IS

macromedia’

FLASHMX

2004

Using Components

Trademarks

Add Life to the Web, Afterburner, Aftershock, Andromedia, Allaire, Animation PowerPack, Aria, Attain, Authorware,
Authorware Star, Backstage, Bright Tiger, Clustercats, ColdFusion, Contribute, Design In Motion, Director, Dream Templates,
Dreamweaver, Drumbeat 2000, EDJE, EJIPT, Extreme 3D, Fireworks, Flash, Flash Lite, Flex, Fontographer, FreeHand,
Generator, HomeSite, JFusion, JRun, Kawa, Know Your Site, Knowledge Objects, Knowledge Stream, Knowledge Track,
LikeMinds, Lingo, Live Effects, MacRecorder Logo and Design, Macromedia, Macromedia Action!, Macromedia Breeze,
Macromedia Flash, Macromedia M Logo and Design, Macromedia Spectra, Macromedia xRes Logo and Design, MacroModel,
Made with Macromedia, Made with Macromedia Logo and Design, MAGIC Logo and Design, Mediamaker, Movie Critic,
Open Sesame!, Roundtrip, Roundtrip HTML, Shockwave, Sitespring, SoundEdit, Titlemaker, UltraDev, Web Design 101, what
the web can be, and Xtra are either registered trademarks or trademarks of Macromedia, Inc. and may be registered in the United
States or in other jurisdictions including internationally. Other product names, logos, designs, titles, words, or phrases mentioned
within this publication may be trademarks, service marks, or trade names of Macromedia, Inc. or other entities and may be
registered in certain jurisdictions including internationally.

Third-Party Information

This guide contains links to third-party websites that are not under the control of Macromedia, and Macromedia is not
responsible for the content on any linked site. If you access a third-party website mentioned in this guide, then you do so at your
own risk. Macromedia provides these links only as a convenience, and the inclusion of the link does not imply that Macromedia
endorses or accepts any responsibility for the content on those third-party sites.

Speech compression and decompression technology licensed from Nellymoser, Inc. (www.nellymoser.com).

smson Sorenson™ Spark™ video compression and decompression technology licensed from Sorenson Media, Inc.

Spark.

Opera ° browser Copyright © 1995-2002 Opera Software ASA and its suppliers. All rights reserved.

Apple Disclaimer

APPLE COMPUTER, INC. MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLIED, REGARDING THE
ENCLOSED COMPUTER SOFTWARE PACKAGE, ITS MERCHANTABILITY OR ITS FITNESS FOR ANY
PARTICULAR PURPOSE. THE EXCLUSION OF IMPLIED WARRANTIES IS NOT PERMITTED BY SOME STATES.
THE ABOVE EXCLUSION MAY NOT APPLY TO YOU. THIS WARRANTY PROVIDES YOU WITH SPECIFIC
LEGAL RIGHTS. THERE MAY BE OTHER RIGHTS THAT YOU MAY HAVE WHICH VARY FROM STATE TO
STATE.

Copyright © 2004 Macromedia, Inc. All rights reserved. This manual may not be copied, photocopied, reproduced,
translated, or converted to any electronic or machine-readable form in whole or in part without prior written approval of
Macromedia, Inc.

Acknowledgments
Director: Erick Vera
Project Management: Julee Burdekin, Erick Vera

Writing: Jay Armstrong, Jody Bleyle, Mary Burger, Francis Cheng, Jen deHaan, Stephanie Gowin, Phillip Heinz, Shimul Rahim,
Samuel R. Neff

Managing Editor: Rosana Francescato

Editing: Mary Ferguson, Mary Kraemer, Noreen Maher, Antonio Padial, Lisa Stanziano, Anne Szabla
Production Management: Patrice O’Neill

Media Design and Production: Adam Barnett, Christopher Basmajian, Aaron Begley, John Francis
Second Edition: June 2004

Macromedia, Inc.
600 Townsend St.
San Francisco, CA 94103

CONTENTS

INTRODUCTION: Getting Started with Components. 7
Intended audience. 7
System reqUITMENTS . . . oo vttt ettt 8
About the documentation 8
Typographical conventions 8
Terms used in thismanual. o 9
Additional resources 9

CHAPTER 1: About Components.iit it i e 11
Installing components.ttt 12
Where component files are stored oo oo 13
Benefits of using components o oo ool 14
Categories Of COMPONENTSo viiiii it 15
About version 2 component architecture.t 15
What's new in version 2 COMPONENLS. « . v v oo 16
About compiled clipsand SWCfiles........... i il 17
Accessibility and components oo o o oo ool 18

CHAPTER 2: Creating an Application with Components (Flash Professional Only)
19

About working with components o oo il 19
About this tutorial. o 20
View the application i 21
About data integration in the sample application. 22
Build the application architectureo i 23
Bind components to display product information from an external source 31
Add ActionScript to the main Timeline. 33
Test theapplication. 41
CHAPTER 3: WorkingwithComponents 43
The Components panel. o i i i 44
Adding components to Flash documents. o o ool 44
Components in the Library panelo o i 47
Setting COMPONENT PATAMELELS . . v v vttt vt tie et e e e e 47
SiZING COMPONENTS . v vttt ettt ettt et 49

Deleting components from Flash documents. 50

Using code hints o 50
Creating custom focus navigationovuiiiiieiineeeean.... 50
Managing component depth in a document oo 51
Components in Live Preview. oo oo 52
About using a preloader with components. oo oL 52
About loading components o oo i oo i 52
Upgrading version 1 components to version 2 architecture 53
CHAPTER 4: Handling ComponentEvents 55
Using the on() eventhandler. 55
Using listeners to handle events. i 56
Delegating eventsouuuiiiiiii 63
About the event object. 66
CHAPTER 5: CustomizingComponents.ttt 67
Using styles to customize component colorand text 67
Aboutthemes 77
About skinning components o o ool 80
CHAPTER 6: Components Dictionary.c.coiiiiiiiinenn... 91
Types Of COMPONENIES. « « v v v vttt ettt 91
Other listings in this chapter........ o i 94
Accordion component (Flash Professional only) 96
Alert component (Flash Professionalonly) 115
Button component 131
CellRenderer APTttt 145
CheckBox cOMPONEnt. . . . 157
Collection interface (Flash Professional only). 169
ComboBox comMPONENt.uvvtttt e 176
Data binding classes (Flash Professional only) 213
DataGrid component (Flash Professional only) 247
DataHolder component (Flash Professional only) 286
DataProvider APTo o 290
DataSet component (Flash Professionalonly) 301
DateChooser component (Flash Professionalonly) 350
DateField component (Flash Professional only) 367
Delegate classouuiu e 388
Delta interface (Flash Professionalonly) 390
Deltaltem class (Flash Professional only)oooiiiii.. 397
DeltaPacket interface (Flash Professional only) 401
DepthManager class 406
EventDispatcher classo 415
FocusManager class 419
Form class (Flash Professional only). oo, 430
Iterator interface (Flash Professionalonly)........... 441
Label component.t 443
LISt COMPONENT . &« oot e e e e e e e e e e e e e 450

4 Contents

Loader COMPONENE uuuttt e 484

Media components (Flash Professional only). 497
Menu component (Flash Professional only). 538
MenuBar component (Flash Professional only) 574
NumericStepper COMPONENt vvvit ittt 588
PopUpManagerclass.t 601
ProgressBar component.t 603
RadioButton component. 621
RadioButtonGroup component.ovuiieiiiiiiiannaenneaa. .. 635
RDBMSResolver component (Flash Professional only) 636
RectBorderclass . ..o 647
Screen class (Flash Professionalonly). oo oo it 651
ScrollPane compOnent.vvvvvtitii i 668
SimpleButton class 686
Slide class (Flash Professional only)o .. 693
StyleManagerclass. 721
SystemManager class. 724
TextArea COMPONENT . . oot vttt et ettt ettt et e et 725
TextInput COMPONENT . ..o e ettt 742
TransferObjectinterface 756
Tree component (Flash Professionalonly) oo ... 759
TreeDataProvider interface (Flash Professional only) 787
UlComponentclass. i 793
UlEventDispatcherclassttt 802
UIODbject class. . . . 808
UIScrollBar COMPONENT . .« vt vttt ettt et et e e 829
Web service classes (Flash Professionalonly) 842
WebServiceConnector component (Flash Professional only) 865
Window componentoouuiiiuui i 878
XMLConnector component (Flash Professionalonly) 894
XUpdateResolver component (Flash Professional only) 907
CHAPTER 7: Creating Componentsoiinininenanananannnn.. 915
Componentsource files. i i 915
What's new in version 2 COMPONENTS. « . ..o veevvvnneeeeenninneeennnn. 916
Overview of COMPONENT STIUCTUIE « + .+« . v v v vt veee ettt eiee e et 917
Building your first component o i ool i i 918
Selecting a parentclass. o i i i i 924
Creating a componentmovieclip o o o i ool 927
Creating the ActionScriptclassfile 930
Exporting and distributing a component. i i 953
Adding the finishing touches. oo oo oo 955

Contents 5

APPENDIX: CollectionProperties, 959

Defining a collection property.ouuiiiiiiiiiiiineennenn 960
Simple collection example. 960
Defining the class for a collectionitem L. 962
Accessing collection information programmatically............. 963
Exporting components that have collections to SWCfiles. 964
Using a component that has a collection property........................ 965
INDEX . .. 967

6 Contents

INTRODUCTION
Getting Started with Components

Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 are the professional
standard authoring tools for producing high-impact web experiences. Components are the
building blocks for the Rich Internet Applications that provide those experiences. A component is
a movie clip with parameters that are set during authoring in Macromedia Flash, and with
ActionScript methods, properties, and events that allow you to customize the component at
runtime. Components are designed to allow developers to reuse and share code, and to
encapsulate complex functionality that designers can use and customize without using
ActionScript.

Components are built on version 2 of the Macromedia Component Architecture, which allows
you to easily and quickly build robust applications with a consistent appearance and behavior.
This book describes how to build applications with version 2 components and describes each
component’s application programming interface (API). It includes usage scenarios and procedural
samples for using the Flash MX 2004 or Flash MX Professional 2004 version 2 components, as
well as descriptions of the component APIs, in alphabetical order.

You can use components created by Macromedia, download components created by other
developers, or create your own components.

This chapter contains the following sections:

Intended audience oottt 7
System reqUIreMEentsttt e 8
About the documentationttt 8
Typographical conventions. 8
Terms used in this manual 9
Additional reSOULCES. . . .« .ottt 9

Intended audience

This book is for developers who are building Flash MX 2004 or Flash MX Professional 2004
applications and want to use components to speed development. You should already be familiar
with developing applications in Flash and writing ActionScript.

If you are less experienced with writing ActionScript, you can add components to a document, set
their parameters in the Property inspector or Component inspector, and use the Behaviors panel
to handle their events. For example, you could attach a Go To Web Page behavior to a Button
component that opens a URL in a web browser when the button is clicked without writing any
ActionScript code.

If you are a programmer who wants to create more robust applications, you can create
components dynamically, use ActionScript to set properties and call methods at runtime, and use
the listener event model to handle events.

For more information, see Chapter 3, “Working with Components,” on page 43.

System requirements

Macromedia components do not have any system requirements in addition to Flash MX 2004 or
Flash MX Professional 2004.

Any SWF file that uses version 2 components must be viewed with Flash Player 6 (6.0.79.0) or
later.

About the documentation

This document explains the details of using components to develop Flash applications. It assumes
that you have general knowledge of Macromedia Flash and ActionScript. Specific documentation
about Flash and related products is available separately.

This document is available as a PDF file and as online help. To view the online help, start Flash
and select Help > Using Components.

For information about Macromedia Flash, see the following documents:

* Getting Started with Flash (or Getting Started Help)

® Using Flash (or Using Flash Help)

* Using ActionScript in Flash (or Using ActionScript Help)

® Flash ActionScripr Language Reference (or Flash ActionScript Language Reference Help)

Typographical conventions

The following typographical conventions are used in this book:
® [talic font indicates a value that should be replaced (for example, in a folder path).
® Code font indicates ActionScript code.

® (Code font italic indicates a code item that should be replaced (for example, an
ActionScript parameter).

* Bold font indicates a value that you enter.

Note: Bold font is not the same as the font used for run-in headings. Run-in heading font is used
as an alternative to a bullet.

8

Introduction: Getting Started with Components

Terms used in this manual

The following terms are used in this manual:
atruntime When the code is running in Flash Player.

while authoring While you are working in the Flash authoring environment.

Additional resources

For the latest information on Flash, plus advice from expert users, advanced topics, examples,
tips, and other updates, see the Macromedia DevNet website at www.macromedia.com/devnet,
which is updated regularly. Check the website often for the latest news on Flash and how to get
the most out of the program.

For TechNotes, documentation updates, and links to additional resources in the Flash
Community, see the Macromedia Flash Support Center at www.macromedia.com/support/flash.

For detailed information on ActionScript terms, syntax, and usage, see Using ActionScript in Flash
and Flash ActionScript Language Reference.

For an introduction to using components, see the Macromedia On Demand Seminar, Flash MX
2004 Family: Using Ul Components at www.macromedia.com/macromedia/events/online/
ondemand/index.html.

Additional resources 9

http://www.macromedia.com/devnet
http://www.macromedia.com/support/flash
http://www.macromedia.com/macromedia/events/online/ondemand/index.html
http://www.macromedia.com/macromedia/events/online/ondemand/index.html

10 Introduction: Getting Started with Components

CHAPTER 1
About Components

Components are movie clips with parameters that allow you to modify their appearance and
behavior. A component can be a simple user interface control, such as a radio button or a check
box, or it can contain content, such as a scroll pane; a component can also be non-visual, like the
FocusManager that allows you to control which object receives focus in an application.

Components enable anyone to build complex Macromedia Flash MX 2004 and Macromedia
Flash MX Professional 2004 applications, even if they don’t have an advanced understanding of
ActionScript. Rather than creating custom buttons, combo boxes, and lists, you can drag these
components from the Components panel to add functionality to your applications. You can also
easily customize the look and feel of components to suit your design needs.

Components are built on version 2 of the Macromedia Component Architecture, which allows
you to easily and quickly build robust applications with a consistent appearance and behavior.
The version 2 architecture includes classes on which all components are based, styles and skins
mechanisms that allow you to customize component appearance, a broadcaster/listener event
model, depth and focus management, accessibility implementation, and more.

Each component has predefined parameters that you can set while authoring in Flash. Each
component also has a unique set of ActionScript methods, properties, and events, also called an
API (application programming interface), that allows you to set parameters and additional
options at runtime.

Flash MX 2004 and Flash MX Professional 2004 include many new Flash components and
several new versions of components that were included in Flash MX. For a complete list of
components included with Flash MX 2004 and Flash MX Professional 2004, see “Installing
components” on page 12. You can also download components built by members of the Flash
community at the Macromedia Exchange at www.macromedia.com/cfusion/exchange/index.cfm.

This chapter contains the following sections:

Installing components 12
Where component files are stored 13
Benefits of using cCOMPONENts.ovttt ettt e 14
Categories Of COMPONENTSot v vttt ettt ettt e et e e e 15

il

http://www.macromedia.com/cfusion/exchange/index.cfm

About version 2 component architecture 15

What's new in version 2 COMPONEILS . « ¢ .. v vttt v ettt ettt et e e e e e e 16
About compiled clips and SWCfiles 17
Accessibility and components. 18

Installing components

A set of Macromedia components is already installed when you launch Flash MX 2004 or Flash
MX Professional 2004 for the first time. You can view them in the Components panel.

Flash MX 2004 includes the following components:

¢ Button component

® CheckBox component

* ComboBox component

® Label component

¢ List component

® Loader component

® NumericStepper component

® ProgressBar component

® RadioButton component

® ScrollPane component

® TextArea component

® TextInput component

* Window component

Flash MX Professional 2004 includes the Flash MX 2004 components and the following
additional components and classes:

® Accordion component (Flash Professional only)
® Alert component (Flash Professional only)

® Data binding classes (Flash Professional only)

® DateField component (Flash Professional only)

® DataGrid component (Flash Professional only)

® DataHolder component (Flash Professional only)
® DataSet component (Flash Professional only)

® DateChooser component (Flash Professional only)
® Form class (Flash Professional only)

® Media components (Flash Professional only)

® Menu component (Flash Professional only)

® MenuBar component (Flash Professional only)

12

Chapter 1: About Components

* RDBMSResolver component (Flash Professional only)
® Screen class (Flash Professional only)

® Slide class (Flash Professional only)

® Tree component (Flash Professional only)

® WebServiceConnector class (Flash Professional only)

* XMLConnector component (Flash Professional only)

® XUpdateResolver component (Flash Professional only)

To verify installation of the Flash MX 2004 or Flash MX Professional 2004 components:
1. Start Flash.

2. Select Window > Development Panels > Components to open the Components panel if it isn’t
already open.

3. Select UI Components to expand the tree and view the installed components.

You can also download components from the Macromedia Exchange at www.macromedia.com/
exchange. To install components downloaded from the Exchange, download and install the
Macromedia Extension Manager at www.macromedia.com/exchange/em_download/

Any component can appear in the Components panel in Flash. Follow these steps to install

components on either a Windows or Macintosh computer.

To install components on a Windows-based or a Macintosh computer:
1. Quit Flash.
2. Place the SWC or FLA file containing the component in the following folder on your hard disk:

= \Program Files\Macromedia\Flash MX 2004\<language>\Configuration\Components
(Windows)

= HD/Applications/Macromedia Flash MX 2004/Configuration/Components (Macintosh)
3. Open Flash.

4. Select Window > Development Panels > Components to view the component in the
Components panel if it isn’t already open.

Where component files are stored

Flash components are stored in the application-level Configuration folder.

Note: For information about these folders, see “Configuration folders installed with Flash” in Using
Flash.

Components are installed in the following locations:
® Windows 2000 or Windows XP: C:\Program Files\Macromedia\Flash MX
2004\ language\Configuration\Components
® Mac OS X: HD/Applications/Macromedia Flash MX 2004/Configuration/Components

The source ActionScript files for components are located in the mx subfolder of the First Run

folder.

Where component files are stored 13

http://www.macromedia.com/exchange/em_download/
http://www.macromedia.com/exchange
http://www.macromedia.com/exchange

If you've added components, you'll need to refresh the Components panel.

To refresh the contents of the Components panel:

® Select Reload from the Components panel menu.

i ¥ Components
B @ UI Compaonents :
E Accordion Help
E Alert
----- [Button
-[E] checkBox
~EF ComboBox
-[Ef] patacrid
E DateChooser
----- T DateField
----- A Label

=n

Close Panel

To remove a component from the Components panel:
® Remove the MXP or FLA file from the Configuration folder.

Benefits of using components

Components enable the separation of coding and design. They also allow you to reuse code,
either in components you create, or by downloading and installing components created by
other developers.

Components allow coders to create functionality that designers can use in applications.
Developers can encapsulate frequently used functionality into components and designers can
customize the look and behavior of components by changing parameters in the Property inspector
or the Component inspector.

Members of the Flash community can use the Macromedia Exchange at www.macromedia.com/
go/exchange to exchange components. By using components, you no longer need to build each
element in a complex web application from scratch. You can find the components you need and
put them together in a Flash document to create a new application.

Components that are based on the version 2 architecture share core functionality such as styles,
event handling, skinning, focus management, and depth management. When you add the first
version 2 component to an application, there is approximately 25K added to the document that
provides this core functionality. When you add additional components, that same 25K is reused
for them as well, resulting in a smaller increase in size to your document than you may expect. For
information about upgrading components, see “Upgrading version 1 components to version 2
architecture” on page 53.

14

Chapter 1: About Components

http://www.macromedia.com/go/exchange
http://www.macromedia.com/go/exchange

Categories of components

Components included with Flash MX 2004 and Flash MX Professional 2004 fall into the
following five categories (the locations of their ActionScript source files roughly correspond to
these categories as well and are listed in parentheses):

® User interface components (mx.controls.*)

User interface components allow you to interact with an application; for example, the
RadioButton, CheckBox, and TextInput components are user interface controls.

® Data components (mx.data.*)

Data components allow you to load and manipulate information from data sources; the
WebServiceConnector and XMLConnector components are data components.

Note: The source files for the data components aren’t installed with Flash. However, some of the
supporting ActionScript files are installed.

® Media components (mx.controls.*)

Media components let you play back and control streaming media; MediaController,
MediaPlayback, and MediaDisplay are media components.

® Managers (mx.managers.*)

Managers are nonvisual components that allow you to manage a feature, such as focus or
depth, in an application; the FocusManager, DepthManager, PopUpManager, StyleManager,
and SystemManager components are manager components.

® Screens (mx.screens.*)

The screens category includes the ActionScript classes that allow you to control forms and
slides in Flash MX Professional 2004.

For a complete list of each category, see Chapter 6, “Components Dictionary,” on page 91.

About version 2 component architecture

You can use the Property inspector or the Component inspector to change component parameters
to make use of the basic functionality of components. However, if you want greater control over
components, you need to use their APIs and understand a little bit about the way they were built.

Flash MX 2004 and Flash MX Professional 2004 components are built with version 2 of the
Macromedia Component Architecture. Version 2 components are supported by Flash Player 6.79
and Flash Player 7. These components are not always compatible with components built using
version 1 architecture (all components released before Flash MX 2004). Also, the original version
1 components are not supported by Flash Player 7. For more information, see “Upgrading version
1 components to version 2 architecture” on page 53.

Note: Flash MX Ul components have been updated to work with Flash Player 7. These updated
components are still based on version 1architecture. You can download them from the Macromedia
Flash Exchange at www.macromedia.com/cfusion/exchange/
index.cfm#loc=en_us&view=sn106&viewName=Exchange%20Search%20Details&authorid=606
39501&page=0&scrollPos=0&subcatid=0&snid=sn106&itemnumber=0&extid=1009423&catid=0.

About version 2 component architecture 15

http://www.macromedia.com/cfusion/exchange/index.cfm#loc=en_us&view=sn106&viewName=Exchange%20Search%20Details&authorid=60639501&page=0&scrollPos=0&subcatid=0&snid=sn106&itemnumber=0&extid=1009423&catid=0
http://www.macromedia.com/cfusion/exchange/index.cfm#loc=en_us&view=sn106&viewName=Exchange%20Search%20Details&authorid=60639501&page=0&scrollPos=0&subcatid=0&snid=sn106&itemnumber=0&extid=1009423&catid=0
http://www.macromedia.com/cfusion/exchange/index.cfm#loc=en_us&view=sn106&viewName=Exchange%20Search%20Details&authorid=60639501&page=0&scrollPos=0&subcatid=0&snid=sn106&itemnumber=0&extid=1009423&catid=0

Version 2 components are included in the Components panel as compiled clip (SWC) symbols. A
compiled clip is a component movie clip whose code has been compiled. Compiled clips cannot
be edited, but you can change their parameters in the Property inspector and Component
inspector, just as you would with any component. For more information, see “About compiled

clips and SWC files” on page 17.

Version 2 components are written in ActionScript 2.0. Each component is a class and each class is
in an ActionScript package. For example, a radio button component is an instance of the
RadioButton class whose package name is mx.controls. For more information about packages, see

“Using packages” in Using ActionScript in Flash.

Most UI components built with version 2 of the Macromedia Component Architecture are
subclasses of the UIObject and UIComponent classes and inherit all properties, methods, and
events from those classes. Many components are also subclasses of other components. The
inheritance path of each component is indicated in its entry in Chapter 6, “Components
Dictionary,” on page 91.

Note: The class hierarchy is also available as a GIF file (v2_Flash_component_arch.gif) in the
Examples folder.

All components also use the same event model, CSS-based styles, and built-in themes and
skinning mechanisms. For more information on styles and skinning, see Chapter 5, “Customizing
Components,” on page 67. For more information on event handling, see Chapter 3, “Working
with Components,” on page 43.

For a detailed explanation of the version 2 component architecture, see Chapter 7, “Creating
Components,” on page 915.

What’s new in version 2 components

This section outlines the differences between version 1 and version 2 components from the
perspective of a developer using components to build Flash applications. For detailed information
about the differences between the version 1 and version 2 architectures for building components,
see Chapter 7, “Creating Components,” on page 915.

The Component inspector allows you to change component parameters while authoring in
Macromedia Flash and Macromedia Dreamweaver. (See “Setting component parameters”
on page 47.)

The listener event model allows listeners to handle events. (See Chapter 4, “Handling
Component Events,” on page 55.) There isnta clickHandler parameter in the Property
inspector, as there was in Flash MX; you must write ActionScript code to handle events.

Skin properties let you load individual skins (for example, up and down arrows or the check for
a check box) at runtime. (See “About skinning components” on page 80.)

CSS-based styles allow you to create a consistent look and feel across applications. (See “Using
styles to customize component color and text” on page 67.) To set a component style, use the
following syntax: componentInstance.setStyle("styleName", value).

Themes allow you to drag a new look from the library onto a set of components. (See “About
themes” on page 77.)

16

Chapter 1: About Components

The Halo theme provides a ready-made, responsive, and flexible user interface for applications.
Halo is the default theme that the version 2 components use. (See “About themes” on page 77.)

Manager classes provide an easy way to handle focus and depth in a application. (See “Creating
custom focus navigation” on page 50 and “Managing component depth in a document”
on page 51.)

The base classes UlObject and UIComponent provide core methods, properties, and events to
components that extend them. (See “UlComponent class” on page 793 and “UlObject class”
on page 808.)

Packaging as a SWC file allows easy distribution and concealable code. See Chapter 7,
“Creating Components,” on page 915.

Built-in data binding is available through the Component inspector. For more information, see
Using Flash > Data Integration.

An easily extendable class hierarchy using ActionScript 2.0 allows you to create unique
namespaces, import classes as needed, and subclass easily to extend components. See Chapter 7,
“Creating Components,” on page 915 and Flash ActionScript Language Reference.

About compiled clips and SWC files

Components included with Flash MX 2004 or Flash MX Professional 2004 are not FLA files—
they are compiled clips that have been packaged into SWC files. SWC is the Macromedia file
format for distributing components; it contains a compiled clip, the component’s ActionScript
class file, and other files that describe the component. For details about SWC files, see “Exporting
and distributing a component” on page 953.

When you place a SWC file in the First Run/Components folder, the component appears in the
Components panel. When you add a component to the Stage from the Components panel, a
compiled clip symbol is added to the library.

A compiled clip is a package of precompiled symbols and ActionScript. It’s used to avoid
recompiling symbols and code that aren’t going to change. A movie clip can also be “compiled” in
Flash and converted to a compiled clip symbol. For example, a movie clip with a lot of
ActionScript code that doesn’t change often could be turned into a compiled clip. The compiled
clip symbol behaves just like the movie clip symbol from which it was compiled, but compiled
clips appear and publish much faster than regular movie clip symbols. Compiled clips can’t be
edited, but they do have properties that appear in the Property inspector and the Component
inspector.

To compile a movie clip symbol:

* Right-click (Windows) or Control-click (Macintosh) the movie clip in the Library panel, and
then select Convert to Compiled Clip.

To export a SWC file:

® Select the movie clip in the Library panel and right-click (Windows) or Control-click
(Macintosh), and then select Export SWC File.

Note: Flash MX 2004 and Flash MX Professional 2004 continue to support FLA components.

About compiled clips and SWC files 17

Accessibility and components

A growing requirement for web content is that it should be accessible; that is, usable for people
with a variety of disabilities. Visual content in Flash applications can be made accessible to the
visually impaired with the use of screen reader software, which provides a spoken audio
description of the contents of the screen.

When a component is created, the author can write ActionScript that enables communication
between the component and a screen reader. Then, when a developer uses components to
build an application in Flash, the developer uses the Accessibility panel to configure each
component instance.

Most components built by Macromedia are designed for accessibility. To find out whether a
component is accessible, see its entry in Chapter 6, “Components Dictionary,” on page 91. When
you're building an application in Flash, you'll need to add one line of code for each component
(mx.accessibility.ComponentNameAccImpl.enableAccessibility();), and set the
accessibility parameters in the Accessibility panel. Accessibility for components works the same
way as it works for all Flash movie clips.

Most components built by Macromedia are also navigable by the keyboard. Each component’s
entry in Chapter 6, “Components Dictionary,” indicates whether or not you can control the
component with the keyboard.

18 Chapter 1: About Components

CHAPTER 2
Creating an Application with Components (Flash
Professional Only)

Components in Flash are prebuilt elements that you can use when creating Flash applications, to
add user interface controls, data connectivity, and other functionality. Components can save you
work when you're building an application, because you don’t have to create all the design and
functionality from scratch.

This tutorial shows how to build a Flash application using components available in Macromedia
Flash MX Professional 2004, including a variety of user interface and data connectivity
components. You'll learn how to work with components by using panels and other interface
features in the Flash authoring environment and by using ActionScript.

About working with components

All components are listed in the Components panel. To use a component, you add an instance of
the component to a Flash application.

You can add a component instance in several ways:

® To add a component instance to an application while authoring, drag the component from the
Components panel onto the Stage. This also places the component in the library. You can add
additional instances of the component by dragging the component from the library onto the
Stage. For more information, see “The Components panel” on page 44 and “Adding
components during authoring” on page 44.

® To create a component instance dynamically, first add the component to the library: drag the
component from the Components panel onto the Stage and then delete the instance on the
Stage (the component remains in the library). Then add ActionScript to the application to
create the instance, as you would create an instance of a movie clip or other object in the
library. For more information on adding components dynamically, see “Adding components at
runtime with ActionScript” on page 46.

Once the component is added to the library, you can create instances either by dragging to the
Stage or by writing ActionScript.

19

You can modify the appearance and behavior of components by setting component parameters in
the authoring environment, using the Parameters tab in either the Property inspector or the
Component inspector. You can also control components during runtime using ActionScript. All
components have ActionScript methods, properties, and events. For more information on
authoring parameters, see “Setting component parameters” on page 47.

After you build an application using components, you can update or repurpose it simply by
resetting component parameters, without having to rewrite code. An application built with
components can even be updated by someone who doesn’t know all the code used to create it.

The components included with Flash MX 2004 and Flash MX Professional 2004 are SWC files
(the Macromedia file format for components). A SWC file contains a compiled clip of the
component, as well as an icon that appears in the Components panel, and other assets to create
component functionality.

Compiled clips are complex symbols that are precompiled so that they are easier to work with in a
Flash document. For example, both the Test Movie and the Publish procedures run faster with
compiled clips, because the clips don’t need to compile when the SWF file is generated.

Because components are precompiled, you cannot edit them as you would uncompiled movie
clips (FLA files). You modify components by setting their parameters or by using their
ActionScript methods, properties, and events.

For more general information about components, see the following topics:

® Chapter 1, “About Components”
® Chapter 3, “Working with Components”

® Chapter 6, “Components Dictionary”

About this tutorial

This tutorial is intended for intermediate Flash users who are familiar with the Flash authoring
environment and have some experience with ActionScript. In the authoring environment, you

should have some experience using panels, tools, the Timeline, and the library. In ActionScript,
you should be familiar with writing functions, adding event listeners, and using class files.

® Build the application architecture: Add component instances and movie clips to build the
application interface. This section covers adding UI and data components and setting their
parameters while authoring.

® Bind components to display product information from an external source: Bind components
to one another to distribute and display data from an external XML file. This section covers
using the data integration features in the Flash authoring environment to bind data and Ul
components together.

® Add ActionScript to the main Timeline: Add ActionScript code to create interactive
functionality. This section includes importing the classes for the components used in the
application. Most of the code places event listeners on components to process data in response
to user input.

20 Chapter 2: Creating an Application with Components (Flash Professional Only)

If you are experienced with building application architecture in Flash, you may want to skip the
first section of the tutorial and read the second and third sections while referring to the finished
FLA file of the sample application, to learn about the procedures used to bind the components

and add event listeners for data integration. (To view the finished FLA file, see the next section.)

All the ActionScript needed for creating the sample application is provided with this tutorial.
However, to understand the scripting concepts and create your own application using the
procedures described here, you should have some prior experience writing ActionScript.

View the application

In this tutorial you'll create an application for the “Fix Your Mistake” gift service, which helps
users select an appropriate gift when they need to make amends with someone.

Keep in mind that the sample application is for demonstration purposes only. It is not possible to
check errors or verify data in the sample.

The sample application uses several Ul components (including the ComboBox, TextArea, and
Button components) to create the application interface. It includes data components to connect
to external data sources: the XMLConnector component (to connect to an XML file) and the
DataSet component (to filter the data from the XML file and make the data available to Ul
components). The application also uses the WebService class to connect dynamically to a web
service.

View the SWF file for the completed application
To view the completed application, open the first_app_v3.swf file at the following location:

® In Windows: boot drive\Program Files\Macromedia\Flash MX 2004\Samples\
HelpExamples\components_application

® On the Macintosh: Macintosh HD/Applications/Macromedia Flash MX 2004/Samples/
HelpExamples/components_application

To see how the application works, first click the arrow control in the What Did You Do? section.
Select from a list of blunders you might have committed (ranging in severity from Forgot to
Water Your Plants to Burned Your House Down). This section uses the ComboBox UI
component, populated by a web service.

A list of gift suggestions appears in the Gift Ideas section. Click a gift to view more information
about it. In the pop-up window that appears, select the quantity you want using the numeric
stepper, and click Add to Cart. Click the close box to close the window. Back in the main screen
of the application, click Checkout. This section uses the XMLConnector data component to
connect to an external XML file, the DataSet data component to filter the data from the XML
file, and the DataGrid UI component to display the data.

View the application 21

On the Checkout screen, click the Billing Information, Shipping Information, and Credit Card
Information headers to view the form fields for each of these items. To place an order, you can
add the appropriate information in each of these panes, and click Confirm at the bottom of the
Credit Card Information pane. You can also click Back to return to the main screen. Close the
SWPE file when you finish examining the completed application. This screen includes several Ul
components (Accordion, TextArea, and others) to display information and provide fields for user
input.

View the FLA file for the completed application

To view the FLA file for the application, open the first_app_v3.fla file in the
components_application folder (the same folder that contains the first_app_v3.swf file).

Examine the Stage, library, and Actions panel to see the content for the application. Notice that
all the components used in the application appear in the library (along with graphics files and
other assets used to create the application architecture). Drag the playhead to view the keyframes
labeled Home (Frame 1) and Checkout (Frame 10). Some components appear as instances on the
Stage. Some are referenced in the ActionScript code but do not appear until runtime.

About data integration in the sample application

The sample application uses features of the Flash data integration architecture to connect to
external data sources, manage the data from those sources, and map the data to Ul components in
the application for display. The Flash data integration architecture enables you to work with
external data in different ways, using components and ActionScript classes. For general
information on Flash data integration features, see Chapter 14, “Data Integration (Flash
Professional Only)” in Using Flash.

The sample application uses both components and classes, to introduce you to different ways of
working with data:

® The XMLConnector component connects to an external XML file. Using this component is
similar to loading an external XML file with XML.10ad () (the Toad method of the XML
object). However, the XMLConnector component is far more powerful and versatile, because
the component makes the XML data available for display in a variety of Ul components,
simply by binding component parameters in the Flash authoring environment. For more
information, see “XMLConnector component (Flash Professional only)” on page 894.

® The DataSet component manages and filters data from the XML file. You bind the
XMLConnector component to the DataSet component in the Flash authoring environment,
and then bind the DataSet component to a Ul component. For more information, see
“DataSet component (Flash Professional only)” on page 301.

® The DataGrid component displays data from the XML file that has been filtered by the
DataSet. You bind the DataSet component to the DataGrid component. (You can also bind
the DataSet component to other Ul components. The DataGrid component is just one
example.) For more information, see “DataGrid component (Flash Professional only)”
on page 247.

22 Chapter 2: Creating an Application with Components (Flash Professional Only)

® The WebService class is part of a set of web service classes, which provides a set of methods,
events, and properties that enable you to connect to a web service. The WebService class is
different from the WebServiceConnector component. (The WebServiceConnector
component, like the XMLConnector component, enables you to connect to an external data
source—in this case, a web service—by adding a component to an application and setting its
parameters.) The sample application uses the WebService class rather than the
WebServiceConnector component simply to demonstrate another way of connecting to an
external data source. For more information on the set of web service classes, see “Web service
classes (Flash Professional only)” on page 842.

Build the application architecture

To build the application architecture, you'll add components to the Stage on Frame 1 (for the
main screen) and Frame 10 (for the Checkout screen). You'll also create movie clips that will be
used to display information inside various components.

Add component instances for the main screen of the application

You'll start the application by adding instances of the ComboBox, DataGrid, DataSet,
XMLConnector, and Button components to the Stage.

You'll also add the Window component to the library. Later in the tutorial you'll add code to
create instances of the Window component dynamically, to display product information when a
user clicks an item in the Gift Ideas section.

The ComboBox instance will display the list of blunders that the user can choose from. The list
will be provided by a web service that you'll connect to the ComboBox component later in the
tutorial, using the WebService class.

The DataGrid instance will display the list of gift ideas that the user can choose from. The list of
gifts (and all the product details for each gift) will be provided by an external XML file, which you
connect to by means of the XMLConnector component. To filter and sort the data from the
XML file, you'll use the DataSet component. Later in the tutorial, you'll use the Flash data
binding features to bind the DataGrid, XMLConnector, and DataSet components to interpret
and display product information from the XML file.

The Window component will be used to create a pop-up window that displays information on
each product in the Gift Ideas list.

1. Open the first_app_v3_start.fla file for the application, located in the components_application
folder (the same folder that contains the first_app_v3.swf and firstc_app_v3.1la files).

The start_app.fla file contains three layers: a Background layer with a black background image
and text titles, a Text layer with text labels for sections of the application, and a Labels layer
with labels on the first frame (Home) and the tenth frame (Checkout).

2. Select File > Save As. Rename the file and save it to your hard drive.

3. In the Timeline, select the Labels layer and click the Add Layer button to add a new layer above
it. Name the new layer Form. You’ll place the component instances on this layer.

Build the application architecture 23

4. Make sure the Form layer is selected. In the Components panel (Window > Development
Panels > Components), locate the ComboBox component in the Ul Components folder. Drag
an instance of ComboBox onto the Stage. Place it below the What Did You Do? text. In the
Property inspector (Window > Properties), for the instance name enter problems_cb. Set

Width to 400 pixels.

Notice that the ComboBox component symbol is added to the library (Window > Library).
When you drag an instance of a component to the Stage, the compiled clip symbol for the
component is added to the library. As with all symbols in Flash, you can create additional
instances of the component by dragging the library symbol onto the Stage.

5. Drag an instance of the DataGrid component from the UI Components folder in the
Components panel onto the Stage. Place it below the Gift Ideas text. Enter products_dg for the
instance name. Set Width to 400 pixels and Height to 160 pixels.

6. Drag an instance of the DataSet component from the Data Components folder in the
Components panel onto the side of the Stage. (The DataSet component does not appear in the
application at runtime. The DataSet icon is simply a placeholder that you work with in the
Flash authoring environment.) Enter products_ds for the instance name.

7. Drag an instance of the XMLConnector component from the Data Components folder in the
Components panel to the side of the Stage. (Like the DataSet component, the XMLConnector
component does not appear in the application at runtime.) Enter products_xmlcon for the
instance name. Click the Parameters tab in the Property inspector, and enter http://www.flash-
mx.com/mm/firstapp/products.xml for the URL property.

Note: You can also use the Component inspector (Window > Development Panels > Component
Inspector) to set parameters for components. The Parameters tab in the Property inspector and
the Component inspector work in the same way.

The URL specifies an external XML file with data about the products that appear in the Gift
Ideas section of the application. Later in the tutorial you'll use data binding to bind the
XMLConnector, DataSet, and DataGrid components together; the DataSet component will
filter data from the external XML file, and the DataGrid component will display it.

8. Drag an instance of the Button component from the Ul Components folder in the Components
panel onto the Stage. Place it in the lower right corner of the Stage. Enter checkout_button for
the instance name. Click the Parameters tab and enter Checkout for the 1abel property.

9. Drag an instance of the Window component from the Ul Components folder in the
Components panel onto the Stage. Select the instance on the Stage and delete it.

The Window component symbol is now added to the library. Later in the tutorial, you'll create
instances of the Window component using ActionScript.

Remember to save your work frequently.

24 Chapter 2: Creating an Application with Components (Flash Professional Only)

http://www.flash-mx.com/mm/firstapp/products.xml
http://www.flash-mx.com/mm/firstapp/products.xml

Create a movie clip with component instances to display product details

In the application, a pop-up window appears when a user clicks on a product in the Gift Ideas
section. The pop-up window contains component instances that display information for the
product, including a text description, image, and price. To make this pop-up window, you'll
create a movie clip symbol and add instances of the Loader, TextArea, Label, NumericStepper,
and Button components.

Later in the tutorial, you'll add ActionScript that dynamically creates an instance of this movie
clip for each product. These movie clip instances will be displayed in the Window component,
which you added to the library earlier. The component instances will be populated with elements
from the external XML file.

1. In the Library panel (Window > Library), click the options menu on the right side of the title
bar and select New Symbol.

2. In the Create New Symbol dialog box, enter ProductForm for Name and select Movie Clip for
Behavior.

0

. Click the Advanced button. Under Linkage, select Export for ActionScript, leave Export in First
Frame selected, and click OK. A document window for the new symbol opens in symbol-
editing mode.

For movie clip symbols that are in the library but not on the Stage, you must select Export for
ActionScript so that you can manipulate them using ActionScript. (Exporting in first frame
means that the movie clip is available as soon as the first frame loads.) Later in the tutorial
you'll add ActionScript that will generate an instance of the movie clip dynamically each time a
user clicks a product in the Gift Ideas section.

=N

. In the Timeline for the new symbol, select Layer 1 and rename it Components.

N

. Drag an instance of the Loader component from the Ul Components folder in the Components
panel onto the Stage. Set the X, Y coordinates to 5, 5. Enter image_ldr for the instance name.
Click the Parameters tab in the Property inspector. Select false for autolLoad and false for
scaleContent.

The Loader component instance will be used to display an image of the product. The false
setting for autoload specifies that the image will not load automatically. The false setting for
scaleContent specifies that the image will not be scaled. Later in the tutorial you'll add code
that loads the image dynamically, based on the product that the user selects in the Gift Ideas
section.

N

. Drag an instance of the TextArea component from the Ul Components folder in the
Components panel onto the Stage. Place it next to the Loader component. Set the X, Y
coordinates to 125, 5. Enter description_ta for the instance name. Click the Parameters tab in
the Property inspector. For editable, select false. For htm1, select true. ForwordWrap, select
true.

The TextArea component instance will be used to display a text description of the selected
product. The selected settings specify that the text cannot be edited by a user, that it can be
formatted with HMTL tags, and that lines will wrap to fit the size of the text area.

Build the application architecture 25

7. Drag an instance of the Label component from the Ul Components folder in the Components
panel onto the Stage. Place it below the Loader component. Set the X, Y coordinates to 5, 145.
Enter price_lbl for the instance name. Click the Parameters tab in the Property inspector. For
autoSize, select Teft. For htm1, select true.

The Label component instance will display the price of the product and the price qualifier (the
quantity of products indicated by the specified price, such as “each” or “one dozen.”)

8. Drag an instance of the NumericStepper component from the Ul Components folder in the
Components panel onto the Stage. Place it below the TextArea component. Set the X, Y
coordinates to 135, 145. Enter quantity_ns for the instance name. Click the Parameters tab in
the Property inspector. For minimum, enter 1.

Setting minimum to 1 specifies that the user must select at least one of the product in order to
add the item to the cart.

9. Drag an instance of the Button component from the Ul Components folder in the Components
panel onto the Stage. Place it beside the NumericStepper component. Set the X, Y coordinates
to 225, 145. Enter addToCart_button for the instance name. Click the Parameters tab in the
Property inspector. For Tabel, enter Add To Cart.

Add code to the ProductForm movie clip

Next, you'll add ActionScript to the ProductForm movie clip that you just created. The
ActionScript populates the components in the movie clip with information about the selected
product, and adds an event listener to the Add to Cart button that adds the selected product to
the cart.

For more information on working with event listeners, see “Using event listeners” in Using

ActionScript in Flash.

1. In the Timeline of the ProductForm movie clip, create a new layer and name it Actions. Select
the first frame in the Actions layer.

2. In the Actions panel, add the following code:

// create an object to reference the selected product item in the DataGrid

var thisProduct:0bject = this._parent._parent.products_dg.selectedItem;

// populate the description_ta TextArea and price_1bl Label instances with

// data from the selected product

description_ta.text = thisProduct.description;

price_lbl.text = "$"+thisProduct.price+" "+thisProduct.priceQualifier+"</
b>";

// Toad an image of the product from the application directory

image_ldr.load(thisProduct.image);

Note: The code includes comments explaining its purpose. It’s a good idea to include comments
like these in all the ActionScript code you write, so that you or anyone else going back to the code
later can easily understand what it was for.

First, the code defines a variable to refer to the selected product in the subsequent code. Using
thisProduct means you don’t have to refer to the specified product using the path
this._parent._parent.products_dg.selectedItem.

26 Chapter 2: Creating an Application with Components (Flash Professional Only)

Next, the code populates the TextArea and Label instances by using the description, price,
and priceQualifier properties of the thisProduct object. These properties correspond to
elements in the products.xml file that you linked to the products_xmlcon XMLConnector
instance at the beginning of the tutorial. Later in the tutorial, you'll bind the XMLConnector,
DataSet, and DataGrid component instances together, and the elements in the XML file will
populate the other two component instances.

Finally, the code uses the image property of the thisProduct object to load an image of the
product into the Loader component.

2

. Next you’ll add an event listener to add the product to the cart when the user clicks the Add to
Cart button. (You’'ll add ActionScript to the main Timeline in the application later in the
tutorial, to create an instance of the Cart class.) Add the following code:

var cartlListener:0bject = new Object();

cartListener.click = function(evt:0bject) f{
var tempObj:0bject = new Object();
tempObj.quantity = evt.target._parent.quantity_ns.value;
temp0Obj.id = thisProduct.id;
tempObj.productObj = thisProduct;
var theCart = evt.target._parent._parent._parent.myCart;
theCart.addProduct(tempObj.quantity, thisProduct);

} .

addToCart_button.addEventListener("click", cartListener);

[I=N

. Click the Check Syntax button (the blue check mark above the Script pane) to make sure there
are no syntax errors in the code.

You should check syntax frequently as you add code to an application. Any errors found in the
code are listed in the Output panel. (When you check syntax, only the current script is
checked; other scripts that may be in the FLA file are not checked.) For more information, see
“Debugging your scripts” in Using ActionScript in Flash.

N

. Click the arrow button at the top left of the document window or select View > Edit Document
to exit symbol editing mode and return to the main Timeline.

Add components for the Checkout screen

When the user clicks the Checkout button on the main screen, the Checkout screen appears. The
Checkout screen provides forms where the user can enter billing, shipping, and credit card
information.

The checkout interface consists of components placed on a keyframe at Frame 10 in the
application. You'll use the Accordion component to create the checkout interface. The Accordion
component is a navigator that contains a sequence of children that it displays one at a time. You'll
also add a Button component instance to create a Back button, so users can return to the main
screen.

Build the application architecture 27

Later in the tutorial, you’ll create movie clips to use as children in the Accordion instance, to

display the Billing, Shipping, and Credit Card Information panes.

1. In the main Timeline for the application, move the playhead to Frame 10 (labeled Checkout).
Make sure the Form layer is selected.

2. Insert a blank keyframe on Frame 10 in the Form layer (select the frame and select Insert >
Timeline > Blank Keyframe).

3. With the new keyframe selected, drag an instance of the Accordion component from the Ul
Components folder in the Components panel onto the Stage. In the Property inspector, enter
checkout_acc for the instance name. Set Width to 300 pixels and Height to 200 pixels.

4. Drag an instance of the Button component from the Ul Components folder in the Components
panel onto the Stage. In the Property inspector, enter back_button for the instance name. Click
the Parameters tab, and enter Back for the Tabel property.

About the Billing, Shipping, and Credit Card panes

The Billing, Shipping, and Credit Card Information panes are built with movie clip instances that
are displayed in the Accordion component instance. Each pane consists of two nested movie clips.

The parent movie clip contains a ScrollPane component, used to display content in a scrollable
area. The child movie clip contains Label and TextInput components where users can enter
personal data, such as name, address, and so on. You'll use the ScrollPane component to display
the child movie clip so that the user can scroll through the information fields.

Create movie clips for the Billing Information pane

First you'll create two movie clips that will display the Billing Information form fields: a parent
movie clip with the ScrollPane component instance, and a child movie clip with the Label and
TextArea component instances.

1. In the Library panel (Window > Library), click the options menu on the right side of the title
bar and select New Symbol.

2. In the Create New Symbol dialog box, enter checkoutl_mc for Name and select Movie Clip
for Behavior.

3. Click the Advanced button. Under Linkage, select Export for ActionScript, leave Export in First
Frame selected, and click OK.

A document window for the new symbol opens in symbol-editing mode.
4. Drag an instance of the ScrollPane component onto the Stage.

5. In the Property inspector, enter checkoutl_sp for the instance name. Set the W and H
coordinates to 300, 135. Set the X and Y coordinates to 0, 0.

6. Click the Parameters tab. Set the contentPath property to checkoutl_sub_mc.

The checkoutl_sub_mc movie clip will appear inside the scroll pane, and will contain the
Label and TextInput components. You'll create this movie clip next.

7. From the Library options menu, select New Symbol.

28

Chapter 2: Creating an Application with Components (Flash Professional Only)

8. In the Create New Symbol dialog box, enter checkoutl_sub_mc for Name and select Movie
Clip for Behavior.

9. Click the Advanced button. Under Linkage, select Export for ActionScript, leave Export in First
Frame selected, and click OK.
A document window for the new symbol opens in symbol-editing mode.

10. Drag six instances of the Label component onto the Stage. Alternatively, you can drag one
instance onto the Stage, and Control-drag (Windows) or Option-drag (Macintosh) it on the
Stage to make copies. Name and position the instances as follows:

= For the first instance, enter firstname_lbl for the instance name and set the X and Y
coordinates to 5, 5. Click the Parameters tab and enter First Name for text.

« For the second instance, enter lastname_lbl for the instance name and set the X and Y
coordinates to 5, 35. Click the Parameters tab and enter Last Name for text.

=« For the third instance, enter country_lbl for the instance name and set the X and Y
coordinates to 5, 65. Click the Parameters tab and enter Country for text.

» For the fourth instance, enter province_lbl for the instance name and set the X and Y
coordinates to 5, 95. Click the Parameters tab and enter Province/State for text.

= For the fifth instance, enter city_Ibl for the instance name and set the X and Y coordinates
to 5, 125. Click the Parameters tab and enter City for text.

» For the sixth instance, enter postal_Ibl for the instance name and set the X and Y
coordinates to 5, 155. Click the Parameters tab and enter Postal/Zip Code for text.

—
—

. Drag six instances of the TextInput component onto the Stage. Place a TextInput instance
immediately to the right of each Label instance. For example, the X, Y coordinates of the first
Textlnput instance should be 105, 5. Name the TextInput instances as follows:

= Name the first instance billingFirstName_ti.

= Name the second instance billingLastName_ti.
= Name the third instance billingCountry_ti.

= Name the fourth instance billingProvince_ti.

= Name the fifth instance billingCity_ti.

= Name the sixth instance billingPostal_ti.

Sometimes content in a scroll pane can be cropped if it’s too close to the border of the pane. In
the next few steps you'll add a white rectangle to the checkoutl_sub_mc movie clip so that the
Label and TextInput instances are displayed properly.

12. In the Timeline, click the Add New Layer button. Drag the new layer below the existing layer.
(The layer with the rectangle should be on the bottom, so that the rectangle doesn’t interfere
with the component display.)

13. Select Frame 1 of the new layer.

Build the application architecture 29

14. In the Tools panel, select the Rectangle tool. Set the Stroke color to None and the Fill color to
white.

Click the Stroke Color control in the Tools panel and click the None button—the white
swatch with a red line through it. Click the Fill Color control and click the white color swatch.

15. Drag to create a rectangle that extends beyond the bottom and right edges of the Label and
Textlnput instances.

Create movie clips for the Shipping Information pane

The movie clips for the Shipping Information pane are very similar to those for the Billing
Information pane. You'll also add a CheckBox component, enabling users to populate the
Shipping Information form fields with the same data they entered in the Billing Information
pane.

1. Follow the earlier instructions (see “Create movie clips for the Billing Information pane”
on page 28) to create the movie clips for the Credit Card Information pane. Note these naming
differences:

= For the first movie clip, enter checkout2_mc for the symbol name and checkout2_sp for the
instance name. In the Property inspector’s Parameters tab, set the contentPath property to
checkout2_sub_mc.

» For the second movie clip, enter checkout2_sub_mc for the symbol name.
= For the TextInput instances, change “billing” to “shipping” in the instance names.

2. With the checkout2_sub_mc movie clip open in symbol-editing mode, drag an instance of the
CheckBox component onto the Stage and position it just above the first Label instance.

Make sure to place this instance on Layer 1, along with the other component instances.
3. In the Property inspector, enter sameAsBilling_ch for the instance name.

4. Click the Parameters tab. Set the 1abel property to Same As Billing Info.

Create movie clips for the Credit Card Information pane

The movie clips for the Credit Card Information pane are also similar to those for the Billing and
Shipping Information panes. However, the nested movie clip for the Credit Card Information
pane has somewhat different fields than the other two panes, for credit card number and other
card data.

1. Follow steps 1-11 of the Billing Information instructions (see “Create movie clips for the Billing
Information pane” on page 28) to create the movie clips for the Credit Card Information pane.
Note these naming differences:

= For the first movie clip, enter checkout3_mc for the symbol name and checkout3_sp for the
instance name. In the Property inspector’s Parameters tab, set the contentPath property to
checkout3_sub_mc.

= For the second movie clip, enter checkout3_sub_mc for the symbol name.

30 Chapter 2: Creating an Application with Components (Flash Professional Only)

2. Drag four instances of the Label component onto the Stage. Name and position the instances
as follows:

» For the first instance, enter ccName_lbl for the instance name and set the X and Y
coordinates to 5, 5. Click the Parameters tab and enter Name On Card for text.

= For the second instance, enter ccType_lbl for the instance name and set the X and Y
coordinates to 5, 35. Click the Parameters tab and enter Card Type for text.

« For the third instance, enter ccNumber_lbl for the instance name and set the X and Y
coordinates to 5, 65. Click the Parameters tab and enter Card Number for text.

=« For the fourth instance, enter ccExp_lbl for the instance name and set the X and Y
coordinates to 5, 95. Click the Parameters tab and enter Expiration for text.

3. Drag an instance of the TextInput component onto the Stage and position it to the right of the
ccName_lbl instance. Name the new instance ccName_cb.

4. Drag an instance of the ComboBox component onto the Stage and position it to the right of
the ccType_lbl instance. Name the new instance ccType_cb.

5. Drag another instance of the TextInput component onto the Stage and position it to the right
of the ccNumber_lbl instance. Name the new instance ccNumber_cb.

6. Drag two instances of the ComboBox component onto the Stage. Position one to the right of
the ccExp_Ibl instance, and position the other one to the right of that. Name the first new
instance ccMonth_cb, and name the second ccYear_cb.

7. Drag an instance of the Button component onto the Stage and position it at the bottom of the
form, below the ccMonth_cb instance. Name the new instance checkout_button. In the
Property inspector’s Parameters tab, set the 1abel property to Checkout.

8. Follow the instructions in steps 14-16 of the Billing Information instructions (see “Create
movie clips for the Billing Information pane” on page 28) to add a rectangle to the bottom of
the form.

Bind components to display product information from an
external source

In the beginning of the tutorial, you added instances of the DataGrid, DataSet, and
XMLConnector components to the Stage. You set the URL property for the XMLConnector
(named products_xmlcon) to the location of an XML file containing product information for the
Gift Ideas section of the application.

Now you'll use data binding features in the Flash authoring environment to bind the
XMLConnector, DataSet, and DataGrid components together to use the XML data in the
application. For general information on working with data binding and other features of the Flash
data integration architecture, see Chapter 14, “Data Integration (Flash Professional Only)” in
Using Flash.

When you bind the components, the DataSet component will filter the list of products in the
XML file according to the severity of the blunder that the user selects in the What Did You Do?
section. The DataGrid component will display the list.

Bind components to display product information from an external source 31

Specify a schema for the XML data source

When you connect to an external XML data source with the XMLConnector component, you
need to specify a schema—a schematic representation which identifies the structure of the XML
document. The schema tells the XMLConnector component how to read the XML data source.
The easiest way to specify a schema is to import a copy of the XML file that you're going to
connect to, and use that copy as a schema.

1. Launch your web browser and go to www.flash-mx.com/mm/firstapp/problems.xml (the
location you set for the XMLConnector URL parameter).

2. Select File > Save As.

. Save products.xml to the same location as the FLA file that you’re working on.
p b4 g

[N SR

. Select Frame 1 in the main Timeline.

N

. On the Stage, select the products_xmlcon (XMLConnector) instance.

6. In the Component inspector, click the Schema tab. Click the Import button (on the right side
of the Schema tab, above the scroll pane). In the Open dialog box, locate the products.xml file
that you imported in step 3, and click Open. The schema for the products.xml file appears in
the scroll pane of the Schema tab.

Bind the XMLConnector, DataSet, and DataGrid components

You'll use the Binding tab in the Component inspector to bind the XMLConnector, DataSet, and
DataGrid component instances to one another.

For information on working with data binding, see “Data binding (Flash Professional only)” in
Using Flash.

—

. With the products_xmlcon (XMLConnector) instance selected on the Stage, click the Bindings
tab in the Component inspector.

. Click the Add Binding button.

. In the Add Binding dialog box, select the results.products.product array item and click
OK.

. In the Bindings tab, click the Bound To item in the Binding Attributes pane (the bottom pane,
showing attribute name-value pairs).

W o

=N

N

. In the Value column for the Bound To item, click the magnifying glass icon to open the Bound
To dialog box.

6. In the Bound To dialog box, select the products_ds (DataSet) instance in the Component Path
pane. Select dataProvider:array in the Schema Location pane. Click OK.

7. In the Bindings tab, click the Direction item in the Binding Attributes pane. From the pop-up
menu in the Value column, select Out.

This option means that the data will pass from the products_xmlcon instance to the
products_ds instance (rather than passing in both directions, or passing from the DataSet
instance to the XMLConnector instance).

