
Microsoft FAT Specification

Microsoft Confidential. © 2004 Microsoft Corporation. All rights reserved Page 1

Microsoft FAT Specification

Microsoft Corporation

August 30 2005

Microsoft makes this contribution to the SD Card Association ("SDA") pursuant to the SDA IPR Policy, with

acknowledgement by the SDA Board of Directors of the following:

© 2004 Microsoft Corporation. All rights reserved.

Ownership. Microsoft retains ownership of its copyrights in and to the Microsoft Contribution. Nothing in SDA’s

Intellectual Property Policy shall be construed as an assignment of such copyrights to SDA or any other person or

entity. Microsoft acknowledges and will not challenge SDA’s assertion of copyright ownership according to SDA’s

Intellectual Property Policy of final SDA specifications subject to the underlying copyrights in Microsoft’s

Contribution and the terms hereof.

Development License. Microsoft hereby grants to SDA and to each other Member a worldwide, irrevocable,

non-transferable, non-sublicensable, royalty-free, non-exclusive, perpetual, fully-paid, copyright license

under its copyrights in the Microsoft Contribution to use, copy, modify, disclose and create derivative works

of such Microsoft Contribution for the sole purpose of incorporation (whether by express incorporation or

incorporation by reference) of such Microsoft Contribution, and/or modifications thereof into any SDA

Specifications, and for the development of any SDA Specifications.

Publication License. Microsoft hereby grants to SDA a worldwide, irrevocable, non-transferable, royalty-

free, non-exclusive, perpetual, fully-paid, copyright license (with the right to sublicense) under its copyrights

in the Microsoft Contribution to use, copy, disclose, publicly display and perform, publish and distribute

such Microsoft Contribution, and/or modifications thereof (which may be made by SDA or any Member),

solely as part of and/or incorporated in (whether by express incorporation or incorporation by reference) one

or more SDA Final Specification(s).

No other rights are granted by implication, estoppel or otherwise.

THE SPECIFICATION IS PROVIDED "AS IS," AND MICROSOFT MAKES NO REPRESENTATIONS OR

WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE;

THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE

IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS,

COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

MICROSOFT WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR

CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO ANY USE OR DISTRIBUTION OF

THE SPECIFICATION.

DO NOT REDISTRIBUTE EXCEPT AS EXPRESSLY PERMITTED HEREIN

Microsoft FAT Specification

Microsoft Confidential. © 2004 Microsoft Corporation. All rights reserved Page 2

Table of Contents

... 1
Microsoft FAT Specification... 1
Table of Contents .. 2
Overview and Purpose .. 3
Section 1: Definitions and Notations.. 4
1.1 Definitions:... 4
1.2 Notations ... 4

Section 2: Volume Structure.. 6
Section 3: Boot Sector and BPB.. 7
3.1 BPB structure common to FAT12, FAT16, and FAT32 implementations 7
3.2 Extended BPB structure for FAT12 and FAT16 volumes ... 10
3.3 Extended BPB structure for FAT32 volumes .. 11
3.4 Initialization of a FAT volume .. 12
3.5 Determination of FAT type when mounting the volume.. 14
3.6 Backup BPB Structure .. 15

Section 4: FAT ... 16
4.1: Determination of FAT entry for a cluster .. 17
4.2 Reserved FAT entries ... 19
4.3 Free space determination ... 20
4.4 Other points to note... 20

Section 5: File System Information (FSInfo) Structure .. 21
Section 6: Directory Structure.. 23
6.1 File/Directory Name (field DIR_Name).. 24
6.2 File/Directory Attributes ... 25
6.3 Date / Time.. 26
6.4 File/Directory Size ... 27
6.5 Directory creation .. 27
6.6 Root Directory ... 28
6.7 File allocation .. 28

Section 7: Long File Name Implementation (optional) .. 30
7.1 Ordinal Number Generation .. 31
7.2 Checksum Generation .. 32
7.3 Example illustrating persistence of a long name... 32
7.4 Rules governing name creation and matching.. 33

Section 8: EA Support (optional) ... 35
Appendix 1: Example BPB for 512 byte sector-size 128 MB HDD media formatted FAT16 36
Appendix 2: Example BPB for 512 byte sector-size 128 MB HDD media formatted FAT32 37

Microsoft FAT Specification

Microsoft Confidential. © 2004 Microsoft Corporation. All rights reserved Page 3

Overview and Purpose

This document describes the on-media FAT file system format. This document is written to help
guide development of FAT implementations that are compatible with those provided by Microsoft.

This document does not describe all algorithms contained in the Microsoft FAT file system driver
implementation neither does it describe all algorithms contained in associated utilities (Microsoft
format and chkdsk utilities). However, it is expected that the reader will refer to the Microsoft
Corporation FAT file system reference source code for additional clarification as/when needed.

There are three variants of the FAT on-disk format, namely:

• FAT12
• FAT16
• FAT32

Data structures comprising all three variants are described here. Also provided are descriptions of
specific algorithms that will be useful to the engineer implementing a FAT driver for reading
and/or writing to media.

It is expected that the FAT Test Specification document will be used by the reader to validate
interoperability and correctness of the resultant FAT implementation.

Microsoft FAT Specification

Microsoft Confidential. © 2004 Microsoft Corporation. All rights reserved Page 4

Section 1: Definitions and Notations

1.1 Definitions:

• byte

A string of binary digits operated upon as a unit.

• bad (defective) sector

A sector whose contents cannot be read or one that cannot be written.

• file

A named stream of bytes representing a collection of information.

• sector

A unit of data that can be accessed independently of other units on the media

• cluster

A unit of allocation comprising a set of logically contiguous sectors. Each cluster within the
volume is referred to by a cluster number “N”. All allocation for a file must be an integral
multiple of a cluster.

• partition

An extent of sectors within a volume.

• volume

A logically contiguous sector address space as specified in the relevant standard for
recording.

1.2 Notations

� Numerical Notation

Numbers in decimal notation are represented by decimal digits, namely 0 to 9.

Numbers in hexadecimal notation are represented as a sequence of one or more
hexadecimal digits namely 0 to 9 and A to F, prefixed by “0x”.

Zero represents a single bit with the value 0.

� Arithmetic Notation

The notation ip(x) shall mean the integer part of x.

The notation ceil(x) shall mean the minimum integer that is greater than x.

Microsoft FAT Specification

Microsoft Confidential. © 2004 Microsoft Corporation. All rights reserved Page 5

The notation rem(x,y) shall mean the remainder of the integer division of x by y.

Microsoft FAT Specification

Microsoft Confidential. © 2004 Microsoft Corporation. All rights reserved Page 6

Section 2: Volume Structure

A FAT file system volume is composed of four basic regions, which are laid out in this order on
the volume:
 0 – Reserved Region
 1 – FAT Region
 2 – Root Directory Region (doesn’t exist on FAT32 volumes)
 3 – File and Directory Data Region

The below figure illustrates the four regions in a volume formatted FAT:

All of the FAT file systems were originally developed for the IBM PC machine architecture.
Hence, on disk data structures for the FAT format are all “little endian.”

To illustrate, below is an instance of a 32-bit FAT entry stored on disk as a series of four 8-bit
bytes—the first being byte[0] and the last being byte[3]. The 32 bits numbered 00 through 31 are
stored as follows (00 being the least significant bit):

byte[3] 3 3 2 2 2 2 2 2
 1 0 9 8 7 6 5 4

byte[2] 2 2 2 2 1 1 1 1
 3 2 1 0 9 8 7 6

byte[1] 1 1 1 1 1 1 0 0
 5 4 3 2 1 0 9 8

byte[0] 0 0 0 0 0 0 0 0

7 6 5 4 3 2 1 0

B
P

B
…

File
Allocation

Table

FAT
Copy

Root
Directory

B
P

B

Reserved Region FAT Region Root Directory
Region

(FAT12 / FAT16)

File & Directory
(Data) Region

Data

mckin
高亮

mckin
高亮

mckin
高亮

mckin
高亮

Microsoft FAT Specification

Microsoft Confidential. © 2004 Microsoft Corporation. All rights reserved Page 7

Section 3: Boot Sector and BPB

The BPB (BIOS Parameter Block) is located in the first sector of the volume in the Reserved
Region. This sector is sometimes called the “boot sector” or the “0

th
 sector”. The important fact to

note is that this sector is simply the first sector of the volume.

