

Introduction to 64 Bit

Windows Assembly

Programming

Ray Seyfarth

ii

Ray Seyfarth

Hattiesburg, MS

USA

Seyfarth, Ray

Introduction to 64 Bit Windows Assembly Programming

Includes index

ISBN-13: 978-1484921968

ISBN-10: 1484921968

© 2014 Ray Seyfarth All rights reserved.

This work may not be translated or copied in whole or in part without

the written permission of the copyright holder, except for brief excerpts

in connection with reviews or scholarly analyses.

iii

Preface

The Intel CPU architecture has evolved over 3 decades from a 16 bit CPU

with no memory protection, through a period with 32 bit processors with

sophisticated architectures into the current series of processors which

support all the old modes of operation in addition to a greatly expanded

64 bit mode of operation. Assembly textbooks tend to focus on the history

and generally conclude with a discussion of the 32 bit mode. Students are

introduced to the concepts of 16 bit CPUs with segment registers allowing

access to 1 megabyte of internal memory. This is an unnecessary focus on

the past.

With the x86-64 architecture there is almost a complete departure

from the past. Segment registers are essentially obsolete and more

register usage is completely general purpose, with the glaring exception

of the repeat-string loops which use specific registers and have no

operands. Both these changes contribute to simpler assembly language

programming.

There are now 16 general purpose integer registers with a few

specialized instructions. The archaic register stack of the 8087 has been

superseded by a well-organized model providing 16 floating point

registers with floating point instructions along with the SSE and AVX

extensions. In fact the AVX extensions even allow a three operand syntax

which can simplify coding even more.

Overall the x86-64 assembly language programming is simpler than

its predecessors. The dominant mode of operation will be 64 bits within a

few short years. Today most personal computers ship with 64 bit

operating systems. In fact the latest versions of the Apple OS X operating

system are only available in 64 bits, though Linux and Microsoft Windows

still have 32 and 64 bit versions. The era of 32 bit CPUs and operating

systems is nearly over. Together these trends indicate that it is time to

teach 64 bit assembly language.

The focus in this textbook is on early hands-on use of 64 bit assembly

programming. There is no 16 or 32 bit programming and the discussion of

the history is focused on explaining the origin of the old register names

and the few non-orthogonal features of the instruction set.

iv

The first version of this book discussed using the yasm assembler and

the gdb debugger directly. Now the author provides a free integrated

development environment named “ebe”, which automates the process of

using yasm. The ebe environment is a GUI program written in C++ using

the Qt system and supports C, C++ and FORTRAN in addition to

assembly language, though its purpose is to support assembly

programming. There was a previous version of ebe written in Python, but

the newer version offers many more features. The Qt version of ebe is

available at http://qtebe.sourceforge.net.

This version of the book discusses assembly programming for the

Windows operating system. There is a companion book discussing

assembly programming for Linux and OS X which use a different function

call interface. There is a discussion of the function call protocol differences

for Linux, OS X and Windows, so having one of the two books should be

sufficient for someone interested in programming on multiple operating

systems.

The Linux/OS X book contains examples using gdb for debugging. Alas

this seems to be impractical under Windows and, in fact, under OS X. The

yasm assembly does not generate sufficient information under Windows

or OS X to determine source code line numbers from memory addresses.

Ebe uses the yasm listing file along with the addresses of global symbols

like main to build translations internally while using memory addresses

for breakpoints and to determine line numbers with gdb. The ebe user

perceives a simple interface, but using gdb manually would require the

user to compute addresses for break points and observe source code in a

separate window. For this reason this book has abandoned the use of

debugging with gdb,

Another issue with Windows is the prevalence of assembly code

examples built around structured exception handling (SEH). The idea

there is to augment the code with data which describes the stack frame

and register usage in such a manner that SEH can “unwind” the stack to

determine which exception handler is the first to be found to handle a

particular exception. Exception handling is arguably a critical feature in

C++, but it is possibly too cumbersome for beginning assembly

programmers. The model used in the book is compatible with C and far

simpler than the code one finds which addresses SEH. Most likely any

assembly code used in C++ will be used for high efficiency and will not

generate any exceptions, so I feel the decision to write simpler assembly

code is useful in practice in addition to being far easier to understand.

Due to costs this book is printed in black and white. The pictures

captured from ebe would have been prettier and perhaps more useful in

color, but the cost of the book would have been roughly double the cost of

a black and white version. The added utility of color is certainly not worth

http://qtebe.sourceforge.net/

v

the extra cost. Generally the highlighted text in ebe is shown with a

colored background while the printed version presents this text with a

light gray background.

Most of the sample code execution in the first edition was illustrated

using gdb. This function has largely been superseded with screen captures

from ebe, though some use of gdb is still shown. It might be that some

people would prefer using a text interface and blind programmers in

particular might find a GUI interface to be a real inconvenience.

There are assignments using the computer from the very first chapter.

Not every statement will be fully understood at this time, but the

assignments are still possible.

The primary target for this book is beginning assembly language

programmers and for a gentle introduction to assembly programming,

students should study chapters 1, 2, 3, 5, 6, 7, 8, 9, 10 and 11. Chapter 4

on memory mapping is not critical to the rest of the book and can be

skipped if desired.

Chapters 12 through 15 are significantly more in depth. Chapter 15

is about data structures in assembly and is an excellent adjunct to

studying data structures in C/C++. The subject will be much clearer after

exposure in assembly language.

The final four chapters focus on high performance programming,

including discussion of SSE and AVX programming.

The author provides slides for classroom instruction along with

sample code and errata at http://rayseyfarth.com/asm.

If you find errors in the book or have suggestions for improvement,

please email the author as ray.seyfarth@gmail.com. Your suggestions

will help improve the book and are greatly appreciated.

You may also email me with questions or suggestions about ebe. Your

email will assist me with providing better on-line support and will help

improve the quality of the software.

Thank you for buying the book and I hope you find something

interesting and worthwhile inside.

http://rayseyfarth.com/asm
mailto:ray.seyfarth@gmail.com

vi

Acknowledgements

No book is created in isolation. This book is certainly no exception. I am

indebted to numerous sources for information and assistance with this

book.

Dr. Paul Carter’s PC assembly language book was used by this author

to study 32 bit assembly language programming. His book is a free PDF

file downloadable from his web site. This is a 195 page book which covers

the basics of assembly language and is a great start at 32 bit assembly

language.

While working on this book, I discovered a treatise by Drs. Bryant and

O’Hallaron of Carnegie Mellon about how gcc takes advantage of the

features of the x86-64 architecture to produce efficient code. Some of their

observations have helped me understand the CPU better which assists

with writing better assembly code. Programmers interested in efficiency

should study their work.

I found the Intel manuals to be an invaluable resource. They provide

details on all the instructions of the CPU. Unfortunately the documents

cover 32 bit and 64 bit instructions together which, along with the huge

number of instructions, makes it difficult to learn assembly programming

from these manuals. I hope that reading this book will make a good

starting point, but a short book cannot cover many instructions. I have

selected what I consider the most important instructions for general use,

but an assembly programmer will need to study the Intel manuals (or

equivalent manuals from AMD).

I thank my friends Maggie and Tim Hampton for their editing

contributions to the book.

I am indebted to my CSC 203 - Assembly Language class at the

University of Southern Mississippi for their contributions to this book.

Teaching 64 bit assembly language has uncovered a few mistakes and

errors in the original Create Space book from July 2011. In particular I

wish to thank Chris Greene, Evan Stuart, Brandon Wolfe and Zachary

Dillon for locating errors in the book.

Thanks to Ken O’Brien for helping locate mistakes in the book.

Thanks go to Christian Korn and Markus Bohm of Germany who have

vii

assisted with “debugging” this book. Thanks also to Francisco Perdomo of

the Canary Islands for assistance. Carsten Hansen of Denmark has also

assisted with debugging the book. David Langer has contributed some

code comment repairs.

Thanks to Quentin Gouchet for locating several typos which had

persisted for several years.

Thanks for Keiji Omori for pointing out that the stack size limits for

Linux processes are now quite generous. At some point there was a hard

kernel limit which could be changed by recompiling the kernel. Now it

can be changed in /etc/security/limits.conf.

Thanks to Wendell Xe for offering suggestions for improving the book

and also suggestions for ebe.

Last I thank my wife, Phyllis, and my sons, David and Adam, for their

encouragement and assistance. Phyllis and Adam are responsible for the

cover design for both this and the Create Space book.

Contents
Preface .. iii

Acknowledgements .. vi

Chapter 1 Introduction ... 1

1.1 Why study assembly language?... 2

So what is good about assembly language? 2

1.2 What is a computer? ... 3

Bytes ... 4

Program execution ... 4

1.3 Machine language .. 5

1.4 Assembly language ... 6

1.5 Assembling and linking ... 7

1.6 Using ebe to run the program ... 8

Chapter 2 Numbers .. 12

2.1 Binary numbers .. 12

2.2 Hexadecimal numbers ... 14

2.3 Integers ... 16

Binary addition .. 18

Binary multiplication .. 19

2.4 Floating point numbers ... 19

Converting decimal numbers to floats ... 22

Converting floats to decimal ... 23

Floating point addition .. 23

Floating point multiplication .. 24

2.5 Exploring with the bit bucket .. 25

Chapter 3 Computer memory .. 28

3.1 Memory mapping ... 28

3.2 Process memory model in Windows .. 29

3.3 Memory example .. 30

3.4 Examining memory with ebe ... 32

Setting a breakpoint .. 32

Running a program and viewing a variable 33

Chapter 4 Memory mapping in 64 bit mode .. 37

4.1 The memory mapping register ... 37

4.2 Page Map Level 4 .. 38

4.3 Page Directory Pointer Table ... 39

4.4 Page Directory Table .. 39

4.5 Page Table ... 39

4.6 Large pages ... 40

4.7 CPU Support for Fast Lookups .. 40

Chapter 5 Registers ... 43

5.1 Observing registers in ebe .. 45

5.2 Moving a constant into a register .. 45

5.3 Moving values from memory to registers 47

5.4 Moving values from a register to memory 49

5.5 Moving data from one register to another 50

Chapter 6 A little bit of math ... 54

6.1 Negation .. 54

6.2 Addition ... 55

6.3 Subtraction .. 57

6.4 Multiplication .. 59

One operand imul .. 59

Two and three operand imul .. 61

Testing for a Pythagorean triple ... 61

6.5 Division .. 64

6.6 Conditional move instructions ... 66

6.7 Why move to a register? ... 67

Chapter 7 Bit operations ... 69

7.1 Not operation .. 69

7.2 And operation .. 70

7.3 Or operation .. 71

7.4 Exclusive or operation .. 72

7.5 Shift operations ... 72

7.6 Bit testing and setting ... 79

7.7 Extracting and filling a bit field .. 83

Chapter 8 Branching and looping .. 86

8.1 Unconditional jump .. 86

8.2 Conditional jump .. 88

Simple if statement ... 88

If/else statement .. 89

If/else-if/else statement ... 90

8.3 Looping with conditional jumps .. 91

While loops ... 91

Counting 1 bits in a memory quad-word 91

Do-while loops .. 93

Counting loops ... 95

8.4 Loop instructions .. 96

8.5 Repeat string (array) instructions .. 96

String instructions ... 96

Chapter 9 Functions ... 102

9.1 The stack ... 102

9.2 Call instruction ... 103

9.3 Return instruction .. 104

9.4 Function parameters and return value 106

9.5 Stack frames ... 108

Function to print the maximum of 2 integers 112

9.6 Recursion .. 113

Chapter 10 Arrays .. 118

10.1 Array address computation ... 118

10.2 General pattern for memory references 119

10.3 Allocating arrays .. 122

10.4 Processing arrays ... 123

Creating the array ... 123

Filling the array with random numbers 123

Printing the array .. 124

Finding the minimum value .. 125

Main program for the array minimum 125

10.5 Command line parameter array .. 126

Chapter 11 Floating point instructions ... 131

11.1 Floating point registers .. 131

11.2 Moving floating point data ... 133

Moving scalars .. 133

Moving packed data ... 133

11.3 Addition ... 134

11.4 Subtraction .. 134

11.5 Multiplication and division .. 135

11.6 Conversion ... 135

Converting to a different length floating point 136

Converting floating point to/from integer 136

11.7 Floating point comparison ... 137

11.8 Mathematical functions.. 137

Minimum and maximum ... 138

Rounding ... 138

Square roots .. 138

11.9 Sample code ... 139

Distance in 3D .. 139

Dot product of 3D vectors .. 139

Polynomial evaluation ... 140

Chapter 12 Accessing Files ... 143

12.1 File access with the Windows API ... 144

Creating a file ... 144

Writing to a file .. 145

Complete program to create a file ... 146

Reading from a file ... 147

Program to copy a file .. 148

12.2 Portable C file access functions ... 151

open ... 152

read and write .. 154

lseek .. 154

close .. 155

Chapter 13 Structs .. 157

13.1 Symbolic names for offsets .. 157

13.2 Allocating and using an array of structs 159

Chapter 14 Using the C stream I/O functions 162

14.1 Opening a file ... 163

14.2 fscanf and fprintf .. 164

14.3 fgetc and fputc .. 164

14.4 fgets and fputs .. 165

14.5 fread .. 166

14.5 fseek and ftell ... 166

14.6 fclose .. 167

Chapter 15 Data structures ... 169

15.1 Linked lists ... 169

List node structure .. 170

Creating an empty list... 170

Inserting a number into a list ... 170

Traversing the list ... 171

15.2 Doubly-linked lists ... 172

Doubly-linked list node structure ... 173

Creating a new list .. 173

Inserting at the front of the list .. 174

List traversal.. 175

15.3 Hash tables ... 175

A good hash function for integers ... 176

A good hash function for strings ... 176

Hash table node structure and array ... 177

Function to find a value in the hash table 177

Insertion code ... 178

Printing the hash table ... 178

Testing the hash table ... 180

15.4 Binary trees ... 181

Binary tree node and tree structures .. 181

Creating an empty tree .. 181

Finding a key in a tree ... 182

Inserting a key into the tree .. 182

Printing the keys in order ... 184

Chapter 16 High performance assembly.. 187

16.1 Efficient use of cache .. 187

16.2 Common subexpression elimination 189

16.3 Strength reduction .. 189

16.4 Use registers efficiently .. 189

16.5 Use fewer branches ... 189

16.6 Convert loops to branch at the bottom 190

16.7 Unroll loops ... 190

16.8 Merge loops ... 191

16.9 Split loops .. 192

16.10 Interchange loops .. 192

16.11 Move loop invariant code outside loops 193

16.12 Remove recursion.. 193

16.13 Eliminate stack frames .. 193

16.14 Inline functions ... 193

16.15 Reduce dependencies to allow super-scalar execution 194

16.16 Use specialized instructions ... 194

Chapter 17 Counting bits in an array .. 196

17.1 C function .. 196

17.2 Counting 1 bits in assembly ... 197

17.3 Precomputing the number of bits in each byte 199

17.4 Using the popcnt instruction ... 199

Chapter 18 Sobel filter .. 202

18.1 Sobel in C .. 202

18.2 Sobel computed using SSE instructions 203

Chapter 19 Computing Correlation ... 209

19.1 C implementation ... 209

19.2 Implementation using SSE instructions 210

19.3 Implementation using AVX instructions 212

Appendix A Installing ebe .. 216

Installing from binary packages ... 216

Installing from source on Windows .. 216

Installing Cygwin .. 217

Installing the required language tools 217

Downloading the source code.. 217

Installing the Visual Studio command line tools 217

Installing the Qt development tools ... 218

Compiling ebe and installing .. 218

Appendix B Using ebe .. 219

Major features ... 219

Tooltips ... 219

Help .. 219

Menu ... 220

Movable toolbars .. 220

Movable subwindows ... 220

Editing ... 222

Navigation .. 222

Cut, copy and paste ... 223

Undo/redo ... 223

Find and replace .. 224

Deleting text... 224

Using tabs .. 224

Auto-indent .. 224

Prettify ... 224

Indent/unindent ... 225

Comment/uncomment ... 225

Word/number completion .. 225

Editing multiple files ... 225

Debugging .. 226

Breakpoints .. 226

Running a program .. 226

Terminal window ... 227

Next and step ... 228

Continue ... 228

Data window ... 228

Register window ... 230

Floating point register window ... 230

Projects ... 231

Viewing the project window .. 231

Creating a new project ... 232

Opening a project ... 232

Adding files to a project ... 232

Closing a project ... 232

Toy box .. 232

Bit bucket ... 233

Backtrace window .. 234

Console ... 234

Ebe settings .. 235

Appendix C Using scanf and printf .. 236

scanf .. 236

printf ... 237

Appendix D Using macros in yasm .. 239

Single line macros .. 239

Multi-line macros ... 240

Preprocessor variables ... 241

Appendix E Sources for more information ... 242

yasm user manual.. 242

nasm user manual ... 242

Stephen Morse’s 8086/8088 primer .. 242

Dr. Paul Carter’s free assembly book ... 242

64 bit machine level programming ... 243

GDB manual .. 243

Intel documentation .. 243

Index .. 244

1

Chapter 1

Introduction

This book is an introduction to assembly language programming for the

x86-64 architecture of CPUs like the Intel Core processors and the AMD

Athlon and Opteron processors. While assembly language is no longer

widely used in general purpose programming, it is still used to produce

maximum efficiency in core functions in scientific computing and in other

applications where maximum efficiency is needed. It is also used to

perform some functions which cannot be handled in a high-level language.

The goal of this book is to teach general principles of assembly

language programming. It targets people with some experience in

programming in a high level language (ideally C or C++), but with no prior

exposure to assembly language.

Assembly language is inherently non-portable and this text focuses on

writing code for the Windows operating system, taking advantage of the

free availability of excellent compilers, assemblers and debuggers. There

is a companion book for Linux and OS X which both use the same function

call ABI (application binary interface) which differs substantially from the

Windows function call ABI. Differences between assembly programming

for Linux and OS X systems will be detailed as the work unfolds

The primary goal of this text is to learn how to write functions callable

from C or C++ programs. This focus should give the reader an increased

understanding of how a compiler implements a high level language. This

understanding will be of lasting benefit in using high level languages.

A secondary goal of this text is to introduce the reader to using SSE

and AVX instructions. The coming trend is for the size of SIMD (Single

Instruction Multiple Data) registers to increase and it generally requires

assembly language to take advantage of the SIMD capabilities.

2

1.1 Why study assembly language?

In a time when the latest fads in programming tend to be object-oriented

high-level languages implemented using byte-code interpreters, the trend

is clearly to learn to write portable programs with high reliability in

record time. It seems that worrying about memory usage and CPU cycles

is a relic from a by-gone era. So why would anyone want to learn assembly

language programming?

Assembly language programming has some of the worst “features”

known in computing. First, assembly language is the poster child for non-

portable code. Certainly every CPU has its own assembly language and

many of them have more than one. The most common example is the Intel

CPU family along with the quite similar AMD CPU collection. The latest

versions of these chips can operate in 16 bit, 32 bit and 64 bit modes. In

each of these modes there are differences in the assembly language. In

addition the operating system imposes additional differences. Further the

function call interface (ABI) employed in x86-64 Linux and OS X systems

differs from that used in Microsoft Windows systems. Portability is

difficult if not impossible in assembly language.

An even worse issue with assembly language programming is

reliability. In modern languages like Java the programmer is protected

from many possible problems like pointer errors. Pointers exist in Java,

but the programmer can be blissfully unaware of them. Contrast this to

assembly language where every variable access is essentially a pointer

access. Furthermore high level language syntax resembles mathematical

syntax, while assembly language is a sequence of individual machine

instructions which bears no syntactic resemblance to the problem being

solved.

Assembly language is generally accepted to be much slower to write

than higher level languages. While experience can increase one’s speed, it

is probably twice as slow even for experts. This makes it more expensive

to write assembly code and adds to the cost of maintenance.

So what is good about assembly language?

The typical claim is that assembly language is more efficient than high

level languages. A skilled assembly language coder can write code which

uses less CPU time and less memory than that produced by a compiler.

However modern C and C++ compilers do excellent optimization and

beginning assembly programmers are no match for a good compiler. The

compiler writers understand the CPU architecture quite well. On the

other hand an assembly programmer with similar skills can achieve

3

remarkable results. A good example is the Atlas (Automatically Tuned

Linear Algebra Software) library which can achieve over 95% of the

possible CPU performance. The Atlas matrix multiplication function is

probably at least 4 times as efficient as similar code written well in C. So,

while it is true that assembly language can offer performance benefits, it

is unlikely to outperform C/C++ for most general purpose tasks.

Furthermore it takes intimate knowledge of the CPU to achieve these

gains. In this book we will point out some general strategies for writing

efficient assembly programs.

One advantage of assembly language is that it can do things not

possible in high level languages. Examples of this include handling

hardware interrupts and managing memory mapping features of a CPU.

These features are essential in an operating system, though not required

for application programming.

So far we have seen that assembly language is much more difficult to

use than higher level languages and only offers benefits in special cases

to well-trained programmers. What benefit is there for most people?

The primary reason to study assembly language is to learn how a CPU

works. This helps when programming in high level languages.

Understanding how the compiler implements the features of a high level

language can aid in selecting features for efficiency. More importantly

understanding the translation from high level language to machine

language is fundamental in understanding why bugs behave the way they

do. Without studying assembly language, a programming language is

primarily a mathematical concept obeying mathematical laws.

Underneath this mathematical exterior the computer executes machine

instructions which have limits and can have unexpected behavior.

Assembly language skills can help in understanding this unexpected

behavior and improve one’s debugging skills.

1.2 What is a computer?

A computer is a machine for processing bits. A bit is an individual unit of

computer storage which can take on 2 values: 0 and 1. We use computers

to process information, but all the information is represented as bits.

Collections of bits can represent characters, numbers, or any other

information. Humans interpret these bits as information, while

computers simply manipulate the bits.

The memory of a computer (ignoring cache) consists mainly of a

relatively large amount of “main memory” which holds programs and data

while programs are executing. There is also a relatively small collection

of memory within the CPU chip called the “register set” of the computer.

4

The registers primarily function as a place to store intermediate values

during calculations based on values from main memory.

Bytes

Modern computers access memory in 8 bit chunks. Each 8 bit quantity is

called a “byte”. The main memory of a computer is effectively an array of

bytes with each byte having a separate memory address. The first byte

address is 0 and the last address depends on the hardware and software

in use.

A byte can be interpreted as a binary number. The binary number

01010101 equals the decimal number 85 (64+16+4+1). If this number is

interpreted as a machine instruction the computer will push the value of

the rbp register onto the run-time stack. The number 85 can also be

interpreted as the upper case letter “U”. The number 85 could be part of a

larger number in the computer. The letter “U” could be part of a string in

memory. It’s all a matter of interpretation.

Program execution

A program in execution occupies a range of addresses for the instructions

of the program. The following 18 bytes constitute a very simple program

which simply exits (with status 5):

5

Address Value

401740 85

401741 72

401742 137

401743 229

401744 72

401745 131

401746 236

401747 32

401748 185

401749 5

40174a 0

40174b 0

40164c 0

40174d 232

40174e 102

40174f 93

401750 0

401651 0

The addresses are listed in hexadecimal though they could have

started with the equivalent decimal number 4200256. Hexadecimal

values are more informative as memory addresses since the computer

memory is mapped into pages of 4096 bytes each. This means that the

rightmost 3 hexadecimal digits (also called “nibbles”) contain an offset

within a page of memory. We can see that the address of the first

instruction of the program is at offset 0x740 of a page.

1.3 Machine language

Each type of computer has a collection of instructions it can execute. These

instructions are stored in memory and fetched, interpreted and executed

during the execution of a program. The sequence of bytes (like the

previous 18 byte program) is called a “machine language” program. It

would be quite painful to use machine language. You would have to enter

the correct bytes for each instruction of your program and you would need

to know the addresses of all data used in your program. A more realistic

program would have branching instructions. The address to branch to

depends on where the computer loads your program into memory when it

is executed. Furthermore the address to branch to can change when you

add, delete or change instructions in your program.

6

The very first computers were programmed in machine language, but

people soon figured out ways to make the task easier. The first

improvement was to use words like mov to indicate the selection of a

particular instruction. In addition people started using symbolic names to

represent addresses of instructions and data in a program. Using symbolic

names prevents the need to calculate addresses and insulates the

programmer from changes in the source code.

1.4 Assembly language

Very early in the history of computing (1950s), programmers developed

symbolic assembly languages. This rapidly replaced the use of machine

language, eliminating a lot of tedious work. Machine languages are

considered “first-generation” programming languages, while assembly

languages are considered “second-generation”.

Many programs continued to be written in assembly language after

the invention of FORTRAN and COBOL (“third-generation” languages) in

the late 1950s. In particular operating systems were typically nearly

100% assembly until the creation of C as the primary language for the

UNIX operating system

The source code for the 12 byte program from earlier is listed below:

; Program: exit
;
; Executes the exit system call
;
; No input
;
; Output: only the exit status
; %errorlevel%
; $? In the Cygwin shell
;
 segment .text
 global main
 extern exit
main:
 push rbp
 mov rbp, rsp
 sub rsp, 32 ; shadow parameter space
 mov ecx, 5 ; parameter for exit function
 call exit

You will observe the use of “;” to signal the start of comments in this

program. Some of the comments are stand-alone comments and others are

end-of-line comments. It is fairly common to place end-of-line comments

on each assembly instruction.

Lines of assembly code consist of labels and instructions. A label is a

string of letters, digits and underscore with the first character either a

7

letter or an underscore. A label usually starts in column 1, but this is not

required. A label establishes a symbolic name for the current point in the

assembler. A label on a line by itself must have a colon after it, while the

colon is optional if there is more to the line. It is probably safer to always

use a colon after a label definition to avoid confusion.

Instructions can be machine instructions, macros or instructions to the

assembler. Instructions usually are placed further right than column 1.

Many people establish a pattern of starting all instructions in the same

column. I suggest using indentation to represent the high level structure

of code, though spacing constraints limit the indentation in the examples.

The statement “segment .text” is an instruction to the assembler

itself rather than a machine instruction. This statement indicates that

the data or instructions following it are to be placed in the .text segment

or section. This is where the instructions of a program are located.

The statement “global main” is another instruction to the assembler

called an assembler directive or a pseudo opcode (pseudo-op). This

pseudo-op informs the assembler that the label main is to be made known

to the linker when the program is linked. When the system runs a

program it transfers control to the main function. A typical C program has

a main function which is called indirectly via a start function in the C

library. Some operating system use “_” as a prefix or suffix for functions.

The OS X gcc prefixes each function name with an underscore, but gcc

under Linux leaves the names alone. So “main” in an OS X C program is

automatically converted to “_main”. Windows leaves the names alone.

 The line beginning with main is a label. Since no code has been

generated up to this point, the label refers to location 0 of the program’s

text segment.

The remaining lines use symbolic opcodes representing the 5

executable instructions in the program. The first two instructions prepare

a stack frame for main. The third instruction subtracts 32 from the stack

pointer, rsp. This is done to leave space for a called function to store

register parameters on the stack if needed. The fourth instruction places

5 in register rcx which is the first and only parameter for the exit call

made in the last instruction.

1.5 Assembling and linking

This book introduces the use of the ebe program as an integrated

development environment for assembly and C programming. Internally

ebe uses the yasm assembler to produce an object file from an assembly

source code file. This is adequate for debugging but some people will want

8

to prepare makefiles or scripts to build their programs. For this purpose

we list the commands required to assemble and link assembly programs.

Here is the yasm command:

 yasm -f win64 -P ebe.inc -l exit.lst exit.asm

The yasm assembler is modeled after the nasm assembler. The -f

win64 option selects a 64 bit output format which is compatible with

Windows and gcc. The -P ebe.inc option tells yasm to prefix exit.asm

with ebe.inc which handles naming differences between Linux and OS

X. Ebe will prepare a copy of ebe.inc in the same directory as the

assembly file for each assembly. The -l exit.lst option asks for a listing

file which shows the generated code in hexadecimal.

The yasm command produces an object file named exit.o, which

contains the generated instructions and data in a form ready to link with

other code from other object files or libraries. Linking is done with the gcc

command:

 gcc -o exit exit.o

The -o exit option gives a name to the executable file produced by

gcc. The actual name will be “exit.exe” following Windows naming

conventions. Without that option, gcc produces a file named a.exe.

You can execute the program using:

 exit.exe

Normally you don’t have to specify “.exe” when running a program,

but “exit” is a command which is interpreted by the command shell.

1.6 Using ebe to run the program

To use ebe to assemble, link and run the program is quite simple. First

start ebe by entering “ebe” from a command shell or click on the ebe icon,

a green alien. This will create a window with several subwindows

including a source code subwindow as shown in the figure below. The

various subwindows can be rearranged by dragging them by their title

bars. They can be dropped on top of each other to create tabbed

subwindows, they can be resized, they can be hidden and they can be

dragged out of the main window to become stand-alone windows.

9

For better visibility the next figure shows ebe without the register,

data and terminal windows. Using the source code window you can enter

the text shown and use the File menu to save the file as “exit.asm”. To

run the program simply click on the “Run” button, the icon which looks

like a green alien (or gray). There is an arrow pointing to the “Run” button.

If there were any output from the program, it would be displayed in the

terminal subwindow. After saving the file once, you can start ebe using

“ebe exit.asm”.

10

More details on using ebe will be illustrated later and a chapter on

ebe is included in the appendix. This is sufficient for the first chapter.

11

Exercises

1. Enter the assembly language program from this chapter and assemble

and link it. Then execute the program from the command line and

enter “echo %errorlevel%”. By convention in UNIX systems, a non-

zero status from a program indicates an error. Change the program to

yield a 0 status.

2. Use the “dir” command to determine the sizes of exit.asm, exit.o and

exit.exe. Which file is the largest? Why?

3. In C and many other languages, 0 means false and 1 (or non-zero)

means true. In the shell 0 for the status of a process means success

and non-zero means an error. Shell if statements essentially use 0 for

true. Why did the writer of the first UNIX shell decide to use 0 for

true?

12

Chapter 2

Numbers

All information in a computer is stored as collections of bits. These bits

can be interpreted in a variety of ways as numbers. In this chapter we will

discuss binary numbers, hexadecimal numbers, integers and floating

point numbers.

2.1 Binary numbers

We are used to representing numbers in the decimal place-value system.

In this representation, a number like 1234 means 103 + 2 ∗ 102 + 3 ∗ 10 +

4. Similarly binary numbers are represented in a place-value system

using 0 and 1 as the “digits” and powers of 2 rather than powers of 10.

Let’s consider the binary number 10101111. This is an 8 bit number

so the highest power of 2 is 27. So this number is

10101111 = 27 + 25 + 23 + 22 + 2 + 1

 = 128 + 32 + 8 + 4 + 2 + 1

 = 175

The bits of an 8 bit number are numbered from 0 to 7 with 0 being the

least significant bit and 7 being the most significant bit

The number 175 has its bits defined below.

bit value 1 0 1 0 1 1 1 1

bit position 7 6 5 4 3 2 1 0

The conversion from binary to decimal is straightforward. It takes a

little more ingenuity to convert from decimal to binary. Let’s examine the

number 741. The highest power of 2 less than (or equal to) 741 is 29 = 512.

So we have

741 = 512 + 229

 = 29 + 229

13

Now we need to work on 229. The highest power of 2 less than 229 is

27 = 128. So we now have

741 = 512 + 128 + 101

 = 29 + 27 + 101

The process continues with 101. The highest power of 2 less than 101

is 26 = 64. So we get

741 = 512 + 128 + 64 + 37

 = 29 + 27 + 26 + 37

Next we can find that 37 is greater than 25 = 32, so

741 = 512 + 128 + 64 + 32 + 5

 = 29 + 27 + 26 + 25 + 5

Working on the 5 we see that

741 = 512 + 128 + 64 + 32 + 4 + 1

 = 29 + 27 + 26 + 25 + 22 + 1

Below is 741 expressed as a 16 bit integer.

bit value 1 0 1 1 1 0 0 1 0 1

bit position 9 8 7 6 5 4 3 2 1 0

A binary constant can be represented in the yasm assembler by

appending “b” to the end of a string of 0’s and 1’s. So we could represent

741 as 1011100101b.

An alternative method for converting a decimal number to binary is

by repeated division by 2. At each step, the remainder yields the next

higher bit.

Let’s convert 741 again.

division quotient remainder binary number

741/2 = 370 1 1

370/2 = 185 0 01

185/2 = 92 1 101

92/2 = 46 0 0101

46/2 = 23 0 00101

23/2 = 11 1 100101

11/2 = 5 1 1100101

5/2 = 2 1 11100101

2/2 = 1 0 011100101

1/2 = 0 1 1011100101

The repeated division algorithm is easier since you don’t have to

identify (guess?) powers of 2 less than or equal to the number under

question. It is also easy to program.

14

2.2 Hexadecimal numbers

Binary numbers are a fairly effective way of representing a string of bits,

but they can get pretty tedious if the string is long. In a 64 bit computer

it is fairly common to work with 64 bit integers. Entering a number as 64

bits followed by a “b” would be tough. Decimal numbers are a much more

compact representation, but it is not immediately apparent what bits are

0’s and 1’s in a decimal number. Enter hexadecimal…

A hexadecimal number is a number in base 16. So we need “digits”

from 0 to 15. The digits from 0-9 are just like in decimal. The digits from

10-15 are represented by the letters ‘A’ through ‘F’. We can also use lower

case letters. Fortunately both yasm and C/C++ represent hexadecimal

numbers using the prefix 0x. You could probably use 0X but the lower case

x tends to make the numbers more visually obvious.

Let’s consider the value of 0xa1a. This number uses a which means

10, so we have

0xa1a = 10 ∗ 162 + 1 ∗ 16 + 10

 = 10 ∗ 256 + 16 + 10

 = 2586

Converting a decimal number to hexadecimal follows a pattern like

the one used before for binary numbers except that we have to find the

highest power of 16 and divide by that number to get the correct “digit”.

Let’s convert 40007 to hexadecimal. The first power of 16 to use is 163 =

4096. 40007/4096 = 9 with a remainder of 3143, so we have

40007 = 9 ∗ 163 + 3143.

3143/162 = 3143/256 = 12 with a remainder of 71, so we get

40007 = 9 ∗ 163 + 12 ∗ 162 + 71.

71/16 = 4 with a remainder of 7, so the final result is

40007 = 9 ∗ 163 + 12 ∗ 162 + 4 ∗ 16 + 7 = 0x9C47.

As with conversion to binary we can perform repeated division and

build the number by keeping the remainders.

division quotient remainder hexadecimal

40007/16 = 2500 7 0x7

2500/16 = 156 4 0x47

156/16 = 9 12 0x947

12/16 = 0 12 0xc947

Converting back and forth between decimal and binary or decimal and

hexadecimal is a bit painful. Computers can do that quite handily, but

why would you want to convert from decimal to hexadecimal? If you are

entering a value in the assembler, simply enter it in the form which

matches your interpretation. If you’re looking at the number 1027 and

15

need to use it in your program to perform arithmetic, enter it as a decimal

number. If you want to represent some pattern of bits in the computer,

then your choices are binary and hexadecimal. Binary is pretty obvious to

use, but only for fairly short binary strings. Hexadecimal is more practical

for longer binary strings.

The bottom line is conversion between binary and hexadecimal is all

that one normally needs to do. This task is made easier since each

hexadecimal “digit” represents exactly 4 bits (frequently referred to as a

“nibble”). Consult the table below to convert between binary and

hexadecimal.

Hex Binary

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

a 1010

b 1011

c 1100

d 1101

e 1110

f 1111

Let’s now consider converting 0x1a5b to binary. 1 = 0001, a = 1010,

5 = 0101 and b = 1011, so we get

 0x1a5b = 0001 1010 0101 1011 = 0001101001011011b

Below 0x1a5b is shown with each bit position labeled:

Bit value 0 0 0 1 1 0 1 0 0 1 0 1 1 0 1 1

Bit position 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

The value of each bit position is 2 raised to that power. In the number

above the leftmost 1 bit is in position 12, so it represents 212 = 4096. So

the number is

212 + 211 + 29 + 26 + 24 + 23 + 21 + 20

4096 + 2048 + 512 + 64 + 16 + 8 + 2 + 1

 6737

16

2.3 Integers

On the x86-64 architecture integers can be 1 byte, 2 bytes, 4 bytes, or 8

bytes in length. Furthermore for each length the numbers can be either

signed or unsigned. Below is a table listing minimum and maximum

values for each type of integer.

Variety Bits Bytes Minimum Maximum

unsigned 8 1 0 255

signed 8 1 -128 127

unsigned 16 2 0 65535

signed 16 2 -32768 32767

unsigned 32 4 0 4294967295

signed 32 4 -2147483648 2147483647

unsigned 64 8 0 18446744073709551615

signed 64 8 -9223372036854775808 9223372036854775807

Let’s consider the maximum unsigned 16 bit integer. This maximum

number is 16 bits all equal to 1 or 1111111111111111. The leftmost bit is

bit 15 so its value is 215. Now suppose we add 1 to 1111111111111111. It’s

pretty clear that we will get a carry in every position and the result is

10000000000000000. This new number has 17 bits and the first bit

position is 16, so we get

1111111111111111 + 1 = 216

Phrasing this more conveniently

1111111111111111 = 216 − 1 = 65536 − 1 = 65535

Similarly the maximum unsigned 64 bit integer is 264 − 1 and the

maximum signed 64 bit integer is 263 − 1. The range of 64 bit integers is

large enough for most needs. Of course there are exceptions, like 20! =

51090942171709440000.

Unsigned integers are precisely the binary numbers discussed earlier.

Signed integers are stored in a useful format called “two’s complement”.

The first bit of a signed integer is the sign bit. If the sign bit is 0, the

number is positive. If the sign bit is 1, the number is negative. The most

obvious way to store negative numbers would be to use the remaining bits

to store the absolute value of the number.

sign bit value

31 0

17

Let’s consider 8 bit signed integers and what we would get if we used

the existing circuitry to add 2 such integers. Let’s add -1 and 1. Well, if we

store -1 with a sign bit and then the value we would get

 -1 = 10000001
 1 = 00000001

-1+1 = 10000010

Oops! We end up with -2 rather than 0.

Let’s try storing 8 bit numbers as a sign bit and invert the bits for the

absolute value part of the number:

 -1 = 11111110
 1 = 00000001

-1+1 = 11111111

Now this is interesting: the result is actually -0, rather than 0. This

sounds somewhat hopeful. Let’s try a different pair of numbers:

 -1 = 11111110
 4 = 00000100

-1+4 = 00000010 = 2

Too bad! It was close. What we need is to add one to the complemented

absolute value for the number. This is referred to as “two’s complement”

arithmetic. It works out well using the same circuitry as for unsigned

numbers and is mainly a matter of interpretation.

So let’s convert -1 to its two’s complement format.

 00000001 for the absolute value
 11111110 for the complement
 11111111 after adding 1
 -1 = 11111111

Using two’s complement numbers the largest negative 8 bit integer is

10000000. To convert this back, complement the number and add 1. This

gives 01111111 + 1 = 10000000 = 128, so 10000000 = -128. You may

have noticed in the table of minimums and maximums that the minimum

values were all 1 larger in absolute value than the maximums. This is due

to complementing and adding 1. The complement yields a string of 1’s and

adding 1 to that yields a single 1 with a bunch of 0’s. The result is that the

largest value for an 𝑛-bit signed integer is 2𝑛−1 − 1 and the smallest value

is −2𝑛−1.

Now let’s convert the number -750 to a signed binary number.

750 = 512 + 128 + 64 + 32 + 8 + 4 + 2 = 1011101110b

Now expressing this as a 16 bit binary number (with spaces to help keep

track of the bits) we get 0000 0010 1110 1110. Next we invert the bits to

get 1111 1101 0001 0001. Finally we add 1 to get -750 = 1111 1101

0001 0010 = 0xFD12.

18

Next let’s convert the hexadecimal value 0xFA13 from a 16 bit signed

integer to a decimal value. Start by converting to binary: 1111 1010 0001

0011. Then invert the bits: 0000 0101 1110 1100. Add 1 to get the 2’s

complement: 0000 0101 1110 1101. Convert this to decimal: 1024 + 256

+ 128 + 64 + 32 + 8 + 4 + 1 = 1517, so 0xFA13 = -1517.

Let’s add -750 and -1517 in binary:

 1111 1101 0001 0010
+ 1111 1010 0001 0011

1 1111 0111 0010 0101

We can ignore the leading 1 bit (a result of a carry). The 16 bit sum is 1111

0111 0010 0101, which is negative. Inverting: 0000 1000 1101 1010.

Next adding 1 to get the two’s complement: 0000 1000 1101 1011. So the

number is 2048 + 128 + 64 + 16 + 8 + 2 + 1 = 2267. So we have -750 + -

1517 = -2267.

Binary addition

Performing binary addition is a lot like decimal addition. Let’s add 2

binary numbers

 10001111
 + 01011010

 1

The first pair of bits was easy. Adding the second pair of bits gives a

value of 2, but 2 = 10b, so we place a 0 on the bottom and carry a 1

 1
 10001111
 + 01011010

 01

We continue in the same way:
 1
 10001111
+ 01011010

 001

 1
 10001111
+ 01011010

 1001

19

 1
 10001111
+ 01011010

 01001

. . .

 10001111
+ 01011010

 11101001

Binary multiplication

Binary multiplication is also much like decimal multiplication. You

multiply one bit at a time of the second number by the top number and

write these products down staggered to the left. Of course these “products”

are trivial. You are multiplying by either 0 or 1. In the case of 0, you just

skip it. For 1 bits, you simply copy the top number in the correct columns.

After copying the top number enough times, you add all the partial

products. Here is an example:

 1010101
 x 10101

 1010101

 1010101

1010101

11011111001

2.4 Floating point numbers

The x86-64 architecture supports 3 different varieties of floating point

numbers: 32 bit, 64 bit and 80 bit numbers. These numbers are stored in

IEEE 754 format

Below are the pertinent characteristics of these types:

Variety Bits Exponent Exponent

Bias

Fraction Precision

float 32 8 127 23 7 digits

double 64 11 1023 52 16 digits

long double 80 15 16383 64 19 digits

The IEEE format treats these different length numbers in the same

way, but with different lengths for the fields. In each format the highest

20

order bit is the sign bit. A negative number has its sign bit set to 1 and

the remaining bits are just like the corresponding positive number. Each

number has a binary exponent and a fraction. We will focus on the float

type to reduce the number of bits involved.

31 30 23 22 0

The exponent for a float is an 8 bit field. To allow large numbers or

small numbers to be stored, the exponent is interpreted as positive or

negative. The actual exponent is the value of the 8 bit field minus 127.

127 is the “exponent bias” for 32 bit floating point numbers.

