y %1 %2 %3” will use the locale setting for ordering the elements of the
date, but will use a suffix on the day and the month in words. For example, Wednesday
01st January 1997.

“%*E %*D%X%*N%*Y %1 %2 '%3” will be similar to 3., but will abbreviate the day of the
week, the day, the month and the year, so the example becomes “Wed 1st Jan 97”.

“%M%Y%D%1%/0%2%/0%3” will appear as 01/01/1997. This demonstrates that the
ordering of the %D, %M and %Y is irrelevant when using locale-dependent formatting.
Instead the ordering of the date components is determined by the order of the %1, %2, and
%3 formatting commands.

style% may take any of the values used to specify gSTYLE, other than 2 (underlined).

Note:
A ‘General Failure’ error will result if you attempt to use an invalid format. Invalid
formats include using %: and %/ followed by 0 or 3 when in European locale setting
(when these separators are without meaning) and using %+ and %- followed by characters
other than A or B.

9-124 OPL Reference

Graphics sprites
CREATESPRITE Create a sprite
APPENDSPRITE Append bitmap to sprite
CHANGESPRITE Change bitmap set of sprite
DRAWSPRITE Draw a sprite
POSSPRITE Position a sprite
CLOSESPRITE Close a sprite

Note:
The OPL16 sprite keywords are no longer supported in OPL32, they have been replaced
by superior sprite handling functions via an OPX.

CREATESPRITE S3a/c, Siena, WA
sprId% = CREATESPRITE

Create a sprite, returning the sprite ID, sprId%.

Note:
Only one sprite is currently available in OPL16.

See also APPENDSPRITE, CHANGESPRITE, CLOSESPRITE, DRAWSPRITE, POSSPRITE.

APPENDSPRITE S3a/c, Siena, WA
APPENDSPRITE time%,var bit$()
APPENDSPRITE time%,var bit$(),dx%,dy%

Append a single bitmap-set to the sprite.
The duration time%, (in tenths of a second), is the time that the bitmap set is to be
displayed before going on to the next bitmap-set in the sequence. The names of the bitmap
files in the set (or "" to specify no bitmap) are held in bit$(). The array must have at least
6 elements:
 bit$(1) for setting black pixels
 bit$(2) for clearing black pixels
 bit$(3) for inverting black pixels
 bit$(4) for setting grey pixels
 bit$(5) for clearing grey pixels
 bit$(6) for inverting grey pixels

All the bitmaps in a single bitmap-set must be the same size else 'Argument' error (-2) is
raised on attempting to draw the sprite. Bitmaps in different bitmap-sets may differ in size.

If supplied, dx% and dy% are the (x,y) offsets from the sprite position to the top-left of the
bitmap-set. Positive values are for offsets to the right and downwards. The default value of
both offsets is zero.

OPL Reference 9-125

See also CHANGESPRITE, CLOSESPRITE, CREATESPRITE, DRAWSPRITE, POSSPRITE.

Problems with APPENDSPRITE (3a, WA)
A sprite larger than the screen can "crash" the machine. (Series 3a screen size: 480 x 160;
Workabout screen size: 240 x 100)

CHANGESPRITE S3a/c, Siena, WA
CHANGESPRITE ix%,time%,var bit$()
CHANGESPRITE ix%,time%,var bit$(),dx%,dy%

Change a bitmap-set in the sprite.
The bitmap-set is specified by ix%, (1 for the first bitmap-set). The names of the bitmap
files in the set (or "" to specify o bitmap) are held in bit$(). The array must have at least
6 elements:
 bit$(1) for setting black pixels
 bit$(2) for clearing black pixels
 bit$(3) for inverting black pixels
 bit$(4) for setting grey pixels
 bit$(5) for clearing grey pixels
 bit$(6) for inverting grey pixels
All the bitmaps in a single bitmap-set must be the same size else 'Argument' error (-2) is
raised on attempting to draw the sprite. Bitmaps in different bitmap-sets may differ in size.
If supplied, dx% and dy% are the (x,y) offsets from the sprite position to the top-left of the
bitmap-set. Positive values are for offsets to the right and downwards. The default value of
both offsets is zero.
The CHANGESPRITE command can be called only after DRAWSPRITE.
Note:
The time% argument is ignored.
See also APPENDSPRITE, CLOSESPRITE, CREATESPRITE, DRAWSPRITE, POSSPRITE.

DRAWSPRITE S3a/c, Siena, WA
DRAWSPRITE xpos%,ypos%

Draw the sprite in the current window with top-left at pixel position xpos%,ypos%. If any
bitmap-set contains bitmaps with different sizes, DRAWSPRITE raises an 'Invalid arguments'
error (-2). Once the sprite has been drawn, no further file access is performed, even when it
is animated.

See also APPENDSPRITE, CHANGESPRITE, CLOSESPRITE, CREATESPRITE, POSSPRITE.

9-126 OPL Reference

POSSPRITE S3a/c, Siena, WA
POSSPRITE xpos%,ypos%

Set the position of the sprite to pixel xpos%,ypos%.

See also APPENDSPRITE, CHANGESPRITE, CLOSESPRITE, CREATESPRITE, DRAWSPRITE.

CLOSESPRITE S3a/c, Siena, WA
CLOSESPRITE sprId%

Close the sprite with ID sprId%. Only one sprite is currently available in OPL. See also
APPENDSPRITE, CHANGESPRITE, CREATESPRITE, DRAWSPRITE, POSSPRITE.

Menus
mINIT Start a new set of menus
mCARD Define a menu
mCASC Define a cascade menu – OPL32
MENU Display menus
mPOPUP Define and display a popup menu – OPL32

Note:
The Menu statements are not available on the HC, menus can be created and used via the
OPL16 SDK library procedures.

mINIT S3, S3a/c, Siena, S5, WA
mINIT

Cancel any existing menus, in preparation for the definition of new menus. Use mCARD and
mCASC (Series 5 only) to define each menu, then MENU to display them.

On the Series 5, it is incorrect to ignore mCARD and mCASC errors by having an ONERR label
around an mCARD or mCASC call. If you do, the menu is discarded and a ‘Structure fault’
will be raised on using mCARD, mCASC or MENU without first using mINIT again - see MENU.

mCARD S3, S3a/c, Siena, S5, WA
mCARD title$,item1$,hotkey1%
mCARD title$,item1$,hotkey1%,item2$,hotkey2%...

Define a menu which has been initialised using mINIT. When all of the menus have been
defined, MENU is used to display them.

OPL Reference 9-127

The title$ argument is the name of the menu. A maximum number of items on the menu
may be defined, depending on which Psion is the target machine:

Psion Maximum
S3 6
S3a/c, S5 8
WA 6

Each menu item is specified by two arguments. The first is the item name, and the second
the key code for a hot-key. This specifies a key which, when pressed together with the
Psion key on SIBO or Ctrl on Series 5, will select the option. If the key code is for an
upper case key, the hot-key will use both the Shift and Psion (Ctrl) keys together (except
S3).

Options can be divided into logical groups by displaying a grey line under the final option
in a group. To do this, pass the negative value corresponding to the hot-key code for the
final option in the group. For example, -%A specifies hot-key Shift-Psion-A (Ctrl-Shift-A)
and displays a grey line under the associated option in the menu.

Series 5 supports the following menu features:

• Menu items without shortcuts, by specifying shortcut values between 1 and 32. For
these items the value specified is still returned if the item is selected.

• Menu items which are dimmed, or which have checkboxes or option buttons
(sometimes known as radio buttons).

The extra properties are controlled by adding the following bits to the shortcut key key-
code.

Effect value OPL32 constant
menu item dimmed $1000 KmenuDimmed%

item has check-box $0800 KmenuCheckBox%

start of an option button list $0900 KmenuOptionStart%

middle of an option button list $0A00 KmenuOptionMiddle%

end of an option button list $0B00 KmenuOptionEnd%

checkbox/option button symbol on $2000 KmenuSymbolOn%

checkbox/option button symbol
indeterminate

$4000 KmenuSymbolIndeterminate%

The start, middle and end option buttons are for specifying a group of related items that
can be selected exclusively (i.e. if one item is selected then the others are deselected). The
number of middle option buttons is variable. A single menu card can have more than one
set of option buttons and checkboxes, but option buttons in a set should be kept together.
For speed, OPL does not check the consistency of these items’ specification.

If a separating line is required when any of these effects had been added, you must be sure
to negate the whole value, not just the shortcut key key-code.

9-128 OPL Reference

In the example,
mCARD “Options”,“View1”,%A OR $2900,“View2”,-(%B OR $B00),

“Another option”,%C

the second shortcut key key-code and its flag value is correctly negated to display a
separating line.

A ‘Too wide’ error is raised if the menu title length is greater than or equal to 40. Shortcut
values must be alphabetic character codes or numbers between the values of 1 and 32. Any
other values will raise an ‘Invalid arguments’ error.

If any menu item fails to be added successfully, a menu is discarded. It is therefore
incorrect to ignore mCARD errors by having an ONERR label around an mCARD call on the
Series 5. If you do, the menu is discarded and a ‘Structure fault’ will be raised on using
mCARD without first using mINIT again. See MENU for an example of this.

See also mINIT, MENU and mCASC for cascaded menu items.

mCASC S5
mCASC title$,item1$,hotkey1%,item2$,hotkey2%

Creates a cascade for a menu, on which less important menu items can be displayed. The
cascade must be defined before use in a menu card. For example, a ‘Bitmap’ cascade under
the File menu of a possible OPL drawing application could be defined like this:
mCASC “Bitmap”,”Load”,%L,”Merge”,%M

mCARD “File”,“New”,%n,”Open”,%o,”Save”,%s,”Bitmap>”,16,”Exit”,%e

The trailing > character specifies that a previously defined cascade item is to be used in the
menu at this point: it is not displayed in the menu item. A cascade has a filled arrow head
displayed along side it in the menu. The cascade title in mCASC is also used only for
identification purposes and is not displayed in the cascade itself. This title needs to be
identical to the menu item text apart from the >. For efficiency, OPL doesn’t check that a
defined cascade has been used in a menu and an unused cascade will simply be ignored.
To display a > in a cascaded menu item, you can use >>.

Shortcut keys used in cascades may be added to the appropriate constant values as for
mCARD to enable checkboxes, option buttons and dimming of cascade items.

As is typical for cascade titles, a shortcut value of 16 is used in the example above. This
prevents the display or specification of any shortcut key. However, it is possible to define a
shortcut key for a cascade title if required, for example to cycle through the options
available in a cascade.

See mCARD, MENU, mINIT.

OPL Reference 9-129

MENU S3, S3a/c, Siena, S5, WA
val% = MENU
val% = MENU(var init%)

Displays the menus defined by mINIT, mCARD and mCASC, and waits for you to select an
item. Returns the hot-key key code of the item selected, as defined in mCARD, in lower
case. If the menu is cancelled by pressing Esc, MENU returns 0.

If init% is passed it sets the initial menu pane and item to be highlighted. The init%
argument should be 256*(menu%)+item%; for both menu% and item%, 0 specifies the
first, 1 the second and so on. If init% is 517 (=256*2+5), for example, this specifies the
6th item on the third menu.

If init% was passed, MENU writes back to init% the value for the item that was last
highlighted on the menu. You can then use this value when calling the menu again.

In OPL16, you only need to use this technique if you have more than one menu in your
program, maintaining one variable for each menu.

In OPL32, It is necessary to use MENU(init%), passing back the same variable each time
the menu is opened if you wish the menu to reopen with the highlight set on the last
selected item.

On the Series 5, it is incorrect to ignore mCARD and mCASC errors by having an ONERR label
around an mCARD or mCASC call. If you do, the menu is discarded and a ‘Structure fault’
will be raised on using mCARD, mCASC or MENU without first using mINIT again.

The following bad code will not display the menu:
mINIT
ONERR errIgnore1
mCARD “Xxx”,”ItemA”,0 REM bad shortcut

errIgnore1::
ONERR errIgnore2
mCARD “Yyy”,”” REM ‘Structure fault’ error (mINIT
discarded)

errIgnore2::
ONERR OFF
MENU REM ‘Structure fault’ again

See also mCARD and mINIT. On the HC the menu%: SIBO OPL16 SDK library procedure
is used.

Problems with MENU (S3, HC)
There are some circumstances in which OPL programs with menus can gradually lose
small amounts of system memory. All memory lost in this way is fully recovered when the
OPL application exits, but if the application runs for a long time without exiting, it is
possible that the cumulative amount of memory lost will in time adversely affect the
performance of the application.

9-130 OPL Reference

Solution
By adding a few extra lines of OPL code to a program, it can be ensured that no memory
loss of this sort will occur. The changes required are as follows:

a) Declare three global arrays pt1&(7), pt2&(7), pt3&(8).
b) Before MENU is called for the first time, you should call the procedure ptinit:
(source code given below).
c) Instead of calling MENU directly, define a procedure menu%: (example source code
given below) and call that instead.

Note:
To simplify the patch code, the contents of ptinit: could be moved inside
menu%:, with virtually no detectable speed degradation, but with the advantage
that the three global arrays can become local variables inside menu%:.

Example of Menu patch code
PROC test:
 GLOBAL pt1&(7),pt2&(7),pt3&(8)
 LOCAL m%
 ptinit:
 DO
 mINIT
 mCARD "Menu 1","Option 1",%a
 mCARD "Menu 2","Exit",%x

 m%=menu%:
 IF m%=%a
 GIPRINT "Option 1 selected"
 ENDIF
 UNTIL m%=%x
ENDP

PROC ptinit:
 pt1&(1)=&8BF88BFC
 pt1&(2)=&8B00121E
 pt1&(3)=&778B205F
 pt1&(4)=&E42AAC0C
 pt1&(5)=&A5ABC88B
 pt1&(6)=&75C084AC
 pt1&(7)=&CBF8E2FB
 pt2&(1)=&00B4F08B
 pt2&(2)=&FC808BCD
 pt2&(3)=&AD0D7330
 pt2&(4)=&C932D08B
 pt2&(5)=&CDD88BAD
 pt2&(6)=&F8754ACF
 pt2&(7)=&CB
ENDP
PROC menu%:
 LOCAL r%
 USR(ADDR(pt1&(1)),ADDR(pt3&(1)),0,0,0)
 r%=menu
 USR(ADDR(pt2&(1)),ADDR(pt3&(1)),0,0,0)
 RETURN(r%)
ENDP

OPL Reference 9-131

mPOPUP S5
mPOPUP(x%,y%,posType%,item1$,hotkey1%,item2$,hotkey2%,...)

Presents a popup menu. mPOPUP returns the value of the keypress used to exit the popup
menu, this being 0 if Esc is pressed.

mPOPUP defines and presents the menu itself, and should not and need not be called from
inside the mINIT…MENU structure. posType% is the position type controlling which corner
of the popup menu x%,y% specifies and can take the values,

posType% corner OPL32 constant
0 top left KMPopupPosTopLeft%
1 top right KMPopupPosTopRight%
2 bottom left KMPopupPosBottomLeft%
3 bottom right KMPopupPosBottomRight%

item$ and key% can take the same values as for mCARD, with key% taking the same
constant values to specify checkboxes, option buttons and dimmed items. However,
cascades in popup menus are not supported.

For example:
mPOPUP (0,0,0,“Continue”,%c,“Exit”,%e)

specifies a popup menu with 0,0 as its top left-hand corner with the items ‘Continue’ and
‘Exit’, with the shortcut keys Ctrl+C and Ctrl+E respectively.

See also mCARD.

9-132 OPL Reference

Dialogs
dINIT Start a new dialog
dINITS Start a new dialog using small font – WA only
dPOSITION Position a dialog
dTEXT Define text for dialog
dEDIT Define a text edit box for dialog
dEDITMULTI Define a multi-line text edit box for dialog – OPL32
dXINPUT Define a secret edit box for a dialog
dFILE,OPL16 Define a filename edit box for a dialog
dFILE,OPL32 Define a filename edit box for a dialog
dCHOICE Define a choice list for a dialog
dFLOAT Define a floating point numeric edit box for a dialog
dLONG Define a long numeric edit box for a dialog
dDATE Define a date edit box for a dialog
dTIME Define a time edit box for a dialog
dBUTTONS Define exit keys for a dialog
dCHECKBOX Define a check box for a dialog – OPL32
DIALOG Display a dialog
ALERT Display a simple alert dialog

Notes:

• Only one dialog may be in use at a time.
• A dialog must be initialised with dINIT, items defined e.g. dLONG and displayed with

DIALOG within in the same procedure.
• In OPL16 i the width of any line would make the dialog too wide, a ‘Too wide’ error

is raised when DIALOG is called. In OPL32 no error is raised if the dialog is too wide
or too long to fit on the screen; it is up to the programmer to ensure the dialog is
displayed in a suitable way.

• In OPL16 a dialog may consist of up to nine lines, including any title. Filename
editors count as two lines, and exit keys count as three. A ‘Too many items’ error is
raised if this limit is exceeded.

dINIT S3, S3a/c, Siena, S5, WA
dINIT
dINIT title$
dINIT title$,flags% – in OPL32

Prepare for the definition of a dialog, cancelling any existing one.

Use dTEXT, dCHOICE, etc. to define each item in the dialog, then DIALOG to display the
dialog. If title$ is supplied, it will be displayed at the top of the dialog, centred and with
a line across the dialog below it.

OPL Reference 9-133

The maximum number of lines of text that the dialog can have depends on which Psion
computer the program will be run on:

System maximum lines
S3 7
S3a/c, Siena and S5 9
WA 6

(8 with dINITS)

In OPL32 flags% can be any ORed combination of the following:

flags% effect OPL32 constant
1 Buttons on right rather than at bottom KDlgButRight%
2 No title, any title in dINIT is ignored KDlgNoTitle%
4 Use the full screen KDlgFillScreen%
8 Don’t allow dialog box to be dragged KDlgNoDrag%
16 Pack dialog densely (not buttons) for more lines KDlgDensePack%

Series 5 dialogs without titles cannot be dragged regardless of value of flags%.

Note:
Errors that occurred when adding items to a dialog in OPL16 did not cause dINIT to fail.
In OPL32 if such errors occur, the dialog will be deleted a ‘Structure fault’ error is raised,
and dINIT will have to be called again.

dINITS WA
dINITS
dINITS title$

Prepare for the definition of a dialog using the small font, cancelling any existing one.
Use dTEXT, dCHOICE, etc. to define each item in the dialog, then DIALOG to display the
dialog.
If title$ is supplied, it will be displayed at the top of the dialog, centred and with a line
across the dialog below it.
This command is specifically for the Workabout, so that a dialog can have eight lines
instead of six on the restricted screen, (see dINIT above). The top and bottom border will
be significantly clipped with nine items, so dINITS dialogs should only use a maximum of
eight items.

dPOSITION S3, S3a/c, Siena, S5, WA
dPOSITION posx%,posy%

Position a dialog.

Use dPOSITION at any time between dINIT and DIALOG. The dPOSITION command uses
two integer values. The first, posx%, specifies the horizontal position, and the second,
posy%, the vertical position.

9-134 OPL Reference

For example:

command dialog screen
position

OPL32 constants

dPOSITION –1,-1 top left KDPositionLeft%,KDPositionLeft%

dPOSITION 1,1 bottom right KDPositionRight%,KDPositionRight%

dPOSITION 0,0 central, the default
position for dialogs.

KDPositionCentre%,KDPositionCentre%

dPOSITION 1,0 right-hand edge, and
centred half way up the
screen.

KDPositionRight%,KDPositionCentre%

dTEXT S3, S3a/c, Siena, S5, WA
dTEXT prompt$,body$
dTEXT prompt$,body$,format%

Define a line of text to be displayed in a dialog.

The prompt, prompt$, will be displayed on the left side of the line, and body$ on the right
side. If you only want to display a single string, use a null string ("") for prompt$, and
pass the desired string in body$. It will then have the whole width of the dialog to itself.
An error is raised if body$ is a null string. The text in body$ is normally displayed left
aligned (although usually in the right column). You can override this by specifying
format%:

format% effect OPL32 constant
0 left align body$ KDTextLeft%
1 right align body$ KDTextRight%
2 centre body$ KDTextCentre%

Note that on the Series 5, alignment of body$ is only supported when prompt$ is null,
with the body being left aligned otherwise. In addition, you can add any or all of the
following three values to format%, for these effects:

format% effect OPL32 constant
$100 use bold text for body$, not OPL32 KDTextBold%
$200 draw a line below this item KDTextLineBelow%
$400 allow prompt$ item to be selected KDTextAllowSelection%
$800 specify this item as a text separator,

OPL32 only
KDTextSeparator%

On the SIBO family, only one line can be drawn across a dialog using the flag $200. It will
be below the last item that requests it, whether the title from dINIT or a dTEXT item.
Setting format% = $400 allows only the prompt, and not the body, to be selected.

On the Series 5, bold dialog text is not supported. You can display a line separator
between any dialog items by setting the flag $800 on an item where p$ and body$ are
null. (If p$ and/or body$ are not null, then the flag is ignored and no separator is drawn.)
The separator counts as an item in the value returned by DIALOG. OPL32 still supports

OPL Reference 9-135

OPL16’s underlining of dTEXT items by setting format% = $200. Setting format% =
$400 allows the only the prompt, but not the body, to be selected.

See also dEDIT.

dEDIT S3, S3a/c, Siena, S5, WA
dEDIT var string$,prompt$
dEDIT var string$,prompt$,width%

Define a string edit box, to go in a dialog.

The prompt, prompt$, will be displayed on the left side of the line. The string variable to
edit is string$. Its initial contents will appear in the dialog. The length used when
string$ was defined is the maximum length you can type in. On exiting the dialog, the
string$ variable will hold the value entered by the user.

The value width%, if supplied, gives the width (in pixels) of the edit box (allowing for
widest possible character in the font). The string will scroll inside the edit box, if
necessary. If width% is not supplied, the edit box is made wide enough for the maximum
width string$ could possibly be.

See also dTEXT, dXINPUT.

dEDITMULTI S5
dEDITMULTI ptrdata&,prompt$,width%,lines%,maxlen%

Defines a multi-line edit box to go into a dialog. Normally the resulting text would be used
in a subsequent dialog, saved to file or printed using the Printer OPX.
Ptrdata& Holds the address of the buffer for the text.
prompt$ Displayed on the left side of the edit box.
width% Specifies the width of the edit box within which the text is wrapped,

using a notional average character width. The actual number of
characters that will fit will depend on the character widths.

lines% Specifies the number of full lines displayed. Any more lines will be
scrolled.

maxlen% The length in bytes of the buffer excluding the bytes used to store the
length.

Note that the edit box uses any Enter key pressed when it has the focus, so Enter can’t be
used to exit the dialog. Another item is needed that can take the focus without using the
Enter key. For example, a button that does not use the Enter key to exit a dialog whenever
it contains a multi-line edit box. The Enter key is used by a multi-line edit box that has the
focus before being offered to any buttons. However, the Esc key will always cancel a
dialog, even when it contains a multi-line edit box.

ptrdata& is the address of a buffer to take the edited data. It could be the address of an
array as returned by ADDR, or of a heap cell, as returned by ALLOC (see ADDR and ALLOC).
The buffer may not be specified directly as a string, and may not be read as such; it should

9-136 OPL Reference

be peeked, byte by byte. It is convenient to use a long integer array as the buffer, with at
least 1+(maxlen%+3)/4 elements. The leading 4 bytes at ptrdata& contains the initial
number of bytes of data following. The first four bytes are set by dEDITMULTI to the
actual number of bytes edited. Hence the first element of the array should specify the
initial length.

If an allocated cell is used (probably because more than 64K is required), the first 4 bytes
of the cell must be set to the initial length of the data. If this length is not set then an error
will be raised. For example if a 100000 byte cell is allocated, you would need to poke a
zero long integer in the start to specify that there is initially no text in the cell. For
example:

ptrdata&=ALLOC(100000)
POKEL ptrdata&,0 REM Text starts at ptrdata& + 4

A number of special characters (defined in CONST.OPH) may appear in the buffer:

A paragraph delimiter marks the end of a paragraph. A line break is a new line that does
not signify a new paragraph. Non-breaking characters guarantee that no line break will
occur at the point they are inserted. A potential hyphen marks the place where a hyphen
may be inserted if the word occurs on the break of a line. A visible space character is the
character that is displayed when spaces are set to be visible. The following example
presents a three-line edit box that is about 10 characters wide and allows up to 399
characters:

CONST KLenBuffer%=399
PROC dEditM:

LOCAL buffer&(101) REM 101=1+(399+3)/4 in integer
arithmetic
LOCAL pLen&,pText&
LOCAL i%
LOCAL c%
pLen&=ADDR(buffer&(1))
pText&=ADDR(buffer&(2))
WHILE 1
 dINIT “Try dEditMulti”
 dEDITMULTI pLen&,”Prompt”,10,3,KLenBuffer%
 dBUTTONS “Done”,%d REM button needed to exit dialog
 IF DIALOG=0 :BREAK :ENDIF
 PRINT “Length:”;buffer&(1)
 PRINT “Text:”
 i%=0
 WHILE i%<buffer&(1)
 c%=PEEKB(pText&+i%)
 IF c%>=32
 PRINT CHR$(c%);
 ELSE
 PRINT “.”; REM just print a dot for special characters
 ENDIF
 i%=i%+1
 ENDWH
ENDWH

ENDP

OPL Reference 9-137

dXINPUT S3, S3a/c, Siena, S5, WA
dXINPUT var string$,prompt$

Define a secret string edit box, such as for a password, to go in a dialog. The prompt,
prompt$, will be displayed on the left side of the line. The string$ parameter is the
string variable to take the string that the user types in.

Initially the dialog does not show any characters for the string; the initial contents of
string$ are ignored. A special symbol will be displayed for each character you type, to
preserve the secrecy of the string.

Note:
string$ must be at least eight characters long on SIBO systems and must be less than 16
characters long on the Series 5 (OPL32 identifier KDXInputMaxLen%).

dFILE, OPL16 S3, S3a/c, Siena, WA
dFILE var file$,prompt$,flags%

Define a filename edit box, to go in a dialog. A 'Disk' selector is automatically added on
the line below. The file$ variable must be declared to be at least 128 bytes long, or an
error will be raised. The prompt, prompt$, will be displayed on the left side of the line.

The type of file editor is controlled by flags%, and the kind of input allowed. You can
add together any of the following values:

flags% meaning
1 use an edit box
2 allow directory names
4 directory names only
8 disallow existing files
16 query existing files
32 allow null string input
64 don't display extension
128 obey/allow wildcards

The first of the list is the most crucial. If you add 1 into flags%, you will see a file edit
box, as when creating a new file. If you do not add 1, you will see the 'matching file'
selector, used when choosing an existing file.

If performing a 'copy to' operation, you might use 1+2+16, to specify a file edit box for the
target file, (in which you can type the name of a directory to copy to), and which will
produce a query if you type the name of an existing file.

If asking for the name of a directory to remove, you might use 4, to allow an existing
directory name only.

'Query existing' is ignored if 'disallow existing' is set. These two, as well as 'allow null
string input', only work with file edit boxes, not 'matching file' selectors.

9-138 OPL Reference

The string variable to edit is file$. Its initial contents always control the initial drive and
directory used. For a file edit box, any filename part of file$ is shown. For a 'matching
file' selector, you can use wildcards in the filename part (such as *.tmp) to control which
filenames are matched. To do this, you must add 128 to flags%. Adding 128 also allows
wildcard specifications to be entered (returned in file$), for both 'matching' and 'new file'
selectors.

If file$ does not contain any drive or directory information, the path as set by SETPATH
is used. If SETPATH has not been used, the \OPD directory on the default drive (usually m:,
'Internal') is used.

With a 'matching file' selector (as opposed to an edit box) the value 8 restricts the selection
to files which match the filename/extension in file$. 'Matching file' selectors can also use
64, in which case files with the same extension as that in file$ are shown without this
extension. (Many Series 3, Series 3a/c, Siena and Workabout file selectors are like this.)

You can always press Tab to produce the full file selector with a dFILE item.

See also dEDIT.

dFILE, OPL32 S5
dFILE file$,prompt$,flags%
dFILE file$,prompt$,flags%,Uid1=0,Uid2=0,Uid3=0

Defines a filename edit box or selector, to go in a dialog. A ‘Folder’ and ‘Disk’ selector
are automatically added on the following lines.

file$ must be declared to be 255 bytes long, since file names may be up to this length,
and if it is shorter an error will be raised. The prompt, prompt$, will be displayed on the
left side of the line. By default no prompts are displayed for the file, folder and disk
selectors on the Series 5. A comma-separated prompt list should be supplied.
For example, for a filename editor with the standard prompts use:

dFILE file$,"File,Folder,Disk",1

The type of file editor is controlled by flags%, and the kind of input allowed. You can
add (OR) together any of the following values:
flags% meaning OPL32 constant

1 use an edit box KDFileEditBox%
2 allow folder names KDFileAllowFolders%
4 folder names only KDFileFoldersOnly%
8 disallow existing files KDFileEditorDisallowExisting%
16 query existing files KDFileEditorQueryExisting%
32 allow null string input KDFileAllowNullStrings%
64 not S5 (don't display

extension) file name
extensions are not significant

128 obey/allow wildcards KDFileAllowWildCards%

OPL Reference 9-139

256 to allow ROM files to be
selected

KDFileSelectorWithRom%

512 to allow files in the System
folder to be selected

KDFileSelectorWithSystem%

The first of the list is the most important. Adding 1 into flags% will present a file edit
box, as when creating a new file. If you do not add 1, a 'matching file' selector is
presented, i.e. for choosing an existing file.

If performing a 'copy to' operation, you might use 1+2+16, to specify a file edit box for the
target file, (in which you can type the name of a folder to copy to), and which will produce
a query if you type the name of an existing file. If asking for the name of a folder to
remove, you might use 4, to allow an existing folder name only. 'Query existing' is ignored
if 'disallow existing' is set. These two, as well as 'allow null string input', only work with
file edit boxes, not 'matching file' selectors.

The string variable to edit is file$. Its initial contents always control the initial drive and
folder used. For a file edit box, any filename part of file$ is shown. For a 'matching file'
selector, you can use wildcards in the filename part (such as *.tmp) to control which
filenames are matched. To do this, you must add 128 to flags%. Adding 128 also allows
wildcard specifications to be entered (returned in file$), for both 'matching' and 'new file'
selectors. You can always press Tab to produce the full file selector with a dFILE item.

UIDs are used to identify files in the system for many purposes. The System screen uses
Uid2 to distinguish between applications of various types and documents:

• Eikon applications
• Eikon applications’ documents
• OPL applications
• OPL applications’ documents

Uid3 is used by the System screen to identify particular applications.

For file selectors, dFILE supports file restriction by UID, or by type from the user’s point
of view. Documents are identified by three UIDs which identify which application created
the document and what kind of file it is. Specifying all three UIDs will restrict the files as
much as is possible, and specifying fewer will provide less restriction. You can supply 0
for uid1& and uid2& if you only want to restrict the list to uid3&. This may be useful
when dealing with documents from one of your own applications: you can easily find out
the third UID as it will be the UID you specified in the APP statement. Note that UIDs
are ignored for file name editors.

Here are some OPL32-related UID constants:

OPL32 constant value
KuidOPLInterpreter& 268435816
KuidOPLApp& 268435572
KuidOPLDoc& 268435573
KuidOPO& 268435571
KuidOPLFile& 268435594
KuidOpxDll& 268435549

9-140 OPL Reference

For example, if the application is UID KUidMyApp&, then the following will list only
application-specific documents:

dFILE file$,prompt$,flags%,0,KUidOplDoc&,KUidMyApp&

See also dEDIT.

dCHOICE S3, S3a/c, Siena, S5, WA
dCHOICE var choice%,prompt$,list$
dCHOICE var choice%,prompt$,list$+”,...” – in OPL32

Define a choice list to go in a dialog.

The prompt, prompt$, will be displayed on the left side of the line. The string list$
should contain the possible choices, separated by commas, for example:

"Yes,No"

One of these will be displayed on the right side of the line, and the LEFT and RIGHT
arrow keys can be used to move between the choices. The choice% parameter must be a
LOCAL or a GLOBAL variable. It specifies which choice should initially be shown: 1 for the
first choice, 2 for the second choice, and so on. When you finish using the dialog,
choice% is given a value indicating which choice was selected - again, 1 for the first
choice, and so on.

On the Series 5, dCHOICE supports an unrestricted number of items (up to memory limits).
To extend a dCHOICE list, add a comma after the last item on the line followed by “...”
(three full-stops), as shown in the usage above. choice% must be the same on all the lines,
otherwise an error is raised.

For example, the following specifies items i1, i2, i3, i4, i5, i6:
dCHOICE ch%,prompt$,"i1,i2,..."
dCHOICE ch%,"","i3,i4,..."
dCHOICE ch%,"","i5,i6"

dFLOAT S3, S3a/c, Siena, S5, WA
dFLOAT var float,prompt$,min,max

Define an edit box for a floating-point number, to go in a dialog.

The prompt, prompt$, will be displayed on the left side of the line. The min and max
parameters give the minimum and maximum values that are to be allowed. An error is
raised if min is higher than max. The floating-point variable float must be a LOCAL or a
GLOBAL variable. It specifies the value to be shown initially. When you finish using the
dialog, the value you entered is returned in float.

OPL Reference 9-141

dLONG S3, S3a/c, Siena, S5, WA
dLONG var long&,prompt$,min&,max&

Defines an edit box for a long integer, to go in a dialog.
The prompt prompt$ will be displayed on the left side of the line.
The min& and max& parameters give the minimum and maximum values which are to be
allowed. An error is raised if min& is higher than max&.
The variable long& must be a LOCAL or a GLOBAL variable. It specifies the value to be
shown initially. When the user finishes using the dialog, the value they entered is returned
in long&.

dDATE S3, S3a/c, Siena, S5, WA
dDATE var disdays&,prompt$,mindays&,maxdays&

Define an edit box for a date, to go in a dialog.

The prompt, prompt$, will be displayed on the left side of the line. The LOCAL or a
GLOBAL variable, disdays&, specifies the date to be shown initially. Although it will
appear on the screen like a normal date, for example "15/03/92", disdays& must be
specified as "days since 1/1/1900". The mindays& and maxdays& parameters specify the
minimum and maximum values which are to be allowed. Again, these are in days since
1/1/1900. An error is raised if mindays& is higher than maxdays&. When the user has
finished using the dialog, the date entered is returned in disdays&, in days since
1/1/1900. The system setting determines whether years, months or days are displayed first.

Note:
The day number of 1 January 1970 is 25567. This is required when converting from a
dialog date to a system date/time, e.g.:

system_time = (dialog_date-
25567)*86400+(seconds_from_start_of_day)

If you're collecting a date/time from a dialog, it's a good idea to set the minimum input
date to this (25567) figure. In OPL32 use DAYSTODATE which converts a number of days
since 1/1/1900, to the corresponding date.

See also DAYS, SECSTODATE, DATETOSECS, DAYSTODATE.

dTIME S3, S3a/c, Siena, S5, WA
dTIME var disecs&,prompt$,type%,minsecs&,maxsecs&

Define an edit box for a time, to go in a dialog.

The prompt, (prompt$), will be displayed on the left side of the line.

9-142 OPL Reference

The disecs& parameter, which must be a LOCAL or a GLOBAL variable, specifies the time
to be shown initially. Although it will appear on the screen like a normal time, for example
18:27, the value of disecs& must be specified as seconds after 00:00. A value of 60
means one minute past midnight; 3600 means one o'clock, and so on.

The minsecs& and maxsecs& parameters give the minimum and maximum values which
are to be allowed. Again, these are in seconds after 00:00. An error is raised if minsecs&
is higher than maxsecs&.

When the user has finished using the dialog, the time that they entered is returned in
disecs&, in seconds after 00:00.

The type% parameter specifies the type of display required, as follows:

type% time display OPL32 constant
0 absolute time, no seconds KDTimeAbsNoSecs%
1 absolute time with seconds KDTimeWithSeconds%
2 duration, no seconds KDTimeDuration%
3 duration with seconds KDTimeDurationWithSecs%
4 S5 only - time displayed without

hours
KDTimeNoHours%

8 S5 only - time displayed in 24 hour
format

KDTime24Hour%

For example, 03:45 represents an absolute time while 3 hours 45 minutes represents
a duration. Absolute times always display am or pm as appropriate, unless 24 hour clock is
specified. Duration’s never display am or pm. Note, however, that if you use the type%
KDTimeNoHours% then the am/pm symbol will be displayed and the type%
KDTimeDuration% must be ORed in if you wish to hide it.

See also dDATE.

dBUTTONS S3, S3a/c, Siena, S5, WA
dBUTTONS prompt1$,keycode1%
dBUTTONS prompt1$,keycode1%,prompt2$,keycode2%
dBUTTONS prompt1$,keycode1%,prompt2$,keycode2%,prompt3$,keycode3%

Define exit keys to go at the bottom of a dialog.

One, two or three exit keys may be defined. Each pair of prompt$ and keycode% specifies
an exit key; prompt$ being the text to be displayed above it, while keycode% is the key
code of the key.

OPL32 allows more than 3 buttons; they are added in the same way, using more prompt /
key code pairs.

The DIALOG function returns the key code of the key pressed (in lower case for letters).

For alphabetic keys, use the % sign: %A means the code of "A"', and so on. The shortcut key
is then Ctrl+alphabetic key on the Series 5. If you use the code for keys such as Tab or
Enter, its name (e.g. 'Tab', or 'Enter') will be shown in the picture of the key.

OPL Reference 9-143

 In OPL32, the following effects may be obtained by adding the appropriate constants to
the shortcut key key-code:

constant effect OPL32 identifier
256 display a button with no shortcut key label

underneath it
KDButtonNoLabel%

512 use the key alone (without the Ctrl
modification) as the shortcut key

KDButtonPlainKey%

If you use a negative value for a keycode% argument, that key is a 'Cancel' key. The
corresponding positive value is used for the key to display and the value for DIALOG to
return, but if you do press this key to exit, the var variables used in commands like
dEDIT, dTIME, etc. will not be set. For OPL32, when using a negative shortcut to specify
the cancel button, you must negate the shortcut together with any added flags.

The Esc key will always cancel a dialog box, with DIALOG returning 0. If you want to
show the Esc key as one of the exit keys, use -27 as the keycode% argument (its key code
is 27) so that the var variables will not be set if Esc is pressed.

In OPL16 there can be only one dBUTTONS item per dialog, and it takes up three lines on
the screen. The dBUTTONS item must be the last dialog command you use before DIALOG
itself.

In OPL32 the buttons take up two lines on the screen. The dBUTTONS item may be used
anywhere between dINIT and DIALOG; where it is used will not affect the position of the
buttons in the dialog.

Some key presses, such as those using the Control key on SIBO, cannot be specified.

This example presents a simple query, returning TRUE for Yes, or FALSE for No.

PROC query:
 dINIT
 dTEXT "","FORGET CHANGES",2
 dTEXT "","Sure?",$202
 dBUTTONS "No",%N,"Yes",%Y
 RETURN DIALOG=%y
ENDP

See also ALERT.

dCHECKBOX S5
dCHECKBOX chk%,prompt$

Creates a dialog checkbox entry with two states i.e. the tick is either on or off. The state of
the checkbox is maintained across calls to the dialog. Initially you should set the live
variable chk% to 0 to set the tick symbol off and to any other value to set it on. chk% is
then automatically set to 0 if the box is unchecked or -1 if it is checked when the dialog is
closed.

See also dINIT.

9-144 OPL Reference

DIALOG S3, S3a/c, Siena, S5, WA
n% = DIALOG

Present the dialog prepared by dINIT and commands such as dTEXT and dCHOICE.

If the user completes the dialog by pressing Enter, the settings are stored in the variables
specified in dTEXT, dCHOICE, etc., although the developer can prevent this with
dBUTTONS.

If dBUTTONS was used when preparing the dialog, the key code that ended the dialog is
returned. Otherwise, DIALOG returns the line number of the item that was current when
Enter was pressed. The top item (or the title line, if present), has line number 1.

If the user cancels the dialog by pressing Esc, the variables are not changed, and 0 is
returned (OPL32 constant KDlgCancel%).

ALERT S3, S3a/c, Siena, S5, WA
ret% = ALERT(msg1$)
ret% = ALERT(msg1$,msg2$)
ret% = ALERT(msg1$,msg2$,caption1$)
ret% = ALERT(msg1$,msg2$,caption1$,caption2$)
ret% = ALERT(msg1$,msg2$,caption1$,caption2$,caption3$)

Present an alert, (a simple dialog), with the messages and key captions specified, and wait
for a response. The message to be displayed on the first line is msg1%. The message to be
displayed on the second line is msg2%. If this is not supplied or is a null string then the
second message line is left blank. Up to three keys may be used out of Esc, Enter and
Space:

• Esc only
• Esc and Enter
• Esc, Enter and Space

The strings to be displayed on screen over the key legends are:

caption1$ Esc
caption2$ Enter
caption3$ Space

If no key captions are supplied then the word CONTINUE is used above an Esc key legend.
The key return values are:

key press return value OPL32 identifier
Esc 1 KAlertEsc%

Enter 2 KAlertEnter%

Space 3 KAlertSpace%

See also BUSY, dBUTTONS and GIPRINT.

OPL Reference 9-145

Screen messages
BUSY Display busy message in a screen corner
GIPRINT Display general information text for ~2 seconds in a screen corner

BUSY S3, S3a/c, Siena, S5, WA
BUSY message$
BUSY message$,c%
BUSY message$,c%,delay%
BUSY OFF

Display or cancel a 'Busy' message in a corner of the screen.
This is used to indicate to the user periods when an OPL program is going to be
temporarily unresponsive to key presses. To display a message in the bottom left of the
screen use BUSY message$. To cancel the message use BUSY OFF.
The string to display, message$, may be up to 19 characters long, 80 in OPL32
(KBusyMaxText% = 80). Only one message can be displayed at a time.
If c% is given, it controls the corner in which the message appears:

c% corner OPL32 constant
0 top left KBusyTopLeft%
1 bottom left KbusyBottomLeft%
2 top right KBusyTopRight%
3 bottom right (default) KBusyBottomRight%

A delay time (in half seconds) before the message is displayed, can be specified using
delay%. This may be used to prevent 'Busy' messages from continually appearing very
briefly on the screen.
See also GIPRINT.

GIPRINT S3, S3a/c, Siena, S5, WA, HC
GIPRINT string$
GIPRINT string$,c%

Display an general information message (string$) for about two seconds, in the bottom
right (or other specified) corner of the screen. For example:

GIPRINT "Not found"
displays:

Not found

The string specified (string$) can be up to 64 characters. If a string is too long for the
screen, it will be clipped. Only one message can be shown at a time. The message can be

9-146 OPL Reference

cleared - for example, when a key is pressed - with GIPRINT "". GIPRINT is not
affected by the text mode set using gTMODE.

If c% is given, it controls the corner in which the message appears:

c% corner OPL32 constant
0 top left KbusyTopLeft%
1 bottom left KbusyBottomLeft%
2 top right KbusyTopRight%
3 bottom right (default) KbusyBottomRight%

See also BUSY, ALERT.

OPL applications (OPAs)
APP, OPL16 Start an OPA definition; code that follows defines an OPA
APP, OPL32 Start an OPA definition; code that follows defines an OPA
CAPTION Define the name of an application for specific languages OPL32
TYPE Define OPA type OPL16 only
FLAGS Define a file or non file based application, OPL32 only
PATH Define directory for files created/used by an OPA OPL16 only
EXT Define filename extension for files created/used by an OPA OPL16

only
ICON Define name of bitmap file containing the icon for an OPA
ENDA End an OPA definition; code that precedes defines an OPA
CMD$ Get command-line information, usually on start up
GETCMD$ Return new command line arguments to a running OPA
SETNAME Set a program's name and update system screen file list, OPL16 only
SETDOC Set a file as a document and update system screen task list, OPL32

only
GETDOC$ Returns the name of the current application document, OPL32 only
LOCK Lock/unlock an OPA

APP, OPL16 S3, S3a/c, Siena, WA
APP name

Begins the definition of an OPL16 application or OPA.
The public name of the OPA, as used by the system screen, is given by name. This is not
the file name. Note also that it does not have surrounding quote marks.
The APP command must be used in conjunction with ENDA:

APP name
...
ENDA

OPL Reference 9-147

The APP line may be followed by any or all of the keywords PATH, EXT, ICON and TYPE

See also the entry for the CMD$ function, for the use of CMD$(5) to return an OPA's public
name.

APP, OPL32 S5
APP pname,uid&

Begins the definition of an OPL32 application (OPA).
The public name of the OPA, as used by the system screen, is given by pname. Note that
the pname string does not have surrounding quote marks and may be up to 250 characters.
The name supplied in pname is the applications’ name in its default language – see the
OPL32 keyword CAPTION for other languages.
The APP command must be used in conjunction with ENDA for example:

APP pname,uid&
...
ENDA

uid& is the application’s unique identifier or UID. For distributed applications, official
reserved UIDs must be used. These can be obtained by contacting Psion Software PLC –
see the 'Series 5' chapter for details.

The APP line may be followed by the keywords ICON and FLAGS. The arguments to any
of the keywords between APP and ENDA must be constants and not expressions. All
information included in the APP…ENDA structure will be used to generate an AIF file that
specifies the applications caption (possibly in various languages), its icons for use on the
System screen and its setting of FLAGS.

See CAPTION, ICON, FLAGS.

CAPTION S5
CAPTION pname$,language%

Specifies an OPA’s public name (or caption) for a particular language, which will appear
below its icon on the Extras bar and in the list of ‘Programs’ in the ‘New File’ dialog
(assuming the setting of FLAGS allows these) when the language is that used by the
machine. CAPTION statements may only be used inside an APP...ENDA construct.

The language code specifies the language variant of each pname$, so that the application
name need not be changed when used on a different language machine. If used, CAPTION
causes the default name given in the APP declaration to be discarded. Therefore CAPTION
statements must be supplied for every language variant, including the language of the
machine on which the application is originally developed. The maximum length of
pname$ is 255 characters. However, a name longer than about 8 characters will not fit
neatly below the application’s icon on the Extras bar.

See APP.

9-148 OPL Reference

TYPE S3, S3a/c, Siena, WA
TYPE opatype%

Set the type of an OPA – OPL16 only.

The type can be from 0 to 4, and this is defined by the value of opatype%. The opatype%
parameter must be a constant, as the translator cannot evaluate variables or expressions.

On the Series 3a/c, Siena or Workabout opatype% should be set to a value from $1000 to
$1004, to set the type to 0 to 4 respectively. The $1000 allows a 48x48 black and grey icon
to be used. OPA types are discussed in the ‘Processes, Memory and Applications’ chapter.

This can only be used between APP and ENDA.

OPL32 / Series 5 users – see Flags.

FLAGS S5
FLAGS flags%

Replaces TYPE used on SIBO systems. Constants for these flags are supplied in
CONST.OPH; possible values for flags% are:

flags% = 1 for applications that can create files. Your application will then be included in
the list of applications offered when the user creates a new file from the System screen.

flags% = 2 to prevent the application from appearing in the Extras bar. It is not usual to
set flags% to this value.

This can only be used between APP and ENDA on Series 5.

PATH S3, S3a/c, Siena, WA
PATH dir$

Give the directory for the System Screen to use when listing files used by an OPA –
OPL16 only.
If you do not use this, the normal \OPD directory will be used. The maximum length,
including a final \, is 19 characters. Don't include a node name or drive name in this path.
This command can only be used between APP and ENDA.

EXT S3, S3a/c, Siena, WA
EXT name$

Define the file extension of files to be used by an OPA – OPL16 only.
This can only be used between APP and ENDA when defining an OPA. If you do not
specify this, .ODB is used. Note that the files used by an OPA do not have to be data files,
as the I/O commands give access to files of all kinds.

OPL Reference 9-149

ICON S3, S3a/c, Siena, S5, WA, HC
ICON name$

Give the name of the bitmap file to use as the icon for an OPA.
This can only be used between APP and ENDA. For SIBO systems see the ‘OPL16
Techniques’ chapter for more details.
On the Series 5, name$ is a multi-bitmap file (.MBM) that contains up to three
bitmap/mask pairs – see the ‘OPL32 Techniques’ chapter for more details.

ENDA S3, S3a/c, Siena, S5, WA, HC
ENDA

End of an OPA clause – see APP above.

CMD$ S3, S3a/c, Siena, S5, WA, HC
command$ = CMD$(x%)

Return the command-line arguments passed when starting a program.

Null strings may be returned. The x% parameter should be from 1 to 3, plus 4 and 5 on
SIBO systems. The arguments CMD$(2) and CMD$(5) are only for OPAs (OPL
applications).

The argument returned by CMD$(1), is the full path name used to start the running
program. This will usually be the full path name of the image file used to run the OPL
process - rom::exopl.img. The second argument, returned by CMD$(2), is the full path
name of the file to be used by an OPA.

The third argument, returned by CMD$(3), may be 'C' for "Create file" or 'O' for "Open
file". If the OPA is being run with a new filename, this will be 'C'. This happens when the
OPA is run for the first time and whenever a new filename is used to run it. Otherwise the
OPA is being run with the name of an existing file, and CMD$(3) will return 'O'.

On Series 5 ‘R’ is returned if the application has been run from the Program editor or has
been selected via the ‘Extras bar’, and not by the selection or creation of one the
applications’ documents from the system screen. If the CMD$(3)=’R’, a default filename,
including path, is passed in CMD$(2).

On SIBO the fourth argument, returned by CMD$(4), is the alias information, if any. In
practice this has no relevance to OPAs. The fifth argument (SIBO only), returned by
CMD$(5), is the application name, as declared with the APP keyword.

See also the GETCMD$ function.

9-150 OPL Reference

GETCMD$ S3, S3a/c, Siena, S5, WA
arg$ = GETCMD$

Returns new command-line arguments to a running OPA, after a “change files” or “shut
down” event have occurred.
The first character has the following meaning:
"C" close down the current file, and create the specified new file.
"O" close down the current file, and open the specified existing file.
"X" close down the current file (if any) and quit the OPA.
"U" Letter unknown – Series 5 only.

If it is "C" or "O", the rest of the string is a filename. You can only call GETCMD$ once for
each system message.

See also CMD$, GETEVENT, TESTEVENT.

SETNAME S3, S3a/c, Siena, WA
SETNAME opaname$

Set the name of the running OPA to opaname$ and redraw any status window, using that
name below the icon. Used to update the system screen file lists with the current file in use
by the application.

For OPL32 see SETDOC.

See also CMD$, GETCMD$, GETEVENT.

SETDOC S5
SETDOC file$

Sets the file file$ to be a document. This command should be called immediately before
the creation of file$ if it is to be recognised as a document. SETDOC may be used with the
commands CREATE, gSAVEBIT and IOOPEN.

The string passed to SETDOC must be identical to the name passed to the following CREATE
or gSAVEBIT otherwise a non-document file will be created - see note below.

Example of document creation:
SETDOC “myfile”
CREATE “myfile”,a,a$,b$

SETDOC should also be called after successfully opening a document to allow the System
screen to display the correct document name in its task list.

OPL Reference 9-151

In case of failure in creating or opening the required file, you should take the following
action:

• Creating - try to re-open the last file and if this fails display an appropriate error dialog
and exit. On reopening, call SETDOC back to the original file so the Task list is correct.

• Opening - as for creating, but calling SETDOC again is not strictly required.

Database documents, created using CREATE, and multi-bitmap documents, created using
gSAVEBIT, will automatically contain your application UID in the file header. For binary
and text file documents created using IOOPEN and LOPEN, it is the programmer’s
responsibility to save the appropriate header in the file. See the ‘OPL32 Techniques’
chapter for details.

Note:
To ensure the application's UID is incorporated into the document header, you are
strongly advised to use the PARSE$ function on the file name before using it with the
SETDOC and subsequent CREATE commands.

GETDOC$ S5
doc$=GETDOC$

Returns the name of the current application document.

See also SETDOC.

LOCK S3, S3a/c, Siena, S5, WA
LOCK ON
LOCK OFF

Mark an OPA or OPO program as locked or unlocked.
When an OPA is locked with LOCK ON, the System screen will not send it events to
change files or shut down. For example on a S3, if you move to the file list in the System
screen and press Delete to try to stop that running OPA, a message appears, indicating that
the OPA cannot close down. On a S5, if you move to the task list or the document name in
the system screen try to stop the OPA by using the ‘Close file’ button or Ctrl+E
respectively, a message appears indicating that the program is busy.
You should use LOCK ON if your OPA uses a command that waits for a user response - e.g.
EDIT, DIALOG, GET, or ALERT. When one of these commands is waiting, the OPA can't
respond to System Screen messages, so use LOCK ON to make sure you don't get any. You
might also use it when the OPA is about to go busy for a considerable length of time, or at
any other point where a clean exit is not possible. Use LOCK OFF as soon as possible
afterwards.
Don't use LOCK ON before a call to GETEVENT.
'Foreground', 'Background' and 'Machine on' events may still occur while the OPA is
accessing the keyboard, and will be discarded.
An OPA or OPO program is initially unlocked.

9-152 OPL Reference

Event handling
TESTEVENT Test whether an event has occurred
GETEVENT Wait until an event occurs and return event information
GETEVENT32 Wait until an event occurs and return event information – OPL32

only
GETEVENTA32 Asynchronous version of GETEVENT32 – OPL32 only
GETEVENTC Cancel previous call to GETEVENTA32 – OPL32 only
POINTERFILTER Selectively filters pointer type events

Important note:
When programming in OPL32 you should always use GETEVENT32 rather than using
GETEVENT. All events are sensed by GETEVENT, but it cannot supply the pointer event
information and is supported on Series 5 only for backward compatibility.

Date change events are not detected by the Series 5.

TESTEVENT S3, S3a/c, Siena, S5, WA, HC
t% = TESTEVENT

Test whether an event has occurred. Returns -1 (true) if an event has occurred, otherwise
returns 0 (false).

Note:
Use TESTEVENT with caution; for example, placing it inside loops can prevent a machine
from switching off, and may lead to very high power consumption. Events are detected but
not read by TESTEVENT - use functions such as GETEVENT or GETEVENT32 to read them.

GETEVENT S3, S3a/c, Siena, S5, WA, HC
GETEVENT var ev%()

Waits for an event to occur. Returns with ev%() specifying the event.

The array ev%() (or string of integers) must be at least 6 integers long. Although only two
elements of ev%() are currently used, the other four are reserved for future expansion.

The GETEVENT command passes control to the operating system, which waits for an event
to occur. When it gets one, it puts the details into ev%() and returns control to the
application. The data returned in ev%() depends on the type of event that occurred.

There are two classes of events: keypress events and system events. On a keypress event,
ev%(1) contains the key code. Modifier keys and auto-repeat count are returned in
ev%(2). On a system event (foreground, background, switch-on, change files, exit, or date
change), ev%(1) contains a code specifying the event.

If the event is a keypress, the expression:

(ev%(1) AND $400)

OPL Reference 9-153

is guaranteed to be zero. For any other events this expression is guaranteed to be non-zero.

If a key has been pressed, the values in ev%() are:
 ev%(1) key code (as for GET)
 ev%(2) AND $00ff modifier (as for KMOD)
 ev%(2)/256 auto-repeat count (ignored by GET)

You can't use KMOD after GETEVENT to find out what the keypress modifiers were, because
GETEVENT returns the modifier in the array passed to it and doesn't store the value for later
retrieval using KMOD.

The table below gives the actual value of array item ev%(1) after a system event.

event description value in
ev%(1)

Application has moved to foreground $401
Application has moved to background $402
The Psion has switched on $403
If a Series 3, 3a/c, Siena or Workabout wants an OPA to change files
or exit (use GETCMD$ to determine which)

$404

Date has changed, Series 3a/c, Siena or Workabout, not Series 5 $405

Future versions of OPL may add other event numbers, so you should not raise an error if
the event number is not one of the currently known ones, but should ignore that unknown
type of event.

Note:
If a non-key event such as 'foreground' occurs while a keyboard keyword such as GET,
GET$, EDIT, INPUT, MENU or DIALOG is being used, the event is discarded. So GETEVENT
must be used exclusively if both key and non-key events need to be monitored. If you need
to use the above keywords in OPAs, use LOCK ON / LOCK OFF around them. See the
LOCK command for more details.

See also TESTEVENT, GETEVENT32, GETCMD$.

GETEVENT32 S5
GETEVENT32 var ev&()

Waits for and returns all event types, including pointer (pen) events.

Returns with ev&() specifying the event, ev&() must have at least 16 elements. All events
return a 32-bit time-stamp. GETEVENT32 returns more information than GETEVENT, as
listed below:

If a key has been pressed: (ev&(1) AND &400)=0
 ev&(1) key code

ev&(2) time stamp
ev&(3) scan code
ev&(4) modifier e.g. Shift, see below
ev&(5) repeat

9-154 OPL Reference

Unlike the key repeat for GETEVENT, the repeat for GETEVENT32 is strictly that, i.e. if there
is only one keypress, then the repeat value in ev&(5) = 0.

For all the other event types, ev&(1) is greater than &400:

event description ev&(1) ev&(2)

Application to foreground $401 time stamp
Application to background $402 time stamp
Psion has switched on $403 time stamp
Application to change files or exit $404 time stamp
Date changed – not available in Series 5 $405

By default the machine switch on event is not enabled, the appropriate flag should be set
to enable it - see SETFLAGS. If the change files / exit event is received, GETCMD$ should
be called to find out what action should be taken.

If a key is pressed down: ev&(1)=&406
 ev&(2) time stamp
 ev&(3) scan code
 ev&(4) modifiers e.g. Shift, see below

If a key is released: ev&(1)=&407
 ev&(2) time stamp
 ev&(3) scan code
 ev&(4) modifiers e.g. Shift, see below

If a pen event occurs: ev&(1)=&408
 ev&(2) time-stamp
 ev&(3) window ID, as returned by the gCREATE keyword.
 ev&(4) pointer type, 0 = pen down, 1 = pen up, 6 = pen drag
 ev&(5) modifiers e.g. Shift, see below
 ev&(6) x-co-ordinate
 ev&(7) y-co-ordinate
 ev&(8) x-co-ordinate relative to parent window
 ev&(9) y-co-ordinate relative to parent window

If a pen enters contact with the screen: ev&(1)=&409
 ev&(2) time stamp
 ev&(3) window ID

If a pen exits contact with the screen: ev&(1)=&40A
 ev&(2) time stamp
 ev&(3) window ID

Modifiers, in ev&(4) for key presses and in ev&(5) for pointer (pen) events, have values
as follows:

modifier value OPL32 constant
Shift 2 KkmodShift%

Control 4 KKmodControl%

Caps 16 KKmodCaps%

Fn 32 KKmodFn%

OPL Reference 9-155

Each even type has an OPL32 constant that may be used to make your code more readable,
their names are as follows.

OPL32 event type constant value
KEvNotKeyMask& &400
KEvFocusGained& &401
KEvFocusLost& &402
KEvSwitchOn& &403
KEvCommand& &404
KEvDateChanged& &405
KEvKeyDown& &406
KEvKeyUp& &407
KEvPtr& &408
KEvPtrEnter& &409
KEvPtrExit& &40A

Notes:
Some events; such as pointer events, pointer enters and pointer exits, can be filtered out to
avoid being swamped by unwanted event types. See POINTERFILTER.

For other unknown events, ev&(1) contains &1400 added to the code returned by the
window server. ev&(2) is the timestamp and ev&(3)is the window ID, and the rest of the
data returned by the window server is put into ev&(4), ev&(5), etc.

If a non-key event such as 'foreground' occurs while an entry keyword such as GET, GET$,
EDIT, INPUT, MENU or DIALOG is being used, the event is discarded. So GETEVENT32 must
be used exclusively if both key and non-key events need to be monitored. If you need to
use the above keywords in OPAs, use LOCK ON/OFF around them so that the System
screen won’t send messages to switch files or shutdown while the application cannot
respond. See the LOCK command for more details.

See also GETEVENT, GETEVENTA32, GETCMD$.

GETEVENTA32 S5
GETEVENTA32 var status%,var ev&()

Asynchronous version of GETEVENT32, returns the same information to the array ev&()
as GETEVENT32. See GETEVENTC, GETEVENT32, GETEVENT. See also the ‘I/O System’
chapter for details of asynchronous I/O functions.

GETEVENTC S5
GETEVENTC(var stat%)

Cancels a previous call to the GETEVENTA32 function, with status stat%. Note that
GETEVENTC consumes the signal (unlike IOCANCEL), so IOWAITSTAT should not be used
after GETEVENTC.

9-156 OPL Reference

POINTERFILTER S5
POINTERFILTER filter%,mask%

Allow filtering of pointer events in the current window.

Some events; such as pointer events, pointer screen enter and pointer screen exit, can be
filtered in or out to avoid being swamped by unwanted event types. By default pointer
events are not filtered out. Add the following values together to achieve the desired
filter% and mask%:

pointer event value
none 0
enter/exit 1
drag 4

The bits set in filter% specify the settings to be used, 1 to filter out the event and 0 to
remove the filter. Only those bits set in mask% will be used for filtering. This allows the
current setting of a particular bit to be left unchanged if that bit is zero in the mask. (i.e.
mask% dictates what to change and filter% specifies the setting to which it should be
changed). For example,
mask%=5 REM =1+4 - allows enter/exit and drag settings to be changed
POINTERFILTER 1,mask% REM filters out enter/exit, but not dragging
...
POINTERFILTER 4,mask% REM filters out drag and reinstates enter/exit

See also GETEVENT32, GETEVENTA32.

Status windows
STATUSWIN Display / hide status window
STATWININFO Get status window information
SETNAME Set a program's name and update system screen file list, OPL16
DIAMINIT Initialise a 'diamond' list and redraw the status window
DIAMPOS Position 'diamond' symbol on a 'diamond' list

Note:
The OPL16 status window keywords are no longer supported in OPL32, status windows
have been replaced by toolbars via a toolbar .OPO support module in ROM – see the
‘OPL32 Techniques’ chapter for details. Diamond lists are not supported under OPL32.

STATUSWIN S3, S3a/c, Siena, WA
STATUSWIN ON
STATUSWIN ON,swtype%
STATUSWIN OFF

Display or remove a 'permanent' Status window.

OPL Reference 9-157

If swtype%=1 the small Status window is shown. If swtype%=2 the large Status window
is shown. The STATUSWIN ON instruction on its own displays an appropriate Status
window; on the Series 3a/c models and Workabout this will always be the large Status
window. The type% argument cannot be used on machines below the Series 3a. Only one
type of Status window is available on the Siena. The STATUSWIN OFF command removes
the Status window.
The permanent status window is behind all other OPL windows. In order to see it, you
must use FONT, or both SCREEN and gSETWIN, to reduce the size of the text and graphics
windows. When creating windows in your program, make sure you don't accidentally
obscure any Status window present.
Note:
The standard key combination for invoking a permanent Status window is Ctrl-Menu. This
cycles through the available types (e.g. large, small, none on the Series 3a/c). A temporary
Status window is displayed for a few seconds by pressing Psion-Menu.
See also STATWININFO.

STATWININFO S3a/c, Siena, WA
t% = STATWININFO(type%, var xy%())

Gets information about the Status window.
Sets xy%(1), xy%(2), xy%(3) and xy%(4) to the top left x, top left y, width and height
respectively of the specified type of status window. There are the following four possible
values of type% for the status window:

 type% description
 1 the Series 3a style small status window
 2 the Series 3a style large status window
 3 the Series 3 compatibility mode status window
-1 whichever type of status window is current

The STATWININFO function returns t%, the type of the current status window (with values
as for type%, or zero if there is no current status window). If type%=-1 is used to get
information about the current status window and there is none enabled, STATWININFO
returns consistent information in xy%() corresponding to a status window of width zero
and full screen height positioned one pixel to the right of the physical screen.

See also STATUSWIN.

SETNAME S3, S3a/c, Siena, WA
SETNAME opaname$

Set the name of the running OPA to opaname$ and redraw any status window, using that
name below the icon. Used to update the system screen file lists with the current file in use
by the application. See SETDOC for OPL32.

See also CMD$, GETCMD$, GETEVENT.

9-158 OPL Reference

DIAMINIT S3a/c, Siena
DIAMINIT pos%,string1$,string2$...

Initialises the Diamond list (discarding any existing list).

The strings string1$, string2$, etc. contain the text to be displayed in the status
window for each item in the list. The pos% parameter specifies the initial item against
which the Diamond indicator (♦) should be positioned, with pos%=1 specifying the first
item. (Any value greater than the number of strings specifies the final item.) If pos%>=1
you must supply at least this many strings. If pos% is not supplied or if pos%=0, or if
DIAMINIT is used on its own with no arguments, no bar is defined.

If pos%=-1 the list is replaced by the icon instead in the large status window.

See also DIAMPOS.

DIAMPOS S3a/c, Siena
DIAMPOS pos%

Positions the Diamond indicator (♦) on the Diamond list.

Positioning outside the range of the items wraps around in the appropriate way. The
parameter value pos%=0 causes the Diamond symbol to disappear.

See also DIAMINIT.

OPL Reference 9-159

I/O operations on files and devices
IOOPEN Open any type of file or device
IOREAD Read from a file or device opened with IOOPEN
IOWRITE Write to a file or device opened with IOOPEN
IOCLOSE Close a file opened with IOOPEN
IOSEEK Position within a file opened with IOOPEN
IOA Perform an asynchronous I/O operation
IOC Perform an asynchronous I/O operation with guaranteed completion
IOCANCEL Cancel an asynchronous I/O function
IOYIELD Allow I/O wait handlers to complete requests and update status words
IOWAIT Wait for completion of any asynchronous operation by IOA or IOC
IOWAITSTAT Wait for completion of a specific asynchronous operation by IOA or IOC
IOWAITSTAT32 Wait for completion of a specific asynchronous operation by IOA or IOC

OPL32 only
IOSIGNAL Signal completion of an I/O operation
IOW Perform a synchronous I/O operation
KEYA Perform an asynchronous keyboard read
KEYC Cancel a KEYA

Notes:
The concepts behind the use of the I/O functions and commands are covered in the ‘I/O
System’ chapter and the ‘Files in EPOC16’ chapter.

In OPL32, the I/O keywords provide the same access to files as in OPL16, but only the
SIBO device drivers “TIM:”, “TTY:A”, “CON:” and “FIL:” are emulated. A handle of -1
for the LOPENed device or -2 for “CON:” can be used as in OPL16.

In OPL32 IOYIELD must always be called before polling status words, i.e. before reading
a 16-bit status word, if IOWAIT or IOWAITSTAT have not been used first. This is because
OPL32 needs to set the 16-bit status word based on the value of the actual EPOC32 32-bit
status word.

IOOPEN S3, S3a/c, Siena, S5, WA, HC
r% = IOOPEN(var h%,name$,mode%)

Create or open a file, or open an I/O device driver called name$.

Returns the handle of the file or device in h%, for use by subsequent I/O function calls.
mode% specifies how to open the file.

For creation of a file with a unique name, use IOOPEN(var h%,address%,mode%)
where address% is the address of a string, specifying only the path of the file to be
created. The string must be at least 130 characters long, to take the unique full file name
specification. Typically used to create a temporary file that will later be renamed or
deleted.

9-160 OPL Reference

The mode in which the file is to be opened is specified by mode%, formed by ORing
together values which fall into the three following categories: Open mode, file format and
access flags.

Open mode – select one value only
$0000 Open an existing file (or device). The initial current position is set to the

start of the file.
$0001 Create a file (which must not already exist).
$0002 Replace a file (truncate it to zero length) or create it if it does not exist.
$0003 Open an existing file for appending. The initial current position is set to

the end of the file. For text format files (see $0020 below) this is the only
way to position to end of file.

$0004 Creates a file with a unique name. For this case, you must use addr%, the
address of a string at least 130 characters long, (the maximum file
specification), instead of name$. This string specifies only the path of the
file to be created (any filename in the string is ignored). IOOPEN then sets
the string to the unique filename generated (including the full path).

File format – select one value only
$0000 Binary. Up to 16K can be read from or written to the file in a single

operation.
$0020 Text. Lines are terminated by any combination of the CR and LF ($0D,

$0A) characters. The maximum record length is 256 bytes and Ctrl-Z
($1A) marks the end of the file.

Access flags – select any combination of one values
$0100 Update flag - Allows the file to be written to as well as read. If not set,

the file is opened for reading only. You must use this flag when creating
or replacing a file.

$0200 Random access flag – the file is opened for random access (not
sequential access), using the IOSEEK function.

$0400 Share flag - the file can still be opened by any process. If not specified,
the file is locked and cannot be opened again by any process until either
the owning process exits, or the file is closed with IOCLOSE. If the file is
opened for writing ($0100 above), this flag is ignored, since sharing is
then not feasible.

See also IOCLOSE.

Problems with IOOPEN (S3, HC)
On error, IOOPEN writes the error code into the handle variable as well as returning the
error code. This is not a problem when opening files, it only causes problems with attached
device drivers. A workaround is provided in the Psion SIBO OPL SDK.

OPL Reference 9-161

IOREAD S3, S3a/c, Siena, S5, WA, HC
r% = IOREAD(h%,addr%,maxLen%)
r% = IOREAD(h%,addr&,length%) - in OPL32

Read from the file with the handle h%.

The addr% argument is the address of a buffer large enough to hold a maximum of
maxLen% bytes. The buffer could be an array or even a single integer as required. No more
than 16K bytes can be read at a time. If the value returned to r% is negative it is an error
value, otherwise it is the actual number of bytes read.

For text files

If maxLen% exceeds the current record length, data only up to the end of the record is read
into the buffer; no error is returned and the file position is set to the next record.

If a record is longer than maxLen%, the error value 'Record too large' (-43) is returned. In
this case the data read is valid but is truncated to length maxLen%, and the file position is
set to the next record.

A string array buffer$(255) can be used for the buffer. Pass the address
UADD(ADDR(buffer$),1) to IOREAD. You can then POKEB the first byte of the string
with the length (returned to r%) so that the string conforms to normal OPL string format.
In this case, maxLen% should be 255 because the record length can be 256. If a 'Record too
large' error is returned, you must read the extra byte separately. (Often you will know that
the record length in your file will be not be greater than 255, in which case you don't need
to check for this error).

For binary files

If you request more bytes than are left in the file, the number of bytes actually read (even
zero) will be less than the number requested.

So if r%<maxLen%, end of file has been reached. No error is returned by IOREAD in this
case, but the next IOREAD would return the error value 'End of file' (-36).

IOWRITE S3, S3a/c, Siena, S5, WA, HC
r% = IOWRITE(h%,addr%,length%)
r% = IOWRITE(h%,addr&,length%) in OPL32

Write length% bytes from a buffer at addr% to the file or device driver with the handle
h%.

When a file is opened as a binary file, the data written by IOWRITE overwrites data at the
current position. When a file is opened as a text file, IOWRITE writes a single record. The
closing CR/LF is automatically added.

9-162 OPL Reference

IOCLOSE S3, S3a/c, Siena, S5, WA, HC
r% = IOCLOSE(h%)

Close the file or device driver with the handle h%. Returns zero if successful, otherwise an
error code is returned.

See also IOOPEN.

IOSEEK S3, S3a/c, Siena, S5, WA, HC
r% = IOSEEK(h%,mode%,var offset&)

Seek to a position in the file with handle h% that has been opened for random access. The
mode% argument specifies how offset& is to be used. The offset& parameter may be
positive to move forwards or negative to move backwards. The values you can use for
mode% are:

mode% effect
1 Set position in a binary file to the absolute value specified in offset&, with

0 for the first byte in the file.
2 Set position in a binary file to offset& bytes from the end of the file.
3 Set position in a binary file to offset& bytes relative to the current position.
6 Rewind a text file to the first record. offset& is ignored, but you must still

pass it as a argument, for compatibility with the other cases.

IOSEEK sets the variable offset& to the absolute position set.

Note:
If you are using # to pass the value of the offset rather than have OPL use its address:

In OPL16 you would call IOSEEK using,
 r% = IOSEEK(h%,mode%,#offset%)

In OPL32 you should use,

 r% = IOSEEK(h%,mode%,#offset&)

i.e. pass the long integer #offset&.

See also IOOPEN

IOA S3, S3a/c, Siena, S5, WA, HC
r% = IOA(h%,func%,var status%,var arg1,var arg2)

Get the device driver opened with handle h% to perform the asynchronous I/O function
func% with the two further arguments, arg1 and arg2 as specified in the driver
documentation.
The argument status% is set by the device driver when the function completes or fails.

OPL Reference 9-163

The usual setting of status% will be -46, which means that the function is still pending.
When, at some later time, the function completes, status% is automatically changed. For
this reason, status% should usually be global - if the program is still running, status%
must be available when the request completes, or the program will probably crash.
If status%>=0, the function completed without error. If status%<0, the function
completed with error. The error number is specific to the device driver. At the same time, a
signal is sent to the running OPL program.
In most cases, you cannot perform another I/O read/write function to this device until you
first read the signal of this function's completion.
An IOWAIT or IOWAITSTAT must be performed for each IOA. If this is the only I/O device
with a function pending, wait for the signal with IOWAITSTAT status%. If you have other
functions pending on other devices, you must use IOWAIT and IOSIGNAL.

Alternatively, you can cancel the pending function with IOW(h%,4). The program will
still receive a signal, which should be read with IOWAITSTAT or IOWAIT.

If an OPL program is ready to exit, it does not have to wait for any signals from pending
IOA calls.

Note:
For S3a/c, Siena, S5 and WA, using IOC is more convenient than IOA.

IOC S3a/c, Siena, S5, WA
r% = IOC(h%,func%,var status%,var arg1,var arg2)

Make an I/O request with guaranteed completion. Gets the device driver opened with
handle h% to perform the asynchronous I/O function func% with the two further
arguments, arg1 and arg2 as specified in the driver documentation.
The IOC function allows you to assume that the request started successfully. Since the
return value is always zero it can be ignored. Any error is always given in the status word
status%. The argument status% is set by the device driver, when the function completes
or fails.
An IOWAIT or IOWAITSTAT must be performed for each IOC. If there was an error,
status% contains the error code and the next IOWAIT will return immediately as if the
error occurred after completion.
There is seldom a requirement to know whether an error occurred on starting a function,
and IOC should therefore be used in preference to IOA.

Problems with IOC (S3a, WA)
Calling this function with the wrong number of arguments, or arguments of the wrong
type, can cause serious problems in your OPL program.

9-164 OPL Reference

IOCANCEL S3a/c, Siena, S5, WA
r% = IOCANCEL(h%)

Cancel any outstanding asynchronous I/O requests (made with IOA or IOC) on the channel
specified by h%, causing them to complete. Zero is always returned, and can therefore be
ignored.
The completion status word contains -48 (meaning "I/O cancelled") after IOCANCEL has
been called.
Device drivers that support truly asynchronous services provide a cancel service. The
detailed effect of the cancel depends on the device driver. However, the following general
principles apply:

• The cancel precipitates the completion of the request (it does not stop the request
from completing).

• The cancel may or may not be effective (i.e. the request may complete naturally
before the cancel is processed; the status word will be set as for IOA/IOC).

• After a cancel, you must still process the completion of the asynchronous request
(typically by immediately calling IOWAITSTAT to "use up" the signal).

The IOCANCEL function is harmless if no request is outstanding (e.g. if the function
completed just before cancellation requested).

See also IOA, IOC.

IOYIELD S3, S3a/c, Siena, S5, WA, HC
IOYIELD

Ensure that any asynchronous I/O functions, queued using IOA or IOC, are given a chance
to run and their status words are updated.

The IOYIELD command is logically equivalent to:

IOSIGNAL :IOWAIT.

which returns immediately, but causes any asynchronous handlers to run.

Some devices are unable to perform an asynchronous request if an OPL program becomes
computationally intensive, using no I/O (screen, keyboard etc.) at all. In such cases, the
OPL program should use IOYIELD before checking the status% variables passed to IOC
or IOA.

IOWAIT S3, S3a/c, Siena, S5, WA, HC
IOWAIT

Wait for any asynchronous I/O function to signal completion.
If you've got an IOA or IOC request pending, use IOWAIT to await its completion.

OPL Reference 9-165

Signals are generated (and thus IOWAIT returns) when any pending I/O request finishes, so
you'll need to check whether this signal was meant for you or not.
To do this, look at the value of the status% variable you passed to IOA or IOC. If the
signal wasn't for you, you'll need to call IOWAIT again.
The best way to handle 'wrong numbers' or 'stray signals' is to have a loop, like this:

loop
 call IOWAIT
 check status%
 is the signal for me?
until the signal is for me

You must keep count of the 'wrong numbers' you receive, because IOWAIT intercepted
those signals before they ever got to their waiting processes. When you have got your
signal, you will need to generate a fresh signal with IOSIGNAL for each 'wrong number'
you received. If you don't do this, you will interfere with other processes' I/O.

If you have no other functions pending on different I/O handles, use IOWAITSTAT or
(IOWAITSTAT32) instead.

IOWAITSTAT S3, S3a/c, Siena, S5, WA, HC
IOWAITSTAT var status%

Wait for the specific asynchronous I/O function (called with IOA or IOC) with status word
status%, to signal completion.

IOWAITSTAT32 S5
IOWAITSTAT32 var status&

Similar to IOWAITSTAT but takes a 32-bit status word. IOWAITSTAT32 should be called
only when you need to wait for completion of a request made using a 32-bit status word
when calling an asynchronous OPX procedure. status& will be &80000001
(KStatusPending32&) while the function is still pending, and on completion will be set
to the appropriate EPOC32 error code. For a 16-bit status word the ‘pending value’ is -46
(KErrFilePending%).

IOSIGNAL S3, S3a/c, Siena, S5, WA, HC
IOSIGNAL

Signal an I/O function's completion.
See also IOWAIT.

9-166 OPL Reference

IOW S3, S3a/c, Siena, S5, WA, HC
r% = IOW(h%,func%,var arg1,var arg2)

Perform the synchronous I/O function func% using the device driver opened with handle
h%, the two further arguments, arg1 and arg2, are as specified for the particular device
driver.

KEYA S3, S3a/c, Siena, S5, WA, HC
error% = KEYA(var status%,var key%())

This is an asynchronous keyboard read function.

The array key%() must be declared with at least two elements.

When the function completes, key%(1) contains the character code of the key pressed.
The least significant byte of key%(2) takes the key modifier. The most significant byte of
key%(2) takes the count of keys pressed (0 or 1). Thus key%(2) AND $FF is the
modifier, using the same codes as KMOD (2 for Shift-, 4 for Control- and so on). If a key
was pressed key%(2)*256 is 1, or else 0.

The KMOD function cannot be used with KEYA.

The KEYA function needs an IOWAIT in the same way as IOA.

The KEYA function is included in OPL because the handle of the keyboard driver is
unknown to the casual programmer.

Note that

KEYA(status%,key%(1))

is almost equivalent to

IOA(-2,status%,key%(1),#0)

where -2 specifies the Console device driver (which handles the OPL keyboard). The only
difference is that any key pressed to exit from PAUSE (when called with a negative
argument) is used up by KEYA but not by the above IOA call.

Cancel with KEYC.

KEYC S3, S3a/c, Siena, S5, WA, HC
error% = KEYC(var status%)

Cancel the previously called KEYA function with status word status%.
After cancelling the request, IOWAITSTAT status% must still be called to consume the
signal.

OPL Reference 9-167

Note that
KEYC

is equivalent to
IOW(-2,FCANCEL,#0,#0)

where -2 specifies the Console device driver (which handles the OPL keyboard) and
FCANCEL = 4.

Object handling
NEWOBJ Create a new object by category number
NEWOBJH Create a new object by category handle
SEND Send a message to an object
ENTERSEND Send a message to an object, returning an error if method leaves
ENTERSEND0 Send a message to an object, returning 0 if method doesn't leave

Note:
These OPL16 functions are not supported in OPL32, access to the operating system
functions, and system related objects, is via OPL extensions called OPXs.

NEWOBJ S3a/c, Siena, WA
objhand% = NEWOBJ(objcatno%,objclass%)

Create a new object by category number objcatno% belonging to the class objclass%.
Returns the object handle on success, or zero if out of memory.
See also LOADLIB, FINDLIB, SEND, ENTERSEND, ENTERSEND0, NEWOBJH.

NEWOBJH S3a/c, Siena, WA
objhand% = NEWOBJH(objcath%,objclass%)

Create a new object by category handle objcath% belonging to the class objclass%.
Returns the object handle on success or zero if out of memory.
See also LOADLIB, FINDLIB, SEND, ENTERSEND, ENTERSEND0, NEWOBJ.

SEND S3a/c, Siena, WA
ret% = SEND(pobj%,method%,var p1,...)

Send a message to the object pobj% to call the method number method%, passing between
zero and three arguments (p1...) depending on the requirements of the method, and
returning the value returned by the selected method.
If the method requires a pointer to a variable, just pass the variable (not the address of it).

9-168 OPL Reference

If the method requires a value (not a pointer) then use the # prefix. For example, to pass
the value 3 as p1 use:

ret% = SEND(pobj%,method%,#3)

See also NEWOBJ, NEWOBJH, ENTERSEND, ENTERSEND0, LOADLIB, LINKLIB, FINDLIB,
UNLOADLIB.

Problems with SEND (S3a, WA)
Calling this function with the wrong number of arguments, or arguments of the wrong
type, can cause serious problems in your OPL program. The OPL translator cannot check
the number of arguments or the types required.

ENTERSEND S3a/c, Siena, WA
ret% = ENTERSEND(pobj%,method%,var p1,...)

Send a message to the object pobj% to call the method number method%, passing between
zero and three arguments (p1, p2, p3) depending on the requirements of the method.
This is the same as SEND except that, if the method leaves, the error code is returned to the
caller. Otherwise the value returned is as returned by the method.
If the method requires a pointer to a variable, just pass the variable (not the address of it).
If the method requires a value (not a pointer) then use the # prefix. For example, to pass
the value 3 as p1 use:

ret% = ENTERSEND(pobj%,method%,#3)

See also ENTERSEND0, SEND , NEWOBJ, NEWOBJH, LOADLIB, LINKLIB, FINDLIB,
UNLOADLIB.

Problems with ENTERSEND (S3a, WA)
Calling this function with the wrong number of arguments, or arguments of the wrong
type, can cause serious problems in your OPL program. The OPL translator cannot check
the number of arguments or the types required.

ENTERSEND0 S3a/c, Siena, WA
ret% = ENTERSEND0(pobj%,method%,var p1,...)

Send a message to the object pobj% to call the method number method%, passing between
zero and three arguments (p1, p2, p3) depending on the requirements of the method.
This is the same as ENTERSEND except that, if the method does not leave, zero is returned.
If the method requires a pointer to a variable, just pass the variable (not the address of it).
If the method requires a value (not a pointer) then use the # prefix.

OPL Reference 9-169

For example, to pass the value 3 as p1 use:
ret% = ENTERSEND0(pobj%,method%,#3)

See also ENTERSEND, SEND ,NEWOBJ, NEWOBJH, LOADLIB, LINKLIB, FINDLIB,
UNLOADLIB.

Problems with ENTERSEND0 (S3a, WA)
Calling this function with the wrong number of arguments, or arguments of the wrong
type, can cause serious problems in your OPL program. The OPL translator cannot check
the number of arguments or the types required.

9-170 OPL Reference

OPL16 Techniques 10-1

10 OPL16 Techniques

Introduction to PPCOPL16
The primary objective of this chapter is to describe the structure of a demonstration OPL
application (PPCOPL16.OPA) to illustrate a wide range of OPL16 programming
techniques. To gain maximum benefit from this chapter, it is best read whilst referring to
the source code of the PPCOPL16 application. I recommend loading the source files into
the program editor on a SIBO system and using the find function to assist in following the
program flow.

The full application and all necessary files are supplied on disk, including extensively
commented source code in OPL and C - see the directory named PPCOPL16.

Techniques covered
As will be evident when you install and run PPCOPL16, that the icon, much of the code
and some of the graphics objects used in PPCOPL16 originated during the development of
a Backgammon game for the Series 3a/c, Siena and Workabout. In the Backgammon
application, OPL was used to provide all elements of the user interface and file handling,
but C was used (via a DYL) for the game 'engine' to ensure the move calculations are done
very quickly. Because of the range of techniques used, the framework of the game was
chosen as an illustrative OPL application framework.

Taken as a whole this a comprehensive and somewhat complex example. However, taken
in stages, with frequent references to the commented source code, the reader should easily
be able to absorb most, if not all, of the techniques demonstrated. You may then
incorporate just the relevant routines into your own application. For example, the
application is not dependent on any code written in C. Use of the DYL can be easily
removed if it is not required. However, readers who are conversant with C, and have the
SIBO C SDK, may choose to extend or replace the DYL methods with their own.

10-2 OPL16 Techniques

OPL application (OPA)
• Type 2 i.e. file based - only one instance running and one file in use at a time
• Default file path located under the APP directory
• Default file extension of .EXT
• A 48x48 pixel icon with grey (3a onwards)

Event handling
• Key press events, including a wide range of special keys such as menu, diamond and

status windows.
• System messages, start command line and new command line information e.g. Create a

new file, switch files, shut down program.