All FAT volumes must have a BPB in the boot sector. The BPB has evolved over the years as
follows:

• The FAT implementation in MS-DOS 1.x did not include a BPB (introduced in MS-DOS
2.x)

• The BPB in MS-DOS 3.x was modified to allow > 64K sectors
• For FAT32, the BPB differs from that for FAT16/FAT12 beginning at offset 36

The BPB in the boot sector of a FAT volume must always have all of the BPB fields for either the
FAT12/FAT16 or FAT32 BPB type. This ensures maximum compatibility of the FAT volume and
will also ensure that all FAT file system drivers understand and support the volume correctly.

NOTE: In the following description, all the fields whose names start with BPB_ are part of the
BPB. All the fields whose names start with BS_ are part of the boot sector and not really part of
the BPB.

The fields comprising the BPB are described further in this section.

3.1 BPB structure common to FAT12, FAT16, and FAT32
implementations

The below table describes the fields in the BPB that are common to all FAT variants.

Descriptive name
of field

Offset
(byte)

Size
(bytes)

Description

BS_jmpBoot 0 3 Jump instruction to boot code. This field has two
allowed forms:

jmpBoot[0] = 0xEB, jmpBoot[1] = 0x??,
jmpBoot[2] = 0x90

and

jmpBoot[0] = 0xE9, jmpBoot[1] = 0x??,
jmpBoot[2] = 0x??

0x?? indicates that any 8-bit value is allowed in
that byte. What this forms is a three-byte Intel x86
unconditional branch (jump) instruction that jumps
to the start of the operating system bootstrap code.
This code typically occupies the rest of sector 0 of
the volume following the BPB and possibly other
sectors. Either of these forms is acceptable.
JmpBoot[0] = 0xEB is the more frequently used
format.

Microsoft FAT Specification

Microsoft Confidential. © 2004 Microsoft Corporation. All rights reserved Page 8

BS_OEMName 3 8 OEM Name Identifier. Can be set by a FAT
implementation to any desired value.

Typically this is some indication of what system
formatted the volume.

BPB_BytsPerSec 11 2 Count of bytes per sector. This value may take on
only the following values: 512, 1024, 2048 or 4096.

BPB_SecPerClus 13 1 Number of sectors per allocation unit. This value
must be a power of 2 that is greater than 0. The
legal values are 1, 2, 4, 8, 16, 32, 64, and 128.

BPB_RsvdSecCnt 14 2 Number of reserved sectors in the reserved region
of the volume starting at the first sector of the
volume. This field is used to align the start of the
data area to integral multiples of the cluster size
with respect to the start of the partition/media.

This field must not be 0 and can be any non-zero
value.

This field should typically be used to align the start
of the data area (cluster #2) to the desired
alignment unit, typically cluster size.

BPB_NumFATs 16 1 The count of file allocation tables (FATs) on the
volume. A value of 2 is recommended although a
value of 1 is acceptable.

BPB_RootEntCnt 17 2 For FAT12 and FAT16 volumes, this field contains
the count of 32-byte directory entries in the root
directory. For FAT32 volumes, this field must be set
to 0. For FAT12 and FAT16 volumes, this value
should always specify a count that when multiplied
by 32 results in an even multiple of
BPB_BytsPerSec.

For maximum compatibility, FAT16 volumes should
use the value 512.

BPB_TotSec16 19 2 This field is the old 16-bit total count of sectors on
the volume. This count includes the count of all
sectors in all four regions of the volume.

This field can be 0; if it is 0, then BPB_TotSec32
must be non-zero. For FAT32 volumes, this field
must be 0.

For FAT12 and FAT16 volumes, this field contains
the sector count, and BPB_TotSec32 is 0 if the
total sector count “fits” (is less than 0x10000).

Microsoft FAT Specification

Microsoft Confidential. © 2004 Microsoft Corporation. All rights reserved Page 9

BPB_Media 21 1 The legal values for this field are 0xF0, 0xF8, 0xF9,
0xFA, 0xFB, 0xFC, 0xFD, 0xFE, and 0xFF.

0xF8 is the standard value for “fixed” (non-
removable) media. For removable media, 0xF0 is
frequently used.

BPB_FATSz16 22 2 This field is the FAT12/FAT16 16-bit count of
sectors occupied by one FAT. On FAT32 volumes
this field must be 0, and BPB_FATSz32 contains
the FAT size count.

BPB_SecPerTrk 24 2 Sectors per track for interrupt 0x13.

This field is only relevant for media that have a
geometry (volume is broken down into tracks by
multiple heads and cylinders) and are visible on
interrupt 0x13.

BPB_NumHeads 26 2 Number of heads for interrupt 0x13. This field is
relevant as discussed earlier for BPB_SecPerTrk.

This field contains the one based “count of heads”.
For example, on a 1.44 MB 3.5-inch floppy drive
this value is 2.

BPB_HiddSec 28 4 Count of hidden sectors preceding the partition that
contains this FAT volume. This field is generally
only relevant for media visible on interrupt 0x13.

This field must always be zero on media that are
not partitioned.

NOTE: Attempting to utilize this field to align the
start of data area is incorrect.

BPB_TotSec32 32 4 This field is the new 32-bit total count of sectors on
the volume. This count includes the count of all
sectors in all four regions of the volume.

This field can be 0; if it is 0, then BPB_TotSec16
must be non-zero. For FAT12/FAT16 volumes, this
field contains the sector count if BPB_TotSec16 is
0 (count is greater than or equal to 0x10000).

For FAT32 volumes, this field must be non-zero.

At this point, the BPB/boot sector for FAT12 and FAT16 differs from the BPB/boot sector for
FAT32.

NOTE: It is recommended that the first sector of the partition (if any) be aligned to the required
alignment unit.

Microsoft FAT Specification

Microsoft Confidential. © 2004 Microsoft Corporation. All rights reserved Page 10

3.2 Extended BPB structure for FAT12 and FAT16 volumes

If the volume has been formatted FAT12 or FAT16, the remainder of the BPB structure must be
as described below:

Descriptive
name of field

Offset
(byte)

Size
(bytes)

Description

BS_DrvNum 36 1 Interrupt 0x13 drive number. Set value to 0x80 or
0x00.

BS_Reserved1 37 1 Reserved. Set value to 0x0.

BS_BootSig 38 1 Extended boot signature. Set value to 0x29 if
either of the following two fields are non-zero.

This is a signature byte that indicates that the
following three fields in the boot sector are
present.

BS_VolID 39 4 Volume serial number.

This field, together with BS_VolLab, supports
volume tracking on removable media. These
values allow FAT file system drivers to detect that
the wrong disk is inserted in a removable drive.

This ID should be generated by simply combining
the current date and time into a 32-bit value.

BS_VolLab 43 11 Volume label. This field matches the 11-byte
volume label recorded in the root directory.

NOTE: FAT file system drivers must ensure that
they update this field when the volume label file in
the root directory has its name changed or
created. The setting for this field when there is no
volume label is the string “NO NAME ”.

BS_FilSysType 54 8 One of the strings “FAT12 ”, “FAT16 ”, or “FAT
”.

NOTE: This string is informational only and does
not determine the FAT type.

- 62 448 Set to 0x00

Signature_word 510 2 Set to 0x55 (at byte offset 510) and 0xAA (at byte
offset 511)

- 512 All
remaining
bytes in
sector

Set to 0x00 (only for media where
BPB_BytsPerSec > 512

Microsoft FAT Specification

Microsoft Confidential. © 2004 Microsoft Corporation. All rights reserved Page 11

3.3 Extended BPB structure for FAT32 volumes

If the volume has been formatted FAT32, the remainder of the BPB structure must be as
described below:

Descriptive
name of field

Offset
(byte)

Size
(bytes)

Description

BPB_FATSz32 36 4 This field is the FAT32 32-bit count of sectors occupied
by one FAT.

Note that BPB_FATSz16 must be 0 for media formatted
FAT32.