32

Chapter 2: Creating an Application with Components (Flash Professional Only)

http://www.flash-mx.com/mm/firstapp/problems.xml

8. On the Stage, select the products_ds instance. In the Bindings tab of the Component inspector,
notice that the component’s data provider appears in the Binding List (the top pane of the
Bindings tab). In the Binding Attributes pane, the Bound To parameter indicates that the
products_ds instance is bound to the products_xmlcom instance, and the binding direction
is In.

In the next few steps you'll bind the DataSet instance to the DataGrid instance so that the data
that is filtered by the data set will be displayed in the data grid.
9. With the products_ds instance still selected, click the Add Binding button in the Bindings tab.
10. In the Add Binding dialog box, select the dataProvider: array item and click OK.
11. In the Bindings tab, make sure the dataProvider: array item is selected in the Binding List.
12. Click the Bound To item in the Binding Attributes pane.

13. In the Value column for the Bound To item, click the magnifying glass icon to open the Bound
To dialog box.

14. In the Bound To dialog box, select the products_dg (DataGrid) instance in the Component
Path pane. Select dataProvider:array in the Schema Location pane. Click OK.

Add ActionScript to the main Timeline

With the application architecture and data binding in place, you're ready to add ActionScript to
the main Timeline to complete the application functionality.

Create references to component class names

Each component is associated with a class file that defines its methods and properties. In this
section of the tutorial, you'll add ActionScript to create references to the class names for the
components used in the application. For some of these components, you have already added
instances to the Stage. For others, you'll add ActionScript later in the tutorial to create instances
dynamically.

Creating a references to the class name makes it easier to write ActionScript for the component
because it enables code completion for component instances, so you can avoid using the fully
qualified name. For example, when you create a reference to the class file for the ComboBox
component, you can refer to instances of the ComboBox with the syntax
instanceName:ComboBox, rather than instanceName:mx.controls.ComboBox.

You'll need these classes:

WebService class This class populates the ComboBox instance with a list of “problems.” For
this class, you'll also need to import the WebServiceClasses item from the Classes common
library. This item contains compiled clips (SWC files) that you'll need in order to compile and
generate the SWF file for your application.

Add ActionScript to the main Timeline 33

Ul Components Controls package This package contains classes for the user interface control
components, including ComboBox, DataGrid, Loader, TextInput, Label, NumericStepper,
Button, and CheckBox. A package is a directory that contains class files and resides in a
designated classpath directory. You can use a wild card to create references to all the classes in a
package: for example, the syntax mx.controls.* creates references to all classes in the controls
package. (When you create a reference to a package with a wild card, the unused classes are
dropped from the application when it is compiled, so they don’t add any extra size.)

Ul Components Containers package This package contains classes for the user interface
container components, including Accordion, ScrollPane, and Window. As with the controls
package, you can create a reference to this package by using a wild card.

DataGridColumn class This class lets you add columns to the DataGrid instance and control
their appearance.

Cartclass A custom class provided with this tutorial, the Cart class defines the functioning of
the shopping cart that you'll create later. (To examine the code in the Cart class file, open the
cart.as file located in the component_application folder with the application FLA and SWF files).

You'll create an Actions layer and add ActionScript code to the first frame of the main Timeline.
For all the code that you'll add to the application in the remaining steps of the tutorial, make sure
you place it on the Actions layer.

1. To import the WebServiceClasses item from the Classes library, select Window > Other
Panels > Common Libraries > Classes.

2. Drag the WebServiceClasses item from the Classes library into the library for the application.

Importing an item from the Classes library is similar to adding a component to the library: it
adds the SWC files for the class to the library. The SWC files need to be in the library in order
for you to use the class in an application.

3. In the Timeline, select the Form layer and click the Add New Layer button. Name the new layer
Actions.

4. With the Actions layer selected, select Frame 1 and press F9 to open the Actions panel.

5. In the Actions panel, enter the following code to create a stop() function that prevents the
application from looping during playback:

stop();

6. With Frame 1 in the Actions layer still selected, add the following code in the Actions panel to
import the classes:

// import necessary classes

import mx.services.WebService;

import mx.controls.*;

import mx.containers.*;

import mx.controls.gridclasses.DataGridColumn;
// import the custom Cart class

import Cart;

34 Chapter 2: Creating an Application with Components (Flash Professional Only)

Add an instance of the Cart class and initialize it

The next code that you'll add creates an instance of the custom Cart class and then initializes the
instance.

® In the Actions panel, add the following code:

var myCart:Cart = new Cart(this);
myCart.init();

This code uses the init() method of the Cart class to add a DataGrid instance to the Stage,
define the columns, and position the DataGrid instance on the Stage. It also adds a Button
component instance and positions it, and adds an Alert handler for the button. (To see the code
for the Cart class init() method, open the Cart.as file.)

Set the data type of component instances

Next you'll assign data types to each of the component instances you dragged to the Stage earlier
in the tutorial.

ActionScript 2.0 uses strict data typing, which means that you assign the data type when you
create a variable. Strict data typing makes code hints available for the variable in the Actions
panel.

® In the Actions panel, add the following code to assign data types to the four component
instances that you already created.
// data type instances on the Stage; other instances might be added at
// runtime from the Cart class
var problems_cb:ComboBox;
var products_dg:DataGrid;
var cart_dg:DataGrid;
var products_xmlcon:mx.data.components.XMLConnector;

Use styles to customize component appearance

Each component has style properties and methods that let you customize its appearance,
including highlight color, font, and font size. You can set styles for individual component
instances, or set styles globally to apply to all component instances in an application. For this
tutorial you'll set styles globally.

® Add the following code to set styles:

// define global styles and easing equations for the problems_cb ComboBox
_global.style.setStyle("themeColor", "haloBlue");
_global.style.setStyle("fontFamily", "Verdana");
_global.style.setStyle("fontSize", 10);
_global.style.setStyle("openkEasing", mx.transitions.easing.Bounce.easeOut);

This code sets the theme color (the highlight color on a selected item), font, and font size for
the components, and also sets the easing for the ComboBox—the way that the drop-down
menu appears and disappears when you click the ComboBox title bar.

Add ActionScript to the main Timeline 35

Add columns to the Gift Ideas section

Now you're ready to add columns to the data grid in the Gift Ideas section of the application, for
displaying product information and price.

® In the Actions panel, add the following code to create, configure, and add a Name column and
a Price column to the DataGrid instance:

// define data grid columns and their default widths in the products_dg
// DataGrid instance

var name_dgc:DataGridColumn = new DataGridColumn("name");
name_dgc.headerText = "Name";

name_dgc.width = 280;

// add the column to the DataGrid
products_dg.addColumn(name_dgc);

var price_dgc:DataGridColumn = new DataGridColumn("price");
price_dgc.headerText = "Price";

price_dgc.width = 100;

// define the function that will be used to set the column’s Tlabel
// at runtime
price_dgc.labelFunction = function(item:0bject) {

if (item != undefined) {

return "$"+item.price+" "+item.priceQualifier;

}
bs
products_dg.addColumn(price_dgc);

Connect to a web service to populate the combo box

In this section you'll add code to connect to a web service that contains the list of blunders
(Forgot to Water Your Plants, and so on). The web service description language (WSDL) file is
located at www.flash-mx.com/mm/firstapp/problems.cfc?WSDL. To see how the WSDL is
structured, point your browser to the WSDL location.

The ActionScript code passes the web service results to the ComboBox instance for display. A
function sorts the blunders in order of severity. If no result is returned from the web service (for
example, if the service is down, or the function isn’t found), an error message appears in the

Output panel.

® In the Actions panel, add the following code:

/* Define the web service used to retrieve an array of problems.

This service will be bound to the problems_cb ComboBox instance. */

var problemService:WebService = new WebService("http://www.flash-mx.com/mm/
firstapp/problems.cfc?WSDL");

var myProblems:0bject = problemService.getProblems();

/* If you get a result from the web service, set the field that will be used
for the column label.
Set the data provider to the results returned from the web service. */
myProblems.onResult = function(wsdlResults:Array) {
problems_cb.labelField = "name";
problems_cb.dataProvider = wsdlResults.sortOn("severity", Array.NUMERIC);

36 Chapter 2: Creating an Application with Components (Flash Professional Only)

http://www.flash-mx.com/mm/firstapp/problems.cfc?WSDL

bs

// 1f you are unable to connect to the remote web service, display the
// error messages in the Output panel.
myProblems.onFault = function(error:0bject) f{

trace("error:");

for (var prop in error) {

trace(" "+prop+" -> "+errorlpropl);

}

b

Load the external XML file listing product information

Next you'll add a line of code that causes the XMLConnector instance to load, parse, and bind
the contents of the remote products.xml file. This file is located at the URL you entered for the
URL property of the XMLConnector instance that you created earlier. The file contains
information on the products that will appear in the Gift Ideas section of the application.

® Add the following code in the Actions panel:
products_xmlcon.trigger();

Add an event listener to filter the products displayed in the Gift Ideas section

You'll add an event listener to detect when a user selects a blunder in the What Did You Do?
section (the problems_cb ComboBox instance). The listener includes a function that filters the
Gift Ideas list according to the blunder the user chooses. Selecting a minor blunder displays a list
of modest gifts (such as a CD or flowers); selecting a more serious blunder displays more opulent
gifts.

For more information on working with event listeners, see “Using event listeners” in Using
ActionScript in Flash.

® In the Actions panel, add the following code:

/* Define a listener for the problems_cb ComboBox instance.
This Tistener will filter the products in the DataSet (and DataGrid).
Filtering is based on the severity of the currently selected item in the
ComboBox. */
var cbListener:0bject = new Object();
cbListener.change = function(evt:0bject) {
products_ds.filtered = false;
products_ds.filtered = true;
products_ds.filterFunc = function(item:0bject) {
// 1f the current item's severity is greater than or equal to the
selected
// item in the ComboBox, return true.
return (item.severity>=evt.target.selectedItem.severity);
b

b

// Add the listener to the ComboBox.
problems_cb.addEventListener("change", cblListener);

Add ActionScript to the main Timeline 37

Resetting the filtered property (setting it to false and then to true) at the beginning of the
change () function ensures that the function will work properly if the user changes the What Did
You Do? selection repeatedly.

The filterFunc function checks whether a given item in the array of gifts falls within the
severity the user selected in the combo box. If the gift is within the selected severity range, it is
displayed in the DataGrid instance (which is bound to the DataSet instance).

The last line of code registers the listener to the problems_cb ComboBox instance.

Add an event listener to display product details

Next you'll add an event listener to the products_dg DataGrid instance to display information
about each product. When the user clicks a product in the Gift Ideas section, a pop-up window
appears with information about the product.

® In the Actions panel, add the following code:

// create a listener for the DataGrid to detect when the row in the
// DataGrid is changed
var dglListener:0bject = new Object();
dgListener.change = function(evt:0bject) f{
// when the current row changes in the DataGrid, Taunch a new pop-up
// window displaying the product's details
myWindow = mx.managers.PopUpManager.createPopUp(_root,
mx.containers.Window, true, {title:evt.target.selectedItem.name,
contentPath:"ProductForm", closeButton:true});
// set the dimensions of the pop-up window
myWindow.setSize(340, 210);
// define a listener that closes the pop-up window when the user clicks
// the close button
var closelistener:0bject = new Object();
closelistener.click = function(evt) {
evt.target.deletePopUp();
bs
myWindow.addEventListener("click", closelListener);
b
products_dg.addEventListener("change", dglListener);

This code creates a new event listener called dgListener, and creates instances of the Window
component you added to the library earlier. The title for the new window is set to the product’s
name. The content path for the window is set to the ProductForm movie clip. The size of the
window is set to 340 x 210 pixels.

The code also adds a close button to enable the user to close the window after viewing the
information.

38 Chapter 2: Creating an Application with Components (Flash Professional Only)

Add an event listener to the Checkout button
Now you'll add code to display the Checkout screen when the user clicks the Checkout button.

® In the Actions panel, add the following code:

// when the Checkout button is clicked, go to the "checkout" frame label
var checkoutBtnListener:0bject = new Object();

checkoutBtnListener.click = function(evt:0bject) {
evt.target._parent.gotoAndStop("checkout");

b
checkout_button.addEventlListener("click", checkoutBtnListener);

This code specifies that, when the user clicks the Checkout button, the playhead moves to the
Checkout label in the Timeline.

Add code for the Checkout screen

Now you're ready to add code to the Checkout screen of the application, on Frame 10 on the
main Timeline. This code processes the data that users enter in the Billing, Shipping, and Credit
Card Information panes that you created earlier with the Accordion component and other
components.

1. In the Timeline, select Frame 10 in the Actions layer and insert a blank keyframe (select Insert >
Timeline > Blank Keyframe)

2. Open the Actions panel (F9).
3. In the Actions panel, add the following code:

stop();
import mx.containers.*;

// define the Accordion component on the Stage
var checkout_acc:Accordion;

=N

. Next you'll add the first child to the Accordion component instance, to accept billing
information from the user. Add the following code:

// define the children for the Accordion component

var childl = checkout_acc.createChild("checkoutl_mc", "childl_mc",
{Tabel:"1. Billing Information"});

var thisChildl = childl.checkoutl_sp.spContentHolder;

The first line calls the createChild () method of the Accordion component and creates an
instance of the checkout1_mc movie clip symbol (which you created earlier) with the instance
name childl_mc and the label “1. Billing Information”. The second line of code creates a
shortcut to an embedded ScrollPane component instance.

5. Create the second child for the Accordion instance, to accept shipping information:

/* Add the second child to the Accordion.

Add an event Tistener for the sameAsBilling_ch CheckBox.

This copies the form values from the first child into the second child. */

var child2 = checkout_acc.createChild("checkout2_mc", "childZ2_mc",
{label:"2. Shipping Information"});

var thisChild2 = child2.checkout2_sp.spContentHolder;

var checkboxListener:0bject = new Object();

Add ActionScript to the main Timeline 39

checkboxlListener.click = function(evt:0bject) {
if (evt.target.selected) {
thisChild2.shippingFirstName_ti.text =
thisChildl.billingFirstName_ti.text;
thisChild2.shippinglLastName_ti.text =
thisChildl.billinglLastName_ti.text;
thisChild2.shippingCountry_ti.text = thisChildl.billingCountry_ti.text;
thisChild2.shippingProvince_ti.text =
thisChildl.billingProvince_ti.text;
thisChild2.shippingCity_ti.text = thisChildl.billingCity_ti.text;
thisChild2.shippingPostal_ti.text = thisChildl.billingPostal_ti.text;
}
by
thisChild2.sameAsBilling_ch.addEventListener("click", checkboxListener);

The first two lines of code are similar to the code for creating the Billing Information child:
you create an instance of the checkout2_mc movie clip symbol, with the instance name

child2_mc and the label “2. Shipping Information”. The second line of code creates a shortcut
to an embedded ScrollPane component instance.

Beginning with the third line of code, you add an event listener to the CheckBox instance. If
the user clicks the check box, the shipping information uses the data the user entered in the
Billing Information pane.

6. Next, create a third child for the Accordion instance, for credit card information:

// define the third Accordion child

var child3 = checkout_acc.createChild("checkout3_mc", "child3_mc",
{label:"3. Credit Card Information"});

var thisChild3 = child3.checkout3_sp.spContentHolder;

7. Add this code to create ComboBox instances for the credit card month, year, and type, and
populate each with a statically defined array:

/* set the values in the three ComboBox instances on the Stage:

ccMonth_cb, ccYear_cb and ccType_cb */

thisChild3.ccMonth_cb.labels = ["01", "02", "03", "04", "05", "06", "07",
"o8", "09", "10", "11", "12"1;

thisChild3.ccYear_cb.labels = [2004, 2005, 2006, 2007, 2008, 2009, 20107;

thisChild3.ccType_cb.labels = ["VISA", "MasterCard", "American Express",
"Diners Club"71;

8. Finally, add the following code to add event listeners to the Checkout button and the Back
button. When the user clicks the Checkout button, the listener object copies the form fields
from the Billing, Shipping, and Credit Card Information panes into a LoadVars object that is
sent to the server. (The LoadVars class lets you send all the variables in an object to a specified
URL.) When the user clicks the Back button, the application returns to the main screen.

/* Create a Tistener for the checkout_button Button instance.
This Tistener sends all the form variables to the server when the user clicks
the Checkout button. */
var checkoutlListener:0bject = new Object();
checkoutListener.click = function(evt:0bject);
evt.target.enabled = false;
/* Create two LoadVars object instances, which send variables to
and receive results from the remote server. */

40 Chapter 2: Creating an Application with Components (Flash Professional Only)

var response_lv:lLoadVars = new LoadVars();

var checkout_lv:LoadVars = new LoadVars();
checkout_lv.billingFirstName = thisChildl.billingFirstName_ti.text;
checkout_lv.biTlinglLastName = thisChildl.billingLastName_ti.text;
checkout_lv.biTlingCountry = thisChildl.billingCountry_ti.text;
checkout_lv.billingProvince = thisChildl.billingProvince_ti.text;
checkout_lv.biTlingCity = thisChildl.billingCity_ti.text;
checkout_lv.billingPostal = thisChildl.billingPostal_ti.text;
checkout_lv.shippingFirstName = thisChild2.shippingFirstName_ti.text;
checkout_Tlv.shippinglLastName = thisChild2.shippinglLastName_ti.text;
checkout_lv.shippingCountry = thisChild2.shippingCountry_ti.text;
checkout_lv.shippingProvince = thisChild2.shippingProvince_ti.text;
checkout_Tv.shippingCity = thisChild2.shippingCity_ti.text;
checkout_lv.shippingPostal = thisChild2.shippingPostal_ti.text;
checkout_Tv.ccName = thisChild3.ccName_ti.text;

checkout_Tv.ccType = thisChild3.ccType_cbh.selectedItem;
checkout_Tv.ccNumber = thisChild3.ccNumber_ti.text;
checkout_Tv.ccMonth = thisChild3.ccMonth_cb.selectedItem;
checkout_lv.ccYear = thisChild3.ccYear_cb.selectedItem;

/* Send the variables from the checkout_1Tv LoadVars to the remote script
on the server.
Save the results in the response_lv instance. */
checkout_1Tv.sendAndLoad("http://www.flash-mx.com/mm/firstapp/cart.cfm",
response_1lv, "POST");
response_lv.onlLoad = function(success:Boolean) {
evt.target.enabled = true;
b
b
thisChild3.checkout_button.addEventListener("click", checkoutListener);
cart_mc._visible = false;
var backListener:0bject = new Object();
backListener.click = function(evt:0bject) f{
evt.target._parent.gotoAndStop("home");
}
back_button.addEventListener("click", backlListener);

Test the application

Congratulations! You've finished building the application. Now you're ready to test it. If you find
any errors during testing, check your application against the finished sample (first_app_v3.fla) to
correct any mistakes.

Try using the procedures demonstrated in this tutorial to build component-based applications of
your own.

1. Select Control > Test Movie or press Control+Enter (Windows) or Command+Return
(Macintosh).

2. Click through the application to test it: select a blunder, choose a gift, and add checkout
information.

Test the application 11

42 Chapter 2: Creating an Application with Components (Flash Professional Only)

CHAPTER 3
Working with Components

In this chapter, you'll use several Macromedia Flash (FLA) files and ActionScript class files to
learn how to add components to a document and set their properties. This chapter also explains a
few advanced topics such as using code hints, creating custom focus navigation, managing
component depth, and upgrading version 1 components to version 2 architecture.

The files used in this chapter are TipCalulator.fla and TipCalculator.swf. The files are installed in
the following locations on your hard disk:

® (Windows) Program Files/Flash MX 2004/Samples/HelpExamples/TipCalculator
® (Macintosh) Applications/Flash MX 2004/Samples/HelpExamples/TipCalculator

This chapter covers the following topics:

The Components panelot 44
Adding components to Flash documents o 44
Components in the Library panel0 47
Setting COMPONENT PATAMELEIS. « . o v vttt et et et ettt e e e e 47
SIZING COMPONENLS. . . oo\ttt ettt et e ettt e e e e e e 49
Deleting components from Flash documents. oo oo 50
Using code hints 50
Creating custom focus Navigationiiuuniiiin e 50
Managing component depth inadocument. oo 51
Components in Live Preview oo o 52s
About using a preloader with components.o il 52
About loading components 52
Upgrading version 1 components to version 2 architecture 53

43

The Components panel

All components in the user-level configuration/Components directory are displayed in the
Components panel. (For more information about this directory, see “Where component files are
stored” on page 13.)

To display the Components panel:

® Select Window > Development Panels > Components.

= I— Components panel menu

@ Media Components
= @ UI Components

------ E Accordion
=

Alert

Button
CheckBox
ComboBox
DataGrid
1| DateChooser
DateField b

To display components that were installed after Flash started up:

1. Select Window > Development Panels > Components.

2. Select Reload from the Components panel menu.

Adding components to Flash documents

When you drag a component from the Components panel to the Stage, a compiled clip (SWC)
symbol is added to the Library panel. Once a compiled clip symbol is in the library, you can drag
multiple instances to the Stage. You can also add that component to a document at runtime by
using the UTObject.createClassObject () ActionScript method.

Adding components during authoring

You can add a component to a document by using the Components panel, and then add
additional instances of the component to the document by dragging the component from the
Library panel to the Stage. You can set properties for additional instances in the Parameters tab of
the Property inspector or in the Parameters tab in the Component inspector.
To add a component to a Flash document by using the Components panel:

1. Select Window > Development Panels > Components.

2. Do one of the following:

= Drag a component from the Components panel to the Stage.

= Double-click a component in the Components panel.

44

Chapter 3: Working with Components

3. If the component is a FLA (all installed version 2 components are SWC files) and if you have
edited skins for another instance of the same component, or for a component that shares skins
with the component you are adding, do one of the following:

= Select Don’t Replace Existing Items to preserve the edited skins and apply the edited skins to
the new component.

= Select Replace Existing Items to replace all the skins with default skins. The new component
and all previous versions of the component, or of components that share its skins, will use

the default skins.

. Select the component on the Stage.

AN

. Select Window > Properties.

N

. In the Property inspector, enter an instance name for the component instance.

™~

Click the Parameters tab and specify parameters for the instance.

The following illustration shows a the Property inspector for the TextInput component that is
in the TipCalculator.fla sample file (installed at Flash MX 2004/Samples/HelpExamples/
TipCalculator).

Campanent editable true ¥4 @

-" . X pazsword @
grakuity_ki text true

w1000 || 1180 ©

H:| 22.0 Y| 126.0 Parametars s

For more information, see “Setting component parameters” on page 47.

()

. Change the size of the component as desired.

For more information on sizing specific component types, see the individual component
entries in Chapter 6, “Components Dictionary,” on page 91.

=)

. If you want to change the color and text formatting of a component, do one or more of
the following:

= Set or change a specific style property value for a component instance by using the
setStyle() method, which is available to all components. For more information, see
UIObject.setStyle() on page 825.

« Edit multiple properties in the global style declaration assigned to all version 2 components.
= Create a custom style declaration for specific component instances.
For more information, see “Using styles to customize component color and text”
on page 67.
10. If you want to customize the appearance of the component, do one of the following:
= Apply a theme (see “About themes” on page 77).

« Edit a component’s skins (see “About skinning components” on page 80).

Adding components to Flash documents 45

Adding components at runtime with ActionScript

Use the createClassObject () method (which most components inherit from the UIObject
class) to add components to a Flash application dynamically. For example, you could add
components that create a page layout based on user-set preferences (as on the home page of a
web portal).

Version 2 components that are installed with Flash MX 2004 reside in package directories. (For
more information, see “Using packages” in Using ActionScript in Flash.) If you add a component
to the Stage during authoring, you can refer to the component simply by using its instance name
(for example, myButton). However, if you add a component to an application with ActionScript
(at runtime), you must either specify its fully qualified class name (for example,
mx.controls.Button) or import the package by using the import statement.

For example, to write ActionScript code that refers to an Alert component, you can use the
import statement to reference the class, as follows:

import mx.controls.Alert;
Alert.show("The connection has failed", "Error");

Alternatively, you can use the full package path, as follows:
mx.controls.Alert.show("The connection has failed", "Error");
For more information, see “Importing classes” in Using ActionScript in Flash.

You can use ActionScript methods to set additional parameters for dynamically added
components. For more information, see Chapter 6, “Components Dictionary,” on page 91.

To add a component to a document at runtime, it must be in the library when the SWF file is
compiled. To add a component to the library, add it to the Stage and delete it.

Note: The instructions in this section assume an intermediate or advanced knowledge
of ActionScript.

To add a component to your Flash document using ActionScript:
1. Drag a component to the Stage and delete it.

If you do this, you must select the Export in First Frame check box in the Linkage Properties
dialog box of the component in the library.

Note: If a component is set to Export in First Frame, you can’t preload the component.

2. Select the frame in the Timeline where you want to add the component.
3. Open the Actions panel if it isn’t already open.
4. Call createClassObject() to create the component instance at runtime.

This method can be called on its own, or from any component instance. The
createClassObject () method takes the following parameters: a component class name, an
instance name for the new instance, a depth, and an optional initialization object that you can
use to set properties at runtime.

You can specify the class package in the class name parameter, as in this example:
createClassObject(mx.controls.CheckBox, "cb", 5, {label:"Check Me"});

46

Chapter 3: Working with Components

Alternatively, you can import the class package, as in this example:

import mx.controls.CheckBox;
createClassObject(CheckBox, "cb", 5, {label:"Check Me"});

For more information, see UIObject.createClassObject() on page 810 and Chapter 4,
“Handling Component Events,” on page 55.

Components in the Library panel

When you add a component to a document, it is displayed as a compiled clip (SWC file) symbol
in the Library panel.

it w Library - Untitled-2 =
One item in library
v
MName |Hnd =)
ﬁ ComboBox Cor;D
il
HE]0 @‘ < >

A ComboBox component in the Library panel

You can add more instances of a component by dragging the component icon from the library to
the Stage.

For more information about compiled clips, see “About compiled clips and SWC files”
on page 17.

Setting component parameters

Each component has parameters that you can set to change its appearance and behavior. A
parameter is a property that appears in the Property inspector and Component inspector. The
most commonly used properties appear as authoring parameters; others must be set with
ActionScript. All parameters that can be set during authoring can also be set with ActionScript.
Setting a parameter with ActionScript overrides any value set during authoring.

All version 2 components inherit properties and methods from the UIObject and UIComponent
classes; these are the properties and methods that all components use, such as
UIObject.setSize(), UIObject.setStyle(), UIObject.x, and UIObject.y. Each
component also has unique properties and methods, some of which are available as authoring
parameters. For example, the ProgressBar component has a percentComplete property
(ProgressBar.percentComplete), and the NumericStepper component has nextValue and
previousValue properties (NumericStepper.nextValue, NumericStepper.previousValue).

Setting component parameters 47

You can set parameters for a component instance using the Component inspector or the Property
inspector (it doesn’t matter which panel you use).
To enter an instance name for a component in the Property inspector:

1. Select Window > Properties.

2. Select an instance of a component on the Stage.

3. Enter an instance name in the text field under the word Component.

It’s a good idea to add a suffix to the instance name that indicates what kind of component it
is; this makes it easier to read your ActionScript code. In this example, the instance name is
states_cb because the component is a combo box that lists the US states.

'l Component data il -
r editable False @
states_ch abiels [ALAK,AR,AZ,CA,CO,CT,DEFLGAHLID,IA,ILINKS KY,LAME]
rowCount 50
wh| 100,00 x| 67,3 o
H:| 22.0 | 86,3 Pararnetars s

To enter parameters for a component instance in the Component inspector:

1. Select Window > Development Panels > Component Inspector.
2. Select an instance of a component on the Stage.

3. To enter parameters, click the Parameters tab.

i v Component Inspector =
EP comboBox, <states cb i

Parameters | Bindings | Schema

Mame | Walue |
data 1

editable False

labels [ALAK, AR AZ,CACOCT,DEF. .
rowCount 50

enabled true

wisible true

rminHeight 0

rmiriridth 1]

4. To enter or view bindings or schemas for a component, click their respective tabs. For more
information, see Chapter 14, “Data Integration (Flash Professional Only),” in Using Flash.

48

Chapter 3: Working with Components

Sizing components

Use the Free Transform tool or the setSize() method to resize component instances.

Resizing the Menu component on the Stage with the Free Transform tool

You can call the setSize() method from any component instance (see UIObject.setSize()
on page 823) to resize it. The following code resizes the Menu component to 200 pixels wide and
300 pixels high:

myMenu.setSize(200, 300);

Note: If you use the ActionScript _width and _height properties to adjust the width and height of a
component, the component is resized but the layout of the content in the component remains the
same. This might cause the component to be distorted in movie playback.

A component does not resize automatically to fit its label. If a component instance that has been
added to a document is not large enough to display its label, the label text is clipped. You must
resize the component to fit its label.

, | This isza very lo

<

ii w Properties

Companent label This iz a wery long label
”' labelPlacement right
=Inztance Mame:=
selected Falze
& H:| 22.0 Y| 249.8
A clipped label for the CheckBox component

For more information about sizing components, see their individual entries in Chapter 6,
“Components Dictionary,” on page 91.

Sizing components 49

Deleting components from Flash documents

To delete a component’s instances from a Flash document, you must delete the component from
the library by deleting the compiled clip icon. It isn’t enough to delete the component from the
Stage.

To delete a component from a document:

1. In the Library panel, select the compiled clip (SWC) symbol.

2. Click the Delete button at the bottom of the Library panel, or select Delete from the Library
options menu.

3. In the Delete dialog box, click Delete to confirm the deletion.

Using code hints

When you are using ActionScript 2.0, you can use strict typing for a variable that is based on a
built-in class, including component classes. If you do so, the ActionScript editor displays code
hints for the variable. For example, suppose you type the following:

import mx.controls.CheckBox;

var myCheckBox:CheckBox;
myCheckBox.

As soon as you type the period after myCheckBox, Flash displays a list of methods and properties
available for CheckBox components, because you have designated the variable as type CheckBox.

For more information, see “Strict data typing” and “Using code hints” in Using ActionScript in
yping g g
Flash.

Creating custom focus navigation

When a user presses the Tab key to navigate in a Flash application or clicks in an application, the
FocusManager class determines which component receives input focus. You don’t need to add a
FocusManager instance to an application or write any code to activate the Focus Manager.

If a RadioButton object receives focus, the Focus Manager examines that object and all objects
with the same groupName value and sets focus on the object with the selected property set
to true.

Each modal Window component contains an instance of the Focus Manager, so the controls on
that window become their own tab set. This prevents a user from inadvertently navigating to
components in other windows by pressing the Tab key.

To create focus navigation in an application, set the tabIndex property on any components
(including buttons) that should receive focus. When a user presses the Tab key, the FocusManager
class looks for an enabled object whose tabIndex value is greater than the current value of
tabIndex. Once the FocusManager class reaches the highest tabIndex property, it returns to 0.
For example, in the following code, the comment object (probably a TextArea component)
receives focus first, and then the okButton object receives focus:

var comment:mx.controls.TextArea;
var okButton:mx.controls.Button;

50

Chapter 3: Working with Components

comment.tabIndex = 1;
okButton.tabIndex = 2;

You can also use the Accessibility panel to assign a tab index value.

If nothing on the Stage has a tab index value, the Focus Manager uses the depth levels (z-order).
The depth levels are set up primarily by the order in which components are dragged to the Stage;
however, you can also use the Modify > Arrange > Bring to Front/Send to Back commands to
determine the final z-order.

To give focus to a component in an application, call focusManager.setFocus().

To create a button that receives focus when a user presses Enter (Windows) or Return
(Macintosh), set the FocusManager.defaultPushButton property to the instance of the desired
button, as in the following code:

focusManager.defaultPushButton = okButton;

The FocusManager class overrides the default Flash Player focus rectangle and draws a custom
focus rectangle with rounded corners.

For more information about creating a focus scheme in a Flash application, see “FocusManager

class” on page 419.

Managing component depth in a document

If you want to position a component in front of or behind another object in an application, you
must use the DepthManager class. The methods of the DepthManager class allows you to place
user interface components in an appropriate z-order (for example, a combo box drops down in
front of other components, insertion points appear in front of everything, dialog boxes float over
content, and so on).

The Depth Manager has two main purposes: to manage the relative depth assignments within any
document, and to manage reserved depths on the root Timeline for system-level services such as
the cursor and tooltips.

To use the Depth Manager, call its methods (see “DepthManager class” on page 400).
The following code places the component instance Toader below the button component:

loader.setDepthBelow(button);

Managing component depth in a document 51

Components in Live Preview

The Live Preview feature, enabled by default, lets you view components on the Stage as they will
appear in the published Flash content; the components appear at their approximate size. The live
preview reflects different parameters for different components. For information about which
component parameters are reflected in the live preview, see each component entry in Chapter 6,
“Components Dictionary,” on page 91.

Button

A Button component with Live Preview enabled

1

A Button component with Live Preview disabled

Components in Live Preview are not functional. To test component functionality, you can use the
Control > Test Movie command.

To turn Live Preview on or off:

® Select Control > Enable Live Preview. A check mark next to the option indicates that it
is enabled.

About using a preloader with components

Components are set to Export in First Frame by default. This causes the components to
load before the first frame of an application is rendered. If you want to create a preloader for
an application, deselect Export in First Frame for any compiled clip symbols in your library.

Note: If you're using the ProgressBar component to display loading progress, leave Export in First
Frame selected for the progress bar.

About loading components

If you load version 2 components into a SWF or into the Loader component, the components
may not work correctly. These components include the following: Alert, ComboBox, DateField,
Menu, MenuBar, and Window.

Use the _Tockroot property when calling ToadMovie() or loading into the Loader component.
If you're using the Loader component, add the following code:

myLoaderComponent.content._Tockroot = true;
If you're using a movie clip with a call to ToadMovie(), add the following code:
myMovieClip._lockroot = true;

If you don’t set _Tockroot to true in the loader movie, the loader only has access to its own
library, but not the library in the loaded movie.

The _Tockroot property is supported by Flash Player 7. For information about this property, see
MovieClip._lockroot in Flash ActionScript Language Reference.

52

Chapter 3: Working with Components

Upgrading version 1 components to version 2 architecture

The version 2 components were written to comply with several web standards (regarding events
[www.w3.0rg/ TR/DOM-Level-3-Events/events.html], styles, getter/setter policies, and so on)
and are very different from their version 1 counterparts that were released with Macromedia Flash
MX and in the DRKs that were released before Macromedia Flash MX 2004. Version 2
components have different APIs and were written in ActionScript 2.0. Therefore, using version 1
and version 2 components together in an application can cause unpredictable behavior. For
information about upgrading version 1 components to use version 2 event handling, styles, and
getter/setter access to the properties instead of methods, see Chapter 7, “Creating Components,”

on page 915.

Flash applications that contain version 1 components work properly in Flash Player 6 and Flash
Player 7, when published for Flash Player 6 or Flash Player 6 (6.0.65.0). If you want to update
your applications to work when published for Flash Player 7, you must convert your code to use
strict data typing. For more information, see Chapter 10, “Creating Custom Classes with
ActionScript 2.0,” in Using ActionScript in Flash.

Upgrading version 1components to version 2 architecture 53

http://www.w3.org/TR/DOM-Level-3-Events/events.html

54 Chapter 3: Working with Components

CHAPTER 4
Handling Component Events

Every component has events that are broadcast when a user interacts with it (for example, the
click and change events) or when something significant happens to the component (for
example, the 10ad event). To handle an event, you write ActionScript code that executes when the
event occurs.

Each component broadcasts its own set of events. This set includes the events of any class from
which the component inherits. This means that all components, except the media components,
inherit events from the UIObject and UIComponent classes, because they are the base classes of
the version 2 architecture. To see the list of events a component broadcasts, see the component’s
entry and its ancestor classes’ entries in Chapter 6, “Components Dictionary,” on page 91.

This chapter uses several versions of a simple Macromedia Flash application, TipCalculator, to
teach you how to handle component events. The FLA and SWF files are installed with Flash MX
2004 version 7.2 to the Macromedia/Flash MX 2004/Samples/HelpExamples/TipCalculator

folder.

This chapter contains the following sections:

Using the on() eventhandler 55
Using listeners to handle events 56
Delegating events.t 63
About the eventobject. 66

Using the on() event handler

The easiest, but least powerful, way to handle a component event is to use the on () event handler.
You can assign the on() event handler to a component instance, just as you would assign a
handler to a button or movie clip. For complex applications, it’s best to use event listeners. For
more information, see “Using listeners to handle events” on page 56.

55

The keyword this, used inside an on () handler attached to a component, refers to the
YW p

component instance. For example, the following code, attached to the Button component

instance myButton, sends “_level0.myButton” to the Output panel:

on(click){
trace(this);
}

To use the on() event handler:

1. Open the file TipCalculator1.fla from Macromedia\Flash MX
2004\Samples\HelpExamples\TipCalculator.

2. On the Stage, select the TextInput component beside the “Enter subtotal” text.

Enter sublotal E

Fercentage; 15%
18%
20%

Gratuity:

3. Open the Actions panel, if it isn’t already open.
4. Look at the following code assigned to the subtotal_ti TextInput component:

on(change) {
this._parent.calculate();
}

This code calls the calculate() function that is defined on Frame 1 of the main Timeline
when the TextInput component changes. The calculate() function calculates the tip
according to which radio button is selected.

5. Select each of the radio buttons to see their event handlers.
Each radio button also calls the calculate() function when clicked.

6. Select Control > Test Movie to use the tip calculator.

Using listeners to handle events

The version 2 component architecture has a broadcaster/listener event model. (A broadcaster is
sometimes also referred to as a dispatcher.) It is important to understand the following key points
about the model:

® All events are broadcast by an instance of a component class. (The component instance is the
broadcaster.)

® A [istener can be a function or an object. If the listener is an object, it must have a callback
function defined on it. The listener handles the event; this means the function, or callback
function, executes when the event occurs.

56 Chapter 4: Handling Component Events

® To register a listener to a broadcaster, call the addEventListener() method from the
broadcaster. Use the following syntax:

componentInstance.addEventListener("eventName", TistenerObjectORFunction);

® You can register multiple listeners to one component instance.
myButton.addEventlListener("click", Tistenerl);
myButton.addEventListener("click", listener?);

® You can register one listener to multiple component instances.
myButton.addEventListener("click", listenerl);
myButtonZ.addEventListener("click", Tistenerl);

® The handler function is passed an event object.

You can use the event object in the body of the function to retrieve information about the
event type, and the instance that broadcast the event. See “About the event object” on page 66.

Using listener objects

To use a listener object, you can either use the this keyword to specify the current object as the
listener, use an object that already exists in your application, or create a new object.

® Use this in most situations.

It’s often easiest to use the current object (this) as a listener, because its scope contains the
components that need to react when the event is broadcast.

® Use an existing object if it is convenient.

For example, in a Flash Form Application, you may want to use a form as a listener object if
that form contains the components that react to the event. Place the code on a frame of the
form’s Timeline.

® Use a new listener object if many components are broadcasting an event (for example, the
c11ick event) and you want only certain listener objects to respond.

If you use the this object, define a function with the same name as the event you want to handle;
the syntax is as follows:
function eventName(evt0Obj:0bject){

// your code here
Vs
If you want to use a new listener object, you must create the object, define a property with the
same name as the events, and assign the property to a callback function that executes when the
event is broadcast, as follows:
var listenerObject:0bject = new Object();
listenerObject.eventName = function(evtObj:0bject){

// your code here
Vs
If you want to use an existing object, use the same syntax as a new listener object, without
creating the new object, as shown here:

existingObject.eventName = function(evtObj:0bject) {

Using listeners to handle events 57

// your code here
b

Tip: The evt0bj parameter is an object that is automatically generated when an event is triggered and
passed to the callback function. The event object has properties that contain information about the
event. For details, see “About the event object” on page 66.

Finally, you call the addEventListener() method from the component instance that broadcasts
the event. The addEventListener () method takes two parameters: a string indicating the name
of the event and a reference to the listener object.

componentInstance.addEventlListener("eventName", TistenerObject);

Here is the whole code segment, which you can copy and paste. Be sure to replace any code in
italics with actual values; you can use TistenerObject and evtObj or any other legal identifiers,
but you must change eventiName to the name of the event.
var listenerObject:0bject = new Object();
listenerObject.eventName = function(evtObj:0bject){
// code placed here executes
// when the event is triggered
bs
componentInstance.addEventlListener("eventName", listenerObject);

The following code segment uses the this keyword as the listener object:

function eventName(evtObj:0bject){
// code placed here executes
// when the event is triggered
}
componentInstance.addEventlListener("eventName", this);

You can call addEventListener() from any component instance; it is mixed in to every
component from the EventDispatcher class. (A “mix-in” is a class that provides specific features
that augment the behavior of another class.) For more information, see
EventDispatcher.addEventListener() on page 416.

For information about the events a component broadcasts, see the component’s entry in
Chapter 6, “Components Dictionary,” on page 91. For example, Button component events
are listed in the Button component section (or Help > Using Components > Components
Dictionary > Button component > Button class > Event summary for the Button class).

To register a listener object in a Flash (FLA) file:

1. In Flash, select File > New and create a new Flash document.

2. Drag a Button component to the Stage from the Components panel.

3. In the Property inspector, enter the instance name myButton.

4. Drag a TextInput component to the Stage from the Components panel.
5. In the Property inspector, enter the instance name myText.

6. Select Frame 1 in the Timeline.

7. Select Window > Development Panels > Actions.

58

Chapter 4: Handling Component Events

8. In the Actions panel, enter the following code:

var myButton:mx.controls.Button;
var myText:mx.controls.TextInput;

function click(evt){
myText.text = evt.target;
}

myButton.addEventListener("click", this);

The target property of the event object, evt, is a reference to the instance broadcasting the
event. This code displays the value of the target property in the TextInput component.

To register a listener object in a class (AS) file:
1. Open the file TipCalculator.fla from the location specified in “Working with Components”
on page 43.
2. Open the file TipCalculator.as from the location specified in “Working with Components”
on page 43.

3. In the FLA file, select form1 and view the class name, TipCalculator, in the Property inspector.

This is the link between the form and the class file. All the code for this application is in the file
TipCalculator.as. The form assumes the properties and behaviors defined by the class assigned
to it.

4. In the AS file, scroll to line 25, public function onlLoad():Void.

The onLoad () function executes when the form loads into Flash Player. In the body of the
function, the subtotal Textlnput instance and the three RadioButton instances,
percentRadiol5, percentRadiol8, and percentRadio?20, call the addEventListener()
method to register a listener with an event.

5. Look at line 27, subtotal.addEventListener("change", this).
When you call addEventListener(), you must pass it two parameters. The first is a string
indicating the name of the event that is broadcast—in this case, "change". The second is a
reference to either an object or a function that handles the event. In this case, the parameter is

the keyword this, which refers to an instance of the class file (an object). Flash then looks on
the object for a function with the name of the event.

6. Look at line 63, public function change(event:0bject):Void.
This is the function that executes when the subtotal TextInput instance changes.

7. Select the TipCalculator.fla and select Control > Test Movie to test the file.

Using the handleEvent callback function

You can also use listener objects that support a handleEvent function. Regardless of the name of
the event that is broadcast, the listener object’s hand1eEvent method is called. You must use an
if elseoraswitch statement to handle multiple events. For example, the following code uses
an if else statement to handle the c11ick and change events:

// define the handleEvent function
// pass it evt as the event object parameter

Using listeners to handle events 59

function handleEvent(evt){
// check if the event was a click
if (evt.type == "click"){
// do something if the event was click
} else if (evt.type == "change"){
// do something else if the event was change
}
bs

// register the listener object to

// two different component instances

// because the function is defined on
// "this" object, the listener is this.

instance.addEventlListener("click", this);
instance2.addEventlListener("change", this);

Using listener functions

Unlike the handleEvent syntax, several listener functions can handle different events. So instead
of having the if and else if checks in myHandler, you can just define myChangeHandler for
the change event and myScrollHandler for the scroll event and register them, as shown here:

myList.addEventListener("change", myChangeHandler);
myList.addEventListener("scroll", myScrollHandler);

To use a listener function, you must first define a function:

function myFunction:Function(evtObj:0bject){
// your code here

}

Tip: The evt0bj parameter is an object that is automatically generated when an event is triggered and
passed to the function. The event object has properties that contain information about the event. For
details, see “About the event object” on page 66.

Then you call the addEventListener() method from the component instance that broadcasts
the event. The addEventListener () method takes two parameters: a string indicating the name
of the event and a reference to the function.

componentInstance.addEventlListener("eventName", myFunction);

You can call addEventListener() from any component instance; it is mixed in to every
component from the EventDispatcher class. For more information, see
EventDispatcher.addEventListener() on page 416.

For information about the events a component broadcasts, see each component’s entry in
Chapter 6, “Components Dictionary,” on page 91.
To register a listener object in a Flash (FLA) file:

1. In Flash, select File > New and create a new Flash document.

2. Drag a List component to the Stage from the Components panel.

3. In the Property inspector, enter the instance name myList.

60

Chapter 4: Handling Component Events

4. Select Frame 1 in the Timeline.
5. Select Window > Development Panels > Actions.
6. In the Actions panel, enter the following code:

// declare variables
var myList:mx.controls.List;
var myHandler:Function;

// add items to the 1list
myList.addItem("Bird");
myList.addItem("Dog");
myList.addItem("Fish");
myList.addItem("Cat");
mylList.addItem("Ape");
myList.addItem("Monkey");

// define myHandler function
function myHandler(eventObj:0bject){

// use the eventObj parameter
// to capture the event type

if (event0Obj.type == "change"){
trace("The list changed");
} else if (eventObj.type == "scroll"){

trace("The 1ist was scrolled");
}
}

// Register the myHandler function with mylList.

// When an item is selected (triggers the change event) or the
// 1list is scrolled, myHandler executes.
myList.addEventListener("change", myHandler);
mylList.addEventListener("scroll", myHandler);

Note: The type property of the event object, evt, is a reference to the event name.

7. Select Control > Test Movie; then select an item in the list and scroll the list to see the results
in the Output panel.

Caution: In a listener function, the keyword this refers to the component instance that calls
addEventListener(), not to the Timeline or the class where the function is defined. However, you can
use the Delegate class to delegate the listener function to a different scope. See “Delegating events”
on page 63. To see an example of function scoping, see the next section.

About scope in listeners

Scope refers to the object within which a function executes. Any variable references within that
function are looked up as properties of that object. You can use the Delegate class to specify the
scope of a listener. For more information, see “Delegating events” on page 63.

Using listeners to handle events 61

As discussed earlier, you register a listener with a component instance by calling
addEventListener(). This method takes two parameters: a string indicating the name of the
event, and a reference to either an object or a function. The following table lists the scope of each

parameter type:

Listener type Scope
Object Listener object
Function Component instance broadcasting the event

If you pass addEventListener() an object, the callback function assigned to that object (or the
function defined on that object) is invoked in the scope of the object. This means that the
keyword this, when used inside the callback function, refers to the listener object, as follows:

var lo:0bject = new 0Object();
lo.click = function(evt){

// this refers to the object 1lo

trace(this);
}
myButton.addEventListener("click", 1o0);
However, if you pass addEventListener() a function, the function is invoked in the scope of the
component instance that calls addEventListener(). This means that the keyword this, when
used inside the function, refers to the broadcasting component instance. This causes a problem if
you're defining the function in a class file. You cannot access the properties and methods of the
class file with the expected paths because this doesn’t point to an instance of the class. To work
around this problem, use the Delegate class to delegate a function to the correct scope. See
“Delegating events” on page 63.

The following code illustrates the scoping of a function when passed to addEventListener() in
a class file. To use this code, copy it into an ActionScript (AS) file named Cart.as. Create a Flash
(FLA) file with a Button component, myButton, and a DataGrid component, myGrid. Select
both components on the Stage and press F8 to convert them into a new symbol named Cart. In
the Linkage properties for the Cart symbol, assign it the class Cart.

class Cart extends MovieClip {

var myButton:mx.controls.Button;
var myGrid:mx.controls.DataGrid;

function myHandler(eventObj:0bject){

// Use the eventObj parameter
// to capture the event type.
if (eventObj.type == "click"){

/* Send the value of this to the Output panel.
Because myHandler is a function that is not defined
on a listener object, this is a reference to the
component instance to which myHandler is registered
(myButton). Also, since this doesn't reference an
instance of the Cart class, myGrid is undefined.

*/

62 Chapter 4: Handling Component Events

trace("this: " + this);
trace("myGrid: " + myGrid);
}
}

// register the myHandler function with myButton
// when the button is clicked, myHandler executes

function onLoad():Void{
myButton.addEventListener("click", myHandler);
}

Delegating events

You can import the Delegate class into your scripts or classes to delegate events to specific scopes
and functions. Use the following syntax:
import mx.utils.Delegate;

compInstance.addEventlListener("eventName", Delegate.create(scopeObject,
function));

The scopeObject parameter specifies the scope in which the specified function parameter is

called.
There are two common uses for calling Delegate.create():

* To dispatch the same event to two different functions.
See the next section.
® To call functions within the scope of the containing class.

When you pass a function as a parameter to addEventListener (), the function is invoked in
the scope of the broadcaster component instance, not the object in which it is declared. See
“Delegating the scope of a function” on page 65.

Delegating events to functions

Calling Delegate.create() is useful if you have two components that broadcast events of the
same name. For example, if you have a check box and a button, you would have to use the switch
statement on the information you get from the eventObject.target property in order to
determine which component is broadcasting the c11ck event.

To use the following code, place a check box named myCheckBox_chb and a button named
myButton_btn on the Stage. Select both instances and press F8 to create a new symbol. Click
Advanced, Export for ActionScript, and enter the AS 2.0 class name Cart. You can give the new
symbol any instance name you want in the Property inspector. The symbol is now an instance of
the Cart class.

import mx.utils.Delegate;
import mx.controls.Button;
import mx.controls.CheckBox;

class Cart {
var myCheckBox_chb:CheckBox;

Delegating events 63

var myButton_btn:Button;

function onload() {
myCheckBox_chb.addEventListener("click", this);
myButton_btn.addEventListener("click", this);

}

function click(eventObj:0bject) {
switch(eventObj.target) {
case myButton_btn:
// sends the broadcaster instance name
// and the event type to the Output panel

trace(eventObj.target + ": " + eventObj.type);
break;

case myCheckBox_chb:
trace(eventObj.target + ": " + eventObj.type);
break;

}
The following is the same class file (Cart.as) modified to use Delegate:

import mx.utils.Delegate;
import mx.controls.Button;
import mx.controls.CheckBox;

class Cart {
var myCheckBox_chb:CheckBox;
var myButton_btn:Button;

function onLoad() {

myCheckBox_chb.addEventListener("click", Delegate.create(this,
chb_onClick));

myButton_btn.addEventListener("click", Delegate.create(this,
btn_onClick));
}

// two separate functions handle the events

function chb_onClick(eventObj:0bject) {
// sends the broadcaster instance name
// and the event type to the Output panel
trace(eventObj.target + ": " + eventObj.type);
// sends the absolute path of the symbol
// that you associated with the Cart class
// in the FLA file to the Output panel
trace(this)

}

function btn_onClick(eventObj:0bject) {
trace(eventObj.target + ": " + eventObj.type);
}

64 Chapter 4: Handling Component Events

Delegating the scope of a function

The addEventListener() method requires two parameters: the name of an event and a reference
to a listener. The listener can either be an object or a function. If you pass an object, the callback
function assigned to the object is invoked in the scope of the object. However, if you pass a
function, the function is invoked in the scope of the component instance that calls
addEventListener(). (For more information, see “About scope in listeners” on page 61.)

Because the function is invoked in the scope of the broadcaster instance, the keyword this in the
body of the function points to the broadcaster instance, not to the class that contains the
function. Therefore, you cannot access the properties and methods of the class that contains the
function. Use the Delegate class to delegate the scope of a function to the containing class so that
you can access the properties and methods of the containing class.

The following example uses the same approach as the previous section with a variation of the
Cart.as class file:

import mx.controls.Button;
import mx.controls.CheckBox;

class Cart {

var myCheckBox_chb:CheckBox;
var myButton_btn:Button;

// define a variable to access
// from the chb_onClick function
var i:Number = 10

function onLoad() {
myCheckBox_chb.addEventListener("click", chb_onClick);
}

function chb_onClick(eventObj:0bject) {
// You would expect to be able to access
// the i variable and output 10.
// However, this sends undefined
// to the Output panel because
// the function isn't scoped to
// the Cart instance where i is defined.
trace(i);

}

To access the properties and methods of the Cart class, call Delegate.create() as the second
parameter of addEventListener(), as follows:

import mx.utils.Delegate;
import mx.controls.Button;
import mx.controls.CheckBox;

class Cart {
var myCheckBox_chb:CheckBox;
var myButton_btn:Button;
// define a variable to access

Delegating events 65

// from the chb_onClick function
var 1:Number = 10

function onlLoad() {

myCheckBox_chb.addEventListener("click", Delegate.create(this,
chb_onClick));
}

function chb_onClick(eventObj:0bject) {
// Sends 10 to the Output panel
// because the function is scoped to
// the Cart instance
trace(i);

About the event object

The event object is an instance of the ActionScript Object class; it has the following properties
that contain information about an event.

Property Description
type A string indicating the name of the event.
target A reference to the component instance broadcasting the event.

When an event has additional properties, they are listed in the event’s entry in the Components
Dictionary.

The event object is automatically generated when an event is triggered and passed to the listener
object’s callback function or the listener function.

You can use the event object inside the function to access the name of the event that was
broadcast, or the instance name of the component that broadcast the event. From the instance
name, you can access other component properties. For example, the following code uses the
target property of the evt0ObJ event object to access the Tabel property of the myButton
instance and sends the value to the Output panel:

var myButton:mx.controls.Button;
var listener:0bject;

listener = new Object();

listener.click = function(evtObj){

trace("The " + evtObj.target.label + " button was clicked");
}
myButton.addEventListener("click", Tistener);

66

Chapter 4: Handling Component Events

CHAPTER S
Customizing Components

You might want to change the appearance of components as you use them in different
applications. There are three ways to accomplish this in Macromedia Flash MX 2004 and
Macromedia Flash MX Professional 2004:

® Use the setStyle() method of each component and style declaration to change the color and
text formatting of a component. See “Using styles to customize component color and text”
on page 67.

® Apply a theme—a collection of styles and skins that make up a component’s appearance. See
“About themes” on page 77.

* Modify or replace a component’s skins. Skins are symbols used to display components.
Skinning is the process of changing the appearance of a component by modifying or replacing
its source graphics. A skin can be a small piece, like a border’s edge or corner, or a composite
piece like the entire picture of a button in its up state (the state in which it hasn’t been pressed).
A skin can also be a symbol without a graphic, which contains code that draws a piece of the
component. See “About skinning components” on page 80.

Using styles to customize component color and text

Every component instance has style properties (also called szyles) and setStyle() and
getStyle() methods that you can use to set and get style property values. The setStyle() and
getStyle() methods are inherited from the UIObject class. (For more information, see
UIObject.setStyle() on page 825 and UIObject.getStyle() on page 814.)

Note: You cannot set styles for the Media components.

The styles used by each component depend partially on what theme the document uses (see
“About themes” on page 77). Some styles, such as defaultIcon, are used by the associated
components regardless of the theme applied to the document. Other styles, such as themeColor
and symbolBackgroundColor, are used only by components if the corresponding theme is in use.
For example, themeColor is used only if the Halo theme is in use, and symbo1BackgroundColor
is used only if the Sample theme is in use.

67

You can use styles to customize a component in the following ways:

Set styles on a component instance.

You can change color and text properties of a single component instance. This is effective in
some situations, but it can be time consuming if you need to set individual properties on all
the components in a document.

See “Setting styles on a component instance” on page 69.
Create custom style declarations and apply them to several component instances.

You may want to have groups of components in a document share a style. To do this, you can
create custom style declarations to apply to the components you specify.

See “Setting custom styles for groups of components” on page 69.
Create default class style declarations.

You can define a default class style declaration so that every instance of a class shares a default
appearance.

See “Setting styles for a component class” on page 71.

Use inheriting styles to set styles for components in a portion of a document.

The values of style properties set on containers are inherited by contained components.
See “Setting inheriting styles on a container” on page 71.

Use the global style declaration that sets styles for all components in a document.

If you want to apply a consistent look to an entire document, you can create styles on the
global style declaration.

See “Setting global styles” on page 73.

Flash does not display changes made to style properties when you view components on the Stage

using the Live Preview feature. For more information, see “Components in Live Preview”

on page 52.

Supported styles

Flash MX 2004 and Flash MX Professional 2004 provide many styles for customizing component
color, text, and behavior. The set of styles used depends on each component and the theme
applied to the document. For a list of styles supported by each component, see Chapter 6,
“Components Dictionary,” on page 91.

Flash provides two visual themes for components: Halo (HaloTheme.fla) and Sample
(SampleTheme.fla). A theme is a set of styles and graphics that controls the appearance of
components in a document. Each theme provides additional styles to the components. To know
what style properties you can set for a component, you must know what theme is assigned to that
component. The style tables for each component in the Components Dictionary indicate
whether each style property applies to one or both of the supplied themes. (For more information,
see “About themes” on page 77.)

68

Chapter 5: Customizing Components

Setting styles on a component instance

You can write ActionScript code to set and get style properties on any component instance.
The UIObject.setStyle() and UIObject.getStyle() methods can be called directly from
any component. The following syntax specifies a property and value for a component instance:

instanceName.setStyle("propertyName", value);

For example, the following code sets the accent colors on a Button instance called myButton that
uses the Halo theme:

myButton.setStyle("themeColor", "haloBlue");

Note: If the value is a string, it must be enclosed in quotation marks.

Even though you can access the styles directly as properties (for example, myButton.color =
0xFFOOFF), it’s best to use the setStyle() and getStyle() methods so that the styles work

correctly and components are redrawn with the new style settings. For more information, see
UIObject.setStyle() on page 825.

Style properties set on a component instance through setStyle() have the highest priority and
override all other style settings discussed in the following sections.

Note: If you want to change multiple properties, or change properties for multiple component
instances, you should create a custom style. For more information, see “Setting custom styles for
groups of components” on page 69.

To set or change a property for a single component instance that uses the Halo theme:
1. Select the component instance on the Stage.
2. In the Property inspector, give it the instance name myComponent.
3. Open the Actions panel and select Scene 1, then select Layer 1: Frame 1.
4. Enter the following code to change the instance to orange:
myComponent.setStyle("themeColor", "haloOrange");
5. Select Control > Test Movie to view the changes.

For a list of styles supported by a particular component, see the component’s entry in
Chapter 6, “Components Dictionary,” on page 91.