Background to foreground program changes

Machine detection
• S3, S3a, S3c, Siena or Workabout
• Screen and graphics size adjustment based on screen resolution

Status window toggling and screen resizing

Menu handling
• Including dynamically changing menu items

Multi-lingual techniques
• Machine language detection
• Use of language specific resource files

Graphics techniques
• Use of grey and black planes
• Use of drawing modes to set, clear or invert pixels
• Drawing graphics objects directly
• Drawing graphics with bitmaps
• Creating, saving and loading bitmap files
• Animation

Sound
• Error beeps - toggling on or off
• Asynchronous digital sound playback

File handling
• Detection of the existence of files and directories
• Locating program file and drive origin
• Determination of the users default drive
• Getting and selecting file names
• Creation of files and directories as needed
• Data file handling for saving a restoring user program preferences and settings
• Use of simple dialogs for data entry

OPL16 Techniques 10-3

Miscellaneous techniques
• Use of EPOC16 operating system calls
• Calls to C functions via a DYL
• Help facilities - including multi-lingual help text
• Error trapping and handling
• Use of random numbers

Source files
If you wish to view or even modify the PPCOPL16 example application, it is best done
using ODE, and a suitable project file is supplied (it has a .MAK file name extension).
Alternatively the program can be translated using S3ATRAN.EXE. If you wish to use
PPCOPL16 on a SIBO system it will be necessary to substitute all of the information from
the 'include' files into the main source code files.

All of the OPL source code is contained in two files, PPCOPL16.OPL and
PPCMOD01.OPL, other identifier and constant information is 'included' from three header
files with .OPH extensions.

Virtually all language specific text for the user interface, including messages, menu titles,
menu items and accelerator keys, is located in the English language resource file i.e.
PPCOPL01.RSS - see the section on 'PPCOPL16 language text' below.

The C source code and related files for the DYL are in a PPCOPL16\\DYL subdirectory.
Note that the PPCOPL16.C file is an automatically generated source file, the main C
source files for the DYL are PPCOPL01.C, PPCOPL16.CAT and PPCOPL16.H. Two
other files are worthy of particular note: The TS.RED file tells the SIBO C SDK where
other files are located; it will have to be modified to reflect your system set up. A
MAKE.BAT file is provided (along with others) to handle building of the DYL from the
source files.

Important note:
It is most important that any C source code files associated with a DYL (or an OOP C
application) do not have the same name as the category file (i.e. the .CAT file). When the
project is built, a source code file is automatically generated with the same name as the
.CAT file but with a .C extension. For example, PPCOPL16.CAT will produce a file called
PPCOPL16.C. Any .C source code file you have laboured to create, that happens to
have the same name as the .CAT file, will be overwritten!

Executable files
The \APP directory and its \PPCOPL16 subdirectory contain all of the files required to run
the demonstration application on a SIBO system. Any other files required by the
application will be created at run-time.

10-4 OPL16 Techniques

Language text
Virtually all language specific text for the user interface, including messages, menu titles,
menu items and accelerator keys, is located in the English language resource file i.e.
PPCOPL01.RSS. This file is converted into a .RSC file by the resource compiler
RCOMP.EXE. The .RSC file is then converted into a compressed form using
RCHUF.EXE. If you do not have this program (it is supplied with the SIBO C SDK), then
the file can be used in its .RSC form, but all references to the .RZC file extension in the
OPL program code will have to be modified to .RSC.

The RZC.BAT file handles the process of resource file compilation and compression (it
also renames the .RSG file, automatically produced by the resource compiler, to .OPH so
its contents can be viewed using the ODE editor).

If other languages are to be supported, the text in the .RSS file will have to be translated
into each of the supported languages, being very careful to stay within the text sizes
indicated in the file itself. Each specific version of the file should be given a name that
incorporates the corresponding country code e.g. the English file is named
PPCOPL01.RSS, the corresponding French resource file should be named
PPCOPL02.RSS, and will generate corresponding .RSC and .RZC file during compilation.
A full list of language codes is given in the Appendix.

Structure overview
Execution begins in the START: procedure where all of the program global variables are
declared, program exit via Psion Esc is disabled with the ESCAPE OFF statement, and the
other OPL program module is loaded. The extra module (PPCMOD01) initialises all
program global variables, file/directory names and much more besides. When PPCMOD01
has done its work it is unloaded and is never called again, thus saving precious memory.

Processing returns from INITOBJ: to START: which sets up the default ONERR error
handling (outside of any deliberate trapping/handling), then an endless loop is entered
using KEYPRES%: to handle all events and key presses. All other program functionality is
provided via routines called from within the KEYPRES%: procedure.

As stated elsewhere in the book, it's the window server that handles passing keyboard
information to the foreground process. Applications can be structured to receive such
event information synchronously; i.e. they can just sit and wait for a key press, in which
case the program is effectively suspended. Alternatively they may need to receive event
information, such as key presses, asynchronously, i.e. register more than one I/O request
and then go round in a loop doing other tasks until signalled that an event such as a key
press has occurred.

In OPL, statements such as GET, GET$ or even GETEVENT are synchronous, whereas KEYA
is an asynchronous keyboard read (a more complex alternative would be to use the
asynchronous I/O function IOA()).

OPL16 Techniques 10-5

Many other asynchronous services are provided by EPOC16. Most OPL programmers
don't need to use asynchronous techniques, but if the program has to do other tasks such as
handling serial port transfers, while remaining responsive to key presses, then
asynchronous methods are essential.

Complete source code for an asynchronous application framework is provided amongst the
examples supplied with the ODE OPL development environment from Psion.

The PPCOPL16 application is structured to respond to a number of event types
synchronously.

Initialisation in detail
The INITOBJ: procedure starts by setting aside some memory for procedure cacheing, not
really needed in this application, useful if program speed is affected when loading and
unloading program modules with LOADM and UNLOADM.

Error handling
Notice the use of the TRAP command before the CACHE statement to override any ONERR
processing that may have been set up. The ERR value will still be set if CACHE fails but the
pferr: procedure will get to process any error that occurs. Calling a procedure such as
pferr: allows for controlled handling and reporting of errors, and leaves open the
potential for error recovery to take place. Relying solely on the system to ‘crash out’ when
an error occurs is very unfriendly. If no error has actually occurred, pferr: will just return
without taking any action.

Another point to note here is the use of the ERR in the pferr: procedure call after the
CACHE statement. If an error occurs at this point it will probably be error –10 which
corresponds to “No system memory”. Using ERR is handy at this point, because as yet we
have not loaded any language specific text, so any program supplied error message might
not be meaningful to the user. Instead, the system error message will be used, and it will be
in the correct language for the machine.

File locations
Next, the getlocs: procedure is called to find out where various files and directories are
located, and to get the users default disk so it can be used to store the program settings file.
Information on disks, directories and file names are stored in a series of global string
variables that will be used extensively elsewhere for a wide range file handling tasks. Two
points are of particular interest here: The use of an operating system call (i.e.
CALL($0387)) to find the users default path, including the default disk drive letter. Also,
including a period ‘.’ at the end of a directory name string, when testing for the existence
of a directory - to prevent OPL automatically appending a .ODB file extension on to the
directory name. For the same reason, when testing for the presence of a particular file, it is
always wise to explicitly include the file name extension in the file name (see the PARSE$
function in the ‘OPL Reference’ chapter).

10-6 OPL16 Techniques

Languages
All language specific text is located and loaded from an appropriate language resource file
by the loadlang: procedure. An operating system call is used to get the language code for
the machine, the code is converted into a two character string (with a leading ‘0’ if
needed), and the string is used as the last two characters of the resource file name, to
ensure it is language specific. See the ‘Language text’ section above for examples, and the
‘Appendix’ for a list of language codes. If a language specific resource file is not found the
program will default to using the English file.

OPL16 does not directly support the use of program resource files, but the EPOC16
system does. To load strings and other data from the resource file it is necessary to call
procedures located in the ROM based ‘OLIB.DYL’ library. Hence, the use of the OPL16
FINDLIB and NEWOBJH keywords to locate and utilise the Object Oriented Methods in the
OLIB dynamic link library. Methods in the library (e.g. to open/close the resource file and
load data) are called using the ENTERSEND keyword. Identifiers such as RS_OPEN and
RS_CLOSE are just the numbers of the library methods. Other identifiers such as
PROG_TITLE are used to load specific items of information. All of the identifiers for
method numbers and text strings etc. are ‘#defined’ in files with .OPH extensions. If you
wish, the corresponding numeric values can be substituted directly into the OPL source
code.

A range of individual ENTERSEND calls are used to load up specific strings, then all of the
user messages, menu strings and menu accelerators are loaded into string arrays inside
three loop structures. An alternative approach, to the use of message arrays, would be to
have a procedure to load specific message strings at the time they are needed. Calls to the
OLIB library are completed very quickly and the user would see no noticeable delay in the
program’s response. However, the use of an array is virtually essential for menu
information for reasons of overall speed, and to avoid the mCARD source lines becoming
too long for the OPL translator. Finally, identifiers such as A_OPEN_A and M_OPEN_T are
used to access the specific elements of the string arrays, they are calculated from related
identifiers (such as A_OPEN) in the ‘included’ file named PPCMENU.OPH.

(See the HELPKIT directory on disk for more details on the use of resource and help files
in OPL16.)

Screen resolution and window sizes
When any OPL program starts its default window (i.e. window ID = 1) occupies the whole
screen. Since OPL uses a system of backup bitmaps, to simplify window re-drawing when
the display is updated, windows can use quite a lot of memory. Twice as much memory is
needed if grey is enabled (via the DEFAULTWIN command). It's always a good idea to
reduce the memory used by windows, by making them only as big as required.

You can consider the default window as having two components, a graphics window with
a slightly smaller text window inside it. To write to the text window you use statements
such as FONT and PRINT, but you can only use one font on screen at once. Ignoring the
text window and using the graphics window instead with statements such as gFONT,
gPRINT and gPRINTB is much more flexible.

OPL16 Techniques 10-7

To accommodate the different screen sizes and resolutions of SIBO machines, the program
now establishes what machine it is running on. Having established the system is suitable;
the machine identity is used to set a number of global variables to values appropriate for
the fonts and graphics objects to be used. Since some of the objects will be loaded from
bitmap files, an appropriate file name prefix is also selected.

Next, the presence of a several essential files is established, and if some of the simpler
bitmap files are not found the program calls crBits: to create and save them (i.e.
circle.pic, cross.pic and spot.pic).

Machine detection
A useful side effect of the start up default window is that the w%=gWIDTH and h%=gHEIGHT
commands will indicate which machine a program is running on. For example, values of
w%,h%: 240,80 = Series 3; 480,160 = Series 3a/c; 240,160 = Siena; 240,100 =
Workabout.

However, a further test is needed to distinguish between a program running on a S3a or on
a S3c. Testing for the presence or otherwise of the ROM based file
ROM::SYS$IRDA.IMG, associated with S3c infrared capability, is a reasonably good
method.

Status windows
The default window will initially obscure any status window, this can be remedied by
reducing the size of the default window using the OPL FONT (or gSETWIN and SCREEN)
statements (see also the SCREENINFO, STATUSWIN and STATWININFO statements). Any
other windows you create may also obscure a status window that is open. If you think of
open windows as a series of layers, one above the other, then any permanent status
window is always positioned as the lowest layer, and so it will always be obscured if any
other windows occupy the same x y co-ordinates. FONT automatically resizes the default
window to the maximum size excluding any status window. It should be called after
creating the status window because the new size of the text and graphics windows depends
on the size of the status window. Note that FONT -$3fff,0 does not change the current
font and style, it just changes the window sizes and clears them. If you use SCREEN and
gSETWIN instead of FONT, you should use the STATWININFO keyword to find out the size
of the status window – see the setdisp: procedure for details.

Loading the DYL
After ensuring that the .DYL file exists, the LOADLIB function is called to load the
dynamic link library into memory and return a category handle for the library into the
variable PgCat%. A category handle is just an identifying number for the group (category)
of methods in the library. A non-zero value returned into su%, from the call to LOADLIB,
indicates that an error occurred. A call to NEWOBJH is used to create the library ‘object’
and return a handle (identifier) for it; the handle is then used to refer to the library object
when making calls to its methods (procedures) via the SEND function. To keep things
simple there is only one method in the example DYL, i.e. O_GETRAM that returns a number
of statistics about the current allocation of system memory.

10-8 OPL16 Techniques

Command line processing
When the program is started (i.e. not already running) from the System Screen, a command
line is passed to the program containing a command byte and a file name. The command
line information will depend on how the program was started up.

The command byte will be ‘C’ if the user used the ‘New file’ option from the system
screen menu while the highlight was under the program’s icon. The user will have been
asked to provide a file name after selecting ‘New file’ and that name will be passed to the
program in the command line. A command byte of ‘O’ results from the user selecting a file
with the highlight from the list under the icon and pressing enter. Again the name of the
selected file is passed to the program.

Two functions are used to get this information from the command line: CMD$(3) returns
the command byte and CMD(2) returns the file name and path. Note the use of the PARSE$
function to add in any missing file name information and build a full file specification.

Program settings file
Program settings are restored by calling the getpdefs: procedure; if the file name (passed
as in the cpfn$ parameter) does not exist the procedure will create one using default
settings. Settings stored are the state of the error beep (on or off) and whether a status
window should be shown or not. After loading or creating the settings file initp: is
called to initialise some parameters including the variable menu item strings such as ‘Beep
on’ or ‘Beep off’, it also uses the SETNAME command to tell the system screen name of the
file now in use. The width of the display is set according to the presence of a status
window or not by the setdisp: procedure, and the string for the status window menu
item is adjusted accordingly.

Random seed
A new random seed is initialised at program start up because the program uses some
random numbers (via the RND function) for dice, and to get random screen co-ordinates for
graphics. To avoid the same sequence of random numbers being generated every time the
program is run, the initrnd: procedure uses a combination of hour, minute and second
as a seed value in RANDOMIZE.

Program credits
After displaying some credits and application information, by calling the about:
procedure, the program returns to the original start: procedure and enters an endless
loop that repeatedly calls keypress%: to handle system events and user key presses.

OPL16 Techniques 10-9

Events and user input
All program functionality, including exit from the program, is provided via procedures
called from within the keypres%: procedure.

The first action taken by keypres%: is to call the GETEVENT: command, a synchronous
call that only returns when an event of some kind has happened. Effectively (as far as
EPOC16 is concerned) the program is suspended and is waiting for the system to pass on
the details of system events or key presses. A program only normally receives key presses
(from the window server) when it is the foreground process, so if the program goes into the
background (e.g. by the user pressing the system key) it is only able to process system
events, not key presses.

On receipt of an event of some kind, keypres%: tests the value in a%(1) to see if it was a
system message event, and if so it tests the command byte in the new command line for
one of three types of command. Valid commands received from the system screen (while
the program was running in the background) are:

• ‘X’ to shutdown the program
• ‘C’ to create a new file, i.e. using the name entered by the user in the dialog presented

by the system screen
• ‘O’ to open the file picked from the list under the program’s icon.

Shutdown messages may arrive due a user selecting the emboldened file from the icon list
and pressing the delete key, or may be sent from the system, for example in response to an
‘Exit application’ command (the ‘Kill application’ does not send any message before
terminating the application).

The new command line is returned by the GETCMD$ function. The command byte is the
first character of the new command line string (in w$), and is retrieved into t$ with the
LEFT$ string function. The remainder of the new command line is the file name, and it is
put back into w$ by getting the next 128 characters with the MID$ string function.

Next, the procedure tests for key presses. Of particular interest are special keys such as:
Ctrl+Menu, Menu, Help, the Diamond key (or Psion+* for Workabout) or the Psion key
plus a menu accelerator key. Key press modifiers are returned by GETEVENT, hence the
tests for Ctrl+Menu involves testing the values returned in a%(2).

The special key presses have the following effects:

Ctrl+menu, Diamond, Psion+* or the menu hot key Shift+Psion+S, toggle the state of the
status window on or off and resize the screen (note how the Status Win menu item changes
when this happens).

Help brings up the help menu using the program related help items and text located in the
language specific resource file. Calling the internal help system is discussed in detail later
in the section on ‘Application functions’.

Menu brings up the program menu. Selecting a menu item from under one of the menu
titles will return a corresponding accelerator key. All menu related text and accelerator

10-10 OPL16 Techniques

keys are defined in the resource file. Thus, all menu text and accelerator keys can be
language specific without affecting the program code in any way.

Note the use of LOCK ON and LOCK OFF surrounding the use of the MENU keyword to tell
the system that the application cannot currently process system messages. Attempting to
send shutdown messages etc. while a menu is open (and marked with LOCK ON) will result
in an ‘xxxxxx is busy’ message; this is a limitation imposed by OPL16.

Menu hot key presses

Once the other key tests have been done (and responded to if found) the Psion key
modifier is tested for. If the Psion key press is detected, the Psion key code is removed and
the Shift modifier is tested for; if found the value of the key pressed is converted to lower
case. The key value remaining in k% is then equivalent to the key value that would be
returned by the MENU function itself.

A series of IF-ELSEIF tests are done to check for menu accelerators, or special keys such
as Enter and Space. Many alternatives to an IF-ELSEIF test sequence can be used, and
some may be considered more elegant or be more efficient e.g. using the VECTOR
command or the @ operator.

When the key value in k% matches a menu key or menu hot key combination, the
appropriate procedure is called. On return from the procedure the keypres% loop is
entered again ready for the next system event or key press.

Application functions
As stated earlier, the PPCOPL16 application is provided as an illustrative example
application, and the functionality included is simply designed to demonstrate a number of
significant programming techniques. Many approaches can be used for the overall design
of an application. If you find the approach illustrated by PPCOPL16 to your liking please
feel free to use the code as a framework for your own applications.

File menu
Options are: Open, Save as and Save

These options simply allow the user to manage the program’s settings file. That is, to open
another settings file, to save the current file under a new name, but stay with the current
file (Note: this typical of SIBO behaviour, but a S5 application should swap to the new
file). Save, just saves the current program settings and stays with the same file.

Edit menu
Options are: Owner and Telephone

Provides simple string editing using dialogs. Note the use of LOCK ON and LOCK OFF
surrounding the use of the DIALOG keyword to tell the system that the application cannot
currently process system messages. Attempting to send shutdown messages etc. while a

OPL16 Techniques 10-11

dialog is open (and marked with LOCK ON) will result in an ‘xxxxxx is busy’ message; this
is a limitation imposed by OPL16.

The Owner and Telephone information is automatically saved in the program’s settings file
whenever the user quits the program, or changes the file in use via the File menu options,
changes the state of any settings such as error beep or the status window state.

Wherever possible program data and information should be saved automatically without
the user having to do it explicitly. Unless of course you wish to provide options for the
user to quit the application without saving or revert to a previously unchanged version.

Game menu
Options are: Clear screen, Throw dice, Graphics and Sound

Clear screen does precisely that, but it clears whatever is the current window, and can be
used to clear only the black plane, the grey plane or both. Try altering the value of the
plns% parameter in clear: in the call at the start of the blobs: procedure. Also note that
clear: does not clear or otherwise affect the state of any status window.

Throw dice function (dice:) generates two random dice values (i.e. in the range 1-6)
using calls to the RND function. Dice value one will always be the larger value, and a flag
will be set if a double is thrown.

Two different methods are used to draw the dice. Method one (called from dicedrwb:)
uses bitmap-copying techniques. First the two dice are drawn, one black and one white,
and then the source of the bitmap objects are drawn to show the origin of the component
parts of the dice. Method two (called from dicedrww:) uses direct drawing of graphics
into a hidden window, and then window to window copies. The pros and cons of the two
techniques are described next in the Graphics discussion.

Graphics shows a number of techniques, illustrated in four main procedures (triang:
blobs: bmpfile: and animicon:) that are all called from the graphics: procedure.

The first procedure triang: draws solid grey, solid black, and ‘hollow’ triangles in the
black and grey planes using bitmap copying. Next, the same types of triangle are drawn,
using direct graphics drawing commands instead. One important factor here is the relative
speed of drawing, particularly with the filled shapes.

Procedure blobs: draws twenty filled and twenty hollow ‘circles’ of various relative
heights, then it draws twenty solid pieces and twenty ‘white’ pieces all of the same size.
All objects are drawn at random screen co-ordinates. The first set of ‘blobs’ were drawn by
direct graphics commands, and the second set of uniform pieces were placed on the screen
by copying from bitmaps held in memory. Points to note are; again the obvious speed
differences, but the possibility for dynamic sizing of the objects when using direct drawing
and the more sophisticated shapes possible with hand-crafted bitmaps.

Procedure bmpffile: shows that when drawing with bitmaps they do not have to be held
in memory, they can be loaded from bitmap files as needed. Copying from bitmaps already
held in memory is quickest, but using gLOADBIT to bring them in as needed is not so far
behind.

10-12 OPL16 Techniques

Incidentally, the three bitmap files used (i.e. circle.pic, cross.pic and spot.pic)
will all be drawn directly and saved to disk if the files don’t exist when the program starts
up – see the crBits: procedure.

Procedure animicon: uses the two bitmaps from the program’s icon file to do some
simple animation. Movement is simulated by alternately copying each bitmap into the
screen in set mode followed by a delay and then again in invert mode. By moving the
‘cursor’ co-ordinates slightly and repeating the process the two halves of the icon appear
to move towards each other and finally coalesce. The smoothness, speed of movement and
degree of screen flicker can be modified by varying the pause duration and the number of
pixels between successive screen positions. Of course any other objects or information
displayed in the path of the bitmaps being ‘moved’ will have to be redrawn. Screen areas
disturbed by animation can be restored in various ways. Principally you have two main
options, either to call the procedures that draw specific areas of the screen as needed, or to
copy the area of the screen about to be disturbed and then replace it when the moving
object has passed moved on. Animation, which does not disturb the underlying display,
can be done using sprites. Using sprites is a little complex at first, made more so if you
have several objects to move, since only one sprite may exist at once in OPL16 (in OPL32
this restriction has gone).

In summary, the particular graphics techniques employed will depend upon the end result
required, but some other factors may play a part in the final decision.

Drawing graphics directly allows dynamic scaling of objects, but will limit the complexity
of the objects used, without resorting to a huge amount of very specific drawing code.

With bitmaps, much more complex shapes can be manipulated, but you can only scale
objects by having multiple bitmap sets, and you are fixed to the range of sizes available in
the pre-defined bitmaps. Hand crafted bitmaps are almost always superior in appearance. A
pixel changed here and there in a bitmap can have dramatic and subtle effects on its final
appearance on the screen. An alternative method of using bitmaps is via a set of custom
made fonts (which are just bitmap sets anyway), then using commands such as gPRINT to
present the objects on screen. See the ‘User Interface’ chapter for details of custom fonts.

Note:
Bitmap files do not contain black and grey bitmaps, they may contain one or more
bitmaps, but what happens to them when they are loaded is up to the programmer. For
example, purely by convention icon files contain two bitmaps (Series 3a onwards), the first
of which is loaded into the black plane and the second is loaded into the grey plane of the
screen. Bitmaps in memory or in files do not have planes, only display screens (on suitable
systems) support the concept of grey and black planes.

Sound calls the psound: procedure to demonstrate the asynchronous playback of a digital
sound file (i.e. GROMIT.WVE). While the sound is playing other activities can still take
place, illustrated by running the icon animation procedure at the same time as playing the
sound. Before attempting to play the sound, the procedure ensures that the file exists and
that the machine is of a suitable type.

OPL16 Techniques 10-13

Control menu
Options are: Beep off/on and Status Win off/on

Beep demonstrates toggling the state of the program error or warning beep to on or off,
and modifying the ‘Beep’ menu item to reflect the change. Note also that the state of the
beep may be modified from the menu item or via its corresponding hot key. Either of these
options will cause the menu item to be changed to ‘Beep on / off, i.e. to reflect the action it
will next perform if selected. All calls within the program to issue a beep sound (i.e. via
the sound: procedure) will only take effect if beep is set to on.

Status Win demonstrates toggling the state of the status window on and off, resizing the
screen and modifying the ‘Status Win’ menu item to reflect the change. Note also that a
number of ways are provided to toggle the state of the status window i.e. from the menu
item, via its corresponding hot-key, with the Diamond key and with the Ctrl+Menu key
combination. Any of these options will cause the menu item to be changed to ‘Status Win
on / off’, i.e. to reflect the action it will next perform if selected.

Any changes to the state of the status window or beep sound are saved into the current
program settings file and are restored whenever the program is run again with the same
file.

Special menu
Options are: Memory, About and Exit

Memory uses the getmem: procedure to call a method (procedure) in the DYL. When the
method is called (i.e. O_GETRAM), the address of the mem%(4) array is passed (in the
variable memaddr%) so that the DYL can put multiple return values directly into the OPL
array. Written in OOP C, the DYL uses some PLIB functions to get some statistics about
the use of system memory, i.e. the first 512 Kbytes of memory normally available for
programs. Some of the first 512 Kbytes of memory will be used for RAM disk on systems
with total memory of 512 K or less. On systems with more than 512 Kbytes of memory,
non-of the first 512 Kbytes will be used as RAM disk until all of the memory above 512K
is filled.

The about: procedure is used in a special mode to display the memory statistics obtained:

• ‘Total usable’ - is all of the system memory, not including any available memory
above 512K.

• ‘For programs’ - is the amount currently in use by programs and their data.
• ‘For RAM disk’ - is the proportion of the first 512K currently occupied as RAM disk,

on larger memory systems this will almost always be zero.
• ‘Free’ - is the amount of memory available for use by new programs and their data.

About uses the about: procedure to display application credits / information, and the
current settings for ‘Owner’ and ‘Telephone’. The same procedure is used for a few
seconds at program start up, but when called from the menu it waits for a key to be pressed
(i.e. by calling the waitkey: procedure) before returning. Note the use of GETEVENT in

10-14 OPL16 Techniques

waitkey: to allow the program to respond to system screen shut down messages whilst
waiting for the user to press a key.

Exit quits from the program via the endit: procedure. Note the use of a call to choose%:
to get a confirmation to quit from the user, and in particular the operating system call (i.e.
CALL($998d,0,0)) to force the program to the foreground. Since the program wants to
confirm the exit option, if the application is in the background and a system shut down
message is received the user would not see the dialog asking for confirmation. Hence the
application must force itself to the foreground to show the message and get a response. In
fact, this is not good practise and was just done to demonstrate the foreground switch. It is
much better to design the application so it saves any information and shuts down without
requiring any user involvement.

Help key
Pressing the help key calls help%: procedure to bring up the application’s help menu. In
fact the code in help%: may look a little odd, but it is similar to using the procedures
(method) in the PPCOPL16.DYL library. Instead, methods provided by the operating
system’s ‘gate object’ are used to: register the name of the application help file (i.e. the
program’s resource file), display a list of help topics and in turn display the text for the
items selected by the user.

C Programming 11-1

11 C Programming

Introduction
An outline of the options for programming in C for SIBO systems is given in the
‘Platforms’ chapter. Although SIBO based development environments do exist they are
not yet fully developed, and are certainly not suitable for the development of complete
applications. The other C development systems are included on disk with their own
documentation and are therefore not considered further in this chapter.

For application development in C the only realistic option is to use the SIBO C SDK from
Psion. This chapter begins by describing the contents of the C SDK in some detail and
goes on to describe and contrast the development options it presents to you as a
prospective user.

Some of the key steps and issues involved in the development process are then outlined.
Finally a guide is given to the wide array of examples included in the C SDK. The SIBO C
SDK covers a lot of ground and includes a lot of useful example code, but the information
about what you actually ‘have in your hands’ is widely scattered throughout the extensive
manuals and the disk based information files.

In addition to the example code provided in the SIBO C SDK, you will find a wide range
of C programming examples on disk. The examples vary: There are small snippets of C
code to demonstrate a specific technique. Some are complete C applications (in HWIF and
HWIM). All of the additional examples provided are described and indexed in the ‘Disk
Contents’ chapter.

ROM-resident libraries
Looking at the size of the sophisticated built-in applications on a SIBO system leads to a
surprise, they are very small. There are two main reasons for this: the very efficient
TopSpeed compiler produces compact code, virtually all applications make extensive use
of the ROM-resident libraries, thus there is no need to append large run-time/library
modules to the executable file. Two basic types of library are available in ROM, C-type
type and object-oriented (OOP) type libraries. The exact libraries available (and versions
thereof) will depend on the machine in use. Use of the SIBO C SDK revolves around the
use of the ROM-resident libraries and they are all fully documented in version 2.20 of the
SDK.

11-2 C Programming

C libraries
CLIB Standard ‘C’ library. In

all machines.
Easiest for porting existing C programs. Restricted
I/O. Most applications will avoid CLIB.

PLIB Psion ‘C’ library. In all
machines.

Library functions designed to utilise the features of
the SIBO system. Generates much smaller code
than CLIB because it is a thin layer over ROM
code.

WLIB Windows server library.
In all machines.

Provides graphical access to the screen and
keyboard.

HWIF Handheld WIMP
interface library. Not
built into any machine,
but is supplied with the
SIBO C SDK.

Gives ‘C’ access to dialogs, menus and edit boxes.
A ‘C’ layer over the object-oriented HWIM,
providing much - but by no means all - of HWIM's
functionality.

Object-oriented libraries
OLIB Psion Object Library

OLIB services may be
used from otherwise
non-object-oriented C
programs. In all
machines.

Provides services that are independent of the user
interface including, data storage, file management,
basic text editing, event scheduling, inter-process
communication, time management and timers.

HWIM Handheld Windows
Icons and Menus. In all
machines.

User interface and application framework library.
Called by HWIF.

FORM Formatted text and
printing. Not in HC
machines.

For more sophisticated treatment of editable text.

XADD The XADD library
extends the
functionality of the
HWIM and FORM
libraries. Not in S3 or
HC systems.

Provides print preview facilities, a calendar
window that can display one or more months, grid
classes, active objects and ATS.

C Programming 11-3

Psion SIBO C SDK
The SDK is available in three variants as discussed in the ‘Development Options’ chapter.
The standard and professional versions of the C SDK provide all of the information and
software tools necessary to develop C language applications for Psion SIBO-based
products.

SIBO C SDK software
The software and related files supplied in the package are actually from two sources,
TopSpeed Corporation and Psion Software. TopSpeed Corporation supply a specially
packaged version of their compiler, linker and project system to Psion who supply it as
part of the C SDK, after adding in their libraries specialist utilities and example source
code. The exact contents of the package depend upon the variant purchased, as described
in the ‘Development Options’ chapter. Further details of the example source code and
utilities are given later in this chapter.

SIBO C SDK documentation
Version 2.20 (February 1997) of the SIBO C SDK documentation consists of nineteen
manuals, in four volumes, covering a wide range of features of the SIBO architecture and
development system. These are described below.

A full electronic index to the documentation in the SIBO C SDK is provided on disk. This
index is extensively cross-referenced and contains over 14,000 entries - see the CSDK
directory. The C SDK index was produced by EMCC as a commercial product, purchasers
of this book are free to use the index for their own individual purposes. However do not
distribute the C SDK index to others, doing so by whatever means, will be in breach of
international copyright laws.

General Programming Manual
This manual explains how to install the SDK and how, by means of simple examples, to
build an application that will run on a Psion SIBO machine.

It describes in detail the differences between the CLIB and PLIB C libraries and also gives
guidance on copy protection. The important ‘Fundamental Programming Guidelines’
chapter explains the basic principles that should be understood by all developers of SIBO
applications. The General Programming Manual has sections on the following topics:

• Installation and overview of the SIBO C SDK
• Building an application
• Notes on CLIB

11-4 C Programming

• Fundamental programming guidelines, includes advice on how to ensure that an
application remains responsive to user input, is robust against run-time errors, such as
shortage of memory.

• Copy protecting software
• Application / machine compatibility

HC Programming Guide
This manual contains information that is specific to the development of applications for
the rugged and highly configurable HC range of hand-held computers. The topics
discussed include:

• Introduction to the HC, basic hardware and software concepts
• Writing software for the HC
• The HC command Shell, overview, files, directories and alphabetical listing
• The HC in the Cradle
• Customising the HC ROM
• Technical specifications

Series 3/3a Programming Guide
This manual contains information that is specific to the Series 3, 3a/c and Siena handheld
computers. The topics discussed include:

• Series 3 Programming Overview - including advice on writing multi-lingual
applications

• Communicating with the System Screen - including the differences between file-based
and non-file based applications,

• The receipt by applications of shutdown and switch-files messages, and the
modification of an application's behaviour by means of the technique of aliasing

• Enhanced sound output
• Use of the Spy application
• Technical specifications and the differences between the Series 3 models

Workabout Programming Guide
This manual contains information that is specific to the Workabout handheld computer. It
describes the principal features of the Workabout and the various user interfaces that are
available to the developer. In addition to guidelines for customising the machine for a
particular application. The topics discussed include:

• Introduction to the Workabout, basic hardware and software
• Writing software for the Workabout, basic programming and customising options
• Full description of the built-in Command Processor software
• Technical specifications, VIC (Vehicle Interface Cradle) and Docking Station

C Programming 11-5

EPOC O/S System Services
This manual contains a complete description of the software interrupt interface to ROM-
based system services. An appendix lists the EPOC16 services both alphabetically, by
service name, and numerically, by interrupt and function number. This will be of particular
interest to assembly language programmers.

Topics in the EPOC O/S System Services manual include:

• Introduction and documentation conventions
• Segmented memory management
• Heap memory, semaphore and message management
• Dynamic library, category and object management
• Device Management
• Input / output management
• File and process management
• Date and time management
• Conversion management
• Long integer management
• Floating point number handling and function interface
• Character, Buffer and string management
• General management
• Database file management
• Hardware management
• Interrupt and function numbers
• Environment variables

Additional System Information
The Additional System Information manual explains a variety of topics, including
communications software, resource files, printer drivers, the file formats used by
applications and the writing of device drivers, in particular

• MCLink, MCPrint and Slink
• Resource files
• WDR printing
• DBF files
• Series 3a Agenda and word processor file format
• Series 3/3a MC spreadsheet file format
• Writing and example device drivers
• Word file format conversion DYL’s
• Agenda file format updates

11-6 C Programming

Tools Reference
This manual contains chapters describing a number of communications and file conversion
tools useful for developers including:

• RCom introduction, selection and advanced use
• PsiWin, a suite of three software packages
• File editor
• Sound and data file conversion utilities

PLIB Reference
This manual contains a comprehensive description of the PLIB C function library. The
library routines are classified into fourteen areas of functionality and each group is
accompanied by background information, usage recommendations and example code.

• Introduction to PLIB, SIBO and EPOC
• Characters, strings and buffers
• Arrays and queues
• Integer conversion and rectangle functions
• Floating point C, long integer and scientific functions
• Error handling
• Memory allocation
• Asynchronous requests and semaphores
• Input / output system
• Time, timers and dates
• EPOC files
• Processes and inter process messaging
• General system services
• Database files
• Object oriented programming
• PLIB reference update

Window Server Reference
The Window Server is a separate built-in process that is always running on each SIBO
machine. It provides access to the screen and keyboard for all running applications. The
Window Server Reference manual describes the WLIB library that provides the interface
between an application and the window server. Topics discussed include:

• Comprehensive introduction and description
• General window server functions
• Windows
• Graphics output, bitmaps, text fonts
• Events and keyboard input
• Window server reference update

C Programming 11-7

I/O Devices Reference
This manual describes the I/O device drivers that have been written by Psion. The
description of each driver includes a full explanation of the services that it supports,
together with example code.

• Introduction
• Console services
• Parallel port
• Serial port
• Sound
• Alarm device driver
• Free running counter
• Series 3 world database
• Xmodem and Ymodem
• NCP and link
• Cradle and docking station
• HC Magnetic card reader
• HC Bar code reader
• HC intelligent bar code reader / RS232 port
• Introductions to Psion Infrared communications
• The AccessIR API
• The IrMUX API
• Fast charger

The SIBO Debugger
The SIBO C source-level debugger supplied with the SDK runs on a PC. It is normally
used for remote debugging of an application running on a SIBO machine but may, in some
circumstances, also be used to debug SIBO applications running on the PC.

The debugger is specifically designed to facilitate the debugging of applications running in
the EPOC environment, in which the application's code segment may be relocated at any
time. This manual describes the facilities provided by the debugger and explains its use.

• Introduction and starting up the Debugger
• The graphics interface
• Top level views
• The process window
• The file manager
• Troubleshooting

11-8 C Programming

Hardware Reference
The Hardware Reference manual contains a description of the SIBO computer hardware,
including the principal chip-set, expansion ports and the SIBO serial protocol.

• The principal chip set
• The SIBO serial protocol
• The SIBO expansion ports

Programming in HWIF
HWIF (the Handheld WIMP Interface) is a library of user interface routines suitable for
use by C developers producing applications for the Workabout, Series 3 and Siena range
of computers. The HWIF library provides easy and efficient access to many aspects of the
functionality of these machines, including sophisticated printing and the presentation of
menu bars, dialog boxes and edit boxes. The manual contains a range of worked examples
as well as a comprehensive description of all HWIF routines.

• Introduction to and overview of HWIF
• Worked examples in HWIF, getting started and getting serious
• Advanced use of HWIF
• The HWIF reference documentation

Object Oriented Programming Guide
The Object Oriented Programming Guide describes the development of applications for
SIBO machines using Psion's proprietary Object Oriented programming techniques. It
contains a general introduction to the concepts of object-oriented programming and full
practical details of how to build an object-oriented application. Later chapters describe the
use of many of the classes supplied in the built-in object libraries, including menus,
dialogs, edit boxes, resource files and the print services. One chapter provides some advice
on application design using the Series 3a/c ‘Record’ application as a model.

• Introduction and basic concepts
• Building an object-oriented application
• Building a Dynamic Library (DYL)
• An HWIM example - Hello World
• Commands and command menus
• Windows
• Dialogs and Dialog controls
• Active objects
• Error handling and recovery
• File based applications
• Edit windows
• Printing
• Link paste
• HWIM resource files

C Programming 11-9

• Application design
• Series 3a attached applications
• Series 3a automatic test system
• Category and method function source files
• Mechanisms

An earlier version (v2.01) of the chapters in this manual can be found in the OOPDOC201
directory on disk.

ISAM Reference
The ISAM (Indexed Sequential Access Method) object library provides a powerful set of
functions to access record and field structured files of the type that are manipulated by
OPL programs and the Data application on SIBO machines.

The ISAM Reference manual explains, with the aid of example code, how to load and use
the ISAM library, and contains a complete description of the ISAM functions.

• Introduction and overview
• ISAM functions, general, data file and index file functions

OLIB Reference
The OLIB library contains a collection of object classes that provide services that are
independent of the user interface, and are therefore suitable for use in the ‘engine’ code of
any application. These services include data storage in a segmented buffer, arrays with a
variable number of elements, basic text editing, event management and scheduling, file
management, timers and time management and inter-process communication.

This manual contains complete descriptions of the object classes in the OLIB library. The
classes described include:

• Introduction using OLIB classes
• The ROOT class
• The TIME class
• The SGBUF segmented buffer class
• Variable array classes (similar to container classes in C++)
• Editable documents
• Resource files (.RSC and .RZC)
• Binary file management
• The CLEANUP class - aids to error recovery
• The APPMAN - applications manager class
• The ACTIVE class and active objects
• Idle objects and the AIDLE class
• TIMER active object classes
• File active objects
• File lists
• File management classes

11-10 C Programming

• The LOCS local file scan class
• System services
• IPCS - Inter-process communication
• Link paste
This library is built into all SIBO machines.

FORM Reference
The FORM library contains classes used in the storage, layout, display and printing
(including print preview) of formatted editable text. This manual contains descriptions of
the object classes in the FORM library. These classes provide the ability to store, display
and print formatted document text. Supports printing to any printers that are supported by
a printer device driver. Essentially FORM implements much of the engine of the word
processor on the Series 3 family.

FORM depends on the window server but is independent of the higher level HWIM. It is
used widely by HWIM to implement edit boxes, for example, and is thus used indirectly
by all applications. It is used directly by the word processor and by other applications for
text processing and for printing.

The topics include:

• Introduction, using form classes
• The Formatted document content classes
• The Document layout classes
• The Document printing classes
• The Print preview class
• The Calendar image class
• The Polytext classes

The library is built into the Workabout, and into all members of the Series 3 family and
Siena.

HWIM Reference
The HWIM Reference manual contains descriptions of more than seventy classes that
provide the basic management of an event-driven application and the whole of an
application's user interface. The HWIM Reference manual contains descriptions of the rich
set of object classes that provide the application management environment and a
sophisticated user interface for all machines in the Series 3 range. It contains classes that
implement the Series 3 interface style, including menus and dialog boxes. Many of the
commonly required dialogs are provided - for example, for print set-up, page layout and
for presenting help. There is extensive support for file selection.

The range of topics includes:

• Introduction, using HWIM classes
• The HWIMMAN Application Manager

C Programming 11-11

• The WSERV class
• The Command Manager
• Windows
• List Boxes and Menus
• Dialog Boxes
• Labels, buttons and choice lists
• Numeric editors
• Text Editors
• Gauge classes
• File selectors
• File list generator classes
• The FILELIST window class
• General system dialogs
• Print classes
• Dialling dialogs
• Help Classes
• OPL and comms script support
• Incremental matchers
• Link paste support
• Representations of time and date
• The GATE class
• HWIM utility functions
• HWIM reference update for Siena and Series 3c

The library is built into the Workabout, and into all members of the Series 3 family and
Siena.

XADD Reference
The XADD library consists of extensions to the HWIM and FORM libraries that are
available on the Workabout, Series 3a/c and Siena. The XADD library was introduced in
the Series 3a machine and is not present in Series 3 machines. The contents include:

• Introduction, using XADD classes
• Print preview classes
• Calendar classes
• Automatic test system classes
• Additional active object classes
• Tabular grid display

The development process
An application written in C with the SIBO SDK must be developed on a PC. The
TopSpeed Corporation's TopSpeed C compiler provides specific support for the generation
of executables that are to run under the EPOC16 operating system.

11-12 C Programming

Programs are written on the PC, using either the TopSpeed Environment or another
program editor. When successfully compiled and linked the program is transferred to, and
run on the machine. See the chapter ‘Linking to a PC or Printer’ for details of suitable
cables and software. Transfer and testing may also be done under the control of the SIBO
source level debugger that is provided with the SIBO C SDK.

Applications running on the machine may be remotely debugged from the PC, using the
SIBO debugger. Those parts of the software that do not depend on the user interface code
specific to the SIBO machine may be debugged locally on the PC.

If an appropriate SIBO emulator is available, it may be used for initial testing, but final
testing should always take place on the machine itself.

Usually the various development steps: of editing, compilation, linking etc. are done in the
DOS environment. It is possible operate in DOS sessions, for example launched from
Windows 3.x, but this is not the most secure way of working. Most of the example
programs and applications are built using a combination of project files (with .PR
extensions) using DOS batch files to automate the ‘make’ process.

Programming options
In general terms, there are five different levels at which C programs can be written (using
the C SDK) for SIBO systems:

• Using CLIB, with user interface restricted to console I/O of the getchar and puts
variety

• Using PLIB, again with user interface restricted to console I/O.
• Using PLIB with WLIB, to access the graphics and windowing capabilities of the

Window Server.
• Using HWIF, with its support for menus and dialogs similar to those available in

OPL.
• Using object-oriented programming (OOP) i.e. the HWIM, FORM, OLIB and XADD

DYLs built into the ROM.

CLIB
The CLIB library contains standard functions, familiar to most C developers, and is
described in the TopSpeed C Library Reference manual supplied with the SIBO C SDK. A
developer who wishes to port an existing application to a SIBO machine with a minimum
amount of effort would use CLIB. However, a pure CLIB program is restricted to using a
simple user interface with row and column text-based display.

PLIB
The PLIB library provides functions with equivalent behaviour to those supplied in CLIB.
It is, however, more closely matched to the EPOC O/S and will, in general, result in a
significantly smaller program than the equivalent version using CLIB. In addition, PLIB

C Programming 11-13

provides access to many of the EPOC system services that are not available in CLIB and
can thus be used, for example, to develop applications with more sophisticated user
interfaces. There is, however, more to learn for a programmer already familiar with
standard C libraries. A compromise route is possible, since a CLIB program may also use a
mix of PLIB functions.

Because of the advantages of code size and greater power, use of the PLIB library is the
recommended route for most types of application development. Choosing this route opens
up a range of further options.

The first of these is to use only the PLIB and WLIB libraries. In addition to PLIB's
provision of full access to the EPOC system services, this approach allows complete
flexibility in the design of an application's user interface. Development of a user interface
comparable with that used by the built-in applications will, however, require a
considerable programming effort. A second option is to use the services provided by the
HWIF library in addition to PLIB.

HWIF
HWIF provides a C function interface to many user interface services of the built-in object
libraries. It allows applications to make use of, for example, windows, command menus
and dialogs, without the need to use object-oriented techniques or for an intimate
knowledge of the object libraries themselves. Programs written in this way will generally
use more memory than programs making direct use of the object libraries and will, in
certain circumstances, lack some responsiveness to multiple event sources. HWIF is the C
equivalent to OPL programs.

Dialog and menu interactions
An HWIF application enters a special mode when it makes the calls uPresentMenus,
uRunDialog, hPrint or hPrintSetupDialog or calls the system help routines:

• System screen messages are blocked, the user is told that the application is ‘busy’
• The application will not be made aware of background/foreground or switch on/off

events.
• If a timer expires, or another non-key press event occurs, the application is only

aware of this when the user concludes the menu or dialog interaction.

Processing of events passes to a central get-event loop in ROM code. This ROM get-event
loop can only process events from event sources it explicitly knows about - and this
excludes any timers, alarms, or other non-key press event sources installed by the
application.

Programmers working with HWIF based C can gain access to some of the HWIM dialog
features (as described in the ‘User Interface’ chapter) see the section ‘HWIF with some
OOP’ in the ‘C SDK examples’ section later in this chapter.

Note that the HWIF library is not built into any machine, but is supplied with the SIBO C
SDK.

11-14 C Programming

Object-oriented programming (OOP)
A third option is to make use of Psion's object-oriented programming system. This allows
developers to take advantage of the OLIB, HWIM, FORM and XADD object libraries that
are built into most machines. Applications developed in this way derive the maximum
benefit from the built-in system software, but at the cost of an appreciable learning curve.

Applications written using OOP and the object libraries have a number of advantages over
those written in OPL and those written in HWIF C. Some of the more significant
advantages are:

• By default an HWIM application maintains its screen's appearance by using a
dynamic redrawing technique. OPL and HWIF use backed-up bitmaps, using more
memory and slowing down drawing to the screen.

• A number of classes such as dialog boxes and dialog box controls already exist, with
default behaviour. As such, they can be used directly, or sub-classed as required for
more specialised behaviour. Such classes permit quite sophisticated applications to be
built fairly quickly.

• The contents of dialog boxes and menus can be changed dynamically, allowing a
more sophisticated dialog with the user. Also, consistency and dependency checks
can be performed before allowing the user to exit from a dialog. Both of these are
difficult, if not impossible, with HWIF.

• Program activity may continue while a menu or a dialog is being displayed.
• All resources are placed in resource files. This encourages the creation of language

independent applications.
• OOP permits software to be re-used. Standard classes can be developed for one

application and can be re-used in another.
• The object paradigm is well suited to the design process, particularly for interactive

event-driven programs with graphical interfaces.

OOP options
An application can make use of OOP techniques in one of a number of different ways.
This section explains the main options that are available.

Using existing object libraries

An otherwise non-object oriented C application can simply create and use one or more
objects from existing object libraries. A typical example of this kind of usage is the using
the ISAM DYL library for database access. Example code is provided on disk to illustrate
how to create an instance of a class from an external category and send messages to it.
Note that, since the ISAM DYL is not in the ROM, it has to be explicitly loaded before
being linked.

In principle, this technique can be used with any class from an existing object library.
However, in practice it is restricted to classes that do not depend on the user interface. The
ISAM example is typical in this respect, in that it uses the console services to supply its
user interface.

C Programming 11-15

The technique is particularly suitable for creating and using instances of classes such as the
variable array (container) classes in OLIB. In such a case, where the class library being
used is in the ROM, there is no need to load it before linking. Examples of using array
classes are provided on disk.

One of the main advantages of this technique is that it requires very little additional
knowledge, other than the details of the particular class or classes that are being used.

Application-specific classes

Rather than simply using an existing class, an application may define one or more
application-specific classes. These classes may, by sub-classing, add value to other
existing library classes or may be totally new classes (although a ‘new’ class is, in fact, a
subclass of the OLIB ROOT class). Such an application may also make use of existing
object libraries, as described above.

Although it is possible to write a fully object oriented application of this type, a typical
application will still be largely written in non-object oriented code. As for applications that
simply use existing classes, the technique is better suited to classes that do not depend on
the user interface.

A simple example of an application of this type appears in the ‘Building an Object
Oriented Application’ chapter of the ‘OOP Guide’ manual in the C SDK. The example
code is provided in the \sibosdk\oopdemo directory of the C SDK.

Using a DYL

Instead of using the classes of an existing object library, an application can use objects in a
custom object library (or DYL). The way to create and use a custom DYL is described in
the ‘Building a Dynamic Library’ chapter of the ‘OOP Guide’ manual in the C SDK. The
example code is provided in the \sibosdk\oopdemo directory of the C SDK.

The classes in the DYL may be any combination of ‘new’ classes or subclasses of existing
library classes. This technique may be combined with the use both of custom libraries and
of custom classes in the application itself, as described above.

In addition to the advantages of the previous techniques, writing one or more parts of an
application as separate DYLs allows for easier code sharing and re-use and allows large
applications to be written (a single code segment may not exceed 64 Kbytes).

See the ‘Example’ sections later in this chapter.

Using HWIM

A developer who wishes to create an application with an object oriented user interface
should make use of the HWIM class library.

This case is qualitatively different from those described above, in that many of the classes
in the HWIM library are designed to be used together, and are not particularly suited to
being used in isolation. Some of the classes rely on the existence of instances of other
classes and on certain specific initialisation having been performed. This is the reason why
the techniques described above are not recommended for the HWIM user interface classes.

11-16 C Programming

An HWIM application always contains a basic framework of objects to provide those
features that are common to all HWIM applications. These features include the provision
of command menus and dialogs, the handling of multiple event sources and the direction
of keyboard events to the appropriate object(s) within the application. Such an application
requires a specific form of start-up code in its main() function to create the basic
framework and perform the necessary initialisation.

Many of the HWIM application framework classes can be used directly, but an application
will always define and use application-specific classes, including sub-classes of the classes
supplied by HWIM. The application may also, of course, use or subclass the classes from
other object libraries - either the standard libraries that are in the ROM, or application-
specific DYLs.

See the ‘Example’ sections later in this chapter.

Code and data size limits
The TopSpeed C compiler was chosen by Psion because it supports a pure small model,
for which the code generator totally abstains from manipulating the 8086 segment
registers. Other C compilers occasionally save and restore the segment registers to memory
when generating small model code.

As it happens there are other benefits to using the TopSpeed C compiler:

• In the EPOC environment, the code generated by the TopSpeed C compiler is
typically 20% more compact than that produced by Turbo C or Microsoft C.

• It supports register-based (rather than just stack-based) calling conventions which
contribute to its compact code generation and also reduce execution times.

• Psion used its capability to define custom calling conventions (via #pragma
statements) to interface efficiently with the software interrupts of the system services
(in some cases removing entirely the need for interfacing code)

Because the functions in the PLIB library for TopSpeed C use custom calling conventions,
the use of C prototypes is mandatory.

When programming in C for EPOC, you must program using the small model, in which
the code and the data segment are each limited to 64K bytes. The restriction to the small
model allows EPOC to move memory segments, including the process code and data
segments, without any co-operation from applications. Being able to move memory
segments around in a multitasking system (for example, as processes are created and
destroyed) is vital for efficient RAM usage.

For reasons described earlier, program executables tend to be significantly smaller when
built in EPOC compared to other environments (such as a PC) and the 64K code segment
limit is less likely to be a problem than you might have first thought. It is also true that
small model code is in any case more compact because function and variable addresses are
16-bit words.

C Programming 11-17

Notwithstanding the above, if an application does require more than 64K of code, there are
the following options:

• Break up the application into a main process with multiple transient sub-processes.
• Implement part of the functionality in a server process where the services are accessed

using inter-process messaging.
• Implement part of the functionality as a device driver, accessed via I/O system calls.
• When using object-oriented programming (OOP) or otherwise, break up the program

into multiple dynamic libraries containing external classes that are accessed by OOP
message sending.

The 64K data segment limit is normally large enough for the stack and miscellaneous data
structures. Dynamic data structures are typically allocated from the ‘heap’. This resides at
the high address end of the data segment and can grow as the need arises.

When a program does require more than 64K of data, it is often because of a single data
structure that can grow to a large size (such as, for example, a word processor document).
Such potentially large data structures may be implemented in external memory segments
where a particular segment can grow up to a limit of 512K bytes. However, the access to
data in an external segment is not as convenient as it is for data in the process data
segment. Library functions are available for the management of memory segment.

11-18 C Programming

Directories in the C SDK
The full set of sub-directories under the \SIBOSDK directory are listed in the table below.
The contents of each sub-directory are summarised in the table. Some directories may be
optional or are specific to the SDK version. Where appropriate, the contents of the sub-
directories listed in the following table are described in more detail. For example, the
contents of each sub-directory that contains significant example programs/applications is
discussed in the text following the table.

Sub-directory Contents

\ATS Automatic Test System demo macro recorder/player
\DEMO Various standard demo programs – from very simple to more complex
\EWDEMO Simple edit windows example – use of some OOP techniques
\FCONV OOP source code for the creation of file format conversion DYLs for Word
\FONT Font file source code examples
\HCMAST Software allowing alternative versions of the HC ROM to be built
\HWDEMO HWIF source code demonstrating extensive use of the HWIF library
\HWIFOOD HWIF examples making use of OOP techniques
\HWIFSRC The entire, build-able, source of the HWIF library, for interest and/or to allow

the writing of extensions to HWIF
\HWIMDEMO Source code demonstrating use of Date and Gauge classes in HWIM
\INCLUDE Header and include files - .h, .g, .rg, .rh, .rsg, .inc, .hpp, ing etc.
\LDD Assembler source code for some example LDD logical device drivers
\LIB Standard libraries, startup objects, and some loadable device drivers

(dynamic extensions to the SIBO operating system)
\NOTES A full HWIM version of Notes program (HWIF version is in \HWDEMO)
\OOPDEMO Programs demonstrating the basic use of the Object Oriented Programming

system (other directories contain more advanced examples)
\PR Some standard/example project files
\RECORD Source of the Object Oriented Series 3a Record application. This is

build-able, provided that the \sibosdk\oop directory has also been installed
\RESOURCE System resource script files (.RSS) for English machine ROMS
\S3ATOOL Series 3a versions of an Icon editor and the Spy applications
\SRC Source code for the CLIB (standard C) library (not present in all versions)
\SYS The SIBO Debugger and many other programming tools and file converters
\TPRINT OOP source code demonstrating use of LPRINTER classes
\WD Printer script source for some WDR printer driver files
\WDRPRINT OOP source code demonstrating use of XPRINTER classes plus the saving of

print settings
\WKDEMO HWIF (Tables) and HWIM (Lcdtest) examples for the Workabout

C Programming 11-19

Example programs in the C SDK
The examples supplied with the Psion C SDK are listed below by directory and typically
with the title of manual\chapter where they are discussed.

\sibosdk\demo
General Programming Manual – Fundamental Programming Guidelines
HELLO.C A first example application using CLIB
P_HELLO.C A PLIB version of Hello World
EVENTS.C First version of Events
EVENTS2.C Second version of Events
EVENTS3.C Third version of Events
EVENTS4.C Fourth version of Events
Writing for the HC
W_HELLO.C A graphics version of Hello World
GAUGE.C Graphics and timers illustrated
LINED.C Line editor code and test code
Series3/3a Programming Guide
SOUND.C Using the SND: device driver on the Series 3a
Additional System Info
READRSC.C Reading the contents of a resource file
PLIB Reference
P_DLIST.C Using p_dinfo to list devices
P_PRNDIR.C Using p_open(P_FDIR) to list a directory
P_COMP.C Binary file access (comparing two files)
P_SEARCH.C Text file access (p_read to search a text file)
Window Server Reference
PCXSAVE.C Capturing the screen directly to a PCX file
SCAPT.C Screen capture program using MCLINK RUN
FONTS.C The program used to generate the font pictures in

the manuals
HC Programming Guide - Replacing the shell on the HC
HCSHELL.C Sample shell/application
LKSHELL.C Minimal shell for remote debugging on the HC
General window server funcs
ALERT.C Alert3 example of calling wsAlertW
Windows Server – Clocks
CLOCK.C Clocks demonstration for the HC
Window Server – Graphics output
BUTTON.C Intended use of wDrawButton

11-20 C Programming

\sibosdk\ats
Demonstrates the use of the ATS mechanisms (outside of an OOP application) by
operating as a Macro recorder/player. See ‘The Series 3a Automatic Test System in the
OOP guide.

\sibosdk\ewdemo
The source code for a simple edit window example ehello.img. This program draws a one-
line edit window in the middle of the screen, and diverts most incoming key presses to that
window. Demonstrates use of some OOP techniques - see the ‘OOP Guide’ manual in the
C SDK. See the \Notes directory for a more complex example OOP program.

\sibosdk\hwdemo
Each paragraph in the following section is headed by the name (in bold type) of an HWIF
application. The associated text describes the principle characteristics of each application
and the particular programming techniques that it illustrates. Although these are HWIF
applications the methods employed are likely to be useful for non-HWIF applications, for
instance, in HWIM programs.

Query focuses almost exclusively on the basic menu and dialog functionality of HWIF
(use of the HWIF time-text utility functions is also illustrated). Examples are given of
each of the possible items that can be included in dialogs. There are only a few graphics
calls, and these are completely straightforward. There is no file-handling (likewise in fact
for all of the first four example applications). The application itself provides answers to
questions that a user may wish to pose, such as the conversion of centigrade values into
Fahrenheit or miles into kilometres; the next occurrence of a certain date combination
(e.g. Friday the 13th); the size of a specified file, and the encryption and decryption
(using a supplied key) of given text messages. Query also demonstrates PLIB functions
that avoid the floating-point emulator. Note that QU1.C to QU4.C are development
stages leading up to the Query application.

Tables, introduces reading a key asynchronously. It involves the user typing in the
answer to a multiplication problem (such as ‘4 times 9’) before a timer that is ticking
away on screen runs out completely. Also introduces use of a simple HWIF edit box (with
double height characters), and includes examples of several useful graphics techniques -
with an animated action button and a growing gauge display outside of the context of a
dialog. On exit, the state of the application is recorded in an environment variable,
which is used to re-initialise the application the next time it is run. Note that TA1.C to
TA3.C are development stages leading up to the Tables application.

Remind, functions as a half-way-house between the built-in Agenda application and the
built-in Time application. Allows users to set alarms with text strings, that can be
‘snoozed’ by specified time intervals. Illustrates access to the alarm server device. It
demonstrates more of the important concepts concerning asynchronous I/O. Also
introduces another large subject: printing and access to the Print Setup dialog. The main
screen display is a scrolling list of all reminders scheduled by the user, automatically
sorted into chronological order. The graphics calls employed demonstrate how to achieve
smooth scrolling (without undue screen flicker). Finally, on receipt of the key-press
control+menu, Remind hides or shows a permanent status window, and adjusts the rest
of its display accordingly.

C Programming 11-21

In Remind, all text has been removed from the source module remind.c and placed in
suitable structures in the remind.rss resource file. Code in remind.c ensures that the
resources are loaded as needed. Several aspects should be noted: The custom project file
remind.pr contains the instruction ‘runrs remind’ which has the result of creating the
binary file remind.rsc from the plain text file remind.rss using the batch file rs.bat which
in turn invokes the resource compiler rcomp.exe. The binary file remind.rsc is listed in
the add-file-list file remind.afl to ensure that it is automatically linked together with the
object code as part of the application file remind.app. The routine LoadMenus in remind.c
loads the menu text out of the resource file into static data structures and then ‘walks’
the data structures, converting them into the form required by the HWIF menu sub-system.
In contrast, string data is only loaded into memory when required using the function
LoadStr. The code in remind.c is copiously commented.

Notes is another application that functions as a half-way house between the functionality
of two of the built-in applications: it straddles some of the characteristics of the built-in
Database and Word applications. The screen is divided up into three edit windows,
Title, Notes, and Find, with the data for a series of notes being directly edited in place (as
opposed to being manipulated only through dialogs). As well as providing a wide-ranging
survey of the editing facilities available via HWIF, the Notes application also gives a
further example of printing. An HWIM version of Notes is located in the \sibosdk\notes
directory.

Dump produces a Hex dump of a nominated file; displayed on the screen in the first
instance, but a selected portion of the dump can be written out to a nominated file. The
dump can be scrolled in any direction, it is possible to search it, either for strings of
text, or for byte streams. The application introduces file-handling, both of the file to be
dumped (initially chosen from the system screen), and of the file to receive a written
record of the dump. Finally, the use of a special mode is illustrated, in which repeated
cursor key-presses may cause the display to be drawn in its new position only when there
is a suitable delay in receiving keys.

Tele and Days are two applications illustrating different uses of the .DBF database
sub-system. These applications differ from both Notes and Remind in that they make
permanent copies of their data on file (whereas Notes and Remind just operate with in-
memory data). Both of these applications deal with Shutdown and Switchfile messages
from the system screen.

Tele is a simple example of a fixed field database, with fields for a name, a department
code, and a telephone extension number. Records can be added, deleted, updated,
searched for, and even sorted (using quicksort). A couple of other .DBF file options are
also illustrated: Merge and Copy. Telephone numbers, once found, can have
corresponding DTMF tones emitted. The main screen display is straightforward,
involving double height characters.

Days illustrates a .DBF database that stores peoples' birthdays (or other days of interest),
along with a notes field. The application maintains an in-memory index that sorts the
entries by date to facilitate a more meaningful presentation of the contents of the database.
The main screen view is somewhat elaborate: it can be toggled between a series of edit

11-22 C Programming

boxes (as in Notes) and a scrolling list (as in Remind). Alteration of the data takes place
by direct manipulation in the edit boxes.

Spy reveals many secrets of the inner workings of the Series 3, which present a list of all
the processes running at any one time, together with specified information, such as the
number of cells in the allocator heap of that process, and the watermark on its stack.
This list can be refreshed on a timer, the application also provides an additional example
of asynchronous keyboard reads.

Joker is a maverick application, whose main role is to instantiate all the special cases
tested for by Spy. For example, Joker can corrupt its allocator heap on demand, in a
variety of different ways.

Iconed is a full-blown icon editor, which can be used to design icons for new
applications and to improve the icons shipped with the example applications. This
illustrates a whole variety of more advanced graphics calls, as well as another set of
possibilities in file-based applications.

\sibosdk\hwifood - HWIF with some OOP
It is possible to arrange for an HWIF program to use parts of the built-in object-oriented
libraries OLIB, FORM, HWIM and (from 3a onwards) XADD. For example, to use the
object-oriented dialogs, via the hOODialog function. The techniques involved are
described in the ‘Advanced Use of HWIF’ chapter in the ‘Programming in HWIF’ manual
of the C SDK. The ‘oquery’ is derived from the HWIF ‘query’ example, but ‘oquery’ uses
an OOP style dialog by using a DYL. The ‘gbar’ example uses a growing scroll bar gauge
and uses OOP techniques by modifying the HWIF category itself.

\sibosdk\notes
The example application Notes.app. Full source code and supporting resource and project
files for an HWIM OOP application to demonstrate three edit windows. This application is
an HWIM version of the HWIF notes example program in the \sibosdk\hwdemo directory.

\sibosdk\oopdemo
Simpler demonstrations of OOP techniques than found in the Notes and Record examples.

The ‘prndir’ example application is written largely in non-object oriented code and is
described in the ‘Building an Object Oriented Application’ chapter of the ‘OOP Guide’
manual.

Two ‘hello world’ example HWIM programs are provided.

The ‘timer’ demonstration application uses a timer to illustrate the use of active object
techniques.

The ‘sort and rsort’ examples demonstrate two ways to create and use a custom DYL and
are described in the ‘Building a Dynamic Library’ chapter of the ‘OOP Guide’ manual.

\sibosdk\record
Full build-able source code for a ‘Record’ application built-in to the Series 3a. Full Object
Oriented Series 3a Record application. The design of this application is described in detail
in the ‘Application Design’ chapter of the OOP Guide manual.

C Programming 11-23

\sibosdk\wkdemo
HWIF version of the ‘Tables’ application and an HWIM program ‘Lcdtest’ tailored for the
Workabout.

‘Charger.c’ is a Workabout program to monitor and control the fast charger circuitry in the
docking station. Allows the main battery, or spare battery to be charged, or the main
battery to be discharged, and the status of both batteries to be monitored.

Examples from the text of the I/O Devices Reference manual
The examples described below only exist as listings in the text of the C SDK manuals; they
are not provided in source file format.

Console chapter, P16-18 simple Console example. A short program consisting of two
parts, the first part simply receives keys typed by the user and reports them by type on the
screen. The second part enables the user to scroll a part of the display and to set the
console attributes (scroll lock, line wrap etc) to see how they affect the way typed
characters are displayed.

Parallel Port chapter P21-22. Simple use of the Parallel port.

Serial Port chapter, P32-36. Simple use of the Serial port

Sound chapter, P40. ‘Ice cream van’ dual tone sound.

Sound chapter, P41-42. DTMF Dialling tones.

Xmodem and Ymodem chapter, P69-71. Simple file transfers.

NCP and Link chapter, P82-83. Client server link example.

HC Intelligent bar code chapter, P110-111. Bar code reading.

AccessIR API chapter, P125-128. Infrared inter-machine transfers.

Examples on disk
A wide range of general C examples are supplied on disk, including full applications in
HWIF and HWIM C. There are also numerous C snippets and examples of using C with
OPL, in particular by calling DYLs. See the descriptive lists and the index in the ‘Disk
Contents’ chapter.

11-24 C Programming

OVAL Programming 12-1

12 OVAL Programming

Introduction
OVAL is short for ‘Object-based Visual Application Language’; it is a
relatively new visual programming system from Psion. In brief, it’s
Visual Basic for the Psion; ‘Object-based’ just refers to the way of
working when developing an application. OVAL is code-compatible
with Microsoft Visual Basic and includes over thirty controls that are
specially designed for building Psion applications, and take full
advantage of the EPOC16 operating system. In general, if you know
VB, you will be well on your way with OVAL.

OVAL introduces visual programming, rapid application development and application
prototyping to the Psion environment. It appears to be a very powerful and flexible
programming system, that is designed to dramatically speed up application development.

OVAL applications are only currently applicable to the Series 3c and later Workabout
machines. A 32-bit implementation OVAL for EPOC32 based system is planned, but it is
not expected until the first half of 1998.

To run OVAL applications the run-time system has to be present in the machine, since
OVAL (like OPL) is an interpreted language. OVAL code is translated into tokenised code
rather than compiled into machine code as with C or C++. On the Series 3c and
Workabout machines the ROMs are considerably bigger than in earlier SIBO systems,
because the OVAL run-time interpreter is very large. Putting so much ‘library code’ in
ROM has the benefit of minimising the size of OVAL applications themselves.

Developing in OVAL
It is not possible to produce OVAL applications on the SIBO system directly. To develop
in OVAL, you’ll need the Windows-based development environment; it features an
intelligent source code editor, code translators for Psion computers and over 30
application controls. Developers design applications graphically in a PC based integrated
development environment (IDE) and test them using a suitable Psion computer connected
via a serial link cable.

12-2 OVAL Programming

OVAL platform
Developing in OVAL requires a PC-compatible computer with: 80386 or better CPU, a
colour VGA display, 4 MB RAM or more (8MB recommended), 2 MB disk space or more
and a serial link connection (e.g. Link cable – see the ‘Linking to a PC or Printer’ chapter).

The OVAL IDE will run under the following operating systems: Windows 3.1 or higher,
Windows 95, Windows NT 3.5 or higher, OS/2 2.1 or higher.

OVAL and events
Graphical user-driven interfaces, of the type found on SIBO systems demand a particular
approach to programming. The conventional linear program structure of: user data input,
processing of the data and the display of the results is not suitable for use with OVAL. In
addition to user actions and input, ‘events’ of other types may occur and they all have to
be handled by the application. For example, the expiry of a timer or the receipt of a system
message are also events to be detected and processed. To be able to process a range of
events of the type described, the application will typically have an ‘event loop’ in which it
will wait for an event to occur, process it and then return to waiting for the next event.
OVAL is designed to operate in this way, and will not take kindly to being ‘bent out of
shape’ and forced to operate according to the old linear approach.

By their very nature OVAL applications are event driven, that is they are capable of
handling a range of user actions plus other events arriving from multiple sources. Event
driven applications will remain responsive to user input and events from other sources e.g.
timers and input/output from devices such as the serial port. This, so-called asynchronous
operation, is difficult to achieve in OPL (or HWIF C) and usually requires the use of
Object Oriented Programming in C (e.g. HWIM C); it is fundamental to OVAL.

OVAL makes the task of handling multiple events easier. I recommend that you carefully
study the design and operation of the example applications provided, and then construct
your own according to the same fundamental structure.

OVAL IDE
The OVAL development system consists of an excellent MS Windows hosted Integrated
Development Environment (IDE) from Psion that includes:

• A project manager.
• A powerful multi-file source code editor with coloured syntax highlighting.
• Powerful context sensitive help that calls on an OVAL reference library.
• PC to SIBO communications capability – (a link cable is not included).
• Source code for a range of illustrative OVAL examples.
• A set of utility programs for sound and graphics file conversions, plus a font compiler

for producing custom font sets.

OVAL Programming 12-3

Note:
The Ovaldemo directory on disk contains a fully functional OVAL integrated
development environment (IDE) from Psion Software; the only restriction is that you can
use a maximum of two forms and two modules in each project. For the most up-to-date
copy of the OVAL evaluation IDE you should visit the Psion Website - see the ‘Contacts
and Sources’ chapter for details.

The development process
Applications are produced graphically using the PC based IDE and are tested after
translation using a suitable Psion computer connected via a serial link cable.

You start writing a new program in OVAL by creating a new project file, adding source
files and other application related files as they are created.

OVAL applications are held in project files that .OVP file extensions. The components of
a project include: Forms, Dialogs, Modules, Resources, Pictures and Files.

To help you get started a number of example applications are provided with the IDE. A
screen shot below shows a database example OVDATA.OVP loaded into the OVAL IDE.

12-4 OVAL Programming

OVAL provides facilities to the programmer via a very extensive range of keywords and
functions within the language itself, but also via the numerous controls available plus their
associated property. The fundamental elements of an OVAL application are ‘forms’ and
‘controls’. Every program usually has at least one form, to act as the graphical backdrop on
which the interface elements (or controls) are placed, for example: menus, user input, text,
graphics etc. A form appears as a window when the application is run, and a separate form
is required for each window in the application. A form is a ‘container’ for controls; dialogs
and frames are other types of container.

OVAL Programming 12-5

In the screen shot below, the main form is open for editing; also shown is the control
selection palette.

Examples controls are: text, menus, buttons, input fields, each control has information
associated with it: its physical appearance, its current state, the things the user can do to it
and with it (its events), and the code that determines what the application does in response
to a given event.

All the information relating to a control is stored in its properties (i.e. associated data). For
example, the pressed or un-pressed state of a button is a property element, so is its size,
position on the form, its colour etc.

12-6 OVAL Programming

Imagine a control such as a button; it has an appearance and a state - on or off. It responds
to one event: when it gets pressed. When the button is pressed, OVAL changes its
appearance and state, then generates a suitable event.

Usually a procedure will have been written, in OVAL BASIC, to specifically handle such
an event, OVAL then executes that procedure. The procedure might, for example, display
a dialog box, or quit the program etc.

You can get information from a control by looking at its properties, and you can also set
the properties in order to change the appearance, behaviour or state of the control. If your
code sets the ‘state property’ of the button to ‘on’, OVAL will change the buttons’
appearance just as if it had been pressed.

Some controls are hidden and do not actually appear on the screen, but are useful
nonetheless. A good example is the Timer control, which simply generates an event after a
specified period of time.

In the form example shown above a date edit field can be seen, indicated by dd/mm/yyyy,
the specific characteristics of that field can be seen, and modified by using the object
inspector shown below.

OVAL Programming 12-7

As can be seen, a wide range of object attributes can be varied, including the initial date
value, the minimum and maximum values for the field etc.

Creating sophisticated menus is easily achieved using the menu editor, as shown in the
example screen below.

12-8 OVAL Programming

Accelerator keys and corresponding sub-routines are associated with each of the menu
options created within the application. In the menu item dialog box above, the accelerator
key for the menu option is set to ‘Psion C’ and the sub-routine mnuCreate (show below)
is called when the menu option is selected.

Sub mnuCreate_Click ()
 Dbload = DATA_CREATE
 CreateDBDlg.Show
End Sub

The sub-routine mnuCreate opens a user dialog to get details of the database to be
created. The dialog box opened, CreateDBDlg, is the first one listed in the main project
view (the very first screen shot) shown under the heading ‘Dialogs’.

Editing of OVAL BASIC program code is done through a very good multi-window editor
that has many powerful features, such as an outline view of program procedures, colour
syntax highlighting and an excellent multi-file text search facility.

Data files associated with the application can also form part of the project information, and
files may be flagged for transfer to the SIBO system. The project file tracking system will
update all earlier versions of files on the SIBO machine, replacing them with their more
up-to-date PC versions as required.

Additional information and code macros can be ‘#included’ from other source files.
Constants with long identifier names may be ‘#defined’ and conditional translation is
supported.

IDE extras

In addition to allowing the creation of forms, dialogs, program code and menus, the OVAL
IDE contains a number of very useful additional 'project sections' i.e. Modules, Resources,
Pictures and Files.

Modules: are containers for code and data. An OVAL project consists of one or more
modules. A form module, for example, contains the description of the form, information
about it, and all the controls and code associated with that form. Each module resides in a
separate file associated with the project. Code attached to a particular form is private to
that form - that is, code in other forms cannot access it. Sections of program code placed in
a code module is accessible to all parts of an OVAL program i.e. they are used for code
which you want to be able to access from several forms.

Resources: are used to store program specific string information, constant data and user
help text. Resources and help text can be edited from within the IDE. When the
application is built the resource information can be included in the resulting .APP file.
Separating this type of information away from the program code eases the production of
multi-lingual applications.

Pictures: holds the file names for bitmap files, such as the program icon and any other
bitmaps that may be used by the application. An icon editor is included within the IDE. PC
type bitmap (.BMP) files may also be included and they will be converted to the Psion
(.PIC) format before being transferred to the Psion.

OVAL Programming 12-9

Files: may hold the names of any other files required by the application, they will be
copied over to the Psion as required.

Builds: You can specify different ‘builds’ for a given OVAL project, with whatever
associated files you want. For example, incorporating language specific resource files to
produce a multi-lingual application.

Running applications
OVAL generates fully-fledged applications that have icons and can be installed on to the
system screen. All of the properties of an OVAL application including the application
type, the icon and other .PIC files, resource files etc. are specified as options and file
names etc. within the Oval integrated development environment. When the Oval
application is generated they are included as part of the .APP file.

To run OVAL applications the Psion must contain the OVAL run-time interpreter, this is
currently limited to the Psion 3c and its industrial relative the Workabout.

When you wish to test the code, the build options can be configured to translate all the
source files, transfer the executables and related files to the SIBO system, and start up the
application on the machine.

Oval applications can be distributed without attached royalties, to suitably equipped users,
either on SSD or on floppy disk for installation from a PC. There are no restrictions
attached to any OVAL applications that you may develop but Psion retain the copyright
over the development environment and documentation. Since the OVAL run-time system
is ROM based, it will occasionally be necessary to distribute other OVAL components,
such as updated libraries (.DYLs), along with your application. Psion do not normally
place any restrictions on the developer in doing this.

Debugging
OVAL provides extensive facilities for PC hosted source code debugging of applications
including: breakpoints, debug messages, step execution, watches and immediate code.

• A breakpoint is a point in the code where OVAL will stop and allow you to inspect
variables, see the call stack and execute immediate code (see below).

• Debug messages allow you to print information to the Debug window from within
your application.

• Step execution allows ‘Step over’ and ‘Step into’ options to execute one line of code
at a time - rather as if every line in your application was set as a breakpoint. ‘Step
into’ traces every single line, while ‘Step over’ treats a procedure call as a single line
and does not trace through the procedure itself.

• Watches show the value of a variable or expression, or allow you to pause the
application under certain conditions (as though OVAL had encountered a
breakpoint).

12-10 OVAL Programming

• Immediate code - while the application is paused in debugging mode, you can enter
any legal OVAL statements into the Debug window and see the result. For example,
you could use it to inspect a variable local to the current procedure.

Performance
On a Series 3c OVAL for example, applications can take a surprisingly long time to start
up, this can be disconcerting at first. However, when the application has initialised and is
running, the overall speed can seem to be quite good. Simple OVAL applications are
probably a little slower than an OPL equivalent. However, the demonstration Formula 1
database application was very slow to respond to certain user actions.

Reliability
Version 1.0 of the OVAL translator and run-time system had a number of fairly significant
reliability problems. In particular, there were problems with the integral database
management system and an interim fix was released by Psion to address these specific
problems (see the OVAL section in the ‘Disk Contents’ chapter for details of the fixed
files).

At the time of going to print (September 1997) version 1.1 of OVAL is undergoing final
testing, and is due for release before the end of the year. Version 1.1 is not intended to be
comprehensive revision of OVAL, instead Psion have concentrated on addressing the
reliability issues.

Manuals and documentation
OVAL is supplied with a single manual (180 pages) in a format that is slightly wider than
A5. The manual is designed to take a user, who is new to visual programming, through
each of the stages required to build a simple application. Later chapters describe key
concepts such as variables and objects, controls, files, graphics, databases etc. However,
all of the detailed information required for in-depth programming is located in three very
large Windows help files. These files cover:

• OVAL help – a guide to using and developing with OVAL that supplements the
printed manual.

• OVAL Control Reference – a detailed guide to the available controls, their properties
and methods.

• OVAL Language Reference – a detailed guide to the OVAL BASIC language
keywords and syntax.

In general the help files are very useful, and at first they seem to be quite comprehensive.
However, when put into practical use, the Language Reference file supplied with version
1.00 of OVAL was incomplete in a number of important areas, and contained quite a few
syntax errors. Since the Windows help files are the programmers’ only reference it is very
important that they should be fully comprehensive, and most of all correct. Hopefully,
version 1.1 of OVAL will address this situation.

OVAL Programming 12-11

Support
The main source of information and support from Psion for programmers and developers is
supposed to be via the Psion Websites, in particular the EPOC World Website. However,
no specific provisions currently seem to be in place on the EPOC World Website for
OVAL developers.

In the past, support for OVAL from Psion has been somewhat limited. The best source of
help and advice for OVAL developers is probably available from the ‘on-line’ discussion
forums. For example, active Psion programming related discussions take place on CIX,
CompuServe and Usenet. If you are considering a commercial project based on OVAL,
going ‘on-line’ to seek the experiences of other developers could be very valuable. See the
'Contacts and Sources' chapter for details of how to access the on-line services and the
Psion Websites.

OVAL IDE examples
A number of example projects are supplied with the OVAL development environment and
demonstrate a range of programming techniques. Although it is puzzling that the
applications provided with OVAL do not seem to be documented in any way.

Examples supplied with version 1.0 of OVAL include:

DEMO1.OVP – A small graphics demonstration, using an animated butterfly bitmap and
a timer to control the animation interval.

WALK.OVP – A small graphics demonstration, using an animated figure with a timer to
control the animation interval. The application starts up with an opening ‘splash’ screen.

BALL.OVP – A small animated graphics demonstration, using a variable shaped ball with
a timer to control the animation interval.

PICVIEW.OVP – Uses a file selection dialog to allow the selection of a bitmap file (.PIC)
and then displays the selected bitmap on screen.

IPCCLNT and IPCSRVR.OVP – used together illustrate inter-process messaging in the
form of a client process and a server process that may send and receive messages.

OVSERIAL.OVP – Used with the Visual BASIC application VBSERIAL.EXE,
demonstrate serial communications between a Psion machine and a PC.

OVDATA.OVP – Demonstrates a simple database creation application that allows the
definition of tables with named fields.

DATABASE.OVP – A comprehensive demonstration of the OVAL database functionality
using a database of Formula 1 motor-racing information. This is a complex and impressive
application, but it was very slow to respond to certain information requests when run on a
Psion 3c.

12-12 OVAL Programming

Examples on disk
Some additional OVAL example projects, programmers hint files and database patches are
supplied on disk. Many of the examples and information files have come from the Psion
Inc (USA) Website. See the descriptive lists and the index in the ‘Disk Contents’ chapter,
and the ‘Contacts and Sources’ chapter for details of the Psion Website addresses.

The Ovaldemo directory on disk contains a fully functional OVAL integrated
development environment (IDE) from Psion Software; the only restriction is that you can
use a maximum of two forms and two modules in each project. For the most up-to-date
copy of the OVAL evaluation IDE you should visit the Psion Website - see the ‘Contacts
and Sources’ chapter for details.

Developing new OVAL controls
OVAL may be extended by adding new controls, this can only be done using the Psion
SIBO C SDK in combination with a specific 'OVAL Controls SDK'. The new OVAL
controls SDK is due out before the end of 1997. An extensive knowledge of HWIM C will
be a pre-requisite for building new OVAL controls.

OVAL Programming 12-1

12 OVAL Programming

Introduction
OVAL is short for ‘Object-based Visual Application Language’; it is a
relatively new visual programming system from Psion. In brief, it’s
Visual Basic for the Psion; ‘Object-based’ just refers to the way of
working when developing an application. OVAL is code-compatible
with Microsoft Visual Basic and includes over thirty controls that are
specially designed for building Psion applications, and take full
advantage of the EPOC16 operating system. In general, if you know
VB, you will be well on your way with OVAL.

OVAL introduces visual programming, rapid application development and application
prototyping to the Psion environment. It appears to be a very powerful and flexible
programming system, that is designed to dramatically speed up application development.

OVAL applications are only currently applicable to the Series 3c and later Workabout
machines. A 32-bit implementation OVAL for EPOC32 based system is planned, but it is
not expected until the first half of 1998.

To run OVAL applications the run-time system has to be present in the machine, since
OVAL (like OPL) is an interpreted language. OVAL code is translated into tokenised code
rather than compiled into machine code as with C or C++. On the Series 3c and
Workabout machines the ROMs are considerably bigger than in earlier SIBO systems,
because the OVAL run-time interpreter is very large. Putting so much ‘library code’ in
ROM has the benefit of minimising the size of OVAL applications themselves.

Developing in OVAL
It is not possible to produce OVAL applications on the SIBO system directly. To develop
in OVAL, you’ll need the Windows-based development environment; it features an
intelligent source code editor, code translators for Psion computers and over 30
application controls. Developers design applications graphically in a PC based integrated
development environment (IDE) and test them using a suitable Psion computer connected
via a serial link cable.

12-2 OVAL Programming

OVAL platform
Developing in OVAL requires a PC-compatible computer with: 80386 or better CPU, a
colour VGA display, 4 MB RAM or more (8MB recommended), 2 MB disk space or more
and a serial link connection (e.g. Link cable – see the ‘Linking to a PC or Printer’ chapter).

The OVAL IDE will run under the following operating systems: Windows 3.1 or higher,
Windows 95, Windows NT 3.5 or higher, OS/2 2.1 or higher.

OVAL and events
Graphical user-driven interfaces, of the type found on SIBO systems demand a particular
approach to programming. The conventional linear program structure of: user data input,
processing of the data and the display of the results is not suitable for use with OVAL. In
addition to user actions and input, ‘events’ of other types may occur and they all have to
be handled by the application. For example, the expiry of a timer or the receipt of a system
message are also events to be detected and processed. To be able to process a range of
events of the type described, the application will typically have an ‘event loop’ in which it
will wait for an event to occur, process it and then return to waiting for the next event.
OVAL is designed to operate in this way, and will not take kindly to being ‘bent out of
shape’ and forced to operate according to the old linear approach.

By their very nature OVAL applications are event driven, that is they are capable of
handling a range of user actions plus other events arriving from multiple sources. Event
driven applications will remain responsive to user input and events from other sources e.g.
timers and input/output from devices such as the serial port. This, so-called asynchronous
operation, is difficult to achieve in OPL (or HWIF C) and usually requires the use of
Object Oriented Programming in C (e.g. HWIM C); it is fundamental to OVAL.

OVAL makes the task of handling multiple events easier. I recommend that you carefully
study the design and operation of the example applications provided, and then construct
your own according to the same fundamental structure.

OVAL IDE
The OVAL development system consists of an excellent MS Windows hosted Integrated
Development Environment (IDE) from Psion that includes:

• A project manager.
• A powerful multi-file source code editor with coloured syntax highlighting.
• Powerful context sensitive help that calls on an OVAL reference library.
• PC to SIBO communications capability – (a link cable is not included).
• Source code for a range of illustrative OVAL examples.
• A set of utility programs for sound and graphics file conversions, plus a font compiler

for producing custom font sets.

OVAL Programming 12-3

Note:
The Ovaldemo directory on disk contains a fully functional OVAL integrated
development environment (IDE) from Psion Software; the only restriction is that you can
use a maximum of two forms and two modules in each project. For the most up-to-date
copy of the OVAL evaluation IDE you should visit the Psion Website - see the ‘Contacts
and Sources’ chapter for details.