BPB_ExtFlags 40 2 Set as described below:

Bits 0-3 -- Zero-based number of active FAT. Only

valid if mirroring is disabled.
Bits 4-6 -- Reserved.
Bit 7 -- 0 means the FAT is mirrored at runtime into

all FATs.
 -- 1 means only one FAT is active; it is the one

referenced in bits 0-3.
Bits 8-15 -- Reserved.

BPB_FSVer 42 2 High byte is major revision number. Low byte is minor
revision number. This is the version number of the
FAT32 volume.

Must be set to 0x0.

BPB_RootClus 44 4 This is set to the cluster number of the first cluster of
the root directory,

This value should be 2 or the first usable (not bad)
cluster available thereafter.

BPB_FSInfo 48 2 Sector number of FSINFO structure in the reserved area
of the FAT32 volume. Usually 1.

NOTE: There is a copy of the FSINFO structure in the
sequence of backup boot sectors, but only the copy
pointed to by this field is kept up to date (i.e., both the
primary and backup boot record point to the same
FSINFO sector).

BPB_BkBootSe
c

50 2 Set to 0 or 6.

If non-zero, indicates the sector number in the
reserved area of the volume of a copy of the boot
record.

BPB_Reserved 52 12 Reserved. Must be set to 0x0.

Microsoft FAT Specification

Microsoft Confidential. © 2004 Microsoft Corporation. All rights reserved Page 12

BS_DrvNum 64 1 Interrupt 0x13 drive number. Set value to 0x80 or
0x00.

BS_Reserved1 65 1 Reserved. Set value to 0x0.

BS_BootSig 66 1 Extended boot signature. Set value to 0x29 if either of
the following two fields are non-zero.

This is a signature byte that indicates that the
following three fields in the boot sector are present.

BS_VolID 67 4 Volume serial number.

This field, together with BS_VolLab, supports
volume tracking on removable media. These values
allow FAT file system drivers to detect that the wrong
disk is inserted in a removable drive.

This ID should be generated by simply combining the
current date and time into a 32-bit value.

BS_VolLab 71 11 Volume label. This field matches the 11-byte volume
label recorded in the root directory.

NOTE: FAT file system drivers must ensure that they
update this field when the volume label file in the root
directory has its name changed or created. The
setting for this field when there is no volume label is
the string “NO NAME ”.

BS_FilSysType 82 8 Set to the string:”FAT32 ”.

NOTE: This string is informational only and does not
determine the FAT type.

- 90 420 Set to 0x00

Signature_word 510 2 Set to 0x55 (at byte offset 510) and 0xAA (at byte
offset 511)

- 512 All
remainin
g bytes
in sector

Set to 0x00 (only for media where BPB_BytsPerSec
> 512

3.4 Initialization of a FAT volume

Determination of FAT type (FAT12, FAT16, or FAT32) is dependent on the number of clusters
(described in Section 3.5 below).

This section describes the determination of values for specific fields in the BPB during volume
initialization for a given target volume. FAT implementations must be capable of mounting media
with all legal values for fields comprising the BPB.

Microsoft FAT Specification

Microsoft Confidential. © 2004 Microsoft Corporation. All rights reserved Page 13

• Floppy disks are formatted as FAT12. A simple (pre-specified) table determines the BPB
structure contents for floppy media. Note that media size for FAT12 volumes must be <=
4MB.

• For 512 byte sector sized media: if volume size is < 512 MB, the volume is formatted

FAT16 else it is formatted FAT32. It is possible to override the default FAT type selection.

The below tables are used by the Microsoft Corporation FAT format utility - an entry in these
tables is selected based on the size of the volume in 512 byte sectors (the value that will go
in BPB_TotSec16 or BPB_TotSec32), and the value that this table sets is the

BPB_SecPerClus value:

struct DSKSZTOSECPERCLUS {
 DWORD DiskSize;
 BYTE SecPerClusVal;
 };

 /*
*This is the table for FAT16 drives. NOTE that this table includes
* entries for disk sizes larger than 512 MB even though typically
* only the entries for disks < 512 MB in size are used.
* The way this table is accessed is to look for the first entry
* in the table for which the disk size is less than or equal
* to the DiskSize field in that table entry. For this table to
* work properly BPB_RsvdSecCnt must be 1, BPB_NumFATs
* must be 2, and BPB_RootEntCnt must be 512. Any of these values
* being different may require the first table entries DiskSize value
* to be changed otherwise the cluster count may be to low for FAT16.
 */
 DSKSZTOSECPERCLUS DskTableFAT16 [] = {
 {8400, 0}, /* disks up to 4.1 MB, the 0 value for SecPerClusVal trips an error */
 {32680, 2}, /* disks up to 16 MB, 1k cluster */
 {262144, 4}, /* disks up to 128 MB, 2k cluster */
 {524288, 8}, /* disks up to 256 MB, 4k cluster */
 {1048576, 16}, /* disks up to 512 MB, 8k cluster */
 /* The entries after this point are not used unless FAT16 is forced */
 {2097152, 32}, /* disks up to 1 GB, 16k cluster */
 {4194304, 64}, /* disks up to 2 GB, 32k cluster */
 {0xFFFFFFFF, 0} /*any disk greater than 2GB, 0 value for SecPerClusVal trips an error */
 };

/*
* This is the table for FAT32 drives. NOTE that this table includes
* entries for disk sizes smaller than 512 MB even though typically
* only the entries for disks >= 512 MB in size are used.
* The way this table is accessed is to look for the first entry
* in the table for which the disk size is less than or equal
* to the DiskSize field in that table entry. For this table to
* work properly BPB_RsvdSecCnt must be 32, and BPB_NumFATs
* must be 2. Any of these values being different may require the first
* table entries DiskSize value to be changed otherwise the cluster count
* may be to low for FAT32.
*/
 DSKSZTOSECPERCLUS DskTableFAT32 [] = {
 {66600, 0}, /* disks up to 32.5 MB, the 0 value for SecPerClusVal trips an error */
 {532480, 1}, /* disks up to 260 MB, .5k cluster */
 {16777216, 8}, /* disks up to 8 GB, 4k cluster */
 {33554432, 16}, /* disks up to 16 GB, 8k cluster */
 {67108864, 32}, /* disks up to 32 GB, 16k cluster */
 {0xFFFFFFFF, 64}/* disks greater than 32GB, 32k cluster */

 };

Given a disk size and a FAT type of FAT16 or FAT32, the above determines the
BPB_SecPerClus value.

Microsoft FAT Specification

Microsoft Confidential. © 2004 Microsoft Corporation. All rights reserved Page 14

The below computes how many sectors the FAT takes up to enable setting the
BPB_FATSz16 or BPB_FATSz32 fields (see Section 4 for a description of the FAT). At

this point, it is assumed that BPB_RootEntCnt, BPB_RsvdSecCnt, and BPB_NumFATs

are appropriately set. It is also assumed that DskSize is the size of the volume that will

be reflected in BPB_TotSec32 or BPB_TotSec16.

RootDirSectors = ((BPB_RootEntCnt * 32) + (BPB_BytsPerSec – 1)) / BPB_BytsPerSec;
TmpVal1 = DskSize – (BPB_ResvdSecCnt + RootDirSectors);
TmpVal2 = (256 * BPB_SecPerClus) + BPB_NumFATs;
If(FATType == FAT32)
 TmpVal2 = TmpVal2 / 2;
FATSz = (TMPVal1 + (TmpVal2 – 1)) / TmpVal2;
If(FATType == FAT32) {
 BPB_FATSz16 = 0;
 BPB_FATSz32 = FATSz;
} else {
 BPB_FATSz16 = LOWORD(FATSz);
 /* there is no BPB_FATSz32 in a FAT16 BPB */
}

NOTE: The above math does not work perfectly. It will occasionally set a FATSz that is
up to 2 sectors too large for FAT16, and occasionally up to 8 sectors too large for FAT32.
It will never compute a FATSz value that is too small, however. Because it is OK to have
a FATSz that is too large, at the expense of wasting a few sectors, the fact that this
computation is surprisingly simple more than makes up for it being off in a safe way in
some cases.

