
 

Introduction to 64 Bit 

Windows Assembly 

Programming 

Ray Seyfarth 



ii 

  
Ray Seyfarth 

Hattiesburg, MS 

USA  

  

 

  

 

 

 

 

 

 

 

 

 

  

Seyfarth, Ray  

Introduction to 64 Bit Windows Assembly Programming 

Includes index 

ISBN-13: 978-1484921968 

ISBN-10: 1484921968 

  

 

  

 

 

 

 

 

 

 

 

  

© 2014 Ray Seyfarth   All rights reserved. 

 

This work may not be translated or copied in whole or in part without 

the written permission of the copyright holder, except for brief excerpts 

in connection with reviews or scholarly analyses.

 

  



iii 

 

Preface 

The Intel CPU architecture has evolved over 3 decades from a 16 bit CPU 

with no memory protection, through a period with 32 bit processors with 

sophisticated architectures into the current series of processors which 

support all the old modes of operation in addition to a greatly expanded 

64 bit mode of operation. Assembly textbooks tend to focus on the history 

and generally conclude with a discussion of the 32 bit mode. Students are 

introduced to the concepts of 16 bit CPUs with segment registers allowing 

access to 1 megabyte of internal memory. This is an unnecessary focus on 

the past. 

With the x86-64 architecture there is almost a complete departure 

from the past. Segment registers are essentially obsolete and more 

register usage is completely general purpose, with the glaring exception 

of the repeat-string loops which use specific registers and have no 

operands. Both these changes contribute to simpler assembly language 

programming. 

There are now 16 general purpose integer registers with a few 

specialized instructions. The archaic register stack of the 8087 has been 

superseded by a well-organized model providing 16 floating point 

registers with floating point instructions along with the SSE and AVX 

extensions. In fact the AVX extensions even allow a three operand syntax 

which can simplify coding even more. 

Overall the x86-64 assembly language programming is simpler than 

its predecessors. The dominant mode of operation will be 64 bits within a 

few short years. Today most personal computers ship with 64 bit 

operating systems. In fact the latest versions of the Apple OS X operating 

system are only available in 64 bits, though Linux and Microsoft Windows 

still have 32 and 64 bit versions. The era of 32 bit CPUs and operating 

systems is nearly over. Together these trends indicate that it is time to 

teach 64 bit assembly language. 

The focus in this textbook is on early hands-on use of 64 bit assembly 

programming. There is no 16 or 32 bit programming and the discussion of 

the history is focused on explaining the origin of the old register names 

and the few non-orthogonal features of the instruction set. 
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The first version of this book discussed using the yasm assembler and 

the gdb debugger directly. Now the author provides a free integrated 

development environment named “ebe”, which automates the process of 

using yasm. The ebe environment is a GUI program written in C++ using 

the Qt system and supports C, C++ and FORTRAN in addition to 

assembly language, though its purpose is to support assembly 

programming. There was a previous version of ebe written in Python, but 

the newer version offers many more features. The Qt version of ebe is 

available at http://qtebe.sourceforge.net. 

This version of the book discusses assembly programming for the 

Windows operating system. There is a companion book discussing 

assembly programming for Linux and OS X which use a different function 

call interface. There is a discussion of the function call protocol differences 

for Linux, OS X and Windows, so having one of the two books should be 

sufficient for someone interested in programming on multiple operating 

systems. 

The Linux/OS X book contains examples using gdb for debugging. Alas 

this seems to be impractical under Windows and, in fact, under OS X. The 

yasm assembly does not generate sufficient information under Windows 

or OS X to determine source code line numbers from memory addresses. 

Ebe uses the yasm listing file along with the addresses of global symbols 

like main to build translations internally while using memory addresses 

for breakpoints and to determine line numbers with gdb. The ebe user 

perceives a simple interface, but using gdb manually would require the 

user to compute addresses for break points and observe source code in a 

separate window. For this reason this book has abandoned the use of 

debugging with gdb, 

Another issue with Windows is the prevalence of assembly code 

examples built around structured exception handling (SEH). The idea 

there is to augment the code with data which describes the stack frame 

and register usage in such a manner that SEH can “unwind” the stack to 

determine which exception handler is the first to be found to handle a 

particular exception. Exception handling is arguably a critical feature in 

C++, but it is possibly too cumbersome for beginning assembly 

programmers. The model used in the book is compatible with C and far 

simpler than the code one finds which addresses SEH. Most likely any 

assembly code used in C++ will be used for high efficiency and will not 

generate any exceptions, so I feel the decision to write simpler assembly 

code is useful in practice in addition to being far easier to understand. 

Due to costs this book is printed in black and white. The pictures 

captured from ebe would have been prettier and perhaps more useful in 

color, but the cost of the book would have been roughly double the cost of 

a black and white version. The added utility of color is certainly not worth 

http://qtebe.sourceforge.net/
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the extra cost. Generally the highlighted text in ebe is shown with a 

colored background while the printed version presents this text with a 

light gray background. 

Most of the sample code execution in the first edition was illustrated 

using gdb. This function has largely been superseded with screen captures 

from ebe, though some use of gdb is still shown. It might be that some 

people would prefer using a text interface and blind programmers in 

particular might find a GUI interface to be a real inconvenience. 

There are assignments using the computer from the very first chapter. 

Not every statement will be fully understood at this time, but the 

assignments are still possible. 

The primary target for this book is beginning assembly language 

programmers and for a gentle introduction to assembly programming, 

students should study chapters 1, 2, 3, 5, 6, 7, 8, 9, 10 and 11. Chapter 4 

on memory mapping is not critical to the rest of the book and can be 

skipped if desired. 

Chapters 12 through 15 are significantly more in depth. Chapter 15 

is about data structures in assembly and is an excellent adjunct to 

studying data structures in C/C++. The subject will be much clearer after 

exposure in assembly language. 

The final four chapters focus on high performance programming, 

including discussion of SSE and AVX programming. 

The author provides slides for classroom instruction along with 

sample code and errata at http://rayseyfarth.com/asm. 

If you find errors in the book or have suggestions for improvement, 

please email the author as ray.seyfarth@gmail.com. Your suggestions 

will help improve the book and are greatly appreciated. 

You may also email me with questions or suggestions about ebe. Your 

email will assist me with providing better on-line support and will help 

improve the quality of the software. 

Thank you for buying the book and I hope you find something 

interesting and worthwhile inside. 

  

http://rayseyfarth.com/asm
mailto:ray.seyfarth@gmail.com
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Chapter 1 

Introduction 

This book is an introduction to assembly language programming for the 

x86-64 architecture of CPUs like the Intel Core processors and the AMD 

Athlon and Opteron processors. While assembly language is no longer 

widely used in general purpose programming, it is still used to produce 

maximum efficiency in core functions in scientific computing and in other 

applications where maximum efficiency is needed. It is also used to 

perform some functions which cannot be handled in a high-level language. 

The goal of this book is to teach general principles of assembly 

language programming. It targets people with some experience in 

programming in a high level language (ideally C or C++), but with no prior 

exposure to assembly language. 

Assembly language is inherently non-portable and this text focuses on 

writing code for the Windows operating system, taking advantage of the 

free availability of excellent compilers, assemblers and debuggers.  There 

is a companion book for Linux and OS X which both use the same function 

call ABI (application binary interface) which differs substantially from the 

Windows function call ABI. Differences between assembly programming 

for Linux and OS X systems will be detailed as the work unfolds  

The primary goal of this text is to learn how to write functions callable 

from C or C++ programs. This focus should give the reader an increased 

understanding of how a compiler implements a high level language. This 

understanding will be of lasting benefit in using high level languages. 

A secondary goal of this text is to introduce the reader to using SSE 

and AVX instructions. The coming trend is for the size of SIMD (Single 

Instruction Multiple Data) registers to increase and it generally requires 

assembly language to take advantage of the SIMD capabilities. 
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1.1  Why study assembly language? 

In a time when the latest fads in programming tend to be object-oriented 

high-level languages implemented using byte-code interpreters, the trend 

is clearly to learn to write portable programs with high reliability in 

record time. It seems that worrying about memory usage and CPU cycles 

is a relic from a by-gone era. So why would anyone want to learn assembly 

language programming? 

Assembly language programming has some of the worst “features” 

known in computing. First, assembly language is the poster child for non-

portable code. Certainly every CPU has its own assembly language and 

many of them have more than one. The most common example is the Intel 

CPU family along with the quite similar AMD CPU collection. The latest 

versions of these chips can operate in 16 bit, 32 bit and 64 bit modes. In 

each of these modes there are differences in the assembly language. In 

addition the operating system imposes additional differences. Further the 

function call interface (ABI) employed in x86-64 Linux and OS X systems 

differs from that used in Microsoft Windows systems. Portability is 

difficult if not impossible in assembly language. 

An even worse issue with assembly language programming is 

reliability. In modern languages like Java the programmer is protected 

from many possible problems like pointer errors. Pointers exist in Java, 

but the programmer can be blissfully unaware of them. Contrast this to 

assembly language where every variable access is essentially a pointer 

access. Furthermore high level language syntax resembles mathematical 

syntax, while assembly language is a sequence of individual machine 

instructions which bears no syntactic resemblance to the problem being 

solved.  

Assembly language is generally accepted to be much slower to write 

than higher level languages. While experience can increase one’s speed, it 

is probably twice as slow even for experts. This makes it more expensive 

to write assembly code and adds to the cost of maintenance. 

So what is good about assembly language? 

The typical claim is that assembly language is more efficient than high 

level languages. A skilled assembly language coder can write code which 

uses less CPU time and less memory than that produced by a compiler. 

However modern C and C++ compilers do excellent optimization and 

beginning assembly programmers are no match for a good compiler. The 

compiler writers understand the CPU architecture quite well. On the 

other hand an assembly programmer with similar skills can achieve 



3 

remarkable results. A good example is the Atlas (Automatically Tuned 

Linear Algebra Software) library which can achieve over 95% of the 

possible CPU performance. The Atlas  matrix multiplication function is 

probably at least 4 times as efficient as similar code written well in C. So, 

while it is true that assembly language can offer performance benefits, it 

is unlikely to outperform C/C++ for most general purpose tasks. 

Furthermore it takes intimate knowledge of the CPU to achieve these 

gains. In this book we will point out some general strategies for writing 

efficient assembly programs. 

One advantage of assembly language is that it can do things not 

possible in high level languages. Examples of this include handling 

hardware interrupts and managing memory mapping features of a CPU. 

These features are essential in an operating system, though not required 

for application programming.  

So far we have seen that assembly language is much more difficult to 

use than higher level languages and only offers benefits in special cases 

to well-trained programmers. What benefit is there for most people?  

The primary reason to study assembly language is to learn how a CPU 

works. This helps when programming in high level languages. 

Understanding how the compiler implements the features of a high level 

language can aid in selecting features for efficiency. More importantly 

understanding the translation from high level language to machine 

language is fundamental in understanding why bugs behave the way they 

do. Without studying assembly language, a programming language is 

primarily a mathematical concept obeying mathematical laws. 

Underneath this mathematical exterior the computer executes machine 

instructions which have limits and can have unexpected behavior. 

Assembly language skills can help in understanding this unexpected 

behavior and improve one’s debugging skills.  

1.2  What is a computer?  

A computer is a machine for processing bits. A bit is an individual unit of 

computer storage which can take on 2 values: 0 and 1. We use computers 

to process information, but all the information is represented as bits. 

Collections of bits can represent characters, numbers, or any other 

information. Humans interpret these bits as information, while 

computers simply manipulate the bits.  

The memory of a computer (ignoring cache) consists mainly of a 

relatively large amount of “main memory” which holds programs and data 

while programs are executing. There is also a relatively small collection 

of memory within the CPU chip called the “register set” of the computer. 
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The registers primarily function as a place to store intermediate values 

during calculations based on values from main memory.  

Bytes  

Modern computers access memory in 8 bit chunks.  Each 8 bit quantity is 

called a “byte”. The main memory of a computer is effectively an array of 

bytes with each byte having a separate memory address. The first byte 

address is 0 and the last address depends on the hardware and software 

in use.  

A byte can be interpreted as a binary number. The binary number 

01010101 equals the decimal number 85 (64+16+4+1). If this number is 

interpreted as a machine instruction the computer will push the value of 

the rbp register onto the run-time stack. The number 85 can also be 

interpreted as the upper case letter “U”. The number 85 could be part of a 

larger number in the computer. The letter “U” could be part of a string in 

memory. It’s all a matter of interpretation.  

Program execution  

A program in execution occupies a range of addresses for the instructions 

of the program.  The following 18 bytes constitute a very simple program 

which simply exits (with status 5):  
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Address Value 

401740 85 

401741 72 

401742 137 

401743 229 

401744 72 

401745 131 

401746 236 

401747 32 

401748 185 

401749 5 

40174a 0 

40174b 0 

40164c 0 

40174d 232 

40174e 102 

40174f 93 

401750 0 

401651 0 

The addresses are listed in hexadecimal though they could have 

started with the equivalent decimal number 4200256. Hexadecimal 

values are more informative as memory addresses since the computer 

memory is mapped into pages of 4096 bytes each. This means that the 

rightmost 3 hexadecimal digits (also called “nibbles”) contain an offset 

within a page of memory. We can see that the address of the first 

instruction of the program is at offset 0x740 of a page. 

1.3  Machine language 

Each type of computer has a collection of instructions it can execute. These 

instructions are stored in memory and fetched, interpreted and executed 

during the execution of a program. The sequence of bytes (like the 

previous 18 byte program) is called a “machine language” program. It 

would be quite painful to use machine language. You would have to enter 

the correct bytes for each instruction of your program and you would need 

to know the addresses of all data used in your program. A more realistic 

program would have branching instructions. The address to branch to 

depends on where the computer loads your program into memory when it 

is executed. Furthermore the address to branch to can change when you 

add, delete or change instructions in your program.  
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The very first computers were programmed in machine language, but 

people soon figured out ways to make the task easier. The first 

improvement was to use words like mov to indicate the selection of a 

particular instruction. In addition people started using symbolic names to 

represent addresses of instructions and data in a program. Using symbolic 

names prevents the need to calculate addresses and insulates the 

programmer from changes in the source code.  

1.4  Assembly language  

Very early in the history of computing (1950s), programmers developed 

symbolic assembly languages. This rapidly replaced the use of machine 

language, eliminating a lot of tedious work. Machine languages are 

considered “first-generation” programming languages, while assembly 

languages are considered “second-generation”.  

Many programs continued to be written in assembly language after 

the invention of FORTRAN and COBOL (“third-generation” languages) in 

the late 1950s. In particular operating systems were typically nearly 

100% assembly until the creation of C as the primary language for the 

UNIX operating system 

The source code for the 12 byte program from earlier is listed below:  

;   Program: exit 
; 
;   Executes the exit system call 
; 
;   No input 
; 
;   Output: only the exit status 
;           %errorlevel% 
;           $? In the Cygwin shell 
; 
       segment .text 
       global   main 
       extern   exit  
main: 
       push    rbp 
       mov      rbp, rsp 
       sub      rsp, 32   ; shadow parameter space 
       mov      ecx, 5    ; parameter for exit function 
       call     exit 

You will observe the use of “;” to signal the start of comments in this 

program. Some of the comments are stand-alone comments and others are 

end-of-line comments. It is fairly common to place end-of-line comments 

on each assembly instruction.  

Lines of assembly code consist of labels and instructions. A label is a 

string of letters, digits and underscore with the first character either a 
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letter or an underscore. A label usually starts in column 1, but this is not 

required. A label establishes a symbolic name for the current point in the 

assembler. A label on a line by itself must have a colon after it, while the 

colon is optional if there is more to the line. It is probably safer to always 

use a colon after a label definition to avoid confusion.  

Instructions can be machine instructions, macros or instructions to the 

assembler. Instructions usually are placed further right than column 1. 

Many people establish a pattern of starting all instructions in the same 

column. I suggest using indentation to represent the high level structure 

of code, though spacing constraints limit the indentation in the examples.  

The statement “segment .text” is an instruction to the assembler 

itself rather than a machine instruction. This statement indicates that 

the data or instructions following it are to be placed in the .text segment 

or section. This is where the instructions of a program are located.  

The statement “global main” is another instruction to the assembler 

called an assembler directive or a pseudo opcode (pseudo-op).  This 

pseudo-op informs the assembler that the label main is to be made known 

to the linker when the program is linked. When the system runs a 

program it transfers control to the main function. A typical C program has 

a main function which is called indirectly via a start function in the C 

library. Some operating system use “_” as a prefix or suffix for functions. 

The OS X gcc prefixes each function name with an underscore, but gcc 

under Linux leaves the names alone.  So “main” in an OS X C program is 

automatically converted to “_main”. Windows leaves the names alone. 

 The line beginning with main is a label. Since no code has been 

generated up to this point, the label refers to location 0 of the program’s 

text segment.  

The remaining lines use symbolic opcodes representing the 5 

executable instructions in the program. The first two instructions prepare 

a stack frame for main.  The third instruction subtracts 32 from the stack 

pointer, rsp.  This is done to leave space for a called function to store 

register parameters on the stack if needed. The fourth instruction places 

5 in register rcx which is the first and only parameter for the exit call 

made in the last instruction. 

1.5  Assembling and linking  

This book introduces the use of the ebe program as an integrated 

development environment for assembly and C programming. Internally 

ebe uses the yasm assembler to produce an object file from an assembly 

source code file. This is adequate for debugging but some people will want 
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to prepare makefiles or scripts to build their programs. For this purpose 

we list the commands required to assemble and link assembly programs. 

Here is the yasm command: 

    yasm -f win64 -P ebe.inc -l exit.lst exit.asm  

The yasm assembler is modeled after the nasm assembler. The -f 

win64 option selects a 64 bit output format which is compatible with 

Windows and gcc. The -P ebe.inc option tells yasm to prefix exit.asm 

with ebe.inc which handles naming differences between Linux and OS 

X. Ebe will prepare a copy of ebe.inc in the same directory as the 

assembly file for each assembly. The -l exit.lst option asks for a listing 

file which shows the generated code in hexadecimal.  

The yasm command produces an object file named exit.o, which 

contains the generated instructions and data in a form ready to link with 

other code from other object files or libraries. Linking is done with the gcc 

command: 

    gcc -o exit exit.o  

The -o exit option gives a name to the executable file produced by 

gcc. The actual name will be “exit.exe” following Windows naming 

conventions. Without that option, gcc produces a file named a.exe.  

You can execute the program using: 

   exit.exe  

Normally you don’t have to specify “.exe” when running a program, 

but “exit” is a command which is interpreted by the command shell. 

1.6  Using ebe to run the program  

To use ebe to assemble, link and run the program is quite simple. First 

start ebe by entering “ebe” from a command shell or click on the ebe icon, 

a green alien. This will create a window with several subwindows 

including a source code subwindow as shown in the figure below. The 

various subwindows can be rearranged by dragging them by their title 

bars. They can be dropped on top of each other to create tabbed 

subwindows, they can be resized, they can be hidden and they can be 

dragged out of the main window to become stand-alone windows. 
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For better visibility the next figure shows ebe without the register, 

data and terminal windows. Using the source code window you can enter 

the text shown and use the File menu to save the file as “exit.asm”. To 

run the program simply click on the “Run” button, the icon which looks 

like a green alien (or gray). There is an arrow pointing to the “Run” button. 

If there were any output from the program, it would be displayed in the 

terminal subwindow. After saving the file once, you can start ebe using 

“ebe exit.asm”. 
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More details on using ebe will be illustrated later and a chapter on 

ebe is included in the appendix. This is sufficient for the first chapter. 
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Exercises  

1. Enter the assembly language program from this chapter and assemble 

and link it. Then execute the program from the command line and 

enter “echo %errorlevel%”. By convention in UNIX systems, a non-

zero status from a program indicates an error. Change the program to 

yield a 0 status. 

2. Use the “dir” command to determine the sizes of exit.asm, exit.o and 

exit.exe.  Which file is the largest?  Why? 

3. In C and many other languages, 0 means false and 1 (or non-zero) 

means true. In the shell 0 for the status of a process means success 

and non-zero means an error. Shell if statements essentially use 0 for 

true. Why did the writer of the first UNIX shell decide to use 0 for 

true?  
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Chapter 2 

Numbers  

All information in a computer is stored as collections of bits. These bits 

can be interpreted in a variety of ways as numbers. In this chapter we will 

discuss binary numbers, hexadecimal numbers, integers and floating 

point numbers.  

2.1  Binary numbers  

We are used to representing numbers in the decimal place-value system.  

In this representation, a number like 1234 means 103 + 2 ∗ 102 + 3 ∗ 10 +

4.  Similarly binary numbers are represented in a place-value system 

using 0 and 1 as the “digits” and powers of 2 rather than powers of 10.  

Let’s consider the binary number 10101111. This is an 8 bit number 

so the highest power of 2 is 27. So this number is  

10101111 = 27 + 25 + 23 + 22 + 2 + 1 

 = 128 + 32 + 8 + 4 + 2 + 1 

 = 175 

The bits of an 8 bit number are numbered from 0 to 7 with 0 being the 

least significant bit and 7 being the most significant bit 

The number 175 has its bits defined below.  

bit value 1 0 1 0 1 1 1 1 

bit position 7 6 5 4 3 2 1 0 

The conversion from binary to decimal is straightforward. It takes a 

little more ingenuity to convert from decimal to binary. Let’s examine the 

number 741. The highest power of 2 less than (or equal to) 741 is 29 = 512. 

So we have 

741 = 512 + 229 

 = 29 + 229 
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Now we need to work on 229. The highest power of 2 less than 229 is 

27 = 128. So we now have  

741 = 512 + 128 + 101 

 = 29 + 27 + 101 

The process continues with 101. The highest power of 2 less than 101 

is 26 = 64. So we get 

741 = 512 + 128 + 64 + 37 

 = 29 + 27 + 26 + 37 

Next we can find that 37 is greater than 25 = 32, so  

741 = 512 + 128 + 64 + 32 + 5 

 = 29 + 27 + 26 + 25 + 5 

Working on the 5 we see that 

741 = 512 + 128 + 64 + 32 + 4 + 1 

 = 29 + 27 + 26 + 25 + 22 + 1 

Below is 741 expressed as a 16 bit integer. 

bit value 1 0 1 1 1 0 0 1 0 1 

bit position 9 8 7 6 5 4 3 2 1 0 

A binary constant can be represented in the yasm assembler by 

appending “b” to the end of a string of 0’s and 1’s. So we could represent 

741 as 1011100101b.  

An alternative method for converting a decimal number to binary is 

by repeated division by 2. At each step, the remainder yields the next 

higher bit.  

Let’s convert 741 again. 

division  quotient remainder binary number 

741/2 = 370 1 1 

370/2 = 185 0 01 

185/2 = 92 1 101 

92/2 = 46 0 0101 

46/2 = 23 0 00101 

23/2 = 11 1 100101 

11/2 = 5 1 1100101 

5/2 = 2 1 11100101 

2/2 = 1 0 011100101 

1/2 = 0 1 1011100101 

The repeated division algorithm is easier since you don’t have to 

identify (guess?) powers of 2 less than or equal to the number under 

question. It is also easy to program.  
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2.2  Hexadecimal numbers  

Binary numbers are a fairly effective way of representing a string of bits, 

but they can get pretty tedious if the string is long. In a 64 bit computer 

it is fairly common to work with 64 bit integers. Entering a number as 64 

bits followed by a “b” would be tough. Decimal numbers are a much more 

compact representation, but it is not immediately apparent what bits are 

0’s and 1’s in a decimal number. Enter hexadecimal… 

A hexadecimal number is a number in base 16. So we need “digits” 

from 0 to 15. The digits from 0-9 are just like in decimal. The digits from 

10-15 are represented by the letters ‘A’ through ‘F’.  We can also use lower 

case letters. Fortunately both yasm and C/C++ represent hexadecimal 

numbers using the prefix 0x. You could probably use 0X but the lower case 

x tends to make the numbers more visually obvious.  

Let’s consider the value of 0xa1a. This number uses a which means 

10, so we have 

0xa1a = 10 ∗ 162 + 1 ∗ 16 + 10 

 = 10 ∗ 256 + 16 + 10 

 = 2586 

Converting a decimal number to hexadecimal follows a pattern like 

the one used before for binary numbers except that we have to find the 

highest power of 16 and divide by that number to get the correct “digit”. 

Let’s convert 40007 to hexadecimal. The first power of 16 to use is 163 =

4096. 40007/4096 = 9 with a remainder of 3143, so we have 

40007 = 9 ∗ 163 + 3143. 

3143/162  = 3143/256 = 12 with a remainder of 71, so we get 

40007 = 9 ∗ 163 + 12 ∗ 162 + 71. 

71/16 = 4 with a remainder of 7, so the final result is 

40007 = 9 ∗ 163 + 12 ∗ 162 + 4 ∗ 16 + 7 = 0x9C47. 

As with conversion to binary we can perform repeated division and 

build the number by keeping the remainders.  

division  quotient remainder hexadecimal 

40007/16 = 2500 7 0x7 

2500/16 = 156 4 0x47 

156/16 = 9 12 0x947 

12/16 = 0 12 0xc947 

Converting back and forth between decimal and binary or decimal and 

hexadecimal is a bit painful. Computers can do that quite handily, but 

why would you want to convert from decimal to hexadecimal? If you are 

entering a value in the assembler, simply enter it in the form which 

matches your interpretation. If you’re looking at the number 1027 and 
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need to use it in your program to perform arithmetic, enter it as a decimal 

number. If you want to represent some pattern of bits in the computer, 

then your choices are binary and hexadecimal. Binary is pretty obvious to 

use, but only for fairly short binary strings. Hexadecimal is more practical 

for longer binary strings.  

The bottom line is conversion between binary and hexadecimal is all 

that one normally needs to do. This task is made easier since each 

hexadecimal “digit” represents exactly 4 bits (frequently referred to as a 

“nibble”). Consult the table below to convert between binary and 

hexadecimal. 

Hex Binary 

0 0000 

1 0001 

2 0010 

3 0011 

4 0100 

5 0101 

6 0110 

7 0111 

8 1000 

9 1001 

a 1010 

b 1011 

c 1100 

d 1101 

e 1110 

f 1111 

Let’s now consider converting 0x1a5b to binary. 1 = 0001, a = 1010, 

5 = 0101 and b = 1011, so we get  

      0x1a5b = 0001 1010 0101 1011 = 0001101001011011b 

Below 0x1a5b is shown with each bit position labeled:  

Bit value 0 0 0 1 1 0 1 0 0 1 0 1 1 0 1 1 

Bit position 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

The value of each bit position is 2 raised to that power.  In the number 

above the leftmost 1 bit is in position 12, so it represents 212 = 4096. So 

the number is  

212 + 211 + 29 + 26 + 24 + 23 + 21 + 20 

4096 + 2048 + 512 + 64 + 16 + 8 + 2 + 1 

            6737        
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2.3  Integers 

On the x86-64 architecture integers can be 1 byte, 2 bytes, 4 bytes, or 8 

bytes in length. Furthermore for each length the numbers can be either 

signed or unsigned. Below is a table listing minimum and maximum 

values for each type of integer. 

Variety Bits Bytes Minimum Maximum 

unsigned 8 1 0 255 

signed 8 1 -128 127 

unsigned 16 2 0 65535 

signed 16 2 -32768 32767 

unsigned 32 4 0 4294967295 

signed 32 4 -2147483648 2147483647 

unsigned 64 8 0 18446744073709551615 

signed 64 8 -9223372036854775808 9223372036854775807 

Let’s consider the maximum unsigned 16 bit integer.  This maximum 

number is 16 bits all equal to 1 or 1111111111111111. The leftmost bit is 

bit 15 so its value is 215. Now suppose we add 1 to 1111111111111111. It’s 

pretty clear that we will get a carry in every position and the result is 

10000000000000000. This new number has 17 bits and the first bit 

position is 16, so we get 

1111111111111111 + 1 = 216 

Phrasing this more conveniently  

1111111111111111 = 216 − 1 = 65536 − 1 = 65535 

Similarly the maximum unsigned 64 bit integer is 264 − 1 and the 

maximum signed 64 bit integer is 263 − 1. The range of 64 bit integers is 

large enough for most needs. Of course there are exceptions, like 20! = 

51090942171709440000. 

Unsigned integers are precisely the binary numbers discussed earlier. 

Signed integers are stored in a useful format called “two’s complement”. 

The first bit of a signed integer is the sign bit. If the sign bit is 0, the 

number is positive. If the sign bit is 1, the number is negative. The most 

obvious way to store negative numbers would be to use the remaining bits 

to store the absolute value of the number.  

sign bit value    

                                

31                0 
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Let’s consider 8 bit signed integers and what we would get if we used 

the existing circuitry to add 2 such integers. Let’s add -1 and 1. Well, if we 

store -1 with a sign bit and then the value we would get 

  -1  =  10000001 
   1  =  00000001 

-1+1  =  10000010 

Oops!  We end up with -2 rather than 0.  

Let’s try storing 8 bit numbers as a sign bit and invert the bits for the 

absolute value part of the number: 

  -1  =  11111110 
   1  =  00000001 

-1+1  =  11111111 

Now this is interesting: the result is actually -0, rather than 0. This 

sounds somewhat hopeful. Let’s try a different pair of numbers: 

  -1  =  11111110   
   4  =  00000100     

-1+4  =  00000010 = 2 

Too bad!  It was close.  What we need is to add one to the complemented 

absolute value for the number. This is referred to as “two’s complement” 

arithmetic. It works out well using the same circuitry as for unsigned 

numbers and is mainly a matter of interpretation.  

So let’s convert -1 to its two’s complement format. 

              00000001 for the absolute value 
              11111110 for the complement 
              11111111 after adding 1 
         -1 = 11111111  

Using two’s complement numbers the largest negative 8 bit integer is 

10000000.  To convert this back, complement the number and add 1.  This 

gives 01111111 + 1 = 10000000 = 128, so 10000000 = -128. You may 

have noticed in the table of minimums and maximums that the minimum 

values were all 1 larger in absolute value than the maximums. This is due 

to complementing and adding 1. The complement yields a string of 1’s and 

adding 1 to that yields a single 1 with a bunch of 0’s. The result is that the 

largest value for an 𝑛-bit signed integer is 2𝑛−1 − 1 and the smallest value 

is −2𝑛−1.  

Now let’s convert the number -750 to a signed binary number. 

750 = 512 + 128 + 64 + 32 + 8 + 4 + 2 = 1011101110b 

Now expressing this as a 16 bit binary number (with spaces to help keep 

track of the bits) we get 0000 0010 1110 1110. Next we invert the bits to 

get 1111 1101 0001 0001. Finally we add 1 to get -750 = 1111 1101 

0001 0010 = 0xFD12.  
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Next let’s convert the hexadecimal value 0xFA13 from a 16 bit signed 

integer to a decimal value. Start by converting to binary: 1111 1010 0001 

0011. Then invert the bits: 0000 0101 1110 1100. Add 1 to get the 2’s 

complement: 0000 0101 1110 1101. Convert this to decimal: 1024 + 256 

+ 128 + 64 + 32 + 8 + 4 + 1 = 1517, so 0xFA13 = -1517.  

Let’s add -750 and -1517 in binary:  

  1111 1101 0001 0010  
+ 1111 1010 0001 0011 

1 1111 0111 0010 0101 

We can ignore the leading 1 bit (a result of a carry). The 16 bit sum is 1111 

0111 0010 0101, which is negative. Inverting:  0000 1000 1101 1010. 

Next adding 1 to get the two’s complement: 0000 1000 1101 1011. So the 

number is 2048 + 128 + 64 + 16 + 8 + 2 + 1 = 2267. So we have -750 + -

1517 = -2267.  

Binary addition  

Performing binary addition is a lot like decimal addition. Let’s add 2 

binary numbers  

   10001111 
 + 01011010 

          1 

The first pair of bits was easy. Adding the second pair of bits gives a 

value of 2, but 2 = 10b, so we place a 0 on the bottom and carry a 1  

        1   
   10001111 
 + 01011010 

         01 

We continue in the same way:  
      1   
  10001111 
+ 01011010 

       001 

 
     1   
  10001111 
+ 01011010 

      1001 
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    1   
  10001111 
+ 01011010 

     01001 
 

. . . 

 
  10001111 
+ 01011010 

  11101001 

 

Binary multiplication 

Binary multiplication is also much like decimal multiplication. You 

multiply one bit at a time of the second number by the top number and 

write these products down staggered to the left. Of course these “products” 

are trivial. You are multiplying by either 0 or 1. In the case of 0, you just 

skip it. For 1 bits, you simply copy the top number in the correct columns.  

After copying the top number enough times, you add all the partial 

products. Here is an example:  

    1010101 
 x    10101 

    1010101 

  1010101 

1010101 

11011111001 

2.4  Floating point numbers 

The x86-64 architecture supports 3 different varieties of floating point 

numbers: 32 bit, 64 bit and 80 bit numbers. These numbers are stored in 

IEEE 754 format  

Below are the pertinent characteristics of these types:  

Variety Bits Exponent Exponent 

Bias 

Fraction Precision 

float 32 8 127 23 7 digits 

double 64 11 1023 52 16 digits 

long double 80 15 16383 64 19 digits 

The IEEE format treats these different length numbers in the same 

way, but with different lengths for the fields. In each format the highest 
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order bit is the sign bit. A negative number has its sign bit set to 1 and 

the remaining bits are just like the corresponding positive number. Each 

number has a binary exponent and a fraction. We will focus on the float 

type to reduce the number of bits involved. 

    

31 30           23 22                                                                                              0 

The exponent for a float is an 8 bit field. To allow large numbers or 

small numbers to be stored, the exponent is interpreted as positive or 

negative. The actual exponent is the value of the 8 bit field minus 127. 

127 is the “exponent bias” for 32 bit floating point numbers.  

The fraction field of a float holds a small surprise. Since 0.0 is defined 

as all bits set to 0, there is no need to worry about representing 0.0 as an 

exponent field equal to 127 and fraction field set to all 0’s. All other 

numbers have at least one 1 bit, so the IEEE 754 format uses an implicit 

1 bit to save space. So if the fraction field is 00000000000000000000000, it 

is interpreted as 1.00000000000000000000000.  This allows the fraction 

field to be effectively 24 bits. This is a clever trick made possible by 

making exponent fields of 0x00 and 0xFF special.  

A number with exponent field equal to 0x00 is defined to be 0. 

Interestingly, it is possible to store a negative 0. An exponent of 0xFF is 

used to mean either negative or positive infinity. There are more details 

required for a complete description of IEEE 754, but this is sufficient for 

our needs.  

To illustrate floating point data, consider the following assembly file, 

“fp.asm”  

          segment .data 
  zero    dd      0.0 
  one     dd      1.0 
  neg1    dd      -1.0 
  a       dd      1.75 
  b       dd      122.5 
  d       dd      1.1 
  e       dd      10000000000. 

This is not a program, it is simply a definition of 7 float values in the 

data segment. The dd command specifies a double word data item. Other 

options include db (data byte), dw (data word) and dq (data quad-word). A 

word is 2 bytes, a double word is 4 bytes and a quad-word is 8 bytes.  

Now consider the listing file, “fp.lst”, produced by executing the 

following command to assemble the file and produce a listing 

   yasm -f elf64 -g dwarf2 -l fp.lst fp.asm 

Here are the contents of the listing: 

  1                            %line 1+1 fp.asm 
  2                            [section .data] 
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  3 00000000 00000000          zero dd 0.0 
  4 00000004 0000803F          one dd 1.0 
  5 00000008 000080BF          neg1 dd -1.0 
  6 0000000C 0000E03F          a dd 1.75 
  7 00000010 0000F542          b dd 122.5 
  8 00000014 CDCC8C3F          d dd 1.1 
  9 00000018 F9021550          e dd 10000000000.0 

The listing has line numbers in the first column. Characters 3-10 (if 

not blank) are relative addresses in hexadecimal. Characters 12-19 

(again, if not blank) are the assembled bytes of data. So we see that zero 

occupies bytes 0-3, one occupies bytes 4-7, etc. We can also examine the 

data produced from each variable definition.  

The zero variable is stored as expected - all 0 bits. The other numbers 

might be a little surprising. Look at one - the bytes are backwards! 

Reverse them and you get 3F800000. The most significant byte is 3F.  The 

sign bit is 0. The exponent field consists of the other 7 bits of the most 

significant byte and the first bit of the next byte. This means that the 

exponent field is 127 and the actual binary exponent is 0. The remaining 

bits are the binary fraction field all 0’s. Thus the value is 1.0 ∗ 20 = 1.0.  

There is only 1 negative value shown: -1.0. It differs in only the sign 

bit from 1.0.  

You will notice that 1.75 and 122.5 have a significant number of 0’s in 

the fraction field. This is because .75 and .5 are both expressible as sums 

of negative powers of 2. 

0.75 = 0.5 + 0.25 = 2−1 + 2−2 

On the other hand 1.1 is a repeating sequence of bits when expressed 

in binary. This is somewhat similar to expressing 1/11 in decimal: 

1/11 = 0.090909̅̅̅̅  

Looking at 1.1 in the proper order 1.1 = 0x3F8CCCCD. The exponent 

is 0 and the fraction field in binary is 00011001100110011001101. It looks 

like the last bit has been rounded up and that the repeated pattern is 

1100. 

1.110 = 1.0001100110011001100̅̅ ̅̅ ̅̅ ̅
2 

Having seen that floating point numbers are backwards, then you 

might suspect that integers are backwards also. This is indeed true. 

Consider the following code which defines some 32 bit integers: 

          segment data 
  zero    dd      0 
  one     dd      1 
  neg1    dd      -1 
  a       dd      175 
  b       dd      4097 
  d       dd      65536 
  e       dd      100000000 
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The associated listing file shows the bits generated for each number. 

The bytes are backwards.  Notice that 4097 is represented as 0x01100000 

in memory. The first byte is the least significant byte. We would prefer to 

consider this as 0x00001001, but the CPU stores least significant byte 

first.  

  1                            %line 1+1 int.asm 
  2                            [section .data] 
  3 00000000 00000000          zero dd 0 
  4 00000004 01000000          one dd 1 
  5 00000008 FFFFFFFF          neg1 dd -1 
  6 0000000C AF000000          a dd 175 
  7 00000010 01100000          b dd 4097 
  8 00000014 00000100          d dd 65536 
  9 00000018 00E1F505          e dd 100000000 

Converting decimal numbers to floats 

Let’s work on an example to see how to do the conversion. Let’s convert -

121.6875 to its binary representation.  

First let’s note that the sign bit is 1. Now we will work on 121.6875.  

It’s fairly easy to convert the integer portion of the number: 121 = 

1111001b. Now we need to work on the fraction.  

Let’s suppose we have a binary fraction x = 0.abcdefgh, where the 

letters indicate either a 0 or a 1. Then 2*x= a.bcdefgh. This indicates that 

multiplying a fraction by 2 will expose a bit.  

We have 2 ∗ 0.6875 = 1.375 so the first bit to the right of the binary 

point is 1. So far our number is 1111001.1b.  

Next multiply the next fraction: 2 ∗ 0.375 = 0.75, so the next bit is 0. 

We have 1111001.10b. 

Multiplying again: 2 ∗ .75 = 1.5, so the next bit is 1. We now have 
1111001.101b.  

Multiplying again: 2 ∗ 0.5 = 1, so the last bit is 1 leaving the final 

1111001.1011b. 

So our number -121.6875 = -1111001.1011b. We need to get this into 

exponential notation with a power of 2.  

          121.6875 = -1111001.1011 

                   = -1.1110011011 * 26  

We now have all the pieces. The sign bit is 1, the fraction (without the 

implied 1) is 11100110110000000000000 and the exponent field is 127+6 

= 133 = 10000101. So our number is  

          1 10000101 11100110110000000000000 
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Organized into nibbles, this is 1100 0010 1111 0011 0110 0000 0000 

0000 or 0xc2f36000. Of course if you see this in a listing it will be reversed: 

0060f3c2.  

Converting floats to decimal 

An example will illustrate how to convert a float to a decimal number.  

Let’s work on the float value 0x43263000.  

The sign bit is 0, so the number is positive. The exponent field is 

010000110 which is 134, so the binary exponent is 7. The fraction field is 

010 0110 0011 0000 0000 0000 0000, so the fraction with implied 1 is 

1.01001100011. 

1.010011000112 ∗ 27 = 10100110.00112 

 = 166 + 2−3 + 2−4 

 = 166 + 0.125 + 0.0625 

 = 166.1875 

Floating point addition 

In order to add two floating point numbers,  we must first convert the 

numbers to binary real numbers. Then we need to align the binary points 

and add the numbers. Finally we need to convert back to floating point.  

Let’s add the numbers 41.275 and 0.315. In hexadecimal these 

numbers are 0x4225199a and 0x3ea147ae. Now let’s convert 0x4225199a 

to a binary number with a binary exponent. The exponent field is 

composed of the first two nibbles and a 0 bit from the next nibble. This is 

100001002 = 132, so the exponent is 132-127=5. The fractional part with 

the understood 1 bit is 

1.010010100011001100110102 

So we have 

0x4225199a = 1. 010010100011001100110102 ∗ 25 

 = 101001.0100011001100110102 

Similarly 0x3ea147ae has an exponent field of the first 2 nibbles and a 

1 from the third nibble. So the exponent field is 011111012 = 125 yielding 

an exponent of -2. The fractional part with the understood 1 bit is 

1.010000101000111101011102 

So we have 
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0x3ea147ae = 1. 010000101000111101011102 ∗ 2−2 

 =  0.01010000101000111101011102 

Now we can align the numbers and add  

  101001.010001100110011010 
+      0.0101000010100011110101110 

  101001.1001011100001010010101110 

Now we have too many bits to store in a 32 bit float. The rightmost 7 

bits will be rounded (dropped in this case) to get 

101001.1001011100001010012 = 1.010011001011100001010012 ∗ 25 

So the exponent is 5 and the exponent field is again 132. Next we 

combine the sign bit, the exponent field and the fraction field (dropping 

the implied 1) bit and convert to hexadecimal 

0   10000100    01001100101110000101001 sign exponentfraction 
0100 0010 0010 0110 0101 1100 0010 1001 organized as nibbles 
  4    2    2    6    5    c    2    9  hexadecimal 

So we determine that the sum is 0x42265c29 which is 41.59 

(approximately).  

You should be able to see that we lost some bits of precision on the 

smaller number. In an extreme case we could try to add 1.0 to a number 

like 1038 and have no effect.  

Floating point multiplication 

Floating point multiplication can be performed in binary much like 

decimal multiplication. Let’s skip the floating point to/from binary 

conversion and just focus on the multiplication of 7.5 and 4.375. First 

observe that 7.5 = 111.12 and 4.375 = 100.0112. Then we multiply binary 

numbers and place the binary point in the correct place in the product. 

  111.1        1111  

100.011    * 100011 
 

        1111  
        1111 
 
 

   1111 
 
 

  1000001101  
 

100000.1101    placing binary point in product 

So we have the product 32.8125 as expected. 
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2.5  Exploring with the bit bucket 

One of the subwindows of the ebe program is called the “bit bucket”. The 

purpose of the bit bucket is to explore fundamental bit operations. Figure 

2.1 shows the bit bucket at the start of a decimal to binary conversion.  

 
 Figure 2.1  Bit bucket before decimal to binary conversion 

There are 5 tabs which can be selected at the top of the bit bucket 

window, allowing you to explore unary operators, binary operators, 

integer conversions, integer math and float conversions. I have selected 

the integer conversions tab.  Using the pull down list to the right of 

“Operator” I have chosen “Decimal to Binary”. After selecting the 

conversion the table is cleared as you see it. There is a field for entering a 

number. In these fields in the bit bucket you can enter a hexadecimal 

number by using the prefix “0x” and you can also enter a binary number 

using the prefix “0b”. After entering a number, you would step through 

the conversion by clicking on the “to binary” button. This button will move 

down the table through each step of the conversion.  