The development process
Applications are produced graphically using the PC based IDE and are tested after
translation using a suitable Psion computer connected via a serial link cable.

You start writing a new program in OVAL by creating a new project file, adding source
files and other application related files as they are created.

OVAL applications are held in project files that .OVP file extensions. The components of
a project include: Forms, Dialogs, Modules, Resources, Pictures and Files.

To help you get started a number of example applications are provided with the IDE. A
screen shot below shows a database example OVDATA.OVP loaded into the OVAL IDE.

12-4 OVAL Programming

OVAL provides facilities to the programmer via a very extensive range of keywords and
functions within the language itself, but also via the numerous controls available plus their
associated property. The fundamental elements of an OVAL application are ‘forms’ and
‘controls’. Every program usually has at least one form, to act as the graphical backdrop on
which the interface elements (or controls) are placed, for example: menus, user input, text,
graphics etc. A form appears as a window when the application is run, and a separate form
is required for each window in the application. A form is a ‘container’ for controls; dialogs
and frames are other types of container.

OVAL Programming 12-5

In the screen shot below, the main form is open for editing; also shown is the control
selection palette.

Examples controls are: text, menus, buttons, input fields, each control has information
associated with it: its physical appearance, its current state, the things the user can do to it
and with it (its events), and the code that determines what the application does in response
to a given event.

All the information relating to a control is stored in its properties (i.e. associated data). For
example, the pressed or un-pressed state of a button is a property element, so is its size,
position on the form, its colour etc.

12-6 OVAL Programming

Imagine a control such as a button; it has an appearance and a state - on or off. It responds
to one event: when it gets pressed. When the button is pressed, OVAL changes its
appearance and state, then generates a suitable event.

Usually a procedure will have been written, in OVAL BASIC, to specifically handle such
an event, OVAL then executes that procedure. The procedure might, for example, display
a dialog box, or quit the program etc.

You can get information from a control by looking at its properties, and you can also set
the properties in order to change the appearance, behaviour or state of the control. If your
code sets the ‘state property’ of the button to ‘on’, OVAL will change the buttons’
appearance just as if it had been pressed.

Some controls are hidden and do not actually appear on the screen, but are useful
nonetheless. A good example is the Timer control, which simply generates an event after a
specified period of time.

In the form example shown above a date edit field can be seen, indicated by dd/mm/yyyy,
the specific characteristics of that field can be seen, and modified by using the object
inspector shown below.

OVAL Programming 12-7

As can be seen, a wide range of object attributes can be varied, including the initial date
value, the minimum and maximum values for the field etc.

Creating sophisticated menus is easily achieved using the menu editor, as shown in the
example screen below.

12-8 OVAL Programming

Accelerator keys and corresponding sub-routines are associated with each of the menu
options created within the application. In the menu item dialog box above, the accelerator
key for the menu option is set to ‘Psion C’ and the sub-routine mnuCreate (show below)
is called when the menu option is selected.

Sub mnuCreate_Click ()
 Dbload = DATA_CREATE
 CreateDBDlg.Show
End Sub

The sub-routine mnuCreate opens a user dialog to get details of the database to be
created. The dialog box opened, CreateDBDlg, is the first one listed in the main project
view (the very first screen shot) shown under the heading ‘Dialogs’.

Editing of OVAL BASIC program code is done through a very good multi-window editor
that has many powerful features, such as an outline view of program procedures, colour
syntax highlighting and an excellent multi-file text search facility.

Data files associated with the application can also form part of the project information, and
files may be flagged for transfer to the SIBO system. The project file tracking system will
update all earlier versions of files on the SIBO machine, replacing them with their more
up-to-date PC versions as required.

Additional information and code macros can be ‘#included’ from other source files.
Constants with long identifier names may be ‘#defined’ and conditional translation is
supported.

IDE extras

In addition to allowing the creation of forms, dialogs, program code and menus, the OVAL
IDE contains a number of very useful additional 'project sections' i.e. Modules, Resources,
Pictures and Files.

Modules: are containers for code and data. An OVAL project consists of one or more
modules. A form module, for example, contains the description of the form, information
about it, and all the controls and code associated with that form. Each module resides in a
separate file associated with the project. Code attached to a particular form is private to
that form - that is, code in other forms cannot access it. Sections of program code placed in
a code module is accessible to all parts of an OVAL program i.e. they are used for code
which you want to be able to access from several forms.

Resources: are used to store program specific string information, constant data and user
help text. Resources and help text can be edited from within the IDE. When the
application is built the resource information can be included in the resulting .APP file.
Separating this type of information away from the program code eases the production of
multi-lingual applications.

Pictures: holds the file names for bitmap files, such as the program icon and any other
bitmaps that may be used by the application. An icon editor is included within the IDE. PC
type bitmap (.BMP) files may also be included and they will be converted to the Psion
(.PIC) format before being transferred to the Psion.

OVAL Programming 12-9

Files: may hold the names of any other files required by the application, they will be
copied over to the Psion as required.

Builds: You can specify different ‘builds’ for a given OVAL project, with whatever
associated files you want. For example, incorporating language specific resource files to
produce a multi-lingual application.

Running applications
OVAL generates fully-fledged applications that have icons and can be installed on to the
system screen. All of the properties of an OVAL application including the application
type, the icon and other .PIC files, resource files etc. are specified as options and file
names etc. within the Oval integrated development environment. When the Oval
application is generated they are included as part of the .APP file.

To run OVAL applications the Psion must contain the OVAL run-time interpreter, this is
currently limited to the Psion 3c and its industrial relative the Workabout.

When you wish to test the code, the build options can be configured to translate all the
source files, transfer the executables and related files to the SIBO system, and start up the
application on the machine.

Oval applications can be distributed without attached royalties, to suitably equipped users,
either on SSD or on floppy disk for installation from a PC. There are no restrictions
attached to any OVAL applications that you may develop but Psion retain the copyright
over the development environment and documentation. Since the OVAL run-time system
is ROM based, it will occasionally be necessary to distribute other OVAL components,
such as updated libraries (.DYLs), along with your application. Psion do not normally
place any restrictions on the developer in doing this.

Debugging
OVAL provides extensive facilities for PC hosted source code debugging of applications
including: breakpoints, debug messages, step execution, watches and immediate code.

• A breakpoint is a point in the code where OVAL will stop and allow you to inspect
variables, see the call stack and execute immediate code (see below).

• Debug messages allow you to print information to the Debug window from within
your application.

• Step execution allows ‘Step over’ and ‘Step into’ options to execute one line of code
at a time - rather as if every line in your application was set as a breakpoint. ‘Step
into’ traces every single line, while ‘Step over’ treats a procedure call as a single line
and does not trace through the procedure itself.

• Watches show the value of a variable or expression, or allow you to pause the
application under certain conditions (as though OVAL had encountered a
breakpoint).

12-10 OVAL Programming

• Immediate code - while the application is paused in debugging mode, you can enter
any legal OVAL statements into the Debug window and see the result. For example,
you could use it to inspect a variable local to the current procedure.

Performance
On a Series 3c OVAL for example, applications can take a surprisingly long time to start
up, this can be disconcerting at first. However, when the application has initialised and is
running, the overall speed can seem to be quite good. Simple OVAL applications are
probably a little slower than an OPL equivalent. However, the demonstration Formula 1
database application was very slow to respond to certain user actions.

Reliability
Version 1.0 of the OVAL translator and run-time system had a number of fairly significant
reliability problems. In particular, there were problems with the integral database
management system and an interim fix was released by Psion to address these specific
problems (see the OVAL section in the ‘Disk Contents’ chapter for details of the fixed
files).

At the time of going to print (September 1997) version 1.1 of OVAL is undergoing final
testing, and is due for release before the end of the year. Version 1.1 is not intended to be
comprehensive revision of OVAL, instead Psion have concentrated on addressing the
reliability issues.

Manuals and documentation
OVAL is supplied with a single manual (180 pages) in a format that is slightly wider than
A5. The manual is designed to take a user, who is new to visual programming, through
each of the stages required to build a simple application. Later chapters describe key
concepts such as variables and objects, controls, files, graphics, databases etc. However,
all of the detailed information required for in-depth programming is located in three very
large Windows help files. These files cover:

• OVAL help – a guide to using and developing with OVAL that supplements the
printed manual.

• OVAL Control Reference – a detailed guide to the available controls, their properties
and methods.

• OVAL Language Reference – a detailed guide to the OVAL BASIC language
keywords and syntax.

In general the help files are very useful, and at first they seem to be quite comprehensive.
However, when put into practical use, the Language Reference file supplied with version
1.00 of OVAL was incomplete in a number of important areas, and contained quite a few
syntax errors. Since the Windows help files are the programmers’ only reference it is very
important that they should be fully comprehensive, and most of all correct. Hopefully,
version 1.1 of OVAL will address this situation.

OVAL Programming 12-11

Support
The main source of information and support from Psion for programmers and developers is
supposed to be via the Psion Websites, in particular the EPOC World Website. However,
no specific provisions currently seem to be in place on the EPOC World Website for
OVAL developers.

In the past, support for OVAL from Psion has been somewhat limited. The best source of
help and advice for OVAL developers is probably available from the ‘on-line’ discussion
forums. For example, active Psion programming related discussions take place on CIX,
CompuServe and Usenet. If you are considering a commercial project based on OVAL,
going ‘on-line’ to seek the experiences of other developers could be very valuable. See the
'Contacts and Sources' chapter for details of how to access the on-line services and the
Psion Websites.

OVAL IDE examples
A number of example projects are supplied with the OVAL development environment and
demonstrate a range of programming techniques. Although it is puzzling that the
applications provided with OVAL do not seem to be documented in any way.

Examples supplied with version 1.0 of OVAL include:

DEMO1.OVP – A small graphics demonstration, using an animated butterfly bitmap and
a timer to control the animation interval.

WALK.OVP – A small graphics demonstration, using an animated figure with a timer to
control the animation interval. The application starts up with an opening ‘splash’ screen.

BALL.OVP – A small animated graphics demonstration, using a variable shaped ball with
a timer to control the animation interval.

PICVIEW.OVP – Uses a file selection dialog to allow the selection of a bitmap file (.PIC)
and then displays the selected bitmap on screen.

IPCCLNT and IPCSRVR.OVP – used together illustrate inter-process messaging in the
form of a client process and a server process that may send and receive messages.

OVSERIAL.OVP – Used with the Visual BASIC application VBSERIAL.EXE,
demonstrate serial communications between a Psion machine and a PC.

OVDATA.OVP – Demonstrates a simple database creation application that allows the
definition of tables with named fields.

DATABASE.OVP – A comprehensive demonstration of the OVAL database functionality
using a database of Formula 1 motor-racing information. This is a complex and impressive
application, but it was very slow to respond to certain information requests when run on a
Psion 3c.

12-12 OVAL Programming

Examples on disk
Some additional OVAL example projects, programmers hint files and database patches are
supplied on disk. Many of the examples and information files have come from the Psion
Inc (USA) Website. See the descriptive lists and the index in the ‘Disk Contents’ chapter,
and the ‘Contacts and Sources’ chapter for details of the Psion Website addresses.

The Ovaldemo directory on disk contains a fully functional OVAL integrated
development environment (IDE) from Psion Software; the only restriction is that you can
use a maximum of two forms and two modules in each project. For the most up-to-date
copy of the OVAL evaluation IDE you should visit the Psion Website - see the ‘Contacts
and Sources’ chapter for details.

Developing new OVAL controls
OVAL may be extended by adding new controls, this can only be done using the Psion
SIBO C SDK in combination with a specific 'OVAL Controls SDK'. The new OVAL
controls SDK is due out before the end of 1997. An extensive knowledge of HWIM C will
be a pre-requisite for building new OVAL controls.

Series 5 13-1

13 Series 5

Hardware
The Series 5 is fractionally larger (at 6.7" x 3.5" x 0.9") and a little heavier than a Series
3c, but it is still easily stowed in a pocket or handbag. Despite having the same form factor
as the earlier machines the real innovations are revealed when the unit is opened out. The
huge screen fills the upper half of the unit, and the keyboard seems too large to fit inside
the shell when closed again.

The general outward appearance may be similar, but the internals of the Series 5 are
radically different from previous SIBO machines. The central large scale device in the
Series 5 is a CL-PS7110 manufactured by Cirrus Logic Inc, based around an ARM 7100
(Advanced RISC Machines Ltd) which is a 32-bit high-integration, application specific
micro-controller, with very low power consumption. The CL-PS7110 device was
developed by a close collaboration between Psion Computers and ARM.

Series 5 machines run under EPOC32, a completely new 32-bit operating system designed
and written by Psion Software. EPOC32 on the Series 5 uses a new Graphical User
Interface called EIKON.

The higher CPU performance allows the Series 5 to cope with the increased software
demands imposed by friendlier user interfaces, WYSIWYG applications, increased
functionality and advanced communication protocols. A high performance CPU removes
the need for expensive and power hungry floating point or DSP (Digital Signal
Processing) units.

Power
Series 5 machines are powered by 2 × AA batteries (giving up to 35 hours life) with a
2032 3V lithium backup cell and an optional external AC adapter (6V DC).

Machine IDs
Programmers interested in copy protection or Shareware registration will be intrigued by
the possibilities presented by 16-digit unique machine identifiers included in Series 5
machines.

13-2 Series 5

ARM processor and sub-systems
The 32-bit RISC (Reduced Instruction Set Computer) processor runs at 18.432 MHz
giving 15-MIPS (Million Instructions Per Second), equivalent to a 33MHz Intel 486 based
PC.

The ARM 7100 device is based around the ARM 710a processor core, which includes a
MMU (Memory Management Unit) and 8-Kbytes of on chip unified instruction and data
cache. Despite containing 570,000 transistors, the ARM710a chip is very small. Outside
the ARM710a core, the ARM7100 uses the AMBA bus to access the integrated
peripherals. The ARM7100 is only a little larger than the ARM710a processor itself.

Besides improving performance from inexpensive memory systems, the on-chip cache also
saves power by reducing the need to drive the power-hungry external busses. In addition to
efficient memory management the MMU provides hardware memory protection to the
operating system and other processes from bugged applications.

The ARM 7100 chip supports a large memory address space (3072MBytes total) it can
directly interface to four banks of DRAM (Dynamic Random Access Memory). Each bank
is 32-bits wide and up to 256Mbytes in size. Self-refresh DRAM is also supported as well
as SRAM/ROM flash memory.

Using the ROM/expansion interface, eight separate linear memory segments are decoded,
each segment being 256Mbytes. Memory segments can be programmed to be 8, 16 or 32-
bits wide. Wait states can be included, either programmed or using a ready pin. This
interface could be called a static memory interface, it can connect SRAM but not DRAM.
Like the DRAM interface, no additional glue logic is required.

The ARM7100 typically delivers 10 times the CPU performance of the 16-bit architectures
on which many of today's electronic organisers are based. These processors are not cached,
have no memory management and have relatively slow clock speeds.

The ARM7100 has exceptionally low power demands (only 66mW full speed), it delivers
270 MIPS of performance per Watt of power consumed, much greater than the best of its
competitors at 150 MIPS/Watt. It has two low power modes (down to 33uW) to further
maximise battery life. During the development of the EPOC32 operating system, Psion
collaborated very closely with the chip designers to ensure that EPOC32 took full
advantage of all of the features of the CL-PS7110, including its unique ultra low-power
consumption modes to maximise battery life. Advanced power management technology
ensures lowest power consumption in standby, idle and normal operating modes. The CL-
PS7110 allows the Series 5 system to consume one-half to one-tenth the energy compared
to the requirements of similar systems.

The ARM7100 typically consumes only 20mA in normal operation at 18.432MHz,
equating to only 66mW at 3.3v. It is specified to 2.2v in standby, where the main oscillator
and display are shut off.

An internal PLL (Phase Locked Loop) is used to generate the main system clock.
Mechanical devices like the quartz crystal are very power hungry and the faster they are

Series 5 13-3

driven the hungrier they are. Using a PLL to multiply the clock frequency by five, system
power consumption is reduced since the external crystal runs at a lower speed.

The ARM7100 is designed to have a second very low speed external clock crystal (32kHz)
to save more power when in standby mode than if the main clock frequency was just
divided down. This second clock is designed to use a very cheap and low power quartz
watch crystal. The 32kHz oscillator maintains the real-time clock and the ability to wake
up for interrupts. Typical current consumption is 10uA.

Idle mode is where the display is still being driven, but the clock to the CPU core is
stopped. The system can respond to any interrupt, e.g. a tap on the screen. Typical current
consumption is 1.5mA. Two pins on the chip can be used to force the device into standby
mode - synchronised with the DRAM cycles. Transition from standby back to normal
operation is only allowed if the appropriate pins indicate no power problem, thus avoiding
a restart when the battery is flat.

Improved user interface features are accommodated by the integral high resolution (640 by
240 pixels), 16 grey scale LCD controller. The keyboard connects via a parallel interface,
the analog-to-digital converter for pen input is connected via a synchronous serial port.

There are five FIFO (First in First Out) buffers on the ARM7100, two for UART
(Universal Asynchronous Receiver Transmitter), two for CODEC interface and one for the
LCD controller. (CODEC is short for Coding and Decoding of analog data streams to and
from digital data.)

Connection to other devices, such as a desktop PC or modem, is achieved through an
RS232 port driven by the on-chip UART. The internal UART has similar functionality to
the 16C550, supporting bit rates up to 115.2kbits/sec. The UART includes an IrDA
(Infrared Data Association) SIR (Serial Infrared) protocol encoder. Transmit and receive
pins are used to directly drive an infrared interface for links to printers and other IrDA
enabled equipment.

PC-card (PCMCIA) slots are essential in many handheld devices. For example, to enable
the user to plug in adapters such as a modem, Ethernet card, memory device and so on.
The ARM7100 contains all the necessary logic to support a PC-card interface, only
requiring an external buffer on the main system bus.

The interrupt controller supports high and low priority interrupt requests. There are a total
of sixteen interrupt sources, including 4 external interrupt pins.

A CODEC interface allows direct connection to a telephony type CODEC chip. This is full
duplex with two separate 16-byte FIFO buffers. Speech recording/playback (and possibly
voice control) is via the CODEC interface which is connected to the internal speaker and
microphone.

A DMA (Direct Memory Access) controller is used to service the LCD without software
and CPU overhead, freeing the processor for other tasks. When the FIFO buffer local to
the LCD controller is half-empty, a DMA request is generated to transfer the next part of
the video buffer located in the external RAM. Main system RAM is used for display
storage to keep the system flexible and cost low.

13-4 Series 5

A power management/state control block controls the start-up and shutdown of the main
oscillator and all power management features. These include hardware shutdown (to avoid
starting-up with low batteries) and battery-low interrupt generation.

Other ARM 7100 peripherals are: Two 16-bit timer/counters with two modes of operation,
a real-time clock and match register, DC-DC converter interface (2 channels) and a
watchdog timer. For parallel I/O, there are 36 bits of programmable I/O (four 8-bit ports,
one 4-bit port).

Hardware block diagram

Notes:
The device labelled E2 contains information such as the unique machine ID and
configuration information such as whether the operating system is in ROM or Flash RAM
(the speed of access is different).

Series 5 13-5

Memory and storage
Current Series 5 machines are available with 4Mb or 8Mb internal RAM memory which
approximates to 2000 pages of text; 40,000 appointments; 20,000 database entries; or 30
minutes of digital audio.

The 32-bit architecture removes the 64K memory constraints on programs and data found
on SIBO system. The Series 5 ROM is now a relatively massive 6 Mbytes.

A section of the internal RAM drive is designated as drive C:, the single compact flash slot
is seen as drive D:, any other drives may be assigned letters E: to Y: (The ROM drive is
referred to as drive Z:).

Storage space is sub-divided into folders instead of directories and filenames can be very
long; up to 255 characters including embedded spaces. Application documents now have
names without the usual filename extension.

Compact flash
Psion have abandoned the use of their proprietary SSD storage units for Series 5, in favour
of industry standard compact flash storage (CF) devices. Compact flash refers to a form
factor for plug in cards that measure approximately 36mm deep by 43mm wide by 3.3mm
thick. The CF format has been adopted as a standard by companies such as Kodak, Canon,
NEC etc, for digital still cameras. CF is also being taken up by manufacturers of other
handheld devices such as organisers, pocket computers and mobile phones.

Concerns about storing certain types of data, such as text and document files, on Flash
RAM are a thing of the past. Media reformatting is not required with CF storage; deleted
file space is recovered automatically. Data on CF disks is very secure, the devices feature
dynamic defect management and error correction. Transfer rates with CF storage are very
high, reading at up to 3.0 Mbytes/sec and writing at up to 1.0 Mbyte/sec.

A single CF card slot (50-pin connector) is provided under the right-hand-side of the
Series 5. CF cards are available from Psion (Sandisk manufactured) and others such as
Simple Technology. Typical capacities are 2, 4, 8, 10, 12 and 16 Mbytes. Higher capacity
CF devices will soon be available from a number of sources, capacities in excess of 32
Mbytes are planned.

Note:
Not all CF units are made equal. Read/write performance and power demands can vary
widely between manufacturers, it is wise to compare the specifications before purchasing
from untried sources.

13-6 Series 5

Screen
Series 5 has a backlit LCD screen, 134-mm wide by 50-mm high, with a resolution of
640x240 pixels (100 x 26 characters) and 16 grey levels. A touch sensitive digitiser (ADC)
overlays the screen, the sidebar and the application icons. The sensitive area is therefore
larger than the display area, it is approximately 142-mm wide by 58-mm high, to allow for
the icon bar and the sidebar at the left edge side of the screen.

The screen resolution of 640x240 pixels is referred to as half VGA and contains twice as
many pixels as Series 3a/c (153600 versus 76800). The sensitive area has a higher
resolution of 695x280, so the icon-bar and sidebar do not take up valuable display area.

Three graphics drawing modes are possible:
• Two 'colour', black and white, no grey (1 bit per pixel).
• Four 'colour', black, white, light grey and dark grey (2 bits per pixel).
• Sixteen 'colour', black, white, and 14 grey levels (4 bits per pixel).

For graphics, four-colour mode (grey-levels) is preferable. Although sixteen-colour mode
may apparently lead to more impressive graphics, there are a number of reasons not to use
this mode:
• The battery load is very much higher
• Bitmaps occupy far more memory and disk space.
• Because of contrast limitations on LCD displays the difference between four-colour

mode and sixteen-colour mode is hardly noticeable.

A new bitmap file format is used; the new .MBM files can hold multiple bitmaps in
compressed format (by a factor of two over the EPOC16 format). Utilities are supplied on
the PsiWin 2 CD-ROM for converting bitmaps between PC .BMP formats to S5 .MBM
and vice-versa. Icons and bitmaps may be imported and exported from the built in Sketch
application. Icons and bitmaps are discussed in more detail in the ‘Programming
Techniques’ chapter.

User input
A 53 key full-travel laptop-style keyboard extends out of the case when the ‘clam shell’
style case is opened. A pointing device or stylus is stored in the right-hand-side of the unit.

The user interface of the Series 5 is designed to make maximum use of the integral touch
sensitive areas including the screen, the sidebar and the icons buttons just above the top
row of keys. However, the system can be driven equally well through the keyboard, either
via selecting menu options or better still by use of menu short-cuts, also known as
hot-keys.

Touch sensitivity has a slight down side; to use it your programs must be event driven.
Series 5 applications should respond to key presses, pointer events (called pen taps), and
system events, e.g. messages to switch documents, shut down etc. Event driven
programming is discussed in detail in the ‘OPL32 Techniques’ chapter.

Series 5 13-7

Hot-keys
The Psion key, familiar to SIBO users as the ‘hot-key’ modifier, is replaced on the Series 5
by the Ctrl key. For alphabetic keys the Ctrl modified value is the ordinal position in the
alphabet ignoring upper and lower case. For example:

Ctrl+A or Shift+Ctrl+A will return 1

Ctrl+B or Shift+Ctrl+B will return 2 etc.

This value can be found by ANDing the ASCII value of the alphabetic character with (NOT
$60). So the key code of upper and lower case letters is the same when pressed together
with Ctrl, with only the value of the modifier differing. For example, pressing Ctrl+J
returns 10 which is (6A AND (NOT $60)).

The following table lists the default hot-key standards for the Series 5. Not all applications
support every one of these, so typically a number of these may frequently do application
specific things instead.

Key Ctrl+key Ctrl+Shift+key

A Select all About Program <name>
B Bold
C Copy Insert special character
D Delete
E Close
F Find Font
G Go to
H Replace Help on Program <name>
I Italic Merge in
J Find next Format object
K Preferences
L Spell Thesaurus
M Zoom in Zoom out
N Create new
O Open Insert object
P Print Print set-up
Q Switch view Password
R Revert to saved
S Save Save as
T Show toolbar Show top toolbar
U Underline Page set-up
V Paste Print preview
W Wrap
X Cut
Y Redo
Z Undo Edit object

13-8 Series 5

Special keys
The codes returned for various special keys are as follows:

key Hex code decimal code

Home 1002 4098
End 1003 4099
PgUp 1004 4100
PgDn 1005 4101
← 1007 4103
→ 1008 4104
↑ 1009 4105
↓ 100A 4106
Menu 1036 4150

Notes:
Repeatedly pressing the Menu key does not cycle through the menu ‘cards’ as it does on
SIBO systems. Pressing the menu key a second time will cancel the menu in a similar
manner to pressing the Esc key.

Pressing the Help-key on Series 5 will always call system related help, hence the Help-key
cannot be used for application specific help. Application related help should now be
provided as an application menu option, via a hot-key press (Ctrl+Shift+H is
recommended) and preferably also via a help button on the application's Toolbar.
Providing application specific help is described and demonstrated in the ‘OPL32
Techniques’ chapter.

Audio
An internal speaker and microphone are present in the Series 5 and are linked through a
CODEC chip to provide a digital audio system. Sound may be recorded and replayed from
digital sound files that are compressed/decompressed in real-time. External record,
play/stop, rewind buttons provide ‘Dictaphone’ type capabilities without needing to open
the unit up.

Audio record/play application software is provided as standard and the digital sound
capabilities are available for use by application programmers.

If the batteries are low on a Series 5 making a beep sound via a system function call may
not produce the desired effect, the buzzer will be used instead, it produces a higher pitched
sound. Buzzer sounds are generated via the same speaker using additional circuitry,
designed to place a lower drain on the batteries.

Series 5 digital-sound files are more compact than the SIBO equivalents. Utilities are
provided on the PsiWin 2 CD for converting Series 3a/c (.WVE) to Series 5 formats and
vice versa. Sound files from the PC (.WAV) can also be transferred in either direction.

Series 5 13-9

Sound files and conversion utilities are discussed in more detail in the ‘Programming
Techniques’ chapter.

Communications
A single combined serial/parallel port is supplied at the back of the Series 5. It uses the
same 15-pin ‘Honda-format’ connector as the Series 3c.

Since connectivity is a fundamental objective for Series 5 systems, all machines are
supplied with a serial cable plus Psion's Explorer software on CD-ROM.

Psion Software’s EPOC Connect software runs on a Microsoft Windows-based PC (Win
95 or NT only) to provide integration facilities (EPOC Connect is ‘badged’ variously by
licensees: Psion Computers’ PsiWin 2.0 product is an example).

Using EPOC Connect, the PC and EPOC32 machine can see each other’s disks, and access
and transfer data. Backup and restore for the EPOC32 machine is supported, with a range
of partial restore options. File format conversion, and agenda synchronisation at record
and even field level, are supported. The EPOC32 machine may use the Windows printing
system to print: this avoids the inconvenience of changing printer cables, and allows
EPOC32 to drive any Windows-supported printer in addition to those it supports natively.

EPOC Connect supports a range of file formats from Microsoft, Lotus and Corel and a
range of applications; word processors, spreadsheets, databases and PIMs. Round-trip
format conversions preserve many features. The architecture of EPOC Connect is
extensible, so that converters for new releases, or different vendors’ products, may be
written.

IrDA infrared links
At the time of going to print only Psion to Psion infrared data transfers or infrared printing
is possible with suitably IrDA enabled systems. An infrared Psion to PC link adapter for
use with the Series 5, and software such as PsiWin 2 is due become available (Autumn 97)
as an option from Psion. The infrared protocols used on the Series 3c and Siena have
changed on the Series 5 and data transfers from SIBO to Series 5 are not possible using the
standard system software.

The RS232 serial port and the infrared link are capable of transfer speed up to 115.2Kbps.

Series 5 has a built-in VT100 terminal emulator.

13-10 Series 5

Software
The Series 5 is based on EPOC32, Psion's new 32-bit multi-tasking operating system.
EPOC32 is based on a small highly optimised real time micro-kernel.

The micro-kernel schedules threads pre-emptively, and uses a memory management unit
(MMU) to provide separate address spaces for each process, therefore isolating all
processes from each other.

EPOC32 is based on a client server model. A few vital system-wide services, such as
thread creation, semaphores and timers, are provided by the kernel. Most other system
services are provided by a variety of servers, such as the file server, window server, serial
communications server and others. The kernel and all servers keep track of the resources
used by their clients, and when a client thread terminates all associated resources are
cleaned up.

The ‘native’ language of EPOC32 is C++. The ‘standard’ Series 5 applications and the
vast majority of EPOC32 is written in C++, even the device drivers, only the kernel is
written in assembly language.

The structure and operations of EPOC32 are discussed in more detail later in this chapter.

System interface
EIKON is the default GUI (Graphical User Interface) for EPOC32. It builds on a number
of central operating system components described later in the chapter.

Displays on handheld machines impose a number of unique constraints; including smaller
screen sizes, grey scale or more restricted colour capabilities, and sometimes lower
contrast. Handheld systems are also used in a wide variety of lighting conditions ranging
from outdoors, through brightly lit offices, to subtly lit rooms at home.

EIKON makes good use of screen space by displaying menus only when needed, and
allowing the toolbar to be optionally turned off. Since the task bar is off-screen, there is no
need to permanently waste screen space displaying the applications currently running.
Cascaded menus allow the length of menu panes to be shortened to fit within a shallow
screen depth. Multi-page dialogs, besides being a valuable GUI paradigm in their own
right, also help to conserve space.

To compensate for displays with lower contrast, EIKON makes use of strong contrasts for
its user interface elements. Available options are displayed in black on white, in a
reasonable-sized font.

Almost all application views support zooming to three, four or five magnification states.
This allows the zoom-state to be tailored to the best compromise between amount of
information displayed, and visibility, depending on lighting conditions, the application’s
data, and the user’s eyesight. Since easy adjustment is a critical comfort factor, zooming is
a sidebar function, always instantly available.

Series 5 13-11

Psion Software designed EIKON specifically for the requirements of handheld machines.
It provides the look and feel for users, a framework for programmers, and an environment
for applications.

EIKON defines the look and feel of the Series 5 machine. It is designed to make this as
attractive as possible. Although in some circumstances, an EPOC32 machine may use a
different GUI.

A wide range of interface elements are available to an OPL32 developer, and they are
determined by those implemented in EIKON. However, more flexibility and options are
available to a C++ developer.

EIKON uses real-world metaphors for some things, however, as PCs are now part of the
real world, PC metaphors such as menus, dialogs and toolbars are also used, these can be
quickly learned. Experience of other platforms has demonstrated that complete departure
from PC to other ‘real-world’ metaphors, while they may be fun initially, severely
compromise the overall usability of the machine.

Psion have paid considerable attention to the wording and layout of text in menus, dialogs
and error messages. Dialogs are navigated using arrow keys rather than TAB. Cues are
given when keyboard shortcuts are available, except for standard keys such as ESCAPE
and ENTER.

The I/O devices of a handheld machine are different from those of a PC: EIKON has been
designed to make EPOC32 machines easy to use with both the keyboard and pen, and to
make optimal use of display ‘real estate’.

Series 5 applications
The ‘standard’ Series 5 applications include: enhanced database, time management,
calculator, time/world clock, word processor, spreadsheet, sketch/draw tool, VT100
communications, audio software, spell checker and the OPL32 programming language.
Due to the additional processing power available the applications ‘built in’ to the Series 5
are now WYSIWYG wherever appropriate.

Under EPOC16 there is a confusing array of application ‘types’ and associated ‘type’
modifiers. (See the ‘Processes, Memory and Applications’ chapter). The situation is
simplified under EPOC32, only two application types are now recognised; applications
that use documents and those that don't. Also the ‘type’ modifiers have gone.

Applications, as well as folders and files, can have long names up to a maximum of 250
characters. In practise using names that are above the usual maximum of eight characters
will create a number of difficulties. For example, when the name is presented in certain
elements of the user interface, such as the Toolbar title and the Extras bar, it will be
truncated.

Under the new system, all applications for distribution should have a unique identifier
numbers (UID) and hold program information and settings in a Windows-style .INI file.

13-12 Series 5

Application UIDs
All applications must specify a unique identifier, and they are used in a number of ways
with the Series 5 system. Applications developed for personal use may safely use any UID
in the range &0100000 to &0fffffff. Psion will issue a UIDs for applications that are to
be distributed; they are guaranteed to be unique and start at &10000000. To obtain a
reserved UID you should contact Psion Software – see the ‘Contacts and Sources’ chapter.

OPX UIDs
All OPL extensions (OPXs) have UIDs to avoid confusion between OPXs that might have
the same name.

AIF files
Application information files (AIFs) are associated with all applications and contain
supporting data such as the icons/masks, the application name(s) and type. The OPL32
translator creates this file automatically based on the details supplied in the APP...ENDA
header.

User interface
The basic user interface metaphor used for Series 5 has changed from that used on most
SIBO systems, i.e.: Icons in the system screen with file lists underneath them, application
files that depend on specific file name extensions that are typically located in specific
application directories. EPOC32 uses a desktop metaphor that is very reminiscent of
Windows 95.

Before designing a new application time spent carefully studying the operation and user
interface of the system, and of the ‘standard’ applications will be time well spent. It is
important, wherever possible, to closely model the ‘look and feel’ of your applications on
the ‘house style’ demonstrated by Psion.

When porting a SIBO application to EPOC32 it is tempting to do the minimum to get the
application ‘up and running’, and to avoid the additional complexity involved in adopting
the new user interface model. If you take the easier approach, for example to leave out
options for a pen driven interface, the application will immediately stand out as an
anachronism to the user. It may be acceptable to those who are familiar with SIBO
applications, but it will be particularly irksome to users who are not familiar with
applications on earlier Psion systems.

Files
Some changes on the Series 5 are in name only. For example, directories are now known
as folders. Series 5 folders and files can have long names up to a maximum of 250
characters.

Series 5 13-13

However, other changes are a little more complex than they may seem at first. Files created
and used by applications are now known as documents and appear on the system screen
next to the corresponding application icon. They contain unique header information to
allow the system to launch the correct application when the user selects a document.

Non document files, i.e. those that do not launch applications when selected, are marked
with the default ‘question mark’ icon (except for certain application related files in the
system folder).

Application documents can be put anywhere the user wishes, conventionally they do not
have nor do they depend on specific extensions to the document name. It is the
programmers’ responsibility to ensure that any necessary folder\file paths are created as
required. New documents created from within a running application should inherit the
current program settings. If an application has a ‘Save as’ option it should save the current
file, create a copy of the current file with the new name and switch to using the new file.
This ‘Save as’ behaviour differs from SIBO applications which stay with the original
document.

Despite the fact that the files an application creates/uses are referred to as documents, the
term file should still be used in any text or prompts in the user interface. For example in
menus, dialogs and other user prompts.

Some aspects of SIBO-style behaviour have been retained. For example, applications and
the files that support them often have specific extensions and are located together in a
specific folder. All applications have a .APP extension (including OPL applications);
resource files end in .RSC; bitmap files end in .MBM and program settings are held in
files with a .INI extension.

Applications and their support files are typically held in a specific folder located directly
under the \system\apps folder. Programmers may still find file name extensions useful. For
example, to distinguish the nature and contents of non-document files that hold other
‘internal’ data required by an application.

Using file name extensions for application support files may simplify the installation of an
application when using PsiWin 2. Early versions of PsiWin 2 may confuse the user by
failing to transfer some files, or even attempting to convert non-document files, during the
installation of an application from a PC to a Series 5. File transfers may be made more
reliable, for the user, if file name extensions are used for non-document files.

Assuming they are located correctly, applications are automatically 'installed' on the Extras
bar. For simple OPL programs the RunOPL icon has gone. When a folder is open, any
OPO programs will appear on the system screen next to a default OPL icon.

Keyboard conventions
Although it is one of EPOC32’s key features that it supports pen-based devices, keyboard
operation is still critically important. A good quality keyboard is still the fastest and most
accurate way to enter large amounts of text. In some conditions, the environment may not
allow pens to be used with great accuracy.

13-14 Series 5

EIKON provides powerful dialog facilities. However, dialogs are navigated using the
arrow keys rather than the tab key (as in Windows). Left and right arrow keys are often
used to navigate within a control, but up and down arrow keys navigate between individual
controls within a dialog. This provides more obvious behaviour to the users, and is a more
natural use of the keyboard within a dialog. As a consequence, dialogs provide only a one-
dimensional vertical array of controls. In practice, this is not an onerous constraint. Multi-
page dialogs provide a natural interface, especially for rich features such as print set-up or
agenda entry settings. Custom controls may be written, containing existing controls if
necessary, that provide horizontal navigation for some dialog lines. The one-dimensional
control list may be extended by using a scrolling dialog.

The most common application commands are available from both the menu and via
keyboard shortcuts. Some keyboard shortcuts are defined earlier in this chapter. For
instance, Copy from the Edit menu is CTRL+C, which will be familiar to users of
Microsoft Windows applications. Other keyboard shortcuts may be application-specific.

Menu items and buttons in dialogs, that have keyboard shortcuts associated with them, are
indicated by an appropriate label. EIKON provides this support automatically, without
programmer intervention.

Pen conventions
EIKON has been optimised for pen usage. Because a pen is not a mouse, different gestures
are appropriate. Pens are good for freehand drawing, but bad for accurate double-clicks
and for drag-and-drop. Clearly, a pen cannot do a right-click. EIKON keeps the pen
interface simple by supporting only the simplest operations with the pen.

The double-click operation familiar to mouse users is replaced in EPOC32 by select and
open. A pen tap on an unselected object will select it. A pen tap on a selected object will
open it. The time interval between selecting and opening is irrelevant.

EIKON makes further use of the pen by presenting an application-specific toolbar to the
right of an application’s window: the toolbar provides a clock, and commonly used
functions at the press of a button.

EPOC32 allows the digitizer to be extended beyond the visible area of the screen. EIKON
uses this to provide a pen-activated side bar on the left with menu, clipboard, infrared and
zooming functions. The digitizer is also extended below the visible area of the screen, to
provide a task bar with application-switching icons.

Standard controls and views provide many active elements. For instance, clocks in the
toolbar may be changed from analog to digital by tapping them. The time may be set from
the Time application by tapping on the clock. ‘Dog-ears’ are available on the Agenda
views to turn pages.

The majority of pen-enabled interface elements are sufficiently large to select comfortably
with a pen, even under unfavourable conditions. Buttons on screen, side bar and task bar
may even be selected with a finger.

Series 5 13-15

INI files
Series 5 applications should store program information and current settings in .INI files.
For example, if the application uses documents it should save the name and path of the last
file used by the application. When an application starts up or closes down information in
the program .INI file should be read or updated respectively. Application .INI files should
have the same name as the application and be located using the same path. All active .INI
files (other than a .INI file used as an initial template) should be stored on the internal
drive, i.e. drive C:. So for example, PPCOPL32.APP has a PPCOPL32.INI file located in
the C:\System\Apps\PPCOPL32\ folder.

In maintaining information in .INI files it is important to remember that multiple
invocations of an application may be running, but there should only be one .INI file.
Therefore, information should only be saved to the .INI file when the application (or any
copy of it) closes. This way, the information stored will always correctly reflect the latest
user preferences and record the document that was last in use. For this reason, .INI files
should be opened, read and closed immediately, they should never be kept open during the
lifetime of an application.

If a .INI file does not exist, or is corrupt, a new file should be created containing suitable
defaults. Creating a .INI file may be done by writing default data into a new file, or by
making a copy from a prepared ‘template’ file (as per the ‘standard’ applications). In the
case of missing or corrupt .INI files, simply recreate a new one but do not confuse the user
with an error message.

Command line information
Command line information is passed to Series 5 applications when they start up, in a
similar manner to SIBO applications. In addition to the Create and Open command bytes
(i.e., ‘C’ and ‘O’), a new Run command byte (‘R’) may be encountered by Series 5
applications. Run signifies that the application has been run from the Program editor, or
has been selected via the Application’s icon on the Series 5 ‘Extras’ bar. It also signifies
that the application was not launched by the selection or creation of a document from the
System screen. A default filename, including path, is passed in to the application by the
system (and is retrieved in OPL32 using CMD$(2)).

On receipt of the ‘R’ command, an application should always try to open the document
that was in use when the program last exited, as recorded in its .INI file. If the .INI file
does not exist (see above), or if the ‘last file used’ no longer exists, you should create a
new document using default file name supplied by the system. (i.e. in OPL32 in CMD$(2)).
The default file name provided by the system screen is based on your application’s name
or caption.

Whenever an application changes to another document it should inform the operating
system to allow the system screen to embolden the current document name, and to
correctly show it in the task list (in OPL32 this is done using the SETDOC command).

13-16 Series 5

New command line information
In EPOC32 a running application may receive messages from the system screen as on
SIBO systems. Valid commands received (typically while the program is running in the
background) are:

• ‘X’ to shutdown the program
• ‘C’ to create a new file, i.e. using the name entered by the user in the dialog presented

by the system screen
• ‘O’ to open the file picked from those displayed on the system screen.
• ‘U’ unknown command.

On arrival of the shutdown message (‘X’) the application should save and close its current
document, save the information and current setting in the .INI file and then close down.
For example, if the user selects the file from the task list and chooses the close option, or
because the message had been sent by the system itself.

For create ('C') the application should save and close its current document, create the
specified new document and restore all program settings to the defaults.

For open ('O') the application should save and close its current document, open the
specified existing document and restore all program settings to the defaults.

Document UIDs
Files that belong to an application are referred to as documents, and are identified by
having the programs' UID embedded in the document (file) header, rather than by their
location and/or file name extension. Documents display their application's icon and will
launch the application if selected. A document header may contain up to four UIDs; you
should always assume the first 32 bytes of a document file, at least, are allocated to UIDs.

The various UIDs are used to identify files in the system for many purposes.

UID1 is the most general identifier, and indicates the type of file structure used (see Store
later). For example:

Database files have UID1=10000050h (KPermanentFileStoreLayoutUid).
Bitmaps are stored with UID1=10000037h (KDirectFileStoreLayout).

UID2 is used by the system screen uses to distinguish between applications of various
types and documents:

Document identifier UID2
EIKON applications 1000006Ch

EIKON applications’ documents 1000006Dh

OPL applications 268435572h

OPL applications’ documents 268435573h

For non-documents files, the value in UID2 indicates that the file is an ‘external file’. In
OPL32, if SETDOC is used, the OPL document UID (KUidOplDoc&=268435573h) is

Series 5 13-17

used instead. External or non-document files do not have an application UIDs, and are
displayed on the system screen beside a question mark icon to indicate that they are
unrecognised.

UID3 is used by the system screen to identify a specific application.

UID4 is a checksum and is system generated (by Store, see later).

A small Series 5 utility program (Uidread), for reading the four UIDs from Series 5 files, is
provided on disk with source code in OPL32 format in \Ppcopl32\ppcopl32, and in text
format in Ppcopl32\dosutils\ppctxt.

Icons
Series 5 icons typically contain three sizes, i.e., 24x24, 32x32 and 48x48 pixels, to
accommodate the different zoom levels in the system screen. The sizes are read from the
.AIF file, if the exact size required is not provided, or if some sizes are missing the most
suitable size is used. Production of Series 5 icons is discussed in the ‘Programming
Techniques’ chapter and more information for OPL32 programmers is provided in the
‘OPL32 Techniques’ chapter.

Toolbars
Status windows used on SIBO systems have been replaced by Toolbars on Series 5.
Toolbars, like status windows, are also located on the right hand side of the screen. The
system screen usually displays a Toolbar (try pressing Ctrl+T). A typical application
Toolbar window will have a title, four application related buttons and a clock. Options on
the Toolbar may be context or mode sensitive i.e.; the options/buttons presented may
change to reflect the current operating ’mode’ of an application. EPOC32 provides support
for the use of Toolbars to application developers. Use of Toolbars in OPL32 is described
and demonstrated in the ‘OPL32 Techniques’ chapter.

13-18 Series 5

EPOC32
Series 5 machines run under the control of EPOC32, Psion's new 32-bit multi-tasking
operating system, that is based on a small highly optimised real time micro-kernel. The
following section is an overview of EPOC32 and its principal components. If you are new
to programming the Series 5 you should spend some time reading this (possibly difficult)
section to familiarise yourself with the new terms and concepts involved.

OPL32 programmers are largely isolated from the intricacies of the operating system, but
C++ programmers will have to become closely acquainted with EPOC32 concepts and
terminology.

A hierarchical diagram of EPOC32 is given below, and it can be seen that the ‘Base’ is the
central core of EPOC32. The base provides the programming framework for all other
components in EPOC32.

Base

Comms Engine
Support

Graphics

EIKON

PC Connect

Development
Support

C++ Apps

OPL

OPL Apps

App engines

Series 5 13-19

Base The core of EPOC32 that acts as the overall system supervisor and
executive. It provides the hardware abstraction layer, user libraries and
the file services.

Comms Serial comms (RS232 and IrCOMM) and sockets (IrDA, TCP/IP, PLP
Psion Link Protocol).

Engine support
for data

Streams, Store and DBMS services.

Engine support
for graphics

Device independent e.g. same for screen and printing.

Engine support Utilities for resource files, clipboard, alarm and world servers, sound
compression etc.

App engines e.g. ShEng.dll the spreadsheet engine – access to application data is
through App engines (OPL would use an OPX for engine access).

EIKON EPOC32’s graphical user interface and policy/graphics layer, providing
elements such as dialogs, menus, toolbars etc. CONE – CONtrol
Environment supports EIKON with very abstract user-interface
elements.

Threads and processes
The EPOC32 micro-kernel schedules threads pre-emptively, and uses a memory
management unit (MMU) to provide separate address spaces for each process, therefore
isolating all processes from each other.

A ‘process’ is a unit of memory protection (an application for example), that may have a
number of associated ‘threads’ that are units of execution, and ‘own’ resources. A process
may just consist of a single thread, and in that case the two terms are effectively
interchangeable.

Each different application started from the system screen, the icon bar or from the extra’s
bar goes into its own process. The individual processes are protected from each other. So if
the user opens two Word documents and one Sheet document three separate processes will
be running. If one instance of the Word application failed, there would be little if any risk
to the other processes or their data.

However, the user may embed some Sheet data inside a Word document (effectively inside
the Word application). In this case the instance of the Sheet application, that edits the
embedded sheet data, will be running in the same process as the Word application, i.e. as a
separate thread. If the embedded Sheet thread was to fail then there is a definite risk to the
data of the ‘containing’ Word application, and possibly to the Word process as well.

Finally, the above discussion only applies to ARM based processes and threads. In the
WINS emulation the ‘S’ in WINS stands for ‘Single process’, hence all applications run in
the same process.

13-20 Series 5

The base
The main components of the base are:

• The kernel
• User library
• Device drivers
• File server

EPOC32 is designed to run on more than one platform, for example the ARM 710
processor and PC platforms. Regardless of the platform on which the base is implemented
the user library and file server present a consistent interface to user programs.

The kernel
The kernel and all servers keep track of the resources used by their clients, and when a
client thread terminates all associated resources are cleaned up. Memory is a precious
commodity in all hand held systems. Resources must be freed when they are finished with;
leakage could cause a system failure eventually. It is especially important that partially
allocated resources should be freed when an operation fails because of insufficient
resources. Within each thread, errors are reported by a leave() function, and may be
trapped by either system or application code. As part of leave() processing, automatic
cleanup deals with partially allocated resources, and prevents memory and other resource
leakage.

EPOC32 achieves its excellent real-time performance in two ways. Firstly, its server-based
architecture allows it to run with processor interrupts always enabled, except for a few
short instruction sequences. Thus interrupt latency, the time between an interrupt
occurring and an interrupt service routine being scheduled, is typically a few tens of
microseconds (for an ARM 7100 at 18MHz). Typical thread latency is only a little longer
than this. If no higher priority thread is running, the thread latency is limited by the time it
takes the interrupt service routine to decide what to do, to post the thread’s request
semaphore, and have the executive schedule the thread.

EPOC32 provides ‘superthreads’, which run as kernel extensions at a higher priority than
the kernel server. ‘Superthreads’ maximum latency is 100 microseconds on an 18MHz
ARM 7100. By contrast, user threads running at a lower priority than the kernel-server,
have a maximum latency limited by the longest running kernel service, which at 35
milliseconds is still very respectable.

The kernel and executive run in privileged state, and can directly access all parts of the
system. User threads run for the most part in unprivileged state. User threads access the
kernel via the kernel executive, whose services are presented through the user library API
(Application Programmers Interface). A user thread can only directly access its own data,
plus data belonging to other threads in the same process.

The kernel server thread is always present. It is the highest-priority thread in the system,
and performs services on behalf of other threads. The kernel server owns all kernel
resources, which reside on the kernel heap. Kernel resources may be used by the executive,

Series 5 13-21

operating in the context of any thread, or by other kernel-side threads. However, kernel
resources may only be allocated by the kernel server to minimise context switching and
locking in the system. It allows the system to run essentially without disabling interrupts,
so that interrupt latency is in the order of a few microseconds.

Power management is a key activity of EPOC32. A ‘null thread’ is always present; it is the
lowest-priority thread in the system and therefore only runs when there is nothing else to
do. It stops the CPU clock to save power, and sets an inactivity timer that will turn the
machine off if no user activity occurs within a given time interval.

User library
A user thread may use services provided by the kernel, by I/O devices, or from other
threads that function as servers. User-threads request kernel services by using the user
library application programmer’s interface (API). The services are carried out by the kernel
server thread. Such services include: extending the heap, timers, semaphores, creating
processes and threads; anything fundamental to the operation of the machine.

The user library makes facilities available to user threads and, in some cases, provides
services to the kernel as well. The user library provides the leave() function, and cleanup
facilities which make it easy for programs to detect errors such as out-of-memory, and to
clean up partially allocated resources. Strings and fixed-length data buffers are supported
by a unified class hierarchy: the descriptor classes. In addition to active objects, EPOC32’s
cleanup support and descriptors are among its most distinctive aspects.

Support functions for DLLs, threads and processes are provided. Data structures include
lists, dynamic memory buffers, and extensible arrays that build on the memory buffers.
C++ templates are used to provide type-safe collection classes. Math functions manipulate
IEEE754 double-precision floating-point numbers. Text support functions similar to
sprintf() in standard C, and a parser like sscanf() are provided.

Device drivers
Machine resources are managed by the kernel, and device drivers interface with hardware.
Device drivers are mainly used by the kernel, but the drivers have associated libraries to
allow user threads to access the driver’s facilities. User threads request services from I/O
devices by using an API provided by a user-side device driver library. The device request
is handled by a device driver under kernel control.

Current device drivers include:

Keyboard Pointer
digitizer

Screen Sound Timer

RS232 Parallel Infrared ATA TCP/IP

The kernel and device drivers implement the required EPOC32 functions in different ways
depending on the hardware platform. The base is responsible for providing the same

13-22 Series 5

interface to user programs, regardless of the particular EPOC32 platform. On each
platform, the base interfaces with underlying hardware or software in a different way.
EPOC32 provides all of the drivers for the CL-PS7110 peripherals.

File server
The file server manages files on behalf of all client threads in the system, and on behalf of
the kernel. The file server presents an object oriented API to its clients, through which
clients may manipulate drives, volumes, directories and files. Volumes are formatted using
VFAT: filenames, including their drive and path, may be up to 256 characters long.

On a machine platform, the ROM is mapped to drive Z:, and contains an unlimited VFAT
directory tree. The RAM is dynamically allocated between user threads and between the C:
drive. Removable media are supported in the form of CF cards (compact flash). Remote
drives, on another computer, connected by a communications link, are supported through
installable file systems.

The file server implements the program loader which supports both .EXEs and .DLLs.
Both are executed in-place from ROM, and loaded as needed from RAM or from
removable or remote drives. On machine platforms, DLLs are restricted to linking by
ordinal, rather than by name to prevent potentially long names wasting memory.
Production of link-by-ordinal DLLs, and maintenance of binary compatible enhancements
to them, is fully supported by the EPOC32 tool chain. On machine platforms, DLLs may
not have write-able static data: instead, object handles must be passed directly, or thread-
local storage (TLS) must be used: there is one machine word of TLS per DLL per thread.

Support services
A few vital system-wide services, such as thread creation, semaphores and timers, are
provided by the kernel. Most other system services are provided by a variety of servers.
Whatever method is used to provide a service, communication between the service
provider and the service requestor is essential.

Message passing
Services provided by servers are referred to as objects, and they are identified using
handles that consist of one or two machine words. Client threads use handle objects to
identify the service requested from the provider. Service request functions, made via a
library, are translated by the library into a message, which may consist of a request code
and up to four machine-word parameters. The executive sends the message to the service
provider. The service provider may respond with a single machine word, which is used as
a return value to the client. For services requiring more parameters or bulk data transfer,
inter-thread read/write functions are available.

The service provider may represent the object with a potentially complex and large class.
Depending on the type of service, objects may be shared so that different client threads
may access them, each client using its own handle for the object. The service provider

Series 5 13-23

must monitor all its client threads so that, if any of them terminates, whether normally or
abnormally, all the server-side resources it currently owns may be released.

Client/server model
EPOC32 is based on a client server model, for example:

File
server

Window
server

Font/bitmap
server

Process
server

Sound
Server

Comms
server

Alarm
server

World server Database
server

Socket
server

User threads request services from server threads by using an API provided by the server’s
client interface library. The service is carried out within the server thread. Servers are used
for all high-level services: in EPOC32, this means anything that does not interface directly
with the kernel or with a device. Servers are often used to manage a single resource on
behalf of multiple clients, controlling sharing or exclusive access where necessary. In turn,
these servers often own and drive I/O devices on behalf of their clients.

For example, the file server is responsible for sharing and manipulating all files, file
systems, devices and media. The window server shares the screen, keyboard and pointer
between processes. The client-server framework is so easy to use that, if you need to write
a multi-threaded application it’s often easier to structure the dependent threads as servers
rather than to use basic thread services.

Asynchronous operation
Asynchronous operations are fundamental to EPOC32, as they were in EPOC16. Many
kernel, I/O and server-provided services complete asynchronously. Monitoring the state of
a number of objects that may have outstanding requests by polling in a tight loop uses a lot
of battery current. To save power, EPOC32 makes extensive use of its own asynchronous
services. Clients wait for completion of asynchronous services, rather than polling. All
threads spend most of their time waiting for one of a number of outstanding requests, and
then briefly handle requests as they are completed.

The mechanism EPOC32 provides to handle asynchronous requests (active objects) is the
‘active object’ system; a design pioneered by Psion in EPOC16. Most threads use an active
scheduler to manage one or more active objects. Each active object is responsible for
requesting a particular service, and then handling its completion. Handling completion
may take from a few tens of instructions, to a couple of seconds: often, handling
completion will result in issuing more requests for asynchronous service. Using an active
scheduler to manage one or more active objects it is possible to produce applications that
always remain responsive to the user.

13-24 Series 5

Stream store
The stream store is fundamental for engine support. Data from applications is stored in a
network of streams, and streams are held in a store. A store may be a file, or it may be a
clipboard, undo buffer, or other implementation.

File stores include two types:

• Direct file store in which streams are written just once and is suitable for most
applications

• Permanent file store in which streams can be manipulated at will and is suitable as a
foundation for a database.

All EPOC32 applications use file stores for their main documents. Embedded documents
are supported by embedded stores, whose interface is similar to that for a direct file store.

The stream store is used for all data storage requirements in the system, and it is a
requirement of any component, or application engine, that it be able to store its data in a
stream, or in a store using a network of streams. Therefore, all other engine support
components use the stream store.

In a conventional system, data is stored in files. For instance, a word processor document
containing an embedded bitmap and an embedded chart may be stored in a file containing
three segments as follows:

For conventional direct access to the file, the word processor would save all the data
sequentially, starting with the embedded objects, and ending with the text stream itself.
References within the file would use seek positions, and would all be backward: useful,
because by the time they are needed, they are already known. The seek position for the
top-level text stream would be stored in a reserved location at the beginning of the file:
this is also possible, if you reserve a fixed amount of space (say, four bytes) at the head of
the file before writing the other data. A file format like this is relatively easy to produce. It
is efficient, and has an important advantage: the embedded objects do not have to be
loaded along with the main text stream, until they are needed. A stream store may be
thought of as an abstraction of such a file, and Psion represent it as follows:

Each stream in the store is identified by a stream ID and the whole store has a single root
stream. One stream may refer to another using its stream ID.

The store interface is abstract, but has a number of concrete implementations. The ‘Direct
file store’, provides exactly the function required by the word processor above: the streams
are written in sequence, the stream ID is represented by a seek position, and the root
stream is stored in the file store’s header. The ‘Direct File store’ is used by most
applications with load/save behaviour; such as a word processor. When the application
saves its data, the old file store is replaced entirely (usually, for safety, it is renamed until
the new file store has been written successfully).

Another concrete store implementation is the ‘Permanent file store’; this uses a much more
complex implementation, allowing streams to be manipulated, added, deleted, extended
and re-written etc., at will. Great care has been taken in the implementation to ensure that
updates are atomic, even under failure conditions. As a result of these complexities, stream

Series 5 13-25

IDs bear no relation to seek position, in fact, you should make no such assumptions about
stream IDs. Such stores are suitable for database type applications, in which entries are
loaded, manipulated and saved a few at a time. It is called a ‘Permanent file store’ because,
although entries may be replaced when they are saved, the file store itself is not replaced.

Other store types are used to implement the system clipboard, in-memory buffers used
sometimes for undo processing, buffers used for communications (e.g., infrared beaming
of application data), and system .INI files.

Most classes in EPOC32 are either ‘stream-aware’ (they can externalise to and internalise
from streams), or are ‘store-aware’ (they can store to and restore from stores, creating and
manipulating streams as necessary). As a result, and because there are so many types of
store, the system is very flexible and promotes re-use in many ways. Provider interfaces
allow new types of stream and store to be written, which further extends the possibilities
for re-use.

Embedding objects
Application data files are referred to as ‘documents’, and are stored in stream stores. The
environment constructs the stream store, and the application uses it without knowing what
type of store it is. For a main document, the environment may construct either a direct file
store or a permanent file store, depending on the requirements of the application.

For an embedded document, the environment constructs another type of store, an
‘embedded store’. The embedded store uses, as its underlying medium, a stream in the
containing store. An embedded store supports the same kind of operations as a direct file
store. Therefore, any application whose main document uses a direct file store may also be
embedded.

The advantage of using an embedded store is that, if the embedding document uses a
permanent file store and wants to delete an embedded document, it needs only to delete a
stream. Or, if it wants to copy an embedded document, it needs only to copy the stream
data. Compared to opening the embedded document during these operations, this saves
RAM, saves having to specify passwords on encrypted embedded documents, and allows
deletion and copying of embedded documents even if their associated application is not
available.

Doors, glass or iconic
Documents with an embedded object must indicate the presence of the object to the user.
This representation is referred to as a ‘door’. If you open a door, you move into the
embedded document. Some embedded documents may only be represented by an ‘iconic
door’, which show an icon associated with the embedded application. Iconic doors are
suitable, for instance, for voice memos, or for long word processor documents. Some
embedded documents are represented by a ‘glass door’; you can see what is behind a glass
door without opening it. A glass door presents a picture of the embedded data.

Application architecture
The application architecture specifies the methods by which embeddable applications can
be found when you wish to embed something in document. In addition it specifies the
methods by which the embedding application can be found again when a glass door is

13-26 Series 5

drawn, or when a door is opened. It also provides the means to manage an application
thread that may have loaded several applications, representing the main document, any
glass doors that are being displayed, and any embedded documents that are open. For this
reason, embeddable applications are all DLLs that run in an existing thread, rather than
programs that would each require a separate process.

Implementing embedding
Object embedding works by re-using several existing components of EPOC32. In turn
applications re-use parts of EPOC32, and parts of their existing code, to support
embedding.

The embedding system is extensible, with no fixed set of embeddable applications. To
make your own application embeddable, you need to create a door for it. An iconic door is
very simple to add. A glass door is slightly more work; most glass-door code benefits from
re-use of application view code that must be written to support on-screen display and
printing.

You also support embedding from your own application: re-use rich text as a component
of your application, and EIKON’s rich text editors will handle the embedding of any
application’s data. The power that this system delivers to users can be seen by detailed
study of the applications built-in to a Series 5 machine.

DBMS
The stream store is also the basis for the database management system (DBMS), which
uses a permanent file store to provide a relational database containing an arbitrary number
of tables. Commit and rollback are supported, together with incremental compaction and
space reclamation. An SQL subset is provided to allow views to be constructed on data
from a table in the database. The database makes very efficient use of RAM and file space,
and can recover from operations that were interrupted, for example by an emergency
power-off.

Graphics
EPOC32’s graphics components fulfil the requirements of a GDI (Graphics Device
Interface), for two main devices, the screen device and printers. Together, the graphics
components form the basis for the EIKON GUI.

The font and bitmap server and BITGDI provide the low-level data management and
rendering needed to produce graphics on screen, or off-screen bitmap. The ARM
processor’s RISC instruction set enables the BITGDI to perform as an extremely effective
blitter and graphics renderer.

The window server builds on these components, using the BITGDI to draw graphics on the
screen, clipping each operation to the boundaries of its window, whether that window is
fully visible, or partially hidden by others higher up in the window order. CONE, the
CONtrol Environment, provides the abstract base class used by all GUI controls: a control
is a rectangular region that may be either a whole window, or just a part of it. Additionally,
any control may contain zero or more component controls.

Series 5 13-27

As well as graphics, the window server drives the keyboard and pen. Keystrokes are sent to
the application with focus, and pointer events are sent to the application owning the
window in which they occurred. CONE packages these facilities, offering each key event
to a stack of controls in turn, and routing each pointer event to the control in which it
occurred. Together, CONE provides sufficient framework for both individual controls, and
controls in the context of a thread that may be running multiple embedded applications.

These facilities provide a powerful programming framework. However, the central
graphics components do not impose the user interface policy: menus, dialogs, toolbars,
buttons, window borders etc are all the responsibility of the EIKON GUI, which uses the
facilities of the graphics components.

Views
Built on the graphics system are several high-level views, all available for applications’
use.

Text views provide an interface for displaying, editing and rapidly reformatting text
content. This is a complex process, but because it is provided as a system component of
EPOC32, it is available for use in any application.

Chart provides business graphics, and is used, for example, by the Sheet application, to
provide charts data based on a spreadsheet range.

Grid provides a grid of rich text data. It is the basic component of a spreadsheet, but can
also be used for other applications.

Clock provides self-updating digital or analog clocks.

Fonts
The font store supports a variety of ROM fonts and also allows applications to define their
own and add them to the font and bitmap server until they are no longer required. EPOC32
provides Times New Roman, Arial and Courier New, plus some symbol fonts and special
UI fonts, such as LED-type digits for the calculator and similar applications.

Rich text
All operating systems and class libraries provide some support for strings. Real text,
however, is much more than strings. EPOC32’s text content and views provide a rich text
model that is used by most EPOC32 applications.

A rich text object consists of characters, paragraphs and pictures. A wide range of
character and paragraph formatting options are available. Any picture derived from the
GDI-provided abstract base class may be included in rich text.

Text content may be stored in a stream store, and may therefore form part of any
application’s data model. An EPOC32 application such as the word processor has a data
model which is simply a rich text object, plus some UI settings such as the cursor location
and zoom state. An application such as the spreadsheet may use several hundred rich text
objects to represent its cell data.

13-28 Series 5

Rich text provides a full range of functions to support inserting, deleting and formatting
text content. An application that manipulates text interactively should co-ordinate its text
content updates with calls to the text views formatting engine, which maintains a display
on the screen. The text views API has been designed for convenience in use, and enables
editors to be written which manipulate large documents with no noticeable performance
degradation when compared with small ones.

EIKON provides standard editors for rich text, available either stand-alone or as
components of dialogs, for re-use by any application which manipulates rich text.

Re-usable rich text is a technology that Psion Software pioneered in EPOC16. It is a
difficult technology. In conventional systems, application authors who wish to present a
non-trivial interface to their users often end up with one of two undesirable situations.
Either they do not attempt the task at all, or they achieve only a minimal and quirky
implementation, and pay a relatively high price even for that. EPOC32’s facilities are
ready for re-use, and allow developers to present a consistent, efficient and usable interface
to applications.

From a technology point of view, rich text also presents another convenient aspect of re-
use: the text views do not use the text content model directly, but through a carefully
defined interface. This interface may be provided by another content model, such as a web
browser or large-scale text browsing application. This allows the application to provide the
text content in an application-optimised way (perhaps implementing dynamic
decompression from a read-only database), but to re-use the layout and formatting
capabilities of text views for display and printing.

Printing
The GDI defines a conventional banded printing model. All graphics devices support
zooming and scaling, and a print device is not fundamentally different from any other type
of device. An application’s view code can therefore be re-used to draw to a banded printer.

EIKON provides a set of re-usable printing components, available to any application. Print
preview uses a print device that maps to a window on the screen. A print settings dialog
specifies which pages to print, and print set-up specifies paper size and margins, headings
and footings. Print settings are ‘stream-aware’, and so may be stored along with an
application’s other data in the application’s stream store.

EPOC32 provides many printer drivers to drive printers directly, over a serial link or, for
maximum convenience, using infrared. If you already have a printer connected to a PC,
EPOC Connect provides the facilities to re-use any printer driver written for Windows,
and any TrueType font, for printing from your PC.

A generic print component provides printer support and several printer drivers for popular
printer families.

Each printer driver provides its own font metrics, and turns the GDI commands issued by
an application when printing, into the relevant instructions for the target printer. It is
possible to use the printer font metrics when formatting for the screen: the text views
component does this, to provide genuine WYSIWYG for the word processor and other
applications. A print job may have a header and a footer, each optionally hidden on the

Series 5 13-29

first page: the header and footer each use rich text, and so support rich content, including
fields for the page number and total number of pages. All print settings can be stored in a
stream, and therefore contained as part of any application’s document content.

A special type of printer driver provides an on-screen preview of any print job. It is
therefore easy for all applications to support print preview.

Another printer driver drives a Windows-hosted printer through EPOC Connect. EPOC
Connect also allows font metrics of any TrueType font to be downloaded to the EPOC32
machine, so that WYSIWYG formatting on the EPOC32 machine is still possible.

A final special case is fax; any application that can print documents may also output to fax.

Component re-use
The components described above provide particularly powerful re-use which may be
appreciated by all developers and users of an EPOC32 system, and which help to make
EPOC32 significantly more powerful than any of its competitors.

More conventional components are also available for re-use, ranging from collection
classes for arrays and lists, in the user library, to hierarchical list boxes and other GUI
elements in EIKON.

For developers, this presents enormous benefit. An EPOC32 developer should assume that
a component is available to do a certain task, and spend some time looking for it. At first,
this may take a while. However, within a short time, this leads to enormously productive
programming, and applications that deliver power to users, in a compact package.

GDI
The GDI does not implement graphics, but it is fundamental because it provides the
abstract base classes used by all graphics on the system. These include a graphics device, a
graphics context (used for all drawing), colour, measurement and zooming support, printer
support and fonts.

Text content
The GDI’s definitions are used in turn by the text content model. This is a powerful
component of EPOC32, which allows rich text to be manipulated with ease. This supports
a variety of applications ranging from the word processor (which simply manipulates a
single rich text object) to entries in databases, agendas and spreadsheet cells. Text content
may also be stored in any stream store.

Application architecture
The application architecture specifies all the architectural issues to do with finding
applications, tracking running applications, file locations, icons and captions, and object
embedding. It provides an extensible system of language environment support: each
language environment provides its own plug-in facilities to recognise and run applications.
Currently, EIKON, OPL and .exe programs are supported. A future language environment

13-30 Series 5

such as Java could provide its own recogniser and run under the present application
architecture without changing it.

Engine utilities
Finally, the engine utilities provide more useful tools, including resource file support (used
for specifying GUI components and translatable text strings), clipboard support, sound
utilities, specialised array classes, an alarm server, and a world data server.

Comms
EPOC32’s communications support is based on two servers: the serial communications
server (comms server) and the sockets-server.

Serial communications
The comms server provides a client API and several serial protocol implementations, each
of which is written to a provider interface.

The serial client API provides a virtualisation of the RS232 device. On the one hand, this
allows the full function of the device to be accessed by any client thread. On the other
hand, it allows any number of threads to have the device open concurrently, provided only
that no two clients attempt to read or write simultaneously. This port sharing gives
increased flexibility: for instance, a dial-up application may use a scripting engine running
in one thread to log onto a service, and then hand the port over to the sockets server to
handle communications during a session.

The provider interface allows any serial protocol to be written, running as part of the
comms server. The serial protocol may be implemented as an active object system running
in the same thread as the comms server or, when pre-emptive response is necessary, it may
launch threads of its own.

Two serial protocols are provided by EPOC32. The RS232 protocol drives the built-in
RS232 device at speeds up to 115kbps on an 18MHz ARM 7100. A full implementation of
IrCOMM is also provided.

On the client side, XMODEM and YMODEM are supported.

Sockets and networking
The socket server’s client API provides an object-oriented sockets interface, with its
cultural heritage in the BSD sockets API. A provider interface provides, in layered form,
support for any sockets protocol. Implementations include TCP/IP, IrDA, and Psion Link
Protocol (PLP).

The TCP/IP implementation supports a rich variety of protocols, including SLIP and PPP.

PLP is a proprietary protocol, used for compatibility with EPOC16, and for
communication to the PC using EPOC Connect.

Series 5 13-31

Dial-up and scripting
Dial-up connections are supported by a telephone dialler using a dial-engine to perform
transformations on telephone numbers to dial the correct tone sequence. The same engine
can be used for DTMF dialling for voice connections. A scripting engine supports the
potentially complex process of signing on to a dial-up service.

EIKON
EIKON is the default GUI (Graphical User Interface) for EPOC32. It builds on the central
components represented by the base, engine utilities and graphics components. It also uses
other machine facilities, notably comms (i.e. for printing).

GUI elements
EIKON provides a rich set of GUI elements. Users can send commands to applications
using menus, shortcut keys, or toolbar buttons. Menus support cascades. Dialog support
includes single and multi-page dialogs and even scrolling dialogs for special applications.

Many standard controls are available, including number and text editors, list boxes and
combo boxes, font and sound selectors, and controls optimised for personal information
management, such as convenient time/date navigation, and latitude and longitude editors.

Scroll bars have dynamically-sized grab handles, and scroll application data automatically.

Many types of list are supported, including hierarchical lists, multi-column lists in which
each entry has several aligned fields, and snaking lists, that wrap vertically into a
container. A variety of standard lists are provided, and owner-draw lists may be written.

A console is available for displaying comms terminals and text-based shells, like an MS-
DOS prompt under Windows 95.

Standard higher-level components include file browsers, ‘Open’ and ‘Save As’ dialogs,
print settings and print preview.

These standard components, plus the flexibility for programmers to define their own
controls, make EIKON the most powerful GUI available for handheld use.

Programmers framework
EIKON provides a powerful framework for programmers. To a first approximation, any
application program may be thought of as an engine plus a GUI. GUI programming in turn
divides into issuing and handling commands, drawing application views, and handling
commands with dialogs.

In EPOC32, separate engine development is encouraged. A well-structured application’s
engine will be completely independent of EIKON.

13-32 Series 5

Commands may be issued using menus, the toolbar or via shortcut keys. It is easy to
specify any of these methods, using a resource file. An EIKON application provides a
single function to handle all commands: typically, this identifies the command and invokes
another function to process it.

Application views consist of one or more controls, which allow the application to draw its
data, and to handle interaction through keyboard and pointer. Usually, the application re-
uses the same drawing code for the control used in the view, for printing, and for drawing
as a glass door.

Many commands are handled using a dialog to specify some further parameters, before
doing some action. Dialogs are specified in a resource file and implemented by deriving
from EIKON’s abstract dialog base class. Facilities are provided to get data into and out of
dialogs, validate controls individually, and ensure consistency across controls. In addition
to the wide range of controls provided by EIKON, you may include custom controls in a
dialog. Dialogs are automatically laid out when they are constructed, so that it is not
necessary to specify pixel positions and sizes in the application. An additional benefit of
automatic layout is that dialogs adjust automatically, when the application is localised into
new languages.

EPOC32 variants
EPOC32 has been optimised for handheld mobile devices. Today, such devices require
considerable software power and robustness. Psion have stated that EPOC32’s robust
design was inspired by industrial-strength workstation environments such as Unix, or
Windows NT. Its multi-processing architecture allows EPOC32 to be scaled upwards to
meet very high demands for personal computing power.

EPOC32 also supports lower-end scalability. Its resources are all owned by threads rather
than processes; this allows EPOC32 to be configured as a single-process system with
relative ease. As it happens, such a single-process system is also much easier to implement
under Win32 than a full multi-process system. The WINS development environment is
therefore a single-process variant of EPOC32.

EPOC32 is an international operating system. It supports localisation in a variety of
Western languages using the Windows Latin 1 and Windows Latin 2 character sets. These
are the ‘narrow’ builds of EPOC32, which allow text data to be represented compactly in
Western markets.

EPOC32 is also designed for ‘wide’ builds, using the UNICODE character set for all
internal purposes, and additionally a variety of other character sets (such as shift-JIS) for
data interchange. Psion Software, together with Psion’s Far Eastern subsidiaries are
working on the input method editors and enhancements to text formatting and GUIs,
required to support Far Eastern locales.

On a machine platform (referred to as MARM, MX86 etc.), the ‘Base’ functions as a real
and complete operating system. The kernel and device drivers use the machine’s hardware.
The file server presents the ROM as drive Z:, and uses the RAM for drive C:, shared
dynamically with other applications’ use of RAM. The file server may also use removable

Series 5 13-33

media for other drives. A hardware abstraction layer (HAL) is used to allow much of the
base to be re-used without change, even for radically different underlying platforms. On
machine platforms that share a common instruction set, such as ARM variants, different
implementations require only slight alterations to some device drivers and configuration
files.

WINS
WINS is an emulation of a machine platform. For example on a Windows 95/NT PC it is
used as the basis of the OPL and C++ SDKs (software development kits). The user library
API and the client interface to the file server are essentially identical. User programs built
on the WINS base use exactly the same source code and binaries as for MX86, and the
same source code as for MARM.

The WINS kernel and device drivers use the Win32 API to provide services. For example,
the EPOC32 screen is mapped to a window on the PC screen: the size and background
bitmap for the window may be configured to represent a variety of EPOC32 target
machines. In all other respects, the emulator window functions just like any other Win32
window. The HAL presents various intended hardware emulations to higher-level parts of
the base.

The WINS file server maps drive C: onto \epoc32\wins\c\ on whatever drive the SDK is
installed. Z: is mapped onto a directory whose name depends on the variant of the WINS
platform: for narrow debug builds, Z:\ is mapped to \epoc32\release\wins\deb\z\. This
means that an EPOC32 program under development, even if it has serious bugs, will not
be able to damage the users’ PC-based files, or even the installed EPOC32 SDK.

WINC
WINC is designed to run the WINS application engine libraries(DLLs), driving them with
format conversion programs that form part of desktop connectivity software. For example,
WINC is the basis of PsiWin 2. The user library and file server provide substantially the
same API for WINC as on a machine platform. The kernel and device drivers use the
Win32 API to provide services to WINC. Unlike WINS or the machine platform, there is
no support for graphics and no need for a screen window. Also, since the driving program
is not an EPOC32 user program, but a Windows application, the WINC file server does
not attempt to map file references into safe areas. Instead, the whole PC file system is
available to WINC and the driving software is responsible for using it correctly.

The WINC platform relies on another EPOC32 concept: that of application ‘engines’. In
C++, it’s sometimes appropriate to think of the member functions of a class as the only
way to access its member variables. On a much larger scale, the API of the application
engine is the only way to access an application’s data, including its file format. Therefore,
instead of publishing file formats for such purposes as format conversion on the PC,
EPOC32 applications simply make their application engines available for use.

An app engine may also be used to promote rapid application development on a machine.
In EPOC16, many programs were written to access files produced by the built-in

13-34 Series 5

applications and so provide an interface between PIM data and some other application.
Under EPOC32, this can be achieved in the OPL language by writing an OPX to provide
some of the app engine’s API to an OPL program. Users of this technique must be aware
that EPOC32 applications do not support concurrent access to a single data file.

For converting file formats, the engine is run under the WINC platform. For converting
formats, only the data is needed; graphics components and the GUI itself are unnecessary.
The application engine is driven by a converter, that on a PC will usually be a Windows
program. The same basic set up is used for conversion both to and from EPOC32 formats,
and also for synchronisation at field and record level.

Software development
Initially there are two main options for Series 5, OPL32 the 32-bit successor to OPL16, or
C++ that succeeds the SIBO C SDK.

OPL32 options
Programmers can develop full applications on the Series 5 itself, but a PC based OPL32
SDK is available for commercial developers or anyone who wants a PC hosted
development environment. The OPL SDK supports more comfortable development of
OPL programs on a PC.

The Psion OPL32 SDK includes:

• The PC based WINS emulation of the Psion Series 5 in several configurations
• Tools (for resource file compilation, bitmap and font manipulation, etc.)
• Examples not found on EPOC32 machines
• Documentation, in HTML and RTF formats.

A PC running under Windows 95, Windows NT 3.51 or Windows NT 4.0 is needed with
25MB of free disk space.

An equivalent to the OPL16 SDK libraries is not supplied with the EPOC32 OPL SDK.
Also, calls to the operating system are not available directly in OPL32. An OPX must be
used to replace any essential EPOC16 OPL library functions or OS calls. Any facility
available to a C++ program may be made available to an OPL program through an
appropriate OPL extension, or OPX. The C++ SDK is needed to develop OPXs. An OPL
programmer does not need the C++ SDK in order to use OPXs.

OPP and OPPDBG for Series 5
Andy Clarkson, the author of OPP and OPPDBG for SIBO systems, will be investigating
the possibility of producing versions for Series 5 in the near future. See the ‘Contacts and
Sources’ chapter.

Series 5 13-35

C++
C++ is EPOC32’s native language. Software development relies on ideas as well as tools.
The most powerful idea in EPOC32 is object orientation and its theoretical corollary, re-
use. Object orientation is an extremely powerful design tool: viewed at all levels, EPOC32
is a system of objects. C++ is a natural, mainstream, object-oriented language, which
allows object-oriented designs to be implemented easily. Although C++ has a reputation in
some quarters for being slow and bloated, this is by no means necessarily the case.
EPOC32 demonstrates that, by achieving re-use of source code and object code, C++ may
be used to write highly efficient, compact systems.

The Psion C++ SDK includes:

• All user-side class libraries
• The WINS emulation of the Psion Series 5 in several configurations
• Tools (for project control, resource compilation, bitmap and font manipulation, etc.)
• Example code
• Documentation, supplied in HTML. Object orientation results in tightly interwoven

class relationships; in turn, the documentation needs to be tightly interwoven also. The
documentation is delivered in HTML, and includes many navigational aids including
links to class definitions from all their references. However, unfortunately there are no
document search facilities.

The C++ SDK includes the GNU tool chain required to compile for MARM. You will also
need Microsoft Visual C++ to compile programs for WINS, the Windows version of
EPOC32. The standard or learning editions of Microsoft Visual C++ may be used (because
WINS does not use MFC libraries). You will need a fairly high specification PC running
Windows NT or Windows 95.

Applications are developed first under Microsoft Visual C++ for the WINS platform, on a
PC running Microsoft Windows 95/NT, and are debugged with the aid of Microsoft’s
powerful debugger. Then, the same source code is cross-compiled using the highly
effective GNU C++ compiler for the target MARM processor, and uploaded to a target
machine for execution.

Other languages
OVAL
The OVAL run-time system is not available in the first Series 5 systems, although this is
likely to be remedied in the not too distant future in the form of OVAL32.

Java
Psion Software PLC recently announced they had licensed Java technologies from Sun
Microsystems Inc, and intend to port it to the EPOC32 platform. Java is a cross-platform
industry standard development language allowing the development of fully featured

13-36 Series 5

programs. Java's strong Internet support will make it easier to develop Internet centric
applications for EPOC32 platforms.

Developer support
EPOC World, Psion Software's developer support organisation, was officially launched on
1st July 1997. Two types of EPOC World subscription are available, at the time of going
to print (September 97) was priced as follows:

'C++ Developer' subscription GBP 200.00
'OPL Developer' subscription GBP 75.00

An EPOC World subscription is for a year, and includes access to the EPOC World
Website, a copy of the latest SDK on CD-ROM and one update to that SDK (when the
next version is released).

The EPOC World web-site includes:

• The latest EPOC32 C++ and OPL SDK documentation and tools
• Extra utilities, example code, documents and how-to guides
• Knowledge-bases
• Contact details for defect reporting
• Administrative services
• Training course timetables
• Conference details

See the ‘Contacts and Sources’ chapter for details of how to subscribe to EPOC World.

OPL32 Techniques 14-1

14 OPL32 Techniques

Introduction
New OPL programmers will benefit considerably from reading the ‘OPL16 Techniques’
chapter before this one, since the emphasis here is on changes from OPL16. All OPL32
programmers should gain more from this chapter if they have read the 'Series 5' chapter
first.

There are two main sections in this chapter, the first concentrates on the changes, deletions
and additions to OPL. The second section describes an example application, in
considerable detail, with the aim of illustrating the primary changes and new features of
OPL32.

All source code and supporting files for the example application are provided on disk - see
the PPCOPL32 directory.

The syntax of the OPL32 keywords and functions is described in the ‘OPL Reference’
chapter. More detailed information, including the functions provided in the ‘standard’
OPXs, is provided in the OPL32 manuals from Psion (they are provided on the PsiWin 2
CD-ROM and are available from Psion’s Website) - also see the OPL32MAN directory on
disk.

OPL, the changes
Some OPL16 programs will need only minor modification to run under EPOC32; it will
depend upon the complexity of the code, the dependence on operating system calls and
possible use of OPL16 SDK library functions.

Extensions to OPL have been made to allow programmers to take advantage of the touch
sensitive high resolution display on the Series 5. Also, some OPL keywords have been
modified and new ones added for controlling the new grey level graphics modes.

In addition to the graphics changes, menus, dialogs and database handling have been
improved to take advantage of the abilities of EPOC32.

Some aspects of OPL16 have gone, some new features have been added, and the syntax of
some language statements has changed to provide extra options due to the effects of 32-bit
addressing. For example, direct calls to the operating system have gone, but most have
been replaced by language extensions called OPXs.

14-2 OPL32 Techniques

One of the major difference between OPL32 and earlier other versions of OPL is the
influence of 32-bit addressing. This means that the arguments and return values of quite a
number of OPL keywords have changed from being integers to long integers.

An indirect effect of the 32-bit architecture is that folder names, file names and program
names can very long. In OPL source code, identifier names, i.e. names of variables,
parameters, constants and procedures, can be up to 32 characters long, including any
variable type specifier.

Header files may be 'included', e.g. for the definition of constants, variables and even
procedure prototypes. In fact, many system-related constants relevant to OPL32
programmers are supplied in a ROM-based file CONST.OPH that can be included in
OPL32 programs.

The new 32-bit memory model has enabled the 64K limits on program and data space to
be removed, which is great news, but this should not have a major influence over the
structure of an OPL application. It should still be part of a responsible designers remit to
avoid producing applications that hog a large proportion of available memory.

To make the best of the new pointer driven interface a slightly modified approach to
application design is also recommended. For existing applications to incorporate features
such as pen input and to behave in a similar manner to the built-in applications, a fair
amount of modification will be required.

Crunching code
A burning question for many existing OPL16 programmers will be: 'How fast is OPL32
compared to OPL16'. My simplistic benchmarks (S3c vs Series 5) confirm statements from
Psion, that over-all OPL32 is about three times faster. However, the really good news is
reserved for lovers of structured programming, because the time overhead on procedure
calls has come right down. In OPL32 calls to procedures are implemented up to fourteen
times faster. Also, calling OPX functions is said to be as fast as calling OPL's built in
functions. Incidentally, auto-switch-off now functions even inside tight loops, you have to
deliberately disable it in OPL32.

Keywords removed
• RECSIZE and COMPRESS (replaced by COMPACT).
• gDRAWOBJECT.
• gINFO is replaced by gINFO32.
• STATUSWIN, STATWININFO, DIAMINIT and DIAMPOS. The Series 5 does not have

status windows, Toolbars are used instead - see later in this chapter for details.
• TYPE, PATH and EXT. On many SIBO machines the information provided via these

statements was only used by the System screen. The Series 5 does not require this
information. A new command FLAGS has a similar function to TYPE. On the Series 5,
applications do not have types, application-specific paths or filename extensions. An
application and its associated documents are identified by a UID (unique identifier)
instead.

OPL32 Techniques 14-3

• CMD$ (4) returned alias information, which is no longer supported on Series 5. The
application name returned by CMD$(5) on SIBO is not supported - see APP and
CAPTION.

