
Macromedia Flash Lite 1.1 Authoring Guidelines

Trademarks

Add Life to the Web, Afterburner, Aftershock, Andromedia, Allaire, Animation PowerPack, Aria, Attain, Authorware,
Authorware Star, Backstage, Bright Tiger, Clustercats, ColdFusion, Contribute, Design In Motion, Director, Dream Templates,
Dreamweaver, Drumbeat 2000, EDJE, EJIPT, Extreme 3D, Fireworks, Flash, Flash Lite, Flex, Fontographer, FreeHand,
Generator, HomeSite, JFusion, JRun, Kawa, Know Your Site, Knowledge Objects, Knowledge Stream, Knowledge Track,
LikeMinds, Lingo, Live Effects, MacRecorder Logo and Design, Macromedia, Macromedia Action!, Macromedia Breeze,
Macromedia Flash, Macromedia M Logo and Design, Macromedia Spectra, Macromedia xRes Logo and Design, MacroModel,
Made with Macromedia, Made with Macromedia Logo and Design, MAGIC Logo and Design, Mediamaker, Movie Critic,
Open Sesame!, Roundtrip, Roundtrip HTML, Shockwave, Sitespring, SoundEdit, Titlemaker, UltraDev, Web Design 101, what
the web can be, and Xtra are either registered trademarks or trademarks of Macromedia, Inc. and may be registered in the United
States or in other jurisdictions including internationally. Other product names, logos, designs, titles, words, or phrases mentioned
within this publication may be trademarks, service marks, or trade names of Macromedia, Inc. or other entities and may be
registered in certain jurisdictions including internationally.

Third-Party Information

This guide contains links to third-party websites that are not under the control of Macromedia, and Macromedia is not
responsible for the content on any linked site. If you access a third-party website mentioned in this guide, then you do so at your
own risk. Macromedia provides these links only as a convenience, and the inclusion of the link does not imply that Macromedia
endorses or accepts any responsibility for the content on those third-party sites.

Speech compression and decompression technology licensed from Nellymoser, Inc. (www.nellymoser.com).

Sorenson™ Spark™ video compression and decompression technology licensed from
Sorenson Media, Inc.

Opera ® browser Copyright © 1995-2002 Opera Software ASA and its suppliers. All rights reserved.

Apple Disclaimer

APPLE COMPUTER, INC. MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLIED, REGARDING THE
ENCLOSED COMPUTER SOFTWARE PACKAGE, ITS MERCHANTABILITY OR ITS FITNESS FOR ANY
PARTICULAR PURPOSE. THE EXCLUSION OF IMPLIED WARRANTIES IS NOT PERMITTED BY SOME STATES.
THE ABOVE EXCLUSION MAY NOT APPLY TO YOU. THIS WARRANTY PROVIDES YOU WITH SPECIFIC
LEGAL RIGHTS. THERE MAY BE OTHER RIGHTS THAT YOU MAY HAVE WHICH VARY FROM STATE TO
STATE.

Copyright © 1997-2004 Macromedia, Inc. All rights reserved. This manual may not be copied, photocopied, reproduced,
translated, or converted to any electronic or machine-readable form in whole or in part without prior written approval of
Macromedia, Inc.

First Edition: June 2004

Macromedia, Inc.
600 Townsend St.
San Francisco, CA 94103

CONTENTS
CHAPTER 1: Introduction. 7

Using Macromedia Flash Lite 1.1 . 7
Getting started . 7

Installing the Flash MX Professional 2004 7.0.1 update 8
Installing the FlashLite1_1.dll (FlashLite1_1.dmg on the Mac) file 8
Installing the FlashLite1_1.xml file. 8
Installing the configuration file. 8

Supported Devices. 9

CHAPTER 2: Optimizing Content . 11

Navigation and key events . 11
Fonts and text . 11

Device fonts . 11
Alias text support . 12
Alias Text button . 12
Alias text rendered in Flash MX Professional 2004 . 12

Pixel fonts . 12
ActionScript and properties . 13
Sound . 15
Network access . 15
SWF file size and memory. 15
Performance optimization . 15

Animation . 16
Bitmap graphics . 16
Bitmap versus vector graphics . 17
Vector graphics . 19
Optimizing ActionScript . 19

Device speed and frames per second . 19
Development checklist . 19

CHAPTER 3: Working with Sound . 21

Audio formats . 21
Event sound . 21
Streaming sound . 21
Embedding sound . 22
Compound sound . 22
3

Adding a Sound Bundle File to a Flash document . 23

CHAPTER 4: ActionScript Enhancements for Flash Lite 1.1 25

New ActionScript functions . 25
FSCommand() . 25
FSCommand2() . 25

Platform capabilities and variables . 26
_capCompoundSound . 26
_capEmail. 26
_capMMS . 26
_capSMS . 26
_capStreamSound. 26
$version . 27
_capMFi . 27
_capMIDI . 27
_capSMAF . 27
_capLoadData . 27
_cap4WayKeyAS . 28

New ActionScript properties . 28
scroll. 28
maxscroll . 28

CHAPTER 5: New FSCommand and FSCommand2 commands 29

General commands . 29
URL Encoding . 29
Escape . 29
Unescape . 30
Input text fields . 30
SetInputTextType(). 30

Controlling Flash playback . 31
Display . 31
Key configuration . 32

Player operation commands. 33
Platform integration commands . 34

Date and time. 34
Volume. 38
Vibrate . 39
Power . 40
Network information . 41
Device user settings . 44
Device and player identification . 45

CHAPTER 6: Creating Content . 47

Flash Lite 1.1 publish settings . 47
Manually change settings . 47
Creating a publish profile . 48

Creating a simple movie for Flash Lite 1.1 (no sound). 48
Adding sound to your Flash Lite 1.1 application . 49
4 Contents

CHAPTER 7: Testing Content . 51

Testing considerations . 51
Using the optional configuration file . 52

CHAPTER 8: Development Kit Examples . 57

CHAPTER 9: Resources and Support. 59

Let us know about your application. 59
Web resources . 59
Books . 60
Discussion groups . 60

APPENDIX A: Supported ActionScript . 61

APPENDIX B: Supported ActionScript Properties . 71

APPENDIX C: Warning and Error Messages . 75

Flash authoring tool warning and error messages . 75
Contents 5

6 Contents

CHAPTER 1
Introduction
Macromedia Flash Lite Authoring Guidelines for covers tips, techniques, and sample code for
developing Macromedia Flash content for mobile phones using Macromedia Flash Lite 1.1.

Running Macromedia Flash Lite 1.1 on mobile phones allows users to view and interact with a
wide range of Flash content, such as games, informational guides, and dynamically updated
applications.

In addition to the information described in this guide, the developer kit includes numerous
examples and sample code to help clarify some of the ideas and concepts presented.

Using Macromedia Flash Lite 1.1

Macromedia Flash Player is broadly distributed on a variety of platforms, from Windows,
Macintosh, and UNIX-based desktop computers, to mobile phones, PDAs, and set-top boxes.

The Macromedia Flash Player application is approximately 500 KB, depending on the CPU. This
and its runtime memory requirements make it too large for most mobile phones. Therefore,
Macromedia created a new version of Flash Player called Macromedia Flash Lite, designed for
consumer devices, including mobile phones. For a new generation of mobile phones, an updated
version has been created, Flash Lite 1.1.

Macromedia Flash Lite 1.1 for the mobile phones lets Flash designers, developers, and content
providers quickly create engaging content for mobile phones using the ActionScript scripting
language, drawing tools, and templates.

Getting started

To create content for mobile phones, you must have the following items on your computer:

• The latest version of Macromedia Flash MX Professional 2004 (7.0.1)
• The new FlashLite1_1.dll (FlashLite1_1.dmg on the Mac) file for testing Flash applications in

the Flash Lite 1.1 authoring environment
• The new FlashLite1_1.xml file for publishing Flash Lite 1.1 SWF files
• The DevicesMsg.cfg configuration file for customizing the features that are supported in

Flash Lite 1.1.
7

Installing the Flash MX Professional 2004 7.0.1 update

To export Flash Lite 1.1 contents for mobile phones correctly, you need to have the latest version
of Macromedia Flash MX Professional 2004 (7.0.1). You can download the updater program
from the Macromedia website: www.macromedia.com/support/flash/downloads.html.

Installing the FlashLite1_1.dll (FlashLite1_1.dmg on the Mac) file

The FlashLite1_1.dll (FlashLite1_1 on the Mac) file is part of the Flash Lite 1.1 Authoring
Updater. This DLL is to be used to test content when you select Test Movie to validate your
content. This new DLL is used when Flash Lite 1.1 is selected as the Flash version to publish to
(using the publish setting interface). Copy the appropriate file to the following location:

• Windows:
C:\Program Files\Macromedia\Flash MX 2004\language\Configuration\Players

• Mac OS X:
Macintosh HD::Applications:Macromedia Flash MX 2004:Configuration:Players

Installing the FlashLite1_1.xml file

To author content using the FSCommand and the new FSCommand2 ActionScript, copy the
FlashLite1_1.xml file, which is available in the Installs folder of the CDK, into the following
location:

• Windows:
C:\Program Files\Macromedia\Flash MX 2004\language\Configuration\Players

• Mac OS X:
Macintosh HD::Applications:Macromedia Flash MX 2004:Configuration:Players

Installing the configuration file

The Flash Lite 1.1 Test Movie command allows users to customize the features that are supported
in Flash Player. From the Flash Lite 1.1 Authoring Updater, copy the DeviceMsg.cfg
configuration file into the following location:

• Windows 2000/ WindowsXP:
C:\Documents and Settings\user name\Local Settings\Application Data\Macromedia\
Flash MX 2004\language\Configuration\

• Windows 98(SE):
C:\Windows\Profiles\user name\Application Data\Macromedia\Flash MX 2004\
language\Configuration\

• Macintosh:
Macintosh HD::Users:user name:Library:Application Support:Macromedia:Flash MX 2004:
language:Configuration:
8 Chapter 1: Introduction

http://www.macromedia.com/support/flash/downloads.html

Supported Devices

For details about mobile phones that support Flash Lite functionality, see the Macromedia
Developer Center web site at www.macromedia.com/devnet/devices/.
Supported Devices 9

http://www.macromedia.com/devnet/devices/

10 Chapter 1: Introduction

CHAPTER 2
Optimizing Content
This chapter describes considerations for creating Macromedia Flash Lite content that runs on
mobile phones, from general functionality to performance and size constraints.

Navigation and key events

Macromedia Flash Lite 1.1 for mobile uses three keys for navigation: Up, Down, and Select.
These three keys correspond to the Shift+Tab, Tab, and Enter keys on the Windows versions of
Macromedia Flash Player.

The keys 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, *, and # are also available. These correspond to the same keys
on the desktop versions of Flash Player. You can attach ActionScript to these keys and to the Enter
key as you would normally in Flash. ActionScript attached to other keys is ignored.

Fonts and text

Flash Lite 1.1 includes support for both device fonts and embedded fonts. Although embedded
fonts give you more control over the design of your content, they increase the size of the SWF file.
Supported mobile phones support multiple device fonts providing content developers with
multiple options for using device text fonts helping keep your file size small.

When using device fonts, Flash Lite 1.1 limits text-formatting options in dynamic text fields to
justification (left, center, right) and color. Formatting options such as superscript, subscript, and
kerning are not supported.

When you create Flash Lite content, you can use Flash to embed text. If you place text inside the
application or graphics, use a typeface that is designed specifically for small screens. Choosing
readable fonts is always an important design consideration. This section describes several options
for using fonts and text for Flash Lite content.

Device fonts

When you create static text, you can specify that Flash Player use device fonts to display certain
text blocks. Using device fonts can decrease the file size of your SWF file, because the SWF file
does not contain font outlines for the text.
11

Supported mobile phones support multiple system fonts, which can be accessed in a SWF file by
setting the associated font style and selecting the Device Fonts check box. Some mobile phones
support multiple fonts. For more details, see the Macromedia Developer Center web site at
www.macromedia.com/devnet/devices/.

Alias text support

Because of the limited screen size of mobile phones, it’s important to use font sizes that are
legible. With Flash MX Professional 2004, Macromedia has added a new option for rendering
text, the Alias Text button.

Alias Text button

The Alias Text button in the Property inspector lets you render text so that it appears more
readable at small sizes.

To enable the Alias Text feature:

• In Flash MX Professional 2004, select Window > Properties.

Flash Lite 1.1 for mobile phones supports static, input, and dynamic text areas when using the
Alias Text option.

Alias text rendered in Flash MX Professional 2004

The Alias Text option makes text more readable by aligning text outlines along pixel boundaries.
This makes the text appear aliased, even when anti-aliasing is enabled.

Pixel fonts

It is very important to use the right type fonts for the Flash Lite content you intend for display on
mobile phones, which have small screens. Standard fonts such as Arial or Verdana are not easy to
read, because Flash Player handles anti-aliasing in all but the low-quality mode. In this case, you
should consider using pixel fonts that are displayed without anti-aliasing.

Pixel fonts make text more readable because text outlines are aligned along pixel boundaries.
Because these fonts use pixels to create each character, they remain sharp and easy to read. They
can be used on all types of screen displays, regardless of the screen resolution. The font sizes need
to be in increments of 8 points (8, 16, 24, and so on) to remain crisp and legible. Use an 8-point
font to get the maximum amount of text on the screen yet keeping it legible.

When using pixel fonts, follow these guidelines:

• Place text on absolute x and y values (10.0, not 10.2, for example).
• If you create input or dynamic text boxes, make sure you embed your fonts. Otherwise, your

Flash content is displayed in the default system fonts.
• To make your text stand out, use a combination of different fonts, bold and normal styles, and

contrasting colors.
12 Chapter 2: Optimizing Content

http://www.macromedia.com/devnet/devices

For more information about pixel fonts, see: www.miniml.com, www.fontsforflash.com, and
www.ultrafonts.com.

ActionScript and properties

Flash Lite 1.1 supports most Flash 4 ActionScript commands. The following are notable
exceptions:

• Use the add operator instead of the & command to concatenate strings.
• Button mouse events such as dragOver, dragOut, and releaseOutside cannot be used to

trigger ActionScript code attached to buttons. However, in addition to keypress events, you
can use the press, release, rollOver, and rollOut events to trigger ActionScript when
attached to buttons and accessed through key-based navigation.

• Draggable movie clip functions and properties (for example: startDrag, stopDrag, and
_dropTarget properties) are not supported.

• Use the eq operator to compare strings and the == operator for numeric comparison.
• URL encoding must be done manually using ActionScript. The escape() ActionScript

function is not a Flash 4 function and is not available in Flash Lite 1.1.
• Two new FSCommand2 commands have been added to encode a string into a format that is

safe for network transfer: Escape and Unescape. For more information, see Chapter 5, “New
FSCommand and FSCommand2 commands” .

• The default Quality level for Flash Lite during playback is medium, and there is no support for
bitmap smoothing.

• Flash Lite 1.1 supports loadMovie(), loadMovieNum(), loadVariables(), and
loadVariablesNum(). Only one LoadMovie and LoadVars action is processed per frame or
per event handler. Certain handsets restrict these actions to keyEvents only, in which case the
action call is processed only if it is triggered in a keyEvent handler. Even under such
circumstances, only one such action is processed per event handler. For more information, see
Appendix A, “Supported ActionScript” .