The unused sectors within a FAT must be set to 0x0.

3.5 Determination of FAT type when mounting the volume

The FAT type is determined solely by the count of clusters on the volume (CountOfClusters).

The following steps describe the computation of the count of clusters:

1. First, determine the count of sectors occupied by the root directory:

RootDirSectors = ((BPB_RootEntCnt * 32) + (BPB_BytsPerSec – 1)) / BPB_BytsPerSec

Note that on a FAT32 volume, the BPB_RootEntCnt value is always 0. Therefore, on a
FAT32 volume, RootDirSectors is always 0.

2. Next, determine the count of sectors in the data region of the volume:

If(BPB_FATSz16 != 0)
 FATSz = BPB_FATSz16;
Else
 FATSz = BPB_FATSz32;

If(BPB_TotSec16 != 0)
 TotSec = BPB_TotSec16;
Else
 TotSec = BPB_TotSec32;

DataSec = TotSec – (BPB_ResvdSecCnt + (BPB_NumFATs * FATSz) + RootDirSectors);

3. Lastly, determine the count of clusters as:

CountofClusters = DataSec / BPB_SecPerClus;

Microsoft FAT Specification

Microsoft Confidential. © 2004 Microsoft Corporation. All rights reserved Page 15

The computation rounds down.

To determine the FAT type, the following algorithm is used:

If(CountofClusters < 4085) {
/* Volume is FAT12 */
} else if(CountofClusters < 65525) {
 /* Volume is FAT16 */
} else {
 /* Volume is FAT32 */
}

The above algorithm determines the FAT type. Note the following:

• A FAT12 volume cannot contain more than 4084 clusters.
• A FAT16 volume cannot contain less than 4085 clusters or more than 65,524 clusters.

It is recommended that volumes not be created with a count of clusters that is exactly equal to the
boundary values listed above (i.e. 4085 clusters or 65525 clusters).

1

The Maximum Valid Cluster Number (MAX) for the volume is (CountofClusters + 1).

The “count of clusters including the two reserved clusters” is (CountofClusters + 2).

3.6 Backup BPB Structure

Loss (inability to retrieve contents) of sector #0 (containing the BPB) could lead to catastrophic
data loss due to possible inability to mount the volume. On FAT32 formatted volumes, sector #6
must contain a copy of the BPB.

The BPB_BkBootSec field contains the value 6 for both copies of the BPB (the one in sector 0
and the backup copy located in sector 6).

Volume repair utilities are expected to retrieve contents of the BPB from sector #6 in a situation
when sector #0 is unreadable.

NOTE: Starting at the BPB_BkBootSec sector is a complete boot record. The Microsoft FAT32
“boot sector” is actually three sectors long. There is a copy of all three of these sectors starting at
the BPB_BkBootSec sector. A copy of the FSInfo sector (see Section 5) is also there, although

the BPB_FSInfo field in this backup boot sector is set to the same value as is stored in the
sector #0 BPB.

1
 To avoid hitting the boundary condition which may lead to computation errors in the FAT

implementation, ensure count of clusters is at least 16 clusters greater than or less than these values.

Microsoft FAT Specification

Microsoft Confidential. © 2004 Microsoft Corporation. All rights reserved Page 16

Section 4: FAT

Each valid entry in the File Allocation Table (FAT) represents the state of a cluster from the set of
clusters comprising the Root Directory Region (when applicable) and the File and Directory Data
Region. The size of each (packed) entry in the FAT is as follows:

� For FAT12 volumes, each FAT entry is 12 bits in length
� For FAT16 volumes, each FAT entry is 16 bits in length
� For FAT32 volumes, each FAT entry is 32 bits in length

As stated earlier, a FAT may be larger than that required to describe all allocatable sectors
comprising the Root/Data regions. Extra entries in the FAT (located at the tail/end of the FAT)
must be set to a value of 0.

The FAT defines a singly linked list of the “extents” (clusters) of a file and thereby maps the data
region of the volume by cluster number. The first data cluster in the volume is cluster #2.

NOTE: A FAT directory or file container is simply a regular file with a special attribute indicating
the directory type. The contents of the directory are a series of 32 byte directory entries
(described in Section 6)).

FAT entry values must be written as described in the below table:

FAT Entry Values

FAT12

FAT16 FAT32

Comments

0x000 0x0000 0x0000000 Cluster is free.
0x002 to
MAX

0x0002 to
MAX

0x0000002 to
MAX

Cluster is allocated. Value of the entry is the
cluster number of the next cluster following this
corresponding cluster. MAX is the Maximum
Valid Cluster Number

(MAX + 1)
to 0xFF6

(MAX + 1) to
0xFFF6

(MAX + 1) to
0xFFFFFF6

Reserved and must not be used.

0xFF7 0xFFF7 0xFFFFFF7 Indicates a bad (defective) cluster.
0xFF8 to
0xFFE

0xFFF8 to
0xFFFE

0xFFFFFF8 to
0xFFFFFFE

Reserved and should not be used. May be
interpreted as an allocated cluster and the final
cluster in the file (indicating end-of-file
condition).

0xFFF 0xFFFF 0xFFFFFFFF Cluster is allocated and is the final cluster for
the file (indicates end-of-file).

NOTE: The high 4 bits of a FAT32 FAT entry are reserved. All FAT implementations must
preserve the current value of the high 4 bits when modifying any FAT32 FAT entry except during
volume initialization (formatting) when the entire FAT table must be set to 0.

NOTE: No FAT32 volume should ever be configured containing cluster numbers available for
allocation >= 0xFFFFFF7.

NOTE: The size of the FAT is limited to 6K sectors on volumes formatted FAT12. The size of the
FAT is limited to 128K sectors on volumes formatted FAT16. There is no limit on the size of the
FAT on volumes formatted FAT32.

Microsoft FAT Specification

Microsoft Confidential. © 2004 Microsoft Corporation. All rights reserved Page 17

4.1: Determination of FAT entry for a cluster

Given any valid cluster number N, this section describes the algorithm used to determine the
entry in the FAT(s) for that cluster number.

FAT 16 and FAT 32

The FAT entry in the first FAT is determined as described below:

If(BPB_FATSz16 != 0)
 FATSz = BPB_FATSz16;
 Else
 FATSz = BPB_FATSz32;

If(FATType == FAT16)
 FATOffset = N * 2;
Else if (FATType == FAT32)
 FATOffset = N * 4;

ThisFATSecNum = BPB_ResvdSecCnt + (FATOffset / BPB_BytsPerSec);
ThisFATEntOffset = REM(FATOffset / BPB_BytsPerSec);2

ThisFATSecNum is the sector number of the FAT sector that contains the entry for cluster N in
the first FAT.

To compute the sector number in any other FAT:

 SectorNumber = (FatNumber * FATSz) + ThisFATSecNum

where, FatNumber will be 2 for the second FAT, 3 for the third FAT, and so on.

The contents of the FAT entry can be extracted from the sector contents (once the sector has
been read from media) as per below:

If(FATType == FAT16)
 FAT16ClusEntryVal = *((WORD *) &SecBuff[ThisFATEntOffset]);
Else
 FAT32ClusEntryVal = (*((DWORD *) &SecBuff[ThisFATEntOffset])) & 0x0FFFFFFF;

To modify an in-memory instance of a FAT entry contained within the sector, use the following
logic:

If(FATType == FAT16)
 *((WORD *) &SecBuff[ThisFATEntOffset]) = FAT16ClusEntryVal;
Else {
 FAT32ClusEntryVal = FAT32ClusEntryVal & 0x0FFFFFFF;
 *((DWORD *) &SecBuff[ThisFATEntOffset]) =
 (*((DWORD *) &SecBuff[ThisFATEntOffset])) & 0xF0000000;
 *((DWORD *) &SecBuff[ThisFATEntOffset]) =
 (*((DWORD *) &SecBuff[ThisFATEntOffset])) | FAT32ClusEntryVal;
}

NOTE: The type WORD is defined as an unsigned 16-bit quantity. The type DWORD is defined
as a 32-bit unsigned quantity.

NOTE: FAT16/FAT32 FAT entries cannot span a sector boundary.