Figure 2.2 shows the results from entering the number 131 and 

stepping through its conversion into binary.  

 
 Figure 2.2  Bit bucket after converting 131 to binary 

The bit bucket will help you explore the way that the computer 

represents and performs operations with numbers. There are conversions 

from decimal, binary and hexadecimal to the alternative forms. There are 
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conversions for 32 bit floating point numbers in addition to integer 

conversions. All the arithmetic and bit operations on integers are also 

available for exploration.   
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Exercises  

1. Convert the following integers to binary.  

a. 37 b. 65 c. 350 d. 427 

2. Convert the following 16 bit signed integers to decimal.  

a. 0000001010101010b c. 0x0101 

b. 1111111111101101b d. 0xffcc 

3. Convert the following 16 bit unsigned integers to binary.  

a. 0x015a c. 0x0101 

b. 0xfedc d. 0xacdc 

4. Convert the following numbers to 32 bit floating point.  

a. 1.375 c. -571.3125 

b. 0.041015625 d. 4091.125 

5. Convert the following numbers from 32 bit floating point to decimal.  

a. 0x3F82000 c. 0x4F84000 

b. 0xBF82000 d. 0x3C86000 

6. Perform the binary addition of the 2 unsigned integers below.  Show 

each carry as a 1 above the proper position.  

  0001001011001011 

+ 1110110111101011 

7. Perform the binary multiplication of the following unsigned binary 

numbers.  Show each row where a 1 is multiplied times the top 

number. You may omit rows where a 0 is multiplied times the top  

  1011001011 

x    1101101 

8. Write an assembly “program” (data only) defining data values using 

dw and dd for all the numbers in exercises 1-4.  
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Chapter 3 

Computer memory 

In this chapter we will discuss how a modern computer performs memory 

mapping to give each process a protected address space and how Windows 

manages the memory for a process. A practical benefit of this chapter is a 

discussion of how to examine memory using the gdb debugger and ebe.  

3.1  Memory mapping 

The memory of a computer can be considered an array of bytes. Each byte 

of memory has an address. The first byte is at address 0, the second byte 

at address 1, and so on until the last byte of the computer’s memory.  

In modern CPUs there are hardware mapping registers which are 

used to give each process a protected address space. This means that 

multiple people can each run a program which starts at address 0x4004c8 

at the same time. These processes perceive the same “logical” addresses, 

while they are using memory at different “physical” addresses.  

The hardware mapping registers on an x86-64 CPU can map pages of 

2 different sizes - 4096 bytes and 2 megabytes. Windows, Linux and OS X 

all use 2 MB pages for the kernel and 4 KB pages for most other uses. All 

three operating systems allow user processes to use 2 MB pages. In some 

of the more recent CPUs there is also support for 1 GB pages.  

The operation of the memory system is to translate the upper bits of 

the address from a process’s logical address to a physical address. Let’s 

consider only 4 KB pages. Then an address is translated based on the page 

number and the address within the page. Suppose a reference is made to 

logical address 0x4000002220. Since 4096 = 212, the offset within the page 

is the right-most 12 bits (0x220). The page number is the rest of the bits 

(0x4000002). A hardware register (or multiple registers) translates this 

page number to a physical page address, let’s say 0x780000000. Then the 

two addresses are combined to get the physical address 0x780000220.  
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Amazingly the CPU generally performs the translations without 

slowing down and this benefits the users in several ways. The most 

obvious benefit is memory protection.  User processes are limited to 

reading and writing only their own pages. This means that the operating 

system is protected from malicious or poorly coded user programs. Also 

each user process is protected from other user processes. In addition to 

protection from writing, users can’t read other users’ data.  

There are instructions used by the operating system to manage the 

hardware mapping registers. These instructions are not discussed in this 

book. Our focus is on programming user processes.  

So why bother to discuss paging, if we are not discussing the 

instructions to manage paging? Primarily this improves one’s 

understanding of the computer. When you write software which accesses 

data beyond the end of an array, you sometimes get a segmentation fault. 

However you only get a segmentation fault when your logical address 

reaches far enough past the end of the array to cause the CPU to reference 

a page table entry which is not mapped into your process.  

3.2  Process memory model in Windows 

In Windows memory for a process is divided into 4 logical regions: text, 

data, heap and stack. The stack by default is 1 MB and is typically located 

at an address befow 0x400000. Immediately above the stack is the text 

segment (for instructions), followed by the data segment.  The heap 

occupies memory from the end of the data segment to the highest address 

for a user process – 0x7ffffffffff. The total number of bits in the 

highest user process address is 43 which amounts to 8 TB of virtual 

address space. 

To the right we see the arrangement of the 

various memory segments. At the lowest address we 

have the stack segment. This segment is shown 

starting at 0, though the actual location is at a higher 

address. The stack is limited in size and can be as 

large as 1 GB which might possibly alter the layout. 

The next higher segment is the text segment which 

seems to start around 4 MB. The text segment does 

not typically need to grow, so the data segment is 

placed immediately above the text segment. Above 

these two segments is the heap segment. The data 

and text segments are limited to the first 2 GB of 

address space, so the relative sizes are quite distorted in the diagram. 
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The data segment starts with the .data segment which contains 

initialized data. Above that is the .bss segment which stands for “block 

started by symbol”. The .bss segment contains data which is statically 

allocated in a process, but is not stored in the executable file. Instead this 

data is allocated when the process is loaded into memory. The initial 

contents of the .bss segment are all 0 bits.  

The heap is not really a heap in the sense discussed in a data 

structures course. Instead it is a dynamically resizable region of memory 

which is used to allocate memory to a process through functions like 

malloc in C and the new operator in C++. In 64 bit Windows this region 

can grow to very large sizes. The limit is imposed by the sum of physical 

memory and swap space.  

The default stack size of 1 MB sounds pretty small, but the stack is 

used to make function calls. For each call the return address and the 

function parameters (well, almost) are pushed on the stack. Also the called 

function places local variables on the stack. Assuming each call uses about 

6 parameters and has 4 local variables this would end up requiring about 

100 bytes per call. This means that 1 MB of stack space would support a 

call depth of 10000. Problems requiring much depth of recursion or arrays 

as local variables might require stack size modification when the program 

is linked. 

This simple memory layout is greatly simplified. There are dynamic-

link libraries (DLLs) which can be mapped into a process at load time and 

after the program is loaded which will result in regions in the heap range 

being used to store instructions and data. This region is also used for 

mapping shared memory regions into a process. Also to improve security 

Windows uses somewhat random stack, text, data, and heap start 

addresses. This means that the top of the stack would differ each time a 

program is executed. Likewise the address of main might vary each time 

a program is executed.  

If you wish to examine the memory used by one of your programs, you 

can download the VMMap program from Microsoft by searching for 

vmmap at http://technet.microsoft.com.  

3.3  Memory example 

Here is a sample assembly program, “memory.asm” with several memory 

items defined:  

     segment .data 
 a   dd      4 
 b   dd      4.4 
 c   times   10 dd 0 



31 

 d   dw      1, 2 
 e   db      0xfb 
 f   db      “hello world”, 0 
 
     segment .bss 
 g   resd    1 
 h   resd    10 
 i   resb    100 
 
     segment .text 
     global  main   ; tell linker about main 
 main: 
     push  rbp      ; set up a stack frame 
     mov   rbp, rsp ; rbp points to stack frame 
     sub   rsp, 32  ; leave some room for shadow parameters 
                    ; rsp on a 16 byte boundary 
     xor   eax, eax ; rax = 0 for return value 
     leave          ; undo stack frame changes 
     ret 

After assembling the program we get the following listing 
file: 

  1                       %line 1+1 memory.asm 
  2                            [section .data] 
  3 00000000 04000000          a dd 4 
  4 00000004 CDCC8C40          b dd 4.4 
  5 00000008 00000000<rept>    c times 10 dd 0 
  6 00000030 01000200          d dw 1, 2 
  7 00000034 FB                e db 0xfb 
  8 00000035 68656C6C6F20776F72- f db  “hello world”, 0 
  9 00000035 6C6400             
 10                                 
 11                            [section .bss] 
 12 00000000 <gap>             g resd 1 
 13 00000004 <gap>             h resd 10 
 14 0000002C <gap>             i resb 100 
 15                             
 16                            [section .text] 
 17                            [global main] 
 18                            main: 
 19 00000000 55                 push rbp 
 20 00000001 4889E5             mov rbp, rsp 
 21 00000004 4883EC10           sub rsp, 16 
 22 00000008 31C0               xor eax, eax 
 23 0000000A C9                 leave 
 24 0000000B C3                 ret 

You can see from the listing the relative addresses of the defined data 

elements. In the data section we have a double word (4 bytes) named a at 

location 0. Notice that the bytes of a are reversed compared to what you 

might prefer.  

Following a is a double word defined as a floating point value named b 

at relative address 4. The bytes for b are also reversed. Consider it as 

0x408ccccd.  Then the sign bit is 0, the exponent field is the rightmost 7 

bits of the “first” byte, 0x40, with the leftmost bit of the next byte, 0x8c. 

So the exponent field is 0x81 = 129, which is a binary exponent of 2. The 
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fraction field (with the implied initial 1 bit) is 0x8ccccd. So b = 

1.00011001100110011001101 ∗ 22 = 4.4.  

The next data item is the array c defined with the times pseudo-op 

which has 10 double word locations. The relative location for c is 8 and c 

consists of 40 bytes, so the next item after c is at relative address 48 or 

0x30.  

Following c is the length 2 array d with values 1 and 2. Array d is of 

type word so each value is 2 bytes. Again you can see that the bytes are 

reversed for each word of d.  

The next data item is the byte variable e with initial value 0xfb. After 

e is the byte array f which is initialized with a string. Notice that I have 

added a terminal null byte explicitly to f. Strings in yasm do not end in 

null bytes.  

After the data segment I have included a bss segment with 3 variables. 

These are listed with their relative addresses as part of the bss segment. 

After linking the bss data items will be loaded into memory beginning 

with g defined by the resd op-code which means “reserve” double word. 

With resd the number 1 means 1 double word. The next bss item is h 

which has 10 reserved double words. The last bss item is i which has 100 

reserved bytes. All these data items are shown in the listing with 

addresses relative to the start of the bss segment. They will all have value 

0 when the program starts.  

3.4  Examining memory with ebe 

In this section we will give a brief introduction to examining memory with 

ebe. We will show how to start the memory program with a breakpoint so 

that we can examine the variables defined in the program.  

Setting a breakpoint 

A breakpoint is a marker for an instruction which is used by a debugger 

to stop the execution of a program when that instruction is reached. The 

general pattern for debugging is to set a breakpoint and then run the 

program. The program will run until the breakpoint is reached and stop 

without executing that instruction.  

Ebe uses the line number column to the left of the source code to 

indicate breakpoints. Left clicking on one of the line numbers will set (or 

clear if already set) a breakpoint on that line of code. Ebe indicates the 

existence of a breakpoint by coloring that line number with a red 

background.  
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The picture below shows the ebe source window with the memory 

program with a breakpoint set on line 17. The breakpoint is shown with a 

gray background in the printed book. Also this picture has been updated 

with an arrow pointing to the ebe “Run” button.  

 

Running a program and viewing a variable 

Having set the breakpoint on line 17, if we now click on the “Run” button 

(the alien icon pointed to by the arrow) the program will be assembled, 

linked and executed.  It will stop execution with the “push rbp” instruction 

as the next instruction to execute. The source window will indicate the 

next line to execute by giving that line a blue-green background (gray in 

the illustration).  
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Now you can mark the a label on line 2 and right-

click. Then ebe will popup a menu which will allow you 

to do one of a few options. 

Choose the “Define variable” option to popup a form 

allowing you to define how to display the data for the 

variable a:  

There is no need to alter the name and 

address fields of the form.  However the name 

field can be changed to any string you prefer and 

the address field could be altered. It could be 

handy to enter a hexadecimal address, but ebe 

has other ways to define variables based on 

hexadecimal addresses. Ebe doesn’t really have 

access to data types and sizes like it would for a 

C program, but it attempts to guess the type and 

sizes. I have clicked on the triangle to the right 

of the “Format” label and selected “Decimal” for the format. The format 

choices are Decimal, Hexadecimal, Floating point, String and String 

array. I also selected “int” for the “type” field since a was defined using 

“dd”. The type choices include signed and unsigned char, short, int and 

long long along with float and double. Linux and OS X use long as the type 

for a 64 bit integer and Windows uses long long. You can also click the 

“array variable” checkbox and select first and last indexes for the variable 

which operate like C arrays with 0 being the first index. After clicking on 
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“OK” the popup form will go away and ebe will display variable a in the 

data window. It will refresh the value of a after each step of execution so 

you can monitor its value as the program executes.  

 

You will note that the data window also shows the top part of the stack 

in hexadecimal. This is quite useful and normally hexadecimal is a good 

choice for the stack. You can alter the format, type and first and last 

indexes for any non-stack variable by right clicking on the name of a 

variable. This will popup a form which will allow you to edit or delete a 

variable. Editing will then popup the same form used when the variable 

was created.  

I have continued on to display all the variables in “memory.asm”. I 

chose last index 9 for c which is an array of 10 double words. I chose type 

short for d and unsigned char for e. For f I chose the “String” format which 

is a little special. This is a C string which is simply an array of characters 

ending with a 0 byte. You can see in the figure below that the variables in 

the bss segment are all 0’s.  
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Exercises 

1. Write a data-only program like the one in this chapter to define an 

array of 10 8 byte integers in the data section, an array of 5 2 byte 

integers in the bss section, and a string terminated by 0 in the   data 

section.  Use ebe’s data command to print the 8 byte integers in 

hexadecimal, the 2 byte integers as unsigned values, and the string 

as a string. 

2. Assuming that the stack size limit is 1MB, about how large can you 

declare an array of doubles inside a C++ function. Do not use the 

keyword static. 

3. Use the command line and compile a C program with an array of 1 

million doubles. You will probably need to use –Wl,--stack,8000000 

option on the gcc command. Note that this option has a lowercase ‘L’ 

after the ‘W’ not a ‘1’. Test the program by writing a loop and placing 

0.0 throughout the array. Determine the smallest number which 

works to the nearest 1000. 

4. Print the value of rsp in ebe.  How many bits are required to store this 

value? 
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Chapter 4 

Memory mapping in 64 bit mode  

In this chapter we discuss the details of how virtual addresses are 

translated to physical addresses in the x86-64 architecture. Some of the 

data for translation is stored in the CPU and some of it is stored in 

memory.  

4.1  The memory mapping register 

The CPU designers named this register “Control Register 3” or just CR3. 

A simplified view of CR3 is that it is a pointer to the top level of a 

hierarchical collection of tables in memory which define the translation 

from virtual addresses (the addresses your program sees) to physical 

addresses. The CPU retains quite a few page translations internally, but 

let’s consider first how the CPU starts all this translation process.  

Somewhere in the kernel of the operating system, an initial hierarchy 

of the translation tables is prepared and CR3 is filled with the address of 

the top level table in the hierarchy. This table is given the illustrious name 

“Page Map Level 4” or PML4. When the CPU is switched to using memory 

mapping on the next memory reference it uses CR3 to fetch entries from 

PML4.  
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4.2  Page Map Level 4 

A virtual address can be broken into fields like this:  

63               48 47     39 38       30 29       21 20     12 11            0 

unused PML4 page page page page 

 index directory directory table offset 

  pointer index index  

  index    

Here we see that a virtual or logical address is broken into 6 fields. 

The top-most 16 bits are ignored. They are supposed to be a sign extension 

of bit 47, but they are not part of the address translation. Windows uses 

44 bits of address space for memory, with bit 43 set to 1 for the kernel. It 

also uses addresses with bits 48-63 set to 1 for special purposes like device 

addresses. Bit 47 is left as 0 in user processes in Linux and OS X so bits 

47-63 are all 0’s. In both operating systems bits 47-63 are all 1 for kernel 

addresses.  We will focus on user process memory management. Following 

the unused bits are four 9 bit fields which undergo translation and finally 

a 12 bit page offset. The result of the translation process will be a physical 

address like 0x7f88008000 which is combined with the offset (let’s say it 

was 0x1f0) to yield a physical address of 0x7f880081f0.  

Pages of memory are 212 = 4096 bytes, so the 12 bit offset makes 

sense. What about those 9 bit fields? Well, addresses are 8 bytes so you 

can store 512 addresses in a page and 512 = 29, so 9 bit fields allow storing 

each of the 4 types of mapping tables in a page of memory.  

Bits 47-39 of a virtual address are used as an index into the PML4 

table. The PML4 table is essentially an array of 512 pointers (32 would be 

enough for Windows since bits 44-47 are all 0). These pointers point to 

pages of memory, so the rightmost 12 bits of each pointer can be used for 

other purposes like indicating whether an entry is valid or not. Generally 

not all entries in the PML4 will be valid. 

Let’s suppose that CR3 has the physical address 0x4ffff000. Then 

let’s suppose that bits 47-39 of our sample address are 0x001, then we 

would have an array in memory at 0x4ffff000 and we would access the 

second entry (index 1) to get the address of a page directory pointer table: 

0x3467000.  

 PML4 at 0x4ffff000 

0 0x3466000 

1 0x3467000 

2 0x3468000 

… . . . 

511 unused 
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4.3  Page Directory Pointer Table  

The next level in the memory translation hierarchy is the collection of 

page directory pointer tables. Each of these tables is also an array of 512 

pointers. These pointers are to page directory tables. Let’s assume that 

our sample address has the value 0x002 for bits 38-30. Then the computer 

will fetch the third entry of the page directory pointer table to lead next 

to a page directory table at address 0x3588000. 
 

 Page Directory Pointer 

Table at 0x3467000 

0 0x3587000 

1 unused 

2 0x3588000 

… . . . 

511 unused 

4.4  Page Directory Table 

The third level in the memory translation hierarchy is the collection of 

page directory tables. Each of these tables is an array of 512 pointers, 

which point to page tables. Let’s assume that our sample address has the 

value 0x000 for bits 29-21. Then the computer will fetch the first entry of 

the page directory table to lead next to a page table at address 0x3678000 

 Page Directory 

Table at 0x3588000 

0 0x3678000 

1 0x3679000 

2 unused 

… . . . 

511 unused 

4.5  Page Table 

The fourth and last level in the memory translation hierarchy is the 

collection of page tables. Again each of these tables is an array of 512 

pointers to pages. Let’s assume that our sample address has the value 

0x1ff for bits 20-12. Then the computer will fetch the last entry of the page 

table to lead next to a page at address 0x5799000. 
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 Page  Table at 
0x3678000 

0 0x5788000 

1 0x5789000 

2 0x578a000 

… . . . 

511 0x5799000 

After using 4 tables we reach the address of the page of memory which 

was originally referenced. Then we can or in the page offset (bits 11-0) of 

the original - say 0xfa8. This yields a final physical address of 0x5799fa8. 

4.6  Large pages 

The normal size page is 4096 bytes. The CPU designers have added 

support for large pages using three levels of the existing translation 

tables. By using 3 levels of tables, there are 9 + 12 = 21 bits left for the 

within page offset field. This makes large pages 221 = 2097152 bytes.  

Some of the latest CPUs support pages using 2 levels of page tables 

which results in having pages of size 230 which is 1 GB. These huge pages 

will be popular for applications requiring large amounts of RAM like 

database management systems and virtual machine emulators.  

4.7  CPU Support for Fast Lookups 

This process would be entirely too slow if done every time by traversing 

through all these tables. Instead whenever a page translation has been 

performed, the CPU adds this translation into a cache called a 

“Translation Lookaside Buffer” or TLB. Then hopefully this page will be 

used many times without going back through the table lookup process.  

A TLB operates much like a hash table. It is presented with a virtual 

page address and produces a physical page address or failure within 

roughly 1/2 of a clock cycle. In the case of a failure the memory search 

takes from 10 to 100 cycles. Typical miss rates are from 0.01% to 1%.  

Clearly there is a limit to the number of entries in the TLB for a CPU. 

The Intel Core 2 series has a total of 16 entries in a level 1 TLB and 256 

entries in a level 2 TLB. The Core i7 has 64 level 1 TLB entries and 512 

level 2 entries. The AMD Athlon II CPU has 1024 TLB entries.  

Given the relatively small number of TLB entries in a CPU it seems 

like it would be a good idea to migrate to allocating 2 MB pages for 
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programs. Wndows, Linux and OS X all support 2 MB pages for user 

processes though the default in 4 KB. Linux also supports 1 GB pages 

which might be quite useful for a dedicated database server with lots of 

RAM.  
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Exercises 

1. Suppose you were given the opportunity to redesign the memory 

mapping hierarchy for a new CPU. We have seen that 4 KB pages 

seem a little small. Suppose you made the pages 217 = 131072 bytes. 

How many 64 bit pointers would fit in such a page? 

2. How many bits would be required for the addressing of a page table? 

3. How would you break up the bit fields of virtual addresses?  

4. Having much larger pages seems desirable. Let’s design a memory 

mapping system with pages of 220 = 1048576 bytes but use partial 

pages for memory mapping tables. Design a system with 3 levels of 

page mapping tables with at least 48 bits of usable virtual address 

space. 

5. Suppose a virtual memory address is 0x123456789012. Divide this 

address into the 4 different page table parts and the within page 

offset. 

6. Suppose a virtual memory address is 0x123456789012. Suppose this 

happens to be an address within a 2MB page. What is the within page 

offset for this address? 

7. Write an assembly language program to compute the cost of electricity 

for a home. The cost per kilowatt hour will be an integer number of 

pennies stored in a memory location. The kilowatt hours used will also 

be an integer stored in memory. The bill amount will be $5.00 plus the 

cost per kilowatt hour times the number of kilowatt hours over 1000. 

You can use a conditional move to set the number of hours over 1000 

to 0 if the number of hours over 1000 is negative. Move the number of 

dollars into one memory location and the number of pennies into 

another. 
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Chapter 5 

Registers 

Computer memory is essentially an array of bytes which software uses for 

instructions and data. While the memory is relatively fast, there is a need 

for a small amount of faster data to permit the CPU to execute 

instructions faster. A typical computer executes at 3 GHz and many 

instructions can execute in 1 cycle. However for an instruction to execute 

the instruction and any data required must be fetched from memory. One 

fairly common form of memory has a latency of 6 nanoseconds, meaning 

the time lag between requesting the memory and getting the data. This 6 

nanoseconds would equal 18 CPU cycles. If the instructions and data were 

all fetched from and stored in memory there would probably be about 18 

nanoseconds required for common instructions. 18 nanoseconds is time 

enough for 54 instructions at 1 instruction per cycle. There is clearly a 

huge need to avoid using the relatively slow main memory.  

One type of faster memory is cache memory, which is perhaps 10 times 

as fast as main memory. The use of cache memory can help address the 

problem, but it is not enough to reach the target of 1 instruction per CPU 

cycle. A second type of faster memory is the CPU’s register set. Cache 

might be several megabytes, but the CPU has only a few registers. 

However the registers are accessible in roughly one half of a CPU cycle or 

less. The use of registers is essential to achieving high performance. The 

combination of cache and registers provides roughly half a modern CPU’s 

performance. The rest is achieved with pipelining and multiple execution 

units. Pipelining means dividing instructions into multiple steps and 

executing several instructions simultaneously though each at different 

steps. Pipelining and multiple execution units are quite important but 

these features are not part of general assembly language programming, 

while registers are a central feature.  

The x86-64 CPUs have 16 general purpose 64 bit registers and 16 

modern floating point registers. These floating point registers are either 

128 or 256 bits depending on the CPU model and can operate on multiple 

integer or floating point values. There is also a floating point register 

stack which we will not use in this book. The CPU has a 64 bit instruction 
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pointer register (rip) which contains the address of the next instruction 

to execute. There is also a 64 bit flags register (rflags). There are 

additional registers which we probably won’t use. Having 16 registers 

means that a register’s “address” is only 4 bits. This makes instructions 

using registers much smaller than instructions using only memory 

addresses.  

The 16 general purpose registers are 64 bit values stored within the 

CPU. Software can access the registers as 64 bit values, 32 bit values, 16 

bit values and 8 bit values. Since the CPU evolved from the 8086 CPU, 

the registers have evolved from 16 bit registers to 32 bit registers and 

finally to 64 bit registers.  

On the 8086 registers were more special purpose than general 

purpose: 

ax - accumulator for numeric operations 

bx - base register (array access) 

cx - count register (string operations) 

dx - data register item 

si - source index 

di - destination index 

bp - base pointer (for function frames) 

sp - stack pointer 

In addition the 2 halves of the first 4 registers can be accessed using 

al for the low byte of ax, ah for the high byte of ax, and bl, bh, cl, ch, dl 

and dh for the halves of bx, cx and dx.  

When the 80386 CPU was designed the registers were expanded to 32 

bits and renamed as eax, ebx, ecx, edx, esi, edi, ebp, and esp. Software 

could also use the original names to access the lower 16 bits of each of the 

registers. The 8 bit registers were also retained without allowing direct 

access to the upper halves of the registers. 

For the x86-64 architecture the registers were expanded to 64 bits and 

8 additional general purpose registers were added. The names used to 

access the 64 bit registers are rax, rbx, rcx, rdx, rsi, rdi, rbp, and rsp for 

the compatible collection and r8-r15 for the 8 new registers. As you might 

expect you can still use ax to access the lowest word of the rax register 

along with eax to access the lower half of the register. Likewise the other 

32 bit and 16 bit register names still work in 64 bit more. You can also 

access registers r8-r15 as byte, word, or double word registers by 

appending b, w or d to the register name.  

The rflags register is a 64 bit register, but currently only the lower 

32 bits are used, so it is generally sufficient to refer to eflags. In addition 
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the flags register is usually not referred to directly. Instead conditional 

instructions are used which internally access 1 or more bits of the flags 

register to determine what action to take.  

Moving data seems to be a fundamental task in assembly language. 

In the case of moving values to/from the integer registers, the basic 

command is mov. It can move constants, addresses and memory contents 

into registers, move data from 1 register to another and move the contents 

of a register into memory.  

5.1  Observing registers in ebe 

One of the windows managed by ebe is the register window. After each 

step of program execution ebe obtains the current values of the general 

purpose registers and displays them in the register window. Similarly ebe 

displays the floating point registers in the floating point register window. 

Below is a sample of the register window.  

 

You can select a different format for the registers by right clicking on 

the name of a register. This will popup a list of choices. You can choose 

either decimal or hexadecimal format for that register or for all the 

general purpose registers. You can see below the general purpose 

registers, the instruction pointer register (rip) and the flags register 

(eflags). For simplicity the set bits of eflags are displayed by their 

acronyms. Here the parity flag (PF), the zero flag (ZF) and the interrupt 

enable flag (IF) are all set. 

5.2  Moving a constant into a register 

The first type of move is to move a constant into a register. A constant is 

usually referred to as an immediate value. It consists of some bytes stored 

as part of the instruction. Immediate operands can be 1, 2 or 4 bytes for 

most instructions. The mov instruction also allows 8 byte immediate 

values. 
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         mov     rax, 100 
         mov     eax, 100  

Surprisingly, these two instructions have the same effect - moving the 

value 100 into rax. Arithmetic operations and moves with 4 byte register 

references are zero-extended to 8 bytes. The program shown below in ebe 

illustrates the mov instruction moving constants into register rax.  

 

There has been a breakpoint set on line 5 and the program has been 

run by clicking the “Run” button.  At this point the first mov has not been 

executed. You can advance the program by clicking on either “Next” or 

“Step” (highlighted with arrows in the picture). The difference is that 

“Step” will step into a function if a function call is made, while “Next” will 

execute the highlighted statement and advance to the next statement in 

the same function. The effect is the same in this code and here is the 

source window and the register window after executing the first mov:  
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You can observe that the value 0x123456789abcdef0 has been placed 

into rax and that clearly the next mov has not been executed. There is little 

value in repeatedly displaying the source window but here is the register 

window after executing the mov at line 6:  

 

For convenience the display format for rax has been switched to 

decimal and you can observe that “mov eax, 100” results in moving 100 

into the lower half of rax and 0 into the upper half.   

You can follow the sequence of statements and observe that moving 

100 into eax will clear out the top half of rax. It turns out that a 32 bit 

constant is stored in the instruction stream for the mov which moves 100. 

Also the instruction to move into eax is 1 byte long and the move into rax 

is 3 bytes long. The shorter instruction is preferable. You might be 

tempted to move 100 into al, but this instruction does not clear out the 

rest of the register. 

5.3  Moving values from memory to registers 

In order to move a value from memory into a register, you must use the 

address of the value. Consider the program shown below  
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The label a is will be replaced by the address of a if included in an 

instruction under Windows or Linux. OS X uses relative addressing and 

a will be replaced by its address relative to register rip. The reason is that 

OS X addresses are too big to fit in 32 bits. In fact yasm will not allow 

moving an address under OS X. The alternative is to use the lea (load 

effective address) instruction which will be discussed later. Consider the 

following statement in the .text section.  

         mov     rax, a 

The instruction has a 32 bit constant field which is replaced with the 

address of a when the program is executed on Windows. When tested, the 

rax register receives the value 0x408010 as shown below:  

 

The proper syntax to get the value of a, 175, is from line 8 of the 

program and also below: 

         mov     rax, [a] 

The meaning of an expression in square brackets is to use that 

expression as a memory address and to load or store from that address. In 

this case it loads the value from the address represented by a. This is 

basically a different instruction from the other mov. The other is “load 

constant” and the latest one is “load from memory”. 

After executing line 8 we see that rax has the value 175. In the 

register display below I have used a decimal format to make the effect 

more obvious.  

 

In line 9 of the program I have introduced the add instruction to make 

things a bit more interesting. The effect of line 9 is to add the contents of 

b, 4097, to rax. The result of the add instruction is shown below: 
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You will notice that my main routine calls no other function. Therefore 

there is no need to establish a stack frame and no need to force the stack 

pointer to be a multiple of 16.  

There are other ways to move data from memory into a register, but 

this is sufficient for simpler programs. The other methods involve storing 

addresses in registers and using registers to hold indexes or offsets in 

arrays. 

You can also move integer values less than 8 bytes in size into a 

register. If you specify an 8 bit register such as al or a 16 bit register such 

as ax, the remaining bits of the register are unaffected. However it you 

specify a 32 bit register such as eax, the remaining bits are set to 0. This 

may or may not be what you wish.  

Alternatively you can use move and sign extend (movsx) or move and 

zero extend (movzx) to control the process. In these cases you would use 

the 64 bit register as a destination and add a length qualifier to the 

instruction.  There is one surprise - a separate instruction to move and 

sign extend a double word: movsxd. Here are some examples:  

        movsx  rax, byte [data]  ; move byte, sign extend 
        movzx  rbx, word [sum]   ; move word, zero extend 
        movsxd rcx, dword [count]; move dword, sign extend 

5.4  Moving values from a register to memory 

Moving data from a register to memory is very similar to moving from 

memory to a register - you simply swap the operands so that the memory 

address is on the left (destination).  

        mov     [sum], rax 

Below is a program which adds 2 numbers from memory and stores the 

sum into a memory location named sum:  
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The source window shows line 11 highlighted which means that the 

mov instruction saving the sum has been executed. You can see that there 

is a breakpoint on line 8 and clearly the “Run” button was used to start 

the program and “Next” was clicked 3 times. Below is the data for the 

program:  

 

5.5  Moving data from one register to another 

Moving data from one register to another is done as you might expect - 

simply place 2 register names as operands to the mov instruction. 

       mov     rbx, rax    ; move value in rax to rbx 

Below is a program which moves the value of a into rax and then 

moves the value into rbx so that the value can be used to compute a+b and 

also a-b. 
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You can see that there is a breakpoint on line 8 and that line 15 is the 

next to be executed. This program introduces the sub instruction which 

subtracts one value from another. In this case it subtracts the value from 

memory location b from rbx with the difference being placed in rbx.  

 

It might be a little interesting to note the value of eflags shown in 

the registers for the addition and subtraction program. You will see SF in 

the flag values which stands for “sign flag” and indicates that the last 

instruction which modified the flags, sub, resulted in a negative value. 
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Exercises 

1. Write an assembly program to define 4 integers in the .data section.  

Give two of these integers positive values and 2 negative values. 

Define one of your positive numbers using hexadecimal notation. 

Write instructions to load the 4 integers into 4 different registers and 

add them with the sum being left in a register. Use ebe to single-step 

through your program and inspect each register as it is modified. 

2. Write an assembly program to define 4 integers - one each of length 1, 

2, 4 and 8 bytes. Load the 4 integers into 4 registers using sign 

extension for the shorter values. Add the values and store the sum in 

a memory location. 

3. Write an assembly program to define 3 integers of 2 bytes each. Name 

these a, b and c. Compute and save into 4 memory locations a+b, a-b, 

a+c and a-c. 
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Chapter 6 

A little bit of math 

So far the only mathematical operations we have discussed are integer 

addition and subtraction. With negation, addition, subtraction, 

multiplication and division it is possible to write some interesting 

programs. For now we will stick with integer arithmetic.  

6.1  Negation  

The neg instruction performs the two’s complement of its operand, which 

can be either a general purpose register or a memory reference. You can 

precede a memory reference with a size specifier from the following table: 

Specifier Size in bytes 

byte 1 

word 2 

dword 4 

qword 8 

The neg instruction sets the sign flag (SF) if the result is negative and 

the zero flag (ZF) if the result is 0, so it is possible to do conditional 

operations afterwards. 

The following code snippet illustrates a few variations of neg:  

       neg   rax       ; negate the value in rax 
       neg   dword [x] ; negate 4 byte int at x 
       neg   byte [x]  ; negate byte at x 
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6.2  Addition 

Integer addition is performed using the add instruction. This instruction 

has 2 operands: a destination and a source. As is typical for the x86-64 

instructions, the destination operand is first and the source operand is 

second. It adds the contents of the source and the destination and stores 

the result in the destination. 

The source operand can be an immediate value (constant) of 32 bits, a 

memory reference or a register. The destination can be either a memory 

reference or a register. Only one of the operands may be a memory 

reference. This restriction to at most one memory operand is another 

typical pattern for the x86-64 instruction set.  

The add instruction sets or clears several flags in the rflags register 

based on the results of the operation. These flags can be used in 

conditional statements following the add. The overflow flag (OF) is set if 

the addition overflows.  The sign flag (SF) is set to the sign bit of the result. 

The zero flag (ZF) is set if the result is 0. Some other flags are set related 

to performing binary-coded-decimal arithmetic.  

There is no special add for signed numbers versus unsigned numbers 

since the operations are the same. The same is true for subtraction, 

though there are special signed and unsigned instructions for division and 

multiplication.  

There is a special increment instruction (inc), which can be used to 

add 1 to either a register or a memory location.  

Below is a sample program with some add instructions. You can see 

that there is a breakpoint on line 7. After clicking the run button the 

program is stopped before it executes line 8. The two instructions on lines 

8 and 9 are commonly used to create a “stack frame”. Under Linux gdb 

does not stop until after the push and mov instructions in a function. Line 

10 subtracks 32 from rsp to leave space on the stack for 4 possible register 

parameters to be stored on the stack if a function needs to save its register 

parameters in memory. These 3 instructions are so common that there is 

a leave instruction which can undo the effect of them to prepare for 

returning from a function. 



56 

 

Next we see the registers and data for the program after executing 

lines 10 through 12.  

 

 

You can see that the sum computed on line 12 has been stored in memory 

in location a.  

Below we see the registers and data after executing lines 13 through 

16. This starts by moving b (310) into rax. Then it adds 10 to rax to get 

320. After adding a (160) we get 480 which is stored in sum.  
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6.3  Subtraction 

Integer subtraction is performed using the sub instruction. This 

instruction has 2 operands: a destination and a source. It subtracts the 

contents of the source from the destination and stores the result in the 

destination.  

The operand choices follow the same pattern as add. The source 

operand can be an immediate value (constant) of 32 bits, a memory 

reference or a register. The destination can be either a memory reference 

or a register. Only one of the operands can be a memory reference.  

The sub instruction sets or clears the overflow flag (OF), the sign flag 

(SF), and the zero flag (ZF) like add. Some other flags are set related to 

performing binary-coded-decimal arithmetic.  

As with addition there is no special subtract for signed numbers versus 

unsigned numbers.  

There is a decrement instruction (dec) which can be used to decrement 

either a register or a value in memory.  

Below is a program with some sub instructions. You can see that the 

program has a breakpoint on line 8 and that gdb has stopped execution 

just after establishing the stack frame. Near the end this program uses 

“xor rax, rax” as an alternative method for setting rax (the return value 

for the function) to 0. This instruction is a 3 byte instruction. The same 

result can be obtained using “xor eax, eax” using 2 bytes which can 
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reduce memory using. Both alternatives will execute in 1 cycle, but using 

fewer bytes may be faster due to using fewer bytes of instruction cache. 

 

The next two figures show the registers and data for the program after 

executing lines 11 through 13 which subtract 10 from memory locations a 

and b. 
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Next we see the results of executing lines 14 through 16, which stores 

b-a in diff. 

 

 

6.4  Multiplication 

Multiplication of unsigned integers is performed using the mul 

instruction, while multiplication of signed integers is done using imul. 

The mul instruction is fairly simple, but we will skip it in favor of imul.  

The imul instruction, unlike add and sub, has 3 different forms. One 

form has 1 operand (the source operand), a second has 2 operands (source 

and destination) and the third form has 3 operands (destination and 2 

source operands).  

One operand imul 

The 1 operand version multiples the value in rax by the source operand 

and stores the result in rdx:rax. The source could be a register or a 

memory reference. The reason for using 2 registers is that multiplying two 

64 bit integers yields a 128 bit result. Perhaps you are using large 64 bit 

integers and need all 128 bits of the product. Then you need this 

instruction. The low order bits of the answer are in rax and the high order 

bits are in rdx. 
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     imul  qword [data]; multiply rax by data 
     mov   [high], rdx ; store top of product 
     mov   [low], rax  ; store bottom of product 

Note that yasm requires the quad-word attribute for the source for the 

single operand version which uses memory. It issued a warning during 

testing, but did the correct operation. 

Here is a sample program which uses the single operand version of 

imul to illustrate a product which requires both rax and rdx. 

 

The mov in line 6 fills rax with a number composed of 63 bits equal to 

1 and a 0 for the sign bit. This is the largest 64 bit signed integer, 263 − 1. 

The imul instruction in line 8 will multiply this large number by 256. Note 

that multiplying by a power of 2 is the same as shifting the bits to the left, 

in this case by 8 bits. This will cause the top 8 bits of rax to be placed in 

rdx and 8 zero bits will be introduced in the right of rax.  

Here are the registers before imul: 

 

and then after imul: 
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Two and three operand imul 

Quite commonly 64 bit products are sufficient and either of the other 

forms will allow selecting any of the general purpose registers as the 

destination register.  

The two-operand form allows specifying the source operand as a 

register, a memory reference or an immediate value.  The source is 

multiplied times the destination register and the result is placed in the 

destination.  

     imul    rax, 100   ; multiply rax by 100 
     imul    r8, [x]    ; multiply r8 by x 
     imul    r9, r10    ; multiply r9 by r10 

The three-operand form is the only form where the destination register 

is not one of the factors in the product. Instead the second operand, which 

is either a register or a memory reference, is multiplied by the third 

operand which must be an immediate value.  

     imul    rbx, [x], 100 ; store 100*x in rbx 
     imul    rdx, rbx, 50  ; store 50*rbx in rdx 

The carry flag (CF) and the overflow flag (OF) are set when the 

product exceeds 64 bits (unless you explicitly request a smaller multiply). 

The zero flag and sign flags are undefined, so testing for a zero, positive 

or negative result requires an additional operation.  

Testing for a Pythagorean triple 

Below is shown a program which uses imul, add and sub to test whether 

3 integers, a, b, and c, form a Pythagorean triple. If so, then 𝑎2 + 𝑏2 = 𝑐2. 
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You can see that there is a breakpoint on line 12 and the next line to 

execute is 12. After clicking on “Next” line 12 will be executed and you can 

see that the value of a is placed in rax. 

 

Next rax is multiplied by itself to get 𝑎2 in rax.  

 

Line 14 moves the value of b into rbx. 
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Then rbx is multiplied by itself to get 𝑏2 in rbx.  

 

Line 16 moves the value of c into rcx. 

 

Then rcx is multiplied by itself to get 𝑐2 in rcx.  

 

Line 18 adds rbx to rax so rax holds 𝑎2 + 𝑏2. 
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Finally line 19 subtracts rcx from rax.  After this rax holds 𝑎2 + 𝑏2 −

𝑐2. If the 3 numbers form a Pythagorean triple then rax must be 0. You 

can see that rax is 0 and also that the zero flag (ZF) is set in eflags. 

 

If we used a few more instructions we could test to see if ZF were set 

and print a success message. 

6.5  Division 

Division is different from the other mathematics operations in that it 

returns 2 results: a quotient and a remainder. The idiv instruction 

behaves a little like the inverse of the single operand imul instruction in 

that it uses rdx:rax for the 128 bit dividend. 

The idiv instruction uses a single source operand which can be either 

a register or a memory reference. The unsigned division instruction div 

operates similarly on unsigned numbers. The dividend is the two registers 

rdx and rax with rdx holding the most significant bits. The quotient is 

stored in rax and the remainder is stored in rdx. 

The idiv instruction does not set any status flags, so testing the 

results must be done separately. 

Below is a program which illustrates the idiv instruction. You can 

see that a breakpoint was placed on line 8 and the program was started 

using the “Run” button.  
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Next we see the registers after loading x into rax and zeroing out rdx. 

 

The next display shows the changes to rax and rdx from executing the 

idiv instruction. The quotient is 20 and the remainder is 5 since 325 =

20 ∗ 16 + 5. 

 

The final display shows the variables after executing lines 12 and 13. 
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6.6  Conditional move instructions 

There are a collection of conditional move instructions which can be used 

profitably rather than using branching. Branching causes the CPU to 

perform branch prediction which will be correct sometimes and incorrect 

other times. Incorrect predictions slow down the CPU dramatically by 

interrupting the instruction pipeline, so it is worthwhile to learn to use 

conditional move instructions to avoid branching in simple cases.  

The conditional move instructions have operands much like the mov 

instruction.  There are a variety of them which all have the same 2 

operands as mov, except that there is no provision for immediate operands. 

instruction effect 

 cmovz move if result was zero 

 cmovnz move if result was not zero 

 cmovl move if result was negative 

 cmovle move if result was negative or zero 

 cmovg move if result was positive 

 cmovge move if result was positive or zero 

There are lot more symbolic patterns which have essentially the same 

meaning, but these are an adequate collection. These all operate by 

testing for combinations of the sign flag (SF) and the zero flag (ZF). 

The following code snippet converts the value in rax to its absolute 

value: 

     mov     rbx, rax  ; save original value 
     neg     rax       ; negate rax 
     cmovl   rax, rbx  ; replace rax if negative 

The code below loads a number from memory, subtracts 100 and 

replaces the difference with 0 if the difference is negative:  
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     mov     rbx, 0    ; set rbx to 0 
     mov     rax, [x]  ; get x from memory 
     sub     rax, 100  ; subtract 100 from x 
     cmovl   rax, rbx  ; set rax to 0 if x-100 was negative 

6.7  Why move to a register? 

Both the add and sub instructions can operate on values stored in 

memory. Alternatively you could explicitly move the value into a register, 

perform the operation and then move the result back to the memory 

location. In this case it is 1 instruction versus 3. It seems obvious that 1 

instruction is better.  

Now if the value from memory is used in more than 1 operation, it 

might be faster to move it into a register first. This is a simple 

optimization which is fairly natural. It has the disadvantage of requiring 

the programmer to keep track of which variables are in which registers. 

