Lotus Adenda
Working with Definition Files

Release 2.0

Lotus Agenda
Working with Definition Files

Release 2.0

Copyright

Neither the documentation nor the software may be copied, photocopied, reproduced, translated, or
reduced to any electronic medium or machine-readable format, except in the manmer described in the
documentation.

© Copyright 1988, 1989, 1990 Lotus Development Corporation
55 Cambridge Parkway
Cambridge, MA 02142

All rights reserved. First edition printed 1988. Second edition printed 1989. Third edition printed 1990.
Printed in the United States.

Lotus, Lotus Agenda, Agenda, Lotus Express, Lotus Metro, 1-2-3, and One Source CD/Corporate are regis-
tered trademarks of Lotus Development Corporation. MCI Mail is a registered trademark of MCI Commu-
nications Corporation. PROFSis a registered trademark of International Business Machines, Inc. The
Industry Participants List and Financials are provided by Disclosure, Inc. and the Lotus One Source
CD/Corporate product is provided by Data Source: Disclosure, Inc.

Contents

Introduction

ix

How this Book 1Is Organized
Before You Begin ... e e e e
Typographic Conventmns

Chapter 1 Getting Started with Definition Files

ix

. Xi
. xi

1-1

In this Chapter ... erasees
About Definition Files ...
When to Use a Definition File ...
Benefits of Using Definition Files ..o
When Other Approaches Are Appropnate
Creating a Definition File ..
Analyzing the Text File ..
Writing the Definition File Patterns and Comumands.

Chapter 2 Creating a Definition File

1-2
1-2
1-4

. 1-4

1-4

e 1-B
.. 15

1-7

2-1

In this Chapter ... e 2-1
Creating a Defmltlon Flle e 271
Analyzing the Text File R L]
Writing the Definition File Patterns and Commands reerenennes 223
What a Definition File Containgccccceeeervvrvrvnnnersnsesesssion 2-3
Guidelines for Writing Statementscccccocvvovecrrimccerccrcnnnns. 2-3
Including Comments in a Definition Filecccccccvevvcvncccis 25
Using @start and @end ... 25

iii

iv Contents

How TXT2STE Uses the Definition File ..oovvvecivnvarcrinnnns .

How TXT2STF Processes Each Text Tine ...
How TXT2STF Builds ltems, Categories, and Notes

Chapter 3 Using Definition Files

2-7

2-10

3-1

About this Chapter ... -
Converting an Electronlc Ma11 Message
Sample Text FLLe v
Sample Definition File
After the Structured File Is Imported ...
Converting a Table of Information ..
Sample Text File ..
Sample Definition Flle
After the Structured File Is Imported

Chapter 4 Patterns

w31

3-2
3-2

. 34

3-10

oo 3-10
e 311
e 3-13

. 3-16

4-1

In this Chapter ...
ADBOUL PaAtbeITIS oottt siss s st sbssssss st sene e s rnensnarsssnee
Special PAterns ...
START .
Using START and END oot er ettt
Match-Control Characters ..
ASEELISK (M) corioiiiivieie it st vesenasssrmrares e e e e e sssna s e e neea e bes s s
Backslash (M) coeeievivrrrrierevesirernreeseseseeieeseeesinreeeeesescnnnnasesesasssassessnns
Brackets ([1) coiiooeiorereeeeeeecieemeeessetsessesesssesssasssenresneesnsasasssesnen
75 = AL G I OO P TP U OO SU UP ORI
COLOTL B (IA) e eetces sttt st st et s es s b e be et eenbeenrarnreransnneneese
(@01 Lo 33 1 I 7<) TRUUO U OO
Q0] (o) 0 15 s 11 65« & JPTTU OO Uy SO
Colon SPace {2) i
Dollar Sign ($) .o
Parentheses () e stessiere e s sessssaterresersessaseessnsssnees
Period (L) oo csiniriesr e vsrrnrsssanare e e s e smee e s e e nnes s abae s beresne
THLAE (o) toeeeeeecesreertisneceseeeaessee e ssssseesneesreesmsesvessasss et ssasesnsesasnsaenseas
VertiCal Bar (1) oo cciiiecicecie s essree s stessreressants s ssrnn e s s nbasessenen

Contents v

How TXT2STF Matches Patternscooooeveeiiieeeeeeececeeeee. 4-14
When TXT2STE Matches Patterns ...cocoovvviioiiniccieeee e, 4-14
How TXT25TF Compares Patterns with Strings ... 4-16
How TXT25TF Searches for Character Classescovvnneninnn. 1-18

Chapter 5 Definition File Commands 5-1

In this Chapter ..., 5-1
Aboult COMMANAS .oovreirer e e 5-1
Types of Commands ... 5-3
Command SYNEAX ..o e reseeaens 5-6
About ATBUMENTS ..o e 5-8
About Variables ... 5-11
Specifying Variables in Commands ... 5-12
Predefined Variables ..., 5-12
@append ... 5-13
@append_Item 514
@append_note ..., 517
@CALEZOTY ..ovovvviveineiiii e 5-19
@categOry_NOLe ... e e 5-22
@category_note_file ... 5-24
@custom_category 9-25
@Aate ..o 5-28
(@25 YT {33 11T LSRR OO 5-29
BETI .o e 5-32

GHERINMZvvvvveriessrreresses s sissrere s e rebrrsssssesssstesssnsrssessrsesssrenssssnsnsssnenens D=0
@make_exterMal IOt ..o iriieeeeeereveree s e e reevreaseessrasesreessreerrens 5-43
2] 4 [] 1 <O U U OSSO 5-45
@NOLE_TIIE ..o e e s stasnanninens D08
COIVUIIIETIC 11vvreverenereneassnsreresinnersssseieseresesisstisassesesnbnnsserstonraressissnsesssnseresn 5-49
@replace ... e 5-51
L) ¢ =) OSSO 5-52

@SKIP oo e 5-55
@sKip_HINes ..o 5-57
(2] 1 o U 5-59
@SSP oo e e 5-60
EADBLEooceeeeee e e e et i saar s s 5-62
] u 11 1 IO TSR UT PP RPT 5-64
@unINAexed ...t arene e B0T

vi Contents

Chapter ¢ Gonverting and Imperting Text

In this Chapter ...
Running TXT2STFccovvnene
The TXT25TF Command
File Conversion Options

How TXT2STF Converts Text Files ..

Specifying a Definition File to Use w1th a Text F11e

Specifying a Different Name for the Structured File ..

Specifying an Alternate Separa

tor Character for a Text File ...

6-1
6-1
6-2

. 6-3

6-3

. 6-4

6-5

Converting More Than One Text Filecccocovvvivnesnnnsiiienn.. 646
Importing the Structured Filecoivvvriiiiieee, 6-6
Chapter 7 Debugging a Definition File 7-1
In this Chapter SOOI |
Procedures for Debuggmg a Defmltmn Flle 7-2
Testing a Definition File .. .72
Naming a Structured File ... 7-3
Including Debugging Options ... 7-3
Redirecting Error Messages to a File ..o, 7-4
Examining the Converted Information ..o 7-4
Examining the Structured File ..o 7-4
Importing the Converted Information ..o, 7-5
Typical Problems and Solutions ..., 7-5
Testing for Pattern Matching ..., 7-6
Testing How Information Is Converted ..o, 7-7
Tips and Techniques ..o 7-8

Writing Patterns ...t
Ordering Statements ...

Skipping Over Textccouini
Handling More Than One Text

Layout .o

Creating More Than One Itemc.cocceeeermrmmmreisimeneeccne

7-8
7-9
7-10
7-12
7-13

Appendix A What’s New in TXT2STF for Agenda 2.0

Contents vii

A-1

In this ApPendiXccccinieeeneereenneeeen e
Definition FIlesc.cooviiiiieeeeneeeceeeeenese e
PAtOrTIS oo
Definition File Commandsc..cocivivniiiiininriesnseecerae e
Structured File Tagscooceeveveniineicr et

Appendix B Structured Files

................ A-1

A-1

................ A-2
................ A-3

A-4
A-5

B-1

In this Appendix ...
About Structured Filesocccorvrvnnnmmimmevnneennnene.
What a Structured File Contains ...
Creating Your Own Structured File
Structured File Tags ...,
Structured File Header Tagcovvvviiivicniiiiniinianenn.
Comment Tag ...
Date Format Tags ..o
NOTE TAES weovree et
Category Tags ..o
Ttem TAZS .o
What Structured Files Look Likec.cocovvvrvinerennn,
A Simple Electronic Mail Example ...
Sample Structured Files ...

Appendix C Quick Reference

B-1

................ B-1

B-2

................ B-3
................ B-3

B-6

................ B-6

B-8

................ B-10
................ B-14
................ B-16

B-16

................ B-18

Patterns .

N o |

s

Special Patterns ..
Pefinition File Commands

Command SYNAxX ..
Predefined Variables ... scrsvarers e ssrsssesresees

e C-2
O A
C-3

viii Contents

Appendix D Error Messages

In this AppendiX ...
About Error Messages ...
Error Messages and Descriptions ...

Index

Introduction

Working with Definition Files provides information about writing and
debugging definition files to use with the Lotus Agenda® TXT2STF
utility.

TXT2STF is a versatile utility that prepares text to be imported into
Agenda. To guide TXT2STF, you can create definition files that pro-
vide custom instructions for converting the contents of text files into
Agenda items, categories, and notes.

How this Book Is Organized

Working with Definition Files is organized into seven chapters and four
appendixes that provide the following information:

¢ Chapter 1, "Getting Started with Definition Files," describes
what a definition file is, when you need to write definition files,
and provides an example of how you might write a definition file
to convert a text file.

Read this chapter to get an overview of what definition files are
and when to use them.

s Chapter 2, "Creating a Definition File," describes how to create a
definition file and what a definition file contains. This chapter
also describes how TXT2STF uses the definition file to process a
text file based on the definition file you write.

Read this chapter for a basic understanding of how to write a
definition file.

¢ Chapter 3, "Using Definition Files," provides examples of what
you can do with a definition file. This chapter presents examples
of text files along with definition files that convert the text files,
and shows how the converted information locks after you import
it into Agenda.

X Introduction

Read this chapter to see some examples of how actual definition
files convert text for importing into Agenda.

Chapter 4, "Patterns," provides specific information about writing
patterns in definition files, including a list of match-control char-
acters you can use in patterns.

Read this chapter to learn about patterns in definition files, or as a
reference when creating definition files.

Chapter 5, "Definition File Commands," provides specific infor-
mation about using commands in definition files, including a list
of all the commands with examples.

Read this chapter to learn about definition file commands, or as a
reference when creating definition files.

Chapter 6, "Converting and Importing Text," describes how to
run TXT25TF to convert your text file into a structured file and
how to import the structured file into Agenda.

Read this chapter when you're ready to run TXT2STF and use
your definition file to convert text for importing into Agenda.

Chapter 7, "Debugging a Definition File," explains how to debug
your definition file and gives tips on how to write better definition
files.

Read this chapter when you've created a definition file and you
want to test how accurately it converts your text.

Appendix A, "What's New in TXT2STF for Agenda 2.0" lists new
and changed TXT2STF features that support Agenda Release 2.0
features, enhance TXT2STF performance, and give you greater
control over how TXT2STF converts text files into structured files.

Read this chapter if you've used a previous release of TXT2STF,
and you want a quick overview of what's changed.

Appendix B, "Structured Files," provides details about structured
files, which are the intermediate ASCII files created by TXT2STF
to hold the converted text. This chapter describes the special tags
that TXT2STF embeds in the structured file that provide Agenda
with details about how to import the converted text.

Read this chapter when you are debugging a definition file, or
when you are creating your own structured files using a tool other
than TXT2STF.

Before You Begin

Introduction xi

* Appendix C, " Quick Reference," is a quick reference to definition
file patterns, match-control characters, commands, and predefined
variables for commands.

Read this appendix when you need a quick review of definition
file pattern and command syntax.

* Appendix D, "Error Messages," lists the error messages you may
see when running TXT2STF with definition files and describes
possible reasons for them and possible solutions.

Consult this chapter if you receive error messages when you run
TXT25TF with a definition file.

You should understand how to use Agenda before you begin to write
definition files. In particular, you should be familiar with the way
Agenda imports information. For more information, see Chapters 23
and 24 in the User's Guide.

Typographic Conventions

Working with Definition Files uses the following typographical conven-
tions:

Information that you type is in a different typeface.

Example
Call Meg tomorrow

Agenda commands, settings, and choices are in boldface type.

Example
To import the contents of a text file, use the File Transfer Import
command.

Chapter 1

Getting Started with Definition Files

Agenda lets you import information from other sources into your
Agenda file. For example, you can import text from a memo created
by using a word processor. In some instances, such as when you
import the contents of a text file into an item note, this involves a sim-
ple combination of two or three keystrokes.

In other cases, you might want to import information that is for-
matted in a more complicated manner. For example, you might want
Agenda to create new items, modify the existing category hierarchy,
or even add to the category hierarchy when it imports text. So that
Agenda can import information in the way that you want, you must
first structure the text into a format that Agenda understands.
Agenda provides two utilities for this purpose:

o TXT2STF (Text to Structured File) formats generic text files and is
discussed in this book.

« LM2STF (List Manager to Structured File) formats files created by
the Lotus Metro List Manager. For information on LM2STF, see
Chapter 23 of the User’s Guide.

This book focuses on the use of definition files with the TXT2STF
utility. Definition files guide the activities of the TXT25TF utility and
tell TXT2STE how to process text files to be imported into Agenda.

Note The information TXT2STF converts must be in an ASCII text
file. Most software products, such as word processors, add
hidden formatting codes to files. However, most products
also let you create ASCII text files (which do not include hid-
den formatting codes). For example, a Lotus 1-2-3% PRN file,
created by printing to a file, is such a text file.

11

1-2 Getting Started with Definition Files

In this Chapter

This chapter describes how to use definition files and provides a sim-
ple example that illustrates basic concepts about definition files and
how they work.

This chapter, along with Chapter 2, provide background information
that describe why and how you create definition files. Even if you
are familiar with programming concepts and /or with Agenda, it is
still important to read through both of these chapters before trying to
create your own definition files. The concepts and examples in these
two chapters will help you understand the unique features of defini-
tion files and the way they interact with TXT2STF.

For more information on what to put in a definition file, see
Chapter 2. For more information about importing text files, see
Chapter 23 in the User’s Guide.

About Definition Files

TXT2STF is a versatile utility, and can process many different types of
text. For example, TXT2STF can process text files containing informa-
tion as varied as electronic mail, online news stories, magazine article
abstracts, tabular output from worksheets, and records from a
traditional database.

TXT25TF processes the contents of text files, structuring the text so
that Agenda can import specific portions of text as items, categories,
and notes. By default, when TXT2STF formats a text file, it makes the
first 350 characters in each new paragraph into an item, and makes
the remaining paragraph text into a note for the item.

To have more control over how Agenda formats imported informa-
tion, you can create a definition file. A definition file describes pat-
terns of text in the text file, and contains commands that tell TXT2?STFE
how to convert the text identified by these patterns into items,
categories, and notes. The definition file is tailored to follow the
layout and content of the text file.

The definition file is created before you run TXT2STF, and is used
when you request the definition file in the TXT2STF command.

Getting Started with Definition Files 1-3

TXT25TF converts the text file according to the instructions in the
definition file, and puts the results in a structured file {text in the file
is structured in a way that Agenda can interpret).

Figure 1-1 shows the flow of information from text file to structured
file when you run TXT2STF with a definition file.

Text file
(Optional)
TXT2STF o
utility *------ Definition file

Structured file

Figure 1-1 Converting a text file to a structured file with an
optional definition file

You import the structured file into Agenda by using the Agenda

File Transfer Import command. (See Chapter 23 in the User’s Guide.)
This command tells Agenda how to incorporate information from the
structured file into your Agenda file.

1-4 Getting Started with Definition Files

When to Use a Definition File

Benefits of
Using Definition
Files

When Other
Approaches Are
Appropriate

You can use a definition file any time you run TXT2STF to convert a
text file for importing. Using a definition file is particularly helpful it

* You have many text files with the same format that you want to
import into Agenda, such as a series of files that contain legal
information, all of which are formatted in a similar way.

* You frequently import specific types of files, such as electronic
mail files.

In these cases, you can use the definition file to automate the conver-
sion of specific types of text into items, categories, and notes. For
example, the definition file can tell TXT2STF to start a new item when
it finds a subject line in an electronic mail file, to make the sender and
recipient names into categories, and to put the body of the electronic
mail into a note for the item. If you use TXT2STF without a definition
file and then import the text, you would need to do much of this
formatting yourself in Agenda after you import the text.

There are various benefits to using a definition file to format text
before you import it into Agenda. When you use a definition file

* You control exactly what text Agenda will interpret as items, cate-
gories, and notes,

* You can set dates and make other category assignments for items.

* You can predefine the category hierarchy.

You don’t have to use a definition file to import a text file. If you only
need to import one or two files of a given format, you might not want
to take the time to write a definition file. In that case, you can

* Run TXT2STF without a definition file and import the structured
file. (See Chapter 23 of the User’s Guide.)

* Import the text file into an Agenda note and then, within the note,
make selected note text into items and categories. (See Chapter 12
of the User’s Guide.)

Getting Started with Definition Files 1-5

Or, you might want to use a different tool to create the structured file.
For example, if the text file is patterned in a complex manner, you
might prefer to write a program in a programming language such as
BASIC or PASCAL to convert the text file into a structured file. For
more information about what the structured file should contain, see
Appendix B.

Creating a Definition File

Analyzing the
Text File

This section describes one way to create a definition file. It presents a
sample text file and describes the procedures you follow to create a
corresponding definition file.

As you read this section, remember that there are usually several
ways to convert the same text file. For example, you might want to
collect different item text from the text file. Your Agenda file might
organize information in a different manner than is outlined in this
example, so you might need to create different categories.

Also remember that the definition file described in this section is tai-
lored to the sample text file. You can use strategies described in this
section in definition files that you create, but you need to adapt them
to fit your own text files, whose contents and format will differ from
the text file shown in this example.

To create a definition file that can convert a text file into items, cate-
gories, and notes, you must

¢ Analyze the text file to determine what text to convert

« Write the definition file, adding information that tells TXT2STF
how to convert the text

The first step in creating a definition file is to analyze the text file to
determine which text to convert into items, categories, and notes.

Figure 1-2 shows a sample text file that you might want to bring into
an Agenda file. This sample text file contains a memo sent to an
Agenda user by electronic mail.

1-6 Getting Started with Definition Files

SEND_VIANODE_42

Date: November 23

To: Jin
From: Linda
Re: Lunch

Can’t make lunch appointment today, can we reschedule for next week?

Figure 1-2 A sample text file

In the current example, you could convert

* The mail date into a When date

* The recipient and sender names into categories
* The mail subject line (labeled Re:) into an item
* The body of the memo into a note for the item

After you determine which text to convert, you must tell TXT2STF
how to identify the text. To do this, look through the text file and
locate text strings that label the text to convert. In the current exam-
ple, this is easy to do, since electronic mail files contain standard
labels that describe the information in the file. Date: labels the date,
To: labels the memo recipient, and so forth.

As shown in Figure 1-3, you want TXT2STF to convert text following
Date: into a When date, the names following To: and From: into cate-
gories, the text following Re: into the item, and the remaining text
into a note for that item. By identifying these text strings, you give
TXT2STF patterns it can use to locate the text you want to convert.

Getting Started with Definition Files 1-7

Text file

SEND _VIA NODE_42
Date: November 19
To: Jill

From: Linda

Subject: Lunch

Can't make lunch
appointment today, can we
reschedule for next week?

Dsfinition file

Date: 1 = When date
To: 1] = Category

From:[_______] = Category
TXT2STF «— | Re[———— - ltem
utility
= Note

Structured file

November 19 = When date
Jill = Category
From = Category
Lunch = ltem
Can't make lunch
appointment today,
can we reschedule
for next week?

= Note

Figure 1-3 Using a definition file to convert text to import

into Agenda
Writing the Now that you know what information you want converted and have
Definition File text strings that identify the text, you have enough information to
Patterns and write a definition file. For each text line you want to convert, you

Commands must

* Add a pattern that describes to TXT2STF the text strings you want
TXT25TF to find

* Provide the commands required to convert the text located by the
pattern into an item, category, note, or some combination

1-8 Getting Started with Definition Files

The combination of a pattern and its commands is called a statement.
A definition file statement must start with a pattern and can include
any number of commands.

Adding patterns

Patterns describe the text sirings you want TXT25TF to find in the
text file, By locating any of these lines in the text file, TXT25TF
locates a line with information to be converted. To convert the elec-
tronic mail message in Figure 1-2, you can add the following patterns:

"ADate\:"
"ATO\ :Il
"AFrom\:"
"ARe\:"

In the above patterns, the caret (*) tells TXT25TF that the text string
begins a new line. The combination of backslash (\) and colon {:) in
the above patterns tell TXT2STF that each colon (1) is a regular text
character (otherwise, the colon (:) starts a special pattern condition).
You include the carat (*}, backslash (\), and other characters in pat-
terns to provide additional information about the text siring. For
more information about patterns, see Chapter 4.

When TXT2STF matches a text line with a pattern in the definition
file, TXT2STF executes all commands related to the pattern. So far,
you have created the patterns that TXT25TF can use to locate text to
be converted. Now you can add commands to each pattern to tell
TXT2STF how to convert the text that matches the pattern.

Converting the When date

Since "Date:" is the first text pattern in the sample text file, you can
start the process of determining how to convert text with this text
line.

When TXT2STF finds "Date:" at the start of a line in an electronic mail
file, you want TXT25TF io

» Begin gathering information for a new item, consisting of text for
the item itself as well as assignments for the item

» Skip over the word Date and the colon () that follows it so that the
string Date: does not occur in the When date

* (Convert the date into a When date

Getting Started with Definition Files 1-9

You set aside some computer memory for TXT2STF to use while con-
structing your item and its note and categories by using the @start
command. To skip over text on a line, use @skip. To make text into a
When date, use @date. Therefore, to convert text into a When date,
you add the following pattern and commands:

Pattern Commands

" Date\:" @start
@skip
@date

Note To simplify the current discussion, this chapter shows defini-
tion file commands without their accompanying arguments.
To see the complete commands with arguments, refer to
Figure 1-4.

Converting the To and From categories

You can continue by creating the To and From categories, since To
and From are the next strings of interest in the text file.

In this example, To: labels the electronic mail recipient name and
From: labels the sender name. You can have the definition file orga-
nize sender names as children of the From category and recipient
names as children of the To category. To do this, the definition file
needs to keep track of both the parent category (To or From) and the
child category (the name of the recipient or sender).

When TXT2STF finds the string To: or From: at the start of a line in an
electronic mail file, you want TXT2STF to

* Convert the word To or From that starts the text line into a parent
category

* Convert the recipient or sender name into a child category of To
or From

You need to use two different portions of text from the same line: the
parent category and the child category. One way to do this is to copy
the parent and child categories into variables. Then, you can include
these variables in the @custom_category command that assigns the
child to the parent category. (For information about variables, see
Chapter 5). For example:

1-10 Getting Started with Definition Files

Pattern Command

"~To\:" @trim (copies the parent category to a variable)
@trim (copies the child category to a variable)
@custom category

Since the same processing is required for both the To and From cate-
gories, you can use a single statement to convert both types of text
lines. To do this, you need to use a pattern that is generic enough to
match both "From:” and "Te:".

You can use the pattern "A.*\:" for this purpose. The carat () is the
start-of-line character that tells TXT2STF that the string begins a new
line in the text file. The combination of period (.) and asterisk (*)
specifies that the string contains one or more characters. The combi-
nation of backslash (\) and colon (:} specifies that the string ends in a
colon (). The pattern "*.*\:" therefore matches any string that starts
at the beginning of a text line and ends in a colon (). The following
single statement handles all To and From lines in the electronic mail
message:

Pattern Commands

"ML\ @trim (copies the parent category to a variable)
@trim (copies the child category to a variable)
@custom category

Converting the item and note

When TXT2STF finds the string "Re:" at the start of a text line, you
want TXT2STF to save the rest of the line as item text.

The Agenda view into which you import electronic mail organizes
electronic mail items as children under the parent category, Mes-
sages. So, when TXT2S5TF finds the string Re: you want TXT2STF to

* Specify that the new item will be assigned to a category called
Messages

* Skip the word Re and the colon () that follows it so the string Re:
does not occur in the jtem text

» Convert the remaining text in the line into an item

* Create a note, starting on the next line and continuing to the end

of the file

Getting Started with Definition Files 1-11

You specify that the new item will be assigned to a category by using
@custom_category. To skip over text on a line, use @skip. To make
text into an item, use @item?2 or @item. To make a note for an item,
use @note.

After TXT2STF creates the note, the item is complete. To tell
TXT2STE to stop converting text for the item, use an @end command.
When TXT25TF executes @end, it copies the item, categories, and
note TXTZ5TF created to a structured file that is ready to be imported
to Agenda.

The statement that creates item and note text is as follows:

Pattern Cormmands

""Re\:" @custom category
@skip
Gitem2
Gnote
@end

Ordering the statements
Because of the way TXT2STF converts a text file, the order of state-
ments in a definition file can be very important.

To convert a text file, TXT2STF steps through the text file, line by line.
For each text line, TXT2STF compares the line with all of the state-
ments in the definition file, starting at the first statement and working
down to the end of the definition file. When a pattern in a statement
matches text in the text line, TXT2STF executes the commands asso-
ciated with the pattern. Then, TXT2STF continues to the next uncon-
verted line in the text file and compares that line with statements,
again starting at the top of the definition file.

When you order statements in a definition file, you must be sure that
the first pattern in the definition file that matches the text line is the
desired pattern. When TXT2STF finds a statement that matches the
current text line, it executes the commands in that statement. Then,
TXT25TF moves on to the next line in the text file. No other state-
ments are executed for the text line.

In general, any statement with a pattern that precisely matches a spe-
cific text line, and no other, should be placed early in the definition
file. Put statements whose patterns are likely to match more than one
text line toward the end of the definition file. If you follow this order-

1-12 Getting Started with Definition Files

ing scheme, TXT2STF compares text lines to statements with specific
patterns before those with generic patterns. Text lines for which
specific patterns exist match their patterns earlier in the conversion
process, which expedites the conversion of text to structured informa-
tion, and prevents them from incorrectly matching the more generic
patterns.

So far, this section has developed statements that
¢ Convert the When date

* Convert the To and From categories

* (Convert the item and note

You might consider placing these statements in the same order in
which the corresponding text strings occur in the text file. This
results in the following order of patterns:

Pattern Purpose of statement that includes the pattern
"~Date\:" Converts the When date

A A Converts the To and From categories
"rRe\:" Converts the item {(and note)

However, if you look at this order you'll see that the generic pattern
"N F\:" occurs before the pattern "ARe\:". This causes TXT2STF to
execute the wrong statement for the electronic mail subject line.
When TXT2STF compares the electronic mail subject line with defini-
tion file statements, it matches the text string "Re:" with the generic
pattern, and then execute the associated commands, which convert
To and From categories.

To correct this problem, put the statement containing the generic pat-
tern at the end of the definition file, which results in the following
order of patterns:

Pattern Purpose
"~Date\:" Converts the When date
"ARe\:" Converts the item {and note)

R AR Converts the To and From categories

Getting Started with Definition Files 1-13

Figure 1-4 shows the actual definition file that formats the sample
electronic mail message in Figure 1-2. The commands in this defini-
tion file include the arguments necessary to actually convert the sam-
ple electronic mail text file. For more information about definition
file commands and arguments, see Chapter 5.

"“Date\:" @start {)
Gskip(™ +", 1}
Gdate (W)
"rRay " Bcustom category({"Messages",,)
@skip{" +", 1)
@item2 ("s")
Gnote (EQOF)
Rend ()
l'l/\-*\:ﬂ @trim(“/\"’ll\:"rN,rlparellt")
@trim("\:","$",N,"cat")

@custom_category {cat,parent,)

Figure 1-4 Sample definition file

The definition file in Figure 1-4 assumes that your text file contains
only one electronic mail message, so @note specifies that the item
note ends when TXT2STF reaches the end of the text file (specified by
the argument EOF). If the text file contains more than one electronic
mail message, you need to change this definition file slightly. (See
"Creating More Than One Item" in Chapter 7.)

The definition file is now ready to convert the electronic mail text file
in Figure 1-2. When TXT2STF uses this definition file to convert the
electronic mail text file, TXT2STF:

1. Matches the date line in the electronic mail file with the state-
ment containing the pattern "*Date\:".

TXT2STEF starts collecting information for a new item. TXT2STF
then skips over the text string Date: and makes November 17 the
When date.

2. Matches the recipient line in the electronic mail file with the
statement containing the pattern "A*\:".

TXT2STF puts the string To into the variable called parent, puts
the name Jill into the variable called cat, and then uses the con-
tents of these variables to create a category.

1-14 Getting Started with Definition Files

imperied item

3. Matches the sender line in the electronic mail file with the state-
ment containing the pattern "**\:".

TXT2STF puts the string From into the variable called parent,
puts the name Linda into the variable called cat, and then uses
the contents of these variables to create a category.

4. Matches the subject line with the statement containing the pat-
tern ""Re\:".

TXT2STF creates the Messages category, and then skips the text
string Re: and makes the rest of the current line the item text.
The caret (*) in the @item2 command tells TXT2STF to add text
to the item until it reaches the start of the next line.

TXT2STF then creates an item note, starting with the line after the
electronic mail subject line continuing until the end of the file
(EOF). Finally, TXT2STF ends the item and copies the item, with
its categories and note, into a structured file.

After you run TXT2STF to create a structured file, you can import the
structured file into Agenda whenever you're ready. Figure 1-5 shows
the converted electronic mail memo after it's imported into Agenda.

Figure 1-5 Converled memo text imported into Agenda

The musical note symbol () beside each item in this view indicates
that the item has a note associated with it. Figure 1-6 shows the note
for your imported item.

Getting Started with Definition Files 1-15

Note for imported item

Figure 1-6 Note for the imported item

Chapter 2

Creating a Definition File

You create a definition file to tell TXT2STF how to process text files to
be imported into Agenda. The definition file must be created before
it can be used with TXT2STFE.

In this Chapter

This chapter explains

How to create a definition file
How to analyze the text file that you plan to import into Agenda

How to write the patterns and commands that make up the defini-
tion file

How TXT25TF uses the definition file to format a text file

Creating a Definition File

When you create a definition file, you perform these general proce-
dures in the following order:

Analyze the text file to be structured.

You must decide how you want to convert the information in your
text file into items, categories, and notes.

Write a definition file to manage the structuring process.

You write patterns to match specific lines in the text file, and com-
mands to convert the text in those lines to Agenda items, catego-
ries, and notes.

21

2-2 Creating a Definition File

. Debuﬁ the definition file.

You run TXT2STF with your definition file and determine
whether it formats information the way you want. If it doesn’t,
revise the definition file and test it again with TXT25TF.

This chapter provides details about the first two procedures listed
above. For more information about debugging a definition file, see
Chapter 7.

Analyzing the Text File

Before you write a definition file, you should become familiar with
the format and contents of the text files that you want to convert.

You need to analyze your text file to

Decide how you want to use information from the text file in
Agenda.

You need to determine which text in the text file you want to use
as items, categories, and/or notes. For example, when converting
a memo sent through electronic mail, you might want the memo’s
date to be a When date, the names of the sender and recipient of
the memo to be categories, the subject of the memo to be the item,
and the body of the memo to be a note for that item.

Identify a unique text string for each part of the text file to be
converted to items, categories, and notes.

For example, in an electronic mail memo, the memo date might be
preceded by an identifying label, such as Date.

Determine how many types of information the text file contains.

Check the text file to see whether you have a single type of infor-
mation in the files you plan to convert (for instance, the file con-
tains only memos), or whether you have more than one type of
information (for example, memos and telexes in the same file). If
vou have more than one type of information, see "Using @start
and @end" later in this chapter.

Creating a Definition File 2-3

Writing the Definition File Patterns and Commands

What a
Definition File
Contains

Guidelines for
Writing Statements

After you analyze the text file to be structured, you can specify the
patterns and commands that tell TXT2STF how to convert the text
file. In this way, you construct the definition file.

You can use any text editor that creates unformatted text files to
create a definition file. You must give the definition file the extension
.DEF.

Tip You can write the definition file patterns and commands in an
Agenda note, and export it to a text file.

A definition file contains statements that govern the conversion of the
contents of a text file into a structured file. The statements, and the
text conversions they produce, are tailored to the requirements of the
text file.

For example, a definition file that converts electronic mail files con-
tains different statements from a definition file for files that contain
legal abstracts due to differences in the layout of the files and in the
information to be converted.

Each statement begins with a pattern and can include one or more
commands:

* Each pattern describes a line of text to be converted. Each pattern
is enclosed in a set of double quotation marks (" ") that indicate
where the pattern begins and ends. The quotation marks are not
part of the pattern.

* Each pattern is followed by one or more commands that tell
TXT2STF how to convert any text line that matches the pattern.
Each command begins with an at (@) character.

This section provides guidelines for writing statements in a definition
file. For specific information about patterns, see Chapter 4. For spe-
cific information about command syntax, see Chapter 5.

Follow these guidelines when you write definition file statements:

¢ To make it easier to differentia‘te patterns from commands, add
spaces or tabs after the pattern to separate it from the commands
that follow it.

2-4 Creating a Definition File

If the statement includes multiple commands, you also can add
spaces or tabs to separate commands from each other on a single
line. However, consider breaking the statement into multiple
lines, and lining up commands in a column, as described below.

To continue a statement onto another line, break the statement
between commands.

This strategy makes it much easier to read and debug statements
that contain more than cne command.

Note Always break statements befween commands; never
break a statement in the middle of a command.

To male it easier to read statements that contain multiple com-
mands, line up commands one under the other in a column.

Version 1.0 of TXT2STF required you to put a backslash (\} in the
first column of each continued line in the larger statement.
Backslashes (\) are no longer required, but you can include them
in definition files if you want.

Note The maximum length of a given definition file statement is

determined by the amount of standard memory available
when TXT25TF executes to the command. If TXT25TF repeat-
edly encounters memory problems, see if you can shorten
long statements,

The definition file in Figure 2-1 follows the above guidelines.

Patterns Commands
"~Datel:" Astart ()
@Skip(" +|f, 1)
Adate (W)
"rRel\ " Bcustom category ("Messages",,}
@sklp(" +"'1)
@item2 ("S$M)
@note (EQF)
Rend ()
ll/\-*\:" @trjm(""“,"\:“,N,"parent")
@trim("\ . |r’ "$",N, "cat")

@custom_category (cat,parent,)

Figure 2-1 Definition file with statements on more than one

line

Including

Comments in a
Definition File

Usin
and

@start
end

Creating a Definition File 2-5

The sample definition file in Figure 2-1 contains three statements,
each of which begins with a pattern and includes commands to pro-
cess text lines. For example, the first statement begins with the pat-
tern ""Date\:" and includes @start, @skip, and @date commands.
Tabs separate patterns and commands in this sample definition file.
Statements with multiple commands are continued to the next line
after each command. The commands are lined up in the right hand
column.

Comments let you describe what a particular statement or command
accomplishes and can help you read through the definition file at a
later time. You add comments for your own use; TXT2STF ignores
comments when it uses the definition file.

It is a good idea to

¢ Start a definition file with a comment that describes the purpose
of the definition file

Since TXT2STF copies the first line of the definition file to the
structured file, making the first definition file a comment line also
causes the structured files it creates to start with a descriptive line.

¢ Include comments throughout the definition file to describe spe-
cific commands and statements

Comments that describe specific processing performed by a defi-
nition file can be particularly useful when you debug the defini-
tion file or update it to reflect changes in text file structure.

To include a comment in your definition file, insert a number sign (#)
at the beginning of a line. This character must be in the first column
of the line, or TXT2STF cannot recognize the line as a comment.

Note Including many lines of comments can occasionally increase
the time it takes TXT2STF to process your text.

Fach definition file must include at least one pair of @start and @end
commands:

* @start sets aside and initializes memory so that TXT25TF can tem-
porarily store information that it converts.

The patterns and commands that occur after @start and before
@end convert text lines and add the resulting structured informa-
tion to memory. The commands executed between each @start
and @end can create a single item, a note, and any number of
categories with or without category notes.

2-6 Creating a Definition File

¢+ @end bundles together the information in memory and copies it to
the structured file.

For example, if memory currently contains two categories and an
item, @end assigns the item to the categories and copies them to
the structured file as a single item specification. After copying
information to the structured file, @end initializes memory.