The fraction field of a float holds a small surprise. Since 0.0 is defined

as all bits set to 0, there is no need to worry about representing 0.0 as an

exponent field equal to 127 and fraction field set to all 0’s. All other

numbers have at least one 1 bit, so the IEEE 754 format uses an implicit

1 bit to save space. So if the fraction field is 00000000000000000000000, it

is interpreted as 1.00000000000000000000000. This allows the fraction

field to be effectively 24 bits. This is a clever trick made possible by

making exponent fields of 0x00 and 0xFF special.

A number with exponent field equal to 0x00 is defined to be 0.

Interestingly, it is possible to store a negative 0. An exponent of 0xFF is

used to mean either negative or positive infinity. There are more details

required for a complete description of IEEE 754, but this is sufficient for

our needs.

To illustrate floating point data, consider the following assembly file,

“fp.asm”

 segment .data
 zero dd 0.0
 one dd 1.0
 neg1 dd -1.0
 a dd 1.75
 b dd 122.5
 d dd 1.1
 e dd 10000000000.

This is not a program, it is simply a definition of 7 float values in the

data segment. The dd command specifies a double word data item. Other

options include db (data byte), dw (data word) and dq (data quad-word). A

word is 2 bytes, a double word is 4 bytes and a quad-word is 8 bytes.

Now consider the listing file, “fp.lst”, produced by executing the

following command to assemble the file and produce a listing

 yasm -f elf64 -g dwarf2 -l fp.lst fp.asm

Here are the contents of the listing:

 1 %line 1+1 fp.asm
 2 [section .data]

21

 3 00000000 00000000 zero dd 0.0
 4 00000004 0000803F one dd 1.0
 5 00000008 000080BF neg1 dd -1.0
 6 0000000C 0000E03F a dd 1.75
 7 00000010 0000F542 b dd 122.5
 8 00000014 CDCC8C3F d dd 1.1
 9 00000018 F9021550 e dd 10000000000.0

The listing has line numbers in the first column. Characters 3-10 (if

not blank) are relative addresses in hexadecimal. Characters 12-19

(again, if not blank) are the assembled bytes of data. So we see that zero

occupies bytes 0-3, one occupies bytes 4-7, etc. We can also examine the

data produced from each variable definition.

The zero variable is stored as expected - all 0 bits. The other numbers

might be a little surprising. Look at one - the bytes are backwards!

Reverse them and you get 3F800000. The most significant byte is 3F. The

sign bit is 0. The exponent field consists of the other 7 bits of the most

significant byte and the first bit of the next byte. This means that the

exponent field is 127 and the actual binary exponent is 0. The remaining

bits are the binary fraction field all 0’s. Thus the value is 1.0 ∗ 20 = 1.0.

There is only 1 negative value shown: -1.0. It differs in only the sign

bit from 1.0.

You will notice that 1.75 and 122.5 have a significant number of 0’s in

the fraction field. This is because .75 and .5 are both expressible as sums

of negative powers of 2.

0.75 = 0.5 + 0.25 = 2−1 + 2−2

On the other hand 1.1 is a repeating sequence of bits when expressed

in binary. This is somewhat similar to expressing 1/11 in decimal:

1/11 = 0.090909̅̅̅̅

Looking at 1.1 in the proper order 1.1 = 0x3F8CCCCD. The exponent

is 0 and the fraction field in binary is 00011001100110011001101. It looks

like the last bit has been rounded up and that the repeated pattern is

1100.

1.110 = 1.0001100110011001100̅̅ ̅̅ ̅̅ ̅
2

Having seen that floating point numbers are backwards, then you

might suspect that integers are backwards also. This is indeed true.

Consider the following code which defines some 32 bit integers:

 segment data
 zero dd 0
 one dd 1
 neg1 dd -1
 a dd 175
 b dd 4097
 d dd 65536
 e dd 100000000

22

The associated listing file shows the bits generated for each number.

The bytes are backwards. Notice that 4097 is represented as 0x01100000

in memory. The first byte is the least significant byte. We would prefer to

consider this as 0x00001001, but the CPU stores least significant byte

first.

 1 %line 1+1 int.asm
 2 [section .data]
 3 00000000 00000000 zero dd 0
 4 00000004 01000000 one dd 1
 5 00000008 FFFFFFFF neg1 dd -1
 6 0000000C AF000000 a dd 175
 7 00000010 01100000 b dd 4097
 8 00000014 00000100 d dd 65536
 9 00000018 00E1F505 e dd 100000000

Converting decimal numbers to floats

Let’s work on an example to see how to do the conversion. Let’s convert -

121.6875 to its binary representation.

First let’s note that the sign bit is 1. Now we will work on 121.6875.

It’s fairly easy to convert the integer portion of the number: 121 =

1111001b. Now we need to work on the fraction.

Let’s suppose we have a binary fraction x = 0.abcdefgh, where the

letters indicate either a 0 or a 1. Then 2*x= a.bcdefgh. This indicates that

multiplying a fraction by 2 will expose a bit.

We have 2 ∗ 0.6875 = 1.375 so the first bit to the right of the binary

point is 1. So far our number is 1111001.1b.

Next multiply the next fraction: 2 ∗ 0.375 = 0.75, so the next bit is 0.

We have 1111001.10b.

Multiplying again: 2 ∗ .75 = 1.5, so the next bit is 1. We now have
1111001.101b.

Multiplying again: 2 ∗ 0.5 = 1, so the last bit is 1 leaving the final

1111001.1011b.

So our number -121.6875 = -1111001.1011b. We need to get this into

exponential notation with a power of 2.

 121.6875 = -1111001.1011

 = -1.1110011011 * 26

We now have all the pieces. The sign bit is 1, the fraction (without the

implied 1) is 11100110110000000000000 and the exponent field is 127+6

= 133 = 10000101. So our number is

 1 10000101 11100110110000000000000

23

Organized into nibbles, this is 1100 0010 1111 0011 0110 0000 0000

0000 or 0xc2f36000. Of course if you see this in a listing it will be reversed:

0060f3c2.

Converting floats to decimal

An example will illustrate how to convert a float to a decimal number.

Let’s work on the float value 0x43263000.

The sign bit is 0, so the number is positive. The exponent field is

010000110 which is 134, so the binary exponent is 7. The fraction field is

010 0110 0011 0000 0000 0000 0000, so the fraction with implied 1 is

1.01001100011.

1.010011000112 ∗ 27 = 10100110.00112

 = 166 + 2−3 + 2−4

 = 166 + 0.125 + 0.0625

 = 166.1875

Floating point addition

In order to add two floating point numbers, we must first convert the

numbers to binary real numbers. Then we need to align the binary points

and add the numbers. Finally we need to convert back to floating point.

Let’s add the numbers 41.275 and 0.315. In hexadecimal these

numbers are 0x4225199a and 0x3ea147ae. Now let’s convert 0x4225199a

to a binary number with a binary exponent. The exponent field is

composed of the first two nibbles and a 0 bit from the next nibble. This is

100001002 = 132, so the exponent is 132-127=5. The fractional part with

the understood 1 bit is

1.010010100011001100110102

So we have

0x4225199a = 1. 010010100011001100110102 ∗ 25

 = 101001.0100011001100110102

Similarly 0x3ea147ae has an exponent field of the first 2 nibbles and a

1 from the third nibble. So the exponent field is 011111012 = 125 yielding

an exponent of -2. The fractional part with the understood 1 bit is

1.010000101000111101011102

So we have

24

0x3ea147ae = 1. 010000101000111101011102 ∗ 2−2

 = 0.01010000101000111101011102

Now we can align the numbers and add

 101001.010001100110011010
+ 0.0101000010100011110101110

 101001.1001011100001010010101110

Now we have too many bits to store in a 32 bit float. The rightmost 7

bits will be rounded (dropped in this case) to get

101001.1001011100001010012 = 1.010011001011100001010012 ∗ 25

So the exponent is 5 and the exponent field is again 132. Next we

combine the sign bit, the exponent field and the fraction field (dropping

the implied 1) bit and convert to hexadecimal

0 10000100 01001100101110000101001 sign exponentfraction
0100 0010 0010 0110 0101 1100 0010 1001 organized as nibbles
 4 2 2 6 5 c 2 9 hexadecimal

So we determine that the sum is 0x42265c29 which is 41.59

(approximately).

You should be able to see that we lost some bits of precision on the

smaller number. In an extreme case we could try to add 1.0 to a number

like 1038 and have no effect.

Floating point multiplication

Floating point multiplication can be performed in binary much like

decimal multiplication. Let’s skip the floating point to/from binary

conversion and just focus on the multiplication of 7.5 and 4.375. First

observe that 7.5 = 111.12 and 4.375 = 100.0112. Then we multiply binary

numbers and place the binary point in the correct place in the product.

 111.1 1111

100.011 * 100011

 1111
 1111

 1111

 1000001101

100000.1101 placing binary point in product

So we have the product 32.8125 as expected.

25

2.5 Exploring with the bit bucket

One of the subwindows of the ebe program is called the “bit bucket”. The

purpose of the bit bucket is to explore fundamental bit operations. Figure

2.1 shows the bit bucket at the start of a decimal to binary conversion.

 Figure 2.1 Bit bucket before decimal to binary conversion

There are 5 tabs which can be selected at the top of the bit bucket

window, allowing you to explore unary operators, binary operators,

integer conversions, integer math and float conversions. I have selected

the integer conversions tab. Using the pull down list to the right of

“Operator” I have chosen “Decimal to Binary”. After selecting the

conversion the table is cleared as you see it. There is a field for entering a

number. In these fields in the bit bucket you can enter a hexadecimal

number by using the prefix “0x” and you can also enter a binary number

using the prefix “0b”. After entering a number, you would step through

the conversion by clicking on the “to binary” button. This button will move

down the table through each step of the conversion.

Figure 2.2 shows the results from entering the number 131 and

stepping through its conversion into binary.

 Figure 2.2 Bit bucket after converting 131 to binary

The bit bucket will help you explore the way that the computer

represents and performs operations with numbers. There are conversions

from decimal, binary and hexadecimal to the alternative forms. There are

26

conversions for 32 bit floating point numbers in addition to integer

conversions. All the arithmetic and bit operations on integers are also

available for exploration.

27

Exercises

1. Convert the following integers to binary.

a. 37 b. 65 c. 350 d. 427

2. Convert the following 16 bit signed integers to decimal.

a. 0000001010101010b c. 0x0101

b. 1111111111101101b d. 0xffcc

3. Convert the following 16 bit unsigned integers to binary.

a. 0x015a c. 0x0101

b. 0xfedc d. 0xacdc

4. Convert the following numbers to 32 bit floating point.

a. 1.375 c. -571.3125

b. 0.041015625 d. 4091.125

5. Convert the following numbers from 32 bit floating point to decimal.

a. 0x3F82000 c. 0x4F84000

b. 0xBF82000 d. 0x3C86000

6. Perform the binary addition of the 2 unsigned integers below. Show

each carry as a 1 above the proper position.

 0001001011001011

+ 1110110111101011

7. Perform the binary multiplication of the following unsigned binary

numbers. Show each row where a 1 is multiplied times the top

number. You may omit rows where a 0 is multiplied times the top

 1011001011

x 1101101

8. Write an assembly “program” (data only) defining data values using

dw and dd for all the numbers in exercises 1-4.

28

Chapter 3

Computer memory

In this chapter we will discuss how a modern computer performs memory

mapping to give each process a protected address space and how Windows

manages the memory for a process. A practical benefit of this chapter is a

discussion of how to examine memory using the gdb debugger and ebe.

3.1 Memory mapping

The memory of a computer can be considered an array of bytes. Each byte

of memory has an address. The first byte is at address 0, the second byte

at address 1, and so on until the last byte of the computer’s memory.

In modern CPUs there are hardware mapping registers which are

used to give each process a protected address space. This means that

multiple people can each run a program which starts at address 0x4004c8

at the same time. These processes perceive the same “logical” addresses,

while they are using memory at different “physical” addresses.

The hardware mapping registers on an x86-64 CPU can map pages of

2 different sizes - 4096 bytes and 2 megabytes. Windows, Linux and OS X

all use 2 MB pages for the kernel and 4 KB pages for most other uses. All

three operating systems allow user processes to use 2 MB pages. In some

of the more recent CPUs there is also support for 1 GB pages.

The operation of the memory system is to translate the upper bits of

the address from a process’s logical address to a physical address. Let’s

consider only 4 KB pages. Then an address is translated based on the page

number and the address within the page. Suppose a reference is made to

logical address 0x4000002220. Since 4096 = 212, the offset within the page

is the right-most 12 bits (0x220). The page number is the rest of the bits

(0x4000002). A hardware register (or multiple registers) translates this

page number to a physical page address, let’s say 0x780000000. Then the

two addresses are combined to get the physical address 0x780000220.

29

Amazingly the CPU generally performs the translations without

slowing down and this benefits the users in several ways. The most

obvious benefit is memory protection. User processes are limited to

reading and writing only their own pages. This means that the operating

system is protected from malicious or poorly coded user programs. Also

each user process is protected from other user processes. In addition to

protection from writing, users can’t read other users’ data.

There are instructions used by the operating system to manage the

hardware mapping registers. These instructions are not discussed in this

book. Our focus is on programming user processes.

So why bother to discuss paging, if we are not discussing the

instructions to manage paging? Primarily this improves one’s

understanding of the computer. When you write software which accesses

data beyond the end of an array, you sometimes get a segmentation fault.

However you only get a segmentation fault when your logical address

reaches far enough past the end of the array to cause the CPU to reference

a page table entry which is not mapped into your process.

3.2 Process memory model in Windows

In Windows memory for a process is divided into 4 logical regions: text,

data, heap and stack. The stack by default is 1 MB and is typically located

at an address befow 0x400000. Immediately above the stack is the text

segment (for instructions), followed by the data segment. The heap

occupies memory from the end of the data segment to the highest address

for a user process – 0x7ffffffffff. The total number of bits in the

highest user process address is 43 which amounts to 8 TB of virtual

address space.

To the right we see the arrangement of the

various memory segments. At the lowest address we

have the stack segment. This segment is shown

starting at 0, though the actual location is at a higher

address. The stack is limited in size and can be as

large as 1 GB which might possibly alter the layout.

The next higher segment is the text segment which

seems to start around 4 MB. The text segment does

not typically need to grow, so the data segment is

placed immediately above the text segment. Above

these two segments is the heap segment. The data

and text segments are limited to the first 2 GB of

address space, so the relative sizes are quite distorted in the diagram.

30

The data segment starts with the .data segment which contains

initialized data. Above that is the .bss segment which stands for “block

started by symbol”. The .bss segment contains data which is statically

allocated in a process, but is not stored in the executable file. Instead this

data is allocated when the process is loaded into memory. The initial

contents of the .bss segment are all 0 bits.

The heap is not really a heap in the sense discussed in a data

structures course. Instead it is a dynamically resizable region of memory

which is used to allocate memory to a process through functions like

malloc in C and the new operator in C++. In 64 bit Windows this region

can grow to very large sizes. The limit is imposed by the sum of physical

memory and swap space.

The default stack size of 1 MB sounds pretty small, but the stack is

used to make function calls. For each call the return address and the

function parameters (well, almost) are pushed on the stack. Also the called

function places local variables on the stack. Assuming each call uses about

6 parameters and has 4 local variables this would end up requiring about

100 bytes per call. This means that 1 MB of stack space would support a

call depth of 10000. Problems requiring much depth of recursion or arrays

as local variables might require stack size modification when the program

is linked.

This simple memory layout is greatly simplified. There are dynamic-

link libraries (DLLs) which can be mapped into a process at load time and

after the program is loaded which will result in regions in the heap range

being used to store instructions and data. This region is also used for

mapping shared memory regions into a process. Also to improve security

Windows uses somewhat random stack, text, data, and heap start

addresses. This means that the top of the stack would differ each time a

program is executed. Likewise the address of main might vary each time

a program is executed.

If you wish to examine the memory used by one of your programs, you

can download the VMMap program from Microsoft by searching for

vmmap at http://technet.microsoft.com.

3.3 Memory example

Here is a sample assembly program, “memory.asm” with several memory

items defined:

 segment .data
 a dd 4
 b dd 4.4
 c times 10 dd 0

31

 d dw 1, 2
 e db 0xfb
 f db “hello world”, 0

 segment .bss
 g resd 1
 h resd 10
 i resb 100

 segment .text
 global main ; tell linker about main
 main:
 push rbp ; set up a stack frame
 mov rbp, rsp ; rbp points to stack frame
 sub rsp, 32 ; leave some room for shadow parameters
 ; rsp on a 16 byte boundary
 xor eax, eax ; rax = 0 for return value
 leave ; undo stack frame changes
 ret

After assembling the program we get the following listing
file:

 1 %line 1+1 memory.asm
 2 [section .data]
 3 00000000 04000000 a dd 4
 4 00000004 CDCC8C40 b dd 4.4
 5 00000008 00000000<rept> c times 10 dd 0
 6 00000030 01000200 d dw 1, 2
 7 00000034 FB e db 0xfb
 8 00000035 68656C6C6F20776F72- f db “hello world”, 0
 9 00000035 6C6400
 10
 11 [section .bss]
 12 00000000 <gap> g resd 1
 13 00000004 <gap> h resd 10
 14 0000002C <gap> i resb 100
 15
 16 [section .text]
 17 [global main]
 18 main:
 19 00000000 55 push rbp
 20 00000001 4889E5 mov rbp, rsp
 21 00000004 4883EC10 sub rsp, 16
 22 00000008 31C0 xor eax, eax
 23 0000000A C9 leave
 24 0000000B C3 ret

You can see from the listing the relative addresses of the defined data

elements. In the data section we have a double word (4 bytes) named a at

location 0. Notice that the bytes of a are reversed compared to what you

might prefer.

Following a is a double word defined as a floating point value named b

at relative address 4. The bytes for b are also reversed. Consider it as

0x408ccccd. Then the sign bit is 0, the exponent field is the rightmost 7

bits of the “first” byte, 0x40, with the leftmost bit of the next byte, 0x8c.

So the exponent field is 0x81 = 129, which is a binary exponent of 2. The

32

fraction field (with the implied initial 1 bit) is 0x8ccccd. So b =

1.00011001100110011001101 ∗ 22 = 4.4.

The next data item is the array c defined with the times pseudo-op

which has 10 double word locations. The relative location for c is 8 and c

consists of 40 bytes, so the next item after c is at relative address 48 or

0x30.

Following c is the length 2 array d with values 1 and 2. Array d is of

type word so each value is 2 bytes. Again you can see that the bytes are

reversed for each word of d.

The next data item is the byte variable e with initial value 0xfb. After

e is the byte array f which is initialized with a string. Notice that I have

added a terminal null byte explicitly to f. Strings in yasm do not end in

null bytes.

After the data segment I have included a bss segment with 3 variables.

These are listed with their relative addresses as part of the bss segment.

After linking the bss data items will be loaded into memory beginning

with g defined by the resd op-code which means “reserve” double word.

With resd the number 1 means 1 double word. The next bss item is h

which has 10 reserved double words. The last bss item is i which has 100

reserved bytes. All these data items are shown in the listing with

addresses relative to the start of the bss segment. They will all have value

0 when the program starts.

3.4 Examining memory with ebe

In this section we will give a brief introduction to examining memory with

ebe. We will show how to start the memory program with a breakpoint so

that we can examine the variables defined in the program.

Setting a breakpoint

A breakpoint is a marker for an instruction which is used by a debugger

to stop the execution of a program when that instruction is reached. The

general pattern for debugging is to set a breakpoint and then run the

program. The program will run until the breakpoint is reached and stop

without executing that instruction.

Ebe uses the line number column to the left of the source code to

indicate breakpoints. Left clicking on one of the line numbers will set (or

clear if already set) a breakpoint on that line of code. Ebe indicates the

existence of a breakpoint by coloring that line number with a red

background.

33

The picture below shows the ebe source window with the memory

program with a breakpoint set on line 17. The breakpoint is shown with a

gray background in the printed book. Also this picture has been updated

with an arrow pointing to the ebe “Run” button.

Running a program and viewing a variable

Having set the breakpoint on line 17, if we now click on the “Run” button

(the alien icon pointed to by the arrow) the program will be assembled,

linked and executed. It will stop execution with the “push rbp” instruction

as the next instruction to execute. The source window will indicate the

next line to execute by giving that line a blue-green background (gray in

the illustration).

34

Now you can mark the a label on line 2 and right-

click. Then ebe will popup a menu which will allow you

to do one of a few options.

Choose the “Define variable” option to popup a form

allowing you to define how to display the data for the

variable a:

There is no need to alter the name and

address fields of the form. However the name

field can be changed to any string you prefer and

the address field could be altered. It could be

handy to enter a hexadecimal address, but ebe

has other ways to define variables based on

hexadecimal addresses. Ebe doesn’t really have

access to data types and sizes like it would for a

C program, but it attempts to guess the type and

sizes. I have clicked on the triangle to the right

of the “Format” label and selected “Decimal” for the format. The format

choices are Decimal, Hexadecimal, Floating point, String and String

array. I also selected “int” for the “type” field since a was defined using

“dd”. The type choices include signed and unsigned char, short, int and

long long along with float and double. Linux and OS X use long as the type

for a 64 bit integer and Windows uses long long. You can also click the

“array variable” checkbox and select first and last indexes for the variable

which operate like C arrays with 0 being the first index. After clicking on

35

“OK” the popup form will go away and ebe will display variable a in the

data window. It will refresh the value of a after each step of execution so

you can monitor its value as the program executes.

You will note that the data window also shows the top part of the stack

in hexadecimal. This is quite useful and normally hexadecimal is a good

choice for the stack. You can alter the format, type and first and last

indexes for any non-stack variable by right clicking on the name of a

variable. This will popup a form which will allow you to edit or delete a

variable. Editing will then popup the same form used when the variable

was created.

I have continued on to display all the variables in “memory.asm”. I

chose last index 9 for c which is an array of 10 double words. I chose type

short for d and unsigned char for e. For f I chose the “String” format which

is a little special. This is a C string which is simply an array of characters

ending with a 0 byte. You can see in the figure below that the variables in

the bss segment are all 0’s.

36

Exercises

1. Write a data-only program like the one in this chapter to define an

array of 10 8 byte integers in the data section, an array of 5 2 byte

integers in the bss section, and a string terminated by 0 in the data

section. Use ebe’s data command to print the 8 byte integers in

hexadecimal, the 2 byte integers as unsigned values, and the string

as a string.

2. Assuming that the stack size limit is 1MB, about how large can you

declare an array of doubles inside a C++ function. Do not use the

keyword static.

3. Use the command line and compile a C program with an array of 1

million doubles. You will probably need to use –Wl,--stack,8000000

option on the gcc command. Note that this option has a lowercase ‘L’

after the ‘W’ not a ‘1’. Test the program by writing a loop and placing

0.0 throughout the array. Determine the smallest number which

works to the nearest 1000.

4. Print the value of rsp in ebe. How many bits are required to store this

value?

37

Chapter 4

Memory mapping in 64 bit mode

In this chapter we discuss the details of how virtual addresses are

translated to physical addresses in the x86-64 architecture. Some of the

data for translation is stored in the CPU and some of it is stored in

memory.

4.1 The memory mapping register

The CPU designers named this register “Control Register 3” or just CR3.

A simplified view of CR3 is that it is a pointer to the top level of a

hierarchical collection of tables in memory which define the translation

from virtual addresses (the addresses your program sees) to physical

addresses. The CPU retains quite a few page translations internally, but

let’s consider first how the CPU starts all this translation process.

Somewhere in the kernel of the operating system, an initial hierarchy

of the translation tables is prepared and CR3 is filled with the address of

the top level table in the hierarchy. This table is given the illustrious name

“Page Map Level 4” or PML4. When the CPU is switched to using memory

mapping on the next memory reference it uses CR3 to fetch entries from

PML4.

38

4.2 Page Map Level 4

A virtual address can be broken into fields like this:

63 48 47 39 38 30 29 21 20 12 11 0

unused PML4 page page page page

 index directory directory table offset

 pointer index index

 index

Here we see that a virtual or logical address is broken into 6 fields.

The top-most 16 bits are ignored. They are supposed to be a sign extension

of bit 47, but they are not part of the address translation. Windows uses

44 bits of address space for memory, with bit 43 set to 1 for the kernel. It

also uses addresses with bits 48-63 set to 1 for special purposes like device

addresses. Bit 47 is left as 0 in user processes in Linux and OS X so bits

47-63 are all 0’s. In both operating systems bits 47-63 are all 1 for kernel

addresses. We will focus on user process memory management. Following

the unused bits are four 9 bit fields which undergo translation and finally

a 12 bit page offset. The result of the translation process will be a physical

address like 0x7f88008000 which is combined with the offset (let’s say it

was 0x1f0) to yield a physical address of 0x7f880081f0.

Pages of memory are 212 = 4096 bytes, so the 12 bit offset makes

sense. What about those 9 bit fields? Well, addresses are 8 bytes so you

can store 512 addresses in a page and 512 = 29, so 9 bit fields allow storing

each of the 4 types of mapping tables in a page of memory.

Bits 47-39 of a virtual address are used as an index into the PML4

table. The PML4 table is essentially an array of 512 pointers (32 would be

enough for Windows since bits 44-47 are all 0). These pointers point to

pages of memory, so the rightmost 12 bits of each pointer can be used for

other purposes like indicating whether an entry is valid or not. Generally

not all entries in the PML4 will be valid.

Let’s suppose that CR3 has the physical address 0x4ffff000. Then

let’s suppose that bits 47-39 of our sample address are 0x001, then we

would have an array in memory at 0x4ffff000 and we would access the

second entry (index 1) to get the address of a page directory pointer table:

0x3467000.

 PML4 at 0x4ffff000

0 0x3466000

1 0x3467000

2 0x3468000

… . . .

511 unused

39

4.3 Page Directory Pointer Table

The next level in the memory translation hierarchy is the collection of

page directory pointer tables. Each of these tables is also an array of 512

pointers. These pointers are to page directory tables. Let’s assume that

our sample address has the value 0x002 for bits 38-30. Then the computer

will fetch the third entry of the page directory pointer table to lead next

to a page directory table at address 0x3588000.

 Page Directory Pointer

Table at 0x3467000

0 0x3587000

1 unused

2 0x3588000

… . . .

511 unused

4.4 Page Directory Table

The third level in the memory translation hierarchy is the collection of

page directory tables. Each of these tables is an array of 512 pointers,

which point to page tables. Let’s assume that our sample address has the

value 0x000 for bits 29-21. Then the computer will fetch the first entry of

the page directory table to lead next to a page table at address 0x3678000

 Page Directory

Table at 0x3588000

0 0x3678000

1 0x3679000

2 unused

… . . .

511 unused

4.5 Page Table

The fourth and last level in the memory translation hierarchy is the

collection of page tables. Again each of these tables is an array of 512

pointers to pages. Let’s assume that our sample address has the value

0x1ff for bits 20-12. Then the computer will fetch the last entry of the page

table to lead next to a page at address 0x5799000.

40

 Page Table at
0x3678000

0 0x5788000

1 0x5789000

2 0x578a000

… . . .

511 0x5799000

After using 4 tables we reach the address of the page of memory which

was originally referenced. Then we can or in the page offset (bits 11-0) of

the original - say 0xfa8. This yields a final physical address of 0x5799fa8.

4.6 Large pages

The normal size page is 4096 bytes. The CPU designers have added

support for large pages using three levels of the existing translation

tables. By using 3 levels of tables, there are 9 + 12 = 21 bits left for the

within page offset field. This makes large pages 221 = 2097152 bytes.

Some of the latest CPUs support pages using 2 levels of page tables

which results in having pages of size 230 which is 1 GB. These huge pages

will be popular for applications requiring large amounts of RAM like

database management systems and virtual machine emulators.

4.7 CPU Support for Fast Lookups

This process would be entirely too slow if done every time by traversing

through all these tables. Instead whenever a page translation has been

performed, the CPU adds this translation into a cache called a

“Translation Lookaside Buffer” or TLB. Then hopefully this page will be

used many times without going back through the table lookup process.

A TLB operates much like a hash table. It is presented with a virtual

page address and produces a physical page address or failure within

roughly 1/2 of a clock cycle. In the case of a failure the memory search

takes from 10 to 100 cycles. Typical miss rates are from 0.01% to 1%.

Clearly there is a limit to the number of entries in the TLB for a CPU.

The Intel Core 2 series has a total of 16 entries in a level 1 TLB and 256

entries in a level 2 TLB. The Core i7 has 64 level 1 TLB entries and 512

level 2 entries. The AMD Athlon II CPU has 1024 TLB entries.

Given the relatively small number of TLB entries in a CPU it seems

like it would be a good idea to migrate to allocating 2 MB pages for

41

programs. Wndows, Linux and OS X all support 2 MB pages for user

processes though the default in 4 KB. Linux also supports 1 GB pages

which might be quite useful for a dedicated database server with lots of

RAM.

42

Exercises

1. Suppose you were given the opportunity to redesign the memory

mapping hierarchy for a new CPU. We have seen that 4 KB pages

seem a little small. Suppose you made the pages 217 = 131072 bytes.

How many 64 bit pointers would fit in such a page?

2. How many bits would be required for the addressing of a page table?

3. How would you break up the bit fields of virtual addresses?

4. Having much larger pages seems desirable. Let’s design a memory

mapping system with pages of 220 = 1048576 bytes but use partial

pages for memory mapping tables. Design a system with 3 levels of

page mapping tables with at least 48 bits of usable virtual address

space.

5. Suppose a virtual memory address is 0x123456789012. Divide this

address into the 4 different page table parts and the within page

offset.

6. Suppose a virtual memory address is 0x123456789012. Suppose this

happens to be an address within a 2MB page. What is the within page

offset for this address?

7. Write an assembly language program to compute the cost of electricity

for a home. The cost per kilowatt hour will be an integer number of

pennies stored in a memory location. The kilowatt hours used will also

be an integer stored in memory. The bill amount will be $5.00 plus the

cost per kilowatt hour times the number of kilowatt hours over 1000.

You can use a conditional move to set the number of hours over 1000

to 0 if the number of hours over 1000 is negative. Move the number of

dollars into one memory location and the number of pennies into

another.

43

Chapter 5

Registers

Computer memory is essentially an array of bytes which software uses for

instructions and data. While the memory is relatively fast, there is a need

for a small amount of faster data to permit the CPU to execute

instructions faster. A typical computer executes at 3 GHz and many

instructions can execute in 1 cycle. However for an instruction to execute

the instruction and any data required must be fetched from memory. One

fairly common form of memory has a latency of 6 nanoseconds, meaning

the time lag between requesting the memory and getting the data. This 6

nanoseconds would equal 18 CPU cycles. If the instructions and data were

all fetched from and stored in memory there would probably be about 18

nanoseconds required for common instructions. 18 nanoseconds is time

enough for 54 instructions at 1 instruction per cycle. There is clearly a

huge need to avoid using the relatively slow main memory.

One type of faster memory is cache memory, which is perhaps 10 times

as fast as main memory. The use of cache memory can help address the

problem, but it is not enough to reach the target of 1 instruction per CPU

cycle. A second type of faster memory is the CPU’s register set. Cache

might be several megabytes, but the CPU has only a few registers.

However the registers are accessible in roughly one half of a CPU cycle or

less. The use of registers is essential to achieving high performance. The

combination of cache and registers provides roughly half a modern CPU’s

performance. The rest is achieved with pipelining and multiple execution

units. Pipelining means dividing instructions into multiple steps and

executing several instructions simultaneously though each at different

steps. Pipelining and multiple execution units are quite important but

these features are not part of general assembly language programming,

while registers are a central feature.

The x86-64 CPUs have 16 general purpose 64 bit registers and 16

modern floating point registers. These floating point registers are either

128 or 256 bits depending on the CPU model and can operate on multiple

integer or floating point values. There is also a floating point register

stack which we will not use in this book. The CPU has a 64 bit instruction

44

pointer register (rip) which contains the address of the next instruction

to execute. There is also a 64 bit flags register (rflags). There are

additional registers which we probably won’t use. Having 16 registers

means that a register’s “address” is only 4 bits. This makes instructions

using registers much smaller than instructions using only memory

addresses.

The 16 general purpose registers are 64 bit values stored within the

CPU. Software can access the registers as 64 bit values, 32 bit values, 16

bit values and 8 bit values. Since the CPU evolved from the 8086 CPU,

the registers have evolved from 16 bit registers to 32 bit registers and

finally to 64 bit registers.

On the 8086 registers were more special purpose than general

purpose:

ax - accumulator for numeric operations

bx - base register (array access)

cx - count register (string operations)

dx - data register item

si - source index

di - destination index

bp - base pointer (for function frames)

sp - stack pointer

In addition the 2 halves of the first 4 registers can be accessed using

al for the low byte of ax, ah for the high byte of ax, and bl, bh, cl, ch, dl

and dh for the halves of bx, cx and dx.

When the 80386 CPU was designed the registers were expanded to 32

bits and renamed as eax, ebx, ecx, edx, esi, edi, ebp, and esp. Software

could also use the original names to access the lower 16 bits of each of the

registers. The 8 bit registers were also retained without allowing direct

access to the upper halves of the registers.

For the x86-64 architecture the registers were expanded to 64 bits and

8 additional general purpose registers were added. The names used to

access the 64 bit registers are rax, rbx, rcx, rdx, rsi, rdi, rbp, and rsp for

the compatible collection and r8-r15 for the 8 new registers. As you might

expect you can still use ax to access the lowest word of the rax register

along with eax to access the lower half of the register. Likewise the other

32 bit and 16 bit register names still work in 64 bit more. You can also

access registers r8-r15 as byte, word, or double word registers by

appending b, w or d to the register name.

The rflags register is a 64 bit register, but currently only the lower

32 bits are used, so it is generally sufficient to refer to eflags. In addition

45

the flags register is usually not referred to directly. Instead conditional

instructions are used which internally access 1 or more bits of the flags

register to determine what action to take.

Moving data seems to be a fundamental task in assembly language.

In the case of moving values to/from the integer registers, the basic

command is mov. It can move constants, addresses and memory contents

into registers, move data from 1 register to another and move the contents

of a register into memory.

5.1 Observing registers in ebe

One of the windows managed by ebe is the register window. After each

step of program execution ebe obtains the current values of the general

purpose registers and displays them in the register window. Similarly ebe

displays the floating point registers in the floating point register window.

Below is a sample of the register window.

You can select a different format for the registers by right clicking on

the name of a register. This will popup a list of choices. You can choose

either decimal or hexadecimal format for that register or for all the

general purpose registers. You can see below the general purpose

registers, the instruction pointer register (rip) and the flags register

(eflags). For simplicity the set bits of eflags are displayed by their

acronyms. Here the parity flag (PF), the zero flag (ZF) and the interrupt

enable flag (IF) are all set.

5.2 Moving a constant into a register

The first type of move is to move a constant into a register. A constant is

usually referred to as an immediate value. It consists of some bytes stored

as part of the instruction. Immediate operands can be 1, 2 or 4 bytes for

most instructions. The mov instruction also allows 8 byte immediate

values.

46

 mov rax, 100
 mov eax, 100

Surprisingly, these two instructions have the same effect - moving the

value 100 into rax. Arithmetic operations and moves with 4 byte register

references are zero-extended to 8 bytes. The program shown below in ebe

illustrates the mov instruction moving constants into register rax.

There has been a breakpoint set on line 5 and the program has been

run by clicking the “Run” button. At this point the first mov has not been

executed. You can advance the program by clicking on either “Next” or

“Step” (highlighted with arrows in the picture). The difference is that

“Step” will step into a function if a function call is made, while “Next” will

execute the highlighted statement and advance to the next statement in

the same function. The effect is the same in this code and here is the

source window and the register window after executing the first mov:

47

You can observe that the value 0x123456789abcdef0 has been placed

into rax and that clearly the next mov has not been executed. There is little

value in repeatedly displaying the source window but here is the register

window after executing the mov at line 6:

For convenience the display format for rax has been switched to

decimal and you can observe that “mov eax, 100” results in moving 100

into the lower half of rax and 0 into the upper half.

You can follow the sequence of statements and observe that moving

100 into eax will clear out the top half of rax. It turns out that a 32 bit

constant is stored in the instruction stream for the mov which moves 100.

Also the instruction to move into eax is 1 byte long and the move into rax

is 3 bytes long. The shorter instruction is preferable. You might be

tempted to move 100 into al, but this instruction does not clear out the

rest of the register.

5.3 Moving values from memory to registers

In order to move a value from memory into a register, you must use the

address of the value. Consider the program shown below

48

The label a is will be replaced by the address of a if included in an

instruction under Windows or Linux. OS X uses relative addressing and

a will be replaced by its address relative to register rip. The reason is that

OS X addresses are too big to fit in 32 bits. In fact yasm will not allow

moving an address under OS X. The alternative is to use the lea (load

effective address) instruction which will be discussed later. Consider the

following statement in the .text section.

 mov rax, a

The instruction has a 32 bit constant field which is replaced with the

address of a when the program is executed on Windows. When tested, the

rax register receives the value 0x408010 as shown below:

The proper syntax to get the value of a, 175, is from line 8 of the

program and also below:

 mov rax, [a]

The meaning of an expression in square brackets is to use that

expression as a memory address and to load or store from that address. In

this case it loads the value from the address represented by a. This is

basically a different instruction from the other mov. The other is “load

constant” and the latest one is “load from memory”.

After executing line 8 we see that rax has the value 175. In the

register display below I have used a decimal format to make the effect

more obvious.

In line 9 of the program I have introduced the add instruction to make

things a bit more interesting. The effect of line 9 is to add the contents of

b, 4097, to rax. The result of the add instruction is shown below:

49

You will notice that my main routine calls no other function. Therefore

there is no need to establish a stack frame and no need to force the stack

pointer to be a multiple of 16.

There are other ways to move data from memory into a register, but

this is sufficient for simpler programs. The other methods involve storing

addresses in registers and using registers to hold indexes or offsets in

arrays.

You can also move integer values less than 8 bytes in size into a

register. If you specify an 8 bit register such as al or a 16 bit register such

as ax, the remaining bits of the register are unaffected. However it you

specify a 32 bit register such as eax, the remaining bits are set to 0. This

may or may not be what you wish.

Alternatively you can use move and sign extend (movsx) or move and

zero extend (movzx) to control the process. In these cases you would use

the 64 bit register as a destination and add a length qualifier to the

instruction. There is one surprise - a separate instruction to move and

sign extend a double word: movsxd. Here are some examples:

 movsx rax, byte [data] ; move byte, sign extend
 movzx rbx, word [sum] ; move word, zero extend
 movsxd rcx, dword [count]; move dword, sign extend

5.4 Moving values from a register to memory

Moving data from a register to memory is very similar to moving from

memory to a register - you simply swap the operands so that the memory

address is on the left (destination).

 mov [sum], rax

Below is a program which adds 2 numbers from memory and stores the

sum into a memory location named sum:

50

The source window shows line 11 highlighted which means that the

mov instruction saving the sum has been executed. You can see that there

is a breakpoint on line 8 and clearly the “Run” button was used to start

the program and “Next” was clicked 3 times. Below is the data for the

program:

5.5 Moving data from one register to another

Moving data from one register to another is done as you might expect -

simply place 2 register names as operands to the mov instruction.

 mov rbx, rax ; move value in rax to rbx

Below is a program which moves the value of a into rax and then

moves the value into rbx so that the value can be used to compute a+b and

also a-b.

51

You can see that there is a breakpoint on line 8 and that line 15 is the

next to be executed. This program introduces the sub instruction which

subtracts one value from another. In this case it subtracts the value from

memory location b from rbx with the difference being placed in rbx.

It might be a little interesting to note the value of eflags shown in

the registers for the addition and subtraction program. You will see SF in

the flag values which stands for “sign flag” and indicates that the last

instruction which modified the flags, sub, resulted in a negative value.

52

53

Exercises

1. Write an assembly program to define 4 integers in the .data section.

Give two of these integers positive values and 2 negative values.

Define one of your positive numbers using hexadecimal notation.

Write instructions to load the 4 integers into 4 different registers and

add them with the sum being left in a register. Use ebe to single-step

through your program and inspect each register as it is modified.

2. Write an assembly program to define 4 integers - one each of length 1,

2, 4 and 8 bytes. Load the 4 integers into 4 registers using sign

extension for the shorter values. Add the values and store the sum in

a memory location.

3. Write an assembly program to define 3 integers of 2 bytes each. Name

these a, b and c. Compute and save into 4 memory locations a+b, a-b,

a+c and a-c.

54

Chapter 6

A little bit of math

So far the only mathematical operations we have discussed are integer

addition and subtraction. With negation, addition, subtraction,

multiplication and division it is possible to write some interesting

programs. For now we will stick with integer arithmetic.

6.1 Negation

The neg instruction performs the two’s complement of its operand, which

can be either a general purpose register or a memory reference. You can

precede a memory reference with a size specifier from the following table:

Specifier Size in bytes

byte 1

word 2

dword 4

qword 8

The neg instruction sets the sign flag (SF) if the result is negative and

the zero flag (ZF) if the result is 0, so it is possible to do conditional

operations afterwards.

The following code snippet illustrates a few variations of neg:

 neg rax ; negate the value in rax
 neg dword [x] ; negate 4 byte int at x
 neg byte [x] ; negate byte at x

55

6.2 Addition

Integer addition is performed using the add instruction. This instruction

has 2 operands: a destination and a source. As is typical for the x86-64

instructions, the destination operand is first and the source operand is

second. It adds the contents of the source and the destination and stores

the result in the destination.

The source operand can be an immediate value (constant) of 32 bits, a

memory reference or a register. The destination can be either a memory

reference or a register. Only one of the operands may be a memory

reference. This restriction to at most one memory operand is another

typical pattern for the x86-64 instruction set.

The add instruction sets or clears several flags in the rflags register

based on the results of the operation. These flags can be used in

conditional statements following the add. The overflow flag (OF) is set if

the addition overflows. The sign flag (SF) is set to the sign bit of the result.

The zero flag (ZF) is set if the result is 0. Some other flags are set related

to performing binary-coded-decimal arithmetic.

There is no special add for signed numbers versus unsigned numbers

since the operations are the same. The same is true for subtraction,

though there are special signed and unsigned instructions for division and

multiplication.

There is a special increment instruction (inc), which can be used to

add 1 to either a register or a memory location.

Below is a sample program with some add instructions. You can see

that there is a breakpoint on line 7. After clicking the run button the

program is stopped before it executes line 8. The two instructions on lines

8 and 9 are commonly used to create a “stack frame”. Under Linux gdb

does not stop until after the push and mov instructions in a function. Line

10 subtracks 32 from rsp to leave space on the stack for 4 possible register

parameters to be stored on the stack if a function needs to save its register

parameters in memory. These 3 instructions are so common that there is

a leave instruction which can undo the effect of them to prepare for

returning from a function.

56

Next we see the registers and data for the program after executing

lines 10 through 12.

You can see that the sum computed on line 12 has been stored in memory

in location a.