• SETNAME. The new SETDOC, serves a similar purpose, and should be called before
saving your main document.

• Named Calculator memories and M0,...,M9. The Series 5 Calculator does not use
OPL to evaluate expressions.

• CACHE, CACHETIDY, CACHEHDR and CACHEREC have gone since procedures are
automatically cached on Series 5.

• CREATESPRITE, APPENDSPRITE, CHANGESPRITE, DRAWSPRITE, POSSPRITE and
CLOSESPRITE. Superior sprite-handling OPX functions are provided.

• OS and CALL. The Series 5 provides extensibility using special OPL DLLs. Five OPXs
are supplied with Series 5 systems as standard, and more are set to emerge from a
range of sources. OPXs are discussed in more detail later in this chapter.

• USR and USR$.
• ODBINFO. Available on S3a/c, Siena and Workabout.
• LOADLIB, LINKLIB, UNLOADLIB, FINDLIB, GETLIBH, NEWOBJ, NEWOBJH, SEND,

ENTERSEND and ENTERSEND0. OPXs are now used for calling language extensions and
creating object instances.

• Printing via the PAR: device is possible, but the device is no longer directly available
to OPL32. All printing from OPL32 programs is best done using the standard printer
OPX. A sophisticated set of functions are available including access to the four
standard print dialogs and facilities for sending text, bitmaps and formatting
information to a printer.

Keywords added
• DECLARE EXTERNAL, EXTERNAL, INCLUDE and CONST allow the use of header files

which include the definition of constants and procedure prototypes.
• mCASC and mPOPUP provide new menu features.
• dCHECKBOX and dEDITMULTI provide new dialogs entry items.
• DAYSTODATE allows easy conversion of “days since 1/1/1990” to a date.
• gCOLOR, gCIRCLE, gELLIPSE and gSETPENWIDTH provide new graphics

functionality.
• gINFO32 replaces gINFO.
• SETFLAGS and CLEARFLAGS allow for increased SIBO compatibility
• IOWAITSTAT32.

Database commands:

• DELETE allows deletion of a table.
• INSERT, MODIFY, PUT and CANCEL allow the construction and management of more

flexible databases.
• BOOKMARK, KILLMARK, GOTOMARK support the identification/marking of specific

records in databases.

14-4 OPL32 Techniques

• BEGINTRANS, COMMITTRANS, INTRANS and ROLLBACK support transactions and
recovery in databases.

• COMPACT replaces COMPRESS.

OPL applications:

• CAPTION and FLAGS allow definition of OPL applications; FLAGS is similar to TYPE.
• SETDOC and GETDOC$ allow files to be created as application documents.
• GETEVENT32, GETEVENTA32 and POINTERFILTER provide increased support for

handling of events, including pointer (pen) events.

Two other significant additions are:

• Support for Toolbars (to replace status windows). See the example application section
later in this chapter.

• Support for language extensions in separate EPOC32 DLLs called OPXs.

Keywords amended
The following keywords have undergone some changes, although many of these are related
to modified argument types and remain functionally compatible with earlier versions of
OPL.

• ADDR, ALLOC, ADJUSTALLOC, REALLOC, LENALLOC and FREEALLOC
• APP and ICON
• CMD$ (3)
• To manage pointer events (pen taps) a new function GETEVENT32 has been added. All

of the old information and more is supplied by GETEVENT32, so the OPL16 function
GETEVENT is essentially redundant in OPL32. Also GETEVENT32 has an asynchronous
equivalent GETEVENTA32.

• BUSY
• OFF
• SCREENINFO
• dBUTTONS, dCHOICE, dFILE, dINIT, dTEXT, dTIME and dXINPUT
• mCARD
• CLOSE, COUNT, CREATE, OPEN, POS and POSITION
• CURSOR, DEFAULTWIN, gBORDER, gBUTTON, gCLOCK, gCREATE, gCREATEBIT, gFONT,

gGREY, gLINETO, gLINEBY, gLOADBIT, gSAVEBIT, gLOADFONT, gUNLOADFONT,
gPEEKLINE and gXBORDER.

• LOADM now 'officially' supports up to seven program modules to be loaded
concurrently, in addition to the main program module. Although, this was possible
'unofficially' on earlier systems. If speed is an issue though it's wise to keep this to
minimum.

OPL32 Techniques 14-5

OPA header changes
As discussed in the 'Processes, Memory and Applications' chapter, OPL applications are
distinguished from OPL programs by the presence of an APP...ENDA header. In OPL32
these headers have changed in a number of ways.

APP pname,UID&
 CAPTION appname1$,language1
 CAPTION appname2$,language2
 FLAGS flags%
 ICON filename$
ENDA

CAPTION
In the example header above, the pname string (without surrounding quotes) specifies the
default public name for the application. Any subsequent occurrences of the CAPTION
keyword will override the default pname with language specific names. If you wish to have
the name of the application dependent on the language in which it is operating then you
must use CAPTION. However, you must supply a CAPTION statement for all language
variants including the original language in which the application was developed.

UID&
This the unique identifier for the application, as discussed in the 'Series 5' chapter.

Applications developed for personal use may safely use any UID in the range &0100000
to &0fffffff. Psion will issue a UIDs for applications that are to be distributed; they are
guaranteed to be unique and start at &10000000. To obtain a reserved UID you should
contact Psion Software - see the 'Series 5' chapter.

FLAGS
FLAGS replaces TYPE used on SIBO systems; possible values for flags% are:

flags% = 1 for applications that can create files. Your application will then be included
in the list of applications offered when the user creates a new file from the System screen.

flags% = 2 to prevent the application from appearing in the Extras bar. It is not usual to
set FLAGS to this value.

ICON
On the Series 5, filename$ following the ICON statement is typically the filename of a
multi-bitmap file (.MBM) that contains up to three bitmap/mask pairs. Three sizes are
included, 24x24, 32x32 and 48x48 pixels, to accommodate the different zoom levels in the
system screen. The sizes are read from the .MBM file, if the exact size required is not
provided, or if some sizes are missing the most suitable size is used.

14-6 OPL32 Techniques

In fact, you can use ICON more than once within the APP...ENDA construct on the Series
5. The OPL32 translator only insists that each icon bitmap is paired with a mask of the
same size in the final ICON list. This allows you to use pairs of MBMs containing just one
bitmap as produced and exported from the Sketch application.

For example, you could specify them individually:
APP ...

ICON “icon24.mbm”
ICON “mask24.mbm”
ICON “icon32.mbm”
ICON “mask32.mbm”
ICON “icon48.mbm”
ICON “mask48.mbm”

ENDA

or with an icon/mask pair in each MBM:
APP ...

ICON “iconMask24.mbm”
ICON “iconMask32.mbm”
ICON “iconMask48.mbm”

ENDA

Or with all the bitmaps and masks as just one MBM, as would normally be the case if the
icon and masks were prepared on the PC, and then processed using the BMCONV tool.
For example.

APP ...
ICON "filename.mbm”

ENDA

Once translated, the icon .MBM file is embedded into the .AIF file and so does not have to
be supplied separately.

Production of icons is discussed in more detail in the 'Programming Techniques' chapter.

Toolbars
Status windows have been replaced by Toolbars located on the right hand side of the
screen. A typical OPL application Toolbar will have a title, four application specific
buttons and a clock. Support for Toolbars in OPL applications is provided via the ROM-
based Toolbar.opo program module and the toolbar.oph header file. Use of a Toolbar is
illustrated in the example application described later in this chapter.

Graphics
Up to sixty-four drawables (windows and bitmaps) can be used at once, the previous
maximum in OPL16 was eight. Animating graphics is easier, multiple 'Sprites' can be used
simultaneously - I can't find a stated limit, but for speed reasons it is not recommended to
use more than 20 at once!

OPL32 Techniques 14-7

Three graphics drawing modes are possible:

• Two 'colour', black and white, no grey.
• Four 'colour', black, white, light grey and dark grey.
• Sixteen 'colour', black, white, and 14 grey levels.

For graphics, four grey-level mode is preferable. Although sixteen 'colour' mode may
apparently lead to more impressive graphics, there are a number of reason not to use this
mode:

• The battery load is very much higher
• Bitmaps occupy far more memory and disk space.
• Because of contrast limitations on LCD displays the difference between four colour

mode and sixteen colour mode is hardly noticeable.

Databases
Operations on twenty-six simultaneous data files are now supported by OPL32 - using the
logical identifiers A to Z. Native Psion .DBF databases can be used, but they have to be
converted to an EPOC32 file format. PsiWin 2.0 does not convert SIBO .ODB files yet,
but I believe a converter may be in production. I recommend the use of JBdata (an
excellent Series 3 freeware program by John Boyce) to save the data in delimited text
format on a Series 3a/c. Then copy the text file to a Series 5 and import it into a database
on the Series 5.

A much improved database server is available to OPL32, with many new keywords - see
the ‘OPL Reference’ chapter. A number of more advanced database features (such as
indexes) are provided via a database OPX - see the documentation in the OPLMAN32
directory on disk.

Application help
Unfortunately, pressing the main help-key on the Series 5 when in an application will take
you to generic system help, not to application specific help. Application related help
should now be provided as an application menu option, via a hot-key press (Ctrl+Shift+H
is recommended) and preferably also via a help button on the application's Toolbar.
Providing application specific help is demonstrated later in this chapter.

14-8 OPL32 Techniques

OPXs
OPL is now extendible through libraries called OPXs. Five OPXs are supplied as standard
with the first Series 5 machines, they provide support function for:

• Date & time handling
• System related - i.e. many of the functions that were only available in OPL16 through

operating system calls, e.g. foreground/background switching, backlight control, sound
control, file and application control, etc.

• Bitmaps for use with buttons and Sprites
• Database extras - including a sub-set of SQL
• Printing - text, bitmaps, formatting information and print preview

Using the functions provided by OPXs is very easy and is demonstrated later in this
chapter. The OPX supplier provides an OXH header file and the INCLUDE keyword is used
to include these header files into your program source. OXH header files provide the
declaration information required by your program when calling the OPX routines. The
declaration information for the OPX specifies its name, UID and version number, followed
by the procedure prototypes.

Alternatively, the OPX declaration details can be inserted directly into your OPL source
code file(s) - see OPH headers below.

The five 'standard' OPXs and their OXH header files have default paths in the ROM (Z:),
but the full path for any OPX may be supplied. These are \System\Opl\ for the header files
and \System\Opx\ for the OPXs themselves. The OPX header files are stored in the ROM,
but may be copied into RAM - see 'OPL32 example files' below.

With the standard OPXs, the OPL programmer is sometimes given direct access to objects
via pointers (i.e. memory addresses used for direct access and efficiency). Otherwise
Sprites, for example, could not be set up using an array of IDs. These objects can be
explicitly deleted (through procedures provided by the OPX) to free memory or else they
will be deleted when the program exits.

All of the functions provided in the ‘standard’ OPXs are detailed in the OPL32 manuals
from Psion (they are provided on the PsiWin 2 CD-ROM and are available from Psion’s
Website) - also see the OPLMAN32 directory on disk.

OPX headers
As an alternative to INCLUDEing the OPX header information, the OPX declarations can
be inserted directly into an OPL source file for example:

DECLARE OPX <opxName>,<uid>,<version>
 <protoType1> : <ordinal1>
 <protoType2> : <ordinal2>
 ...
END DECLARE

where,

OPL32 Techniques 14-9

<opxName> is the name of the OPX without the .OPX extension. The OPX is stored in a
\System\Opx\ folder on any drive, with the drives scanned from Y: to A: and then Z: if no
path is specified. This allows ROM OPXs (in Z:) to be overridden if required.

<uid> is the UID of the OPX. The specification of a UID as well as a name guards against
OPXs with the same name being confused, which could otherwise cause serious problems.
The UID is checked on loading the OPX, a ‘Not supported’ error will result if the UIDs in
the header file and in the OPX itself do not match.

<version> is the version number of the OPX. The version number of an OPX will be
increased when any new procedures are added. OPL will refuse to load an OPX which
reports that it can’t support the version number given in the declaration. The version
number expressed in hex is e.g. $0100 to represent version 1.00, $0102 for version 1.02
etc. In general, an OPX supplier will increment the 2 low digits (the so-called minor
version number) for backward compatible changes, and will increment the 2 high digits for
major incompatible changes.

<prototype> specifies the name, return type and parameters of an OPX procedure in the
same way as for an OPL procedure when using the EXTERNAL keyword. Numeric
parameters to OPX procedure can be passed by reference using BYREF. This means that
the OPX is able to change the value of the variable. The OPX procedure prototype is
followed additionally by a colon.

<ordinal> specifies the number of the procedure in the OPX itself and is used to call the
correct procedure.

OPX name clashes
If an OPX procedure name clashes with one of your OPL procedures, or with that of
another OPX procedure, you can make a copy of the OXH file and change the name of the
offending procedures, but not the return type, parameter list or ordinal. You should then
include this new OXH file in your module and the new name can then be used to refer to
the procedure in your code.

For example, consider the OPX declaration,
DECLARE OPX XXOpx,XXOpxUid&,XXOpxVersion&
 XXClose%:(id&) : 1
 ProcWithLongParam:(aLong&) : 2
 AddOneToParams:(BYREF par1%,BYREF par2&, BYREF par3) : 3
END DECLARE

If a short integer is passed to ProcWithLongParam:, the translator will automatically
convert it to a long integer.

The AddOneToParams: procedure adds one to each of the parameters. This is possible
because the parameters are passed by reference. Parameters passed by reference must be
variables rather than constant values because the OPX will write back to the variable. The
variable type must always be the same as given in the declaration.

14-10 OPL32 Techniques

Callbacks from OPX procedures
An OPX procedure can call-back to a OPL procedure. This may be useful if an OPX needs
some information that is not known when the procedure is initially called, or if it requires a
large amount of data that needs to be sent piecemeal.

The OPX provider will specify the exact form for the OPL procedure that you must
provide for the call-back to be completed successfully.

Developing OPXs
OPXs are (Dynamic Link Libraries) DLLs that are written in C++, they must conform to a
series of standard interface conventions. Information and OPX source code examples are
provided with the Series 5 C++ SDK available from Psion - see the 'Series 5' chapter for
more details.

Series 5 OPL source files
Unlike OPL source code files on SIBO systems, OPL files on the Series 5 are not plain
ASCII text. Instead they conform to the EPOC32 document conventions by having a
binary header containing UIDs. The UID header identifies the files as belonging to the
OPL editor program. Hence, reading Series OPL source files directly on other systems is
not possible. However, the OPL editor on the Series 5 has options to import text files into
a editor file and export OPL source code as plain text.

Notes:
A 'Shifted' space character is not treated as equivalent to an unshifted space character, and
it is very easy to accidentally include them when entering OPL code. Shifted space
characters in a Series 5 source file will give an 'Illegal character' error on translation.
Fortunately, even though they are not visible any illegal characters are flagged and are
therefore easily removed.

A REM comment on the same line as an INCLUDE statement will give a 'Not found' error
on translation. Comments can be put on separate lines, before or after an INCLUDE
statement, but not on the same line.

OPL32 example files
A number of OPL32 example programs and associated header files are supplied in the
ROM of each Series 5 machine. If you wish to learn from them, or to use some of the
example code in your own applications, there a two methods of getting access to the files.
You can load them individually into the program editor, using the method described below
for reading ROM-based files, or they can be easily transferred into a folder of your choice
as follows:

• Create a new folder to hold the files
• Switch to the OPL program editor

OPL32 Techniques 14-11

• Select 'Create standard files' from the Tools menu and choose the folder name you
created in the dialog that is presented.

Reading ROM-based files
Go to the system screen and press Ctrl+K (to select Tools, preferences), ensure that the
‘Show system folder’ option is checked (i.e. set) and tap ‘OK’, which will take you back to
the system screen. Press Ctrl+Tab, this will take you to the folder browser. Select Disk Z
in the disk select box at the top of the screen. The contents of the ROM folders will now
be shown. Select the top level OPL folder, the Const.oph file will be listed along with
many other header files (i.e. OPH and OPX files). Quit from the browser view by tapping
‘OK’, and all of the files in the OPL ROM folder will now be displayed on the system
screen.

Double tap on the Const.oph file and it will be loaded into the OPL programming editor as
a read only file. Use the ‘Save as’ option from the file menu to save the selected file in a
folder of your choice.

Introduction to PPCOPL32
The rest of this chapter provides a detailed description of the structure of a demonstration
OPL32 application. PPCOPL32 is based upon the ‘Demo’ application supplied by Psion
with each Series 5 machine - see the 'OPL32 example files' section above. PPCOPL32 is
designed to illustrate the structure of an OPL32 application and to demonstrate many of
the new features of OPL32, including handling pointer and other events.

I have extensively commented the original source code, fixed a bug or two and extended
the range of techniques used. For example, the application now uses an .INI file to store
and retrieve its settings between invocations. It also incorporates the use of help Data files,
which themselves contain information that describes how to implement program help.
Additional error handling has been added, the editing of very long text data through a
dialog box, plus the basis for multi-lingual support is included.

The full application and all necessary supporting files are supplied on disk. Included are
extensively commented source code in Series 5 OPL format as well as in text format. In
addition, the DOS and Series 5 bitmap files needed to build the 'zoomable' program icon
are provided, plus the other graphical items used by the application such the 'EPOC' logo
and the bitmaps for the Toolbar buttons. DOS batch files are available to build the .MBM
files on a PC. All files are located in the directory structure named PPCOPL32.

To gain maximum benefit from the discussion that follows, the rest of this chapter is best
read whilst referring to the comments and OPL source code of the PPCOPL32 application.
I recommend loading the source files into the program editor on a Series 5 and using the
find function to assist in following the program flow.

14-12 OPL32 Techniques

Note:
If you wish to view the PPCOPL32 source code in the Series 5 editor I recommend the
following editor settings: From the Tools preferences menu set 'Mono fonts only' with all
other options unchecked. From the Format menu set the Font to 'Courier 8pt bold' and the
text colour to 'black'.

Techniques covered
Taken as a whole this a comprehensive and somewhat complex example. However, taken
in stages, with frequent references to the commented source code, the reader should easily
be able to absorb most, if not all, of the techniques demonstrated. You may then
incorporate just the relevant routines into your own application.

OPL application (OPA)
• Application UIDs
• FLAGS 1 i.e. file based - although the application does not use 'Documents', and more

than one instance of the application may be running.
• Zoom-able icon i.e. 48x48, 32x32 and 24x24 pixel icons
• Include files - OPX headers, system constants and application specific constants

Event handling
• Key press events, including a wide range of special keys such as menu and menu

hot-keys.
• Pointer events
• Machine switch on event
• Foreground / background (gained focus / lost focus) events
• System messages, new command line information i.e. shut down program.

Toolbar use
• Toggling on/off
• Retaining the Toolbar state
• Button bitmaps

Menu handling
• Cascaded menus
• Dynamically changing menu items
• Popup menus

Multi-lingual techniques
• Language specific application names
• Resource file selection

Graphics techniques
• Use of four and sixteen grey levels
• Drawing with a pen
• Loading and displaying bitmap files
• Ordering of multiple windows

OPL32 Techniques 14-13

Sound
• Error beeps - toggling on or off
• Retaining sound state

File handling
• Detection of the existence of files and directories
• File name PARSE$ing for file and drive origin
• Program .INI file
• Use of dialog flags for file name editors / selectors

OPX calls
• For microsecond resolution timer
• Running, monitoring and ending other programs
• Resource file handling (limited)

Miscellaneous techniques
• Editing of very long text through a dialog box
• New dialog time editors
• Application help facilities
• Error trapping and handling

Source files
If you wish to modify or experiment with the PPCOPL32 example application the files
will have to be loaded from the CD-ROM on to a Series 5 system or into the WINS
directory structure on a PC.

All of the OPL source code is contained in two Series 5 format files, PPCOPL32 and
PPCOPL32.OPH - see the \PPCOPL32\PPCOPL32 sub-directory on disk.

Text versions of the files are also provided for convenient viewing on a PC - see the
\PPCOPL32\DOSUTILS\PPCTXT sub-directory.

The translated application is located in \PPCOPL32\SYSTEM\APPS\PPCOPL32. Other
support files for building the icon and the other .MBM files are located in sub directories
such as \PPCOPL32\DOSUTILS\ICONMBM etc.

Structure overview
At the top of the PPCOPL32 source file there are a number of INCLUDE statements to link
in constants and header information for the OPXs used by the application. Of particular
note is the inclusion of CONST.OPH, a ROM-based file that defines the values of a wide
range of system constants. For details of the contents of the CONST.OPH file see the section
'OPL32 example files' earlier in this chapter. The PPCOPL32.OPH header file contains a
number of application specific numeric and string constants, in particular the UID for the
application with the identifier name KUidEmcc00& and the 32-bit hexadecimal value
&100002A5.

14-14 OPL32 Techniques

The APP..ENDA header uses a default 'public name' of PPCOPL32 for the application,
followed by its UID. Three CAPTION statements are language specific names/country
codes for the application and will override the default name. The exact name used will
depend on the language code returned by the machine and is taken care of by the system.
Application names can be very long (250 characters) but it is advisable to keep them quite
short to prevent them from being truncated on the 'Extras' bar and possibly in the Toolbar
title.

ICONs for the application are declared to be in the multi-bitmap file PPCOPL32.MBM. This
file contains three bitmap/mask pairs for three icon sizes, to allow for 'zooming' of the
system screen display. Production of icons is discussed in more detail in the 'Programming
Techniques' chapter.

The APP...ENDA construct is used by the OPL translator to generate an Application
Information File (.AIF) containing 3 icon and mask pairs, the application name and the
setting of FLAGS. The .AIF file is created in the application directory together with the
.APP file itself. For example, the .AIF for PPCOPL32.APP is:

 \System\Apps\PPCOPL32\PPCOPL32.AIF

The translator will generate an .AIF based on all the information available in the
APP…ENDA header. However, if any is missing, then the following defaults are be used:

• for ICON: the 'question mark' icon
• for CAPTION: the caption specified in the APP declaration
• for FLAGS: the default value of 0.

Application headers are discussed in more detail under 'OPA header changes' earlier in the
chapter.

Execution begins in the main: procedure where many of the program global variables are
declared. The ROM-based Toolbar.opo module is loaded with LOADM, then TBarLink:
one of its procedures is called to link in some GLOBAL variables needed for the toolbar
routines. Note that processing never returns to this point. Instead, a procedure name is
passed as an argument in the call to TBarLink: and it is in the KAppCont1: procedure
where processing will resume. After TBarLink: has completed its tasks it will call
KAppCont1: using the OPL procedure calling operator @. More GLOBAL variables are
set up by KAppCont1:, and myInit%: an initialisation procedure is called. Finally
KAppCont1: enters an endless loop to repeatedly call the nextEv%: procedure, that in
turn uses the new GETEVENT32 function to wait for the next event. All other program
functionality is provided via command procedures called by the Toolbar.opo procedure
TBarOffer%: or from within the offrCmd%: procedure. The clockwise and anti-clockwise
graphics options are available from the Menu and the Toolbar buttons, but the Pop-up
menu demonstration is only available from the Toolbar button.

OPL32 Techniques 14-15

Processing in detail
The first three actions in main: are to get the width and height of the full screen (the
default window), to use the SETFLAGS statement to enable GETEVENT32 to see machine
switch on events (not seen by default), and to disable program exit via Psion Esc with the
ESCAPE OFF statement.

Language text
Next Getlang: is called to get the machines language code and hence derive the name of
a language specific resource file. Currently no OPX function is available to return the
language code for a Series 5 (as I write this one is in production by Psion), therefore the
Getlang: procedure is incomplete. Currently it just determines the name of the resource
file and briefly displays it during program initialisation.

Assuming the language code for the machine has been obtained, the code is converted into
a two character string (with a leading ‘0’ if needed), and the string is used as the last two
characters of the resource file name, to ensure it is language specific. See the ‘Language
text’ section in the 'OPL16 Techniques' chapter for examples, and the ‘Appendix’ chapter
for a list of language codes. If a language specific resource file is not found the program
will default to using the English file, if that is not found the program would normally quit
out with an error message via the pferr: procedure.

Support for the use of program resource files is included in the SYSTEM.OPX library, and
example calls to the procedures involved are included in Getlang: for information but are
REMed out so they are not executed.

Toolbar support
All Series 5 applications should support a toolbar. Toolbar.opo is supplied in the ROM
and provides the set of procedures required for this support. The key procedures in
Toolbar.opo are described as they are encountered.

The Toolbar.opo support module is now loaded and TBarLink:("AppCont1") is
called as described earlier. Processing resumes in the AppCont1: procedure which calls
the procedure myInit: that in turn calls Read_ini: to restore program settings (or set up
and use the defaults) from the programs' .INI file.

Application files
Program settings are restored by calling the Read_ini: procedure. Settings stored are the
state of the error beep (on or off) and whether a Toolbar window should be shown or not.
The width of the display is set according to the presence of a Toolbar or not.

All applications should ensure that they handle corrupt or missing .INI files correctly.
When starting up, the program tries to open the .INI file. If this fails for any reason the

14-16 OPL32 Techniques

procedure will use the default settings. It is not useful to report an error to the user, they
will probably not understand the error or know how to fix it.

Series 5 applications should save non-document files (external files) to their so-called
application directory. So, in the case of PPCOPL32, the application directory is
\System\Apps\ppcopl32\, this is also the directory where the application itself should be
located. Note, you can determine the full file specification of a file by using the PARSE$
function.

Documents and UIDs
Although PPCOPL32 does not create or use 'document' files it is worth an aside here to
describe how they may be created. A document is a file that is specific to a particular
application and may be used to launch the application. Documents do not normally have a
filename extension and are identified as belonging to a particular application via a file
header that may contain up to four UIDs. If a file header contains the UID of an
application the appropriate icon will appear beside the file name when it is visible on the
system screen.

Database documents, produced using CREATE, and multi-bitmap documents, created using
gSAVEBIT, will automatically contain your application UID in the file header, providing
the SETDOC command is used immediately before the command to produce the file. For
example:

file$ =“myfile”
SETDOC file$
CREATE file$,a,a$,b$

Sets the file myfile to be a document. SETDOC may be used with the commands CREATE,
gSAVEBIT to ensure the document header is created correctly. However, documents
created with IOOPEN represent a special case and are described later.

Note:
The string passed to SETDOC must be identical in every respect to the name passed to the
following CREATE or gSAVEBIT otherwise a non-document file will be created. So you are
strongly advised to use the PARSE$ function on the file name before using it with the
SETDOC and subsequent CREATE commands. For example:

file$ =“myfile” REM ensure file$ string is at maximum size
file$=PARSE$(file$,LEFT$(CMD$(1),LEN(CMD$(1))-4),off%())
SETDOC file$
CREATE file$,a,a$,b$

SETDOC should also be called after successfully opening a document to allow the System
screen to display the correct document name in its task list.

In case of failure in creating or opening the required file, you should take the following
action:

• Creating - try to re-open the last file and if this fails display an appropriate error dialog
and exit. On re-opening, call SETDOC naming the original file so the Task-list is
correct.

• Opening - as for creating, but calling SETDOC again is not strictly required.

OPL32 Techniques 14-17

For binary and text file documents created using IOOPEN and LOPEN, it is the
programmer’s responsibility to save the appropriate header in the file. This is a fairly
straight-forward process and the following suggests one way of finding out what the
header should be:

• Create a database or bitmap document in a test run of your application using SETDOC
as described above.

• Run the program described below to read the four long integer UIDs from the test
document.

• Write these four long integers to the start of the file you create using IOOPEN.

A small Series 5 utility program (Uidread) for reading the four UIDs from Series 5 files is
provided on disk with source code in OPL32 format in \Ppcopl32\ppcopl32, and in text
format in Ppcopl32\dosutils\ppctxt.

Creating text file documents using IOOPEN or LOPEN has two special requirements:

• You will need to save the required header as the first text record. This will insert the
standard text file line delimiters CR LF (hex 0D 0A) at the end of the record.

• The specific 16 bytes required for your application may itself however contain CR LF.
Since you should know when this is the case, you will need to read records until you
have reached byte 16 in the document. This is clearly not a desirable state of affairs,
but is inescapable given that text files were not designed to have headers. It is
recommended by Psion that you request a replacement UID for your application if it
contains bytes equivalent to CR LF.

Once a document has been open/created using IOOPEN, and the header written as
described above, you should still use the SETDOC command to inform the system
screen/task list about the document that is now being used by the application.

Toolbar initialisation
After loading the .INI file information, processing continues in myInit: by setting the
values of a number of global variables and sets the pen line drawing width to two pixels.
Then myInit: calls one of the application's own procedures initTBar:, to initialise the
Toolbar.

After loading two button bitmaps from the 'buttons.mbm' multi-bitmap file, the
TBarInit: procedure (from the Toolbar.opo module) is called, passing the application
name and the full screen dimensions as parameters. This call sets the Toolbar title to the
application name and creates an invisible toolbar window with a clock. By default OPL32
programs have compute mode on (i.e. they run at background priority even when in
foreground). Note that TBarInit: sets compute mode off (see SETCOMPUTEMODE: in
SYSTEM.OXH) allowing the program to run at foreground priority when in foreground.

Four Toolbar buttons are then set up by calling TBarButt:, two of the buttons use the
bitmaps loaded at the start of the TBarInit: procedure. The first argument in the list
passed to TBarButt: is the hot-key (or menu shortcut key) that corresponds to the action
to be taken, i.e., the procedure to be called inside your application.

14-18 OPL32 Techniques

Finally the Toolbar is either made visible or left hidden depending on the setting of the
TbVis% flag established by the Read_ini: procedure.

Windows
When any OPL program starts its default window (i.e. window ID = 1) occupies the whole
screen. To simplify window re-drawing when the display is updated OPL uses a system of
backup bitmaps. Each window created will use twice as much memory as you might
expect. Therefore, it is always a good idea to make windows only as big as required to
minimise your programs use of memory.

You can consider the default window as having two components, a graphics window with
a slightly smaller text window inside it. FONT clears the window and sets the text window
font and style. To write to the text window you use statements such as FONT and PRINT,
but you can only use one font on screen at once. Ignoring the text window and using the
graphics window instead with statements such as gFONT, gPRINT and gPRINTB is much
more flexible.

Next, the myInit: procedure calls the makeWins: procedure to load the 'EPOC' bitmap
from a file into memory. The makeWin%: procedure is then called twelve times to create
an arrangement of small windows arranged in a circular pattern, each displaying the
'EPOC logo' copied from the bitmap held in memory. Control returns to the AppCont1:
procedure after the main window is positioned last in the order.

Events and user input
The AppCont1: procedure now enters an endless loop calling nextEv%: to wait for the
next event to occur. When events of particular type occur the control will BREAK from the
loop in the nextEv%: procedure and return control to AppCont1:. Together these two
procedures act as filters, testing for and reacting to different types of event.

AppCont1: displays any text characters that are typed in, draws lines on the screen in
response to pen actions on the main window, and displays numeric information about
other events not handled by the nextEv%: procedure.

nextEv%: calls GETEVENT32 to detect all events including: key presses, shutdown
messages from the system, pen events, machine switch on and other events such as
foreground and background changes. It is the nextEv%: procedure that is responsible for
offering all pointer events (pen taps) to the Toolbar procedure TBarOffer%:. All pen taps
on the side-bar menu tab, possible menu key presses, or hot-key short cuts are passed to
the offrCmd%: procedure. All program functionality, including exit from the program, is
provided via procedures called by offrCmd%:.

The GETEVENT32 command is a synchronous call that only returns when an event of some
kind has happened. Effectively (as far as EPOC32 is concerned) the program is suspended
and is waiting for the system to pass on the details of system events or key presses. A
program only normally receives key presses (from the window server) when it is the

OPL32 Techniques 14-19

foreground process, so if the program goes into the background (e.g. by the user pressing
the system key) it is only able to process system events, not key presses.

In OPL, statements such as GET, GET$ or even GETEVENT32 are synchronous, whereas
GETEVENTA32 and KEYA are asynchronous. Most OPL programmers don't need to use
asynchronous techniques, but if the program has to do other tasks such as handling serial
port transfers, while remaining responsive to key presses, then asynchronous methods are
essential (see GETEVENTA32). The PPCOPL32 application is structured to respond to a
number of event types synchronously.

System messages
On receipt of an event of some kind, nextEv%: tests the value in event&(1) to see if it
was a system message event, if so it tests the command byte in the new command line.
Valid commands received from the system screen (typically while the program is running
in the background) are:

• ‘X’ to shutdown the program
• ‘C’ to create a new file, i.e. using the name entered by the user in the dialog presented

by the system screen
• ‘O’ to open the file picked from those displayed on the system screen.
• ‘U’ unknown command.

Since this application does not open or create documents it only tests for the arrival of the
shutdown message (‘X’) from the system. For example, if the user selects the file from the
task list and chooses the close option, or because message has been sent by the system.

New command line information is returned by the GETCMD$ function. The command byte
is the first character of the new command line string (in command$), and is retrieved with
the LEFT$ string function. The remainder of the new command line is ignored.

Test are done for special key press events such as Menu or the Ctrl key plus a menu
accelerator key. Key press modifiers are returned by GETEVENT32, hence the tests for
Ctrl+Menu involves testing the values returned in event&(2).

Menu commands
In the PPCOPL32 application, pressing the Menu key or tapping the Menu tab on the
side-bar will bring up the program menu. Selecting a menu item from under one of the
menu titles will return a corresponding accelerator key or hot-key character code. All menu
related text and accelerator keys are defined as literal strings and character codes in the
offrCmd%: procedure. For a multi-lingual application such data should be read from a
specific resource file. Thus allowing all menu text and accelerator keys to be language
specific without affecting the program code in any way. Use of program resource files is
demonstrated in the 'OPL16 Techniques' chapter and is not implemented in PPCOPL32 for
two reasons: The language code for the machine cannot be obtained in OPL32 (an
additional OPX is due from Psion to address this oversight), and the resource file compiler
is only available with the OPL and C++ SDKs from Psion.

14-20 OPL32 Techniques

All pen taps are sent to the Toolbar procedure TBarOffer%:, if it corresponds to one of
the Toolbar buttons the appropriate command procedure is called. The same procedure
also detects taps on the clock or Toolbar title and takes the appropriate action to change
the clock type or bring up the task list.

If the menu key or a hot-key is pressed the offrCmd%: procedure is called to decode it.
For valid entries a corresponding command procedure will be called. Matching procedures
are called via the @ operator which is designed to call a procedure named in a string
variable. Selecting a menu option or using a valid accelerator key results in a single ASCII
character; the selection is decoded in offrCmd%:. The character returned is added to the
command procedure root string (in cmdRoot$) to arrive at a unique string that will be the
name of the procedure provided to handle the menu option selected. For example, pressing
Ctrl+E (i.e., to exit the program) will generate the character 'E' which when added to the
command root string gives 'cmdE', the name of the program exit procedure. Two types of
command procedure root names exist, 'cmd' for lower case hot-key presses and 'cmds' for
shifted key presses.

The Toolbar procedures also use this mechanism to call the procedure assigned to each
button during Toolbar initialisation by calls to the TBarButt: procedure. Each button has
a short cut or hot-key letter associated with a corresponding command procedure in your
application, that will be called by Toolbar.opo when a toolbar button is selected.

A number of points about the offrCmd%: procedure are worthy of note: The key stroke
and key stroke modifier are passed as parameters and are used to detect if the menu key,
menu pen tab or a hot-key was pressed. If the menu key is detected or the menu side bar
tab was tapped the procedure will present a menu. Note the LOCK ON and LOCK OFF
statements around the MENU function call to inform the system that the application is
busy and cannot process system messages. Attempting to send shutdown messages etc.
while a menu is open (and marked with LOCK ON) will result in an ‘xxxxxx is busy’
message; this is a limitation imposed by OPL32.

Two of the menu items have check boxes so the state of the snd% and TbVis% flags are
tested to see if the check boxes should ticked or not when the menu is displayed. If a tick
should be shown a value of $2000 is put into the appropriate flag variables i.e., TbOn%
and/or SOn% and the flags are used in the mCARD line.

If the key press was a hot-key (i.e., the Ctrl key modifier was used) the key value has to be
converted. Pressing Ctrl+A will return the number 1, corresponding to the first letter of the
alphabet, Ctrl+B returns 2 and so on (try the 'Events' option on the PPCOPL32 menu and
look at the numeric values returned for key presses with the Ctrl key). By subtracting 1
from the hot-key value and adding in the ASCII value for the character 'a' the result of a
hot-key press will be equivalent to the value returned by the call to MENU where the same
option was selected.

Error handling
In a number of critical places sections of error handling code are included to deal with
abnormal situations. For example, at the end of the offrCmd%: procedure, to deal with
illegal options or variables being encountered that have not been defined. Error handling is

OPL32 Techniques 14-21

enabled with the ONERR eNotCmd statement and control will jump to the labelled section
of code in the event of an error.

Notice also the use of the TRAP command before certain keywords. The TRAP command
will override any ONERR processing that may have been set up. The ERR value will still be
set if the function or command fails but the pferr: procedure will get to process any error
that occurs. Calling a procedure such as pferr: allows for controlled handling and
reporting of errors, and leaves open the potential for error recovery to take place. Relying
solely on the system to ‘crash out’ when an error occurs is very unfriendly. If no error has
actually occurred, pferr: will just return without taking any action.

Another point to note is the use of the ERR code with calls to the pferr: procedure. Using
ERR as the error code is handy at certain points, e.g. before any language specific text has
been loaded because any program supplied error text will not be available. Instead, the
system error code (ERR) and message can be used, by default it will be in the correct
language for the machine.

Menu options
As stated earlier, the PPCOPL32 application is provided as an illustrative example
application, and the functionality included is simply designed to demonstrate the features
of OPL32 plus a number of significant programming techniques. Many approaches can be
used for the overall design of an application. If you find the approach illustrated by
PPCOPL32 to your liking you may wish to use some of the ideas or code in the framework
of your own applications.

File menu
Options are: Close

Program exit is handled by the cmdE%: procedure. All routes out of the PPCOPL32
application are via this procedure. First, the .INI file is saved, then tests are done to see if
the application help was used and whether the help ‘thread’ is still running. When help is
started a thread ID is returned in HelpThrdID&, this value will be non-zero. A call to
IOYIELD is used to allow the status word Hstatus& to be updated for the help thread. If
help is still active the status word will be equal to KStatusPending32&, so the thread is
ended using an OPX routine called ENDTASK&: using the identifier (ID) for the help thread
obtained when help was called.

The above code is included to deal with the situation where the user has ended the help
thread (via the help menu or through the task list) before quitting from the application. In
these circumstances the status word will be reset to zero after the call to IOYIELD,
therefore trying to end the help thread would result in an error.

14-22 OPL32 Techniques

Edit menu
Options are: Clear screen

Clear screen is handled by the cmdSC%: procedure which makes the Toolbar window the
first in rank order and the main window second in rank order, thus hiding the ‘EPOC’
windows behind the main window. The main window is then made current and is cleared.

Dialogs
Options are: New flags, Edit boxes - cascades to Text editor, Date/Time and Filename

The first thing to note is the second level menu with three options that cascade from the
'Edit boxes' option on the Dialogs menu item.

New flags
New dialog flags is handled by the cmdSF%: procedure which is designed to use a dialog
to repeatedly alter its appearance and characteristics in response to new flags settings,
changed through user input using the dialog itself. The new flags are for:

• Dialog buttons arranged on the vertically right rather than along a horizontal line.
• Dialog title or no title switching.
• Full screen or normal dialog.
• Drag or no drag of the dialog box.
• Dense packing or not of dialog items except buttons.

Text editor
Long text editing using the new dEDITMULTI dialog item is handled by the cmdSE%:
procedure. Text entered through the dialog is held in a long integer array (four bytes per
integer) that is sized to allow for the maximum text expected, plus an additional four bytes
at the start of the buffer to hold the length of the data entered. Each byte of the text entered
is accessed using the PEEKB function and displayed on the screen. Note that a button is
required to complete the editing process since non printing key presses such as 'Enter' are
taken as valid characters.

Date/Time
Editing time fields with the new time flags is handled by the cmdD%: procedure. Two new
flags are used, a time field with no hours and an absolute time in 24-hour format.

Filename
Filename editing is demonstrated by the cmdF%: procedure which illustrates the use of
selection and editing control flags, including the following new flags:

• 64 ($40) don’t display file extension
• 256 ($100) allow ROM files to be selected
• 512 ($200) allow files in the System folder to be selected

Notes:
Using LOCK ON and LOCK OFF surrounding the use of the DIALOG keyword will tell the
system that the application cannot currently process system messages. Attempting to send

OPL32 Techniques 14-23

shutdown messages etc. while a dialog is open (and marked with LOCK ON) will result in
an ‘xxxxxx is busy’ message; this is a limitation imposed by OPL32.

Wherever possible program data and information should be saved automatically without
the user having to do it explicitly. Unless of course you wish to provide options for the
user to quit the application without saving or revert to a previously unchanged version.

View menu
Options are: Show toolbar

Toolbar visibility on or off is toggled by cmdT%: procedure which simply calls routines in
the Toolbar.opo module to hide or display the Toolbar. The procedure uses a global
variable TbVis% to store the current state of the Toolbar visibility. Changing the state of
the Toolbar will cause the check box next to the 'Show toolbar' menu item (on the View
menu) to be ticked or not. Any change to the state of the Toolbar is saved in the program
.INI file on exit from the program, and is restored whenever the program is invoked again.

Graphics menu
Options are: Clockwise, Anti-clockwise, Grey scales

Clockwise and Anti-clockwise
The clockwise demo is handled by the cmdC%: procedure and the anti-clockwise demo is
handled by cmdA%:. The twelve 'EPOC' windows are created during the program
initialisation and are retained throughout the duration of the program. When the windows
are not visible it is simply because they are obscured by the main window. The clockwise
and anti-clockwise procedures work by bringing each of the 'EPOC' windows to the front
in an appropriate sequence.

Note the use of a negative value for the Anti-clockwise menu hot-key; it results in the
display of grey line underneath the menu item to separate it from the item below.

Grey scales
The grey scales demonstration is handled by the cmdG%: and bands: procedures. After
receiving input from the user via a dialog, the cmdG%: procedure creates two windows that
occupy the top and bottom halves of the whole screen. The top window is created in four
colour mode and the lower window in sixteen colour mode. The bands: procedure is
called to draw a sequence of 'coloured' bands in both windows. The width of each band
and the starting gCOLOR is as specified in the dialog. Of course there are no actual colours
displayed, just shades of grey from white through to solid black. The range of greys
actually displayed will depend upon values used by gCOLOR, and also on the colour mode
of the window used. All sixteen grey levels used (i.e., 0 to 255 in increments of 16) will
not be visible in a four colour mode window, and so an approximate 'dithered' value will
be displayed i.e., where not all of the pixels are used and hence an approximation to the
grey level is achieved.

Note that on Series 5 the concept of grey and black planes has gone. The 'colour' that is
displayed when drawing in a window will depend upon its colour mode and the gCOLOR

14-24 OPL32 Techniques

value. Intermediate greys can also be achieved by using different values for the three
arguments in the gCOLOR command, although it is more normal to achieve this in the way
demonstrated.

When drawing graphics by copying bitmaps it is the grey levels in the bitmap, the colour
mode of the window used, and in some cases the use of a so-called mask, that will
determine the final visual effect. For example, with ICON and gBUTTON the bits that are set
in the mask specify the bits in the bitmap that are to be used. Bits that are clear in the mask
specify the bits that are not to be used. This allows the effect a particular bitmap will create
to be varied by supplying different masks. For example, in ICON mbm$, each icon bitmap
is paired with a mask in the multi-bitmap file mbm$. Only pixels that are set in the mask are
drawn in the final icon. The pixels that are clear in the mask are not drawn, allowing any
background pixels to 'show through'.

Events menu
Options are: Display events

Display events is handled by the cmdV%:, clrEv: and showEv: procedures. Instead of
reacting to events the cmdV%: procedure receives them and uses the showEv: procedure to
display the nature and characteristics of each event. The only exception to this behaviour is
if the user presses the Esc key which will quit from the procedure (and only Esc with no
modifiers such as Shift or Ctrl). Not all events will set every element of the event array, so
clrEv: is used to fill the event array with zeros to ensure that information left over from a
previous event cannot be confused with the most recent event.

The show event is quite a complex procedure, but it is worth close study since it illustrates
how to detect the event type and how to use the additional information that is supplied in
the event array. I have extensively commented the code to assist with understanding its
operation.

OPX menu
Options are: Stopwatch demo

The Stopwatch demo is handled by the cmdS%: procedure which uses calls to the Date
OPX to implement a timer with micro-second resolution (i.e., millionth of a second). Two
OPX procedures are used, DTNOW&: is used to get a snapshot of the current date and time
to the nearest micro-second. Then a loop is entered which repeatedly calls the same
procedure to get updated information; the second procedure DTDATETIMEDIFF: is called
to calculate the difference between the start time and the current time to the nearest
micro-second. Time differences are displayed to the nearest milli-second by dividing the
time differences by 1000.

Obtaining timings that are truly resolvable down to a single micro-second using the above
method is most unlikely to be possible. However it is very probable that the system timer
itself is capable of that degree of resolution.

OPL32 Techniques 14-25

Tools menu
Options are: Help and Sound

Help
Pressing Fn+Help on a Series 5 will bring up information that is related to the Series 5
system and the built-in applications. This behaviour is distinctly different from SIBO
systems, where well designed programs will invoke application specific help. Application
specific help is handled by cmdSH%: procedure.

It is now recommended that help is implemented using EPOC32 database files that contain
two fields - a subject field and an information field. Help is called by running the Data
application, via a the RUNAPP&: procedure in the System OPX, passing the name of your
help data file as a parameter. Application related help should now be provided as a menu
option, via hot-key press (Ctrl+Shift+H is recommended) and preferably also via a help
button on the application's Toolbar.

Simply exiting from help (via the menu or with Ctrl+E) will dump you back into the
system screen, instead of returning to the application where you called for help. If the help
database file in your application is given a .hlp filename extension the behaviour of the
Data application will be modified. The options on the Data menu will be restricted, and
will include a 'Go back' option. Also the Toolbar options will be different and a 'Go back'
button will be included. The help Data file provided with PPCOPL32 contains advice on
the stages involved in creating help files for your own applications.

When the help option from the Tools menu is selected or Shift+Ctrl+H is pressed the
cmdSH%: procedure is invoked. A test is done to see if help is already running by
examining the value of HelpThrdID&, if it is equal to zero the System OPX procedure
RUNAPP&: is used to start up the Data application using the fully PARSE$ed help file name
as a parameter. The call to RUNAPP&: will return a 'thread ID' that can be used to identify
the application’s help 'thread'. Another OPX procedure LOGONTOTHREAD: is used with a
status word HStatus& which the system can update to indicate whether the help thread is
running (pending) or not.

If the value of HelpThrdID& is not zero, a call to IOYIELD will allow the system to
update the status word for the help thread. If help is still running (the user may have closed
it) the status word will be returned equal to KStatusPending32&, so help is brought to
the foreground with the SETFOREGROUNDBYTHREAD&: procedure. However, if the help
thread had ended for any reason the status word would be zero. In this case the
HelpThrdID& variable is set to zero and the procedure recursively calls itself to restart the
help thread.

When the program ends the cmdE%: procedure tests to see if the help thread is active, if so
an OPX procedure ENDTASK&: is called to send a shutdown message to the window group
identified by the thread ID. Hence application specific help is not left running when the
main application has finished.

14-26 OPL32 Techniques

Note:
For multi-lingual applications you will need to supply language specific versions of the
help Data file. Each file should have a name unique to the language - see the Getlang:
procedure for an example of constructing language specific file names.

Sound
Sound on or off is toggled by cmdSS%: procedure which simply uses a global variable
snd% to store the current state of the application sound. Changing the state of the sound
flag will cause the check box next to the 'Sound' menu item (on the Tools menu) to be
ticked or not. Any change to the state of the sound flag is saved in the program .INI file on
exit from the program and is restored whenever the program is invoked again. All calls
within the program to issue a beep sound (i.e. via the sound: procedure) will only take
effect if the snd% sound flag is set to true.

Toolbar options
Options are: Clock, Anti, Popup demo, Exit

Program exit, clockwise and anti-clockwise graphics options are available from the Menu
and the Toolbar buttons and are described above. However, the Pop-up menu
demonstration is only available from the Toolbar button and is handled by the
cmdTbDownP%: procedure.

Pop-up demo
A simple demonstration of an independent pop-up menu is given by the cmdTbDownP%:
procedure. Pop-up menus are (and should always be) used independently of normal
menus.

Clock and title
Tapping on the Toolbar clock will toggle the format of the clock between analogue and
digital formats (using a Date OPX procedure). Touching the Toolbar title will bring up the
task list (using a System OPX procedure). Both of these actions are handled from within
the Toolbar.opo module.

Support procedures
Getlang:

Determines and displays the file name for a program resource file. This incomplete
procedure is discussed in more detail in the 'Language text' section earlier in this chapter.

waitkeypen:

A simple procedure to wait for any key press or pen tap before returning. It uses
GETEVENT32 to test for a system shutdown message and calls the cmdE%: procedure to
exit the application if one is received.

sound:

Makes a beep sound if program sound is enabled.

OPL32 Techniques 14-27

Read_ini:
Sets up the default settings before trying to open the application's .INI file. If the .INI file
is found the stored settings are used in preference to the defaults. Note the use of fully
PARSE$ed file names and the ‘hard coded’ drive C: for the location of the .INI file, as
recommended by Psion.

Save_ini:

Deletes the application's current .INI file, if one exists, and creates a new file containing
the current application settings. Note the use of fully PARSE$ed file names and the ‘hard
coded’ drive C: for the location of the .INI file, as recommended by Psion.

pferr:

Used to display error messages, either supplied by the application or by using the system
generated error codes. |The program exit procedure is called if an unrecoverable error has
occurred.

14-28 OPL32 Techniques

Programming Techniques 15-1

15 Programming Techniques

Application files
The format of the files created by the applications ‘built-in’ to Psion machines are
described to varying levels of detail in a number of sources on disk, the key sources are
described below. Where possible, information on file format conversion is given. The key
examples that illustrate how to access the application data files from within your own
programs are described in this chapter.

In addition, a number of DOS-based utility programs are available to convert between
various file formats. Virtually all of the conversion utilities are provided on disk and are
described below.

File formats, EPOC16
The Psion SIBO C SDK contains the definitive source of information on virtually all of the
EPOC16 file formats. However, for those who do not own the SIBO C SDK, the following
directories contain information files describing the format of most of the key application
files.

PSIONICS
An excellent source of EPOC16 file format information, plus a host of other valuable data,
can be found in the so-called 'Psionics’ files that have been assembled over a number of
years by Clive D Feather. The ‘Psionics’ files are provided on disk in the PSIONICS
directory. However, the information included is being continually improved and expanded
so please refer to Clive Feather's web site for the most up-to-date versions, see the
‘Contacts and Sources’ chapter for the URL.

FORMATS
File formats details for Psion 3a Agenda, Database, Word and Spreadsheet files in RTF,
TXT and Word for Window versions. See also the OODOC201 directory for resource file
information.

DOC
Documents in Microsoft Word for Windows format.

HEXVIEW1
A file and memory segment viewer and editor, works in text or hexadecimal mode, useful
for investigating the detailed construction of a file at a binary level.

15-2 Programming Techniques

Format conversion, EPOC16
PsiWin Versions 1.0, 1.1
The Psion Manager in PsiWin 1.x provides drag and drop management of files and
directories, plus seamless conversion of a range of file types to and from Psion formats to
your preferred PC equivalents. For example, from Psion Word format to Microsoft Word
format and vice-versa. More information on PsiWin is provided in the chapter ‘Linking to
a PC or Printer’.

Writing PsiWin converters
For those who wish to write additional EPOC16 file converters, Psion produced file
conversion documentation and example source code in C++. The additional converters are
designed to be used with PsiWin 1.x (Windows 3.1 version). See the FILECONV
directory on disk.

File formats, EPOC32
The file formats for Series 5 applications have not been published (not even in the OPL32
or C++ SDKs). It is unlikely that Psion will ever publish the formats, because the
mechanism Psion recommend for access to an application's data (documents) is through
the application engine itself, as described below and in the 'Series 5' chapter.

Format conversion, EPOC32
Programmers are encouraged to make use of the ‘services’ provided by an application’s
engine to read and write the data. C++ programmers can make direct use of the engine, but
OPL32 programmers must use the engine via a suitable OPX. Information on how to do
this is beginning to emerge from Psion - see Agenda files later. PsiWin 2 also uses this
mechanism to convert from Series 3 files to Series 5 formats.

PsiWin 2
A CD-ROM is supplied with every Series 5 system, it contains the Windows 95 ‘Explorer’
software from Psion. PsiWin 2 integrates itself into the Windows 95 Explorer file manager
and provides a connection between a Series 5 and a PC. Bi-directional file transfers and
format conversions are an integral part of the system. PsiWin 2 actually runs under WINC,
a specific ‘communication’ variant of EPOC32. WINC uses the ‘built-in’ Series 5
application engines to do file conversion from/to the Psion file formats and those of other
applications. For example, between Microsoft Word for Windows format and Psion Series
5 Word format and vice-versa. PsiWin 2 is discussed further in the chapter ‘Linking to a
PC or Printer’.

Programming Techniques 15-3

Agenda files
Agenda files on the original Series 3 follow a standard DBF format, but from the Series 3a
onwards the format changed. Series 3a files have the same basic file and record nature as
DBF files, but the internal record structure and file signatures are not the same. Series 3c
and Siena Agenda files incorporate additional information to help with the synchronisation
between the Agenda records and those held in PC based organisers/schedulers.

The AGNFILE.DOC file in the DOC directory is a document in Microsoft Word format
that describes the Series 3a Agenda file format. The same information can also be found in
the FORMATS directory as three different file types, i.e. AGNFILE.DOC, AGNFILE.TXT
and AGNFILE.RTF.

In the PSIONICS directory, the AGENDA.TXT and AGENDA3A.TXT files discuss all of
the Series 3 and Siena formats.

Also, see the OPL source code from Mark Esposito in the PELAGN directory which
demonstrates how to read Agenda files from OPL.

For Series 5 Agenda files, see the notes above under ‘Format conversion EPOC32’. An
OPX that makes use of the Agenda ‘engine’, to read and write data, is available from the
Psion EPOC World web site - see the ‘Contacts and Sources’ chapter for access details.

Database files
EPOC16 ‘native’ databases are binary files containing typed, variable length records. See
DBF.TXT in the PSIONICS directory and DBFFILE.DOC (or .TXT or .RTF) in the
FORMATS directory for database format information.

The following directories contain example code illustrating access to database files.

DBFEXAM
Two examples illustrating C access to .DBF files. DBFED2.C uses DbfQuickOpen which,
although documented, its use is not demonstrated in the C SDK manuals.

ISAMEG
Contains a demonstration of an Indexed Sequential Access Method (ISAM) database in
OPL using the ISAM.DYL library from Psion.

ISAM
Contains a demonstration of an Indexed Sequential Access Method (ISAM) database in C
using the ISAM.DYL library from Psion.

DBS Database Server
For more advanced DBF database handling, plus access to dBaseIII and dBaseIV format
files see the DBS_105 directory system. The DBS system is ‘built in’ to OVAL, although
version 1.04 had some problems (see the DBSPATCH or
PSIONINC\OVAL\DBASE\SERVER directories for patches).

15-4 Programming Techniques

Database conversion
The following directories contain utilities for database file format conversions.

OPLTRAN
A set of DOS-based utility programs for EPOC16 file conversions including:
DBF2TEXT.EXE Convert a Psion database to a delimited text file.
TEXT2DBF.EXE Convert a delimited text file to a Psion database.

DBF2TEXT
Converts a Psion database file to a delimited text file – useful as an intermediate step for
exporting Psion database data to other formats. This version of the program is more recent
than the copy in the OPLTRAN directory.

DBFC103
Converts a delimited text file to a Psion database file - useful as an intermediate step for
importing databases in other formats to Psion format.

JBdata
An excellent Freeware database for Series 3a/c that has many more facilities than the built
in Data application, in particular it has the ability to load data files with field types other
than string. JBdata can also export a Series 3a/c database as a delimited text file, useful for
transfer to other systems e.g. Series 5.

Series 5 Data files
Details of the format of Series 5 Data files are not available, see the notes above under
‘Format conversion EPOC32’.

PsiWin 2 will convert EPOC16 Data files to Series 5 format. However, files containing
field types other than strings cannot yet be converted by PsiWin 2. For example, database
files created by OPL applications that have non-string data fields.

An interim solution might be to use JBdata to export the EPOC16 database (e.g. on S3a/c)
as a delimited text file, transfer the file to a Series 5 and use the delimited file import in the
Series 5 Data application.

Word files
For information on the format of EPOC16 Word files see WORD.TXT in the PSIONICS
directory and WORDFILE.DOC (or .TXT or .RTF) in the FORMATS directory.

The C source code for a DOS program to convert Psion Word files to text files is located
in the W2TSRC directory. The EPOC16 Word application itself provides options to
export/import Word files to/from text files. In fact, the OPL editor on EPOC16 machines is
just an alias of the Word application that operates on plain text files. Aliasing in EPOC16
is discussed later in this chapter.

Programming Techniques 15-5

Series 5 Word files
Details of the format of Series 5 Word files are not available, see the notes above under
‘Format conversion EPOC32’. The Series 5 Word application itself has the option to
export/import Word files to/from plain text files.

PsiWin 2 will convert EPOC16 Word files to Series 5 Word format.

Spreadsheet files
For information on the format of EPOC16 Sheet files see SPR.TXT in the PSIONICS
directory and SPRFILE.DOC (or .TXT or .RTF) in the FORMATS directory.

Series 5 Word files
Details of the format of Series 5 Sheet files are not available, see the notes above under
‘Format conversion EPOC32’.

PsiWin 2 will convert EPOC16 Sheet files to Series 5 Sheet format.

Text files
Plain ASCII text files can be edited in the EPOC16 Word application, or with the OPL
program editor. Therefore, transferring text files between a PC and a SIBO system is very
simple.

Programs in OPL16 are plain ASCII text files, whereas OPL32 source files are considered
to be ‘documents’ on the Series 5 and so have a UID header, hence they may not be
directly readable by a PC text editor. OPL32 source files have to be exported as text files
from the Series 5 program editor. Text files can also be imported into the Series 5 program
editor.

The Series 5 Word application is able to import/export plain text files.

Sound
In SIBO systems, sounds produced by the buzzer (or buzzer emulation) are generated via
the PLIB p_sound function, the GenSound OS call, the OPL BEEP function or the Oval
Beep function. Sounds made via a speaker (if fitted), such as DTMF dialling tones, are
controlled via I/O functions using the SND: device driver. The SND: driver can produce two
distinct notes at the same time allowing the generation of a wide range of notes and note
sequences.

All Series 3 and HC models have an internal amplifier driven loudspeaker that can be
driven by the SND: device driver. The original Series 3 and the HC also have piezoelectric
buzzers for emitting warning beeps and other simple sounds. The piezoelectric buzzer is
emulated via the speaker on the later Series 3 models, however it takes more power to

15-6 Programming Techniques

drive. On the first Series 3 the sound driver is limited to providing DTMF dialling tones or
simple alarm sounds.

On the 3a and 3c the SND: driver can produce two distinct notes at the same time, allowing
the generation of a wide range of sounds. Although the sound quality is not as high as with
digital sound files, the memory requirements are much less. For example, to play a tune
lasting six seconds, at around 8Kbytes per second, would require a digital sound file of
size 49,184 bytes. A comparable figure using the SND: device driver would be less than 1
Kbytes for the data required.

The 3a/c systems also include a microphone and can record sounds into compressed digital
sound files that can be replayed. The Siena and Workabout have only piezoelectric buzzers
and so are restricted to emitting warning beeps and other simple sounds, they do not have
speakers or microphones and cannot record or play digital sounds. The HC does not
include a microphone or the CODEC hardware necessary for digital sounds.

Series 5 machines have a speaker, microphone and CODEC hardware. Sounds can be
generated as tones synthesised from a combination of sine waves according to an
algorithm, and are generated directly by the sound driver. Series 5 machines can also
record sounds into EPOC32 compressed digital sound files that can be replayed.

Sound files
EPOC16
Playing and recording of digital sound files (.WVE files) on suitably equipped SIBO
system is achieved in different ways depending on the language:

In OPL16, by using appropriate EPOC16 operating system calls - see key examples below.

In OVAL, using methods associated with a ‘hidden’ Sound control i.e. Cancel, Play,
PlayAsync, Record, RecordAsync.

In C, using calls to PLIB library functions, for example:
For recording - p_recordsounda(), p_recordsoundw(), p_recordsoundcancel().
For playback - p_playsounda(), p_playsoundw(), p_playsoundcancel().

Key sound examples on disk are:
Files in the PPCOPL16 directory demonstrate playing a sound file asynchronously in
OPL16. Examples in the TSMP10 directory demonstrate recording/sampling sounds in
OPL and C. The sound examples use a SYS$SAMP.LDD logical device driver to provide
access to a SMP: I/O device. See SYS1.TXT in the PSIONICS directory and
OSCALLS.DOC in the DOC directory for details of the EPOC16 O/S calls required for
recording and playing digital sound files.

Note:
Digital sounds cannot be recorded to Flash SSDs, although once copied to a Flash SSD
they can be played back.

Programming Techniques 15-7

EPOC32
EPOC32 digital sound files contain data encoded using the Alaw standard for encoding
sound. Sound recording (sampling) facilities are provided by EPOC32. Sampled digital
sound files can be generated using EPOC32’s sound recording facilities. Like all
‘document’ files in EPOC32, sound files do not have filename extensions.

In C++ a number of sound classes are available, with associated methods for sound
replay/recording and for producing sounds algorythmically.

In OPL32, playing of digital sound files is achieved through calls to the procedures in the
System OPX:

PLAYSOUND:(file$,volume&), PLAYSOUNDA:(file$,volume&,statusWord&) and
ret&=STOPSOUND&: to play a sound file synchronously, asynchronously and to cancel the
replay of a sound file respectively.

Sound recording OPX functions are not yet available.

Sound file formats
On Series 3a/c machines, digital sound files have a .WVE filename extension (and they
may be grouped in a \WVE directory). A set of sample sound files are provided in the
WVE directory on disk.

Series 3a/c sound files are compressed and hold one second of sound per 8Kbytes of disk
space. For information on the format of EPOC16 (.WVE) sound files see the
SOUND.TXT file in the PSIONICS directory on disk.

PC-based wave sound files have .WAV filename extensions. Conversion between
EPOC16 and PC type sound files can be achieved using one of the two PC-hosted
conversion programs, provided in the OPLTRAN directory on disk.

• WVE2WAV.EXE Convert a Psion WVE file to a Windows WAV sound file.
• WAV2WVE.EXE Convert a Windows WAV file to a Psion WVE sound file.
• WAV2WVE.CPP The C++ source code for a version of the
 WAV2WVE.EXE conversion program.

Series 5 sound files are treated as documents and do not have filename extensions. The
format of Series 5 digital sound files is different to EPOC16 (.WVE) files, they are more
compact and can hold a choice of 2 minutes (standard compression) or 4 minutes
(ADPCM compression) of sound per MByte. In other words, 8.5Kbytes or 4.3Kbytes per
second.

A new sound file conversion utility WVECONV.EXE (Windows 95/NT only) has been
provided by Psion to convert Series 3a/c sound files to Series 5 and vice-versa.

You should find the WVECONV.EXE utility on the PsiWin CD-ROM in the
\EXTRAS\UTILS directory.

Combined with the other two conversion utilities described above, WVECONV gives full
interchange capability between the PC .WAV format and the various Psion formats.

15-8 Programming Techniques

Bitmaps, icons and fonts
For a discussion of EPOC16 bitmaps and bitmap files see the ‘User Interface’ chapter. For
details of EPOC32 bitmaps see the ‘Series 5’ chapter. Using program icons is described in
the chapters on OPL techniques, production of bitmap files and program icons is described
later in this section. Standard and custom text fonts are also described later.

Bitmap files, EPOC16
Options for producing bitmap files, for icons in particular, are described in the ‘Icon for
EPOC16’ section below. The format of EPOC16 bitmap files (.PIC) is detailed in
BITMAP.TXT in the PSIONICS directory on disk.

Bitmap utilities, EPOC16
A utility program, WSPCX.EXE in the OPLTRAN directory, will convert Windows PCX
files to EPOC16 bitmap (.PIC) files; it will also bind multiple EPOC16 bitmaps into one
file.

A more recent version of the WSPCX.EXE program, than the version located in the
OPLTRAN directory, can be found in the WSPCX314 directory.

Another conversion utility, by Andrew Baldwin, is located in the FIREPIC directory. It is
a bitmap loader/viewer/saver for the Psion 3/3a/c and Workabout that offers a few extra
features over other similar programs. It can load and save multiple file formats by the use
of plug-in DYLs (currently supplied DYLs for PIC and PCX formats). Full source code is
supplied, in C and OPL that demonstrates how to write and use DYLs called by an OPL
program.

Note:
PCX files are ZSoft Paintbrush format files, a format understood by many PC-based
bitmap edit programs.

Screen capture, EPOC16
Screen captures are useful for including Psion screen shots in manuals or web pages or for
extracting parts of the Psion screen for use as icons.

On SIBO systems Shift+Ctrl+Psion+S will capture the whole screen into to an EPOC16
bitmap file called LOC::M:\screen.pic. If the machine has a grey plane the file will contain
two bitmaps, the first to store the black plane information and the second to store the grey
plane.

Programming Techniques 15-9

Icons for EPOC16
To produce bitmaps and icons on a Series 3a/c, a pixel oriented drawing package is
needed. An excellent shareware application, Draw version 2.84 by Rick Andrews, is
included in the DRAW284 directory for your evaluation (please register Draw if you
intend to keep it).

A Windows (version 3.x) based icon editor, that is very easy to use, is included in the
PSICON directory (please read the notes included with the program files).

A SIBO based icon editor is located in the ICONED directory. The program was produced
by Psion as part of the C SDK and was been placed in the public domain. The HWIF C
source code is included with the executable program.

The OVAL IDE has its own icon editor built in.

A collection of 48x48 icons for use with your own applications or program groups can be
found in the ICONS directory (please read the notes included with the files).

Bitmap files, EPOC32
Options for producing Series 5 bitmap files, for icons in particular, are described in the
‘Icons for EPOC32’ section below. Series 5 multi-bitmap files (.MBMs) may contain from
one to many bitmaps. Files produced by the Series 5 Sketch application are not the same as
MBM format files. Sketch uses its own ‘document’ file format for drawings. However,
Sketch is able to import and export MBM files that contain a single bitmap. If a
multi-bitmap file, containing more than one bitmap, is imported into Sketch only the first
bitmap is loaded. Details of the format of Series 5 multi-bitmap files (.MBM) or Sketch
files are not yet available.

A new bitmap file conversion utility BMCONV.EXE (Windows 95/NT only) has been
provided by Psion to convert Windows BMP files to Series 5 MBM format and vice-versa.
In addition to converting BMP files to MBM, BMCONV is able to combine individual
MBM files into multi-bitmap MBMs, it will also disassemble a MBM file into a series of
individual BMP files – see the ‘Icons for EPOC32’ section below.

You should find the BMCONV.EXE utility on the PsiWin CD-ROM in the
\EXTRAS\UTILS directory. It is also under the PPCOPL32 directory on the disk supplied
with this book.

Screen capture, EPOC32
Screen captures are useful for including Psion screen shots in manuals or web pages or for
extracting parts of the Psion screen for use as icons.

On the Series 5, pressing Shift+Ctrl+Fn+S will capture a complete screen image as an
MBM multi-bitmap file (containing a single bitmap) into a folder and file of your choice.

15-10 Programming Techniques

Icons for EPOC32
Series 5 icons are typically held in a multi-bitmap file (.MBM), that contain up to three
bitmap/mask pairs. The three sizes are 24x24, 32x32 and 48x48 pixels to accommodate the
different zoom levels in the system screen. When an application is ‘built’ the icons are
placed in an .AIF file, the system then reads the most suitable size for the ‘zoom level’. If
the exact size required is not provided, or if some sizes are missing the most suitable size
is used.
Each icon bitmap is paired with a mask of the same size. Only pixels which are ‘set’ in the
mask are drawn in the final icon. The pixels which are ‘clear’ in the mask are not drawn,
allowing the background to be displayed in these pixels.

In an OPL32 application header you can use MBMs containing just one bitmap as
produced and exported from the Sketch application.

For example in OPL32, you could specify them individually:
APP ...

ICON “icon24.mbm”
ICON “mask24.mbm”
ICON “icon32.mbm”
ICON “mask32.mbm”
ICON “icon48.mbm”
ICON “mask48.mbm”

ENDA

or with an icon/mask pair in each MBM:
APP ...

ICON “iconMask24.mbm”
ICON “iconMask32.mbm”
ICON “iconMask48.mbm”

ENDA

Or with all of the bitmaps and masks in one MBM, as would normally be the case if the
icon and masks were prepared on the PC, and then processed using the BMCONV.EXE
utility. For example:
APP ...

ICON "filename.mbm”
ENDA

Once the application is ‘built’, the icon .MBM file is embedded into the .AIF file and so
does have to be supplied separately.

In the OPL32 example application, PPCOPL32, the DOS and Series 5 bitmap files needed
to build the ‘zoomable’ program icon are provided, plus the other graphical items used by
the application such the ‘EPOC’ logo and the bitmaps for the Toolbar buttons. DOS batch
files are available to build the .MBM files on a PC. All files are located in the directory
structure named PPCOPL32.

The translated application is located in \PPCOPL32\SYSTEM\APPS\PPCOPL32. Other
support files for building the icon and the other .MBM files are located in sub directories
such as \PPCOPL32\DOSUTILS\ICONMBM etc.

Programming Techniques 15-11

The multi-bitmap file PPCOPL32.MBM contains three bitmap/mask pairs for three icon
sizes, to allow for ‘zooming’ of the system screen display. The component bitmaps and
masks in this file were built as PC-type .BMP files using the Windows Paint program. All
six files were then converted and assembled into the compressed .MBM file using a batch
file and list file with the BMCONV.EXE utility from Psion. All of the files described are
located on the disk.

If required, BMVCONV can create a header file that may be used in program source files
to identify the component bitmaps within a multi-bitmap set.

Displaying MBM bitmaps
When drawing graphics by copying bitmaps it is the grey levels in the bitmap and the
‘colour mode’ of the window used that will determine the final effect, and in some cases
the use of a so-called mask. Bits that are set in the mask specify bits in the bitmap that are
to be used. Bits that are clear in the mask specify bits that are not to be used. This allows
the effect a particular bitmap will create to be varied by varying the mask used. For
example in icons, each icon bitmap is paired with a mask in the multi-bitmap file. Only
pixels that are set in the mask are drawn in the final icon. The pixels that are clear in the
mask are not drawn, allowing any background pixels to ‘show through’.

Disassembling MBM files
To re-create icon components, or access other Series 5 bitmap components from .MBM
files containing multiple bitmaps, you can use the BMCONV.EXE utility ‘in reverse’.

For example:

BMCONV /u mbmfile.mbm bitmap01.bmp bitmap02.bmp etc.

will pull the specified .MBM file apart, generating a Windows bitmap file for each of the
Series 5 bitmaps in the multi-bitmap (.MBM) file. Since you may not know how many
components are in the .MBM file, you may have to experiment with the number of .BMP
file names you supply on the BMCONV command line. Using a list file with a long list of
potential file names is a good way to disassemble unknown .MBM files. You can then edit
the component .BMP files to your needs using a program such as Windows paint. Then
convert and reassemble the .BMP files again into a .MBM as required using BMCONV.

Hint, for icon files use the custom zoom option in Windows paint program to set the
‘zoom’ level to maximum, and set the grid to on.

Series 5 clipart
As stated above, the Sketch application may be used for producing icon components.
Sketch has a number of ‘standard’ clipart images within the application. The S5ART
directory contains a set of Series 5 Sketch files that may be used as an additional source of
clipart graphics images.

15-12 Programming Techniques

Fonts
A number of font related utilities are supplied on disk for use with EPOC16 machines.

A utility to display all of the characters, their ASCII codes and fonts available on a Series
3a/c is located in the CHARM directory.

A simple program for viewing some text in all of the different built in fonts on the S3a/c
can be found in the FONTVW directory. The OPL16 source code is included. Fontview,
by Mark Esposito, is very helpful during screen design, to decide which typeface will look
best.

A shareware font file editor by Steve Godfrey, for producing new fonts or graphics
characters, is located in the FONT172 directory for your evaluation (please register
Font172 if you intend to keep it).

A utility for producing/compiling new EPOC16 font files is located in the WSFCOMP
directory – see later under ‘Custom fonts’.

ROM based fonts
The table below lists the fonts provided in the system ROMs.

In the table below:

• Swiss and Arial refer to fonts without serifs (also known as sans serif - a serif is a
slight projection which finishes off a stroke).

• Roman and Times fonts either have serifs (e.g. font 6) or are in a style designed for
serifs, but are too small to show them (e.g. font 5 on the Series 3c).

• Courier is a mono-spaced font, i.e. has characters that are all the same width (and
have their pixel size as width x height).

• With proportional fonts, each character may have a different width.

Fonts on EPOC16 systems are identified by a 16-bit value representing the font position in
the ROM as on EPOC16 systems, whereas on the Series 5 they are identified by a 32-bit
UID.

Font Name Pixels
WxH or
H only

System Name
Series 5
only

Pixels
WxH or
H only

1 Series 3 normal 8 S3, S3a/c, Siena, WA N/A
2 Series 3 bold 8 S3, S3a/c, Siena, WA N/A
3 Series 3 digits 6x6 S3, S3a/c, Siena, WA N/A
4 Mono 8x8 S3a/c, Siena, WA Courier 8
5 Roman 8 S3a/c, Siena, WA Times 8
6 Roman 11 S3a/c, Siena, WA Times 11
7 Roman 13 S3a/c, Siena, WA Times 13
8 Roman 16 S3a/c, Siena, WA Times 15
9 Swiss 8 S3a/c, Siena, WA Arial 8
10 Swiss 11 S3a/c, Siena, WA Arial 11

Programming Techniques 15-13

11 Swiss 13 S3a/c, Siena, WA Arial 13
12 Swiss 16 S3a/c, Siena, WA Arial 15
13 Mono 6x6 S3a/c, Siena, WA Tiny

(mono)
3x4

Fonts 1 to 3 are the Series 3 fonts, and are used when running in compatibility mode on
the Series 3a/c, Siena and Workabout. The original Series 3 fonts are 1 = Standard, 2 =
Bold, 3 = Small digit for numbers 1 to 9 including the space character.

Initially font 4 is used on the text screen of the Series 3a/c and Siena, Courier 11 is used
on the Series 5.

The special font number $9a is set aside to give a machine's default graphics font; this is
the font used initially for graphics text. The actual font may vary from machine to machine
- e.g. it is font 1 on the Series 3 and font 11 on the Series 3a. The default font is 11 (Swiss
13) for the Series 3c and 12 (Arial 15) for the Series 5.

For EPOC16 OPL programmers the ROM based font IDs are numbered from 1 upwards to
the number of fonts available. Whereas, C programmers start with WS_FONT_BASE for the
first font, then WS_FONT_BASE+1 etc. for as many fonts as are built into the ROM.

The default font sometimes called the system font, is in most cases the first font in the
ROM - with ID WS_FONT_BASE. On the Series 3, the system font is determined by the
$WS_SF environment variable which should contain a WORD binary value of 0 for
WS_FONT_BASE and 1 for WS_FONT_BASE+1 and so on.

In version 4 of the SIBO window server, which started with the S3a, the system fonts are
determined by the $WS_FNTS environment variable. This contains a series of words each
containing the fonts used by the window server in various situations.

The full list is:

System font
Notifier/Alert font
Status Window font
Symbols font used for the status window diamond symbol
Medium 2 digital clock font
Medium 2 date font
Notifier/alert button font
Small status window clock font

The EPOC16 character set is compatible with the IBM code page 850 character set for
character codes in the range 32 to 255. In some proportional fonts the code page 850 block
graphics characters (for example, the box drawing characters) are absent. The characters
with codes less than 32 are not compatible with any standard and vary from font to font.

In EPOC32, on the Series 5, fonts are identified by a 32-bit UID, OPL32 programmers
should refer to ROM based CONST.OPH file. On the Series 5 the character set (in the
English version of EPOC32) is intended to be with compatible with code page 1252 as
used by Microsoft Windows.

15-14 Programming Techniques

The following style modifiers are available.

style value effect OPL32 constant
G_STY_NORMAL 0 normal style KgStyleNormal%

G_STY_BOLD 1 bold KgStyleBold%

G_STY_UNDERLINE 2 underlined KgStyleUnder%

G_STY_INVERSE 4 inverse KgStyleInverse%

G_STY_DOUBLE 8 double height KgStyleDoubleHeight%

G_STY_MONO 16 mono KgStyleMonoFont%

G_STY_ITALIC 32 italic KgStyleItalic%

These styles can be combined by ORing their values, for example, to set underlined and
double height and Times Roman 8 point, use:

2 OR 8

Alternatively add the style values together. For example, to set bold underlined and double
height use:

1+2+8=11

Note that the Series 3 fonts (font numbers 1and 2) are the normal and bold font versions of
each other and G_STY_BOLD should not be used with them. Also G_STY_MONO was
designed for use with these two proportional fonts to change them to mono-spaced fonts
algorithmically.

Font numbering is different on the HC from that of the rest of the SIBO family. The HC
fonts are listed below.

Font Name Pixel WxH
or H only

System

1 HC standard font 15 HC
2 HC small font 11 HC
3 HC Mono 6x8 HC
4 HC Mono 2 font 7x10 HC
5 Series 3 normal 8 HC
6 Series 3 bold 8 HC

Custom fonts, EPOC16
SIBO font files are bitmap files that provide the pixel patterns used for drawing characters
on the display.

A utility for producing/compiling new EPOC16 font files is located in the WSFCOMP
directory, along with a number of example font source files (.FSC) and some helpful notes.
Font source files are just plain text files that are compiled by WSFCOMP.EXE into font
files that have .FON extensions.

Programming Techniques 15-15

A shareware font file editor by Steve Godfrey, for producing new text fonts or graphics
characters, is located in the FONT172 directory for your evaluation (please register
Font172 if you intend to keep it).

Custom fonts, EPOC32
Series 5 font files are bitmap files that provide the pixel patterns used for drawing
characters on the display. To conserve memory EPOC32 uses files in its own font store file
format (.GDR).

Two methods can be used to produce a .GDR file:

The font details can be specified as a text file (a .GD file) that can be compiled into a font
store file, using the FNTTRAN.EXE utility (Windows 95/NT only).

Custom EPOC/16 font source files (.FSC) can be converted into a .GD source files using
the FONTCOMP.EXE utility, which can be compiled into a .GDR file using the
FNTTRAN.EXE font compiler (Windows 95/NT only).

The FNTTRAN and FONTCOMP utilities are supplied with the EPOC32 SDKs from
Psion.

Resource/help files
Application resource files are typically used for the following reasons:

• To hold all of the program specific text and data separately from the program code,
including menu items, menu accelerators, dialog items, user prompts etc.

• Providing program help text (EPOC16 only) - which may be context sensitive.
• Simplifying the production of multi-lingual applications.
• All application written in SIBO C based on the HWIM OOP library assume the use of

a resource file.

Advantages of resource files
Use of application resource files has a number of very significant advantages:

• Removing the data from the program itself reduces the size of the data segment
required, thus reducing the RAM requirements at run-time. The required data or
textual information can be loaded into the program as required, the process is usually
very quick and will not be noticed by the user. Each resource item is tagged with a
unique resource identifier that is used in the program source to refer to it as required.

• Resource files can be compressed to further reduce the storage overheads, system
functions decompresses the information automatically during the loading process.

15-16 Programming Techniques

• If the text strings are not embedded in the source code they can be used in multiple
places throughout the code. A common resource file could even be used for multiple
applications.

• Isolating the program data and text from the source code enables minor changes to be
made without requiring program re-compilation, and can help to ensure any changes
were complete without the need to search multiple source files.

• Program text, without the source code, can be passed to a language specialist to be
translated. Thus also avoiding multiple copies of the program source for each
language variant in a multi-lingual application.

• Allows applications to be produced as mono-lingual at first and later adapted very
easily to be multi-lingual.

Resource/help definition files
An application’s resources (strings, dialog data etc.) are defined in a text source file with a
.RSS extension.

In EPOC16 applications, help information is typically included in the resource file.
EPOC32 applications differ because the help information is usually placed in a help Data
file – see ‘Help file utilities, EPOC32’ later in this chapter.

If other languages are to be supported, the text in the .RSS file will have to be translated
into each of the supported languages, being very careful to stay within the text sizes
indicated in the file itself.

The .RSS files are converted into a .RSC files by the DOS-based resource compiler
RCOMP.EXE. The .RSC file may then be converted into a compressed form (.RZC) using
another utility. For EPOC16 system the DOS-based compression utility used is
RCHUF.EXE, as supplied with the SIBO C SDK.

Header files are produced by the resource compiler (.RSG) that can be ‘included’ into
program source code to allow the resource identifier names to be used instead of their
numeric values.

A program must identify the language code of the machine and load its resources from the
corresponding language resource file at run-time. Using and naming of language specific
resource files is described in detail in the ‘OPL16 Techniques’ chapter, and a full list of
language codes is available in the Appendix.

On SIBO systems, special resource files (.CFO) are used within the system to hold
country/language specific data. System functions are used to access .CFO file data, see the
Appendix.

Resource definition files (.RSS), compiled resource files (.RSC) and the resource compiler
(RCOMP.EXE) are not interchangeable between EPOC16 and EPOC32 systems.

Programming Techniques 15-17

Resource/help file utilities, EPOC16
The following disk directories contain utilities for using EPOC16 resource files:

HELPKIT
A set of help/resource file production utilities, put together by Jeremy Wakefield (Jezar), is
included on disk in the HELPKIT directory. The materials and utilities supplied
demonstrate how to build and compile help program resource files, including displaying
help from within an OPL16 program. The EPOC16 DOS-based resource compiler
RCOMP.EXE is included along with an example resource definition file.

A resource compiler, written in OPL16, suitable for use on a SIBO system is also included.

XFHELP
An OPL ‘front end’ program for the SIBO-based resource file compiler described in
HELPKIT above.

HELPED11
A Windows 3.x based application from Psion (free but unsupported), for the construction
and editing of application resource files for program help.

PHCOMP
A DOS-based utility for simplifying the production of application resource / help files.

Resource file utilities, EPOC32
EPOC32 resource files (.RSS) are converted into a .RSC files by the resource compiler
RCOMP.EXE (Windows 95/NT only). EPOC32 .RSC files may apparently be converted
into a compressed form, although at the time of going to print (September 1997) it was not
clear how to do this.

Header files are produced by the resource compiler (.RSG) that can be ‘included’ into
program source code to allow the resource identifier names to be used instead of their
numeric values.

Psion’s C++ libraries provide classes and methods for using resource files. OPL
programmers should refer to the section below on ‘Country specific information’ and to
the ‘Series 5’ chapter for details of using resource files from OPL32.

Help file utilities, EPOC32
EPOC32 help is typically provided in the form of a ‘Data’ file of help topics. The
‘standard’ EPOC32 applications share a single database. New applications may add a
database of their own. Groups of applications released simultaneously may share a help
database.

A typical help implementation is demonstrated by the PPCOPL32 application, described in
the ‘OPL32 Techniques’ chapter. An example ‘Data’ file is provided that contains help

15-18 Programming Techniques

information about creating program help, it may be viewed on a Series 5 machine
independently of the PPCOPL32 application.

The Psion C++ SDK documentation describes a tool called aleppo, designed to support the
generation of help databases from source documents. The information states that aleppo
will make it convenient and easy to edit the source (in RTF format) documents, and quick
to re-generate a help database. Aleppo is said to support localisation and various
customisation options, although the aleppo utility was not actually supplied with version
1.01 of the Psion C++ SDK.

Printing
To allow the user flexibility in choice of printer model, printer settings (such as page size,
margins headers etc.) and print device configuration (e.g. via serial, parallel, infrared or to
a file) an application should provide access to the standard print set-up dialog(s). After
invoking the Print Set Up dialog, an application is not normally required to keep a record
of the selections or changes made by the user, ROM-based system code will take care of
this (on SIBO systems the choices are actually held in environment variables - see the
Appendix for details).

Invoking the print set-up dialog from OPL16 is described in OPLPRINT.TXT in the
OPLEXAMS directory. In HWIF C a single function call is all that is required i.e.
hPrintSetupDialog(). In HWIM, methods in the PRNCTRL class are used.

In OPL32, a printer OPX is provided that provides control over printing and a wide range
of advanced printing capabilities to the OPL32 programmer. A sophisticated set of
functions are available including access to the four standard print dialogs and facilities for
sending text, bitmaps and formatting information to a printer.

It is the responsibility of an application to obtain, and to record, information about the
users detailed printing requirement, usually via a dialog. For example, it may only be to
confirm that printing is required, or possibly to select what should be printed, or the way in
which it should be done etc.

