
1

The Complete

SPECTRUM

ROM

DISASSEMBLY

BY

Dr Ian Logan & Dr Frank O’Hara

Transcribed by the following readers of
the comp.sys.sinclair newsgroup:-

J.R. Biesma
Biggo

Dr. J. Bland
Paul E .Collins
Chris Cowley

Dr. Rupert Goodwins
Jonathan G Harston

Marcus Lund
Joe Mackay

Russell Marks
Eduardo Yañez Parareda

Adam Stonehewer
Mark Street

Gerard Sweeney
Geoff Wearmouth
Matthew Westcott
Matthew Wilson

Witchy

2

Preface

The Sinclair ZX Spectrum is a worthy successor to the ZX 81 which in turn replaced the ZX 80.

The Spectrum has a 16K monitor program. This program has been developed directly from the 4K program
of the ZX 80 although there are now so many new features that the differences outweigh the similarities.

We have both enjoyed producing this book. We have learnt a great deal about the techniques of Z80
machine code programming and now feel that between us we have unravelled the ‘secrets of the Spectrum’.

We would like to thank:

-- Our families.

-- Alfred Milgrom, our publisher who has been extremely helpful.

-- Philip Mitchell whose notes on the cassette format were most informative.

-- Clive Sinclair and his team at Sinclair Research Ltd. who have produced such a ‘challenging’ and
useful machine.

January 1983

 Ian Logan Lincoln, U.K.

 Frank O’Hara London, U.K.

3

Contents

 page
Preface
Introduction
The DISASSEMBLY

- The restart routines and tables 1
- The keyboard routines 5
- The loudspeaker routines 11
- The cassette handling routines 15
- The screen and printer handling routines 33
- The executive routines 59
- BASIC line and command interpretation 84
- Expression evaluation 127
- The arithmetic routines 164
- The floating-point calculator 190

Appendix

- BASIC programs for the main series 222
(SIN X, EXP X, LN X & ATN X)

- The ‘DRAW’ algorithm 228
- The ‘CIRCLE’ algorithm 228
- Note on small integers and -65536 229

Index to routines 231

i

Introduction

The 16K monitor program of the Spectrum is a complex Z80 machine code program. Its overall structure is very clear in that it is divided
into three major parts:

a. Input/Output routines
b. BASIC interpreter
c. Expression handling

However these blocks are too large to be managed easily and in this book the monitor program is discussed in ten parts.
Each of these parts will now be ‘outlined’.

The restart routines and tables.
At the start of the monitor program are the various ‘restart’ routines that are called with the single byte ‘RST’ instructions. All of the
restarts are used. For example ‘restart 0008’ is used for the reporting of syntax or run-time errors.
The tables in this part of the monitor program hold the expanded forms of the tokens and the ‘key-codes’.

The keyboard routine.
The keyboard is scanned every 1/50 th. of a second (U.K. model) and the keyboard routine returns the required character code. All of
the keys of the keyboard 'repeat' if they are held down and the keyboard routine takes this into consideration.

The loudspeaker routines.
The spectrum has a single on-board loudspeaker and a note is produced by repeatedly using the appropriate 'OUT' instruction. In the
controller routine great care has been taken to ensure that the note is held at a given 'pitch' throughout its 'duration'.

The cassette handling routines.
It was a very unfortunate feature of the ZX 81 that so little of the monitor program for that machine was devoted to the cassette
handling.
However in the Spectrum there is an extensive block of code and now the high standard of cassette handling is one of the most
successful features of the machine.
BASIC programs or blocks of data are both dealt with in the same manner of having a 'header' block (seventeen bytes) that is SAVEd
first. This 'header' describes the 'data block' that is SAVEd after it.
One disadvantage of this system is that it is not possible to produce programs with any 'security' whatsoever.

The screen and printer handling routines.
All of the remaining input/output routines of the Spectrum are 'vectored' through the 'channel & stream information areas'.
In the standard Spectrum 'input' is only possible from the keyboard but 'output' can be directed to the printer, the upper part of the T.V.
display or the lower part of the T.V. display.
The major 'input' routine in this part of the monitor program is the EDITOR that allows the user to enter characters into the lower part of
the T.V. display.
The PRINT-OUT routine is a rather slow routine as the same routine is used for 'all possibilities'. For example, the adding of a single
byte to the 'display area' involves considering the present status of OVER and INVERSE on every occasion.

The executive routines
In this part of the monitor program are to be found the INITIALISATION procedure and the 'main execution loop' of the BASIC
interpreter.
In the Spectrum the BASIC line returned by the EDITOR is checked for the correctness of its syntax and then saved in the program
area, if it was a line starting with a line number, or 'executed' otherwise.
This execution can in turn lead to further statements being considered. (Most clearly seen as in the case of - RUN.)

ii

BASIC line and command interpretation.
This part of the monitor program considers a BASIC line as a set of statements and in its turn each statement as starting with a
particular command. For each command there is a 'command routine' and it is the execution of the machine code in the appropriate
'command routine' that effects the 'interpretation'.

Expression evaluation
The Spectrum has a most comprehensive expression evaluator allowing for a wide range of variable types, functions and operations.
Once again this part of the monitor is fairly slow as all the possible alternatives have to be considered.
The handling of strings is particularly well managed. All simple strings are managed 'dynamically' and old copies are 'reclaimed' once
they are redundant. This means that there is no 'garbage collecting' to be done.

The arithmetic routines
The Spectrum has two forms for numbers. Integer values in the range -65535 to +65535 are in an 'integral' or 'short' form whilst all other
numbers are in a five byte floating point form.
The present version of the monitor is unfortunately marred by two mistakes in this part.
 i. There is a mistake in 'division' whereby the 34th bit of a division is lost.
ii. The value of -65536 is sometimes put in 'short' form and at other times in 'floating-point' and this leads to troubles.

The floating-point calculator
The CALCULATOR of the Spectrum handles numbers and strings and its operations are specified by 'literals'. It can therefore be
considered that there is an internal 'stack operating' language in the CALCULATOR.
This part of the monitor program contains routines for all the mathematical functions. The approximations to SIN X, EXP X, LN X & ATN
X are obtained by developing Chebyshev polynomials and full details are given in the appendix.

Overall the 16K monitor program offers an extremely wide range of different BASIC commands and functions. The programmers have
always however been short of 'room' and hence the program is written for 'compactness' rather than 'speed'.

1

THE DISASSEMBLY

THE RESTART ROUTINES and THE TABLES

THE 'START'
The maskable interrupt is disabled and the DE register pair set to hold the 'top of possible RAM'.
0000 START DI Disable the 'keyboard interrupt'.
 XOR A +00 for start (but +FF for
 'NEW').
 LD DE,+FFFF Top of possible RAM.
 JP 11CB,START/NEW Jump forward.

THE 'ERROR' RESTART
The error pointer is made to point to the position of the error.
0008 ERROR-1 LD HL,(CH-ADD) The address reached by the
 LD (X-PTR),HL interpreter is copied to the error
 JP 0053,ERROR-2 pointer before proceeding.

THE 'PRINT A CHARACTER' RESTART
The A register holds the code of the character that is to be printed.
0010 PRINT-A-1 JP 15F2,PRINT-A-2 Jump forward immediately.
 DEFB +FF,+FF,+FF,+FF,+FF Unused locations.

THE 'COLLECT CHARACTER' RESTART
The contents of the location currently addressed by CH-ADD are fetched. A return is made if the value represents a printable character,
otherwise CH-ADD is incremented and the tests repeated.
0018 GET-CHAR LD HL,(CH-ADD) Fetch the value that is addressed
 LD A,(HL) by CH-ADD.
001C TEST-CHAR CALL 007D,SKIP-OVER Find out if the character is
 RET NC printable. Return if it is so.

THE 'COLLECT NEXT CHARACTER' RESTART
As a BASIC line is interpreted, this routine is called repeatedly to step along the line.
0020 NEXT-CHAR CALL 0074,CH-ADD+1 CH-ADD needs to be incre-
 mented.
 JR 001C,TEST-CHAR Jump back to test the new
 value.
 DEFB +FF,+FF,+FF Unused locations.

THE 'CALCULATOR' RESTART
The floating point calculator is entered at 335B.
0028 FP-CALC JP 335B,CALCULATE Jump forward immediately.
 DEFB +FF,+FF,+FF,+FF,+FF Unused locations.

THE 'MAKE BC SPACES' RESTART
This routine creates free locations in the work space. The number of locations is determined by the current contents of the BC register
pair.
0030 BC-SPACES PUSH BC Save the 'number'.
 LD HL,(WORKSP) Fetch the present address of the
 PUSH HL start of the work space and save
 JP 169E,RESERVE that also before proceeding.

THE 'MASKABLE INTERRUPT' ROUTINE
The real time clock is incremented and the keyboard scanned whenever a maskable interrupt occurs.
0038 MASK-INT PUSH AF Save the current values held in
 PUSH HL these registers.
 LD HL,(FRAMES) The lower two bytes of the

2

 INC HL frame counter are incremented
 LD (FRAMES),HL every 20 ms. (U.K.) The highest
 LD A,H byte of the frame counter is
 OR L only incremented when the
 JR NZ,0048,KEY-INT value of the lower two bytes
 INC (FRAMES-3) is zero.
0048 KEY-INT PUSH BC Save the current values held
 PUSH DE in these registers.
 CALL 02BF,KEYBOARD Now scan the keyboard.
 POP DE Restore the values.
 POP BC
 POP HL
 POP AF
 EI The maskable interrupt is en-
 RET abled before returning.

THE 'ERROR-2' ROUTINE
The return address to the interpreter points to the 'DEFB' that signifies which error has occurred. This 'DEFB' is fetched and transferred
to ERR-NR. The machine stack is cleared before jumping forward to clear the calculator stack.
0053 ERROR-2 POP HL The address on the stack points
 LD L,(HL) to the error code.
0055 ERROR-3 LD (ERR-NR),L It is transferred to ERR-NR.
 LD SP,(ERR-SP) The machine is cleared before
 JP 16C5,SET-STK exiting via SET-STK.
 DEFB +FF,+FF,+FF,+FF Unused locations.
 DEFB +FF,+FF,+FF

THE 'NON-MASKABLE INTERRUPT' ROUTINE
This routine is not used in the standard Spectrum but the code allows for a system reset to occur following activation of the NMI line.
The system variable at 5CB0, named here NMIADD, has to have the value zero for the reset to occur.
0066 RESET PUSH AF Save the current values held
 PUSH HL in these registers.
 LD HL,(NMIADD) The two bytes of NMIADD
 LD A,H must both be zero for the reset
 OR L to occur.
 JR NZ,0070,NO-RESET Note: This should have been
 'JR Z'!
 JP (HL) Jump to START.
0070 NO-RESET POP HL Restore the current values to
 POP AF these registers and return.
 RETN

THE 'CH-ADD+1' SUBROUTINE
The address held in CH-ADD is fetched, incremented and restored. The contents of the location now addressed by CH-ADD is fetched.
The entry points of TEMP-PTR1 and TEMP-PTR2 are used to set CH-ADD for a temporary period.
0074 CH-ADD+1 LD HL,(CH-ADD) Fetch the address.
0077 TEMP-PTR1 INC HL Increment the pointer.
0078 TEMP-PTR2 LD (CH-ADD),HL Set CH-ADD.
 LD A,(HL) Fetch he addressed value and
 RET then return.

THE 'SKIP-OVER' SUBROUTINE
The value brought to the subroutine in the A register is tested to see if it is printable. Various special codes lead to HL being
incremented once, or twice, and CH-ADD amended accordingly.
007D SKIP-OVER CP +21 Return with the carry flag reset
 RET NC if ordinary character code.
 CP +0D Return if the end of the line
 RET Z has been reached.
 CP +10 Return with codes +00 to +0F

3

 RET C but with carry set.
 CP +18 Return with codes +18 to +20
 CCF again with carry set.
 RET C
 INC HL Skip-over once.
 CP +16 Jump forward with codes +10
 JR C,0090,SKIPS to +15 (INK to OVER).
 INC HL Skip-over once more (AT &
 TAB).
0090 SKIPS SCF Return with the carry flag set
 LD (CH-ADD),HL and CH-ADD holding the
 RET appropriate address.

THE TOKEN TABLE
All the tokens used by the Spectrum are expanded by reference to this table. The last code of each token is 'inverted' by having its bit 7
set.

0095 BF 52 4E C4 49 4E 4B 45 '?' R N 'D' I N K E

009D 59 A4 50 C9 46 CE 50 4F Y '$' P 'I' F 'N' P O

00A5 49 4E D4 53 43 52 45 45 I N 'T' S C R E E

00AD 4E A4 41 54 54 D2 41 D4 N '$' A T T 'R' A 'T'

00B5 54 41 C2 56 41 4C A4 43 T A 'B' V A L '$' C

00BD 4F 44 C5 56 41 CC 4C 45 O D 'E' V A 'L' L E

00C5 CE 53 49 CE 43 4F D3 54 'N' S I 'N' C O 'S' T

00CD 41 CE 41 53 CE 41 43 D3 A 'N' A S 'N' A C 'S'

00D5 41 54 CE 4C CE 45 58 D0 A T 'N' L 'N' E X 'P'

00DD 49 4E D4 53 51 D2 53 47 I N 'T' S Q 'R' S G

00E5 CE 41 42 D3 50 45 45 CB 'N' A B 'S' P E E 'K'

00ED 49 CE 55 53 D2 53 54 52 I 'N' U S 'R' S T R

00F5 A4 43 48 52 A4 4E 4F D4 '$' C H R '$' N O 'T'

00FD 42 49 CE 4F D2 41 4E C4 B I 'N' O 'R' A N 'D'

0105 3C BD 3E BD 3C BE 4C 49 < '=' > '=' < '>' L I

010D 4E C5 54 48 45 CE 54 CF N 'E' T H E 'N' T 'O'

0115 53 54 45 D0 44 45 46 20 S T E 'P' D E F

011D 46 CE 43 41 D4 46 4F 52 F 'N' C A 'T' F O R

0125 4D 41 D4 4D 4F 56 C5 45 M A 'T' M O V 'E' E

012D 52 41 53 C5 4F 50 45 4E R A S 'E' O P E N

0135 20 A3 43 4C 4F 53 45 20 '#' C L O S E

013D A3 4D 45 52 47 C5 56 45 '#' M E R G 'E' V E

0145 52 49 46 D9 42 45 45 D0 R I F 'Y' B E E 'P'

014D 43 49 52 43 4C C5 49 4E C I R C L 'E' I N

0155 CB 50 41 50 45 D2 46 4C 'K' P A P E 'R' F L

015D 41 53 C8 42 52 49 47 48 A S 'H' B R I G H

0165 D4 49 4E 56 45 52 53 C5 'T' I N V E R S 'E'

016D 4F 56 45 D2 4F 55 D4 4C O V E 'R' O U 'T' L

0175 50 52 49 4E D4 4C 4C 49 P R I N 'T' L L I

017D 53 D4 53 54 4F D0 52 45 S 'T' S T O 'P' R E

0185 41 C4 44 41 54 C1 52 45 A 'D' D A T 'A' R E

018D 53 54 4F 52 C5 4E 45 D7 S T O R 'E' N E 'W'

0195 42 4F 52 44 45 D2 43 4F B O R D E 'R' C O

019D 4E 54 49 4E 55 C5 44 49 N T I N U 'E' D I

01A5 CD 52 45 CD 46 4F D2 47 'M' R E 'M' F O 'R' G

01AD 4F 20 54 CF 47 4F 20 53 O T 'O' G O S

01B5 55 C2 49 4E 50 55 D4 4C U 'B' I N P U 'T' L

01BD 4F 41 C4 4C 49 53 D4 4C O A 'D' L I S 'T' L

01C5 45 D4 50 41 55 53 C5 4E E 'T' P A U S 'E' N

01CD 45 58 D4 50 4F 4B C5 50 E X 'T' P O K 'E' P

01D5 52 49 4E D4 50 4C 4F D4 R I N 'T' P L O 'T'

01DD 52 55 CE 53 41 56 C5 52 R U 'N' S A V 'E' R

01E5 41 4E 44 4F 4D 49 5A C5 A N D O M I Z 'E'

01ED 49 C6 43 4C D3 44 52 41 I 'F' C L 'S' D R A

01F5 D7 43 4C 45 41 D2 52 45 'W' C L E A 'R' R E

01FD 54 55 52 CE 43 4F 50 D9 T U R 'N' C O P 'Y'

4

THE KEY TABLES
There are six separate key tables. The final character code obtained depends on the particular key pressed and the 'mode' being used.

(a) The main key table - L mode and CAPS SHIFT.
0205 42 48 59 36 35 54 47 56 B H Y 6 5 T G V

020D 4E 4A 55 37 34 52 46 43 N J U 7 4 R F C

0215 4D 4B 49 38 33 45 44 58 M K I 8 3 E D X

021D 0E 4C 4F 39 32 57 53 5A SYMBOL L 0 9 2 W S Z

 SHIFT

0225 20 0D 50 30 31 51 41 SPACE ENTER P 0 1 Q A

(b) Extended mode. Letter keys and unshifted
022C E3 C4 E0 E4 READ BIN LPRINT DATA

0230 B4 BC BD BB TAN SGN ABS SQR

0234 AF B0 B1 C0 CODE VAL LEN USR

0238 A7 A6 BE AD PI INKEY$ PEEK TAB

023C B2 BA E5 A5 SIN INT RESTORE RND

0240 C2 E1 B3 B9 CHR$ LLIST COS EXP

0244 C1 B8 STR$ LN

(c) Extended mode. Letter keys and either shift.
0246 7E DC DA 5C ~ BRIGHT PAPER \

024A B7 7B 7D D8 ATN { } CIRCLE

024E BF AE AA AB IN VAL$ SCREEN$ ATTR

0252 DD DE DF 7F INVERSE OVER OUT ©

0256 B5 D6 7C D5 ASN VERIFY | MERGE

025A 5D DB B6 D9] FLASH ACS INK

025E 5B D7 0C 07 [BEEP

(d) Control codes. Digit keys and CAPS SHIFT.
0260 0C 07 06 04 DELETE EDIT CAPS LOCK TRUE VIDEO

0264 05 08 0A 0B INV VIDEO Cursor left Cursor down Cursor up

0268 09 0F Cursor right GRAPHICS

(e) Symbol code. Letter keys and symbol shift.
026A E2 2A 3F CD STOP * ? STEP

026E C8 CC CB 5E >= TO THEN ^

0272 AC 2D 2B 3D AT - + =

0276 2E 2C 3B 22 . , ; "

027A C7 3C C3 3E <= < NOT >

027E C5 2F C9 60 OR / <> £

0282 C6 3A AND :

(f) Extended mode. Digit keys and symbol shift.
0284 D0 CE A8 CA FORMAT DEF FN FN LINE

0288 D3 D4 D1 D2 OPEN CLOSE MOVE ERASE

028C A9 CF POINT CAT

5

THE KEYBOARD ROUTINES

THE 'KEYBOARD SCANNING' SUBROUTINE
This very important subroutine is called by both the main keyboard subroutine and the INKEY$ routine (in SCANNING).
In all instances the E register is returned with a value in the range of +00 to +27, the value being different for each of the forty keys of
the keyboard, or the value +FF, the no-key.
The D register is returned with a value that indicates which single shift key is being pressed. If both shift keys are being pressed then
the D and E registers are returned with the values for the CAPS SHIFT and SYMBOL SHIFT keys respectively.
If no keys is being pressed then the DE register pair is returned holding +FFFF.
The zero flag is returned reset if more than two keys are being pressed, or neither key of a pair of keys is a shift key.

028E KEY-SCAN LD L,+2F The initial key value for each
 line will be +2F, +2E,...,+28.
 (Eight lines.)
 LD DE,+FFFF Initialise DE to 'no-key'.
 LD BC,+FEFE C = port address, B = counter.

Now enter a loop. Eight passes are made with each pass having a different initial key value and scanning a different line of five keys.
(The first line is CAPS SHIFT, Z, X, C, V.)

0296 KEY-LINE IN A,(C) Read from the port specified.
 CPL A pressed key in the line will set
 AND +1F its respective bit (from bit 0 -
 outer key, to bit 4 - inner key).
 JR Z,02AB,KEY-DONE Jump forward if none of the
 five keys in the line are being
 pressed.
 LD H,A The key-bits go to the H register
 LD A,L whilst the initial key value is
 fetched.
029F KEY-3KEYS INC D If three keys are being pressed
 RET NZ on the keyboard then the D
 register will no longer hold +FF
 - so return if this happens.
02A1 KEY-BITS SUB +08 Repeatedly subtract '8' from
 SRL H the preset key value until a
 JR NC,02A1,KEY-BITS key-bit is found.
 LD D,E Copy any earlier key value to
 the D register.
 LD E,A Pass the new key value to the
 E register.
 JR NZ,029F,KEY-3KEYS If there is a second, or possibly
 a third, pressed key in this line
 then jump back.
02AB KEY-DONE DEC L The line has been scanned so the
 initial key value is reduced for
 the next pass.
 RLC B The counter is shifted and the
 JR C,0296,KEY-LINE jump taken if there are still lines
 to be scanned.
Four tests are now made.
 LD A,D Accept any key value for a pair
 RET Z of keys if the 'D' key is CAPS
 SHIFT.

6

 CP +19 Accept the key value for a pair
 RET Z of keys if the 'D' key is SYMBOL
 SHIFT.
 LD A,E It is however possible for the 'E'
 LD E,D key of a pair to be SYMBOL
 LD D,A SHIFT - so this has to be
 CP +18 considered.
 RET Return with the zero flag set if
 it was SYMBOL SHIFT and
 'another key'; otherwise reset.

THE 'KEYBOARD' SUBROUTINE
This subroutine is called on every occasion that a maskable interrupt occurs. In normal operation this will happen once every 20 ms.
The purpose of this subroutine is to scan the keyboard and decode the key value. The code produced will, if the 'repeat' status allows it,
be passed to the system variable LAST-K. When a code is put into this system variable bit 5 of FLAGS is set to show that a 'new' key
has been pressed.

02BF KEYBOARD CALL 028E,KEY-SCAN Fetch a key value in the DE
 RET NZ register pair but return immedi-
 ately if the zero pair flag is reset.

A double system of 'KSTATE system variables' (KSTATE0 - KSTATE 3 and KSTATE4 - KSTATE7) is used from now on.
The two sets allow for the detection of a new key being pressed (using one set) whilst still within the 'repeat period' of the previous key
to have been pressed (details in the other set).
A set will only become free to handle a new key if the key is held down for about 1/10 th. of a second. i.e. Five calls to KEYBOARD.

 LD HL,KSTATE0 Start with KSTATE0.
02C6 K-ST-LOOP BIT 7,(HL) Jump forward if a 'set is free';
 JR NZ,02D1,K-CH-SET i.e. KSTATE0/4 holds +FF.
 INC HL However if the set is not free
 DEC (HL) decrease its '5 call counter'
 DEC HL and when it reaches zero signal
 JR NZ,02D1,K-CH-SET the set as free.
 LD (HL),+FF

After considering the first set change the pointer and consider the second set.

02D1 K-CH-SET LD A,L Fetch the low byte of the
 LD HL,+KSTATE4 address and jump back if the
 CP L second set has still to be
 JR NZ,02C6,K-ST-LOOP considered.

Return now if the key value indicates 'no-key' or a shift key only.

 CALL 031E,K-TEST Make the necessary tests and
 RET NC return if needed. Also change
 the key value to a 'main code'.

A key stroke that is being repeated (held down) is now separated from a new key stroke.

 LD HL,+KSTATE0 Look first at KSTATE0.
 CP (HL) Jump forward if the codes
 JR Z,0310,K-REPEAT match - indicating a repeat.
 EX DE,HL Save the address of KSTATE0.
 LD HL,+KSTATE4 Now look at KSTATE4.
 CP (HL) Jump forward if the codes
 JR Z,0310,K-REPEAT match - indicating a repeat.

But a new key will not be accepted unless one of the sets of KSTATE system variables is 'free'.

 BIT 7,(HL) Consider the second set.
 JR NZ,02F1,K-NEW Jump forward if 'free'.
 EX DE,HL Now consider the first set.

7

 BIT 7,(HL) Continue if the set is 'free' but
 RET Z exit from the KEYBOARD
 subroutine if not.

The new key is to be accepted. But before the system variable LAST-K can be filled, the KSTATE system variables, of the set being
used, have to be initialised to handle any repeats and the key's code has to be decoded.

02F1 K-NEW LD E,A The code is passed to the
 LD (HL),A E register and to KSTATE0/4.
 INC HL The '5 call counter' for this
 LD (HL),+05 set is reset to '5'.
 INC HL The third system variable of
 LD A,(REPDEL) the set holds the REPDEL value
 LD (HL),A (normally 0.7 secs.).
 INC HL Point to KSTATE3/7.

The decoding of a 'main code' depends upon the present state of MODE, bit 3 of FLAGS and the 'shift byte'.

 LD C,(MODE) Fetch MODE.
 LD D,(FLAGS) Fetch FLAGS.
 PUSH HL Save the pointer whilst the
 CALL 0333,K-DECODE 'main code' is decoded.
 POP HL
 LD (HL),A The final code value is saved in
 KSTATE3/7; from where it is
 collected in case of a repeat.

The next three instruction lines are common to the handling of both 'new keys' and 'repeat keys'.

0308 K-END LD (LAST-K),A Enter the final code value into
 SET 5,(FLAGS) LAST-K and signal 'a new key'.
 RET Finally return.

THE 'REPEATING KEY' SUBROUTINE
A key will 'repeat' on the first occasion after the delay period - REPDEL (normally 0.7 secs.) and on subsequent occasions after the
delay period - REPPER (normally 0.1 secs.).

0310 K-REPEAT INC HL Point to the '5 call counter'
 LD (HL),+05 of the set being used and reset
 it to '5'.
 INC HL Point to the third system vari-
 DEC (HL) able - the REPDEL/REPPER
 value, and decrement it.
 RET NZ Exit from the KEYBOARD
 subroutine if the delay period
 has not passed.
 LD A,(REPPER) However once it has passed the
 LD (HL),A delay period for the next repeat
 is to be REPPER.
 INC HL The repeat has been accepted
 LD A,(HL) so the final code value is fetched
 from KSTATE3/7 and passed
 JR 0308,K-END to K-END.

THE 'K-TEST' SUBROUTINE
The key value is tested and a return made if 'no-key' or 'shift-only'; otherwise the 'main code' for that key is found.

031E K-TEST LD B,D Copy the shift byte.
 LD D,+00 Clear the D register for later.
 LD A,E Move the key number.
 CP +27 Return now if the key was
 RET NC 'CAPS SHIFT' only or 'no-key'.

8

 CP +18 Jump forward unless the 'E'
 JR NZ,032C,K-MAIN key was SYMBOL SHIFT.
 BIT 7,B However accept SYMBOL SHIFT
 RET NZ and another key; return with
 SYMBOL SHIFT only.

The 'main code' is found by indexing into the main key table.

032C K-MAIN LD HL,+0205 The base address of the table.
 ADD HL,DE Index into the table and fetch
 LD A,(HL) the 'main code'.
 SCF Signal 'valid keystroke'
 RET before returning.

THE 'KEYBOARD DECODING' SUBROUTINE
This subroutine is entered with the 'main code' in the E register, the value of FLAGS in the D register, the value of MODE in the C
register and the 'shift byte' in the B register.
By considering these four values and referring, as necessary, to the six key tables a 'final code' is produced. This is returned in the A
register.

0333 K-DECODE LD A,E Copy the 'main code'.
 CP +3A Jump forward if a digit key is
 JR C,0367,K-DIGIT being considered; also SPACE,
 ENTER & both shifts.
 DEC C Decrement the MODE value.
 JP M,034F,K-KLC-LET Jump forward, as needed, for
 JR Z,0341,K-E-LET modes 'K', 'L', 'C' & 'E'.

Only 'graphics' mode remains and the 'final code' for letter keys in graphics mode is computed from the 'main code'.

 ADD A,+4F Add the offset.
 RET Return with the 'final code'.

Letter keys in extended mode are considered next.

0341 K-E-LET LD HL,+01EB The base address for table 'b'.
 INC B Jump forward to use this table
 JR Z,034A,K-LOOK-UP if neither shift key is being
 pressed.
 LD HL,+0205 Otherwise use the base address
 for table 'c'.

Key tables 'b-f' are all served by the following look-up routine. In all cases a 'final code' is found and returned.

034A K-LOOK-UP LD D,+00 Clear the D register.
 ADD HL,DE Index the required table
 LD A,(HL) and fetch the 'final code'.
 RET Then return.

Letter keys in 'K', 'L' or 'C' modes are now considered. But first the special SYMBOL SHIFT codes have to be dealt with.

034F K-KLC-LET LD HL,+0229 The base address for table 'e'
 BIT 0,B Jump back if using the SYMBOL
 JR Z,034A,K-LOOK-UP SHIFT key and a letter key.
 BIT 3,D Jump forward if currently in
 JR Z,0364,K-TOKENS 'K' mode.
 BIT 3,(FLAGS2) If CAPS LOCK is set then
 RET NZ return with the 'main code'
 INC B Also return in the same manner
 RET NZ if CAPS SHIFT is being pressed.
 ADD A,+20 However if lower case codes are
 RET required then +20 has to be
 added to the 'main code' to give
 the correct 'final code'.

The 'final code' values for tokens are found by adding +A5 to the 'main code'.

9

0364 K-TOKENS ADD A,+A5 Add the required offset and
 RET return.

Next the digit keys; and SPACE, ENTER & both shifts; are considered.

0367 K-DIGIT CP +30 Proceed only with the digit keys.
 RET C i.e. Return with SPACE (+20),
 ENTER (+0D) & both shifts
 (+0E).
 DEC C Now separate the digit keys into
 three groups - according to the
 mode.
 JP M,039D,K-KLC-DGT Jump with 'K', 'L' & 'C' modes;
 JR NZ,0389,K-GRA-DGT and also with 'G' mode.
 Continue with 'E' mode.
 LD HL,+0254 The base address for table 'f'.
 BIT 5,B Use this table for SYMBOL
 JR Z,034A,K-LOOK-UP SHIFT & a digit key in
 extended mode.
 CP +38 Jump forward with digit keys
 JR NC,0382,K-8-&-9 '8' and '9'.

The digit keys '0' to '7' in extended mode are to give either a 'paper colour code' or an 'ink colour code' depending on the use of the
CAPS SHIFT.

 SUB +20 Reduce the range +30 to +37
 giving +10 to +17.
 INC B Return with this 'paper colour
 RET Z code' if the CAPS SHIFT is
 not being used.
 ADD A,+08 But if it is then the range is to
 RET be +18 to +1F instead - indicat-
 ing an 'ink colour code'.

The digit keys '8' and '9' are to give 'BRIGHT' & 'FLASH' codes.

0382 K-8-&-9 SUB +36 +38 & +39 go to +02 & +03.
 INC B Return with these codes if CAPS
 RET Z SHIFT is not being used. (These
 are 'BRIGHT' codes.)
 ADD A,+FE Subtract '2' is CAPS SHIFT is
 RET being used; giving +00 & +01 (as
 'FLASH' codes).

The digit keys in graphics mode are to give the block graphic characters (+80 to +8F), the GRAPHICS code (+0F) and the DELETE
code (+0C).

0389 K-GRA-DGT LD HL,+0230 The base address of table 'd'.
 CP +39 Use this table directly for
 JR Z,034A,K-LOOK-UP both digit key '9' that is to give
 CP +30 GRAPHICS, and digit key '0'
 JR Z,034A,K-LOOK-UP that is to give DELETE.
 AND +07 For keys '1' to '8' make the
 ADD A,+80 range +80 to +87.
 INC B Return with a value from this
 RET Z range if neither shift key is
 being pressed.
 XOR +0F But if 'shifted' make the range
 RET +88 to +8F.

Finally consider the digit keys in 'K', 'L' & 'C' modes.

039D K-KLC-DGT INC B Return directly if neither shift
 RET Z key is being used. (Final codes
 +30 to +39.)
 BIT 5,B Use table 'd' if the CAPS
 LD HL,+0230 SHIFT key is also being
 JR NZ,034A,K-LOOK-UP pressed.

10

The codes for the various digit keys and SYMBOL SHIFT can now be found.

 SUB +10 Reduce the range to give +20 to
 +29.
 CP +22 Separate the '@' character
 JR Z,03B2,K-@-CHAR from the others.
 CP +20 The '-' character has also to be
 separated.
 RET NZ Return now with the 'final
 codes' +21, +23 to +29.
 LD A,+5F Give the '-' character a
 RET code of +5F.
03B2 K-@-CHAR LD A,+40 Give the '@' character a code
 RET of +40.

11

THE LOUDSPEAKER ROUTINES

The two subroutines in this section are the BEEPER subroutine, that actually controls the loudspeaker, and the BEEP command
routine.
The loudspeaker is activated by having D4 low during an OUT instruction that is using port '254'. When D4 is high in a similar situation
the loudspeaker is deactivated. A 'beep' can therefore be produced by regularly changing the level of D4.
Consider now the note 'middle C' which has the frequency 261.63 hz. In order to get this note the loudspeaker will have to be
alternately activated and deactivated every 1/523.26

th
. of a second. In the SPECTRUM the system clock is set to run at 3.5 mhz. and

the note of 'middle C' will require that the requisite OUT instruction be executed as close as possible to every 6,689 T states. This last
value, when reduced slightly for unavoidable overheads, represents the 'length of the timing loop' in the BEEPER subroutine.

THE 'BEEPER' SUBROUTINE
This subroutine is entered with the DE register pair holding the value 'f*t', where a note of given frequency 'f' is to have a duration of 't'
seconds, and the HL register pair holding a value equal to the number of T states in the 'timing loop' divided by '4'.
i.e. For the note 'middle C' to be produced for one second DE holds +0105 (INT(261.3 * 1)) and HL holds +066A (derived from 6,689/4 -
30.125).

03B5 BEEPER DI Disable the interrupt for the
 duration of a 'beep'.
 LD A,L Save L temporarily.
 SRL L Each '1' in the L register is
 SRL L to count '4' T states, but take
 INT (L/4) and count '16' T
 states instead.
 CPL Go back to the original value
 AND +03 in L and find how many were
 LD C,A lost by taking INT (L/4).
 LD B,+00
 LD IX,+03D1 The base address of the timing
 loop.
 ADD IX,BC Alter the length of the timing
 loop. Use an earlier starting
 point for each '1' lost by taking
 INT (L/4).
 LD A,(BORDCR) Fetch the present border
 AND +38 colour and move it to bits
 RRCA 2, 1 & 0 of the A register.
 RRCA
 RRCA
 OR +08 Ensure the MIC output is 'off'.

Now enter the sound generation loop. 'DE' complete passes are made, i.e. a pass for each cycle of the note.
The HL register holds the 'length of the timing loop' with '16' T states being used for each '1' in the L register and '1,024' T states for
each '1' in the H register.

03D1 BE-IX+3 NOP Add '4' T states for each
03D2 BE-IX+2 NOP earlier entry port
03D3 BE-IX+1 NOP that is used.
03D4 BE-IX+0 INC B The values in the B & C registers
 INC C will come from H & L registers
 - see below.
03D6 BE-H&L-LP DEC C The 'timing loop'.
 JR NZ,03D6,BE-H&L-LP i.e. 'BC' * '4' T states.
 LD C,+3F (But note that at the half-cycle
 DEC B point - C will be equal to
 JP NZ,03D6,BE-H&L-LP 'L+1'.)

The loudspeaker is now alternately activated and deactivated.

 XOR +10 Flip bit 4.

12

 OUT (+FE),A Perform the OUT operation;
 leaving the border unchanged.
 LD B,H Reset the B register.
 LD C,A Save the A register.
 BIT 4,A Jump if at the half-cycle
 JR NZ,03F2,BE-AGAIN point.

After a full cycle the DE register pair is tested.

 LD A,D Jump forward if the last
 OR E complete pass has been
 JR Z,03D6,BE-END made already.
 LD A,C Fetch the saved value.
 LD C,L Reset the C register.
 DEC DE Decrease the pass counter.
 JP (IX) Jump back to the required
 starting location of the loop.

The parameters for the second half-cycle are set up.

03F2 BE-AGAIN LD C,L Reset the C register.
 INC C Add '16' T states as this path
 is shorter.
 JP (IX) Jump back.

Upon completion of the 'beep' the maskable interrupt has to be enabled.

03F6 BE-END EI Enable interrupt.
 RET Finally return.

THE 'BEEP' COMMAND ROUTINE
The subroutine is entered with two numbers on the calculator stack. The topmost
number represents the 'pitch' of the note and the number underneath it represents the 'duration'.

03F8 BEEP RST 0028,FP-CALC The floating-point calculator is
 used to manipulate the two values - t & P.
 DEFB +31,duplicate t,P,P
 DEFB +27,int t,P,P
 DEFB +C0,st-mem-0 t,P,i (mem-0 holds i)
 DEFB +03,subtract t,P (where p is the fractional
 part of P)
 DEFB +34,stk-data Stack the decimal value 'K'.
 DEFB +EC,exponent+7C 0.0577622606 (which is a
 DEFB +6C,+98,+1F,+F5 little below 12*(2^0.5)-1)
 DEFB +04,multiply t,pK
 DEFB +A1,stk-one t,pK,1
 DEFB +0F,addition t,pK+1
 DEFB +38,end-calc

Now perform several tests on I, the integer part of the 'pitch'.

 LD HL,+5C92 This is 'mem-0-1st (MEMBOT).
 LD A,(HL) Fetch the exponent of i.
 AND A Give an error if i is not in the
 JR NZ,046C,REPORT-B integral (short) form.
 INC HL Copy the sign byte to the
 LD C,(HL) C register.
 INC HL Copy the low-byte to the
 LD A,B register.
 RLA Again give report B if i does not
 SBC A,A satisfy the test:
 CP C -128<=i<=+127
 JR NZ,046C,REPORT-B
 INC HL
 CP (HL)

13

 JR NZ,046C,REPORT-B
 LD A,B Fetch the low-byte and test
 it further.
 ADD A,+3C
 JP P,0425,BE-I-OK Accept -60<=i<=67.
 JP PO,046C,REPORT-B Reject -128 to -61.

Note: The range +70 to +127 will be rejected later on.

The correct frequency for the 'pitch' i can now be found.

0425 BE-I-OK LD B,+FA Start '6' octaves below middle C.
0427 BE-OCTAVE INC B Repeatedly reduce i in order to
 SUB +0C find the correct octave.
 JR NC,0427,BE-OCTAVE
 ADD A,+0C Ass back the last subtraction.
 PUSH BC Save the octave number.
 LD HL,+046E The base address of the 'semi-
 tone table'.
 CALL 3406,LOC-MEM Consider the table and pass the
 CALL 33B4,STACK-NUM 'A th.' value to the calculator
 stack. (Call it C.)

Now the fractional part of the 'pitch' can be taken into consideration.

 RST 0028,FP-CALC t, pK+1, C
 DEFB +04,multiply t, C(pK+1)
 DEFB +38,end-calc

The final frequency f is found by modifying the 'last value' according to the octave number.

 POP AF Fetch the octave number.
 ADD A,(HL) Multiply the 'last value' by
 LD (HL),A '2 to the power of the octave
 number'.
 RST 0028,FP-CALC t, f
 DEFB +C0,st-mem-0 The frequency is put aside for
 DEFB +02,delete the moment in mem-0.

Attention is now turned to the 'duration'.
 DEFB +31,duplicate t, t
 DEFB +38,end-calc
 CALL 1E94,FIND-INT1 The value 'INT t' must be in
 CP +0B the range +00 to +0A.
 JR NC,046C,REPORT-B

The number of complete cycles in the 'beep' is given by 'f*t' so this value is now found.

 RST 0028,FP-CALC t
 DEFB +E0,get-mem-0 t, f
 DEFB +04,multiply f*t

The result is left on the calculator stack whilst the length of the 'timing loop' required for the 'beep' is computed;

 DEFB +E0,get-mem-0 f*t
 DEFB +34,stk-data The value '3.5 * 10^6/8'
 DEFB +80,four bytes is formed on the top of
 DEFB +43,exponent +93 the calculator stack.
 DEFB +55,+9F,+80,(+00) f*t, f, 437,500 (dec.)
 DEFB +01,exchange f*t, 437,500, f
 DEFB +05,division f*t, 437,500/f
 DEFB +34,stk-data
 DEFB +35,exponent +85
 DEFB +71,(+00,+00,+00) f*t, 437,500/f, 30.125 (dec.)
 DEFB +03,subtract f*t, 437,500/f - 30.125
 DEFB +38,end-calc

14

Note: The value '437,500/f' gives the 'half-cycle' length of the note and reducing it by '30.125' allows for '120.5' T states in which to
actually produce the note and adjust the counters etc.
The values can now be transferred to the required registers.

 CALL 1E99,FIND-INT2 The 'timing loop' value is
 compressed into the BC
 PUSH BC register pair; and saved.

Note: If the timing loop value is too large then an error will occur (returning via ERROR-1); thereby excluding 'pitch' values of '+70 to
+127'.

 CALL 1E99,FIND-INT2 The 'f*t' value is compressed
 into the BC register pair.
 POP HL Move the 'timing loop' value to
 the HL register pair.
 LD D,B Move the 'f*t' value to the
 LD E,C DE register pair.

However before making the 'beep' test the value 'f*t'.

 LD A,D Return if 'f*t' has given the
 OR E result of 'no cycles'
 RET Z required.
 DEC DE Decrease the cycle number and
 JP 03B5,BEEPER jump to the BEEPER subroutine
 (making, at least, one pass).

Report B - integer out of range

046C REPORT-B RST 0008,ERROR-1 Call the error handling
 DEFB +0A routine.

THE 'SEMI-TONE' TABLE
This table holds the frequencies of the twelve semi-tones in an octave.

 frequency hz. note
046E DEFB +89,+02,+D0,+12,+86 261.63 C
 DEFB +89,+0A,+97,+60,+75 277.18 C#
 DEFB +89,+12,+D5,+17,+1F 293.66 D
 DEFB +89,+1B,+90,+41,+02 311.12 D#
 DEFB +89,+24,+D0,+53,+CA 329.63 E
 DEFB +89,+2E,+9D,+36,+B1 349.23 F
 DEFB +89,+38,+FF,+49,+3E 369.99 F#
 DEFB +89,+43,+FF,+6A,+73 392 G
 DEFB +89,+4F,+A7,+00,+54 415.30 G#
 DEFB +89,+5C,+00,+00,+00 440 A
 DEFB +89,+69,+14,+F6,+24 466.16 A#
 DEFB +89,+76,+F1,+10,+05 493.88 B

THE 'PROGRAM NAME' SUBROUTINE (ZX81)
The following subroutine applies to the ZX81 and was not removed when the program was rewritten for the SPECTRUM.

04AA DEFB +CD,+FB,+24,+3A
 DEFB +3B,+5C,+87,+FA
 DEFB +8A,+1C,+E1,+D0
 DEFB +E5,+CD,+F1,+2B
 DEFB +62,+6B,+0D,+F8
 DEFB +09,+CB,+FE,+C9

15

THE CASSETTE HANDLING ROUTINES

The 16K monitor program has an extensive set of routines for handling the cassette interface. In effect these routines form the SAVE.
LOAD, VERIFY & MERGE command routines.
The entry point to the routines is at SAVE-ETC (0605). However before this point are the subroutines concerned with the actual
SAVEing and LOADing (or VERIFYing) of bytes.
In all cases the bytes to be handled by these subroutines are described by the DE register pair holding the 'length' of the block, the IX
register pair holding the 'base address' and the A register holding +00 for a header block, or +FF for a program/data block.

THE 'SA-BYTES' SUBROUTINE
This subroutine is called to SAVE the header information (from 09BA) and later the actual program/data block (from 099E).

04C2 SA-BYTES LD HL,+053F Pre-load the machine stack with
 PUSH HL the address - SA/LD-RET.
 LD HL,+1F80 This constant will give a leader
 of about 5 secs. for a 'header'.
 BIT 7,A Jump forward if SAVEing a
 JR Z,04D0,SA-FLAG header.
 LD HL,+0C98 This constant will give a leader
 of about 2 secs. for a program/
 data block.
04D0 SA-FLAG EX AF,A'F' The flag is saved.
 INC DE The 'length' is incremented
 DEC IX and the 'base address' reduced
 to allow for the flag.
 DI The maskable interrupt is
 disabled during the SAVE.
 LD A,+02 Signal 'MIC on' and border to
 be RED.
 LD B,A Give a value to B.

A loop is now entered to create the pulses of the leader. Both the 'MIC on' and the 'MIC off' pulses are 2,168 T states in length. The
colour of the border changes from RED to CYAN with each 'edge'.

Note: An 'edge' will be a transition either from 'on' to 'off', or from 'off' to 'on'.

04D8 SA-LEADER DJNZ 04D8,SA-LEADER The main timing period.
 OUT (+FE),A MIC on/off, border RED/CYAN,
 XOR +0F on each pass.
 LD B,+A4 The main timing constant.
 DEC L Decrease the low counter.
 JR NZ,04D8,SA-LEADER Jump back for another pulse.
 DEC B Allow for the longer path
 (-reduce by 13 T states).
 DEC H Decrease the high counter.
 JP P,04D8,SA-LEADER Jump back for another pulse
 until completion of the leader.

A sync pulse is now sent.

 LD B,+2F
04EA SA-SYNC-1 DJNZ 04EA,SA-SYNC-1 MIC off for 667 T states from
 'OUT to OUT'.
 OUT (+FE),A MIC on and RED.
 LD A,+0D Signal 'MIC off & CYAN'.
 LD B,+37 MIC on for 735 T States from
04F2 SA-SYNC-2 DJNZ 04F2,SA-SYNC-2 'OUT to OUT'.
 OUT (+FE),A Now MIC off & border CYAN.

The header v. program/data flag will be the first byte to be SAVEd.

16

 LD BC,+3B0E +3B is a timing constant; +0E
 signals 'MIC off & YELLOW'.
 EX AF,A'F' Fetch the flag and pass it to the
 LD L,A L register for 'sending'.
 JP 0507,SA-START Jump forward into the SAVEing
 loop.

The byte SAVEing loop is now entered. The first byte to be SAVEd is the flag; this is followed by the actual data byte and the final byte
sent is the parity byte that is built up by considering the values of all the earlier bytes.

04FE SA-LOOP LD A,D The 'length' counter is tested
 OR E and the jump taken when it
 JR Z,050E,SA-PARITY has reached zero.
 LD L,(IX+00) Fetch the next byte that is to
 be SAVEd.
0505 SA-LOOP-P LD A,H Fetch the current 'parity'.
 XOR L Include the present byte.
0507 SA-START LD H,A Restore the 'parity'. Note that
 on entry here the 'flag' value
 initialises 'parity'.
 LD A,+01 Signal 'MIC on & BLUE'.
 SCF Set the carry flag. This will act
 as a 'marker' for the 8 bits of a
 byte.
 JP 0525,SA-8-BITS Jump forward.

When it is time to send the 'parity' byte then it is transferred to the L register for SAVEing.

050E SA-PARITY LD L,H Get final 'parity' value.
 JR 0505,SA-LOOP-P Jump back.

The following inner loop produces the actual pulses. The loop is entered at SA-BIT-1 with the type of the bit to be SAVEd indicated by
the carry flag. Two passes of the loop are made for each bit thereby making an 'off pulse' and an 'on pulse'. The pulses for a reset bit
are shorter by 855 T states.

0511 SA-BIT-2 LD A,C Come here on the second pass
 and fetch 'MIC off & YELLOW'.
 BIT 7,B Set the zero flag to show
 'second pass'.
0514 SA-BIT-1 DJNZ 0514,SA-BIT-1 The main timing loop; always
 801 T states on a 2nd. pass.
 JR NC,051C,SA-OUT Jump, taking the shorter path, if
 SAVEing a '0'.
 LD B,+42 However if SAVEing a '1' then
051A SA-SET DJNZ 051A,SA-SET add 855 T states.
051C SA-OUT OUT (+FE),A On the 1st. pass 'MIC on &
 BLUE' and on the 2nd. pass
 'MIC off & YELLOW'.
 LD B,+3E Set the timing constant for
 the second pass.
 JR NZ,0511,SA-BIT-2 Jump back at the end of the
 DEC B first pass; otherwise reclaim
 13 T states.
 XOR A Clear the carry flag and set
 INC A A to hold +01 (MIC on & BLUE}
 before continuing into the
 '8 bit loop'.

The '8 bit loop' is entered initially with the whole byte in the L register and the carry flag set. However it is re-entered after each bit has
been SAVEd until the point is reached when the 'marker' passes to the carry flag leaving the L register empty.

0525 SA-8-BITS RL L Move bit 7 to the carry and the
 'marker' leftwards.

17

 JP NZ,0514,SA-BIT-1 SAVE the bit unless finished
 with the byte.
 DEC DE Decrease the 'counter'.
 INC IX Advance the 'base address'.
 LD B,+31 Set the timing constant for the
 first bit of the next byte.
 LD A,+7F Return (to SA/LD-RET) if the
 IN A,(+FE) BREAK key is being pressed.
 RRA
 RET NC
 LD A,D Otherwise test the 'counter
 INC A and jump back even if it has
 JP NZ,04FE,SA-LOOP reached zero (so as to send the
 'parity' byte).
 LD B,+3B Exit when the 'counter
053C SA-DELAY DJNZ 053C,SA-DELAY reaches +FFFF. But first
 RET give a short delay.

Note: A reset bit will give a 'MIC off' pulse of 855 T states followed by a 'MIC on' pulse of 855 T states. Whereas a Set bit will give
pulses of exactly twice as long. Note also that there are no gaps either between the sync pulse and the first bit of the flag, or between
bytes.

THE 'SA/LD-RET' SUBROUTINE
This subroutine is common to both SAVEing and LOADing.
The border is set to its original colour and the BREAK key tested for a last time.

053F SA/LD-RET PUSH AF Save the carry flag. (It is reset
 after a LOADing error.)
 LD A,(BORDCR) Fetch the original border colour
 AND +38 from its system variable.
 RRCA Move the border colour
 RRCA to bits 2, l & 0.
 RRCA
 OUT (+FE),A Set the border to its original
 colour.
 LD A.+7F Read the BREAK key for a
 IN A,(+FE) last time.
 RRA
 EI Enable the maskable interrupt.
 JR C,0554,SA/LD-END Jump unless a break is to be
 made.

Report D - BREAK-CONT repeats

0552 REPORT-D RST 0008,ERROR-l Call the error handling
 DEFB +0C routine.

Continue here.

0554 SA/LD-END POP AF Retrieve the carry flag.
 RET Return to the calling routine.

THE 'LD-BYTES' SUBROUTINE
This subroutine is called to LOAD the header information (from 07BE) and later LOAD, or VERIFY, an actual block of data (from 0802).

0556 LD-BYTES INC D This resets the zero flag. (D
 cannot hold +FF.)
 EX AF,A'F' The A register holds +00 for a
 header and +FF for a block of
 data.
 The carry flag is reset for
 VERIFYing and set for
 LOADing.
 DEC D Restore D to its original value.

18

 DI The maskable interrupt is now
 disabled.
 LD A,+0F The border is made WHITE.
 OUT (+FE),A
 LD HL,+053F Preload the machine stack
 PUSH HL with the address - SA/LD-RET.
 IN A,(+FE) Make an initial read of port '254'
 RRA Rotate the byte obtained but
 AND +20 keep only the EAR bit,
 OR +02 Signal 'RED' border.
 LD C,A Store the value in the C register. -
 (+22 for 'off' and +02 for 'on'
 - the present EAR state.)
 CP A Set the zero flag.

The first stage of reading a tape involves showing that a pulsing signal actually exist (i.e. 'On/off' or 'off/on' edges.)

056B LD-BREAK RET NZ Return if the BREAK key is
 being pressed.
056C LD-START CALL 05E7,LD-EDGE-1 Return with the carry flag reset
 JR NC,056B,LD-BREAK if there is no 'edge' within
 approx. 14,000 T states. But if
 an 'edge' is found the border
 will go CYAN.

The next stage involves waiting a while and then showing that the signal is still pulsing.

 LD HL,+0415 The length of this waiting
0574 LD-WAIT DJNZ 0574,LD-WAIT period will be almost one
 DEC HL second in duration.
 LD A,H
 OR L
 JR NZ,0574,LD-WAIT
 CALL 05E3,LD-EDGE-2 Continue only if two edges are
 JR NC,056B,LD-BREAK found within the allowed time
 period.

Now accept only a 'leader signal'.

0580 LD-LEADER LD B,+9C The timing constant,
 CALL 05E3,LD-EDGE-2 Continue only if two edges are
 JR NC,056B,LD-BREAK found within the allowed time
 period.
 LD A,+C6 However the edges must have
 CP B been found within about
 JR NC,056C,LD-START 3,000 T states of each other
 INC H Count the pair of edges in the H
 JR NZ,0580,LD-LEADER register until '256' pairs have
 been found.

After the leader come the 'off' and 'on' part's of the sync pulse.

058F LD-SYNC LD B,+9C The timing constant.
 CALL 05E7,LD-EDGE-1 Every edge is considered until
 JR NC,056B,LD-BREAK two edges are found close
 LD A,B together - these will be the
 CP +D4 start and finishing edges of
 JR NC,058F,LD-SYNC the 'off' sync pulse.
 CALL 05E7,LD-EDGE-1 The finishing edge of the
 RET NC 'on' pulse must exist.
 (Return carry flag reset.)

The bytes of the header or the program/data block can now be LOADed or VERIFied. But the first byte is the type flag.

 LD A,C The border colours from now
 XOR +03 on will be BLUE & YELLOW.

19

 LD C,A
 LD H,+00 Initialise the 'parity matching'
 byte to zero.
 LD B,+B0 Set the timing constant for the
 flag byte.
 JR 05C8,LD-MARKER Jump forward into the byte
 LOADING loop.

The byte LOADing loop is used to fetch the bytes one at a time. The flag byte is first. This is followed by the data bytes and the last byte
is the 'parity' byte.

05A9 LD-LOOP EX AF,A'F' Fetch the flags.
 JR NZ,05B3,LD-FLAG Jump forward only when
 handling the first byte.
 JR NC,05BD,LD-VERIFY Jump forward if VERIFYing a
 tape.
 LD (IX+00),L Make the actual LOAD when
 required.
 JR 05C2,LD-NEXT Jump forward to LOAD the
 next byte.
05B3 LD-FLAG RL C Keep the carry flag in a safe
 place temporarily.
 XOR L Return now if the type flag does
 RET NZ not match the first byte on the
 tape. (Carry flag reset.)
 LD A,C Restore the carry flag now.
 RRA
 LD C,A
 INC DE Increase the counter to
 JR 05CA,LD-DEC compensate for its 'decrease'
 after the jump.

If a data block is being verified then the freshly loaded byte is tested against the original byte.

05BD LD-VERIFY LD A,(IX+00) Fetch the original byte.
 XOR L Match it against the new byte.
 RET NZ Return if 'no match'. (Carry
 flag reset.)