If the text file contains several occurrences of the same type of infor-
mation, such as several electronic mail messages all formatted in basi-
cally the same way, the same block of definition file commands can
be executed over and over, each time creating a new item and
copying it to the structured file. After copying an item to the struc-
tured file, the @end command initializes memory so TXT2STF can
construct a new item. Then, TXT25TF progresses to the next
electronic mail message and converts it, starting from the beginning
of the definition file.

Figure 2-2 illustrates how @start and @end work. If you omit @start,
TXT2STFE will not have any memory in which to store converted
information. If you omit @end, TXT2STF won’t put anything in the
structured file.

You need more than one @start or @end in a definition file when the
file to be converted:

» (Can begin or end in different ways

For example, if an electronic mail file can begin with different
labels, such as either Date: or Today:, you should include a @start
for each possible file beginning and an @end for each possible file
ending,

* {(Can contain mere than one type of information

For example, a text file might include some messages received
from an internal electronic mail system and some received as telex
messages. In this case, the messages will have different layouts.
You must include a @start and @end pair for statements that con-
vert the electronic mail messages, and another @start and @end
for statements tailored to convert the telex messages.

Caution If multiple types of information have patterns in common,
unexpected structuring can result.

For more information about @start and @end, see "How TXT2STF
Builds Items, Categories, and Notes" at the end of this chapter.

Creating a Definition File 2-7

Definition file Memory
pattern @start 1 ost > | Temporarily
: : 1. Gstart stores
initializes information
memory converted by
- pattorn” Pond > TXT2STF
2. Gend
instructs
TXT2STF to

copy information
in memory to the
structured file

Structured file

Contains converted
information to be
imported into Agenda

Figure 2-2 How @start and @end work

How TXT2STF Uses the Definition File

To write efficient definition files, it helps to understand how
TXT2STF uses the definition file when processing your text file. This
information also helps you when you debug the definition file to
determine why information in the structured file is different from
what you expected.

TXT2STF processes your text file one line at a time, starting with the
first line in the text file. When it finishes with the current text line,
TXT2STF proceeds to the next line in the text file. When there are no
more lines in the text file, TXT2STF stops running.

The following sections provide details about

e How TXT2STF processes each line from the text file

2-8 Creating a Definition File

How TXT2STF
Processes Each
Text Line

» How TXT2STF builds items, categories, and notes from text in the

text file

TXT25TF processes each text line by copying it into memory,
searching the definition file for a pattern that matches the line and, if
it finds a pattern, executing the commands associated with the pat-
tern.

Note TXT2STF always uses standard memory, and not expanded or

extended memory.

For each line in the text file, TXT25TF performs the following steps:

1.

Copies a line of the text file into memory

In this document, this line is often referred to as the current text
line in memory, or the current text line.

TXT25TF determines that it has copied the entire text line when it
encounters a carriage return character (ASCII decimal 13) or the
alternate separator character as specified by using the TXT25TF
/S option. (See Chapter 6). The maximum length for a text line
is 512 characters.

Caution If a text line is longer, TXT2STF treats it as more than
one text line, stopping the first line at 512 characters
and using the remaining characters as a second text
line. If the current statement ends when TXT25TF is
only part-way through this second text line, TXT25TF
discards the unprocessed text characters and contin-
ues to the next unprocessed text line in the text file.

Searches the definition file from the top, looking for a pattern
that matches the current text line in memory

As soon as TXT25TF finds a pattern that matches the current text
line, it stops searching the definition file. (TXT25TF does not
later search for other paiterns that might match the current text
line.)

Executes the cormmands associated with the pattern that matched
the text line, one after the other

The commands convert the current text line. TXT2STF executes
all commands associated with the current pattern. When there
are no more commands for the pattern, TXT2STF continues to
Step 4.

2-10 Creating a Definition File

1. TXT2STF
copies a
line into
memory

How TXT2STF
Builds Items,
Categories,
and Notes

Text file
!] 3. TXT2STF proceeds to the
Current line of text next unprocessed text line
after executing the last command
Next line of text in the matching statement.
-
Definition file
START @start
Memory .
*"“current” 8command
Gurrent @command
line of
text 2. TXT2STF
searches
the
definition
file for a

pattern that
matches the
current line and
then executes
the commands
in the matching
statement.

Figure 2-3 How TXT2STF processes text file lines when
using a definition file

As TXT25TF processes lines from the text file, TXT25TF formats the
lines into items, categories, and notes. The commands in your defini-
tion file tell TXT25TF which text to use and which to ignore.

TXT25TF builds each item, category, and note in a separate buffer in
memory. These buffers are special portions of the computer’s
memeory that only TXT25TE can use. As it builds items, categories,
and notes, TXT25TF maintains

s A single item buffer
* A single note buffer

* A separate buffer for each category

Creating a Definition File 2-9

Some commands can also convert subsequent lines from the text
file. For example, @note can make several consecutive text lines
into a note. In this case, TXT2STF reads each text line into
memory, one after the other, and converts it as instructed by the
command. When the command finishes converting text lines,
TXT2STF continues to the next command in the statement.

Note If a command reads additional lines from the text file,
these additional text lines are not searched and compared
to other patterns in the definition file as described in
Steps 1 and 2.

4. Proceeds to the next unprocessed line in the text file

In general, depending on the commands you use, the next line in
the text file is the line immediately after the line most recently
copied into memory. When it locates the next line in the text file,
TXT2STE returns to Step 1 above.

TXT2STF repeats these steps until it has processed the last line from
the text file.

Figure 2-3 illustrates the preceding process. The first operation that
TXT2STF performs on any text line is to copy the line into memory.
TXT2STF never alters the original text file.

For more information about how commands influence which line in
the text file is the next line to be processed, see Chapter 5. For infor-
mation about how to run TXT2STF, see Chapter 6.

Creating a Definition File 2-11

TXT2STF adds to the end of the appropriate buffer each time it
executes a command that identifies text to be used as item, category,
or note text.

An @end command causes TXT2STF to bundle together the contents
of all buffers and then copy the bundled information to the end of the
structured file. If the item buffer contains text, TXT2STF creates an
item. If the note buffer or any of the category buffers contain text,
TXT2STF adds them (it adds the note to the item and assigns the item
to the categories).

If the item buffer is empty, TXT2STF can create
* One or more independent categories (not assigned to items)
* Anindependent note (assigned to a blank item on import)

For example, if the buffers contain two categories and an item,
TXT2STF adds the item to the structured file, and adds the categories
as assigned to the item. If the buffers contain three categories but no
item, TXT2STF creates three categories in the structured file.

When it copies information to the structured file, TXT2STF inserts
tags in the converted text that tell Agenda how to import the struc-
tured information, and how to relate various elements. For example,
tags indicate where each new item starts, and specify the category
values and notes that belong to each item. (See Appendix B.)

When TXT2STF terminates, it clears all buffers. It only copies the
buffers to the structured file if an @end is executed before TXT2STF
terminates.

In Figure 2-4, TXT2STF adds converted text to buffers in response to
commands in the definition file. The @custom_category command
causes TXT2STF to put a category value in a buffer. Then, TXT2STF
puts item text in a buffer in response to the @item2 command. When
TXT2STF executes the @note command in a later statement, it puts
note text in a buffer. When it executes the @end command, TXT2STF
copies categories, items, and notes to the structured file.

2-12 Creating a Definition File

1. TXT2STF converts
the current line
of text into a
category and
an item by
executing
commands in
the statement
that matches
the current
line.

2. TXT28TF places
the category in a
category buffer
and the item in
the item buffer.

Definition file

START Bstart

"“current” Gcustom_category
Gitemn2

Memory
Current line
of text
Buffers
Category
Category buffor
3. TXT2STF copies
ltem the current contents
item text buffer of the buffers to
the structured file
i When it executes
@end.

<

Structured file

ltem text = ltem
Category = Category

Figure 2-4 TXT2S5TF uses buffers to store text

Creating a Definition File 2-13

A text file can contain more than one piece of information to be
converted. For example, a text file can contain several electronic mail
messages, each one to be converted to a new item. You must make
sure TXT2STF executes an @end command for each item to be added
to the structured file. This means you must use @end to copy
TXT2STF buffers to the structured file when TXT2STF reaches the end
of each occurrence of the information type (for example, each new
electronic mail message).

Chapter 3

Using Definition Files

This chapter shows how you can use definition files by providing
some examples. You can adapt these examples for your use, chang-
ing patterns to suit your own text files, and changing commands to
convert text as appropriate for your needs.

About this Chapter

‘This chapter presents detailed examples of how to use definition files

to
e Convert electronic mail messages
e Convert a table of information

For each example, this chapter describes how text in the text file is
converted and presents a sample definition file that accomplishes this
conversion. Each example concludes by showing you how the sam-
ple converted information looks after you import it to Agenda.

These examples give you a starting point for creating your own defi-

nition files. To become familiar with how definition files work, it is a
good idea to read through both examples. They help prepare you for
writing your own definition files.

When TXT2STF converts a text file, it puts the converted information
into a structured file, which is the file you actually import into
Agenda. Because reading through structured files requires some
practice, this chapter omits the structured files from the examples.
This helps you focus on definition files. When you become more
familiar with definition files, consult Appendix B for information
about structured files. Appendix B contains the structured files for
the examples in this chapter.

3-1

3-2 Using Definition Files

Converting an Electronic Mail Message

The example described below shows one way to convert a text file
that contains an electronic mail message. In this example, you'll see
the original text file to be converted, the definition file that converts
it, and an Agenda view displaying the converted information after it
is imported.

Sample Text File Figure 3-1 shows the text file to be converted. This text file contains a
generic example of a PROFS® mail message after it is exported to an
ASCII text file.

In this example, the electronic mail message will be converted so that

¢ The subject of the message (in this example, Charting Seminar!)
becomes an item

* The date and time at the top of the message (11/08,/90 15:12:04)
becomme an Entry date

» The sender name (Susan Anthony) becomes a category, with the
sender’s department (Public Relations) as a category note

Also, the original text file containing the entire electronic mail mes-
sage is attached to the item as a note file. You can do this because
TXT2STF converts and imports information from text files without
altering the original text file. When you look at the note in Agenda,
you see the actual contents of the original text file, since it is used as a
note file. If you make any changes to the note, Agenda saves the
changes in the external note file. For more information about note
files, see Chapter 12 in the User’s Guide.

Using Definition Files 3-3

1
From: SG04B04 --LOCKOVM1 Date and time 11/08/90 15:12:04
To: SG05B05 --LOCKOVM1 ARNOLD BENJAMIN

From: Susan Anthony, Public Relations
Subject: Charting Seminar!

Hi Ben--

Just when you thought you could work on something besides the Accounting
Chart package.......

Actually, the reason I am writing you is to do me a favor and possibly earn
the undying gratitude of the Marketing department at the same time!!

As you know, (or maybe you don’t) - part of my job has me in charge of what
we are calling Inter-departmental Professional Development - otherwise
known as training! The Marketing department is trying to enhance their
leverage on their investment in PCs, so I'm putting together a 2-day session
on several of the custom applications you've built with the more widely used
corporate software.

Hank will be teaching the class. It is being held on November 21st and 22nd
in the New York office. We would like you to be our guest speaker and do a
session on the Cloudduster chart portfolio you put together for Accounting,.
(Abby specifically asked for this...I think she wants to use the same approach
to the quarterly product rollups her group sends to management.)

Hank is concentrating on the networked ABC pro-forma system and the
Downfeather application they are using to plan the Q1 Sales Conference in
Pittsburgh.

Please let me know as soon as possible if you can come down. We would
really appreciate your help!

Sue

Figure 3-1 Sample electronic mail text file

3-4 Using Definition Files

Sample Definition
File

Figure 3-2 shows sample definition file that converts the sample text
file shown in Figure 3-1.

#definition file for electronic mail

"~ *From\:.*Date™ Q@start ()
gskip ("Date and time", 1)
fdate (E)

" *Froml " @skip{"\: ", 1)
@set ("savel2')
@trim (™, 1\ (", "$",)
@category ("s", "From",)
Breset {save?)
Btrim("~", ", I\{",)
Bcategory note(""")

"~ kSubject\ " Bskip("\: ", 1)
@item{"~",80,N)
@note file (FILENAME)
@skip_lines (EOF)
Gend ()

Figure 3-2 Definition file for converting the sample
electronic mail text file

This definition file contains three statements:
* The first statement creates the Entry date.

* The second statement creates a category using the sender name
and category note using the sender’s department.

¢ The third statement creates the item and attaches the original text
file as an item note.

When the resulting structured file is imported into Agenda, the item
is assigned to the Entry date and sender name (Susan Anthony) cate-
gories.

The sample definition file in Figure 3-2 is tailored to work with the
sample text file shown in Figure 3-1 and might not work with all
PROFS messages. For example, differences in the header information
for the message or in how messages are formatted might require
changes in how the definition file matches and converts text lines.

Using Definition Files 3-5

The sample definition file in Figure 3-2 also assumes that each file to
be processed contains a single electronic mail message, as in the sam-
ple text file. To convert a text file containing multiple electronic mail
messages, you need to make some changes to the sample definition
file. For example, you need to change @note so it specifies something
other than EOF for the end-of-note string. See "Creating More Than
One Item" in Chapter 7.

Creating the Entry date

The first statement in the sample definition file creates an Entry date.
This statement begins with the pattern "A *From\:*Date", which
matches a text line whose first word is From: and that contains the
word Date somewhere later in the same text line. To specify this, the
pattern

e Starts with a caret ("), a special match-control character that speci-
fies that the pattern only matches a string that starts a text line

e Includes a space () followed by an asterisk (*)

The asterisk (*) is a match-control character that tells TXT2STF to
match the immediately preceding character any number of times
that it occurs in a row. The combination of space () and

asterisk (*) specifies that the text line can start with any number of
space characters.

e Includes From\:

This tells TXT2STF to match the word From followed by a

colon (:). The backslash (\) tells TXT2STF that the colon (:) is a
regular text character (otherwise, the colon () starts a special pat-
tern condition).

¢ Includes .*

The period (.) is a match-control character that matches any text
character, including the space character. The combination of
period (.) and asterisk (*) tells TXT2STF to match any number of
text characters.

¢ Includes Date

This tells TXT2STF to match the word Date. Because the pattern
concludes with this specification, the entire pattern matches a text
line that starts with From and ends with Date.

For more information about patterns, see Chapter 4.

3-6 Using Definition Files

A pattern and its associated commands together form a single state-
ment. When TXT2STT finds a text line that matches pattern

"N *From\:*Date”, TXT25TF executes the commands in the
statement:

* @start reserves memory that TXT2STF can use while converting a
text file into items, categories, and notes.

* @skip removes the first portion of the text line, leaving the date
and time information in the text line

* @date makes the remaining current text line into an Entry date (as
specified by the uppercase E in @date)

When Agenda imports the text line, it eliminates extra words, and
retains only the date and time information as the Entry date.

For details about definition file commands and the arguments speci-
fied in them, see Chapter 5.

Creating the sender name category

The second statement in definition file creates a category from the
electronic mail sender name (Susan Anthony). This statement begins
with the pattern "» *From\:", which matches any text line that starts
with any number of space characters, followed by the word From,
followed by a colon (3).

When TXT2STT finds a text line that matches pattern "~ *From\:",
TXT25TF executes the commands in the statement:

* @skip deletes the string From:, including the colon (:} from the text
line.

To do this, @skip divides the text line into separate values, using
the colon character followed by a space (\:) as the dividing
string. Then @skip deletes the first value from the field, which is
everything on the line through the word From, followed by a
colon (), followed by a space character.

* @set puts the current contents of the text line (after From: is
deleted) into a variable named save2,

* @trim deletes the words Public Relations from the text line, start-
ing with the comma {,} and continuing to the end of the text line.

Te do this, @irim searches the current text line for either a
comma (,) or an open (lefthand) parenthesis. If it finds either of
these characters, @trim deletes the character and everything after
it from the text line.

Using Definition Files 3-7

no

The pattern ", | \(" tells @trim to search for either a comma (,) or an
open (lefthand) parenthesis. The vertical bar (1) tells @trim to
search for either of the two characters on either side of the vertical
bar (). In this example, @trim searches for either the comma (,),
which is on the left side of the vertical bar (1) or the open paren-
thesis, which is to the right of the vertical bar (i). (The

backslash (\) tells TXT2STF to search for the open parenthesis as a
regular character and to ignore its special meaning in patterns.)

@category makes the current text line (after the end is deleted)
into a child category of the From category.

The dollar sign ($) is the end-of-line match-control character.
Since the dollar sign ($) is specified as a pattern, @category makes
the entire current line through the end of the line into a category.
The second argument in @category is "From", which is the name
of the parent category.

@reset replaces the current text line with the contents of the vari-
able save2, which contains the text line as it existed when @set
stored the text line in save2, above.

@trim deletes the name Susan Anthony and the comma (,) from
the text line.

This @trim is similar to the @trim discussed above. The current
@trim starts from the beginning of the text line, as specified by the
start-of-line character, the caret (), and deletes everything up to
the first comma or open (lefthand) parenthesis, as specified by the
pattern ", i \(".

@category_note makes the current line into a category note for the
sender name (Susan Anthony) category.

The pattern "A" tells @category_note to make everything into a
category note until it reaches the start of the next line in the text
file.

The statement that starts with the pattern "~ *From" only processes
the second line that starts with From in the electronic mail text file.
This is because the pattern that starts the statement matches the text
line, and also because the statement is not the first statement in the
definition file. To see how statement order affects which statement
matches a text line, let's examine how TXT2STF uses the current defi-
nition file to convert text lines in the text file:

e TXT2STF starts with the first line in the text file and compares that
line to patterns in the definition file, starting from the top of the
definition file and working down.

3-8 Using Definition Files

The first line in this text file contains only the number 1, and does
not match any patterns in the definition file.

* TXT2STF then moves to the second line in the text file and com-
pares that text line to definition file patterns, starting from the top
of the definition file and working down.

The second line starts with From and contains the word Date, s0 it
matches the pattern in the first statement, which is

"~ From\:*Date". The commands in the matching statement for-
mats the text line into an Entry date as described earlier in this
section.

* TXT2STF advances line by line through the text file, comparing,
text lines with patterns in the definition file, until TXT2STF
reaches the second line that starts with the word From.

This is the next text line that matches a pattern. TXT2STF com-
pares this text line to patterns in the definition file, starting from
the top of the definition file and working down. Though the text
line starts with From it does not contain the string Date, and so
does not match the first pattern in the definition file

(" From\:*Date"}, but matches the second pattern (" From\:").
TXT2STF then processes the text line using the commands in the
statement with pattern " From\:".

If the statement with pattern "~ From\:", which matches any text line
that starts with From, were the first statement in the definition pat-
tern, both text lines that start with From would match this pattern:

® TXT2STF compares the first text line that starts with From with
patterns in the definition file, starting from the top of the defini-
tion file and working down.

This text line matches the first pattern in the definition file,

"~ *From\:". Therefore, TXT2STF uses this first statement to pro-
cess the text line, and never compares the text line with pattern

"~ From\:*Date" since it occurs later in the definition file than the
matching pattern "* From\:",

* TXT25TF compares the second text line with patterns in the defini-
tion file, starting from the top of the definition file and working
down,

This text line also matches pattern " *From\:", and is processed by
the same definition file statement,

Using Definition Files 3-9

Creating the item

The third statement in the sample definition file creates an item. This
statement begins with the pattern " *Subject\:", which matches any
text line that starts with any number of space characters, followed by
the word Subject, followed by a colon (:).

When TXT2STF finds a text line that matches pattern "» *Subject\:",
TXT2STF executes the commands in the statement:

@skip deletes the string Subject:, including the colon (:) from the
text line.

@item creates a note from the remaining text on the text line.

The pattern "" tells @item to make an item that includes all text
up to the start of the next text line. 80 specifies that the item can
include a maximum of 80 characters. The N tells @item to not put
any remaining characters from the text line (if any) in a note for
the item.

Note @item?2 is an alternative to @item. The equivalent @item?2
argument list would be @item2("$",80,N). For more infor-
mation, see Chapter 5.

@note_file attaches the current text file, which contains the elec-
tronic mail message, as a note file for the current item.

FILENAME is a predefined variable that tells @note_file to use the
current text file name as the note file name.

@skip_lines moves TXT2STF to the end of the text file.

EOF (end of file) is a predefined variable that tells @skip_lines to
move to the end of the current text file.

@end adds the categories, notes, and item created by this defini-
tion file to a structured file.

@end is the only way to add this information to the structured file,
which is the file that Agenda can import. If @end is omitted, the
structured file won’t contain the categories, notes, and item
created in this example.

After @end, the definition file terminates since it is at the end of the
text file, and there is no more text to convert.

3-10 Using Definition Files

After the
Structured
File Is
Imported

Imported item and categories

The sample definition file in Figure 3-2 puts the item and categories it
creates into a structured file. To import the item and categories into
an Agenda file, you start Agenda and use the File Transfer Import
command to import the structured file.

Figure 3-3 shows how the item and categories created by the sample
definition file look after you import the structured file into Agenda.
The view in Figure 3-3 shows imported messages.

Figure 3-3 The imported item and categories

The double musical note symbol () before the imported item indi-
cates that the item has an external note file attached to it. In the
current example, the note file is the text file containing the original
electronic mail message. If you highlight the Susan Anthony cate-
gory, a musical note symbol () displays in the upper righthand cor-
ner of the screen to indicate that the category also has a note. In this
example, the note contains the text Public Relations.

Converting a Table of Information

The example described below shows one way to convert information
that is arranged in a table format. This example converts a text file
that contains a report derived from Lotus CD/Corporate®, a member
of the Lotus One Source® family of CD-ROM-based information
products. CD/Corporate provides business news, statistics, and
financial information through monthly CID-ROM:s and online
updates.

The report shown in this example was generated and saved (trans-
ferred to an ASCII text file by using CD/Corporate). After saving a
CD/Corporate report in an ASCII text file, you can use TXT2STF to
process it.

Sample Text File

Using Definition Files 3-11

The strategy for converting the table shown in the following example
applies to any ASCII text file that contains information in a table. For
example, you could apply this strategy to convert a table of informa-
tion from a Lotus 1-2-3 worksheet that has been printed to a text file.
Keep in mind, however, that you need to change the definition file
shown in this chapter to work with your table and your Agenda file
requirements.

Note Remember when using TXT2STF to convert tables (as well as
any other information) is that the information must be in a text
file (ASCII format). You cannot directly convert a CD/Corpo-
rate report or a 1-2-3 worksheet because they are not in ASCII
format. You must first create an ASCII text version. For
CD/Corporate, transfer the report to a text file. For a 1-2-3
worksheet, print the spreadsheet to a text file,

The text file for the current example contains information from the
Lotus CD/Corporate Industry Participants report, which is standard
CD/Corporate output. This report lists all companies assigned to a
particular industry grouping, ranked according to sales.

Figure 3-4 shows the beginning of the sample report derived from
CD/Corporate. The report has already been saved in a text file, and
so is already in ASCII format and ready to be converted. The table in
this report lists companies in the Food Processing industry. The orig-
inal report is long, so Figure 3-4 shows only a portion of the report.

The sample table in Figure 3-4 will be converted so that

* The text on the Industry line (Food Processing) is added as a child
category under the category Industry.

* The table headings (Rank, Company, FYE, Sales, and Income)
each become categories.

¢ FEach company name (for example, Sara Lee Corp) becomes an
item and is assigned to the Company category.

* Each company name is assigned to the Rank, FYE, Sales, and
Income categories by the corresponding date and numeric values
listed for the company in the table.

3-12 Using Definition Files

Industry: Food Processing

Rank Company FYE Sales Income
1 Sara Lee Corp 7/01/89 11,717,678 410,492
2 Conagra Inc 5/28/89 11,340,414 197,878
3 IBPInc 12/31/88 9,066,101 62,328

4 Archer Daniels Midland Co 6/30/89 7,928,836 424,673
5 Borden Inc 12/31/88 7,243,526 311,882
6 Ralston Purina Co 9/30/88 5,875,900 387,800
7 HJ Heinz Co 5/03/89 5,800,877 440,230
8 Quaker Qats Co 6/30/85 5,724,200 203,000
9 Campbell Soup Co 7/30/89 5,672,100 13,100

10 General Mills Inc 5/28/89 5,620,600 414,300
11 CPC International Inc 12/31/88 4,700,000 289,100
12 Kellogg Co 12/31/88 4,348,800 480,400
13 Beatrice Co 2/28/89 4,066,000 325,000
14 Swift Independent Packing Co 10/31/87 3,692,147 -18,437
15 Whitman Corp 12/31/88 3,582,500 233,500

Figure 3-4 Sample text file containing information in a table

The table shown in Figure 3-4 is slightly different from the original
table. In the original table, the column heads spanned two lines
rather than one, and the heads were separated from information by a
line of dashes (-—---}. For example, the beginning of the table looked
like this:

Corporate Net
Rank Company FYE Sales Income

1 Sara Lee Corp 7/01/89 11,717,678 410,492

To make the table easier to process:

¢ The two-line headings, Corporate Sales and Net Income, were
shortened so that all headings could fit on a single line.

* The line of dashes (-} that separated column headings from the
data was deleted.

In addition, an exira space was added between the Rank and Com-
pany heads, so that each column head is separated from the next
column head by at least fwo space characters. All of these changes
make it easier to write a @table command to process the table.

Sample Definition
File

Using Definition Files 3-13

Figure 3-5 shows the sample definition file developed for the sample
CD/Corporate text file in Figure 3-4. As is typical of definition files,
this definition file is tailored to work with the sample text file in
Figure 3-4. This definition file, however can be used for any Industry
Participants report extracted from CD/Corporate, put into a text file,
and modified as described in the previous section.

#Cable-reading DRF file sample for CD/Corporate participant zable

"Induslryh:"™ #start ()
fBskip(™h: ", 1}
Bzategory ("5", "Industry™,)
Bend ()
Bskip_lines (1)

#3tanle starts ‘n the left so the argument list stays on one Line

(reguaired for all commands)

#

Etable (" +",EOF, 1, "unindexed", 2, "item", 3, "datc™, 4, "nuneric”, 5, "numerc™)

Figure 3-5 Definition file for converting the sample table

The sample definition file in Figure 3-5 contains a single statement
that starts with the pattern "Industry\:". When TXT2STF finds a text
line that contains the word Industry followed by a colon (3), it
executes the commands in the statement.

The statement first executes a @start to reserve memory for TXT2STF
to use while converting the text file. Next, remaining commands
process the sample text file, starting with the text line that contains
the word Industry.

Commands in the statement

* Create a category from the industry (in this example, Food Pro-
cessing) listed in the Industry text line

* Process each row in the table

Creating the Food Processing category

The definition file statement creates a Food Processing category as a
child of the category Industry. The statement executes the following
commands:

* @skip deletes the word Industry and the colon () that follows it
from the text line.

3-14 Using Definition Files

To do this, @skip divides the text line into separate values, using
the colon () followed by a space (} as the dividing string. The
backslash (\) before the colon (:) tells @skip to use the colon (:) as
a regular text character (otherwise the colon (:) starts a special pat-
tern condition). Then @skip deletes the first value from the field,
which is everything on the line through the colon (:).

@category makes the current text line (after the word Industry and
the colon () are deleted) into a child category of Industry.

The pattern "$" tells @category to make the entire current line
through the end of the line into a category. The second argument
in @category is "Industry", which is the name of the parent cate-

gory.
@end saves the category to the structured file.

[t is important to execute an @end before starting to process a
table since the first thing the @table command does is clear the
memory where items and categories are saved prior to being
copied to the structured file. If this @end is omitted, the struc-
tured file won’t contain the Food Processing category.

Since there are unprocessed text lines in the text file after the Industry
line, TXT2STF continues processing the text file after executing @end.

Processing the table

In order to process the table in Figure 3-4 and create items and cate-
gories, the definition file statement in Figure 3-5 executes the follow-
ing commands:

@skip_lines skips over the blank line between the Industry line
and the table.

@table processes each line in the table, creating categories from
the first line in the table and creating items from remaining lines.

@table is a powerful command. The single @table command in
Figure 3-5:

Processes the row containing table headings to create categories,
making Rank an unindexed category, Company a standard cate-
gory, FYE a date category, Sales a numeric category, and Income a
numeric category

Processes each line in the table, creating an item from the com-
pany name and making date and numeric values in the same rows
into category assignments for the item

Using Definition Files 3-15

When the resulting structured file is imported into Agenda, each
item is assigned to the Company category and is also assigned by
date/numeric value to the Rank, FYE, Sales, and Income catego-
Ties.

@table converts a table one line at a time. @table assumes that the
tirst line in a table provides header or label information for each col-
umn, and so always starts by making text in the first table line into
categories. Then @table converts the remaining text lines, creating an
item and related categories from each text line. To do this, @table
includes the following arguments:

Argument What it specifies

"

+ The pattern that @table uses to divide each text line into
table columns. This pattern tells @table to end each column
when it finds fiwo or more spaces in the text line. This is why
an extra space was added between the original Rank and

Company headings (described earlier in this chapter).

EOF The end of the table. @table finishes processing text lines
when it reaches the end of the text file (EQF stands for
end-of-file).

1,"unindexed" How @table converts fext in the first table column. In this
case, the first column contains information for an unindexed
category (Rank}.

2,"item" How @table converts text in the second table column. In this
case, the second column contains items.

3,"date" How @table converts text in the third table column. In this
case, the third column contains information for a date cate-
gory (FYE).

4, numeric” How @table converts text in the fourth table column. In this
case, the fourth column contains information for a numeric
category (Sales).

5,"numeric" How @table converts text in the fifth table column. In this
case, the fifth column contains information for a numeric
category (Income).

When it starts processing each text line, @table internally executes
@start to clear the memory where @table adds items and categories as
it creates them. After it processes each text line, @table internally
executes @end to add the current item and category information to
the structured file. Then @table continues to the next line in the table.

3-16 Using Definition Files

After the
Structured
Filels
Imported

The definition file puts the items and categories it creates from the
table of food processing company information into a structured file.
To import the items and categories into an Agenda file, you start
Agenda and use the File Transfer Import command to import the
structured file.

Figure 3-6 shows how the items and categories converted in this
example look after you imported the structured file into Agenda. The
view shown in Figure 3-6 displays the names of companies, their rela-
tive ranking in the industry, their fiscal year end dates, and their sales
and income figures.

Figure 3-6 The imported items and categories

Chapter 4
Patterns

In this Chapter

A pattern describes a string of text characters. The pattern specifies,

character by character, the text string to match. The pattern also can

include additional information about the text string, such as whether
it starts or ends the text line.

About Patterns

This chapter gives you information about how to use patterns by
* Describing how to use patterns in definition files

* Describing special patterns START and END that you can use
with TXT2STF

* Detailing the match-conirol characters you can use when con-
structing patterns

* Detailing how TXT2STF uses patterns to match text strings in text
lines

Patterns describe text strings in a text file. Whenever you need to
match a text string in a text file, you specify a pattern in the definition
file.

You use patterns in the following ways:

* You begin each definition file statement with a pattern that
describes the text line where the statement begins converting text.

4-1

4-2 Patterns

Special Patterns

When TXT25TF finds a text line that matches the pattern,
TXT2STF converts the text line by executing the commands in the
statement.

* You also can include patterns as arguments in many definition file
commands.

For example, you can include a pattern in @replace to identify the
text string to be replaced with another string. When TXT25TF
finds the identified string in the text line, it replaces it with the
substitute string also specified by @replace.

A pattern describes a text string. To create a pattern, you can

¢ Type the text string itself, surrounded by a pair of double quota-
tion marks (" "); you must use double quotation marks (" ") and not
single quotation marks (" /).

nn

For example, to search for the text string Subject, use the pattern
"Subject". If the text string includes spaces, make sure the pattern
specifies each space in the correct position. Do not add spaces
where the text line has no spaces.

¢ Include match-control characters in the pattern.

Match-control characters help provide extra information about the
text string in a compact form. For example, match-control charac-
ters let you specify whether the text string is the first or last text on
aline. You also can use match-control characters to specify a
more generic pattern, such as a pattern that matches any grouping,
of four letter characters in a row.

For meore information, see "Match-Control Characters” later in this
chapter.

Note TXT2STF ignores case when matching letters of the alphabet,
unless you specify the /C option when you run TXT2STF.
(See Chapter 6.)

TXT2STF provides two special patterns, START and END, that iden-
tify the beginning and the end of a text file. These patterns can begin
definition file statements. They cannot be included as patterns in
commands. Do not enclose the patterns START and END in quota-
tion marks.

START

END

Usin
and

START
ND

Patterns 4-3

Note Do not confuse these patterns with @start and @end, which
are commands. (See Chapter 5.) You can, however, include
@start in a statement that begins with START and @end in a
statement that begins with END.

START causes a statement to execute only once, when TXT2STF
begins processing the text file. You use START when the statement
includes commands you want TXT2STF to run only when it begins
processing the text file.

You can also use START to write a statement that specifies the format
of dates in the structured file. Agenda uses this information when jt
imports the structured file. Use START as the pattern and put the
@date_format command in the statement, followed by an @end com-
mand. @date format specifies the format of numeric dates in the
structured file (for example, MM/DD/YY format).

END causes a statement to execute only once, when TXT2STF finishes
processing the text file. You use END when the statement includes
commands you want TXT2STF to execute only when it finishes pro-
cessing the text file.

You might use START and END if you have a group of files that
don’t all start and/or end in the same way. Use START as the pattern
in the statement that contains the first @start command. Use END as
the pattern in the statement that contains the final @end command.

You should not use END as the only pattern associated with the @end
command if your input text file has more than one input group, for
example, a number of elecironic mail messages, each one of which
should become a separate item. You need an @end command to copy
each item to the structured file; if @end is not executed until TXT2STE
closes the file, only the last item is copied to the structured file.

START and END do not cause TXT2STF to read text into memory, so
you should only use them with commands that do not make use of
the current text line, such as @start, @end, and @date_format.

Note You should not use these patterns in commands that convert
text into items, categories, or notes, as those commands
require that you have a text line in memory to be converted.

4-4 Patterns

Match-Control Characters

Match-control characters let you write patterns that match a varied
set of text strings in the text line by letting you specify additional
information about the text strings to be matched.

For example, to match lines that start with the word Subject, begin
the pattern with the caret (") match-control character. Caret (") tells
TXT2STF to find the specified text string only when it occurs at the
beginning of a line, resulting in the pattern ""Subject". To search for

a line starting with either Subject or Re, you could use the pattern
"M(Subject i Re)", which includes the vertical bar (i) as the "or" charac-

ter.

The following table summarizes the available patterns. Each
match-control character is discussed in greater detail later in this

chapter.

Note These match-control characters are different from the match-
control characters used in Agenda for text conditions.

Match-Control Character

Description

Asterisk (*)

Backslash (\)

Brackets ([])

Caret ()

Colon a (:a)

Colon d (:d)

Colonn (in)

Matches zero or more occurrences of the preceding
pattern character

Specifies that the next character in a pattern is a
text character and not a match-control character

Specifies a range or group of characters, and
matches any single text character specified in the
range or group

As the first character in a pattern, causes the pat-
tern to match the corresponding text only when it
occurs at the beginning of a text line

As the first character in a pair of brackets ([]),
caret (") negates the range or group specified in
the brackets

Matches any single uppercase or lowercase alpha-
betic text character

Matches any single numeric text character from 0
through 9

Matches any single alphabetic or mumeric text
character

continued

Asterisk (*)

Patterns 4-5

Match-Control Characier Description

Colon space (:) Matches a single space or control character in the
text file
Dollar sign ($) As the last character of a pattern, causes the pat-

tern to match the corresponding text string only
when it occurs at the end of a text line

Parentheses () Groups pattern characters into a string so you can
apply a match-control character to the string

Period () Matches any single character in the text file {except
a carriage return or linefeed character)

Plus {(+) Matches one or more occurrences of the immedi-
ately preceding pattern character

Tilde (~) Matches any text string that js not the pattern
Vertical bar (1) Matches one pattern or another (performs a logical
OR)

The asterisk (*) matches zero or more occurrences of the preceding
pattern character. For example, "X*" matches a zero, one, or any
number of uppercase X characters in a row.

To match zero or more occurrences of a string, enclose the entire
string in parentheses, followed by the asterisk (*).

Tip If you need to match at Jeast one text character, use the plus (+)
and not the asterisk (*).

Examples
Sample pattern Matches in the text file
ftahk a

ab

abbbb

It does not match zb or fbbb

"Hey{, Terry)*" Hey
Hey, Terry
Hey, Terry, Terry, Terry

For more examples of using the asterisk (*), see the section about the
period () later in this chapter. For more information about how
TXTZSTE matches the asterisk (*), see "How TXT2STF Compares Pat-
terns with Strings" later in this chapter.

4-6 Patterns

Backslash (\}

Brackets

(1)

The backslash (\} specifies that the immediately-following character
is a text character and not a match-control character. You use the
backslash (\) to match a character that TXT2STF uses as a match-
control character, such as the asterisk (*) or dollar sign ($).

