et
yrssaesend
n..ﬂmm?ﬂyx”
m&vﬁﬁ
)

{1

Release 2.0

Lotus Agenda
Working with Macros

Release 2.0

Copyright

Neither the documentation nor the software may be copied, photocopied, reproduced, translated, or
reduced to any electronic medium or machine-readable format, except in the manner described in the
documentation.

© Copyright 1990 Lotus Development Corporation
55 Cambridge Parkway
Cambridge, MA 02142

All rights reserved. First edition printed 1990. Printed in the United States.

Lotus Agenda and Agenda are registered trademarks of Lotus Development Corporation.

Contents

Introduction

How this Book Is Orgamzed
Before You Begin ... s
Typographic Conventmns ..

Chapter 1 Using Macros

vii

. viii

viii

1-1

In this Chapter ...

ADout MACIOS ...ttt e b
Parts of a Macro .

Creating Macros .. ettt e
Creating Simple Macros
Creating Macros that Include Macro Commands

The Macre Manager ...
Sorting the List of MELCEOS eooesessesressoeseessesseesesreesesss oo
Rearranging the List of Macrosccoeeeiiiicnininininnniniennna
Deleting Macros ..

Hidden Macros .. -

Representing Keys in Macros

The Macro Properties Box .. et e e e
Macro Properties Setﬁngs ...

Running Macros ... eeree s

Editing Macros ..

Changing Macro Names ..
Editing the Contents of Macros ...
Macro Edit Commands ...

Replacing a Macro ..

Appending to a Macro

Transferring All Macros to a New F11e ...

Importing Text Files into Macrosccccooevvecevicrnerevncncninens

Exporting Macros to Text Files ..o,

Attaching Macros to Keysoccooeireeseeenesscnees

1-2
1-2

e 1-3
v 13
.. 14

1-6

- 1-7

1-10
1-10

e 1411
e 1411
e 112

. 1-15

1-16
1-18

w120
. 1-20

1-21
1-22

veenn 1223
. 1-24

1-24
1-25
1-26
1-27

iii

iv Contents

About Macro Files ..

Attaching a Macro Flle
Storing an Existing Macro in a Macro Flle

Detaching Macro Files
Erasing Macro Files ...t

Chapter 2 About Macro Commands

1-30

voevveeens 1231
e 1-34

1-35
1-36

2-1

In this Chapter

Macro Commands

Types of Macro Commandsc.cccocuecrenciniencccserenconconnnes
Macro Command Syntax ...

About Arguments

About String CONSIANEScevicrininirnneceerees e aanes

About Variables ...

About EXPIeSSIONS ...
Global and Local Variables ...
Guidelines for Working with Variablescccccooeoninnniianennnne.

Chapter 3 Macro Command Descriptions

2.2

2-2
2-7
2-8
2-10
2-11
2-12
2-13
2-15

3-1

In this Chapter
{ALERT} ...
{APPEND}

{DEBUGOFF]}
{DEBUGON}

{FOR} ..o

{GETKEY} ..o

3-1

3-3

{IFNOTEQ} ..o
{INPUTTEXTY} ..ot
{LABEL} ..o iicssmems e essssnseseons
[LEFTSTRY .o cme e
{LENGTH] ..o
{LET} o
[MIDSTRE .o
{ONBREAK]} ... s cenmenes
RETURNY] .o
{RIGHTSTR] ... eeecsreeas
ROLLMENUT Lo
[SPEED)] ...t e

{TYPE} ..
{UNDEF}

{WINDOWSOFF} ...Iﬁfﬁﬁffﬁfﬁfﬁfﬁ:ﬁﬁﬁffﬁffffﬁ::ﬁf.'ﬁffffffﬁfﬁfﬁﬁﬁﬁf

{WINDOWSON] ..
{WINDOWSUPD}

Highlight-control Commands
{SELECTIONT weiitire et csssecseenssssasessssesens
Special Variables ...
HFARGCOUNT oot
FASCIIMND) oo eeeene e e s e esssntne s
HDATE vt
HERRMSG ..o ane s
HERRING Lo
HEALSE oy
#FILENAME e,

#FILEPATH .

#HIGHLIGHT TYPE ..
#HIGHLIGHT_ VALUEcovii e
AKEYHIT ..ot ermer e
#MARK_COUNT, #MARKED_IN_ VIEW .
AINULL et st
APROMPT ..ot e

Contents v

3-14

..................... 3-15

3-16
3-18

..................... 3-20
..................... 3-22

3-22

..................... 3-24
..................... 3-24
..................... 3-25

3-26

..................... 3-28
..................... 3-28

3-31
3-34

..................... 3-34
..................... 3-35
..................... 3-35
..................... 3-38

e 3-38
. 3-39

..................... 3-39

oo 341
. 3-41

..................... 3-42
..................... 3-43

3-45

..................... 3-45
..................... 3-47

3-47

..................... 3-47

3-47

..................... 3-47
..................... 3-47
..................... 3-48
..................... 3-48

. 3-48

s, 348
..................... 3-48
..................... 3-48

3-49
3-49

vi Contents

HTIME ..ottt et s s bt et bt e e e e e nenemnennermnesenaneranes 3-55
HTRUE ..ot css e sasesssssnesssesssobssasssassssnsssmesssssssesssssssnin 3-55
HVIEWNAME ...t rens s eans sresasas s sssnanses 3-55
Chapter 4 Tips and Techniques 4-1
In this Chapter s re s e e s et s e 4-1
Choosing Menu Commands in Macros ..o, 451
Starting in the Correct Part of Agendaccocovvnvnnrcvrrnnnnns 4-2
Troubleshooting ... e 4-3
Chapter 5 Sample Macros 5-1
In Bhis CRAPLET ...t e e 5-1
Sample Macre 1: Exporting Items in a Sectionccceoeeeee. 5-1
Sample Macro 2: Parsing a Namecoocoveccivieinnniniiiiiiaa,. 3-3
Sample Macro 3: Searching for Stringsccviviiiiiiinninne 5-4
Sample Macro 4: Performing Calculations Across Numeric
COIUIATIS oottt ettt et ti et e et me e e e e s eeee e e e e eenesnes 5-6

Index

Introduction

This book provides information about Lotus Agenda® macros and
macro commands. Macros automate and simplify working in
Agenda®. You can also use macros to develop customized Agenda
applications.

How this Book Is Organized

This book is organized into five chapters that provide the following
information:

¢ Chapter 1, "Using Macros," provides the procedures for working
with macros, including creating, running, and editing macros.
You don't have to be very familiar with macros to run them or to
begin using them.

Read this chapter if you want to learn basic information about
using macros in Agenda.

* Chapter 2, "About Macro Commands,” introduces the Agenda
macro commands, including information about macro command
syntax, arguments, and variables.

Read this chapter if you plan to create macros using macro com-
mands.

¢ Chapter 3, "Macro Command Descriptions,” provides detailed
descriptions and, in many cases, examples of each macro com-
mand and special variable.

Read this chapter to iearn about the macro commands offered in
Agenda, or as a reference when| creating macros that include
macro commands.

vif

viii Introduction

Before You Begin

» Chapter 4, "Tips and Techniques," provides tips and trouble-
shooting suggestions that can help you when you create macros.

Read this chapter before you begin to create macros or if you
encounter problems when running macros that you've created.

* Chapter 5, "Sample Macros,” provides several sample macros that
use many of the macro commands described in this book.

Read this chapter to get ideas about macros that you can create in
Agenda. You can also use — or modify — these sample macros
for your own use.

Before you begin working with macros, you should be familiar with
Agenda and its basic features. To use macros for developing custom-
ized Agenda applications, you should be familiar with Agenda and
how it works.

Typographic Conventions

Working with Macros uses the following typographical conventions:

The names of Agenda function keys, accelerator keys, and special
keys appear in small capital letters. Function keys are identified by
the key number, followed by the Agenda name.

Example
F6 (PROPS)

Information that you type appears in a different typeface.

Example
Call Helen about this week’s meeting

Commands, settings, and choices appear in boldface type.

Example
Press F10 (MENU) and select File Attach.

Chapter 1

Using Macros

A macro is a series of Agenda® keystrokes and/or macro commands
that you create to perform an Agenda task. When you run the macro,
Agenda reads through the keystrokes and commands in the macro
and performs them automatically.

Macros automate and simplify working in Agenda. They reduce the
time that users would otherwise spend performing long and repeti-
tive tasks; macros also streamline complex procedures. For example,
you can create a macro that formats and prints a report. Macros can
also help users who are unfamiliar with Agenda work with specific
Agenda applications. For example, you can use macros to develop an
Agenda application with customized menus and function keys.

You can include macro commands in macros. For information about
these commands and how to use them, see Chapters 2 and 3.

Note You cannot create macros that work while using Print Setup
or previewing a document. You can, however, create macros
(including those created using Learn mode) that take the user
to Print Setup or Print Preview, and then continue executing
once the user leaves Print Setup or Print Preview.

In addition, you can’t use macros directly from an earlier
release of Agenda in Agenda 2.0 if those macros contain menu
commands, function keys, or other keystrokes from the earlier
release. You can, however, edit these macros to work in
Agenda 2.0. (See "Editing Macros" later in this chapter.)

11

1-2 Using Macros

In this Chapter

About Macros

This chapter describes

* What a macro is

* How to create and use macros

* How to display or not display hidden macros

* How to import a macro in a text file into an Agenda file

* How to export a macro to a text file

* How to attach macros to keys

* How to store and work with macros in external macro files

Note Macros are often written for other people. In this chapter, the
term "you" refers to the person writing the macro. The term
"user"” refers to the person running the macro.

There are two ways to create macros. You can create:
» Simple keystroke macros using Learn mode
¢ Macros that include macro commands

With simple macros, you record keysirokes while you perform a
task. The stored keystrokes can type characters (such as letters and
punctuation marks) or perform an Agenda task (such as those per-
formed by menu commands, and function, accelerator, arrow, and
special keys). When a user plays back a simple macro, Agenda
performs the keystrokes contained in that macro. For example, you
can create a simple macro that formats and prints your weekly sta-
tus report.

Macros can include macro commands as well as keystrokes. Macros
that include macro commands provide a powerful programming
language tool that can perform long and complicated tasks. Macro
commands perform complex operations such as changing the
appearance of a screen, displaying messages, looping, calling other
macros, or prompting for user input. For detailed information about
macro commands, see Chapters 2 and 3.

Parts of a Macro

Creating Macros

Using Macros 1-3

Each Agenda file can contain both simple macros and those that
include macro commands. Macros are stored in the file in which
you create them {unless you store a macro in an external macro file).
Each Agenda file can contain up to 100 macros. (For information on
using external macro files, see "About Macro Files" later in this chap-
ter.)

The keystrokes and commands in a macro cannot exceed 2,000 char-
acters. If a macro exceeds this limit, Agenda tells you while the
macro is compiling and the macro aborts. The macro text (the macro
name, the text from the keystrokes, the commands, and any com-
ments) cannot exceed 10,000 characters. There is no size limit to a
macro stored in an external macro file, but if it exceeds 10,000
characters, it cannot be modified. (See "About Macro Files” later in
this chapter.)

Agenda macros have two parts: the macro name and the macro
instructions.

¢ The macro name is a word or phrase of up to 35 characters. You
name a macro when you create it; the name should describe what
the macro does. The name must be on the first line of the macro,
enclosed in braces ({ }).

* The macro instructions are the keystrokes and/or macro com-
mands that Agenda plays back when the user runs the macro.

A keystroke can consist of a single character, such as a W or dollar
sign ($), or a key name enclosed in braces ({ }), such as (LEFT).

You can create both simple macros and those that include macro
commands in views, notes, and the category manager.

The process for creating a macro involves the following steps:

1. Planning the macro (for example, identifying the steps of the
Agenda task that you are automating)

2. Naming the macro in the macro manager (giving the macro a
descriptive name)

3. Recording the keystrokes in Learn mode and/or entering the
macro commands

1-4 Using Macros

Creating Simple
Macros

4. Documenting the macro with comments (describing the purpose
of the macro and its commands)

5. Running the macro to see if it works correctly

6. Fixing any problems in the macro, if necessary, using the
{DEBUGON} command to step through the macro to find the
problem (see Chapter 3)

7. Specifying where the macro can be run from and whether the
macro is protected by completing the settings in the Macro Prop-
erties box

When you create a macro, you indicate whether you want users to
run the macro in views, notes, the category manager, and/or every-
where else in the file (for example, from boxes with settings). For
example, if you create a macro that formalts a column, it makes sense
to allow users to run this macro only in views — not in notes, the
category manager, or anywhere else in Agenda.

To specify where users can run a macro, select Yes for the appropri-
ate settings under Macro can be run from in the Macro Properties
box. See "Macro Properties Settings” later in this chapter.

You can also create a macro that executes each time a file is opened.
To do this, name the macro aut cexec when you create it. You can
only have one autoexec macro per Agenda file.

The following sections describe how to create simple macros and
macros that contain macro commands. Procedures for running and
working with macros are provided later in this chapter.

Note If you press a key that has an attached macro while you are
recording a macro in Learn mode, Agenda inserts a {CALL}
command into the macro you are recording. This calls the
macro that is atfached to that key. {See Chapter 3.)

The easiest way to create a macro is to use Learn mode. In Learn
mode Agenda records your keystrokes while you perform a task.
You can begin recording a macro in a view, a note, or the category
manager.

Keystrokes can include anything that you can type, press, or select
using your keyboard: menu commands; function, accelerator, arrow,
and special keys; text (letters and punctuation marks); as well as keys
that have attached macros.

Using Macros 1-5

To create simple macros using Learn mode:

1. Place the highlight in a view, note, or the category manager
{where you want to begin recording keystrokes for the macro).

2. Press ALT-F3 (MACRO).

Agenda displays the macro manager (Figure 1-1).
3. Type a name of up to 35 characters and press ENTER.
4. Press F7 (LEARN).

Agenda removes the macro manager and returns you to where
you were in Agenda. When Agenda is in Learn mode, it displays
the LEARN indicator (LEARN) in the upper right corner of the
screen and records a keystroke each time you press a key. When
you press a key, Agenda also beeps to remind you that key-
strokes are being recorded.

5. Press each keystroke that you want to record. When you finish,
press ALT-F3 (MACRO) again.

Agenda stops recording keystrokes and displays a message
telling you that Learn mode has been turned off. The LEARN
indicator also disappears from the upper right corner of the
screer.

6. Press any key to remove the message.

Noles When you create a macro, Agenda records only the key-
strokes, not whether you are typing them in a view, note, or
the category manager. For example, if you are recording a
macro in the category manager and you press F7 (PROMOTE),
Agenda records that keystroke as F7. If you run this macro in
a view, Agenda interprets the keystroke as F7 (MARK) (the
function of F7 in a view).

If you make a mistake while recording a macro, you can stop
recording the macro by pressing ALT-F3 (MACRO). Press AFI-F3
(MACRO} again to display the macro manager. You can then
make changes to the macro by pressing F2 (EDITMAC) on the
macro name in the macro manager, or append or replace the
macro using Learn mode again. (See "Editing Macros,” "Repl-
acing a Macro," and "Appending to a Macro™ later in this
chapter.)

Pressing ALT-Z while recording a macro in Learn mode turns
Learn mode off (because ALT-Z runs the last-run macro).

1-6 Using Macros

Creating Macros
that Include Macro
Commands

You can create macros that include macro commands in a view, a
note, or the category manager in either of two ways. You can:

* Edit an existing macro you already created using Learn mode

* Type all the macro instructions (including the keystrokes and
macro commands) in the Macro edit screen. {For detailed infor-
mation on macro commands, see Chapter 3.)

To create a macro that includes macro commands:
1. Press ALT-F3 (MACRO).

Agenda displays the macro manager (Figure 1-1).
2. Do one of the following:

* To edit an existing macro that was created in Learn mode,
highlight the macro name.

* To create a new macro, type a name of up to 35 characters.
Then press ENTER.

3. DPress F2 (EDITMAC).
Agenda displays the Macro edit screen.

4. Type any key names and/or commands that you want to include
in this macro. You can type uppercase and /or lowercase letters,
Make sure you enclose key names in braces. (For example, type
{F10} to specify the F10 function key.) See "Representing Keys
in Macros" later in this chapter and Chapter 3 for information
about macro commands.

Note The set of characters in braces on the first line of the Macro
edit screen is the macro name. While you can edit this name,
do not delete the macro name or enter any macro commands
or keystrokes before it. If you enter any characters before the
macro name that are nof enclosed in braces, Agenda displays
<Nameless Macro> instead of the macro name in both the
macro manager and the Macro Properties box.

5. Press F10 (MENL) and select Return.
Agenda saves the macro and returns to the macro manager.

Notes If you type a key that is attached to another macro, the original
Agenda function of that key is called in the current macro. To
include a macro that's attached to a key in the current macro,
use {CALL}. (See Chapter 3.)

Using Macros 1-7

In a macro, leading white space in a line is ignored but trail-
ing white space is significant. This means that any spaces at
the end of a line in a macro are typed as literal spaces.

To see how many spaces are at the end of each line in a
macro, you can display carriage returns. To display carriage
returns, select Yes for Display carriage returns using the
Utilities Customize command.

The Macro Manager

When you press ALT-F3 (MACRO) in a new Agenda file, the macro
manager is empty (Figure 1-1).

Figure 1-1 The macro manager

When you press ALT-F3 (MACRO) in an Agenda file that already con-
tains macros, the macro manager lists the names of these macros
(Figure 1-2). When vou create a macro, the macro is added to the list
of macros in the macro manager.

1-8 Using Macros

Hidden macro

Macros aftached to keys

Macro stored as external macro file

Figure 1-2 The macro manager with a list of macros in a
view

The function key map at the bottom of the screen shows the function
keys that you can use in the macro manager. Press ALT to display the
alternate function keys that you can use in this box.

When you highlight a macro name in the macro manager, Agenda
may display indicators in the upper right corner of the box. These
indicators provide information about the highlighted macro includ-
ing:

¢ Where the macro can be run from (views, notes, and so forth)

* Whether the macro is protected (see Appendix G in the User’s
Guide)

* Whether the macro can override protection (see Appendix G in
the User’s Guide)

The following table describes the indicators that may appear in the
upper right corner of the macro manager when you highlight a
macro.

Using Macros 1-9

Indicator Meaning

i Macro is protected (see Appendix G in the User’s Guide)

Macre can override protection (see Appendix G in the
User’s Guide)

v Macro can be run from views

C Macro can be run from the category manager

N Macro can be run from notes

E Macro can be run from everywhere else (for example,

from boxes with settings)

Under the following conditions, the macro manager also displays the
following information about the macros in the current file:

If you press ALT-F7 (DISPLAY), the macro manager displays the
names of any hidden macros in parentheses. For example, Figure
1-2 shows the macro manager in a view. In this example, the
"Format memo for printing” macro is hidden because it can’t be
run in a view. (See "Hidden Macros” later in this chapter.)

If any macros are attached to keys, the names of these keys appear
in braces beside the macros to which they are attached. For exam-
ple, in Figure 1-2, the "Print Quarterly Report" macro is attached
to SHIFT-F4 and the "Switch to Calls view" macro is attached to
CTRL-A.

In addition, if you attach a macro to a function key, SHIFT function
key, ALT function key, or CTRL function key, the first seven charac-
ters of the macro name appear in the function key map at the
bottom of the screen. (See "Attaching Macros to Keys" later in this
chapter.)

If any macros are stored in external macro files, double note sym-
bols () appear beside those macros. For example, in Figure 1-2,
the "Print Menu" macro is stored in an external macro file. {See
"About Macro Files" later in this chapter.)

If the current file was created in an earlier release of Agenda, the
<R1> symbol appears beside the names of macros in that file after
it is opened in Agenda 2.0. For example, in Figure 1-3, the macros
in the macro manager are all from an earlier release of Agenda.

1-10 Using Macros

rrent view

Macros from earlier Agenda releases

Figure 1-3 The macro manager with macros from an earlier
Agenda release

Note You can't use macros directly from an earlier release of
Agenda in Agenda 2.0 if the macros contain menu commands,
function keys, or other keystrokes from the earlier release.
You can, however, edit these macros or keystroke them again
in Learn mode so that they work in Agenda 2.0. (See "Editing
Macros" later in this chapter.)

You specify most of the information shown in the macro manager for
a highlighted macro in the Macro Properties box for that macro. (See
"The Macro Properties Box" later in this chapter.)

Sorting the You can sort the list of macros in the macro manager alphabetically.
List of Macros You may want to do this if you have many macros and want to
quickly scan the list.

To sort the list of macros alphabetically:
1. Press ALT-F3 (MACRO).

Agenda displays the macro manager.
2. Press ALT-F5 (SORT).

Agenda sorts the list of macros alphabetically.

Rearranging the You can rearrange the position of macro names in your list of macros.
List of Macros For example, you might want to change the order in which Agenda
displays macros to appear in order of the tasks they perform.

To rearrange the list of macros:
1. DPress ALT-F3 (MACRO).

Agenda displays the macro manager.

Deleting Macros

Hidden Macros

Using Macros 1-11

2. Highlight the macro you want to move and press
ALT-F10 (MOVE]}.

Agenda displays a symbol (») beside the macro you select.

3. Move the symbol to the macro name above or below which you
want to place the macro in the list.

4. Do one of the following:

¢ Toinsert the macro name above the symbol, press
CTRL-ENTER.

* To insert the macro name below the symbol, press ENTER.

Agenda rearranges the list of macros and removes the symbol.

You can delete a macro if you no longer want it.
To delete a macro:
1. Press ALT-F3 (MACRO).

Agenda displays the macro manager.

2. Highlight the name of the macro you want to delete and press
F4 (DELETE) Or DEL.

Agenda asks if you want to delete the current macro. Select Yes.
Agenda deletes the macro from the macro manager in this file.

Note You cannot delete a macro if it is protected. (See Appendix G
in the User's Guide.)

You can control where a macro can be run from. For example, you
might specify that users can run a macro from notes, but not from
views or the category manager. In this case, the name of the macro
does nof appear (or is displayed in parentheses) in the macro manager
in views or the category manager. This macro is a hidden macro in
views and category manager. The name of this macro, however, does
appear in the macro manager in notes.

1-12 Using Macros

You specify where users can run a macro by completing the Macro
can be run from setting in the Macro Properties box. (See "Macro
Properties Settings" later in this chapter.)

Hidden macros do not appear in the macro manager when it is first
displayed. However, once you set Agenda to display hidden macros,
Agenda will continue to display them enclosed in parentheses until
you set Agenda to nof display hidden macros.

Users can switch between displaying or not displaying the names of
hidden macros in the macro manager.

To display or not display hidden macros in the macro manager:
1. Press ALT-F3 (MACRO).

Agenda displays the macro manager.
2. Press ALT-F7 (DISPLAY).

Agenda displays or does not display any hidden macros in the macro
manager.

In Figure 1-2, when the macro manager displays in a view, users can
press ALT-F7 (DISPLAY) to display the name of the hidden macro, "For-
mat memo for printing.” Agenda displays the names of hidden mac-
ros in parentheses. If a file does not include any hidden macros,
pressing ALT-F7 (DISPEAY) has no effect. If you highlight a hidden
macro and press ENTER to run it, Agenda tells you that the macro
can’t be run in the current mode.

Note You cannot switch between displaying and not displaying the
names of hidden macros if the file is sealed. (See Appendix G
in the User's Guide.)

Representing Keys in Macros

Text characters (a, b, ¢, and so forth) are recorded in a macro as the
characters themselves. Function keys, accelerator keys, and special
keys are represented by abbreviations of key names, enclosed in
braces.

If you add function, accelerator, and / or special keys to a macro when
editing it, you must include the braces as well as the key name abbre-
viation.

Using Macros 1-13

To include a function, accelerator, or special key in a macro, do one of
the following:

Press ALT = (hold down ALT, press EQUAL, then release both keys),
then press a key listed in the following table.

Agenda automatically encloses the key name in braces.

Type the abbreviation for the key name as identified in the follow-
ing table and enclose it in braces, for example, {CL1W}.

You can type the abbreviation in uppercase and/or lowercase. If
you misspell a key name or forget to include the braces, the macro
types the characters instead of performing the keystroke.

The following table shows how Agenda records keys in macros. For
example, if you press ALT and = to record a key and then press ALT
and F2, Agenda records this key as {AltF2}.