A new byte can now be collected from the tape.

05C2 LD-NEXT INC IX Increase the 'destination'.
05C4 LD-DEC DEC DE Decrease the 'counter'.
 EX AF,A'F' Save the flags.
 LD B,+B2 Set the timing constant.
05C8 LD-MARKER LD L,+01 Clear the 'object' register apart
 from a 'marker' bit.

The 'LD-8-BITS' loop is used to build up a byte in the L register.

05CA LD-8-BITS CALL 05E3,LD-EDGE-2 Find the length of the 'off'
 and 'on' pulses of the next bit.
 RET NC Return if the time period is
 exceeded. (Carry flag reset.)
 LD A,+C5 Compare the length against
 approx. 2,400 T states; resetting
 CP B the carry flag for a '0' and
 setting it fore '1'.
 RL L Include the new bit in the L
 register.
 LD B,+B0 Set the timing constant for the
 next bit.
 JP NC,05CA,LD-8-BITS Jump back whilst there are still
 bits to be fetched.

The 'parity matching' byte has to be updated with each new byte.

20

 LD A,H Fetch the 'parity matching'
 XOR L byte and include the new byte.
 LD H,A Save it once again.
Passes round the loop are made until the 'counter' reaches zero. At that point the 'parity matching' byte should be holding zero.
 LD A,D Make a further pass if the DE
 OR E register pair does not hold
 JR NZ,05A9,LD-LOOP zero.
 LD A,H Fetch the 'parity matching'
 byte.
 CP +01 Return with the carry flat set
 RET if the value is zero.
 (Carry flag reset if in error.)

THE 'LD-EDGE-2' AND 'LD-EDGE-1' SUBROUTINES
These two subroutines form the most important part of the LOAD/VERIFY operation.

The subroutines are entered with a timing constant in the B register, and the previous border colour and 'edge-type' in the C register.
The subroutines return with the carry flag set if the required number of 'edges' have been found in the time allowed; and the change

to the value in the B register shows just how long it took to find the 'edge(s)'.
The carry flag will be reset if there is an error. The zero flag then signals 'BREAK pressed' by being reset, or 'time-up' by being set.
The entry point LD-EDGE-2 is used when the length of a complete pulse is required and LD-EDGE-1 is used to find the time before

the next 'edge'.

05E3 LD-EDGE-2 CALL 05E7,LD-EDGE-1 In effect call LD-EDGE-1 twice;
 RET NC returning in between if there
 is an error.
05E7 LD-EDGE-1 LD A,+16 Wait 358 T states before
05E9 LD-DELAY DEC A entering the sampling loop.
 JR NZ,05E9,LD-DELAY
 AND A

The sampling loop is now entered. The value in the B register is incremented for each pass; 'time-up' is given when B reaches zero.

05ED LD-SAMPLE INC B Count each pass.
 RET Z Return carry reset & zero set if
 'time-up'.
 LD A,+7F Read from port +7FFE.
 IN A,(+FE) i.e. BREAK & EAR.
 RRA Shift the byte.
 RET NC Return carry reset & zero reset
 if BREAK was pressed.
 XOR C Now test the byte against the
 AND +20 'last edge-type'; jump back
 JR Z,05ED,LD-SAMPLE unless it has changed.

A new 'edge' has been found within the time period allowed for the search. So change the border colour and set the carry flag.

 LD A,C Change the 'last edge-type'
 CPL and border colour.
 LD C,A
 AND +07 Keep only the border colour.
 OR +08 Signal 'MIC off'.
 OUT (+FE),A Change the border colour (RED/
 CYAN or BLUE/YELLOW).
 SCF Signal the successful search
 RET before returning.

Note: The LD-EDGE-1 subroutine takes 465 T states, plus an additional 58 T states for each unsuccessful pass around the sampling
loop.

21

For example, therefore, when awaiting the sync pulse (see LD-SYNC at 058F) allowance is made for ten additional passes through the
sampling loop. The search is thereby for the next edge to be found within, roughly, 1,100 T states (465 + 10 * 58 + overhead). This will
prove successful for the sync 'off' pulse that comes after the long 'leader pulses'.

THE 'SAVE, LOAD, VERIFY & MERGE' COMMAND ROUTINES
The entry point SAVE-ETC is used for all four commands. The value held in T-ADDR however distinguishes between the four
commands. The first part of the following routine is concerned with the construction of the 'header information' in the work space.

0605 SAVE-ETC POP AF Drop the address - SCAN-LOOP.
 LD A,(T-ADDR-lo) Reduce T-ADDR-lo by +E0;
 SUB +E0 giving +00 for SAVE, +01 for
 LD (T-ADDR-lo),A LOAD, +02 for VERIFY and
 +03 for MERGE.
 CALL 1C8C,EXPT-EXP Pass the parameters of the
 'name' to the calculator stack.
 CALL 2530,SYNTAX-Z Jump forward if checking
 JR Z,0652,SA-DATA syntax.
 LD BC,+0011 Allow seventeen locations
 LD A,(T-ADDR-lo) for the header of a SAVE but
 AND A thirty four for the other
 JR Z,0621,SA-SPACE commands.
 LD C,+22
0621 SA-SPACE RST 0030,BC-SPACES The required amount of space is
 made in the work space.
 PUSH DE Copy the start address to the
 POP IX IX register pair.
 LD B,+0B A program name can have
 LD A,+20 up to ten characters but
0629 SA-BLANK LD (DE),A first enter eleven space
 INC DE characters into the prepared
 DJNZ 0629,SA-BLANK area.
 LD (IX+01),+FF A null name is +FF only.
 CALL 2BF1,STK-FETCH The parameters of the name
 are fetched and its length is
 tested.
 LD HL,+FFF6 This is '-10'.
 DEC BC In effect jump forward if the
 ADD HL,BC length of the name is not
 INC BC too long. (i.e. No more than
 JR NC,064B,SA-NAME ten characters.)
 LD A,(T-ADDR-lo) But allow for the LOADing,
 AND A VERIFYing and MERGEing of
 JR NZ,0644,SA-NULL programs with 'null' names or
 extra long names.

Report F - Invalid file name

0642 REPORT-F RST 0008,ERROR-1 Call the error handling
 DEFB +0E routine.

Continue to handle the name of the program.

0644 SA-NULL LD A,B Jump forward if the name
 OR C has a 'null' length.
 JR Z,0652,SA-DATA
 LD BC,+000A But truncate longer names.

The name is now transferred to the work space (second location onwards).

064B SA-NAME PUSH IX Copy the start address to the
 POP HL HL register pair.
 INC HL Step to the second location.
 EX DE,HL Switch the pointers over and
 LDIR copy the name.

22

The many different parameters, if any, that follow the command are now considered. Start by handling 'xxx "name" DATA'.

0652 SA-DATA RST 0018,GET-CHAR Is the present code the
 CP +E4 token 'DATA'?
 JR NZ,06A0,SA-SCR$ Jump if not.
 LD A,(T-ADDR-lo) However it is not possible
 CP +03 to have 'MERGE name DATA'.
 JP Z,1C8A,REPORT-C
 RST 0020,NEXT-CHAR Advance CH-ADD.
 CALL 28B2,LOOK-VARS Look in the variables area for
 the array.
 SET 7,C Set bit 7 of the array's name.
 JR NC,0672,SA-V-OLD Jump if handling an existing
 array.
 LD HL,+0000 Signal 'using a new array'.
 LD A,(T-ADDR-lo) Consider the value in T-ADDR
 DEC A and give an error if trying to
 JR Z,0685,SA-V-NEW SAVE or VERIFY a new array.

Report 2 - Variable not found

0670 REPORT-2 RST 0008,ERROR-1 Call the error handling
 DEFB +01 routine.

Continue with the handling of an existing array.

0672 SA-V-OLD JP NZ,1C8A,REPORT-C Note: This fails to exclude
 simple strings.
 CALL 2530,SYNTAX-Z Jump forward if checking
 JR Z,0692,SA-DATA-1 syntax.
 INC HL Point to the 'low length' of the
 variable.
 LD A,(HL) The low length byte goes into
 LD (IX+0B),A the work space; followed by
 INC HL the high length byte.
 LD A,(HL)
 LD (IX+0C),A
 INC HL Step past the length bytes.

The next part is common to both 'old' and 'new' arrays. Note: Syntax path error.

0685 SA-V-NEW LD (IX+0E),C Copy the array's name.
 LD A,+01 Assume an array of numbers.
 BIT 6,C Jump if it is so.
 JR Z,068F,SA-V-TYPE
 INC A It is an array of characters.
068F SA-V-TYPE LD (IX+00),A Save the 'type' in the first
 location of the header area.

The last part of the statement is examined before joining the other pathways.

0692 SA-DATA-1 EX DE,HL Save the pointer in DE.
 RST 0020,NEXT-CHAR Is the next character
 CP +29 a ')' ?
 JR NZ,0672,SA-V-OLD Give report C if it is not.
 RST 0020,NEXT-CHAR Advance CH-ADD.
 CALL 1BEE,CHECK-END Move on to the next statement
 if checking syntax.
 EX DE,HL Return the pointer to the HL
 JP 075A,SA-ALL register pair before jumping
 forward. (The pointer indicates
 the start of an existing array's
 contents.)

Now consider 'SCREEN$'.

06A0 SA-SCR$ CP +AA Is the present code the
 token SCREEN$'.

23

 JR NZ,06C3,SA-CODE Jump if not.
 LD A,(T-ADDR-lo) However it is not possible to
 CP +03 have 'MERGE name SCREEN$'.
 JP Z,1C8A,REPORT-C
 RST 0020,NEXT-CHAR Advance CH-ADD.
 CALL 1BEE,CHECK-END Move on to the next statement
 if checking syntax.
 LD (IX+0B),+00 The display area and the
 LD (IX+0C),+1B attribute area occupy +1800
 locations and these locations
 LD HL,+4000 start at +4000; these details
 LD (IX+0D),L are passed to the header area
 LD (IX+0E),H in the work space.
 JR 0710,SA-TYPE-3 Jump forward.

Now consider 'CODE'.

06C3 SA-CODE CP +AF Is the present code the token
 'CODE'?
 JR NZ,0716,SA-LINE Jump if not.
 LD A,(T-ADDR-lo) However it is not possible to
 CP +03 have 'MERGE name CODE'.
 JP Z,1C8A,REPORT-C
 RST 0020,NEXT-CHAR Advance CH-ADD.
 CALL 2048,PR-ST-END Jump forward if the statement
 JR NZ,06E1,SA-CODE-1 has not finished.
 LD A,(T-ADDR-lo) However it is not possible to
 AND A have 'SAVE name CODE' by
 JP Z,1C8A,REPORT-C itself.
 CALL 1CE6,USE-ZERO Put a zero on the calculator
 stack - for the 'start'.
 JR 06F0,SA-CODE-2 Jump forward.

Look for a 'starting address'.

06E1 SA-CODE-1 CALL 1C82,EXPT-1NUM Fetch the first number.
 RST 0018,GET-CHAR Is the present character a ','
 CP +2C or not?
 JR Z,06F5,SA-CODE-3 Jump if it is - the number was
 a 'starting address'.
 LD A,(T-ADDR-lo) However refuse 'SAVE name
 AND A CODE' that does not have a
 JP Z,1C8A,REPORT-C 'start' and a 'length'.
06F0 SA-CODE-2 CALL 1CE6,USE-ZERO Put a zero on the calculator
 stack - for the 'length'.
 JR 06F9,SA-CODE-4 Jump forward.

Fetch the 'length' as it was specified.

06F5 SA-CODE-3 RST 0020,NEXT-CHAR Advance CH-ADD.
 CALL 1C82,EXPT-1NUM Fetch the 'length'.

The parameters are now stored in the header area of the work space.

06F9 SA-CODE-4 CALL 1BEE,CHECK-END But move on to the next state-
 ment now if checking syntax.
 CALL 1E99,FIND-INT2 Compress the 'length' into
 LD (IX+0B),C the BC register pair and
 LD (IX+0C),B store it.
 CALL 1E99,FIND-INT2 Compress the 'starting address'
 LD (IX+0D),C into the BC register pair
 LD (IX+0E),B and store it.
 LD H,B Transfer the 'pointer' to the
 LD L,C HL register pair as usual.

'SCREEN$' and 'CODE' are both of type 3.

0710 SA-TYPE-3 LD (IX+00),+03 Enter the 'type' number.

24

 JR 075A,SA-ALL Rejoin the other pathways.

Now consider 'LINE'; and 'no further parameters'.
0716 SA-LINE CP +CA Is the present code the token
 'LINE'?
 JR Z,0723,SA-LINE-1 Jump if it is.
 CALL 1BEE,CHECK-END Move on to the next statement
 if checking syntax.
 LD (IX+0E),+80 When there are no further
 parameters an +80 is entered.
 JR 073A,SA-TYPE-0 Jump forward.

Fetch the 'line number' that must follow 'LINE'.

0723 SA-LINE-1 LD A,(T-ADDR-lo) However only allow 'SAVE
 AND A name LINE number'.
 JP NZ,1C8A,REPORT-C
 RST 0020,NEXT-Char Advance CH-ADD.
 CALL 1C82,EXPT-1NUM Pass the number to the
 calculator stack.
 CALL 1BEE,CHECK-END Move on to the next statement
 if checking syntax.
 CALL 1E99,FIND-INT2 Compress the 'line number'
 LD (IX+0D),C into the BC register pair
 LD (IX+0E),B and store it.

'LINE' and 'no further parameters' are both of type 0.

073A SA-TYPE-0 LD (IX+00),+00 Enter the 'type' number.

The parameters that describe the program, and its variables, are found and stored in the header area of the work space.

 LD HL,(E-LINE) The pointer to the end of the
 variables area.
 LD DE,(PROG) The pointer to the start of the
 BASIC program.
 SCF Now perform the subtraction
 SBC HL,DE to find the length of the
 LD (IX+0B),L 'program + variables'; store
 LD (IX+0C),H the result.
 LD HL,(VARS) Repeat the operation but this
 SBC HL,DE time storing the length of the
 LD (IX+0F),L 'program' only.
 LD (IX+10),H
 EX DE,HL Transfer the 'pointer' to the
 HL register pair as usual.

In all cases the header information has now been prepared.

 The location 'IX+00' holds the type number.
 Locations 'IX+01 to IX+0A' holds the name (+FF in 'IX+01' if null).
 Locations 'IX+0B & IX+0C' hold the number of bytes that are to be found in the 'data block'.
 Locations 'IX+0D to IX+10' hold a variety of parameters whose exact interpretation depends on the 'type'.

The routine continues with the first task being to separate SAVE from LOAD, VERIFY and MERGE.

075A SA-ALL LD A,(T-ADDR-lo) Jump forward when handling
 AND A a SAVE command.
 JP Z,0970,SA-CONTRL

In the case of a LOAD, VERIFY or MERGE command the first seventeen bytes of the 'header area' in the work space hold the prepared
information, as detailed above; and it is now time to fetch a 'header' from the tape.

 PUSH HL Save the 'destination' pointer.

25

 LD BC,+0011 Form in the IX register pair
 ADD IX,BC the base address of the 'second
 header area'.

Now enter a loop; leaving it only when a 'header' has been LOADed.

0767 LD-LOOK-H PUSH IX Make a copy of the base address.
 LD DE,+0011 LOAD seventeen bytes.
 XOR A Signal 'header'.
 SCF Signal 'LOAD'.
 CALL 0556,LD-BYTES Now look for a header.
 POP IX Retrieve the base address.
 JR NC,0767,LD-LOOK-H Go round the loop until
 successful.

The new 'header' is now displayed on the screen but the routine will only proceed if the 'new' header matches the 'old' header.

 LD A,+FE Ensure that channel 'S'
 CALL 1601,CHAN-OPEN is open.
 LD (SCR-CT),+03 Set the scroll counter.
 LD C,+80 Signal 'names do not match'.
 LD A,(IX+00) Compare the 'new' type
 CP (IX-11) against the 'old' type.
 JR NZ,078A,LD-TYPE Jump if the 'types' do not
 match.
 LD C,+F6 But if they do; signal 'ten
 characters are to match'.
078A LD-TYPE CP +04 Clearly the 'header' is
 JR NC,0767,LD-LOOK-H nonsense if 'type 4 or more'.

The appropriate message - 'Program:', 'Number array:', 'Character array:' or 'Bytes:' is printed.

 LD DE,+09C0 The base address of the message
 block.
 PUSH BC Save the C register whilst
 CALL 0C0A,PO-MSG the appropriate message is
 POP BC printed.

The 'new name' is printed and as this is done the 'old' and the 'new' names are compared.

 PUSH IX Make the DE register pair
 POP DE point to the 'new type' and
 LD HL,+FFF0 the HL register pair to the
 ADD HL,DE 'old name'.
 LD B,+0A Ten characters are to be
 considered.
 LD A,(HL) Jump forward if the match is
 INC A to be against an actual name.
 JR NZ,07A6,LD-NAME
 LD A,C But if the 'old name' is 'null'
 ADD A,B then signal 'ten characters
 LD C,A already match'.

A loop is entered to print the characters of the 'new name'. The name will be accepted if the 'counter' reaches zero, at least.

07A6 LD-NAME INC DE Consider each character of the
 LD A,(DE) 'new name' in turn.
 CP (HL) Match it against the appropriate
 INC HL character of the 'old name'.
 JR NZ,07AD,LD-CH-PR Do not count it if it does not
 INC C does not match.
07AD LD-CH-PR RST 0010,PRINT-A-1 Print the 'new' character.
 DJNZ 07A6,LD-NAME Loop for ten characters.
 BIT 7,C Accept the name only if the
 JR NZ,0767,LD-LOOK-H counter has reached zero.

26

 LD A,+0D Follow the 'new name' with
 RST 0010,PRINT-A-1 a 'carriage return'.

The correct header has been found and the time has come to consider the three commands LOAD, VERIFY, & MERGE separately.

 POP HL Fetch the pointer.
 LD A,(IX+00) 'SCREEN$ and CODE' are
 CP +03 handled with VERIFY.
 JR Z,07CB,VR-CONTRL
 LD A,(T-ADDR-lo) Jump forward if using a
 DEC A LOAD command.
 JP Z,0808,LD-CONTRL
 CP +02 Jump forward if using a MERGE
 JP Z,08B6,ME-CONTRL command; continue with a
 VERIFY command.

THE 'VERIFY' CONTROL ROUTINE
The verification process involves the LOADing of a block of data, a byte at a time, but the bytes are not stored - only checked. This
routine is also used to LOAD blocks of data that have been described with 'SCREEN$ & CODE'.

07CB VR-CONTRL PUSH HL Save the 'pointer'.
 LD L,(IX-06) Fetch the 'number of bytes'
 LD H,(IX-05) as described in the 'old' header.
 LD E,(IX+0B) Fetch also the number from the
 LD D,(IX+0C) 'new' header.
 LD A,H Jump forward if the 'length' is
 OR L unspecified.
 JR Z,07E9,VR-CONT-1 e.g. 'LOAD name CODE' only.
 SBC HL,DE Give report R if attempting
 JR C,0806,REPORT-R to LOAD a larger block than has
 been requested.
 JR Z,07E9,VR-CONT-1 Accept equal 'lengths'.
 LD A,(IX+00) Also give report R if trying
 CP +03 to VERIFY blocks that are of
 JR NZ,0806,REPORT-R unequal size. ('Old length'
 greater than 'new length'.)

The routine continues by considering the 'destination pointer'.

07E9 VR-CONT-1 POP HL Fetch the 'pointer', i.e. the
 'start'.
 LD A,H This 'pointer' will be used
 OR L unless it is zero, in which
 JR NZ,07F4,VR-CONT-2 case the 'start' found in
 LD L,(IX+0D) the 'new' header will be used
 LD H,(IX+0E) instead.

The VERIFY/LOAD flag is now considered and the actual LOAD made.

07F4 VR-CONT-2 PUSH HL Move the 'pointer' to the
 POP IX IX register pair.
 LD A,(T-ADDR-lo) Jump forward unless using
 CP +02 the VERIFY command; with
 SCF the carry flag signalling
 JR NZ,0800,VR-CONT-3 'LOAD'
 AND A Signal 'VERIFY'.
0800 VR-CONT-3 LD A,+FF Signal 'accept data block only'
 before LOADing the block.

THE 'LOAD A DATA BLOCK' SUBROUTINE
This subroutine is common to all the 'LOADing' routines. In the case of LOAD & VERIFY it acts as a full return from the cassette
handling routines but in the case of MERGE the data block has yet to be 'MERGEd'.

0802 LD-BLOCK CALL 0556,LD-BYTES LOAD/VERIFY a data block.
 RET C Return unless an error.

27

Report R - Tape loading error

0806 REPORT-R RST 0008,ERROR-1 Call the error handling
 DEFB +1A routine.

THE 'LOAD' CONTROL ROUTINE
This routine controls the LOADing of a BASIC program, and its variables, or an array.

0808 LD-CONTRL LD E,(IX+0B) Fetch the 'number of bytes'
 LD D,(IX+0C) as given in the 'new header'.
 PUSH HL Save the 'destination pointer'.
 LD A,H Jump forward unless trying
 OR L to LOAD a previously
 JR NZ,0819,LD-CONT-1 undeclared array.
 INC DE Add three bytes to the
 INC DE length - for the name, the
 INC DE low length & the high length
 EX DE,HL of a new variable.
 JR 0825,LD-CONT-2 Jump forward.

Consider now if there is enough room in memory for the new data block.

0819 LD-CONT-1 LD L,(IX-06) Fetch the size of the existing
 LD H,(IX-05) 'program+variables or array'.
 EX DE,HL
 SCF Jump forward if no extra
 SBC HL,DE room will be required; taking
 JR C,082E,LD-DATA into account the reclaiming of
 the presently used memory.

Make the actual test for room.

0825 LD-CONT-2 LD DE,+0005 Allow an overhead of five
 ADD HL,DE bytes.
 LD B,H Move the result to the
 LD C,L BC register pair and make
 CALL 1F05,TEST-ROOM the test.

Now deal with the LOADing of arrays.

082E LD-DATA POP HL Fetch the 'pointer' anew.
 LD A,(IX+00) Jump forward if LOADing
 AND A a BASIC program.
 JR Z,0873,LD-PROG
 LD A,H Jump forward if LOADing a
 OR L new array.
 JR Z,084C,LD-DATA-1
 DEC HL Fetch the 'length' of the
 LD B,(HL) existing array by collecting
 DEC HL the length bytes from the
 LD C,(HL) variables area.
 DEC HL Point to its old name.
 INC BC Add three bytes to the
 INC BC length - one for the name
 INC BC and two for the 'length'.
 LD (X-PTR),IX Save the IX register pair
 CALL 19E8,RECLAIM-2 temporarily whilst the old
 LD IX,(X-PTR) array is reclaimed.

Space is now made available for the new array - at the end of the present variables area.

084C LD-DATA-1 LD HL,(E-LINE) Find the pointer to the
 DEC HL end-marker of the variables
 area - the '80-byte'.
 LD C,(IX+0B) Fetch the 'length' of the
 LD B,(IX+0C) new array.
 PUSH BC Save this 'length'.

28

 INC BC Add three bytes - one for
 INC BC the name and two for the
 INC BC 'length'.
 LD A,(IX-03) 'IX+0E' of the old header
 gives the name of the array.
 PUSH AF The name is saved whilst the
 CALL 1655,MAKE-ROOM appropriate amount of room is
 INC HL made available. In effect 'BC'
 POP AF spaces before the 'new 80-byte'.
 LD (HL),A The name is entered.
 POP DE The 'length' is fetched and
 INC HL its two bytes are also
 LD (HL),E entered.
 INC HL
 LD (HL),D
 INC HL HL now points to the first
 location that is to be filled
 with data from the tape.
 PUSH HL This address is moved to the
 POP IX IX register pair; the carry
 SCF flag set; 'data block' is
 LD A,+FF signalled; and the block
 JP 0802,LD-BLOCK LOADed.

Now deal with the LOADing of a BASIC program and its variables

0873 LD-PROG EX DE,HL Save the 'destination pointer'.
 LD HL,(E-LINE) Find the address of the
 DEC HL end-marker of the current
 variables area - the '80-byte'.
 LD (X-PTR),IX Save IX temporarily.
 LD C,(IX+0B) Fetch the 'length' of the
 LD B,(IX+0C) new data block.
 PUSH BC Keep a copy of the 'length'
 CALL 19E5,RECLAIM-1 whilst the present program and
 POP BC variables areas are reclaimed.
 PUSH HL Save the pointer to the program
 PUSH BC area and the length of the new
 data block.
 CALL 1655,MAKE-ROOM Make sufficient room available
 for the new program and its
 variables.
 LD IX,(X-PTR) Restore the IX register pair.
 INC HL The system variable VARS
 LD C,(IX+0F) has also to be set for the
 LD B,(IX+10) new program.
 ADD HL,BC
 LD (VARS),HL
 LD H,(IX+0E) If a line number was
 LD A,H specified then it too has to
 AND +C0 be considered.
 JR NZ,08AD,LD-PROG-1 Jump if 'no number'; otherwise
 LD L,(IX+0D) set NEWPPC & NSPPC.
 LD (NEWPPC),HL
 LD (NSPPC),+00

The data block can now be LOADed.

08AD LD-PROG-1 POP DE Fetch the 'length'.
 POP IX Fetch the 'start'.
 SCF Signal 'LOAD'.
 LD A,+FF Signal 'data block' only.
 JP 0802,LD-BLOCK Now LOAD it.

29

THE 'MERGE' CONTROL ROUTINE
There are three main parts to this routine.

I. LOAD the data block into the work space.
II. MERGE the lines of the new program into the old program.
III. MERGE the new variables into the old variables.

Start therefore with the LOADing of the data block.

08B6 ME-CONTRL LD C,(IX+0B) Fetch the 'length' of the
 LD B,(IX+0C) data block.
 PUSH BC Save a copy of the 'length'.
 INC BC Now made 'length+1' locations
 RST 0030,BC-SPACES available in the work space.
 LD (HL),+80 Place an end-marker in the
 extra location.
 EX DE,HL Move the 'start' pointer to the
 HL register pair.
 POP DE Fetch the original 'length'.
 PUSH HL Save a copy of the 'start'.
 PUSH HL Now set the IX register pair
 POP IX for the actual LOAD.
 SCF Signal 'LOAD'.
 LD A,+FF Signal 'data block only'.
 CALL 0802,LD-BLOCK LOAD the data block.

The lines of the new program are MERGEd with the lines of the old program.

 POP HL Fetch the 'start' of the new
 program.
 LD DE,(PROG) Initialise DE to the 'start' of
 the old program.

Enter a loop to deal with the lines of the new program.

08D2 ME-NEW-LP LD A,(HL) Fetch a line number and test
 AND +C0 it.
 JR NZ,08F0,ME-VAR-LP Jump when finished with all
 the lines.

Now enter an inner loop to deal with the lines of the old program.

08D7 ME-OLD-LP LD A,(DE) Fetch the high line number
 INC DE byte and compare it.
 CP (HL) Jump forward if it does not
 INC HL match but in any case advance
 JR NZ,08DF,ME-OLD-L1 both pointers.
 LD A,(DE) Repeat the comparison for the
 CP (HL) low line number bytes.
08DF ME-OLD-L1 DEC DE Now retreat the pointers.
 DEC HL
 JR NC,08EB,ME-NEW-L2 Jump forward if the correct
 place has been found for a line
 of the new program.
 PUSH HL Otherwise find the address of
 EX DE,HL the start of the next old line.
 CALL 19B8,NEXT-ONE
 POP HL
 JR 08D7,ME-OLD-LP Go round the loop for each of
 the 'old lines'.
08EB ME-NEW-L2 CALL 092C,ME-ENTER Enter the 'new line' and go
 JR 08D2,ME-NEW-LP round the outer loop again.

In a similar manner the variables of the new program are MERGEd with the variables of the old program.
 A loop is entered to deal with each of the new variables in turn.

08F0 ME-VAR-LP LD A,(HL) Fetch each variable name in

30

 LD C,A turn and test it.
 CP +80 Return when all the variables
 RET Z have been considered.
 PUSH HL Save the current new pointer.
 LD HL,(VARS) Fetch VARS (for the old
 program).

Now enter an inner loop to search the existing variables area.

08F9 ME-OLD-VP LD A,(HL) Fetch each variable name and
 CP +80 test it.
 JR Z,0923,ME-VAR-L2 Jump forward once the end
 marker is found. (Make an
 'addition'.)
 CP c Compare the names 0 st. bytes).
 JR Z,0909,ME-OLD-v2 Jump forward to consider it
 further; returning here if it
 proves not to match fully.
0901 ME-OLD-V1 PUSH BC Save the new variable's name
 CALL 19B8,NEXT-ONE whilst the next 'old variable'
 POP BC is located.
 EX DE,HL Restore the pointer to the
 JR 08F9,ME-OLD-VP D E register pair and go round
 the loop again.

The old and new variables match with respect to their first bytes but variables with long names will need to be matched fully.

0909 ME-OLD-V2 AND +E0 Consider bits 7, 6 & 5 only.
 CP +A0 Accept all the variable types
 JR NZ,0921,ME-VAR-L1 except 'long named variables'.
 POP DE Make DE point to the first
 PUSH DE character of the 'new name'.
 PUSH HL Save the pointer to the 'old
 name'.

Enter a loop to compare the letters of the long names.

0912 ME-OLD-V3 INC HL Update both the 'old' and the
 INC DE ‘new' pointers.
 LD A,(DE) Compare the two letters
 CP (HL)
 JR NZ,091E,ME-OLD-V4 Jump forward if the match
 fails.
 RLA Go round the loop until the
 JR NC,0912,ME-OLD-V3 'last character' is found.
 POP HL Fetch the pointer to the
 start of the 'old' name and
 JR 0921,ME-VAR-L1 jump forward - successful.
091E ME-OLD-V4 POP HL Fetch the pointer and jump
 JR 0901,ME-OLD-V1 back - unsuccessful.

Come here if the match was found.

0921 ME-VAR-L1 LD A,+FF Signal 'replace' variable.

And here if not. (A holds +80 - variable to be 'added'.)

0923 ME-VAR-L2 POP DE Fetch pointer to 'new' name.
 EX DE,HL Switch over the registers.
 INC A The zero flag is to be set if there
 is to be a 'replacement'; reset
 for an 'addition'.
 SCF Signal 'handling variables'.
 CALL 092C,ME-ENTER Now make the entry.
 JR 08F0,ME-VAR-LP Go round the loop to consider
 the next new variable.

31

THE 'MERGE A LINE OR A VARIABLE' SUBROUTINE

This subroutine is entered with the following parameters:
 Carry flag reset - MERGE a BASIC line.
 set - MERGE a variable.
 Zero reset - It will be an 'addition'.
 set - It is a 'replacement'.
 HL register pair - Points to the start of the new entry.
 DE register pair - Points to where it is to MERGE.

092C ME-ENTER JR NZ,093E,ME-ENT-1 Jump if handling an 'addition'.
 EX AF,A'F' Save the flags.
 LD (X-PTR),HL Save the 'new' pointer whilst
 EX DE,HL the 'old' line or variable
 CALL 19B8,NEXT-ONE is reclaimed.
 CALL 19E8,RECLAIM-2
 EX DE,HL
 LD HL,(X-PTR)
 EX AF,A'F' Restore the flags.

The new entry can now be made.

093E ME-ENT-1 EX AF,A'F' Save the flags.
 PUSH DE Make a copy of the
 'destination' pointer.
 CALL 19B8,NEXT-ONE Find the length of the 'new'
 variable/line.
 LD (X-PTR),HL Save the pointer to the 'new'
 variable/line.
 LD HL,(PROG) Fetch PROG - to avoid
 corruption.
 EX (SP),HL Save PROG on the stack and
 fetch the 'new' pointer.
 PUSH BC Save the length.
 EX AF,A'F' Retrieve the flags.
 JR C,0955,ME-ENT-2 Jump forward if adding a new
 variable.
 DEC HL A new line is added before the
 'destination' location.
 CALL 1655,MAKE-ROOM Make the room for the new line.
 INC HL
 JR 0958,ME-ENT-3 Jump forward.
0955 ME-ENT-2 CALL 1655,MAKE-ROOM Make the room for the new
 variable.
0958 ME-ENT-3 INC HL Point to the 1st new location.
 POP BC Retrieve the length.
 POP DE Retrieve PROG and store it
 LD (PROG),DE in its correct place.
 LD DE,(X-PTR) Also fetch the 'new' pointer.
 PUSH BC Again save the length and the
 PUSH DE new' pointer.
 EX DE,HL Switch the pointers and copy
 LDIR the 'new' variable/line into the
 room made for it.

The 'new' variable/line has now to be removed from the work space.

 POP HL Fetch the 'new' pointer.
 POP BC Fetch the length.
 PUSH DE Save the 'old' pointer. (Points
 to the location after the 'added'
 variable/line.)
 CALL 19E8,RECLAIM-2 Remove the variable/line from
 the work space.
 POP DE Return with the 'old' pointer
 RET in the DE register pair.

32

THE 'SAVE' CONTROL ROUTINE
The operation of SAVing a program or a block of data is very straightforward.

0970 SA-CONTRL PUSH HL Save the 'pointer'.
 LD A,+FD Ensure that channel 'K'
 CALL 1601,CHAN-OPEN is open.
 XOR A Signal 'first message'.
 LD DE,+09A1 Print the message - Start tape,
 CALL 0C0A,PO-MSG then press any key.'.
 SET 5,(TV-FLAG) Signal 'screen will require to be
 cleared'.
 CALL 15D4,WAIT-KEY Wait for a key to be pressed.

Upon receipt of a keystroke the 'header' is saved.

 PUSH IX Save the base address of the
 'header' on the machine stack.
 LD DE,+0011 Seventeen bytes are to be
 SAVEd.
 XOR A Signal 'It is a header'.
 CALL 04C2,SA-BYTES Send the 'header'; with a leading
 'type' byte and a trailing 'parity'
 byte.

There follows a short delay before the program/data block is SAVEd.

 POP IX Retrieve the pointer to the
 'header'.
 LD B,+32 The delay is for fifty
0991 SA-1-SEC HALT interrupts, i.e. one second.
 DJNZ 0991,SA-1-SEC
 LD E,(IX+0B) Fetch the length of the
 LD D,(IX+0C) data block that is to be SAVEd.
 LD A,+FF Signal 'data block'.
 POP IX Fetch the 'start of block
 JP 04C2,SA-BYTES pointer' and SAVE the block.

THE CASSETTE MESSAGES
Each message is given with the last character inverted (+80 hex.).

09A1 DEFB +80 - Initial byte is stepped over.
09A2 DEFM - Start tape, then press any key.
09C1 DEFM - 'carriage return' - Program:
09CB DEFM - 'carriage return' - Number array:
09DA DEFM - 'carriage return' - Character array:
09EC DEFM - 'carriage return' - Bytes:

33

THE SCREEN & PRINTER HANDLING ROUTINES

THE 'PRINT-OUT' ROUTINES
All of the printing to the main part of the screen, the lower part of the screen and the printer is handled by this set of routines.
The PRINT-OUT routine is entered with the A register holding the code for a control character, a printable character or a token.

09F4 PRINT-OUT CALL 0B03,PO-FETCH The current print position.
 CP +20 If the code represents a
 JP NC,0AD9,PO-ABLE printable character then jump.
 CP +06 Print a question mark for
 JR C,0A69,PO-QUEST codes in the range +00 - +05.
 CP +18 And also for codes +18 - +1F.
 JR NC,0A69,PO-QUEST
 LD HL,+0A0B Base of 'control' table.
 LD E,A Move the code to the
 LD D,+00 DE register pair.
 ADD HL,DE Index into the table and
 LD E,(HL) fetch the offset.
 ADD HL,DE Add the offset and make
 PUSH HL an indirect jump to the
 JP 0B03,PO-FETCH appropriate subroutine.

THE 'CONTROL CHARACTER' TABLE

address offset character address offset character

0A11 4E PRINT comma 0A1A 4F not used
0A12 57 EDIT 0A1B 5F INK control
0A13 10 cursor left 0A1C 5E PAPER control
0A14 29 cursor right 0A1D 5D FLASH control
0A15 54 cursor down 0A1E 5C BRIGHT control
0A16 53 cursor up 0A1F 5B INVERSE control
0A17 52 DELETE 0A20 5A OVER control
0A18 37 ENTER 0A21 54 AT control
0A19 50 not used 0A22 53 TAB control

THE 'CURSOR LEFT' SUBROUTINE
The subroutine is entered with the B register holding the current line number and the C register with the current column number.

0A23 PO-BACK-1 INC C Move leftwards by one column.
 LD A,+22 Accept the change unless
 CP C up against the lefthand side.
 JR NZ,0A3A,PO-BACK-3
 BIT 1,(FLAGS) If dealing with the printer
 JR NZ,0A38,PO-BACK-2 jump forward.
 INC B Go up one line.
 LD C,+02 Set column value.
 LD A,+18 Test against top line.
 CP B Note: This ought to be +19.
 JR NZ,0A3A,PO-BACK-3 Accept the change unless at
 the top of the screen.
 DEC B Unacceptable so down a line.
0A38 PO-BACK-2 LD C,+21 Set to lefthand column.
0A3A PO-BACK-3 JP 0DD9,CL-SET Make an indirect return via
 CL-SET & PO-STORE.

THE 'CURSOR RIGHT' SUBROUTINE
This subroutine performs an operation identical to the BASIC statement – PRINT OVER 1;CHR$ 32; -.

0A3D PO-RIGHT LD A,(P-FLAG) Fetch P-FLAG and save it on
 PUSH AF the machine stack.

34

 LD (P-FLAG),+01 Set P-FLAG to OVER 1.
 LD A,+20 A 'space'.
 CALL 0B65,PO-CHAR Print the character.
 POP AF Fetch the old value of
 LD (P-FLAG),A P-FLAG.
 RET Finished.
 Note: The programmer has
 forgotten to exit via PO-STORE.

THE 'CARRIAGE RETURN' SUBROUTINE
If the printing being handled is going to the printer then a carriage return character leads to the printer buffer being emptied. If the
printing is to the screen then a test for 'scroll?' is made before decreasing the line number.

0A4F PO-ENTER BIT 1,(FLAGS) Jump forward if handling
 JP NZ,0ECD,COPY-BUFF the printer.
 LD C,+21 Set to lefthand column.
 CALL 0C55,PO-SCR Scroll if necessary.
 DEC B Now down a line.
 JP 0DD9,CL-SET Make an indirect return via
 CL-SET & PO-STORE.

THE 'PRINT COMMA' SUBROUTINE
The current column value is manipulated and the A register set to hold +00 (for TAB 0) or +10 (for TAB 16).

0A5F PO-COMMA CALL 0B03,PO-FETCH Why again?
 LD A,C Current column number.
 DEC A Move rightwards by two
 DEC A columns and then test.
 AND +10 The A register will be +00 or
 +10.
 JR 0AC3,PO-FILL Exit via PO-FILL.

THE 'PRINT A QUESTION MARK' SUBROUTINE
A question mark is printed whenever an attempt is made to print an unprintable code.

0A69 PO-QUEST LD A,+3F The character '?'.
 JR 0AD9,PO-ABLE Now print this character instead.

THE 'CONTROL CHARACTERS WITH OPERANDS' ROUTINE
The control characters from INK to OVER require a single operand whereas the control characters AT & TAB are required to be
followed by two operands.
The present routine leads to the control character code being saved in TVDATA-lo, the first operand in TVDATA-hi or the A register if
there is only a single operand required, and the second operand in the A register.

0A6D PO-TV-2 LD DE,+0A87 Save the first operand in
 LD (TVDATA-hi),A TVDATA-hi and change the
 JR 0A80,PO-CHANGE address of the 'output' routine
 to PO-CONT (+0A87).

Enter here when handling the characters AT & TAB.

0A75 PO-2-OPER LD DE,+0A6D The character code will be
 JR 0A7D,PO-TV-1 saved in TVDATA-lo and the
 address of the 'output' routine
 changed to PO-TV-2 (+0A6D).

Enter here when handling the colour items - INK to OVER.

0A7A PO-1-OPER LD DE,+0A87 The 'output' routine is to be
 changed to PO-CONT (+0A87).
0A7D PO-TV-1 LD (TVDATA-lo),A Save the control character code.

The current 'output' routine address is changed temporarily.

35

0A80 PO-CHANGE LD HL,(CURCHL) HL will point to the 'output'
 routine address.
 LD (HL),E Enter the new 'output'
 INC HL routine address and thereby
 LD (HL),D force the next character code
 RET to be considered as an operand.

Once the operands have been collected the routine continues.

0A87 PO-CONT LD DE,+09F4 Restore the original address
 CALL 0A80,PO-CHANGE for PRINT-OUT (+09F4).
 LD HL,(TVDATA) Fetch the control code and the
 first operand if there are indeed
 two operands.
 LD D,A The 'last' operand and the
 LD A,L control code are moved.
 CP +16 Jump forward if handling
 JP C,2211,CO-TEMPS INK to OVER.
 JR NZ,0AC2,PO-TAB Jump forward if handling TAB.

Now deal with the AT control character.

 LD B,H The line number.
 LD C,D The column number.
 LD A,+1F Reverse the column number;
 SUB C i.e. +00 - +1F becomes +1F -
 +00.
 JR C,0AAC,PO-AT-ERR Must be in range.
 ADD A,+02 Add in the offset to give
 LD C,A C holding +21 - +22.
 BIT 1,(FLAGS) Jump forward if handling the
 JR NZ,0ABF,PO-AT-SET printer.
 LD A,+16 Reverse the line number;
 SUB B i.e. +00 - +15 becomes +16 -
 +01.
0AAC PO-AT-ERR JP C,1E9F,REPORT-B If appropriate jump forward.
 INC A The range +16 - +01 becomes
 LD B,A +17 - +02.
 INC B And now +18 - +03.
 BIT 0,(TV-FLAG) If printing in the lower part
 JP NZ,0C55,PO-SCR of the screen then consider
 whether scrolling is needed.
 CP (DF-SZ) Give report 5 - Out of screen,
 JP C,0C86,REPORT-5 if required.
0ABF PO-AT-SET JP 0D09,CL-SET Return via CL-SET & PO-STORE.

And the TAB control character.

0AC2 PO-TAB LD A,H Fetch the first operand.
0AC3 PO-FILL CALL 0B03,PO-FETCH The current print position.
 ADD A,C Add the current column value.
 DEC A Find how many 'spaces', modulo
 AND +1F 32, are required and return
 RET Z if the result is zero.
 LD D,A Use 0 as the counter.
 SET 0,(FLAGS) Suppress 'leading space'.
0AD0 PO-SPACE LD A,+20 Print 'D number' of
 CALL 0C3B,PO-SAVE spaces.
 DEC D
 JR NZ,0AD0,PO-SPACE
 RET Now finished.

PRINTABLE CHARACTER CODES.
The required character (or characters) is printed by calling PO-ANY followed by PO-STORE.

36

0AD9 PO-ABLE CALL 0B24,PO-ANY Print the character(s)
 and continue into PO-STORE.

THE 'POSITION STORE' SUBROUTINE
The new position's 'line & column' values and the 'pixel' address are stored in the appropriate system variables.

0ADC PO-STORE BIT 1,(FLAGS) Jump forward if handling
 JR NZ,0AFC,PO-ST-PR the printer.
 BIT 0,(TV-FLAG) Jump forward if handling the
 JR NZ,0AF0,PO-ST-E lower part of the screen.
 LD (S-POSN),BC Save the values that relate
 LD (DF-CC),HL to the main part of the
 RET screen. Then return.
0AF0 PO-ST-E LD (S-POSNL),BC Save the values that relate
 LD (ECHO-E),BC to the lower part of the
 LD (DF-CCL),HL screen.
 RET Then return.
0AFC PO-ST-PR LD (P-POSN),C Save the values that relate
 LD (PR-CC),HL to the printer buffer.
 RET Then return.

THE 'POSITION FETCH' SUBROUTINE
The current position's parameters are fetched from the appropriate system variables.

0B03 PO-FETCH BIT 1,(FLAGS) Jump forward if handling
 JR NZ,0B1D,PO-F-PR the printer.
 LD BC,(S-POSN) Fetch the values relating
 LD HL,(DF-CC) to the main part of the
 BIT 0,(TV-FLAG) screen and return if this
 RET Z was the intention.
 LD BC,(S-POSNL) Otherwise fetch the values
 LD HL,(DF-CCL) relating to the lower part
 RET of the screen.
0B1D PO-F-PR LD C,(P-POSN) Fetch the values relating
 LD HL,(PR-CC) to the printer buffer.
 RET

THE 'PRINT ANY CHARACTER(S)' SUBROUTINE
Ordinary character codes, token codes and user-defined graphic codes, and graphic codes are dealt with separately.

0B24 PO-ANY CP +80 Jump forward with ordinary
 JR C,0B65,PO-CHAR character codes.
 CP +90 Jump forward with token
 JR NC,0B52,PO-T&UDG codes and UDG codes.
 LD B,A Move the graphic code.
 CALL 0B38,PO-GR-1 Construct the graphic form.
 CALL 0B03,PO-FETCH HL has been disturbed so
 'fetch' again.
 LD DE,+5C92 Make DE point to the start of the
 graphic form; i.e. MEMBOT.
 JR 0B7F,PO-ALL Jump forward to print the
 graphic character.

Graphic characters are constructed in an Ad Hoc manner in the calculator's memory area; i.e. MEM-0 & MEM-1.

0B38 PO-GR-1 LD HL,+5C92 This is MEMBOT.
 CALL 0B3E,PO-GR-2 In effect call the following
 subroutine twice.
0B3E PO-GR-2 RR B Determine bit 0 (and later bit 2)
 SBC A,A of the graphic code.
 AND +0F The A register will hold +00 or
 +0F depending on the value of
 the bit in the code.

37

 LD C,A Save the result in C.
 RR B Determine bit 1 (and later bit 3)
 SBC A,A of the graphic code.
 AND +F0 The A register will hold +00
 or +F0.
 OR C The two results are combined.
 LD C,+04 The A register holds half the
0B4C PO-GR-3 LD (HL),A character form and has to be
 INC HL used four times.
 DEC C This is done for the upper
 JR NZ,0B4C,PO-GR-3 half of the character form
 RET and then the lower.

Token codes and user-defined graphic codes are now separated.

0B52 PO-T&UDG SUB +A5 Jump forward with token codes
 JR NC,0B5F,PO-T
 ADD A,+15 UDG codes are now +00 - +0F.
 PUSH BC Save the current position
 values on the machine stack.
 LD BC,(UDG) Fetch the base address of the
 JR 0B6A,PO-CHAR-2 UDG area and jump forward.
0B5F PO-T CALL 0C10,PO-TOKENS Now print the token and return
 JP 0B03,PO-FETCH via PO-FETCH.

The required character form is identified.

0B65 PO-CHAR PUSH BC The current position is saved.
 LD BC,(CHARS) The base address of the
 character area is fetched.
0B6A PO-CHAR-2 EX DE,HL The print address is saved.
 LD HL,+5C3B This is FLAGS.
 RES 0,(HL) Allow for a leading space
 CP +20 Jump forward if the character
 JR NZ,0B76,PO-CHAR-3 is not a 'space'.
 SET 0,(HL) But 'suppress' if it is.
0B76 PO-CHAR-3 LD H,+00 Now pass the character code
 LD L,A to the HL register pair.
 ADD HL,HL The character code is in
 ADD HL,HL effect multiplied by 8.
 ADD HL,HL
 ADD HL,BC The base address of the
 character form is found.
 POP BC The current position is fetched
 EX DE,HL and the base address passed to
 the DE register pair.

THE 'PRINT ALL CHARACTERS' SUBROUTINE
This subroutine is used to print all '8*8' bit characters. On entry the DE register pair holds the base address of the character form, the
HL register the destination address and the BC register pair the current 'line & column' values.

0B7F PR-ALL LD A,C Fetch the column number.
 DEC A Move one column rightwards.
 LD A,+21 Jump forward unless a new
 JR NZ,0893,PR-ALL-1 line is indicated.
 DEC B Move down one line.
 LD C,A Column number is +21.
 BIT 1,(FLAGS) Jump forward if handling
 JR Z,0B93,PR-ALL-1 the screen.
 PUSH DE Save the base address whilst
 CALL 0ECD,COPY-BUFF the printer buffer is
 POP DE emptied.
 LD A,C Copy the new column number.
0B93 PR-ALL-1 CP C Test whether a new line is

38

 PUSH DE being used. If it is
 CALL Z,0C55,PO-SCR see if the display requires
 POP DE to be scrolled.

Now consider the present state of INVERSE & OVER'

 PUSH BC Save the position values
 PUSH HL and the destination address
 on the machine stack.
 LD A,(P-FLAG) Fetch P-FLAG and read bit 0.
 LD B,+FF Prepare the 'OVER-mask' in
 RRA the B register; i.e. OVER 0
 JR C,0BA4,PR-ALL-2 = +00 & OVER 1 - +FF.
 INC B
0BA4 PR-ALL-2 RRA Read bit 2 of P-FLAG and
 RRA prepare the 'INVERSE-mask'
 SBC A,A in the C register; i.e.
 LD C,A INVERSE 0 = +00 & INVERSE
 1 = +FF.
 LD A,+08 Set the A register to hold
 AND A the 'pixel-line' counter and
 clear the carry flag.
 BIT 1,(FLAGS) Jump forward if handling
 JR Z,0BB6,PR-ALL-3 the screen.
 SET 1,(FLAGS2) Signal 'printer buffer no longer
 empty.
 SCF Set the carry flag to show that
 the printer is being used.
0BB6 PR-ALL-3 EX DE,HL Exchange the destination
 address with the base address
 before entering the loop.

The character can now be printed. Eight passes of the loop are made - one for each 'pixel-line'.

0BB7 PR-ALL-4 EX AF,A'F' The carry flag is set when using
 the printer. Save this flag in F'.
 LD A,(DE) Fetch the existing 'pixel-line'.
 AND B Use the 'OVER-mask' and then
 XOR (HL) XOR the result with the 'pixel-
 line' of the character form.
 XOR C Finally consider the 'INVERSE-
 mask'.
 LD (DE),A Enter the result.
 EX AF,A'F' Fetch the printer flag and
 JR C,0BD3,PR-ALL-6 jump forward if required.
 INC D Update the destination address
0BC1 PR-ALL-5 INC HL Update the 'pixel-line' of
 the character form.
 DEC A Decrease the counter and loop
 JR NZ,0BB7,PR-ALL-4 back unless it is zero.

Once the character has been printed the attribute byte is to set as required.

 EX DE,HL Make the H register hold a
 DEC H correct high-address for the
 character area.
 BIT 1,(FLAGS) Set the attribute byte only if
 CALL Z,0BDB,PO-ATTR handling the screen.
 POP HL Restore the original
 POP BC destination address and the
 position values.
 DEC C Decrease the column number
 INC HL and increase the destination
 RET address before returning.

When the printer is being used the destination address has to be updated in increments of +20.

39

0BD3 PR-ALL-6 EX AF,A'F' Save the printer flag again.
 LD A,+20 The required increment value.
 ADD A,E Add the value and pass the
 LD E,A result back to the E register.
 EX AF,A'F' Fetch the flag.
 JR 0BC1,PR-ALL-5 Jump back into the loop.

THE 'SET ATTRIBUTE BYTE' SUBROUTINE
The appropriate attribute byte is identified and fetched. The new value is formed by manipulating the old value, ATTR-T, MASK-T and
P-FLAG. Finally this new value is copied to the attribute area.

0BDB PO-ATTR LD A,H The high byte of the
 RRCA destination address is
 RRCA divided by eight and ANDed
 RRCA with +03 to determine which
 AND +03 third of the screen is being
 addressed; i.e. 00,01 or 02.
 OR +58 The high byte for the
 LD H,A attribute area is then formed.
 LD DE,(ATTR-T) D holds ATTR-T, and
 E holds MASK-T.
 LD A,(HL) The old attribute value.
 XOR E The values of MASK-T and
 AND D ATTR-R are taken into
 XOR E account.
 BIT 6,(P-FLAG) Jump forward unless dealing
 JR Z,0BFA,PO-ATTR-1 with PAPER 9.
 AND +C7 The old paper colour is ignored
 and depending on whether the
 BIT 2,A ink colour is light or dark
 JR NZ,0BFA,PO-ATTR-1 the new paper colour will be
 XOR +38 black (000) or white (111).
0BFA PO-ATTR-1 BIT 4,(P-FLAG) Jump forward unless dealing
 JR Z,0C08,PO-ATTR-2 with INK 9.
 AND +F8 The old ink colour is ignored and
 depending on whether the paper
 BIT 5,A colour is light or dark the new
 JR NZ,0C08,PO-ATTR-2 ink colour will be black (000)
 XOR +07 or white (111).
0C08 PO-ATTR-2 LD (HL),A Enter the new attribute value
 RET and return.

THE 'MESSAGE PRINTING' SUBROUTINE
This subroutine is used to print messages and tokens. The A register holds the 'entry number' of the message or token in a table. The
DE register pair holds the base address of the table.

0C0A PO-MSG PUSH HL The high byte of the last
 LD H,+00 entry on the machine stack is
 EX (SP),HL made zero so as to suppress
 trailing spaces (see below).
 JR 0C14,PO-TABLE Jump forward.

Enter here when expanding token codes.

0C10 PO-TOKENS LD DE,+0095 The base address of the token
 table.
 PUSH AF Save the code on the stack.
 (Range +00 - +5A; RND - COPY).

The table is searched and the correct entry printed.

0C14 PO-TABLE CALL 0C41,PO-SEARCH Locate the required entry.
 JR C,0C22,PO-EACH Print the message/token.
 LD A,+20 A 'space' will be printed

40

 BIT 0,(FLAGS) before the message/token
 CALL Z,0C3B,PO-SAVE if required.

The characters of the message/token are printed in turn.

0C22 PO-EACH LD A,(DE) Collect a code.
 AND +7F Cancel any 'inverted bit'.
 CALL 0C3B,PO-SAVE Print the character.
 LD A,(DE) Collect the code again.
 INC DE Advance the pointer.
 ADD A,A The 'inverted bit' goes to
 JR NC,0C22,PO-EACH the carry flag and signals
 the end of the message/token;
 otherwise jump back.

Now consider whether a 'trailing space' is required.

 POP DE For messages - D holds +00;
 for tokens - D holds +00 - +5A.
 CP +48 Jump forward if the last
 JR Z,0C35,PO-TRSP character was a '$'.
 CP +82 Return if the last character
 RET C was any other before 'A'.
0C35 PO-TR-SP LD A,D Examine the value in D and
 CP +03 return if it indicates a
 RET C message, RND, INKEY$ or PI.
 LD A,+20 All other cases will require
 a 'trailing space'.

THE 'PO-SAVE' SUBROUTINE
This subroutine allows for characters to be printed 'recursively'. The appropriate registers are saved whilst 'PRINT-OUT' is called.

0C3B PO-SAVE PUSH DE Save the DE register pair.
 EXX Save HL & BC.
 RST 0010,PRINT-A-1 Print the single character.
 EXX Restore HL & BC.
 POP DE Restore DE.
 RET Finished.