WDR printing, EPOC16
All Series 3 models, the Siena and the Workabout have a dynamic library called
FORM.DYL as part of their ROM. This library provides support for the Psion proprietary
WDR based printing services i.e. printing using printer drivers in WDR format, that
generate suitable printer command sequences to control printing operations, on behalf of
an application for a range of supported printers. Applications need not know which
particular driver is in use, because the WDR printer driver will convert printing requests
into sequences suitable for the currently selected printer. A utility program is provided in
the WDRKIT directory for producing and compiling custom WDR printer driver files.

Programming Techniques 15-19

Miscellaneous topics
This book is fairly ambitious in its scope, but cannot possibly cover all topics. If you are
pushing the limits of what is possible it’s always advisable to have access to an appropriate
Psion SDK and documentation. However, that does not always help if you’re trying to
solve a specific programming problem. Usually, you can be reasonably sure that someone
else has had the same or similar problem and has solved it. This section is a brief
description of some of the more esoteric topics and the support materials on disk that
describe how some of the more difficult problems have been tackled. However, this
section is by no means fully comprehensive. There is a mine of useful information on disk,
so always refer to the extensive disk index provided in the ‘Disk Contents’ chapter. If that
fails go ‘on-line’ where there are many talented and generous people out there who are
usually willing to help. The key ‘places to go’ are detailed in the ‘Contacts and Sources’
chapter.

Country specific information
Psion machines are produced in a number of language variants and may differ in a number
of respects. For example: the language code, the language of the text used by the ROM-
based software such as error messages, the month names etc. In SIBO systems, all the
above variations are encapsulated in a single configuration file in the ROM called
ROM::SYS$CTRY.CFO.

See the Appendix for a complete list of language codes plus methods of retrieving the
country specific information from a SIBO machine ROM.

For Series 5 programmer using OPL32, a limited amount of country specific information is
available via the Date OPX. The System OPX provides facilities for using program
resource files, but does not include a function to return the machine language code. A new
OPX due from Psion will address this, plus providing some other requested functions – see
the Psion EPOC World web site for the latest information.

The following directories contain some examples of accessing country specific
information.

WLD
An OPL16 example of access to the World application database files, via the WLD:
device, to get country and dialling code information.

RISET
Using the WLD: device in OPL16 to access the World database for sunrise and sunset
information.

CLOCKS
An excellent full HWIM C demonstration application using the World database
information to display multiple World time-zone clocks.

15-20 Programming Techniques

Using libraries and other programs
Using DYLs
Mechanisms are provided in OPL16 (through SEND, ENTERSEND etc.) to call dynamic
library procedures (methods) written in SIBO OOP C. Three key example are available on
disk with full source code on OPL and C.

The simplest example is in the PPCOPL16 directory system and is described in detail in
the ‘OPL16 Techniques’ chapter. A second more complex example is in the FIREPIC
directory. A very sophisticated example is provided in the KMAC directory system. The
FIREPIC and KMAC examples have explanatory documentation included.

Documents in the OODOC201 directory describe using Object Oriented Programming
techniques with the Psion SIBO C SDK (v2.01), including information on writing DYLs.

Calling C from OPL16
Files and example code (in C and OPL) in the OPL_C directory demonstrate a method of
calling C routines from within an OPL program.

Calling C++ from OPL32
Calling the operating system or other external code directly through functions such as
CALL, OS or USR etc. is not possible in OPL32. Instead the OPX mechanism is provided
to allow external library functions, written in C++, to be used by OPL32 programs, thus
extending the language. Examples of how to call some of the ‘standard’ OPX procedures
are given in the PPCOPL32 demonstration application described in the ‘OPL32
Techniques’ chapter.

In the C++ SDK, Psion provide examples of OPX code, in C++ and OPL32 (see the
TOPX demonstration in the \EPOC32EX\OPL directory), more examples are becoming
available via the Psion EPOC World web site.

Calling EPOC16 functions
The EPOC16 operating system has an extensive system of ‘software interrupts’ that allow
programmers to make use of operating system routines in the ROM. C programmers utilise
these facilities through the PLIB and WLIB library functions. OPL16 programmer can also
make use of the interrupts using either the CALL or OS OPL functions. The example
application described in the ‘OPL16 Techniques’ chapter demonstrates the use of some of
these operating system calls. A number of documents, in Word and text format, are
supplied on disk to provide a detailed description of virtually every available system
functions.

Refer to the files and documents in the following directories:

PSIONICS A comprehensive set of text files providing a huge amount
of programming related information including operating
system calls.

DOC OSCALLS.DOC, operating system calls explained and
detailed.

EPOCALLS The operating system calls manual from version 2.01 of the
C SDK in Word for Windows format.

Programming Techniques 15-21

Running other programs
The OPL16 program in the S3PROC directory illustrates running a named application
from within an OPL program, getting a list of all running applications and how to ‘kill’ a
specific application.

Inter-process communications (IPCS)
Since EPOC16 is based on a client/server architecture it provides extensive support for
communications between processes and applications. For C programmers the PLIB library
provides functions for inter-process message management and for copying data between
different process data segments. OPL programmer may use the same function by using
operating system calls (software interrupts).

An OPL16 demonstration of inter-process communication is provided in the IPC directory.
One program sends messages to another to indicate a change of state or the completion of
a task. The example uses one of the ‘magic statics’ as a message/flag indicator, it also
demonstrates asynchronous event handling and extensive use of calls to the EPOC16
operating system.

Link-paste or Bring
An example of a very specific use of inter-process communications is the ‘Link-Paste or
Bring’ capabilities of many of the built-in applications, where data that is highlighted in
one application can be brought or pasted into another application, where the user has
invoked a ‘Bring’ command.

An example link-paste server and client, both in OPL and in C, written by Tom Dolbilin is
provided in the LPCS directory. It illustrates how to implement ‘Bringing’ of highlighted
data from one application into another.

Since a link paste server (i.e. the supplier of the data) may be requested to provide data at
any time - even when it may be currently displaying a menu, dialog or help screen, it is
preferable that OPL or HWIF programs should not normally declare themselves as servers.
A link paste server would usually be a HWIM process. (On the Series 3 family it is the
window server that actually handles the link paste process.)

Supplementary SIBO SDKs
Other specialist Software Development Kits are available from Psion Software and more
are appearing with time. A list and brief descriptions of the current supplementary SDKs
are given below.

The supplementary kits are not designed as commercial products, and more often than not
are made available free to serious developers on request. Psion do like to keep control over
the distribution of these SDKs because of the implications they have for consuming
support resources within the company. For more information on the supplementary SDKs
see the ‘Contacts and Sources’ chapter for the address of your nearest Psion Software
support organisation, or make enquiries via the EPOC World web site.

15-22 Programming Techniques

DBS Database Server
For more advanced DBF database file handling, plus access to dBaseIII and dBaseIV
format files see the DBS_105 directory system.

The DBS system is ‘built in’ to OVAL although version 1.04 had some problems (see the
DBSPATCH or PSIONINC\OVAL\DBASE\SERVER directories for patches).

PRC
Psion remote communications supplementary SDK is used to connect a SIBO system
(using C, OPL or OVAL) with a remote filing system such as a PC. Facilities for C and
Visual BASIC PC programmers are provided in the PRC SDK. An example of the use of
PRC is the PsiWin suite from Psion, where the basis of the SIBO to PC link is via PRC.

SMS
The SMS SDK allows application developers (from OPL or C) to use a SIBO system to
take advantage of the Short Messaging Services available via many of the cellular
telephony service providers.

TCP/IP
Psion provide a TCP/IP SDK to provide Internet and e-mail connectivity to SIBO based
applications written in OPL or C.

Uri
The URI Universal Radio Interface SDK is for developers who wish to use a SIBO system
to implement a radio based network application.

Aliasing applications, EPOC16
Some file-based applications may end up with large file lists. It may be desirable to
separate a file list into two or more separate lists, for example (for the Word application)
all correspondence going in one file list, all poetry in another, and so on. These file lists
could be distinguished, on the System Screen, by having distinct icons, different
application buttons could be used to cycle round running instances of these tasks.

Going further, it may be desirable for the behaviour of the application to alter, depending
on which type of file is open. For example, the behaviour of the built-in text editor is
different for .WRD files (when the application is seen as Word) from .OPL files (when the
application is seen as Prog).

The concept of ‘aliasing’ an application is designed to meet these requirements. For each
required new file list, an alias file (.ALS file) should be installed in the System Screen. In
practice the user can do this on the Series 3a/c using the ‘Create new list’ item from the
‘Special’ menu.

Broadly speaking, the contents of a .ALS file match those of a .SHD file: the Public Name,
default extension, and default directory are all defined, as well as the application type
number.

Programming Techniques 15-23

However, the .ALS file goes beyond the .SHD file in that it also specifies:

• the name of the application that is being aliased

• (optionally) some alias info that the system screen should pass to the application
when it is run, via the command line, to configure its behaviour in some special way.

Active aliasing and passive aliasing
In theory, all applications are capable of being aliased, without them needing to make any
conscious provision for this possibility. This is known as passive aliasing. Other
applications pay explicit attention to any alias info that may be passed to them on their
command lines, and adjust their behaviour according to the contents of this info. This is
known as active aliasing. An example of active aliasing is that of the built-in text editor,
as described in the following section. This is the only application built into the Series 3
and Series 3a that supports active aliasing. However, in the Series 3c, the Jotter application
is just an alias of Data. Any other program that supports active aliasing is free to interpret
alias info passed to it in any way that it wishes. There is no obligation to mimic the
detailed rules obeyed by the text editor.

Creating .ALS files
An .ALS file is produced from a .MA file and a .PIC file by running the tool MAKEALS.
The three files all have the same root name (i.e. disregarding the extensions). For
example, the command

makeals letter

produces the file letter.als from letter.ma and letter.pic.

The .PIC file is the icon to use. The process of creating .PIC files is discussed in the
earlier in this chapter.

The .MA file is a source file similar in format to a .MS file. For example, the contents of a
file letter.ma could be:

Letter.let
\WRD\LET\
3
Word

in which there is a fifth line which is blank (MAKEALS will give an error if the fifth line
is omitted altogether). See the MAKEALS directory for the Psion utility program for
making program alias (ALS) files.

Just as there are multi-lingual forms of .MS files, there are also multi-lingual forms of .MA
files. However, in practice these are of limited use, for technical reasons. In most cases,
the application type will be the same for the alias file as for the application being aliased.
However, the Public Name, the default extension, and the default directory are all
commonly varied. Note that the Public Name of an alias must differ from that of the
application it is aliasing. Otherwise, seeking to install the alias in the System Screen will

15-24 Programming Techniques

have no effect (it is not possible to have two different file lists, each with the same Public
Name). Incidentally, no check is made, at the time of installing an alias file, that the
application it aliases is itself currently installed. This check is only made when an instance
of the alias is to be started.

Active aliasing in the built-in text editor
If the alias info is a null string, the text editor enters Word mode, with multi-level outline
facilities, styles and emphases, and so on. Note that it is not unreasonable for an alias to
define null alias info. This allows the creation of aliases of the text editor that behave in
exactly the same way as the built-in Word application, but differ from each other in terms
of their default extensions, default directories, and/or Public Names.

If there is any non-null alias info, the text editor enters one of a number of other modes,
with the mode depending on the first character of the alias info. Some of these modes are
not available on Series 3 machines. At the time of writing, the allowed first characters and
the corresponding modes are:

O

S

$

/

OPL program editor
Comms script program editor
Plain text editor (not Series 3)
Word processor with custom template (not Series 3)

The program editor mode is available on all machines. In this mode there is no access to
the style and emphasis subsystems, the corresponding menu commands being replaced by
options to ‘translate’, ‘run’, ‘show error’ and set ‘indentation’.

In this mode, the first letter of the alias info denotes the nature of the program that is being
edited. It actually identifies the program to invoke to effect any ‘translate’ and (possibly)
‘run’ commands from the user. The generic name of this program is sys$prg?.img, with
the question mark being filled in from the first letter of the alias info. Thus the Prog alias
has 'O' for the first letter of its alias info, and so the OPL translate/run program
sys$prgo.img is used. In contrast, the Script editor from the communications ROM has
'S' for the first letter of the alias info, so that the program sys$prgs.img is used.

In program editor mode the second letter of the alias info should be 'R' if the program is
of a type that understands ‘run’ instructions in addition to ‘translate’ ones. Any other
second character disables the ‘run’ command option. The following three letters (e.g.
'OPO' or 'SCO') denote both the expected file extension and the expected top-level
directory where any translated output will by default be placed. (This information is used
by the editor when offering the user a suitable filename to ‘run’).

On the Series 3a a final '*' character may be added to the alias info. This has the effect of
adding an "S3 Translate" menu option.

The remaining modes are not available on Series 3 machines.

Alias info that consists of a single '$' character selects a plain text editing mode. In this
case the program-related menu options are suppressed, with only an ‘indentation’ option
being offered.

Programming Techniques 15-25

A variant on the Word mode is set by alias info that consists of a single '/' character.
This behaves in a similar way to the Word application, with the exception that a specific
template file is loaded whenever a new file is created. The template must have the same
name as the aliased application and must be located on the current drive at the time the
new file is created. Thus, an alias created from the following .MA file:

Letter.LET
\LET\
1083
Word
/

would, on creation of a new file, automatically load the template file \wdr\letter.wrt,
provided it exists on the current drive. Note that, in this mode, the value 80 must be added
into the application type number. If it is not, the automatic loading of the template is
disabled.

How aliasing works
Part of the mechanism of aliasing is handled by the System Screen:

• creating a new file list
• listing the appropriate files in the new file list
• allowing the user to assign a new application button to the new file list
• creating a suitable command line to pass to the relevant application, when the user

chooses to start an instance of the alias (by pressing ENTER on an entry in the file list).

However, other parts of the mechanism of aliasing rely on the application paying suitable
attention to the details of the command line passed to it. Failure to do this will diminish
the effect. Thus, even passive aliasing relies on some co-operation from the application
being aliased. For example, an application that knows its Public Name (say Word) and
blindly writes this to DatProcessNamePtr in all cases, despite a different Public Name
being passed to it on the command line, will frustrate the intent of any aliasing application.

Any application button, assigned to the alias by the user, will be ineffective. Instances of
the alias, that are running, will appear (in bold) in the wrong file list in the System Screen.
This is just one reason why all serious applications should analyse the command line
passed to them, as part of their initialisation procedures. There are routines in both the
HWIF and HWIM libraries and in OPL16 to assist in analysing the command line.

15-26 Programming Techniques

Object-oriented programming (OOP)
An in-depth discussion of object oriented programming is beyond the scope of this book,
but it is worth describing some of the concepts, in particular those that have been applied
in various Psion programming environments, using the terminology adopted by Psion.

Grouping of related items into classes is a common way of understanding and organising
the world around us e.g. we are all familiar with the concept of classifying the natural
world into hierarchies and groupings such as animals, insects, plants etc. Usually because
they have things in common e.g. their appearance, habitats, food, behaviour etc. Object
oriented programming is an attempt to group the more abstract items that inhabit the world
of software; such as display windows, dialogs, database records etc., into classes along
with the program code which operates on them. For example, items such an area of a
screen, a dialog box or an edit box could all be considered as objects which belong to a
specific class called a window. A window will have certain attributes that are common to
all objects of the class window e.g. its dimensions, position co-ordinates, and other
characteristic such as whether it is currently visible or not. This information (i.e. data),
which holds the current dimensions, position, visibility etc., is referred to as the property
belonging to the object.

Similarly, there may be certain common operations that are carried out on objects of class
window, such as changing the windows size, position and visibility etc. Such operations
are called methods (otherwise known as functions or procedures) which belong to that
particular class of object. By creating an instance of a window object, a set of ‘property’
will be created for that instance of class window, and the methods normally associated
with objects of class window will become available for use by the programmer.

Using a method, to operate on an object and/or its property, for example in OOP C, is
referred to as ‘sending a message to the object’. In fact, this simply refers to calling one of
the functions associated with that class of object, and should not be confused with actually
sending a message e.g. using Inter-process Communication or messaging - see earlier in
this chapter.

For applications with anything more than a primitive user interface, which aim to emulate
the style set by the built-in applications, it is mandatory to use menus, accelerator keys,
windows, dialogs etc. The support for such interface objects provided by languages such
as OPL and by the built-in system libraries is excellent, and could therefore be said to be
object oriented in some senses. However true object oriented programming goes much
further than the user interface, and would have a significant influence over the whole
architecture of an application.

For programmers working with the SIBO C SDK, Psion have provided the HWIM library,
whilst not being fully compliant with all OPP techniques, goes a long way towards
providing a complete architecture for an application.

Programming Techniques 15-27

SIBO OOP HWIM C
HWIM, short for Hand-held WIMP (where WIMP represents - Windows, Icons, Menus,
Pointing device), is a user interface and application management library built in to the
ROM of the Series 3 range, primarily for use by C programs. To develop complete HWIM
applications (or re-entrant dynamic link libraries - DYLs) it is necessary to purchase the C
SDK from Psion. Building applications based on HWIM, plus the associated supporting
libraries, has a lot to recommend it, but it is not simple to master even for experienced
programmers. It is a proprietary approach to implementing an object oriented
programming system. Thankfully, there are a number of complete HWIM example
applications included in the C SDK with source files supplied. In fact, the complete source
code is supplied for the Record application that is built-in to the Series 3a. For further
details of HWIM programming with the SIBO C SDK, see the documents in the
OODOC201 directory. A complete set of Word for Windows documents is included, from
version 2.01 of the C SDK, that describe Psion’s Object Oriented Programming
techniques. A number of other very useful chapters are provided, including information on
resource files, DYLs and OOP application design, using the Series 3a Record application
as an example.

OVAL OOP
A new object based approach to producing EPOC16 applications became available with
the inclusion of the OVAL run-time interpreter into the ROM of the Series 3c and
Workabout in September 96, and the availability of a PC-based OVAL integrated
development environment (OVAL IDE).

Applications produced with OVAL are based on objects such as Forms and Controls,
which may contain data and can send and receive messages to and from other objects.
OVAL is effectively a Visual BASIC programming system for the Series 3c and
Workabout. It is functionally and syntactically equivalent to Microsoft Visual BASIC.
Producing an application simply involves the manipulation of interface and control
objects. Program code is then attached to the objects (controls etc.) to carry out actions
that correspond to the objects manipulated by the user. Although OVAL is not fully object
oriented, it draws on many useful concepts from OOP. For example, forms and controls
have items of property (data) which determine their appearance and behaviour etc. They
also have code (methods) associated with them that provides the functionality and
behaviour required by the application designer. OVAL applications can respond to a range
of events e.g. from the system screen or events caused the actions of the user. For example,
forms may have a hide method that if triggered will cause the form to hide itself or
disappear. OVAL is able to hide much of the underlying system and its complexity from
the developer.

OVAL is likely appeal mainly to commercial developers, or systems staff with companies,
that wish to avoid complex development environments and yet quickly produce
sophisticated applications to meet their business needs. It is still early days for OVAL on
the 16-bit platforms and OVAL has yet to emerge on the 32-bit Series 5 machines.

15-28 Programming Techniques

C++ OOP
For the Series 5 and EPOC32, Psion Software have changed from using HWIM C to using
C++ as their primary application development tool. In fact, they have used C++ to write
the majority of EPOC32 itself. C++ is an object-oriented super-set of the C language that
has a steep learning curve. However, there are a number of additional compelling reasons
for making the effort required to adopt C++ for EPOC32 development. For example:

• It is Psion’s primary development tool.
• Object-oriented techniques are now widely used by many serious developers.
• The number of C++ programmers is increasing all the time.
• Other development tools, such as Java, are object-oriented.
• The limits on what is possible in the EPOC32/Series 5 environment are minimised.

Errors and Debugging 16-1

16 Errors and Debugging

Introduction
This chapter is written primarily with SIBO and EPOC16 based systems in mind, but many
of the concepts and strategies are applicable to Series 5 and EPOC32.

Psion machines and their applications have an enviable reputation for being innovative,
but above all users trust them to be stable and reliable. Where memory is used for storing
files great care must always be taken to protect the user’s data. Psion have designed the
operating systems and hardware of their systems with reliability uppermost in mind.
Programmers too have a responsibility to produce applications that are reliable, and
through good design, handle error conditions without any loss of data.

EPOC16 and EPOC32 are well-protected environments, but errors due to mistakes, design
oversights, errors in program code or unexpected user actions are an unfortunate fact of
life for software developers. Some types of error, comparatively rare in desktop PCs, are
more likely to occur in handheld systems.

An overview of the typical errors is presented with suggested methods of handling them.
Strategies for avoiding errors are discussed, plus an overview of debugging and testing of
applications.

Avoiding errors
The best way of dealing with errors is to try to avoid them in the first place; which is
definitely not the same as ignoring them. With experience many errors are easily
anticipated, trapped or designed out. The common types of error, and conditions leading
up to errors, are described in the following section. The list is not intended to be
exhaustive, but illustrative of the sort of errors that often crop up in programs, or are
typical in Psion systems.

Programming errors
Errors due to the use of incorrect parameters in calls to functions or procedures may not
appear for some time. Methods for avoiding this type of error will depend on the language
used and the facilities provided within the development system. In OPL16 for example,

16-2 Errors and Debugging

using utilities such as OPLLINT can eliminate most errors of this type. In OPL32 new
keywords such as EXTERNAL and DECLARE EXTERNAL have been added to help
programmers avoid such errors. In SIBO C, the use of function prototypes is not enforced
but is recommended to ensure parameter type checking during compilation.

If the return value from a procedure or function call could indicate an error condition, it is
advisable to include extra code to do the appropriate checks. Ignoring return values may
save a few lines of code, or allow for simpler code structure, however, it is sure to leap up
and bite you eventually.

Accidentally trying to access memory outside of the process data segment will cause the
operating system to terminate the process with a corresponding panic number. This type of
error is more common in C or C++ programs where pointers are often used. Flawed
pointer arithmetic can leave a pointer referring to an illegal address. It is also possible to
experience this type of error in OPL programs, particularly if the parameters passed to an
operating system call are wrong, or when using OPL keywords such as PEEK and POKE
that directly manipulate memory.

Failing to size variables correctly can also attempt to write into areas of memory that are
‘not legal’. For example, by concatenation of string variables, where the final string would
be too big for the variable used for the result. Keep the number and size of global variables
down to save memory. However, don’t be too frugal when sizing local variables, because
they only exist for the duration of the procedure call.

Choose names for your variables carefully, particularly those for any global variables. Use
of too many global variables can lead to problems, particularly if a local and a global have
the same name. Your code may not be doing what you think.

OPL programs can be prone to a number of unique errors. Failure to declare a variable
before it is used is the most insidious. This often happens due to a simple typing error or
because the type specifier character was omitted from a variable name. Undefined
variables in OPL programs are only detected at run-time, and therefore may be a long time
in showing them-selves. This type of error is missed by the OPL translator and may only
‘bite’ when an obscure part of the application code or user option is encountered. The OPL
translator fails to check that each variable has a corresponding LOCAL or GLOBAL
declaration statement. Again OPLLINT used with OPL16 or EXTERNAL and DECLARE
EXTERNAL used with OPL32 can avoid these errors - see the OPLLINT directory on disk.
OVAL, C and C++ do not suffer from this type of problem.

Attempting to load too many OPL program modules at once (i.e. with LOADM) may also
lead to errors, as can trying to load a module that is already loaded, or calling a procedure
that is not yet in memory. Juggling lots of small modules is best avoided.

Many of the problems described above will be avoided by adopting or developing a
particular programming style or a set of self-imposed ‘rules’.

Errors and Debugging 16-3

Design errors
Potential errors may arise though failures in application design. All computer systems
operate in different ways and impose certain expectations on application designers. Psion
systems are no different in this regard, the EPOC operating systems expect applications to
conform in a number of key respects. Failure to conform can at best lead to unexpected
behaviour and in the worst cases may lead to loss of data.

Directories and files
In contrast to other computers systems, file selectors on Psion systems allow users to
specify paths that do not yet exist. This can happen fairly commonly, for example on a
SIBO system as follows:-

1. The user inserts a brand new SSD into drive A
2. A ‘Save as’ or ‘New file’ menu option is selected
3. The user adjusts the disk selector to drive A: hence the new disk
4. The user types e.g. ‘Design’ into the filename editor

Assuming the default directory for the application is \DOC\ and the default file name
extension is .TXT, the filename returned (after internal parsing) to the application would
be: LOC::A:\DOC\DESIGN.TXT even though the directory \DOC\ does not currently exist
on the disk in the A: drive.

The user may specify the wrong file name, file type, or a file that is now not available. For
example, the storage device may have been removed or swapped, or the file does not exist
because the user may have deleted it.

It is the responsibility of application programs to test for such conditions and to create the
required directories or files.

Preventing auto-switch off
Under certain conditions it is possible for a program to prevent a machine from being able
to switch off. This should be avoided at all costs, since if it goes unnoticed by the user the
application will cause the main batteries to go flat. Loss of data can occur under the
conditions described. Although Psion machines are well protected against low power
situations and have backup batteries, it is undesirable and very risky to prevent switching
off. Devices such as SRAMs depend on the main system batteries if their own internal
backup batteries have expired.

Conditions that may prevent auto-switch-off are discussed under ‘Processes and
auto-switch-off’ in the ‘Processes, Memory and Applications’ chapter.

16-4 Errors and Debugging

Program resource errors
Data and text used by applications, for example; in user prompts, menus, dialog labels etc.
are usually referred to as program resources. Such resources may be embedded in the
program code as static data and text strings. A better approach, particularly for
multi-lingual applications, is to put this type of data in separate resource files, as discussed
in the ‘Programming Techniques’ chapter. Whichever method you use, it is very important
to check the text and data are correct in a number of crucial respects. For example,
duplicated menu accelerator keys can cause strange behaviour with application menus and
hot-keys. Text strings used for menu titles/items, dialog prompts, information messages,
help text, etc. must be sized carefully to avoid strange display effects, or even errors such
as ‘Too wide’. This is particularly true when translating program resources from the
primary language into a number of alternatives. For the benefit of the translator, always
clearly specify the maximum size allowed for every item of text. Bear in mind also, that the
English variant is not always the best model for determining the maximum size of text
resource strings etc.

Ignoring command line and system messages
The command line
Simple applications - especially those that are not file based - have no need to pay any
attention to the command line passed to them by the system screen. In this case, the
various relevant EPOC16 reserved (magic) statics are left at their default (zero) values.

This fact is picked up by the system screen and by other parts of the operating system, with
the following results:

• The name displayed in any status window and in the file list in the system screen is
just that of the application .APP or .OPA file

• If the user requests the application to be shut down, from the system screen, the
application is shut down by EPOC16, without the application itself being informed of
this fact (just as if the user had selected the ‘Kill’ option in the system screen).

If an application needs to do its own clean up processing in response to a shut down
request issued by the user in the system screen, it must analyse its command line during its
initialisation, this is true even if the application is not file-based.

One final drawback of an application not processing its command line is that users will be
unable to assign application buttons with any effect on that application.

New command lines
The first byte of the new command line will be one of 'X', 'O', or 'C':

'X' means the command is a shut down message
'O' means the command is a Switch files message, with a specified file to be opened
'C' means the command is a Switch files message, with a specified file to be created.

Errors and Debugging 16-5

In the case of switch-files messages, the remainder of the new command line gives the full
path name of the file to open or create.

For OPL programmers one of the c$=CMD$(x%) variants may be used to get the
appropriate components of new command line. OVAL programmers use the COMMAND$
functions.

At the time of writing, the command byte is restricted to one of the three values given
above. It is possible, however, that some future application might send messages to other
applications having different command bytes. In order to be future proof, an application
should test explicitly for all expected values of the command byte and should just ignore
values other than those expected, i.e. should not generate an error on receipt of an
unexpected value.

Shutdown messages
Applications can receive shut down messages from the system screen, as an instruction to
quit and close down tidily, saving any changes to file as required. These messages can
arise when the user presses ‘Delete’ after highlighting a running task in the system screen.
However, as mentioned above, if the application has set its DatLocked to TRUE, the
system screen instead presents an ‘Application is busy’ message.

Incidentally, applications are sent shut down messages only if they have a non-zero value
of DatProcessNamePtr. The system screen assumes that any application that has left this
EPOC16 reserved static at its default (zero) value is unlikely to be prepared to respond to
shut down messages. In that case, the system screen will terminate the application, losing
any modified data in the process.

Finally, note that any application which has $4000 included in its application type number
will never be sent a shut down message from the system screen; instead, the system screen
will display the message ‘Cannot quit application’.

Switch files messages
Applications can receive switch files messages from the system screen, as an instruction to
close their existing open file, and to open or create another one. These messages can arise
when the user presses ‘Enter’ after highlighting a file within that applications file list in the
system screen. However, if the application has set its DatLocked to TRUE, the system
screen instead presents an ‘Application is busy’ message.

Switch file messages will only ever be sent to applications with a basic type number of 2
or 3. Applications whose type numbers include $8000 can receive switch file messages of
the Open sort, but not of the Create sort.

16-6 Errors and Debugging

System related errors
Out of memory and out of disk space errors can occur through design errors, or through
the action of the user. For example, the user may have started other programs, loaded new
software or created new large files, etc. Any of these actions may occur while your
application is still running. In multi-tasking systems this is just not probable, it is almost
certain to happen. An application should check that sufficient resources are available at
start up, it should also do checks before any critical actions that may require more
resources. In the event that the resources required are not available, the application should
be able to warn the user and ‘roll back’ to a safe configuration.

Also, because other processes are running, files, devices or other resources may not be
available because they are in use by another application.

It is impossible on a multi-tasking machine to predict memory availability. It is essential
to do extensive testing of ‘out of memory’ conditions to ensure that the application fails
gracefully.

User generated errors
Care should be taken to prevent invalid data entered by a user from generating run-time
errors. For example, you may be expecting the user to enter numeric data and by mistake
they enter alpha-numeric data instead. Getting input through simple console style
functions, such as INPUT in OPL or the PLIB C function p_getch, should be avoided if
possible. Dialogs are friendlier for the user and safer, since they handle the validation of
data automatically.

File errors can be generated for a host of reasons. The user may specify the wrong file
name or file type. A file may not be available because the user has deleted it. The required
file or directory may not be available because the user has removed the SSD.

Mass storage devices such as SRAM and Flash RAM can be removed, changed or
repositioned at will by the user. In general the filing system itself is robust and reasonably
secure. On SIBO systems SSD drive doors have switches that keep the file server informed
of possible SSD changes.

If a file is on a remote system, access may fail due to disconnection of the link by the user,
or possibly due to a failure on the remote system.

Robust programs can easily be designed to cope with all of the situations described above.
Wherever possible allow the user the opportunity to correct a problem and to continue
without crashing the application.

Errors and Debugging 16-7

Handling errors
You should design the error handling of a program in the same way as the program itself.
Applications are usually more reliable when they are incrementally built up from
procedures that have been individually tested. Error handling procedures are best
constructed on the same basis.

All of the options for programming Psion systems offer facilities for detecting, trapping
and processing errors, there is little excuse for not using them.

Each procedure, where things could conceivably go wrong, should normally contain its
own local error handling. The error handling statements can then be appropriate to the
procedure. For example, a procedure that performs a calculation would have one type of
error handling, but another procedure that offers a set of choices would probably handle
errors differently.

There are cases when this strategy may not apply. For example, the program may perform
some large activity calling several related procedures to open and display all the records in
a file. If an error occurs at any stage in this activity, such as failing to open the file or
failing to read a record, it may be perfectly reasonable to handle the error centrally in a
higher level procedure.

A mixture of these strategies may apply too, for example if the procedure that failed were
to establish an error handler to perform any cleaning up (such as closing files) and then let
the higher level procedure display the error message.

Another option might be to establish a ‘catch-all’ error handler in the top-level procedure,
in case any unanticipated error occurs. An error of such a general nature is symptomatic of
a bug rather than of a legitimate error, and should be investigated by the programmer.

If you use multiple levels of error handling avoid reporting an error more than once.

Certain errors can be treated as fatal. For instance, if program initialisation fails, there is
little point in trying to continue. Reporting an appropriate error message indicating the
reason for not continuing, allows the user to rectify any obvious problem before trying
again.

When modified data has been accumulated in the program, it is not acceptable to terminate
the program without at least trying to recover cleanly. A retry or recovery philosophy is
much more appropriate: the program should roll back to a previous good state, cleaning up
any resources set up in the lower level procedures that led to the error.

Can data get out of synchronisation with itself? If items of data need to be written in more
than one place, for example to provide a relational link in a database, it is important to be
able to unwind the first write if the second fails.

Errors should be reported to users as clearly and as jargon free as possible. If, for instance,
a file is missing it is helpful to say which file is missing, but only if the user is likely to be
able to do something about it. So if it is not a data file you might just create the file again,
or warn the user and ask if the program should continue by creating a new file.

16-8 Errors and Debugging

Alerts are a simple form of dialog that displays a number of lines of text and waits for a
response from the user to a limited set of options. For example, an alert can be used to
display a simple message such as ‘Are you sure?’; offer a choice of two keys such as ‘Y’
and ‘N’, then wait for the users input. Alternatively, an alert dialog may display a number
of lines of text (e.g. up to 4 on a 3a/c), present three options for the user positioned over
the top of three buttons. The button labels are Esc, Space and Enter.

If the error is non-destructive and no user action is required, a brief information message
may be sufficient. For example, if the user tries to ‘Bring’ data when there is no data to
bring.

Error codes
Comprehensive listings of all virtually all types of error codes are provided in the
Appendix.

In programming environments that can make use of ‘include files’ (e.g. files with
extensions of .OPH or .H), it is common practise to assign ‘English like’ identifier names
to constants such as error codes. Therefore, you may come across terms such as
E_FILE_NOTREADY instead of the actual numerical value (i.e. -62) assigned to this
identifier. Where possible the both the numerical value and the usual identifier name will
be given. In the OPL16 and C SDKs supplied by Psion, the identifiers names used for
error codes and other constants are often very similar but not always identical.

Fatal errors
In C programs, errors may be reported back to your application code through the return
values from calls to system or library functions. In OPL and OVAL similar mechanisms
are available to the programmer through interpreter error functions (e.g. ERR). In all cases
the programmer has the opportunity to intercept the error condition and handle it in an
appropriate way. In OVAL and OPL a run-time error may occur which the interpreter may
consider is not recoverable and the program will be terminated. Similarly the operating
system itself may detect unrecoverable error conditions (generated by any type of program)
and again it will terminate the process.

System panics
When EPOC16 detects a condition that it determines could only have arisen from a
bugged application, it will terminate or panic the process in question. An error code called
a panic number, in the range 0 – 255, will be reported to the user. EPOC32 also refers to
fatal errors as panics, however the error codes are not equivalent.

See Appendix for a full list of the EPOC16 panic numbers and their meanings.

Errors and Debugging 16-9

There is no way for an application to avoid being terminated when a panic has been
initiated. Panics are designed to protect the system from errant programs and represent
unrecoverable error conditions. Different panic codes will be returned depending on which
part of the system code detected the error.

Any particular panic number may be used by more than one piece of code, and therefore
may have more than one point of origin. In C programs the SIBO debugger can be used to
trap the panic and trace the code back to its origin.

Panic number Source

0 - 80 and 255 PLIB library – General purpose functions or EPOC16 O/S
services

81 - 129 WLIB library – Window Server library
130 - 160 OLIB library – Object Oriented library
161 - 254 Non ROM resident code e.g. ISAM library

Some of the panics, especially those described by ‘Invalid function number for ...’, are
unlikely to indicate a specific bug; it is almost impossible to create code that would
produce such a panic by a coding error. However, this type of panic could easily arise from
trashing a return address on the stack, with the instruction pointer wandering into arbitrary
code. In the lists in the Appendix, those panics that are likely to indicate a specific coding
problem are described more fully.

If you get a panic 79, or a panic in the range 81 to 254, it may be due to some other system
component. Panics in the range 81-121 are generated by the Window Server. When using
object oriented programming, panics in the range 130-158 may be generated.

OPL errors
The OPL run time environment is well protected and panics are rarely generated. Fatal
errors are usually (but not always) trapped by the OPL run time interpreter itself. Most of
the OPL error codes listed in the Appendix are common between OPL16 and OPL32. The
OPL32 constant names in the table may be used in OPL32 programs instead of the
numeric values, providing that the CONST.OPH file is ‘included’ in your source file.

OPL run-time errors
Good facilities for error trapping, recovery and error simulation are provided in the OPL
language and should enable a well designed program to cope with most foreseeable error
conditions. Examples of error handling in OPL are provided in the ‘OPL16 Techniques’
and ‘OPL32 Techniques’ chapters.

16-10 Errors and Debugging

OVAL errors
Many structural and syntax errors are detected by the OVAL translator. Fatal errors during
run-time are usually trapped by the OVAL interpreter, panics should be rare. See the
Appendix for a complete list of OVAL run-time and OVAL translator error codes and their
meanings. The error constant names in the table may be used in OVAL programs instead
of the numeric values, providing that the CONST.BAS file is 'included' in your source file.

OVAL error codes can have values between 1 and 32767, but not all the values are
earmarked for OVAL or application-specific errors. Programmers can adopt any of the
unused values for their own user-defined errors. In general undefined error numbers will
be those right at the top of the range, so it is best to use numbers from 32767 downwards.
The range of error codes between 20000 and 29999 are apparently reserved for controls.

C errors
Many system and library functions return negative values to indicate that an error
condition was encountered. Programs can use the return value with the PLIB p_errs()
function to get a language dependent error description of the problem. The values -1 to -31
are general errors and -32 to -63 indicate I/O device errors: the error code values and their
textual identifiers are held in the files p_gen.h and p_file.h respectively, supplied with the
SIBO C SDK. The C SDK provides support for the reporting of errors through the PLIB
‘notifier services’ and via the p_enter and p_leave function calling mechanisms.

Debugging, an overview
The SIBO C SDK and the OVAL IDE have source level debugging facilities available.
Psion have never produced an equivalent debugger for OPL16, although a shareware
system (OPP with OPPDBG) is available. No debugging tools currently exist for OPL32,
not even an equivalent to OPLLINT.

OPL
Since the OPL16 interpreter has no mechanisms for introducing break points or for tracing
the execution of code, it is not possible to debug OPL16 code directly. Debugging in
OPL16 and OPL32 often takes the form of including temporary lines of code to pause the
program execution at key points and to display the values of key variable. The TRAP,
ONERROR and RAISE instructions are also very valuable, see the ‘OPL programming’
chapter for more details.

The only debugging utility available for OPL16 programmers (apart from the OPLLINT
code checker mentioned previously) is in the form of a clever utility program OPPDBG

Errors and Debugging 16-11

that has to used in conjunction with the OPP OPL pre-processor. Both of these utilities are
available as shareware, OPP and OPPDBG are both supplied on disk.

OVAL
Debugging of OVAL applications is hosted on a PC. The debugger has an extensive set of
facilities for source level debugging including: break-points, debug messages, step
execution, watches and immediate code execution. See the ‘OVAL Programming’ chapter
for more details.

C
Users of the Psion SIBO C SDK have access to the SDBG source level debugger. The
debugger runs on a host machine (a PC) and can debug applications running on a
connected (remote) SIBO system.

Spy, EPOC16
The Spy application is a utility program (for Series 3, 3a/c) from Psion for presenting a
scrolling list of all processes currently running on a system. It can be very useful for
debugging and optimising applications. Twelve pieces of data can be displayed (in hex or
decimal) for each process including information on the heap, stack statistics, data segment
statistics, heap integrity tests, I/O semaphores, process ID’s and priorities and more
besides. The complete source code for the Spy application is provided with the SIBO C
SDK from Psion.

A copy of Spy, with instructions for use, is included on disk - see the SPY directory.

The main display is a scrolling list of processes currently running on the Series 3. The
‘Change processes’ menu option allows customisation of which processes are shown.
‘System’ processes are simply ones whose names start with ‘sys$’, and include:

sys$shll which the user sees as the system screen
sys$wsrv the Window Server, which co-ordinates access to the screen and

keyboard
sys$fsrv the File Server, which co-ordinates access to the filing systems
sys$mang the Manager, which keeps track of all resources used by processes (so

that, for example, they can be properly tidied whenever processes exit)
sys$ncp the ‘brains’ behind Remote Link (when it is running).

16-12 Errors and Debugging

• The Null process, sys$null, which performs the vital task of switching the Series 3 off
following sufficient inactivity, is omitted from the list displayed, for various technical
reasons.

• First letter matching works in the main window, so that pressing ‘C’ enough times
will position the highlight to the ‘Calc’ process.

• Arrows are drawn in the top right and bottom right corner, Agenda-wise, whenever
there are more processes beyond the visible boundaries of the list.

• The data displayed is updated every time Spy comes into foreground, and also
whenever the ‘Update’ menu option is selected. By default, it is also updated
regularly on a timer, though this can be disabled by a menu option. The ‘Refresh
rate’ option governs how frequently updates take place, when the timer is enabled.

• There are in all twelve pieces of data that can be displayed for each process, but only
three of these can be seen at any one time. Use the ‘Change data’ menu option to
choose which.

• Many of the data items can be displayed either in Hex or in Decimal.

Spy, EPOC32
An EPOC32 Spy application is a utility program from Psion (supplied with the C++ SDK)
for presenting a scrolling list of all processes, threads or heaps currently active in a system.
It also has the ability to ‘gobble’ memory to stress other applications to see how they react
to low memory conditions.

Spy can be very useful for investigating and optimising an applications’ use of memory
and that used by any associated threads. The data items displayed (in decimal) depend
upon the mode selected, that is: to spy on processes, threads or heaps. Typical data
displayed includes information on the size of heaps, process and thread ID’s and their
priorities. When in ‘heap walk’ mode, Spy can dump memory and find text or hex data.

Testing
Many approaches to testing are possible. Its is difficult to say that any individual approach
is better than any other, so I can only present my own and recommend it as one that has
proved valuable to me.

Start off with a design for your application rather than just writing code and working
things out as they develop. I am strongly in favour of testing all the component procedures
and functions of an application individually, wherever feasible, before testing them in
combination. This may mean writing some extra test code. When particular elements have
been tested and ‘proved’ to be reliable don't change them, even slightly, unless the reasons
are absolutely compelling.

Separate an application into well-defined areas and try to avoid any overlap. For example
user interface code should be completely separated from engine code. An application
engine should not be responsible for displaying information, not even error messages.

Errors and Debugging 16-13

Similarly, an engine should not contain any code involved in user input. Try to construct a
‘test harness’ to exercise the engine code without relying on the existence of a
sophisticated user interface.

Emulators are very useful for developing code and initial testing but never rely on them for
final testing, after all emulators are just that, they can never fully duplicate hardware. If the
application is intended to run on different models of machine make sure it is tested on all
machine variants.

If the application is available in multi-lingual formats be sure to have it tested on each
foreign machine and to exercise every option in the application. Have the testers carefully
note that each screen display, menu cards, dialogs and messages appear as they should.

Use a system of alpha (initial) and beta (pre-release) testing, resist the temptation to
change any design elements once at the beta stage. Try to recruit a wide range of
individuals to take part in the testing.

Automatic test system (ATS)
Starting with the 3a, the ATS system was introduced to assist with automated testing of
HWIM (OOP) applications. Although the process which controls the ATS sequence does
not have to be an HWIM application, the process which is being controlled by ATS does
have to be a standard HWIM application (or one which mimics the support for ATS).
Inter-process messaging is used to implement the ATS mechanism and message types
include sending, receiving and recording key presses, running a dialogs etc.

ATS can be used for a number of purposes including the following:

• Testing an application by running a pre-determined sequence of operations, such as
displaying all the text strings and dialogs belonging to a program, to check the
suitability of the resource files contents.

• Producing a rolling demonstration of one or more applications.
• Macro recording and playback.
• Controlling attached applications.

The ATS system is covered in depth in the ‘Object Oriented Programming Guide’ manual
in SIBO C SDK. An example ATS based Macro recording and playback system is
provided with the SIBO C SDK. See the OODOC201 directory on disk. The Macsys
Macro system is based on the ATS system and could be used for automated testing of
suitable applications. The complete MACSYS system is supplied on disk with several
example Macros – see the MACSYS directory. Similarly, the KMAC macro system is
based on ATS. The complete KMAC system, including source code, is supplied on disk
with example Macros – see the KMAC directory.

16-14 Errors and Debugging

Distributing Your Software 17-1

17 Distributing Your
 Software

Introduction
You may decide to release a piece of software, originally written for your own use, to be
used by other people. Many people release small personal programs for free and the
receivers should expect nothing else from the author. However, if you set out to produce
software for other people to use, then designing and writing the application is merely part
of the overall process.

A large amount of software for Psion machines has been put into the public domain for
free. Some of it offers very high functionality and is also of excellent quality. For those
seeking rewards for their efforts the competition is quite tough.

If your application offers something unique, or is of significant complexity, then it is
reasonable to expect users to pay for it. However, the standards expected by people who
are paying for software will be much higher. Most people have come to expect very high
standards from such software, particularly in terms of usability, functionality and above all
reliability.

If you expect to receive payment for an application, then there are many things to consider.
For example, how is the application to be marketed, supplied, packaged, documented,
tested, supported, how much are you going to charge for it and what methods are available
for people to pay you.

Application style guides
To increase the quality of your application and your chances of producing a successful
product, its advisable to ensure that it conforms to the Psion 'house style'. Close study of
the look and feel of the 'standard' applications is very worthwhile. Producing an
application that differs markedly from those a Psion owner uses daily will not improve
sales of your product.

To assist developers, Psion produce style guides that define the norms for applications, as
well as the do's and don'ts. Two style guide documents, produced by Psion, are provided

17-2 Distributing Your Software

on disk in the DOC directory. APPGUIDE.DOC and CHECK.DOC are slightly different
variants of the same guide to writing Series 3/3a applications.

The Series 3 guidelines have changed in a number of ways for Series 5 applications.
Interface guidelines are included in the C++ SDK, for example, on Dialogs, Infoprints and
messages, Menus, Toolbars, Basic user interface principles and a Glossary of terms. Some
guidance is also provided in the OPL32 SDK documentation.

Additional examples, support documents and 'style guides' are becoming available via the
EPOC World web site for EPOC32/Series 5 applications.

Distribution options
The simplest option, by far, is to provide the software for free, thus relieving you of almost
all obligations - see ‘Copyrights and limitations’ below. The following discussion
therefore is for those who wish profit from their endeavours.

Shareware
A huge amount of Psion shareware exists and is expanding daily. In the main this is due to
the inclusion of OPL on all machines.

Shareware is not intended to be freeware, but many people will treat it as such unless they
have a good reason to send the registration fee to the author. Many methods have been
tried by authors to induce users to register their software. Some approaches are more
successful than others, for example:

• By limiting the functionality of the application.
• Having a reminder/nag screen pop up periodically (sometimes of increasing

frequency).
• Limiting the number of times the program may run or do certain tasks.
• Or even having an in-built time limit, after which the program ceases to function.

Typically when a user registers a shareware application they will receive a special code to
enter into the program that will remove any limits, nag screens or unlock the extra
functionality.

Time limited applications are not a particularly good idea, they may be irritating to the
user particularly if the time has become out-of-date before the user has ever tried it.

Unlocking functionality may be a reasonable inducement, but be sure not to limit things
too much, or the user will never really get to evaluate the application properly. I once tried
a shareware card game where the computer was the opponent. The limitation placed on the
game was that it didn’t score according to the rules, so the user could never win! How was
I expected to evaluate the games playing ability?

Offering extras on registration, such as additional modules or a printed manual may add
enough value to induce payment.

Distributing Your Software 17-3

Determining a suitable price for shareware is always a difficult decision. Asking for too
little may be as bad as asking for too much. A decision based on something substantially
less than commercial rates and close to the price sought by other shareware authors may be
fair. Whatever you decide make the cost clear in the documentation, including how and
where the user can send payment.

You obviously want to distribute your application as widely as possible, but keep a note of
where so you can provide updates and new editions. For Psion based shareware, sending it
to the ‘3-Lib’ shareware library is always good choice. Uploading a zip file into the active
Psion forums in ‘on-line’ systems such as CIX and CompuServe is very likely to lead to a
large number of potential registered users. On-line registration is also available through
CompuServe and via the Regnet web site – see the ‘Contacts and Sources’ chapter.

Software licensing
The largest sales volumes of applications software are generated through direct high street
sales outlets and via mail order companies. A number of the key software houses and mail
order companies, specialising in Psion products, are interested in licensing quality
application from software authors. Psion do this themselves, but only rarely and in
exceptional cases.

Such companies may be willing to take the risk of packaging and marketing an application
that has good potential sales if it is of sufficient quality. Because they may take on a
significant financial risk the royalties offered may at first seem less than generous.
Balancing the equation involved is tricky. You have to judge the total income likely from
lower royalties on larger numbers sold, versus the likely total from a lower volume of
shareware registrations at a higher income per unit. As a starting point, see the table of
‘Psion distributors and retailers’ in the ‘Contacts and Sources’ chapter.

Self publishing
The most complex and financially risky option is to publish the software yourself, an
option only really available to existing organisations or new start-up companies. The
various Psion companies, provide a number of services and products to software
developers and publishers, most are described below.

Copyrights and limitations
Whatever method of distribution you choose, always make the copyright information
prominent in the application and any documentation, clearly setting out any limitation or
conditions of use.

Applications written in OPL may be prone to reverse translation, if this is likely to cause
concern see the ‘Source code protection’ section of the ‘OPL Programming’ chapter for
options to prevent reverse engineering of your code.

17-4 Distributing Your Software

Distribution methods
For commercial SIBO software, the main distribution media options are SSD or floppy
disk.

For Series 5 applications the options are floppy disk and possibly using small
compact-flash units. Psion have do not yet have compact flash units available for
developers at the time of going to print (September 1997).

Shareware is usually distributed via on-line methods. Other supply options are now being
adopted by commercial organisations and shareware authors alike. For example, making
software available via down load from web sites, or by distribution in bulk as part of a
wide-ranging selection on CD-ROM. Typically, 'unlock codes' are then provided to make
the software available when payment has been received.

SSDs
There are three main types of SSD available, from Psion to Developers, as media for
software. They are, Solo (one-time programmable) SSDs, masked ROM SSDs, or
Developers Flash SSDs. Each has its own benefits, but they differ principally in unit cost
and minimum order quantities.

Solo SSDs
One-time-programmable Solo SSDs and masked ROMs are used by software publishers
for product distribution. As their names suggest such SSDs or ROMs cannot be
reformatted once written to.

The benefits of Solo SSDs are:

• They have a low minimum order quantity.
• They are cheaper than conventional memory SSDs such as Flash.
• They are suitable for low volume specialist market products, where the sales pattern is

irregular and application sizes are below 256Kbytes.

The constraints of Solo SSDs are:

• They are more expensive than Masked ROM SSDs and are not suitable for volume
markets.

• They are available in only 128K, 256K and 512Kbyte capacities.

Using Solo SSDs
Once the software is thoroughly tested and is bug-free, a master version of the application
is made on a Flash SSD of the appropriate capacity. The Flash master is placed in a dual
SSD drive unit connected to a PC. This type of drive is available from Psion or their one
of their VADs. The DOS-based SOLOPRG.EXE program is used to produce an image

Distributing Your Software 17-5

master file that is held on the PC. The SOLOPRG software is then used as required to
duplicate the software on to two Solo SSDs at a time, using the PC based master file as the
source.

Masked ROM SSDs
The benefits of Masked ROM SSDs are:
• They have the lowest unit cost.
• They offer higher capacities (up to 2Mb).
• They are ideal for volume applications, where price points and unit costs are
• important.

The constraints of masked ROM SSDs are:

• They have a larger minimum unit commitment - nominally 3,000 units.
• They have a longer lead-time, typically 10 weeks.
• They have a higher fixed mastering fee (imposed by the silicon foundry, not Psion).

Production of Masked ROM SSDs
Once the software is thoroughly tested and is bug-free, a master version of the application
is made on an appropriate capacity Flash SSD. This master is used by Psion to produce a
trial master SSD that is sent back for checking. Once the copy is verified as a faithful copy
of the software, the mastering process can go ahead. Psion insist on a minimum quantity of
units to be ordered (nominally 3,000).

Developers Flash SSDs
Flash memory-based SSDs were not designed as a software release medium for
Developers. They are really intended for use during the development and testing of
software, as a test and beta release medium for software applications. Flash SSDs are the
most suitable format for this purpose as they can be reused application after application
and therefore provide a cost-effective solution to testing software. Flash SSDs are
available from Psion as blank unlabelled SSDs in quantities of 25 units. Capacities
available are 128KBytes, 256KBytes, 512KBytes, 1MBytes and 2Mbytes.

Floppy disk
Many users of Psion the Series 3 family have access to a PC and over 50% of owners have
purchased PsiWin. Distributing applications on floppy disk is probably set to take over
from SSDs as the most popular supply media.

Psion have produced a Windows based installation utility that is available free of charge to
developers. Psisetup, is a Windows 3.x software installation package that controls the
communication between a SIBO system and a PC and completes the installation of
software from a floppy disk on to an EPOC16 system.

17-6 Distributing Your Software

To obtain a copy of the Psisetup contact your nearest Psion Software company or VAD.
See the 'Contacts and Sources' chapter for details.

Yellow Computing GmbH have also produced a Windows-hosted installation package. See
the 'Contacts and Sources' chapter for details.

Packaging and manuals
Psion can also supply developers with the other elements that make up the final product,
for example packaging items. These may include:

• Cartons and trays to holds an SSD/floppy
• SSDs label for the front and back
• A printed license document and a license sticker which is stuck across the SSD in the

tray. In order to take the SSD out of the tray the user has to 'break' the sticker and, in
doing so, becomes bound by the terms of the licence.

• Generic multi-lingual software licence stickers; to explain what happens if the user
removes or breaks the Licence sticker. The production of a formal end-user Licence
Agreement is the responsibility of the application developer.

It is the developer's responsibility to write the manual or arrange to have it written.

Psion Software and Accessories catalogue
This Psion catalogue is produced annually and Psion charge relatively modest rates for
advertisements. The anticipated 1998 circulation is well over 400,000 copies.

The Software Catalogue aims to:
• Build awareness of the range of software available for Psion personal systems.
• Provide Developers with the opportunity to promote products worldwide, both to
 existing and new Psion users.
• Open up new markets for Psion systems and software.

The catalogue is distributed worldwide as follows.

• In the UK and other markets to the existing customer base.
• To every new user as part of a 'Welcome pack'
• To potential owners and interested parties in retail stores and in response to direct

demand
• To Developers for distribution to their own customer base

Linking to a PC or Printer 18-1

18 Linking to a PC or Printer

Introduction
Use of PC based development environments, e.g. those from Psion and some third party
utilities, will ultimately require a PC link for file transfer and/or debugging. Transfer of
executable and related files to the Psion system for testing can be done in a number of
ways. Software such as RCom or MCLink allows transfer of information either ‘manually’
or in a semi-automated way using batch (script) files. Integrated development
environments (IDEs) such as ODE and OVAL have internal communications routines that
handle transfer of files automatically. Software suites, such as PsiWin from Psion, provide
file manager or explorer type interfaces, file conversion utilities and facilities for printing
via a PC. All of the methods and options currently available are described here.

PC link hardware
Whatever PC link or printing method you choose, use of an external power supply for the
Psion system is highly recommended. There is a particularly high drain on the internal
batteries during communications e.g. to a PC or printer.

Some SIBO systems have micro-switches on the SSD drive doors to inform the system that
an SSD may have been removed or changed. Opening a drive door during external
communications may interrupt the connection. For example, if an SSD drive door is
opened on a Series 3 during communication with a PC, the Series 3 will not be able to
communicate with the PC until it is closed again. Although it is unlikely that any
information will be lost, it is safest not to open an SSD drive door when a PC link is
actually in use, i.e. transferring data.

PC 3Link cable, S3/3a
Also known colloquially as the ‘soap on rope’ cable, the Psion ‘3Link’ cable connects to
the Series 3 or 3a via a 6-pin plug into a port (the Reduced External Expansion Port) on
the left-hand edge of the system, near the hinge.

Approximately 50cm along the cable is a lozenge shaped unit containing some electronics
and a ROM (Read Only Memory), which appears as Disk[C] when the unit is connected.
(Try pressing Psion+* from the System screen, and use the arrow keys to view each of the

18-2 Linking to a PC or Printer

Disks). The circuitry converts the very high-speed internal serial interface (used to access
RAM and FLASH SSDs) to an industry-standard RS232 serial interface. On the Series 3
this is limited to a maximum baud rate of 9600, this was raised to 19200 baud on the 3a.
From the in-line lozenge unit onwards the connection is via a normal RS232 cable
terminated in a 9-pin D-type connector (a double ended version with 9 and 25-pin
connectors was also available).

The additional ROM in the ‘3Link’ cable electronics also contains communications
software and example communications scripts.

Since the 3Link cable electronics are powered from the Series 3 or 3a, use of an external
power supply for the Psion system is highly recommended. The additional drain on the
internal batteries during communication with a PC can be very significant.

PC link cable, S3c, Siena and S5
An integral RS232 port was introduced on the Siena and the Series 3c. A custom
connector was used, the so-called ‘Honda’ style connector has 15 pins that supply the
RS232 signals (and a slightly modified version of the S3a SIBO high-speed serial signals).
On the Series 3c the port is on the left-hand-side of the system. Series 3c serial speeds
were increased to 57.6K baud.

On the Siena the connector is on the top edge of the system, i.e. when the unit is opened
out flat. Initially the Siena could only work at speeds up to 19.2K baud, but Psion plan to
increase later Siena models to 57.6K baud as per the Series 3c.

On the Siena, an external power supply cannot be attached directly, however it may be
applied indirectly via an optional external SSD drive. It is possible to ‘daisy chain’ the
serial connector cable to the external SSD drive, and then on to a PC to enable the Siena to
‘see’ the external SSD drive and also the PC connection.

For the Series 5, the same ‘Honda’ type 15-pin connector is used, but serial
communications speeds were increased to a maximum of 115.2K baud. The ‘Honda’ style
connector on the Series 5 is at the back of the machine on the left-hand-side under a roll
top dust cover.

The PC link cables are terminated in an RS-232 9-pin D-type connector (PC AT type).

PC to Psion infrared link
At the time of going to print, only Psion to Psion infrared data transfers or infrared
printing is possible with suitably IrDA enabled systems.

An infrared Psion to PC link adapter for use with the Series 5 and software such as Psiwin
2 is due to become available (Autumn 97) as an option from Psion.

Linking to a PC or Printer 18-3

Note:
The infrared protocols used on the Series 3c and Siena are different to those used on the
Series 5. Data transfer between SIBO and Series 5 systems is not possible with the
standard system software.

PC to HC connection
Three types of PC connection exist:

• Direct connections to the HC via an RS232 serial port.
• Direct connection to the HC via a LIF (low insertion force) converter.
• Connection via a Docking Station (or Cradle).

Direct connection is via a standard serial cable from the HC serial port (assuming the HC
is fitted with a suitable expansion module) and either COM1 or COM2 on the PC.

LIF converters inserted in the HC provide a 3Link-type 6-pin socket suitable for use with
the 3Link cable as per the Series 3/3a.

With the HC inserted in a Docking Station, connection to the PC is via a high-speed serial
cable connected to a Psion interface card fitted in the PC.

PC to Workabout connection
Four types of PC connection exist:

• Direct connections to the Workabout via an RS232 serial port, if fitted.
• Direct connection to the Workabout via a LIF (low insertion force) converter.
• Connection via a Docking Station.
• Connection via a Docking Holster.

Direct connection is via a null modem serial cable from the Workabout serial port
(assuming it is fitted with a suitable interface module) and either COM1 or COM2 on the
PC.

LIF converters inserted in the Workabout provide a 3Link-type 6-pin socket suitable for
use with the 3Link cable as per the Series 3/3a.

With the Workabout inserted in a Docking Station, connection to the PC is via a high-
speed serial cable connected to a Psion interface card fitted in the PC.

Docking Holsters have a 3Link type 6-pin socket suitable for use with the 3Link cable as
per the Series 3/3a.

18-4 Linking to a PC or Printer

PC link software
During the lifetime and development of the various systems available from Psion they have
released a number of machine to PC communications programs and utilities. Some utilities
became available as part of the PC Link packages, or with software development tools
such as ODE or the SDKs, or as part of application suites such as PsiWin. Each of the
communications programs provides different facilities and a summary is given below.

Slink
A very basic PC hosted DOS ‘server’ program that handles a link between a Psion system
and a PC. Slink does not have a command driven interface or support for modems, but is
simple and more likely to work with PCs that are less than 100% compatible, and that are
not able to run MCLink.

MCLink
A PC based DOS program allowing file transfer and remote file access between the PC
and a SIBO system. MCLink has a user command driven interface, and can be driven via
batch files on the PC. Once the link is established the PC drives are visible from the SIBO
system. MCLink provides modem support.

RCom
An extensive DOS based program that displays its own command prompt. There have been
a range of versions of RCom and associated utilities. Later versions of RCom are provided
with set up and help facilities, to enable operation under DOS and/or Windows.

When the PC and Psion computer are connected and the RCom command prompt is
displayed, the following options are available:

• Enter RCom commands to transfer files to and from the PC and manipulate files or
directories on the Psion.

• Use the menu options (or commands) on the Psion to transfer files to and from the
PC.

• Format and compress SSDs in the Psion's drives.

The Psion drives are represented by the new drive letters as defined in the RCom set up
file.

Linking to a PC or Printer 18-5

RCom batch files or scripts
A batch file (or script) contains one or more RCom commands. When the batch file is run,
the commands are carried out as if they had been typed in at the command prompt. Batch
files for RCom will usually look just like DOS batch files - they may even be DOS batch
files as RCom's commands are so similar to DOS commands. RCom commands can also
be run from within a DOS batch file. For example, the line:
RCOM /W /C DIR I:

In a DOS batch file will run the RCom command prompt, wait for the link to be
established (the /W switch), perform a directory listing of the Psion computer's internal
drive and then exit RCom (the /C switch).

ODE link
The OPL Development Environment (ODE) from Psion has its own communications
routines included, and provides facilities for most of the stages in the development cycle,
including transferring all of the appropriate files to the SIBO system and executing the
code. When the code is subsequently modified, ODE will then transfer only those files that
have changed during the code translation step.

OVAL link
The Organiser Visual Application Language development environment from Psion has its
own communications routines included, and provides facilities for most of the stages in the
development cycle, including transferring all of the appropriate files to the SIBO system
and executing the code. When the code is subsequently modified OVAL will then transfer
only those files which have changed during the code translation step.

SIBO C debugging link
Applications developed with the SIBO C SDK can be generated in debug mode and then
run on the SIBO system, but under the control of the PC hosted SDBG debugger
(SDBG.EXE). Communication between the SIBO system and the PC DOS based debugger
is via a suitable serial link cable – see above.

18-6 Linking to a PC or Printer

PsiWin
PsiWin version 1.0 is primarily intended for use with Series 3/3a systems, and version 1.1
was released for use with Series 3c and Siena. PsiWin 1.0 and 1.1 operate in combination
with Windows 3.x or Windows 95.

PsiWin version 2 was released for the Series 5 and runs under Windows 95 or Windows
NT4 only. Purchase of a Series 5 system includes PsiWin 2 and a PC Link cable as integral
components of the Series 5 package.

PsiWin 1.x, SIBO
PsiWin provides ‘Psion Manager’ a sophisticated Windows based file manager that
displays the contents of disks on the PC and on a SIBO system connected via a PC link
cable. It forms the main part of the PsiWin version 1 product produced by Psion. In a
manner very reminiscent of Microsoft Windows File Manager, Psion Manager provides
drag and drop management of files and directories, plus seamless conversion of a range of
file types to and from Psion formats to your preferred PC equivalents. For example, from
Psion Word format to Microsoft Word 6.0 format and vice-versa. Therefore, files produced
during a development cycle on a PC can be moved back and forth very easily. Psion
Manager also makes file by file or disk based backups (and restoration) of a SIBO system
to a PC extremely easy.

PsiWin also includes Psion Database - a Windows PC version of the Psion Database
application that is standard on a Series 3 and Siena. Although Psion Database can work
with database files from any Series 3 or Siena, it is based on the 3a/c version of the
Database application and has a few menu options not present on the original Series 3. Files
produced or modified by Psion Database under Windows can be copied directly to a Series
3 without any need for conversion. It also provides a number of features not present on any
of the Series 3 versions like sorting of records, multiple windows for more than one
database open at once, extensive printing and much more.

RCom was supplied with PsiWin version 1.0 for DOS based users.

PsiWin 2, S5
Under Windows 95 or NT4, PsiWin 2 integrates itself into Windows Explorer during the
installation process. When a Series 5 is connected to a Windows 95 based system, the
Psion disks and folder contents become visible in the Explorer window. Drag and drop
management of files and folders is possible, plus seamless conversion of a range of file
types to and from Psion formats to your preferred PC equivalents. For example,
conversion from Psion Word format to Microsoft Word format and vice-versa. Therefore,
files produced during a development cycle on a PC can be moved back and forth very
easily. File by file or disk based backups (and restoration) from Series 5 to a PC is also
extremely easy.

Linking to a PC or Printer 18-7

Printing via a PC
See the ‘PC link hardware’ section above for details of the various Psion to PC link cables.

Whatever PC link or printing method you choose, use of an external power supply for the
Psion system is highly recommended. There is a particularly high drain on the internal
batteries during communications e.g. to a PC or printer.

MCPrint and RPrint
MCPrint is a PC DOS based ‘server’ program that allows a SIBO system to print, via its
serial printer interface, to a printer that is attached to the PC. The PC hosted printer may be
connected via a PC serial or parallel port. MCPrint does not have a user interface.

The RPrint program (supplied with RCom) allows you to print information from a SIBO
system to a printer that is attached to a PC. It takes its settings from RCom set up - see
above.

To print a file with RPrint:

Use the 'Printer setup' option on the SIBO system and set the 'Printer device' to 'Serial'. Set
the same 'Baud rate' for printing as you set in RCom set up. Any Link software on the
SIBO system should not be running, i.e. set the 'Remote link' option in the System screen
to 'off'. Open the file to be printed on the SIBO system and use the application's 'Printer
setup' option to set the model of the printer that is attached to the PC. Use the application's
'Print' option to print the file.

PsiWin 1.x, Psion Print
Version 1 of PsiWin includes Psion Print which allows printing of files created on the
SIBO system to almost any printer that is installed under Windows, whether connected
directly or via a Network. Psion Print allows the use of TrueType fonts. The Psion Print
set up utility is used to configure the printing settings and for installing new printer drivers
(e.g. a WDR file).

For example to print from within a Series 3 application:

From the System screen, select the Control menu and set up the printer as serial. Connect
the PC Link cable to the Series 3 and the PC (make sure that the Remote Link option on
the Special menu is off). Set the Printer model within the Psion application to Psion Print.
At the PC end use the Psion Print setup utility to select the type of printer attached to the
PC. Run the Psion Print program on the PC and check that a connection is established by
the program, printing from within the Psion application should now be possible to the
specified printer attached to the PC.

18-8 Linking to a PC or Printer

PsiWin 2, printing
Version 2 of PsiWin incorporates extensive facilities to enable printing of files, created on
the Series 5, to almost any printer that is connected to a Windows 95 or Windows NT
based PC.

Infrared printing, via a PC
At the time of going to print, infrared printing is only possible directly from IrDA enabled
Psion systems to suitable IrDA enabled printers.

Printing directly from a Psion system
The number of options that exist for direct printing depends upon the system used.
Assuming the presence of suitable interface ports, all systems have the capability to print
via at least one serial and one parallel port.

In the case of systems such as the HC and Workabout, the options available will depend
upon the exact expansion/interface adapter(s) installed. Some systems may have more than
one interface port available. For example, Workabout or HC systems may have more than
one serial or parallel ports fitted. See the ‘PC link hardware’ section above for details of
the connection options for HC and Workabout.

Printing on the Series 3 family, Siena and the Series 5 is always via the dual serial/parallel
interface port, where necessary using adapter cables to convert the signals into the correct
form. Infrared (IrDA) printing only became available with S3c, Siena and S5 systems.

Whatever PC link or printing method you choose, use of an external power supply for the
Psion system is highly recommended. There is a particularly high drain on the internal
batteries during communications e.g. to a PC or printer.

Serial printing
Printing to serial printers can sometimes be a little difficult, mainly due to the non standard
nature of some manufacturers’ implementation of the so-called ‘Industry Standard’ RS232
interface. From the Psion end things tend to be straightforward. For example, setting up for
serial printing from a Series 3c would be as follows:

Attach the serial cable into the port on the left-hand-side of the Series 3c. Connect the
other end of the cable containing the 9-pin ‘D’ type connector into the serial port of a
suitable printer. A 9-pin to 25-pin adapter will probably be required (Psion supply a range
of suitable adapters). From the Series 3c system screen, select the ‘Printer’ option from the
Control menu and set the Printer device to ‘Serial’. Ensure the serial parameters such as
baud rate and handshaking methods are set in accordance with the requirements of your

Linking to a PC or Printer 18-9

printer. Make sure that the ‘Communications’ option on the Special menu is set to ‘None’.
Ensure the ‘Print set up’ options within the application match the appropriate (or nearest
compatible) printer i.e. the settings for Printer device and Printer model.

Problems with serial interfaces are most often associated with incorrect matching of the
serial port settings such as baud rate, parity and handshaking schemes. If the serial port
settings are carefully matched at both ends and problems are still encountered, carefully
check the pin-out requirements of the connection to the printer, starting with the printer
port. It may be that a signal converter such as a ‘null modem’ adapter is necessary to
reconfigure the data transmit and receive lines.

Serial printer cable, S3/3a
On the Series 3/3a, a serial printer cable connects into the port on the left-hand-side of the
machines via a small right angled 6-pin plug on one end of the cable. The other end of the
cable contains a 25-pin D-type connector (male) suitable for a serial printer port. A 3Link
PC cable with a suitable adapter (e.g. 9 to 25-pin) may also be used.

Serial printer cable, S3c, Siena and S5
Connection to the serial port on these more recent systems is via a custom ‘Honda’ style
15-pin connector. The other end of the PC Link cable contains a 9-pin PC AT style
(female) connector, so an adapter may be required to provide a connection suitable for a
serial printer port. For example, a 9-pin (female) to 25-pin ‘D’ type (male) connector.

Parallel printing
Printing via the parallel link is usually very straightforward. Centronics ports, cables and
connectors are much more uniform, and there are no awkward parameters and handshaking
settings to configure. For example, setting up for parallel printing from a Series 3c would
be as follows:

Attach the Psion parallel cable/adapter into the port on the left-hand-side of the Series 3c.
Connect the other end of the cable containing the 36-pin ‘D’ type connector into the
parallel port of a suitable printer. The little box on the ‘D’ type end of the Psion cable
contains some electronics that convert the signals available from the Psion port to an
industry-standard Centronics parallel interface.

From the Series 3c system screen select the ‘Printer’ option from the Control menu and set
the Printer device to ‘Parallel’. Make sure that the ‘Communications’ option on the
Special menu is set to ‘None’. Ensure the ‘Print set up’ options within the application
match the appropriate (or nearest compatible) printer i.e. the settings for Printer device and
Printer model.

Note:
Problems may be experienced when opening the PAR: device (i.e. the parallel device
driver) for printing, for example on the Series 3c or Siena. If you experience an error of the

18-10 Linking to a PC or Printer

type ‘Device not present’ it may be necessary to print using the TTY: device instead, even
though a parallel cable is being used - see the text file ‘FORUM06.TXT’ lines 841-1405 in
the \ONLINE directory on disk.

S3/3a parallel printer cable
On the Series 3/3a a parallel link adapter connects into the port on the side of the systems
via a small right angle shaped 6-pin plug on one end of the 3Link parallel cable. The other
end of the cable contains a 36-pin ‘D’ type connector suitable for the centronics parallel
port of a printer. A small box on the D-type end of the Psion cable contains circuitry that
converts the very high speed internal serial interface (used to access RAM and FLASH
SSDs) to an industry-standard Centronics parallel printer interface.

Power for the S3/3a parallel link adapter is drawn from the Psion system.

S3c, Siena and S5 parallel printer cable
The parallel link adapter connects via a 15 pin ‘Honda’ plug on one end of the cable into a
suitable port on the Psion system. On the Series 3c the port is on the left-hand-side of the
system. On the Siena the connector is on the top edge of the system, i.e. when the unit is
opened out flat. The connector on the Series 5 is at the back of the system on the left-hand-
side under a roll top dust cover. The other end of the cable contains a 36-pin ‘D’ type
connector suitable for the centronics parallel port of a printer. A small box on the ‘D’ type
end of the Psion cable contains circuitry that converts the signals from the ‘Honda’ port to
an industry-standard Centronics parallel printer interface.

The parallel link adapter is powered from its own battery (9V PP3 type).

File printing
On many systems the printer device may be set to a file name. For example, setting up for
printing from a Series 3c into a file is as follows:

From the Series 3c system screen, select the ‘Printer’ option from the Control menu and
set the Printer device to ‘File’. A default file name of ‘P.lis’ will be used, although this
may be edited to a name of your choice. Ensure the ‘Print set up’ options within the
application match the appropriate (or nearest compatible) printer i.e. the settings for
Printer model. The contents of such a file is likely to include a lot of printer control data as
well as the text to be printed. One way of utilising this type of file is to send it (i.e. copy it)
directly to the printer device, when you want a paper copy.

Printing plain text to a file from OPL can be done very simply. For example, just use
LOPEN(“filename.txt”) to open the file for printing (remember to include any file
directory path as well) and use LPRINT commands as normal.

Linking to a PC or Printer 18-11

Infrared printing
Infrared communications on Series 3c, Siena and Series 5 systems (IrDA enabled systems)
allow direct ‘point and shoot’ printing from within suitably enabled applications to
similarly equipped IrDA printers.

With a Series 3c or Series 5 this functionality is built in, but the Siena requires additional
external infrared device drivers to be loaded first - see the 'I/O System' chapter for more
details and the ‘Disk Contents’ chapter for the Siena drivers.

For example, setting up for infrared printing from a Series 3c would be as follows:

From the Series 3c system screen, select the ‘Printer’ option from the Control menu and
set the Printer device to ‘Infrared’. Make sure that the ‘Communications’ option on the
Special menu is set to ‘None’. Ensure the ‘Print set up’ options within the application
match the appropriate (or nearest compatible) printer i.e. the settings for Printer model.

Printing to the infrared port can be done from your own applications via the IRP: I/O
device. For example in OPL just use LOPEN(IRP:A) to open the infrared device and use
LPRINT commands as normal.

18-12 Linking to a PC or Printer

Disk Contents 19-1

19 Disk Contents

Problem solving
A considerable amount of ground has been covered in the previous chapters, but it is
almost impossible to anticipate everything a programmer may wish to do. Over the years a
large number of programmers have solved a huge range of problems, many have
generously put their solutions and example code into the public domain for the benefit of
others. Numerous difficult questions have been raised and answered in the key on-line
forums related to Psion programming. Answers have come from a range of sources,
including Psion’s own technical staff, commercial third party developers and from the
huge number of talented non-professional developers.

In an attempt to provide solutions for as many potential questions as possible I have
scoured all the key sources of programming related information and examples, added in
some of my own, and put them all together on disk. This chapter provides a detailed guide
to the contents of the CD-ROM containing the collected materials. See the ‘Contacts and
Sources’ chapter for details of the sources used.

Lists and thumbnail sketches of all of the materials and examples are provided below. The
lists and descriptions are grouped into topics, in disk directory name order.

For access to a particular programming technique, problem solution or utility program,
refer to the disk index at the end of this chapter as well as the main book index. The disk
index extensively cross-references the accumulated examples and information by subject
matter.

Entries in the disk index will be of the general form:
Keyword plus explanatory text, the category of the information, the directory name for the
file or files, followed the name of the file(s) involved, and possibly a line number or a
range of lines within the file.

Line number references are given when the information or example code is part of a large
ASCII text file. Line number references are general pointers to the location of the
information. While every effort has been made to group and order the information be sure
to read down the file, below the initial line number / entry, for any related information
which may follow on.

All files have been unpacked if they were obtained in the form of a compressed archive.
Therefore all files with a .ZIP file name extension are the original compressed archive files
provided for convenience. A program such as Pkzip or Winzip is needed to unpack .ZIP
archives.

19-2 Disk Contents

When looking for the solution to a programming problem always check references to the
other programming language sections as well. For example: a C programmer may gain
considerable insights to a solution from the OPL examples provided and vice versa.
Although, it has to be said, that some of the C code can be somewhat obtuse to
programmers only familiar with OPL.

Note:
You are referred to Psion’s Web-sites for the latest version of all documentation and
examples originating from Psion – see the ‘Contacts and Sources’ chapter for access
details.

OPL examples
Aalarms
How to set alarms from within an OPL program (3a onwards); shows how to select and set
the built in alarm sounds such as soft bells etc. Illustrates the use of the SND: device.

Aka230
An OPL programmers’ utility that compacts variable names, reduces the size of translated
OPL programs, speeds them up and makes them less understandable if they are reverse
translated.

Appman
Asynchronous handling of menus and dialogs - including nested or multi-level dialogs.
Complex code, but very useful if you must have layered dialogs.

Ball
A complete application that demonstrates many OPL techniques, including resource files
for multi-lingual programs, icons and bitmaps plus many others - requires the use of the
S3atran or S3tran translators, but can be modified to avoid this as all necessary
information is provided.

Beepoff
Asynchronous event handling (multiple); detects the switch off key and time to go before
the machine will switch off. Demonstrates how to tell whether the processor is busy and if
external power is in use.

Bincalc
A hexadecimal, octal and binary calculator written in OPL.

Call870a
A procedure to extract and display information returned by the operating system call
FilStatusDevice, $87 Sub $0A. Useful for finding disk space and other details of a storage
device.

Dataentr
Use of very long choice lists in OPL dialogs - uses calls to the OOP libraries.

Disk Contents 19-3

Dbs_105
A supplementary Database Server from Psion for use with OPL or C programs. The DBS
SDK is a Database server that runs on Psion machines and access to dBase III and IV
format files and Psion DBF files from both C and OPL programs. DBS is the replacement
for ISAM. ISAM is a set of routines that provided DBF file manipulation and indexing
support.

Dbspatch
On some systems (Workabout and Series 3c) problems were experienced with the DBS
database server, these files were issued by Psion as a fix for the version of DBS v04 in
ROM - see the dbspatch.txt file.

Dialog
Enhanced dialog routines in OPL. In particular, performs dialogs asynchronously, i.e.
handles key presses and other events outside the dialogs, allows more than eight dialog
entries and multi-line entries.

Drawbit
Access to two Window Server routines (gInitBit and gDrawBit) from OPL for the loading
and manipulation of bitmaps.

Dun22src
The OPL source code for a dungeon style game.

Editbox
Edit box functions from OPL for text editing with word wrap, cursors, text attributes etc.

Embed
Demonstrates how to embed multiple bitmaps (PIC files) into an OPA and then access
them as needed.

Firepic
A picture loader/viewer/saver for the Psion 3/3a/Workabout that offers a few extra features
over other similar programs. It can load and save multiple file formats by the use of plug-
in DYLs (currently supplied DYLs for PIC and PCX formats). Source code is supplied (in
C and OPL) that demonstrates how to write and use DYLs called by an OPL program.

Fontvw
A simple program for viewing some text in all of the different built in fonts on the S3a; the
OPL source code is included. Helpful during screen design, to decide which typeface will
look best.

Frame
An application framework/library that supports message-based, event-driven application
programming in OPL on the Series 3 or 3a/c computers, includes support for time-based
applications.

Freevt05
Emulation of a VT100 terminal in OPL, with source code, useful for studying RS232
serial port communications techniques.

19-4 Disk Contents

Fsort
Database sorting example in OPL.

Gfxdemo
Graphics effect demonstrations - numerous in OPL.

Helpkit
A set of help / resource file production utilities. Demonstrates how to build / compile help
and program resource files; including displaying help from within an OPL program. See
Xfhelp below.

Ipc
An OPL demonstration of inter-process communication, where one program sends
messages to another to indicate a change of state or the completion of a task. Uses one of
the magic statics as a message/flag indicator, uses asynchronous events and extensive use
of O/S calls.

Irchat
Two infrared communications examples in OPL. Irchat.opl demonstrates a keyboard based
dialog between two infrared enabled Psions. Ircopy.opl demonstrates how to copy a file
from one system to another using the infrared serial link.

Isameg
A demonstration of an Indexed Sequential Access Method (ISAM) database in OPL using
the isam.dyl library from Psion.

JBsort
A utility to alphabetically sort database files in the background or the foreground. It will
sort database files created with Data or by the OPL CREATE command. It can be used by
your own programs, and will work on the S3 and S3a/c (and probably the Siena).

Jezar
Examples of directory scanning, asynchronous event handling, access to text files and
error handling (all in OPL16).

Kmac
A Macro record / play back system written in OOP C with demonstration use by C or OPL
applications, full source code in C and OPL. Example macros are included (kmac\cword)
which will count the words in a Word document and will insert the date into a document.

Lib24
An application framework / library that supports event-driven application programming in
OPL.

Longlist
Allows building of very long choice lists for use in OPL dialogs. Two OPL examples are
given which demonstrate the use of variable arrays and VAFLAT or VASTR array classes.
VASTR arrays are smaller but slower to navigate than VAFLAT arrays which are faster to
navigate but consume more memory.

Disk Contents 19-5

Lpcs
An example link / paste server and client - both in OPL and in C. Illustrates how to
implement ‘bringing’ of highlighted data from one application into another.

Makedbf
OPL example code (OPP) to create a .DBF database file including field labels.

Mandel
An example of Mandelbrot set graphics in - OPL and C source code included. Illustrates
how to use the floating point maths driver.

Norev14
A reverse translation protection system - see Revtran below.

Nitesrc0
A small Series5 program to automatically switch on the display backlight when the
machine is switched on between certain hours of the day.

Online
A large set of text files containing questions and answers from the on-line community of
Psion users and technical support. The files include text and code examples that illustrate
many techniques, and solve many technical queries - mainly OPL with O/S calls, some
OVAL, C and assembler code. All of the files have been indexed by topic related
keywords, and numbers quoted refer to the line in the file where the discussion begins.

Opl_c
How to call C routines from within OPL programs; OPL and C source code is included.

Oplcs
OPL code studio – a Windows based editing and template system for writing OPL code.

Oplexams
Numerous OPL source code and text files containing example code and explanatory text to
demonstrate a wide range of techniques. All files are referenced by keywords in the disk
contents index, and descriptions are given in the READ1ST.TXT file located within the
Oplexams directory.

Oplhelp
A programmers’ utility to show media types, memory contents and OPL keywords.

Oplhlp
A very comprehensive Windows help file on the OPL language.

Oplinker
The basis of a working linker to link translated OPL modules together into one executable
file; OPL source code is provided.

Opllint
An extremely useful OPL source code checking utility – checks OPL syntax and the use of
variables and procedure calls.

19-6 Disk Contents

Oplman
The text of the S3a programming manual, including all the example OPL code in text and
Psion Word format, plus a .DBF database of all of the OPL keywords.

Oplman32
The text of the Siena, Series 3c and Series 5 programming manual (from the Psion PLC
Website, June 97) in Microsoft WinWord format. The documents include an OPL16 to
OPL32 porting guide – see OPLMAN32.DOC.

Note:
You are referred to the Psion Website for the latest version of this document – see the
‘Contacts and Sources’ chapter for access details.

Oplrad
Notes on speeding up OPL programs, plus an application to store and retrieve program
settings.

Opltran
OPL translators and pre-processors for the S3 and S3a/c and Siena.

S3ATRAN.EXE Translate a Psion S3a OPL source file to a .OPO or .OPA executable.
S3TRAN.EXE Translate a Psion S3 OPL source file to a .OPO or .OPA executable.

Opp16f
An excellent OPL programmers’ pre-processor and utility set for extending the language
and using the operating system.

Oppdbg11
An excellent OPL programmers source level debugging utility – requires the use of OPP.

Palmtop
A collection of OPL examples from Palmtop magazine.

Parse$
An example of using the PARSE$ function to get/build all of the components of a file
specification.

Pason4e
A utility program with OPL source that demonstrates:

How to enable/disable the switch on password, enable the password after a short period of
inactivity, how to switch on the alarm sounds at regular intervals and how to switch off the
remote link. The program runs continuously; it does not stop during backups and does not
appear when cycling through the list of programs (with Shift-System). Pason4e runs on a
3a/c and the Siena.

Pelagn
Demonstrates how to read Agenda files in OPL.

Plink
A cross-linker for converting C programs to Psion format, which may then be run from
inside an OPL program. Useful for speeding up time critical sections of an OPL program.

Disk Contents 19-7

Ppcopl16
A complete SIBO application that demonstrates a wide range of simple and advanced
techniques in OPL16, including calling a DYL from OPL. Full source code provided in
OPL and C.

Ppcopl32
A complete Series 5 application that demonstrates a wide range of simple and advanced
techniques in OPL32, including handling pointer events, using .INI files, program help
and calling OPX procedures. Full source code provided in Series 5 and text formats, plus
everything needed to build ‘zoomable’ Series 5 icons.

Ppcopl32\ppcopl32 and Ppcopl32\dosutils\ppctxt
A small Series 5 utility program (Uidread) for reading the four UIDs from Series 5 files.
Source code is provided in OPL32 format in \Ppcopl32\ppcopl32, and in text format in
Ppcopl32\dosutils\ppctxt.

Psioninc\opl
OPL examples from the Psion Inc US Web site.