Setting custom styles for groups of components

You can create custom style declarations to specify a unique set of properties for groups of
components in your Flash document. You create a new instance of the CSSStyleDeclaration
object, create a custom style name and place it on the _global.styles list
(Lglobal.styles.newStyle), specify the properties and values for the style, and assign the style
name to component instances that should share the same look.

To make changes to a custom style format, use the following syntax:
_global.styles.CustomStyleName.setStyle(propertyName, propertylValue);

The CSSStyleDeclaration object is accessible if you have placed at least one component instance
on the Stage.

Using styles to customize component colorand text 69

Custom style settings have priority over class, inherited, and global style settings.

For a list of the styles that each component supports, see the component entries in Chapter 6,
“Components Dictionary,” on page 91.

To create a custom style declaration for a group of components:

—

. Make sure the document contains at least one component instance.
For more information, see “Adding components to Flash documents” on page 44.

This example uses three button components with the instance names a, b, and c. If you use
different components, give them instance names in the Property inspector and use those
instance names in step 9.

. Create a new layer in the Timeline and give it a name.

. Select a frame in the new layer on which (or before which) the component appears.

= W o

. Open the Actions panel.

D

. Use the following syntax to create an instance of the CSSStyleDeclaration object to define the
new custom style format:

var styleObj = new mx.styles.CSSStyleDeclaration();

N

. Set the styleName property of the style declaration to name the style:
styleObj.styleName = "newStyle";

™~

Place the style on the _global.styles list:
_global.styles.newStyle = styleObj;

You can also create a CSSStyleDeclaration object and assign it to a new style declaration by
using the following syntax:

var styleObj = _global.styles.newStyle = new
mx.styles.CSSStyleDeclaration();

8. Use the following syntax to specify the properties you want to define for the newStyle
style declaration:
styleObj.setStyle("fontFamily”, "_sans");
styleObj.setStyle("fontSize”, 14);
styleObj.setStyle("fontWeight”, "bold");
styleObj.setStyle("textDecoration”, "underline");
styleObj.setStyle("color”, 0x336699);
styleObj.setStyle("themeColor", "haloBlue");

9. In the same Script pane, use the following syntax to set the sty1eName property of three specific
components to the custom style declaration:
a.setStyle("styleName", "newStyle");

b.setStyle("styleName", "newStyle");
c.setStyle("styleName", "newStyle");

Now you can access styles on the custom style declaration using the setStyle() and getStyle()
methods through its global styleName property. The following code sets the backgroundColor
style on the newSty1le style declaration:

_global.styles.newStyle.setStyle("themeColor", "haloOrange");

70 Chapter 5: Customizing Components

Another option in setting custom style declarations is you can assign the CSSStyleDeclaration
instance directly to the component instance’s styleName property and bypass storing the
declaration in _global.styles. To use this approach, modify the above procedure as follows:

® Remove the ActionScript from steps 6 and 7 above.

® Modify the ActionScript in step 9 to assign the CSSStyleDeclaration instance directly to the
component instances:

a.setStyle("styleName", styleObj);
b.setStyle("styleName", styleObj);
c.setStyle("styleName", styleObj);

Setting styles for a component class

You can define a class style declaration for any class of component (Button, CheckBox, and so on)
that sets default styles for each instance of that class. You must create the style declaration before
you create the instances. Some components, such as TextArea and TextInput, have class style
declarations predefined by default because their borderStyle and backgroundColor properties
must be customized.

Caution: If you replace a class style sheet, make sure to add any styles that you want from the old
style sheet; otherwise, they will be overwritten.

The following code creates a class style declaration for CheckBox and sets the color for all check
box instances to blue:

if (_global.styles.CheckBox == undefined) {
_global.styles.CheckBox = new mx.styles.CSSStyleDeclaration();

}

_global.styles.CheckBox.setStyle(“color”, 0x0000FF);

Custom style settings have priority over inherited and global style settings.

Setting inheriting styles on a container

An inheriting style is a style that inherits its value from parent components in the document’s
MovieClip hierarchy. If a text or color style is not set at an instance, custom, or class level, Flash
searches the MovieClip hierarchy for the style value. Thus, if you set styles on a container
component, the contained components inherit these style settings.

The following styles are inheriting styles:
® fontFamily

® fontSize

® fontStyle

® fontWeight

® textAlign

® textIndent

® All single-value color styles (for example, themeColor is an inheriting style, but
alternatingRowColors is not)

Using styles to customize component color and text I

The Style Manager tells Flash whether a style inherits its value. Additional styles can also be added
at runtime as inheriting styles. For more information, see “StyleManager class” on page 721.

Note: The CSS inherit value is not supported.

Inherited styles take priority over global styles.

The following example demonstrates how inheriting styles can be used with an Accordion
component, which is available with Flash MX Professional. (The inheriting styles feature is
supported by both Flash MX and Flash MX Professional.)

To create an Accordion component with styles that are inherited by the components in the
individual Accordion panes:

1. Open a new FLA file.
2. Drag an Accordion component from the Components panel to the Stage.

3. Use the Property inspector to name and size the Accordion component. For this example, give
the component the instance name accordion.

=N

. Drag a TextInput component and a Button component from the Components panel to the
Stage. Select the instances on the Stage and delete them.

By dragging the components to the Stage and immediately deleting them, you add the
components to the library and make them available to your document at runtime.

5. Add the following ActionScript to the frame:
var sectionl = accordion.createChild(mx.core.View, "sectionl", {label:
"First Section"});
var section2 = accordion.createChild(mx.core.View, "section2", {label:

"Second Section"});

var inputl = sectionl.createChild(mx.controls.TextInput, "inputl");
var buttonl = sectionl.createChild(mx.controls.Button, "buttonl");

inputl.text = "Text Input";
buttonl.label = "Button";
buttonl.move(0, inputl.height + 10);

var input2 = section2.createChild(mx.controls.TextInput, "input2");
var button2 = section2.createChild(mx.controls.Button, "button2");

input2.text = "Text Input";
button2.label = "Button";
button2.move(0, input2.height + 10);

The above code adds two children to the Accordion component and loads each with a
TextInput and Button control, which this example uses to demonstrate style inheritance.

6. Select Control > Test Movie to see the document before adding style inheritance.
7. Add the following ActionScript to the end of the frame:
accordion.setStyle("fontStyle", "italic");

8. Select Control > Test Movie to see the changes.

72

Chapter 5: Customizing Components

Notice that the fontStyle setting on the Accordion component affects not only the Accordion
text itself but also the text associated with the TextInput and Button components inside the
Accordion component.

Setting global styles

The global style declaration is assigned to all Flash components built with version 2 of the
Macromedia Component Architecture. The _global object has a style property
(_global.style) that is an instance of CSSStyleDeclaration. This property acts as the global
style declaration. If you change a property’s value on the global style declaration, the change is
applied to all components in your Flash document.

Caution: Some styles are set on a component class’s CSSStyleDeclaration instance (for example,
the backgroundColor style of the TextArea and Textinput components). Because the class style
declaration takes precedence over the global style declaration when style values are determined,
setting backgroundColor on the global style declaration would have no effect on TextArea and
Textlnput components. For more information, see “Using global, custom, and class styles in the same
document” on page 73.

To change one or more properties in the global style declaration:

1. Make sure the document contains at least one component instance.

For more information, see “Adding components to Flash documents” on page 44.

o

. Select a frame in the Timeline on which (or before which) the components appear.

2

. In the Actions panel, use code like the following to change properties on the global style
declaration. You need to list only the properties whose values you want to change, as shown
here:

_global.style.setStyle("color", 0xCC6699);
_global.style.setStyle("themeColor", "haloBlue")

_global.style.setStyle("fontSize",16);
_global.style.setStyle("fontFamily" , "_serif");

4. Select Control > Test Movie to see the changes.

Using global, custom, and class styles in the same document

If you define a style in only one place in a document, Flash uses that definition when it needs to
know a property’s value. However, one Flash document can have a variety of style settings—style
properties set directly on component instances, custom style declarations, default class style
declarations, inheriting styles, and a global style declaration. In such a situation, Flash determines
the value of a property by looking for its definition in all these places in a specific order.

Flash looks for styles in the following order until a value is found:
1. Flash looks for a style property on the component instance.

2. Flash looks at the styleName property of the instance to see if a custom style declaration is
assigned to it.

3. Flash looks for the property on a default class style declaration.

Using styles to customize component color and text 73

4. If the style is one of the inheriting styles, Flash looks through the parent hierarchy for an
inherited value.

5. Flash looks for the style in the global style declaration.
6. If the property is still not defined, the property has the value undefined.

About color style properties

Color style properties behave differently than noncolor properties. All color properties have a
name that ends in “Color”—for example, backgroundColor, disabledColor, and color. When
color style properties are changed, the color is immediately changed on the instance and in all of
the appropriate child instances. All other style property changes simply mark the object as
needing to be redrawn, and changes don’t occur until the next frame.

The value of a color style property can be a number, a string, or an object. If it is a number, it
represents the RGB value of the color as a hexadecimal number (0xRRGGBB). If the value is a

string, it must be a color name.

Color names are strings that map to commonly used colors. You can add new color names by
using the Style Manager (see “StyleManager class” on page 721). The following table lists the

default color names:

Color name Value

black 0x000000
white OxFFFFFF
red OxFFO000
green OxO0FFOO
blue OxOO000FF
magenta OxFFOOFF
yellow OxFFFFOO
cyan OxOOFFFF
haloGreen Ox80FF4D
haloBlue Ox2BF5F5
haloOrange OxFFC200

Note: If the color name is not defined, the component may not draw correctly.

You can use any valid ActionScript identifier to create your own color names (for example,
"WindowText" or "ButtonText"). Use the Style Manager to define new colors, as shown here:

mx.styles.StyleManager.registerColorName("special_blue", 0x0066ff);

Most components cannot handle an object as a color style property value. However, certain
components can handle color objects that represent gradients or other color combinations. For
more information, see the “Using styles” section of each component’s entry in Chapter 6,
“Components Dictionary.”

74

Chapter 5: Customizing Components

You can use class style declarations and color names to easily control the colors of text and
symbols on the screen. For example, if you want to provide a display configuration screen that
looks like Microsoft Windows, you would define color names like ButtonText and WindowText
and class style declarations like Button, CheckBox, and Window.

Note: Some components provide style properties that are an array of colors, such as
alternatingRowColors. You must set these styles only as an array of numeric RGB values, not color
names.

Customizing component animations

Several components, such as the Accordion, ComboBox, and Tree components, provide
animation to demonstrate the transition between component states—for example, when
switching between Accordion children, expanding the ComboBox drop-down list, and expanding
or collapsing Tree folders. Additionally, components provide animation related to the selection
and deselection of an item, such as rows in a list.

You can control aspects of these animations through the following styles:

Animation style Description

openDuration The duration of the transition for open easing in Accordion, ComboBox,
and Tree components, in milliseconds. The default value is 250.

opentasing A reference to a tweening function that controls the state animation in the
Accordion, ComboBox, and Tree components. The default equation uses
asine in/out formula.

popupDuration The duration of the transition as a menu opens in the Menu component, in
milliseconds. The default value is 150. Note, however, that the animation
always uses the default sine in/out equation.

selectionDuration The duration of the transition in ComboBox, DataGrid, List, and Tree
components from a normal to selected state or back from selected to
normal, in milliseconds. The default value is 200.

selectionkasing A reference to a tweening function that controls the selection animation in
ComboBox, DataGrid, List, and Tree components. This style applies only
for the transition from a normal to a selected state. The default equation
uses a sine in/out formula.

The mx.transtions.easing package provides six classes to control easing:

Easing class Description

Back Extends beyond the transition range at one or both ends one time to
provide a slight overflow effect.

Bounce Provides a bouncing effect entirely within the transition range at one or
both ends. The number of bounces is related to the duration: longer
durations produce more bounces.

Elastic Provides an elastic effect that falls outside the transition range at one or
both ends. The amount of elasticity is unaffected by the duration.

Using styles to customize component color and text 75

Easing class Description

None Provides an equal movement from start to end with no effects, slowing, or
speeding. This transition is also commonly referred to as a linear transition.

Regular Provides for slower movement at one or both ends for a speeding-up
effect, a slowing-down effect, or both.

Strong Provides for much slower movement at one or both ends. This effect is
similar to Regular but is more pronounced.

Each of the classes in the mx.transitions.easing package provides the following three easing
methods:

Easing method Description

easeln Provides the easing effect at the beginning of the transition.

easeQut Provides the easing effect at the end of the transition.

easelnQut Provides the easing effect at the beginning and end of the transition.

Because the easing methods are static methods of the easing classes, you never need to instantiate
the easing classes. The methods are used in calls to setStyle(), as in the following example.

import mx.transitions.easing.*;

trace("_global.styles.Accordion = " + _global.styles.Accordion);
_global.styles.Accordion.setStyle("openDuration", 1500);
_global.styles.Accordion.setStyle("openEasing", Bounce.easeOut);

Note: The default equation used by all transitions is not available in the easing classes listed above.
To specify that a component should use the default easing method after another easing method has
been specified, call setStyle("openEasing", null).

Getting style property values

To retrieve a style property value, use UIObject.getStyle(). Every component that is a subclass
of UIObject (which includes all version 2 components except the Media components) inherits the
getStyle() method. This means you can call getStyle() from any component instance, just as
you can call setStyle() from any component instance.

The following code gets the value of the themeColor style and assigns it to the variable 01dStyle:

var myCheckBox:mx.controls.CheckBox;
var oldFontSize:Number

oldFontSize = myCheckBox.getStyle("fontSize");
trace(oldFontSize);

76

Chapter 5: Customizing Components

About themes

Themes are collections of styles and skins. The default theme for Flash MX 2004 and Flash MX
Professional 2004 is called Halo (HaloTheme.fla). The Halo theme lets you provide a responsive,
expressive experience for your users. Flash MX 2004 and Flash MX Professional 2004 include one
additional theme, Sample (SampleTheme.fla). The Sample theme provides an example of how
you can use more styles for customization. (The Halo theme does not use all styles included in the
Sample theme.) The theme files are located in the following folders in a default installation:

® Windows: \Program Files\Macromedia\Flash MX 2004\/anguage\
Configuration\ComponentFLA\

® Macintosh: HD/Applications/Macromedia Flash MX 2004/Configuration/ComponentFLA/

You can create new themes and apply them to an application to change the look and feel

of all the components. For example, you could create themes that mimic the native operating
system appearance.

Components use skins (graphic or movie clip symbols) to display their appearances. The AS file
that defines each component contains code that loads specific skins for the component. You can
easily create a new theme by making a copy of the Halo or Sample theme and altering the
graphics in the skins.

A theme can also contain a new set of style default values. You must write ActionScript code to
create a global style declaration and any additional style declarations. For more information, see
“Modifying default style property values in a theme” on page 78.

Creating a new theme

If you don’t want to use the Halo theme or the Sample theme, you can modify one of them to
create a new theme.

Some skins in the themes have a fixed size. You can make them larger or smaller and the
components will automatically resize to match them. Other skins are composed of multiple
pieces, some static and some that stretch.

Some skins (for example, RectBorder and ButtonSkin) use the ActionScript drawing API to draw
their graphics, because it is more efficient in terms of size and performance. You can use the
ActionScript code in those skins as a template to adjust the skins to your needs.

For a list of the skins supported by each component and their properties, see Chapter 6,
“Components Dictionary,” on page 91.
To create a new theme:

1. Select the theme FLA file that you want to use as a template, and make a copy.

Give the copy a unique name such as MyTheme.fla.
2. Select File > Open MyTheme.fla in Flash.
3. Select Window > Library to open the library if it isn’t open already.

About themes 7

4. Double-click any skin symbol you want to modify to open it in symbol-editing mode.

The skins are located in the Flash Ul Components 2/Themes/MMDefault/ Component Assets
folder (this example uses RadioButton Assets).

5. Modify the symbol or delete the graphics and create new graphics.

You may need to select View > Zoom In to increase the magnification. When you edit a skin,
you must maintain the registration point in order for the skin to be displayed correctly. The
upper left corner of all edited symbols must be at (0,0).

For example, open the States/RadioFalseDisabled asset and change the inner circle to a light
gray.

6. When you finish editing the skin symbol, click the Back button at the left side of the
information bar at the top of the Stage to return to document-editing mode.

7. Repeat steps 4-6 until you've edited all the skins you want to change.

8. Apply MyTheme.fla to a document by following the steps shown later in this chapter. (See
“Applying a theme to a document” on page 79.)

Modifying default style property values in a theme

The default style property values are provided by each theme in a class named Default. To change
the defaults for a custom theme, create a new ActionScript class called Default in a package
appropriate for your theme, and change the default settings as desired.
To modify default style values in a theme:
1. Create a new folder for your theme in First Run/Classes/mx/skins.
For example, create a folder called myTheme.
2. Copy an existing Defaults class to your new theme folder.
For example, copy mx/skins/halo/Defaults.as to mx/skins/myTheme/Defaults.as.
3. Open the new Defaults class in an ActionScript editor.

Flash MX 2004 Professional users can open the file within Flash MX 2004 Professional. Flash
MX 2004 users can open the file in Notepad in Windows or SimpleText on the Macintosh.

4. Modify the class declaration to reflect the new package.
For example, our new class declaration is class mx.skins.myTheme.Defaults.
5. Modify the style settings as desired.

For example, change the default disabled color to a dark red.
o.disabledColor = 0x663333;

6. Save the changed Defaults class file.
7. Copy an existing FocusRect class from the source theme to your custom theme.
For example, copy mx/skins/halo/FocusRect.as to mx/skins/myTheme/FocusRect.as.

8. Open the new FocusRect class in an ActionScript editor.

78 Chapter 5: Customizing Components

9. Modify all references to the source theme’s package to the new theme’s package.
For example, change all occurrences of “halo” to “myTheme”.
10. Save the changed FocusRect class file.
11. Open the FLA file for your custom theme.
This example uses MyTheme.fla.
12. Open the library (Window > Library) and locate the Defaults symbol.
In this example, it’s in Flash Ul Components 2/Themes/MMDefault/Defaults.
13. Edit the symbol properties for the Default symbol.
14. Change the AS 2.0 Class setting to reflect your new package.
The example class is mx.skins.myTheme.Defaults.
15. Click OK.
16. Locate the FocusRect symbol.
In this example, it’s in Flash UI Components 2/Themes/MMDefault/FocusRect.
17. Edit the symbol properties for the FocusRect symbol.
18. Change the AS 2.0 Class setting to reflect your new package.
The example class is mx.skins.myTheme.FocusRect.
19. Click OK.
20. Apply the custom theme to a document by following the steps in the next section.

Remember to include the Defaults and FocusRect symbols when dragging assets from your
custom theme to the target document.

In this example you used a new theme to customize the text color of disabled components. This
particular customization, changing a single default style property value, would have been
accomplished more easily through styling as explained in “Using styles to customize component
color and text” on page 67. Using a new theme to customize defaults is appropriate when
customizing many style properties or when already creating a new theme to customize component

graphics.

Applying a theme to a document

To apply a new theme to a document, open a theme FLA file as an external library, and drag the
theme folder from the external library to the document library. The following steps explain the
process in detail.

To apply a theme to a document:

1. Select File > Open and open the document that uses version 2 components in Flash, or select
File > New and create a new document that uses version 2 components.

2. Select File > Save and choose a unique name such as ThemeApply.fla.

About themes 79

2

. Select File > Import > Open External Library, and select the FLA file of the theme you want to
apply to your document.

If you haven’t created a new theme, you can use the Sample theme.

[I=N

. In the theme’s Library panel, select Flash UI Components 2/ Themes/MMDefault and drag the
Assets folder of any components in your document to the ThemeApply.fla library.

For example, drag the RadioButton Assets folder to the ThemeApply.fla library.

If you're unsure about which components are in the document, drag the Sample Theme movie
clip to the Stage. The skins are automatically assigned to components in the document.

Note: The Live Preview of the components on the Stage will not reflect the new theme.

N

. If you dragged individual component Assets folders to the ThemeApply.fla library, make sure
the Assets symbol for each component is set to Export in First Frame.

For example, the Assets folder for the RadioButton component is called RadioButton Assets; it
has a symbol called RadioButtonAssets, which contains all of the individual asset symbols. If
you set Export in First Frame on the RadioButtonAssets symbol, all individual asset symbols
will also export in the first frame.

N

. Select Control > Test Movie to see the document with the new theme applied.

In this example, make sure you have a RadioButton instance on the Stage and set its enabled
y g

property to false in the Actions panel in order to see the new disabled RadioButton

appearance.

About skinning components

Skins are movie clip symbols a component uses to display its appearance. Most skins contain
shapes that represent the component’s appearance. Some skins contain only ActionScript code
that draws the component in the document.

Version 2 components are compiled clips—you cannot see their assets in the library. However, the
Flash installation includes FLA files that contain all the component skins. These FLA files are
called themes. Each theme has a different appearance and behavior, but contains skins with the
same symbol names and linkage identifiers. This lets you drag a theme onto the Stage in a
document to change its appearance. You also use the theme FLA files to edit component skins.
The skins are located in the Themes folder in the Library panel of each theme FLA file. (For more
information about themes, see “About themes” on page 77.)

Each component is composed of many skins. For example, the down arrow of the ScrollBar
subcomponent consists of four skins: ScrollDownArrowDisabled, ScrollDownArrowDown,
ScrollDownArrowOver, and ScrollDownArrowUp. The entire ScrollBar uses 13 different skin

symbols.

Some components share skins; for example, components that use scroll bars—such as
ComboBox, List, and ScrollPane—share the skins in the ScrollBar Skins folder. You can edit
existing skins and create new skins to change the appearance of components.

80

Chapter 5: Customizing Components

The AS file that defines each component class contains code that loads specific skins for the
component. Each component skin corresponds to a skin property that is assigned to a skin
symbol’s linkage identifier. For example, the pressed (down) state of the down arrow of the
ScrollBar component has the skin property name downArrowDownName. The default value of the
downArrowDownName property is "Scrol1DownArrowDown", which is the linkage identifier of the
skin symbol in the theme FLA file. You can edit existing skins and apply them to all components
that use the skin by editing the skin symbol and leaving the existing linkage identifier. You can
create new skins and apply them to specific component instances by setting the skin properties for
a component instance. You do not need to edit the component’s AS file to change its skin
properties; you can pass skin property values to the component’s constructor function when the
component is created in your document.

The skin properties for each component are listed in each component’s entry in the Components
Dictionary. For example, the skin properties for the Button component are located here:
Components Dictionary > Button component > Customizing the Button component > Using
skins with the Button component.

Choose one of the following ways to skin a component according to what you want to do. These
approaches are listed from easiest to most difficult.

® To change the skins associated with all instances of a particular component in a single
document, copy and modify individual skin elements. (See “Editing component skins in a
document” on page 81).

This method of skinning is reccommended for beginners, because it doesn’t require
any scripting.

® To replace all the skins in a document with a new set (with each kind of component sharing
the same appearance), apply a theme. (See “About themes” on page 77.)
This method of skinning is reccommended for applying a consistent look and feel across all
components and across several documents.

® To link the color of a skin element to a style property, add ActionScript code to the skin to
register it as a colored skin element. (See “Linking skin color to styles” on page 83).

® To use different skins for multiple instances of the same component, create new skins and set
skin properties. (See “Creating new component skins” on page 83 and “Applying new skins to
a component” on page 85.)

® To change skins in a subcomponent (such as a scroll bar in a List component), subclass the
component. (See “Applying new skins to a subcomponent” on page 86.)

® To change skins of a subcomponent that aren’t directly accessible from the main component
(such as a List component in a ComboBox component), replace skin properties in the
prototype. (See “Changing skin properties in the prototype” on page 89.)

Editing component skins in a document

To edit the skins associated with all instances of a particular component in a single document,
copy the skin symbols from the theme to the document and edit the graphics as desired.

About skinning components 81

The procedure described below is very similar to creating and applying a new theme (see “About
themes” on page 77). The primary difference is that this procedure describes copying symbols
directly from the theme already in use to a single document and editing only a small number of all
skins available. This is appropriate when your modifications are all in a single document and

when you are modifying skins for only a few components. If the edited skins will be shared in

multiple documents or encompass changes in several components, you may find it maintenance

to be easier if you create a new theme.

To edit component skins in a document:

[T

3.

=N

N

N

™~

<)

o

. If you already applied the Sample theme to a document, skip to step 5.

. Select File > Import > Open External Library, and select the HaloTheme.fla file.

This file is located in the application-level configuration folder. For the exact location on your
operating system, see “About themes” on page 77.

In the theme’s Library panel, select Flash Ul Components 2/Themes/MMDefault and drag the
Assets folder of any components in your document to the library for your document.

For example, drag the RadioButton Assets folder to the ThemeApply.fla library.

. If you dragged individual component Assets folders to the library, make sure the Assets symbol

for each component is set to Export in First Frame.

For example, the Assets folder for the RadioButton component is called RadioButton Assets; it
has a symbol called RadioButtonAssets, which contains all of the individual asset symbols. If
you set Export in First Frame on the RadioButtonAssets symbol, all individual asset symbols
will also export in the first frame.

. Double-click any skin symbol you want to modify to open it in symbol-editing mode.

For example, open the States/RadioFalseDisabled symbol.

. Modify the symbol or delete the graphics and create new graphics.

You may need to select View > Zoom In to increase the magnification. When you edit a skin,
you must maintain the registration point in order for the skin to be displayed correctly. The
upper left corner of all edited symbols must be at (0,0).

For example, change the inner circle to a light gray.

When you finish editing the skin symbol, click the Back button at the left side of the
information bar at the top of the Stage to return to document-editing mode.

. Repeat steps 5-7 until you’ve edited all the skins you want to change.

Note: The live preview of the components on the Stage will not reflect the edited skins.

. Select Control > Test Movie.

In this example, make sure you have a RadioButton instance on the Stage and set its enabled
y g

property to false in the Actions panel in order to see the new disabled RadioButton

appearance.

82

Chapter 5: Customizing Components

Creating new component skins

If you want to use a particular skin for one instance of a component, but another skin for another

instance of the component, you must open a theme FLA file and create a new skin symbol.

Components are designed to make it easy to use different skins for different instances.

To create a new skin:

LW b

=N

N

~N S

o

o

. Select File > Open and open the theme FLA file that you want to use as a template.
. Select File > Save As and select a unique name, such as MyTheme.fla.

. Select the skins that you want to edit (in this example, RadioTrueUp).

The skins are located in the Themes/MMDefault/ Component Assets folder (in this example,
Themes/MMDefault/RadioButton Assets/States).

. Select Duplicate from the Library options menu (or by right-clicking the symbol), and give the

symbol a unique name, such as MyRadioTrueUp.

. Click Advanced in the Symbol Properties dialog box, and select Export for ActionScript.

A linkage identifier that matches the symbol name is entered automatically.

. Double-click the new skin in the library to open it in symbol-editing mode.

Modify the movie clip, or delete it and create a new one.

You may need to select View > Zoom In to increase the magnification. When you edit a skin,
you must maintain the registration point in order for the skin to be displayed correctly. The
upper left corner of all edited symbols must be at (0,0).

. When you finish editing the skin symbol, click the Back button at the left side of the

information bar at the top of the Stage to return to document-editing mode.

. Select File > Save but don’t close MyTheme.fla. Now you must create a new document in which

to apply the edited skin to a component.

For more information, see “Applying new skins to a component” on page 85, “Applying new
skins to a subcomponent” on page 86, or “Changing skin properties in the prototype”
on page 89.

Note: Flash does not display changes made to component skins when you view components on the
Stage using Live Preview.

Linking skin color to styles

The version 2 component framework makes it easy to link a visual asset in a skin element to a

style set on the component using the skin. To register a movie clip instance to a style, or an entire

skin element to a style, add ActionScript code in the Timeline of the skin to call
mx.skins.ColoredSkinElement.setColorStyle(targetMovieClip, styleName).

About skinning components 83

To link a skin to a style property:

—_

. If you already applied the Sample theme to a document, skip to step 5.

(3]

. Select File > Import > Open External Library, and select the HaloTheme.fla file.

This file is located in the application-level configuration folder. For the exact location on your
operating system, see “About themes” on page 77.

3. In the theme’s Library panel, select Flash Ul Components 2/ Themes/MMDefault, and drag the
Assets folder of any components in your document to the library for your document.

For example, drag the RadioButton Assets folder to the target library.

[I=N

. If you dragged individual component assets folders to the library, make sure the Assets symbol
for each component is set to Export in First Frame.

For example, the Assets folder for the RadioButton component is called RadioButton Assets; it
has a symbol called RadioButtonAssets, which contains all of the individual asset symbols. If
you set Export in First Frame on the RadioButtonAssets symbol, all individual asset symbols
will also export in the first frame.

N

. Double-click any skin symbol you want to modify to open it in symbol-editing mode.

For example, open the States/RadioFalseDisabled symbol.

o

. If the element to be colored is a graphic symbol and not a movie clip instance, use Modify >
Convert to Symbol to covert it to a movie clip instance.

For this example, change the center graphic, which is an instance of the graphic symbol
RadioShapel, to a movie clip symbol; then name it Inner Circle. You do not need to select
Export for ActionScript.

It would be good practice, but it is not required, to move the newly created movie clip symbol
to the Elements folder of the component assets being edited.

~

. If you converted a graphic symbol to a movie clip instance in the previous step, give that
instance a name so it can be targeted in ActionScript.
For this example, name the instance innerCircle.
8. Add ActionScript code to register the skin element or a movie clip instance it contains as a
colored skin element.
For example, add the following code to the skin element’s Timeline.

mx.skins.ColoredSkinETement.setColorStyle(innerCircle,
"symbolBackgroundDisabledColor");

In this example you're using a color that already corresponds to an existing style name in the
Sample style. Wherever possible, it’s best to use style names corresponding to official Cascading
Style Sheet standards or styles provided by the Halo and Sample themes.

o

. Repeat steps 5-8 until you’ve edited all the skins you want to change.

For this example, repeat these steps for the RadioTrueDisabled skin, but instead of converting
the existing graphic to a movie clip, delete the graphic and drag the existing Inner Circle
symbol to the RadioTrueDisabled skin element.

10. When you finish editing the skin symbol, click the Back button at the left side of the

information bar at the top of the Stage to return to document-editing mode.

84

Chapter 5: Customizing Components

11. Drag an instance of the component to the Stage.

For this example, drag two RadioButton components to the Stage, set one to selected, and use
ActionScript to set both to disabled in order to see the changes.

12. Add ActionScript code to the document to set the new style property on the component
instances or at the global level.

For this example, set the property at the global level as follows:
_global.style.setStyle("symbolBackgroundDisabledColor", 0xD9D9D9);

13. Select Control > Test Movie.

Applying new skins to a component

Once you have created a new skin, you must apply it to a component in a document. You can use
the createClassObject () method to dynamically create the component instances, or you can
manually place the component instances on the Stage. There are two different ways to apply skins
to component instances, depending on how you add the components to a document.

To dynamically create a component and apply a new skin:
1. Select File > New to create a new Flash document.
2. Select File > Save and give the file a unique name, such as DynamicSkinning.fla.

3. Drag any components from the Components panel to the Stage, including the component
whose skin you edited (in this example, RadioButton), and delete them.

This adds the symbols to the document’s library, but doesn’t make them visible in
the document.

4. Drag MyRadioTrueUp and any other symbols you customized from MyTheme.fla to the Stage
of DynamicSkinning.fla, and delete them.

This adds the symbols to the document’s library, but doesn’t make them visible in
the document.

5. Open the Actions panel and enter the following on Frame I:

import mx.controls.RadioButton;
createClassObject(RadioButton, "myRadio", 0, {trueUplcon:"MyRadioTrueUp",
label: "My Radio Button"});

6. Select Control > Test Movie.

To manually add a component to the Stage and apply a new skin:

1. Select File > New to create a new Flash document.
2. Select File > Save and give the file a unique name, such as ManualSkinning.fla.

3. Drag components from the Components panel to the Stage, including the component whose
skin you edited (in this example, RadioButton).

4. Drag MyRadioTrueUp and any other symbols you customized from MyTheme.fla to the Stage
of ManualSkinning.fla, and delete them.

This adds the symbols to the document’s library, but doesn’t make them visible in
the document.

About skinning components 85

5. Select the RadioButton component on the Stage and open the Actions panel.

6. Attach the following code to the RadioButton instance:

onClipEvent(initialize){
trueUplcon = "MyRadioTrueUp";
}

7. Select Control > Test Movie.

Applying new skins to a subcomponent

In certain situations you may want to modify the skins of a subcomponent in a component, but
the skin properties are not directly available (for example, there is no direct way to alter the skins
of the scroll bar in a List component). The following code lets you access the scroll bar skins. All
the scroll bars that are created after this code runs will also have the new skins.

If a component is composed of subcomponents, the subcomponents are identified in the
component’s entry in Chapter 6, “Components Dictionary.”

To apply a new skin to a subcomponent:

1. Follow the steps in “Creating new component skins” on page 83, but edit a scroll bar skin.
For this example, edit the ScrollDownArrowDown skin and give it the new name
MyScrollDownArrowDown.

2. Select File > New to create a new Flash document.
3. Select File > Save and give the file a unique name, such as SubcomponentProject.fla.

4. Double-click the List component in the Components panel to add it to the Stage, and press
Backspace to delete it from the Stage.

This adds the component to the Library panel, but doesn’t make the component visible in
the document.

5. Drag MyScrollDownArrowDown and any other symbols you edited from MyTheme.fla to the
Stage of SubcomponentProject.fla, and delete them.
This adds the symbol to the Library panel, but doesn’t make it visible in the document.

6. Do one of the following:
= Ifyou want to change all scroll bars in a document, enter the following code in the Actions

panel on Frame 1 of the Timeline:

import mx.controls.List;

import mx.controls.scrollClasses.ScrollBar;

ScrollBar.prototype.downArrowDownName = "MyScrollDownArrowDown";

You can then enter the following code on Frame 1 to create a list dynamically:

createClassObject(List, "myListBox", 0, {dataProvider: ["AL","AR","AZ",
"CA" L "HI"."ID", "KA"."LA"."MA"]}):

Or, you can drag a List component from the library to the Stage.

86 Chapter 5: Customizing Components

= If you want to change a specific scroll bar in a document, enter the following code in the
Actions panel on Frame 1 of the Timeline:

import mx.controls.List

import mx.controls.scrollClasses.ScrollBar

var oldName = ScrollBar.prototype.downArrowDownName;

Scrol1Bar.prototype.downArrowDownName = "MyScrollDownArrowDown";

createClassObject(List, "myListl", 0, {dataProvider: ["AL","AR","AZ",
"CA","HI","ID", "KA","LA","MA"]1});

myListl.redraw(true);

ScrollBar.prototype.downArrowDownName = oldName;

Note: Set enough data so that the scroll bars appear, or set the vScrol1Policy property to true.

7. Select Control > Test Movie.

You can also set subcomponent skins for all components in a document by setting the skin
property on the subcomponent’s prototype object in the #initclip section of a skin symbol.

To use #initclip to apply an edited skin to all components in a document:

1. Follow the steps in “Creating new component skins” on page 83, but edit a scroll bar skin. For
this example, edit the ScrollDownArrowDown skin and give it the new name
MyScrollDownArrowDown.

2. Select File > New and create a new Flash document. Save it with a unique name, such as

SkinsInitExample.fla.

3. Select the MyScrollDownArrowDown symbol from the library of the edited theme library
example, drag it to the Stage of SkinsInitExample.fla, and delete it.

This adds the symbol to the library without making it visible on the Stage.

4. Select MyScrollDownArrowDown in the SkinsInitExample.fla library, and select Linkage from
the Library options menu.

5. Select the Export for ActionScript check box. Click OK.
Export in First Frame is automatically selected.

6. Double-click MyScrollDownArrowDown in the library to open it in symbol-editing mode.

7. Enter the following code on Frame 1 of the MyScrollDownArrowDown symbol:

fHinitclip 10
import mx.controls.scrollClasses.ScrollBar;
ScrollBar.prototype.downArrowDownName = "MyScrollDownArrowDown";
ffendinitclip

8. Do one of the following to add a List component to the document:

= Drag a List component from the Components panel to the Stage. Enter enough label
parameters so that the vertical scroll bar will appear.
= Drag a List component from the Components panel to the Stage and delete it. Enter the
following code on Frame 1 of the main Timeline of SkinsInitExample.fla:
createClassObject(mx.controls.List, "myListBoxl", 0, {dataProvider:
["AL","AR","AZ", "CA","HI","ID", "KA","LA","MA"1});

Note: Add enough data so that the vertical scroll bar appears, or set vScrol1Policy to true.

About skinning components 87

The following example explains how to skin something that’s already on the Stage. This example
skins only List scroll bars; any TextArea or ScrollPane scroll bars would not be skinned.

To use #initclip to apply an edited skin to specific components in a document:

1. Follow the steps in “Editing component skins in a document” on page 81, but edit a scroll bar
skin. For this example, edit the ScrollDownArrowDown skin and give it the new name
MyScrollDownArrowDown.

2. Select File > New and create a Flash document.

. Select File > Save and give the file a unique name, such as MyVScroll Test.fla.

[N SR

. Drag MyScrollDownArrowDown from the theme library to the MyVScrollTest.fla library.

N

. Select Insert > New Symbol and give the symbol a unique name, such as MyVScrollBar.
6. Select the Export for ActionScript check box. Click OK.

Export in First Frame is automatically selected.
7. Enter the following code on Frame 1 of the MyVScrollBar symbol:

fHinitclip 10
import MyVScrollBar
Object.registerClass("VScrollBar", MyVScrollBar);
ffendinitclip

8. Drag a List component from the Components panel to the Stage.

9. In the Property inspector, enter as many Label parameters as necessary for the vertical scroll bar
to appear.

10. Select File > Save.
11. Select File > New and create a new ActionScript file.

12. Enter the following code:

import mx.controls.VScrollBar
import mx.controls.List
class MyVScrollBar extends VScrollBar{
function init():Void{
if (_parent instanceof List){
downArrowDownName = "MyScrollDownArrowDown";
}
super.init();
}
}

13. Select File > Save and save this file as MyVScrollBar.as.
14. Click a blank area on the Stage and, in the Property inspector, click the Publish Settings button.
15. Click the ActionScript Version Settings button.

16. Click the Add New Path (+) button to add a new classpath, and select the Target button to
browse to the location of the MyVScrollBar.as file on your hard disk.

17. Select Control > Test Movie.

88

Chapter 5: Customizing Components

Changing skin properties in the prototype

If a component does not directly support skin variables, you can subclass the component and
replace its skins. For example, the ComboBox component doesn't directly support skinning its
drop-down list, because the ComboBox component uses a List component as its drop-down list.

If a component is composed of subcomponents, the subcomponents are identified in the

component’s entry in Chapter 6, “Components Dictionary.”

To skin a subcomponent:

L.

SN W

~

<)

9.
10.

11.
12.

Follow the steps in “Editing component skins in a document” on page 81, but edit a scroll bar
skin. For this example, edit the ScrollDownArrowDown skin and give it the new name
MyScrollDownArrowDown.

. Select File > New and create a Flash document.
. Select File > Save and give the file a unique name, such as MyComboTest.fla.

. Drag MyScrollDownArrowDown from the theme library above to the Stage of

MyComboTest.fla, and delete it.

This adds the symbol to the library, but doesn’t make it visible on the Stage.

. Select Insert > New Symbol and give the symbol a unique name, such as MyComboBox.

. Select the Export for ActionScript check box and click OK.

Export in First Frame is automatically selected.

. Enter the following code in the Actions panel on Frame 1 of the MyComboBox symbol:

#initclip 10
import MyComboBox
Object.registerClass("ComboBox", MyComboBox);
ffendinitclip

. When you finish editing the symbol, click the Back button at the left side of the information

bar at the top of the Stage to return to document-editing mode.
Drag a ComboBox component to the Stage.

In the Property inspector, enter as many Label parameters as necessary for the vertical scroll bar
to appear.

Select File > Save.

Select File > New and create a new ActionScript file.

About skinning components 89

13. Enter the following code:

import mx.controls.ComboBox

import mx.controls.scrollClasses.ScrollBar

class MyComboBox extends ComboBox{

function getDropdown():0bject{

var oldName = ScrollBar.prototype.downArrowDownName;
ScrollBar.prototype.downArrowDownName = "MyScrollDownArrowDown";
var r = super.getDropdown();
ScrollBar.prototype.downArrowDownName = oldName;
return r;

}
14, Select File > Save and save this file as MyComboBox.as.
15. Return to the file MyComboTest.fla.
16. Click a blank area on the Stage and, in the Property inspector, click the Publish Settings button.
17. Click the ActionScript Version Settings button.

18. Click the Add New Path (+) button to add a new classpath, and select the Target button to
browse to the location of the MyComboBox.as file on your hard disk.

19. Select Control > Test Movie.

90 Chapter 5: Customizing Components

CHAPTER 6
Components Dictionary

This reference chapter describes each component and its application programming interface
(API). Each component description contains information about the following:

® Keyboard interaction

¢ Live preview

® Accessibility

® Setting the component parameters

® Using the component in an application

® Customizing the component with styles and skins

® ActionScript methods, properties, and events

Components are presented alphabetically. You can also find components arranged by category in
the tables that follow.

This chapter contains the following sections:
Types of COMPONENTS . « . ..ottt ettt ettt e e et 91
Other listings in this chapter 94

Types of components

The following tables list the different components, arranged by category, in version 2 of the
Macromedia Component Architecture.

User interface (Ul) components

Component Description

Accordion component (Flash A set of vertical overlapping views with buttons along the top that
Professional only) allow users to switch views.

Alert component (Flash A window that presents a message and buttons to capture the
Professional only) user’s response.

Button component A resizable button that can be customized with a custom icon.

91

Component

Description

CheckBox component

ComboBox component

DataGrid component (Flash
Professional only)

DateChooser component
(Flash Professional only)

DateField component (Flash
Professional only)

LLabel component
List component
LLoader component

Menu component (Flash
Professional only)

MenuBar component (Flash
Professional only)

NumericStepper component

ProgressBar component
RadioButton component

ScrollPane component

TextArea component
Textlnput component

Tree component (Flash
Professional only)

Window component

UlScrollBar component

Allows users to make a Boolean (true or false) choice.

Allows users to select one option from a scrolling list of choices.
This component can have an selectable text field at the top of the
list that allows users to search the list.

Allows users to display and manipulate multiple columns of data.

Allows users to select one or more dates from a calendar.

An nonselectable text field with a calendar icon. When a user clicks
inside the component’s bounding box, Macromedia Flash displays
a DateChooser component.

A non-editable, single-line text field.
Allows users to select one or more options from a scrolling list.
A container that holds a loaded SWF or JPEG file.

A standard desktop application menu; allows users to select one
command from a list.

A horizontal bar of menus.

A text box with clickable arrows that raise and lower the value of a
number.

Displays the progress of a process, such as a loading operation.
Allows users to select between mutually exclusive options.

Displays movies, bitmaps, and SWF files in a limited area using
automatic scroll bars.

An optionally editable, multiline text field.
An optionally editable, single-line text input field.

Allows a user to manipulate hierarchical information.

A draggable window with a title bar, caption, border, and Close
button and content-display area.

Allows you to add a scroll bar to a text field.

Data handling

Component

Description

Data binding classes (Flash
Professional only)

DataHolder component (Flash
Professional only)

Classes that implement the Flash runtime data
binding functionality.

Holds data and can be used as a connector between components.

92

Chapter 6: Components Dictionary

Component

Description

DataProvider API

DataSet component (Flash
Professional only)

RDBMSResolver component
(Flash Professional only)

Web service classes (Flash
Professional only)

WebServiceConnector
component (Flash Professional

only)

XML Connector component
(Flash Professional only)

XUpdateResolver component
(Flash Professional only)

The model for linear-access lists of data; it provides simple array-
manipulation capabilities that broadcast data changes.

A building block for creating data-driven applications.

Lets you save data back to any supported data source. This
component translates the XML that can be received and parsed by
a web service, JavaBean, servlet, or ASP page.

Classes that allow access to web services that use Simple Object
Access Protocol (SOAP). These classes are in the mx.services
package.

Provides scriptless access to web service method calls.

Reads and writes XML documents by using the HTTP GET and
POST methods.

Lets you save data back to any supported data source. This
component translates the delta packet into XUpdate.

Media components

Component

Description

MediaController component
MediaDisplay component

MediaPlayback component

Controls streaming media playback in an application.
Displays streaming media in an application.

A combination of the MediaDisplay and
MediaController components.

For more information on these components, see “Media components (Flash Professional only)”

on page 497.

Managers

Class

Description

DepthManager class

FocusManager class

PopUpManager class
StyleManager class

SystemManager class

Manages the stacking depths of objects.

Handles Tab key navigation between components. Also handles
focus changes as users click in the application.

Lets you create and delete pop-up windows.
Lets you register styles and manages inherited styles.

Lets you manage which top-level window is activated.

Types of components 93

Screens

Class

Description

Form class (Flash Professional

only)

Screen class

Slide class (Flash Professional

only)

Lets you manipulate form application screens at runtime.

Base class for the Slide and Form classes. See Screen class
(Flash Professional only).

Lets you manipulate slide presentation screens at runtime.

Other listings in this chapter

This chapter also describes several classes and APIs that don't fall into the above categories of
components. They are listed in the following table.

Item

Description

CellRenderer API

Collection interface (Flash
Professional only)

DataGridColumn class (Flash
Professional only)

Delegate class

Delta interface (Flash
Professional only)

Deltaltem class (Flash
Professional only)

DeltaPacket interface (Flash
Professional only)

EventDispatcher class
lterator interface (Flash

Professional only)

MenuDataProvider class

RectBorder class

SimpleButton class

TransferObject interface

A set of properties and methods that the list-based components
(List, DataGrid, Tree, Menu, and ComboBox) use to manipulate
and display custom cell content for each of their rows.

Lets you manage a group of related items, called collection items.
Each collection item in this set has properties that are described in
the metadata of the collection item class definition.

Lets you create objects to use as columns of a data grid.

Allows a function passed from one object to another to be run in
the context of the first object.

Provides access to the transfer object, collection, and transfer
object-level changes.

Provides information about an individual operation performed on a
transfer object.

Along with the Delta interface and Deltaltem class, lets you
manage changes made to data.

Let youadd and remove event listeners so that your code can react
to events appropriately.

Lets you step through the objects that a collection contains.

Lets XML instances assigned toaMenu.dataProvider property use
methods and properties to manipulate their own data as well as the
associated menu views.

Describes the styles used to control component borders.

Lets you control some aspects of button appearance and
behavior.

Defines a set of methods that items managed by the DataSet
component must implement.

94

Chapter 6: Components Dictionary

Item

Description

TreeDataProvider interface
(Flash Professional only)
UlIComponent class

UlEventDispatcher class

UlObject class

A set of properties and methods used to create XML for the
Tree.dataProvider property.

Provides methods, properties, and events that allow components
to share some common behavior.

Allows components to emit certain events. This class is mixed in to
the UIComponent class.

The base class for all version 2 components.

Other listings in this chapter 95

Accordion component (Flash Professional only)

The Accordion component is a navigator that contains a sequence of children that it displays one
at a time. The children must be objects that inherit from the UIObject class (which includes all
components and screens built with version 2 of the Macromedia Component Architecture); most
often, children are a subclass of the View class. This includes movie clips assigned to the class
mx.core.View. To maintain tabbing order in an accordion’s children, the children must also be
instances of the View class.

An accordion creates and manages header buttons that a user can click to navigate between the
accordion’s children. An accordion has a vertical layout with header buttons that span the width
of the component. One header is associated with each child, and each header belongs to the
accordion—not to the child. When a user clicks a header, the associated child is displayed below
that header. The transition to the new child uses a transition animation.

An accordion with children accepts focus, and changes the appearance of its headers to display
focus. When a user tabs into an accordion, the selected header displays the focus indicator. An
accordion with no children does not accept focus. Clicking components that can take focus
within the selected child gives them focus. When an Accordion instance has focus, you can use
the following keys to control it:

Key Description
Down Arrow, Right Moves focus to the next child header. Focus cycles from last to first
Arrow without changing the selected child.
Up Arrow, Left Arrow Moves focus to the previous child header. Focus cycles from first to last
without changing the selected child.
End Selects the last child.
Enter/Space Selects the child associated with the header that has focus.
Home Selects the first child.
Page Down Selects the next child. Selection cycles from the last child to the first child.
Page Up Selects the previous child. Selection cycles from the first child to the
last child.
Shift+Tab Moves focus to the previous component. This component may be inside

the selected child, or outside the accordion; it is never another header in
the same accordion.

Tab Moves focus to the next component. This component may be inside the
selected child, or outside the accordion; it is never another header in the
same accordion.

The Accordion component cannot be made accessible to screen readers.

96

Chapter 6: Components Dictionary

Using the Accordion component (Flash Professional only)

You can use the Accordion component to present multipart forms. For example, a three-child
accordion might present forms where the user fills out her shipping address, billing address, and
payment information for an e-commerce transaction. Using an accordion instead of multiple web
pages minimizes server traffic and allows the user to maintain a better sense of progress and
context in an application.

Accordion parameters

You can set the following authoring parameters for each Accordion component instance in the
Property inspector or in the Component inspector:

childSymbols is an array that specifies the linkage identifiers of the library symbols to be used to
create the accordion’s children. The default value is [] (an empty array).

childNames is an array that specifies the instance names of the accordion’s children. The values
you enter will be the instance names for the child symbols you specify in the childSymbols
parameter. The default value is [] (an empty array).

childLabels is an array that specifies the text labels to use on the accordion’s headers. The default
value is [] (an empty array).

childlcons is an array that specifies the linkage identifiers of the library symbols to be used as the
icons on the accordion’s headers. The default value is [] (an empty array).

You can write ActionScript to control additional options for the Accordion component using its
properties, methods, and events. For more information, see “Accordion class (Flash Professional

only)” on page 105.

Creating an application with the Accordion component

In this example, an application developer is building the checkout section of an online store. The
design calls for an accordion with three forms in which a user enters a shipping address, a billing
address, and payment information. The shipping address and billing address forms are identical.

To use screens to add an Accordion component to an application:
1. In Flash, select File > New and select Flash Form Application.
2. Double-click the text Form1, and enter the name addressForm.

Although it doesn’t appear in the library, the addressForm screen is a symbol of the Screen
class. Because the Screen class is a subclass of the View class, an accordion can use it as a child.

3. With the form selected, in the Property inspector, set the form’s visible property to false.
This hides the contents of the form in the application; the form only appears in the accordion.

4. Drag components such as Label and TextInput from the Components panel onto the form to
create a mock address form; arrange them, and set their properties in the Parameters tab of the
Component inspector.

Position the form elements in the upper left corner of the form. This corner of the form is
placed in the upper left corner of the accordion.

Accordion component (Flash Professional only) 97

5.
6.
7.

8.

9.

Repeat steps 2-4 to create a screen named checkoutForm.
Create a new screen named accordionForm.

Drag an Accordion component from the Components panel to the accordionForm form, and
name it myAccordion.

With myAccordion selected, in the Property inspector, do the following:
= For the childSymbols property, enter addressForm, addressForm, and checkoutForm.
These strings specify the names of the screens used to create the accordion’s children.

Note: The first two children are instances of the same screen, because the shipping address
form and the billing address form are identical.

= For the childNames property, enter shippingAddress, billingAddress, and checkout.
These strings are the ActionScript names of the accordion’s children.

=« For the childLabels property, enter Shipping Address, Billing Address, and Checkout.
These strings are the text labels on the accordion headers.

Select Control > Test Movie.

To add an Accordion component to an application:

L N

=N

~N SN W

()

. Select File > New and create a new Flash document.
. Select Insert > New Symbol and name it AddressForm.

. In the Create New Symbol dialog box, click the Advanced button and select Export for

ActionScript. In the AS 2.0 Class field, enter mx.core.View.

To maintain tabbing order in an accordion’s children, the children must also be instances of the
View class.

. Drag components such as Label and TextInput from the Components panel onto the Stage to

create a mock address form; arrange them, and set their properties in the Parameters tab of the
Component inspector.

Position the form elements in relation to 0,0 (the middle) on the Stage. The 0,0 coordinate of
the movie clip is placed in the upper left corner of the accordion.

. Select Edit > Edit Document to return to the main Timeline.

. Repeat steps 2-5 to create a movie clip named CheckoutForm.

Drag an Accordion component from the Components panel to add it to the Stage on the
main Timeline.

. In the Property inspector, do the following:

= Enter the instance name myAccordion.
= For the childSymbols property, enter AddressForm, AddressForm, and CheckoutForm.

These strings specify the names of the movie clips used to create the accordion’s children.

Note: The first two children are instances of the same movie clip, because the shipping address
form and the billing address form are identical.

98

Chapter 6: Components Dictionary

» For the childNames property, enter shippingAddress, billingAddress, and checkout.
These strings are the ActionScript names of the accordion’s children.

» For the childLabels property, enter Shipping Address, Billing Address, and Checkout.
These strings are the text labels on the accordion headers.

» For the childIcons property, enter Addresslcon, Addresslcon, and Checkoutlcon.

These strings specify the linkage identifiers of the movie clip symbols that are used as the
icons on the accordion headers. You must create these movie clip symbols if you want icons
in the headers.

9. Select Control > Test Movie.

To use ActionScript to add children to an Accordion component:

1. Select File > New and create a Flash document.
2. Drag an Accordion component from the Components panel to the Stage.
3. In the Property inspector, enter the instance name myAccordion.
4. Drag a TextInput component to the Stage and delete it.
This adds the component to the library so that you can dynamically instantiate it in step 6.
5. In the Actions panel on Frame 1 of the Timeline, enter the following:

myAccordion.createChild("View", "shippingAddress", {label: "Shipping

Address"});

myAccordion.createChild("View", "billingAddress", {Tabel: "Billing
Address"});

myAccordion.createChild("View", "payment", {Tabel: "Payment"});

This code calls the createChild() method to create its child views.
6. In the Actions panel on Frame 1, below the code you entered in step 5, enter the following code:

var o = myAccordion.shippingAddress.createChild("TextInput", "firstName");
o.move(20, 38);

0.setSize(1l16, 20);

o = myAccordion.shippingAddress.createChild("TextInput", "lastName");
o.move(175, 38);

0.setSize(145, 20);

This code adds component instances (two TextInput components) to the accordion’s children.

Customizing the Accordion component (Flash Professional only)

You can transform an Accordion component horizontally and vertically during authoring and at
runtime. While authoring, select the component on the Stage and use the Free Transform tool or
any of the Modify > Transform commands. At runtime, use the setSize() method (see
UIObject.setSize()).

The setSize() method and the Transform tool change only the width of the accordion’s headers
and the width and height of its content area. The height of the headers and the width and height
of the children are not affected. Calling the setSize() method is the only way to change the
bounding rectangle of an accordion.

Accordion component (Flash Professional only) 99

If the headers are too small to contain their label text, the labels are clipped. If the content area of
an accordion is smaller than a child, the child is clipped.

Using styles with the Accordion component

You can set style properties to change the appearance of the border and background of an
Accordion component.

If the name of a style property ends in “Color”, it is a color style property and behaves differently
than noncolor style properties. For more information, see “Using styles to customize component
color and text” on page 67.

An Accordion component uses the following styles:

Style Theme Description

themeColor Halo The base color scheme of a component. This is the only color style
that doesn’t inherit its value. Possible values are "haloGreen",
"haloBlue",and "haloOrange".

backgroundColor Both The background color. The default color is white.

border styles Both The Accordion component uses a RectBorder instance as its border
and responds to the styles defined on that class. See “RectBorder
class” on page 647.
The Accordion component’s default border style value is "so11d".

headerHeight Both The height of the header buttons, in pixels. The default value is 22.

color Both The text color. The default value is OXOB333C for the Halo theme
and blank for the Sample theme.

disabledColor Both The color for text when the component is disabled. The default color
is Ox848384 (dark gray).

embedFonts Both A Boolean value that indicates whether the font specified in

fontFamily is an embedded font. This style must be set to true if
fontFamily refers to an embedded font. Otherwise, the embedded
font will not be used. If this style is set to true and fontFamily does
not refer to an embedded font, no text will be displayed. The default
valueis false.

fontFamily Both The font name for the header labels. The default value is "_sans".

fontSize Both The point size for the font of the header labels. The default value is
10.

fontStyle Both The font style for the header labels; either "normal" or "italic". The

default value is "normal".

fontWeight Both The font weight for the header labels; either "none" or "bo1d". The
default value is "none".
All components can also accept the value "normal" in place of
"none" duringa setStyle() call, but subsequent calls to getStyle()
will return "none".

textDecoration Both The text decoration; either "none" or "underline".

100 Chapter 6: Components Dictionary

Style Theme Description

openDuration Both The duration, in milliseconds, of the transition animation.

opentasing Both A reference to a tweening function that controls the animation.
Defaults to sine in/out. For more information, see “Customizing
component animations” on page 75.

Using skins with the Accordion component

The Accordion component uses skins to represent the visual states of its header buttons. To skin
the buttons and title bar while authoring, modify skin symbols in the Flash UI Components 2/
Themes/MMDefault/Accordion Assets skins states folder in the library of one of the themes FLA
files. For more information, see “About skinning components” on page 80.

An Accordion component is composed of its border, background, header buttons, and children.
The border and background are provided by the RectBorder class by default. For information on
skinning the RectBorder class, see “RectBorder class” on page 647. You can sking the headers with
the skins listed below.

Property Description Default value

falseUpSkin The up (normal) state of the header above all accordionHeaderSkin
collapsed children.

falseDownSkin The pressed state of the header above all collapsed accordionHeaderSkin
children.

falseOverSkin The rolled-over state of the header above all collapsed accordionHeaderSkin
children.

falseDisabled The disabled state of the header above all collapsed ~ accordionHeaderSkin
children.

truelpSkin The up (normal) state of the header above the accordionHeaderSkin
expanded child.

trueDownSkin The pressed state of the header above the expanded accordionHeaderSkin
child.

trueOverSkin The rolled-over state of the header above the accordionHeaderSkin

expanded child.

trueDisabledSkin The disabled state of the header above the expanded accordionHeaderSkin
child.

Using ActionScript to draw the Accordion header

The default headers in both the Halo and Sample themes use the same skin element for all states
and draw the actual graphics through ActionScript. The Halo implementation uses an extension
of the RectBorder class and custom drawing API code to draw the states. The Sample
implementation uses the same skin and the same ActionScript class as the Button skin.