2
 REM is the remainder operator.

Microsoft FAT Specification

Microsoft Confidential. © 2004 Microsoft Corporation. All rights reserved Page 18

FAT 12

Each FAT12 FAT entry has a length of 1.5 bytes (12-bits). The FAT entry in the first FAT is
determined as described below:

 if (FATType == FAT12)
 FATOffset = N + (N / 2);
/* Multiply by 1.5 without using floating point, the divide by 2 rounds DOWN */

 ThisFATSecNum = BPB_ResvdSecCnt + (FATOffset / BPB_BytsPerSec);
 ThisFATEntOffset = REM(FATOffset / BPB_BytsPerSec);

The logic below checks for the entry spanning a sector boundary and comments on an
approach to deal with this case:

If(ThisFATEntOffset == (BPB_BytsPerSec – 1)) {
 /* This cluster access spans a sector boundary in the FAT */
 /* There are a number of strategies to handling this. The */
 /* easiest is to always load FAT sectors into memory */
 /* in pairs if the volume is FAT12 (if you want to load */
 /* FAT sector N, you also load FAT sector N+1 immediately */
 /* following it in memory unless sector N is the last FAT */
 /* sector). It is assumed that this is the strategy used here */
 /* which makes this if test for a sector boundary span */
 /* unnecessary. */
}

ThisFATSecNum is the sector number of the FAT sector that contains the entry for cluster N in
the first FAT.

To compute the sector number in any other FAT:

 SectorNumber = (FatNumber * FATSz) + ThisFATSecNum

where, FatNumber will be 2 for the second FAT, 3 for the third FAT, and so on.

The contents of the FAT entry can be extracted from the sector contents (once the sector has
been read from media) as per below:

 FAT12ClusEntryVal = *((WORD *) &SecBuff[ThisFATEntOffset]);
 If(N & 0x0001)
 FAT12ClusEntryVal = FAT12ClusEntryVal >> 4; /* Cluster number is ODD */
 Else
 FAT12ClusEntryVal = FAT12ClusEntryVal & 0x0FFF; /* Cluster number is EVEN */

NOTE: For even numbered clusters, the logic above correctly obtains the low 12 bits describing
the FAT entry. For odd numbered clusters, the logic correctly obtains the high 12 bits.

To modify an in-memory instance of a FAT entry contained within the sector, use the following
logic:

Microsoft FAT Specification

Microsoft Confidential. © 2004 Microsoft Corporation. All rights reserved Page 19

If(N & 0x0001) {
 FAT12ClusEntryVal = FAT12ClusEntryVal << 4; /* Cluster number is ODD */
 *((WORD *) &SecBuff[ThisFATEntOffset]) =
 (*((WORD *) &SecBuff[ThisFATEntOffset])) & 0x000F;
} Else {
 FAT12ClusEntryVal = FAT12ClusEntryVal & 0x0FFF; /* Cluster number is EVEN */
 *((WORD *) &SecBuff[ThisFATEntOffset]) =
 (*((WORD *) &SecBuff[ThisFATEntOffset])) & 0xF000;
}
*((WORD *) &SecBuff[ThisFATEntOffset]) =
 (*((WORD *) &SecBuff[ThisFATEntOffset])) | FAT12ClusEntryVal;

NOTE: It is assumed that the >> operator shifts a bit value of 0 into the high 4 bits and that the <<
operator shifts a bit value of 0 into the low 4 bits.

4.2 Reserved FAT entries

The first two entries in the FAT are reserved.

The first reserved entry (FAT[0]), contains the BPB_Media byte value in its low 8 bits, and all

other bits are set to 1. For example, if the BPB_Media value is 0xF8, then:

� for FAT12, FAT[0] = 0x0FF8
� for FAT16, FAT[0] = 0xFFF8
� for FAT32 FAT[0] = 0x0FFFFFF8

The second reserved entry (FAT[1]), is set by the format utility to the EOC value.

� On FAT12 volumes, this entry is not modified subsequent to the format and, therefore,

always contains an EOC mark.
� For FAT16 and FAT32, the file system driver implementation on Microsoft Windows may use

the high two bits of the FAT[1] entry for dirty volume flags (note that all other bits, are always
left set to 1). Also note that the bit location is different for FAT16 and FAT32, because they
are the high 2 bits of the entry.

For FAT16:
 ClnShutBitMask = 0x8000;
 HrdErrBitMask = 0x4000;

For FAT32:
 ClnShutBitMask = 0x08000000;
 HrdErrBitMask = 0x04000000;

Bit ClnShutBitMask: If bit is 1, the volume is “clean”. The volume can be mounted for

access. If bit is 0, the volume is “dirty” indicating that a FAT file
system driver was unable to dismount the volume properly (during a
prior mount operation). The volume contents should be scanned for
any damage to file system metadata.

Bit HrdErrBitMask: If this bit is 1, no disk read/write errors were encountered.
If this bit is 0, the file system driver implementation encountered a
disk I/O error on the volume the last time it was mounted, which is an
indicator that some sectors may have gone bad. The volume
contents should be scanned with a disk repair utility that does
surface analysis on it looking for new bad sectors.

Microsoft FAT Specification

Microsoft Confidential. © 2004 Microsoft Corporation. All rights reserved Page 20

4.3 Free space determination

The file system driver implementation must scan through all FAT entries to construct a list of
free/available clusters. A free cluster is identified by the following value recorded in the
corresponding FAT entry:

� FAT12: 0x000
� FAT16: 0x0000
� FAT32: 0x0000000 (note that the highest order 4 bits are reserved and ignored)

Note that the list of free clusters is not stored on the volume. On FAT32 volumes, the
BPB_FSInfo sector may contain a valid count of free clusters on the volume (see Section 5).

4.4 Other points to note

� The last sector of the FAT is not necessarily all part of the FAT. The FAT stops at the cluster

number in the last FAT sector that corresponds to the entry for cluster number
(CountOfClusters + 1), and this entry is not necessarily at the end of the last FAT sector.

FAT implementations must not make any assumptions about what the contents of the last
FAT sector are after the (CountOfClusters + 1) FAT entry. When initializing (formatting)
a volume, the implementation must zero all bytes after this last FAT entry.

� The number of sectors reserved for each FAT (count of sectors in the BPB_FATSz16 or

BPB_FATSz32 fields) may be bigger than the actual number of sectors required for
containing the entire FAT. Therefore, there may be totally unused FAT sectors at the end of
each FAT in the FAT region of the volume. Each implementation must determine the value
for the last valid sector in the FAT using CountOfClusters (the last valid sector in the FAT

is the one containing the FAT entry numbered CountOfClusters + 1).

All sectors reserved for the FAT beyond the last valid sector (defined as the one containing
the FAT entry for the last cluster) must be set to 0x0 during volume initialization/format.

Microsoft FAT Specification

Microsoft Confidential. © 2004 Microsoft Corporation. All rights reserved Page 21

Section 5: File System Information (FSInfo) Structure

The File System Information (FSInfo) structure helps optimize file system driver
implementations by containing a count of the number of free clusters on the volume as well as the
cluster number for the first available (free) cluster.

NOTE: The information contained in the structure must be considered as advisory only and file
system driver implementations must validate the values at volume mount. File system driver
implementations are not required to ensure that information within the structure is kept consistent
although this is recommended.

The FSInfo structure is only present on volumes formatted FAT32. The structure must be
persisted on the media during volume initialization (format). The structure must be located at
sector #1 – immediately following the sector containing the BPB.

A copy of the structure is maintained at sector #7.

The below table describes the fields comprising the FSInfo structure:

Descriptive
name of field

Offset
(byte)

Size
(bytes)

Description

FSI_LeadSig 0 4 Value = 0x41615252. This lead signature is used to
validate the beginning of the FSInfo structure in
the sector.

FSI_Reserved1 4 480 Reserved. Must be set to 0.

FSI_StrucSig 484 4 Value = 0x61417272. An additional signature
validating the integrity of the FSInfo structure.

FSI_Free_Count 488 4 Contains the last known free cluster count on the
volume.

The value 0xFFFFFFFF indicates the free count is
not known.