\scan Sample code to open a channel to the serial port, queue a serial
barcode read and a queue a keyboard read.

\serial Sample code to open a channel to the serial port and queue a read from
the serial port.

reorder.opl Sample code to sort a database file.
linkon.opl Sample code to turn the remote link on.
xmo.opl Sample code to terminate the link from within program, the application

provides an example of this utility by communicating with an external
modem.

longlist.opl Sample code to use subclasses of the OLIB VAROOT class to
implement long choice lists.

Revtran
Reverse translator for OPL programs. Will convert an OPO or OPA file back to an OPL
source file. See Norev14 above and the ‘OPL Programming’ chapter for information on
protecting your programs from reverse translation.

Riset
Using the WLD: device to access the World database for sunrise and sunset information.

S3proc
Run named application from within an OPL program, get a list of all running applications
and kill a specific application.

Segments
Provides access to memory segments to OPL programs.

Speed
Notes on speeding up OPL programs plus information on some commercial applications.

Spritec
Fast use of sprites for the 3a onwards - uses access to sprites via the operating system to
increase the speed of manipulating graphics objects.

19-8 Disk Contents

Sqr12src
Squares graphics game with source OPL code.

Sunopl
Calculation of sunrise and sunset times based on latitude / longitude information.

Tsmp10
Demonstrations in OPL and C of recording / sampling sounds - uses the SYS$SAMP.LDD
logical device driver via the SMP: device.

Watch
Examples of a high-resolution stopwatch (to 1/1024th second) using the free running
counter device (FRC:).

Wld
Example of access to the World application database files, via the WLD: device, to get
country and dialling code information.

Yam13src
Mine sweeper game application in OPL - full source and support files provided;
demonstrates many sophisticated programming techniques, needs S3ATRAN to translate
the source.

C examples
Appskel
An example skeleton application for HWIF based C programmers.

Clocks
An excellent full HWIM demonstration application showing multiple world time zone
clocks.

Cpocall
An interim C compiler for the Psion, not yet fully functional - see the cpocall\cpocread
directory first.

Dbfexam
Two examples illustrating C access to .DBF files, DBFED2.C uses DbfQuickOpen which,
although documented, is not demonstrated in the C SDK manuals.

Dbs_105
A supplementary Database Server from Psion, for use with OPL or C programs. The DBS
SDK is a Database server that runs on Psion machines and access to dBase III and IV
format files and Psion DBF files from both C and OPL programs. DBS is the replacement
for ISAM; a library of routines that provides DBF file manipulation and indexing support.

Disk Contents 19-9

Dbspatch
On some systems (Workabout and Series 3c) problems were experienced with the DBS
database server, these files were issued by Psion as a fix for the version of DBS v04 in
ROM - see the dbspatch.txt file.

Fileconv
File conversion documentation and C++ source code examples for producing additional
file format converters for use with Psiwin (Windows 3.1 version).

Filetags
File selecting and tagging / marking demonstration in HWIM C.

Firepic
A picture loader/viewer/saver for the Psion 3/3a/Workabout that offers a few extra features
over other similar programs. It can load and save multiple file formats by the use of plug-
in DYLs (currently supplied DYLs for PIC and PCX formats). Source code is supplied (in
C and OPL) that demonstrates how to write and use DYLs called by an OPL program.

Floatlib
A section of C code for loading the floating-point emulator library.

Funcs
Notes and sections of C code for using library functions for binary searches and sorting.

Getenv
A short and simple C program to show all environment variables on a SIBO system.

Grepfv10
A file string searching program (DOS Shareware) with C source code. Will search a range
of files for a text string – excellent for searching the example files for obscure instances of
language keywords or functions.

Growbar
A small C application using HWIF with OOP techniques; demonstrating a gauge / growing
progress bar.

Hwifeg
A small application in HWIF C with OOP techniques; demonstrating more sophisticated
dialog interactions.

Hwimex
A small HWIM C demonstration of customised dialog controls.

Iconed
An icon production / editing program with HWIF C source code.

Isam
A demonstration of an Indexed Sequential Access Method (ISAM) application in C.

Kmac
A Macro record / play back system written in OOP C with demonstration use by C or OPL
applications, full source code in C and OPL. Example macros are included (kmac\cword)
which will count the words in a Word document and will insert the date into a document.

19-10 Disk Contents

Lpcs
An example link / paste server and client - C and OPL source code included. Illustrates
how to implement ‘bringing’ highlighted data from one application into another.

Mandel
An example of Mandelbrot set graphics - C and OPL source code are included. Illustrates
how to use the floating point maths driver.

Online
A large set of text files containing questions and answers from the on-line community of
Psion users and technical support. The files include text and code examples that illustrate
many techniques, and solve many technical queries - mainly OPL with O/S calls, some
OVAL, C and assembler code. All of the files have been indexed by topic related
keywords, and numbers quoted refer to the line in the file where the discussion begins.

Oodoc201
Word for Windows documents describing Object Oriented Programming techniques with
the Psion SIBO C SDK. A number of other very useful chapters are included here,
including information on resource files, DYLs, OOP application design using the Record
application as an example.

Opl_c
How to call C routines from within OPL programs; OPL and C source code is included.

Opltran
The C++ source code for a program (WAV2WVE.EXE) to convert a Windows WAV
sound file to a Psion WVE sound file – see WAV2WVE.CPP.

P_crc
C source code to calculate a cyclical redundancy check (CRC) for a data set.

Parent
C code showing a parent process writing information to the window of a child process.

Plink
A cross-linker for converting C programs to Psion format, which may then be run from
inside an OPL program. Useful for speeding up time critical sections of an OPL program.

Ppcopl16
A complete SIBO application that demonstrates a wide range of simple and advanced
techniques in OPL16, including calling a DYL from OPL. Full source code provided in
OPL and C.

Psioninc\csdk
 C examples from the Psion Inc US Web site.

scan.c Sample code to open a channel to the serial port, queue a serial
barcode read and queue a keyboard read.

linkon.c Sample code to demonstrate use of a ‘console’ program to start
another program using p_exec().

crdtype.c Sample code to identify whether HC is in old style or new style
docking station.

Disk Contents 19-11

\modem Sample code to demonstrate XMODEM and YMODEM
communication.

\hcdock Image file to allow HC to communicate with new style docking
station.

Pyrmid
A card game, full HWIF C source code and support files are included.

RS232_eg
A short demonstration in C of serial port communications - read and write.

S3c111
A SIBO based C compiler and development system – based on the SmallC compiler.

Solipeg
A complete set of HWIM C source code and support files for a Solitaire game: Slp15s is
the first HWIM version, Slp21s is an enhanced but more complex release, Slp212 is as per
Slp21s but includes Siena compatibility. Excellent examples (from Cade Roux) for
studying HWIM programming.

Tsmp10
Demonstrations in C and OPL of recording / sampling sounds - uses the SYS$SAMP.LDD
logical device driver via the SMP: device.

W2tsrc
The source code for a DOS program to convert Psion Word files to text files.

OVAL examples
Online
A large set of text files containing questions and answers from the on-line community of
Psion users and technical support. The files include text and code examples that illustrate
many techniques, and solve many technical queries - mainly OPL with O/S calls, some
OVAL, C and assembler code. All of the files have been indexed by topic related
keywords, and numbers quoted refer to the line the file where the discussion begins.

Ovaldemo
This directory contains a fully functional OVAL integrated development environment
(IDE) from Psion Software; the only restriction is that you can use a maximum of two
forms and two modules in each project. To use the OVAL demo package copy the files
(except OVALDEMO.EXE) from the OVALDEMO directory on CD into a directory on
your PC, run SETUP.EXE and follow the on-screen instructions. (Do not copy the
OVALDEMO.EXE file – it is the self-extracting archive file that has already been
unzipped, it is only needed if problems are encountered with particular files.) For the most
up-to-date copy of the demonstration IDE you should visit the Psion Website - see the
‘Contacts and Sources’ chapter for details.

19-12 Disk Contents

Ovaldemo\filename
A small OVAL demonstration of how to get file names from a user.

Ovaldemo\ovalterm
An untested terminal emulator, written in OVAL – useful for studying serial
communications techniques and handshaking.

Ovaldemo\psionweb
Some notes and tips on OVAL – from the Psion Software web site, see the readme.txt file
for the web address (URL).

Psioninc\oval\
OVAL examples from the Psion Inc US Web site.

\barscan Barcode scanning application to scan a barcode, accept keyboard,
search a database and allow user to make additions to database.
Intended as a model for an inventory application. Includes error-
handling routines to create application databases if they are not
present.

\dbase Sample code to demonstrate handling of dBase III and dBase IV files

within OVAL applications.
\dbase\server Includes database server files necessary to utilise dBase files on the

SIBO unit. i.e. patches to DBS04. Read file and database
documentation first, i.e. Filehand.doc.

\makedb Sample code to create a ‘Psion native’ database file including an
index.

\gridapp Sample application to demonstrate the use of a grid populated with

values from a ‘Psion native’ database.

\dbgrid Sample application to demonstrate the use of a grid populated with

values from a dBase database. Note that the method for populating the
grid differs because the dBase file must be opened before being loaded
into the grid.

\dbspatch On some systems (Workabout and Series 3c) problems were

experienced with the DBS database server, these files were issued by
Psion as a fix for the version of DBS v04 in ROM - see the
dbspatch.txt file.

\modem Sample application to start the comms process, run the program in

background using a script file, and return control to the OVAL
application. The script file connects to a modem through the serial port
(in a Docking station), dials out and transfers a file using Ymodem.
Open the script file using Script Editor, edit to suit your needs, then
translate before running the application.

Disk Contents 19-13

Assembler examples
S3asm2
A full Assembler with support files for producing machine code programs and code
segments.

Cpocall\cpocas86
An Assembler is supplied with the CPOC C development system, it is not designed as a
stand-alone program and has to be used in conjunction with the CPOC ‘front end’.

Online
A large set of text files containing questions and answers from the on-line community of
Psion users and technical support. The files include text and code examples that illustrate
many techniques, and solve many technical queries - mainly OPL with O/S calls, some
OVAL, C and assembler code. All of the files have been indexed by topic related
keywords, and numbers quoted refer to the line in the file where the discussion begins.

Macro systems
Kmac
A Macro record / play back system written in OOP C with demonstration use by C or OPL
applications, full source code in C and OPL. Example macros are included (kmac\cword)
which will count the words in a Word document and will insert the date into a document.

Macsys
Macsys is an application that allows a user to create cross-application macros. Macros are
pre-programmed commands that help automate many repetitive tasks. Each Macro, once
written and translated, must be installed and assigned a hotkey; thereafter pressing the
hotkey from any application will execute the macro. Example Macros are located in
macsys\mcr.

Online
A large set of text files containing questions and answers from the on-line community of
Psion users and technical support. The files include text and code examples that illustrate
many techniques, and solve many technical queries - mainly OPL with O/S calls, some
OVAL, C and assembler code. All of the files have been indexed by topic related
keywords, and numbers quoted refer to the line in the file where the discussion begins.

19-14 Disk Contents

Utility software & support files
3lib
Shareware library listings – see the page at the end of the book for details of how to
contact the 3Lib Shareware library.

Charm
A utility to display all of the characters, ASCII codes and fonts available on a Series 3a.

CSDK
A database application (DOS based) that provides a very comprehensive index to the
whole of the SIBO C SDK manuals, suitable for versions up to 2.20. The C SDK index
was produced by EMCC as a commercial product, purchasers of this book are free to use
the index for their own individual purposes. However do not distribute the C SDK index to
others, doing so by whatever means will be in breach of international copyright laws.

Dbf2text
Converts a Psion database file to a delimited text file – useful as an intermediate step for
exporting Psion database data to other formats. This version of the program is more recent
than the copy in the \Opltran directory.

Dbfc103
Converts a delimited text file to a Psion database file - useful as an intermediate step for
importing databases in other formats to Psion format.

Defines
Defines.dbf is a Psion database file containing a comprehensive set of EPOC16 defines
and identifiers with their corresponding numerical values.

Doc
A collection of miscellaneous programming related documents in Microsoft Word for
Windows format.

AGNFILE.DOC Series 3a Agenda file format.
APPGUIDE.DOC A guide to writing Series 3/3a applications.
CHECK.DOC A guide to writing Series 3/3a applications.
FLASHFR.DOC Flash disk friendliness on S3.
OSCALLS.DOC Operating system calls explained and detailed.
C96.DOC Interim SIBO C SDK information for Siena and S3c.
OPL96.DOC Interim SIBO OPL SDK information for Siena and S3c.
UPGRADE.DOC Interim SIBO C SDK update (September 96) for Siena and S3c.
MANDEF.DOC Known defects in the SIBO C SDK version 2.10 manuals.
SOFTDEF.DOC Known defects in the SIBO C SDK version 2.10 software.

Draw284
A graphics / bitmap drawing program - useful for producing icon and other bitmap files for
SIBO systems.

Emul3a
A DOS based emulation of the Psion Series 3a.

Disk Contents 19-15

Epocalls
The operating system calls manual from version 2.01 of the C SDK in Word for Windows
format.

Firepic
A picture loader/viewer/saver for the Psion 3/3a/Workabout that offers a few extra features
over other similar programs. It can load and save multiple file formats by the use of plug-
in DYLs (currently supplied DYLs for PIC and PCX formats). Source code is supplied (in
C and OPL) that demonstrates how to write and use DYLs called by an OPL program.

Font172
A font file editor for producing new fonts or graphics characters.

Fontvw
A simple program for viewing some text in all of the different built in fonts on the S3a; the
OPL source code is included. Helpful during screen design, to decide which typeface will
look best.

Formats
File formats for Psion 3a Agenda, Database, Word and Spreadsheet files in RTF, TXT and
Word for Window versions. See also the oodoc201 directory for resource file information.

Freevt05
Emulation of a VT100 terminal in OPL, with source code, useful for studying RS232
serial port communications techniques.

Getenv
A short and simple C program to show all environment variables on a SIBO system.

Grepfv10
A file string searching program (DOS Shareware) with C source code. Will search a range
of files for a text string – excellent for searching the example files for obscure instances of
language keywords or functions.

Helped11
A Windows based application from Psion (free but unsupported) for editing application
help files.

Helpkit
A set of help / resource file production utilities. Demonstrates how to build and compile
help and program resource files. See Xfhelp below.

Hexview1
A file and memory segment viewer and editor – works in text or hexadecimal mode.

Iconed
An icon production / editing program with HWIF C source code.

Icons
A collection of icons for use with your own applications or program groups.

19-16 Disk Contents

JBdata
An excellent Freeware database for Series 3a/c that has many more facilities than the built
in Data application – in particular the ability to load data files with field types other than
string. It can also export a database as a delimited text file, useful for transfer to other
systems e.g. Series 5.

Makeals
The Psion utility program for making program alias (ALS) files.

Ncp
The NCP documentation and defines covering use of the remote link in Word for
Windows format.

Nwtftp
A Excel spreadsheet file with the contents of the Shareware and Freeware on the New
World Technology ftp and web site.

Online
A large set of text files containing questions and answers from the on-line community of
Psion users and technical support. The files include text and code examples that illustrate
many techniques, and solve many technical queries - mainly OPL with O/S calls, some
OVAL, C and assembler code. All of the files have been indexed by topic related
keywords, and numbers quoted refer to the line in the file where the discussion begins.

Oodoc201
Word for Windows documents describing Object Oriented Programming techniques with
the Psion SIBO C SDK. A number of other very useful chapters are included here,
including information on resource files, DYLs, OOP application design using the Record
application as an example.

Oplman
A Psion database file (SIBO) of the OPL language (see S5data for an OPL32 database).

Opltran

A set of utility programs for file conversions.

DBF2TEXT.EXE Convert a Psion database to a delimited text file.
TEXT2DBF.EXE Convert a delimited text file to a Psion database.
WAV2WVE.EXE Convert a Windows WAV sound file to a Psion WVE sound file.
WVE2WAV.EXE Convert a Psion WVE sound file to a Windows WAV sound file.
WSPCX.EXE Convert Windows PCX files to Psion bitmap (.PIC) files; will also

bind multiple Psion bitmaps into one file. Also see the \wspcx314
directory.

Phcomp
A DOS based utility for simplifying the production of application resource / help files.

Psicon
A straight forward Windows based icon editor.

Disk Contents 19-17

Psionfaq
A comprehensive set of text files providing answers to Frequently Asked Questions (FAQ)
on all aspects of Psion computers.

Psionics
A comprehensive set of text files providing a huge amount of programming related
information such as file formats, operating system calls and the use of a wide range of I/O
devices.

S3aspy
A program memory and file inspection utility.

S5art
A set of Series 5 sketch files containing clipart graphics images.

S5data
A Psion Series 5 database of the OPL32 language (see Oplman an OPL16 database). Also
included is an Series 5 database of the OPL32 constants.

S5demo
A Windows 95 based graphical demonstration of the new Series 5 system.

Sieirpr
Siena additional device drivers to enable infrared printing (to the IRP: device) plus other
infrared I/O capabilities to the Siena.

Siena
A DOS based emulation of the Psion Siena.

Spy
A utility from Psion to monitor all active processes in the system and the resources they
are using.

Ssds
Notes on upgrading the storage capacity of SSDs.

Undelete
A small utility which attempts to undelete files from Flash SSDs.

Uri
Microsoft Word for Windows document describing the Universal Radio Interface SDK for
implementing a radio based network application.

Wdrkit
A set of utilities for producing / compiling WDR printer driver files.

Wrkabout
A DOS based emulation of the Psion Workabout.

Wsfcomp
A utility for producing / compiling new SIBO font files.

19-18 Disk Contents

Wspcx314
Convert Windows PCX files to Psion bitmap (.PIC) files; will also bind multiple Psion
bitmaps into one file. This is a more recent version of the WPCX.EXE program than the
version located in the \Opltran directory.

Xfhelp
A ‘front end’ program for the resource and help file compiler in Helpkit.

Zmdmptch
A patch version of the Zmodem protocol library for the S3c. If you have an early (V5.20F)
S3c and wish to use the Zmodem protocol from comms scripts then you should install the
SCP$ZMDM.DYL file into an \IMG directory.

WVE
A collection of miscellaneous Series 3 family digital sound files (.WVE files).

General Utilities
Grepfv10
A file string searching program (DOS Shareware) with C source code. Will search a range
of files for a text string – excellent for searching the example files for obscure instances of
language keywords or functions.

Lha213
A set of DOS based utilities for compressing and uncompressing files and archive file sets.

Pkzip
A set of DOS based utilities for compressing and uncompressing files and archive file sets.

Winzip31
A Windows 3.1 based application for compressing and uncompressing files and archive
file sets.

Winzip95
A Windows 95 based application for compressing and uncompressing files and archive file
sets.

Disk Contents 19-19

Disk index
Disk index topic Type Directory File File or line
3Fax accessing the device OPL online forum02.txt ln606
3Lib shareware library lists text 3lib various
Add files and bitmaps OPL online usenet01.txt ln2139
Agenda application start & stop OPL online conf01.txt ln3204
Agenda checking for Macro online conf02.txt ln959
Agenda closing down the app OPL online forum05.txt ln1133
Agenda file format descriptions text formats agnfile.*
Agenda file read records OPL pelagn agn_read.opl readme.txt
Agenda file read records OPL Oplexams readagn.opl
Agenda file repeat records text online conf02.txt ln160
Agenda files format S3 text psionics agenda.txt
Agenda files format S3 text Oplexams agendfmt.txt
Agenda files format S3a WWord doc agnfile.doc
Agenda files format S3a text psionics agenda3a.txt
Alarm cancelling OPL online forum04.txt ln181
Alarm cancelling OPL online forum06.txt ln718-839
Alarm fanfare sound playing OPL online conf01.txt ln2150
Alarm server replacement text online usenet08.txt ln912
Alarm sounds enable disable OPL pason4e various
Alarms cancelling from OPL text online usenet07.txt ln75-98
Alarms list queue OPL Oplexams inqalm.opl
Alarms playing std alarm sounds OPL aalarms alarmsnd.opl
Alarms setting OPL Oplexams ex_alarm.opl readme.txt
Alarms setting OPL online conf01.txt ln2111
Alarms setting and system time OPL aalarms aalarma.opl aalarma.txt
Alarms used to trigger a program OPL online usenet10.txt ln219-285
Alias file maker Util makeals various
Alignment of text on screen OPL online forum01.txt ln210
ALLOC use of OPL online forum01.txt ln662
AND operator OPL Oplexams and.opl
Animated graphics OPL Oplexams sinus.opl
Animated rectangle OPL Oplexams ex_anima.opl readme.txt
Animating bitmaps text online usenet08.txt ln878-910
Animation graphics driver ref to text online usenet11.txt ln1-25
Animation of bitmap OPL Oplexams bitmap.opl
Animation of character OPL Oplexams ex_bounc.opl
APP file format text online usenet04.txt ln101-208
Application alias file maker Util makeals various
Application closing down another OPL online forum05.txt ln1133
Application closing down another OPL Oplexams closeapp.opl
Application closing down another OPL online forum01.txt ln736
Application devel speed up OPL OPL oplrad various
Application file format descriptions text formats various
Application file formats text psionics various
Application framework OPL Oplexams opaskel3.opl
Application framework & DYL PPCOPL16 OPL/C ppcopl16 various
Application framework async OPL lib24 various
Application framework async OPL frame various
Application framework async OPL appman appman.opl
Application framework multi screen OPL Oplexams templa.opl
Application framework OPL32 PPCOPL32 OPL ppcopl32 various
Application installer Windows based text online usenet08.txt ln82
Application launching OPL Oplexams starta.opl startapp.opl

19-20 Disk Contents

Disk index topic Type Directory File File or line
Application launching OPL Oplexams launch.opl
Application launching & test link on/off OPL Oplexams launch2.opl
Application launching ROM based OPL online usenet09.txt ln573-599
Application launching within a program OPL online forum02.txt ln1615-1827
Application launching within a program OPL online forum03.txt ln832-943
Application location of / loaded from OPL online usenet07.txt ln310-360
Application name CMD$(5) OPL OPL online usenet09.txt ln396-426
Application passwords text online forum02.txt ln113
Application process data getting OPL online usenet10.txt ln1323-1384
Application resources checking Util spy various
Application running from OPL Word App OPL Oplexams runwp.opl
Application running OPL App from OPL OPL Oplexams sys$prog.opl
Application skeleton for HWIF C C appskel various
Application standards guide S3 family WWord doc check.doc appguide.doc
Application type 0 OPL Oplexams ex_app0.opl
Application type 3 OPL Oplexams ex_app3.opl
Applications running built in OPL online forum01.txt ln1202
Applications running from OPL OPL online conf01.txt ln1593 / 4831
Applications starting up OPL online usenet01.txt ln1097
ARCTAN in C C online usenet01.txt ln3356
Arrays 2D OPL Oplexams twodtext.opl
Arrays 2D OPL/Ass Oplexams assemb.opl
Arrays multi-dimensional in OPL text online usenet07.txt ln1-43
Arrow characters OPL online usenet01.txt ln1017
Assembler for Psion Util s3asm2 various
Assembler programming advice text online usenet01.txt ln1517/1657
Assembly language book text online usenet04.txt ln968
Assembly language console display Assem online usenet02.txt ln1-106
Assembly language console display Assem online usenet04.txt ln38-208
Asynchronous application framework OPL appman appman.opl
Asynchronous dialogs OPL dialog various
Asynchronous events OPL beepoff various
Asynchronous events OPL Oplexams various
Asynchronous events multiple OPL jezar various
Asynchronous I/O example HWIF C C online usenet05.txt ln38-250
Asynchronous tutorial OPL Oplexams ttyread.txt
ATS example from OPL (OPP) OPL online forum06.txt ln1407-1581
Attributes of files changing OPL online conf01.txt ln4293
Auto switch off OPL beepoff various
Auto switch off and Workabout text online usenet02.txt ln329
Auto switch off set / get OPL Oplexams opl.txt
Auto switch off setting OPL Oplexams expow.opl
Background detecting if sent into OPL online conf01.txt ln5068
Background foreground demo OPL Oplexams invade.opl
Background keypresses OPL Oplexams capture.txt
Backlight bug on S3c and fix text online usenet08.txt ln38
Backlight bug on S3c explained text online forum02.txt ln624
Backlight control OPL online usenet02.txt ln108
Backlight control Series 5 OPL nitesrc0 various
Bar code reading OVAL psioninc\oval\barscan, various
Bar code reading C psioninc\csdk various
Bar code reading OPL psioninc\opl\scan\scan1.opl
Bar code reading OPL online usenet10.txt ln56-167
Bar codes reading on Workabout OPL online forum06.txt ln98
Bar codes reading on Workabout OPL online usenet02.txt ln526
Bar codes serial I/O on Workabout OVAL online usenet09.txt ln1155-1215
BASIC to OPL converter text online usenet08.txt ln1
Battery info OPL Oplexams opl.txt

Disk Contents 19-21

Disk index topic Type Directory File File or line
Battery voltages OPL Oplexams batchk.opl battery.opl
Battery voltages OPL Oplexams battery1.opl
Battery voltages finding OPL online conf01.txt ln2658
Baud rate serial comms tech details text online conf04.txt ln90
BBS for Psion files in UK OPL online usenet01.txt ln188.1981
Beep frequencies OPL Oplexams ex_music.opl noteconv.opl
Binary files truncating OPL online forum06.txt ln609-654
Binary files truncating OPL online usenet02.txt ln591
Binary search routine OPL online conf05.txt ln2070-2123
Binary searches and sorts C funcs various
Binary; octal; hex calculator OPL bincalc bincalc.opl
Bitmap and font files format of text online usenet09.txt ln667-801
Bitmap animation OPL Oplexams bitmap.opl
Bitmap combining multiple Util opltran wspcx.exe
Bitmap converter Util opltran wspcx.exe
Bitmap editor Util draw284 various
Bitmap file conversions various text online usenet10.txt ln565-693
Bitmap file converter / combining Util wspcs314 wspcx.exe
Bitmap file format text Oplexams picfmt.txt
Bitmap files combining into one file OPL online usenet09.txt ln1036-1152
Bitmap files in an OPA OPL online forum04.txt ln650-838
Bitmap files in OPAs OPL Oplexams picinopl.txt
Bitmap loading advanced OPL drawbit drawbit.opl drawbit.txt
Bitmap loading multiple OPL drawbit drawbit.opl drawbit.txt
Bitmaps and grey planes text online conf01.txt ln2431
Bitmaps and sprites OPL online usenet04.txt ln885
Bitmaps animating text online usenet08.txt ln878-910
Bitmaps backed up C online usenet06.txt ln665-698
Bitmaps combining many in a file text online forum02.txt ln1890
Bitmaps displaying OPL online usenet06.txt ln701-812
Bitmaps embedded in an OPA file OPL embed various
Bitmaps from an OPA file OPL embed various
Bitmaps inverting text online usenet06.txt ln905-959
Bitmaps loading black and grey OPL online forum05.txt ln588-723
Bitmaps locating in a file text online usenet07.txt ln46-73
Bitmaps multiple in a file OPL online usenet01.txt ln2139
Bitmaps printing OPL online usenet10.txt ln1234-1320
Bits testing for in C C online conf01.txt ln4531
Bring or link paste OPL/C lpcs various
Bring or link paste advice text online usenet01.txt ln2431
Bring or link paste demonstration OPL/C lpcs various
Bring via infrared text online conf02.txt ln453
Bugs in programs causing resets text online forum02.txt ln461
C calling from OPL OPL/C opl_c various
C calling from OPL OPL Oplexams res&lang.txt
C code to calculate a CRC C p_crc p_crc.c
C compiler alternative tot Topspeed text online usenet02.txt ln556
C compiler description of CPOC system text online usenet10.txt ln288-667
C compiler header files for CPOC text online usenet04.txt ln946
C compiler make files alt to Topspeed .pr C online usenet03.txt ln648-821
C compiler make files alt to Topspeed .pr C online usenet04.txt ln1-35
C compiler provisional for Psions Util cpocall various
C compiler Small C for Psions Util s3c111 various
C compiler Web sites text online usenet09.txt ln626
C functions calling from OPL HWIF C OPL/C online usenet05.txt ln378-450
C linker / converter for Psion PLINK text online usenet06.txt ln846-902
C linker/converter for Psion Util Plink various
C programming with CPOC text online usenet01.txt ln3274

19-22 Disk Contents

Disk index topic Type Directory File File or line
C SDK index to SIBO manuals up to 2.20 Util csdk various
C SDK Object Oriented Programming text oodoc201 various
C SDK v2.1 HWIF interim 3c/Siena update WWord doc upgrade.doc
C SDK v2.1 interim 3c/Siena update WWord doc C96.doc
C SDK v2.1 known document defects WWord doc mandef.doc
C SDK v2.1 known software defects WWord doc softdef.doc
C structs and OPL OPL online usenet01.txt ln1903
C vs OPL programs text online forum02.txt ln756-972
C++ with Psion text online usenet07.txt ln815-844
Cacheing procedures text online usenet01.txt ln301
Calculator add conversions OPL Oplexams conv.opl
Calculator memories access OPL online usenet01.txt ln1429
Calculator; hex; octal; binary OPL bincalc bincalc.opl
Calendar displaying in OPL text online conf05.txt ln33-118
Cancelling alarms OPL online forum04.txt ln181
Cancelling alarms OPL online forum06.txt ln718-839
Card game in HWIF C C pyrmid various
Character codes display OPL online forum01.txt ln1561
Character codes display utility S3a/c Util charm various
Characters special OPL online conf01.txt ln283
Checksum / CRC calculation OPL online usenet01.txt ln2013 / 2101
Child / parent process demonstration C parent various
Choice items to text box OPL online forum03.txt ln358
Choice list in dialogs long OPL psioninc\opl\ flatlist.opl
Choice list in dialogs long OPL online conf01.txt ln1692
Choice lists in dialogs OPL online conf01.txt ln563
Choice lists in dialogs long OPL online usenet01.txt ln455
Choice lists in dialogs long OPL longlist various
Choice lists long with VAFLAT reading OPL online conf05.txt ln1871-1950
Choice lists long with VARRAYs text online conf02.txt ln135 / 535
Choice lists very long in dialogs OPL online forum06.txt ln369-607
Circle drawing OPL Oplexams circlex.opl
Circle drawing OPL Oplexams circle.opl
Circle drawing OPL Oplexams circles.opl
Circle filled OPL Oplexams ex_circ2.opl readme.txt
Circle filled OPL Oplexams circlef.opl
Circle hollow OPL Oplexams ex_circl.opl readme.txt
Clipart collection for Series 5 Util S5art various
Clock to 1/32 second OPL Oplexams getaevnt.txt getaevnt.opl
Clock type getting OPL Oplexams getclock.opl
Clock types displaying OPL online usenet04.txt ln525-602
Clock types displaying OPL online usenet05.txt ln251-346
Clock types displaying OPL online usenet09.txt ln222-271
Clocks HWIM C application C clocks various
Clocks reading the current type OPL online conf05.txt ln2315-2409
Close down another application OPL online forum01.txt ln736
Close down another application OPL Oplexams closeapp.opl
CMD$(5) OPL command return values OPL online usenet09.txt ln396-426
Comm ports selection of text online conf04.txt ln1
Comms programs from fax OPL Oplexams seriafax.txt
Comms routines OPL Oplexams commtime.txt
Comms script run OPL Oplexams runsco.opl
Communication between processes OPL ipc various
Communications examples of code text online usenet02.txt ln410
Compiler C provisional for Psions Util cpocall various
Compiler C Small C for Psions Util s3c111 various
Compiling font files Util wsfcomp various
Compress data files OPL Oplexams cpress.opl

Disk Contents 19-23

Disk index topic Type Directory File File or line
Compressing files OPL online usenet01.txt ln277
Compressing heaps C online forum02.txt ln137
Contrast changing screen OPL Oplexams contrast.txt
Contrast changing screen OPL online usenet01.txt ln1
Contrast controlling screen OPL Oplexams lcd.opl
Control codes special characters text online conf02.txt ln906
Controls custom dialog HWIM C hwimex various
Conversions to calculator OPL Oplexams conv.opl
Convert numeric string any base to long OPL Oplexams convstr.opl
Copy function in OPL and file date stamps OPL online conf05.txt ln322
Copy protection text online conf02.txt ln480
Copying ROM files OPL online forum05.txt ln1113
Copying ROM files text online usenet10.txt ln195-233
Copying screen areas / bitmaps text online conf01.txt ln1388
Count down and beep OPL Oplexams countdwn.opl
Count down timer OPL Oplexams ex_timer.opl
Country & system info OPL Oplexams getctd.opl
Country currency symbol change system OPL Oplexams currency.opl
Country specific information OPL online conf01.txt ln4167
Country specific information OPL online usenet09.txt ln1-38
Country specific machines text online conf01.txt ln1339
CPOC C compiler description of system text online usenet10.txt ln288-667
CPOC C compiler header files for text online usenet04.txt ln946
CPOC C compiler Web site text online usenet09.txt ln626
CPOC C programming text online usenet01.txt ln3274
CRC calculation OPL online usenet01.txt ln2013 / 2101
CRC calculation explanation text online usenet10.txt ln1111-1231
CRC checks OPL online usenet07.txt ln140-191
CRC procedure C p_crc p_crc.c
Currency handling suggestion text online usenet07.txt ln879
Currency symbol change system OPL Oplexams currency.opl
Currency symbol information OPL online conf01.txt ln4167
Cursor keys reading OPL online conf05.txt ln1 / 19
Data acquisition using Psion text online usenet01.txt ln1795/1952/2302
DATA statement substitute for OPL Oplexams oplvars.txt
Database convert to text file Util dbf2text various
Database creating with DBS SDK in C C online forum06.txt ln167-291
Database dBase file handling OVAL psioninc\oval\dBase\ various
Database dBase file handling grid control OVAL psioninc\oval\dbgrid\ various
Database patches for v04 of DBS Util dbspatch various
Database patches for v04 of DBS & OVAL Util psioninc\oval\dbspatch\ various
Database field insert additional OPL Oplexams insert.opl
Database field labels OPL Oplexams oplfield.txt
Database field labels getting OPL online conf05.txt ln121
Database fields how many? text online conf01.txt ln854
Database fields variable names OPL online conf01.txt ln4905
Database file access in C C dbfexam various
Database file export to comma delimited OPL Oplexams dbase.opl
Database file export to text OPL Oplexams export.opl
Database file field adjustment OPL Oplexams ex_label.opl readme.txt
Database file format descriptions text formats dbffile.*
Database file sort OPL Oplexams ex_reord.opl
Database file sorting OPL Oplexams reorder.opl
Database file using IOOPEN OPL Oplexams iotype.opl
Database file which one is in use OPL online usenet09.txt ln429-548
Database file with field labels OPL makedbf various
Database file with field labels OPL online usenet07.txt ln363-681
Database files adding records OPL online conf01.txt ln4000

19-24 Disk Contents

Disk index topic Type Directory File File or line
Database files compress OPL Oplexams cpress.opl
Database files getting field labels OPL online conf01.txt ln1541/2537/2675
Database files in Macros Macro online forum02.txt ln437
Database files reading header records OPL Oplexams rectype.opl
Database from a text file Util dbfc103 various
Database ISAM example in C C isam various
Database of EPOC16 defines Util defines defines.dbf
Database of HTML for Psion text online usenet08.txt ln106
Database of OPL commands OPL oplman oplref3a.dbf
Database of OPL32 commands OPL S5data opls5
Database of OPL32 constants OPL S5data oplconst
Database opening in C C online usenet09.txt ln274-393
Database program JBdata Util jbdata
Database Psion native file OVAL psioninc\oval\makedb\ various
Database Psion native file & grid OVAL psioninc\oval\gridapp\ various
Database records undelete OPL Oplexams undel.opl
Database server DBS04 patches OVAL psioninc\oval\dBase\server\
Database server for DBF and dBase files OPL/C dbs_105 various
Database sort example OPL psioninc\opl\ reorder.opl
Database sort program OPL Oplexams dbsort.opl
Database sort program OPL fsort fsort.opl
Database sorting utility for OPL OPL Jbsort various
Database to text converter Util opltran dbf2text.exe
Database using DBS Library from Psion OPL/C dbs_105 various
Database using ISAM OPL isameg various
Databases in OVAL bug fix OVAL online forum05.txt ln1-54
Date / day of week OPL Oplexams ex_birth.opl
Date and time getting and formatting OPL online conf05.txt ln1108-1537/2215-2311
Date calculations OPL online usenet08.txt ln795-844
Date change with Getevent OPL online forum05.txt ln240-299
Date conversion number to string OPL online usenet10.txt ln820-974
Date conversion/calculation OPL online conf03.txt ln234
Date format separator character getting OPL online conf05.txt ln1515
Date format transformation OPL online forum01.txt ln911
Date from system display of C online usenet10.txt ln977-1023
Date manipulation OPL online forum02.txt ln494
Dates OPL Oplexams datetrix.txt
Dates calculation of various holidays OPL online conf02.txt ln759 / 823
Dates conversion OPL online forum01.txt ln1627
Dates formatting OPL online forum06.txt ln656-715
Day name getting OPL online conf02.txt ln508
Day of week / dates OPL Oplexams ex_birth.opl
Daylight saving times text online usenet01.txt ln416
dBase file handling OVAL psioninc\oval\dBase\
dBase file handling grid control OVAL psioninc\oval\dbgrid\
dBase files database server library OPL/C dbs_105 various
DBF database file with field labels OPL makedbf various
DBS database creating in C C online forum06.txt ln167-291
DBS database server patches for v04 of DBS Util dbspatch various
DBS04 Database server patches OVAL psioninc\oval\dBase\server\
dChoice lists in dialogs OPL online conf01.txt ln563
Debugger for OPL OPL online usenet01.txt ln979
Debugger for OPL Util oppdbg11 various
Debugging OPL advice text online conf01.txt ln1077
Debugging processes Util spy
Debugging utility Util s3aspy various
Decimal place rounding OPL online usenet01.txt ln1372
Default disk drive getting OPL online conf01.txt ln1419

Disk Contents 19-25

Disk index topic Type Directory File File or line
Defines database for programming Util defines defines.dbf
Demonstration of Series 5 Util s5demo various
Device driver for sound sampling OPL/C tsmp10 various
Device status getting OPL online conf01.txt ln3886
Device status getting OPL online forum01.txt ln1
Devices present and types OPL Oplexams devlist.opl
Devices type RAM ROM or Flash OPL Oplexams devtype.opl
Dialling and country info OPL Oplexams fdial.txt
Dialling tones OPL Oplexams dtmf.opl ex_dtmf.opl
Dialog boxes dynamic/conditional controls OPL online forum06.txt ln1-95
Dialog choice lists long OPL online conf01.txt ln1692
Dialog choice lists long OPL online usenet01.txt ln455
Dialog choice lists long OPL longlist various
Dialog choice lists very long OPL online forum06.txt ln369-607
Dialog custom controls HWIM C hwimex various
Dialog file selector options OPL online forum05.txt ln164-193
Dialog underlines OPL Oplexams diuline.txt
Dialogs and help key OPL online forum02.txt ln1549-1612
Dialogs and help key OPL online forum03.txt ln564-627
Dialogs and key detection OPL online forum03.txt ln946-1051
Dialogs asynchronously OPL dialog various
Dialogs dynamically changing text online conf01.txt ln3788
Dialogs HWIF C with OOP techniques C hwifeg various
Dialogs long choice lists OPL psioninc\opl\ flatlist.opl
Dialogs multi-level OPL appman appman.opl
Dialogs underlining OPL online conf05.txt ln1825-1868
Dialogs variable OPL online forum01.txt ln770
Dialogs with more than 8 lines etc OPL dialog various
Diamond key and lists OPL online usenet06.txt ln962-984
Diamond key handling OPL online forum01.txt ln124
Diamond symbol in a menu OPL online conf01.txt ln4050
Dice random OPL Oplexams ex_dice.opl
Directory access & scan OPL jezar various
Directory and file entries getting OPL online conf05.txt ln508-530
Directory or file testing for OPL online usenet02.txt ln421
Directory test for OPL Oplexams checkdir.txt
Directory test for OPL Oplexams dirtest.opl
Directory testing for existence of OPL online conf01.txt ln1502 / 4605
Directory tree traversing OPL online conf01.txt ln4334
Disk access accessing PC via PsiWin text online conf02.txt ln354 / 464
Disk access accessing PC via PsiWin text online conf04.txt ln29
Disk device status getting OPL online conf01.txt ln3886
Disk device status getting OPL online forum01.txt ln1
Disk device type testing OPL Oplexams fildev.opl
Disk drive getting users default OPL online conf01.txt ln1419
Disk space free and memory available OPL online forum03.txt ln775-829
Disk space free OS call OPL online forum06.txt ln1584-1634
Disk type finding OPL online conf01.txt ln2463
Disk type RAM ROM or Flash OPL Oplexams devtype.opl
Display contrast changing OPL online usenet03.txt ln261
Display formatting width of text strings text online conf05.txt ln2665-2711
Display of characters to console Assem online usenet02.txt ln1-106
Display of characters to console Assem online usenet04.txt ln38-208
Display printing / capture C online usenet02.txt ln286
Display screen capture keys text online usenet10.txt ln696
Docking station communication with C psioninc\csdk\hcdock\
Docking station type detection C psioninc\csdk\ crdtype.c
Docking station Workabout test for text online conf05.txt ln2611

19-26 Disk Contents

Disk index topic Type Directory File File or line
Documentation miscellaneous text doc various
Drawing graphics bitmaps Util draw284 various
Drive name getting current text online conf05.txt ln2625-2662
Drivers printers producing SIBO Util wdrkit various
Dtext changing dynamically OPL online conf01.txt ln440
DTR serial port handshaking OPL Oplexams dtr.opl
Dungeon game with source code OPL dun22src various
DYLs and OPL example app PPCOPL16 OPL/C ppcopl16 various
DYLs calling from OPL programs OPL/C ppcopl16 various
DYLs calling from OPL programs OPL/C firepic various
DYLs example C code OPL/C ppcopl16 various
DYLs for Workabout and HC C online forum02.txt ln1-111
DYLs how to produce & code example WWord oodoc201 dylbld.doc; catfile.doc etc
DYLs using from C C online forum04.txt ln1-158
Dynamic dialogs OVAL text online conf02.txt ln442
Dynamic memory use OPL online forum01.txt ln662
Easter calculation OPL online usenet01.txt ln923
Easter calculation of date OPL online conf02.txt ln683 / 759
Edit boxes OPL editbox various
Edit boxes advanced text online conf01.txt ln1847
Editing text OPL online conf01.txt ln3295
Editor for font files Util font172 various
Editor preferences keeping OPL settings OPL online forum05.txt ln196-238
Editor; OPL; windows based Util oplcs various
Elapsed timer calculating OPL online conf01.txt ln2150
Electrical impedances OPL Oplexams atten.opl
Ellipses drawing OPL Oplexams elipse3.opl
Emulator detecting PC EPOC operation OPL online usenet05.txt ln783
Emulator DOS based for S3a Util emul3a various
Emulator DOS based for Siena Util Siena various
Emulator DOS based for Workabout Util Wrkabout various
Emulators Psion in Win95 text online conf03.txt ln75
Encryption / passwords OPL Oplexams encrypt.opl
Encryption of data text online usenet03.txt ln121
Entersend0 on S3 text online conf01.txt ln3128
Environment variable for Owner info OPL online usenet11.txt ln315-377
Environment variable for user info OPL online conf05.txt ln531-619
Environment variable owner/user info OPL Oplexams user.opl
Environment variable serial port status OPL Oplexams penv.opl
Environment variables displaying C getenv various
Environment variables identified text Oplexams envvars.txt
Environment variables print settings OPL online forum06.txt ln940-980
Environment variables reading OPL online forum06.txt ln940-980
EPOC calls WWord doc oscalls.doc
EPOC calls OPLs Oplexams oscalls.txt
EPOC calls interpreting text online conf01.txt ln695
EPOC operating system calls full manual text epocalls various
ERR resetting to zero OPL online usenet01.txt ln1081
ERR value resetting to zero OPL online conf05.txt ln270-319
Error handling OPL online conf01.txt ln512
Error handling and I/O commands OPL online forum02.txt ln1961-2046
Error handling handles and I/O commands OPL online forum02.txt ln974-1105
Error handling with ONERR OPL jezar upfile.opl
Error value resetting ERR to zero OPL online conf05.txt ln270-319
Evaluation command OPL Oplexams ex_eval.opl
Event handling text online conf01.txt ln374
Event handling asynchronous OPL beepoff various
Event handling asynchronous OPL jezar various

Disk Contents 19-27

Disk index topic Type Directory File File or line
Example OPL file descriptions OPLs Oplexams read.txt
Examples from OPL prog manual OPL oplman oplexam.wrd oplexam.txt
Fanfare sound playing OPL online conf01.txt ln2150
FAQ Psion text psionfaq various
Fax accessing device from a program OPL online forum02.txt ln606
Field labels in database files OPL online usenet07.txt ln363-681
File / memory viewer / editor Util hexview1 s3aspy
File access using I/O statements OPL online forum01.txt ln1010
File access writing text records OPL online conf05.txt ln1989-2066
File and dir information OPL online conf01.txt ln35
File and directory entries getting OPL online conf05.txt ln508-530
File attributes changing OPL online conf01.txt ln4293
File attributes reading /setting OPL online usenet02.txt ln463
File attributes reading and modifying OPL online conf05.txt ln1700-1822
File attributes setting OPL Oplexams attrib.opl attrib1.opl
File attributes setting from OPL OPL online forum05.txt ln416-585
File compression OPL online usenet01.txt ln277
File converters DOS based Util opltran various
File converters writing for PsiWin C fileconv various
File copy function in OPL and date stamps OPL online conf05.txt ln322
File date and time finding OPL online conf01.txt ln2626 / 2815
File date and time setting / reading OPL online forum03.txt ln418-561
File date and time setting / reading OPL online forum03.txt ln418-561
File dialog selections / options OPL online forum05.txt ln164-193
File dump in hexadecimal OPL Oplexams hexdump.opl
File format agenda S3 text Oplexams agendfmt.txt
File format converter for PIC and PCX OPL/C firepic various
File format descriptions text formats various
File format IMG / APP text online usenet04.txt ln101-208
File format IMG files C online usenet01.txt ln3032
File formats for applications text psionics various
File I/O for numeric data OPL online usenet06.txt ln34-56
File I/O functions and commands OPL oplman b11advan.txt
File in use by an application text online forum03.txt ln180-252
File information date & time modified etc. OPL Oplexams datadate.txt
File information getting OPL online forum01.txt ln1819
File information getting OPL Oplexams finfo.opl
File list tagged OPL Oplexams taggin.opl
File list update OPL Oplexams fileevnt.txt
File lists system screen update OPL Oplexams updflist.opl
File name and type info OPL Oplexams ex_iotyp.opl
File name components getting OPL online conf05.txt ln622-711
File name default extensions OPL Oplexams opldialo.txt
File name getting in OPA's type 3 OPL online forum02.txt ln679
File name in use by an App e.g. Agenda OPL Oplexams datused.opl
File name PARSE$ OPL parse$ parse$.opl
File or directory test OPL Oplexams checkdir.txt
File or directory testing for OPL online usenet02.txt ln421
File position with I/O commands OPL online usenet04.txt ln212-358
File search for pattern OPL Oplexams oposrch.opl
File searching utility for text Grep Util grepfv10 various
File selection limiting the list OPL online forum01.txt ln700
File selectors advice OPL online usenet01.txt ln1265
File size OPL Oplexams fsize.opl
File size and other information OPL call870a call87.opl
File size etc. OPL online usenet01.txt ln899 / 1703
File size information OPL online usenet10.txt ln1-40
File size information getting OPL online conf02.txt ln66

19-28 Disk Contents

Disk index topic Type Directory File File or line
File specification finding OPL online conf01.txt ln2463
File tagging from a list OPL online usenet05.txt ln582-780
File tagging in HWIM C C filetags various
File test if directory OPL Oplexams dirtest.opl
File transfer and PRC advice text online usenet01.txt ln2525
File transfer via Infrared text online usenet08.txt ln1137
File transfer via serial port Xmodem OPL Oplexams txmodem.opl
File transfer via serial port Ymodem OPL Oplexams tymodem.opl
File undelete for Flash RAM Util online usenet11.txt ln28-53
File viewer IOOPEN IOREAD OPL Oplexams fileview.opl
File which is in use by program OPL online conf01.txt ln640
Files loading from specific drives OPL online forum05.txt ln726-864
Files locating OPL online forum02.txt ln716
Files locating on specific drives OPL online forum05.txt ln726-864
Files opening in OVAL OVAL online usenet05.txt ln821
Files setting the date of text online conf05.txt ln2570
Files text using IOOPEN etc. OPL jezar upfile.opl
Files truncating binary OPL online forum06.txt ln609-654
Files truncating binary OPL online usenet02.txt ln591
Files undeleting on Flash RAM Util undelete various
Find file name in use by an App e.g. Agenda OPL Oplexams datused.opl
Find run and kill programs OPL s3proc s3kill.opl
Findfield bug OPL Oplexams various
Findfield command bugs OPL online usenet01.txt ln28
Flash friendly applications guide WWord doc flashfr.doc
Flash RAM file undelete Util online usenet11.txt ln28-53
Flash RAM undeleting files on Util undelete various
Flash SSD format reading Assem Oplexams flash.txt
Floating point & integer numbers testing text online usenet06.txt ln1068-1142
Floating point driver example of use C mandel various
Floating point emulator C floatlib various
Floating point numbers comparing / testing OPL online usenet07.txt ln683-783
Font and bitmap files format of text online usenet09.txt ln667-801
Font conversion / changing text online usenet08.txt ln1047-1079
Font file compiling Util wsfcomp various
Font file editor Util font172 various
Font files format text Oplexams fontform.txt
Font files source of text online forum03.txt ln712
Font viewer for 3a OPL fontvw various
Fonts and styles OPL Oplexams ex_ioscr.opl
Fonts character codes display S3a/c Util charm various
Fonts multiple on screen OPL online conf05.txt ln1089-1105
Foreground / background OPL Oplexams various
Foreground background demo OPL Oplexams invade.opl
Foreground force any process OPL online conf01.txt ln112
Foreground forcing a program to the front OPL online forum05.txt ln296
Foreign language Hotkey & Menu equiv OPL online usenet09.txt ln550
Format a disk device OPL Oplexams fmt%.opl
Format a disk device OPL Oplexams format.opl
Format disk OPL Oplexams format.opl
Formatting a device C online usenet10.txt ln459
Formatting date and time OPL online conf05.txt ln1108-1537 / 2215-2311
Formatting dates OPL online forum06.txt ln656-715
Formatting numbers and separators OPL online forum03.txt ln1-177
Formatting numbers to x dec places OPL online forum03.txt ln741-772
Free memory / disk space OPL online forum03.txt ln775-829
Free running counter OPL Oplexams frc.opl
Freeware and shareware info Web site text online usenet09.txt ln1217-1269

Disk Contents 19-29

Disk index topic Type Directory File File or line
Frequencies of beeps OPL Oplexams ex_music.opl noteconv.opl
Frequently asked questions on Psions text psionfaq various
Ftp / Web shareware / freeware site Excel file nwtftp nwtftp.xls
Full screen on 3a C online usenet01.txt ln2230 / 2469
Game dungeon type with source code OPL dun22src various
Game mine sweeper OPA source OPL yam13src various
Game of cards in HWIF C C pyrmid various
Game solitaire v1.5 in HWIM C C \solipeg\slp15s various
Game solitaire v2.1 in HWIM C C \solipeg\slp21s various
Game solitaire v2.2 in HWIM C C \solipeg\slp22s various
Game squares graphics OPL sqr12src various
Gauge progress bar HWIF with OOP C growbar various
Getevent date change OPL online forum05.txt ln240-299
Getevent use of OPL online forum05.txt ln240-299
GIF to PIC file conversion OPL online forum06.txt ln124-164
Graphics 3D cube OPL Oplexams cube.txt cube.opl
Graphics animation OPL Oplexams sinus.opl
Graphics animation driver reference to text online usenet11.txt ln1-25
Graphics bitmap editor Util draw284 various
Graphics bitmap file converter / combining Util wspcs314 wspcx.exe
Graphics bitmaps embedded in an OPA file OPL embed various
Graphics card game in HWIF C C pyrmid various
Graphics clipart collection for Series 5 Util S5art various
Graphics demo mandelbrot OPL/C mandel various
Graphics demonstrations many OPL gfxdemo gfxdemo.opl
Graphics ellipses OPL Oplexams elipse3.opl
Graphics file viewer and converter OPL/C firepic various
Graphics game mine sweeper OPA source OPL yam13src various
Graphics Mandelbrot plots OPL/C mandel various
Graphics speed up OPL Oplexams doubleb.txt
Graphics spiral demo small OPL online usenet01.txt ln365
Graphics squares game OPL sqr12src various
Graphics with bitmaps OPL ball various
Grep program for text in files searching C grepfv10 various
Grep text file search utility Util grepfv10 various
Grey plane in Image file conversion text online forum02.txt ln388
Grey planes and bitmaps text online conf01.txt ln2431
GRID class list view of records text online conf05.txt ln375
Grid control and databases in OVAL text online usenet10.txt ln722-817
Group names and program names text online conf03.txt ln280
gUPDATE in OPL text online usenet07.txt ln100-138
Handshake lines serial port OPL online usenet07.txt ln193
Handshake lines serial port text online usenet08.txt ln317
HC serial port access text online usenet03.txt ln598
HC serial port types OPL online forum02.txt ln1830
Heaps compressing C online forum02.txt ln137
Help / resource file compiler front end Util xfhelp various
Help / resource file editor Util helped11 various
Help / resource file format description text psionics various
Help / resource file format description text psionics various
Help / resource file format description WWord oodoc201 various
Help / resource file processor Util phcomp various
Help / resource file utilities / compiler Util helpkit various
Help file for Windows covering OPL Util oplhlp opl.hlp
Help files OPL Oplexams ctrlhelp.opl
Help files OPL online conf01.txt ln310
Help files and helpkit text online conf01.txt ln1478
Help files calling OPL online conf01.txt ln4969

19-30 Disk Contents

Disk index topic Type Directory File File or line
Help files compiling text online conf01.txt ln1142
Help files using OPL online forum01.txt ln1689
Help key and dialogs OPL online usenet07.txt ln215-306
Help key detecting in menu & dialog OPL Oplexams various
Help key in dialogs OPL online forum02.txt ln1549-1612
Help key in dialogs OPL online forum03.txt ln564-627
Help/resource file releasing OPL online conf05.txt ln404-469
Help/resource files embedding in OPA's text online conf05.txt ln2412-2504
Hex to decimal conversion OPL Oplexams oplvars.txt
Hex; octal; binary calculator OPL bincalc bincalc.opl
Hexadecimal file dump OPL Oplexams hexdump.opl
Holidays calculation of various dates OPL online conf02.txt ln759 / 823
Home city getting OPL online\usenet01.txt ln2050 / 2183 / 2208
Hot keys detecting key presses OPL online conf01.txt ln2865
Hotkeys & Menus foreign lang equiv OPL online usenet09.txt ln550
HTML database for Psion text online usenet08.txt ln106
HWIF C application skeleton C appskel various
HWIF C asynchronous I/O example C online usenet05.txt ln38-250
HWIF C based Icon editor with source C iconed various
HWIF C card game C pyrmid various
HWIF C functions calling from OPL OPL/C online usenet05.txt ln378-450
HWIF C non backed up Windows C online usenet06.txt ln1030-1067
HWIF C with OOP techniques Dialogs C hwifeg various
HWIF C with OOP techniques Gauge C growbar various
HWIF with HWIM examples C hwifeg various
HWIM C solitaire game v1.5 C \solipeg\slp15s various
HWIM C solitaire game v2.1 C \solipeg\slp21s various
HWIM C solitaire game v2.2 C \solipeg\slp22s various
HWIM C world clocks application C clocks various
HWIM list box classes C online forum04.txt ln238-552
I/O asynchronous example HWIF C C online usenet05.txt ln38-250
I/O commands error handling OPL online forum02.txt ln1961-2046
I/O commands error handling & handles OPL online forum02.txt ln974-1105
I/O commands file positioning OPL online usenet04.txt ln212-358
I/O commands Word and Spreadsheets OPL online forum02.txt ln1107-1546
I/O device information text psionics various
I/O file commands for numeric data OPL online usenet06.txt ln34-56
I/O functions and commands OPL oplman b11advan.txt
I/O functions in OPL notes on usage OPL online usenet10.txt ln71-216
I/O statements for file access OPL online forum01.txt ln1010
Icon and bitmaps drawing graphics bitmaps Util draw284 various
Icon byte offset in OPA OPL online forum01.txt ln2032
Icon changing in an existing group OPL online usenet10.txt ln410-456
Icon displayed in a dialog OPL online forum01.txt ln226
Icon editor MS Windows based Util psicon various
Icon editor SIBO based with source C iconed various
Icon load and display program icon OPL Oplexams dispicon.opl
Icon loading a programs icon bitmap OPL online conf01.txt ln5122
Icon simple OPL Oplexams ex_icon.opl
Icons collection of Util icons various
Icons copy from opa OPL Oplexams opapic.opl
Icons location and display OPL online conf01.txt ln3538
ICONs reading from a program file OPL online forum02.txt ln522
ICONs reading from an OPA OPL online usenet07.txt ln786-812
Image file conversion text online forum02.txt ln388
IMG file format text online usenet04.txt ln101-208
IMG files format C online usenet01.txt ln3032
Impedance calc OPL Oplexams atten.opl

Disk Contents 19-31

Disk index topic Type Directory File File or line
Infrared Bring function text online conf02.txt ln453
Infrared chat program example OPL irchat irchat.opl
Infrared drivers for Siena printing etc. Util sieirpr various
Infrared example programs OPL online\usenet06.txt ln439-470 / 634-657
Infrared file transfer text online usenet08.txt ln1137
Infrared IrDA information text online usenet03.txt ln342
Infrared IrDA information text online usenet06.txt ln290-662
Infrared IrDA information text online usenet08.txt ln455-544
Infrared IrDA Web page text online usenet08.txt ln755
Infrared IrDA web site text online conf02.txt ln367
Infrared port device drivers Siena Util sieirpr various
Infrared receive file example OPL irchat ircopy.opl
Infrared to PC information text online usenet08.txt ln847-875
Installation program Windows based text online usenet08.txt ln82
Integer numbers testing text online usenet06.txt ln1068-1142
Integer rounding techniques OPL online forum05.txt ln57-161
Integers long splitting OPL online forum01.txt ln2013
Inter-process communication OPL ipc various
IOA use of for key presses OPL online forum01.txt ln1124
IOOPEN advice OPL online usenet01.txt ln3200
IR port chat OPL program example OPL irchat irchat.opl
IR port chat program infrared example OPL irchat irchat.opl
IR port device drivers for Siena Util sieirpr various
IR port receive file infrared example OPL irchat ircopy.opl
IrDA information text online usenet03.txt ln342
IrDA information text online usenet06.txt ln290-662
IrDA infrared information text online usenet08.txt ln455-544
IrDA infrared to PC information text online usenet08.txt ln847-875
IrDA infrared Web page text online usenet08.txt ln755
IrDA infrared web site text online conf02.txt ln367
ISAM Database OPL isameg various
ISAM database example in C C isam various
Java for EPOC32 text online usenet08.txt ln149-272
Java project references text online usenet06.txt ln815-843
Jbdata database program Util jbdata
Key click disable OPL Oplexams keycloff.txt
Key clicks turning off OPL online conf01.txt ln1
Key detection in dialogs OPL online forum03.txt ln946-1051
Key press getting the last OPL online usenet01.txt ln1169
Key press getting the last key pressed OPL online usenet09.txt ln42-104
Key presses hot keys detecting OPL online conf01.txt ln2865
Key presses in background OPL Oplexams capture.txt
Key presses scanning for with I/O funts OPL online usenet04.txt ln796-883
Key presses simulating OPL online conf01.txt ln1706
Key presses using IOA OPL online forum01.txt ln1124
KEY$ OPL function discussion OPL online conf05.txt ln1 / 19
Keyboard buffer clearing OPL online conf01.txt ln4805
Keyboard scan codes OPL Oplexams kbscan.opl
Keypress capture and test advanced OPL Oplexams docap.opl
Keypress capture and test advanced OPL Oplexams jump.opl
Keypress capture and test async OPL Oplexams ktest.opl
Keypresses asynchronous OPL Oplexams getaevnt.txt getaevnt.opl
Kill run find programs OPL s3proc s3kill.opl
Language / country code list of text online usenet01.txt ln2554
Language code OPL Oplexams res&lang.txt
Latitude / long calcs advice text online usenet01.txt ln2380
Latitude / long from World OPL Oplexams latlong.opl
LCD contrast changing OPL online usenet03.txt ln261

19-32 Disk Contents

Disk index topic Type Directory File File or line
LCD contrast get & set OPL Oplexams contrast.txt
LCD screen contrast controlling OPL Oplexams lcd.opl
Leap year test OPL online usenet01.txt ln1051
Leap years & Y2000 text online usenet08.txt ln1082-1134
LHA213 - DOS zip / unzip utility Util lha213 various
Link / paste or bring advice text online usenet01.txt ln2431
Link activating C online\usenet02.txt ln141-283 / 355
Link activating OPL online usenet04.txt ln483
Link connection detecting OPL online conf05.txt ln206-268
Link from OPL OPL online usenet08.txt ln343-452
Link on/off testing OPL Oplexams link.opl linkon.opl
Link paste OPL/C lpcs various
Link paste or bring demonstration OPL/C lpcs various
Link serial starting from OPL OPL online conf01.txt ln1679
Link starting serial comms OPL Oplexams linkopl.txt
Link test and program starting OPL Oplexams launch2.opl
Link to PC PRC SDK from Psion text online usenet08.txt ln275
Linker for OPL provisional Util oplinker olnkengn.opl
LINT running OPL checker OPL online conf01.txt ln5199
List / choice items to text box OPL online forum03.txt ln358
List box classes in HWIM C online forum04.txt ln238-552
List boxes in OVAL OVAL online usenet06.txt ln1-32
List view of records/information text online conf05.txt ln375
Lists scrolling OPL Oplexams listch1.txt
LOADM command in OPL loc of files OPL online usenet09.txt ln126-219
LOCK command action text online usenet02.txt ln347
Locked processes testing OPL online forum01.txt ln736
Long integer splitting OPL online forum01.txt ln2013
LPRINT redirected OPL Oplexams lprintp.txt
Machine code book text online usenet04.txt ln968
Machine code programs Util s3asm2 various
Machine detection / flags C online forum02.txt ln278-349
Machine detection all OPL online usenet05.txt ln348-375
Machine detection including S3a/c C online usenet02.txt ln638
Machine detection S3a/c OPL online usenet04.txt ln473
Machine detection Series 3a or 3c OPL online conf05.txt ln206-249
Machine finding which model OPL online forum01.txt ln2103
Machine type recognising which OPL online conf01.txt ln5013
Machine type S3 or 3a OPL Oplexams tell.txt
Macro record/play application Util macsys various
Macro record/play app and source OPL/C kmac various
Macros and database files Macro online forum02.txt ln437
Macros Macsys Web page text online usenet08.txt ln24
Macsys to run another program Macro online forum05.txt ln302-386
Macsys Web page text online usenet08.txt ln24
Magic (reserved) statics text online forum03.txt ln197
Magic (reserved) statics contents text online usenet04.txt ln170-208
Magic static variables OPL Oplexams oplvars.txt
Mandelbrot graphics demo OPL/C mandel various
MC diary to agenda file OPL Oplexams mc2agn.opl
MCLINK advice text online usenet01.txt ln2264
Measurement data reading via serial port text online usenet10.txt ln380-407
Memory / file viewer / editor Util hexview1 s3aspy
Memory dynamic use of OPL online forum01.txt ln662
Memory free and disk space available OPL online forum03.txt ln775-829
Memory information OPL online conf01.txt ln94
Memory limit using DYLs C online forum04.txt ln1-158
Memory loss fix with menus S3 OPL/Ass Oplexams menpat.txt mnupatch.opl

Disk Contents 19-33

Disk index topic Type Directory File File or line
Memory segment access OPL segments various
Memory usage operating system text Oplexams kernel.txt
Menu key press getting in dialog OPL online usenet01.txt ln1169
Menu memory loss fix S3 OPL/Ass Oplexams menpat.txt mnupatch.opl
Menus OPL Oplexams ex_menus.opl
Menus and the shift key OPL online forum01.txt ln479
Menus asynchronous OPL appman appman.opl
Mine sweeper game OPA source OPL yam13src various
MOD function for OPL OPL online conf05.txt ln2600
MOD function for OPL OPL online usenet07.txt ln847-870
Modem connection for S3c / Siena text online usenet08.txt ln933-1044
Modem serial port comms example OVAL psioninc\oval\modem\ various
Money handling suggestion text online usenet07.txt ln879
Multi-lingual application OPL ball various
Number conversion string in any base OPL Oplexams convstr.opl
Number formatting and separators OPL online forum03.txt ln1-177
Numbers comparing / testing values text online usenet06.txt ln1068-1142
Numbers formatting to x decimal places OPL online forum03.txt ln741-772
Numeric base changes OPL Oplexams basechng.opl
Object Oriented Programming C docs text oodoc201 various
Octal; hex; binary calculator OPL bincalc bincalc.opl
Off detecting switch off OPL online usenet01.txt ln245
Off key Workabout reading OPL online usenet05.txt ln520
ONERR error handling OPL jezar upfile.opl
Onerr use of OPL online conf01.txt ln512
OOP functions using from OPL OPL online forum02.txt ln185
OPA files creating one large file text online conf01.txt ln1120 / 1522
OPA running from OPL OPL Oplexams runopa.txt
OPA's and OPO's differences text online conf01.txt ln2829
OPA's type 3 file name handling OPL online forum02.txt ln679
Operating system calls WWord doc oscalls.doc
Operating system calls OPLs Oplexams oscalls.txt
Operating system calls detailed OPLs Oplexams syscal.txt
Operating system calls full manual text epocalls various
Operating system calls interpreting text online conf01.txt ln695
Operating system information text psionics various
Operating system kernel memory text Oplexams kernel.txt
Operating system version number OPL online forum03.txt ln255
OPL and DYL example app PPCOPL16 OPL/C ppcopl16 various
OPL arrays multi-dimensional text online usenet07.txt ln1-43
OPL calendar display text online conf05.txt ln33-118
OPL calling C OPL/C opl_c various
OPL command CMD$(5) return values OPL online usenet09.txt ln396-426
OPL creating one large OPA file text online conf01.txt ln1120 / 1522
OPL database of commands etc. OPL oplman oplref3a.dbf
OPL database of OPL32 commands OPL S5data opls5
OPL database of OPL32 constants OPL S5data oplconst
OPL database sorting utility OPL Jbsort various
OPL debugger OPL online usenet01.txt ln979
OPL debugger Util oppdbg11 various
OPL debugging advice text online conf01.txt ln1077
OPL differences S3a/c OPL online usenet04.txt ln400-480
OPL differences Siena text online conf02.txt ln374
OPL editor preferences keeping OPL online forum05.txt ln196-238
OPL editor running from a program OPL online conf05.txt ln2538
OPL editor; windows based Util oplcs various
OPL example App & DYL PPCOPL16 OPL/C ppcopl16 various
OPL example files text Oplexams read.txt

19-34 Disk Contents

Disk index topic Type Directory File File or line
OPL example OPL32 App PPCOPL32 OPL ppcopl32 various
OPL examples from 3a OPL manual OPL oplman oplexam.wrd oplexam.txt
OPL examples; Palmtop mag OPL palmtop various
OPL graphics 3D cube OPL Oplexams cube.txt cube.opl
OPL gUPDATE text online usenet07.txt ln100-138
OPL I/O functions notes on usage OPL online usenet10.txt ln71-216
OPL Infrared example programs OPL online\usenet06.txt ln439-470 / 634-657
OPL linker provisional Util oplinker olnkengn.opl
OPL LOADM command location of files OPL online usenet09.txt ln126-219
OPL MOD function OPL online conf05.txt ln2600
OPL MOD function OPL online forum02.txt ln156
OPL MOD function OPL online usenet07.txt ln847-870
OPL parameters passing by reference OPL online usenet10.txt ln499-562
OPL PARSE$ function example OPL parse$ parse$.opl
OPL preprocessor Util opp16f various
OPL preprocessor / language extension Util opp16f various
OPL program running from OPL prog OPL Oplexams sys$prog.opl
OPL programmers help Util oplhelp various
OPL programming - OPL16 to OPL32 guide WWord oplman32 oplman32.doc
OPL programming manual OPL32 docs WWord oplman32 various
OPL programming manual text 3a text oplman various
OPL programming manual text 3c WWord oplman32 various
OPL programming manual text Series 5 WWord oplman32 various
OPL programming manual text Siena WWord oplman32 various
OPL reference Windows help file Util oplhlp opl.hlp
OPL reverse translation Util revtran various
OPL reverse translation blocking Revtran text online conf03.txt ln1 / 30
OPL reverse translation confusing text online conf03.txt ln30
OPL reverse translation prevention text online usenet10.txt ln1026-1109
OPL reverse translation protection Util norev14 various
OPL SDK v2.1 interim 3c/Siena update WWord doc OPL96.doc
OPL source files translating large OPL online usenet01.txt ln60
OPL source lines very long text online conf01.txt ln3613
OPL speed up advice OPL speed various
OPL speed up advice text online conf01.txt ln1015
OPL speed up notes OPL oplrad various
OPL sprites examples fast access OPL spritec various
OPL syntax and variable checker Util opllint various
OPL translation of large source files text online usenet01.txt ln1616
OPL translator running OPL Oplexams 3aeval.opl
OPL translators DOS based Util opltran various
OPL use of resource / help files OPL helpkit various
OPL VAL function language dependent OPL online forum04.txt ln162
OPL variable compactor code obfuscation Util aka230 various
OPL variables contiguous storage OPL online conf01.txt ln4721-4798
OPL vs C programs text online forum02.txt ln756-972
OPL XOR function OPL online conf05.txt ln2606
OPLLINT OPL source code checker Util opllint various
OPLLINT OPL source code checker using OPL online conf01.txt ln5199
OPO's and OPA's differences text online conf01.txt ln2829
Organiser II diary to s3 OPL Oplexams org2agn.opl
OVAL Database patches for v04 of DBS Util psioninc\oval\dbspatch various
OVAL database server bug fix OVAL online forum05.txt ln1-54
OVAL dynamic dialogs text online conf02.txt ln442
OVAL evaluation; full IDE Util ovaldemo various
OVAL files opening OVAL online usenet05.txt ln821
OVAL grid control and databases text online usenet10.txt ln722-817
OVAL IDE evaluation Util ovaldemo various

Disk Contents 19-35

Disk index topic Type Directory File File or line
OVAL List boxes OVAL online usenet06.txt ln1-32
Owner information location OPL online usenet10.txt ln315-377
Owner/user info from environment var OPL Oplexams user.opl
Parallel port printing on S3c / Siena OPL online forum06.txt ln841-1405
Parameters passing back multiple OPL Oplexams oplvars.txt
Parameters passing by reference in OPL OPL online usenet10.txt ln499-562
Parent / child process demonstration C parent various
PARSE$ function example OPL parse$ parse$.opl
Password enable disable OPL pason4e various
Password encryption method text online usenet05.txt ln1-35
Password switching on and off OPL online usenet03.txt ln230
Passwords / encryption OPL Oplexams encrypt.opl
Passwords for applications text online forum02.txt ln113
PC disk drive accessing via PsiWin text online conf02.txt ln354 / 464
PC disk drive accessing via PsiWin text online conf04.txt ln29
PC file and disk access with PsiWin text online forum06.txt ln294-367
PC Link activating C online usenet02.txt ln141-283 / 355
PC link SDK PRC SDK from Psion text online usenet08.txt ln275
PC to Workabout connection options text online usenet08.txt ln768
PIC file conversion from GIF OPL online forum06.txt ln124-164
PIC file converter Util opltran wspcx.exe
PIC file format text Oplexams picfmt.txt
PIC file printing OPL online usenet01.txt ln226
PIC files combining multiple Util opltran wspcx.exe
PIC files in an OPA OPL online forum04.txt ln650-838
PIC files in OPAs OPL Oplexams picinopl.txt
Pixels testing status on or off OPL online usenet09.txt ln106
PKZIP - DOS zip / unzip utility Util pkzip various
PLINK C linker/converter for Psion Util Plink various
PLINK C linker/converter for Psion text online usenet06.txt ln846-902
Power supply / battery info OPL Oplexams opl.txt
Power supply reading on Workabout C online usenet06.txt ln58-286
Powers raising values to OPL online usenet05.txt ln453-491
PPCOPL16 - example OPL App & DYL OPL/C ppcopl16 various
PPCOPL32 - example OPL32 App OPL ppcopl32 various
PRC and file transfer advice text online usenet01.txt ln2525
PRC Psion remote comms SDK text online conf03.txt ln59
Pre-processor OPL Util opp16f various
Print output to screen redirection OPL online conf01.txt ln1090
Print preview OPL online forum01.txt ln550
Print preview in OPL OPL online usenet02.txt ln620
Print set up OPL Oplexams oplprint.txt
Print set up environment variables OPL online forum06.txt ln940-980
Printer device drivers for Siena IR port Util sieirpr various
Printer drivers producing SIBO Util wdrkit various
Printer environment variables OPL online forum06.txt ln940-980
Printer setup dialog accessing OPL online conf01.txt ln3849
Printing a PIC file OPL online usenet01.txt ln226
Printing bitmaps OPL online usenet10.txt ln1234-1320
Printing formatted text OPL online conf05.txt ln1540-1556
Printing from an output text file OPL online conf03.txt ln92
Printing redirected OPL Oplexams lprintp.txt
Printing to a file OPL online forum01.txt ln1540
Printing to parallel port on S3c / Siena OPL online forum06.txt ln841-1405
Printing via Infrared on Siena Util sieirpr various
Printing via Lprint OPL online conf01.txt ln485
Printing via PsiPrint OPL online forum01.txt ln550
Procedure cacheing text online usenet01.txt ln301

19-36 Disk Contents

Disk index topic Type Directory File File or line
Process control run kill find programs OPL s3proc s3kill.opl
Process data getting OPL online usenet10.txt ln1323-1384
Process information getting text online forum03.txt ln241 629-709
Process into background detecting OPL online conf01.txt ln5068
Process locked testing for OPL online forum01.txt ln736
Process renaming OPL online conf01.txt ln2957 / 4086
Process terminating another OPL online usenet01.txt ln198
Process termination OPL online forum01.txt ln736
Process to foreground OPL online conf01.txt ln112
Process to process communication OPL ipc various
Processes monitoring Util spy various
Processes parent/ child demo C parent various
Program closing down an application OPL online forum05.txt ln1133
Program closing down another OPL online forum01.txt ln736
Program closing down another OPL Oplexams closeapp.opl
Program completion getting text online forum03.txt ln241 629-709
Program control run kill find programs OPL s3proc s3kill.opl
Program data getting OPL online usenet10.txt ln1323-1384
Program foreground/background detection OPL online conf05.txt ln1980
Program Icon load and display OPL Oplexams dispicon.opl
Program launch OPL Oplexams starta.opl startapp.opl
Program location of / loaded from OPL online usenet07.txt ln310-360
Program name CMD$(5) OPL command OPL online usenet09.txt ln396-426
Program names and group names text online conf03.txt ln280
Program renaming OPL online conf01.txt ln2957.4086
Program renaming OPL online conf05.txt ln1953
Program running from OPL OPL online conf01.txt ln1593 / 4831
Program settings saving in OPL Util oplrad various
Program start up C psioninc\csdk\ linkon.c
Program starting OPL Oplexams launch.opl
Program starting and test link on/off OPL Oplexams launch2.opl
Program terminating another OPL online usenet01.txt ln198
Program test if running OPL online conf01.txt ln1593
Programmers help for OPL Util oplhelp various
Programming defines database Util defines defines.dbf
Programming for speed OPL speed various
Programming manual for OPL etc. text oplman various
Programming manual for OPL32 Series 5 WWord oplman32 various
Programming manual for Series 3c WWord oplman32 various
Programming manual for Siena WWord oplman32 various
Programs monitoring all Util spy various
Programs run/ kill others OPL Oplexams s3kill.txt
Programs running aliases of OPL online conf05.txt ln472-505
Programs running built in OPL online forum01.txt ln1202
Programs running from within a program OPL online conf05.txt ln2126-2169
Programs running multiple copies of text online conf03.txt ln185
Programs running other applications OPL online forum02.txt ln1615-1827
Programs running other applications OPL online forum03.txt ln832-943
Programs starting in background OPL online conf01.txt ln1776
Programs starting up OPL online usenet01.txt ln1097
Progress gauge HWIF with OOP C growbar various
Psion emulators in Win95 text online conf03.txt ln75
Psion escape disabling OPL online usenet02.txt ln334
Psion frequently asked questions FAQ text psionfaq various
Psion remote comms PRC SDK text online conf03.txt ln59
Psion series 5 demo program Util s5demo various
Psion symbol displaying OPL online conf01.txt ln4074
Psionics files C structs and OPL OPL online usenet01.txt ln1903

Disk Contents 19-37

Disk index topic Type Directory File File or line
Psionics files onlnaddress text online conf01.txt ln4155
PsiWin and PC Comm ports text online usenet10.txt ln236-312
PsiWin file converters writing C fileconv various
PsiWin PC disk and file access text online forum06.txt ln294-367
PsiWin PC disk drive accessing text online conf02.txt ln354 / 464
PsiWin PC disk drive accessing text online conf04.txt ln29
PSIZIP running from OPL (OPP) OPL online forum06.txt ln1407-1581
Radio interface document WWord uri uri_faq.doc
Raising to powers OPL online usenet05.txt ln453-491
RAM disk used getting OPL online usenet01.txt ln1821
Random dice OPL Oplexams ex_dice.opl
Random numbers text online usenet03.txt ln1-68 / 184
Random numbers problems with OPL/C online conf03.txt ln248 / 262
Recording sound via SMP: device driver OPL/C tsmp10 various
Re-direction of Lprint to screen OPL online conf01.txt ln1090
Re-drawing screens faster OPL online conf01.txt ln1232
Registration code for Shareware OPL online forum01.txt ln1448
Registration code for shareware CRC OPL online usenet07.txt ln140-191
Registration of shareware method text online usenet04.txt ln605
Remote comms / serial link docs text ncp various
Remote link enable disable OPL pason4e various
Remote link off OPL psioninc\opl\ xmo.opl
Remote link on OPL psioninc\opl\ linkon.opl
Renaming a process OPL online conf01.txt ln2957.4086
Reserved (magic) statics text online forum03.txt ln197
Reserved (magic) statics contents text online usenet04.txt ln170-208
Reserved or magic static variables OPL Oplexams oplvars.txt
Resets by program bugs text online forum02.txt ln461
Resource / help file compiler front end Util xfhelp various
Resource / help file editor Util helped11 various
Resource / help file format description WWord oodoc201 various
Resource / help file format description text psionics various
Resource / help file processor Util phcomp various
Resource / help file utilities / compiler Util helpkit various
Resource files compiling text online conf01.txt ln1142
Resource files; use of OPL ppcopl16 various
Resource files; use of OPL ball various
Resource/help file releasing OPL online conf05.txt ln404-469
Resource/help files embedding in OPA's text online conf05.txt ln2412-2504
Resources application checking Util spy various
Rest days & country specific information OPL online usenet09.txt ln1-38
Return values passing back multiple OPL Oplexams oplvars.txt
Reverse translation of OPL Util revtran various
Reverse translation of OPL prevention text online usenet10.txt ln1026-1109
Reverse translation protect OPL Util norev14 norev14.txt
Reverse translation protection text online conf01.txt ln734
Revtran making reverse translation harder text online conf03.txt ln30
Revtran preventing reverse translation text online conf03.txt ln1 / 30
Revtran protection text online conf01.txt ln734
ROM based application launching OPL online usenet09.txt ln573-599
ROM based applications cannot be moved text online usenet10.txt ln42
ROM files copying OPL online forum05.txt ln1113
ROM files copying text online usenet10.txt ln195-233
ROM version number OPL online forum03.txt ln255
ROM version reading OPL online conf01.txt ln2934
Rounding techniques with integers OPL online forum05.txt ln57-161
Rounding to fixed decimal places OPL online usenet01.txt ln1372
RS232 communications demo C rs232_eg rs232.c

19-38 Disk Contents

Disk index topic Type Directory File File or line
Run kill find programs OPL s3proc s3kill.opl
Run or kill other applications OPL Oplexams s3kill.txt
Running an application within a program OPL online forum02.txt ln1615-1827
Running an application within a program OPL online forum03.txt ln832-943
Running an OPA OPL Oplexams runopa.txt
Running another program with Macsys Macro online forum05.txt ln302-386
Running multiple copies of programs text online conf03.txt ln185
Running Word from OPL OPL online forum03.txt ln302
S3a/c machine detection C online usenet02.txt ln638
S3a/c machine detection OPL online usenet04.txt ln473
S3a/c OPL differences OPL online usenet04.txt ln400-480
S3c serial port cables text online usenet08.txt ln661-752
S3c serial port pin outs text online usenet08.txt ln661-752
Screen alignment of text OPL online forum01.txt ln210
Screen capture keys text online usenet10.txt ln696
Screen capture programmatically OPL online conf02.txt ln551
Screen contrast changing OPL online usenet01.txt ln1
Screen contrast changing OPL online usenet03.txt ln261
Screen contrast controlling OPL Oplexams lcd.opl
Screen contrast get & set OPL Oplexams contrast.txt
Screen pixels testing status on or off OPL online usenet09.txt ln106
Screen printing / capture C online usenet02.txt ln286
Screen re-drawing faster OPL online conf01.txt ln1232
Screen re-sizing for status window OPL online conf05.txt ln2507
Screen using full on 3a C online usenet01.txt ln2230 / 2469
Script file run from OPL OPL Oplexams script.opl
Scrolling lists OPL Oplexams listch1.txt
Scrolling windows OPL Oplexams various
SDDs upgrading the capacity text ssds various
SDK Psion remote comms PRC text online conf03.txt ln59
SDK SIBO C index to manuals up to 2.20 Util csdk various
SDK SMS from Psion text online conf03.txt ln209
SDK SMS version 2.01 functions text online conf04.txt ln71
Search for pattern in file OPL Oplexams oposrch.opl
Search for text string in a file OPL Oplexams ts.opl
Serial comms technical details text online conf04.txt ln90
Serial I/O on Workabout for bar codes OVAL online usenet09.txt ln1155-1215
Serial link enable disable OPL pason4e various
Serial link / remote comms docs text ncp various
Serial link activating C online usenet02.txt ln141-283 / 355
Serial link activating OPL online usenet04.txt ln483
Serial link checking for installation OPL online conf04.txt ln42
Serial link detecting OPL online conf05.txt ln206-268
Serial link from OPL OPL online usenet08.txt ln343-452
Serial link off OPL psioninc\opl\ xmo.opl
Serial link on OPL psioninc\opl\ linkon.opl
Serial link on C psioninc\csdk\ linkon.c
Serial link on/off testing OPL Oplexams link.opl linkon.opl
Serial link read / write S3 OPL Oplexams s3serial.txt
Serial link starting OPL Oplexams linkopl.txt
Serial link starting from OPL OPL online conf01.txt ln1679
Serial port / modem comms example OVAL psioninc\oval\modem\ various
Serial port access on HC text online usenet03.txt ln598
Serial port buffers reading data in OPL online usenet05.txt ln494
Serial port cables S3c text online usenet08.txt ln661-752
Serial port comms OPL Oplexams commtime.txt
Serial port comms via VT100 emulation OPL freevt05 various
Serial port communications demo C rs232_eg rs232.c