Below we see the registers and data after executing lines 13 through

16. This starts by moving b (310) into rax. Then it adds 10 to rax to get

320. After adding a (160) we get 480 which is stored in sum.

57

6.3 Subtraction

Integer subtraction is performed using the sub instruction. This

instruction has 2 operands: a destination and a source. It subtracts the

contents of the source from the destination and stores the result in the

destination.

The operand choices follow the same pattern as add. The source

operand can be an immediate value (constant) of 32 bits, a memory

reference or a register. The destination can be either a memory reference

or a register. Only one of the operands can be a memory reference.

The sub instruction sets or clears the overflow flag (OF), the sign flag

(SF), and the zero flag (ZF) like add. Some other flags are set related to

performing binary-coded-decimal arithmetic.

As with addition there is no special subtract for signed numbers versus

unsigned numbers.

There is a decrement instruction (dec) which can be used to decrement

either a register or a value in memory.

Below is a program with some sub instructions. You can see that the

program has a breakpoint on line 8 and that gdb has stopped execution

just after establishing the stack frame. Near the end this program uses

“xor rax, rax” as an alternative method for setting rax (the return value

for the function) to 0. This instruction is a 3 byte instruction. The same

result can be obtained using “xor eax, eax” using 2 bytes which can

58

reduce memory using. Both alternatives will execute in 1 cycle, but using

fewer bytes may be faster due to using fewer bytes of instruction cache.

The next two figures show the registers and data for the program after

executing lines 11 through 13 which subtract 10 from memory locations a

and b.

59

Next we see the results of executing lines 14 through 16, which stores

b-a in diff.

6.4 Multiplication

Multiplication of unsigned integers is performed using the mul

instruction, while multiplication of signed integers is done using imul.

The mul instruction is fairly simple, but we will skip it in favor of imul.

The imul instruction, unlike add and sub, has 3 different forms. One

form has 1 operand (the source operand), a second has 2 operands (source

and destination) and the third form has 3 operands (destination and 2

source operands).

One operand imul

The 1 operand version multiples the value in rax by the source operand

and stores the result in rdx:rax. The source could be a register or a

memory reference. The reason for using 2 registers is that multiplying two

64 bit integers yields a 128 bit result. Perhaps you are using large 64 bit

integers and need all 128 bits of the product. Then you need this

instruction. The low order bits of the answer are in rax and the high order

bits are in rdx.

60

 imul qword [data]; multiply rax by data
 mov [high], rdx ; store top of product
 mov [low], rax ; store bottom of product

Note that yasm requires the quad-word attribute for the source for the

single operand version which uses memory. It issued a warning during

testing, but did the correct operation.

Here is a sample program which uses the single operand version of

imul to illustrate a product which requires both rax and rdx.

The mov in line 6 fills rax with a number composed of 63 bits equal to

1 and a 0 for the sign bit. This is the largest 64 bit signed integer, 263 − 1.

The imul instruction in line 8 will multiply this large number by 256. Note

that multiplying by a power of 2 is the same as shifting the bits to the left,

in this case by 8 bits. This will cause the top 8 bits of rax to be placed in

rdx and 8 zero bits will be introduced in the right of rax.

Here are the registers before imul:

and then after imul:

61

Two and three operand imul

Quite commonly 64 bit products are sufficient and either of the other

forms will allow selecting any of the general purpose registers as the

destination register.

The two-operand form allows specifying the source operand as a

register, a memory reference or an immediate value. The source is

multiplied times the destination register and the result is placed in the

destination.

 imul rax, 100 ; multiply rax by 100
 imul r8, [x] ; multiply r8 by x
 imul r9, r10 ; multiply r9 by r10

The three-operand form is the only form where the destination register

is not one of the factors in the product. Instead the second operand, which

is either a register or a memory reference, is multiplied by the third

operand which must be an immediate value.

 imul rbx, [x], 100 ; store 100*x in rbx
 imul rdx, rbx, 50 ; store 50*rbx in rdx

The carry flag (CF) and the overflow flag (OF) are set when the

product exceeds 64 bits (unless you explicitly request a smaller multiply).

The zero flag and sign flags are undefined, so testing for a zero, positive

or negative result requires an additional operation.

Testing for a Pythagorean triple

Below is shown a program which uses imul, add and sub to test whether

3 integers, a, b, and c, form a Pythagorean triple. If so, then 𝑎2 + 𝑏2 = 𝑐2.

62

You can see that there is a breakpoint on line 12 and the next line to

execute is 12. After clicking on “Next” line 12 will be executed and you can

see that the value of a is placed in rax.

Next rax is multiplied by itself to get 𝑎2 in rax.

Line 14 moves the value of b into rbx.

63

Then rbx is multiplied by itself to get 𝑏2 in rbx.

Line 16 moves the value of c into rcx.

Then rcx is multiplied by itself to get 𝑐2 in rcx.

Line 18 adds rbx to rax so rax holds 𝑎2 + 𝑏2.

64

Finally line 19 subtracts rcx from rax. After this rax holds 𝑎2 + 𝑏2 −

𝑐2. If the 3 numbers form a Pythagorean triple then rax must be 0. You

can see that rax is 0 and also that the zero flag (ZF) is set in eflags.

If we used a few more instructions we could test to see if ZF were set

and print a success message.

6.5 Division

Division is different from the other mathematics operations in that it

returns 2 results: a quotient and a remainder. The idiv instruction

behaves a little like the inverse of the single operand imul instruction in

that it uses rdx:rax for the 128 bit dividend.

The idiv instruction uses a single source operand which can be either

a register or a memory reference. The unsigned division instruction div

operates similarly on unsigned numbers. The dividend is the two registers

rdx and rax with rdx holding the most significant bits. The quotient is

stored in rax and the remainder is stored in rdx.

The idiv instruction does not set any status flags, so testing the

results must be done separately.

Below is a program which illustrates the idiv instruction. You can

see that a breakpoint was placed on line 8 and the program was started

using the “Run” button.

65

Next we see the registers after loading x into rax and zeroing out rdx.

The next display shows the changes to rax and rdx from executing the

idiv instruction. The quotient is 20 and the remainder is 5 since 325 =

20 ∗ 16 + 5.

The final display shows the variables after executing lines 12 and 13.

66

6.6 Conditional move instructions

There are a collection of conditional move instructions which can be used

profitably rather than using branching. Branching causes the CPU to

perform branch prediction which will be correct sometimes and incorrect

other times. Incorrect predictions slow down the CPU dramatically by

interrupting the instruction pipeline, so it is worthwhile to learn to use

conditional move instructions to avoid branching in simple cases.

The conditional move instructions have operands much like the mov

instruction. There are a variety of them which all have the same 2

operands as mov, except that there is no provision for immediate operands.

instruction effect

 cmovz move if result was zero

 cmovnz move if result was not zero

 cmovl move if result was negative

 cmovle move if result was negative or zero

 cmovg move if result was positive

 cmovge move if result was positive or zero

There are lot more symbolic patterns which have essentially the same

meaning, but these are an adequate collection. These all operate by

testing for combinations of the sign flag (SF) and the zero flag (ZF).

The following code snippet converts the value in rax to its absolute

value:

 mov rbx, rax ; save original value
 neg rax ; negate rax
 cmovl rax, rbx ; replace rax if negative

The code below loads a number from memory, subtracts 100 and

replaces the difference with 0 if the difference is negative:

67

 mov rbx, 0 ; set rbx to 0
 mov rax, [x] ; get x from memory
 sub rax, 100 ; subtract 100 from x
 cmovl rax, rbx ; set rax to 0 if x-100 was negative

6.7 Why move to a register?

Both the add and sub instructions can operate on values stored in

memory. Alternatively you could explicitly move the value into a register,

perform the operation and then move the result back to the memory

location. In this case it is 1 instruction versus 3. It seems obvious that 1

instruction is better.

Now if the value from memory is used in more than 1 operation, it

might be faster to move it into a register first. This is a simple

optimization which is fairly natural. It has the disadvantage of requiring

the programmer to keep track of which variables are in which registers.

If this code is not going to be executed billions of times, then the time

required will probably not matter. In that case don’t overwhelm yourself

with optimization tricks. Also if the 2 uses are more than a few

instructions apart, then keep it simple.

68

Exercises

1. Write an assembly language program to compute the distance

squared between 2 points in the plane identified as 2 integer

coordinates each, stored in memory.

Remembe the Pythagoran Theorem!

2. If we could do floating point division, this exercise would have you

compute the slope of the line segment connecting 2 points. Instead you

are to store the difference in x coordinates in 1 memory location and

the difference in y coordinates in another. The input points are

integers stored in memory. Leave register rax with the value 1 if the

line segment is vertical (infinite or undefined slope) and 0 if it is not.

You should use a conditional move to set the value of rax.

3. Write an assembly language program to compute the average of 4

grades. Use memory locations for the 4 grades. Make the grades all

different numbers from 0 to 100. Store the average of the 4 grades in

memory and also store the remainder from the division in memory.

69

Chapter 7

Bit operations

A computer is a machine to process bits. So far we have discussed using

bits to represent numbers. In this chapter we will learn about a handful

of computer instructions which operate on bits without any implied

meaning for the bits like signed or unsigned integers.

Individual bits have the values 0 and 1 and are frequently interpreted

as false for 0 and true for 1. Individual bits could have other

interpretations. A bit might mean male or female or any assignment of an

entity to one of 2 mutually exclusive sets. A bit could represent an

individual cell in Conway’s game of Life.

Sometimes data occurs as numbers with limited range. Suppose you

need to process billions of numbers in the range of 0 to 15. Then each

number could be stored in 4 bits. Is it worth the trouble to store your

numbers in 4 bits when 8 bit bytes are readily available in a language like

C++? Perhaps not if you have access to a machine with sufficient memory.

Still it might be nice to store the numbers on disk in half the space. So you

might need to operate on bit fields.

7.1 Not operation

The not operation is a unary operation, meaning that it has only 1

operand. The everyday interpretation of not is the opposite of a logical

statement. In assembly language we apply not to all the bits of a word. C

has two versions of not, “!” and “~”. “!” is used for the opposite of a true

or false value, while “~” applies to all the bits of a word. It is common to

distinguish the two nots by referring to “!” as the “logical” not and “~” as

the “bit-wise” not. We will use “~” since the assembly language not

instruction inverts each bit of a word. Here are some examples,

illustrating the meaning of not (pretending the length of each value is as

shown).

70

 ~0 == 1
 ~1 == 0
 ~10101010b == 01010101b
 ~0xff00 == 0x00ff

The not instruction has a single operand which serves as both the

source and the destination. It can be applied to bytes, words, double words

and quad-words in registers or in memory. Here is a code snippet

illustrating its use.

 mov rax, 0
 not rax ; rax == 0xffffffffffffffff
 mov rdx, 0 ; preparing for divide
 mov rbx, 15 ; will divide by 15 (0xf)
 div rbx ; unsigned divide
 ; rax == 0x1111111111111111
 not rax ; rax == 0xeeeeeeeeeeeeeeee

Let’s assume that you need to manage a set of 64 items. You can

associate each possible member of the set with 1 bit of a quad-word. Using

not will give you the complement of the set.

7.2 And operation

The and operation is also applied in programming in 2 contexts. First it is

common to test for both of 2 conditions being true - && in C. Secondly you

can do an and operation of each pair of bits in 2 variables - & in C. We will

stick with the single & notation, since the assembly language and

instruction matches the C bit-wise and operation.

Here is a truth table for the and operation:

& 0 1

0 0 0

1 0 1

Applied to some bit fields we get:

 11001100b & 00001111b == 00001100b
 11001100b & 11110000b == 11000000b
 0xabcdefab & 0xff == 0xab
 0x0123456789 & 0xff00ff00ff == 0x0100450089

You might notice that the examples illustrate using & as a bit field

selector. Wherever the right operand has a 1 bit, the operation selected

that bit from the left operand. You could say the same thing about the left

operand, but in these examples the right operand has more obvious

“masks” used to select bits.

Below is a code snippet illustrating the use of the and instruction:

71

 mov rax, 0x12345678
 mov rbx, rax
 and rbx, 0xf ; rbx has nibble 0x8
 mov rdx, 0 ; prepare to divide
 mov rcx, 16 ; by 16
 idiv rcx ; rax has 0x1234567
 and rax, 0xf ; rax has nibble 0x7

It is a little sad to use a divide just to shift the number 4 bits to the

right, but shift operations have not been discussed yet.

Using sets of 64 items you can use and to form the intersection of 2

sets. Also you can use and and not to form the difference of 2 sets, since

𝐴 − 𝐵 = 𝐴 ∩ 𝐵̅.

7.3 Or operation

The or operation is the final bit operation with logical and bit-wise

meanings. First it is common to test for either (or both) of 2 conditions

being true - || in C. Secondly you can do an or operation of each pair of

bits in 2 variables - | in C. We will stick with the single | notation, since

the assembly language or instruction matches the bit-wise or operation.

You need to be aware that the “or” of everyday speech is commonly

used to mean 1 or the other but not both. When someone asks you if you

want of cup of “decaf” or “regular”, you probably should not answer “Yes”.

The “or” of programming means one or the other or both.

Here is a truth table for the or operation:

| 0 1

0 0 1

1 1 1

Applied to some bit fields we get:

 11001100b | 00001111b == 11001111b
 11001100b | 11110000b == 11111100b
 0xabcdefab | 0xff == 0xabcdefff
 0x0123456789 | 0xff00ff00ff == 0xff23ff67ff

You might notice that the examples illustrate using | as a bit setter.

Wherever the right operand has a 1 bit, the operation sets the

corresponding bit of the left operand. Again, since or is commutative, we

could say the same thing about the left operand, but the right operands

have more obvious masks.

Here is a code snippet using the or instruction to set some bits:

 mov rax, 0x1000
 or rax, 1 ; make the number odd
 or rax, 0xff00 ; set bits 15-8 to 1

72

Using sets of 64 items you can use or to form the union of 2 sets.

7.4 Exclusive or operation

The final bit-wise operation is exclusive-or. This operation matches the

everyday concept of 1 or the other but not both. The C exclusive-or

operator is “^”.

Here is a truth table for the exclusive-or operation:

^ 0 1

0 0 1

1 1 0

From examining the truth table you can see that exclusive-or could

also be called “not equals”. In my terminology exclusive-or is a “bit-

flipper”. Consider the right operand as a mask which selects which bits to

flip in the left operand. Consider these examples:

 00010001b ^ 00000001b == 00010000b
 01010101b ^ 11111111b == 10101010b
 01110111b ^ 00001111b == 01111000b
 0xaaaaaaaa ^ 0xffffffff == 0x55555555
 0x12345678 ^ 0x12345678 == 0x00000000

The x86-64 exclusive-or instruction is named xor. The most common

use of xor is as an idiom for setting a register to 0. This is done because

moving 0 into a register requires 7 bytes for a 64 bit register, while xor

requires 3 bytes. You can get the same result using the 32 bit version of

the intended register which requires only 2 bytes for the instruction.

Observe some uses of xor:

 mov rax, 0x1234567812345678
 xor eax, eax ; set to 0
 mov rax, 0x1234
 xor rax, 0xf ; change to 0x123b

You can use xor to form the symmetric difference of 2 sets. The

symmetric difference of 2 sets is the the elements which are in one of the

2 sets but not both. If you don’t like exclusive-or, another way to compute

this would be using 𝐴∆𝐵 = (𝐴 ∪ 𝐵) ∩ 𝐴 ∩ 𝐵̅̅ ̅̅ ̅̅ ̅. Surely you like exclusive-or.

7.5 Shift operations

In the code example for the and instruction I divided by 16 to achieve the

effect of converting 0x12345678 into 0x1234567. This effect could have

been obtained more simply by shifting the register’s contents to the right

73

4 bits. Shifting is an excellent tool for extracting bit fields and for building

values with bit fields.

In the x86-64 architecture there are 4 varieties of shift instructions:

shift left (shl), shift arithmetic left (sal), shift right (shr), and shift

arithmetic right (sar). The shl and sal shift left instructions are actually

the same instruction. The sar instruction propagates the sign bit into the

newly vacated positions on the left which preserves the sign of the

number, while shr introduces 0 bits from the left.

 There are 2 operands for a shift instruction. The first operand is the

register or memory location to shift and the second is the number of bits

to shift. The number to shift can be 8, 16, 32 or 64 bits in length. The

number of bits can be an immediate value or the cl register. There are no

other choices for the number of bits to shift.

C contains a shift left operator (<<) and a shift right operator (>>). The

decision of logical or arithmetic shift right in C depends on the data type

being shifted. Shifting a signed integer right uses an arithmetic shift.

Here are some examples of shifting:

 10101010b >> 2 == 00101010b
 10011001b << 4 == 100110010000b
 0x12345678 >> 4 == 0x01234567
 0x1234567 << 4 == 0x12345670
 0xabcd >> 8 == 0x00ab

To extract a bit field from a word, you first shift the word right until

the right most bit of the field is in the least significant bit position (bit 0)

and then “and” the word with a value having a string of 1 bits in bit 0

through n-1 where n is the number of bits in the field to extract. For

example to extract bits 4-7, shift right four bits, and then and with 0xf.

To place some bits into position, you first need to clear the bits and

then “or” the new field into the value. The first step is to build the mask

with the proper number of 1’s for the field width starting at bit 0. Then

shift the mask left to align the mask with the value to hold the new field.

Negate the mask to form an inverted mask. And the value with the

inverted mask to clear out the bits. Then shift the new value left the

proper number of bits and or this with the value.

Now consider the following program which extracts a bit field and

then replaces a bit field.

74

The program was started with a breakpoint on line 4 and I used “Next”

until line 7 was executed which placed 0x12345678 into rax.

The first goal is to extract bits 8-15. We start by shifting right 8 bits.

This leave the target bits in bits 0-7 of rax.

Next we must get rid of bits 8-63. The easiest way to do this is to and

with 0xff.

75

The next goal is to replace bits 8-15 of 0x12345678 with 0xaa yielding

0x1234aa78. We start by moving 0x12345678 into rax.

The second step is to get the value 0xaa into rdx.

We need a mask to clear out bits 8-15. We start building the mask by

placing 0xff into rbx.

Then we shift rbx left 8 positions to align the mask with bits 8-15. We

could have started with 0xff00.

76

The final preparation of the mask is to complement all the bits with

not. We could have started with 0xffffffffffff00ff, but that would

require some counting and is not as generally useful.

Using and as a bit selector we select each bit of rax which has a

corresponding 1 bit in rbx.

Now we can shift 0xaa left 8 positions to align with bits 8-15.

Having cleared out bits 8-15 of rax, we now complete the task by or’ing

rax and rdx.

77

The x86-64 instruction set also includes rotate left (rol) and rotate

right (ror) instructions. These could be used to shift particular parts of a

bit string into proper position for testing while preserving the bits. After

rotating the proper number of bits in the opposite direction, the original

bit string will be left in the register or memory location.

The rotate instructions offer a nice way to clear out some bits. The

code below clears out bits 11-8 of rax and replaces these bits with 1010b.

Observe that a breakpoint has been placed on line 4 and the program

run and stepped to line 8. In the register display below we see that

0x12345678 has been placed in rax.

78

Executing the rotate instruction on line 7 moves the 0x78 byte in rax

to the upper part of the register.

Next the shift instruction on line 8 wipes out bits 3-0 (original 11-8).

The shift instruction on line 9 introduces four 0 bits into rax.

Now the or instruction at line 10 places 1010b into bits 3-0.

Finally the rotate left instruction at line 11 realigns all the bits as they

were originally.

79

Interestingly C provides shift left (<<) and shift right (>>) operations,

but does not provide a rotate operation. So a program which does a large

amount of bit field manipulations might be better done in assembly. On

the other hand a C struct can have bit fields in it and thus the compiler

can possibly use rotate instructions with explicit bit fields.

7.6 Bit testing and setting

It takes several instructions to extract or insert a bit field. Sometimes you

need to extract or insert a single bit. This can be done using masking and

shifting as just illustrated. However it can be simpler and quicker to use

the bit test instruction (bt) and either the bit test and set instruction (bts)

or the bit test and reset instruction (btr).

The bt instruction has 2 operands. The first operand is a 16, 32 or 64

bit word in memory or a register which contains the bit to test. The second

operand is the bit number from 0 to the number of bits minus 1 for the

word size which is either an immediate value or a value in a register. The

bt instructions set the carry flag (CF) to the value of the bit being tested.

The bts and btr instructions operate somewhat similarly. Both

instructions test the current bit in the same fashion as bt. They differ in

that bts sets the bit to 1 and btr resets (or clears) the bit to 0.

One particular possibility for using these instructions is to implement

a set of fairly large size where the members of the set are integers from 0

to 𝑛 − 1 where 𝑛 is the universe size. A membership test translates into

determining a word and bit number in memory and testing the correct bit

in the word. Following the bt instruction the setc instruction can be used

to store the value of the carry flag into an 8 bit register. There are setCC

instructions for each of the condition flags in the eflags register.

Insertion into the set translates into determining the word and bit

number and using bts to set the correct bit. Removal of an element of the

set translates into using btr to clear the correct bit in memory.

In the code below we assume that the memory for the set is at a

memory location named set and that the bit number to work on is in

80

register rax. The code preserves rax and performs testing, insertion and

removal.

Lines 9 through 12 set bits 4, 7, 8 and 76 in the array set. To set bit

76, we use [set+8] in the instruction to reference the second quad-word

of the array. You will also notice the use of set+8*rbx in lines 18, 20 and

21. Previously we have used a variable name in brackets. Now we are

using a variable name plus a constant or plus a register times 8. The use

of a register times 8 allows indexing an array of 8 byte quantities. The

instruction format includes options for multiplying an index register by 2,

4 or 8 to be added to the address specified by set. Use 2 for a word array,

4 for a double word array and 8 for a quad-word array. Register rbx holds

the quad-word index into the set array.

Operating on the quad-word of the set in memory as opposed to

moving to a register is likely to be the fastest choice, since in real code we

will not need to test, insert and then remove in 1 function call. We would

do only one of these operations.

Here we trace through the execution of this program. We start by

observing the set array in hexadecimal after setting 4, 7, 8 and 76. Setting

bit 4 yields 0x10, setting bit 7 yields 0x90 and setting bit 8 yields 0x190.

Bit 76 is bit 12 of the second quad-word in the array and yields 0x1000.

81

Next lines 13 and 14 move 76 into rax and rbx.

Shifting the bit number (76) right 6 bits will yield the quad-word

number of the array. This works since 26 = 64 and quad-words hold 64

bits. This shift leaves a 1 in rbx.

We make another copy of the bit number in rcx.

The bit number and’ed with 0x3f will extract the rightmost 6 bits of

the bit number. This will be the bit number of the quad-word containing

the bit.

82

Next we use xor to zero out rdx.

Line 19 tests the bit we wish to test from the array. You will notice

that the carry flag (CF) is set.

Line 20 uses the setc instruction to set dl which is now a 1 since 76

was in the set.

Line 21 sets the bit in the set.

83

Line 22 clears the bit (reset), effectively removing 76 from the set.

7.7 Extracting and filling a bit field

To extract a bit field you need to shift the field so that its least significant

bit is in position 0 and then bit mask the field with an and operation with

the appropriate mask. Let’s suppose we need to extract bits 51-23 from a

quad-word stored in a memory location. Then, after loading the quad-

word, we need to shift it right 23 bits to get the least significant bit into

the proper position. The bit field is of length 29. The simplest way to get

a proper mask (29 bits all 1) is using the value 0x1fffffff. Seven f’s is

28 bits and the 1 gives a total of 29 bits. Here is the code to do the work:

 mov rax, [sample] ; move qword into rax
 shr rax, 23 ; align bit 23 at 0
 and rax, 0x1fffffff ; select 29 low bits
 mov [field], rax ; save the field

Of course it could be that the field width is not a constant. In that case

you need an alternative. One possibility is to generate a string of 1 bits

based on knowing that 2𝑛 − 1 is a string of 𝑛 1 bits. You can generate 2𝑛

by shifting 1 to the left 𝑛 times or use bts. Then you can subtract 1 using

dec.

Another way to extract a bit field is to first shift left enough bits to

clear out the bits to the left of the field and then shift right enough bits to

wipe out the bits to the right of the field. This will be simpler when the

field position and width are variable. To extract bits 51-23, we start by

84

shifting left 12 bits. Then we need to shift right 35 bits. In general if the

field is bits 𝑚 through 𝑛 where 𝑚 is the higher bit number, we shift left

63 − 𝑚 and then shift right 𝑛 + (63 − 𝑚).

 mov rax, [sample] ; move qword into rax
 shl rax, 12 ; wipe out higher bits
 shr rax, 35 ; align the bit field
 mov [field], rax ; save the field

Now suppose we wish to fill in bits 51-23 of sample with the bits in

field. The easy method is to rotate the value to align the field, shift right

and then left to clear 29 bits, or in the field, and then rotate the register

to get the field back into bits 23-51. Here is the code:

 mov rax, [sample] ; move qword into rax
 ror rax, 23 ; align bit 23 at 0
 shr rax, 29 ; wipe out 29 bits
 shl rax, 29 ; align bits again
 or rax, [field] ; trust field is 29 bits
 rol rax, 23 ; realign the bit fields
 mov [sample], rax ; store fields in memory

85

Exercises

1. Write an assembly program to count all the 1 bits in a byte stored in

memory. Use repeated code rather than a loop.

2. Write an assembly program to swap 2 quad-words in memory using

xor. Use the following algorithm:

 a = a ^ b
 b = a ^ b
 a = a ^ b

3. Write an assembly program to use 3 quad-words in memory to

represent 3 sets: A, B and C. Each set will allow storing set values 0-

63 in the corresponding bits of the quad-word. Perform these steps:

 insert 0 into A
 insert 1 into A
 insert 7 into A
 insert 13 into A
 insert 1 into B
 insert 3 into B
 insert 12 into B
 store A union B into C
 store A intersect B into C
 store A - B into C
 remove 7 from C

4. Write an assembly program to move a quad-word stored in memory

into a register and then compute the exclusive-or of the 8 bytes of the

word. Use either ror or rol to manipulate the bits of the register so

that the original value is retained.

5. Write an assembly program to dissect a double stored in memory. This

is a 64 bit floating point value. Store the sign bit in one memory

location. Store the exponent after subtracting the bias value into a

second memory location. Store the fraction field with the implicit 1 bit

at the front of the bit string into a third memory location.

6. Write an assembly program to perform a product of 2 float values

using integer arithmetic and bit operations. Start with 2 float values

in memory and store the product in memory.

86

Chapter 8

Branching and looping

So far we have not used any branching statements in our code. Using the

conditional move instructions added a little flexibility to the code while

preserving the CPU’s pipeline contents. We have seen that it can be

tedious to repeat instructions to process each byte in a quad-word or each

bit in a byte. In the next chapter we will work with arrays. It would be

fool-hardy to process an array of 1 million elements by repeating the

instructions. It might be possible to do this, but it would be painful coping

with variable sized arrays. We need loops.

In many programs you will need to test for a condition and perform one

of 2 actions based on the results. The conditional move is efficient if the 2

actions are fairly trivial. If each action is several instructions long, then

we need a conditional jump statement to branch to one alternative while

allowing the CPU to handle the second alternative by not branching. After

completing the second alternative we will typically need to branch around

the code for the first alternative. We need conditional and unconditional

branch statements.

8.1 Unconditional jump

The unconditional jump instruction (jmp) is the assembly version of the

goto statement. However there is clearly no shame in using jmp. It is a

necessity in assembly language, while goto can be avoided in higher level

languages.

The basic form of the jmp instruction is

 jmp label

where label is a label in the program’s text segment. The assembler will

generate a rip relative jump instruction, meaning that the flow of control

will transfer to a location relative to the current value of the instruction

pointer. The simplest relative jump uses an 8 bit signed immediate value

87

and is encoded in 2 bytes. This allows jumping forwards or backwards

about 127 bytes. The next variety of relative jump in 64 bit mode uses a

32 bit signed immediate value and requires a total of 5 bytes. Fortunately

the assembler figures out which variety it can use and chooses the shorter

form. The programmer simply specifies a label.

The effect of the jmp statement is that the CPU transfers control to the

instruction at the labeled address. This is generally not too exciting except

when used with a conditional jump. However, the jmp instruction can

jump to an address contained in a register or memory location. Using a

conditional move one could manage to use an unconditional jump to an

address contained in a register to implement a conditional jump. This isn’t

sensible, since there are conditional jump statements which handle this

more efficiently.

There is one more possibility which is more interesting - implementing

a switch statement. Suppose you have a variable i which is known to

contain a value from 0 to 2. Then you can form an array of instruction

addresses and use a jmp instruction to jump to the correct section of code

based on the value of i. Here is an example:

 segment .data
 switch:
 dq main.case0
 dq main.case1
 dq main.case2
 i: dq 2
 segment .text
 global main
 main:
 mov rax, [i] ; move i to rax
 jmp [switch+rax*8] ; switch (i)
 .case0:
 mov rbx, 100 ; go here if i == 0
 jmp .end
 .case1:
 mov rbx, 101 ; go here if i == 1
 jmp .end
 .case2:
 mov rbx, 102 ; go here if i == 2
 .end:
 xor eax, eax
 ret

In this code we have used a new form of label with a dot prefix. These

labels are referred to as “local” labels. They are defined within the range

of enclosing regular labels. Basically the local labels could be used for all

labels inside a function and this would allow using the same local labels

in multiple functions. Also we used main.case0 outside of main to refer to

the .case0 label inside main.

From this example we see that an unconditional jump instruction can

be used to implement some forms of conditional jumps. Though

conditional jumps are more direct and less confusing, in larger switch

88

statements it might be advantageous to build an array of locations to jump

to.

8.2 Conditional jump

To use a conditional jump we need an instruction which can set some

flags. This could be an arithmetic or bit operation. However doing a

subtraction just to learn whether 2 numbers are equal might wipe out a

needed value in a register. The x86-64 CPU provides a compare

instruction (cmp) which subtracts its second operand from its first and sets

flags without storing the difference.

There are quite a few conditional jump instructions with the general

pattern:

 jCC label ; jump to location

The CC part of the instruction name represents any of a wide variety of

condition codes. The condition codes are based on specific flags in eflags

such as the zero flag, the sign flag, and the carry flag. Below are some

useful conditional jump instructions.

instruction meaning aliases flags

 jz jump if zero je ZF=1

 jnz jump if not zero jne ZF=0

 jg jump if > 0 jnle ZF=0 and SF=0

 jge jump if ≥ 0 jnl SF=0

 jl jump if > 0 jnge js SF=1

 jle jump if ≤ 0 jng ZF=1 or SF=1

 jc jump if carry jb jnae CF=1

 jnc jump if not carry jnb jae

It is possible to generate “spaghetti” code using jumps and conditional

jumps. It is probably best to stick with high level coding structures

translated to assembly language. The general strategy is to start with C

code and translate it to assembly. The rest of the conditional jump section

discusses how to implement C if statements.

Simple if statement

Let’s consider how to implement the equivalent of a C simple if

statement. Suppose we are implementing the following C code:

 if (a < b) {
 temp = a;
 a = b;

89

 b = temp;
 }

Then the direct translation to assembly language would be

 ; if (a < b) {
 mov rax, [a]
 mov rbx, [b]
 cmp rax, rbx
 jge in_order
 ; temp = a;
 mov [temp], rax
 ; a = b;
 mov [a], rbx
 ; b = temp
 mov [b], rax
 ; }
 in_order:

The most obvious pattern in this code is the inclusion of C code as

comments. It can be hard to focus on the purpose of individual assembly

statements. Starting with C code which is known to work makes sense.

Make each C statement an assembly comment and add assembly

statements to achieve each C statement after the C statement. Indenting

might help a little though the indentation pattern might seem a little

strange.

You will notice that the if condition was less than, but the conditional

jump used greater than or equal to. Perhaps it would appeal to you more

to use jnl rather than jge. The effect is identical but the less than

mnemonic is part of the assembly instruction (with not). You should select

the instruction name which makes the most sense to you.

If/else statement

It is fairly common to do 2 separate actions based on a test. Here is a

simple C if statement with an else clause:

 if (a < b) {
 max = b;
 } else {
 max = a;
 }

This code is simple enough that a conditional move statement is likely

to be a faster solution, but nevertheless here is the direct translation to

assembly language:

 ; if (a < b) {
 mov rax, [a]
 mov rbx, [b]
 cmp rax, rbx
 jnl else ;
 max = b;
 mov [max], rbx

90

 jmp endif
 ; } else {
 else:
 ; max = a;
 mov [max], rax
 ; }
 endif:

If/else-if/else statement

Just as in C/C++ you can have an if statement for the else clause, you

can continue to do tests in the else clause of assembly code conditional

statements. Here is a short if/else-if/else statement in C:

 if (a < b) {
 result = 1;
 } else if (a > c) {
 result = 2;
 } else {
 result = 3;
 }

This code is possibly a good candidate for 2 conditional move

statements, but simplicity is bliss. Here is the assembly code for this:

 ; if (a < b) {
 mov rax, [a]
 mov rbx, [b]
 cmp rax, rbx
 jnl else_if
 ; result = 1;
 mov qword [result], 1
 jmp endif
 ; } else if (a > c) {
 else_if:
 mov rcx, [c]
 cmp rax, rcx
 jng else
 ; result = 2;
 mov qword [result], 2
 jmp endif
 ; } else {
 else:
 ; result = 3;
 mov qword [result], 3
 ; }
 endif:

It should be clear that an arbitrary sequence of tests can be used to

simulate multiple else-if clauses in C.

91

8.3 Looping with conditional jumps

The jumps and conditional jumps introduced so far have been jumping

forward. By jumping backwards, it is possible to produce a variety of loops.

In this section we discuss while loops, do-while loops and counting loops.

We also discuss how to implement the effects of C’s continue and break

statements with loops.

While loops

The most basic type of loop is possibly the while loop. It generally looks

like this in C:

 while (condition) {
 statements;
 }

C while loops support the break statement which gets out of the loop

and the continue statement which immediately goes back to the top of

the loop. Structured programming favors avoiding break and continue.

However they can be effective solutions to some problems and, used

carefully, are frequently clearer than alternatives based on setting

condition variables. They are substantially easier to implement in

assembly than using condition variables and faster.

Counting 1 bits in a memory quad-word

The general strategy is to shift the bits of a quad-word 1 bit at a time and

add bit 0 of the value at each iteration of a loop to the sum of the 1 bits.

This loop needs to be done 64 times. Here is the C code for the loop:

 sum = 0;
 i = 0;
 while (i < 64) {
 sum += data & 1;
 data = data >> 1;
 i++;
 }

The program below implements this loop with only the minor change

that values are in registers during the execution of the loop. It would be

pointless to store these values in memory during the loop. The C code is

shown as comments which help explain the assembly code.

 segment .data
 ; long long data;
 data dq 0xfedcba9876543210
 ; long long sum;
 sum dq 0

92

 segment .text
 global main

 ; int main() ; {
 main:
 push rbp
 mov rbp, rsp
 sub rsp, 32

 ; int i; in register rcx
 ; Register usage
 ;
 ; rax: bits being examined
 ; rbx: carry bit after bt, setc
 ; rcx: loop counter i, 0-63
 ; rdx: sum of 1 bits

 mov rax, [data]
 xor ebx, ebx
 ; i = 0;
 xor ecx, ecx
 ; sum = 0;
 xor edx, edx
 ; while (i < 64) {
 while:
 cmp rcx, 64
 jnl end_while
 ; sum += data & 1;
 bt rax, 0
 setc bl
 add edx, ebx
 ; data >>= 1;
 shr rax, 1
 ; i++;
 inc rcx
 ; }
 jmp while
 end_while:
 mov [sum], rdx
 xor eax, eax
 leave
 ret

The first instruction of the loop is cmp which is comparing i (rcx)

versus 64. The conditional jump selected, jnl, matches the inverse of the

C condition. Hopefully this is less confusing than using jge. The last

instruction of the loop is a jump to the first statement of the loop. This is

the typical translation of a while loop.

Coding this in C and running

 gcc -O3 -S countbits.c

yields an assembly language file named countbits.s which is

unfortunately not quite matching our yasm syntax. The assembler for gcc,

gas, uses the AT&T syntax which differs from the Intel syntax used by

yasm. Primarily the source and destination operands are reversed and

some slight changes are made to instruction mnemonics. You can also use

93

 gcc -O3 -S -masm=intel countbits.c

to request that gcc create an assembly file in Intel format (for Linux)

which is very close to the code in this book. Here is the loop portion of the

program produced by gcc;

 mov rax, QWORD PTR data[rip]
 mov ecx, 64
 xor edx, edx
 .L2:
 mov rsi, rax
 sar rax
 and esi, 1
 add rdx, rsi
 sub ecx, 1
 jne .L2

You will notice that the compiler eliminated one jump instruction by

shifting the test to the end of the loop. Also the compiler did not do a

compare instruction. In fact it discovered that the counting up to 64 of i

was not important. Only the number of iterations mattered, so it

decremented down from 64 to 0. Thus it was possible to do a conditional

jump after the decrement. Overall the compiler generated a loop with 6

instructions, while the hand-written assembly loop used 8 instructions.

As stated in the introduction a good compiler is hard to beat. You can learn

a lot from studying the compiler’s generated code. If you are interested in

efficiency you may be able to do better than the compiler. You could

certainly copy the generated code and do exactly the same, but if you can’t

improve on the compiler’s code then you should stick with C.

There is one additional compiler option, -funroll-all-loops which

tends to speed up code considerably. In this case the compiler used more

registers and did 8 iterations of a loop which added up 8 bits in each

iteration. The compiler did 8 bits in 24 instructions where before it did 1

bit in 6 instructions. This is about twice as fast. In addition the instruction

pipeline is used more effectively in the unrolled version, so perhaps this

is 3 times as fast.

Optimization issues like loop unrolling are highly dependent on the

CPU architecture. Using the CPU in 64 bit mode gives 16 general-purpose

registers while 32 bit mode gives only 8 registers. Loop unrolling is much

easier with more registers. Other details like the Intel Core i series

processors’ use of a queue of micro-opcodes might eliminate most of the

effect of loops interrupting the CPU pipeline. Testing is required to see

what works best on a particular CPU.

Do-while loops

We saw in the last section that the compiler converted a while loop into a

do-while loop. The while structure translates directly into a conditional

94

jump at the top of the loop and an unconditional jump at the bottom of the

loop. It is always possible to convert a loop to use a conditional jump at

the bottom.

A C do-while loop looks like

 do {
 statements;
 } while (condition);

A do-while always executes the body of the loop at least once.

Let’s look at a program implementing a search in a character array,

terminated by a 0 byte. We will do an explicit test before the loop to not

execute the loop if the first character is 0. Here is the C code for the loop:

 i = 0;
 c = data[i];
 if (c != 0) {
 do {
 if (c == x) break;
 i++;
 c = data[i];
 } while (c != 0);
 }
 n = c == 0 ? -1 : i;

Here’s an assembly implementation of this code:

 SECTION .data
 data db “hello world”, 0
 n dq 0
 needle:
 db ‘w’
 SECTION .text
 global main
 main:
 push rbp
 mov rbp, rsp
 sub rsp, 32

 ; Register usage
 ;
 ; rax: c, byte of data array
 ; bl: x, byte to search for
 ; rcx: i, loop counter, 0-63

 mov bl, [needle]
 ; i = 0;
 xor ecx, ecx
 ; c = data[i];
 mov al, [data+rcx]
 ; if (c != 0) {
 cmp al, 0
 jz end_if
 ; do {
 do_while:
 ; if (c == x) break;
 cmp al, bl
 je found
 ; i++;

95

 inc rcx
 ; c = data[i];
 mov al, [data+rcx];
 ; } while (c != 0);
 cmp al, 0
 jnz do_while
 ; }
 end_if:
 ; n = c == 0 ? -1 : i;
 mov rcx, -1 ; c == 0 if you reach here
 found:
 mov [n], rcx
 ; return 0;
 xor eax, eax
 leave
 ret

The assembly code (if stripped of the C comments) looks simpler than

the C code. The C code would look better with a while loop. The

conditional operator in C was not necessary in the assembly code, since

the conditional jump on finding the proper character jumps past the

movement of -1 to rcx.

It might seem rational to try to use more structured techniques, but

the only reasons to use assembly are to improve efficiency or to do

something which can’t be done in a high level language. Bearing that in

mind, we should try to strike a balance between structure and efficiency.

Counting loops

The normal counting loop in C is the for loop, which can be used to

implement any type of loop. Let’s assume that we wish to do array

addition. In C we might use

 for (i = 0; i < n; i++) {
 c[i] = a[i] + b[i];
 }

Translated into assembly language this loop might be

 mov rdx, [n]
 xor ecx, ecx
 for: cmp rcx, rdx
 je end_for
 mov rax, [a+rcx*8]
 add rax, [b+rcx*8]
 mov [c+rcx*8], rax
 inc rcx
 jmp for
 end_for:

Once again it is possible to do a test on rdx being 0 before executing

the loop. This could allow the compare and conditional jump statements

to be placed at the end of the loop. However it might be easier to simply

translate C statements without worrying about optimizations until you

96

improve your assembly skills. Perhaps you are taking an assembly class.

If so, does performance affect your grade? If not, then keep it simple.

8.4 Loop instructions

There is a loop instruction along with a couple of variants which operate

by decrementing the rcx register and branching until the register reaches

0. Unfortunately, it is about 4 times faster to subtract 1 explicitly from

rcx and use jnz to perform the conditional jump. This speed difference is

CPU specific and only true for a trivial loop. Generally a loop will have

other work which will take more time than the loop instruction.

Furthermore the loop instruction is limited to branching to a 8 bit

immediate field, meaning that it can branch backwards or forwards about

127 bytes. All in all, it doesn’t seem to be worth using.

Despite the forgoing tale of gloom, perhaps you still wish to use loop.

Consider the following code which looks in an array for the right-most

occurrence of a specific character:

 mov ecx, [n]
 more: cmp [data+rcx-1],al
 je found
 loop more
 found: sub ecx, 1
 mov [loc], ecx

8.5 Repeat string (array) instructions

The x86-64 repeat instruction (rep) repeats a string instruction the

number of times specified in the count register (rcx). There are a handful

of variants which allow early termination based on conditions which may

occur during the execution of the loop. The repeat instructions allow

setting array elements to a specified value, copying one array to another,

and finding a specific value in an array.

String instructions

There are a handful of string instructions. The ones which step through

arrays are suffixed with b, w, d or q to indicate the size of the array

elements (1, 2, 4 or 8 bytes).

The string instructions use registers rax, rsi and rdi for special

purposes. Register rax or its sub-registers eax, ax and al are used to hold

97

a specific value. Resister rsi is the source address register and rdi is the

destination address. None of the string instructions need operands.

All of the string operations working with 1, 2 or 4 byte quantities are

encoded in 1 byte, while the 8 byte variants are encoded as 2 bytes.