THE 'TABLE SEARCH' SUBROUTINE
The subroutine returns with the DE register pair pointing to the initial character of the required entry and the carry flag reset if a 'leading
space' is to be considered.

0C41 PO-SEARCH PUSH AF Save the 'entry number'.
 EX DE,HL HL now holds the base address.
 INC A Make the range +01 - ?.
0C44 PO-STEP BIT 7,(HL) Wait for an 'inverted
 INC HL character'.
 JR Z,0C44,PO-STEP
 DEC A Count through the entries
 JR NZ,0C44,PO-STEP until the correct one is found.
 EX DE,HL DE points to the initial character.
 POP AF Fetch the 'entry number' and
 CP +20 return with carry set for the
 RET C first thirty two entries.
 LD A,(DE) However if the initial
 SUB +41 character is a letter then a
 RET leading space may be needed.

THE 'TEST FOR SCROLL' SUBROUTINE
This subroutine is called whenever there might be the need to scroll the display. This occurs on three occasions; i. when handling a
'carriage return' character; ii. when using AT in an INPUT line; & iii. when the current line is full and the next line has to be used.
On entry the B register holds the line number under test.

41

0C55 PO-SCR BIT 1,(FLAGS) Return immediately if the
 RET NZ printer is being used.
 LD DE,+0DD9 Pre-load the machine stack
 PUSH DE with the address of 'CL-SET'.
 LD A,B Transfer the line number.
 BIT 0,(TV-FLAG) Jump forward if considering
 JP NZ,0D02,PO-SCR-4 'INPUT ... AT ..'.
 CP (DF-SZ) Return, via CL-SET, if the line
 JR C,0C86,REPORT-6 number is greater than the value
 RET NZ of DF-SZ; give report 5 if it is
 less; otherwise continue.
 BIT 4,(TV-FLAG) Jump forward unless dealing
 JR Z,0C88,PO-SCR-2 with an 'automatic listing'.
 LD E,(BREG) Fetch the line counter.
 DEC E Decrease this counter.
 JR Z,0CD2,PO-SCR-3 Jump forward if the listing
 is to be scrolled.
 LD A,+00 Otherwise open channel 'K',
 CALL 1601,CHAN-OPEN restore the stack pointer,
 LD SP,(LIST-SP) flag that the automatic
 RES 4,(TV-FLAG) listing has finished and
 RET return via CL-SET.

Report 5 - Out of screen

0C86 REPORT-5 RST 0008,ERROR-1 Call the error handling
 DEFB +04 routine.

Now consider if the prompt 'scroll?' is required.

0C88 PO-SCR-2 DEC (SCR-CT) Decrease the scroll counter
 JR NZ,0CD2,PO-SCR-3 and proceed to give the prompt
 only if is becomes zero.

Proceed to give the prompt message.

 LD A,+18 The counter is reset.
 SUB B
 LD (SCR-CT),A
 LD HL,(ATTR-T) The current values of ATTR-T
 PUSH HL and MASK-T are saved.
 LD A,(P-FLAG) The current value of P-FLAG
 PUSH AF is saved.
 LD A,+FD Channel 'K' is opened.
 CALL 1601,CHAN-OPEN
 XOR A The message 'scroll?' is
 LD DE,+0CF8 message '0'. This message is
 CALL 0C0A,PO-MSG now printed.
 SET 5,(TV-FLAG) Signal 'clear the lower screen
 after a keystroke'.
 LD HL,+5C3B This is FLAGS.
 SET 3,(HL) Signal 'L mode'.
 RES 5,(HL) Signal 'no key yet'.
 EXX Note: DE should be pushed also.
 CALL 15D4,WAIT-KEY Fetch a single key code.
 EXX Restore the registers.
 CP +20 There is a jump forward to
 JR Z,0D00,REPORT-D REPORT-D - 'BREAK - CONT
 CP +E2 repeats' - if the keystroke
 JR Z,0D00,REPORT-D was 'BREAK', 'STOP', 'N' or
 OR +20 'n'; otherwise accept the
 CP +6E keystroke as indicating the
 JR Z,0D00,REPORT-D need to scroll the display.
 LD A,+FE Open channel 'S'.
 CALL 1601,CHAN-OPEN
 POP AF Restore the value of

42

 LD (P-FLAG),A P-FLAG.
 POP HL Restore the values of ATTR-T
 LD (ATTR-T),HL and MASK-T.

The display is now scrolled.

0CD2 PO-SCR-3 CALL 0DFE,CL-SC-ALL The whole display is scrolled.
 LD B(DF-SZ) The line and column numbers
 INC B for the start of the line
 LD C,+21 above the lower part of the
 PUSH BC display are found and saved.
 CALL 0E9B,CL-ADDR The corresponding attribute
 LD A,H byte for this character area is
 RRCA then found. The HL register pair
 RRCA holds the address of the
 RRCA byte.
 AND +03
 OR +58
 LD H,A

The line in question will have 'lower part' attribute values and the new line at the bottom of the display may have 'ATTR-P' values so the
attribute values are exchanged.

 LD DE,+5AE0 DE points to the first attribute
 byte of the bottom line.
 LD A,(DE) The value is fetched.
 LD C,(HL) The 'lower part' value.
 LD B,+20 There are thirty two bytes.
 EX DE,HL Exchange the pointers.
0CF0 PO-SCR-3A LD (DE),A Make the first exchange
 LD (HL),C and then proceed to use the
 INC DE same values for the thirty
 INC HL two attribute bytes of the
 DJNZ 0CF0,PO-SCR-3A two lines being handled.
 POP BC The line and column numbers of
 the bottom line of the 'upper
 part' are fetched before
 RET returning.

The 'scroll?' message

0CF8 DEFB +80 Initial marker - stepped over.
 DEFB +73,+63,+72,+6F s-c-r-o
 DEFB +6C,+6C,+BF l - l - ? (inverted).

Report 0 - BREAK - CONT repeats

0D00 REPORT-D RST 0008,ERROR-1 Call the error handling
 DEFB +0C routine.

The lower part of the display is handled as follows:

0D02 PO-SCR-4 CP +02 The 'out of screen' error is
 JR C,0C86,REPORT-5 given if the lower part is
 ADD A,(DF-SZ) going to be 'too large' and a
 SUB +19 return made if scrolling is
 RET NC unnecessary.
 NEG The A register will now hold
 'the number of scrolls to be
 made'.
 PUSH BC The line and column numbers
 are now saved.
 LD B,A The 'scroll number', ATTR-T
 LD HL,(ATTR-T) MASK-T & P-FLAG are all
 PUSH HL saved.
 LD HL,(P-FLAG)
 PUSH HL
 CALL 0D40,TEMPS The 'permanent' colour items
 are to be used.

43

 LD A,B The 'scroll number' is fetched.

The lower part of the screen is now scrolled 'A' number of times.

0D1C PO-SCR-4A PUSH AF Save the 'number'.
 LD HL,+5C6B This is DF-SZ.
 LD B,(HL) The value in DF-SZ is
 LD A,B incremented; the B register
 INC A set to hold the former value and
 LD (HL),A the A register the new value.
 LD HL,+5C89 This is S-POSN-hi.
 CP (HL) The jump is taken if only the
 JR C,0D2D,PO-SCR-4B lower part of the display is
 to be scrolled. (B = old DF-SZ).
 INC (HL) Otherwise S-POSN-hi is
 LD B,+18 incremented and the whole
 display scrolled. (B = +18)
0D2D PO-SCR-4B CALL 0E00,CL-SCROLL Scroll 'B' lines.
 POP AF Fetch and decrement the
 DEC A scroll number'.
 JR NZ,0D1C,PO-SCR-4A Jump back until finished.
 POP HL Restore the value of
 LD (P-FLAG),L P-FLAG.
 POP HL Restore the values of ATTR-T
 LD (ATTR-T),HL and MASK-T.
 LD BC,(S-POSN) In case S-POSN has been
 RES 0,(TV-FLAG) changed CL-SET is called to
 CALL 0DD9,CL-SET give a matching value to DF-CC.
 SET 0,(TV-FLAG) Reset the flag to indicate that
 POP BC the lower screen is being
 RET handled, fetch the line and
 column numbers, and then
 return.

THE 'TEMPORARY COLOUR ITEMS' SUBROUTINE
This is a most important subroutine. It is used whenever the 'permanent' details are required to be copied to the 'temporary' system
variables. First ATTR-T & MASK-T are considered

0D4D TEMPS XOR A A is set to hold +00.
 LD HL,(ATTR-P) The current values of ATTR-P
 BIT 0,(TV-FLAG) and MASK-P are fetched.
 JR Z,0D5B,TEMPS-1 Jump forward if handing the
 main part of the screen.
 LD H,A Otherwise use +00 and the
 LD L,(BORDCR) value in BORDCR instead.
0D5B TEMPS-1 LD (ATTR-T),HL Now set ATTR-T & MASK-T.

Next P-FLAG is considered.
 LD HL,+5C91 This is P-FLAG.
 JR NZ,0D65,TEMPS-2 Jump forward if dealing with
 the lower part of the screen
 (A = +00).
 LD A,(HL) Otherwise fetch the value of
 RRCA P-FLAG and move the odd bits
 to the even bits.
0D65 TEMPS-2 XOR (HL) Proceed to copy the even bits
 AND +55 of A to P-FLAG.
 XOR (HL)
 LD (HL),A
 RET

THE 'CLS COMMAND' ROUTINE
In the first instance the whole of the display is 'cleared' - the 'pixels' are all reset and the attribute bytes are set to equal the value in
ATTR-P - then the lower part of the display is reformed.

44

0D6B CLS CALL 0DAF,CL-ALL The whole of the display is
 'cleared'.
0D6E CLS-LOWER LD HL,+5C3C This is TV-FLAG.
 RES 5,(HL) Signal 'do not clear the lower
 screen after keystroke'.
 SET 0,(HL) Signal 'lower part'.
 CALL 0D4D,TEMPS Use the permanent values. i.e.
 ATTR-T is copied from BORDCR.
 LD B,(DF-SZ) The lower part of the screen is
 CALL 0E44,CL-LINE now 'cleared' with these values.

With the exception of the attribute bytes for lines '22' & '23' the attribute bytes for the lines in the lower part of the display will need to be
made equal to ATTR-P.

 LD HL,+5AC0 Attribute byte at start of line
 '22'.
 LD A,(ATTR-P) Fetch ATTR-P.
 DEC B The line counter.
 JR 0D8E,CLS-3 Jump forward into the loop.
0D87 CLS-1 LD C,+20 +20 characters per line.
0D89 CLS-2 DEC HL Go back along the line setting
 LD (HL),A the attribute bytes.
 DEC C
 JR NZ,0D89,CLS-2
0D8E CLS-3 DJNZ 0D87,CLS-1 Loop back until finished.

The size of the lower part of the display can now be fixed.

 LD (DF-SZ),+02 It will be two lines in size.

It now remains for the following 'house keeping' tasks to be performed.

0D94 CL-CHAN LD A,+FD Open channel 'K'.
 CALL 1601,CHAN-OPEN
 LD HL,(CURCHL) Fetch the address of the
 LD DE,+09F4 current channel and make
 AND A the output address +09F4
0DA0 CL-CHAN-A LD (HL),E (= PRINT-OUT) and the
 INC HL input address +10A8
 LD (HL),D (= KEY-INPUT).
 INC HL
 LD DE,+10A8
 CCF First the output address
 JR C,0DA0,CL-CHAN-A then the input address.
 LD BC,+1721 As the lower part of the
 display is being handled the
 'lower print line' will be
 line '23'.
 JR 0DD9,CL-SET Return via CL-SET.

THE 'CLEARING THE WHOLE DISPLAY AREA' SUBROUTINE
This subroutine is called from; i. the CLS command routine. ii. the main execution routine, and iii. the automatic listing routine.

0DAF CL-ALL LD HL,+0000 The system variable C00RDS
 LD (C00RDS),HL is reset to zero.
 RES 0,(FLAGS2) Signal 'the screen is clear'.
 CALL 0D94,CL-CHAN Perform the 'house keeping'
 tasks.
 LD A,+FE Open channel 'S'.
 CALL 1601,CHAN-OPEN
 CALL 0D4D,TEMPS Use the 'permanent' values.
 LD B,+18 Now 'clear' the 24 lines
 CALL 0E44,CL-LINE of the display.
 LD HL,(CURCHL) Ensure that the current
 LD DE,+09F4 output address is +09F4

45

 LD (HL),E (PRINT-OUT).
 INC HL
 LD (HL),D
 LD (SCR-CT),+01 Reset the scroll counter.
 LD BC,+1821 As the upper part of the display
 is being handled the 'upper print
 line' will be Line '0'.
 Continue into CL-SET.

THE 'CL-SET' SUBROUTINE
This subroutine is entered with the BC register pair holding the line and column numbers of a character areas, or the C register holding
the column number within the printer buffer. The appropriate address of the first character bit is then found. The subroutine returns via
PO-STORE so as to store all the values in the required system variables.

0DD9 CL-SET LD HL,+5B00 The start of the printer buffer.
 BIT 1,(FLAGS) Jump forward if handling the
 JR NZ,0DF4,CL-SET-2 printer buffer.
 LD A,B Transfer the line number.
 BIT 0,(TV-FLAG) Jump forward if handling the
 JR Z,0DEE,CL-SET-1 main part of the display.
 ADD A,(DF-SZ) The top line of the lower
 SUB +18 part of the display is called
 'line +18' and this has to be
 converted.
0DEE CL-SET-1 PUSH BC The line & column numbers are
 saved.
 LD B,A The line number is moved.
 CALL 0E9B,CL-ADDR The address for the start of the
 line is formed in HL.
 POP BC The line & column numbers are
 fetched back.
0DF4 CL-SET-2 LD A,+21 The column number is now
 SUB C reversed and transferred to
 LD E,A the DE register pair.
 LD D,+00
 ADD HL,DE The required address is now
 JP 0ADC,PO-STORE formed; and the address and
 the line and column numbers
 are stored by jumping to
 PO-STORE.

THE 'SCROLLING' SUBROUTINE
The number of lines of the display that are to be scrolled has to be held on entry to the main subroutine in the B register.

0DFE CL-SC-ALL LD B,+17 The entry point after 'scroll?'

The main entry point - from above and when scrolling for INPUT..AT.

0E00 CL-SCROLL CALL 0E9B,CL-ADDR Find the starting address of
 the line.
 LD C,+08 There are eight pixel lines to
 a complete line.

Now enter the main scrolling loop. The B register holds the number of the top line to be scrolled, the HL register pair the starting
address in the display area of this line and the C register the pixel line counter.

0E05 CL-SCR-1 PUSH BC Save both counters.
 PUSH HL Save the starting address.
 LD A,B Jump forward unless
 AND +07 dealing at the present
 LD A,B moment with a 'third' of
 JR NZ,0E19,CL-SCR-3 the display.

The pixel lines of the top lines of the 'thirds' of the display have to be moved across the 2K boundaries. (Each 'third' = 2K.)

46

0E0D CL-SCR-2 EX DE,HL The result of this
 LD HL,+F8E0 manipulation is to leave HL
 ADD HL,DE unchanged and DE pointing to
 EX DE,HL the required destination.
 LD BC,+0020 There are +20 characters.
 DEC A Decrease the counter as one line
 is being dealt with.
 LDIR Now move the thirty two bytes.

The pixel lines within the 'thirds' can now be scrolled. The A register holds, on the first pass, +01 - +07, +09 - +0F or +11 - +17.

0E19 CL-SCR-3 EX DE,HL Again DE is made to point
 LD HL,+FFE0 to the required destination.
 ADD HL,DE This time only thirty two
 EX DE,HL locations away.
 LD B,A Save the line number in B.
 AND +07 Now find how many characters
 RRCA there are remaining in the
 RRCA 'third'.
 RRCA
 LD C,A Pass the 'character total' to the
 C register.
 LD A,B Fetch the line number.
 LD B,+00 BC holds the 'character total'
 LDIR and a pixel line from each of the
 characters is 'scrolled'.
 LD B,+07 Now prepare to increment the
 address to jump across a 'third'
 boundary.
 ADD HL,BC Increase HL by +0700.
 AND +F8 Jump back if there are any
 JR NZ,0E0D,CL-SCR-2 'thirds' left to consider.

Now find if the loop has been used eight times - once for each pixel line.

 POP HL Fetch the original address.
 INC H Address the next pixel line.
 POP BC Fetch the counters.
 DEC C Decrease the pixel line counter
 JR NZ,0E05,CL-SR-1 and jump back unless eight lines
 have been moved.

Next the attribute bytes are scrolled. Note that the B register still holds the number of lines to be scrolled and the C register holds zero.

 CALL 0E88,CL-ATTR The required address in the
 attribute area and the number
 of characters in 'B' lines are
 found.
 LD HL,+FFE0 The displacement for all
 ADD HL,DE the attribute bytes is
 EX DE,HL thirty two locations away.
 LDIR The attribute bytes are
 'scrolled'.

It remains now to clear the bottom line of the display.

 LD B,+01 The B register is loaded with
 +01 and CL-LINE is entered.

THE 'CLEAR LINES' SUBROUTINE
This subroutine will clear the bottom 'B' lines of the display.

0E44 CL-LINE PUSH BC The line number is saved for the
 duration of the subroutine.
 CALL 0E9B,CL-ADDR The starting address for the line
 is formed in HL.

47

 LD C,+08 Again there are eight pixel
 lines to be considered.

Now enter a loop to clear all the pixel lines.

0E4A CL-LINE-1 PUSH BC Save the line number and the
 pixel line counter.
 PUSH HL Save the address.
 LD A,B Save the line number in A.
0E4D CL-LINE-2 AND +07 Find how many characters are
 RRCA involved in 'B mod 8' lines.
 RRCA Pass the result to the
 RRCA C register. (C will hold +00
 LD C,A i.e. 256 dec. for a 'third'.)
 LD A,B Fetch the line number.
 LD B,+00 Make the BC register pair
 DEC C hold 'one less' than the number
 of characters.
 LD D,H Make DE point to the first
 LD E,L character.
 LD (HL),+00 Clear the pixel-byte of the
 first character.
 INC DE Make DE point to the second
 LDIR character and then clear the
 pixel-bytes of all the other
 characters.
 LD DE,+0701 For each 'third' of the
 ADD HL,DE display HL has to be increased
 by +0701.
 DEC A Now decrease the line number.
 AND +F8 Discard any extra lines and
 LD B,A pass the 'third' count to B.
 JR NZ,0E4D,CL-LINE-2 Jump back if there are still
 'thirds' to be dealt with.

Now find if the loop has been used eight times.

 POP HL Update the address for each
 INC H pixel line.
 POP BC Fetch the counters.
 DEC C Decrease the pixel line
 JR NZ,0E4A,CL-LINE-1 counter and jump back unless
 finished.

Next the attribute bytes are set as required. The value in ATTR-P will be used when handling the main part of the display and the value
in BORDCR when handling the lower part.

 CALL 0E88,CL-ATTR The address of the first
 attribute byte and the number
 of bytes are found.
 LD H,D HL will point to the first
 LD L,E attribute byte and DE the
 INC DE second.
 LD A,(ATTR-P) Fetch the value in ATTR-P.
 BIT 0,(TV-FLAG) Jump forward if handling the
 JR Z,0E80,CL-LINE-3 main part of the screen.
 LD A,(BORDCR) Otherwise use BORDCR instead.
0E80 CL-LINE-3 LD (HL),A Set the attribute byte.
 DEC BC One byte has been done.
 LDIR Now copy the value to all the
 attribute bytes.
 POP BC Restore the line number.
 LD C,+21 Set the column number to the
 RET lefthand column and return.

48

THE 'CL-ATTR' SUBROUTINE
This subroutine has two separate functions.

i. For a given display area address the appropriate attribute address is returned in the DE register pair. Note that the value on entry
points to the 'ninth' line of a character.

ii. For a given line number, in the B register, the number of character areas in the display from the start of that line onwards is returned
in the BC register pair.

0E88 CL-ATTR LD A,H Fetch the high byte.
 RRCA Multiply this value by
 RRCA thirty two.
 RRCA
 DEC A Go back to the 'eight' line.
 OR +50 Address the attribute area.
 LD H,A Restore to the high byte and
 EX DE,HL transfer the address to DE.
 LD H,C This is always zero.
 LD L,B The line number.
 ADD HL,HL Multiply by thirty two.
 ADD HL,HL
 ADD HL,HL
 ADD HL,HL
 ADD HL,HL
 LD B,H Move the result to the
 LD C,L BC register pair before
 RET returning.

THE 'CL-ADDR' SUBROUTINE
For a given line number, in the B register, the appropriate display file address is formed in the HL register pair.

0E9B CL-ADDR LD A,+18 The line number has to be
 SUB B reversed.
 LD D,A The result is saved in D.
 RRCA In effect '(A mod 8) * 32'.
 RRCA In a 'third' of the display
 RRCA the low byte for the:
 AND +E0 1st. line = +00,
 2nd. line = +20, etc.
 LD L,A The low byte goes into L.
 LD A,D The true line number is fetched.
 AND +18 In effect '64 +8 * INT (A/8)'
 OR +40 For the upper 'third' of the
 display the high byte = +40,
 middle 'third' = +48, and the
 lower 'third' = +50.
 LD H,A The high byte goes to H.
 RET Finished.

THE 'COPY' COMMAND ROUTINE
The one hundred and seventy six pixel lines of the display are dealt with one by one.

0EAC COPY DI The maskable interrupt is
 disabled during COPY.
 LD B,+B0 The '176' lines.
 LD HL,+4000 The base address of the display.

The following loop is now entered.

0EB2 COPY-1 PUSH HL Save the base address and
 PUSH BC the number of the line.
 CALL 0EF4,COPY-LINE It is called '176' times.
 POP BC Fetch the line number and
 POP HL the base address.
 INC H The base address is updated by
 '256' locations for each line of
 pixels.

49

 LD A,H Jump forward and hence round
 AND +07 the loop again directly for the
 JR NZ,0EC9,COPY-2 eight pixel lines of a character
 line.

For each new line of characters the base address has to be updated.

 LD A,L Fetch the low byte.
 ADD A,+20 Update it by +20 bytes.
 LD L,A The carry flag will be reset when
 'within thirds' of the display.
 CCF Change the carry flag.
 SBC A,A The A register will hold +F8
 AND +F8 when within a 'third' but +00
 when a new third' is reached.
 ADD A,H The high byte of the
 LD H,A address is now updated.
0EC9 COPY-2 DJNZ 0EB2,COPY-1 Jump back until '176' lines have
 been printed.
 JR 0EDA,COPY-END Jump forward to the end
 routine.

THE 'COPY-BUFF' SUBROUTINE
This subroutine is called whenever the printer buffer is to have its contents passed to the printer.

0ECD COPY-BUFF DI Disable the maskable interrupt.
 LD HL,+5800 The base address of the printer
 buffer.
 LD B,+08 There are eight pixel lines.
0ED3 COPY-3 PUSH BC Save the line number.
 CALL 0EF4,COPY-LINE It is called '8' times.
 POP BC Fetch the line number.
 DJNZ 0ED3,COPY-3 Jump back until '8' lines
 have been printed.

Continue into the COPY-END routine.

0EDA COPY-END LD A,+04 Stop the printer motor.
 OUT (+FB),A
 EI Enable the maskable interrupt
 and continue into CLEAR-PRB.

THE 'CLEAR PRINTER BUFFER' SUBROUTINE
The printer buffer is cleared by calling this subroutine.

0EDF CLEAR-PRB LD HL,+5B00 The base address of the printer
 buffer.
 LD (PR-CC-lo),L Reset the printer 'column'.
 XOR A Clear the A register.
 LD B,A Also clear the B register in
 effect B holds dec.256).
0EE7 PRB-BYTES LD (HL),A The '256' bytes of the
 INC HL printer buffer are all
 DJNZ 0EE7,PRB-BYTES cleared in turn.
 RES 1,(FLAGS2) Signal 'the buffer is empty'.
 LD C,+21 Set the printer position and
 JP 0DD9,CL-SET return via CL-SET & P0-STORE.

THE 'COPY-LINE' SUBROUTINE
The subroutine is entered with the HL register pair holding the base address of the thirty two bytes that form the pixel-line and the B
register holding the pixel-line number.

0EF4 COPY-LINE LD A,B Copy the pixel-line number.
 CP +03 The A register will hold
 SBC A,A +00 until the last two lines
 AND +02 are being handled.

50

 OUT (+FB),A Slow the motor for the last two
 pixel lines only.
 LD D,A The D register will hold either
 +00 or +02.

There are three tests to be made before doing any 'printing'.

0EFD COPY-L-1 CALL 1F54,BREAK-KEY Jump forward unless the
 JR C,0F0C,COPY-L-2 BREAK key is being pressed.
 LD A,+04 But if it is then;
 OUT (+FB),A stop the motor,
 EI enable the maskable interrupt,
 CALL 0EDF,CLEAR-PRB clear the printer buffer and exit
 RST 0008,ERROR-1 via the error handling routine
 DEFB +0C - 'BREAK-CONT repeats'.
0F0C COPY-L-2 IN A,(+FB) Fetch the status of the
 ADD A,A printer.
 RET M Make an immediate return if the
 printer is not present.
 JR NC,0EFD,COPY-L-1 Wait for the stylus.
 LD C,+20 There are thirty two bytes.

Now enter a loop to handle these bytes.

0F14 COPY-L-3 LD E,(HL) Fetch a byte.
 INC HL Update the pointer.
 LD B,+08 Eight bits per byte.
0F18 COPY-L-4 RL D Move D left.
 RL E Move each bit into the carry.
 RR D Move D back again, picking up
 the carry from E.
0F1E COPY-L-5 IN A,(+FB) Again fetch the status of the
 RRA printer and wait for the
 JR NC,0F1E,COPY-L-5 signal from the encoder.
 LD A,D Now go ahead and pass the
 OUT (+FB),A 'bit' to the printer
 Note: bit 2 - low starts the
 motor, bit 1 - high slows the
 motor and bit 7 is high for the
 actual 'printing'.
 DJNZ 0F18,COPY-L-4 'Print' each bit.
 DEC C Decrease the byte counter.
 JR NZ,0F14,COPY-L-3 Jump back whilst there are
 RET still bytes; otherwise return.

THE 'EDITOR' ROUTINES
The editor is called on two occasions:
i. From the main execution routine so that the user can enter a BASIC line into the system.

ii. From the INPUT command routine.

First the 'error stack pointer' is saved and an alternative address provided.

0F2C EDITOR LD HL,(ERR-SP) The current value is saved on
 PUSH HL the machine stack.
0F30 ED-AGAIN LD HL,+107F This is ED-ERROR.
 PUSH HL Any event that leads to the
 LD (ERR-SP),SP error handling routine being
 used will come back to
 ED-ERROR.

A loop is now entered to handle each keystroke.

0F38 ED-LOOP CALL 15D4,WAIT-KEY Return once a key has been
 pressed.
 PUSH AF Save the code temporarily.

51

 LD D,+00 Fetch the duration of the
 LD E,(PIP) keyboard click.
 LD HL,+00C8 And the pitch.
 CALL 03B5,BEEPER Now make the 'pip'.
 POP AF Restore the code.
 LD HL,+0F38 Pre-load the machine stack
 PUSH HL with the address of ED-LOOP.

Now analyse the code obtained.

 CP +18 Accept all character codes,
 JR NC,0F81,ADD-CHAR graphic codes and tokens.
 CP +07 Also accept ','.
 JR C,0F81,ADD-CHAR
 CP +10 Jump forward if the code
 JR C,0F92,ED-KEYS represents an editing key.

The control keys - INK to TAB -are now considered.

 LD BC,+0002 INK & PAPER will require
 two locations.
 LD D,A Copy the code to 0.
 CP +16 Jump forward with INK &
 JR C,0F6C,ED-CONTR PAPER'

AT & TAB would be handled as follows:

 INC BC Three locations required.
 BIT 7,(FLAGX) Jump forward unless dealing
 JP Z,101E,ED-IGNORE with INPUT LINE... .
 CALL 15D4,WAIT-KEY Get the second code.
 LD E,A and put it in E.

The other bytes for the control characters are now fetched.

0F6C ED-CONTR CALL 15D4,WAIT-KEY Get another code.
 PUSH DE Save the previous codes.
 LD HL,(K-CUR) Fetch K-CUR.
 RES 0,(MODE) Signal 'K mode'.
 CALL 1655,MAKE-ROOM Make two or three spaces.
 POP BC Restore the previous codes.
 INC HL Point to the first location.
 LD (HL),B Enter first code.
 INC HL Then enter the second code
 LD (HL),C which will be Overwritten if
 there are only two codes - i.e.
 with INK & PAPER.
 JR 0F8B,ADD-CH-1 Jump forward.

THE 'ADDCHAR' SUBROUTINE
This subroutine actually adds a code to the current EDIT or INPUT line.

0F81 ADD-CHAR RES 0,(MODE) Signal 'K mode'.
 LD HL,(K-CUR) Fetch the cursor position.
 CALL 1652,ONE-SPACE Make a single space.
0F8B ADD-CH-1 LD (DE),A Enter the code into the space
 INC DE and signal that the cursor is to
 LD (K-CUR),DE occur at the location after. Then
 RET return indirectly to ED-LOOP.

The editing keys are dealt with as follows:

0F92 ED-KEYS LD E,A The code is transferred to
 LD C,+00 the DE register pair.
 LD HL,+0F99 The base address of the editing
 key table.
 ADD HL,DE The entry is addressed and
 LD E,(HL) then fetched into E.
 ADD HL,DE The address of the handling

52

 PUSH HL routine is saved on the machine
 stack.
 LD HL,(K-CUR) The HL register pair is set and
 RET an indirect jump made to the
 required routine.

THE 'EDITING KEYS' TABLE

address offset character address offset character
0FA0 09 EDIT 0FA5 70 DELETE
0FA1 66 cursor left 0FA6 7E ENTER
0FA2 6A cursor right 0FA7 CF SYMBOL SHIFT
0FA3 50 cursor down 0FA8 D4 GRAPHICS
0FA4 85 cursor up

THE 'EDIT KEY' SUBROUTINE
When in 'editing mode' pressing the EDIT key will bring down the 'current BASIC line'. However in 'INPUT mode' the action of the EDIT
key is to clear the current reply and allow a fresh one.

0FA9 ED-EDIT LD HL,(E-PPC) Fetch the current line number.
 BIT 5,(FLAGX) But jump forward if in
 JP NZ,1097,CLEAR-SP 'INPUT mode'.
 CALL 196E,LINE-ADDR Find the address of the start of
 CALL 1695,LINE-NO the current line and hence its
 number.
 LD A,D If the line number returned is
 OR E zero then simply clear the
 JP Z,1097,CLEAR-SP editing area.
 PUSH HL Save the address of the line.
 INC HL Move on to collect the
 LD C,(HL) length of the line.
 INC HL
 LD B,(HL)
 LD HL,+000A Add +0A to the length and test
 ADD HL,BC that there is sufficient room
 LD B,H for a copy of the line.
 LD C,L
 CALL 1F05,TEST-ROOM
 CALL 1097,CLEAR-SP Now clear the editing area.
 LD HL,(CURCHL) Fetch the current channel
 EX (SP),HL address and exchange it for the
 address of the line.
 PUSH HL Save it temporarily.
 LD A,+FF Open channel 'A' so that the
 CALL 1601,CHAN-OPEN line will be copied to the editing
 area.
 POP HL Fetch the address of the line.
 DEC HL Goto before the line.
 DEC (E-PPC-lo) Decrement the current line
 number so as to avoid
 printing the cursor.
 CALL 1855,OUT-LINE Print the BASIC line
 INC (E-PPC-lo) Increment the current line
 number.
 Note: The decrementing of the
 line number does not always
 stop the cursor from being
 printed.
 LD HL,(E-LINE) Fetch the start of the line in
 INC HL the editing area and step past
 INC HL the line number and the
 INC HL length to find the address
 INC HL for K-CUR.

53

 LD (K-CUR),HL
 POP HL Fetch the former channel
 CALL 1615,CHAN-FLAG address and set the
 RET appropriate flags before
 returning to ED-LOOP.

THE 'CURSOR DOWN EDITING' SUBROUTINE

0FF3 ED-DOWN BIT 5,(FLAGX) Jump forward if in
 JR NZ,1001,ED-STOP 'INPUT' mode'.
 LD HL,+5C49 This is E-PPC.
 CALL 190F,LN-FETCH The next line number is found
 JR 106E,ED-LIST and a new automatic listing
 produced.
1001 ED-STOP LD (ERR-NR),+10 'STOP in INPUT' report.
 JR 1024,ED-ENTER Jump forward.

THE 'CURSOR LEFT EDITING' SUBROUTINE

1007 ED-LEFT CALL 1031,ED-EDGE The cursor is moved.
 JR 1011,ED-CUR Jump forward.

THE 'CURSOR RIGHT EDITING' SUBROUTINE

100C ED-RIGHT LD A,(HL) The current character is tested
 CP +0D and if it is 'carriage return'
 RET Z then return.
 INC HL Otherwise make the cursor
 come after the character.
1011 ED-CUR LD (K-CUR),HL Set the system variable K-CUR.
 RET

THE 'DELETE EDITING' SUBROUTINE

1015 ED-DELETE CALL 1031,ED-EDGE Move the cursor leftwards.
 LD BC,+0001 Reclaim the current
 JP 19E8,RECLAIM-2 character.

THE 'ED-IGNORE' SUBROUTINE

101E ED-IGNORE CALL 15D4,WAIT-KEY The next two codes from the
 CALL 15D4,WAIT-KEY key-input routine are ignored.

THE 'ENTER EDITING' SUBROUTINE

1024 ED-ENTER POP HL The address of ED-LOOP and
 POP HL ED-ERROR are discarded.
1026 ED-END POP HL The old value of ERR-SP
 LD (ERR-SP),HL is restored.
 BIT 7,(ERR-NR) Now return if there were
 RET NZ no errors.
 LD SP,HL Otherwise make an indirect
 RET jump to the error routine.

THE 'ED-EDGE' SUBROUTINE
The address of the cursor is in the HL register pair and will be decremented unless the cursor is already at the start of the line. Care is
taken not to put the cursor between control characters and their parameters.

1031 ED-EDGE SCF DE will hold either E-LINE
 CALL 1195,SET-DE (for editing) or WORKSP
 (for INPUTing).
 SBC HL,DE The carry flag will become set
 if the cursor is already to be at
 ADD HL,DE the start of the line.
 INC HL Correct for the subtraction.

54

 POP BC Drop the return address.
 RET C Return via ED-LOOP if the
 carry flag is set.
 PUSH BC Restore the return address.
 LD B,H Move the current address of
 LD C,L the cursor to BC.

Now enter a loop to check that control characters are not split from their parameters.

103E ED-EDGE-1 LD H,D HL will point to the
 LD L,E character in the line after
 INC HL that addressed by DE.
 LD A,(DE) Fetch a character code.
 AND +F0 Jump forward if the code
 CP +10 does not represent
 JR NZ,1051,ED-EDGE-2 INK to TAB.
 INC HL Allow for one parameter.
 LD A,(DE) Fetch the code anew.
 SUB +17 Carry is reset for TAB.
 ADC A,+00 Note: This splits off AT & TAB
 but AT & TAB in this form are
 not implemented anyway so it
 makes no difference.
 JR NZ,1051,ED-EDGE-2 Jump forward unless dealing
 INC HL with AT & TAB which would
 have two parameters, if used.
1051 ED-EDGE-2 AND A Prepare for true subtraction.
 SBC HL,BC The carry flag will be reset
 ADD HL,BC when the 'updated pointer'
 reaches K-CUR.
 EX DE,HL For the next loop use the
 JR C,103E,ED-EDGE-1 'updated pointer', but if
 RET exiting use the 'present
 pointer' for K-CUR.
 Note: It is the control character
 that is deleted when using
 DELETE.

THE 'CURSOR UP EDITING' SUBROUTINE

1059 ED-UP BIT 5,(FLAGX) Return if in 'INPUT mode'.
 RET NZ
 LD HL,(E-PPC) Fetch the current line
 CALL 196E,LINE-ADDR number and its start address.
 EX DE,HL HL now points to the previous
 line.
 CALL 1695,LINE-NO This line's number is fetched.
 LD HL,+5C4A This is E-PPC-hi.
 CALL 1910,LN-STORE The line number is stored.
106E ED-LIST CALL 1795,AUTO-LIST A new automatic listing is
 LD A,+00 now produced and channel 'K'
 JP 1601,CHAN-OPEN re-opened before returning to
 ED-LOOP.

THE 'ED-SYMBOL' SUBROUTINE
If SYMBOL & GRAPHICS codes were used they would be handled as follows:

1076 ED-SYMBOL BIT 7,(FLAGX) Jump back unless dealing with
 JR Z,1024,ED-ENTER INPUT. LINE.
107C ED-GRAPH JP 0F81,ADD-CHAR Jump back.

THE 'ED-ERROR' SUBROUTINE
Come here when there has been some kind of error.

107F ED-ERROR BIT 4,(FLAGS2) Jump back if using other than
 JR Z,1026,ED-END channel 'K'.

55

 LD (ERR-NR),+FF Cancel the error number and
 LD D,+00 give a 'rasp' before going
 LD E,(RASP) around the editor again.
 LD HL,+1A90
 CALL 0385,BEEPER
 JP 0F30,ED-AGAIN

THE 'CLEAR-SP' SUBROUTINE
The editing area or the work space is cleared as directed.

1097 CLEAR-SP PUSH HL Save the pointer to the space.
 CALL 1190,SET-HL DE will point to the first
 character and HL the last.
 DEC HL The correct amount is now
 CALL 19E5,RECLAIM-1 reclaimed.
 LD (K-CUR),HL The system variables K-CUR
 LD (MODE),+00 and MODE ('K mode') are
 POP HL initialised before fetching
 RET the pointer and returning.

THE 'KEYBOARD INPUT' SUBROUTINE
This important subroutine returns the code of the last key to have bean pressed but note that CAPS LOCK, the changing of the mode
and the colour control parameters are handled within the subroutine.

10A8 KEY-INPUT BIT 3,(TV-FLAG) Copy the edit-linear the
 CALL NZ,111D,ED-COPY INPUT-line to the screen if
 the mode has changed.
 AND A Return with both carry
 BIT 5,(FLAGS) and zero flags reset if no
 RET Z new key has been pressed
 LD A,(LAST-K) Otherwise fetch the code and
 RES 5,(FLAGS) signal that it has been taken
 PUSH AF Save the code temporarily.
 BIT 5,(TV-FLAG) Clear the lower part of the
 CALL NZ,0D6E,CLS-LOWER display if necessary;
 e.g. after 'scroll?';
 POP AF Fetch the code.
 CP +20 Accept all characters and
 JR NC,111B,KEY-DONE token codes.
 CP +10 Jump forward with most of
 JR NC,10FA,KEY-CONTR the control character codes.
 CP +06 Jump forward with the 'mode'.
 JR NC,10DB,KEY=M&CL codes and the CAPS LOCK code.

Now deal with the FLASH, BRIGHT& INVERSE codes.

 LD B,A Save the code.
 AND +01 Keep only bit 0.
 LD C,A C holds +00 (= OFF) or
 C holds +01 (= ON).
 LD A,B Fetch the code.
 RRA Rotate it once (losing bit 0).
 ADD A,+12 Increase it by +12 giving for
 JR 1105,KEY-DATA FLASH - +12, BRIGHT - +13
 and INVERSE - +14.

The CAPS LOCK code and the mode codes are dealt with 'locally'.

10DB KEY-M&CL JR NZ,10E6,KEY-MODE Jump forward with 'mode' codes.
 LD HL,+5C6A This is FLAGS2.
 LD A,+08 Flip bit 3 of FLAGS2. This is
 XOR (HL) the CAPS LOCK flag.
 LD (HL),A
 JR 10F4,KEY-FLAG Jump forward.
10E6 KEY-MODE CP +0E Check the lower limit.

56

 RET C
 SUB +0D Reduce the range.
 LD HL,+5C41 This is MODE.
 CP (HL) Has it been changed?
 LD (HL),A Enter the new 'mode' code.
 JR NZ,10F4,KEY-FLAG Jump if it has changed;
 LD (HL),+00 otherwise make it 'L mode'.
10F4 KEY-FLAG SET 3,(TV-FLAG) Signal 'the mode might have
 changed.
 CP A Reset the carry flag and
 RET return.

The control key codes (apart from FLASH, BRIGHT & INVERSE) are manipulated.

10FA KEY-CONTR LD B,A Save the code.
 AND +07 Make the C register hold the
 LD C,A parameter. (+00 to +07)
 LD A,+10 A now holds the INK code.
 BIT 3,B But if the code was an
 JR NZ,1105,KEY-DATA 'unshifted' code then make A
 INC A hold the PAPER code.

The parameter is saved in K-DATA and the channel address changed from KEY-INPUT to KEY-NEXT.

1105 KEY-DATA LD (K-DATA),C Save the parameter.
 LD DE,+110D This is KEY-NEXT.
 JR 1113,KEY-CHAN Jump forward.

Note: On the first pass entering at KEY-INPUT the A register is returned holding a control code' and then on the next pass, entering
at KEY-NEXT, it is the parameter that is returned.

110D KEY-NEXT LD A,(K-DATA) Fetch the parameter.
 LD DE,+10A8 This is KEY-INPUT.

Now set the input address in the first channel area.

1113 KEY-CHAN LD HL,(CHANS) Fetch the channel address.
 INC HL
 INC HL
 LD (HL),E Now set the input address.
 INC HL
 LD (HL),D

Finally exit with the required code in the A register.

111B KEY-DONE SCF Show a code has been found
 RET and return.

THE 'LOWER SCREEN COPYING' SUBROUTINE
This subroutine is called whenever the line in the editing area or the INPUT area is to be printed in the lower part of the screen.

111D ED-COPY CALL 0D4D,TEMPS Use the permanent colours.
 RES 3,(TV-FLAG) Signal that the 'mode is to be
 RES 5,(TV-FLAG) considered unchanged' and the
 'lower screen does not need
 clearing'.
 LD HL,(S-POSNL) Save the current value of
 PUSH HL S-POSNL.
 LD HL,(ERR-SP) Keep the current value of
 PUSH HL ERR-SP.
 LD HL,+1167 This is ED-FULL.
 PUSH HL Push this address on to the
 LD (ERR-SP),SP machine stack to make ED-FULL
 the entry point following an
 error.

57

 LD HL,(ECHO-E) Push the value of ECHO-E
 PUSH HL on to the stack.
 SCF Make HL point to the start
 CALL 1195,SET-HL of the space and DE the end.
 EX DE,HL
 CALL 187D,OUT-LINE2 Now print the line.
 EX DE,HL Exchange the pointers and
 CALL 18E1,OUT-CURS print the cursor.
 LD HL,(S-POSNL) Next fetch the Current value
 EX (SP),HL of S-POSNL and exchange it
 with ECHO-E.
 EX DE,HL Pass ECHO-E to DE.
 CALL 0D4D,TEMPS Again fetch the permanent
 colours.

The remainder of any line that has been started is now completed with spaces printed with the 'permanent' PAPER colour.

1150 ED-BLANK LD A,(S-POSNL-hi) Fetch the current line number
 SUB D and subtract the old line number.
 JR C,117C,ED-C-DONE Jump forward if no 'blanking'
 of lines required.
 JR NZ,115E,ED-SPACES Jump forward if not on the
 same line.
 LD A,E Fetch the old column number
 SUB (S-POSNL-lo) and subtract the new column
 number.
 JR NC,117C,ED-C-DONE Jump if no spaces required.
115E ED-SPACES LD A,+20 A 'space'.
 PUSH DE Save the old values,
 CALL 09F4,PRINT-OUT Print it.
 POP DE Fetch the old values.
 JR 1150,ED-BLANK Back again.

New deal with any errors.

1167 ED-FULL LD D,+00 Give out a 'rasp'.
 LD E,(RASP)
 LD HL,+1A90
 CALL 03B5,BEEPER
 LD (ERR-NR),+FF Cancel the error number.
 LD DE,(S-POSNL) Fetch the current value of
 JR 117E,ED-C-END S-POSNL and jump forward.

The normal exit upon completion of the copying over of the editor the INPUT line.

117C ED-C-DONE POP DE The new position value.
 POP HL The 'error address'.

But come here after an error.

117E ED-C-END POP HL The old value of ERR-SP is
 LD (ERR-SP),HL restored.
 POP BC Fetch the old value of
 S-POSNL.
 PUSH DE Save the new position values.
 CALL 0DD9,CL-SET Set the system variables.
 POP HL The old value of S-POSNL
 LD (ECHO-E),HL goes into ECHO-E.
 LD (X-PTR-hi),+00 X-PTR is cleared in a
 RET suitable manner and the return
 Made.

THE 'SET-HL' AND 'SET-DE' SUBROUTINES
These subroutines return with HL pointing to the first location and DE the 'last' location of either the editing area or the work space.

1190 SET-HL LD HL,(WORKSP) Point to the last location

58

 DEC HL of the editing area.
 AND A Clear the carry flag.
1195 SET-DE LD DE,(E-LINE) Point to the start of the
 BIT 5,(FLAGX) editing area and return if
 RET Z in 'editing mode'.
 LD DE,(WORKSP) Otherwise change DE.
 RET C Return if now intended.
 LD HL,(STKBOT) Fetch STKBOT and then
 RET return.

THE 'REMOVE-FP' SUBROUTINE
This subroutine removes the hidden floating-point forms in a BASIC line.

11A7 REMOVE-FP LD A,(HL) Each character in turn is
 examined.
 CP +0E Is it a number marker?
 LD BC,+0006 It will occupy six locations.
 CALL Z,19E8,RECLAIM-2 Reclaim the F-P number.
 LD A,(HL) Fetch the code again.
 INC HL Update the pointer.
 CP +0D 'Carriage return'?
 JR NZ,11A7,REMOVE-FP Back if not. But make a
 RET simple return if it is.

59

THE EXECUTIVE ROUTINES

THE 'INITIALISATION' ROUTINE
The main entry point to this routine is at START/NEW (11CB). When entered from START (0000), as when power is first applied to the
system, the A register holds zero and the DE register the value +FFFF. However the main entry point can also be reached following
the execution of the NEW command routine.

THE 'NEW COMMAND' ROUTINE

11B7 NEW DI Disable the maskable interrupt.
 LD A,+FF The NEW flag.
 LD DE,(RAMTOP) The existing value of RAMTOP
 is preserved.
 EXX Load the alternate registers
 LD BC,(P-RAMT) with the following system
 LD DE,(RASP/PIP) variables. All of which will
 LD HL,(UDG) also be preserved.
 EXX

The main entry point.

11CB START/NEW LD B,A Save the flag for later.
 LD A,+07 Make the border white in
 OUT (+FE),A colour.
 LD A,+3F Set the I register to hold
 LD I,A the value of +3F.
 DEFB +00,+00,+00 Wait 24 T states.
 DEFB +00,+00,+00

Now the memory is checked.

11DA RAM-CHECK LD H,D Transfer the value in DE
 LD L,E (START = +FFFF, NEW =
 RAMTOP).
11DC RAM-FILL LD (HL),+02 Enter the value of +02 into
 DEC HL every location above +3FFF.
 CP H
 JR NZ,11DC,RAM-FILL
11E2 RAM-READ AND A Prepare for true subtraction.
 SBC HL,DE The carry flag will become
 ADD HL,DE reset when the top is reached.
 INC HL Update the pointer.
 JR NC,11EF,RAM-DONE Jump when at top.
 DEC (HL) +02 goes to +01.
 JR Z,11EF,RAM-DONE But if zero then RAM is faulty.
 Use current HL as top.
 DEC (HL) +01 goes to +00.
 JR Z,11E2,RAM-READ Step to the next test unless it
 fails.
11EF RAM-DONE DEC HL HL points to the last actual
 location in working order.

Next restore the 'preserved' system variables. (Meaningless when coming from START.)
 EXX Switch registers.
 LD (P-RAMT),BC Restore P-RAMT,RASP/PIP
 LD (RASP/PIP),DE &UDG
 LD (UDG),HL
 EXX
 INC B Test the START/NEW flag.
 JR Z,1219,RAM-SET Jump forward if coming from
 the NEW command routine.

60

Overwrite the system variables when coming from START and initialise the user-defined graphics area.

 LD (P-RAMT),HL Top of physical RAM.
 LD DE,+3EAF Last byte of 'U' in character
 set.
 LD BC,+00A8 There are this number of bytes
 in twenty one letters.
 EX DE,HL Switch the pointers.
 LDDR Now copy the character forms
 of the letter 'A' to 'U'.
 EX DE,HL Switch the pointers back.
 INC HL Point to the first byte.
 LD (UDG),HL Now set UDG.
 DEC HL Down one location.
 LD BC,+0040 Set the system variables
 LD (RASP/PIP),BC RASP & PIP.

The remainder of the routine is common to both the START and the NEW operations.
1219 RAM-SET LD (RAMTOP),HL Set RAMTOP.
 LD HL,+3C00 Initialise the system variable
 LD (CHARS),HL CHARS.

Next the machine stack is set up.

 LD HL,(RAMTOP) The top location is made to
 LD (HL),+3E hold +3E.
 DEC HL The next location is left holding
 zero.
 LD SP,HL These two locations represent
 the 'last entry'.
 DEC HL Step down two locations to
 DEC HL find the correct value for
 LD (ERR-SP),HL ERR-SP.

The initialisation routine continues with:

 IM 1 Interrupt mode 1 is used.
 LD IY,+5C3A IY holds +ERR-NR always.
 EI The maskable interrupt can now
 be enabled. The real-time clock
 will be updated and the keyboard
 scanned every 1/50th of a
 second.
 LD HL,+5CB6 The base address of the
 LD (CHANS),HL channel information area.
 LD DE,15AF The initial channel data
 LD BC,+0015 is moved from the table
 EX DE,HL (15AF) to the channel
 LDIR information area.
 EX DE,HL The system variable DATADD
 DEC HL is made to point to the last
 LD (DATADD),HL location of the channel data.
 INC HL And PROG & VARS to the
 LD (PROG),HL the location after that.
 LD (VARS),HL
 LD (HL),+80 The end-marker of the
 variables area.
 INC HL Move on one location to find
 LD (E-LINE),HL the value for E-LINE.
 LF (HL),+0D Make the edit-line be a single
 INC HL 'carriage return' character.
 LD (HL),+80 Now enter an end-marker.
 INC HL Move on one location to find
 LD (WORKSP),HL the value for WORKSP, STKBOT
 LD (STKBOT),HL & STKEND.

61

 LD (STKEND),HL
 LD A,+38 Initialise the colour system
 LD (ATTR-P),A variables to : FLASH 0,
 LD (ATTR-T),A BRIGHT 0, PAPER 7, & INK 0.
 LD (BORDCR),A
 LD HL,+0523 Initialise the system
 LD (REPDEL),HL variables REPDEL & REPPER.
 DEC (KSTATE-0) Make KSTATE-0 hold +FF
 DEC (KSTATE-4) Make KSTATE-4 hold +FF
 LD HL,+15C6 Next move the initial stream
 LD DE,+5C10 data from its table to the
 LD BC,+000E streams area.
 LDIR
 SET 1,(FLAGS) Signal 'printer in use'
 CALL 0EDF,CLEAR-PRB and clear the printer buffer.
 LD (DF-SZ),+02 Set the size of the lower
 CALL 0D6B,CLS part of the display and clear
 the whole display.
 XOR A Now print the message
 LD DE,+1538 '© 1982 Sinclair Research Ltd'
 CALL 0C0A,PO-MSG on the bottom line.
 SET 5,(TV-FLAG) Signal 'the lower part will
 required to be cleared.
 JR 12A9,MAIN-1 Jump forward into the main
 execution loop.

THE 'MAIN EXECUTION' LOOP
The main loop extends from location 12A2 to location 15AE and it controls the 'editing mode', the execution of direct commands and the
production of reports.

12A2 MAIN-EXEC LD (DF-SZ),+02 The lower part of the screen
 is to be two lines in size.
 CALL 1795,AUTO-LIST Produce an automatic listing.
12A9 MAIN-1 CALL 16B0,SET-MIN All the areas from E-LINE
 onwards are given their
 minimum configurations.

12AC MAIN-2 LD A,+00 Channel 'K' is opened before
 CALL 1601,CHAN-OPEN calling the EDITOR.
 CALL 0F2C,EDITOR The EDITOR is called to allow
 the user to build up a BASIC line.
 CALL 1B17,LINE-SCAN The current line is scanned for
 correct syntax.
 BIT 7,(ERR-NR) Jump forward if the syntax is
 JR NZ,12CF,MAIN-3 correct.
 BIT 4,(FLAGS2) Jump forward if other than
 JR Z,1303,MAIN-4 channel 'K' is being used.
 LD HL,(E-LINE) Point to the start of the line
 with the error.
 CALL 11A7,REMOVE-FP Remove the floating-point
 forms from this line.
 LD (ERR-NR),+FF Reset ERR-NR and jump back
 JR 12AC,MAIN-2 to MAIN-2 leaving the listing
 unchanged.

The 'edit-line' has passed syntax and the three types of line that are possible have to be distinguished from each other.

12CF MAIN-3 LD HL,(E-LINE) Point to the start of the line.
 LD (CH-ADD),HL Set CH-ADD to the start also.
 CALL 19FB,E-LINE-NO Fetch any line number into BC.
 LD A,B Is the line number a valid
 OR C one?
 JR NZ,155D,MAIN-ADD Jump if it is so, and add the new
 line to the existing program.

62

 RST 0018 Fetch the first character of
 CP +0D the line and see if the line is
 'carriage return only'.
 JR Z,12A2,MAIN-EXEC If it is then jump back.

The 'edit-line' must start with a direct BASIC command so this line becomes the first line to be interpreted.

 BIT 0,(FLAGS2) Clear the whole display unless
 CALL NZ,0DAF,CL-ALL the flag says it is unnecessary.
 CALL 0D6E,CLS-LOWER Clear the lower part anyway.
 LD A,+19 Set the appropriate value
 SUB (S-POSN-hi) for the scroll counter.
 LD (SCR-CT),A
 SET 7,(FLAGS) Signal 'line execution'.
 LD (ERR-NR),+FF Ensure ERR-NR is correct.
 LD (NSPPC),+01 Deal with the first statement in
 the line.
 CALL 1B8A,PROG-RUN Now the line is interpreted.
 Note: The address 1303 goes on
 to the machine stack and is
 addressed by ERR-SP.

After the line has been interpreted and all the actions consequential to it have been completed a return is made to MAIN-4, so that a
report can be made.