If this code is not going to be executed billions of times, then the time 

required will probably not matter. In that case don’t overwhelm yourself 

with optimization tricks. Also if the 2 uses are more than a few 

instructions apart, then keep it simple. 
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Exercises 

1. Write an assembly language program to compute the distance 

squared between 2 points in the plane identified as 2 integer 

coordinates each, stored in memory. 

Remembe the Pythagoran Theorem! 

2. If we could do floating point division, this exercise would have you 

compute the slope of the line segment connecting 2 points. Instead you 

are to store the difference in x coordinates in 1 memory location and 

the difference in y coordinates in another. The input points are 

integers stored in memory. Leave register rax with the value 1 if the 

line segment is vertical (infinite or undefined slope) and 0 if it is not. 

You should use a conditional move to set the value of rax.  

3. Write an assembly language program to compute the average of 4 

grades. Use memory locations for the 4 grades. Make the grades all 

different numbers from 0 to 100. Store the average of the 4 grades in 

memory and also store the remainder from the division in memory. 
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Chapter 7 

Bit operations 

A computer is a machine to process bits. So far we have discussed using 

bits to represent numbers. In this chapter we will learn about a handful 

of computer instructions which operate on bits without any implied 

meaning for the bits like signed or unsigned integers. 

Individual bits have the values 0 and 1 and are frequently interpreted 

as false for 0 and true for 1. Individual bits could have other 

interpretations. A bit might mean male or female or any assignment of an 

entity to one of 2 mutually exclusive sets. A bit could represent an 

individual cell in Conway’s game of Life. 

Sometimes data occurs as numbers with limited range. Suppose you 

need to process billions of numbers in the range of 0 to 15. Then each 

number could be stored in 4 bits. Is it worth the trouble to store your 

numbers in 4 bits when 8 bit bytes are readily available in a language like 

C++? Perhaps not if you have access to a machine with sufficient memory. 

Still it might be nice to store the numbers on disk in half the space. So you 

might need to operate on bit fields.  

7.1  Not operation 

The not operation is a unary operation, meaning that it has only 1 

operand. The everyday interpretation of not is the opposite of a logical 

statement. In assembly language we apply not to all the bits of a word. C 

has two versions of not, “!” and “~”.  “!” is used for the opposite of a true 

or false value, while “~” applies to all the bits of a word. It is common to 

distinguish the two nots by referring to “!” as the “logical” not and “~” as 

the “bit-wise” not. We will use “~” since the assembly language not 

instruction inverts each bit of a word.  Here are some examples, 

illustrating the meaning of not (pretending the length of each value is as 

shown).  
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     ~0 == 1 
     ~1 == 0 
     ~10101010b == 01010101b 
     ~0xff00 == 0x00ff 

The not instruction has a single operand which serves as both the 

source and the destination. It can be applied to bytes, words, double words 

and quad-words in registers or in memory. Here is a code snippet 

illustrating its use. 

     mov   rax, 0 
     not   rax       ; rax == 0xffffffffffffffff 
     mov   rdx, 0    ; preparing for divide 
     mov   rbx, 15   ; will divide by 15 (0xf) 
     div   rbx       ; unsigned divide 
                     ; rax == 0x1111111111111111 
     not   rax       ; rax == 0xeeeeeeeeeeeeeeee 

Let’s assume that you need to manage a set of 64 items. You can 

associate each possible member of the set with 1 bit of a quad-word. Using 

not will give you the complement of the set. 

7.2  And operation 

The and operation is also applied in programming in 2 contexts. First it is 

common to test for both of 2 conditions being true - && in C. Secondly you 

can do an and operation of each pair of bits in 2 variables - & in C. We will 

stick with the single & notation, since the assembly language and 

instruction matches the C bit-wise and operation.  

Here is a truth table for the and operation:  

& 0 1 

0 0 0 

1 0 1 

Applied to some bit fields we get:  

     11001100b & 00001111b == 00001100b 
     11001100b & 11110000b == 11000000b 
     0xabcdefab & 0xff == 0xab 
     0x0123456789 & 0xff00ff00ff == 0x0100450089 

You might notice that the examples illustrate using & as a bit field 

selector. Wherever the right operand has a 1 bit, the operation selected 

that bit from the left operand. You could say the same thing about the left 

operand, but in these examples the right operand has more obvious 

“masks” used to select bits.  

Below is a code snippet illustrating the use of the and instruction:  
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     mov   rax, 0x12345678 
     mov   rbx, rax 
     and   rbx, 0xf       ; rbx has nibble 0x8 
     mov   rdx, 0         ; prepare to divide 
     mov   rcx, 16        ; by 16 
     idiv  rcx            ; rax has 0x1234567 
     and   rax, 0xf       ; rax has nibble 0x7 

It is a little sad to use a divide just to shift the number 4 bits to the 

right, but shift operations have not been discussed yet.  

Using sets of 64 items you can use and to form the intersection of 2 

sets. Also you can use and and not to form the difference of 2 sets, since 

𝐴 − 𝐵 = 𝐴 ∩ 𝐵̅. 

7.3  Or operation 

The or operation is the final bit operation with logical and bit-wise 

meanings. First it is common to test for either (or both) of 2 conditions 

being true - || in C.  Secondly you can do an or operation of each pair of 

bits in 2 variables - | in C. We will stick with the single | notation, since 

the assembly language or instruction matches the bit-wise or operation.  

You need to be aware that the “or” of everyday speech is commonly 

used to mean 1 or the other but not both. When someone asks you if you 

want of cup of “decaf” or “regular”, you probably should not answer “Yes”. 

The “or” of programming means one or the other or both.  

Here is a truth table for the or operation:  

| 0 1 

0 0 1 

1 1 1 

Applied to some bit fields we get:  

     11001100b | 00001111b == 11001111b 
     11001100b | 11110000b == 11111100b 
     0xabcdefab | 0xff == 0xabcdefff 
     0x0123456789 | 0xff00ff00ff == 0xff23ff67ff 

You might notice that the examples illustrate using | as a bit setter. 

Wherever the right operand has a 1 bit, the operation sets the 

corresponding bit of the left operand. Again, since or is commutative, we 

could say the same thing about the left operand, but the right operands 

have more obvious masks.  

Here is a code snippet using the or instruction to set some bits: 

     mov     rax, 0x1000 
     or      rax, 1        ; make the number odd 
     or      rax, 0xff00   ; set bits 15-8 to 1 
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Using sets of 64 items you can use or to form the union of 2 sets.  

7.4  Exclusive or operation 

The final bit-wise operation is exclusive-or. This operation matches the 

everyday concept of 1 or the other but not both. The C exclusive-or 

operator is “^”.  

Here is a truth table for the exclusive-or operation: 

^ 0 1 

0 0 1 

1 1 0 

From examining the truth table you can see that exclusive-or could 

also be called “not equals”. In my terminology exclusive-or is a “bit-

flipper”. Consider the right operand as a mask which selects which bits to 

flip in the left operand. Consider these examples: 

     00010001b ^ 00000001b == 00010000b 
     01010101b ^ 11111111b == 10101010b 
     01110111b ^ 00001111b == 01111000b 
     0xaaaaaaaa ^ 0xffffffff == 0x55555555 
     0x12345678 ^ 0x12345678 == 0x00000000 

The x86-64 exclusive-or instruction is named xor. The most common 

use of xor is as an idiom for setting a register to 0. This is done because 

moving 0 into a register requires 7 bytes for a 64 bit register, while xor 

requires 3 bytes. You can get the same result using the 32 bit version of 

the intended register which requires only 2 bytes for the instruction.  

Observe some uses of xor: 

     mov   rax, 0x1234567812345678 
     xor   eax, eax           ; set to 0 
     mov   rax, 0x1234 
     xor   rax, 0xf           ; change to 0x123b 

You can use xor to form the symmetric difference of 2 sets. The 

symmetric difference of 2 sets is the the elements which are in one of the 

2 sets but not both. If you don’t like exclusive-or, another way to compute 

this would be using 𝐴∆𝐵 = (𝐴 ∪ 𝐵) ∩ 𝐴 ∩ 𝐵̅̅ ̅̅ ̅̅ ̅. Surely you like exclusive-or.  

7.5  Shift operations 

In the code example for the and instruction I divided by 16 to achieve the 

effect of converting 0x12345678 into 0x1234567. This effect could have 

been obtained more simply by shifting the register’s contents to the right 
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4 bits. Shifting is an excellent tool for extracting bit fields and for building 

values with bit fields.  

In the x86-64 architecture there are 4 varieties of shift instructions: 

shift left (shl), shift arithmetic left (sal), shift right (shr), and shift 

arithmetic right (sar). The shl and sal shift left instructions are actually 

the same instruction. The sar instruction propagates the sign bit into the 

newly vacated positions on the left which preserves the sign of the 

number, while shr introduces 0 bits from the left. 

  

 There are 2 operands for a shift instruction. The first operand is the 

register or memory location to shift and the second is the number of bits 

to shift. The number to shift can be 8, 16, 32 or 64 bits in length. The 

number of bits can be an immediate value or the cl register. There are no 

other choices for the number of bits to shift.  

C contains a shift left operator (<<) and a shift right operator (>>). The 

decision of logical or arithmetic shift right in C depends on the data type 

being shifted. Shifting a signed integer right uses an arithmetic shift.  

Here are some examples of shifting: 

     10101010b >> 2 == 00101010b 
     10011001b << 4 == 100110010000b 
     0x12345678 >> 4 == 0x01234567 
     0x1234567 << 4 == 0x12345670 
     0xabcd >> 8 == 0x00ab 

To extract a bit field from a word, you first shift the word right until 

the right most bit of the field is in the least significant bit position (bit 0) 

and then “and” the word with a value having a string of 1 bits in bit 0 

through n-1 where n is the number of bits in the field to extract. For 

example to extract bits 4-7, shift right four bits, and then and with 0xf. 

To place some bits into position, you first need to clear the bits and 

then “or” the new field into the value. The first step is to build the mask 

with the proper number of 1’s for the field width starting at bit 0. Then 

shift the mask left to align the mask with the value to hold the new field. 

Negate the mask to form an inverted mask. And the value with the 

inverted mask to clear out the bits. Then shift the new value left the 

proper number of bits and or this with the value.  

Now consider the following program which extracts a bit field and 

then replaces a bit field.  
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The program was started with a breakpoint on line 4 and I used “Next” 

until line 7 was executed which placed 0x12345678 into rax. 

 

The first goal is to extract bits 8-15. We start by shifting right 8 bits. 

This leave the target bits in bits 0-7 of rax.  

 

Next we must get rid of bits 8-63. The easiest way to do this is to and 

with 0xff.  
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The next goal is to replace bits 8-15 of 0x12345678 with 0xaa yielding 

0x1234aa78. We start by moving 0x12345678 into rax.  

 

The second step is to get the value 0xaa into rdx.  

 

We need a mask to clear out bits 8-15. We start building the mask by 

placing 0xff into rbx.  

 

Then we shift rbx left 8 positions to align the mask with bits 8-15. We 

could have started with 0xff00.  
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The final preparation of the mask is to complement all the bits with 

not. We could have started with 0xffffffffffff00ff, but that would 

require some counting and is not as generally useful.  

 

Using and as a bit selector we select each bit of rax which has a 

corresponding 1 bit in rbx.  

 

Now we can shift 0xaa left 8 positions to align with bits 8-15.  

 

Having cleared out bits 8-15 of rax, we now complete the task by or’ing 

rax and rdx.  
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The x86-64 instruction set also includes rotate left (rol) and rotate 

right (ror) instructions. These could be used to shift particular parts of a 

bit string into proper position for testing while preserving the bits. After 

rotating the proper number of bits in the opposite direction, the original 

bit string will be left in the register or memory location.  

The rotate instructions offer a nice way to clear out some bits.  The 

code below clears out bits 11-8 of rax and replaces these bits with 1010b.  

 

Observe that a breakpoint has been placed on line 4 and the program 

run and stepped to line 8. In the register display below we see that 

0x12345678 has been placed in rax. 
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Executing the rotate instruction on line 7 moves the 0x78 byte in rax 

to the upper part of the register. 

 

Next the shift instruction on line 8 wipes out bits 3-0 (original 11-8).  

 

The shift instruction on line 9 introduces four 0 bits into rax.  

 

Now the or instruction at line 10 places 1010b into bits 3-0.  

 

Finally the rotate left instruction at line 11 realigns all the bits as they 

were originally.  
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Interestingly C provides shift left (<<) and shift right (>>) operations, 

but does not provide a rotate operation. So a program which does a large 

amount of bit field manipulations might be better done in assembly. On 

the other hand a C struct can have bit fields in it and thus the compiler 

can possibly use rotate instructions with explicit bit fields.  

7.6  Bit testing and setting 

It takes several instructions to extract or insert a bit field. Sometimes you 

need to extract or insert a single bit. This can be done using masking and 

shifting as just illustrated. However it can be simpler and quicker to use 

the bit test instruction (bt) and either the bit test and set instruction (bts) 

or the bit test and reset instruction (btr).  

The bt instruction has 2 operands. The first operand is a 16, 32 or 64 

bit word in memory or a register which contains the bit to test. The second 

operand is the bit number from 0 to the number of bits minus 1 for the 

word size which is either an immediate value or a value in a register. The 

bt instructions set the carry flag (CF) to the value of the bit being tested.  

The bts and btr instructions operate somewhat similarly. Both 

instructions test the current bit in the same fashion as bt. They differ in 

that bts sets the bit to 1 and btr resets (or clears) the bit to 0.  

One particular possibility for using these instructions is to implement 

a set of fairly large size where the members of the set are integers from 0 

to 𝑛 − 1 where 𝑛 is the universe size. A membership test translates into 

determining a word and bit number in memory and testing the correct bit 

in the word. Following the bt instruction the setc instruction can be used 

to store the value of the carry flag into an 8 bit register. There are setCC 

instructions for each of the condition flags in the eflags register. 

Insertion into the set translates into determining the word and bit 

number and using bts to set the correct bit. Removal of an element of the 

set translates into using btr to clear the correct bit in memory.  

In the code below we assume that the memory for the set is at a 

memory location named set and that the bit number to work on is in 
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register rax. The code preserves rax and performs testing, insertion and 

removal.  

 

Lines 9 through 12 set bits 4, 7, 8 and 76 in the array set. To set bit 

76, we use [set+8] in the instruction to reference the second quad-word 

of the array. You will also notice the use of set+8*rbx in lines 18, 20 and 

21. Previously we have used a variable name in brackets. Now we are 

using a variable name plus a constant or plus a register times 8. The use 

of a register times 8 allows indexing an array of 8 byte quantities. The 

instruction format includes options for multiplying an index register by 2, 

4 or 8 to be added to the address specified by set. Use 2 for a word array, 

4 for a double word array and 8 for a quad-word array. Register rbx holds 

the quad-word index into the set array.  

Operating on the quad-word of the set in memory as opposed to 

moving to a register is likely to be the fastest choice, since in real code we 

will not need to test, insert and then remove in 1 function call. We would 

do only one of these operations. 

Here we trace through the execution of this program. We start by 

observing the set array in hexadecimal after setting 4, 7, 8 and 76. Setting 

bit 4 yields 0x10, setting bit 7 yields 0x90 and setting bit 8 yields 0x190. 

Bit 76 is bit 12 of the second quad-word in the array and yields 0x1000.  
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Next lines 13 and 14 move 76 into rax and rbx.  

 

Shifting the bit number (76) right 6 bits will yield the quad-word 

number of the array. This works since 26 = 64 and quad-words hold 64 

bits. This shift leaves a 1 in rbx. 

 

We make another copy of the bit number in rcx.  

 

The bit number and’ed with 0x3f will extract the rightmost 6 bits of 

the bit number. This will be the bit number of the quad-word containing 

the bit. 



82 

 

Next we use xor to zero out rdx.  

 

Line 19 tests the bit we wish to test from the array. You will notice 

that the carry flag (CF) is set.  

  

Line 20 uses the setc instruction to set dl which is now a 1 since 76 

was in the set.  

 

Line 21 sets the bit in the set.  
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Line 22 clears the bit (reset), effectively removing 76 from the set.  

 

7.7  Extracting and filling a bit field 

To extract a bit field you need to shift the field so that its least significant 

bit is in position 0 and then bit mask the field with an and operation with 

the appropriate mask. Let’s suppose we need to extract bits 51-23 from a 

quad-word stored in a memory location. Then, after loading the quad-

word, we need to shift it right 23 bits to get the least significant bit into 

the proper position. The bit field is of length 29. The simplest way to get 

a proper mask (29 bits all 1) is using the value 0x1fffffff.  Seven f’s is 

28 bits and the 1 gives a total of 29 bits. Here is the code to do the work:  

     mov  rax, [sample]   ; move qword into rax 
     shr  rax, 23         ; align bit 23 at 0 
     and  rax, 0x1fffffff ; select 29 low bits 
     mov  [field], rax    ; save the field 

Of course it could be that the field width is not a constant. In that case 

you need an alternative. One possibility is to generate a string of 1 bits 

based on knowing that 2𝑛 − 1 is a string of 𝑛 1 bits. You can generate 2𝑛 

by shifting 1 to the left 𝑛 times or use bts. Then you can subtract 1 using 

dec. 

Another way to extract a bit field is to first shift left enough bits to 

clear out the bits to the left of the field and then shift right enough bits to 

wipe out the bits to the right of the field. This will be simpler when the 

field position and width are variable. To extract bits 51-23, we start by 
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shifting left 12 bits. Then we need to shift right 35 bits. In general if the 

field is bits 𝑚 through 𝑛 where 𝑚 is the higher bit number, we shift left 

63 − 𝑚 and then shift right 𝑛 + (63 − 𝑚). 

     mov  rax, [sample] ; move qword into rax 
     shl  rax, 12       ; wipe out higher bits 
     shr  rax, 35       ; align the bit field 
     mov  [field], rax  ; save the field 

Now suppose we wish to fill in bits 51-23 of sample with the bits in 

field. The easy method is to rotate the value to align the field, shift right 

and then left to clear 29 bits, or in the field, and then rotate the register 

to get the field back into bits 23-51. Here is the code:  

     mov  rax, [sample] ; move qword into rax 
     ror  rax, 23       ; align bit 23 at 0 
     shr  rax, 29       ; wipe out 29 bits 
     shl  rax, 29       ; align bits again 
     or   rax, [field]  ; trust field is 29 bits 
     rol  rax, 23       ; realign the bit fields 
     mov  [sample], rax ; store fields in memory 
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Exercises 

1. Write an assembly program to count all the 1 bits in a byte stored in 

memory.  Use repeated code rather than a loop.  

2. Write an assembly program to swap 2 quad-words in memory using 

xor.  Use the following algorithm: 

     a = a ^ b 
     b = a ^ b 
     a = a ^ b 

3. Write an assembly program to use 3 quad-words in memory to 

represent 3 sets: A, B and C. Each set will allow storing set values 0-

63 in the corresponding bits of the quad-word. Perform these steps: 

     insert 0 into A 
     insert 1 into A 
     insert 7 into A 
     insert 13 into A 
     insert 1 into B 
     insert 3 into B 
     insert 12 into B 
     store A union B into C 
     store A intersect B into C 
     store A - B into C 
     remove 7 from C 

4. Write an assembly program to move a quad-word stored in memory 

into a register and then compute the exclusive-or of the 8 bytes of the 

word. Use either ror or rol to manipulate the bits of the register so 

that the original value is retained.  

5. Write an assembly program to dissect a double stored in memory. This 

is a 64 bit floating point value. Store the sign bit in one memory 

location. Store the exponent after subtracting the bias value into a 

second memory location. Store the fraction field with the implicit 1 bit 

at the front of the bit string into a third memory location.  

6. Write an assembly program to perform a product of 2 float values 

using integer arithmetic and bit operations. Start with 2 float values 

in memory and store the product in memory.  
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Chapter 8 

Branching and looping 

So far we have not used any branching statements in our code. Using the 

conditional move instructions added a little flexibility to the code while 

preserving the CPU’s pipeline contents. We have seen that it can be 

tedious to repeat instructions to process each byte in a quad-word or each 

bit in a byte. In the next chapter we will work with arrays. It would be 

fool-hardy to process an array of 1 million elements by repeating the 

instructions. It might be possible to do this, but it would be painful coping 

with variable sized arrays. We need loops. 

In many programs you will need to test for a condition and perform one 

of 2 actions based on the results. The conditional move is efficient if the 2 

actions are fairly trivial. If each action is several instructions long, then 

we need a conditional jump statement to branch to one alternative while 

allowing the CPU to handle the second alternative by not branching. After 

completing the second alternative we will typically need to branch around 

the code for the first alternative. We need conditional and unconditional 

branch statements.  

8.1  Unconditional jump 

The unconditional jump instruction (jmp) is the assembly version of the 

goto statement. However there is clearly no shame in using jmp. It is a 

necessity in assembly language, while goto can be avoided in higher level 

languages.  

The basic form of the jmp instruction is 

       jmp     label 

where label is a label in the program’s text segment. The assembler will 

generate a rip relative jump instruction, meaning that the flow of control 

will transfer to a location relative to the current value of the instruction 

pointer. The simplest relative jump uses an 8 bit signed immediate value 
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and is encoded in 2 bytes. This allows jumping forwards or backwards 

about 127 bytes. The next variety of relative jump in 64 bit mode uses a 

32 bit signed immediate value and requires a total of 5 bytes. Fortunately 

the assembler figures out which variety it can use and chooses the shorter 

form. The programmer simply specifies a label.  

The effect of the jmp statement is that the CPU transfers control to the 

instruction at the labeled address. This is generally not too exciting except 

when used with a conditional jump. However, the jmp instruction can 

jump to an address contained in a register or memory location. Using a 

conditional move one could manage to use an unconditional jump to an 

address contained in a register to implement a conditional jump. This isn’t 

sensible, since there are conditional jump statements which handle this 

more efficiently.  

There is one more possibility which is more interesting - implementing 

a switch statement. Suppose you have a variable i which is known to 

contain a value from 0 to 2. Then you can form an array of instruction 

addresses and use a jmp instruction to jump to the correct section of code 

based on the value of i. Here is an example: 

     segment .data  
 switch: 
     dq    main.case0 
     dq    main.case1 
     dq    main.case2 
 i:  dq    2 
     segment .text 
     global  main 
 main: 
     mov   rax, [i]       ; move i to rax 
     jmp   [switch+rax*8] ; switch ( i ) 
 .case0: 
     mov   rbx, 100       ; go here if i == 0 
     jmp   .end  
 .case1: 
     mov   rbx, 101       ; go here if i == 1 
     jmp   .end 
 .case2: 
     mov   rbx, 102       ; go here if i == 2 
 .end: 
     xor   eax, eax 
     ret 

In this code we have used a new form of label with a dot prefix. These 

labels are referred to as “local” labels. They are defined within the range 

of enclosing regular labels. Basically the local labels could be used for all 

labels inside a function and this would allow using the same local labels 

in multiple functions. Also we used main.case0 outside of main to refer to 

the .case0 label inside main.  

From this example we see that an unconditional jump instruction can 

be used to implement some forms of conditional jumps. Though 

conditional jumps are more direct and less confusing, in larger switch 
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statements it might be advantageous to build an array of locations to jump 

to.  

8.2  Conditional jump 

To use a conditional jump we need an instruction which can set some 

flags. This could be an arithmetic or bit operation. However doing a 

subtraction just to learn whether 2 numbers are equal might wipe out a 

needed value in a register. The x86-64 CPU provides a compare 

instruction (cmp) which subtracts its second operand from its first and sets 

flags without storing the difference.  

There are quite a few conditional jump instructions with the general 

pattern: 

       jCC     label  ; jump to location 

The CC part of the instruction name represents any of a wide variety of 

condition codes. The condition codes are based on specific flags in eflags 

such as the zero flag, the sign flag, and the carry flag. Below are some 

useful conditional jump instructions.  

instruction meaning aliases flags 

   jz jump if zero je ZF=1 

   jnz jump if not zero jne ZF=0 

   jg jump if > 0 jnle ZF=0 and SF=0 

   jge jump if ≥ 0 jnl SF=0 

   jl jump if > 0 jnge js SF=1 

   jle jump if ≤ 0 jng ZF=1 or SF=1 

   jc jump if carry jb jnae CF=1 

   jnc jump if not carry jnb jae  

It is possible to generate “spaghetti” code using jumps and conditional 

jumps. It is probably best to stick with high level coding structures 

translated to assembly language. The general strategy is to start with C 

code and translate it to assembly. The rest of the conditional jump section 

discusses how to implement C if statements.  

Simple if statement 

Let’s consider how to implement the equivalent of a C simple if 

statement. Suppose we are implementing the following C code: 

      if ( a < b ) { 
          temp = a; 
          a = b; 
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          b = temp; 
       } 

Then the direct translation to assembly language would be 

 ;     if ( a < b ) { 
       mov   rax, [a] 
       mov   rbx, [b] 
       cmp   rax, rbx 
       jge   in_order 
 ;         temp = a; 
           mov   [temp],  rax 
 ;         a = b; 
           mov   [a], rbx 
 ;         b = temp 
           mov   [b], rax 
 ;     } 
 in_order: 

The most obvious pattern in this code is the inclusion of C code as 

comments. It can be hard to focus on the purpose of individual assembly 

statements. Starting with C code which is known to work makes sense. 

Make each C statement an assembly comment and add assembly 

statements to achieve each C statement after the C statement. Indenting 

might help a little though the indentation pattern might seem a little 

strange.  

You will notice that the if condition was less than, but the conditional 

jump used greater than or equal to. Perhaps it would appeal to you more 

to use jnl rather than jge. The effect is identical but the less than 

mnemonic is part of the assembly instruction (with not). You should select 

the instruction name which makes the most sense to you. 

If/else statement 

It is fairly common to do 2 separate actions based on a test. Here is a 

simple C if statement with an else clause: 

       if ( a < b ) { 
           max = b; 
       } else { 
           max = a; 
       } 

This code is simple enough that a conditional move statement is likely 

to be a faster solution, but nevertheless here is the direct translation to 

assembly language: 

 ;     if ( a < b ) { 
       mov   rax, [a] 
       mov   rbx, [b] 
       cmp   rax, rbx 
       jnl   else ; 
           max = b; 
           mov   [max], rbx 
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           jmp   endif 
 ;     } else { 
 else: 
 ;         max = a; 
           mov   [max], rax 
 ;     } 
 endif: 

If/else-if/else statement 

Just as in C/C++ you can have an if statement for the else clause, you 

can continue to do tests in the else clause of assembly code conditional 

statements. Here is a short if/else-if/else statement in C: 

       if ( a < b ) { 
           result = 1; 
       } else if ( a > c ) { 
           result = 2; 
       } else { 
           result = 3; 
       } 

This code is possibly a good candidate for 2 conditional move 

statements, but simplicity is bliss. Here is the assembly code for this: 

 ;     if ( a < b ) { 
       mov   rax, [a] 
       mov   rbx, [b] 
       cmp   rax, rbx 
       jnl   else_if 
 ;         result = 1; 
           mov   qword [result], 1 
           jmp   endif 
 ;     } else if ( a > c ) { 
 else_if: 
       mov   rcx, [c] 
       cmp   rax, rcx 
       jng   else 
 ;         result = 2; 
           mov   qword [result], 2 
           jmp   endif 
 ;     } else { 
 else: 
 ;         result = 3; 
           mov   qword [result], 3 
 ;     } 
 endif: 

It should be clear that an arbitrary sequence of tests can be used to 

simulate multiple else-if clauses in C.  
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8.3  Looping with conditional jumps 

The jumps and conditional jumps introduced so far have been jumping 

forward. By jumping backwards, it is possible to produce a variety of loops. 

In this section we discuss while loops, do-while loops and counting loops. 

We also discuss how to implement the effects of C’s continue and break 

statements with loops.  

While loops 

The most basic type of loop is possibly the while loop.  It generally looks 

like this in C: 

       while ( condition ) { 
          statements; 
       } 

C while loops support the break statement which gets out of the loop 

and the continue statement which immediately goes back to the top of 

the loop. Structured programming favors avoiding break and continue. 

However they can be effective solutions to some problems and, used 

carefully, are frequently clearer than alternatives based on setting 

condition variables. They are substantially easier to implement in 

assembly than using condition variables and faster.  

Counting 1 bits in a memory quad-word 

The general strategy is to shift the bits of a quad-word 1 bit at a time and 

add  bit 0 of the value at each iteration of a loop to the sum of the 1 bits. 

This loop needs to be done 64 times. Here is the C code for the loop: 

       sum = 0; 
       i = 0; 
       while ( i < 64 ) { 
           sum += data & 1; 
           data = data >> 1; 
           i++; 
       } 

The program below implements this loop with only the minor change 

that values are in registers during the execution of the loop. It would be 

pointless to store these values in memory during the loop. The C code is 

shown as comments which help explain the assembly code. 

       segment .data 
 ; long long data; 
 data  dq      0xfedcba9876543210 
 ; long long sum; 
 sum   dq      0 
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       segment .text 
       global  main 
 
 ; int main() ; { 
 main: 
       push    rbp 
       mov     rbp, rsp 
       sub     rsp, 32 
 
 ;     int i;           in register rcx 
 ;     Register usage 
 ; 
 ;     rax: bits being examined 
 ;     rbx: carry bit after bt, setc 
 ;     rcx: loop counter i, 0-63 
 ;     rdx: sum of 1 bits 
  
       mov     rax, [data] 
       xor     ebx, ebx 
 ;     i = 0; 
       xor     ecx, ecx 
 ;     sum = 0; 
       xor     edx, edx 
 ;     while ( i < 64 ) { 
 while: 
       cmp     rcx, 64 
       jnl     end_while 
 ;         sum += data & 1; 
           bt      rax, 0 
           setc    bl 
           add     edx, ebx 
 ;         data >>= 1; 
           shr     rax, 1 
 ;         i++; 
           inc     rcx 
 ;     } 
       jmp     while 
 end_while: 
       mov     [sum], rdx 
       xor     eax, eax 
       leave 
       ret 

The first instruction of the loop is cmp which is comparing i (rcx) 

versus 64. The conditional jump selected, jnl, matches the inverse of the 

C condition. Hopefully this is less confusing than using jge. The last 

instruction of the loop is a jump to the first statement of the loop. This is 

the typical translation of a while loop.  

Coding this in C and running 

     gcc -O3 -S countbits.c 

yields an assembly language file named countbits.s which is 

unfortunately not quite matching our yasm syntax. The assembler for gcc, 

gas, uses the AT&T syntax which differs from the Intel syntax used by 

yasm. Primarily the source and destination operands are reversed and 

some slight changes are made to instruction mnemonics. You can also use 
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     gcc -O3 -S -masm=intel countbits.c 

to request that gcc create an assembly file in Intel format (for Linux) 

which is very close to the code in this book. Here is the loop portion of the 

program produced by gcc; 

       mov     rax, QWORD PTR data[rip] 
       mov     ecx, 64 
       xor     edx, edx 
 .L2: 
       mov     rsi, rax 
       sar     rax 
       and     esi, 1 
       add     rdx, rsi 
       sub     ecx, 1 
       jne     .L2 

You will notice that the compiler eliminated one jump instruction by 

shifting the test to the end of the loop. Also the compiler did not do a 

compare instruction. In fact it discovered that the counting up to 64 of i 

was not important. Only the number of iterations mattered, so it 

decremented down from 64 to 0. Thus it was possible to do a conditional 

jump after the decrement. Overall the compiler generated a loop with 6 

instructions, while the hand-written assembly loop used 8 instructions. 

As stated in the introduction a good compiler is hard to beat. You can learn 

a lot from studying the compiler’s generated code. If you are interested in 

efficiency you may be able to do better than the compiler. You could 

certainly copy the generated code and do exactly the same, but if you can’t 

improve on the compiler’s code then you should stick with C.  

There is one additional compiler option, -funroll-all-loops which 

tends to speed up code considerably. In this case the compiler used more 

registers and did 8 iterations of a loop which added up 8 bits in each 

iteration. The compiler did 8 bits in 24 instructions where before it did 1 

bit in 6 instructions. This is about twice as fast. In addition the instruction 

pipeline is used more effectively in the unrolled version, so perhaps this 

is 3 times as fast.  

Optimization issues like loop unrolling are highly dependent on the 

CPU architecture. Using the CPU in 64 bit mode gives 16 general-purpose 

registers while 32 bit mode gives only 8 registers. Loop unrolling is much 

easier with more registers. Other details like the Intel Core i series 

processors’ use of a queue of micro-opcodes might eliminate most of the 

effect of loops interrupting the CPU pipeline. Testing is required to see 

what works best on a particular CPU.  

Do-while loops 

We saw in the last section that the compiler converted a while loop into a 

do-while loop. The while structure translates directly into a conditional 
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jump at the top of the loop and an unconditional jump at the bottom of the 

loop. It is always possible to convert a loop to use a conditional jump at 

the bottom.  

A C do-while loop looks like  

       do { 
           statements; 
       } while ( condition ); 

A do-while always executes the body of the loop at least once.  

Let’s look at a program implementing a search in a character array, 

terminated by a 0 byte. We will do an explicit test before the loop to not 

execute the loop if the first character is 0. Here is the C code for the loop: 

       i = 0; 
       c = data[i]; 
       if ( c != 0 ) { 
           do { 
               if ( c == x ) break; 
               i++; 
               c = data[i]; 
           } while ( c != 0 ); 
       } 
       n = c == 0 ? -1 : i;  

Here’s an assembly implementation of this code: 

       SECTION .data 
 data  db      “hello world”, 0 
 n     dq      0 
 needle: 
       db      ‘w’ 
       SECTION .text 
       global  main 
 main: 
       push    rbp 
       mov     rbp, rsp 
       sub     rsp, 32 
  
 ;     Register usage 
 ; 
 ;     rax: c, byte of data array 
 ;     bl:  x, byte to search for 
 ;     rcx: i, loop counter, 0-63 
 
       mov     bl, [needle] 
 ;     i = 0; 
       xor     ecx, ecx 
 ;     c = data[i]; 
       mov     al, [data+rcx] 
 ;     if ( c != 0 ) { 
       cmp     al, 0 
       jz      end_if 
 ;         do { 
 do_while: 
 ;             if ( c == x ) break; 
               cmp     al, bl 
               je      found 
 ;             i++; 
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               inc     rcx 
 ;             c = data[i]; 
               mov     al, [data+rcx]; 
 ;         } while ( c != 0 ); 
           cmp     al, 0 
           jnz     do_while 
 ;     } 
 end_if: 
 ;     n = c == 0 ? -1 : i; 
       mov     rcx, -1 ; c == 0 if you reach here 
 found: 
       mov     [n], rcx 
 ;     return 0; 
       xor     eax, eax 
       leave 
       ret 

The assembly code (if stripped of the C comments) looks simpler than 

the C code. The C code would look better with a while loop. The 

conditional operator in C was not necessary in the assembly code, since 

the conditional jump on finding the proper character jumps past the 

movement of -1 to rcx.  

It might seem rational to try to use more structured techniques, but 

the only reasons to use assembly are to improve efficiency or to do 

something which can’t be done in a high level language. Bearing that in 

mind, we should try to strike a balance between structure and efficiency.  

Counting loops 

The normal counting loop in C is the for loop, which can be used to 

implement any type of loop. Let’s assume that we wish to do array 

addition. In C we might use  

       for ( i = 0; i < n; i++ ) { 
           c[i] = a[i] + b[i]; 
       } 

Translated into assembly language this loop might be 

       mov     rdx, [n] 
       xor     ecx, ecx 
 for:  cmp     rcx, rdx 
       je      end_for 
       mov     rax, [a+rcx*8] 
       add     rax, [b+rcx*8] 
       mov     [c+rcx*8], rax 
       inc     rcx 
       jmp     for 
 end_for: 

Once again it is possible to do a test on rdx being 0 before executing 

the loop. This could allow the compare and conditional jump statements 

to be placed at the end of the loop. However it might be easier to simply 

translate C statements without worrying about optimizations until you 
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improve your assembly skills. Perhaps you are taking an assembly class. 

If so, does performance affect your grade? If not, then keep it simple. 

8.4  Loop instructions 

There is a loop instruction along with a couple of variants which operate 

by decrementing the rcx register and branching until the register reaches 

0. Unfortunately, it is about 4 times faster to subtract 1 explicitly from 

rcx and use jnz to perform the conditional jump. This speed difference is 

CPU specific and only true for a trivial loop. Generally a loop will have 

other work which will take more time than the loop instruction. 

Furthermore the loop instruction is limited to branching to a 8 bit 

immediate field, meaning that it can branch backwards or forwards about 

127 bytes. All in all, it doesn’t seem to be worth using. 

Despite the forgoing tale of gloom, perhaps you still wish to use loop. 

Consider the following code which looks in an array for the right-most 

occurrence of a specific character:  

         mov    ecx, [n] 
 more:   cmp    [data+rcx-1],al 
         je     found 
         loop   more 
 found:  sub    ecx, 1 
         mov    [loc], ecx 

8.5  Repeat string (array) instructions 

The x86-64 repeat instruction (rep) repeats a string instruction the 

number of times specified in the count register (rcx). There are a handful 

of variants which allow early termination based on conditions which may 

occur during the execution of the loop. The repeat instructions allow 

setting array elements to a specified value, copying one array to another, 

and finding a specific value in an array.  

String instructions 

There are a handful of string instructions. The ones which step through 

arrays are suffixed with b, w, d or q to indicate the size of the array 

elements (1, 2, 4 or 8 bytes).  

The string instructions use registers rax, rsi and rdi for special 

purposes. Register rax or its sub-registers eax, ax and al are used to hold 
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a specific value. Resister rsi is the source address register and rdi is the 

destination address. None of the string instructions need operands. 

All of the string operations working with 1, 2 or 4 byte quantities are 

encoded in 1 byte, while the 8 byte variants are encoded as 2 bytes. 

Combined with a 1 byte repeat instruction, this effectively encodes some 

fairly simple loops in 2 or 3 bytes. It is hard to beat a repeat.  

The string operations update the source and/or destination registers 

after each use. This updating is managed by the direction flag (DF). If DF 

is 0 then the registers are increased by the size of the data item after each 

use. If DF is 1 then the registers are decreased after each use.  

Move 

The movsb instruction moves bytes from the address specified by rsi to 

the address specified by rdi. The other movs instructions move 2, 4 or 8 

byte data elements from [rsi] to [rdi]. The data moved is not stored in 

a register and no flags are affected. After each data item is moved, the rdi 

and rsi registers are advanced 1, 2, 4 or 8 bytes depending on the size of 

the data item. 

Below is some code to move 100000 bytes from one array to another:  
       lea     rsi, [source] 
       lea     rdi, [destination] 
       mov     rcx, 100000 
       rep     movsb 

 Store 

The stosb instruction moves the byte in register al to the address 

specified by rdi. The other variants move data from ax, eax or rax to 

memory. No flags are affected. A repeated store can fill an array with a 

single value. You could also use stosb in non-repeat loops taking 

advantage of the automatic destination register updating. 

Here is some code to fill an array with 1000000 double words all equal 

to 1:  

       mov     eax, 1 
       mov     ecx, 1000000 
       lea     rdi, [destination] 
       rep     stosd 

Load 

The lodsb instruction moves the byte from the address specified by rsi 

to the al register. The other variants move more bytes of data into ax, eax 

or rax. No flags are affected. Repeated loading seems to be of little use. 

However you can use lods instructions in other loops taking advantage of 

the automatic source register updating. 

Here is a loop which copies data from 1 array to another removing 

characters equal to 13: 
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       lea     rsi, [source] 
       lea     rdi, [destination] 
       mov     ecx, 1000000 
 more: lodsb 
       cmp     al, 13 
       je      skip 
       stosb 
 skip: sub     ecx, 1 
       jnz     more 
 end 

Scan 

The scasb instruction searches through an array looking for a byte 

matching the byte in al. It uses the rdi register. Here is an 

implementation of the C strlen function: 

       segment .text 
       global  strlen 
 strlen: 
       mov     rdi, rcx ; first parameter is rcx 
       cld              ; prepare to increment rdi 
       mov     rcx, -1  ; maximum iterations 
       xor     al, al   ; will scan for 0 
       repne   scasb    ; repeatedly scan for 0 
       mov     rax, -2  ; start at -1 
                        ; end 1 past the end 
       sub     rax, rcx 
       ret 

The function sets rcx to -1, which would allow quite a long repeat loop 

since the code uses repne to loop. It would decrement rcx about 264 times 

in order to reach 0. Memory would run out first.  

The first parameter in a 64 bit Windows program in rcx which must 

be copied to rdi to prepare for the scan instruction. Interestingly the first 

parameter for Linux and OS X is placed in rdi which makes this function 

1 instruction shorter. The standard way to return an integer value is to 

place it in rax, so we place the length there.  

Compare 

The cmpsb instruction compares values of 2 arrays. Typically it is used 

with repe which will continue to compare values until either the count in 

ecx reaches 0 or two different values are located. At this point the 

comparison is complete.  

This is almost good enough to write a version of the C strcmp function, 

but strcmp expects strings terminated by 0 and lengths are not usually 

known for C strings. It is good enough for memcmp: 

         segment .text 
         global  memcmp 
 memcmp: mov     rdi, rcx ; first array address 
         mov     rsi, rdx ; second array address 
         mov     rcx, r8  ; count: third parameter 
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         repe    cmpsb    ; compare until end or difference 
         cmp     rcx, 0 
         jz      equal    ; reached the end 
         movzx   eax, byte [rdi-1] 
         movzx   ecx, byte [rsi-1] 
         sub     rax, rcx 
         ret 
 equal:  xor     eax, eax 
         ret 

In the memcmp function the repeat loop advances the rdi and rsi 

registers one too many times. Thus there is a -1 in the move and zero 

extend instructions to get the 2 bytes. Subtraction is sufficient since 

memcmp returns 0, a positive or a negative value. It was designed to be 

implemented with a subtraction yielding the return value. The first 2 

parameters to memcmp are rdi and rsi with the proper order. 

Set/clear direction 

The clear direction cld instruction clears the direction flag to 0, which 

means to process increasing addresses with the string operations. The set 

direction std instruction sets the direction flag to 1. Programmers are 

supposed to clear the direction flag before exiting any function which sets 

it.  
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Exercises 

1. Write an assembly program to compute the dot product of 2 arrays, 

i.e: 

 𝑝 = ∑ 𝑎𝑖 ∗ 𝑏𝑖

𝑛−1

𝑖=0

 

 

Your arrays should be double word arrays in memory and the dot 

product should be stored in memory.  

2. Write an assembly program to compute Fibonacci numbers storing all 

the computed Fibonacci numbers in a quad-word array in memory.  

Fibonacci numbers are defined by 

           fib(0) = 0 
           fib(1) = 1 
           fib(i) = fib(i-1) + fib(i-2) for i > 1 

 What is the largest i for which you can compute fib(i)? 

3. Write an assembly program to sort an array of double words using 

bubble sort.  Bubble sort is defined as 

           do { 
               swapped = false; 
               for ( i = 0; i < n-1; i++ ) { 
                   if ( a[i] > a[i+1] } { 
                       swap a[i] and a[i+1] 
                       swapped = true; 
                   } 
               } 
           } while ( swapped ); 
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4. Write an assembly program to determine if a string stored in memory 

is a palindrome. A palindrome is a string which is the same after being 

reversed, like “refer”.  Use at least one repeat instruction. 

5. Write an assembly program to perform a “find and replace” operation 

on a string in memory.  Your program should have an input array and 

an output array.  Make your program replace every occurrence of 

“amazing” with “incredible”.A Pythagorean triple is a set of three 

integers 𝑎, 𝑏 and 𝑐 such that 𝑎2 + 𝑏2 = 𝑐2. Write an assembly program 

to determine if an integer, 𝑐 stored in memory has 2 smaller integers 

𝑎 and 𝑏 making the 3 integers a Pythagorean triple. If so, then place 

𝑎 and 𝑏 in memory. 
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Chapter 9 

Functions 

In this chapter we will discuss how to write assembly functions which can 

be called from C or C++ and how to call C functions from assembly. Since 

the C or C++ compiler generally does a very good job of code generation, 

it is usually not important to write complete programs in assembly. There 

might be a few algorithms which are best done in assembly, so we might 

write 90% of a program in C or C++ and write a few functions in assembly 

language.  