• Only one getURL() action is processed per frame or per event handler. Certain handsets
restrict the getURL() action to keyEvents only, in which case the getURL() call is processed
only if it is triggered in a keyEvent handler. Even under such circumstances, only one
getURL() action is processed per event handler.
An example of using the tel protocol would be the following:
on (release, keyPress "#"){

getURL(“tel:117”);
}

ActionScript and properties 13

http://www.miniml.com
http://www.fontsforflash.com
http://www.ultrafonts.com

• A button action can be assigned to launch an e-mail composition window with the address,
subject, and body text fields already populated. There are two ways to do this: Method 1 can
be used for either Shift-JIS or English character encoding, while method 2 supports only
English character encoding.
Method 1
Set variables for each of the desired parameters, for example:
on (release, keyPress "#"){

subject = “email subject”;
body = “email body”;
getURL(“mailto:somebody@anywhere.com”, ““, “GET”);

}

Method 2
Define each parameter within the getURL action, for example:
on (release, keyPress "#"){

getURL(“mailto:somebody@anywhere.com?cc=cc@anywhere.com&bcc=bcc@anywhere.
com&subject=I am the email subject&body=I am the email body”);

}

Method 1 results in automatic URL encoding while method 2 preserves the spaces in the
strings. For instance, the resulting string of using method 1 is as follows:
email+subject
email+body

whereas method 2 results in the following strings:
email subject
email body

• Key events can be attached only to the keys 0-9, #, *, and the Enter key.
• Sound functionality is limited to event sound. Only the first event sound in a keypress

statement block is played, and all subsequent sounds in the same block are ignored.
• The range of valid integers that can be represented is -2,147,483,648 to 2,147,483,647.
• Math functions are not natively supported. In Flash Lite, the methods and properties of the

Math object are emulated using approximations and may not be as accurate as the non-
emulated math functions supported in Flash Player 5 and later.

• The _url property is not supported.
• The Number() and String() functions are not supported.

Note: Flash 4 ActionScript does not support arrays. However, they can be emulated using the
eval() function. For more information, see Macromedia TechNote 14219, “How to use Eval to
emulate an array,” at www.macromedia.com/go/flash_support (English) or
www.macromedia.com/go/flash_support_jp (Japanese).

ActionScript commands that are not recognized are ignored. For a detailed listing of supported
ActionScript and properties, see Appendix A, “Supported ActionScript” and Appendix B,
“Supported ActionScript Properties” .
14 Chapter 2: Optimizing Content

http://www.macromedia.com/go/flash_support
http://www.macromedia.com/go/flash_support_jp

Sound

Using audio in Flash content helps to create a richer user experience that goes beyond a typical
mobile phone application. For more information about embedding sound into Flash Lite content
for mobile phones, see Chapter 3, “Working with Sound” .

Network access

It’s possible for Flash content that resides on a mobile phone to download new data from a web
server by using various functions, which are described below.

The Flash Lite 1.1 specification supports the getURL()action which is processed once per frame
or per event handler. The getURL() action can be associated with the following keys: 0-9, *, #, or
the Select key. Only the first getURL() call in a keypress statement block is executed; all
subsequent getURL() calls in the same block are ignored.

The getURL() function can be used to load another SWF or HTML page (http), a secured (SSL-
Secure Sockets Layer) HTTP page (https), send e-mail (mailto), or dial a phone number (tel).

With Flash Lite 1.1, it is possible to load data and SWF files from a web server using the
loadMovie(), loadMovieNum(), loadVariables(), and loadVariablesNum() functions. By
using these functions you can update Flash content that resides on a mobile phone. These actions
will be processed once per frame or per event handler.

SWF file size and memory

Supported mobile phones impose limitations on the size of Flash Lite SWF files and on the
amount of runtime memory they use. The SWF file size is a larger issue for mobile phones than
for desktop computers because mobile phones don’t have as much RAM as desktop computers.

There is a prescribed limit on how large a web page can be, whether or not it includes Flash Lite
content. For most mobile phones, this limit is 100 KB.

The runtime memory available to Flash Lite applications running on mobile phones is limited
and might vary among models. Generally, for mobile phones, this limit is not less than 1 MB.
Because Flash MX Professional 2004 does not provide a mechanism for checking a phone’s
runtime memory consumption, Macromedia strongly recommends that you test all content on
actual mobile phones.

Performance optimization

CPU speed in mobile phones varies among models and is typically much slower than the CPU
speed in current desktop computers. Therefore, it is extremely important to consider application
performance and optimization from the beginning of each project for creating Flash Lite content
created for mobile phones.

Note: In Flash MX Professional 2004, you can find tips on optimizing Flash applications. (Select
Help > Using Flash -> Search and enter optimizing movies in the Keyword Searchtext box.)

If you follow the simple guidelines described in this document to author your Flash Lite content,
you can create rich and compelling content despite CPU limitations.
Performance optimization 15

Animation

When creating animated content for a mobile phone, it is important to keep in mind the phone’s
CPU limitations. The following guidelines can help prevent your Flash Lite content from
running slowly:

• If you need to provide intense or complex animation, experiment with changing the quality
setting of the content. The default quality setting is Medium.
To change the quality setting in Flash MX Professional 2004, select File > Publish Settings, and
select the HTML tab. Select a quality setting from the Quality pop-up menu.
Because changing the quality setting might noticeably affect the visual quality of the Flash Lite
content, make sure to thoroughly test the SWF file.

• You can also use ActionScript to control the rendering quality of a SWF file, by using either
the _quality property or the new FSCommand2 setQuality() function.
For the _quality property, valid values are LOW, MEDIUM, and HIGH. The following code sets the
rendering quality to LOW:
_quality = "LOW";

For more information about the setQuality function, see Chapter 5, “New FSCommand and
FSCommand2 commands” .

• Limit the number of simultaneous tweens.
• Use Alpha effects on symbols sparingly, as they are very CPU intensive. In particular, it is

generally not a good idea to tween symbols that have alpha levels that are not fully opaque (less
than 100%).

• Avoid intensive visual effects. These include large masks, extensive motion, alpha blending,
extensive gradients, and complex vectors.

• Although animating with ActionScript may produce more desirable results, in general, you
should avoid unnecessary use of ActionScript because it can become processor intensive.

• Experiment with combinations of tweens, key frame animations, and ActionScript-driven
movement to produce the most efficient results.

• If possible, test animations frequently on your target phones.

Bitmap graphics

Macromedia recommends optimizing bitmap graphics to 16 bits before importing them into
Flash MX Professional 2004. Doing so reduces Flash Lite movie size and gives you more control
over the final output. Also, make sure that bitmaps are imported at the size they need to be in the
Flash Lite movie. Using larger than required bitmaps results in higher runtime memory
requirements.
16 Chapter 2: Optimizing Content

Bitmap versus vector graphics

Flash Lite generally uses vector graphics to define content, which can tax a phone’s CPU when
rendering complex graphics and animations. In general, the more vectors that are manipulated on
the Stage, the more CPU power is required. This is also true for Flash movies delivered on
desktop computers. However, a mobile phone is far less powerful than desktop computer, so you
should avoid taxing the CPU.

When creating content for mobile phones, it is sometimes better to use bitmaps instead of vectors
because they require less CPU power to animate. For example, a road map of a large city would
have too many complex shapes to scroll and animate well on a mobile phone if it were created as
a vector graphic; a bitmap would work much better.

Using bitmaps produces larger files than using vector images, so take care during development to
find the right balance of CPU versus file size and runtime memory requirements. Because of
mobile phones’ smaller screens, slower data transmission speeds, limited memory, and slower
CPU speeds, you should take extra care in planning and testing.

If you are using bitmaps, you can set image compression options that reduce your SWF file size.

To set bitmap image compression:

1. Start Flash and create a new document.

2. Select a bitmap in the Library window.

3. Right-click (Windows) or Control-click (Macintosh) the bitmap’s icon in the Library window.

4. Select Properties from the options menu. The Bitmap Properties dialog box appears:
Performance optimization 17

5. In the Compression pop-up menu, select one of the following options:

■ Select Photo (JPEG) for images with complex color or tonal variations, such as photographs
or images with gradient fills. This option produces a JPEG format file. Select the Use
Imported JPEG Data check box to use the default compression quality specified for the
imported image. To specify a new quality compression setting, deselect Use Imported JPEG
Data and enter a value between 1 and 100 in the Quality text box. A higher setting produces
a higher image quality, but also a larger file size, so adjust the value accordingly.

■ For images with simple shapes and relatively few colors, select Lossless (PNG/GIF) to
compress the image with lossless compression, in which no data is discarded from the image.
Save the bitmap as a PNG file.

6. Click Test to determine the results of the file compression. Compare the original file size to the
compressed file size to determine if the selected compression setting is acceptable.

You can also globally adjust the compression settings for JPEG files.

To globally set bitmap compression for JPEG files:

1. Select File > Publish Settings, and then select the Flash tab. The Publish Settings dialog box with
the Flash tab options appears:

2. Adjust the JPEG Quality slider or enter a value.

A higher JPEG quality value results in a higher image quality, but a larger SWF file size. As
with the compression settings previously described, lower image quality produces a smaller
SWF file. Try different settings to determine the best trade-off between size and quality.
18 Chapter 2: Optimizing Content

Vector graphics

Whenever possible, do not use borders in your vector graphics as this greatly diminishes the
number of rendered lines.

Optimizing ActionScript

Because of CPU limitations, you should follow these general guidelines when developing
ActionScript for Flash Lite content deployed on mobile phones:

• Keep the ActionScript as simple as possible.
• Limit the number of loops that you use and the amount of code that each loop contains.
• Stop frame-based looping as soon as it is no longer needed.
• Avoid string and emulated array processing—it can be extremely CPU intensive.

Note: Flash 4 ActionScript does not support arrays. However, they can be emulated using the
eval() function. For more information, see Macromedia TechNote 14219, “How to use Eval to
emulate an array,” at www.macromedia.com/go/flash_support (English) www.macromedia.com/
go/flash_support_jp (Japanese).

Device speed and frames per second

If the project contains static images, it’s not likely that the device processor speed will be an issue.
The complexity of Flash requires some important trade-offs when developing content for mobile
phones. Until mobile phones have faster processors and there are improvements to other internal
components, you must make adjustments to provide an experience that does not appear sluggish
to users; otherwise, they won’t use the application.

Try to avoid full-screen wipes, fades, and animations. Remember that updating many pixels at a
time can be slow, depending on the content. The performance of your Flash application depends
on the number of open applications, available phone memory, processor speed, and screen
resolution.

Development checklist

When you develop Flash content for mobile phones, make sure to check the following items:

• Does the Flash content work?
• Is the Flash content intuitive and easy to interact with?
• Does the Flash content load data and SWF files without any problems?
• Can you optimize the images or rewrite code to further reduce the file size and memory

requirements while improving performance?
• Are all bitmap images successfully decoded and rendered on the mobile phone?
Development checklist 19

http://www.macromedia.com/go/flash_support
http://www.macromedia.com/go/flash_support_jp
http://www.macromedia.com/go/flash_support_jp

20 Chapter 2: Optimizing Content

CHAPTER 3
Working with Sound
This section describes the various aspects of sound in relationship to Macromedia Flash Lite 1.1
for the mobile phones.

Audio formats

Flash Lite 1.1 supports MIDI, MFi, SMAF, uncompressed PCM (or WAV), compressed
ADPCM, and compressed MP3 audio formats.

Event sound

Event sound is the ability to play sound independent of the Timeline; any event can be used to
trigger an event sound. Event sound data must download completely before it begins playing, and
it continues playing until either the end of the sound buffer has been reached or it is explicitly
stopped. It is possible to loop event sounds within a SWF file.

Streaming sound

Streaming sounds begin playing as soon as enough data for the first few frames has been
downloaded; stream sounds are synchronized to the Timeline for playing on a mobile phone.

Flash Lite 1.1 supports uncompressed PCM (or WAV), compressed ADPCM, and compressed
MP3 audio formats for streaming sound.
21

Embedding sound

Because Flash MX Professional 2004 does not natively support certain audio formats such as
MIDI or SMAF, you must temporarily substitute a proxy sound in a recognized format such as
MP3. You can use options in the Sound Properties dialog box and the Flash Publish Settings
dialog box to link the proxy sound file to a MIDI file.

Sound files that have been substituted are displayed in green; blue sound waves are files that haven’t
been substituted.

For information on how to substitute sounds in your Flash Lite content, see Chapter 6, “Creating
Content” .

Compound sound

Flash Lite 1.1 provides the ability to encapsulate device-specific sounds of multiple formats into a
single tagged data block. This provides content developers with the ability to create a single piece
of content that is compatible with multiple devices. As an example, a single Flash movie can
contain the same sound represented in both MIDI and MFi formats. This Flash movie can be
played back both on a device that supports only MIDI and on a device that supports only MFi,
with each device playing back the specific sound format that it natively supports.

During content creation, content developers identify the sound files in the formats that they want
to bundle together. An external tool (FlashLiteSoundBundler.exe) is available to bundle the
identified sound files into one sound data block, to be played when triggered by an event. When
the appropriate event is triggered, Flash Lite 1.1 processes this bundled sound data block and
plays the sound data in the specific format supported by the device. The sound bundle file
generated by the FlashLiteSoundBundler.exe program creates a file with the extension .fls.

The steps to create a Sound Bundle File are:

1. Launch FlashLiteSoundBundler.exe.

2. Drag and drop a sound file to be bundled into the target window.

The FlashLiteSoundBundler.exe allows you to create compound sounds.
22 Chapter 3: Working with Sound

Note: Right click on this window to trigger the Exit button.

3. Flash Lite 1.1 Compound Information window will launch.

4. Drag and drop the rest of the sound files to be bundled.

5. Click on Save Bundle to save your Sound Bundle File in a specific location.

When the appropriate event is triggered, Flash Player processes this bundled sound data block
and plays the appropriate sound data contained in the sound bundle.

For information on how to substitute sounds in your Flash Lite content, see Chapter 6, “Creating
Content” .

Adding a Sound Bundle File to a Flash document

With Flash MX Professional 2004, you can include event sounds when authoring documents for
playback on mobile devices. The general process is described in this section. For detailed
information on authoring for mobile devices, see the Content Development Kits on the Mobile
and Devices Development Center at www.macromedia.com/devnet/devices.

Flash does not support sound file formats used for mobile devices (such as MIDI and others);
when authoring for mobile devices, you must temporarily place a proxy sound in a supported
format such as MP3, WAV, or AIFF in the Flash document. The proxy sound in the document is
then linked to an external mobile device sound, such as a MIDI file or a Sound Bundle file.
During the document publishing process, the proxy sound is replaced with the linked external
sound. The SWF file generated contains the external sound or sound bundle data and processes it
appropriately for playback on a mobile device.

When adding device specific sounds or sound bundles to Flash documents for playback on
mobile devices, keep the following in mind:

• This feature works with event sounds only.
• The Effect, Sync, and Edit options are not supported when linking a sound.
• You must specify an external device sound file for each sound in a document.
• As with all external files, the device sound file or the sound bundle file must be available during

the publishing process but is not needed by the SWF file for playback.

The steps to add a Sound Bundle File to a Flash document are:

1. Import a sound file to the library in the Flash document (File > Import > Import to Library).

2. In the Library panel, right-click (Windows) or Control-click (Macintosh) the sound and select
Properties.

3. In the Device sound text box, enter a path or click the folder icon and browse to the location
where the Sound Bundle File is located. Click OK to close the Property inspector.

4. Add a button instance to the Stage from the Buttons common library (Window > Other
Panels > Common Libraries > Buttons).