Key Agenda Key Alt Ctri Shf
F1- F10 [Fri} where 1 is the {AltFn} wherenis {CtlFn} wherenis [ShfFn}, where n is the
function key num- the function key the function key function key number, such
ber, such as {F2} number, such as number, such as as {ShfF5)
{AltF5) [CHF4}
A-7 The lowercase let- {Altn} where 1 is the Ctln)] where n is the The uppercase letter, such
ter, such as a key letter, such as key letter, suchas as A
AltA CtlB
0-9 The number, such * The corresponding punc-
as 8 tuation character, such.
as &
TAB [TAB} {ShfTAB}
BACKSPACE {BS} &) {BS}
ENTER {ENTER} {CtlEnter} {ShiEnter}
ESCAPE {BSC) {ESC) {ESC]}
HOME {HOME} {CtlHome} {HOME}
END {END} [CHIEnd} {(END}
INSERT [INS} {INS}
DELETE [DEL} {DEL}

conitined

1-14 Using Macros

Key Agenda Key Alt Ctrl Shf

T {UP} {UP}

1 {DOWN} {DOWN])
“ {LEFT} {CtlLeft) {LEFT}
- (RIGHT} {CtIRighi} IRIGHT}
PGDN {PGDN} {CHIPGDN) {PGDN}
PGUP |PGUP} |{CHPGUF} {PGUP}
PRINTSCRN {CtIPrtSc}

BREAK {Ctr1Brk)

GREY {GREY-) {ALT-}
GREY+ {GREY+} {ALT=}

[{ESC}

H {BS}

1 {TAB)

] [{CtlEnter}

M {ENTER}

*ALT-0 through ALT-9 represent international characters. See Appendix D in the User's Guide. In addition,
on many systems, ALT-n (where 7 is a digit on the numeric keypad) is interpreted as a control character.

Notes You cannot represent the ALT-F1 (COMPOSE) key in a macro.
Simply type the compose character instead. (See Appendix D
in the User’s Guide.) Also, you cannot represent the ALT-Z key
in a macro.

If you attach a macro to a key, you should keep in mind that
the CTRL-[, CTRL-H, CTRL-I, CTRLJ, and CTRL-M keys are
recorded as other keys (as shown in the preceding table). For
example, if you attach a macro to CTRL-M, each time the user
presses ENTER, Agenda runs the attached macro. See "Attach-
ing Macros to Keys" later in this chapter.

SPACE BAR does not have a special key name representation.
It is simply recorded as a space character. ;

Using Macros 1-15

The Macro Properties Box

You use the Macro Properties box to specify and display information
about a macro. From this box you can:

Display the name of the macro

Display the contents of and edit the macro

Attach an external macro file to a macro

Attach the macro to a key

Identify where users can run the macro in Agenda

Indicate whether the macro is protected (see Appendix G in the
User’s Guide)

Indicate whether the macro can perform protected operations, if
you have specified one or more protection settings for this file (see
Appendix G in the User’s Guide)

To display the Macro Properties box:

1.

3.

Press ALT-F3 (MACRO).
Agenda displays the macro manager.

Highlight the macro for which you want to display the Macro
Properties box.

Press Fé6 (PROPS).

Agenda displays the Macro Properties box (Figure 1-4).

1-16 Using Macros

Macro Properties
Settings

Figure 1-4 The Macro Properties box

You use the Macro Properties box to specify and display information
about a macro, and to enter and edit the contents of the macro.

Name Displays the name of the macro. This name also appears in
the macro manager.

You cannot move the highlight to or edit the name of a macro from
this setting. (For information on editing a macro name, see "Chang-
ing Macro Names" later in this chapter.)

Contents Displays the contents of the macro. (Press SPACEBAR to
display the Macro edit screen for the macro.) You can edit the macro
name from here. (See "Changing Macro Names" later in this chapter.)

This setting appears only if the Macro is protected setting is set to
No.

Macro file Specify the name of the external macro file to which you
want to attach the current macro. If you do not specify an extension,
Agenda automatically gives the extension MAC to the file. If the
contents of this macro already exist, (in other words, if the macro
already contains keystrokes and/or macro commands), Agenda asks
if you want to delete the existing macro. (You can also use the File
Attach command from the Macro edit screen to attach an external
macro file to a macro. See "About Macro Files" later in this chapter.)

Using Macros 1-17

Attach to key Specify the key to which you want to attach the
macro. Make sure you enclose the key name in braces. The key name
also appears enclosed in braces beside the macro name in the macro
manager. (See "Representing Keys in Macros” earlier in this chapter
and "Attaching Macros to Keys" later in this chapter.)

Agenda displays the Everywhere else setting under Macro can be
run from.

Macro can be run from Specify where you want to let users run the
macro from (View, Note, Category manager, and/or Everywhere
else). The Everywhere else setting appears only when you attach a
macro to a key in the Attach to key setting.

The Macro can be run from settings determine whether a macro is
hidden. For example, if you do not let users run a macro in views,
this macro is a hidden macro in a view. For more information, see
"Hidden Macros” earlier in this chapter.

For each of the Macro can be run from settings, select one of the
following choices.

Choice Result

No Prevents users from running this macro in views,
notes, the category manager, or from everywhere else
in Agenda (for example, from boxes with settings).
The macro name does not appear in the macro man-
ager when the macro manager is displayed in that
part of Agenda. If ALT-F7 (DISPLAY) is pressed,
Agenda displays the name of hidden macros in paren-
theses (unless the file is sealed).

Yes Lets users run this macro in views, notes, the category
manager, or from everywhere else in Agenda (for
example, from boxes with settings). Users can run the
macro from the macro manager or, if this macro is
attached to a key, by pressing the appropriate key.
The macro can be run only from anywhere else in
Agenda (other than views, notes, or the category man-
ager} if it is attached to a key.

Note Yes is the default choice for the View, Note, and Category
manager settings. No is the default for the Everywhere else
setting.

1-18 Using Macros

Running Macros

Even if you select No for any or all of these settings, other macros can
still call or run this macro from anywhere in Agenda. You use the
macro commands {CALL} and {GOTO) to do this. (See Chapter 3.)

Macro is protected Specify whether you want to let users display
the contents of and edit the current macro, or change any of the set-
tings in the Macro Properties box for the current macro. The choices
are Yes and No (default). (See Appendix G in the User’s Guide.)

If you select Yes, Agenda does not display the Contents setting in the
Macro Properties box.

Macro can override protection Specify whether you want the cur-
rent macro to perform operations that the user is protected against
performing. (See Appendix G in the Lser's Guide.) The choices are
Yes and No (default).

For example, suppose you develop an Agenda application in which
you want to prevent users from arbitrarily modifying a certain view,
while still allowing some changes to be made to this view under
macro control.

Select View Properties and set Full protection for the View protec-
tion setting. At this point you can write a macro that performs the
desired changes (for example, that sorts items, or hides done items}.
By selecting Yes for the Macro can override protection setting for this
macro, the macro makes the changes to the view, even though this
view is protected.

Note Unless this file is sealed, users can change the Macro can
override protection setting and other protection settings. For
more information about sealing files, see Appendix G in the
User’s Guide.

Macros make doing your work easier. To run macros, users don't
need to know much about them; they can simply run the macros that
already exist in a file,

Agenda provides two procedures for running a macro. A macro can
be run from the macro manager or by pressing a key (if a macro is
attached to it). Both of these procedures are described in this section.

Using Macros 1-19

Macros can be run from views, notes, the category manager and/or
from everywhere else in Agenda (for example, from boxes with set-
tings or in Edit mode). You specify where you want to let users run a
macro with the Macro can be run from settings in the Macro
Properties box.

Note The Everywhere else setting appears only if you attach a
macro to a key in the Attach to key setting in the Macro Prop-
erties box. Selecting Yes for this setting allows users to run
macros that are attached to keys from anywhere else in
Agenda other than views, notes, and the category manager
{for example, from boxes with settings or in Edit mode).

If you develop an application that includes macros that users can run
from places other than views, notes, and the category manager, you
might want to attach these macros to function, ALT function, SHIFT
function, or CTRL function keys. Agenda then displays the names of
these macros in the function key map at the bottom of the screen.
(Hold down the ALT, SHIFT, and CTRL keys to see the names of macros
attached to these function keys.) (See "Attaching Macros to Keys"
later in this chapter.)

Note Macros that are hidden (macros that appear in parentheses in
the macro manager when you press ALT-F7 (DISPLAY)) cannot
be run.

To run a macro from the macro manager:
1. Press ALT-F3 {(MACRO).

Agenda displays the macro manager.
2. Do one of the following;:

* Highlight the name of the macro you want to run and press
ENTER.

* Type the name of the macro you want to run and press ENTER
fwice.

Agenda tells you that the macro is compiling and then executes the
keystrokes and commands contained in that macro.

To run a macro that’s attached to a key:
¢ Press the key to which the macro is attached.
To run the macro you last ran during the current Agenda session:

* Tress ALT-Z.

1-20 Using Macros

Editing Macros

Changing Macro
Names

You can edit a macro name as well as the keystrokes and/or macro
commands that the macro contains fo correct mistakes or to change
what the macro does. You can also edit a macro if it contains menu
commands, function keys, or other keystrokes from an earlier release
so that you can use it in Agenda 2.0. (In the macro manager, Agenda
displays <R1:> beside the names of macros from earlier releases of
Agenda.)

When you edit a macro, you can use many of the editing features
offered in Agenda. (See Chapter 14.) You cannot, however, insert
markers into macros. Also, press FI (HELP) for comprehensive lists of
the keys that you can use to edit macros.

Note If a macro from an earlier release was created in Learn mode,
it may be easier to simply record the new keystrokes for this
macro in Agenda 2.0 using F7 (LEARN).

Once you create a macro, you might want to change its name to better
describe its contents.

To change a macro name:
1. Press ALT-F3 (MACRO).
Agenda displays the macro manager.

2. Highlight the macro whose name you want to change and press
F2 (EDITMAC).

Agenda displays the Macro edit screen for the macro you
selected. The name of the macro appears in braces on the first
line of the macro.

3. Make any changes to the macro name. Make sure that the name
does not exceed 35 characters and that it is enclosed in braces

.

4. Press F10 (MENU) and select Retwn to return to the macro man-
ager.

Agenda displays the macro in the macro manager with the new
name.

Editing the
Contents of
Macros

Using Macros 1-21

Note Do not delete the braces or enter any macro instructions

before the macro name in the Macro edit screen. If you enter
any characters before the macro name that are #ot enclosed in
braces, <Nameless Macro> appears instead of the macro
name in both the macro manager and the Macro Properties
box,

You can edit the contents of a macro to correct mistakes or to change
what the macro does. You can also edit the contents of a macro if it
contains menu commands, function keys, or keystrokes from an ear-
lier release of Agenda so that you can use it in Agenda 2.0.

Note Agenda 2.0 supports all macro commands from earlier

releases of Agenda. Note that the [INPUT} from earlier
releases of Agenda is {INPUTTEXT} in Agenda 2.0. (See
Chapter 3.}

To edit the contents of a macro;

1.

Press ALT-F3 (MACRO).
Agenda displays the macro manager.

Highlight the name of the macro you want to edit and press
F2 (EDITMAC).

Agenda displays the Macro edit screen for the macro you
selected (Figure 1-5). The set of characters in braces on the first
line is the macro name. Subsequent characters are the macro
instructions.

Make any changes to the contents of this macro. (For general
information about editing, see Chapter 14 in the User's Guide.)

Te discard any changes that you made to the macro before sav-
ing it, press ESC. Agenda asks if you want to discard the
changes. Select Yes and press ENTER.

When you finish editing the macro, press F10 (MENU) and select
RETURN.

Agenda redisplays the macro manager.

Note If you edited the contents of a macro from an earlier release of

Agenda so that it works in Agenda 2.0, you can delete the
<R1> beside the macro name by editing the macro name.

1-22 Using Macros

Macro name

Macro contents

Macro Edit
Commands

Figure 1-5 Macro edif screen

You can also edit a macro from the Macro Properties box:

1.

Press ALT-F3 (MACRO).
Agenda displays the macro manager.

Highlight the name of the macro you want to edit and press
F6 (PROPS).

Agenda displays the Macro Properties box.
Highlight Contents and press SPACE BAR.

Agenda displays the Macro edit screen for the macro you
selected (Figure 1-5).

Follow Steps 3 and 4 in the previous procedure to edit the macro.

You can use the menu commands that display in the Macro edit
screen to work with the current macro.

To display the Macro edit screen menu:

1.

3.

Press ALT-F3 (MACRO).
Agenda displays the macro manager.

Highlight the name of the macro you want to work with and
press F2 (EDITMAC).

Agenda displays the Macro edit screen for the macro you
selected.

Press F1o (MENU).

Agenda displays the macro edit menu commands. The following
table describes each command.

Using Macros 1-23

Command

Function

File

Print

Import

Export

Clear

Return

Quit

Displays the Attach, Detach, and Erase commands.
Attach attaches an external macro file to the current
macro. (You can also complete the Macro file setting in
the Macro Properties box to attach an external macro file
to the current macro.) Detach removes the attachment of
the macro from the external macro file. Erase removes the
attachment of the macro from the external macro file and
erases the file from your disk. (See "About Macro Files"
later in this chapter.)

Displays the Final, Preview, Layout, Setup, and Named
print commands so that you can print the contents of the
current macro. If you select one of these commands,
Agenda first saves any changes made to the macro. (See
Chapter 17 in the User's Guide)

Imports the contents of a text file into a macro. (See
"Importing Text Files into Macros” later in this chapter.)

Exports the contents of a macro to a text file. (See
"Exporting Macros to Text Files" later in this chapter.)

Clears the contents of the current macro.

Returns to the macro manager or Macro Properties box,
saving any changes made to the current macro.

Ends the current Agenda session.

Replacing a Macro

If you make errors, particularly while recording a macro using Learn
mode, it may be easier to re-enter keystrokes and replace the macro
than to edit the macro extensively. You might also want to replace a
macro that was created in Learn mode in an earlier release of

Agenda.

To replace a macro:

1. Press ALT-F3 (MACRO).

Agenda displays the macro manager.

2. Highlight the macro you want to replace and press F7 (LEARN).

1-24 Using Macros

Agenda tells you that the macro already exists and asks if you
want to replace the existing macro or append to it. Select
Replace and press ENTER.

Agenda removes the macro manager and retuxns you to where
you were in Agenda. When Agenda is in Learn mode, it displays
the LEARN indicator (LEARN) in the upper right corner of the
screen and records a keystroke each time you press a key. When
you press a key, Agenda also beeps to remind you that key-
strokes are being recorded.

3. Press the keystrokes you want to record. When you are tinished,

press ALT-F3 (MACRO) again.

Agenda stops recording keystrokes and displays a message that
Learn mode has been turned off. The LEARN indicator also dis-
appears from the upper right corner of the screen.

4. Press any key to remove the message.

Note You cannot replace a protected macro. (See Appendix G in
the User's Guide.)

Appending to a Macro

You can add keystrokes to the end of an existing macro. You might
do this if you want to create a long macro one segment at a time. You
can enter and test a set of keyslrokes and then extend the macro by
appending additional keystrokes.

The procedure for appending keystrokes to an existing macro is the
same as for replacing a macro except that you select Append in Step 2
in the preceding procedure ("Replacing a Macro”).

Transferring All Macros to a New File

When you create a new Agenda file, it contains no macros. You can,
however, create a new file that contains macros from another file.

The File Transfer Template command creates a new file and copies
the structure of one file (its category hierarchy, views, conditions and
actions, file properties, as well as its macros) to a new file.

Using Macros 1-25

Note The new file does not contain items or their assignments from
the original file, although you can use the File Transfer
Import command to import items.

To transfer all macros from one file to another file:

1. Open the file whose structure you want to copy.

2. Press F10 (MENUD) and select File Transfer Template.
Agenda displays the Select File box.

3. Press INS and type the name of the new file to which you want to
copy the structure of the current file. Then press ENTER.

Caution Do not type the name of an existing file, unless you want
to erase that file and reuse the name.

Agenda creates the file that you specified in Step 3 and copies the
structure of the current file to it.

Importing Text Files into Macros

You can import a macro from a text file into a macro in another
Agenda file. You might do this if you want to bring a macro from
another Agenda file into the current Agenda file. When you import
the contents of a text file, Agenda copies the contents of that text file
into the current macro.

To import a text file into a macro in an Agenda file:
1. Open the file into which you want to import the macro.

2. DPress ALT-F3 (MACRO) to display the macro manager and type a
name {(up to 35 characters) of a new macro. Press ENTER and then
press F2 (EDIT MAC) to display the Macro edit screen for that
macro.

3. Press END to go to the end of the macro name. Then press
F10 (MENU) and select Import.

Agenda displays the File box.

1-26 Using Macros

4. Highlight File name and do one of the following:

* Type the name of the text file whose contents you want to
import (including the path, if necessary) and press ENTER.

* Press F3 (CHOICES) and highlight the file whose contents you
want to import. Then press ENTER.

5. Highlight Strip carriage returns. Sclect No (default) to keep
single carriage returns in the macro when you import it, thus
preserving the original formatting of the contents of the macro.
Select Yes to remove single carriage returns from the macro
when you import it, thus rewrapping the contents of the macro
to 79-character lines.

Agenda displays the imported contents of the text file in the current
macro. This macro is now part of the current Agenda file.

If you import a macro from a text file into a macro that already con-
tains commands and/or keystrokes, Agenda inserts the contents of
the file in the current macre after the cursor.

Caution When you import a macro to a second file, the macro may
have two names: the name that it had in the original
macro and the name that you gave the macro in the sccond
file (Step 1). Be sure to delete one of these names when
you complete this procedure. (Make sure that the macro
name is on the first line of the Macro edit screen and is
enclosed in braces ({).

Exporting Macros to Text Files

You can export the contents of a macro to a text file. You might do
this to use the macro in another Agenda file. In this case, import the
text file that contains the macro into the other Agenda file.

To export the contents of a macro to a text file:
1. Do one of the following;:

* In the macro manager, highlight the macro you want to
export and press F2 (EDITMAC).

e In the Macro Properties box for the macro you want fo export,
highlight Contents and press SPACE BAR.

Using Macros 1-27

Agenda displays the Macro edit screen.

2. From the Macro edit screen, press Fio (MENU) and select Export.
Agenda displays the File box.

3. Do one of the following:

+ Type the name of a file to which you want to export the con-
tents of the current macro (including the path, if necessary)
and press ENTER twice.

» Press F3 (CHOICES) to display a list of files. Highlight the name
of the file to which you want to export the contents of the
current macro and press ENTER fwice.

If the file already exists, Agenda asks whether you want to
append or replace the contents of the file. Select Append to add
the exported contents of the macro at the end of the text already in
that file. Select Replace to delete the text in that file before placing
the contents of the macro in it. Then press ENTER.

Note To specify a different file name, press ESC and repeat Steps 2
and 3.

Agenda creales a text file that contains the contents of the current
macro. The contents of the macro still remain in the current Agenda
file. You can now import the text file that contains the contents of the
macro into another Agenda file.

Attaching Macros to Keys

You can attach a macro to most keys including function, CTRL, ALT,
SHIFT function, and special keys (such as INS and GREY +). Attaching
a macro to a key simplifies writing customized Agenda applications,
and lets users carry out complex tasks in an application with a single
keystroke. For example, you can attach a macro to CTRL-S that sorts
items in a view. The user simply presses CTRL-S to sort the items.

You can attach a macro to a key, even if this attachment overrides
existing key attachments or the functions of Agenda keys. This lets
you customize Agenda to meet your needs.

For each file, you can attach up to 100 macros to keys.

1-28 Using Macros

Note You cannot attach a macro to ALT-F1, ALT-F3, or ALT-Z. In addi-
tion, certain keys in Agenda are recorded as other keys. You
should be aware of these keys before attaching macros to
them. See the table in "Representing Keys in Macros” earlier
in this chapter.

To attach a macro to a key:
1. Press ALT-F3 (MACRO}.
Agenda displays the macro manager.

2. Highlight the macro that you want to attach to a key and press
Fé (PROPS).

Agenda displays the Macros Properties box for the current
macro.

3. Highlight the Attach to key setting and do one of the following:

* Press ALT = (hold down ALT, press EQUAL, then release both
keys), then press the key to which you want to attach the
macto, and press ENTER. (See "Representing Keys in Macros”
earlier in this chapter.)

Agenda automatically encloses the key name in braces.

¢ Type the name of the key in braces, for example, {F4}, and
press ENTER. (See the table in "Representing Keys in Macros"
earlier in this chapter.)

4. Press ENTER.

Agenda displays this key in braces beside the macro name in the
Macro manager.

If you attached the current macro to a function, CTRL , ALT, or SHIFT
function key, the first seven characters of the macro name appear in
the function key map at the bottom of the screen (Figure 1-6). Press
ALT, CTRL, or SHIFT to see the key map for macros attached to those
function keys.

To remove an attachment of a macro to a key:

* From the Macro Properties box, highlight Attach to key and press
CTRL-ENTER.

Using Macros 1-29

Macro attached to SHIFT functicn
key

Figure 1-6 Function key map with macro attached to a key

Use these guidelines when attaching macros to keys:

* [f a macro contains a reference to a key that is attached to another
macro, the original Agenda function given to that key is called by
that macro.

For example, if a macro references the F1 key, the macro calls
Agenda Help, which is the normal function of the F1 key in
Agenda (even though another macro may be attached to F1).
Instead, use the {CALL} command to call the macro attached to
the key. You can thus develop application-specific Help screens
(that are attached to the F1 (HELP} key) but still give users access to
the Agenda Help system.

* If you press a key that has a macro attached to it while you are in
Learn mode, Agenda inserts a {CALL} command into the macro
you are recording to call the macro that is attached to that key.

For more information about the {CALL} command, see Chapter 3.

1-30 Using Macros

About Macro Files

Macro file name

You can store macros in separate, external macro files. This lets you
create one macro that can be used with more than one Agenda file.
Macro files are not part of your Agenda file; Agenda stores only the
file name and directory in your file.

When you display the Macro edit screen for a macro file (by pressing
F2 (EDITMAC) on the macro name in the macro manager, or by press-
ing SPACE BAR on Contents in the Macro Properties box), Agenda
displays the contents of the macro file. Agenda also displays the
name of the macro file in the upper left corner of the Macro edit
screen (Figure 1-7). In the macro manager, Agenda displays a
double note symbol () beside all macros stored as external macro
files. (See "The Macro Properties Box™ earlier in this chapter.)

Figure 1-7 Macro attached as external macro file

You work with macros in external macro files the same way you
work with macros in your Agenda file. When you leave the macro,
Agenda saves any changes that you've made to the macro file.

You can either:

* Attach a new or existing macro file to a macro and then enter or
edit the contents of the macro

* Store an existing macro in an external macro file (rather than store
it as part of your Agenda file)

Note If you copy your Agenda file to another disk, you should also
copy any external files attached to that file — including
macro files. (The File Maintenance MakeCopy command
doesn’t copy external files, but it does copy the attachments to
these files.)

For information on printing a list of external files attached to
an Agenda file, see Chapter 22 in the User’s Guide.

Attaching a Macro
File

Using Macros 1-31

You can attach a new or existing file fo a macro and then enter or edit
the contents of the macro. You might do this if you want to create a
macro that you plan to use with several Agenda files.

* If you attach a new macro file to a macro, Agenda displays a blank
Macro edit screen; you can then type the contents of the macro
that you want to store in this external macro file.

* If you attach an existing macro filc to a macro, Agenda displays
the contents of the macro contained in that file. You can then edit
the contents of that macro to meet your needs, or use the macro as
itis. Any changes that you make to the macroe are saved to the
macro file.

You can attach a macro file to a macro from either the Macro edit
screen or the Macro Properties box.

To attach a macro file to a macro from the Macro edit screen:
1. Press ALT-F3 MACRO) and do one of the following:

* Typec a name (up to 35 characters) of a new macro and press
ENTER.

* Highlight the name of an existing macro.
2. Press F2 (EDITMAC).

Agenda displays the Macro edit screen for the macro you speci-
fied.

3. Press F10 (MENU) and select File Attach.

Agenda displays the File box. If you highlighted the name of an
existing macro in Step 1, Agenda asks if you want to delete this
macro. Select Yes and press ENTER to delete the contents of the
macro.

4. Do one of the following:

* Type the name (up to 8 characters) of a new macro file. If you
do not specify a file extension, Agenda gives the file the
extension .MAC. Then press ENTER.

* DPress F3 (CHOICES) to display a list of .MAC files. {If you had
previously entered a file name with an extension other than
MAC, Agenda displays all the files with that extension.)
Highlight the macro file to which you want to attach the cur-
rent macro and press ENTER.

5. Press ENTER.

1-32 Using Macros

If you specified the name of an existing file in Step 4, Agenda dis-
plays the contents of this file. Make sure that the name of the macro
appears in braces on the first line of the macre.

If you specified a new file, Agenda displays a blank macro file. Enter
the name of the current macro in braces (up to 35 characters) on the
first line of the Macro edit screen. You can now type the contents of
the macro,

To attach a macro file from the Macro Properties box:
1. Press ALT-F3 (MACRO) and do one of the following:

s Type a name (up to 35 characters) of a new macro and press
ENTER.