It is also useful to call C functions from assembly. This gives your 

assembly programs full access to all C libraries. We will use scanf to input 

values from stdin and we will use printf to print results. This will allow 

us to write more useful programs.  

9.1  The stack 

So far we have had little use for the run-time stack, but it is an integral 

part of using functions. The default stack size under Windows is 1 MB and 

the location is generally in lower addresses than the code or data for a 

program. 

Items are pushed onto the stack using the push instruction. The effect 

of push is to subtract 8 from the stack pointer rsp and then place the value 

being pushed at that address. We tend to refer to the latest item placed 

on the stack as the “top” of the stack, while the address is actually the 

lowest of all items on the stack. Most CPUs use stacks which grow 

downwards, but there have been exceptions.  

Many different values are pushed onto the stack by the operating 

system. These include the environment (a collection of variable names and 

values defining things like the search path) and the command line 

parameters for the program. 
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Values can be removed from the stack using the pop instruction. pop 

operates in the reverse pattern of push. It moves the value at the location 

specified by the stack pointer (rsp) to a register or memory location and 

then adds 8 to rsp.  

You can push and pop smaller values than 8 bytes, at some peril. It 

works as long as the stack remains bounded appropriately for the current 

operation. So if you push a word and then push a quad-word, the quad-

word push may fail. It is simpler to push and pop only 8 byte quantities. 

9.2  Call instruction 

The assembly instruction to call a function is call. A typical use would be 

like 

       call   my_function 

The operand my_function is a label in the text segment of a program. 

The effect of the call instruction is to push the address of the instruction 

following the call onto the stack and to transfer control to the address 

associated with my_function. The address pushed onto the stack is called 

the “return address”. Another way to implement a call would be 

       push   next_instruction 
       jmp    my_function 
 next_instruction: 

While this does work, the call instruction has more capability which we 

will generally ignore. 

Ebe shows the top of the stack (normally 6 values) as your program 

executes. Below are the top 3 quad-words on the stack upon entry to main 

in an assembly program. Immediately preceding this register display was 

a call instruction to call main.  

 

The first item on the stack is the return address, 0x4013b5. Normal 

text segment addresses tend to be a little past 0x400000 in Windows 

programs as illustrated by rip in the register display below taken from 

the same program when it enters main. The return address is an address 

in a function in a DLL, which prepares the environment and command 

line parameters for a C main function. For a C++ program this DLL 

function will also call all constructors for global objects.  
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9.3  Return instruction 

To return from a function you use the ret instruction. This instruction 

pops the address from the top of the stack and transfers control to that 

address. In the previous example next_instruction is the label for the 

return address. 

Below is shown a very simple program which illustrates the steps of a 

function call and return. The first instruction in main is a call to the doit 

function.  

 

You can see that there is a breakpoint on line 7 and the call to doit 

has not yet been made. I have added an arrow pointing to the “Step” 

button which is immediately to the right of the “Next” button. In the 

register display below you can see that rip is 0x401746.  



105 

 

Previously we have used the “Next” button to execute the current 

instruction. However, if we use “Next” now, the debugger will execute the 

doit call and control will be returned after the function returns and the 

highlighted line will be line 8. In order to study the function call, I have 

clicked on “Step” which will step into the doit function.  

 

Now we see that the next instruction to execute is on line 4. It is 

instructive to view the registers at this point and the stack.  

 

You can see that rip is now 401740 which is at a lower address than 

the call at line 7.  
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From the variable display we see that the first item on the stack is 

40174b which is the return address. After using “Step” two more times the 

debugger executes the return from doit. Below are the registers after 

executing the return.  

 

Here we see that rip is now 0x40174b which was the value placed on 

the stack by the call to doit.  

9.4  Function parameters and return value 

Most function have parameters which might be integer values, floating 

point values, addresses of data values, addresses of arrays, or any other 

type of data or address. The parameters allow us to use a function to 

operate on different data with each call. In addition most functions have 

a return value which is commonly an indicator of success or failure.  

Windows uses a function call protocol called the “Microsoft x64 Calling 

Convention”, while Linux and OS X use a different protocol called the 

“System V Application Binary Interface” or System V ABI. In both 

protocols some of the parameters to functions are passed in registers. 

Windows allows the first 4 integer parameters to be passed in registers, 

while Linux allows the first 6 (using different registers). Windows allows 

the first 4 floating point parameters to be passed in floating pointer 

registers xmm0-xmm3, while Linux allows the first 8 floating point 

parameters to be passed in registers xmm0-xmm7. 

There is one peculiarity in calling functions with a variable number of 

parameters in Windows. The central idea in the ABI is that there can be 

4 parameters in registers and that these 4 can be easily moved into 

position on the stack as if they had been pushed. To make this even easier 

the caller must copy any floating point registers to the corresponding 

general purpose register prior to the call. The most likely function to 

exhibit this situation is printf. Below is a code segment illustrating how 

to print the double value in register xmm0. The address of the format string 

will be placed in rcx and then the value in xmm0 must be copied to xmm1 

and also to rdx. 
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         segment .data 
 format  db      “x is %lf”, 0x0a, 0 
         segment .text 
         lea      rcx, [format] 
         movxd    xmm1, xmm0      ; discussed in chapter 11 
         movq     rdx, xmm1       ; copies the bits from xmm1 
         call     printf 

Windows, Linux and OS X use register rax for integer return values 

and register xmm0 for floating point return values. Register xmm0 is used to 

return 128 bit results while larger structs are allocated and a pointer to 

the struct is passed in register rax. 

Linux uses a different strategy for returning larger values. It returns 

large integers in rdx:rax, while the calling function must provide a 

hidden first parameter for larger structs. This means the caller allocates 

memory and places the address of this memory in rdi. 

Both Windows and Linux expect the stack pointer to be maintained on 

16 byte boundaries in memory. This means that the hexadecimal value 

for rsp should end in 0. The reason for this requirement is to allow local 

variables in functions to be placed at 16 byte alignments for SSE and AVX 

instructions. Executing a call would then decrement rsp leaving it 

ending with an 8. Conforming functions should either push something or 

subtract from rsp to get it back on a 16 byte boundary. It is common for a 

function to push rbp as part of establishing a stack frame which re-

establishes the 16 byte boundary for the stack. If your function calls any 

external function, it seems wise to stick with the 16 byte bounding 

requirement.  

The first 4 parameters in a function under Windows are passed in 

registers with rcx, rdx, r8 and r9 being used for integer values and xmm0-

xmm3 for floating point values. For example if a function used parameters 

which were int, float, int and float it would use registers rcx, xmm1, r8 and 

xmm3. By contrast Linux and OS X use up to 6 integer parameters in 

registers rdi, rsi, rdx, rcx, r8 and r9 and up to 8 floating point 

parameters in registers xmm0-xmm7. If a function requires more 

parameters, they are pushed onto the stack in reverse order.  

Under Linux and OS X functions like scanf and printf which have a 

variable number of parameters pass the number of floating point 

parameters in the function call using the rax register. This is not required 

for Windows. 

A final requirement for making function calls in Windows is that the 

calling function must leave 32 bytes free at the top of the stack at the point 

of the call. This space is intended to make it easy for a function to move 

its four register parameters onto the stack making it possible to access all 

the function’s parameters as an array. This is quite handy for functions 

which have a variable number of parameters. Technically the called 
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function can use the space however it wishes, but the caller must make 

sure that this “shadow” space is available. 

For 32 bit programs the protocol is different. Registers r8-r15 are not 

available, so there is not much value in passing function parameters in 

registers. These programs use the stack for all parameters. 

We are finally ready for “Hello World!”  

      section .data 
 msg: db    “Hello World!”,0x0a,0 
      section .text 
      global  main 
      extern  printf 
 main: 
      push  rbp 
      mov   rbp, rsp 
      sub   rsp, 32    ; shadow parameter space 
      lea   rcx, [msg] ; parameter 1 for printf 
      call  printf 
      xor   eax, eax   ; return 0 
      pop   rbp 
      ret 

We use the “load effective address” instruction (lea) to load the 

effective address of the message to print with printf into rcx. This could 

also be done with mov, but lea allows specifying more items in the 

brackets so that we could load the address of an array element. 

Furthermore, under OS X mov will not allow you to move an address into 

a register. There the problem is that static addresses for data have values 

which exceed the capacity of 32 bit pointers and to save space the software 

is designed to use 32 bit fields for addresses which must then be relative 

to rip. The easy assessment is to use lea to load addresses.  

9.5  Stack frames 

One of the most useful features of the gdb debugger is the ability to trace 

backwards through the stack functions which have been called using 

command bt or backtrace. To perform this trick each function must keep 

a pointer in rbp to a 2 quad-word object on the stack identifying the 

previous value of rbp along with the return address. You might notice the 

sequence “push rbp; mov rbp, rsp” in the hello world program. The first 

instruction pushes rbp immediately below the return address. The second 

instruction makes rbp point to that object. 

Assuming all functions obey this rule of starting with the standard 2 

instructions, there will be a linked list of objects on the stack - one for each 

function invocation. The debugger can traverse through the list to identify 

the function (based on the location of the return address) called and use 
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other information stored in the executable to identify the line number for 

this return address. 

These 2 quad-word objects are simple examples of “stack frames”. In 

functions which do not call other functions (leaf functions), the local 

variables for the function might all fit in registers. If there are too many 

local variables or if the function calls other functions, then there might 

need to be some space on the stack for these local variables in excess of 

the shadow parameter space in the active stack frame. To allocate space 

for the local variables, you simply subtract from rsp. For example to leave 

32 bytes for local variables and 32 bytes for shadow space for calling 

functions in the stack frame do this: 

         push    rbp 
         mov     rbp, rsp 
         sub     rsp, 64 

Be sure to subtract a multiple of 16 bytes to avoid possible problems with 

stack alignment.  

To establish a stack frame, you use the following 2 instructions at the 

start of a function: 

         push    rbp 
         mov     rbp, rsp 

The effect of the these 2 instructions and a possible subtraction from rsp 

can be undone using  

         leave 

just before a ret instruction. For a leaf function there is no need to do the 

standard 2 instruction prologue and no need for the leave instruction. 

They can also be omitted in general though it will prevent gdb from being 

able to trace backwards though the stack frames.  

Below is a diagram of the stack contents of after preparing a stack 

frame in a function and subtracting 32 from rsp: 
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 parameter 6 [rbp+56] 

 parameter 5 [rbp+48] 

 shadow [rbp+40] 

 parameter [rbp+32] 

 space [rbp+24] 

 4 quad-words [rbp+16] 

 return address  

rbp previous rbp  

  [rsp+24] 

  [rsp+16] 

  [rsp+8] 

rsp  [rsp] 

In the diagram the bottom 4 cells are reserved for shadow space for the 

functions which are called by this function. Normally this space will be 

left unused by the current function. The previous value of rbp which was 

pushed at the start of the function is located where rbp currently points. 

At rbp+8 is the return address which was placed on the stack in the 

process of making the call. The 4 locations above the return address are 

for copying the register parameters of the current function (or whatever 

you wish to place there). Above these four values might be additional 

parameters which must be placed on the stack if this function were called 

with more than 4 parameters. I have labelled the 4 shadow register space 

with memory references to the right of each cell. These 4 are always 

available and you can use them to store anything you wish. The space 

above there will not be available if your function has 4 or fewer 

parameters. 

To save registers in the shadow space you would move values into the 

memory references from the diagram. If you want to save rcx into the 

place reserved for it you could use 

        mov   [rbp+16], rcx 

Perhaps you would prefer to use a name for the spot rather than using 

16. Then you could use something like 

 count  equ   16 
        mov   [rbp+count], rcx 

The equ pseudo-op stands for “equate” and it gives you a symbolic name 

for a number – in the previous case: 16. 

Sometimes you may need more local space than the 32 bytes in the 

shadow parameter space. Let’s assume that you wish to use 2 local 

variables named x and y in addition to 4 variables in the shadow space. 

Here is a diagram of how this might look: 
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 parameter 6 [rbp+56] 

 parameter 5 [rbp+48] 

 shadow [rbp+40] 

 parameter [rbp+32] 

 space [rbp+24] 

 4 quad-words [rbp+16] 

 return address  

rbp previous rbp  

 x [rbp-8] 

 y [rbp-16] 

  [rsp+24] 

  [rsp+16] 

  [rsp+8] 

rsp  [rsp] 

You can see that we need to subtract 48 from rsp rather than 32 to leave 

room for 2 local variables. (Remember to always subtract a multiple of 16 

from rsp.)  The memory reference for x would be [rbp-8] and for y we 

would use [rbp-16]. For conformity it might be nice to equate x and y to 

negative values like this code snippet which saves x and y: 

 x       equ    -8 
 y       equ    -16 
         mov    [rbp+x], r8 
         mov    [rbp+y], r9 

In this way we can have all the variables in the stack frame addressed as 

rbp plus a label, rather than having to remember which need plus and 

which need minus. 

This same diagram would apply to writing a function which would call 

a function with 6 parameters. However for parameters I suggest using 

positive offsets from rsp rather negative offsets from rbp. This will make 

your code simpler if you need to call a function with more parameters and 

have to expand the stack frame. In this case parameter 5 would be at 

[rsp+32] and parameter 6 would be at [rsp+40]. For a function which 

calls several functions with different numbers of parameters it is simplest 

to prepare the stack frame to accommodate the function with the most 

parameters.  That way you subtract a value from rsp at the start of the 

function and leave it the same until the leave instruction. You might like 

using equates for parameters beyond the fourth: 

 par5    equ    32 
 par6    equ    40 
 par7    equ    48 
 par8    equ    56 

Notice that the general habit is to use rbp for local variables whether 

they are in the active frame’s shadow space or just above the space for 

parameters for called functions. Also if there is a need for more than 4 
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parameters in a called function then you should use rsp to place those 

values on the stack.  

With any function protocol you must specify which registers must be 

preserved in a function. The Windows calling convention requires that 

registers rbx, rbp, rsp, rsi, rdi and r12-15 must be preserved, while for 

the System V ABI (Linux and OS X) registers rbx, rbp and r12-15 must 

be preserved. The registers which you preserve would be copied into the 

stack frame like count, x and y from the previous examples and copied 

back to the appropriate registers before returning. 

Function to print the maximum of 2 integers 

The program listed below calls a function named print_max to print the 

maximum of 2 longs passed as parameters. It calls printf so it uses the 

extern pseudo-op to inform yasm and ld that printf will be loaded from 

a library.  

     segment .text 
     global  main 
     extern  printf 
 
 ; void print_max ( long a, long b ) 
 ; { 
 a   equ  32           ; place a in the stack frame 
 b   equ  40           ; and b above a 
 print_max: 
     push rbp;         ; normal stack frame 
     mov  rbp, rsp  
     sub  rsp, 32      ; shadow parameter space 
 ;   int max; 
 max equ  48           ; above a, b in the stack frame 
     mov  [rsp+a], rcx ; save a 
     mov  [rsp+b], rdx ; save b 
 ;   max = a; 
     mov  [rsp+max], rcx 
 ;   if ( b > max ) max = b; 
     cmp  rdx, rcx 
     jng  skip 
     mov  [rsp+max], rcx 
 skip: 
 ;   printf ( “max(%ld,%ld) = %ldn”, a, b, max ); 
     segment .data 
 fmt db   ‘max(%ld,%ld) = %ld’,0xa,0 
     segment .text 
     lea  rcx, [fmt] 
     mov  rdx, [rsp+a] 
     mov  r8, [rsp+b] 
     mov  r9, [rsp+max] 
     call printf 
 ; } 
     leave 
     ret  
 
main: 
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     push rbp 
     mov  rbp, rsp 
     sub  rsp, 32     ; shadow parameter space 
 ;   print_max ( 100, 200 ); 
     mov  rcx, 100    ; first parameter 
     mov  rdx, 200    ; second parameter 
     call print_max 
     xor  eax, eax    ; to return 0 
     leave 
     ret 

In main you first see the standard 2 instructions to establish a stack 

frame. There are no local variables in main, so we subtract 32 from rsp to 

provide shadow space for calling print_max. On the other hand the 

print_max function has 2 parameters and 1 local variable. The required 

space is 24 bytes, which is fits into the current stack frame (in the current 

shadow space). We subtract 32 from rsp to provide the shadow parameter 

space for the printf call. It would be possible to avoid storing these 

variables in memory, but it would be more confusing and less informative.  

Immediately after the comment for the heading for print_max, I have 

2 equates to establish offsets on the stack for a and b. After the comment 

for the declaration for max, I have an equate for it too.  

Before doing any of the work of print_max I have 2 mov instructions to 

save a and b onto the stack.  Both variables will be parameters to the 

printf call, but they will be the second and third parameters so they will 

need to be different registers at that point. 

The computation for max is done using the stack location for max rather 

than using a register. It would have been possible to use r9 which is the 

register for max in the printf call, but would be less clear and the goal of 

this code is to show how to handle parameters and local variables to 

functions simply.  

The call to printf requires a format string which should be in the data 

segment. It would be possible to have a collection of data prior to the text 

segment for the program, but it is nice to have the definition of the format 

string close to where it is used. It is possible to switch back and forth 

between the text and data segments, which seems easier to maintain. 

9.6  Recursion 

One of the fundamental problem solving techniques in computer 

programming is recursion. A recursive function is a function which calls 

itself. The focus of recursion is to break a problem into smaller problems. 

Frequently these smaller problems can be solved by the same function. So 

you break the problem into smaller problems repeatedly and eventually 

you reach such a small problem that it is easy to solve. The easy to solve 
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problem is called a “base case”. Recursive functions typically start by 

testing to see if you have reached the base case or not. If you have reached 

the base case, then you prepare the easy solution. If not you break the 

problem into sub-problems and make recursive calls. As you return from 

recursive calls you assemble solutions to larger problems from solutions 

to smaller problems. 

Recursive functions generally require stack frames with local variable 

storage for each stack frame. Using the complete stack frame protocol can 

help in debugging. 

Using the function call protocol it is easy enough to write recursive 

functions. As usual, recursive functions test for a base case prior to 

making a recursive call. 

The factorial function can be defined recursively as 

𝑓(𝑛) =  {
        1                if 𝑛 ≤ 1
 𝑛 ∗ 𝑓(𝑛 − 1)  if 𝑛 < 1

 

Here is a program to read an integer n, compute n! recursively and 

print n!. 

     segment .data 
 x   dq      0 
 scanf_format: 
     db    “%ld”,0 
 printf_format: 
     db    “fact(%ld) = %ld”,0x0a,0  
 
     segment .text 
     global  main          ; tell world about main 
     global  fact          ; tell world about fact 
     extern  scanf         ; resolve scanf and 
     extern  printf        ; printf from libc 
 main: 
     push    rbp 
     mov     rbp, rsp 
     sub     rsp, 32       ; shadow parameter space 
     lea     rcx, [scanf_format] ; set arg 1 
     lea     rdx, [x]      ; set arg 2 for scanf 
     call    scanf 
     mov     rcx, [x]      ; move x for fact call 
     call    fact 
     lea     rcx, [printf_format]; set arg 1 
     mov     rdx, [x]      ; set arg 2 for printf 
     mov     r8, rax       ; set arg 3 to be x! 
     call    printf 
     xor     eax, eax      ; set return value to 0 
     leave 
     ret 
 
 fact:                     ; recursive function 
 n   equ     16 
     push    rbp 
     mov     rbp, rsp 
     sub     rsp, 32       ; space for shadow parameters 
     cmp     rcx, 1        ; compare n with 1 
     jg      greater       ; if n <= 1, return 1 
     mov     eax, 1        ; set return value to 1 
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     leave 
     ret 
 greater: 
     mov     [rbp+n], rcx  ; save n 
     dec     rcx           ; call fact with n-1 
     call    fact 
     mov     rcx, [rbp+n]  ; restore original n 
     imul    rax, rcx      ; multiply fact(n-1)*n 
     leave 
     ret 

In the fact function I have used an equate for the variable n. The equ 

statement defines the label n to have the value 16. In the body of the 

function I save the value of n on the stack prior to making a recursive call. 

The reference [rbp+n] is equivalent to [rbp+16] but it allows more 

flexibility in coding while being clearer. 
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Exercises 

1. Write an assembly program to produce a billing report for an electric 

company. It should read a series of customer records using scanf and 

print one output line per customer giving the customer details and the 

amount of the bill. The customer data will consist of a name (up to 64 

characters not including the terminal 0) and a number of kilowatt 

hours per customer. The number of kilowatt hours is an integer. The 

cost for a customer will be $20.00 if the number of kilowatt hours is 

less than or equal to 1000 or $20.00 plus 1 cent per kilowatt hour over 

1000 if the usage is greater than 1000. Use quotient and remainder 

after dividing by 100 to print the amounts as normal dollars and cents. 

Write and use a function to compute the bill amount (in pennies). 

2. Write an assembly program to generate an array of random integers 

(by calling the C library function random), to sort the array using a 

bubble sort function and to print the array. The array should be stored 

in the .bss segment and does not need to be dynamically allocated. 

The number of elements to fill, sort and print should be stored in a 

memory location. Write a function to loop through the array elements 

filling the array with random integers. Write a function to print the 

array contents. If the array size is less than or equal to 20, call your 

print function before and after printing. 

3. A Pythagorean triple is a set of three integers, 𝑎, 𝑏 and 𝑐, such that 

𝑎2 + 𝑏2 = 𝑐2. Write an assembly program to print all the Pythagorean 

triples where 𝑐 <=  500. Use a function to test whether a number is a 

Pythagorean triple. 

4. Write an assembly program to keep track of 10 sets of size 1000000. 

Your program should read accept the following commands: “add”, 

“union”, “print” and “quit”. The program should have a function to 

read the command string and determine which it is and return 0, 1, 2 

or 3 depending on the string read.     After reading “add” your program 

should read a set number from 0 to 9 and an element number from 0 

to 999999 and insert the element into the proper set. You need to have 

a function to add an element to a set. After reading “union” your 

program should read 2 set numbers and make the first set be equal to 

the union of the 2 sets. You need a set union function. After reading 

“print” your program should print all the elements of the set. You 



117 

can assume that the set has only a few elements. After reading “quit” 

your program should exit. 

5. A sequence of numbers is called bitonic if it consists of an increasing 

sequence followed by a decreasing sequence or if the sequence can be 

rotated until it consists of an increasing sequence     followed by a 

decreasing sequence. Write an assembly program to read a sequence 

of integers into an array and print out whether the sequence is bitonic 

or not. The maximum number of elements in the array should be 100. 

You need to write 2 functions: one to read the numbers into the array 

and a second to determine     whether the sequence is bitonic. Your 

bitonic test should not actually rotate the array. 

6.  Write an assembly program to read two 8 byte integers with scanf 

and compute their greatest common divisor using Euclid’s algorithm, 

which is based on the recursive definition 

gcd(𝑎, 𝑏) =  { 
        𝑎                   if 𝑏 = 0

gcd(𝑏, 𝑎 mod 𝑏)   otherwise
 

7. Write an assembly program to read a string of left and right 

parentheses and determine whether the string contains a balanced 

set of parentheses. You can read the string with scanf using “%79s” 

into a character array of length 80. A set of parentheses is balanced if 

it is the empty string or if it consists of a left parenthesis followed by 

a sequence of balanced sets and a right parenthesis. Here’s an 

example of a balanced set of parentheses: “((()())())”.  
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Chapter 10 

Arrays 

An array is a contiguous collection of memory cells of a specific type. This 

means that an array has a start address. The start address is the lowest 

address in the array and is identified by the label used when defining an 

array in the text or bss segment.  

Elements of the array are accessed by index with the smallest index 

being 0 as in C. Subsequent indices access higher memory addresses. The 

final index of an array of size n is n-1.  

It would be possible to define arrays with different starting indices. In 

fact the default for FORTRAN is for arrays to start at index 1 and you can 

define the range of indices in many high level languages. However it is 

quite natural to use 0 as the first index for arrays. The assembly code is 

simpler in this way which helps with efficiency in C and C++.  

10.1  Array address computation 

There can be arrays of many types of data. These include the basic types: 

bytes, words, double words, and quad-words. We can also have arrays of 

structs (defined later).  

Array elements are of a specific type so each array element occupies 

the same number of bytes of memory. This makes it simple to compute the 

location of any array element. Suppose that the array a with base address 

base uses m bytes per element, then element a[i] is located at base + 

i*m.  

Let’s illustrate the indexing of arrays using the following program: 

     segment .bss 
 a   resb    100  ; array of 100 bytes 
 b   resd    100  ; array of 100 double words 
     align   8 
 c   resq    100  ; array of 100 quad-words 
     segment .text 
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     global  main 
 main: 
     push  rbp 
     mov   rbp, rsp 
     sub   rsp, 32 
     leave 
     ret 

 Fortunately it is not really necessary to 

see the actual first address of an array to 

observe the array in ebe. Instead we can use 

a control-right-click on the variable name a 

in the source code window (or we can mark 

the variable name and use a right click) to 

bring up a variable definition window and set 

it to print hexadecimal numbers with size 1 

to add a to the data window. 

After defining a properly we can now 

view the selected locations of the array. 

 

10.2  General pattern for memory references 

So far we have used array references in sample code without discussing 

the options for memory references. A memory reference can be expressed 

as  

[label]  the value contained at label 

[label+2*ind]  the value contained at the memory address obtained by 

adding the label and index register times 2 

[label+4*ind]  the value contained at the memory address obtained by 

adding the label and index register times 4 

[label+8*ind]  the value contained at the memory address obtained by 

adding the label and index register times 8   

[reg]   the value contained at the memory address in the register  

[reg+k*ind]  the value contained at the memory address obtained by 

adding the register and index register times k 
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[label+reg+k*ind]  the value contained at the memory address obtained 

by adding the label, the register and index register times k 

[number+reg+k*ind]  the value contained at the memory address 

obtained by adding the number, the register and index register times 
k 

This allows a lot of flexibility in array accesses. For arrays in the text 

and data segments it is possible to use the label along with an index 

register with a multiplier for the array element size (as long as the array 

element size is 1, 2, 4 or 8). With arrays passed into functions, the address 

must be placed in a register. Therefore the form using a label is not 

possible. Instead we can use a base register along with an index register. 

Any of the 16 general purpose registers may be used as a base register or 

an index register, however it is unlikely that you would use the stack 

pointer register as an index register. 

Let’s look at an example using a base register and an index register. 

Let’s suppose we wish to copy an array to another array in a function. 

Then the two array addresses could be the first 2 parameters (rcx and 

rdx) and the number of array elements could be the third parameter r8. 

Let’s assume that the arrays are double word arrays. 
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It is easy to monitor data processed in a function with ebe. You can see 

that a breakpoint was placed on line 18 and the program was run. At this 

point the copy_array function has been called and the parameters are in 

registers rcx, rdx, and r8. 

 

By left clicking on the value of rdx, 

0x408010, and then right-clicking we can 

bring up a form to define a variable with 

the address in rdx. The form needs the 

name, type, format, array variable, first 

and last completed for a. 

This was done for both the source and 

destination arrays allowing both arrays to 

be observed as the function executes. Here 

is a view of the arrays after 3 values have 

been copied. 

 

In the copy_array function we used the parameters as they were 

provided. We used rdx as the base address register for the source array 

and rcx as the base address register for the destination array. For both 

accesses we used r9 as the index register with a multiplier of 4 since the 

arrays have 4 byte elements. This allows us to compare r9 versus r8 to 

see if there are more elements to copy. Register r9 as chosen since it was 

one which is considered “volatile” and a function is not required to 

preserve its original value. 

Note that multiplying by 2, 4 or 8 is a shift of 1, 2 or 3 bits, so there is 

effectively 0 cost to using the multiplier. Alternatively we could add 4 to 

r9 in each loop iteration after shifting r8 left 2 positions. 

The last pattern would be useful for accessing an array of structs. If 

you had an array of structs with each struct having a character array and 
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a pointer, then the number part of the reference could be the offset of the 

struct element within the struct, while the base register and index 

register could define the address of a particular struct in the array. 

10.3  Allocating arrays 

The simplest way to allocate memory in assembly is probably to use the C 

library malloc function. The prototype for malloc is 

       void *malloc ( long size ); 

On success malloc returns a pointer to the allocated memory, while 

failure results in malloc returning 0. The memory returned by malloc is 

bounded on 16 byte boundaries, which is useful as an address for any type 

of object (except for arrays needing to be on 32 byte boundaries for AVX 

instructions). The memory can be returned for potential reuse by calling 

the free function with the pointer returned by malloc 

        void free ( void *ptr ); 

Here is an assembly segment to allocate an array of 1000000000 bytes 

        extern  malloc 
        ... 
        mov     rcx, 1000000000 
        call    malloc 
        mov     [pointer], rax 

There are several advantages to using allocated arrays. The most 

obvious one is that you can have arrays of exactly the right size. 

Frequently you can compute the size of array needed in your code and 

allocate an array of the correct size. If you use statically defined arrays 

either in the data or bss segment, you have to know the size needed before 

running the program (or guess). 

Another less obvious reason for using allocated arrays is due to size 

limitations imposed on the data and bss sections by either the assembler, 

linker or operating system. Yasm reports “FATAL: out of memory” when 

you try to declare an array of much more than 2 billion bytes. It succeeds 

with an array of 2 billion bytes in the bss segment. It took approximately 

104 seconds on a 2.4 GHz Opteron system to assemble and link a test 

program with a 2 GB array. In addition both the object file and the 

executable file exceeded 2 billion bytes in size. It is much faster (less than 

1 second) to assemble and link a program using malloc and the executable 

size was about 10 thousand bytes. 

The program using malloc was modified to allocate 20 billion bytes 

and still assembled and linked in less than 1 second. It executed in 3 
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milliseconds. There is no more practical way to use large amounts of 

memory than using allocated memory. 

The user should be cautioned not to attempt to assemble programs 

with large static memory needs on a computer with less RAM than 

required. This will cause disk thrashing while assembling and linking, 

using far more than 100 seconds and nearly crippling the computer during 

the process. Also it can be quite painful to use arrays larger than memory 

even if they are allocated. Disk thrashing is not cool. 

10.4  Processing arrays 

Here we present an example application with several functions which 

process arrays. This application allocates an array using malloc, fills the 

array with random numbers by calling random and computes the 

minimum value in the array. If the array size is less than or equal to 20, 

it prints the values in the array. 

Creating the array 

The array is created using the create function shown below. This function 

is perhaps too short to be a separate function. It multiplies the array size 

by 4 to get the number of bytes in the array and then calls malloc. 

 ;      array = create ( size ); 
 create: 
        push    rbp 
        mov     rbp, rsp 
        sub     rsp, 32 
        sal     rcx, 2 
        call    malloc 
        leave 
        ret 

Filling the array with random numbers 

The fill function uses storage on the stack for local copies of the array 

pointer and its size. It also stores a local variable on the stack. These 3 

variables require 24 bytes of storage, which we can use from the shadow 

space prepared by the calling function. We store data in the array using 

“mov [rdx+rcx*4], rax”, where rdx holds the address of the start of the 

array and rcx contains the index of the current array element. 

Here we use several local labels. A local label is a label beginning with 

a dot. Their scope is between normal labels. So in the fill function, labels 
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.array, .size, .i and .more are local. This allows reusing these same 

labels in other functions, which simplifies the coding of this application. 

 ;      fill ( array, size ); 
 fill: 
 .array equ     16 
 .size  equ     24 
 .i     equ     32 
        push    rbp 
        mov     rbp, rsp 
        sub     rsp, 32  
        mov     [rbp+.array], rcx 
        mov     [rbp+.size], rdx 
        xor     ecx, ecx 
 .more  mov     [rbp+.i], rcx 
        call    random 
        mov     rcx, [rbp+.i] 
        mov     rdx, [rbp+.array] 
        mov     [rdx+rcx*4], eax 
        inc     rcx 
        cmp     rcx, [rbp+.size] 
        jl      .more 
        leave 
        ret 

Printing the array 

Printing the array is done with printf. The print function, just like fill, 

needs to save 3 values on the stack since it calls another function. The 

code is somewhat similar to fill, except that array values are loaded into 

a register rather than values being stored in the array. You will notice 

that the data segment is used to store the printf format in a spot near 

the printf call. You will also notice that I have reused several local labels. 

 ;      print ( array, size ); 
 print: 
 .array equ     16 
 .size  equ     24 
 .i     equ     32 
        push    rbp 
        mov     rbp, rsp 
        sub     rsp, 32 
        mov     [rbp+.array], rcx 
        mov     [rbp+.size], rdx 
        xor     ecx, ecx 
        mov     [rbp+.i], r8 
        segment .data 
 .format: 
        db      “%10d”,0x0a,0 
        segment .text 
 .more  lea     rcx, [.format] 
        mov     rdx, [rbp+.array] 
        mov     r8, [rbp+.i] 
        mov     edx, [rdx+r8*4] 
        mov     [rbp+.i], r8 
        call    printf 
        mov     rcx, [rbp+.i] 
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        inc     rcx 
        mov     [rbp+.i], rcx 
        cmp     rcx, [rbp+.size] 
        jl      .more 
        leave 
        ret 

Finding the minimum value 

The min function is a leaf function (does not call any other functions), so 

there is no real need for a stack frame and no need to align the stack at a 

16 byte boundary. A conditional move instruction is used to avoid 

interrupting the instruction pipeline. 

 ;      x = min ( array, size ); 
 min: 
        mov     eax, [rcx] 
        mov     r8, 1 
 .more  mov     r8d, [rcx+r8*4] 
        cmp     r8d, eax 
        cmovl   eax, r8d 
        inc     r8 
        cmp     r8, rdx 
        jl      .more 
        ret 

Main program for the array minimum 

The main program is shown below. It uses stack space for the local 

variables .array and .size. It uses a command line parameter for the 

array size, which is discussed in the next section. Comments in the code 

outline the behavior.  

 main: 
 .array equ     -8 
 .size  equ     -16 
        push    rbp 
        mov     rbp, rsp 
        sub     rsp, 48          ; shadow space 
                                 ; and 2 local variables 
        mov     ecx, 10          ; set default size 
        mov     [rbp+.size], rcx 
 
 ;      check for argv[1] providing a size 
        cmp     ecx, 2 
        jl      .nosize 
        mov     rcx, [rdx+8] 
        call    atoi 
        mov     [rbp+.size], rax 
 
 .nosize:  
 ;      create the array 
        mov     rcx, [rbp+.size] 
        call    create 
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        mov     [rbp+.array], rax 
 ;      fill the array with random numbers 
        mov     rcx, rax 
        mov     rdx, [rbp+.size] 
        call    fill 
 
 ;      if size <= 20 print the array 
        mov     rdx, [rbp+.size] 
        cmp     rcx, 20 
        jg      .toobig 
        mov     rcx, [rbp+.array] 
        call    print 
 
 .toobig: 
 ;      print the minimum 
        segment .data  
.format: 
        db      “min: %ld”,0xa,0 
        segment .text 
        mov     rcx, [rbp+.array] 
        mov     rdx, [rbp+.size] 
        call    min 
        lea     rcx, [.format] 
        mov     rdx, rax 
        call    printf  
        leave 
        ret 

10.5  Command line parameter array 

The command line parameters are available to a C program as parameters 

to main. The number of command line parameters is the first argument to 

main and an array of character pointers is the second argument to main. 

The first parameter is always the name of the executable file being run. 

The remaining parameters are the expansion by the user’s shell of the rest 

of the command line. This expansion makes it convenient to use patterns 

like “*.dat” on the command line. The shell replaces that part of the 

command line with all the matching file names.  

Here is a simple C program to print the command line parameters: 

     #include <stdio.h> 
 
     int main ( int argc, char *argv[] ) 
     { 
         int i; 
         for ( i = 0; i < argc; i++ ) { 
             printf(“%sn”, argv[i]); 
         } 
         return 0; 
     } 

When executed as “./args hello world”, it prints 
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     ./args 
     hello 
     world 

The argv array is passed like all C arrays by placing the address of the 

first element of the array in a register or on the stack. In the case of argv 

its address is in register rsi. Below is a translation of the program to 

assembly, though the assembly code takes advantage of the fact that there 

is a NULL pointer at the end of the argv array.  

 

You will notice that “hello world” has been entered in the “Command 

line” text box. When this program executes it will print the program name 

followed by “hello” and “world” on separate lines in the ebe terminal 

window. This terminal window will also be used by ebe for all reads from 

standard input. 

 



128 

 

Exercises 

1. Write 2 test programs: one to sort an array of random 4 byte integers 

using bubble sort and a second program to sort an array of random 4 

bytes integers using the qsort function from the C library. Your 

program should use the C library function atol to convert a number 

supplied on the command line from ASCII to long. This number is the 

size of the array (number of 4 byte integers). Then your program can 

allocate the array using malloc and fill the array using random. You 

call qsort like this 

         qsort ( array, n, 4, compare ); 

The second parameter is the number of array elements to sort and 

the third is the size in bytes of each element. The fourth parameter is 

the address of a comparison function. Your comparison function will 

accept two parameters. Each will be a pointer to a 4 byte integer. The 

comparison function should return a negative, 0 or positive value 

based on the ordering of the 2 integers. All you have to do is subtract 

the second integer from the first. 

2. Write a program to use qsort to sort an array of random integers and 

use a binary search function to search for numbers in the array. The 

size of the array should be given as a command line parameter. Your 

program should use random()%1000 for values in the array. This will 

make it simpler to enter values to search for. After building the array 

and sorting it, your program should enter a loop reading numbers 

with scanf until scanf fails to return a 1. For each number read, your 

program should call your binary search function and either report that 

the     number was found at a particular index or that the number was 

not found. 

3. Write an assembly program to compute the Adler-32 checksum value 

for the sequence of bytes read using fgets to read 1 line at a time until 

end of file. The prototype for fgets is 

         char *fgets( char *s, int size, FILE *fp); 

The parameter s is a character array which should be in the bss 

segment. The parameter size is the number of bytes in the array s. 

The parameter fp is a pointer and you need stdin. Place the following 

line in your code to tell the linker about stdin  
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         extern stdin 

 fgets will return the parameter s when it succeeds and will 

return 0 when it fails. You are to read until it fails. The Adler-32 

checksum is computed by 

        long adler32(char *data, int len) 
        { 
           long a = 1, b = 0; 
           int i; 
              for ( i = 0; i < len; i++ ) { 
                 a = (a + data[i]) % 65521; 
                 b = (b + a) % 65521; 
              } 
           return (b << 16) | a; 
        } 

Your code should compute 1 checksum for the entire file. If you use 

the function shown for 1 line, it works for that line, but calling it again 

restarts. 

4. Write a test program to evaluate how well the hashing function below 

works.  

         int multipliers[] = { 
            123456789, 
            234567891, 
            345678912, 
            456789123, 
            567891234, 
            678912345, 
            789123456, 
            891234567 
        };  
 
        int hash ( unsigned char *s ) 
        { 
            unsigned long h = 0; 
            int i = 0; 
 
            while ( s[i] ) { 
                h = h + s[i] * multipliers[i%8]; 
                i++; 
            } 
            return h % 99991; 
        } 

Your test program should read a collection of strings using scanf 

with the format string “%79s” where you are reading into a character 

array of 80 bytes. Your program should read until scanf fails to return 

1. As it reads each string it should call hash (written in assembly) to 

get a number h from 0 to 99990. It should increment location h of an 

array of integers of size 99991. After entering all the data, this array 

contains a count of how many words mapped to each location in the 

array. What we want to know is how many of these array entries have 

0 entries, how many have 1 entry, how many have 2 entries, etc. When 
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multiple words map to the same location, it is called a “collision”. So 

the next step is to go through the array collision counts and increment 

another array by the index there. There should be no more than 1000 

collisions, so this could be done using 

        for ( i = 0; i < 99991; i++ ) { 
            k = collisions[i]; 
            if ( k > 999 ) k = 999; 
            count[k]++; 
        } 

After the previous loop the count array has interesting data. Use 

a loop  to  step  through  this  array  and  print  the  index  and  the  

value for all non-zero locations. An interesting file to test is 

“/usr/share/dict/words”. Write an assembly program to read a 

sequence of integers using scanf and determine if the first number 

entered can be formed as a sum of some of the other numbers and 

print a solution if it exists. You can assume that there will be no more 

than 20 numbers. Suppose the numbers are 20, 12, 6, 3, and 5. Then 

20 =  12 + 3 +5. Suppose the numbers are 25, 11, 17 and 3.  In this 

case there are no solutions. 
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Chapter 11 

Floating point instructions 

The 8086 CPU used a floating point coprocessor called the 8087 to perform 

floating point arithmetic. Many early personal computers lacked the 8087 

chip and performed floating point operations in software. This 

arrangement continued until the 486 which contained a coprocessor 

internally. The 8087 used instructions which manipulated a stack of 80 

bit floating point values. These instructions are still part of modern CPUs, 

though there is a completely separate floating point facility available 

which has sixteen 128 bit registers (256 bits for the Intel Core i series) in 

64 bit mode. We will study the newer instructions. 

If you study the Intel 64 and IA-32 Architectures Software Developer’s 

Manual, you will find many instructions such as fadd which work with 

registers named ST0, ST1, … These instructions are for the math 

coprocessor. There are newer instructions such as addsd which work with 

Streaming SIMD Extensions (SSE) registers xmm0, xmm1, …, xmm15. SIMD 

is an acronym for “Single Instruction - Multiple Data”. These instructions 

are the focus of this chapter. 

11.1  Floating point registers 

There are 16 floating point registers which serve multiple purposes 

holding either 1 value or multiple values. The names for these registers 

are xmm0, xmm1, …, xmm15. These registers can be used with instructions 

operating on a single value in each register or on a vector of values. When 

used as a vector an XMM register can be used as either 4 floats or 2 

doubles. The registers can also be used for collections of integers of 

various sizes, though the SSE integer instructions are basically ignored 

in this book. 

The Core i series of computers introduced the Advanced Vector 

Extensions (AVX) which doubled the size of the floating point registers 

and added some new instructions. To use the full 256 bits (8  floats or 4 
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doubles) you need to use a register name from ymm0, ymm1, … ymm15. Each 

XMM register occupies the first 128 bits of the corresponding YMM 

register.  

For most of this chapter the discussion refers only to XMM registers. 

In all cases the same instruction (prefixed by the letter “v”) can be used 

with YMM registers to operate on twice as many data values. Stating this 

repeatedly would probably be more confusing than accepting it as a rule.  

Ebe makes it easy to view the contents of floating point registers. The 

floating point register window displays the floating point registers in a 

variety of different formats. Consider this simple program which loads 2 

float values and adds them: 

 

Below are the floating point registers after executing the vaddss 

instruction at line 11. 
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11.2  Moving floating point data 

The SSE registers are 128 bits on most x86-64 CPUs (256 bits for the AVX 

registers). These registers can be used to do 1 operation at a time or 

multiple operations at a time. There are instructions for moving 1 data 

value and instructions from moving multiple data items, referred to as 

“packed” data. 

Moving scalars 

There are two instructions for moving scalar (1 value) floating point 

values to/from SSE registers: movss which moves 32 bit floating point 

values (floats) and movsd which moves 64 bit floating point values 

(doubles). These two instructions move a floating point value from 

memory to/from the lower part of a XMM register or from one XMM 

register to another. There is no implicit data conversion - after movss a 32 

bit value exists in the destination. Here is a sample: 

       movss   xmm0, [x]   ; xmm0 = value at x 
       movsd   [y], xmm1   ; move xmm1 to y 
       movss   xmm2, xmm0  ; xmm2 = xmm0  

Moving packed data 

There are instructions for loading integer packed data and floating point 

packed data. We will concentrate here on packed floating point data. You 

can move packed floats or packed doubles. There are instructions for 

moving aligned or unaligned packed data. The aligned instructions are 

movaps for moving four floats and movapd for moving two doubles using 

XMM registers. The unaligned versions are movups and movupd. Moving 

packed data to/from YMM registers moves twice as many values.  