5. Add the linked sound to the Hit frame of the button.

6. Open the Publish Settings dialog box (File > Publish Settings), and click the Flash tab.
Adding a Sound Bundle File to a Flash document 23

http://www.macromedia.com/devnet/devices

7. Select Flash Lite 1.1 from the version menu.

8. The SWF file now contains the linked Sound Bundle File.

9. Select Control > Test Movie to test your Flash application.

10. Select File > Publish to save the SWF file that contains the Sound Bundle File created earlier.
24 Chapter 3: Working with Sound

CHAPTER 4
ActionScript Enhancements for Flash Lite 1.1
Macromedia Flash Lite 1.1 supports two new ActionScript functions: FSCommand() and
FSCommand2(). Many new FSCommand and FSCommand2 commands have been introduced in
Flash Lite 1.1 For a complete list of ActionScript expressions supported on mobile phones, see
Appendix A, “Supported ActionScript” .

New ActionScript functions

Almost all of these new ActionScript functions are available only for creating Flash Lite 1.1
content; however, not all of them are applicable to all mobile phones. Be sure to check the
functions and commands you plan on using before integrating them with Flash Lite content for
specific mobile phones.

FSCommand()

Flash Lite 1.1 supports the FSCommand() function, which enables Flash Lite content to
communicate with Macromedia Flash Player, the host application, and the device hosting
the player.

FSCommand2()

The FSCommand2() function is a new ActionScript function that is supported in Flash Lite 1.1
but is not yet supported in the standard desktop version of Flash Player. The FSCommand2() and
FSCommand() provide similar functionality, with the following main differences:

• FSCommand2() can take an arbitrary number of arguments.
• During the playback of a Flash application, the FSCommand2() function is executed

immediately, whereas FSCommand() is executed at the end of the frame being processed.
• The FSCommand2() function returns a value that can be used to report success, failure, or the

result of the command.

See Chapter 5, “New FSCommand and FSCommand2 commands” for more information.
25

Platform capabilities and variables

The following variables are used to specify whether certain capabilities are available in Flash Lite,
the device, the host application, or Flash Player.

_capCompoundSound

The _capCompoundSound variable indicates whether Flash Lite can process compound sound
data. If so, this variable is defined and has a value of 1; if not, this variable is undefined.

Example

mVarValue = _capCompoundSound;

_capEmail

The _capEMail variable indicates whether Flash Lite can send e-mail messages by means of the
GetURL() ActionScript command. If so, this variable is defined and has a value of 1; if not, this
variable is undefined.

Example

myVarValue = _capEmail;

_capMMS

The _capMMS variable indicates whether Flash Lite can send MMS messages by using the
GetURL() ActionScript command. If so, this variable is defined and has a value of 1; if not, this
variable is undefined.

Example

myVarValue = _capMMS;

_capSMS

The _capSMS variable indicates whether Flash Lite can send SMS messages by using the
GetURL() ActionScript command. If so, this variable is defined and has a value of 1; if not, this
variable is undefined.

Example

myVarValue = _capSMS;

_capStreamSound

The _capStreamSound variable indicates whether the device can playing streaming
(synchronized) sound. If so, this variable is defined and has a value of 1; if not, this variable is
undefined.

Example

myVarValue = _capStreamSound;
26 Chapter 4: ActionScript Enhancements for Flash Lite 1.1

$version

The $version variable contains the version number of Flash Lite. It contains a major number,
minor number, build number, and an internal build number, which is generally 0 in all released
versions (for example, 5,2,1,141).

Example

myVarValue = $version;

_capMFi

The _capMFi variable indicates whether the device can play sound data in the MFi audio format.
If so, this variable is defined and has a value of 1; if not, this variable is undefined.

Example

myVarValue = _capMFi;

_capMIDI

The _capMIDI variable indicates whether the device can play sound data in the MIDI audio
format. If so, this variable is defined and has a value of 1; if not, this variable is undefined.

Example

myVarValue = _capMIDI;

_capSMAF

The _capSMAF variable indicates whether the device can play sound data in the SMAF audio
format. If so, this variable is defined and has a value of 1; if not, this variable is undefined.

Example

myVarValue = _capSMAF;

_capLoadData

The _capLoadData variable indicates whether the host application can dynamically load
additional data through calls to loadMovie(), loadMovieNum(), loadVariables(), and
loadVariablesNum() functions. If so, this variable is defined and has a value of 1; if not, this
variable is undefined.

Example

myVarValue = _capLoadData;
Platform capabilities and variables 27

_cap4WayKeyAS

The _cap4WayKeyAS variable indicates whether Flash Player executes ActionScript expressions
attached to key event handlers associated with the Right, Left, Up and Down keys. This variable
is defined and has a value of 1 only when the host application uses four-way key navigation mode
to navigate between Flash controls (buttons and input text fields). Otherwise, this variable is
undefined.

If the value of this variable is 1 and one of the four-way keys is pressed, Flash Player first looks for
a handler for that key. If none is found, Flash control navigation is performed. However, if an
event handler is found, no navigation action occurs for that key. In other words, the presence of a
keypress handler for a Down key disables the user’s ability to navigate down.

Example

myVarValue = _cap4WayKeyAS;

New ActionScript properties

The following properties are new in ActionScript.

scroll

You can use the scroll property to retrieve and set a text field. When the scroll property of a
text field is retrieved, it indicates the number of the line currently displayed as the first line in the
text field’s viewable area. When you set the scroll property to a specific value, the text field
scrolls so that the line with that number appears at the top of the field’s viewable region. This
property is normally used with the maxscroll property to create text-scrolling interfaces.

Example

on (release) {
myText.scroll = myText.scroll + 1;
}

maxscroll

The maxscroll property returns the largest allowable scroll value for a text field. It represents the
number of the last line in a text field that can be used as the top line in its viewable region. This
property can be used with the scroll property with a function to create text-scrolling interfaces.

Example

textBoxMax = myText.maxscroll
28 Chapter 4: ActionScript Enhancements for Flash Lite 1.1

CHAPTER 5
New FSCommand and FSCommand2 commands
This chapter discusses the new FSCommand() and FSCommand2() commands in Macromedia
Flash Lite 1.1. These new commands fall into these categories: general commands, commands
controlling Flash playback, and platform integration commands.

General commands

The commands in this section provide general control of Flash Lite content on mobile phones.

URL Encoding

Two new commands have been added to encode a string into a format that is safe for network
transfer to a server and back to the mobile phone: Escape and Unescape.

Escape

The Escape function encodes an arbitrary string into a format that is safe for network transfer. All
characters that are not alphanumeric are replaced with a hexadecimal escape sequence (%xx, or
%xx%xx in the case of double-byte characters). The encoded string is returned in a variable that is
passed into the SWF file by name.

This function is executed immediately upon invocation.

Syntax

status = FSCommand2("Escape", original, encoded)

In this code example, original is the string to be encoded into a format safe for URLs, and
encoded is the resulting encoded string.

Return value

A value of 0 upon failure; 1 upon success.
29

Unescape

The Unescape function decodes an arbitrary encoded string that is safe for network transfer into
its normal form. All characters that are in hexadecimal format, that is, a percent character (%)
followed by two hexadecimal digits, are converted into their decoded form. The decoded string is
returned in a variable that is passed in by name.

This function is executed immediately upon invocation.

Syntax

status = FSCommand2("Unescape", original, encoded)

In this example, original is the string to be decoded from a format safe for network transfer and
encoded is the resulting decoded string.

Return value

A value of 0 upon failure; 1 upon success.

Example

original_string = "hello, how are you?";
status = fscommand2("Escape", original_string, "encoded_string");
original_string2 = "Hello%7B%5BWorld%5D%7D";
status = fscommand2("Unescape", original_string2, "normal_string");

Input text fields

The commands in this section control the input text fields of Flash content on mobile phones.

SetInputTextType()

In Flash Lite, input text functionality is supported by asking the host application to start the
generic, device-specific, text-input interface, often referred to as the Front End Processor (FEP).
The SetInputTextType() function specifies the mode in which the input text field should be
opened. The available options are Numeric, Alpha, Alphanumeric, Latin, NonLatin and
NoRestriction.

These options are mutually exclusive and cannot be combined. When this command is not used,
the FEP is opened in default mode. The following rules apply when the following text-input
interface options are not supported on certain mobile phones:

• If Numeric mode is not supported, the FEP is opened in Alphanumeric mode.
• If Alpha mode is not supported, the FEP is opened in Alphanumeric mode.
• If Alphanumeric mode is not supported the FEP is opened in Latin mode.
• If Latin mode is not supported, the FEP is opened in NoRestriction mode.

Similarly, if NonLatin mode is not supported, the FEP is opened in NoRestriction mode.

Note: Not all mobile phones support these input text field types. For this reason, you must validate
the input text data.

The SetInputTextType() function is executed immediately upon invocation.
30 Chapter 5: New FSCommand and FSCommand2 commands

Syntax

status = FSCommand2("SetInputTextType", variableName, type)

In the preceding example, variableName is the name of the variable associated with the input
text field and type is one of the following values:

Numeric: sets the FEP to numbers only mode [0-9].

Alpha: sets the FEP to alpha characters only mode [A-Z, a-z].

Alphanumeric: sets the FEP to alphanumeric characters only mode [0-9, A-Z, a-z].

Latin: sets FEP to Latin characters only mode [Alphanumeric and punctuation].

NonLatin: sets FEP to non-Latin characters only mode [example: Kanji and Kana].

NoRestriction: sets no restriction on the FEP—the FEP is started in default mode.

Return value

A value of 0 upon failure; 1 upon success.

Example

status = fscommand2("SetInputTextType", "input1", "Numeric");

Controlling Flash playback

The commands in this section control the playback of Flash content on mobile phones.

Display

The commands in this section control the display aspect of Flash content on mobile phones.

FullScreen()

The FullScreen() function sets the size of the display area to be used for rendering. The size can
be either full screen or less than full screen. Set the size argument to true to indicate full screen
and to false otherwise.

The FullScreen() function is executed immediately upon invocation. If this function is not
supported, a value of -1 is returned.

This command is supported only when Flash Lite is running in stand-alone mode. It is not
supported when the player is running in the context of another application (for example, as a
plug-in to a browser).

Syntax

status = FSCommand2("FullScreen", size)

In this example, size is either a defined variable or a constant string value (for example, "true").

Return value

A value of -1 if the function is not supported; 0 if it’s supported.
Controlling Flash playback 31

Supported applications

This feature is not supported in all mobile phones.

SetQuality()

The SetQuality() function sets the quality of the rendering of the animation. The value of the
quality argument must be high, medium, or low.

The SetQuality() function is executed immediately upon invocation. If this function is not
supported, a value of -1 is returned.

Syntax

status = FSCommand2("SetQuality", quality)

Here, quality is either a defined variable or a constant string value (for example, "medium").

Return value

A value of -1 if the function is not supported; 0 if it’s supported.

Key configuration

The commands in this section describe how to control the soft keys for Flash content on
mobile phones.

SetSoftKeys()

The SetSoftKeys() function is used to remap the left and right soft keys of mobile phones,
provided that they can be accessed and remapped. The left and right parameters to this
command specify the text to be displayed for the left and right soft keys, respectively. After this
function is executed, pressing the left key generates a PageUp keypress event, and pressing the
right key generates a PageDown keypress event. ActionScript associated with the PageUp and
PageDown keypress events is executed when the respective key is pressed.

This function is executed immediately upon invocation. If this function is not supported, a value
of -1 is returned.

This function is supported only when Flash Lite is running in stand-alone mode. It is not
supported when the player is running in the context of another application (for example, as a
plug-in to a browser).

Syntax

status = FSCommand2("SetSoftkeys", left, right)

In this example, left and right are either defined variables or constant string values (for
example, "label")

Return value

A value of -1 if the function is not supported; 0 if it’s supported.

Supported applications

This feature is not supported in all mobile phones.
32 Chapter 5: New FSCommand and FSCommand2 commands

ResetSoftKeys()

The ResetSoftKeys() function resets the soft keys to their original settings. It is executed
immediately upon invocation. If this function is not supported, a value of -1 is returned.

The ResetSoftKeys() function is supported only when Flash Lite is running in stand-alone
mode. It is not supported when the player is running in the context of another application (for
example, as a plug-in to a browser).

Syntax

status = FSCommand2("ResetSoftKeys”)

Return value

A value of -1 if the function is not supported; 0 if it’s supported.

Supported applications

This feature is not supported in all mobile phones.

Player operation commands

The commands in this section provide the mobile phone’s memory value to Flash content on the
mobile phone.

GetFreePlayerMemory()

The GetFreePlayerMemory() function returns the amount of memory, in kilobytes, currently
available to Flash Lite. This function is executed immediately upon invocation. If this function is
not supported, a value of -1 is returned.

Syntax

status = FSCommand2("GetFreePlayerMemory”)

Return value

A value of -1 if the function is not supported; otherwise, the amount of memory available,
in kilobytes.

GetTotalPlayerMemory()

The GetTotalPlayerMemory() function returns the total amount of memory, in kilobytes,
allocated to Flash Lite. This function is executed immediately upon invocation. If the function is
not supported, a value of -1 is returned.

Syntax

status = FSCommand2("GetTotalPlayerMemory”)

Return value

A value of -1 if the function is not supported; otherwise, the amount of memory available,
in kilobytes.
Player operation commands 33

Launch()

This function starts another application on the mobile phone. The name of the application being
launched and the parameters to it, separated by commas, are passed in as a single parameter.

Note: This feature is operating-system dependent.

The launch() function is supported only when Flash Lite is running in stand-alone mode. It is
not supported when the player is running in the context of another application (for example, as a
plug-in to a browser).

Syntax

status = FSCommand("Launch", "application-path,arg1,arg2,...,argn")

Supported applications

This feature is not supported in all mobile phones.

Quit()

The Quit() function causes Flash Player to stop playback and exit. It is executed immediately
upon invocation. If this function is not supported, a value of -1 is returned.

The Quit() function is supported only when Flash Lite is running in stand-alone mode. It is not
supported when the player is running in the context of another application (for example, as a
plug-in to a browser).

Syntax

status = FSCommand2("Quit”)

Return value

A value of -1 if the function not supported.

Supported applications

This feature is not supported in all mobile phones.

Platform integration commands

A standard set of commands has been created to get and set platform-specific information. These
include information such as current time and date, network status, signal strength, battery level,
and so on. The implementations of these commands all rely on either FSCommand or FSCommand2
commands.

Date and time

The commands in this section provide the mobile phone’s date and time information to Flash
content on the mobile phone.

GetDateDay()

The GetDateDay() function returns the day of the current date. It is a numeric value (without a
leading zero). Valid days are 1–31.
34 Chapter 5: New FSCommand and FSCommand2 commands

The GetDateDay() function is executed immediately upon invocation. If this function is not
supported, a value of -1 is returned.

Syntax

status = FSCommand2("GetDateDay”)

Return value

A value of -1 if the function is not supported; otherwise, the current day, returned as a
number (1-31).

GetDateMonth()

The GetDateMonth() function returns the month of the current date. It is a numeric value
(without a leading zero). Valid months are 1–12.

The GetDateMonth() function is executed immediately upon invocation. If this function is not
supported, a value of -1 is returned.

Syntax

status = FSCommand2("GetDateMonth”)

Return value

A value of -1 if the function is not supported; otherwise, the current month, returned as a number
(1-12).

GetDateWeekday()

The GetDateWeekday() function returns a numeric value that is the name of the day of the
current date. Valid days are 0–6, where 0 represents Sunday, 1 represents Monday, 2 represents
Tuesday, 3 represents Wednesday, 4 represents Thursday, 5 represents Friday, and 6 represents
Saturday.