For example, to match the string "Amount in US$", you need to
match the dollar sign ($) as a text character. To do this, use the fol-
fowing pattern: "Amount in US\$". The backslash (\) in this pattern
tells TXT2STE to match the dollar sign ($) as a text character, and to
ignore its special meaning as the end-of-line match-control character.

Use backslash (\) before each of these special characters to match
them as literal text characters:

P~][ASNY) (H@"

The backslash (\) applies to only one character at a time. To match a
string of special characters as literal text, you must precede each of the
special characters with a backslash (\).

Tip The backslash (\) cannot be used for control characters (ASCII
decimal 1 through 32). To match these characters, use the
combination of colon (:) and space (), described later in this
chapter.

Examples

Sample pattern Matches in the text file

"ABA\S" Two consecutive dollar signs {($$) in the text file
"Coll\\Col2" The string Col1\Col2

Brackets ([]) define a range or group of characters, and match any
single character in that range or group. You can include range and
group specifications in the same pair of brackets { [| }.

You can specify any text characters (characters above ASCII 031},
including the space character ().

Note TXT25TF ignores the /C option when matching characters
specified in brackets ([1), and matches those characters
exactly as specified in the range or group.

Ranges

A range is a configuous set of characters or values, for example 1
through 5. You specify a range to match any one of the characters in
the range.

Patterns 4-7

To specify a range, identify the lowest and highest values in the
range, separating these values with a hyphen (-). For example, [1-5]
matches any character in the range from 1 through 5. [a-z] matches
any single lowercase character in the range from a through z.

The characters that define the range must be specified with the
smaller ASCII decimal value first and the highest ASCII decimal
value last. Use the standard character representation (for example, A
or 9) and not the equivalent ASCII decimal representation.

Examples

Sample pattern Matches in the text file

"[Aa-z]" Any single uppercase letter

"[a=zA-Z]" Any single character in the alphabet, including both upper-
case and Jowercase values

"[0-9]" Any single numeric character from 0 to 9, including 0 and 9

"[a-c5-8]1" Any single character in the alphabetic range of lowercase a
through c or in the numeric range 5 through ¢

Groups
A group is a list of characters, each of which is valid. You specify a
group of characters to match any one of a specific list of characters.

Examples

Sample pattern Maiches in the text file

"[SML]" Any of the uppercase characters S, M, or L
"[RGB]" Any of the uppercase characters R, G, or B
"[a-z123]" Any of the lowercase characters specified in the range a

through z, or any of the numbers 1, 2, or 3

Special character guidelines

A match-control character that immediately follows a range or group
applies to the entire range or group. For example, [A-Z]+ matches
one or more characters in the range A through Z.

4-8 Patterns

Caret (0)

When included inside of brackets ([])

Match-control characters lose their special meaning when
included in range or group specifications. For example, the
asterisk (*}, backslash (\), period (), and left bracket ([} represent
actual characters when included in a pair of brackets ([]).

The caret (") negates the remaining specification when included
as the first character inside the brackets ({]). The pattern
matches any character except a character specified in the range or
group. The pattern does not, however, match linefeed (ASCII dec-
tmal 10) or carriage return (ASCII decimal 13).

The hyphen (-) indicates a range specification unless it occurs as
the first character after the left bracket ([), or after the caret (*) in
negative patterns. In these two cases, the hyphen (-) is an actual
character and not a special character.

The right bracket (]) ends the range or group specification unless
it occurs as the first character after the left bracket ([), or after the
caret (") in negative patterns. In these two cases, the right

bracket (]) is an actual character and not a special character.

Examples

Sample pattern Matches in the fext file

"[a-zA-Z]+" One or more alphabetic characters, uppercase or lowercase,

in a row
T[A0-5]" Any character that is not in the range 0 through 5; for
example, it matches A or 6, but does not match 5
"[rXYZ]" Any character that is not an uppercase X, Y, or Z; for
example, it matches A, T, and lowercase x, y, or z
"[11-71" Either the right bracket { 1) or any character in the range 1
through 7
nix-/1 Any character in the range from the asterisk (*), which is

ASCII decimal 042, through the slash (/), which is ASCII
decimal 47

The caret (™), when included as the first character of a pattern, causes
the pattern to match the corresponding text string anly when it
occurs at the beginning of a text line. The caret (M) must be the first
character in the pattern.

To match the caret (") as a normal text character, precede it with a
backslash (\).

Colon a (:a)

Patterns 4-8

When the caret (") is the first character in a pair of brackets ([]), as
in "[*1-9], the caret (") negates the range or group specified in the
brackets { []). For more information, see "Brackets { [] }" earlier in
this chapter.

Example
Sampile pattern Matches in the text file
"AThe" Any line that begins with the string The

It does not match either of these lines:
1. The
However, the...

"A(To\: |From\:) Any line that begins with either To: or From:

Por more information about how TXT2STF matches the caret (M), see
"How TXT25TF Compares Patterns with Strings" later in this chapter.

The combination :a matches any single uppercase or lowercase alpha-
betic character.

Example

Sample pattern Matches in the text file

Yian w
z
B
or any other single alphabetic character

Note The :a match-control character is not case sensitive even if you
use the /C option when you run TXT2STF. (See Chapter 6.)
To match only uppercase or only lowercase characters, see
"Brackets ([])" earlier in this chapter.

4-10 Patterns

Colon d (:d)

Colon n (:n)

Colon Space (:)

The combination :d matches any single numeric character from 0 to 9.

Examples

Sample pattern Matches in the text file

":did:d-:d:d:d:d" 555-8500
555-1212
or any other seven-digit phone number with a
hyphen in the middle

"Order\: :d:d:d4d- The word Order, followed by a colon (:), followed

by any three-digit order number

The combination :m matches any single uppercase or lowercase alpha-
betic character or numeric character.

Example

Sample pattern Matches in the text file

":n:n:n" b5h
897
XXX
or any other combination of three alphabetic and /or
numeric characters

The combination of colon ;) followed by one space () matches one
space or control character.

Specifically, it matches any character from ASCII decimal 1

through 32. This list includes tab (ASCII decimal 9), linefeed (ASCII
decimal 10), carriage return (ASCH decimal 13), and other control
characters as well as the standard space () character (ASCII
decimal 32).

Example

Sample pattern Matches in the text file

"id: " Any two-character combination consisting of a single
numetic character followed by cne space or control
character, such as tab

Dollar Sign ($)

Parentheses ()

Patterns 4-11

The dollar sign ($), when included as the last character of a pattern,
causes the pattern to match the corresponding text string only when
it occurs at the end of a text line. The dollar sign ($) matches the
actual end of a line (not the carriage return, linefeed, or alternate
separator).

To use the dollar sign (§) as a normal text character, precede it with a
backslash (\).

Example

Sample pattern Matches in the text file

"The end.: *$" Any line that ends with The end

It does not match a line that ends with:
The end. Display film credits.

For more information about how TXT2STF matches the dollar
sign (8), see "How TXT25STF Compares Patterns with Strings” later in
this chapter.

Parentheses group characters into a string. This lets you apply a
match-control character to an entire string rather than to just a single
character.

Each set of parentheses in a pattern begins a new level of nesting,.
When you include a set of parentheses inside another set of paren-
theses, the inner parentheses define a new nesting level that is one
level deeper than the level defined by the outside set. A pattern can
include up to 10 nesting levels. If you end one set of parentheses
before starting a second set, both parentheses are at the same level of
nesting.

Examples

Sample pattern Matches in the text file

" (HLQ) *™ Zero or more consecutive occurrences of the entire
string HL.Q, for example, HLQhlg

"{:n:n:n)+" A line containing one or more strings of three

numeric characters, for example 123

"*(:a:za{:d:d)+)+" Aline starting with two alphabetic characters
(specified by :a:a} followed an even number of
numeric characters (specified by :d:d); the string
can include any number of instances of this string

4-12 Patterns

Period (.)

Plus (+)

The period (.) matches any single character, including a space charac-
ter. The period (.) also matches control characters (ASCII decimal 1
through 31, except for linefeed (ASCII decimal 10) or carriage return
(ASCII decimal 13)).

Examples

Sample pattern Matches in the text file

Lt 123
abc
{1=
"R Any characters up to the start of the next new line
AN Any characters up to and including the final colon () on the

current line; the pattern does not match a text line if the line
is missing a colon ()

The plus (+) matches one or more occurrences of the immediately-
preceding character.

To match one or more occurrences of a character string, enclose the
string in parentheses followed by plus (+).

Tip To match zero or more occurrences of a character, use the
asterisk (*) and not the plus (+).

Examples

Sample pattern Matches in the tex! file

"h " b
bh
bbbbbbbb

"0123+" 0123
01233
012333333333

"(0123)+" 0123
01230123
(123012301230123

continued

Tilde (~)

Patterns 4-13

Sample pattern

Matches in the text file

LR

e

All characters up to the start of the next new line; the pattern
does not match a text line if the text line lacks at least one
character before a linefeed, carrlage return, or aiternate sep-
arator character

All characters up to and including the final colon (2) on the
current line; the pattern does not match a text line if the line
lacks a colon {:} preceded by at least one other character

For more information about how TXT2STF matches the plus (+), see
"How TXT2STF Compares Patterns with Strings” later in this chapter.

The tilde (~) matches any string that is not the pattern.

Note Negative patterns typically provide less control over what the
statement matches. As a general rule, use negative patterns
only in text files in which the order and format of lines is very

predictable.
Example
Sample pattern Matches in the text file
" ~~Modem" Any line (or string) that does not begin with the word
Modem
"4~ *Modem"” Any line (or string) that does not contain the word Modem

Note To make sure that the pattern does not match every line in the
text file, it is important to anchor the pattern to some fixed
characteristic in the string you want to match. For example,
the pattern "*~Modem" matches lines that start with any
string other than Modem. Without the caret ("), this pattern
would also match lines that include the string Modem, since
portions of this string (such as odem) are not the same as the
string Modem, and so would match the pattern.

For more information about how TXT2STF matches the tilde (~), see
"How TXT2STF Compares Patterns with Strings" later in this chapter.

4-14 Patterns

Vertical Bar ()

The vertical bar (1) represents a logical OR. This lets you match one
pattern OR another. You separate the alternative patterns with the
vertical bar (1).

Examples

Sample pattern Maiches in the text file
"aib" aORb

"dog | cat” dog OR cat

"[a-£11 [g-z]" Any single letter between a and £ OR any single letter
between g and z

How TXT2STF Matches Patterns

When TXT2STF
Matches Patterns

TXT2STF compares a pattern to the characters in a text line to deter-
mine whether the text line matches the pattern. TXT2STF searches a
single text line at a time. If the text line includes the entire string
specified by the pattern, it matches the pattern. If the text line lacks
the string, the line does not match the pattern.

Patterns describe strings in your text file that you want TXT2STF to
match. By matching the string, TXT2STF finds a portion of text that
you want to convert.

You use patterns in definition file statements in the following ways:

* Each definition file statement begins with a pattern that identifies
the text line the statement converts.

For example, to convert a text line that includes the string Person-
nel Record, a definition file statement begins with the string "Per-
sonnel Record".

* You can include patterns as arguments in definition file com-
mands.

For example, you can specify where an item ends by including a
termination pattern in the @item command.

TXT2STF matches these patterns as described below.

Patterns 4-15

Patterns that begin statements

Patterns that begin statements identify which text lines the com-
mands in the statement convert.

TXT2STF converts a text file line by line. After reading a line of the
text file into memory, TXT2STF compares it with patterns in the defi-
nition file, starting with the first pattern in the definition file. The text
line matches the first pattern that describes a string in the text line.

For example, the following text line matches the second pattern ("Re-
cords") since TXT2STF encounters the second pattern before the third
pattern ("“Personne]"):

Personnel Records For New Employees

Patterns:
"“Date\:"
"Records"
"~Personnel”

When it matches any portion of a text line with a pattern, TXT2STF
uses the statement that contains the pattern to convert the text line.
The entire text line is available when TXT2STF executes the first com-
mand in the statement.

After converting a text line, TXT2STF continues to the next uncon-
verted line in the text file, and attempts to match that line with pat-
terns in the definition file, starting again with the first pattern in the
definition file. TXT2STF never returns to a converted text line, and
never uses more than one statement to convert a text line. For more
information, see "How TXT2STF Processes Each Text Line" in
Chapter 2,

Tip If you start TXT2STF with the /M debugging option, TXT2STF
displays each text string that matches a definition file pattern.
(See Chapter 7.) Using this information, you can determine
which text line matches each pattern, and therefore can deter-
mine whether the correct statement converts each text line.

Patterns that are arguments in commands

You can include patterns as arguments in definition file commands.
These patterns are pattern constants that specify information to be
used in the command. For example, you identify the locations where
@trim starts and stops trimming text by specifying a start and end
pattern.

4-16 Patterns

How TXT2STF
Compares Patterns
with Strings

When TXT2STF executes a command that includes pattern constants,
it compares the pattern to the current text line, starting with the first
character in the line. By matching a string with the pattern, TXT2STF
navigates to a specific portion of the line. After it Iocates the appro-
priate place in the text line, TXT2STF performs the operation speci-
fied by the command.

For example, @trim{(""," +",) deletes text from the current text line.

The pattern "*" tells TXT2STF to start deleting at the beginning of the
text line. The pattern " +" tells TXT2STF to keep deleting text until it
reaches the end of a string consisting of one or more space characters.

Note TXT2STF does not display text strings that match pattern con-
stants in commands, even if vou start TXT25TF with the /M
debugging option.

To seeif a text string matches a pattern, TXT2STF compares the char-
acters in the pattern with the characters in the text string, one charac-
ter at a time. A pattern can consist of regular text characters
exclusively, or can also include match-control characters.

If the pattern contains text characters, such as the pattern "Subject",
TXT2STE starts by searching the text line for the first text character in
the pattern (for example, the uppercase § in "Subject”). When it finds
that character, TXT2STF compares the next character in the pattern
(for example, the lowercase u in "Subject") with the next character in
the text string. If the characters match, TXT2STF continues compar-
ing characters in the pattern with characters in the text line, one by
one, until the entire pattern matches a complete string. If at least one
text character in the string differs from the pattern, the text string
does not match the pattern.

The TXT2STF /C option determines whether TXT2STF matches or
ignores the case (uppercase or lowercase) of text characters when it
matches patterns. (See Chapter 6.) The /C option is ignored, how-
ever, when matching ranges or groups specified in brackets ([]).
TXT25TF matches those characters exactly as they are specified in the
range or group.

The caret (*) and dollar sign ($)

Match-control characters affect how TXT2STF matches patterns,
Specifying a caret (") as the first character in a pattern tells TXT2STF
to match the pattern only when the corresponding text string begins
the text line. Specifying a dollar sign ($) as the last character in a pat-
tern tells TXT2STF to match the pattern only when the corresponding
text string occurs at the end of a text line.

Patterns 4-17

The asterisk (*) and plus {+)

The asterisk (*) and plus {+) tell TXT2STF to match as many occur-
rences of the preceding pattern character as possible. For example,
"X*" matches zero or more uppercase X characters in a row. The
pattern ".*" matches a string containing zero or more characters.

When TXT2STF matches a string with a pattern that ends with either
asterisk (*) or plus (+), TXT2STF matches up through the last text
character that matches the pattern. If the next character in the pattern
does not match the next text character after the currently matched
string, TXT25TF searches backward through the matched string until it
tinds the text character that matches the pattern character,

For example, the pattern ".*\:" matches a line containing zero or more
characters, and matches up through the last character in the text line.
Then, TXT2STF looks to see whether the next character is a colon (3),
as specified by the combination of backslash and colon (\:) in the
pattern. Since TXT2S5TF is at the end of the text line, it cannot find a
colon after the matched string in the text line. So, TXT2STF starts
searching backward through the matched string for a colon ().

For example, the pattern "**\:" matches the following sample text
line up through the colon (:) that ends the word Site: '

From: KGY Site: 23

To match only up through the colon (:) that ends the word From in
the above sample text line, you could use the pattern "~[*:]*\:". This
pattern matches a string consisting of any characters that are not
colons (), as specified by [*:I*. The string matches the pattern up to
the first colon in the line or the end of the line, whichever comes first.
TXT25TF then compares the next character in the text line with the
next pattern character, which is the colon character specified by the
combination of backslash and colon (\:). If the next character is a
colon, the text line matches the pattern up through the first colon in
the line.

The tilde (~)

The tilde {~) begins a negative pattern. That is, it tells TXT2STF to
match any string that is not the pattern. It is important to anchor a
negative pattern to a fixed characteristic of the text line (for example,
caret (") anchors the pattern to the beginning of the text line). This
keeps TXT2STF from trying to match the pattern in ways that, in this
case, are undesired.

4-18 Patterns

How TXT2STF
Searches for
Character Classes

To match a negative pattern, TXT2STF starts at the beginning of the
text line and searches through the entire text line for the negative
pattern. The negative pattern matches the text line if TXT2STF cannot
find the negative pattern in the text line.

The negative pattern does not match the text line if TXT2STF finds the
negative pattern in the text line. If the larger pattern begins with
caret (™), TXT2STF concludes the matching process and continues to
the next argument, command, or statement, as appropriate.

Note Without the caret (*) to specify where TXT2STF must begin
searching the text line, the negative pattern eventually
matches the text line. Each time TXT2STF finds the negative
pattern in the text line, TXT2STF moves forward in the text
line by one character and tries again to locate the negative
pattern from its new starting location in the text line. Eventu-
ally TXT2STF moves beyond the start of the text string that
matches the negative pattern. At this point, TXT2STF can no
longer find the negative pattern in the text line, and so the
negative pattern matches the text line.

Each of the following match-control characters matches any single
character of a specific type, range, or group:

* Colon a (:a) matches an alphabetic character.
¢ Colon d (:d) matches a numeric character.
¢ Colon n (:n) matches an alphabetic or numeric character.

* Colon space (:) matches a space or control character (ASCII deci-
mal 1 through 32).

* A range or group specification in brackets ([|) matches a charac-
ter specified in the range or group.

Each of these match-control characters specifies a class of characters,
any one of which matches the corresponding character in a text line.
For example, the colon a (:a) combination matches any single upper-
case or lowercase alphabetic character.

Patterns 4-19

Before TXT2STF compares patterns with text in the file, it internally
expands each of these character class specifications, replacing the
match-control character with the full list of characters it can match.
For example, TXT2STF internally changes the combination of

colon a (:a) to the full Iist of uppercase and lowercase alphabetic char-
acters. Then, TXT25TF compares the text line with the pattern.

A pattern can include up to eight different character class specifica-

tions:

¢ Each group or range specification constitutes a separate character

class specification.

» Each different colon combination, such as colon a (:a) or colon
d (:d), is a separate character class specification.

The pattern can, however, include any number of the same type of
colon combination. For example, since all colon a (a:) combina-
tions expand in the same way, TXT25TF can re-use the first
expanded colon a (:a) specification for all subsequent colon a (:a)

specifications in the pattern.

Examples

This pattern

Includes these character class
specifications

":d:d/:d:d/:d:4"

"[a-£] | [q-2]"

"Arat-rdid”

":d:a[3-5abec] [3-5abc] :d:a"

One character class specification, for
the combination colon d (:d)

Two character class specifications, one
for each range

Two character class specifications, one
for the combination colon a (:a) and
one for colon d (:d)

Four character class specifications, one
for :d, one for :a, and one for each
range specification {even though they
specify the same characters)

Chapter 5
Definition File Commands

Agenda provides several commands that you can include in a defini-
tion file to tell TXT2STF how to process the contents of your text file.

In this Chapter

This chapter describes

s The types of definition file commands that Agenda offers

» Definition file command syntax

« Arguments and variables used with definition file commands
¢ The syntax and purpose of each definition file command

This chapter also includes one or more examples of each definition
file command.

About Commands

Commands tell TXT2STF how to process the contents of your text file.
For example, commands in your definition file can tell TXT2STF
when it processes a text file containing electronic mail to make the
text following Subject: into an item and the text following Date: the
When date for the item.

Each definition file statement begins with a pattern, and includes one
or more commands. A pattern and all of its commands belong to a
single statement. (See Chapter 2 for more information.)

5-2 Definition File Commands

TXT25TF processes a text file by comparing lines in the text file, one
at a time, with the patterns that begin statements in the definition file,
starting from the top of the definition file. When TXT2STE matches
text line with a pattern, TXT2STF executes the commands in the state-
ment whose pattern matches the text line. This is how TXT2STF pro-
cesses the text line.

Most commands in a statement perform an action that processes the
current text line. For example, @item? can take characters from the
text line and put them into the item buffer. @skip and @trim can
remove text from the text line. When a command finishes processing
a portion of the text line, the next command in the statement starts
where the previous line left off.

S0 that TXT2STF can progress through a text file, a statement uses up
at least one text line. When a statement finishes executing, TXT2STF
gets ready to continue processing the text file by copying the next
unprocessed text line into memory. Then TXT2STF searches for a
definition file pattern that matches the current text line in memory.

Caution Text remaining in the current text line when a statement
finishes executing is discarded when TXT2STF copies the
next unprocessed text line into memory in preparation for
the next statement.

Commands operate on the current text line in memeory, telling
TXT25TF how to convert the line and whether to save the resulting
text in the item buffer, a category buffer, or the note buffer. Com-
mands can add text to variables and advance your position in the text
file. Commands also can tell TXT2STF when fo transfer the contents
of these buffers to the structured file. This chapter describes, for each
command, the changes the command makes to the current text line,
to TXT2STF buffers, to variables, to your location in the text file, and
to the structured file.

When you include more than one command in a statement, you can
make the statement easier to read by placing each command on a new
line, immediately under the preceding command. For example, the
following statement includes three commands, one under the other,
beginning with @start:

"ADate\:" @start()
@skip(" +",1)
@date{W)

Types of
Commands

Definition File Commands 5-3

Note In Release 1.0, you had to begin each continued command line
with a backslash (\) as the first character of the new line. The
backslash (\) is no longer required, but is allowed in defini-
tion files. In this chapter, partial examples where commands
are shown without the corresponding pattern (or other
commands) begin with a backslash (\} to indicate that the
command is part of a larger statement that is not shown. For
example, a backslash (\) precedes the following @start since
the command is shown without a preceding pattern:

N\ @start(
Agenda definition file commands fall into the following groups:

* (Category commands add categories; each category command
adds a new category to TXT2STF category buffers.

» Control commands initialize TXT25TF item, note, and category
buffers and copy converted text from the buffers to the structured
file.

» Date commands add date categories and describe the format of
numeric dates in the text file.

« [tem commands convert text into items.
e Note commands convert text into notes for items and categories.
¢ Table commands convert tables into items and categories.

* Trimming commands let you delete text from a text line before
you convert it. ‘

» Variable commands create new variables, put values into vari-
ables, and initialize variables.

The following tables list Agenda definition file commands by group
and briefly describe the purpose of each command. For more infor-
mation about each command, see the alphabetical description of these
commands later in this chapter.

5-4 Definition File Commands

Category Commands

Description

@category

@custom_category

@date
@nuimeric
@unindexed

Creates one or more categories from the text line
and optionally makes them children of a specified
parent category

Creates a category from text that you specify and
optionally makes themn children of a specified par-
ent category

Creates assignments to date categories
Creates assignments to numeric categories

Creales assignments to unindexed categories

Control Commands

Description

@end

@start

Copies the contents of the item, note, and category
buffers to the structured file, and then initialize the
buffers

Initializes the item, note, and category buffers
without first copying them to the structured file;
prepares the buffers for use

Date Command

Description

@date
@date format

Creates assignments to date categories

Describes the format of the dates in the text file

Item Commands

Description

@append_item
@item

@item2

Appends a string to the end of the item currently
being constructed from the text file

Creates an jtem using text from the text file; is an
alternative to @item?2

Creates an item using text from the text file; is an
alternative lo @item

Definition File Commands 5-5

Note Commands

Description

@append_note

@category_note

@category_note_file

@make_external_note

Appends a string to the end of the current note

Creates a category note and assigns it to the cate-
gory created by the most recently executed @cate-
gory or @custom_category command

Identifies the external note file for the current cate-
gory
Creates an external note file and copies text from

the text file into the file; on import the note file is
added as an item note

@note Creates a note and assigns it to the current item
@note_file Identifies the external note file for the current item
Table Command Description

@table Makes information in a table into items and cate-

gories

Trimming Commands

Description

@replace
@skip

@skip_lines
@strip

@trim

Substitutes one string for another

Divides the line into values and then deletes one
value from the line

Skips over the number of lines you specify

Deletes one or more occurrences of a specified
string from the text line

Deletes all the text between one string and
another, placing the deleted text in a variable

5-6 Definition File Commands

Command Syntax

Variable Commands — Description

@append Adds a string to the end of the current contents of the
variable

@equate Stores a pattern or a text string in a variable

@grab Divides the current text line into several values and
puts each value into a variable

@reset Replaces the current text line with the specified value

@set Stores the current text line in the specified variable

@trim Deletes all the text between one string and another,

placing the deleted text in a variable

Each definition file command consists of a keyword, which is the
command name. Most commands also require you to specify one or
more arguments in parentheses. Arguments provide the information
that TXT25TF needs to complete the command; the what and where
of a particular action.

Syntax

Figure 5-1 shows the format for definition file commands:

@KEYWORD()

Parentheses

[]
@KEYWORD((argumentl,argument2,...)

Argument separators

Figure 5-1 Definition file command syntax

When you specify a command without arguments, be sure to include
the pair of parentheses at the end of the command without any
intervening spaces.

Definition File Commands 5-7

Conventions
This chapter uses these conventions when showing command syntax:

* Arguments that you replace with your own information are in
italic type.

* Optional arguments are enclosed in brackets ([]) in the syntax.

If you omit an optional argument, include the comma (,} that pre-
cedes the argument only if the comma (,) precedes the
brackets (| 1) in the syntax.

* A pair of double quotation marks (" ") around an argument indi-
cate that the quotation marks are required; you must use a pair of
double quotation marks (" ") and not a pair of single quotation
marks (" 7).

* Fllipsis points (...} in commands indicate that you can specify the
argument more than one time.

Note In examples, vertical ellipses (a series of points, one above
the other) indicate that lines are omitted to simplify the
example, as shown below:

"AStart_trans\:" @start()

"AQUOTE " @item2("$")

At (@} character

Each definition file command starts with an at (@) character. Start the
command name immediately after the at (@) character without an
intervening space. For example, use @start(), not @ start().

Note Though definition file commands begin with the at (@) char-
acter, they differ from Lotus 1-2-3 at (@) functions, and per-
form different types of processing,.

Keywords
The keyword in the command is like an action verb. It tells TXT2STF
what action to perform.

Arguments

Arguments provide the information that Agenda needs to complete
the command. For example, you specify the name of a date category,
such as When, as an argument in a @date conumand to assign a date
to that category.

5-8 Definition File Commands

About Arguments

Arguments in command syntax stand for specific types of informa-
tion that you can include in the command.

Follow these guidelines when including arguments in commands:

* Enclose all command arguments in the pair of parentheses that
follows the command.

* Separate the arguments with commas. You can include spaces
after the commas that separate arguments — for example,
@skip("\:", 1).

* If you omit an optional argument (indicated by brackets in syn-
tax), you must still include the correct number of cormmas in the
correct places. For example, the following @item?2 command
omits the optional second argument:

@J.tem2 (rlArl .)
Depending on the command, an argument can be any of the follow-
g six types:

Argument
Type Description Example
String A group of characters, In Gappend item("Derived from

constant

such as the text of an
item or a date value.

A string contains stan-
dard alphabetic,
numeric, and

punctuation characters.

The backslash (\) is a
special character that
instructs TXT2STF to
ignore the next charac-
ter.

String constants must
be enclosed in a pair of
quotation marks (" ").

E-Mail"}, the phrase "Derived from
E-Mail" is a string that the @append_i-
tem command adds, without quotes,
to the end of the current item.

continued

Definition File Commands 5-9

Argument

Type Description Example

File name The name of a DOS file In @make_external note
string or directory. {("\agenda"), the phrase
constant "\agenda" is the file name string

Variable name
string
constant

A file name string con-
stant contains standard
alphabetic characters.
There are no special
characters for file name
string constants.

File name siring con-
stants must be enclosed
in a pair of quotation
marks (" ").

The name of a variable.

A variable name string
constant defines a vari-
able or references it by
name,

A variable name string
contains standard
alphabetic characters.
There are no special
characters for variable
name string constants.

Variable name string
constants must be
enclosed in a pair of
quotation marks (" ").

constant that names the direc-
tory where
@make_external_note stores a
note.

In Bappend ("dest_var",
source_var), the phrase
"dest_wvar” is the name of the
variable into which text is
appended.

continued

5-10 Definition File Commands

Argument
Type Description Example
Pattern A group of characters In @note ("~---*"), the pattern ""-
constant that describes a string --*" describes the string that signals the
for which to search. end of note text in the text file; in this
case, a text line starting with at least
A pattern can include three hyphens.
standard string charac-
ters and special pattern-
matching characters,
such as the
backslash (\) or
asterisk (*). (See
Chapter 4.)
Patterns must be
enclosed in a pair of
quotation marks (").
Numeric A number; this value In @skip_ lines (3), the number 3
constant cannot contain non- specifies that TXT25TF should skip
numeric characters. down three lines in the text file.
Type A constant that identi- In @categoxry (", ", "Tazrget
constant fies a type of category. Dates\:", "date"), the "date” type
constant instructs @category to make
Type constant can be categories into dates.
"date”, "exclusive”, "nu-
meric”, "standard”,
"unindexed”, or (@table
only} "item". The type
constant must be
enclosed in a pair of
quotation marks (" ™).
Logical A constant that speci- In @txrim("*Who", "How
constant fies either N (no)or Y Many",N), logical constant N

(yes). Command
syntax shows these con-
stants as N (italic
uppercase N).

instructs @trim to not trim the search
strings Who and How Many when
mmming the text between these
strings.

continted

About Variables

Definition File Commands 5-11

Argument
Type Description Example
Variable The name of a variable, In @append("dest var",

without surrounding
quotation marks.

A variable name, with-
out quotation marks,

tells TXT2STF to use the

contents of a variable.

Variables can be used
in the place of string
constants, file name
strings constants, and
pattern constants.

Variables cannot be
used in place of vari-
able name string con-
stants, numeric
constants, type
constants, or logical
constants.

source var},source var is the vari-
able whose contents are copied into
variable dest_var.

You can specify variables as arguments in many definition file com-
mands, You can use variables in commands to:

* Store text from one text line for use in a command that converts a

later text line.

* Equate a long pattern to a short variable name and then specify
the variable in your commands. This can make your definition

file easier to read.

Note

Variables can only be used as arguments for commands. You

cannot use variables to represent the patterns that begin state-

ments.

To create variables and store information in them, use variable com-
mands. A variable can contain a maximum of 512 characters at a

time.

5-12 Definition File Commands

Specifying
Variables in
Commands

Predefined
Variables

A variable name can be up to 32 characters in length. Variable names
can be more than one word and can include spaces. Variable names
cannot include punctuation and cannot begin with a number.
TXT25TF ignores the case of a variable when using it. This means
that you can specify a varjable using uppercase, lowercase, or a
combination of the two.

When you identify a variable in a command

* Enclose a variable name in a pair of quotation marks (") when
you need to simply name the variable.

For example, you name a variable in @equate to associate the vari-
able name with a specified value. To associate the string
SOURCE-QIO-A with the variable Origin, you specify
@equate("Origin”,"SOURCE-QIO-A").

* Specify the variable name without quotation marks when you
want TXT25TF to use the contents of the variable.

For example, to append the contents of the Namel variable to the
end of an item, specify @append_item(Namel).

Agenda supplies six variables whose values are predefined by
Agenda: FILENAME, EQOF, CR, D, E, and W. You can use these
variables anywhere you need to use the Agenda-defined value.
TXT2STF ignores the case of these variables. This means you can use
uppercase, lowercase, or a combination of the two when naming any
of these variables.

FILENAME

You can use FILENAME in commands to stand for the current text
file name. For example, you can use this variable in @custom_cate-
gory to assign each item to a category whose name is the file from
which the item came.

As another example, you can use FILENAME to attach information
from external files, such as electronic mail files, as note files. To do
this, you can write a definition file to process the external files, cre-
ating a separate item for each external file. To attach an external file
as the note file for an item, include FILENAME in @note file. By
specifying FILENAME as the external file name, you instruct
TXT2STEF to attach the current text file as a note file.

@append

Definition File Commands 5-13

EOF

EOF stands for end of file. You can use this variable to specify the
termination point in an @item?2, @note, @category_note, @make exte-
rnal_note, or @skip_lines.

CR

CR stands for carriage return. You can use this variable whenever
you want TXT2STF to use the combination of carriage return (ASCII
decimal 13) and linefeed (ASCII decimal 10) as a value.

For example, you can use the variable CR in an @append_note com-
mand to specify where a new text line starts in the note text currently
in the note buffer. When the note is imported into Agenda, the note
text will break to a new line where the CR adds the carriage return
and linefeed.

CR is not affected by the TXT2STF /S command-line option. (See
Chapter 6.)

D,E,and W
You can use these variables to represent Agenda-defined date catego-
ries in definition file commands:

Variable Means

D Done date
E Entry date
w When date

@append adds a string to the end of the contents of a specified vari-
able.

Syntax
@append ("variable-name" string)

vatiable-name identifies the variable to which to append the string.
variable-name is a variable name string constant.

5-14 Definition File Commands

@append_item

string is the string to be appended. string is a string constant. You
can specify the actual string value, in a pair of quotation marks (" "),
or the name of a variable that contains the string.

Example

The following sample command adds the text Company to the end of
the variable tempvar:

A\ @append ("tempvar", "Company")

In this example, if tempvar contains the value One (the word One
followed by a space} before @append is executed, it contains the
phrase One Company after this command.

Changes made by this command

Elements that commands can chiange Changes made by this command

Current line in memory None
Item, category, and note buffers None

Variables Can create new variables or add to the
contents of existing ones

Location in text file None

Structured file None

@append_item adds a string to the end of the current contents of the
item buffer. If TXT2STF is not currently constructing an item, this
command also begins the item.

Syntax
@append_item(stringl,N1)

string is the string to be added to the end of the current item buffer.
string is a string constant. You can specify an actual string value, in a
pair of quotation marks (" "), or the name of a variable that contains
the string.

N (optional) prohibits TXT2STF from adding text to the note buffer if
the item butfer becomes full.

Definition File Commands 5-15

Example

This example shows one way to convert the following memo:

To: Jill
From: Linda

Subject: Your proposal

Jill, Tliked your proposal

but I had a few questions,

could we get together next Wednesday
to talk about it?

The sample definition file shown below converts the names Jill and
Linda into categories and converts the remaining mermo text into an
item.

The definition file creates the jitem in two stages. First, it puts the
subject text (Your proposal) into the item buffer and uses
@append_item to add a space character () to the end of the item
buffer.

Next it processes each line of the indented text. It executes @trim to
remove the leading spaces from the text line and puts the remaining
text into the variable called LINE. Then it executes

@append_item to add the text in variable LINE to the item buffer,
followed by another @append_item that adds a space character () to
the end of the item buffer. These changes eliminate the existing line
breaks in the message. On import, Agenda wraps the item text to fit
the item column width.

#Converting memo text using Bappend item

START @equate("SPACE", " ")
Gequate ("PERSON™, ")
@start ()
#Create To category ("To:" starts each memc in the file)
"fToN:” Bend ()

@trim(""To\:", "&", N, "PERSON"}
@custom_category {PERSCN, "To",)

#Assign a perscn te the From category

" From\:" Btrim (" From\:", "$", N, "PERSON")
EGcustom category (PERSON, "From",)

continued

5-16 Definition File Commands

#2dd subject line to item buffer

"~Subjecti: " @trim("~", "Subjecti\:"™,,)
@item2 {("$")
@append_ item (SPACE)

#Discard blank lines so "~To\:"(NCT Tc:) won’t match them
llf\-[]*$" @equate(llblanksll'"")
#add each remaining line to item buffer

I!A~TO\:II @trim(ur\: *"'"S", N, IILINEII)
@append item(LINE)
@append_item(SPACE)

END Gend ()

When the resulting structured file is imported into Agenda, To and
From are added as categories under the category specified when you
use the Agenda File Transfer Import command. The name Jill is
added as a child of To, and Linda is added as a child of From. The
item, which consists of the text from the Subject line plus the four-line
memo, is assigned to the categories Jill and Linda.

To see what the structured file for this example looks like, see "A
Simple Electronic Mail Example" in Appendix B.

Changes made by this command

Elements that commands can change Changes made by this command

Current line in memory None

Item, category, and note buffers Adds to the contents of the item buffer. If
the item buffer becomes full, the rest of
the string specified is added to the end of
the note buffer, unless you specify other-
wise. TXT25TF issues a warning when
the item buffer becomes full.