Combined with a 1 byte repeat instruction, this effectively encodes some

fairly simple loops in 2 or 3 bytes. It is hard to beat a repeat.

The string operations update the source and/or destination registers

after each use. This updating is managed by the direction flag (DF). If DF

is 0 then the registers are increased by the size of the data item after each

use. If DF is 1 then the registers are decreased after each use.

Move

The movsb instruction moves bytes from the address specified by rsi to

the address specified by rdi. The other movs instructions move 2, 4 or 8

byte data elements from [rsi] to [rdi]. The data moved is not stored in

a register and no flags are affected. After each data item is moved, the rdi

and rsi registers are advanced 1, 2, 4 or 8 bytes depending on the size of

the data item.

Below is some code to move 100000 bytes from one array to another:
 lea rsi, [source]
 lea rdi, [destination]
 mov rcx, 100000
 rep movsb

 Store

The stosb instruction moves the byte in register al to the address

specified by rdi. The other variants move data from ax, eax or rax to

memory. No flags are affected. A repeated store can fill an array with a

single value. You could also use stosb in non-repeat loops taking

advantage of the automatic destination register updating.

Here is some code to fill an array with 1000000 double words all equal

to 1:

 mov eax, 1
 mov ecx, 1000000
 lea rdi, [destination]
 rep stosd

Load

The lodsb instruction moves the byte from the address specified by rsi

to the al register. The other variants move more bytes of data into ax, eax

or rax. No flags are affected. Repeated loading seems to be of little use.

However you can use lods instructions in other loops taking advantage of

the automatic source register updating.

Here is a loop which copies data from 1 array to another removing

characters equal to 13:

98

 lea rsi, [source]
 lea rdi, [destination]
 mov ecx, 1000000
 more: lodsb
 cmp al, 13
 je skip
 stosb
 skip: sub ecx, 1
 jnz more
 end

Scan

The scasb instruction searches through an array looking for a byte

matching the byte in al. It uses the rdi register. Here is an

implementation of the C strlen function:

 segment .text
 global strlen
 strlen:
 mov rdi, rcx ; first parameter is rcx
 cld ; prepare to increment rdi
 mov rcx, -1 ; maximum iterations
 xor al, al ; will scan for 0
 repne scasb ; repeatedly scan for 0
 mov rax, -2 ; start at -1
 ; end 1 past the end
 sub rax, rcx
 ret

The function sets rcx to -1, which would allow quite a long repeat loop

since the code uses repne to loop. It would decrement rcx about 264 times

in order to reach 0. Memory would run out first.

The first parameter in a 64 bit Windows program in rcx which must

be copied to rdi to prepare for the scan instruction. Interestingly the first

parameter for Linux and OS X is placed in rdi which makes this function

1 instruction shorter. The standard way to return an integer value is to

place it in rax, so we place the length there.

Compare

The cmpsb instruction compares values of 2 arrays. Typically it is used

with repe which will continue to compare values until either the count in

ecx reaches 0 or two different values are located. At this point the

comparison is complete.

This is almost good enough to write a version of the C strcmp function,

but strcmp expects strings terminated by 0 and lengths are not usually

known for C strings. It is good enough for memcmp:

 segment .text
 global memcmp
 memcmp: mov rdi, rcx ; first array address
 mov rsi, rdx ; second array address
 mov rcx, r8 ; count: third parameter

99

 repe cmpsb ; compare until end or difference
 cmp rcx, 0
 jz equal ; reached the end
 movzx eax, byte [rdi-1]
 movzx ecx, byte [rsi-1]
 sub rax, rcx
 ret
 equal: xor eax, eax
 ret

In the memcmp function the repeat loop advances the rdi and rsi

registers one too many times. Thus there is a -1 in the move and zero

extend instructions to get the 2 bytes. Subtraction is sufficient since

memcmp returns 0, a positive or a negative value. It was designed to be

implemented with a subtraction yielding the return value. The first 2

parameters to memcmp are rdi and rsi with the proper order.

Set/clear direction

The clear direction cld instruction clears the direction flag to 0, which

means to process increasing addresses with the string operations. The set

direction std instruction sets the direction flag to 1. Programmers are

supposed to clear the direction flag before exiting any function which sets

it.

100

Exercises

1. Write an assembly program to compute the dot product of 2 arrays,

i.e:

 𝑝 = ∑ 𝑎𝑖 ∗ 𝑏𝑖

𝑛−1

𝑖=0

Your arrays should be double word arrays in memory and the dot

product should be stored in memory.

2. Write an assembly program to compute Fibonacci numbers storing all

the computed Fibonacci numbers in a quad-word array in memory.

Fibonacci numbers are defined by

 fib(0) = 0
 fib(1) = 1
 fib(i) = fib(i-1) + fib(i-2) for i > 1

 What is the largest i for which you can compute fib(i)?

3. Write an assembly program to sort an array of double words using

bubble sort. Bubble sort is defined as

 do {
 swapped = false;
 for (i = 0; i < n-1; i++) {
 if (a[i] > a[i+1] } {
 swap a[i] and a[i+1]
 swapped = true;
 }
 }
 } while (swapped);

101

4. Write an assembly program to determine if a string stored in memory

is a palindrome. A palindrome is a string which is the same after being

reversed, like “refer”. Use at least one repeat instruction.

5. Write an assembly program to perform a “find and replace” operation

on a string in memory. Your program should have an input array and

an output array. Make your program replace every occurrence of

“amazing” with “incredible”.A Pythagorean triple is a set of three

integers 𝑎, 𝑏 and 𝑐 such that 𝑎2 + 𝑏2 = 𝑐2. Write an assembly program

to determine if an integer, 𝑐 stored in memory has 2 smaller integers

𝑎 and 𝑏 making the 3 integers a Pythagorean triple. If so, then place

𝑎 and 𝑏 in memory.

102

Chapter 9

Functions

In this chapter we will discuss how to write assembly functions which can

be called from C or C++ and how to call C functions from assembly. Since

the C or C++ compiler generally does a very good job of code generation,

it is usually not important to write complete programs in assembly. There

might be a few algorithms which are best done in assembly, so we might

write 90% of a program in C or C++ and write a few functions in assembly

language.

It is also useful to call C functions from assembly. This gives your

assembly programs full access to all C libraries. We will use scanf to input

values from stdin and we will use printf to print results. This will allow

us to write more useful programs.

9.1 The stack

So far we have had little use for the run-time stack, but it is an integral

part of using functions. The default stack size under Windows is 1 MB and

the location is generally in lower addresses than the code or data for a

program.

Items are pushed onto the stack using the push instruction. The effect

of push is to subtract 8 from the stack pointer rsp and then place the value

being pushed at that address. We tend to refer to the latest item placed

on the stack as the “top” of the stack, while the address is actually the

lowest of all items on the stack. Most CPUs use stacks which grow

downwards, but there have been exceptions.

Many different values are pushed onto the stack by the operating

system. These include the environment (a collection of variable names and

values defining things like the search path) and the command line

parameters for the program.

103

Values can be removed from the stack using the pop instruction. pop

operates in the reverse pattern of push. It moves the value at the location

specified by the stack pointer (rsp) to a register or memory location and

then adds 8 to rsp.

You can push and pop smaller values than 8 bytes, at some peril. It

works as long as the stack remains bounded appropriately for the current

operation. So if you push a word and then push a quad-word, the quad-

word push may fail. It is simpler to push and pop only 8 byte quantities.

9.2 Call instruction

The assembly instruction to call a function is call. A typical use would be

like

 call my_function

The operand my_function is a label in the text segment of a program.

The effect of the call instruction is to push the address of the instruction

following the call onto the stack and to transfer control to the address

associated with my_function. The address pushed onto the stack is called

the “return address”. Another way to implement a call would be

 push next_instruction
 jmp my_function
 next_instruction:

While this does work, the call instruction has more capability which we

will generally ignore.

Ebe shows the top of the stack (normally 6 values) as your program

executes. Below are the top 3 quad-words on the stack upon entry to main

in an assembly program. Immediately preceding this register display was

a call instruction to call main.

The first item on the stack is the return address, 0x4013b5. Normal

text segment addresses tend to be a little past 0x400000 in Windows

programs as illustrated by rip in the register display below taken from

the same program when it enters main. The return address is an address

in a function in a DLL, which prepares the environment and command

line parameters for a C main function. For a C++ program this DLL

function will also call all constructors for global objects.

104

9.3 Return instruction

To return from a function you use the ret instruction. This instruction

pops the address from the top of the stack and transfers control to that

address. In the previous example next_instruction is the label for the

return address.

Below is shown a very simple program which illustrates the steps of a

function call and return. The first instruction in main is a call to the doit

function.

You can see that there is a breakpoint on line 7 and the call to doit

has not yet been made. I have added an arrow pointing to the “Step”

button which is immediately to the right of the “Next” button. In the

register display below you can see that rip is 0x401746.

105

Previously we have used the “Next” button to execute the current

instruction. However, if we use “Next” now, the debugger will execute the

doit call and control will be returned after the function returns and the

highlighted line will be line 8. In order to study the function call, I have

clicked on “Step” which will step into the doit function.

Now we see that the next instruction to execute is on line 4. It is

instructive to view the registers at this point and the stack.

You can see that rip is now 401740 which is at a lower address than

the call at line 7.

106

From the variable display we see that the first item on the stack is

40174b which is the return address. After using “Step” two more times the

debugger executes the return from doit. Below are the registers after

executing the return.

Here we see that rip is now 0x40174b which was the value placed on

the stack by the call to doit.

9.4 Function parameters and return value

Most function have parameters which might be integer values, floating

point values, addresses of data values, addresses of arrays, or any other

type of data or address. The parameters allow us to use a function to

operate on different data with each call. In addition most functions have

a return value which is commonly an indicator of success or failure.

Windows uses a function call protocol called the “Microsoft x64 Calling

Convention”, while Linux and OS X use a different protocol called the

“System V Application Binary Interface” or System V ABI. In both

protocols some of the parameters to functions are passed in registers.

Windows allows the first 4 integer parameters to be passed in registers,

while Linux allows the first 6 (using different registers). Windows allows

the first 4 floating point parameters to be passed in floating pointer

registers xmm0-xmm3, while Linux allows the first 8 floating point

parameters to be passed in registers xmm0-xmm7.

There is one peculiarity in calling functions with a variable number of

parameters in Windows. The central idea in the ABI is that there can be

4 parameters in registers and that these 4 can be easily moved into

position on the stack as if they had been pushed. To make this even easier

the caller must copy any floating point registers to the corresponding

general purpose register prior to the call. The most likely function to

exhibit this situation is printf. Below is a code segment illustrating how

to print the double value in register xmm0. The address of the format string

will be placed in rcx and then the value in xmm0 must be copied to xmm1

and also to rdx.

107

 segment .data
 format db “x is %lf”, 0x0a, 0
 segment .text
 lea rcx, [format]
 movxd xmm1, xmm0 ; discussed in chapter 11
 movq rdx, xmm1 ; copies the bits from xmm1
 call printf

Windows, Linux and OS X use register rax for integer return values

and register xmm0 for floating point return values. Register xmm0 is used to

return 128 bit results while larger structs are allocated and a pointer to

the struct is passed in register rax.

Linux uses a different strategy for returning larger values. It returns

large integers in rdx:rax, while the calling function must provide a

hidden first parameter for larger structs. This means the caller allocates

memory and places the address of this memory in rdi.

Both Windows and Linux expect the stack pointer to be maintained on

16 byte boundaries in memory. This means that the hexadecimal value

for rsp should end in 0. The reason for this requirement is to allow local

variables in functions to be placed at 16 byte alignments for SSE and AVX

instructions. Executing a call would then decrement rsp leaving it

ending with an 8. Conforming functions should either push something or

subtract from rsp to get it back on a 16 byte boundary. It is common for a

function to push rbp as part of establishing a stack frame which re-

establishes the 16 byte boundary for the stack. If your function calls any

external function, it seems wise to stick with the 16 byte bounding

requirement.

The first 4 parameters in a function under Windows are passed in

registers with rcx, rdx, r8 and r9 being used for integer values and xmm0-

xmm3 for floating point values. For example if a function used parameters

which were int, float, int and float it would use registers rcx, xmm1, r8 and

xmm3. By contrast Linux and OS X use up to 6 integer parameters in

registers rdi, rsi, rdx, rcx, r8 and r9 and up to 8 floating point

parameters in registers xmm0-xmm7. If a function requires more

parameters, they are pushed onto the stack in reverse order.

Under Linux and OS X functions like scanf and printf which have a

variable number of parameters pass the number of floating point

parameters in the function call using the rax register. This is not required

for Windows.

A final requirement for making function calls in Windows is that the

calling function must leave 32 bytes free at the top of the stack at the point

of the call. This space is intended to make it easy for a function to move

its four register parameters onto the stack making it possible to access all

the function’s parameters as an array. This is quite handy for functions

which have a variable number of parameters. Technically the called

108

function can use the space however it wishes, but the caller must make

sure that this “shadow” space is available.

For 32 bit programs the protocol is different. Registers r8-r15 are not

available, so there is not much value in passing function parameters in

registers. These programs use the stack for all parameters.

We are finally ready for “Hello World!”

 section .data
 msg: db “Hello World!”,0x0a,0
 section .text
 global main
 extern printf
 main:
 push rbp
 mov rbp, rsp
 sub rsp, 32 ; shadow parameter space
 lea rcx, [msg] ; parameter 1 for printf
 call printf
 xor eax, eax ; return 0
 pop rbp
 ret

We use the “load effective address” instruction (lea) to load the

effective address of the message to print with printf into rcx. This could

also be done with mov, but lea allows specifying more items in the

brackets so that we could load the address of an array element.

Furthermore, under OS X mov will not allow you to move an address into

a register. There the problem is that static addresses for data have values

which exceed the capacity of 32 bit pointers and to save space the software

is designed to use 32 bit fields for addresses which must then be relative

to rip. The easy assessment is to use lea to load addresses.

9.5 Stack frames

One of the most useful features of the gdb debugger is the ability to trace

backwards through the stack functions which have been called using

command bt or backtrace. To perform this trick each function must keep

a pointer in rbp to a 2 quad-word object on the stack identifying the

previous value of rbp along with the return address. You might notice the

sequence “push rbp; mov rbp, rsp” in the hello world program. The first

instruction pushes rbp immediately below the return address. The second

instruction makes rbp point to that object.

Assuming all functions obey this rule of starting with the standard 2

instructions, there will be a linked list of objects on the stack - one for each

function invocation. The debugger can traverse through the list to identify

the function (based on the location of the return address) called and use

109

other information stored in the executable to identify the line number for

this return address.

These 2 quad-word objects are simple examples of “stack frames”. In

functions which do not call other functions (leaf functions), the local

variables for the function might all fit in registers. If there are too many

local variables or if the function calls other functions, then there might

need to be some space on the stack for these local variables in excess of

the shadow parameter space in the active stack frame. To allocate space

for the local variables, you simply subtract from rsp. For example to leave

32 bytes for local variables and 32 bytes for shadow space for calling

functions in the stack frame do this:

 push rbp
 mov rbp, rsp
 sub rsp, 64

Be sure to subtract a multiple of 16 bytes to avoid possible problems with

stack alignment.

To establish a stack frame, you use the following 2 instructions at the

start of a function:

 push rbp
 mov rbp, rsp

The effect of the these 2 instructions and a possible subtraction from rsp

can be undone using

 leave

just before a ret instruction. For a leaf function there is no need to do the

standard 2 instruction prologue and no need for the leave instruction.

They can also be omitted in general though it will prevent gdb from being

able to trace backwards though the stack frames.

Below is a diagram of the stack contents of after preparing a stack

frame in a function and subtracting 32 from rsp:

110

 parameter 6 [rbp+56]

 parameter 5 [rbp+48]

 shadow [rbp+40]

 parameter [rbp+32]

 space [rbp+24]

 4 quad-words [rbp+16]

 return address

rbp previous rbp

 [rsp+24]

 [rsp+16]

 [rsp+8]

rsp [rsp]

In the diagram the bottom 4 cells are reserved for shadow space for the

functions which are called by this function. Normally this space will be

left unused by the current function. The previous value of rbp which was

pushed at the start of the function is located where rbp currently points.

At rbp+8 is the return address which was placed on the stack in the

process of making the call. The 4 locations above the return address are

for copying the register parameters of the current function (or whatever

you wish to place there). Above these four values might be additional

parameters which must be placed on the stack if this function were called

with more than 4 parameters. I have labelled the 4 shadow register space

with memory references to the right of each cell. These 4 are always

available and you can use them to store anything you wish. The space

above there will not be available if your function has 4 or fewer

parameters.

To save registers in the shadow space you would move values into the

memory references from the diagram. If you want to save rcx into the

place reserved for it you could use

 mov [rbp+16], rcx

Perhaps you would prefer to use a name for the spot rather than using

16. Then you could use something like

 count equ 16
 mov [rbp+count], rcx

The equ pseudo-op stands for “equate” and it gives you a symbolic name

for a number – in the previous case: 16.

Sometimes you may need more local space than the 32 bytes in the

shadow parameter space. Let’s assume that you wish to use 2 local

variables named x and y in addition to 4 variables in the shadow space.

Here is a diagram of how this might look:

111

 parameter 6 [rbp+56]

 parameter 5 [rbp+48]

 shadow [rbp+40]

 parameter [rbp+32]

 space [rbp+24]

 4 quad-words [rbp+16]

 return address

rbp previous rbp

 x [rbp-8]

 y [rbp-16]

 [rsp+24]

 [rsp+16]

 [rsp+8]

rsp [rsp]

You can see that we need to subtract 48 from rsp rather than 32 to leave

room for 2 local variables. (Remember to always subtract a multiple of 16

from rsp.) The memory reference for x would be [rbp-8] and for y we

would use [rbp-16]. For conformity it might be nice to equate x and y to

negative values like this code snippet which saves x and y:

 x equ -8
 y equ -16
 mov [rbp+x], r8
 mov [rbp+y], r9

In this way we can have all the variables in the stack frame addressed as

rbp plus a label, rather than having to remember which need plus and

which need minus.

This same diagram would apply to writing a function which would call

a function with 6 parameters. However for parameters I suggest using

positive offsets from rsp rather negative offsets from rbp. This will make

your code simpler if you need to call a function with more parameters and

have to expand the stack frame. In this case parameter 5 would be at

[rsp+32] and parameter 6 would be at [rsp+40]. For a function which

calls several functions with different numbers of parameters it is simplest

to prepare the stack frame to accommodate the function with the most

parameters. That way you subtract a value from rsp at the start of the

function and leave it the same until the leave instruction. You might like

using equates for parameters beyond the fourth:

 par5 equ 32
 par6 equ 40
 par7 equ 48
 par8 equ 56

Notice that the general habit is to use rbp for local variables whether

they are in the active frame’s shadow space or just above the space for

parameters for called functions. Also if there is a need for more than 4

112

parameters in a called function then you should use rsp to place those

values on the stack.

With any function protocol you must specify which registers must be

preserved in a function. The Windows calling convention requires that

registers rbx, rbp, rsp, rsi, rdi and r12-15 must be preserved, while for

the System V ABI (Linux and OS X) registers rbx, rbp and r12-15 must

be preserved. The registers which you preserve would be copied into the

stack frame like count, x and y from the previous examples and copied

back to the appropriate registers before returning.

Function to print the maximum of 2 integers

The program listed below calls a function named print_max to print the

maximum of 2 longs passed as parameters. It calls printf so it uses the

extern pseudo-op to inform yasm and ld that printf will be loaded from

a library.

 segment .text
 global main
 extern printf

 ; void print_max (long a, long b)
 ; {
 a equ 32 ; place a in the stack frame
 b equ 40 ; and b above a
 print_max:
 push rbp; ; normal stack frame
 mov rbp, rsp
 sub rsp, 32 ; shadow parameter space
 ; int max;
 max equ 48 ; above a, b in the stack frame
 mov [rsp+a], rcx ; save a
 mov [rsp+b], rdx ; save b
 ; max = a;
 mov [rsp+max], rcx
 ; if (b > max) max = b;
 cmp rdx, rcx
 jng skip
 mov [rsp+max], rcx
 skip:
 ; printf (“max(%ld,%ld) = %ldn”, a, b, max);
 segment .data
 fmt db ‘max(%ld,%ld) = %ld’,0xa,0
 segment .text
 lea rcx, [fmt]
 mov rdx, [rsp+a]
 mov r8, [rsp+b]
 mov r9, [rsp+max]
 call printf
 ; }
 leave
 ret

main:

113

 push rbp
 mov rbp, rsp
 sub rsp, 32 ; shadow parameter space
 ; print_max (100, 200);
 mov rcx, 100 ; first parameter
 mov rdx, 200 ; second parameter
 call print_max
 xor eax, eax ; to return 0
 leave
 ret

In main you first see the standard 2 instructions to establish a stack

frame. There are no local variables in main, so we subtract 32 from rsp to

provide shadow space for calling print_max. On the other hand the

print_max function has 2 parameters and 1 local variable. The required

space is 24 bytes, which is fits into the current stack frame (in the current

shadow space). We subtract 32 from rsp to provide the shadow parameter

space for the printf call. It would be possible to avoid storing these

variables in memory, but it would be more confusing and less informative.

Immediately after the comment for the heading for print_max, I have

2 equates to establish offsets on the stack for a and b. After the comment

for the declaration for max, I have an equate for it too.

Before doing any of the work of print_max I have 2 mov instructions to

save a and b onto the stack. Both variables will be parameters to the

printf call, but they will be the second and third parameters so they will

need to be different registers at that point.

The computation for max is done using the stack location for max rather

than using a register. It would have been possible to use r9 which is the

register for max in the printf call, but would be less clear and the goal of

this code is to show how to handle parameters and local variables to

functions simply.

The call to printf requires a format string which should be in the data

segment. It would be possible to have a collection of data prior to the text

segment for the program, but it is nice to have the definition of the format

string close to where it is used. It is possible to switch back and forth

between the text and data segments, which seems easier to maintain.

9.6 Recursion

One of the fundamental problem solving techniques in computer

programming is recursion. A recursive function is a function which calls

itself. The focus of recursion is to break a problem into smaller problems.

Frequently these smaller problems can be solved by the same function. So

you break the problem into smaller problems repeatedly and eventually

you reach such a small problem that it is easy to solve. The easy to solve

114

problem is called a “base case”. Recursive functions typically start by

testing to see if you have reached the base case or not. If you have reached

the base case, then you prepare the easy solution. If not you break the

problem into sub-problems and make recursive calls. As you return from

recursive calls you assemble solutions to larger problems from solutions

to smaller problems.

Recursive functions generally require stack frames with local variable

storage for each stack frame. Using the complete stack frame protocol can

help in debugging.

Using the function call protocol it is easy enough to write recursive

functions. As usual, recursive functions test for a base case prior to

making a recursive call.

The factorial function can be defined recursively as

𝑓(𝑛) = {
 1 if 𝑛 ≤ 1
 𝑛 ∗ 𝑓(𝑛 − 1) if 𝑛 < 1

Here is a program to read an integer n, compute n! recursively and

print n!.

 segment .data
 x dq 0
 scanf_format:
 db “%ld”,0
 printf_format:
 db “fact(%ld) = %ld”,0x0a,0

 segment .text
 global main ; tell world about main
 global fact ; tell world about fact
 extern scanf ; resolve scanf and
 extern printf ; printf from libc
 main:
 push rbp
 mov rbp, rsp
 sub rsp, 32 ; shadow parameter space
 lea rcx, [scanf_format] ; set arg 1
 lea rdx, [x] ; set arg 2 for scanf
 call scanf
 mov rcx, [x] ; move x for fact call
 call fact
 lea rcx, [printf_format]; set arg 1
 mov rdx, [x] ; set arg 2 for printf
 mov r8, rax ; set arg 3 to be x!
 call printf
 xor eax, eax ; set return value to 0
 leave
 ret

 fact: ; recursive function
 n equ 16
 push rbp
 mov rbp, rsp
 sub rsp, 32 ; space for shadow parameters
 cmp rcx, 1 ; compare n with 1
 jg greater ; if n <= 1, return 1
 mov eax, 1 ; set return value to 1

115

 leave
 ret
 greater:
 mov [rbp+n], rcx ; save n
 dec rcx ; call fact with n-1
 call fact
 mov rcx, [rbp+n] ; restore original n
 imul rax, rcx ; multiply fact(n-1)*n
 leave
 ret

In the fact function I have used an equate for the variable n. The equ

statement defines the label n to have the value 16. In the body of the

function I save the value of n on the stack prior to making a recursive call.

The reference [rbp+n] is equivalent to [rbp+16] but it allows more

flexibility in coding while being clearer.

116

Exercises

1. Write an assembly program to produce a billing report for an electric

company. It should read a series of customer records using scanf and

print one output line per customer giving the customer details and the

amount of the bill. The customer data will consist of a name (up to 64

characters not including the terminal 0) and a number of kilowatt

hours per customer. The number of kilowatt hours is an integer. The

cost for a customer will be $20.00 if the number of kilowatt hours is

less than or equal to 1000 or $20.00 plus 1 cent per kilowatt hour over

1000 if the usage is greater than 1000. Use quotient and remainder

after dividing by 100 to print the amounts as normal dollars and cents.

Write and use a function to compute the bill amount (in pennies).

2. Write an assembly program to generate an array of random integers

(by calling the C library function random), to sort the array using a

bubble sort function and to print the array. The array should be stored

in the .bss segment and does not need to be dynamically allocated.

The number of elements to fill, sort and print should be stored in a

memory location. Write a function to loop through the array elements

filling the array with random integers. Write a function to print the

array contents. If the array size is less than or equal to 20, call your

print function before and after printing.

3. A Pythagorean triple is a set of three integers, 𝑎, 𝑏 and 𝑐, such that

𝑎2 + 𝑏2 = 𝑐2. Write an assembly program to print all the Pythagorean

triples where 𝑐 <= 500. Use a function to test whether a number is a

Pythagorean triple.

4. Write an assembly program to keep track of 10 sets of size 1000000.

Your program should read accept the following commands: “add”,

“union”, “print” and “quit”. The program should have a function to

read the command string and determine which it is and return 0, 1, 2

or 3 depending on the string read. After reading “add” your program

should read a set number from 0 to 9 and an element number from 0

to 999999 and insert the element into the proper set. You need to have

a function to add an element to a set. After reading “union” your

program should read 2 set numbers and make the first set be equal to

the union of the 2 sets. You need a set union function. After reading

“print” your program should print all the elements of the set. You

117

can assume that the set has only a few elements. After reading “quit”

your program should exit.

5. A sequence of numbers is called bitonic if it consists of an increasing

sequence followed by a decreasing sequence or if the sequence can be

rotated until it consists of an increasing sequence followed by a

decreasing sequence. Write an assembly program to read a sequence

of integers into an array and print out whether the sequence is bitonic

or not. The maximum number of elements in the array should be 100.

You need to write 2 functions: one to read the numbers into the array

and a second to determine whether the sequence is bitonic. Your

bitonic test should not actually rotate the array.

6. Write an assembly program to read two 8 byte integers with scanf

and compute their greatest common divisor using Euclid’s algorithm,

which is based on the recursive definition

gcd(𝑎, 𝑏) = {
 𝑎 if 𝑏 = 0

gcd(𝑏, 𝑎 mod 𝑏) otherwise

7. Write an assembly program to read a string of left and right

parentheses and determine whether the string contains a balanced

set of parentheses. You can read the string with scanf using “%79s”

into a character array of length 80. A set of parentheses is balanced if

it is the empty string or if it consists of a left parenthesis followed by

a sequence of balanced sets and a right parenthesis. Here’s an

example of a balanced set of parentheses: “((()())())”.

118

Chapter 10

Arrays

An array is a contiguous collection of memory cells of a specific type. This

means that an array has a start address. The start address is the lowest

address in the array and is identified by the label used when defining an

array in the text or bss segment.

Elements of the array are accessed by index with the smallest index

being 0 as in C. Subsequent indices access higher memory addresses. The

final index of an array of size n is n-1.

It would be possible to define arrays with different starting indices. In

fact the default for FORTRAN is for arrays to start at index 1 and you can

define the range of indices in many high level languages. However it is

quite natural to use 0 as the first index for arrays. The assembly code is

simpler in this way which helps with efficiency in C and C++.

10.1 Array address computation

There can be arrays of many types of data. These include the basic types:

bytes, words, double words, and quad-words. We can also have arrays of

structs (defined later).

Array elements are of a specific type so each array element occupies

the same number of bytes of memory. This makes it simple to compute the

location of any array element. Suppose that the array a with base address

base uses m bytes per element, then element a[i] is located at base +

i*m.

Let’s illustrate the indexing of arrays using the following program:

 segment .bss
 a resb 100 ; array of 100 bytes
 b resd 100 ; array of 100 double words
 align 8
 c resq 100 ; array of 100 quad-words
 segment .text

119

 global main
 main:
 push rbp
 mov rbp, rsp
 sub rsp, 32
 leave
 ret

 Fortunately it is not really necessary to

see the actual first address of an array to

observe the array in ebe. Instead we can use

a control-right-click on the variable name a

in the source code window (or we can mark

the variable name and use a right click) to

bring up a variable definition window and set

it to print hexadecimal numbers with size 1

to add a to the data window.

After defining a properly we can now

view the selected locations of the array.

10.2 General pattern for memory references

So far we have used array references in sample code without discussing

the options for memory references. A memory reference can be expressed

as

[label] the value contained at label

[label+2*ind] the value contained at the memory address obtained by

adding the label and index register times 2

[label+4*ind] the value contained at the memory address obtained by

adding the label and index register times 4

[label+8*ind] the value contained at the memory address obtained by

adding the label and index register times 8

[reg] the value contained at the memory address in the register

[reg+k*ind] the value contained at the memory address obtained by

adding the register and index register times k

120

[label+reg+k*ind] the value contained at the memory address obtained

by adding the label, the register and index register times k

[number+reg+k*ind] the value contained at the memory address

obtained by adding the number, the register and index register times
k

This allows a lot of flexibility in array accesses. For arrays in the text

and data segments it is possible to use the label along with an index

register with a multiplier for the array element size (as long as the array

element size is 1, 2, 4 or 8). With arrays passed into functions, the address

must be placed in a register. Therefore the form using a label is not

possible. Instead we can use a base register along with an index register.

Any of the 16 general purpose registers may be used as a base register or

an index register, however it is unlikely that you would use the stack

pointer register as an index register.

Let’s look at an example using a base register and an index register.

Let’s suppose we wish to copy an array to another array in a function.

Then the two array addresses could be the first 2 parameters (rcx and

rdx) and the number of array elements could be the third parameter r8.

Let’s assume that the arrays are double word arrays.

121

It is easy to monitor data processed in a function with ebe. You can see

that a breakpoint was placed on line 18 and the program was run. At this

point the copy_array function has been called and the parameters are in

registers rcx, rdx, and r8.

By left clicking on the value of rdx,

0x408010, and then right-clicking we can

bring up a form to define a variable with

the address in rdx. The form needs the

name, type, format, array variable, first

and last completed for a.

This was done for both the source and

destination arrays allowing both arrays to

be observed as the function executes. Here

is a view of the arrays after 3 values have

been copied.

In the copy_array function we used the parameters as they were

provided. We used rdx as the base address register for the source array

and rcx as the base address register for the destination array. For both

accesses we used r9 as the index register with a multiplier of 4 since the

arrays have 4 byte elements. This allows us to compare r9 versus r8 to

see if there are more elements to copy. Register r9 as chosen since it was

one which is considered “volatile” and a function is not required to

preserve its original value.

Note that multiplying by 2, 4 or 8 is a shift of 1, 2 or 3 bits, so there is

effectively 0 cost to using the multiplier. Alternatively we could add 4 to

r9 in each loop iteration after shifting r8 left 2 positions.

The last pattern would be useful for accessing an array of structs. If

you had an array of structs with each struct having a character array and

122

a pointer, then the number part of the reference could be the offset of the

struct element within the struct, while the base register and index

register could define the address of a particular struct in the array.

10.3 Allocating arrays

The simplest way to allocate memory in assembly is probably to use the C

library malloc function. The prototype for malloc is

 void *malloc (long size);

On success malloc returns a pointer to the allocated memory, while

failure results in malloc returning 0. The memory returned by malloc is

bounded on 16 byte boundaries, which is useful as an address for any type

of object (except for arrays needing to be on 32 byte boundaries for AVX

instructions). The memory can be returned for potential reuse by calling

the free function with the pointer returned by malloc

 void free (void *ptr);

Here is an assembly segment to allocate an array of 1000000000 bytes

 extern malloc
 ...
 mov rcx, 1000000000
 call malloc
 mov [pointer], rax

There are several advantages to using allocated arrays. The most

obvious one is that you can have arrays of exactly the right size.

Frequently you can compute the size of array needed in your code and

allocate an array of the correct size. If you use statically defined arrays

either in the data or bss segment, you have to know the size needed before

running the program (or guess).

Another less obvious reason for using allocated arrays is due to size

limitations imposed on the data and bss sections by either the assembler,

linker or operating system. Yasm reports “FATAL: out of memory” when

you try to declare an array of much more than 2 billion bytes. It succeeds

with an array of 2 billion bytes in the bss segment. It took approximately

104 seconds on a 2.4 GHz Opteron system to assemble and link a test

program with a 2 GB array. In addition both the object file and the

executable file exceeded 2 billion bytes in size. It is much faster (less than

1 second) to assemble and link a program using malloc and the executable

size was about 10 thousand bytes.

The program using malloc was modified to allocate 20 billion bytes

and still assembled and linked in less than 1 second. It executed in 3

123

milliseconds. There is no more practical way to use large amounts of

memory than using allocated memory.

The user should be cautioned not to attempt to assemble programs

with large static memory needs on a computer with less RAM than

required. This will cause disk thrashing while assembling and linking,

using far more than 100 seconds and nearly crippling the computer during

the process. Also it can be quite painful to use arrays larger than memory

even if they are allocated. Disk thrashing is not cool.

10.4 Processing arrays

Here we present an example application with several functions which

process arrays. This application allocates an array using malloc, fills the

array with random numbers by calling random and computes the

minimum value in the array. If the array size is less than or equal to 20,

it prints the values in the array.

Creating the array

The array is created using the create function shown below. This function

is perhaps too short to be a separate function. It multiplies the array size

by 4 to get the number of bytes in the array and then calls malloc.

 ; array = create (size);
 create:
 push rbp
 mov rbp, rsp
 sub rsp, 32
 sal rcx, 2
 call malloc
 leave
 ret

Filling the array with random numbers

The fill function uses storage on the stack for local copies of the array

pointer and its size. It also stores a local variable on the stack. These 3

variables require 24 bytes of storage, which we can use from the shadow

space prepared by the calling function. We store data in the array using

“mov [rdx+rcx*4], rax”, where rdx holds the address of the start of the

array and rcx contains the index of the current array element.

Here we use several local labels. A local label is a label beginning with

a dot. Their scope is between normal labels. So in the fill function, labels

124

.array, .size, .i and .more are local. This allows reusing these same

labels in other functions, which simplifies the coding of this application.

 ; fill (array, size);
 fill:
 .array equ 16
 .size equ 24
 .i equ 32
 push rbp
 mov rbp, rsp
 sub rsp, 32
 mov [rbp+.array], rcx
 mov [rbp+.size], rdx
 xor ecx, ecx
 .more mov [rbp+.i], rcx
 call random
 mov rcx, [rbp+.i]
 mov rdx, [rbp+.array]
 mov [rdx+rcx*4], eax
 inc rcx
 cmp rcx, [rbp+.size]
 jl .more
 leave
 ret

Printing the array

Printing the array is done with printf. The print function, just like fill,

needs to save 3 values on the stack since it calls another function. The

code is somewhat similar to fill, except that array values are loaded into

a register rather than values being stored in the array. You will notice

that the data segment is used to store the printf format in a spot near

the printf call. You will also notice that I have reused several local labels.

 ; print (array, size);
 print:
 .array equ 16
 .size equ 24
 .i equ 32
 push rbp
 mov rbp, rsp
 sub rsp, 32
 mov [rbp+.array], rcx
 mov [rbp+.size], rdx
 xor ecx, ecx
 mov [rbp+.i], r8
 segment .data
 .format:
 db “%10d”,0x0a,0
 segment .text
 .more lea rcx, [.format]
 mov rdx, [rbp+.array]
 mov r8, [rbp+.i]
 mov edx, [rdx+r8*4]
 mov [rbp+.i], r8
 call printf
 mov rcx, [rbp+.i]

125

 inc rcx
 mov [rbp+.i], rcx
 cmp rcx, [rbp+.size]
 jl .more
 leave
 ret

Finding the minimum value

The min function is a leaf function (does not call any other functions), so

there is no real need for a stack frame and no need to align the stack at a

16 byte boundary. A conditional move instruction is used to avoid

interrupting the instruction pipeline.

 ; x = min (array, size);
 min:
 mov eax, [rcx]
 mov r8, 1
 .more mov r8d, [rcx+r8*4]
 cmp r8d, eax
 cmovl eax, r8d
 inc r8
 cmp r8, rdx
 jl .more
 ret

Main program for the array minimum

The main program is shown below. It uses stack space for the local

variables .array and .size. It uses a command line parameter for the

array size, which is discussed in the next section. Comments in the code

outline the behavior.

 main:
 .array equ -8
 .size equ -16
 push rbp
 mov rbp, rsp
 sub rsp, 48 ; shadow space
 ; and 2 local variables
 mov ecx, 10 ; set default size
 mov [rbp+.size], rcx

 ; check for argv[1] providing a size
 cmp ecx, 2
 jl .nosize
 mov rcx, [rdx+8]
 call atoi
 mov [rbp+.size], rax

 .nosize:
 ; create the array
 mov rcx, [rbp+.size]
 call create

126

 mov [rbp+.array], rax
 ; fill the array with random numbers
 mov rcx, rax
 mov rdx, [rbp+.size]
 call fill

 ; if size <= 20 print the array
 mov rdx, [rbp+.size]
 cmp rcx, 20
 jg .toobig
 mov rcx, [rbp+.array]
 call print

 .toobig:
 ; print the minimum
 segment .data
.format:
 db “min: %ld”,0xa,0
 segment .text
 mov rcx, [rbp+.array]
 mov rdx, [rbp+.size]
 call min
 lea rcx, [.format]
 mov rdx, rax
 call printf
 leave
 ret

10.5 Command line parameter array

The command line parameters are available to a C program as parameters

to main. The number of command line parameters is the first argument to

main and an array of character pointers is the second argument to main.

The first parameter is always the name of the executable file being run.

The remaining parameters are the expansion by the user’s shell of the rest

of the command line. This expansion makes it convenient to use patterns

like “*.dat” on the command line. The shell replaces that part of the

command line with all the matching file names.

Here is a simple C program to print the command line parameters:

 #include <stdio.h>

 int main (int argc, char *argv[])
 {
 int i;
 for (i = 0; i < argc; i++) {
 printf(“%sn”, argv[i]);
 }
 return 0;
 }

When executed as “./args hello world”, it prints

127

 ./args
 hello
 world

The argv array is passed like all C arrays by placing the address of the

first element of the array in a register or on the stack. In the case of argv

its address is in register rsi. Below is a translation of the program to

assembly, though the assembly code takes advantage of the fact that there

is a NULL pointer at the end of the argv array.

You will notice that “hello world” has been entered in the “Command

line” text box. When this program executes it will print the program name

followed by “hello” and “world” on separate lines in the ebe terminal

window. This terminal window will also be used by ebe for all reads from

standard input.

128

Exercises

1. Write 2 test programs: one to sort an array of random 4 byte integers

using bubble sort and a second program to sort an array of random 4

bytes integers using the qsort function from the C library. Your

program should use the C library function atol to convert a number

supplied on the command line from ASCII to long. This number is the

size of the array (number of 4 byte integers). Then your program can

allocate the array using malloc and fill the array using random. You

call qsort like this

 qsort (array, n, 4, compare);

The second parameter is the number of array elements to sort and

the third is the size in bytes of each element. The fourth parameter is

the address of a comparison function. Your comparison function will

accept two parameters. Each will be a pointer to a 4 byte integer. The

comparison function should return a negative, 0 or positive value

based on the ordering of the 2 integers. All you have to do is subtract

the second integer from the first.

2. Write a program to use qsort to sort an array of random integers and

use a binary search function to search for numbers in the array. The

size of the array should be given as a command line parameter. Your

program should use random()%1000 for values in the array. This will

make it simpler to enter values to search for. After building the array

and sorting it, your program should enter a loop reading numbers

with scanf until scanf fails to return a 1. For each number read, your

program should call your binary search function and either report that

the number was found at a particular index or that the number was

not found.

3. Write an assembly program to compute the Adler-32 checksum value

for the sequence of bytes read using fgets to read 1 line at a time until

end of file. The prototype for fgets is

 char *fgets(char *s, int size, FILE *fp);

The parameter s is a character array which should be in the bss

segment. The parameter size is the number of bytes in the array s.

The parameter fp is a pointer and you need stdin. Place the following

line in your code to tell the linker about stdin

129

 extern stdin

 fgets will return the parameter s when it succeeds and will

return 0 when it fails. You are to read until it fails. The Adler-32

checksum is computed by

 long adler32(char *data, int len)
 {
 long a = 1, b = 0;
 int i;
 for (i = 0; i < len; i++) {
 a = (a + data[i]) % 65521;
 b = (b + a) % 65521;
 }
 return (b << 16) | a;
 }

Your code should compute 1 checksum for the entire file. If you use

the function shown for 1 line, it works for that line, but calling it again

restarts.

4. Write a test program to evaluate how well the hashing function below

works.

 int multipliers[] = {
 123456789,
 234567891,
 345678912,
 456789123,
 567891234,
 678912345,
 789123456,
 891234567
 };

 int hash (unsigned char *s)
 {
 unsigned long h = 0;
 int i = 0;

 while (s[i]) {
 h = h + s[i] * multipliers[i%8];
 i++;
 }
 return h % 99991;
 }

Your test program should read a collection of strings using scanf

with the format string “%79s” where you are reading into a character

array of 80 bytes. Your program should read until scanf fails to return

1. As it reads each string it should call hash (written in assembly) to

get a number h from 0 to 99990. It should increment location h of an

array of integers of size 99991. After entering all the data, this array

contains a count of how many words mapped to each location in the

array. What we want to know is how many of these array entries have

0 entries, how many have 1 entry, how many have 2 entries, etc. When

130

multiple words map to the same location, it is called a “collision”. So

the next step is to go through the array collision counts and increment

another array by the index there. There should be no more than 1000

collisions, so this could be done using

 for (i = 0; i < 99991; i++) {
 k = collisions[i];
 if (k > 999) k = 999;
 count[k]++;
 }

After the previous loop the count array has interesting data. Use

a loop to step through this array and print the index and the

value for all non-zero locations. An interesting file to test is

“/usr/share/dict/words”. Write an assembly program to read a

sequence of integers using scanf and determine if the first number

entered can be formed as a sum of some of the other numbers and

print a solution if it exists. You can assume that there will be no more

than 20 numbers. Suppose the numbers are 20, 12, 6, 3, and 5. Then

20 = 12 + 3 +5. Suppose the numbers are 25, 11, 17 and 3. In this

case there are no solutions.