The GetDateWeekday() function is executed immediately upon invocation. If this function is
not supported, a value of -1 is returned.

Syntax

status = FSCommand2("GetDateWeekday”)

Return value

A value of -1 if the function is not supported; otherwise, the current weekday, returned as a
number (0-6).

GetDateYear()

The GetDateYear() function returns a numeric, four-digit value that is the year of the
current date.

The GetDateYear() function is executed immediately upon invocation. If this function is not
supported, a value of -1 is returned.
Platform integration commands 35

Syntax

status = FSCommand2("GetDateYear”)

Return value

A value of -1 if the function is not supported; otherwise, the current year, returned as a number
(for example, 2004).

GetLocaleLongDate()

The GetLocaleLongDate() function sets a parameter to a string representing the current date, in
long form, formatted according to the currently defined locale. The parameter is passed in by
name. The value returned through it is a multiple-character, variable-length string. The actual
formatting depends on the mobile phone and the locale.

The GetLocaleLongDate() function is executed immediately upon invocation. If this function is
not supported, a value of -1 is returned.

Syntax

status = FSCommand2("GetLocaleLongDate”, "longdate")

Return value

A value of -1 if the function is not supported; 0 if it’s supported.

Sample resultant values for longdate:
October 16, 2004
16 October 2004

GetLocaleShortDate()

The GetLocaleShortDate() function sets a parameter to a string representing the current date,
in abbreviated form, formatted according to the currently defined locale. The parameter is passed
in by name. The value returned is a multiple-character, variable-length string. The actual
formatting depends on the mobile phone and the locale.

The GetLocaleShortDate() function is executed immediately upon invocation. If this function
is not supported, a value of -1 is returned.

Syntax

status = FSCommand2("GetLocalShortDate”, "shortdate")

Return value

A value of -1 if the function is not supported; 0 if it’s supported.

Sample resultant values for shortdate:
10/16/2004
16-10-2004
36 Chapter 5: New FSCommand and FSCommand2 commands

GetLocaleTime()

The GetLocaleTime() function sets a parameter to a string representing the current time,
formatted according to the currently defined locale. The parameter is passed in by name. The
value returned is a multiple-character, variable-length string. The actual formatting depends on
the mobile phone and the locale.

The GetLocaleTime() function is executed immediately upon invocation. If this function is not
supported, a value of -1 is returned.

Syntax

status = FSCommand2("GetLocalTime”, "time”)

Return value

A value of -1 if the function is not supported; 0 if it’s supported.

Sample resultant values for time:
6:10:44 PM
18:10:44

GetTimeHours()

The GetTimeHours() function returns the hour of the current time of day, based on a 24-hour
clock. It is a numeric value (without a leading zero). Valid hours are 0–23.

The GetTimeHours() function is executed immediately upon invocation. If this function is not
supported, a value of -1 is returned.

Syntax

status = FSCommand2("GetTimeHours”)

Return value

A value of -1 if the function is not supported; otherwise, the current hour, returned as a
number (0-23).

GetTimeMinutes()

The GetTimeMinutes() function returns the minute of the current time of day. It is a numeric
value (without a leading zero). Valid minutes are 0–59.

The GetTimeMinutes() function is executed immediately upon invocation. If this function is
not supported, a value of -1 is returned.

Syntax

status = FSCommand2("GetTimeMinutes”)

Return value

A value of -1 if the function is not supported; otherwise, the current minute, returned as a
number (0-59).
Platform integration commands 37

GetTimeSeconds()

The GetTimeSeconds() function returns the second of the current time of day. It is a numeric
value (without a leading zero). Valid seconds are 0–59.

The GetTimeSeconds() function is executed immediately upon invocation. If this function is
not supported, a value of -1 is returned.

Syntax

status = FSCommand2("GetTimeSeconds”)

Return value

A value of -1 if the function is not supported; otherwise, the current second, returned as a number
(0-59).

GetTimeZoneOffset()

The GetTimeZoneOffset() function sets a parameter to the number of minutes between the
local time zone and universal time (UTC). The parameter is passed in by name. The value
returned is numeric, and may be a positive or negative number.

The GetTimeZoneOffset() function is executed immediately upon invocation. If this function is
not supported, a value of -1 is returned.

Syntax

status = FSCommand2("GetTimeZoneOffset”, ”timezoneoffset”)

Return value

A value of -1 if the function is not supported; 0 if it’s supported.

Sample resultant values for timezoneoffset:

540: Japan standard time

-420: Pacific daylight savings time

Volume

The commands in this section provide the mobile phone’s volume information to Flash content
on the mobile phone.

GetMaxVolumeLevel()

The GetMaxVolumeLevel() function returns the maximum volume level of the mobile phone. It
is a numeric value greater than zero.

The GetMaxVolumeLevel() function is executed immediately upon invocation. If this function is
not supported, a value of -1 is returned.

Syntax

status = FSCommand2("GetMaxVolumeLevel”)
38 Chapter 5: New FSCommand and FSCommand2 commands

Return value

A value of -1 if the function is not supported; otherwise, the maximum volume level, returned as
a number.

GetVolumeLevel()

The GetVolumeLevel() function returns the current volume level of the mobile phone. It is a
numeric value, in the range of 0 to the maximum value returned by GetMaxVolumeLevel.

The GetVolumeLevel() function is executed immediately upon invocation. If this function is
not supported, a value of -1 is returned.

Syntax

status = FSCommand2("GetVolumeLevel”)

Return value

A value of -1 if not supported; otherwise, the volume level, returned as a number.

Vibrate

The commands in this section provide the mobile phone’s vibration information to Flash content
on the mobile phone.

StartVibrate()

The StartVibrate() function starts the phone’s vibration feature. The pulse of the vibration is
specified by an “on” time followed by an “off ” time. Both the on time and the off time are
specified in milliseconds, and neither can exceed 5 seconds. The pulse can be repeated
sequentially, up to three times.

If a vibration is already occurring, that vibration is stopped before the new specified one is started.
Vibrations are also stopped when the Flash application playback is stopped or paused, and when
Flash Player is exited.

This function is executed immediately upon invocation. If this function is not supported, a value
of -1 is returned.

Syntax

status = FSCommand2("StartVibrate”, time_on, time_off, repeat)

In this example, time_on is the amount of time in milliseconds (the maximum is 5 seconds) that
the vibration is on, time_off is the amount of time in milliseconds (the maximum is 5 seconds)
that the vibration is off, and repeat is the number of times (a maximum of three) to repeat this
vibration.

Return value

A value of -1 if the function is not supported; 0 if the vibration is started; 1 if an error occurred
and the vibration could not be started.
Platform integration commands 39

StopVibrate()

The StopVibrate() function stops the current vibration, if any.

This function is executed immediately upon invocation. If this function is not supported, a value
of -1 is returned.

Syntax

status = FSCommand2("StopVibrate”)

Return value

A value of -1 if the function is not supported; 0 if the vibration is stopped.

Power

The commands in this section provide the mobile phone’s power information to Flash content on
the mobile phone.

GetBatteryLevel()

The GetBatteryLevel() function returns the current battery level. It is a numeric value, in the
range of 0 to the maximum value returned by the GetMaxBatteryLevel().

This function is executed immediately upon invocation. If this function is not supported, a value
of -1 is returned.

Syntax

status = FSCommand2("GetBatteryLevel”)

Return value

A value of -1 if not supported; otherwise, the battery level, returned as a number.

GetMaxBatteryLevel()

The GetMacBatteryLevel() function returns the maximum battery level of the mobile phone.
It is a numeric value greater than zero.

This function is executed immediately upon invocation. If the GetMacBatteryLevel() function
is not supported, a value of -1 is returned.

Syntax

status = FSCommand2("GetMaxBatteryLevel”)

Return value

A value of -1 if the function is not supported; otherwise, the maximum battery level, returned as a
number.
40 Chapter 5: New FSCommand and FSCommand2 commands

GetPowerSource()

The GetPowerSource() function returns a value indicating whether the power source is currently
supplied a battery or externally supplied.

This function is executed immediately upon invocation. If the GetPowerSource() function is
not supported, a value of -1 is returned.

Syntax

status = FSCommand2("GetPowerSource”)

Return value

A value of -1 if the function is not supported; 0 if the mobile phone is operating on battery
power; 1 if the mobile phone is operating on an external power source.

Network information

The commands in this section provide the mobile phone’s network information to Flash content
on the mobile phone.

GetMaxSignalLevel()

The GetMaxSignalLevel() function returns the maximum signal strength level. It is a numeric
value greater than zero.

This function is executed immediately upon invocation. If GetMaxSignalLevel() is not
supported, a value of -1 is returned.

Syntax

status = FSCommand2("GetMaxSignalLevel”)

Return value

A value of -1 if the function is not supported; otherwise, the maximum signal level, returned as a
number.

GetNetworkConnectStatus()

The GetNetworkConnectStatus() function returns a value indicating the current network
connection status.

This function is executed immediately upon invocation. If GetNetworkConnectStatus() is not
supported, a value of -1 is returned.

Syntax

status = FSCommand2("GetNetworkConnectStatus”)

Return value

A value of -1 if the function is not supported; otherwise, one of the following values:

0: There is currently an active network connection.

1: The mobile phone is in the process of attempting to connect to the network.
Platform integration commands 41

2: There is currently no active network connection.

3: Network connection is in a suspended state.

4: The network connection is in an indeterminable state.

GetNetworkName()

The GetNetworkName() function sets a parameter to the name of the current network. The
parameter is passed in by name. The value returned is a string representing the network name.

If no network is registered, the parameter containing the name is set to a zero-length string, and a
value of 0 is returned. If the network is registered but the name cannot be determined, the
parameter containing the name is set to a zero-length string, and a value of 1 is returned. If the
network is registered and its name can be determined, then the parameter containing the name is
set to be the network name, and a value of 2 is returned.

This function is executed immediately upon invocation. If GetNetworkName() is not supported,
a value of -1 is returned.

Syntax

status = FSCommand2(“GetNetworkName”, “networkname”)

Return value

A value of -1 if the function is not supported; otherwise, the following values are returned:

0: No network registered, and networkname is not set.

1: Network registered, but network name is not known; networkname is not set.

2: Network registered, and network name is known; networkname is set.

Sample resultant values for networkname:

AT&T Wireless: Phone is currently on the AT&T Wireless network.

KPN Mobile: Phone is currently on the KPN Mobile network.

GetNetworkRequestStatus()

The GetNetworkRequestStatus() function returns a value indicating the status of the most
recent HTTP request.

This function is executed immediately upon invocation. If GetNetworkRequestStatus() is not
supported, a value of -1 is returned.

Syntax

status = FSCommand2("GetNetworkRequestStatus”)

Return value

A value of -1 if the function is not supported; otherwise, one of the following values:

0: There is a pending request, a network connection has been established, the server’s host name
has been resolved, and a connection to the server has been made.
42 Chapter 5: New FSCommand and FSCommand2 commands

1: There is a pending request, and a network connection is being established.

2: There is a pending request, but a network connection has not yet been established.

3: There is a pending request, a network connection has been established, and the server’s host
name is being resolved.

4: The request failed because of a network error.

5: The request failed because of a failure in connecting to the server.

6: The server returned an HTTP error (for example, 404).

7: The request failed because of a failure in accessing the DNS server or in resolving the server
name.

8: The request has been successfully fulfilled.

9: The request failed because of a timeout.

10: The request has not yet been made.

GetNetworkStatus()

The GetNetworkStatus() function returns a value indicating the network status of the phone
(that is, whether there is a network registered and whether the phone is currently roaming).

This function is executed immediately upon invocation. If The GetNetworkStatus() is not
supported, a value of -1 is returned.

Syntax

status = FSCommand2("GetNetworkStatus”)

Return value

A value of -1 if the function is not supported; otherwise, one of the following values:

0: No network registered.

1: On home network.

2: On extended home network.

3: Roaming (away from home network).

GetSignalLevel()

The GetSignalLevel() function returns the current signal strength. It is a numeric value, in the
range of 0 to the maximum value returned by GetMaxSignalLevel().

This function is executed immediately upon invocation. If GetSignalLevel() is not supported,
a value of -1 is returned.

Syntax

status = FSCommand2("GetSignalLevel”)
Platform integration commands 43

Return value

A value of -1 if the function is not supported; otherwise, the current signal level, returned as a
number.

Device user settings

The commands in this section provide the mobile phone’s language setting to Flash content on
the mobile phone.

GetLanguage()

The GetLanguage() function sets a parameter that identifies the language currently used by the
mobile phone. The language is returned as a string in a variable that is passed in by name..

This function is executed immediately upon invocation. If GetLanguage() is not supported, a
value of -1 is returned.

Syntax

status = FSCommand2("GetLanguage”, “language”)

Return value

A value of -1 if the function is not supported; 0 if it’s supported.

Resultant values for the language:

cs: Czech.

da: Danish.

de: German.

en-UK: UK or international English.

en: USA English.

es: Spanish.

fi: Finnish.

fr: French.

hu: Hungarian.

it: Italian.

jp: Japanese.

ko: Korean.

nl: Dutch.

no: Norwegian.

pl: Polish.

pt: Portuguese.

ru: Russian.
44 Chapter 5: New FSCommand and FSCommand2 commands

sv: Swedish.

tr: Turkish.

xu: The language cannot be determined.

zh-CN: Simplified Chinese.

zh-TW: Traditional Chinese.

Device and player identification

The commands in this section provide the mobile phone’s ID and platform information to Flash
content on the mobile phone.

GetDeviceID()

The GetDeviceID() function sets a parameter that represents the unique identifier of the mobile
phone (for example, serial number).

This function is executed immediately upon invocation. If GetDeviceID() is not supported, a
value of -1 is returned.

Syntax

status = FSCommand2("GetDeviceID” “id”)

Return value

A value of -1 if the function is not supported; 0 if it’s supported.

Supported applications

This feature is not supported in all mobile phones.

GetPlatform()

The GetPlatform() function identifies the current platform. The platform broadly describes the
class of the mobile phone. For mobile phones with open operating systems, this identifier is
typically the name and version of the operating system.

The name of the platform is returned in a variable that is passed in by name, in the form of a
string.

This function is executed immediately upon invocation. If GetPlatform() is not supported, a
value of -1 is returned.

Syntax

status = FSCommand2("GetPlatform”, “platform”)

Return value

A value of -1 if the function not supported; 0 if it’s supported.

Sample resultant values for platform:
Platform integration commands 45

506i indicates that the device is a 506i phone.

FOMA1 indicates that the device is a FOMA1 phone.

GetDevice()

The GetDevice() function identifies the mobile phone on which Flash is running. This
identifier is typically the model name.

The name of the mobile phone is returned in a variable that is passed in by name. The device
identifier is a string.

This function is executed immediately upon invocation. If GetDevice() is not supported, a value
of -1 is returned.

Syntax

status = FSCommand2("GetDevice”, “device”)

Return value

A value of -1 if it’s not supported; 0 if it’s supported.
46 Chapter 5: New FSCommand and FSCommand2 commands

CHAPTER 6
Creating Content
This document contains numerous code examples and detailed reference information. With all of
this information available to you for creating Macromedia Flash Lite 1.1 content for mobile
phones, it’s important to understand how to publish your Flash Lite content.

This chapter provides instructions for publishing your Flash Lite 1.1 content so that it plays back
on mobile phones. It also describes how to embed sound into your Flash applications.

Flash Lite 1.1 publish settings

When you open a new Flash document in Macromedia Flash MX Professional 2004, the Flash
Player export settings are set to Flash Player 7 by default. When authoring content for mobile
phones, you need to make sure the Flash export settings are set to Flash Lite 1.1 before you start
creating any content.