Accordion component (Flash Professional only) 101

To create an ActionScript class to use as the skin and provide different states, the skin can read the
borderStyle style property of the skin to determine the state. The following table shows the
border style that is set for each skin:

Property Border style
falseUpSkin falseup
falseDownSkin falsedown

falseOverSkin
falseDisabled
trueUpSkin
trueDownSkin

trueOverSkin

falserollover
falsedisabled
trueup
truedown

truerollover

trueDisabledSkin truedisabled

To create an ActionScript customized Accordion header skin:

1. Create a new ActionScript class file.

For this example, name the file RedGreenBlueHeader.as.

2. Copy the following ActionScript to the file:

import mx.skins.RectBorder;
import mx.core.ext.UIObjectExtensions;

class RedGreenBlueHeader extends RectBorder

{

static var symbolName:String = "RedGreenBlueHeader";
static var symbolOwner:0bject = RedGreenBlueHeader;

function size():Void

{

var c:Number; // color
var borderStyle:String = getStyle("borderStyle");

switch (borderStyle) {

case "falseup":

case "falserollover"

case "falsedisabled":
c = O0x7777FF;
break;

case "falsedown":
c = Ox77FF77;
break;

case "trueup":

case "truedown":

case "truerollover":

case "truedisabled":
c = OxFF7777;
break;

102 Chapter 6: Components Dictionary

clear();
lineStyle(0, 0, 100);
beginFill(c, 100);
drawRect(0, 0, __width, __height);
endFi11();
}

// required for skins
static function classConstruct():Boolean
{
UIObjectExtensions.Extensions();
_global.skinRegistry["AccordionHeaderSkin"] = true;
return true;
}
static var classConstructed:Boolean = classConstruct();
static var UIObjectExtensionsDependency = UIObjectExtensions;
}

This class creates a square box based on the border style: a blue box for the false up, rollover,
and disabled states; a green box for the normal pressed state; and a red box for the expanded

child.
. Save the file.
. Create a new FLA file.
. Save the FLA file in the same folder as the AS file.

(I N SN

. Create a new symbol by selecting Insert > New Symbol.

. Set the name to AccordionHeaderSkin.

~N oSN N

()

. If the advanced view is not displayed, click the Advanced button.

=l

. Select Export for ActionScript.
The identifier will be automatically filled out with AccordionHeaderSkin.
10. Set the AS 2.0 class to RedGreenBlueHeader.
11. Ensure that Export in First Frame is already selected, and click OK.
12. Drag an Accordion component to the Stage.
13. Set the Accordion properties so that they display several children.

For example, set the childLabels to an array of [One, Two, Three] and childNames to an
array of [one, two,threel.

14. Select Control > Test Movie.

Using movie clips to customize the Accordion header skin

The above example demonstrates how to use an ActionScript class to customize the Accordion
header skin, which is the method used by the skins provided in both the Halo and Sample
themes. However, because the example uses simple colored boxes, it is simpler in this case to use
different movie clip symbols as header skins.

Accordion component (Flash Professional only) 103

To create movie clip symbols for Accordion header skins:
1. Create a new FLA file.
2. Create a new symbol by selecting Insert > New Symbol.
3. Set the name to RedAccordionHeaderSkin.
4. If the advanced view is not displayed, click the Advanced button.
5. Select Export for ActionScript.
The identifier will be automatically filled out with RedAccordionHeaderSkin.
6. Leave the AS 2.0 Class text box blank.
7. Ensure that Export in First Frame is already selected, and click OK.
8. Open the new symbol for editing.
9. Use the drawing tools to create a box with a red fill and black line.
10. Set the border style to hairline.
11. Set the box, including the border, so that it is positioned at (0,0) and has a width and height of
100.
The ActionScript code will size the skin as needed.
12. Repeat steps 2-11 and create green and blue skins, named accordingly.
13. Click the Back button to return to the main Timeline.
14. Drag an Accordion component to the stage.
15. Set the Accordion properties so that they display several children.
For example, set childlLabels to an array of [One,Two,Three] and childNames to an array
of [one,two, threel.

16. Copy the following ActionScript code to the Actions panel with the Accordion instance
selected:
onClipEvent(initialize) {

falseUpSkin = "RedAccordionHeaderSkin";
falseDownSkin "GreenAccordionHeaderSkin";

falseOverSkin = "RedAccordionHeaderSkin";
falseDisabled = "RedAccordionHeaderSkin";
truelUpSkin = "BlueAccordionHeaderSkin";
trueDownSkin = "BlueAccordionHeaderSkin";
trueQverSkin = "BlueAccordionHeaderSkin";
trueDisabledSkin = "BlueAccordionHeaderSkin";

}

17. Select Control > Test Movie.

104 Chapter 6: Components Dictionary

Accordion class (Flash Professional only)
Inheritance MovieClip > UIObject class > UIComponent class > View > Accordion
ActionScript Class Name mx.containers.Accordion

An Accordion component contains children that are displayed one at a time. Each child has a
corresponding header button that is created when the child is created. A child must be an instance

of UIObject.

A movie clip symbol automatically becomes an instance of the UIObject class when it becomes a
child of an accordion. However, to maintain tabbing order in an accordion’s children, the children
must also be instances of the View class. If you use a movie clip symbol as a child, set its AS 2.0
Class field to mx.core.View so that it inherits from the View class.

Setting a property of the Accordion class with ActionScript overrides the parameter of the same
name set in the Property inspector or Component inspector.

Each component class has a version property that is a class property. Class properties are
available only on the class itself. The version property returns a string that indicates the version
of the component. To access this property, use the following code:

trace(mx.containers.Accordion.version);

Note: The code trace(myAccordionInstance.version); returns undefined.

Method summary for the Accordion class

The following table lists methods of the Accordion class.

Method Description
Accordion.createChild() Creates a child for an Accordion instance.
Accordion.createSegment() Creates a child for an Accordion instance. The parameters for this

method are different from those of the createChild() method.
Accordion.destroyChildAt() Destroys a child at a specified index position.

Accordion.getChildAt() Gets a reference to a child at a specified index position.

Methods inherited from the UlObject class

The following table lists the methods the Accordion class inherits from the UIObject class. When
calling these methods from the Accordion object, use the form
accordionlInstance.methodName.

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.
UIObject.destroyObject() Destroys a component instance.
UlObject.dolater() Calls a function when parameters have been set in the Property and

Component inspectors.

Accordion component (Flash Professional only) 105

Method Description

UIObject.getStyle() Gets the style property from the style declaration or object.
UIObject.invalidate() Marks the object so it will be redrawn on the next frame interval.
UIObject.move() Moves the object to the requested position.

UIObject.redraw() Forces validation of the object so it is drawn in the current frame.
UIObject.setSize() Resizes the object to the requested size.

UIObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.

Methods inherited from UIComponent class

The following table lists the methods the Accordion class inherits from the UIComponent class.
When calling these methods from the Accordion object, use the form
accordionlnstance.methodName.

Method Description
UIComponent.getFocus() Returns a reference to the object that has focus.
UIComponent.setFocus() Sets focus to the component instance.

Property summary for the Accordion class

The following table lists properties of the Accordion class.

Property Description

Accordion.numChildren The number of children of an Accordion instance.
Accordion.selectedChild A reference to the selected child.
Accordion.selectedIndex The index position of the selected child.

Properties inherited from the UlObject class

The following table lists the properties the Accordion class inherits from the UIObject class.
When accessing these properties, use the form accordionInstance.propertyName.

Property Description

UIObject.bottom The position of the bottom edge of the object, relative to the
bottom edge of its parent. Read-only.

UlObject.height The height of the object, in pixels. Read-only.

UIObject.left The left edge of the object, in pixels. Read-only.

UIObject.right The position of the right edge of the object, relative to the right

edge of its parent. Read-only.

UIObject.scaleX A number indicating the scaling factor in the x direction of the
object, relative to its parent.

106 Chapter 6: Components Dictionary

Property Description

UIObject.scaleY A number indicating the scaling factor in the y direction of the
object, relative to its parent.

UIObject.top The position of the top edge of the object, relative to its parent.
Read-only.

UIObject.visible A Boolean value indicating whether the object is visible (true) or
not (false).

UIObject.width The width of the object, in pixels. Read-only.

UIObject.x The left edge of the object, in pixels. Read-only.

UIObject.y The top edge of the object, in pixels. Read-only.

Properties inherited from the UIComponent class

The following table lists the properties the Accordion class inherits from the UIComponent class.
When accessing these properties, use the form accordionInstance.propertyName.

Property

Description

UIComponent.enabled

UIComponent.tabIndex

Indicates whether the component can receive focus and input.

A number indicating the tab order for a component in a document.

Event summary for the Accordion class

The following table lists an event of the Accordion class.

Event

Description

Accordion.change

Broadcast to all registered listeners when the selectedIndex and
selectedChild properties of an accordion change because of a
user’'s mouse click or keypress.

Events inherited from the UlObject class

The following table lists the events the Accordion class inherits from the UIObject class.

Event Description

UlObject.draw Broadcast when an object is about to draw its graphics.
UIObject.hide Broadcast when an object’s state changes from visible to invisible.
UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

UIObject.resize Broadcast when an object has been resized.

UIObject.reveal Broadcast when an object’s state changes from invisible to visible.
UIObject.unload Broadcast when the subobjects are being unloaded.

Accordion component (Flash Professional only) 107

Events inherited from the UIComponent class

The following table lists the events the Accordion class inherits from the UIComponent class.

Event Description

UIComponent.focusln Broadcast when an object receives focus.
UIComponent.focusOut Broadcast when an object loses focus.
UIComponent.keyDown Broadcast when a key is pressed.
UIComponent.keyUp Broadcast when a key is released.

Accordion.change

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

listenerObject = new 0Object();
listenerObject.change = function(eventObject){
// insert your code here
}
myAccordionInstance.addEventListener("change", TistenerObject)

Description

Event; broadcast to all registered listeners when the selectedIndex and selectedChild
properties of an accordion change. This event is broadcast only when a user’s mouse click or
keypress changes the value of selectedChild or selectedIndex—not when the value is
changed with ActionScript. This event is broadcast before the transition animation occurs.

Version 2 components use a dispatcher/listener event model. The Accordion component
dispatches a change event when one of its buttons is clicked and the event is handled by a
function (also called a handler) on a listener object (17stenerObject) that you create. You call
the addEventListener () method and pass it a reference to the handler as a parameter.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has properties that contain information about the event. You can use
these properties to write code that handles the event. For more information, see “EventDispatcher
class” on page 415.

The Accordion change event also contains two unique event object properties:

® newValue Number; the index of the child that is about to be selected.

® prevValue Number; the index of the child that was previously selected.

108

Chapter 6: Components Dictionary

Example

In the following example, a handler called myAccordionListener is defined and passed to the
myAccordion.addEventListener() method as the second parameter. The event object is
captured by the change handler in the eventObject parameter. When the change event is
broadcast, a trace statement is sent to the Output panel.

myAccordionListener = new Object();
myAccordionListener.change = function(){
trace("Changed to different view");
}
myAccordion.addEventListener("change", myAccordionListener);

Accordion.createChild()
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage
myAccordion.createChild(classOrSymbolName, instanceNamel, initialProperties])

Parameters

classOrSymbolName Either the constructor function for the class of the UIObject to be
instantiated, or the linkage name (a reference to the symbol to be instantiated). The class must be
UIObject or a subclass of UIObject, but most often it is View object or a subclass of View.

instanceName The instance name of the new instance.

initialProperties An optional parameter that specifies initial properties for the new
instance. You can use the following properties:

® label A string that specifies the text label that the new child instance uses on its header.
® icon A string that specifies the linkage identifier of the library symbol that the child uses for

the icon on its header.

Returns

A reference to an instance of the UIODbject that is the newly created child.

Description

Method (inherited from View); creates a child for the accordion. The newly created child is added
to the end of the list of children owned by the accordion. Use this method to place views inside
the accordion. The created child is an instance of the class or movie clip symbol specified in the
classOrSymbolName parameter. You can use the 1abel and icon properties to specify a text label
and an icon for the associated accordion header for each child in the initialProperties
parameter.

When each child is created, it is assigned an index number in the order of creation and the
numChildren property is increased by 1.

Accordion component (Flash Professional only) 109

Example

The following code creates an instance of the PaymentForm movie clip symbol named payment as
the last child of myAccordion:

var child = myAccordion.createChild("PaymentForm", "payment", {label:
"Payment", Icon: "paylcon"});

child.cardType.text = "Visa";

child.cardNumber.text = "1234567887654321";

The following code creates a child that is an instance of the View class:

var child = myAccordion.createChild(mx.core.View, "payment", {label:
"Payment", Icon: "paylcon"});

child.cardType.text = "Visa";

child.cardNumber.text = "1234567887654321";

The following code also creates a child that is an instance of the View class, but it uses import to
reference the constructor for the View class:

import mx.core.View

var child = myAccordion.createChild(View, "payment", {label: "Payment", Icon:
"paylcon"});

child.cardType.text = "Visa";

child.cardNumber.text = "1234567887654321";

Accordion.createSegment()

Availability

Flash Player 6 (6.0 79.0).
Edition

Flash MX Professional 2004.

Usage
myAccordion.createSegment(classOrSymbolName, instanceNamel, Tabell, iconl])

Parameters

classOrSymboilName Either a reference to the constructor function for the class of the
UIODbject to be instantiated, or the linkage name of the symbol to be instantiated. The class must
be UIObject or a subclass of UIObject, but most often it is View or a subclass of View.

instanceName The instance name of the new instance.

Tabel A string that specifies the text label that the new child instance uses on its header. This
parameter is optional.

icon A string reference to the linkage identifier of the library symbol that the child uses for the
icon on its header. This parameter is optional.

Returns

A reference to the newly created UIODbject instance.

10

Chapter 6: Components Dictionary

Description

Method; creates a child for the accordion. The newly created child is added to the end of the list
of children owned by the accordion. Use this method to place views inside the accordion. The
created child is an instance of the class or movie clip symbol specified in the class0rSymbolName
parameter. You can use the 7abel and 7con parameters to specify a text label and an icon for the
associated accordion header for each child.

The createSegment () method differs from the createChild() method in that 7abel and 7con
are passed directly as parameters, not as properties of an initalProperties parameter.

When each child is created, it is assigned an index number in the order of creation, and the
numChildren property is increased by 1.
Example

The following example creates an instance of the PaymentForm movie clip symbol named
payment as the last child of myAccordion:

var child = myAccordion.createSegment("PaymentForm", "payment", "Payment",
"paylcon");

child.cardType.text = "Visa";

child.cardNumber.text = "1234567887654321";

The following code creates a child that is an instance of the View class:

var child = myAccordion.createSegment(mx.core.View, "payment", {label:
"Payment", Icon: "paylcon"});

child.cardType.text = "Visa";

child.cardNumber.text = "1234567887654321";

The following code also creates a child that is an instance of the View class, but it uses import to
reference the constructor for the View class:

import mx.core.View

var child = myAccordion.createSegment(View, "payment", {label: "Payment",
Icon: "paylcon"});

child.cardType.text = "Visa";

child.cardNumber.text = "1234567887654321";

Accordion.destroyChildAt()
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage
myAccordion.destroyChildAt(index)

Parameters

index The index number of the accordion child to destroy. Each child of an accordion is
assigned a zero-based index number in the order in which it was created.

Accordion component (Flash Professional only) m

Returns
Nothing.
Description

Method (inherited from View); destroys one of the accordion’s children. The child to be
destroyed is specified by its index, which is passed to the method in the index parameter. Calling
this method destroys the corresponding header as well.

If the destroyed child is selected, a new selected child is chosen. If there is a next child, it is
selected. If there is no next child, the previous child is selected. If there is no previous child, the
selection is undefined.

Note: Calling destroyChildAt() decreases the numChildren property by 1.
Example

The following code destroys the last child of myAccordion:

myAccordion.destroyChildAt(myAccordion.numChildren - 1);
See also

Accordion.createChild()

Accordion.getChildAt()
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage
myAccordion.getChildAt(index)

Parameters

index The index number of an accordion child. Each child of an accordion is assigned a
zero-based index in the order in which it was created.

Returns

A reference to the instance of the UIObject at the specified index.

Description

Method; returns a reference to the child at the specified index. Each accordion child is given an
index number for its position. This index number is zero-based, so the first child is 0, the second
child is 1, and so on.

Example
The following code gets a reference to the last child of myAccordion:

var lastChild:UIObject = myAccordion.getChildAt(myAccordion.numChildren - 1);

12 Chapter 6: Components Dictionary

Accordion.numChildren
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage
myAccordion.numChildren

Description

Property (inherited from View); indicates the number of children (of type UIObject) in an
Accordion instance. Headers are not counted as children.

Each accordion child is given an index number for its position. This index number is zero-based,
so the first child is 0, the second child is 1, and so on. The code myAccordion.numChild - 1
always refers to the last child added to an accordion. For example, if there were seven children in
an accordion, the last child would have the index 6. The numChildren property is not zero-based,
so the value of myAccordion.numChildren would be 7. The result of 7 - 1 is 6, which is the
index number of the last child.

Example

The following example selects the last child:

myAccordion.selectedIndex = myAccordion.numChildren - 1;

Accordion.selectedChild
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage
myAccordion.selectedChild

Description

Property; the selected child (of type UIODbject) if one or more children exist; undefined if no
children exist.

If the accordion has children, the code myAccordion.selectedChild is equivalent to the code
myAccordion.getChildAt(myAccordion.selectedIndex).

Setting this property to a child causes the accordion to begin the transition animation to display

the specified child.

Changing the value of seTectedChi1d also changes the value of selectedIndex.

Accordion component (Flash Professional only) 113

The default value is myAccordion.getChi1dAt(0) if the accordion has children. If the accordion
doesn’t have children, the default value is undefined.

Example

The following example retrieves the label of the selected child view:
var selectedlLabel = myAccordion.selectedChild.label;
The following example sets the payment form to be the selected child view:

myAccordion.selectedChild = myAccordion.payment;

See also

Accordion.selectedIndex

Accordion.selectedIndex

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myAccordion.selectedIndex

Description

Property; the zero-based index of the selected child in an accordion with one or more children.
For an accordion with no child views, the only valid value is undefined.

Each accordion child is given an index number for its position. This index number is zero-based,
so the first child is 0, the second child is 1, and so on. The valid values of selectedIndex are 0,
1,2, ..., n- 1, where n is the number of children.

Setting this property to a child causes the accordion to begin the transition animation to display

the specified child.

Changing the value of seTectedIndex also changes the value of selectedChild.

Example

The following example remembers the index of the selected child:
var oldSelectedIndex = myAccordion.selectedIndex;
The following example selects the last child:

myAccordion.selectedIndex = myAccordion.numChildren - 1;

See also

Accordion.numChildren, Accordion.selectedChild

Chapter 6: Components Dictionary

Alert component (Flash Professional only)

The Alert component lets you display a window that presents the user with a message and
response buttons. The window has a title bar that you can fill with text, a message that you can
customize, and buttons whose labels you can change. An Alert window can have any combination
of Yes, No, OK, and Cancel buttons, and you can change the button labels by using the
Alert.yeslabel, Alert.click, Alert.okLabel, and Alert.cancellabel properties. You
cannot change the order of the buttons in an Alert window; the button order is always OK, Yes,
No, Cancel. An Alert window closes when a user clicks any of its buttons.

To display an Alert window, call the Alert.show() method. In order to call the method
successfully, the Alert component must be in the library. By dragging the Alert component from
the Components panel to the Stage and then deleting the component, you add the component to
the library without making it visible in the document.

The live preview for the Alert component is an empty window.

When you add an Alert component to an application, you can use the Accessibility panel to make
the component’s text and buttons accessible to screen readers. First, add the following line of code
to enable accessibility:

mx.accessibility.AlertAccImpl.enableAccessibility();
Note: You enable accessibility for a component only once, regardless of how many instances you
have of the component.

Using the Alert component (Flash Professional only)

You can use an Alert component whenever you want to announce something to a user. For
example, you could display an alert when a user doesn’t fill out a form properly, when a stock hits
a certain price, or when a user quits an application without saving the session.

Alert parameters

The Alert component has no authoring parameters. You must call the ActionScript
Alert.show() method to display an Alert window. You can use other ActionScript properties to
modify the Alert window in an application. For more information, see “Alert class (Flash
Professional only)” on page 119.

Creating an application with the Alert component
The following procedure explains how to add an Alert component to an application while

authoring. In this example, the Alert component appears when a stock hits a certain price.

To create an application with the Alert component:

1. Double-click the Alert component in the Components panel to add it to the Stage.
2. Press Backspace (Windows) or Delete (Macintosh) to delete the component from the Stage.

This adds the component to the library, but doesn’t make it visible in the application.

Alert component (Flash Professional only) 115

3. In the Actions panel, enter the following code on Frame 1 of the Timeline to define an event
handler for the c11ick event:

import mx.controls.Alert;
myClickHandler = function (evt){
if (evt.detail == Alert.0K){
trace("start stock app");
// startStockApplication();
}
}
Alert.show("Launch Stock Application?", "Stock Price Alert", Alert.OK |
Alert.CANCEL, this, myClickHandler, "stockIcon", Alert.0K);

This code creates an Alert window with OK and Cancel buttons. When the user clicks either
button, Flash calls the myC1ickHandler function. But when the user clicks the OK button,
Flash calls the startStockApplication() function.

Note: The Alert.show() method includes an optional parameter that displays an icon in the Alert
window (in this example, an icon with the linkage identifier “stocklcon”). To include this icon in your
test example, create a symbol named stocklcon and set it to Export for ActionScript in the Linkage
Properties dialog box or the Create New Symbol dialog box.

4. Select Control > Test Movie.

Customizing the Alert component (Flash Professional only)

The Alert component positions itself in the center of the component that was passed as its parent
parameter. The parent must be a UIComponent object. If it is a movie clip, you can register the
clip as mx.core.View so that it inherits from UIComponent.

The Alert window automatically stretches horizontally to fit the message text or any buttons that
are displayed. If you want to display large amounts of text, include line breaks in the text.

The Alert component does not respond to the setSize() method.

Using styles with the Alert component

You can set style properties to change the appearance of an Alert component. If the name of a
style property ends in “Color”, it is a color style property and behaves differently than noncolor
style properties. For more information, see “Using styles to customize component color and text”

on page 67.

An Alert component supports the following styles:

Style Theme Description

themeColor Halo The base color scheme of a component. Possible values are
"haloGreen", "haloBlue",and "haloOrange". The default value
is "haloGreen".

backgroundColor Both The background color. The default color is white for the Halo
theme and OXEFEBEF (light gray) for the Sample theme.

16

Chapter 6: Components Dictionary

Style

Theme Description

border styles

color

disabledColor

embedFonts

fontFamily
fontSize

fontStyle

fontWeight

textAlign

textDecoration

textIndent

Both The Alert component uses a RectBorder instance as its
border and responds to the styles defined on that class. See
“RectBorder class” on page 647.

The Alert component has a component-specific borderStyle
setting of “alert” with the Halo theme and “outset” with the
Sample theme.

Both The text color. The default value is OxOB333C for the Halo
theme and blank for the Sample theme.

Both The color for text when the component is disabled. The default
color is 0x848384 (dark gray).

Both A Boolean value that indicates whether the font specified in
fontFamily is an embedded font. This style must be set to
true if fontFamily refers to an embedded font. Otherwise, the
embedded font will not be used. If this style is set to true and
fontFamily does not refer to an embedded font, no text will be
displayed. The default value is false.

Both The font name for text. The default value is "_sans".
Both The point size for the font. The default value is 10.

Both The font style: either "normal" or "italic". The default value
is "normal".

Both The font weight: either "none" or "bo1d". The default value
is "none". All components can also accept the value "normal"
in place of "none" duringa setStyle() call, but subsequent
callsto getStyle() will return "none".

Both The text alignment: either "1eft", "right", or "center". The
default value is "Teft".

Both The text decoration: either "none" or "underline". The default
value is "none".

Both A number indicating the text indent. The default value is O.

The Alert component includes three different categories of text. Setting the text properties for the

Alert component itself provides default values for all three categories, as shown here:

import mx.controls.Alert;
_global.styles.Alert.setStyle("color", 0x000099);
Alert.show("This is a test alert", "Title");

To set the text styles for one category individually, the Alert component provides static properties
that are references to a CSSStyleDeclaration instance.

Static property

Text affected

buttonStyleDeclaration
messageStyleDeclaration

titleStyleDeclaration

Button
Message

Title

Alert component (Flash Professional only) 117

The following example demonstrates how to set the title of an Alert component to be italicized:

import mx.controls.Alert;
import mx.styles.CSSStyleDeclaration;

var titleStyles = new CSSStyleDeclaration();
titleStyles.setStyle("fontWeight", "bold");
titleStyles.setStyle("fontStyle", "italic");

Alert.titleStyleDeclaration = titleStyles;

Alert.show("Name is a required field", "Validation Error");

The default title style declarations set fontWeight to "bold". When you override the
titleStyleDeclaration property, this default is also overridden, so you must explicitly set
fontWeight to "bold" if that setting is desired.

Note: Text styles set on an Alert component provide default text styles to its components through
style inheritance. For more information, see “Setting inheriting styles on a container” on page 71.

Using skins with the Alert component

The Alert component extends the Window component and uses its title background skin for the
title background, a RectBorder class instance for its border, and Button skins for the visual states
of its buttons. To skin the buttons and title bar while authoring, modify the Flash Ul
Components 2/Themes/MMDefault/Window Assets/Elements/TitleBackground and Flash Ul
Components 2/Themes/MMDefault/Button Assets/ButtonSkin symbols. For more information,
see “About skinning components” on page 80. The border and background are provided by the
RectBorder class by default. For information on skinning the RectBorder class, see “RectBorder
class” on page 647.

An Alert component uses the following skin properties to dynamically skin the buttons and

title bar:

Property Description Default value
buttonUp The up state of the buttons. ButtonSkin
buttonUpEmphasized The up state of the default button. ButtonSkin
buttonDown The pressed state of the buttons. ButtonSkin
buttonDownEmphasized The pressed state of the default button. ButtonSkin
buttonOver The rolled-over state of the buttons. ButtonSkin
buttonOverEmphasized The rolled-over state of the default button. ButtonSkin
titleBackground The window title bar. TitleBackground

To set the title of an Alert component to a custom movie clip symbol:
1. Create a new FLA file.

2. Create a new symbol by selecting Insert > New Symbol.

3. Set the name to TitleBackground.

18 Chapter 6: Components Dictionary

4. If the advanced view is not displayed, click the Advanced button.

5. Select Export for ActionScript.

6. The identifier will be automatically filled out with Tit1eBackground.
7. Set the AS 2.0 class to mx.skins.SkinETement.

SkinElement is a simple class that can be used for all skin elements that don’t provide their own
ActionScript impelmentation. It provides movement and sizing functionality required by the
version 2 component framework.

8. Ensure that Export in First Frame is already selected.

9. Click OK.

10. Open the new symbol for editing.

11. Use the drawing tools to create a box with a red fill and black line.
12. Set the border style to hairline.

13. Set the box, including the border, so that is positioned at (0,0) and has a width of 100 and
height of 22.

The Alert component will set the proper width of the skin as needed, but it will use the
existing height as the height of the title.

14. Click the Back button to return to the main Timeline.
15. Drag an Alert component to the Stage and delete it.
This will add the Alert component to the library and available at run-time.
16. Add ActionScript code to the main Timeline to create a sample Alert instance.

import mx.controls.Alert;
Alert.show("This is a skinned Alert component","Title");

17. Select Control > Test Movie.

Alert class (Flash Professional only)

Inheritance MovieClip > UIObject class > UIComponent class > View > ScrollView > Window
component > Alert

ActionScript Class Name mx.controls.Alert

To use the Alert component, you drag an Alert component to the Stage and delete it so that the
component is in the document library but not visible in the application. Then you call
Alert.show() to display an Alert window. You can pass parameters to Alert.show() that add a
message, a title bar, and buttons to the Alert window.

Because ActionScript is asynchronous, the Alert component is not blocking, which means that
the lines of ActionScript code that follow the call to ATert.show() run immediately. You must
add listeners to handle the c11ck events that are broadcast when a user clicks a button and then
continue your code after the event is broadcast.

Note: In operating environments that are blocking (for example, Microsoft Windows), a call to
Alert.show() does not return until the user has taken an action, such as clicking a button.

Alert component (Flash Professional only) 119

To understand more about the Alert class, see “Window component” on page 878 and
“PopUpManager class” on page 601.

Method summary for the Alert class

The following table lists the method of the Alert class.

Method Description

Alert.show() Creates an Alert window with optional parameters.

Methods inherited from the UlObject class

The following table lists the methods the Alert class inherits from the UIObject class.

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UIObject.dolater() Calls a function when parameters have been set in the Property and
Component inspectors.

UIObject.getStyle() Gets the style property from the style declaration or object.

UIObject.invalidate() Marks the object so it will be redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.

UlObject.redraw() Forces validation of the object so it is drawn in the current frame.

UIObject.setSize() Resizes the object to the requested size.

UlObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.

Methods inherited from the UIComponent class

The following table lists the methods the Alert class inherits from the UIComponent class.

Method Description
UIComponent.getFocus() Returns a reference to the object that has focus.
UIComponent.setFocus() Sets focus to the component instance.

Methods inherited from the Window class

The following table lists the methods the Alert class inherits from the Window class.

Method Description

Window.deletePopUp() Removes a window instance created by
PopUpManager.createPopUp().

120 Chapter 6: Components Dictionary

Property summary for the Alert class

The following table lists properties of the Alert class.

Property

Description

Alert.buttonHeight
Alert.buttonWidth

Alert.CANCEL

Alert.cancellabel
Alert.click

Alert.NO

Alert.0K

Alert.oklabel

Alert.YES

Alert.yeslabel

The height of each button, in pixels. The default value is 22.
The width of each button, in pixels. The default value is 100.

A constant hexadecimal value indicating whether a Cancel
button should be displayed in the Alert window.

The label text for the Cancel button.
The label text for the No button.

A constant hexadecimal value indicating whether a No
button should be displayed in the Alert window.

A constant hexadecimal value indicating whether an OK
button should be displayed in the Alert window.

The label text for the OK button.

A constant hexadecimal value indicating whether a Yes
button should be displayed in the Alert window.

The label text for the Yes button.

Properties inherited from the UlObject class

The following table lists the properties the Alert class inherits from the UIODbject class. When
calling these properties from the Alert object, use the form Alert.propertyName.

Property

Description

UIObject.bottom

UIObject.height
UIObject.left

UIObject.right

UIObject.scaleX

UIObject.scaleY

UIObject.top

UIObject.visible

UIObject.width

The position of the bottom edge of the object, relative to the
bottom edge of its parent. Read-only.

The height of the object, in pixels. Read-only.
The left edge of the object, in pixels. Read-only.

The position of the right edge of the object, relative to the right
edge of its parent. Read-only.

A number indicating the scaling factor in the x direction of the
object, relative to its parent.

A number indicating the scaling factor in the y direction of the
object, relative to its parent.

The position of the top edge of the object, relative to its parent.
Read-only.

A Boolean value indicating whether the object is visible (true) or
not (false).

The width of the object, in pixels. Read-only.

Alert component (Flash Professional only) 121

Property Description
UIObject.x The left edge of the object, in pixels. Read-only.

UIObject.y The top edge of the object, in pixels. Read-only.

Properties inherited from the UIComponent class

The following table lists the properties the Alert class inherits from the UIComponent class.
When calling these properties from the Alert object, use the form Alert.propertyName.

Property Description
UIComponent.enabled Indicates whether the component can receive focus and input.
UIComponent.tabIndex A number indicating the tab order for a component in a document.

Properties inherited from the Window class

The following table lists the properties the Alert class inherits from the Window class.

Property Description

Window.closeButton Indicates whether a close button is (true) oris not (false) included
on the title bar.

Window.content A reference to the content (root movie clip) of the window.

Window.contentPath Sets the name of the content to display in the window.

Window.title The text that appears in the title bar.

Window.titleStyleDeclaration The style declaration that formats the text in the title bar.

Event summary for the Alert class

The following table lists an event of the Alert class.

Event Description

Alert.click Broadcast when a button in an Alert window is clicked.

Events inherited from the UlObject class

The following table lists the events the Alert class inherits from the UIObject class. When calling
these events from the Alert object, use the form Alert. eventName.

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.
UIObject.hide Broadcast when an object’s state changes from visible to invisible.
UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

UlObject.resize Broadcast when an object has been resized.

122 Chapter 6: Components Dictionary

Event Description

UIObject.reveal Broadcast when an object’s state changes from invisible to visible.

UIObject.unload Broadcast when the subobjects are being unloaded.

Events inherited from the UIComponent class

The following table lists the events the Alert class inherits from the UIComponent class. When
calling these events from the Alert object, use the form Alert.eventName.

Event Description

UIComponent.focusIn Broadcast when an object receives focus.
UIComponent.focusOut Broadcast when an object loses focus.
UIComponent.keyDown Broadcast when a key is pressed.
UIComponent.keyUp Broadcast when a key is released.

Events inherited from the Window class

The following table lists the events the Alert class inherits from the Window class.

Event Description

Window.click Broadcast when the close button is clicked (released).

Window.complete Broadcast when a window is created.

Window.mouseDownOutside Broadcast when the mouse is clicked (released) outside the modal
window.

Alert.buttonHeight
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage
Alert.buttonHeight

Description
Property (class); a class (static) property that changes the height of the buttons. The default value
is 22.

See also

Alert.buttonWidth

Alert component (Flash Professional only) 123

Alert.buttonWidth
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage
Alert.buttonWidth

Description

Property (class); a class (static) property that changes the width of the buttons. The default value
is 100.

See also

Alert.buttonHeight

Alert. CANCEL
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage
Alert.CANCEL

Description

Property (constant); a property with the constant hexadecimal value 0x8. This property can be
used for the flags or defaultButton parameter of the Alert.show() method. When used as a
value for the f7ags parameter, this property indicates that a Cancel button should be displayed in
the Alert window. When used as a value for the defaultButton parameter, the Cancel button has
initial focus and is triggered when the user presses Enter (Windows) or Return (Macintosh). If the
user tabs to another button, that button is triggered when the user presses Enter.

Example

The following example uses Alert.CANCEL and Alert.OK as values for the f7ags parameter and
displays an Alert component with an OK button and a Cancel button:
import mx.controls.Alert;

Alert.show("This is a generic Alert window", "Alert Test", Alert.OK |
Alert.CANCEL, this);

124 Chapter 6: Components Dictionary

Alert.cancelLabel

Availability

Flash Player 6 (6.0 79.0).
Edition

Flash MX Professional 2004.
Usage

Alert.cancellabel
Description

Property (class); a class (static) property that indicates the label text on the Cancel button.

Example
The following example sets the Cancel button’s label to “cancellation”:

Alert.cancellLabel = "cancellation";

Alert.click

Availability

Flash Player 6 (6.0 79.0).
Edition

Flash MX Professional 2004.

Usage

clickHandler = function(eventObject){
// insert code here

}

Alert.show(messagel, titlel, flagsl, parentl, clickHandlerl, iconl,
defaultButtonl]11111)

Description
Event; broadcast to the registered listener when the OK, Yes, No, or Cancel button is clicked.

Version 2 components use a dispatcher/listener event model. The Alert component dispatches a
click event when one of its buttons is clicked and the event is handled by a function, also called
a handler, on a listener object (77istener0Object) that you create. You call the ATert.show()
method and pass it the name of the handler as a parameter. When a button in the Alert window is
clicked, the listener is called.

When the event occurs, it automatically passes an event object (eventObject) to the handler.
Each event object has properties that contain information about the event. You can use these
properties to write code that handles the event. The ATert.click events event object has an
additional detail property whose value is ATert.0K, Alert.CANCEL, Alert.YES, or Alert.NO,
depending on which button was clicked. For more information, see “EventDispatcher class”

on page 415.

Alert component (Flash Professional only) 125

Example

In the following example, a handler called myC11ickHandler is defined and passed to the
Alert.show() method as the fifth parameter. The event object is captured by myClickHandler
in the evt parameter. The detail property of the event object is then used in a trace statement
to send the name of the button that was clicked (Alert.0K or Alert.CANCEL) to the Output
panel.

import mx.controls.Alert;
myClickHandler = function(evt){
if(evt.detail == Alert.O0K){
trace(Alert.oklLabel);
jelse if (evt.detail == Alert.CANCEL){
trace(Alert.cancellabel);
}
}
Alert.show("This is a test of errors”, "Error", Alert.0K | Alert.CANCEL, this,
myClickHandler);

Alert.NO

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

Alert.NO

Description

Property (constant); a property with the constant hexadecimal value 0x2. This property can be
used for the flags or defaultButton parameter of the Alert.show() method. When used as a
value for the f7ags parameter, this property indicates that a No button should be displayed in the
Alert window. When used as a value for the defaultButton parameter, the Cancel button has
initial focus and is triggered when the user presses Enter (Windows) or Return (Macintosh). If the
user tabs to another button, that button is triggered when the user presses Enter.

Example

The following example uses Alert.NO and Alert.YES as values for the f7ags parameter and
displays an Alert component with a No button and a Yes button:
import mx.controls.Alert;

Alert.show("This is a generic Alert window", "Alert Test", Alert.NO |
Alert.YES, this);

126

Chapter 6: Components Dictionary

Alert.noLabel

Availability

Flash Player 6 (6.0 79.0).
Edition

Flash MX Professional 2004.

Usage
Alert.nolabel

Description

Property (class); a class (static) property that indicates the label text on the No button.

Example
The following example sets the No button’s label to “nyet™:

Alert.noLabel = "nyet";

Alert.OK

Availability

Flash Player 6 (6.0 79.0).
Edition

Flash MX Professional 2004.

Usage
Alert.OK

Description

Property (constant); a property with the constant hexadecimal value 0x4. This property can be
used for the flags or defaultButton parameter of the Alert.show() method. When used as a
value for the f1ags parameter, this property indicates that an OK button should be displayed in
the Alert window. When used as a value for the defaultButton parameter, the OK button has
initial focus and is triggered when the user presses Enter (Windows) or Return (Macintosh). If the
user tabs to another button, that button is triggered when the user presses Enter.

Example

The following example uses Alert.0K and Alert.CANCEL as values for the f7ags parameter and
displays an Alert component with an OK button and a Cancel button:
import mx.controls.Alert;

Alert.show("This is a generic Alert window", "Alert Test", Alert.OK |
Alert.CANCEL, this);

Alert component (Flash Professional only) 127

Alert.okLabel

Availability

Flash Player 6 (6.0 79.0).
Edition

Flash MX Professional 2004.

Usage
Alert.oklabel

Description

Property (class); a class (static) property that indicates the label text on the OK button.

Example
The following example sets the OK button’s label to “okay”:
Alert.okLabel = "okay";

Alert.show()

Availability

Flash Player 6 (6.0 79.0).
Edition

Flash MX Professional 2004.

Usage

Alert.show(messagel, titlel, flagsl, parentl, clickHandlerl, iconl,
defaultButton]]1111)

Parameters
message The message to display.

title The textin the Alert title bar. This parameter is optional; if you omit it, the title bar is
blank.

flags An optional parameter that indicates the buttons to display in the Alert window. The
default value is ATert. 0K, which displays an OK button. When you use more than one value,
separate the values with a | character. Use one or more of the following values: Alert. 0K,
Alert.CANCEL, Alert.YES, ATert.NO.

You can also use Alert.NONMODAL to indicate that the Alert window is nonmodal. A nonmodal
window allows a user to interact with other windows in the application.

parent The parent window for the Alert component. The Alert window centers itself in the
parent window. Use the value nul1 or undefined to specify the _root Timeline. The parent
window must inherit from the UIComponent class. You can register the parent window with
mx.core.View to cause it to inherit from UIlComponent. This parameter is optional.

128 Chapter 6: Components Dictionary

clickHandler A handler for the c11ck events broadcast when the buttons are clicked. In
addition to the standard click event object properties, there is an additional detai1 property,
which contains the flag value of the button that was clicked (Alert.0K, Alert.CANCEL,
Alert.YES, Alert.NO). This handler can be a function or an object. For more information, see
“Using listeners to handle events” on page 56.

icon A string that is the linkage identifier of a symbol in the library; this symbol is used as an
icon displayed to the left of the alert text. This parameter is optional.

defaultButton Indicates which button has initial focus and is clicked when a user presses
Enter (Windows) or Return (Macintosh). If a user tabs to another button, that button is triggered
when the Enter key is pressed.

This parameter can be one of the following values: Alert.0K, Alert.CANCEL, Alert.YES,
Alert.NO.

Returns

The Alert instance that is created.

Description

Method (class); a class (static) method that displays an Alert window with a message, an optional
title, optional buttons, and an optional icon. The title of the alert appears at the top of the
window and is left-aligned. The icon appears to the left of the message text. The buttons are
centered below the message text and the icon.

Example
The following code is a simple example of a modal Alert window with an OK button:
mx.controls.Alert.show("Hello, world!");

The following code defines a click handler that sends a message to the Output panel about which
button was clicked:

import mx.controls.Alert;

myClickHandler = function(evt){
trace ("button " + evt.detail + " was clicked");

}

Alert.show("This is a test of errors", "Error", Alert.0K | Alert.CANCEL, this,
myClickHandler);

The event object’s detail property returns a number to represent each button. The OK button is
4, the Cancel button is 8, the Yes button is 1, and the No button is 2.

Note: You must have an Alert component in the library for this code to display an alert. To add the
component to the library, drag it to the Stage and then delete it.

Alert component (Flash Professional only) 129

Alert.YES

Availability

Flash Player 6 (6.0 79.0).
Edition

Flash MX Professional 2004.

Usage
Alert.YES

Description

Property (constant); a property with the constant hexadecimal value 0x1. This property can be
used for the flags or defaultButton parameter of the Alert.show() method. When used as a
value for the f1ags parameter, this property indicates that a Yes button should be displayed in the
Alert window. When used as a value for the defaultButton parameter, the Yes button has initial
focus and is triggered when the user presses Enter (Windows) or Return (Macintosh). If the user
tabs to another button, that button is triggered when the user presses Enter.

Example

The following example uses Alert.NO and Alert.YES as values for the f1ags parameter and
displays an Alert component with a No button and a Yes button:

import mx.controls.Alert;
Alert.show("This is a generic Alert window", "Alert Test", Alert.NO |
Alert.YES, this);

Alert.yesLabel
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage
Alert.yeslLabel

Description
Property (class); a class (static) property that indicates the label text on the Yes button.
Example

The following example sets the OK button’s label to “da”:
Alert.yeslLabel = "da";

130 Chapter 6: Components Dictionary

Button component

The Button component is a resizable rectangular user interface button. You can add a custom
icon to a button. You can also change the behavior of a button from push to toggle. A toggle
button stays pressed when clicked and returns to its up state when clicked again.

A button can be enabled or disabled in an application. In the disabled state, a button doesn’t
receive mouse or keyboard input. An enabled button receives focus if you click it or tab to it.
When a Button instance has focus, you can use the following keys to control it:

Key Description

Shift+Tab Moves focus to the previous object.

Spacebar Presses or releases the component and triggers the c1ick event.
Tab Moves focus to the next object.

For more information about controlling focus, see “Creating custom focus navigation”
on page 50 or “FocusManager class” on page 419.

A live preview of each Button instance reflects changes made to parameters in the Property
inspector or Component inspector during authoring. However, in the live preview a custom icon
is represented on the Stage by a gray square.

When you add the Button component to an application, you can use the Accessibility panel to
make it accessible to screen readers. First, you must add the following line of code:

mx.accessibility.ButtonAccImpl.enableAccessibility();

You enable accessibility for a component only once. regardless of how many instances you have of
the component.

Using the Button component

A button is a fundamental part of any form or web application. You can use buttons wherever you
want a user to initiate an event. For example, most forms have a Submit button. You could also

add Previous and Next buttons to a presentation.

To add an icon to a button, you need to select or create a movie clip or graphic symbol to use as
the icon. The symbol should be registered at 0,0 for appropriate layout on the button. Select the
icon symbol in the Library panel, open the Linkage dialog box from the Library options menu,
and enter a linkage identifier. This is the value to enter for the icon parameter in the Property
inspector or Component inspector. You can also enter this value for the Button.icon
ActionScript property.

Note: If anicon is larger than the button, it extends beyond the button’s borders.

To designate a button as the default push button in an application (the button that receives the
click event when a user presses Enter), use FocusManager.defaultPushButton.

Button component 131

Button parameters

You can set the following authoring parameters for each Button component instance in the
Property inspector or in the Component inspector:

label sets the value of the text on the button; the default value is Button.

icon adds a custom icon to the button. The value is the linkage identifier of a movie clip or
graphic symbol in the library; there is no default value.

toggle turns the button into a toggle switch. If true, the button remains in the down state when
clicked and returns to the up state when clicked again. If false, the button behaves like a normal
push button; the default value is false.

selected if the toggle parameter is true, this parameter specifies whether the button is pressed
(true) or released (false). The default value is false.

labelPlacement orients the label text on the button in relation to the icon. This parameter can be
one of four values: Teft, right, top, or bottom; the default value is right. For more
information, see Button.labelPlacement.

You can write ActionScript to control these and additional options for the Button component
using its properties, methods, and events. For more information, see “Button class” on page 139.

Creating an application with the Button component

The following procedure explains how to add a Button component to an application while
authoring. In this example, the button is a Help button with a custom icon that opens a Help
system when a user clicks it.

To create an application with the Button component:
1. Drag a Button component from the Components panel to the Stage.
2. In the Property inspector, enter the instance name helpBtn.
3. In the Property inspector, do the following:
= Enter Help for the label parameter.
» Enter Helplcon for the icon parameter.

To use an icon, there must be a movie clip or graphic symbol in the library with a linkage
identifier to use as the icon parameter. In this example, the linkage identifier is HelpIcon.

= Set the toggle property to true.
4. Select Frame 1 in the Timeline, open the Actions panel, and enter the following code:

function click(evt){

clippyHelper.enabled = evt.target.selected;
}
helpBtn.addEventlListener("click", this);

The last line of code adds a c11 ck event handler to the he1pBtn instance. The handler enables
and disables the c1ippyHelper instance, which could be a Help panel of some sort.

132

Chapter 6: Components Dictionary

Customizing the Button component

You can transform a Button component horizontally and vertically while authoring and at
runtime. While authoring, select the component on the Stage and use the Free Transform tool or
any of the Modify > Transform commands. At runtime, use the setSize() method (see
UIObject.setSize()) or any applicable properties and methods of the Button class (see “Button
class” on page 139). Resizing the button does not change the size of the icon or label.

The bounding box of a Button instance is invisible and also designates the hit area for the
instance. If you increase the size of the instance, you also increase the size of the hit area. If the
bounding box is too small to fit the label, the label is clipped to fit.

If an icon is larger than the button, the icon extends beyond the button’s borders.

Using styles with the Button component

You can set style properties to change the appearance of a button instance. If the name of a style
property ends in “Color”, it is a color style property and behaves differently than noncolor style
properties. For more information, see “Using styles to customize component color and text”

on page 67.

A Button component supports the following styles:

Style Theme Description

themeColor Halo The base color scheme of a component. Possible values are
"haloGreen", "haloBlue",and "haloOrange". The default value
is "haloGreen".

backgroundColor Sample The background color. The default value is OXEFEBEF (light
gray).
The Halo theme uses OxF8F8F8 (very light gray) for the
button background color when the button is up and
themeColor when the button is pressed. You can only modify
the up background color in the Halo theme by skinning the
button. See “Using skins with the Button component”
on page 134.

border styles Sample The Button component uses a RectBorder instance as its
border in the Sample theme and responds to the styles
defined on that class. See “RectBorder class” on page 647.
With the Halo theme, the Button component uses a custom
rounded border whose colors cannot be modified except for
themeColor.

color Both The text color. The default value is OxOB333C for the Halo
theme and blank for the Sample theme.

disabledColor Both The color for text when the component is disabled. The default
color is 0x848384 (dark gray).

Button component 133

Style

Theme Description

embedFonts

fontFamily
fontSize

fontStyle

fontWeight

textDecoration

Both A Boolean value that indicates whether the font specified in
fontFamily is an embedded font. This style must be set to
true if fontFamily refers to an embedded font. Otherwise, the
embedded font will not be used. If this style is set to true and
fontFamily does not refer to an embedded font, no text will be
displayed. The default value is false.

Both The font name for text. The default value is "_sans".
Both The point size for the font. The default value is 10.

Both The font style: either "normal" or "italic". The default value
is "normal".

Both The font weight: either "none" or "bo1d". The default value
is "none". All components can also accept the value "normal"
in place of "none" duringa setStyle() call, but subsequent
callsto getStyle() will return "none".

Both The text decoration: either "none" or "underline". The default
value is "none".

Using skins with the Button component

The Button component includes 32 different skins that can be customized to correspond to the
border and icon in 16 different states. To skin the Button component while authoring, create new
movie clip symbols with the desired graphics and set the symbol linkage identifiers using
ActionScript. (See “Using ActionScript to draw Button skins” on page 136.)

The default implementation of the Button skins provided with both the Halo and Sample themes
uses the ActionScript drawing API to draw the button states, and uses a single movie clip symbol
associated with one ActionScript class to provide all skins for the Button component.

The Button component has many skins because a button has so many states, and a border and
icon for each state. The state of a Button instance is controlled by four properties and user

interaction. The properties that affect skins include the following:

Property

Description

emphasized

enabled

toggle

selected

Provides two different looks for Button instances and is typically used
to highlight one button, such as the default button in a form.

Shows whether or not the button is allowing user interaction.

Toggle buttons provide a selected and unselected value and use
different skins to demonstate the current value. For a Button instance
whose toggle property is set to false, the false skins are used. When
the toggle propertyis true, the skin depends on the selected property.

When the toggle property is set to true, this property determines if the
Button is selected (true or false). Different skins are used to identify
the value and by default are the only way this value is depicted on
screen.

134

Chapter 6: Components Dictionary

If a button is enabled, it displays its over state when the pointer moves over it. The button receives

input focus and displays its down state when it’s pressed. The button returns to its over state when
the mouse is released. If the pointer moves off the button while the mouse is pressed, the button
returns to its original state and it retains input focus. If the toggle parameter is set to true, the

state of the button does not change until the mouse is released over it.

If a button is disabled, it displays its disabled state, regardless of user interaction.

A Button component supports the following skin properties:

Property

Description

falseUpSkin
falseDownSkin
falseOverSkin
falseDisabledSkin
trueUpSkin

trueDownSkin
truelOverSkin
trueDisabledSkin
falseUpSkinEmphasized
falseDownSkinEmphasized
falseOverSkinEmphasized
falseDisabledSkinEmphasized
trueUpSkinEmphasized
trueDownSkinEmphasized
trueOverSkinEmphasized
trueDisabledSkinEmphasized
falseUpIcon
falseDownlcon
falseOverIcon
falseDisabledIcon
truelplcon

trueOverlIcon
trueDownIcon
trueDisabledIcon
falseUpIconEmphasized
falseDownIconEmphasized

falseOverlconEmphasized

The up (normal) state.

The pressed state.

The over state.

The disabled state.

The toggled state.

The pressed-toggled state.

The over-toggled state.

The disabled-toggled state.

The up (normal) state of an emphasized button.
The pressed state of an emphasized button.

The over state of an emphasized button.

The disabled state of an emphasized button.

The toggled state of an emphasized button.

The pressed-toggled state of an emphasized button.
The over-toggled state of an emphasized button.
The disabled-toggled state of an emphasized button.
The icon up state.

The icon pressed state.

Theicon over state.

The icon disabled state.

Theicon toggled state.

The icon over-toggled state.

The icon pressed-toggled state.

The icon disabled-toggled state.

The icon up state of an emphasized button.

The icon pressed state of an emphasized button.

The icon over state of an emphasized button.

Button component

135

Property Description

falseDisabledIconEmphasized The icon disabled state of an emphasized button.
trueUplconEmphasized The icon toggled state of an emphasized button.
trueOverIconEmphasized The icon over-toggled state of an emphasized button.
trueDownIconEmphasized The icon pressed-toggled state of an emphasized button.

trueDisabledIconEmphasized Theicon disabled-toggled state of an emphasized button.

The default value for all skin properties ending in “Skin” is ButtonSkin, and the default for all
“Icon” properties is undefined. The properties with the “Skin” suffix provide a background and
border, whereas those with the “Icon” suffix provide a small icon.

In addition to the icon skins, the Button component also supports a standard icon property. The
difference between the standard property and style property is that through the style property you
can set icons for the individual states, whereas with the standard property only one icon can be set
and it applies to all states. If a Button instance has both the icon property and icon style
properties set, the instance may not behave as anticipated.

To see an interactive movie demonstrating when each skin is used, see Using Components Help.

Using ActionScript to draw Button skins

The default skins in both the Halo and Sample themes use the same skin element for all states and
draw the actual graphics through ActionScript. The Halo implementation uses an extension of
the RectBorder class and custom drawing API code to draw the states. The Sample
implementation uses the same skin and the same ActionScript class as the Button skin.

To create an ActionScript class to use as the skin and provide different states, the skin can read the
borderStyle style property of the skin and emphasized property of the parent to determine the
state. The following table shows the border style that is set for each skin:

Property Border style

falseUpSkin
falseDownSkin
falseOverSkin
falseDisabled
trueUpSkin
trueDownSkin

trueOverSkin

trueDisabledSkin

falseup
falsedown
falserollover
falsedisabled
trueup
truedown
truerollover

truedisabled

Chapter 6: Components Dictionary

To create an ActionScript customized Button skin:
1. Create a new ActionScript class file.
For this example, name the file RedGreenBlueSkin.as.
2. Copy the following ActionScript to the file:

import mx.skins.RectBorder;
import mx.core.ext.UIObjectExtensions;

class RedGreenBlueSkin extends RectBorder

{
static var symbolName:String = "RedGreenBlueSkin";
static var symbolOwner:0bject = RedGreenBlueSkin;

function size():Void
{
var c:Number; // color
var borderStyle:String = getStyle("borderStyle");

switch (borderStyle) {
case "falseup":
case "falserollover"
case "falsedisabled":
c = 0x7777FF;
break;
case "falsedown":
c = Ox77FF77;
break;
case "trueup":
case "truedown":
case "truerollover"
case "truedisabled":
c = OxFF7777;
break;
}

clear();
var thickness = _parent.emphasized ? 2 : 0;
lineStyle(thickness, 0, 100);
beginFill(c, 100);
drawRect(0, 0, __width, __height);
endFil1();

}

// required for skins
static function classConstruct():Boolean
{
UIObjectExtensions.Extensions();
_global.skinRegistry["ButtonSkin"] = true;
return true;
}
static var classConstructed:Boolean = classConstruct();
static var UIObjectExtensionsDependency = UIObjectExtensions;

Button component

137

This class creates a square box based on the border style: a blue box for the false up, rollover,
and disabled states; a green box for the normal pressed state; and a red box for the expanded
child. It draws a hairline border in the normal case and a thick border if the button is
empbhasized.

. Save the file.
. Create a new FLA file.
. Save the FLA file in the same folder as the AS file.

. Create a new symbol by selecting Insert > New Symbol.

B 0

. Set the name to ButtonSkin.

o N o\

. If the advanced view is not displayed, click the Advanced button.

o

. Select Export for ActionScript.
The identifier will be automatically filled out with ButtonSkin.
10. Set the AS 2.0 class to RedGreenBlueSkin.
11. Ensure that Export in First Frame is already selected, and click OK.
12. Drag a Button component to the Stage.

13. Select Control > Test Movie.

Using movie clips to customize Button skins

The above example demonstrates how to use an ActionScript class to customize the Button skin,
which is the method used by the skins provided in both the Halo and Sample themes. However,
because the example uses simple colored boxes, it is simpler in this case to use different movie clip
symbols as the skins.

To create movie clip symbols for Button skins:

1. Create a new FLA file.

2. Create a new symbol by selecting Insert > New Symbol.

3. Set the name to RedButtonSkin.

4. If the advanced view is not displayed, click the Advanced button.

5. Select Export for ActionScript.

The identifier will be automatically filled out with RedButtonSkin.

6. Set the AS 2.0 class to mx.skins.SkinETement.

7. Ensure that Export in First Frame is already selected, and click OK.
8. Open the new symbol for editing.

9. Use the drawing tools to create a box with a red fill and black line.
10. Set the border style to hairline.

11. Set the box, including the border, so that it is positioned at (0,0) and has a width and height of
100.

The SkinETement class resizes the content as appropriate.

138

Chapter 6: Components Dictionary

12. Repeat steps 2-11 and create green and blue skins, named accordingly.

13. Click the Back button to return to the main Timeline.

14. Drag a Button component to the Stage.

15. Set the toggled property value to true to see all three skins.

16. Copy the following ActionScript code to the Actions panel with the Button instance selected.

onClipEvent(initialize) {
falseUpSkin = "BlueButtonSkin";
falseDownSkin = "GreenButtonSkin";
falseOverSkin = "BlueButtonSkin";
falseDisabledSkin = "BlueButtonSkin";
truelUpSkin = "RedButtonSkin";
trueDownSkin = "RedButtonSkin";
trueQverSkin = "RedButtonSkin";
trueDisabledSkin = "RedButtonSkin";

}

17. Select Control > Test Movie.

Button class
Inheritance MovieClip > UIObject class > UlComponent class > SimpleButton class > Button
ActionScript Class Name mx.controls.Button

The properties of the Button class let you do the following at runtime: add an icon to a button,
create a text label, and indicate whether the button acts as a push button or as a toggle switch.

Setting a property of the Button class with ActionScript overrides the parameter of the same name
set in the Property inspector or Component inspector.

The Button component uses the Focus Manager to override the default Flash Player focus
rectangle and draw a custom focus rectangle with rounded corners. For more information, see
“Creating custom focus navigation” on page 50.

Each component class has a version property, which is a class property. Class properties are
available only on the class itself. The version property returns a string that indicates the version
of the component. To access this property, use the following code:

trace(mx.controls.Button.version);

Note: The code trace(myButtonInstance.version); returns undefined.

The Button component class is different from the built-in ActionScript Button object.

Button component 139

Method summary for the Button class

There are no methods exclusive to the Button class.

Methods inherited from the UlObject class

The following table lists the methods the Button class inherits from the UIODbject class. When
calling these methods from the Button object, use the form buttonInstance.methodName.

Method Description

UlObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UIObject.dolLater() Calls a function when parameters have been set in the Property and
Component inspectors.

UlObject.getStyle() Gets the style property from the style declaration or object.

UIObject.invalidate() Marks the object so it will be redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.

UIObject.redraw() Forces validation of the object so it is drawn in the current frame.

UIObject.setSize() Resizes the object to the requested size.