131

Chapter 11

Floating point instructions

The 8086 CPU used a floating point coprocessor called the 8087 to perform

floating point arithmetic. Many early personal computers lacked the 8087

chip and performed floating point operations in software. This

arrangement continued until the 486 which contained a coprocessor

internally. The 8087 used instructions which manipulated a stack of 80

bit floating point values. These instructions are still part of modern CPUs,

though there is a completely separate floating point facility available

which has sixteen 128 bit registers (256 bits for the Intel Core i series) in

64 bit mode. We will study the newer instructions.

If you study the Intel 64 and IA-32 Architectures Software Developer’s

Manual, you will find many instructions such as fadd which work with

registers named ST0, ST1, … These instructions are for the math

coprocessor. There are newer instructions such as addsd which work with

Streaming SIMD Extensions (SSE) registers xmm0, xmm1, …, xmm15. SIMD

is an acronym for “Single Instruction - Multiple Data”. These instructions

are the focus of this chapter.

11.1 Floating point registers

There are 16 floating point registers which serve multiple purposes

holding either 1 value or multiple values. The names for these registers

are xmm0, xmm1, …, xmm15. These registers can be used with instructions

operating on a single value in each register or on a vector of values. When

used as a vector an XMM register can be used as either 4 floats or 2

doubles. The registers can also be used for collections of integers of

various sizes, though the SSE integer instructions are basically ignored

in this book.

The Core i series of computers introduced the Advanced Vector

Extensions (AVX) which doubled the size of the floating point registers

and added some new instructions. To use the full 256 bits (8 floats or 4

132

doubles) you need to use a register name from ymm0, ymm1, … ymm15. Each

XMM register occupies the first 128 bits of the corresponding YMM

register.

For most of this chapter the discussion refers only to XMM registers.

In all cases the same instruction (prefixed by the letter “v”) can be used

with YMM registers to operate on twice as many data values. Stating this

repeatedly would probably be more confusing than accepting it as a rule.

Ebe makes it easy to view the contents of floating point registers. The

floating point register window displays the floating point registers in a

variety of different formats. Consider this simple program which loads 2

float values and adds them:

Below are the floating point registers after executing the vaddss

instruction at line 11.

133

11.2 Moving floating point data

The SSE registers are 128 bits on most x86-64 CPUs (256 bits for the AVX

registers). These registers can be used to do 1 operation at a time or

multiple operations at a time. There are instructions for moving 1 data

value and instructions from moving multiple data items, referred to as

“packed” data.

Moving scalars

There are two instructions for moving scalar (1 value) floating point

values to/from SSE registers: movss which moves 32 bit floating point

values (floats) and movsd which moves 64 bit floating point values

(doubles). These two instructions move a floating point value from

memory to/from the lower part of a XMM register or from one XMM

register to another. There is no implicit data conversion - after movss a 32

bit value exists in the destination. Here is a sample:

 movss xmm0, [x] ; xmm0 = value at x
 movsd [y], xmm1 ; move xmm1 to y
 movss xmm2, xmm0 ; xmm2 = xmm0

Moving packed data

There are instructions for loading integer packed data and floating point

packed data. We will concentrate here on packed floating point data. You

can move packed floats or packed doubles. There are instructions for

moving aligned or unaligned packed data. The aligned instructions are

movaps for moving four floats and movapd for moving two doubles using

XMM registers. The unaligned versions are movups and movupd. Moving

packed data to/from YMM registers moves twice as many values.

Aligned data means that it is on a 16 byte boundary in memory. This

can be arranged by using align 16 for an array in the data section. The

alignb pseudo-op for an array in the bss section does not do the job

properly. Arrays allocated by malloc will be on 16 byte boundaries. Your

program will fail with a segmentation fault if you attempt to use an

aligned move to an unaligned address. Fortunately on the Core i series of

CPUs the unaligned moves are just as fast as the aligned moves when the

data is aligned. Note that the instructions using AVX registers begin with

“v”. Here is a sample.

 movups xmm0, [x] ; move 4 floats to xmm0
 vmovups ymm0, [x] ; move 8 floats to ymm0
 vmovupd ymm1, [x] ; move 4 doubles to ymm1
 movupd [a], xmm15 ; move 2 doubles to a

134

11.3 Addition

The instructions for adding floating point data come in scalar and packed

varieties. The scalar add instructions are addss to add two floats and

addsd to add two doubles. Both these operate on a source operand and

destination operand. The source can be in memory or in an XMM register

while the destination must be in an XMM register. Unlike the integer add

instruction the floating point add instructions do not set any flags, so

testing must be done using a compare instruction.

The packed add instructions are addps which adds 4 floats from the

source to 4 floats in the destination and addpd which adds 2 doubles

from the source to 2 doubles in the destination using XMM registers. Like

the scalar adds the source can be either memory or an XMM register,

while the destination must be an XMM register. Using packed adds

(vaddps or vaddpd) with YMM registers adds either 8 pairs of floats or 4

pairs of doubles.

 movss xmm0, [a] ; load a
 addss xmm0, [b] ; add b to a
 movss [c], xmm0 ; store sum in c
 movapd xmm0, [a] ; load 2 doubles from a
 addpd xmm0, [b] ; a[0]+b[0], a[1]+b[1]
 movapd [c], xmm0 ; store 2 sums in c
 vmovupd ymm0, [a] ; load 4 doubles from a
 vaddpd ymm0, [b] ; add 4 pairs of doubles
 movupd [c], ymm0 ; store 4 sums in c

11.4 Subtraction

Subtraction operates like addition on either scalar floats or doubles or

packed floats or doubles. The scalar subtract instructions are subss

which subtracts the source float from the destination float and subsd

which subtracts the source double from the destination double. The

source can be either in memory or in an XMM register, while the

destination must be an XMM register. No flags are affected by the floating

point subtraction instructions.

The packed subtract instructions are subps which subtracts 4 source

floats from 4 floats in the destination and subpd which subtracts 2

source doubles from 2 doubles in the destination using XMM registers.

Again the source can be in memory or in an XMM register, while the

destination must be an XMM register. Using packed subtracts (vsubps or

vsubpd) with YMM registers subtracts either 8 pairs of floats or 4 pairs

of doubles.

135

 movss xmm0, [a] ; load a
 subss xmm0, [b] ; subtract b from a
 movss [c], xmm0 ; store a-b in c
 movapd xmm0, [a] ; load 2 doubles from a
 subpd xmm0, [b] ; a[0]-b[0], a[1]-b[1]
 movapd [c], xmm0 ; store 2 results in c
 vmovapd ymm0, [a] ; load 4 doubles from a
 vmovapd [c], ymm0 ; store 4 results in c

11.5 Multiplication and division

Multiplication and division follow the same pattern as addition and

subtraction in that they operate on memory or register operands. They

support floats and doubles and they support scalar and packed data. The

basic mathematical instructions for floating point data are

instruction effect

addsd add scalar double

addss add scalar float

addpd add packed double

addps add packed float

subsd subtract scalar double

subss subtract scalar float

subpd subtract packed double

subps subtract packed float

mulsd multiple scalar double

mulss multiply scalar float

mulpd multiple packed double

mulps multiple packed float

divsd divide scalar double

divss divide scalar float

divpd divide packed double

divps subtract packed float

11.6 Conversion

It is relatively common to need to convert numbers from one length

integer to another, from one length floating point to another, from integer

to floating point or from floating point to integer. Converting from one

length integer to another is accomplished using the various move

instructions presented so far. The other operations take special

instructions.

136

Converting to a different length floating point

There are 2 instructions to convert floats to doubles: cvtss2sd which

converts one float to a double and cvtps2pd which converts 2 packed

floats to 2 packed doubles. The source can be a memory location or an

XMM register while the destination must be an XMM register.

Similarly 2 instructions convert doubles to floats: cvtsd2ss which

converts a double to a float and cvtpd2ps which converts 2 packed

doubles to 2 packed floats. It has the same restriction that the

destination must be an XMM register.

 cvtss2sd xmm0, [a] ; convert a to double in xmm0
 addsd xmm0, [b] ; add a double to a
 cvtsd2ss xmm0, xmm0 ; convert to float
 movss [c], xmm0 ; move float sum to c

Converting floating point to/from integer

There are 2 instructions which convert floating point to integers by

rounding: cvtss2si which converts a float to a double or quad word

integer and cvtsd2si which converts a double to a double or quad word

integer. The mxcsr register controls the type of conversion. Set it to 0x1f80

to specify rounding. The source can be an XMM register or a memory

location, while the destination must be a general purpose register. There

are 2 instructions which convert by truncating: cvttss2si and cvttsd2si.

There are 2 instructions which convert integers to floating point:

cvtsi2ss which converts a double or quad word integer to a float and

cvtsi2sd which converts a double or quad word integer to a double. The

source can be a general purpose register or a memory location, while the

destination must be an XMM register. When using a register for the

source the size is implicit in the register name. When using a memory

location you need to add “dword” or “qword” to the instruction to specify

the size.

 segment .data
round dd 0x1f80
 segment .text
 ldmxcsr [round] ; default to rounding
 cvtss2si eax, xmm0 ; convert to int (round)
 cvtsi2sd xmm0, rax ; long to double
 cvtsi2sd xmm0, dword [x] ; dword to double

137

11.7 Floating point comparison

The IEEE 754 specification for floating point arithmetic includes 2 types

of “Not a Number” or NaN. These 2 types are quiet NaNs and signaling

NaNs. A quiet NaN (QNaN) is a value which can be safely propagated

through code without raising an exception. A signaling NaN (SNaN)

always raises an exception when it is generated. Perhaps you have

witnessed a program failing with a divide by 0 error which is caused by a

signal.

Floating point comparisons are considered to be either “ordered” or

“unordered”. An ordered comparison causes a floating point exception if

either operand is a QNaN or SNaN. An unordered comparison causes an

exception for only an SNaN. The gcc compiler uses unordered

comparisons, so I will do the same.

The unordered floating point comparison instructions are ucomiss for

comparing floats and ucomisd for comparing doubles. The first operand

must be an XMM register, while the second operand can be memory or an

XMM register. They set the zero flag, parity flag and carry flag to indicate

the type of result: unordered (at least 1 operand is NaN), less than, equal

or greater than. A conditional jump seems like a natural choice after a

comparison, but we need some different instructions for floating point

conditional jumps. It will look good to use an instruction like jge (jump if

greater than or equal), but the effect is different from jae (jump if above

or equal).

instruction meaning aliases flags

 jb jump if < jc jnae CF=1

 jbe jump if ≤ jna CF=1 or ZF=1

 ja jump if > jnbe ZF=0 and CF=0

 jae jump if ≥ Jnc jnb CF=0

Here is an example

 movss xmm0, [a]
 mulss xmm0, [b]
 ucomiss xmm0, [c]
 jbe less_eq ; jmp if a*b <= c

11.8 Mathematical functions

The 8087 coprocessor implemented a useful collection of transcendental

functions like sine, cosine and arctangent. These instructions still exist in

modern CPUs, but they use the floating point register stack and are no

138

longer recommended. Instead efficient library functions exist for these

functions.

The SSE instructions include floating point functions to compute

minimum and maximum, perform rounding, and compute square roots

and reciprocals of square roots.

Minimum and maximum

The minimum and maximum scalar instructions are minss and maxss to

compute minimums and maximums for floats and minsd and maxsd to do

the same for doubles. The first operand (destination) must be an XMM

register, while the second operand (source) can be either an XMM register

or a memory location. The result is placed in the destination register.

There are packed versions of the minimum and maximum instructions:

minps, maxps, minpd and maxpd which operate on either 4 floats (the ps

versions) or 2 doubles (the pd versions). The packed instructions require

an XMM register for the first operand and either an XMM register or

memory for the second. The float versions compute 4 results while the

double versions compute 2 results.

 movss xmm0, [x] ; move x into xmm0
 maxss xmm0, [y] ; xmm0 has max(x,y)
 movapd xmm0, [a] ; move a[0], a[1] to xmm0
 minpd xmm0, [b] ; xmm0[0] = min(a[0],b[0])
 ; xmm0[1] = min(a[1],b[1])

Rounding

The SSE instructions include 4 instructions for rounding floating point

numbers to whole numbers: roundss which rounds 1 float, roundps which

rounds 4 floats, roundsd which rounds 1 double and roundpd which

rounds 2 doubles. The first operand must be an XMM register, while the

second operand can be either an XMM register or a memory location.

There is a third operand which selects a rounding mode. A simplified view

of the possible rounding modes is in the table below:

mode meaning

0 round, giving ties to even numbers

1 round up

2 round toward 0 (truncate)

Square roots

The SSE instructions include 4 square root instructions: sqrtss which

computes 1 float square root, sqrtps which computes 4 float square

139

roots, sqrtsd which computes 1 double square root and sqrtpd which

computes 2 double square roots. As normal the first operand (destination)

must be an XMM register, and the second operand can be either an XMM

register or a memory location. Bounding to 16 byte boundaries is required

for a packed instruction with a memory reference.

11.9 Sample code

Here we illustrate some of the instructions we have covered in some fairly

practical functions.

Distance in 3D

We can compute distance in 3D using a function which accepts 2 float

arrays with x, y and z coordinates. The 3D distance formula is

𝑑 = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 + (𝑧1 − 𝑧2)2

Here is assembly code for 3D distance:

 distance3d:
 movss xmm0, [rcx] ; x of first point
 subss xmm0, [rdx] ; - x of second point
 mulss xmm0, xmm0 ; (x1-x2)^2
 movss xmm1, [rcx+4] ; y of first point
 subss xmm1, [rdx+4] ; - y of second point
 mulss xmm1, xmm1 ; (y1-y2)^2
 movss xmm2, [rcx+8] ; z of first point
 subss xmm2, [rdx+8] ; - z of second point
 mulss xmm2, xmm2 ; (z1-z2)^2
 addss xmm0, xmm1 ; add x and y parts
 addss xmm0, xmm2 ; add z part
 sqrtss xmm0, xmm0
 ret

Dot product of 3D vectors

The dot product of two 3D vectors is used frequently in graphics and is

computed by

𝑥1𝑥2 + 𝑦1𝑦2 + 𝑧1𝑧2

Here is a function computing the dot product of 2 float vectors passed

as 2 arrays

 dot_product:
 movss xmm0, [rcx] ; get x1
 mulss xmm0, [rdx] ; times x2
 movss xmm1, [rcx+4] ; get y1

140

 mulss xmm1, [rdx+4] ; times y2
 addss xmm0, xmm1 ; x1*x2+y1*y2
 movss xmm2, [rcx+8] ; get z1
 mulss xmm2, [rdx+8] ; times z2
 addss xmm0, xmm2 ; dot product
 ret

Polynomial evaluation

The evaluation of a polynomial of 1 variable could be done at least 2 ways.

First is the obvious definition:

𝑃(𝑥) = 𝑝0 + 𝑝1𝑥 + 𝑝2𝑥2 + ⋯ + 𝑝𝑛𝑥𝑛

A more efficient way to compute the value is using Horner’s Rule:

𝑏𝑛 = 𝑝𝑛

𝑏𝑛−1 = 𝑝𝑛−1 + 𝑏𝑛𝑥

𝑏𝑛−2 = 𝑝𝑛−2 + 𝑏𝑛−1𝑥

⋯ ⋯ ⋯

𝑏0 = 𝑝0 + 𝑏1𝑥

Then 𝑃(𝑥) = 𝑏0.

Written as a function with an array of double coefficients as the first

parameter (rcx), a value for x as the second parameter (xmm0) and the

degree of the polynomial as the third parameter (r8) we have:

 horner:
 movsd xmm1, xmm0 ; use xmm1 as x
 movsd xmm0, [rcx+r8*8] ; xmm0 = b_k
 cmp r8d, 0 ; is the degree 0
 jz done
 more:
 sub r8d, 1
 mulsd xmm0, xmm1 ; b_k * x
 addsd xmm0, [rcx+r8*8] ; add p_k
 jnz more
 done:
 ret

141

Exercises

1. Write a program testing a function to compute sin 𝑥. The formula for

sin 𝑥 is given as the Taylor’s series:

𝑠𝑖𝑛 𝑥 = 𝑥 −
𝑥3

3!
+

𝑥5

5!
−

𝑥7

7!
⋯

Your function should work with doubles. Your program should

read 2 numbers at a time using scanf. The first number is 𝑥 and the

second number is the number of terms of the expansion to compute.

Your program should call your sine function and print the value it

computes using scanf. The reading and computing should continue

until scanf fails to return 2.

2. Write a program to compute the area of a polygon. You can use this

formula for the area

𝐴 =
1

2
∑(𝑥𝑖𝑦𝑖+1 − 𝑥𝑖+1𝑦𝑖)

𝑛−1

𝑖=0

Your area function should have 3 parameters. The first parameter

is an array of doubles holding 𝑥 values. The second is an array of

doubles holding 𝑦 values. The third is the value 𝑛. Your arrays should

be size 𝑛 + 1 and location 𝑛 of both arrays should be repeats of location

0. The number of vertices will be read using scanf. Then your program

should allocate arrays of size 𝑛 + 1 and read the coordinates using

scanf. Lastly your program should compute and print the area.

3. Write a program to approximate the definite integral of a polynomial

function of degree 5 using the trapezoidal rule. A polynomial of degree

5 is defined by 6 coefficients 𝑝0, 𝑝1 , ⋯ , 𝑝5, where

𝑝(𝑥) = 𝑝0 + 𝑝1𝑥 + 𝑝2𝑥2 + 𝑝3𝑥3 + 𝑝4𝑥4 + 𝑝5𝑥5

The trapezoidal rule states that the integral from 𝑐 to 𝑑 of a

function 𝑓(𝑥) can be approximated as

(𝑑 − 𝑐)
𝑓(𝑐) + 𝑓(𝑑)

2

To use this to get a good approximation you divide the interval

from 𝑎 to 𝑏 into a collection of sub-intervals and use the trapezoidal

rule on each sub-interval. Your program should read the values of 𝑎

142

and 𝑏. Then it should read the number of sub-intervals 𝑛. Last it

should read the coefficients of the polynomial in the order 𝑝0, 𝑝1, ⋯

𝑝5. Then it should perform the computation and print the approximate

integral.

4. Write a program to perform integration and differentiation of

polynomials. The program should prompt for and read the degree of

the polynomial. Then it should allocate arrays of the correct size for a

polynomial, its derivative and its integral. Then the program should

prompt for and read the coefficients of the polynomial. The last input

will be two values from the domain, 𝑎 and 𝑏. The program should

evaluate and print the polynomial and its derivative at 𝑎 and 𝑏. Last

it should print the integral from 𝑎 to 𝑏.

143

Chapter 12

Accessing Files

A system call is essentially a function call which changes the CPU into

kernel mode and executes a function which is part of the kernel. When

you run a process on Windows it runs in user mode which means that it

is limited to executing only “safe” instructions. It can move data within

the program, do arithmetic, do branching, call functions, … , but there are

instructions which your program can’t do directly. For example it would

be unsafe to allow any program to read or write directly to the disk device,

so this is avoided by preventing user programs from executing input or

output instructions. Another prohibited action is directly setting page

mapping registers.

When a user program needs to do something like open a disk file, it

makes a system call. This changes the CPU’s operating mode to kernel

mode where the CPU can execute input and output instructions. The

kernel open call will verify that the user program has permission to open

the file and then open it, performing any input or output instructions

required on behalf of the program

Windows uses the syscall instruction much like Linux and OS X do

to make system calls. A process places up to 4 parameters for the system

call into registers and places any additional parameters on the stack like

a normal function call. Then the process places the system call number

into register rax and issues the syscall instruction. Unfortunately

Microsoft regularly changes the numbers for system calls and

recommends that programmers use the Windows API functions instead.

So in this chapter we will discuss a little about file access using the

Windows API and also using similar functions from the C library. The C

library functions are much easier to use, though a Windows programming

adventure would be incomplete without a little of the Windows API.

Anyone interested in more Windows API programming should be able to

use the online documentation at http:.//msdn.microsoft.com to learn more

details.

144

In this chapter we give a brief introduction to using the Windows API

to perform file access and present an alternative more portable low level

file access collection. Learning how to use the Windows API file access

functions is sufficient for explaining basic concepts involved in using

Windows functions for GUI design and process control.

12.1 File access with the Windows API

Here we discuss how to create, read and write disk files using the

Windows API. We will present one program to create a file and write

“Hello world!” to the file and a second program to copy a file to a new file.

The copy program uses command line parameters for file names and for

the size of the array used in the copy. We also present timing based on a

variety of array sizes.

Creating a file

The primary function for creating or opening a file in the Windows API is

CreateFile. There are actually 2 variants: a Unicode version named

CreateFileW and an Ascii one name CreateFileA. We will use CreateFileA

which uses Ascii characters for the file name. In truth CreateFile can

create and open many other things in addition to disk files, but we won’t

be trying that. The prototype taken from http://msdn.microsoft.com is

 HANDLE WINAPI CreateFileA(
 In LPCTSTR lpFileName,
 In DWORD dwDesiredAccess,
 In DWORD dwShareMode,
 _In_opt_ LPSECURITY_ATTRIBUTES lpSecurityAttributes,
 In DWORD dwCreationDisposition,
 In DWORD dwFlagsAndAttributes,
 _In_opt_ HANDLE hTemplateFile
);

The return type is a HANDLE which is a synonym for a double-word.

This will be placed in register rax by CreateFileA, so it could be regarded

as a quad-word. This value is an integer which is used in subsequent

Windows API calls to refer to this created or opened file.

The first parameter is an input parameter which points to a normal C

character string with a terminal 0. This pointer will be placed in register

rcx.

The second parameter is a double-word which contains the access mode

for the file. In the programs we present we will use GENERIC_READ and

GENERIC_WRITE modes. The access mode will be placed in register rdx and

it is adequate to treat it either as a double-word or a quad-word.

145

Technically the other double-word parameters can also be considered

as quad-words since they are either placed in registers or on the stack in

64 bit locations. We will include the file “win32n.inc” prepared by Tamas

Kaproncai to facilitate assembly programming using the Windows API. In

addition to equates for values like GENERIC_READ, the include file includes

struct definitions for many Windows API functions.

The third parameter defines the sharing mode for the function. A 0

means that there will be no sharing. One could also choose

FILE_SHARE_READ or FILE_SHARE_WRITE. The third parameter is placed in

register r8.

The fourth parameter is an optional pointer to a SECURITY_ATTRIBUTES

struct. Leaving this as 0 will result in default security and prevents this

file handle from being inherited by any child processes. The fourth

parameter is placed in register r9.

The fifth parameter defines what should happen with a call to

CreateFileA. You may want to only succeed with creation if the file

currently does not exist (CREATE_NEW), open an existing file and delete its

current data (CREATE_ALWAYS), open the file and keep its data

(OPEN_ALWAYS), open the file only if it already exists (OPEN_EXISTING) or a

handful of other options. The fifth parameter in placed on the stack at

position rsp+0x40 which leaves spaces for the shadow parameters in

before the fifth parameter.

The sixth parameter can specify a collection of flags and attributes

which are each single bits and can be or’ed together. For our programs we

will use FILE_ATTRIBUTE_NORMAL. This parameter will be placed on the

stack at location rsp+0x48.

The seventh parameter is an optional HANDLE which can be used to copy

file attributes from another file. We will leave this as 0 to not use a

template file.

Writing to a file

The Windows API function to write to a file is WriteFile. Though the

example program writes text to the file, the file can contain any bytes

and the writing is an exact copy of the array of bytes used in the

WriteFile call. In particular in the program below a carriage-return

(0x0d) and a new-line character (0x0a) are written to the file to make it a

valid text file. The prototype for WriteFile is

 BOOL WINAPI WriteFile(
 In HANDLE hFile,
 In LPCVOID lpBuffer,
 In DWORD nNumberOfBytesToWrite,
 _Out_opt_ LPDWORD lpNumberOfBytesWritten,

146

 _Inout_opt_ LPOVERLAPPED lpOverlapped
);

WriteFile returns true when it succeeds and false otherwise. It is

generally necessary to use the fourth parameter to receive the number of

bytes written to test for complete success.

The first parameter to WriteFile is the HANDLE returned from

CreateFile. It is placed in register rcx.

The second parameter is the address of the data to be written to the

file. This can be the address of any type of data. It is placed in register

rdx.

The third parameter is the number of bytes to write. This is placed in

register r8. Since this is a 32 bit integer it is not possible to write more

than 231-1 bytes in one call. Perhaps this is unsigned and you could write

more.

The fourth parameter is a pointer to a double-word which will receive

back the number of bytes that CreateFile actually writes which can be

less than requested for a variety of reasons. The web site describes this as

optional, but I had problems leaving this as 0.

The fifth parameter is described as a struct pertaining to “overlapping”

which means issuing a write and returning before it completes. This

generally requires writing a “call-back” function to be called when the

write completes. Another term for this is “asynchronous I/O”. We will

leave this as 0 indicating no asynchronous I/O.

Complete program to create a file

Below is a program to create a file named “sample.txt” and write “Hello

world!” to it. When the program was written I copied the prototype for

CreateFileA and WriteFile into the source as comments, but these

comments are omitted from here.

%include "win32n.inc"

par5 equ 0x20
par6 equ 0x28
par7 equ 0x30

 segment .data
handle dq 0
written dq 0
filename db "sample.txt", 0
hello db "Hello world!", 0x0d, 0x0a, 0
length equ $-hello-1

 segment .text
 global main
 extern CreateFileA, WriteFile, CloseHandle
main:

147

 push rbp
 mov rbp, rsp
 sub rsp, 0x40

 xor eax, eax
 mov [rsp+par7], rax ; hTemplateFile
 mov qword [rsp+par6], FILE_ATTRIBUTE_NORMAL
 mov qword [rsp+par5], CREATE_ALWAYS
 xor r9d, r9d ; lpSecurityAttributes
 xor r8d, r8d ; dwShareMode
 mov rdx, GENERIC_WRITE ; dwDesiredAccess
 lea rcx, [filename] ; lpFileName
 call CreateFileA
 mov [handle], rax

 xor eax, eax
 mov [rsp+par5], eax ; not asynchronous I/O
 lea r9, [written] ; pointer to dword
 mov r8d, length ; # bytes to write
 lea rdx, [hello] ; pointer to text
 mov rcx, [handle] ; file handle
 call WriteFile

 mov rcx, [handle]
 call CloseHandle
 xor eax, eax
 leave
 ret

This maximum number of parameters in any called function in this

program is 7 for CreateFile. Four of those are passed in registers and

three on the stack. Providing 4 quad-words of shadow space and room for

3 more parameters means a total of 7 quad-words needed on the stack at

the time of the call. Keeping the stack aligned on a 16 byte boundary

dictates subtracting 8*8=64 (or 0x40) from rsp to establish the stack

frame. It might be handy to use hexadecimal to keep track of stack offsets

since each offset will end in either 0 or 8. Sometimes hexadecimal

arithmetic is easier than decimal.

This program uses an equate for the length of the hello array based

on the $ symbol from yasm. $ means the current position in the code or

data. This position is incremented for each byte of hello. We don’t want

to write the terminal 0 byte to the file so we use $-hello-1. This would

allow changing the text to write while simultaneously adjusting the

length value.

Reading from a file

Reading is done using ReadFile which has 5 parameters like WriteFile

and each parameter has similar meanings as the corresponding

parameter for WriteFile. Here is the prototype

148

 BOOL WINAPI ReadFile(
 In HANDLE hFile,
 Out LPVOID lpBuffer,
 In DWORD nNumberOfBytesToRead,
 _Out_opt_ LPDWORD lpNumberOfBytesRead,
 _Inout_opt_ LPOVERLAPPED lpOverlapped
);

Again I strongly suggest supplying a pointer to a double-word to

receive the number of bytes read by ReadFile. It is a good habit to check

reads and writes for success after each call to discover problems early

rather than late, though for simplicity the code in this book omits most

error checking.

Program to copy a file

Below is a program to use the command line to accept 3 parameters: an

input file name, a name for a new file and the number of bytes to read

and write with each FileRead and FileWrite call. The reason for varying

the number of bytes to read or write is to test performance with various

sizes for the data array.

The flow of the program is fairly typical. It starts by testing the number

of command line parameters. If this is not 4 it prints a usage message and

exits. If this is OK it processes the command line parameters. It saves the

pointer to the input file name in variable input which will later hold the

hold the HANDLE for the file. It uses the variable output to save the

output file name. It uses atol to convert the fourth command line

parameter to a long which will be the array size. After this it uses malloc

to allocate an array of the requested size. Then it opens both files and

enters a loop where it attempts to read the number of bytes requested.

Upon reading 0 bytes (or less) it breaks out of the loop to close the files

and return. After a successful read it writes the same number of bytes as

it had read.

%include "win32n.inc"

par5 equ 0x20
par6 equ 0x28
par7 equ 0x30

 segment .data
input dq 0
output dq 0
read dq 0
written dq 0
size dq 0
data dq 0
usage db "usage: copy_file old new bytes_per_read"
 db 0x0a,0

 segment .text

149

 global main
 extern CreateFileA, ReadFile, WriteFile, CloseHandle
 extern printf, atol, exit, malloc
main:
 push rbp
 mov rbp, rsp
 sub rsp, 0x40

; if (argc != 4) {
 cmp rcx, 4
 je endif

; print usage message
 lea rcx, [usage]
 call printf

; exit(1)
 mov ecx, 1
 call exit
; }
endif:

; input = argv[1];
 mov rcx, [rdx+8];
 mov [input], rcx

; output = argv[2];
 mov rcx, [rdx+16];
 mov [output], rcx

; size = atol(argv[3]);
 mov rcx, [rdx+24];
 call atoll
 mov [size], rax
 mov rcx, rax
 call malloc
 mov [data], rax

; Open input file

 xor eax, eax
 mov [rsp+par7], rax ; hTemplateFile
 mov qword [rsp+par6], FILE_ATTRIBUTE_NORMAL
 mov qword [rsp+par5], OPEN_EXISTING
 xor r9d, r9d ; lpSecurityAttributes
 xor r8d, r8d ; dwShareMode
 mov rdx, GENERIC_READ ; dwDesiredAccess
 mov rcx, [input] ; lpFileName
 call CreateFileA

; if (open fails) {
 cmp rax, 0
 jg opened_input
; print message
 segment .data
open_failure db "failed to open %s",0x0a
 segment .text
 lea rcx, [open_failure]
 mov rdx, [input]
 call printf

150

; exit(1)
 mov ecx, 1
 call exit

; }
opened_input:
 mov [input], rax

; Open output file

 xor eax, eax
 mov [rsp+par7], rax ; hTemplateFile
 mov qword [rsp+par6], FILE_ATTRIBUTE_NORMAL
 mov qword [rsp+par5], CREATE_ALWAYS
 xor r9d, r9d ; lpSecurityAttributes
 xor r8d, r8d ; dwShareMode
 mov rdx, GENERIC_WRITE ; dwDesiredAccess
 mov rcx, [output] ; lpFileName
 call CreateFileA

; if (open fails) {
 cmp rax, 0
 jg opened_output
; print message
 lea rcx, [open_failure]
 mov rdx, [output]
 call printf
 mov ecx, 1
; exit(1)
 call exit
; }
opened_output:
 mov [output], rax

; while (1)
read_more:
; read from input
 xor eax, eax
 mov [rsp+par5], eax
 lea r9, [read]
 mov r8d, [size]
 mov rdx, [data]
 mov rcx, [input]
 call ReadFile
; if (read == 0) break;
 mov r8d, [read]
 cmp r8, 0
 jle done
; write the same size as read
 xor eax, eax
 mov [rsp+par5], eax
 lea r9, [written]
 mov rdx, [data]
 mov rcx, [output]
 call WriteFile
; }
 jmp read_more

done:
 mov rcx, [input]
 call CloseHandle

151

 mov rcx, [output]
 call CloseHandle
 xor eax, eax
 leave
 ret

Below we see a plot of the time taken to copy a 1 million byte file using

a variety of different array sizes. Using 1 byte at a time took about 8.5

seconds while using 1000 took about 0.19 seconds. Effectively the

performance was almost maximal for 1000 bytes with 100000 and

1000000 requiring 0.18 seconds. These times include the time for running

the program which includes program start time and copy time.

Interestingly copying an empty file took about 0.175 seconds. The timing

was a little erratic and getting more than 2 digits of accuracy would

require better timing than afforded by my shell (bash under Cygwin).

12.2 Portable C file access functions

The lingua franca of UNIX is C, so every UNIX system call is usable via a

C wrapper function. For example there is a write function in the C library

which does very little other than use the syscall instruction to perform

the write request. Using these functions rather than the explicit syscall

instruction is the preferred way to use the system calls. You won’t have to

152

worry about finding the numbers and you won’t have to cope with the

slightly different register usage.

The UNIX file access functions are available using gcc under Windows.

Internally these functions end up calling their Windows API equivalents,

so the performance should be slightly worse. Given that it takes a few

nanoseconds to make a function call and translate to Windows API calls,

the difference should be almost impossible to measure.

The previous “Hello world” program can be rewritten using write and

exit as

 segment .data
 msg: db “Hello World!”,0x0a
 len: equ $-msg ; Length of the string
 segment .text
 global main
 extern write, exit
 main:
 push rbp
 mov rsp, rsp
 sub rsp, 32 ; shadow parameter space
 mov r8d, len ; Arg 3 is the length
 mov rdx, msg ; Arg 2 is the array
 mov ecx, 1 ; Arg 1 is the fd
 call write
 xor ecx, ecx ; 0 return = success
 call exit

Here you will notice that I have used a yasm equate to define len to be

the current assembly point, $, minus the address of msg. equ is a pseudo-

op which defines a symbolic name for an expression. This saves the

trouble of counting characters and insulates the program from slight

changes.

You might also have noticed the use of extern to tell the linker that

write and exit are to be defined in some other place, in this case from the

C library.

open

In order to read and write a file, it must be opened. For ordinary files this

is done using the open function:

 int open (char *pathname, int flags [, int mode]);

The pathname is a C string (character array terminated with a 0 byte).

The flags are a set of bit patterns which are or’ed together to define how

the file is to be opened: read-only mode, write mode or read-write mode

and other characteristics like whether the file is to be created. If the file

is to be created the mode parameter defines the permissions to assign to

the new file.

The flags are defined in the table below:

153

bits meaning

0 read-only

1 write-only

2 read and write

0x40 create if needed

0x200 truncate the file

0x400 append

The basic permissions are read, write and execute. A process must

have read permission to read an object, write permission to write it, and

execute permission to execute it. Execute permission for a file means that

the file (either a program or a script) can be executed. Execute permission

for a directory allows traversal of the directory.

These three permissions are granted or denied for 3 categories of

accounts: user, group and other. When a user logs in to a Linux system

the user’s shell is assigned the user’s user-id which is an integer

identifying the user. In addition the user has a group-id (also an integer)

which identifies the user as being in a particular group of users. A user

can belong to multiple groups though only one is the active group. You can

use the “id” command in the shell to print your user-id, group-id and the

list of groups you belong to.

The basic permissions are 3 permissions for 3 groups. The permissions

are 1 bit each for read, write and execute. This makes an ideal situation

for using octal numbers. One octal “digit” represents 3 bits. Using 9 bits

you can specify the basic permissions for user, group and others. Using

yasm an octal number can be represented by a sequence of digits ending

in either “o” or “q”. Thus you could specify permissions for read and write

for the user as 6, read for the group as 4 and no permissions for others as

0. Putting all these together we get 640o.

The return value from open is a file descriptor if the value is greater

than or equal to 0. An error is indicated by a negative return. A file

descriptor is an integer identifying the connection made by open. File

descriptors start at 0 and increase for each opened file. Here is some code

to open a file:

 segment .data
 fd: dd 0
 name: db “sample”,0
 segment .text
 extern open
 lea rcx, [name] ; pathname
 mov edx, 0x42 ; read-write|create
 mov r8d, 600o ; read-write for me
 call open
 cmp eax, 0
 jl error ; failed to open
 mov [fd], eax

154

read and write

The functions to read and write data to files are read and write. Their

prototypes are quite similar:

 int read(int fd, void *data, long count);
 int write(int fd, void *data, long count);

The data array can be any type of data. Whatever the type is, the count

is the number of bytes to read or write. Both functions return the number

of bytes read or written. An error is indicated by returning -1 and setting

the extern variable errno to an integer indicating the type of error. You

can use the perror function call to print a text version of the error.

lseek

When reading or writing files, it is sometimes necessary to position to

a specific spot in the file before reading or writing. An example would be

writing record number 1000 from a file with records which are 512 bytes

each. Assuming that record numbers begin with 0, then record 1000 would

start at byte position 1000 ∗ 512 = 512000. It can be very quick to position

to 512000 and write 512 bytes. This is also easier than reading and

writing the whole file.

The lseek function allows you to set the current position for reading

or writing in a file. Its prototype is

 long lseek(int fd, long offset, int whence);

The offset parameter is frequently simply the byte position in the file,

but the meaning of offset depends on the value of whence. If whence is 0,

then offset is the byte position. If whence is 1, then offset is relative to

the current position. If whence is 2, then offset is relative to the end of

file. The return value from lseek is the position of the next read or write

for the file.

Using lseek with offset 0 and whence equal to 2, lseek will return a

byte position 1 greater than the last byte of the file. This is an easy way

to determine the file size. Knowing the size, you could allocate an array

and read the entire file (as long as you have enough RAM).

 mov rcx, [fd]
 xor edx, edx ; set offset to 0
 mov r8d, 2 ; set whence to 2
 call lseek ; determine file size
 mov [size], rax
 mov rcx, rax
 call malloc ; allocate an array
 mov [data], rax
 mov rcx, [fd]
 xor edx, esi ; set offset to 0
 xor r8d, r8d ; set whence to 0

155

 call lseek ; seek to start of file
 mov rcx, [fd]
 mov rdx, [data]
 mov r8, [size]
 call read ; read the entire file

With 64 Windows, Linux and OS X, lseek uses a 64 bit integer for the

offset parameter and this makes it possible to seek to positions greater

than 232. Doing the same with 32 bit Windows would require using

lseek64.

close

When you are done reading or writing a file you should close it. The only

parameter for the close function is the file descriptor for the file to close.

If you exit a program without closing a file, it will be closed by the

operating system. Data read or written using file descriptors is not

buffered in the user program, so there will not be any unwritten data

which might be lost. This is not true for using FILE pointers which can

result in lost data if there is no close. The biggest advantages to closing

files are that it reduces overhead in the kernel and avoids running into

the per-process limit on the number of open files.

 mov edi, [fd]
 call close

156

Exercises

1. Write a program which processes a collection of files named on the

command line. For each file the program should print the number of

bytes, words and lines much like the wc program does.

2. Write a program which expects 2 strings on the command line. The

first string is a string to find and the second is the name of a file to

search through for the string. The program should print all matching

lines. This is a greatly simplified version of grep.

3. Write a version of the file copy program using open, read, write and

close rather than the Windows API equivalents. Compare the times

for both version for various sizes for the data array.

157

Chapter 13

Structs

It is fairly simple to use structs compatible with C by defining a struct in

yasm. A struct is a compound object which can have data items of different

types. Let's consider the C struct Customer:

 struct Customer {
 int id;
 char name[64];
 char address[64];
 int balance;
 };

We could access the customer data using assembly code assuming that

we know the offsets for each item of the struct.

 mov rcx, 136 ; size of a Customer
 call malloc
 mov [c], rax ; save the address
 mov [rax], dword 7; set the id
 lea rcx, [rax+4] ; name field
 lea rdx, [name] ; name to copy to struc
 call strcpy
 mov rax, [c]
 lea rcx, [rax+68] ; address field
 lea rdx, [address]; address to copy
 call strcpy
 mov rax, [c]
 mov edx, [balance]
 mov [rax+132], edx

13.1 Symbolic names for offsets

Well that was certainly effective but using specific numbers for offsets

within a struct is not really ideal. Any changes to the structure will

require code modification and errors might be made adding up the offsets.

It is better to have yasm assist you with structure definition. The yasm

158

keyword for starting a struct is “struc”. Struct components are defined

between “struc” and “endstruc”. Here is the definition of Customer:

 struc Customer
id resd 1
name resb 64
address resb 64
balance resd 1
 endstruc

Using this definition gives us the same effect as using equ to set

symbolic names for the offsets. These names are globally available, so you

would not be permitted to have id in multiple structs. Instead you can

prefix each of these names with a period like this:

 struc Customer
.id resd 1
.name resb 64
.address resb 64
.balance resd 1
 endstruc

Now you must use “Customer.id” to refer to the offset of the id field.

A good compromise is to prefix the field names with a short abbreviation

of the struct name. In addition to giving symbolic names to the offsets,

yasm will also define Customer_size to be the number of bytes in the

struct. This makes it easy to allocate memory for the struct. Below is a

program to initialize a struct from separate variables.

 segment .data
name db "Calvin", 0
address db "12 Mockingbird Lane",0
balance dd 12500
 struc Customer
c_id resd 1
c_name resb 64
c_address resb 64
c_balance resd 1
 endstruc
c dq 0
 segment .text
 global main
 extern malloc, strcpy
main:
 push rbp
 mov rbp, rsp
 sub rsp, 32 ; shadow parameter space
 mov rcx, Customer_size
 call malloc
 mov [c], rax ; save the pointer
 mov [rax+c_id], dword 7
 lea rcx, [rax+c_name]
 lea rdx, [name]
 call strcpy
 mov rax, [c] ; restore the pointer
 lea rcx, [rax+c_address]
 lea rdx, [address]
 call strcpy

159

 mov rax, [c] ; restore the pointer
 mov edx, [balance]
 mov [rax+c_balance], edx
 xor eax, eax
 leave
 ret

Now this is all great but there is a possible alignment problem versus

C if we make the address field 1 byte larger. In C this makes the offset of

balance increase from 132 to 136. In yasm it increases from 132 to 133. It

still works but the struct definition does not match the alignment of C. To

do so we must place align 4 before the definition of c_balance.

Another possibility is to have a static variable of type Customer. To do

this with default data, simply use this:

c istruc Customer
 iend

If you wish to define the fields, define them all in order.

c istruc Customer
 at c_id, dd 7
 at c_name, db "Calvin", 0
 at c_address, db "12 Mockingbird Lane", 0
 at c_balance, dd 12500
 iend

13.2 Allocating and using an array of structs

If you wish to allocate an array of structs, then you need to multiply the

size of the struct times the number of elements to allocate enough space.