Variables None
Location in text file None
Structured file When the next @end is executed, the

appended string is part of the item
added to the structured file.

@append_note

Definition File Commands 5-17

@append_note adds a string to the end of the current note, as stored
in the note buffer. If TXT2STF is not currently constructing a note,
this command also begins a note for the current item.

Syntax
@append_note(string)

string is the string to be added to the end of the note buffer. string is a
string constanf. You can specify an actual string value, in a pair of
quotation marks ("), or the name of a variable that contains the
string,

Example

This example shows one way to convert the following memo:

To: Jill
From: Linda

Subject: Your proposal

Jill, Iliked your proposal

but I had a few questions,

could we get together next Wednesday
fo talk about it?

The sample definition file shown below converts the names Jill and
Linda into categories and converts the text on the Subject line into an
item. Then it converts the remaining memo text into an item note. It
executes @trim to put the memo text into a variable (without the
leading spaces) and executes @append_note to add the text to the
note butfer, followed by an @append_note to add a space

character () to the end of the note buffer. These changes eliminate
the existing line breaks in the message. On import, Agenda wraps the
note text to fit the note screen.

5-18 Definition File Commands

#Converting memo text using @append note

START fequate ("SPACE", ™ ™)

Bequate ("FERSON","™)

@start ()
#Create To category ("To:" starts each memo in the file)
TATo\: " fend ()

@trim("~To\:", "$", N, "PERSON™}

@custom category (FERSON, "To™",)
#Assign a person to the From category

"“Fromh:" @trim{" From\:™, "$", N, "PERSON")
@custom_category (PERSON, "From”,)

#Add subject line to item buffer

"~Subjecth\: " Gtrim (""", "Subject\:",,)
@item2{"s")

#Discard blank lines so "~To\:" (NCT To:) won't match them
nA[]*su @equate("blanks","")
#Add each remaining line to note buffer

"A,_*TO\:" @trim(“’*: *l’lrl'l$"’ N, "LINEII)
Gappend note (LINE)
Gappend note (SPACE)

END Aend ()

When the resulting structured file is imported into Agenda, To and
From are added as categories under the category specified when you
use the Agenda File Transfer Import command. The name Jill is
added as a child of To and Linda is added as a child of From. The
item, which consists of the text from the Subject line, is assigned to
the categories Jill and Linda. The note, which consists of the body of
the message, is added to the item.

@category

Definition File Commands 5-19

Changes made by this command

Elements that commands can change Changes made by this command

Current line in memory None

Item, category, and note buffers Adds to the contents of the note buffer.
If the note buffer becomes full, the
remaining portion of the string is
ignored. TXT2STF issues a warning that
the note buffer is full.

Variables None
Location in text file None
Structured file When the next @end is executed, the

appended string is part of the note added
to the structured file.

@category creates one or more categories from the input text, and
optionally makes them children of a specified parent category. The
category is added as a child of the current category, as specified when
you use the Agenda File Transfer Import command, unless you spec-
ify that the parent category is a child of MAIN.

If the specified category already exists, Agenda retains the existing
category and does not create a duplicate category. If you specify a
parent, the category created by @category becomes its child when the
structured file is imported into Agenda. If the specified parent does
not already exist, Agenda creates it on import.

The current item is assigned to this category. The item and category
must both be created before an @end copies the item and its catego-
ries to the structured file.

The item buffer can be empty when TXT2STF copies the category to
the structured file. When you import the resulting structured file,
Agenda adds the category to the category hierarchy but does not
assign the any items to the category.

Syntax
@category(separator-pattern,[parent]["fype"'])

5-20 Definition File Commands

separator-pattern identifies the character or characters that TXT2STF
uses to determine where a given value ends and the next value
begins. separator-patiern is a pattern constant. This pattern can
include the space character (). You can specify the pattern itself, in a
pair of quotation marks (" "), or the name of the variable that contains
the separator pattern.

TXT25TF makes each value into a separate category. The categories
do not include the characters that match the separator pattern.

Tip Specifying the dollar sign ($) (the end-of-line character) as the
separator pattern tells TXT2STF to make the entire text line a
single category.

parent (optional) is the parent of the new categories. parent is a string
constant. You can specify the parent category name, in a pair of
quotation marks ("), or the name of a variable that contains the cate-
gory name.

You can specify the entire name of the parent category, including ifs
parents. Use fwo backslashes (\\) to separate category names, with-
out including any spaces. (A single backslash (\) is a special charac-
ter that tells TXT2STT to use the next character as a regular character
and not as a special character.) For example, to identify a parent
category named Sales that is a child of Personnel in the category hier-
archy, specify "Personnel\\Sales".

If a category name string begins with two backslashes (\\} the first
category in the string is added as an immediate child of MAIN.

type (optional) specifies the type of category to be created. type is a
type constant. You can specify "date", "exclusive”, "numeric", "stan-
dard", or "unindexed". If you omit fype, TXT2STF uses "standard". If
the category already exists and is a different type, Agenda retains the

original category and type on import.
Example

This example shows how to convert the following text in order to
import the memo recipient names as child categories under the par-
ent category To, which is itself a child of People, and the company
name under the parent category Company:

Teo: Todd, Lynne, Sam, Julie
Company: ABC Corporation

Definition File Commands 5-21

That is, it converts the above text so you can import the following
category hierarchy, with People and Company both children of
MAIN:

People
To
Todd
Lynne
Sam
Julie
Company
ABC Corporation

The sample definition file converts the text file by first processing the
To line and then the Company line. The statement that starts with
the pattern "To\:" processes the first text line. @trim removes the
string To:, which is the word To followed by a colon (), from the line.
Then @category divides the remaining text line into separate values
using a comma (,) or space character (), or a combination of the two
(as specified by the pattern "[,]+"). Then @category makes each of
the resulting values into categories.

To process the second text line, the definition file trims the string
Company: from the line. @category makes the rest of the current line
a category under the parent category Company.

#Definition file that creates categories
START @start ()
#Convert names on "To" line into multiple categories

“ATO\: n @trim("f\"’“\:"r,)
@category (™[, 1+”,"\\People\\To",)

#Convert Co. name on "Company" line into one category

"“Company\: " @Erim (™", "\:",)
Bcategory ("$", "\\Company",)

END fend ()

When the resulting structured file is imported into Agenda, the Peo-
ple and Company categories are added as children of MAIN.

See @custom_category for an example of using @category to create a
numeric category and for an example of using @custom_category to
create a single category from a text line.

5-22 Definition File Commands

@category_note

Changes made by this command

Elements that commands can change Changes made by this command

Current line in memory None

Item, category, and note buffers Adds one or more categories to TXT2STF
category buffers

Variables None

Location in text file None

Structured file When the next @end command is

executed, TXT2STF copies a category
definition for each category buffer
created by @category.

@category note creates a category note and assigns it to the most
recently created category. The category and category note must both
be created before an @end copies the category and its note to the
structured file.

Syntax
@category_note(fermination-pattern)

termination-pattern describes the string that ends the category note.
termination-pattern is a pattern constant. You can specify the pattern
itself, in a pair of quotation marks (" "), or the name of a variable that
contains the pattern.

The note starts with the current text line and ends the note when it
finds the specified termination pattern. The note does not include the
line containing the termination pattern; that line is the next text line
fo be processed.

Tip To use only the current text line as the note, specify caret (%)
as the termination pattern. This causes TXT2STF to terminate
the note when it reaches the start of the next text line.

Definition File Commands 5-23

Example

This example shows how to convert a file that contains these lines
and make the name Mia Fischer into a category, and the company
name and address into a note for the category:

Send To: Mia Fischer
Toys Toys Toys Inc.
1234 Pinkham Road
Storyville, WA 02138

The following sample definition file searches for the string Send To:
at the start of a text line and trims the string from the line. Then,
@category adds the name Mia Fischer as a child of the To category.
@skip_lines then instructs TXT25TF to skip to the next line, which
becomes the first line in a category note created by @category_note.
The category note ends when TXT2STF finds a row of dashes in the
text file.

START @start i)
¥Trim out "Send To:" and make rest of line a category

"~Send To\:" @trim("~","\:",)
Becategory ("s", "\\To",)

#8kip to next line and make rest of text a category note

@skip lines (1)
Bcategory note (" -—--%*")

END Bend ()

When the resulting structured file is imported, the To category is
added as a child of MAIN. The note is added as its category note.

Changes made by this command

Elements that connmands can change Changes made by this command

Current line in memory The first line that contains the termina-
tion pattern.

Item, category, and note buffers The note created by this command is
associated with the category most
recently added to the category buffer.

Variables None

continued

5-24 Definition File Commands

Elements that commands can change Changes made by this contmand

Location in text file The new location is the beginning of the
first line from the old current line that
matched the pattern termination-pattern.

Structured file When the next @end is executed, a cate-
gory note is defined in the structured file
for the category mentioned above.

@category_note_file

@category_note_file identifies the external note file for the current
category. Agenda attaches the note to the most recently created cate-
gory. The category and category note must both be created before an
@end copies the category and its note to the structured file.

Note If you include both @category_note file and @category_note
for a category, TXT2STF ignores the @category_note and
copies only the name of the note file specified by @cate-
gory_note_file to the structured file.

Note TXT2STF does not check whether the file exists. If the file
does not exist, Agenda asks whether vou want to create it
when you ask to look at the note in the Agenda file.

Syntax
@category_note_file(file-name)

file-name is the note file name. file-name is a file name string constant.
You can specify the name itself, in a pair of quotation marks (" "), or
the name of a variable that contains the file name.

Example

This example creates a category called Quarter? under the parent
category Fiscal Year. It specifies the file QUARTER.DAT as a note file
for that category.

N Bcustom category{"Quarter2", "Fiscal Year" .}

\ Ccategory note file("quarter.dat™)

Definition File Commands 5-25

When the resulting structured file is imported, the Fiscal Year cate-
gory is added as a child of the category specified when you use the
Agenda File Transfer Import command. Quarter? is added as a child
of Fiscal Year. The note file QUARTER.DAT is attached as the cate-
gory note for Quarter2.

Changes made by this command

Elements that commands can change ~ Changes made by this command

Current line in memory None

Item, category, and note buffers The note for the last category defined is
set to the file name specified.

Variables None
Location in text file None
Structured file When the next @end is executed, a cate-

gory note is defined in the structured file
for the category mentioned above,

@custom_category

@custom _category creates a category from text that you specify and
optionally makes them children of a specified parent category. The
category is added as a child of the current category, as specified when
you use the Agenda File Transfer Import command, unless you spec-
ify that the parent category is a child of MAIN.

If the category already exists, Agenda retains the existing category
and does not create a duplicate category. If you specify a parent, the
category created by @custom_category becomes its child when the
structured file is imported into Agenda. If the specified parent does
not already exist, Agenda creates it on import.

The current item is assigned to this category. The item and category
must both be created before an @end copies the item and its catego-
ries to the structured file.

The item buffer can be empty when TXT2STF copies the category to
the structured file. When you import the resulting structured file,
Agenda adds the category to the category hierarchy but does not
assign any items to the category.

5-26 Definition File Commands

Syntax
@custom_category(category [parent] ["type'])

category is the category name. category is a string constant. You can
specify the category as a siring, in a pair of quotation marks (" "), or
the name of a variable that contains the string.

parent (optional) is the parent category to which the new category is
added. parent is a string constant. You can specify a parent category
name, in a pair of quotation marks (" "), or the name of a variable that
contains a category name.

You can specify the entire name of the parent category, including its
parents. Use fwo backslashes (\\) to separate category names. (A
single backslash (\} is a special character that tells TXT2STF to use the
next character as a regular character and not as a special character.)
For example, to identify a parent category named Sales that is a child
of Personnel in the category hierarchy, specify "Personnel\ \Sales".

If a category name string begins with two backslashes (\\) the first
category in the string is added as an immediate child of MAIN.

type (optional) specifies the type of category to create. fypeis a type
constant. You can specify "date", "exclusive”, "numeric", "standard",
or "unindexed". If you omit type, TXT2STF uses "standard”. If the
category already exists and is a different type, Agenda retains the

original category and type on import.
Example

This example shows one way to convert the following sample text
lines to make ABC Corporation an item that is assigned to the cate-
gory Lyle Clark and also is assigned to the numeric category named
Company # with the number 5012.

Company Number: 5012
Company: ABC Corporation
Contact: Lyle Clark

The following sample definition file converts the above text file. The
first statement is executed when TXT2STF finds the string Company
Num at the start of a text line. @skip deletes the start of the text line
up through the colon(:). @category makes the rest of the text line (the
number 5012) a numeric value for the category Company #, which is
a numeric category.

Definition File Commands 5-27

The next statement is executed when TXT2STF finds the string Com-
pany: at the start of a text line. @skip deletes the string Company:
from the line. @item2 makes the remaining text line (ABC
Corporation) into an item.

The final statement is executed when TXT2STF finds the string Con-
tact: at the start of a text line. @trim puts the entire text line into the
variable contact_var, after first removing the string Company:,
through the colon (:), from the line. Then @custom_category adds the
contents of contact_var (Lyle Clark) as a category under the parent
category Contact. Since @custom_category omits the third argument,
which specifies the type of category to create, the name ABC Corpo-
ration is added as a standard category.

START @start {}
" Company num" Gskip{"s:", 1)
Bcategory ("$", "Company #", "numeric")
"“Company® o " Bskip(m™y:™, 1)
fitemz ("5™)
"~Contacth:" BLrim("~.*\:", "$" N, "contact var™)
@custom category({centact wvar,"\\Contact™,)
fend()

When the resulting structured file is imported, the categories Contact
and Company # are added as children of MAIN. Lyle Clark is added
as a child of Contact. The item ABC Corporation is assigned to the
category Lyle Clark and also assigned to the category Company #
with the numeric value 5012.

Changes made by this command

Elements that commands can change Changes made by this comnand

Current line in memory None

ltem, category, and note buffers ~ Creates a new category

Variables None
Location in text file None
Structured file When the next @end is executed, the

category created is added to the
structured file.

5-28 Definition File Commands

@date

@date lets you create assignments to date categories. @date specifies
the category name and optionally specifies a date value, such as
11/12/90. The date category can be a category defined by Agenda
(Entry, When, or Done) or any other date category you create.

When @end copies the category specified by @date to the structured
file, it also copies the item in the item buffer to the structured file,
When the structured file is imported, Agenda uses the date value
specified by @date to assign the item to the date category.

If the date category already exists, Agenda retains the existing cate-
gory and does not create a duplicate category.

Caution If there is no item in the item buffer when the next @end is
executed, then on import Agenda creates the category but
does not import the date value since there is no item to
assign to the date category.

To assign the same date value to more than one date category,
include a separate @date for each date category.

By default, Agenda assumes that the dates in the structured file are in
the format MM/DD/YY. To specify a different format, use
@date format.

Syntax
@date(categoryl,valuel)

category is the name of the date category. This value must be a string
constant. You can specify either the category name, in a pair of quo-
tation marks (" "), or a previously defined variable that contains the
name of the category.

oalue {(optional) is the date value used in the assignment, for example
11/12/90. This value must be a string constant. You can specify
either the value itself, in a pair of quotation marks (" "), or a pre-
viously defined variable that contains the date value.

If you omit value, TXT25TF uses the entire current text line in the
assignment. On import, Agenda discards any portion of the line that
is not part of a valid date.

@date_format

Definitien File Commands 5-29

Example

This sample Jocates a text line that starts with a date value in stan-
dard MM/DD/YY format, and makes the date value a When date.
The sample also creates an item from a text line that starts with the
word What.

"~ {adid/idid/ A A" RBdate (W)
"rRhat" @itemz ("s")
fend{)

When the resulting structured file is imported, the item created by
the @itemn?2 command is assigned to When.

See @date_format for another example.

Changes made by this command

Elements that commands can change Changes made by this command

Current line in memory None

[tem, category, and note buffers ~ Adds a date category to TXT2STF
category buffers

Variables None

Location in text file None

Structured file When the next @end is executed, the date

category is added to the structured file.

If an item exists in the item buffer at that
time, TXT2STF also adds the item to the
structured file and assigns it to the date
category using the value specified by the
@date. Otherwise, there is no item to
assign to the category, and so the cate-
gory is imported into Agenda but the
associated date value is ignored.

@date_format describes the format of the dates and times in the struc-
tured file. On import, Agenda uses this date format specification to
interpret dates in the structured file. @date_format is particularly
useful if you are likely to have dates in international date formats.

5-30 Definition File Commands

By default, Agenda assumes that the dates in the structured file are in
the format MM/DD/YY and that times are specified using a 24-hour
clock. Use @date_format if dates in the text file have a different for-
mat. You can omit @date_format if all dates in the structured file are
specified either in the default format (MM /DD/YY) orin a
combination of words and numbers, as in "Thursday November 8,
1990",

You can use @date formal once at the beginning of the definition file
if your text file contains dates in only one format. If the date format
changes at intervals in your text file, include a new @date format
immediately before any commands in a statement that process dates in
the new date format,

TXT2STF copies the date format to the structured file when an @end
is executed. If more than one @date_format is executed between a
given @start/@end (or @end /@end) pair, only the last @date_format
is used.

Syntax
@date_formal(format-number)

format-number is a numeric constant that indicates the format of the
dates in the text file. Use any of the following format numbers (for-
mat 1 is the default):

Format number Associated date formai Associated time format

1 MM/DD/YY 24-hour clock
2 DD/MM/YY 24-hour clock
3 DD.MM.YY 24-hour clock
4 YY-MM-DD 24-hour clock
5 DD-MMM 24-hour clock
6 DD-MMM-YY 24-hour clock
7 MM/DD/YY 12-hour clock
8 DD/MM/YY 12-hour clock
9 DDMM.YY 12-hour clock
10 YY-MM-DD 12-hour clock
11 DD-MMM 12-hour dock
12 DD-MMM-YY 12-hour clock

Definition File Commands 5-31

Note These are only a subset of the date formats supported by
Agenda. (See Chapter 7 in the Lser's Guide.) For another way
to convert dates into different formats, see @replace.

Example

This example converts the dates in electronic mail messages when
you get mail from mail nodes in both the United Kingdom (UK} and
the United States (US). If the mail has the string "UK_Node" (which
in this example identifies it as being from the UK), the date format is
set to DD/MM/YY. If it has the string "US Node™ (which identifies it
as being from the US), the date format is set to MM/DD/YY.

Tiah @start (}
"UK Node" @date format (2}
"US Node™ @date_format (1}

"idid/:d:d/d:d™ @date (W)

"Subject™ @item2 ("s"}
Aend{)

When the resulting structured file is imported, the item created by
@item?2 is assigned to the When date created by @date.

Changes made by this command

Elements that commands can change Changes made by this command

Current line in memory Nene

Item, category, and note buffers None

Variables None
Location in text file None
Structured file When the next @end is executed,

TXT25TF copies the most recent date for-
mat specification to the structured file,
which tells Agenda the date format to
use to interpret all subsequent dates in
the structured file.

5-32 Definition File Commands

@end

Copies the contents of TXT2STF item, category, and note buffers to
the structured file as items, notes, and categories, @end then ini-
Halizes the buffers.

An @end must be executed for each item to be copied to the struc-
tured file. You do not, however, need to include an @end for items
created by @table because @table internally executes an @end (and
@start) for each item it creates.

@end also should be the last command executed in the definition file.
There are two ways to ensure that @end executes last:

* Add a statement of the following form to the definition file:
END @end()

* Make @end the last command in the statement that matches the
last line of your text file.

Caution If the definition file ends with a command other than
@end, the structured file might not contain all the informa-
tion it is supposed to.

@end does not initialize the contents of variables. To initialize a vari-
able you can use @append, @equate, @grab, @set, and @trim.

Syntax

@end()

@end has no arguments, but the parentheses are required.
Example

This sample statement copies the accumulated information to a struc-
tured file when it finds the word Sincerely followed by a comma (,) at
the end of a text line.

"Sincerely, §" fend ()

@equate

Definition File Commands 5-33

Changes made by this command

Elements that commands can change Changes made by this command

Current line in memory None

ftem, category, and note buffers Clears these buffers after writing them to
the structured file

Variables None

Location in text file None

Structured file Copies the contents of item, note, and

category buffers to the structured file

@equate initializes a variable and then puts the specified string in the
variable. If the variable already exists, the information it contained
before @equate is lost.

@equate is a convenient way to initialize variables. You also can use
it to associate the variable name with a pattern or text string. After
you use @equate, you can specify the variable name in other com-
mands instead of the pattern or text string.

Syntax

"o

@equate("variable-name","string")

varinble-name is the variable into which the string is placed. variable-
name is a variable name string constant.

string is the pattern or string constant, enclosed in a pair of quotation
marks (" "), or a previously defined variable that contains a string or
pattern constant.

Example

In this example, @equate associates the variable with the string Com-
pany. Then, on any line that starts Company: or any other string that
begins with the string Co and ends with a colon (:), TXT2STF puts
everything after the colon (:) into the variable Category. @custom_ca-
tegory then uses both variables Category and Parent to create a cate-

gory.

5-34 Definition File Commands

@grab

START @start ()
fequate ("Parent™, "\\Company")
"ACO.*\:“ @trim(llACO'*\:"’ "$"r N’ "Category")
@custom category{Category, Parent,)
@end ()

When the resulting structured file is imported into Agenda, the Com-
pany category is added as a child of MAIN.

Changes made by this command

Elements that commands ean change Changes made by this command

Current line in memory None

Item, category, and note buffers None

Variables Creates new variables or replaces the
contents of existing ones

Location in text file None

Structured file None

@grab temporarily divides portions of the current text line into values
and puts one or more of the resulting values into variables. If a vari-
able already exists, its previous contents are lost. If a variable does
not exist, TXT2STF creates it.

@grab leaves the text line intact in memory. The next command in
the statement can operate on the same text line that @grab originally
processed. All commands that follow @grab can use values that
@grab stores in variables.

To put text into variables, @grab first divides the line into values
using the specified separator pattern. It then assigns a number to
each value, assigning the number 1 (one) to the first (leftmost) value,
the number 2 to the second, and so forth. Finally, @grab puts into
variables the values you identify by number. For example, to put the
second value from the text line in a variable, you tell @grab to put
value number 2 in a specific variable.

Definition File Commands 5-35

Syntax

@grab(separator-patiern,position-number,"variahle-name"
L position-number, "variable-name",...])

separator-pattern describes the string that TXT2STF uses to divide the
line into separate values. This pattern specifies where a given value
ends and another begins. separator-pattern must be a pattern constant.
You can specify the actual string, in a pair of quotation marks (" "), or
a variable that contains the string value.

position-number identifies, by number, the value to put in a variable.
position-number must be a numeric constant. For each position num-
ber, you must also identify a variable.

variable-name identifies the variable in which to put the value identi-
fied by position-number. variable is a variable name constant.

To identify more than one value in a single @grab, specify a position-
number and variable for each value. The position number and variable
pairs must all be on the same line as the rest of the @grab command.
Put a comma () before each new position number, If you identify a
value that does not exist, TXT2STF ignores the position number and
its associated variable, and continues executing the command. For
example, if you specify a variable for the fifth value, and only four
values exist, TXT2STF does not change the specified variable.

5-36 Definition File Commands

Example

This example shows one way to convert the following text, by mak-
ing make the first word on the line, such as To or From, into a parent
category, and the name on the line into its child category.

To: Mark
From: Sonjaya
Company: ABC Corporation

That is, you import the following category hierarchy:

To

Mark
From

Sonjaya
Company

ABC Corporation

The following sample definition file processes one text line at a time.
The pattern "/.*\:" matches each line that starts with a string fol-
lowed by a colon (:). After the line is matched, @grab puts the first
string on the text line, such as To, in a variable called Parent and puts
the second string after the colon (:) in a variable called Category. For
each line, @custom_category creates a category using the text current
in the Category variable, and whose parent is the text stored in the

Parent variable.

START @start ()

L AN Bgrab ("\:",1, "Parent", 2, "Category")
Bcustom category (Category,Parent,)

END fand ()

When the resulting structured file is imported, categories To, From,
and Company are added as children of the category you specify
when you use the Agenda File Transfer Import command.

@item

Definition File Commands 5-37

Changes made by this command

Elements that commands can change Changes made by this command

Current line in memory None

Item, category, and note buffers None

Variables Creates new variables or replaces the
contents of existing ones

Location in text file None

Structured file None

@item creates an item using text from the text file. The item starts
with the current text line and can include subsequent text lines from
the text file, depending on the arguments you specify in the com-
mand.

Note @item is an alternative to @item?2. If you already have defini-
tion files that use @item, you can continue to use them. How-
ever, to have more control over how TXT2STF constructs
items, consider using @item?2 and not @item in your definition
files. (See "@item?2" later in this chapter.)

The item created by @item includes the entire current text line. (If
you want to remove characters from this text line, use trimming com-
mands before executing @item.) @item adds additional text lines to
the item buffer until it either finds the termination pattern for the
item or the item buffer contains the maximum number of characters,
as specified in the @item command. (This differs from @item?2, which
copies text only up to where the termination pattern or maximum
length is encountered, even if this means stopping in the middle of
the first text line.)

TXT2STF maintains a single item buffer. This means you can create
only one item at a time. If more than one @item is executed between
the @start (or @end) that initializes the buffer and the @end that
copies the item buffer to the structured file, TXT2STF adds the text to
the end of the item and/or note buffer, as appropriate.

5-38 Definition File Commands

The item buffer can contain up to 350 characters. If this buffer fills
during execution of @item, TXT2STF puts the remaining characters in
the current note buffer, unless you specify otherwise in @item. The
TXT25TE note buffer can contain up to 10,000 characters. @item stops
copying, text to the note buffer when it encounters the termination
pattern in a text line, fills the note buffer, or reaches the end of the
text file.

For each text line that it processes, @item always uses the entire text
line. It does not process portions of a text line. (This differs from
@item2, which processes each text line character by character.)

@item always copies the entire first text line it processes to the item
buffer. Then TXT2STF loads the next unprocessed text line into
memory. At this time, @item starts searching for the termination
pattern or testing to see if the maximum number of characters have
been added to the item. TXT2STF goes through line after line of text,
adding each one to the item (or note) buffer, until either the termina-
tion string or maximum number of characters is encountered. When
either of these occurrences ends @item, TXT25TF loads the nexi
unprocessed text line into memory, and continues processing the text
file. (This is different from @item?2, which can copy a portion of the
current text line to the item buffer, which means that the next com-
mand in the current statement starts where @item?2 stopped process-
ing the current text line. See "@item?2" later in this chapter.)

Syntax
@item(termination—pattem,total—length,[N 1

termination-pattern describes the string that ends the item text.
termination-pattern is a pattern constant. The pattern can consist of
one or more characters, including the space character (). You can
specify the pattern itself, in a pair of quotation marks (" "), or the
name of a variable that contains the pattern.

Tip Touse only the current text line as the item, specify caret (*),
which is the start-of-line character, as the termination pattern.
This causes TXT2STF to terminate the item when it reaches
the start of the next text line.

@item starts searching for the termination pattern after copying the
first text line to the item buffer. The line that contains the termination
pattern.is n0f included in the item. If @item does nof specify a total
length, @item stops executing when it the termination pattern is
maiched. Otherwise, @item continues until either it copies the num-
ber of characters specified by fofal-length into the item (or note) buffer
or reaches the end of the text file.

Definition File Commands 5-39

total-length is a numeric constant that specifies the maximum number
of characters @item can process. total-length is a numeric constant.
You can specify up to 350 for this value.

@item adds the entire current text line to the buffer when any charac-
ter in the line causes the item buffer to contain the maximum number
of characters specified by total-length, even if this adds more than the
specified number of characters. If @item allows text to be added to
the note buffer (specified by N, below) and the termination pattern
has not yet been encountered, @item adds text to the note buffer until
it finds the termination pattern. The line that contains the termina-
tion pattern is not included in the note.

N (optional) prohibits TXT2STF from adding text to the note if the
item buffer becomes full.

Example

This example shows one way to convert the following text into an
item and item note:

Re: Lunch

Can’t make [unch appointment today, can we reschedule for next week?

The following sample definition file statement executes when
TXT25TF finds the string Re: at the start of a line. @custom_category
creates a category called Messages. @skip causes TXT2STF to skip
over the string Re: on the current line, and @item makes Lunch an
item, by including everything up to the start of the next line, as speci-
fied by the pattern "~". (The 80 supplements the """ specification,
telling @item that the item can be no longer than 80 characters in
length.) @note creates a note from the remaining text in the file, up to
the end of the text file, as specified by the predefined variable EOF, or
it fills the note buffer.

TrReh:" @start ()
@custom category ("Messages™,,)
@skip(™: +",1)
@item("~",80,)
Znote (EOF)
Bend ()

When the resulting structured file is imported into Agenda, Messages
is added as a child of the category specified when vou use the
Agenda File Transfer Import command. The item created by @item
is assigned to the Messages category. The note is added as an item
nofe.

5-40 Definition File Commands

@item2

Note As an alternative to @item("*",80,) and @note(EOF), you
could use the single command @item(EOF,80,), which makes
an item from the current line (which internally is assumed to
by 80 characters long) and then puts the remaining text lines
into a note for the item.

Changes made by this command

Elements that commands can change Changes made by this command

Current line in memory The text line that matched the termina-
tion string, or the text line after the text
line that caused the maximum number of
characters to be added to the item (or
note) buffer.

ltern, category, and note buffers Appends text to the item buffer and may
append text to the note buffer.

Variables None

Location in text file Advances to the line where the item
ends, or to the next line if the item con-
tains only one text line.

Structured file When the next @end is executed, an item
is defined in the structured file using the
contents of the item buffer. Text
appended to the note buffer by @item is
added as an item note.

@item? creates an item using text from the text file. The item starts at
the beginning of the current text line and can include as many charac-
ters from the current text line as necessary. The item also can include
subsequent text lines from the text file, depending on the arguments
you specify in the command.

Note @item? is an alternative to @item, and provides greater flexi-
bility in how you can create an item.

The item created by @item? starts at the beginning of the current text
line, and continues until either it finds the termination pattern for the
item or the item buffer contains the maximum number of characters,

as specified in the @item command. (This differs from @item, which

copies the entire first text line into the item buffer before it starts

Definition File Commands 5-41

looking for the termination pattern or checking to see if the item
buffer is full. @item?2 differs also in that it copies text into the item
buffer character by character, and not line by line in the way @item
does.)

TXT2STF maintains a single item buffer. This means you can create
only one item at a time. If more than one @item?2 is executed between
the @start (or @end) that initializes the buffer and the @end that

- copies the item buffer to the structured file, TXT2STF adds the text to
the end of the item and/or note buffer, as appropriate.

The item buffer can contain up to 350 characters. If this buffer fills
during execution of @item2, TXT2STF puts the remaining characters
in the current note buffer, unless you specify otherwise in @item. The
TXT2STF note buffer can contain up to 10,000 characters. @item?
stops copying text to the note buffer when it encounters the termina-
tion pattern in a text line, fills the note buffer, or reaches the end of
the text file.

@item?2 copies text to the item buffer character by character. The next
command in the current statement starts where @itemn? stopped pro-
cessing the current text line. (This differs from @item, which always
copies entire lines of text into the item buffer. See "@item” earlier in
this chapter for more information.)

If @item?2 is the last command in the statement, TXT25TF recopies the
most recently processed text line back into memory, which means
that the next text line to be processed is the same text line where the
item ended.

Syntax

@item2(termination-pattern| total-length][,N])
or
@item2(item-length|,N])

termination-pattern describes the string that ends the item text.
termination-pattern is a pattern constant. The pattern can consist of
one or more characters, including the space character (). You can
specify the pattern itself, in a pair of quotation marks ("), or the
name of a variable that contains the pattern.

Tip To use only the current text line as the item, specify a dollar
sign ($) as the termination pattern. This causes TXT2STF to
terminate the item when it reaches the end of the current line.

5-42 Definition File Commands

@item?2 includes in the item buffer characters up to, but not including,
the matched characters. If @item2 does not specify a total length for
an item, @item2 stops executing when it matches the termination pat-
tern. Otherwise, @item?2 continues until either it copies the maximum
number of characters to the item (or note) buffer or reaches the end of
the text file.

total-length (optional) is a numeric constant that specifies the maxi-
mum number of characters @item2 can process. total-length is a
numeric constant. You can specify up to 350 for this value.

@item?2 stops adding characters to the item buffer when the item
buffer contains the maximum number of characters. If @item?2 allows
text to be added to the note buffer (specified by N, below) and the
termination pattern has not yet been encountered, @item?2 adds text
to the note buffer until it finds the termination pattern. The termina-
tion pattern is not included in the note.

item-length is a numeric constant that specifies the maximum number
of characters the item can contain. TXT2STF stops adding characters
to the item buffer when it contains the maximum number of charac-
ters. item-length is a numeric constant. When the item buffer con-
tains this number of characters, TXT2STF stops executing @item?2.
You can specify up to 350 for this value.

N (optional) prohibits TXT2STF from adding text to the note if the
item buffer becomes full.

Example

This example shows one way to convert the following text into an
item and item note:

Re: Lunch

Can’t make lunch appointment today, can we reschedule for next week?

The following sample definition file statement executes when
TXT2STF finds the string Re: at the start of a line. @custom_category
creates a category called Messages. @skip causes TXT2STF to skip
over the string Re: on the current line, and @item?2 makes an item
from the current line (Lunch). Then @note copies the remaining char-
acters in the text file to the note buffer, until it reaches the end of the
text file, as specified by the predefined variable EOF, or it fills the
note buffer.

Definition File Commands 5-43

"rReMN:" @start ()
@custom_category {"Messages”,, }
Askip{": +",1)

@item2 ("$")
@note (EOF)
Bend ()

When the resulting structured file is imported into Agenda, Messages
is added as a child of the category specified when you use the
Agenda File Transfer Import command. The item created by @item2
is assigned to the Messages category. The note is added as an item
note.

Note As an alternative to @item2("$") and @note(EQF), you could
use the single command @item2(ECOF,80), which makes an
item from everything in the current line (up to a maximum of
80 characters) and then puts the remaining text up to the end
of the file into a note.

Changes made by this command

Elements that commands can change Changes made by this command

Current line in memory The current line becomes the line where
the item text ends.

[tem, category, and note buffers Appends text to the item buffer and may
append text to the note buffer.

Variables None

Location in text file Advances to the next character after the
item text.

Structured file When the next @end is executed, the

item is added in the structured file using
the contents of the item buffer. Text
appended to the note buffer by @item? is
added as an item note.

@make_external_note

@make_external note creates an external note file and copies text
from the text file to the note file, The note file is asscciated with the
item in the item buffer.

5-44 Definition File Commands

If the item buffer is empty when TXT2STF copies the external note
file name to the structured file, the note file is not attached to an item
when the structured file is imported to Agenda. This occurs when
there are no item commands between the previous command that
cleared TXT2STF buffers (@start or @end) and the @end that copies
the note to the structured file. When you import the resulting struc-
tured file, Agenda creates an empty item for the note.

TXT2STF gives the note file a name of the form NOTEn.AGN, where
11 1s a number between 1 and 9999. TXT2STF increments # by 1 each
time it creates a note file. If a file already exists with this name,
TXT2STF retains the existing file and increments # until it creates a
unique file name. TXT2STF stores the file in the directory you spec-
ify, and copies the name of the note file to the structured file.

If an error occurs when TXT2STF tries to create the note file, for
example the specified directory does not exist or TXT2STF cannot
create the file for another reason, TXT2STF reports the error, ignores
the command, and continues converting the text file.

Syntax
@makefexternal_note(termination—pattern,["d irectory”])

termination-pattern describes the string that ends the note text.
terminalion-pattern is a pattern constant. You can specify the pattern
itself, in a pair of quotation marks (" "), or the name of a variable that
contains the pattern,

TXT2STF starts the note with the current text line. After adding that
text line to the external note file, TXT2STF starts searching for the
specified termination pattern, and ends the note when it reaches a
line that contains that pattern. The note does not include the line
containing the termination pattern; that text line is the next line to be
processed.

directory (optional) is the name of the directory in which you want the
note file to be stored. directory is a file name string constant. This
value is a string constant. You can specify the directory name itself,
In a pair of quotation marks (" "), or a predefined variable that con-
taing the directory name.

To store the note in the current directory, omit the directory argument.

@note

Definition File Commands 5-45

Example

The following sample statement is executed when TXT2STF finds the
string Subject: at the start of a text line. @skip removes Subject: from
the text line. @item?2 makes an item from the remaining text on the
current line. @make_external_note copies all remaining text lines, up
to the end of the text file (as specified by the predefined variable
EQF) into a new note file called NOTEn.AGN (where 7 is the next
available number) in the Agenda directory \AGENDA).