» Highlight the name of an existing macro.
2. DPress Fe (PROPS).

Agenda displays the Macro Properties box for the macro you
specified.

3. Highlight Macro file and do one of the following:

* Type a name {of up to 8 characters) of a new macro file and
press ENTER. If you do not specify a file extension, Agenda
gives the file the extension .MAC.

¢ DPress F3 (CHOICES) to display a list of . MAC files. (If you had
previously entered a file name with an extension other than
MAC, Agenda displays all files with that extension.) High-
light the macro file to which you want to attach the current
macro and press ENTER,

If you highlighted the name of an existing macro in Step 1,
Agenda asks if you want to delete this macro. Select Yes and
press ENTER to delete the macro.

If the macro already has an attached macro file, Agenda asks
if you want to delete the attachment from the current macro
file. Select Yes and press ENTER.

Using Macros 1-33

4. Do one of the following:

e If you specified the name of an existing macro file in Step 3,

do one of the following;:

— If you specified a macro file that already has a name, this
name displays in the Name setting in the Macro Properties
box. Highlight Contents and press SPACE BAR to display
the contents of the current macro.

— If you specified a macro file that had no name (or the name
does not appear on the first line of the macro}, <Namcless
Macro: appears as the macro name in the Name setting in
the Macro Properties box. Highlight Contents and press
SPACE BAR to display the contents of the current macro.
Enter the name of the macro (up to 35 characters) in braces
on the first line of the Macro edit screen.

If you specified the name of a new macro file in Sicp 3,
<Nameless Macro> appears as the macro name in the Name
setting. Highlight Contents and press SPACE BAR. Enter the
name of the current macro (up to 35 characters) in braces on
the first line of the Macro edit screen. You can now type the
contents of the macro.

5. Press F10 (MENU} and select Retumn.

Agenda returns to the Macro Properties box and saves any changes
you made to this macro.

Note

You can attach macro files to an Agenda file that resides cn a
Local Area Network (LAN). If more than one user is sharing
an Agenda file with these attached macro files, or if more than
one user has an Agenda file with one or more of these macro
files attached to it, all users can see the contents of the
attached macro files (as long as the macros in those files aren’t
protected).

However, only one user at a time can modify a macro file.
Thus, if a macro file is being modified, other users can see its
contents, but cannot make changes to it. Changes made to
the macro file cannot be seen by others on the LAN until the
user making the changes leaves the macro {which saves the
changes to the macro file). (See Appendix Fin the User’s
Guide.)

1-34 Using Macros

Storing an Existing You may have already entered a macro in your Agenda file and then
decide that you want to store it in an external macro file so that you
can use it with your other Agenda files. In this case, export the con-
tents of the macro to a file and then attach it as a macro file.

Macro in a Macro
File

To store an existing macro in a macro file:

1.

5.

Press ALT-F3 (MACRO) and highlight the name of the macro you
want to store in a macro file. Then press F2 (EDITMAC),

Agenda displays the Macro edit screen for the macro you speci-
fied.

Press F10 (MENU) and select Export.
Agenda displays the File box.

Type the name (up to 8 characters) of the macro file that you
want to create and type the file extension .MAC; then press
ENTER {wice. If you don’t specify an extension for the file you are
exporting, Agenda gives the file the extension MAC.

If the macro file you specified exists, Agenda asks if you want to
Append or Replace the file. Select Append to add the macro to
the end of the contents of the specified file. Select Replace to
replace the file. Then press ENTER.

To specify a different file name, press ESC and repeat Step 2.
Press F10 (MENU} and select File Attach.

Agenda asks if you want to delete the existing macro. You must
delete the existing macro before you can attach an external macro
file. Select Yes and press ENTER to delete the existing macro.
(Make sure that you have completed Step 3 before doing this.)

Agenda displays the File box. Specify the name of the file that
you exported your macro to in Step 3.

Press ENTER twice,

Agenda attaches the macro file that you created to the current macro.

Detaching Macro
Files

Using Macros 1-35

You can remove the attachment of a macre from an external macro
file. This procedurc removes the attachment of the current macro
from the external macro file but does nof delete the macro file from
your disk. This means that you can still attach this macro file to other
Agenda files.

You can remove the attachment of a macro from an external macro
file from either the macro manager or the Macro . Properties box.

To remove the attachment of a macro from an external file from the
IMACTO Mmanager:

1. Press ALTF3 (MACRO).
Agenda displays the macro manager.

2. Highlight the name of the macro that you want to detach from
the macro file and press F2 (EDITMAC).

Agenda displays the Macro edit screen for the macro you
selected.

3. Press F10 (MENU) and select File Detach.

Agenda detaches the macro file from the current macro, but does nof
delete the file from your disk. This means that the macro file still
exists. You can attach it to the current or any other Agenda file.

To remove the attachment of a macro from an external macro file
from the Macro Properties box:

1. Press ALT-F3 (MACRO).
Agenda displays the macro manager.

2. Highlight the name of the macro that you want to detach from
the macro file and press Fé (PROPS).

Agenda displays the Macro Properties box for the macro you
specified. For the Macro file setting, Agenda displays the name
of the macro attached to this macro.

3. Highlight Macro file and press CTRL-ENTER to detach the macro
from this file.

Agenda asks if you want to detach the existing macro. Select Yes
and press ENTER twice.

1-36 Using Macros

Erasing Macro
Files

You can erase a macro file from your disk if you no longer want to
attach this macro file to the current, or any, Agenda file. This proce-
dure removes the attachment of the current macro from the external
macro file and also erases this file from your disk.

To erase a macro file from your disk:
1. Press ALT-F3 (MACRO).
Agenda displays the macro manager.

2. Highlight the name of the macro attached to the macro file that
you want to erase and press F2 (EDITMAC).

Agenda displays the Macro edit screen for the macro you speci-
fied.

3. Press F10 (MENU) and select File Frase.

Agenda asks if you want to delete the macro file from disk.
Select Yes and press ENTER to erase this file.

Agenda removes the attachment of the current macro to this macro
tile and erases this file from your disk.

Chapter 2

About Macro Commands

In this Chapter

Agenda macro commands provide you with a powerful program-
ming language tool. You can use these commands to write macros
that perform complex operations and simplify working in Agenda.

Chapter 1 provides information about working with macros, includ-
ing procedures for creating them. Agenda lets you create simple
macros by recording keystrokes in Learn mode; you can also create
macros that include macro commands. This chapter introduces the
macro commands that you can include in macros. Chapter 3
describes in detail each macro command.

This chapter describes

* The types of macro commands that Agenda offers

* Macro command syntax

» Arguments and variables used with macro commands
¢ The difference between global and local variables

Note Macros are often written for other people. In this chapter, the
term "you" refers to the person writing the macro. The term
"user" refers to the person running the macro.

2-1

2-2 About Macro Commands

Macro Commands

Types of Macro
Commands

You can create macros that include macro commands to perform
complex operations. For example, you can create macros that

* Change the appearance of a screen
* Display messages

* Prompt for user input

¢ Loop within a macro

¢ Call other macros

To create a macro that includes macro commands, follow the proce-
dure in "Creating Macros that Include Macro Commands” in
Chapter 1.

Agenda macro commands fall into the following groups:

* Variable commands define (and undefine) integer, floating-point
and string variables. Some of these commands also assign values
to numeric variables and character strings to string variables.

* String-manipulation commands let you make revisions to string
variables,

* Flow-of-conirol commands direct the path of macro execution so

that, for example, you can include loops within a macro, or branch

to other macros.

* Input/output commands let you request information from, and
display information to, the user.

* Highlight-control commands control the movement of the high-
light on the screen.

* Miscellaneous commands control macro execution and change
different parts of the screen display.

The following tables list Agenda macro commands by group and
brietly describe the purpose of each command. For more complete
descriptions of these commands and how they work, see Chapter 3.

About Macro Commands 2-3

Variable

Commanids Purpose

{CLEAR} Sets the value of some {or all) string variables to null
or numeric variables to zero ()

{DEFELOAT} Defines a numeric floating-point variable

{DEFINT} Defines a numeric integer variable

(DEFSTR} Defines a string variable

{LET} Assigns a character string to a string variable and /or a
numeric value to a numeric variable

{UNDEF} Undefines some (or all) numeric and string variables

String-manipulation

Commands Purpose

{APPEND} Appends a string to the end of a string variable

{FIND} Searches for a string within another string

{LEFTSTR} Puts into a string variable the leftmost » number of
characters from another string

{LENGTH} Assigns the number of characters in a string to a
numeric variable

[MIDSTR} Puts into a string variable a certain number of charac-
ters from a point within another string

{RIGHTSTR} Puts into a string variable the rightmost number of

characters from another string

2-4 About Macro Commands

Flow-of-control
Commands

Purpose

{BRANCIT}

{CALL}

{FOR)

{GOTO}

{IF)

{IFEQ]

{IFKEY)

{IFNOTEQ}

{LABEL}

{ONBREAK}

{ONERROR]

{RETURN}

Transfers control of macro execution to another point
within the same macro

Transfers control of macro execution to another
macro. The current macro regains control when the
called macro executes {(RETURN]

Initiates a loop that performs a task a specified num-
ber of times. {LABEL} is the end of a {FOR} loop

Transfers control of macro execution to another
macro. Control does not return to the current macro
when the other macro finishes executing

Causes the macro to branch to {LABEL} within the
same macro if the expression in the command is true

Compares two strings and, if they are equal, causes
the macro to branch to {LABEL} within the same
MAacro

Causes the macro to branch to {LABEL} within the
same macro if the user presses a key

Compares two strings and, if they are not equal,
causes the macro to branch to {LABEL] within the
same macro

Creates a reference point in a macro. Lets {RRANCH},
{IF}, {IFEQJ, (IFKEY), (IFNOTEQ}, and (FOR) transfer
control of macro execution to this point within the
Same Mmacro

Transfers control of macro execution to another macro
if the user presses CTRL-BREAK during macro execu-
tion. The current macro regains control when the
other macro executes {[RETURN])

Transfers control of macro execution to another macro
if an error occurs during macro execution. The cur-
rent macro regains control if the other macro executes
[RETURN}

Returns control of macro execution to the macro that
called the current macro using {CALL}, [ONBREAK],
or {ONERROR}

About Macro Commands 2-5

Input{Output

Commands Purpose

{ALERT} Causes a macro to display a box with one or two
messages and then pause and wait for the user to
press a key

{GETKEY! Causes a macro to pause and wait for the user to press
a key. {GETKEY] stores the keystroke in a variable

{INPUTCAT} Causes a macro to pausce and wait for the user to enter
a category name. {INPUTCAT} stores the category
name in a variable and creates a new category if a new
category is specified

{INPUTFILE! Causes a macro to pause and wait for the user to enter
a file name. {INFUTFILE} stores the file name in a
variable

{INPUTTEXT} Causes a macro to pause and wait for the user to enter
text. {INPUTTEXT) stores the text in a variable

{LARGEBOX} Displays a screen of information and pauses for the
user to press ENTER

{LOTUSMENU} Creates a Lotus-style menu across the top of the screen
that lets the user perform various operations

{ROLLMENU} Creates a box with choices that lets the user perform

various operations

Highlight-control

Commands Purpose
{BS} Moves the highlight the number of times specified
with this command

[CTLEND} Same as above
{CTLHOME} Same as above
([CTLLEFT) Same as above
{CTLPCGDN} Same as above
{CTLPGUT} Same as above
{CTLRIGHT} Same as above
{DEL} Same as above
IDOWN} Same as above

continued

2-6 About Macro Commands

Highlight-control

Commands Purpose

{END} Same as above

[ENTER} Same as above

{ESC] Same as above

{(HOME} Same as above

{INS) Same as above

{LEFT} Sarme as above

{PGDNj} Same as above

{PGUP} Same as above

{RIGHT} Same as above '

{SELECTION) Moves the highlight to a specific setting within a box

{SHFTAB} Moves the highlight the number of times specified
- with this command

{TAB) Same as above

{UP} Same as above

Miscellaneous

Commands Purpose

{COMMENT} Lets you add explanatory comments to a macro. Does
not execute

{DEBUGOFTF) Turns off single-step macro execution

{DEBUGON]) Turns on single-step macro execution, which runs a
macro one keystroke or instruction at a ime

{QUIT} Terminates macro execution

{SPEED} Slows down macro execution to one of three speeds
that are slower than normal keystroke execution

{TYPE} Types a string, the contents of a variable, or the result
of a numeric expression on the screen

[WINDOWSOFF) Freezes the screen display while a macro is running,

optionally displaying a "Please wait" box

continyed

About Macro Commands 2-7

Miscellaneous
Commands Purpose

{WINDOWSON]} Unfreezes a screen that has been previously frozen by
{WINDOWSOFF} and updates the screen display

{(WINDOWSUPD] Updates the screen display that has been previously
frozen by (WINDOWSOFF} while a macro is running

Macro Command Syntax

R

Each macro command consists of a keyword (the command name})
and, in most cases, one or more arguments. For each command, the
keyword and any arguments must be enclosed in braces (Figure 2-1).

Macro commands have the following syntax:

{KEYWORD}

Braces

|

[1
{KEYWORD {argumentl,l‘argumentZ,l'. .

Argument separators

Figure 2-1 Macro contmand syntax

The keyword tells Agenda what action to perform.

Arguments provide the information that Agenda needs to complete
the command: the what, where, and when of a particular action.
Arguments can be string constants, numeric constants, string vari-
ables, numeric variables, special variables, and /or expressions. (See
also "About Arguments" later in this chapter.)

2-8 About Macrec Commands

Use these guidelines when working with macro commands:

* [Enclose the entire macro command (the keyword and its argu-
ments, if any) in braces ([}).

* Separate the keyword and each argument with a semicolon.

* You can type uppercase and/or lowercase letters when you enter
a macro command. (Macros are not case sensitive.)

* The compiied keystrokes and commands in a macro cannot
exceed 2,000 characters. If the macro exceeds this limit, Agenda
tells you while the macro is compiling and the macro aborts. The
macro text (the macro name, the text from the keystrokes, the
commands, and any comments) cannot exceed 10,000 characters.

* Blank lines between commands in a macro are ignored.

About Arguments

Agenda supports six types of arguments that you can include in
macro commands. The following table briefly describes each of these
arguments. The rest of this chapter provides more detailed informa-
tion about these arguments.

Argument
Type

Description

Example

String
constant

A constant that is a
character string (such
as the text of a mes-
sage}. You must enclose
a string constant in
quotes if you want
Agenda to recognize
leading or trailing
white space or if you
want to include sermico-
lons ¢}, braces ({ }}, or
percents (%) in the
string (if the % symbol
is the first character in
the string)

In the command
{INPUTTEXT;Please enter your
name;%name), "Please enter your
name" is a string constant

continued

About Macro Commands 2-9

Argument
Type Description Example
Numeric A constant that is a In the command
constant number {ROLLMENU;Do you want to
quit?;choices;2;Yes;Labelone;No;
Labeltwo}, 2 is a numeric constant.
String A variable representing In the command
variable a character string (in- {INPUTTEXT,Please enter your
cluding any sequence name;%fullname},
of letters, numbers, and %fullname is a string variable.
symbols)
Numeric A variable representing In the command
variable a numeric value {DEFINT;% year}{LET ;% year;1990},
%year is a numeric variable.
Expression Formulas that youcan In the command {TYPE;(5+7)}, (5+7)
use to pexform mathe- is an expression.
matical operations or
string comparisons on
variables and constants
Special A variable that returns In the command
variable a specific value, {IF;(#MODE=NOTE);Start},

describing the current
state of the Agenda file.
Special variables cannot
be given any other
value by the user.
Some special variables
return strings; others
return numbers. Spe-
cial variables are
always preceded by a
pound sign (#)

#MODE is a special variable equal
to NOTE only if the cursor is in a
note.

Some macro commands have arguments that expect either strings or

numbers.

¢ For commands for which a number is expected, you can include
numeric variables, numeric constants, some special variables, or
expressions for the arguments.

* For commands for which a string is expected, you can include
string variables, string constants, and some special variables for
the arguments.

2-10 About Macro Commands

About String
Constants

If you use the wrong type of argument in a command, Agenda tries
to convert the variable to the appropriate argument type.

* [fyou use a numeric value where a string is expected, Agenda
converts the numeric value to a string representation.

* If you use a string where a number is expected, Agenda tries to
convert the string to a numeric value. If the string cannot be con-
verted fo a number, Agenda uses a value of zero (0).

For example, the command {FOR;%i;1;10;1;LOOP) expects numbers
for the second, third, and fourth arguments. If, on the other hand, the
command was [FOR;%i;1;%a;1;LOOP}, and %a was previously
defined in the macro as a string, Agenda tries to convert this string to
a numeric value.

You must enclose string constants in quotes if you want the string to
include

* Semicolons (;), braces ({ }), and percents (%) (if the % symbol is the
first character in the string)

* An expression operator, such as a hyphen (-), or anything that
looks like an expression, such as (Profit - Expenses), so that
Agenda interprets this as a string and nof an expression. For
example, if you specify {IF;{%a="Joanna James-Smith"); LOOP},
Agenda will not interpret the hyphen as a minus sign (see also
"About Expressions” Jater in this chapter)

* White space (spaces, tabs, and carriage returns) before and/or
after string constants

Agenda strips white space before and after string constants. If
you want Agenda to recognize white space preceding and/or fol-
lowing a string, you must enclose the string in quotes. For exam-
ple, the command {LET;%d;" John Smith ") recognizes a space
preceding and following the string John Smith.

You can enclose the string in either single or double quotes, but both
the open and close quotes must match.

If you need to enclose a string in quotes for one of the above reasons
and the string already contains quotes, enclose the string with the
other type of quote. For example, to specify a string that already
contains double quotes, type " Employee number "1110";
John Smith’

About Variables

About Macro Commands 2-11

Notes You cannot specify a string constant that contains, as text,
both a single and double quote.

If you write a macro that includes a slash (/), this character
produces different results, depending on where the macro
executes the keystrokes that include the slash. For example, if
a macro containing a slash is run in a view, the slash brings
up the menu. If a macro containing a slash is run while edit-
ing an item or a note, the macro produces the slash character.

Tip To bring up the menu, regardless of what part of Agenda the
macro is run in, include {F10} in the macro. To produce the
slash (/) character, include this character in the {TYPE} com-
mand, for example {TYPE; /].

As shown in "About Arguments" earlier in this chapter, Agenda sup-
ports both string variables and numeric variables. (For information
on special variables, see Chapter 3.)

String variables represent specific character strings and can include
any sequence of letters, numbers, and symbols.

Numeric variables represent numeric values.
Agenda offers two types of numeric variables:
* Integer numeric variables

Integer numeric variables provide loop counters and string
indexes that you can use, for example, in string-manipulation
commands and to perform numeric operations. Each integer
numeric variable can hold numbers between 1 2 billion.

¢ Hoating-point numeric variables

Floating-point numeric variables let you perform numeric opera-
tions using floating-point numbers. Each floating-point numeric
variable can hold numbers between + 1 E 70. Floating-point
numeric variables evaluate to two decimal places.

2-12 About Macro Commands

About Expressions

Agenda performs the following mathematical operations on numeric
integer and floating-point variables:

* Addition

* Subtraction

* Multiplication
¢ Division

* Comparison

Expressions are formulas that you use to perform mathematical oper-
ations or string comparisons on variables and constants. You can use
an expression anywhere that you use a numeric variable.

Expressions always return a numeric value (either integer or floating

point). Expressions that are used for comparisons return a value of 1

(True) or 0 (False). You must enclose expressions in parentheses.

Valid operators for expressions are:
+, -, *; /r < 2=, e, >, =

Expressions are evaluated from left to right with operator precedence
in the following order:

* Unary operators (for example, -1 or +1)

* Multiplication (*) and division (/)

¢ Addition (+} and subtraction (-)

* Relational operators (>, <, »>=, <=, =, and <>)
Thus, for the following expression:

1+2>4/2

4/2 is evaluated first, 1 + 2 is evaluated second, and the comparison
of the results, 3 > 2, is evaluated last, showing the expression to be
true.

Note You cannot use exponents with expressions.

You can also perform comparisons of strings. Both parameters being
compared must be strings.

Global and Local
Variables

About Macro Commands 2-13

Valid operators for string comparisons are:
<, >, <>, =, v, <=

Note Comparison operators are nof case sensitive. For example,
(lynne = LYNNE) is true.

Agenda lets you define variables as either global or local.

A global variable is a variable that is accessible by all macros in a file.
A global variable is also permanent; it remains in the file until you
undefine it using {UNDEF}.

You identify a variable as global by preceding the variable name with
two percent (%) symbols. For example, %%name and % %guest are
both global variables.

You define a global variable if you want information to be shared
among macros and used in a variety of places. For example, vou
might define a global variable and use {INPUTTEXT} to input a per-
son’s name and then use that variable (% %name) in other macros.

You might also define a global variable if you want a macro to store
information from one execution of the macro to the next. You must
use a global variable if you want one macro to provide a value to
another macro (in either direction).

In contrast to global variables, local variables are accessible to the
current macro only; other macros — including called macros — do
#not have access to local variables and their values. Local variables are
also temporary; as soon as the macro finishes executing, Agenda
automatically undefines any local variables in that macro. (In other
words, local variables do not remain in the file.)

You identify a local variable by preceding the variable name with one
percent (%) symbol. For example, %name and %guest are both local
variables.

Sometimes, you might have two macros, each of which define a local
variable with the same name. Because these are local variables, these
macros each access two different variables {(even though they have
the same name). If, on the other hand, these macros both define a
global variable with the same name, they each access and change the
value of the same variable (Figure 2-2).

2-14 About Macro Commands

Macro 1

~

Local variable
% cost (20)
/

Global variable
%% cost (50)

i

Local variable

% cost (40)

Macro 2

Figure 2-2 Global and local variables

In this figure, the first macro (Macro 1) includes the local variable
%cost and gives it a value (20). The second macro {Macro 2} also
includes a local variable by the same name {%cost) and givesita
value (40). Because each of these variables is a local variable, Macro 1
uses 20, the value assigned to the %cost variable in that macro and
Macro 2 uses 40, the value assigned to the %cost variable in that
macro. Neither macro can access or change the value of the other’s
Tocost variable.

On the other hand, Macro 1 and Macro 2 might each define a global
variable (%%cost) and give it a value (for example, 50). By definition,
this variable, and its value, is accessible by all macros in the file.
Thus, both Macro 1 and Macro 2 access the same global variable

(% %cost) and its value of 50. In addition, if either macro changes the
value of % %cost, the value of that variable is changed and all macros
now access the new value for that variable.

Guidelines for
Working with
Variables

About Macro Commands 2-15

Use the following guidelines when working with variables in macro
commands:

* Both local and global variable names can be up to 24 characters
long. Variable names can include special characters except semi-
colons (;), braces ({), or percents (%).

* Local variable names must be preceded by a single percent (%),
for example, %a or %number.

* Global variable names must be preceded by two percent signs, for
example, %%plan or %%average.

* Each string variable (regardless of whether it’s a local or global
variable) represents a string of up to 1,000 characters. If a string
variable is longer than the maximum length of characters for a
particular argument, Agenda uses as much of the variable as pos-
sible.

* Each Agenda file can contain up to 100 macros and an unlimited
number of variables (both local and global).

* Macro variables are stored in the Agenda file. This has different
implications, depending on whether a variable is global or local.

If a command in one macro gives a value to a global variable, all
macros in that file use the value assigned to that global variable
until it is changed with a macro command or undefined (with the
[UNDEF} command).

Make sure to undefine all global variables when you no longer
need them because global variables remain in your file. (See
{UNDEF} in Chapter 3.)

If a command in one macro gives a value to a local variable, only
that macro uses the value assigned to that local variable. Once a
macro completes processing, Agenda automatically undefines all
local variables in that macro.

* You should not combine a (numeric or string) variable and a char-
acter string into a single argument. Use {APPEND} to make a
single string; then use the result.

Chapter 3
Macro Command Descriptions

Agenda offers many macro commands that you can include in mac-
ros. These commands provide a powerful programming language
tool that performs long and complicated tasks. Macro commands can
also perform complex operations such as changing the appearance of
a screen, displaying messages, looping, calling other macros, and
prompting for user input.

In this Chapter

This chapter describes
* The syntax and purpose of each macro command
* The purpose of each special variable

In most cases, this chapter also includes one or more examples of
how each macro command works. The commands are organized
alphabetically by keyword.

For basic information about macro commands, see Chapter 2. For
examples of more complex macros that include many of these com-
mands, see Chapter 5. See also Starter Applications for sample appli-
cations that include many of the commands described in this chapter.