But the size given by Customer_size might not match the value from

sizeof(struct Customer) in C. C will align each data item on

appropriate boundaries and will report a size which will result in each

element of an array having aligned fields. You can assist yasm by adding

a terminal align X where X represents the size of the largest data item in

the struct. If the struct has any quad word fields then you need align 8

to force the _size value to be a multiple of 8. If the struct has no quad

word byte fields but has some double word fields you need align 4.

Similarly you might need align 2 if there are any word fields.

So our code to declare a struct (slightly changed) and allocate an array

would look like this

 segment .data
 struc Customer
c_id resd 1 ; 4 bytes
c_name resb 65 ; 69 bytes
c_address resb 65 ; 134 bytes
 align 4 ; aligns to 136
c_balance resd 1 ; 140 bytes
c_rank resb 1 ; 141 bytes

160

 align 4 ; aligns to 144
 endstruc
customers dq 0
 segment .text
 mov ecx, 100 ; for 100 structs
 mul ecx, Customer_size
 call malloc
 mov [customers], rax

Now to work with each array element we can start with a register

holding the value of customers and add Customer_size to the register

after we process each customer.

 segment .data
format db "%s %s %d",0x0a,0
 segment .text
 push r15
 push r14

; We're using r14 and r15 since
; they are preserved through calls

 mov r15, 100 ; loop counter
 mov r14, [customers]
more lea ecx, [format]
 lea edx, [r14+c_name]
 lea r8, [r14+c_address]
 mov r9, [r14+c_balance]
 call printf
 add r14, Customer_size
 sub r15, 1
 jnz more

; r14 and r15 must be restored
; for the calling function

 pop r14
 pop r15
 ret

161

Exercises

1. Design a struct to represent a set. The struct will hold the maximum

set size and a pointer to an array holding 1 bit per possible element of

the set. Members of the set will be integers from 0 to the set size minus

1. Write a test program to read commands which operate on the set.

The commands will be “add”, “remove”, and “test”. Each command

will have an integer parameter entered with it. Your program will

then be able to add elements to the set, remove elements to the set

and test numbers for membership.

2. Using the design for sets from exercise 1, write a program to

manipulate multiple sets. Implement commands “add”, “union”,

“print” and “intersect”. Create 10 sets with size equal to 10000. “add

s k” will add 𝑘 to set 𝑠. “union s t” will replace set 𝑠 with 𝑠 ∪ 𝑡.

“intersect s t” will replace set 𝑠 with 𝑥 ∩ 𝑡. “print s” will print the

elements of 𝑠.

3. Design a struct to represent large integers. For simplicity use quad

word arrays as the data for the large integers. Each quad word will

represent 18 digits of the number. So 1 quad word can store a number

up to 999,999,999,999,999,999. 2 quad words can store a number up

to 999,999,999,999,999,999,999,999,999,999,999,999. Implement only

positive numbers. Implement addition and multiplication (based on

addition). Compute 50!. You are permitted to write a main routine and

the factorial function in C or C++ using assembly code to perform all

long arithmetic.

162

Chapter 14

Using the C stream I/O

functions

The functions callable from C include a wide variety of functions in many

areas including process management, file handling, network

communications, string processing and graphics programming. Studying

much of these capabilities would lead us too far afield from the study of

assembly language. The stream input and output facilities provide an

example of a higher level library which is also quite useful in many

programs.

In the chapter on system calls we focused on open, read, write and

close which are merely wrapper functions for system calls. In this

chapter we will focus on a similar collection of functions which perform

buffered I/O. Buffered I/O means that the application maintains a data

buffer for each open file.

Reading using a buffered I/O system can be more efficient. Let’s

suppose you ask the buffered I/O system to read 1 byte. It will attempt to

read 1 byte from the buffer of already read data. If it must read, then it

reads enough bytes to fill its buffer - typically 8192 bytes. This means that

8192 reads of 1 byte can be satisfied by 1 actual system call. Reading a

byte from the buffer is very fast. In fact reading a large file is over 20

times as fast reading 1 byte at a time using the C stream getchar function

compared to reading one byte at a time using read.

You should be aware that the operating system also uses buffers for

open files. When you call read to read 1 byte, the operating system is

forced by the disk drive to read complete sectors, so it must read at least

1 sector (probably 512 bytes). Most likely the operating system reads 4096

bytes and saves the data which has been read in order to make use of the

data in subsequent reads. If the operating system did not use buffers,

reading 1 byte at a time would require interacting with the disk for each

byte which would be perhaps 10 to 20 times slower than using the buffer.

163

The net result from this discussion is that if your program needs to

read or write small quantities of data, it will be faster to use the stream

I/O facilities rather than using the system calls. It is generally possible to

use the system calls and do your own buffering which is tailored for your

needs thereby saving time. You will of course pay for this improved

efficiency by working harder. You must weigh the importance of improved

performance versus increased labor.

14.1 Opening a file

The function to open a file using the stream I/O functions is fopen. It, like

the other stream I/O functions, begins with the letter “f” to make the

name distinct from the system call wrapper function it resembles. The

prototype for fopen is

 FILE *fopen (char *pathname, char *mode);

The file to be opened is named in the first parameter and the mode is

named in the second parameter. The mode can be any of the values from

the table below

mode meaning

r read-only

r+ read and write, truncates or creates

w write-only, truncates or creates

w+ read and write, truncates or creates

a write only, appends or creates

a+ read and write, appends or creates

The return value is a pointer to a FILE object. This is an opaque

pointer in the sense than you never need to know the components of the

FILE object. Most likely a FILE object is a struct which contains a pointer

to the buffer for the file and various “house-keeping” data items about the

file. This pointer is used in the other stream I/O functions. In assembly

language it is sufficient to simply store the pointer in a quad-word and

use that quad-word as needed for function calls. Here is some code to open

a file:

 segment .data
 name db “customers.dat”,0
 mode db “w+”,0
 fp dq 0
 segment .text
 global fopen
 lea rcx, [name]
 lea rdx, [mode]

164

 call fopen
 mov [fp], rax

14.2 fscanf and fprintf

You have encountered scanf and printf in previous code. scanf is a

function which calls fscanf with a FILE pointer named stdin as its first

parameter, while printf is a function which calls fprintf with FILE

pointer stdout as its first parameter. The only difference between these

pairs of functions is that fscanf and fprintf can work with any FILE

pointer. Their prototypes are

 int fscanf(FILE *fp, char *format, ...);
 int fprintf(FILE *fp, char *format, ...);

For simple use consult Appendix B which discusses scanf and printf.

For more information use “man fscanf” or “man fprintf” or consult a C

book.

14.3 fgetc and fputc

If you need to process data character by character, it can be convenient to

use fgetc to read characters and fputc to write characters. Their

prototypes are

 int fgetc (FILE *fp);
 int fputc (int c, FILE *fp);

The return value of fgetc is the character which has been read, except

for end of file or errors when it returns the symbolic value EOF which is -1

as a 32 bit integer. This means that you need to compare eax instead of

rax for a negative value to detect end of file. The function fputc writes

the character provided in c to the file. It returns the same character it has

written unless there is an error when it returns EOF.

Fairly often it is convenient to get a character and do something which

depends on the character read. For some characters you may need to give

control over to another function. This can be simplified by giving the

character back to the file stream using ungetc. You are guaranteed only

1 pushed back character, but having 1 character of look-ahead can be

quite useful. The prototype for ungetc is

 int ungetc (int c, FILE *fp);

Below is a loop copying a file from one stream to another using fgetc

and fputc.

165

 more: mov rcx, [ifp] ; input file pointer
 call fgetc
 cmp eax, -1
 je done
 mov rcx, rax
 mov rdx, [ofp] ; output file pointer
 call fputc
 jmp more
 done:

14.4 fgets and fputs

Another common need is to read lines of input and process them line by

line. The function fgets reads 1 line of text (or less if the array is too

small) and fputs writes 1 line of text. Their prototypes are

 char *fgets(char *s, int size, FILE *fp);
 int fputs(char *s, FILE *fp);

The first parameter to fgets is an array of characters to receive the

line of data and the second parameter is the size of the array. The size is

passed into the function to prevent buffer overflow. fgets will read up to

size - 1 characters into the array. It stops reading when it hits a new-line

character or end of file. If it reads a new-line it stores the new-line in the

buffer. Whether it reads a complete line or not, fgets always places a 0

byte at the end of the data it has read. It returns s on success and a NULL

pointer on error or end of file.

fputs writes the string in s without the 0 byte at the end of the string.

It is your responsibility to place any required new-lines in the array and

add the 0 byte at the end. It returns a non-negative number on success or

EOF on error.

It can be quite useful following fgets to use sscanf to read data from

the array. sscanf is like scanf except that the first parameter is an array

of characters which it will attempt to convert in the same fashion as

scanf. Using this pattern gives you an opportunity to read the data with

sscanf, determine that the data was not what you expected and read it

again with sscanf with a different format string.

Here is some code which copies lines of text from one stream to

another, skipping lines which start with a “;”

more: lea rcx, [s]
 mov edx, 200
 mov r8, [ifp]
 call fgets
 cmp rax, 0
 je done
 mov al, [s]
 cmp al, ‘;’
 je more

166

 lea rcx, [s]
 mov rdx, [ofp]
 call fputs
 jmp more
 done:

14.5 fread and fwrite
The fread and fwrite functions are designed to read and write arrays

of data. Their prototypes are

 int fread(void *p, int size, int nelts, FILE *fp);
 int fwrite(void *p, int size, int nelts, FILE *fp);

The first parameter to these functions is an array of any type. The next

parameter is the size of each element of the array, while the third is the

number of array elements to read or write. They return the number of

array elements read or written. In the event of an error or end of file, the

return value might be less than nelts or 0.

Here is some code to write all 100 elements of the customers array to

a disk file

 mov rcx, [customers] ; allocated array
 mov edx, Customer_size
 mov r8d, 100
 mov r9, [fp]
 call fwrite

14.5 fseek and ftell

Positioning a stream is done using the fseek function, while ftell is used

to determine the current position. The prototype for these functions are

 int fseek (FILE *fp, long offset, int whence);
 long ftell (FILE *fp);

The second parameter, offset, of fseek is a byte position value which is

dependent on the third parameter, whence, to define its meaning. The

meaning of whence is exactly like in lseek. If whence is 0, then offset is

the byte position. If whence is 1, then offset is relative to the current

position. If whence is 2, then offset is relative to the end of file.

The return value of fseek is 0 for success and -1 for errors. If there is

an error the variable errno is set appropriately. The return value of ftell

is the current byte position in the file unless there is an error. On error it

returns -1.

Here is a function to write a Customer record to a file.

 ; void write_customer(FILE *fp, struct Customer *c,
 ; int record_number);
 segment .text
 global write_customer write_customer:

167

 .fp equ 16
 .c equ 24
 .rec equ 32
 push rbp
 mov rbp, rsp
 sub rsp, 32 ; shadow parameters
 mov [rbp+.fp], rcx ; save parameters in
 mov [rbp+.c], rdx ; current stack frame
 mov [rbp+.rec], r8
 mul r8, Customer_size
 mov rdx, r8 ; offset for ftell
 mov r8, 0 ; whence
 call fseek ; position file
 mov rcx, [rbp+.c]
 mov rdx, Customer_size
 mov r8, 1
 mov r9, [rbp+.fp]
 call fwrite ; write the record
 leave
 ret

14.6 fclose

fclose is used to close a stream. This is important since a stream may

have data in its buffer which needs to be written. This data will be written

when you call fclose and will be forgotten if you fail to call it. A FILE

pointer is the only parameter to fclose.

168

Exercises

1. Write an assembly program which will create a new Customer using

the struct definition from this chapter. Your program should prompt

for and read the file name, the customer name, address, balance and

rank fields. Then your code should scan the data in the file looking for

an empty position. An empty position is a record with 0 in the id field.

In general the id value will be 1 greater than the record number for a

record. If there is no empty record, then add a new record at the end

of the file. Report the customer’s id.

2. Write an assembly program to update the balance for a customer. The

program should accept from the command line the name of a data file,

a customer id and an amount to add to the balance for that customer.

The customer’s id is 1 greater than the record number. Report an error

if the customer record is unused (id = 0).

3. Write an assembly program to read the customer data in a file, sort it

by balance and print the data in increasing balance order. You should

open the file and use fseek to seek to the end and use ftell to

determine the number of records in the file. It should allocate an array

large enough to hold the entire file, read the records one at a time,

skipping past the unused records (id = 0). Then it should sort using

qsort. You can call qsort using

 qsort(struct Customer *c, int count, int size, compare);

The count parameter is the number of structs to sort and size is

the size of each in bytes. The compare parameter is the address of a

function which will accept 2 parameters, each a pointer to a struct

Customer. This function will compare the balance fields of the 2

structs and return a negative, 0, or positive value based on the order

of the 2 balances.

169

Chapter 15

Data structures

Data structures are widely used in application programming. They are

frequently used for algorithmic purposes to implement structures like

stacks, queues and heaps. They are also used to implement data storage

based on a key, referred to as a “dictionary”. In this chapter we discuss

implementing linked lists, hash tables, doubly-linked lists and binary

trees in assembly.

One common feature of all these data structures is the use of a

structure called a “node” which contains data and one or more pointers to

other nodes. The memory for these nodes will be allocated using malloc.

15.1 Linked lists

A linked list is a structure composed of a chain of nodes. Below is an

illustration of a linked list:

You can see that the list has 4 nodes. Each node has a data value and

a pointer to another node. The last node of the list has a NULL pointer

(value 0), which is illustrated as a filled circle. The list itself is represented

as a pointer. We can illustrate the list more completely by placing the list’s

first pointer in a box and giving it a name:

This list has no obvious order to the data values in the nodes. It is

either unordered or possibly ordered by time of insertion. It is very easy

to insert a new node at the start of a list, so the list could be in decreasing

time of insertion order.

170

The list is referenced using the pointer stored at the memory location

labeled list. The nodes on the list are not identified with specific labels

in the code which maintains and uses the list. The only way to access these

nodes is by using the pointers in the list.

List node structure

Our list node will have 2 fields: a data value and a pointer to the next

node. The yasm structure definition is

 struc node
 n_value resq 1
 n_next resq 1
 align 8
 endstruc

The alignment instruction is not needed with 2 quad-words in the

structure, but it may protect us from confusion later.

Creating an empty list

The first decision in designing a container structure is how to represent

an empty container. In this linked list design we will take the simplest

choice of using a NULL pointer as an empty list. Despite this simplicity it

may be advantageous to have a function to create an empty list.

 newlist:
 xor eax, eax
 ret

Inserting a number into a list

The decision to implement an empty list as a NULL pointer leaves a small

issue for insertion. Each insertion will be at the start of the list which

means that there will be a new pointer stored in the list start pointer for

each insertion. There are 2 possible ways to cope with this. One way is to

pass the address of the pointer into the insertion function. A second way

is to have the insertion pointer return the new pointer and leave it to the

insertion code to assign the new pointer upon return. It is less confusing

to dodge the address of a pointer problem. Here is the insertion code:

 ; list = insert (list, k);
 insert:
 .list equ 16
 .k equ 24
 push rbp
 mov rbp, rsp
 sub rsp, 32 ; shadow space
 mov [rbp+.list], rcx ; save list pointer

171

 mov [rbp+.k], rdx ; and k in stack frame
 mov ecx, node_size
 call malloc ; rax = node pointer
 mov r8, [rbp+.list] ; get list pointer
 mov [rax+n_next], r8 ; save list pointer in new node
 mov r9, [rbp+.k] ; get k
 mov [rax+n_value], r9 ; save k in node
 leave
 ret

Traversing the list

Traversing the list requires using an instruction like

 mov rbx, [rbx+n_next]

to advance from a pointer to one node to a pointer to the next node. We

start by inspecting the pointer to see if it is NULL. If it is not then we enter

the loop. After processing a node we advance the pointer and repeat the

loop if the pointer is not NULL. The print function below traverses the list

and prints each data item. The code shows a good reason why it is nice to

have a few registers protected in calls. We depend on rbx being preserved

by printf.

 print:
 segment .data
 .print_fmt:
 db “%ld “,0
 .newline:
 db 0x0a,0
 segment .text
 .rbx equ 16
 push rbp
 mov rbp, rsp
 sub rsp, 32 ; shadow space
 mov [rbp+.rbx], rbx ; save old rbx
 cmp rcx, 0 ; skip the loop if
 je .done ; list pointer == 0
 mov rbx, rcx ; get first node
 .more:
 lea rcx, [.print_fmt]
 mov rdx, [rbx+n_value]
 call printf ; print node value
 mov rbx, [rbx+n_next] ; p = p->next
 cmp rbx, 0 ; end the loop if
 jne .more ; node pointer == 0
 .done:
 lea rcx, [.newline]
 call printf ; print a new-line
 mov rbx, [rbp+.rbx] ; restore rbx
 leave
 ret

Last we have a main function which creates a list, reads values using

scanf, inserts the values into the list and prints the list after each

insertion.

172

 main:
 .list equ -8
 .k equ -16
 segment .data
 .scanf_fmt:
 db “%ld”,0
 segment .text
 push rbp
 mov rbp, rsp
 sub rsp, 48 ; shadow space +
 ; room for list and k
 call newlist ; create a list
 mov [rbp+.list], rax
 .more lea rcx, [.scanf_fmt]
 lea rdx, [rbp+.k]
 call scanf ; read k
 cmp rax, 1 ; if the read fails return
 jne .done
 mov rcx, [rbp+.list]
 mov rdx, [rbp+.k]
 call insert ; insert k
 mov [rbp+.list], rax
 mov rcx, rax
 call print ; print the list
 jmp .more
 .done leave
 ret

Here is a sample session using the program, entering the numbers 1

through 5 (input in boldface):

 1
 1

 2
 2 1

 3
 3 2 1

 4
 4 3 2 1

 5
 5 4 3 2 1

You can see the most recently printed number is at the first of the list.

By adding a function to get and remove (pop) the first element of the list,

we could turn this into a stack. This is one of the exercises for this chapter.

15.2 Doubly-linked lists

A doubly-linked list has 2 pointers for each node: one points to the next

node and one points to the previous node. It becomes quite simple to

manage a doubly-linked list if you make the list circular and if you retain

173

an unused cell at the start of the list. Here is an example list with 4 data

nodes:

 We see that the variable list points to the first node of the list, called

the “head node”. The head node has a value, but we never use the value.

The top pointer in each node points to the next node in the list and the

bottom pointer points to the previous node in the list. The previous pointer

of the head node is the last node in the list. This makes this list capable

of implementing a stack (last-in first-out), a queue (first-in first-out) or a

double-ended queue (deque). The primary advantage of this design is that

the list is never really empty - it can be logically empty but the head node

remains. Furthermore, once a list is created, the pointer to the head node

never changes.

Doubly-linked list node structure

Our list node will have 3 fields: a data value, a pointer to the next node

and a pointer to the previous node. The yasm structure definition is

 struc node
 n_value resq 1
 n_next resq 1
 n_prev resq 1
 align 8
 endstruc

Creating a new list

The code for creating a new doubly-linked list allocates a new node and

sets its next and previous pointers to itself. The calling function receives

a pointer which does not change during the execution of the program.

Here is the creation code:

 ; list = newlist();
 newlist:
 push rbp
 mov rbp, rsp
 sub rsp, 32
 mov ecx, node_size
 call malloc
 mov [rax+n_next], rax ; head points forward
 mov [rax+n_prev], rax ; and back to itself
 leave
 ret

174

When it returns the empty list looks like the diagram below:

Inserting at the front of the list

To insert a new node at the front of the list you need to place the head

node’s next pointer in the new node’s next slot and place the head pointer

into the new node’s previous slot. After doing that you can make the head

node point forward to the new node and make the head’s former next point

backwards to the new node. These steps are illustrated in the diagram

below. The old links are in dashed lines and the new links are numbered,

with bold lines.

One of the elegant features of the doubly-linked circular list is the

elimination of special cases. Inserting the first node is done with exactly

the same code as inserting any other node.

The code for insertion is

 ; insert (list, k);
 insert:
 .list equ 16
 .k equ 24
 push rbp
 mov rbp, rsp
 sub rsp, 32
 mov [rbp+.list], rcx ; save list pointer
 mov [rbp+.k], rdx ; and k on stack
 mov ecx, node_size
 call malloc ; rax = new node
 mov r8, [rbp+.list] ; get list pointer
 mov r9, [r8+n_next] ; get head’s next
 mov [rax+n_next], r9 ; p->next = h->next
 mov [rax+n_prev], r8 ; p->prev = h
 mov [r8+n_next], rax ; h->next = p
 mov [r9+n_prev], rax ; p->next->prev = p
 mov r9, [rbp+.k] ; get k
 mov [rax+n_value], r9 ; save k in node
 leave
 ret

175

List traversal

List traversal of a doubly-linked list is somewhat similar to traversal of a

singly-linked list. We do need to skip past the head node and we need to

test the current pointer against the pointer to the head node to detect the

end of the list. Here is the code for printing the list:

 ; print (list);
 print:
 segment .data
 .print_fmt:
 db “%ld “,0
 .newline:
 db 0x0a,0
 segment .text
 .list equ 16
 .rbx equ 24
 push rbp
 mov rbp, rsp
 sub rsp, 32
 mov [rbp+.rbx], rbx ; save rbx
 mov [rbp+.list], rcx ; keep head pointer
 mov rbx, [rcx+n_next]; get first node
 cmp rbx, [rbp+.list] ; if it’s head node
 je .done ; the list is empty
 .more:
 lea rcx, [.print_fmt]
 mov rdx, [rbx+n_value]
 call printf ; print node value
 mov rbx, [rbx+n_next]; get next node
 cmp rbx, [rbp+.list] ; if it’s head node
 jne .more ; end the loop
 .done:
 lea rcx, [.newline]
 call printf ; print a newline
 mov rbx, [rbp+.rbx] ; restore rbx
 leave
 ret

15.3 Hash tables

A hash table is an efficient way to implement a dictionary. The basic idea

is that you compute a hash value for the key for each item in the

dictionary. The purpose of the hash value is to spread the keys throughout

an array. A perfect hash function would map each key to a unique location

in the array used for hashing, but this is difficult to achieve. Instead we

must cope with keys which “collide”.

The simplest way to cope with collisions is to use a linked list for each

location in the hash array. Consider the illustration below:

176

In this hash table, keys 12, 4, 16 and 9 all have hash values of 1 and

are placed on the list in location 1 of the hash array. Keys 13 and 8 both

have hash values 3 and are placed on the list in location 3 of the array.

The remaining keys are mapped to 5 and 7.

One of the critical issues with hashing is to develop a good hashing

function. A hashing function should appear almost random. It must

compute the same value for a particular key each time it is called for the

key, but the hash values aren’t really important - it’s the distribution of

keys onto lists which matters. We want a lot of short lists. This means

that the array size should be at least as large as the number of keys

expected. Then, with a good hash function, the chains will generally be

quite short.

A good hash function for integers

It is generally recommended that a hash table size be a prime number.

However this is not very important if there is no underlying pattern to the

numbers used as keys. In that case you can simply use 𝑛 mod 𝑡 where 𝑛 is

the key and 𝑡 is the array size. If there is a pattern like many multiples of

the same number, then using a prime number for 𝑡 makes sense.

Here is the hash function for the example code:

; i = hash (n);
 hash mov rax, rcx
 and rax, 0xff
 ret

The table size is 256 in the example, so using and gives 𝑛 mod 256.

 A good hash function for strings

A good hash function for strings is to treat the string as containing

polynomial coefficients and evaluate 𝑝(𝑛) for some prime number 𝑛. In the

177

code below we use the prime number 191 in the evaluation. After

evaluating the polynomial value, you can perform a modulus operation

using the table size (100000 in the sample code).

 int hash (unsigned char *s)
 {
 unsigned long h = 0;
 int i = 0;
 while (s[i]) {
 h = h*191 + s[i];
 i++;
 }
 return h % 100000;
 }

Hash table node structure and array

In the sample hash table the table size is 256, so we need an array of 256

NULL pointers when the program starts. Since this is quite small, it is

implemented in the data segment. For a more realistic program, we would

need a hash table creation function to allocate an array and fill it with 0’s.

Below is the declaration of the array and the structure definition for the

linked lists at each array location.

 segment .data
 table times 256 dq 0
 struc node
 n_value resq 1
 n_next resq 1
 align 8
 endstruc

Function to find a value in the hash table

The basic purpose of a hash table is to store some data associated with a

key. In the sample hash table we are simply storing the key. The find

function below searches through the hash table looking for a key. If it is

found, the function returns a pointer to the node with the key. If it is not

found, it returns 0. A more realistic program would probably return a

pointer to the data associated with the key.

The find function operates by calling hash to compute the index in the

hash array for the linked list which might hold the key being sought. Then

the function loops through the nodes on the list looking for the key.

 ; p = find (n);
 ; p = 0 if not found
 find:
 .n equ 16
 push rbp
 mov rbp, rsp
 sub rsp, 32
 mov [rbp+.n], rcx ; save n

178

 call hash ; h = hash(n)
 mov rax, [table+rax*8]; p = table[h]
 mov rcx, [rbp+.n] ; restore n
 cmp rax, 0 ; if node pointer
 je .done ; is 0 quit
 .more:
 cmp rcx, [rax+n_value]; if p->value = n
 je .done ; return p
 mov rax, [rax+n_next] ; p = p->next
 cmp rax, 0 ; if node pointer
 jne .more ; is 0 quit
 .done:
 leave
 ret

Insertion code

The code to insert a key into the hash table begins by calling find to avoid

inserting the key more than once. If the key is found it skips the insertion

code. If the key is not found, the function calls hash to determine the index

for the linked list to add the key to. It allocates memory for a new node

and inserts it at the start of the list.

 ; insert (n);
 insert:
 .n equ 16
 .h equ 24
 push rbp
 mov rbp, rsp
 sub rsp, 32
 mov [rbp+.n], rcx ; save n
 call find ; look for n
 cmp rax, 0 ; if n id found
 jne .found ; skip insertion
 mov rcx, [rbp+.n] ; restore n
 call hash ; compute h=hash(n)
 mov [rbp+.h], rax ; save h
 mov rcx, node_size
 call malloc ; allocate node
 mov r9, [rbp+.h] ; restore h
 mov r8, [table+r9*8] ; get first node f from
table[h]
 mov [rax+n_next], r8 ; set next pointer of node to f
 mov r8, [rbp+.n] ; set value of new
 mov [rax+n_value], r8 ; node to n
 mov [table+r9*8], rax ; make node first on table[h]
 .found:
 leave
 ret

Printing the hash table

The print function iterates through the indices from 0 through 255,

printing the index number and the keys on each non-empty list. It uses

179

registers r12 and r13 for safe storage of a loop counter to iterate through

the locations of the hash table array and for a pointer to loop through the

nodes on each linked list. This is more convenient than using registers

which require saving and restoring around each printf call. It does

require saving and restoring these 2 registers at the start and end of the

function to preserve them for calling functions.

You will notice that the code switches back and forth between the data

and text segments so that printf format strings will be placed close to their

point of use in the code.

print:
.r12 equ 16
.r13 equ 24
 push rbp
 mov rbp, rsp
 sub rsp, 32
 mov [rbp+.r12], r12 ; i: integer counter for table
 mov [rbp+.r13], r13 ; p: pointer for list at table[i]

 ; for (i = 0; i < 256; i++) {
 xor r12, r12

 .more_table:
 ; p = table[i];
 mov r13, [table+r12*8]

 ; if (p != 0) {
 cmp r13, 0
 je .empty

; print the list header
 segment .data
 .print1:
 db “list %3d: “,0
 segment .text
 lea rcx, [.print1]
 mov rdx, r12
 call printf

; do {
 .more_list:
; print the node’s value
 segment .data
 .print2 db “%ld “,0
 segment .text
 lea rcx, [.print2]
 mov rdx, [r13+n_value]
 call printf

; advance to the next node
 mov r13, [r13+n_next]

; } while (the node != 0)
 cmp r13, 0

 jne .more_list

180

; print new line
 segment .data
 .print3: db 0x0a,0
 segment .text
 lea rcx, [.print3]
 call printf
 .empty:

; i++
 inc r12
 cmp r12, 256
 jl .more_table
 ; } end of for loop
 mov r13, [rbp+.r13]
 mov r12, [rbp+.r12]
 leave
 ret

Testing the hash table

The main function for the hash table reads numbers with scanf, inserts

them into the hash table and prints the hash table contents after each

insertion:

main:
 .k equ -8
 segment .data
 .scanf_fmt:
 db “%ld”,0
 segment .text
 push rbp
 mov rbp, rsp
 sub rsp, 48
 .more:
 lea rcx, [.scanf_fmt]
 lea rdx, [rbp+.k]
 call scanf ; read k
 cmp rax, 1 ; if the read fails
 jne .done ; end it all
 mov rcx, [rbp+.k]
 call insert ; insert(k);
 call print ; print hash table
 jmp .more
 .done:
 leave
 ret

Below is the printing of the hash table contents after inserting 1, 2, 3,

4, 5, 256, 257, 258, 260, 513, 1025 and 1028.

 list 0: 256
 list 1: 1025 513 257 1
 list 2: 258 2
 list 3: 3
 list 4: 1028 260 4
 list 5: 5

181

15.4 Binary trees

A binary tree is a structure with possibly many nodes. There is a single

root node which can have left or right child nodes (or both). Each node in

the tree can have left or right child nodes (or both).

Generally binary trees are built with an ordering applied to keys in the

nodes. For example you could have a binary tree where every node divides

keys into those less than the node’s key (in the left sub-tree) and those

greater than the node’s key (in the right sub-tree). Having an ordered

binary tree, often called a binary search tree, makes it possible to do fast

searches for a key while maintaining the ability to traverse the nodes in

increasing or decreasing order.

Here we will present a binary tree with integer keys with the ordering

being lower keys on the left and greater keys on the right. First are the

structures used for the tree.

Binary tree node and tree structures

The nodes in the binary tree have an integer value and two pointers. The

structure definition below uses a prefix convention in naming the value

field as n_value and the left and right pointers as n_left and n_right.

 struc node
 n_value resq 1
 n_left resq 1
 n_right resq 1
 align 8
 endstruc

It would be possible to simply use a pointer to the root node to

represent the tree. However we could add features to the tree, like node

deletion or balancing, which could change the root of the tree. It seems

logical to store the root in a structure insulating us from future root

changes in a tree. We have also included in the tree structure a count of

the number of nodes in the tree.

 struc tree
 t_count resq 1
 t_root resq 1
 align 8
 endstruc

Creating an empty tree

The new_tree function allocates memory for a tree structure and sets the

count and the root of the new tree to 0. By having the root of the tree in a

structure the code using the binary tree always refers to a particular tree

182

using the pointer returned by new_tree. A more robust function should

check the value returned by malloc.

 new_tree:
 push rbp
 mov rbp, rsp
 sub rsp, 32
 mov rcx, tree_size
 call malloc
 xor ecx, ecx
 mov [rax+t_root], rcx
 mov [rax+t_count], rcx
 leave
 ret

Finding a key in a tree

To find a key in a binary search tree you start with a pointer to the root

node and compare the node’s key with the key being sought. If it’s a match

you’re done. If the target key is less than the node’s key you change your

pointer to the node’s left child. If the target key is greater than the node’s

key you change the pointer to the node’s right child. You then repeat these

comparisons with the new node. If you ever reach a NULL pointer, the key

is not in the tree. Below is the code for finding a key in a binary tree. It

returns a pointer to the correct tree node or NULL if not found.

 ; p = find (t, n);
 ; p = 0 if not found
 find:
 push rbp
 mov rbp, rsp
 mov rcx, [rcx+t_root]
 xor eax, eax
 .more cmp rcx, 0
 je .done
 cmp rdx, [rcx+n_value]
 jl .goleft
 jg .goright
 mov rax, rcx
 jmp .done
 .goleft:
 mov rcx, [rcx+n_left]
 jmp .more
 .goright:
 mov rcx, [rcx+n_right]
 jmp .more
 .done leave
 ret

Inserting a key into the tree

The first step in inserting a key is to use the find function to see if the

key is already there. If it is, then there is no insertion. If not, then a new

183

tree node is allocated, its value is set to the new key value and its left and

right child pointers are set to NULL. Then it’s time to find where to place

this in the tree.

There is a special case for inserting the first node in the tree. If the

count of nodes in the tree is 0, then the count is incremented and the tree’s

root pointer is set to the new node.

If the tree is non-empty then you start by setting a current pointer to

point to the root node. If the new key is less than the current node’s key,

then the new node belongs in the left sub-tree. To handle this you inspect

the left child pointer of the current node. If it is null, you have found the

insertion point, so set the left pointer to the pointer of the new node.

Otherwise update your current node pointer to be the left pointer and

start comparisons with this node. If the key is not less than the current

node’s key, it must be greater than. In that case you inspect the current

node’s right child pointer and either set it the new node’s pointer or

advance your current pointer to the right child and repeat the comparison

process.

 ; insert (t, n);
 insert:
 .n equ 16
 .t equ 24
 push rbp
 mov rbp, rsp
 sub rsp, 32
 mov [rbp+.t], rcx
 mov [rbp+.n], rdx
 call find ; look for n
 cmp rax, 0 ; if in the tree
 jne .done ; don’t insert it
 mov rcx, node_size
 call malloc ; p = new node
 mov rdx, [rbp+.n]
 mov [rax+n_value], rdx ; p->value = n
 xor eax, eax
 mov [rax+n_left], rax ; p->left = NULL
 mov [rax+n_right], rax ; p->right = NULL
 mov r9, [rbp+.t]
 mov rcx, [r9+t_count] ; get tree size
 cmp rcx, 0 ; count == 0 ?
 jne .findparent
 inc qword [r9+t_count] ; count = 1
 mov [r9+t_root], rax ; root = new node
 jmp .done
 .findparent:
 inc qword [r9+t_count] ; count++
 mov r9, [r9+t_root] ; p = root
 .repeatfind:
 cmp rdx, [r9+n_value] ; p=>value < n ?
 jl .goleft
 mov r8, r9 ; t = p
 mov r9, [r8+n_right] ; p = p->right
 cmp r9, 0 ; is p NULL ?
 jne .repeatfind
 mov [r8+n_right], rax ; if so, add node

184

 jmp .done ; and return
 .goleft:
 mov r8, r9 ; t = p
 mov r9, [r8+n_left] ; p = p->left
 cmp r9, 0 ; id p NULL ?
 jne .repeatfind
 mov [r8+n_left], rax ; if so, add node
 .done: ; and return
 leave
 ret

Printing the keys in order

Printing the keys of a binary tree in order is easily performed by using

recursion. The basic idea is to print the keys in the left sub-tree, print the

key of the root node and print the keys of the right sub-tree. The use of a

special tree structure means that there needs to be a different function to

recursively print sub-trees starting with the pointer to the root. The main

print function is named print and the recursive function is called

rec_print.

rec_print:
 .t equ 16
 push rbp
 mov rbp, rsp
 sub rsp, 32
 cmp rcx, 0
 je .done
 mov [rbp+.t], rcx
 mov rcx, [rcx+n_left]
 call rec_print
 mov rcx, [rbp+.t]
 mov rdx, [rcx+n_value]
 segment .data
 .print db “%ld “,0
 segment .text
 lea rcx, [.print]
 call printf
 mov rcx, [rbp+.t]
 mov rcx, [rcx+n_right]
 call rec_print
 .done leave
 ret

; print(t);
 print:
 push rbp
 mov rbp, rsp
 sub rsp, 32
 mov rcx, [rcx+t_root]
 call rec_print
 segment .data
 .print db 0x0a, 0
 segment .text
 lea rcx, [.print]
 call printf

185

 leave
 ret

186

Exercises

1. Modify the singly-linked list code to implement a stack of strings. You

can use the C strdup function to make duplicates of strings that you

insert. Write a main routine which creates a stack and enters a loop

reading strings. If the string entered equals “pop”, then pop the top of

the stack and print that value. If the string entered equals “print”,

then print the contents of the stack. Otherwise push the string onto

the stack. Your code should exit when either scanf or fgets fails to

read a string.

2. Modify the doubly-linked list code to implement a queue of strings.

Your main routine should read strings until no more are available. If

the string entered equals “dequeue”, then dequeue the oldest string

from the queue and print it. If the string entered equals “print”, then

print the contents of the queue. Otherwise add the string onto the end

of the queue. Your code should exit when either scanf or fgets fails

to read a string.

3. Modify the hash table code to implement a hash table where you store

strings and integers. The string will be the key and the integer will be

its associated value. Your main routine should read lines using fgets

and read the text again using sscanf to get a string and a number. If

no number is read, sscanf returns 1), then look for the string in the

hash table and print its value if it there or else print an error message.

If there is a string and a number (sscanf returns 2), then add the

string or update the string’s value in the hash table. Your code should

exit when fgets fails to read a string

4. Implement a binary tree of strings and use it to read a file of text using

fgets and then print the lines of text in alphabetical order.

187

Chapter 16

High performance assembly

In this chapter we discuss some strategies for writing efficient x86-64

assembly language. The gold standard is the efficiency of

implementations written in C or C++ and compiled with a good optimizing

compiler. The author uses gcc to have it produce an assembly language

file. Studying this generated code may give you some ideas about how to

write efficient assembly code.

16.1 Efficient use of cache

One of the goals in high performance computing is to keep the processing

units of the CPU busy. A modern CPU like the Intel Core i7 operates at a

clock speed around 3 GHz while its main memory maxes out at about 21

GB/sec. If your application ran strictly from data and instructions in

memory using no cache, then there would be roughly 7 bytes available per

cycle. The CPU has 4 cores which need to share the 21 GB/sec, so we’re

down to about 2 bytes per cycle per core from memory. Yet each of these

cores can have instructions being processed in 3 processing sub-units and

2 memory processing sub-units. Each CPU can complete 4 instructions

per cycle. The same is true for the AMD Bulldozer CPUs. It requires much

more than 2 bytes per cycle to keep instructions flowing in a modern CPU.

To keep these CPUs fed requires 3 levels of cache.

I performed a short test to illustrate the effect of main memory access

versus cache on a Core i7 CPU. The test consisted of executing 10 billion

exclusive or operations on quad-words in memory. In the plot below you

can see that the time depends heavily on the array size. With an array of

size 8000 bytes, the time as 1.5 seconds. The time steadily grows through

the use of the 8 MB of cache. When the size is 80 million bytes the cache

is nearly useless and a maximum of about 5.7 seconds is reached.

188

A prime example of making efficient use of cache is in the

implementation of matrix multiplication. Straightforward matrix

multiplication is 𝑂(𝑛3) where there are 𝑛 rows and 𝑛 columns of data. It

is commonly coded as 3 nested loops. However it can be broken up into

blocks small enough for 3 blocks to fit in cache for a nice performance

boost. Below are MFLOPs ratings for various block sizes for multiplying

2 2048x2048 matrices in a C program. There is considerable room for

improvement by using assembly language to take advantage of SSE or

AVX instructions.

189

16.2 Common subexpression elimination

Common subexpression eliminations is generally performed by optimizing

compilers. If you are to have any hope of beating the compiler, you must

do the same thing. Sometimes it may be hard to locate all common

subexpressions. This might be a good time to study the compiler’s

generated code to discover what it found. The compiler is tireless and

efficient at its tasks. Humans tend to overlook things.

16.3 Strength reduction

Strength reduction means using a simpler mathematical technique to get

an answer. It is possible to compute 𝑥3 using pow, but it is probably faster

to compute 𝑥 ∗ 𝑥 ∗ 𝑥. If you need to compute 𝑥4, then do it in stages:

 x2 = x * x;
 x4 = x2 * x2;

If you need to divide or multiply an integer by a power of 2, this can be

done more quickly by shifting. If you need to divide more than one floating

point number by 𝑥, compute 1/𝑥 and multiply.

16.4 Use registers efficiently

Place commonly used values in registers. It is nearly always better to

place values in registers. I once wrote a doubly nested loop in 32 bit mode

where I had all my values in registers. gcc generated faster code by using

the stack for a few values. These stack values probably remained in the

level 1 cache and were almost as good as being in registers. Testing tells

the truth.

16.5 Use fewer branches

Modern CPUs make branch predictions and will prepare the pipeline with

some instructions from one of the 2 possibilities when there is a

conditional branch. The pipeline will stall when this prediction is wrong,

so it will help to try to make fewer branches. Study the generated code

from your compiler. It will frequently reorder the assembly code to reduce

190

the number of branches. You will learn some general techniques from the

compiler.

16.6 Convert loops to branch at the bottom

If you code a while loop as written, there will be a conditional jump at the

top of the loop to branch past the loop and an unconditional jump at the

bottom of the loop to get back to the top. It is always possible to transform

the loop have a conditional branch at the bottom. You may need a one-

time use conditional jump before the top of the loop to handle cases where

the loop body should be skipped.

Here is a C for loop converted to a do-while loop. First the for loop:

 for (i = 0; i < n; i++) {
 x[i] = a[i] + b[i];
 }

Now the do-while loop with an additional if:

 if (n > 0) {
 i = 0;
 do {
 x[i] = a[i] + b[i];
 i++;
 } while (i < n);
 }

Please do not adopt this style of coding in C or C++. The compiler will

handle for loops quite well. In fact the simplicity of the for loop might

allow the compiler to generate better code. I presented this in C simply to

get the point across more simply.

16.7 Unroll loops

Unrolling loops is another technique used by compilers. The primary

advantage is that there will be fewer loop control instructions and more

instructions doing the work of the loop. A second advantage is that the

CPU will have more instructions available to fill its pipeline with a longer

loop body. Finally if you manage to use registers with little or no

dependencies between the separate sections of unrolled code, then you

open up the possibility for a super-scalar CPU (most modern CPUs) to

execute multiple original iterations in parallel. This is considerably easier

with 16 registers than with 8.

Let’s consider some code to add up all the numbers in an array of quad-

words. Here is the assembly code for the simplest version:

191

 segment .text
 global add_array
 add_array:
 xor eax, eax
 .add_words:
 add rax, [rcx]
 add rcx, 8
 dec rdx
 jg .add_words
 ret

Here is a version with the loop unrolled 4 times:

 segment .text
 global add_array
 add_array:
 xor eax, eax
 mov r8, rax
 mov r9, rax
 mov r10, rax
.add_words:
 add rax, [rcx]
 add r8, [rcx+8]
 add r9, [rcx+16]
 add r10, [rcx+24]
 add rcx, 32
 sub rdx, 4
 jg .add_words
 add r9, r10
 add rax, r8
 add rax, r9
 ret

In the unrolled code I am accumulating partial sums in rax, r8, r9 and

r10. These partial sums are combined after the loop. Executing a test

program with 1000000 calls to add up an array of 10000 quad-words took

3.9 seconds for the simple version and 2.44 seconds for the unrolled

version. There is so little work to do per data element that the 2 programs

start becoming memory bandwidth limited with large arrays, so I tested

a size which fit easily in cache.