There are three ways to adjust your Flash export settings for developing Flash content for mobile
phones: you can manually change settings, create a publish profile, or use a publishing template.

Manually change settings

Changing the Flash publish settings manually is straightforward but you must repeat these steps
for every FLA file for which you want to export Flash Lite 1.1 content.

To change Flash publish settings manually:

1. Open a new document in Flash MX Professional 2004.

2. Open the Property inspector and click the Settings button. The Publish Settings dialog box
appears.

3. In the Publish Settings dialog box, click the Player version pop-up menu. Select Flash Lite 1.1
and click OK.

The Flash Player export version is now set to Flash Lite 1.1. Now, whenever you test or export
a SWF file it will be exported as a Flash Lite 1.1 SWF file.
47

Creating a publish profile

Another way of reusing specific publish settings for multiple files and projects is to save them as a
publishing profile. When you export your publish settings using a publishing profile, all of the
selected options for all of the enabled tabs are saved.

To create a publish profile:

1. Open a new document in Flash MX Professional 2004, and save it.

2. Open the Publish Settings dialog box (File > Publish Settings), select the Flash tab, and click
the Create New Profile button. Give your profile a descriptive name and click OK.

3. Still in the Publish Settings pop-up, make the changes to the export settings and then select
Export from the Import/Export Profile button. Save your publish settings to the default
location in the save window and click OK.

Your publish settings have been exported. You can import them into any new or existing project
document and share them with others member of your team if you work in a group environment.

Creating a simple movie for Flash Lite 1.1 (no sound)

You can create a Flash application (without sound) that runs on a mobile phone. Make sure you
have installed the necessary updater files before you begin this procedure. See “Getting started”
on page 7 for more information.

To create a Flash Lite 1.1 compatible SWF file:

1. In Flash MX Professional 2004, create a new document and name it FlashLiteTest.fla.

2. Select File > Publish Settings, and then the Flash tab. In the Version pop-up menu, select Flash
Lite 1.1. Click OK.

3. From the Property inspector select the Size button, and change your document properties so
that width = 240, height = 266, and Frame Rate = 15. Click OK. Make sure to use the
appropriate frame rate on the actual devices.

4. Select Window > Other Panels > Common Libraries > Buttons. Select a button and drag it to
the Stage.

5. If the button is not selected on the Stage, click it once to select it. Open the Actions panel if it
is not already open (Window > Development Panels > Actions) and enter the following:
on (press, keyPress "<Enter>") {

getURL(“http://www.macromedia.com”, _top);
}

6. Select Control > Test Movie.

Flash MX Professional 2004 executes the Test Movie command.
48 Chapter 6: Creating Content

7. To simulate the user input of a mobile phone, you must disable the keyboard shortcuts (from
the Test Movie window, select Control > Disable keyboard shortcuts). Use the Enter and Tab
keys to interact with the SWF file.

You can now interact with the Flash application. When you click the button in the SWF file, a
browser opens at www.macromedia.com.

8. Select File > Publish to save the SWF file as FlashLiteTest.swf.

In the mobile phone web browser or from a desktop that can transfer a file using desktop-to-
phone synchronization software, transfer the file to the mobile phone and verify that it works
correctly.

Adding sound to your Flash Lite 1.1 application

You can add sound to your Flash Lite 1.1 application by associating a SMAF sound file with an
ActionScript sound symbol so you can test your SWF file by using the Test Movie command in
Flash MX Professional 2004 Flash.

In the procedure below you will learn how to add sound to a Flash Lite application by embedding
the SMAF sound file birdChirp.mmf, located in the CDK\Tutorials folder, into a Flash Lite 1.1
SWF file.

To associate a SMAF sound file with an ActionScript sound symbol:

1. In Flash MX Professional 2004, create a new document and name it FlashLiteSound.fla. Save
it in the same directory as birdChirp.mmf (CDK\Tutorials folder).

2. Select File > Publish Settings and select the Flash tab. In the player version pop-up menu, select
Flash Lite 1.1. Click OK.

3. From the Property inspector select the Size button, and change your document properties so
that Width = 240, Height = 266, and Frame Rate = 15. Click OK. Make sure to use the
appropriate frame rate on the actual devices.

4. Select File > Import > Import to Library. Locate the CDK\Tutorials folder and select the
tempAudio.mp3 file. Click OK.

5. Select Window > Other Panels > Common Libraries > Buttons. Select a button and drag it to
the Stage.

6. Double-click the new button. The Timeline changes to allow editing of the button and displays
frames named Up, Over, Down, and Hit.

7. Select Insert > Timeline > Layer to create a new layer. Select Modify > Timeline > Layer
Properties and change the name of the layer to Sound.

8. Select the Down frame in the Sound layer and insert a keyframe.

9. Select the testAudio.mp3 file from the Library window and drag it to the keyframe.
Adding sound to your Flash Lite 1.1 application 49

http://www.macromedia.com

10. Associate the proxy sound with the birdChirp.mmf file by doing the following:

■ Select Window > Library and find the sound that you added in step 9. Select the sound and
right-click it to open the context menu. Select Properties from the context menu. The
Sound Properties dialog box appears:

■ In the Device sound text box, use the file browser to find and select birdChirp.mmf.
■ Click OK.

11. Select Control > Test Movie to start the Flash MX Professional 2004 Flash Lite 1.1 to test your
SWF file.

12. Select File > Publish to save the SWF file as FlashLiteSound.swf.

When you add sound files to your Flash Lite SWF file, keep the following points in mind:

• The Effect, Sync, and Edit options are not supported on mobile devices.
• You must specify an external device sound for each sound in a document if you want the sound

to play on a mobile device.
• As with all external files, the device sound files must be available during the Publish process.

However, the file is not needed during the SWF playback.

In the mobile phone web browser or from a desktop that can transfer a file using
desktop-to-phone synchronization software, transfer the file to the mobile phone and
verify that it works correctly.
50 Chapter 6: Creating Content

CHAPTER 7
Testing Content
Anyone can make mistakes while developing content, and it’s a good idea to test your
Macromedia Flash content frequently as you progress. Consider asking someone who is not
familiar with your application to look at it and provide feedback.

Testing considerations

Test your Macromedia Flash Lite 1.1 SWF content frequently on actual mobile phones. This step
may seem obvious, but it is often overlooked. It is especially important when you develop Flash
Lite 1.1 SWF files for mobile phones. No matter how much phone emulation you do, the final
delivery remains the most important part of the development cycle. Emulation is helpful for
much of the testing, but it is no substitute for testing on actual mobile phones.

You provide the most benefit for users by delivering a well-designed UI. If the application is slow,
difficult to use, or not viewable, your development effort is wasted.

You should use the following methods to test the Flash Lite content you develop for mobile
phones:

• The Flash Player Test Movie command (Control > Test Movie)
• Flash Player on the manufacturer’s phone

The Macromedia Flash MX Professional 2004 Test Movie command recognizes and plays Flash
Lite SWF files. When you select Control > Test Movie or Control > Test Scene, new information,
warnings, and error messages specifically related to Flash Lite applications are displayed in a
separate Output panel.

Whenever an unknown tag is encountered, warning messages are displayed so that you can
modify the content appropriately. Not all invalid Flash content is flagged as an error (for example,
invalid ActionScript and invalid key input).

For a detailed explanation of all messages related to Flash Lite 1.1, see Appendix C, “Warning and
Error Messages” . This appendix lists all of the warning and error messages that you might see
when creating Flash Lite 1.1 SWF files for mobile phones.
51

Using the optional configuration file

The Flash Lite 1.1 External (Test Movie) player provides the user the ability to customize the
features that are supported in the Flash Lite 1.1 player. The user can also add their platform
specific strings in the configuration file. A sample configuration file is provided in the installation
package.

The steps to install the configuration file are:

1. For Windows:

Copy and paste DeviceMsg.cfg to the Flash MX 2004 configuration folder which usually is
C:\Documents and Settings\<user name>\Local Settings\Application Data\Macromedia\
Flash MX 2004\language\Configuration\

2. For Macintosh:

Copy and paste DeviceMsg.cfg to Macintosh HD::Users:<user name>:Library:
Application Support:Macromedia:Flash MX 2004:language:Configuration:

The configuration consists of multiple feature lines. Each line starts with a feature tag name
followed by an equal sign. Lines starting with "//" are considered to be comments and are not
processed.

There are two methods to set up a feature line. The first method is to add a double quoted string
after the equal sign. When this string is present, that feature is turned on no matter what the
original settings of the Test Movie player are. This string added by the user will be displayed in
the authoring tool output window to remind the content developer of the platforms on which
this feature is not supported. The second method is to put "on" or "off" after the equal sign to
turn on/off that feature.

A special feature line can also be set up to change the sound order preference when creating
content with compound sound data. One example is:

{Midi,SMAF_MA2,SMAF_MA3,SMAF_MA5,MFI,MFI_Fujitsu,MFI_Mitsubishi,MFI_NEC,
MFI_Panasonic,MFI_Sharp,MFI_Sony}

In this example, Midi sound is set to have the highest priority when a compound sound bundle is
processed. All the supported device sound formats are listed in this example. Once the user
specifies this special feature line in the configuration file, playback of the device sound formats
specified in this line will be supported in the test movie player. Sound formats not specified in
this line will not be supported in the test movie player.

The details of tags that can be specified in the configuration file are explained in the following
table:

Tag name Default Value(note) Tag Usages Notes

AddSound On Sound playback is allowed

ADPCM On ADPCM sound format is
allowed

PCM On PCM sound format is
allowed
52 Chapter 7: Testing Content

MIDI On MIDI sound format is allowed

SMAF On All the SMAF sound format
is allowed. capSMAF is set
to 1;

This is a generic tag
for all SMAF sound
formats.

SMAF MA2 On MA2 SMAF sound format is
allowed

This is set to “On”
when the “SMAF”
tag is set to “On”

SMAF MA3 On MA3 SMAF sound format is
allowed

This is set to “On”
when the “SMAF”
tag is set to “On”

SMAF MA5 On MA5 SMAF sound format is
allowed

This is set to “On”
when the “SMAF”
tag is set to “On”

MFI On Generic Mfi sound format
sound is allowed

MFI Fujitsu On Mfi sound with Fujitsu
extension is allowed

MFI Mitsubishi On Mfi sound with Mitsubishi
extension is allowed

MFI NEC On Mfi sound with NEC
extension is allowed

MFI Panasonic On Mfi sound with Panasonic
extension is allowed

MFI Sharp On Mfi sound with Sharp
extension is allowed

MFI Sony On Mfi sound with Sony
extension is allowed

mp3codec On MP3 sound format is allowed

SingleSoundOnly On Only one device sound can
be played at one time, no
mixing allowed

AddSoundKeyOnly On When turned on, sound will
be played only when it is
associated with a key press

StreamingSound On Stream Sound is supported,
_capStreamSound is set to 1.

LoadVarsOnePerKey Off When turned on, only
loadVars calls associated
with a key press are allowed

Tag name Default Value(note) Tag Usages Notes
Using the optional configuration file 53

LoadVarsOnePerKeyOr
Frame

On loadVars call does not have
to be associated with a key
press, but only one call is
allowed per key and per
frame.

LoadMovieOnePerKey Off When turned on, only
loadMovie calls associated
with a key press are allowed

LoadMovieOnePerKeyO
rFrame

On loadMovie call does not have
to be associated with a key
press, but only one call is
allowed per key and per
frame.

GetURLOnePerKey Off When turned on, only getUrl
calls associated with a key
press are allowed

GetURLOnePerKeyOrFr
ame

On GetUrl call does not have to
be associated with a key
press, but only one call is
allowed per key and per
frame.

FSCommandOnePerKey Off When turned on, only
FSCommand calls
associated with a key press
are allowed

FSCommandOnePerKey
OrFrame

On FSCommand call does not
have to be associated with a
key press, but only one call is
allowed per key and per
frame.

KeySetFull Off When turned on, all the key
events will be handled.

KeySetPhone On Only the keys used on cell
phones ('0'-'9'',*,#) are
processed.

Inputtext On Input text is allowed

Mouse Off Extra Mouse events are
handled

Navi4Way On Four way navigation mode is
on,
_cap4WayKeyAS is set to 1.

Navi4WayWrapAround Off Four way navigation with
wrap around mode is on

Only valid if
Navi4Way feature
is turned on.

Tag name Default Value(note) Tag Usages Notes
54 Chapter 7: Testing Content

Note: The default value in the table is the value that the test movie player uses for the feature when
there is no corresponding feature line specified in the configuration file.

Email Off When turned on, _capEmail
is set to 1; otherwise, it is set
to 0.

SMS On When turned on, _capSMS
is set to 1; otherwise, it is set
to 0.

MMS Off When turned on,
_capMMSis set to 1;
otherwise, it is set to 0.

LoadData Off When turned on,
_capLoadData is set to 1;
otherwise, it is set to 0.

Tag name Default Value(note) Tag Usages Notes
Using the optional configuration file 55

56 Chapter 7: Testing Content

CHAPTER 8
Development Kit Examples
The development kit includes a variety of sample files (FLA and SWF files) that demonstrate
many of the concepts and applications that are described in this document. These examples are
included to help you create content for mobile phones. The files include capabilities examples,
processor detectors, and data-driven examples. Be sure to view the readme.txt file in the folder
associated with each sample file.
57

58 Chapter 8: Development Kit Examples

CHAPTER 9
Resources and Support
As you develop Flash content for mobile phones, it’s important to use all of the resources available
throughout the community. Websites, books, tutorials, articles, and discussion groups are great
ways to enhance and share your knowledge with others.

Let us know about your application

If you have created a Flash Lite 1.1 application for a mobile phone, Macromedia would like to
hear more about it. Send e-mail to mobile-applications@macromedia.com.

Web resources

For more information about Macromedia Flash Lite 1.1 for mobile phones, visit the following
sites:

• Macromedia Mobile and Devices Developer Center
www.macromedia.com/devnet/devices/

• Flash Devices—Flash Development Resource for Mobile Devices
www.flashdevices.net

• Flash the Future—Developer site for Flash on devices
www.flashthefuture.com

• miniml—Pixel fonts for use with Flash on small screens
www.miniml.com

• Fonts For Flash—Pixel fonts for use with Flash on small screens
www.fontsforflash.com

• Ultra Fonts—Grayscale-enabled outline pixel fonts for use with Flash on small screens.
www.ultrafonts.com
59

http://www.macromedia.com/devnet/devices/aukddi
http://www.flashdevices.net
http://www.flashthefuture.com
http://www.miniml.com
http://www.fontsforflash.com
http://www.ultrafonts.com

Books

There are many books about Flash, but currently only two specifically address the development of
Flash applications for mobile devices. Both of these books offer insight into real-world scenarios
and complement each other well.

Flash Enabled: Flash Design & Development for Devices
by Phillip Torrone, Branden Hall, Bill Perry, et al.
New Riders Publishing
ISBN: 0735711771

Flash: The Future
by Jon Warren Lentz, Ian Chia, Bill Turner, et al.
No Starch Press
ISBN: 1886411964

Discussion groups
• Macromedia Flash Support Forums – Flash Handhelds

webforums.macromedia.com/flash/categories.cfm?catid=195
60 Chapter 9: Resources and Support

http://webforums.macromedia.com/flash/categories.cfm?catid=195

APPENDIX A
Supported ActionScript
This appendix lists the Macromedia Flash Lite 1.1 ActionScript commands.