Note Optional arguments for the commands that follow are
enclosed in brackets ([]). Examples that include ellipses (...)
indicate that macro commands preceding or following the
commands in the example have been omitted.

3-1

3-2 Macro Command Descriptions

{ALERT)}

Box_top message

Main_message

{ALERT} causes a macro to display a box with one or two messages
and then pause and wait for the user to press a key.

Syntax { ALERT boxtop_message;main_message}

boxtop_message represents the message at the top of the box.
main_message represents the message displayed in the box. box-
top_message and main_message can each be character strings or vari-
ables of up to 76 characters,

The following example produces a sample alert box (Figure 3-1).

Example

{ALERT; Category displays an alert box
error;Highlight is
not on a category}

Figure 3-1 Sample alert box created using (ALERT}

The main message is centered in the box. The message "Press any key
to continue” always displays along the bottom border of the box.

Note To display only one of the messages, omit one of the argu-
ments (for example, {ALERT;;main_message}) or use
(ALERT boxtop_message;}. Because {ALERT} requires two
arguments, you must include two semicolons even if only one
argument is provided.

{APPEND}

Macro Command Descriptions 3-3

{BRANCH}

{APPEND) appends a string to the end of a string variable.
Syntax (APPEND;stroar;string}

string represents the string that you are appending, to the end of
strvar. strvar represents the string variable to which you are append-
ing string.

Example

{INPUTTEXT;Enter first prompis user for first name
name; %$first}

{INPUTTEXT;Enter last prompts users for last name
name; ¥fullname}

{APPEND; $fullname; Appends ", " (a comma and space) to last
", "} name

{APPEND; $fullname; Appends first name to last name (separated
$first} by a comma and space}

{TYPE; %fullname} types out lastname, firstname

This macro produces the following output:

Lastname, Firstname

{BRANCH]} transfers control of macro execution to another point
within the same macro.

Syntax {BRANCH labelname)

labelname represents the point to which macro execution transfers
control. labelname can be a character string or a variable. You use
{LABEL]} to establish labelname.

If there is no {LABEL} command with a matching labelnase, the
macro proceeds to the command after BRANCH] (that is,
{(BRANCH} is ignored).

Note Matching is not case sensitive.

The following is an example of a subroutine called by a macro to
return the user to a view.

3-4 Macro Command Descriptions

[CALL}

Example

{LABEL; ToView}
{BRANCH; #MODE }

{ESC}

{BRANCH; ToView}
{LABEL; Note}
{F5}

{BRANCH; TcView}
{LABEL; CatMgr}
{F9}

{LABEL; View}

{RETURN}

branches to {LABEL} designed to match the
possible values of #MODE

escapes out of every mode in Agenda except
view, note, or category manager

branches to top of loop to try again

if #MODE = NOTE

F5 exits note

loops to try again

if #tMODE = category manager

F9 goes to the view

if #MODE = VIEW, macro successfully
executes

returns to the macro that executed {CALL)

Note Whereas {BRANCH]} transfers control of macro execution to
another point within the same macro; {CALL} transfers control
of macro execution to another macro.

{CALL} transfers control of macro execution to another macro. The
current macro regains control when the called macro executes

{RETURN}.

Syntax {CALLmacronamel;parameterl;parameter2l;...}

macroname represents the name of the macro being called. parameterl,
parameterl... represent optional arguments that the caller macro
passes to the called macro. These arguments are applied to the first,
second, and so forth {INPUTTEXT}, {INPUTCAT]}, or {INPUTFILE}
commands encountered in the called macro.

The purpose of this technique is to provide a macro that serves as a
subroutine for other macros. In this case, the macro gets its informa-
tion directly from the macro that called it, without prompting for user
input. (See {INPUTTEXT}, {INPUTCAT]), and {INPUTFILE} later in

this chapter.)

Macro Command Descriptions 3-5

The macro that executed (CALL) regains control when the called
macro executes {RETURNY}. If the called macro does not include
{QUIT} or (RETURN], Agenda returns to the calling macro when the
called macro finishes executing.

Note The special variable #ARGCOUNT equals the number of
parameters in {CALL} left to be executed. (See #ARGCOUNT
later in this chapter.)

In the following example, Macro 1 (the caller macro) calls Macro 2
(the called macro). parameterl (John Smith) "pairs up" with the first
{INPUTTEXT} command in the called macro, {INPUTTEXT;Enter the
name;%name}.

parameter? (555-1234) "pairs up"” with the second (INPUTTEXT
command}, {INPUTTEXT:Enter the phone number;%phone}. Thus,
%name contains John Smith and %phone contains 555-1234, without
the user ever being prompted for this input.

Example
Macro 1 (The caller macro)

{CALL;Add Name and calls Macro 2, Add Name and Number, and
Number;John Smith; passes the name and telephone number
"555-1234"} to the variables %name and %phone in

Macro 2

Macro 2 (The called macro, Add Name and Number)

{2dd Name and Number} the called macro

{ INPUTTEXT; passes the name and phone number used as
Enter the parameters in Macro 1 to the variables
name; $name} %name and %phone without prompting

for user input
{INPUTTEXT;
Enter the phone
number; $phone}

{F9} switches to the category manager

{INS} adds the category using the contents of
%name

{TYPE; %name}

{ENTER}

{F5} enters the note

{ENTER} puts the phone number on line 2 of the cate-

gory’s note

continued

3-6 Macro Command Descriptions

[CLEAR}

{TYPE; ¢*phone}

{F5} exits the note, accepting the changes made to
it

{F9} exits the category manager

{RETURN} returns control to Macro 1, the macro which

executed the {CALL} command

{COMMENT}

(CLEAR] sets the value of some (or all) string variables to null or
numeric variables to 0. This command is equivalent to the macro
command {LET;%wvar;" "} or {LET:%var;0}.

Syntax {CLEAR;varl;fvar2];...} or {CLEAR;ALL)

var represents the name of the string or numeric variable that you
want to clear. You can use one {CLEAR;var] command to clear as
many global and/or local string and numeric variables as you want.

{CLEAR;ALL)} clears all the global variables in a file and all the local
variables in the current macro at once.

Whereas {UNDEF} removes all traces of a variable, {CLLEAR} leaves
the variables that it clears in the file so that they retain their status as
being either string or numeric variables. {CLEAR} also sets the values
of string variables to null and numeric variables to 0. {CLEAR} is
useful for resetting variables that you want to reuse in a macro. (See
also ([UNDEF] later in this chapter.)

{COMMENT} lets you add explanatory comments to a macro.
Comments are especially helpful if other people use your macros.
(Comments do not execute.)

Syntax {COMMENT;text}

text represents the explanatory comment that you add to a macro.
Comments are visible only when you are editing a macro; they do not
affect a macro when it runs. Everything between the COMMENT
keyword and the closing brace is ignored when the macro is
executed. There is no maximum length for comment text.

Macro Command Descriptions 3-7

You can also "comment out” macro instructions. When you do, the
macro does not execute these instructions. You might comment out
one or more macro instructions that you don’t plan to use at this
time, but that you don't want to delete. The following example illus-

trates this point.

Note You must include both an opening and closing brace when
commenting out macro instructions.

Example

{INPUTTEXT; First
name?; $fname}
{INPUTTEXT; Last
name?; $fullname}
{APPEND; $fullname;
mw , 1n }
{APPEND; $fullname;
$fname}
{COMMENT; For debugging

{ALERT; Full name;
Comments out macro instructions — %fullname}
{COMMENT ;

{Done debugging)}

}

asks user for first name

asks user for last name

adds a comma (,) and space () to the full
name

adds first name to the full name

"comments out” the following macro instruc-
tions

shows full name

this is a regular commenti

ends "comment out”

{DEBUGOFF}

{DEBUGOFF} turns off single-step macro execution. You set single-
step execution using {DEBUGON}.

Syntax {DEBUGQOFF)

{DEBUGON}

{DEBUGON]} turns on single-step macro execution, which lets you
run a macro one keystroke at a time.

Syntax (DEBUGON}

3-8 Macro Command Descriptions

With {DEBUGON], you (or the user) press any key to step through
macro execution, one keystroke or command at a time. Agenda dis-
plays the {DEBUGON} indicator (DEBUG) in the upper-right corner
of the screen to indicate that you are in this mode. {DEBUGON} stays
in effect until the macro ends or encounters a {DEBUGOFF} com-
mand.

(DEBUGON]} can help you debug a long or complicated macro; it lets
you step through the macro to help you determine where the prob-
lem is.

Note If you use {DEBUGON]}, {IWINDOWSOFF] has no effect. In
addition, [DEBUGON]} will execute (WINDOWSON], if
{WINDOWSOFF) was previously executed.

{DEFFLOAT}

{DEFFLOAT} defines global and/or local floating-point variables.
Syntax {DEFFLOATnumvarl[numovar2];...}

numpar represents the numeric floating-point variable you're defin-
ing,.

You must use {DEFFLOAT) to define a numeric floating-point vari-
able. Agenda does not default to floating-point numeric variables.
Display of floating-point variables default to two decimal places.

You might define a floating-point variable, for example, to collect
expense information. {(For an example of a macro that uses
{DEFFLOAT! for this purpose, see Chapter 5.)

If you use {DEFFLOAT] to define a variable that already exists, the
command is ignored.

You can use one {DEFFLOAT} command to define several local
and/or global numeric floating-point variables. For example, you
can use {DEFFLOAT; %%rate; %i;%i} to define one global numeric
floating-point variable (% %rate) and two local numeric floating-point
variables {%i and %j).

Note You should not use floating-point variables as loop counters
or string indexes in string-manipulation commands. Doing so
may produce unpredictable results. Use an integer instead.
(See {DEFINT} later in this chapter.)

{DEFINT}

Macre Command Descriptions 3-9

The following example illustrates how {DEFFLOAT} defines a
floating-point variable.

Example

{DEFFLOAT; %f} defines a floating-point variable

{LET; $£; (4.11 + 0.62)} sets %f equal to the sum of (4.11 + 0.62)
{TYPE; 3£} types out the contents of %{

This macro produces the following output:

4.73

{DEFINT) defines global and/or local numeric integer variables. You
can use numeric integer variables as loop counters and string indexes
in, for example, string-manipulation commands.

Syntax {DEFINTnumoari{numvar2];..}
numoar represents the numeric integer variable you're defining.

You can use {DEFINT} to define as many local and/or global numeric
integer variables as you want. For example, you can use
{DEFINT;%%count;%i; %i} to define one global numeric integer vari-
able (% %count) and two local numeric integer variables (%i and %j).

If you use {DEFINT} to define a variable that already exists, the com-
mand is ignored.

You do not have to define a numeric integer variable using {(DEFINT).
You use this command only to define a numeric integer variable if it
is not obvious from the macro that a variable is a numeric integer
variable. In many cases, Agenda can determine whether a variable is
a string or numeric integer variable based on its use in a macro.

For example, in {FOR;%i;1;10;1;LOOP}, Agenda recognizes that the
variable %i is a numeric integer variable because arguments in {FOR}
must be numeric. If, in the macro command {LET;%x;%v), the vari-
able %y has a numeric integer value, Agenda assumes that the vari-
able %x is also a numeric integer variable because %x = %y.

3-10 Macro Command Descriptions

{DEFSTRY}

{FIND}

{DEFSTR} defines a local or global string variable.
Syntax {DEFSTR;stroarl[;stroar?2];...}
stroar represents the string variable you're defining,

You can use this command to define as many local and/or global
string variables as you want. For example, you can use
{DEFSTR; % %name;%first;%last} to define one global string variable
{(%%name) and two local string variables (%first and %last).

If you use {DEFSTR} to define a variable that already exists, the com-
mand is ignored.

You do not have to define a string variable using {DEFSTR}. You use
this command only to define a string variable if it is not obvious from
the macro that a variable is a string variable. In many cases, Agenda
can determine whether a variable is a string or numeric variable,
based on its use in a macro.

For example, in the macro command {RIGHTSTR;%s;%name;1},
Agenda recognizes that the variable %s is a string variable because
the value assigned to it is a string.

{FIND} searches for string?2 in stringl, beginning at a specific point in
stringl. The search is not case sensitive. {FIND} returns the position
in stringl where string? begins.

Syntax {FIND;numoar;string1string2 position}

numoar represents the integer variable in which the result is stored.
string2 represents the string you are searching for in stringl. sfringl
represents the string in which you are searching for string2. position is
a number that represents the point at which the search begins.

Starting its search at position, (FIND} finds string? in stringl. If found,
it puts the number of the first character of the match in mumovar. If it is
not found, Agenda gives numuvar the value -1.

{FOR}

Macro Command Descriptions 3-11

Example

{FIND;%string;one two finds the string "three” in the string "one two
three;three;1} three”, beginning with the first character

{TYPE; *string} types the number of the position of the first

character of the match

This macro produces the following output:

9

{FOR} initiates a loop that performs a task a specified number of
times.

Syntax {FOR;numuvar;initial val:final val;incr;labelname)

numuwar represents the variable that initial val, final val, and incr con-
trol the value of. initial val sets the starting value of numvar the first
time the loop is executed. final val represents the value for numwar
that causes the loop to end. incr represents the number by which
nuntoar is incremented (or decremented). labelname represents the
label that designates the last instruction in the {FOR} loop. All com-
mands before the corresponding {LABEL} command are executed for
each loop.

Note The arguments in {FOR} must be integers.

In the following example, the {FOR} loop creates ten new items, each
numbered from 1 to 10. After the tenth item is entered, the loop ends.

Example
{FOR; %Item;1;10;1; initiates a {FOR) loop that enters ten items in
ENDLOOP } sequence
{TYPE; $Item} types a number (the current value of %Item)
into item
{ENTER} accepts the item
{ LABEL ; ENDLGOP } indicates the end of the {FOR} loop

Note You can also decrement the loop counter using a negative
number for incr. For example, if the {FOR} command in the
above example read {FOR;%ITEM;10;1;-1, ENDLOOP}, it
would create ten items numbered from 10 to 1, ending with 1.

3-12 Macro Command Descriptions

{GETKEY}

{GOTO}

{GETKEY] causes a macro to pause and wait for the user to press a
key. {GETKEY]} stores the keystroke in a variable. You can test or use
that variable in subsequent macro commands.

Syntax (GETKEY strvar}

stroar represents the name of the string variable you want to use to
store the keystroke.

[GETKEY! does not prompt the user for the keystroke. You should
use other macro commands to provide a prompt for user input.

Note You may have a macro that displays a box that requires the
user to press a key to clear the box (such as {ALERT}, followed
by {GETKEY]. In this case, the first key pressed clears the
alert box; the second key pressed is stored as a (GETKEY} vari-
able.

The following example shows a macro that repeats each keystroke
twice (for example, if the user presses a, Agenda produces aa on the
screen) until the user presses TAB.

Example

{LABEL; Get More} top of loop

{GETKEY; tkey} waits for next key pressed

{IF; (%key={TAB}}; if TAB pressed, gets out of loop
Stop get}

{TYPE; $key} outputs the key twice

{TYPE; %key}

{BRANCH; Get More} loops up to wait for next key

{LABEL; Stop get}

{GOTOQ} transfers control of macro execution to another macro.
When the macro runs, it executes all keystrokes and commands
before the {GOTO} command, and then begins executing the second
macro. Control of macro execution does not return to the calling
macro when the called macro finishes executing,.

{IF}

Macro Command Descriptions 3-13

Syntax {GOTO;macroname}

macroname represents the name of an existing macro. If macroname is
not found, macro execution continues with the command after
{GOTO} ({GOTOY} is ignored). When the called macro is finished
executing, control of macro execution is #of returned to the macro
that executed {GOTO}. (See {CALL) earlier in this chapter.)

Note Whereas {GOTO) transfers control of macro execution to
another macro; (BRANCH) transfers control of macro execu-
tion to another point within the same macro.

{IF} causes a macro to branch to {LABEL) within the same macro if
expression is true.

Syntax {IF,expressionlabelname}

expression represents the numeric or string comparison that is evalu-

ated when (IF} executes. labelname can be a character string or vari-
able.

Expressions must be enclosed in parentheses (). lnbelname represents
the label that the command branches to. If expression is false, the
macro proceeds to the next macro command after {IF}. (For more
information on expressions, see Chapter 2.)

In the following example, the macro compares the variables %a and
%eb. If their values are equal, the macro displays the message, "The
values are equal.” If their values are not equal, the macro displays the
message, "The values are not equal.”

Example

{IF; (%a=%b) ; EQUAL} compares %a and %D to see if they are equal

{ALERT; ;The wvalues are displays this message if the values are not
not equal} equal

{BRANCH; SKIP} skips over the equal message

{LABEL; EQUAL}

{ALERT; ; The values are displays this message if the values are equal
equal}
{LABEL; SKIP} resumes macro execution here

3-14 Macro Command Descriptions

{IFEQ}

{IFKEY}

(IFEQ} compares two strings and, if they are equal, causes a macro to
branch to another point ({LABEL}) within the same macro.

Syntax {IFEQualuel value? dabelname;

valuel and value? represent the two strings that are compared. valuel
and value? can be numeric or string constants, numeric or string vari-
ables, special variables, or expressions.

labelname represents the point to which macro execution transfers
control within the same macro. Iabelname can be a character string or
variable. You use [LABEL) to establish lnbelname.

{IFEQ} compares valuel to value? (this comparison is not case sensi-
tive). One of the following happens:

* Ifthe values are equal, the macro transfers control to the
{LABEL;labelname} command in the same macro.,

* If the values are not equal, execution continues with the command
that follows {IFEQ}.

{IFEQ} is equivalent to {IF;(waluel =value2) ;labelname).

If there is no {LABEL} command with a maftching labelname, execution
continues with the command after {IFEQ} ({IFEQ} is ignored).

{IFKEY} causes a macro to branch to another point within the same
macro ({LABEL}) if the user presses a key.

Syntax {IFKEY;labelname)

Iabelname represents the point to which macro execution branches
within the same macro. labetname can be a character string or vari-
able. You use the {LABEL} command to establish labelname.

You can use (IFKEY} when a macro initiates an activity that you want
to continue until the user interrupts it by pressing a key. When the
user presses a key, macro execution continues at the
{LABEL;labelname} command within the same macro.

{IFNOTEQ}

Macro Command Descriptions 3-15

{IFKEY} does not store the keystroke. If necessary, you can follow
this command with {GETKEY) or {INPUTTEXT] to capture the key-
stroke and test it.

If there is no {LABEL} command with a matching labelnane, macro
execution continues with the command that follows {IFKEY} ({IFKEY}
is ignhored).

In the following example, the contents of %a are typed repeatedly
until the user presses a key. The keystroke that caused the loop to
terminate is placed in %b by (GETKEY} to get the key out of the
buffer so that it does not clear the Alert box. If {GETKEY} was not
included in this macro, the key that caused the loop to terminate
would cause the Alert box to be cleared before it could be read by the
user.

Example

{LABEL; locp}

{LET; %a;a}

{TYPE; %a} types the contents of the variable
{IFKEY;end loop} aborts LOOP if key pressed

{BRANCH; loop} if no key pressed, branches to LOOP and

continues looping
{LABEL;end loop}

{GETKEY; %b} gets the key that was pressed (include to get
key out of buffer)

{ALERT; ; Loop ended.} displays the message "Loop ended.”

{QUIT}

{IFNOTEQ} compares two strings and, if they are nof equal, branches
to another point ({LABEL}) within the same macro.

Syntax (IFNOTEQ;valuel jvalue2 labelname}

valuel and value? represent the two strings that are compared. valuel
and value? can be numeric or string constants, numeric or string vari-
ables, special variables, or expressions.

labelname represents the point to which macro execution transfers
control within the same macro. labelname can be a character string or
a variable. You use {LABEL} to establish labelname.

3-16 Macro Command Descriptions

{INPUTCAT}

{FNOTEQ} compares valuel and value2 (this comparison is not case
sensitive). One of the following happens:

* If the values are not equal, the macro transfers control to the
{LABEL;labelname} command in the same macro.

s If the values are equal, execution continues with the command
that follows {IFNOTEQ!.

{IENOTEQ)} is equivalent to {IF;(valuel <>value?) Jdabelname).

If there is no {LABEL!} command with a matching labelname, macro
execution continues with the command after {IFNOTEQ} ({IFNOTEQ)
is ignored).

{INPUTCAT]} causes a macro to pause and wait for the user to enter a
category name. {INPUTCAT] stores the category name in a variable
and creates a new category if a new category is specified. You can
test or use that variable in subsequent macro commands.

Syntax {INPUTCAT;prompt_message;var}

prompt_message represents the message in the top border of the box.
It can be a character string of up to 76 characters or a variable. (Any
string longer than 76 characters will be truncated.)

var represents the name of the variable in which Agenda stores the
category name that the user enters. The user can enter up to 69 char-
acters.

If the user presses ENTER without specifying a category name or pres-
ses ESC, one of the following happens:

* If a string variable is used, the value of var is set to null.

¢ If a numeric variable is used, the value of var is set to 0 (zero). Or,
if a string is specified for a numeric variable, the value of var is set
to 0 (zero).

You'd use (INPUTCAT] rather than {INPUTTEXT) to let the user use
automatic compietion or press F3 (CHOICES) to display the list of cate-
gories in the current file.

Macro Command Descriptions 3-17

{(INPUTCAT} displays a box with the prompi_message in the top bor-
der of the box and the message "Press ENTER to accept, ESC to can-
cel" in the bottom border of the box. This command displays the
highlight in the box where the user types characters.

The user can do either of the following:

¢ Type the name of a new category and press ENTER to create a new

category.

Agenda automatically adds the category as a child of MAIN.

s DPress F3 (CHOICES) to display the category hierarchy and select an
existing category, or add a child of another category.

To add a category as a child of another category:

1. Press F3 (CHOICES) fo display the category hierarchy.

2. Highlight the category under which you want to add a child

category.

3. Press ALT-R and type the name of the category you want to add.
Then press ENTER three times.

Agenda adds the category as a child of the category you specily.

In the following example, Agenda prompts the user to enter the name
of the category to which to assign the current item (Figure 3-2). This
macro assumes that the highlight is on an item.

Example

{INPUTCAT;
Enter category
name; $catname}
{Fé6}
{SELECTION;
Assigned to}
{INS}
{TYPE; %catname}
{ENTER; 2}

prompts user for category name

displays the Item Properties box
moves the highlight to Assigned to setting

adds a category

types the category name

accepts the category name and Item Proper-
ties box

3-18 Macro Command Descriptions

Prompts for category name

{INPUTFILE}

Figure 3-2 Sample prompt for category name using
{INPUTCAT)}

You can also pass values to {INPUTCAT) commands (or to
{INPUTTEXT} or (INPUTFILE}} in a called macro using the argu-
ments in {CALL}. In this case, the macro gets its information directly
from the macro that called it, without prompting for user input. (See
[CALL} and #ARGCOUNT in this chapter.)

{INPUTFILE} causes a macro to pause and wait for the user to enter a
file name. The {INPUTFILE} command stores the file name in a vari-
able. You can test or use that variable in subsequent macro com-
mands.

Syntax (INPUTFILE;prompf_message;var}

prompt_message represents the message in the top border of the box.
It can be a character string of up to 76 characters or a variable. (Any
string longer than 76 characters is truncated.)

var represents the name of the variable in which Agenda stores the
file name that the user enters. The user can enter up to 79 characters.

Macro Command Descriptions 3-19

If the user presses ENTER without specifying a file name, or presses
ESC, onte of the following happens:

* If a string variable is used, the value of var is set to null.

» TIf a numeric variable is used, the value of var is set to 0 (zero). Or,
if a string is specified for a numeric variable, the value of var is set
to 0 (zero).

You’'d use {INPUTFILE} rather than {INFUTTEXT] to let the user use
automatic completion or press F3 (CHOICES) to display a list of files.

{INPUTFILE} displays a box with the prompt_message in the top bor-
der of the hox and the message "Press ENTER to accept, ESC to can-
cel” in the bottom border of the box. This command displays the
highlight in the box where the user types characters.

The user can do either of the following;:

¢ Type the name of a new file and press ENTER to specify a new file
name.

* Press F3 (CHOICES) to display a list of files and select an existing
file

In the following example, Agenda prompts the user to enter the name
of a file to import into the current Agenda file (Figure 3-3). This
macro assumes that the highlight is in a view.

Example

{INPUTFILE; prompts user for file to import
Enter file to
import;%filename}

{F10}FTI displays Import Structured file box
{TYPE; %filename} types the file name
{ENTER; 2} accepts the file name and imports the struc-

tured file

3-20 Macro Command Descriptions

{INPUTTEXT}

Figure 3-3 Sample prompt for file name using (INPUTEILE}

You can also pass values to {INPUTFILE) commands (or to {INPU'T-
TEXT} or {INPUTCAT}) in a called macro using the arguments in
{CALL}. In this case, the macro gets its information directly from the
macro that called it, without prompting for user input. (See (CALL}
and #ARGCOUNT in this chapter.)