16.8 Merge loops

If you have 2 for loops iterating over the same sequence of values and

there is no dependence between the loops, it seems like a no-brainer to

merge the loops. Consider the following 2 loops:

 for (i = 0; i < 1000; i++) {
 a[i] = b[i] + c[i];
 }
 for (j = 0; j < 1000; j++) {
 d[j] = b[j] - c[j];
 }

192

This can easily be merged to get:

 for (i = 0; i < 1000; i++) {
 a[i] = b[i] + c[i];
 d[i] = b[i] - c[i];
 }

In general merging loops can increase the size of a loop body,

decreasing the overhead percentage and helping to keep the pipeline full.

In this case there is additional gain from loading the values of b and c

once rather than twice.

16.9 Split loops

We just got through discussing how merging loops was a good idea. Now

we are going to learn the opposite - well for some loops. If a loop is

operating on 2 independent sets of data, then it could be split into 2 loops.

This can improve performance if the combined loop exceeds the cache

capacity. There is a trade-off between better cache usage and more

instructions in the pipeline. Sometime merging is better and sometimes

splitting is better.

16.10 Interchange loops

Suppose you wish to place 0’s in a 2-dimensional array in C. You have 2

choices:

 for (i = 0; i < n; i++) {
 for (j = 0; j < n; j++) {
 x[i][j] = 0;
 }
 }

or

 for (j = 0; j < n; j++) {
 for (i = 0; i < n; i++) {
 x[i][j] = 0;
 }
 }

Which is better? In C the second index increments faster than the first.

This means that x[0][1] is immediately after x[0][0]. On the other hand

x[1][0] is n elements after x[0][0]. When the CPU fetches data into the

cache it fetches more than a few bytes and cache writes to memory behave

similarly, so the first loop makes more sense. If you have the extreme

misfortune of having an array which is too large for your RAM, then you

193

may experience virtual memory thrashing with the second version. This

could turn into a disk access for each array access.

16.11 Move loop invariant code outside loops

This might be a fairly obvious optimization to perform. It’s another case

where studying the compiler’s generated code might point out some loop

invariant code which you have overlooked.

16.12 Remove recursion

If it is easy to eliminate recursion then it will nearly always improve

efficiency. Often it is easy to eliminate “tail” recursion where the last

action of a function is a recursive call. This can generally be done by

branching to the top of the function. On the other hand if you try to

eliminate recursion for a function like quicksort which makes 2 non-trivial

recursive calls, you will be forced to “simulate” recursion using your own

stack. This may make things slower. In any case the effect is small, since

the time spent making recursive calls in quicksort is small.

16.13 Eliminate stack frames

For leaf functions it is not necessary to use stack frames. In fact if you

have non-leaf functions which call your own functions and no others then

you can omit the frame pointers from these too. The only real reason for

frame pointers is for debugging. There is a requirement for leaving the

stack on 16 byte boundaries, but this only becomes an issue with functions

which have local variables (on the stack) which participate in aligned 16

or 32 byte accesses which can either fail or be slower. If you know that

your own code is not using those instructions, then neither frame pointers

nor frame alignment are important other than for debugging.

16.14 Inline functions

As part of optimization compilers can inline small functions. This reduces

the overhead significantly. If you wish to do this, you might be interested

194

in exploring macros which can make your code easier to read and write

and operate much like a function which has been inlined.

16.15 Reduce dependencies to allow

 super-scalar execution

Modern CPUs inspect the instruction stream looking ahead for

instructions which do not depend upon results of earlier instructions. This

is called “out of order execution”. If there is less dependency in your code,

then the CPU can execute more instructions out of order, allowing

multiple independent instructions to execute at one (super-scalar) and

your program can run more quickly.

As an example of this I modified the previous add_array function with

unrolled loops to accumulate all 4 values in the loop into rax. This

increased the time from 2.44 seconds to 2.75 seconds.

16.16 Use specialized instructions

So far we have seen the conditional move instruction which is fairly

specialized and also the packed floating point instructions. There are

many specialized instructions in the x86-64 architecture which are more

difficult for a compiler to apply. A human can reorganize an algorithm to

add the elements of an array somewhat like I did with loop unrolling

except to keep 4 partial sums in one AVX register. Combining the 4 parts

of the AVX register can be done after the loop. This can make the adding

even faster, since 4 adds can be done in one instruction. This technique

can also be combined with loop unrolling for additional performance. This

will be explored in detail in subsequent chapters.

195

Exercises

1. Given an array of 3D points defined in a structure with x, y and z

components, write a function to compute a distance matrix with the

distances between each pair of points.

2. Given a 2D array, 𝑀, of floats of dimensions 𝑛 by 4, and a vector, 𝑣, of

4 floats compute 𝑀𝑣.

3. Write a blocked matrix-matrix multiplication using a C main program

and an assembly function to perform the multiplication. Try various

block sizes to see which block size gives the highest performance.

196

Chapter 17

Counting bits in an array

In this chapter we explore several solutions to the problem of counting all

the 1 bits in an array of quad-word integers. For each test we use the same

C main program and implement a different function counting the number

of 1 bits in the array. All these functions implement the same prototype:

 long popcnt_array (long *a, int size);

17.1 C function

The first solution is a straightforward C solution:

 long popcnt_array (long long *a, int size)
 {
 int w, b;
 long long word;
 long n;

 n = 0;
 for (w = 0; w < size; w++) {
 word = a[w];
 n += word & 1;
 for (b = 1; b < 64; b++) {
 n += (word >> b) & 1;
 }
 }
 return n;
 }

The testing consists of calling popcnt_array 1000 times with an array

of 100000 longs (800000 bytes). Compiling with optimization level zero

(option -O0) the test took 14.63 seconds. With optimization level 1, it took

5.29 seconds, with level 2 it took 5.29 seconds again, and with level 3 it

took 5.37 seconds. Finally adding -funroll-all-loops, it took 4.74

seconds.

197

The algorithm can be improved by noticing that frequently the upper

bits of the quad-words being tested might be 0. We can change the inner

for loop into a while loop:

 long popcnt_array (unsigned long long *a, int size)
 {
 int w, b;
 unsigned long long word;
 long n;

 n = 0;
 for (w = 0; w < size; w++) {
 word = a[w];
 while (word != 0) {
 n += word & 1;
 word >>= 1;
 }
 }
 return n;
 }

Using the maximum optimization options the version takes 3.34

seconds. This is an instance of using a better algorithm.

17.2 Counting 1 bits in assembly

It is not too hard to unroll the loop for working on 64 bits into 64 steps of

working on 1 bit. In the assembly code which follows one fourth of the bits

of each word are placed in rax, one fourth in rbx, one fourth in rcx and

one fourth in rdx. Then each fourth of the bits are accumulated using

different registers. This allows considerable freedom for the computer to

use out-or-order execution with the loop.

 segment .text
 global popcnt_array
 popcnt_array:
 push rdi
 push rsi
 push rbx
 push rbp
 push r12
 push r13
 push r14
 push r15
 mov rdi, rcx ; Use rdi and rsi to hold parameters
 mov rsi, rdx ; like Linux to simplify the coding
 xor eax, eax
 xor ebx, ebx
 xor ecx, ecx
 xor edx, edx
 xor r12d, r12d
 xor r13d, r13d
 xor r14d, r14d
 xor r15d, r15d

198

 .count_words:
 mov r8, [rdi]
 mov r9, r8
 mov r10, r8
 mov r11, r9
 and r8, 0xffff
 shr r9, 16
 and r9, 0xffff
 shr r10, 32
 and r10, 0xffff
 shr r11, 48
 and r11, 0xffff
 mov r12w, r8w
 and r12w, 1
 add rax, r12
 mov r13w, r9w
 and r13w, 1
 add rbx, r13
 mov r14w, r10w
 and r14w, 1
 add rcx, r14
 mov r15w, r11w
 and r15w, 1
 add rdx, r15

 %rep 15
 shr r8w, 1
 mov r12w, r8w
 and r12w, 1
 add rax, r12
 shr r9w, 1
 mov r13w, r9w
 and r13w, 1
 add rbx, r13
 shr r10w, 1
 mov r14w, r10w
 and r14w, 1
 add rcx, r14
 shr r11w, 1
 mov r15w, r11w
 and r15w, 1
 add rdx, r15
 %endrep
 add rdi, 8
 dec rsi
 jg .count_words
 add rax, rbx
 add rax, rcx
 add rax, rdx
 pop r15
 pop r14
 pop r13
 pop r12
 pop rbp
 pop rbx
 pop rsi
 pop rdi
 ret

199

This has an unfortunate side effect - the use of a repeat section which

repeats 15 times. This makes for a function of 1123 bytes. Perhaps it was

worth it to execute the test in 2.52 seconds. The object file is only 240 bytes

larger than the C code with unrolled loops.

17.3 Precomputing the number of bits

 in each byte

The next algorithmic improvement comes from recognizing that we can

precompute the number of bits in each possible bit pattern for a byte and

use an array of 256 bytes to store the number of bits in each possible byte.

Then counting the number of bits in a quad-word consists of using the 8

bytes of the quad-word as indices into the array of bit counts and adding

them up.

Here is the C function for adding the number of bits in the array

without the initialization of the count array:

 long popcnt_array (long long *a, int size)
 {
 int b;
 long n;
 int word;

 n = 0;
 for (b = 0; b < size*8; b++) {
 word = ((unsigned char *)a)[b];
 n += count[word];
 }
 return n;
 }

This code took 0.24 seconds for the test, so we have a new winner. I

tried hard to beat this algorithm using assembly language, but managed

only a tie.

17.4 Using the popcnt instruction

A new instruction included in the Core i series processors is popcnt which

gives the number of 1 bits in a 64 bit register. So on the right computers,

we can employ the technique of using a specialized instruction:

 segment .text
 global popcnt_array
 popcnt_array:
 push r12
 push r13

200

 push r14
 push r15
 xor eax, eax
 xor r8d, r8d
 xor r9d, r9d
 xor r14d, r14d
 xor r15d, r15d
.count_more:
 popcnt r10, [rcx+r9*8]
 add rax, r10
 popcnt r11, [rcx+r9*8+8]
 add r8, r11
 popcnt r12, [rcx+r9*8+16]
 add r14, r12
 popcnt r13, [rcx+r9*8+24]
 add r15, r15
 add r9, 4
 cmp r9, rdx
 jl .count_more
 add rax, r8
 add rax, r14
 add rax, r15
 pop r15
 pop r14
 pop r13
 pop r12
 ret

We have a new winner on the Core i7 at 0.04 seconds which is 6 times

faster than the nearest competitor.

201

Exercises

1. Write a function to convert an array of ASCII characters to EBCDIC

and another to convert back to ASCII.

2. For 2 arrays of ASCII characters write a function to find the longest

common substring.

202

Chapter 18

Sobel filter

The Sobel filter is an edge detection filter used in image processing. The

operation of the filter is to process 3x3 windows of data by convolving each

pixel by one 3x3 matrix to produce an edge measure in the 𝑥 direction and

another in the 𝑦 direction. Here are the 2 matrices

𝑆𝑥 = [
−1 0 1
−2 0 2
−1 0 1

] 𝑆𝑦 = [
−1 −2 1
0 0 0
1 2 1

]

For an individual pixel 𝐼𝑟,𝑐 the 𝑥 edge measure, 𝐺𝑥, is computed by

𝐺𝑥 = ∑ ∑ (𝑆𝑥,𝑖,𝑗𝐼𝑟+𝑖.𝑐+𝑗)

1

𝑗=−1

1

𝑖=−1

where we have conveniently numbered the rows and columns of 𝑆𝑥

starting with -1. Similarly we compute 𝐺𝑦 using

𝐺𝑦 = ∑ ∑ (𝑆𝑦,𝑖,𝑗𝐼𝑟+𝑖.𝑐+𝑗)

1

𝑗=−1

1

𝑖=−1

Next we compute the magnitude of the edge measure, 𝐺,

𝐺 = √𝐺𝑥
2 + 𝐺𝑦

2

18.1 Sobel in C

Here is a C function which computes the Sobel edge magnitude for an

image of arbitrary size:

 #include <math.h>

 #define I(a,b,c) a[(b)*(cols)+(c)]

203

 void sobel (unsigned char *data, float *out,
 long rows, long cols)
 {
 int r, c; int gx, gy;

 for (r = 1; r < rows-1; r++) {
 for (c = 1; c < cols-1; c++) {
 gx = -I(data,r-1,c-1) + I(data,r-1,c+1) +
 -2*I(data,r,c-1) + 2*I(data,r,c+1) +
 -I(data,r+1,c-1) + I(data,r+1,c+1);
 gy = -I(data,r-1,c-1) - 2*I(data,r-1,c) -
 I(data,r-1,c+1) + I(data,r+1,c-1) +
 2*I(data,r+1,c) + I(data,r+1,c+1);
 I(out,r,c) = sqrt((float)(gx)*(float)(gx)+
 (float)(gy)*(float)(gy));
 }
 }
 }

This code was compiled with -O3 optimization and full loop unrolling.

Testing with 1024 × 1024 images showed that it computed 161.5 Sobel

magnitude images per second. Testing with 1000 different images to cut

down on the effect of cached images, this code produced 158 images per

second. Clearly the code is dominated by mathematics rather than

memory bandwidth.

18.2 Sobel computed using SSE instructions

Sobel was chosen as a good example of an algorithm which manipulates

data of many types. First the image data is byte data. The movdqu

instruction was used to transfer 16 adjacent pixels from one row of the

image. These pixels were processed to produce the contribution of their

central 14 pixels to 𝐺𝑥 and 𝐺𝑦. Then 16 pixels were transferred from the

image one row down from the first 16 pixels. These pixels were processed

in the same way adding more to 𝐺𝑥 and 𝐺𝑦. Finally 16 more pixels 2 rows

down from the first 16 were transferred and their contributions to 𝐺𝑥 and

𝐺𝑦 were computed. Then these contributions were combined, squared,

added together, converted to 32 bit floating point and square roots were

computed for the 14 output pixels which were placed in the output array.

Tested on the same Core i7 computer, this code produced 1063 Sobel

magnitude images per second. Testing with 1000 different images this

code produced 980 images per second, which is about 6.2 times as fast as

the C version.

Here are the new instructions used in this code:

pxor This instruction performs an exclusive or on a 128 XMM source

register or memory and stores the result in the destination register.

204

movdqa This instruction moves 128 bits of aligned data from memory to a

register, from a register to memory, or from a register to a register.

movdqu This instruction moves 128 bits of unaligned data from memory

to a register, from a register to memory, or from a register to a

register.

psrldq This instruction shifts the destination XMM register right the

number of bytes specified in the second immediate operand.

punpcklbw This instruction unpacks the low 8 bytes of 2 XMM registers

and intermingles them. I used this with the second register holding

all 0 bytes to form 8 words in the destination.

punpckhbw This instruction unpacks the upper 8 bytes of 2 XMM registers

and intermingles them.

paddw This instruction adds 8 16 bit integers from the second operand to

the first operand. At least one of the operands must be an XMM

register and one can be a memory field.

psubw This instruction divides the second set of 8 16 bit integers from the

first set.

pmullw This instruction multiplies the first set of 8 16 bit integers times

the second set and stores the low order 16 bits of the products in the

first operand.

punpcklwd This instruction unpacks and interleaves words from the lower

halves of 2 XMM registers into the destination register.

punpckhwd This instruction unpacks and interleaves words from the upper

halves of 2 XMM registers into the destination register.

cvtdq2ps This instruction converts 4 double word integers into 4 double

word floating point values.

Here is the assembly code:

 %macro multipush 1-* ; I needed to push and pop all
 %rep %0 ; callee save registers, so I
 push %1 ; used macros from the yasm
 %rotate 1 ; documentation.
 %endrep
 %endmacro

 %macro multipop 1-*
 %rep %0
 %rotate -1
 pop %1
 %endrep
 %endmacro

 ; sobel (input, output, rows, cols);
 ; char input[rows][cols]
 ; float output[rows][cols]

205

 ; border of the output array will be unfilled
 ;
 segment .text
 global sobel, main
 sobel:
 .cols equ 0
 .rows equ 8
 .output equ 16
 .input equ 24
 .bpir equ 32
 .bpor equ 40
 multipush rbx, rbp, r12, r13, r14, r15
 sub rsp, 48
 cmp r8, 3 ; need at least 3 rows
 jl .noworktodo
 cmp r8, 3 ; need at least 3 columns
 jl .noworktodo
 mov [rsp+.input], rcx
 mov [rsp+.output], rdx
 mov [rsp+.rows], r8
 mov [rsp+.cols], r9
 mov [rsp+.bpir], r9 ; bytes per input row
 imul r9, 4
 mov [rsp+.bpor], r9 ; 4 bytes per output pixel

 mov rax, [rsp+.rows] ; # rows to process
 mov r11, [rsp+.cols]
 sub rax, 2
 mov r8, [rsp+.input]
 add r8, r11
 mov r9, r8 ; address of row
 mov r10, r8
 sub r8, r11 ; address of row-1
 add r10, r11 ; address of row+1
 add rdx, [rsp+.bpor] ; address of 1st output row
 pxor xmm13, xmm13
 pxor xmm14, xmm14
 pxor xmm15, xmm15
 .more_rows:
 mov rbx, 1 ; first column
 .more_cols:
 movdqu xmm0, [r8+rbx-1] ; data for 1st row
 movdqu xmm1, xmm0
 movdqu xmm2, xmm0
 pxor xmm9, xmm9
 pxor xmm10, xmm10
 pxor xmm11, xmm11
 pxor xmm12, xmm12
 psrldq xmm1, 1 ; shift the pixels 1
 : to the right
 psrldq xmm2, 2 ; shift the pixels 2
 ; to the right

 ; Now the lowest 14 values of xmm0, xmm1 and
 ; xmm2 are lined up properly for applying the
 ; top row of the 2 matrices.

 movdqa xmm3, xmm0
 movdqa xmm4, xmm1
 movdqa xmm5, xmm2
 punpcklbw xmm3, xmm13 ; The low 8 values

206

 ; are now words in
 punpcklbw xmm4, xmm14 ; registers xmm3,
 ; xmm4, and xmm5
 punpcklbw xmm5, xmm15 ; ready for math.
 psubw xmm11, xmm3 ; xmm11 will hold
 ; 8 values of Gx
 psubw xmm9, xmm3 ; xmm9 will hold
 ; 8 values of Gy
 paddw xmm11, xmm5 ; Gx subtracts left
 ; adds right
 psubw xmm9, xmm4 ; Gy subtracts
 ; 2 * middle pixel
 psubw xmm9, xmm4
 psubw xmm9, xmm5 ; Final Gy subtract
 punpckhbw xmm0, xmm13 ; Convert top 8
 ; bytes to words
 punpckhbw xmm1, xmm14
 punpckhbw xmm2, xmm15
 psubw xmm12, xmm0 ; Do the same math
 psubw xmm10, xmm0 ; storing these 6
 paddw xmm12, xmm2 ; values in xmm12
 psubw xmm10, xmm1 ; and xmm10
 psubw xmm10, xmm1
 psubw xmm10, xmm2
 movdqu xmm0, [r9+rbx-1] ; data for 2nd row
 movdqu xmm2, xmm0 ; repeat math from
 psrldq xmm2, 2 ; 1st row with
 movdqa xmm3, xmm0 ; nothing added to
 movdqa xmm5, xmm2 ; Gy
 punpcklbw xmm3, xmm13
 punpcklbw xmm5, xmm15 ; 2nd row
 psubw xmm11, xmm3
 psubw xmm11, xmm3
 paddw xmm11, xmm5
 paddw xmm11, xmm5
 punpckhbw xmm0, xmm13
 punpckhbw xmm2, xmm15
 psubw xmm12, xmm0
 psubw xmm12, xmm0
 paddw xmm12, xmm2
 paddw xmm12, xmm2

 movdqu xmm0, [r10+rbx-1] ; data for 3rd row
 movdqu xmm1, xmm0
 movdqu xmm2, xmm0
 psrldq xmm1, 1
 psrldq xmm2, 2
 movdqa xmm3, xmm0
 movdqa xmm4, xmm1
 movdqa xmm5, xmm2
 punpcklbw xmm3, xmm13
 punpcklbw xmm4, xmm14
 punpcklbw xmm5, xmm15 ; 3rd row
 psubw xmm11, xmm3
 paddw xmm9, xmm3
 paddw xmm11, xmm5
 paddw xmm9, xmm4
 paddw xmm9, xmm4
 paddw xmm9, xmm5
 punpckhbw xmm0, xmm13
 punpckhbw xmm1, xmm14

207

 punpckhbw xmm2, xmm15
 psubw xmm12, xmm0
 paddw xmm10, xmm0
 paddw xmm12, xmm2
 paddw xmm10, xmm1
 paddw xmm10, xmm1
 paddw xmm10, xmm2

 pmullw xmm9, xmm9 ; square Gx and Gy
 pmullw xmm10, xmm10
 pmullw xmm11, xmm11
 pmullw xmm12, xmm12
 paddw xmm9, xmm11 ; sum of squares
 paddw xmm10, xmm12
 movdqa xmm1, xmm9
 movdqa xmm3, xmm10
 punpcklwd xmm9, xmm13 ; Convert low 4
 ; words to dwords
 punpckhwd xmm1, xmm13 ; Convert high 4
 ; words to dwords
 punpcklwd xmm10, xmm13 ; Convert low 4
 ; words to dwords
 punpckhwd xmm3, xmm13 ; Convert high 4
 ; words to dwords
 cvtdq2ps xmm0, xmm9 ; to floating point
 cvtdq2ps xmm1, xmm1 ; to floating point
 cvtdq2ps xmm2, xmm10 ; to floating point
 cvtdq2ps xmm3, xmm3 ; to floating point
 sqrtps xmm0, xmm0
 sqrtps xmm1, xmm1
 sqrtps xmm2, xmm2
 sqrtps xmm3, xmm3
 movups [rdx+rbx*4], xmm0
 movups [rdx+rbx*4+16], xmm1
 movups [rdx+rbx*4+32], xmm2
 movlps [rdx+rbx*4+48], xmm3

 add rbx, 14 ; process 14 Sobel values
 cmp rbx, r11
 jl .more_cols
 add r8, r11
 add r9, r11
 add r10, r11
 add rsi, [rsp+.bpor]
 sub rax, 1 ; 1 fewer row
 cmp rax, 0
 jg .more_rows
 .noworktodo:
 add rsp, 48
 multipop rbx, rbp, r12, r13, r14, r15
 ret

208

Exercises

1. Convert the Sobel function into a function to perform an arbitrary

convolution of an image with a 3 × 3 matrix

2. Write an assembly function to convert an image into a run-length

encoded image.

3. Write a function to fill an array with pseudo-random numbers derived

by using 4 separate interleaved sequences based on the formula

𝑋𝑛+1 = (𝑎𝑋𝑛 + 𝑐) mod 𝑚

Use 𝑚 = 32 for all 4 sequences. Use 1664525, 22695477, 1103515245

and 214013 for the values of 𝑎 and 1013904223, 1, 12345 and 2531011

for the values of 𝑐.

209

Chapter 19

Computing Correlation

The final example of optimization is computing the correlation between

two variables 𝑥 and 𝑦 given 𝑛 sample values. One way to compute

correlation is using

𝑟𝑥𝑦 =
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑛

𝑖=1

√∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1 ∑ (𝑦𝑖 − 𝑦̅)2𝑛

𝑖=1

But this formula requires two passes through the data - one pass to

compute averages and a second pass to complete the formula. There is a

less intuitive formula which is more amenable to computation:

𝑟𝑥𝑦 =
𝑛 ∑ 𝑥𝑖𝑦𝑖

𝑛
𝑖=1 − ∑ 𝑥𝑖

𝑛
𝑖=1 ∑ 𝑦𝑖

𝑛
𝑖=1

√𝑛 ∑ 𝑥𝑖
2𝑛

𝑖=1 − (∑ 𝑥𝑖
𝑛
𝑖=1)2√𝑛 ∑ 𝑦𝑖

2𝑛
𝑖=1 − (∑ 𝑦𝑖

𝑛
𝑖=1)2

The computational formula requires computing 5 sums when you scan

the data: the sum of 𝑥𝑖, the sum of 𝑦𝑖, the sum of 𝑥𝑖
2, the sum of 𝑦𝑖

2 and

the sum of 𝑥𝑖𝑦𝑖. After computing these 5 sums there is a small amount of

time required for implementing the computational formula.

19.1 C implementation

The C computation is performed in the corr function given below:

 #include <math.h>

 double corr (double x[], double y[], long n)
 {
 double sum_x, sum_y, sum_xx, sum_yy, sum_xy;
 long i;
 sum_x = sum_y = sum_xx = sum_yy = sum_xy = 0.0;
 for (i = 0; i < n; i++) {
 sum_x += x[i];
 sum_y += y[i];
 sum_xx += x[i]*x[i];
 sum_yy += y[i]*y[i];

210

 sum_xy += x[i]*y[i];
 }
 return (n*sum_xy-sum_x*sum_y)/
 sqrt((n*sum_xx-sum_x*sum_x)*
 (n*sum_yy-sum_y*sum_y));
 }

The gcc compiler generated assembly code which used all 16 of the

XMM registers as it unrolled the loop to process 4 iterations of the for

loop in the main loop. The compiler also correctly handled the extra data

values when the array size was not a multiple of four. Performing 1

million calls to compute correlation on 2 arrays of size 10000 required

13.44 seconds for the C version. This is roughly 5.9 GFLOPs which is quite

impressive for compiled code.

19.2 Implementation using SSE instructions

A version of the corr function was written using SSE instructions which

will execute on many modern computers. Here is the SSE version:

 segment .text
 global corr

 ;
 ; rcx: x array
 ; rdx: y array
 ; r10: loop counter
 ; r8: n

 ; xmm0: 2 parts of sum_x
 ; xmm1: 2 parts of sum_y
 ; xmm2: 2 parts of sum_xx
 ; xmm3: 2 parts of sum_yy
 ; xmm4: 2 parts of sum_xy
 ; xmm5: 2 x values - later squared
 ; xmm6: 2 y values - later squared
 ; xmm7: 2 xy values

 corr:
 xor r9d, r9d
 mov r10, r8
 subpd xmm0, xmm0
 movapd xmm1, xmm0
 movapd xmm2, xmm0
 movapd xmm3, xmm0
 movapd xmm4, xmm0
 movapd xmm8, xmm0
 movapd xmm9, xmm0
 movapd xmm10, xmm0
 movapd xmm11, xmm0
 movapd xmm12, xmm0
 .more:
 movapd xmm5, [rcx+r9] ; mov x
 movapd xmm6, [rdx+r9] ; mov y

211

 movapd xmm7, xmm5 ; mov x
 mulpd xmm7, xmm6 ; xy
 addpd xmm0, xmm5 ; sum_x
 addpd xmm1, xmm6 ; sum_y
 mulpd xmm5, xmm5 ; xx
 mulpd xmm6, xmm6 ; yy
 addpd xmm2, xmm5 ; sum_xx
 addpd xmm3, xmm6 ; sum_yy
 addpd xmm4, xmm7 ; sum_xy
 movapd xmm13, [rcx+r9+16] ; mov x
 movapd xmm14, [rdx+r9+16] ; mov y
 movapd xmm15, xmm13 ; mov x
 mulpd xmm15, xmm14 ; xy
 addpd xmm8, xmm13 ; sum_x
 addpd xmm9, xmm14 ; sum_y
 mulpd xmm13, xmm13 ; xx
 mulpd xmm14, xmm14 ; yy
 addpd xmm10, xmm13 ; sum_xx
 addpd xmm11, xmm14 ; sum_yy
 addpd xmm12, xmm15 ; sum_xy
 add r9, 32
 sub r10, 4
 jnz .more
 addpd xmm0, xmm8
 addpd xmm1, xmm9
 addpd xmm2, xmm10
 addpd xmm3, xmm11
 addpd xmm4, xmm12
 haddpd xmm0, xmm0 ; sum_x
 haddpd xmm1, xmm1 ; sum_y
 haddpd xmm2, xmm2 ; sum_xx
 haddpd xmm3, xmm3 ; sum_yy
 haddpd xmm4, xmm4 ; sum_xy
 movsd xmm6, xmm0 ; sum_x
 movsd xmm7, xmm1 ; sum_y
 cvtsi2sd xmm8, r8 ; n
 mulsd xmm6, xmm6 ; sum_x*sum_x
 mulsd xmm7, xmm7 ; sum_y*sum_y
 mulsd xmm2, xmm8 ; n*sum_xx
 mulsd xmm3, xmm8 ; n*sum_yy
 subsd xmm2, xmm6 ; n*sum_xx-sum_x*sum_x
 subsd xmm3, xmm7 ; n*sum_yy-sum_y*sum_y
 mulsd xmm2, xmm3 ; denom*denom
 sqrtsd xmm2, xmm2 ; denom
 mulsd xmm4, xmm8 ; n*sum_xy
 mulsd xmm0, xmm1 ; sum_x*sum_y
 subsd xmm4, xmm0 ; n*sum_xy-sum_x*sum_y
 divsd xmm4, xmm2 ; correlation
 movsd xmm0, xmm4 ; need in xmm0
 ret

In the main loop of this function the movapd instruction was used to

load 2 double precision values from the x array and again the load 2 values

from the y array. Then accumulation was performed in registers xmm0 -

xmm4. Each of these accumulation registers held 2 accumulated values -

one for even indices and one for odd indices

After this collection of accumulations the movapd instruction was used

again to load 2 more values for x and again to load 2 more values from y.

212

These values were used to form accumulations into 5 more registers: xmm8

- xmm12.

After completing the loop, it was time to add together the 4 parts of

each required summation. The first step of this process was using addpd

to add the registers xmm8 - xmm12 to registers xmm0 - xmm4. Following this

the “horizontal add packed double”, haddpd, instruction was used to add

the upper and lower halves of each of the summation registers to get the

final sums. Then the code implemented the formula presented earlier.

When tested on 1 million correlations of size 10000, this program used

6.74 seconds which is approximately 11.8 GFLOPs. Now this is pretty

impressive since the CPU operates at 3.4 GHz. It produced about 3.5

floating point results per cycle. This means that more than one of the SSE

instructions was completing at once. The CPU is performing out-of-order

execution and completing more than one SSE instruction per cycle.

19.3 Implementation using AVX instructions

The Core i7 CPU implements a new collection of instructions called

“Advanced Vector Extensions” or AVX. For these instructions an

extension of the XMM registers named ymm0 through ymm15 is provided

along with some new instructions. The YMM registers are 256 bits each

and can hold 4 double precision values in each one. This allowed a fairly

easy adaptation of the SSE function to operate on 4 values at once.

In addition to providing the larger registers, the AVX instructions

added versions of existing instructions which allowed using 3 operands: 2

source operands and a destination which did not participate as a source

(unless you named the same register twice). The AVX versions of

instructions are prefixed with the letter “v”. Having 3 operand

instructions reduces the register pressure and allows using two registers

as sources in an instruction while preserving their values.

Here is the AVX version of the corr function:

 segment .text
 global corr
 ;
 ; rcx: x array
 ; rdx: y array
 ; r10: loop counter
 ; r8: n

 ; ymm0: 4 parts of sum_x
 ; ymm1: 4 parts of sum_y
 ; ymm2: 4 parts of sum_xx
 ; ymm3: 4 parts of sum_yy
 ; ymm4: 4 parts of sum_xy
 ; ymm5: 4 x values - later squared

213

 ; ymm6: 4 y values - later squared
 ; ymm7: 4 xy values

 corr:
 xor r9d, r9d
 mov r1-, r8
 vzeroall
 .more:
 vmovupd ymm5, [rcx+r9] ; mov x
 vmovupd ymm6, [rdx+r9] ; mov y
 vmulpd ymm7, ymm5, ymm6 ; xy
 vaddpd ymm0, ymm0, ymm5 ; sum_x
 vaddpd ymm1, ymm1, ymm6 ; sum_y
 vmulpd ymm5, ymm5, ymm5 ; xx
 vmulpd ymm6, ymm6, ymm6 ; yy
 vaddpd ymm2, ymm2, ymm5 ; sum_xx
 vaddpd ymm3, ymm3, ymm6 ; sum_yy
 vaddpd ymm4, ymm4, ymm7 ; sum_xy
 vmovupd ymm13, [rcx+r9+32] ; mov x
 vmovupd ymm14, [rdx+r9+32] ; mov y
 vmulpd ymm15, ymm13, ymm14 ; xy
 vaddpd ymm8, ymm8, ymm13 ; sum_x
 vaddpd ymm9, ymm9, ymm14 ; sum_y
 vmulpd ymm13, ymm13, ymm13 ; xx
 vmulpd ymm14, ymm14, ymm14 ; yy
 vaddpd ymm10, ymm10, ymm13 ; sum_xx
 vaddpd ymm11, ymm11, ymm14 ; sum_yy
 vaddpd ymm12, ymm12, ymm15 ; sum_xy
 add r9, 64
 sub r10, 8
 jnz .more
 vaddpd ymm0, ymm0, ymm8
 vaddpd ymm1, ymm1, ymm9
 vaddpd ymm2, ymm2, ymm10
 vaddpd ymm3, ymm3, ymm11
 vaddpd ymm4, ymm4, ymm12
 vhaddpd ymm0, ymm0, ymm0 ; sum_x
 vhaddpd ymm1, ymm1, ymm1 ; sum_y
 vhaddpd ymm2, ymm2, ymm2 ; sum_xx
 vhaddpd ymm3, ymm3, ymm3 ; sum_yy
 vhaddpd ymm4, ymm4, ymm4 ; sum_xy
 vextractf128 xmm5, ymm0, 1
 vaddsd xmm0, xmm0, xmm5
 vextractf128 xmm6, ymm1, 1
 vaddsd xmm1, xmm1, xmm6
 vmulsd xmm6, xmm0, xmm0 ; sum_x*sum_x
 vmulsd xmm7, xmm1, xmm1 ; sum_y*sum_y
 vextractf128 xmm8, ymm2, 1
 vaddsd xmm2, xmm2, xmm8
 vextractf128 xmm9, ymm3, 1
 vaddsd xmm3, xmm3, xmm9
 cvtsi2sd xmm8, r8 ; n
 vmulsd xmm2, xmm2, xmm8 ; n*sum_xx
 vmulsd xmm3, xmm3, xmm8 ; n*sum_yy
 vsubsd xmm2, xmm2, xmm6 ; n*sum_xx - sum_x*sum_x
 vsubsd xmm3, xmm3, xmm7 ; n*sum_yy - sum_y*sum_y
 vmulsd xmm2, xmm2, xmm3 ; denom*denom
 vsqrtsd xmm2, xmm2, xmm2 ; denom
 vextractf128 xmm6, ymm4, 1
 vaddsd xmm4, xmm4, xmm6
 vmulsd xmm4, xmm4, xmm8 ; n*sum_xy

214

 vmulsd xmm0, xmm0, xmm1 ; sum_x*sum_y
 vsubsd xmm4, xmm4, xmm0 ; n*sum_xy - sum_x*sum_y
 vdivsd xmm0, xmm4, xmm2 ; correlation
 ret

Now the code is accumulating 8 partial sums for each required sum.

The vhaddpd instruction unfortunately did not sum all 4 values in a

register. Instead it summed the first 2 values and left that sum in the

lower half of the register and summed the last 2 values and left that sum

in the upper half of the register. It was necessary to use the “extract 128

bit field”, vextractf128, instruction to move the top half of these sums

into the lower half of a register to prepare for adding the 2 halves.

When tested with one million calls to compute correlation on 10000

pairs of values, the AVX version used 3.9 seconds which amounts to 20.5

GFLOPs. This is achieving an average of 6 floating point results in each

clock cycle. The code had many instructions which did 4 operations and

the CPU did an excellent job of out-of-order execution. The use of 2 sets of

accumulation registers most likely reduced the inter-instruction

dependency which helped the CPU perform more instructions in parallel.

215

Exercises

1. Write an SSE function to compute the mean and standard deviation

of an array of doubles.

2. Write a function to perform a least squares fit for a polynomial

function relating two sequences of doubles in 2 arrays.

216

Appendix A

Installing ebe

There are basically 2 choices for installing ebe: either install a pre-

compiled binary package or install from source. Installing binary

packages is the easy choice and requires downloading an installation exe

file. It seems that the installation exe works for 64 bit Windows 7 and

Windows 8. There may be problems with other versions of Windows. On

the other hand installing from source requires setting up a development

environment though the source code is quite portable between different

versions of Windows.

Installing from binary packages

You can find Windows installation exe files at the qtebe sourceforge site:

https://sourceforge.net/projects/qtebe/files/Windows. Simply

download and execute a file with a name like “ebe64-2.4.7-setup.exe”.

This is a program prepared using Inno Setup and will guide you through

the installation process. The program will install ebe, gcc, g++, gfortran,

gdb, astyle and yasm which is all that is needed to use ebe.

There are also “update” files which simple install a newer version of

ebe and use the previously installed compilers and other tools. So you

should probably use the “setup” program once and later use the “update”

program to get a newer version of ebe.

Installing from source on Windows

Installing from source on Windows requires more effort and is probably

not worth the trouble unless for some reason the binary installation fails

https://sourceforge.net/projects/qtebe/files/Windows

217

or you want to work with the ebe souce code. The basic idea is to install

the programs and libraries required to compile ebe, download the source

code and compile. The examples are for Qt 4, but ebe is also compatible

with Qt 5.

Installing Cygwin

I have used Cygwin as a base for working with ebe. For the purpose of

installing from source, it will provide the git program which is used to

download the source code.

You can find the Cygwin setup program at http://cygwin.com. There is

a 32 bit as well as a 64 bit Cygwin. I suggest using the 64 bit version, but

either will do. Follow the instructions and select the git package while

installing Cygwin.

Installing the required language tools

The required tools are astyle, g++, gfortran. gdb and yasm. The simplest

way to install these is to use the binary installer for ebe. The programs

will be installed in C:\gcc\bin.

Alternatively you can locate the Mingw compilers, astyle and yasm

from their web sites and install them.

Downloading the source code

From a Cygwin windows you can use git to copy the source code from

sourceforge using

 git clone git://git.code.sf.net/p/qtebe/code ebe

This will create a directory named ebe which contains all the source code.

Git is a source code management system which makes it possible to

update the source code using “git pull” from the ebe directory in the

future. It will download only the changes.

Installing the Visual Studio command line tools

Microsoft provides the Visual Studio tools free of charge in the Visual

Studio Express package. You will find several versions of this, but you

need to pick the latest version matching the compiled libraries for the Qt

development tools. On my computer this was VS 2012, though currently

http://cygwin.com/

218

Visual Studio 2013 is available and also supported by Qt. I suggest

checking Qt first and then searching for the proper version of Visual

Studio.

Installing the Qt development tools

You can find the Qt development tools already built for Windows at

http://qt-project.org/downloads. You can use either the 32 bit or 64

bit version of the Qt tools. Ebe will work with either Qt version 4 or

version 5.

Compiling ebe and installing

There is a bash script named “qrc” which needs to be executed in a

Cygwin terminal window in order to convert text messages in ebe into

the various languages it supports. Use this command after installing the

Qt tools

 cd ebe
 ./qrc

You will need to use a Visual Studio Native Tools x86 Command

Prompt windows in order to compile the ebe source code. Here are the

commands I use for this

 cd \cygwin\home\seyfarth\ebe # use you own name
 nmake

The nmake program is part of the Visual Studio Express suite and it

builds a program prepared by using the Qt qmake program. You may have

to add the Qt tools directory to your path in order to execute qmake. If you

have installed Qt 5, you will definitely need to run qmake.

When nmake completes it will leave ebe.exe in the release directory

under the ebe directory. You can prepare a shortcut on your desktop to

this program and use the icon in the ebe directory for the shortcut.

http://qt-project.org/downloads

219

Appendix B

Using ebe

This book has introduced ebe a little at a time, as needed, to help students

progress through increasing assembly mastery. Most of the discussion of

ebe so far has been about debugging. Here we discuss editing, projects,

debugging and more.

Major features

Beyond the basic issues of successfully starting and ending ebe, it is

important to learn how to find help within the program. The first learning

tool is a set of tooltips. Next is the help system accessible from the menu.

The third learning tool is the set of keystrokes visible within the menu

system. However possibly the greatest aid to learning is curiosity.

Tooltips

Move the mouse over the various subwindows and items within the

subwindows and wait about a half second and ebe will popup tooltips. The

tooltips are pretty persistent. If you are editing use the mouse to set the

editing cursor and move the mouse cursor to the open space in a title bar

to make the tooltip disappear. Tooltips will help as you get used to the

program, but they will become an annoyance after you’ve memorized what

they say. You can turn off the tooltips in the menu by unchecking the

“Tooltips” option in the “View” menu.

Help

The help system operates by clicking “Help” in the main menu and then

clicking on one of the help options. Each help file is displayed in a different

220

window and can be dismissed in the normal manner for windows on your

computer.

Menu

The menu system contains nearly everything which can be done in the

program. Nearly all the menu options have keyboard shortcuts. Use the

menu to figure out what all can be done and learn some keyboard tricks

as you progress. A few things like using control with the arrow keys, home

and end are not in the menu, so experiment.

Movable toolbars

There are a collection of 4 toolbars in ebe: the file toolbar, the edit tool bar,

the debug toolbar and the template toolbar. Each of these has icons to

perform common actions and each has a “grab point” on the left or top

which can be used with a left click to move the toolbar. You can move a

toolbar out of the program to make it a separate window. You can also

right click on the grab point to select which toolbars are visible. Below the

debug toolbar is shown as it appears as a separate window.

Ebe remembers the configuration of the ebe main window, the toolbars

and its subwindows using the file “.ebe.ini”, so you can relocate the

toolbars as you wish to make using ebe more convenient. There is a

separate “.ebe.ini” in each directory where you use ebe, so you can

customize the appearance for different languages or projects.

Movable subwindows

In addition to have movable toolbars ebe has a collection of movable or

dockable subwindows: data, register, floating point register, terminal,

project, toy box, bit bucket, backtrace and console windows. Ebe keeps

track of the visibility and location of these subwindows in “.ebe.ini” to

make it easy to customize. Below we see ebe with a few of the windows in

their “docked” location.

221

Between each of the docked windows is a “resize bar” which can be

used with a left click to adjust the division of space allotted to the docked

windows. There is also a resize bar between the docked windows and the

source window which can be used to adjust the width of the docked

windows.

Each docked window has a “title bar” at the top. There are 2 tiny icons

on the right of each title bar which can be used to make the window stand-

alone or to make the window disappear. You can also use a right click on

a title bar to pop up a menu allowing you to select with dock windows and

toolbars are visible. Visibility can also be controlled using the View menu.

You can use a left click on a dock window title bar to drag it around.