"rSubjecti" @skip (" +",1)
@itemZ ("5")
@make external note (ECF, "\agenda™}

When the resulting structured file is imported into Agenda, the note
file is attached to the item created by @item2.

Changes made by this command

Elements that commands can change Changes made by this command

Current line in memory The current line becomes the first line
from the old current line that has a string
which matches the terminafion-pattern.

Item, category, and note buffers Causes TXT25TF to ignore the contents

of the note buffer.
Variables None
Location in text file The next command begins executing on

the beginning of the new current line.

Structured file When the next @end is executed, instead
of writing the contents of the note buffer
to the structured file, TXT2STF copies the
name of the file note created by @make-
_external_note.

@note creates a note and assigns it to the item in the item buffer. If
TXT2STF finds more @note commands before @end copies the item
and note to the structured file, TXT2STF appends the text to the exis-
ting note.

5-46 Definition File Commands

To attach a note file, use @note_file instead of @note. To assign the
note to a category, use @category note or @category_note_file.

Caution @note can only create notes that contain up to 10,000 char-
acters (about seven pages of double spaced text). If the
text contains more than this number of characters, use
@make_external note, which puts any number of charac-
ters in a text file and attaches the text file as an external
note.

if the item buffer is empty when TXT2S5TF copies the note to the
structured file, the note will not be assigned to an item when the
structured file is imported to Agenda. This occurs when there are no
item commands between the previous command that cleared
TXT2STE buffers (@start or @end) and the @end that copies the note
to the structured file. When you import the resulting structured file,
Agenda creates an empty item for the note.

Syntax
@notel(termination-patterrn)

termination-pattern describes the string that ends the note text.
termination-pattern is a pattern constant. You can specify the pattern
itself, in a pair of quotation marks (" "), or the name of a variable that
contains the pattern.

TXT2STF starts the note with the current text line. After adding that
text line to the note buffer, TXT2STF starts searching for the specified
termination pattern, and ends the note when it reaches a line that
contains that pattern. The note does not include the line containing
the termination pattern; that text line is the next line to be processed.

Tip Touse only the current text line as the note, specify caret ()
as the termination pattern. This causes TXT2S5TF to terminate
the note when it reaches the start of the nexf text line.

Definition File Commands 5-47

Example

The following sample definition file creates an item from text on a
line starting with the string QUOTE, and a category from the text on
a line starting with the string PUT. When TXT2STF finds the string
DETAILS at the start of a text line, it starts a note for the current item.
The note goes up to, but does not include, the next line that starts
with the string QUOTE.

""5tart trans\:" @start()
IIAQUOTE " @Skip (" 'I‘", l)
EBcustom category ("Quotes", "\\Buys",)
Bitem2 ("5")
mepgT T @skip (" +v,1)
@ecategory ("$", "\\Buys\\Puts", }
"DETAILS " @note ("~QUOTE, ™)
Gend (}

When the resulting structured file is imported into Agenda, Buys is
added as a children of MAIN. Quotes and Puts are children of Buys.
The category created by @category is added as a child of Puts. The
item created by @item? is assigned to the Quotes category and to the
category created as a child of Puts.

Changes made by this command

Elements that commands can change Changes made by this command

Current line in memory The current line becomes the first line
after the old current line that has a string
that matches the termination-pattern.

Item, category, and note buffers ~ Appends into the note buffer all the
information in the text file staring from
the current location in the text file to the
end of the line before the new current

line.
Variables None
Location in text file The next command begins executing on

the beginning of the new current line.

Structured file When the next @end is executed, a note
is defined in the structured file with the
contents of the note buffer.

5-48 Definition File Commands

@note_file

@note_file identifies the external note file for the item in the item
buffer.

Notes If you use both @note_file and @note, TXT2STF ignores @note
and copies only the name of the note file specified by @no-
te_file to the structured file.

TXT2STF does not check to see if the file exists. If the file does
not exist, Agenda asks whether you want to create it when
you try look at the note in the Agenda file.

Syntax
@note_file(file-name)

file-name is the name of the external note file. file-name is a file name
string constant. You can specify the note file name itself, in a pair of
quotation marks (" "), or the name of a variable that contains the note
file name.

Example

The following sample definition file statement is executed when
TXT2STT finds a line that starts with NEW VENDOR. ®item? creates
an item from the current text line. @note_file makes the current text
tile the note file for the item. (FILENAME is a predefined variable
that represents the name of the current text file.)

"~NEW VENDOR" Bitem2 ("$")
@note file (FILENAME)

When the resulting structured file is imported into Agenda, the origi-
nal text file is attached as a note file to the item created by @item?.
Since TXT2STF does not change the text file when it converts text in
it, the contents of the original file are available as note text.

@numeric

Definition File Commands 5-49

Changes made by this command

Elements that commands can change Changes made by this command

Current line in memory None

Item, category, and note buffers Causes TXT25TF to ignore the contents
of the note buffer.

Variables None
Location in text file None
Structured file When the next @end is executed, instead

of writing the contents of the note buffer
to the structured file, TXT25TF defines a
file note whose name is file-name.

@numeric lets you create assignments to numeric categories. @nu-
meric specifies the category name and optionally specifies a numeric
value.

When @end copies the category specified by @numeric to the struc-
tured file, it also copies the item in the item buffer to the structured
file. When the structured file is imported, Agenda uses the numeric
value specified by @numeric to assign the item to the numeric cate-

gory.

It the numeric category already exists, Agenda retains the existing
category and does not create a duplicate category.

Caution If there is no item in the item buffer when the next @end is
executed, then on import Agenda creates the category but
does not import the number since there is no item to
assign to the numeric category.

Syntax
@numeric(categoryl,value])

category is the name of the numeric category. This value must be a
string constant. You can specify either the category name itself, in a
pair of quotation marks (" "), or a previously defined variable that
contains the category name.

5-50 Definition File Commands

value (optional) is the numeric value used in the assignment. This
value must be a string constant. You can specify either the value
itself, in a pair of quotation marks (" "), or a previously defined vari-
able that contains the value.

If you omit value, TXT25TF uses the entire current text line in the
assignment. Agenda imports the text line starting from the first char-
acter on the line and continuing until it finds a nonnumeric character.
Agenda ignores the rest of the line. If the first character is
nonnumeric, Agenda ignores the entire line.

Example

The following sample command assigns the current item to the Cost
category with a numeric value of 350.23.

\ Anumeric ("Cost","350.23")

When the resulting text file is imported into Agenda, the numeric
category Cost is imported as a child of the current category, as
specified when you use the Agenda File Transfer Import command.

Changes made by this command

Elements that commands can change Changes made by this command

Current line in memory None

Item, category, and note buffers Adds a numeric category to TXT25TF
category buffers.

Variables None

Location in text file None

Structured file When the next @end is executed, the
numeric category is added to the struc-
tured file.

If an item exists in the item buffer at that
time, TXT25TF also adds the item to the
structured file and assigns it to the
numeric category using the value speci-
fied by @numeric. Otherwise, there is no
item to assign to the category, and so the
category is imported into Agenda but the
associated numeric value is ignored.

@replace

Definition File Commands 5-51

@replace replaces the specified number of occurrences of a given
string in the text line with another string.

Syntax
@replace(search-pattern,replacement-string [number])

search-pattern describes the string for which TXT2STF searches.
search-pattern is a pattern constant. You can specify the pattern itself,
in a pair of quotation marks {" "), or a variable that contains the pat-
tern.

replacement-string is the string that replaces the string identified by
search-pattern. This value must be a string constant. You can specify
the string itself, in a pair of quotation marks (" "), or a variable that
contains the string.

number (optional) specifies the number of occurrences of search-pat-
tern to be replaced by replacement-string. mumber must be a numeric
constant. If you omit number in the text line, @replace substitutes

replacement-string for all occurrences of search-pattern in the text line.

Example

The following sample statement replaces all dashes in a text line with
slashes. With the text line "11-12-90", you will get a When date of
"11/12/90", which is in the Agenda default date format.

":d:d-:d:d-:d:d" @replace("-","/",)
Bdate (W)

See @date_format for other ways to transform dates into other for-
mats.

Changes made by this command

Elemenis that commands can change Changes made by this command

Current line in memory May alter the contents of the current line
Item, category, and note buffers None
Variables None
Location in text file None

Structured file None

85-52 Definition File Commands

@reset

@reset replaces the text line in memory with the contents of the speci-
fied variable, or with the text string you specify.

You can use @reset if you need to convert the same text line in more
than one way or to use text from one text line when converting a later
text line. To do this, save the complete or trimmed text line with the
@set variable. Restore the saved line at a later time by using @reset,
and use the variable named in the @set.

Syntax
@reset(replacement-string)

replacement-string is the string that replaces the current text line in
memory. replacement-string must be a string constant. You can spec-
ify the string itself, in a pair of quotation marks (" "), or a variable that
contains the replacement string.

Example

This example shows one way to convert information from the Lotus
Metro® appointment book, extracling each appointment as an item.
This example uses the following appointment book information,
which has already been printed to an ASCII text file:

Definition File Commands 5-53

Monday, November 5, 1990
Book: MAIN
6:00a
7:00
8:00 R.Ball (Shelley)
9:00
10:00 Meeting with Phil and Anne re. sign
11:00
12:00p
1:00 to 3 - Downtown, Bookseller intg.

Tuesday, November 6, 1990
Book: MAIN
6:00a
7:00
8:00
9:00
10:00 At Large Wkly Wrap-up
11:00
12:00p
1:00 send-off plan review mtg.

The following sample definition file uses variable Full Date to assign
each item the correct When date and variable Book to assign each
item to a category that names the book the item is from.

Notice in this example that @set specifies variable names, such as
Pate and Bookname, in a pair of quotation marks (" ") because it is
simply naming the variables. @reset names the Full Date variable
without quotation marks to instruct TXT2STF to use the contents of
the variable.

5-54 Definition File Commands

#5tart collecting information for a new item, delete day name
#(for example, Monday) from day header line, and put date
tin variable Date

"tra+, cat d+, :d:id:d:dv @start ()
@trim(""", ", "r }
@set {"Date")

#Put name of the book into variabkle Bockname
nARook\ " @Sk‘?.p(" L
dset ("Booknama™)

#Make contents of Bookname a child of category Book

"id+\iidid[ap).*:at" @custom_category (Bookname, "Bock"™,)

#Trim text, construct date and time in wvariable Full Date

Ftrim (""", ":dv\::d:d",, "Time™)
@trim('”\", ":n",N)
@item2 ("$™)

Bequate ("Full Date",Date)
Bappend ("Full Date"," at ™)
Bappend("Full Date",Time)

#Reset current line to contents of wariable Full Date,
#create a When date using the "new" line, and copy
#current item/category/date infe to structured file

Breset (Full Date)
Bdate {W)
Bend ()

When TXT25TF uses this definition file to convert the sample Metro
file using the sample definition file, it creates five items for your
Agenda file, one for each appointment listed in the file.

Changes made by this command

Elements that commands can change Changes made by this command

Current line in memory Replaces the current line
Item, category, and note buffers None
Variables Nene
Location in text file None

Structured file None

@set

Definition File Commands 5-55

@skip

@set stores the current text line in the specified variable.

This lets you use the current text line in more than one way. You can
save the text line by using @set, and then trim or convert the line
however you want. Then, to use the original text line in another way,
use @reset to restore the full text line. The @reset can be in a different
statement than @set.

Tip @set stores the entire text line in a variable. To save a portion
of the line, use one of the trimming commands to remove
unwanted text before you use @set.

Syntax
@set("variable-name™)

variable-name is the variable in which the text line is stored. varighle-
name must be a variable name string constant.

See @reset for an example of using @set.

Changes made by this command

Elements that commands can change Changes made by this commuand

Current line in memory None

Item, category, and note buffers None

Variables Copies the contents of the current text
line to the specified variable

Location in text file None

Structured file None

@skip divides the current text line into separate values using the sep-
arator pattern you specify. It then deletes the specified value from
the text line.

5-56 Definition File Commands

This lets you remove unwanted text from the text line before you
convert the line into an item, category, or note. TXT25TF uses the
entire text line minus the unwanted text, leaving no spaces where the
text was deleted.

Tip If you want to use a text line in several ways, consider using
@trim and not @skip (since @trim saves deleted text in vari-
ables for later use). If you use @skip, you can use @set to save
the original line in a variable before executing @skip. To
restore the original line at a later time, use @reset.

To delete text, @skip first divides the line into values using the speci-
fied separator pattern. It then assigns a number to each value, assign-
ing the number 1 (one) to the first (leftmost) value, the number 2 to
the second, and so forth, Finally, @skip deletes the value whose
number you identify in @skip. For example, you delete the second
value from the text line by telling @skip to delete value number 2.

Each @skip removes one value from the text line. To remove more
than one value from a line, you must include more than one @skip in
a statement. Each @skip divides the line and renumbers the resulting
values based on the specified separator pattern.

Syntax
@skip(separator-pattern,position-number)

separator-pattern describes the string that TXT2STF uses to separate
the text line into separate values. This pattern specifies where a given
value ends and another begins. The separator pattern is included at
the end of each string where it is found. separator-pattern must be a
pattern constant. You can specify the pattern itself, in a pair of quota-
tion marks (" "), or a variable that contains the pattern.

position-number identifies, by number, the value to delete. posifion-
number must be a numeric constant.

Example

This example shows one way to convert the following text line to
create a category swind:pkyn, with a parent of ID.

SYSID:swind: USERID:pkyn

The sample statement shown below is executed when TXT2STF finds
the string SYSID: at the start of a text line. The first @skip uses the
colon (2), as specified by the pattern "\:", to separate the text line into
four values (SYSID:, swind:, USERIEY:, and pkyn). The same @skip
then deletes the first value (SYSID:) from the text line.

@skip_lines

Definition File Commands 5-57

The second @skip again uses the colon (:) to separate the text line,
which results in three values (swind:, USERID:, and pkyn). The same
@skip then deletes the second value (USERID:) from the text line.
Then @category makes a category from the current text line, which
now contains only swind:pkyn.

"ASYSIDN " @skip("\:", 1)
@skip("\:",Z)
Bcategory ("s","ID",)

Changes made by this command

Elements that commands can change Changes made by this command

Current line in memory May delete text from the start of the
current line

Item, category, and note buffers None

Variables None
Location in text file None
Structured file None

@skip_lines lets you skip over unneeded lines of text. It copies lines
into memory and discards them until it finds the termination point
you specify.

Syntax
@skip_lines(termination-point)

termination-point describes the string or numeric constant that speci-
fies where to stop skipping lines. termination-point can be a pattern
constant, or a numeric constant.

* A pattern constant (or a variable that contains the pattern) causes
@skip_lines to skip to the beginning of the first character that
matches the pattern. @skip_lines skips over all intervening text
lines.

5-58 Definition File Commands

* Anumeric constant causes @skip_lines to skip the specified num-
ber of lines from the current line. For example, specifying 1 (one)
skips to the next line in the text file, which becomes the current
line.

Specifying a pattern as the termination point for @skip_lines is partic-
ularly useful when you know the pattern for:

* The start of the text you want to convert

In this case, the line for which you are searching becomes the
current text line in memory. This means that you can include the
commands (@item2, @note, and so forth) for the current line in the
same statement.

* The end of the text you want to skip over

In this case, the line you wish to convert is the next line after the
line with the pattern. To skip to this next line, use @skip_lines(1).

Note After TXT2STF matches the @skip_lines termination pattern
in a text line, the entire line including the matching string is
available to the next command. If @skip,_lines is the last com-
mand in the statement, the entire matching text line is avail-
able to match the pattern at the start of the next statement.

Example

This example shows one way to convert the following text file:

Message: 123456889766787

WEEKLY SALES UPDATE: Week of 11/16,/90

Northeast/Mid-Atlantic:

October goal of 70,000 met due to success of CopyCat and Stratford copiers;
regional sales meeting Monday 12/3/90,

The following sample definition file statement is executed when
TXT2STF finds the string Message: at the start of a text line.
@skip_lines causes TXT2STF to skip down to the next line. @item?
creates an item from the current line, and @note creates a note from
the remaining text lines, as specified by the predefined variable EOF.,

"“Message\:" @skip lines (1)
Gitem2 ("3}
€note (EOF)
@end (}

@start

Definition File Commands 5-59

When the resulting structured file is imported, it adds the item

WEEKLY SALES UPDATE: Week of 11/16/90. 1t adds the remaining
text as an item note,

Changes made by this command

Elements that commands can change Changes made by this commund

Current line in memory May change the current line to be a later
line in the text file.

Item, category, and note buffers ~ None
Variables None

Location in text file If @skip_lines specifies a number,
TXT25TF points to the start of the new
current line. If @skip_lines specifies a
termination pattern, TXT25TF points to
the first character that matches the pat-
tern in the text line.

Structured file None

@start initializes the item, category, and note buffers.

Execute @start before any commands that convert information you
want to copy to the structured file, so that TXT25TF has buffers in
which to keep the converted information. @start is typically the first
command in the first statement executed in a definition file.

You can include @start anywhere else in the definition file where you
want to initialize buffers wifhout copying their contents to the struc-
tured file.

Tip To copy the contents of the item, category, and note buffers to
the structured file, use @end.

Syntax
start()

@start has no arguments, but the parentheses are required.

5-60 Definition File Commands

@strip

Example

The following sample statement starts converting information when-
ever it finds the string To: at the beginning of a line.

"AToN" @start ()

Changes made by this command

Elements that commands can change Changes made by this command

Current line in memory None

Item, category, and note buffers Initializes these buffers

Variables None
Location in text file None
Structured file None

@strip deletes from the text line one or more occurrences of the string
you identify.

Syntax
@strip(strip-pattern [number])

strip-pattern describes the string to be removed from the text line.
strip-pattern must be a pattern constant. You can specify the pattern
itself, in a pair of quotation marks ("), or a variable that contains the
pattern.

number (optional) specifies the number of occurrences of the strip
string to be deleted from the text line. number must be a numeric
constant. If you omit the number, @strip deletes all the occurrences
of the strip string,

Definition File Commands 5-61

Example

This example shows one way to convert the following text file:

Part-23-17-A
200/250 filter for Empress humidifier (model #230), with pre-filter attach-
ment for Gen Clean (hospital model #1230/1231)

The following sample definition file statement executes when
TXT2STF finds a line starting with the string Part-, which is the word
Part followed by a hyphen (-). @strip removes all the hyphens (-)
from the current text line, @set puts the resulting text into the vari-
able Catname, @custom_category makes the contents of Catname into
a child of the category Part. @skip_lines advances TXT25TF to the
next text line. @category_note makes this text line and the remaining
text lines in the text file into a note for the category, as specified by
the predefined variable EOF. @end copies the categories to the struc-
tured file.

"epart-" gstrip("-",)
@set ("Catname")
Gcustom category{catname, "Component”,)}
fskip lines (1)
@category note (ECE)
Bend{)

When the resulting structured file is imported into Agenda, Compo-
nent is added as a child of the current category, as specified when
you use the Agenda File Transfer Import command. The category
Pari2317A is added as a child of Part. The category note is added to
category Part2317A.

Changes made by this command

Elements that commands can change Changes made by this command

Current line in memory Deletes from the current line one or more
occurrences of the identified string

Item, category, and note buffers ~ None
Variables None
Location in text file None

Structured file None

5-62 Definition File Commands

@table

@table converts information in a table into items and categories. For
example, you can use @table to convert a table of information from a
Lotus 1-2-3 worksheet that has been printed to a text file.

@table starts processing the table with the current line. TXT2STF
executes @table once for each line in the table. To specify where the
table ends, you include a termination pattern that describes a string
on the line immediately affer the table.

To convert tabular information, @table separates the information into
columns, using the separator pattern you specify. It then processes
each line in the table, converting the text in specific columns into
items, categories, and category values. For example, @table can make
text in the first column of each line into an item, text in the second
column into a category, and so forth.

@table assumes that the first line in the table provides header or label
information for the column, and converts the columns in that line into
categories. When @table processes the remaining lines in the table, it
assigns items to the category that heads the item column. When
@table converts text in a category column in the table:

* For a standard category, @table makes the text a child of the cate-
gory that heads the category column.

s For a date, numeric, or unindexed category, @table makes the text
a value (for example a date) for the category that heads the cate-
gory column.

Note @table adds an item and/or categories to the structured file
after converting each text line. To do this, @table internally
executes an @start before and an @end after converting each
text line.

Syntax

@table{(separator-pattern termination-pattern,col-number,type
[,col-number type,...])

separator-pattern describes the string that TXT2STF uses to divide the
table. This pattern specifies where a given value ends and another
begins. separator-pattern must be a pattern constant. You can specify
the pattern itself, in a pair of quotation marks (" "), or the name of a
variable that contains the pattern.

Definition File Commands 5-63

termination-pattern describes the string that ends the table.
termination-pattern must be a pattern constant. You can specify the
pattern itself, in a pair of quotation marks (" "), or the name of a vari-
able that contains the pattern.

The termination pattern must describe a string on the line that imme-
diately follows the last line of the table. If the text file does not
include the pattern, TXT2STFE processes each line in the text file up
through and including the last line in the file.

col-number is a numeric constant that identifies a column to process
into an item, category, and so forth. To determine the number for a
colummn, count the columns in the text file from left to right, using 1
for the first column, 2 for the second column, and so forth. When
counting, include all columns, including columns you intend for
TXT25TF to ignore.

TXT2STF only converts and copies to the structured file those col-
umns that @table identifies by number. For each position number in
@table, you must specify a type. The column number and type
combinations must all be on the same line as the rest of the @table
command.

type determines whether information in the column becomes an item
or a category. For categories, this value also identifies the type of
category to create. type must be a type constant. You can specify
"date", "exclusive”, "numeric", "standard" or "unindexed" for catego-

ries, or "item" for items.
Example

This example shows one way to convert the following tabular infor-
mation:

Table 1:

Events Start Date End Date COG Revenues
Post-XMAS R 12/26/89 12/30/90 2800 3200
Spring Fling R 04/01/90 04/15/90 4500 8200

Met Sidewlk Days 05/02/90 05/09/90 4200 75001

The following sample statement finds the string Table at the start of a
line. @skip_lines skips TXT2STF down a line, where @table starts
processing the tabular text. @table divides columns by searching for
two or more space characters (as specified by the pattern ™ "+) @ta-
ble makes the first table column the item column, the third column a
date, and the fifth column a numeric category. @table ignores the
second and fourth column.

5-64 Definition File Commands

@trim

""Tabla™ Eskip lines{l)
Btable(™: +","-——+",1,"iten", 3, "date™, 3, "numeric"}

When the resulting structured file is imported, Events, End Date, and
Revenues are added as categories under the current category speci-
fied when you use the Agenda File Transfer Import command.
Items created from the first column of the table, such as
Post-XMASR, are assigned to the Events category. Each item is also
assigned to the End Date category by the date value on the same row
as the item, and to the Revenue category by the numeric value on the
saine row.

See "Converting a Table of Information” in Chapter 3 for another
example of using @table.

Changes made by this command

Elements that commands can change Changes made by this command

Current line in memory When TXT2STF finishes processing the
table, the current line is the line that
matched the termination pattern.

Item, category, and note buffers Adds items and categories to TXT2STF

buffers.
Variables None
Location in text file When TXT2STF finishes processing the

table, the location in the text file is the
beginning of the line that matched the
termination pattern.

Structured file Adds to the structured file after process-
ing each line in the table, adding the item
and/or categories created from the line.

@trim deletes text from the text line and optionally puts the deleted
text into a variable.

This lets you remove unwanted text from the text line before you
convert the line to be an item, category, or note. TXT2STF then uses
the entire text line minus the unwanted text (leaving no spaces where
the text was deleted).

Definition File Commands 5-65

You can save the deleted portions of the line in a variable. This lets
you use the deleted text in a later command or statement.

To delete text, @trim locates the specified start and end patterns in
the text line. It then deletes the text between the patterns. It also
deletes the pattern text if you instruct it to.

Each @trim removes one value from the current line. To remove
more than one value from a line before you use it, you must include
more than one @trim in a statement.

Syntax
@trim(start-pattern,end-pattern iN 1L, "varinble-name"]}

start-pattern and end-pattern identify the text to be deleted from the
current line by giving the starting and ending points for deletion.
start-pattern describes the string where deletion should start and end-
pattern the string where deletion should end. Both patterns must be
pattern constants. You can specify the patterns in a pair of quotation
marks (" "}, or the name of the variables containing the strings.

N (optional) specifies that the deletion is not inclusive. N must be a
logical constant. If you specify N, @trim deletes the text between the
specified strings without deleting the strings. If you omit N, @trim
deletes from start-string through end-string, including the strings.

oarigble-name (optional) identifies a variable into which TXT25TF puts
the string trimmed from the current text line. variable-name must be a
variable name string constant.

Example

This example shows one way to convert the following sample text file
to get two categories, Robin McAfee and Anand Mohanty, with the
address for each person a category note for the category created for
the person.,

Name: Robin McAfee

Address: 1234 Main Street
Anytowr, IL
61820

Name: Anand Mohanty

Address: 85 Broadway
South City, MA
02042

5-66 Definition File Commands

The sample definition file shown below converts this text file. The
first statement in the definition file is executed when TXT2STF finds
the string Name: at the start of a text line. Then, @trim deletes from
the line everything from the start of the line (specified by the pattern
"A") up through the block of spaces that separates the string Name:
from the actual name (for example, Robin McAfee). @category makes
the remaining text line (for example, Robin McAfee) a child of the
Student Name category.

The second statement is executed when TXT2STF finds the string
Address: at the start of a text line. @category_note creates a note that
starts with the current text line and continues up to (but not inclhud-
ing) the next name in the file (which is on a line beginning with the
string Name:). @end copies the current category and category note to

the structured file.
"Namel " @start ()
@trim(u/\rl’n +n’)
Gcategory{"$", "Student Name",)
"rAddress\:” @category_note (" Name\:")

Bend ()

When the resulting structured file is imported, Student Name is
added as a child of the current category specified when you use the
Agenda File Transfer Import command.

For an example of how @trim puts a string into a variable, see the
sample definition file shown at the end of "Writing the Definition File
Patterns and Commands” in Chapter 1.

Changes made by this command

Elements that commands can change Changes made by this command

Current line in memory Deletes text from the current line
Item, category, and note buifers None

Variables Can create new variables or replace the
contents of existing ones

Location in text file None

Structured file None

@unindexed

Definition File Commands 5-67

@unindexed lets you create assignments to unindexed categories.
@unindexed specifies the category name and optionally specifies a
text value.

When @end copies the category specified by @unindexed to the struc-
tured file, it also copies the item in the item buffer to the structured
file. When the structured file is imported, Agenda uses the text value
specified by @unindexed to assign the item to the unindexed cate-

gOory.

If the unindexed category already exists, Agenda retains the existing
category and does not create a duplicate category.

Caution If there is no item in the item buffer when the next @end is
executed, then on import Agenda creates the category but
does not import the text value specified by @unindexed
since there is no item to assign to the unindexed category.

Syntax
@unindexed(categoryl,valuel)

category is the name of the unindexed category. This value must be a
string constant. You can specify the category name, in a pair of quo-
tation marks (" "), or a previously defined variable that contains the
category name.

value (optional) is the text value used in the assignment. This value
must be a string constant. You can specify either the value itself, in a
pair of quotation marks (" "}, or a previously defined variable that
contains the value. If you omit value, TXT2STF uses the entire current
text line in the assignment.

Example

The following sample definition file statement creates an assignment
to an unindexed category, Label, with the text value Al. @end copies
the category to the structured file.

START @start ()
@unindexed ("Label", "Al"™)
@end{)

5-68 Definition File Commands

When the resulting text file is imported into Agenda, the unindexed
category Label is imported as a child of the current category specified
when you use the Agenda File Transfer Import command. If an item
is added at the same time, the item is assigned to the Label category
by means of the text value Al. If no item is added with the unin-
dexed category, Agenda ignores the text value Al.

Changes made by this command

Elements that commands can change Changes made by this command

Current line in memory

Item, category, and note buffers

Variables
Location in text file
Structured file

None

Adds an unindexed category to TXT2STF
category buffers,

None
None

When the next @end is executed, the
unindexed category is added to the
structured file.

If an item exists in the item buffer at that
time, TXT2STF alsc adds the item to the
structured file and assigns it to the unin-
dexed category using the value specified
by @unindexed. Otherwise, there is no
itemn to assign to the category, and so the
category is imported into Agenda but the
associated text value is ignored.

Chapter 6

Converting and Importing Text

In this Chapter

Before you import text into Agenda, you can convert the text so that
Agenda knows which text to use as items, categories, and notes. To
do this, you run the Agenda TXT25TF utility to convert the text file to
a structured file. Then, you return to Agenda and import the struc-
tured file using the Agenda File Transfer Import command.

This chapter describes how to convert and import text by:

» Explaining how to use the TXT2STF utility and its options to con-
vert a text file to a structured file

* Describing the File Transfer Import command and additional
options you can specify to control the importing of structured files

For information about structured files, see Appendix B. For general
information about converting files to be imported into Agenda, see
Chapter 23 in the User’s Guide.

Note If you plan to convert a file from an external source (for exam-
ple, a word processing document), make sure it is an ASCII
text file. Refer to the manuals for the software you use for
information on how to create an ASCI text file.

Running TXT2STF

You run the TXT2STF utility to convert a text file to a structured file.
You run this utility outside of Agenda, as follows:

1. Make sure you are in the Agenda program directory.
6-1

6-2 Converting and Importing Text

The TXT2STF
Command

File Conversion
Options

2. At the operating system prompt, type the TXT2STF command,
following the syntax described in "The TXT25TF Command,”
below.

TXTZSTF displays the TXT2STF copyright box and converts the
text file to a structured file with the same name and the extension
STF. TXT2STF converts the contents of the text file without
modifying or deleting the original text file.

The TXT2STF command has the following syntax:

Syntax
TXT2STE textfile.ext [option(s)]

textfile.ext is the name of the text file you want to convert. For exam-
ple, if the file name is MEMO.DOC, specify MEMO.DOC for
textfile.ext. The file must be an ASCII text file.

options provide additional information to TXT25TF. You can include
the following types of options in the TXT2STF command:

* File conversion options give TXT2STF information about how to
convert the text file. These options are discussed in "File Conver-
sion Options" later in this chapter.

* Debugging options tell TXT2STF to return debugging information
when it converts the text file. For more information about these
options, see "Including Debugging Options” in Chapter 7.

The following TXT2STF options provide additional information
about how to convert a text file:

Option Description

/C Tells TXT2STF to be case sensitive when matching literal alphabetic
characters specified in patterns.

/D Specifies a definition file. A definition file tells TXT2STF how to
interpret a text file. For more information, see "Specifying a Defini-
tion File” later in this chapter.

/O Specifies another name for the structured file. For more informa-
tion, see "Specifying a Different Name for the Structured File" later
in this chapter.

/5 Specifies an alternate separator character for paragraphs in the text
file. For more information, see "Specifying an Alternate Separator
Character in the Text File" later in this chapter.

How TXT2STF
Converts Text
Files

Specifying a
Definition File
to Use with

a Text File

Converting and Importing Text 6-3

Note TXT2STF ignores the /C option when matching a character
specified as a range or group in brackets ([| } and matches
those characters exactly as specified in the range or group.
(See Chapter 4.)

Follow these guidelines when you include options in the TXT25TF
command:

* You must use either a slash {/) or a hyphen (-) before each option.
Correct:
CANAGENDA> txtZstf events.txt /o=calendar
Incorrect:
CAAGENDA> txtZ2stf events.txt o=calendar

* You can type options in uppercase or lowercase.

* You can include options in any order.

If you run the TXT2STF utility without any file conversion aptions,
TXT2STF converts each paragraph into an item, putting any text that
does not fit in the item into a note for the item. The conversion works
as follows:

* TXT2STF begins at the beginning of the text file, taking text for the
first item. When TXT2STF reaches a double carriage return (a
blank line), it ends the item and starts a new item.

s If there is no double carriage return before the 350th character,
Agenda ends the item at the 350th character (the maximum length
for an item) and puts the remaining text into a note.

For more information about how TXT2STF processes a text file, see
Chapter 2.

The /D option of the TXT25TF command specifies a definition file
that tells TXT2STF how to convert the text file. You must specify a
definition file that already exists. For information about how to
create a definition file, see Chapter 2.

The /D option has the following syntax:

Syntax
/ D=definition-file

6-4 Converting and Importing Text

Specifyinﬁ a
Difierent Name for
the Structured File

definition-file is the name of the definition file to use. You do not need
to specify an extension: TXT2STF automatically uses the extension
STE.

Example
CANAGENDA> txt2stf memo.all /d=memcony?

This example formats a text file called MEMO.ALL using the defini-
tion file MEMCONV1.DEF (TXT2STF automatically uses the exten-
sion .DEF.

Example
CANAGENDA> txt2stf news.txt /d=\def\wirenews.def

In this example, you specify a path since the definition file is not in
the current directory. The definition file that TXT2STF uses in the
above example is WIRENEWS.DEF in the DEF subdirectory.

The /O option of the TXT2STF command specifies another name for
the output (structured) file.

By default, TXT2STF converts the text file to a structured file with the
same name as the text file and the extension .STF; for example,
MEMO.STF. If this file already contains information, TXT2STF over-
writes the original information in that file when it puts the newly
formatted text into the structured file.

Use the /O option if you want the structured file to have a different
name. You might do this, for example, to save each structured file
TXT2STF creates for a given text file.

This is especially useful during debugging, when you run TXT2STF
each time you change the definition file. If you specify a different
structured file each time you run TXT2STF, you can compare the
results of each change you make to the definition file. For more infor-
mation about debugging a definition file, see Chapter 7.

The /O option has the following syntax:

Syntax
/O=structured-file

structured-file is the name of the structured file in which TXT2STF
puts formatted text. Do not specify an extension; TXT2STF automati-
cally gives the output file the extension .STF.

Specifying an
Alternate
Separator
Character for a
Text File

Converting and importing Text 6-5

Example
CANAGENDA> txt2stf memo.all /o=runl

In this example, TXT2STF puts formatted text in the structured file
RUNTI.STF, even though the text file is named MEMOQO.ALL.

You can also specify a path with the /O option.

Example
CANAGENDA> txt2stf events.txt /o=\stflcalendar

The /S option of the TXT25TF command specifies an alternate sepa-
rator character for paragraphs in the text file. When TXT2STF
encounters {wo consecutive paragraph separator characters in a text
file, TXT25TF begins a new paragraph.

The default separator character is the carriage return (ASCII
decimal 13). You can use the /S option to specify a different separa-
tor character if the paragraphs in your text file are separated with a
different character.

The /S option has the following syntax:

Syntax
/S=separator-character

separator-character specifies the character TXT2STF uses as the para-
graph separator character. You can use the following as separator
characters with the /S option:

* Any keyboard character, such as a comma (,) or period ()
* A three-digit decimal ASCII code preceded by a backslash (\)

Note To use a backslash (\) as a separator character, you must
enter two backslash characters (s=\\).

Examples
CANAGENDA> txt2stf news.txt /s=,

The preceding example specifies the comma (,) as the separator char-
acter. Each time TXT2STF encounters fwo commas in a row, TXT2STF
starts a new paragraph.

CANAGENDA> txt2stf news.txt /s5=\010

The preceding example specifies the three-digit ASCII decimal code
for a linefeed as the separator character.

6-6 Converting and Importing Text

Converting More
Than One
Text File

You might want to convert more than one text file into a single struc-
tured file. For example, you might want to format a group of files
that each contains information about clients.

You can convert all the text files at one time if the files have similar
names. In this case, you can use a wild card character to specify a
group of files.

If you want to put the converted files into a single structured file, use
the /O option when you run TXT2STF. If you omit the /O, TXT25TF
creates a separate structured file for each text file it converts.

Example
CANAGENDA> £xt2stf *.inf /o=allinf

In this example, TXT2STF converts all files that have an extension of
INF, and puts the results in a single structured file named
ALLINF.STF.

For more information about wildcard characters, see your operating
system manual.

Importing the Structured File

After you create a structured file, you can import it into an Agenda
file. Agenda uses the information in the structured file to create
itemns, categories, and notes.

Note Before importing a structured file, make sure you have thor-
oughly debugged the definition file that produced the struc-
tured file, as described in Chapter 7.

To import a structured file:
1. Start Agenda and open a file.

2. Press F10(MENUD) and select File Transfer Import.

Agenda displays the Import Structured File box, which lets you
specify the type of information you want Agenda to import from
the structured file.

3. Complete the Import Structured File settings and press ENTER.

Converting and Importing Text 6-7

Agenda imports items and categories from the structured file, and
assigns the items to categories, according to the choices you specify in
the Import Structured File settings. You can specify whether you
want to import everything in the structured file, or only information
that is new in the structured file since the last time you imported the
same file. You also use the Import Structured File box to specify the
types of information to import.