{INPUTTEXT} causes a macro to pause and wait for the user to enter
text. {INPUTTEXT} stores this text in a variable. You can test or use
that variable in subsequent macro commands.

Syntax {INPUTTEXT;prompt_message;uar}
Note In previous releases of Agenda, {INPUTTEXT} was {INPUT}.

prompt_message represents the message in the top border of the box.
[t can be a character string of up to 76 characters or a variable. {Any
string longer than 76 characters will be truncated.)

var represents the name of the variable in which Agenda stores the
text the user enters. The user can enter up to 79 characters.

Prompts user for text to search for

Macro Command Descriptions 3-21

If the user presses ENTER without specifying any text, or presses ESC,
one of the following happens:

» If a string variable is used and the user leaves the highlight empty
and presses ENTER, the vaiue of var is set to NULL.

* If a string variable is used and the user presses ESC, the ESC char-
acter is produced.

* If a numeric variable is used and the user leaves the highlight
empty or presses ESC, the value of var is set to 0 (zero).

{INPUTTEXT} displays a box with the prompt_message in the top bor-
der of the box and the message "Press ENTER to accept, ESC to can-
cel" in the bottom border of the box. This command displays a
highlight in the box where the user types characters. The user can
edit the string of characters before pressing ENTER.

In the following example, Agenda prompts the user for text to search
for within item text in the current view (Figure 3-4). This macro
assumes that the highlight is in a view.

Example

{INPUTTEXT; Enter text prompts user for fext to search for
to search
for; %¥search}

{ALTF6} displays Search box
{Type; ¥search} types text to search for
{ENTER; 2} accepts entry and starts search

Figure 3-2 Sample prompt created using [INPUTTEXT)

3-22 Macro Command Descriptions

{LABEL}

You can also pass values to {INPUTTEXT} commands (or to {INPUT-
CAT] or (INPUTFILE}) in a called macro using the arguments in
{CALL). In this case, the macro gets its information directly fromn the
macro that called it, without prompting for user input. (See {CALL}
and #ARGCOUNT in this chapter.)

{LARGEBOX]}

[LABEL} creates a reference point in a macro. {LABEL} lets
{BRANCH], {IF), (IFEQ), {IFKEY}, {IFNOTEQ}, and (FOR} transfer
control of macro execution to the reference point within the same
macro.

Syntax [LLABEL;labelname)

labelname represents the reference point in a macro. It can be a char-
acter string or a variable. Use the same character string or variable in
the commands from which you want to transfer control as you use
for labelname.

In the following example, {BRANCH) transfers control to a point Jater
in the macro, that is, to (LABEL). :

Example

{BRANCH; enter name} macro execution skips to {LABEL}
. skips commands after {BRANCH)
{LABETL; enter_ name} macro execution resumes here

{LARGEBOX]} lets you display a screen of information. You might
use this command to display a copyright message, informational
messages, or other information to the user.

Syntax {LARGEBOX;header;string}

header represents the box header or title; it can be a character string of
up to 76 characters or a variable. (If header is more than 76 characters
in length, it will be truncated.)

Macro Command Descriptions 3-23

Note If you don’t want to display a header, you need to include an
argument separator when you omit header. The semicolon (;)
serves as the argument separator. If you omit the argument
separator, the macro may produce unexpected results.

string represents the contents of the box; it can contain approximately
1,000 characters. If the string is large, Agenda automatically makes
line breaks and scrolls, as needed. It also sizes the box appropriately
and centers it on the screen. If the box is larger than one screen of
characters in length, Agenda displays arrows in the upper and/or
lower corner of the box. The user can use T, |, PGUP, PGDN, HOME,
and END to see the rest of the screen.

Agenda always displays the message "Press ENTER to continue” in
the bottom border of the box.

Note Toinclude semicolons (), braces ({ 1), or a percent (%) (if the
% symbol is the first character in the string) in string as liter-
als, you must enclose the siring in quotes.

Example

{LARGEBOX; Widgetbase; displays a screen of information
Copyright 1990 ABC
Widget, Inc.

All rights reserved.}

In this example, the macro displays a copyright screen for the ABC
Widget Inc. company.

Figure 3-5 Sample screen created using [LARGEBOX]

3-24 Macro Cemmand Descriptions

{LEFTSTR}

{LENGTH}

{LEFTSTR} puts into strvar the leftmost # number of characters
(width) from string.

Syntax {LEFISTR;stroar;string;widih}

struar represents the string variable in which the leftmost number of
characters from string is stored. string represents the string from
which the leftmost number of characters is taken. width represents
the number of characters taken from string.

Example

{LEFTSTR; $strvar; puts the leftmost five characters from string
Press enter;5} into strvar
{TYPE; %strvar} types the string variable

This macro produces the following output:

Press

(LENGTH]} assigns the number of characters in a string to numoar.
Syntax {LENGTH;numuvar;string)

numuar represents the number of characters in string. string repre-
sents the string, whose length is assigned to numuvar.

Example

{LENGTH; $numvar; puts the length of string into numvar
Agenda}

{TYPE; 5numvar} types the numeric variable

This macro produces the following output:

6

(LET}

Macro Command Descriptions 3-25

{LET} assigns a character string to a string variable or a numeric
value to a numeric variable.

Syntax {LET;var;string} or {LET;varnumber}

var represents the string or numeric variable to which you want to
assign a numeric or string value. siring represents the character
string that you want to assign to var. number represents the numeric
value that you want to assign to var.

The following example illustrates how {LET} handles a numeric vari-
able. The parentheses enclosing the numeric variable ensures that
Agenda evaluates the argument as an expression.

Example
{LET; %var; (3+4)} sets var equal to 7
{TYPE; %var} fypes out the contents of var

When this macro executes, {LET} gives the variable %var a value of
3 + 4 or 7. Because Agenda can perform operations on numeric
variables, in this example {TYPE} produces the results of the opera-
tion 3 + 4:

7

The following example illustrates how {LET) handles a string vari-
able.

Example

{LET; %str;Lotus sets str equal to Lotus Agenda
Agenda}

{IYPE; %str} types out the contents of str

This macro produces the following output, because {TYPE]} types out
the contents of the string variable:

Lotus Agenda

Note If you want Agenda to recognize leading or trailing white
space {spaces, tabs, and carriage returns) or include semico-
lons (;), braces ({ }), or percents (%) in string constants, you
must enclose the string in quotes.

3-26 Macro Command Desctiptions

{LOTUSMENU}

(LOTUSMENUJ lets you create a Lotus-style menu across the top of
the screen. The user can select menu choices in either of two ways:

* Type the first letter of the desired choice

¢ Use < and — to highlight a menu choice and then press ENTER
on the desired choice

Syntax {LOTUSMENU number;choicel strin g1;labell
[;choice2;string2 dabel2;)...}

number represents the number of menu choices. choicel ,choice?...
represent the actual menu choices, or commands, that appear across
the top of the screen. stringl string?2... represent the long prompts that
appear as the user highlights each choice. labell label2... represent the
labels that the macro branches to if the user selects the corresponding
menu choice.

Use the following guidelines when using {LOTUSMENU] to create a
menu.:

* EHach menu can have up to 20 menu command choices (15 charac-
ters each). The maximum total length of all menu choices is 76.

* Begin each menu choice with a different character so that users
can select each choice by typing the unique first character.

* Uppercase and lowercase letters are equivalent when making a
menu selection; for example, the user can select Two by typing t
orT.

* If more than one choice starts with the same letter, when the user
types that letter Agenda selects the first choice, reading from left
to right, whose first character matches the character that was

typed.

* (LOTUSMENU] lets you display long prompts describing each
highlighted menu choice. If you have a color monitor, Agenda
displays by default long prompts in yellow on blue, menu choices
in white on blue, and highlighted menu choices in white on red.
(These are the default colors for the Color choice for the Color
setting that you specify using the Utilities Customize command.
To change these colors, see Chapter 1 in Setting Up Agenda.)

Long prompt for highlighted
command

Macro Command Descriptions 3-27

If you want to display other menu choices (rather than a long
prompt) for a highlighted menu choice, precede string with a dol-
lar sign ($). This lets you display these submenu choices in the
same color as other menu choices. For an example of how Agenda
displays menu choices versus long prompts with a color monitor,
move the highlight across the menu choices in the File menu.

This following macro produces a Lotus-style menu with two menu
command choices.

Example
{LOTUSMENU; 2 ;Mark; indicates the choices and prompts that appear
Mark items; in the menu when this macro executes

labelone;Print;
Print marked items;

labeltwo}
{QUIT} if the user presses ESC, ends macro execution
{LABEL; labelone} if the user selects Mark, executes the macro
commands at labelone, and ends macro
C e execution
{QUIT}
{LAREL; labeltwo} if the user selects Print, executes the macro
commands at labeltwo, and ends macro
. execution
{QuIT}

Menu commands

Figure 3-6 Sample Lotus-style menu created using
{LOTUSMENL}

Macro processing branches to a different point, depending on what
the user does:

¢ If the user selects the first menu choice (Mark), macro processing
branches to {LABEL;labelone}. ’

* If the user selects the second menu choice (Print), macro process-
ing branches to {LABEL;labeltwo).

3-28 Macro Command Descriptions

{MIDSTR}

Note If the user presses EscC, or if {[LOTUSMENU] references labels
that don’t exist, the macro continues executing at the next
macro command after [LOTUSMENU].

{ONBREAK}

{MIDSTR} puts the number of characters specified in width, starting
with the character identified in position, from string into stérvar. For
example, (MIDSTR;strvar;abc;2;1} results in strvar = b,

Syntax [MIDSTR;strmr;string;position;width}

stroar represents the string variable that stores the number of charac-
ters. string represents the string from which the number of characters
1s taken. position is a number that represents the point in string from
which characters are taken. width represents the number of charac-
ters, starting with position, that are taken from string and put into
struar.

Example

{LET; ¥string;Personal setsstring equal {o the string "Personal
Information Information Management"
Management}

{MIDSTR; %strvar; beginning with the tenth character, puts
$string;10;11} eleven characters into strvar

{TYPE; $strvar} types the string variable

This macro produces the following output:

Infermation

{ONBREAK} lets you transfer control of macro execution to another
macro if the user presses CTRL-BREAK during macro execution.

Syntax {ONBREAK;macroname} or {ONBREAK}

macroname represents the name of the break handler macro.

Macro Command Descriptions 3-29

A break handler macro runs when the user presses CTRL-BREAK dur-
ing macro execution. Macro processing is returned to the executing
macro (to the point at which the user pressed CTRL-BREAK) by
executing (RETURN]. If the break handler macro does not include
[{QUIT} or {RETURN}, macro processing automatically returns to the
execuling macro when the break handler macro {inishes executing. If
there is no break handler macro, pressing CTRL-BREAK causes a macro
to terminate execution.

The ability to maintain macro execution, even if the user presses
CTRL-BREAK, is very useful for application developers who are pro-
viding turnkey Agenda applications.

Note You can reference only one break handler macro at a time. If
you reference another macro using {ONBREAK]} during
macro execution, Agenda uses the most recently executed
{ONBREAK]} command in the macro. You should put the
[ONBREAK]} command at the beginning of a macro.

It a macro that includes an {ONBREAK)} command calls one or more
macros, the {ONBREAK} command remains in effect for all called
macros unless a new {ONBREAK} command is cxecuted. Therefore,
if the user presses CTRL-BREAK during macro execution, Agenda
transfers control to the break handler macro, regardless of when the
user pressed CTRL-BREAK.

(ONBREAK} used without the macroname argument removes the cur-
rent break handler macro.

The following example shows two macros, the second of which
serves as a break handler for the first. In this example, a break han-
dler macro (Macro 2) is provided because Macro 1 takes a long time
to complete and there is a chance that the user may inadvertently
press CTRL-BREAK during macro execution.

Example
Macro 1 (The executing macro)

{ONBREAK; establishes Break Handler as the break han-
Break Handler} dler macro (Macro 2)

{WINDCWSOFF; freezes the display and puts up a "Pleasc
Long Macro; wait" box
Press Ctrl-Break to
Abort}

e the body of the long macro
{WINDOWSON} restores the display
{ONBREAK} removes the break handler

3-30 Macro Command Descriptions

Macro 2 (The break handler macro}

{Break Handler} name of break handler macro
{ROLLMENU; Do you asks if the user wants to quit

really want to

quit?;Select Yes to

end macro

execution, No to

continue.;2;Yes;

Yeslabel;No;

Nolabel}

{LABEL; Nolabel} if the user selects N or ESC, macro process-
{RETURN} ing resurnes where it left off

{LABEL; Yeslabel} if the user selects Y, all macro processing
{QUIT} terminates

If the user presses CTRL-BREAK during macro execution, the break
handler macro displays (in a simple roll menu) a message confirming
whether the user really intended to quit (Figure 3-7). If the user types
N or presses ESC to indicate that the user did not intend to quit, the
break handler macro allows the original macro (Macro 1) to continue
executing.

In contrast, if {ONBREAK]} wasn’t present and the user pressed
CTRL-BREAK when the macro was processing, macro execution would
terminate.

Figure 3-7 Sample message ereated using (ONBREAK)

{ONERROR}

Macro Command Descriptions 3-31

[ONERROR;} lets vou transfer control of macro execution to another
macro if specific errors occur during macro execution.

Syntax [ONERROR;macroname} or (ONERROR}
macroname represents the name of the error handler macro.

An error handler macro is one that is called whenever specific errors
occur in Agenda during macro execution. Macro processing is
returned to the executing macro (to the point at which the error
occurred) by executing (RETURN}. If there is no error handler macro
and an error occurs in Agenda during macro execution, macro pro-
cessing is terminated.

If appropriate macro instructions are provided, macros can handle
many errors that occur in Agenda during macro execution, For
example, you might have a macro that prints marked items, prompt-
ing the user to mark items to print. If the user does not mark items
prior to printing, an error occurs. If there was no error handler
macro, this situation would cause macro execution to terminate. You
can, however, provide an error handler macro to handle this type of
error. (For a list of Agenda errors that macroes can handle, see Appen-
dix D in the User’s Guide.)

Note Macros cannot handle all errors. For example, macros cannot
handle DOS errors such as "Disk is full.”

{ONERROR} works in conjunction with the special variables
#ERRNO and #ERRMS5G. When an error in Agenda occurs during
macro execution and an error handler macro is present, the error han-
dler macro checks to see if the error that occurred is one that it can
handle. (Errors are identified by #ERRNO, a number associated with
cach Agenda error.) If the macro can handle the error (it can undo or
safely ignore the error), the error handler macro can execute {RE-
TURN} to continue macre processing at the point at which the error
occurred.

If {ONERROR} does not recognize and thus, cannot handle the error,
macro processing terminates. 1f the error handler macro cannot han-
dle the error, the error handler macro should execute cither:

« {QUIT}, which terminates macro processing

¢ {QUIT;ERROR} which terminates macro processing and displays
the error message associated with the error that occurred

3-32 Macro Command Descriptions

(See (QUIT}, #ERRNO, and #ERRMSG, later in this chapter. See also
Appendix I in the User’s Guide for descriptions of Agenda error mes-
sages that macros can handle and the number (#ERRNO) associated
with each.}

The ability to maintain macro execution, even if an error occurs in
Agenda during macro execution, is very useful for application devel-
opers who are providing turnkey Agenda applications.

Note You can reference only one error handler macro at a time. If
you reference another macro using {ONERROR}, Agenda uses
the most recently executed {ONERROR} command in the
macro. You should use {ONERROR] at the beginning of a
macro.

If a macro that includes an {ONERROR! command calls one or more
macros, the [ONERROR} command remains in effect for all the called
macros unless a new {ONERROR} command is executed. Therefore,
if an error occurs during macro execution, Agenda transfers control
to the error handler macro, regardless of when the error occurred.

{ONERROR!} used without the macroname argument removes the cur-
rent error handler macro.

The following example shows how an error handler macro works. In
this example, the purpose of Macro 1 is to make modifications to all
notes attached to categories in a file. The modifications themselves
are indicated by ellipses (...) in Macro 1. (It is assurned that this
macro is being run from the category manager.)

An error might occur during the execution of Macro 1: A note might
be attached as an external note file that is greater than 10,000 charac-
ters. Notes greater than 10,000 characters can only be read; they can-
not be modiiied.

In this case, modifications cannot be made to such notes. This means
that as soon as one of these notes is displayed, an error occurs.
Rather than displaying the message that Agenda usually displays for
this error, and terminating macro execution, Agenda calls the error
handler macro (Macro 2). The error handler macro sets a flag (called
%%SkipThisNote) in Macro 2. This flag tells Macro 1 to skip making
the modification to this note and continue execution.

Example

Macro Command Descriptions 3-33

Macre 1 (The executing macro)

{ONERROR ;
Error Handler}

{DEFINT; %%SkipThis-
Note}

{CLEAR;
Note}

MAIN{ENTER}

{F5}

{LABEL; Loop}

{IF;
(3%SkipThisNote=
#TRUE) ; Skipit}

%%SkipThis-

{LABEL; Skipit}

{Clear; %%SkipThis-
Note}

{AltN}

{IF;
{(#mode <> Dialog):
NoChangesMade}

N

{LABEL; NoChangesMade}

{IF; (#mode = Note);
Loop}

{ONERROR}

establishes Error Handler as the error han-
dler macro
defines the error flag variable

ensures the error flag is reset

moves the highlight to the category Main
goes to the note attached to Main

if the error handler has set the error flag to
TRUE, skips the note

the body of the macro

resets the error flag before moving to the
next note

moves to the next note

if changes were made, Agenda asks "Discard
changes?"

enters "N" for no

in new note, loops to see if note is read-only

removes the error handler

Macro 2 (The error handler macro)

{Error Handler}

{IF; (#ERRNO = 6200);
ReadOnlyNote)
{QUIT;ERROR}.

{LABEL; ReadOnlyNote}

{LET; %%SkipThisNote;
#TRUE }

{RETURN }

the name of the error handler macro
6200 = Notes this long can only be viewed
(read-only)

if an error occurs that the macro can't han-
dle, displays the error message and ends
the macro

sets the error flag to TRUE which tells other
macro not to modify this note

returns to the previous macro at the point at
which the error occurred

3-34 Macro Command Descriptions

[QUIT}

{RETURN}

{QUIT} terminates macro execution.
Syntax [QUIT] or {QUIT,ERROR}

If a macro that is running is called by another macro (via {CALLY)),
{QUIT]} does not return to the caller macro; it terminates all macro
processing,.

If {QUIT} executes (by pressing a key which has an attached macro)
while Learn mode is on, Learn mode is turned off. To continue, turn
Learn mode on again and append to the macro. (See Chapter 1.)

{QUIT} and {QUIT;ERROR} also work in conjunction with an error
handler macro. If an error occurs during macro execution and an
error handler macro is present, the error handler macro checks to see
if the error that occurred is one that it can handle. For those cases
when it cannot handle the error, include {QUIT} or {QUIT;ERROR} in
the error handler macro to execute either {QUIT} {to terminate macro
execution) or (QUIT;ERROR] (to terminate macro execution and dis-
play the error message associated with that error). (See {ONERROR}
earlier in this chapter.)

{RETURN} returns control of macro execution to the macro from
which it was called (by {CALL)}).

Syntax {RETURN}

{RETURN} also returns control to the macro from which the current
macro was called by ejither [ONBREAK] or {ONERROR}. (If the
called macro is a break handler macro, it would be called if the user
pressed CTRI-BREAK during macro execution. If called macro was an
error handler macro, it would be called if an error occurred during
macro execution.)

Macro processing resumes at the next command to be executed,
which is typically the command after {CALL} (or the point at which
CTRL-BREAK was pressed or an error occurred).

{RIGHTSTR}

Macro Command Descriptions 3-35

If a macro does not include {RETURN]} (or (QUIT}) and macro execu-
tion continues until the end of the macro, at that point Agenda
assumes there’s a {RETURN} and returns control of macro execution
to the macro that called it.

{ROLLMENU}

{RIGHTSTR} puis into struar the rightmost number of characters from
string.

Syntax {RIGHTSTR;strvar;string width}

stroar represents the string variable in which the rightmost number of
characters from string is stored. string represents the string from
which the rightmost number of characters is taken. width represents
the number of characters taken from string.

Example

{RIGHTSTR; $strvar; putis the rightmost four characters from
Initial View:4} string into strvar

{TYPE; %strvar} types the string variable

This macro produces the following output:

View

{ROLLMENUJ} lets you create a box with choices in a vertical list.
This box lets users select a choice in either of two ways:

¢ Use Tand | to highlight a choice and then press ENTER on the
desired choice.

* Use Agenda’s automatic completion feature by typing the name of
the desired choice and then pressing ENTER when the highlight is
on that choice.

For more information on using boxes in Agenda and automatic com-
pletion, see Chapter 2 in the User’s Guide.

3-36 Macro Command Descriptions

Syntax {ROLLMENU;header;long promptnumber;
choicel labell|;choice?;label2;]...}

header represents the text that appears at the top of the box and identi-
fies the box; it can be up to 76 characters long. long prompt represents
the text that appears at the top of the screen; long prompt can be up to
two lines of 70 characters each. number represents the total number of
choices in the box; number can be up to 40 (the maximum number of
choices allowed in each box). choicel choice?... represent the actual
choices in the box. labell label?... represent the labelnames that the
macro branches to if the user selects the corresponding menu choice.

Note If you omit the header or prompt arguments, you need to enter
an argument separator for each argument you omit. "The
semicolon () serves as the argument separator. If you omit
the argument separators, the macro may produce unexpected
results.

Use the following guidelines when using {ROLLMENU] to create a
box with choices:

* You can include up to 40 choices for each box. If the box exceeds
the length of the screen, the user can use the arrow keys to scroll
to see the choices.

* Uppercase and lowercase letters are equivalent when selecting a
choice using automatic completion. The user can select No by
typing n or N.

* If the user presses ESC, or if [ROLLMENU} references labels that
don’t exist, the macro continues executing at the next macro com-
mand after {ROLLMENU}.

* To specify a two-line long prompt, include a vertical bar in long
prompt at the point at which you want the text to break. Each line
can be up to 70 characters in length.

The following macro creates a box with two choices.

Example

Macro Command Descriptions 3-37

{ROLLMENU; Do you want
to quit?;Highlight
your choice and
press ENTER;2;
Yes;labelone;

No; labeltwo}

{QUIT}

{LABEL; labelone}

{QUIT}

{LABEL; labeltwo}

{QUIT}

indicates the choices that appear in the box
when the macro executes

if the user presses ESC, ends the macro

if the user selects Yes, executes the macro
commands after labelone and ends
macro execution

if the user chooses No, executes the macro
commands after labeltwo and ends the
macro

Figure 3-8 Sample box created using [ROLLMENU}

Macro processing branches to a different point, depending on what

the user does.

+ If the user selects the first choice (Yes), macro processing branches

to {LABEL;labelone}.

* If the user selects the second choice (No), macro processing
branches to {LABEL;labeltwo].

3-38 Macro Command Descriptions

{SPEED}

{TYPE}

{SPEED)} slows down macro execution to one of three speeds that are
slower than normal keystroke execution. You might use {SPEED)}, for
example, if you've developed a training application and want to have
the file execute slowly so that users can see the keystrokes execute.

Syntax {SPEED;argument}

argument represents the speed of macro execution. It can be SLOW,
MED, FAST, or MAX. SLOW, MED, and FAST are ali slower than
normal playback speed. MAX returns playback to normal (MAX)
speed.

Macro execution always starts at normal (MAX) speed. When a
macro finishes executing, Agenda macro execution automatically
returns to normal speed.

For all speeds except MAX, the speed with which a macro executes is
based on the system clock {not the processing speed of your com-
puter). This means that if, for example, a macro is running at
(SPEED;MED} on both an IBM® XT™ and a Compaq® 386 computer,
this macro runs at the same speed on both computers.

{TYPE} types the contents of a variable as if the user had typed it on
the keyboard.

Syntax {TYPE;parameter}

parameter represents the constant, expression, variable, or special vari-
able whose value Agenda types.

In the following example, {LLET} defines the variable %a; {TYPE} types
out the contents of this variable on the screen.

Example
{LET; %a;MEMO} defines the variable %a
{TYPE; %a} displays "MEMO" on the screen as if the user

typed it

{UNDEF}

Macro Command Descriptions 3-39

{WINDOWSOFF}

{UNDEF} undefines some (or all) numeric and/or string variables.
Syntax {UNDEFvar1[;var2];...} or {UNDEE:ALL)}

var represents the name of the existing string or numeric variable that
you want to undefine. You can use {UNDEF:zer} to undefine as
many string and /or numeric variables as you want.