1303 MAIN-4 HALT The maskable interrupt must be
 enabled.
 RES 5,(FLAGS) Signal 'ready for a new key'.
 BIT 1,(FLAGS2) Empty the printer buffer if
 CALL NZ,0ECD,COPY-BUFF it has been used.
 LD A,(ERR-NR) Fetch the error number and
 INC A increment it.
1313 MAIN-G PUSH AF Save the new value.
 LD HL,+0000 The system variables
 LD (FLAGX),H FLAGX, X-PTR-hi &
 LD (X-PTR-hi),H DEFADD are all set to zero.
 LD (DEFADD),HL
 LD HL,+0001 Ensure that stream +00
 LD (STRMS-6),HL points to channel 'K'
 CALL 16B0,SET-MIN Clear all the work areas and the
 calculator stack.
 RES 5,(FLAGX) Signal 'editing mode'.
 CALL 0D6E,CLS-LOWER Clear the lower screen.
 SET 5,(TV-FLAG) Signal 'the lower screen will
 require clearing'.
 POP AF Fetch the report value.
 LD B,A Make a copy in B.
 CP +0A Jump forward with report
 JR C,133C,MAIN-5 numbers '0 to 9'.
 ADD A,+07 Add the ASCII letter
 offset value.
133C MAIN-5 CALL 15EF,OUT-CODE Print the report code and
 LD A,+20 follow it with a 'space'.
 RST 0010,PRINT-A-1
 LD A,B Fetch the report value and
 LD DE,+1391 use it to identify the
 CALL 0C0A,PO-MSG required report message.
 XOR A Print the message and follow
 LD DE,+1536 it by a 'comma' and a 'space'.
 CALL 0C0A,PO-MSG
 LD BC,(PPC) Now fetch the current line
 CALL 1A1B,OUT-NUM1 number and print it as well.
 LD A,+3A Follow it by a ':'
 RST 0010,PRINT-A-1

63

 LD C,(SUBPPC) Fetch the current statement
 LD B,+00 number into the BC register
 CALL 1A1B,OUT-NUM1 pair and print it.
 CALL 1097,CLEAR-SP Clear the editing area.
 LD A,(ERR-NR) Fetch the error number again.
 INC A Increment it as usual.
 JR Z,1386,MAIN-9 If the program was completed
 successfully there cannot be
 any 'CONTinuing' so jump.
 CP +09 If the program halted with
 JR Z,1373,MAIN-6 'STOP statement' or 'BREAK
 CP +15 into program' CONTinuing will
 JR NZ,1376,MAIN-7 be from the next statement;
1373 MAIN-6 INC (SUBPPC) otherwise SUBPPC is unchanged.
1376 MAIN-7 LD BC,+0003 The system variables OLDPPC
 LD DE,+5C70 & OSPCC have now to be made
 to hold the CONTinuing line
 and statement numbers.
 LD HL,+5C44 The values used will be those in
 BIT 7,(NSPPC) PPC & SUBPPC unless NSPPC
 JR Z,1384,MAIN-8 indicates that the 'break'
 ADD HL,BC occurred before a 'jump'.
1384 MAIN-8 LDDR (i.e. after a GO TO statement
 etc.)
1386 MAIN-9 LD (NSPPC),+FF NSPPC is reset to indicate
 'no jump'.
 RES 3,(FLAGS) 'K mode' is selected.
 JP 12AC,MAIN-2 And finally the jump back is
 made but no program listing
 will appear until requested.

THE REPORT MESSAGES
Each message is given with the last character inverted (+80 hex.).

1391 DEFB +80 - initial byte is stepped over.
1392 Report 0 - 'OK'
1394 Report 1 - 'NEXT without FOR'
13A4 Report 2 - 'Variable not found'
13B6 Report 3 - 'Subscript wrong'
13C6 Report 4 - 'Out of memory'
13D2 Report 5 - 'Out of screen'
13DF Report 6 - 'Number too big'
13ED Report 7 - 'RETURN without GOSUB'
1401 Report 8 - 'End of file'
140C Report 9 - 'STOP statement'
141A Report A - 'Invalid argument'
142A Report B - 'Integer out of range'
143E Report C - 'Nonsense in BASIC'
144F Report D - 'BREAK - CONT repeats'
1463 Report E - 'Out of DATA'
146E Report F - 'Invalid file name'
147F Report G - 'No room for line'
148F Report H - 'STOP in INPUT'
149C Report I - 'FOR without NEXT'
14AC Report J - 'Invalid I/O device'
14BE Report K - 'Invalid colour'
14CC Report L - 'BREAK into program'
14DE Report M - 'RAMTOP no good'
14EC Report N - 'Statement lost'
14FA Report O - 'Invalid stream'
1508 Report P - 'FN without DEF'
1516 Report Q - 'Parameter error'
1525 Report R - 'Tape loading error'

64

There are also the following two messages.

1537 ', ' - a 'comma' and a 'space'
1539 '© 1982 Sinclair Research Ltd'

Report G - No room for line

1555 REPORT-G LD A,+10 'G' has the code '10+07+30'
 LD BC,+0000 Clear BC.
 JP 1313,MAIN-G Jump back to give the report.

THE 'MAIN-ADD' SUBROUTINE
This subroutine allows for a new BASIC line to be added to the existing BASIC program in the program area. If a line has both an old
and a new version then the old one is 'reclaimed'. A new line that consists of only a line number does not go into the program area.

155D MAIN-ADD LD (E-PPC),BC Make the new line number the
 'current line'.
 LD HL,(CH-ADD) Fetch CH-ADD and save the
 EX DE,HL address in DE.
 LD HL,+1555 Push the address of REPORT-G
 PUSH HL on to the machine stack.
 ERR-SP will now point to
 REPORT-G.
 LD HL,(WORKSP) Fetch WORKSP.
 SCF Find the length of the line
 SBC, HL,DE from after the line number to
 the 'carriage return' character
 inclusively.
 PUSH HL Save the length.
 LD H,B Move the line number to the
 LD L,C HL register pair.
 CALL 196E,LINE-ADDR Is there an existing line
 with this number?
 JR NZ,157D,MAIN-ADD1 Jump if there was not.
 CALL 19B8,NEXT-ONE Find the length of the 'old'
 CALL 19E8,RECLAIM-2 line and reclaim it.
157D MAIN-ADD1 POP BC Fetch the length of the
 LD A,C 'new' line and jump forward
 DEC A if it is only a 'line number
 OR B and a carriage return'.
 JR 15AB,MAIN-ADD2
 PUSH BC Save the length.
 INC BC Four extra locations will be
 INC BC needed.
 INC BC i.e. two for the number &
 INC BC two for the length.
 DEC HL Make HL point to the location
 before the 'destination'.
 LD DE,(PROG) Save the current value of
 PUSH DE PROG to avoid corruption when
 adding a first line.
 CALL 1655,MAKE-ROOM Space for the new line is created.
 POP HL The old value of PROG is
 LD (PROG),HL fetched and restored.
 POP BC A copy of the line length
 PUSH BC (without parameters) is taken.
 INC DE Make DE point to the end
 location of the new area
 LD HL,(WORKSP) and HL to the 'carriage
 DEC HL return' character of the new
 DEC HL line in the editing area.
 LDDR Now copy over the line.
 LD HL,(E-PPC) Fetch the line's number.

65

 EX DE,HL Destination into HL &
 number into DE.
 POP BC Fetch the new line's length.
 LD (HL),B The high length byte.
 DEC HL
 LD (HL),C The low length byte.
 DEC HL
 LD (HL),E The low line number byte.
 DEC HL
 LD (HL),D The high line number byte.
15AB MAIN-ADD2 POP AF Drop the address of REPORT-G.
 JP 12A2,MAIN-EXEC Jump back and this time do
 produce and automatic listing.

THE 'INITIAL CHANNEL INFORMATION'
Initially there are four channels - 'K', 'S', 'R', & 'P' - for communicating with the 'keyboard', 'screen', 'work space' and 'printer'. For each
channel the output routine address comes before the input routine address and the channel's code.

15AF DEFB F4 09 - PRINT-OUT
 DEFB A8 10 - KEY-INPUT
 DEFB 4B - 'K'
15B4 DEFB F4 09 - PRINT-OUT
 DEFB C4 15 - REPORT-J
 DEFB 53 - 'S'
15B9 DEFB 81 0F - ADD-CHAR
 DEFB C4 15 - REPORT-J
 DEFB 52 - 'R'
15BE DEFB F4 09 - PRINT-OUT
 DEFB C4 15 - REPORT-J
 DEFB 50 - 'P'
15C3 DEFB 80 - End marker.

Report J - Invalid I/O device
15C4 REPORT-J RST 0008,ERROR-1 Call the error handling
 DEFB +12 routine

THE 'INITIAL STREAM DATA'
Initially there are seven streams - +FD to +03.

15C6 DEFB 01 00 - stream +FD leads to channel 'K'
15C8 DEFB 06 00 - stream +FE " " 'S'
15CA DEFB 0B 00 - stream +FF " " 'R'
15CC DEFB 01 00 - stream +00 " " 'K'
15CE DEFB 01 00 - stream +01 " " 'K'
15D0 DEFB 06 00 - stream +02 " " 'S'
15D2 DEFB 10 00 - stream +03 " " 'P'

THE 'WAIT-KEY' SUBROUTINE
This subroutine is the controlling subroutine for calling the current input subroutine.

15D4 WAIT-KEY BIT 5,(TV-FLAG) Jump forward if the flag
 JR NZ,15DE,WAIT-KEY1 indicates the lower screen
 does not require clearing.
 SET 3,(TV-FLAG) Otherwise signal 'consider
 the mode as having changed'.
15DE WAIT-KEY1 CALL 15E6,INPUT-AD Call the input subroutine
 indirectly via INPUT-AD.
 RET C Return with acceptable codes.
 JR Z,15DE,WAIT-KEY1 Both the carry flag and the
 zero flag are reset if 'no key is
 being pressed'; otherwise
 signal an error.

66

Report 8 - End of file
15E4 REPORT-8 RST 0008,ERROR-1 Call the error handling
 DEFB +07 routine.

THE 'INPUT-AD' SUBROUTINE
The registers are saved and HL made to point to the input address.

15E6 INPUT-AD EXX Save the registers.
 PUSH HL
 LD HL,(CURCHL) Fetch the base address for the
 current channel information.
 INC HL Step past the output address.
 INC HL
 JR 15F7,CALL-SUB Jump forward.

THE 'MAIN PRINTING' SUBROUTINE
The subroutine is called with either an absolute value or a proper character code in the A register.

15EF OUT-CODE LD E,+30 Increase the value in the
 ADD A,E A register by +30.
15F2 PRINT-A-2 EXX Again save the registers.
 PUSH HL
 LD HL,(CURCHL) Fetch the base address for the
 current channel. This will point
 to an output address.

Now call the actual subroutine. HL points to the output or the input address as directed.

15F7 CALL-SUB LD E,(HL) Fetch the low byte.
 INC HL
 LD D,(HL) Fetch the high byte.
 EX DE,HL Move the address to the HL
 register pair.
 CALL 162C,CALL-JUMP Call the actual subroutine.
 POP HL Restore the registers.
 EXX
 RET Return will be from here
 unless an error occurred.

THE 'CHAN-OPEN' SUBROUTINE
This subroutine is called with the A register holding a valid stream number - normally +FD to +03. Then depending on the stream data
a particular channel will be made the current channel.

1601 CHAN-OPEN ADD A,A The value in the A register is
 ADD A,+16 doubled and then increased by
 LD L,A +16. The result is moved to L.
 LD H,+5C The address 5C16 is the base
 address for stream +00.
 LD E,(HL) Fetch the first byte of the
 INC HL required stream's data; then
 LD D,(HL) the second byte.
 LD A,D Give an error if both bytes
 OR E are zero; otherwise jump
 JR NZ,1610,CHAN-OP-1 forward.

Report O - Invalid stream
160E REPORT-O RST 0008,ERROR-1 Call the error handling
 DEFB +17 routine.

Using the stream data now find the base address of the channel information associated with that stream.

1610 CHAN-OP-1 DEC DE Reduce the stream data.
 LD HL,(CHANS) The base address of the whole
 channel information area.

67

 ADD HL,DE Form the required address in
 this area.

THE 'CHAN-FLAG' SUBROUTINE
The appropriate flags for the different channels are set by this subroutine.

1615 CHAN-FLAG LD (CURCHL),HL The HL register pair holds the
 base address for a particular
 channel.
 RES 4,(FLAGS2) Signal 'using other than channel
 'K''.
 INC HL Step past the output
 INC HL and the input addresses and
 INC HL make HL point to the
 INC HL channel code.
 LD C,(HL) Fetch the code.
 LD HL,+162D The base address of the 'channel
 code look-up table'.
 CALL 16DC,INDEXER Index into this table and locate
 the required offset; but return if
 RET NC there is not a matching channel
 code.
 LD D,+00 Pass the offset to the
 LD E,(HL) DE register pair.
 ADD HL,DE Jump forward to the appropriate
162C CALL-JUMP JP (HL) flag setting routine.

THE 'CHANNEL CODE LOOK-UP' TABLE

162D DEFB 4B 06 - channel 'K', offset +06, address 1634
162F DEFB 53 12 - channel 'S', offset +12, address 1642
1631 DEFB 50 1B - channel 'P', offset +1B, address 164D
1633 DEFB 00 - end marker.

THE 'CHANNEL 'K' FLAG' SUBROUTINE

1634 CHAN-K SET 0,(TV-FLAG) Signal 'using lower screen'.
 RES 5,(FLAGS) Signal 'ready for a key'.
 SET 4,(FLAGS2) Signal 'using channel 'K''.
 JR 1646,CHAN-S-1 Jump forward.

THE 'CHANNEL 'S' FLAG' SUBROUTINE

1642 CHAN-S RES 0,(TV-FLAG) Signal 'using main screen'.
1646 CHAN-S-1 RES 1,(FLAGS) Signal 'printer not being used'.
 JP 0D4D,TEMPS Exit via TEMPS so as to set the
 colour system variables.

THE 'CHANNEL 'P' FLAG' SUBROUTINE

164D CHAN-P SET 1,(FLAGS) Signal 'printer in use'.
 RET

THE 'MAKE-ROOM' SUBROUTINE
This is a very important subroutine. It is called on many occasions to 'open up' an area. In all cases the HL register pair points to the
location after the place where 'room' is required and the BC register pair holds the length of the 'room' needed. When a single space
only is required then the subroutine is entered at ONE-SPACE.

1652 ONE-SPACE LD BC,+0001 Just the single extra location
 is required.
1655 MAKE-ROOM PUSH HL Save the pointer.
 CALL 1F05,TEST-ROOM Make sure that there is sufficient
 memory available for the task
 being undertaken.
 POP HL Restore the pointer.

68

 CALL 1664,POINTERS Alter all the pointers before
 making the 'room'.
 LD HL,(STKEND) Make HL hold the new STKEND.
 EX DE,HL Switch 'old' and 'new'.
 LDDR Now make the 'room'
 RET and return.

Note: This subroutine returns with the HL register pair pointing to the location before the new 'room' and the DE register pair pointing to
the last of the new locations. The new 'room' therefore has the description: '(HL)+1' to '(DE)' inclusive.
However as the 'new locations' still retain their 'old values' it is also possible to consider the new 'room' as having been made after the
original location '(HL)' and it thereby has the description '(HL)+2' to (DE)+1'.
In fact the programmer appears to have a preference for the 'second description' and this can be confusing.

THE 'POINTERS' SUBROUTINE
Whenever an area has to be 'made' or 'reclaimed' the system variables that address locations beyond the 'position' of the change have
to be amended as required. On entry the BC register pair holds the number of bytes involved and the HL register pair addresses the
location before the 'position'.

1664 POINTERS PUSH AF These registers are saved.
 PUSH HL Copy the address of the
 'position'.
 LD HL,+5C4B This is VARS, the first of the
 LD A,+0E fourteen system pointers.

A loop is now entered to consider each pointer in turn. Only those pointers that point beyond the 'position' are changed.

166B PTR-NEXT LD E,(HL) Fetch the two bytes of the
 INC HL current pointer.
 LD D,(HL)
 EX (SP),HL Exchange the system variable
 with the address of the 'position'.
 AND A The carry flag will become
 SBC HL,DE set if the system variable's
 ADD HL,DE address is to be updated.
 EX (SP),HL Restore the 'position'.
 JR NC,167F,PTR-DONE Jump forward if the pointer is
 to be left; otherwise change it.
 PUSH DE Save the old value.
 EX DE,HL Now add the value in BC
 ADD HL,BC to the old value.
 EX DE,HL
 LD (HL),D Enter the new value into the
 DEC HL system variable - high byte
 LD (HL),E before low byte.
 INC HL Point again to the high byte.
 POP DE Fetch the old value.
167F PTR-DONE INC HL Point to the next system
 DEC A variable and jump back until all
 JR NZ,166B,PTR-NEXT fourteen have been considered.

Now find the size of the block to be moved.

 EX DE,HL Put the old value of STKEND in
 POP DE HL and restore the other
 POP AF registers.
 AND A Now find the difference
 SBC HL,DE between the old value of
 LD B,H STKEND and the 'position'.
 LD C,L Transfer the result to BC
 INC BC and add '1' for the inclusive
 byte.

69

 ADD HL,DE Reform the old value of
 EX DE,HL STKEND and pass it to DE
 RET before returning.

THE 'COLLECT A LINE NUMBER' SUBROUTINE
On entry the HL register pair points to the location under consideration. If the location holds a value that constitutes a suitable high byte
for a line number then the line number is returned in DE. However if this is not so then the location addressed by DE is tried instead;
and should this also be unsuccessful line number zero is returned.

168F LINE-ZERO DEFB +00 Line number zero.
 DEFB +00
1691 LINE-NO-A EX DE,HL Consider the other pointer.
 LD DE,+168F Use line number zero.

The usual entry point is at LINE-NO.

1695 LINE-NO LD A,(HL) Fetch the high byte and
 AND +C0 test it.
 JR NZ,1691,LINE-NO-A Jump back if not suitable.
 LD D,(HL) Fetch the high byte.
 INC HL
 LD E,(HL) Fetch the low byte and
 RET return.

THE 'RESERVE' SUBROUTINE
This subroutine is normally called by using RST 0030,BC-SPACES.
On entry here the last value on the machine stack is WORKSP and the value above it is the number of spaces that is to be 'reserved'.
This subroutine always makes 'room' between the existing work space and the calculator stack.

169E RESERVE LD HL,(STKBOT) Fetch the current value of
 DEC HL STKBOT and decrement it to
 get the last location of the
 work space.
 CALL 1655,MAKE-ROOM Now make 'BC spaces'.
 INC HL Point to the first new space
 INC HL and then the second.
 POP BC Fetch the old value of
 LD (WORKSP),BC WORKSP and restore it.
 POP BC Restore BC - number of spaces.
 EX DE,HL Switch the pointers,
 INC HL Make HL point to the first of
 the displaced bytes.
 RET Now return.

Note: It can also be considered that the subroutine returns with the DE register pair pointing to a 'first extra byte' and the HL register
pair pointing to a 'last extra byte', these extra bytes having been added after the original '(HL)+1' location.

THE 'SET-MIN' SUBROUTINE
This subroutine resets the editing area and the areas after it to their minimum sizes. In effect it 'clears' the areas.

16B0 SET-MIN LD HL,(E-LINE) Fetch E-LINE.
 LD (HL),+0D Make the editing area hold
 LD (K-CUR),HL only the 'carriage return'
 INC HL character and the end marker.
 LD (HL),+80
 INC HL Move on to clear the work
 LD (WORKSP),HL space.

Entering here will 'clear' the work space and the calculator stack.

16BF SET-WORK LD HL,(WORKSP) Fetch the WORKSP.
 LD (STKBOT),HL This clears the work space.

70

Entering here will 'clear' only the calculator stack.

16C5 SET-STK LD HL,(STKBOT) Fetch STKBOT.
 LD (STKEND),HL This clears the stack.

In all cases make MEM address the calculator's memory area.

 PUSH HL Save STKEND.
 LD HL,+5C92 The base of the memory area.
 LD (MEM),HL Set MEM to this address.
 POP HL Restore STKEND to the HL
 RET register pair before returning.

THE 'RECLAIM THE EDIT-LINE' SUBROUTINE'

16D4 REC-EDIT LD DE,(E-LINE) Fetch E-LINE.
 JP 19E5,RECLAIM-1 Reclaim the memory.

THE 'INDEXER' SUBROUTINE
This subroutine is used on several occasions to look through tables. The entry point is at INDEXER.

16DB INDEXER-1 INC HL Move on to consider the next
 pair of entries.
16DC INDEXER LD A,(HL) Fetch the first of a pair of
 AND A entries but return if it is
 RET Z zero - the end marker.
 CP C Compare it to the supplied
 code.
 INC HL Point to the second entry.
 JR NZ,16DB,INDEXER-1 Jump back if the correct entry
 has not been found.
 SCF The carry flag is set upon a
 RET successful search.

THE 'CLOSE #' COMMAND ROUTINE
This command allows the user to CLOSE streams. However for streams +00 to +03 the 'initial' stream data is restored and these
streams cannot therefore be CLOSEd.

16E5 CLOSE CALL 171E,STR-DATA The existing data for the stream
 is fetched.
 CALL 1701,CLOSE-2 Check the code in that
 stream's channel.
 LD BC,+0000 Prepare to make the stream's
 data zero.
 LD DE,+A3E2 Prepare to identify the use of
 EX DE,HL streams +00 to +03.
 ADD HL,DE The carry flag will be set with
 streams +04 to +0F.
 JR C,16FC,CLOSE-1 Jump forward with these
 LD BC,+15D4 streams; otherwise find the
 ADD HL,BC correct entry in the 'initial
 stream data' table.
 LD C,(HL) Fetch the initial data
 INC HL for streams +00 to +03.
 LD B,(HL)
16FC CLOSE-1 EX DE,HL Now enter the data; either
 LD (HL),C zero & zero, or the initial
 INC HL values.
 LD (HL),B
 RET

THE 'CLOSE-2' SUBROUTINE
The code of the channel associated with the stream being closed has to be 'K', 'S', or 'P'.

1701 CLOSE-2 PUSH HL Save the address of the
 stream's data.

71

 LD HL,(CHANS) Fetch the base address of the
 ADD HL,BC channel information area and
 find the channel data for the
 stream being CLOSEd.
 INC HL Step past the subroutine
 INC HL addresses and pick up
 INC HL the code for that channel.
 LD C,(HL)
 EX DE,HL Save the pointer.
 LD HL,+1716 The base address of the 'CLOSE
 stream look-up' table.
 CALL 16DC,INDEXER Index into this table and locate
 the required offset.
 LD C,(HL) Pass the offset to the BC
 LD B,+00 register pair.
 ADD HL,BC Jump forward to the
 JP (HL) appropriate routine.

THE 'CLOSE STREAM LOOK-UP' TABLE

1716 DEFB 4B 05 - channel 'K', offset +05, address 171C
1718 DEFB 53 03 - channel 'S', offset +03, address 171C
171A DEFB 50 01 - channel 'P', offset +01, address 171C

Note: There is no end marker at the end of this table.

THE 'CLOSE STREAM' SUBROUTINE.

171C CLOSE-STR POP HL Fetch the channel information
 RET pointer and return.

THE 'STREAM DATA' SUBROUTINE
This subroutine returns in the BC register pair the stream data for a given stream.

171E STR-DATA CALL 1E94,STK-TO-A The given stream number is
 taken off the calculator stack.
 CP +10 Give an error if the stream
 JR C,1727,STR-DATA1 number is greater than +0F.

Report O - Invalid stream

1725 REPORT-O RST 0008,ERROR-1 Call the error handling
 DEFB +17 routine.

Continue with valid stream numbers.

1727 STR-DATA1 ADD A,+03 Range now +03 to +12;
 RLCA and now +06 to +24.
 LD HL,+5C10 The base address of the
 stream data area.
 LD C,A Move the stream code to the
 LD B,+00 BC register pair.
 ADD HL,BC Index into the data area
 LD C,(HL) and fetch the two data bytes
 INC HL into the BC register pair.
 LD B,(HL)
 DEC HL Make the pointer address the
 RET first of the data bytes before
 returning.

THE 'OPEN #' COMMAND ROUTINE
This command allows the user to OPEN streams. A channel code must be supplied and it must be 'K', 'k', 'S', 's', 'P', or 'p'.
Note that no attempt is made to give streams +00 to +03 their initial data.

1736 OPEN RST 0028,FP-CALC Use the CALCULATOR.
 DEFB +01,exchange Exchange the stream number

72

 DEFB +38,end-calc and the channel code.
 CALL 171E,STR-DATA Fetch the data for the stream.
 LD A,B Jump forward if both bytes of
 OR C the data are zero, i.e. the
 JR Z,1756,OPEN-1 stream was in a closed state.
 EX DE,HL Save DE.
 LD HL,(CHANS) Fetch CHANS - the base
 ADD HL,BC address of the channel
 INC HL information and find the
 INC HL code of the channel
 INC HL associated with the stream
 LD A,(HL) being OPENed.
 EX DE,HL Return DE.
 CP +4B The code fetched from the
 JR Z,1756,OPEN-1 channel information area
 CP +53 must be 'K', 'S' or 'P';
 JR Z,1756,OPEN-1 give an error if it is not.
 CP +50
 JR NZ,1725,REPORT-O
1756 OPEN-1 CALL 175D,OPEN-2 Collect the appropriate data
 in DE.
 LD (HL),E Enter the data into the
 INC HL two bytes in the stream
 LD (HL),D information area.
 RET Finally return.

THE 'OPEN-2' SUBROUTINE
The appropriate stream data bytes for the channel that is associated with the stream being OPENed are found.

175D OPEN-2 PUSH HL Save HL
 CALL 2BF1,STK-FETCH Fetch the parameters of the
 channel code.
 LD A,B Give an error if the
 OR C expression supplied is a null
 JR NZ,1767,OPEN-3 expression; i.e. OPEN #5,"".

Report F - Invalid file name

1765 REPORT-F RST 0008,ERROR-1 Call the error handling
 DEFB +0E routine.

Continue if no error occurred.

1767 OPEN-3 PUSH BC The length of the expression
 is saved.
 LD A,(DE) Fetch the first character.
 AND +DF Convert lower case codes to
 upper case ones.
 LD C,A Move code to the C register.
 LD HL,+177A The base address of the
 'OPEN stream look-up' table.
 CALL 16DC,INDEXER Index into this table and locate
 the required offset.
 JR NC,1765,REPORT-F Jump back if not found.
 LD C,(HL) Pass the offset to the BC
 LD B,+00 register pair.
 ADD HL,BC Make HL point to the start of
 the appropriate subroutine.
 POP BC Fetch the length of the
 JP (HL) expression before jumping to
 the subroutine.

THE 'OPEN STREAM LOOK-UP' TABLE
177A DEFB 4B 06 - channel 'K', offset +06, address 1781

73

177C DEFB 53 08 - channel 'S', offset +08, address 1785
177E DEFB 50 0A - channel 'P', offset +0A, address 1789
1780 DEFB 00 - end marker;

THE 'OPEN-K' SUBROUTINE

1781 OPEN-K LD E,+01 The data bytes will be +01
 JR 178B,OPEN-END & +00.

THE 'OPEN-S' SUBROUTINE

1785 OPEN-S LD E,+06 The data bytes will be +06
 JR 178B,OPEN-END & +00.

THE 'OPEN-P' SUBROUTINE

1789 OPEN-P LD E,+10 The data bytes will be +10
 & +00.
178B OPEN-END DEC BC Decrease the length of the
 LD A,B expression and give an error
 OR C if it was not a single
 JR NZ,1765,REPORT-F character; otherwise clear the
 LD D,A D register, fetch HL and
 POP HL return.
 RET

THE 'CAT, ERASE, FORMAT & MOVE' COMMAND ROUTINES
In the standard SPECTRUM system the use of these commands leads to the production of report O - Invalid stream.

1793 CAT-ETC. JR 1725,REPORT-O Give this report.

THE 'LIST & LLIST' COMMAND ROUTINES
The routines in this part of the 16K program are used to produce listings of the current BASIC program. Each line has to have its line
number evaluated, its tokens expanded and the appropriate cursors positioned.
The entry point AUTO-LIST is used by both the MAIN EXECUTION routine and the EDITOR to produce a single page of the listing.

1795 AUTO-LIST LD (LIST-SP),SP The stack pointer is saved
 allowing the machine stack to
 be reset when the listing is
 finished. (see PO-SCR,0C55)
 LD (TV-FLAG),+10 Signal 'automatic listing in the
 main screen'.
 CALL 0DAF,CL-ALL Clear this part of the screen.
 SET 0,(TV-FLAG) Switch to the editing area.
 LD B,(DF-SZ) Now clear the lower part
 CALL 0E44,CL-LINE of the screen as well.
 RES 0,(TV-FLAG) Then switch back.
 SET 0,(FLAGS2) Signal 'screen is clear'.
 LD HL,(E-PPC) Now fetch the 'current' line
 LD DE,(S-TOP) number and the 'automatic'
 line number.
 AND A If the 'current' number is
 SBC HL,DE less than the 'automatic'
 ADD HL,DE number then jump forward to
 JR C,17E1,AUTO-L-2 update the 'automatic' number.

The 'automatic' number has now to be altered to give a listing with the 'current' line appearing near the bottom of the screen.

 PUSH DE Save the 'automatic' number.
 CALL 196E,LINE-ADDR Find the address of the
 LD DE,+02C0 start of the 'current' line
 EX DE,HL and produce an address roughly

74

 SBC HL,DE a 'screen before it' (negated).
 EX (SP),HL Save the 'result' on the machine
 CALL 196E,LINE-ADDR stack whilst the 'automatic' line
 address is also found (in HL).
 POP BC The 'result' goes to the BC
 register pair.

A loop is now entered. The 'automatic' line number is increased on each pass until it is likely that the 'current' line will show on a listing.

17CE AUTO-L-1 PUSH BC Save the 'result'.
 CALL 19B8,NEXT-ONE Find the address of the start
 of the line after the present
 'automatic' line (in DE).
 POP BC Restore the 'result'.
 ADD HL,BC Perform the computation and
 JR C,17E4,AUTO-L-3 jump forward if finished.
 EX DE,HL Move the next line's address
 LD D,(HL) to the HL register pair and
 INC HL collect its line number.
 LD E,(HL)
 DEC HL
 LD (S-TOP),DE Now S-TOP can be updated and
 JR 17CE,AUTO-L-1 the test repeated with the new
 line.

Now the 'automatic' listing can be made.

17E1 AUTO-L-2 LD (S-TOP),HL When E-PPC is less than S-TOP.
17E4 AUTO-L-3 LD HL,(S-TOP) Fetch the top line's number
 CALL 196E,LINE-ADDR and hence its address.
 JR Z,17ED,AUTO-L-4 If the line cannot be found
 EX DE,HL use DE instead.
17ED AUTO-L-4 CALL 1833,LIST-ALL The listing is produced.
 RES 4,(TV-FLAG) The return will be to here
 RET unless scrolling was needed to
 show the current line.

THE 'LLIST' ENTRY POINT
The printer channel will need to be opened.

17F5 LLIST LD A,+03 Use stream +03.
 JR 17FB,LIST-1 Jump forward.

THE 'LIST' ENTRY POINT
The 'main screen' channel will need to be opened.

17F9 LIST LD A,+02 Use stream +02.
17FB LIST-1 LD (TV-FLAG),+00 Signal 'an ordinary listing in
 the main part of the screen'.
 CALL 2530,SYNTAX-Z Open the channel unless
 CALL NZ,1601,CHAN-OPEN checking syntax.
 RST 0018,GET-CHAR With the present character in
 CALL 2070,STR-ALTER the A register see if the stream
 is to be changed.
 JR C,181F,LIST-4 Jump forward if unchanged.
 RST 0018,GET-CHAR Is the present character
 CP +3B a ';'?
 JR Z,1814,LIST-2 Jump if it is.
 CP +2C Is it a ','?
 JR NZ,181A,LIST-3 Jump if it is not.
1814 LIST-2 RST 0020,NEXT-CHAR A numeric expression must
 CALL 1C82,EXPT-1NUM follow, e.g. LIST #5,20
 JR 1822,LIST-5 Jump forward with it.
181A LIST-3 CALL 1CE6,USE-ZERO Otherwise use zero and
 JR 1822,LIST-5 also jump forward.

75

Come here if the stream was unaltered.

181F LIST-4 CALL 1CDE,FETCH-NUM Fetch any line or use zero if
 none supplied.
1822 LIST-5 CALL 1BEE,CHECK-END If checking the syntax of the
 edit-line move on to the next
 statement.
 CALL 1E99,FIND-INT Line number to BC.
 LD A,B High byte to A.
 AND +3F Limit the high byte to the
 LD H,A correct range and pass the
 LD L,C whole line number to HL.
 LD (E-PPC),HL Set E-PPC and find the address
 CALL 196E,LINE-ADDR of the start of this line or the
 first line after it if the actual
 line does not exist.
1833 LIST-ALL LD E,+01 Flag 'before the current line'.

Now the controlling loop for printing a series of lines is entered.

1835 LIST-ALL-1 CALL 1855,OUT-LINE Print the whole of a BASIC line.
 RST 0010,PRINT-A-1 This will be a 'carriage return'.
 BIT 4,(TV-FLAG) Jump back unless dealing
 JR Z,1835,LIST-ALL-1 with an automatic listing.
 LD A,(DF-SZ) Also jump back if there is
 SUB (S-POSN-hi) still part of the main screen
 JR NZ,1835,LIST-ALL-1 that can be used.
 XOR E A return can be made at this
 RET Z point if the screen is full and the
 current line has been printed
 (E = +00)
 PUSH HL However if the current line is
 PUSH DE missing from the listing
 LD HL,+5C6C then S-TOP has to be updated
 CALL 190F,LN-FETCH and a further line printed
 POP DE (using scrolling).
 POP HL
 JR 1835,LIST-ALL-1

THE 'PRINT A WHOLE BASIC LINE' SUBROUTINE
The HL register pair points to the start of the line - the location holding the high byte of the line number.
Before the line number is printed it is tested to determine whether it comes before the 'current' line, is the 'current' line or comes after.

1855 OUT-LINE LD BC,(E-PPC) Fetch the 'current' line
 CALL 1980,CP-LINES number and compare it.
 LD D,+3E Pre-load the D register with the
 current line cursor.
 JR Z,1865,OUT-LINE1 Jump forward if printing the
 'current' line.
 LD DE,+0000 Load the D register with zero
 (it is not the cursor) and
 RL E set E to hold +01 if the line is
 before the 'current' line and +00
 if after. (The carry flag comes
 from CP-LINES.)
1865 OUT-LINE1 LD (BREG),E Save the line marker.
 LD A,(HL) Fetch the high byte of the
 CP +40 line number and make a full
 POP BC return if the listing has been
 RET NC finished.
 PUSH BC
 CALL 1A28,OUT-NUM-2 The line number can now be
 printed - with leading spaces.

76

 INC HL Move the pointer on to address
 INC HL the first command code in
 INC HL the line.
 RES 0,(FLAGS) Signal 'leading space allowed'
 LD A,D Fetch the cursor code and
 AND A jump forward unless the
 JR Z,1881,OUT-LINE3 cursor is to be printed.
 RST 0010,PRINT-A-1 So print the cursor now.
187D OUT-LINE2 SET 0,(FLAGS) Signal 'no leading space now'.
1881 OUT-LINE3 PUSH DE Save the registers.
 EX DE,HL Move the pointer to DE.
 RES 2,(FLAGS2) Signal 'not in quotes'.
 LD HL,+5C3B This is FLAGS.
 RES 2,(HL) Signal 'print in K-mode'.
 BIT 5,(FLAGX) Jump forward unless in
 JR 1894,OUT-LINE4 INPUT mode.
 SET 2,(HL) Signal 'print in L-mode'.

Now enter a loop to print all the codes in the rest of the BASIC line - jumping over floating-point forms as necessary.

1894 OUT-LINE4 LD HL,(X-PTR) Fetch the syntax error
 AND A pointer and jump forward
 SBC HL,DE unless it is time to print
 JR NZ,18A1,OUT-LINE5 the error marker.
 LD A,+3F Print the error marker now.
 CALL 18C1,OUT-FLASH It is a flashing '?'.
18A1 OUT-LINE5 CALL 18E1,OUT-CURS Consider whether to print the
 cursor.
 EX DE,HL Move the pointer to HL now.
 LD A,(HL) Fetch each character in turn.
 CALL 18B6,NUMBER If the character is a 'number
 marker' then the hidden floating-
 point form is not to be printed.
 INC HL Update the pointer for the next
 pass.
 CP +0D Is the character a 'carriage
 return'.
 JR Z,18B4,OUT-LINE6 Jump if it is.
 EX DE,HL Switch the pointer to DE.
 CALL 1937,OUT-CHAR Print the character.
 JR 1894,OUT-LINE4 Go around the loop for at least
 one further pass.

The line has now been printed.

18B4 OUT-LINE6 POP DE Restore the DE register pair
 RET and return.

THE 'NUMBER' SUBROUTINE
If the A register holds the 'number marker' then the HL register pair is advanced past the floating-point form.

18B6 NUMBER CP +0E Is the character a 'number
 RET NZ marker'. Return if not.
 INC HL Advance the pointer six
 INC HL times so as to step past the
 INC HL 'number marker' and the five
 INC HL locations holding the
 INC HL floating-point form.
 INC HL
 LD A,(HL) Fetch the current code before
 RET returning.

77

THE 'PRINT A FLASHING CHARACTER' SUBROUTINE
The 'error cursor' and the 'mode cursors' are printed using this subroutine.

18C1 OUT-FLASH EXX Save the current register.
 LD HL,(ATTR-T) Save the ATTR-T & MASK-T on
 PUSH HL the machine stack.
 RES 7,H Ensure that FLASH is
 SET 7,L active.
 LD (ATTR-T),HL Use these modified values
 for ATTR-T & MASK-T.
 LD HL,+5C91 This is P-FLAG.
 LD D,(HL) Save P-FLAG also on the
 PUSH DE machine stack.
 LD (HL),+00 Ensure INVERSE 0, OVER 0,
 and not PAPER 9 nor INK 9.
 CALL 09F4,PRINT-OUT The character is printed.
 POP HL The former value of P-FLAG
 LD (P-FLAG),H is restored.
 POP HL The former values of ATTR-T
 LD (ATTR-T),HL & MASK-T are also restored
 EXX before returning.
 RET

THE 'PRINT THE CURSOR' SUBROUTINE
A return is made if it is not the correct place to print the cursor but if it is then either 'C', 'E', 'G', 'K' or 'L' will be printed.

18E1 OUT-CURS LD HL,(K-CUR) Fetch the address of the
 AND A cursor but return if the
 SBC HL,DE correct place is not being
 RET NZ considered.
 LD A,(MODE) The current value of MODE is
 RLC A fetched and doubled.
 JR Z,18F3,OUT-C-1 Jump forward unless dealing with
 Extended mode or Graphics.
 ADD A,+43 Add the appropriate offset to
 give 'E' or 'G'.
 JR 1909,OUT-C-2 Jump forward to print it.
18F3 OUT-C-1 LD HL,+5C3B This is FLAGS.
 RES 3,(HL) Signal 'K-mode'.
 LD A,+4B The character 'K'.
 BIT 2,(HL) Jump forward to print 'K'.
 JR Z,1909,OUT-C-2 If 'the printing is to be in
 K-mode'.
 SET 3,(HL) The 'printing is to be in L-mode'
 so signal 'L-MODE'.
 INC A Form the character 'L'.
 BIT 3,(FLAGS2) Jump forward if not in
 JR Z,1909,OUT-C-2 'C-mode'.
 LD A,+43 The character 'C'.
1909 OUT-C-2 PUSH DE Save the DE register pair
 CALL 18C1,OUT-FLASH whilst the cursor is printed
 POP DE - FLASHing.
 RET Return once it has been done.

Note: It is the action of considering which cursor-letter is to be printed that determines the mode - 'K' vs. 'L/C'.

THE 'LN-FETCH' SUBROUTINE
This subroutine is entered with the HL register pair addressing a system variable - S-TOP or E-PPC.
The subroutine returns with the system variable holding the line number of the following line.

190F LN-FETCH LD E,(HL) The line number held by the
 INC HL system variable is collected.

78

 LD D,(HL)
 PUSH HL The pointer is saved.
 EX DE,HL The line number is moved to the
 INC HL HL register pair and incremented.
 CALL 196E,LINE-ADDR The address of the start of this
 line is found, or the next line
 if the actual line number is not
 being used.
 CALL 1695,LINE-NO The number of that line is
 fetched.
 POP HL The pointer to the system
 variable is restored.

The entry point LN-STORE is used by the EDITOR.

191C LN-STORE BIT 5,(FLAGX) Return if in 'INPUT mode';
 RET NZ otherwise proceed to
 LD (HL),D enter the line number into
 DEC HL the two locations of the
 LD (HL),E system variable.
 RET Return when it has been done.

THE 'PRINTING CHARACTERS IN A BASIC LINE' SUBROUTINE
All of the character/token codes in a BASIC line are printed by repeatedly calling this subroutine.
The entry point OUT-SP-NO is used when printing line numbers which may require leading spaces.

1925 OUT-SP-2 LD A,E The A register will hold +20 for
 a space or +FF for no-space.
 AND A Test the value and return if
 RET M there is not to be a space.
 JR 1937,OUT-CHAR Jump forward to print a space
192A OUT-SP-NO XOR A Clear the A register.

The HL register pair holds the line number and the BC register the value for 'repeated subtraction'. (BC holds '-1000, -100 or -10'.)

192B OUT-SP-1 ADD HL,BC The 'trial subtraction'.
 INC A Count each 'trial'.
 JR C,192B,OUT-SP-1 Jump back until exhausted.
 SBC HL,BC Restore last 'subtraction'
 DEC A and discount it.
 JR Z,1925,OUT-SP-2 If no 'subtractions' were possible
 jump back to see if a space is to
 be printed.
 JP 15EF,OUT-CODE Otherwise print the digit.

The entry point OUT-CHAR is used for all characters, tokens and control characters.

1937 OUT-CHAR CALL 2D1B,NUMERIC Return carry reset if handling a
 digit code.
 JR NC,196C,OUT-CH-3 Jump forward to print the digit.
 CP +21 Also print the control
 JR C,196C,OUT-CH-3 characters and 'space'.
 RES 2,(FLAGS) Signal 'print in K-mode'.
 CP +CB Jump forward if dealing
 JR Z,196C,OUT-CH-3 with the token 'THEN'.
 CP +3A Jump forward unless dealing
 JR NZ,195A,OUT-CH-1 with ':'.
 BIT 5,(FLAGX) Jump forward to print the
 JR NZ,1968,OUT-CH-2 ':' if in 'INPUT mode'.
 BIT 2,(FLAGS2) Jump forward if the ':'
 JR Z,196C,OUT-CH-3 is 'not in quotes', i.e.
 an inter-statement marker.
 JR 1968,OUT-CH-2 The ':' is inside quotes and can
 now be printed.

79

195A OUT-CH-1 CP +22 Accept for printing all
 JR NZ,1968,OUT-CH-2 characters except '"'.
 PUSH AF Save the character code whilst
 changing the 'quote mode'.
 LD A,(FLAGS2) Fetch FLAGS2 and flip
 XOR +04 bit 2.
 LD (FLAGS2),A Enter the amended value and
 POP AF restore the character code.
1968 OUT-CH-2 SET 2,(FLAGS) Signal 'the next character is
 to be printed in L-mode'.
196C OUT-CH-3 RST 0010,PRINT-A-1 The present character is
 RET printed before returning.

Note: It is the consequence of the tests on the present character that determines whether the next character is to be "printed in 'K' or 'L'
mode".
Also note how the program does not cater for ':' in REM statements.

THE 'LINE-ADDR' SUBROUTINE
For a given line number, in the HL register pair, this subroutine returns the starting address of that line or the 'first line after', in the HL
register pair, and the start of the previous line in the DE register pair.
If the line number is being used the zero flag will be set. However if the 'first line after' is substituted then the zero flag is returned reset.

196E LINE-ADDR PUSH HL Save the given line number.
 LD HL,(PROG) Fetch the system variable
 LD D,H PROG and transfer the address
 LD E,L to the DE register pair.

Now enter a loop to test the line number of each line of the program against the given line number until the line number is matched or
exceeded.

1974 LINE-AD-1 POP BC The given line number.
 CALL 1980,CP-LINES Compare the given line number
 against the addressed line
 RET NC number. Return if carry reset;
 PUSH BC otherwise address the next
 CALL 19B8,NEXT-ONE line's number.
 EX DE,HL Switch the pointers and
 JR 1974,LINE-AD-1 jump back to consider the next
 line of the program.

THE 'COMPARE LINE NUMBERS' SUBROUTINE
The given line number in the BC register pair is matched against the addressed line number.

1980 CP-LINES LD A,(HL) Fetch the high byte of the
 CP B addressed line number and
 RET NZ compare it. Return if they do
 not match.
 INC HL Next compare the low bytes.
 LD A,(HL) Return with the carry flag
 DEC HL set if the addressed line
 CP C number has yet to reach the
 RET given line number.

THE 'FIND EACH STATEMENT' SUBROUTINE
This subroutine has two distinct functions.

I. It can be used to find the 'D'th. statement in a BASIC line - returning with the HL register pair addressing the location before the
start of the statement and the zero flag set.

II. Also the subroutine can be used to find a statement, if any, that starts with a given token code (in the E register).

80

1988 INC HL Not used.
 INC HL
 INC HL
198B EACH-STMT LD (CH-ADD),HL Set CH-ADD to the current byte.
 LD C,+00 Set a 'quotes off' flag.

Enter a loop to handle each statement in the BASIC line.

1990 EACH-S-1 DEC D Decrease 'D' and return if
 RET Z the required statement has
 been found.
 RST 0020,NEXT-CHAR Fetch the next character code
 CP E and jump if it does not match
 JR NZ,199A,EACH-S-3 the given token code.
 AND A But should it match then
 RET return with the carry and the
 zero flags both reset.

Now enter another loop to consider the individual characters in the line to find where the statement ends.

1998 EACH-S-2 INC HL Update the pointer and fetch
 LD A,(HL) the new code.
199A EACH-S-3 CALL 18B6,NUMBER Step over any number.
 LD (CH-ADD),HL Update CH-ADD.
 CP +22 Jump forward if the character
 JR NZ,19A5,EACH-S-4 is not a '"'.
 DEC C Otherwise set the 'quotes flag'.
19A5 EACH-S-4 CP +3A Jump forward if the character
 JR Z,19AD,EACH-S-5 is a ':'.
 CP +CB Jump forward unless the code
 JR NZ,19B1,EACH-S-6 is the token 'THEN'.
19AD EACH-S-5 BIT 0,C Read the 'quotes flag' and
 JR Z,1990,EACH-S-1 jump back at the end of each
 statement (including after
 'THEN').
19B1 EACH-S-6 CP +0D Jump back unless at the end
 JR NZ,1998,EACH-S-2 of a BASIC line.
 DEC D Decrease the statement
 SCF counter and set the carry
 RET flag before returning.

THE 'NEXT-ONE' SUBROUTINE
This subroutine can be used to find the 'next line' in the program area or the 'next variable' in the variables area. The subroutine caters
for the six different types of variable that are used in the SPECTRUM system.

19B8 NEXT-ONE PUSH HL Save the address of the
 current line or variable.
 LD A,(HL) Fetch the first byte.
 CP +40 Jump forward if searching
 JR C,19D5,NEXT-O-3 for a 'next line'.
 BIT 5,A Jump forward if searching for
 JR Z,19D6,NEXT-O-4 the next string or array variable.
 ADD A,A Jump forward with simple
 JP M,19C7,NEXT-O-1 numeric and FOR-NEXT
 variables.
 CCF Long name numeric variables
 only.
19C7 NEXT-O-1 LD BC,+0005 A numeric variable will
 JR NC,19CE,NEXT-O-2 occupy five locations but a
 LD C,+12 FOR-NEXT control variable
 will need eighteen locations.
19CE NEXT-O-2 RLA The carry flag becomes reset
 for long named variables only;
 until the final character of the

81

 long name is reached.
 INC HL Increment the pointer and
 LD A,(HL) fetch the new code.
 JR NC,19CE,NEXT-O-2 Jump back unless the previous
 code was the last code of the
 variable's name.
 JR 19DB,NEXT-O-5 Now jump forward (BC =
 +0005 or +0012).
19D5 NEXT-O-3 INC HL Step past the low byte of the
 line number.
19D6 NEXT-O-4 INC HL Now point to the low byte
 of the length.
 LD C,(HL) Fetch the length into the
 INC HL BC register pair.
 LD B,(HL)
 INC HL Allow for the inclusive byte.

In all cases the address of the 'next' line or variable is found.

19DB NEXT-O-5 ADD HL,BC Point to the first byte of the
 'next' line or variable.
 POP DE Fetch the address of the
 previous one and continue into
 the 'difference' subroutine.

THE 'DIFFERENCE' SUBROUTINE
The 'length' between two 'starts' is formed in the BC register pair. The pointers are reformed but returned exchanged.

19DD DIFFER AND A Prepare for a true subtraction.
 SBC HL,DE Find the length from one
 LD B,H 'start' to the next and pass
 LD C,L it to the BC register pair.
 ADD HL,DE Reform the address and
 EX DE,HL exchange them before
 RET returning.

THE 'RECLAIMING' SUBROUTINE
The entry point RECLAIM-1 is used when the address of the first location to be reclaimed is in the DE register pair and the address of
the first location to be left alone is in the HL register pair. The entry point RECLAIM-2 is used when the HL register pair points to the
first location to be reclaimed and the BC register pair holds the number of the bytes that are to be reclaimed.

19E5 RECLAIM-1 CALL 19DD,DIFFER Use the 'difference' subroutine
 to develop the appropriate
 values.
19E8 RECLAIM-2 PUSH BC Save the number of bytes to be
 reclaimed.
 LD A,B All the system variable
 CPL pointers above the area
 LD B,A have to be reduced by 'BC'
 LD A,C so this number is 2's
 CPL complemented before the
 LD C,A pointers are altered.
 INC BC
 CALL 1664,POINTERS
 EX DE,HL Return the 'first location'
 POP HL address to the DE register
 ADD HL,DE pair and reform the address of
 the first location to the left.
 PUSH DE Save the 'first location'
 LDIR whilst the actual reclamation
 POP HL occurs.
 RET Now return.

82

THE 'E-LINE-NO' SUBROUTINE
This subroutine is used to read the line number of the line in the editing area. If there is no line number, i.e. a direct BASIC line, then
the line number is considered to be zero.
In all cases the line number is returned in the BC register pair.

19FB E-LINE-NO LD HL,(E-LINE) Pick up the pointer to the
 edit-line.
 DEC HL Set the CH-ADD to point to the
 LD (CH-ADD),HL location before any number.
 RST 0020,NEXT-CHAR Pass the first code to the A
 register.
 LD HL,+5C92 However before considering
 LD (STKEND),HL the code make the calculator's
 memory area a temporary
 calculator stack area.
 CALL 2D3B,INT-TO-FP Now read the digits of the line
 number. Return zero if no
 number exists.
 CALL 2DA2,FP-TO-BC Compress the line number into
 the BC register pair.
 JR C,1A15,E-L-1 Jump forward if the number
 exceeds '65,536'.
 LD HL,+D8F0 Otherwise test it against
 ADD HL,BC '10,000'.
1A15 E-L-1 JP C,1C8A,REPORT-C Give report C if over '9,999'.
 JP 16C5,SET-STK Return via SET-STK that
 restores the calculator stack to
 its rightful place.

THE 'REPORT AND LINE NUMBER PRINTING' SUBROUTINE
The entry point OUT-NUM-1 will lead to the number in the BC register pair being printed. Any value over '9,999' will not however be
printed correctly.
The entry point OUT-NUM-2 will lead to the number indirectly addressed by the HL register pair being printed. This time any necessary
leading spaces will appear. Again the limit of correctly printed numbers is '9,999'.

1A1B OUT-NUM-1 PUSH DE Save the other registers
 PUSH HL throughout the subroutine.
 XOR A Clear the A register.
 BIT 7,B Jump forward to print a zero
 rather than '-2' when
 JR NZ,1A42,OUT-NUM-4 reporting on the edit-line.
 LD H,B Move the number to the
 LD L,C HL register pair.
 LD E,+FF Flag 'no leading spaces'.
 JR 1A30,OUT-NUM-3 Jump forward to print the
 number.
1A28 OUT-NUM-2 PUSH DE Save the DE register pair.
 LD D,(HL) Fetch the number into the
 INC HL DE register pair and save
 LD E,(HL) the pointer (updated).
 PUSH HL
 EX DE,HL Move the number to the HL
 LD E,+20 register pair and flag 'leading
 space are to be printed'.

Now the integer form of the number in the HL register pair is printed.

1A30 OUT-NUM-3 LD BC,+FC18 This is '-1,000'.
 CALL 192A,OUT-SP-NO Print a first digit.
 LD BC,+FF9C This is '-100'.
 CALL 192A,OUT-SP-NO Print the second digit.
 LD C,+F6 This is '-10'.
 CALL 192A,OUT-SP-NO Print the third digit.

83

 LD A,L Move any remaining part of
 the number to the A register.
1A42 OUT-NUM-4 CALL 15EF,OUT-CODE Print the digit.
 POP HL Restore the registers
 POP DE before returning.
 RET

84

BASIC LINE AND COMMAND INTERPRETATION

THE SYNTAX TABLES

i. The offset table
There is an offset value for each of the fifty BASIC commands.

 command address command address
1A48 DEFB +B1 DEF FN 1AF9 1A61 DEFB +94 BORDER 1AF5
1A49 DEFB +CB CAT 1B14 1A62 DEFB +56 CONTINUE 1AB8
1A4A DEFB +BC FORMAT 1B06 1A63 DEFB +3F DIM 1AA2
1A4B DEFB +BF MOVE 1B0A 1A64 DEFB +41 REM 1AA5
1A4C DEFB +C4 ERASE 1B10 1A65 DEFB +2B FOR 1A90
1A4D DEFB +AF OPEN # 1AFC 1A66 DEFB +17 GO TO 1A7D
1A4E DEFB +B4 CLOSE # 1B02 1A67 DEFB +1F GO SUB 1A86
1A4F DEFB +93 MERGE 1AE2 1A68 DEFB +37 INPUT 1A9F
1A50 DEFB +91 VERIFY 1AE1 1A69 DEFB +77 LOAD 1AE0
1A51 DEFB +92 BEEP 1AE3 1A6A DEFB +44 LIST 1AAE
1A52 DEFB +95 CIRCLE 1AE7 1A6B DEFB +0F LET 1A7A
1A53 DEFB +98 INK 1AEB 1A6C DEFB +59 PAUSE 1AC5
1A54 DEFB +98 PAPER 1AEC 1A6D DEFB +2B NEXT 1A98
1A55 DEFB +98 FLASH 1AED 1A6E DEFB +43 POKE 1AB1
1A56 DEFB +98 BRIGHT 1AEE 1A6F DEFB +2D PRINT 1A9C
1A57 DEFB +98 INVERSE 1AEF 1A70 DEFB +51 PLOT 1AC1
1A58 DEFB +98 OVER 1AF0 1A71 DEFB +3A RUN 1AAB
1A59 DEFB +98 OUT 1AF1 1A72 DEFB +6D SAVE 1ADF
1A5A DEFB +7F LPRINT 1AD9 1A73 DEFB +42 RANDOMIZE 1AB5
1A5B DEFB +81 LLIST 1ADC 1A74 DEFB +0D IF 1A81
1A5C DEFB +2E STOP 1A8A 1A75 DEFB +49 CLS 1ABE
1A5D DEFB +6C READ 1AC9 1A76 DEFB +5C DRAW 1AD2
1A5E DEFB +6E DATA 1ACC 1A77 DEFB +44 CLEAR 1ABB
1A5F DEFB +70 RESTORE 1ACF 1A78 DEFB +15 RETURN 1A8D
1A60 DEFB +48 NEW 1AA8 1A79 DEFB +5D COPY 1AD6

ii. The parameter table
For each of the fifty BASIC commands there are up to eight entries in the parameter table. These entries comprise command class
details, required separators and, where appropriate, command routine addresses.