Disk Contents 19-39

Disk index topic Type Directory File File or line
Serial port data reading text online usenet10.txt ln380-407
Serial port file transfer using Xmodem OPL Oplexams txmodem.opl
Serial port file transfer using Ymodem OPL Oplexams tymodem.opl
Serial port handshake lines OPL online usenet07.txt ln193
Serial port handshake lines text online usenet08.txt ln317
Serial port handshaking OPL online usenet01.txt ln2329
Serial port handshaking DTR OPL Oplexams dtr.opl
Serial port I/O on Workabout C online usenet06.txt ln58-286
Serial port pin outs S3c text online usenet08.txt ln661-752
Serial port pins information S3/3a text online usenet01.txt ln3219
Serial port programming example OVAL online usenet09.txt ln602-622
Serial port reading OPL Oplexams ttyread.txt
Serial port reading from OPL online usenet01.txt ln2605
Serial port reading from OPL online usenet04.txt ln649-793
Serial port reading from OPL psioninc\opl\serial\serial.opl
Serial port reading from OPL online conf02.txt ln276
Serial port reading/writing OPL online conf05.txt ln715-1085
Serial port sending Esc etc. OPL online usenet01.txt ln2451
Serial port settings reading OPL online conf01.txt ln2911
Serial port status OPL online conf01.txt ln3671
Serial port status from environment var OPL Oplexams penv.opl
Serial port time outs text online conf02.txt ln186
Serial port types on HC OPL online forum02.txt ln1830
Serial transfers Xmodem example OPL online usenet09.txt ln804-1034
Series 3 family application stds guide WWord doc check.doc
Series 3 finding which model OPL online forum01.txt ln2103
Series 3 menu memory loss fix OPL/Ass Oplexams menpat.txt mnupatch.opl
Series 3 model recognising which OPL online conf01.txt ln5013
Series 3a DOS based emulator Util emul3a various
Series 3a or 3c detecting OPL online conf05.txt ln206-249
Series 3c parallel port printing problems OPL online forum06.txt ln841-1405
Series 3c programming manual WWord oplman32 various
Series 3c Zmodem patch Util zmdmptch various
Series 5 backlight control example OPL nitesrc0 various
Series 5 clipart collection Util S5art various
Series 5 demo program Util s5demo various
Series 5 programming manual for OPL32 WWord oplman32 various
Shareware / freeware Web / Ftp site Excel file nwtftp nwtftp.xls
Shareware and freeware info Web site text online usenet09.txt ln1217-1269
Shareware library 3Lib lists text 3lib various
Shareware registration code using CRC OPL online usenet07.txt ln140-191
Shareware registration method / function text online usenet04.txt ln605
Shareware registration methods OPL online forum01.txt ln1448
Shift key and menus OPL online forum01.txt ln479
Shutdown another program OPL online forum01.txt ln736
Shutdown message handling OPL online conf05.txt ln341-372
Siena DOS based emulator Util siena various
Siena IR port device drivers Util sieirpr various
Siena numeric keypad OPL online usenet04.txt ln635
Siena OPL differences text online conf02.txt ln374
Siena parallel port printing problems OPL online forum06.txt ln841-1405
Siena printing Infrared drivers for etc. Util sieirpr various
Siena programming manual WWord oplman32 various
SMP: device for sound recording OPL/C tsmp10 various
SMS SDK from Psion text online conf03.txt ln209
SMS SDK version 2.01 functions text online conf04.txt ln71
SND: device example OPL aalarms various
SND: device playing standard alarms OPL aalarms alarmsnd.opl

19-40 Disk Contents

Disk index topic Type Directory File File or line
Software copy protection text online conf02.txt ln480
Solitaire game v1.5 in HWIM C C \solipeg\slp15s various
Solitaire game v2.1 in HWIM C C \solipeg\slp21s various
Solitaire game v2.2 in HWIM C C \solipeg\slp22s various
Sort comb type OPL Oplexams combsort.opl
Sort database program OPL fsort fsort.opl
Sort database program OPL Oplexams dbsort.opl
Sort heap sort OPL Oplexams sort.opl
Sort re-order data file OPL Oplexams ex_reord.opl
Sorting advice text online usenet01.txt ln1461
Sorting an array OPL online conf01.txt ln2274
Sorting database files OPL Oplexams reorder.opl
Sorting utility for databases OPL Jbsort various
Sorts and binary searches C funcs various
Sound file conversion WAV to WVE text online usenet08.txt ln641-658
Sound file converter WAV to WVE Util opltran wav2wve.exe
Sound file converter WVE to WAV Util opltran wve2wav.exe
Sound Files - miscellaneous .WVE Util WVE various
Sound files playing OPL online forum01.txt ln1664
Sound files playing asynchronously OPL online forum05.txt ln867-1103
Sound key clicks turning off OPL online conf01.txt ln1
Sound playing async problems text online conf01.txt ln3956
Sound playing standard alarm sounds OPL aalarms alarmsnd.opl
Sound playing two tone OPL online forum01.txt ln2054
Sound playing wve files OPL ball various
Sound recording via SMP: device driver OPL/C tsmp10 various
Sound sampling OPL/C tsmp10 various
Sound setting off or on text online conf01.txt ln962
Sound testing if off or on text online conf01.txt ln933
Sound volume control OPL online forum01.txt ln2054
Special characters control codes text online conf02.txt ln906
Speeding up OPL text online conf01.txt ln1015
Spiral graphics demo small OPL online usenet01.txt ln365
Spreadsheet creating OPL online forum01.txt ln955
Spreadsheet file format descriptions text formats sprfile.*
Spreadsheets Word and I/O commands OPL online forum02.txt ln1107-1546
Sprites advice on multiple OPL online usenet01.txt ln1347
Sprites and bitmaps OPL online usenet04.txt ln885
Sprites in OPL fast access OPL spritec various
Sprites using OPL online forum01.txt ln327
SSD Disk device type testing OPL Oplexams fildev.opl
SSD drive name getting current text online conf05.txt ln2625-2662
Stack implementing one OPL online usenet01.txt ln2771
Starting up an application OPL online usenet01.txt ln1097
Status window re-sizing screen OPL online conf05.txt ln2507
Status windows strange effects text online conf02.txt ln1
Stopwatch OPL Oplexams ex_watch.opl
Stopwatch high resolution OPL Oplexams frc.opl
Stopwatch high resolution OPL watch various
Sub-process OPL Oplexams various
Sub-processes OPL Oplexams ctrlhelp.opl
Summer times settings World data OPL Oplexams zones.opl
Sunrise / set calculation of OPL sunopl various
Sunrise / set info via World database OPL riset riset.opl
Switch off detecting OPL beepoff various
Switch off detecting OPL online usenet01.txt ln245
Switch off setting auto OPL Oplexams expow.opl
Switch off time to go before OPL beepoff various

Disk Contents 19-41

Disk index topic Type Directory File File or line
System & country info OPL Oplexams getctd.opl
System date display of C online usenet10.txt ln977-1023
System screen file lists update OPL Oplexams updflist.opl
System screen replacing text online usenet10.txt ln670-719
System screen shutdown messages OPL online conf05.txt ln341-372
System time and alarms setting OPL aalarms aalarma.opl aalarma.txt
System time information OPL Oplexams timetick.txt
System time information and alarms OPL Oplexams aalarm.opl
Tagged file list OPL Oplexams taggin.opl
Tagging files from a list OPL online usenet05.txt ln582-780
Tagging files in HWIM C C filetags various
TCP/IP stack project text online conf05.txt ln2172-2211
Terminal emulator VT100 incl OPL source OPL freevt05 various
Terminal program examples of code text online usenet02.txt ln410
Terminating a process OPL online forum01.txt ln736
Text and font viewer for 3a OPL fontvw various
Text entry via edit boxes OPL editbox various
Text file convert from a database Util dbf2txt various
Text file from data file OPL Oplexams export.opl
Text file printing OPL online conf03.txt ln92
Text file reading from OPL online conf05.txt ln1560-1697
Text file search utility Grep Util grepfv10 various
Text file to database converter Util dbfc103 various
Text file writing records into OPL online conf05.txt ln1989-2066
Text files from Word files C w2tsrc wrd2txt.c
Text files reading and word wrap text online conf01.txt ln2014
Text files using IOOPEN etc. OPL jezar upfile.opl
Text files using IOOPEN etc. OPL online usenet01.txt ln127
Text formatting fonts multiple on screen OPL online conf05.txt ln1089-1105
Text formatting when printing OPL online conf05.txt ln1540-1556
Text in files searches Grep program C grepfv10 various
Text string search in a file OPL Oplexams ts.opl
Text strings testing for display width text online conf05.txt ln2665-2711
Text to database converter Util opltran text2dbf.exe
Time / clock calculation OPL Oplexams clockcrd.opl
Time and date getting and formatting OPL online\conf05.txt ln1108-1537 / 2215-2311
Time change from OPL OPL online forum05.txt ln389
Time conversion OPL online forum02.txt ln156 / 352
Time getting system settings OPL online conf05.txt ln1108-1537
Time information from system OPL Oplexams timetick.txt
Time outs serial port text online conf02.txt ln186
Time setting from OPL OPL online usenet06.txt ln986-1028
Time setting system OPL Oplexams various
Time system get current OPL Oplexams attime.txt
Time zones dates of Summer/Winter text online usenet10.txt ln474
Timer and run program OPL Oplexams abstim.opl
Timer count down OPL Oplexams ex_timer.opl
Timer example OPL online usenet03.txt ln70
Timer high res stop watch OPL watch various
Timer high resolution OPL Oplexams frc.opl
Timer information and alarm setting OPL Oplexams aalarm.opl
Timer set absolute OPL Oplexams attime.txt
Timer setting OPL Oplexams abstim.opl
Timer setting OPL Oplexams alarms.opl alm.opl
Timers two OPL Oplexams timers2.opl
Translating large OPL source files OPL online usenet01.txt ln60
Translation of large OPL source files text online usenet01.txt ln1616
Translators DOS based OPL Util opltran various

19-42 Disk Contents

Disk index topic Type Directory File File or line
Undelete data records OPL Oplexams undel.opl
Undeleting files on Flash RAM Util undelete various
Universal radio interface document WWord uri uri_faq.doc
Upgrading SDDs capacity text ssds various
User information location OPL online usenet10.txt ln315-377
User information location of OPL online conf05.txt ln531-619
User/owner info from environment variable OPL Oplexams user.opl
VAFLAT OOP function using from OPL OPL online forum02.txt ln185
VAL OPL function language dependent OPL online forum04.txt ln162
VAL use of OPL function OPL online forum02.txt ln1855
Variable arrays use for file tagging OPL online usenet05.txt ln582-780
Variable arrays VARRAYs text online conf02.txt ln135 / 535
Variable sizes calculating OPL online conf01.txt ln4687
Variables compactor for OPL Util aka230 various
Variables contiguous storage OPL online conf01.txt ln4721-4798
Variables converting OPL Oplexams oplvars.txt
Variables storage and memory OPL Oplexams oplvars.txt
Variables tutorial OPL Oplexams oplvars.txt
VARRAYs variable arrays text online conf02.txt ln135 / 535
VAT codes checking OPL online conf02.txt ln560
Videoplus codes algorithm text online usenet03.txt ln514
VT100 terminal emulator incl OPL source OPL freevt05 various
WAV to WVE file converter Util opltran wav2wve.exe
WAV to WVE sound file conversion text online usenet08.txt ln641-658
Web / Ftp shareware / freeware site Excel file nwtftp nwtftp.xls
Window re-sizing for status window OPL online conf05.txt ln2507
Window server calls text psionics wserver.txt
Window server calls text online usenet04.txt ln361-397
Window server calls finding which text online usenet05.txt ln535-580
Windows help file covering OPL Util oplhlp opl.hlp
Windows non backed up in HWIF C C online usenet06.txt ln1030-1067
Windows status strange effects text online conf02.txt ln1
Windows95 Psion emulators text online conf03.txt ln75
WINZIP31 - Win 3.x zip / unzip utility Util winzip31 various
WINZIP95 - Win 95 zip / unzip utility Util winzip95 various
WLD: device for sun rise/set info OPL riset riset.opl
WLIB Window server calls text psionics wserver.txt
Word application running from OPL OPL Oplexams runwp.opl
Word application starting and aliasing OPL online conf01.txt ln2989
Word application starting and aliasing OPL online forum01.txt ln155
Word file format descriptions text formats wordfile.*
Word files to text conversion C w2tsrc wrd2txt.c
Word files writing text to OPL online forum03.txt ln267
Word files writing to text online forum04.txt ln555-647
Word running from OPL OPL online forum03.txt ln302
Word Spreadsheets and I/O commands OPL online forum02.txt ln1107-1546
Word starting up OPL online usenet01.txt ln1397
Workabout auto exec file text online conf03.txt ln270
Workabout docking station test for text online conf05.txt ln2611
Workabout DOS based emulator Util wrkabout various
Workabout off key reading OPL online usenet05.txt ln520
Workabout power supply reading C online usenet06.txt ln58-286
Workabout reading bar codes OPL online forum06.txt ln98
Workabout reading bar codes OPL online usenet02.txt ln526
Workabout serial I/O for bar codes OVAL online usenet09.txt ln1155-1215
Workabout serial port I/O C online usenet06.txt ln58-286
Workabout to PC connection options text online usenet08.txt ln768
Working days & country specific info OPL online usenet09.txt ln1-38

Disk Contents 19-43

Disk index topic Type Directory File File or line
World data summer times settings OPL Oplexams zones.opl
World database access OPL wld various
World database compat of 3a/3c/Siena text online usenet08.txt ln547-638
World database for sun rise/set info OPL riset riset.opl
World dialling and country info OPL Oplexams fdial.txt
World dialling info access OPL wld various
World home city getting OPL online\usenet01.txt ln2050 / 2183 / 2208
World info sunrise and sunset data text online forum02.txt ln1913-1958
World lat / long info OPL Oplexams latlong.opl
WSPCX and grey plane in PIC file text online forum02.txt ln388
WSPCX bitmap file converter/combining Util wspcx314 wspcx.exe
WVE miscellaneous sound files Util WVE various
WVE sound files playing OPL online forum01.txt ln1664
WVE sound files playing async OPL online forum05.txt ln867-1103
WVE to WAV file converter Util opltran wve2wav.exe
XMD: device Xmodem serial port OPL Oplexams txmodem.opl
XMD: device Ymodem serial port OPL Oplexams tymodem.opl
Xmodem example OPL online usenet09.txt ln804-1034
Xmodem serial port file transfer OPL Oplexams txmodem.opl
Xmodem serial read OPL psioninc\opl\ xmo.opl
Xmodem serial read C psioninc\csdk\modem\ various
XOR function for OPL OPL online conf05.txt ln2606
Year 2000 in spreadsheet etc. text online usenet10.txt ln170
Ymodem serial port file transfer OPL Oplexams tymodem.opl
Ymodem serial read OPL psioninc\opl\ xmo.opl
Ymodem serial read C psioninc\csdk\modem\ various
Zip / unzip DOS utility LHA213 Util lha213 various
Zip / unzip DOS utility PKZIP Util pkzip various
Zip / unzip Win 3.x utility WINZIP31 Util winzip31 various
Zip / unzip Win 95 utility WINZIP95 Util winzip95 various
Zmodem patch for S3c Util zmdmptch various

19-44 Disk Contents

Contacts and Sources 20-1

20 Contacts and Sources

Psion
Psion’s main source of support, SDK information and updates for developers is through
their EPOC World Website.

The SIBO software development kits and related goods are no longer supplied directly to
developers. Although for licensees and Value Added Resellers (VARs), who pay annual
fees to Psion, alternative arrangements are available.

In the UK the SIBO SDKs and certain other supplies are now only available through
approved ‘Value Added Distributors’ (VADs). Contact details for the three main VADs
are listed below.

Psion Software and UIDs
To obtain a reserved UID for Series 5 applications you should contact Psion Software in
one of the following ways:

E-mail: uid_sw@software.psion.com

EPOC World web site: http://software.psion.com/EPOCWorld/

Fax to: +44-171-724-4048, attn UID Allocations
Write to: UID Allocations, Psion Software PLC, 19 Harcourt St, London

W1N 1DT, England

EPOC World subscriptions
EPOC World Website

http://software.psion.com/EPOCWorld/

Write to:

Customer Services Department, Psion PLC, 1 Red Place,
London W1Y 3RE

Telephone:

+44 (0) 990 143 050

E-mail to:

ew_subs@psion.com.

20-2 Contacts and Sources

Psion’s key web sites
These locations are the key starting points for the web sites of the Psion group.

Psion PLC main web site http://www.psion.com

Psion Software’s support related site. http://www.software.psion.com/EPOCWorld/

Psion Inc in the USA http://www.psioninc.com

Psion Inc free downloads for developers. http://www.psioninc.com/downloads/samples.htm

Psion UK VADs
In the UK the SIBO SDKs and certain other Psion related supplies are now only available
through approved ‘Value Added Distributors’ (VADs). All UK Psion ‘Value Added
Resellers’ (VARs) must be associated with one of the VADs listed below.

VAD Telephone & Fax E-mail & Web site address
Paradigm Technology Ltd
7 Thames Park
Lester Way
Wallingford Oxford
OX10 9TA

Tel:
+44 1491 822600

Fax:
+44 1491 822601

Sales@paratech.co.uk

Frontline Distribution Ltd
Hampshire House
Wade Road, Basingstoke
Hampshire
RG24 8PL

Tel:
+44 1256 463344

Fax:
+44 1256 479461

info@frontline.co.uk

http://www.frontline.co.uk

Hugh Symmons Mobile Data
Alder Hills Park
16 Alder Hills
Poole Dorset
BH12 4AR

Tel:
+44 1202 718388

Fax:
+44 1202 714410

Psion International Contacts
European Psion Contacts
Austria
Hayward Computer-Peripherie tel: +43 662 85870

fax: +43 662 858780

support@hayward.telecom.at

Belgium
Micro Connection tel: +32 3 232 3468

fax: +32 3 226 1749
BBS: +32 3 226 2079

MCD@innet.be

Contacts and Sources 20-3

European Psion Contacts
Cyprus
Series 5/3/3a/3c/Siena
Synchrotech Limited

tel: +357 2 448618
fax: +357 2 458345

Workabout and HC
3A Company

tel +30 31 327 961
fax: +30 31 327 962

3a-psion-sideris@the.forthnet.gr

Czech Republic
Point X spol sro tel: +42 2 2319395,

2310672, 2318636,
fax: +42 2 24810821

pointx@login.cz
http://www.netx.cz/psion/

Denmark
Mobi Data A/S tel: + 48 16 96 00

fax: + 48 16 96 01
info@mobidata.dk
http://www.winet.dk/com/mobidata/defaul
t.htm

Eire
SIS Survey tel: +353 1 4568 650

fax: +353 1 4568 653

Finland
Anglo Nordic
Series 5/3/3a/3c/Siena

tel: +358 9 819 211
fax: +358 9 811 338

Hand Held Systems
Finland Workabout and HC

tel: +358 5 811 700
fax: +358 5 371 0062

Sales: satu.penttinen@hhs.inet.fi
Tech Sup: Pekka.Aikas@HHS.Inet.F

France
Psion France tel: +33 1 53 41 12 00

fax: +33 1 5341 12 01

Germany
Psion GmbH tel: +49 6172 6630

fax: +49 6172 663100
Sales:gmbh-vertrieb@psion.com
Tech Supt: gmbh-support@psion.com
http://www.psion-gmbh.com/

Greece
INT Electronic
Series 5/3/3a/3c/Siena

tel: +30 1 9233013
fax: +30 1 9234273

intelect@cybex.gr
http://www.cybex.gr/int_psion.html/

3A Company
Workabout and HC

tel +30 31 327 961
fax +30 31 327 962

3a-psion-sideris@the.forthnet.gr

Hungary
Psion Magyarorszag KFT tel and fax:

+36 1 1851722
+36 1 2093804
+36 1 2093805

psion@hungary.net
http://www.hungary.net/weblapok/psion/

Italy
Video Computer
Series 5/3/3a/3c/Siena

tel: +39 11 403 4828
fax: +39 11 403 3325

http://www.videocomputer.it/

Nordelettronica (Division
Micra)- Workabout and HC

 tel: +39 2 660921
fax: +39 2 6601 3335

Tech queries: psion.tech@nordele.it
Comm: nordele@nordele.it

Macedonia
Duna
Workabout and HC

tel +389 91 11 97 55
fax +389 91 41 50 41

pajkovski@duna.com.mk
http://www.duna.com.mk/

Malta
BDS Limited tel: +356 239200

fax: +356 248603

20-4 Contacts and Sources

European Psion Contacts
Netherlands
Psion BV

Tech Support:

Tel: +31 20 4469444
Fax: +31 20 4469446
Tel: +31 20 4469499,
fax: +31 20 4469425

psionnl-support@psion.com
http://www.psion.nl

Norway
Ucom AS tel: +47 32 20 33 00

fax: +47 32 20 34 59

Poland
Centrum Informatyki
Energetyki

tel: +48 22 821 3262
fax: +48 22 821 3263

ciesm@elmo.nask.waw.pl

Portugal
 Comp 3 Lda tel: +351 1 797 2259,

fax: +351 1 795 1928.

Russia
Roditi
Series 5/3/3a/3c/Siena

tel: +44 171 439 4390
fax: +44 171 434
0896

Pilot Corporation
Workabout and HC

tel: +7 095 976 7280
fax: +7 095 976 7235

alex@pilot.msk.ru

Slovenia
Davos tel: +386 64 324 223

fax: +386 64 324 223
joze.prosenik@spika.unistar.si

Spain
Paresa SA
Barcelona

tel: +34 3 487 2702
fax: +34 3 487 2516

paresa@paresa.es
http://www.paresa.es/

Paresa SA
Madrid

tel: +34 1 308 5947
fax: +34 1 308 6719

paresa@paresa.es
http://www.paresa.es/

Sweden
Svenska Industrielektronic
AB

tel: +46 31 709 1600
fax: +46 31 478520

psion.support@industrielektronik.se
http://www.industrielektronik.se

Switzerland
Excom AG tel: +41 1 782 2111

fax: +41 1 781 1361
infos@excom.ch
http://www.excom.ch/

Turkey
Porcan AS
Workabout and HC

tel: +90 216 388 84
50 fax: +90 216 366
98 29

argune@porcan.com.tr
http://www.porcan-b.com.tr/porcan-b/

United Kingdom
Psion UK
Technical Support:
Sales:

tel: +44 171 3174100
tel: 0990 143061
tel: 0990 143050
Fax: 0990 561046.
Doc faxback service:
fax: 0891 515432

www.psion.co.uk
uk-support@psion.com

Contacts and Sources 20-5

North American Psion Contacts
Canada
Syscan International Inc tel: +1 514-521-0482,

fax: +1 514-521-0949
Web site: http://www.syscan.com/

Mexico
TDT tel: +52 5 361 3755

fax: +52 5 361 3755

United States of America
Psion Inc - Sales hotline
Concord (Head/Office),
MA

1-800 997 7466
tel: +1 508 371 0310
fax: +1 508 371 9611

Tech Sup:
usa-support@psion.com
http://www.psioninc.com/

Burlingame (West Coast
Office), CA

tel: +1 415 373 1234
fax: +1 415 373 1233

Psion distributors and retailers
The following list is not exhaustive, it simply represents some of the key third party
dealers or producers who supply products useful to programmers.

Clove Technology
43 Springbank Rd
Bournemouth BH7 7EL

Suppliers of Psion systems, software and
accessories.

+44 1202 302796
+44 1202 300419 (fax)

100255.3642@compuserve.com
http://www.clove-tech.co.uk

Exportech
PO Box4499
London SW17 8XQ

Suppliers of Psion systems, etc. Specialist in
large SSDs and SSD upgrades. Also Compact
Flash RAMs.

+44 181 682 3313
+44 181 682 4414 (fax)

100121.1165@compuserve.com

New World Technologies Inc
110 Greene St. (#5100)
New York NY,
10012, USA

Suppliers of Psion systems, software and
accessories.

+1 800 886-4967 (US toll-free)
+1 212 941-4633 (Int’l)
+1 212 274-8527 (Fax)
info@nwt.com
http://www.nwt.com/
FTP server: ftp://ftp.nwt.com/pub/

POS
143 Streatham High Road, London SW16 6EG

Psion approved repair company

+ 181 677 9246
+ 181 769 9293 (fax)
0831 194985 (mobile)
106051.2651@compuserve.com

Purple software Ltd
PO Box 7535, London NW1 6AT

Software development house offering a wide
range of applications. Manufacturer and supplier
of the Cyclone floppy disk drive for Psion
systems.

+44 171 387 7777
+ 44 171 387 1188 (fax)

purple_software@compuserve.com

http://www.purplesoft.com

20-6 Contacts and Sources

Widget Software Ltd
121 London Road
Knebworth, Herts SG3 6EX

Suppliers of Psion systems, software and
accessories.

+44 1438 815444
+44 1438 815222 (fax)

info@widget.co.uk
http://www.widget.co.uk

Yellow Computing
Computersysteme GmbH
Hanns-Martin-Schleyer-Str. 1
D-74177 Bad Friedrichshall, Germany

Software house and supplier of the Yellow
application installer.

+49 0 7136 9511 0
+49 0 7136 9511 11 (fax)
info@yellow.de
http://www.yellow.de

Getting ‘On-line’
The best way of keeping up to date with all that is happening in the world of Psion
programming is to join the main ‘on-line’ discussion groups, particularly if you are ‘new’
to the Psion environment. Many questions and answers are to be found in this arena which
may save you hours of head scratching. It is advisable to aim straight for the FAQ’s
(frequently asked questions) section, if there is one, before posting questions yourself, to
avoid irritating the regulars with questions that have been asked many times before. A
copy (September 1997) of the excellent FAQ maintained by Daniel Pfund is in the
PSIONFAQ directory on disk. For the most up-to-date version of this FAQ see Daniel
Pfund’s web site, the URL is listed in the key web site section.

On-line sources
Psion EPOC World news groups Accessible to EPOC World subscribers only. The

news server is ‘ew-news.software.psion.com’ and
access is via your EPOC World user name and
password. There are a number of groups including
C++, OPL, OPXs.

Usenet groups
See your internet service provider for access

The current groups on Usenet are:-
comp.sys.psion.announce
comp.sys.psion.misc
comp.sys.psion.comm
 comp.sys.psion.apps comp.sys.psion.programmer
comp.sys.psion.marketplace
comp.sys.psion.reviews

CIX: 0845 355 5050 (UK)
admin@cix.co.uk
http://www.cix.co.uk/

The conference is called ‘Psion’, it contains
numerous topics and extensive file lists available
for download.

Contacts and Sources 20-7

CompuServe
Tel: 0800 289378 (UK)
http://www.compuserve.co.uk/homepages/

The forum is called ‘Psion’ and contains numerous
message boards and file libraries with huge lists of
files for download.
On-line shareware registration services to users and
authors - GO SWREG.

Key programmers’ web sites
The following list of web sites represent some of the key Psion related pages that are
oriented towards programming (apologies to those not listed). Starting at any of the
addresses in the table below should take you to virtually all of the key web sites. All of the
sites below have extensive links to other Psion related pages.

Steve Litchfield http://3lib.ukonline.co.uk
Probably the best page on the web for Psion programmers. A great starting point. Home of the 3-lib
shareware library, including Steve’s renowned Mapper application.
John Boyce http://www.compulink.co.uk/~jbsoft/
One of the most productive Psion programmers offering a wide range of excellent freeware.
Rick Andrews http://web.ukonline.co.uk/Members/rick/
Author of Draw284, probably the best drawing program for Series 3a/c. Series 5 version due any
day.
Palmtop Magazine http://www.palmtop.co.uk & palmtop@aol.com
A finely crafted dedicated magazine, literally packed with Psion related material, including some
programming related stuff.
Mark Esposito (Pelican Software) http://www.pelicansoft.com
A long established and highly respected Psion programmer, producer of the renowned Notepad
deluxe application.
Andy Clarkson http://ourworld.compuserve.com/homepages/andyc
Author of OPP and OPPDBG, the widely used and highly renowned OPL program development
utilities.
Daniel Pfund http://www.geocities.com/SiliconValley/8130/
Maintainer of the excellent and comprehensive Psion FAQ.
Clive Feather http://www.cityscape.co.uk/users/cdwf/psion/psionics/
Compiler of the Psionics files, the most detailed and comprehensive set of programming related
information files outside of the Psion SDKs.
Cade Roux http://ourworld.compuserve.com/homepages/cade
Probably the most knowledgeable individual on object-oriented programming outside of Psion. See
the excellent Solipeg on disk.
Steve Godfrey http://www.users.dircon.co.uk/~steveg/
An expert Psion C programmer. See the excellent HWIM clocks application on disk.
Konstantin Saliy http://sunny.aha.ru/~kis/
Author of the renowned keyboard re-mapping program and Hexview1, supplied on disk.
Softbase http://www.softbase.co.uk/psion/ A very slick Series 5 specific site. Wide range of
information including SDK document searches.
Total S5 http://homepages.enterprise.net/livewire
An excellent Series 5 specific site. Wide range of information including links to Series 5 software
and S5 FAQs
REGNET http://www.swregnet.com/
A shareware registration web page – on-line registration of shareware using your credit card.
A service to authors and users. E-mail info@swregnet.com for more information.

20-8 Contacts and Sources

EMCC http://www.compulink.co.uk/~emcc/
The publisher of this book. Visit this site for the latest information on this book and CD-ROM,
including news of any updates or corrections.

E-mail addresses
Some miscellaneous e-mail addresses you may find useful.

Marco Aicardi, author of OPLprot the anti-Revtran program can be contacted via
maicardi@mbox.vol.it

Leigh Edwards, can be contacted via ple@cix.compulink.co.uk or
100533.1726@compuserve.com or during CompuServe access using 100533,1726.

Acknowledgements and credits
As I outlined in the introduction, I am very grateful to many people. I owe considerable
thanks to the many individuals who have provided help, example code, answers to
questions, numerous utilities, proof reading, artistic design, time and effort expended on
my behalf. Without the help of others this book would never have been produced. I have
attempted here to acknowledge as many of the key individuals as I could and can only
apologise to anyone I may have missed.

I intend to keep this book current and relevant to future developments from Psion and third
party developers. If you have any constructive comments, contributions or corrections to
this work I would be very grateful to receive them, preferably by E-mail. All significant
contributions will be credited, any major contributions will warrant a free copy of a revised
edition.

In alphabetical order by Surname:

John Arundel, Rick Andrews, John Boyce, Andrew Baldwin, Jeremy Burton, Steve Clack,
Andy Clarkson, Clive Craske, Tom Dolbilin, Simon East, Mark Esposito, Clive D Feather
Psionics, Steve Godfrey, Richard Harrision, Les Huett, Steve Litchfield, Ali Manson,
Colly Myers, Joe Odukoya, David Palmer, Daniel Pfund, Dave Ponsford, Howard Price,
Rosemary Rolfe, Dan Ramage, Cade Roux, Mike Rudin, Konstantin Saliy, Martin Stamp,
Martin Tasker, Jeremy Wakefield (Jezar), David Wood.

Appendix 1

Appendix

Panic numbers, EPOC16
When EPOC16 detects an error condition that it determines could have only arisen from a
bugged application, it will terminate or panic the process in question. An error code called
a panic number in the range 0 - 255 will be reported to the user.

Panics, operating system
Panic
Code

Description

00 Used by test code when a test fails
01 Invalid function number (semaphore manager)
02 Invalid semaphore handle
03 Semaphore not allocated
04 Initial semaphore count is negative
05 Signal count is negative
06 Invalid function number for process manager
07 Invalid process ID
08 Task tried to create a task
09 Invalid function number for time manager
10 Invalid function number for segment manager
11 Segment size was negative
12 Type was not one of E_SEGMENT_LOW E_SEGMENT_HIGH

E_SEGMENT_DEVICE or E_SEGMENT_LOCKED
13 Invalid segment handle
14 Segment copy is out of range
15 Invalid function number for heap manager
16 Heap not initialised
17 A heap cell is being reduced by more than its size
18 Attempt to set heap granularity greater than E_MAX_GROWBY
19 A heap cell address is outside the boundaries of the heap (the heap has

probably been corrupted – try calling p_allchk to catch the corruption
sooner)

20 Invalid function number for inter-process message manager
21 Inter-process messaging has already been initialised (i.e. p_minit has

2 Appendix

Panic
Code

Description

been called twice)
22 Inter-process messaging has not been initialised (i.e. p_minit has not

been called)
23 Cannot initialise with zero messages in the queue
24 Invalid function number for I/O manager
25 Invalid I/O channel (possibly because you did not test that the previous

p_open succeeded or you have closed the channel or you overwrote the
variable containing the channel)

26 Device requested panic
27 Invalid wait handler handle (possibly nothing to do with wait handlers and

just indicative of a low address overwrite of the 4 bytes at address 2 - as a
result of an un-initialised pointer)

28 Key and pointing device already hooked
29 Key and pointing device requesting process is not a task
30 Invalid function number for device manager
31 Invalid device handle
32 Invalid function number for file manager
33 Process already connected to file server
34 Reserved for future use
35 Invalid function number for library manager
36 Invalid library handle
37 Invalid function number for library
38 Invalid LIB file channel
39 Invalid DYL index number
40 Invalid message to file server
41 Process has not connected to file server
42 Invalid function number for conversion manager
43 Invalid function number for general manager
44 Attempt to unhook from notify when not already hooked
45 Invalid revector address
46 Invalid function number for conversion manager
47 Leave called before a call to enter (possibly because you were unaware that

the function you were calling could call p_leave)
48 No method available to handle message (OOP)
49 Invalid reclass attempted (OOP)
50 Unknown category in LibHandle (OOP)
51 Unknown class in LibCreate (OOP)
52 Supersend called from outside a method (OOP)
53 Attempt to get a handle before being linked (OOP)
54 Missing external categories in LibLink (OOP)
55 Object does not point to a valid class (OOP)
56 Invalid link layer completion code
57 Invalid function number for window server

Appendix 3

Panic
Code

Description

58 Invalid function number for hardware manager
59 Unexpected interrupt
60 Attempted to write outside of process data segment (possibly because of an

un-initialised pointer or a corrupted data structure)
61 Interrupts have been disabled for too long
62 Reserved for future use
63 Divide by zero interrupt
64 Overflow interrupt
65 Invalid function number for Dbf manager
66 Invalid DBF I/O channel
67 Invalid parameter for DBF function
68 Address zero overwrite (possibly because of an uninitialised pointer)
69 The operating system detected less than 0x100 bytes of remaining stack

(this amount is reserved for hardware interrupts to run). You probably
have declared large data structures as automatics. Consider making them
static variables or allocate them from the heap.

70 Environment name size > EnvMaxNameSize
71 Single step interrupt (INT 1)
72 Break point interrupt (INT 3)
73 A request was made while an asynchronous request of the same type and

on the same channel was already pending
74 Invalid function number for serial I/O manager
75 Call to an ASIC1 function on an ASIC9 machine
76 Attempt to find a DYL not in a visible bank
77 Floating point emulator exception
78 Semaphore count exceeds 0x7fff
80 Library fatal error – preceded by a notification of the specific error
255 The function p_allchk detected a corrupted heap

Panics, window server
Panic
Code

Description

81 Font does not exist
82 Illegal window or bitmap ID
83 Illegal window ID
84 Null handle given to server
85 Illegal graphics context ID
86 Illegal GMODE value (V2 only)
87 Illegal TEXTMODE value (V2 only)
88 Illegal font ID (V2 only)
89 wBeginRedraw called while already in a redraw

4 Appendix

Panic
Code

Description

90 Mouse icon does not exist
91 Illegal bitmap ID
92 Window tree is already initialised
93 WendRedraw called when there isn't a redraw to end
94 Attempted to change the background of a backed-up window
95 wInitialiseWindowTree called when the parent window is not

initialised
96 Illegal parameters passed to wsAlertW wsAlertA or wsAlertUpdate
97 Illegal length in gPeekBit (V2 only)
98 Illegal x+length value in gPeekBit (V2 only)
99 Illegal ypos in gPeekBit (V2 only)
100 Tried to connect a second time
101 Tried to access a permanent graphics context while a temporary graphics

context exists
102 Illegal opcode in message
103 Command buffer received by wserv is too long
104 Generally bad message received
105 wFree was called with an ID that doesn't refer to a freeable object
106 Illegal DYL ID
107 Out of range count sent to wSetWinBitmap
108 A bitmap was freed while still in use by a wSetWinBitmap command
109 Illegal window-bitmap ID
110 Bad data or version in connect message
111 Called wGetEvent while the previous call was still pending
112 Function not available
113 Illegal clock ID in wsSetClock
114 Illegal sprite ID (V4 only)
115 Client already has a sprite (V4 only)
120 Corrupt control block (possibly not connected)
121 Function number out of range

Panics, object oriented programming (SIBO)
Panic
Code

Description

130 Record in flat variable array is out of range
131 Number of record to insert new record before in flat VA is out of range
132 Attempt to set capacity of flat VA less than current number of records
133 Number of record to delete in flat VA is out of range
134 Record in segmented VA is out of range
135 Outside range of segmented buffer
136 Tried to delete outside segmented buffer

Appendix 5

Panic
Code

Description

137 Record in string VA whose address is sought is out of range
138 Attempt to set capacity of string VA less than current number of records
139 Number of record to insert new record before in string VA is out of range
140 Number of record to delete in string VA is out of range
141 Did not read correct number of bytes from resource file
142 Image fails to contain built-in resource file
143 Stray signal death in Application Manager
144 Request to clear area outside character map
145 Bad type/length binary file record header
146 Read on serial port already outstanding or read buffer not allocated
147 Serial port read buffer too small for requested read
148 Write to serial port already outstanding or write buffer not allocated
149 Serial port write buffer too small for requested write
150 Read on serial port outstanding when tried to see no. of characters available

to read
151 Read on serial port outstanding when tried to flush serial read buffer
152 Read or write outstanding when tried to set serial port characteristics
153 Control to set/get not supported
154 OPL translator invoked with empty command line
155 Unrecognised code for setting the console
156 String passed to console is too long
157 IPCS Message read failed
158 Stray signal death in IPCS server list

6 Appendix

OPL errors
Good facilities for error trapping, recovery and error simulation are provided in the OPL
language and should enable a well designed program to cope with most foreseeable error
conditions. See the ‘Errors and Debugging’ chapter for further details.

OPL errors, general (-1 to -25)
Error
Code

Description OPL32 Constant

-1 General failure KErrGenFail%
-2 Invalid arguments KErrInvalidArgs%
-3 Operating system error KErrOs%
-4 Service not supported KErrNotSupported%
-5 Underflow (number too small) KErrUnderflow%
-6 Overflow (number too large) KErrOverflow%
-7 Out of range KErrOutOfRange%
-8 Divide by zero KErrDivideByZero%
-9 In use (e.g. serial port being used by another

program)
KErrInUse%

-10 No system memory KErrNoMemory%
-11 Segment table full KErrNoSegments%

-12 Semaphore table full KErrNoSemaphore%
-13 Process table full/too many processes KErrNoProcess%
-14 Resource already open KErrAlreadyOpen%
-15 Resource not open KErrNotOpen%
-16 Invalid image/device file KErrImage%
-17 No receiver KErrNoReceiver%
-18 Device table full KErrNoDevices%
-19 File system not found (e.g. if you unplug cable

to PC)
KErrNoFileSystem%

-20 Failed to start KErrFailedToStart%
-21 Font not loaded KErrFontNotLoaded%
-22 Too wide (dialogs) KErrTooWide%
-23 Too many items (dialogs) KErrTooManyItems%
-24 Batteries too low for digital audio KErrBatLowSound%
-25 Batteries too low to write to flash/disk KErrBatLowFlash%
-26 to –
31

Unknown error

Appendix 7

OPL errors, file and device (-32 to -69)
Error
Code

Description OPL32 Constant

-32 File already exists KErrExists%
-33 File does not exist KErrNotExists%
-34 Write failed KErrWrite%
-35 Read failed KErrRead%
-36 End of file (when you try to read past end of

file)
KErrEof%

-37 Disk full KErrFull%
-38 Invalid name KErrName%
-39 Access denied (e.g. to a protected file on PC) KErrAccess%
-40 File or device in use KErrLocked%
-41 Device does not exist KErrDevNotExist%
-42 Directory/folder does not exist KErrDir%
-43 Record too large KErrRecord%
-44 Read only file KErrReadOnly%
-45 Invalid I/O request KErrInvalidIO%
-46 I/O operation pending KErrFilePending%
-47 Invalid volume (corrupt disk) KErrVolume%
-48 I/O cancelled KErrIOCancelled%
-50 Disconnected
-51 Connected
-52 Too many retries
-53 Line failure
-54 Inactivity timeout
-55 Incorrect parity
-56 Serial frame (usually because Baud setting is

wrong)

-57 Serial overrun (usually because Handshaking is
wrong)

-58 Cannot connect to remote modem
-59 Remote modem busy
-60 No answer from remote modem
-61 Number is black listed (you may try a number

only a certain number of times; wait a while and
try again)

-62 Not ready
-63 Unknown media (corrupt SSD)
-64 Root directory/folder is full (on any device the

root directory has a maximum amount of
memory allocated to it)

-65 Write protected

8 Appendix

Error
Code

Description OPL32 Constant

-66 File/media is corrupt
-67 User abandoned
-68 Erase pack failure
-69 Wrong file type

OPL errors, translator (-70 to -95)
Error
Code

Description OPL32 Constant

-70 Missing ”
-71 String too long
-72 Unexpected name
-73 Name too long
-74 Logical device must be A-D (A-Z in OPL32)
-75 Bad field name
-76 Bad number
-77 Syntax error KErrSyntax%=
-78 Illegal character
-79 Function argument error
-80 Type mismatch
-81 Missing label
-82 Duplicate name
-83 Declaration error
-84 Bad array size
-85 Structure fault KOplStructure%
-86 Missing endp
-87 Syntax Error
-88 Mismatched (or)
-89 Bad field list
-90 Too complex
-91 Missing ,
-92 Variables too large
-93 Bad assignment
-94 Bad array index
-95 Inconsistent procedure arguments

Appendix 9

OPL errors, specific (-96 to -120)
Error
Code

Description OPL32 Constant

-96 Illegal Opcode (corrupt module - translate again) KErrIllegal%
-97 Wrong number of arguments (to a function or

parameters to a procedure)
KErrNumArg%

-98 Undefined externals (a variable has been
encountered which hasn't been declared

KErrUndef%

-99 Procedure not found KErrNoProc%
-100 Field not found KErrNoFld%
-101 File already open KErrOpen%
-102 File not open KErrClosed%
-103 Record too big (data file contains record too big

for OPL)
KErrRecSize%

-104 Module already loaded (when trying to LOADM) KErrModLoad%
-105 Maximum modules loaded (when trying to

LOADM)
KErrMaxLoad%

-106 Module does not exist (when trying to LOADM) KErrNoMod%
-107 Incompatible translator version (OPL file needs

retranslation)
KErrNewVer%

-108 Module not loaded (when trying to UNLOADM) KErrModNotLoaded%
-109 Bad file type (data file header wrong or corrupt) KErrBadFileType%
-110 Type violation (passing wrong type to

parameter)
KErrTypeViol%

-111 Subscript or dimension error (out of range in
array)

KErrSubs%

-112 String too long KErrStrTooLong%
-113 Device already open (when trying to LOPEN) KErrDevOpen%
-114 Escape key pressed KErrEsc%
-115 Incompatible runtime version
-116 ODB file(s) not closed
-117 Maximum drawables open (maximum 8

windows and/or bitmaps allowed)
KErrMaxDraw%

-118 Drawable not open KErrDrawNotOpen%
-119 Invalid window (window operation attempted on

a bitmap)
KErrInvalidWindow%

-120 Screen access denied (when run from
Calculator)

KErrScreenDenied%

10 Appendix

OPL32 errors (-121 to –126)
Error
Code

Description

-121 OPX does not exist KErrOpxNotFound%

-122 Incompatible OPX version KErrOpxVersion%

-123 OPX procedure not found KErrOpxProcNotFound%

-124 STOP used in call back KErrStopInCallback%

-125 Incompatible update mode KErrIncompUpdateMode%

-126 In transaction KErrInTransaction%

-127 Include file cannot contain procedures

-128 Too many OPX’s

-129 Too many OPX functions

-130 Undefined variable

-131 Undefined procedure

-132 Icon mask missing

-133 Incompatible declaration

-134 - Unknown error

OVAL errors
Many structural and syntax errors are detected by the OVAL translator, fatal errors during
run-time are usually trapped by the OVAL interpreter. The OVAL run-time environment is
well protected and panics should be rare. See the 'Errors and Debugging' chapter for
details of how to avoid and detect errors.

Error
Code

Description OVAL Global Constant

 0 ERR_NO_ERR

 3 Return requires GoSub ERR_RET_NO_GOSUB

 5 Illegal function argument ERR_ILLEGAL_FUNCTION_CALL

 6 Overflow ERR_OVERFLOW

 7 No system memory ERR_OUT_OF_MEMORY

 9 Subscript out of bounds ERR_INDX_OUT_OF_BOUNDS

 11 Divide by zero ERR_DIVIDE_0

 13 Type mismatch ERR_TYPE_MISMATCH

 14 No string memory ERR_OUT_OF_STRING_SPACE

 19 Resume missing ERR_NO_RESUME

 20 Resume outside error handler ERR_RESUME_NO_ERR

 28 No stack memory ERR_OUT_OF_STACK_SPACE

 51 Internal error ERR_INTERNAL

 52 Invalid file name/number ERR_BAD_FILE_NUMBER

 53 File not found ERR_FILE_NOT_FOUND

Appendix 11

Error
Code

Description OVAL Global Constant

 54 Invalid file mode ERR_BAD_FILE_MODE

 55 File already open ERR_FILE_ALREADY_OPEN

 57 I/O error ERR_IO

 58 File already exists ERR_FILE_ALREADY_EXISTS

 59 Invalid record length ERR_BAD_RECORD_LENGTH

 61 Disk full ERR_DISK_FULL

 62 Input beyond end of file ERR_INPUT_PAST_EOF

 63 Invalid record number ERR_BAD_RECORD_NUMBER

 67 Max files reached ERR_TOO_MANY_FILES

 68 Device not available ERR_INVALID_DRIVE

 70 Access denied ERR_ACCESS_DENIED

 71 Disk not present ERR_DISK_NOT_READY

 75 Invalid path or filename ERR_FILE_ACCESS

 76 Invalid path ERR_PATH_NOT_FOUND

 91 Object not Set before use ERR_OBJECT_VARIABLE_NOT_SET

 93 Invalid match pattern ERR_PATTERN_INVALID

 94 Invalid Null argument ERR_INVALID_USE_OF_NULL

 321 Unknown file format ERR_INVALID_FILE_FORMAT

 340 Control array element does not
exist

ERR_CA_ELEMENT_NOT_EXIST

 341 Invalid control array index ERR_INVALID_CA_INDEX

 343 Object is not an array ERR_OBJ_NOT_ARRAY

 344 Object array requires index ERR_NO_INDEX_FOR_ARRAY

 360 Control array element already
loaded

ERR_OBJ_ALREADY_LOADED

 362 Design time controls cannot be
unloaded

ERR_CANT_UNLOAD_CONTROL

 365 Form unload disabled ERR_CANT_UNLOAD

 380 Property value is invalid ERR_INVALID_PROPERTY_VALUE

 381 Property array index is invalid ERR_INVALID_ARRAY_INDEX

 383 Cannot write to property ERR_PROPERTY_READ_ONLY

 385 Property array requires index ERR_NEED_INDEX

 386 Property only available at design
time

ERR_NOT_RT_PROP

 394 Cannot read property ERR_PROPERTY_WRITE_ONLY

 400 Cannot show form modally ERR_CANTSHOWMODALLY

 401 Cannot show form non-modally ERR_CANTSHOWNONMODALLY

 402 Close or hide topmost modal form
first

ERR_MUSTCLOSEMODAL

 422 Property does not exist ERR_PROPERTY_NOT_FOUND

 423 Property or control does not exist ERR_PROP_CONTROL_NOT_FOUND

3001 Invalid argument ERR_DA_INV_ARG

3002 Could not start DBS server ERR_DA_SESSION

12 Appendix

Error
Code

Description OVAL Global Constant

3006 Database ' ' is locked ERR_DA_DB_EXLOCKED

3008 Table ' ' is locked ERR_DA_TB_EXLOCKED

3009 Table ' ' could not be locked ERR_DA_TB_IN_USE

3010 Table ' ' already exists ERR_DA_TB_EXISTS

3011 Could not find item ' ' ERR_DA_OBJ_NOT_FOUND

3015 Table does not contain index ' ' ERR_DA_TB_NOT_INDEX

3017 Field too long ERR_DA_FLD_TOO_LONG

3018 Field ' ' not found ERR_DA_FLD_NOT_FOUND

3019 No current index ERR_DA_INV_NO_INDEX

3020 Update requires Edit or AddNew ERR_DA_BAD_UPDATE

3021 Operation requires current record ERR_DA_NO_RECORD

3022 Duplicate key ERR_DA_DUPLICATE

3023 Edit or AddNew already called ERR_DA_ADD_EDIT

3024 File ' ' not found ERR_DA_FILE_NOT_FOUND

3026 Disk full ERR_DA_NO_DISK_SPACE

3027 Database is read-only ERR_DA_DB_READ_ONLY

3040 I/O read error ERR_DA_DISK_IO

3044 Invalid path ' ' ERR_DA_INV_PATH

3046 Table locked ERR_DA_LOCKED

3051 File ' ' could not be opened ERR_DA_FILE_OPEN_FAIL

3070 Failed to bind name ' ' ERR_DA_BIND_NAME

3113 Field ' ' not updatable ERR_DA_NO_UPDATE

3125 Invalid name ERR_DA_NAME

3146 Table open when deleting index ERR_DA_ODBC_FAIL

3159 Invalid bookmark ERR_DA_BMARK

3162 Field cannot be Null ERR_DA_INV_NULL

3163 Field data too long ERR_DA_DATA_TOO_LONG

3170 Installable ISAM not found ERR_DA_ISAM

3191 Duplicate field name ERR_DA_FLD_TWICE

3204 Database already exists ERR_DA_DB_EXISTS

3218 Record locked ERR_DA_UPDATE_LOCKED

3219 Illegal operation ERR_DA_ILLEGAL

3250 Index could not be built ERR_DA_BAD_KEY

3259 Invalid field type ERR_DA_TYPE

3264 Cannot append table with no
fields

ERR_DA_NO_FIELDS

3265 Collection item not found ERR_DA_NOT_FOUND

3266 Cannot append Field ERR_DA_FLD_APPEND

3267 Invalid use of property 'Value' ERR_DA_FLD_PROPERTY

3268 Property cannot be set ERR_DA_DB_PROPERTY

3269 Cannot append Index ERR_DA_IDX_APPEND

3273 Method not available ERR_DA_METHOD

Appendix 13

Error
Code

Description OVAL Global Constant

3283 Primary index already defined ERR_DA_PRIMARY

3284 Index already exists ERR_DA_IDX_EXISTS

3290 Syntax error ERR_DA_SYNTAX

30009 Row value invalid ERR_GRID_INVALID_ROW

30010 Column value invalid ERR_GRID_INVALID_COLUMN

30011 Grid/database synchronisation
error

ERR_GRID_DB_ERROR

31000 Unknown error[0]
31001 General failure
31002 Invalid arguments
31003 O/S error
31004 Service not supported
31005 Underflow
31006 Overflow
31007 Out of range
31008 Divide by zero
31009 In use
31010 No system memory
31011 Segment table full
31012 Semaphore table full
31013 Too many processes
31014 Resource already open
31015 Resource not open
31016 Invalid image/device file
31017 No receiver
31018 Device table full
31019 File system not found
31020 Failed to start
31021 Font not loaded
31022 Too wide
31023 Too many items
31024 Batteries too low for digital audio
31025 Batteries too low to write to Flash
31026 -
31031

Unknown error[-26 to -31]

31032 File already exists
31033 File does not exist
31034 Write failed
31035 Read failed
31036 End of file
31037 Disk full
31038 Invalid name
31039 Access denied

14 Appendix

Error
Code

Description OVAL Global Constant

31040 File or device in use
31041 Device does not exist
31042 Directory does not exist
31043 Record too large
31044 Read only file
31045 Invalid I/O request
31046 I/O operation pending
31047 Invalid volume
31048 I/O cancelled
31050 Disconnected
31051 Connected
31052 Too many retries
31053 Line failure
31054 Inactivity timeout
31055 Incorrect parity
31056 Serial frame
31057 Serial overrun
31058 Cannot connect to remote modem
31059 Remote modem busy
31060 No answer from remote modem
31061 Number is black listed
31062 Not ready
31063 Unknown media
31064 Root directory full
31065 Write protected
31066 Media is corrupt
31067 User abandoned
31068 Erase disk failure
31069 Wrong file type
31070 Missing "
31071 String too long
31072 Unexpected name
31073 Name too long
31074 Logical device must be A-D
31075 Bad field name
31076 Bad number
31077 Syntax error
31078 Illegal character
31079 Function argument error
31080 Type mismatch
31081 Missing label
31082 Duplicate name

Appendix 15

Error
Code

Description OVAL Global Constant

31083 Declaration error
31084 Bad array size
31085 Structure fault
31086 Missing endp
31087 Syntax Error
31088 Mismatched (or)
31089 Bad field list
31090 Too complex
31091 Missing ,
31092 Variables too large
31093 Bad assignment
31094 Bad array index
31095 Inconsistent procedure arguments
31096 Illegal Opcode
31097 Wrong number of arguments
31098 Undefined externals
31099 Procedure not found
31100 Field not found
31101 File already open
31102 File not open
31103 Record too big
31104 Module already loaded
31105 Maximum modules loaded
31106 Module does not exist
31107 Incompatible translator version
31108 Module not loaded
31109 Bad file type
31110 Type violation
31111 Subscript or dimension error
31112 String too long
31113 Device already open
31114 Escape key pressed
31115 Incompatible runtime version
31116 ODB file(s) not closed
31117 Maximum drawables open
31118 Drawable not open
31119 Invalid window
31120 Screen access denied
31121 -
31127

Unknown error[-121 to -127]

31500 ' ' is not an OVAL application
31501 OVAL application ' ' is corrupt
31502 Unable to locate OVAL extension

16 Appendix

Error
Code

Description OVAL Global Constant

' '
31503 Cannot find OVAL component ' '
31504 Incompatible version of OVAL

component ' '

31505 ' ' cannot be run. It is only for
design

31506 ' ' cannot be run. Incompatible
translator version

31507 Unable to locate OVAL extension
' ' in RAM

Magic (reserved) static variables
The EPOC16 reserved statics (commonly refered to as magic statics) are variables with
fixed, known, addresses, existing in the process data space (i.e. a unique set for each
process) between addresses 0x00 and 0x40. They are 'magic' in the sense that they are
accessible from all parts of the process code, even from dynamic library code (which does
not have any data space and therefore may not normally access statics).

Some of these variables are used by the operating system as part of the process context.
Others are used by system code such as the window server, and the graphics user interface
libraries. The specific usage differs depending on the model of SIBO machine.

The remaining reserved statics are freely available for use by the process code. A common
use is to provide access from dynamic library code to application-specific data, without the
need for it to be passed in function parameters.

Magic static Purpose
0x00 DatWordDead The word at this address contains the value 0xDEAD. This

value must not be changed by application code. Many
operating system calls check for this value and will panic
the process with panic reason code PanicDead0 if it has
changed. A change in this value is symptomatic of a
common software bug; the unintentional use of a NULL
pointer.

0x02 DatHandNext
0x04 DatHandPrev

The data at these two addresses are used as pointers to a
queue of wait handler function descriptors. This data
should not be modified by application code.

0x06 DatCountrySeg This holds the segment handle of the data segment
containing the country and language specific fold tables
for the process. This data should not be modified by
application code.

0x08 DatClassHandle
0x0a DatClassPtr

In applications which use any of the object oriented

Appendix 17

Magic static Purpose
programming calls (this includes use of HWIF programs)
these locations hold data required by the operating
system to work out how to send a message to an object's
superclass. It is recommended that application code does
not modify the contents of these locations.

0x0c
DatEClassHandle
0x0e DatEClassPtr

In applications which use any of the object oriented
programming calls (this includes use of HWIF) these
locations hold data required by the operating system to
work out how to perform a p_exactsend. It is
recommended that application code does not modify the
contents of these locations.

0x10
DatEnterFramePtr

The enter and leave mechanism provided by the operating
system uses this address to store the pointer to the last
enter frame generated on the stack. When a leave occurs
this pointer is used to unwind the stack and restore the
register set. This location should not be modified by
application code.

0x12 w_ws In applications that use system user interface libraries this
location is assumed to hold the object handle of an
instance of the 'wserv' object. The application is
responsible for ensuring that this location is set up
correctly, normally by calling system code on application
start-up.

0x14 w_am In applications that use the application manager object
(all object oriented programs and HWIF programs) this
location is assumed to hold the object handle of an
instance of the application manager object. The
application is responsible for ensuring that this location is
set up correctly, normally by calling system code on
application start-up.

0x16 wClientData
0x18 wserv_channel

These locations are used by the window server process to
store information about your application. If you use any
graphics functions you should not modify the contents of
these locations.

0x1a T This location is used by the OPL language translator. If
your application does not use OPL then this location is
free for use by application code.

0x1c r This location is used by the OPL language runtime code.
If your application does not use OPL then this location is
free for use by application code.

0x1e DatOsFramePtr This location contains a pointer to the last member of a
linked list of operating system calling frames. Following
this linked list will show which functions called which
operating system services. This location should not be
modified by application code.

18 Appendix

Magic static Purpose
0x20 DatATFlag This byte location contains the current address trap status

for the process. Certain operating system calls cause
address trapping to be turned on or off and the operating
system sets or clears this flag to record the current
address trap hardware status. Just setting the flag to zero
will not disable address trapping. This location should
not be modified by application code.

0x21 DatHeapLocked This byte location contains the current state of the heap
locked flag. While the heap is being modified (for
example, being resized, due to a memory allocation
request) the heap is locked. This prevents the operating
system from compressing the segment while the data
structures used by the operating system to run the heap
are in an inconsistent state. This location should not be
modified by application code.

0x22
DatProcessNamePtr

System user interface library code assumes that this
location contains either NULL or a pointer to a zero
terminated string that the application wishes to be
displayed as its name. Otherwise it is free for use by
application code.

0x24 DatCommandPtr This location contains a pointer, set up by the operating
system. It points to an alloc cell that contains the full
path name, as a zero terminated string, of the .img or .app
file from which the process was loaded. Immediately
following the zero terminator, the alloc cell contains
leading byte counted initial command line data.

0x26 DatTest Psion's test system library code assumes that this location
contains the object handle of the test code. Otherwise it is
free for use by application code.

0x28 DatApp1
0x2a DatApp2
0x2c DatApp3
0x2e DatApp4
0x30 DatApp5
0x32 DatApp6
0x34 DatApp7

These locations are free for application code to use.

0x36 DatDialogPtr System user interface library code may assume that this
location contains a pointer to the current dialog structure.
Otherwise it is free for use by application code.

0x38 DatGate System user interface library code may assume that this
location contains an object handle. Otherwise it is free for
use by application code.

0x3a DatLocked System user interface library code may assume that this
location contains a flag indicating whether the
application is capable of receiving termination or switch
files messages. Otherwise it is free for use by application
code.

Appendix 19

Magic static Purpose
0x3c
DatStatusNamePtr

System user interface library code may assume that this
location contains a pointer to a zero terminated string that
will appear in a status window. Otherwise it is free for
use by application code.

0x3e
DatUsedPathNamePtr

System user interface library code may assume that this
location contains a pointer to a fully parsed file name.
Otherwise it is free for use by application code.

Language and country data
Psion machines are produced in a number of language variants, and may differ in the
following respects:

• the language code
• the language of the text used by the ROM-based software (for example, the error

messages returned by p_errs and the month names returned by p_nmmon)
• character type and conversion tables
• the keyboard layout
• the default country and country-dependent data

A particular language variant will always have a different language code and text, but may
not differ in all of the above.

Systems are designed to be produced in a variety of languages and, as far as SIBO system
services are concerned, all the above variations are encapsulated in a single configuration
file in the ROM called ROM::SYS$CTRY.CFO. Depending on the machine, there may be
further files (for example, ‘resource files’) containing language-dependent data for
higher-level system components.

Unlike the language-dependent data, the country-dependent data may be altered from the
language-dependent defaults.

Get machine language code
INT p_getlanguage(VOID);

lang% = CALL($1b8b) REM as called in OPL16

Return the language code from the ROM configuration file. The language code can be
used by applications that contain the text for more than one language to determine which
language to present. The language codes, defined in p_config.h, are as follows:

Notes:
With Series 5 systems, there are slight differences from the SIBO language codes.
Constants for the language codes are supplied in CONST.OPH for OPL32 .

20 Appendix

Code Country, SIBO Country, EPOC32 OPL32 Constant
1 English English KLangEnglish%
2 French French KLangFrench%
3 German German KLangGerman%
4 Spanish Spanish KLangSpanish%
5 Italian Italian KLangItalian%
6 Swedish Swedish KLangSwedish%
7 Danish Danish KLangDanish%
8 Norwegian Norwegian KLangNorwegian%
9 Finnish Finnish KLangFinnish%
10 USA American KLangAmerican%
11 Swiss French Swiss French KLangSwissFrench%
12 Swiss German Swiss German KLangSwissGerman%
13 Portuguese Portuguese KLangPortuguese%
14 Turkish Turkish KLangTurkish%
15 Icelandic Icelandic KLangIcelandic%
16 Russian Russian KLangRussian%
17 Hungarian Hungarian KLangHungarian%
18 Dutch Dutch KLangDutch%

19 Belgian Flemish Belgian Flemish KLangBelgianFlemish%
20 Australian Australian KLangAustralian%
21 New Zealand Belgian-French KLangBelgianFrench%
22 Austrian Austrian KLangAustrian%
23 Belgian French New Zealand KLangNewZealand%
24 International French KLangInternationalFrench%

Often, language codes are included as part of file names to load language specific
information e.g. with resource files. When the language code is less than 10 it is usual to
pad the number with a leading zero in making up the file name. For example, to load a
French resource file, with a country code of 2, the file name would typically become
MYTEXT02.RSC instead of MYTEXT2.RSC.

Get O/S error text
INT p_errs(TEXT *pBuffer, INT n);

REM in OPL16
AX%= REM set to negative error number n
bx%= REM points to a 64 byte data buffer
r%=CALL($068b,bx%)

Get the error string n from the ROM configuration file and write it to pBuffer. Returns
zero if successful or the ‘Unknown error’ if n is outside the range of error text strings in
the configuration file.

Appendix 21

Get O/S message text
INT p_gettext(INT n, TEXT *pBuffer);

REM in OPL16
AX%= REM set to message number n
bx%= REM points to a 64 byte data buffer
r%=CALL($148b,bx%)

Get the nth string from the ROM configuration file and write it to pBuffer. Returns zero
if successful or the negative E_GEN_ARG if n is outside the range of the text strings in the
configuration file. This function is called by specific text retrieval functions such as
p_errs and p_nmmon.

Applications only need to use p_gettext when retrieving text associated with a higher
level of system software (in which case the documentation of the higher level software will
list appropriate values of n).

22 Appendix

Get country-dependent data
VOID p_getctd(E_CONFIG *pcfg);

bx%= REM points to a 40 byte data buffer
r%=CALL($058b,bx%) REM as called in OPL16

Write a copy of the system E_CONFIG struct to pcfg where the E_CONFIG struct is
defined in p_config.h as:

typedef struct
 {
 UWORD countryCode;
 WORD gmtOffset;
 UBYTE dateType;
 UBYTE timeType;
 UBYTE currencySymbolPosition;
 UBYTE currencySpaceRequired;
 UBYTE currencyDecimalPlaces;
 UBYTE currencyNegativeInBrackets;
 UBYTE currencyTriadsAllowed;
 UBYTE thousandsSeparator;
 UBYTE decimalSeparator;
 UBYTE dateSeparator;
 UBYTE timeSeparator;
 UBYTE currencySymbol[9];
 UBYTE startOfWeek;
 UBYTE summerTime;
 UBYTE clockType;
 UBYTE dayAbbreviation;
 UBYTE monthAbbreviation;
 UBYTE workDays;
 UBYTE units;
 UBYTE spare[9];
 } E_CONFIG;.

The countryCode specifies a country by its international dialling code.

Appendix 23

EPOC16 identifiers
Details of many identifiers or defines, environment variables and reserved (magic) statics
are given here to assist the reader, however the current value of any of the identifiers
referred to here should always be confirmed by reference to other relevant documentation
e.g. header files (i.e. .h or .g files) provided with the appropriate SDK.

For defines/identifiers see the defines.dbf (in the DEFINES directory) Psion database file
on the supplementary disks for a comprehensive set of defines with their corresponding
numerical values.

Identifiers code Description
E_MAX_NAME 12 maximum length of an EPOC16 process name
E_MAX_ENV_SIZE 16 maximum length of the name of an environment

variable
E_MAX_PROCESSES 24 maximum number of active processes running

under EPOC16
P_FNAMESIZE 128 maximum length of an EPOC16 file specification

see EPOCDEFS.H
E_PRIORITY_FORE 128 the default priority of a foreground process
P_ENVMAX 256 maximum size of an environment variable in bytes

EPOC16 Environment variables
A list of all the SIBO system and application environment variables and their functions.

The following table lists all environment variables on SIBO systems that are created or
read by Psion’s software. All Psion environment variable names contain the $ character,
any your own applications may create should never contain the $ character.

Name Environment Variable Function

EM$ Used by the CLIB and PLIB startup modules. Contains a string that
specifies a search path for the 8087 floating point emulator.

$WS_FL On HC with V3.5 of the window server, and all machines using version 4
or later. The initial value of the internal parameter that is set by wSystem is
loaded from the $WS_FL environment variable when the window server
starts. Ensures the window server will:- provide the notifier service, report
low battery voltages, present a hung-up status window if an application
hangs, report a process that terminates with a panic or with a negative
reason number.

24 Appendix

Name Environment Variable Function

$WS_FNTS

Contains a series of words, each of which includes the index of a font used
by the window server, as follows:- system font, notifier/alert font, status
window font, symbols font used for the status window diamond symbol,
medium 2 digital clock font, medium 2 date font, notifier/alert button font,
small status window clock font.

$WS_IF HC: the font used for output that is not graphics context directed is
determined by the $WS_IF ("Internal Font") environment variable. Should
contain a WORD binary value of 0 for WS_FONT_BASE, 1 for
WS_FONT_BASE+1, etc. If you change the value of $WS_IF, you must
reset the machine. The "factory" setting of $WS_IF is 4 (which selects the
S3 font).

$WS_SD Pressing shift-ctrl-psion-s on MC, S3, S3a/3c, Siena or Workabout saves
the current screen to a file called screen.pic in the current path of the
window server. An existing file of the same name is replaced. The current
path of the window server on a SIBO machine is always LOC::M:\. If an
environment variable with the name $WS_SD exists, the window server uses
its value to open the file to be created. E.g. running the following
program:

#include <p_std.h>

GLDEF_C INT main(VOID)
 {
 p_setenv("$WS_SD","B:\\SCREEN.PIC");
 return(0);
 }

subsequently causes the screen dump to be written to the root directory of
the local B: drive. If the save fails for any reason, the file is not produced
and no notification of the failure is given. You can use this behaviour to
disable the shift-ctrl-psion-s screen dump key by setting up $WS_SD to
contain an illegal file specification. E.g. inserting the following line of
code:- p_setenv("$WS_SD","");disables the screen dump key.

$WS_SF Determines the system font, which should contain a WORD binary value of 0
for WS_FONT_BASE, a WORD binary value of 1 for WS_FONT_BASE+1, etc.
If you change the value of $WS_SF, you must reset the machine

M$V Evaluator format preferences, stored as an HWIM
EXTENDED_MEM_VALUES structure. Read and written by the
ws_eval_env method of the WSERV class.

D$X Values may vary in non-English machines. Telephone dialling preferences,
stored as a DIAL_ENVAR structure. Read and written by ws_dial_env
method of the WSERV class. Normal default values are: toneLengthTicks
= 8, delayLengthTicks = 8, pauseLengthTicks = 48,
dialOutCode[] = "9".

Appendix 25

Name Environment Variable Function

L$X Read by the S3c only, to provide an extra option for the ‘Use’ choice list of
the System Screen’s ‘Communications’ dialog. Should contain three
leading byte counted items which are:- text for the extra option, which will
be appended to the choice list; full file specification of the file to p_execc
if the new option is selected; additional command line data. E.g. to add an
‘IRcom’ option that executes the file loc::m:\sys$irc.img, passing it
the command line “-P1”, the environment variable could be set (using an
HC-style Command Processor).by: set
L$X=\05IRCom\13LOC::M:\SYS$IRC.IMG\03-P1

Additional command line options can be appended to any specified using
the ‘Extra parameters’ line in the System screen’s ‘Communications’
dialog.

P$D Type of the port used for printing, held as a zero terminated character
containing a single ASCII digit. The possible port types are:-
PRINTER_PORT_PARALLEL = '0'; PRINTER_PORT_SERIAL = '1';
PRINTER_PORT_FILE = '2'; PRINTER_PORT_FAX = '3'. The
default value represents PRINTER_PORT_PARALLEL. Set/created by the
PRINTER pr_set_port_type method, got by the PRINTER
pr_port_data method.

P$F File to which printing is to be directed, held as a zero terminated character
string. The default print file name is p.lis. Set/created by the PRINTER
pr_store_srchar method, got by the PRINTER pr_port_data
method.

P$S Characteristics of the serial port when used for printing, held as a
P_SRCHAR structure. Default values are: tbaud = P_BAUD_9600, rbaud
= P_BAUD_9600, frame = P_DATA_8, parity = 0, hand =
P_OBEY_XOFF|P_OBEY_DSR|P_IGN_CTS, xoff = oX11, xon =
oZ11, flags = 0, tmask = 0. Set/created by the PRINTER
pr_store_srchar method, got by the PRINTER pr_port_data method.

P$M Specification of the current printer model, held as a zero terminated
character string, which contains an ASCII digit, followed by the name of a
printer driver (.wdr) file. The digit specifies the index number, starting
from zero, of the model within the printer driver file. The default value is
“0BJ.WDR” (the file bj.wdr is in the ROM of relevant machines and
contains only one model - for the BJ-10e printer). Set/created by the
PRINTER pr_set_model method, got by the PRINTER
pr_sense_model method.

P$P Contains two bytes of data that specify the display preferences for print
preview. The first byte is an ASCII digit specifying the number of pages to
display, whichmust be in the range ‘1’ to ‘4’. The second byte is also an
ASCII digit, which may be ‘1’, indicating that margins are to be visible
during print preview, or ‘0’. Set/created by the PRVVIEW wn_init method

26 Appendix

Name Environment Variable Function

P$PP Port used for parallel printing, specified as a single ASCII character, for
example, ‘B’. Should only be set on machines that have more than one
port, such as the Workabout. It is read, but not created, by the
pr_sense_port method of the PRINTER class.

P$SP Port used for serial printing, specified as a single ASCII character, for
example, ‘A’. Should only be set on machines that have more than one
port, such as the Workabout. It is read but not created, by the
pr_sense_port method of the PRINTER class.

P$Z Paper size, stored as a single ASCII digit. It is normally ‘0’ (A4) or ‘4’
(Letter). Only used on the Siena & 3c. It is not supported on Siena, version
4.20 or below.

P$IP Single ASCII character, specifying the port letter for the IR printing
device. Used on the Siena & S3c only.

P$PX Contains device type & serial characteristics for ‘Parallel’ printing. Used
only on the Siena and the Series 3c, which communicate with the Parallel
cable via a serial interface. Contains a one byte device type (0 is parallel)
followed by a P_SRCHAR struct, as defined in p_serial.h. Used on the
Siena & S3c only

C$CALC Used on Siena & S3c machines only, stores Calculator display preferences.

M$0M0 to
M$9M9

Contain the current values of the ten (Advanced view) calculator
memories. The names are dependent on the names of the memories, as seen
from within the Calculator application, e.g if memory M2 is renamed to
“Memory2”, the environment variable M$2M2 will be replaced by an
environment variable with the name M$2MEMORY2. The names will never
exceed eleven characters.

TW$S Contains permanent data for the Tips application. The data consists of a
single byte containing two flags:
0x02 = if set, the display of tips is enabled
0x04 = if set, tips are displayed once per day, otherwise they are
displayed whenever the machine is turned on

W$C Contains display preferences for World application, as three WORDs:-
clock type: WS_CLOCK_FORCE_ANALOG or WS_CLOCK_FORCE_DIGITAL
map colour: TRUE for grey map FALSE for black map
distance units: WR_UNITS_MILES (0), WR_UNITS_KILOMETERS (1) or
WR_UNITS_NAUTICAL (2)

W$R Stores permanent data for the World database. Content has 3 elements:- a
signature for the world database file, including file version; data specifying
home city; data specifying default country, that is, the country to which
telephone numbers are assumed to belong if a country is not specified.

Appendix 27

Name Environment Variable Function

SP$DRV Identifies the drive that contains the Spellchecker’s global dictionary, as set
from the Spell application’s Install menu option. It contains a single ASCII
character that may be ‘A’, ‘B’ or ‘M’.

SP$OPT Stores the preferences settings from the Spell application as a series of
flags, stored in a single UWORD. Contents affect spellchecker & thesaurus
(not necessarily used by both). The content is an ORed combination of the
following set of values, selected by the user from the Spell application’s
Preferences menu option:
0x0100: if set, ignore words all in upper case
0x0200: if set, ignore words containing punctuation
0x0400: if set, ignore repeated words
0x0800: if set, ignore the case of repeated words
0x1000: if set, show the definitions window

WP$SPEL

Used by all applications that may wish to access Spellchecker. The content
is a single byte with a value of zero, but has no significance. Its existence
indicates that Spellchecker is installed.

WP$THES Used by all applications that may wish to access the Thesaurus. The
content is a single byte with a value of zero, but has no significance. Its
existence indicates that the Thesaurus is installed.

F$X Contains two bytes of preferences. The first byte contains one of the ASCII
characters ‘M’, ‘A’ or ‘B’, representing the drive that is currently used to
store the application’s intermediate files. The second byte contains a
combination of the following flags:
0x01: if set, a new fax job is created on selection of ‘Print to fax’.
Otherwise, the document is simply processed to produce an intermediate
file, for later sending
0x02: if set, intermediate files are automatically deleted after they have
been sent

F$XM Contains the current 3Fax modem parameters.

F$XP Stores power usage data for the 3Fax device. Contains time on batteries
and time on mains.

28 Appendix

Name Environment Variable Function

MAIL$ST Used, with some differences in content, by both the Corporate and the
Internet PsiMail applications. It is created by an email application
whenever a mail session completes, to contain data passed from the
message transfer agent (MTA) to the mail client. It is not a permanent store
of data, as it is deleted and recreated every time the MTA starts. A
MAIL$ST environment variable created by the Corporate mail application
will not disrupt the Internet mail application, should it be run on the same
machine, and vice versa.

The content for the Corporate application consists of a sequence of five
UWORDs, in the following order:- a count of the messages that were sent; a
count of the messages that were received; a count of the messages that were
not sent; a count of the messages that are marked as read; a flag which, if
set to TRUE, indicates that some messages were not received

The content for the Internet application consists of a sequence of eight
UWORDs, in the following order: a count of the messages that were sent; a
count of the messages that were received; a count of the messages that were
not sent; a count of the messages that are marked as read; a count of
messages that were deleted from the mail server; the return code from the
MTA; the return code from the sending process (normally 0); the return
code from the receiving process (normally 0). The first 4 items are common
to both variants of MAIL$ST.

S$SVER Contains a text string representing the Workabout System Screen version
number, for example, “1.00F”. Only used on Workabout

C$P@ Set when exiting from the Workabout command processor. It contains a
single ASCII character representing the current drive, default value of
‘M’. Only used on Workabout.

C$PA to
C$PZ

C$PA may be set when exiting from the Workabout command processor, to
contain a text string representing the current path on drive A. It is not set if
the drive A path is to the root directory. Similar environment variables may
be set for all other possible drives - C$PB to C$PZ inclusive. Only used on
Workabout.

C$P£ Contains parameters used by Link when accessed from the Workabout
System Screen and/or Command Processor. Only used on Workabout.

CP Set following selection of the keyboard from the Command Processor or
the System Screen. It contains a single byte whose binary value is either 0
(Standard keyboard selected) or 1 (Special keyboard selected). Only used
on Workabout.

Appendix 29

Utility programs, SIBO C SDK V2.20
All of the following programs and utilities are located in the \SIBOSDK\SYS directory.

Utility Program Function
CTRAN.EXE Generates a .C source code file from a .CAT file in an application

project using Object Oriented Programming (OOP) techniques e.g.
when using HWIM applications or producing DYL's.

DEBUG.APP Debugging tool e.g. used in the DOS based Psion 3a Emulator
ECOBJ.EXE Converts .OBJ files for Object Oriented Programming based (OOP)

applications to place the class descriptor data into the code segment. It
is run automatically, should not be directly executed.

ECONFIG.EXE Converts .FIG files, source files containing country specific data, such
as default international dialling code, currency symbol, into .CFO files,
used in building a new country specific version of a ROM.

ECPPFX.EXE A C++ compiler support utility. Used to patch object files for EPOC16
after compilation by the Topspeed compiler. Called automatically from
the project system (see TSPRJ.TXT) Should never be executed directly.

EDUMP.EXE Dump/display the details of an .IMG or .APP file. See EMAKE.
EMAKE.EXE Makes the .IMG file and used to add additional files into an executable

image file (.IMG) e.g .PIC, .RSC or .RZC, .SHD files. For example to
add icons, resources and shell data files into an executable file. Up to
four named files can be added into a .IMG file, which is then normally
renamed to a .APP file. The files to be added into the .IMG file are
specified in a .AFL file. If building the application by using a project
file (.PR) the EMAKE utility is called automatically if a .AFL file is
found. See EDUMP. Also used by the build process to convert the .EXE
file produced by the linker to a .IMG file. Can be used to convert the
.EXE file to other Psion file types e.g. Logical device driver (.LDD),
Physical device driver (.PDD) and Dynamic library (.DYL). Can also be
used to set the version number and/or the initial priority of the
executable.

EMAST.EXE Detailed in the HC programming guide, Vol 1 of the C SDK. It is a
mastering tool, for transferring an image of the HC ROM, onto an
SSD, for use as a master repro disk.

EREMAKE.EXE Used to change the files added into an existing executable file. See
EMAKE.EXE.

EROM.EXE Creates a master file image of the HC rom. Used when producing
customised versions of the HC rom.

FATD.EXE A FAT file system integrity checker
FE.EXE A TLV file editor
FLASHD.EXE A Flash SSD integrity checker
FLMAN.APP File manager used during debugging.
LPREP.EXE Used with RGCOMP and RGPREP in the production of .RG files from .RE

30 Appendix

Utility Program Function
resource externals files. LPREP is a general pre-processor (see
TSPRJ.EMP). Should never be executed directly.

MAKEALS.EXE Produces .ALS files from .MA files. See the Series 3a programming
guide 'Aliasing applications' in Vol 1 of the C SDK

MAKESHD.EXE Make a shell data (.SHD) from a source (.MS) file. Specifies the
application type e.g. 'File type' or 'No file type', the default application
name and icon size expected.

MASTCPY.EXE See EMAST for details
MCLINK.EXE Link PC to Psion via a com port.
MCPRINT.EXE Link PC to Psion to use PC as a print server.
RCHUF.EXE Compiled resource files (.RSC) can be compressed by RCHUF.EXE to

save space on the SSD supplied. The Psion will automatically
uncompress the data when it is loaded by the appropriate operating
system call or C function call

RCOMP.EXE Compiles a .RSS file into a .RSC files.
RGCOMP.EXE Used with RGPREP and LPREP in the production of .RG files from .RE

resource externals files. RGCOMP (see TSPRJ.EMP) Processes .I files to
????. Should never be executed directly.

RGPREP.EXE Used with RGCOMP and LPREP in the production of .RG files from .RE
resource externals files. RGPREP (see TSPRJ.EMP). (Processes .RE files
to .REX files ????) Should never be executed directly.

SDBG.EXE Symbolic debugger.
SLINK.EXE Simplified version of MCLINK to connect a PC to a Psion.
WAV2WVE.EXE Converts PC type sound files (.WAV) to Psion (.WVE) sound files
WDTRAN.EXE Compiles .WDR printer driver files from a .WD source file as described in

Chapter 3 of the Additional System Information, vol 1 of the C SDK.
WSDUMP.EXE A window server debugging aid that converts window server dump

output to human readable form.
WSFCOMP.EXE Font compiler for producing specific fonts from .FSC files.
WSPCX.EXE

Bitmap and PCX file conversion utility. Can be used to link multiple
.PIC files into one file.

WVEDMP.EXE Provides header info from a .WVE file. Usage WVEDMP
<filename.ext>.

Appendix 31

File types, by extension

Ext File Description
.AFL Add file list files (.AFL) are used to add resource files (RSC or RZC), graphics or

icons (.PIC) files and shell data (.SHD) to an .IMG file which by convention (not
automatic) are renamed to an application (.APP) files.

.AGN Format of agenda files, S3

.AIF Application information files (Series 5)

.ALS Program alias file for allowing an application to generate a separate list in the
system screen and possibly to have modified behaviour. The OPL editor is just
an alias of Word which operates on text files with a default extension of .OPL

.APP Executable application file which has added files included e.g. an icon file
(.PIC) and possibly others such as .RSC or .RZC files and a shell data file
(.SHD). Executable application files for Series 5 (EIKON or OPL)

.ASM Assembly language source file

.BMP PC type bitmap files.

.BTF HC command shell (batch) file.

.C C language source code files.

.CAT Category files for HWIM applications or DYL libraries.

.CFO Language configuration files – country specific

.CL Sub category files HWIM

.DBD Debugging file information for the symbolic debugger produced during the
compile and link step. The debugging information is only produced when the
VID debug pragma is enabled.

.DBF Psion ‘native’ Data application database files.

.DFL Add file lists for DYL

.DYL Dynamic library file.

.EXT Category file include file for HWIM or DYL projects

.G Include file HWIM or DYL projects – resource Ids

.HLP Help files, applications specific help for Series 5 (Series 5 data files)

.IMG Applications - image files

.ING ASM include file HWIM

.INI Application information files (Series 5 and MS Windows based systems)

.LDD Logical device driver files

.LIS Category listing file HWIM

.MA Alias files source files S3

.MAP Generated during the linking process, contains symbolic information.

.MAS HC ROM build

.MBM Multi bitmap files (Series 5)

.MS Text source file used to generate a Shell Data file (.SHD) using MAKESHD.EXE.

.OPA OPL translated application programs

.OPH OPL header files SIBO and Series 5 (formats differ)

32 Appendix

Ext File Description
.OPL OPL source code files SIBO
.OPO OPL translated program files
.OPX OPL language extension library files OPXs (Series 5)
.OXH OPX header files
.PCX PC type graphics bitmap/picture files.
.PDD Physical device driver file
.PH Multi bitmap header files SIBO (used with WSPCX)
.PIC Psion bitmap files which can be used to store icons and other graphics objects.
.PLK Multi bitmap files list specifier files (used with WSPCX)
.PR Project file used to control the compile / link / build process SIBO C.
.RE Resource externals file used with application resource (.RSS) files.
.RED The re-direction file used by the Topspeed compiler etc to locate the various

files such as #include files (e.g .H and .G files) etc.
.RG Produced from .RE files during the build process.
.RH Resource header files in SIBO OOP
.RSC The compiled form of a .RSS file. In multi-lingual applications there may be

several of these files supplied, one for each country supported. e.g.
myapp01.rsc for English, myapp02.rsc for French, myapp03.rsc for
German. SIBO and EPOC32 formats vary.

.RSG Resource generated files – resource ID inforamation

.RSS A resource script specifier file. Used to specify program constants, string data,
menu data, dialogue data and help resources etc. used within a programe. e.g.
typically used to store all the static or language specific data and strings used
by a program, particularly useful when producing multi-lingual applications.

.RTF Word processor file format (rich text format)

.RZC The compressed form of an .RSC file. Compiled resource files can be
compressed by RCHUF.EXE to save space on the SSD supplied. The Psion will
automatically uncompress the data when it is loaded by the appropriate
operating system call or C function call.

.SHD Shell data files specify the application type e.g. 'File type' or 'No file type', the
default application name and icon size expected.

.SPR Format of spreadsheet files

.SYM Created by the EMAKE utility when it makes the .IMG file. The debugging
information is produced during the compile and link step if the VID debug
pragma is enabled.

.TRM Serial port parameters

.TXT Format of text files

.WAV PC Windows type sound files.

.WD WDR printer driver source files SIBO

.WDR Printer driver file for SIBO

.WRD Format Psion word processor

.WRT Word template files (SIBO)

.WVE Psion digital sound files. (EPOC32 sound files do not have a .WVE extension)

Appendix 33

Special Keys
SIBO system special keys
On SIBO systems the Psion key is identified by the symbol.

On SIBO, Psion+Esc will quit from any console based process e.g. OPL or HWIF
program, unless it has been disabled by the application e.g. by using ESCAPE OFF in
OPL or HWIF uEscape(FALSE).

Control+S pauses the foreground application and any other key resumes.

Shift+Ctrl+Psion+S - captures the screen on a SIBO system to a file called
LOC::M:\screen.pic

The so-called 'Key of death' which kills the foreground process on SIBO systems is
Ctrl+Shift+Psion+K. Be careful with this key combination it will kill any process rather
than shutting it down.

Series 5 / WINS special keys
OPL32 has different keypresses for WINS and the Series 5, to avoid clashes with the
Windows task list keys.

For OPL32 or other 'console' based process, the ‘Kill’ key is:

WINS: Shift+Esc

Series 5: Control+Esc

The ‘Pause’ and ‘Resume’ keys are:

WINS: Control+Alt+S and Control+Alt+Q

Series 5: Control+Fn+S and Control+Fn+Q

Shift+Ctrl+Fn+S - Capture the screen on a Series 5 system to a file and folder of your
choice.

The so-called 'Key of death' which kills the foreground process on Series 5 is
Ctrl+Shift+Fn+K. Be careful with this key combination it will kill any process rather than
shutting it down.

34 Appendix

Glossary of terms

Term Description
3Link Psion's Serial link package (the Psion Parallel link package is sometimes

referred to as a "Parallel 3Link").
API Application Programmers Interface – a library provided for programmers,

typically to provide access to operating system functions and facilities.
ARM Advanced RISC Machines
ARM 710a Advanced RISC Machines Processor, Series 5
ASCII text or
characters

The American Standard Code for Information Interchange system for
assigning a numeric code for displayable and non-displayable characters.