UIObject.setSkin() Sets a skin in the object.

UlObject.setStyle() Sets the style property on the style declaration or object.

Methods inherited from the UIComponent class

The following table lists the methods the Button class inherits from the UIComponent class.
When calling these methods from the Button object, use the form
buttonInstance.methodName.

Method Description
UIComponent.getFocus() Returns a reference to the object that has focus.
UIComponent.setFocus() Sets focus to the component instance.

Property summary for the Button class

The following table lists properties of the Button class.

Property Description

Button.icon Specifies an icon for a button instance.

Button.label Specifies the text that appears in a button.
Button.labelPlacement Specifies the orientation of the label text in relation to an icon.

140

Chapter 6: Components Dictionary

Properties inherited from the SimpleButton class

The following table lists the properties the Button class inherits from the SimpleButton class.
When accessing these properties, use the form buttonInstance.propertyName.

Property Description

SimpleButton.emphasized Indicates whether a button has the look of a default
push button.

SimpleButton.emphasizedStyleDeclaration The style declaration when the emphasized property is

setto true.

SimpleButton.selected A Boolean value indicating whether the button is
selected (true) or not (false). The default value is
false.

SimpleButton.toggle A Boolean value indicating whether the button

behaves as a toggle switch (true) or not (false). The
default value is false.

Properties inherited from the UlObject class

The following table lists the properties the Button class inherits from the UIObject class. When
accessing these properties from the Button object, use the form
buttonInstance.propertyName.

Property Description

UIObject.bottom The position of the bottom edge of the object, relative to the
bottom edge of its parent. Read-only.

UIObject.height The height of the object, in pixels. Read-only.

UlObject.left The left edge of the object, in pixels. Read-only.

UIObject.right The position of the right edge of the object, relative to the right

edge of its parent. Read-only.

UlObject.scaleX A number indicating the scaling factor in the x direction of the
object, relative to its parent.

UIObject.scaleY A number indicating the scaling factor in the y direction of the
object, relative to its parent.

UIObject.top The position of the top edge of the object, relative to its parent.
Read-only.

UlObject.visible A Boolean value indicating whether the object is visible (true) or
not (false).

UIObject.width The width of the object, in pixels. Read-only.

UIObject.x The left edge of the object, in pixels. Read-only.

UIObject.y The top edge of the object, in pixels. Read-only.

Button component 141

Properties inherited from the UIComponent class

The following table lists the properties the Button class inherits from the UIComponent class.
When accessing these properties from the Button object, use the form
buttonInstance.propertyName.

Property Description
UIComponent.enabled Indicates whether the component can receive focus and input.
UIComponent.tabIndex A number indicating the tab order for a component in a document.

Event summary for the Button class

There are no events exclusive to the Button class.

Events inherited from the SimpleButton class

The following table lists the events the Button class inherits from the SimpleButton class.

Property Description

SimpleButton.click Broadcast when a button is clicked.

Events inherited from the UlObject class

The following table lists the events the Button class inherits from the UIObject class.

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.
UIObject.hide Broadcast when an object’s state changes from visible to invisible.
UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

UIObject.resize Broadcast when an object has been resized.

UlObject.reveal Broadcast when an object’s state changes from invisible to visible.
UIObject.unload Broadcast when the subobjects are being unloaded.

Events inherited from the UIComponent class

The following table lists the events the Button class inherits from the UIComponent class.

Event Description

UIComponent.focusIn Broadcast when an object receives focus.
UIComponent.focusOut Broadcast when an object loses focus.
UIComponent.keyDown Broadcast when a key is pressed.
UIComponent.keyUp Broadcast when a key is released.

142

Chapter 6: Components Dictionary

Button.icon
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX 2004.

Usage
buttonlInstance.icon

Description

Property; a string that specifies the linkage identifier of a symbol in the library to be used as an
icon for a button instance. The icon can be a movie clip symbol or a graphic symbol with an
upper left registration point. You must resize the button if the icon is too large to fit; neither the
button nor the icon resizes automatically. If an icon is larger than a button, the icon extends over
the borders of the button.

To create a custom icon, create a movie clip or graphic symbol. Select the symbol on the Stage in
symbol-editing mode and enter 0 in both the X and Y boxes in the Property inspector. In the
Library panel, select the movie clip and select Linkage from the Library options menu. Select
Export for ActionScript, and enter an identifier in the Identifier text box.

The default value is an empty string (""), which indicates that there is no icon.
Use the 1abelPTacement property to set the position of the icon in relation to the button.

Note: The icon does not appear on the Stage in Flash. You must choose Control > Test Movie to see
the icon.

Example

The following code assigns the movie clip from the Library panel with the linkage identifier
happiness to the Button instance as an icon:

myButton.icon = "happiness"

See also

Button.labelPlacement

Button.label
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX 2004.

Usage
buttoninstance.label

Button component 143

Description

Property; specifies the text label for a button instance. By default, the label appears centered on
the button. Calling this method overrides the label authoring parameter specified in the Property
inspector or the Component inspector. The default value is "Button".

Example
The following code sets the label to “Remove from list™:
buttonInstance.label = "Remove from Tist";
See also

Button.labelPlacement

Button.labelPlacement
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX 2004.

Usage
buttonlnstance.labelPlacement

Description

Property; sets the position of the label in relation to the icon. The default value is "right". The
following are the four possible values; the icon and label are always centered vertically and
horizontally within the bounding area of the button:

® "right" The label is set to the right of the icon.
® "left" The label is set to the left of the icon.
® "phottom" The label is set below the icon.

® "top" The label is set above the icon.
Example

The following code sets the label to the left of the icon. The second line of the code sends the
value of the 1abel1Placement property to the Output panel:

iconlnstance.labelPlacement = "left";
trace(iconlnstance.labelPlacement);

144 Chapter 6: Components Dictionary

CellRenderer API

The CellRenderer API is a set of properties and methods that the list-based components (List,
DataGrid, Tree, Menu, and ComboBox) use to manipulate and display custom cell content for
each of their rows. This customized cell can contain a prebuilt component, such as a CheckBox
component, or any class you create.

Understanding the List class

To use the CellRenderer API, you need an advanced understanding of the List class. The
DataGrid, Tree, Menu, and ComboBox components are extensions of the List class, so
understanding the List class lets you understand them as well.

About the composition of the List component

List components are composed of rows. These rows display rollover and selection highlights, are
used as hit states for row selection, and play a vital part in scrolling. Aside from selection
highlights and icons (such as the node icons and expander arrows of a Tree component), a row
consists of one cell (or, in the case of the DataGrid component, many cells). In the default case,
these cells are TextField objects that implement the CellRenderer API. However, you can tell a
List component to use a different class of component as the cell for each row. The only
requirement is that the class must implement the CellRenderer API, which the List component
uses for communicating with the cell.

z-order
lcons Cell

~— =

rollQver/Selection
highlight

Background (hit area)

The stacking order of a row in a List or DataGrid component

Note: If a cell has button event handlers (onPress and so on), the background hit area may not receive
input necessary to trigger the events.

About the scrolling behavior of the List component

The List class uses a fairly complex algorithm for scrolling. A list only lays out as many rows as it
can display at once; items beyond the value of the rowCount property don’t get rows at all. When
the list scrolls, it moves all the rows up or down (depending on the scrolling direction). The list
then recycles the rows that are scrolled out of views it reinitializes them and uses them for the new
rows being scrolled into view. To do this, it sets the value of the old row to the new item in the
view and moves the old row to where the new item is scrolled into view.

CellRenderer APl 145

Because of this scrolling behavior, you cannot expect a cell to be used for only one value.
Recycling of rows means that the cell renderer must know how to completely reset its state when
it is set to a new value. For example, if your cell renderer creates an icon to display one item, it
might need to remove that icon when another item is rendered with it. Assume your cell renderer
is a container that will be filled with numerous item values over time, and it has to know how to
completely change itself from displaying one value to displaying another. In fact, your cell should
even know how to properly render undefined items, which might mean removing all old content
in the cell.

Using the CellRenderer API

You must write a class with four methods (Ce11Renderer.getPreferredHeight(),
CellRenderer.getPreferredWidth(), Cel1Renderer.setSize(), and
CellRenderer.setValue()) that the list-based component uses to communicate with the cell.
The class must be specified in the AS 2.0 Class text box in the Linkage Properties dialog box of a
movie clip symbol in your Flash application. You can look at the CheckCellRenderer class that
implements the Cell Renderer API for an example; it's located in FirstRun/classes/mx/controls/
cells.

ii v Library - cellRenderer.fla =

3 items
Linkage Properties
+ Identifier | MyCelRenderer
A5 2.0 Class: | mx.controls, cells, CheckCellRenderet|
Mame |kind Linkage: [¥]Expart For ActionScript
Checkb I E [CJExpart For runtime sharing
eckBox an
Datatid con Export in firsk frame
MyCelRenderer Mm:
HE10 i< |
—

There are two methods and a property (Cel1Renderer.getCellIndex(),
CellRenderer.getDatalabel(), and CellRenderer.1istOwner) that are given automatically
to a cell to allow it to communicate with the list-based component. For example, suppose a cell
contains a check box that, when selected, causes a row to be selected. The cell renderer needs a
reference to the list-based component that contains it in order to call the component’s
selectedIndex property. Also, the cell needs to know which item index it is currently rendering
so that it can set selectedIndex to the correct number; the cell can use
CellRenderer.listOwner and Cel1Renderer.getCellIndex() to do so. You do not need to
implement these ActionScript elements; the cell receives them automatically when it is placed in
the list-based component.

146

Chapter 6: Components Dictionary

Simple cell renderer example
This section presents an example of a cell renderer that displays multiple lines of text in a cell.
A cell renderer class must implement the following methods:

® CellRenderer.getPreferredHeight()

® CellRenderer.getPreferredWidth()
This method is necessary only for Menu components; otherwise, comment it out of the code,
as in the example.

® CellRenderer.setSize()
If a cell renderer class extends UIObject, implement size() instead.

® CellRenderer.setValue()
A cell renderer class must also declare the methods and property received from the List class:

® CellRenderer.getCellIndex()
® CellRenderer.getDatalabel()

® CellRenderer.listQwner

To test this cell renderer, create a Flash document with a list-based component. You must also
create an empty movie clip and link it to the ActionScript 2.0 class MultiLineCell. Then, set the
cellRenderer property of the component to the linkage identifier of the movie clip. For
example, if you use a DataGrid component with the instance name grid and a movie clip with
the linkage identifier MultiLineCel1, the following code would cause the first column of the grid
to render with multiline text:

grid.getColumnAt(0).cellRenderer = "MultilLineCell";

Note: Remember to add data to the DataGrid component.

If you were using a ComboBox component, you could write the following code:
comboBox.dropdown.cellRenderer = "MultilineCell"
The following is the code for the MultiLineCell.as file:

class MultiLineCell extends mx.core.UIComponent
{
var multilinelabel; //the label to be used for text
var owner; // the row that contains this cell
var listOwner; // the List/grid/tree that contains this cell

// empty constructor
function MultilLineCell()
{

}

// UlObject expects you to fill in createChildren by instantiating
// all the movie clip assets you might need upon initialization.
// Here, it's just a label.
function createChildren():Void
{
// createlabel is a useful method of UIObject--all components use this

CellRenderer APl 147

var ¢ = multilLinelLabel = ¢

reatelLabel ("multilLineLabel", 10);

// Tinks the style of the label to the

// style of the grid

c.styleName = TistOwner;
c.selectable = false;
c.tabEnabled = false;
c.background = false;
c.border = false;
c.multiline = true;
c.wordWrap = true;

}

// By extending UIComponent, you get setSize for free;
// however, UIComponent expects you to implement size().

// Assume __width and __height

are set for you now.

// You're going to expand the cell to fit the whole rowHeight.

function size():Void
{

// __width and __height are the underlying variables

// of the getter/setters

var ¢ = multilLinelabel;
c._width = __width;
c._height = __height;

}

function getPreferredHeight(
{
/* The cell is given a prope
that references the row. It’
that the cell take up most o
*/

return owner.__height - 4;
}

function setValue(suggested:

{

// Set the text property of

// You could also set the te
multilinelabel.text = "Thi

}

// function getPreferredWidt

// function getCellIndex ::

// function getDatalabel

.width and

.height
) :Number
rty, "owner",

s always preferred
f the row's height.

String,

the label
xt property to a variable.
s text wraps to two lines!";

h :: only necessary for menu
not used in this cell renderer
not used in this cell renderer

Methods to implement for the CellRenderer API

You must write a class with the following methods so that the List, DataGrid, Tree, or Menu

component can communicate with the cell.

Method

Description

Cel1Renderer.getPreferredHeight()

CellRenderer.getPreferredWidth()

Returns the preferred height of a cell.

The preferred width of a cell.

148

Chapter 6: Components Dictionary

item:0bject, selected:Boolean):Void

Method Description

CellRenderer.setSize() Sets the width and height of a cell.

CellRenderer.setValue() Sets the content to be displayed in the cell.

Methods provided by the CellRenderer API

The List, DataGrid, Tree, and Menu components give the following methods to the cell when itis
created within the component. You do not need to implement these methods.

Method Description

CellRenderer.getCellIndex() Returns an object with two fields, columnIndex and rowIndex,
that indicate the position of the cell.

CellRenderer.getDatalabel () Returns a string containing the name of the cell renderer’s
data field.

Properties provided by the CellRenderer API

The List, DataGrid, Tree, and Menu component give the following properties to the cell when it
is created within the component. You do not need to implement these properties.

Property Description
CellRenderer.listOwner A reference to the List component that contains the cell.
CellRenderer.owner A reference to the row that contains the cell.

CellRenderer.getCelllndex()
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX 2004.

Usage
componentInstance.getCellIndex()

Parameters

None.

Returns

An object with two fields: coTumnIndex and itemIndex.

Description

Method; returns an object with two fields, columnIndex and itemIndex, that locate the cell in
the component. Each field is an integer that indicates a cell’s column position and item position.
For any components other than the DataGrid component, the value of columnIndex is always 0.

CellRenderer APl 149

This method is provided by the List class; you do not have to implement it. Declare it in your cell
renderer class as follows, and use it in the functions in your cell renderer:

var getCellIndex:Function;
Example

This example edits a DataGrid component’s data provider from within a cell:

var index = getCellIndex();
var colName = listOwner.getColumnAt(index.columnIndex).columnName;
listOwner.dataProvider.editField(index.itemIndex, colName, someVal);

CellRenderer.getDatalabel()
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX 2004.

Usage
componentInstance.getDatalabel ()

Parameters
None.
Returns
A string.
Description

Method; returns a string containing the name of the cell renderer’s data field. For the DataGrid
component, this method returns the column name for the current cell.

This method is provided by the List class; you do not have to implement it. Declare it in your cell
renderer class as follows, and use it in the functions in your cell renderer:

var getDatalabel:Function;
Example

The following code tells the cell that it’s rendering the data field "Price". The variable p is now
equal to "Price":

var p = getDatalabel();
CellRenderer.getPreferredHeight()
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX 2004.

150 Chapter 6: Components Dictionary

Usage
componentInstance.getPreferredHeight()

Parameters

None.

Returns

The correct height for the cell.
Description

Method; returns the preferred height of a cell. This is especially important for getting the right
height of text within the cell. If you set this value higher than the rowHeight property of the
component, cells will bleed above and below the rows.

This method is not provided by the List class; you must implement it. It tells the rows of the list
how to center the cell and how to adjust the cell’s height if necessary. If necessary, you can return
a constant (for example, 22), or you can measure and return the height of the contents. You can
also return owner.height, which is the height of the row.

Example

This example returns the value 20, which indicates that the cell should be 20 pixels high:

function getPreferredHeight(Void) :Number

{
return 20;
}

This example returns a value that is 4 pixels less that the height of the row:

function getPreferredHeight():Number
{

/* You know the cell is given a property,

, which is the row. It’s

always preferred for the cell to take up most of the row's height.

*/
return owner.__height - 4;
}

CellRenderer.getPreferredWidth()
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX 2004.

Usage
componentInstance.getPreferredWidth()

Parameters

None.

CellRenderer API

151

Returns

A value (of type Number) that indicates the correct width of the cell.

Description

Method; the preferred width of a cell. If you specify a width greater than that of the component,
the cell may be cut off.

You need to implement this method only for the Menu component. Your cell will be sized to
whatever the width of the row is, except in a menu, which must measure the text for the width of
the row.

Example

This example returns the value 3, which indicates that the cell should be three times bigger than
the length of the string it is rendering:

function getPreferredWidth():Number
{

return myString.length*3;
}

This example comments out the getPreferredWidth() method:

// function getPreferredWidth :: only really necessary for a menu

CellRenderer.listOwner

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

componentInstance.listOwner

Description

Property; a reference to the list that owns the cell. That list can be a DataGrid, Tree, List, or Menu
component.

This method is provided by the List class; you do not have to implement it. Declare it in your cell
renderer class as follows, and use it as a reference back to the list (or tree, menu, or grid):

var listOwner:MovieClip; // or UIObject, etc.

Example

This example finds the list’s selected item in a cell:

var s = listOwner.selectedItem;

152

Chapter 6: Components Dictionary

CellRenderer.owner
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX 2004.

Usage
componentlInstance.owner

Description
Property; a reference to the row that contains the cell.

This method is provided by the List class; you do not have to implement it. Declare it in your cell
renderer class and use it as a reference:

var owner:MovieClip; // or UIObject, etc.

CellRenderer.setSize()
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX 2004.

Usage
componentInstance.setSize(width, height)

Parameters
width A number that indicates the width at which to lay out the component.
height A number that indicates the height at which to lay out the component.
Returns
Nothing.
Description

Method; lets the list tell its cells the size at which they should lay themselves out. The cell renderer
should do layout so that it fits in the specified area, or the cell may bleed into other parts of the
list and appear broken.

If the cell renderer extends the UIODbject class, you should implement the size () method
instead. Write the same function that you would write for setSize(), but use the width and
height properties instead of parameters.

CellRenderer APl 153

Example
This example sizes an image in the cell to fit within the bounds specified by the list:

function setSize(w:Number, h:Number):Void
{
image._width = w-2;
image._height = h-2;
image._x = image._y = 1;
}
This example is in a cell renderer class that extends UIComponent (which extends UIObject), so
you must implement size() instead of setSize(), as follows:
// By extending UIComponent, you get setSize for free;
// however, UIComponent expects you to implement size().

// Assume __width and __height are set for you now.
// You’re going to expand the cell to fit the whole rowHeight.

function size():Void
{
// __width and __height are the underlying variables
// of the getters/setters .width and .height.
var ¢ = multilinelabel;
c._width = __width;
c._height = __height;
}

CellRenderer.setValue()
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX 2004.

Usage
componentiInstance.setValue(suggested, item, selected)

Parameters
suggested A value to be used for the cell renderer’s text, if any is needed.

item An object that is the entire item to be rendered. The cell renderer can use properties of
this object for rendering.

selected A string with the following possible values: "normal”, "highlighted", and
"selected".

Returns

Nothing.

154 Chapter 6: Components Dictionary

Description

Method; takes the values given and creates a representation of them in the cell. This resolves any
difference between what was displayed in the cell and what needs to be displayed in the cell for
the new item. (Remember that any cell could display many values during its time in the list.) This
is the most important CellRenderer method, and you must implement it in every cell renderer.

The setValue() method is called frequently (for example, when a rollover, a selection, column
resizing, or scrolling occurs). Therefore, you should write i f statements in the body of
setValue() that allow code to run only if a change has occurred. See the “Example” section
below.

If a row is selected and the mouse pointer is over it, the value of the selected parameter is
"highlighted", not "selected". This can cause problems if you're trying to make the cell
renderer behave differently according to whether the row is in a selected state. To test whether the
current row is in a selected state, use the following code:

var reallySelected:Boolean = selected ne "normal" && TistOwner.selectedNode ==
item;

Example

The following example shows how to use setValue() and editField() to reference a cell
renderer instance in a grid.

Because a particular cell might not exist on the Stage (for example, if it’s scrolled out of the display
area) or because it might be reused to render another value, you cannot directly reference a
specific cell renderer instance in the grid.

Instead, use the data provider to communicate with a specific cell in the grid. The data provider
holds all the state information about the grid. To display a given cell as enabled or selected
(checked), there should be a corresponding field in the data provider to hold that information.
The setValue() method of your cell renderer communicates changes in the data provider’s state
to the cell. The following is a setValue() implementation from a theoretical cell renderer that
renders a check box in the cells:

function setValue(str, itm, sel)

{

/* Assume the data provider has two relevant fields for this cell : checked and
enabled.

The form of such a data provider might Took Tike this:

L

{fieldl:"DisplayMe", field2:"SomeString", checked:true, enabled:false}
{fieldl:"DisplayMe", field2:"SomeString", checked:false, enabled:true}
{fieldl:"DisplayMe", field2:"SomeString", checked:true, enabled:true}
]
*

/

// redundancy checking
if (myCheck.selected!=itm.checked){
myCheck.selected = itm.checked;
}

CellRenderer APl 155

if (myCheck.enabled!=itm.enabled){
myCheck.enabled = itm.enabled;
}
}

If you want to enable the check box on the second row, you communicate through the data
provider. Any change to the data provider (when made through a DataProvider method such as
DataProvider.editField()) calls setValue() to refresh the display of the grid. This code
would be written in the Flash application, either on a frame, on an object, or in another class file
(but not in the cell renderer class file):

// calls setValue() again
myGrid.editField(1, "enabled", true);

The following example loads an image in a loader component within the cell, depending on the
value passed:

function setValue(suggested, item, selected) : Void
{
// clear the loader
loader.contentPath = undefined;
// the 1ist has URLs for different images in its data provider
if (suggested!=undefined)
loader.contentPath = suggested;
}

The following example is from a multiline text cell renderer:

function setValue(suggested:String, item:0bject, selected:Boolean):Void
{

// adds the text to the label

multilinelLabel.text = suggested;

156

Chapter 6: Components Dictionary

CheckBox component

A check box is a square box that can be selected or deselected. When it is selected, a check mark
appears in the box. You can add a text label to a check box and place it to the left, right, top,
or bottom.

A check box can be enabled or disabled in an application. If a check box is enabled and a user
clicks it or its label, the check box receives input focus and displays its pressed appearance. If a
user moves the pointer outside the bounding area of a check box or its label while pressing the
mouse button, the component’s appearance returns to its original state and it retains input focus.
The state of a check box does not change until the mouse is released over the component.
Additionally, the check box has two disabled states, selected and deselected, which do not allow
mouse or keyboard interaction.

If a check box is disabled, it displays its disabled appearance, regardless of user interaction. In the
disabled state, a button doesn’t receive mouse or keyboard input.

A CheckBox instance receives focus if a user clicks it or tabs to it. When a CheckBox instance has
focus, you can use the following keys to control it:

Key Description

Shift+Tab Moves focus to the previous element.

Spacebar Selects or deselects the component and triggers the c1ick event.
Tab Moves focus to the next element.

For more information about controlling focus, see “Creating custom focus navigation”
on page 50 or “FocusManager class” on page 419.

A live preview of each CheckBox instance reflects changes made to parameters in the Property
inspector or Component inspector during authoring.

When you add the CheckBox component to an application, you can use the Accessibility
panel to make it accessible to screen readers. First, you must add the following line of code to
enable accessibility:

mx.accessibility.CheckBoxAccImpl.enableAccessibility();

You enable accessibility for a component only once, regardless of how many instances you have of
the component. For more information, see Chapter 17, “Creating Accessible Content,” in Using

Flash.

Using the CheckBox component

A check box is a fundamental part of any form or web application. You can use check boxes
wherever you need to gather a set of true or false values that aren’t mutually exclusive. For
example, a form collecting personal information about a customer could have a list of hobbies for
the customer to select; each hobby would have a check box beside it.

CheckBox component 157

CheckBox parameters

You can set the following authoring parameters for each CheckBox component instance in the
Property inspector or in the Component inspector:

label sets the value of the text on the check box; the default value is defaultValue.
selected sets the initial value of the check box to checked (true) or unchecked (false).

labelPlacement orients the label text on the check box. This parameter can be one of four values:
left, right, top, or bottom; the default value is right. For more information, see
CheckBox.labelPlacement.

You can write ActionScript to control these and additional options for the CheckBox component
using its properties, methods, and events. For more information, see “CheckBox class”
on page 161.

Creating an application with the CheckBox component

The following procedure explains how to add a CheckBox component to an application while
authoring. The following example is a form for an online dating application. The form is a query
that searches for possible dating matches for the customer. The query form must have a check box
labeled Restrict Age that permits customers to restrict their search to a specified age group. When
the Restrict Age check box is selected, the customer can then enter the minimum and maximum
ages into two text fields. (These text fields are enabled only when the check box is selected.)

To create an application with the CheckBox component:
1. Drag two TextInput components from the Components panel to the Stage.
2. In the Property inspector, enter the instance names minimumAge and maximumAge.
3. Drag a CheckBox component from the Components panel to the Stage.
4. In the Property inspector, do the following:
= Enter restrictAge for the instance name.
= Enter Restrict Age for the label parameter.
5. Select Frame 1 in the Timeline, open the Actions panel, and enter the following code:

restrictAgeListener = new Object();

restrictAgelListener.click = function (evt){
minimumAge.enabled = evt.target.selected;
maximumAge.enabled = evt.target.selected;

}

restrictAge.addEventListener("click", restrictAgelistener);

This code creates a c11ck event handler that enables and disables the minimumAge and
maximumAge text field components, which have already been placed on Stage. For more
information, see CheckBox.c11ick and “Textlnput component” on page 742.

158

Chapter 6: Components Dictionary

Customizing the CheckBox component

You can transform a CheckBox component horizontally and vertically while authoring and at
runtime. While authoring, select the component on the Stage and use the Free Transform tool or
any of the Modify > Transform commands. At runtime, use the setSize() method
(UIObject.setSize()) or any applicable properties and methods of the CheckBox class.
Resizing the check box does not change the size of the label or the check box icon; it only changes
the size of the bounding box.

The bounding box of a CheckBox instance is invisible and also designates the hit area for the
instance. If you increase the size of the instance, you also increase the size of the hit area. If the
bounding box is too small to fit the label, the label is clipped to fit.

Using styles with the CheckBox component

You can set style properties to change the appearance of a CheckBox instance. If the name of a
style property ends in “Color”, it is a color style property and behaves differently than noncolor
style properties. For more information, see “Using styles to customize component color and text”
on page 67.

A CheckBox component supports the following styles:

Style Theme Description

themeColor Halo The base color scheme of a component. Possible
values are "haloGreen", "haloBlue", and
"haloOrange". The default value is "haloGreen".

color Both The text color. The default value is OxOB333C for the
Halo theme and blank for the Sample theme.

disabledColor Both The color for text when the component is disabled.
The default color is Ox848384 (dark gray).

embedFonts Both A Boolean value that indicates whether the font
specified in fontFamily is an embedded font. This
style must be set to true if fontFamily refersto an
embedded font. Otherwise, the embedded font will
not be used. If this style is set to true and fontFamily
does not refer to an embedded font, no text will be
displayed. The default value is false.

fontFamily Both The font name for text. The default valueis "_sans".
fontSize Both The point size for the font. The default value is 10.
fontStyle Both The font style: either "normal" or "italic". The default

value is "normal".

fontWeight Both The font weight: either "none" or "bo1d". The default
value is "none". All components can also accept the
value "normal" in place of "none" duringa setStyle()
call, but subsequent calls to getStyle() will return
"none".

CheckBox component 159

Style Theme Description

textDecoration Both The text decoration: either "none" or "underline". The
default value is "none".

symbolBackgroundColor Sample The background color of the check box. The default
value is OxFFFFFF (white).

symbolBackgroundDisabledColor Sample The background color of the check box when
disabled. The default value is OXEFEEEF (light gray).

symbolBackgroundPressedColor Sample The background color of the check box when pressed.
The default value is OxFFFFFF (white).

symbolCoTor Sample The color of the check mark. The default value is
0Ox000000 (black).

symbolDisabledColor Sample The color of the disabled check mark. The default

value is Ox848384 (dark gray).

Using skins with the CheckBox component

The CheckBox component uses symbols in the library to represent the button states. To skin the

CheckBox component while authoring, modify symbols in the Library panel. The CheckBox
component skins are located in the Flash Ul Components 2/Themes/MMDefault/CheckBox
Assets/states folder in the library of either the HaloTheme.fla file or the SampleTheme.fla file. For
more information, see “About skinning components” on page 80.

A CheckBox component uses the following skin properties:

Property Description

falseUpSkin The up (normal) unchecked state. The default is CheckFalseUp.
falseDownSkin The pressed unchecked state. The default is CheckFalseDown.
falseOverSkin The over unchecked state. The defaultis CheckFalseQver.
falseDisabledSkin The disabled unchecked state. The default is CheckFalseDisabled.
trueUpSkin The toggled checked state. The default is CheckTrueUp.
trueDownSkin The pressed checked state. The default is CheckTrueDown.
trueOverSkin The over checked state. The default is CheckTrueOver.
trueDisabledSkin The disabled checked state. The default is CheckTrueDisabled.

Each of these skins corresponds to the icon indicating the CheckBox state. The CheckBox
component does not have a border or background.

To create movie clip symbols for CheckBox skins:

1. Create a new FLA file.

2. Select File > Import > Open External Library, and select the HaloTheme.fla file.

This file is located in the application-level configuration folder. For the exact location on your

operating system, see “About themes” on page 77.

160 Chapter 6: Components Dictionary

3. In the theme’s Library panel, expand the Flash UI Components 2/Themes/MMDefault folder
and drag the CheckBox Assets folder to the library for your document.

4. Expand the CheckBox Assets/States folder in the library of your document.
5. Open the symbols you want to customize for editing.
For example, open the CheckFalseDisabled symbol.
6. Customize the symbol as desired.
For example, change the inner white square to a light gray.
7. Repeat steps 5-6 for all symbols you want to customize.
For example, repeat the color change for the inner box of the CheckTrueDisabled symbol.
8. Click the Back button to return to the main Timeline.
9. Drag a CheckBox component to the Stage.
For this example, drag two instances to show the two new skin symbols.
10. Set the CheckBox instance properties as desired.

For this example, set one CheckBox instance to true, and use ActionScript to set both
CheckBox instances to disabled.

. Select Control > Test Movie.

CheckBox class

Inheritance MovieClip > UIODbject class > UIComponent class > SimpleButton class > Button
component > CheckBox

ActionScript Class Name mx.controls.CheckBox

The properties of the CheckBox class let you create a text label and position it to the left, right,
top, or bottom of a check box at runtime.

Setting a property of the CheckBox class with ActionScript overrides the parameter of the same
name set in the Property inspector or Component inspector.

The CheckBox component uses the Focus Manager to override the default Flash Player focus
rectangle and draw a custom focus rectangle with rounded corners. For more information, see
“Creating custom focus navigation” on page 50.

Each component class has a version property, which is a class property. Class properties are
available only on the class itself. The version property returns a string that indicates the version
of the component. To access this property, use the following code:

trace(mx.controls.CheckBox.version);

Note: The code trace(myCheckBoxInstance.version); returns undefined.

Method summary for the CheckBox class

There are no methods exclusive to the CheckBox class.

CheckBox component 161

Methods inherited from the UlObject class

The following table lists the methods the CheckBox class inherits from the UIObject class. When
calling these methods from the CheckBox object, use the form checkBoxInstance.methodName.

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UlObject.dolater() Calls a function when parameters have been set in the Property and
Component inspectors.

UIObject.getStyle() Gets the style property from the style declaration or object.

UlObject.invalidate() Marks the object so it will be redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.

UIObject.redraw() Forces validation of the object so it is drawn in the current frame.

UIObject.setSize() Resizes the object to the requested size.

UlObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.

Methods inherited from the UIComponent class

The following table lists the methods the CheckBox class inherits from the UIComponent class.
When calling these methods from the CheckBox object, use the form
checkBoxInstance.methodName.

Method Description
UIComponent.getFocus() Returns a reference to the object that has focus.
UIComponent.setFocus() Sets focus to the component instance.

Property summary for the CheckBox class

The following table lists properties of the CheckBox class.

Property Description

CheckBox.label Specifies the text that appears next to a check box.
CheckBox.labelPlacement Specifies the orientation of the label text in relation to a check box.
CheckBox.selected Specifies whether the check box is selected (true) or

deselected (false).

162 Chapter 6: Components Dictionary

Properties inherited from the UlObject class

The following table lists the properties the CheckBox class inherits from the UIObject class.
When accessing these properties from the CheckBox object, use the form
checkBoxInstance.propertyName.

Property Description

UIObject.bottom The position of the bottom edge of the object, relative to the
bottom edge of its parent. Read-only.

UIObject.height The height of the object, in pixels. Read-only.

UlObject.left The left edge of the object, in pixels. Read-only.
UIObject.right The position of the right edge of the object, relative to the right
edge of its parent. Read-only.

UlObject.scaleX A number indicating the scaling factor in the x direction of the
object, relative to its parent.

UIObject.scaleY A number indicating the scaling factor in the y direction of the
object, relative to its parent.

UIObject.top The position of the top edge of the object, relative to its parent.
Read-only.

UlObject.visible A Boolean value indicating whether the object is visible (true) or
not (false).

UIObject.width The width of the object, in pixels. Read-only.

UIObject.x The left edge of the object, in pixels. Read-only.

UIObject.y The top edge of the object, in pixels. Read-only.

Properties inherited from the UIComponent class

The following table lists the properties the CheckBox class inherits from the UIComponent class.
When accessing these properties from the CheckBox object, use the form
checkBoxInstance.propertyName.

Property Description
UIComponent.enabled Indicates whether the component can receive focus and input.
UIComponent.tabIndex A number indicating the tab order for a component in a document.

CheckBox component 163

Properties inherited from the SimpleButton class

The following table lists the properties the CheckBox class inherits from the SimpleButton class.
When accessing these properties from the CheckBox object, use the form
checkBoxInstance.propertyName.

Property Description

SimpleButton.emphasized Indicates whether a button has the appearance of a
default push button.

SimpleButton.emphasizedStyleDeclaration The style declaration when the emphasized property is

setto true.

SimpleButton.selected A Boolean value indicating whether the button is
selected (true) or not (false). The default value is
false.

SimpleButton.toggle A Boolean value indicating whether the button

behaves as a toggle switch (true) or not (false). The
default value is false.

Properties inherited from the Button class

The following table lists the properties the CheckBox class inherits from the Button class. When
accessing these properties from the CheckBox object, use the form
checkBoxInstance.propertyName.

Property Description
Button.label Specifies the text that appears in a button.
Button.labelPlacement Specifies the orientation of the label text in relation to an icon.

Event summary for the CheckBox class

The following table lists an event of the CheckBox class.

Event Description

CheckBox.click Triggered when the mouse is clicked (released) over the check
box, or if the check box has focus and the Spacebar is pressed.

Events inherited from the UlObject class

The following table lists the events the CheckBox class inherits from the UIObject class.

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.
UIObject.hide Broadcast when an object’s state changes from visible to invisible.
UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

UlObject.resize Broadcast when an object has been resized.

164

Chapter 6: Components Dictionary

Event Description

UIObject.reveal Broadcast when an object’s state changes from invisible to visible.

UIObject.unload Broadcast when the subobjects are being unloaded.

Events inherited from the UIComponent class

The following table lists the events the CheckBox class inherits from the UIComponent class.

Event Description

UIComponent.focusIn Broadcast when an object receives focus.
UIComponent.focusOut Broadcast when an object loses focus.
UIComponent.keyDown Broadcast when a key is pressed.
UIComponent.keyUp Broadcast when a key is released.

Events inherited from the SimpleButton class

The following table lists the event the CheckBox class inherits from the SimpleButton class.

Event Description

SimpleButton.click Broadcast when a button is clicked.

CheckBox.click
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX 2004.
Usage
Usage 1:

on(click){

}

Usage 2:

listenerObject = new Object();
listenerObject.click = function(eventObject){

}
checkBoxInstance.addEventlListener("click", TistenerObject)

Description

Event; broadcast to all registered listeners when the mouse is clicked (released) over the check box,
or if the check box has focus and the Spacebar is pressed.

CheckBox component 165

The first usage example uses an on() handler and must be attached directly to a CheckBox
instance. The keyword this, used inside an on() handler attached to a component, refers to the
component instance. For example, the following code, attached to the check box myCheckBox,
sends “_level0.myCheckBox” to the Output panel:

on(click){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(checkBoxInstance) dispatches an event (in this case, c1ick), and the event is handled by a
function, also called a handler, on a listener object (17stenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. The event object has properties that contain
information about the event. You can use these properties to write code that handles the event.
Finally, you call the addEventListener() method (see
EventDispatcher.addEventListener()) on the component instance that broadcasts the event
to register the listener with the instance. When the instance dispatches the event, the listener is

called.

For more information, see “EventDispatcher class” on page 415.

Example

This example, written on a frame of the Timeline, sends a message to the Output panel when a
button called checkBoxInstance is clicked. The first line of code creates a listener object called
form. The second line defines a function for the c11ick event on the listener object. Inside the
function is a trace() statement that uses the event object that is automatically passed to the
function (in this example, event0bj) to generate a message. The target property of an event
object is the component that generated the event (in this example, checkBoxInstance). The
CheckBox.selected property is accessed from the event object’s target property. The last line
calls addEventListener() from checkBoxInstance and passes it the c11ick event and the form
listener object as parameters.

form = new 0Object();
form.click = function(event0Obj){
trace("The selected property has changed to " + eventObj.target.selected);
}
checkBoxInstance.addEventListener("click", form);

The following code also sends a message to the Output panel when checkBoxInstance is
clicked. The on() handler must be attached directly to checkBoxInstance:
on(click){

trace("check box component was clicked");
}

See also

EventDispatcher.addEventListener()

166

Chapter 6: Components Dictionary

CheckBox.label
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX 2004.

Usage
checkBoxInstance.label

Description
Property; indicates the text label for the check box. By default, the label appears to the right
of the check box. Setting this property overrides the label parameter specified in the Parameters
tab of the Component Inspector panel.

Example

The following code sets the text that appears beside the CheckBox component and sends the
value to the Output panel:

checkBox.Tabel = "Remove from Tist";
trace(checkBox.label)

See also

CheckBox.labelPlacement

CheckBox.labelPlacement
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX 2004.

Usage
checkBoxInstance.labelPlacement

Description

Property; a string that indicates the position of the label in relation to the check box. The
following are the four possible values (the dotted lines represent the bounding area of the
component; they are invisible in a document):

® "right" The check box is pinned to the upper left corner of the bounding area. The label is
set to the right of the check box. This is the default value.

CheckBox component 167

® "left" The check box is pinned to the upper right corner of the bounding area. The label is
set to the left of the check box.

® "pottom" The label is set below the check box. The check box and label are centered
horizontally and vertically.

® "top" The label is placed below the check box. The check box and label are centered
horizontally and vertically.

You can change the bounding area of a component while authoring by using the Transform
command or at runtime using the UIObject.setSize() property. For more information, see
“Customizing the CheckBox component” on page 159.

Example
The following example sets the placement of the label to the left of the check box:
checkBox_mc.labelPlacement = "left";

See also

CheckBox.Tabel

CheckBox.selected
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX 2004.

Usage
checkBoxInstance.selected

Description
Property; a Boolean value that selects (true) or deselects (false) the check box.
Example

The following example selects the instance checkbox1:

checkboxl.selected = true;

168 Chapter 6: Components Dictionary

Collection interface (Flash Professional only)
ActionScript Class Name mx.utils.Collection

The collection class is distributed in the common classes library as a compiled clip symbol. To
access this class, select Window > Other Panels > Common Libraries > Classes > UtilsClasses.

The collection interface lets you programmatically manage a group of related items, called
collection items. Each collection item in this set has properties that are described in the metadata of
the collection item class definition.

Components can expose properties as collections, which you can manipulate while authoring by
using the Values dialog box from the Component inspector. Using this dialog box, you can add
items, remove items, change properties of items, and change the position of items within the
collection. For more information on collections and collection items, see “About the Collection

tag” on page 942.

You typically use the collection interface with components that use the Collection metadata tag to
create collection properties. Although you can create, access, and delete Collection instances
programmatically, collections are most often used in the context of a component. Flash MX
Professional 2004 provides implementations of both collection-related interfaces (CollectionImpl
for Collection, and IteratorImpl for Iterator).

Method summary for the Collection interface

The following table lists the methods of the Collection interface.

Method Description

Collection.addItem() Adds a new item to the end of the collection.
Collection.contains() Indicates whether the collection contains the specified item.
Collection.clear() Removes all elements from the collection.
Collection.getItemAt() Returns an item within the collection by using its index.
Collection.getIterator() Returns an iterator over the elements in the collection.
Collection.getlength() Returns the number of items in the collection.
Collection.isEmpty() Indicates whether the collection is empty.
Collection.removeltem() Removes the specified item from the collection.

Collection.addltem()
Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage
collection.addItem(item)

Collection interface (Flash Professional only) 169

Parameters

item The object to be added to the collection. If i temis null, it is not added to the collection.

Returns

A Boolean value of true if the collection was changed as a result of the operation.

Description

Method; adds a new item to the end of the collection.

Example
The following example calls addItem():

on (click) {
import CompactDisc;

var myColl:mx.utils.Collection;

myColl = _parent.thisShelf.MyCompactDiscs;
myCD = new CompactDisc();

myCD.Artist = "John Coltrane";

myCD.Title = "Giant Steps";

var wasAdded:Boolean = myColl.addItem(myCD);

Collection.contains()
Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage
collection.contains(item)

Parameters

item The object whose presence in the collection is to be tested.

Returns

A Boolean value of true if the collection contains 7tem.

Description

Method; indicates whether the collection contains the specified item. For Flash to consider the
objects as equal, they must refer to the same object. If itemis a different object,
Collection.contains() returns false, even if the object’s properties are all equal.

170 Chapter 6: Components Dictionary

Example

The following example calls contains ():

var myColl:mx.utils.Collection;
myColl = _parent.thisShelf.MyCompactDiscs;

var itr:mx.utils.Iterator = myColl.getlterator();

while (itr.hasNext()) {
var cd:CompactDisc = CompactDisc(itr.next());
var title:String = cd.Title;
var artist:String = cd.Artist;
if(myColl.contains(cd)) {
trace("myColl contains " + title);
}
else {
trace("myColl does not contain " + title);
}
}

Collection.clear()

Availability
Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

collection.clear()

Returns

Nothing.

Description

Method; removes all of the elements from the collection.

Example

The following example calls clear ():

on (click) {
var myColl:mx.utils.Collection;

myColl = _parent.thisShelf.MyCompactDiscs;
myColl.clear();
}

Collection interface (Flash Professional only)

17

Collection.getltemAt()
Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage
collection.getItemAt(index)

Parameters

index A number that indicates the location of 7tem within the collection. This is a zero-based
index, so O retrieves the first item, 1 retrieves the second item, and so on.

Returns

An object containing a reference to the specified collection item, or nul1 if index is out of
bounds.

Description

Method; returns an item within the collection by using its index.

Example
The following example calls getItemAt ():

/...
var myColl:mx.utils.Collection;
myColl = _parent.thisShelf.MyCompactDiscs;
var myCD = CompactDisc(myColl.getItemAt(0));
if (myCD !=null) {
trace("Retrieved " + myCD.Title);
}
/...

Collection.getlterator()
Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage
collection.getlIterator()

Returns

An Iterator object that you can use to step through the collection.

172 Chapter 6: Components Dictionary

Description

Method; returns an iterator over the elements in the collection. There are no guarantees

concerning the order in which the elements are returned (unless this collection is an instance of a
class that provides a guarantee).

Example

The following example calls getIterator():

on (click) {
var myColl:mx.utils.Collection;
myColl = _parent.thisShelf.MyCompactDiscs;

var itr:mx.utils.Iterator = myColl.getlterator();
while (itr.hasNext()) {

var cd:CompactDisk = CompactDisc(itr.next());
var title:String = cd.Title;
var artist:String = cd.Artist;

trace("Title: " + title + " - Artist: " + artist);

}

Collection.getLength()
Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage
collection.getlLength()

Returns

The number of items in the collection.
Description

Method; returns the number of items in the collection.
Example

The following example calls getLength():

/...
var myColl:mx.utils.Collection;
myColl = _parent.thisShelf.MyCompactDiscs;

trace ("Collection size is: " + myColl.getlLength());
/...

Collection interface (Flash Professional only) 173

Collection.isEmpty()
Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage
collection.isEmpty()

Returns

A Boolean value of true if the collection is empty.

Description

Method; indicates whether the collection is empty.

Example
The following example calls isEmpty ():

on (click) {
var myColl:mx.utils.Collection;
myColl = _parent.thisShelf.MyCompactDiscs;
if (myColl.isEmpty()) {
trace("No CDs in the collection");
}
}
/...

Collection.removeltem()
Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage
collection.removeltem(item)

Parameters
item The object to be removed from the collection.

Returns

A Boolean value of true if 7tem was removed successfully.

174 Chapter 6: Components Dictionary

Description

Method; removes the specified item from the collection. Because Collection.removeltem()
dynamically reduces the size of the collection, do not call this method while looping through an

iterator.

Example

The following example calls removelItem():

var myColl:mx.utils.Collection;
myColl = _parent.thisShelf.MyCompactDiscs;

// get this from a text input box
var removeArtist:String = _parent.tArtistToRemove.text;
var removeSize:Number = 0;

if (myColl.isEmpty()) {
trace("No CDs in the collection");
}
else {
var toRemove:Array = new Array();
var itr:mx.utils.Iterator = myColl.getlterator();
var cd:CompactDisc = new CompactDisc();
var title:String = "";
var artist:String = "";
while (itr.hasNext()) {
cd = CompactDisc(itr.next());
title = cd.Title;
artist = cd.Artist;
if(artist == removeArtist) {
// mark this artist for deletion
removeSize = toRemove.push(cd);
trace("*** Marked for deletion: " + artist + "

}
}
// after while Toop, remove the bad ones
var removeCD:CompactDisc = new CompactDisc();
for(i = 0; i < removeSize; i++) {
removeCD = toRemovel[i];

trace("Removing: " + removeCD.Artist + "|" + removeCD.Title);

myColl.removeltem(removeCD);
}

"+ title);

Collection interface (Flash Professional only)

175

ComboBox component

A combo box allows a user to make a single selection from a drop-down list. A combo box can be
static or editable. An editable combo box allows a user to enter text directly into a text field at the
top of the list, as well as selecting an item from a drop-down list. If the drop-down list hits the
bottom of the document, it opens up instead of down. The combo box is composed of three
subcomponents: a Button component, a TextInput component, and a List component.

When a selection is made in the list, the label of the selection is copied to the text field at the top
of the combo box. It doesn’t matter if the selection is made with the mouse or the keyboard.

A ComboBox component receives focus if you click the text box or the button. When a
ComboBox component has focus and is editable, all keystrokes go to the text box and are handled
according to the rules of the TextInput component (see “TextInput component” on page 742),
with the exception of the following keys:

Key Description

Control+Down Opens the drop-down list and gives it focus.
Arrow

Shift+Tab Moves focus to the previous object.

Tab Moves focus to the next object.

When a ComboBox component has focus and is static, alphanumeric keystrokes move the
selection up and down the drop-down list to the next item with the same first character. You can
also use the following keys to control a static combo box:

Key Description

Control+Down Opens the drop-down list and gives it focus.

Arrow

Control+Up Closes the drop-down list, if open in the stand-alone and browser versions of Flash
Arrow Player.

Down Arrow Moves the selection down one item.

End Selection moves to the bottom of the list.

Escape Closes the drop-down list and returns focus to the combo box in Test Movie mode.
Enter Closes the drop-down list and returns focus to the combo box.

Home Moves the selection to the top of the list.

Page Down Moves the selection down one page.

Page Up Moves the selection up one page.
Shift+Tab Moves focus to the previous object.
Tab Moves focus to the next object.

176

Chapter 6: Components Dictionary

When the drop-down list of a combo box has focus, alphanumeric keystrokes move the selection
up and down the drop-down list to the next item with the same first character. You can also use
the following keys to control a drop-down list:

Key Description
Control+Up If the drop-down list is open, focus returns to the text box and the drop-down list
Arrow closes in the stand-alone and browser versions of Flash Player.

Down Arrow Moves the selection down one item.

End Moves the insertion point to the end of the text box.

Enter If the drop-down list is open, focus returns to the text box and the drop-down list
closes.

Escape If the drop-down list is open, focus returns to the text box and the drop-down list
closes in Test Movie mode.

Home Moves the insertion point to the beginning of the text box.

Page Down Moves the selection down one page.

Page Up Moves the selection up one page.

Tab Moves focus to the next object.

Shift+End Selects the text from the insertion point to the End position.

Shift+Home Selects the text from the insertion point to the Home position.
Shift+Tab Moves focus to the previous object.

Up Arrow Moves the selection up one item.

Note: The page size used by the Page Up and Page Down keys is one less than the number of items
that fit in the display. For example, paging down through a ten-line drop-down list will show items O-
9, 9-18, 18-27, and so on, with one item overlapping per page.

For more information about controlling focus, see “Creating custom focus navigation”
on page 50 or “FocusManager class” on page 419.

A live preview of each ComboBox component instance on the Stage reflects changes made to
parameters in the Property inspector or Component inspector during authoring. However, the
drop-down list does not open in the live preview, and the first item displays as the selected item.

When you add the ComboBox component to an application, you can use the Accessibility
panel to make it accessible to screen readers. First, you must add the following line of code to
enable accessibility:

mx.accessibility.ComboBoxAccImpl.enableAccessibility();

You enable accessibility for a component only once, regardless of how many instances you have of
the component. For more information, see Chapter 17, “Creating Accessible Content,” in Using

Flash.

ComboBox component 177

Using the ComboBox component

You can use a ComboBox component in any form or application that requires a single choice
from a list. For example, you could provide a drop-down list of states in a customer address form.
You can use an editable combo box for more complex scenarios. For example, in an application
that provides driving directions, you could use an editable combo box for a user to enter her
origin and destination addresses. The drop-down list would contain her previously entered
addresses.

ComboBox parameters

You can set the following authoring parameters for each ComboBox component instance in the
Property inspector or in the Component inspector:

editable determines if the ComboBox component is editable (true) or only selectable (false).
The default value is false.

labels populates the ComboBox component with an array of text values.

data associates a data value with each item in the ComboBox component. The data parameter is
an array.

rowCount sets the maximum number of items that can be displayed in the list. The default value
is 5.

You can write ActionScript to set additional options for ComboBox instances using the methods,

properties, and events of the ComboBox class. For more information, see “ComboBox class”
on page 182.

Creating an application with the ComboBox component

The following procedure explains how to add a ComboBox component to an application
while authoring. In this example, the combo box presents a list of cities to select from in its
drop-down list.

To create an application with the ComboBox component:
1. Drag a ComboBox component from the Components panel to the Stage.
2. Select the Transform tool and resize the component on the Stage.

The combo box can only be resized on the Stage during authoring. Typically, you would only
change the width of a combo box to fit its entries.

3. Select the combo box and, in the Property inspector, enter the instance name comboBox.
4. In the Component inspector or Property inspector, do the following:

= Enter Minneapolis, Portland, and Keene for the label parameter. Double-click the label
parameter field to open the Values dialog box. Then click the plus sign to add items.
» Enter MN.swf, OR.swf, and NH.swf for the data parameter.

These are imaginary SWF files that, for example, you could load when a user selects a city
from the combo box.

178 Chapter 6: Components Dictionary

5. Select Frame 1 in the Timeline, open the Actions panel, and enter the following code:

function change(evt)({
trace(evt.target.selectedItem.label);

}

comboBox.addEventListener("change", this);

The last line of code adds a change event handler to the ComboBox instance. For more
information, see ComboBox.change.

Customizing the ComboBox component

You can transform a ComboBox component horizontally and vertically while authoring. While
authoring, select the component on the Stage and use the Free Transform tool or any of the
Modify > Transform commands.

If text is too long to fit in the combo box, the text is clipped to fit. You must resize the combo box
while authoring to fit the label text.

In editable combo boxes, only the button is the hit area—not the text box. For static combo
boxes, the button and the text box constitute the hit area. The hit area responds by opening or
closing the drop-down list.

Using styles with the ComboBox component

You can set style properties to change the appearance of a ComboBox component. If the name of
a style property ends in “Color”, it is a color style property and behaves differently than noncolor
style properties. For more information, see “Using styles to customize component color and text”
on page 67.

The combo box has two unique styles: openDuration and openEasing. Other styles are passed
to the button, text box, and drop-down list of the combo box through those individual
components, as follows:

® The button is a Button instance and uses its styles. (See “Using styles with the Button
component” on page 133.)

® The text is a TextInput instance and uses its styles. (See “Using styles with the TextInput
component” on page 744.)

® The drop-down list is an List instance and uses its styles. (See “Using styles with the List
component” on page 453.)

A ComboBox component uses the following styles:

Style Theme Description

themeColor Halo The base color scheme of a component. Possible values are
"haloGreen", "haloBlue",and "haloOrange". The default value
is "haloGreen".

backgroundColor Both The background color. The default color is white.

ComboBox component 179

Style Theme Description

border styles Both The Button subcomponent uses two RectBorder instances
for its borders and responds to the styles defined on that
class. See “RectBorder class” on page 647.
In the Halo theme, the ComboBox component uses a custom
rounded border for the collapsed portion of the ComboBox.
The colors of this portion of the ComboBox can be modified
only through skinning. See “Using skins with the ComboBox
component” on page 181.

color Both The text color. The default value is OxOB333C for the Halo
theme and blank for the Sample theme.

disabledColor Both The color for text when the component is disabled. The default
color is Ox848384 (dark gray).

embedFonts Both Boolean value that indicates whether the font specified in
fontFamily is an embedded font. This style must be set to
true if fontFamily refers to an embedded font. Otherwise, the
embedded font will not be used. If this style is set to true and
fontFamily does not refer to an embedded font, no text will be
displayed. The default value is false.

fontFamily Both The font name for text. The default value is "_sans".

fontSize Both The point size for the font. The default value is 10.

fontStyle Both The font style: either "normal" or "italic". The default value
is "normal".

fontWeight Both The font weight: either "none" or "bo1d". The default value

is "none". All components can also accept the value "normal"
in place of "none" duringa setStyle() call, but subsequent
callsto getStyle() will return "none".

textAlign Both The text alignment: either "1eft", "right", or "center". The
default value is "Teft".

textDecoration Both The text decoration: either "none" or "underline". The default
value is "none".

openDuration Both The duration, in milliseconds, of the transition animation. The
default value is 250.

openEasing Both A reference to a tweening function that controls the animation.
Defaults to sine in/out. For more information, see
“Customizing component animations” on page 75.

The following example demonstrates how to use List styles to control the behavior of the drop-
down portion of a ComboBox component.

// comboBox is an instance of the ComboBox component on Stage
comboBox.setStyle("alternatingRowColors", [OxFFFFFF, OxBFBFBF]);

180 Chapter 6: Components Dictionary

Using skins with the ComboBox component

The ComboBox component uses symbols in the library to represent the button states and has
skin variables for the down arrow. These skins are located in the Flash UI Components 2/
Themes/MMDefault/ComboBox Assets/States folder of the HaloTheme.fla and
SampleTheme.fla files. The information below describes these skins and provides steps for
customizing them.

The ComboBox component also uses scroll bar skins for the drop-down list’s scroll bar and two
RectBorder class instances for the border around the text input and drop-down list. For
information on customizing these skins, see “Using skins with the UIScrollBar component”

on page 831 and “RectBorder class” on page 647. For more information on the methods available
to skin components, see “About skinning components” on page 80.

A ComboBox component uses the following skin properties:

Property Description

ComboDownArrowDisabledName The down arrow’s disabled state. The default is
ComboDownArrowDisabled.

ComboDownArrowDownName The down arrow’s down state. The default is ComboDownArrowDown.
ComboDownArrowUpName The down arrow’s up state. The default is ComboDownArrowOver.
ComboDownArrowOverName The down arrow’s over state. The default is ComboDownArrowUp.

To create movie clip symbols for ComboBox skins:
1. Create a new FLA file.

2. Select File > Import > Open External Library, and select the HaloTheme.fla file.

This file is located in the application-level configuration folder. For the exact location on your
operating system, see “About themes” on page 77.

3. In the theme’s Library panel, expand the Flash UI Components 2/Themes/MMDefault folder
and drag the ComboBox Assets folder to the library for your document.

4. Expand the ComboBox Assets/States folder in the library of your document.
5. Open the symbols you want to customize for editing.
For example, open the ComboDownArrowDisabled symbol.
6. Customize the symbol as desired.
For example, change the inner white square to a light gray.
7. Repeat steps 5-6 for all symbols you want to customize.
8. Click the Back button to return to the main Timeline.
9. Drag a ComboBox component to the Stage.
10. Set the ComboBox instance properties as desired.
For this example, use ActionScript to set the ComboBox to disabled.

11. Select Control > Test Movie.

ComboBox component 181

ComboBox class

Inheritance MovieClip > UIObject class > UIComponent class > ComboBase > ComboBox
ActionScript Class Name mx.controls.ComboBox

The ComboBox component combines three separate subcomponents: Button, TextInput, and
List. Most of the methods, properties, and events of each subcomponent are available directly
from the ComboBox component and are listed in the summary tables for the ComboBox class.

The drop-down list in a combo box is provided either as an array or as a data provider. If you use
a data provider, the list changes at runtime. You can change the source of the ComboBox data
dynamically by switching to a new array or data provider.

Items in a combo box list are indexed by position, starting with the number 0. An item can be one
of the following:

® A primitive data type.
® An object that contains a Tabel property and a data property

Note: An object may use the ComboBox.labelFunction or ComboBox.labelField property to
determine the 1abel property.

If the item is a primitive data type other than String, it is converted to a string. If an item is an
object, the 1abel property must be a string and the data property can be any ActionScript value.

ComboBox methods to which you supply items have two parameters, Tabel and data, that refer
to the properties above. Methods that return an item return it as an object.

A combo box defers the instantiation of its drop-down list until a user interacts with it. Therefore,
a combo box may appear to respond slowly on first use.

Use the following code to programmatically access the ComboBox component’s drop-down list
and override the delay:

var foo = myComboBox.dropdown;

Accessing the drop-down list may cause a pause in the application. This may occur when the user
first interacts with the combo box, or when the above code runs.

Method summary for the ComboBox class

The following table lists methods of the ComboBox class.

Method Description

ComboBox.addItem() Adds an item to the end of the list.
ComboBox.addItemAt() Adds an item to the end of the list at the specified index.
ComboBox.close() Closes the drop-down list.