1A7A P-LET DEFB +01 CLASS-01
 DEFB +3D '='
 DEFB +02 CLASS-02
1A7D P-GO-TO DEFB +06 CLASS-06
 DEFB +00 CLASS-00
 DEFB +67,+1E GO-TO,1E67
1A81 P-IF DEFB +06 CLASS-06
 DEFB +CB 'THEN'
 DEFB +05 CLASS-05
 DEFB +F0,+1C IF,1CF0
1A86 P-GO-SUB DEFB +06 CLASS-06
 DEFB +00 CLASS-00
 DEFB +ED,+1E GO-SUB,1EED
1A8A P-STOP DEFB +00 CLASS-00
 DEFB +EE,+1C STOP,1CEE
1A8D P-RETURN DEFB +00 CLASS-00
 DEFB +23,+1F RETURN,1F23
1A90 P-FOR DEFB +04 CLASS-04
 DEFB +3D '='
 DEFB +06 CLASS-06
 DEFB +CC 'TO'
 DEFB +06 CLASS-06
 DEFB +05 CLASS-05
 DEFB +03,+1D FOR,1D03

85

1A98 P-NEXT DEFB +04 CLASS-04
 DEFB +00 CLASS-00
 DEFB +AB,+1D NEXT,1DAB
1A9C P-PRINT DEFB +05 CLASS-05
 DEFB +CD,+1F PRINT,1FCD
1A9F P-INPUT DEFB +05 CLASS-05
 DEFB +89,+20 INPUT,2089
1AA2 P-DIM DEFB +05 CLASS-05
 DEFB +02,+2C DIM,2C02
1AA5 P-REM DEFB +05 CLASS-05
 DEFB +B2,+1B REM,1BB2
1AA8 P-NEW DEFB +00 CLASS-00
 DEFB +B7,+11 NEW,11B7
1AAB P-RUN DEFB +03 CLASS-03
 DEFB +A1,+1E RUN,1EA1
1AAE P-LIST DEFB +05 CLASS-05
 DEFB +F9,+17 LIST,17F9
1AB1 P-POKE DEFB +08 CLASS-08
 DEFB +00 CLASS-00
 DEFB +80,+1E POKE,1E80
1AB5 P-RANDOM DEFB +03 CLASS-03
 DEFB +4F,+1E RANDOMIZE,1E4F
1AB8 P-CONT DEFB +00 CLASS-00
 DEFB +5F,+1E CONTINUE,1E5F
1ABB P-CLEAR DEFB +03 CLASS-03
 DEFB +AC,+1E CLEAR,1EAC
1ABE P-CLS DEFB +00 CLASS-00
 DEFB +6B,+0D CLS,0D6B
1AC1 P-PLOT DEFB +09 CLASS-09
 DEFB +00 CLASS-00
 DEFB +DC,+22 PLOT,22DC
1AC5 P-PAUSE DEFB +06 CLASS-06
 DEFB +00 CLASS-00
 DEFB +3A,+1F PAUSE,1F3A
1AC9 P-READ DEFB +05 CLASS-05
 DEFB +ED,+1D READ,1DED
1ACC P-DATA DEFB +05 CLASS-05
 DEFB +27,+1E DATA,1E27
1ACF P-RESTORE DEFB +03 CLASS-03
 DEFB +42,+1E RESTORE,1E42
1AD2 P-DRAW DEFB +09 CLASS-09
 DEFB +05 CLASS-05
 DEFB +82,+23 DRAW,2382
1AD6 P-COPY DEFB +00 CLASS-00
 DEFB +AC+0E COPY,0EAC
1AD9 P-LPRINT DEFB +05 CLASS-05
 DEFB +C9,+1F LPRINT,1FC9
1ADC P-LLIST DEFB +05 CLASS-05
 DEFB +F5,+17 LLIST,17F5
1ADF P-SAVE DEFB +0B CLASS-0B
1AE0 P-LOAD DEFB +0B CLASS-0B
1AE1 P-VERIFY DEFB +0B CLASS-0B
1AE2 P-MERGE DEFB +0B CLASS-0B
1AE3 P-BEEP DEFB +08 CLASS-08
 DEFB +00 CLASS-00
 DEFB +F8,+03 BEEP,03F8
1AE7 P-CIRCLE DEFB +09 CLASS-09
 DEFB +05 CLASS-05
 DEFB +20,+23 CIRCLE,2320
1AEB P-INK DEFB +07 CLASS-07
1AEC P-PAPER DEFB +07 CLASS-07
1AED P-FLASH DEFB +07 CLASS-07
1AEE P-BRIGHT DEFB +07 CLASS-07

86

1AEF P-INVERSE DEFB +07 CLASS-07
1AF0 P-OVER DEFB +07 CLASS-07
1AF1 P-OUT DEFB +08 CLASS-08
 DEFB +00 CLASS-00
 DEFB +7A,+1E OUT,1E7A
1AF5 P-BORDER DEFB +06 CLASS-06
 DEFB +00 CLASS-00
 DEFB +94,+22 BORDER,2294
1AF9 P-DEF-FN DEFB +05 CLASS-05
 DEFB +60,+1F DEF-FN,1F60
1AFC P-OPEN DEFB +06 CLASS-06
 DEFB +2C ','
 DEFB +0A CLASS-0A
 DEFB +00 CLASS-00
 DEFB +36,+17 OPEN,1736
1B02 P-CLOSE DEFB +06 CLASS-06
 DEFB +00 CLASS-00
 DEFB +E5,+16 CLOSE,16E5
1B06 P-FORMAT DEFB +0A CLASS-0A
 DEFB +00 CLASS-00
 DEFB +93,+17 CAT-ETC,1793
1B0A P-MOVE DEFB +0A CLASS-0A
 DEFB +2C ','
 DEFB +0A CLASS-0A
 DEFB +00 CLASS-00
 DEFB +93,+17 CAT-ETC,1793
1B10 P-ERASE DEFB +0A CLASS-0A
 DEFB +00 CLASS-00
 DEFB +93,+17 CAT-ETC,1793
1B14 P-CAT DEFB +00 CLASS-00
 DEFB +93,+17 CAT-ETC,1793

Note: The requirements for the different command classes are as follows:

CLASS-00 - No further operands.
CLASS-01 - Used in LET. A variable is required.
CLASS-02 - Used in LET. An expression, numeric or string, must follow.
CLASS-03 - A numeric expression may follow. Zero to be used in case of default.
CLASS-04 - A single character variable must follow.
CLASS-05 - A set of items may be given.
CLASS-06 - A numeric expression must follow.
CLASS-07 - Handles colour items.
CLASS-08 - Two numeric expressions, separated by a comma, must follow.
CLASS-09 - As for CLASS-08 but colour items may precede the expressions.
CLASS-0A - A string expression must follow.
CLASS-0B - Handles cassette routines.

THE 'MAIN PARSER' OF THE BASIC INTERPRETER
The parsing routine of the BASIC interpreter is entered at LINE-SCAN when syntax is being checked, and at LINE-RUN when a BASIC
program of one or more statements is to be executed.

Each statement is considered in turn and the system variable CH-ADD is used to point to each code of the statement as it occurs in the
program area or the editing area.

1B17 LINE-SCAN RES 7,(FLAGS) Signal 'syntax checking'.
 CALL 19FB,E-LINE-NO CH-ADD is made to point to the
 first code after any line number.
 XOR A The system variable SUBPPC
 LD (SUBPPC),A is initialised to +00 and
 DEC A ERR-NR to +FF.
 LD (ERR-NR),A
 JR 1B29,STMT-L-1 Jump forward to consider the
 first statement of the line.

87

THE STATEMENT LOOP.
Each statement is considered in turn until the end of the line is reached.

1B28 STMT-LOOP RST 0020,NEXT-CHAR Advance CH-ADD along the line.
1B29 STMT-L-1 CALL 16BF,SET-WORK The work space is cleared.
 INC (SUBPPC) Increase SUBPPC on each
 passage around the loop.
 JP M,1C8A,REPORT-C But only '127' statements are
 allowed in a single line.
 RST 0018,GET-CHAR Fetch a character.
 LD B,+00 Clear the register for later.
 CP +0D Is the character a 'carriage
 JR Z,1BB3,LINE-END return'; jump if it is.
 CP +3A Go around the loop again if
 JR Z,1B28,STMT-LOOP it is a ':'.

A statement has been identified so, first, its initial command is considered.

 LD HL,+1B76 Pre-load the machine stack
 PUSH HL with the return address
 - STMT-RET.
 LD C,A Save the command temporarily
 RST 0020,NEXT-CHAR in the C register whilst
 LD A,C CH-ADD is advanced again.
 SUB +CE Reduce the command's code by
 +CE; giving the range +00 to
 +31 for the fifty commands.
 JP C,1C8A,REPORT-C Give the appropriate error if
 not a command code.
 LD C,A Move the command code to the
 BC register pair (B holds +00).
 LD HL,+1A48 The base address of the syntax
 offset table.
 ADD HL,BC The required offset is passed to
 LD C,(HL) the C register and used to
 ADD HL,BC compute the base address for
 the command's entries in the
 parameter table.
 JR 1B55,GET-PARAM Jump forward into the scanning
 loop with this address.

Each of the command class routines applicable to the present command are executed in turn. Any required separators are also
considered.

1B52 SCAN-LOOP LD HL,(T-ADDR) The temporary pointer to the
 entries in the parameter table.
1B55 GET-PARAM LD A,(HL) Fetch each entry in turn.
 INC HL Update the pointer to the
 LD (T-ADDR),HL entries for the next pass.
 LD BC,+1B52 Pre-load the machine stack
 PUSH BC with the return address -
 SCAN-LOOP.
 LD C,A Copy the entry to the C register
 for later.
 CP +20 Jump forward if the entry is
 JR NC,1B6F,SEPARATOR a 'separator'.
 LD HL,+1C01 The base address of the
 'command class' table.
 LD B,+00 Clear the B register and
 ADD HL,BC index into the table.
 LD C,(HL) Fetch the offset and compute
 ADD HL,BC the starting address of the
 required command class routine
 PUSH HL Push the address on to the
 machine stack.

88

 RST 0018,GET-CHAR Before making an indirect
 DEC B jump to the command class
 RET routine pass the command code
 to the A register and set the B
 register to +FF.

THE 'SEPARATOR' SUBROUTINE
The report - 'Nonsense in BASIC is given if the required separator is not present. But note that when syntax is being checked the actual
report does not appear on the screen - only the 'error marker'.

1B6F SEPARATOR RST 0018,GET-CHAR The current character is
 CP C fetched and compared to the
 entry in the parameter table.
 JP NZ,1C8A,REPORT-C Give the error report if there
 is not a match.
 RST 0020,NEXT-CHAR Step past a correct character
 RET and return.

THE 'STMT-RET' SUBROUTINE
After the correct interpretation of a statement a return is made to this entry point.

1B76 STMT-RET CALL 1F54,BREAK-KEY The BREAK key is tested after
 every statement.
 JR C,1B7D,STMT-R-1 Jump forward unless it has
 been pressed.

Report L - 'BREAK into program'

1B7B REPORT-L RST 0008,ERROR-1 Call the error handling
 DEFB +14 routine.

Continue here as the BREAK key was not pressed.

1B7D STMT-R-1 BIT 7,(NSPPC) Jump forward if there is not
 JR NZ,1BF4,STMT-NEXT a 'jump' to be made.
 LD HL,(NEWPPC) Fetch the 'new line' number
 BIT 7,H and jump forward unless dealing
 JR Z,1B9E,LINE-NEW with a further statement in the
 editing area.

THE 'LINE-RUN' ENTRY POINT
This entry point is used wherever a line in the editing area is to be 'run'. In such a case the syntax/run flag (bit 7 of FLAGS) will be set.

The entry point is also used in the syntax checking of a line in the editing area that has more than one statement (bit 7 of FLAGS will be
reset).

1B8A LINE-RUN LD HL,+FFFE A line in the editing area
 LD (PPC),HL is considered as line '-2'.
 LD HL,(WORKSP) Make HL point to the end
 DEC HL marker of the editing area
 LD DE,(E-LINE) and DE to the location before
 DEC DE the start of that area.
 LD A,(NSPPC) Fetch the number of the next
 statement to be handled
 JR 1BD1,NEXT-LINE before jumping forward.

THE 'LINE-NEW' SUBROUTINE
There has been a jump in the program and the starting address of the new line has to be found.

1B9E LINE-NEW CALL 196E,LINE-ADDR The starting address of the line,
 or the 'first line after' is found.
 LD A,(NSPPC) Collect the statement number.
 JR Z,1BBF,LINE-USE Jump forward if the required
 AND A line was found; otherwise

89

 JR NZ,1BEC,REPORT-N check the validity of the state-
 ment number - must be zero.
 LD B,A Also check that the 'first
 LD A,(HL) line after' is not after the
 AND +C0 actual 'end of program'.
 LD A,B
 JR Z,1BBF,LINE-USE Jump forward with valid
 addresses; otherwise signal the
 error 'OK'.
Report 0 - 'OK'

1BB0 REPORT-0 RST 0008,ERROR-1 Use the error handling
 DEFB +FF routine.

Note: Obviously not an error in the normal sense — but rather a jump past the program.

THE 'REM' COMMAND ROUTINE
The return address to STMT-RET is dropped which has the effect of forcing the rest of the line to be ignored.

1BB2 REM POP BC Drop the address - STMT-RET.

THE 'LINE-END' ROUTINE
If checking syntax a simple return is made but when 'running' the address held by NXTLIN has to be checked before it can be used.

1BB3 LINE-END CALL 2530,SYNTAX-Z Return if syntax is being
 RET Z checked; otherwise fetch
 LD HL,(NXTLIN) the address in NXTLIN.
 LD A,+C0 Return also if the address is
 AND (HL) after the end of the program
 RET NZ - the 'run' is finished.
 XOR A Signal 'statement zero' before
 proceeding.

THE 'LINE-USE' ROUTINE
This short routine has three functions; i. Change statement zero to statement '1'; ii. Find the number of the new line and enter it into
PPC; & iii. Form the address of the start of the line after.

1BBF LINE-USE CP +01 Statement zero becomes
 ADC A,+00 statement '1'
 LD D,(HL) The line number of the line
 INC HL to be used is collected and
 LD E,(HL) passed to PPC.
 LD (PPC),DE
 INC HL Now find the 'length'
 LD E,(HL) of the line.
 INC HL
 LD D,(HL)
 EX DE,HL Switch over the values.
 ADD HL,DE Form the address of the start
 INC HL of the line after in HL and the
 location before the 'next' line's
 first character in DE.

THE 'NEXT-LINE' ROUTINE
On entry the HL register pair points to the location after the end of the 'next' line to be handled and the DE register pair to the location
before the first character of the line. This applies to lines in the program area and also to a line in the editing area - where the next line
will be the same line again whilst there are still statements to be interpreted.

1BD1 NEXT-LINE LD (NXTLIN),HL Set NXTLIN for use once the
 current line has been completed.
 EX DE,HL As usual CH-ADD points to the

90

 LD (CH-ADD),HL location before the first
 character to be considered.
 LD D,A The statement number is
 fetched.
 LD E,+00 The E register is cleared in case
 EACH-STMT is used.
 LD (NSPPC),+FF Signal 'no jump'.
 DEC D The statement number minus
 LD (SUBPPC),D one goes into SUBPPC.
 JP Z,1B28,STMT-LOOP A first statement can now be
 considered.
 INC D However for later statements
 CALL 198B,EACH-STMT the 'starting address' has to be
 found.
 JR Z,1BF4,STMT-NEXT Jump forward unless the state-
 ment does not exist.

Report N - 'Statement lost'

1BEC REPORT-N RST 0008,ERROR-1 Call the error handling
 DEFB +16 routine.

THE 'CHECK-END' SUBROUTINE
This is an important routine and is called from many places in the monitor program when the syntax of the edit-line is being checked.
The purpose of the routine is to give an error report if the end of a statement has not been reached and to move on to the next
statement if the syntax is correct.

1BEE CHECK-END CALL 2530,SYNTAX-Z Do not proceed unless
 RET NZ checking syntax.
 POP BC Drop the addresses of
 POP BC SCAN-LOOP & STMT-RET
 before continuing into
 STMT-NEXT.

THE 'STMT-NEXT' ROUTINE
If the present character is a 'carriage return' then the 'next statement' is on the 'next line'; if ' : ' it is on the same line; but if any other
character is found then there is an error in syntax.

1BF4 STMT-NEXT RST 0018,GET-CHAR Fetch the present character.
 CP +0D Consider the 'next line' if
 JR Z,1BB3,LINE-END it is a 'carriage return'.
 CP +3A Consider the 'next statement'
 JP Z,1B28,STMT-LOOP if it is a ' : '.
 JP 1C8A,REPORT-C Otherwise there has been a
 syntax error.

THE 'COMMAND CLASS' TABLE

address offset class number address offset class number
1C01 0F CLASS-00-1C10 1C07 7B CLASS-06,1C82
1C02 1D CLASS-01,1C1F 1C08 8E CLASS-07,1C96
1C03 4B CLASS-02,1C4E 1C09 71 CLASS-08,1C7A
1C04 09 CLASS-03,1C0D 1C0A B4 CLASS-09,1CBE
1C05 67 CLASS-04,1C6C 1C0B 81 CLASS-0A,1C8C
1C06 0B CLASS-05,1C11 1C0C CF CLASS-0B,1CDB

THE 'COMMAND CLASSES - 00, 03 & 05'
The commands of class-03 may, or may not, be followed by a number. e.g. RUN & RUN 200.

1C0D CLASS-03 CALL 1CDE,FETCH-NUM A number is fetched but zero
 is used in cases of default.

91

The commands of class-00 must not have any operands. e.g. COPY & CONTINUE.

1C10 CLASS-00 CP A Set the zero flag for later.

The commands of class-05 may be followed by a set of items. e.g. PRINT & PRINT "222".

1C11 CLASS-05 POP BC In all cases drop the address
 - SCAN-LOOP.
 CALL Z,1BEE,CHECK-END If handling commands of classes
 00 & 03 AND syntax is being
 checked move on now to
 consider the next statement.
 EX DE,HL Save the line pointer in the DE
 register pair.

THE 'JUMP-C-R' ROUTINE
After the command class entries and the separator entries in the parameter table have been considered the jump to the appropriate
command routine is made.

1C16 JUMP-C-R LD HL,(T-ADDR) Fetch the pointer to the
 LD C,(HL) entries in the parameter table
 INC HL and fetch the address of the
 LD B,(HL) required command routine.
 EX DE,HL Exchange the pointers back
 PUSH BC and make an indirect jump
 RET to the command routine.

THE 'COMMAND CLASSES - 01, 02 & 04'
These three command classes are used by the variable handling commands - LET, FOR & NEXT and indirectly by READ & INPUT.
 Command class 01 is concerned with the identification of the variable in a LET, READ or INPUT statement.

1C1F CLASS-01 CALL 28B2,LOOK-VARS Look in the variables area to
 determine whether or not
 the variable has been used already.

THE 'VARIABLE IN ASSIGNMENT' SUBROUTINE
This subroutine develops the appropriate values for the system variables DEST & STRLEN.

1C22 VAR-A-1 LD (FLAGX),+00 Initialise FLAGX to +00.
 JR NC,1C30,VAR-A-2 Jump forward if the variable
 has been used before.
 SET 1,(FLAGX) Signal 'a new variable'.
 JR NZ,1C46,VAR-A-3 Give an error if trying to use
 an 'undimensioned array'.

Report 2 - Variable not found

1C2E REPORT-2 RST 0008,ERROR-1 Call the error handling
 DEFB +01 routine.

Continue with the handling of existing variables.

1C30 VAR-A-2 CALL Z,2996,STK-VARS The parameters of simple string
 variables and all array variables
 are passed to the calculator
 stack. (STK-VARS will 'slice' a
 string if required.)
 BIT 6,(FLAGS) Jump forward if handling a
 JR NZ,1C46,VAR-A-3 numeric variable.
 XOR A Clear the A register.
 CALL 2530,SYNTAX-Z The parameters of the string of
 CALL NZ,2BF1,STK-FETCH string array variable are fetched
 unless syntax is being checked.
 LD HL,+5C71 This is FLAGX.

92

 OR (HL) Bit 0 is set only when handling
 LD (HL),A complete simple strings' thereby
 signalling 'old copy to be
 deleted'.
 EX DE,HL HL now points to the string or
 the element of the array.

The pathways now come together to set STRLEN & DEST as required. For all numeric variables and 'new' string & string array
variables STRLEN-lo holds the 'letter' of the variable's name. But for 'old' string & string array variables whether 'sliced' or complete it
holds the 'length' in 'assignment'.

1C46 VAR-A-3 LD (STRLEN),BC Set STRLEN as required.

DEST holds the address for the 'destination of an 'old' variable but in effect the 'source' for a 'new' variable.

 LD (DEST),HL Set DEST as required and
 RET return.

Command class 02 is concerned with the actual calculation of the value to be assigned in a LET statement.

1C4E CLASS-02 POP BC The address - SCAN-LOOP is
 dropped.
 CALL 1C56,VAL-FET-1 The assignment is made.
 CALL 1BEE,CHECK-END Move on to the next statement
 either via CHECK-END if
 RET checking syntax, or STMT-RET
 if in 'run-time'.

THE 'FETCH A VALUE' SUBROUTINE
This subroutine is used by LET, READ & INPUT statements to first evaluate and then assign values to the previously designated
variable.
 The entry point VAL-FET-1 is used by LET & READ and considers FLAGS whereas the entry point VAL-FET-2 is used by
INPUT and considers FLAGX.

1C56 VAL-FET-1 LD A,(FLAGS) Use FLAGS.
1C59 VAL-FET-2 PUSH AF Save FLAGS or FLAGX.
 CALL 24FB,SCANNING Evaluate the next expression.
 POP AF Fetch the old FLAGS or FLAGX.
 LD D,(FLAGS) Fetch the new FLAGS.
 XOR D The nature - numeric or string
 AND +40 of the variable and the
 expression must match.
 JR NZ,1C8A,REPORT-C Give report C if they do not.
 BIT 7,D Jump forward to make the
 JP NZ,2AFF,LET actual assignment unless
 checking syntax when simply
 RET return.

THE 'COMMAND CLASS 04' ROUTINE
The command class 04 entry point is used by FOR & NEXT statements.

1C6C CLASS-04 CALL 28B2,LOOK-VARS Look in the variables area for
 the variable being used.
 PUSH AF Save the AF register pair whilst
 LD A,C the discriminator byte is tested
 OR +9F to ensure that the variable
 INC A is a FOR-NEXT control
 JR NZ,1C8A,REPORT-C variable.
 POP AF Restore the flags register and
 JR 1C22,VAR-A-1 jump back to make the variable
 that has been found the
 'variable in assignment'.

93

THE 'EXPECT NUMERIC/STRING EXPRESSIONS' SUBROUTINE
There is a series of short subroutines that are used to fetch the result of evaluating the next expression. The result from a single
expression is returned as a 'last value' on the calculator stack.
 The entry point NEXT-2NUM is used when CH-ADD needs updating to point to the start of the first expression.

1C79 NEXT-2NUM RST 0020,NEXT-CHAR Advance CH-ADD.

The entry point EXPT-2NUM (EQU. CLASS-08) allows for two numeric expressions, separated by a comma, to be evaluated.

1C7A EXPT-2NUM CALL 1C82,EXPT-1NUM Evaluate each expression in
 (CLASS-08) turn - so evaluate the first.
 CP +2C Give an error report if the
 JR NZ,1C8A separator is not a comma.
 RST 0020,NEXT-CHAR Advance CH-ADD.

The entry point EXPT-1NUM (EQU. CLASS-06) allows for a single numeric expression to be evaluated.

1C82 EXPT-1NUM CALL 24FB,SCANNING Evaluate the next expression.
 (CLASS-06)
 BIT 6,(FLAGS) Return as long as the result was
 RET NZ numeric; otherwise it is an error.

Report C - Nonsense in BASIC

1C8A REPORT-C RST 0008,ERROR-1 Call the error handling
 DEFB +0B routine.

The entry point EXPT-EXP (EQU. CLASS-0A) allows for a single string expression to be evaluated.

1C8C EXPT-EXP CALL 24FB,SCANNING Evaluate the next expression.
 (CLASS-0A)
 BIT 6,(FLAGS) This time return if the result
 RET Z indicates a string; otherwise
 JR 1C8A,REPORT-C give an error report.

THE 'SET PERMANENT COLOURS' SUBROUTINE (EQU. CLASS-07)
This subroutine allows for the current temporary colours to be made permanent. As command class 07 it is in effect the command
routine for the six colour item commands.

1C96 PERMS BIT 7,(FLAGS) The syntax/run flag is read.
 (CLASS-07)
 RES 0,(TV-FLAG) Signal 'main screen'.
 CALL NZ,0D4D,TEMPS Only during a 'run' call TEMPS
 to ensure the temporary colours
 are the main screen colours.
 POP AF Drop the return address -
 SCAN-LOOP.
 LD A,(T-ADDR) Fetch the low byte of T-ADDR
 and subtract +13 to give the
 SUB +13 range +D9 to +DE which are the
 token codes for INK to OVER.
 CALL 21FC,CO-TEMP-4 Jump forward to change the
 temporary colours as directed
 by the BASIC statement.
 CALL 1BEE,CHECK-END Move on to the next statement
 if checking syntax.
 LD HL,(ATTR-T) Now the temporary colour
 LD (ATTR-P),HL values are made permanent
 (both ATTR-P & MASK-P).
 LD HL,+5C91 This is P-FLAG; and that too
 LD A,(HL) has to be considered.

94

The following instructions cleverly copy the even bits of the supplied byte to the odd bits. In effect making the permanent bits the same
as the temporary ones.

 RLCA Move the mask leftwards.
 XOR (HL) Impress onto the mask
 AND +AA only the even bits of the
 XOR (HL) other byte.
 LD (HL),A Restore the result.
 RET

THE 'COMMAND CLASS 09' ROUTINE
This routine is used by PLOT, DRAW & CIRCLE statements in order to specify the default conditions of 'FLASH 8; BRIGHT 8; PAPER
8;' that are set up before any embedded colour items are considered.

1CBE CLASS-09 CALL 2530,SYNTAX-Z Jump forward if
 JR Z,1CD6,CL-09-1 checking syntax.
 RES 0,(TV-FLAG) Signal 'main screen'.
 CALL 0D4D,TEMPS Set the temporary colours for
 the main screen.
 LD HL,+5C90 This is MASK-T.
 LD A,(HL) Fetch its present value but
 OR +F8 keep only its INK part
 'unmasked'.
 LD (HL),A Restore the value which now
 indicates 'FLASH 8; BRIGHT 8;
 PAPER 8;'.
 RES 6,(P-FLAG) Also ensure NOT 'PAPER 9'.
 RST 0018,GET-CHAR Fetch the present character
 before continuing to deal with
 embedded colour items.
1CD6 CL-09-1 CALL 21E2,CO-TEMP Deal with the locally dominant
 colour items.
 JR 1C7A,EXPT-2NUM Now get the first two operands
 for PLOT, DRAW or CIRCLE.

THE 'COMMAND CLASS 0B' ROUTINE
This routine is used by SAVE, LOAD, VERIFY & MERGE statements.

1CDB CLASS-0B JP 0605,SAVE-ETC Jump to the cassette
 handling routine.

THE 'FETCH A NUMBER' SUBROUTINE
This subroutine leads to a following numeric expression being evaluated but zero being used instead if there is no expression.

1CDE FETCH-NUM CP +0D Jump forward if at the end
 JR Z,1CE6,USE-ZERO of a line.
 CP +3A But jump to EXPT-1NUM unless
 JR NZ,1C82,EXPT-1NUM at the end of a statement.

The calculator is now used to add the value zero to the calculator stack.

1CE6 USE-ZERO CALL 2530,SYNTAX-Z Do not perform the operation
 RET Z if syntax is being checked.
 RST 0028,FP-CALC Use the calculator.
 DEFB +A0,stk-zero The 'last value' is now zero.
 DEFB +38,end-calc
 RET Return with zero added to the
 stack.

THE COMMAND ROUTINES
The section of the 16K monitor program from 1CEE to 23FA contains most of the command routines of the BASIC interpreter.

95

THE 'STOP' COMMAND ROUTINE
The command routine for STOP contains only a call to the error handling routine.

1CEE STOP RST 0008,ERROR-1 Call the error handling
 (REPORT-9) DEFB +08 routine.

THE 'IF' COMMAND ROUTINE
On entry the value of the expression between the IF and the THEN is the 'last value' on the calculator stack. If this is logically true then
the next statement is considered; otherwise the line is considered to have been finished.

1CF0 IF POP BC Drop the return address
 - STMT-RET.
 CALL 2530,SYNTAX-Z Jump forward if checking
 JR Z,1D00,IF-1 syntax.

Now use the calculator to 'delete' the last value on the calculator stack but leave the DE register pair addressing the first byte of the
value.

 RST 0028,FP-CALC Use the calculator.
 DEFB +02,delete The present 'last value' is
 DEFB +38,end-calc deleted.
 EX DE,HL Make HL point to the first
 CALL 34E9,TEST-ZERO byte and call TEST-ZERO.
 JP C,1BB3,LINE-END If the value was 'FALSE' jump
 to the next line.
1D00 IF-1 JP 1B29,STMT-L-1 But if 'TRUE' jump to the next
 statement (after the THEN).

THE 'FOR' COMMAND ROUTINE
This command routine is entered with the VALUE and the LIMIT of the FOR statement already on the top of the calculator stack.

1D03 FOR CP +CD Jump forward unless a 'STEP'
 JR NZ,1D10,F-USE-1 is given.
 RST 0020,NEXT-CHAR Advance CH-ADD and fetch the
 CALL 1C82,EXPT-1NUM value of the STEP.
 CALL 1BEE,CHECK-END Move on to the next statement
 JR 1D16,F-REORDER if checking syntax; otherwise
 jump forward.

There has not been a STEP supplied so the value '1' is to be used.

1D10 F-USE-1 CALL 1BEE,CHECK-END Move on to the next statement
 if checking syntax; otherwise
 RST 0028,FP-CALC use the calculator to place a '1'
 DEFB +A1,stk-one on the calculator stack.
 DEFB +38,end-calc

The three values on the calculator stack are the VALUE (v), the LIMIT (l) and the STEP (s). These values now have to be manipulated.

1D16 F-REORDER RST 0028,FP-CALC v, l, s
 DEFB +C0,st-mem-0 v, l, s (mem-0 = s)
 DEFB +02,delete v, l
 DEFB +01,exchange l, v
 DEFB +E0,get-mem-0 l, v, s
 DEFB +01,exchange l, s, v
 DEFB +38,end-calc

A FOR control variable is now established and treated as a temporary calculator memory area.

 CALL 2AFF,LET The variable is found, or created
 if needed (v is used).
 LD (MEM),HL Make it a 'memory area'.

The variable that has been found may be a simple numeric variable using only six locations in which case it will need extending.

96

 DEC HL Fetch the variable's single
 LD A,(HL) character name.
 SET 7,(HL) Ensure bit 7 of the name is set.
 LD BC,+0006 It will have six locations at least.
 ADD HL,BC Make HL point after them.
 RLCA Rotate the name and jump if
 JR C,1D34,F-L&S it was already a FOR variable.
 LD C,+0D Otherwise create thirteen
 CALL 1655,MAKE-ROOM more locations.
 INC HL Again make HL point to the
 LIMIT position.

The initial values for the LIMIT and the STEP are now added.

1D34 F-L&S PUSH HL The pointer is saved.
 RST 0028,FP-CALC l, s
 DEFB +02,delete l
 DEFB +02,delete -
 DEFB +38,end-calc DE still points to 'l'.
 POP HL The pointer is restored and
 EX DE,HL both pointers exchanged.
 LD C,+0A The ten bytes of the LIMIT
 LDIR and the STEP are moved.

The looping line number and statement number are now entered.

 LD HL,(PPC) The current line number.
 EX DE,HL Exchange the registers before
 LD (HL),E adding the line number to the
 INC HL FOR control variable.
 LD (HL),D
 LD D,(SUBPPC) The looping statement is
 INC D always the next statement -
 INC HL whether it exists or not.
 LD (HL),D

The NEXT-LOOP subroutine is called to test the possibility of a 'pass' and a return is made if one is possible; otherwise the statement
after for FOR - NEXT loop has to be identified.

 CALL 1DDA,NEXT-LOOP Is a 'pass' possible?
 RET NC Return now if it is.
 LD B,(STRLEN-lo) Fetch the variable's name.
 LD HL,(PPC) Copy the present line number
 LD (NEWPPC),HL to NEWPPC.
 LD A,(SUBPPC) Fetch the current statement
 NEG number and two's complement it.
 LD D,A Transfer the result to the D
 register.
 LD HL,(CH-ADD) Fetch the current value of
 CH-ADD.
 LD E,+F3 The search will be for 'NEXT'.

Now a search is made in the program area, from the present point onwards, for the first occurrence of NEXT followed by the correct
variable.

1D64 F-LOOP PUSH BC Save the variable's name.
 LD BC,(NXTLIN) Fetch the current value of
 NXTLIN.
 CALL 1D86,LOOK-PROG The program area is now
 searched and BC will change
 with each new line examined.
 LD (NXTLIN),BC Upon return save the pointer.
 POP BC Restore the variable's name.
 JR C,1D84,REPORT-I If there are no further NEXTs
 then give an error.

97

 RST 0020,NEXT-CHAR Advance past the NEXT that
 was found.
 OR +20 Allow for upper and lower
 CP B case letters before the new
 variable name is tested.
 JR Z,1D7C,F-FOUND Jump forward if it matches.
 RST 0020,NEXT-CHAR Advance CH-ADD again and
 JR 1D64,F-LOOP jump back if not the correct
 variable.

NEWPPC holds the line number of the line in which the correct NEXT was found. Now the statement number has to be found and
stored in NSPPC.

1D7C F-FOUND RST 0020,NEXT-CHAR Advance CH-ADD.
 LD A,+01 The statement counter in the
 SUB D D register counted statements
 back from zero so it has to
 be subtracted from '1'.
 LD (NSPPC),A The result is stored.
 RET Now return - to STMT-RET.

REPORT I - FOR without NEXT

1D84 REPORT-I RST 0008,ERROR-1 Call the error handling
 DEFB +11 routine.

THE 'LOOK-PROG' SUBROUTINE
This subroutine is used to find occurrences of either DATA, DEF FN or NEXT. On entry the appropriate token code is in the E register
and the HL register pair points to the start of the search area.

1D86 LOOK-PROG LD A,(HL) Fetch the present character.
 CP +3A Jump forward if it is a ' : '
 JR Z,1DA3,LOOK-P-2 which will indicate there are
 more statements in the present
 line.

Now a loop is entered to examine each further line in the program.

1D8B LOOK-P-1 INC HL Fetch the high byte of the
 LD A,(HL) line number and return with
 AND +CO carry set if there are no
 SCF further lines in the program.
 RET NZ
 LD B,(HL) The line number is fetched
 INC HL and passed to NEWPPC.
 LD C,(HL)
 LD (NEWPPC),BC
 INC HL Then the length is collected.
 LD C,(HL)
 INC HL
 LD B,(HL)
 PUSH HL The pointer is saved whilst
 ADD HL,BC the address of the end of the
 LD B,H line is formed in the BC
 LD C,L register pair.
 POP HL The pointer is restored.
 LD D,+00 Set the statement counter to
 zero.
1DA3 LOOK-P-2 PUSH BC The end-of-line pointer is
 CALL 198B,EACH-STMT saved whilst the statements
 POP BC of the line are examined.
 RET NC Make a return if there was
 JR 1D8B,LOOK-P-1 an 'occurrence'; otherwise
 consider the next line.

98

THE 'NEXT' COMMAND ROUTINE
The 'variable in assignment' has already been determined (see CLASS-04,1C6C); and it remains to change the VALUE as required.

1DAB NEXT BIT 1,(FLAGX) Jump to give the error report
 JP NZ,1C2E,REPORT-2 if the variable was not found.
 LD HL,(DEST) The address of the variable
 BIT 7,(HL) is fetched and the name
 JR Z,1DD8,REPORT-1 tested further.

Next the variable's VALUE and STEP are manipulated by the calculator.

 INC HL Step past the name.
 LD (MEM),HL Make the variable a
 temporary 'memory area'.
 RST 0028,FP-CALC -
 DEFB +E0,get-mem-0 v
 DEFB +E2,get-mem-2 v, s
 DEFB +0F,addition v+s
 DEFB +C0,st-mem-0 v+s
 DEFB +02,delete -
 DEFB +38,end-calc -

The result of adding the VALUE and the STEP is now tested against the LIMIT by calling NEXT-LOOP.

 CALL 1DDA,NEXT-LOOP Test the new VALUE against
 the LIMIT
 RET C Return now if the FOR-NEXT
 loop has been completed.

Otherwise collect the 'looping' line number and statement.

 LD HL,(MEM) Find the address of the
 LD DE,+000F low byte of the looping
 ADD HL,DE line number.
 LD E,(HL) Now fetch this line number.
 INC HL
 LD D,(HL)
 INC HL
 LD H,(HL) Followed by the statement
 number.
 EX DE,HL Exchange the numbers before
 JP 1E73,GO-TO-2 jumping forward to treat them
 as the destination line of a
 GO TO command.

Report 1 - NEXT without FOR

1DD8 REPORT-1 RST 0008,ERROR-1 Call the error handling
 DEFB +00 routine.

THE 'NEXT-LOOP SUBROUTINE
This subroutine is used to determine whether the LIMIT has been exceeded by the present VALUE. Note has to be taken of the sign of
the STEP.
 The subroutine returns the carry flag set if the LIMIT is exceeded.

1DDA NEXT-LOOP RST 0028,FP-CALC -
 DEFB +E1,get-mem-1 l
 DEFB +E0,get-mem-0 l, v
 DEFB +E2,get-mem-2 l, v, s
 DEFB +36,less-0 l, v,(1/0)
 DEFB +00,jump-true l, v,(1/0)
 DEFB +02,to NEXT-1 l, v,(1/0)
 DEFB +01,exchange v, l
1DE2 NEXT-1 DEFB +03,subtract v-l or l-v
 DEFB +37,greater-0 (1/0)
 DEFB +00,jump-true (1/0)

99

 DEFB +04,to NEXT-2 -
 DEFB +38,end-calc -
 AND A Clear the carry flag and
 RET return - loop is possible.

However if the loop is impossible the carry flag has to be set.

1DE9 NEXT-2 DEFB +38,end-calc -
 SCF Set the carry flag and
 RET return.

THE 'READ' COMMAND ROUTINE
The READ command allows for the reading of a DATA list and has an effect similar to a series of LET statements.
 Each assignment within a single READ statement is dealt with in turn. The system variable X-PTR is used as a storage
location for the pointer to the READ statement whilst CH-ADD is used to step along the DATA list.

1DEC READ-3 RST 0020,NEXT-CHAR Come here on each pass, after
 the first, to move along the
 READ statement.
1DED READ CALL 1C1F,CLASS-01 Consider whether the variable
 has been used before; find
 the existing entry if it has.
 CALL 2530,SYNTAX-Z Jump forward if checking
 JR Z,1E1E,READ-2 syntax.
 RST 0018,GET-CHAR Save the current pointer
 LD (X-PTR),HL CH-ADD in X-PTR.
 LD HL,(DATADD) Fetch the current DATA list
 LD A,(HL) pointer and jump forward
 CP +2C unless a new DATA statement
 JR Z,1E0A,READ-1 has to be found.
 LD E,+E4 The search is for 'DATA'.
 CALL 1D86,LOOK-PROG Jump forward if the search is
 JR NC,1E0A,READ-1 successful.

Report E - Out of DATA

1E08 REPORT-E RST 0008,ERROR-1 Call the error handling
 DEFB +0D routine.

Continue - picking up a value from the DATA list.

1E0A READ-1 CALL 0077,TEMP-PTR1 Advance the pointer along the
 DATA list and set CH-ADD.
 CALL 1C56,VAL-FET-1 Fetch the value and assign it
 to the variable.
 RST 0018,GET-CHAR Fetch the current value of
 LD (DATADD),HL CH-ADD and store it in
 DATADD.
 LD HL,(X-PTR) Fetch the pointer to the
 LD (X-PTR-hi),+00 READ statement and clear
 X-PTR.
 CALL 0078,TEMP-PTR2 Make CH-ADD once again point
 to the READ statement.
1E1E READ-2 RST 0018,GET-CHAR GET the present character and
 CP +2C see if it is a ','.
 JR Z,1DEC,READ-3 If it is then jump back as
 there are further items;
 CALL 1BEE,CHECK-END otherwise return either via
 RET CHECK-END (if checking
 syntax) or the RET instruction
 (to STMT-RET).

100

THE 'DATA' COMMAND ROUTINE
During syntax checking a DATA statement is checked to ensure that it contains a series of valid expressions, separated by commas.
But in 'run-time' the statement is passed by.
1E27 DATA CALL 2530,SYNTAX-Z Jump forward unless checking
 JR NZ,1E37,DATA-2 syntax.
A loop is now entered to deal with each expression in the DATA statement.
1E2C DATA-1 CALL 24FB,SCANNING Scan the next expression.
 CP +2C Check for the correct
 separator - a ',';
 CALL NZ,1BEE,CHECK-END but move on to the next
 statement if not matched.
 RST 0020,NEXT-CHAR Whilst there are still
 JR 1E2C,DATA-1 expressions to be checked go
 around the loop.
The DATA statement has to be passed-by in 'run-time'.
1E37 DATA-2 LD A,+E4 It is a 'DATA' statement that
 is to be passed-by.

THE 'PASS-BY' SUBROUTINE
On entry the A register will hold either the token 'DATA' or the token 'DEF FN' depending on the type of statement that is being 'passed-
by'.
1E39 PASS-BY LD B,A Make the BC register pair hold
 a very high number.
 CPDR Look back along the statement
 for the token.
 LD DE,+0200 Now look along the line
 JP 198B,EACH-STMT for the statement after. (The
 'D-1'th statement from the
 current position.

THE 'RESTORE' COMMAND ROUTINE
The operand for a RESTORE command is taken as a line number, zero being used if no operand is given.
The REST-RUN entry point is used by the RUN command routine.
1E42 RESTORE CALL 1E99,FIND-INT2 Compress the operand into the
 BC register pair.
1E45 REST-RUN LD H,B Transfer the result to the
 LD L,C HL register pair.
 CALL 196E,LINE-ADDR Now find the address of that
 line or the 'first line after'.
 DEC HL Make DATADD point to the
 LD (DATADD),HL location before.
 RET Return once it is done.

THE 'RANDOMIZE' COMMAND ROUTINE
Once again the operand is compressed into the BC register pair and transferred to the required system variable. However if the
operand is zero the value in FRAMES1 and FRAMES2 is used instead.
1E4F RANDOMIZE CALL 1E99,FIND-INT2 Fetch the operand.
 LD A,B Jump forward unless the
 OR C value of the operand is
 JR NZ,1E5A,RAND-1 zero.
 LD BC,(FRAMES1) Fetch the two low order bytes
 of FRAMES instead.
1E5A RAND-1 LD (SEED),BC Now enter the result into the
 RET system variable SEED before
 returning.

101

THE 'CONTINUE' COMMAND ROUTINE
The required line number and statement number within that line are made the object of a jump.
1E5F CONTINUE LD HL,(OLDPPC) The line number.
 LD D,(OSPPC) The statement number.
 JR 1E73,GO-TO-2 Jump forward.

THE 'GO TO' COMMAND ROUTINE
The operand of a GO TO ought to be a line number in the range '1' to '9999' but the actual test is against an upper value of '61439'.
1E67 GO-TO CALL 1E99,FIND-INT2 Fetch the operand and transfer
 LD H,B it to the HL register pair.
 LD L,C
 LD D,+00 Set the statement number to
 zero.
 LD A,H Give the error message
 CP +F0 - Integer out of range -
 JR NC,1E9F,REPORT-B with lines over '614139'
The entry point GO-TO-2 is used to determine the line number of the next line to be handled in several instances.
1E73 GO-TO-2 LD (NEWPPC),HL Enter the line number and
 LD (NSPPC),D then the statement number.
 RET Return; - to STMT-RET.

THE 'OUT' COMMAND ROUTINE
The two parameters for the OUT instruction are fetched from the calculator stack and used as directed.
1E7A OUT CALL 1E85,TWO-PARAM The operands are fetched.
 OUT (C),A The actual OUT instruction.
 RET Return; - to STMT-RET.

THE 'POKE' COMMAND ROUTINE
In a similar manner the POKE operation is performed.
1E80 POKE CALL 1E85,TWO-PARAM The operands are fetched.
 LD (BC),A The actual POKE operation.
 RET Return; - to STMT-RET.

THE 'TWO-PARAM' SUBROUTINE
The topmost parameter on the calculator stack must be compressible into a single register. It is two's complemented if it is negative.
The second parameter must be compressible into a register pair.
1E85 TWO-PARAM CALL 2DD5,FP-TO-A The parameter is fetched.
 JR C,1E9F,REPORT-B Give an error if it is too high
 a number.
 JR Z,1E8E,TWO-P-1 Jump forward with positive
 NEG numbers but two's complement
 negative numbers.
1E8E TWO-P-1 PUSH AF Save the first parameter
 CALL 1E99,FIND-INT2 whilst the second is fetched.
 POP AF The first parameter is
 RET restored before returning.

THE 'FIND INTEGERS' SUBROUTINE
The 'last value' on the calculator stack is fetched and compressed into a single register or a register pair by entering at FIND-INT1 AND
FIND-INT2 respectively.
1E94 FIND-INT1 CALL 2DD5,FP-TO-A Fetch the 'last value'.
 JR 1E9C,FIND-I-1 Jump forward.
1E99 FIND-INT2 CALL 2DA2,FP-TO-BC Fetch the 'last value'.
1E9C FIND-I-1 JR C,1E9F,REPORT-B In both cases overflow is

102

 indicated by a set carry flag.
 RET Z Return with all positive
 numbers that are in range.
Report B - Integer out of range
1E9F REPORT-B RST 0008,ERROR-1 Call the error handling
 DEFB +0A routine.

THE 'RUN' COMMAND ROUTINE
The parameter of the RUN command is passed to NEWPPC by calling the GO TO command routine. The operations of 'RESTORE 0'
and 'CLEAR 0' are then performed before a return is made.
1EA1 RUN CALL 1E67,GO-TO Set NEWPPC as required.
 LD BC,+0000 Now perform a 'RESTORE 0'.
 CALL 1E45,REST-RUN
 JR 1EAF,CLEAR-1 Exit via the CLEAR command routine.

THE 'CLEAR' COMMAND ROUTINE
This routine allows for the variables area to be cleared, the display area cleared and RAMTOP moved. In consequence of the last
operation the machine stack is rebuilt thereby having the effect of also clearing the GO SUB stack.
1EAC CLEAR CALL 1E99,FIND-INT2 Fetch the operand - using
 zero by default.
1EAF CLEAR-RUN LD A,B Jump forward if the operand is
 OR C other than zero. When called
 JR NZ,1EB7,CLEAR-1 from RUN there is no jump.
 LD BC,(RAMTOP) If zero use the existing value in
 RAMTOP.
1EB7 CLEAR-1 PUSH BC Save the value.
 LD DE,(VARS) Next reclaim all the bytes
 LD HL,(E-LINE) of the present variables
 DEC HL area.
 CALL 19E5,RECLAIM-1
 CALL 0D6B,CLS Clear the display area.

The value in the BC register pair which will be used as RAMTOP is tested to ensure it is neither too low nor too high.

 LD HL,(STKEND) The current value of STKEND.
 LD DE,+0032 is increased by '50' before
 ADD HL,DE being tested. This forms the
 POP DE lower limit.
 SBC HL,DE
 JR NC,1EDA,REPORT-M RAMTOP will be too low.
 LD HL,(P-RAMT) For the upper test the value
 AND A for RAMTOP is tested against
 SBC HL,DE P-RAMT.
 JR NC,1EDC,CLEAR-2 Jump forward if acceptable.

Report M - RAMTOP no good

1EDA REPORT-M RST 0008,ERROR-1 Call the error handling
 DEFB +15 routine.

Continue with the CLEAR operation.
1EDC CLEAR-2 EX DE,HL Now the value can actually be
 LD (RAMTOP),HL passed to RAMTOP.
 POP DE Fetch the address - STMT-RET.
 POP BC Fetch the 'error address'.
 LD (HL),+3E Enter a GO SUB stack end
 marker.
 DEC HL Leave one location.
 LD SP,HL Make the stack pointer point

103

 to an empty GO SUB stack.
 PUSH BC Next pass the 'error address'
 LD (ERR-SP),SP to the stack and save its
 address in ERR-SP.
 EX DE,HL An indirect return is now
 JP (HL) made to STMT-RET.

Note: When the routine is called from RUN the values of NEWPPC & NSPPC will have been affected and no statements coming after
RUN can ever be found before the jump is taken.

THE 'GO SUB' COMMAND ROUTINE
The present value of PPC and the incremented value of SUBPPC are stored on the GO SUB stack.
1EED GO-SUB POP DE Save the address - STMT-RET.
 LD H,(SUBPPC) Fetch the statement number
 INC H and increment it.
 EX (SP),HL Exchange the 'error address'
 with the statement number.
 INC SP Reclaim the use of a location.
 LD BC,(PPC) Next save the present line
 PUSH BC number.
 PUSH HL Return the 'error address'
 LD (ERR-SP),SP to the machine stack and
 reset ERR-SP to point to it.
 PUSH DE Return the address -
 STMT-RET.
 CALL 1E67,GO-TO-1 Now set NEWPPC & NSPPC to
 the required values.
 LD BC,+0014 But before making the jump
 make a test for room.

THE 'TEST-ROOM' SUBROUTINE
A series of tests is performed to ensure that there is sufficient free memory available for the task being undertaken.
1F05 TEST-ROOM LD HL,(STKEND) Increase the value taken from
 ADD HL,BC STKEND by the value carried
 into the routine by the BC
 register pair.
 JR C,1F15,REPORT-4 Jump forward if the result is
 over +FFFF.
 EX DE,HL Try it again allowing for a
 LD HL,+0050 further eighty bytes.
 ADD HL,DE
 JR C,1F15,REPORT-4
 SBC HL,SP Finally test the value against the
 address of the machine stack.
 RET C Return if satisfactory.
Report 4 - Out of memory
1F15 REPORT-4 LD L,+03 This is a 'run-time' error and the
 JP 0055,ERROR-3 error marker is not to be used.

THE 'FREE MEMORY' SUBROUTINE
There is no BASIC command 'FRE' in the SPECTRUM but there is a subroutine for performing such a task.
An estimate of the amount of free space can be found at any time by using:
'PRINT 65536-USR 7962'
1F1A FREE-MEM LD BC,+0000 Do not allow any overhead.
 CALL 1F05,TEST-ROOM Make the test and pass the

104

 LD B,H result to the BC register
 LD C,L before returning.
 RET

THE 'RETURN' COMMAND ROUTINE
The line number and the statement number that are to be made the object of a 'return' are fetched from the GO SUB stack.
1F23 RETURN POP BC Fetch the address - STMT-RET.
 POP HL Fetch the 'error address'.
 POP DE Fetch the last entry on the
 GO SUB stack.
 LD A,D The entry is tested to see if
 CP +3E it is the GO SUB stack end
 JR Z,1F36,REPORT-7 marker; jump if it is.
 DEC SP The full entry uses three
 locations only.
 EX (SP),HL Exchange the statement number
 with the 'error address'.
 EX DE,HL Move the statement number.
 LD (ERR-SP),SP Reset the error pointer.
 PUSH BC Replace the address -
 STMT-RET.
 JP 1E73,GO-TO-2 Jump back to change NEWPPC
 & NSPPC.
Report 7 - RETURN without GOSUB
1F36 REPORT-7 PUSH DE Replace the end marker and
 PUSH HL the 'error address'.
 RST 0008,ERROR-1 Call the error handling
 DEFB +06 routine.

THE 'PAUSE' COMMAND ROUTINE
The period of the PAUSE is determined by counting the number of maskable interrupts as they occur every 1/50 th. of a second.
A PAUSE is finished either after the appropriate number of interrupts or by the system Variable FLAGS indicating that a key has been
pressed.
1F3A PAUSE CALL 1E99,FIND-INT2 Fetch the operand.
1F3D PAUSE-1 HALT Wait for a maskable interrupt.
 DEC BC Decrease the counter.
 LD A,B If the counter is thereby
 OR C reduced to zero the PAUSE
 JR Z,1F4F,PAUSE-END has come to an end.
 LD A,B If the operand was zero BC
 AND C will now hold +FFFF and this
 INC A value will be returned to
 JR NZ,1F49,PAUSE-2 zero. Jump will all other
 INC BC operand values.
1F49 PAUSE-2 BIT 5,(FLAGS) Jump back unless a key has
 JR Z,1F3D,PAUSE-1 been pressed.
The period of the PAUSE has now finished.
1F4F PAUSE-END RES 5,(FLAGS) Signal 'no key pressed'.
 RET Now return; - to STMT-RET.

THE 'BREAK-KEY' SUBROUTINE
This subroutine is called in several instances to read the BREAK key. The carry flag is returned reset only if the SHIFT and the BREAK
keys are both being pressed.
1F54 BREAK-KEY LD A,+7F Form the port address
 IN A,(+FE) +7FFE and read in a byte.
 RRA Examine only bit 0 by shifting
 it into the carry position.

105

 RET C Return if the BREAK key is
 not being pressed.
 LD A,+FE Form the port address
 IN A,(+FE) +FEFE and read in a byte.
 RRA Again examine bit 0.
 RET Return with carry reset if
 both keys are being pressed.