Aligned data means that it is on a 16 byte boundary in memory. This 

can be arranged by using align 16 for an array in the data section. The 

alignb pseudo-op for an array in the bss section does not do the job 

properly. Arrays allocated by malloc will be on 16 byte boundaries. Your 

program will fail with a segmentation fault if you attempt to use an 

aligned move to an unaligned address. Fortunately on the Core i series of 

CPUs the unaligned moves are just as fast as the aligned moves when the 

data is aligned. Note that the instructions using AVX registers begin with 

“v”. Here is a sample. 

       movups  xmm0, [x]   ; move 4 floats to xmm0 
       vmovups ymm0, [x]   ; move 8 floats to ymm0 
       vmovupd ymm1, [x]   ; move 4 doubles to ymm1 
       movupd  [a], xmm15  ; move 2 doubles to a 
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11.3  Addition 

The instructions for adding floating point data come in scalar and packed 

varieties. The scalar add instructions are addss to add two floats and 

addsd to add two doubles. Both these operate on a source operand and 

destination operand. The source can be in memory or in an XMM register 

while the destination must be in an XMM register. Unlike the integer add 

instruction the floating point add instructions do not set any flags, so 

testing must be done using a compare instruction. 

The packed add instructions are addps which adds 4 floats from the 

source to 4 floats in the destination and addpd which adds 2 doubles 

from the source to 2 doubles in the destination using XMM registers. Like 

the scalar adds the source can be either memory or an XMM register, 

while the destination must be an XMM register. Using packed adds 

(vaddps or vaddpd) with YMM registers adds either 8 pairs of floats or 4 

pairs of doubles.  

       movss   xmm0, [a]  ; load a 
       addss   xmm0, [b]  ; add b to a 
       movss   [c], xmm0  ; store sum in c 
       movapd  xmm0, [a]  ; load 2 doubles from a 
       addpd   xmm0, [b]  ; a[0]+b[0], a[1]+b[1] 
       movapd  [c], xmm0  ; store 2 sums in c 
       vmovupd ymm0, [a]  ; load 4 doubles from a 
       vaddpd  ymm0, [b]  ; add 4 pairs of doubles 
       movupd  [c], ymm0  ; store 4 sums in c 

  

11.4  Subtraction 

Subtraction operates like addition on either scalar floats or doubles or 

packed floats or doubles. The scalar subtract instructions are subss 

which subtracts the source float from the destination float and subsd 

which subtracts the source double from the destination double. The 

source can be either in memory or in an XMM register, while the 

destination must be an XMM register. No flags are affected by the floating 

point subtraction instructions. 

The packed subtract instructions are subps which subtracts 4 source 

floats from 4 floats in the destination and subpd which subtracts 2 

source doubles from 2 doubles in the destination using XMM registers. 

Again the source can be in memory or in an XMM register, while the 

destination must be an XMM register. Using packed subtracts (vsubps or 

vsubpd) with YMM registers subtracts either 8 pairs of floats or 4 pairs 

of doubles. 
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       movss   xmm0, [a] ; load a 
       subss   xmm0, [b] ; subtract b from a 
       movss   [c], xmm0 ; store a-b in c 
       movapd  xmm0, [a] ; load 2 doubles from a 
       subpd   xmm0, [b] ; a[0]-b[0], a[1]-b[1] 
       movapd  [c], xmm0 ; store 2 results in c 
       vmovapd ymm0, [a] ; load 4 doubles from a 
       vmovapd [c], ymm0 ; store 4 results in c 

11.5  Multiplication and division 

Multiplication and division follow the same pattern as addition and 

subtraction in that they operate on memory or register operands. They 

support floats and doubles and they support scalar and packed data. The 

basic mathematical instructions for floating point data are  

instruction effect 

addsd add scalar double 

addss add scalar float 

addpd add packed double 

addps add packed float 

subsd subtract scalar double 

subss subtract scalar float 

subpd subtract packed double 

subps subtract packed float 

mulsd multiple scalar double 

mulss multiply scalar float 

mulpd multiple packed double 

mulps multiple packed float 

divsd divide scalar double 

divss divide scalar float 

divpd divide packed double 

divps subtract packed float 

11.6  Conversion 

It is relatively common to need to convert numbers from one length 

integer to another, from one length floating point to another, from integer 

to floating point or from floating point to integer. Converting from one 

length integer to another is accomplished using the various move 

instructions presented so far. The other operations take special 

instructions. 
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Converting to a different length floating point 

There are 2 instructions to convert floats to doubles:  cvtss2sd which 

converts one float to a double and cvtps2pd which converts 2 packed 

floats to 2 packed doubles. The source can be a memory location or an 

XMM register while the destination must be an XMM register. 

Similarly 2 instructions convert doubles to floats: cvtsd2ss which 

converts a double to a float and cvtpd2ps which converts 2 packed 

doubles to 2 packed floats. It has the same restriction that the 

destination must be an XMM register.  

       cvtss2sd xmm0, [a]  ; convert a to double in xmm0 
       addsd    xmm0, [b]  ; add a double to a 
       cvtsd2ss xmm0, xmm0 ; convert to float 
       movss    [c], xmm0  ; move float sum to c 

Converting floating point to/from integer 

There are 2 instructions which convert floating point to integers by 

rounding: cvtss2si which converts a float to a double or quad word 

integer and cvtsd2si which converts a double to a double or quad word 

integer. The mxcsr register controls the type of conversion. Set it to 0x1f80 

to specify rounding. The source can be an XMM register or a memory 

location, while the destination must be a general purpose register. There 

are 2 instructions which convert by truncating: cvttss2si and cvttsd2si. 

There are 2 instructions which convert integers to floating point: 

cvtsi2ss which converts a double or quad word integer to a float and 

cvtsi2sd which converts a double or quad word integer to a double. The 

source can be a general purpose register or a memory location, while the 

destination must be an XMM register. When using a register for the 

source the size is implicit in the register name. When using a memory 

location you need to add “dword” or “qword” to the instruction to specify 

the size.  

       segment   .data  
round  dd        0x1f80 
       segment   .text 
       ldmxcsr   [round]         ; default to rounding 
       cvtss2si  eax, xmm0       ; convert to int (round) 
       cvtsi2sd  xmm0, rax       ; long to double 
       cvtsi2sd  xmm0, dword [x] ; dword to double 
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11.7  Floating point comparison 

The IEEE 754 specification for floating point arithmetic includes 2 types 

of “Not a Number” or NaN. These 2 types are quiet NaNs and signaling 

NaNs. A quiet NaN (QNaN) is a value which can be safely propagated 

through code without raising an exception. A signaling NaN (SNaN) 

always raises an exception when it is generated. Perhaps you have 

witnessed a program failing with a divide by 0 error which is caused by a 

signal. 

Floating point comparisons are considered to be either “ordered” or 

“unordered”. An ordered comparison causes a floating point exception if 

either operand is a QNaN or SNaN. An unordered comparison causes an 

exception for only an SNaN. The gcc compiler uses unordered 

comparisons, so I will do the same. 

The unordered floating point comparison instructions are ucomiss for 

comparing floats and ucomisd for comparing doubles. The first operand 

must be an XMM register, while the second operand can be memory or an 

XMM register. They set the zero flag, parity flag and carry flag to indicate 

the type of result: unordered (at least 1 operand is NaN), less than, equal 

or greater than. A conditional jump seems like a natural choice after a 

comparison, but we need some different instructions for floating point 

conditional jumps. It will look good to use an instruction like jge (jump if 

greater than or equal), but the effect is different from jae (jump if above 

or equal).  

instruction meaning aliases flags 

   jb jump if < jc jnae CF=1 

   jbe jump if ≤ jna CF=1 or ZF=1 

   ja jump if > jnbe ZF=0 and CF=0 

   jae jump if ≥ Jnc jnb CF=0 

Here is an example 

       movss   xmm0, [a] 
       mulss   xmm0, [b] 
       ucomiss xmm0, [c] 
       jbe     less_eq     ; jmp if a*b <= c 

11.8  Mathematical functions 

The 8087 coprocessor implemented a useful collection of transcendental 

functions like sine, cosine and arctangent. These instructions still exist in 

modern CPUs, but they use the floating point register stack and are no 
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longer recommended. Instead efficient library functions exist for these 

functions. 

The SSE instructions include floating point functions to compute 

minimum and maximum, perform rounding, and compute square roots 

and reciprocals of square roots. 

Minimum and maximum 

The minimum and maximum scalar instructions are minss and maxss to 

compute minimums and maximums for floats and minsd and maxsd to do 

the same for doubles. The first operand (destination) must be an XMM 

register, while the second operand (source) can be either an XMM register 

or a memory location. The result is placed in the destination register.  

There are packed versions of the minimum and maximum instructions: 

minps, maxps, minpd and maxpd which operate on either 4 floats (the ps 

versions) or 2 doubles (the pd versions). The packed instructions require 

an XMM register for the first operand and either an XMM register or 

memory for the second. The float versions compute 4 results while the 

double versions compute 2 results.  

       movss  xmm0, [x] ; move x into xmm0 
       maxss  xmm0, [y] ; xmm0 has max(x,y) 
       movapd xmm0, [a] ; move a[0], a[1] to xmm0 
       minpd  xmm0, [b] ; xmm0[0] = min(a[0],b[0]) 
                        ; xmm0[1] = min(a[1],b[1]) 

Rounding 

The SSE instructions include 4 instructions for rounding floating point 

numbers to whole numbers: roundss which rounds 1 float, roundps which 

rounds 4 floats, roundsd which rounds 1 double and roundpd which 

rounds 2 doubles. The first operand must be an XMM register, while the 

second operand can be either an XMM register or a memory location. 

There is a third operand which selects a rounding mode. A simplified view 

of the possible rounding modes is in the table below: 

mode meaning 

0 round, giving ties to even numbers 

1 round up 

2 round toward 0 (truncate) 

Square roots 

The SSE instructions include 4 square root instructions: sqrtss which 

computes 1 float square root, sqrtps which computes 4 float square 
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roots, sqrtsd which computes 1 double square root and sqrtpd which 

computes 2 double square roots. As normal the first operand (destination) 

must be an XMM register, and the second operand can be either an XMM 

register or a memory location. Bounding to 16 byte boundaries is required 

for a packed instruction with a memory reference.  

11.9  Sample code 

Here we illustrate some of the instructions we have covered in some fairly 

practical functions.  

Distance in 3D 

We can compute distance in 3D using a function which accepts 2 float 

arrays with x, y and z coordinates. The 3D distance formula is 

𝑑 = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 + (𝑧1 − 𝑧2)2 

Here is assembly code for 3D distance: 

 distance3d: 
       movss   xmm0, [rcx]   ; x of first point 
       subss   xmm0, [rdx]   ; - x of second point 
       mulss   xmm0, xmm0    ; (x1-x2)^2 
       movss   xmm1, [rcx+4] ; y of first point 
       subss   xmm1, [rdx+4] ; - y of second point 
       mulss   xmm1, xmm1    ; (y1-y2)^2 
       movss   xmm2, [rcx+8] ; z of first point 
       subss   xmm2, [rdx+8] ; - z of second point 
       mulss   xmm2, xmm2    ; (z1-z2)^2 
       addss   xmm0, xmm1    ; add x and y parts 
       addss   xmm0, xmm2    ; add z part 
       sqrtss  xmm0, xmm0 
       ret  

Dot product of 3D vectors 

The dot product of two 3D vectors is used frequently in graphics and is 

computed by  

𝑥1𝑥2 + 𝑦1𝑦2 + 𝑧1𝑧2 

Here is a function computing the dot product of 2 float vectors passed 

as 2 arrays 

 dot_product: 
       movss   xmm0, [rcx]   ; get x1 
       mulss   xmm0, [rdx]   ; times x2 
       movss   xmm1, [rcx+4] ; get y1 
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       mulss   xmm1, [rdx+4] ; times y2 
       addss   xmm0, xmm1    ; x1*x2+y1*y2 
       movss   xmm2, [rcx+8] ; get z1 
       mulss   xmm2, [rdx+8] ; times z2 
       addss   xmm0, xmm2    ; dot product 
       ret 

Polynomial evaluation 

The evaluation of a polynomial of 1 variable could be done at least 2 ways. 

First is the obvious definition: 

𝑃(𝑥) = 𝑝0 + 𝑝1𝑥 + 𝑝2𝑥2 + ⋯ + 𝑝𝑛𝑥𝑛  

A more efficient way to compute the value is using Horner’s Rule: 

𝑏𝑛 = 𝑝𝑛 

𝑏𝑛−1 = 𝑝𝑛−1 + 𝑏𝑛𝑥 

𝑏𝑛−2 = 𝑝𝑛−2 + 𝑏𝑛−1𝑥 

⋯ ⋯ ⋯ 

𝑏0 = 𝑝0 + 𝑏1𝑥 

Then 𝑃(𝑥)  = 𝑏0.  

Written as a function with an array of double coefficients as the first 

parameter (rcx), a value for x as the second parameter (xmm0) and the 

degree of the polynomial as the third parameter (r8) we have:  

 horner: 
       movsd   xmm1, xmm0        ; use xmm1 as x 
       movsd   xmm0, [rcx+r8*8]  ; xmm0 = b_k 
       cmp     r8d, 0            ; is the degree 0 
       jz      done 
 more: 
       sub     r8d, 1 
       mulsd   xmm0, xmm1        ; b_k * x 
       addsd   xmm0, [rcx+r8*8]  ; add p_k 
       jnz     more 
 done: 
       ret  
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Exercises 

1. Write a program testing a function to compute sin 𝑥. The formula for 

sin 𝑥 is given as the Taylor’s series: 

𝑠𝑖𝑛 𝑥 = 𝑥 −
𝑥3

3!
+

𝑥5

5!
−

𝑥7

7!
⋯ 

Your function should work with doubles. Your program should 

read 2 numbers at a time using scanf. The first number is 𝑥 and the 

second number is the number of terms of the expansion to compute. 

Your program should call your sine function and print the value it 

computes using scanf. The reading and computing should continue 

until scanf fails to return 2. 

2. Write a program to compute the area of a polygon. You can use this 

formula for the area 

𝐴 =
1

2
∑(𝑥𝑖𝑦𝑖+1 − 𝑥𝑖+1𝑦𝑖)

𝑛−1

𝑖=0

 

Your area function should have 3 parameters. The first parameter 

is an array of doubles holding 𝑥 values. The second is an array of 

doubles holding 𝑦 values. The third is the value 𝑛. Your arrays should 

be size 𝑛 + 1 and location 𝑛 of both arrays should be repeats of location 

0. The number of vertices will be read using scanf. Then your program 

should allocate arrays of size 𝑛 + 1 and read the coordinates using 

scanf. Lastly your program should compute and print the area. 

3. Write a program to approximate the definite integral of a polynomial 

function of degree 5 using the trapezoidal rule. A polynomial of degree 

5 is defined by 6 coefficients 𝑝0, 𝑝1 , ⋯ , 𝑝5, where 

𝑝(𝑥) = 𝑝0 + 𝑝1𝑥 + 𝑝2𝑥2 + 𝑝3𝑥3 + 𝑝4𝑥4 + 𝑝5𝑥5 

The trapezoidal rule states that the integral from 𝑐 to 𝑑 of a 

function 𝑓(𝑥) can be approximated as 

(𝑑 − 𝑐)
𝑓(𝑐) + 𝑓(𝑑)

2
 

To use this to get a good approximation you divide the interval 

from 𝑎 to 𝑏 into a collection of sub-intervals and use the trapezoidal 

rule on each sub-interval. Your program should read the values of 𝑎 
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and 𝑏. Then it should read the number of sub-intervals 𝑛. Last it 

should read the coefficients of the polynomial in the order 𝑝0,  𝑝1, ⋯  

𝑝5. Then it should perform the computation and print the approximate 

integral. 

4. Write a program to perform integration and differentiation of 

polynomials. The program should prompt for and read the degree of 

the polynomial. Then it should allocate arrays of the correct size for a 

polynomial, its derivative and its integral. Then the program should 

prompt for and read the coefficients of the polynomial. The last input 

will be two values from the domain, 𝑎 and 𝑏. The program should 

evaluate and print the polynomial and its derivative at 𝑎 and 𝑏. Last 

it should print the integral from 𝑎 to 𝑏. 
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Chapter 12 

Accessing Files 

A system call is essentially a function call which changes the CPU into 

kernel mode and executes a function which is part of the kernel. When 

you run a process on Windows it runs in user mode which means that it 

is limited to executing only “safe” instructions. It can move data within 

the program, do arithmetic, do branching, call functions, … , but there are 

instructions which your program can’t do directly. For example it would 

be unsafe to allow any program to read or write directly to the disk device, 

so this is avoided by preventing user programs from executing input or 

output instructions. Another prohibited action is directly setting page 

mapping registers. 

When a user program needs to do something like open a disk file, it 

makes a system call. This changes the CPU’s operating mode to kernel 

mode where the CPU can execute input and output instructions. The 

kernel open call will verify that the user program has permission to open 

the file and then open it, performing any input or output instructions 

required on behalf of the program 

Windows uses the syscall instruction much like Linux and OS X do 

to make system calls. A process places up to 4 parameters for the system 

call into registers and places any additional parameters on the stack like 

a normal function call. Then the process places the system call number 

into register rax and issues the syscall instruction. Unfortunately 

Microsoft regularly changes the numbers for system calls and 

recommends that programmers use the Windows API functions instead. 

So in this chapter we will discuss a little about file access using the 

Windows API and also using similar functions from the C library. The C 

library functions are much easier to use, though a Windows programming 

adventure would be incomplete without a little of the Windows API. 

Anyone interested in more Windows API programming should be able to 

use the online documentation at http:.//msdn.microsoft.com to learn more 

details. 
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In this chapter we give a brief introduction to using the Windows API 

to perform file access and present an alternative more portable low level 

file access collection. Learning how to use the Windows API file access 

functions is sufficient for explaining basic concepts involved in using 

Windows functions for GUI design and process control.  

12.1  File access with the Windows API 

Here we discuss how to create, read and write disk files using the 

Windows API. We will present one program to create a file and write 

“Hello world!” to the file and a second program to copy a file to a new file. 

The copy program uses command line parameters for file names and for 

the size of the array used in the copy. We also present timing based on a 

variety of array sizes. 

Creating a file 

The primary function for creating or opening a file in the Windows API is 

CreateFile. There are actually 2 variants: a Unicode version named 

CreateFileW and an Ascii one name CreateFileA. We will use CreateFileA 

which uses Ascii characters for the file name. In truth CreateFile can 

create and open many other things in addition to disk files, but we won’t 

be trying that. The prototype taken from http://msdn.microsoft.com is 

   HANDLE WINAPI CreateFileA( 
     _In_      LPCTSTR lpFileName, 
     _In_      DWORD dwDesiredAccess, 
     _In_      DWORD dwShareMode, 
     _In_opt_  LPSECURITY_ATTRIBUTES lpSecurityAttributes,               
     _In_      DWORD dwCreationDisposition, 
     _In_      DWORD dwFlagsAndAttributes, 
     _In_opt_  HANDLE hTemplateFile 
   ); 

The return type is a HANDLE which is a synonym for a double-word. 

This will be placed in register rax by CreateFileA, so it could be regarded 

as a quad-word. This value is an integer which is used in subsequent 

Windows API calls to refer to this created or opened file. 

The first parameter is an input parameter which points to a normal C 

character string with a terminal 0.  This pointer will be placed in register 

rcx. 

The second parameter is a double-word which contains the access mode 

for the file. In the programs we present we will use GENERIC_READ and 

GENERIC_WRITE modes. The access mode will be placed in register rdx and 

it is adequate to treat it either as a double-word or a quad-word. 
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Technically the other double-word parameters can also be considered 

as quad-words since they are either placed in registers or on the stack in 

64 bit locations. We will include the file “win32n.inc” prepared by Tamas 

Kaproncai to facilitate assembly programming using the Windows API. In 

addition to equates for values like GENERIC_READ, the include file includes 

struct definitions for many Windows API functions. 

The third parameter defines the sharing mode for the function. A 0 

means that there will be no sharing. One could also choose 

FILE_SHARE_READ or FILE_SHARE_WRITE. The third parameter is placed in 

register r8. 

The fourth parameter is an optional pointer to a SECURITY_ATTRIBUTES 

struct. Leaving this as 0 will result in default security and prevents this 

file handle from being inherited by any child processes. The fourth 

parameter is placed in register r9. 

The fifth parameter defines what should happen with a call to 

CreateFileA. You may want to only succeed with creation if the file 

currently does not exist (CREATE_NEW), open an existing file and delete its 

current data (CREATE_ALWAYS), open the file and keep its data 

(OPEN_ALWAYS), open the file only if it already exists (OPEN_EXISTING) or a 

handful of other options. The fifth parameter in placed on the stack at 

position rsp+0x40 which leaves spaces for the shadow parameters in 

before the fifth parameter. 

The sixth parameter can specify a collection of flags and attributes 

which are each single bits and can be or’ed together. For our programs we 

will use FILE_ATTRIBUTE_NORMAL. This parameter will be placed on the 

stack at location rsp+0x48. 

The seventh parameter is an optional HANDLE which can be used to copy 

file attributes from another file. We will leave this as 0 to not use a 

template file. 

Writing to a file 

The Windows API function to write to a file is WriteFile. Though the 

example program writes text to the file, the file can contain any bytes 

and the writing is an exact copy of the array of bytes used in the 

WriteFile call. In particular in the program below a carriage-return 

(0x0d) and a new-line character (0x0a) are written to the file to make it a 

valid text file. The prototype for WriteFile is 

   BOOL WINAPI WriteFile( 
      _In_         HANDLE hFile, 
      _In_         LPCVOID lpBuffer, 
      _In_         DWORD nNumberOfBytesToWrite, 
      _Out_opt_    LPDWORD lpNumberOfBytesWritten, 
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      _Inout_opt_  LPOVERLAPPED lpOverlapped 
   ); 

WriteFile returns true when it succeeds and false otherwise. It is 

generally necessary to use the fourth parameter to receive the number of 

bytes written to test for complete success. 

The first parameter to WriteFile is the HANDLE returned from 

CreateFile. It is placed in register rcx. 

The second parameter is the address of the data to be written to the 

file. This can be the address of any type of data. It is placed in register 

rdx. 

The third parameter is the number of bytes to write. This is placed in 

register r8. Since this is a 32 bit integer it is not possible to write more 

than 231-1 bytes in one call. Perhaps this is unsigned and you could write 

more. 

The fourth parameter is a pointer to a double-word which will receive 

back the number of bytes that CreateFile actually writes which can be 

less than requested for a variety of reasons. The web site describes this as 

optional, but I had problems leaving this as 0. 

The fifth parameter is described as a struct pertaining to “overlapping” 

which means issuing a write and returning before it completes. This 

generally requires writing a “call-back” function to be called when the 

write completes. Another term for this is “asynchronous I/O”. We will 

leave this as 0 indicating no asynchronous I/O. 

Complete program to create a file 

Below is a program to create a file named “sample.txt” and write “Hello 

world!” to it. When the program was written I copied the prototype for 

CreateFileA and WriteFile into the source as comments, but these 

comments are omitted from here. 

%include "win32n.inc" 
 
par5     equ     0x20 
par6     equ     0x28 
par7     equ     0x30 
 
         segment .data 
handle   dq      0 
written  dq      0 
filename db      "sample.txt", 0 
hello    db      "Hello world!", 0x0d, 0x0a, 0 
length   equ     $-hello-1 
 
         segment .text 
         global  main 
         extern  CreateFileA, WriteFile, CloseHandle 
main: 
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         push    rbp 
         mov     rbp, rsp 
         sub     rsp, 0x40 
 
         xor     eax, eax 
         mov     [rsp+par7], rax     ; hTemplateFile 
         mov     qword [rsp+par6], FILE_ATTRIBUTE_NORMAL 
         mov     qword [rsp+par5], CREATE_ALWAYS 
         xor     r9d, r9d            ; lpSecurityAttributes 
         xor     r8d, r8d            ; dwShareMode 
         mov     rdx, GENERIC_WRITE  ; dwDesiredAccess 
         lea     rcx, [filename]     ; lpFileName 
         call    CreateFileA 
         mov     [handle], rax 
 
         xor     eax, eax 
         mov     [rsp+par5], eax     ; not asynchronous I/O 
         lea     r9, [written]       ; pointer to dword 
         mov     r8d, length         ; # bytes to write 
         lea     rdx, [hello]        ; pointer to text  
         mov     rcx, [handle]       ; file handle 
         call    WriteFile 
 
         mov     rcx, [handle] 
         call    CloseHandle 
         xor     eax, eax 
         leave 
         ret 

This maximum number of parameters in any called function in this 

program is 7 for CreateFile. Four of those are passed in registers and 

three on the stack. Providing 4 quad-words of shadow space and room for 

3 more parameters means a total of 7 quad-words needed on the stack at 

the time of the call. Keeping the stack aligned on a 16 byte boundary 

dictates subtracting 8*8=64 (or 0x40) from rsp to establish the stack 

frame. It might be handy to use hexadecimal to keep track of stack offsets 

since each offset will end in either 0 or 8. Sometimes hexadecimal 

arithmetic is easier than decimal. 

This program uses an equate for the length of the hello array based 

on the $ symbol from yasm. $ means the current position in the code or 

data. This position is incremented for each byte of hello. We don’t want 

to write the terminal 0 byte to the file so we use $-hello-1. This would 

allow changing the text to write while simultaneously adjusting the 

length value. 

Reading from a file 

Reading is done using ReadFile which has 5 parameters like WriteFile 

and each parameter has similar meanings as the corresponding 

parameter for WriteFile. Here is the prototype 



148 

   BOOL WINAPI ReadFile( 
      _In_         HANDLE hFile, 
      _Out_        LPVOID lpBuffer, 
      _In_         DWORD nNumberOfBytesToRead, 
      _Out_opt_    LPDWORD lpNumberOfBytesRead, 
      _Inout_opt_  LPOVERLAPPED lpOverlapped 
   ); 

Again I strongly suggest supplying a pointer to a double-word to 

receive the number of bytes read by ReadFile. It is a good habit to check 

reads and writes for success after each call to discover problems early 

rather than late, though for simplicity the code in this book omits most 

error checking. 

Program to copy a file 

Below is a program to use the command line to accept 3 parameters: an 

input file name, a name for a new file and the number of bytes to read 

and write with each FileRead and FileWrite call. The reason for varying 

the number of bytes to read or write is to test performance with various 

sizes for the data array. 

The flow of the program is fairly typical. It starts by testing the number 

of command line parameters. If this is not 4 it prints a usage message and 

exits. If this is OK it processes the command line parameters. It saves the 

pointer to the input file name in variable input which will later hold the 

hold the HANDLE for the file. It uses the variable output to save the 

output file name. It uses atol to convert the fourth command line 

parameter to a long which will be the array size. After this it uses malloc 

to allocate an array of the requested size. Then it opens both files and 

enters a loop where it attempts to read the number of bytes requested. 

Upon reading 0 bytes (or less) it breaks out of the loop to close the files 

and return. After a successful read it writes the same number of bytes as 

it had read. 

%include "win32n.inc" 
 
par5    equ     0x20 
par6    equ     0x28 
par7    equ     0x30 
 
        segment .data 
input   dq     0 
output  dq     0 
read    dq     0 
written dq     0 
size    dq     0 
data    dq     0 
usage   db     "usage: copy_file old new bytes_per_read" 
        db     0x0a,0 
 
        segment .text 
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        global  main 
        extern  CreateFileA, ReadFile, WriteFile, CloseHandle 
        extern  printf, atol, exit, malloc 
main: 
        push    rbp 
        mov     rbp, rsp 
        sub     rsp, 0x40 
 
;       if ( argc != 4 ) { 
        cmp     rcx, 4 
        je      endif  
        
;           print usage message 
            lea     rcx, [usage] 
            call    printf 
             
;           exit(1) 
            mov     ecx, 1 
            call    exit 
;       } 
endif: 
 
;       input = argv[1]; 
        mov     rcx, [rdx+8]; 
        mov     [input], rcx 
         
;       output = argv[2]; 
        mov     rcx, [rdx+16]; 
        mov     [output], rcx 
         
;       size = atol(argv[3]); 
        mov     rcx, [rdx+24]; 
        call    atoll 
        mov     [size], rax 
        mov     rcx, rax 
        call    malloc 
        mov     [data], rax 
        
;       Open input file 
 
        xor     eax, eax 
        mov     [rsp+par7], rax     ; hTemplateFile 
        mov     qword [rsp+par6], FILE_ATTRIBUTE_NORMAL 
        mov     qword [rsp+par5], OPEN_EXISTING 
        xor     r9d, r9d            ; lpSecurityAttributes 
        xor     r8d, r8d            ; dwShareMode 
        mov     rdx, GENERIC_READ   ; dwDesiredAccess 
        mov     rcx, [input]        ; lpFileName       
        call    CreateFileA 
         
;       if ( open fails ) { 
        cmp     rax, 0 
        jg      opened_input 
;            print message 
             segment .data 
open_failure db     "failed to open %s",0x0a 
             segment .text 
             lea    rcx, [open_failure] 
             mov    rdx, [input] 
             call   printf 
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;            exit(1) 
             mov    ecx, 1 
             call   exit 
 
;       } 
opened_input: 
        mov     [input], rax 
 
;       Open output file 
      
        xor     eax, eax 
        mov     [rsp+par7], rax     ; hTemplateFile 
        mov     qword [rsp+par6], FILE_ATTRIBUTE_NORMAL 
        mov     qword [rsp+par5], CREATE_ALWAYS 
        xor     r9d, r9d            ; lpSecurityAttributes 
        xor     r8d, r8d            ; dwShareMode 
        mov     rdx, GENERIC_WRITE  ; dwDesiredAccess 
        mov     rcx, [output]       ; lpFileName       
        call    CreateFileA 
         
;       if ( open fails ) { 
        cmp     rax, 0 
        jg      opened_output 
;            print message 
             lea    rcx, [open_failure] 
             mov    rdx, [output] 
             call   printf 
             mov    ecx, 1 
;            exit(1) 
             call   exit 
;       } 
opened_output: 
        mov     [output], rax 
 
;       while ( 1 ) 
read_more: 
;           read from input 
        xor     eax, eax 
        mov     [rsp+par5], eax 
        lea     r9, [read] 
        mov     r8d, [size] 
        mov     rdx, [data] 
        mov     rcx, [input] 
        call    ReadFile 
;           if ( read == 0 ) break; 
            mov    r8d, [read] 
            cmp    r8, 0 
            jle    done 
;           write the same size as read   
        xor     eax, eax 
        mov     [rsp+par5], eax 
        lea     r9, [written] 
        mov     rdx, [data] 
        mov     rcx, [output] 
        call    WriteFile 
;       } 
        jmp     read_more     
   
done: 
        mov     rcx, [input] 
        call    CloseHandle 
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        mov     rcx, [output] 
        call    CloseHandle 
        xor     eax, eax 
        leave 
        ret 

Below we see a plot of the time taken to copy a 1 million byte file using 

a variety of different array sizes. Using 1 byte at a time took about 8.5 

seconds while using 1000 took about 0.19 seconds. Effectively the 

performance was almost maximal for 1000 bytes with 100000 and 

1000000 requiring 0.18 seconds. These times include the time for running 

the program which includes program start time and copy time. 

Interestingly copying an empty file took about 0.175 seconds. The timing 

was a little erratic and getting more than 2 digits of accuracy would 

require better timing than afforded by my shell (bash under Cygwin). 

 

12.2  Portable C file access functions 

The lingua franca of UNIX is C, so every UNIX system call is usable via a 

C wrapper function. For example there is a write function in the C library 

which does very little other than use the syscall instruction to perform 

the write request. Using these functions rather than the explicit syscall 

instruction is the preferred way to use the system calls. You won’t have to 
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worry about finding the numbers and you won’t have to cope with the 

slightly different register usage.  

The UNIX file access functions are available using gcc under Windows. 

Internally these functions end up calling their Windows API equivalents, 

so the performance should be slightly worse. Given that it takes a few 

nanoseconds to make a function call and translate to Windows API calls, 

the difference should be almost impossible to measure. 

The previous “Hello world” program can be rewritten using write and 

exit as  

        segment .data 
 msg:   db      “Hello World!”,0x0a 
 len:   equ     $-msg       ; Length of the string 
        segment .text 
        global  main 
        extern  write, exit 
 main: 
        push    rbp 
        mov     rsp, rsp 
        sub     rsp, 32     ; shadow parameter space 
        mov     r8d, len    ; Arg 3 is the length 
        mov     rdx, msg    ; Arg 2 is the array 
        mov     ecx, 1      ; Arg 1 is the fd 
        call    write 
        xor     ecx, ecx    ; 0 return = success 
        call    exit 

Here you will notice that I have used a yasm equate to define len to be 

the current assembly point, $, minus the address of msg. equ is a pseudo-

op which defines a symbolic name for an expression. This saves the 

trouble of counting characters and insulates the program from slight 

changes.  

You might also have noticed the use of extern to tell the linker that 

write and exit are to be defined in some other place, in this case from the 

C library. 

open 

In order to read and write a file, it must be opened.  For ordinary files this 

is done using the open function: 

    int open ( char *pathname, int flags [, int mode ] ); 

The pathname is a C string (character array terminated with a 0 byte). 

The flags are a set of bit patterns which are or’ed together to define how 

the file is to be opened: read-only mode, write mode or read-write mode 

and other characteristics like whether the file is to be created. If the file 

is to be created the mode parameter defines the permissions to assign to 

the new file. 

The flags are defined in the table below:  



153 

bits meaning 

0 read-only 

1 write-only 

2 read and write 

0x40 create if needed 

0x200 truncate the file 

0x400 append 

The basic permissions are read, write and execute. A process must 

have read permission to read an object, write permission to write it, and 

execute permission to execute it. Execute permission for a file means that 

the file (either a program or a script) can be executed. Execute permission 

for a directory allows traversal of the directory.  

These three permissions are granted or denied for 3 categories of 

accounts: user, group and other. When a user logs in to a Linux system 

the user’s shell is assigned the user’s user-id which is an integer 

identifying the user. In addition the user has a group-id (also an integer) 

which identifies the user as being in a particular group of users. A user 

can belong to multiple groups though only one is the active group. You can 

use the “id” command in the shell to print your user-id, group-id and the 

list of groups you belong to.  

The basic permissions are 3 permissions for 3 groups. The permissions 

are 1 bit each for read, write and execute. This makes an ideal situation 

for using octal numbers. One octal “digit” represents 3 bits. Using 9 bits 

you can specify the basic permissions for user, group and others. Using 

yasm an octal number can be represented by a sequence of digits ending 

in either “o” or “q”. Thus you could specify permissions for read and write 

for the user as 6, read for the group as 4 and no permissions for others as 

0. Putting all these together we get 640o.  

The return value from open is a file descriptor if the value is greater 

than or equal to 0. An error is indicated by a negative return. A file 

descriptor is an integer identifying the connection made by open. File 

descriptors start at 0 and increase for each opened file. Here is some code 

to open a file: 

       segment .data 
 fd:   dd      0 
 name: db      “sample”,0 
       segment .text 
       extern  open 
       lea     rcx, [name] ; pathname 
       mov     edx, 0x42   ; read-write|create 
       mov     r8d, 600o   ; read-write for me 
       call    open 
       cmp     eax, 0 
       jl      error       ; failed to open 
       mov     [fd], eax 
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read and write 

The functions to read and write data to files are read and write. Their 

prototypes are quite similar: 

     int read(int fd, void *data, long count); 
     int write(int fd, void *data, long count); 

The data array can be any type of data. Whatever the type is, the count 

is the number of bytes to read or write. Both functions return the number 

of bytes read or written. An error is indicated by returning -1 and setting 

the extern variable errno to an integer indicating the type of error. You 

can use the perror function call to print a text version of the error. 

lseek 

When reading or writing files, it is sometimes necessary to position to 

a specific spot in the file before reading or writing. An example would be 

writing record number 1000 from a file with records which are 512 bytes 

each. Assuming that record numbers begin with 0, then record 1000 would 

start at byte position 1000 ∗ 512 = 512000. It can be very quick to position 

to 512000 and write 512 bytes. This is also easier than reading and 

writing the whole file. 

The lseek function allows you to set the current position for reading 

or writing in a file. Its prototype is 

     long lseek(int fd, long offset, int whence); 

The offset parameter is frequently simply the byte position in the file, 

but the meaning of offset depends on the value of whence. If whence is 0, 

then offset is the byte position. If whence is 1, then offset is relative to 

the current position. If whence is 2, then offset is relative to the end of 

file. The return value from lseek is the position of the next read or write 

for the file. 

Using lseek with offset 0 and whence equal to 2, lseek will return a 

byte position 1 greater than the last byte of the file. This is an easy way 

to determine the file size. Knowing the size, you could allocate an array 

and read the entire file (as long as you have enough RAM).  

       mov    rcx, [fd] 
       xor    edx, edx    ; set offset to 0 
       mov    r8d, 2      ; set whence to 2 
       call   lseek       ; determine file size 
       mov    [size], rax 
       mov    rcx, rax 
       call   malloc      ; allocate an array 
       mov    [data], rax 
       mov    rcx, [fd] 
       xor    edx, esi    ; set offset to 0 
       xor    r8d, r8d    ; set whence to 0 
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       call   lseek       ; seek to start of file 
       mov    rcx, [fd] 
       mov    rdx, [data] 
       mov    r8, [size] 
       call   read        ; read the entire file 

With 64 Windows, Linux and OS X, lseek uses a 64 bit integer for the 

offset parameter and this makes it possible to seek to positions greater 

than 232. Doing the same with 32 bit Windows would require using 

lseek64. 

close 

When you are done reading or writing a file you should close it. The only 

parameter for the close function is the file descriptor for the file to close. 

If you exit a program without closing a file, it will be closed by the 

operating system. Data read or written using file descriptors is not 

buffered in the user program, so there will not be any unwritten data 

which might be lost. This is not true for using FILE pointers which can 

result in lost data if there is no close. The biggest advantages to closing 

files are that it reduces overhead in the kernel and avoids running into 

the per-process limit on the number of open files. 

       mov     edi, [fd] 
       call    close 

  



156 

 

Exercises 

1. Write a program which processes a collection of files named on the 

command line. For each file the program should print the number of 

bytes, words and lines much like the wc program does. 

2. Write a program which expects 2 strings on the command line. The 

first string is a string to find and the second is the name of a file to 

search through for the string. The program should print all matching 

lines. This is a greatly simplified version of grep. 

3. Write a version of the file copy program using open, read, write and 

close rather than the Windows API equivalents. Compare the times 

for both version for various sizes for the data array. 
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Chapter 13 

Structs 

It is fairly simple to use structs compatible with C by defining a struct in 

yasm. A struct is a compound object which can have data items of different 

types. Let's consider the C struct Customer: 

    struct Customer { 
        int  id; 
        char name[64]; 
        char address[64]; 
        int  balance; 
    }; 

We could access the customer data using assembly code assuming that 

we know the offsets for each item of the struct. 

    mov   rcx, 136      ; size of a Customer 
    call  malloc 
    mov   [c], rax      ; save the address 
    mov   [rax], dword 7; set the id 
    lea   rcx, [rax+4]  ; name field 
    lea   rdx, [name]   ; name to copy to struc 
    call  strcpy 
    mov   rax, [c] 
    lea   rcx, [rax+68] ; address field 
    lea   rdx, [address]; address to copy 
    call  strcpy 
    mov   rax, [c] 
    mov   edx, [balance] 
    mov   [rax+132], edx 

13.1  Symbolic names for offsets 

Well that was certainly effective but using specific numbers for offsets 

within a struct is not really ideal. Any changes to the structure will 

require code modification and errors might be made adding up the offsets. 

It is better to have yasm assist you with structure definition. The yasm 
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keyword for starting a struct is “struc”. Struct components are defined 

between “struc” and “endstruc”. Here is the definition of Customer: 

        struc   Customer 
id      resd    1 
name    resb    64 
address resb    64 
balance resd    1 
        endstruc 

Using this definition gives us the same effect as using equ to set 

symbolic names for the offsets. These names are globally available, so you 

would not be permitted to have id in multiple structs. Instead you can 

prefix each of these names with a period like this: 

         struc   Customer 
.id      resd    1 
.name    resb    64 
.address resb    64 
.balance resd    1 
         endstruc 

Now you must use “Customer.id” to refer to the offset of the id field. 

A good compromise is to prefix the field names with a short abbreviation 

of the struct name. In addition to giving symbolic names to the offsets, 

yasm will also define Customer_size to be the number of bytes in the 

struct. This makes it easy to allocate memory for the struct. Below is a 

program to initialize a struct from separate variables. 

        segment .data 
name    db      "Calvin", 0 
address db      "12 Mockingbird Lane",0 
balance dd      12500 
        struc   Customer 
c_id      resd    1 
c_name    resb    64 
c_address resb    64 
c_balance resd    1 
        endstruc 
c       dq      0 
        segment .text 
        global  main 
        extern  malloc, strcpy 
main: 
        push    rbp 
        mov     rbp, rsp 
        sub     rsp, 32       ; shadow parameter space 
        mov     rcx, Customer_size 
        call    malloc 
        mov     [c], rax      ; save the pointer 
        mov     [rax+c_id], dword 7 
        lea     rcx, [rax+c_name] 
        lea     rdx, [name] 
        call    strcpy 
        mov     rax, [c]      ; restore the pointer 
        lea     rcx, [rax+c_address] 
        lea     rdx, [address] 
        call    strcpy 
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        mov     rax, [c]      ; restore the pointer 
        mov     edx, [balance] 
        mov     [rax+c_balance], edx 
        xor     eax, eax 
        leave 
        ret 

Now this is all great but there is a possible alignment problem versus 

C if we make the address field 1 byte larger. In C this makes the offset of 

balance increase from 132 to 136. In yasm it increases from 132 to 133. It 

still works but the struct definition does not match the alignment of C. To 

do so we must place align 4 before the definition of c_balance. 

Another possibility is to have a static variable of type Customer. To do 

this with default data, simply use this: 

c      istruc  Customer 
       iend 

If you wish to define the fields, define them all in order. 

c      istruc  Customer 
       at c_id, dd 7 
       at c_name, db "Calvin", 0 
       at c_address, db "12 Mockingbird Lane", 0 
       at c_balance, dd 12500 
       iend 

13.2  Allocating and using an array of structs 

If you wish to allocate an array of structs, then you need to multiply the 

size of the struct times the number of elements to allocate enough space. 

But the size given by Customer_size might not match the value from 

sizeof(struct Customer) in C. C will align each data item on 

appropriate boundaries and will report a size which will result in each 

element of an array having aligned fields. You can assist yasm by adding 

a terminal align X where X represents the size of the largest data item in 

the struct. If the struct has any quad word fields then you need align 8 

to force the _size value to be a multiple of 8. If the struct has no quad 

word byte fields but has some double word fields you need align 4. 

Similarly you might need align 2 if there are any word fields. 