ComboBox.getItemAt() Returns the item at the specified index.
ComboBox.open() Opens the drop-down list.

ComboBox.removeAll () Removes all items in the list.

182

Chapter 6: Components Dictionary

Method

Description

ComboBox.

ComboBox.

ComboBox

ComboBox.

removeltemAt ()

replaceltemAt()

.sortItems()

sortItemsBy()

Removes an item from the list at the specified location.
Replaces the content of the item at the specified index.
Sorts the list using a compare function.

Sorts the list using a field of each item.

Methods inherited from the UlObject class

The following table lists the methods the ComboBox class inherits from the UIObject class.
When calling these methods from the ComboBox object, use the form
comboBoxInstance.methodName.

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UIObject.dolater() Calls a function when parameters have been set in the Property and
Component inspectors.

UIObject.getStyle() Gets the style property from the style declaration or object.

UIObject.invalidate() Marks the object so it will be redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.

UlObject.redraw() Forces validation of the object so it is drawn in the current frame.

UIObject.setSize() Resizes the object to the requested size.

UlObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.

Methods inherited from the UIComponent class

The following table lists the methods the ComboBox class inherits from the UIComponent class.
When calling these methods from the ComboBox object, use the form
comboBoxInstance.methodName.

Method

Description

UIComponent.getFocus()

UIComponent.setFocus()

Returns a reference to the object that has focus.

Sets focus to the component instance.

ComboBox component 183

Property summary for the ComboBox class

The following table lists properties of the ComboBox class.

Property Description

ComboBox.dataProvider The data model for the items in the list.

ComboBox.dropdown Returns a reference to the List component contained by the
combo box.

ComboBox.dropdownWidth The width of the drop-down list, in pixels.

ComboBox.editable Indicates whether a combo box is editable.

ComboBox.labelField Indicates which data field to use as the label for the drop-down list.

ComboBox.labelFunction Specifies a function to compute the label field for the drop-down
list.

ComboBox.length Read-only; the length of the drop-down list.

ComboBox.restrict The set of characters that a user can enter in the text field of a
combo box.

ComboBox.rowCount The maximum number of list items to display at one time.

ComboBox.selectedIndex The index of the selected item in the drop-down list.

ComboBox.selectedItem The value of the selected item in the drop-down list.

ComboBox.text The string of text in the text box.

ComboBox.textField A reference to the Textinput component in the combo box.

ComboBox.value The value of the text box (editable) or drop-down list (static).

Properties inherited from the UlObject class

The following table lists the properties the ComboBox class inherits from the UIObject class.
When accessing these properties from the ComboBox object, use the form
comboBoxInstance.propertyName.

Property Description

UIObject.bottom The position of the bottom edge of the object, relative to the
bottom edge of its parent. Read-only.

UIObject.height The height of the object, in pixels. Read-only.

UlObject.left The left edge of the object, in pixels. Read-only.
UIObject.right The position of the right edge of the object, relative to the right
edge of its parent. Read-only.

UlObject.scaleX A number indicating the scaling factor in the x direction of the
object, relative to its parent.
UIObject.scaleY A number indicating the scaling factor in the y direction of the

object, relative to its parent.

184

Chapter 6: Components Dictionary

Property Description

UIObject.top The position of the top edge of the object, relative to its parent.
Read-only.

UIObject.visible A Boolean value indicating whether the object is visible (true) or
not (false).

UIObject.width The width of the object, in pixels. Read-only.

UIObject.x The left edge of the object, in pixels. Read-only.

UIObject.y The top edge of the object, in pixels. Read-only.

Properties inherited from the UIComponent class

The following table lists the properties the ComboBox class inherits from the UIComponent
class. When accessing these properties from the ComboBox object, use the form
comboBoxInstance.propertyName.

Property Description
UIComponent.enabled Indicates whether the component can receive focus and input.
UIComponent.tabIndex A number indicating the tab order for a component in a document.

Event summary for the ComboBox class

The following table lists events of the ComboBox class.

Event Description

ComboBox.change Broadcast when the value of the combo box changes as a result of
user interaction.

ComboBox.close Broadcast when the list of the combo box begins to retract.

ComboBox.enter Broadcast when the Enter key is pressed.

ComboBox.itemRo110ut Broadcast when the pointer rolls off a drop-down list item.

ComboBox.itemRol10ver Broadcast when a drop-down list item is rolled over.

ComboBox.open Broadcast when the drop-down list begins to open.

ComboBox.scroll Broadcast when the drop-down list is scrolled.

Events inherited from the UlObject class

The following table lists the events the ComboBox class inherits from the UIODbject class.

Event Description

UlObject.draw Broadcast when an object is about to draw its graphics.
UIObject.hide Broadcast when an object’s state changes from visible to invisible.
UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

ComboBox component 185

Event Description

UIObject.resize Broadcast when an object has been resized.
UIObject.reveal Broadcast when an object’s state changes from invisible to visible.
UIObject.unload Broadcast when the subobjects are being unloaded.

Events inherited from the UIComponent class

The following table lists the events the ComboBox class inherits from the UIComponent class.

Event Description
UIComponent.focusIn Broadcast when an object receives focus.
UIComponent.focusOut Broadcast when an object loses focus.
UIComponent.keyDown Broadcast when a key is pressed.
UIComponent.keyUp Broadcast when a key is released.
ComboBox.addltem()
Availability

Flash Player 6 (6.0 79.0).
Edition
Flash MX 2004.

Usage
comboBoxInstance.addItem(labell, datal)

comboBoxInstance.addItem({1abel:Jabell, data:datall)
comboBoxInstance.addItem(obj) ;
Parameters
Tabel A string that indicates the label for the new item.
data The data for the item; it can be of any data type. This parameter is optional.

obj An object with a 1abel property and an optional data property.

Returns

The index at which the item was added.

Description

Method; adds a new item to the end of the list.

Example
The following code adds an item to the myComboBox instance:

myComboBox.addItem("this is an Item");

186 Chapter 6: Components Dictionary

ComboBox.addltemAt()

Availability

Flash Player 6 (6.0 79.0).
Edition

Flash MX 2004.

Usage
comboBoxInstance.addItemAt(index, Tlabell, datal)
comboBoxInstance.addItemAt(7index, {label:Tabell, data:datal})

comboBoxInstance.addItemAt(index, obj);
Parameters

index A number 0 or greater that indicates the position at which to insert the item (the index

of the new item).
Tabel A string that indicates the label for the new item.
data The data for the item; it can be of any data type. This parameter is optional.

obj An object with 1abel and data properties.

Returns

The index at which the item was added.

Description
Method; adds a new item to the end of the list at the index specified by the 7ndex parameter.
Indices greater than ComboBox. length are ignored.

Example
The following code inserts an item at index 3, which is the fourth position in the combo box list
(0 is the first position):
myBox.addItemAt(3, "this is the fourth Item");

ComboBox.change
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX 2004.
Usage
Usage 1:

on(change){
// your code here
}

ComboBox component 187

Usage 2:

listenerObject = new Object();
listenerObject.change = function(eventObject)
// your code here
}
comboBoxInstance.addEventListener("change", IistenerObject)

Description

Event; broadcast to all registered listeners when the ComboBox.selectedIndex or
ComboBox.selectedItem property changes as a result of user interaction.

The first usage example uses an on() handler and must be attached directly to a ComboBox
instance. The keyword this, used in an on() handler attached to a component, refers to the
component instance. For example, the following code, attached to the ComboBox instance
myBox, sends “_level0.myBox” to the Output panel:

on(change) {

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(comboBoxInstance) dispatches an event (in this case, change) and the event is handled by a
function, also called a handler, on a listener object (17stenerobject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has properties that contain
information about the event. You can use these properties to write code that handles the event.
Finally, you call addEventListener() (see EventDispatcher.addEventListener()) on the
component instance that broadcasts the event to register the listener with the instance. When the
instance dispatches the event, the listener is called.

For more information, see “EventDispatcher class” on page 415.

Example

The following example sends the instance name of the component that generated the change
event to the Output panel:

form.change = function(eventObj){

trace("Value changed to " + eventObj.target.value);
}
myCombo.addEventListener("change", form);

See also

EventDispatcher.addEventListener()

188

Chapter 6: Components Dictionary

ComboBox.close()
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX 2004.

Usage
myComboBox.close()

Parameters
None.
Returns
Nothing.
Description
Method; closes the drop-down list.
Example
The following example closes the drop-down list of the myBox combo box:
myBox.close();
See also

ComboBox.open()

ComboBox.close
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX 2004.
Usage
Usage 1:

on(close){
// your code here
}

Usage 2:

listenerObject = new 0Object();

listenerObject.close = function(eventObject)
// your code here

}

comboBoxInstance.addEventListener("close", listenerObject)

ComboBox component 189

Description

Event; broadcast to all registered listeners when the drop-down list of the combo box is fully
retracted.

The first usage example uses an on () handler and must be attached directly to a ComboBox
instance. The keyword this, used in an on() handler attached to a component, refers to the
component instance. For example, the following code, attached to the ComboBox instance
myBox, sends “_level0.myBox” to the Output panel:

on(close){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(comboBoxInstance) dispatches an event (in this case, cTose) and the event is handled by a
function, also called a handler, on a listener object (17stenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has properties that contain
information about the event. You can use these properties to write code that handles the event.
Finally, you call the addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

For more information, see “EventDispatcher class” on page 415.

Example

The following example sends a message to the Output panel when the drop-down list begins to
close:

form.close = function(){
trace("The combo box has closed");
}
myCombo.addEventListener("close", form);

See also

EventDispatcher.addEventListener()

ComboBox.dataProvider

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

comboBoxInstance.dataProvider

190

Chapter 6: Components Dictionary

Description

Property; the data model for items viewed in a list. The value of this property can be an array
or any object that implements the DataProvider APIL. The default value is [1. The List
component and the ComboBox component share the dataProvider property, and changes to
this property are immediately available to both components.

The List component, like other data-aware components, adds methods to the Array object’s
prototype so that they conform to the DataProvider API (see DataProvider.as for details).
Therefore, any array that exists at the same time as a list automatically has all the methods
(addItem(), getItemAt(), and so on) needed for it to be the model of a list, and can be used to
broadcast model changes to multiple components.

If the array contains objects, the TabelField or 1abelFunction property is accessed to
determine what parts of the item to display. The default value is "1abe1", so if such a field exists,
it is chosen for display; if not, a comma-separated list of all fields is displayed.

Note: If the array contains strings at each index, and not objects, the list is not able to sort the items
and maintain the selection state. Any sorting will cause the selection to be lost.

Any instance that implements the DataProvider API is eligible as a data provider for a List
component. This includes Flash Remoting RecordSet objects, Firefly DataSet components, and
so on.

Example
This example uses an array of strings to populate the drop-down list:
comboBox.dataProvider = ["Ground Shipping","2nd Day Air","Next Day Air"];
This example creates a data provider array and assigns it to the dataProvider property:

myDP = new Array();
list.dataProvider = myDP;

for (var i=0; i<accounts.length; i++) {
// these changes to the DataProvider will be broadcast to the Tist
myDP.addItem({Tabel: accounts[il.name,
data: accounts[il.accountID});
}

ComboBox.dropdown
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX 2004.

Usage
myComboBox.dropdown

ComboBox component 191

Description

Property (read-only); returns a reference to the list contained by the combo box. The List
subcomponent isn’t instantiated in the combo box until it needs to be displayed. However, when
you access the dropdown property, the list is created.

See also

ComboBox.dropdownWidth

ComboBox.dropdownWidth
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX 2004.

Usage
myComboBox.dropdownWidth

Description
Property; the width limit of the drop-down list, in pixels. The default value is the width of the
ComboBox component (the TextInput instance plus the SimpleButton instance).
Example
The following code sets dropdownWidth to 150 pixels:
myComboBox.dropdownWidth = 150;
See also

ComboBox.dropdown

ComboBox.editable

Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX 2004.
Usage
myComboBox.editable
Description

Property; indicates whether the combo box is editable (true) or not (false). In an editable
combo box, a user can enter values into the text box that do not appear in the drop-down list. If a
combo box is not editable, you cannot enter text into the text box. The text box displays the text
of the item in the list. The default value is false.

192 Chapter 6: Components Dictionary

Making a combo box editable clears the combo box text field. It also sets the selected index (and

item) to undefined. To make a combo box editable and still retain the selected item, use the
following code:

var ix = myComboBox.selectedIndex;
myComboBox.editable = true; // clears the text field
myComboBox.selectedIndex = ix; // copies the Tabel back into the text field

Example

The following code makes myComboBox editable:

myComboBox.editable = true;

ComboBox.enter
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX 2004.

Usage
Usage 1:

on(enter) {
// your code here
}

Usage 2:

listenerObject = new 0Object();

listenerObject.enter = function(eventObject){
// your code here

}

comboBoxInstance.addEventlListener("enter", IlistenerObject)

Description

Event; broadcast to all registered listeners when the user presses the Enter key in the text box. This
event is a TextInput event that is broadcast only from editable combo boxes. For more
information, see TextInput.enter.

The first usage example uses an on () handler and must be attached directly to a ComboBox
instance. The keyword this, used in an on() handler attached to a component, refers to the
component instance. For example, the following code, attached to the ComboBox instance
myBox, sends “_level0.myBox” to the Output panel:

on(enter){

trace(this);
}

ComboBox component 193

The second usage example uses a dispatcher/listener event model. A component instance
(comboBoxInstance) dispatches an event (in this case, enter) and the event is handled by a
function, also called a handler, on a listener object (17stenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has properties that contain
information about the event. You can use these properties to write code that handles the event.
Finally, you call the addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

For more information, see “EventDispatcher class” on page 415.

Example

The following example sends a message to the Output panel when the drop-down list begins

to close:

form.enter = function(){

trace("The combo box enter event was triggered");
}
myCombo.addEventListener("enter", form);

See also

EventDispatcher.addEventListener()

ComboBox.getltemAt()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

comboBoxInstance.getItemAt(index)

Parameters

index The index of the item to retrieve. The index must be a number greater than or equal to

0, and less than the value of ComboBox.1ength.

Returns

The indexed item object or value. The value is undefined if the index is out of range.

Description

Method; retrieves the item at a specified index.

194

Chapter 6: Components Dictionary

Example

The following code displays the item at index position 4:

trace(myBox.getItemAt(4).label);

ComboBox.itemRollOut
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX 2004.
Usage
Usage 1:

on(itemRo110ut){
// your code here
}

Usage 2:

listenerObject = new Object();

listenerObject.itemRo110ut = function(eventObject){
// your code here

}

comboBoxInstance.addEventlListener("itemRol110ut", TistenerObject)

Event object

In addition to the standard properties of the event object, the itemRo110ut event has an index
property. The index is the number of the item that the pointer rolled out of.

Description

Event; broadcast to all registered listeners when the pointer rolls out of drop-down list items.
This is a List event that is broadcast from a combo box. For more information, see
List.itemRol110ut.

The first usage example uses an on () handler and must be attached directly to a ComboBox
instance. The keyword this, used inside an on() handler attached to a component, refers to the
component instance. For example, the following code, attached to the ComboBox instance
myBox, sends “_level0.myBox” to the Output panel:

on(itemRol10ut){

trace(this);
}

ComboBox component 195

The second usage example uses a dispatcher/listener event model. A component instance
(comboBoxInstance) dispatches an event (in this case, itemRo110ut) and the event is handled by
a function, also called a handler, on a listener object (7istenerObject) that you create. You
define a method with the same name as the event on the listener object; the method is called
when the event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has properties that contain
information about the event. You can use these properties to write code that handles the event.
For more information, see “EventDispatcher class” on page 415.

Finally, you call the addEventListener () method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

Example

The following example sends a message to the Output panel that indicates the index of the item
that the pointer rolled out of:

form.itemRol110ut = function (eventObj) {

trace("Item #" + eventObj.index + " has been rolled out of.");
}
myCombo.addEventListener("itemRol10ut", form);

See also

ComboBox.itemRol10ver, EventDispatcher.addEventListener()

ComboBox.itemRollOver
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX 2004.
Usage
Usage 1:

on(itemRol10ver){
// your code here
}

Usage 2:

listenerObject = new Object();

listenerObject.itemRo110ver = function(eventObject){
// your code here

}

comboBoxInstance.addEventlListener("itemRol110ver", IlistenerObject)
Event object

In addition to the standard properties of the event object, the itemRo110ver event has an index
property. The index is the number of the item that the pointer rolled over.

196 Chapter 6: Components Dictionary

Description

Event; broadcast to all registered listeners when the mouse pointer rolls over drop-down list items.
This is a List event that is broadcast from a combo box. For more information, see
List.itemRol10ver.

The first usage example uses an on() handler and must be attached directly to a ComboBox
instance. The keyword this, used in an on() handler attached to a component, refers to the
component instance. For example, the following code, attached to the ComboBox instance
myBox, sends “_level0.myBox” to the Output panel:

on(itemRol10ver)({

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(comboBoxInstance) dispatches an event (in this case, itemRo110ver) and the event is handled
by a function, also called a handler, on a listener object (7istenerObject) that you create. You
define a method with the same name as the event on the listener object; the method is called
when the event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has properties that contain
information about the event. You can use these properties to write code that handles the event.
For more information, see “EventDispatcher class” on page 415.

Finally, you call the addEventListener () method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

Example

The following example sends a message to the Output panel that indicates the index of the item
that the pointer rolled over:

form.itemRol10ver = function (eventObj) {

trace("Item #" + eventObj.index + " has been rolled over.");
}
myCombo.addEventListener("itemRol10ver", form);

See also

ComboBox.itemRo110ut, EventDispatcher.addEventlListener()

ComboBox.labelField

Availability

Flash Player 6 (6.0 79.0).
Edition

Flash MX 2004.

Usage
myComboBox.labelField

ComboBox component 197

Description

Property; the name of the field in dataProvider array objects to use as the label field. This is a
property of the List component that is available from a ComboBox component instance. For
more information, see List.labelField.

The default value is undefined.
Example

The following example sets the dataProvider property to an array of strings and sets the
TabelField property to indicate that the name field should be used as the label for the
drop-down list:

myComboBox.dataProvider = [
{name:"Gary", gender:"male"},
{name:"Susan", gender:"female"} 1;

myComboBox.labelField = "name";
See also

List.labelFunction

ComboBox.labelFunction
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX 2004.

Usage
myComboBox.labelFunction

Description

Property; a function that computes the label of a data provider item. You must define the
function. The default value is undefined.

Example

The following example creates a data provider and then defines a function to specify what to use
as the label in the drop-down list:

myComboBox.dataProvider = [
{firstName:"Nigel", TastName:"Pegg", age:"really young"},
{firstName:"Gary", lastName:"Grossman", age:"young"},
{firstName:"Chris", TastName:"Walcott", age:"old"},
{firstName:"Greg", lastName:"Yachuk", age:"really old"} 1;

myComboBox.labelFunction = function(itemObj) {
return (itemObj.lastName + ", " + itemObj.firstName);
}

198 Chapter 6: Components Dictionary

See also

List.labelField

ComboBox.length
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX 2004.

Usage
myComboBox.length

Description

Property (read-only); the length of the drop-down list. This is a property of the List component
that is available from a ComboBox instance. For more information, see List.length. The
default value is 0.

Example
The following example stores the value of Tength to a variable:

dropdownItemCount = myBox.length;

ComboBox.open()
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX 2004.

Usage
myComboBox.open()

Parameters
None.
Returns
Nothing.
Description
Method; opens the drop-down list.
Example

The following code opens the drop-down list for the combol instance:

combol.open();

ComboBox component 199

See also

ComboBox.close()

ComboBox.open
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX 2004.

Usage
Usage 1:

on(open){
// your code here
}

Usage 2:

lTistenerObject = new Object();
listenerObject.open = function(eventObject){
// your code here
}
comboBoxInstance.addEventlListener("open", TistenerObject)

Description
Event; broadcast to all registered listeners when the drop-down list is completely open.

The first usage example uses an on () handler and must be attached directly to a ComboBox
instance. The keyword this, used in an on() handler attached to a component, refers to the
component instance. For example, the following code, attached to the ComboBox instance
myBox, sends “_level0.myBox” to the Output panel:

on(open) {

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(comboBoxInstance) dispatches an event (in this case, open) and the event is handled by a
function, also called a handler, on a listener object (11stenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has properties that contain
information about the event. You can use these properties to write code that handles the event.
For more information, see “EventDispatcher class” on page 415.

Finally, you call the addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

200 Chapter 6: Components Dictionary

Example

The following example sends a message to the Output panel:

function open(evt) {

trace("The combo box has opened with text " + evt.target.text);
}
myBox.addEventListener("open", this);

See also

ComboBox.close, EventDispatcher.addEventListener()

ComboBox.removeAll()
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX 2004.

Usage
comboBoxInstance.removeAll()

Parameters
None.

Returns
Nothing.

Description

Method; removes all items in the list. This is a method of the List component that is available
from an instance of the ComboBox component.

Example
The following code clears the list:

myCombo.removeAll();
See also

ComboBox.removeltemAt(), ComboBox.replaceltemAt()

ComboBox.removeltemAt()
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX 2004.

ComboBox component 201

Usage
listInstance.removeltemAt(index)

Parameters

index A number that indicates the position of the item to remove. The index is zero-based.
Returns

An object; the removed item (undefined if no item exists).
Description

Method; removes the item at the specified index position. The list indices after the index
indicated by the 7ndex parameter collapse by one. This is a method of the List component that is
available from an instance of the ComboBox component.

Example

The following code removes the item at index position 3:

myCombo.removeltemAt(3);
See also

ComboBox.removeAll(), ComboBox.replaceltemAt()

ComboBox.replaceltemAt()
Availability

Flash Player 6 (6.0 79.0).
Edition

Flash MX 2004.

Usage
comboBoxInstance.replaceltemAt(index, Tlabell, datal)
comboBoxInstance.replaceltemAt(index, {label:labell, data:datall)

comboBoxInstance.replaceltemAt(index, obj);
Parameters

index A number 0 or greater that indicates the position at which to insert the item (the index
of the new item).

lTabel A string that indicates the label for the new item.

data The data for the item. This parameter is optional.

obj An object with 1abel and data properties.
Returns

Nothing.

202 Chapter 6: Components Dictionary

Description
Method; replaces the content of the item at the specified index. This is a method of the List
component that is available from the ComboBox component.

Example
The following example changes the third index position:

myCombo.replaceltemAt(3, "new label");

See also

ComboBox.removeAll(), ComboBox.removeltemAt()

ComboBox.restrict

Availability

Flash Player 6 (6.0 79.0).
Edition

Flash MX 2004.

Usage
comboBoxInstance.restrict

Description

Property; indicates the set of characters that a user can enter in the text field of a combo box. The
default value is undefined. If this property is nul1 or an empty string (""), a user can enter any
character. If this property is a string of characters, the user can enter only characters in the string;
the string is scanned from left to right. You can specify a range by using a dash (-).

If the string begins with a caret (*), all characters that follow the caret are considered unacceptable
characters. If the string does not begin with a caret, the characters in the string are considered
acceptable.

You can use the backslash (\) to enter a hyphen (-), caret (*), or backslash (\) character, as shown
here:

\ A

\ -

\\

When you enter a backslash in the Actions panel within double quotation marks, it has a

special meaning for the Actions panel’s double-quote interpreter. It signifies that the character
following the backslash should be treated “as is.” For example, you could use the following code to
enter a single quotation mark:

var leftQuote = "\"";

The Actions panel’s restrict interpreter also uses the backslash as an escape character. Therefore,
you may think that the following should work:

myText.restrict = "0-9\-\"\\";

ComboBox component 203

However, since this expression is surrounded by double quotation marks, the value 0-9-*\ is sent
to the restrict interpreter, and the restrict interpreter doesnt understand this value.

Because you must enter this expression within double quotation marks, you must not only
provide the expression for the restrict interpreter, but you must also escape the expression so that
it will be read correctly by the Actions panel’s built-in interpreter for double quotation marks. To
send the value 0-9\-\"\\ to the restrict interpreter, you must enter the following code:

myCombo.restrict = "0-9\\-\\"\\\\";

The restrict property restricts only user interaction; a script may put any text into the text
field. This property does not synchronize with the Embed Font Outlines check boxes in the
Property inspector.

Example

In the following example, the first line of code limits the text field to uppercase letters, numbers,
and spaces. The second line of code allows all characters except lowercase letters.
my_combo.restrict = "A-Z 0-9";

my_combo.restrict = ""*a-z";

The following code allows a user to enter the characters “0 1234567 89 -~ \” in the instance
myCombo. You must use a double backslash to escape the characters -, #, and \. The first \ escapes
the double quotation marks, and the second \ tells the interpreter that the next character should
not be treated as a special character.

myCombo.restrict = "0-9\\-*\\\\";

ComboBox.rowCount

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

myComboBox.rowCount

Description

Property; the maximum number of rows visible in the drop-down list. The default value is 5.

If the number of items in the drop-down list is greater than the rowCount property, the list resizes
and a scroll bar is displayed if necessary. If the drop-down list contains fewer items than the
rowCount property, it resizes to the number of items in the list.

This behavior differs from the List component, which always shows the number of rows specified
by its rowCount property, even if some empty space is shown.

If the value is negative or fractional, the behavior is undefined.

204

Chapter 6: Components Dictionary

Example

The following example specifies that the combo box should have 20 or fewer rows visible:

myComboBox.rowCount = 20;

ComboBox.scroll
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX 2004.
Usage
Usage 1:

on(scroll){
// your code here
}

Usage 2:

listenerObject = new Object();

listenerObject.scroll = function(eventObject){
// your code here

}

comboBoxInstance.addEventlListener("scroll", IistenerObject)

Event object

Along with the standard event object properties, the scroll event has one additional property,
direction. It is a string with two possible values, "horizontal" or "vertical". Fora
ComboBox scrol1 event, the value is always "vertical".

Description

Event; broadcast to all registered listeners when the drop-down list is scrolled. This is a List
component event that is available to the ComboBox component.

The first usage example uses an on () handler and must be attached directly to a ComboBox
instance. The keyword this, used in an on() handler attached to a component, refers to the
instance. For example, the following code, attached to the ComboBox component instance
myBox, sends “_level0.myBox” to the Output panel:

on(scroll){

trace(this);
}

ComboBox component 205

The second usage example uses a dispatcher/listener event model. A component instance
(comboBoxInstance) dispatches an event (in this case, scrol11) and the event is handled by a
function, also called a handler, on a listener object (17stenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has properties that contain
information about the event. You can use these properties to write code that handles the event.
For more information, see “EventDispatcher class” on page 415.

Finally, you call the addEventListener () method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

Example

The following example sends a message to the Output panel that indicates the index of the item
that the list scrolled to:

form.scroll = function (eventObj) {

trace("The 1ist had been scrolled to item # " + eventObj.target.vPosition);
}
myCombo.addEventListener("scroll", form);

See also

EventDispatcher.addEventListener()

ComboBox.selectedIndex

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX 2004.

Usage

myComboBox.selectedIndex

Description

Property; the index number of the selected item in the drop-down list. The default value is 0.
Assigning this property clears the current selection, selects the indicated item, and displays the
label of that item in the combo box’s text box.

If you assign an out-of-range value to this property, Flash ignores it. Entering text into the text
field of an editable combo box sets selectedIndex to undefined.

Example

The following code selects the last item in the list:

myComboBox.selectedIndex = myComboBox.length-1;

206

Chapter 6: Components Dictionary

See also

ComboBox.selectedItem

ComboBox.selectedltem
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX 2004.

Usage
myComboBox.selectedItem
Description

Property; the value of the selected item in the drop-down list.

If the combo box is editable, selectedItem returns undefined if the user enters any text in the
text box. The property only has a value if you select an item from the drop-down list or set the
value using ActionScript. If the combo box is static, the value of selectedItem is always valid; it
returns undefined if there are no items in the list.

Example
The following example shows selectedItem if the data provider contains primitive types:

var item = myComboBox.selectedItem;
trace("You selected the item " + item);

The following example shows seTectedItem if the data provider contains objects with 1abe1 and
data properties:

var obj = myComboBox.selectedItem;

trace("You have selected the color named: " + obj.label);
trace("The hex value of this color is: " + obj.data);
See also

ComboBox.dataProvider, ComboBox.selectedIndex

ComboBox.sortltems()
Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage
myComboBox.sortltems([compareFunc], [optionsFlagl)

ComboBox component 207

Parameters

comparefunc A reference to a function that compares two items to determine their sort order.
For details, see Array.sort () in Flash ActionScript Language Reference. This parameter
is optional.

optionsFlag Lets you perform multiple sorts of different types on a single array without
having to replicate the entire array or re-sort it repeatedly. This parameter is optional.

The following are possible values for optionsfiag:

® Array.DESCENDING, which sorts highest to lowest.

® Array.CASEINSENSITIVE, which sorts without regard to case.

® Array.NUMERIC, which sorts numerically if the two elements being compared are numbers. If
they aren’t numbers, use a string comparison (which can be case-insensitive if that flag is
specified).

® Array.UNIQUESORT, which returns an error code (0) instead of a sorted array if two objects in
the array are identical or have identical sort fields.

® Array.RETURNINDEXEDARRAY, which returns an integer index array that is the result of the
sort. For example, the following array would return the second line of code and the array
would remain unchanged:
[van, ngn. mer vprg
[o, 3, 2, 11

You can combine these options into one value. For example, the following code combines options

3and 1:
array.sort (Array.NUMERIC | Array.DESCENDING)

Returns

Nothing.

Description

Method; sorts the items in the combo box according to the specified compare function or
according to the specified sort options.

Example

This example sorts according to uppercase labels. The items a and b are passed to the function
and contain 1abel and data fields:

myComboBox.sortItems(upperCaseFunc);
function upperCaseFunc(a,b){

return a.label.toUpperCase() > b.label.toUpperCase();
}

The following example uses the upperCaseFunc() function defined above, along with the
optionsFlag parameter to sort the elements of a ComboBox instance named myComboBox:

myComboBox.addItem("Mercury");
myComboBox.addItem("Venus");
myComboBox.addItem("Earth");
myComboBox.addItem("pTlanet");

208

Chapter 6: Components Dictionary

myComboBox.sortItems(upperCaseFunc, Array.DESCENDING);
// The resulting sort order of myComboBox will be:

// Venus

// planet

// Mercury

// Earth

ComboBox.sortltemsBy()

Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage
myComboBox.sortltemsBy(fieldName, order [optionsFlagl)

Parameters

fieldName A string that specifies the name of the field to use for sorting. This value is usually
"label" or "data".

order A string that specifies whether to sort the items in ascending order ("ASC") or descending
order ("DESC").

optionsFlag Lets you perform multiple sorts of different types on a single array without
having to replicate the entire array or re-sort it repeatedly. This parameter is optional, but if used,
should replace the order parameter.

The following are possible values for optionsfiag:

® Array.DESCENDING, which sorts highest to lowest.

® Array.CASEINSENSITIVE, which sorts without regard to case.

® Array.NUMERIC, which sorts numerically if the two elements being compared are numbers. If
they aren’t numbers, use a string comparison (which can be case-insensitive if that flag is
specified).

® Array.UNIQUESORT, which returns an error code (0) instead of a sorted array if two objects in
the array are identical or have identical sort fields.

® Array.RETURNINDEXEDARRAY, which returns an integer index array that is the result of the
sort. For example, the following array would return the second line of code and the array
would remain unchanged:
["an, "gn, "en vprg
(o, 3, 2, 13

You can combine these options into one value. For example, the following code combines options

3and 1:
array.sort (Array.NUMERIC | Array.DESCENDING)

ComboBox component 209

Returns

Nothing.

Description

Method; sorts the items in the combo box alphabetically or numerically, in the specified order,
using the specified field name. If the 7ie7dName items are a combination of text strings and
integers, the integer items are listed first. The fieldName parameter is usually "Tabel" or
"data", but advanced programmers may specify any primitive value. If you want, you can use the
optionsFlag parameter to specify a sorting style.

Example

The following examples are based on a ComboBox instance named myComboBox, which contains
four elements labeled "Apples", "Bananas", "cherries”, and "Grapes":

// First, populate the ComboBox with the elements.
myComboBox.addItem("Bananas");
myComboBox.addItem("Apples");
myComboBox.addItem("cherries");
myComboBox.addItem("Grapes");

// The following statement sorts using the order parameter set to "ASC",
// and results in a sort that places "cherries" at the bottom of the Tist
// because the sort is case-sensitive.

myDP.sortItemsBy("label", "ASC");

// resulting order: Apples, Bananas, Grapes, cherries

// The following statement sorts using the order parameter set to "DESC",
// and results in a sort that places "cherries" at the top of the list

// because the sort is case-sensitive.

myComboBox.sortItemsBy("label", "DESC");

// resulting order: cherries, Grapes, Bananas, Apples

// The following statement sorts using the optionsflag parameter set to

// Array.CASEINSENSITIVE. Note that an ascending sort is the default setting.
myComboBox.sortItemsBy("Tabel", Array.CASEINSENSITIVE);

// resulting order: Apples, Bananas, cherries, Grapes

// The following statement sorts using the optionsFlag parameter set to

// Array.CASEINSENSITIVE | Array.DESCENDING.
myComboBox.sortItemsBy("label™, Array.CASEINSENSITIVE | Array.DESCENDING):
// resulting order: Grapes, cherries, Bananas, Apples

ComboBox.text

Availability

Flash Player 6 (6.0 79.0).

Edition
Flash MX 2004.
210 Chapter 6: Components Dictionary

Usage
myComboBox.text

Description

Property; the text of the text box. You can get and set this value for editable combo boxes. For
static combo boxes, the value is read-only.

Example
The following example sets the current text value of an editable combo box:

myComboBox.text = "California";

ComboBox.textField

Availability

Flash Player 6 (6.0 79.0).
Edition

Flash MX 2004.

Usage
myComboBox.textField

Description

Property (read-only); a reference to the TextInput component contained by the ComboBox
component.

This property lets you access the underlying TextInput component so that you can manipulate it.
For example, you might want to change the selection of the text box or restrict the characters that
can be entered in it.

Example
The following code restricts the text box of myComboBox so that it only accept numbers:

myComboBox.textField.restrict = "0-9";

ComboBox.value

Availability

Flash Player 6 (6.0 79.0).
Edition

Flash MX 2004.

Usage
myComboBox.value

ComboBox component 211

Description

Property (read-only); if the combo box is editable, value returns the value of the text box. If the
combo box is static, value returns the value of the drop-down list. The value of the drop-down
list is the data field, or, if the data field doesn’t exist, the 1abel field.

Example

The following example puts the data into the combo box by setting the dataProvider property.
It then displays the value in the Output panel. Finally, it selects "California" and displays it in
the text box.

cb.dataProvider = [
{label:"Alaska", data:"AZ"},
{label:"California", data:"CA"},
{label:"Washington", data:"WA"}1;
ch.editable = true;
ch.selectedIndex = 1;
trace('Editable value is "California": '+ cb.value);
ch.editable = false;
ch.selectedIndex = 1;
trace('Non-editable value is "CA": '+ cb.value);

212

Chapter 6: Components Dictionary

Data binding classes (Flash Professional only)

The data binding classes provide the runtime functionality for the data binding feature in Flash
MX Professional 2004. You can visually create and configure data bindings in the Flash authoring
environment by using the Bindings tab in the Component inspector, or you can
programmatically create and configure bindings by using the classes in the mx.data.binding
package.

For an overview of data binding and how to visually create data bindings in the Flash authoring
tool, see “Data binding (Flash Professional only)” in Using Flash.

Making data binding classes available at runtime (Flash Professional only)

To compile your SWF file, your library must contain SWC files that contain the byte code for the
data binding classes and web service classes. If you create data bindings in Flash while authoring,
the relevant component classes are automatically added to the library. If you work with data
binding and web services at runtime, you must add the classes to your FLA file’s library. You can
get these SWC files from the Classes common library.

To add the SWC files to your library:
1. Select the Classes library (Window > Other Panels > Common Libraries > Classes).
2. Open the library for your document (Window > Library).

3. Drag the appropriate SWC files (DataBindingClasses, WebServiceClasses, or both) from the
Classes library into your document’s library.

For more information on these classes, see “Binding class (Flash Professional only)” on page 214
and “Web service classes (Flash Professional only)” on page 842.

Classes in the mx.data.binding package (Flash Professional only)

The following table lists the classes in the mx.data.binding package:

Class Description

Binding class (Flash Creates a binding between two endpoints.
Professional only)

ComponentMixins class (Flash Adds data binding functionality to components.
Professional only)

CustomFormatter class (Flash The base class for creating custom formatter classes.
Professional only)

CustomValidator class (Flash The base class for creating custom validator classes.
Professional only)

DataType class (Flash Provides read and write access to data fields of a
Professional only) component property.

Data binding classes (Flash Professional only) 213

Class Description

EndPoint class (Flash Defines the source or destination of a binding.
Professional only)

TypedValue class (Flash Contains a data value and information about the value’s data type.
Professional only)

Binding class (Flash Professional only)
ActionScript Class Name mx.data.binding.Binding

The Binding class defines an association between two endpoints, a source and a destination.
It listens for changes to the source endpoint and copies the changed data to the destination
endpoint each time the source changes.

You can write custom bindings by using the Binding class (and supporting classes), or use the
Bindings tab in the Component inspector.

Note: To make this class available at runtime, you must include the data binding classes in your FLA
document. For more information, see “Making data binding classes available at runtime (Flash
Professional only)” on page 213.

For an overview of the classes in the mx.data.binding package, see “Classes in the mx.data.binding
package (Flash Professional only)” on page 213.

Method summary for the Binding class

The following table lists the methods of the Binding class.

Method Description

Binding.execute() Fetches the data from the source component, formats it, and
assigns it to the destination component.

Constructor for the Binding class
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage
new Binding(source, destination, [format]l, [isTwoWay])

Parameters

source A source endpoint of the binding. This parameter is nominally of type
mx.data.binding.EndPoint, but can be any ActionScript object that has the required Endpoint
fields (see “EndPoint class (Flash Professional only)” on page 224).

214 Chapter 6: Components Dictionary

destination The destination endpoint of the binding. This parameter is nominally of type

mx.data.binding.EndPoint, but can be any ActionScript object that has the required Endpoint
fields.

format An optional object that contains formatting information. The object must have the
following properties:

® cls An ActionScript class that extends the class mx.data.binding.DataAccessor.

® settings An object whose properties provide optional settings for the formatter class
specified by c1s.

isTwoWay An optional Boolean value that specifies whether the new Binding object is
bidirectional (true) or not (false). The default value is false.

Returns
Nothing.
Description

Constructor; creates a new Binding object. You can bind data to any ActionScript object that has
g obj y ptobj
properties and emits events including, but not limited to, components.

A binding object exists as long as the innermost movie clip contains both the source and
destination components. For example, if movie clip named A contains components X and Y, and
there is a binding between X and Y, then the binding is in effect as long as movie clip A exists.

Note: It's not necessary to retain a reference to the new Binding object. As soon as the Binding
object is created, it immediately begins listening for “changed” events emitted by either endpoint. In
some cases, however, you might want to save a reference to the new Binding object, so that you can
callits execute () method at a later time (see Binding.execute()).

Example

In this example, the text property of a TextInput component (src_txt) is bound to the text
property of another TextInput component (dest_txt). When the src_txt text field loses focus
(that is, when the focusOut event is generated), the value of its text property is copied into
dest_txt.text.

import mx.data.binding.*;
var src = new EndPoint();
src.component = src_txt;
src.property = "text";
src.event = "focusOut";

var dest= new EndPoint();
dest.component = dest_txt;
dest.property = "text";

new Binding(src, dest);

The following example demonstrates how to create a Binding object that uses a custom formatter
g g
class. For more information, see “CustomFormatter class (Flash Professional only)” on page 217.

import mx.data.binding.*;
var src = new EndPoint();

Data binding classes (Flash Professional only) 215

src.component = src_txt;
src.property = "text";
src.event = "focusOut";

var dest= new EndPoint();
dest.component = text_dest;
dest.property = "text";

new Binding(src, dest, {cls: mx.data.formatters.Custom, settings: {classname:
"com.mycompany.SpecialFormatter"}});

Binding.execute()
Availability
Flash Player 6.
Edition
Flash MX Professional 2004.

Usage
myBinding.execute([reversel)

Parameters

reverse A Boolean value that specifies whether the binding should also be executed from the
destination to the source (true), or only from the source to the destination (false). By default,
this value is false.

Returns

A nul1 value if the binding executed successfully; otherwise, the method returns an array of error
message strings that describe the errors that prevented the binding from executing.

Description

Method; fetches the data from the source component and assigns it to the destination
component. If the binding uses a formatter, then the data is formatted before being assigned to
the destination.

This method also validates the data and causes either a valid or invalid event to be emitted by
the destination and source components. Data is assigned to the destination even if it’s invalid,
unless the destination is read-only.

If the reverse parameter is set to true and the binding is two-way, then the binding is executed
in reverse (from the destination to the source).
Example

The following code, attached to a Button component instance, executes the binding in reverse
(from the destination component to the source component) when the button is clicked.
on(click) {

_root.myBinding.execute(true);
}

216 Chapter 6: Components Dictionary

CustomFormatter class (Flash Professional only)
ActionScript Class Name mx.data.binding.CustomFormatter

The CustomFormatter class defines two methods, format() and unformat (), that provide the
ability to transform data values from a specific data type to String, and vice versa. By default, these
methods do nothing; you must implement them in a subclass of
mx.data.binding.CustomFormatter.

To create your own custom formatter, you first create a subclass of CustomFormatter that
implements format () and unformat() methods. You can then assign that class to a binding
between components either by creating a new Binding object with ActionScript (see “Binding
class (Flash Professional only)” on page 214), or by using the Bindings tab in the Component
inspector. For information on assigning a formatter class using the Component inspector, see
“Schema formatters” in Using Flash.

You can also assign a formatter class to a component property on the Component inspector’s
Schema tab. However, in that case, the formatter will be used only when the data is needed in the
form of a string. In contrast, formatters assigned with the Bindings panel, or created with
ActionScript, are used whenever when the binding is executed.

For an example of writing and assigning a custom formatter using ActionScript, see “Sample
custom formatter” on page 217.

Note: To make this class available at runtime, you must include the data binding classes in your FLA
document.

For an overview of the classes in the mx.data.binding package, see “Classes in the mx.data.binding
package (Flash Professional only)” on page 213.

Sample custom formatter

The following example demonstrates how to create a custom formatter class and then apply it to a
binding between two components by using ActionScript. In this example, the current value of a
NumericStepper component (its value property) is bound to the current value of a TextInput
component (its text property). The custom formatter class formats the current numeric value of
the NumericStepper component (for example, 1, 2, or 3) as its English word equivalent (for
example, “one”, “two”, or “three”) before assigning it to the TextInput component.

To create and use a custom formatter:

1. In Flash MX Professional 2004, create a new ActionScript file.
2. Add the following code to the file:

// NumberFormatter.as
class NumberFormatter extends mx.data.binding.CustomFormatter {
// Format a Number, return a String
function format(rawValue) {
var returnValue;
var strArray = new Array('one', 'two', 'three');
var numArray = new Array(l, 2, 3);
returnValue = 0;
for (var i = 0; i<strArray.length; i++) {

Data binding classes (Flash Professional only) 217

if (rawValue == numArray[i]) {
returnValue = strArrayl[il;
break;
}
}
return returnValue;
} // convert a formatted value, return a raw value
function unformat(formattedValue) {
var returnValue;

var strArray = new Array('one', 'two', 'three');
var numArray = new Array(l, 2, 3);
returnValue = "invalid";

for (var i = 0; i<strArray.length; i++) {
if (formattedValue == strArray[i]) {
returnValue = numArrayl[il;
break;
}
}
return returnValue;

}
3. Save the ActionScript file as NumberFormatter.as.
4. Create a new Flash (FLA) document.

5. From the Components panel, drag a TextInput component to the Stage and name it textInput.
Then drag a NumericStepper component to the Stage and name it stepper.

6. Open the Timeline and select the first frame on Layer 1.
7. In the Actions panel, add the following code to the Actions panel:

import mx.data.binding.*;

var x:NumberFormatter;

var customBinding = new Binding({component:stepper, property:"value",
event:"change"}, {component:textInput, property:"text",
event:"enter,change"}, {cls:mx.data.formatters.Custom,
settings:{classname:"NumberFormatter"}});

The second line of code (var x:NumberFormatter) ensures that the byte code for your
custom formatter class is included in the compiled SWF file.

8. Select Window > Panels > Other Panels > Classes to open the Classes library.
9. Open your document’s library by selecting Window > Library.
10. Drag DataBindingClasses from the Classes library to your document’s library.

This makes the data binding runtime classes available for your document.

—_

11. Save the FLA file to the same folder that contains NumberFormatter.as.
12. Test the file (Control > Test Movie).

Click the buttons on the NumericStepper component and watch the contents of the TextInput
component update.

218 Chapter 6: Components Dictionary

Method summary for the CustomFormatter class

The following table lists the methods of the CustomFormatter class.

Method Description

CustomFormatter.format() Converts from a raw data type to a new object.

CustomFormatter.unformat() Converts from a string, or other data type, to a raw data
type.

CustomFormatter.format()
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.
Usage
This method is called automatically; you don’t invoke it directly.
Parameters
rawData The data to be formatted.
Returns
A formartted value.
Description
Method; converts from a raw data type to a new object.

This method is not implemented by default. You must define it in your subclass of
mx.data.binding. CustomFormatter.

For more information, see “Sample custom formatter” on page 217.

CustomFormatter.unformat()
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.
Usage
This method is called automatically; you don’t invoke it directly.

Parameters

formattedData The formatted data to convert back to the raw data type.

Data binding classes (Flash Professional only)

219

Returns

An unformatted value.

Description

Method; converts from a string, or other data type, to the raw data type. This transformation
should be the exact inverse transformation of CustomFormatter.format().

This method is not implemented by default. You must define it in your subclass of
mx.data.binding. CustomFormatter.

For more information, see “Sample custom formatter” on page 217.

CustomValidator class (Flash Professional only)

ActionScript Class Name mx.data.binding.CustomValidator

You use the Custom Validator class when you want to perform custom validation of a data field
contained by a component.

To create a custom validator class, you first create a subclass of mx.data.binding. CustomValidator
that implements a method named validate(). This method is automatically passed a value to be
validated. For more information about how to implement this method, see
CustomValidator.validate().

Next, you assign your custom validator class to a field of a component by using the Component
inspector’s Schema tab. For an example of creating and using a custom validator class, see the
Example section in the CustomValidator.validate() entry.
To assign a custom validator:

1. In the Component inspector, select the Schema tab.

2. Select the field you want to validate, and then select Custom from the Data Type pop-up menu.

3. Select the Validation Options field (at the bottom of the Schema tab), and click the magnifying
glass icon to open the Custom Validation Settings dialog box.

4. In the ActionScript Class text box, enter the name of the custom validator class you created.

In order for the class you specify to be included in the published SWF file, it must be in
the classpath.

Note: To make this class available at runtime, you must include the data binding classes in your FLA
document. .

For an overview of the classes in the mx.data.binding package, see “Classes in the mx.data.binding
package (Flash Professional only)” on page 213.

220

Chapter 6: Components Dictionary

Method summary for the CustomValidator class

The following table lists the methods of the CustomValidator class.

Method Description

CustomValidator.validate() Performs validation on data.

CustomValidator.validationError() Reports validation errors.

CustomValidator.validate()
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.
Usage

This method is called automatically; you don't invoke it directly.

Parameters

value The data to be validated; it can be of any type.
Returns

Nothing.
Description

Method; called automatically to validate the data contained by the value parameter. You must
implement this method in your subclass of CustomValidator; the default implementation
does nothing.

You can use any ActionScript code to examine and validate the data. If the data is not valid, this
method should call this.validationError() with an appropriate message. You can call
this.validationError() more than once if there are several validation problems with the data.

Since validate() might be called repeatedly, avoid adding code that takes a long time to
complete. Your implementation of this method should only check for validity, and then report
any errors using CustomValidator.validationError(). Similarly, your implementation should
not take any action as a result of the validation test, such as alerting the end user. Instead, create
event listeners for valid and invalid events and alert the end user from those event listeners (see
the example below).

Example

The following procedure demonstrates how to create and use a custom validator class. The
validate() method of the CustomValidator class OddNumbersOnly.as determines any value
that is not an odd number to be invalid. The validation occurs whenever a change occurs in the
value of a NumericStepper component, which is bound to the text property of a

Label component.

Data binding classes (Flash Professional only) 221

To create and use a custom validator class:
1. In Flash MX Professional 2004, create a new ActionScript (AS) file.

2. Add the following code to the AS file:

class 0OddNumbersOnly extends mx.data.binding.CustomValidator
{
public function validate(value) {
// make sure the value is of type Number
var n = Number(value);

if (String(n) == "NaN") {
this.validationError("'" + value + "' is not a number.");
return;

}
// make sure the number is odd
if (n % 2 ==20) {
this.validationError("'" + value + "' is not an odd number.");

return;
}
// data is 0K, no need to do anything, just return

}
3. Save the AS file as OddNumbersOnly.as.

Note: The name of the AS file must match the name of the class.

4. Create a new Flash (FLA) document.
5. Open the Components panel.

6. Drag a NumericStepper component from the Components panel to the Stage and name
it stepper.

7. Drag a Label component to the Stage and name it textLabel.

8. Drag a TextArea component to the Stage and name it status.

9. Select the NumericStepper component, and open the Component inspector.

10. Select the Bindings tab in the Component inspector, and click the Add Binding (+) button.
11. Select the Value property (the only one) in the Add Bindings dialog box, and click OK.

12. In the Component inspector, double-click Bound To in the Binding Attributes pane of the
Bindings tab to open the Bound To dialog box.

13. In the Bound To dialog box, select the Label component in the Component Path pane and its
text property in the Schema Location pane. Click OK.

14, Select the Label component on the Stage, and click the Schema tab in the Component
Inspector panel.

15. In the Schema Attributes pane, select Custom from the Data Type pop-up menu.

16. Double-click the Validation Options field in the Schema Attributes pane to open the Custom
Validation Settings dialog box.

17. In the ActionScript Class text box, enter OddNumbersOnly, which is the name of the
ActionScript class you created previously. Click OK.

222 Chapter 6: Components Dictionary

18. Open the Timeline and select the first frame on Layer 1.
19. Open the Actions panel.
20. Add the following code to the Actions panel:

function datalsInvalid(evt) f{
if (evt.property == "text") {
status.text = evt.messages;
}
}

function datalsValid(evt) {
if (evt.property == "text") {
status.text = "0OK";
}
}

textlabel.addEventListener("valid", datalsValid);
textlabel.addEventListener("invalid", datalsInvalid);

21. Save the FLA file as OddOnly.fla to the same folder that contains OddNumbersOnly.as.
22. Test the SWF file (Control > Test Movie).

Click the arrows on the NumericStepper component to change its value. Notice the message
that appears in the TextArea component when you choose even and odd numbers.

CustomValidator.validationError()

Availability
Flash Player 6 (6.0 79.0).

Edition
Flash MX Professional 2004.

Usage
this.validationkError(errorMessage)

Note: This method can be invoked only from within a custom validator class; the keyword this refers
to the current CustomValidator object.

Parameters

errorMessage A string that contains the error message to be reported.

Returns
Nothing.

Description

Method; called from the validate() method of your subclass of CustomValidator to report
validation errors. If you dont call validationError(), a valid event is generated when
validate() finishes executing. If you call validationError() one or more times from within
the validate(), an invalid event is generated after validate() returns.

Data binding classes (Flash Professional only) 223

Each message you pass to validationError() is available in the messages property of the event
object that was passed to the invalid event handler.

Example

See the Example section for CustomValidator.validate().

EndPoint class (Flash Professional only)

ActionScript Class Name mx.data.binding.EndPoint

The EndPoint class defines the source or destination of a binding. EndPoint objects define a
constant value, component property, or particular field of a component property, from which you
can get data, or to which you can assign data. They can also define an event, or list of events, that
a Binding object listens for; when the specified event occurs, the binding executes.

When you create a new binding with the Binding class constructor, you pass it two EndPoint
objects: one for the source and one for the destination.

new mx.data.binding.Binding(srcEndPoint, destEndPoint);
The EndPoint objects, srcEndPoint and destEndPoint, might be defined as follows:

var srckEndPoint = new mx.data.binding.EndPoint();
var destEndPoint = new mx.data.binding.EndPoint();
srcEndPoint.component = source_txt;
srcEndPoint.property = "text";

srcEndPoint.event = "focusOut";
destEndPoint.component = dest_txt;
destEndPoint.property = "text";

In English, the above code means “When the source text field loses focus, copy the value of its
text property into the text property of the destination text field.”

You can also pass generic ActionScript objects to the Binding constructor, rather than passing
explicitly constructed EndPoint objects. The only requirement is that the objects define the
required EndPoint properties, component and property. The following code is equivalent to that
shown above.

var srcEndPoint = {component:source_txt, property:"text"};
var destEndPoint = {component:dest_txt, property:"text"};
new mx.data.binding.Binding(srckndPoint, destEndPoint);

Note: To make this class available at runtime, you must include the data binding classes in your FLA
document.

For an overview of the classes in the mx.data.binding package, see “Classes in the mx.data.binding
package (Flash Professional only)” on page 213.

224

Chapter 6: Components Dictionary

Property summary for the EndPoint class

The following table lists the properties of the EndPoint class.

Method Description

EndPoint.component A reference to a component instance.

EndPoint.constant A constant value.

EndPoint.event The name of an event, or array of event names, that the component will
emit when the data changes.

EndPoint.location The location of a data field within the property of the component instance.

EndPoint.property The name of a property of the component instance specified by

EndPoint.component.

Constructor for the EndPoint class
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage
new EndPoint()

Returns

Nothing.
Description

Constructor; creates a new EndPoint object.
Example

This example creates a new EndPoint object named source_obj and assigns values to its
component and property properties:

var source_obj = new mx.data.binding.EndPoint();
source_obj.component = myTextField;
source_obj.property = "text";
EndPoint.component

Availability
Flash Player 6 (6.0 79.0).

Edition
Flash MX Professional 2004.

Data binding classes (Flash Professional only) 225

Usage
endPoint0Obj.component

Description

Pl‘OpCI‘ty; a reference to a component instance.

Example

This example assigns an instance of the List component (11stBox1) as the component parameter
of an EndPoint object.

var sourcekEndPoint = new mx.data.binding.EndPoint();
sourceEndPoint.component=1istBox1;

EndPoint.constant
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage
endPoint_src.constant

Description

Property; a constant value assigned to an EndPoint object. This property can be applied only to

EndPoint objects that are the source, not the destination, of a binding between components. The

value can be of any data type that is compatible with the destination of the binding. If this

property is specified, all other EndPoint properties for the specified EndPoint object are ignored.
Example

In this example, the string constant value “hello” is assigned to an EndPoint object’s
constant property:

var sourceEndPoint = new mx.data.binding.EndPoint();
sourceEndPoint.constant="hello";

EndPoint.event
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage
endPoint0Obj.event

226 Chapter 6: Components Dictionary

Description

Property; specifies the name of an event, or an array of event names, generated by the component
when data assigned to the bound property changes. When the event occurs, the binding executes.

The specified event only applies to components that are used as the source of a binding, or as the

destination of a two-way binding. For more information about creating two-way bindings, see
“Binding class (Flash Professional only)” on page 214.

Example

In this example, the text property of one TextInput (src_txt) component is bound to the same
property of another TextInput component (dest_txt). The binding is executed when either the
focusOut or enter event is emitted by the src_txt component.

var source = {component:src_txt, property:"text", event:["focusOut",
"enter"1};
var dest = {component:myTextArea, property:"text"};

var newBind = new mx.data.binding.Binding(source, dest);

EndPoint.location
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage
endPoint0Obj.location

Description

Property; specifies the location of a data field within the property of the component instance.
There are four ways to specify a location: as a string that contains an XPath expression, as a string
that contains an ActionScript path, as an array of strings, or as an object.

XPath expressions can only be used when the data is an XML object. (See Example 1 below.) For
a list of supported XPath expressions, see “Adding bindings using path expressions” in Using Flash.

For XML and ActionScript objects, you can also specify a string that contains an ActionScript
path. An ActionScript path contains the names of fields separated by dots (for example,
"a.b.c").

You can also specify an array of strings as a location. Each string in the array “drills down” another
level of nesting. You can use this technique with both XML and ActionScript data. (See Example
2 below.) When used with ActionScript data, an array of strings is equivalent to use of an
ActionScript path; that is, the array ["a","b","c"] is equivalent to "a.b.c".

Data binding classes (Flash Professional only) 227

If you specify an object as the location, the object must specify two properties: path and indices.
The path property is an array of strings, as discussed above, except that one or more of the
specified strings may be the special token "[n]". For each occurrence of this token in path, there
must be a corresponding index item in indices. As the path is evaluated, the indices are used to
index into arrays. The index item can be any EndPoint object. This type of location can be
applied to ActionScript data only—not XML. (See Example 3 below.)

Example

Example 1: This example uses an XPath expression to specify the location of a node named zip in

an XML object:

var sourcekEndPoint = new mx.databinding.EndPoint();
var sourcObj=new Object();

sourceObj.xml=new XML("<zip>94103</zip>");
sourceEndPoint.component=sourceObj;
sourceEndPoint.property="xml";
sourceEndPoint.location="/zip";//

Example 2: This example uses an array of strings to “drill down” to a nested movie clip property:

var sourcekEndPoint = new mx.data.binding.EndPoint();
// assume movieClipl.ball.position exists
sourcekndPoint.component=movieClipl;
sourceEndPoint.property="ball";

// access movieClipl.ball.position.x
sourceEndPoint.location=["position","x"];

Example 3: This example shows how to use an object to specify the location of a data field in a
complex data structure:

var city=new Object();

city.theaters = [{theater: "t1", movies: [{name: "Good,Bad,Ugly"},
{name:"Matrix Reloaded"}1}, {theater: "t2", movies: [{name: "Gladiator"},
{name: "Catch me if you can"}1}1;

var srckndPoint = new EndPoint();

srcEndPoint.component=city;

srcEndPoint.property="theaters";

srcEndPoint.location = {path: ["[n]","movies","[n]","name"], indices:
[{constant:0},{constant:0}1};

EndPoint.property

Availability

Flash Player 6 (6.0 79.0)

Edition

Flash MX Professional 2004.

Usage

endPointObj.property

228

Chapter 6: Components Dictionary

Description

Property; specifies a property name of the component instance specified by
EndPoint.component that contains the bindable data.

Note: EndPoint.component and EndPoint.property must combine to form a valid ActionScript object/
property combination.