THE 'DEF FN' COMMAND ROUTINE
During syntax checking a DEF FN statement is checked to ensure that it has the correct form. Space is also made available for the
result of evaluating the function.
But in 'run-time' a DEF FN statement is passed-by.
1F60 DEF-FN CALL 2530,SYNTAX-Z Jump forward if checking
 JR Z,1F6A,DEF-FN-1 syntax.
 LD A,+CE Otherwise bass-by the
 JP 1E39,PASS-BY 'DEF FN' statement.
First consider the variable of the function.
1F6A DEF-FN-1 SET 6,(FLAGS) Signal 'a numeric variable'.
 CALL 2C8D,ALPHA Check that the present
 code is a letter.
 JR NC,1F89,DEF-FN-4 Jump forward if not.
 RST 0020,NEXT-CHAR Fetch the next character.
 CP +24 Jump forward unless it is
 JR NZ,1F7D,DEF-FN-2 a '$'.
 RES 6,(FLAGS) Change bit 6 as it is a
 string variable.
 RST 0020,NEXT-CHAR Fetch the next character.
1F7D DEF-FN-2 CP +28 A '(' must follow the
 JR NZ,1FBD,DEF-FN-7 variable's name.
 RST 0020,NEXT-CHAR Fetch the next character.
 CP +29 Jump forward if it is a
 JR Z,1FA6,DEF-FN-6 ')' as there are no
 parameters of the function.
A loop is now entered to deal with each parameter in turn.
1F86 DEF-FN-3 CALL 2C8D,ALPHA The present code must be
1F89 DEF-FN-4 JP NC,1C8A,REPORT-C a letter.
 EX DE,HL Save the pointer in DE.
 RST 0020,NEXT-CHAR Fetch the next character.
 CP +24 Jump forward unless it is
 JR NZ,1F94,DEF-FN-5 a '$'.
 EX DE,HL Otherwise save the new pointer
 in DE instead.
 RST 0020,NEXT-CHAR Fetch the next character.
1F94 DEF-FN-5 EX DE,HL Move the pointer to the last
 character of the name to the HL
 register pair.
 LD BC,+0006 Now make six locations after
 CALL 1655,MAKE-ROOM that last character and
 INC HL enter a 'number marker' into
 INC HL the first of the new
 LD (HL),+0E locations.
 CP +2C If the present character is
 JR NZ,1FA6,DEF-FN-6 a ',' then jump back as
 RST 0020,NEXT-CHAR there should be a further
 JR 1F86,DEF-FN-3 parameter; otherwise jump
 out of the loop.
Next the definition of the function is considered.
1FA6 DEF-FN-6 CP +29 Check that the ')' does
 JR NZ,1FBD,DEF-FN-7 exist.

106

 RST 0020,NEXT-CHAR The next character is fetched.
 CP +3D It must be an '='.
 JR NZ,1FBD,DEF-FN-7
 RST 0020,NEXT-CHAR Fetch the next character.
 LD A,(FLAGS) Save the nature - numeric or
 PUSH AF string - of the variable.
 CALL 2F4B,SCANNING Now consider the definition
 as an expression.
 POP AF Fetch the nature of the
 XOR (FLAGS) variable and check that it
 AND +40 is of the same type as found
 for the definition.
1FBD DEF-FN-7 JP NZ,1C8A,REPORT-C Give an error report if it
 is required.
 CALL 1BEE,CHECK-END Exit via the CHECK-END
 subroutine. (Thereby moving
 on to consider the next state-
 ment in the line.)

THE 'UNSTACK-Z' SUBROUTINE
This subroutine is called in several instances in order to 'return early' from a subroutine when checking syntax. The reason for this is to
avoid actually printing characters or passing values to/from the calculator stack.
1FC3 UNSTACK-Z CALL 2530,SYNTAX-Z Is syntax being checked?
 POP HL Fetch the return address but
 RET Z ignore it in 'syntax-time'.
 JP (HL) In 'run-time' make a simple
 return to the calling routine.

THE 'LPRINT & PRINT' COMMAND ROUTINES
The appropriate channel is opened as necessary and the items to be printed are considered in turn.
1FC9 LPRINT LD A,+03 Prepare to open channel 'P'.
 JR 1FCF,PRINT-1 Jump forward.
1FCD PRINT LD A,+02 Prepare to open channel 'S'.
1FCF PRINT-1 CALL 2530,SYNTAX-Z Unless syntax is being
 CALL NZ,1601,CHAN-OPEN checked open a channel.
 CALL 0D4D,TEMPS Set the temporary colour
 system variables.
 CALL 1FDF,PRINT-2 Call the print controlling
 subroutine.
 CALL 1BEE,CHECK-END Move on to consider the next
 RET statement; via CHECK-END IF
 checking syntax.
The print controlling subroutine is called by the PRINT, LPRINT and INPUT command routines.
1FDF PRINT-2 RST 0018,GET-CHAR Get the first character.
 CALL 2045,PR-END-Z Jump forward if already at the
 JR Z,1FF2,PRINT-4 end of the item list.
Now enter a loop to deal with the 'position controllers' and the print items.
1FE5 PRINT-3 CALL 204E,PR-POSN-1 Deal with any consecutive
 JR Z,1FE5,PRINT-3 position controllers.
 CALL 1FFC,PR-ITEM-1 Deal with a single print item.
 CALL 204E,PR-POSN-1 Check for further position
 JR Z,1FE5,PRINT-3 controllers and print items
 until there are none left.
1FF2 PRINT-4 CP +29 Return now if the present
 RET Z character is a ')'; otherwise
 consider performing a 'carriage
 return'.

107

THE 'PRINT A CARRIAGE RETURN' SUBROUTINE
1FF5 PRINT-CR CALL 1FC3,UNSTACK-Z Return if changing syntax.
 LD A,+0D Print a carriage return
 RST 0010,PRINT-A-1 character and then return.
 RET

THE 'PRINT ITEMS' SUBROUTINE
This subroutine is called from the PRINT, LPRINT and INPUT command routines.
The various types of print item are identified and printed.
1FFC PR-ITEM-1 RST 0018,GET-CHAR The first character is fetched.
 CP +AC Jump forward unless it is
 JR NZ,200E,PR-ITEM-2 an 'AT'.
Now deal with an 'AT'.
 CALL 1C79,NEXT-2NUM The two parameters are trans-
 ferred to the calculator stack.
 CALL 1FC3,UNSTACK-Z Return now if checking syntax.
 CALL 2307,STK-TO-BC The parameters are compressed
 into the BC register pair.
 LD A,+16 The A register is loaded with
 JR 201E,PR-AT-TAB the AT control character before
 the jump is taken.
Next look for a 'TAB'.
200E PR-ITEM-2 CP +AD Jump forward unless it is
 JR NZ,2024,PR-ITEM-3 a 'TAB'.
Now deal with a 'TAB'.
 RST 0020,NEXT-CHAR Get the next character.
 CALL 1C82,EXPT-1NUM Transfer one parameter to the
 calculator stack.
 CALL 1FC3,UNSTACK-Z Return now if checking syntax.
 CALL 1E99,FIND-INT2 The value is compressed into the
 BC register pair.
 LD A,+17 The A register is loaded with the
 TAB control character.
The 'AT' and the 'TAB' print items are printed by making three calls to PRINT-OUT.
201E PR-AT-TAB RST 0010,PRINT-A-1 Print the control character.
 LD A,C Follow it with the first
 RST 0010,PRINT-A-1 value.
 LD A,B Finally print the second
 RST 0010,PRINT-A-1 value; then return.
 RET
Next consider embedded colour items.
2024 PR-ITEM-3 CALL 21F2,CO-TEMP-3 Return with carry reset if a
 colour items was found.
 RET NC Continue if none were found.
 CALL 2070,STR-ALTER Next consider if the stream is
 to be changed.
 RET NC Continue unless it was altered.
The print item must now be an expression, either numeric or string.
 CALL 24FB,SCANNING Evaluate the expression but
 CALL 1FC3,UNSTACK-Z return now if checking syntax.
 BIT 6,(FLAGS) Test for the nature of the
 expression.
 CALL Z,2BF1,STK-FETCH If it is string then fetch the nec-
 essary parameters; but if it is
 JP NZ,2DE3,PRINT-FP numeric then exit via PRINT-FP.

108

A loop is now set up to deal with each character in turn of the string.
203C PR-STRING LD A,B Return now if there are
 OR C no characters remaining
 DEC BC in the string; otherwise
 RET Z decease the counter.
 LD A,(DE) Fetch the code and increment
 INC DE the pointer.
 RST 0010,PRINT-A-1 The code is printed and a jump
 JR 203C,PR-STRING taken to consider any further
 characters.

THE 'END OF PRINTING' SUBROUTINE
The zero flag will be set if no further printing is to be done.
2045 PR-END-Z CP +29 Return now if the character
 RET Z is a ')'.
2048 PR-ST-END CP +0D Return now if the character is
 RET Z a 'carriage return'.
 CP +3A Make a final test against ':'
 RET before returning.

THE 'PRINT POSITION' SUBROUTINE
The various position controlling characters are considered by this subroutine.
204E PR-POSN-1 RST 0018,GET-CHAR Get the present character.
 CP +3B Jump forward if it is
 JR Z,2067,PR-POSN-3 a ';'.
 CP +2C Also jump forward with a
 JR NZ,2061,PR-POSN-2 character other than a ',';
 CALL 2530,SYNTAX-Z but do not actually print the
 JR Z,2067,PR-POSN-3 character if checking syntax.
 LD A,+06 Load the A register with
 RST 0010,PRINT-A-1 the 'comma' control code and
 JR 2067,PR-POSN-3 print it; then jump forward.
2061 PR-POSN-2 CP +27 Is it a '''?
 RET NZ Return now if not any of the
 position controllers.
 CALL 1FF5,PR-CR Print 'carriage return' unless
 checking syntax.
2067 PR-POSN-3 RST 0020,NEXT-CHAR Fetch the next character.
 CALL 2045,PR-END-Z If not at the end of a print
 JR NZ,206E,PR-POSN-4 statement then jump forward;
 POP BC otherwise return to the
206E PR-POSN-4 CP A calling routine.
 RET The zero flag will be reset if the
 end of the print statement has
 not been reached.

THE 'ALTER STREAM' SUBROUTINE
This subroutine is called whenever there is the need to consider whether the user wishes to use a different stream.
2070 STR-ALTER CP +23 Unless the present character
 SCF is a '#' return with the
 RET NZ carry flag set.
 RST 0020,NEXT-CHAR Advance CH-ADD.
 CALL 1C82,EXPT-1NUM Pass the parameter to the
 calculator stack.
 AND A Clear the carry flag.
 CALL 1FC3,UNSTACK-Z Return now if checking syntax.
 CALL 1E94,FIND-INT1 The value is passed to the A
 register.
 CP +10 Give report O if the value is

109

 JP NC,160E,REPORT-O over +FF.
 CALL 1601,CHAN-OPEN Use the channel for the
 stream in question.
 AND A Clear the carry flag and
 RET return.

THE 'INPUT' COMMAND ROUTINE
This routine allows for values entered from the keyboard to be assigned to variables. It is also possible to have print items embedded in
the INPUT statement and these items are printed in the lower part of the display.
2089 INPUT CALL 2530,SYNTAX-Z Jump forward if syntax is
 JR Z,2096,INPUT-1 being checked.
 LD A,+01 Open channel 'K'.
 CALL 1601,CHAN-OPEN
 CALL 0D6E,CLS-LOWER The lower part of the display
 is cleared.
2096 INPUT-1 LD (TV-FLAG),+01 Signal that the lower screen is being
 handled. Reset all other bits.
 CALL 20C1,IN-ITEM-1 Call the subroutine to deal with
 the INPUT items.
 CALL 1BEE,CHECK-END Move on to the next statement
 if checking syntax.
 LD BC,(S-POSN) Fetch the current print position.
 LD A,(DF-SZ) Jump forward if the current
 CP B position is above the lower
 JR C,20AD,INPUT-2 screen.
 LD C,+21 Otherwise set the print position
 LD B,A to the top of the lower screen.
20AD INPUT-2 LD (S-POSN),BC Reset S-POSN.
 LD A,+19 Now set the scroll counter.
 SUB B
 LD (SCR-CT),A
 RES 0,(TV-FLAG) Signal 'main screen'.
 CALL 0DD9,CL-SET Set the system variables
 JP 0D6E,CLS-LOWER and exit via CLS-LOWER.
The INPUT items and embedded PRINT items are dealt with in turn by the following loop.
20C1 IN-ITEM-1 CALL 204E,PR-POSN-1 Consider first any position
 JR Z,20C1,IN-ITEM-1 control characters.
 CP +28 Jump forward if the present
 JR NZ,20D8,IN-ITEM-2 character is not a '('.
 RST 0020,NEXT-CHAR Fetch the next character.
 CALL 1FDF,PRINT-2 Now call the PRINT command
 routine to handle the items
 inside the brackets.
 RST 0018,GET-CHAR Fetch the present character.
 CP +29 Give report C unless the
 JP NZ,1C8A,REPORT-C character is a ')'.
 RST 0020,NEXT-CHAR Fetch the next character and
 JP 21B2,IN-NEXT-2 jump forward to see if there are
 any further INPUT items.
Now consider whether INPUT LINE is being used.
20D8 IN-ITEM-2 CP +CA Jump forward if it is not
 JR NZ,20ED,IN-ITEM-3 'LINE'.
 RST 0020,NEXT-CHAR Advance CH-ADD.
 CALL 1C1F,CLASS-01 Determine the destination
 address for the variable.
 SET 7,(FLAGX) Signal 'using INPUT LINE'.
 BIT 6,(FLAGS) Give report C unless using
 JP NZ,1C8A,REPORT-C a string variable.

110

 JR 20FA,IN-PROMPT Jump forward to issue the
 prompt message.
Proceed to handle simple INPUT variables.
20ED IN-ITEM-3 CALL 2C8D,ALPHA Jump to consider going round
 JP NC,21AF-IN-NEXT-1 the loop again if the present
 character is not a letter.
 CALL 1C1F,CLASS-01 Determine the destination
 address for the variable.
 RES 7,(FLAGX) Signal 'not INPUT LINE'.
The prompt message is now built up in the work space.
20FA IN-PROMPT CALL 230,SYNTAX-Z Jump forward if only checking
 JP Z,21B2,IN-NEXT-2 syntax.
 CALL 16BF,SET-WORK The work space is set to null.
 LD HL,+5C71 This is FLAGX.
 RES 6,(HL) Signal 'string result'.
 SET 5,(HL) Signal 'INPUT mode'.
 LD BC,+0001 Allow the prompt message only
 a single location.
 BIT 7,(HL) Jump forward if using 'LINE'.
 JR NZ,211C,IN-PR-2
 LD A,(FLAGS) Jump forward if awaiting
 AND +40 a numeric entry.
 JR NZ,211A,IN-PR-1
 LD C,+03 A string entry will need three
 locations.
211A IN-PR-1 OR (HL) Bit 6 of FLAGX will become
 LD (HL),A set for a numeric entry.
211C IN-PR-2 RST 0030,BC-SPACES The required number of
 locations is made available.
 LD (HL),+0D A 'carriage return' goes into
 the last location.
 LD A,C Test bit 6 of the C register
 RRCA and jump forward if only
 RRCA one location was required.
 JR NC,2129,IN-PR-3
 LD A,+22 A 'double quotes' character
 LD (DE),A goes into the first and
 DEC HL second locations.
 LD (HL),A
2129 IN-PR-3 LD (K-CUR),HL The position of the cursor
 can now be saved.
In the case of INPUT LINE the EDITOR can be called without further preparation but for other types of INPUT the error stack has to be
changed so as to trap errors.
 BIT 7,(FLAGX) Jump forward with INPUT
 JR NZ,215E,IN-VAR-3 LINE'
 LD HL,(CH-ADD) Save the current values of
 PUSH HL CH-ADD & ERR-SP on the
 LD HL,(ERR-SP) machine stack.
 PUSH HL
213A IN-VAR-1 LD HL,+213A This will be the 'return
 PUSH HL point' in case of errors.
 BIT 4,(FLAGS2) Only change the error
 JR Z,2148,IN-VAR-2 stack pointer if using channel
 LD (ERR-SP),SP 'K'.
2148 IN-VAR-2 LD HL,(WORKSP) Set HL to the start of the
 CALL 11A7,REMOVE-FP INPUT line and remove any
 floating-point forms. (There will
 not be any except perhaps after
 an error.)
 LD (ERR-NR),+FF Signal 'no error yet'.

111

 CALL 0F2C,EDITOR Now get the INPUT and with
 RES 7,(FLAGS) the syntax/run flag indicating
 CALL 21B9,IN-ASSIGN syntax, check the INPUT for
 JR 2161,IN-VAR-4 errors; jump if in order; return
 to IN-VAR-1 if not.
215E IN-VAR-3 CALL 0F2C,EDITOR Get a 'LINE'.
All the system variables have to be reset before the actual assignment of a value can be made.
2161 IN-VAR-4 LD (K-CUR-hi),+00 The cursor address is reset.
 CALL 21D6,IN-CHAN-K The jump is taken if using
 JR NZ,2174,IN-VAR-5 other than channel 'K'.
 CALL 111D,ED-COPY The input-line is copied to
 LD BC,(ECHO-E) the display and the position
 CALL 0DD9,CL-SET in ECHO-E made the current
 position in the lower screen.
2174 IN-VAR-5 LD HL,+5C71 This is FLAGX.
 RES 5,(HL) Signal 'edit mode'.
 BIT 7,(HL) Jump forward if handling an
 RES 7,(HL) INPUT LINE.
 JR NZ,219B,IN-VAR-6
 POP HL Drop the address IN-VAR-1.
 POP HL Reset the ERR-SP to its
 LD (ERR-SP),HL original address.
 POP HL Save the original CH-ADD
 LD (X-PTR),HL address in X-PTR.
 SET 7,(FLAGS) Now with the syntax/run flag
 CALL 21B9,IN-ASSIGN indicating 'run' make the
 assignment.
 LD HL,(X-PTR) Restore the original address
 LD (X-PTR-hi),+00 to CH-ADD and clear X-PTR.
 LD (CH-ADD),HL
 JR 21B2,IN-NEXT-2 Jump forward to see if there
 are further INPUT items.
219B IN-VAR-6 LD HL,(STKBOT) The length of the 'LINE' in
 LD DE,(WORKSP) the work space is found.
 SCF
 SBC, HL,DE
 LD B,H DE points to the start and
 LD C,L BC holds the length.
 CALL 2AB2,STK-ST-$ These parameters are stacked
 CALL 2AFF,LET and the actual assignment made.
 JR 21B2,IN-NEXT-2 Also jump forward to consider
 further items.
Further items in the INPUT statement are considered.
21AF IN-NEXT-1 CALL 1FFC,PR-ITEM-1 Handle any print items.
21B2 IN-NEXT-2 CALL 204E,PR-POSN-1 Handle any position controllers.
 JP Z,20C1,IN-ITEM-1 Go around the loop again if
 there are further items;
 RET otherwise return.

THE 'IN-ASSIGN' SUBROUTINE
This subroutine is called twice for each INPUT value. Once with the syntax/run flag reset (syntax) and once with it set (run).
21B9 IN-ASSIGN LD HL,(WORKSP) Set CH-ADD to point to the
 LD (CH-ADD),HL first location of the work
 RST 0018,GET-CHAR space and fetch the character.
 CP +E2 Is it a 'STOP'?
 JR Z,21D0,IN-STOP Jump if it is.
 LD A,(FLAGX) Otherwise make the assignment
 CALL 1C59,VAL-FET-2 of the 'value' to the variable.

112

 RST 0018,GET-CHAR Get the present character
 CP +0D and check it is a 'carriage
 RET Z return'. Return if it is.
Report C - Nonsense in BASIC
21CE REPORT-C RST 0008,ERROR-1 Call the error handling
 DEFB +0B routine.
Come here if the INPUT line starts with 'STOP'.
21D0 IN-STOP CALL 2530,SYNTAX-Z But do not give the error
 RET Z report on the syntax-pass.
Report H - STOP in INPUT
21D4 REPORT-H RST 0008,ERROR-1 Call the error handling
 DEFB +10 routine.

THE 'IN-CHAN-K' SUBROUTINE
This subroutine returns with the zero flag reset only if channel 'K' is being used.
21D6 IN-CHAN-K LD HL,(CURCHL) The base address of the
 INC HL channel information for the
 INC HL current channel is fetched
 INC HL and the channel code compared
 INC HL to the character 'K'.
 LD A,(HL)
 CP +4B
 RET Return afterwards.

THE 'COLOUR ITEM' ROUTINES
This set of routines can be readily divided into two parts:
i. The embedded colour item' handler.
ii. The 'colour system variable' handler.
i. Embedded colour items are handled by calling the PRINT-OUT subroutine as required.
A loop is entered to handle each item in turn. The entry point is at CO-TEMP-2.
21E1 CO-TEMP-1 RST 0020,NEXT-CHAR Consider the next character
 in the BASIC statement.
21E2 CO-TEMP-2 CALL 21F2,CO-TEMP-3 Jump forward to see if the
 present code represents an
 embedded 'temporary' colour
 RET C item. Return carry set if not a
 colour item.
 RST 0018,GET-CHAR Fetch the present character.
 CP +2C Jump back if it is either a
 JR Z,21E1,CO-TEMP-1 ',' or a ';'; otherwise
 CP +3B there has been an error.
 JR Z,21E1,CO-TEMP-1
 JP 1C8A,REPORT-C Exit via 'report C'.
21F2 CO-TEMP-3 CP +D9 Return with the carry flag
 RET C Set if the code is not in the
 CP +DF range +D9 to +DE (INK to
 OVER).
 CCF
 RET C
 PUSH AF The colour item code is
 RST 0020,NEXT-CHAR preserved whilst CH-ADD is
 POP AF advanced to address the
 parameter that follows it.
The colour item code and the parameter are now 'printed' by calling PRINT-OUT on two occasions.
21FC CO-TEMP-4 SUB +C9 The token range (+D9 to +DE)

113

 is reduced to the control
 character range (+10 to +15).
 PUSH AF The control character code is
 CALL 1C82,EXPT-1NUM preserved whilst the parameter
 POP AF is moved to the calculator stack.
 AND A A return is made at this point
 CALL 1FC3,UNSTACK-Z if syntax is being checked.
 PUSH AF The control character code is
 CALL 1E94,FIND-INT1 preserved whilst the parameter
 LD D,A is moved to the D register.
 POP AF
 RST 0010,PRINT-A-1 The control character is sent
 out.
 LD A,D Then the parameter is fetched
 RST 0010,PRINT-A-1 and sent out before
 RET returning.
ii. The colour system variables - ATTR-T, MASK-T & P-FLAG - are altered as required. This subroutine is called by PRINT-OUT. On
entry the control character code is in the A register and the parameter is in the D register.
Note that all changes are to the 'temporary' system variables.
2211 CO-TEMP-5 SUB +11 Reduce the range and jump
 ADC A,+00 forward with INK & PAPER.
 JR Z,2234,CO-TEMP-7
 SUB +02 Reduce the range once again
 ADC A,+00 and jump forward with FLASH
 JR Z,2273,CO-TEMP-C & BRIGHT.
The colour control code will now be +01 for INVERSE and +02 for OVER and the system variable P-FLAG is altered accordingly.
 CP +01 Prepare to jump with OVER.
 LD A,D Fetch the parameter.
 LD B,+01 Prepare the mask for OVER.
 JR NZ,2228,CO-TEMP-6 Now jump.
 RLCA Bit 2 of the A register is to be
 RLCA reset for INVERSE 0 and set for
 LD B,+04 INVERSE 1; the mask is to have
 bit 2 set.
2228 CO-TEMP-6 LD C,A Save the A register whilst the
 range is tested.
 LD A,D The correct range for
 CP +02 INVERSE and OVER is only
 JR NC,2244,REPORT-K '0-1'.
 LD A,C Fetch the A register.
 LD HL,+5C91 It is P-FLAG that is to be
 changed.
 JR 226C,CO-CHANGE Exit via CO-CHANGE and alter
 P-FLAG using 'B' as a mask.
 i.e. Bit 0 for OVER & bit 2
 for INVERSE'
PAPER & INK are dealt with by the following routine. On entry the carry flag is set for INK.
2234 CO-TEMP-7 LD A,D Fetch the parameter.
 LD B,+07 Prepare the mask for INK.
 JR C,223E,CO-TEMP-8 Jump forward with INK.
 RLCA Multiply the parameter for
 RLCA PAPER by eight.
 RLCA
 LD B,+38 Prepare the mask for PAPER.
223E CO-TEMP-8 LD C,A Save the parameter in the C
 register whilst the range of the
 parameter is tested.

114

 LD A,D Fetch the original value.
 CP +0A Only allow PAPER/INK a
 JR C,2246,CO-TEMP-9 range of '0' to '9'.
Report K - Invalid colour
2244 REPORT-K RST 0008,ERROR-1 Call the error handling
 DEFB +13 routine.
Continue to handle PAPER & INK;
2246 CO-TEMP-9 LD HL,+5C8F Prepare to alter ATTR-T,
 MASK-T & P-FLAG.
 CP +08 Jump forward with PAPER/INK
 JR C,2258,CO-TEMP-B '0' to 5'7'.
 LD A,(HL) Fetch the current value of
 JR Z,2257,CO-TEMP-A ATTR-T and use it unchanged,
 by jumping forward, with
 PAPER/INK '8'.
 OR B But for PAPER/INK '9' the
 CPL PAPER and INK colours
 AND +24 have to be black and white.
 JR Z,2257,CO-TEMP-A Jump for black INK/PAPER;
 LD A,B but continue for white INK/
 PAPER.
2257 CO-TEMP-A LD C,A Move the value to the C register.
The mask (B) and the value (C) are now used to change ATTR-T.
2258 CO-TEMP-B LD A,C Move the value.
 CALL 226C,CO-CHANGE Now change ATTR-T as needed.
Next MASK-T is considered.
 LD A,+07 The bits of MASK-T are set
 CP D only when using PAPER/INK
 SBC A,A '8' or '9'.
 CALL 226C,CO-CHANGE Now change MASK-T as needed.
Next P-FLAG is considered.
 RLCA The appropriate mask is
 RLCA built up in the B register
 AND +50 is order to change bits 4 &
 LD B,A 6 as necessary.
 LD A,+08 The bits of P-FLAG are set
 CP D only when using PAPER/INK
 SBC A,A '9'.
 Continue into CO-CHANGE to
 manipulate P-FLAG.

THE 'CO-CHANGE' SUBROUTINE
This subroutine is used to 'impress' upon a system variable the 'nature' of the bits in the A register, The B register holds a mask that
shows which bits are to be 'copied over' from A to (HL).
226C CO-CHANGE XOR (HL) The bits, specified by the
 AND B mask in the B register, are
 XOR (HL) changed in the value and the
 LD (HL),A result goes to form the
 system variable.
 INC HL Move on to address the next
 system variable.
 LD A,B Return with the mask in the
 RET A register.
FLASH & BRIGHT are handled by the following routine.

115

2273 CO-TEMP-C SBC A,A The zero flag will be set for
 BRIGHT.
 LD A,D The parameter is fetched and
 RRCA rotated.
 LD B,+80 Prepare the mask for FLASH.
 JR NZ,227D,CO-TEMP-D Jump forward with FLASH.
 RRCA Rotate an extra time and
 LD B,+40 prepare the mask for BRIGHT.
227D CO-TEMP-D LD C,A Save the value in the C register.
 LD A,D Fetch the parameter and test
 CP +08 its range; only '0', '1'
 JR Z,2287,CO-TEMP-E & '8' are allowable.
 CP +02
 JR NC,2244,REPORT-K
The system variable ATTR-T can now be altered.
2287 CO-TEMP-E LD A,C Fetch the value.
 LD HL,+5C8F This is ATTR-T.
 CALL 226C,CO-CHANGE Now change the system variable.
The value in MASK-T is now considered.
 LD A,C The value is fetched anew.
 RRCA The set bit of FLASH/BRIGHT
 RRCA '8' (bit 3) is moved to
 RRCA bit 7 (for FLASH) or bit 6
 (for BRIGHT).
 JR 226C,CO-CHANGE Exit via CO-CHANGE.

THE 'BORDER' COMMAND ROUTINE
The parameter of the BORDER command is used with an OUT command to actually alter the colour of the border. The parameter is
then saved in the system variable BORDCR.
2294 BORDER CALL 1E94,FIND-INT1 The parameter is fetched
 CP +08 and its range is tested.
 JR NC,2244,REPORT-K
 OUT (+FE),A The OUT instruction is then
 used to set the border colour.
 RLCA The parameter is then
 RLCA multiplied by eight.
 RLCA
 BIT 5,A If the border colour is a 'light'
 JR NZ,22A6,BORDER-1 colour then the INK colour in
 the editing area is to be black -
 make the jump.
 XOR +07 Change the INK colour.
22A6 BORDER-1 LD (BORDCR),A Set the system variable as
 RET required and return.

THE 'PIXEL ADDRESS' SUBROUTINE
This subroutine is called by the POINT subroutine and by the PLOT command routine. Is is entered with the co-ordinates of a pixel in
the BC register pair and returns with HL holding the address of the display file byte which contains that pixel and A pointing to the
position of the pixel within the byte.
22AA PIXEL-ADD LD A,+AF Test that the y co-ordinate (in
 SUB B B) is not greater than 175.
 JP C,24F9,REPORT-B
 LD B,A B now contains 175 minus y.
 AND A A holds b7b6b5b4b3b2b1b0,
 RRA the bite of B. And now
 0b7b6b5b4b3b2b1.
 SCF
 RRA Now 10b7b6b5b4b3b2.

116

 AND A
 RRA Now 010b7b6b5b4b3.
 XOR B
 AND +F8 Finally 010b7b6b2b1b0, so that
 XOR B H becomes 64 + 8*INT (B/64) +
 LD H,A B (mod 8), the high byte of the
 LD A,C pixel address. C contains X.
 RLCA A starts as c7c6c5c4c3c2c1c0.
 RLCA
 RLCA And is now c2c1c0c7c6c5c4c3.
 XOR B
 AND +C7
 XOR B Now c2c1b5b4b3c5c4c3.
 RLCA
 RLCA Finally b5b4b3c7c6c5c4c3, so
 LD L,A that L becomes 32*INT (B(mod
 LD A,C 64)/8) + INT(x/8), the low byte.
 AND +07 A holds x(mod 8): so the pixel
 RET is bit (A - 7) within the byte.

THE 'POINT' SUBROUTINE
This subroutine is called by the POINT function in SCANNING. It is entered with the co-ordinates of a pixel on the calculator stack, and
returns a last value of 1 if that pixel is ink colour, and 0 if it is paper colour.
22CB POINT-SUB CALL 2307,STK-TO-BC Y co-ordinate to B, x to C.
 CALL 22AA,PIXEL-ADD Pixel address to HL.
 LD B,A B will count A+1 loops to get
 INC B the wanted bit of (HL) to
 LD A,(HL) location 0.
22D4 POINT-LP RLCA The shifts.
 DJNZ 22D4,POINT-LP
 AND +01 The bit is 1 for ink, 0 for paper.
 JP 2D28,STACK-A It is put on the calculator stack.

THE 'PLOT' COMMAND ROUTINE
This routine consists of a main subroutine plus one line to call it and one line to exit from it. The main routine is used twice by CIRCLE
and the subroutine is called by DRAW. The routine is entered with the co-ordinates of a pixel on the calculator stack. It finds the
address of that pixel and plots it, taking account of the status of INVERSE and OVER held in the P-FLAG.
22DC PLOT CALL 2307,STK-TO-BC Y co-ordinate to B, x to C.
 CALL 22E5,PLOT-SUB The subroutine is called.
 JP 0D4D,TEMPS Exit, setting temporary colours.
22E5 PLOT-SUB LD (COORDS),BC The system variable is set.
 CALL 22AA,PIXEL-ADD Pixel address to HL.
 LD B,A B will count A+1 loops to get a
 INC B zero to the correct place in A.
 LD A,+FE The zero is entered.
22F0 PLOT-LOOP RRCA Then lined up with the pixel
 DJNZ 22F0,PLOT-LOOP bit position in the byte.
 LD B,A Then copied to B.
 LD A,(HL) The pixel-byte is obtained in A.
 LD C,(P-FLAG) P-FLAG is obtained and first
 BIT 0,C tested for OVER.
 JR NZ,22FD,PL-TST-IN Jump if OVER 1.
 AND B OVER 0 first makes the pixel
 zero.
22FD PL-TST-IN BIT 2,C Test for INVERSE.
 JR NZ,2303,PLOT-END INVERSE 1 just leaves the pixel
 as it was (OVER 1) or zero
 (OVER 0).
 XOR B INVERSE 0 leaves the pixel

117

 CPL complemented (OVER 1) or
 1 (OVER 0).
2303 PLOT-END LD (HL),A The byte is entered. Its other
 bits are unchanged in every case.
 JP 0BDB,PO-ATTR Exit, setting attribute byte.

THE 'STK-TO-BC' SUBROUTINE
This subroutine loads two floating point numbers into the BC register pair. It is thus used to pick up parameters in the range +00-+FF. It
also obtains in DE the 'diagonal move' values (+/-1,+/-1) which are used in the line drawing subroutine of DRAW.

2307 STK-TO-BC CALL 2314,STK-TO-A First number to A.
 LD B,A Hence to B.
 PUSH BC Save it briefly.
 CALL 2314,STK-TO-A Second number to A.
 LD E,C Its sign indicator to E.
 POP BC Restore first number.
 LD D,C Its signs indicator to D.
 LD C,A Second number to C.
 RET BC, DE are now as required.

THE 'STK-TO-A' SUBROUTINE
This subroutine loads the A register with the floating point number held at the top of the calculator stack. The number must be in the
range 00-FF.

2314 STK-TO-A CALL 2DD5,FP-TO-A Modulus of rounded last value to
 JP C,24F9,REPORT-B A if possible; else, report error.
 LD C,+01 One to C for positive last value.
 RET Z Return if value was positive.
 LD C,+FF Else change C to +FF (i.e. minus
 RET one). Finished.

THE 'CIRCLE' COMMAND ROUTINE
This routine draws an approximation to the circle with centre co-ordinates X and Y and radius Z. These numbers are rounded to the
nearest integer before use. Thus Z must be less than 87.5, even when (X,Y) is in the centre of the screen. The method used is to draw
a series of arcs approximated by straight lines. It is illustrated in the BASIC program in the appendix. The notation of that program is
followed here.

 CIRCLE has four parts:

I. Tests the radius. If its modulus is less than 1, just plot X,Y;
II. Calls CD-PRMS-1 at 2470-24B6, which is used to set the initial parameters for both CIRCLE and DRAW;
III. Sets up the remaining parameters for CIRCLE, including the initial displacement for the first 'arc' (a straight line in fact);
IV. Jumps into DRAW to use the arc-drawing loop at 2420-24FA.

Parts i. to iii. will now be explained in turn.

i. 2320-23AA. The radius, say Z', is obtained from the calculator stack. Its modulus Z is formed and used from now on. If Z is less than
1, it is deleted from the stack and the point X,Y is plotted by a jump to PLOT.

2320 CIRCLE RST 0017,GET-CHAR Get the present character.
 CP +2C Test for comma.
 JP NZ,1C8A,REPORT-C If not so, report the error.
 RST 0020,NEXT-CHAR Get next character (the radius).
 CALL 1C82,EXPT-1NUM Radius to calculator stack.
 CALL 1BEE,CHECK-END Move to consider next statement
 if checking syntax.
 RST 0028,FP-CALC Use calculator: the stack holds:
 DEFB +2A,abs X, Y, Z
 DEFB +3D,re-stack Z is re-stacked; its exponent
 DEFB +38,end-calc is therefore available.
 LD A,(HL) Get exponent of radius.

118

 CP +81 Test whether radius less than 1.
 JR NC,233B,C-R-GRE-1 If not, jump.
 RST 0028,FP-CALC If less, delete it from the stack.
 DEFB +02,delete The stack holds X, Y.
 DEFB +38,end-calc
 JR 22DC,PLOT Just plot the point X, Y.

ii. 233B-2346 and the call to CD-PRMS1. 2*PI is stored in mem-5 and CD-PRMS1 is called. This subroutine stores in the B register the
number of arcs required for the circle, viz. A=4*INT (PI*SQR Z/4)+4, hence 4, 8, 12 ..., up to a maximum of 32. It also stores in mem-0
to mem-4 the quantities 2*PI/A, SIN(PI/A), 0, COS (2*PI/A) and SIN (2*PI/A).

233B C-R-GRE-1 RST 0028,FP-CALC
 DEFB +A3,stk-pi/2 X, Y, Z, PI/2.
 DEFB +38,end-calc Now increase exponent to 83
 LD (HL),+83 hex, changing PI/2 into 2*PI.
 RST 0028,FP-CALC X, Y, Z, 2*PI.
 DEFB +C5,st-mem-5 (2*PI is copied to mem-5).
 DEFB +02,delete X, Y, Z
 DEFB +38,end-calc
 CALL 247D,CD-PRMS1 Set the initial parameters.

iii. 2347-2381: the remaining parameters and the jump to DRAW. A test is made to see whether the initial 'arc' length is less than 1. If it
is, a jump is made simply to plot X, Y. Otherwise, the parameters are set: X+Z and X-Z*SIN (PI/A) are stacked twice as start and end
point, and copied to COORDS as well; zero and 2*Z*SIN (PI/A) are stored in mem-1 and mem-2 as initial increments, giving as first 'arc'
the vertical straight line joining X+Z, y-Z*SIN (PI/A) and X+Z, Y+Z*SIN (PI/A). The arc-drawing loop of DRAW will ensure that all
subsequent points remain on the same circle as these two points, with incremental angle 2*PI/A. But it is clear that these 2 points in fact
subtend this angle at the point X+Z*(1-COS (PI/A)), Y not at X, Y. Hence the end points of each arc of the circle are displaced right by
an amount 2*(1-COS (PI/A)), which is less than half a pixel, and rounds to one pixel at most.

2347 C-ARC-GE1 PUSH BC Save the arc-count in B.
 RST 0028,FP-CALC X,Y,Z
 DEFB +31,duplicate X,Y,Z,Z
 DEFB +E1,get-mem-1 X,Y,Z,Z,SIN (PI/A)
 DEFB +04,multiply X,Y,Z,Z*SIN (PI/A)
 DEFB +38,end-calc Z*SIN (PI/A) is half the initial
 LD A,(HL) 'arc' length; it is tested to see
 CP +80 whether it is less than 0.5.
 JR NC,235A,C-ARC-GE1 If not, the jump is made.
 RST 0028,FP-CALC Otherwise, Z is deleted from the
 DEFB +02,delete stack, with the half-arc too; the
 DEFB +02,delete machine stack is cleared; and a
 DEFB +38,end-calc jump is made to plot X, Y.
 POP BC
 JP 22DC,PLOT
235A RST 0028,FP-CALC X,Y,Z,Z*SIN (PI/A)
 DEFB +C2,st-mem-2 (Z*SIN (PI/A) to mem-2 for
 now).
 DEFB +01,exchange X,Y,Z*SIN (PI/A),Z
 DEFB +C0,st-mem-0 X,Y,Z*SIN (PI/A),Z
 DEFB +02,delete X,Y,Z*SIN (PI/A)
 DEFB +03,subtract X, Y - Z*SIN (PI/A)
 DEFB +01,exchange Y - Z*SIN (PI/A), X
 DEFB +E0,get-mem-0 Y - Z*SIN (PI/A), X, Z
 DEFB +0F,addition Y - Z*SIN (PI/A), X+Z
 DEFB +CO,st-mem-0 (X+Z is copied to mem-0)
 DEFB +01,exchange X+Z, Y - Z*SIN (PI/A)
 DEFB +31,duplicate X+Z, Y-Z*SIN (PI/A), Y-Z*SIN
 (PI/A)
 DEFB +E0,get-mem-0 sa,sb,sb,sa

119

 DEFB +01,exchange sa,sb,sa,sb
 DEFB +31,duplicate sa,sb,sa,sb,sb
 DEFB +E0,get-mem-0 sa,sb,sa,sb,sb,sa
 DEFB +A0,stk-zero sa,sb,sa,sb,sb,sa,0
 DEFB +C1,st-mem-1 (mem-1 is set to zero)
 DEFB +02,delete sa,sb,sa,sb,sb,sa
 DEFB +38,end-calc

(Here sa denotes X+Z and sb denotes Y - Z*SIN (PI/A)).

 INC (mem-2-1st) Incrementing the exponent byte
 of mem-2 sets mem-2 to
 2*Z*SIN(PI/A).
 CALL 1E94,FIND-INT1 The last value X+Z is moved
 LD L,A from the stack to A and copied
 to L.
 PUSH HL It is saved in HL.
 CALL 1E94,FIND-INT1 Y - Z*SIN (PI/A) goes from the
 POP HL stack to A and is copied to H.
 LD H,A HL now holds the initial point.
 LD (COORDS),HL It is copied to COORDS.
 POP BC The arc-count is restored.
 JP 2420,DRW-STEPS The jump is made to DRAW.

(The stack now holds X+Z, Y - Z*SIN (PI/A), Y - Z*SIN (PI/A), X+Z).

THE DRAW COMMAND ROUTINE
This routine is entered with the co-ordinates of a point X0, Y0, say, in COORDS. If only two parameters X, Y are given with the DRAW
command, it draws an approximation to a straight line from the point X0, Y0 to X0+X, Y0+Y. If a third parameter G is given, it draws an
approximation to a circular arc from X0, Y0 to X0+X, Y0+Y turning anti-clockwise through an angle G radians.

 The routine has four parts:

I. Just draws a line if only 2 parameters are given or if the diameter of the implied circle is less than 1;
II. Calls CD-PRMS1 at 247D-24B6 to set the first parameters;
III. Sets up the remaining parameters, including the initial displacements for the first arc;
IV. Enters the arc-drawing loop and draws the arc as a series of smaller arcs approximated by straight lines, calling the line-

drawing subroutine at 24B7-24FA as necessary.

Two subroutines, CD-PRMS1 and DRAW-LINE, follow the main routine. The above 4 parts of the main routine will now be treated in
turn.

i. If there are only 2 parameters, a jump is made to LINE-DRAW at 2477. A line is also drawn if the quantity Z=(ABS X + ABS Y)/ABS
SIN(G/2) is less than 1. Z lies between 1 and 1.5 times the diameter of the implied circle. In this section mem-0 is set to SIN (G/2),
mem-1 to Y, and mem-5 to G.

2382 DRAW RST 0018,GET-CHAR Get the current character.
 CP +2C If it is a comma,
 JR Z,238D,DR-3-PRMS then jump.
 CALL 1BEE,CHECK-END Move on to next statement if
 checking syntax.
 JP 2477,LINE-DRAW Jump to just draw the line.
238D DR-3-PRMS RST 0020,NEXT-CHAR Get next character (the angle).
 CALL 1C82,EXPT-1NUM Angle to calculator stack.
 CALL 1BEE,CHECK-END Move on to next statement if
 checking syntax.
 RST 0028,FP-CALC X, Y, G are on the stack.
 DEFB +C5,st-mem-5 (G is copied to mem-5)
 DEFB +A2,stk-half X, Y, G, 0.5
 DEFB +04,multiply X, Y, G/2
 DEFB +1F,sin X, Y, SIN (G/2)
 DEFB +31,duplicate X, Y, SIN (G/2), SIN (G/2)

120

 DEFB +30,not X, Y, SIN (G/2), (0/1)
 DEFB +30,not X, Y, SIN (G/2), (1/0)
 DEFB +00,jump-true X, Y, SIN (G/2)
 DEFB +06,to DR-SIN-NZ (If SIN (G/2)=0 i.e. G = 2*N*PI
 DEFB +02,delete just draw a straight line).
 DEFB +38,end-calc X, Y
 JP 2477,LINE-DRAW Line X0, Y0 to X0+X, Y0+Y.
23A3 DR-SIN-NZ DEFB +C0,st-mem-0 (SIN (G/2) is copied to mem-0)
 DEFB +02,delete X, Y are now on the stack.
 DEFB +C1,st-mem-1 (Y is copied to mem-1).
 DEFB +02,delete X
 DEFB +31,duplicate X, X
 DEFB +2A,abs X, X' (X' = ABS X)
 DEFB +E1,get-mem-1 X, X', Y
 DEFB +01,exchange X, Y, X'
 DEFB +E1,get-mem-1 X, Y, X', Y
 DEFB +2A,abs X, Y, X', Y' (Y' = ABS Y)
 DEFB +0F,addition X, Y, X'+Y'
 DEFB +E0,get-mem-0 X, Y, X'+Y', SIN (G/2)
 DEFB +05,division X, Y, (X'+Y')/SIN (G/2)=Z', say
 DEFB +2A,abs X, Y, Z (Z = ABS Z')
 DEFB +E0,get-mem-0 X, Y, Z, SIN (G/2)
 DEFB +01,exchange X, Y, SIN (G/2), Z
 DEFB +3D,re-stack (Z is re-stacked to make sure
 DEFB +38,end-calc that its exponent is available).
 LD A,(HL) Get exponent of Z.
 CP +81 If Z is greater than or equal
 JR NC,23C1,DR-PRMS to 1, jump.
 RST 0028,FP-CALC X, Y, SIN (G/2), Z
 DEFB +02,delete X, Y, SIN (G/2)
 DEFB +02,delete X, Y
 DEFB +38,end-calc Just draw the line from X0, Y0
 JP 2477,LINE-DRAW to X0+X, Y0+Y.

ii. Just calls CD-PRMS1. This subroutine saves in the B register the number of shorter arcs required for the complete arc, viz. A=4*INT
(G'*SQR Z/8)+4, where G' = mod G, or 252 if this expression exceeds 252 (as can happen with a large chord and a small angle). So A
is 4, 8, 12, ... , up to 252. The subroutine also stores in mem-0 to mem-4 the quantities G/A, SIN (G/2*A), 0, COS (G/A), SIN (G/A).

23C1 DR-PRMS CALL 247D,CD-PRMS1 The subroutine is called.

iii. Sets up the rest of the parameters as follow. The stack will hold these 4 items, reading up to the top: X0+X and Y0+Y as end of last
arc; then X0 and Y0 as beginning of first arc. Mem-0 will hold X0 and mem-5 Y0. Mem-1 and mem-2 will hold the initial displacements
for the first arc, U and V; and mem-3 and mem-4 will hold COS (G/A) and SIN (G/A) for use in the arc-drawing loop.

The formulae for U and V can be explained as follows. Instead of stepping along the final chord, of length L, say, with displacements X
and Y, we want to step along an initial chord (which may be longer) of length L*W, where W=SIN (G/2*A)/SIN (G/2), with displacements
X*W and Y*W, but turned through an angle - (G/2 - G/2*A), hence with true displacements:

 U = Y*W*SIN (G/2 - G/2*A) + X*W*COS (G/2 - G/2*A)
 Y = Y*W*COS (G/2 - G/2*A) - X*W*SIN (G/2 - G/2*A)

These formulae cam be checked from a diagram, using the normal expansion of COS (P - Q) and SIN (P - Q), where Q = G/2 - G/2*A

23C4 PUSH BC Save the arc-counter in B.
 RST 0028,FP-CALC X,Y,SIN(G/2),Z
 DEFB +02,delete X,Y,SIN(G/2)
 DEFB +E1,get-mem-1 X,Y,SIN(G/2),SIN(G/2*A)
 DEFB +01,exchange X,Y,SIN(G/2*A),SIN(G/2)
 DEFB +05,division X,Y,SIN(G/2*A)/SIN(G/2)=W
 DEFB +C1,st-mem-1 (W is copied to mem-1).

121

 DEFB +02,delete X,Y
 DEFB +01,exchange Y,X
 DEFB +31,duplicate Y,X,X
 DEFB +E1,get-mem-1 Y,X,X,W
 DEFB +04,multiply Y,X,X*W
 DEFB +C2,st-mem-2 (X*W is copied to mem-2).
 DEFB +02,delete Y,X
 DEFB +01,exchange X,Y
 DEFB +31,duplicate X,Y,Y
 DEFB +E1,get-mem-1 X,Y,Y,W
 DEFB +04,multiply X,Y,Y*W
 DEFB +E2,get-mem-2 X,Y,Y*W,X*W
 DEFB +E5,get-mem-5 X,Y,Y*W,X*W,G
 DEFB +E0,get-mem-0 X,Y,Y*W,X*W,G,G/A
 DEFB +03,subtract X,Y,Y*W,X*W,G - G/A
 DEFB +A2,stk-half X,Y,Y*W,X*W,G - G/A, ½
 DEFB +04,multiply X,Y,Y*W,X*W, G/2 - G/2*A=F
 DEFB +31,duplicate X,Y,Y*W,X*W, F, F
 DEFB +1F,sin X,Y,Y*W,X*W, F, SIN F
 DEFB +C5,st-mem-5 (SIN F is copied to mem-5).
 DEFB +02,delete X,Y,Y*W,X*W,F
 DEFB +20,cos X,Y,Y*W,X*W, COS F
 DEFB +C0,st-mem-0 (COS F is copied to mem-0).
 DEFB +02,delete X,Y,Y*W,X*W
 DEFB +C2,st-mem-2 (X*W is copied to mem-2).
 DEFB +02,delete X,Y,Y*W
 DEFB +C1,st-mem-1 (Y*W is copied to mem-1).
 DEFB +E5,get-mem-5 X,Y,Y*W,SIN F
 DEFB +04,multiply X,Y,Y*W*SIN F
 DEFB +E0,get-mem-0 X,Y,Y*W*SIN F,X*W
 DEFB +E2,get-mem-2 X,Y,Y*W*SIN F,X*W, COS F
 DEFB +04,multiply X,Y,Y*W*SIN F,X*W*COS F
 DEFB +0F,addition X,Y,Y*W*SIN F+X*W*COS F=U
 DEFB +E1,get-mem-1 X,Y,U,Y*W
 DEFB +01,exchange X,Y,Y*W,U
 DEFB +C1,st-mem-1 (U is copied to mem-1)
 DEFB +02,delete X,Y,Y*W
 DEFB +E0,get-mem-0 X,Y,Y*W, COS F
 DEFB +04,multiply X,Y,Y*W*COS F
 DEFB +E2,get-mem-2 X,Y,Y*W*COS F,X*W
 DEFB +E5,get-mem-5 X,Y,Y*W*COS F,X*W, SIN F
 DEFB +04,multiply X,Y,Y*W*COS F,X*W*SIN F
 DEFB +03,subtract X,Y,Y*W*COS F - X*W*SIN
 F = V
 DEFB +C2,st-mem-2 (V is copied to mem-2).
 DEFB +2A,abs X, Y, V' (V' = ABS V)
 DEFB +E1,get-mem-1 X, Y, V', U
 DEFB +2A,abs X, Y, V', U' (U' = ABS U)
 DEFB +0F,addition X, Y, U' + V'
 DEFB +02,delete X, Y
 DEFB +38,end-calc (DE now points to U' + V').
 LD A,(DE) Get exponent of U' + V'
 CP +81 If U' + V' is less than 1, just
 POP BC tidy the stack and draw the line
 JP C,2477,LINE-DRAW from X0, Y0 to X0+X, Y0+Y.
 PUSH BC Otherwise, continue with the
 RST 0028,FP-CALC parameters: X, Y, on the stack.
 DEFB +01,exchange Y, X
 DEFB +38,end-calc
 LD A,(COORDS-lo) Get X0 into A and so
 CALL 2D28,STACK-A on to the stack.
 RST 0028,FP-CALC Y, X, X0

122

 DEFB +C0,st-mem-0 (X0 is copied to mem-0).
 DEFB +0F,addition Y, X0 + X
 DEFB +01,exchange X0+X, Y
 DEFB +38,end-calc
 LD A,(COORDS-hi) Get Y0 into A and so
 CALL 2D28,STACK-A on to the stack.
 RST 0028,FP-CALC X0+X, Y, Y0
 DEFB +C5,st-mem-5 (Y0 is copied to mem-5).
 DEFB +0F,addition X0+X, Y0+Y
 DEFB +E0,get-mem-0 X0+X, Y0+Y, X0
 DEFB +E5,get-mem-5 X0+X, Y0+Y, X0, Y0
 DEFB +38,end calc
 POP BC Restore the arc-counter in B.

iv. The arc-drawing loop. This is entered at 2439 with the co-ordinates of the starting point on top of the stack, and the initial
displacements for the first arc in mem-1 and mem-2. It uses simple trigonometry to ensure that all subsequent arcs will be drawn to
points that lie on the same circle as the first two, subtending the same angle at the centre. It can be shown that if 2 points X1, Y1 and
X2, Y2 lie on a circle and subtend an angle N at the centre, which is also the origin of co-ordinates, then X2 = X1*COS N - Y1*SIN N,
and Y2 = X1*SIN N + Y1*COS N. But because the origin is here at the increments, say Un = Xn+1 - Xn and Vn = Yn+1 - Yn, thus
achieving the desired result. The stack is shown below on the (n+1)th pass through the loop, as Xn and Yn are incremented by Un and
Vn, after these are obtained from Un-1 and Vn-1. The 4 values on the top of the stack at 2425 are, in DRAW, reading upwards, X0+X,
Y0+Y, Xn and Yn but to save space these are not shown until 2439. For the initial values in CIRCLE, see the end of CIRCLE, above. In
CIRCLE too, the angle G must be taken to be 2*PI.