BCS Binary Counted Strings. String variables that are preceded by a value that
gives the current length of the string (usually a byte value, which limits the
string length to 255 characters).

C A compiled programming language
C++ An object-oriented super-set of the C language
CF Compact flash - non volatile storage media, used on Series 5
CISC Complex Instruction Set Computers
CLIB 'C' Library. This library is very similar to standard 'C' libraries from other

development systems such as Borland or Microsoft. Developers can
consider using CLIB if they are unfamiliar with Psion's proprietary
languages, such as PLIB, or if they have to port some existing code from
another project in another development environment.

CODEC Coding and Decoding of Analog data streams to and from digital data.
Compact Flash CF - non volatile storage media, for Series 5
DMA Direct Memory Access controller
DRAM Dynamic Random Access Memory
DSP Digital Signal Processor
DTMF Digital Tone Multiple Frequency
DYL see Dynamic library
Dynamic library
(DYL)

OOP based library code modules used on SIBO systems

EIKON The default Graphical User Interface on Series 5
Environment
variable

Unit of storage used on SIBO system. Globally available through system
functions.

EPOC Psion's operating system – usually referring to SIBO systems.
EPOC16 Psion's operating system – specifically referring to SIBO systems.
EPOC32 Psion's operating system – specifically referring to 32-bit systems.
FIFO First in, first out
Flash RAM Flash SSD storage not needing power to maintain the data
Flash SSD Solid State Disk designed to store information that is unlikely to be altered

frequently.
FMFS Flash Memory Filing System used in Flash SSDs.
FORM A DYL providing screen layout, formatted text and printing.
GDI Graphics device interface
Heap An area of memory used for dynamic storage of program data

Appendix 35

Term Description
HWIF Handheld Wimp InterFace library. This contains library routines for

creating menus, dialogs and edit boxes, and for carrying out printing. It has
the style of traditional 'C' programming, in contrast to the HWIM library. It
allows some measure of access to the user interface software in the ROMs
of the SIBO computer range, but not as much as the HWIM library does.

HWIM Handheld Windows Icons and Menus library. This is a DYL that exists in
the ROMs of most SIBO systems, and also refers to a particular style of
programming, in which the full power of the user interface software in the
ROM is accessed. This programming style is fully object-oriented, in
contrast to HWIF, which basically provides a wrapping layer around the
object-oriented programming features.

I/O Short for Input / Output
I/O Semaphore Flag used to indicate the status of a processes I/O requests
Interrupt Hardware - physical signal to a processor of an external event.

Software- system of calling system related functions
IrDA Infrared Data Association
ISAM Indexed Sequential Access Method.
ISAM.DYL Indexed Sequential Access Method, object library
Magic (reserved)
static variable

A static variable private, but available to a particular process and any sub-
processes (tasks) on SIBO systems only.

MMU Memory management Unit
OLIB Psion's Object Library that provides the basis of application architecture

and the foundation for other DYLs.
OOP Object-Oriented Programming.
OPL Organiser Programming Language
OTP One-time programmable SSD.
OVAL Object-based Visual Application Language
PCMCIA Interface to miniature PC cards and peripheral
Pixels Short for picture elements.
PLIB PLIB is Psion's proprietary version of a standard 'C' Library. It differs from

CLIB by being more suited to the particular demands of programming
SIBO systems. It provides a closer binding to the ROM software than
CLIB.

PLL Phase Locked Loop, Series 5
Process control
block

Segment of memory used by the operating system to manage a process

Process data
segment

The area of memory used for a programs data and variable storage.

RAM Random Access Memory (as opposed to sequential access)
RAM SSD Solid State Disk used for storing information that is likely to be altered

often. These SSDs require a power source.
RCOM The communications program in Psion's 3Link package.
Reserved (magic)
static variable

See magic static

RISC Reduced Instruction Set Computer processor. CPUs with less complex
instructions, but where each is highly optimised for speed, e.g. execute in
the smallest number of CPU cycles.

RLIB A library used automatically by the SIBO C SDK
ROM Read Only Memory

36 Appendix

Term Description
RTF files Rich Text Format files - a word processor interchange format
SDK Software Development Kit.
Semaphore A software flag, typically used by an operating system.
SIBO Psion's hardware architecture SIxteen-Bit Organiser e.g. the Series 3, 3a/c

Siena, Workabout and HC.
SIR Serial Infrared - transmission of data
SRAM Static RAM
SSD Solid State Disk - see Flash RAM and RAM SSD
Stack Area of memory used for temporary storage e.g. by a processor
Static variable A variable that retains its contents between function calls
Text files see ASCII text
UART Universal Asynchronous Receiver Transmitter – serial comms
UIDs Unique Identifiers, Series 5 applications
URL Universal Resource Locator – used for World Wide Web addressing on the

Internet
Usenet A system of discussion or ‘news groups’ on thousands of topics taking

place via the Internet.
VAD Value Added Distributor, Psion nominated main distributors.
VAR Value Added Re-seller, typically suppliers of Psion computers with

specialised software or hardware added.
Variable static see Static variable
WDR printing A system for using printer drivers on SIBO system
Web site / page Personal or business oriented pages on the Internet located with URL

addresses.
WIMP In the widest sense, WIMP means Windows Icons Menus and Pointing

device, in other words, modern styles of user interfaces.
WLIB Window Server Library – SIBO
WYSIWYG What You See Is What You Get - usually applied to applications that

display information exactly as it will appear in the final form e.g. when
printed.

XADD A SIBO DYL for Print preview classes, grid classes etc.
ZTS Zero terminated string, a zero or null character (ASCII 0) is added to the

end of a string to mark its end.

Index

Index

Index

.

.ALS files creation
techniques · 15-23

.DBF files
EPOC16 · 6-11

@

@ operator
OPL statement · 9-12

3

3 link cable
S3/3a · 18-1

A

ABS
OPL statement · 9-75

Absolute timers
I/O · 7-11

ACOS
OPL statement · 9-68

ADDR
OPL statement · 9-59

ADJUSTALLOC
OPL statement · 9-58

Agenda files
format · 15-3

AIF files
Series 5 · 13-12

AKA
DOS OPL utility · 8-5

AKA OPL utility
DOS hosted · 2-13

Alarm sound
I/O · 7-11

Alarms

I/O · 7-13
ALERT

OPL statement · 9-144
Alerts

user interface · 5-5
Aliasing

active and passive · 4-21
applications · 4-21
techniques · 15-23

Aliasing applications
user interface · 5-20

Aliasing Word
techniques · 15-24

Aliasing, how it works
techniques · 15-25

ALLOC
OPL statement · 9-57

APP and IMG
C programs · 4-17

APP OPL16
OPL statement · 9-146

APP OPL32
OPL statement · 9-147

APPEND
OPL statement · 9-39

APPENDSPRITE
OPL statement · 9-124

Application
command lines · 4-22

Application aliasing
techniques EPOC16 · 15-22
user interface · 5-20

Application buttons
assigning · 4-24

Application command line
Series 5 · 13-15

Application debugging
Spy EPOC16 · 16-11
Spy EPOC32 · 16-12

Application design
asynchronous or synchronous · 5-2
user interface · 5-1

Application development
OVAL · 12-3

Application errors
auto switchoff · 16-3

Index

avoiding · 16-1
C programming · 16-10
command line · 16-4
command line and system messages ·

16-4
design · 16-3
directories and files · 16-3
fatal · 16-8
handling · 16-7, 16-8
introduction · 16-1
OPL · 16-9
OPL run-time · 16-9
OVAL programming · 16-10
panics · 16-8
program resources · 16-4
programming technique · 16-1
shutdown messages · 16-5
switch file messages · 16-5
system related · 16-6
testing · 16-12
user generated · 16-6

Application files
formats · 15-1
locating and naming · 5-7
user interface · 5-7

Application help
OPL32 · 14-7
OPL32 PPCOPL32 · 14-25

Application performance
OVAL programming · 12-10

Application reliability
OVAL programming · 12-10

Application testing
ATS automatic test system · 16-13

Application types
EPOC16 · 4-14

Application UIDs
Series 5 · 13-12

Application user interface
Series 5 · 13-12

Applications
aliasing: · 4-21
attached · 4-29
debugging overview · 16-10
EPOC16 · 3-14, 4-14
INI files Series 5 · 13-15

interface elements · 5-1
multi-lingual · 5-18
OPL · 4-15
OVAL · 4-19
Psion style guides · 17-1
public name · 4-19
Series 5 · 13-11
user interface style · 5-1

Applications debugging
C programming · 16-11
OPL programming · 16-10
OVAL programming · 12-9, 16-11

Applications examples on disk
OVAL programming · 12-12

Applications files
Series 5 · 13-12

Applications support
OVAL programming · 12-11

Applications, OVAL
running · 12-9

ARM 7100
Series 5 · 13-2

ARM 710a
Series 5 · 13-2

ARM processor
Series 5 · 13-2

ASC
OPL statement · 9-82

ASICs
SIBO architecture · 3-2

ASIN
OPL statement · 9-68

Assembler
CPOC · 2-8

Assembler and editor
S3Asm · 2-8

Assembler and linker
Borland · 2-7
Topspeed · 2-7

Assembler programming
book by John Farrant · 2-8
disk examples · 19-13

Assembler programs
IMG and APP · 4-17

Assembly language
options · 2-7

Index

reasons for using · 2-3
Assigning buttons

applications · 4-24
Asynchronous

file access EPOC16 · 6-6
I/O · 7-5

Asynchronous I/O
cancelling request · 7-7

Asynchronous operation
EPOC32 · 13-23

Asynchronous or synchronous
messaging · 4-31

Asynchronous or synchronous design
user interface · 5-2

AT
OPL statement · 9-21

ATAN
OPL statement · 9-69

ATS
automatic test system · 4-30

ATS automatic test system
application testing · 16-13

ATS macros
automatic test system · 2-15

Attached applications · 4-29
user interface · 5-19

Audio
Series 5 · 13-8

Author · 20-8
Auto switchoff

EPOC16 processes · 4-7
errors · 16-3
saving battery power · 3-4

Automatic test system
ATS · 4-30

Automation options
macros · 2-14

B

BACK
OPL statement · 9-42

Base
EPOC32 · 13-20

BEEP

OPL statement · 9-89
BEGINTRANS

OPL statement · 9-47
Binary files

EPOC16 · 6-7
Binary or text files I/O

EPOC16 files · 6-8
Bitmap files

EPOC16 · 15-8
EPOC16 utilities · 15-8
EPOC32 · 15-9
Series 5 · 13-6

Bitmaps
disassembling MBMs · 15-11
displaying MBMs · 15-11
Series 5 clipart · 15-11
techniques · 15-8
user interface · 5-11

Book
programming machine code · 2-8

BOOKMARK
OPL statement · 9-47

Borland
assembler and linker · 2-7

BREAK
OPL statement · 9-9

Bring
copying data between programs · 5-19
link paste · 4-29

Bring in OPL
techniques · 15-21

B-tree
ISAM files · 6-12

Bugged software
memory protection · 3-3

BUSY
OPL statement · 9-145

BYREF
OPL statement · 9-59

C

C
programming · 2-8

C cross linker

Index

PLINK from Microsoft C · 2-9
C development system

CPOC · 2-8
S3C111 · 2-9

C from OPL16
techniques · 15-20

C libraries
C programming · 11-2

C programming
application development · 11-11
C SDK directories · 11-18
C SDK documentation SIBO · 11-3
C SDK examples · 11-19
C SDK SIBO · 11-3
C SDK software SIBO · 11-3
code and data size · 11-16
debugging applications · 16-11
disk examples · 19-8
errors · 16-10
I/O devices examples · 11-23
introduction · 11-1
object oriented libraries · 11-2
reasons for using · 2-4
ROM resident libraries · 11-1

C programs
IMG and APP · 4-17

C SDK
C libraries · 11-2

C SDK
additional system information · 11-5
application development · 11-11
CLIB library · 11-12
code and data size · 11-16
complete index · 19-14
Debugger, SIBO · 11-7
directories · 11-18
documentation SIBO · 2-9, 11-3
DOS-based index app · 19-14
EPOC O/S system services · 11-5
example programs · 11-19
FORM reference · 11-10
general programming manual · 11-3
Hardware reference · 11-8
HC programming guide · 11-4
HWIF library · 11-13
HWIF programming · 11-8

HWIM reference · 11-10
I/O devices examples · 11-23
I/O devices reference · 11-7
index to · 19-14
ISAM reference · 11-9
object oriented libraries · 11-2
object oriented programming · 11-14
Object oriented programming · 11-8
OLIB reference · 11-9
PLIB library · 11-12
PLIB reference · 11-6
professional variant · 2-10
programming options · 2-9, 11-12
programming SIBO · 11-3
Series 3/3a programming guide · 11-4
software SIBO · 11-3
standard variant · 2-10
Tools reference · 11-6
Window server reference · 11-6
Workabout programming guide · 11-4
XADD reference · 11-11

C++
development option Series 5 · 13-35

C++ from OPL32
techniques · 15-20

C++ OOP
techniques · 15-28

CACHE
OPL statement · 9-50

CACHEHDR
OPL statement · 9-50

CACHEREC
OPL statement · 9-51

CACHETIDY
OPL statement · 9-52

CALL
OPL statement · 9-66

CANCEL
OPL statement · 9-46

CAPTION
OPL statement · 9-147

Caption keyword
OPL32 · 14-5

CHANGESPRITE
OPL statement · 9-125

CHR$

Index

OPL statement · 9-83
CLEARFLAGS

OPL statement · 9-7
CLIB library

C programming · 11-12
Client server

EPOC16 · 4-28
Client/server model

EPOC32 · 13-23
Clipart Series 5 · 15-11
CLOSE

OPL statement · 9-43
CLOSESPRITE

OPL statement · 9-126
Closing channel

I/O system · 7-4
CL-PS7110

Series 5 · 13-2
CLS

OPL statement · 9-18
CMD$

OPL statement · 9-149
Command line

errors from ignoring · 16-4
to magic statics · 4-23

Command line information
Series 5 · 13-15

Command line new
system screen · 4-28

Command lines
application · 4-22

commands
OPL · 9-2

COMMITTRANS
OPL statement · 9-47

Communicating externally
other devices · 3-9

Communications
EPOC32 support · 13-30
Series 5 · 13-9

COMPACT
OPL statement · 9-48

Compact flash
Series 5 · 13-5

Component re-use
EPOC32 · 13-29

COMPRESS
OPL statement · 9-38

Compute intensive
I/O processes · 7-7

Console services
I/O · 7-8

Contacts
acknowledgements and credits · 20-8
author · 20-8
EPOC World subscriptions · 20-1
Psion · 20-1
Psion ‘on-line’ groups · 20-6
Psion distributors/retailers · 20-5
Psion international · 20-2
Psion key web sites · 20-7
Psion software UIDs · 20-1
Psion UK VADS · 20-2
Psion web sites · 20-2

CONTINUE
OPL statement · 9-9

COPY
OPL statement · 9-29

Copying
Solo SSDs · 17-4

Copyrights
software · 1-3, 17-3

COS
OPL statement · 9-68

COUNT
OPL statement · 9-43

Country specific information
techniques · 15-19

CPOC
assembler · 2-8
development system C · 2-8

CPOC development system
assembler · 2-8

CREATE OPL16
OPL statement · 9-35

CREATE OPL32
OPL statement · 9-35

CREATESPRITE
OPL statement · 9-124

CSDK
ROM resident libraries · 11-1

CURSOR

Index

OPL statement · 9-22
Cursors

user interface · 5-13
Custom fonts

EPOC16 · 15-14
EPOC32 · 15-15

D

Data files
format · 15-3
format conversion · 15-4

Database
C SDK index · 19-14

Database compression · 6-12
Database files

EPOC16 · 6-11
Databases

OPL32 · 14-7
Date

and time · 3-9
DATETOSECS

OPL statement · 9-88
DATIM$

OPL statement · 9-84
DAY

OPL statement · 9-85
DAYNAME$

OPL statement · 9-88
DAYS

OPL statement · 9-86
DAYSTODATE · 9-141

OPL statement · 9-89
dBase files · 6-14
Dbf files

file format · 15-3
file format conversion · 15-4

DBMS
EPOC32 · 13-26

DBS database files
EPOC16 files · 6-13

DBS SDK
techniques · 15-22

dBUTTONS
OPL statement · 9-142

dCHECKBOX
OPL statement · 9-143

dCHOICE
OPL statement · 9-140

dDATE
OPL statement · 9-141

Debug code runtime
OPL debugger · 2-13

Debugger
OPL · 2-13

Debugging
overview · 16-10

Debugging applications
C programming · 16-11
EPOC16 Spy · 16-11
EPOC32 Spy · 16-12
OPL programming · 16-10
OVAL programming · 16-11

Debugging link
SIBO C · 18-5

DECLARE EXTERNAL
OPL statement · 9-56

DECLARE OPX
OPL statement · 9-6

dEDIT
OPL statement · 9-135

dEDITMULTI
OPL statement · 9-135

Default extension
file based application · 4-19

Default path
file based application · 4-20

DEFAULTWIN
OPL statement · 9-94

DEG
OPL statement · 9-69

DELETE
OPL statement · 9-29, 9-46

Develoment
platforms SIBO · 2-1

Developer support
Series 5 · 13-36

Development
SIBO system options · 2-2

Development cycle
software project · 2-6

Index

Development environment
ODE: · 2-11

Development in OPL
SIBO system · 8-2

Development options
OPL · 2-11

Development system for C
CPOC · 2-8

Device drivers
EPOC16 · 3-16
EPOC32 · 13-20, 13-21
I/O system · 7-2

Device drivers in detail
I/O · 7-16

Device drivers writing
I/O · 7-17

Device drivers,external
I/O · 7-17

dFILE OPL16
OPL statement · 9-137

dFILE OPL32
OPL statement · 9-138

dFLOAT
OPL statement · 9-140

Diagram
EPOC32 operating system · 13-18

Dialling DTMF sound
I/O · 7-11

DIALOG
OPL statement · 9-144

Dialogs
user interface · 5-4

DIAMINIT
OPL statement · 9-158

Diamond key
user interface · 5-3

DIAMPOS
OPL statement · 9-158

dINIT
OPL statement · 9-132

dINITS
OPL statement · 9-133

DIR$
OPL statement · 9-30

Directories
EPOC16 · 6-4

Directory names
standard EPOC16 · 6-4

Disk contents
index entry format · 19-1
index table · 19-19
locating information · 1-4

Disk examples
assembler programming · 19-13
C programming · 19-8
OPL programming · 19-2
OVAL programming · 19-11

Disk index
macro systems · 19-13
support and software files · 19-14
table · 19-19
utilities, general · 19-18
utility files · 19-14

Disk information
loading · 1-4

Display screens
Psion Series 3 and Siena · 3-7

Distribution
shareware · 17-2

Distribution methods
software · 17-4

Distribution options
floppy disk · 17-5
OTP SSDs · 17-4
Psion catalogue · 17-6
software · 17-2
software packaging supplies · 17-6
Solo SSDs · 17-4
SSDs · 17-4

dLONG
OPL statement · 9-141

DO...UNTIL
OPL statement · 9-8

Document files
Series 5 · 13-12

Document UIDs
Series 5 · 13-16

Documentation
OVAL programming · 12-10
SIBO C SDK · 2-9

Doors
glass EPOC32 · 13-25, 13-26

Index

iconic EPOC32 · 13-25
DOS based

emulator SIBO · 8-6
DOS based emulators

SIBO · 2-2
DOS based OPL development · 8-4
DOS based pre-processor

OPP · 8-5
DOS based utility

OPLLINT · 2-13
DOS OPL utility

AKA · 2-13
DOS or SIBO pre-processor

OPP · 2-13
DOW

OPL statement · 9-86
dPOSITION

OPL statement · 9-133
DRAWSPRITE

OPL statement · 9-125
Drives

flash EPROM · 3-6, 3-7
dTEXT

OPL statement · 9-134
dTIME

OPL statement · 9-141
DTMF dialling sound

I/O · 7-11
dXINPUT

OPL statement · 9-137
DYLs using

techniques · 15-20

E

E_CONFIG · A-22
E_MAX_GROWBY · A-1
EDIT

OPL statement · 9-23
Editing source code

OPL · 8-4
Editor and assembler

S3Asm · 2-8
Editor for OPL

windows based OPCLS · 2-13

EIKON
EPOC32 · 13-31
GUI elements EPOC32 · 13-31
programmers framework EPOC32 ·

13-31
Embedding objects

EPOC32 · 13-25
EMCC

web site · 20-8
Emulator SIBO

DOS based · 8-6
Emulators

DOS based SIBO · 2-2
End of file

setting new EPOC16 · 6-10
ENDA

OPL statement · 9-149
ENTERSEND

OPL statement · 9-168
ENTERSEND0

OPL statement · 9-168
Environment variable

types · 4-13
Environment variables

EPOC16 · 4-13, A-23
naming · 4-13
system · 4-14

EOF
OPL statement · 9-43

EPOC operating system
EPOC16 version · 3-11
EPOC32 version · 13-18

EPOC World
subscriptions · 20-1
support Series 5 · 13-36

EPOC16
application types · 4-14
applications · 3-14, 4-14
auto switchoff and processes · 4-7
bitmap file producting · 15-8
bitmap file utilities · 15-8
client server services · 4-28
clients servers processes · 3-12
device drivers · 3-16
directories · 6-4
environment variables · A-23

Index

errors in program code · 4-32
fatal errors · 4-32
file access remote · 6-5
file formats · 15-1
file name extensions · 6-3
file name parsing · 6-2
file naming system · 3-15
file server · 6-5
file specification · 3-16
fonts · 15-12
fonts customised · 15-14
foreground/background processes ·

3-13
I/O (input / output) · 3-16
I/O semaphore · 4-3
I/O system · 7-1
icon files · 15-9
identifiers · A-23
idle object or sub-process · 4-8
idle objects · 4-8
inactivity counter resets · 4-7
IPCS, inter-process communications

· 3-15
memory · 4-9
multi tasking and threading · 3-14
operating system · 3-10, 3-11
OPL errors · A-6
OPL errors (-1 to -25) · A-6
OPL file and device errors (-32 to -

69) · A-7
OPL specific errors (-96 to -120) ·

A-9
OPL translator errors (-70 to -95) ·

A-8
OPL32 errors (-121 to -126) · A-10
Panics · 4-32
process control block · 4-5
process ID's · 4-5
process names · 4-6
process priorities · 4-1
process queues · 4-5
processes · 4-1
processes and auto switchoff · 4-7
processes and priorities · 3-12
processes clients servers · 3-12

processes foreground/background · 3-
13

re-entrant processes/functions · 4-12
screen capture · 15-8
semaphores · 4-2
servers clients processes · 3-12
shared code segments · 4-12
sound files · 15-6
sound files playing · 15-6
special keys · A-33
sub-process or idle object · 4-8
sub-process priorities · 4-8
SYS$NULL · 4-7
system processes · 4-4
utility programs · A-29

EPOC16 applications
memory · 3-14

EPOC16 errors
panic numbers · A-1

EPOC16 events
introduction · 3-13

EPOC16 file
selectors and editors · 6-2
types and formats · 6-7

EPOC16 file systems
installable · 6-5

EPOC16 file types
by extension · A-31

EPOC16 files
.DBF files · 6-11
asynchronous operations · 6-6
binary · 6-7
closing · 6-10
database files · 6-11
DBS database files · 6-13
directory names standard · 6-4
file management · 6-5
flash filing · 6-14
flushing file buffers · 6-9
format conversion · 6-7, 15-2
I/O errors · 6-10
I/O, binary or text · 6-8
introduction · 6-1
ISAM database files · 6-12
open modes · 6-9
positioning within · 6-10

Index

Psion application formats · 6-7
reading and writing · 6-9
setting new end of file · 6-10
specification · 6-1
SSDs and robust applications · 6-14
text · 6-8
wildcard searches · 6-3

EPOC16 from OPL
techniques · 15-20

EPOC16 operating system
key features · 3-10
panics · A-1

EPOC16 panics
object oriented (SIBO) · A-4
window server · A-3

EPOC16 process
message slots · 4-30

EPOC16 programming
aliasing applications · 15-22

EPOC16 semaphores
asynchronous versus synchronous ·

4-2
EPOC16 Spy

debugging applications · 16-11
EPOC32

asynchronous operation · 13-23
bitmap files · 15-9
client/server model · 13-23
communications support · 13-30
component re-use · 13-29
DBMS · 13-26
device drivers · 13-20, 13-21
EIKON · 13-31
EIKON GUI elements · 13-31
EIKON programmers framework ·

13-31
embedding objects · 13-25
file formats · 15-2
file server · 13-20, 13-22
fonts · 13-27
fonts customised · 15-15
glass doors · 13-25, 13-26
icon files · 15-10
iconic doors · 13-25
kernel · 13-20
MBM bitmap files · 15-11

MBM bitmaps disassembling · 15-11
message passing · 13-22
operating system · 3-11
operating system diagram · 13-18
operating system Series 5 · 13-18
printing · 13-28
processes and threads · 13-19
rich text · 13-27
screen capture · 15-9
sound files · 15-7
sound files playing · 15-7
special keys · A-33
stream store · 13-24
support services · 13-22
the Base · 13-20
threads and processes · 13-19
user library · 13-20, 13-21
variants · 13-32
variants WINC · 13-33
variants WINS · 13-33

EPOC32 files
format conversion · 15-2

EPOC32 Spy
debugging applications · 16-12

EPROM
flash · 3-6, 3-7

ERASE
OPL statement · 9-41

ERR
OPL statement · 9-13

ERR$
OPL statement · 9-14

Error
switch files messages · 16-5

Error codes
applications · 16-8

Error handling
applications · 16-7

Errors
auto switchoff · 16-3
avoiding · 16-1
C programming · 16-10
command line · 16-4
directories and files · 16-3
EPOC16 · 4-32
fatal · 16-8

Index

from ignoring command line · 16-4
I/O system · 7-4
introduction · 16-1
OPL run-time · 16-9
OVAL · 16-10, A-10
panics · 16-8
program resources · 16-4
programming · 16-1
programming design · 16-3
shutdown · 16-5
system related · 16-6
testing · 16-12
user generated · 16-6

Errors EPOC16
panic numbers · A-1

Errors fatal
EPOC16 · 4-32

Errors in OPL
EPOC16 · A-6

ERRX$
OPL statement · 9-14

ESCAPE OFF/ON
OPL statement · 9-27

EVAL
OPL statement · 9-83

Events
OVAL Programming · 12-2

Events introduction
EPOC16 · 3-13

Example files
OPL32 · 14-10

EXIST
OPL statement · 9-30

EXP
OPL statement · 9-70

EXT
OPL statement · 9-148

EXTERNAL
OPL statement · 9-56

External Communication
SIBO computers · 3-9

External device drivers
I/O · 7-17

F

Fatal errors
applications · 16-8
EPOC16 · 4-32
OPL · 4-32
OVAL · 4-32

Field types
ISAM files · 6-13

File access
remote EPOC16 · 6-5

File and device errors (-32 to -69)
EPOC16OPL · A-7

File buffers
flushing EPOC16 · 6-9

File changes
user interface · 5-8

File closing
EPOC16 files · 6-10

File conversion
formats EPOC16 · 6-7

File extension
default · 4-19

File format
Agenda files · 15-3
Data file conversion · 15-4
Data files · 15-3
OPL32 files · 15-5
Sheet files · 15-5
sound file conversion · 15-7
sound files EPOC16 · 15-6
sound files EPOC32 · 15-7
text files · 15-5
Word files · 15-4

File format conversion
EPOC16 · 15-2
EPOC32 · 15-2

File formats
application files · 15-1
EPOC16 · 15-1
EPOC32 · 15-2
Psion applications · 6-7
PSIONICS files · 15-1

File I/O errors
EPOC16 files · 6-10

File I/O, binary or text

Index

EPOC16 files · 6-8
File lists

system screen · 4-23
File management

EPOC16 · 6-5
File name

parsing EPOC16 · 6-2
File name editors

EPOC16 · 6-2
File name extensions

EPOC16 · 6-3
File name selectors

EPOC16 · 6-2
File naming system

EPOC16 · 3-15
File open modes

EPOC16 files · 6-9
File operations

asynchronous EPOC16 · 6-6
File positioning

EPOC16 files · 6-10
File reading and writing

EPOC16 files · 6-9
File server

EPOC16 · 6-5
EPOC32 · 13-20, 13-22

File services
I/O · 7-9

File specification
EPOC16 · 3-16, 6-1

File systems
installable EPOC16 · 6-5

File types
binary EPOC16 · 6-7
text EPOC16 · 6-8

File types and formats
EPOC16 files · 6-7

File types by extension
EPOC16 · A-31

Files
.DBF EPOC16 · 6-11
user interface · 5-7

Files in EPOC16
introduction · 6-1

Files locating and naming
user interface · 5-7

Files, database
EPOC16 files · 6-11

FIND
OPL statement · 9-40

FINDFIELD
OPL statement · 9-40

Finding information
on disk · 1-4

FINDLIB
OPL statement · 9-53

FIRST
OPL statement · 9-42

FIX$
OPL statement · 9-78

FLAGS
OPL statement · 9-148, 14-5

Flash
and robust programs · 3-7

Flash filing
EPOC16 files · 6-14

Flash SSDs
for developers · 17-5

Floppy disk
distribution option · 17-5

FLT
OPL statement · 9-76

Flushing File buffers
EPOC16 files · 6-9

FONT
OPL statement · 9-19

Font files
user interface · 5-15

fonts
UIDs · 9-98

Fonts
custom EPOC16 · 15-14
custom EPOC32 · 15-15
EPOC16 · 15-12
EPOC32 · 13-27
ROM based · 15-12
techniques · 15-8
user interface · 5-14

Fonts, custom
user interface · 5-15

Fonts, ROM based
user interface · 5-14

Index

Format
Agenda files · 15-3
Data file conversion · 15-4
Data files · 15-3
OPL32 files · 15-5
Sheet files · 15-5
sound file conversion · 15-7
sound files EPOC16 · 15-6
sound files EPOC32 · 15-7
text files · 15-5
Word files · 15-4

Format conversion
EPOC16 files · 15-2
EPOC32 files · 15-2

Formats
application files · 15-1
EPOC16 files · 15-1
EPOC32 files · 15-2

FRC
free running counter I/O · 7-13

Free running counter (FRC)
I/O · 7-13

FREEALLOC · 9-58
OPL statement · 9-58

Freeware
free software · 1-3

functions
OPL · 9-2

G

gAT
OPL statement · 9-103

gBORDER
OPL statement · 9-107

gBOX
OPL statement · 9-107

gBUTTON
OPL statement · 9-114

gCIRCLE
OPL statement · 9-116

gCLOCK
OPL statement · 9-116

gCLOCK, S3 and HC
OPL statement · 9-117

gCLOCK, S3a/c, Siena and WA
OPL statement · 9-118

gCLOCK, S5
OPL statement · 9-121

gCLOSE
OPL statement · 9-94

gCLS
OPL statement · 9-106

gCOLOR
OPL statement · 9-111

gCOPY
OPL statement · 9-112

gCREATE
OPL statement · 9-90

gCREATEBIT
OPL statement · 9-93

gDRAWOBJECT
OPL statement · 9-115

gELLIPSE
OPL statement · 9-116

GEN$
OPL statement · 9-79

GET
OPL statement · 9-25

GET$
OPL statement · 9-25

GETCMD$
OPL statement · 9-150

GETDOC$
OPL statement · 9-151

GETEVENT
OPL statement · 9-152

GETEVENT32
OPL statement · 9-153

GETEVENTA32
OPL statement · 9-155

GETEVENTC
OPL statement · 9-155

gFILL
OPL statement · 9-110

gFONT
OPL statement · 9-97

gGMODE
OPL statement · 9-99

gGREY
OPL statement · 9-95

Index

gHEIGHT
OPL statement · 9-101

gIDENTITY
OPL statement · 9-100

gINFO
OPL statement · 9-101

gINFO32
OPL statement · 9-102

gINVERT
OPL statement · 9-111

GIPRINT
OPL statement · 9-145

gLINEBY
OPL statement · 9-106

gLINETO
OPL statement · 9-107

gLOADBIT
OPL statement · 9-93

gLOADFONT
OPL statement · 9-96

GLOBAL variables
OPL statement · 9-54

Glossary · A-34
gMOVE

OPL statement · 9-103
gORDER

OPL statement · 9-91
gORIGINX

OPL statement · 9-92
gORIGINY

OPL statement · 9-92
GOTO

OPL statement · 9-10
GOTOMARK

OPL statement · 9-47
gPATT

OPL statement · 9-111
gPEEKLINE

OPL statement · 9-112
gPOLY

OPL statement · 9-110
gPRINT

OPL statement · 9-104
gPRINTB

OPL statement · 9-104
gPRINTCLIP

OPL statement · 9-104
gRANK

OPL statement · 9-92
Graphics

OPL32 · 14-6
user interface · 5-10

Graphics modes
Series 5 · 13-6

Grep utility
disk index · 19-18

gSAVEBIT
OPL statement · 9-94

gSCROLL
OPL statement · 9-113

gSETPENWIDTH
OPL statement · 9-112

gSETWIN
OPL statement · 9-91

gSTYLE
OPL statement · 9-98

gTMODE
OPL statement · 9-100

gTWIDTH
OPL statement · 9-105

gUNLOADFONT
OPL statement · 9-97

gUPDATE
OPL statement · 9-21

gUSE
OPL statement · 9-94

gVISIBLE
OPL statement · 9-92

gWIDTH
OPL statement · 9-101

gX
OPL statement · 9-103

gXBORDER
OPL statement · 9-109

gXPRINT
OPL statement · 9-105

gY
OPL statement · 9-103

Index

H

Handles
I/O system · 7-3

Hardware
PC link · 18-1
Series 5 · 13-1

Hardware and software
processor interrupts: · 3-3

Hardware diagram
Series 5 · 13-4

Hardware sound
Psion Series 3 and Siena · 3-8

HC
sound · 3-9

HC to PC · 18-3
Help

OPL32 applications · 14-7
OPL32 in PPCOPL32 · 14-25
program resources · 4-20

Help files
programming EPOC16 · 15-17
programming EPOC32 · 15-17
techniques · 15-16

Help information
user interface · 5-17

HEX$
OPL statement · 9-77

Hexadecimal
explained · 9-77

Hot keys
Series 5 · 13-7

HOUR
OPL statement · 9-85

HWIF library
C programming · 11-13

I

I/O
absolute timers · 7-11
alarm sound · 7-11
alarms · 7-13
async/synchronous timers · 7-12

asynchronous · 7-5
compute intensive processes · 7-7
console services · 7-8
device drivers · 7-2
device drivers external · 7-17
device drivers in detail · 7-16
dialling DTMF sounds · 7-11
file services · 7-9
free running counter (FRC · 7-13
infrared communications · 7-15
input / output, EPOC16 · 3-16
Link and NCP · 7-10
PAR device · 7-9
parallel port · 7-9
processes and timers · 7-11
sempahores and status words · 7-5
serial port device · 7-9
sound mechanisms · 7-10
sound systems · 7-10
Status words · 7-5
synchronous · 7-4
synchronous/async timers · 7-12
timer functions · 7-12
timers and processes · 7-11
timers relative · 7-12
world database · 7-14
writing device drivers · 7-17
Xmodem and Ymodem transfers · 7-

10
Ymodem and Xmodem transfers · 7-

10
I/O (input / output)

EPOC16 · 3-16
I/O asynchronous

cancelling request · 7-7
I/O devices

introduction · 7-1
list of · 7-1

I/O semaphore
EPOC16 · 4-3

I/O system
closing channel · 7-4
EPOC16 · 7-1
error avoidance · 7-4
functions · 7-3
handles · 7-3

Index

using · 7-2
I/O timers

async and synchronous · 7-12
IABS

OPL statement · 9-76
ICON

OPL statement · 9-149, 14-5
Icon files

EPOC16 · 15-9
EPOC32 · 15-10

Icons
applications Series 5 · 13-17
producing · 4-20
techniques · 15-8
user interface · 5-9

IDE
OVAL extra tools · 12-8
OVAL programming · 12-2

IDE examples
OVAL applications · 12-11

Identifiers
EPOC16 · A-23

Idle object
or sub-process EPOC16 · 4-8

Idle objects
EPOC16 · 4-8

IF...ENDIF
OPL statement · 9-10

IMG and APP
C and programs · 4-17

Inactivity counter resets
EPOC16 · 4-7

INCLUDE
OPL statement · 9-4, 9-5, 9-6, 9-55

Index to C SDK · 19-14
Index to disk

format of entries · 19-1
index table · 19-19
location · 1-4

Infrared communications
I/O · 7-15

Infrared link
PC to Psion · 18-2

Infrared printing
via a PC · 18-8

Infrared printing, · 18-11

INI file
procedures OPL32 PPCOPL32 · 14-

27
INI files

Series 5 applications · 13-15
INPUT

OPL statement · 9-23
Input focus

user interface · 5-6
Input output system

using · 7-2
INSERT

OPL statement · 9-46
INT

OPL statement · 9-76
Inter process communications

IPCS · 4-29
Interface

SSD · 3-5
Interface elements · 5-1
Interface style

applications · 5-1
Internal memory

RAM · 3-4
ROM · 3-4

Inter-process comms in OPL
techniques · 15-21

Interrupts to processor
hardware and software · 3-3

INTF
OPL statement · 9-76

INTRANS
OPL statement · 9-47

IOA
OPL statement · 9-162

IOC
OPL statement · 9-163

IOCANCEL
OPL statement · 9-164

IOCLOSE
OPL statement · 9-162

IOOPEN
OPL statement · 9-159

IOREAD
OPL statement · 9-161

IOSEEK

Index

OPL statement · 9-162
IOSIGNAL

OPL statement · 9-165
IOW

OPL statement · 9-166
IOWAIT

OPL statement · 9-164
IOWAITSTAT

OPL statement · 9-165
IOWAITSTAT32

OPL statement · 9-165
IOWRITE · 9-161

OPL statement · 9-161
IOYIELD

OPL statement · 9-164
IPCS

inter process communications · 4-29
inter-process communications

EPOC16 · 3-15
IPCS in OPL

techniques · 15-21
IPCS, inter-process communications

EPOC16 · 3-15
ISAM

B-tree files · 6-12
ISAM database files

EPOC16 · 6-12
ISAM files

field types · 6-13

J

Java
Series 5 · 13-35

K

Kernel
EPOC32 · 13-20

KEY
OPL statement · 9-26

Key components
SIBO architecture · 3-2

KEY$

OPL statement · 9-26
KEYA

OPL statement · 9-166
Keyboard conventions

Series 5 · 13-13
Keyboard input

user interface · 5-2
KEYC

OPL statement · 9-166
Keywords added

OPL32 · 14-3
Keywords amended

OPL32 · 14-4
Keywords removed

OPL32 · 14-2
KILLMARK

OPL statement · 9-47
KMAC

macro record/playback · 2-15
KMOD

OPL statement · 9-26

L

Language codes · A-19
Language options

programming · 2-3
Languages and platforms · 2-7
LAST

OPL statement · 9-42
LCLOSE

OPL statement · 9-67
LEFT$

OPL statement · 9-80
LEN

OPL statement · 9-82
LENALLOC

OPL statement · 9-59
Licensing

software · 17-3
Link and NCP

I/O · 7-10
Link cable

S3c, Seina and S5 · 18-2
Link paste

Index

bring · 4-29
copying data between programs · 5-

19
Link to PC software · 18-4
Linker and assembler

Borland · 2-7
Topspeed · 2-7

LINKLIB
OPL statement · 9-53

Link-paste in OPL
techniques · 15-21

LN
OPL statement · 9-70

LOADLIB
OPL statement · 9-52

LOADM
OPL statement · 9-48

LOC
OPL statement · 9-82

LOCALS variables
OPL statement · 9-55

LOCK
OPL statement · 9-151

LOG
OPL statement · 9-70

LOPEN
OPL statement · 9-66

LOWER$
OPL statement · 9-81

LPRINT
OPL statement · 9-67

M

Machine code
book by John Farrant · 2-8
options · 2-7
reasons for using · 2-3

Macro
ATS automatic test system · 2-15
KMAC record/playback · 2-15

Macro system
MACSYS freeware · 2-14

Macro systems
disk examples · 19-13

Macros
programming options · 2-14
reasons for using · 2-4

MACSYS
freeware macro system · 2-14

Magic statics
variable addresses · A-16
variables · 4-11

Magic statics
from command line · 4-23

Manuals and documentation
OVAL programming · 12-10

Manuals for OPL · 8-1
Masked ROMs

production · 17-5
SSDs · 17-5

MAX
OPL statement · 9-72

MBM bitmaps
disassembling · 15-11
displaying · 15-11

mCARD
OPL statement · 9-126

mCASC
OPL statement · 9-128

MClink · 18-4
MCPrint and RPrint · 18-7
MEAN

OPL statement · 9-73
Memory · 9-54

EPOC16 · 4-9
EPOC16 applications · 3-14
internal RAM · 3-4

Memory and storage
Series 5 · 13-5

Memory protection
bugged software · 3-3

Memory use
languages · 2-5

MENU
OPL statement · 9-129

Menu accelerators
keyboards · 5-18
user interface · 5-18

Menu hot keys
Series 5 · 13-7

Index

Menus
creating and handling · 5-3
user interface · 5-3

Message passing
EPOC32 · 13-22

Message slots
EPOC16 process · 4-30

Messages
shutdown · 4-27
switch files · 4-27
system screen · 4-27
user interface · 5-6

Messaging
asynchronous or synchronous · 4-31

Microsoft C compiler
PLINK cross linker · 2-9

MID$
OPL statement · 9-80

MIN
OPL statement · 9-73

mINIT
OPL statement · 9-126

MINUTE
OPL statement · 9-84

MKDIR
OPL statement · 9-33

Modal or non modal dialog
user interface · 5-6

MODIFY
OPL statement · 9-46

Mono-spaced text · 9-97
MONTH

OPL statement · 9-85
MONTH$

OPL statement · 9-87
mPOPUP

OPL statement · 9-131
Multi tasking and threading

EPOC16 · 3-14
Multi-lingual applications

user interface · 5-18

N

Naming

environment variables · 4-13
NCP and Link

I/O · 7-10
New command lines

Series 5 · 13-16
NEWOBJ

OPL statement · 9-167
NEWOBJH

OPL statement · 9-167
NEXT

OPL statement · 9-42
NUM$

OPL statement · 9-79

O

Object oriented (SIBO)
EPOC16 panics · A-4

Object oriented programming
C SDK · 11-14

Object oriented programming, OOP
techniques · 15-26

ODBINFO
OPL statement · 9-44

ODE
OPL development environment · 2-

11, 8-7
ODE link · 18-5
ODE with OPP

pre processor system · 8-8
OFF

OPL statement · 9-28
ONERR

OPL statement · 9-14
OOP

C programming · 11-14
OPA header changes

OPL32 · 14-5
OPEN OPL16

OPL statement · 9-36
OPEN OPL32

OPL statement · 9-37
OPENR

OPL statement · 9-37
Operating system

Index

country dependent info · A-22
EPOC16 · 3-10, 3-11
EPOC32 · 3-11
Series 5 EPOC32 · 13-18
text message · A-21

Operatings system
err message text get · A-20

OPL
address and pointer arithmetic · 9-59
application errors · 16-9
application keywords (OPAs) · 9-146
bitmap and window characteristics ·

9-96
bitmap and window information · 9-

100
bitmap management keywords · 9-90
branching · 9-8
cacheing procedures · 9-50
complete reference · 9-1
cursor positioning · 9-103
database management · 9-34
date and time keywords · 9-84
decisions · 9-8
development options · 2-11
device I/O keywords · 9-159
dialog keywords · 9-132
directory management · 9-33
dyl handling keywords · 9-167
dynamic library (DYL) handling · 9-

52
editing · 8-4
EPOC16 calls · 9-64
error handling · 9-13
event handling keywords · 9-152
fatal errors · 4-32
file I/O keywords · 9-159
file-handling · 9-28
file-management general · 9-28
flow control · 9-8
functions and commands · 9-2
graphics cursor positioning · 9-103
graphics drawing keywords · 9-106
graphics keywords · 9-90
graphics sprite keywords · 9-124
graphics text keywords · 9-104
I/O keywords · 9-159

keyboard and screen control · 9-17
loops, branches and jumps · 9-8
machine code calls · 9-63
manuals · 8-1
memory handling keywords · 9-54
memory, address and pointer

arithmetic · 9-59
memory, dynamic allocation · 9-57
memory, peeking and pokeing · 9-60
memory, reading and writing · 9-60
menu keywords · 9-126
message keywords · 9-145
modules · 9-48
numeric conversions · 9-75
numeric functions · 9-68
numeric functions, general · 9-70
object handling keywords · 9-167
ODE development environment · 2-11
on SIBO with OPP/OPPDBG · 8-2
OPA keywords · 9-146
operating system calls · 9-64
OS calls · 9-64
printing · 9-66
procedure cacheing · 9-50
procedures · 9-4
program comments · 9-16
program control · 9-4
program modules · 9-48
program settings · 9-7
programming options · 2-11
screen and keyboard control · 9-17
sound keywords · 9-89
sprite keywords · 9-124
statistical functions · 9-72
status window keywords · 9-156
string keywords · 9-80
time and date keywords · 9-84
translation · 8-4
trigonometric functions · 9-68
variable declarations · 9-54
window and bitmap characteristics ·

9-96
window and bitmap information · 9-

100
window management keywords · 9-90

OPL applications · 4-15

Index

OPL code studio
OPLCS · 2-13

OPL code studio OPLCS · 8-6
OPL debugger

debug during runtime · 2-13
OPPDBG · 8-3

OPL development
DOS based · 8-4
PC based · 8-3

OPL DOS utility
AKA · 8-5

OPL errors
EPOC16 · A-6

OPL errors (-1 to -25)
EPOC16 · A-6

OPL file and device errors (-32 to -69)
EPOC16 · A-7

OPL language
reasons for using · 2-4

OPL ODE
OPL development environment · 8-7

OPL pre-processors
SIBO system · 2-12

OPL programming
debugging applications · 16-10
disk examples · 19-2
introduction · 8-1
run-time errors · 16-9

OPL programming tool
OPLLINT · 8-5

OPL running programs
techniques · 15-21

OPL SDK
SIBO · 2-12

OPL SIBO
SDK · 2-12

OPL specific errors (-96 to -120)
EPOC16 · A-9

OPL statement
@ operator · 9-12
ABS · 9-75
ACOS · 9-68
ADDR · 9-59
ADJUSTALLOC · 9-58
ALERT · 9-144
ALLOC · 9-57

APP OPL16 · 9-146
APP OPL32 · 9-147
APPEND · 9-39
APPENDSPRITE · 9-124
ASC · 9-82
ASIN · 9-68
AT · 9-21
ATAN · 9-69
BACK · 9-42
BEEP · 9-89
BEGINTRANS · 9-47
BOOKMARK · 9-47
BREAK · 9-9
BUSY · 9-145
BYREF · 9-59
CACHE · 9-50
CACHEHDR · 9-50
CACHEREC · 9-51
CACHETIDY · 9-52
CALL · 9-66
CANCEL · 9-46
CAPTION · 9-147
CHANGESPRITE · 9-125
CHR$ · 9-83
CLEARFLAGS · 9-7
CLOSE · 9-43
CLOSESPRITE · 9-126
CLS · 9-18
CMD$ · 9-149
COMMITTRANS · 9-47
COMPACT · 9-48
COMPRESS · 9-38
CONTINUE · 9-9
COPY · 9-29
COS · 9-68
COUNT · 9-43
CREATE OPL16 · 9-35
CREATE OPL32 · 9-35
CREATESPRITE · 9-124
CURSOR · 9-22
DATETOSECS · 9-88
DATIM$ · 9-84
DAY · 9-85
DAYNAME$ · 9-88
DAYS · 9-86
DAYSTODATE · 9-89

Index

dBUTTONS · 9-142
dCHECKBOX · 9-143
dCHOICE · 9-140
dDATE · 9-141
DECLARE EXTERNAL · 9-56
DECLARE OPX · 9-6
dEDIT · 9-135
dEDITMULTI · 9-135
DEFAULTWIN · 9-94
DEG · 9-69
DELETE · 9-29, 9-46
dFILE OPL16 · 9-137
dFILE OPL32 · 9-138
dFLOAT · 9-140
DIALOG · 9-144
DIAMINIT · 9-158
DIAMPOS · 9-158
dINIT · 9-132
dINITS · 9-133
DIR$ · 9-30
dLONG · 9-141
DO...UNTIL · 9-8
DOW · 9-86
dPOSITION · 9-133
DRAWSPRITE · 9-125
dTEXT · 9-134
dTIME · 9-141
dXINPUT · 9-137
EDIT · 9-23
ENDA · 9-149
ENTERSEND · 9-168
ENTERSEND0 · 9-168
EOF · 9-43
ERASE · 9-41
ERR · 9-13
ERR$ · 9-14
ERRX$ · 9-14
ESCAPE OFF/ON · 9-27
EVAL · 9-83
EXIST · 9-30
EXP · 9-70
EXT · 9-148
EXTERNAL · 9-56
FIND · 9-40
FINDFIELD · 9-40
FINDLIB · 9-53

FIRST · 9-42
FIX$ · 9-78
FLAGS · 9-148, 14-5
FLT · 9-76
FONT · 9-19
gAT · 9-103
gBORDER · 9-107
gBOX · 9-107
gBUTTON · 9-114
gCIRCLE · 9-116
gCLOCK · 9-116
gCLOCK, S3 and HC · 9-117
gCLOCK, S3a/c, Siena and WA · 9-

118
gCLOCK, S5 · 9-121
gCLOSE · 9-94
gCLS · 9-106
gCOLOR · 9-111
gCOPY · 9-112
gCREATE · 9-90
gCREATEBIT · 9-93
gDRAWOBJECT · 9-115
gELLIPSE · 9-116
GEN$ · 9-79
GET · 9-25
GET$ · 9-25
GETCMD$ · 9-150
GETDOC$ · 9-151
GETEVENT · 9-152
GETEVENT32 · 9-153
GETEVENTA32 · 9-155
GETEVENTC · 9-155
gFILL · 9-110
gFONT · 9-97
gGMODE · 9-99
gGREY · 9-95
gHEIGHT · 9-101
gIDENTITY · 9-100
gINFO · 9-101
gINFO32 · 9-102
gINVERT · 9-111
GIPRINT · 9-145
gLINEBY · 9-106
gLINETO · 9-107
gLOADBIT · 9-93
gLOADFONT · 9-96

Index

GLOBAL variables · 9-54
gMOVE · 9-103
gORDER · 9-91
gORIGINX · 9-92
gORIGINY · 9-92
GOTO · 9-10
GOTOMARK · 9-47
gPATT · 9-111
gPEEKLINE · 9-112
gPOLY · 9-110
gPRINT · 9-104
gPRINTB · 9-104
gPRINTCLIP · 9-104
gRANK · 9-92
gSAVEBIT · 9-94
gSCROLL · 9-113
gSETPENWIDTH · 9-112
gSETWIN · 9-91
gSTYLE · 9-98
gTMODE · 9-100
gTWIDTH · 9-105
gUNLOADFONT · 9-97
gUPDATE · 9-21
gUSE · 9-94
gVISIBLE · 9-92
gWIDTH · 9-101
gX · 9-103
gXBORDER · 9-109
gXPRINT · 9-105
gY · 9-103
HEX$ · 9-77
HOUR · 9-85
IABS · 9-76
ICON · 9-149, 14-5
IF...ENDIF · 9-10
INCLUDE · 9-4, 9-5, 9-6, 9-55
INPUT · 9-23
INSERT · 9-46
INT · 9-76
INTF · 9-76
INTRANS · 9-47
IOA · 9-162
IOC · 9-163
IOCANCEL · 9-164
IOCLOSE · 9-162
IOOPEN · 9-159

IOREAD · 9-161
IOSEEK · 9-162
IOSIGNAL · 9-165
IOW · 9-166
IOWAIT · 9-164
IOWAITSTAT · 9-165
IOWAITSTAT32 · 9-165
IOWRITE · 9-161
IOYIELD · 9-164
KEY · 9-26
KEY$ · 9-26
KEYA · 9-166
KEYC · 9-166
KILLMARK · 9-47
KMOD · 9-26
LAST · 9-42
LCLOSE · 9-67
LEFT$ · 9-80
LEN · 9-82
LENALLOC · 9-59
LINKLIB · 9-53
LN · 9-70
LOADLIB · 9-52
LOADM · 9-48
LOC · 9-82
LOCAL variables · 9-55
LOCK · 9-151
LOG · 9-70
LOPEN · 9-66
LOWER$ · 9-81
LPRINT · 9-67
MAX · 9-72
mCARD · 9-126
mCASC · 9-128
MEAN · 9-73
MENU · 9-129
MID$ · 9-80
MIN · 9-73
mINIT · 9-126
MINUTE · 9-84
MKDIR · 9-33
MODIFY · 9-46
MONTH · 9-85
MONTH$ · 9-87
mPOPUP · 9-131
NEWOBJ · 9-167

Index

NEWOBJH · 9-167
NEXT · 9-42
NUM$ · 9-79
ODBINFO · 9-44
OFF · 9-28
ONERR · 9-14
OPEN OPL16 · 9-36
OPEN OPL32 · 9-37
OPENR · 9-37
OS · 9-64
PARSE$ · 9-31
PATH · 9-148
PAUSE · 9-25
PEEK$ · 9-62
PEEKB · 9-61
PEEKF · 9-62
PEEKL · 9-62
PEEKW · 9-62
PI · 9-70
POINTERFILTER · 9-156
POKE$ · 9-61
POKEB · 9-61
POKEF · 9-61
POKEL · 9-61
POKEW · 9-61
POS · 9-44
POSITION · 9-42
POSSPRITE · 9-126
PRINT · 9-24
PROC..ENDP · 9-4
PUT · 9-46
RAD · 9-69
RAISE · 9-15
RANDOMIZE · 9-71
REALLOC · 9-58
RECSIZE · 9-45
REM · 9-16
RENAME · 9-30
REPT$ · 9-81
RETURN · 9-12
RIGHT$ · 9-81
RMDIR · 9-33
RND · 9-71
ROLLBACK · 9-48
SCI$ · 9-79
SCREEN · 9-17

SCREENINFO · 9-18
SECOND · 9-84
SECSTODATE · 9-88
SEND · 9-167
SETDOC · 9-150
SETFLAGS · 9-7
SETNAME · 9-150, 9-157
SETPATH · 9-33
SIN · 9-68
SPACE · 9-32
SQR · 9-70
STATUSWIN · 9-156
STATWININFO · 9-157
STD · 9-74
STOP · 9-13
STYLE · 9-20
SUM · 9-74
TAN · 9-68
TESTEVENT · 9-152
TRAP · 9-16
TYPE · 9-148
UADD · 9-60
UNLOADLIB · 9-53
UNLOADM · 9-49
UPDATE · 9-39
UPPER$ · 9-81
USE · 9-38
USR · 9-63
USR$ · 9-64
USUB · 9-60
VAL · 9-82
VAR · 9-74
VECTOR · 9-11
WEEK · 9-87
WHILE...ENDWH · 9-8
YEAR · 9-86

OPL translator errors (-70 to -95)
EPOC16 · A-8

OPL translators
PC hosted for SIBO · 2-12

OPL utility
AKA · 2-13

OPL16
executable files PPCOPL16 · 10-3
language resource files PPCOPL16 ·

10-4

Index

PPCOPL16 application functions ·
10-10

PPCOPL16 command line · 10-8
PPCOPL16 control menu · 10-13
PPCOPL16 DYL loading · 10-7
PPCOPL16 edit menu · 10-10
PPCOPL16 error handling · 10-5
PPCOPL16 events and user input ·

10-9
PPCOPL16 file locations · 10-5
PPCOPL16 file menu · 10-10
PPCOPL16 game menu · 10-11
PPCOPL16 help key · 10-14
PPCOPL16 intialisation procedure ·

10-5
PPCOPL16 language text · 10-6
PPCOPL16 program credits · 10-8
PPCOPL16 random seed · 10-8
PPCOPL16 screen resolution · 10-6
PPCOPL16 special menu · 10-13
PPCOPL16 structure overview · 10-4
PPCOPL16 techniques · 10-1
source files PPCOPL16 · 10-3

OPL16 calling C
techniques · 15-20

OPL16 calling EPOC16
techniques · 15-20

OPL16 SDK
manuals · 8-9
SIBO · 8-8

OPL16 source code
protection · 8-13

OPL32
application help · 14-7
caption keyword · 14-5
databases · 14-7
development option Series 5 · 13-34
example files · 14-10
graphics · 14-6
help application · 14-7
introduction · 14-1
keywords added · 14-3
keywords amended · 14-4
keywords removed · 14-2
OPA header changes · 14-5
OPX callbacks · 14-10

OPX developing · 14-10
OPX headers · 14-8
OPX name clashes · 14-9
OPXs · 14-8
PPCOPL32 application files · 14-15
PPCOPL32 dialogs options · 14-22
PPCOPL32 documents and UIDs ·

14-16
PPCOPL32 edit menu · 14-22
PPCOPL32 error handling · 14-20
PPCOPL32 events and user input ·

14-18
PPCOPL32 events menu · 14-24
PPCOPL32 file menu · 14-21
PPCOPL32 graphics menu · 14-23
PPCOPL32 help · 14-25
PPCOPL32 ini file procedures · 14-27
PPCOPL32 introduction · 14-11
PPCOPL32 language text · 14-15
PPCOPL32 menu commands · 14-19
PPCOPL32 menus · 14-21
PPCOPL32 OPX menu option · 14-24
PPCOPL32 processing in detail · 14-

15
PPCOPL32 source files · 14-13
PPCOPL32 structure overview · 14-

13
PPCOPL32 support procedures · 14-

26
PPCOPL32 system messages · 14-19
PPCOPL32 techniques · 14-12
PPCOPL32 toolbar initialisation · 14-

17
PPCOPL32 toolbar options · 14-26
PPCOPL32 toolbar support · 14-15
PPCOPL32 tools menu · 14-25
PPCOPL32 view menu · 14-23
PPCOPL32 windows · 14-18
ROM based files reading · 14-11
source files Series 5 · 14-10
the changes · 14-1
toolbars · 14-6
UID unique identifier · 14-5

OPL32 calling C++
techniques · 15-20

OPL32 errors (-121 to -126)

Index

EPOC16 · A-10
OPL32 files

format · 15-5
OPLCS

OPL code studio · 2-13, 8-6
Windows based editor · 2-13

OPLLINT
programming tool · 8-5

OPLLINT utility
DOS based · 2-13

OPP
DOS based pre-processor · 8-5

OPP pre processor system
ODE · 8-8

OPP pre-processor
DOS or SIBO hosted · 2-13

OPP/OPPDBG
OPL on SIBO · 8-2

OPPDBG
OPL debugger · 8-3

OPPDBG/OPP
OPL on SIBO · 8-2

OPT SSDs
distribution option · 17-4

Options
programming language · 2-3

Options for programming
macros · 2-14

Options programming
C SDK SIBO · 2-9
SIBO C SDK · 2-9

OPX callbacks
OPL32 · 14-10

OPX developing
OPL32 · 14-10

OPX headers
OPL32 · 14-8

OPX name clashes
OPL32 · 14-9

OPX UIDs
Series 5 · 13-12

OPXs
callbacks OPL32 · 14-10
developing for OPL32 · 14-10
name clashes OPL32 · 14-9
OPL32 · 14-8

OS
OPL statement · 9-64

OVAL
applications · 4-19
errors · 16-10
fatal errors · 4-32
reasons for using · 2-4
Series 5 · 13-35
Visual basic for Psion · 2-14

OVAL applications
debugging · 12-9
development · 12-3
examples on disk · 12-12
IDE examples · 12-11
performance · 12-10
reliability · 12-10
running · 12-9
support · 12-11

OVAL errors
SIBO · A-10

OVAL examples
disk based examples · 12-12
IDE example applications · 12-11

OVAL IDE
extra tools · 12-8
integrated development environment ·

12-2
manuals and documentation · 12-10
PC platform · 12-2

OVAL link · 18-5
OVAL OOP

techniques · 15-27
OVAL platform

PC requirements · 12-2
OVAL programming

debugging applications · 16-11
developing · 12-1
disk examples · 19-11
events · 12-2
introduction · 12-1

P

Packaging supplies
software distribution · 17-6

Index

Panic numbers
EPOC16 · A-1

Panics
EPOC16 · 4-32
EPOC16 operating system · A-1
EPOC16 window server · A-3
system errors · 16-8

Panics, object oriented (SIBO)
EPOC16 · A-4

PAR device
I/O · 7-9

Parallel port device
I/O · 7-9

PARSE$
OPL statement · 9-31

Parsing file names
EPOC16 · 6-2

Path
default · 4-20

PATH
OPL statement · 9-148

PAUSE
OPL statement · 9-25

PC 3link cable
S3/3a · 18-1

PC based OPL development · 8-3
PC link

hardware · 18-1
introduction · 18-1

PC link cable
S3c, Seina and S5 · 18-2

PC link software · 18-4
PC linked with SIBO system · 2-3
PC to HC · 18-3
PC to Psion

infrared link · 18-2
PC to Workabout · 18-3
PEEK$

OPL statement · 9-62
PEEKB

OPL statement · 9-61
PEEKF

OPL statement · 9-62
PEEKL

OPL statement · 9-62
PEEKW

OPL statement · 9-62
Pen conventions

Series 5 · 13-14
PI

OPL statement · 9-70
Platforms

SIBO overview · 2-1
Platforms and languages · 2-7
PLIB library

C programming · 11-12
PLINK C cross linker

from Microsoft C compiler · 2-9
Pointer conventions

Series 5 · 13-14
POINTERFILTER

OPL statement · 9-156
POKE$

OPL statement · 9-61
POKEB

OPL statement · 9-61
POKEF

OPL statement · 9-61
POKEL

OPL statement · 9-61
POKEW

OPL statement · 9-61
Porting and re-using

source code · 2-5
POS

OPL statement · 9-44
POSITION

OPL statement · 9-42
POSSPRITE

OPL statement · 9-126
PPCOPL16

application functions OPL16 · 10-10
command line OPL16 · 10-8
control menu OPL16 · 10-13
credits procedure OPL16 · 10-8
DYL loading OPL16 · 10-7
edit menu OPL16 · 10-10
error handling OPL16 · 10-5
events and user input OPL16 · 10-9
file locations OPL16 · 10-5
file menu OPL16 · 10-10
game menu OPL16 · 10-11

Index

help key OPL16 · 10-14
intialisation procedure OPL16 · 10-5
language text OPL16 · 10-6
OPL16 techniques · 10-1
random seed OPL16 · 10-8
screen resolution OPL16 · 10-6
source files OPL16 · 10-3
special menu OPL16 · 10-13
structure overview OPL16 · 10-4
user input and events OPL16 · 10-9
window sizes OPL16 · 10-6

PPCOPL16 executable files
OPL16 · 10-3

PPCOPL16 language resource files
OPL16 · 10-4

PPCOPL32
application files OPL32 · 14-15
dialogs options OPL32 · 14-22
documents and UIDs OPL32 · 14-16
edit menu OPL32 · 14-22
error handling OPL32 · 14-20
events and user input OPL32 · 14-18
events menu OPL32 · 14-24
file menu OPL32 · 14-21
graphics menu OPL32 · 14-23
help option OPL32 · 14-25
ini file procedures OPL32 · 14-27
introduction OPL32 · 14-11
language text OPL32 · 14-15
menu commands OPL32 · 14-19
menus OPL32 · 14-21
OPX menu option OPL32 · 14-24
processing in detail OPL32 · 14-15
source files OPL32 · 14-13
structure overview OPL32 · 14-13
support procedures OPL32 · 14-26
system messages OPL32 · 14-19
techniques OPL32 · 14-12
toolbar initialistion OPL32 · 14-17
toolbar options OPL32 · 14-26
toolbar support OPL32 · 14-15
tools menu OPL32 · 14-25
UIDs and documents OPL32 · 14-16
view menu OPL32 · 14-23
windows OPL32 · 14-18

PRC SDK

techniques · 15-22
Pre-processor, OPP

DOS or SIBO hosted · 2-13
Pre-processors

OPL SIBO system · 2-12
PRINT

OPL statement · 9-24
Printer drivers

WDR utility EPOC16 · 15-18
Printing

EPOC32 · 13-28
linking introduction · 18-1
techniques · 15-18
user interface · 5-16
WDR utility EPOC16 · 15-18

Printing from a Psion · 18-8
Printing infrared

via a PC · 18-8
Printing to a file · 18-10
Printing to serial printers · 18-8
Printing via a parallel link · 18-9
Printing via a PC · 18-7
Printing, infrared · 18-11
PROC..ENDP

OPL statement · 9-4
Process control block

EPOC16 · 4-5
Process ID's

EPOC16 · 4-5
Process names

EPOC16 · 4-6
Process priorities

EPOC16 · 4-1
Process queues

EPOC16 · 4-5
Processes

in EPOC16 · 4-1
Processes and auto switchoff

EPOC16 · 4-7
Processes and functions

re-entrant · 4-12
Processes and threads

EPOC32 · 13-19
Processes and timers

I/O · 7-11
Processes co-operation

Index

between programs · 5-19
Processes, compute intensive

I/O · 7-7
Processor

SIBO · 3-3
Processor interrupts

hardware and software · 3-3
Professional variant

SIBO C SDK · 2-10
Program development

SIBO system options · 2-2
Program errors

EPOC16 · 4-32
Program resource

errors · 16-4
Program resources

help · 4-20
Programming

.ALS file creation · 15-23
aliasing applications · 15-22
aliasing Word · 15-24
aliasing, active and passive · 15-23
aliasing, how it works · 15-25
bitmaps · 15-8
C · 2-8
C from OPL16 · 15-20
C++ from OPL32 · 15-20
C++ OOP · 15-28
country specific information · 15-19
DBS SDK · 15-22
DYLs using · 15-20
EPOC16 from OPL16 · 15-20
errors · 16-1
extra SIBO SDKs · 15-21
fonts · 15-8
help files · 15-16
help files EPOC16 · 15-17
help files EPOC32 · 15-17
icons · 15-8
object oriented OOP · 15-26
OPL options · 2-11
OPL running programs · 15-21
OVAL · 2-14
OVAL development · 12-1
OVAL OOP · 15-27
PRC SDK · 15-22

printing · 15-18
Psion style guides · 17-1
PSIONICS · 15-1
resource files · 15-15, 15-16
resource files EPOC16 · 15-17
resource files EPOC32 · 15-17
SIBO OOP HWIM C · 15-27
SMS SDK · 15-22
sound · 15-5
TCP/IP SDK · 15-22
URI SDK · 15-22
World data · 15-19

Programming book
machine code by John Farrant · 2-8

Programming C
introduction · 11-1

Programming errors
auto switchoff · 16-3
avoiding · 16-1
design · 16-3
directories and files · 16-3

Programming language
options · 2-3

Programming OPL
introduction · 8-1

Programming options
C programming · 11-12
C SDK SIBO · 2-9
macros · 2-14
SIBO C SDK · 2-9

Programs
co-operation between · 5-19
EPOC16 utilities · A-29
running others · 5-19

Psion
Contacts · 20-1
international contacts · 20-2
on-line groups · 20-6
retailers for programmers · 20-5
VADS UK · 20-2
web sites · 20-2

Psion application files
formats EPOC16 · 6-7

Psion applications
file formats · 6-7

Psion catalogue

Index

software · 17-6
Psion emulators

DOS based SIBO · 2-2
Psion visual basic

OVAL · 2-14
PSIONICS

file formats · 15-1
techniques · 15-1

PsiWin · 18-6
PsiWin 1

SIBO · 18-6
PsiWin 1.x · 18-7
PsiWin 2

printing · 18-8
PsiWin 2, S5 · 18-6
Public name

applications · 4-19
Publishing

software · 17-3
PUT

OPL statement · 9-46

R

RAD
OPL statement · 9-69

RAISE
OPL statement · 9-15

RAM
internal memory · 3-4
SSD · 3-5

RANDOMIZE
OPL statement · 9-71

RCom · 18-4
scripts · 18-5

REALLOC
OPL statement · 9-58

Receiving messages
system screen · 4-27

Records
maximum in database · 6-11

RECSIZE
OPL statement · 9-45

Re-entrant
processes and functions · 4-12

Registration
shareware · 17-2

Relative timers
I/O · 7-12

REM
OPL statement · 9-16

Remote file access
EPOC16 · 6-5

RENAME
OPL statement · 9-30

REPT$
OPL statement · 9-81

Reserved (magic) statics
variable addresses · A-16

Reserved statics
variables · 4-11

Resets
inactivity counter · 4-7

Resource files
advantages of · 15-15
programming EPOC16 · 15-17
programming EPOC32 · 15-17
techniques · 15-15, 15-16
user interface · 5-17

RETURN
OPL statement · 9-12

Re-using and porting
source code · 2-5

Revtran
Reverse code translator · 8-13

Rich text
EPOC32 · 13-27

RIGHT$
OPL statement · 9-81

RMDIR
OPL statement · 9-33

RND
OPL statement · 9-71

Robust programs
using SSD · 3-7

ROLLBACK
OPL statement · 9-48

ROM
internal memory · 3-4
SSDs · 17-5

ROM based files

Index

reading OPL32 · 14-11
ROM based fonts

techniques · 15-12
ROM SSDs

production · 17-5
Rprint and MCPrint · 18-7
Running programs

user interface · 5-19
Running programs from OPL

techniques · 15-21

S

S3Asm
editor and assembler · 2-8

S3C111 development system
SIBO hosted · 2-9

SCI$
OPL statement · 9-79

Screen
Series 5 · 13-6
Siena and Series 3 · 3-11

SCREEN
OPL statement · 9-17

Screen capture
EPOC16 · 15-8
EPOC32 · 15-9

Screen display
Psion Series 3 and Siena · 3-7

Screen drawing
user interface · 5-13

Screen size compatibility
user interface · 5-11

SCREENINFO
OPL statement · 9-18

Scripts
RCom · 18-5

SDK
OPL SIBO · 2-12
OPL16 manuals · 8-9

SDK DBS
techniques · 15-22

SDK OPL16
manuals · 8-9
SIBO · 8-8

SDK PRC
techniques · 15-22

SDK SMS
techniques · 15-22

SDK TCP/IP
techniques · 15-22

SDK URI
techniques · 15-22

SDKs, extras
techniques · 15-21

SECOND
OPL statement · 9-84

SECSTODATE
OPL statement · 9-88

Segment registers
V30H and EPOC16 · 4-9

Segments
shared code EPOC16 · 4-12

Semaphore, I/O
EPOC16 · 4-3

Semaphores
asynchronous versus synchronous

EPOC16 · 4-2
EPOC16 · 4-2

Sempahores and status words
I/O · 7-5

SEND
OPL statement · 9-167

Serial port device
I/O · 7-9

Series 3
sound · 3-8

Series 3a/c
sound · 3-8

Series 5
AIF files · 13-12
application AIF files · 13-12
application INI files · 13-15
application UIDs · 13-12
application user interface · 13-12
applications · 13-11
applications files · 13-12
ARM 7100 · 13-2
ARM 710a · 13-2
ARM processor etc · 13-2
audio · 13-8

Index

bitmap files · 13-6
C++ development option · 13-35
CL-PS7110 · 13-2
command line information · 13-15
communications · 13-9
compact flash · 13-5
developer support · 13-36
document files · 13-12
document UIDs · 13-16
EPOC32 diagram · 13-18
EPOC32 operating system · 13-18
graphics modes · 13-6
hardware · 13-1
hardware diagram · 13-4
hot keys · 13-7
icons · 13-17
Java · 13-35
keyboard conventions · 13-13
memory and storage · 13-5
menu hot keys · 13-7
new command lines · 13-16
OPL32 development option · 13-34
OPL32 source files · 14-10
OPX UIDs · 13-12
OVAL · 13-35
pen conventions · 13-14
screen · 13-6
software · 13-10
software development · 13-34
sound · 13-8
special keys · 13-8, A-33
system interface · 13-10
Toolbars · 13-17
user input · 13-6

Series 5 clipart · 15-11
SETDOC

OPL statement · 9-150
SETFLAGS

OPL statement · 9-7
SETNAME

OPL statement · 9-150, 9-157
SETPATH

OPL statement · 9-33
Shared code segments

EPOC16 · 4-12
Shareware

copyrights · 1-3
distribution · 17-2
registration · 17-2

Sheet files
format · 15-5

Shutdown messages
errors · 16-5
system screen · 4-27
user interface · 5-6

SIBO
OPL16 SDK · 8-8
processor · 3-3
Psiwin 1 · 18-6
special keys · A-33

SIBO architecture
ASICs · 3-2
key components · 3-2
SIxteen Bit Organiser · 3-2

SIBO based
OPL development · 8-2

SIBO C
debugging link · 18-5

SIBO C SDK
C programming · 11-3
documentation · 2-9
documentation · 11-3
professional variant · 2-10
programming options · 2-9
standard variant · 2-10

SIBO C SDK software
C programming · 11-3

SIBO computers
external communication · 3-9

SIBO development
system based options · 2-2

SIBO emulator
DOS based · 8-6

SIBO hosted C development
S3C111 · 2-9

SIBO linked with a PC · 2-3
SIBO OOP HWIM C

techniques · 15-27
SIBO OPL

SDK · 2-12
SIBO OPL translators

PC hosted · 2-12

Index

SIBO or DOS pre-processor
OPP · 2-13

SIBO storage
alternatives overview · 3-4

SIBO system
OPL pre-processors · 2-12

Siena
sound · 3-8

SIN
OPL statement · 9-68

SIxteen Bit Organiser
SIBO · 3-2

Slink · 18-4
SMS SDK

techniques · 15-22
Software

copyrights · 1-3, 17-3
distribution · 17-1
distribution methods · 17-4
distribution options · 17-2
licensing · 17-3
Psion catalogue · 17-6
publishing · 17-3
Series 5 · 13-10

software and hardware
processor interrupts · 3-3

Software and support files
disk index · 19-14

Software development
Series 5 · 13-34

Software development kit (SDK)
OPL SIBO · 2-12
SIBO OPL · 2-12

Software distribution
packaging supplies · 17-6
Psion catalogue · 17-6

Software project
development cycle · 2-6

Solid state disks
SSD · 3-4

Solo SSDs
copying · 17-4
distribution option · 17-4

Sound
HC · 3-9
Series 3 · 3-8

Series 3a/c · 3-8
Series 5 · 13-8
Siena · 3-8
techniques · 15-5
user interface · 5-16
Workabout · 3-9

Sound files
format conversion · 15-7
format EPOC16 · 15-6
format EPOC32 · 15-7
playing EPOC16 · 15-6
playing EPOC32 · 15-7

Sound hardware
Psion Series 3 and Siena · 3-8

Sound mechanisms
I/O · 7-10

Sound systems
I/O · 7-10

Source code
re-using and porting · 2-5

Source code protection
OPL16 · 8-13

SPACE
OPL statement · 9-32

Special keys
Series 5 · 13-8, A-33
SIBO · A-33

Sprites
user interface · 5-13

Spy
EPOC16 debugging · 16-11
EPOC32 debugging · 16-12

SQR
OPL statement · 9-70

SRAM
and robust programs · 3-7

SSD
and robust programs · 3-7
flash EPROM · 3-6, 3-7
interface · 3-5
RAM · 3-5
solid state disks · 3-4

SSDs
developers Flash SSDs · 17-5
distribution options · 17-4
ROMs · 17-5

Index

SSDs
robust applications EPOC16 · 6-14

Standard variant
C SDK SIBO · 2-10
SIBO C SDK · 2-10

Status windows
compatibility mode · 5-16
user interface · 5-15

Status words
I/O · 7-5

STATUSWIN
OPL statement · 9-156

STATWININFO
OPL statement · 9-157

STD
OPL statement · 9-74

STOP
OPL statement · 9-13

Storage alternatives
overview · 3-4

Stream store
EPOC32 · 13-24

structures
E_CONFIG; · A-22

STYLE
OPL statement · 9-20

Style guides
Psion applications · 17-1

Sub-process
or idle object EPOC16 · 4-8

Sub-process priorities
EPOC16 · 4-8

SUM
OPL statement · 9-74

Support and software files
disk index · 19-14

Support services
EPOC32 · 13-22

Switch files
messages · 4-27

Switch files messages
errors · 16-5
user interface · 5-6

Synchronous
I/O · 7-4

Synchronous or asynchronous

messaging · 4-31
Synchronous or aynchronous design

user interface · 5-2
SYS$NULL

EPOC16 · 4-7
System information

country codes · A-19
country-dependent data · A-22
language code get · A-19
language codes table · A-19
O/S text · A-21
O/S text get · A-20

System interface
Series 5 · 13-10

System messages
errors from ignoring · 16-4
user interface · 5-6

System processes
EPOC16 · 4-4

System screen
file lists · 4-23
messages · 4-27
messages from · 4-27
new command line · 4-28
Series 3 and Siena · 3-11
Siena and Series 3 · 3-11

T

TAN
OPL statement · 9-68

TCP/IP SDK
techniques · 15-22

TESTEVENT
OPL statement · 9-152

Testing applications
ATS automatic test system · 16-13
errors · 16-12

Text file
format · 15-5

Text files
EPOC16 files · 6-8
format · 15-5

Thanks to · 20-8
Threads and processes

Index

EPOC32 · 13-19
Time

and date · 3-9
Timer

free running counter (FRC) · 7-13
high resolution · 7-13

Timer functions
I/O · 7-12

Timers absolute
I/O · 7-11

Timers and processes
I/O · 7-11

Timers asynchronous
I/O · 7-12

Timers relative
I/O · 7-12

Timers synchronous
I/O · 7-12

Toolbars
OPL32 · 14-6
Series 5 · 13-17

Topspeed
assembler and linker · 2-7

Translation
OPL source code · 8-4

Translators OPL
PC hosted for SIBO · 2-12

TRAP
OPL statement · 9-16

TYPE
OPL statement · 9-148

U

UADD
OPL statement · 9-60

UIDs
documents Series 5 · 13-16
font · 9-98
OPL32 · 14-5
OPXs · 13-12
Psion software · 20-1
Series 5 · 13-12

UK VADS
Psion contacts · 20-2

Unique identifier (UID)
OPL32 · 14-5

UNLOADLIB
OPL statement · 9-53

UNLOADM
OPL statement · 9-49

Unzip utility
disk index · 19-18

UPDATE
OPL statement · 9-39

UPPER$
OPL statement · 9-81

URI SDK
techniques · 15-22

USE
OPL statement · 9-38

User generated
errors · 16-6

User input
Series 5 · 13-6

User interface
alerts · 5-5
application design · 5-1
application files · 5-7
applications aliasing · 5-20
attached applications · 5-19
bitmaps · 5-11
cursors · 5-13
dialogs · 5-4
diamond key · 5-3
file changes · 5-8
font files · 5-15
fonts · 5-14
fonts ROM based · 5-14
Fonts, custom · 5-15
graphics · 5-10
help information · 5-17
icons · 5-9
input focus · 5-6
keyboard input · 5-2
keyboards · 5-18
menu accelerators · 5-18
modal or non modal dialog · 5-6
multi-lingual applications · 5-18
printing · 5-16
resource files · 5-17

Index

screen drawing · 5-13
screen size compatibility · 5-11
Series 5 applications · 13-12
shutdown messages · 5-6
sound · 5-16
sprites · 5-13
status windows · 5-15
status windows compatibility · 5-16
switch files messages · 5-6
system messages · 5-6, 5-7
windows · 5-4

User interface menus
creating and handling · 5-3

User library
EPOC32 · 13-20, 13-21

USR
OPL statement · 9-63

USR$
OPL statement · 9-64

USUB
OPL statement · 9-60

Utilities, general
disk index · 19-18

Utility files
disk index · 19-14

Utility programs
EPOC16 · A-29

Utility, DOS based
OPLLINT · 2-13

V

VAL
OPL statement · 9-82

VAR
OPL statement · 9-74

Variables
environment · 4-13
magic statics · 4-11

Variants
EPOC32 · 13-32

VECTOR
OPL statement · 9-11

Visual basic for Psion
OVAL · 2-14

W

WDR printer drivers
utility EPOC16 · 15-18

WDR printing
utility EPOC16 · 15-18

Web sites
Psion programmers · 20-7

WEEK
OPL statement · 9-87

WHILE...ENDWH
OPL statement · 9-8

Wildcard searches
files EPOC16 · 6-3

WINC
EPOC32 variant · 13-33

Window server panics
EPOC16 · A-3

Windows
user interface · 5-4

Windows based editor
OPLCS: · 2-13

WINS
EPOC32 variant · 13-33

WLD device
I/O · 7-14

Word files
format · 15-4

Workabout
sound · 3-9

Workabout to PC · 18-3
World data

techniques · 15-19
World database

I/O · 7-14
Writing device drivers

I/O · 7-17

X

XMD device driver
I/O · 7-10

Xmodem transfers
I/O · 7-10

Index

Y

YEAR
OPL statement · 9-86

Ymodem transfers
I/O · 7-10

Z

Zip file utility
disk index · 19-18

Index

Order forms

CD-ROM request form

Programming Psion Computers

FREE if not supplied with the book.

Requests must be on this form
Please complete this order form,

carefully cut it from the book and

send it to the address over the page.

For destinations outside of Europe

Please include £2.00 postage.

Please send files on CD to:

Name

Address 1

Address 2

Address 3

City

Post code

Country

Order forms

Files on CD-ROM
EMCC

108 Manchester Rd
Carrington
Manchester
M31 4BD
England

Order forms

The 3-Lib Shareware Library

The biggest collection of Psion
shareware in existence, maintained by

Steve Litchfield.

visit http://3lib.ukonline.co.uk

Probably the best page on the web for Psion programmers.

A great starting-point.

Home of the 3-lib shareware library, including Steve’s

renowned Mapper application.

Please complete the order form over the page

Order forms

The 3-Lib Shareware Library

Please complete this order form, carefully cut it from the book

and send it with a self addressed envelope to:

3-Lib Shareware Library

22 Greys Crescent

Woodley

RG5 3EN

England

Please send me a 3-Lib library listing

Name

Address 1

Address 2

Address 3

City

Post code

Country

	Table of Contents
	1 Introduction
	Purpose and Scope
	Shareware, freeware and copyrights
	Using this book
	Terms used
	Loading the disk information
	Finding disk-based information
	Other sources of information
	Disclaimer

	2 Development Options
	Introduction
	Platforms, overview
	Language options
	Use of memory
	Protability and re-use of source code
	A typical development cycle
	Languages and platforms, in detail

	3 Fundamental Concepts
	Introduction
	SIBO architecture
	The EPOC16 operating system

	4 Processes, Memory and Applications
	Processes
	Memory
	Applications
	Errors

	5 User Interface
	Application Design
	Synchronous or asynchronous design
	Keyboard input
	Menus
	Windows
	Dialogs
	Input focus
	System messages
	Application files
	Icons
	Graphics
	Status windows
	Printing
	Sound
	Resource files
	Co-operating programs
	Aliasing applications

	6 Files in EPOC16
	Introduction
	File specification
	Directories
	General file management
	The file server
	File types and formats in EPOC16
	SSDs and robust applications

	7 I/O System
	Introduction
	Using the I/O system
	Device drivers, in more detail

	8 OPL Programming
	Introduction
	SIBO based development
	PC based development
	ODE
	The Psion SIBO OPL16 SDK
	Source code protection

	9 OPL Reference
	Introduction
	Functions, commands and procedures
	Program control
	Screen and keyboard control
	Files
	Memory management
	Printing
	Numeric functions
	Date and time
	Sound
	Graphics
	Menus
	Dialogs
	Screen messages
	OPL applications (OPAs)
	Event handling
	Status windows
	I/O operations on files and devices
	Object handling

	10 OPL16 Techniques
	Introduction to PPCOPL16

	11 C Programming
	Introduction
	ROM-resident libraries
	Psion SIBO C SDK

	12 OVAL Programming
	Introduction
	Developing in OVAL

	13 Series 5
	Hardware
	Software
	EPOC32

	14 OPL32 Techniques
	Introduction
	OPL, the changes
	Introduction to PPCOPL32

	15 Programming Techniques
	Application files
	Sound
	Bitmaps, icons and fonts
	Resource/help files
	Printing
	Miscellaneous topics

	16 Errors and Debugging
	Introduction
	Avoiding errors
	Handling errors
	Error codes
	Debugging, an overview
	Testing

	17 Distributing Your Software
	Introduction
	Application style guides
	Distribution options
	Distribution methods

	18 Linking to a PC or Printer
	Introduction
	PC link hardware
	PC link software
	Printing via a PC
	Printing directly from a Psion system

	19 Disk Contents
	Problem solving
	OPL examples
	C examples
	OVAL examples
	Assembler examples
	Macro systems
	Utility software & support files
	Disk index

	20 Contacts and Sources
	Getting ‘On-line’
	Acknowledgements and credits

	Appendix
	Panic numbers, EPOC16
	OPL errors
	OVAL errors
	Magic (reserved) static variables
	Language and country data
	EPOC16 identifiers
	EPOC16 Environment variables
	Utility programs, SIBO C SDK V2.20
	File types, by extension
	Special Keys
	Glossary of terms

	Index
	CD-ROM request form
	Files on CD-ROM
	The 3-Lib Shareware Library