Action name Description Support

// (comment) Comment; indicates the beginning of a script comment.
Any characters that appear between the comment
delimiter // and the end-of-line character are interpreted
as a comment.

Fully supported

, (comma) Operator; a separator between two expressions that
causes the value of the second expression to be the
return value.

Fully supported

. (dot) Operator; used to navigate movie clip hierarchies to
access nested (child) movie clips, variables, or
properties.

Fully supported

“ “ (string delimiter) String delimiter; when used before and after characters,
double quotes indicate that the characters have a literal
value and are considered a string and not a variable,
numerical value, or other ActionScript element.

Fully supported

– – (decrement) Operator; a pre-decrement and post-decrement unary
operator that subtracts 1 from an expression.

Fully supported

++ (increment) Operator; a pre-increment and post-increment unary
operator that adds 1 to an expression.

Fully supported

+ (add) A numeric operator used for adding numbers. Fully supported

+= (addition
assignment)

Operator (arithmetic); assigns to expression1 the value of
expression1 + expression2

For example, the following two statements have the
same result:
x += y;
x = x + y;

Fully supported
61

(–) subtract Operator (arithmetic); used for negating or subtracting.
When used for negating, it reverses the sign of the
numerical expression. When used for subtracting, it
performs an arithmetic subtraction on two numerical
expressions, subtracting expression2 from expression1.
Example 1: The following statement reverses the sign of
the expression 2 + 3.
-(2 + 3)
The result is -5.
Example 2: The following statement subtracts the integer
2 from the integer 5.
5 - 2
The result is 3.

Fully supported

-= (subtraction
assignment)

Operator (arithmetic); assigns to expression1 the value of
expression1 - expression2

For example, the following two statements have the
same result:
x -= y;
x = x - y;

Fully supported

* (multiply) Operator (arithmetic); multiplies two numerical
expressions.

Fully supported

*= (multiplication
assignment)

Operator (arithmetic); assigns to expression1 the value of
expression1 * expression2
x *= y;
x = x * y;

Fully supported

/ (divide) Operator (arithmetic); divides expression1 by
expression2.
For example, the following statement sets the value of x
to 25:
y = 50;
x = y/2;

Fully supported

/= (division
assignment)

Operator (arithmetic); assigns to expression1 the value of
expression1 / expression2

For example, the following two statements are the same:
x /= y;
x = x / y;

Fully supported

= (numeric equality) A numeric equality operator used to test two expressions
for equality. The result is true if the expressions are
equal.

Fully supported

Action name Description Support
62 Appendix A: Supported ActionScript

< (less than) Operator (comparison); compares two expressions and
determines whether expression1 is less than
expression2 (true), or whether expression1 is greater
than or equal to expression2 (false). In Flash Lite (and
Flash 4), < is a numeric operator and is only used for
expressions and not strings.
The following examples illustrate true and false results
for < comparisons.
3 < 10;
// true

10 < 3;
// false

Fully supported

<= (less than or equal
to)

Operator (comparison); compares two expressions and
determines whether expression1 is less than or equal to
expression2 (true), or whether expression1 is greater
than expression2 (false).
The following examples illustrate true and false results
for <= comparisons:
5 <= 10;
// true

2 <= 2;
// true

10 <= 3;
// false

Fully supported

> (greater than) Operator (comparison); compares two expressions and
determines whether expression1 is greater than
expression2 (true), or whether expression1 is less than
or equal to expression2 (false).
The following examples illustrate true and false results
for > comparisons.
10 > 3;
// true

3 > 10;
// false

Fully supported

>= (greater than or
equal to)

Operator (comparison); compares two expressions and
determines whether expression1 is greater than or equal
to expression2 (true), or whether expression1 is less
than expression2 (false).
The following examples illustrate true and false results
for >= comparisons:
10 >= 5;
// true

2 >= 2;
// true

3 >=10;
// false

Fully supported

Action name Description Support
63

<> (inequality) Operator (equality); tests the opposite of the equality
operator. If expression1 is equal to expression2, the
result is false.
The following examples illustrate true and false returns
for the <> operator.
3 < > 10;
// true

3 <> 3;
// false

Fully supported

% (modulo) Operator; calculates the remainder of expression1
divided by expression2.
For example, the following statement sets the value of x
to 3:
x = 45 % 6;

Fully supported

%= (modulo
assignment)

Operator (assignment); assigns to expression1 the value
of expression1 % expression2.
For example, the following two expressions are the same:

x %= y
x = x % y

Fully supported

|| (logical OR) Operator (logical); evaluates expression1 and, if
expression1 is false, evaluates expression2. The result is
true if either or both expressions evaluate to true; the
result is false only if both expressions evaluate to false.
The following example uses the || operator in an if
statement. The second expression evaluates to true so
the final result is true:
x = 10;
y = 250;
if (x > 25 || y > 200) {
 z = 5;
 }
 else {
 z=0;
}
// z has a value of 5 after the code above has
executed.

Fully supported

! (logical NOT) Operator (logical); inverts the Boolean value of a variable
or expression.

Fully supported

Action name Description Support
64 Appendix A: Supported ActionScript

&& (logical AND) Operator (logical); evaluates expression1 and, if
expression1 is true, evaluates expression2. The result is
true if both expressions evaluate to true; the result is
false if either expression evaluates to false.
The following example uses the && operator in an if
statement. Both expressions evaluate to true, so the final
result is true:
x = 30;
y = 250;
if (x > 25 && y > 200) {
z = 5;
}
else {
z = 0;
}
// z has a value of 5 after the code above has
executed.

Fully supported

?: (conditional) Operator (conditional); evaluates expression1, and
returns the value of expression2 if expression1 is true;
otherwise, returns the value of expression3.
The following statement assigns the value of variable x to
variable z because expression1 evaluates to true:
x = 5;
y = 10;
z = (x < 6) ? x : y;
// z has a value of 5

Fully supported

& (string
concatenation)

Operator; used for concatenating strings. Fully supported

add Operator; concatenates (combines) two or more strings. Fully supported

and Operator; performs a logical AND operation. If both
expressions evaluate to true, then the entire expression
is true.

Fully supported

break Action; appears within a loop (for, for...in, do...while
or while). The break action skips the rest of the loop
body, stopping the looping action, and executes the
statement following the loop statement. Use the break
action to break out of a series of nested loops.

Fully supported

call Action; switches the context from the current script to the
script attached to the frame being called.

Fully supported

case Keyword; defines a condition for the switch action. Fully supported

chr() String function; converts ASCII code numbers to
characters.

Fully supported

continue Action; used to control code execution in loops. Fully supported

do... while Action; executes the statements inside the loop, and then
evaluates the condition of the loop for as long as the
condition is true.

Fully supported

duplicateMovieClip Action; creates an instance of a movie clip while the
movie is playing.

Fully supported

Action name Description Support
65

else Action; specifies the actions, clauses, arguments, or
other conditional to run if the initial if statement returns
false.

Fully supported

else if Action; evaluates a condition and specifies the
statements to run if the condition in the initial if
statement returns false.

Fully supported

eq (string equal) Comparison operator; compares two expressions for
equality and returns true if expression1 is equal to
expression2; otherwise, returns false. This action is
string specific.
The following examples illustrate true and false results
for the eq operator:
x =”Amy”;
y=”Fred”;
x eq “Amy”;
// true
x eq y;
// false

Fully supported

eval() Function; accesses variables. The value of the variable is
returned.

Fully supported

fscommand() Action; allows the Flash application to communicate with
the program hosting Flash Player.

Partially
supported

ge (string greater than
or equal)

Comparison operator; returns true if the string
representation for expression1 is greater than or equal to
the string representation for expression2; otherwise,
returns false. This action is string specific.
The following examples illustrate true and false results
for the ge operator:
x =”Amy”;
y=”Fred”;
x ge y;
// false
x ge “Amy”;
// true
y ge x;
// true

Fully supported

getProperty() Function; returns the value of the specified property for
the movie clip instance.

Partially
supported. (See
“Supported
ActionScript”
on page 61.)

getTimer() Function; returns the number of milliseconds that have
elapsed since the SWF file started playing.

Fully supported

Action name Description Support
66 Appendix A: Supported ActionScript

getURL() Action; loads a document from a specific URL into a
window or passes variables to another application at a
defined URL. When sending variables, specify whether
to load variables using a GET or POST method. GET
appends the variables to the end of the URL, and is used
for small numbers of variables. POST sends the variables in
a separate HTTP header and is used for long strings of
variables.

Partially
supported (The
URL protocols
http, https, mailto,
and tel are
supported, once
per event action.)

gotoAndPlay() Action; sends the playhead to the specified frame in a
scene and plays from that frame. If a scene is not
specified, the playhead goes to the specified frame in the
current scene.

Fully supported

gotoAndStop() Action; sends the playhead to the specified frame in a
scene and stops it. If no scene is specified, the playhead
is sent to the frame in the current scene.

Fully supported

gt (string greater
than)

Comparison operator; returns true if the string
representation for expression1 is greater than the string
representation for expression2; otherwise, returns false.
This action is string specific.

Fully supported

if Action; evaluates a condition to determine the next
action in a movie. If the condition is true, Flash runs the
statements that follow.

Fully supported

ifFrameLoaded() Action; checks whether the contents of a specific frame
are available locally. Use ifFrameLoaded() to start playing
a simple animation while the rest of the SWF file
downloads.

Fully supported

int() Function; converts a decimal number to the closest
integer value.

Fully supported

le (string less than or
equal)

Comparison operator; returns true if the string
representation for expression1 is less than or equal to the
string representation for expression2; otherwise, returns
false. This action is string specific.
The following examples illustrate true and false results
for the le operator:
x =”Amy”;
y=”Fred”;
y le x;
// false
x le “Amy”;
// true
x le y;
// true

Fully supported

length() String function; returns the length of the specified string
or variable name.

Fully supported

Action name Description Support
67

loadMovie() Action; plays additional movies without closing Flash
Lite. Normally, Flash Lite displays a single Flash
application (SWF file) and then closes. The loadMovie()
action lets you display several SWF files at once or
switch between them without loading another HTML
document.

Fully supported

loadMovieNum() Action; loads a SWF file into a level in Flash Lite while
the originally loaded movie is playing.

Fully supported

loadVariables() Action; reads data from an external file, such as a text file
or text generated by a CGI script, Active Server Pages
(ASP), or Personal Home Page (PHP), and sets the
values for variables in a SWF file or movie clip.

Fully supported

loadVariablesNum() Action; reads data from an external file, such as a text file
or text generated by a CGI script, Active Server Pages
(ASP), or PHP, or Perl script, and sets the values for
variables in a Flash Lite level.

Fully supported

lt (string less than) Operator (comparison); compares expression1 to
expression2 and returns true if expression1 is less than
or equal to expression2; otherwise, returns false. This
action is string specific.
The following examples illustrate true and false results
for the lt operator:
x =”Amy”;
y=”Fred”;
y lt x;
// false
x lt “Jane”;
// true

Fully supported

mbchr() String function; converts an ASCII code number to a
multibyte character.

Fully supported

mblength() String function; returns the length of the multibyte
character string.

Fully supported

mbord() String function; converts the specified character to a
multibyte number.

Fully supported

mbsubstring() String function; extracts a new multibyte character string
from a multibyte character string.

Fully supported

ne (string not-equal) Comparison operator; compares two expressions for
inequality and returns true if expression1 is not equal to
expression2; otherwise, returns false. This action is
string specific.
The following examples illustrate true and false results
for the ne operator:
x =”Amy”;
y=”Fred”;
y ne“Amy”;
// true
x ne “Amy”;
// false

Fully supported

Action name Description Support
68 Appendix A: Supported ActionScript

nextFrame() Action; sends the playhead to the next frame and stops it. Fully supported

nextScene() Action; sends the playhead to frame 1 of the next scene
and stops it.

Fully supported

Number() Function; converts the argument x to a number and
returns a value as follows:
If x is a number, the return value is x.
If x is a Boolean value, the return value is 1 if x is true, 0 if
x is false.
If the value of x is a string, the function attempts to parse
x as a decimal number with an
optional trailing exponent, that is, 1.57505e-3.
If x is undefined, the return value is 0.

Not supported

on (event) Handler; specifies the mouse event or keypress that
triggers an action.

Partially
supported
(Events
supported are
keyPress, press,
release, rollOver
and rollOut.
Keys supported
in Flash Lite are:
0-9, *, # and
Select.)

ord() String function; converts characters to ASCII code
numbers.

Fully supported

play() Action; moves the playhead forward in the Timeline. Fully supported

prevFrame() Action; sends the playhead to the previous frame and
stops it.

Fully supported

prevScene() Action; sends the playhead to Frame 1 of the previous
scene and stops it.

Fully supported

random() Function; returns a random integer between 0 and the
integer specified in the value parameter.

Fully supported

removeMovieClip() Action; deletes a movie clip instance that was created
with the duplicateMovieClip() action.

Fully supported

set() Action; assigns a value to a variable. A variable is a
container that holds information.

Fully supported

setProperty() Action; changes the property of a movie clip as the SWF
file plays.

Partially
supported. (See
“Supported
ActionScript”
on page 61.)

startDrag() Action; makes the target movie clip draggable while the
SWF file is playing. Only one movie clip can be dragged
at a time.

Not supported

Action name Description Support
69

stop() Action; stops the SWF file that is currently playing. Fully supported

stopAllSounds() Action; stops all sounds currently playing in a movie
without stopping the playhead.

Fully supported

stopDrag() Action; stops the current drag operation. Not supported

String() Function; returns a string representation of the specified
argument as follows:
If x is a Boolean value, the return string is true or false.
If x is a number, the return string is a decimal
representation of the number.
If x is a string, the return string is x.
If x is a movie clip, the return value is the target path of the
movie clip in slash (/) notation.
If x is undefined, the return value is an empty string.

Not supported

substring() String function; extracts part of a string. Fully supported

switch() Action; creates a branching structure for ActionScript
statements. The switch action tests a condition and
executes statements if the condition returns a value of
true.

Fully supported

tellTarget() Action; Can be used to apply instructions to a particular
Timeline or movie clip. For example, tellTarget() can be
assigned to buttons that stop or start movie clips on the
Stage or prompt movie clips to jump to a particular frame.

Fully supported

toggleHighQuality() Action; turns anti-aliasing on and off in Flash Lite. Anti-
aliasing smooths the edges of objects but results in
slower movie playback. The toggleHighQuality() action
affects all movies in Flash Lite.

Fully supported

trace() Action; evaluates the expression and displays the results
in the Output panel when you run the Test Movie
command.

Fully supported

unloadMovie() Action; removes a movie clip from Flash Lite that was
previously loaded or created using the loadMovie() or
duplicateMovieClip() actions.

Fully supported

unloadMovieNum() Action; removes a movie at a specified level from Flash
Lite that was previously loaded or created using the
loadMovie() action.

Fully supported

while() Action; runs a statement or series of statements
repeatedly in a loop as long as the condition argument is
true.

Fully supported

Action name Description Support
70 Appendix A: Supported ActionScript

APPENDIX B
Supported ActionScript Properties
This appendix lists the Macromedia Flash Lite 1.1 ActionScript properties and points out any
exceptions.

Properties Description Support

/(slash notation) Property; specifies or returns a reference to the root
SWF file Timeline. Functionality provided by this
property is similar to that provided by the _root
property in Flash 5.

Fully supported

: Used in conjunction with "/" to reference variables
and properties of other movie clips that are contained
in the current SWF file. It is also used with the Call()
action to reference a frame label of a movie clip.

Fully supported

_alpha Property; sets or retrieves the alpha transparency
(value) of the movie clip. Valid values are 0 (fully
transparent) to 100 (fully opaque).