So our code to declare a struct (slightly changed) and allocate an array 

would look like this 

          segment .data 
          struc   Customer 
c_id      resd    1     ; 4 bytes 
c_name    resb    65    ; 69 bytes 
c_address resb    65    ; 134 bytes 
          align   4     ; aligns to 136 
c_balance resd    1     ; 140 bytes 
c_rank    resb    1     ; 141 bytes 
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          align   4     ; aligns to 144 
          endstruc 
customers dq      0 
          segment .text 
          mov   ecx, 100 ; for 100 structs 
          mul   ecx, Customer_size 
          call  malloc 
          mov   [customers], rax 

Now to work with each array element we can start with a register 

holding the value of customers and add Customer_size to the register 

after we process each customer. 

          segment .data 
format    db    "%s %s %d",0x0a,0 
          segment .text 
          push  r15 
          push  r14 
 
;         We're using r14 and r15 since 
;         they are preserved through calls 
 
          mov   r15, 100        ; loop counter 
          mov   r14, [customers] 
more      lea   ecx, [format] 
          lea   edx, [r14+c_name] 
          lea   r8,  [r14+c_address] 
          mov   r9,  [r14+c_balance] 
          call  printf 
          add   r14, Customer_size 
          sub   r15, 1 
          jnz   more 
 
;         r14 and r15 must be restored 
;         for the calling function 
 
          pop   r14 
          pop   r15 
          ret 
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Exercises 

1. Design a struct to represent a set. The struct will hold the maximum 

set size and a pointer to an array holding 1 bit per possible element of 

the set. Members of the set will be integers from 0 to the set size minus 

1. Write a test program to read commands which operate on the set. 

The commands will be “add”, “remove”, and “test”. Each command 

will have an integer parameter entered with it. Your program will 

then be able to add elements to the set, remove elements to the set 

and test numbers for membership. 

2. Using the design for sets from exercise 1, write a program to 

manipulate multiple sets. Implement commands “add”, “union”, 

“print” and “intersect”. Create 10 sets with size equal to 10000. “add 

s k” will add 𝑘 to set 𝑠. “union s t” will replace set 𝑠 with 𝑠 ∪ 𝑡. 

“intersect s t” will replace set 𝑠 with 𝑥 ∩ 𝑡. “print s” will print the 

elements of 𝑠. 

3. Design a struct to represent large integers. For simplicity use quad 

word arrays as the data for the large integers. Each quad word will 

represent 18 digits of the number. So 1 quad word can store a number 

up to 999,999,999,999,999,999. 2 quad words can store a number up 

to 999,999,999,999,999,999,999,999,999,999,999,999. Implement only 

positive numbers. Implement addition and multiplication (based on 

addition). Compute 50!. You are permitted to write a main routine and 

the factorial function in C or C++ using assembly code to perform all 

long arithmetic. 
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Chapter 14 

Using the C stream I/O 

functions 

The functions callable from C include a wide variety of functions in many 

areas including process management, file handling, network 

communications, string processing and graphics programming. Studying 

much of these capabilities would lead us too far afield from the study of 

assembly language. The stream input and output facilities provide an 

example of a higher level library which is also quite useful in many 

programs.  

In the chapter on system calls we focused on open, read, write and 

close which are merely wrapper functions for system calls. In this 

chapter we will focus on a similar collection of functions which perform 

buffered I/O. Buffered I/O means that the application maintains a data 

buffer for each open file.  

Reading using a buffered I/O system can be more efficient. Let’s 

suppose you ask the buffered I/O system to read 1 byte. It will attempt to 

read 1 byte from the buffer of already read data. If it must read, then it 

reads enough bytes to fill its buffer - typically 8192 bytes. This means that 

8192 reads of 1 byte can be satisfied by 1 actual system call. Reading a 

byte from the buffer is very fast. In fact reading a large file is over 20 

times as fast reading 1 byte at a time using the C stream getchar function 

compared to reading one byte at a time using read. 

You should be aware that the operating system also uses buffers for 

open files. When you call read to read 1 byte, the operating system is 

forced by the disk drive to read complete sectors, so it must read at least 

1 sector (probably 512 bytes). Most likely the operating system reads 4096 

bytes and saves the data which has been read in order to make use of the 

data in subsequent reads. If the operating system did not use buffers, 

reading 1 byte at a time would require interacting with the disk for each 

byte which would be perhaps 10 to 20 times slower than using the buffer.  
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The net result from this discussion is that if your program needs to 

read or write small quantities of data, it will be faster to use the stream 

I/O facilities rather than using the system calls. It is generally possible to 

use the system calls and do your own buffering which is tailored for your 

needs thereby saving time. You will of course pay for this improved 

efficiency by working harder. You must weigh the importance of improved 

performance versus increased labor.  

14.1  Opening a file 

The function to open a file using the stream I/O functions is fopen. It, like 

the other stream I/O functions, begins with the letter “f” to make the 

name distinct from the system call wrapper function it resembles. The 

prototype for fopen is  

     FILE *fopen ( char *pathname, char *mode ); 

The file to be opened is named in the first parameter and the mode is 

named in the second parameter. The mode can be any of the values from 

the table below 

mode meaning 

r read-only 

r+ read and write, truncates or creates 

w write-only, truncates or creates 

w+ read and write, truncates or creates 

a write only, appends or creates 

a+ read and write, appends or creates 

The return value is a pointer to a FILE object. This is an opaque 

pointer in the sense than you never need to know the components of the 

FILE object. Most likely a FILE object is a struct which contains a pointer 

to the buffer for the file and various “house-keeping” data items about the 

file. This pointer is used in the other stream I/O functions. In assembly 

language it is sufficient to simply store the pointer in a quad-word and 

use that quad-word as needed for function calls. Here is some code to open 

a file: 

        segment .data 
 name   db      “customers.dat”,0 
 mode   db      “w+”,0 
 fp     dq      0 
        segment .text 
        global  fopen 
        lea     rcx, [name] 
        lea     rdx, [mode] 
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        call    fopen 
        mov     [fp], rax 

14.2  fscanf and fprintf 

You have encountered scanf and printf in previous code. scanf is a 

function which calls fscanf with a FILE pointer named stdin as its first 

parameter, while printf is a function which calls fprintf with FILE 

pointer stdout as its first parameter. The only difference between these 

pairs of functions is that fscanf and fprintf can work with any FILE 

pointer. Their prototypes are 

     int fscanf( FILE *fp, char *format, ... ); 
     int fprintf( FILE *fp, char *format, ... ); 

For simple use consult Appendix B which discusses scanf and printf. 

For more information use “man fscanf” or “man fprintf” or consult a C 

book. 

14.3  fgetc and fputc 

If you need to process data character by character, it can be convenient to 

use fgetc to read characters and fputc to write characters. Their 

prototypes are 

     int fgetc ( FILE *fp ); 
     int fputc ( int c, FILE *fp ); 

The return value of fgetc is the character which has been read, except 

for end of file or errors when it returns the symbolic value EOF which is -1 

as a 32 bit integer. This means that you need to compare eax instead of 

rax for a negative value to detect end of file. The function fputc writes 

the character provided in c to the file. It returns the same character it has 

written unless there is an error when it returns EOF.  

Fairly often it is convenient to get a character and do something which 

depends on the character read. For some characters you may need to give 

control over to another function. This can be simplified by giving the 

character back to the file stream using ungetc. You are guaranteed only 

1 pushed back character, but having 1 character of look-ahead can be 

quite useful. The prototype for ungetc is 

     int ungetc ( int c, FILE *fp ); 

Below is a loop copying a file from one stream to another using fgetc 

and fputc. 
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 more:  mov     rcx, [ifp]  ; input file pointer 
        call    fgetc 
        cmp     eax, -1 
        je      done 
        mov     rcx, rax 
        mov     rdx, [ofp]  ; output file pointer 
        call    fputc 
        jmp     more 
 done: 

14.4  fgets and fputs 

Another common need is to read lines of input and process them line by 

line. The function fgets reads 1 line of text (or less if the array is too 

small) and fputs writes 1 line of text. Their prototypes are 

     char *fgets(char *s, int size, FILE *fp); 
     int fputs(char *s, FILE *fp); 

The first parameter to fgets is an array of characters to receive the 

line of data and the second parameter is the size of the array. The size is 

passed into the function to prevent buffer overflow. fgets will read up to 

size - 1 characters into the array. It stops reading when it hits a new-line 

character or end of file. If it reads a new-line it stores the new-line in the 

buffer. Whether it reads a complete line or not, fgets always places a 0 

byte at the end of the data it has read. It returns s on success and a NULL 

pointer on error or end of file. 

fputs writes the string in s without the 0 byte at the end of the string. 

It is your responsibility to place any required new-lines in the array and 

add the 0 byte at the end. It returns a non-negative number on success or 

EOF on error. 

It can be quite useful following fgets to use sscanf to read data from 

the array. sscanf is like scanf except that the first parameter is an array 

of characters which it will attempt to convert in the same fashion as 

scanf. Using this pattern gives you an opportunity to read the data with 

sscanf, determine that the data was not what you expected and read it 

again with sscanf with a different format string. 

Here is some code which copies lines of text from one stream to 

another, skipping lines which start with a “;” 

more:  lea     rcx, [s] 
       mov     edx, 200 
       mov     r8, [ifp] 
       call    fgets 
       cmp     rax, 0 
       je      done 
       mov     al, [s] 
       cmp     al, ‘;’ 
       je      more 
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       lea     rcx, [s] 
       mov     rdx, [ofp] 
       call    fputs 
       jmp     more 
 done: 

14.5  fread and fwrite 
The fread and fwrite functions are designed to read and write arrays 

of data. Their prototypes are  

     int fread(void *p, int size, int nelts, FILE *fp); 
     int fwrite(void *p, int size, int nelts, FILE *fp);  

The first parameter to these functions is an array of any type. The next 

parameter is the size of each element of the array, while the third is the 

number of array elements to read or write. They return the number of 

array elements read or written. In the event of an error or end of file, the 

return value might be less than nelts or 0.  

Here is some code to write all 100 elements of the customers array to 

a disk file 

       mov     rcx, [customers] ; allocated array 
       mov     edx, Customer_size 
       mov     r8d, 100 
       mov     r9, [fp] 
       call    fwrite 

14.5  fseek and ftell 

Positioning a stream is done using the fseek function, while ftell is used 

to determine the current position. The prototype for these functions are  

     int fseek ( FILE *fp, long offset, int whence ); 
     long ftell ( FILE *fp ); 

The second parameter, offset, of fseek is a byte position value which is 

dependent on the third parameter, whence, to define its meaning. The 

meaning of whence is exactly like in lseek. If whence is 0, then offset is 

the byte position. If whence is 1, then offset is relative to the current 

position. If whence is 2, then offset is relative to the end of file.  

The return value of fseek is 0 for success and -1 for errors. If there is 

an error the variable errno is set appropriately. The return value of ftell 

is the current byte position in the file unless there is an error. On error it 

returns -1.  

Here is a function to write a Customer record to a file. 

 ;     void write_customer(FILE *fp, struct Customer *c, 
 ;                         int record_number ); 
       segment .text 
       global  write_customer write_customer: 
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 .fp   equ     16 
 .c    equ     24 
 .rec  equ     32 
       push    rbp 
       mov     rbp, rsp 
       sub     rsp, 32         ; shadow parameters 
       mov     [rbp+.fp], rcx  ; save parameters in 
       mov     [rbp+.c], rdx   ; current stack frame 
       mov     [rbp+.rec], r8 
       mul     r8, Customer_size 
       mov     rdx, r8         ; offset for ftell 
       mov     r8, 0           ; whence 
       call    fseek           ; position file 
       mov     rcx, [rbp+.c] 
       mov     rdx, Customer_size 
       mov     r8, 1 
       mov     r9, [rbp+.fp] 
       call    fwrite          ; write the record 
       leave 
       ret 

14.6  fclose 

fclose is used to close a stream. This is important since a stream may 

have data in its buffer which needs to be written. This data will be written 

when you call fclose and will be forgotten if you fail to call it. A FILE 

pointer is the only parameter to fclose. 
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Exercises 

1. Write an assembly program which will create a new Customer using 

the struct definition from this chapter. Your program should prompt 

for and read the file name, the customer name, address, balance and 

rank fields. Then your code should scan the data in the file looking for 

an empty position. An empty position is a record with 0 in the id field. 

In general the id value will be 1 greater than the record number for a 

record. If there is no empty record, then add a new record at the end 

of the file. Report the customer’s id. 

2. Write an assembly program to update the balance for a customer. The 

program should accept from the command line the name of a data file, 

a customer id and an amount to add to the balance for that customer. 

The customer’s id is 1 greater than the record number. Report an error 

if the customer record is unused (id = 0). 

3. Write an assembly program to read the customer data in a file, sort it 

by balance and print the data in increasing balance order. You should 

open the file and use fseek to seek to the end and use ftell to 

determine the number of records in the file. It should allocate an array 

large enough to hold the entire file, read the records one at a time, 

skipping past the unused records (id = 0). Then it should sort using 

qsort. You can call qsort using  

      qsort(struct Customer *c, int count, int size, compare);  

The count parameter is the number of structs to sort and size is 

the size of each in bytes. The compare parameter is the address of a 

function which will accept 2 parameters, each a pointer to a struct 

Customer. This function will compare the balance fields of the 2 

structs and return a negative, 0, or positive value based on the order 

of the 2 balances. 
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Chapter 15 

Data structures 

Data structures are widely used in application programming. They are 

frequently used for algorithmic purposes to implement structures like 

stacks, queues and heaps. They are also used to implement data storage 

based on a key, referred to as a “dictionary”. In this chapter we discuss 

implementing linked lists, hash tables, doubly-linked lists and binary 

trees in assembly. 

One common feature of all these data structures is the use of a 

structure called a “node” which contains data and one or more pointers to 

other nodes. The memory for these nodes will be allocated using malloc. 

15.1  Linked lists 

A linked list is a structure composed of a chain of nodes. Below is an 

illustration of a linked list:  

  

You can see that the list has 4 nodes. Each node has a data value and 

a pointer to another node. The last node of the list has a NULL pointer 

(value 0), which is illustrated as a filled circle. The list itself is represented 

as a pointer. We can illustrate the list more completely by placing the list’s 

first pointer in a box and giving it a name: 

  

This list has no obvious order to the data values in the nodes. It is 

either unordered or possibly ordered by time of insertion. It is very easy 

to insert a new node at the start of a list, so the list could be in decreasing 

time of insertion order. 
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The list is referenced using the pointer stored at the memory location 

labeled list. The nodes on the list are not identified with specific labels 

in the code which maintains and uses the list. The only way to access these 

nodes is by using the pointers in the list. 

List node structure 

Our list node will have 2 fields: a data value and a pointer to the next 

node. The yasm structure definition is 

         struc   node 
 n_value resq    1 
 n_next  resq    1 
         align   8 
         endstruc  

The alignment instruction is not needed with 2 quad-words in the 

structure, but it may protect us from confusion later. 

Creating an empty list 

The first decision in designing a container structure is how to represent 

an empty container. In this linked list design we will take the simplest 

choice of using a NULL pointer as an empty list. Despite this simplicity it 

may be advantageous to have a function to create an empty list. 

 newlist: 
       xor     eax, eax 
       ret  

Inserting a number into a list 

The decision to implement an empty list as a NULL pointer leaves a small 

issue for insertion. Each insertion will be at the start of the list which 

means that there will be a new pointer stored in the list start pointer for 

each insertion. There are 2 possible ways to cope with this. One way is to 

pass the address of the pointer into the insertion function. A second way 

is to have the insertion pointer return the new pointer and leave it to the 

insertion code to assign the new pointer upon return. It is less confusing 

to dodge the address of a pointer problem. Here is the insertion code: 

 ;   list = insert ( list, k ); 
 insert: 
 .list equ     16 
 .k    equ     24 
       push rbp 
       mov  rbp, rsp 
       sub  rsp, 32           ; shadow space 
       mov  [rbp+.list], rcx  ; save list pointer 
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       mov  [rbp+.k], rdx     ; and k in stack frame 
       mov  ecx, node_size 
       call malloc            ; rax = node pointer 
       mov  r8, [rbp+.list]   ; get list pointer 
       mov  [rax+n_next], r8  ; save list pointer in new node 
       mov  r9, [rbp+.k]      ; get k 
       mov  [rax+n_value], r9 ; save k in node 
       leave 
       ret 

Traversing the list 

Traversing the list requires using an instruction like 

       mov     rbx, [rbx+n_next] 

to advance from a pointer to one node to a pointer to the next node. We 

start by inspecting the pointer to see if it is NULL. If it is not then we enter 

the loop. After processing a node we advance the pointer and repeat the 

loop if the pointer is not NULL. The print function below traverses the list 

and prints each data item. The code shows a good reason why it is nice to 

have a few registers protected in calls. We depend on rbx being preserved 

by printf. 

 print: 
       segment .data 
 .print_fmt: 
       db    “%ld “,0 
 .newline: 
       db    0x0a,0 
       segment .text 
 .rbx  equ   16 
       push  rbp 
       mov   rbp, rsp 
       sub   rsp, 32           ; shadow space 
       mov   [rbp+.rbx], rbx   ; save old rbx 
       cmp   rcx, 0            ; skip the loop if 
       je    .done             ; list pointer == 0 
       mov   rbx, rcx          ; get first node 
 .more: 
       lea   rcx, [.print_fmt] 
       mov   rdx, [rbx+n_value] 
       call  printf            ; print node value 
       mov   rbx, [rbx+n_next] ; p = p->next 
       cmp   rbx, 0            ; end the loop if 
       jne   .more             ; node pointer == 0 
 .done: 
       lea   rcx, [.newline] 
       call  printf            ; print a new-line 
       mov   rbx, [rbp+.rbx]   ; restore rbx 
       leave 
       ret 

Last we have a main function which creates a list, reads values using 

scanf, inserts the values into the list and prints the list after each 

insertion. 
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 main: 
 .list equ     -8 
 .k    equ     -16 
       segment .data 
 .scanf_fmt: 
       db      “%ld”,0 
       segment .text 
       push     rbp 
       mov      rbp, rsp 
       sub      rsp, 48          ; shadow space + 
                                 ; room for list and k 
       call     newlist          ; create a list 
       mov      [rbp+.list], rax 
 .more lea      rcx, [.scanf_fmt] 
       lea      rdx, [rbp+.k] 
       call     scanf            ; read k 
       cmp      rax, 1           ; if the read fails return 
       jne      .done 
       mov      rcx, [rbp+.list] 
       mov      rdx, [rbp+.k] 
       call     insert           ; insert k 
       mov      [rbp+.list], rax 
       mov      rcx, rax 
       call     print            ; print the list 
       jmp     .more 
 .done leave 
       ret 

Here is a sample session using the program, entering the numbers 1 

through 5 (input in boldface):  

     1 
     1 
 
     2 
     2 1 
 
     3 
     3 2 1 
 
     4 
     4 3 2 1 
 
     5 
     5 4 3 2 1  

You can see the most recently printed number is at the first of the list. 

By adding a function to get and remove (pop) the first element of the list, 

we could turn this into a stack. This is one of the exercises for this chapter. 

15.2  Doubly-linked lists 

A doubly-linked list has 2 pointers for each node: one points to the next 

node and one points to the previous node. It becomes quite simple to 

manage a doubly-linked list if you make the list circular and if you retain 
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an unused cell at the start of the list. Here is an example list with 4 data 

nodes: 

 

 We see that the variable list points to the first node of the list, called 

the “head node”. The head node has a value, but we never use the value. 

The top pointer in each node points to the next node in the list and the 

bottom pointer points to the previous node in the list. The previous pointer 

of the head node is the last node in the list. This makes this list capable 

of implementing a stack (last-in first-out), a queue (first-in first-out) or a 

double-ended queue (deque). The primary advantage of this design is that 

the list is never really empty - it can be logically empty but the head node 

remains. Furthermore, once a list is created, the pointer to the head node 

never changes. 

Doubly-linked list node structure 

Our list node will have 3 fields: a data value, a pointer to the next node 

and a pointer to the previous node. The yasm structure definition is 

         struc   node 
 n_value resq    1 
 n_next  resq    1 
 n_prev  resq    1 
         align   8 
         endstruc 

Creating a new list 

The code for creating a new doubly-linked list allocates a new node and 

sets its next and previous pointers to itself. The calling function receives 

a pointer which does not change during the execution of the program. 

Here is the creation code: 

 ;       list = newlist(); 
 newlist: 
         push    rbp 
         mov     rbp, rsp 
         sub     rsp, 32 
         mov     ecx, node_size 
         call    malloc 
         mov     [rax+n_next], rax  ; head points forward 
         mov     [rax+n_prev], rax  ; and back to itself 
         leave 
         ret 
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When it returns the empty list looks like the diagram below:  

 

Inserting at the front of the list 

To insert a new node at the front of the list you need to place the head 

node’s next pointer in the new node’s next slot and place the head pointer 

into the new node’s previous slot. After doing that you can make the head 

node point forward to the new node and make the head’s former next point 

backwards to the new node. These steps are illustrated in the diagram 

below. The old links are in dashed lines and the new links are numbered, 

with bold lines. 

 

One of the elegant features of the doubly-linked circular list is the 

elimination of special cases. Inserting the first node is done with exactly 

the same code as inserting any other node. 

The code for insertion is 

 ;   insert ( list, k ); 
 insert: 
 .list equ   16 
 .k    equ   24 
       push  rbp 
       mov   rbp, rsp 
       sub   rsp, 32 
       mov   [rbp+.list], rcx  ; save list pointer 
       mov   [rbp+.k], rdx     ; and k on stack 
       mov   ecx, node_size 
       call  malloc            ; rax = new node 
       mov   r8, [rbp+.list]   ; get list pointer 
       mov   r9, [r8+n_next]   ; get head’s next 
       mov   [rax+n_next], r9  ; p->next = h->next 
       mov   [rax+n_prev], r8  ; p->prev = h 
       mov   [r8+n_next], rax  ; h->next = p 
       mov   [r9+n_prev], rax  ; p->next->prev = p 
       mov   r9, [rbp+.k]      ; get k 
       mov   [rax+n_value], r9 ; save k in node 
       leave 
       ret 
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List traversal 

List traversal of a doubly-linked list is somewhat similar to traversal of a 

singly-linked list. We do need to skip past the head node and we need to 

test the current pointer against the pointer to the head node to detect the 

end of the list. Here is the code for printing the list: 

 ;   print ( list ); 
 print: 
       segment .data 
 .print_fmt: 
       db    “%ld “,0 
 .newline: 
       db    0x0a,0 
       segment .text 
 .list equ   16 
 .rbx  equ   24 
       push  rbp 
       mov   rbp, rsp 
       sub   rsp, 32 
       mov   [rbp+.rbx], rbx  ; save rbx 
       mov   [rbp+.list], rcx ; keep head pointer 
       mov   rbx, [rcx+n_next]; get first node 
       cmp   rbx, [rbp+.list] ; if it’s head node 
       je    .done            ; the list is empty 
 .more: 
       lea   rcx, [.print_fmt] 
       mov   rdx, [rbx+n_value] 
       call  printf           ; print node value 
       mov   rbx, [rbx+n_next]; get next node 
       cmp   rbx, [rbp+.list] ; if it’s head node 
       jne   .more            ; end the loop 
 .done: 
       lea   rcx, [.newline] 
       call  printf           ; print a newline 
       mov   rbx, [rbp+.rbx]  ; restore rbx 
       leave 
       ret 

15.3  Hash tables 

A hash table is an efficient way to implement a dictionary. The basic idea 

is that you compute a hash value for the key for each item in the 

dictionary. The purpose of the hash value is to spread the keys throughout 

an array. A perfect hash function would map each key to a unique location 

in the array used for hashing, but this is difficult to achieve. Instead we 

must cope with keys which “collide”. 

The simplest way to cope with collisions is to use a linked list for each 

location in the hash array. Consider the illustration below: 
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In this hash table, keys 12, 4, 16 and 9 all have hash values of 1 and 

are placed on the list in location 1 of the hash array. Keys 13 and 8 both 

have hash values 3 and are placed on the list in location 3 of the array. 

The remaining keys are mapped to 5 and 7.  

One of the critical issues with hashing is to develop a good hashing 

function. A hashing function should appear almost random. It must 

compute the same value for a particular key each time it is called for the 

key, but the hash values aren’t really important - it’s the distribution of 

keys onto lists which matters. We want a lot of short lists. This means 

that the array size should be at least as large as the number of keys 

expected. Then, with a good hash function, the chains will generally be 

quite short. 

A good hash function for integers 

It is generally recommended that a hash table size be a prime number. 

However this is not very important if there is no underlying pattern to the 

numbers used as keys. In that case you can simply use 𝑛 mod 𝑡 where 𝑛 is 

the key and 𝑡 is the array size. If there is a pattern like many multiples of 

the same number, then using a prime number for 𝑡 makes sense.  

Here is the hash function for the example code: 

;       i = hash ( n ); 
 hash   mov     rax, rcx 
        and     rax, 0xff 
        ret 

The table size is 256 in the example, so using and gives 𝑛 mod 256.  

 A good hash function for strings 

A good hash function for strings is to treat the string as containing 

polynomial coefficients and evaluate 𝑝(𝑛) for some prime number 𝑛. In the 
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code below we use the prime number 191 in the evaluation. After 

evaluating the polynomial value, you can perform a modulus operation 

using the table size (100000 in the sample code). 

     int hash ( unsigned char *s ) 
     { 
         unsigned long h = 0; 
         int i = 0; 
         while ( s[i] ) { 
             h = h*191 + s[i]; 
             i++; 
         } 
         return h % 100000; 
     } 

Hash table node structure and array 

In the sample hash table the table size is 256, so we need an array of 256 

NULL pointers when the program starts. Since this is quite small, it is 

implemented in the data segment. For a more realistic program, we would 

need a hash table creation function to allocate an array and fill it with 0’s. 

Below is the declaration of the array and the structure definition for the 

linked lists at each array location. 

         segment .data 
 table   times 256 dq    0 
         struc  node 
 n_value resq    1 
 n_next  resq    1 
         align   8 
         endstruc 

Function to find a value in the hash table 

The basic purpose of a hash table is to store some data associated with a 

key. In the sample hash table we are simply storing the key. The find 

function below searches through the hash table looking for a key. If it is 

found, the function returns a pointer to the node with the key. If it is not 

found, it returns 0. A more realistic program would probably return a 

pointer to the data associated with the key.  

The find function operates by calling hash to compute the index in the 

hash array for the linked list which might hold the key being sought. Then 

the function loops through the nodes on the list looking for the key.  

 ;     p = find ( n ); 
 ;     p = 0 if not found 
 find: 
 .n    equ   16 
       push  rbp 
       mov   rbp, rsp 
       sub   rsp, 32 
       mov   [rbp+.n], rcx     ; save n 
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       call  hash              ; h = hash(n) 
       mov   rax, [table+rax*8]; p = table[h] 
       mov   rcx, [rbp+.n]     ; restore n 
       cmp   rax, 0            ; if node pointer 
       je    .done             ; is 0 quit 
 .more: 
       cmp   rcx, [rax+n_value]; if p->value = n 
       je    .done             ; return p 
       mov   rax, [rax+n_next] ; p = p->next 
       cmp   rax, 0            ; if node pointer 
       jne   .more             ; is 0 quit 
 .done: 
       leave 
       ret 

Insertion code 

The code to insert a key into the hash table begins by calling find to avoid 

inserting the key more than once. If the key is found it skips the insertion 

code. If the key is not found, the function calls hash to determine the index 

for the linked list to add the key to. It allocates memory for a new node 

and inserts it at the start of the list. 

 ;     insert ( n ); 
 insert: 
 .n    equ   16 
 .h    equ   24 
       push  rbp 
       mov   rbp, rsp 
       sub   rsp, 32 
       mov   [rbp+.n], rcx     ; save n 
       call  find              ; look for n 
       cmp   rax, 0            ; if n id found 
       jne   .found            ; skip insertion 
       mov   rcx, [rbp+.n]     ; restore n 
       call  hash              ; compute h=hash(n) 
       mov   [rbp+.h], rax     ; save h 
       mov   rcx, node_size 
       call  malloc            ; allocate node 
       mov   r9, [rbp+.h]      ; restore h 
       mov   r8, [table+r9*8]  ; get first node f from 
table[h] 
       mov   [rax+n_next], r8  ; set next pointer of node to f 
       mov   r8, [rbp+.n]      ; set value of new 
       mov   [rax+n_value], r8 ; node to n 
       mov   [table+r9*8], rax ; make node first on table[h] 
 .found: 
       leave 
       ret 

Printing the hash table 

The print function iterates through the indices from 0 through 255, 

printing the index number and the keys on each non-empty list. It uses 
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registers r12 and r13 for safe storage of a loop counter to iterate through 

the locations of the hash table array and for a pointer to loop through the 

nodes on each linked list. This is more convenient than using registers 

which require saving and restoring around each printf call. It does 

require saving and restoring these 2 registers at the start and end of the 

function to preserve them for calling functions.  

You will notice that the code switches back and forth between the data 

and text segments so that printf format strings will be placed close to their 

point of use in the code.  

print: 
.r12   equ   16 
.r13   equ   24 
       push  rbp 
       mov   rbp, rsp 
       sub   rsp, 32 
       mov   [rbp+.r12], r12 ; i: integer counter for table 
       mov   [rbp+.r13], r13 ; p: pointer for list at table[i] 
 
 ;     for ( i = 0; i < 256; i++ ) { 
       xor   r12, r12 
 
 .more_table: 
 ;        p = table[i]; 
          mov   r13, [table+r12*8]  
 
 ;        if ( p != 0 ) { 
          cmp   r13, 0 
          je    .empty   

;            print the list header 
             segment .data 
 .print1: 
             db    “list %3d: “,0 
             segment .text 
             lea   rcx, [.print1] 
             mov   rdx, r12 
             call  printf  
 
;            do { 
 .more_list: 
;               print the node’s value 
                segment .data 
 .print2        db      “%ld “,0 
                segment .text 
                lea   rcx, [.print2] 
                mov   rdx, [r13+n_value] 
                call  printf 
 
;               advance to the next node 
                mov   r13, [r13+n_next] 
 
;            } while ( the node != 0 ) 
             cmp   r13, 0 
 
 
             jne   .more_list  
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;         print new line 
          segment .data 
 .print3: db      0x0a,0 
          segment .text 
          lea   rcx, [.print3] 
          call  printf 
 .empty: 
 
;         i++ 
          inc   r12 
          cmp   r12, 256 
          jl    .more_table 
 ;     } end of for loop 
       mov   r13, [rbp+.r13] 
       mov   r12, [rbp+.r12] 
       leave 
       ret 

Testing the hash table 

The main function for the hash table reads numbers with scanf, inserts 

them into the hash table and prints the hash table contents after each 

insertion: 

main: 
 .k     equ   -8 
        segment .data 
 .scanf_fmt: 
        db    “%ld”,0 
        segment .text 
        push  rbp 
        mov   rbp, rsp 
        sub   rsp, 48 
 .more: 
        lea   rcx, [.scanf_fmt] 
        lea   rdx, [rbp+.k] 
        call  scanf            ; read k 
        cmp   rax, 1           ; if the read fails 
        jne   .done            ; end it all 
        mov   rcx, [rbp+.k] 
        call  insert           ; insert(k); 
        call  print            ; print hash table 
        jmp   .more 
 .done: 
        leave 
        ret 

Below is the printing of the hash table contents after inserting 1, 2, 3, 

4, 5, 256, 257, 258, 260, 513, 1025 and 1028.  

 list   0: 256 
 list   1: 1025 513 257 1 
 list   2: 258 2 
 list   3: 3 
 list   4: 1028 260 4 
 list   5: 5 
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15.4  Binary trees 

A binary tree is a structure with possibly many nodes. There is a single 

root node which can have left or right child nodes (or both). Each node in 

the tree can have left or right child nodes (or both).  

Generally binary trees are built with an ordering applied to keys in the 

nodes. For example you could have a binary tree where every node divides 

keys into those less than the node’s key (in the left sub-tree) and those 

greater than the node’s key (in the right sub-tree). Having an ordered 

binary tree, often called a binary search tree, makes it possible to do fast 

searches for a key while maintaining the ability to traverse the nodes in 

increasing or decreasing order.  

Here we will present a binary tree with integer keys with the ordering 

being lower keys on the left and greater keys on the right. First are the 

structures used for the tree. 

Binary tree node and tree structures 

The nodes in the binary tree have an integer value and two pointers. The 

structure definition below uses a prefix convention in naming the value 

field as n_value and the left and right pointers as n_left and n_right. 

         struc   node 
 n_value resq    1 
 n_left  resq    1 
 n_right resq    1 
         align   8 
         endstruc 

It would be possible to simply use a pointer to the root node to 

represent the tree. However we could add features to the tree, like node 

deletion or balancing, which could change the root of the tree. It seems 

logical to store the root in a structure insulating us from future root 

changes in a tree. We have also included in the tree structure a count of 

the number of nodes in the tree. 

         struc   tree 
 t_count resq    1 
 t_root  resq    1 
         align   8 
         endstruc 

Creating an empty tree 

The new_tree function allocates memory for a tree structure and sets the 

count and the root of the new tree to 0. By having the root of the tree in a 

structure the code using the binary tree always refers to a particular tree 
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using the pointer returned by new_tree. A more robust function should 

check the value returned by malloc. 

 new_tree: 
         push    rbp 
         mov     rbp, rsp 
         sub     rsp, 32 
         mov     rcx, tree_size 
         call    malloc 
         xor     ecx, ecx 
         mov     [rax+t_root], rcx 
         mov     [rax+t_count], rcx 
         leave 
         ret 

Finding a key in a tree 

To find a key in a binary search tree you start with a pointer to the root 

node and compare the node’s key with the key being sought. If it’s a match 

you’re done. If the target key is less than the node’s key you change your 

pointer to the node’s left child. If the target key is greater than the node’s 

key you change the pointer to the node’s right child. You then repeat these 

comparisons with the new node. If you ever reach a NULL pointer, the key 

is not in the tree. Below is the code for finding a key in a binary tree. It 

returns a pointer to the correct tree node or NULL if not found. 

 ;       p = find ( t, n ); 
 ;       p = 0 if not found 
 find: 
         push    rbp 
         mov     rbp, rsp 
         mov     rcx, [rcx+t_root] 
         xor     eax, eax 
 .more   cmp     rcx, 0 
         je      .done 
         cmp     rdx, [rcx+n_value] 
         jl      .goleft 
         jg      .goright 
         mov     rax, rcx 
         jmp     .done 
 .goleft: 
         mov     rcx, [rcx+n_left] 
         jmp     .more 
 .goright: 
         mov     rcx, [rcx+n_right] 
         jmp     .more 
 .done   leave 
         ret 

Inserting a key into the tree 

The first step in inserting a key is to use the find function to see if the 

key is already there. If it is, then there is no insertion. If not, then a new 
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tree node is allocated, its value is set to the new key value and its left and 

right child pointers are set to NULL. Then it’s time to find where to place 

this in the tree. 

There is a special case for inserting the first node in the tree. If the 

count of nodes in the tree is 0, then the count is incremented and the tree’s 

root pointer is set to the new node.  

If the tree is non-empty then you start by setting a current pointer to 

point to the root node. If the new key is less than the current node’s key, 

then the new node belongs in the left sub-tree. To handle this you inspect 

the left child pointer of the current node. If it is null, you have found the 

insertion point, so set the left pointer to the pointer of the new node. 

Otherwise update your current node pointer to be the left pointer and 

start comparisons with this node. If the key is not less than the current 

node’s key, it must be greater than. In that case you inspect the current 

node’s right child pointer and either set it the new node’s pointer or 

advance your current pointer to the right child and repeat the comparison 

process. 

 ;     insert ( t, n ); 
 insert: 
 .n    equ   16 
 .t    equ   24 
       push  rbp 
       mov   rbp, rsp 
       sub   rsp, 32 
       mov   [rbp+.t], rcx 
       mov   [rbp+.n], rdx 
       call  find                ; look for n 
       cmp   rax, 0              ; if in the tree 
       jne   .done               ; don’t insert it 
       mov   rcx, node_size 
       call  malloc              ; p = new node 
       mov   rdx, [rbp+.n] 
       mov   [rax+n_value], rdx  ; p->value = n 
       xor   eax, eax 
       mov   [rax+n_left], rax   ; p->left = NULL 
       mov   [rax+n_right], rax  ; p->right = NULL 
       mov   r9, [rbp+.t] 
       mov   rcx, [r9+t_count]   ; get tree size 
       cmp   rcx, 0              ; count == 0 ? 
       jne   .findparent 
       inc   qword [r9+t_count]  ; count = 1 
       mov   [r9+t_root], rax    ; root = new node 
       jmp   .done 
 .findparent: 
       inc   qword [r9+t_count]  ; count++ 
       mov   r9, [r9+t_root]     ; p = root 
 .repeatfind: 
       cmp   rdx, [r9+n_value]   ; p=>value < n ? 
       jl    .goleft 
       mov   r8, r9              ; t = p 
       mov   r9, [r8+n_right]    ; p = p->right 
       cmp   r9, 0               ; is p NULL ? 
       jne   .repeatfind  
       mov   [r8+n_right], rax   ; if so, add node 
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       jmp   .done               ; and return 
 .goleft: 
       mov   r8, r9              ; t = p 
       mov   r9, [r8+n_left]     ; p = p->left 
       cmp   r9, 0               ; id p NULL ? 
       jne   .repeatfind 
       mov   [r8+n_left], rax    ; if so, add node 
 .done:                          ; and return 
       leave 
       ret 

Printing the keys in order 

Printing the keys of a binary tree in order is easily performed by using 

recursion. The basic idea is to print the keys in the left sub-tree, print the 

key of the root node and print the keys of the right sub-tree. The use of a 

special tree structure means that there needs to be a different function to 

recursively print sub-trees starting with the pointer to the root. The main 

print function is named print and the recursive function is called 

rec_print. 

rec_print: 
 .t     equ     16 
        push    rbp 
        mov     rbp, rsp 
        sub     rsp, 32 
        cmp     rcx, 0 
        je      .done 
        mov     [rbp+.t], rcx 
        mov     rcx, [rcx+n_left] 
        call    rec_print 
        mov     rcx, [rbp+.t] 
        mov     rdx, [rcx+n_value] 
        segment .data 
 .print db      “%ld “,0 
        segment .text 
        lea     rcx, [.print] 
        call    printf 
        mov     rcx, [rbp+.t] 
        mov     rcx, [rcx+n_right] 
        call    rec_print 
 .done  leave 
        ret 
 
;       print(t); 
 print: 
        push    rbp 
        mov     rbp, rsp 
        sub     rsp, 32 
        mov     rcx, [rcx+t_root] 
        call    rec_print 
        segment .data 
 .print db      0x0a, 0 
        segment .text 
        lea     rcx, [.print] 
        call    printf 
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        leave 
        ret 
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Exercises 

1. Modify the singly-linked list code to implement a stack of strings. You 

can use the C strdup function to make duplicates of strings that you 

insert. Write a main routine which creates a stack and enters a loop 

reading strings. If the string entered equals “pop”, then pop the top of 

the stack and print that value. If the string entered equals “print”, 

then print the contents of the stack. Otherwise push the string onto 

the stack. Your code should exit when either scanf or fgets fails to 

read a string. 

2. Modify the doubly-linked list code to implement a queue of strings. 

Your main routine should read strings until no more are available. If 

the string entered equals “dequeue”, then dequeue the oldest string 

from the queue and print it. If the string entered equals “print”, then 

print the contents of the queue. Otherwise add the string onto the end 

of the queue. Your code should exit when either scanf or fgets fails 

to read a string. 

3. Modify the hash table code to implement a hash table where you store 

strings and integers. The string will be the key and the integer will be 

its associated value. Your main routine should read lines using fgets 

and read the text again using sscanf to get a string and a number. If 

no number is read, sscanf returns 1), then look for the string in the 

hash table and print its value if it there or else print an error message. 

If there is a string and a number (sscanf returns 2), then add the 

string or update the string’s value in the hash table. Your code should 

exit when fgets fails to read a string 

4. Implement a binary tree of strings and use it to read a file of text using 

fgets and then print the lines of text in alphabetical order. 
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Chapter 16 

High performance assembly 

In this chapter we discuss some strategies for writing efficient x86-64 

assembly language. The gold standard is the efficiency of 

implementations written in C or C++ and compiled with a good optimizing 

compiler. The author uses gcc to have it produce an assembly language 

file. Studying this generated code may give you some ideas about how to 

write efficient assembly code. 

16.1  Efficient use of cache 

One of the goals in high performance computing is to keep the processing 

units of the CPU busy. A modern CPU like the Intel Core i7 operates at a 

clock speed around 3 GHz while its main memory maxes out at about 21 

GB/sec. If your application ran strictly from data and instructions in 

memory using no cache, then there would be roughly 7 bytes available per 

cycle. The CPU has 4 cores which need to share the 21 GB/sec, so we’re 

down to about 2 bytes per cycle per core from memory. Yet each of these 

cores can have instructions being processed in 3 processing sub-units and 

2 memory processing sub-units. Each CPU can complete 4 instructions 

per cycle. The same is true for the AMD Bulldozer CPUs. It requires much 

more than 2 bytes per cycle to keep instructions flowing in a modern CPU. 

To keep these CPUs fed requires 3 levels of cache. 

I performed a short test to illustrate the effect of main memory access 

versus cache on a Core i7 CPU. The test consisted of executing 10 billion 

exclusive or operations on quad-words in memory. In the plot below you 

can see that the time depends heavily on the array size. With an array of 

size 8000 bytes, the time as 1.5 seconds. The time steadily grows through 

the use of the 8 MB of cache. When the size is 80 million bytes the cache 

is nearly useless and a maximum of about 5.7 seconds is reached. 
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A prime example of making efficient use of cache is in the 

implementation of matrix multiplication. Straightforward matrix 

multiplication is 𝑂(𝑛3) where there are 𝑛 rows and 𝑛 columns of data. It 

is commonly coded as 3 nested loops. However it can be broken up into 

blocks small enough for 3 blocks to fit in cache for a nice performance 

boost. Below are MFLOPs ratings for various block sizes for multiplying 

2 2048x2048 matrices in a C program. There is considerable room for 

improvement by using assembly language to take advantage of SSE or 

AVX instructions.  
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16.2  Common subexpression elimination 

Common subexpression eliminations is generally performed by optimizing 

compilers. If you are to have any hope of beating the compiler, you must 

do the same thing. Sometimes it may be hard to locate all common 

subexpressions. This might be a good time to study the compiler’s 

generated code to discover what it found. The compiler is tireless and 

efficient at its tasks. Humans tend to overlook things. 

16.3  Strength reduction 

Strength reduction means using a simpler mathematical technique to get 

an answer. It is possible to compute 𝑥3 using pow, but it is probably faster 

to compute 𝑥 ∗ 𝑥 ∗ 𝑥. If you need to compute 𝑥4, then do it in stages: 

      x2 = x * x; 
      x4 = x2 * x2; 

If you need to divide or multiply an integer by a power of 2, this can be 

done more quickly by shifting. If you need to divide more than one floating 

point number by 𝑥, compute 1/𝑥 and multiply. 

16.4  Use registers efficiently 

Place commonly used values in registers. It is nearly always better to 

place values in registers. I once wrote a doubly nested loop in 32 bit mode 

where I had all my values in registers. gcc generated faster code by using 

the stack for a few values. These stack values probably remained in the 

level 1 cache and were almost as good as being in registers. Testing tells 

the truth. 

16.5  Use fewer branches 

Modern CPUs make branch predictions and will prepare the pipeline with 

some instructions from one of the 2 possibilities when there is a 

conditional branch. The pipeline will stall when this prediction is wrong, 

so it will help to try to make fewer branches. Study the generated code 

from your compiler. It will frequently reorder the assembly code to reduce 
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the number of branches. You will learn some general techniques from the 

compiler. 

16.6  Convert loops to branch at the bottom 

If you code a while loop as written, there will be a conditional jump at the 

top of the loop to branch past the loop and an unconditional jump at the 

bottom of the loop to get back to the top. It is always possible to transform 

the loop have a conditional branch at the bottom. You may need a one-

time use conditional jump before the top of the loop to handle cases where 

the loop body should be skipped.  