The contents of this field must be validated at
volume mount (and subsequently maintained in
memory by the file system driver implementation).

It is recommended that this field contain an
accurate count of the number of free clusters at
volume dismount (during controlled
dismount/shutdown).

Microsoft FAT Specification

Microsoft Confidential. © 2004 Microsoft Corporation. All rights reserved Page 22

FSI_Nxt_Free 492 4 Contains the cluster number of the first available
(free) cluster on the volume.

The value 0xFFFFFFFF indicates that there exists
no information about the first available (free)
cluster.

The contents of this field must be validated at
volume mount.

It is recommended that this field be appropriately
updated at volume dismount (during controlled
dismount/shutdown).

FSI_Reserved2 496 12 Reserved. Must be set to 0.

FSI_TrailSig 508 4 Value = 0xAA550000. . This trail signature is used
to validate the integrity of the data in the sector
containing the FSInfo structure.

Microsoft FAT Specification

Microsoft Confidential. © 2004 Microsoft Corporation. All rights reserved Page 23

Section 6: Directory Structure

A FAT directory is a special file type. The directory serves as a container for other files and sub-
directories. Directory contents (data) are a series of 32 byte directory entries. Each directory entry
in turn, typically represents a contained file or sub-directory directory.

The below table describes fields comprising each directory entry:

Descriptive name
of field

Offset
(byte)

Size
(bytes)

Description

DIR_Name 0 11 “Short” file name limited to 11 characters (8.3
format).

DIR_Attr 11 1 Legal file attribute types are as defined below:

ATTR_READ_ONLY 0x01
ATTR_HIDDEN 0x02
ATTR_SYSTEM 0x04
ATTR_VOLUME_ID 0x08
ATTR_DIRECTORY 0x10
ATTR_ARCHIVE 0x20

ATTR_LONG_NAME is defined as follows:
(ATTR_READ_ONLY | ATTR_HIDDEN |
ATTR_SYSTEM | ATTR_VOLUME_ID)

The upper two bits of the attribute byte are
reserved and must always be set to 0 when a file
is created. These bits are not interpreted.

DIR_NTRes 12 1 Reserved. Must be set to 0.

DIR_CrtTimeTenth 13 1 Component of the file creation time. Count of
tenths of a second. Valid range is:

0 <= DIR_CrtTimeTenth <= 199

DIR_CrtTime 14 2 Creation time. Granularity is 2 seconds.

DIR_CrtDate 16 2 Creation date.
DIR_LstAccDate 18 2 Last access date. Last access is defined as a

read or write operation performed on the
file/directory described by this entry.

This field must be updated on file modification
(write operation) and the date value must be
equal to DIR_WrtDate.

DIR_FstClusHI 20 2 High word of first data cluster number for
file/directory described by this entry.

Only valid for volumes formatted FAT32. Must be
set to 0 on volumes formatted FAT12/FAT16.

Microsoft FAT Specification

Microsoft Confidential. © 2004 Microsoft Corporation. All rights reserved Page 24

DIR_WrtTime 22 2 Last modification (write) time. Value must be
equal to DIR_CrtTime at file creation.

DIR_WrtDate 24 2 Last modification (write) date. Value must be
equal to DIR_CrtDate at file creation.

DIR_FstClusLO 26 2 Low word of first data cluster number for
file/directory described by this entry.

DIR_FileSize 28 4 32-bit quantity containing size in bytes of
file/directory described by this entry.

6.1 File/Directory Name (field DIR_Name)

The DIR_Name field contains the 11 character (“short”) name of the file or sub-directory
described by the corresponding entry containing the field. The DIR_Name field is logically
comprised of two components:

� The 8-character main part of the name
� The 3-character extension

Each of the above two components are “trailing space padded” if required (using value: 0x20).

Note the following:

1. An implied ‘.’ character separates the main part of the name from the extension. The “.”

separator character is never stored in the DIR_Name field.

2. DIR_Name[0]3 = 0xE5 indicates the directory entry is free (available). However, 0xE5 is a
valid KANJI lead byte value for the character set used in Japan. For KANJI character set
based names, the value 0x05 is stored in DIR_Name[0] - if required - to represent 0xE5. If

the FAT file system implementation reads DIR_NAME[0] = 0x05 and if the character set
used is KANJI, it must perform the appropriate substitution in memory prior to returning the
name to the application.

3. DIR_Name[0] = 0x00 also indicates the directory entry is free (available). However,

DIR_Name[0] = 0x00 is an additional indicator that all directory entries following the current
free entry are also free.

4. DIR_Name[0] cannot equal 0x20 (in other words, names cannot start with a space
character).

5. All names in the directory must be unique.

Restrictions on characters comprising the name

� Lower case characters are not allowed
� Illegal values for characters in the name are as follows:

o Values less than 0x20 (except for the special case of 0x05 in DIR_Name[0]
described earlier)

o 0x22, 0x2A, 0x2B, 0x2C, 0x2E, 0x2F, 0x3A, 0x3B, 0x3C, 0x3D, 0x3E, 0x3F, 0x5B,
0x5C, 0x5D, and 0x7C

The below examples illustrate how names are handled and persisted:

3
 This indicates the first byte in the field.

Microsoft FAT Specification

Microsoft Confidential. © 2004 Microsoft Corporation. All rights reserved Page 25

User entered file/directory name Stored contents of DIR_Name field

“foo.bar” “FOO BAR”
“FOO.BAR” “FOO BAR”
“Foo.Bar” “FOO BAR”
“foo” “FOO “
“foo.” “FOO “

“PICKLE.A” “PICKLE A “
“prettybg.big” “PRETTYBGBIG”

“.big” “ BIG”

Name Limits and Character Set for Short File Names

Short file names are limited to 8 characters followed by an optional period (“.”) and extension of
up to 3 characters. The characters comprising a short file name may be any combination of
letters, digits, or characters with code point values greater than 127. The following special
characters are also allowed:

$ % ' - _ @ ~ ` ! () { } ^ # &

Names are stored in a short name directory entry in the OEM code page that the system is
configured for at the time the directory entry is created. Short name directory entries remain in
OEM character set for compatibility. OEM characters are single 8-bit characters or can be DBCS
character pairs for certain code pages.

Short file names passed to the file system are always converted to upper case and their original
case value is lost. A problem that is generally true of most OEM code pages is that they map
lower to upper case extended characters in a non-unique fashion i.e. they map multiple extended
characters to a single upper case character. This creates problems because it does not preserve
the information that the extended character provides. This mapping also prevents the creation of
some file names that would normally differ, but because of the mapping to upper case they
become the same file name.

6.2 File/Directory Attributes

Attribute values associated with a file or sub-directory impact behavior of the file system driver
implementation. Certain attribute values can be legally combined. The table below describes the
possible attribute values for a file or directory:

Attribute (value)

Description

ATTR_READ_ONLY (0x01) The file cannot be modified – all modification
requests must fail with an appropriate error
code value.

ATTR_HIDDEN (0x02) The corresponding file or sub-directory must
not be listed unless a request is issued by the
user/application explicitly requesting inclusion
of “hidden files”.

ATTR_SYSTEM (0x04) The corresponding file is tagged as a
component of the operating system. It must not
be listed unless a request is issued by the

Microsoft FAT Specification

Microsoft Confidential. © 2004 Microsoft Corporation. All rights reserved Page 26

user/application explicitly requesting inclusion
of “system files”.

ATTR_VOLUME_ID (0x08) The corresponding entry contains the volume
label. DIR_FstClusHI and DIR_FstClusLO
must always be 0 for the corresponding entry
(representing the volume label) since no
clusters can be allocated for this entry.

Only the root directory (see Section 6.x below)
can contain one entry with this attribute. No
sub-directory must contain an entry of this type.
Entries representing long file names (see
Section 7) are exceptions to these rules.

ATTR_DIRECTORY (0x10) The corresponding entry represents a directory
(a child or sub-directory to the containing
directory).

DIR_FileSize for the corresponding entry
must always be 0 (even though clusters may
have been allocated for the directory).

ATTR_ARCHIVE (0x20) This attribute must be set when the file is
created, renamed, or modified. The presence
of this attribute indicates that properties of the
associated file have been modified.