For details about the File Transfer Import command and the Import
Structured File box, see Chapter 23 in the User's Guide.

You can import any or all of the following types of information:

¢ [ltems along with notes

» Category assignments {assignment of items to existing categories)
* New categories referenced in assignments

* New categories that are explicitly created in the structured file
(created as independent categories and assigned to blank items on
import)

You also can use Import Structured File settings to specify
* A category to which all imported items are assigned

* The criteria Agenda should use to determine whether categories
in the structured file match categories in the Agenda file

* Whether Agenda should eliminate single carriage returns when it
imports notes

Note After you import a structured file, Agenda tests items against
all conditions in the file. If you have a large struciured file
and a complex Agenda file, this can take a significant amount
of ime. You may want to disable conditions before you
import the structured file. (See Chapter 19 in the User’s Guide.)

Chapter 7

Debugging a Definition File

In this Chapter

Writing a definition file is like writing a computer program; you may
need to make some changes before it works the way you want. For
example, the first time you use the definition file, you might discover
that TXT2STF converts your text file in a way different from what
you want. You might find out that it ignores certain items, catego-
ries, or notes that you want converted.

The process of using a definition file, evaluating the results, and
changing the definition file to work the way you want is called
debugging.

This chapter describes procedures and strategies for debugging a def-
inition file, and provides additional information to help you write
and debug definition files.

This chapter describes

* Procedures for debugging a definition file

s Testing a definition file

» Examining the converted information in the structured file

» Typical problems encountered during debugging and possible
solutions

* Tips and techniques for writing better definition files

7-2 Debugging a Definition File

Procedures for Debugging a Definition File

To debug a definition file, you typically perform the following gen-
eral procedures:

1. Test the definition file by running TXT2STF to convert a sample
text file.

2. Look at the resulting structured file to examine the converted
information that TXT2STF creates. Also note error messages if
TXT2STF displays any. If the results are not what you want,
perform Step 3.

3. Modify the definition file. When you think you’ve corrected the
problems in the definition file, return to Step 1.

This chapter describes how to test the definition file and look at the
resulting structured file. To modify a definition file, see "Writing the
Definition File Patterns and Commands” in Chapter 2.

You perform the above series of steps, modifying the definition file
and checking the results, until the definition file consistently returns
satisfactory results. Since TXT2STF does not modify your text file,
you can run TXT25TF to convert your text file as many times as nec-
essary.

You may find it helpful to start by running TXT2STF on a small sam-
ple version of your text file. Then, when the definition file correctly
converts information in that sample, you can test a more complicated
text file and evaluate the results.

You are finished debugging your definition file when TXT2STF runs
without displaying error messages and the structured file contains
the information you want. At this point, you can import the strue-
tured file into Agenda. If you are developing the definition file for
other users, you can distribute the definition file to them when you
finish debugging it.

Testing a Definition File

To determine whether a definition file works the way you want, you
need to {ry using it with TXT2STF. To name your definition file,
include the /D option in the TXT2STF command. For more informa-
tion about running TXT2STF, see Chapter 6.

Naming a
Structured
File

Including
Debugging
Options

Debugging a Definition File 7-3

TXT2STF puts the text it converts into a structured file. By default,
TXT2STF creates a structured file with the same name as the text file
and the extension .STF. For example, TXT25TF creates a structured
file named MEMOQO.STF for a text file named MEMO.DOC.

When you debug a definition file, you may want to name a new
structured file each time you change the definition file and run
TXT2STF. This way, you can compare the results of each change you
make to the definition file.

To specify a structured file, include the /O option in the TXT25TF
command. For more information, see "Specifying a Different Name
for the Structured File” in Chapter 6. :

TXT2STF provides several debugging options to help you see how
TXT2STF uses your definition file to convert the text file. These
options tell TXT2STF to display information and return messages
about its activities while it converts your text file.

You can specify any or all of the following debugging options when
you run TXT2STE:

Option With this option, TXT2STF

/A Uses all debugging options (/L, /M, /T, /U, and /V)

/L Displays the current text line when TXT25TF loads or modifies it

/M Displays the text strings that match patterns that start definition file
statements

/T Displays each definition file command when it's executed

/U Displays each category that TXT25TF creates

A Displays the contents of each variable every time it's modified

For information about other TXT25TF command-line options, see
Chapter 6.

7-4 Debugging a Definition File

Redirecting Error
Messages to a File

By default, TXT2STF displays error messages on your screen. So that
you can examine these messages later, you can redirect them to a file
by using the redirection symbol defined by your operating system
(for example, > filename) when you run TXT2STF.

Example
CANAGENDA> txt2stf xfer.txt /d=xfer /a > msgs

In this example, TXT2STF converts text file XFER.TXT using defini-
tion file XFER.DEF. TXT2STF puts debugging information in the file
MSGS.

Examining the Converted Information

Examining the
Structured File

To see how TXT2STF uses the definition file to convert the text file,
you can examine the results. To do this you can

* Examine the structured file that TXT2STF creates
* Examine the debugging information returned by TXT2STF

* Import the converted information in the structured file into
Agenda and examine it

You examine the contents of the structured file to determine if the
definition file made the correct text into items, categories, and notes.

When you examine a structured file, you see that the structured file
contains these text elements embedded in special tags that Agenda
uses to import the text correctly. For example, the {C} tag indicates
text to be imported as a category. For information about how to read
the tags in structured files, see Appendix B.

You can examine a structured file by using any text processor that
displays text files. If you redirect TXT2STF debugging information to
a file, you also can examine the file using a text processor that dis-
plays ASCII files.

If you expect either file to be relatively short, you can use your oper-
ating system type/display command to quickly view the contents of
the file on your screen. This command typically, however, does not
let you page back and forth through the contents of a file in the way
that a text processor does.

Debugging a Definition File 7-5

Example
CNAGENDA>» type ocutfile.stf | more

The above sample command displays the contents of structured file
OUTFILE.STF.

If text in the structured file looks different from what you want, you
need to modify the definition file based on the problems you identify
in the structured file. Consult "Typical Problems and Solutions" later
in this chapter for some ideas.

Importing the When you are satisfied with the contents of the structured file, you
Convertgd can import it into your Agenda file.
Information

Caution To keep your Agenda file from containing incorrectly con-
verted information, you should wait to import information
until after the contents of the structured file indicate that
you have thoroughly debugged the definition file.

To import the converted information into Agenda, see "Importing a
Structured File" in Chapter 6.

Typical Problems and Solutions

There are three major types of errors that can occur when you run
TXT2STF with definition files:

¢ Syntax errors in statements
¢ Pattern matching problems
* Converting information incorrectly from a text line

If you have a syntax error in any statements, TXT25TF displays an
error message. For explanations of TXT25TF error messages, see
Appendix D.

Other problems in your definition file, such as pattern matching
problems, typically cause the structured file to contain incorrect infor-
mation. For example, lines from your text file might be omitted from
your structured file, or might be converted incorrectly.

7-6 Debugging a Definition File

Testing for
Pattern Matching

Some reasons why lines from your text file might not be copied to the
structured file include:

* The line is not converted, and thus not copied, because it does not
match the intended pattern.

* The line matches the pattern, but is never tested against that pat-
tern.

To find out if a text line matches the intended pattern, create a defini-
tion file that includes only the statement intended to match the line.
Run TXT2STF using this single-statement definition file, and include
the /L and /M debugging options. (See "Including Debugging
Options" earlier in this chapter.)

* /M shows you exactly where each text line matches a patternin a
statement.

¢ /L displays the text line if TXT2STF matches it, and every time
TXT25TF changes it.

If the text line does not match the intended statement, you need to
modify the pattern in the statement.

If the text line does match the statement, consider whether:

¢ An earlier statement in the original definition file matches the
text line,

In this case, TXT25TF uses the earlier statement to convert the text
line and never uses the intended statement. Remember that once
TXT2STF finds a pattern that matches the text line, it does not
search any further.

Try refining the patterns or changing the order of statements in
the definition file. Make sure that statements that include the gen-
eral patterns occur after statements with specific patterns in the
definition file. For more information about statement order in
definition files, see "Tips and Techniques” later in this chapter.

Also check @skip_lines commands in previous definition file
statements to see whether they cause TXT2STF to skip over the
line you want to convert. This occurs if @skip_lines matches a
pattern on the line you want to convert or on a later line in the text
file. To fix this problem, you can generally put the converting
commands in the same statement as the @skip_lines command.
The /L option can tell you where the @skip_lines command
skipped to.

Testing How
Information
Is Converted

Debugging a Definition File 7-7

* The commands in the intended statement convert information dif-
ferently from what you want.

In this case, you can examine the information returned by the /L
debugging option to see how the text line is modified by com-
mands. For additional solutions, see "Testing [How Information Is
Converted."

To determine if either or both of these situations apply, you can
examine the original definition file. Also, consider running TXT2STF
again, using the original definifion file and the /L and /M options.

Even though a text line matches the intended statement, the com-
mands in the statement may not convert the line in the way you
want. There are several reasons why this might occur.

To find out why information is converted incorrectly, you need to
analyze how each command in the statement converts the text. For
each text line that is not converted how you want, run TXT25TF using
a definition file that includes only the statement intended to convert
the text line. Also include debugging options in the TXT2STF com-
mand. (See "Including Debugging Options" earlier in this chapter.)

» To focus on how the text line is formatted, include the /L /T, and
/V options in the TXT25TF command.

/T displays each command when TXT2STF executes it. /L dis-
plays the contents of the text line each time TXT2STF changes it.
/V displays the contents of each variable whenever TXT2STF
modifies the variable. This is important if you use variable com-
mands, such as @grab, to convert text lines.

* To see how TXT2STF creates categories, consider turning on all
debugging options by including the /A option in the TXT2STF
command.

/A provides the most complete debugging information. In early
stages of debugging, however, this option may provide more
information than you need.

Typical reasons why a text line is converted differently from what
you want:

¢ The line might be altered incorrectly by a trimming command.

For example, the command might trim text that you want to con-
vert. The /L option helps you find this problem by displaying the
current line after each trimming command changes it.

7-8 Debugging a Definition File

* Commands such as @grab and @trim, which create variables,
might incorrectly put values into variables.

The /V option helps you find this problem by displaying vari-
ables each time they are created or modified. If this occurs, it is
likely that you need to modify an argument in the command, such
as the separator pattern in @grab or the start and end patterns in
trim.

* An @skip_lines command might make the text line unavailable.

A @skip _lines in the current definition file statement might skip
over the text line you want to convert. In this case, the line is
unavailable for conversion. Use the /1. option to see which line
@skip_lines skips to.

* Patterns included as parameters within commands might require
adjustment.

For example, you can specify a pattern to tell TXT2STF where an
item or a note ends. If these patterns are incorrect, TXT2STF con-
verts different portions of text than the portions you want.

Tips and Techniques

Writing Patterns

This section lists suggestions to help you write better definition files.

In general, it is a good idea to write patterns that explicitly describe
the text to be matched. Include in the pattern as many actual charac-
ters from the string as you can. Specifying explicit patterns increases
the likelihood that the correct text lines will match the pattern.

Even when using a generic pattern, try to be as exact as possible. For
example, consider the generic pattern used in the sample definition
file constructed in Chapter 1. That pattern, "**\:", matches lines
starting with either To: and From: and thereby enables you to write
one statement to handle two different text lines.

However, this pattern really matches an entire text line, as specified
by the combination caret ("), period (.}, and asterisk (*). Then,
TXT2STF searches the line backward, character by character, to find a
colon (:). (The backslash (\) tells TXT2STF to match the colon (:) as a
text character and to ignore its special meaning in match-control
characters.) The matching string consists of the entire line up to the

Ordering
Statements

Debugging a Definition File 7-9

Iast colon (2} in the line, which is acceptable for the example in
Chapter 1, but could cause problems for text lines that include more
than one colon (3).

A different pattern that also matches To: and From: is

"ML\, which matches an entire text line up through the first
colon (:). This pattern starts at the beginning of a text line, and
matches each character that is not a colon (2). If it finds a colon (@) in
the line, the text from the start of the line up to the colon (:) matches
the pattern. If the line does not contain a colon (3}, the line does not
match the pattern. (See "How TXT2STF Compares Patterns with
Strings" in Chapter 4.).

Other tips for writing patterns:
* Analyze negative patterns carefully.

A negative pattern uses the tilde (~) to match text that is nof the
pattern. Typically, many text lines can match a negative pattern.
For example, the pattern ""~Tuesday" matches any line that does
not start with the word Tuesday.

When you need to use a negative pattern, anchor the pattern to a
fixed characteristic of the string, such as the start or end of the
line. This makes the pattern more likely to match only those text
strings for which it is intended.

When vou use a statement starting with a negative pattern, make
sure the statement is located toward the end of the definition file.
For more information about negative patterns, see the discussion
of the tilde character in Chapter 4.

¢ If youneed to use a complicated pattern more than once as an
argument in definition file commands, consider using @equate to
assign the pattern to a variable. This way you need to debug the
pattern only one time. You can then use the variable that contains
the pattern in every command where you need the pattern. Fur-
thermore, if you need that pattern in another definition file, you
can copy the @equate command into that definition file and use
the variable there.

The order of statements can significantly affects how the definition
file converts text lines in the file.

This is because the definition file does not operate like a procedural
program, but more like a list of different actions to take when
TXT25TF finds specific text strings in a text file. Each definition file

7-10 Debugging a Definition File

Skipping
Over Text

statement describes an action to take. When TXT2STF matches a text
line with a definition file statement, it executes the commands in the
matching statement,

Each definition file statement begins with a pattern that describes the
line to be converted by the statement. TXT2STF converts a text file
line by line, one text line after the other. For each new text line to be
converted, TXT2STF compares the line to statements in the definition
file, starting from the beginning of the definition file, searching for a
pattern that the text line matches.

For this reaseon, it is important to organize the statements so that the
first pattern matched by a text line is the correct pattern. In general, it
is a good idea to put specific patterns, which exactly match particular
lines, early in the file. This way, text lines for which specific patterns
exist match their patterns right away.

Sometimes it is useful to have a statement match more than one line.
For example, you might want to match both the To and From lines in
an electronic mail file and use the same commands to convert both
lines into categories.

Statements that are generic enough to match more than one lines
should be put toward the end of the definition file. Statements with
specific patterns should be put toward the start of the definition file.
This way TXT2STF compares a text line with all specific patterns,
which are eatly in the definition file, before comparing it with generic
patterns.

When converting text in a text file, you might need to skip over text
on a specific text line. You also might need to skip over entire lines of
text.

If you need to selectively convert portions of a single text line, use
trimming commands such as @trim, @skip, @strip, and @replace.
@trim is especially useful, since it saves the text it trims in variables
S0 you can use the trimmed text later in the file conversion process.

Put the trimming commands for a text line before any commands that
convert the line into item text, a category, or a note.

If you need to construct a single item, category, or note from text that
is separated by intervening material in the text file, construct your
statement as described below.

* Use the pattern to locate the start of the item, category, or note,
and use the appropriate command to convert it.

Debugging a Definition File 7-11

* Next use the @skip_lines command to skip over the irrelevant
material. You can delete several lines of unwanted text in the
middle of an item or note.

¢ Finally, use another @item?2 or @note command to append the rest
of the text to an item or note.

For example, Figure 7-1 shows a sample text file.

Name: Lynne George

Req: Job Posting FA-1290

Address: 10 Holstream Rd.
Jamaica Plain, MA 02130

D.O.B: 4-7-58

Social Security: 123-45-6789

Degree Program: Fashion Design

Work Experience: ART. costumes

Comments: Lynne has taken two semesters
of Pattern Making

Figure 7-1 Sample text file

Figure 7-2 shows a definition file that makes the name into an item,
starts a note at the Req line, and then skips the information until
D.0.B. It puts information until Degree into the note, then makes the
degree program a category. The text following the degree is
appended to the note that was started above.

7-12 Debugging a Definition File

Handling More
Than One
Text Layout

#Convert student informatieon to .STF format

#5kip over "Name:" and make item from name con the line
"AName\ " @start {}

@skip("\: +",1)

Ritem2 ("&")
#Start ncte after skipping "Req:", skip over address,
#and add DOB to Degree into note
rlAReq\:u @Skip{"\: +n’1)

Anote {("$")

@skip lines (""D.0.B")
@note (""Degree”)

#Skip over "Degree Program:" and make degree into
#category under category Program

uADegreerl @Skip("\: +u’1)
@category ("§", "Frogram™,)

#2dd all of Work experience and Comments lines to end
#of note

"“Work™ @Gnote ("Name")
Rend ()

Figure 7-2 Definition file for converting student information
text file

When the resulting structured file is imported into Agenda, the name
Lynne George is added as an item and is assigned to the category
Fashion Design. The item has a note that contains various informa-
tion about the candidate Lynne George. The category Fashion Design
is added as a child of Program, which is itself a child of the current
category specified when you use the File Transfer Import command.

You may need to write a definition file that can handle more than one
text layout. For example, it might need to convert electronic mail
messages whose topics are labeled either by Subject: or Re:, or that
end in several different ways depending on the electronic mail
source.

When you add statements to the definition file, make sure you add
statements whose patterns match each differing layout. For example,
add a statement that matches and converts a topic line that starts with
Subject:, and another statement for a topic line that starts with Re:.

Creating More
Than One
ltem

Debugging & Definition File 7-13

If the text can end in more than one way, include a statement of the
form:

END @end()

The above statement executes @end, and copies the current item to
the structured file when TXT2STF reaches the end of the text file.
Without an @end, TXT2STF stops processing the text file without
copying the item it created to the structured file.

You may want to create more than one item from the information in a
text file. For example, a text file can contain several electronic mail
messages, in which case you might want to create a new item for each
message.

To create an item, you add statements to the definition file, each of
which converts appropriate lines in the text file. Commands in each
statement create the item, an item note, and one or more categories
from the text file, as appropriate.

After the definition file creates each item, it should execute an @end
to copy the item to the structured file. Then, TXT2STF can create
another item by converting the next text lines in the text file.

If the text can end in more than one way, it might be useful to end
each item by searching for the start of the next occurrence of text in
the file (for example, the next electronic mail message). Then, make
@end the first command in the statement followed by the commands
that convert the matched text line. To write the very last item to the
structured file, include a statement of the form:

END @end()

The following strategies describe typical situations when you may
want to create more than one item from a text file:

¢ The text file contains multiple occurrences of the same type of
information (for example, several electronic mail messages).

In this case, each message has basically the same layout and can
be converted by the same group of statements. At the end of each
item (for example, the end of each message), execute @end. End
the definition file with the statement END @end, as described
above.

« The text file contains different types of information (for example,
both electronic mail and telex messages).

7-14 Debugging a Definition File

In this case, you must add definition file statements that can han-
dle each type of information in the file.

I the types of information differ significantly in layout, you may
need to organize the statements for each layout into separate
groups, each with its own pair of @start and @end commands.
Even if differences in the file formats do not require separate state-
ment groupings, you might prefer to group them separately to
improves the readability of the definition file.

Appendix A
What’s New in TXT2STF for Agenda 2.0

New features have been added to TXT2STF to support Agenda 2.0
features and also to enhance TXT2STF performance and give you
greater control over how TXT2STF converts text files into structured
files.

In this Appendix

This appendix describes changes in
¢ Running TXT2STF

¢ Definition files, including changes in patterns and commands
(previously called actions)

¢ Structured file tags

Running TXT2STF

You run TXT2STF to convert the contents of a text file into items,
categories, and notes. TXT2STF puts the items, categories, and notes
in a structured file, which you can then import into Agenda.

The following differences apply whenever you run TXT2STF:

¢ TXT2STF runs faster than in Agenda 1.0. Comments in definition
files do not slow performance.

¢ New error and warning messages describe situations that arise
when TXT2STF converts a text file to a structured file. (See
Appendix D.)

A-1

A-2 What's New in TXT2STF for Agenda 2.0

Definition Files

* New debugging options for use with definition files replace the
TXT2STF debugging options used in Agenda 1.0 (see below).

TXT2STF still supports the /C, /D, and /O command-line options
that you can use whenever you run TXT2S5TF (even when you do not
use a definition file). For more information about running TXT25TF
and using these options, see Chapter 6.

You also specify TXT25TF debugging options in the TXT2STF com-
mand line. The new TXT2STF debugging options are

Option With this option, TXT2STF

/A Uses all debugging options (/L, /M, /T, /U, and /V)

/L Displays the current text line when TXT2STF loads or modifies it

/M Displays the text strings that match patterns that start definition file
statements

/T Displays each definition file command when it's executed

/U Displays each category that TXT25TF creates

/v Displays the contents of each variable every time it's modified

For more information about TXT2STF debugging options, see
Chapter 7.

You can create definition files to give TXT2STF instructions about
how to convert text files into structured files.

When you continue a definition file statement to another line, you no
longer need to start the continued line with a backslash (\). (You still
must, however, make sure that you split the statement between com-
mands and that you don’t split a command to two lines.) TXT2STF
still accepts backslashes (\) at the start of a line, so you do not need to
remove the backslashes (\) from existing definition files.

Patterns

What’s New in TXT2STF for Agenda 2.0 A-3

Patterns describe a text string that you want the definition file to
match. For details about patterns see Chapter 4.

Changes have been made to the match-control characters you can
specify in a pattern and to the number of character classes you can
include in a pattern.

Match-control characters
The following changes have been made to match-control characters:

Match-control chavacter Changes

Caret (") Must be the first character in the entire pattern; for
example ""Hardware | ASoftware” must now be
written as "“{Hardware | Software)" and
"Re\: | ASubject’:” must be "Subject: | Re\:"

Dollar sign ($) Must be the last character in the entire pattern; for
example "follows$ | below$" must now be written as
“(follows i below)$" and "emblem$ | sign" must be
"sign | emblem$"

Exclamation point (1} No longer supported as the NOT character (see Tilde,
below)

Parentheses () Can be a maximum of 10 nesting levels defined by
nested parentheses in a pattern

Square brackets ([]} Ts always case-sensitive, regardless of whether you
specify the /C command line option in the TXT25TF
command

Tilde (~) {New) Matches any line that contains a string that is
not the pattern; creates a negative pattern, but works
differently than the exclamation peint (! did in
Agenda 1.0

Character classes

A character class is defined by colon a (:a), colon d (:d), colon n (:n),
colon space {: }, and by each range/group specification made in
brackets ([]). TXT2STF now restricts you to a maximum of eight
character classes per command.

A-4 What's New in TXT2STF for Agenda 2.0

Definition File
Commands

Definition file commands, called actions in Agenda 1.0, tell TXT2STF
how to convert the current line into item, category, or note text. For
details about definition file commands, see Chapter 5.

With Agenda 2.0, you have more flexibility in using variables in com-
mands. Several new commands have been added and existing com-
mands have been changed to let you take advantage of new Agenda
and TXT2STF features.

Variables

You can now take much more advantage of variables in TXT2STF
commands. For example, you can now use @trim to put text from a
text line in a variable, which lets you use the trimmed text in later
commands or statements. New commands @append and @grab put
text in variables, which makes it easier to use variables as argumenls
in definition file commands and gives you more flexibility in writing
definition files.

New commands
TXT2STF provides the following new commands:

New command Description

@append Adds a string to the end of the current contents of the
variable

@append_item Appends a string to the end of the item currently being
constructed from the text file

@append _note Appends a string to the end of the current note

@grab Divides the current text line into several values, and puts
each value into a variable

@item?2 Creates an item using text from the text file; is an alterna-
tive to @item that provides greater control over how
TXT2STF constructs an item

@numeric Creates an assignment to a numeric category

@unindexed Creates an assignment to an unindexed category

What's New in TXT2STF for Agenda 2.0 A-5

Changed commands
Changes and enhancements have been made to the following com-

mands:

Existing command

Changes made to the command

@category
and
@custom_category

@date

@make_external_note

@table

@trim

Can specify the ancestors of a parent category (en-
hancement to the second argument)

Can now create "date", "exclusive”, "numeric”, "stan-
dard", and "unindexed" categories (enhancement to
the third command argument)

Can now name any date category and optionally
identify a date value (such as 11/01/90) for the date
category (enhancement to the first command argu-
ment; new optional second argument)

Can now create note files that contain more than
10,000 characters

Gives you greater flexibility in converting tabular
information and lets you create any type of category
(new argument list}

Can put trimmed text in a variable (new optional
fourth argument)

Structured File Tags

A structured file contains text for items, categories, and notes. This
text is embedded in structured file tags, which tell Agenda how to

import the text.

A-6 What's New in TXT2STF for Agenda 2.0

Changes have been made to the following structured file tags:

Tag Change

{C} {C] can now create date, exclusive, numeric, standard, and unin-
dexed categories. For date, numeric, and unindexed categories, the
final term in the category specification is the value associated with
the category, such as the date.

Special characters specify the type of category to create. The escape
character (%) lets you include any of these special category charac-
ters as normal text characters if necessary.

{STF) {STT} specifies header information for the structured file using a new
format. This new header tells Agenda that the structured file con-
tains structured file tags for Agenda 2.0.

Agenda still accepts structured files created with the Agenda 1.0
header; however, if the structured file contains Agenda 2.0 struc-
tured file tags, the information may be imported differently than
how you want. For example, date, numeric, and unindexed
categories would be imported as unindexed categories.

Appendix B
Structured Files

TXT2STF converts text from a text file, placing the converted text in a
specially formatted file called a structured file. A structured file con-
tains text that is structured in a way that Agenda can import.

After you create a structured file, you use the Agenda File Transfer
Import command to import the structured file. For more informa-
tion, see "Importing the Structured File” in Chapter 6.

You can also use your own software products or tools to create a
structured file. In this case, you must create a structured file that
conforms to the layout described in this chapter.

This appendix provides information to help you examine a structured
file when you debug a definition file. It also provides information
you need to know if you are creating your own structured file.

In this Appendix

This appendix describes the layout of structured files by providing
* An overview of structured files
¢ A description of structured file tags

» Sample structured files that you can use to see how text in a struc-
tured file typically looks

About Structured Files

A structured file includes information that is ready to be imported
into Agenda. TXT2STF creates a structured file whenever you run
TXT2STF to convert a text file or when you export from Agenda.

B-2 Structured Files

What a
Structured
File Contains

You need to be familiar with structured files and what they contain
when you debug a definition file. By examining the definition file,
you can quickly see how TXT2STF interprets the definition file state-
ments. For example, you can see whether TXT2STF converted the
proper text into items and assigned items to categories in the way
you want.

You should also be familiar with structured files if you create your
own structured files using a programming language, such as BASIC
or PASCAL. The program you write to create the structured file must
structure text so that Agenda can import the text in the way you
want.

For more information about importing a structured file, see "Import-
ing the Structured File" in Chapter 6. For additional information
about importing files, see Chapter 23 of the User’s Guide.

Note If users are sharing a structured file on a Local Area Network
(LAN), they all can see the contents of any structured files, as
long as the structured files are unprotected. However, only
the first user to open a structured file can modify it. Thus, if a
file is being modified, other users can see the file and use its
contents but cannot make changes to it. Changes made to the
structured file cannot be seen by other users on the LAN until
the user making the changes exits from the structured file.
For information on file reservation, see Appendix F of the
User’s Guide.

A structured file contains text to be imported into an Agenda file,
with tags that tell Agenda how to import the text. For example, tags
specify which text to use as items, categories, and notes, and which
date format to use when importing dates.

Structured file tags are special codes that provide instructions to
Agenda. Each structured file tag is enclosed in a pair of braces ({ });
for example, {I}. Structured file tags can create

* One or more items, each item having related categories and a note
* One or more independent categories (not assigned to items)

* Independent notes (attached to blank items on import)

A structured file can contain tags to create any or all of these.

You can examine a structured file using any text processor that can
read ASCII text files. Itis very helpful to look at a structured file
when you are debugging the definition file that created it.

Creating Your
Own Structured
File

Structured Files B-3

You can create your own structured file. This may be useful, for
example, if you have a text file that cannot easily be formatted using
TXT25TF (for example, you need to perform branching or conditional
operations), or if you are already familiar with a programming lan-
guage such as BASIC or PASCAL, and would prefer to use that lan-

guage.
It you create your own structured file, keep in mind that the file must

be a text file, must include structured file tags in the proper format,
and must have an extension of .STF.

Structured File Tags

Structured file tags tell Agenda how to import the text in the struc-
tured file. For example, the {C} tag tells Agenda that the immediately
following text should be imported as a category. The {N] tag
indicates where note text begins.

Agenda provides structured file tags that
¢ Begin a structured file

¢ (Create comment text {(a block of text that contains information that
Agenda ignores on import)

* Specify the format of dates in the structured file, so Agenda can
correctly import subsequent dates

¢ (reate notes
¢ (reate categories (category and family, with any associated notes)
* Create items (item and associated categories, notes, and dates)

TXT25TF includes structured file tags in text when it copies the con-
tents of the current item, category, and note buffers created by
converting a text file to the structured file. If you construct your own
structured file, you must make sure to include the correct tags.

The following table lists the tags that can be included in structured
files. Tags must be in the same case (lowercase or uppercase) as
shown in this table.

B-4 Structured Files

Tag Meaning

{d} Specifies a date format, such as MM/DD/YY

{C} Beginning of a category specification (the category and family, with
any associated notes)

D} Dane date

{F} Beginning of a category note

{E} Entry date

(G} Name of the note file for the category

I Beginning of an item specification (the item and associated catego-
ries, and notes)

N} Beginning of an item note

{0} Name of the note file for an item

{s} Beginning of comment text to be ignored when imported

[STF} Header that begins a structured file

{T}) Beginning of the text of an item

fw} When date

{]
{1

End of a category specification

End of an item specification

Figure B-1 shows a sample structured file containing structured file
tags. This example contains information converted from a sample
MCI Mail® file,

Structured File
Header Tag

Structured Files B-5

#Processing electronic mail messages

{STF}11/19/90;11:54:49;002

{n

{T) Weekly Sales Update

{CheeN Alan Stewart %/ MCIID: 234-5678{.}

{CINTo\ Pam Crawford %/ MCIL1D: 567-89011{.}

{[CI\To\ * Paul Kyn %/ MCI ID: 890-1234{.}

{C\From\ Lynne George %/ MCIID: 123-45671.}

{CI\Entry@ 1 Mon November 19, 1990 9:24am GMT{.)
{CIAMail\NE-Mail{.}

{N} WEEKLY SALES UPDATE: Week of 11/16/90
Northeast/Mid-Atlantic:

October goal of 70,000 met due to success of CopyCat and Stratford copiers;
hiring of two new personnel for fall school promotions (Henry Clarkman -
Hartford, Ct., Jennine Powell, New York City schools); regional sales meeting
Monday 12/3/90.

Hh

Figure B-1 Sample structured file

The above sample creates a single item, whose text is Weekly Sales
Update. It adds the item to the cc, To, From, and Mail categories, and
assigns it an Entry date of Mon November 19, 1990. All text after the
{N} is a note for the item. The entire item specification starts with {I}
and ends with {!}.

The remainder of this chapter describes the types of tags that can be
included in a structured file, and gives additional information about
how Agenda interprets tags and the structured information they
identify.

[{STF! starts a structured file. This tag must be the tag in the struc-
tured file. The following information occurs on the same line, imme-
diately after this tag:

* The date and time when the structured file was created; the date is
in MM/DD/YY format and the time uses a 24-hour clock

* A revision number that tells Agenda which revision of structured
tile tags are in the file; for Agenda release 2.0, this revision num-
ber value must be 002 (with leading zeros)

A semicolon (;} separates the date from the time and the time from
the revision number.

Note If the header is incorrect, structures new to Agenda Release
2.0 will not be imported as expected. For example, all date
and numeric categories are imported as unindexed categories.

B-6 Structured Files

Comment Tag

Date Format Tags

Figure B-2 shows a sample structured file header line.

{STF}11/02/90;15:20:11;002

Figure B-2 Sample header line

If you create your own structured file, make sure you use the format
shown in Figure B-2. Notice that the date must be in the default
Agenda format of MM/DD/YY, and that the header must end with
the number 002,

{S} begins comment text in the body of the structured file. Comments
let you describe what a structured file or its tags do. For example,
you can include comments to describe how a group of tags organizes
information to be imported.

Agenda ignores comment lines when it imports information from the
structured file. Agenda ignores any text between {S} and either the
next tag in the structured file or the end of the structured file.

Date format tags specify the format of dates and times in the struc-
tured file. Onimport, Agenda uses the date format specification to
interpret dates in the structured file.

By default, Agenda assumes that dates in the structured file are in the
format MM/DD/YY and use a 24-hour clock. If dates in the text file
have a different format, the structured file must specify the format
before specifying any date values. You can omit date format tags if all
dates are specified either in the default format (MM/DD/YY) orin a
combination of words and numbers, as in "Thursday November 8,
1990".

Note The date format tag does not affect the date and time speci-
fied in the (STF) tag, which must specify a date in
MM/DD/YY format and time using a 24-hour clock.

TXT25TF adds a date format tag to the structured file when it
execuites @date format command in a definition file.

The following table lists the valid date format tags and the date for-
mats they specify.

Note These are only a subset of the date formats supported by
Agenda. (See Chapter 7 in the User’s Guide.)

Structured Files B-7

Format number

Associated date format

Associated time format

1 MM/DD/YY 24-hour clock
2 DD/MM/YY 24-hour clock
3 DD.MM.YY 24-hour clock
4 YY-MM-DD 24-hour clock
5 DD-MMM 24-hour clock
6 DD-MMM-YY 24-hour clock
7 MM/DD/YY 12-hour clock
8 DD/MM/YY 12-hour clock
9 DD.MM.YY 12-hour clock
10 YY-MM-DD 12-hour clock
11 DD-MMM 12-hour clock
12 DD-MMM-YY 12-hour clock
Note Each date format tag must contain a lowercase d, and must be

immediately followed by the format number as shown in the
above table.

Figure B-3 shows an example of using date format tags.

{d)2
{CINActivity Date@1 15/11/90{.}
{C)\Start Date@: Thu November 15, 1990 3:44pm GMT.{)

{dh

[C}\Start Date@:1 11/19/90(.)

Figure B-3 Sample date format tags

The example in Figure B-3 begins with a (d}2 tag, which specifies that
the structured file contains dates in the format DD/MM/YY. The
next two {C} tags create date categories; each category specification
starts with {C} and ends with {.}. The {d}2 tag applies to the first {C}
in the pair, which adds a date in the DD/MM/YY format. The {d}2
tag does not apply to the second {C} specification, since the date
value in that specification contains both words and numbers.

B-8 Structured Files

Note Tags

The {d}1 tag then changes the date format to MM/DD/YY format.
This tells Agenda that subsequent date values in the structured file
are in MM/DD/YY format. This {d}1 enables Agenda to import the
date in the immediately following {C) specification, which is in
MM/DD/YY format.

For more information about the {C} tag for specifying categories and
dates see "Category Tags" later in this Appendix.

Note tags identify note text to be imported, or the name of a note file
to be used by an item or category. The following table lists the note
tags that can be included in a structured file.

Tag Meaning

{F} Beginning of a category note
{Gl Name of the note file for the category
{N} Beginning of an item note

{O} Name of the note file for an item

Caution A note can be a maximum of 10,000 characters. When
Agenda imports a note that is longer than this maximum,
it truncates the remainder of the imported note text when
the note reaches 10,000 characters in length. Item text can
contribute to the size of a note, as described in "Item Tags”
later in this chapter.

Category notes

{F} and {G} identify category notes and must occur between tags that
create a category. (See "Category Tags" later in this appendix.)
Agenda adds the note to the specified category. If more than one
category note tag occurs in the category specification, Agenda uses
only the last one and discards the preceding note tags.

{F} starts a regular note. The note text to be imported follows imme-
diately after, on the same line. Agenda assumes that all remaining
text is note text until it encounters another structured file tag or
reaches the end of the structured file.

{G] identifies an external file to be attached as a note file. If {G}
identifies a note file that does not exist, Agenda asks you whether
you want to create it when you attempt to look at the note in the
Agenda file,

Structured Files B-9

Figure B-4 shows sample category note tags in a category specifica-
tion.

{CI\Client\
{Gle:\Agendaclients.Ist
{.}

Figure B-4 Sample category note tags

In Figure B-4, {C} and {.} begin and end the category specification, as
described in "Category Tags" later in this appendix. Within the cate-
gory specification, {G} instructs Agenda to make external file
AGENDANCLIENTS.LST the note file for the Client category.

Item notes

{N} and {O} identify notes. The location of the note tag determines
what Agenda does with the imported note.

 If the tag occurs between item tags, as described in "Ttem Tags,"
Agenda adds the note to the item.

 If the tag occurs outside of an item specification, Agenda creates
an empty item and adds the note to that item. This lets you
import a note without assigning it to an item or category.