Here is a C for loop converted to a do-while loop. First the for loop: 

      for ( i = 0; i < n; i++ ) { 
          x[i] = a[i] + b[i]; 
      } 

Now the do-while loop with an additional if: 

      if ( n > 0 ) { 
          i = 0; 
          do { 
              x[i] = a[i] + b[i]; 
              i++; 
          } while ( i < n ); 
      } 

Please do not adopt this style of coding in C or C++. The compiler will 

handle for loops quite well. In fact the simplicity of the for loop might 

allow the compiler to generate better code. I presented this in C simply to 

get the point across more simply. 

16.7  Unroll loops 

Unrolling loops is another technique used by compilers. The primary 

advantage is that there will be fewer loop control instructions and more 

instructions doing the work of the loop. A second advantage is that the 

CPU will have more instructions available to fill its pipeline with a longer 

loop body. Finally if you manage to use registers with little or no 

dependencies between the separate sections of unrolled code, then you 

open up the possibility for a super-scalar CPU (most modern CPUs) to 

execute multiple original iterations in parallel. This is considerably easier 

with 16 registers than with 8. 

Let’s consider some code to add up all the numbers in an array of quad-

words. Here is the assembly code for the simplest version: 
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       segment .text 
       global  add_array 
 add_array: 
       xor     eax, eax 
 .add_words: 
       add     rax, [rcx] 
       add     rcx, 8 
       dec     rdx 
       jg      .add_words 
       ret 

Here is a version with the loop unrolled 4 times: 

       segment .text 
       global  add_array 
 add_array: 
       xor     eax, eax 
       mov     r8, rax 
       mov     r9, rax 
       mov     r10, rax  
.add_words: 
       add     rax, [rcx] 
       add     r8, [rcx+8] 
       add     r9, [rcx+16] 
       add     r10, [rcx+24] 
       add     rcx, 32 
       sub     rdx, 4 
       jg      .add_words 
       add     r9, r10 
       add     rax, r8 
       add     rax, r9 
       ret 

In the unrolled code I am accumulating partial sums in rax, r8, r9 and 

r10. These partial sums are combined after the loop. Executing a test 

program with 1000000 calls to add up an array of 10000 quad-words took 

3.9 seconds for the simple version and 2.44 seconds for the unrolled 

version. There is so little work to do per data element that the 2 programs 

start becoming memory bandwidth limited with large arrays, so I tested 

a size which fit easily in cache. 

16.8  Merge loops 

If you have 2 for loops iterating over the same sequence of values and 

there is no dependence between the loops, it seems like a no-brainer to 

merge the loops. Consider the following 2 loops: 

     for ( i = 0; i < 1000; i++ ) { 
         a[i] = b[i] + c[i]; 
     } 
     for ( j = 0; j < 1000; j++ ) { 
         d[j] = b[j] - c[j]; 
     } 
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This can easily be merged to get: 

     for ( i = 0; i < 1000; i++ ) { 
         a[i] = b[i] + c[i]; 
         d[i] = b[i] - c[i]; 
     } 

In general merging loops can increase the size of a loop body, 

decreasing the overhead percentage and helping to keep the pipeline full. 

In this case there is additional gain from loading the values of b and c 

once rather than twice. 

16.9  Split loops 

We just got through discussing how merging loops was a good idea. Now 

we are going to learn the opposite - well for some loops. If a loop is 

operating on 2 independent sets of data, then it could be split into 2 loops. 

This can improve performance if the combined loop exceeds the cache 

capacity. There is a trade-off between better cache usage and more 

instructions in the pipeline. Sometime merging is better and sometimes 

splitting is better. 

16.10  Interchange loops 

Suppose you wish to place 0’s in a 2-dimensional array in C.  You have 2 

choices:  

     for ( i = 0; i < n; i++ ) { 
         for ( j = 0; j < n; j++ ) { 
             x[i][j] = 0; 
         } 
     } 

or  

     for ( j = 0; j < n; j++ ) { 
         for ( i = 0; i < n; i++ ) { 
             x[i][j] = 0; 
         } 
     } 

Which is better?  In C the second index increments faster than the first. 

This means that x[0][1] is immediately after x[0][0]. On the other hand 

x[1][0] is n elements after x[0][0]. When the CPU fetches data into the 

cache it fetches more than a few bytes and cache writes to memory behave 

similarly, so the first loop makes more sense. If you have the extreme 

misfortune of having an array which is too large for your RAM, then you 
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may experience virtual memory thrashing with the second version. This 

could turn into a disk access for each array access. 

16.11  Move loop invariant code outside loops 

This might be a fairly obvious optimization to perform. It’s another case 

where studying the compiler’s generated code might point out some loop 

invariant code which you have overlooked. 

16.12  Remove recursion 

If it is easy to eliminate recursion then it will nearly always improve 

efficiency. Often it is easy to eliminate “tail” recursion where the last 

action of a function is a recursive call. This can generally be done by 

branching to the top of the function. On the other hand if you try to 

eliminate recursion for a function like quicksort which makes 2 non-trivial 

recursive calls, you will be forced to “simulate” recursion using your own 

stack. This may make things slower. In any case the effect is small, since 

the time spent making recursive calls in quicksort is small. 

16.13  Eliminate stack frames 

For leaf functions it is not necessary to use stack frames. In fact if you 

have non-leaf functions which call your own functions and no others then 

you can omit the frame pointers from these too. The only real reason for 

frame pointers is for debugging. There is a requirement for leaving the 

stack on 16 byte boundaries, but this only becomes an issue with functions 

which have local variables (on the stack) which participate in aligned 16 

or 32 byte accesses which can either fail or be slower. If you know that 

your own code is not using those instructions, then neither frame pointers 

nor frame alignment are important other than for debugging. 

16.14  Inline functions 

As part of optimization compilers can inline small functions. This reduces 

the overhead significantly. If you wish to do this, you might be interested 
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in exploring macros which can make your code easier to read and write 

and operate much like a function which has been inlined. 

16.15  Reduce dependencies to allow 

 super-scalar execution 

Modern CPUs inspect the instruction stream looking ahead for 

instructions which do not depend upon results of earlier instructions. This 

is called “out of order execution”. If there is less dependency in your code, 

then the CPU can execute more instructions out of order, allowing 

multiple independent instructions to execute at one (super-scalar) and 

your program can run more quickly. 

As an example of this I modified the previous add_array function with 

unrolled loops to accumulate all 4 values in the loop into rax. This 

increased the time from 2.44 seconds to 2.75 seconds. 

16.16  Use specialized instructions 

So far we have seen the conditional move instruction which is fairly 

specialized and also the packed floating point instructions. There are 

many specialized instructions in the x86-64 architecture which are more 

difficult for a compiler to apply. A human can reorganize an algorithm to 

add the elements of an array somewhat like I did with loop unrolling 

except to keep 4 partial sums in one AVX register. Combining the 4 parts 

of the AVX register can be done after the loop. This can make the adding 

even faster, since 4 adds can be done in one instruction. This technique 

can also be combined with loop unrolling for additional performance. This 

will be explored in detail in subsequent chapters. 
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Exercises 

1. Given an array of 3D points defined in a structure with x, y and     z 

components, write a function to compute a distance matrix with the 

distances between each pair of points.  

2. Given a 2D array, 𝑀, of floats of dimensions 𝑛 by 4, and a vector, 𝑣, of 

4 floats compute 𝑀𝑣. 

3. Write a blocked matrix-matrix multiplication using a C main program 

and an assembly function to perform the multiplication. Try various 

block sizes to see which block size gives the highest performance. 
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Chapter 17 

Counting bits in an array 

In this chapter we explore several solutions to the problem of counting all 

the 1 bits in an array of quad-word integers. For each test we use the same 

C main program and implement a different function counting the number 

of 1 bits in the array. All these functions implement the same prototype: 

     long popcnt_array ( long *a, int size ); 

17.1  C function 

The first solution is a straightforward C solution: 

     long popcnt_array ( long long *a, int size ) 
     { 
         int w, b; 
         long long word; 
         long n; 
 
         n = 0; 
         for ( w = 0; w < size; w++ ) { 
             word = a[w]; 
             n += word & 1; 
             for ( b = 1; b < 64; b++ ) { 
                 n += (word >> b) & 1; 
             } 
         } 
         return n; 
     } 

The testing consists of calling popcnt_array 1000 times with an array 

of 100000 longs (800000 bytes). Compiling with optimization level zero 

(option -O0) the test took 14.63 seconds. With optimization level 1, it took 

5.29 seconds, with level 2 it took 5.29 seconds again, and with level 3 it 

took 5.37 seconds. Finally adding -funroll-all-loops, it took 4.74 

seconds.  
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The algorithm can be improved by noticing that frequently the upper 

bits of the quad-words being tested might be 0. We can change the inner 

for loop into a while loop: 

     long popcnt_array ( unsigned long long *a, int size ) 
     { 
         int w, b; 
         unsigned long long word; 
         long n; 
 
         n = 0; 
         for ( w = 0; w < size; w++ ) { 
             word = a[w]; 
             while ( word != 0 ) { 
                 n += word & 1; 
                 word >>= 1; 
             } 
         } 
         return n; 
     } 

Using the maximum optimization options the version takes 3.34 

seconds. This is an instance of using a better algorithm. 

17.2  Counting 1 bits in assembly 

It is not too hard to unroll the loop for working on 64 bits into 64 steps of 

working on 1 bit. In the assembly code which follows one fourth of the bits 

of each word are placed in rax, one fourth in rbx, one fourth in rcx and 

one fourth in rdx. Then each fourth of the bits are accumulated using 

different registers. This allows considerable freedom for the computer to 

use out-or-order execution with the loop. 

       segment .text 
       global  popcnt_array 
 popcnt_array: 
       push    rdi 
       push    rsi 
       push    rbx 
       push    rbp 
       push    r12 
       push    r13 
       push    r14 
       push    r15 
       mov     rdi, rcx   ; Use rdi and rsi to hold parameters 
       mov     rsi, rdx   ; like Linux to simplify the coding 
       xor     eax, eax 
       xor     ebx, ebx 
       xor     ecx, ecx 
       xor     edx, edx 
       xor     r12d, r12d 
       xor     r13d, r13d 
       xor     r14d, r14d 
       xor     r15d, r15d 
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 .count_words: 
       mov     r8, [rdi] 
       mov     r9, r8 
       mov     r10, r8 
       mov     r11, r9 
       and     r8, 0xffff 
       shr     r9, 16 
       and     r9, 0xffff 
       shr     r10, 32 
       and     r10, 0xffff 
       shr     r11, 48 
       and     r11, 0xffff 
       mov     r12w, r8w 
       and     r12w, 1 
       add     rax, r12 
       mov     r13w, r9w 
       and     r13w, 1 
       add     rbx, r13 
       mov     r14w, r10w 
       and     r14w, 1 
       add     rcx, r14 
       mov     r15w, r11w 
       and     r15w, 1 
       add     rdx, r15 
 
 %rep 15 
       shr     r8w, 1 
       mov     r12w, r8w 
       and     r12w, 1 
       add     rax, r12 
       shr     r9w, 1 
       mov     r13w, r9w 
       and     r13w, 1 
       add     rbx, r13 
       shr     r10w, 1 
       mov     r14w, r10w 
       and     r14w, 1 
       add     rcx, r14 
       shr     r11w, 1 
       mov     r15w, r11w 
       and     r15w, 1 
       add     rdx, r15 
 %endrep 
       add     rdi, 8 
       dec     rsi 
       jg      .count_words 
       add     rax, rbx 
       add     rax, rcx 
       add     rax, rdx 
       pop     r15 
       pop     r14 
       pop     r13 
       pop     r12 
       pop     rbp 
       pop     rbx 
       pop     rsi 
       pop     rdi 
       ret 
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This has an unfortunate side effect - the use of a repeat section which 

repeats 15 times. This makes for a function of 1123 bytes. Perhaps it was 

worth it to execute the test in 2.52 seconds. The object file is only 240 bytes 

larger than the C code with unrolled loops. 

17.3  Precomputing the number of bits 

 in each byte 

The next algorithmic improvement comes from recognizing that we can 

precompute the number of bits in each possible bit pattern for a byte and 

use an array of 256 bytes to store the number of bits in each possible byte. 

Then counting the number of bits in a quad-word consists of using the 8 

bytes of the quad-word as indices into the array of bit counts and adding 

them up. 

Here is the C function for adding the number of bits in the array 

without the initialization of the count array: 

     long popcnt_array ( long long *a, int size ) 
     { 
         int b; 
         long n; 
         int word; 
 
         n = 0; 
         for ( b = 0; b < size*8; b++ ) { 
             word = ((unsigned char *)a)[b]; 
             n += count[word]; 
         } 
         return n; 
     } 

This code took 0.24 seconds for the test, so we have a new winner. I 

tried hard to beat this algorithm using assembly language, but managed 

only a tie. 

17.4  Using the popcnt instruction 

A new instruction included in the Core i series processors is popcnt which 

gives the number of 1 bits in a 64 bit register. So on the right computers, 

we can employ the technique of using a specialized instruction: 

       segment .text 
       global  popcnt_array 
 popcnt_array: 
       push    r12 
       push    r13 
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       push    r14 
       push    r15 
       xor     eax, eax 
       xor     r8d, r8d 
       xor     r9d, r9d 
       xor     r14d, r14d 
       xor     r15d, r15d 
.count_more: 
       popcnt  r10, [rcx+r9*8] 
       add     rax, r10 
       popcnt  r11, [rcx+r9*8+8] 
       add     r8, r11 
       popcnt  r12, [rcx+r9*8+16] 
       add     r14, r12 
       popcnt  r13, [rcx+r9*8+24] 
       add     r15, r15 
       add     r9, 4 
       cmp     r9, rdx 
       jl      .count_more 
       add     rax, r8 
       add     rax, r14 
       add     rax, r15 
       pop     r15 
       pop     r14 
       pop     r13 
       pop     r12 
       ret 

We have a new winner on the Core i7 at 0.04 seconds which is 6 times 

faster than the nearest competitor. 
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Exercises 

1. Write a function to convert an array of ASCII characters to EBCDIC 

and another to convert back to ASCII. 

2. For 2 arrays of ASCII characters write a function to find the longest 

common substring. 
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Chapter 18 

Sobel filter 

The Sobel filter is an edge detection filter used in image processing. The 

operation of the filter is to process 3x3 windows of data by convolving each 

pixel by one 3x3 matrix to produce an edge measure in the 𝑥 direction and 

another in the 𝑦 direction. Here are the 2 matrices 

𝑆𝑥 = [
−1 0 1
−2 0 2
−1 0 1

]              𝑆𝑦 = [
−1 −2 1
0 0 0
1 2 1

] 

For an individual pixel 𝐼𝑟,𝑐 the 𝑥 edge measure, 𝐺𝑥, is computed by 

𝐺𝑥 = ∑ ∑ (𝑆𝑥,𝑖,𝑗𝐼𝑟+𝑖.𝑐+𝑗)

1

𝑗=−1

1

𝑖=−1

 

where we have conveniently numbered the rows and columns of 𝑆𝑥 

starting with -1.  Similarly we compute 𝐺𝑦 using 

𝐺𝑦 = ∑ ∑ (𝑆𝑦,𝑖,𝑗𝐼𝑟+𝑖.𝑐+𝑗)

1

𝑗=−1

1

𝑖=−1

 

Next we compute the magnitude of the edge measure, 𝐺, 

𝐺 = √𝐺𝑥
2 + 𝐺𝑦

2 

18.1  Sobel in C 

Here is a C function which computes the Sobel edge magnitude for an 

image of arbitrary size:  

     #include <math.h> 
 
     #define I(a,b,c) a[(b)*(cols)+(c)] 
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     void sobel ( unsigned char *data, float *out, 
                  long rows, long cols ) 
     { 
         int r, c;    int gx, gy; 
 
         for ( r = 1; r < rows-1; r++ ) { 
             for ( c = 1; c < cols-1; c++ ) { 
                 gx = -I(data,r-1,c-1) + I(data,r-1,c+1) + 
                      -2*I(data,r,c-1) + 2*I(data,r,c+1) + 
                      -I(data,r+1,c-1) + I(data,r+1,c+1); 
                 gy = -I(data,r-1,c-1) - 2*I(data,r-1,c) - 
                       I(data,r-1,c+1) + I(data,r+1,c-1) + 
                       2*I(data,r+1,c) + I(data,r+1,c+1); 
                 I(out,r,c) = sqrt((float)(gx)*(float)(gx)+ 
                                   (float)(gy)*(float)(gy)); 
             } 
         } 
     } 

This code was compiled with -O3 optimization and full loop unrolling. 

Testing with 1024 × 1024 images showed that it computed 161.5 Sobel 

magnitude images per second. Testing with 1000 different images to cut 

down on the effect of cached images, this code produced 158 images per 

second. Clearly the code is dominated by mathematics rather than 

memory bandwidth. 

18.2  Sobel computed using SSE instructions 

Sobel was chosen as a good example of an algorithm which manipulates 

data of many types. First the image data is byte data. The movdqu 

instruction was used to transfer 16 adjacent pixels from one row of the 

image. These pixels were processed to produce the contribution of their 

central 14 pixels to 𝐺𝑥 and 𝐺𝑦. Then 16 pixels were transferred from the 

image one row down from the first 16 pixels. These pixels were processed 

in the same way adding more to 𝐺𝑥 and 𝐺𝑦. Finally 16 more pixels 2 rows 

down from the first 16 were transferred and their contributions to 𝐺𝑥 and 

𝐺𝑦 were computed. Then these contributions were combined, squared, 

added together, converted to 32 bit floating point and square roots were 

computed for the 14 output pixels which were placed in the output array.  

Tested on the same Core i7 computer, this code produced 1063 Sobel 

magnitude images per second. Testing with 1000 different images this 

code produced 980 images per second, which is about 6.2 times as fast as 

the C version.  

Here are the new instructions used in this code:  

pxor This instruction performs an exclusive or on a 128 XMM source 

register or memory and stores the result in the destination register. 
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movdqa This instruction moves 128 bits of aligned data from memory to a 

register, from a register to memory, or from a register to a register. 

movdqu This instruction moves 128 bits of unaligned data from memory  

to a register, from a register to memory, or from a register to a 

register. 

psrldq This instruction shifts the destination XMM register right the 

number of bytes specified in the second immediate operand. 

punpcklbw This instruction unpacks the low 8 bytes of 2 XMM registers 

and intermingles them. I used this with the second register holding 

all 0 bytes to form 8 words in the destination. 

punpckhbw This instruction unpacks the upper 8 bytes of 2 XMM registers 

and intermingles them. 

paddw This instruction adds 8 16 bit integers from the second operand to 

the first operand.  At least one of the operands must be an XMM 

register and one can be a memory field. 

psubw This instruction divides the second set of 8 16 bit integers from the 

first set. 

pmullw This instruction multiplies the first set of 8 16 bit integers times 

the second set and stores the low order 16 bits of the products in the 

first operand. 

punpcklwd This instruction unpacks and interleaves words from the lower 

halves of 2 XMM registers into the destination register. 

punpckhwd This instruction unpacks and interleaves words from the upper 

halves of 2 XMM registers into the destination register. 

cvtdq2ps This instruction converts 4 double word integers into 4 double 

word floating point values. 

Here is the assembly code:  

 %macro  multipush 1-* ; I needed to push and pop all 
     %rep  %0          ; callee save registers, so I 
         push    %1    ; used macros from the yasm 
         %rotate 1     ; documentation. 
     %endrep 
 %endmacro 
 
 %macro  multipop 1-* 
     %rep %0 
         %rotate -1 
         pop     %1 
     %endrep 
 %endmacro 

 ;       sobel ( input, output, rows, cols ); 
 ;       char input[rows][cols] 
 ;       float output[rows][cols] 
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 ;       border of the output array will be unfilled 
 ; 
         segment .text 
         global  sobel, main 
 sobel: 
 .cols   equ     0 
 .rows   equ     8 
 .output equ     16 
 .input  equ     24 
 .bpir   equ     32 
 .bpor   equ     40 
         multipush   rbx, rbp, r12, r13, r14, r15 
         sub     rsp, 48 
         cmp     r8, 3            ; need at least 3 rows 
         jl      .noworktodo 
         cmp     r8, 3            ; need at least 3 columns 
         jl      .noworktodo 
         mov     [rsp+.input], rcx 
         mov     [rsp+.output], rdx 
         mov     [rsp+.rows], r8 
         mov     [rsp+.cols], r9 
         mov     [rsp+.bpir], r9  ; bytes per input row 
         imul    r9, 4 
         mov     [rsp+.bpor], r9  ; 4 bytes per output pixel 
 
         mov     rax, [rsp+.rows] ; # rows to process 
         mov     r11, [rsp+.cols] 
         sub     rax, 2 
         mov     r8, [rsp+.input] 
         add     r8, r11 
         mov     r9, r8           ; address of row 
         mov     r10, r8 
         sub     r8, r11          ; address of row-1 
         add     r10, r11         ; address of row+1 
         add     rdx, [rsp+.bpor] ; address of 1st output row 
         pxor    xmm13, xmm13 
         pxor    xmm14, xmm14 
         pxor    xmm15, xmm15 
 .more_rows: 
         mov     rbx, 1           ; first column 
 .more_cols: 
         movdqu  xmm0, [r8+rbx-1] ; data for 1st row 
         movdqu  xmm1, xmm0 
         movdqu  xmm2, xmm0 
         pxor    xmm9, xmm9 
         pxor    xmm10, xmm10 
         pxor    xmm11, xmm11 
         pxor    xmm12, xmm12 
         psrldq  xmm1, 1          ; shift the pixels 1 
                                  : to the right 
         psrldq  xmm2, 2          ; shift the pixels 2 
                                  ; to the right 
 
 ;   Now the lowest 14 values of xmm0, xmm1 and 
 ;   xmm2 are lined up properly for applying the 
 ;   top row of the 2 matrices. 
 
         movdqa  xmm3, xmm0 
         movdqa  xmm4, xmm1 
         movdqa  xmm5, xmm2 
         punpcklbw   xmm3, xmm13  ; The low 8 values 
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                                  ; are now words in 
         punpcklbw   xmm4, xmm14  ; registers xmm3, 
                                  ; xmm4, and xmm5 
         punpcklbw   xmm5, xmm15  ; ready for math. 
         psubw   xmm11, xmm3      ; xmm11 will hold 
                                  ; 8 values of Gx 
         psubw   xmm9, xmm3       ; xmm9 will hold 
                                  ; 8 values of Gy 
         paddw   xmm11, xmm5      ; Gx subtracts left 
                                  ; adds right 
         psubw   xmm9, xmm4       ; Gy subtracts 
                                  ; 2 * middle pixel 
         psubw   xmm9, xmm4 
         psubw    xmm9, xmm5      ; Final Gy subtract 
         punpckhbw  xmm0, xmm13   ; Convert top 8 
                                  ; bytes to words 
         punpckhbw  xmm1, xmm14 
         punpckhbw  xmm2, xmm15 
         psubw   xmm12, xmm0      ; Do the same math 
         psubw   xmm10, xmm0      ; storing these 6 
         paddw   xmm12, xmm2      ; values in xmm12 
         psubw   xmm10, xmm1      ; and xmm10 
         psubw   xmm10, xmm1 
         psubw   xmm10, xmm2 
         movdqu  xmm0, [r9+rbx-1] ; data for 2nd row 
         movdqu  xmm2, xmm0       ; repeat math from 
         psrldq  xmm2, 2          ; 1st row with 
         movdqa  xmm3, xmm0       ; nothing added to 
         movdqa  xmm5, xmm2       ; Gy 
         punpcklbw   xmm3, xmm13 
         punpcklbw   xmm5, xmm15  ; 2nd row 
         psubw   xmm11, xmm3 
         psubw   xmm11, xmm3 
         paddw   xmm11, xmm5 
         paddw   xmm11, xmm5 
         punpckhbw  xmm0, xmm13 
         punpckhbw  xmm2, xmm15 
         psubw   xmm12, xmm0 
         psubw   xmm12, xmm0 
         paddw   xmm12, xmm2 
         paddw   xmm12, xmm2 
 
         movdqu  xmm0, [r10+rbx-1] ; data for 3rd row 
         movdqu  xmm1, xmm0 
         movdqu  xmm2, xmm0 
         psrldq  xmm1, 1 
         psrldq  xmm2, 2 
         movdqa  xmm3, xmm0 
         movdqa  xmm4, xmm1 
         movdqa  xmm5, xmm2 
         punpcklbw   xmm3, xmm13 
         punpcklbw   xmm4, xmm14 
         punpcklbw   xmm5, xmm15   ; 3rd row 
         psubw   xmm11, xmm3 
         paddw   xmm9, xmm3 
         paddw   xmm11, xmm5 
         paddw   xmm9, xmm4 
         paddw   xmm9, xmm4 
         paddw   xmm9, xmm5 
         punpckhbw  xmm0, xmm13 
         punpckhbw  xmm1, xmm14 
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         punpckhbw  xmm2, xmm15 
         psubw   xmm12, xmm0 
         paddw   xmm10, xmm0 
         paddw   xmm12, xmm2 
         paddw   xmm10, xmm1 
         paddw   xmm10, xmm1 
         paddw   xmm10, xmm2 
 
         pmullw  xmm9, xmm9        ; square Gx and Gy 
         pmullw  xmm10, xmm10 
         pmullw  xmm11, xmm11 
         pmullw  xmm12, xmm12 
         paddw   xmm9, xmm11       ; sum of squares 
         paddw   xmm10, xmm12 
         movdqa  xmm1, xmm9 
         movdqa  xmm3, xmm10 
         punpcklwd xmm9, xmm13     ; Convert low 4 
                                   ; words to dwords 
         punpckhwd xmm1, xmm13     ; Convert high 4 
                                   ; words to dwords 
         punpcklwd xmm10, xmm13    ; Convert low 4 
                                   ; words to dwords 
         punpckhwd xmm3, xmm13     ; Convert high 4 
                                   ; words to dwords 
         cvtdq2ps  xmm0, xmm9      ; to floating point 
         cvtdq2ps  xmm1, xmm1      ; to floating point 
         cvtdq2ps  xmm2, xmm10     ; to floating point 
         cvtdq2ps  xmm3, xmm3      ; to floating point 
         sqrtps    xmm0, xmm0 
         sqrtps    xmm1, xmm1 
         sqrtps    xmm2, xmm2 
         sqrtps    xmm3, xmm3 
         movups    [rdx+rbx*4], xmm0 
         movups    [rdx+rbx*4+16], xmm1 
         movups    [rdx+rbx*4+32], xmm2 
         movlps    [rdx+rbx*4+48], xmm3 
 
         add     rbx, 14           ; process 14 Sobel values 
         cmp     rbx, r11 
         jl      .more_cols 
         add     r8, r11 
         add     r9, r11 
         add     r10, r11 
         add     rsi, [rsp+.bpor] 
         sub     rax, 1            ; 1 fewer row 
         cmp     rax, 0 
         jg      .more_rows 
 .noworktodo: 
         add     rsp, 48 
         multipop    rbx, rbp, r12, r13, r14, r15 
         ret 
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Exercises 

1. Convert the Sobel function into a function to perform an arbitrary 

convolution of an image with a 3 ×  3 matrix 

2. Write an assembly function to convert an image into a run-length 

encoded image. 

3. Write a function to fill an array with pseudo-random numbers derived 

by using 4 separate interleaved sequences based on the formula 

𝑋𝑛+1 = (𝑎𝑋𝑛 + 𝑐) mod 𝑚 

Use 𝑚 = 32 for all 4 sequences. Use 1664525, 22695477, 1103515245 

and 214013 for the values of 𝑎 and 1013904223, 1, 12345 and 2531011 

for the values of 𝑐. 
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Chapter 19 

Computing Correlation 

The final example of optimization is computing the correlation between 

two variables 𝑥 and 𝑦 given 𝑛 sample values. One way to compute 

correlation is using 

𝑟𝑥𝑦 =
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑛

𝑖=1

√∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1 ∑ (𝑦𝑖 − 𝑦̅)2𝑛

𝑖=1

 

But this formula requires two passes through the data - one pass to 

compute averages and a second pass to complete the formula. There is a 

less intuitive formula which is more amenable to computation: 

𝑟𝑥𝑦 =
𝑛 ∑ 𝑥𝑖𝑦𝑖

𝑛
𝑖=1 − ∑ 𝑥𝑖

𝑛
𝑖=1 ∑ 𝑦𝑖

𝑛
𝑖=1

√𝑛 ∑ 𝑥𝑖
2𝑛

𝑖=1 − (∑ 𝑥𝑖
𝑛
𝑖=1 )2√𝑛 ∑ 𝑦𝑖

2𝑛
𝑖=1 − (∑ 𝑦𝑖

𝑛
𝑖=1 )2

 

The computational formula requires computing 5 sums when you scan 

the data: the sum of 𝑥𝑖, the sum of 𝑦𝑖, the sum of 𝑥𝑖
2, the sum of 𝑦𝑖

2 and 

the sum of 𝑥𝑖𝑦𝑖. After computing these 5 sums there is a small amount of 

time required for implementing the computational formula. 

19.1  C implementation 

The C computation is performed in the corr function given below:  

     #include <math.h> 
 
     double corr ( double x[], double y[], long n ) 
     { 
         double sum_x, sum_y, sum_xx, sum_yy, sum_xy; 
         long i;  
         sum_x = sum_y = sum_xx = sum_yy = sum_xy = 0.0; 
         for ( i = 0; i < n; i++ ) { 
             sum_x += x[i]; 
             sum_y += y[i]; 
             sum_xx += x[i]*x[i]; 
             sum_yy += y[i]*y[i]; 
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             sum_xy += x[i]*y[i]; 
         } 
         return (n*sum_xy-sum_x*sum_y)/ 
                sqrt((n*sum_xx-sum_x*sum_x)* 
                     (n*sum_yy-sum_y*sum_y)); 
     } 

The gcc compiler generated assembly code which used all 16 of the 

XMM registers as it unrolled the loop to process 4 iterations of the for 

loop in the main loop. The compiler also correctly handled the extra data 

values when the array size was not a multiple of four. Performing 1 

million calls to compute correlation on 2 arrays of size 10000 required 

13.44 seconds for the C version. This is roughly 5.9 GFLOPs which is quite 

impressive for compiled code. 

19.2  Implementation using SSE instructions 

A version of the corr function was written using SSE instructions which 

will execute on many modern computers. Here is the SSE version:  

       segment .text 
       global corr 
 
 ; 
 ;     rcx:  x array 
 ;     rdx:  y array 
 ;     r10:  loop counter 
 ;     r8:   n 
 
 ;     xmm0: 2 parts of sum_x 
 ;     xmm1: 2 parts of sum_y 
 ;     xmm2: 2 parts of sum_xx 
 ;     xmm3: 2 parts of sum_yy 
 ;     xmm4: 2 parts of sum_xy 
 ;     xmm5: 2 x values - later squared 
 ;     xmm6: 2 y values - later squared 
 ;     xmm7: 2 xy values 
 
 corr: 
       xor     r9d, r9d 
       mov     r10, r8 
       subpd   xmm0, xmm0 
       movapd   xmm1, xmm0 
       movapd   xmm2, xmm0 
       movapd   xmm3, xmm0 
       movapd   xmm4, xmm0 
       movapd   xmm8, xmm0 
       movapd   xmm9, xmm0 
       movapd   xmm10, xmm0 
       movapd   xmm11, xmm0 
       movapd   xmm12, xmm0 
 .more: 
       movapd  xmm5, [rcx+r9]  ; mov x 
       movapd  xmm6, [rdx+r9]  ; mov y 
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       movapd  xmm7, xmm5      ; mov x 
       mulpd   xmm7, xmm6      ; xy 
       addpd   xmm0, xmm5      ; sum_x 
       addpd   xmm1, xmm6      ; sum_y 
       mulpd   xmm5, xmm5      ; xx 
       mulpd   xmm6, xmm6      ; yy 
       addpd   xmm2, xmm5      ; sum_xx 
       addpd   xmm3, xmm6      ; sum_yy 
       addpd   xmm4, xmm7      ; sum_xy 
       movapd  xmm13, [rcx+r9+16]  ; mov x 
       movapd  xmm14, [rdx+r9+16]  ; mov y 
       movapd  xmm15, xmm13    ; mov x 
       mulpd   xmm15, xmm14    ; xy 
       addpd   xmm8, xmm13     ; sum_x 
       addpd   xmm9, xmm14     ; sum_y 
       mulpd   xmm13, xmm13    ; xx 
       mulpd   xmm14, xmm14    ; yy 
       addpd   xmm10, xmm13    ; sum_xx 
       addpd   xmm11, xmm14    ; sum_yy 
       addpd   xmm12, xmm15    ; sum_xy 
       add     r9, 32 
       sub     r10, 4 
       jnz     .more 
       addpd   xmm0, xmm8 
       addpd   xmm1, xmm9 
       addpd   xmm2, xmm10 
       addpd   xmm3, xmm11 
       addpd   xmm4, xmm12 
       haddpd  xmm0, xmm0   ; sum_x 
       haddpd  xmm1, xmm1   ; sum_y 
       haddpd  xmm2, xmm2   ; sum_xx 
       haddpd  xmm3, xmm3   ; sum_yy 
       haddpd  xmm4, xmm4   ; sum_xy 
       movsd   xmm6, xmm0   ; sum_x 
       movsd   xmm7, xmm1   ; sum_y 
       cvtsi2sd xmm8, r8    ; n 
       mulsd   xmm6, xmm6   ; sum_x*sum_x 
       mulsd   xmm7, xmm7   ; sum_y*sum_y 
       mulsd   xmm2, xmm8   ; n*sum_xx 
       mulsd   xmm3, xmm8   ; n*sum_yy 
       subsd   xmm2, xmm6   ; n*sum_xx-sum_x*sum_x 
       subsd   xmm3, xmm7   ; n*sum_yy-sum_y*sum_y 
       mulsd   xmm2, xmm3   ; denom*denom 
       sqrtsd  xmm2, xmm2   ; denom 
       mulsd   xmm4, xmm8   ; n*sum_xy 
       mulsd   xmm0, xmm1   ; sum_x*sum_y 
       subsd   xmm4, xmm0   ; n*sum_xy-sum_x*sum_y 
       divsd   xmm4, xmm2   ; correlation 
       movsd   xmm0, xmm4   ; need in xmm0 
       ret 

In the main loop of this function the movapd instruction was used to 

load 2 double precision values from the x array and again the load 2 values 

from the y array. Then accumulation was performed in registers xmm0 - 

xmm4. Each of these accumulation registers held 2 accumulated values - 

one for even indices and one for odd indices 

After this collection of accumulations the movapd instruction was used 

again to load 2 more values for x and again to load 2 more values from y. 
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These values were used to form accumulations into 5 more registers: xmm8 

- xmm12.  

After completing the loop, it was time to add together the 4 parts of 

each required summation. The first step of this process was using addpd 

to add the registers xmm8 - xmm12 to registers xmm0 - xmm4. Following this 

the “horizontal add packed double”, haddpd, instruction was used to add 

the upper and lower halves of each of the summation registers to get the 

final sums. Then the code implemented the formula presented earlier. 

When tested on 1 million correlations of size 10000, this program used 

6.74 seconds which is approximately 11.8 GFLOPs. Now this is pretty 

impressive since the CPU operates at 3.4 GHz. It produced about 3.5 

floating point results per cycle. This means that more than one of the SSE 

instructions was completing at once. The CPU is performing out-of-order 

execution and completing more than one SSE instruction per cycle. 

19.3  Implementation using AVX instructions 

The Core i7 CPU implements a new collection of instructions called 

“Advanced Vector Extensions” or AVX. For these instructions an 

extension of the XMM registers named ymm0 through ymm15 is provided 

along with some new instructions. The YMM registers are 256 bits each 

and can hold 4 double precision values in each one. This allowed a fairly 

easy adaptation of the SSE function to operate on 4 values at once. 

In addition to providing the larger registers, the AVX instructions 

added versions of existing instructions which allowed using 3 operands: 2 

source operands and a destination which did not participate as a source 

(unless you named the same register twice). The AVX versions of 

instructions are prefixed with the letter “v”. Having 3 operand 

instructions reduces the register pressure and allows using two registers 

as sources in an instruction while preserving their values. 

Here is the AVX version of the corr function:  

       segment .text 
       global corr 
 ; 
 ;     rcx:  x array 
 ;     rdx:  y array 
 ;     r10:  loop counter 
 ;     r8:   n 
 
 ;     ymm0: 4 parts of sum_x 
 ;     ymm1: 4 parts of sum_y 
 ;     ymm2: 4 parts of sum_xx 
 ;     ymm3: 4 parts of sum_yy 
 ;     ymm4: 4 parts of sum_xy 
 ;     ymm5: 4 x values - later squared 
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 ;     ymm6: 4 y values - later squared 
 ;     ymm7: 4 xy values 
 
 corr: 
       xor      r9d, r9d 
       mov      r1-, r8 
       vzeroall 
 .more: 
       vmovupd  ymm5, [rcx+r9]      ; mov x 
       vmovupd  ymm6, [rdx+r9]      ; mov y 
       vmulpd   ymm7, ymm5, ymm6    ; xy 
       vaddpd   ymm0, ymm0, ymm5    ; sum_x 
       vaddpd   ymm1, ymm1, ymm6    ; sum_y 
       vmulpd   ymm5, ymm5, ymm5    ; xx 
       vmulpd   ymm6, ymm6, ymm6    ; yy 
       vaddpd   ymm2, ymm2, ymm5    ; sum_xx 
       vaddpd   ymm3, ymm3, ymm6    ; sum_yy 
       vaddpd   ymm4, ymm4, ymm7    ; sum_xy 
       vmovupd  ymm13, [rcx+r9+32]  ; mov x 
       vmovupd  ymm14, [rdx+r9+32]  ; mov y 
       vmulpd   ymm15, ymm13, ymm14 ; xy 
       vaddpd   ymm8, ymm8, ymm13   ; sum_x 
       vaddpd   ymm9, ymm9, ymm14   ; sum_y 
       vmulpd   ymm13, ymm13, ymm13 ; xx 
       vmulpd   ymm14, ymm14, ymm14 ; yy 
       vaddpd   ymm10, ymm10, ymm13 ; sum_xx 
       vaddpd   ymm11, ymm11, ymm14 ; sum_yy 
       vaddpd   ymm12, ymm12, ymm15 ; sum_xy 
       add     r9, 64 
       sub     r10, 8 
       jnz     .more 
       vaddpd   ymm0, ymm0, ymm8 
       vaddpd   ymm1, ymm1, ymm9 
       vaddpd   ymm2, ymm2, ymm10 
       vaddpd   ymm3, ymm3, ymm11 
       vaddpd   ymm4, ymm4, ymm12 
       vhaddpd  ymm0, ymm0, ymm0    ; sum_x 
       vhaddpd  ymm1, ymm1, ymm1    ; sum_y 
       vhaddpd  ymm2, ymm2, ymm2    ; sum_xx 
       vhaddpd  ymm3, ymm3, ymm3    ; sum_yy 
       vhaddpd  ymm4, ymm4, ymm4    ; sum_xy 
       vextractf128 xmm5, ymm0, 1 
       vaddsd   xmm0, xmm0, xmm5 
       vextractf128 xmm6, ymm1, 1 
       vaddsd   xmm1, xmm1, xmm6 
       vmulsd   xmm6, xmm0, xmm0    ; sum_x*sum_x 
       vmulsd   xmm7, xmm1, xmm1    ; sum_y*sum_y 
       vextractf128  xmm8, ymm2, 1 
       vaddsd   xmm2, xmm2, xmm8 
       vextractf128  xmm9, ymm3, 1 
       vaddsd   xmm3, xmm3, xmm9 
       cvtsi2sd xmm8, r8            ; n 
       vmulsd   xmm2, xmm2, xmm8    ; n*sum_xx 
       vmulsd   xmm3, xmm3, xmm8    ; n*sum_yy 
       vsubsd   xmm2, xmm2, xmm6    ; n*sum_xx - sum_x*sum_x 
       vsubsd   xmm3, xmm3, xmm7    ; n*sum_yy - sum_y*sum_y 
       vmulsd   xmm2, xmm2, xmm3    ; denom*denom 
       vsqrtsd  xmm2, xmm2, xmm2    ; denom 
       vextractf128  xmm6, ymm4, 1 
       vaddsd   xmm4, xmm4, xmm6 
       vmulsd   xmm4, xmm4, xmm8    ; n*sum_xy 
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       vmulsd   xmm0, xmm0, xmm1    ; sum_x*sum_y 
       vsubsd   xmm4, xmm4, xmm0    ; n*sum_xy - sum_x*sum_y 
       vdivsd   xmm0, xmm4, xmm2    ; correlation 
       ret 

Now the code is accumulating 8 partial sums for each required sum. 

The vhaddpd instruction unfortunately did not sum all 4 values in a 

register. Instead it summed the first 2 values and left that sum in the 

lower half of the register and summed the last 2 values and left that sum 

in the upper half of the register. It was necessary to use the “extract 128 

bit field”, vextractf128, instruction to move the top half of these sums 

into the lower half of a register to prepare for adding the 2 halves. 

When tested with one million calls to compute correlation on 10000 

pairs of values, the AVX version used 3.9 seconds which amounts to 20.5 

GFLOPs.  This is achieving an average of 6 floating point results in each 

clock cycle. The code had many instructions which did 4 operations and 

the CPU did an excellent job of out-of-order execution. The use of 2 sets of 

accumulation registers most likely reduced the inter-instruction 

dependency which helped the CPU perform more instructions in parallel. 

  



215 

 

Exercises 

1. Write an SSE function to compute the mean and standard deviation     

of an array of doubles. 

2. Write a function to perform a least squares fit for a polynomial     

function relating two sequences of doubles in 2 arrays. 

  



216 

 

Appendix A 

Installing ebe 

There are basically 2 choices for installing ebe: either install a pre-

compiled binary package or install from source. Installing binary 

packages is the easy choice and requires downloading an installation exe 

file.  It seems that the installation exe works for 64 bit Windows 7 and 

Windows 8. There may be problems with other versions of Windows. On 

the other hand installing from source requires setting up a development 

environment though the source code is quite portable between different 

versions of Windows. 

Installing from binary packages 

You can find Windows installation exe files at the qtebe sourceforge site: 

https://sourceforge.net/projects/qtebe/files/Windows.  Simply 

download and execute a file with a name like “ebe64-2.4.7-setup.exe”. 

This is a program prepared using Inno Setup and will guide you through 

the installation process. The program will install ebe, gcc, g++, gfortran, 

gdb, astyle and yasm which is all that is needed to use ebe. 

There are also “update” files which simple install a newer version of 

ebe and use the previously installed compilers and other tools. So you 

should probably use the “setup” program once and later use the “update” 

program to get a newer version of ebe. 

 

Installing from source on Windows 

Installing from source on Windows requires more effort and is probably 

not worth the trouble unless for some reason the binary installation fails 

https://sourceforge.net/projects/qtebe/files/Windows
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or you want to work with the ebe souce code. The basic idea is to install 

the programs and libraries required to compile ebe, download the source 

code and compile. The examples are for Qt 4, but ebe is also compatible 

with Qt 5. 

Installing Cygwin 

I have used Cygwin as a base for working with ebe. For the purpose of 

installing from source, it will provide the git program which is used to 

download the source code. 

You can find the Cygwin setup program at http://cygwin.com. There is 

a 32 bit as well as a 64 bit Cygwin. I suggest using the 64 bit version, but 

either will do. Follow the instructions and select the git package while 

installing Cygwin. 

Installing the required language tools 

The required tools are astyle, g++, gfortran. gdb and yasm. The simplest 

way to install these is to use the binary installer for ebe. The programs 

will be installed in C:\gcc\bin. 

Alternatively you can locate the Mingw compilers, astyle and yasm 

from their web sites and install them. 