{UNDEF,ALL} undefines the global variables in a file and all local
variables in the current macro at once.

Typically, you use this command to undefine a global variable so that
you can use a global variable with the same name, but a different
value, for another purpose. You also use this command to undefine a
variable that you no longer plan to use so that your file is not filled
with unused global variables.

Note Although you can also use this command to undefine a local
variable, it is not necessary to do so because Agenda automat-
ically undefines local variables in a macro when the macro
completes processing.

Whereas {CLEAR} leaves the variables that it clears in the file,
{UNDEF} leaves no trace of the variables that it undefines. Thus, they
do not retain their status as being either string or numeric variables.
(See [CLEAR} earlier in this chapter.)

{(WINDOWSQFF] freezes the screen display while a macro is run-
ning, optionally displaying a "Please wait" box. You use this com-
mand in conjunction with {[WINDOWSON?} and /or
{(WINDOWSUPD}. ({IWINDOWSON] unfreezes a screen that was
previously frozen by {WINDOWSOFF}; {WINDOWSUPD} updates a
screen that was previously frozen by {WINDOWSOFF).) (See (WIN-
DOWSON} and {WINDOWSUPD} later in this chapter).

Syntax {WINDOWSOFF[;header;footer]}

3-40 Macro Command Descriptions

header represents the text in the top border of the "Please wait" box.
footer represents the text in the bottom border of the "Please wait"
box. header and footer can each be 76 characters in length. The default
footer is "Macro running.”

Without any arguments, (WINDOWSOFF} does not display a "Please
wait" box but it does freeze the entire screen display until the macro
encounters {WINDOWSON} or {(WINDOWSUPD.

If header or footer is specified, the screen freezes and Agenda displays
the specified header and footer in a box with the message "Please
wait." {WINDOWSUPDY does not refresh the screen if a "Please wait"
box is displayed.

Macro commands that display messages for the user siill appear
when the screen is frozen.

Notes Both header and footer are optional arguments. If you include
only one of these arguments, you need to enter an argument
separator for the argument you omit. The semicolon (;) serves
as the argument separator. If you omit the argument separa-
tor, the macro may produce unexpected results. You do not
need to include argument separators if you omit both the
header and footer arguments.

If you include {DEBUGON]} in a macro, {WINDOWSQFF} is
ignored. If {DEBUGON] is executed while windows are off,
windows are turned on. (See {DEBUGON] and {DEBUGOFF}
earlier in this chapter.)

In the following example, (WINDOWSOFF} freezes the screen and
displays the message "Please wait" with the header "Section being
added." As the new section head and items are added to the view,
the changes are not shown until (WINDOWSON] is executed and the
screen 1s redisplayed.

{WINDOWSON}

Macro Command Descriptions 3-41

Example
{WINDOWSOFF; Section freezes the window display and displays a
being added;} "Please wait" box with the header "Sec-
tion being added" and the default footer
"Macro running”

{AltD}

New{ENTER} inserts the new section head, New, below
the current section, but does not display
it at this time

jiteml {ENTER} adds five items to the section

item2 {ENTER}

item3 {ENTER}

itemd {ENTER}

item5{ENTER}

{WINDOWSON} unfreezes and updates the screen

{WINDOWSUPD}

[WINDOWSON] unfreezes a screen that has been previously frozen
by (WINDOWSOEFF}. If a "Please wait" box displays while the screen
was frozen, {(WINDOWSON]} clears the box and updates the display
to reflect any changes that have been made to the information. (See
{WINDOWSOFEF] earlier in this chapter.)

Syntax {WINDOWSON)

(WINDOWSUPD} updates the screen display while a macro is
executing and then keeps the screen frozen with the new display.
This command cannot be used if the {(WINDOWSOFF} command that
originally froze the screen includes a "Please wait" box. (See {WIN-
DOWSQOFEF} and {WINDOWSON] earlier in this chapter.)

Syntax (WINDOWSUPD)

Using [WINDOWSUPD} in the following macro allows the user to
see the changes being made when {WINDOWSLUIPD)} is executed.

3-42 Macro Command Descriptions

Example

{WINDOWSOFF} freezes the window display

{AltD}

New{ENTER} inserts the new section head, New, below
the current section but does not display it
at this time

{WINDOWSUPD} updates the display, showing the new sec-
tion head and then freezes the display
again

iteml {ENTER} adds five items to the section, but does not
display them

item2 [ENTER}

item3{ENTER}

item4 {ENTER}

item5 {ENTER}

{WINDOWSON} unfreezes the screen and displays the

updated information {the new items)

Highlight-control Commands

Highlight-control commands move the highlight the number of times
that you specify in the number argument. Where you are in Agenda
determines where the highlight moves. For example, if you are in a
note, {DOWN;4} moves the highlight down four lines. If you omit the
number argument, the highlight moves once. Highlight-control com-
mands work for all highlight-movement keys, such as PGUP, DOWN,
and CTRL-PGDN.

If you move the highlight somewhere that it is not allowed, Agenda
beeps. For example, if you are in the category manager and you
write a macro that includes the {LEFT] command, Agenda beeps
because you cannot move the highlight to the left in the category
manager.

The following list identifies the Agenda highlight-control commands.
These commands repeat the given keystroke the number of times spe-
cified in number.

Note The number argument must be a numeric constant. Variables
are not valid arguments for highlight-control commands.

Macro Command Descriptions 3-43

Syntax

e {BS[;number]}

s [CTLPGUP[;numberl}
« {CTLPGDNI[;number]}
o [CTLENDI[;number]}

s {CTLHOME[;nuimber]}
e {CTLLEFTL;number]}
s {CTLRIGHTnumber]}
s [DEL[;number]}

e {DOWNI[;number]}

s [END[number]}

s [ENTER[:number]}

+ [ESCI;numberl}

* [HOME[;number]}

o [INS[;numberl}

o [LEFT:number])

s [PGUPLnumber])

» [PGDN[;number]}

¢ [RIGHTI;numberi}

» {SHFTAB[;number]}

o {TAB[;number]}

o |UP[;number]}

{SELECTION} In a box that contains settings, {SELECTION} moves the highlight
directly to the setting whose prompt is string.

Syntax {SELECTION;séring}

string represents the setting in the box to which the highlight is
moved. (If the setting is hidden, or does not match, the command is
ignored and the macro may produce unexpected results.) You can

3-44 Macro Command Descriptions

use either uppercase or lowercase when specifying siring. When the
highlight is on a setting that {SELECTION} moved to, string is the
string that #PROMPT returns. (See #PROMPT later in this chapter.)

After you use {SELECTION} to move to a particular setting, you can
also include macro instructions that complete the setting, If the set-
ting is one with choices, you can include macro instructions that:

* Use F3 (CHOICES) to display the choices for the setting

* Type out the first letter of a choice if the first letters of the choices
are unique.

{SELECTION} is a very useful command because some selections you
make in Agenda boxes affect whether or not Agenda displays addi-
tional settings in these boxes. In other words, you cannot specify a
certain number of keystrokes and be certain that Agenda will place
the highlight on the setting that you want.

Because Agenda displays some settings based on choices made for
other settings, you may want to confirm where the highlight is before
you provide macro instructions that act on that setting. You use
#PROMPT to confirm where the highlight is.

For example, you might create a macro that includes the instruction
{SELECTION;File already exists:}R. In the Export Structured File box,
if the file that is specified already exists, Agenda displays the File
already exists setting. This macro selects R to replace the specified
file.

If the file that is specified does not already exist, however, the instruc-
tion (SELECTION;File already exists:} does not move to this setting
and typing R will produce unexpected results.

To ensure that the highlight is on the File already exists setting
before the macro types R, you can include the command
[IF;(#PROMPT = "File already exists:");replace}.

If you use #PROMPT to confirm where the highlight is in the Print
Layout and /or Header and Footer boxes, the value of #PROMPT is
not simply the text of the current setting. For more information, see
#PROMPT later in this chapter.

In addition, there are some settings in Agenda that have the same
names (for example, there are two Sort on settings in the Ttem Sorting
in All Sections box, one under Primary sort key, and one under Sec-
ondary sort key). For these settings, the value of #PROMPT is typi-
cally the heading under which the setting displays and the name of

Special Variables

Macro Command Descriptions 3-45

the setting. Thus, before using {SELECTION]} to move the highlight
to one of these settings, you should first verify the value of
#PROMPT and then specify that value in {SELECTION}.

Note In order for {SELECTION]} to wark, #MODE must equal
DIALOG. (See #MODE later in this chapter.)

The following example shows how you can use {SELECTION}. The
macro in this example uses {SELECTION]} to move the highlight to
the appropriate settings and select choices to print the items in a
view.

Example

{F10}PF displays the Final Print box

{SELECTION;Print:} moves the highlight to the Print setting and
{F3}View selects to print the view
{ENTER}

{SELECTION; Include:} moves the highlight to the Include setting
{F3}Item and selects to print items in that view
{ENTER}

{SELECTION;Print to:} moves the highlight to the Print to setting
{F3}Printer and selects a printer
{ENTER}

{ENTER} accepts the choices in this box and begins

printing

#ARGCOUNT

Special variables are variables that return a specific value, describing
the current state of the Agenda file. For example, if a user is in a note,
the value of the special variable #MODE is NOTE. Special variables
cannot be given any other value by the user. You can include special
variables in macro commands.

The value of #ARGCOUNT contains the number of arguments
passed by {CALL} that are left to be matched by the {INPUTCAT),
{INPUTFILE}, or {INPUTTEXT)} commands in a called macro. (See
{INPUTCAT], (INPUTFILE}, {INPUTTEXT}, and [CALLJ} earlier in
this chapter.)

For example, you can include #ARGCOUNT in a called macro to
control how many times a loop executes (because #ARGCOUNT
equals the number of arguments in {CALL} left to be matched to the
{INPUTCAT?}, (INPUTFILE), or {INPUTTEXT} commands.)

3-46 Macro Command Descriptions

The following example shows how you can use #ARGCOUNT to
control the number of times a loop executes. In this example, Macro 1
calls Macro 2.

Example
Macre 1 (The caller macro)

{CALL;Add names; calls Macro 2, Adds names, and passes the
Helen Voss; names to the variable %name in Macro 2
Floyd Hastings;

Norbert Thomas}

Macro 2 (The called macro, Add names)

{Add names} the called macro
{LABEL; Test #ARGCOUNT)}
{IF; (#ARGCOUNT <> Q) tests the value of #ARGCOUNT to deter-

Enter name} mine if there are any names to be passed
by Macro 1 .
{RETURN} if the value of #ARGCOUNT=0, control of

macro execution returns to Macro 1
{LABEL; Enter name}

{INPUTTEXT;Please assigns the names used as parameters in
enter employee Macre 1 to the variable %name
name; $name }
{TYPE; ¥name} {ENTER} types the contents of the variable %name
{BRANCH; branches back to the label test
Test #ARGCOUNT] #ARGCOUNT to determine if there are
any more parameters o pass from
Macro 1
{LABEL; Continue}

When Macro 1 (the caller macro) first calls Macro 2, (the called
macro), #ARGCOUNT=3 (the number of arguments in the caller
macro). Since #ARGCOUNT does not equal 0, the macro executes

the loop (Enter name} and the first argument (Helen Voss) in {CALL}
"pairs up" with the first {INPUTTEXT) command in Macro 2, (INPUT-
TEXT; Please enter employee name;%name}.

Alter it completes the first loop, #ARGCOUNT=2 (the number of
arguments in {CALL} left to be executed). Processing continues until
there are no arguments in {CALL} left to be processed. At this point,
#ARGCOUNT=0 and {RETURN} is executed, passing control back to
the first macro.

#ASCIl(nnn)

#CLIPBOARD

#DATE

#DEPTH

#ERRMSG

#ERRNO

Macro Command Descriptions 3-47

The value of #ASCII(snn), where 7 is a decimal number, results in the
character with the ASCII value nnn. For example, the value of
#ASCI027) equals ESC.

The value of #CLIPBOARD is a string that contains the current con-
tents of the clipboard. (When a user is editing an Agenda file and
cutting or copying text, Agenda places the cut or copied text in the
Clipboard. The user can then paste this text elsewhere in the current
file or in another Agenda file during the same session.) If the Clip-
board contains more than 1,000 characters, the special variable
#CLIPBOARD contains only the first 1,000 characters.

Note If the Clipboard contains text with markers, the value of
#CLIPBOARD used in a command (such as {TYPE}), will no!
contain any markers.

The value of #DATE is a string containing the current system date in
the default date format, which you set using the File Properties com-
mand.

The value of #DEPTH is the depth or level of the highlighted cate-
gory in the category manager. #DEPTH has a value only when
#MODE=CATMGR. #DEPTH of the category MAIN equals 0. (See
#MODE later in this chapter.)

The value of #BRRMSG is a siring containing the error message of the
last error that occurred. #ERRMSG corresponds to the value of
#ERRNO, the number of this error message. If you create a macro
that handles errors, you can use #ERRMSG to use the text of the error
message of the error that occurred.

(See {ONERROR} and {QUIT} earlier in this chapter. For a list of
Agenda error messages and their associated numbers, see also
Appendix D in the User’s Guide.)

The value of #ERRNQ is the number of the last error that occurred.
(The text of the message is in #ERRMSG, as described earlier in this
chapter.)

If you create a macro to handle errors that occur while other macros
execute, you can use #£ERRNO within the error handler macro so that
you can include instructions in the macre to handle the error. (See

3-48 Macre Command Descriptions

#FALSE

#FILENAME

#FILEPATH

#HIGHLIGHT _
TYPE

#HIGHLIGHT _
VALUE

#KEYHIT

[ONERROR] earlier in this chapter.) For a list of Agenda error mes-
sages and their associated numbers, see Appendix D in the User’s
Guide.

The value of #FALSE is 0 (zero). You can use #FALSE to test #KEY-
HIT with the {IF} command. (See {IFKEY}, {IF}, and #KEYHIT in this
chapter.)

The value of #FILENAME is the name of the current Agenda file,
including the extension, without the path.

The value of #FILEPATH is the path of the current file, without the
filename.

The value of #HIGHLIGHT _TYPE is the highlighted element; for
example, an item, column head, and so forth. (For a complete list of
#HIGHLIGHT_TYPE values, see #MODE later in this chapter.)

The value of #HIGHLIGHT VALUE is the highlighted text;

for example, the text of an item, column head, and so forth.
#HIGHLIGHT VALUE has no value if the value of
#MODE=OTHER. (For a complete list of #HIGHLIGHT VALUE val-
ues, see #MODE later in this chapter.)

The value of #KEYHIT returns either one of the following numbers:
1 (true) or 0 (false). The command {IF;(#KEYHIT=#TRUE);100p} is
the same as {IFKEY;loop}. (See {IFKEY] and {IF} earlier in this chap-
ter.)

The following example shows a macro that types the contents of the
variable %a continually, until the user presses a key.

Example

{LABEL; LOOPF}

{LET: %a;a}

{TYPE; %a}

{IF; (#KEYHIT=#FALSE); if user doesn't press a key, keeps looping
LOCOP}

{QUIT}

#MARK_COUNT,
#MARKED_IN_
VIEW

#MODE

Macro Command Descriptions 3-49

The values of #¥MARK_COUNT and #MARKED IN VIEW are the
number of marked items in the current file and the number of
marked items in the current view, respectively.

Tip You can use this special variable together with the ALT-J (jump
to marked) accelerator key to write macros that can perform
complex operations on all marked items.

The value of #MODE is a siring that identifies what part of Agenda
you are in. Values for #MODE can be any of the following:

s View

s Catmgr

e Note

e Macroedit
e Jtemedit
¢ Catedit

* Feldedit
* Dialog

s Select

s Menu

* Other

The commands in the following macro let the macro continue execut-
ing only if the user is in a view.,

Example
{1IF; (#MODE=View) ; tests the contents of the special variable
continue} #MODE
{QUIT} terminates all macro processing if #MODE is
not equal to VIEW
{LABEL; continue} if the user is in a view, continues macro
processing

Note You can test a value for #MODE using either uppercase or
lowercase.

3-50 Macro Command Descriptions

The special variables #MODE, #HIGHLIGHT_TYPE,
#HIGHLIGHT VALUE, #PROMPT, and #DEFPTH are related to one
another.

s #MODE always has a value.

¢ #HIGHLIGHT_TYPE, #HIGHLIGHT VALUE, #PROMPT, and
#DEPTH all depend on the value of #MODE for their respective
values.

The value of #HIGHLIGHT_TYPE is the highlighted element; for
exarnple, an item, column, and so forth.

The value of #ITIGHLIGIHT VALUE is the highlighted text; for exam-
ple, the text of an item, column head, and so forth. This special vari-
able has no value if the value of #MODE=0OTHER.

The value of #PROMPT is the setting that the user is currently
responding to in a box with settings. This special variable has a value
only when the value of #MODE=DIALOG. (See #MODE=DIALOG
later in this chapter.)

The value of #DEPTH is the depth or level of the highlighted cate-
gory in the category hierarchy. This special variable has a value only
if #tMODE=CATMGR. (See #DEPTH earlier in this chapter and
#MODE-CATMGR later in this chapter.)

The following sections identify the values of #HIGHLIGHT_TYPE,
#HIGHLIGHT VALUE, #°PROMVPT, and #DEPTH given the values
of #MODE.

MODE=VIEW

When #MODE=VIEW, the highlight is in a view. #PROMPT and
#DEPTH have no values.

#HIGHLIGHT _
If the highlight is on TYPE #HIGHLIGHT VALUE
ftem Item Text of the item
Calculation label Label Text of the calculation label
Section head Section Text of the section head category

name

continued

Macro Command Descriptions 3-51

#HIGHLIGHT
If the highlight is on TYPE #HIGHLIGHT VALUE
Column head Column Text of the column head cate-
ZOry name
Numeric column entry ~ Numeric Text of the Numeric column
entry
Date column entry Date Text of the Date columnn entry
Unindexed category Unindexed Text of the Unindexed column
column entry entry
Standard category col- Standard Text of the Standard column
umn entry entry

#MODE=CATMGR

When #MODE=CATMGR, the highlight is in the category manager
on a category. In this case, #’ROMPT has no value. #DEPTH is the
depth or level of the highlighted category in the category hierarchy.
(See #DEPTH earlier in this chapter.) #HIGHLIGHT TYPE is always
the type of category that the highlight is on (standard, numeric, date,
or unindexed).

#HIGHLIGHT
If the highlight is on TYPE #HIGHLIGHT _VALUE
Numeric category Numeric Text of the numeric category
name
Date category Date Text of the date category name
Unindexed category Unindexed Text of the unindexed category
name
Standard category Standard Text of the standard category
name

+ #MODE=NOTE

* #MODE=MACROEDIT
* #MODE=ITEMEDIT

* #MODE=CATEDIT

* #MODE=FIELDEDIT

3-52 Macro Command Descriptions

When #MODE=NOTE, MACROEDIT, ITEMEDIT, CATEDIT, or
FIELDEDIT the highlight is in a note, macro, item, category, or text
setting (such as the File description setting), respectively. In any of
these cases, #’ROMPT and #DEPTH have no values.

#HIGHLIGHT
If the highlight is on TYPE #HIGHLIGHT _VALUE
A single character (if Character Character under the cursor
there is no marked text
and the cursor is not on
a marker)
Marked text Marked Text that is marked
Attribute, font, or Marker Long description of the marker

special marker

Notes The #HIGHLIGHT _VALUE of marked text does not include
any markers that are contained in that marked region of text.

When #MODE=CATEDIT, #HIGHLIGHT_TYPE cannot
equal Marker.

#MODE=DIALOG

When #MODE=DIALOG, the highlight is in a box that contains set-
tings, at the point at which the user could press ENTER to accept the
box. (For example, the user has not pressed F3 (CHOICES) to display
choices for a setting.) In this case, the value of #PROMPT is the text
of the setting that is currently highlighted. #DEPTH has no value.

Note #MODE=DIALOG does not tell you which box the highlight
isin.

Macro Command Descriptions 3-53

#HIGHLIGHT _
If the highlight is on TYPE

#HIGHLIGHT _VALUE

A setting that displays ~ Choice
choices in a box (when

the user presses F3

(CHOICES))

A text setting (such as Text
View name)

A numeric setting (such Number
as Line spacing)

A file name setting Filename
{such as Export to file)

A date setting (such as Date
Start date)

A list of category names Listfield
(such as Sections)

A setting that displays Continuation
an ellipses (such as
Header/Footer...)

A setting that displays ~ Category
a category name (such
as Section head)

Text of the highlighted choice in
a box that contains settings

Text of the highlighted text
setting

Text of the highlighted number
setting

Text of the highlighted file name
setting

Text of the highlighted date
setting

Text of the highlighted category
in the list

Null

Text of the highlighted category
setting

4MODE=SELECT

When #MODE=SELECT, the highlight is in the View Manager,
Macro Manager, the Select File box, or in boxes with choices. In this
case, #PROMPT and #DEPTH have no value.

#HIGHLIGHT _
For the following box TYPE #HIGHLIGHT VALUE
View Manager Viewname Text of the highlighted view
lname
Macro Manager Macroname Text of the highlighted macro
name
Select File Filename Text of the highlighted file name
Choices Choice Text of the highlighted choice

3-54 Macro Command Descriptions

#NULL

#PROMPT

#MODE=MENU
When #MODE=MENU, the highlight is on a menu command. In this
case, #PROMPT and #DEPTH have no value.

#HIGHLIGHT _
If the highlight is on TYPE #HIGHLIGHT VALUE
a menu command Menu Text of selected menu choice

#MODE=0OTHER

When #MODE=OTHER, the highlight is anywhere in Agenda that is
not covered by the other values for #MODE. For example, the value
of #MODE=OTHER in Help and where part of the category hierarchy
is displayed, such as in the Section setting after pressing F3
(CHOICES)). When #MODE=OTHER, #PROMPT and #DEPTH have
no value.

The value of #NULL is null (empty). You can use #NULL for making
string comparisons. For example, you can use #NULL to test for a
string variable that contains no data, as shown in the example below.
You can also use #NULL to test any occurrences of null values (for
example, when #MODE=DIALOG and #HIGHLIGHT TYPE=
Continuation, #HIGHLIGHT VALUE=NULL).

Example

{IF; ($x=#NULL) ; LOOP} branches to LOOP if %x is empty

The two commands {LET;%a#NULL} and {CLEAR;%a) have the
same effect.

Note You can use #NULL only for making string comparisons.
#NULL does not work for numeric comparisons.

If the highlight is in a box with settings, the value of #°ROMPT con-
tains the name of the current setting. For example, if the Special
actions setting is highlighted in the Category Properties box, the
value of #PROMPT is Special actions:. In addition, in
{SELECTION;string}, string is the text that #PROMPT returns. (See
#MODE and {SELECTION} in this chapter.)

#TIME

#TRUE

#VIEWNAME

Macro Command Descriptions 3-55

The settings in the Print Layout box that control separators, spacing,
fonts, attributes, and alignment have values for #PROMPT that are
not simply the name of the setting. This is also true for the settings in
the Header and Footer box that contain the header and footer text.

The value of #PROMPT for each of these settings, is equal to the
name of the setting and the particular heading under which this set-
ting displays. For example, in the Print Layout box in a view, the
value of #PROMPT for the After items/notes setting under
Separators is After items/notes Separators.

You determine the value for #PROMPT in the Header and Footer box
{in views, notes, and the category manager) in a similar manner. For
example, the value of #PROMPT for the first line of text under
Header is Header Line 1 Left.

In addition, there are some settings in Agenda that have the same
names (for example, there are two Sort on settings in the Item Sorting
in All Sections box, one under Primary sort key, and one under Sec-
ondary sort key). For these settings, the value of #PROMPT is typi-
cally the heading under which the setting displays and the name of
the setting.

Tip If you plan to use {SELECTION] to move the highlight to one
of these settings, you should first verify the value of #?’ROMPT
and then specify that value in {SELECTION].

The value of #TIME is the current systemn time in the default time
format, which you set using the File Properties command in the
Global Date Settings box.

The value of #TRUE is 1 (true). You can use #TRUE to test #KEYHIT
with the {IF} command. (See {IFKEY}, {IF}, and #KEYHIT earlier in
this chapter.)

The value of #VIEWNAME returns the name of the view.

s If#MODE=VIEW, the value of #VIEWNAME is the name of the
current view.

* If #MODE equals anything except VIEW, the value of #VIEW-
NAME is the name of the last-displayed view.

See #MODE earlier in this chapter.

Chapter 4
Tips and Techniques

This chapter provides some guidelines and troubleshooting sug-
gestions that you can use when you create macros or when you
encounter problems running macros you've created.