Backup utilities can utilize this information to
determine the set of files that need to be
backed up to ensure protection in case of
media and other failure conditions.

6.3 Date / Time4

The following date/time fields in a directory entry are optional (i.e. the file system implementation
may choose not to maintain/update the contents of these fields):

� DIR_CrtTime

� DIR_CrtTimeTenth

� DIR_CrtDate

� DIR_LstAccDate

Any of the fields above not supported by a file system implementation must be set to 0. Field
values set to 0 should be ignored by a file system implementation.

The following date/time fields must be appropriately updated by the file system driver
implementation:

� DIR_WrtTime

4
 Bit position 0 is the least significant bit; bit position 15 is the most significant bit of a 16-bit word

Microsoft FAT Specification

Microsoft Confidential. © 2004 Microsoft Corporation. All rights reserved Page 27

� DIR_WrtDate

Date format

Contents of the DIR_CrtDate, DIR_LstAccDate, and DIR_WrtDate fields must be in the
following format:

� Bit positions 0 through 4 represent the day of the month (valid range: 1..31 inclusive)
� Bit positions 5 through 8 represent the month of the year (1 = January, 12 = December, valid

range: 1..12 inclusive)
� Bit positions 9 through 15 are the count of years from 1980 (valid range: 0..127 inclusive

allowing representation of years 1980 through 2107)

Time format

Directory entry timestamps are 16-bit values with a granularity of 2 seconds. Contents of the
DIR_CrtTime and DIR_WrtTime must be in the following format:

� Bit positions 0 through 4 contain elapsed seconds – as a count of 2-second increments (valid

range: 0..29 inclusive allowing representation of 0 through 58 seconds)
� Bit positions 5 through 10 represent number of minutes (valid range: 0..59 inclusive)
� Bit positions 11 through 15 represent hours (valid range: 0..23 inclusive)

The valid time range is from Midnight 00:00:00 to 23:59:58.

6.4 File/Directory Size

The maximum file size is 0xFFFFFFFF bytes. Any chain of clusters allocated to a file must be <=
0x100000000 bytes. The last byte in such a chain of clusters cannot be part of the file.

The maximum valid directory size is 2

21
 bytes.

6.5 Directory creation

When a new directory is created, the file system implementation must ensure the following:

� The ATTR_DIRECTORY bit must set in its DIR_Attr field

� The DIR_FileSize must be set to 0

� At least one cluster must be allocated – the contents of the DIR_FstClusLO and

DIR_FstClusHI fields must refer to the first allocated cluster number
� If only a single cluster is allocated, the corresponding file allocation table entry must indicate

end-of-file condition
� The contents of the allocated cluster(s) must be initialized to 0
� Except for the root directory, each directory must contain the following two entries at the

beginning of the directory:

o The first directory entry must have a directory name set to “.”

This dot entry refers to the current directory. Rules listed above for the DIR_Attr

field and DIR_FileSize field must be followed. Since the dot entry refers to the
current directory (the one containing the dot entry), the contents of the
DIR_FstClusLO and DIR_FstClusHI fields must be the same as that of the

Microsoft FAT Specification

Microsoft Confidential. © 2004 Microsoft Corporation. All rights reserved Page 28

current directory. All date and time fields must be set to the same value as that for
the containing directory.

o The second directory entry must have the directory name set to “..”

This dotdot entry refers to the parent of the current directory. Rules listed above for
the DIR_Attr field and DIR_FileSize field must be followed. Since the dotdot
entry refers to the parent of the current directory (the one containing the dotdot
entry), the contents of the DIR_FstClusLO and DIR_FstClusHI fields must be the
same as that of the parent of the current directory. If the parent of the current
directory is the root directory (see below), the DIR_FstClusLO and

DIR_FstClusHI contents must be set to 0. All date and time fields must be set to
the same value as that for the containing directory.

6.6 Root Directory

The root directory is a special container file created during volume initialization (format) and,
therefore, always present on the formatted volume.

On FAT12 and FAT16 volumes, the root directory must immediately follow the last file allocation
table. The location of the first sector of the root directory is computed as below:

FirstRootDirSecNum = BPB_ResvdSecCnt + (BPB_NumFATs * BPB_FATSz16)

The size of the root directory on FAT12 and FAT16 volumes is computed using the contents of
the BPB_RootEntCnt field.

On volumes formatted FAT32, the root directory can be of variable size. The location of the first
cluster of the root directory on the FAT32 volume is stored in the BPB_RootClus field.

Only the root directory can contain an entry with the DIR_Attr field contents equal to

ATTR_VOLUME_ID.

There is no name for the root directory (on most operating system implementations, the implied
name “\” is used). Further, the root directory does not have any associated date/time stamps.
Lastly, the root directory does not contain either the dot or dotdot entries.

6.7 File allocation

The cluster number of the first cluster of the file is recorded in the directory entry associated with
the file. For zero-length files, the first cluster number in the associated directory entry is set to 0.

The file allocation table entry corresponding to the first allocated cluster for a file either indicates
that this is the sole/last allocated cluster for the file or contains the cluster number for the next
allocated cluster.

Determination of the first sector of an allocated cluster

Section 3.5 describes the computation of RootDirSectors, and FATSz.

The first sector of the beginning of the data region (cluster #2) is computed as given below:

Microsoft FAT Specification

Microsoft Confidential. © 2004 Microsoft Corporation. All rights reserved Page 29

FirstDataSector = BPB_ResvdSecCnt + (BPB_NumFATs * FATSz)
+ RootDirSectors

Given any valid data cluster number N, the sector number of the first sector of that cluster is

computed as follows:

FirstSectorofCluster = ((N – 2) * BPB_SecPerClus) + FirstDataSector;

Microsoft FAT Specification

Microsoft Confidential. © 2004 Microsoft Corporation. All rights reserved Page 30

Section 7: Long File Name Implementation (optional)

The DIR_Name field in the directory entry only allows for a 11 character file / sub-directory name
comprised of a main part (maximum length of 8 characters) and an extension (maximum length of
3 characters). The contents of this field are also known as the “short name” and the
corresponding directory entry is also known as the short name directory entry. Applications and
users typically prefer creating longer (more descriptive) names for files/sub-directories. This
section describes how such long file names can be stored on media.

Support for long file names is optional for file system implementations. However, such support is
very strongly recommended.

NOTE: Long file names can be supported on any FAT variant i.e. on media formatted FAT12,
FAT16 or FAT32.

A long file name for a target file or sub-directory is stored in a set (one or more) of additional
directory entries associated with the short name directory entry describing the target file or sub-
directory. This set of additional directory entries (also known as the long name directory entries)
must immediately precede the corresponding short name directory entry and is, therefore,
physically contiguous with the short name directory entry.

NOTE: The sequence of long name directory entries is stored in reverse order (last entry in the
set is stored first, followed by entry n-1, followed by entry n-2, and so on, until entry 1).

A long name directory entry structure is described in the table below:

Descriptive Name Offset

(byte)
Size
(bytes)

Description

LDIR_Ord 0 1 The order of this entry in the sequence of long name
directory entries (each containing components of the
long file name) associated with the corresponding
short name directory entry.

The contents of this field must be masked with 0x40
(LAST_LONG_ENTRY) for the last long directory
name entry in the set. Therefore, each sequence of
long name directory entries begins with the contents
of this field masked with LAST_LONG_ENTRY.

LDIR_Name1 1 10 Contains characters 1 through 5 constituting a
portion of the long name.

Microsoft FAT Specification

Microsoft Confidential. © 2004 Microsoft Corporation. All rights reserved Page 31

LDIR_Attr 11 1 Attributes – must be set to ATTR_LONG_NAME
defined as below:

ATTR_LONG_NAME = (ATTR_READ_ONLY |

ATTR_HIDDEN |
ATTR_SYSTEM |
ATTR_VOLUME_ID)

NOTE: A mask to determine whether a directory
entry is part of the set of a long name directory
entries is defined below:

#define ATTR_LONG_NAME_MASK =

(ATTR_READ_ONLY |
ATTR_HIDDEN |
ATTR_SYSTEM |
ATTR_VOLUME_ID |
ATTR_DIRECTORY |
ATTR_ARCHIVE)

LDIR_Type 12 1 Must be set to 0.