Example

This example binds the text property of one TextInput component (text_1) to the same
property in another TextInput component (text_2).

var sourceEndPoint = {component:text_1, property:"text"};

var destEndPoint = {component:text_2, property:"text"};

new Binding(sourceEndPoint, destEndPoint);
ComponentMixins class (Flash Professional only)

ActionScript Class Name mx.data.binding.ComponentMixins

The ComponentMixins class defines properties and methods that are automatically added to any
object that is the source or destination of a binding, or to any component that’s the target of a
ComponentMixins.initComponent() method call. These properties and methods do not affect
normal component functionality; rather, they add functionality that is useful with data binding.

Note: To make this class available at runtime, you must include the data binding classes in your FLA
document.

For an overview of the classes in the mx.data.binding package, see “Classes in the mx.data.binding
package (Flash Professional only)” on page 213.

Method summary for the ComponentMixins class

The following table lists the methods of the ComponentMixins class.

Method Description

ComponentMixins.getField() Returns an object for getting and setting the value of a
field at a specific location in a component property.

ComponentMixins.initComponent() Adds the ComponentMixins methods to a component.

ComponentMixins.refreshDestinations() Executes all the bindings that have this object as the
source endpoint.

ComponentMixins.refreshFromSources() Executes all bindings that have this component as the
destination endpoint.

ComponentMixins.validateProperty() Checks to see if the data in the indicated property
is valid.

Data binding classes (Flash Professional only) 229

ComponentMixins.getField()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

componentInstance.getField(propertyName, [Tocation])

Parameters

propertyName A string that contains the name of a property of the specified component.

lTocation An optional parameter that indicates the location of a field within the component
property. This is useful if propertyName specifies a complex data structure and you are interested
in a particular field of that structure. The Tocation property can take one of three forms:

® A string that contains an XPath expression. This is only valid for XML data structures. For a

list of supported XPath expressions, see “Adding bindings using path expressions” in Using
Flash.

® A string that contains field names, separated by dots—for example, "a.b.c". This form is
permitted for any complex data (ActionScript or XML).

® An array of strings, where each string is a field name—for example, ["a", "b", "c"]. This
form is permitted for any complex data (ActionScript or XML).

Returns

A DataType object.

Description

Method; returns a DataType object whose methods you can use to get or set the data value in the
component property at the specified field location. For more information, see “DataType class
(Flash Professional only)” on page 234.

Example

This example uses the DataType.setAsString() method to set the value of a field located in a
component’s property. In this case the property (results) is a complex data structure.

import mx.data.binding.*;

var field : DataType = myComponent.getField("results", "po.address.namel");
field.setAsString("Teri Randall");

See also

DataType.setAsString()

230

Chapter 6: Components Dictionary

ComponentMixins.initComponent()
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage
mx.data.binding.ComponentMixins.initComponent(componentiInstance)

Parameters

componentInstance A reference to a component instance.
Returns

Nothing.
Description

Method (static); adds all the ComponentMixins methods to the component specified by
componentInstance. This method is called automatically for all components involved in a data
binding. To make the ComponentMixins methods available for a component that is not involved
in a data binding, you must explicitly call this method for that component.

Example
The following code makes the ComponentMixins methods available to a DataSet component:

mx.data.binding.ComponentMixins.initComponent(_root.myDataSet);

ComponentMixins.refreshDestinations()
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage
componentInstance.refreshDestinations()

Parameters
None.

Returns
Nothing.

Description

Method; executes all the bindings for which componentInstance is the source EndPoint object.
This method lets you execute bindings whose sources do not emit a “data changed” event.

Data binding classes (Flash Professional only) 231

Example

The following example executes all the bindings for which the DataSet component instance
named user_data is the source EndPoint object:

user_data.refreshDestinations();

ComponentMixins.refreshFromSources()
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage
componentInstance.refreshFromSources()

Parameters

None.
Returns

Nothing.
Description

Method; executes all bindings for which componentInstance is the destination EndPoint object.
This method lets you execute bindings that have constant sources, or sources that do not emit a
“data changed” event.

Example

The following example executes all the bindings for which the ListBox component instance
named cityList is the destination EndPoint object:

cityList.refreshFromSources();

ComponentMixins.validateProperty()
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage
componentInstance.validateProperty(propertyName)

Parameters

propertyName A string that contains the name of a property that belongs to
componentInstance.

232 Chapter 6: Components Dictionary

Returns

An array, or null.

Description

Method; determines if the data in propertyName is valid based on the property’s schema settings.
The property’s schema settings are those specified on the Schema tab in the Component
Inspector panel.

The method returns nu11 if the data is valid; otherwise, it returns an array of error messages
as strings.

Validation applies only to fields that have schema information available. If a field is an object that
contains other fields, each “child” field is validated, and so on, recursively. Each individual field
dispatches a valid or invalid event, as necessary. For each data field contained by
propertyName, this method dispatches valid or invalid events, as follows:

® If the value of the field is nu11, and is 7ot required, the method returns nu11. No events
are generated.

® If the value the field is nu171, and /s required, an error is returned and an invalid event
is generated.

® Ifthe value of the field is not nu11 and the field’s schema does 7ot have a validator, the method
returns nul 1; no events are generated.

® If the value is not nu11 and the field’s schema does define a validator, the data is processed by
the validator object. If the data is valid, a valid event is generated and nul1 is returned;
otherwise, an invalid event is generated and an array of error strings is returned.

Example

The following example shows how to use validateProperty () to make sure that text entered by
a user is of a valid length. You'll determine the valid length by setting the Validation Options for
the String data type in the Component inspector’s Schema tab. If the user enters a string of
invalid length in the text field, the error messages returned by validateProperty () are displayed
in the Output panel.

To validate text entered by a user in a Textlnput component:

1. Drag a TextInput component from the Components panel to the Stage, and name it
zipCode_txt.

2. Select the TextInput component and, in the Component inspector, click the Schema tab.
3. In the Schema Tree pane (the top pane of the Schema tab), select the text property.

4. In the Schema Attributes pane (the bottom pane of the Schema tab), select ZipCode from the
Data Type pop-up menu.

5. Open the Timeline if it is not already open.

6. Click the first frame on Layer 1 in the Timeline, and open the Actions panel (Window >
Development Panels > Actions).

Data binding classes (Flash Professional only) 233

7. Add the following code to the Actions panel:

// Add ComponentMixin methods to TextInput component.
// Note that this step is only necessary if the component
// isn’t already involved in a data binding,
// either as the source or destination.
mx.data.binding.ComponentMixins.initComponent(zipCode_txt);
// Define event listener function for component:
validateResults = function (eventObj) {

var errors:Array = eventObj.target.validateProperty("text");

if (errors != null) {

trace(errors);

}
by
// Register listener function with component:
zipCode_txt.addEventListener("enter", validateResults);

8. Select Window > Other Panels > Common Libraries > Classes to open the Classes library.
9. Open your document’s library by choosing Window > Library.
10. Drag DataBindingClasses from the Classes library to your document’s library.
This step makes the data binding runtime classes available to the SWF file at runtime.
11. Test the SWF file by selecting Control > Test Movie.

In the TextInput component on the Stage, enter an invalid United States zip code—for
example, one that contains all letters, or one that contains fewer than five numbers. Notice the
error messages displayed in the Output panel.

DataType class (Flash Professional only)

ActionScript Class Name mx.data.binding.DataType

The DataType class provides read and write access to data fields of a component property. To get
a DataType object, you call the ComponentMixins.getField() method on a component. You
can then call methods of the DataType object to get and set the value of the field.

If you get and set field values directly on the component instance instead of using DataType class
methods, the data is provided in its “raw” form. In contrast, when you get or set field values using
DataType methods, the values are processed according to the field’s schema settings.

For example, the following code gets the value of a component’s property directly and assigns it to
a variable. The variable, propVar, contains whatever “raw” value is the current value of the
property propName.

var propVar = myComponent.propName;

The next example gets the value of the same property by using the DataType.getAsString()

method. In this case, the value assigned to stringVar is the value of propName after being
processed according to its schema settings, and then returned as a string,.

var dataTypeObj:mx.data.binding.DataType = myComponent.getField("propName");
var stringVar: String = dataTypeObj.getAsString();

For more information about how to specify a field’s schema settings, see “Working with schemas
in the Schema tab (Flash Professional only)” in Using Flash.

234

Chapter 6: Components Dictionary

You can also use the methods of the DataType class to get or set fields in various data types. The
DataType class automatically converts the raw data to the requested type, if possible. For example,
in the code example above, the data that’s retrieved is converted to the String type, even if the raw
data is a different type.

The ComponentMixins.getField() method is available for components that have been
included in a data binding (either as a source, destination, or an index), or that have been
initialized with ComponentMixins.initComponent (). For more information, see
“ComponentMixins class (Flash Professional only)” on page 229.

Note: To make this class available at runtime, you must include the data binding classes in your FLA
document.

For an overview of the classes in the mx.data.binding package, see “Classes in the mx.data.binding

package (Flash Professional only)” on page 213.

Method summary for the DataType class

The following table lists the methods of the DataType class.

Method Description

DataType.getAnyTypedValue() Fetches the current value of the field.

DataType.getAsBoolean() Fetches the current value of the field as a Boolean value.

DataType.getAsNumber() Fetches the current value of the field as a number.

DataType.getAsString() Fetches the current value of the field as a String value.

DataType.getTypedValue() Fetches the current value of the field in the form of the requested
data type.

DataType.setAnyTypedValue() Setsa new value in the field.

DataType.setAsBoolean() Sets the field to the new value, which is given as a Boolean value.
DataType.setAsNumber() Sets the field to the new value, which is given as a number.
DataType.setAsString() Sets the field to the new value, which is given as a string.
DataType.setTypedValue() Sets a new value in the field.

Property summary for the DataType class

The following table lists the properties of the DataType class.

Property Description
DataType.encoder Provides a reference to the encoder object associated with this field.
DataType.formatter Provides a reference to the formatter object associated with
this field.
DataType.kind Provides a reference to the Kind object associated with this field.

Data binding classes (Flash Professional only) 235

DataType.encoder

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

dataTypeObject.encoder

Description

Property; provides a reference to the encoder object associated with this field, if one exists. You
can use this property to access any properties and methods defined by the specific encoder applied
to the field in the Component inspector’s Schema tab.

If no encoder was applied to the field in question, then this property returns undefined.

For more information about the encoders provided with Flash MX Professional 2004, see
“Schema encoders” in Using Flash.

Example

The following example assumes that the field being accessed (isValid) uses the Boolean encoder
(mx.data.encoders.Bool). This encoder is provided with Flash MX Professional 2004 and
contains a property named trueStrings that specifies which strings should be interpreted as

true values. The code below sets the trueStrings property for a field’s encoder to be the strings
“Yes” and “Oui”.

var myField:mx.data.binding.DataType = dataSet.getField("isValid");
myField.encoder.trueStrings = "Yes,Oui";

DataType.formatter

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

dataTypeObject.formatter

Description

Property; provides a reference to the formatter object associated with this field, if one exists. You
can use this property to access any properties and methods for the formatter object applied to the
field in the Component inspector’s Schema tab.

If no formatter was applied to the field in question, this property returns undefined.

236

Chapter 6: Components Dictionary

For more information about the formatters provided with Flash MX Professional 2004, see
“Schema formatters” in Using Flash.

Example

This example assumes that the field being accessed is using the Number Formatter
(mx.data.formatters.NumberFormatter) provided with Flash MX Professional 2004. This
formatter contains a property named precision that specifies how many digits to display after
the decimal point. This code sets the precision property to two decimal places for a field using
this formatter.

var myField:DataType = dataGrid.getField("currentBalance");
myField.formatter.precision = 2;

DataType.getAnyTypedValue()

Availability
Flash Player 6 (6.0 79.0).

Edition
Flash MX Professional 2004.

Usage
dataTypeObject.getAnyTypedValue(suggestedTypes)

Parameters

suggestedTypes An array of strings that specify, in descending order of desirability, the
preferred data types for the field.

Returns

The current value of the field, in the form of one of the data types specified in the
suggestedTypes array.

Description

Method; fetches the current value of the field, using the information in the field’s schema to
process the value. If the field can provide a value as the first data type specified in the
suggestedTypes array, the method returns the field’s value as that data type. If not, the method
attempts to extract the field’s value as the second data type specified in the suggestedTypes array,
and so on.

If you specify nu11 as one of the items in the suggestedTypes array, the method returns the
value of the field in the data type specified in the Schema tab of the Component inspector.
Specifying nu11 always results in a value being returned, so only use nul1 at the end of the array.

If a value can't be returned in the form of the one of the suggested types, it is returned in the type
specified in the Schema tab.

Data binding classes (Flash Professional only) 237

Example

This example attempts to get the value of a field (productInfo.available) inan
XMLConnector component’s results property first as a number or, if that fails, as a string.

import mx.data.binding.DataType;
import mx.data.binding.TypedValue;

var f: DataType = myXmlConnector.getField("results", "productInfo.available");
var b: TypedValue = f.getAnyTypedValue(["Number", "String"]);

See also

ComponentMixins.getField()

DataType.getAsBoolean()
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage
dataTypeObject.getAsBoolean()

Parameters

None.
Returns

A Boolean value.
Description

Method; fetches the current value of the field and converts it to Boolean form, if necessary.

Example

In this example, a field named propName that belongs to a component named myComponent is
retrieved as a Boolean value, and assigned to a variable:

var dataTypeObj:mx.data.binding.DataType = myComponent.getField("propName");
var propValue:Boolean = dataTypeObj.getAsBoolean();

DataType.getAsNumber()
Availability
Flash Player 6.
Edition
Flash MX Professional 2004.

Usage
dataTypeObject.getAsNumber()

238 Chapter 6: Components Dictionary

Parameters

None.

Returns

A number.

Description

Method; fetches the current value of the field and converts it to Number form, if necessary.

Example

In this example, a field named propName that belongs to a component named myComponent is
retrieved as a number, and assigned to a variable:

var dataTypeObj:mx.data.binding.DataType = myComponent.getField("propName");
var propValue:Number = dataTypeObj.getAsNumber();

See also

DataType.getAnyTypedValue()

DataType.getAsString()
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage
dataTypeObject.getAsString()

Parameters

None.
Returns

A string.
Description

Method; fetches the current value of the field and converts it to String form, if necessary.

Example

In this example, a property named propName that belongs to a component named myComponent
is retrieved as a string and assigned to a variable:

var dataTypeObj:mx.data.binding.DataType = myComponent.getField("propName");
var propValue:String = dataTypeObj.getAsString();

See also

DataType.getAnyTypedValue()

Data binding classes (Flash Professional only) 239

DataType.getTypedValue()
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage
dataTypeObject.getTypedValue(requestedType)

Parameters
requestedType A string containing the name of a data type, or null.
Returns

A TypedValue object (see “TypedValue class (Flash Professional only)” on page 244).

Description

Method; returns the value of the field in the specified form, if the field can provide its value in
that form. If the field cannot provide its value in the requested form, the method returns nu11.

If nul1 is specified as requestedType, the method returns the value of the field in its default
type.

Example

The following example returns the value of the field converted to the Boolean data type. This is
stored in the boo1 variable.

var bool:TypedValue = field.getTypedValue("Boolean");

DataType.kind
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage
dataTypeObject.kind

Description

Property; provides a reference to the Kind object associated with this field. You can use this
property to access properties and methods of the Kind object.

240 Chapter 6: Components Dictionary

DataType.setAnyTypedValue()
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage
dataTypeObject.setAnyTypedValue(newTypedValue)

Parameters

newTypedValue A TypedValue object value to set in the field. For more information, see
“TypedValue class (Flash Professional only)” on page 244.

Returns

An array of strings describing any errors that occurred while attempting to set the new value.
Errors can occur under any of the following conditions:

® The data provided cannot be converted to the data type of this field (for example, "abc"
cannot be converted to Number).

® The data is an acceptable type but does not meet the validation criteria of the field.
® The field is read-only.

Note: The actual text of an error message varies depending on the data type, formatters, and
encoders that are defined in the field’s schema.

Description

Method; sets a new value in the field, using the information in the field’s schema to process

the field.

This method operates by first calling DataType.setTypedValue() to set the value. If that fails,
the method checks to see if the destination object is willing to accept String, Boolean, or Number
data, and if so, attempts to use the corresponding ActionScript conversion functions.

Example

This example creates a new TypedValue object (a Boolean), and then assigns that value to a
DataType object named field. Any errors that occur are assigned to the errors array.

import mx.data.binding.*;
var t:TypedValue = new TypedValue (true, "Boolean");
var errors: Array = field.setAnyTypedValue (t);

See also

DataType.setTypedValue()

Data binding classes (Flash Professional only) 241

DataType.setAsBoolean()
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage
dataTypeObject.setAsBoolean(newBooleanValue)

Parameters

newBooleanValue A Boolean value.
Returns

Nothing.
Description

Method; sets the field to the new value, which is given as a Boolean value. The value is converted
to, and stored as, the data type that is appropriate for this field.

Example

The following example sets a variable named boo1 to the Boolean value true. It then sets the
value referenced by field to true.

var bool: Boolean = true;
field.setAsBoolean (bool);

DataType.setAsNumber()
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage
dataTypeObject.setAsNumber (newNumberValue)

Parameters

newNumberValue A number.
Returns

Nothing.
Description

Method; sets the field to the new value, which is given as a number. The value is converted to,
and stored as, the data type that is appropriate for this field.

242 Chapter 6: Components Dictionary

Example

The following example sets a variable named num to the Number value of 32. It then sets the value
referenced by field to num.

var num: Number = 32;
field.setAsNumber (num);

DataType.setAsString()

Availability

Flash Player 6 (6.0 79.0).
Edition

Flash MX Professional 2004.
Usage

dataTypeObject.setAsString(newStringlValue)
Parameters

newStringValue A string.
Returns

Nothing.
Description

Method; sets the field to the new value, which is given as a string. The value is converted to, and
stored as, the data type that is appropriate for this field.

Example

The following example sets the variable stringVal to the string "The new value". It then sets
the value of field to the string.

var stringVal: String = "The new value";
field.setAsString (stringVal);

DataType.setTypedValue()

Availability
Flash Player 6 (6.0 79.0).

Edition
Flash MX Professional 2004.

Usage
dataTypeObject.setTypedValue(newTypedValue)

Parameters

newTypedValue A TypedValue object value to set in the field.

Data binding classes (Flash Professional only) 243

For more information about TypedValue objects, see “TypedValue class (Flash Professional only)”
on page 244.

Returns

An array of strings describing any errors that occurred while attempting to set the new value.
Errors can occur under any of the following conditions:

® The data provided is not an acceptable type.

® The data provided cannot be converted to the data type of this field (for example, "abc"
cannot be converted to Number).

® The data is an acceptable type but does not meet the validation criteria of the field.

® The field is read-only.

Note: The actual text of an error message varies depending on the data type, formatters, and
encoders that are defined in the field’s schema.

Description

Method; sets a new value in the field, using the information in the field’s schema to process the
field. This method behaves similarly to DataType.setAnyTypedValue(), except that it doesnt
try as hard to convert the data to an acceptable data type. For more information, see
DataType.setAnyTypedValue().

Example

This example creates a new TypedValue object (a Boolean), and then assigns that value to a
DataType object named field. Any errors that occur are assigned to the errors array.
import mx.data.binding.*;

var bool:TypedValue = new TypedValue (true, "Boolean");
var errors: Array = field.setTypedValue (bool);

See also

DataType.setTypedValue()

TypedValue class (Flash Professional only)

ActionScript Class Name mx.data.binding. TypedValue

A TypedValue object contains a data value, along with information about the value’s data type.
TypedValue objects are provided as parameters to, and are returned from, various methods of the
DataType class. The data type information in the TypedValue object helps DataType objects
decide when and how they need to do type conversion.

Note: To make this class available at runtime, you must include the data binding classes in your FLA
document.

For an overview of the classes in the mx.data.binding package, see “Classes in the mx.data.binding
package (Flash Professional only)” on page 213.

244

Chapter 6: Components Dictionary

Property summary for the TypedValue class

The following table lists the properties of the TypedValue class.

Property Description

TypedValue.type Contains the schema associated with the TypedValue object’s value.

TypedValue.typeName Names the data type of the TypedValue object’s value.

TypedValue.value Contains the data value of the TypedValue object.

Constructor for the TypedValue class
Availability
Flash Player 6 (6.0 79.0).

Usage
new mx.data.binding.TypedValue(value, typeName, [typel)

Parameters
value A data value of any type.

typeName A string that contains the name of the value’s data type.

type An optional Schema object that describes in more detail the schema of the data. This field
is required only in certain circumstances, such as when setting data into a DataSet component’s

dataProvider property.

Description

Constructor; creates a new TypedValue object.

TypedValue.type
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage
typedValueObject.type

Description

Property; contains the schema associated with the TypedValue object’s value.

Example
This example displays nu11 in the Output panel:

var t: TypedValue = new TypedValue (true, "Boolean", null);
trace(t.type);

Data binding classes (Flash Professional only)

245

TypedValue.typeName
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage
typedValueObject.typeName

Description

Property; contains the name of the data type of the TypedValue object’s value.

Example
This example displays Boolean in the Output panel:
var t: TypedValue = new TypedValue (true, "Boolean", null);
trace(t.typeName);

TypedValue.value
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage
typedValueObject.value

Description

Property; contains the data value of the TypedValue object.

Example
This example displays true in the Output panel:

var t: TypedValue = new TypedValue (true, "Boolean", null);
trace(t.value);

246 Chapter 6: Components Dictionary

DataGrid component (Flash Professional only)

The DataGrid component lets you create powerful data-enabled displays and applications. You
can use the DataGrid component to instantiate a recordset (retrieved from a database query in
Macromedia ColdFusion, Java, or .Net) using Macromedia Flash Remoting and display it in
columns. You can also use data from a data set or from an array to fill a DataGrid component.
The version 2 DataGrid component has been improved to include horizontal scrolling, better
event support (including event support for editable cells), enhanced sorting capabilities, and
performance optimizations.

You can resize and customize characteristics such as the font, color, and borders of columns in a

. o « » .)
grid. You can use a custom movie clip as a “cell renderer” for any column in a grid. (A cell
renderer displays the contents of a cell.) You can use scroll bars to move through data in a grid;
you can also turn off scroll bars and use the DataGrid methods to create a page view style display.

When you add the DataGrid component to an application, you can use the Accessibility panel to
make the component accessible to screen readers. First, you must add the following line of code to
enable accessibility for the DataGrid component:

mx.accessibility.DataGridAccImpl.enableAccessibility();

You enable accessibility for a component only once, regardless of how many instances you have of
the component. For more information, see Chapter 17, “Creating Accessible Content,” in Using

Flash.

Interacting with the DataGrid component (Flash Professional only)
You can use the mouse and the keyboard to interact with a DataGrid component.

If DataGrid.sortableColumns and DataGridColumn.sortOnHeaderRelease are both true,
clicking in a column header causes the grid to sort based on the column’s cell values.

If DataGrid.resizableColumns is true, clicking in the area between columns lets you resize
columns.

Clicking in an editable cell sends focus to that cell; clicking a non-editable cell has no effect on
focus. An individual cell is editable when both the DataGrid.editable and
DataGridColumn.editable properties of the cell are true.

When a DataGrid instance has focus either from clicking or tabbing, you can use the following
keys to control it:

Key Description

Down Arrow When a cell is being edited, the insertion point shifts to the end of the
cell’s text. If a cell is not editable, the Down Arrow key handles selection
as the List component does.

Up Arrow When a cell is being edited, the insertion point shifts to the beginning of
the cell’s text. If a cell is not editable, the Up Arrow key handles selection
as the List component does.

Right Arrow When a cell is being edited, the insertion point shifts one character to the
right. If a cell is not editable, the Right Arrow key does nothing.

DataGrid component (Flash Professional only) 247

Key Description

Left Arrow When a cell is being edited, the insertion point shifts one character to the
left. If a cell is not editable, the Left Arrow key does nothing.

Return/Enter/Shift+Enter When a cell is editable, the change is committed, and the insertion point is
moved to the cell on the same column, next row (up or down, depending
on the shift toggle).

Shift+Tab/Tab Moves focus to the previous item. When the Tab key is pressed, focus
cycles from the last column in the grid to the first column on the next line.
When Shift+Tab is pressed, cycling is reversed. All the text in the focused
cell is selected.

Using the DataGrid component (Flash Professional only)

You can use the DataGrid component as the foundation for numerous types of data-driven
applications. You can easily display a formatted tabular view of a database query (or other data),
but you can also use the cell renderer capabilities to build more sophisticated and editable user
interface pieces. The following are practical uses for the DataGrid component:

® A webmail client
® Search results pages

® Spreadsheet applications such as loan calculators and tax form applications

Understanding the design of the DataGrid component

The DataGrid component extends the List component. When you design an application with the
DataGrid component, it is helpful to understand how the List class underlying it was designed.
The following are some fundamental assumptions and requirements that Macromedia used when
developing the List class:

® Keep it small, fast, and simple.
Don’t make something more complicated than absolutely necessary. This was the prime design
directive. Most of the requirements listed below are based on this directive.

® Lists have uniform row heights.
Every row must be the same height; the height can be set during authoring or at runtime.

® Lists must scale to thousands of records.

® Lists don’t measure text.
This creates a horizontal scrolling issue for List and Tree components; for more information,
see “Understanding the design of the List component” on page 451. The DataGrid

component, however, supports "auto" asan hScrol1Pol1cy value, because it measures
columns (which are the same width per item), not text.

The fact that lists don’t measure text explains why lists have uniform row heights. Sizing
individual rows to fit text would require intensive measuring. For example, if you wanted to
accurately show the scroll bars on a list with nonuniform row height, you'd need to premeasure
every row.

248

Chapter 6: Components Dictionary

® Lists perform worse as a function of their visible rows.

Although lists can display 5000 records, they can’t render 5000 records at once. The more
visible rows (specified by the rowCount property) you have on the Stage, the more work the list
must to do to render. Limiting the number of visible rows, if at all possible, is the best solution.

® Lists aren’t tables.

DataGrid components are intended to provide an interface for many records. They’re not
designed to display complete information; theyre designed to display enough information so
that users can drill down to see more. The message view in Microsoft Outlook is a prime
example. You don’t read the entire e-mail in the grid; the message would be difficult to read
and the client would perform terribly. Outlook displays enough information so that a user can
drill into the post to see the details.

Understanding the DataGrid component: data model and view

Conceptually, the DataGrid component is composed of a data model and a view that displays the
data. The data model consists of three main parts:

® DataProvider

This is a list of items with which to fill the data grid. Any array in the same frame as a
DataGrid component is automatically given methods (from the DataProvider API) that let you
manipulate data and broadcast changes to multiple views. Any object that implements the
DataProvider API can be assigned to the DataGrid.dataProvider property (including
recordsets, data sets, and so on). The following code creates a data provider called myDP:

myDP = new Array({name:"Chris", price:"Priceless"}, {name:"Nigel",
price:"Cheap"});

* Jtem

This is an ActionScript object used for storing the units of information in the cells of a
column. A data grid is really a list that can display more than one column of data. A list can be
thought of as an array; each indexed space of the list is an item. For the DataGrid component,
each item consists of fields. In the following code, the content between curly braces ({ 1) is

an item:

myDP = new Array({name:"Chris", price:"Priceless"}, {name:"Nigel",
price:"Cheap"});

* Field
Identifiers that indicate the names of the columns within the items. This corresponds to the
columnNames property in the columns list. In the List component, the fields are usually 1abel
and data, but in the DataGrid component the fields can be any identifier. In the following
code, the fields are name and price:

myDP = new Array({name:"Chris", price:"Priceless"}, {name:"Nigel",
price:"Cheap"});

DataGrid component (Flash Professional only) 249

The view consists of three main parts:

®* Row

This is a view object responsible for rendering the items of the grid by laying out cells. Each
row is laid out horizontally below the previous one.

® Column

Columns are fields that are displayed in the grid; the fields each correspond to the columnName
property of each column.

Each column is a view object (an instance of the DataGridColumn class) responsible for
displaying each column—for example, width, color, size, and so on.

There are three ways to add columns to a data grid: assign a DataProvider object to
DataGrid.dataProvider (this automatically generates a column for each field in the first
item), set DataGrid.columnNames to specify which fields will be displayed, or use the
constructor for the DataGridColumn class to create columns and call DataGrid.addColumn()
to add them to the grid.

To format columns, either set up style properties for the entire data grid, or define
DataGridColumn objects, set up their style formats individually, and add them to the
data grid.

e Cell

This is a view object responsible for rendering the individual fields of each item. To
communicate with the data grid, these components must implement the CellRenderer API
(see “CellRenderer API” on page 145). For a basic data grid, a cell is a built-in ActionScript
TextField object.

DataGrid parameters

You can set the following authoring parameters for each DataGrid component instance in the
Property inspector or in the Component inspector:

multipleSelection is a Boolean value that indicates whether multiple items can be selected (true)
or not (false). The default value is false.

rowHeight indicates the height of each row, in pixels. Changing the font size does not change the
row height. The default value is 20.

editable is a Boolean value that indicates whether the grid is editable (true) or not (false). The
default value is false.

You can write ActionScript to control these and additional options for the DataGrid component
using its properties, methods, and events. For more information, see “DataGrid class (Flash
Professional only)” on page 254.

250

Chapter 6: Components Dictionary

Creating an application with the DataGrid component

To create an application with the DataGrid component, you must first determine where your data
is coming from. The data for a grid can come from a recordset that is fed from a database query in
Macromedia ColdFusion, Java, or .Net using Flash Remoting. Data can also come from a data set
or an array. To pull the data into a grid, you set the DataGrid.dataProvider property to the
recordset, data set, or array. You can also use the methods of the DataGrid and DataGridColumn
classes to create data locally. Any Array object in the same frame as a DataGrid component copies
the methods, properties, and events of the DataProvider API.

To use Flash Remoting to add a DataGrid component to an application:
1. In Flash, select File > New and select Flash Document.
2. In the Components panel, double-click the DataGrid component to add it to the Stage.
3. In the Property inspector, enter the instance name myDataGrid.
4. In the Actions panel on Frame 1, enter the following code:
myDataGrid.dataProvider = recordSetInstance;

The Flash Remoting recordset recordSetInstance is assigned to the dataProvider property
of myDataGrid.

5. Select Control > Test Movie.

To use a local data provider to add a DataGrid component to an application:

1. In Flash, select File > New and select Flash Document.

2. In the Components panel, double-click the DataGrid component to add it to the Stage.
3. In the Property inspector, enter the instance name myDataGrid.
4. In the Actions panel on Frame 1, enter the following code:

myDP = new Array({name:"Chris", price:"Priceless"}, {name:"Nigel",
price:"Cheap"});

myDataGrid.dataProvider = myDP;

The name and price fields are used as the column headings, and their values fill the cells in

each row.

5. Select Control > Test Movie.

Customizing the DataGrid component (Flash Professional only)

You can transform a DataGrid component horizontally and vertically during authoring and
runtime. While authoring, select the component on the Stage and use the Free Transform tool or
any of the Modify > Transform commands. At runtime, use the setSize() method (see
UIObject.setSize()). If there is no horizontal scroll bar, column widths adjust proportionally.
If column (and therefore, cell) size adjustment occurs, text in the cells may be clipped.

DataGrid component (Flash Professional only) 251

Using styles with the DataGrid component

You can set style properties to change the appearance of a DataGrid component. The DataGrid
component inherits styles from the List component. (See “Using styles with the List component”
on page 453.) The DataGrid component also supports the following styles:

Style Theme Description

backgroundColor Both The background color, which can be set for the whole grid or
for each column.

backgroundDisabledColor Both The background color when the component’s enabled
property is set to "false". The default value is OxXDDDDDD
(medium gray).

border styles Both The DataGrid component uses a RectBorder instance as its
border and responds to the styles defined on that class. See
“RectBorder class” on page 647.
The default border style value is "inset".

headerColor Both The color of the column headers. The default value is
OxEAEAEA (light gray)

headerStyle Both A CSS style declaration for the column header that can be
applied to a grid or column to customize the header styles.
color Both The text color. The default value is OxOB333C for the Halo

theme and blank for the Sample theme.

disabledColor Both The color for text when the component is disabled. The
default color is Ox848384 (dark gray).

embedFonts Both A Boolean value that indicates whether the font specified in
fontFamily is an embedded font. This style must be set to
trueif fontFamily refers to an embedded font. Otherwise,
the embedded font will not be used. If this style is set to true
and fontFamily does not refer to an embedded font, no text
will be displayed. The default value is false.

fontFamily Both The font name for text. The default value is "_sans".

fontSize Both The point size for the font. The default value is 10.

fontStyle Both The font style: either "norma1" or "italic". The default value
is "normal".

fontWeight Both The font weight: either "none" or "bo1d". The default value

is "none". All components can also accept the value
"normal" in place of "none" duringa setStyle() call, but
subsequent calls to getStyle() will return "none".

textAlign Both The text alignment: either "Teft", "right", or "center". The
default value is "1eft".

textDecoration Both The text decoration: either "none" or "underline". The
default value is "none".

vGridLines Both A Boolean value that indicates whether to show vertical grid
lines (true) or not (false). The default value is true.

252 Chapter 6: Components Dictionary

Style Theme Description

hGridLines Both A Boolean value that indicates whether to show horizontal
grid lines (true) or not (false). The default value is false.

vGridLineColor Both The color of the vertical grid lines. The default value is
Ox666666 (medium gray).

hGridLineColor Both The color of the horizontal grid lines. The default value is
Ox666666 (medium gray).

Setting styles for an individual column

Color and text styles can be set for the grid as a whole or for a column. You can use the following
syntax to set a style for a particular column:

grid.getColumnAt(3).setStyle("backgroundColor", OxFFOOAA);

Setting header styles

You can set header styles through headerStyTe, which is a style property itself. To do this, you
create an instance of CSSStyleDeclaration, set the appropriate properties on that instance for
the header, and then assign the CSSStyleDeclaration to the headerStyle property, as shown in
the following example.

import mx.styles.CSSStyleDeclaration;

var headerStyles = new CSSStyleDeclaration();
headerStyles.setStyle("fontStyle", "italic");
grid.setStyle("headerStyle", headerStyles);

Setting styles for all DataGrid components in a document

The DataGrid class inherits from the List class, which inherits from the ScrollSelectList class. The
default class-level style properties are defined on the ScrollSelectList class, which the Menu
component and all List-based components extend. You can set new default style values on this
class directly, and these new settings will be reflected in all affected components.

_global.styles.ScrollSelectlList.setStyle("backgroundColor", OxFFOOAA);

To set a style property on the DataGrid components only, you can create a new instance of
CSSStyleDeclaration and store it in _global.styles.DataGrid.

import mx.styles.CSSStyleDeclaration;

if (_global.styles.DataGrid == undefined) {
_global.styles.DataGrid = new CSSStyleDeclaration();

}

_global.styles.DataGrid.setStyle("backgroundColor", OxFFOO0AA);

When creating a new class-level style declaration, you will lose all default values provided by the
ScrollSelectList declaration, including backgroundColor, which is required for supporting
mouse events. To create a class-level style declaration and preserve defaults, use a for. . in loop to
copy the old settings to the new declaration.

var source = _global.styles.ScrollSelectlList;

var target = _global.styles.DataGrid;
for (var style in source) {

DataGrid component (Flash Professional only) 253

target.setStyle(style, source.getStyle(style));
}

For more information about class-level styles, see “Setting styles for a component class”
on page 71.

Using skins with the DataGrid component

The skins that the DataGrid component uses to represent its visual states are included in the
subcomponents that constitute the data grid (scroll bars and RectBorder). For information about
their skins, see “Using skins with the UlScrollBar component” on page 831 and “RectBorder
class” on page 647.

DataGrid class (Flash Professional only)

Inheritance MovieClip > UIObject class > UIComponent class > View > ScrollView >
ScrollSelectList > List component > DataGrid

ActionScript Class Name mx.controls.DataGrid

Each component class has a version property, which is a class property. Class properties are
available only on the class itself. The version property returns a string that indicates the version
of the component. To access this property, use the following code:

trace(mx.controls.DataGrid.version);

Note: The code trace(myDataGridInstance.version); returns undefined.

Method summary for the DataGrid class

The following table lists methods of the DataGrid class.

Method Description

DataGrid.addColumn() Adds a column to the data grid.

DataGrid.addColumnAt () Adds a column to the data grid at a specified location.

DataGrid.addItem() Adds an item to the data grid.

DataGrid.addItemAt() Adds an item to the data grid at a specified location.

DataGrid.editField() Replaces the cell data at a specified location.

DataGrid.getColumnAt() Gets a reference to a column at a specified location.

DataGrid.getColumnIndex() Gets a reference to the DataGridColumn object at the specified
index.

DataGrid.removeAllColumns() Removes all columns from a data grid.

DataGrid.removeColumnAt() Removes a column from a data grid at a specified location.

DataGrid.replaceltemAt() Replaces an item at a specified location with another item.

DataGrid.spaceColumnsEqually() Spaces all columns equally.

254 Chapter 6: Components Dictionary

Methods inherited from the UlObject class

The following table lists the methods the DataGrid class inherits from the UIObject class. When
calling these methods, use the form dataGridInstance.methodName.

Method Description

UIObject.createClassObject() Creates an object on the specified class.

UIObject.createObject() Creates a subobject on an object.

UIObject.destroyObject() Destroys a component instance.

UlObject.dolater() Calls a function when parameters have been set in the Property
and Component inspectors.

UIObject.getStyle() Gets the style property from the style declaration or object.

UlObject.invalidate() Marks the object so it will be redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.

UIObject.redraw() Forces validation of the object so it is drawn in the current frame.

UIObject.setSize() Resizes the object to the requested size.

UlObject.setSkin() Sets a skin in the object.

UIObject.setStyle() Sets the style property on the style declaration or object.

Methods inherited from the UIComponent class

The following table lists the methods the DataGrid class inherits from the UIComponent class.
When calling these methods, use the form dataGridInstance.methodName.

Method Description
UIComponent.getFocus() Returns a reference to the object that has focus.
UIComponent.setFocus() Sets focus to the component instance.

Methods inherited from the List class

The following table lists the methods the DataGrid class inherits from the List class. When calling
these methods, use the form dataGridInstance.methodName.

Method Description

List.addItem() Adds an item to the end of the list.

List.addItemAt() Adds an item to the list at the specified index.
List.getItemAt() Returns the item at the specified index.

List.removeAll() Removes all items from the list.

List.removeltemAt() Removes the item at the specified index.
List.replaceltemAt() Replaces the item at the specified index with another item.
List.setPropertiesAt() Applies the specified properties to the specified item.

DataGrid component (Flash Professional only) 255

Method

Description

List.sort

List.sort

Items()

ItemsBy()

Sorts the items in the list according to the specified compare
function.

Sorts the items in the list according to a specified property.

Property summary for the DataGrid class

The following table lists the properties of the DataGrid class.

Property

Description

DataGrid.

DataGrid.

DataGrid.

DataGrid.

DataGrid.
DataGrid.

DataGrid.

DataGrid.

DataGrid.

DataGrid.

DataGrid.

columnCount

columnNames

dataProvider

editable

focusedCell
headerHeight

hScrollPolicy

resizableColumns

selectable

showHeaders

sortableColumns

Read-only; the number of columns that are displayed.

An array of field names within each item that are displayed
as columns.

The data model for a data grid.

A Boolean value that indicates whether the data grid is editable
(true)ornot (false).

Defines the cell that has focus.
The height of the column headers, in pixels.

Indicates whether a horizontal scroll bar is present ("on"), not
present ("off"), or appears when necessary ("auto").

A Boolean value that indicates whether the columns are
resizable (true) or not (false).

A Boolean value that indicates whether the data grid is
selectable (true) or not (false).

A Boolean value that indicates whether the column headers are
visible (true) or not (false).

A Boolean value that indicates whether the columns are sortable
(true)ornot (false).

Properties inherited from the UlObject class

The following table lists the properties the DataGrid class inherits from the UIObject class. When
accessing these properties from the DataGrid object, use the form
dataGridInstance.propertyName.

Property Description

UIObject.bottom The position of the bottom edge of the object, relative to the
bottom edge of its parent. Read-only.

UIObject.height The height of the object, in pixels. Read-only.

UlObject.left The left edge of the object, in pixels. Read-only.

UlObject.right The position of the right edge of the object, relative to the right

edge of its parent. Read-only.

256

Chapter 6: Components Dictionary

Property

Description

UIObject.scaleX

UIObject.scaleY

UIObject.top

UIObject.visible

UIObject.width
UIObject.x

UIObject.y

A number indicating the scaling factor in the x direction of the
object, relative to its parent.

A number indicating the scaling factor in the y direction of the
object, relative to its parent.

The position of the top edge of the object, relative to its parent.
Read-only.

A Boolean value indicating whether the object is visible (true) or
not (false).

The width of the object, in pixels. Read-only.
The left edge of the object, in pixels. Read-only.
The top edge of the object, in pixels. Read-only.

Properties inherited from the UIComponent class

The following table lists the properties the DataGrid class inherits from the UIComponent class.
When accessing these properties from the DataGrid object, use the form
dataGridInstance.propertyName.

Property

Description

UIComponent.enabled

UIComponent.tabIndex

Indicates whether the component can receive focus and input.

A number indicating the tab order for a componentin a
document.

Properties inherited from the List class

The following table lists the properties the DataGrid class inherits from the List class. When
accessing these properties from the DataGrid object, use the form

dataGridInstance.propertyName.

Property

Description

List.cellRenderer
List.dataProvider
List.hPosition

List.hScrol1Policy

List.iconField
List.iconFunction
List.labelField

List.labelFunction

List.length

Assigns the class or symbol to use to display each row of the list.
The source of the list items.
The horizontal position of the list.

Indicates whether the horizontal scroll bar is displayed ("on") or
not ("off").

A field in each item to be used to specify icons.
A function that determines which icon to use.
Specifies a field of each item to be used as label text.

A function that determines which fields of each item to use for
the label text.

The number of items in the list. This property is read-only.

DataGrid component (Flash Professional only) 257

Property

Description

List.

List.

List.

List

List.

List.

List.

List.

List.

List.

List.

maxHPosition

multipleSelection

rowCount

.rowHeight

selectable
selectedIndex
selectedIndices

selectedItem

selectedItems

vPosition

vScrollPolicy

The number of pixels the list can scroll to the right, when
List.hScroll1Policyissetto "on".

Indicates whether multiple selection is allowed in the list (true) or
not (false).

The number of rows that are at least partially visible in the list.
The pixel height of every row in the list.

Indicates whether the list is selectable (true) or not (false).
The index of a selection in a single-selection list.

An array of the selected items in a multiple-selection list.

The selected item in a single-selection list. This property is read-
only.

The selected item objects in a multiple-selection list. This
property is read-only.

Scrolls the list so the topmost visible item is the number
assigned.

Indicates whether the vertical scroll bar is displayed ("on"), not
displayed ("off"), or displayed when needed ("auto").

Event summary for the DataGrid class

The following table lists the events of the DataGrid class.

Event

Description

DataGrid.cellEdit

DataGrid.cellFocuslIn

DataGrid.cellFocusOut

DataGrid.cellPress

DataGrid.change

DataGrid.columnStretch

DataGrid.headerRelease

Broadcast when the cell value has changed.
Broadcast when a cell receives focus.

Broadcast when a cell loses focus.

Broadcast when a cell is pressed (clicked).
Broadcast when an item has been selected.
Broadcast when a user resizes a column horizontally.

Broadcast when a user clicks (releases) a header.

Events inherited from the UlObject class

The following table lists the events the DataGrid class inherits from the UIObject class.

Event

Description

UIObject.draw

UIObject.hide

UIObject.load

Broadcast when an object is about to draw its graphics.

Broadcast when an object’s state changes from visible to
invisible.

Broadcast when subobjects are being created.

258

Chapter 6: Components Dictionary

Event Description

UIObject.move Broadcast when the object has moved.

UIObject.resize Broadcast when an object has been resized.

UIObject.reveal Broadcast when an object’s state changes from invisible to
visible.

UIObject.unload Broadcast when the subobjects are being unloaded.

Events inherited from the UIComponent class

The following table lists the events the DataGrid class inherits from the UIComponent class.

Event Description

UIComponent.focusIn Broadcast when an object receives focus.
UIComponent.focusOut Broadcast when an object loses focus.
UIComponent.keyDown Broadcast when a key is pressed.
UIComponent.keyUp Broadcast when a key is released.

Events inherited from the List class

The following table lists the events the DataGrid class inherits from the List class.

Event Description
List.change Broadcast whenever user interaction causes the selection to
change.
List.itemRoll0ut Broadcast when the pointer rolls over and then off of list items.
List.itemRol10ver Broadcast when the pointer rolls over list items.
List.scroll Broadcast when a list is scrolled.
DataGrid.addColumn()
Availability

Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage
myDataGrid.addColumn(dataGridColumn)

myDataGrid.addColumn(name)

Parameters
dataGridColumn An instance of the DataGridColumn class.

name A string that indicates the name of a new DataGridColumn object to be inserted.

DataGrid component (Flash Professional only) 259

Returns

A reference to the DataGridColumn object that was added.

Description

Method; adds a new column to the end of the data grid. For more information, see
“DataGridColumn class (Flash Professional only)” on page 278.

Example
The following code adds a new DataGridColumn object named Purple:
import mx.controls.gridclasses.DataGridColumn;
myGrid.addColumn(new DataGridColumn("Purple"));

DataGrid.addColumnAt()

Availability

Flash Player 6 (6.0 79.0).
Edition

Flash MX Professional 2004.

Usage
myDataGrid.addColumnAt(7ndex, name)
myDataGrid.addColumnAt(index, dataGridColumn)

Parameters

index The index position at which the DataGridColumn object is added. The first
position is 0.

name A string that indicates the name of the DataGridColumn object.

dataGridColumn An instance of the DataGridColumn class.

Returns

A reference to the DataGridColumn object that was added.

Description

Method; adds a new column at the specified position. Columns are shifted to the right and their
indexes are incremented. For more information, see “DataGridColumn class (Flash Professional

only)” on page 278.

Example

The following example inserts a new DataGridColumn object called "Green" at the second and
fourth columns:
import mx.controls.gridclasses.DataGridColumn;

myGrid.addColumnAt(1l, "Green");
myGrid.addColumnAt(3, new DataGridColumn("Purple"));

260 Chapter 6: Components Dictionary

DataGrid.addltem()
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage
myDataGrid.addItem(item)

Parameters

item An instance of an object to be added to the grid.

Returns

A reference to the instance that was added.

Description

Method; adds an item to the end of the grid (after the last item index).

Note: This differs from the List.addItem() method in that an object is passed rather than a string.
Example

The following example adds a new object to the grid myGrid:

var anObject= {name:"Jim!!", age:30};
myGrid.addItem(anObject);

DataGrid.addltemAt()
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage
myDataGrid.addItemAt(index, item)

Parameters

index The index position (among the child nodes) at which the node should be added. The
first position is 0.

item A string that displays the node.
Returns
A reference to the object instance that was added.

Description

Method; adds an item to the grid at the position specified.

DataGrid component (Flash Professional only) 261

Example

The following example inserts an object instance to the grid at index position 4:

var anObject= {name:"Jim!!", age:30};
myGrid.addItemAt(4, anObject);

DataGrid.cellEdit

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

lTistenerObject = new Object();
listenerObject.cellEdit = function(eventObject)
// insert your code here
}
myDataGridInstance.addEventListener("cellEdit", IistenerObject)

Description

Event; broadcast to all registered listeners when cell value changes.

Version 2 components use a dispatcher/listener event model. The DataGrid component
dispatches a ce1TEdit event when the value of a cell has changed, and the event is handled by a
function (also called a handler) that is attached to a listener object (77stenerobject) that you
create. You call the addEventListener() method and pass it the name of the handler as a
parameter.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has properties that contain information about the event. You can use
these properties to write code that handles the event. The DataGrid.cel1Edit event’s event
object has four additional properties:

columnIndex A number that indicates the index of the target column.
itemIndex A number that indicates the index of the target row.
oldValue The previous value of the cell.

type The string "celTEdit".

For more information, see “EventDispatcher class” on page 415.

Example

In the following example, a handler called myDataGridListener is defined and passed to
myDataGrid.addEventListener() as the second parameter. The event object is captured by the
cel1Edit handler in the eventObject parameter. When the ce11Ed it event is broadcast, a
trace statement is sent to the Output panel.

myDataGridListener = new Object();
myDataGridListener.cellEdit = function(event){

262

Chapter 6: Components Dictionary

var cell = "(" + event.columnIndex + ", " + event.itemIndex + ")";
trace("The value of the cell at " + cell + " has changed");

}

myDataGrid.addEventListener("cellEdit", myDataGridListener);

Note: The grid must be editable for the above code to work.

DataGrid.cellFocusin
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage
lTistenerObject = new 0Object();
listenerObject.cellFocusIn = function(eventObject){
// insert your code here
}
myDataGridInstance.addEventListener("cellFocusIn", TistenerObject)

Description

Event; broadcast to all registered listeners when a particular cell receives focus. This event is
broadcast after any previously edited cell’s editCel11 and cel1FocusOut events are broadcast.

Version 2 components use a dispatcher/listener event model. When a DataGrid component
dispatches a ce11FocusIn event, the event is handled by a function (also called a handler) that is
attached to a listener object (17stenerObject) that you create. You call the
addEventListener() method and pass it the name of the handler as a parameter.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has properties that contain information about the event. You can use
these properties to write code that handles the event. The DataGrid.cellFocusIn event’s event
object has three additional properties:

columnIndex A number that indicates the index of the target column.
itemIndex A number that indicates the index of the target row.

type The string "cel1FocusIn".

For more information, see “EventDispatcher class” on page 415.

Example

In the following example, a handler called myListener is defined and passed to
grid.addEventListener() as the second parameter. The event object is captured by the
cellFocusIn handlerin the eventObject parameter. When the cel1FocusIn event is broadcast,
a trace statement is sent to the Output panel.

var myListener = new Object();

myListener.cellFocusIn = function(event) {
var cell = "(" + event.columnlindex + ", " + event.itemIndex + ")";

DataGrid component (Flash Professional only) 263

trace("The cell at " + cell + " has gained focus");
bs
grid.addEventListener("cellFocusIn", myListener);

Note: The grid must be editable for the above code to work.

DataGrid.cellFocusOut
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage

lTistenerObject = new Object();
listenerObject.cellFocusOut = function(eventObject){
// insert your code here
}
myDataGridInstance.addEventListener("cellFocusOut", TistenerObject)

Description

Event; broadcast to all registered listeners whenever a user moves off a cell that has focus. You can
use the event object properties to isolate the cell that was left. This event is broadcast after the
cel1Edit event and before any subsequent celTFocusIn events are broadcast by the next cell.

Version 2 components use a dispatcher/listener event model. When a DataGrid component
dispatches a ce11FocusOut event, the event is handled by a function (also called a handler) that is
attached to a listener object that you create. You call the addEventListener () method and pass
it the name of the handler as a parameter.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has properties that contain information about the event. You can use
these properties to write code that handles the event. The DataGrid.cellFocusOut event’s event
object has three additional properties:

columnIndex A number that indicates the index of the target column. The first position is 0.
itemIndex A number that indicates the index of the target row. The first position is 0.
type The string "cellFocusOut".
For more information, see “EventDispatcher class” on page 415.
Example

In the following example, a handler called myListener is defined and passed to
grid.addEventListener() as the second parameter. The event object is captured by the
cellFocusOut handler in the eventObject parameter. When the cel1FocusOut event is
broadcast, a trace statement is sent to the Output panel.

var myListener = new Object();

myListener.cellFocusOut = function(event) {
var cell = "(" + event.columnIndex + ", " + event.itemIndex + ")";

264 Chapter 6: Components Dictionary

trace("The cell at " + cell + " has lost focus");
bs
grid.addEventListener("cellFocusQut", myListener);

Note: The grid must be editable for the above code to work.

DataGrid.cellPress

Availability

Flash Player 6 (6.0 79.0).
Edition

Flash MX Professional 2004.

Usage

lTistenerObject = new Object();
listenerObject.cellPress = function(eventObject)
// insert your code here
}
myDataGridInstance.addEventListener("cellPress", TistenerObject)

Description
Event; broadcast to all registered listeners when a user presses the mouse button on a cell.

Version 2 components use a dispatcher/listener event model. When a DataGrid component
broadcasts a ce11Press event, the event is handled by a function (also called a handler) that is
attached to a listener object (77stenerobject) that you create. You call the
addEventListener() method and pass it the name of the handler as a parameter.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has properties that contain information about the event. You can use
these properties to write code that handles the event. The DataGrid.cellPress event’s event
object has three additional properties:

columnIndex A number that indicates the index of the column that was pressed. The first
position is 0.

itemIndex A number that indicates the index of the row that was pressed. The first position is

0.
type The string "cellPress”.

For more information, see “EventDispatcher class” on page 415.

Example

In the following example, a handler called myListener is defined and passed to
grid.addEventListener() as the second parameter. The event object is captured by the
cel1Press handler in the eventObject parameter. When the cel11Press event is broadcast, a
trace statement is sent to the Output panel.

var myListener = new Object();

myListener.cellPress = function(event) {
var cell = "(" + event.columnIndex + ", " + event.itemIndex + ")";

DataGrid component (Flash Professional only) 265

trace("The cell at " + cell + " has been clicked");
bs
grid.addEventListener("cellPress", mylListener);

DataGrid.change

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

listenerObject = new Object();
listenerObject.change = function(eventObject)
// insert your code here
}
myDataGridInstance.addEventListener("change", IlistenerObject)

Description

Event; broadcast to all registered listeners when an item has been selected.

Version 2 components use a dispatcher/listener event model. When a DataGrid component
dispatches a change event, the event is handled by a function (also called a handler) that is
attached to a listener object (17stenerObject) that you create. You call the
addEventListener() method and pass it the name of the handler as a parameter.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has properties that contain information about the event. You can use
these properties to write code that handles the event. The DataGrid.change event’s event object
has one additional property, type, whose value is "change". For more information, see
“EventDispatcher class” on page 415.

Example

In the following example, a handler called myListener is defined and passed to
grid.addEventListener() as the second parameter. The event object is captured by change
handler in the eventObject parameter. When the change event is broadcast, a trace statement
is sent to the Output panel.

var myListener = new Object();
myListener.change = function(event) {
trace("The selection has changed to

+ event.target.selectedIndex);
bs
grid.addEventListener("change", mylListener);

266

Chapter 6: Components Dictionary

DataGrid.columnCount
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage
myDataGrid.columnCount

Description
Property (read-only); the number of columns displayed.

Example
The following example gets the number of displayed columns in the DataGrid instance grid:

var ¢ = grid.columnCount;

DataGrid.columnNames
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage
myDataGrid.columnNames

Description
Property; an array of field names within each item that are displayed as columns.
Example

The following example tells the grid instance to display only these three fields as columns:

grid.columnNames = ["Name", "Description", "Price"];

DataGrid.columnStretch
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

DataGrid component (Flash Professional only) 267

Usage

listenerObject = new Object();
listenerObject.columnStretch = function(eventObject){
// insert your code here
}
myDataGridInstance.addEventListener("columnStretch", IistenerObject)

Description
Event; broadcast to all registered listeners when a user resizes a column horizontally.

Version 2 components use a dispatcher/listener event model. When a DataGrid component
dispatches a columnStretch event, the event is handled by a function (also called a handler) that
is attached to a listener object (77stener0Object) that you create. You call the
addEventListener() method and pass it the name of the handler as a parameter.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has properties that contain information about the event. You can use
these properties to write code that handles the event. The DataGrid.columnStretch event’s
event object has two additional properties:

columnIndex A number that indicates the index of the target column. The first position is 0.
type The string "columnStretch".
For more information, see “EventDispatcher class” on page 415.

Example

In the following example, a handler called myListener is defined and passed to
grid.addEventListener() as the second parameter. The event object is captured by the
columnStretch handler in the eventObject parameter. When the columnStretch event is
broadcast, a trace statement is sent to the Output panel.

var myListener = new Object();
myListener.columnStretch = function(event) f{
trace("column " + event.columnIndex + " was resized");
b
grid.addEventListener("columnStretch", mylListener);

DataGrid.dataProvider
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage
myDataGrid.dataProvider

Description

Property; the data model for items viewed in a DataGrid component.

268 Chapter 6: Components Dictionary

The data grid adds methods to the prototype of the Array class so that each Array object conforms
to the DataProvider API (see DataProvider.as in the Classes/mx/controls/listclasses folder). Any
array that is in the same frame or screen as a data grid automatically has all the methods
(addItem(), getItemAt(), and so on) needed for it to be the data model of a data grid, and can
be used to broadcast data model changes to multiple components.

In a DataGrid component, you specify fields for display in the DataGrid.columnNames property.
If you don’t define the column set (by setting the DataGrid.columnNames property or by calling
DataGrid.addColumn()) for the data grid before the DataGrid.dataProvider property has
been set, the data grid generates columns for each field in the data provider’s first item, once that
item arrives.

Any object that implements the DataProvider API can be used as a data provider for a data grid
(including Flash Remoting recordsets, data sets, and arrays).

Use a grid’s data provider to communicate with the data in the grid because the data provider
remains consistent, regardless of scroll position.

Example

The following example creates an array to be used as a data provider and assigns it directly to the
dataProvider property:

grid.dataProvider = [{name:"Chris", price:"Priceless"}, {name:"Nigel",
price:"cheap"}];

The following example creates a new Array object that is decorated with the DataProvider API. It
uses a for loop to add 20 items to the grid:

myDP = new Array();

for (var i=0; i<20; i++)
myDP.addItem({name:"Nivesh", price:"Priceless"});

list.dataProvider = myDP

DataGrid.editable
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage
myDataGrid.editable

Description

Property; determines whether the data grid can be edited by a user (true) or not (false). This
property must be true in order for individual columns to be editable and for any cell to receive
focus. The default value is false.

If you want individual columns to be uneditable, use the DataGridColumn.editable property.

DataGrid component (Flash Professional only) 269

Caution: The DataGrid is not editable or sortable if it is bound directly to a WebServiceConnector
component or an XMLConnector component. You must bind the DataGrid component to the
DataSet component and bind the DataSet component to the WebServiceConnector component or
XMLConnector component if you want the grid to be editable or sortable. For more information, see
Chapter 14, “Data Integration (Flash Professional Only),” in Using Flash.