In this Chapter

This chapter provides

* Suggestions for creating macros that choose menu commands
* Suggestions for creating macros in the correct mode

* Troubleshooting techniques

Note Macros are often written for other people. In this chapter, the
term "you" refers to the person writing the macro. The term
“user” refers to the person running the macro.

Choosing Menu Commands in Macros

If you include instructions in a macro that select Agenda menu com-
mands, it is a good idea to select those commands by their first letter,
rather than by highlighting the command and pressing ENTER. For
example, in a view, both of the following macro instructions select
the Print command:

{F1I0HRIGHT;4H{ENTER}
{F10iP

4-2 Tips and Techniques

The second form is better because it is shorter, easier to understand,
and does not depend on the order of commands in the menus.

The same is true of selecting choices for settings in boxes. It's better
to select a choice for a setting by pressing 3 (CHOICES) and then typ-
ing the full name of the choice. This is a more precise action than
pressing SPACE BAR to cycle through the choices for a setting, pressing
F3 (CHOICES) and then using T and/or | to highlight the choice, or
typing the first letter of the desired choice (since some choices begin
with the same first initial letter).

Note Do noi use keystrokes to move to a specific choice in a box.
Instead, use {SELECTION} to go directly to the choice. For
guidelines for using this command, see "{SELECTION}" in
Chapter 3.

In addition, if you write a macro that includes a slash (/), this charac-
ter produces different results, depending on where the macro
executes the keystrokes that include the slash. For example, if a
macro containing a slash is run in a view, the slash brings up the
menu. If a macro containing a slash is run while editing an item or a
note, the macro produces the slash character.

Tip To bring up the menu, regardless of what part of Agenda the
macro is run in, include {F10} in the macro. To produce the
slash (/) character, include this character in the {TYPE} com-
mand, for example {TYPE; /}.

Starting in the Correct Part of Agenda

You can start recording a macro in a view, the category manager, or a
note. If you record a macro in a view, and play it back in a note, you
are likely to get unexpected results.

If you are creating macros for your own use, this may not be a prob-
lem because you can usually remember or tell from the macro name
where you have to be in Agenda to run the macro. If you create a
macro that you want to share with others, you might want to make
sure that the macro is run in the correct part of Agenda (in a view,
note, and so forth).

You use the Macros Properties box to specify the part of Agenda in
which a macro can be run (see Chapter 1). You can also use macro

Troubleshooting

Tips and Technigues 4-3

commands to select the correct part of Agenda to run a macro, as
illustrated in the following example. The macro in this example
ensures that the user is in a view before the macro is executed.

The following example shows a macro with commands that switches
to the current view from anywhere in Agenda. You might use this
macro as a subroutine.

Example

{LABEL, ToView}

{BRANCH; #MCDE} branches to label designed to match the pos-
sible values of #MODE

{ESC} escapes from any part of Agenda except the
note, view, or category manager

{BRANCH; ToView} branches to top of loop to try again

{LABEL; Note} if MODE=NOTE, Fs5 exits note

{F5}

{BRANCH; ToView} loops to try again

{LABEL; CatMgr} if MODE=CATMGR, F2 to go to the view

{FS}

{LABEL; View} if MODE=VIEW, in correct part of Agenda

to run the macro

You may encounter problems when working with macros. This sec-
tion lists in alphabetical order some of these problems and what to do
to correct them.

Running a macro in the wrong part of Agenda

The most obvious evidence that a macro is not working is that it
types unexpected characters. If the macro is simply a set of recorded
keystrokes, and it types keystrokes where they are not expected (such
as in a menu, or in a box that contains settings), it usually means that
the macro was recorded in one part of Agenda and run in another
part. You might encounter this problem if you create a macro in a
view and run it in a note. The Macro Properties box identifies where
a macro can be run.

4-4 Tips and Techniques

Missing a brace around a macro command

If the macro types characters that look like incomplete macro com-
mands, it usually means that one or both braces enclosing the macro
commands are missing. For example, consider the following macro
commands:

{LABEL; first_step
{IFEQ; %a; %h; first step}

In this example, the right brace is missing from the {LABEL} com-
mand. When a macro with these lines is executed, {IFEQ! does not
execute. Instead, Agenda types the following characters:

%a; %b; first step}

Enclosing a macro command in parentheses (()) or
brackets ([1)

If the macro types characters that look like incomplete macro com-
mands, it usually means that you did not enclose a macro command
in braces ({ }), but used one or more parentheses (()) or brackets ([)
instead.

Missing a semicolon between arguments

You may write a macro command that requires multiple arguments
but you leave out a semicolon (or add an extra one). For example:

{IFEQ; %a; $blabelname}

{IFEQ} requires three arguments separated by semicolons. The line
above includes only two arguments and the semicolon before
labelname is missing. {IFEQ} will not execute. Instead, Agenda types:

{IFEQ; %a; $blabelname}

Missing a semicolon if omitting arguments

Some commands have optional arguments. For example, for
[ALERT;boxtop_message;main_message}, if you don’t want to dis-
play a boxtop_message in the Alert box, you need to enter an argu-
ment separator for the argument you omit. The semicolon serves as
the argument separator. Thus, {ALERT;;main message} displays an
Alert box with just a main message.

Incorrect spacing between commands

A space is interpreted as a literal character {(except at the beginning of
a line). This means that inadvertent placement of a space between

Tips and Techniques 4-5

commands may produce unexpected results. For example, in a box
with settings, pressing SPACE BAR may switch between choices for set-
tings.

Not enclosing character strings in quotes

You must enclose string constants in quotes if you want the string to
include:

Semicolons (;), braces ({ 1), or percents (%) (if the % symbol is the
first character in the string)

An expression operator, such as a hyphen (=), or anything that
looks like an expression, such as (Profit — Expenses) so that
Agenda interprets this as a string and not an expression. For
example, if you specify {IF;{(%a="Joanna James-Smith"):LOOP},
Agenda will not interpret the hyphen as a minus sign. (See also
"About Expressions” in Chapter 2.)

White space (spaces, tabs, and carriage returns) before and/or
after string constants

Agenda strips white space before and after string constants. If
you want Agenda to recognize white space preceding and /or fol-
lowing a string, you must enclose the string in quotes. For exam-
ple, the command {LET;%d;" John Smith ") recognizes a space
preceding and following the string John Smith.

Not enclosing expressions in parentheses

You must enclose expressions in parentheses in order for them to be
recognized as expressions and not strings. (See "About Expressions”
in Chapter 2.)

Chapter 5
Sample Macros

This chapter provides sample macros that include many of the macro
commands described in this book. You can use these macros as they
are presented here, or modify them before using them in your own
work. For additional macros that include many of these commands,
see Starter Applications.

In this Chapter

This chapter provides sample macros that

* Export items in a section using #PROMPT and
#HIGHLIGHT_VALUE

* DParse a name using string-manipulation commands
* Search for any of several strings using {FIND}

¢ Perform calculations across several numeric columns in a view
using expressions and floating-point variables

Sample Macro 1: Exporting ltems in a Section

You can use the following macro to guide a new user through export-
ing all items in a section to another file. This macro prompts the user
to specify a file name, checks whether the file exists, prompts for user
action based on whether the file exists, and informs the user when the
export is complete.

5-2 Sample Macros

This macro also illustrates the use of the {SELECTION! command,
and the #HIGHLIGHT VALUE and #PROMPT special variables in a

macro.
Example
{Export the Current Section}
{WINDOWSOFF}
{F10}FTE

{LET; 3ExFile; #HIGHLIGHT_VALUE }

{LABEL; Input Name}

{INPUTFILE; Enter an Export File Name:
$ExFile}

{IF; (3ExFile=#NULL) ; Input Name}

{IF; ($3ExFile={ESC}) ;EscPressed}

{TYPE; 3ExFile}

{ENTER}
{SELECTION;File already exists}

{IF; (#prompt <> File already exists:);
Export it}

{ROLLMENU; File already exists;
Please choose:;3;Append;Append;Replace;
Replace;Choose another file;Input Name}

{BRANCH; Input Name}

{LABEL; Append}

A

{BRANCH; Export it}
{LABEL; Replace}

R

{LABEL; Export it}
{SELECTION; Items}
{F3}Items in section

{ENTER; 2}
{LET; 3Complete Msg; "Exported File: "}

{APPEND; $Complete_ Msqg; $ExFile}
{ATERT; ; %Complete Msg}
{BRANCH; End}

{LABEL; EscPressed}

{ALERT;User Pressed Escape;Operation Can-
celled}

{ESC; 4}

{LABEL; End}

{RETURN }

the macro name

hides the Export Structured File box from the
user

Menu, File, Transfer, Export

gets default file name from screen

asks user to enter file name

if no response, asks again

if user presses ESC, aborts

puts uset’s response into the Export to file
setting

moves the highlight to the File already exists
setting

if the file does not already exist, export the
items

if the file already exists, asks the user what
action to take

if user presses ESC, asks the user to enter a file
name

selects Append and exports the items

selects Replace and exports

moves the highlight to the Ttems setting
makes sure [tems in Section is selected, and, if
it is, proceeds with the export

once expott is complete, displays a message to

let the user know that the export was
successful

branches here if the user pressed ESC from the
file name box. Cancels entire operation

unfreezes the screen display

Sample Macro 2: Parsing a Name

Sample Macros 5-3

The following macro prompts for a user’s name and displays it as
Last name, First name Middle name. This macro illustrates string
manipulation; you can also use it as a subroutine for other macros.

Example

{Parsing a Name}
{DEFINT; ¥space; $space_two; ¥start last}
{LAREL; Input Name}
{INPUTTEXT;Please enter your
full name; $namel}
{IF; (¥name=#NULL) ; Input Name}
{IF; (*name={ESC}) ;Done}
{FIND; $space; $name;" ";1}
{FIND; $space_two;%name;" "; (%space+l}}

{LENGTH; $length; $name}
{IF; (¥space_two=-1};NoMid}
{LET; ¥start_last;% space_two}

{BRANCH; Continue}
{LABEL:NoMid}

{LET; $start_ last; %space}
{LABEL; Continue}
{RIGHTSTR; ¥last; %name;
(¥length - %start_last)}
{TYPE; %last}
{LEFTSTR; $first; $name; (¥space~1)}
{TYPE;", "}
{TYPE; $first}
{IF; ($space_two=-1) ;Done}
{MIDSTR; 3middle; $name;
%space; (¥space_ two-%space)}
{TYPE; smiddle}
{LABEL; Done}
{QUIT}

the macro name
defines integer variables

prompts for user's name

if no response, asks again

if user presses ESC, aborts

finds the first space

checks if there is a middle name or initial by
looking for another space starting at one
position beyond the last value of %space

finds the length of the string

determines whether there is a middle name

if there is a middle name, the last name starts
after it

if there is no middle name, the last name starts
after the first name

extracts the last name

types the last name

extracts the first name

types a comma and a space

types the first name

if there is no middle name, ends macro
if there is a middle name, extracts it

types middle name or initial, if there is one

ends macro

5-4 Sample Macros

Sample Macro 3: Searching for Strings

This macro is an expansion of {FIND}. It is intended as a subroutine
for other macros. This macro is used when you are searching for sev-
eral strings at the same time.

You might use this macro to find white space within a string, where
white space is defined as SPACE BAR, TAB, or ENTER. For example,
you might want to locate white space so that you can manipulate part
of a string (such as the Jast name from a string that contains both a
first and last name).

This macro receives a source siring, a string position, and any num-
ber of search strings. It returns (in the global variable %%offset) the
first place in the source string that matches any of the search strings.

You might call this macro from another macro with the following
macro instruction;

{CALL;Find OneQf; %srcstr;%n;" "; {TAB}; {ENTER} }

where %scrstr is the string to be searched for, %n is the starting posi-
tion of the search, and the " ", {TAB}, and (ENTER) arguments are
match strings.

Example

Sample Macros 5-5

{Find OneOf}
{IF; (#ARGCOUNT>2) ; ArgsOK}

{ALERT;Macre Bug;
Bad Args Passed to Find Oneof}
{QUIT}

{LABEL; ArgsOK}

{DEFINT; $%offset; %n; %f}

{DEFSTR; smatchl}
{INPUTTEXT; ; $src}
{INPUTTEXT; ; %n}

{LET; %%ocffset;-1}

{LABEL; Loop}

{IF; (#ARGCOUNT=0) ; DONE}
{INPUTTEXT; ; ¥match}
{FIND; %£; %$src; ¥match; $n}

{IF; (¥f=-1) ; Loop}
{IF; (¥%offset=-1) ;Uselt}
{IF; (¥f>=%%0ffset) ; Loop}

{LABEL; UseIt}
{LET; $%offset; £}
{BRANCH; Loop}
{LABEL;DONE }

{RETURN}

the macro name

checks to make sure this macro is called with at
least 3 arguments.

displays a message if not enough arguments
are passed from the previous macro and
terminates macro execution

goes here if the arguments are correct

defines the global and local numeric variables
in this macro

defines the local string variable %match to
store the arguments to be matched

first argument passed from first macro is
source string

second argument passed from first macro is
start position

no matches found yet

loops through all remaining arguments

if no arguments are left, ends macro

gets the next argument from the first macro

tries to find it in the source string and saves its
location in %f

if no match found, goes to next match string

finds and uses first match

if this match is not earlier than others, does not
use it

if this match is earliest found, saves its loca-
tion, then tries next match string

finished. Returns value already in variable
% Fooffset

5-6 Sample Macros

Sample Macro 4: Performing Calculations

Across Numeric Columns

The following macro shows how you can use expressions and
tloating-point variables to calculate totals for four numeric columns
in a view. In this example, the macro prompts the user to enter the
purpose of the trip and then travel expenses. Next, the macro types
the expenses that the user enters into the appropriate numeric
expense column in the view. Finally, it calculates the total expenses
and types these results in the Total column.

This macro is based on a view with numeric columns as shown in
Figure 5-1. In this view, Trip is the section head and Hotel, Meals,
Airfare, Trans, and Total are numeric column heads.

Example

{Enter Travel Expenses}

{WINDOWSOFF}

{LABEL; Start}

{DEFSTR; $trip; $temp}

{DEFFLOAT; thotel; ¥meals; %air; $trans; $ttl}
{CLEAR;all}

{LABEL;Enter Trip}

{LET; $temp; $trip}

{INPUTTEXT; Enter purpose of trip; %temp}
{IF; (¥temp={ESC}) ; Escape}

{LET; $trip; $temp}

{LABEL; Input Hotel}

{LET; %temp; thotel}

{INPUTTEXT; Enter hotel expenses;%temp)
{IF; (¥temp={ESC}) ;Enter Trip}

{LET; $hotel; $temp}

{LABEL; Input Meals}

{LET; $temp; *meals}

{INPUTTEXT; Enter meal expenses;$temp}
{IF; (¥*temp={ESC}); Input Hotel}

{LET; tmeals; temp)

{LABEL; Input Airfare}

{LET; %temp; %air}

{INPUTTEXT; Enter airfare expenses;%temp}
{IF; (%temp=(ESC}}; Input Meals}

{LET; %air; %temp}

{LABEL; Input Trans}

the macro name
freezes screen display

defines all string and floating point variables
resets all variables to 0 or NULL

resets temp variable

prompfis user to enter purpose of trip

if user presses E8C, asks if user wants to quit
stores user’s input to a string variable

resets temp variable

prompts user to enter hotel expenses
if user presses ESC, returns to previous entry
stores user’s input to floating-point variable

resets temp variable

prompts user to enter meal expenses

if user presses ESC, returns to previous entry
stores user’s input to floating-point variable

resets termnp variable

prompts user to enter airfare expenses

if user presses ESC, returns to previous entry
stores user’s input to floating-point variable

contined

Sample Macros 5-7

{LET; %temp; %trans}
{INPUTTEXT; Enter other transportation
expenses;
ttemp}
{IF; (Ytemp={BESC}); Input Airfare}
{LET; %trans; %temp]}
{LABEL; Type Expenses}
{CtlHome} {CtlLeft}
{TYPE; %txrip} {ENTER} {RIGHT}
{TYPE; $hotel} {ENTER} {RIGHT}
{TYPE; ¥meals} {ENTER} {RIGHT}
{TYPE; %air} {ENTER} {RIGHT}
{TYPE; %trans} {ENTER} {RIGHT}

{LABEL; Total}

{LET; %ttl;

(*hotel + %meals + %air + %trans)}

{TYPE; %ttl} {ENTER}

{BRANCH; End}

{LABEL; Escape}

{ROLLMENU; Do you want to quit?;
Select No to continue, Yes to end macro;
2;No;Continue; Yes;:Quit}

{BRANCH; End}

{LABEL; Quit}

{BRANCH; End}

{LABEL; Continue}

{BRANCH; Entexr Trip}

{LABEL; End}

{ALERT; ;Done entering expenses}

{WINDOWSON}

{QUIT}

resets temp variable
prompts user fo enter other transportation
expenses

if user presses ESC, returns to previous entry
stores user’s input to floating-point variable

maoves cursor to top-left corner of view

types explanation of trip into an item

types hotel expense into Hotel column

types meal expense into meals column

types airfare expense into Air column

types transportation expense into Trans
column

calculates total expenses

types total expenses into Total column
branch to label which ends macro

if the user presses ESC while entering the trip
explanation, asks if the user wants to con-

tinue or quit

branch to label which ends
macro

branch to label which continues entering
expenses

displays message saying macro is done

updates the screen display with changes

ends macro

5-8 Sample Macros

This macro may produce the following output:

R

BRI R
e ey

EiE

M

P e
o Gimdeny

iy

2

2
s

=

o

3 ey el B
Rl L e e
e e Higeas

o mzﬁmv@,f Sk - Y
et dn g Gk

ey o
Hl e
Srpnine e

el

3

ekl

SR R o BT o i
?ﬁwnm,&w R Bl
b B R B s e
R S G an

s S e st

iE e

s el

3

R

fen T e
mEade b el
BEmhait iy L e
B e e
s a s g

Sl
: m;mmzwﬁmm”m
R R
(Gl R B o
ESEOAE PRCHU T S B

hesel R SRR
s

SR e B S
SREh o

i

T
a1

oty
5
i

:

:

€543

i
i

T

o
24
T
i
3
i
=
£
£
B

SamEE e g ain e s
P i
il S

.

R

S B e
Hol et pet i R e
i i

§

i
&
s

s s SRR e e e Baih S
o B G ma
ui G ak e e e TR AR
A s A Bl
SIEGRAACR e
HERLAE TR I e e e
S AR el Ansn R R s on
el i R e ARl R e
i e Sl e
R R e R R
CHC R e e

e

Lo e e s Sy

Figure 5-1 Expenses calculated across numeric columns

Index

Symbols and special characters sample macro with 3-7, 3-13, 3-15, B
119 5-2 to 5-5, 5-7
1o Alert boxes 2-5, 3-2, 3-12
angle brackets (<>} 2-12 to 2-13 Alignment settings 3-54 to 3-55

Blank lines in macros 2-8
Boxes See Alert boxes; Settings boxes

asterisk (*) 2-12 ALT-= key 1-13 Braces ({1 1)
braces ({ }) 1-6, 2-8, 2-10, 2-15, 44, ALT-] key 3-49 key names in 1-3, 1-6, 1-12, 1-17,
4-5 ALT-Z key 1-14, 1-28 1-28,4-4)
brackets ([]) 4-4 ALT function keys See Function keys keywords and arguments in 2-8,
dollar sign ($) 3-27 Angle brackets (<>) 2-12 to 2-13 215 _
double note (f3) 1-9, 1-30 {APPEND} macre names in 1-3, 1-21, 1-26,
double quotation mark (") 2-8, defined 2-3, 3-3 ‘1‘_28
2-10, 3-25, 4-5 sample macro with 3-7, 5-2 missing 4-4
double right arrow {>>) 1-11 #ARGCOUNT as part of string 2-10, 2-15, 3-23,
down arrow () 3-23, 3-35 {CALL] with 3-5 4-3

Brackets (I]) 4-4
{BRANCH])
defined 2-4, 3-3 to 3-4

equal (=) 2-12 to 2-13

greater than (>) 2-12 to 2-13 sample macro with 5-5

greater than or equal to (>=) 2-12 Argument separator See .
t0 2-13 Semicolon () {GOTO} compared with 3-13

hyphen (-} 2-9, 4-5 Arguments See alse Macro com- sample macro with 3-4, 3-47, 52,

left arrow (&) 3-26 mands, syntax 5-3,5-7 . .

less than (<) 2-12 to 2-13 braces ({]) around 2-8, 2-15 special variables with 4-3

fess than or equal to (<=)2-12 to constants in 2-8 to 2-11 Branching See Macro execution,
2-13 counting 3-45 to 3-46 branching

minas (<} 2-12 defined 2-7 to 2-8 Break-handler macros 3-28 to 3-30

parentheses (()) 1-12, 3-13, 3-25, expressions in 2-9, 2-12 to 2-13, {BS} 2-5, 3-42
4-4

defined 3-45 to 3-46

3-13
percent (%) 2-8, 2-10, 2-13, 2-15, formulas in 2-9 C
3-23,4-5 global and local variables in 2-13
plus (+) 2-12 to 2-15 {CgLfL_] 24 34 1036
d si g itting 4-4 efin -4, 3-
pound sign (#) 2-8 omitting (INPUTCAT) with 3-4

right arrow (=) 3-26

semicolon (;) 2-8, 2-10, 2-15, 3-23,
4-4, 4-5

single quotation mark (') 2-10

optional 3-4

passing to called macros 3-4 to
3-6, 3-18, 3-45 to 3-46

results 2-9 to 2-10

in LEARN mode 1-4, 1-29
passing values with 3-4 to 3-6,
3-18, 3-45 to 3-46

{RETURN} with 2-4, 3-35
Calling macros

attached to keys 1-4, 1-6, 1-29

error handling with 3-31 to 3-33

slash (/) 4-2

semicolon (;) missing 4-4
up arrow (T) 3-35

types 2-8to 2-15
white space in 2-8, 2-10, 3-25, 4-5

#ASCII(nnn) 3-47 r 1

A ASCII values 3-47 passing values with 3-4 to 3-6,
Accelerator keys Asterisk (*) 2-12 318

ALT-=1-13 Attaching files to macros 1-16, 1-23, terminating 3-34

ALT-] 3-49 1-30 to 1-35 Carriage returns 1-7, 1-26 See also

ALT-7.1-14, 1-28 Attaching macros to keys 1-9, 1-14, White space

representing in macros 1-13 1-17 to 1-19, 1-27 to 1-29 Categor_les .
Addition 2-12 Attribute settings 3-54 to 3-55 Cre;tigg with macros 2-5, 3-16 to

{ALERT]
defined 2-5, 3-2

Autoexec macro 1-4

Automation Sez Macros highlight in 3-51

fevel of 3-47
Index-1

2-Index

Category manager
highlight in 3-51
running macros in 1-4, 1-9, 1-16 to
1-19
Category names
highlighted 3-53
specifying with macros 3-16
storing in variables 2-5
Characters See also Strings
extracting from strings 3-24, 3-28,
3-34
highlighted 3-52
CHOICES (F3) key 1-26, 1-31, 3-17,
3-44
Clear menu command 1-23
[CLEAR]
defined 2-3, 3-6
8rror handler macro with 3-33
#NULL with 3-54
‘sample macro with 5-6
[UNDEF] compared with 3-39
Clearing
alert boxes 3-12
macros 1-11, 1-23, 1-34
variables 3-6
#CLIPBOARD 3-47
Columns, numeric 5-5
{COMMENT) 2-6, 3-6 to 3-7
COMPOSE (ALT-F1) key 1-14
Compose characters in macros 1-14
Conditional branching 3-13 to 3-16
See also Macro execution
Constants 2-8 to 2-11
Controlling execution See Macro
execution
Copying file attachments 1-30
Correcting errors See Errors;
Troubleshooting
Creating macros
adding to 1-24
defined 1-2, 1-3 to 1-7
representing keys 1-12 to 1-14
using macro commands 2-5
{CTLEND} 2-5, 3-43
{CTLHOME} 2-5, 3-43
{CTLLEFT} 2-5, 3-43
[CTLPGDN]} 2-5, 3-43
{CTLPGUP) 2-5, 343
{CTLRIGHT} 2-5, 3-43
CTRL-BREAK 3-29 to 3-30
CTRIL-ENTER 1-34