LDIR_Chksum 13 1 Checksum of name in the associated short name
directory entry at the end of the long name directory
entry set.

LDIR_Name2 14 12 Contains characters 6 through 11 constituting a
portion of the long name.

LDIR_FstClusLO 26 2 Must be set to 0.

LDIR_Name3 28 4 Contains characters 12 and 13 constituting a portion
of the long name.

The below illustrates how long name directory entries are stored:

Entry Ordinal

N
th
 long name directory entry LAST_LONG_ENTRY (0x40) | N

… Additional long name directory entries …
1
st
 long name directory entry 1

Short name directory entry associated with preceding
long name directory entry set

N/A

7.1 Ordinal Number Generation

The below rules must be followed in storing ordinal numbers for each long name directory entry in
a set of such entries (associated with a short name directory entry):

1. The first member of a set has an LDIR_Ord value of 1.

2. The LDIR_Ord value for each subsequent entry must contain a monotonically increasing
value.

3. The N
th
 (last) member of the set must contain a value of (N | LAST_LONG_ENTRY)

Microsoft FAT Specification

Microsoft Confidential. © 2004 Microsoft Corporation. All rights reserved Page 32

If any member of the set of long name directory entries does not follow the rules above, the set is
considered corrupt.

7.2 Checksum Generation

An 8-bit checksum is computed on the name contained in the short name directory entry at the
time the short and long name directory entries are created. All 11 characters of the name in the
short name entry are used in the checksum calculation. The check sum is placed in every long
name directory entry in the LDIR_Chksum field. If any of the check sums in the set of long name
entries associated with the appropriate short name directory entry, do not agree with the
computed checksum of the name contained in the short name directory entry, the set of long
name directory entries is considered corrupt.

The below algorithm describes the logic used to generate the check sum value:

 //---
 // ChkSum()
 // Returns an unsigned byte checksum computed on an unsigned byte
 // array. The array must be 11 bytes long and is assumed to contain
 // a name stored in the format of a MS-DOS directory entry.
 // Passed: pFcbName Pointer to an unsigned byte array assumed to be

// 11 bytes long.
 // Returns: Sum An 8-bit unsigned checksum of the array pointed

// to by pFcbName.
 //--
 unsigned char ChkSum (unsigned char *pFcbName)
 {
 short FcbNameLen;
 unsigned char Sum;

 Sum = 0;
 for (FcbNameLen=11; FcbNameLen!=0; FcbNameLen--) {
 // NOTE: The operation is an unsigned char rotate right
 Sum = ((Sum & 1) ? 0x80 : 0) + (Sum >> 1) + *pFcbName++;
 }
 return (Sum);
 }

7.3 Example illustrating persistence of a long name

The following example is provided to illustrate how a long name is stored across several long
name directory entries. Names are also NULL terminated and padded with 0xFFFF characters in
order to detect corruption of long name fields. A name that fits exactly in a set of long name
directory entries (i.e. is an integer multiple of 13) is not NULL terminated and not padded with
0xFFFF.

Name: "The quick brown.fox"

Microsoft FAT Specification

Microsoft Confidential. © 2004 Microsoft Corporation. All rights reserved Page 33

Short entry

1st long entry

2nd long entry
(and last)

chk-
sum

chk-
sum

T h e q u

i c k b r o

w n f o x.

T QH E U I F X~ 1 O

42h

01h

00h

00h

0000h

0000h

0000h

0000h FFFFh FFFFh FFFFh FFFFh FFFFh FFFFh

0Fh

0Fh

20h Rsvd

Last
Access
Date

Last

Time

First
Cluster

File Size

NT

Date
Modified

Date

Time

Modified
LastCreated

Created

Name Limits and Character Set for Long File Names

Long file names are limited to 255 characters, not including the trailing NULL. The characters
may be any combination of those defined for short file names (see Section 6.1) with the addition
of the period (“.”) character used multiple times within the long name. A space is also a valid
character in a long file name as it always has been for a short file name. The following six special
characters are allowed in a long file name (they are not legal in a short file name):

+ , ; = []

Embedded spaces within a long file name are allowed. Leading and trailing spaces in a long file
name are ignored.

Leading and embedded periods are allowed in a name and are stored in the long file name.
Trailing periods are ignored.

Long file names are stored in long directory entries in UNICODE. UNICODE characters are 16-bit
characters. It is not be possible to store UNICODE in short name directory entries since the
names stored there are 8-bit characters or DBCS characters.

Long file names passed to the file system are not converted to upper case and their original case
value is preserved. UNICODE solves the case mapping problem prevalent in some OEM code
pages by always providing a translation for lower case characters to a single, unique upper case
character

7.4 Rules governing name creation and matching

The union of all long and short file names is defined as the namespace of objects contained in the
volume.

For such a namespace, the following rules must be observed:

� Any name within a specific directory, whether it is a short name or a long name, can occur

only once (difference in case is ignored and such names must be considered as conflicting)

� When a character on the media (whether stored in the OEM character set or in UNICODE)

cannot be translated into the appropriate character in the OEM or ANSI code page, it is
always translated to the "_" (underscore) character – the character is not modified on the

media. The “_” character is the same in all OEM code pages and ANSI.

Microsoft FAT Specification

Microsoft Confidential. © 2004 Microsoft Corporation. All rights reserved Page 34

Microsoft FAT Specification

Microsoft Confidential. © 2004 Microsoft Corporation. All rights reserved Page 35

Section 8: EA Support (optional)

This section to be expanded.

Microsoft FAT Specification

Microsoft Confidential. © 2004 Microsoft Corporation. All rights reserved Page 36

Appendix 1: Example BPB for 512 byte sector-size 128 MB
HDD media formatted FAT16

Byte Position Length Description

Contents

0 3 Intel jump instruction
to boot code

0xeb903c

3 8 OEM Name String MSDOS5.0
11 2 Bytes per sector 0x200
13 1 Sectors per cluster 0x8
14 2 Reserved sectors 0x4
16 1 Number of FATs 0x2
17 2 Root Entry Count 0x200
29 2 16-bit Count of

sectors
0

21 1 Media Type ID 0xf8
22 2 Sectors per FAT 0x86
24 2 Sectors per track 0x3f
26 2 Number of heads 0xff
28 4 Number of hidden

sectors
0x3f

32 4 32-bit Count of
sectors

0x42a92

36 1 Physical drive
Number

0x80

37 1 Reserved 0
38 1 Extended boot

signature
0x29

39 4 Volume serial number 0xa0309f1e
43 11 Volume label NO NAME
54 8 Informational FS Type FAT16
62 448 Reserved 0x0
510 2 Signature 0x55AA

Microsoft FAT Specification

Microsoft Confidential. © 2004 Microsoft Corporation. All rights reserved Page 37

Appendix 2: Example BPB for 512 byte sector-size 128 MB
HDD media formatted FAT32

Byte Position Length Description

Contents

0 3 Intel jump instruction
to boot code

0xeb9058

3 8 OEM Name String MSDOS5.0
11 2 Bytes per sector 0x200
13 1 Sectors per cluster 0x4
14 2 Reserved sectors 0x20
16 1 Number of FATs 0x2
17 2 Root Entry Count 0
29 2 16-bit Count of

sectors
0

21 1 Media Type ID 0xf8
22 2 Sectors per FAT 0
24 2 Sectors per track 0x3f
26 2 Number of heads 0xff
28 4 Number of hidden

sectors
0x3f

32 4 32-bit Count of
sectors

0x42a92

36 4 32-bit count of sectors
per FAT

0x214

40 2 Extended flags 0
42 2 File system version 0
44 4 Root directory start

cluster
0x2

48 2 File system
information sector

0x1

50 2 Backup boot sector 0x6
52 12 Reserved 0
64 1 Physical drive

Number
0x80

65 1 Reserved 0
66 1 Extended boot

signature
0x29

67 4 Volume serial number 0x20bccd50
71 11 Volume label NO NAME
82 8 Informational FS Type FAT32
90 420 Reserved 0x0
510 2 Signature 0x55AA