Fully supported

_currentframe Property (read-only); returns the number of the frame
where the playhead is currently located in the
Timeline.

Fully supported

_droptarget Property (read-only); returns the absolute path in
slash syntax notation of the movie clip instance on
which the draggableInstanceName (the name of a
movie clip instance that was the target of a
startDrag() action) was dropped. This property
always returns a path that starts with /.

Not supported

_focusrect Property (global); specifies whether a yellow
rectangle appears around the button that has the
current focus. The default value true (nonzero)
displays a yellow rectangle around the currently
focused button or text field as the user presses the
Tab key to navigate.

Fully supported
71

_framesloaded Property (read-only); the number of frames that have
been loaded from a streaming movie. This property is
useful for determining whether the contents of a
specific frame, and all the frames before it, have
loaded and are available locally in a user’s browser.

Fully supported

_height Property (read-only); retrieves the height of the
space occupied by a movie’s content.
In Flash Lite, _height is a read-only property.

Fully supported

_highquality Property (global); specifies the level of anti-aliasing
applied to the current movie. This property can be
used to control bitmap smoothing as well.

Partially supported
(bitmap smoothing
not supported)

_level In Flash Lite, SWF files are assigned a number
according to the order in which they are loaded. The
SWF file that is loaded first is loaded at the bottom
level, level 0. The SWF file in level 0 sets the frame
rate, background color, and frame size for all
subsequently loaded SWF files. SWF files are then
stacked in higher-numbered levels above the SWF
file in level 0.
This property is a reference to the root movie clip
Timeline of levelN.

Fully supported

Maxscroll Property; a read-only property that works with the
Scroll property to control the display of information
in a text field. This property can be retrieved, but not
modified.

Fully supported

_name Property; specifies the movie clip instance name. Fully supported

_rotation Property; specifies the rotation, in degrees, of the
movie clip.

Fully supported

Scroll Controls the display of information in a text field
associated with a variable. The Scroll property
defines where the text field begins displaying
content. After you set it, Flash Lite updates it as the
user scrolls through the text field. The Scroll
property is useful for directing users to a specific
paragraph in a long passage, or creating scrolling text
fields.

Fully supported

_soundbuftime Property (global); establishes the number of seconds
it takes to stream sound to the prebuffer.

Not supported

_target Property (read-only); returns the target path of the
movie clip instance specified as argument.

Fully supported

_totalframes Property (read-only); evaluates the movie clip
specified as argument and returns the total number
of frames in the SWF file.

Fully supported

_url Property (read only); retrieves the URL of the SWF
file from which the movie clip was downloaded.

Not supported

Properties Description Support
72 Appendix B: Supported ActionScript Properties

_visible Property; determines whether the specified movie
clip is visible. Movie clips that are not visible (when
the property is set to false) are disabled.

Fully supported

_width Property (read-only); retrieves the width of the space
occupied by a movie’s content. In Flash Lite, _width
is a read- only property.

Fully supported

_x Property; sets the x coordinate of the movie clip
relative to the local coordinates of the parent movie
clip.

Fully supported

_xscale Property; determines the horizontal scale
(percentage) of the movie clip as applied from the
registration point of the movie clip.

Fully supported

_y Property; sets the y coordinate of the movie clip
relative to the local coordinates of the parent movie
clip.

Fully supported

_yscale Property; sets the vertical scale (percentage) of the
movie clip as applied from the registration point of
the movie clip.

Fully supported

Properties Description Support
73

74 Appendix B: Supported ActionScript Properties

APPENDIX C
Warning and Error Messages
This appendix lists the possible information and warning messages you might encounter when
creating Macromedia Flash Lite 1.1 content for mobile phones.

Flash authoring tool warning and error messages

Message Identifier Message Explanation

SWFS016 Detected loadMovie() -
will be ignored.

Flash Player detected that the SWF file contains a
loadMovie() ActionScript command, which the
specified device’s Flash Lite does not support. No
modifications are made to the device-specific
SWF file—this is just a warning.

SWFS017 Detected
loadVariables() – will be
ignored.

Flash Player detected that the SWF file contains a
loadVariables() ActionScript command, which
the specified device’s Flash Lite does not support.
No modifications are made to the device-specific
SWF file—this is just a warning.

SWFS018 Detected getURL() -
restrictions may apply.

Flash Player detected that the SWF file contains a
getURL() ActionScript command, which has some
runtime restrictions when played by the specified
device’s Flash Lite. No modifications are made to
the device-specific SWF file—this is just a warning.

SWFS019 startDrag() action not
supported.

Flash Player detected that the SWF file contains a
startDrag() ActionScript command, which Flash
Lite does not support. No modifications are made
to the device- specific SWF file—this is just a
warning.

SWFS020 stopDrag() action not
supported.

Flash Player detected that the SWF file contains a
stopDrag() ActionScript command, which Flash
Lite does not support. No modifications are made
to the device-specific SWF file—this is just a
warning.
75

SWFS021 _droptarget property not
supported.

Flash Player detected that the SWF file contains a
getProperty() or setProperty() ActionScript
command referring to the droptarget property,
which Flash Lite does not support. No
modifications are made to the device-specific
SWF file—this is just a warning.

SWFS023 _soundbuftime property
not supported.

Flash Player detected that the SWF file contains a
getProperty() or setProperty() ActionScript
command referring to the _soundbuftime property,
which Flash Lite does not support. No
modifications are made to the device-specific
SWF file—this is just a warning.

SWFS027 File saved as filename Flash Player displays this message to indicate the
name it is using for the device-specific SWF file.

SWFS028 File size after
substitution: nnn
kilobytes

Flash Player displays this message to indicate the
size of the device-specific SWF file after
substitution or removal of sounds. This is an
informational message only.

SWFS032 Detected fscommand() -
will be ignored.

The Flash player detected that the SWF file
contains an fscomamnd() ActionScript command,
which Flash Lite does not support. No
modifications are made to the device-specific
SWF file—this is just a warning.

SWFS033 Not enough memory to
perform operation.

Flash Player was unable to get enough memory to
finish the operation.

 SWFS035 _url property not
supported.

Flash Player detected that the SWF file contains a
getProperty() or setProperty() Actionscript
command referring to the _url property, which is
not supported by Flash Lite. No modifications are
made to the device specific SWF file—this is just a
warning

SWFS040 Uncompressed sound
found.

Flash Player detected that the SWF
file contains uncompressed sound. which is not
supported by the specified device’s Flash Player.
No modifications are made to the device-specific
SWF file—this is just a warning.

SWFS041 ADPCM sound found. Flash Player detected that the SWF
file contains ADPCM sound, which is not
supported by the specified device’s Flash Player.
No modifications are made to the device-specific
SWF file—this is just a warning.

SWFS042 Nellymoser sound found. Flash Player detected that the SWF file contains
Nellymoser sound, which is not supported by the
specified device’s Flash Player. No modifications
are made to the device-specific SWF file—this is
just a warning.

Message Identifier Message Explanation
76 Appendix C: Warning and Error Messages

SWFS043 MP3 sound found. Flash Player detected that the SWF file contains
MP3 sound, which is not supported by the
specified device’s Flash Player. No modifications
are made to the device-specific SWF file—this is
just a warning.

SWFS044 Export tag subst:sound
file name was found and
ignored. Please use the
Device sound feature.

Flash Player detected that the SWF file contains a
subst:file name export tag used in the old Flash 6
updater, which is not supported by the Flash Lite
1.0 Test Movie command. The author should use
the new Device Sound feature. No modifications
are made to the device-specific SWF file—this is
just a warning.

SWFS045 MIDI sound found. Flash Player detected that the SWF file contains
MIDI sound, which is supported by Flash Lite.

SWFS046 MFi sound with
manufacturer extension
found.

Flash Player detected that the SWF file contains
MFi sound with certain manufacturer extension,
which is supported by Flash Lite.

SWFS047 Unsupported device
sound format found.

Flash Player detected that the SWF file contains a
sound format that is not supported by Flash Lite.
No modifications are made to the device-specific
SWF file—this is just a warning.

SWFS048 Sound bundle found Flash Player detected that the SWF file contains a
sound bundle while parsing the movie. The
playback bundled sound on the real device might
be different.

SWFS049 SMAF sound found. Flash Player detected that the SWF file contains
SMAF sound, which is supported in certain
configurations.

FTPE001 The key will not be
processed: key keycode:
nnn

While testing a movie clip, a key was pressed that
Flash Lite does not support—the keypress is
ignored.

FTPA005 The call to getURL() for
URL was ignored
because there was more
than one request per
keypress.

While testing a movie clip, multiple ActionScript
getURL() commands were called during a keypress
event. Flash Lite allows only one getURL()
command per keypress, so only the first command
is processed—the others are ignored.

FTPA007 getProperty or
setProperty not
supported for: property
name

While testing a movie clip, a getProperty() or
setProperty() ActionScript command was
encountered for a property that the specified
device’s Flash Player does not support. The
command is ignored.

FTPA008 getProperty or
setProperty not fully
supported for: property
name

While testing a movie clip, a getProperty() or
setProperty() ActionScript command was
encountered for a property that Flash Lite does not
completely support. The command is performed,
but the results might not be as expected.

Message Identifier Message Explanation
Flash authoring tool warning and error messages 77

FTPA009 startDrag() and
stopDrag() are not
supported.

While testing a movie clip, a startDrag() or
stopDrag() ActionScript command was
encountered. Flash Lite does not support these
commands and ignores them.

FTPS011 Only a single sound can
be played at a time (no
mixing).

While testing a movie clip, a sound was started
while another sound was already playing. Flash
Lite does not support sound mixing, so the first
sound is stopped to allow the second sound to
play.

FTPS022 ADPCM sounds not
supported.

While testing a movie clip, an ADPCM sound was
encountered. The specified device’s Flash Player
does not support ADPCM sound format.

FTPS023 MP3 sounds not
supported.

While testing the movie clip, an MP3 sound was
encountered. The specified device’s Flash Player
does not support MP3 sound format.

FTPS024 MIDI/MFI sounds not
supported.

While testing the movie, MIDI/MFI sound was
encountered. The specified device’s Flash Player
does not support MIDI/MFI sound format.

FTPS025 PCM sounds not
supported.

While testing the movie clip, an PCM sound was
encountered. The specified device’s Flash Player
does not support PCM sound format.

FTPS026 Debug movie is not
supported in the
specified test movie
player

While the Flash Player is specified in the publish
settings, an attempt was made to debug the movie
using the Flash Lite 1.0 Test Movie command,
which is not supported.

FTPS027 Compound sound found. Flash Player detected that the SWF file contains
compound sound. The playback of compound
sound on the real device might be different.

FTPS028 Invalid FSCommand2
command found.

Flash Player detected an invalid FSCommand2()
object ActionScript command.

FTPS029 FSCommand2
command name
command found.

Flash Player detected a valid
FSCommand2() ActionScript command.

FTPS030 FSCommand2
command name
command not supported
in the emulator, please
test it on the device.

Flash Player detected an FSCommand2()
ActionScript command that is not supported in the
emulator. The user is advised to test it on the
device.

FTPS031 More than one instance
of URL request calls
found.

Flash Player detected more than one instance of
URL request (getUrl(), loadMovie(), loadVars()
and fsCommand()) calls. Only one URL request per
frame or event handler is allowed.

Message Identifier Message Explanation
78 Appendix C: Warning and Error Messages

FTPS032 A call to getURL URL
found, limitation might
apply.

Flash Player detected a getURL() call. Different
limitations might apply on different devices.

FTPS033 A call to loadVariables
URL found, limitation
might apply.

Flash Player detected a loadVariables() call.
Different limitations might apply on different
devices.

FTPS034 A call to FSCommmand URL
found, limitation might
apply.

Flash Player detected an FSCommmand() call.
Different limitations might apply on different
devices.

FTPS035 A call to loadMovie URL
found, limitation might
apply.

Flash Player detected a loadMovie() call. Different
limitations might apply on different devices.

FTPS036 size kilobytes of file name
with extension sound
found in compound
sound.

Flash Player detected a device sound in the
compound sound, the format and the size of the
device sound are reported.

FTPS037 SMAF sounds not
supported.

Flash Player detected that the SWF file contains
SMAF sound, which is not supported by the
specified device’s Flash Player. No modifications
are made to the device-specific SWF file—this is
just a warning.

FTPS038 The call to StartVibrate/
StopVibrate was ignored
because there was more
than one request per
frame or event.

Flash Player detected more than one instance of
FSCommand2() StartVibrate() and StopVibrate()
calls. Only one call per frame or event handler is
allowed.

FTPS039 FSCommmand2
SetInputTextType(text
type) found, not
supported in the
emulator, please test it
on the device.

Flash Player detected the SetInputTextType()
command. It is not supported in the emulator; the
type settings in the command are reported in the
Output panel.

FTPS040 MIDI sound found, not
supported on these
platforms: platform name.

Flash Player detected a MIDI sound. MIDI sound
playback is not supported on certain platforms.
This message is shown only when platform strings
are specified in corresponding flags in the
configuration file.

FTPS041 Mfi sound found, not
supported on these
platforms: platform name.

Flash Player detected a Generic Mfi sound. Mfi
sound playback is not supported on certain
platforms. This message is shown only when
platform strings are specified in corresponding
flags in the configuration file.

Message Identifier Message Explanation
Flash authoring tool warning and error messages 79

FTPS042 SMAF sound found, not
supported on these
platforms: platform name

Flash Player detected a SMAF sound. SMAF
sound playback is not supported on certain
platforms. This message is shown only when
platform strings are specified in corresponding
flags in the configuration file.

FTPS043 MP3 sound found, not
supported on these
platforms: platform name.

Flash Player detected an MP3 sound. MP3 sound
playback is not supported on certain platforms.
This message is shown only when platform strings
are specified in corresponding flags in the
configuration file.

FTPS044 Streaming sound found,
not supported on these
platforms: platform name.

Flash Player detected a stream sound. Stream
sound playback is not supported on certain
platforms. This message is shown only when
platform strings are specified in corresponding
flags in the configuration file.

FTPS045 Input text field found, not
supported on these
platforms: platform
name.

Flash Player detected an input text field. Input text
is not supported on certain platforms. This
message is shown only when platform strings are
specified in corresponding flags in the
configuration file.

FTPS046 Four way navigation is
not supported on these
platforms: platform name.

Flash Player is in four-way navigation mode. This
mode is not supported on certain platforms. This
message is shown only when platform strings are
specified in corresponding flags in the
configuration file.

FTPS047 Four way navigation with
wraparound is not
supported on these
platforms: platform name.

Flash Player is in four-way navigation with
wraparound mode. This mode is not supported on
certain platforms. This message is shown only
when platform strings are specified in
corresponding flags in the configuration file.

FTPS048 Four way navigation is
not supported.

Four-way navigation mode is not supported in the
current configuration.

FTPS049 Four way navigation with
wraparound is not
supported.

Four-way navigation with wraparound mode is not
supported in the current configuration.

FTPS050 Generic MFI sounds not
supported.

Flash Player detected a generic MFI sound, it is not
supported in current configuration.

FTPS051 Unsupported mouse
event found.

Flash Player detected an unsupported mouse
event.

FTPS052 ADPCM sound found,
not supported on these
platforms: platform name.

Flash Player detected an ADPCM sound. ADPCM
sound playback is not supported on certain
platforms. This message is shown only when
platform strings are specified in corresponding
flags in the configuration file.

Message Identifier Message Explanation
80 Appendix C: Warning and Error Messages

FTPS053 PCM sound found, not
supported on these
platforms: platform name.