D

Data
entering with macros 2-6
protecting with macros 1-18
#DATE 3-47

Dates
in macros 3-47
settings, highlighted 3-53
Debugging macros 2-6, 3-7 to 3-8,
4-3 ta 4-5
{DEBUGOFF} 2-6, 3-7
{DEBUGON]} 2-6, 3-7 to 3-8, 3-40
{DEFFLOAT}
defined 2-3, 3-8 to 3-9
sample macro with 5-6
Defining variables 3-8 to 3-10 See also
Variables
[DEFINT?}
defined 2-3, 3-9
sample macro with 3-33, 5-3, 5-5
{DEFSTR}
defined 2-3, 3-9 to 3-10
sample macro with 5-5, 5-6
{DEL} 2-5, 3-42
DELETE (F4) key 1-11
Deleting
file attachments 1-32
macros 1-11, 1-23, 1-34
Deleting macro files See Erasing
macro files
#DEPTH 3-47
Detaching macro files 1-32, 1-35
Discarding changes to macros 1-21
DISPLAY (ALT-F7) key 1-9, 1-12
Displaying
hidden macros 1-9, 1-12
information on the screen 2-5,
3-22 to 3-23
macro names 1-16, 1-28
Macros Properties box 1-15
menus 2-11, 3-26 to 3-28
Division 2-12
Documenting macros 2-6, 3-6 to 3-7
Dollar sign {$) 3-27
Double note symbol) 1-9, 1-30
Double quotation mark (") 2-8, 2-10,
3-25,4-5
Double right arrow (>>) 1-11
{DOWN) 2-5, 3-43
Down arrow (1) 3-23, 3-35

E

Editing macros
clearing variables 3-6
discarding changes 1-21
in files 1-31
guidelines for 1-20 to 1-24
menu commands for 1-22 to 1-23
names 1-16
on a network 1-33
EDITMAC (F2) key 1-5, 1-20
Elements, selecting 3-53

Empty value 3-54
{END} 2-6, 3-43
[ENTER} 2-6, 3-43
Equal (=) 2-12 t0 2-13
Erasing macro files 1-36
#ERRMSG 3-31 to 3-33, 3-47
#ERRNO 3-31 to 3-33, 3-47
Error handler macros 3-31 to 3-33,
3-47
Errors
correcting in Learn mode 1-23 to
1-24
debugging 2-6, 3-7 t0 3-8, 4-3 to
4-5
[ESC} 2-6, 3-43
Executing macros See Macro
execution
Export menu command 1-23
Exporting
items to files 5-1 to 5-2
macros to files 1-23, 1-26 to 1-27
Expressions
defined 2-9, 2-12, 4-5
operators in 2-12 to 2-13
parentheses around (()) 3-13
sample macro with 5-5 to 5-7
External files See Macro files
Extracting characters from strings
3-23,3-28, 3-34

F

#FALSE 3-48
File menu commands 1-23
Attach 1-16, 1-31 to 1-32, 1-34
Copy 1-30
Detach 1-34
Erase 1-36
Properties 3-47
Transfer Import 1-25
Transfer Template 1-24
#FILENAME 3-48
File names
entering with macros 3-18 to 3-20
highlighted 3-53
MAC extension for 1-17, 1-31
settings, highlighted 3-53
storing in variables 2-3
#FILEPATH 3-48
Files See alse Macro files; Text files
counting marked items in 3-49
exporting items to 5-1 to 5-2
exporting macros to 1-23, 1-26 to
1-27
importing into macros 1-23 to
1-26
number of macros in 2-15
template 1-24 to 1-25

transferring macros to 1-24 to 1-25
|FIND}
defined 2-3, 3-10 to 3-11
sample macro with 5-3, 5-4
Floating-point variables
defined 2-11
defining 3-8 to 3-9
macro commands for 2-2 to 2-3
sample macro with 5-6 to 5-7
Fow-of-control macro commands
2-3to 2-4
Font settings 3-54 to 3-55
Footer settings 3-54 to 3-55
{FOR) 24, 3-11
Formulas in arguments 2-9
Freezing the screen 2-6, 3-39 to 3-41
Function key map 1-8, 1-19
Function keys
ALT-F1 (COMPQSE) 1-14
ALT-F3 MACRO) 1-5, 1-7, 1-10
ALT-F5 {(SORT) 1-10
ALT-F7 (DISPLAY) 1-9, 1-12
ALT-F10 MOVE} 1-11
attaching macros to 1-9, 1-14, 1-17
to 1-19, 1-27 to 1-29
F1 (HELP) 1-2¢
F2 (EDITMAC) 1-5, 1-20
F3 (CHOICES}) 1-26, 1-31, 3-16,
3-44
F4 (DELETE) 1-11
F6 (PROPS) 1-16, 1-22, 1-28, 1-32,

1-35
F7 (LEARN) 1-5, 1-20
F7 (MARK) 1-5

F7 (PROMOTE) 1-5
representing in macros 1-12 to
1-14

G

{GETKEY} 2-5, 3-12
Global variables
clearing 3-6
defined 2-13 to 2-14
defining 3-8 to 3-10
guidelines for using 2-15
undefining 3-39
{GOTO} 2-4, 3-12 to 3-13
Greater than (>) 2-12 to 2-13
Greater than or equal to (>=) 2-12 to
2-13

H

Header settings 3-54 to 3-55
HELP (F1) key 1-29
Help screens, customizing 1-29

Hidden macros
defined 1-11 to 1-12
displaying 1-9
macro execution and 1-19
settings for 1-17
Highlight 2-5 to 2-6, 3-42 to 3-45,
3-48 to 3-54
#HIGHILIGHT TYPE 3-48 to 3-52
#HIGHLIGHT VALUE 3-48 to 3-54,
5-2
[HOME} 2-6, 3-43
Hyphen (-} 2-10, 4-5

{IF}
defined 2-4, 3-13
error handling with 3-33
#KEYHIT with 3-48
#NULL with 3-54
sample macro with 3-46, 5-2, 5-3,
5-5 to 5-7
testing conditions of 3-48
{IFEQ} 2-4, 3-14
(IFKEY} 24, 3-14 to 3-15
[TENOTEQ) 2-4, 3-15 to 3-16
Import menu command 1-23
Importing text files into macros 1-25
to 1-26
Information, displaying on screen
2-5, 3-22 to 3-23
Input 2-6, 3-38
{INPUTCAT}
[CALL} with 3-4
counting arguments for 3-45 to
3-46
defined 2-5, 3-16 to 3-18
{INPUTFILE}
{CALL} with 3-4
counting arguments for 3-45 to
3-46
defined 2-5, 3-18 to 3-20
sample macro with 5-2
Input/QOutput macro commands 2-5
[INPUTTEXT}
{APPEND} with 3-3
{CALL} with 3-4 to 3-5
counting arguments for 3-45 to
3-46
defined 2-5, 3-20 to 3-22
(INPUTCAT} compared with 3-16
to 3-17
sample macro with 3-7, 3-46, 5-3,
5-5to 5-6, 5-7
{INS} 2-6, 3-43
Integer variables
defined 2-11
defining 3-9

Index-3

macro commands for 2-2 to 2-3

Interactive macros See also Macro
execution

{ALERT} in 3-2

boxes in 3-12, 3-35 to 3-37

break-handler macros 3-28 to 3-30

entering information with 3-38

error handling in 3-31 to 3-33

{GETKEY}in 3-12

{IFKEY} in 3-14 to 3-15

Input commands in 2-5, 3-16 to

3-22

macro commands for 2-5

menus controlling 3-26 to 3-28

sample macros 3-5, 5-2 to 5-3

testing conditions for 3-48
International characters 1-14
Interrupting macros 3-14 to 3-15
Items

counting marked 3-49

exporting to a file 5-1 to 5-2

highlight in 3-51 to 3-52

K

#KEYHIT 3-46, 3-48
Key names, braces ({]} around 1-3,
1-6,1-12, 1-17, 1-28, 4-4
Keys
attaching macros to 1-9, 1-14, 1-17
to 1-19, 1-27 to 1-29
representing in macros 1-12 to
1-14
Keystrokes
adding to macros 1-24
storing with {GETKEY] 3-11 to
3-12
Keywords
braces {{ }) around 2-8, 2-15
defined 2-7 to 2-8

L

{LABEL}
HARGCOUNT with 3-45 to 3-46
{BRANCH]} with 3-3 to 3-4
branching to conditionally 2-4,
3-13 to 3-16
break handling with 3-30
defined 2-4, 3-22
error handling with 3-33
sample macros with 3-27, 4-3, 5-2,
5-3,5-5 t0 5-7
{LARGEBQX] 2-5, 3-22 to 3-23
LEARN (¥7) key 1-5, 1-20
LEARN indicator 1-5
Learn mode
{Call} in1-4, 1-29

4-Index

correcting errors in 1-23 to 1-24
creating macros in 1-4 to 1-5
turning off 1-5
{LEFT} 2-6, 3-43
Left arrow {¢<-) 3-26
{LEFTSTR)
defined 2-3, 3-24
sample macros with 5-3
{LENGTH]}
defined 2-3, 3-24
sample macros with 5-3
Less than {<) 2-12 to 2-13
Less than or equal to (<=) 2-12 to
2-13
{LET}
{CLEAR) compared with 3-6
defined 2-3, 3-25
error handling with 3-33
#NULL with 3-34
sample macros with 3-28, 5-2 to
5-3,5-5ta 5-7
List options See {ROLLMENU)
Local variables
clearing 3-6
defined 2-13
defining 3-8 to 3-10
guidelines for using 2-15
undefining 3-39
Locations
identifying with #MODE 3-49 to
3-54
selecting for macro execution 1-4,
1-9, 1-16 to 1-19, 4-2 to 4-3
Loops See also Macro execution
counters in 2-11, 3-8, 3-9, 3-45 to
3-d6
decrementing counters 3-11
#KEYHIT in 3-48
macro commands for 2-4
terminating 3-15, 3-48
{LOTUSMENU} 2-5, 3-26 to 3-28

MAC extension 1-16, 1-31
MACRO (ALT-F3) key 1-5, 1-7, 1-10
Macro commands See also Creating
macros; Macro execution;
Macros
arguments in 2-8 to 2-15
category level specified in 3-47
counting arguments for 3-45 to
3-46
creating macros with 1-6 to 1-7
defined 1-2 to 1-3
editing 1-20 to 1-24
expressions in 2-12 to 2-13

global and local variables in 2-13
to 2-15

guidelines for using 2-8

hightight in 3-52

highlighting with 2-5 to 2-6, 3-42
to 3-45, 3-48 to 3-54

markers in 1-20, 3-47

missing braces ({ }) 4-4

representing keys in 1-12 to 1-14

special variables in 3-45 {o 3-55

summary list of 2-2 to 2-7

syntax 2-7 ta 2-15

troubleshooting 2-6, 3-7 to 3-8, 4-3
to 4-5

types 2-2

white space in 1-7, 1-26, 2-8, 2-10,
3-25

Macro edit menu 1-23
Macro edit screen

attaching files from 1-31 to 1-32
creating macros in 1-6 to 1-7
editing macros in 1-21
highlight in 3-52

storing files with 1-34

Macro execution See also Macro com-

mands; Macros

accessing variables 2-13 to 2-15

Agenda locations for 1-4, 1-9, 1-16
to 1-19, 4-2 to 4-3

branching 2-4, 3-3 to 3-6, 3-13 to
3-16, 3-34 to 3-35

branching with menus 3-26 to
3-28

break handiing during 3-28 to
330

choosing menu commands during
4-1t04-2

counting marked jtems during
3-47

creating boxes 3-35 to 3-37

defined 1-1, 1-18 to 1-19

displaying menus 2-9, 3-26 to 3-28

displaying screens 3-22 to 3-23

entering file names 3-18 to 3-20

entering information during 2-6,
3-38

error handling 3-31 to 3-33

extracting strings 3-24, 3-28, 3-34

freezing the screen 2-6, 3-39 to
3-11

ignoring commands during 3-6 to
37

interactive 3-11 to 3-22, 3-26 to
3-33

interrupting 3-14 to 3-15

looping 2-4, 2-11, 3-11, 3-15

passing values 3-18, 3-45 to 3-46

searching during 2-3, 3-10 to 3-11,
3-21,54t05-5
selecting Agenda elements 3-53
selecting settings 2-6, 3-43 to 3-45,
4-2
setiings for 1-17 to 1-19
slowing down 2-6, 3-38
terminating 2-6, 3-15, 3-34, 3-37
transferring to another macro 2-4,
3-12 to 3-13
transferring within a macro 2-4,
3-3 to 3-6, 3-13 to 3-16
troubleshooting 2-6, 3-7 to 3-8, 4-3
to 4-5
undefining variables 2-15, 3-39
unfreezing the screen 2-7, 3-41
updating the screen 2-7, 3-41
Macro files See also Files
attaching to macros 1-16, 1-23,
1-30 to 1-34
copying attachments 1-30
deleting macros from 1-34
detaching from macros 1-32, 1-35
editing macros in 1-31
erasing 1-36
storing macros in 1-9, 1-30 to 1-34
Macro instructions See Macro com-
mands; Simple macros
Macro manager
defined 1-7 to 1-11
detaching files from 1-3, 2-5, 1-35
highlight in 3-53
running macros from 1-18 to 1-19
Macro names
braces ({ }} around 1-3, 1-21, 1-26,
1-28
changing 1-20 to 1-21
creating 1-3, 1-6
displaying 1-16, 1-28
editing 1-16 \
in function key map 1-18, 119,
1-28
of imported macros 1-26
Macro Properties box 1-4, 1-22, 1-32,
4-2 10 4-3
Macros See also Creating macros;
Editing macros; Macro
commands
Macro execution
adding keystrokes to 1-24
alert boxes displayed with 3-2
attaching files to 1-16, 1-23, 1-30
to 1-34
attaching to keys 1-9, 1-14, 1-17 to
1-19, 1-27 to 1-29
autoexec 1-4
clearing 1-11, 1-23, 1-34
Clipboard reference in 3-47

compose characters in 1-14
creating categories with 2-5, 3-16
to 3-18
dates in 3-47
defined 1-1
detaching files from 1-32, 1-35
displaying 1-9, 1-12, 1-16, 1-28
documenting 2-6, 3-6 to 3-7
from earlier releases of Agenda
1-1, 1-9 to 1-10, 1-23
editing 1-20 to 1-24
exporting 1-23, 1-26 to 1-27, 5-1 to
5-2
hidden 1-9, 1-11 to 1-12, 1-17, 1-19
importing 1-23, 1-25 to 1-26
number allowed in Agenda file
2-15
parts defined 1-3
pausing 2-5, 3-12
printing 1-1, 1-23, 3-54 to 3-55
protecting 1-18, 1-24
replacing 1-23 to 1-24
saving 1-6, 1-23, 1-33
size 1-3, 2-8
sorting list of 1-10 to 1-11
status of 1-8 to 1-9
storing in macro files 1-9, 1-30 to
1-34
transferring to files 1-24 to 1-25
troubleshooting 2-5, 3-7 to 3-8, 4-3
to 4-5
Macros Properties box
attaching keys with 1-28 to 1-29
defined 1-15 to 1-18
detaching files with 1-35
editing macros with 1-22
#MARK_COUNT 349
#MARKED_IN_VIEW 3-49
Markers 1-20, 3-47
MARK (F7) key 1-5
Mathematical operations in macros
2-8,2-12
Menus
commands 3-54, 4-1 to 4-2
displaying with macro 2-11, 3-26
to 3-28
Message boxes See Alert boxes; Set-
tings boxes
{MIDSTR}
defined 2-3, 3-28
sample macro with 5-3
Minus {(-) 2-12
Mistakes See Errors; Troubleshooting
#MODE
defined 3-48 to 3-54
sample macro with 4-3
#VIEWNAME with 3-55

#MODE=CATMGR

defined 3-51

#DEPTH with 3-47

sample macro with 4-3
#MODE=DIALOG 343, 3-51 to 3-52
#MODE=FIELDEDIT 3-52
#MODE=ITEMEDIT 3-52
#MODE=MACROEDIT 3-52
#MODE=MENU 3-54
#MODE=NOTE 3-52, 4-3
#MODE=CTHER 3-54
#MODE=SELECT 3-53
#MODE=VIEW

defined 3-50 to 51

sample macro with 4-3

#VIEWNAME with 3-55
MOVE (ALT-F10) key 1-11
Movement keys 1-14 to 1-15
Multiplication 2-12

N

Names, macro See Category names;
Macro names
Networks 1-33
Notes
highlight in 3-52
running macros in 1-4, 1-9, 1-16 to
1-19
slash (/) in 4-2
#NULL
defined 3-54
sample macro with 5-2, 5-6
Numbaers
argument results 2-8 to 2-10
representing in macros 1-14
Numeric columns 5-5
Numeric constants 2-9, 3-14
Numeric settings 3-53
Numeric variables
arguments 2-9
assigning numeric strings to 3-25
clearing 3-6
combining 2-15
defined 2-11
defining 3-8 to 3-10
macro commands for 2-2 to 2-3
undefining 3-39

o

{ONBREAK} 2-4, 3-28 to 3-30, 3-34

{ONERROR} 2-4, 3-31 to 3-33, 3-34

Operators 2-10, 2-12 to 2-13 See also
Symbols and special characters

Index-5

P

Parentheses {()) 1-12, 3-13, 3-25, 4-4
Passing arguments See Arguments
#PATH 3-48
Pausing macro execution 2-5, 3-12,
3-16 to 3-18 See also
Interactive macros; Macro
execution
Percent (%)
as character in a string 3-23, 4-5
specifying global and local vari-
ables with 2-13, 2-15
in string constants 2-7, 2-8
{PGDN]) 2-6, 3-43
{PGUP} 2-6, 3-43
Plus (+) 2-12
Pound (#) sign 2-8
Previewing documents 1-1
Print menu commands 1-23
Printing macros 1-1, 1-23, 3-53
PROMOTE (F7} key 1-5
#PROMPT
defined 3-54 to 3-55
#MODE with 3-43, 3-30 to 3-5b4
sample macro with 5-2
selection with 3-43
PROPS (F6) key 1-16, 1-22, 1-28, 1-32,
1-35
Protecting macros 1-18, 1-24

Q

{QUIT) 2-6, 3-34
break-handling with 3-28 to 3-20
error handling with 3-31
sample macro with 5-3
terminating subroutines with 3-5
Quit menu command 1-23

R

Rearranging the list of macros 1-10
to 1-11
Reference peints See {LABEL}
Relational operators in expressions
2-12 to 2-13
Removing attachments 1-35
Replacing macros 1-23 to 1-24
Representing keys in macros See
Keys, representing in macros
{RETURN}
break-handling with 3-28 to 3-30
defined 2-4, 3-35
error handling with 3-34 to 3-35
sample macros with 3-4, 3-5, 5-3,
55

6-index

terminating subroutines with 3-4
to 3-5
transferring to called macro with
2-4, 3-35
Return menu command 1-23
Revising macros 1-23 to 1-24 See alse
Editing macros
{RIGHT] 2-6, 3-43
Right arrow (—) 3-26
[RIGHTSTR} 2-3, 3-10, 3-34, 5-3
{ROLLMENLUJ}
defined 2-5, 3-35 to 3-37
sample macros with 3-30, 5-2, 5-7
Running macros See Macro
execution

S

Saving macros 1-6, 1-23, 1-33 See also
Storing macros
Screen
displaying 2-5, 3-22 to 3-23
freezing /unfreczing 2-6, 3-39 to
3-41
updating 2-7, 3-41
Searching 2-3, 3-10 to 3-11, 3-21, 5-4
to 5-5
Section, exporting items in 5-1 to 5-2
Select File box 3-53
Selecting See also Highlighting
Agenda elements 3-53
menu commands with macros 4-1
to 4-2
scttings 2-6, 3-43 to 3-45, 4-2
{SELECTION}
defined 3-43 to 3-45
moving highlight with 3-55
sample macros with 3-43 to 3-44,
5-2
selecting settings with 2-6, 4-2
Semicolon () 2-8, 2-10, 2-15, 3-23,
4-4,4-5
Settings
highlighted 3-53 to 3-54
in Macros Properties box 1-17 to
1-19
returned by #PROMPT 3-54 to
3-55
selecting with macros 2-6, 3-43 to
3-45, 4-2
Settings boxes 3-35 to 3-37
{SHFTAB! 2-6, 3-43
Simple macros
creating 14 to 1-5
defined 1-2 to 1-3
editing 1-21 to 1-23
Single quotation mark () 2-10
Slash (/42

Slowing macro execution 2-6, 3-38
SORT (ALT-F5) key 1-10
Sorting the list of macros 1-10 to 1-11
SPACE BAR 1-14
Spaces See White space
Spacing 3-55, 4-4
Special keys 1-12 to 1-14, 1-27 to 1-29
Special variables
as arguments 2-9
defined 3-45
error handling with 3-31 to 3-33
listed 3-45 to 3-55
sample macro with 5-1 to 5-2
selecting settings with 3-44 to 3-45
testing with #NULL 3-54
[SPEED} 2-5, 3-38
Stopping macro execution See Macro
execution, terminating
Storing See alse Saving macros
macros in macro files 1-9, 1-30 to
1-34
user input in variables 2-5, 3-16 to
3-21,3-22 t0 3-12
String constants
as arguments 2-8, 2-11
white space in 3-25, 4-5
String indexes 2-11, 3-8 to 3-9
Strings
argument results 2-9 to 2-10
determining length of 3-24
extracting characters from 3-23,
3-27 to 3-28, 3-34
manipulating 5-4
searching for 5-4 to 5-5
String variables
appending string to 3-3
assigning character string to 3-25
clearing 3-6
combining 2-15
defined 2-9, 2-11
defining 3-9 to 3-10
[LET} with 3-25
macro commands for 2-2 to 2-3
size 2-15
undefining 3-39
Structure of macros See Macro com-
mands, syntax
Subroutines 3-3 to 3-6 See also
[BRANCHY; {CALL)
Subtraction 2-12
Symbols and special characters
See list at beginning of index
Syntax See Macro commands

T

{TAB} 2-6, 3-43
Tabs See White space

Template files 1-24 to 1-25
Terminating macro execution 2-6,
3-15, 3-34, 3-31
Testing conditions 3-54 to 3-55 See
also Troubleshooting
Text See alse String constants; String
variables
appending characters to 2-3, 3-3
on the Clipboard 3-47
in header and footer 3-55
highlighted 3-48, 3-52 to 3-53
settings, highlighted 3-53
storing in variables 2-5
Text arguments See String-constant
arguments; String-variable
arguments
Text commands See String-
manipulation commands
Text files 1-23, 1-25 to 1-26 See nlso
Files; Macro files
#TIME 3-55
Training applications 3-38
Troubleshooting 2-6, 3-7 to 3-8, 4-3
to 4-5
#TRUE 3-55
{TYPE}
{APPEND] with 3-3
defined 2-7, 3-38
displaying menu with 4-2
sample macros with 3-10, 3-19,
5.2, 5-3,5-7
Typing information automatically
338
Typographical conventions viii, 1-6,
1-13, 2-8, 3-1

U

Unary operators 2-12
{UNDEF)
compared to {CLEAR] 3-6
defined 2-3, 3-39
global variables with 2-13, 2-15
Undefining variables 2-15, 3-39
Unfreezing the screen 2-7, 3-41
{(UP} 2-6, 3-43
Up arrow (M 335
Updating the screen 2-7, 3-41
Utilities Customize menu command
1-7,3-26

\'}

Values
ASCIT 3-47
empty 3-54
for #MODE 3-49
numetic 2-11

passing to macro commands 3-18
returning specific 3-45
Variables
in arguments 2-9 to 2-10
assigning strings to 3-3, 3-25
clearing 3-6
defining 3-8 to 3-10
error handling with 3-31 to 3-33
expressions as 2-12 to 2-13
floating-point 2-11, 3-8 to 3-9, 5-5
to 5-7
global and local 2-13 to 2-15
guidelines for using 2-15
integer 2-11, 3-9
macro commands for 2-2 to 2-4
special 3-45 to 3-55
storing data in 3-16 to 3-22
storing user input in 2-5, 3-12
testing with #NULL 3-54
types 2-2 to 2-3, 2-11
undefining 3-39
View manager, highlight in 3-53
#VIEWNAME 3-54
Views
counting marked items in 3-49
highlight in 3-50 to 3-51
recording macros in 4-2 to 4-3
running macros in 1-4, 1-9, 1-17,
1-18 to 1-1%
slash (/) in 4-2

w

White space

in arguments 2-8, 2-10, 3-25, 4-5

in macros 1-7, 1-26

searching for 5-4 to 5-5
[(WINDOWSOFF)

break handling with 3-30

{DEBUG} with 3-8

defined 2-6, 3-39 to 3-41

sample macro with 5-2, 5-6
{WINDOWSON}

break handling with 3-30

{DEBUG] with 3-8

defined 2-7, 3-41

other window commands with

3-40

sample macro with 5-7

(WINDOWSUPD} 2-7, 3-39, 3-41

index-7