Downloading the source code 

From a Cygwin windows you can use git to copy the source code from 

sourceforge using 

   git clone git://git.code.sf.net/p/qtebe/code ebe 

This will create a directory named ebe which contains all the source code.  

Git is a source code management system which makes it possible to 

update the source code using “git pull” from the ebe directory in the 

future. It will download only the changes. 

Installing the Visual Studio command line tools 

Microsoft provides the Visual Studio tools free of charge in the Visual 

Studio Express package. You will find several versions of this, but you 

need to pick the latest version matching the compiled libraries for the Qt 

development tools. On my computer this was VS 2012, though currently 

http://cygwin.com/
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Visual Studio 2013 is available and also supported by Qt. I suggest 

checking Qt first and then searching for the proper version of Visual 

Studio. 

Installing the Qt development tools 

You can find the Qt development tools already built for Windows at 

http://qt-project.org/downloads. You can use either the 32 bit or 64 

bit version of the Qt tools. Ebe will work with either Qt version 4 or 

version 5. 

Compiling ebe and installing 

There is a bash script named “qrc” which needs to be executed in a 

Cygwin terminal window in order to convert text messages in ebe into 

the various languages it supports. Use this command after installing the 

Qt tools 

   cd ebe 
   ./qrc 

You will need to use a Visual Studio Native Tools x86 Command 

Prompt windows in order to compile the ebe source code. Here are the 

commands I use for this 

   cd \cygwin\home\seyfarth\ebe  # use you own name 
   nmake 

The nmake program is part of the Visual Studio Express suite and it 

builds a program prepared by using the Qt qmake program. You may have 

to add the Qt tools directory to your path in order to execute qmake. If you 

have installed Qt 5, you will definitely need to run qmake. 

When nmake completes it will leave ebe.exe in the release directory 

under the ebe directory. You can prepare a shortcut on your desktop to 

this program and use the icon in the ebe directory for the shortcut.  

http://qt-project.org/downloads
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Appendix B 

Using ebe 

This book has introduced ebe a little at a time, as needed, to help students 

progress through increasing assembly mastery. Most of the discussion of 

ebe so far has been about debugging. Here we discuss editing, projects, 

debugging and more.  

Major features 

Beyond the basic issues of successfully starting and ending ebe, it is 

important to learn how to find help within the program. The first learning 

tool is a set of tooltips. Next is the help system accessible from the menu. 

The third learning tool is the set of keystrokes visible within the menu 

system. However possibly the greatest aid to learning is curiosity. 

Tooltips 

Move the mouse over the various subwindows and items within the 

subwindows and wait about a half second and ebe will popup tooltips. The 

tooltips are pretty persistent. If you are editing use the mouse to set the 

editing cursor and move the mouse cursor to the open space in a title bar 

to make the tooltip disappear. Tooltips will help as you get used to the 

program, but they will become an annoyance after you’ve memorized what 

they say. You can turn off the tooltips in the menu by unchecking the 

“Tooltips” option in the “View” menu.  

Help 

The help system operates by clicking “Help” in the main menu and then 

clicking on one of the help options. Each help file is displayed in a different 
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window and can be dismissed in the normal manner for windows on your 

computer. 

Menu 

The menu system contains nearly everything which can be done in the 

program. Nearly all the menu options have keyboard shortcuts. Use the 

menu to figure out what all can be done and learn some keyboard tricks 

as you progress. A few things like using control with the arrow keys, home 

and end are not in the menu, so experiment. 

Movable toolbars 

There are a collection of 4 toolbars in ebe: the file toolbar, the edit tool bar, 

the debug toolbar and the template toolbar. Each of these has icons to 

perform common actions and each has a “grab point” on the left or top 

which can be used with a left click to move the toolbar. You can move a 

toolbar out of the program to make it a separate window. You can also 

right click on the grab point to select which toolbars are visible. Below the 

debug toolbar is shown as it appears as a separate window. 

 

Ebe remembers the configuration of the ebe main window, the toolbars 

and its subwindows using the file “.ebe.ini”, so you can relocate the 

toolbars as you wish to make using ebe more convenient. There is a 

separate “.ebe.ini” in each directory where you use ebe, so you can 

customize the appearance for different languages or projects. 

Movable subwindows 

In addition to have movable toolbars ebe has a collection of movable or 

dockable subwindows: data, register, floating point register, terminal, 

project, toy box, bit bucket, backtrace and console windows. Ebe keeps 

track of the visibility and location of these subwindows in “.ebe.ini” to 

make it easy to customize. Below we see ebe with a few of the windows in 

their “docked” location. 
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Between each of the docked windows is a “resize bar” which can be 

used with a left click to adjust the division of space allotted to the docked 

windows. There is also a resize bar between the docked windows and the 

source window which can be used to adjust the width of the docked 

windows. 

Each docked window has a “title bar” at the top. There are 2 tiny icons 

on the right of each title bar which can be used to make the window stand-

alone or to make the window disappear. You can also use a right click on 

a title bar to pop up a menu allowing you to select with dock windows and 

toolbars are visible. Visibility can also be controlled using the View menu. 

You can use a left click on a dock window title bar to drag it around. 

You can drag it out of ebe to make it stand-alone or to a different vertical 

position in the dock area. You will notice a gray area in the dock area 

where the window will drop when you release the left button. You can 

even drag a dock window to the right of the ebe window or the bottom to 

use 2 different dock areas. Finally you can drag a dock window on top of 

another one to create a collection of tabbed dock windows. Perhaps you 

would like to be able to switch easily between the data, register and 

floating point register windows. Below we see a dock window with 3 tabs 

at the bottom for these 3 windows and the terminal window below. 
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Editing 

Editing in ebe uses the mouse and keyboard in mostly normal ways for 

editors. Special keys like Delete and Enter work as expected. For many of 

these normal keys an additional action is invoked using the Control key 

and the normal key. Most editing actions are available in the menu system 

which will also show the shortcut keys for the actions. 

For simplicity the discussion of editing in ebe refers to using the 

Control key to invoke shortcuts. On OS X this is usually done using the 

Apple key. Fortunately the menu system displays the proper shortcuts. In 

addition the shortcuts are based on normal editing shortcuts obtained 

from Wikipedia: 

 http://en.wikipedia.org/wiki/Table_of_keyboard_shortcuts. 

Navigation 

Scrollbars  There are vertical and horizontal scrollbars which can scroll 

through the file.  Scrolling can also be done using the mouse wheel. 
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Arrow keys  Moving 1 character at a time is done using the left and right 

arrow keys on the keyboard. Up and down arrows move up or down 

one line at a time. 

Control + Arrow keys  Control-Right moves 1 word to the right. Control-

Left moves 1 word to the left. 

Home/End  Home moves to column 1 on the current line. End moves to 

the end of the current line. 

Control + Home/End Control-Home moves to column 1 of line 1. Control-

End moves to the end of the file.  

PageUp/PageDown  These keys move up/down one screenful at a time.  

Control-T/Control-B  Control-T (top) moves to column 1 of the top line 

currently on the screen. Control-B (bottom) moves to column 1 of the 

last line currently on the screen. 

Control-M  Control-M scrolls the screen until the current line is at the 

middle of the screen. 

Control-L  Control-L will pop up a dialog where you can enter a line 

number to go to. 

Cut, copy and paste 

The first step in cutting or copying is to select the text to copy or cut. 

Left mouse  Dragging with the left mouse button held down can be used 

to mark a section of text. Double clicking with the left mouse button 

will select a word of text. 

Select all  You can select all of the text using Control-A or the Edit menu 

option. 

Select none You can cancel any select using Control-0 (zero) or the Edit 

menu option. 

 Selected text can be cut, copied and pasted using either options in the 

Edit menu or the normal shortcuts: Control-X for cut, Control-C for copy, 

or Control-V for paste. The edit toolbar also has buttons for cut, copy and 

paste. 

Undo/redo 

Control-Z will undo an edit operation. Insertions will be undone basically 

one line at a time. Shift-Control-Z will redo an edit operation. You can also 

do undo/redo using the menu system or the edit toolbar. The editor keeps 
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track of a large number of editing steps which allows undoing a lot of 

changes. 

Find and replace 

 Use Control-F to pop up the Find/Replace dialog. There is a text entry 

box there for entering a string to find. The focus is ready for you to type 

the search string when the dialog starts. If you simply want to find, then 

enter either Enter, Control-F or the Find button as many times as you 

wish. If you wish to change the string, then use Tab to move to the text 

entry box for the replacement field and enter a string. To replace the 

string, use Control-R or the Replace button. You can end the Find/Replace 

dialog using the Cancel button.  

Deleting text 

Backspace will delete the character to the left of the cursor while Delete 

will delete the character to the right of the cursor. Control-Backspace will 

delete the word to the left of the cursor and Control-Delete will delete the 

word to the right of the cursor. 

Using tabs 

Entering a tab character will enter enough spaces to move to the next tab 

stop. Tabs are at columns 5, 9, 13, ... - indenting 4 characters for each tab. 

Control-Tab will delete space characters to the left of the cursor to position 

to the previous tab column. The tab spacing value can be changed by 

editing “.ebe.ini” or by using “Edit settings” from the Edit menu. 

Auto-indent 

The editor will automatically enter spaces so that a new line will be 

indented just the same as the previous line. Ebe will indent the next line 

after a line ending in “{“. Likewise it will unindent when a line begins with 

“}”. Adjusting indentation for a new line can be done using Tab or Control-

Tab. 

Prettify 

Ebe will call the external program astyle to format C and C++ programs 

if you use the “Prettify” option under the Edit menu or the “magic wand” 

icon on the edit toolbar. You can change the options used for astyle or even 
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replace the program with another by editing “.ebe.ini” or using the “Edit 

settings” option under the Edit menu. 

Indent/unindent 

After marking a group of lines you can indent it one tab stop at a time 

using Control-> which resembles the C right shift operator (>>). You can 

shift the text left (unindent) using Control-<. There are also menu options 

for indent/unident and edit toolbar icons. 

Comment/uncomment 

Control-K will comment out the current line or a range of lines if some 

text is selected. Control-U will uncomment either the current line or a 

range of lines. Ebe will use comment syntax for the appropriate language. 

Word/number completion 

Ebe keeps track of words and numbers to simplify entering/re-entering 

longer words. It starts with the a collection of keywords and adds words 

and numbers as you edit. When you enter some text ebe will pop up a list 

of words to the right of where you are editing. Simply select the desired 

word (or number) and press “Enter” to accept the suggested completion or 

enter additional characters to narrow down the choices. 

Editing multiple files 

It is possible to maintain several open files in ebe. You can open multiple 

times using the File menu or possibly you could use a project which 

consists of multiple files. The various files will be accessible as tabbed 

windows in the source subwindow of ebe. 

If you are not using a project ebe will compile or assemble only the 

currently selected file from those opened. This might be useful if you are 

working on a few similar programs or if you want to prepare a data file 

for your program to access. If you are using a project, then ebe will build 

the program using the source files in the project. Once again it is possible 

to have a data file as part of a project. 
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Debugging 

The debug toolbar is shown below. There are 4 icons or buttons which are 

used to control debugging. Each time you click on the Run button the 

program saves your source code, runs the compiler and/or assembler and 

then starts running your program in the debugger. Most likely you will 

want to set a breakpoint before clicking Run. Do this by clicking to the left 

of a source code line where you would like to have the program stop and 

inspect things. Then you can click Run and Next/Step to step through your 

program 1 line at a time. Use Next to stay within the same function or 

subroutine. Use Step if you wish to debug inside a function or subroutine. 

You can skip past a bunch of statements using Continue which will 

execute until it reaches the next breakpoint. The Stop button will end the 

debugging process. 

 

Breakpoints 

A breakpoint is a point in your source code which will cause the debugger 

to stop executing your program when it runs your program. If you set a 

breakpoint on line 10 of your code, the debugger will execute all lines up 

to line 10 when you click the Run button. Line 10 will not be run until you 

take another action like using one of the Next, Step or Continue buttons.  

Every line of source code has a line number in the line numbers column 

to the left of the source code. A breakpoint is visually identified in the 

source code window by using a red background for the line number for the 

line with a breakpoint.  

You set or clear a breakpoint using a left click on a line number. The 

first click with set the breakpoint and the second will clear it. A right click 

will pop up a menu allowing management of breakpoints inclucing an 

option to delete them all. 

Running a program 

The first step is to set a breakpoint on the line where you want your 

program to stop. Left click on the line number and you will see the line 
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number for the line change to a bright red background. Click again if this 

is the wrong line.  

After setting one or more breakpoints, you need to click on the Run 

button. This button will save your source code file, run the proper compiler 

for your code and then start the gdb debugger on the compiled program. 

When the program reaches a line with a breakpoint, it will stop and ebe 

will highlight the line using a pastel blue-green background. The 

highlighted line will be the next line to execute.  

Terminal window 

The terminal window is one of the dock windows which supports terminal 

input and output. It does not include a real terminal emulator. Instead all 

input is done using a text input box and the text displayed is all printed 

by the program plus the input echoed to make it all look more normal. The 

picture below shows the terminal window in a program being tested. 

 

In the previous session one input operation has been done and one is 

in progress. The first input, 3, was typed into the Input box and after 

pressing Enter 3 was echoed in the terminal window. The next input is in 

progress. Four numbers have been typed into the Input box, but Enter has 

not been pressed which would complete the input. 

It is possible to use Control-D or Control-Z in the Input box to send an 

end of file indication into the program. However this only works if the 

EOF is signaled before the input operation is performed. This is abnormal, 

but it works fine if you are single-stepping. Then you enter Control-D prior 

to executing the scanf call (or another form of read). 
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Next and step 

Both the Next and Step buttons will step through your code, line by line. 

The difference is that Next will stay in the current function or subroutine, 

while Step will step into a function if one is called on the highlighted line. 

You generally only want to use the Step button to step into a function in 

the same source file or another file in the project.  

Continue 

The Continue button will resume normal execution of the program and it 

will only stop if it encounters a breakpoint. You probably would use this 

to rapidly step past some debugged code to reach a breakpoint in some 

code which currently has an error.  

Data window 

The data window displays variables in your program. For high level 

language this includes global variables, parameters to functions, local 

variables and user-defined variables. The globals includes a stack display 

which by default shows the top 6 values on the stack. 

For assembly language the variables must be user-defined. The 

debugger is aware of the address of static variables, but not their type 

which makes it impossible to display them properly as globals. Below is a 

picture of the data window while debugging a program. 

 

You can see that 3 local variables have been defined with type long and 

their values are displayed. 

Defining variables 

You can define variables using either the name of a variable in the editor 

or using the address of a variable shown either in the data window or the 
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register window. User-defined variables are displayed automatically in 

the data window each time control is returned to ebe from debugging.  

To define a variable by name, you can mark the variable first and then 

use a right click to bring up a dialog to define a variable. In this dialog 

you can edit the format and the size of data items as needed. The first and 

last values are used as array indices for the variable being defined. If this 

is not an array, leave the array checkbox unchecked. If this is an array, 

check the array checkbox and set the indices as you wish. Remember that 

the first index is 0. 

You will notice that the name has 

been provided along with the address 

which uses the C address-of operator. 

You can select the type from char, 

unsigned char,signed char, short, 

unsigned short, int, unsigned int, long, 

unsigned long, float, double and bool. 

Depending on the type you can select 

appropriate formats. For integer types 

you can select decimal, hexadecimal or 

binary. For floating point types you can 

select a normal floating point display or 

a nice collection of formats which can display the various fields of a 

floating point number. This can be quite helpful in understanding how a 

computer stores floating point values. 

To define a variable by address, you can mark the address (a left click 

works) in one of the value fields in the register window and then use a 

right click to bring up a dialog to define a variable with the selected 

address. 

You can use a right click on a variable in the data window to either 

edit or delete the variable. The edit option pops up the same dialog used 

to create a variable and allows choosing from the same types and formats. 

For an array (or a struct in C or C++) there will 

be “>” to the left of the name (as in the stack variable 

in the previous data window picture). Clicking on the 

“>” pops up a window to select indices for an array or 

shows the fields of a C/C++ struct. Once you have 

selected the first and last indices (starting with 0 as 

the first index) clicking on OK will display the array 

entries one per line. 
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Register window 

The register window provides a live display of the 16 general purpose 

registers, the instruction pointer and the CPU flags. Here is a sample 

 

Registers r12-r15 have been left out so that the rest of the registers could 

be displayed using larger characters. You can change the format of a 

register (other than rip) by right clicking on its name. This will pop up a 

form allowing you to choose decimal or hexadecimal for that register or 

for all the registers. The flags which are currently set are displayed. In 

the sample the interrupt flag is set. Some interrupts can be ignored if IF 

is set while there are other non-maskable interrupts which are beyond 

software control. 

Floating point register window 

The floating point registers are displayed in a separate dockable window. 

Here is an example 

 

The floating point registers can be used to hold floats, doubles, packed 

floats, packed doubles and a variety of packed integers of various sizes. 

Using AVX instructions doubles the number of packed floats or doubles in 

each register. This makes it important to be able to select the format for 

the floating point registers. Right clicking on a register or its content will 

pop up a menu for selecting formatting one register or all. Then you get to 

select from all the possible interpretations of the registers. 
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Projects 

A program in ebe is generally managed using a project file to keep track 

of the source code files in the program. The name of a project is the name 

of the program with “.ebe” appended to the name. Thus to build a program 

named “hello”, you would use a project file named “hello.ebe”.  

It is not necessary to use a project file with programs consisting of a 

single source code file. Ebe starts execution with no known project name 

(if not given on the command line). As long as there is no known project 

name, it is assumed that there is only 1 source file. Creating a project or 

opening a project will change the state so that ebe will be aware of having 

a project file. After that point ebe will keep track of the files using the 

project file.  

Viewing the project window 

You may need to check the Project checkbox in the View menu in order to 

display the project window. The project window is one of several optional 

windows which are intitially placed to the left of the source window. You 

can see an empty project window below. You can move the window to be a 

“floating” window by left clicking in the title bar of the project window and 

dragging it until it is outside of the main window of ebe. 

 

For the project window right clicking will allow you to add or delete 

files from the project. 
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Creating a new project 

You can create a new project using the “New project” option under the File 

menu. This option will allow you to navigate to a new directory and specify 

the name of the new project file. After creating the project file, any open 

source files will be closed and the project will be empty. Any changes to 

the project will be written automatically so there is no need to save a 

project file.  

Opening a project 

You can open an existing project using the “Open project” option under 

the File menu. This option will allow you to navigate to a new directory 

and open a file with the “.ebe” extension. After opening the project file, 

any open source files will be closed and the first file in the project will be 

opened in the editor. 

Adding files to a project 

A right click in the project window will pop up a menu which will allow 

you to remove the selected file from the project, open the selected file in 

the ebe editor, or add a file to the project. A project is simply a file with a 

collection of file names – one per line, so it is also possible to edit a project 

file with a text editor. 

Closing a project 

If you close the active project ebe will return to the default mode of not 

using a project. It will close all open files.  

Toy box 

The ebe toy box is a dockable subwindow which allows experimentation 

with expressions in C/C++ or Fortran. The basic idea is to place variable 

definitions in one table and expressions in expressions in a second table. 

A variable definition includes a name, a type and a value. The types are 

selected from a list of simple types in the language. The names and values 

must be entered. 

The second table has expressions in the first column. After you enter 

an expression you click on the “do it” button to the right and ebe generates 
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a program in the selected language, compiles it and executes it. From the 

program’s output it determines the type of the expression and its value 

which are added to the table. Then you can choose a variety of formats 

depending on the type. For the integer types you can choose decimal, 

hexadecimal or binary. For the floating point types you can choose 

decimal, hexadecimal, binary, binary floating point, or fields. In the toy 

box window below I have included several expressions which help in 

understanding floating point to integer conversion and floating point 

format. 

 

Bit bucket 

The ebe bit bucket is a lower level educational tool. It is targeted primarily 

at assembly language students. It allows you to experiment with a variety 

of computer operations. It allows you to observe how binary operations 

like and, or, exlusive or, addition and multiplication work. It shows the 

steps in converting a decimal number to binary or hexadecimal. It 

illustrates how to convert a floating point number like 1.625 into its 

internal representation as a float. Here is an example illustrating 

multiplication. 
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You can see that there are 5 tabs in the bit bucket. I have selected 

“Integer math”. After that I used the pull down list to the right of 

“Operation” to select “Multiplication”. Initially there were 2 “Input” boxes 

to enter 2 numbers and a “*” in the “Operator” column on row 3. After the 

first clicking of “*” it converted the 2 numbers to binary in column 3. Then 

I clicked the “*” again and it filled in row 3 and moved the “*” to row 4. 

After a couple more steps the product was presented on row 5.  

The 5 tabs include a large number of illustrations. An assembly 

language student should find the bit bucket a great tool for learning how 

a computer works. 

Backtrace window 

The backtrace window displays the information gleaned from stepping 

backward through the stack and examining the stack frames for each 

function invoked. The gdb command for this is “backtrace” or simply “bt”. 

In the picture below we see that the function in the top stack frame is time 

and the program is stopped at line 18 of “testcopy.c”. Next we see that 

time was called from the test function at line 26. The values of the 

parameters to test are displayed as well. Last we see that test was called 

from main at line 47. 

 

Console 

The ebe console provides a way to access gdb directly while debugging. In 

its text window it displays all the communication with gdb. There is also 

a command entry box where you can issue a gdb command. After you press 

“Enter” it executes the command and the results are visible in the text 

window. I executed “p $rip” to print the instruction pointer register. The 

next instruction to execute is at 0x400ed1 which is located in main. 
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Ebe settings 

Using the “Edit settings” under the Edit menu will pop up a form with a 

lot of adjustable features about ebe. Here is how it looks when set for a 

gray color scheme. 

 

All these settings are stored in “.ebe.ini” in a very simple format, so 

it is possible to edit the file successfully. However the settings dialog is 

easier to manage. 

Note that there is a “Language” option which is set to “English”. Ebe 

can also operate in Arabic, Chinese, Danish, French, German, Hindi, 

Indonesian, Japanese, Portuguese, Russian, Spanish and Swedish. I have 

had excellent assistance for a few languages, but some of these are the 

direct result of using Google Translate. Some of the translations might be 

comical. I hope that none are offensive.  
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Appendix C 

Using scanf and printf 

The simplest method for input and output is using the C library’s scanf 

and printf functions. These functions can handle virtually all forms of 

text input and output converting to/from integer and floating point 

format. 

It may be that modern programmers are familiar with C++ I/O and not 

with C. It would not be simple to call C++ I/O facilities, while it is simple 

to call C functions. So there is probably a need for a slight introduction to 

the 2 basic workhorses of C I/O: scanf and printf. These are sufficient 

for the I/O needs for learning assembly language. Practical uses of 

assembly language will likely be writing computational or bit 

manipulating functions with no requirement for I/O. Therefore this 

appendix will stick to the basics to facilitate writing complete programs 

while learning assembly programming. 

scanf 

The simplest way of explaining how to use scanf is to show C calls, 

followed by assembly equivalents. scanf is called with a format string as 

its first parameter. Depending on the format string there can be an 

arbitrary number of additional parameters. Within the format string are 

a series of conversion specifiers. Each specifier is a percent character 

followed by one of more letters defining the type of data to convert. Here 

are the basic format specifiers: 



237 

format data type 

%d 4 byte integer (int) 

%hd 2 byte integer (short) 

%ld 4 byte integer (long) 

%I64d 8 byte integer (long long) 

%f 4 byte floating point (float) 

%lf 8 byte floating point (double) 

%s character array (C string) 

So if we wish to read a double followed by a character string we could use 

the format string “%lf %s”.  

Each additional parameter for scanf is an address of the data location 

to receive the data read and converted by scanf. Here is a sample C call: 

     double x; 
     char s[100]; 
     n = scanf ( “%lf %s”, &x, s ); 

scanf will return the number of items converted. In the call above it 

will return 2 if a number and a string are successfully entered. The string 

will be placed in the array s with a 0 at the end of the string. 

Here is how to do the same thing in assembly: 

       segment .data 
 x     dq      0.0 
 n     dd      0 
 s     times   100 db 0 
 fmt   db      “%lf %s”,0 
       segment .text 
       lea     rcx, [fmt] 
       lea     rdx, [x] 
       lea     r8, [s] 
       call    scanf 
       mov     [n], eax 

There are a couple of pitfalls possible. First the format string needs a 

0 at the end and it can’t be enclosed in the double quotes. Second there 

are no floating point parameters - &x is a address parameter and it is 

stored in rsi so rax must be set to 0 before the call. 

printf 

printf allows printing in a wide variety of formats. Like scanf its first 

parameter is a format string. The format string contains characters to 

print along with conversion specifiers like scanf. Data printed with 

printf is likely to be stored in a buffer until a new-line character is 

printed. In C, the new-line character can be represented as \n at the end 
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of the format string. Yasm does not support C escape characters in strings, 

so it is necessary to explicitly add new-line (0x0a) and 0 bytes.  

Here is a C printf call 

     char name[64]; 
     int value; 
     printf ( “The value of %s is %dn”, name, value ); 

Here is the same printf call in assembly 

       segment .data 
 value dd      0 
 name  times   64 db 0 
 fmt   db      “The value of %s is %d”,0x0a,0 
       segment .text 
       lea     rcx, [fmt] 
       lea     rdx, [name] 
       mov     r8d, [value] 
       call    printf 

When you print a floating point value the XMM register’s value must 

be copied without conversion into the corresponding general purpose 

register. This is most easily done using the instruction “movq” which 

moves a value from an XMM register to a general purpose register or the 

reverse pattern. Here is some code printing 2 doubles stored in memory 

locations. 

;      printf ( “sqrt(%lf) = %lf\n”, a, b ); 
       segment .data 
 fmt   db      “sqrt(%lf) = %lf”, 0x0a, 0 
       segment .text 
       lea     rcx, [fmt] 
       movsd   xmm1, [a]     ; second parameter 
       movq    rdx, xmm1     ; also in rdx 
       movsd   xmm2, [b]     ; third parameter 
       movq    r8, xmm2      ; copied into r8 
       call    printf 
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Appendix D 

Using macros in yasm 

Yasm provides both single line macros and multi-line macros. Both of 

these can be used to provide abbreviations with meaningful names for 

commonly used instructions. While these might obscure the mechanisms 

of assembly language while learning the language they can be of 

significant utility in practical situations.  

Single line macros 

A single line macro uses the %define preprocessor command. Let’s 

suppose you are tired of seeing 0x0a for the new-line character. You could 

define a macro for this as 

 %define newline 0x0a 

From that point forward you could simply use newline and get 0x0a 

inserted in replacement for the macro.  

Single line macros can have parameters.   Let’s suppose you wanted to 

define a while loop macro. You might wish to compare a value in a register 

against a value and if a condition is satisfied jump to the top of the loop. 

Here is a possible while macro: 

 %define while(cc,label) jmp%+cc label 

The %+ allows concatenation of tokens. After this definition we could use 

code like 

         cmp rax, 20 
         while(l,.more) 
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Multi-line macros 

Using a multi-line macro can simply our while macro to include the 

required cmp instruction: 

 %macro  while 4 
         cmp %1, %3 
         j%2 %4 
 %endmacro 

The number 4 on the %macro line suggests that 4 parameters are expected. 

You can access each parameter as %1, %2, etc. You can also access the 

number of parameters as %0.  

Now this definition leaves the fairly pleasant feel of creating an 

instruction, since the macro invocation does not use parentheses: 

         while rax, l, 20, .more 

Admittedly this creates an instruction with 4 parameters which must be 

learned, but it simplifies things a little bit. 

How about the standard production of a stack frame: 

 %macro function 2 
         global  %1 
     %1: push    rbp 
         mov     rbp, rsp 
         sub     rsp, %2 
 %endmacro 

We might as well simplify the ending of a function: 

 %macro return 1 
         mov     rax, %1 
         leave 
         ret 
 %endmacro  

Now we can write a simple program using these macros: 

         function main, 32 
         xor eax, eax 
 .loop   inc rax 
         while rax, l, 10, .loop 
         return 0 

A fairly useful pair of macros from the yasm manual are multipush 

and multipop. These were used earlier in the Sobel example. It makes 

sense to have a pair of macros to push and pop all callee-save registers for 

use in register intensive functions. 

 %macro pushsaved 
        push rbp 
        push rbx 
        push r12 
        push r13 
        push r14 
        push r15 
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 %endmacro 
 
 %macro popsaved 
         pop r15 
         pop r14 
         pop r13 
         pop r12 
         pop rbx 
         pop rbp 
 %endmacro 

Now these by themselves don’t preserve 16 byte stack alignment, so 

perhaps a better choice would be needed for some functions. Maybe you 

could combine the creation of a stack frame with pushing the rest of the 

registers and subtracting from the stack pointer to achieve alignment and 

room for local variables. 

Preprocessor variables 

 Yasm allows defining preprocessor variables which can be used in macros 

using %assign. You could assign a variable i in one spot and modify it 

later:  

 %assign i 1 
. . . 
 %assign i i+1 

For more information about yasm macros visit the yasm web site at 
http://www.tortall.net/projects/yasm/manual/html/index.html 

which discusses topics like looping and string length. 

  

http://www.tortall.net/projects/yasm/manual/html/index.html


242 

 

Appendix E 

Sources for more information 

yasm user manual 

http://www.tortall.net/projects/yasm/manual/html/index.html is 

the location of the yasm user manual. This is quite extensive and a good 

reference for learning more about yasm.  

nasm user manual 

Look at http://www.nasm.us/doc/ for the nasm user manual. This is the 

software which nasm is based on and the documentation is fairly similar 

to the yasm manual.  

Stephen Morse’s 8086/8088 primer 

Stephen P. Morse is the architect of the 8086 Intel microprocessor. He has 

a primer on the 8086/8088 at 

   http://www.stevemorse.org/8086/index.html.  

Dr. Paul Carter’s free assembly book 

Dr. Carter has prepared an excellent book on 32 bit x86 programming 

which can be downloaded at http://www.drpaulcarter.com/pcasm/.  

http://www.tortall.net/projects/yasm/manual/html/index.html
http://www.nasm.us/doc/
http://www.stevemorse.org/8086/index.html
http://www.drpaulcarter.com/pcasm/
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64 bit machine level programming 

Drs. Bryant and O’Hallaron of Carnegie Mellon have provided an 

excellent treatise dissecting how gcc takes advantage of the x86-64 

architecture in a document located at 

www.cs.cmu.edu/~{}fp/courses/15213-s07/misc/asm64-handout.pdf 

GDB manual 

You may find a need to learn more about gdb. Send your browser to  

http://www.gnu.org/software/gdb/documentation.  

Intel documentation 

Intel provides excellent documentation about their processors at 

http://www.intel.com/products/processor/manuals/.  

You should probably review the architecture in “Intel 64 and IA-32 

Architectures Software Developer’s Manual, Volume 1: Basic 

Architectures”. 

The instructions are described in great detail in “Volume 2A: 

Instruction Set Reference, A-M” and “Volume 2B: Instruction Set 

Reference, N-Z”. These manuals are quite helpful, but some categorization 

of instructions would help. There are a bewildering number of instructions 

and looking through the alphabetized list can be overwhelming.  

http://www.intel.com/products/processor/manuals/
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multipop, 209 

multipush, 209 
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8086, 45 
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binary, 18 
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addps, 138 

address, 4, 28 
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virtual, 38, 39 

addsd, 138 

addss, 138 

ahr, 85 

align, 137, 164 

alignb, 137 

aligned data, 137 

and, 71, 72, 74, 85 

argc, 130 

argv, 130 

array, 121 

index, 121 

Atlas, 3 

AVX, 1, 110, 126, 135, 137, 193, 

199, 218, 220 

binary, 12 

to decimal, 12 

binary addition, 18 

binary constant, 13 

binary multiplication, 19 

binary number, 4, 12 

binary tree, 186 

find, 187 

insert, 188 

new_tree, 187 

node struct, 186 

print, 189 

root struct, 187 

traversal, 189 

bit, 3, 12, 70, 71 

flipper, 73 

numbering, 12 

setter, 72 

bit bucket, 25 

bit field, 74, 81, 85 

extraction, 74 

insertion, 75 

bit field selector, 71 

bit fields, 70 

bit operations, 70 

bit test. See bt 

bit test and reset. See btr 

bit test and set. See bts 

break, 93 

breakpoint, 33 

bss segment, 30, 32 

bt, 84 

btr, 81, 85 

bts, 81, 82, 84, 85 

buffered I/O, 167 

byte, 4 

C stream I/O, 167 

C wrapper function, 157 

cache, 44, 192 

matrix multiply, 193 

call, 106 

carry, 18 

CF, 62, 81, 84 
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cl, 84 

cld, 100, 102 

close, 160 

CloseHandle, 152 

cmovl, 129 

cmp, 90, 94, 98, 100 

cmpsb, 101 

command line parameters, 106, 

129, 130 

comment, 6 

common subexpression 

elimination, 194 

continue, 93 

correlation, 215 

AVX, 218 

C, 215 

SSE, 216 

counting bits, 93, 201 

assembly shift/and, 202 

byte at a time, 204 

C, 201 

popcnt instruction, 204 

counting lo, 97 

counting loop. See for loop 

CR3, 38 

CreateFile, 149 

cvtdq2ps, 209 

cvtpd2ps, 140 

cvtps2pd, 140 

cvtsd2si, 141 

cvtsd2ss, 140 

cvtsi2sd, 141 

cvtsi2ss, 141 

cvtss2sd, 140 

cvtss2si, 141 

cvttsd2si, 141 

cvttss2si, 141 

data segment, 30, see 

segment…data 

db, 20 

dd, 20 

dec, 58, 85 

decimal 

to binary, 13 

to hexadecimal, 14 

DF, 99 

direction flag, 99 

distance in 3D, 144 

div, 65 

dl, 84 

dot product, 144 

double word, 21 

doubly-linked list, 178 

deque, 178 

insert, 179 

newlist, 178 

node struct, 178 

print, 180 

queue, 178 

stack, 178 

traversal, 180 

do-while, 93 

do-while loop, 96 

dq, 20 

dw, 20 

ebe, 8, 46, 58 

array definition, 122 

breakpoint, 33, 52 

data window, 51 

next, 47, 108 

register window, 46 

run, 9, 33, 47 

source window, 51 

step, 47, 107, 108 

terminal window, 131 

echo, 11 

eflags, 46, 81, 90 

eliminate stack frames, 198 

environment, 105 

EOF, 169 

equ, 115, 117, 157 

errno, 159 

exit, 157 

exponent, 20, 21, 23, 24 

exponent bias, 20 

exponent field, 20, 21, 23, 24 

extern, 115, 157 

fclose, 172 

fgetc, 169, 170 

fgets, 170 

FILE, 160, 168, 169 

file name patterns, 130 

float, 20, 23 

floating point 
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addition, 23 

exponent, 20 

fraction, 20 

to decimal, 23 

floating point comparison, 141 

floating point conversion, 140 

floating point multiplication, 24 

floating point number, 19 

fopen, 168 

mode, 168 

for loop, 97 

fprintf, 169 

fputc, 169, 170 

fputs, 170 

fraction field, 20, 21, 23, 24 

fread, 171 

free, 126 

fscanf, 169 

fseek, 171 

ftell, 171 

function, 105, 106, 109 

parameters, 109, 110, 116 

return value, 109 

variable number of 

parameters, 110 

fwrite, 171 

gcc, 7, 8 

function prefix, 7 

generate assembly, 95 

stack size, 37 

unroll loops, 95 

gdb 

backtrace, 111 

getchar, 167 

global, 7 

HANDLE, 149 

hash function, 181 

integer, 181 

string, 182 

hash table, 180, 181 

find, 183 

insert, 183 

node struct, 182 

print, 184 

traversal, 184 

heap, 30 

heap segment, 30 

hexadecimal, 5, 14, 21, 23 

to binary, 15 

Horner’s rule, 145 

huge page, 41 

idiv, 65 

to shift, 72 

IEEE 754, 20 

IEEE 754 format, 19 

if, 91 

IF, 47 

if/else, 91 

if/else-if/else, 92 

immediate, 47 

imul, 60 

1 operand, 61 

2 operands, 62 

3 operands, 62 

inc, 56, 98 

index, 82 

infinity, 20 

inline functions, 199 

instruction, 5, 7 

integer, 55 

maximum, 16 

minimum, 16 

signed, 16, 17 

unsigned, 16 

interchange loops, 197 

interrupt enable flag. See IF 

ja, 142 

jae, 90, 142 

jb, 90, 142 

jbe, 142 

jc, 90 

je, 90, 98, 100 

jg, 90 

jge, 90, 91, 95 

jl, 90 

jle, 90 

jmp, 88, 89, 98 

rip relative, 88 

jnae, 90 

jnb, 90 

jnc, 90 

jne, 90 

jng, 90 

jnge, 90 
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jnl, 90, 91, 94 

jnle, 90 

jnz, 90, 98, 100 

jump. See jmp 

conditional, 90 

jz, 90, 101 

kernel mode, 148 

label, 7 

large page, 41 

ld, 115 

lea, 111 

leaf function, 112, 129 

least significant bit, 12 

least significant byte first, 21 

leave, 56, 112 

linked list, 174 

insert, 175 

newlist, 175 

node struct, 175 

print, 176 

traversal, 176 

Linux, 1, 2, 7, 8, 28, 29, 30, 39, 

49, 109, 110, 148, 158 

local label, 127 

local labels, 89 

local variable, 116, 127 

lodsb, 100 

logical address, 28 

loop, 98 

branch at bottom, 195 

loop invariant, 198 

lseek, 159, 160 

machine language, 5 

main, 7, 106 

malloc, 30, 125, 126, 127, 174, 
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mapping registers, 29 

mask, 71, 72, 73, 75, 85 

mathematical functions, 142 

maxpd, 143 

maxps, 143 

maxsd, 142 

maxss, 142 

memcmp, 101 

memory 

address, 28 

page, 28 

protection, 29 

memory latency, 44 

memory reference, 122 

merge loops, 196 

minpd, 143 

minps, 143 

minsd, 142 

minss, 142 

most significant bit, 12 

mov, 46, 47, 48, 51 

from memory, 49 

immediate, 47 

register to register, 52 

sign extend. See movsx 

to memory, 51 

zero extend. See movzx 

movapd, 137 

movaps, 137 

movdqa, 209 

movdqu, 209 

movsb, 99 

movsd, 137 

movss, 137 

movsx, 50 

movsxd, 51 

movupd, 137 

movups, 137 

movzx, 50, 101 

multiplication 

binary, 19 

neg, 55 

negative, 21 

negative infinity, 20 

new, 30 

nibble, 5, 15, 23, 24 

not, 70, 71 

NULL, 170, 174 

OF, 56, 58, 62 

open, 157, 158 

or, 72, 86 

OS X, 1, 2, 7, 8, 28, 39, 49, 110 

overflow flag. See OF 

packed data, 137 

paddw, 209 

page 

fault, 29 

huge, 41 
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kernel, 28 

large, 41 

user, 28 

page  table, 41 

page directory pointer table, 40 

page directory table, 40 

page table, 40 

palindrome, 104 

parity flag. See PF 

perror, 159 

PF, 46 

physical address, 28, 39, 41 

pipelining, 44 

PML4, 38, 39 

pmullw, 209 

polynomial evaluation, 145 

pop, 106 

popcnt, 204 

positive infinity, 20 

printf, 105, 110, 111, 115, 128 

pseudo-op, 7 

psrldq, 209 

psubw, 209 

punpckhbw, 209 

punpckhwd, 209 

punpcklbw, 209 

punpcklwd, 209 

push, 105 

pxor, 209 

pythagorean triple, 63 

Pythagorean triple, 104 

QNaN, 141 

quad-word, 21 

quotient, 65 

random, 127 

read, 159, 167 

ReadFile, 153 

recursion, 116 

register, 4, 44, 45 

ah, 45 

al, 45, 48, 50, 99, 100 

ax, 45, 46, 50, 99 

bh, 45 

bl, 45 

bp, 45 

bx, 45 

ch, 45 

cl, 45, 74 

cx, 45 

dh, 45 

di, 45 

dl, 45 

eax, 45, 47, 48, 50, 99 

ebp, 45 

ebx, 45 

ecx, 45 

edi, 45 

edx, 45 

eflags, 46, 53 

esi, 45 

esp, 45 

preserved, 115 

r12-r15, 115 

r8, 110 

r8-r15, 46 

r9, 110 

rax, 45, 47, 48, 49, 50, 52, 99, 

110 

rbp, 4, 46, 111, 115 

rbx, 45, 52, 115 

rcx, 45, 98, 99, 100, 101, 110 

rdi, 46, 99, 100, 101, 110, 115 

rdx, 45, 110 

rdx:rax, 61, 65 

rflags, 45, 46, 56 

rip, 45, 49, 106, 107, 108, 109 

rsi, 46, 99, 100, 101, 110, 115 

rsp, 46, 105, 106, 111, 112, 118 

sp, 45 

ST0, ST1, 135 

xmm0, 110 

xmm0-xmm15, 135 

ymm0-ymm15, 136 

register window, 46 

remainder, 65 

rep, 99, 100 

repe, 101 

repne, 100, 101 

resb, 32 

resd, 32 

ret, 107, 112 

return address, 106 

rip, 46 

rip relative, 49 



249 

rol, 78 

ror, 78, 86 

rotate left. See rol 

rotate right. See ror 

rounding, 143 

rounding mode, 143 

roundps, 143 

roundsd, 143 

rsp, 7 

sal, 74 

sar, 74 

scanf, 105, 110 

scasb, 100 

section. see segment 

sector, 167 

segment, 7 

.bss, 30, 32 

.data, 30 

.text, 30 

data, 20 

text, 7 

segmentation fault, 29 

set, 71, 81, 82 

complement, 71 

difference, 72 

intersection, 72 

setc, 81, 84 

SF, 53, 55, 56, 58, 67 

shift, 74 

left, 74 

right, 74 

shift arithmetic left. See sal 

shift arithmetic right. See sar 

shift left. See shl 

shift right. See shr 

shl, 74, 85, 86 

shr, 74, 85, 86 

sign bit, 16, 21, 23, 74 

sign flag. See SF 

signed, 16 

signed integer, 16, 17 

SIMD, 1, 135 

SNaN, 141 

Sobel, 207 

C, 207 

SSE, 208 

specialized instructions, 199 

split loops, 197 

sqrtpd, 143 

sqrtps, 143 

sqrtsd, 143 

sqrtss, 143 

sscanf, 170 

SSE, 1, 135 

stack, 35, 106, 108 

alignment, 110, 112, 184, 247 

stack frame, 111, 112 

stack segment, 30 

stack size, 37 

stack size option, 37 

status, 11 

std, 102 

stdin, 105 

stosb, 100 

stosd, 100 

strcmp, 101 

strength reduction, 194 

strlen, 100 

struc, 162 

alignment, 164 

struct, 162, 163 

array, 164 

sub, 52, 58 

subpd, 139 

subps, 139 

subsd, 138 

subss, 138 

switch 

using jmp, 89 

syscall, 157 

system call, 148 

System V ABI, 109 

text segment, 30 

TLB, 42 

translation lookaside buffer, 41 

two’s complement, 16, 17 

ucomisd, 142 

ucomiss, 142 

ungetc, 169 

unrolling loops, 195 

unsigned, 16 

unsigned integer, 16 

vaddpd, 138 

vaddps, 138 
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virtual address, 39 

VMMap, 31 

vmoupd, 137 

vmovups, 137 

vsubpd, 139 

vsubps, 139 

while, 93, 97 

while loop, 93, 95 

win32n.inc, 150 

Windows, 2, 42, 109, 110, 115 

Windows API, 149 

word, 20 

write, 157, 159 

WriteFile, 150 

x86-64, 45 

xor, 58, 73 

yasm, 8, 21, 115 

listing, 21 

zero flag. See ZF 

ZF, 47, 55, 56, 58, 65, 67 
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