2420 DRW-STEPS DEC B B counts the passes through the
 loop.
 JR Z,245F,ARC-END Jump when B has reached zero.
 JR 2439,ARC-START Jump into the loop to start.
2425 ARC-LOOP RST 0028,FP-CALC (See text above for the stack).
 DEFB +E1,get-mem-1 Un-1
 DEFB +31,duplicate Un-1,Un-1
 DEBF +E3,get-mem-3 Un-1,Un-1,COS(G/A)
 DEFB +04,multiply Un-1,Un-1*COS(G/A)
 DEFB +E2,get-mem-2 Un-1,Un-1*COS(G/A),Vn-1
 DEFB +E4,get-mem-4 Un-1,Un-1*COS(G/A),Vn-1,
 SIN(G/A)
 DEFB +04,multiply Un-1,Un-1*COS(G/A),Vn-1*
 SIN(G/A)
 DEFB +03,subtract Un-1,Un-1*COS(G/A)-Vn-1*
 SIN(G/A)=Un
 DEFB +C1,st-mem-1 (Un is copied to mem-1).
 DEFB +02,delete Un-1
 DEFB +E4,get-mem-4 Un-1,SIN(G/A)
 DEFB +04,multiply Un-1*SIN(G/A)
 DEFB +E2,get-mem-2 Un-1*SIN(G/A),Vn-1
 DEFB +E3,get-mem-3 Un-1*SIN(G/A),Vn-1,COS(G/A)
 DEFB +04,multiply Un-1*SIN(G/A),Vn-1*COS(G/A)
 DEFB +0F,addition Un-1*SIN(G/A)+Vn-1*COS
 (G/A)=Vn
 DEFB +C2,st-mem-2 (Vn is copied to mem-2).
 DEFB +02,delete (As noted in the text, the stack
 DEFB +38,end-calc in fact holds X0+X,Y0+Y, Xn
 and Yn).
2439 ARC-START PUSH BC Save the arc-counter.
 RST 0028,FP-CALC X0+X, Y0+y, Xn, Yn
 DEFB +C0,st-mem-0 (Yn is copied to mem-0).
 DEFB +02,delete X0+X, Y0+Y, Xn
 DEFB +E1,get-mem-1 X0+X, Y0+Y, Xn, Un
 DEFB +0F,addition X0+X, Y0+Y, Xn+Un = Xn+1

123

 DEFB +31,duplicate X0+X, Y0+Y, Xn+1, Xn+1
 DEFB +38,end-calc Next Xn', the approximate
 value of Xn reached by
 the line-drawing subroutine
 LD A,(COORDS-lo) is copied to A
 CALL 2D28,STACK-A and hence to the stack.
 RST 0028,FP-CALC X0+X,Y0+Y,Xn+1,Xn'
 DEFB +03,subtract X0+X,Y0+Y,Xn+1,Xn+1,Xn'
 - Xn' = Un'
 DEFB +E0,get-mem-0 X0+X,Y0+Y,Xn+1,Un',Yn
 DEFB +E2,get-mem-2 X0+X,Y0+Y,Xn+1,Un',Yn,Vn
 DEFB +0F,addition X0+X,Y0+Y,Xn+1,Un',Yn +
 Vn = Yn+1
 DEFB +C0,st-mem-0 (Yn+1 is copied to mem-0).
 DEFB +01,exchange X0+X,Y0+Y,Xn+1,Yn+1,Un'
 DEFB +E0,get-mem-0 X0+X,Y0+Y,Xn+1,Yn+1,
 Un',Yn+1
 DEFB +38,end-calc
 LD A,(COORDS-hi) Yn', approximate like Xn', is
 CALL 2D28,STACK-A copied to A and hence to the
 stack.
 RST 0028,FP-CALC X0+X,Y0+Y,Xn+1,Yn+1,
 Un',Yn+1,Yn'
 DEFB +03,subtract X0+X,Y0+Y,Xn+1,Yn+1,
 Un',Vn'
 DEFB +38,end-calc
 CALL 24B7,DRAW-LINE The next 'arc' is drawn.
 POP BC The arc-counter is restored.
 DJNZ 2425,ARC-LOOP Jump if more arcs to draw.
245F ARC-END RST 0028,FP-CALC The co-ordinates of the end
 DEFB +02,delete of the last arc that was drawn
 DEFB +02,delete are now deleted from the stack.
 DEFB +01,exchange Y0+Y, X0+X
 DEFB +38,end-calc
 LD A,(COORDS-lo) The X-co-ordinate of the end of
 CALL 2D28,STACK-A the last arc that was drawn, say
 RST 0028,FP-CALC Xz', is copied to the stack.
 DEFB +03,subtract Y0+Y, X0+X - Xz'
 DEFB +01,exchange X0+X - Xz', Y0+Y
 DEFB +38,end-calc
 LD A,(COORDS-hi) The Y-co-ordinate is obtained.
 CALL 2D28,STACK-A
 RST 0028,FP-CALC X0+X - Xz', Y0+Y, Yz'
 DEFB +03,subtract X0+X - Xz', Y0+Y - Yz'
 DEFB +38,end-calc
2477 LINE-DRAW CALL 24B7,DRAW-LINE The final arc is drawn to reach
 X0+X, Y0+Y (or close the
 circle).
 JP 0D4D,TEMPS Exit, setting temporary colours.

THE 'INITIAL PARAMETERS' SUBROUTINE
This subroutine is called by both CIRCLE and DRAW to set their initial parameters. It is called by CIRCLE with X, Y and the radius Z on
the top of the stack, reading upwards. It is called by DRAW with its own X, Y, SIN (G/2) and Z, as defined in DRAW i. above, on the top
of the stack. In what follows the stack is only shown from Z upwards.
The subroutine returns in B the arc-count A as explained in both CIRCLE and DRAW above, and in mem-0 to mem-5 the quantities
G/A, SIN (G/2*A), 0, COS (G/A), SIN (G/A) and G. For a circle, G must be taken to be equal to 2*PI.

247D CD-PRMS1 RST 0028,FP-CALC Z
 DEFB +31,duplicate Z, Z
 DEFB +28,sqr Z, SQR Z
 DEFB +34,stk-data Z, SQR Z, 2

124

 DEFB +32,exponent +82
 DEFB +00,(+00,+00,+00)
 DEFB +01,exchange Z, 2, SQR Z
 DEFB +05,division Z, 2/SQR Z
 DEFB +E5,get-mem-5 Z, 2/SQR Z, G
 DEFB +01,exchange Z, G, 2/SQR Z
 DEFB +05,division Z, G*SQR Z/2
 DEFB +2A,abs Z, G'*SQR Z/2 (G' = mod G)
 DEFB +38,end-calc Z, G'*SQR Z/2 = A1, say
 CALL 2DD5,FP-TO-A A1 to A from the stack, if
 possible.
 JR C,2495,USE-252 If A1 rounds to 256 or more,
 use 252.
 AND +FC 4*INT (A1/4) to A.
 ADD A,+04 Add 4, giving the arc-count A.
 JR NC,2497,DRAW-SAVE Jump if still under 256.
2495 USE-252 LD A,+FC Here, just use 252 decimal.
2497 DRAW-SAVE PUSH AF Now save the arc-count.
 CALL 2D28,STACK-A Copy it to calculator stack too.
 RST 0028,FP-CALC Z, A
 DEFB +E5,get-mem-5 Z, A, G
 DEFB +01,exchange Z, G, A
 DEFB +05,division Z, G/A
 DEFB +31,duplicate Z,G/A, G/A
 DEFB +1F,sin Z, G/A, SIN (G/A)
 DEFB +C4,st-mem-4 (SIN (G/A) is copied to mem-4).
 DEFB +02,delete Z, G/A
 DEFB +31,duplicate Z, G/A, G/A
 DEFB +A2,stk-half Z, G/A, G/A, 0.5
 DEFB +04,multiply Z, G/A, G/2*A
 DEFB +1F,sin Z, G/A, SIN (G/2*A)
 DEFB +C1,st-mem-1 (SIN (G/2*A) is copied to
 mem-1).
 DEFB +01,exchange Z, SIN (G/2*A), G/A
 DEFB +C0,st-mem-0 (G/A is copied to mem-0).
 DEFB +02,delete Z, SIN (G/2*A) = S
 DEFB +31,duplicate Z, S, S
 DEFB +04,multiply Z, S*S
 DEFB +31,duplicate Z, S*S, S*S
 DEFB +0F,addition Z, 2*S*S
 DEFB +A1,stk-one Z, 2*S*S, 1
 DEFB +03,subtract Z, 2*S*S - 1
 DEFB +1B,negate Z, 1 - 2*S*S = COS (G/A)
 DEFB +C3,st-mem-3 (COS (G/A) is copied to mem-3).
 DEFB +02,delete Z
 DEFB +38,end-calc
 POP BC Restore the arc-count to B.
 RET Finished.

THE LINE-DRAWING SUBROUTINE
This subroutine is called by DRAW to draw an approximation to a straight line from the point X0, Y0 held in COORDS to the point
X0+X, Y0+Y, where the increments X and Y are on the top of the calculator stack. The subroutine was originally intended for the ZX80
and ZX81 8K ROM, and it is described in a BASIC program on page 121 of the ZX81 manual. It is also illustrated here in the Circle
program in the appendix.
The method is to intersperse as many horizontal or vertical steps as are needed among a basic set of diagonal steps, using an
algorithm that spaces the horizontal or vertical steps as evenly as possible.

24B7 DRAW-LINE CALL 2307,STK-TO-BC ABS Y to B; ABS X to C;
 SGN Y to D; SGN X to E.
 LD A,C Jump if ABS X is greater than
 CP B or equal to ABS Y, so that the

125

 JR NC,24C4,DL-X-GE-Y smaller goes to L, and the
 LD L,C larger (later) goes to H.
 PUSH DE Save diag. step (±1,±1) in DE.
 XOR A Insert a vertical step (±1, 0)
 LD E,A into DE (D holds SGN Y).
 JR 24CB,DL-LARGER Now jump to set H.
24C4 DL-X-GE-Y OR C Return if ABS X and ABS Y
 RET Z are both zero.
 LD L,B The smaller (ABS Y here) goes
 to L.
 LD B,C ABS X to B here, for H.
 PUSH DE Save the diagonal step here too.
 LD D,+00 Hor. step (0, ±1) to DE here.
24CB DL-LARGER LD H,B Larger of ABS X, ABS Y to H
 now.

The algorithm starts here. The larger of ABS X and ABS Y, say H, is put into A and reduced to INT (H/2). The H - L horizontal or vertical
steps and L diagonal steps are taken (where L is the smaller of ABS X and ABS Y) in this way: L is added to A; if A now equals or
exceeds H, it is reduced by H and a diagonal step is taken; otherwise a horizontal or vertical step is taken. This is repeated H times (B
also holds H). Note that meanwhile the exchange registers H' and L' are used to hold COORDS.

 LD A,B B to A as well as to H.
 RRA A starts at INT (H/2).
24CE D-L-LOOP ADD A,L L is added to A.
 JR C,24D4,D-L-DIAG If 256 or more, jump - diag.
 step.
 CP H If A is less than H, jump for
 JR C,24DB,D-L-HR-VT horizontal or vertical step.
24D4 D-L-DIAG SUB H Reduce A by H.
 LD C,A Restore it to C.
 EXX Now use the exchange resisters.
 POP BC Diag. step to B'C'.
 PUSH BC Save it too.
 JR 24DF,D-L-STEP Jump to take the step.
24DB D-L-HR-VT LD C,A Save A (unreduced) in C.
 PUSH DE Step to stack briefly.
 EXX Get exchange registers.
 POP BC Step to B'C' now.
24DF D-L-STEP LD HL,(COORDS) Now take the step: first,
 COORDS to H'L' as the start
 point.
 LD A,B Y-step from B' to A.
 ADD A,H Add in H'.
 LD B,A Result to B' .
 LD A,C Now the X-step; it will be tested
 INC A for range (Y will be tested in
 PLOT).
 ADD A,L Add L' to C' in A, jump on
 JR C,24F7,D-L-RANGE carry for further test.
 JR Z,24F9,REPORT-B Zero after no carry denotes
 X-position -1, out of range.
24EC D-L-PLOT DEC A Restore true value to A.
 LD C,A Value to C' for plotting.
 CALL 22E5,PLOT-SUB Plot the step.
 EXX Restore main registers.
 LD A,C C back to A to continue
 algorithm.
 DJNZ 24CE,D-L-LOOP Loop back for 8 steps (i.e. H
 steps).
 POP DE Clear machine stack.
 RET Finished.

126

24F7 D-L-RANGE JR Z,24EC,D-L-PLOT Zero after carry denotes X.
 position 255, in range.

Report B - Integer out of range

24F9 REPORT-B RST 0008,ERROR-1 Call the error handling
 DEFB +0A routine.

127

EXPRESSION EVALUATION

THE 'SCANNING' SUBROUTINE

This subroutine is used to produce an evaluation result of the 'next expression'.

The result is returned as the 'last value' on the calculator stack. For a numerical result, the last value will be the actual floating point
number. However, for a string result the last value will consist of a set of parameters. The first of the five bytes is unspecified, the
second and third bytes hold the address of the start of the string and the fourth and fifth bytes hold the length of the string.

Bit 6 of FLAGS is set for a numeric result and reset for a string result.
When a next expression consists of only a single operand, e.g. ... A ..., ... RND ..., ... A$ (4, 3 TO 7) ... , then the last value is simply

the value that is obtained from evaluating the operand.
However when the next expression contains a function and an operand, e.g. ... CHR$ A..., ... NOT A ... , SIN 1 ..., the operation

code of the function is stored on the machine stack until the last value of the operand has been calculated. This last value is then
subjected to the appropriate operation to give a new last value.

In the case of there being an arithmetic or logical operation to be performed, e.g. ... A+B ... , A*B ..., ... A=B ... , then both the last
value of the first argument and the operation code have to be kept until the last value of the second argument has been found. Indeed
the calculation of the last value of the second argument may also involve the storing of last values and operation codes whilst the
calculation is being performed.

It can therefore be shown that as a complex expression is evaluated, e.g. ... CHR$ (T+A - 26*INT ((T+A)/26)+65)..., a hierarchy of
operations yet to be performed is built up until the point is reached from which it must be dismantled to produce the final last value.

Each operation code has associated with it an appropriate priority code and operations of higher priority are always performed before
those of lower priority.

The subroutine begins with the A register being set to hold the first character of the expression and a starting priority marker - zero -
being put on the machine stack.

24FB SCANNING RST 0018,GET-CHAR The first character is fetched.
 LD B,+00 The starting priority marker.
 PUSH BC It is stacked.
24FF S-LOOP-1 LD C,A The main re-entry point.
 LD HL,+2596 Index into scanning function
 CALL 16DC,INDEXER table with the code in C.
 LD A,C Restore the code to A.
 JP NC,2684,S-ALPHNUM Jump if code not found in table.
 LD B,+00 Use the entry found in the table
 LD C,(HL) to build up the required address
 ADD HL,BC in HL, and jump to it.
 JP (HL)

Four subroutines follow; they are called by routines from the scanning function table. The first one, the 'scanning quotes subroutine', is
used by S-QUOTE to check that every string quote is matched by another one.

250F S-QUOTE-S CALL 0074,CH-ADD+1 Point to the next character.
 INC BC Increase the length count by
 one.
 CP +0D Is it a carriage return?
 JP Z, 1C8A,REPORT-C Report the error if so.
 CP +22 Is it another '"'?
 JR NZ,250F,S-QUOTE-S Loop back if it is not.
 CALL 0074,CH-ADD+1 Point to next character; set zero
 CP +22 flag if it is another '"'.
 RET Finished.

The next subroutine, the 'scanning: two co-ordinates' subroutine, is called by S-SCREEN$, S-ATTR and S-POINT to make sure the
required two co-ordinates are given in their proper form.

2522 S-2-COORD RST 0020, NEXT-CHAR Fetch the next character.
 CP +28 Is it a '('?

128

 JR NZ,252D,S-RPORT-C Report the error if it is not.
 CALL 1C79,NEXT-2NUM Co-ordinates to calculator stack.
 RST 0018,GET-CHAR Fetch the current character.
 CP +29 Is it a ')'?
252D S-RPORT-C JP NZ,1C8A,REPORT-C Report the error if it is not.

THE 'SYNTAX-Z' SUBROUTINE
At this point the 'SYNTAX-Z' subroutine is interpolated. It is called 32 times, with a saving of just one byte each call. A simple test of bit
7 of FLAGS will give the zero flag reset during execution and set during syntax checking.
 i.e. SYNTAX gives Z set.

2530 SYNTAX-Z BIT 7,(FLAGS) Test bit 7 of FLAGS.
 RET Finished.

The next subroutine is the 'scanning SCREEN$ subroutine', which is used by S-SCREENS$ to find the character that appears at line x,
column y of the screen. It only searches the character set 'pointed to' to CHARS.

Note: This is normally the characters +20 (space) to +7F (©) although the user can alter CHARS to match for other characters,
including user-defined graphics.

2535 S-SCRN$-S CALL 2307,STK-TO-BC x to C, y to B; 0<=x<23
 LD HL,(CHARS) decimal; O<=y<=31 decimal.
 LD DE,+0100 CHARS plus 256 decimal gives
 ADD HL,DE HL pointing to the character set.
 LD A,C x is copied to A.
 RRCA The number 32 (decimal) * (x
 RRCA mod 8) + y is formed in A and
 copied to E.
 RRCA This is the low byte of the
 AND +E0 required screen address.
 XOR B
 LD E,A
 LD A,C x is copied to A again
 AND +18 Now the number 64 (decimal) +
 XOR +40 8*INT (x/8) is inserted into D.
 LD D,A DE now holds the screen address.
 LD B,+60 B counts the 96 characters.
254F S-SCRN-LP PUSH BC Save the count.
 PUSH DE And the screen pointer.
 PUSH HL And the character set pointer.
 LD A,(DE) Get first row of screen character.
 XOR (HL) Match with row from character
 set.
 JR Z,255A,S-SC-MTCH Jump if direct match found.
 INC A Now test for match with inverse
 character (get +00 in A from
 +FF).
 JR NZ,2573,S-SCR-NXT Jump if neither match found.
 DEC A Restore +FF to A.
255A S-SC-MTCH LD C,A Inverse status (+00 or +FF) to C.
 LD B,+07 B counts through the other 7
 rows.
255D S-SC-ROWS INC D Move DE to next row (add 256
 dec.).
 INC HL Move HL to next row (i.e. next
 byte).
 LD A,(DE) Get the screen row.
 XOR (HL) Match with row from the ROM.
 XOR C Include the inverse status.
 JR NZ,2573,S-SCR-NXT Jump if row fails to match.
 DJNZ 255D,S-SC-ROWS Jump back till all rows done.
 POP BC Discard character set pointer.
 POP BC And screen pointer.

129

 POP BC Final count to BC.
 LD A,+80 Last character code in set plus
 one.
 SUB B A now holds required code.
 LD BC,+0001 One space is now needed in the
 work space.
 RST 0030,BC-SPACES Make the space.
 LD (DE),A Put the character into it.
 JR 257D,S-SCR-STO Jump to stack the character.
2573 S-SCR-NXT POP HL Restore character set pointer.
 LD DE,+0008 Move it on 8 bytes, to the next
 ADD HL,DE character in the set.
 POP DE Restore the screen pointer.
 POP BC And the counter.
 DJNZ 254F,S-SCRN-LP Loop back for the 96 characters.
 LD C,B Stack the empty string (Length
 zero).
257D S-SCR-STO JP 2AB2,STK-STO-$ Jump to stack the matching
 character, or the null string if
 no match is found.

Note: This exit, via STK-STO-$, is a mistake as it leads to 'double storing' of the string result (see S-STRING, 25DB). The instruction
line should be 'RET'.

 The last of these four subroutines is the 'scanning attributes subroutine'. It is called by S-ATTR to return the value of ATTR (x,y)
which codes the attributes of line x, column y on the television screen.

2580 S-ATTR-S CALL 2307,STK-TO-BC x to C, y to B. Again, 0<=x<=23
 LD A,C decimal; 0<=y<=31 decimal.
 RRCA x is copied to A and the number
 RRCA 32 (decimal)*x (mod 8)+y is
 RRCA formed in A and copied to L.
 LD C,A 32*x(mod 8)+INT (x/8) is also
 AND +E0 copied to C.
 XOR B
 LD L,A L holds low byte of attribute
 address.
 LD A,C 32*x(mod 8)+INT (x/8) is
 copied to A.
 AND +03 88 (decimal)+INT (x/8) is
 XOR +58 formed in A and copied to H.
 LD H,A H holds high byte of attribute
 address.
 LD A,(HL) The attribute byte is copied to
 A.
 JP 2D28,STACK-A Exit, stacking the required byte.

THE SCANNING FUNCTION TABLE

This table contains 8 functions and 4 operators. It thus incorporates 5 new Spectrum functions and provides a neat way of accessing
some functions and operators which already existed on the ZX81.

location code offset name address of handling routine
2596 22 1C S-QUOTE 25B3
2598 28 4F S-BRACKET 25E8
259A 2E F2 S-DECIMAL 268D
259C 2B 12 S-U-PLUS 25AF
259E A8 56 S-FN 25F5
25A0 A5 57 S-AND 25F8
25A2 A7 84 S-PI 2627
25A4 A6 8F S-INKEY$ 2634
25A6 C4 E6 S-BIN (EQU. S-DECIMAL) 268D
25A8 AA BF S-SCREEN$ 2668
25AA AB C7 S-ATTR 2672

130

25AC A9 CE S-POINT 267B
25AE 00 End-marker

THE SCANNING FUNCTION ROUTINES

25AF S-U-PLUS RST 0020,NEXTCHAR For unary plus, simply move on
 JP 24FF,S-LOOP-1 to the next character and jump
 back to the main re-entry
 of SCANNING.

The 'scanning QUOTE routine': This routine deals with string quotes, whether simple like "name" or more complex like "a ""white"" lie"
or the seemingly redundant VAL$ """a""".

25B3 S-QUOTE RST 0018,GET-CHAR Fetch the current character.
 INC HL Point to the start of the string.
 PUSH HL Save the start address.
 LD BC,+0000 Set the length to zero.
 CALL 250F,S-QUOTE-S Call the "matching" subroutine.
 JR NZ,25D9,S-Q-PRMS Jump if zero reset - no more
 quotes.
25BE S-Q-AGAIN CALL 250F,S-QUOTE-S Call it again for a third quote.
 JR Z,25BE,S-Q-AGAIN And again for the fifth, seventh
 etc.
 CALL 2530,SYNTAX-Z If testing syntax, jump to reset
 JR Z,25D9,S-Q-PRMS bit 6 of FLAGS and to continue
 scanning.
 RST 0030,BC-SPACES Make space in the work space
 for the string and the
 terminating quote.
 POP HL Get the pointer to the start.
 PUSH DE Save the pointer to the first
 space.
25CB S-Q-COPY LD A,(HL) Get a character from the string.
 INC HL Point to the next one.
 LD (DE),A Copy last one to work space.
 INC DE Point to the next space.
 CP +22 Is last character a '"'?
 JR NZ,25CB,S-Q-COPY If not, jump to copy next one.
 LD A,(HL) But if it was, do not copy next
 INC HL one; if next one is a '"', jump
 CP +22 to copy the one after it;
 JR Z,25CB,S-Q-COPY otherwise, finished with copying.
25D9 S-Q-PRMS DEC BC Get true length to BC.

Note that the first quote was not counted into the length; the final quote was, and is discarded now. Inside the string, the first, third, fifth,
etc., quotes were counted in but the second, fourth, etc., were not.

 POP DE Restore start of copied string.
25DB S-STRING LD HL,+5C3B This is FLAGS; this entry point
 RES 6,(HL) is used whenever bit 6 is to be
 BIT 7,(HL) reset and a string stacked if exe-
 CALL NZ,2AB2,STK-STO-S cuting a line. This is done now.
 JP 2712,S-CONT-2 Jump to continue scanning the
 line.

Note that in copying the string to the work space, every two pairs of string quotes inside the string ("") have been reduced to one pair of
string quotes(").

25E8 S-BRACKET RST 0020,NEXT-CHAR The 'scanning BRACKET
 CALL 24FB,SCANNING routine' simply gets the
 CP +29 character and calls SCANNING
 recursively.
 JP NZ,1C8A,REPORT-C Report the error if no matching
 RST 0020,NEXT-CHAR bracket; then continue scanning.

131

 JP 2712,S-CONT-2
25F5 S-FN JP 27BD,S-FN-SBRN The 'scanning FN routine'.

This routine, for user-defined functions, just jumps to the 'scanning FN subroutine'.

25F8 S-RND CALL 2530,SYNTAX-Z Unless syntax is being checked,
 JR Z,2626,S-RND-END jump to calculate a random
 number.
 LD BC,(SEED) Fetch the current value of
 SEED.
 CALL 2D2B,STACK-BC Put it on the calculator stack.
 RST 0028,FP-CALC Now use the calculator,
 DEFB +A1,stk-one The 'last value' is now
 DEFB +0F,addition SEED+1.
 DEFB +34,stk-data Put the decimal number 75
 DEFB +37,exponent+87 on the calculator stack.
 DEFB +16,(+00,+00,+00)
 DEFB +04,multiply 'last value' (SEED+1)*75.
 DEFB +34,stk-data See STACK LITERALS to see
 DEFB +80,(four bytes) how bytes are expanded so as to
 DEFB +41,exponent +91 put the decimal number 65537
 DEFB +00,+00,+80,(+00) on the calculator stack.
 DEFB +32,n-mod-m Divide (SEED+1)*75 by 65537
 to give a 'remainder' and an
 'answer'.
 DEFB +02,delete Discard the 'answer'.
 DEFB +A1,stk-one The 'last value' is now
 DEFB +03,subtract 'remainder' - 1.
 DEFB +31,duplicate Make a copy of the 'last value'.
 DEFB +38,end-calc The calculation is finished.
 CALL 2DA2,FP-TO-BC Use the 'last value' to give the
 LD (SEED),BC new value for SEED.
 LD A,(HL) Fetch the exponent of 'last
 value'.
 AND A Jump forward if the exponent is
 JR Z,2625,S-RND-END zero.
 SUB +10 Reduce the exponent, i.e. divide
 LD (HL),A 'last value' by 65536 to give the
 required 'last value'.
2625 S-RND-END JR 2630,S-PI-END Jump past the 'PI' routine.

The 'scanning-PI routine': unless syntax is being checked the value of 'PI' is calculated and forms the 'last value' on the calculator stack.

2627 S-PI CALL 2530,SYNTAX-Z Test for syntax checking.
 JR Z,2630,S-PI-END Jump if required.
 RST 0028,FP-CALC Now use the calculator.
 DEFB +A3,stk-pi/2 The value of PI/2 is put on the
 DEFB +3B,end-calc calculator stack as the 'last
 value'.
 INC (HL) The exponent is incremented
 thereby doubling the 'last value'
 giving PI.
2630 S-PI-END RST 0020,NEXT-CHAR Move on to the next character.
 JP 26C3,S-NUMERIC Jump forward.
2634 S-INKEY$ LD BC,+105A Priority +10 hex, operation
 RST 0020,NEXT-CHAR code +5A for the 'read-in'
 subroutine.
 CP +23 If next char. is '#', jump.
 JP Z,270D,S-PUSH-PO There will be a numerical
 argument.
 LD HL,+5C3B This is FLAGS.
 RES 6,(HL) Reset bit 6 for a string result.
 BIT 7,(HL) Test for syntax checking.

132

 JR Z,2665,S-INK$-EN Jump if required.
 CALL 028E,KEY-SCAN Fetch a key-value in DE.
 LD C,+00 Prepare empty string; stack it if
 JR NZ,2660,S-IK$-STK too many keys pressed.
 CALL 031E,K-TEST Test the key value; stack empty
 JR NC,2660,S-IK$-STK string if unsatisfactory.
 DEC D +FF to D for L made (bit 3 set).
 LD E,A Key-value to E for decoding.
 CALL 0333,K-DECODE Decode the key-value.
 PUSH AF Save the ASCII value briefly.
 LD BC,+0001 One space is needed in the work
 space.
 RST 0030,BC-SPACES Make it now.
 POP AF Restore the ASCII value.
 LD (DE),A Prepare to stack it as a string.
 LD C,+01 Its length is one.
2660 S-IK$-STK LD B,+00 Complete the length parameter.
 CALL 2AB2,STK-STO-$ Stack the required string.
2665 S-INK$-EN JP 2712,S-CONT-2 Jump forward.
2668 S-SCREEN$ CALL 2522,S-2-COORD Check that 2 co-ordinates are
 given.
 CALL NZ,2535,S-SCRN$-S Call the subroutine unless
 RST 0020,NEXT-CHAR checking syntax; then get next
 JP 25DB,S-STRING character and jump back.
2672 S-ATTR CALL 2522,5-2-COORD Check that 2 co-ordinates are
 given.
 CALL NZ,2580,S-ATTR-S Call the subroutine unless
 RST 0020,NEXT-CHAR checking syntax; then get the
 JR 26C3,S-NUMERIC next character and jump
 forward.
267B S-POINT CALL 2522,S-2-COORD Check that 2 co-ordinates are
 given.
 CALL NZ,22CB,POINT-SUB Call the subroutine unless
 RST 0020,NEXT-CHAR checking syntax; then get the
 JR 26C3,S-NUMERIC next character and jump
 forward.
2684 S-ALPHNUM CALL 2C88,ALPHANUM Is the character alphanumeric?
 JR NC,26DF,S-NEGATE Jump if not a letter or a digit.
 CP +41 Now jump if it a letter;
 JR NC,26C9,S-LETTER otherwise continue on into
 S-DECIMAL.

The 'scanning DECIMAL routine' which follows deals with a decimal point or a number that starts with a digit. It also takes care of the
expression 'BIN', which is dealt with in the 'decimal to floating-point' subroutine.

268D S-DECIMAL CALL 2530,SYNTAX-Z Jump forward if a line is
 (EQU. S-BIN) JR NZ,2685,S-STK-DEC being executed.

The action taken is now very different for syntax checking and line execution. If syntax is being checked then the floating-point form has
to be calculated and copied into the actual BASIC line. However when a line is being executed the floating-point form will always be
available so it is copied to the calculator stack to form a 'last value'.

During syntax checking:
 CALL 2C9B,DEC-TO-FP The floating-point form is
 found.
 RST 0018,GET-CHAR Set HL to point one past the
 last digit.
 LD BC,+0006 Six locations are required.
 CALL 1655,MAKE-ROOM Make the room in the BASIC
 line.
 INC HL Point to the first free space.
 LD (HL),+0E Enter the number marker code.
 INC HL Point to the second location.
 EX DE,HL This pointer is wanted in DE.

133

 LD HL,(STKEND) Fetch the 'old' STKEND.
 LD C,+05 There are 5 bytes to move.
 AND A Clear the carry flag.
 SBC HL,BC The 'new' STKEND='old'
 STKEND -5.
 LD (STKEND),HL Move the floating-point number
 LDIR from the calculator stack to
 the line.
 EX DE,HL Put the line pointer in HL.
 DEC HL Point to the last byte added.
 CALL 0077,TEMP-PTR1 This sets CH-ADD.
 JR 26C3,S-NUMERIC Jump forward.

During line execution:
26B5 S-STK-DEC RST 0018,GET-CHAR Get the current character.
26B6 S-SD-SKIP INC HL Now move on to the next
 LD A,(HL) character in turn until
 CP +0E the number marker code
 JR NZ,26B6,S-SD-SKIP is found.
 INC HL Point to the first byte of the
 number.
 CALL 33B4,STACK-NUM Move the floating-point number.
 LD (CH-ADD),HL Set CH-ADD.

A numeric result has now been identified, coming from RND, PI, ATTR, POINT or a decimal number, therefore bit 6 of FLAGS must be
set.

26C3 S-NUMERIC SET 6,(FLAGS) Set the numeric marker flag.
 JR 26DD,S-CONT-1 Jump forward.

THE SCANNING VARIABLE ROUTINE
When a variable name has been identified a call is made to LOOK-VARS which looks through those variables that already exist in the
variables area (or in the program area at DEF FN statements for a user-defined function FN). If an appropriate numeric value is found
then it is copied to the calculator stack using STACK-NUM. However a string or string array entry has to have the appropriate
parameters passed to the calculator stack by the STK-VAR subroutine (or in the case of a user-defined function, by the STK-F-ARG
subroutine as called from LOOK-VARS).

26C9 S-LETTER CALL 28B2,LOOK-VARS Look in the existing variables
 for the matching entry.
 JP C,1C2E,REPORT-2 An error is reported if there is
 no existing entry.
 CALL Z,2996,STK-VARS Stack the parameters of the
 string entry/return numeric
 element base address.
 LD A,(FLAGS) Fetch FLAGS.
 CP +C0 Test bits 6 and 7 together.
 JR C,26DD,S-CONT-1 One or both bits are reset.
 INC HL A numeric value is to be stacked.
 CALL 33B4,STACK-NUM Move the number.
26DD S-CONT-1 JR 2712,S-CONT-2 Jump forward.

The character is tested against the code for '-', thus identifying the 'unary minus' operation.

Before the actual test the B register is set to hold the priority +09 and the C register the operation code +D8 that are required for this
operation.

26DF S-NEGATE LD BC,+09DB Priority +09, operation code
 +D8.
 CP +2D Is it a '-'?
 JR Z,270D,S-PUSH-PO Jump forward if it is 'unary
 minus'.

Next the character is tested against the code for 'VAL$', with priority 16 decimal and operation code 18 hex.

134

 LD BC,+1018 Priority 16 dec, operation code
 +18 hex.
 CP +AE Is it 'VAL$'?
 JR Z,270D,S-PUSH-PO Jump forward if it is 'VAL$'.

The present character must now represent one of the functions CODE to NOT, with codes +AF to +C3.

 SUB +AF The range of the functions is
 changed from +AF to +C3 to
 range +00 to +14 hex.
 JP C,1C8A,REPORT-C Report an error if out of range.

The function 'NOT' is identified and dealt with separately from the others.

 LD BC,+04F0 Priority +04, operation code
 +F0.
 CP +14 Is it the function 'NOT'?
 JR Z,270D,S-PUSH-PO Jump if it is so.
 JP NC,1C8A,REPORT-C Check the range again.

The remaining functions have priority 16 decimal. The operation codes for these functions are now calculated. Functions that operate
on strings need bit 6 reset and functions that give string results need bit 7 reset in their operation codes.

 LD B,+10 Priority 16 decimal.
 ADD A,+DC The function range is now +DC
 +EF.
 LD C,A Transfer the operation code.
 CP +DF Separate CODE, VAL and LEN
 JR NC,2707.S-NO-TO-S which operate on strings to give
 RES 6,C numerical results.
2707 S-NO-TO-S CP +EE Separate STR$ and CHR$
 JR C,2700,S-PUSH-PO which operate on numbers to
 give string results.
 RES 7,C Mark the operation codes.
 The other operation codes have
 bits 6 and 7 both set.

The priority code and the operation code for the function being considered are now pushed on to the machine stack. A hierarchy of
operations is thereby built up.

270D S-PUSH-PO PUSH BC Stack the priority and operation
 RST 0020,NEXT-CHAR codes before moving on to
 JP 24FF,S-LOOP-1 consider the next part of the
 expression.

The scanning of the line now continues. The present argument may be followed by a '(', a binary operator or, if the end of the
expression has been reached, then e.g. a carriage return character or a colon, a separator or a 'THEN'.

2712 S-CONT-2 RST 0018,GET-CHAR Fetch the present character.
2713 S-CONT-3 CP +28 Jump forward if it is not a '(',
 JR NZ,2723,S-OPERTR which indicates a parenthesised
 expression.

If the 'last value' is numeric then the parenthesised expression is a true sub-expression and must be evaluated by itself. However if the
'last value' is a string then the parenthesised expression represents an element of an array or a slice of a string. A call to SLICING
modifies the parameters of the string as required.

 BIT 6,(FLAGS) Jump forward if dealing with a
 JR NZ,2734,S-LOOP numeric parenthesised
 expression.
 CALL 2A52,SLICING Modify the parameters of the
 'last value'.
 RST 0020,NEXT-CHAR Move on to consider the next
 JR 2713,S-CONT-3 character.

135

If the present character is indeed a binary operator it will be given an operation code in the range +C3 - +CF hex, and the appropriate
priority code.

2723 S-OPERTR LD B,+00 Original code to BC to index
 LD C,A into table of operators.
 LD HL,+2795 The pointer to the table.
 CALL 16DC,INDEXER Index into the table.
 JR NC,2734,SLOOP Jump forward if no operation
 found.
 LD C,(HL) Get required code from the
 table.
 LD HL,+26ED The pointer to the priority
 table: i.e. 26ED +C3 gives 27B0
 as the first address.
 ADD HL,BC Index into the table.
 LD B,(HL) Fetch the appropriate priority.

The main loop of this subroutine is now entered. At this stage there are:

I. A 'last value' on the calculator stack.
II. The starting priority market on the machine stack below a hierarchy, of unknown size, of function and binary operation codes.

This hierarchy may be null.
III. The BC register pair holding the 'present' operation and priority, which if the end of an expression has been reached will be

priority zero.

Initially the 'last' operation and priority are taken off the machine stack and compared against the 'present' operation and priority.

If the 'present' priority is higher than the 'last' priority then an exit is made from the loop as the 'present' priority is considered to bind
tighter than the 'last' priority.

However, if the present priority is less binding, then the operation specified as the 'last' operation is performed. The 'present'
operation and priority go back on the machine stack to be carried round the loop again. In this manner the hierarchy of functions and
binary operations that have been queued are dealt with in the correct order.

2734 S-LOOP POP DE Get the 'last' operation and
 priority.
 LD A,D The priority goes to the A
 register.
 CP B Compare 'last' against 'present'.
 JR C,2773,S-TIGHTER Exit to wait for the argument.
 AND A Are both priorities zero?
 JP Z,0018,GET-CHAR Exit via GET-CHAR thereby
 making 'last value' the required
 result.

Before the 'last' operation is performed, the 'USR' function is separated into 'USR number' and 'USR string' according as bit 6 of FLAGS
was set or reset when the argument of the function was stacked as the 'last value'.

 PUSH BC Stack the 'present' values.
 LO HL,+5C3B This is FLAGS.
 LD A,E The 'last' operation is compared
 CP +ED with the code for USR, which
 JR NZ,274C,S-STK-LST will give 'USR number' unless
 modified; jump if not 'USR'.
 BIT 6,(HL) Test bit 6 of FLAGS.
 JR NZ,274C,S-STK-LST Jump if it is set ('USR number').
 LD E,+99 Modify the 'last' operation
 code: 'offset' 19, +80 for string
 input and numerical result
 ('USR string').
274C S-STK-LST PUSH DE Stack the 'last' values briefly.
 CALL 2530,SYNTAX-Z Do not perform the actual
 JR Z,275B,S-SYNTEST operation if syntax is being
 checked.

136

 LD A,E The 'last' operation code.
 AND +3F Strip off bits 6 and 7 to convert
 LD B,A the operation code to a
 calculator offset.
 RST 0028,FP-CALC Now use the calculator.
 DEFB +3B,fp-calc-2 Perform the actual operation
 DEFB +38,end-calc It has been done.
 JR 2764,S-RUNTEST Jump forward.

An important part of syntax checking involves the testing of the operation to ensure that the nature of the 'last value' is of the correct
type for the operation under consideration.

275B S-SYNTEST LD A,E Get the 'last' operation code.
 XOR (FLAGS) This tests the nature of the 'last
 AND +40 value' against the requirement
 of the operation. They are to be
 the same for correct syntax.
2761 S-RPORT-C JP NZ,1C8A,REPORT-C Jump if syntax fails.

Before jumping back to go round the loop again the nature of the 'last value' must be recorded in FLAGS.

2764 S-RUNTEST POP DE Get the 'last' operation code.
 LD HL,+5C3B This is FLAGS.
 SET 6,(HL) Assume result to be numeric.
 BIT 7,E Jump forward if the nature of
 JR NZ,2770,S-LOOPEND 'last value' is numeric.
 RES 6,(HL) It is string.
2770 S-LOOPEND POP BC Get the 'present' values into BC:
 JR 2734,S-LOOP Jump back.

Whenever the 'present' operation binds tighter, the 'last' and the 'present' values go back on the machine stack. However if the 'present'
operation requires a string as its operand then the operation code is modified to indicate this requirement.

2773 S-TIGHTER PUSH DE The 'last' values go on the stack.
 LD A,C Get the 'present' operation
 code.
 BIT 6,(FLAGS) Do not modify the operation
 JR NZ,2790,S-NEXT code if dealing with a numeric
 operand.
 AND +3F Clear bits 6 and 7.
 ADD A,+08 Increase the code by +08 hex.
 LD C,A Return the code to the C
 register.
 CP +10 Is the operation 'AND'?
 JR NZ,2788,S-NOT-AND Jump if it is not so.
 SET 6,C 'AND' requires a numeric
 operand.
 JR 2790,S-NEXT Jump forward.
2788 S-NOT-AND JR C,2761,S-RPORT-C The operations -,*,/,^ and OR
 are not possible between strings.
 CP +17 Is the operation a '+'?
 JR Z,2790,S-NEXT Jump if it is so.
 SET 7,C The other operations yield a
 numeric result.
2790 S-NEXT PUSH BC The 'present' values go on the
 machine stack.
 RST 0020,NEXT-CHAR Consider the next character.
 JP 24FF,S-LOOP-1 Go around the loop again.

137

THE TABLE OF OPERATORS

 operator operator
location code code operator location code code operator

2795 2B CF + 27A3 3C CD <
2797 2D C3 - 27A5 C7 C9 <=
2799 2A C4 * 27A7 C8 CA >=
279B 2F C5 / 27A9 C9 CB <>
279D 5E C6 ^ 27AB C5 C7 OR
279F 3D CE = 27AD C6 C8 AND
27A1 3E CC > 27AF 00 End marker

THE TABLE OF PRIORITIES (precedence table)

location priority operator location priority operator
27B0 06 - 27B7 05 >=
27B1 08 * 27B8 05 <>
27B2 08 / 27B9 05 >
27B3 0A ^ 27BA 05 <
27B4 02 OR 27BB 05 =
27B5 03 AND 27BC 06 +
27B6 05 <=

THE 'SCANNING FUNCTION' SUBROUTINE
This subroutine is called by the 'scanning FN routine' to evaluate a user defined function which occurs in a BASIC line. The subroutine
can be considered in four stages:

I. The syntax of the FN statement is checked during syntax checking.
II. During line execution, a search is made of the program area for a DEF FN statement, and the names of the functions are

compared, until a match is found - or an error is reported.
III. The arguments of the FN are evaluated by calls to SCANNING.
IV. The function itself is evaluated by calling SCANNING, which in turn calls LOOK-VARS and so the 'STACK FUNCTION

ARGUMENT' subroutine.

27BD S-FN-SBRN CALL 2530,SYNTAX-Z Unless syntax is being checked,
 JR NZ,27F7,SF-RUN a jump is made to SF-RUN.
 RST 0020,NEXT-CHAR Get the first character of the
 name.
 CALL 2C8D,ALPHA If it is not alphabetic, then
 JP NC,1C8A,REPORT-C report the error.
 RST 0020,NEXT-CHAR Get the next character.
 CP +24 Is it a '$'?
 PUSH AF Save the zero flag on the stack.
 JR NZ,27D0,SF-BRKT-1 Jump if it was not a '$'.
 RST 0020,NEXT-CHAR But get the next character if it
 was.
27D0 SF-BRKT-1 CP +28 If the character is not a '(', then
 JR NZ,27E6,SF-RPRT-C report the error.
 RST 0020,NEXT-CHAR Get the next character.
 CP +29 Is it a ')'?
 JR Z,27E9,SF-FLAG-6 Jump if it is; there are no argu-
 ments.
27D9 SF-ARGMTS CALL 24FB,SCANNING Within the loop, call SCANNING
 to check the syntax of each
 argument and to insert floating-
 point numbers.
 RST 0018,GET-CHAR Get the character which follows
 CP +2C the argument; if it is not a ','
 JR NZ,27E4,SF-BRKT-2 then jump - no more arguments.
 RST 0020,NEXT-CHAR Get the first character in the
 next argument.

138

 JR 27D9,SF-ARGMTS Loop back to consider this
 argument.
27E4 SF-BRKT-2 CP +29 Is the current character a ')'?
27E6 SF-RPRT-C JP NZ,1C8A,REPORT-C Report the error if it is not.
27E9 SF-FLAG-6 RST 0020,NEXT-CHAR Point to the next character in
 the BASIC line.
 LD HL.+5C3B This is FLAGS; assume a string-
 RES 6,(HL) valued function and reset bit 6
 of FLAGS.
 POP AF Restore the zero flag, jump if
 JR Z,27F4,SF-SYN-EN the FN is indeed string valued.
 SET 6,(HL) Otherwise, set bit 6 of FLAGS
27F4 SF-SYN-EN JP 2712,S-CONT-2 Jump back to continue scanning
 the line.

ii. During line execution, a search must first be made for a DEF FN statement.

27F7 SF-RUN RST 0020,NEXT-CHAR Get the first character of the
 name.
 AND +DF Reset bit 5 for upper case.
 LD B,A Copy the name to B.
 RST 0020,NEXT-CHAR Get the next character.
 SUB +24 Subtract 24 hex, the code for '$'.
 LD C,A Copy the result to C (zero for a
 string, non-zero for a numerical
 function).
 JR NZ,2802,SF-ARGMT1 Jump if non-zero: numerical
 function.
 RST 0020,NEXT-CHAR Get the next character, the '('.
2802 SF-ARGMT1 RST 0020,NEXT-CHAR Get 1st character of 1st argu-
 ment.
 PUSH HL Save the pointer to it on the
 stack.
 LD HL,(PROG) Point to the start of the
 program.
 DEC HL Go back one location.
2808 SF-FND-DF LD DE,+00CE The search will be for 'DEF FN'.
 PUSH BC Save the name and 'string
 status'.
 CALL 1D86,LOOK-PROG Search the program now.
 POP BC Restore the name and status.
 JR NC,2814,SF-CP-DEF Jump if a DEF FN statement
 found.

REPORT P - FN without DEF.

2812 REPORT-P RST 0008,ERROR-1 Call the error handling
 DEFB +18 routine.

When a DEF FN statement is found, the name and status of the two functions are compared: if they do not match, the search is
resumed.

2814 SF-CP-DEF PUSH HL Save the pointer to the DEF FN
 character in case the search has
 to be resumed.
 CALL 28AB,FN-SKPOVR Get the name of the DEF FN
 function.
 AND +DF Reset bit 5 for upper case.
 CP B Does it match the FN name?
 JR NZ,2825,SF-NOT-FD Jump if it does not match.
 CALL 28AB,FN-SKPOVR Get the next character in the
 DEF FN.
 SUB +24 Subtract 24 hex, the code for
 '$'.
 CP C Compare the status with that of
 FN.

139

 JR Z,2831,SF-VALUES Jump if complete match now
 found.
2825 SF-NOT-FD POP HL Restore the pointer to the 'DEF
 FN'.
 DEC HL Step back one location.
 LD DE,+0200 Use the search routine to find
 PUSH BC the end of the DEF FN state-
 CALL 198B,EACH-STMT ment, preparing for the next
 POP BC search; save the name and status
 meanwhile.
 JR 2808,SF-FND-DF Jump back for a further search.

ii. The correct DEF FN statement has now been found. The arguments of the FN statement will be evaluated by repeated calls of
SCANNING, and their 5 byte values (or parameters, for strings) will be inserted into the DEF FN statement in the spaces made there at
syntax checking. HL will be used to point along the DEF FN statement (calling FN-SKPOVR as needed) while CH-ADD points along the
FN statement (calling RST 0020, NEXT-CHAR, as needed).

2831 SF-VALUES AND A If HL is now pointing to a '$',
 CALL Z,28AB,FN-SKPOVR move on to the '('.
 POP DE Discard the pointer to 'DEF
 FN'.
 POP DE Get the pointer to the first
 LD (CH-ADD),DE argument of FN, and copy it to
 CH-ADD.
 CALL 28AB,FN-SKPOVR Move past the '(' now.
 PUSH HL Save this pointer on the stack.
 CP +29 Is it pointing to a ')'?
 JR Z,2885,SF-R-BR-2 If so, jump: FN has no argu-
 ments.
2843 SF-ARG-LP INC HL Point to the next code.
 LD A,(HL) Put the code into A.
 CP +0E Is it the 'number marker' code,
 0E hex?
 LD D,+40 Set bit 6 of D for a numerical
 argument.
 JR Z,2852,SF-ARG-VL Jump on zero: numerical
 argument.
 DEC HL Now ensure that HL is pointing
 to the '$' character (not e.g. to a
 CALL 28AB,FN-SKPOVR control code).
 INC HL HL now points to the 'number
 marker'.
 LD D,+00 Bit 6 of D is reset: string
 argument.
2852 SF-ARG-VL INC HL Point to the 1st of the 5 bytes
 in DEF FN.
 PUSH HL Save this pointer on the stack.
 PUSH DE Save the 'string status' of the
 argument.
 CALL 24FB,SCANNING Now evaluate the argument.
 POP AF Get the no./string flag into A.
 XOR (FLAGS) Test bit 6 of it against the result
 AND +40 of SCANNING.
 JR NZ,288B,REPORT-Q Give report Q if they did not
 match.
 POP HL Get the pointer to the first of
 EX DE,HL the 5 spaces in DEF FN into
 DE.
 LD HL,(STKEND) Point HL at STKEND.
 LD BC,+0005 BC will count 5 bytes to be
 moved.
 SBC HL,BC First, decrease STKEND by 5,

140

 LD (STKEND),HL so deleting the 'last value' from
 the stack.
 LDIR Copy the 5 bytes into the spaces
 in DEF FN.
 EX DE,HL Point HL at the next code.
 DEC HL Ensure that HL points to the
 CALL 28AB,FN-SKPOVR character after the 5 bytes.
 CP +29 Is it a ')'?
 JR Z,2885,SF-R-BR-2 Jump if it is: no more
 arguments in the DEF FN
 statement.
 PUSH HL It is a ',': save the pointer to it.
 RST 0018,GET-CHAR Get the character after the last
 argument that was evaluated
 from FN.
 CP +2C If it is not a ',' jump: mis-
 JR NZ,288B,REPORT-Q matched arguments of FN and
 DEF FN.
 RST 0020,NEXT-CHAR Point CH-ADD to the next
 argument of FN.
 POP HL Point HL to the ',' in DEF FN
 again.
 CALL 28AB,FN-SKPOVR Move HL on to the next argu-
 ment in DEF FN.
 JR 2843,SF-ARG-LP Jump back to consider this
 argument.
2885 SF-R-BR-2 PUSH HL Save the pointer to the ')' in
 DEF FN.
 RST 0018,GET-CHAR Get the character after the last
 argument in FN.
 CP +29 Is it a ')'?
 JR Z,288D,SF-VALUE If so, jump to evaluate the
 function; but if not, give report
 Q.

REPORT Q - Parameter error.
288B REPORT-Q RST 0008,ERROR-1 Call the error handling
 DEFB +19 routine.

iv. Finally, the function itself is evaluated by calling SCANNING, after first setting DEFADD to hold the address of the arguments as they
occur in the DEF FN statement. This ensures that LOOK-VARS, when called by SCANNING, will first search these arguments for the
required values, before making a search of the variables area.

288D SF-VALUE POP DE Restore pointer to ')' in DEF
 FN.
 EX DE,HL Get this pointer into HL.
 LD (CH-ADD),HL Insert it into CH-ADD.
 LD HL,(DEFADD) Get the old value of DEFADD.
 EX (SP),HL Stack it, and get the start
 LD (DEFADD),HL address of the arguments area of
 DEF FN into DEFADD.
 PUSH DE Save address of ')' in FN.
 RST 0020,NEXT-CHAR Move CH-ADD on past ')' and
 RST 0020,NEXT-CHAR '=' to the start of the expression
 for the function in DEF FN.
 CALL 24FB,SCANNING Now evaluate the function.
 POP HL Restore the address of ')' in
 FN.
 LD (CH-ADD),HL Store it in CH-ADD.
 POP HL Restore original value of
 DEFADD.
 LD (DEFADD),HL Put it back into DEFADD.

141

 RST 0020,NEXT-CHAR Get the next character in the
 BASIC line.
 JP 2712,S-CONT-2 Jump back to continue
 scanning.

THE 'FUNCTION SKIPOVER' SUBROUTINE
This subroutine is used by FN and by STK-F-ARG to move HL along the DEF FN statement while leaving CM-ADD undisturbed, as it
points along the FN statement.

28AB FN-SKPOVR INC HL Point to the next code in the
 statement.
 LD A,(HL) Copy the code to A.
 CP +21 Jump back to skip over it if it is
 JR C,28AB,FN-SKPOVR a control code or a space.
 RET Finished.

THE 'LOOK-VARS' SUBROUTINE
This subroutine is called whenever a search of the variables area or of the arguments of a DEF FN statement is required. The
subroutine is entered with the system variable CH-ADD pointing to the first letter of the name of the variable whose location is being
sought. The name will be in the program area or the work space. The subroutine initially builds up a discriminator byte, in the C register,
that is based on the first letter of the variable's name. Bits 5 & 6 of this byte indicate the type of the variable that is being handled.

The B register is used as a bit register to hold flags.

28B2 LOOK-VARS SET 6,(FLAGS) Presume a numeric variable.
 RST 0018,GET-CHAR Get the first character into A.
 CALL 2C8D,ALPHA Is it alphabetic?
 JP NC,1C8A,REPORT-C Give an error report if it is not
 so.
 PUSH HL Save the pointer to the first
 letter.
 AND +1F Transfer bits 0 to 4 of the letter
 LD C,A to the C register; bits 5 & 7 are
 always reset.
 RST 0020,NEXT-CHAR Get the 2nd character into A.
 PUSH HL Save this pointer also.
 CP +28 is the 2nd character a '('?
 JR Z,28EF,V-RUN/SYN Separate arrays of numbers.
 SET 6,C Now set bit 6.
 CP +24 Is the 2nd character a '$'?
 JR Z,28DE,V-STR-VAR Separate all the strings.
 SET 5,C Now set bit 5.
 CALL 2C88,ALPHANUM If the variable's name has only
 JR NC,28E3,V-TEST-FN one character then jump
 forward.

Now find the end character of a name that has more than one character.

28D4 V-CHAR CALL 2C88,ALPHANUM Is the character alphanumeric?
 JR NC,28EF,V-RUN/SYN Jump out of the loop when the
 end of the name is found.
 RES 6,C Mark the discriminator byte.
 RST 0020,NEXT-CHAR Get the next character.
 JR 28D4,V-CHAR Go back to test it.

Simple strings and arrays of strings require that bit 6 of FLAGS is reset.

28DE V-STR-VAR RST 0020,NEXT-CHAR Step CH-ADD past the '$'.
 RES 6,(FLAGS) Reset the bit 6 to indicate a
 string.

If DEFADD-hi is non-zero, indicating that a 'function' (a 'FN') is being evaluated, and if in 'run-time', a search will be made of the
arguments in the DEF FN statement.

28E3 V-TEST-FN LD A,(DEFADD-hi) Is DEFADD-hi zero?

142

 AND A
 JR Z,28EF,V-RUN/SYN If so, jump forward.
 CALL 2530,SYNTAX-Z In 'run-time'?
 JP NZ,2951,STK-F-ARG If so, jump forward to search
 the DEF FN statement.

Otherwise (or if the variable was not found in the DEF FN statement) a search of variables area will be made, unless syntax is being
checked.

28EF V-RUN/SYN LD B,C Copy the discriminator bytes to
 the B register.
 CALL 2530,SYNTAX-Z Jump forward if in
 JR NZ,28FD,V-RUN 'run-time'.
 LD A,C Move the discriminator to A.
 AND +E0 Drop the character code part.
 SET 7,A Indicate syntax by setting bit 7.
 LD C,A Restore the discriminator.
 JR 2934,V-SYNTAX Jump forward to continue.

A BASIC line is being executed so make a search of the variables area.

28FD V-RUN LD HL,(VARS) Pick up the VARS pointer.

Now enter a loop to consider the names of the existing variables.

2900 V-EACH LD A,(HL) The 1st. letter of each
 existing variable.
 AND +7F Match on bits 0 to 6.
 JR Z,2932,V-80-BYTE Jump when the '80-byte' is
 reached.
 CP C The actual comparison.
 JR NZ,292A,V-NEXT Jump forward if the 1st
 characters do not match.
 RLA Rotate A leftwards and then
 ADD A,A double it to test bits 5 & 6.
 JP P,293F,V-FOUND-2 Strings and array variables.
 JR C,293F,V-FOUND-2 Simple numeric and FOR-NEXT
 variables.