You can drag it out of ebe to make it stand-alone or to a different vertical

position in the dock area. You will notice a gray area in the dock area

where the window will drop when you release the left button. You can

even drag a dock window to the right of the ebe window or the bottom to

use 2 different dock areas. Finally you can drag a dock window on top of

another one to create a collection of tabbed dock windows. Perhaps you

would like to be able to switch easily between the data, register and

floating point register windows. Below we see a dock window with 3 tabs

at the bottom for these 3 windows and the terminal window below.

222

Editing

Editing in ebe uses the mouse and keyboard in mostly normal ways for

editors. Special keys like Delete and Enter work as expected. For many of

these normal keys an additional action is invoked using the Control key

and the normal key. Most editing actions are available in the menu system

which will also show the shortcut keys for the actions.

For simplicity the discussion of editing in ebe refers to using the

Control key to invoke shortcuts. On OS X this is usually done using the

Apple key. Fortunately the menu system displays the proper shortcuts. In

addition the shortcuts are based on normal editing shortcuts obtained

from Wikipedia:

 http://en.wikipedia.org/wiki/Table_of_keyboard_shortcuts.

Navigation

Scrollbars There are vertical and horizontal scrollbars which can scroll

through the file. Scrolling can also be done using the mouse wheel.

223

Arrow keys Moving 1 character at a time is done using the left and right

arrow keys on the keyboard. Up and down arrows move up or down

one line at a time.

Control + Arrow keys Control-Right moves 1 word to the right. Control-

Left moves 1 word to the left.

Home/End Home moves to column 1 on the current line. End moves to

the end of the current line.

Control + Home/End Control-Home moves to column 1 of line 1. Control-

End moves to the end of the file.

PageUp/PageDown These keys move up/down one screenful at a time.

Control-T/Control-B Control-T (top) moves to column 1 of the top line

currently on the screen. Control-B (bottom) moves to column 1 of the

last line currently on the screen.

Control-M Control-M scrolls the screen until the current line is at the

middle of the screen.

Control-L Control-L will pop up a dialog where you can enter a line

number to go to.

Cut, copy and paste

The first step in cutting or copying is to select the text to copy or cut.

Left mouse Dragging with the left mouse button held down can be used

to mark a section of text. Double clicking with the left mouse button

will select a word of text.

Select all You can select all of the text using Control-A or the Edit menu

option.

Select none You can cancel any select using Control-0 (zero) or the Edit

menu option.

 Selected text can be cut, copied and pasted using either options in the

Edit menu or the normal shortcuts: Control-X for cut, Control-C for copy,

or Control-V for paste. The edit toolbar also has buttons for cut, copy and

paste.

Undo/redo

Control-Z will undo an edit operation. Insertions will be undone basically

one line at a time. Shift-Control-Z will redo an edit operation. You can also

do undo/redo using the menu system or the edit toolbar. The editor keeps

224

track of a large number of editing steps which allows undoing a lot of

changes.

Find and replace

 Use Control-F to pop up the Find/Replace dialog. There is a text entry

box there for entering a string to find. The focus is ready for you to type

the search string when the dialog starts. If you simply want to find, then

enter either Enter, Control-F or the Find button as many times as you

wish. If you wish to change the string, then use Tab to move to the text

entry box for the replacement field and enter a string. To replace the

string, use Control-R or the Replace button. You can end the Find/Replace

dialog using the Cancel button.

Deleting text

Backspace will delete the character to the left of the cursor while Delete

will delete the character to the right of the cursor. Control-Backspace will

delete the word to the left of the cursor and Control-Delete will delete the

word to the right of the cursor.

Using tabs

Entering a tab character will enter enough spaces to move to the next tab

stop. Tabs are at columns 5, 9, 13, ... - indenting 4 characters for each tab.

Control-Tab will delete space characters to the left of the cursor to position

to the previous tab column. The tab spacing value can be changed by

editing “.ebe.ini” or by using “Edit settings” from the Edit menu.

Auto-indent

The editor will automatically enter spaces so that a new line will be

indented just the same as the previous line. Ebe will indent the next line

after a line ending in “{“. Likewise it will unindent when a line begins with

“}”. Adjusting indentation for a new line can be done using Tab or Control-

Tab.

Prettify

Ebe will call the external program astyle to format C and C++ programs

if you use the “Prettify” option under the Edit menu or the “magic wand”

icon on the edit toolbar. You can change the options used for astyle or even

225

replace the program with another by editing “.ebe.ini” or using the “Edit

settings” option under the Edit menu.

Indent/unindent

After marking a group of lines you can indent it one tab stop at a time

using Control-> which resembles the C right shift operator (>>). You can

shift the text left (unindent) using Control-<. There are also menu options

for indent/unident and edit toolbar icons.

Comment/uncomment

Control-K will comment out the current line or a range of lines if some

text is selected. Control-U will uncomment either the current line or a

range of lines. Ebe will use comment syntax for the appropriate language.

Word/number completion

Ebe keeps track of words and numbers to simplify entering/re-entering

longer words. It starts with the a collection of keywords and adds words

and numbers as you edit. When you enter some text ebe will pop up a list

of words to the right of where you are editing. Simply select the desired

word (or number) and press “Enter” to accept the suggested completion or

enter additional characters to narrow down the choices.

Editing multiple files

It is possible to maintain several open files in ebe. You can open multiple

times using the File menu or possibly you could use a project which

consists of multiple files. The various files will be accessible as tabbed

windows in the source subwindow of ebe.

If you are not using a project ebe will compile or assemble only the

currently selected file from those opened. This might be useful if you are

working on a few similar programs or if you want to prepare a data file

for your program to access. If you are using a project, then ebe will build

the program using the source files in the project. Once again it is possible

to have a data file as part of a project.

226

Debugging

The debug toolbar is shown below. There are 4 icons or buttons which are

used to control debugging. Each time you click on the Run button the

program saves your source code, runs the compiler and/or assembler and

then starts running your program in the debugger. Most likely you will

want to set a breakpoint before clicking Run. Do this by clicking to the left

of a source code line where you would like to have the program stop and

inspect things. Then you can click Run and Next/Step to step through your

program 1 line at a time. Use Next to stay within the same function or

subroutine. Use Step if you wish to debug inside a function or subroutine.

You can skip past a bunch of statements using Continue which will

execute until it reaches the next breakpoint. The Stop button will end the

debugging process.

Breakpoints

A breakpoint is a point in your source code which will cause the debugger

to stop executing your program when it runs your program. If you set a

breakpoint on line 10 of your code, the debugger will execute all lines up

to line 10 when you click the Run button. Line 10 will not be run until you

take another action like using one of the Next, Step or Continue buttons.

Every line of source code has a line number in the line numbers column

to the left of the source code. A breakpoint is visually identified in the

source code window by using a red background for the line number for the

line with a breakpoint.

You set or clear a breakpoint using a left click on a line number. The

first click with set the breakpoint and the second will clear it. A right click

will pop up a menu allowing management of breakpoints inclucing an

option to delete them all.

Running a program

The first step is to set a breakpoint on the line where you want your

program to stop. Left click on the line number and you will see the line

227

number for the line change to a bright red background. Click again if this

is the wrong line.

After setting one or more breakpoints, you need to click on the Run

button. This button will save your source code file, run the proper compiler

for your code and then start the gdb debugger on the compiled program.

When the program reaches a line with a breakpoint, it will stop and ebe

will highlight the line using a pastel blue-green background. The

highlighted line will be the next line to execute.

Terminal window

The terminal window is one of the dock windows which supports terminal

input and output. It does not include a real terminal emulator. Instead all

input is done using a text input box and the text displayed is all printed

by the program plus the input echoed to make it all look more normal. The

picture below shows the terminal window in a program being tested.

In the previous session one input operation has been done and one is

in progress. The first input, 3, was typed into the Input box and after

pressing Enter 3 was echoed in the terminal window. The next input is in

progress. Four numbers have been typed into the Input box, but Enter has

not been pressed which would complete the input.

It is possible to use Control-D or Control-Z in the Input box to send an

end of file indication into the program. However this only works if the

EOF is signaled before the input operation is performed. This is abnormal,

but it works fine if you are single-stepping. Then you enter Control-D prior

to executing the scanf call (or another form of read).

228

Next and step

Both the Next and Step buttons will step through your code, line by line.

The difference is that Next will stay in the current function or subroutine,

while Step will step into a function if one is called on the highlighted line.

You generally only want to use the Step button to step into a function in

the same source file or another file in the project.

Continue

The Continue button will resume normal execution of the program and it

will only stop if it encounters a breakpoint. You probably would use this

to rapidly step past some debugged code to reach a breakpoint in some

code which currently has an error.

Data window

The data window displays variables in your program. For high level

language this includes global variables, parameters to functions, local

variables and user-defined variables. The globals includes a stack display

which by default shows the top 6 values on the stack.

For assembly language the variables must be user-defined. The

debugger is aware of the address of static variables, but not their type

which makes it impossible to display them properly as globals. Below is a

picture of the data window while debugging a program.

You can see that 3 local variables have been defined with type long and

their values are displayed.

Defining variables

You can define variables using either the name of a variable in the editor

or using the address of a variable shown either in the data window or the

229

register window. User-defined variables are displayed automatically in

the data window each time control is returned to ebe from debugging.

To define a variable by name, you can mark the variable first and then

use a right click to bring up a dialog to define a variable. In this dialog

you can edit the format and the size of data items as needed. The first and

last values are used as array indices for the variable being defined. If this

is not an array, leave the array checkbox unchecked. If this is an array,

check the array checkbox and set the indices as you wish. Remember that

the first index is 0.

You will notice that the name has

been provided along with the address

which uses the C address-of operator.

You can select the type from char,

unsigned char,signed char, short,

unsigned short, int, unsigned int, long,

unsigned long, float, double and bool.

Depending on the type you can select

appropriate formats. For integer types

you can select decimal, hexadecimal or

binary. For floating point types you can

select a normal floating point display or

a nice collection of formats which can display the various fields of a

floating point number. This can be quite helpful in understanding how a

computer stores floating point values.

To define a variable by address, you can mark the address (a left click

works) in one of the value fields in the register window and then use a

right click to bring up a dialog to define a variable with the selected

address.

You can use a right click on a variable in the data window to either

edit or delete the variable. The edit option pops up the same dialog used

to create a variable and allows choosing from the same types and formats.

For an array (or a struct in C or C++) there will

be “>” to the left of the name (as in the stack variable

in the previous data window picture). Clicking on the

“>” pops up a window to select indices for an array or

shows the fields of a C/C++ struct. Once you have

selected the first and last indices (starting with 0 as

the first index) clicking on OK will display the array

entries one per line.

230

Register window

The register window provides a live display of the 16 general purpose

registers, the instruction pointer and the CPU flags. Here is a sample

Registers r12-r15 have been left out so that the rest of the registers could

be displayed using larger characters. You can change the format of a

register (other than rip) by right clicking on its name. This will pop up a

form allowing you to choose decimal or hexadecimal for that register or

for all the registers. The flags which are currently set are displayed. In

the sample the interrupt flag is set. Some interrupts can be ignored if IF

is set while there are other non-maskable interrupts which are beyond

software control.

Floating point register window

The floating point registers are displayed in a separate dockable window.

Here is an example

The floating point registers can be used to hold floats, doubles, packed

floats, packed doubles and a variety of packed integers of various sizes.

Using AVX instructions doubles the number of packed floats or doubles in

each register. This makes it important to be able to select the format for

the floating point registers. Right clicking on a register or its content will

pop up a menu for selecting formatting one register or all. Then you get to

select from all the possible interpretations of the registers.

231

Projects

A program in ebe is generally managed using a project file to keep track

of the source code files in the program. The name of a project is the name

of the program with “.ebe” appended to the name. Thus to build a program

named “hello”, you would use a project file named “hello.ebe”.

It is not necessary to use a project file with programs consisting of a

single source code file. Ebe starts execution with no known project name

(if not given on the command line). As long as there is no known project

name, it is assumed that there is only 1 source file. Creating a project or

opening a project will change the state so that ebe will be aware of having

a project file. After that point ebe will keep track of the files using the

project file.

Viewing the project window

You may need to check the Project checkbox in the View menu in order to

display the project window. The project window is one of several optional

windows which are intitially placed to the left of the source window. You

can see an empty project window below. You can move the window to be a

“floating” window by left clicking in the title bar of the project window and

dragging it until it is outside of the main window of ebe.

For the project window right clicking will allow you to add or delete

files from the project.

232

Creating a new project

You can create a new project using the “New project” option under the File

menu. This option will allow you to navigate to a new directory and specify

the name of the new project file. After creating the project file, any open

source files will be closed and the project will be empty. Any changes to

the project will be written automatically so there is no need to save a

project file.

Opening a project

You can open an existing project using the “Open project” option under

the File menu. This option will allow you to navigate to a new directory

and open a file with the “.ebe” extension. After opening the project file,

any open source files will be closed and the first file in the project will be

opened in the editor.

Adding files to a project

A right click in the project window will pop up a menu which will allow

you to remove the selected file from the project, open the selected file in

the ebe editor, or add a file to the project. A project is simply a file with a

collection of file names – one per line, so it is also possible to edit a project

file with a text editor.

Closing a project

If you close the active project ebe will return to the default mode of not

using a project. It will close all open files.

Toy box

The ebe toy box is a dockable subwindow which allows experimentation

with expressions in C/C++ or Fortran. The basic idea is to place variable

definitions in one table and expressions in expressions in a second table.

A variable definition includes a name, a type and a value. The types are

selected from a list of simple types in the language. The names and values

must be entered.

The second table has expressions in the first column. After you enter

an expression you click on the “do it” button to the right and ebe generates

233

a program in the selected language, compiles it and executes it. From the

program’s output it determines the type of the expression and its value

which are added to the table. Then you can choose a variety of formats

depending on the type. For the integer types you can choose decimal,

hexadecimal or binary. For the floating point types you can choose

decimal, hexadecimal, binary, binary floating point, or fields. In the toy

box window below I have included several expressions which help in

understanding floating point to integer conversion and floating point

format.

Bit bucket

The ebe bit bucket is a lower level educational tool. It is targeted primarily

at assembly language students. It allows you to experiment with a variety

of computer operations. It allows you to observe how binary operations

like and, or, exlusive or, addition and multiplication work. It shows the

steps in converting a decimal number to binary or hexadecimal. It

illustrates how to convert a floating point number like 1.625 into its

internal representation as a float. Here is an example illustrating

multiplication.

234

You can see that there are 5 tabs in the bit bucket. I have selected

“Integer math”. After that I used the pull down list to the right of

“Operation” to select “Multiplication”. Initially there were 2 “Input” boxes

to enter 2 numbers and a “*” in the “Operator” column on row 3. After the

first clicking of “*” it converted the 2 numbers to binary in column 3. Then

I clicked the “*” again and it filled in row 3 and moved the “*” to row 4.

After a couple more steps the product was presented on row 5.

The 5 tabs include a large number of illustrations. An assembly

language student should find the bit bucket a great tool for learning how

a computer works.

Backtrace window

The backtrace window displays the information gleaned from stepping

backward through the stack and examining the stack frames for each

function invoked. The gdb command for this is “backtrace” or simply “bt”.

In the picture below we see that the function in the top stack frame is time

and the program is stopped at line 18 of “testcopy.c”. Next we see that

time was called from the test function at line 26. The values of the

parameters to test are displayed as well. Last we see that test was called

from main at line 47.

Console

The ebe console provides a way to access gdb directly while debugging. In

its text window it displays all the communication with gdb. There is also

a command entry box where you can issue a gdb command. After you press

“Enter” it executes the command and the results are visible in the text

window. I executed “p $rip” to print the instruction pointer register. The

next instruction to execute is at 0x400ed1 which is located in main.

235

Ebe settings

Using the “Edit settings” under the Edit menu will pop up a form with a

lot of adjustable features about ebe. Here is how it looks when set for a

gray color scheme.

All these settings are stored in “.ebe.ini” in a very simple format, so

it is possible to edit the file successfully. However the settings dialog is

easier to manage.

Note that there is a “Language” option which is set to “English”. Ebe

can also operate in Arabic, Chinese, Danish, French, German, Hindi,

Indonesian, Japanese, Portuguese, Russian, Spanish and Swedish. I have

had excellent assistance for a few languages, but some of these are the

direct result of using Google Translate. Some of the translations might be

comical. I hope that none are offensive.

236

Appendix C

Using scanf and printf

The simplest method for input and output is using the C library’s scanf

and printf functions. These functions can handle virtually all forms of

text input and output converting to/from integer and floating point

format.

It may be that modern programmers are familiar with C++ I/O and not

with C. It would not be simple to call C++ I/O facilities, while it is simple

to call C functions. So there is probably a need for a slight introduction to

the 2 basic workhorses of C I/O: scanf and printf. These are sufficient

for the I/O needs for learning assembly language. Practical uses of

assembly language will likely be writing computational or bit

manipulating functions with no requirement for I/O. Therefore this

appendix will stick to the basics to facilitate writing complete programs

while learning assembly programming.

scanf

The simplest way of explaining how to use scanf is to show C calls,

followed by assembly equivalents. scanf is called with a format string as

its first parameter. Depending on the format string there can be an

arbitrary number of additional parameters. Within the format string are

a series of conversion specifiers. Each specifier is a percent character

followed by one of more letters defining the type of data to convert. Here

are the basic format specifiers:

237

format data type

%d 4 byte integer (int)

%hd 2 byte integer (short)

%ld 4 byte integer (long)

%I64d 8 byte integer (long long)

%f 4 byte floating point (float)

%lf 8 byte floating point (double)

%s character array (C string)

So if we wish to read a double followed by a character string we could use

the format string “%lf %s”.

Each additional parameter for scanf is an address of the data location

to receive the data read and converted by scanf. Here is a sample C call:

 double x;
 char s[100];
 n = scanf (“%lf %s”, &x, s);

scanf will return the number of items converted. In the call above it

will return 2 if a number and a string are successfully entered. The string

will be placed in the array s with a 0 at the end of the string.

Here is how to do the same thing in assembly:

 segment .data
 x dq 0.0
 n dd 0
 s times 100 db 0
 fmt db “%lf %s”,0
 segment .text
 lea rcx, [fmt]
 lea rdx, [x]
 lea r8, [s]
 call scanf
 mov [n], eax

There are a couple of pitfalls possible. First the format string needs a

0 at the end and it can’t be enclosed in the double quotes. Second there

are no floating point parameters - &x is a address parameter and it is

stored in rsi so rax must be set to 0 before the call.

printf

printf allows printing in a wide variety of formats. Like scanf its first

parameter is a format string. The format string contains characters to

print along with conversion specifiers like scanf. Data printed with

printf is likely to be stored in a buffer until a new-line character is

printed. In C, the new-line character can be represented as \n at the end

238

of the format string. Yasm does not support C escape characters in strings,

so it is necessary to explicitly add new-line (0x0a) and 0 bytes.

Here is a C printf call

 char name[64];
 int value;
 printf (“The value of %s is %dn”, name, value);

Here is the same printf call in assembly

 segment .data
 value dd 0
 name times 64 db 0
 fmt db “The value of %s is %d”,0x0a,0
 segment .text
 lea rcx, [fmt]
 lea rdx, [name]
 mov r8d, [value]
 call printf

When you print a floating point value the XMM register’s value must

be copied without conversion into the corresponding general purpose

register. This is most easily done using the instruction “movq” which

moves a value from an XMM register to a general purpose register or the

reverse pattern. Here is some code printing 2 doubles stored in memory

locations.

; printf (“sqrt(%lf) = %lf\n”, a, b);
 segment .data
 fmt db “sqrt(%lf) = %lf”, 0x0a, 0
 segment .text
 lea rcx, [fmt]
 movsd xmm1, [a] ; second parameter
 movq rdx, xmm1 ; also in rdx
 movsd xmm2, [b] ; third parameter
 movq r8, xmm2 ; copied into r8
 call printf

239

Appendix D

Using macros in yasm

Yasm provides both single line macros and multi-line macros. Both of

these can be used to provide abbreviations with meaningful names for

commonly used instructions. While these might obscure the mechanisms

of assembly language while learning the language they can be of

significant utility in practical situations.

Single line macros

A single line macro uses the %define preprocessor command. Let’s

suppose you are tired of seeing 0x0a for the new-line character. You could

define a macro for this as

 %define newline 0x0a

From that point forward you could simply use newline and get 0x0a

inserted in replacement for the macro.

Single line macros can have parameters. Let’s suppose you wanted to

define a while loop macro. You might wish to compare a value in a register

against a value and if a condition is satisfied jump to the top of the loop.

Here is a possible while macro:

 %define while(cc,label) jmp%+cc label

The %+ allows concatenation of tokens. After this definition we could use

code like

 cmp rax, 20
 while(l,.more)

240

Multi-line macros

Using a multi-line macro can simply our while macro to include the

required cmp instruction:

 %macro while 4
 cmp %1, %3
 j%2 %4
 %endmacro

The number 4 on the %macro line suggests that 4 parameters are expected.

You can access each parameter as %1, %2, etc. You can also access the

number of parameters as %0.

Now this definition leaves the fairly pleasant feel of creating an

instruction, since the macro invocation does not use parentheses:

 while rax, l, 20, .more

Admittedly this creates an instruction with 4 parameters which must be

learned, but it simplifies things a little bit.

How about the standard production of a stack frame:

 %macro function 2
 global %1
 %1: push rbp
 mov rbp, rsp
 sub rsp, %2
 %endmacro

We might as well simplify the ending of a function:

 %macro return 1
 mov rax, %1
 leave
 ret
 %endmacro

Now we can write a simple program using these macros:

 function main, 32
 xor eax, eax
 .loop inc rax
 while rax, l, 10, .loop
 return 0

A fairly useful pair of macros from the yasm manual are multipush

and multipop. These were used earlier in the Sobel example. It makes

sense to have a pair of macros to push and pop all callee-save registers for

use in register intensive functions.

 %macro pushsaved
 push rbp
 push rbx
 push r12
 push r13
 push r14
 push r15

241

 %endmacro

 %macro popsaved
 pop r15
 pop r14
 pop r13
 pop r12
 pop rbx
 pop rbp
 %endmacro

Now these by themselves don’t preserve 16 byte stack alignment, so

perhaps a better choice would be needed for some functions. Maybe you

could combine the creation of a stack frame with pushing the rest of the

registers and subtracting from the stack pointer to achieve alignment and

room for local variables.

Preprocessor variables

 Yasm allows defining preprocessor variables which can be used in macros

using %assign. You could assign a variable i in one spot and modify it

later:

 %assign i 1
. . .
 %assign i i+1

For more information about yasm macros visit the yasm web site at
http://www.tortall.net/projects/yasm/manual/html/index.html

which discusses topics like looping and string length.

http://www.tortall.net/projects/yasm/manual/html/index.html

242

Appendix E

Sources for more information

yasm user manual

http://www.tortall.net/projects/yasm/manual/html/index.html is

the location of the yasm user manual. This is quite extensive and a good

reference for learning more about yasm.

nasm user manual

Look at http://www.nasm.us/doc/ for the nasm user manual. This is the

software which nasm is based on and the documentation is fairly similar

to the yasm manual.

Stephen Morse’s 8086/8088 primer

Stephen P. Morse is the architect of the 8086 Intel microprocessor. He has

a primer on the 8086/8088 at

 http://www.stevemorse.org/8086/index.html.

Dr. Paul Carter’s free assembly book

Dr. Carter has prepared an excellent book on 32 bit x86 programming

which can be downloaded at http://www.drpaulcarter.com/pcasm/.

http://www.tortall.net/projects/yasm/manual/html/index.html
http://www.nasm.us/doc/
http://www.stevemorse.org/8086/index.html
http://www.drpaulcarter.com/pcasm/

243

64 bit machine level programming

Drs. Bryant and O’Hallaron of Carnegie Mellon have provided an

excellent treatise dissecting how gcc takes advantage of the x86-64

architecture in a document located at

www.cs.cmu.edu/~{}fp/courses/15213-s07/misc/asm64-handout.pdf

GDB manual

You may find a need to learn more about gdb. Send your browser to

http://www.gnu.org/software/gdb/documentation.

Intel documentation

Intel provides excellent documentation about their processors at

http://www.intel.com/products/processor/manuals/.

You should probably review the architecture in “Intel 64 and IA-32

Architectures Software Developer’s Manual, Volume 1: Basic

Architectures”.

The instructions are described in great detail in “Volume 2A:

Instruction Set Reference, A-M” and “Volume 2B: Instruction Set

Reference, N-Z”. These manuals are quite helpful, but some categorization

of instructions would help. There are a bewildering number of instructions

and looking through the alphabetized list can be overwhelming.

http://www.intel.com/products/processor/manuals/

244

Index

%macro, 209

multipop, 209

multipush, 209

%rep, 202

80386, 45

8086, 45

add, 50, 52, 56

addition

binary, 18

addpd, 138

addps, 138

address, 4, 28

logical, 28

physical, 28, 39

virtual, 38, 39

addsd, 138

addss, 138

ahr, 85

align, 137, 164

alignb, 137

aligned data, 137

and, 71, 72, 74, 85

argc, 130

argv, 130

array, 121

index, 121

Atlas, 3

AVX, 1, 110, 126, 135, 137, 193,

199, 218, 220

binary, 12

to decimal, 12

binary addition, 18

binary constant, 13

binary multiplication, 19

binary number, 4, 12

binary tree, 186

find, 187

insert, 188

new_tree, 187

node struct, 186

print, 189

root struct, 187

traversal, 189

bit, 3, 12, 70, 71

flipper, 73

numbering, 12

setter, 72

bit bucket, 25

bit field, 74, 81, 85

extraction, 74

insertion, 75

bit field selector, 71

bit fields, 70

bit operations, 70

bit test. See bt

bit test and reset. See btr

bit test and set. See bts

break, 93

breakpoint, 33

bss segment, 30, 32

bt, 84

btr, 81, 85

bts, 81, 82, 84, 85

buffered I/O, 167

byte, 4

C stream I/O, 167

C wrapper function, 157

cache, 44, 192

matrix multiply, 193

call, 106

carry, 18

CF, 62, 81, 84

245

cl, 84

cld, 100, 102

close, 160

CloseHandle, 152

cmovl, 129

cmp, 90, 94, 98, 100

cmpsb, 101

command line parameters, 106,

129, 130

comment, 6

common subexpression

elimination, 194

continue, 93

correlation, 215

AVX, 218

C, 215

SSE, 216

counting bits, 93, 201

assembly shift/and, 202

byte at a time, 204

C, 201

popcnt instruction, 204

counting lo, 97

counting loop. See for loop

CR3, 38

CreateFile, 149

cvtdq2ps, 209

cvtpd2ps, 140

cvtps2pd, 140

cvtsd2si, 141

cvtsd2ss, 140

cvtsi2sd, 141

cvtsi2ss, 141

cvtss2sd, 140

cvtss2si, 141

cvttsd2si, 141

cvttss2si, 141

data segment, 30, see

segment…data

db, 20

dd, 20

dec, 58, 85

decimal

to binary, 13

to hexadecimal, 14

DF, 99

direction flag, 99

distance in 3D, 144

div, 65

dl, 84

dot product, 144

double word, 21

doubly-linked list, 178

deque, 178

insert, 179

newlist, 178

node struct, 178

print, 180

queue, 178

stack, 178

traversal, 180

do-while, 93

do-while loop, 96

dq, 20

dw, 20

ebe, 8, 46, 58

array definition, 122

breakpoint, 33, 52

data window, 51

next, 47, 108

register window, 46

run, 9, 33, 47

source window, 51

step, 47, 107, 108

terminal window, 131

echo, 11

eflags, 46, 81, 90

eliminate stack frames, 198

environment, 105

EOF, 169

equ, 115, 117, 157

errno, 159

exit, 157

exponent, 20, 21, 23, 24

exponent bias, 20

exponent field, 20, 21, 23, 24

extern, 115, 157

fclose, 172

fgetc, 169, 170

fgets, 170

FILE, 160, 168, 169

file name patterns, 130

float, 20, 23

floating point

246

addition, 23

exponent, 20

fraction, 20

to decimal, 23

floating point comparison, 141

floating point conversion, 140

floating point multiplication, 24

floating point number, 19

fopen, 168

mode, 168

for loop, 97

fprintf, 169

fputc, 169, 170

fputs, 170

fraction field, 20, 21, 23, 24

fread, 171

free, 126

fscanf, 169

fseek, 171

ftell, 171

function, 105, 106, 109

parameters, 109, 110, 116

return value, 109

variable number of

parameters, 110

fwrite, 171

gcc, 7, 8

function prefix, 7

generate assembly, 95

stack size, 37

unroll loops, 95

gdb

backtrace, 111

getchar, 167

global, 7

HANDLE, 149

hash function, 181

integer, 181

string, 182

hash table, 180, 181

find, 183

insert, 183

node struct, 182

print, 184

traversal, 184

heap, 30

heap segment, 30

hexadecimal, 5, 14, 21, 23

to binary, 15

Horner’s rule, 145

huge page, 41

idiv, 65

to shift, 72

IEEE 754, 20

IEEE 754 format, 19

if, 91

IF, 47

if/else, 91

if/else-if/else, 92

immediate, 47

imul, 60

1 operand, 61

2 operands, 62

3 operands, 62

inc, 56, 98

index, 82

infinity, 20

inline functions, 199

instruction, 5, 7

integer, 55

maximum, 16

minimum, 16

signed, 16, 17

unsigned, 16

interchange loops, 197

interrupt enable flag. See IF

ja, 142

jae, 90, 142

jb, 90, 142

jbe, 142

jc, 90

je, 90, 98, 100

jg, 90

jge, 90, 91, 95

jl, 90

jle, 90

jmp, 88, 89, 98

rip relative, 88

jnae, 90

jnb, 90

jnc, 90

jne, 90

jng, 90

jnge, 90

247

jnl, 90, 91, 94

jnle, 90

jnz, 90, 98, 100

jump. See jmp

conditional, 90

jz, 90, 101

kernel mode, 148

label, 7

large page, 41

ld, 115

lea, 111

leaf function, 112, 129

least significant bit, 12

least significant byte first, 21

leave, 56, 112

linked list, 174

insert, 175

newlist, 175

node struct, 175

print, 176

traversal, 176

Linux, 1, 2, 7, 8, 28, 29, 30, 39,

49, 109, 110, 148, 158

local label, 127

local labels, 89

local variable, 116, 127

lodsb, 100

logical address, 28

loop, 98

branch at bottom, 195

loop invariant, 198

lseek, 159, 160

machine language, 5

main, 7, 106

malloc, 30, 125, 126, 127, 174,

187

mapping registers, 29

mask, 71, 72, 73, 75, 85

mathematical functions, 142

maxpd, 143

maxps, 143

maxsd, 142

maxss, 142

memcmp, 101

memory

address, 28

page, 28

protection, 29

memory latency, 44

memory reference, 122

merge loops, 196

minpd, 143

minps, 143

minsd, 142

minss, 142

most significant bit, 12

mov, 46, 47, 48, 51

from memory, 49

immediate, 47

register to register, 52

sign extend. See movsx

to memory, 51

zero extend. See movzx

movapd, 137

movaps, 137

movdqa, 209

movdqu, 209

movsb, 99

movsd, 137

movss, 137

movsx, 50

movsxd, 51

movupd, 137

movups, 137

movzx, 50, 101

multiplication

binary, 19

neg, 55

negative, 21

negative infinity, 20

new, 30

nibble, 5, 15, 23, 24

not, 70, 71

NULL, 170, 174

OF, 56, 58, 62

open, 157, 158

or, 72, 86

OS X, 1, 2, 7, 8, 28, 39, 49, 110

overflow flag. See OF

packed data, 137

paddw, 209

page

fault, 29

huge, 41

248

kernel, 28

large, 41

user, 28

page table, 41

page directory pointer table, 40

page directory table, 40

page table, 40

palindrome, 104

parity flag. See PF

perror, 159

PF, 46

physical address, 28, 39, 41

pipelining, 44

PML4, 38, 39

pmullw, 209

polynomial evaluation, 145

pop, 106

popcnt, 204

positive infinity, 20

printf, 105, 110, 111, 115, 128

pseudo-op, 7

psrldq, 209

psubw, 209

punpckhbw, 209

punpckhwd, 209

punpcklbw, 209

punpcklwd, 209

push, 105

pxor, 209

pythagorean triple, 63

Pythagorean triple, 104

QNaN, 141

quad-word, 21

quotient, 65

random, 127

read, 159, 167

ReadFile, 153

recursion, 116

register, 4, 44, 45

ah, 45

al, 45, 48, 50, 99, 100

ax, 45, 46, 50, 99

bh, 45

bl, 45

bp, 45

bx, 45

ch, 45

cl, 45, 74

cx, 45

dh, 45

di, 45

dl, 45

eax, 45, 47, 48, 50, 99

ebp, 45

ebx, 45

ecx, 45

edi, 45

edx, 45

eflags, 46, 53

esi, 45

esp, 45

preserved, 115

r12-r15, 115

r8, 110

r8-r15, 46

r9, 110

rax, 45, 47, 48, 49, 50, 52, 99,

110

rbp, 4, 46, 111, 115

rbx, 45, 52, 115

rcx, 45, 98, 99, 100, 101, 110

rdi, 46, 99, 100, 101, 110, 115

rdx, 45, 110

rdx:rax, 61, 65

rflags, 45, 46, 56

rip, 45, 49, 106, 107, 108, 109

rsi, 46, 99, 100, 101, 110, 115

rsp, 46, 105, 106, 111, 112, 118

sp, 45

ST0, ST1, 135

xmm0, 110

xmm0-xmm15, 135

ymm0-ymm15, 136

register window, 46

remainder, 65

rep, 99, 100

repe, 101

repne, 100, 101

resb, 32

resd, 32

ret, 107, 112

return address, 106

rip, 46

rip relative, 49

249

rol, 78

ror, 78, 86

rotate left. See rol

rotate right. See ror

rounding, 143

rounding mode, 143

roundps, 143

roundsd, 143

rsp, 7

sal, 74

sar, 74

scanf, 105, 110

scasb, 100

section. see segment

sector, 167

segment, 7

.bss, 30, 32

.data, 30

.text, 30

data, 20

text, 7

segmentation fault, 29

set, 71, 81, 82

complement, 71

difference, 72

intersection, 72

setc, 81, 84

SF, 53, 55, 56, 58, 67

shift, 74

left, 74

right, 74

shift arithmetic left. See sal

shift arithmetic right. See sar

shift left. See shl

shift right. See shr

shl, 74, 85, 86

shr, 74, 85, 86

sign bit, 16, 21, 23, 74

sign flag. See SF

signed, 16

signed integer, 16, 17

SIMD, 1, 135

SNaN, 141

Sobel, 207

C, 207

SSE, 208

specialized instructions, 199

split loops, 197

sqrtpd, 143

sqrtps, 143

sqrtsd, 143

sqrtss, 143

sscanf, 170

SSE, 1, 135

stack, 35, 106, 108

alignment, 110, 112, 184, 247

stack frame, 111, 112

stack segment, 30

stack size, 37

stack size option, 37

status, 11

std, 102

stdin, 105

stosb, 100

stosd, 100

strcmp, 101

strength reduction, 194

strlen, 100

struc, 162

alignment, 164

struct, 162, 163

array, 164

sub, 52, 58

subpd, 139

subps, 139

subsd, 138

subss, 138

switch

using jmp, 89

syscall, 157

system call, 148

System V ABI, 109

text segment, 30

TLB, 42

translation lookaside buffer, 41

two’s complement, 16, 17

ucomisd, 142

ucomiss, 142

ungetc, 169

unrolling loops, 195

unsigned, 16

unsigned integer, 16

vaddpd, 138

vaddps, 138

250

virtual address, 39

VMMap, 31

vmoupd, 137

vmovups, 137

vsubpd, 139

vsubps, 139

while, 93, 97

while loop, 93, 95

win32n.inc, 150

Windows, 2, 42, 109, 110, 115

Windows API, 149

word, 20

write, 157, 159

WriteFile, 150

x86-64, 45

xor, 58, 73

yasm, 8, 21, 115

listing, 21

zero flag. See ZF

ZF, 47, 55, 56, 58, 65, 67

	Preface
	Acknowledgements
	Chapter 1 Introduction
	1.1 Why study assembly language?
	So what is good about assembly language?

	1.2 What is a computer?
	Bytes
	Program execution

	1.3 Machine language
	1.4 Assembly language
	1.5 Assembling and linking
	1.6 Using ebe to run the program

	Chapter 2 Numbers
	2.1 Binary numbers
	2.2 Hexadecimal numbers
	2.3 Integers
	Binary addition
	Binary multiplication

	2.4 Floating point numbers
	Converting decimal numbers to floats
	Converting floats to decimal
	Floating point addition
	Floating point multiplication

	2.5 Exploring with the bit bucket

	Chapter 3 Computer memory
	3.1 Memory mapping
	3.2 Process memory model in Windows
	3.3 Memory example
	3.4 Examining memory with ebe
	Setting a breakpoint
	Running a program and viewing a variable

	Chapter 4 Memory mapping in 64 bit mode
	4.1 The memory mapping register
	4.2 Page Map Level 4
	4.3 Page Directory Pointer Table
	4.4 Page Directory Table
	4.5 Page Table
	4.6 Large pages
	4.7 CPU Support for Fast Lookups

	Chapter 5 Registers
	5.1 Observing registers in ebe
	5.2 Moving a constant into a register
	5.3 Moving values from memory to registers
	5.4 Moving values from a register to memory
	5.5 Moving data from one register to another

	Chapter 6 A little bit of math
	6.1 Negation
	6.2 Addition
	6.3 Subtraction
	6.4 Multiplication
	One operand imul
	Two and three operand imul
	Testing for a Pythagorean triple

	6.5 Division
	6.6 Conditional move instructions
	6.7 Why move to a register?

	Chapter 7 Bit operations
	7.1 Not operation
	7.2 And operation
	7.3 Or operation
	7.4 Exclusive or operation
	7.5 Shift operations
	7.6 Bit testing and setting
	7.7 Extracting and filling a bit field

	Chapter 8 Branching and looping
	8.1 Unconditional jump
	8.2 Conditional jump
	Simple if statement
	If/else statement
	If/else-if/else statement

	8.3 Looping with conditional jumps
	While loops
	Counting 1 bits in a memory quad-word
	Do-while loops
	Counting loops

	8.4 Loop instructions
	8.5 Repeat string (array) instructions
	String instructions

	Chapter 9 Functions
	9.1 The stack
	9.2 Call instruction
	9.3 Return instruction
	9.4 Function parameters and return value
	9.5 Stack frames
	Function to print the maximum of 2 integers

	9.6 Recursion

	Chapter 10 Arrays
	10.1 Array address computation
	10.2 General pattern for memory references
	10.3 Allocating arrays
	10.4 Processing arrays
	Creating the array
	Filling the array with random numbers
	Printing the array
	Finding the minimum value
	Main program for the array minimum

	10.5 Command line parameter array

	Chapter 11 Floating point instructions
	11.1 Floating point registers
	11.2 Moving floating point data
	Moving scalars
	Moving packed data

	11.3 Addition
	11.4 Subtraction
	11.5 Multiplication and division
	11.6 Conversion
	Converting to a different length floating point
	Converting floating point to/from integer

	11.7 Floating point comparison
	11.8 Mathematical functions
	Minimum and maximum
	Rounding
	Square roots

	11.9 Sample code
	Distance in 3D
	Dot product of 3D vectors
	Polynomial evaluation

	Chapter 12 Accessing Files
	12.1 File access with the Windows API
	Creating a file
	Writing to a file
	Complete program to create a file
	Reading from a file
	Program to copy a file

	12.2 Portable C file access functions
	open
	read and write
	lseek
	close

	Chapter 13 Structs
	13.1 Symbolic names for offsets
	13.2 Allocating and using an array of structs

	Chapter 14 Using the C stream I/O functions
	14.1 Opening a file
	14.2 fscanf and fprintf
	14.3 fgetc and fputc
	14.4 fgets and fputs
	14.5 fseek and ftell
	14.6 fclose

	Chapter 15 Data structures
	15.1 Linked lists
	List node structure
	Creating an empty list
	Inserting a number into a list
	Traversing the list

	15.2 Doubly-linked lists
	Doubly-linked list node structure
	Creating a new list
	Inserting at the front of the list
	List traversal

	15.3 Hash tables
	A good hash function for integers
	A good hash function for strings
	Hash table node structure and array
	Function to find a value in the hash table
	Insertion code
	Printing the hash table
	Testing the hash table

	15.4 Binary trees
	Binary tree node and tree structures
	Creating an empty tree
	Finding a key in a tree
	Inserting a key into the tree
	Printing the keys in order

	Chapter 16 High performance assembly
	16.1 Efficient use of cache
	16.2 Common subexpression elimination
	16.3 Strength reduction
	16.4 Use registers efficiently
	16.5 Use fewer branches
	16.6 Convert loops to branch at the bottom
	16.7 Unroll loops
	16.8 Merge loops
	16.9 Split loops
	16.10 Interchange loops
	16.11 Move loop invariant code outside loops
	16.12 Remove recursion
	16.13 Eliminate stack frames
	16.14 Inline functions
	16.15 Reduce dependencies to allow super-scalar execution
	16.16 Use specialized instructions

	Chapter 17 Counting bits in an array
	17.1 C function
	17.2 Counting 1 bits in assembly
	17.3 Precomputing the number of bits in each byte
	17.4 Using the popcnt instruction

	Chapter 18 Sobel filter
	18.1 Sobel in C
	18.2 Sobel computed using SSE instructions

	Chapter 19 Computing Correlation
	19.1 C implementation
	19.2 Implementation using SSE instructions
	19.3 Implementation using AVX instructions

	Appendix A Installing ebe
	Installing from binary packages
	Installing from source on Windows
	Installing Cygwin
	Installing the required language tools

	Downloading the source code
	Installing the Visual Studio command line tools
	Installing the Qt development tools

	Compiling ebe and installing

	Appendix B Using ebe
	Major features
	Tooltips
	Help
	Menu
	Movable toolbars
	Movable subwindows

	Editing
	Navigation
	Cut, copy and paste
	Undo/redo
	Find and replace
	Deleting text
	Using tabs
	Auto-indent
	Prettify
	Indent/unindent
	Comment/uncomment
	Word/number completion
	Editing multiple files

	Debugging
	Breakpoints
	Running a program
	Terminal window
	Next and step
	Continue
	Data window
	Register window
	Floating point register window

	Projects
	Viewing the project window
	Creating a new project
	Opening a project
	Adding files to a project
	Closing a project

	Toy box
	Bit bucket
	Backtrace window
	Console
	Ebe settings

	Appendix C Using scanf and printf
	scanf
	printf

	Appendix D Using macros in yasm
	Single line macros
	Multi-line macros
	Preprocessor variables

	Appendix E Sources for more information
	yasm user manual
	nasm user manual
	Stephen Morse’s 8086/8088 primer
	Dr. Paul Carter’s free assembly book
	64 bit machine level programming
	GDB manual
	Intel documentation

	Index