If more than one note tag appears in an item specification, Agenda
uses only the last one and discards the preceding note tags.

{N!} starts a regular note. The note text to be imported follows imme-
diately after, on the same line. Agenda assumes that all remaining
text is note text until it encounters another structured file tag or
reaches the end of the structured file.

{O} identifies an external file to be attached as a note file. If ()
identifies a note file that does not exist, Agenda asks you whether

you want to create it when you try to look at the note in the Agenda
file.

Figure B-5 shows sample item note tags in an item specification.

B-10 Structured Files

Category Tags

B
[T} Sales Reward Dinner
{N}Allgrands Hearthside Inn
1234 Highway 1
West Linton, WA
(Just past the Lighthouse Mall on the left)
{1

Figure B-5 Sample item note tags

Figure B-5 defines an item, Sales Reward Dinner, and defines a note
describing the location of the restaurant where the dinner will be
held. Onimport, Agenda adds the note to the item because {N} is
included between the {I} and {I} item tags that create the item. For
more information see "[tem Tags" later in this chapter.

Category tags create a category and its family, along with any asso-
ciated category notes. The location of the category tags determines
what Agenda does with the imported category.

* If the category tags occur between tags that create an item, as
described in "[tem Tags," Agenda assigns the item to the category.

¢ If the tags occur outside an item specification, Agenda adds the
category as an independent category to the category hierarchy,
but does not assign the categories to an item.

For more information see "ltem Tags" later in this chapter.

The following tags create a category:

Tag Meaning

{Cl Beginning of a category specification (the category and family, with
any associated notes)

.} End of category specification

Each {C} begins a new category specification. The name of the cate-
gory to be imported follows immediately after, on the same line.
Each category ends with a {.} tag. If category note tags (F} or {G}
occurs between {C} and {.}, Agenda adds a note to the category on
import.

Structured Files B-11

When you use the File Transfer Import command, you can specify
whether Agenda should import either or both of the following types
of categories:

* New categories created in item specifications
* New independent categories

Agenda imports the categories you specify and adds them to the cate-
gory hierarchy. For more information, see Chapter 23 in the User's
Guide.

If the category is created in an item specification, Agenda assigns the
item to the category on import. If the category is a date, numeric, or
unindexed category, Agenda uses the associated value, such as the
date, to assign the item to the category.

Caution If a date, numeric, or unindexed category is specified out-
side of an item specification, Agenda creates the category
if appropriate, but does not import the associated numeric,
date, or unindexed value.

If the structured file identifies a category that already exists, Agenda
retains the original category on import, and does not import the
duplicate category.

Category characters

Special category characters in the category name tell Agenda the type
of category to create.

Category Character ~Meaning

\ Standard category
/ Exclusive
i Unindexed
#1 Numeric
@\ Date

The category character immediately follotws the category to which it
applies. For example, the following text after a {C} tag adds Date
Delivered as a date category:

B-12 Structured Files

Date Delivered@ |

To indicate parent and child relationships in category information,
the 1C} tag separates each parent name from its child by using the
appropriate category character. In date, numeric, and unindexed
categories, the category character separates the category name from
the associated value. For example, the following text after a {C} tag
adds the Date Delivered category with a value of 11/26/90:

Date Delivered@ ! 11/26/90

If the structured file identifies a new parent category, Agenda creates
the parent category when it imports the structured file.

If the category specification begins with the standard category charac-
ter, the backslash (\), Agenda imports the category as a child of
MAIN. For example:

{CI\From\ Terry Smith {.}

In the above example, the backslash (\) in front of From tells Agenda
to add From as a child of MAIN.

A category specification that starts without a category character is
added as a child of the current category specified by the File Transfer
Import command. (See Chapter 23 in the User’s Guide.)

Date categories

By default, Agenda assumes all dates are in the format MM/DD/YY.
Dates in a different format must be preceded with a date format tag
that identifies the format. (See "Date Format Tags" earlier in this
chapter.) On import, Agenda discards any information that cannot
be interpreted as date information in the current format.

Date categories can be created using {C} and {.} tags. However,
Agenda also supports an older set of category commands for creating
Agenda-defined date categories. These tags are:

Tag Meaning

D} Done date
{E} Entry date
(W} When date

Structured Files B-13

When any of these tags is used to create a date category, the date
value immediately follows and concludes the date specification. A
date specified by any of these tags does nof end with the category-end
tag {.}.

For example, the following line adds a When date of 11/12/90:
{W}11/12/90

The following example shows how the same date category specifica-
tion looks using {C} and {.} tags:

{C\When@: 11/12/90

Escape character

An escape character is a special character that tells Agenda to inter-
pret the immediately following character as a text character. This is
necessary whenever a category includes one of the category
characters as a text character. The escape character in structured files
is the percent sign (%).

For example, if a category includes the number sign (#) in its text, the
number sign must be preceded with the escape character { %#) so
that Agenda imports the number sign as text. Without the immedi-
ately preceding escape character (%), Agenda interprets the number
sign as the first character in the numeric category character.

The following guidelines apply to the use of escape characters in cate-
gory specifications:

* The escape character must immediately precede the special char-
acter to which it applies. There cannot be a space between the
escape character and the character.

* Each category character to be imported as text requires its own
escape character. For example, if two slashes in a row (//) are to
be imported as text, an escape character must precede each slash
character, for example:

o

» If the category includes the percent sign (%) as a text character, the
category specification must include two percent signs in a row:

% %

B-14 Structured Files

ltem Tags

Figure B-6 shows how category tags define categories.

{CI\From\ Lymnne George %/ MCI 11): 123-4567{.}
[CN\When@: Mon November 19, 1990 9:24am GMT[.}

Figure B-6 Sample category tags

Figure B-6 defines two categories. Because each {C} specification
begins with a backslash (\), the new categories are added as children
of MAIN when they are imported into Agenda. The first {C} defines
a From category, and makes the category Lynne George (along with
her MCI ID) a child of From.

The second {C} defines a When date of Mon November 19, 1990. The
date category characters (@ |) apply to the When category, and indi-
cate that When is the parent category. The next value in the category
specification is the date. If this When category is imported with an
item, Agenda uses the date to assign the item to the When category.
If the When category is not imported with an item, Agenda ignores
the date value.

Item tags create an item and its associated categories and note. The
following tags create an item:

Tag Meaning

I Beginning of an item specification (the item and associated categories,
notes, and dates)

(T} Beginning of the item text

{1} End of an item specification

Each {I} begins a new item. The item ends with a
{1} tag. Tags between (I} and {!} add other elements to the item:

¢ The {T} tag begins the item text
* Category tags assign the item to the specified categories
* Note tags {N} or {O) add a note to the item

Category and note tags are discussed earlier in this chapter.

Structured Files B-15

{T} specifies the item text. On import, Agenda ends the item text
when it encounters another structured file tag. In Agenda, the item
text can be a maximum of 350 characters in length.

Caution If (T} identifies item text that is longer than this maximum,
Agenda makes the first 350 characters into the item and
ignores the remaining characters.

When you use the File Transfer Import command, you can specify
whether Agenda should import any of the following information
from item specifications in the structured file:

* [tems and notes
*» Category assignments {assignment of items to existing categories)
* New categories created in item specifications

You also can specify the category to which imported items are
assigned. For more information, see Chapter 23 in the User’s Guide.

Figure B-7 shows how sample item tags define an item.

{STF}11/02/90;12:21:08,002

{1}

{T)Friday Lunch Canceled

{CINFrom\LeeX {.}

{C\Entry@1 Fri Nov 2, 1990 9:23am GMT{}

{CIAMail\E-Mail{.}

{N]Rescheduled meeting Mon Nov 5, at Sam.

{1

{I

[Tl Attention Book Fans

{CWhFrom\MartyV {.}

{C\Entry@ 1 Fri Nov 2, 1990 11:17am GMT{.}

{CH\Mail \E-Mail{.}

{N}Gala Re-Opening

Au Claire Books announced it's reopening its downtown store on the week-
end of Nov 10 (you may remember, they were burned out along with Stacy’s
a few months ago).

Their flyer says they’ll have poetry readings Sat and Sun from 1 to 3 in the
afternoon, and balloons for the kids. New books upstairs, and an expanded
used section downstairs. And, an expanded comfy chair section!! (And, as
always, 5% of sales to the usual charitable causes, including the Homeless
Coalition, the Literacy Campaign, etc.).

t

Figure B-7 Sample item tags

B-16 Structured Files

Figure B-7 contains information extracted from electronic mail. This
sample constructs two items. The text for the first item is Friday
Lunch Canceled. The second item is Attention Book Fans. Fach item
is assigned to the From and Mail categories, and is assigned an Entry
date. All text after the [N} is a note for the item. Each item specifica-
tion starts with {I} and ends with {!).

What Structured Files Look Like

A Simple
Electronic Mail
Example

This section provides examples of structured files. The first strue-
tured file is based on a simple example in Chapter 4. The remaining
structured files in this section are generated by the definition files
presented in Chapter 3.

This section presents

* A simple electronic mail example with text file, definition file, and
resulting structured file

* The sample structured files created for the examples in Chapter 3

This example shows one way to convert text in a sample electronic
mail memo into category and item text. Figure B-8 shows a text file
that contains an electronic mail message to be converted.

To: Jill
From: Linda

Subject: Your proposal

Jill, I liked your proposal

but [had a few questions,

could we get together next Wednesday
to talk about it?

Figure B-8 Text file containing an electronic mail message to
be converted

Figure B-9 shows the definition file that converts the sample text file.
This definition file can convert a text file containing one or more
electronic mail messages. The definition file assumes that each new
electronic mail message begins with the string To: at the start of a
line. When it finds this string, the definilion file executes @end to

Structured Files B-17

save the current contents of item, note, and category buffers to the
structured file. Then it then begins converting the electronic mail
message by executing @trim. It continues converting text lines until it
finds another To: at the start of a line, at which point it executes
@end, and then converts the new electronic mail message. When it
reaches the end of the text file (END), the definition file executes
@end and then terminates.

#Converting memo text using Gappend item

START Reguate ("SPACE™, " ")
Requate ("PERSON", "™)
@start ()

#Create To category ("To:" starts each meme in the file)

AT\ " fBend ()
Btrim (" To\:", "S$", N, "PERSON")
Bcustom_category (PERSON, "To",)

#Assign a person to the From category

"APromh ;" @trim(""From\:", "$", N, "PERSON")
@custom_category (PERSON, "From",)

#Add subject line to item buffer

"rSubjecti:” Btrim(""", "subject\:",,)
@item2 ("s$")
Bappend item{SPACE)

#Discard blank lines so "~To:" (NOT To:) won't match them
||/\£ 1*$n @equate("blanks","")
#Add each remaining line to item buffer

"A"‘TO\:" @trim(""[]*u’usn’ N, "LINE")
Bappend item(LINE}
Bappend item{SPACE)

END Gend ()

Figure B-9 Definition file to convert text files containing
electronic mail messages

The definition file shown in Figure B-9 converts the names Jill and
Linda into categories and converts the remaining memo text into an
item. When it converts the memo text, the structured file removes the
leading spaces from the text. Figure B-10 shows the structured file
created by this definition file.

B-18 Structured Files

Sample Structured
Files

#Converting memo text using @append_item

{STF)11/26/90;19:43:34;002

{n

[T} our proposal

Jill, 1 liked your proposal but I had a few questions, could we get together
next Wednesday to talk about it?

{CIToN Jill{.}

{C}From\ Linda{.}

{1}

Figure B-10 Resulting structured file

When the structured file is imported into Agenda, To and From are
added as categories under the category specified in the File Transfer
Import command. The name Jill is added as a child of To and Linda
is added as a child of From. The item, which consists of the text from
the Subject line plus the four-line memo, is assigned to the categories
Jill and Linda.

This section shows the sample structured files developed for the
examples in Chapter 3. That chapter presented the text file and defi-
nition file to:

» Convert electronic mail messages
= (Convert a table of information

The resulting structured files for each example is shown below.

Converting an electronic mail message

Figure B-11 shows the structured file created when TXT2STF used the
sample definition file to convert the sample electronic mail file pres-
ented in Chapter 3.

Structured Files B-19

#definition file for electronic mail
[STF}05 /24 /90;13:59:54;002

{I

[T}Charting Seminar!

{C)From\Susan Anthony\
{FJPublic Relations

1}

{CI\Entry@ i 11/08/90 15:12:041.}
{OJEMAIL5.EML

it

Figure B-11 Sample structured file for converted electronic
mail

Converting a table of information

Figure B-12 shows the structured file created when TXT2STF used the
sample definition file to convert the sample CD/Corporate Industry
Participants report file presented in Chapter 3. Since the original
report, and therefore the resulting structured file, is long, Figure B-12
shows only the structured information for the first five companies in
the report.

B-20 Structured Files

#Table-reading DEF file sample for CD/Corporate participant table
{STF}05 /24 /90;09:59:34;002
{ClIndustry\Food Processing\{.}
{n

{TiSara Lee Corp
{Clincome # 1 410,492(.}
{C)Sales# 1 11,717,678{.}
{CIFYE@ | 7% /01%/89(.)
(CHCompany\ (.}

[ClRank 1 1{.}

{1

{1}

{T}Conagra Inc
{CHIncome # | 197,878}
{ClSales# | 11,340,414/}
{CIFYE@ | 5% /28%/89()
{C)Company\{}

{ClRank : 2.}

{t

i

[THBP Inc

[CHncome # 1 62,328{.}
{CSales# | 9,066,101{.}
{CIFYE@ | 12%/31%/88{)
{CYCompany\[.}

{ClRank i 3{.}

n

{1}

{T} Archer Daniels Midland Co
{Clincome # | 424,673(.}
[ClSales# | 7,928,836(.1
{CIFYE@ | 6% /30%/89{.)
{C}Company\[.}

{ClRank i 4{.}

n

{1}

{T)Borden Inc

{C)Income #: 311,882{)
{C)Sales# 1 7,243,526(.}
{CIFYE@ | 12%/31% /88(.}
[ClCompany\ (.}

[ClRank | 5{.}

{1

Figure B-12 Sample structured file for converted
CD/Corporate Industry Participants report

Appendix C

Quick Reference

This Quick Reference provides information about the patterns and
commands you can include in definition files.

Patterns

To specify a pattern, you can

* Type the text string itself

¢ Include match-control characters in the pattern

* LUse special patterns START and END
Match-Control Use the following match-control characters to write patterns that can
Characters match a varied set of text strings in the input line.

Match-Control Character Description

Asterisk (*) Matches zero or more accurrences of the preceding
pattern character

Backslash (\) Specifies that the immediately following character
in a pattern is a text character and not a match-
control character

Brackets ([1) Specifies a range or group of characters, and

matches any single text character specified in the
range or group

continued

C-1

C-2 Quick Reference

Special Patterns

Match-Control Character

Description

Caret (M)

Colon a (:a)
Colon d (:d)
Colon n (m)
Colon space (;)

Dollar sign ($)

Parentheses ()
Period ()
Plus {(+)

Tilde (~}
Vertical bar (1)

As the first character in a pattern, causes the pat-
tern to match the corresponding text only when it
occurs at the beginning of a text line

As the first character in a pair of brackets ([]),
caret (") negates the range or group specified in
the brackets ([1)

Matches any single uppercase or lowercase alpha-
betic text character

Matches any single numeric text character from 0
through 9

Matches any single alphabetic or numeric text
character

Matches a single space or control character in the
text file

As the last character of a pattern, causes the pat-
tern to match the corresponding text string only
when it occurs at the end of a text line

Groups pattern characters into a string so you can
apply a match-control character to the string

Matches any single character in the text file (except
a carriage return or linefeed character)

Matches one or more occurrences of the immedi-
alely preceding pattern character

Matches any text string that is not the pattern

Matches one pattern or another {performs a logical

OR}

You can use the following two special patterns in definition file

statements.

Pattern Used for

START Statements you want to execute only when TXT2STF starts process-

ing the text file

END Statements you want to execute ondy when TXT2STF finishes pro-
cessing the text file

Definition File Commands

Quick Reference C-3

The following pages describe

¢ Syntax for definition file commands

* DPredefined variables you can use as command argumernts

Command Syntax This section provides the syntax for definition file commands.

Note You caninclude spaces after the commas that separate argu-
ments. If you omit an optional argument, you must include
the comma that precedes the argument only if the comma
precedes the brackets ([1) in command syntax.

Command

Description

@append("variable-name" string)

@append_item(string[[N}
@append_notelstring)
@category(separator-pattern,[parent],["type"D)

@category_noteltermination-patiern)
@category_note_file(file-name)
@custom_category(category,[parent],["type"])

@date{categoryl,valuel)

Adds a string to the end of the current contents of the vari-
able

Adds a string to the end of the current item
Adds a string to the end of the current note

Creates one or more categories from the text line and can
make them children of a specified parent category

Creates a category note and assigns it to the category created
by the most recently executed @category or @custom_cate-

gory
Identifies the external note file for the current category

Creates a category from text that you specify and can make
the category a child of a specified parent category

Creates assignments to date categories; assumes date format
MM/DD/YY

continued

C-4 Quick Reference

Command

Description

@date format(format-number)

@end()

LI

@equate("variable-name”, "pattern”)

@grab(separator-pattern field-number, " variable-name"
| field-number,"variable-name",...1}

@itemltermination-pattern,total-length,[N)

@item 2 termination-pattern[,max-length][,N])
or
@item2(max-lengthl N1)

@make_external_note(termination-pattern,| “directory”1)

@note(termination-pattern)

@note_file(file-name)
@numeric{category| valuel)
@replace(search-pattern replacement-strin g, [number])

@reset(replacement-string)

@set("variable-name")

Indicates the format of dates and times in the
structured file by specifying a format number (for-
mats 1-6 use 24-hour time; 7-12 use 12-hour time):

land 7 = MM/DD/YY
Zand 8 = DD/MM/YY
3and 9 = DDMM.YY

4 and 10 = YY-MM-DD
5and 11 = DD-MMM
6 and 12 = DD-MMM-YY

Copies the current contents of item, note, and cate-
gory buffers to the structured file, and then ini-
tializes the buffers

Stores a pattern or a text string in a variable

Divides the current text line into several values
and puis one or more of the resulting value into
variables; leaves the text line intact in memoiy

Creates an item using text in the text file; is the
Release 1.0 alternative to @item?2

Creates an item using text in the text file; is the
Release 2.0 alternative to @item

Creates an external note file and copies text from
the text file into the note file; on import the note
file is added as an item note

Creates a item note and assigns it to the current
item

Identifies the external note file for the current item
Creates assignments to numeric categories

Replaces the specified number of occurrences of
the string identified by search-pattern with the
replacement string

Replaces the current text line in memory with the
specified string

Stores the current text line in the specified variable

continied

Quick Reference C-5

Command

Description

@skip(separator-pattern field-number)

@skip_lines(fermination-point)

@start()

@strip(strip-pattern, number)

Divides the text line into values and then
deletes one of the resulting values from the
text line

Skips over the number of text lines you spec-

ify

Initializes the item, note, and category buffers
TXT25TF uses to hold converted information

Deletes one or more occurrences of a specified
string from the text line

@table(separator-pattern fermination-pattern col-number,"type" Makes items and categories from a table in

Leol-number,"type",...1)

the text file, using separator-pattern fo divide
the text into table columns

@trim(start-pattern.end-pattern [N1[, "variable-name"]) Deletes all the text between one string and

@unindexed(category,value)

another, and can place the deleted textin a
variable

Creates assignments to unindexed categories

Predefined You can use these predefined variables as arguments in definition file
Variables commands.
Variable Represents
FILENAME The name of the current text file
ECF End-of-file; used for specifying a termination peoint in com-
mands
CR Carriage return; used for adding the combination of carriage
return {ASCII decimal 13) and linefeed (ACII decimal 10} to
text
D,E,and W Done date, Entry date, and When date, respectively

Appendix D
Error Messages

Error messages provide information about problems that TXT2STF
encounters while converting a text file. This appendix describes the
error messages that you may see when working with TXT25TF.

In this Appendix

This appendix provides
e Information about TXT2STF error messages

* A description of each error message, with possible ways to correct
the current problem

About Error Messages

Error messages notify you when one or more problems occur in con-
verting a text file and give you a starting place for locating the prob-
lem. Each TXT2STF error message starts with an identifying number,
followed by a phrase that describes the situation that caused
TXT2STF to display an error message.

TXT2STF error messages can identify:
e FErrors in how a definition file statement is composed

For example, the statement may begin with an invalid pattern or
might include commands that do not comply with command syn-
tax.

¢ Frrors that arise when TXT2STF uses the definition file

D-2 Error Messages

For example, a statement may need to use the contents of a vari-
able before any text is copied into the variable.

* Errors that relate to your computer or its resources

For example, your computer may run out of memory while
TXT2STF is still converting a text file.

If errors occur when you use a definition file, TXT2STF stops execut-
ing either the command or the statement where the error occurs and
displays the error message with as much information as possible
about the current error. TXT2STF then resumes converting the file,
after first skipping over the command or statement where the error
occurred.

If it skips over a command, TXT2STF lists the command that caused
the problem when it displays the error message. If it skips over an
entire statement, TXT2STF lists the current command, current text
line, and the commands already executed in the statement when it
displays the error message.

To see more information about your errors, use the debugging option
/A when you run TXT2STF. Also, redirect TXT2STF messages to a
file s0 you can view them later. (See Chapter 7.)

Error Messages and Descriptions

The remainder of this appendix lists TXT2STF error messages and
provides possible ways to correct the problem identified by each
error message. Error messages are listed by error number.

0 The end of the definition file was reached before the end of a
command

The definition file ends before expected. The current command is
probably missing the closing (righthand) parenthesis.

1 The current statement has an invalid format

Make sure the current statement begins with a pattern and includes
at least one command to convert text. Make sure that commands
begin with the at (@) character and end with an argument list
enclosed in parentheses. Also make sure that each pattern is enclosed
in a pair of double quotation marks (").

Error Messages D-3

2 Anunrecognized command is in the definition file

Make sure that all commands in the definition file begin with an
at (@) character and are spelled correctly.

3 An argument for the command is not recognizable

Make sure that all arguments in the command are in the correct posi-
tion and that all required commas are included in the command when
optional arguments are omitted. Make sure that each argument is the
right type. For example, if the syntax specifies that an argument can
only be a numeric constant, make sure you have specified a numeric
constant. Make sure that each string constant (including file name
string and variable name string constants), pattern constant, and type
constant is enclosed in a pair of double quotation marks ("). Also
make sure that each numeric constant, logical constant, and variable
is not enclosed in double quotation marks (").

4 There is not enough memory to execute this sequence of
commands

Your computer ran out of memery while TXT25TF was converting a
text file. It is possible that you are currently running a software prod-
uct that uses memory. Try to free this memeory so that TXT2STF can
use it, as follows:

* You may have temporarily exited to the operating system from a
software product.

To free memory, return to the product (typically you type exit
and press ENTER) and then exit completely from the product.

* You may have run a product that stays resident in memory after
executing, such as Lotus Express™,

To free memory, use the key combination defined for this purpose
(for Express, press the key combination ALT-SHIFT-END) or restart
your computer without running any of products that remain in
memory after use.

If none of the above strategies free enough memory, see if you can
shorten the statement so that it will need less memory to execute. ltis
possible that your computer does not have sufficient memory
installed to run the definition file; contact computer support person-
nel at your site if necessary.

D-4 Error Messages

5 There is not enough memory to define another pattern

There are more than 20 patterns currently defined in memory. The
pattern that begins a statement remains defined in memory through-
out the execution of the statement. Patterns that are used as argu-
ments in commands are defined in memory only while the command
is being executed. When the next command in a statement starts
executing, the patterns for the previous command are removed from
memory and the patterns for the current command are defined in
memory.

6 Bad pattern in the command

Make sure that each pattern in the command is enclosed in a pair of
double quotation marks (" "). Make sure that you used the correct
match-control characters. Make sure the command does not include
special patterns START or END; these commands can only begin
statements. Make sure that all arguments are in the correct position.
Make sure the command includes the correct number of arguments.

7 Not enough arguments were supplied for the command

Make sure that all arguments in the command are specified in the
correct position and that all required commas are included for
optional arguments that are omitted. Make sure the argument list
does not include a closing parenthesis in the wrong location.

8 Too many arguments were supplied for the command

Make sure that the command includes only allowed arguments and
that the command does not include non-required commas for
optional arguments that are omitted.

% Command or data line too long
The current text line can be a maximum of 512 characters in length.
10 The variable specified in the command line does not exist

The command specifies a variable that does not yet contain text, so it
does not exist. Reorganize the statements in the definition file so that
the statement that places information into the variable executes
before the current statement. To review the order in which TXT2STE
executes definition file statements, see "How TXT2STF Processes Each
Text Line" in Chapter 2.

Error Messages D-5

11 The variable name specified in the command line is too long

A variable name can be up to 32 characters in length. Make sure that
the variable name is spelled correctly. If the current argument must
be a variable name string constant, make sure the variable is enclosed
in a pair of double quotation marks (" "). If the argument is simply a
variable, make sure the variable name is not enclosed in quetation
marks. Make sure that all arguments in the command are specified in
the correct position and that all required commas are included for
optional arguments that are omitted. Make sure that non-required
commas are #not included for omitted optional arguments.

12 A variable was given for an argument that cannot be a variable

The command includes a variable for an argument that cannot be a
variable. Consult the command syntax for valid arguments. Make
sure that all arguments in the command are specified in the correct
position and that all required commas are included for optional argu-
ments that are omitted. Make sure that non-required commas are not
included for omitted optional arguments.

13 A number was given for an argument which cannot be a
number

The command includes a numeric constant for an argument that can-
not be a numeric constant. Consult the command syntax for valid
arguments. If the number should be a string constant, enclose it in a
pair of double quotation marks (" "). Make sure that all arguments in
the command are specified in the correct position and that all required
commas are included for optional arguments that are omitted. Make
sure that non-required commas are nof included for omitted optional
arguments.

14 Argument too long

An argument in the command contains too many characters. Consult
the command syntax for the correct length for arguments. Make sure
that all arguments in the command are specified in the correct posi-
tion and that all required commas are included for optional arguments
that are omitted. Make sure that non-required cominas are not
included for omitted optional arguments.

15 Missing, or) in command

The command either is missing a required comma (,) or does not end
in a closing (righthand) parenthesis.

D-6 Error Messages

16 Variable is full

The current variable contains 512 characters, which is the maximum
number of characters a variable can contain.

17 Wrong type supplied for an argument

An argument in the current command is specified incorrectly. For
example, the argument is supposed to be a numeric constant, but is
currently a string constant.

18 Unbalanced (s

A pattern includes a different number of open (lefthand) parentheses
than closing (righthand) parentheses. Make sure each open parenthe-
sis has a corresponding closing parenthesis. Also make sure each
closing parenthesis closes an expression that starts with an open
parenthesis. Inspect nested parentheses carefully for mismatched
open and closing parentheses.

19 Too many tildes (~) per subpattern

A subpattern contains too many tilde characters (~). There can be a
maximum of one tilde (~) in each subpattern defined

* Inanesting level defined by a pair of parentheses

* Atthe top level of the pattern, before an open parenthesis begins a
nesting level

Por example, the pattern "~a~b" is incorrect but ~(ab) and ~a(~b) are
correct.

Each pattern on either side of a vertical bar (|) character defines a
new subpattern at the current level. This means that the pattern
"~Meeting | ~Seminar” is correct because each subpattern at the cur-
rent level contains only one tilde (~).

20 Pattern too big

The pattern is too complicated. When TXT2STF tries to compile the
pattern into an internal form, the pattern exceeds the capacity of
TXT2STF to store it. Try to simplify the pattern.

21 Too many classes

An entire pattern can include up to eight different character class
specifications.

Error Messages D-7

22 No closing square bracket (])

An open bracket ([) in a pattern indicates the start of a range or
sroup specification, but the specification does not end in a closed
bracket (1).

23 Bad colon(:} class

There are only four match-control characters that begin with colons,
colon a (:a), colon d (:d), colon n {:n}, and colon space {:). Make sure
that each colon space (:) combination includes a space after the
colon.

24 Too many ()'s

The pattern includes too many levels of nested parentheses. A pat-
tern can include up to 10 nesting levels. 1f you end one set of paren-
theses before starting a second set, both parentheses are at the same
level of nesting, and do not cause this error to occur.

25 (Carat (*) can only be the first character

The carat (") must be the first character in a pattern to match the
pattern with a string at the start of a text line. For example,
""Hardware | “Software" is invalid; the correct way to write this pat-
tern is "“(Hardware i Software)".

26 Dollar sign ($) can only be the last character

The dollar sign ($) must be the last character in a pattern to match the
pattern with a string at the end of a text line. For example,

"follows$ | below$" is invalid; the correct way to write this pattern is
"(follows | below)$".

27 Bad pattern

TXT2STF cannot use the pattern because it contains invalid characters
or some other error that invalidates it.

28 One of the arguments for the command was empty

It is possible that an argument in the current command either speci-
fies an empty string, which consists of two double quotation

marks (") without any intervening space. In this case, correct the
argument. Another possibility is that a variable does not contain text
when TXT2STF attempts to use it. In this case, see the description for
error message 10 for ways to correct the problem.

D-8 Error Messages

29 There is not enough memory to define another pattern

Your computer ran out of memory while TXT2STF was converting a
text file. See the possible solutions listed for error message 4. Also,
see if you can eliminate any patterns from commands in the current
statement. Look for commands that can be rewritten to use an
argument other than a pattern. For example, see if @item?2 can spec-
ify where the item ends by using a total length parameter and not a
pattern.

30 Unexpected end of file

The text file ends before expected. The current statement assumes
that more text remains to be converted. Look at the command and
make sure it specifies the correct arguments. Make sure the text file is
complete, and has not been shortened (truncated),

31 File has an invalid format

The text file is not an ASCII text file. It is possible that it contains
hidden characters added by the product originally used to create the
file. Use that product to create a copy of the file that contains only
ASCIl characters. Then, convert that copy of the file.

32 Out of memory

Your computer ran out of memory while TXT2STF was leading a
statement. It is possible that the statement is too big. It also is possi-
ble that there is not enough memory to execute this sequence of com-
mands; see the possible solutions listed for error message 4.

33 Current text line is split because it's too long

The current line contains more than 512 characters and so TXT2STE
must split the line to process it. TXT2STF processes the first 512
characters as one text line, and the remaining characters as another
text line. If the current statement ends when TXT2STF is only part-
way through this second text line, TXT2STF discards the text line and
continues to the next unprocessed text line in the text file.
Unprocessed characters on the discarded second text line are never
processed.

34 The exclamation point (!) is not a valid pattern character

The pattern contains an exclamation point (1), which is not a valid
match-control character in a pattern. To create a negative pattern, use
the tilde (~) and not the exclamation point (1). To search for the excla-
mation point (!) as a regular text character, place a backslash (\)
immedjately before the exclamation point ().

Index

Symbols and special characters

See also Category characters;
Match-control characters

asterisk (*) 3-5, 44, 4-5, 4-17, C-1

at (@) 2-3, 3-5, 5-7

backslash {\) 4-4, 4-6, 5-3, 5-8 to
5-10, 6-5

brackets ([1) 4-5 to 4-8, 5-7, D-6,
D-7

caret (*) 1-8, 4-4, 4-8 to 4-9

colon {} 1-8, 4-5, 4-10

commia (,) 5-7, 5-8, 5-21, 6-5

dollar sign ($) 3-7, 4-5, 411, 4-16
to 4-18

double note (') 3-10

double quotation marks ("} 2-3,
4-2,5-7,5-8 to 5-10, 5-17

ellipses (... 5-7

escape (%) B-13 to B-14

exclamation point {!) A-3, D-8

hyphen (-) 4-7, 6-3

note (B) 1-14, 3-10

number (#) 2-5

parentheses 4-11, 5-8, A-3, D-6 to
D-7

percent (%) B-13 to B-14

period () 3-5, 4-5, 412, C-2

plus (+} 3-15, 4-12 to 4-13, 4-17,
Cc-2

semicolon {;) B-5 to B-6

single quotation mark ('} 4-2, 5-7

slash (/) 6-3

space (} 5-20, 5-21

tilde (~) 44, 4-14

vertical bar (1) D-6

A

Actions See Definition file
commands
Adding See also Appending;
Converting
definition file patterns to state-
ments 1-7 to 1-9, 4-2 to 4-3
notes to categories 3-7 to 3-4, 5-22
ta 5-25, B-8 to B-9

notes to items 3-9 to 3-10, 5-43 to
5-48, B-9 to B-10
statements to definition files 2-3
to 2-5,7-12 to 7-13
/ A debugging option 7-3, D-2
Analyzing text files 1-5 to 1-7, 2-2
Anchoring negative patterns 4-13,
4-17 to 4-18, 7-9
@append
defined 5-6, 5-13 to 5-14
example 5-9, 5-54
Appending See also Adding
strings to items 5-4, 5-14 to 5-16
strings to notes 5-5, 5-17 to 5-19
strings to vartables 5-6, 5-13 to
5-14
text to elements 7-11 to 7-12
@append_item
defined 5-4, 5-14 to 5-16
example 5-8
@append_note 5-5, 5-17 to 5-19
Arguments
defined 5-7 10 5-8
empty D-7
invalid D-5
length of D-5
optional 5-7, 5-8, 5-14, 5-65
parentheses in 5-6, 5-8, D-6
patterns as 4-2, 4-14 to 4-19, 5-10,
5-22
syntax 5-8
types 5-8 to 5-11
unrecognized D-3
variables 5-9, 5-11 to 5-13
wrong number of D-4
ASCII See aiso Text files
characters 4-8, 4-10, 4-18 t0 4-19
decimal codes 6-5
Assigning
dates to date categories 5-4, 5-28
to 5-29, 5-62
dates to items 5-53 to 5-54
items to categories 1-11, 3-11 to
3-16, 5-19, 5-25 to 5-29,
5-49 to 5-50, 5-67 to 5-68, B-11
items to numeric categories 5-26,
5-49 to 5-50

items to unindexed categories
5-67 to 5-68
notes to categories 5-22 to 5-25
notes to items 5-5, 5-43 to 5-48
patterns to variables 7-9
values to variables 5-34 o 5-36
Assignments, specifying 6-7
Asterisk (%)
defined 3-5, 4-4, 4-5, C-1
plus (+) compared with 4-5, 4-12
to 4-13, 4-17
Al sign (@) 2-5, 3-5, 5-7
At-vertical bar (@) B-11 to B-12

Backslash (\)
in Agenda 1.0 2-4
in arguments 5-8, 5-10
category names separated with
5-26
defined 4-4, 4-6
in definition file commands 5-3
exclamation point (T}
preceding D-8
indicating standard category
B-11
preceding statements A-2
as separator character 6-8
Brackets (])
in Agenda 2.0 A-3
defined 4-5 to 4-8
missing from pattern D-6
typographical convention 5-7
Buffers 5ee Memory buffers
Building
category hierarchy 1-9 to 1-10,
5-25 to 5-27, 5-62 to 5-64, 6-6 to
6-7, B2
structured files 2-10 to 2-11
Bundling information in memory
2-6,2-11

C

Caret (")
in Agenda 2.0 A-3

index-1

2-Index

ancharing negative patterns with
4-17 to 4-18
defined 1-8, 4-4, 4-8 to 4-9, C-2
matching patterns 3-5, 4-16 to
4-18
position in pattern D-7
Carriage return See also CR
variable
matching 4-8
as separator character 2-8, 6-3,
6-5
as variable value 5-13
Case 4-2, 4-16, 6-2
Categories
analyzing text for conversion 2-2
assignment to 6-7
copying to structured files 5-32
to 5-33
date 5-28 to 5-29, 5-62, B-11 to
B-13
debugging 7-4 to 7-5
default type 5-20
definition file statements con-
verting 3-6 to 3-9
exclusive 5-10, B-11 t¢ B-12
importing 3-10, 6-6 to 6-7, 7-4 to
7-5, B-11 to B-12
items assigned to 1-11, 3-11 to
3-16, 5-4, 5-19, 5-25 to 5-29,
B-11
names 5-20), 5-28, 5-49, 5-67 to
5-68
notes assigned to 3-7 to 3-9, 5-22
to 5-25, B-8 to B-9
numeric 5-26, 5-49 to 5-50
removing text from 5-56 to 5-59
saving with @end 3-14
single 7-10 to 7-11
standard 5-10, 5-62
structured file tag converting
B-2, B-10 to B-12
tables converted to 3-10 to 3-16,
5-5, 5-62 to 5-64
tagging 2-11, 7-4 to 7-5, B-3, B-10
to B-12
text converted to 1-9 te 1-10, 3-6
to 3-8, 5-19 to 5-22, 5-25 to 5-27
types 5-10, 5-20, 5-62
unindexed 5-4, 562, 5-67 to 5-68
values in buffers 2-11
@category
in Agenda 2.0 A-5
defined 5-4, 5-19 to 5-22
example 5-10, 5-23, 5-26 to 5-27
Category buffers
building items in 2-10 to 2-11
copying contents to structured
file 5-32 to 5-33

initializing 5-3, 5-59 to 5-60
Category characters B-11 to B-12
Category commands, defined 5-3 to