Example
The following example allows users to edit all the columns of the grid except the first column:

myDataGrid.editable = true;
myDataGrid.getColumnAt(0).editable = false;

See also

DataGridColumn.editable

DataGrid.editField()
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage
myDataGrid.editField(index, colName, data)

Parameters
index The index of the target cell. This number is zero-based.
colName A string indicating the name of the column (field) that contains the target cell.
data The value to be stored in the target cell. This parameter can be of any data type.
Returns
The data that was in the cell.
Description

Method; replaces the cell data at the specified location and refreshes the data grid with the new
value. Any cell present for that value will have its setValue() method triggered.

Example
The following example places a value in the grid:

var prevValue = myGrid.editField(5, "Name", "Neo");

270 Chapter 6: Components Dictionary

DataGrid.focusedCell

Availability

Flash Player 6 (6.0 79.0).
Edition

Flash MX Professional 2004.

Usage
myDataGrid.focusedCell

Description

Property; in editable mode only, an object instance that defines the cell that has focus. The object
must have the fields columnIndex and itemIndex, which are both integers that indicate the
index of the column and item of the cell. The origin is (0,0). The default value is undefined.

Example
The following example sets the focused cell to the third column, fourth row:

grid.focusedCell = {columnlndex:2, itemIndex:3};

DataGrid.getColumnAt()
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage
myDataGrid.getColumnAt(index)

Parameters
index The index of the DataGridColumn object to be returned. This number is zero-based.
Returns
A DartaGridColumn object.
Description
Method; gets a reference to the DataGridColumn object at the specified index.
Example

The following example gets the DataGridColumn object at index 4:
var aColumn = myGrid.getColumnAt(4);

DataGrid component (Flash Professional only) 271

DataGrid.getColumnindex()
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage
myDataGrid.getColumnIndex(columnName)

Parameters
columnName A string that is the name of a column.
Returns

A number that specifies the index of the column.

Description

Method; returns the index of the column specified by the columnName parameter.

DataGrid.headerHeight
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage
myDataGrid.headerHeight

Description
Property; the height of the header bar of the data grid, in pixels. The default value is 20.
Example

The following example sets the scroll position to the top of the display:
myDataGrid.headerHeight = 30;

DataGrid.headerRelease
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

272 Chapter 6: Components Dictionary

Usage

listenerObject = new Object();
listenerObject.headerRelease = function(eventObject){
// insert your code here
}
myDataGridIinstance.addEventListener("headerRelease", IistenerObject)

Description

Event; broadcast to all registered listeners when a column header has been released. You can use
this event with the DataGridColumn.sortOnHeaderRelease property to prevent automatic
sorting and to let you sort as you like.

Version 2 components use a dispatcher/listener event model. When the DataGrid component
dispatches a headerRelease event, the event is handled by a function (also called a handler) that
is attached to a listener object (77stener0Object) that you create. You call the
addEventListener() method and pass it the name of the handler as a parameter.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has properties that contain information about the event. You can use
these properties to write code that handles the event. The DataGrid.headerRelease event’s
event object has two additional properties:

columnIndex A number that indicates the index of the target column.
type The string "headerRelease".
For more information, see “EventDispatcher class” on page 415.

Example

In the following example, a handler called myListener is defined and passed to
grid.addEventListener() as the second parameter. The event object is captured by the
headerRelease handler in the eventObject parameter. When the headerRelease event is
broadcast, a trace statement is sent to the Output panel.
var myListener = new Object();
myListener.headerRelease = function(event) f{

trace("column " + event.columnlIndex + " header was pressed");
b
grid.addEventListener("headerRelease", mylListener);

DataGrid.hScrollPolicy
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage
myDataGrid.hScrollPolicy

DataGrid component (Flash Professional only) 273

Description

Property; specifies whether the data grid has a horizontal scroll bar. This property can have the
value "on", "off", or "auto". The default value is "off".

If hScrol1Policy isset to "off", columns scale proportionally to accommodate the finite width.
Note: This differs from the List component, which cannot have hScrol1Policy setto "auto".
Example

The following example sets horizontal scroll policy to automatic, which means that the horizontal
scroll bar appears if it’s necessary to display all the content:

myDataGrid.hScroll1Policy = "auto";

DataGrid.removeAllColumns()
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage
myDataGrid.removeAl1Columns()

Parameters

None.
Returns

Nothing.
Description

Method; removes all DataGridColumn objects from the data grid. Calling this method has no
effect on the data provider.

Call this method if you are setting a new data provider that has different fields from the previous
data provider, and you want to clear the fields that are displayed.

Example
The following example removes all DataGridColumn objects from myDataGrid:

myDataGrid.removeAlT1Columns();

DataGrid.removeColumnAt()
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

274 Chapter 6: Components Dictionary

Usage
myDataGrid.removeColumnAt(index)

Parameters

index The index of the column to remove.
Returns

A reference to the DataGridColumn object that was removed.
Description

Method; removes the DataGridColumn object at the specified index.
Example

The following example removes the DataGridColumn object at index 2 in myDataGrid:

myDataGrid.removeColumnAt(2);

DataGrid.replaceltemAt()
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage
myDataGrid.replaceltemAt(index, item)

Parameters
index The index of the item to be replaced.
item An object that is the item value to use as a replacement.
Returns
The previous value.
Description
Method; replaces the item at a specified index and refreshes the display of the grid.
Example

The following example replaces the item at index 4 with the item defined in aNewValue:

var aNewValue = {name:"Jdim", value:"tired"};
var prevValue myGrid.replaceltemAt(4, aNewValue);

DataGrid component (Flash Professional only)

275

DataGrid.resizableColumns

Availability

Flash Player 6 (6.0 79.0).
Edition

Flash MX Professional 2004.

Usage
myDataGrid.resizableColumns

Description

Property; a Boolean value that determines whether the columns of the grid can be stretched by
the user (true) or not (false). This property must be true for individual columns to be resizable
by the user. The default value is true.

Example
The following example prevents users from resizing columns:

myDataGrid.resizableColumns = false;

DataGrid.selectable
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage
myDataGrid.selectable

Description

Property; a Boolean value that determines whether a user can select the data grid (true) or not
(false). The default value is true.

Example
The following example prevents the grid from being selected:

myDataGrid.selectable = false;

DataGrid.showHeaders
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

276 Chapter 6: Components Dictionary

Usage
myDataGrid.showHeaders

Description

Property; a Boolean value that indicates whether the data grid displays the column headers (true)
or not (false). Column headers are shaded to differentiate them from the other rows in a grid.
Users can click column headers to sort the contents of the column if
DataGrid.sortableColumns is set to true. The default value of showHeaders is true.

Example
The following example hides the column headers:
myDataGrid.showHeaders = false;

See also

DataGrid.sortableColumns

DataGrid.sortableColumns
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage
myDataGrid.sortableColumns

Description

Property; a Boolean value that determines whether the columns of the data grid can be sorted
(true) or not (false) when a user clicks the column headers. This property must be true for
individual columns to be sortable, and for the headerRelease event to be broadcast. The default
value is true.

Caution: The DataGrid is not editable or sortable if it is bound directly to a WebServiceConnector
component or an XML Connector component. You must bind the DataGrid component to the
DataSet component and bind the DataSet component to the WebServiceConnector component or
XML Connector component if you want the grid to be editable or sortable. For more information, see
Chapter 14, “Data Integration (Flash Professional Only),” in Using Flash.

Example
The following example turns off sorting:
myDataGrid.sortableColumns = false;
See also

DataGrid.headerRelease

DataGrid component (Flash Professional only) 277

DataGrid.spaceColumnsEqually()

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myDataGrid.spaceColumnsEqually()

Parameters

None.

Returns

Nothing.

Description

Method; respaces the columns equally.

Example

The following example respaces the columns of myGrid when any column header is pressed
and released:

myGrid.showHeaders = true

myGrid.dataProvider = [{guitar:"Flying V", name:"maggot"}, {guitar:"SG",
name:"dreschie"}, {guitar:"jagstang", name:"vitapup"}];

gridL0 = new Object();

gridL0.headerRelease = function(){
myGrid.spaceColumnsEqually();

}

myGrid.addEventListener("headerRelease", gridlL0);

DataGridColumn class (Flash Professional only)

ActionScript Class Name mx.controls.gridclasses.DataGridColumn

You can create and configure DataGridColumn objects to use as columns of a data grid. Many of
the methods of the DataGrid class are dedicated to managing DataGridColumn objects.
DataGridColumn objects are stored in an zero-based array in the data grid; 0 is the leftmost
column. After columns have been added or created, you can access them by calling
DataGrid.getColumnAt(index).

There are three ways to add or create columns in a grid. If you want to configure your columns, it
is best to use either the second or third way before you add data to a data grid so you don’t have to
create columns twice.

® Adding a data provider or an item with multiple fields to a grid that has no configured
DataGridColumn objects automatically generates columns for every field in the reverse order
of the for..in loop.

278

Chapter 6: Components Dictionary

® DataGrid.columnNames takes in the field names of the desired item fields and generates
DataGridColumn objects, in order, for each field listed. This approach lets you select and
order columns quickly with a minimal amount of configuration. This approach removes any

previous column information.

® The most flexible way to add columns is to prebuild them as DataGridColumn objects and
add them to the data grid by using DataGrid.addColumn (). This approach is useful because it
lets you add columns with proper sizing and formatting before the columns ever reach the grid

(which reduces processor demand). For more information, see “Constructor for the
DataGridColumn class” on page 279.

Property summary for the DataGridColumn class

The following table lists the properties of the DataGridColumn class.

Property

Description

DataGridColumn.

DataGridColumn.

DataGridColumn.

DataGridColumn.

DataGridColumn.
DataGridColumn.

DataGridColumn.

DataGridColumn.

DataGridColumn.

DataGridColumn.

cellRenderer

columnName

editable

headerRenderer

headerText

lTabelFunction

resizable

sortable

sortOnHeaderRelease

width

The linkage identifier of a symbol to be used to display the
cells in this column.

Read-only; the name of the field associated with the column.

A Boolean value that indicates whether a column is editable
(true)ornot (false).

The name of a class to be used to display the header of
this column.

The text for the header of this column.
A function that determines which field of an item to display.

A Boolean value that indicates whether a column is resizable
(true)ornot (false).

A Boolean value that indicates whether a column is sortable
(true)ornot (false).

A Boolean value that indicates whether a column is sorted
(true) or not (false) when a user clicks a column header.

The width of a column, in pixels.

Constructor for the DataGridColumn class
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage
new DataGridColumn(name)

DataGrid component (Flash Professional only) 279

Parameters

name A string that indicates the name of the DataGridColumn object. This parameter is the
field of each item to display.

Returns
Nothing.
Description

Constructor; creates a DataGridColumn object. Use this constructor to create columns to add to
a DataGrid component. After you create the DataGridColumn objects, you can add them to a
data grid by calling DataGrid.addColumn().

Example
The following example creates a DataGridColumn object called Location:
import mx.controls.gridclasses.DataGridColumn;

var column = new DataGridColumn("Location");

DataGridColumn.cellRenderer

Availability

Flash Player 6 (6.0 79.0).
Edition

Flash MX Professional 2004.

Usage
myDataGrid.getColumnAt(7ndex).cellRenderer

Description

Property; a linkage identifier for a symbol to be used to display cells in this column. Any class
used for this property must implement the CellRenderer API (see “CellRenderer API”
on page 145.) The default value is undefined.

Example
The following example uses a linkage identifier to set a new cell renderer:

myGrid.getColumnAt(3).cellRenderer = "MyCellRenderer";

DataGridColumn.columnName

Availability

Flash Player 6 (6.0 79.0).
Edition

Flash MX Professional 2004.

Usage
myDataGrid.getColumnAt(7ndex).columnName

280 Chapter 6: Components Dictionary

Description

Property (read-only); the name of the field associated with this column. The default value is the
name called in the DataGridColumn constructor.

Example

The following example assigns the column name of the column at the third index position to the
variable name:

var name = myGrid.getColumnAt(3).columnName;
See also

Constructor for the DataGridColumn class

DataGridColumn.editable
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage
myDataGrid.getColumnAt(index).editable
Description

Property; determines whether the column can be edited by a user (true) or not (false). The
DataGrid.editable property must be true in order for individual columns to be editable, even
when DataGridColumn.editable is set to true. The default value is true.

Caution: The DataGrid is not editable or sortable if it is bound directly to a WebServiceConnector
component or an XML Connector component. You must bind the DataGrid component to the
DataSet component and bind the DataSet component to the WebServiceConnector component or
XML Connector component if you want the grid to be editable or sortable. For more information, see
Chapter 14, “Data Integration (Flash Professional Only),” in Using Flash.

Example
The following example prevents the first column in a grid from being edited:
myDataGrid.getColumnAt(0).editable = false;

See also

DataGrid.editable

DataGrid component (Flash Professional only) 281

DataGridColumn.headerRenderer

Availability

Flash Player 6 (6.0 79.0).
Edition

Flash MX Professional 2004.

Usage
myDataGrid.getColumnAt(7ndex).headerRenderer

Description

Property; a string that indicates a class name to be used to display the header of this column. Any
class used for this property must implement the CellRenderer API (see “CellRenderer API”
on page 145). The default value is undefined.

Example
The following example uses a linkage identifier to set a new header renderer:

myGrid.getColumnAt(3).headerRenderer = "MyHeaderRenderer";

DataGridColumn.headerText
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage
myDataGrid.getColumnAt(index).headerText

Description

Property; the text in the column header. The default value is the column name.

This property allows you to display something other than the field name as the header.
Example

The following example sets the column header text to “The Price”:

var myColumn = new DataGridColumn("price");
myColumn.headerText = "The Price";

DataGridColumn.labelFunction
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

282 Chapter 6: Components Dictionary

Usage
myDataGrid.getColumnAt(7index).labelFunction

Description

Property; specifies a function to determine which field (or field combination) of each item to
display. This function receives one parameter, i tem, which is the item being rendered, and must
return a string representing the text to display. This property can be used to create virtual columns
that have no equivalent field in the item.

Note: The specified function operates in a nondefined scope.
Example
The following example creates a virtual column:
var myCol = myGrid.addColumn("Subtotal");
myCol.labelFunction = function(item) f{
return "$" + (item.price + (item.price * salesTax));
b
DataGridColumn.resizable
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage
myDataGrid.getColumnAt(index).resizable

Description

Property; a Boolean value that indicates whether a column can be resized by a user (true) or not

(false). The DataGrid.resizableColumns property must be set to true for this property to
take effect. The default value is true.

Example

The following example prevents the column at index 1 from being resized:

myGrid.getColumnAt(1l).resizable = false;
DataGridColumn.sortable
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage
myDataGrid.getColumnAt(7ndex).sortable

DataGrid component (Flash Professional only) 283

Description

Property; a Boolean value that indicates whether a column can be sorted by a user (true) or not
(false). The DataGrid.sortableColumns property must be set to true for this property to take
effect. The default value is true.

Caution: The DataGrid is not editable or sortable if it is bound directly to a WebServiceConnector
component or an XMLConnector component. You must bind the DataGrid component to the
DataSet component and bind the DataSet component to the WebServiceConnector component or
XML Connector component if you want the grid to be editable or sortable. For more information, see
Chapter 14, “Data Integration (Flash Professional Only),” in Using Flash.

Example

The following example prevents the column at index 1 from being sorted:

myGrid.getColumnAt(1l).sortable = false;

DataGridColumn.sortOnHeaderRelease

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

myDataGrid.getColumnAt(index).sortOnHeaderRelease

Description

Property; a Boolean value that indicates whether the column is sorted automatically (true) or not
(false) when a user clicks a header. This property can be set to true only if
DataGridColumn.sortable is set to true. If DataGridColumn.sortOnHeaderRelease is set to
false, you can catch the headerRelease event and perform your own sort.

The default value is true.

Caution: The DataGrid is not editable or sortable if it is bound directly to a WebServiceConnector
component or an XMLConnector component. You must bind the DataGrid component to the
DataSet component and bind the DataSet component to the WebServiceConnector component or
XML Connector component if you want the grid to be editable or sortable. For more information, see
Chapter 14, “Data Integration (Flash Professional Only),” in Using Flash.

Example

The following example lets you catch the headerRelease event to perform your own sort:

myGrid.getColumnAt(7).sortOnHeaderRelease = false;

284

Chapter 6: Components Dictionary

DataGridColumn.width
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage
myDataGrid.getColumnAt(7ndex).width

Description
Property; a number that indicates the width of the column, in pixels. The default value is 50.
Example

The following example makes a column half the default width:
myGrid.getColumnAt(4).width = 25;

DataGrid component (Flash Professional only) 285

DataHolder component (Flash Professional only)

The DataHolder component is a repository for data and a means of generating events when that
data has changed. Its main purpose is to hold data and act as a connector between other
components that use data binding.

Initially, the DataHolder component has a single bindable property named data. You can add
more properties by using the Schema tab in the Component inspector. For more information on
using the Schema tab, see “Working with schemas in the Schema tab (Flash Professional only)” in
Using Flash.

You can assign any type of data to a DataHolder property, either by creating a binding between
the data and another property, or by using your own ActionScript code. Whenever the value of
that data changes, the DataHolder component emits an event whose name is the same as the
property, and any bindings associated with that property are executed.

In most cases, you will not use this component to build an application. It is needed only when
you cannot bind external data directly to another component and you do not want to use a
DataSet component. The DataHolder component is useful when you can’t directly bind
components (such as connectors, user interface components, or DataSet components) together.
Below are some scenarios in which you might use a DataHolder component:

® Ifa data value is generated by ActionScript, you might want to bind it to some other
components. In this case, you could have a DataHolder component that contains properties
that are bound as desired. Whenever new values are assigned to those properties (by means of
ActionScript, for example) those values will be distributed to the data-bound object.

® You might have a data value that results from a complex indexed data binding, as shown in the
following diagram.

Web Service Method Results 3 Ul ListBox
getMovies movieList
Results[movieList.selectedindex] data.movieTitle Ul TextField
title
. 2
DataModel —JdetemovieRating o Ul TextField
myDataModel rating
data.movieTimes Ul ListBox
times

In this case it is convenient to bind the data value to a DataHolder component (called
DataModel in this illustration) and then use that for bindings to the user interface.

286

Chapter 6: Components Dictionary

Note: The DataHolder component is not meant to implement the same control over your data as the
DataSet component. It does not manage or track data, nor does it have the ability to update data. It is
a repository for holding data and generating events when that data has changed.

Creating an application with the DataHolder component
(Flash Professional only)

In this example, you add an array property to a DataHolder component’s schema (an array) whose
value is determined by ActionScript code that you write. You then bind that array property to the
dataProvider property of a DataGrid component by using the Bindings tab in the Component
inspector.

To use the DataHolder component in a simple application:
1. In Flash MX Professional 2004, create a new file.

2. Open the Components panel, drag a DataHolder component to the Stage, and name it
dataHolder.

. Drag a DataGrid component to the Stage and name it namesGrid.

= o

. Select the DataHolder component and open the Component inspector.

D

. Click the Schema tab in the Component inspector.
6. Click the Add Component Property (+) button located in the top pane of the Schema tab.

7. In the bottom pane of the Schema tab, type namesArray in the Field Name field, and select
Array from the Data Type pop-up menu.

8. Click the Bindings tab in the Component inspector, and add a binding between the
namesArray property of the DataHolder component and the dataProvider property of the
DataGrid component.

For more information on creating bindings with the Bindings tab, see “Working with bindings
in the Bindings tab (Flash Professional only)” in Using Flash.

9. In the Timeline, select the first frame on Layer 1 and open the Actions panel.
10. Enter the following code in the Actions panel:

dataHolder.namesArray= [{name:"Tim"},{name:"Paul"},{name:"Jason"}1;

This code populates the namesArray array with several objects. When this variable assignment
executes, the binding that you established previously between the DataHolder component and
the DataGrid component executes.

11. Test the file by selecting Control > Test Movie.

DataHolder component (Flash Professional only) 287

DataHolder class

Inheritance MovieClip > DataHolder
ActionScript class name mx.data.components.DataHolder

The DataHolder component is a repository for data and a means of generating events when that
data has changed. Its main purpose is to hold data and act as a connector between other
components that use data binding.

Initially, the DataHolder component has a single bindable property named data. You can add
more properties by using the Schema tab in the Component inspector.

Property summary for the DataHolder class

The following table lists the properties of the DataHolder class.

Property Description

DataHolder.data Default bindable property for the DataHolder component.

DataHolder.data

Availability

Flash Player 6 (6.0 79.0).

Edition

Flash MX Professional 2004.

Usage

dataHolder.data

Description

Property; the default item in a DataHolder object’s schema. This property is not a “permanent”
member of the DataHolder component. Rather, it is the default bindable property for each
instance of the component. You can add your own bindable properties, or delete the default data
property, by using the Schema tab in the Component inspector.

For more information on using the Schema tab, see “Working with schemas in the Schema tab
(Flash Professional only)” in Using Flash.

Example

For a step-by-step example of using this component, see “Creating an application with the
DataHolder component (Flash Professional only)” on page 287.

The following code shows a simple example of how to populate the DataHolder component with
data that is a variable. To test the application, you enter a value into the text input field and click
the addDate_btn instance, which adds the value to the DataHolder component. Click the
dumpDataHolder_btn instance to trace the contents of the DataHolder component.

288

Chapter 6: Components Dictionary

// Drag two Button components onto the Stage (addDate_btn and

dumpDataHolder_btn), a TextInput (myDate_txt) and a DataHolder

(myDataHolder). Add the following ActionScript to Frame 1:

var dhlListener:0bject = {};
dhListener.click = function() {
trace("dumping DataHolder");
trace(" "+myDataHolder.myDate);
trace("");
b
var datelistener:0bject = {};
datelListener.click = function() {
myDataHolder.myDate = myDate_txt.text;
trace("added value");
bs
this.dumpDataHolder_btn.addEventListener("click", dhListener);
this.addDate_btn.addEventListener("click", datelistener);

DataHolder component (Flash Professional only)

289

DataProvider API

ActionScript Class Name mx.controls.listclasses.DataProvider

The DataProvider API is a set of methods and properties that a data source needs so that a list-
based class can communicate with it. Arrays, recordsets, and data sets implement this API. You
can create a DataProvider-compliant class by implementing all the methods and properties
described in this section. A list-based component could then use that class as a data provider.

The methods of the DataProvider API let you query and modify the data in any component that
displays data (also called a view). The DataProvider API also broadcasts change events when the
data changes. Multiple views can use the same data provider and receive the change events.

A data provider is a linear collection (like an array) of items. Each item is an object composed of
many fields of data. You can access these items by index (as you can with an array), using
DataProvider.getItemAt().

Data providers are most commonly used with arrays. Data-aware components apply all the
methods of the DataProvider API to Array.prototype when an Array object is in the same
frame or screen as a data-aware component. This lets you use any existing array as the data for
views that have a dataProvider property.

Because of the DataProvider API, the version 2 components that provide views for data
(DataGrid, List, Tree, and so on) can also display Flash Remoting RecordSet objects and data
from the DataSet component. The DataProvider API is the language with which data-aware
components communicate with their data providers.

In the Macromedia Flash documentation, “DataProvider” is the name of the API, dataProvider
is a property of each component that acts as a view for data, and “data provider” is the generic
term for a data source.

Method summary for the DataProvider API

The following table lists the methods of the DataProvider API.

Method Description

DataProvider.addItem() Adds an item at the end of the data provider.
DataProvider.addItemAt() Adds an item to the data provider at the specified position.
DataProvider.editField() Changes one field of the data provider.

DataProvider.getEditingData() Getsthe data for editing from a data provider.

DataProvider.getItemAt() Gets a reference to the item at a specified position.
DataProvider.getItemID() Returns the unique ID of the item.

DataProvider.removeAll() Removes all items from a data provider.
DataProvider.removeltemAt() Removes an item from a data provider at a specified position.

DataProvider.replaceltemAt() Replaces the item at a specified position with another item.

290

Chapter 6: Components Dictionary

Method Description

DataProvider.sortItems() Sorts the items in the data provider according to a compare
function or sort options.

DataProvider.sortItemsBy() Sorts the items in the data provider alphabetically or numerically,
in the specified order, using the specified field name.

Property summary for the DataProvider API
The following table lists the properties of the DataProvider API.

Property Description

DataProvider.length The number of items in a data provider.

Event summary for the DataProvider API

The following table lists the events of the DataProvider API.

Event Description

DataProvider.modelChanged Broadcast when the data provider is changed.

DataProvider.addiltem()

Availability

Flash Player 6 (6.0 79.0).
Edition

Flash MX Professional 2004.

Usage
myDP.addItem(item)
Parameters

item An object that contains data. This constitutes an item in a data provider.

Returns
Nothing.
Description
Method; adds a new item at the end of the data provider. This method triggers the mode1Changed
event with the event name addItems.
Example
The following example adds an item to the end of the data provider myDP:

myDP.addItem({Tabel : "this is an Item"});

DataProvider APl 291

DataProvider.additemAt()
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage
myDP.addItemAt(index, item)

Parameters

index A number greater than or equal to 0. This number indicates the position at which to
insert the item; it is the index of the new item.

item An object containing the data for the item.
Returns

Nothing.
Description

Method; adds a new item to the data provider at the specified index. Indices greater than the data
provider’s length are ignored.

This method triggers the mode1Changed event with the event name addItems.
Example

The following example adds an item to the data provider myDP at the fourth position:

myDP.addItemAt(3, {label : "this is the fourth Item"});

DataProvider.editField()
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage
myDP.editField(index, fieldName, newData)

Parameters
index A number greater than or equal to 0; the index of the item.
fieldName A string indicating the name of the field to modify in the item.

newData The new data to put in the data provider.

292 Chapter 6: Components Dictionary

Returns
Nothing.
Description
Method; changes one field of the data provider.

This method triggers the mode1Changed event with the event name updateField.

Example
The following code modifies the 1abel field of the third item:
myDP.editField(2, "Tabel", "mynewData");

DataProvider.getEditingData()
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage
myDP.getEditingData(index, fieldName)

Parameters

index A number greater than or equal to 0 and less than DataProvider.length. This number
is the index of the item to retrieve.

fieldName A string indicating the name of the field being edited.
Returns
The editable formatted data to be used.

Description

Method; retrieves data for editing from a data provider. This lets the data model provide different
formats of data for editing and displaying.

Example
The following code gets an editable string for the price field:
trace(myDP.getEditingData(4, "price");

DataProvider.getltemAt()
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

DataProvider APl 293

Usage
myDP.getltemAt(index)

Parameters

index A number greater than or equal to 0 and less than DataProvider.length. This number
is the index of the item to retrieve.

Returns

A reference to the retrieved item; undefined if the index is out of range.
Description

Method; retrieves a reference to the item at a specified position.
Example

The following code displays the label of the fifth item:
trace(myDP.getItemAt(4).label);

DataProvider.getltemID()
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX 2004 Professional.

Usage
myDP.getItemID(index)

Parameters
index A number greater than or equal to 0.
Returns

A number that is the unique ID of the item.

Description

Method; returns a unique ID for the item. This method is primarily used to track selection. The
ID is used in data-aware components to keep lists of what items are selected.

Example

This example gets the ID of the fourth item:
var ID = myDP.getItemID(3);

294 Chapter 6: Components Dictionary

DataProvider.length

Availability

Flash Player 6 (6.0 79.0).
Edition

Flash MX Professional 2004.
Usage

myDP.length
Description

Property (read-only); the number of items in the data provider.

Example
This example sends the number of items in the myArray data provider to the Output panel:

trace(myArray.length);

DataProvider.modelChanged

Availability
Flash Player 6 (6.0 79.0).

Edition
Flash MX Professional 2004.

Usage
listenerObject = new Object();
listenerObject.modelChanged = function(eventObject){
// insert your code here

}
myMenu.addEventListener("modelChanged", I7stenerObject)

Description

Event; broadcast to all of its view listeners whenever the data provider is modified. You typically
add a listener to a model by assigning its dataProvider property.

Version 2 components use a dispatcher/listener event model. When a data provider changes in
some way, it broadcasts a mode1Changed event, and data-aware components catch it to update
their displays to reflect the changes in data.

The Menu.modelChanged event’s event object has five additional properties:

® eventName The eventName property is used to subcategorize modelChanged events.
Data-aware components use this information to avoid completely refreshing the component
instance (view) that is using the data provider. The eventName property supports the following
values:

= updateAll The entire view needs refreshing, excluding scroll position.

« addItems A series of items has been added.

DataProvider APl 295

« removeltems A series of items has been deleted.

= updateltems A series of items needs refreshing.

« sort The data has been sorted.

= updatefField A field in an item must be changed and needs refreshing.

= updateColumn An entire field’s definition in the data provider needs refreshing.

« filterModel The model has been filtered, and the view needs refreshing (reset the scroll
position).
» schemaloaded The field’s definition of the data provider has been declared.
® firstIitem The index of the first affected item.

® lastltem Theindex of the last affected item. The value equals firstItemif only one item is

affected.
® removedIDs An array of the item identifiers that were removed.

® fieldName A string indicating the name of the field that is affected.

For more information, see “EventDispatcher class” on page 415.

Example

In the following example, a handler called Tistener is defined and passed to
addEventListener() as the second parameter. The event object is captured by the
modelChanged handler in the evt parameter. When the modelChanged event is broadcast, a
trace statement is sent to the Output panel.

listener = new Object();

listener.modelChanged = function(evt){
trace(evt.eventName);

}

myList.addEventListener("modelChanged", Tistener);

DataProvider.removeAll()
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage
myDP.removeAl1()

Parameters
None.

Returns

Nothing.

296 Chapter 6: Components Dictionary

Description

Method; removes all items in the data provider. This method triggers the mode1Changed event
with the event name removeltems.

Example
This example removes all the items in the data provider:

myDP.removeAl1();

DataProvider.removeltemAt()
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage
myDP.removeltemAt (index)

Parameters

index A number greater than or equal to 0. This number is the index of the item to remove.
Returns

Nothing.
Description

Method; removes the item at the specified index. The indices after the removed index collapse
by one.

This method triggers the mode1Changed event with the event name removelItenms.
Example

This example removes the item at the fourth position:

myDP.removeltemAt(3);

DataProvider.replaceltemAt()
Availability
Flash Player 6 (6.0 79.0).
Edition
Flash MX Professional 2004.

Usage
myDP.replaceltemAt(index, item)

DataProvider APl 297

Parameters
index A number greater than or equal to 0. This number is the index of the item to change.

item An object that is the new item.
Returns
Nothing.
Description
Method; replaces the content of the item at the specified index. This method triggers the
modelChanged event with the event name removeltems.
Example
This example replaces the item at index 3 with the item labeled “new label”:

myDP.replaceltemAt(3, {label : "new Tlabel"});

DataProvider.sortltems()

Availability
Flash Player 7.
Edition
Flash MX Professional 2004.
Usage
myDP.sortltems([compareFunc], LoptionsFlagl)
Parameters

comparefunc A reference to a function that compares two items to determine their sort order.
For details, see Array.sort () in Flash ActionScripr Language Reference. This parameter
is optional.

optionsFlag Lets you perform multiple, different types of sorts on a single array without
having to replicate the entire array or resort it repeatedly. This parameter is optional.

The following are possible values for optionsFiag:

® Array.DESCENDING, which sorts highest to lowest.
® Array.CASEINSENSITIVE, which sorts case-insensitively.

® Array.NUMERIC, which sorts numerically if the two elements being compared are numbers. If
they aren’t numbers, use a string comparison (which can be case-insensitive if that flag is
specified).

® Array.UNIQUESORT, which returns an error code (0) instead of a sorted array if two objects in
the array are identical or have identical sort fields.

298 Chapter 6: Components Dictionary

® Array.RETURNINDEXEDARRAY, which returns an integer index array that is the result of the
sort. For example, the following array would return the second line of code and the array
would remain unchanged:

["a", "d", "c", "b"]
[0, 3, 2, 1]

You can combine these options into one value. For example, the following code combines options

3 and 1:

array.sort (Array.NUMERIC | Array.DESCENDING)
Returns

Nothing.
Description

Method; sorts the items in the data provider according to the specified compare function or
according to one or more specified sort options.

This method triggers the mode1Changed event with the event name sort.

Example

This example sorts according to uppercase labels. The items a and b are passed to the function
and contain Tabel and data fields:

myList.sortItems(upperCaseFunc);
function upperCaseFunc(a,b){

return a.label.toUpperCase() > b.label.toUpperCase();
}

DataProvider.sortltemsBy()

Availability
Flash Player 7.
Edition
Flash MX Professional 2004.
Usage
myDP.sortltemsBy(fieldName, optionsFlag)
myDP.sortltemsBy(fieldName, order)
Parameters

fieldName A string that specifies the name of the field to use for sorting. This value is usually
"label" or "data".

order A string that specifies whether to sort the items in ascending order ("ASC") or descending
order ("DESC").

optionsFlag Lets you perform multiple, different types of sorts on a single array without
having to replicate the entire array or resort it repeatedly. This parameter is optional.

DataProvider APl 299

The following are possible values for optionsfiag:

® Array.DESCENDING—sorts highest to lowest.
® Array.CASEINSENSITIVE—sorts case-insensitively.

® Array.NUMERIC—sorts numerically if the two elements being compared are numbers. If they
aren’t numbers, use a string comparison (which can be case-insensitive if that flag is specified).

® Array.UNIQUESORT—if two objects in the array are identical or have identical sort fields, this
method returns an error code (0) instead of a sorted array.

® Array.RETURNINDEXEDARRAY—returns an integer index array that is the result of the sort. For
example, the following array would return the second line of code and the array would remain

unchanged:
["an, "gn, "en vprg
[0, 3, 2, 11

You can combine these options into one value. For example, the following code combines options

3and 1:
array.sort (Array.NUMERIC | Array.DESCENDING)

Returns

Nothing.

Description

Method; sorts the items in the data provider in the specified order, using the specified field name.
If the fieldName items are a combination of text strings and integers, the integer items are listed
first. The fieldName parameter is usually "1abel" or "data", but advanced programmers may
specify any primitive value.

This method triggers the mode1Changed event with the event name sort.

This is the fastest way to sort data in a component. It also maintains the component’s selection
state. The sortItemsBy () method is fast because it doesnt run any ActionScript while sorting.
The sortItems() method needs to run an ActionScript compare function, and is therefore
slower.

Example

The following code sorts the items in a list in ascending order using the labels of the list items:

myDP.sortItemsBy("label", "ASC");

300

Chapter 6: Components Dictionary

DataSet component (Flash Professional only)

The DataSet component lets you work with data as collections of objects that can be indexed,
sorted, searched, filtered, and modified.

The DataSet component functionality includes DataSetlterator, a set of methods for traversing
and manipulating a data collection, and DeltaPacket, a set of interfaces and classes for working
with updates to a data collection. In most cases, you don’t use these classes and interfaces directly;
you use them indirectly through methods provided by the DataSet class.

The items managed by the DataSet component are also called zransfer objects. A transfer object
exposes business data that resides on the server with public attributes or accessor methods for
reading and writing data. The DataSet component allows developers to work with sophisticated
client-side objects that mirror their server-side counterparts or, in its simplest form, a collection of
anonymous objects with public attributes that represent the fields in a record of data. For details
on transfer objects, see Core J2EE Patterns Transfer Object at http://java.sun.com/blueprints/
corej2eepatterns/Patterns/ TransferObject.heml.

Note: The DataSet component requires Flash Player 7 or later.

Using the DataSet component

You typically use the DataSet component in combination with other components to manipulate
and update a data source: a connector component for connecting to an external data source, user
interface components for displaying data from the data source, and a resolver component for
translating updates made to the data set into the appropriate format for sending to the external
data source. You can then use data binding to bind properties of these different components
together.

The DataSet component uses functionality in the data binding classes. If you intend to work with
the DataSet component in ActionScript only, without using the Binding and Schema tabs in the
Component inspector to set properties, you'll need to import the data binding classes into your
FLA file and set required properties in your code. See “Making data binding classes available at
runtime (Flash Professional only)” on page 213.

For general information on how to manage data in Flash using the DataSet component, see “Data
management (Flash Professional only)” in Using Flash.

DataSet parameters
You can set the following parameters for the DataSet component:

itemClassName is a string indicating the name of the transfer object class that is instantiated
each time a new item is created in the DataSet component.

The DataSet component uses transfer objects to represent the data that you retrieve from an
external data source. If you leave this parameter blank, the data set creates an anonymous transfer
object for you. If you give this parameter a value, the data set instantiates your transfer object
whenever new data is added.

Note: You must make a fully qualified reference to this class somewhere in your code to make sure
that it gets compiled into your application (such as private var myltem:my.package.myItem;).

DataSet component (Flash Professional only) 301

http://java.sun.com/blueprints/corej2eepatterns/Patterns/TransferObject.html
http://java.sun.com/blueprints/corej2eepatterns/Patterns/TransferObject.html

logChanges is a Boolean value that defaults to true. If this parameter is set to true, the data set
logs all changes made to its data and any method calls made on the associated transfer objects.

readOnly is a Boolean value that defaults to false. If this parameter is set to true, the data set
cannot be modified.

You can write ActionScript to control these and additional options for the DataSet component
using its properties, methods, and events. For more information, see “DataSet class (Flash
Professional only)” on page 304.

Common workflow for the DataSet component

The typical workflow for the DataSet component is as follows.

To use a DataSet component:

1. Add an instance of the DataSet component to your application and give it an instance name.

2. Select the Schema tab for the DataSet component and create component properties to represent
the persistent fields of the data set.

(S}

. Load the DataSet component with data from an external data source. (For more information,
see “About loading data into the DataSet component” in Using Flash.)

[I=N

. Use the Bindings tab of the Component inspector to bind the data set fields to UI components
in your application.

The UI controls are notified as records (transfer objects) are selected or modified within the
DataSet component, and updated accordingly. In addition, the DataSet component is notified
of changes made from within a UI control; those changes are tracked by the data set and can be
extracted by means of a delta packet.

N

. Call the methods of the DataSet component in your application to manage your data.

Note: In addition to these steps, you can bind the DataSet component to a connector and a
resolver component to provide a complete solution for accessing, managing, and updating data
from an external data source.

Creating an application with the DataSet component

Typically, you use the DataSet component with other user interface components, and often with a
connector component such as XMLConnector or WebServiceConnector. The items in the data
set are populated by means of the connector component or raw ActionScript data, and then
bound to user interface controls (such as List or DataGrid components).

The DataSet component uses functionality in the data binding classes. If you intend to work with
the DataSet component in ActionScript only, without using the Binding and Schema tabs in the
Component inspector to set properties, you'll need to import the data binding classes into your
FLA file and set required properties in your code. See “Making data binding classes available at
runtime (Flash Professional only)” on page 213.

302

Chapter 6: Components Dictionary

To create an application using the DataSet component:

1. In Flash MX Professional 2004, select File > New. In the Type column, select Flash Document
and click OK.

2. Open the Components panel if it’s not already open.

3. Draga DataSet component from the Components panel to the Stage. In the Property inspector,
give it the instance name userData.

[I=N

. Drag a DataGrid component to the Stage and give it the instance name userGrid.
. Resize the DataGrid component to be approximately 300 pixels wide and 100 pixels tall.
. Drag a Button component to the Stage and set its instance name to nextBtn.

. In the Timeline, select the first frame on Layer 1 and open the Actions panel.

[~ I N A YA

. Add the following code to the Actions panel:

var recData = [{id:0, firstName:"Mick", lastName:"Jones"},
{id:1, firstName:"Joe", lastName:"Strummer"},
{id:2, firstName:"Paul", lastName:"Simonon"}];
userData.items = recData;
This populates the DataSet object’s items property with an array of objects, each of which has
three properties: id, firstName, and TastName.

9. Add the three properties and their required data types to the DataSet schema:
a Select the DataSet component on the Stage, open the Component inspector, and click the
Schema tab.

b Click Add Component Property, and add three new properties, with field names id,
firstName, and TastName, and data types Number, String, and String, respectively.

Or, if you prefer to add the properties and their required data types in code, you can add the

following line of code to the Actions panel instead of following steps a and b above:

// add required schema types
var i:mx.data.types.Str;
var j:mx.data.types.Num;

10. To bind the contents of the DataSet component to the contents of the DataGrid component,
open the Component inspector and click the Bindings tab.

11. Select the DataGrid component (userGrid) on the Stage, and click the Add Binding (+) button
in the Component inspector.

12. In the Add Binding dialog box, select “dataProvider : Array” and click OK.
13. Double-click the Bound To field in the Component inspector.

14, In the Bound To dialog box that appears, select “DataSet <userData>” from the Component
Path column and then select “dataProvider : Array” from the Schema Location column.

15. To bind the selected index of the DataSet component to the selected index of the DataGrid
component, select the DataGrid component on the Stage and click the Add Binding (+) button
again in the Component inspector.

16. In the dialog box that appears, select “selectedIndex : Number”. Click OK.

DataSet component (Flash Professional only) 303

17. Double-click the Bound To field in the Component inspector to open the Bound To dialog
box.

18. In the Component Path field, select “DataSet <userData>” from the Component Path column,
and then select “selectedIndex : Number” from the Schema Location column.

19. Enter the following code in the Actions panel:

nextBtn.addEventlListener("click", nextBtnClick);

function nextBtnClick(eventObj:0bject):Void {
userData.next();

}

This code uses the DataSet.next () method to navigate to the next item in the DataSet
object’s collection of items. Since you had previously bound the selectedIndex property of
the DataGrid object to the same property of the DataSet object, changing the current item in
the DataSet object will change the current (selected) item in the DataGrid object, as well.

. Save the file, and select Control > Test Movie to test the SWF file.

The DataGrid object is populated with the specified items. Notice how clicking the button
changes the selected item in the DataGrid object.

2

=1

DataSet class (Flash Professional only)

Inheritance MovieClip > DataSet
ActionScript Class Name mx.data.components.DataSet

The DataSet component lets you work with data as collections of objects that can be indexed,
sorted, searched, filtered, and modified.

The DataSet component functionality includes DataSetlterator, a set of methods for traversing
and manipulating a data collection, and DeltaPacket, a set of interfaces and classes for working
with updates to a data collection. In most cases, you don’t use these classes and interfaces directly;
you use them indirectly through methods provided by the DataSet class.

Method summary for the DataSet class

The following table lists the methods of the DataSet class.

Method Description

DataSet.addItem() Adds the specified item to the collection.
DataSet.addItemAt() Adds an item to the data set at the specified position.
DataSet.addSort() Creates a new sorted view of the items in the collection.
DataSet.applyUpdates() Signals that the de1taPacket property has a value that you can

access using data binding or ActionScript.

DataSet.changesPending() Indicates whether the collection has changes pending that have not
yet been sent in a delta packet.

DataSet.clear() Clears all items from the current view of the collection.

DataSet.createltem() Returns a newly initialized collection item.

304

Chapter 6: Components Dictionary

Method

Description

DataSet.

DataSet.

DataSet

DataSet.

DataSet.

DataSet.

DataSet.

DataSet

DataSet.

DataSet.

DataSet.

DataSet.

DataSet

DataSet

DataSet.

DataSet.

DataSet.

DataSet.

DataSet

DataSet.

DataSet.

DataSet.

DataSet

DataSet.

DataSet.

DataSet.

DataSet

DataSet

disableEvents()

enableEvents()

find()

findFirst()

findlLast()

first()

getItemId()

.getlterator()

getlLength()

hasNext()

hasPrevious()

hasSort()

LisEmpty ()
Llast()

loadFromShared0bj ()

locateById()
next()

previous()

.removeAll()

removeltem()
removeltemAt()

removeRange()

.removeSort()

saveToShared0Obj()
setlterator()

setRange()

.skip()

.useSort()

Stops sending DataSet events to listeners.
Resumes sending DataSet events to listeners.
Locates an item in the current view of the collection.

Locates the first occurrence of an item in the current view of
the collection.

Locates the last occurrence of an item in the current view of
the collection.

Moves to the first item in the current view of the collection.
Returns the unique ID for the specified item.

Returns a clone of the current iterator.

Returns the number of items in the data set.

Indicates whether the current iterator is at the end of its view of
the collection.

Indicates whether the current iterator is at the beginning of its view
of the collection.

Indicates whether the specified sort exists.
Indicates whether the collection contains any items.
Moves to the last item in the current view of the collection.

Loads all of the relevant data needed to restore the DataSet
collection from a shared object.

Moves the current iterator to the item with the specified ID.
Moves to the next item in the current view of the collection.
Moves to the previous item in the current view of the collection.
Removes all the items from the collection.

Removes the specified item from the collection.

Removes a data set item at a specified position.

Removes the current iterator’s range settings.

Removes the specified sort from the DataSet object.
Saves the data in the DataSet object to a shared object.
Sets the current iterator for the DataSet object.

Sets the current iterator’s range settings.

Moves forward or backward by a specified number of items in the
current view of the collection.

Makes the specified sort the active one.

DataSet component (Flash Professional only) 305

Property summary for the DataSet class

The following table lists the properties of the DataSet class.

Property Description

DataSet.currentItem Returns the current item in the collection.

DataSet.dataProvider Returns the data provider.

DataSet.deltaPacket Returns changes made to the collection, or assigns changes to be
made to the collection.

DataSet.filtered Indicates whether items are filtered.

DataSet.filterFunc User-defined function for filtering items in the collection.

DataSet.items [tems in the collection.

DataSet.itemClassName Name of the object to create when assigning items.

DataSet.length Specifies the number of items in the current view of the collection.

DataSet.logChanges Indicates whether changes made to the collection, or its items,
are recorded.

DataSet.properties Contains the properties (fields) for any transfer object in
this collection.

DataSet.readOnly Indicates whether the collection can be modified.

DataSet.schema Specifies the collection’s schema in XML format.

DataSet.selectedIndex Contains the current item’s index in the collection.

Event summary for the DataSet class

The following table lists the events of the DataSet class.

Event Description

DataSet.addItem Broadcast before an item is added to the collection.

DataSet.afterLoaded Broadcast after the items property is assigned.

DataSet.calcFields Broadcast when calculated fields should be updated.

DataSet.deltaPacketChanged Broadcast whenthe DataSet object’s delta packet has been
changed and is ready to be used.

DataSet.iteratorScrolled Broadcast when the iterator’s position is changed.

DataSet.modelChanged Broadcast when items in the collection have been modified in
some way.

DataSet.newItem Broadcast when a new transfer object is constructed by the
DataSet object, but before it is added to the collection.

DataSet.removeltem Broadcast before an item is removed.

DataSet.resolveDelta Broadcast when a delta packet is assigned to the DataSet object

that contains messages.

306

Chapter 6: Components Dictionary

DataSet.addltem
Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage
on(addItem) {
// insert your code here
}
listenerObject = new Object();
listenerObject.addItem = function (eventObj) f{
// insert your code here
}
dataSet.addEventListener("addItem", IistenerObject)

Description
Event; generated just before a new record (transfer object) is inserted into this collection.

If you set the result property of the event object to false, the add operation is canceled; if you
set it to true, the add operation is allowed.

The event object (event0bj) contains the following properties:
target The DataSet object that generated the event.

type The string "addItem".

item A reference to the item in the collection to be added.

result A Boolean value that specifies whether the specified item should be added. By default,
this value is true.

Example

The following on(addItem) event handler (attached to a DataSet object) cancels the addition of
the new item if a user-defined function named userHasAdminPrivs() returns false; otherwise,
the item addition is allowed.

on(addItem) {
if(globalObj.userHasAdminPrivs()) {
// AlTow the item addition.
eventObj.result = true;
} else {
// Don’t allow item addition; user doesn’t have admin privileges.
eventObj.result = false;
}
}

See also

DataSet.removeltem

DataSet component (Flash Professional only) 307

DataSet.addltem()
Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage
dataSet.addItem([obj])

Parameters

obj An object to add to this collection. This parameter is optional.

Returns

A Boolean value: true if the item was added to the collection, false if it was not.

Description

Method; adds the specified record (transfer object) to the collection for management. The newly
added item becomes the current item of the data set. If no obj parameter is specified, a new
object is created automatically by means of DataSet.createltem().

The location of the new item in the collection depends on whether a sort has been specified for
the current iterator. If no sort is in use, the item is added to the end of the collection. If a sort is in
use, the item is added to the collection according to its position in the current sort.

For more information on initialization and construction of the transfer object, see
DataSet.createltem().

Example

The following example uses DataSet.createltem() to create a new item and add it to the data
set:

myDataSet.addItem(myDataSet.createltem());

See also

DataSet.createltem()

DataSet.addltemAt()
Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage
DataSetInstance.addItemAt(index, item)

308 Chapter 6: Components Dictionary

Parameters

index A number greater than or equal to 0. This number indicates the position at which to
insert the item; it is the index of the new item.

item An object containing the data for the item.

Returns

A Boolean value indicating whether the item was added: true indicates that the item was added,
and false indicates that the item already exists in the data set.

Description

Method; adds a new item to the data set at the specified index. Indices greater than the data
provider’s length are ignored.

This method triggers the mode1Changed event with the event name addItems.

Example
The following example adds an item to the data set myDataSet at the fourth position:

myDataset.addItemAt(3, {label : "this is the fourth item"});

DataSet.addSort()

Availability
Flash Player 7.
Edition
Flash MX Professional 2004.
Usage
dataSet.addSort(name, fieldlList, sortOptions)
Parameters
name A string that specifies the name of the sort.
fieldlList An array of strings that specify the field names to sort on.

sortOptions One or more of the following integer (constant) values, which indicate what
options are used for this sort. Separate multiple values using the bitwise OR operator (|). Specify
one or more of the following values:

® DataSetlterator.Ascending Sortsitems in ascending order. This is the default sort option,
if none is specified.

® DataSetlterator.Descending Sorts items in descending order based on item
properties specified.

® DataSetlIterator.Unique Prevents the sort if any fields have like values.

® DataSetlterator.Caselnsensitive Ignores case when comparing two strings during the
sort operation. By default, sorts are case-sensitive when the property being sorted on is a string.

DataSet component (Flash Professional only) 309

A DataSetError exception is thrown when DataSetIterator.Unique is specified as a sort
option and the data being sorted is not unique, when the specified sort name has already been
added, or when a property specified in the fieldList array does not exist in this data set.

Returns
Nothing.
Description

Method; creates a new ascending or descending sort for the current iterator based on the
properties specified by the fieldList parameter. Flash automatically assigns the new sort to the
current iterator after it is created, and then stores it in the sorting collection for later retrieval.

Example

The following code creates a new sort named "rank" that performs a descending, case-sensitive,
unique sort on the DataSet object’s "classRank" field.

myDataSet.addSort("rank", ["classRank"], DataSetIterator.Descending |
DataSetIterator.Unique | DataSetlIterator.Caselnsensitive);

See also

DataSet.removeSort()

DataSet.afterLoaded

Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage

on(afterLoaded) {
// insert your code here
}
lTistenerObject = new Object();
listenerObject.afterLoaded = function (eventObj) {
// insert your code here
}
dataSet.addEventListener("afterlLoaded", TistenerObject)

Description
Event; broadcast immediately after the DataSet. items property has been assigned.
The event object (event0bj) contains the following properties:
target The DataSet object that generated the event.

type The string "afterLoaded".

310 Chapter 6: Components Dictionary

Example

In this example, a form named contactForm (not shown) is made visible once the items in the
data set contact_ds have been assigned.

contact_ds.addEventListener("afterLoaded", ToadListener);
loadListener = new Object();
loadListener.afterlLoaded = function (eventObj) {
if(eventObj.target == "contact_ds") f{
contactForm.visible = true;
}
}

DataSet.applyUpdates()
Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage
dataSet.applyUpdates()

Parameters

None.
Returns

Nothing.
Description

Method; signals that the DataSet.deltaPacket property has a value that you can access using
data binding or directly by ActionScript. Before this method is called, the DataSet.deltaPacket
property is nul1. This method has no effect if events have been disabled by means of the
DataSet.disableEvents() method.

Calling this method also creates a transaction ID for the current DataSet.deltaPacket property
and emits a deltaPacketChanged event. For more information, see DataSet.deltaPacket.

Example
The following code calls the applyUpdates() method on myDataSet.
myDataSet.applyUpdates();

See also

DataSet.deltaPacket

DataSet component (Flash Professional only) 311

DataSet.calcFields

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

on(calcFields) {
// insert your code here
}
listenerObject = new Object();
listenerObject.calcFields = function (eventObj) |
// insert your code here
}
dataSet.addEventListener("calcFields", TistenerObject)

Description

Event; generated when values of calculated fields for the current item in the collection need to be
determined. A calculated field is one whose Kind property is set to Calculated on the Schema tab
of the Component inspector. The calcFields event listener that you create should perform the
required calculation and set the value for the calculated field.

This event is also called when the value of a noncalculated field (that is, a field with its Kind
property set to Data on the Schema tab) is updated.

For more information on the Kind property, see “Schema kinds” in Using Flash.

Caution: Do not change the values of any of noncalculated fields in this event, because this will result
in an “infinite loop.” Set only the values of calculated fields within the calcFields event.

DataSet.changesPending()

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

dataSet.changesPending()

Parameters

None.

Returns

A Boolean value.

312

Chapter 6: Components Dictionary

Description

Method; returns true if the collection, or any item in the collection, has changes pending that
have not yet been sent in a delta packet; otherwise, returns false.

Example

The following code enables a Save Changes button (not shown) if the DataSet collection, or any
items with that collection, have had modifications made to them that haven’t been committed to
a delta packet.

if(data_ds.changesPending()) {
saveChanges_btn.enabled = true;
}

DataSet.clear()
Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage
dataSet.clear()

Returns
Nothing.
Description

Method; removes the items in the current view of the collection. Which items are considered
“viewable” depends on any current filter and range settings on the current iterator. Therefore,
calling this method might not clear all of the items in the collection. To clear all of the items in
the collection regardless of the current iterator’s view, use DataSet.removeAll().

If DataSet.logChanges is set to true when you invoke this method, “remove” entries are added
to DataSet.deltaPacket for all items in the collection.

Example

This example removes all items from the current view of the DataSet collection. Because the
TogChanges property is set to true, the removal of those items is logged.

myDataSet.logChanges= true;
myDataSet.clear();

See also

DataSet.deltaPacket, DataSet.logChanges

DataSet component (Flash Professional only) 313

DataSet.createltem()
Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage
dataSet.createltem([itemDatal)

Parameters

itemData Data associated with the item. This parameter is optional.

Returns

The newly constructed item.

Description

Method; creates an item that isn’t associated with the collection. You can specify the class of object
created by using the DataSet.itemClassName property. If no DataSet.itemClassName value is
specified and the 7temData parameter is omitted, an anonymous object is constructed. This
anonymous object’s properties are set to the default values based on the schema currently specified
by DataSet.schema.

When this method is invoked, any listeners for the DataSet.newItem event are notified and are

able to manipulate the item before it is returned by this method. The optional item data is used to
initialize the class specified with the DataSet.itemClassName property or is used as the item if

DataSet.itemClassName is blank.

A DataSetError exception is thrown when the class specified with the DataSet.itemClassName
property cannot be loaded.

Example

contact.itemClassName = "Contact";

var itemData = new XML("<contact_info><name>John Smith</
name><phone>555.555.4567</phone><zip><pre>94025</pre><post>0556</post></
zip></contact_info>");

contact.addItem(contact.createltem(itemData));

See also

DataSet.itemClassName, DataSet.newlItem, DataSet.schema

DataSet.currentltem
Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

314 Chapter 6: Components Dictionary

Usage
dataSet.currentltem

Description

Property (read-only); returns the current item in the DataSet collection, or nu11 if the collection
is empty or if the current iterator’s view of the collection is empty.

This property provides direct access to the item in the collection. Changes made by directly
accessing this object are not tracked (in the DataSet.deltaPacket property), nor are any of the
schema settings applied to any properties of this object.

Example

The following example displays the value of the customerName property defined in the current
item in the data set named customerData.

trace(customerData.currentlitem.customerName);

DataSet.dataProvider
Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage
dataSet.dataProvider

Description

Property; the data provider for this data set. This property provides data to user interface controls,
such as the List and DataGrid components.

For more information about the DataProvider API, see “DataProvider API” on page 290.

Example

The following code assigns the dataProvider property of a DataSet object to the corresponding
property of a DataGrid component.

myGrid.dataProvider = myDataSet.dataProvider;

DataSet.deltaPacket
Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage
dataSet.deltaPacket

DataSet component (Flash Professional only) 315

Description

Property; returns a delta packet that contains all of the change operations made to the dataSet
collection and its items. This property is nu11 until DataSet.applyUpdates() is called on
dataSet.

When DataSet.applyUpdates() is called, a transaction ID is assigned to the delta packet. This
transaction ID is used to identify the delta packet on an update round trip from the server and
back to the client. Any subsequent assignment to the deltaPacket property by a delta packet
with a matching transaction ID is assumed to be the server’s response to the changes previously
sent. A delta packet with a matching ID is used to update the collection and report errors
specified within the packet.

Errors or server messages are reported to listeners of the DataSet.resolveDelta event. Note that
the DataSet.logChanges settings are ignored when a delta packet with a matching ID is
assigned to DataSet.deltaPacket. A delta packet without a matching transaction ID updates
the collection, as if the DataSet API were used directly. This may create additional delta entries,
depending on the current DataSet.logChanges setting of dataSet and the delta packet.

A DataSetError exception is thrown if a delta packet is assigned with a matching transaction ID
and one of the items in the newly assigned delta packet cannot be found in the original delta
packet.

See also

DataSet.applyUpdates(), DataSet.logChanges, DataSet.resolveDelta

DataSet.deltaPacketChanged

Availability
Flash Player 7.

Edition
Flash MX Professional 2004.

Usage
on(deltaPacketChanged) f{
// insert your code here
}
listenerObject = new Object();
listenerObject.deltaPacketChanged = function (eventObj) {
// insert your code here
}
dataSet.addEventListener("deltaPacketChanged", TlistenerObject)

Description

Event; broadcast when the specified DataSet object’s deltaPacket property has been changed
and is ready to be used.

See also

DataSet.deltaPacket

316 Chapter 6: Components Dictionary

DataSet.disableEvents()

Availability
Flash Player 7.
Edition
Flash MX Professional 2004.
Usage
dataSet.disableEvents()
Returns
Nothing.
Description

Method; disables events for the DataSet object. While events are disabled, no user interface
controls (such as a DataGrid component) are updated when changes are made to items in the
collection, or when the DataSet object is scrolled to another item in the collection.

To reenable events, you must call DataSet.enableEvents(). The disableEvents() method
can be called multiple times, and enableEvents () must be called an equal number of times to
reenable the dispatching of events.

Example

In this example, events are disabled before changes are made to items in the collection, so the
DataSet object won't try to refresh controls and impact performance.

// Disable events for the dat