Flash Player detected a PCM sound. PCM sound
playback is not supported on certain platforms.
This message is shown only when platform strings
are specified in corresponding flags in the
configuration file.

FTPS054 Sound found, not
supported on these
platforms: platform name.

Flash Player detected a sound. Sound playback is
not supported on certain platforms. This message
is shown only when platform strings are specified in
corresponding flags in the configuration file.

FTPS055 Multiple Sounds found,
sound mixing is not
supported on these
platforms: platform name.

Flash Player detected multiple sounds. Sound
mixing is not supported on certain platforms. This
message is shown only when platform strings are
specified in corresponding flags in the
configuration file.

FTPS056 Sound was ignored
because it was not
associated with a
keypress, this feature is
not supported on these
platforms: platform name.

While testing a movie clip, a sound was
encountered outside of a keypress event. The
specified device’s Flash Player allows sounds to be
handled only during keypress events. Sounds
outside of a keypress event are ignored. This
feature is not supported on certain platforms. This
message is shown only when platform strings are
specified in corresponding flags in the
configuration file.

FTPS058 StartDrag and EndDrag
found, not supported on
these platforms: platform
name.

Flash Player detected a StartDrag() or EndDrag()
ActionScript event. These events are not
supported on certain platforms. This message is
shown only when platform strings are specified in
corresponding flags in the configuration file.

FTPS059 Specific mouse event
found, not supported on
these platforms: platform
name.

Flash Player detected certain mouse events.These
events are not supported on certain platforms. This
message is shown only when platform strings are
specified in corresponding flags in the
configuration file.

FTPS060 A call to loadVariables
found, might not be
supported on these
platforms: platform name.

Flash Player detected a loadVariables call.
It will be executed, but it is not supported on certain
platforms. This message is shown only when
platform strings are specified in corresponding
flags in the configuration file.

FTPS061 A call to loadMovie found,
might not be supported
on these platforms:
platform name.

Flash Player detected a loadMovie call.
It will be executed, but it is not supported on certain
platforms. This message is shown only when
platform strings are specified in corresponding
flags in the configuration file.

Message Identifier Message Explanation
Flash authoring tool warning and error messages 81

FTPS062 A call to getURL found,
might not be supported
on these platforms:
platform name.

Flash Player detected a getURL call.
It will be executed, but it is not supported on certain
platforms. This message is shown only when
platform strings are specified in corresponding
flags in the configuration file.

FTPS063 A call to fscommand()
found, might not be
supported on these
platforms: platform name.

Flash Player detected an fscommand() call.
It will be executed. But it is not supported on
certain platforms. This message is shown only
when platform strings are specified in
corresponding flags in the configuration file.

FTPS064 SMAF (MA-2) sound
found, not supported on
these platforms: platform
name.

Flash Player detected a SMAF MA-2 sound. It is
not supported on certain platforms. This message
is shown only when platform strings are specified in
corresponding flags in the configuration file.

FTPS065 SMAF (MA-3) sound
found, not supported on
these platforms: platform
name.

Flash Player detected a SMAF MA-3 sound. It is
not supported on certain platforms. This message
is shown only when platform strings are specified in
corresponding flags in the configuration file.

FTPS066 SMAF (MA-5) sound
found, not supported on
these platforms: platform
name.

Flash Player detected a SMAF MA-5 sound. It is
not supported on certain platforms. This message
is shown only when platform strings are specified in
corresponding flags in the configuration file.

FTPS067 SMAF(MA-2) sounds
not supported.

Flash Player detected a SMAF MA-2 sound. It is
not supported in the current configuration.

FTPS068 SMAF(MA-3) sounds
not supported.

Flash Player detected a SMAF MA-3 sound. It is
not supported in the current configuration.

FTPS069 SMAF(MA-5) sounds
not supported.

Flash Player detected a SMAF MA-5 sound. It is
not supported in the current configuration.

FTPS070 MFI sounds with Fujitsu
extension not supported.

Flash Player detected an MFI sound with the
Fujitsu extension. It is not supported in the current
configuration.

FTPS071 MFI sounds with
Mitsubishi extension not
supported.

Flash Player detected an MFI sound with the
Mitsubishi extension. It is not supported in the
current configuration.

FTPS072 MFI sounds with NEC
extension not supported.

Flash Player detected an MFI sound with NEC
extension. It is not supported in the current
configuration.

FTPS073 MFI sounds with
Panasonic extension not
supported.

Flash Player detected an MFI sound with the
Panasonic extension. It is not supported in the
current configuration.

FTPS074 MFI sounds with Sharp
extension not supported.

Flash Player detected an MFI sound with the
Sharp extension. It is not supported in the current
configuration.

Message Identifier Message Explanation
82 Appendix C: Warning and Error Messages

FTPS075 MFI sounds with Sony
extension not supported.

Flash Player detected an MFI sound with the Sony
extension. It is not supported in the current
configuration.

FTPS076 MFI sounds with Fujitsu
extension not supported
on these platforms:
platform name.

Flash Player detected an MFI sound with Fujitsu
extension. It is not supported on certain platforms.
This message is shown only when platform strings
are specified in corresponding flags in the
configuration file.

FTPS077 MFI sounds with
Mitsubishi extension not
supported on these
platforms: platform name.

Flash Player detected an MFI sound with the
Mitsubishi extension. It is not supported on certain
platforms. This message is shown only when
platform strings are specified in corresponding
flags in the configuration file.

FTPS078 MFI sounds with NEC
extension not supported
on these platforms:
platform name.

Flash Player detected an MFI sound with the NEC
extension. It is not supported on certain platforms.
This message is shown only when platform strings
are specified in corresponding flags in the
configuration file.

FTPS079 MFI sounds with
Panasonic extension not
supported on these
platforms: platform name.

Flash Player detected an MFI sound with
Panasonic extension. It is not supported on certain
platforms. This message is shown only when
platform strings are specified in corresponding
flags in the configuration file.

FTPS080 MFI sounds with Sharp
extension not supported
on these platforms:
platform name.

Flash Player detected an MFI sound with Sharp
extension. It is not supported on certain platforms.
This message is shown only when platform strings
are specified in corresponding flags in the
configuration file.

FTPS081 MFI sounds with Sony
extension not supported
on these platforms:
platform name.

Flash Player detected an MFI sound with Sony
extension. It is not supported on certain platforms.
This message is shown only when platform strings
are specified in corresponding flags in the
configuration file.

FTPS082 ActionScript processing
error found. ActionScript
command.

Flash Player detected an ActionScript processing
error. The warning message contains the
ActionScript command that caused the processing
error.

FTPS083 Invalid entry found in
configuration file: Line
line number.

Flash Player detected an invalid entry on line line
number in the configuration file.

FTPS084 Configuration file found. Flash Player detected a cofiguration file.

Message Identifier Message Explanation
Flash authoring tool warning and error messages 83

FTPS085 loadVariables requests
are allowed only when
associated with a
keypress, not supported
on these platforms:
platform name.

Flash Player detected a loadVariables call
associated with a keypress.
It will be executed, but it is not supported on certain
platforms. This message is shown only when
platform strings are specified in corresponding
flags in the configuration file.

FTPS086 loadMovie requests are
allowed only when
associated with a
keypress, not supported
on these platforms:
platform name.

Flash Player detected a loadMovie call associated
with a keypress.
It will be executed, but it is not supported on certain
platforms. This message is shown only when
platform strings are specified in corresponding
flags in the configuration file.

FTPS087 getURL requests are
allowed only when
associated with a
keypress, not supported
on these platforms:
platform name.

Flash Player detected a getURL() call associated
with a keypress.
It will be executed, but it is not supported on certain
platforms. This message is shown only when
platform strings are specified in corresponding
flags in the configuration file.

FTPS088 FSCommand() requests are
allowed only when
associated with a
keypress, not supported
on these platforms:
platform name.

Flash Player detected an FSCommand() call
associated with a keypress.
It will be executed but it is not supported on certain
platforms. This message is shown only when
platform strings are specified in corresponding
flags in the configuration file.

FTPS089 loadVariables requests
are allowed on frame, not
supported on these
platforms: platform name.

A loadVariables call is detected by Flash Player.
The call is allowed on a frame or when associated
with a keypress, but this feature is not supported on
certain platforms. This message is shown only
when platform strings are specified in
corresponding flags in the configuration file.

FTPS090 loadMovie requests are
allowed on frame, not
supported on these
platforms: platform name.

Flash Player detected a loadMovie() call. The call
is allowed on frame or when associated with a
keypress, but this feature is not supported on
certain platforms. This message is shown only
when platform strings are specified in
corresponding flags in the configuration file.

FTPS091 getURL requests are
allowed on frame, not
supported on these
platforms: <platform
name>.

Flash Player detected a getURL() call. The call is
allowed on frame or when associated with a
keypress, but this feature is not supported on
certain platforms. This message is shown only
when platform strings are specified in
corresponding flags in the configuration file.

FTPS092 FSCommand() requests are
allowed on frame, not
supported on these
platforms: <platform
name>.

Flash Player detected an FSCommand() call. The call
is allowed on frame or when associated with a
keypress, but this feature is not supported on
certain platforms. This message is shown only
when platform strings are specified in
corresponding flags in the configuration file.

Message Identifier Message Explanation
84 Appendix C: Warning and Error Messages

FTPS093 All the keys are allowed,
this feature is not
supported on these
platforms: platform name.

Flash Player supports the full key set in the current
configuration. This feature is not supported on
certain platforms. This message is shown only
when platform strings are specified in
corresponding flags in the configuration file.

FTPS094 Only keys on the phone
are allowed, this feature
is not supported on these
platforms: platform name.

Flash Player supports only the keys on the cell
phone in the current configuration. This feature is
not supported on certain platforms. This message
is shown only when platform strings are specified in
corresponding flags in the configuration file.

FTPS095 _capEmail is set to 1, this
feature is not supported
on these platforms:
platform name.

Flash Player has set the platform capability variable
_capEmail to 1 in the current configuration. This
feature is not supported on certain platforms. This
message is shown only when platform strings are
specified in corresponding flags in the
configuration file.

FTPS096 _capSMS is set to 1, this
feature is not supported
on these platforms:
platform name.

Flash Player has set the platform capability variable
_capSMS to 1 in the current configuration. This
feature is not supported on certain platforms. This
message is shown only when platform strings are
specified in corresponding flags in the
configuration file.

FTPS097 _capMMS is set to 1, this
feature is not supported
on these platforms:
platform name.

Flash Player has set the platform capability variable
_capMMS to 1 in the current configuration. This
feature is not supported on certain platforms. This
message is shown only when platform strings are
specified in corresponding flags in the
configuration file.

FTPS098 _capLoadData is set to 1,
this feature is not
supported on these
platforms: platform name.

Flash Player has set the platform capability
variable_capLoadData to 1 in current configuration.
This feature is not supported on certain platforms.
This message is shown only when platform strings
are specified in corresponding flags in the
configuration file.

FTPS099 Print Commands are not
supported.

A Call to the Print command has been detected by
the Flash Player, this feature is not supported.

FTPS100 <sound format> sound is
chosen in sound bundle.

A Flash Lite sound bundle has been detected by
the Flash Player, the device sound in <sound
format> has been chosen to be played back by the
Flash Player.

FTPS101 None of the format in the
sound bundle file is
supported.

A Flash Lite sound bundle has been detected by
the Flash Player, none of the device sound format
in the sound bundle is supported in the Flash
Player.

Message Identifier Message Explanation
Flash authoring tool warning and error messages 85

FTPS102 SMAF sound playback
not supported in the test
movie player.

A SMAF format device sound has been detected
in the Flash Player, while it is supported in the real
device, it is not supported in the test movie player
used in the authoring tool.

FTPS103 Invalid tag <tag name>
found in the local
configuration file.

An invalid tag is detected in the local configuration
file.

FTPS104 No key is allowed, this
feature is not supported
on these platforms:
<platform names>

The Flash Player has detected that the user set
KeySetNone to “on” in the local configuration file
and a keypress has been detected. This feature is
not supported on certain platforms. This message
will be shown only when platform strings are
specified in corresponding flags in the
configuration file.

FTPS105 The SWF file is not in
Flash Lite format.

The Flash Lite test movie player detected that the
current SWF movie is not in Flash 4 format.

Message Identifier Message Explanation
86 Appendix C: Warning and Error Messages

	Contents
	Introduction
	Using Macromedia Flash Lite 1.1
	Getting started
	Installing the Flash MX Professional 2004 7.0.1 update
	Installing the FlashLite1_1.dll (FlashLite1_1.dmg on the Mac) file
	Installing the FlashLite1_1.xml file
	Installing the configuration file

	Supported Devices

	Optimizing Content
	Navigation and key events
	Fonts and text
	Device fonts
	Alias text support
	Alias Text button
	Alias text rendered in Flash MX Professional 2004

	Pixel fonts
	ActionScript and properties
	Sound
	Network access
	SWF file size and memory
	Performance optimization
	Animation
	Bitmap graphics
	Bitmap versus vector graphics
	Vector graphics
	Optimizing ActionScript

	Device speed and frames per second
	Development checklist

	Working with Sound
	Audio formats
	Event sound
	Streaming sound
	Embedding sound
	Compound sound
	Adding a Sound Bundle File to a Flash document

	ActionScript Enhancements for Flash Lite 1.1
	New ActionScript functions
	FSCommand()
	FSCommand2()

	Platform capabilities and variables
	_capCompoundSound
	_capEmail
	_capMMS
	_capSMS
	_capStreamSound
	$version
	_capMFi
	_capMIDI
	_capSMAF
	_capLoadData
	_cap4WayKeyAS

	New ActionScript properties
	scroll
	maxscroll

	New FSCommand and FSCommand2 commands
	General commands
	URL Encoding
	Escape
	Unescape
	Input text fields
	SetInputTextType()

	Controlling Flash playback
	Display
	FullScreen()
	SetQuality()

	Key configuration
	SetSoftKeys()
	ResetSoftKeys()

	Player operation commands
	GetFreePlayerMemory()
	GetTotalPlayerMemory()
	Launch()
	Quit()

	Platform integration commands
	Date and time
	GetDateDay()
	GetDateMonth()
	GetDateWeekday()
	GetDateYear()
	GetLocaleLongDate()
	GetLocaleShortDate()
	GetLocaleTime()
	GetTimeHours()
	GetTimeMinutes()
	GetTimeSeconds()
	GetTimeZoneOffset()

	Volume
	GetMaxVolumeLevel()
	GetVolumeLevel()

	Vibrate
	StartVibrate()
	StopVibrate()

	Power
	GetBatteryLevel()
	GetMaxBatteryLevel()
	GetPowerSource()

	Network information
	GetMaxSignalLevel()
	GetNetworkConnectStatus()
	GetNetworkName()
	GetNetworkRequestStatus()
	GetNetworkStatus()
	GetSignalLevel()

	Device user settings
	GetLanguage()

	Device and player identification
	GetDeviceID()
	GetPlatform()
	GetDevice()

	Creating Content
	Flash Lite 1.1 publish settings
	Manually change settings
	Creating a publish profile

	Creating a simple movie for Flash Lite 1.1 (no sound)
	Adding sound to your Flash Lite 1.1 application

	Testing Content
	Testing considerations
	Using the optional configuration file

	Development Kit Examples
	Resources and Support
	Let us know about your application
	Web resources
	Books
	Discussion groups

	Supported ActionScript
	Supported ActionScript Properties
	Warning and Error Messages
	Flash authoring tool warning and error messages