54
Category hierarchy
building 1-9 to 1-10, 5-25 to 5-27,
5-62 to 5-64, B-2
importing 1-4, 5-36, 6-6 to 6-7,
B-12
Category names
@category_note

defined 5-5, 5-22 to 5-24

example 5-61, 5-66
@category_note_file 5-5, 5-24 to

5-25
Category notes
converting text to 3-7 to 3-9, 5-5,
5-22 fo 5-25
creating with note tags B-8 to B-9
Category tags 7-4 to 7-5, B-3, B-10
to B-14
{C} category tag B-10 to B-14
in Agenda 2.0 A-6
buailding category hierarchy with
7-4.to 7-5, B-12

defined B-4, B-10 to B-14
Character classes

matching 4-18 to 4-19

maximum number per

command A-3

number allowed D-6
Characters See also Text; Text lines

class specifications 4-18 to 4-19

copying to item buffers

groups 4-7, 4-11, 4-18 to 4-19

literal 4-5

matching 3-5, 4-4, 4-9 to 4-10,

4-12 to 4-13, 4-18 to 4-19
ranges 4-5 to 4-8, 4-18 to 4-19
searching for with TXT25TF 4-18

to 4-19

Child categories See also Categories;

Category hierarchy
category characters indicating

B-12
tables converted to 3-11 to 3-16,

5-62 to 5-64
text converted to 1-9, 3-7 to 3-9,

5-19 to 5-22, 5-25 to 5-27

Classes See Character clagses
Clearing memory 2-11, 3-15
Colon {:) 1-8, 3-5, 4-4, 4-17
Colon a (a)

in Agenda 2.0 A-3

defined 4-4, 4-9, C-2

matching alphabetic characters

with 4-18 to 4-19

Colon d (:d)
in Agenda 2.0 A-3
defined 4-4, 4-10, C-2
matching numeric characters
with 4-18 to 4-19
Colon n (:n)
in Agenda 2.0 A-3
defined 4-4, 4-10, C-2
matching characters with 4-18 to
4-19
Colon space {:)
defined 4-5, 4-10, C-2
matching control characters with
4-18 to 4-19
Columns See Tables
Comma (,} 5-7, 5-8, 5-21, 6-5, D-5
Command names See Definition file
commands, syntax
Commands See Definition file com-
mands
Comments
in definition files 2-5
in structured files B-6
Comment tag (S} B-6
Comparing patterns and text See
Matching
Constants in arguments 5-8 to 5-10
Control characters, matching 4-5,
4-10, 4-18 to 4-19
Control commands, defined 5-3 to
5-4
Controlling formats Se¢ Formats
Conversion
debugging 7-7 to 7-8, D-1 to D-2
file options 6-2 to 6-5
terminating 5-22
/C conversion option 4-2, 4-16, 6-2
to 6-3, A-2
Converting, See also Converting text;
Importing
ASCII text files 1-1, 3-10 to 3-11
bundled text 2-5 to 2-7
date formats 5-29 to 5-31, 5-51
with definition file statements
3-4
electronic mail files 1-13 to 1-15,
2-2, 3-2 10 3-10, B-16 to B-19
multiple text files 6-6
options for 6-2 to 6-3
paragraphs to items 1-2, 6-3
reports 3-10 to 3-16
tables 3-10 to 3-16, 5-62 to 5-64,
B-19 to B-20
text layout 7-11 to 7-12
When dates 1-8 to 1-9

Converting text

to categories 1-9 to 1-10, 3-6 to
3-8, 5-19 to 5-22, 5-25 to 5-27,
B-5 to B-16

to category notes 3-7 to 3-9, 5-22
to 5-25

to child categories 3-7 to 3-9

with definition file commands
2-8,4-2

identifying text lines for 4-15

to item notes 2-9, 5-45 to 5-47

to items 1-10 to 1-11, 3-9, 3-10,
5-37 to 5-43, 5-54

to multiple items 7-13 to 7-14

to notes 1-10 to 1-11, 2-10 to 2-11,
3-7 0 3-9, 5-22 to 5-25, 5-43 to
5-49

by pattern 4-14 to 4-19

to single element 7-10 to 7-11

Converting text files

in Agenda 2.0 A-1 to A-2
defined 1-11 to 1-15, 2-7 to 2-13,
5-37 to 543

Copying

characters to item buffers 5-40 to
5-43

contents of buffers 5-32 to 5-33,
5-59 to 5-60, B-3

to structured files 2-11, 5-19 to
5-22, 5-32 to 5-33, 5-62 to 5-64

text lincs 2-8 to 2-9, 5-37 to 5-39

text to note files 5-43 ko 5-45

text to variables 1-9 to 1-10

Creating See also Adding; Convert-

in,

categ%)ry hierarchy 1-9 to 1-10,
5-25 to 5-27, 5-62 to 5-64, B-Z,
B-12

definition file patterns 1-7 to 1-9,
4-2tod4-3

definition files 1-5, 2-1 to 2-7

entry dates 3-5 to 3-6

notes with tags B-2, B-8 to B-9

structured files B-3

variables 5-3, 5-13 to 5-14

CR variable 5-13
@custom_category

in Agenda 2.0 A-5
defined 5-4, 5-25 to 5-27
example 5-15, 5-21, 5-33 to 5-34

D

@date

in Agenda 2.0 A-5
defined 3-6, 5-4, 5-28 to 5-29
example 5-31, 5-51

Date categories
creating with category tags B-11
to B-13
defined 5-28 to 5-29
example 3-14
Date commands, defined 5-3 to 5-4
@date format 5-4, 5-29 to 5-31, B-6
Date format tags B-6 to B-8
[D} date tag B-12 to B-13
Dates
as arguments 5-8
assigning to date categories 5-4,
5-28 to 5-29, 5-62
assigning to items 5-53 to 5-54
default format 5-31, B-6
Done 5-13, B-12 to B-13
Entry 3-4
formatting 5-28 to 5-31, 5-51
predefined variables for 5-13, C-5
tags B-6 to B-8
values 3-15, 5-28 to 5-29
When 1-8 to 1-9, 5-13, B-12 to
B-13
/D conversion option
in Agenda 2.0 A-2
defined 6-2, 6-3 to 6-4
specifying files with 7-2
Debugging
in Agenda 2.0 A-2
conversion 7-7 to 7-8
defined 7-1 to 7-2
definition file patterns 7-5 to 7-9,
D-4,D-7
definition file commands 7-7, D-3
to D-5
definition files 6-4 to 6-5, 7-1 to
7-3
examining results of 7-4
options, list of 7-3, 4-15
text line format 7-7 to 7-8
Default
category type 5-20
date format 5-31, B-6
items as 1-2
separator characters 6-5
Definition file commands
in Agenda 2.0 A4 to A-5
arguments in 5-7 to 5-11
converting text with 2-8, 4-2
debugging 7-7, D-3 to D-5
defined 2-3, 5-1 to 5-3
displaying during execution 7-7
to 7-8
from earlier releases 5-3
executing 3-6, 5-2, 7-10
last in file 5-32 to 5-33
line length D-4

Index-3

pattern arguments in 4-2, 4-14 to
4-19, 5-10, 5-22

separating from patterns 2-3 to
2-4

specifying variables in 5-11 to
5-13

summary list of 5-4 to 5-6, C-3 to
C-5

syntax 2-5 to 2-7, 5-6 to 5-8

terminating 5-13, 5-57 to 5-59

unrecognized D-3

writing 1-7 to 1-9

Definition file commands, defined

@append 5-6, 5-13 to 5-14

@append_item 5-4, 5-14 to 5-16

@append_note 5-5, 5-17 to 5-19

@category 5-4, 5-19 to 5-22

@category_note 5-5, 5-22 fo 5-24

@categorv_note_file 5-5, 5-24 to
5-25

@custom_category 5-4, 5-25 to
5-27

@date 5-4, 5-28 to 53-29

@date_format 5-4, 5-29 to 5-31

@end 2-5, 5-4, 5-32 to 5-33

@equate 5-6, 5-33 to 5-34

@grab 5-6, 5-34 to 5-36

@itern 5-4, 5-37 to 5-40

@itern2 5-2, 5-4, 5-40 to 5-43

@make_external_note 5-5, 5-43 to
5-45

@note 5-5, 5-45 to 5-48

@note_file 5-5, 5-48 to 5-49

@nurneric b-4, 5-49 to 5-50

@replace 5-5, 5-51

@reset 5-6, 5-52

@set 3-6, 5-6, 5-55

@skip 3-6, 5-2, 5-5, 5-55 to 5-57

@skip_lines 5-5, 5-57 to 5-59

@start 3-6, 5-4, 5-59 to 5-60

@strip 5-5, 5-60 to 5-61

@table 5-5, 5-62 to 5-64

@trim 3-6, 5-5, 5-6, 5-64 to 5-66

@unindexed 5-4, 5-67 to 5-68

Definition file patterns

in Agenda 2.0 A-3

as arguments 4-2, 4-14 to 4-19,
5-10, 5-22

assigning to variables 7-9

beginning statements with 5-1 to
5-3, 7-10

caret () in 3-5, 4-17 to 4-18, D-7

complicated D-6

creating 1-7 to 1-9, 4-2 to 4-3

debugging 7-5 to 7-9, D-4, D-7

defined 2-3, 4-1 to 4-2, 4-T4 to
1-19

dollar sign ($) in 4-16 to 4-18, D-7

4-index

general and specific 7-6 ta 7-10

locating elements with 7-10 to
7-11

match-control characters in 4-4

matching to text lines 1-11 to
1-15, 2-8, 3-7 to 3-8, 4-1 to 4-2,
4-16 to 4-18

negative 4-13, 4-17 to 4-18, 7-9

nesting levels in 4-11

separating from commands 2-3
to 2-4

special 4-2 to 4-3, C-2

specifying 7-8 to 7-9, C-1 to C-2

statements beginning with 4-1 to
4-2,4-15, 7-8 to 7-10

storing in variables 5-6

strings compared with 4-16 to
4-18

tilde (~) in D-6

types 2-4

variable name equated with 5-6,
5-33 to 5-34

writing 7-8 to 7-9

Definition files

converting text files with 3-15 to
5-16, 5-21 to 5-22, 6-3 to 6-4

creating 1-5, 2-1 to 2-7

debugging 6-4 to 6-5, 7-1 to 7-3,
D-2

defined 1-2 to 1-3

documenting 2-5

naming 7-1 to 7-2

running TXT25TF with 1-4, 2-7 to
2-13, 6-1 to 6-2

specifying 6-2 to 6-4, 7-2

statements added to 2-3 to 2-5,
7-12 to 7-13

terminating 3-9

Definition file statements

adding to definition files 7-12

in Agenda 1.0 24

backslash (\} preceding A-2

beginning with @start 5-59 to
5-60

categories converted with 3-6 to
3-9

debugging 7-7, D-2 to D-5

defined 2-3

documenting 2-5

format errors in D-2

grouping 7-14

items converted with 7-13 to 7-14

match-control characters in 3-5

matching 7-6 to 7-7, 7-10

maximum length of 2-4

ordering in file 1-11 to 1-15, 7-9
to 7-10

patterns added to 1-7 to 1-9, 4-2
to 4-3
START and END in 4-2 to 4-3,
7-13,C-2
starting with patterns 4-1 to 4-2,
4-15,7-10
syntax 4-2, 5-1 to 5-3
writing 1-7 to 1-15, 2-3 to 2-5
Deleting
strings from text lines 5-5, 5-60 to
5-61
text 3-6, 3-9, 3-13, 5-6, 5-64 to 5-66
values from text lines 5-5, 5-55 to
5-57
Discarding text lines 5-57 to 5-59
Displaying
definition file commands 7-3
text lines 7-3, 7-7 to 7-8
variables 7-8
Dividing text lines into values 3-15,
5-5, 5-21, 5-34 to 5-36, 5-55 to
5-57
Documenting,
definition file statements 2-5
structured files B-6
Dollar sign ($}
in Agenda 2.0 A-3
defined 4-5, 4-11, C-2
in definition file commands 5-20,
5-41
matching patterns with 3-7, 4-16
position in pattern D-7
Done dates 5-13, B-12 to B-13
DOS files and dircetories as argu-
ments 5-9
Double nete symbol (1) 3-10
Double quotation marks
in arguments 5-7
in patterns 2-3, 4-2
string constants in 5-8 to 5-10
string value in 5-17
D variable 5-13

E

{E} date tag B-4, B-12 to B-13
Electronic mail files 1-13 to 1-15,
2-2,3-2 to 3-10, B-16 to B-19
Ellipses (...) 5-7
Empty arguments -7
@end
bundling information with 2-6,
2-11
copying buffer contents with
5-59 to 5-60, B-3
copying to structured file with
5-19 to 5-22
defined 2-5, 5-4, 5-32 to 5-33

END patiern with 4-3
example 5-15, 5-23
grouping statements with 7-14
Ending TXT2STF See
Terminating
End-of-file Se¢ EOF variable
End-of-line character See Dollar
sign ($}
END pattern 4-2 to 4-3, 7-13, C-2
Entry dates 3-5 to 3-6, 5-13, B-12 to
B-13
creating with tags B-12 to B-13
EOF variable
defined 3-9, 5-13
example 3-15, 5-39, 5-45, 5-38
@equate
defined 5-6, 3-33 to 5-34
example 5-15, 5-54
Equating variable names with pat-
terns 5-33 to 5-34
Error messages
in Agenda 2.0 A-1 to A-2
defined D-1 to D-2
storing in files 7-4
Errors, types 7-5 to 7-8, D-1 to D-2
Escape character (%) B-13 to B-14
E variable 5-13
{!} item tag B-14 to B-16
Exclamation point {) A-3, D-8
Exclusive categories B-11 to B-12
Executing definition file commands
See also Definition file com-
mands
External note files See Note files

F

File name string constant argu-
moents 5-9
FILENAME variable
defined 3-9, 5-12
example 5-48 to 5-49
Files 5-12 5ee also Definition files;
Note files; Structured files;
Text files
end of D-8
invalid format D-8
Lotus PRIN 1-1
storing error messages in 7-4
types of information in 2-2, 2-6,
7-13 to 7-14
File Transfer Import command 1-3,
3-10, 6-6 to 6-7, B-11
{F} note tag B-4, B-8
Formats
controlling 1-2
debugging text lines 7-7 to 7-8
default file 1-2

invalid file D-8
Formatting See also Converting
dates and times 5-28 to 5-31, 5-51
errors D-2
text 2-2
Formatting text files See
Converting

G

{G} note tag B-4, B-8 to B-10
General patterns 5See Definition file
patterns
@grab 5-6, 5-34 to 5-36
Grouping
characters 4-7, 4-18 to 4-19
statements 7-14

H

Header tag A-6, B-4 to B-6
Hyphen (-} 4-7, 6-3

I
Importing
categories 3-10, 6-6 to 6-7, B-11
category hierarchy 1-4, 5-36, 6-6
to 6-7, B-12
items and notes 3-10, 6-6 (o 6-7
structured files 3-10, 6-6 to 6-7,
74 to 7-5, A-6
with structured file tags 2-11, 7-4
to 7-5
text files 1-2
Information
bundling in memory 2-6, 2-11
converting tabular 3-10 to 3-16,
5-62 to 5-64, B-19 to B-20
copying to structured files 2-11,
5-19, to 5-22, 5-32 to 5-33
saving in ASCII files 3-10 to 3-11
storing with TXT25TF 2-5 to 2-7
types 2-2, 2-6, 7-13 to 7-14
Initializing
memory buffers 2-5 to 2-6, 5-32
to 5-33, 5-59 to 5-60
variables 5-3, 5-32 to 5-34
Invalid arguments D-5
@itemn 5-4, 5-37 to 5-40
@item?2
converting with 5-29, 5-45
defined 5-4, 5-40 to 5-43
storing characters in item buffers
with 5-2
Item buffers
adding strings in 5-14 to 5-16
building items in 2-10 to 2-11

copying characters to 5-40 to 5-43
copying contents to structured
file 5-32 to 5-33, 5-59 to 5-60
copying text lines to 5-37 to 5-39
empty 5-19
initializing 2-5 to 2-6, 5-32 to
5-34, 5-59 to 5-60
maximum number of characters
in 5-37 to 5-38
Item comrmands, defined 5-3 to 5-4
Item notes 1-10 to 1-11, 5-45 to 5-47,
B-9to B-10
Items
appending to strings 5-4, 5-14 to
5-16
appending text to 7-11 to 7-12
as arguments 5-8
assigning notes to 5-5, 5-12, 5-43
to 5-48
assigning to categories 1-11, 3-11
to 3-16, 5-19, 5-25 to 5-29, B-11
assigning to numeric categories
5-49 to 5-50
assigning to unindexed catego-
ries 5-67 to 5-68
building 2-10 to 2-11
converting more than one 7-13 to
7-14
converting with tags B-2, B-14 to
B-16
copying to structured files 5-4,
5-32 to 5-33, 5-62 to 5-64
date 5-53 to 5-54
as defaults 1-2
empty 2-11
importing 3-10, 6-6 to 6-7
initializing memory buffers for
2-5 to 2-6, 5-32 t0 5-33, 5-5% to
5-60
note files with 5-12, 5-43 to 5-45,
5-48 to 5-49
paragraphs converted to 6-3
removing text from 5-2, 5-56 to
5-59
single 7-10 to 7-11
starting and ending 6-3
stored in buffers 2-11
tables converted to 3-10 to 3-16,
5-62 to 5-64, B-19 to B-20
tagging 2-11, B-14 to B-16
text converted to 1-10 to 1-11,
39, 3-10, 5-37 to 5-43, 5-54
[!} item tag B-4, B-14 to B-16
{I} item tag B-4, B-14 to B-16
(T} item tag B-4, B-14 to B-16
Item tags 2-11, B-4, B-14 to B-16

Index-5

K

Keywords 5-6, 5-7

L

Layout See Text

/L debugging option 7-3, 7-7 to 7-8

Length of definition file statements
2-4

Line feeds 4-8, 5-13

Literal characters 4-5

LM2STF 1-1

Logical constant arguments,
defined 5-10

Lotus 1-2-3 worksheet 3-11, 5-62

Lowercase See Case

@make_external_note
in Agenda 2.0 A-5
defined 5-43 to 5-45
example 5-9
Match-control characters
asterisk (*) 3-5, 4-4, 4-7
in Agenda 2.0 A-3
at (@) 3-5, 4-4, 4-5
backslash (\} 3-5, 4-4, 4-6
brackets ([1) 3-5, 4-4, 4-6
caret (") 3-5, 4-4, 4-8
colon () 3-5, 4-4, 4-9 to 4-10
defined 4-4
dollar sign (5) 4-4, 4-11
parentheses 4-4, 4-11
in patterns 4-2, 4-16 to 4-18, 5-10,
7-8t0 79
period () 3-5
plus (+} 4-4, 4-12
summary list of C-1 to C-2
tilde (~) 4-4, 4-13, 7-9
vertical bar (|) 4-5, 4-14
Matching
beginning of text line 4-8 to 4-9,
4-16 t0 4-18
characters 4-4 to 4-5, 4-9 to 4-10,
4-18 to 4-19
definition file statements 7-6 to
7-7,7-10
end of line 4-11, 4-16
literal characters 4-5
multiple occurrences of text 4-12
to 4-13, 4-17
nested levels 4-11
non-pattern characters 4-13, 4-17
to 4-18, 7-9

6-Index

patterns to text 1-11 to 1-15, 2-8,
3-7t03-8,4-1t0 4-2, 4-14 to
4-19, 7-6 ta 7-7
single characters 4-9 to 4-10, 4-12
strings 4-11
text 3-5, 4-4, 4-12 to 4-13
text lines to patterns 1-8, 2-8, 5-2
/M debugging option 4-15, 7-3
Memory
bundling information in 2-6, 2-11
clearing 2-11, 3-15
problems with 2-4
reserving with @start 3-6
running out D-3 to D-4, -8
TXT25TF using 2-8
Memory buffers
category 2-10 to 2-11, 5-32 to 5-33
clearing 2-11, 3-15
copying contents of 5-32 to 5-33,
5-59 to 5-60, B-3
initializing 2-5 to 2-6, 5-3, 5-4,
5-32 to 5-33, 5-59 to 5-60
item 2-10 to 2-11, 5-14 to 5-16,
5-37 to 5-43
note 5-14, 5-17 to 5-19, 5-32 to
5-33, 5-41
storing information in 2-11
Mistakes See Errors

Negative patterns 4-13, 4-17 to 4-18,
7-9
Nesting levels in patterns 4-11, D-6
Networks B-2
@note
defined 5-5, 5-45 to 5-48
example 5-10, 5-39, 5-42
Note buffers
adding 5-17 to 5-19
adding text to 5-14, 5-41
copying contents to structured
file 5-32 to 5-33
injtializing 5-59 to 5-60
Note categories 5-5, 5-22 to 5-25
Note commands, defined 5-3
@note_file
defined 5-5, 5-48 to 5-49
example 5-12
Note files 5-5
attaching to items 5-5, 5-12, 5-43
to 5-48
creating external 5-43 to 5-45
identifying with note tags B-8 to
B-10
naming 3-9

Notes See also Category notes; ltem
notes
adding to categories 3-7 to 3-4,
5-22 to 5-25, B-8 to B-9
adding to items 3-4, 3-9 to 3-10,
5-43 to 5-48, B-9 to B-10
appending text to 5-5, 5-17 to
5-19, 7-11 to 7-12
assigned to empty items 2-11
converting with structured file
tags B-2, B-8 to B-9
copying to structured files 5-4,
5-32 to 5-33, 5-62 to 5-64
debugging 7-4 to 7-5
importing 3-10, 6-6 to 6-7
indicating with {N} tag B-3
initializing memory buffers for
5-32 to 5-33, 5-59 to 5-60
maximum number of characters
in 5-46
removing text from 5-56 to 5-59
single 7-10 to 7-11
stored in buffers 2-11
tables converted to 3-10 to 3-16,
5-62 to 5-64
tagging 2-11
text converted to 1-10 to 1-11,
2-10 to 2-11, 3-7 to 3-9, 5-22 to
5-27,5-43 to 5-49
Note symbol (¢) 1-14, 3-10
{N] note tag B-3 to B-4, B-8 to B-10
Note tags B-8 to B-10
Number sign (#) 2-5
Number-vertical bar ¢ |) B-11 to
B-12
@numeric 5-4, 5-49 to 5-50
Numeric categories 5-62
assigning numbers to 5-3, 5-26
converting to 5-49 to 5-50, 5-62
example 3-14
Numeric constant arguments
defined 5-10
example 5-39
Numeric values 3-11 to 3-16, 3-15,
5-49 to 5-50

o)

/O conversion option 6-2, 6-4 to
6-5,7-3, A-2

{O} note tag B-4, B-8 to B-10

Optional arguments 5-7, 5-8, 5-14,
5-65

Ordering definition file statements
1-11 to 1-15, 7-9 to 7-10

P

Paragraphs 1-2, 6-3
Paragraph separators 6-5
Parent categories Sez also Catego-
ries; Category hicrarchy
adding child categories to 5-19 to
5-22, 5-25 to 5-27
converting to 1-9
indicating with category charac-
ters B-12
Parentheses
in Agenda 2.0 A-3
arguments in 5-8, D-6
defined 4-11, C-2
in @end 5-32
in nested levels D-6, D-7
Pattern constant arguments,
defined 5-10, 5-22
Patterns See Definition file
patterns
Percent sign (%) B-13 to B-14
See also Escape character
Period (.) 3-5, 4-5, 4-12, C-5
(.} category tag B-4, B-10 to B-14
Plus {+) 3-15, 4-5, 4-12 to 4-13, 4-17,
C-2
Predefined variables 5-13, C-5
Problems Se¢ Debugging; Error
messages
Processing files See Converting;
TXT25TF
Protecting structured files B-2

R

Ranges of characters 4-5 to 4-8, 4-18
to 4-19
Removing
spaces 5-15 to 5-16
text from categories and items
5-2, 5-56 to 5-59
text and spaces with @trim 5-1,
5-10, 5-21, 5-64 to 5-66
text from text lines 3-8, 5-5, 5-60
to 5-61
@replace 5-5, 5-51
Replacing text 3-7, 4-2, 5-51 to 5-54
Reports, converting 3-10 to 3-16
Reserving memory 3-6
@reset 5-6, 5-52
Running TXT2STF 6-1 to 6-2, A-1 to
A2

S

Saving See also Storing
categories with @end 3-14

information in ASCITI files 3-10 to
3-11
text in variables 3-6 to 3-7, 5-55
(S} comment tag B-4, B-6
/5 conversion option 2-§, 6-2, 6-5
Searching for characters See Match-
mg
Selecting portions of text lines 7-10
to 7-11
Semicolon {;) B-5 to B-6
Separator characters 2-3 to 2-4, 5-34
to 5-36, 6-5
@set
defined 3-6, 5-6, 5-55
example 5-54, 5-61
Single quotation mark (') 4-2, 5-7
@skip
defined 3-6, 5-5, 5-55 to 5-57
example 5-2, 5-26 to 5-27, 5-39,
5-42
@skip_lines
debugging 7-6 to 7-7
defined 5-5, 5-57 to 5-59
example 5-10, 5-23, 5-62 to 5-64
Skipping lines 5-57 to 5-59, 7-11 to
7-12
Skipping over text 5-39, 5-55 to
5-57, 7-10 to 7-11
Slash (/) 6-3, B-11 to B-12
indicating exclusive category
B-11 to B-12
Spaces
removing 5-15 to 5-16
separating patterns from com-
mands 2-3 to 2-4
starting text lines with 3-5, 4-2
Spedial patterns 4-2 to 4-3, C-2
Specific patterns See Definition file
patterns
Specifying
assignments 6-7
carriage returns 5-13 :
categories with tags 2-11, 7-4 to
7-5, B-3, B-10 to B-14
category types 5-10, 5-20, 5-62
definition file patterns 7-8 to 7-9,
C-1toC-2
definition files 6-2 to 6-4, 7-2
file names with variables 5-12
linge feeds 5-13
names for structured files 6-4, 7-3
ranges of characters 4-5 to 4-8,
4-18 to 4-19
termination patterns 5-57 to 5-59
values for variables 5-6, 5-52
variables 5-12, 5-33 to 5-34, 5-22,
5-64 to 5-66
Square brackets See Brackets ([1)

Standard categories 5-4, 5-10, 5-20,
5-62, B-10 to B-12
@start
defined 3-6, 5-4, 5-59 to 5-60
example 5-15, 5-23
grouping statements with 7-14
Start-of-line character See
Caret ()
START pattern 4-2 to 4-3, C-2
Statements See Definition file state-
ments
{STF} header tag A-6, B-4 to B-6
Stopping See alse Terminating
conversion 5-22
definition files 3-9
TXT25TF 2-11
Storing See also Saving
converted information 2-5 to 2-7
error messages in files 7-4
patterns in variables 5-6
text in memory buffers 2-11
text in variables 3-6 to 3-7, 5-6,
5.11, 5-52, 5-35
values in variables 5-34 to 5-36
String constant arguments
defined 5-8 to 5-10
example 5-14
Strings See also Text
appending to items 5-4, 5-14 to
5-16
appending to notes 5-5, 5-17 to
5-19
appending to variables 5-6, 5-13
to 5-14
as argumenis 5-8
deleting from text lines 5-5, 5-60
to 5-61
grouping characters in 4-11
matching non-pattern 4-13, 4-17
to 4-18
patterns compared with 4-16 to
4-18
specifying for variables 5-5, 5-33
to 5-34, 5-52
specifying in patterns 4-5
@strip 5-5, 5-60 to 5-61
Structured files
in Agenda 2.0 A-1 to A-2
building with TXT25TF 2-10 to
2-11
contents of B-2
copying information to 2-11, 5-4,
5-19 to 5-22, 5-32 to 5-33, 5-62
to 5-64
creating B-3
defined B-1 to B-2
defining category notes in 5-23
documenting B-6

Index-7

examining 7-4 to 7-5
formatting dates in 4-3, 5-29 to
5-31
importing 3-10, 6-6 to 6-7, 7-4 to
7-5, A6
naming 6-4, 7-3
on networks B-2
samples B-5, B-16 to B-20
testing 6-7
text files converted to 6-2, 5-62 to
5-64, B-5 to B-16
Structured file tags
in Agenda 2.0 A-5
Category tags 7-4 to 7-5, B-10 to
B-14
Comment tag B-6
Date format B-6
defined B-3
header {STF} A-6, B-5 to B-6
importing with 7-4 to 7-5
inserting into converted text 2-11
Item B-14 to B-16
Note B-6 to B-8
syntax B-2
Symbols and special characters See
list at beginning of index
Syntax See Definition file com-~
mands, syntax
Syntax errors 7-5 to 7-8

T

@table
in Agenda 2.0 A-5
defined 5-5, 5-62 to 5-64
@end with 5-32
example 3-12, 5-32
Table commands, list of 5-3
Tables, converting 3-10 to 3-16, 5-62
to 5-64, B-19 to B-20
Tabs 2-3 to 2-4
Tags See Structured file tags
/T debugging option 7-3, 7-7 to 7-8
Terminating
conversion 5-22
definition file commands 5-13,
5-57 to 5-59
definition files 3-9
TXT2STF 2-11
Testing See Debugging
Text See also Strings
adding to items 5-4, 5-14 to 5-16
adding te notes 5-5, 517 to 5-19
appending to elements 7-11 to
7-12
in arguments 5-8
converting to categories 1-9 to
1-10, 5-19 to b-22, 5-25 to 5-27

8-Index

converting to items 1-10 to 111,
3-6 to 3-8, 3-9 to 3-10, 5-37 to
5-43, 5-54

converting to notes 1-10 to 1-11,
2-10to 2-11, 3-7 to 3-9, 5-22 to
5-25

copying to variables 1-9 to 1-10

defining range of characters 4-5
to 4-8, 4-18 to 4-19

deleting 3-6, 3-9, 3-13, 5-6, 5-64 to
5-66

inserting tags in 2-11

layout 7-11 to 7-12

matching multiple occurrences
4-12 to 4-13, 4-17

matching nen-pattern 4-13, 4-17
to 4-18

matching single character 4-9 to
4-10, 4-12

matching patterns to I-11 to 1-15,
3-7103-8,4-1 t0 4-2, 4-16 to
4-18,7-6 to 7-7

removing from categories 5-56 to
5-59

removing from text lines 3-6,
5-60 to 5-61

replacing 4-2, 5-51 to 5-54

searching 4-16 to 4-18

skipping over 7-10 to 7-11

specifying literal strings 4-5

storing in variables 3-6 to 3-7,
5-6, 5-11, 5-52, 5-55

Text files

in Agenda 2.0 A-1 to A-2

analyzing 1-5 to 1-7, 2-2

ASCII 1-1, 3-10 to 3-11

conversion options 6-2 to 6-5

converting 1-11 to 1-15, 2-7 to
2-13, 5-37 to 5-43, 5-45 to 5-47,
6-1to 6-3

converting more than one 6-6

end of 3-9, 5-13, 5-45, D-8

invalid formats D-8

moving to end of 3-9

processing with TXT25TF 1-2 to
1-3

separator characters in 6-2 to 6-3,
6-5

types of information in 2-6, 7-13
to 7-14

using definition files with 5-15 to
5-16, 5-21 to 5-22, 6-3 to 6-4

Text lines

converting to items 1-10 to 1-11,
5-37 to 5-39, 5-43

copying to buffers 2-8 to 2-9, 5-37
to 5-39

copying to note files 5-43 to 5-45

debugging format of 7-7 to 7-8
deleting text from 5-5, 5-60 to
5-61, 5-64 to 5-66
deleting values from 5-5, 5-55 to
5-57
discarding 5-57 to 5-59
displaying 7-3, 7-7 to 7-8
dividing into values 3-15, 5-5,
5-21, 5-34 to 5-36, 5-55 to 5-57
identifying for conversion 4-15
length of 2-8, D-8
matching 3-7
matching beginning 4-8 to 4-9,
4-16
matching end 4-11, 4-16
matching patterns to 1-11 to 1-15,
2-8, 3-7 to 3-8, 4-1 to 4-2, 4-16
to 4-18
processing with TXT25TF 2-8 to
2-9,3-7t0 38
removing text from 3-6, 5-5, 5-60
to 5-61, 5-64 to 5-66
replacing 3-7, 5-6, 5-51 to 5-54
selecting portions of 7-10 to 7-11
skipping 5-5, 5-57 to 5-58, 7-11 to
7-12
spaces in 3-5, 4-2
storing in variables 5-5, 5-55
Text values 5-67 to 5-68
Tilde (~)
in Agenda 2.0 A-3
defined 4-5, 4-13, 4-17 to 4-18,
7-9,C-2
in patterns 7-9, D-6
Times 5-3, 5-4, 5-28 to 5-31, B-6 to
B-8§
@trim
in Agenda 2.0 A-5
defined 3-6, 5-5, 5-6, 5-64 to 5-66
placing text in variables 5-27
removing spaces with 5-15 to
5-16
removing text with 5-2, 5-10, 5-21
@skip compared with 5-56
Trimming commands, defined 5-3
Troubleshooting See Debugging
TXT2STF
ASCII files converted with 1-1,
3-10 to 3-11
building structured files with
2-10 to 2-11
comparing patterns with strings
4-16 to 4-18
controlling with definition file
statements 2-3
debugging options with 4-15
defined 1-1 to 1-3

definition files used by 2-7 to
2-13
error messages D-1 to D-2
executing definition file com-
mands 3-6, 5-2, 7-10
matching with 4-18 to 4-19
memory problems with 2-4
running 1-4, 2-7 to 2-13, 6-1 to
6-2, A-Tto A2
storing information with 2-5 to
2-7
tables converted with 3-10 to
3-16, 5-62 to 5-64, B-19 to B-20
terminating 2-11
text lines converted with 2-8 to
2-9,3-7t0 3-8
TXT2STF command 6-2 to 6-3, 7-2
Type constant arguments 5-10

U

/U debugging option 7-3

@unindexed 5-4, 5-67 Lo 5-68

Unindexed categories 5-4, 5-62, 5-67
to 5-68, B-11 to B-12

Uppercase See Case

\'J

Values 3-15
assigning to variables 5-34 to
5-36
category 2-11
date 3-15, 5-28 to 5-29
deleting from text lines 5-5, 5-55
to 5-57
dividing text lines into 3-15, 5-5,
5-21, 5-34 to 5-36, 5-55 to 5-57
numeric 3-11 to 3-16, 5-49 to 5-50
removing 5-64 to 5-66
replacing text lines with 5-6
specifying for variables 5-6, 5-52
storing in variables 5-34 to 5-36
Variable argument 5-11
Variable commands, defined 5-3,
5-6
Variable names
defined 5-12
equating with patterns 5-6, 5-33
to 5-34
length of D-5
Variable name string constant argu-
ment
defined 5-9, D-5
example b-14
Variables
in Agenda 2.0 A-4 to A-5

Index-9

appending strings to 5-6, 5-13 to
5-14

as arguments 5-9, 5-11

copying text to 1-9 ta 1-10

creating 5-3, 5-13 to 5-14

defined 5-11

displaying 7-3, 7-8

EOF 3-9, 3-15, 5-13, 5-39, 5-45,
5-58

errors specifying 7-8, D-4

FILENAME 3-9, 5-12, 5-48 to 5-49

initializing 5-3, 5-32 to 5-34

invalid D-5

maximum size 5-11

patterns assigned to 7-9

patterns stored in 5-6

predefined 5-13, C-5

specifying 5-5, 5-12, 5-33 to 5-34,
5-52, 5-64 to 5-66

text stored in 3-6 to 3-7, 5-6, 5-52,
5-55

values assigned to 5-34 to 5-36

values stored in 5-34 o 5-36

/v debugging option 7-3, 7-7 to 7-8
Vertical bar {1)

defined 4-5, 4-13, C-2

indicating unindexed category
B-11to 8-12, D-6

w

(W} date tag B-4, B-12 to B-13
When dates
converting 1-8 to 1-9
creating with tags B-12 to B-13
variables for 5-13
Worksheet, 1-2-3 3-11, 5-62
Writing
comments 2-5
definition file commands 1-7 to
1-9
definition file patterns 4-4, 7-8 to
7-9
definition files 2-3
definition file statements 1-7 to
1-15, 2-3 to 2-5
W variable 5-13