Long names are required to be matched fully.
 POP DE Take a copy of the pointer
 PUSH DE to the 2nd. character.
 PUSH HL Save the 1st letter pointer.
2912 V-MATCHES INC HL Consider the next character.
2913 V-SPACES LD A,(DE) Fetch each character in turn.
 INC DE Point to the next character.
 CP +20 Is the character a 'space'?
 JR Z,2913,V-SPACES Ignore the spaces.
 OR +20 Set bit 5 so as to match
 lower and upper case letters.
 CP (HL) Make the comparison.
 JR Z,2912,V-MATCHES Back for another character if
 it does match.
 OR +80 Will it match with bit 7 set?
 CP (HL) Try it.
 JR NZ,2929,V-GET-PTR Jump forward if the 'last
 characters' do not match.
 LD A,(DE) Check that the end of the
 CALL 2C88,ALPHANUM name has been reached before
 JR NC,293E,V-FOUND-1 jumping forward.

In all cases where the names fail to match the HL register pair has to be made to point to the next variable in the variables area.

2929 V-GET-PTR POP HL Fetch the pointer.
292A V-NEXT PUSH BC Save B & C briefly.
 CALL 19B8,NEXT-ONE DE is made to point to the
 next variable.

143

 EX DE,HL Switch the two pointers.
 POP BC Get B & C back.
 JR 2900,V-EACH Go around the loop again.

Come here if no entry was found with the correct name.

2932 V-80-BYTE SET 7,B Signal 'variable not found'.

Come here if checking syntax.

2934 V-SYNTAX POP DE Drop the pointer to the
 2nd. character.
 RST 0018,GET-CHAR Fetch the present character.
 CP +28 Is it a '('?
 JR Z,2943,V-PASS Jump forward.
 SET 5,B Indicate not dealing with an
 JR 294B,V-END array and jump forward.

Come here when an entry with the correct name was found.

293E V-FOUND-1 POP DE Drop the saved variable pointer.
293F V-FOUND-2 POP DE Drop the 2nd character pointer.
 POP DE Drop the first letter pointer.
 PUSH HL Save the 'last' letter pointer.
 RST 0018,GET-CHAR Fetch the current character.

If the matching variable name has more than a single letter then the other characters must be passed-over.

Note: This appears to have been done already at V-CHAR.

2943 V-PASS CALL 2C88,ALPHANUM Is it alphanumeric?
 JR NC,294B,V-END Jump when the end of the name
 has been found.
 RST 0020,NEXT-CHAR Fetch the next character.
 JR 2943,V-PASS Go back and test it.

The exit-parameters are now set.

294B V-END POP HL HL holds the pointer to the
 letter of a short name or the
 'last' character of a long name.
 RL B Rotate the whole register.
 BIT 6,B Specify the state of bit 6.
 RET Finished.

The exit-parameters for the subroutine can be summarised as follows: The system variable CH-ADD points to the first location after the
name of the variable as it occurs in the BASIC line.

When 'variable not found':

I. The carry flag is set.
II. The zero flag is set only when the search was for an array variable.
III. The HL register pair points to the first letter of the name of the variable as it occurs in the BASIC line.

When 'variable found':

I. The carry flag is reset.
II. The zero flag is set for both simple string variables and all array variables.
III. The HL register pair points to the letter of a 'short' name, or the last character of a 'long' name, of the existing entry that was

found in the variables area.

In all cases bits 5 & 6 of the C register indicate the type of variable being handled. Bit 7 is the complement of the SYNTAX/RUN flag.
But only when the subroutine is used in 'runtime' will bits 0 to 4 hold the code of the variable's letter.

In syntax time the return is always made with the carry flag reset. The zero flag is set for arrays and reset for all other variables, except
that a simple string name incorrectly followed by a '$' sets the zero flag and, in the case of SAVE "name" DATA a$(), passes syntax as
well.

144

THE 'STACK FUNCTION ARGUMENT' SUBROUTINE

This subroutine is called by LOOK-VARS when DEFADD-hi in non-zero, to make a search of the arguments area of a DEF FN
statement, before searching in the variables area. If the variable is found in the DEF FN statement, then the parameters of a string
variable are stacked and a signal is given that there is no need to call STK/VAR. But it is left to SCANNING to stack the value of a
numerical variable at 26DA in the usual way.

2951 STK-F-ARG LD HL,(DEFADD) Point to the 1st character in the
 LD A,(HL) arguments area and put it into A.
 CP +29 Is it a ')'?
 JP Z,28EF,V-RUN/SYN Jump to search the variables
 area.
295A SFA-LOOP LD A,(HL) Get the next argument in the
 loop.
 OR +60 Set bits 5 & 6, assuming a
 LD B,A simple numeric variable; copy it
 to B.
 INC HL Point to the next code.
 LD A,(HL) Put it into the A register.
 CP +0E Is it the 'number marker' code
 0E hex?
 JR Z,296B,SFA-CP-VR Jump if so: numeric variable.
 DEC HL Ensure that HL points to the
 CALL 28AB,FN-SKPOVR character, not to a space or
 control code.
 INC HL HL now points to the 'number
 marker'.
 RES 5,B Reset bit 5 of B: string variable.
296B SFA-CP-VR LD A,B Get the variable name into A.
 CP C Is it the one we are looking for?
 JR Z,2981,SFA-MATCH Jump if it matches.
 INC HL Now pass over the 5 bytes of
 INC HL the floating-point number or
 INC HL string parameters to get to the
 INC HL next argument.
 INC HL
 CALL 28AB,FN-SKPOVR Pass on to the next character.
 CP +29 Is it a ')'?
 JP Z,28EF,V-RUN/SYN If so, jump to search the
 variables area.
 CALL 28AB,FN-SKPOVR Point to the next argument.
 JR 295A,SFA-LOOP Jump back to consider it.

A match has been found. The parameters of a string variable are stacked, avoiding the need to call the STK-VAR subroutine.

2981 SFA-MATCH BIT 5,C Test for a numeric variable.
 JR NZ,2991,SFA-END Jump if the variable is numeric;
 SCANNING will stack it.
 INC HL Point to the first of the 5
 bytes to be stacked.
 LD DE,(STKEND) Point DE to STKEND.
 CALL 33C0,MOVE-FP Stack the 5 bytes.
 EX DE,HL Point HL to the new position
 LD (STKEND),HL of STKEND, and reset the
 system variable.
2991 SFA-END POP DE Discard the LOOK-VARS
 POP DE pointers (2nd & 1st character
 pointers).
 XOR A Return from the search with
 INC A both the carry and zero flags
 reset - signalling that a call
 STK-VAR is not required.
 RET Finished.

145

THE 'STK-VAR' SUBROUTINE
This subroutine is usually used either to find the parameters that define an existing string entry in the variables area or to return in the
HL register pair the base address of a particular element or an array of numbers. When called from DIM the subroutine only checks the
syntax of the BASIC statement.

Note that the parameters that define a string may be altered by calling SLICING if this should be specified.

Initially the A and the B registers are cleared and bit 7 of the C register is tested to determine whether syntax is being checked.

2996 STK-VAR XOR A Clear the array flag.
 LD B,A Clear the B register for later.
 BIT 7,C Jump forward if syntax is
 JR NZ,29E7,SV-COUNT being checked.

Next, simple strings are separated from array variables.

 BIT 7,(HL) Jump forward if dealing with
 JR NZ,29AE,SV-ARRAYS an array variable.

The parameters for a simple string are readily found.

 INC A Signal 'a simple string'.
29A1 SV-SIMPLE$ INC HL Move along the entry.
 LD C,(HL) Pick up the low length counter.
 INC HL Advance the pointer.
 LD B,(HL) Pick up the high length
 pointer.
 INC HL Advance the pointer.
 EX DE,HL Transfer the pointer to the
 actual string.
 CALL 2AB2,STK-STORE Pass these parameters to the
 calculator stack.
 RST 0018,GET-CHAR Fetch the present character
 and jump forward to see if a
 JP 2A49,SV-SLICE? 'slice' is required.

The base address of an element in an array is now found. Initially the 'number of dimensions' is collected.

29AE SV-ARRAYS INC HL Step past the length bytes.
 INC HL
 INC HL
 LD B,(HL) Collect the 'number of
 dimensions'.
 BIT 6,C Jump forward if handling an
 JR Z,29C0,SV-PTR array of numbers.

If an array of strings has its 'number of dimensions' equal to '1' then such an array can be handled as a simple string.

 DEC B Decrease the 'number of
 JR Z,29A1,SV-SIMPLE$ dimensions' and jump if the
 number is now zero.

Next a check is made to ensure that in the BASIC line the variable is followed by a subscript.

 EX DE,HL Save the pointer in DE.
 RST 0018,GET-CHAR Get the present character.
 CP +28 Is it a '('?
 JR NZ,2A20,REPORT-3 Report the error if it is not so.
 EX DE,HL Restore the pointer.

For both numeric arrays and arrays of strings the variable pointer is transferred to the DE register pair before the subscript is evaluated.

29C0 SV-PTR EX DE,HL Pass the pointer to DE.
 JR 29E7,SV-COUNT Jump forward.

146

The following loop is used to find the parameters of a specified element within an array. The loop is entered at the mid-point - SV-
COUNT -, where the element count is set to zero.
The loop is accessed 'B' times, this being, for a numeric array, equal to the number of dimensions that are being used, but for an array
of strings 'B' is one less than the number of dimensions in use as the last subscript Is used to specify a 'slice' of the string.

29C3 SV-COMMA PUSH HL Save the counter.
 RST 0018,GET-CHAR Get the present character.
 POP HL Restore the counter.
 CP +2C Is the present character a ','?
 JR Z,29EA,SV-LOOP Jump forward to consider
 another subscript.
 BIT 7,C If a line is being executed
 JR Z,2A20,REPORT-3 then there is an error.
 BIT 6,C Jump forward if dealing with
 JR NZ,29D8,SV-CLOSE an array of strings.
 CP +29 Is the present character a ')'?
 JR NZ,2A12,SV-RPT-C Report an error if not so.
 RST 0020,NEXT-CHAR Advance CH-ADD.
 RET Return as the syntax is correct.

For an array of strings the present subscript may represent a 'slice', or the subscript for a 'slice' may yet be present in the BASIC line.

29D8 SV-CLOSE CP +29 Is the present character a ')'?
 JR Z,2A48,SV-DIM Jump forward and check
 whether there is another sub-
 script.
 CP +CC Is the present character a 'TO'?
 JR NZ,2A12,SV-RPT-C It must not be otherwise.
29E0 SV-CH-ADD RST 0018,GET-CHAR Get the present character.
 DEC HL Point to the preceding
 LD (CH-ADD),HL character and set CH-ADD.
 JR 2A45,SV-SLICE Evaluate the 'slice'.

Enter the loop here.

29E7 SV-COUNT LD HL,+0000 Set the counter to zero.
29EA SV-LOOP PUSH HL Save the counter briefly.
 RST 0020,NEXT-CHAR Advance CH-ADD.
 POP HL Restore the counter.
 LD A,C Fetch the discriminator byte.
 CP +C0 Jump unless checking the
 JR NZ,29FB,SV-MULT syntax for an array of strings.
 RST 0018,GET-CHAR Get the present character.
 CP +29 Is it a ')'?
 JR Z,2A48,SV-DIM Jump forward as finished
 counting elements.
 CP +CC Is to 'TO'?
 JR Z,29E0,SV-CH-ADD Jump back if dealing with a
 'slice'.
29FB SV-MULT PUSH BC Save the dimension-number
 counter and the discriminator
 byte.
 PUSH HL Save the element-counter.
 CALL 2AEE,DE,(DE+1) Get a dimension-size Into DE.
 EX (SP),HL The counter moves to HL and
 the variable pointer is stacked.
 EX DE,HL The counter moves to DE and
 the dimension-size to HL.
 CALL 2ACC,INT-EXP1 Evaluate the next subscript.
 JR C,2A20,REPORT-3 Give an error if out of range.
 DEC BC The result of the evaluation is
 decremented as the counter is to

147

 count the elements occurring
 before the specified element.
 CALL 2AF4,GET-HL*DE Multiply the counter by the
 dimension-size.
 ADD HL,BC Add the result of 'INT-EXP1'
 to the present counter.
 POP DE Fetch the variable pointer.
 POP BC Fetch the dimension-number
 and the discriminator byte.
 DJNZ 29C3,SV-COMMA Keep going round the loop
 until 'B' equals zero.

The SYNTAX/RUN flag is checked before arrays of strings are separated from arrays of numbers.

 BIT 7,C Report an error if checking
2A12 SV-RPT-C JR NZ,2A7A,SL-RPT-C syntax at this point.
 PUSH HL Save the counter.
 BIT 6,C Jump forward if handling
 JR NZ,2A2C,SV-ELEM$ an array of strings.

When dealing with an array of numbers the present character must be a ')'.

 LD B,D Transfer the variable pointer
 LD C,E to the BC register pair.
 RST 0018,GET-CHAR Fetch the present character.
 CP +29 Is it a ')'?
 JR Z,2A22,SV-NUMBER Jump past the error report
 unless it is needed.

Report 3 - Subscript out of range

2A20 REPORT-3 RST 0008,ERROR-1 Call the error handling
 DEFB +02 routine.

The address of the location before the actual floating-point form can now be calculated.

2A22 SV-NUMBER RST 0020,NEXT-CHAR Advance CH-ADD.
 POP HL Fetch the counter.
 LD DE,+0005 There are 5 bytes to each
 element in an array of numbers.
 CALL 2AF4,GET-HL*DE Compute the total number of
 bytes before the required
 element.
 ADD HL,BC Make HL point to the location
 before the required element.
 RET Return with this address.

When dealing with an array of strings the length of an element is given by the last 'dimension-size'. The appropriate parameters are
calculated and then passed to the calculator stack.

2A2C SV-ELEM$ CALL 2AEE,DE,(DE+1) Fetch the last dimension-size.
 EX (SP),HL The variable printer goes on the
 stack and the counter to HL.
 CALL 2AF4,GET-HL*DE Multiply 'counter' by
 'dimension-size'.
 POP BC Fetch the variable pointer.
 ADD HL,BC This gives HL pointing to the
 location before the string.
 INC HL So point to the actual 'start'.
 LD B,D Transfer the last dimension-
 LD C,E size to BC to form the 'length'.
 EX DE,HL Move the 'start' to DE.
 CALL 2AB1,STK-ST-0 Pass these parameters to the
 calculator stack. Note: The first
 parameter is zero indicating a
 string from an 'array of strings'

148

 and hence the existing entry is
 not to be reclaimed.

There are three possible forms of the last subscript. The first is illustrated by - A$(2,4 TO 8) -, the second by - A$(2)(4 TO 8) - and the
third by - A$(2) - which is the default form and indicates that the whole string is required.

 RST 0018,GET-CHAR Get the present character.
 CP +29 Is it a ')'?
 JR Z,2A48,SV-DIM Jump if it is so.
 CP +2C Is it a ','?
 JR NZ,2A20,REPORT-3 Report the error if not so.
2A45 SV-SLICE CALL 2A52,SLlCING Use SLICING to modify the
 set of parameters.
2A48 SV-DIM RST 0020,NEXT-CHAR Fetch the next character.
2A49 SV-SLICE? CP +28 Is It a '('?
 JR Z,2A45,SV-SLICE Jump back if there is a
 'slice' to be considered.

When finished considering the last subscript a return can be made.
 RES 6,(FLAGS) Signal - string result.
 RET Return with the parameters of
 the required string forming a
 'last value' on the calculator
 stack.

THE 'SLICING' SUBROUTINE
The present string can be sliced using this subroutine. The subroutine is entered with the parameters of the string being present on the
top of the calculator stack and in the registers A, B, C, D & E. Initially the SYNTAX/RUN flag is tested and the parameters of the string
are fetched only if a line is being executed.

2A52 SLICING CALL 2530,SYNTAX-Z Check the flag.
 CALL NZ,2BF1,STK-FETCH Take the parameters off the
 stack in 'run-time'.

The possibility of the 'slice' being '()' has to be considered.
 RST 0020,NEXT-CHAR Get the next character.
 CP +29 Is it a ')'?
 JR Z,2AAD,SL-STORE Jump forward if it is so.

Before proceeding the registers are manipulated as follows:

 PUSH DE The 'start' goes on the
 machine stack.
 XOR A The A register is cleared
 PUSH AF and saved.
 PUSH BC The 'length' is saved briefly.
 LD DE,+0001 Presume that the 'slice' is to
 begin with the first character.
 RST 0018,GET-CHAR Get the first character.
 POP HL Pass the 'length' to HL.

The first parameter of the 'slice' is now evaluated.

 CP +CC Is the present character a
 'TO'?
 JR Z,2A81,SL-SECOND The first parameter, by default,
 will be '1' if the jump is taken.
 POP AF At this stage A is zero.
 CALL 2ACD,INT-EXP2 BC is made to hold the first
 parameter. A will hold +FF if
 there has been an 'out of range'
 error.
 PUSH AF Save the value anyway.
 LD D,B Transfer the first parameter
 LD E,C to DE.
 PUSH HL Save the 'length' briefly.

149

 RST 0018,GET-CHAR Get the present character.
 POP HL Restore the 'length'.
 CP +CC Is the present character a 'TO'?
 JR Z,2A81,SL-SECOND Jump forward to consider the
 second parameter if it is so;
 CP +29 otherwise show that there is
2A7A SL-RPT-C JP NZ,1C8A,REPORT-C a closing bracket.

At this point a 'slice' of a single character has been identified. e.g. - A$(4).

 LD H,D The last character of the 'slice'
 LD L,E is also the first character.
 JR 2A94,SL-DEFINE Jump forward.

The second parameter of a 'slice' is now evaluated.

2A81 SL-SECOND PUSH HL Save the 'length' briefly.
 RST 0020,NEXT-CHAR Get the next character.
 POP HL Restore the 'length'.
 CP +29 Is the present character a
 ')'?
 JR Z,2A94,SL-DEFINE Jump if there is not a
 second parameter.
 POP AF If the first parameter was in
 range A will hold zero;
 otherwise +FF.
 CALL 2ACD,INT-EXP2 Make BC hold the second
 parameter.
 PUSH AF Save the 'error register'.
 RST 0018,GET-CHAR Get the present character.
 LD H,B Pass the result obtained from
 LD L,C INT-EXP2 to the HL register
 pair.
 CP +29 Check that there is a closing
 JR NZ,2A7A,SL-RPT-C bracket now.

The 'new' parameters are now defined.

2A94 SL-DEFINE POP AF Fetch the 'error register'.
 EX (SP),HL The second parameter goes on
 the stack and the 'start' goes to
 HL.
 ADD HL,DE The first parameter is added
 to the 'start'.
 DEC HL Go back a location to get it
 correct.
 EX (SP),HL The 'new start' goes on the
 stack and the second parameter
 goes to HL.
 AND A Subtract the first parameters
 SBC HL,DE from the second to find the
 length of the 'slice'.
 LD BC,+0000 Initialise the 'new length'.
 JR C,2AA8,SL-OVER A negative 'slice' is a 'null
 string' rather than an error
 condition. (See manual.)
 INC HL Allow for the inclusive byte.
 AND A Only now test the 'error
 register'.
 JP M,2A20,REPORT-3 Jump if either parameter was
 out of range for the string.
 LD B,H Transfer the 'new length'
 LD C,L to BC.
2AA8 SL-OVER POP DE Get the 'new start'.
 RES 6,(FLAGS) Ensure that a string is still
 indicated.

150

2AAD SL-STORE CALL 2530,SYNTAX-Z Return at this point if
 RET Z checking syntax; otherwise
 continue into the STK-STORE
 subroutine.

THE 'STK-STORE' SUBROUTINE
This subroutine passes the values held in the A, B, C, D & E registers to the calculator stack. The stack thereby grows in size by 5
bytes with every call to this subroutine.
The subroutine is normally used to transfer the parameters of strings but it is also used by STACK-BC and LOG (2^A) to transfer 'small
integers' to the stack.
Note that when storing the parameters of a string the first value stored (coming from the A register) will be a zero if the string comes
from an array of strings or is a 'slice' of a string. The value will be '1' for a complete simple string. This 'flag' is used in the 'LET'
command routine when the '1' signals that the old copy of the string is to be 'reclaimed'.

2AB1 STK-ST-0 XOR A Signal - a string from an
 array of strings or a 'sliced'
 string.
2AB2 STK-STO-$ RES 6,(FLAGS) Ensure the flag Indicates a
 string result.
2AB6 STK-STORE PUSH BC Save B & C briefly.
 CALL 33A9,TEST-5-SP Is there room for 5 bytes?
 Do not return here unless there
 is room available.
 POP BC Restore B & C.
 LD HL,(STKEND) Fetch the address of the first
 location above the present
 stack.
 LD (HL),A Transfer the first byte.
 INC HL Step on.
 LD (HL),E Transfer the second and
 INC HL third bytes; for a string
 LD (HL),D these will be the 'start'.
 INC HL Step on.
 LD (HL),C Transfer the fourth and
 INC HL fifth bytes; for a string
 LD (HL),B these will be the 'length'.
 INC HL Step on so as to point to the
 location above the stack.
 LD (STKEND),HL Save this address In STKEND
 RET and return.

THE 'INT-EXP' SUBROUTINE
This subroutine returns the result of evaluating the 'next expression' as an integer value held in the BC register pair. The subroutine
also tests this result against a limit-value supplied in the HL register pair. The carry flag becomes set if there is an 'out of range' error.
The A register is used as an 'error register' and holds +00 of there is no 'previous error' and +FF if there has been one.

2ACC INT-EXP1 XOR A Clear the 'error register'.
2ACD INT-EXP2 PUSH DE Save both the DE & HL
 PUSH HL register pairs throughout.
 PUSH AF Save the 'error register'
 briefly.
 CALL 1C82,EXPT-1NUM The 'next expression' is
 evaluated to give a 'last value'
 on the calculator stack.
 POP AF Restore the 'error register'.
 CALL 2530,SYNTAX-Z Jump forward if checking

151

 JR Z,2AEB,I-RESTORE syntax.
 PUSH AF Save the error register again.
 CALL 1E99,FIND-INT2 The 'last value' is
 compressed Into BC.
 POP DE Error register to D.
 LD A,B A 'next expression' that
 OR C gives zero is always in
 SCF error so jump forward if it
 JR Z,2AE8,I-CARRY is so.
 POP HL Take a copy of the
 PUSH HL limit-value. This will be a
 'dimension-size' a 'DIM-limit'
 or a 'string length'.
 AND A Now compare the result of
 SBC HL,BC evaluating the expression against
 the limit.

The state of the carry flag and the value held in the D register are now manipulated so as to give the appropriate value for the 'error
register'.

2AE8 I-CARRY LD A,D Fetch the 'old error value'
 SBC A,+00 Form the 'new error value';
 +00 if no error at anytime/
 +FF or less if an 'out of
 range' error on this pass or on
 previous ones.

Restore the registers before returning.

2AEB I-RESTORE POP HL Restore HL & DE.
 POP DE
 RET Return; 'error register' is the
 A register.

THE 'DE,(DE+1)' SUBROUTINE
This subroutine performs the construction - LD DE,(DE+1) - and returns HL pointing to 'DE+2'.

2AEE DE,(DE+1) EX DE,HL Use HL for the construction.
 INC HL Point to 'DE+1'.
 LD E,(HL) In effect - LD E,(DE+1).
 INC HL Point to 'DE+2'.
 LD D,(HL) In effect - LD D,(DE+2).
 RET Finished.

THE 'GET-HL*DE' SUBROUTINE
Unless syntax is being checked this subroutine calls 'HL=HL*DE' which performs the implied construction.
Overflow of the 16 bits available in the HL register pair gives the report 'out of memory'. This is not exactly the true situation but it
implies that the memory is not large enough for the task envisaged by the programmer.

2AF4 GET-HL*DE CALL 2530,SYNTAX-Z Return directly if syntax is
 RET Z being checked.
 CALL 30A9,HL=HL*DE Perform the multiplication.
 JP C,1F15,REPORT-4 Report 'Out of memory'.
 RET Finished.

THE 'LET' COMMAND ROUTINE
This is the actual assignment routine for the LET, READ and INPUT commands.
When the destination variable is a 'newly declared variable' then DEST will point to the first letter of the variable's name as it occurs in
the BASIC line. Bit 1 of FLAGX will be set.
However if the destination variable 'exists already' then bit 1 of FLAGX will be reset and DEST will point for a numeric variable to the
location before the five bytes of the

152

'old number'; and for a string variable to the first location of the 'old string'. The use of DEST in this manner applies to simple variables
and to elements of arrays.
Bit 0 of FLAGX is set if the destination variable is a 'complete' simple string variable. (Signalling - delete the old copy.)
Initially the current value of DEST is collected and bit 1 of FLAGS tested.

2AFF LET LD HL,(DEST) Fetch the present address in
 DEST.
 BIT 1,(FLAGX) Jump if handling a variable
 JR Z,2B66,L-EXISTS that 'exists already'.

A 'newly declared variable' is being used. So first the length of its name is found.

 LD BC,+0005 Presume dealing with a
 numeric variable - 5 bytes.

Enter a loop to deal with the characters of a long name. Any spaces or colour codes in the name are ignored.

2B0B L-EACH-CH INC BC Add '1' to the counter for
 each character of a name.
2B0C L-NO-SP INC HL Move along the variable's name.
 LD A,(HL) Fetch the 'present code'.
 CP +20 Jump back if it is a 'space';
 JR Z,2B0C,L-NO-SP thereby Ignoring spaces.
 JR NC,2B1F,L-TEST-CH Jump forward if the code is
 +21 to +FF.
 CP +10 Accept, as a final code, those
 JR C,2B29,L-SPACES in the range +00 to +0F.
 CP +16 Also accept the range
 JR NC,2B29,L-SPACES +16 to +1F.
 INC HL Step past the control code
 after any of INK to OVER.
 JR 2B0C,L-NO-SP Jump back as these control
 codes are treated as spaces.

Separate 'numeric' and 'string' names.

2B1F L-TEST -CH CALL 2C88,ALPHANUM Is the code alphanumeric?
 JR C,2B0B,L-EACH-CH If It is so then accept it as
 a character of a 'long' name.
 CP +24 Is the present code a 'S'?
 JP Z,2BC0,L-NEWS Jump forward as handling a
 'newly declared' simple string.

The 'newly declared numeric variable' presently being handled will require 'BC' spaces in the variables area for its name and its value.
The room is made available and the name of the variable is copied over with the characters being 'marked' as required.

2B29 L-SPACES LD A,C Copy the 'length' to A.
 LD HL,(E-LlNE) Make HL point to the
 DEC HL '80-byte' at the end of the
 variables area.
 CALL 1655,MAKE-ROOM Now open up the variables area.
 Note: In effect 'BC' spaces are
 made before the displaced
 '80-byte'.
 INC HL Point to the first 'new' byte.
 INC HL Make DE point to the second
 EX DE,HL 'new' byte.
 PUSH DE Save this pointer.
 LD HL,(DEST) Fetch the pointer to the
 start of the name.
 DEC DE Make DE point to the first
 'new' byte.
 SUB +06 Make B hold the 'number of
 LD B,A extra letters' that are found
 in a 'long name'.

153

 JR Z,2B4F,L-SINGLE Jump forward if dealing with
 a variable with a 'short name'.

The 'extra' codes of a long name are passed to the variables area.

2B3E L-CHAR INC HL Point to each 'extra' code.
 LD A,(HL) Fetch the code.
 CP +21 Accept codes from +21 to +FF;
 JR C,2B3E,L-CHAR ignore codes +00 to +20.
 OR +20 Set bit 5, as for lower case
 letters.
 INC DE Transfer the codes in turn
 LD (DE),A to the 2nd 'new' byte
 onwards.
 DJNZ 2B3E,L-CHAR Go round the loop for all the
 'extra' codes.

The last code of a 'long' name has to be ORed with +80.

 OR +80 Mark the code as required
 LD (DE),A and overwrite the last code.

The first letter of the name of the variable being handled is now considered.

 LD A,+C0 Prepare the mark the letter
 of a 'long' name.
2B4F L-SINGLE LD HL,(DEST) Fetch the pointer to the letter.
 XOR (HL) A holds +00 for a 'short'
 name and +C0 for a 'long' name.
 OR +20 Set bit 5, as for lower case
 letters.
 POP HL Drop the pointer now.

The subroutine L-FIRST is now called to enter the 'letter' into its appropriate location.

 CALL 2BEA,L-FIRST Enter the letter and return
 with HL pointing to 'new
 80-byte'.

The 'last value' can now be transferred to the variables area. Note that at this point HL always points to the location after the five
locations allotted to the number.
A 'RST 0028' instruction is used to call the CALCULATOR and the 'last value' is deleted. However this value is not overwritten.

2B59 L-NUMERIC PUSH HL Save the 'destination' pointer.
 RST 0028,FP-CALC Use the calculator.
 DEFB +02,delete This moves STKEND back five
 DEFB +38,end-calc bytes.
 POP HL Restore the pointer.
 LD BC,+0005 Give the number a 'length'
 of five bytes.
 AND A Make HL point to the first
 SBC HL,BC of the five locations and
 JR 2BA6,L-ENTER jump forward to make the
 actual transfer.

Come here if considering a variable that 'exists already'. First bit 6 of FLAGS is tested so as to separate numeric variables from string
or array of string variables.

2B66 L-EXISTS BIT 6,(FLAGS) Jump forward if handling any
 JR Z,2B72,L-DELETES kind of string variable.

For numeric variables the 'new' number overwrites the 'old' number. So first HL has to be made to point to the location after the five
bytes of the existing entry. At present HL points to the location before the five bytes.

 LD DE,+0006 The five bytes of a number +'1'.
 ADD HL,DE HL now points 'after'.
 JR 2B59,L-NUMERIC Jump back to make the actual
 transfer.

154

The parameters of the string variable are fetched and complete simple strings separated from 'sliced' strings and array strings.

2B72 L-DELETE$ LD HL,(DEST) Fetch the 'start'. Note: This
 line is redundant.
 LD BC,(STRLEN) Fetch the 'length'.
 BIT 0,(FLAGX) Jump if dealing with a complete
 JR NZ,2BAF,L-ADD$ simple string; the old string will
 need to be 'deleted' in this case
 only.

When dealing with a 'slice' of an existing simple string, a 'slice' of a string from an array of strings or a complete string from an array of
strings there are two distinct stages involved. The first is to build up the 'new' string in the work space, lengthening or shortening it as
required. The second stage is then to copy the 'new' string to its allotted room in the variables area.
However do nothing if the string has no 'length'.

 LD A,B Return if the string is
 OR C a null string.
 RET Z

Then make the required number of spaces available in the work space.

 PUSH HL Save the 'start' (DEST).
 RST 0030,BC-SPACES Make the necessary amount of
 room in the work space.
 PUSH DE Save the pointer to the
 first location.
 PUSH BC Save the 'length' for use later
 on.
 LD D,H Make DE point to the last
 LD E,L location.
 INC HL Make HL point 'one past' the
 new locations.
 LD (HL),+20 Enter a 'space' character.
 LDDR Copy this character into all the
 new locations. Finish with HL
 pointing to the first new
 location.

The parameters of the string being handled are now fetched from the calculator stack.
 PUSH HL Save the pointer briefly.
 CALL 2BF1,STK-FETCH Fetch the 'new' parameters.
 POP HL Restore the pointer.

Note: At this point the required amount of room has been made available in the work space for the 'variable in assignment'. e.g. For
statement - LET A$(4 to 8)="abcdefg" - five locations have been made.
The parameters fetched above as a 'last value' represent the string that is to be copied into the new locations with Procrustean
lengthening or shortening as required.
The length of the 'new' string is compared to the length of the room made available for it.

 EX (SP),HL 'Length' of new area to HL.
 'Pointer' to new area to stack.
 AND A Compare the two 'lengths'
 SBC HL,BC and jump forward if the 'new'
 ADD HL,BC string will fit into the room.
 JR NC,2B9B,L-LENGTH i.e. No shortening required.
 LD B,H However modify the 'new'
 LD C,L length if it is too long.
2B9B L-LENGTH EX (SP),HL 'Length' of new area to stack.
 'Pointer' to new area to HL.

As long as the new string is not a 'null string' it is copied into the work space. Procrustean lengthening is achieved automatically if the
'new' string is shorter than the room available for it.

155

 EX DE,HL 'Start' of new string to HL.
 'Pointer' to new area to DE.
 LD A,B Jump forward if the
 OR C 'new' string is a 'null'
 JR Z,2BA3,L-IN-W/S string.
 LDIR Otherwise move the 'new'
 string to the work space.

The values that have been saved on the machine stack are restored.

2BA3 L-IN-W/S POP BC 'Length' of new area.
 POP DE 'Pointer' to new area.
 POP HL The start - the pointer
 to the 'variable in assignment'
 which was originally in DEST.
 L-ENTER is now used to pass
 the 'new' string to the variables
 area.

THE 'L-ENTER' SUBROUTINE
This short subroutine is used to pass either a numeric value, from the calculator stack, or a string, from the work space, to its
appropriate position in the variables area.
The subroutine is therefore used for all except 'newly declared' simple strings and 'complete & existing' simple strings.

2BA6 L-ENTER EX DE,HL Change the pointers over.
 LD A,B Check once again that the
 OR C length is not zero.
 RET Z
 PUSH DE Save the destination pointer.
 LDIR Move the numeric value or the
 string
 POP HL Return with the HL register
 RET pair pointing to the first byte
 of the numeric value or the
 string.

THE LET SUBROUTINE CONTINUES HERE
When handling a 'complete & existing' simple string the new string is entered as if it were a 'newly declared' simple string before the
existing version is 'reclaimed'.

2BAF L-ADD$ DEC HL Make HL point to the letter
 DEC HL of the variable's name.
 DEC HL i.e. DEST - 3.
 LD A,(HL) Pick up the letter.
 PUSH HL Save the pointer to the 'existing
 version'.
 PUSH BC Save the 'length' of the
 'existing string'.
 CALL 2BC6,L-STRING Use L-STRING to add the new
 string to the variables area.
 POP BC Restore the 'length'.
 POP HL Restore the pointer.
 INC BC Allow one byte for the letter
 INC BC and two bytes for the length.
 INC BC
 JP 19E8,RECLAIM-2 Exit by jumping to RECLAIM-2
 which will reclaim the whole
 of the existing version.

'Newly declared' simple strings are handled as follows:

2BC0 L-NEW$ LD A,+DF Prepare for the marking of
 the variable's letter.

156

 LD HL,(DEST) Fetch the pointer to the
 letter.
 AND (HL) Mark the letter as required.
 L-STRING is now used to add
 the new string to the variables
 area.

THE 'L-STRING' SUBROUTINE
The parameters of the 'new' string are fetched, sufficient room is made available for it and the string is then transferred.

2BC6 L-STRING PUSH AF Save the variable's letter
 CALL 2BF1,STK-FETCH Fetch the 'start' and the
 'length' of the 'new' string.
 EX DE,HL Move the 'start' to HL.
 ADD HL,BC Make HL point 'one-past' the
 string.
 PUSH BC Save the 'length'.
 DEC HL Make HL point to the end of
 the string.
 LD (DEST),HL Save the pointer briefly.
 INC BC Allow one byte for the letter
 INC BC and two bytes for the length.
 INC BC
 LD HL,(E-LINE) Make HL point to the
 DEC HL '80-byte' at the end of the
 variables area.
 CALL 1655,MAKE-ROOM Now open up the variables area.
 Note: In effect 'BC' spaces are
 made before the displaced
 '80-byte'.
 LD HL,(DEST) Restore the pointer to the
 end of the 'new' string.
 POP BC Make a copy of the length
 PUSH BC of the 'new' string.
 INC BC Add one to the length in case
 the 'new' string is a 'null'
 string.
 LDDR Now copy the 'new' string +
 one byte.
 EX DE,HL Make HL point to the byte
 INC HL that is to hold the high-length.
 POP BC Fetch the 'length'.
 LD (HL),B Enter the high-length.
 DEC HL Back one.
 LD (HL),C Enter the low-length.
 POP AF Fetch the variable’s letter.

THE 'L-FIRST' SUBROUTINE
This subroutine is entered with the letter of the variable, suitably marked, in the A register. The letter overwrites the 'old 80-byte' in the
variables area. The subroutine returns with the HL register pair pointing to the 'new 80-byte'.

2BEA L-FIRST DEC HL Make HL point to the 'old
 80-byte'.
 LD (HL),A It is overwritten with the
 letter of the variable.
 LD HL,(E-LINE) Make HL point to the 'new
 80-byte'.
 DEC HL Finished with all the
 RET 'newly declared variables'.

157

THE 'STK-FETCH' SUBROUTINE
This important subroutine collects the 'last value' from the calculator stack. The five bytes can be either a floating-point number, in
'short' or 'long' form, or set of parameters that define a string.

2BF1 STK-FETCH LD HL,(STKEND) Get STKEND.
 DEC HL Back one;
 LD B,(HL) The fifth value.
 DEC HL Back one.
 LD C,(HL) The fourth one.
 DEC HL Back one.
 LD D,(HL) The third value.
 DEC HL Back one.
 LD E,(HL) The second value.
 DEC HL Back one.
 LD A,(HL) The first value.
 LD (STKEND),HL Reset STKEND to its new
 position
 RET Finished.

THE 'DIM' COMMAND ROUTINE
This routine establishes new arrays in the variables area. The routine starts by searching the existing variables area to determine
whether there is an existing array with the same name. If such an array is found then it is 'reclaimed' before the new array is
established.
A new array will have all its elements set to zero, if it is a numeric array, or to 'spaces', if it is an array of strings.

2C02 DIM CALL 28B2,LOOK-VARS Search the variables area.
2C05 D-RPORT-C JP NZ,1C8A,REPORT-C Give report C as there has been
 an error.
 CALL 2530,SYNTAX-Z Jump forward if in
 JR NZ,2C15,D-RUN 'run time'.
 RES 6,C Test the syntax for string arrays
 as if they were numeric.
 CALL 2996,STK-VAR Check the syntax of the
 parenthesised expression.
 CALL 1BEE,CHECK-END Move on to consider the
 next statement as the syntax
 was satisfactory.

An 'existing array' is reclaimed.

2C15 D-RUN JR C,2C1F,D-LETTER Jump forward if there is no
 'existing array'.
 PUSH BC Save the discriminator byte.
 CALL 19B8,NEXT-ONE Find the start of the next
 variable
 CALL 19E8,RECLAIM-2 Reclaim the 'existing array'.
 POP BC Restore the discriminator byte.

The initial parameters of the new array are found.

2C1F D-LETTER SET 7,C Set bit 7 in the discriminator
 byte.
 LD B,+00 Make the dimension counter
 zero.
 PUSH BC Save the counter and the
 discriminator byte.
 LD HL,+0001 The HL register pair is to
 BIT 6,C hold the size of the elements
 JR NZ,2C2D,D-SIZE in the array, '1' for a string
 LD L,+05 array/ '5' for a numeric array.
2C2D D-SIZE EX DE,HL Element size DE.

158

The following loop is accessed for each dimension that is specified in the parenthesised expression of the DIM statement. The total
number of bytes required for the elements of the array is built up in the DE register pair.

2C2E D-NO-LOOP RST 0020,NEXT-CHAR Advance CH-ADD on each pass..
 LD H,+FF Set a 'limit value'.
 CALL 2ACC,INT-EXP1 Evaluate a parameter.
 JP C,2A20,REPORT-3 Give an error if 'out of range'.
 POP HL Fetch the dimension-counter
 and the discriminator byte.
 PUSH BC Save the parameter on each
 pass through the loop.
 INC H Increase the dimension counter
 on each pass also.
 PUSH HL Restack the dimension-counter
 and the discriminator byte.
 LD H,B The parameter is moved to
 LD L,C the HL register pair.
 CALL 2AF4,GET-HL*DE The byte total is built up
 EX DE,HL in HL and the transferred to
 DE.
 RST 0018,GET-CHAR Get the present character
 CP +2C and go around the loop again
 JR Z,2C2E,D-NO-LOOP if there is another dimension.

Note: At this point the DE register pair indicates the number of bytes required for the elements of the new array and the size of each
dimension is stacked, on the machine stack.
Now check that there is indeed a closing bracket to the parenthesised expression.

 CP +29 Is it a ')'?
 JR NZ,2C05,D-REPORT-C Jump back if not so.
 RST 0020,NEXT-CHAR Advance CH-ADD past it.

Allowance is now made for the dimension-sizes.

 POP BC Fetch the dimension-counter
 and the discriminator byte.
 LD A,C Pass the discriminator byte
 to the A register for later.
 LD L,B Move the counter to L.
 LD H,+00 Clear the H register.
 INC HL Increase the dimension-
 INC HL counter by two and double the
 ADD HL,HL result and form the
 ADD HL,DE correct overall length for
 the variable by adding the
 element byte total.
 JP C,1F15,REPORT-4 Give the report 'Out of
 memory' if required.
 PUSH DE Save the element byte total.
 PUSH BC Save the dimension counter
 and the discriminator byte.
 PUSH HL Save the overall length also.
 LD B,H Move the overall length to BC.
 LD C,L

The required amount of room is made available for the new array at the end of the variables area.

 LD HL,(E-LINE) Make the HL register pair
 DEC HL point to the '80-byte'.
 CALL 1655,MAKE-ROOM The room is made available.
 INC HL HL is made to point to the first
 new location.

The parameters are now entered.

159

 LD (HL),A The letter, suitably marked,
 is entered first.
 POP BC The overall length is fetched
 DEC BC and decreased by '3'.
 DEC BC
 DEC BC
 INC HL Advance HL.
 LD (HL),C Enter the low length.
 INC HL Advance HL.
 LD (HL),B Enter the high length.
 POP BC Fetch the dimension counter.
 LD A,B Move it to the A register.
 INC HL Advance HL.
 LD (HL),A Enter the dimension count.

The elements of the new array are now 'cleared'.

 LD H,D HL is made to point to the
 LD L,E last location of the array
 DEC DE and DE to the location before
 that one.
 LD (HL),+00 Enter a zero into the last
 BIT 6,C location but overwrite it
 JR Z,2C7C,DIM-CLEAR with 'space' if dealing
 LD (HL),+20 with an array of strings.
2C7C DIM-CLEAR POP BC Fetch the element byte total.
 LDDR Clear the array + one extra
 location.

The 'dimension-sizes' are now entered.

2C7F DIM-SIZES POP BC Get a dimension-size.
 LD (HL),B Enter the high byte.
 DEC HL Back one.
 LD (HL),C Enter the low byte.
 DEC HL Back one.
 DEC A Decrease the dimension
 counter.
 JR NZ,2C7F,DIM-SIZES Repeat the operation until all
 the dimensions have been
 RET considered; then return.

THE 'ALPHANUM' SUBROUTINE
This subroutine returns with the carry flag set if the present value of the A register denotes a valid digit or letter.

2C88 ALPHANUM CALL 2D1B,NUMERIC Test for a digit; carry will be
 reset for a digit.
 CCF Complement the carry flag.
 RET C Return if a digit; otherwise
 continue on into 'ALPHA'.

THE 'ALPHA' SUBROUTINE
This subroutine returns with the carry flag set if the present value of the A register denotes a valid letter of the alphabet.

2C8D ALPHA CP +41 Test against 41 hex, the code
 for 'A'
 CCF Complement the carry flag.
 RET NC Return if not a valid character
 code.
 CP +5B Test against 5B hex, 1 more
 than code for 'Z'.
 RET C Return if an upper case letter.
 CP +61 Test against 61 hex, the code
 for 'a'.

160

 CCF Complement the carry flag.
 RET NC Return if not a valid character
 code.
 CP +7B Test against 7B hex, 1 more
 than the code for 'z'.
 RET Finished.

THE 'DECIMAL TO FLOATING POINT' SUBROUTINE
As part of syntax checking decimal numbers that occur in a BASIC line are converted to their floating-point forms. This subroutine reads
the decimal number digit by digit and gives its result as a 'last value' on the calculator stack. But first it deals with the alternative
notation BIN, which introduces a sequence of 0's and 1's giving the binary representation of the required number.

2C9B DEC-TO-FP CP +C4 Is the character a 'BIN'?
 JR NZ,2CB8,NOT-BIN Jump if it is not 'BIN'.
 LD DE,+0000 Initialise result to zero in DE.
2CA2 BIN-DIGIT RST 0020,NEXT-CHAR Get the next character.
 SUB +31 Subtract the character code for
 '1'.
 ADC A,+00 0 now gives 0 with carry set; 1
 gives 0 with carry reset.
 JR NZ,2CB3,BIN-END Any other character causes a
 jump to BIN-END and will be
 checked for syntax during or
 after scanning.
 EX DE,HL Result so far to HL now.
 CCF Complement the carry flag.
 ADC HL,HL Shift the result left, with the
 carry going to bit 0.
 JP C,31AD,REPORT-6 Report overflow if more than
 65535.
 EX DE,HL Return the result so far to DE.
 JR 2CA2,BIN-DIGIT Jump back for next 0 or 1.
2CB3 BIN-END LD B,D Copy result to BC for stacking.
 LD C,E
 JP 2D2B,STACK-BC Jump forward to stack the
 result.

For other numbers, first any integer part is converted; if the next character is a decimal, then the decimal fraction is
considered.

2CB8 NOT-BIN CP +2E Is the first character a '.'?
 JR Z,2CCB,DECIMAL If so, jump forward.
 CALL 2D3B,INT-TO-FP Otherwise, form a 'last value' of
 the integer.
 CP +2E Is the next character a '.'?
 JR NZ,2CEB,E-FORMAT Jump forward to see if it is an 'E'.
 RST 0020,NEXT-CHAR Get the next character.
 CALL 2D1B,NUMERIC Is it a digit?
 JR C,2CEB,E-FORMAT Jump if not (e.g. 1.E4 is allowed).
 JR 2CD5,DEC-STO-1 Jump forward to deal with the
 digits after the decimal point.
2CCB DECIMAL RST 0020,NEXT-CHAR If the number started with a
 CALL 2D1B,NUMERIC decimal, see if the next
 character is a digit.
2CCF DEC-RPT-C JP C,1C8A,REPORT-C Report the error if it is not.
 RST 0028,FP-CALC Use the calculator to stack zero
 DEFB +A0,stk-zero as the integer part of such
 DEFB +38,end-calc numbers.
2CD5 DEC-STO-1 RST 0028,FP-CALC Use the calculator again.
 DEFB +A1,stk-one Find the floating-point form of
 DEFB +C0,st-mem-0 the decimal number '1', and

161

DEFB +02,delete save it in the memory area.
 DEFB +38,end-calc
2CDA NXT-DGT-1 RST 0018,GET-CHAR Get the present character.
 CALL 2D22,STK-DIGIT If it is a digit then stack it.
 JR C,2CEB,E-FORMAT If not jump forward.
 RST 0028,FP-CALC Now use the calculator.
 DEFB +E0,get-mem-0 For each passage of the loop,
 DEFB +A4,stk-ten the number saved in the memory
 DEFB +05,division area is fetched, divided by 10
 DEFB +C0,st-mem-0 and restored: i.e. going from .1
 to .01 to .001 etc.
 DEFN +04,multiply The present digit is multiplied
 DEFB +0F,addition by the 'saved number' and
 DEFB +38,end-calc added to the 'last value'.
 RST 0020,NEXT-CHAR Get the next character.
 JR 2CDA,NXT-DGT-1 Jump back (one more byte than
 needed) to consider it.

Next consider any 'E notation', i.e. the form xEm or xem where m is a positive or negative integer.

2CEB E-FORMAT CP +45 Is the present character an 'E'?
 JR Z,2CF2,SIGN-FLAG Jump forward if it is.
 CP +65 Is it an 'e'?
 RET NZ Finished unless it is so.
2CF2 SIGN-FLAG LD B,+FF Use B as a sign flag, FF for '+'.
 RST 0020,NEXT-CHAR Get the next character.
 CP +2B Is it a '+'?
 JR Z,2CFE,SIGN-DONE Jump forward.
 CP +2D Is it a '-'?
 JR NZ,2CFF,ST-E-PART Jump if neither '+' not '-'.
 INC B Change the sign of the flag.
2CFE SIGN-DONE RST 0020,NEXT-CHAR Point to the first digit.
2CFF ST-E-PART CALL 2D1B,NUMERIC Is it indeed a digit?
 JR C,2CCF,DEC-RPT-C Report the error if not.
 PUSH BC Save the flag in B briefly.
 CALL 2D3B,INT-TO-FP Stack ABS m, where m is the
 exponent.
 CALL 2DD5,FP-TO-A Transfer ABS m to A.
 POP BC Restore the sign flag to B.
 JP C,31AD,REPORT-6 Report the overflow now if
 AND A ABS m is greater than 255 or
 JP M,31AD,REPORT-6 indeed greater than 127 (other
 values greater than about 39 will
 be detected later).
 INC B Test the sign flag in B; '+'
 (i.e. +FF) will now set the zero
 flag.
 JR Z,2D18,E-FP-JUMP Jump if sign of m is '+'.
 NEG Negate m if sign is '-'.
2D18 E-FP-JUMP JP 2D4F,E-TOO-FP Jump to assign to the 'last value'
 the result of x*10^m.

THE 'NUMERIC’ SUBROUTINE
This subroutine returns with the carry flag reset if the present value of the A register denotes a valid digit.

2D1B NUMERIC CP +30 Test against 30 hex, the code
 for '0'.
 RET C Return if not a valid character
 code.
 CP +3A Test against the upper limit.
 CCF Complement the carry flag.
 RET Finished.

162

THE 'STK DIGIT' SUBROUTINE
This subroutine simply returns if the current value held in the A register does not represent a digit but if it does then the floating-point
form for the digit becomes the 'last value' on the calculator stack.

2D22 STK-DIGIT CALL 2D1B,NUMERIC Is the character a digit?
 RET C Return if not in range.
 SUB +30 Replace the code by the actual
 digit.

THE 'STACK-A' SUBROUTINE
This subroutine gives the floating-point form for the absolute binary value currently held in the A register.

2D28 STACK-A LD C,A Transfer the value to the C
 register.
 LD B,+00 Clear the B register

THE 'STACK-BC' SUBROUTINE
This subroutine gives the floating-point form for the absolute binary value currently held in the BC register pair.

The form used in this and hence in the two previous subroutines as well is the one reserved in the Spectrum for small integers n, where
-65535 <= n <= 65535. The first and fifth bytes are zero; the third and fourth bytes are the less significant and more significant bytes of
the 16 bit integer n in two's complement form (if n is negative, these two bytes hold 65536+n); and the second byte is a sign byte, 00 for
'+' and FF for '-'.

2D2B STACK-BC LD IY,+5C3A Re-initialise IY to ERR-NR.
 XOR A Clear the A register.
 LD E,A And the E register, to indicate
 '+'.
 LD D,C Copy the less significant byte to
 D.
 LD C,B And the more significant byte
 to C.
 LD B,A Clear the B register.
 CALL 2AB6,STK-STORE Now stack the number.
 RST 0028,FP-CALC Make HL point to
 DEFB +38,end-calc STKEND-5.
 AND A Clear the carry flag.
 RET Finished.

THE 'INTEGER TO FLOATING-POINT' SUBROUTINE
This subroutine returns a 'last value' on the calculator stack that is the result of converting an integer in a BASIC line, i.e. the integer
part of the decimal number or the line number, to its floating-point form.

Repeated calls to CH-ADD+1 fetch each digit of the integer in turn. An exit is made when a code that does not represent a digit has
been fetched.

2D3B INT-TO-FP PUSH AF Save the first digit - in A.
 RST 0028,FP-CALC Use the calculator.
 DEFB +A0,stk-zero The 'last value' is now zero.
 DEFB +38,end-calc
 POP AF Restore the first digit.

Now a loop is set up. As long as the code represents a digit then the floating-point form is found and stacked under the 'last value'. The
'last value' is then multiplied by decimal 10 and added to the 'digit' to form a new 'last value' which is carried back to the start of the
loop.

163

2D40 NXT-DGT-2 CALL 2D22,STK-DIGIT If the code represents a digit
 RET C then stack the floating-point
 form.
 RST 0028,FP-CALC Use the calculator.
 DEFB +01,exchange 'Digit' goes under 'last value'.
 DEFB +A4,stk-ten Define decimal 10.
 DEFB +04,multiply 'Last value' = 'last value' *10.
 DEFB +0F,addition 'Last value' = 'last value+
 'digit'.
 DEFB +38,end-calc
 CALL 0074,CH-ADD+1 The next code goes into A.
 JR 2D40,NXT-DGT-2 Loop back with this code.

164

THE ARITHMETIC ROUTINES

THE 'E-FORMAT TO FLOATING-POINT' SUBROUTINE
(Offset 3C - see CALCULATE below: 'e-to-fp')

This subroutine gives a 'last value' on the top of the calculator stack that is the result of converting a number given in the form xEm,
where m is a positive or negative integer. The subroutine is entered with x at the top of the calculator stack and m in the A register.

The method used is to find the absolute value of m, say p, and to multiply or divide x by 10^p according to whether m is positive or
negative.

To achieve this, p is shifted right until it is zero, and x is multiplied or divided by 10^(2^n) for each set bit b(n) of p. Since p is never
much more than decimal 39, bits 6 and 7 of p will not normally be set.

2D4F E-TO-FP RLCA Test the sign of m by rotating
 RRCA bit 7 of A into the carry
 without changing A.
 JR NC,2D55,E-SAVE Jump if m is positive.
 CPL Negate m in A without
 INC A disturbing the carry flag.
2D55 E-SAVE PUSH AF Save m in A briefly.
 LD HL,+5C92 This is MEMBOT: a sign flag is
 CALL 350B,FP-0/1 now stored in the first byte of
 mem-0, i.e. 0 for '+' and 1 for
 RST 0028,FP-CALC The stack holds x.
 DEFB +A4,stk-ten x,10 (decimal)
 DEFB +38,end-calc x,10
 POP AF Restore m in A.
2D60 E-LOOP SRL A In the loop, shift out the next
 bit of m, modifying the carry
 and zero flags appropriately;
 JR NC,2D71,E-TST-END jump if carry reset.
 PUSH AF Save the rest of m and the flags.
 RST 0028,FP-CALC The stack holds x' and
 10^(2^n), where x' is an
 interim stage in the multiplica-
 tion of x by 10^m, and n=
 0,1,2,3,4 or 5.
 DEFB +C1,st-mem-1 (10^(2^n) is copied to mem-1).
 DEFB +E0,get-mem-0 x', 10^(2^n), (1/0)
 DEFB +00,jump-true x', 10^(2^n)
 DEFB +04,to E-DIVSN x', 10^(2^n)
 DEFB +04,multiply x'*10^(2^n)= x"
 DEFB +33,jump x''
 DEFB +02,to E-FETCH x''
2D6D E-DIVSN DEFB +05,division x/10^(2^n)=x'' (x'' is N'*10^
 (2^n) or x'/10^(2^n)
 according as m is '+' ot '-').
2D6E E-FETCH DEFB +E1,get-mem-1 x'', 10^(2^n)
 DEFB +38,end-calc x'', 10^(2^n)
 POP AF Restore the rest of m in A, and
 the flags.
2D71 E-TST-END JR Z,2D7B,E-END Jump if m has been reduced to
 zero.
 PUSH AF Save the rest of m in A.
 RST 0028,FP-CALC x'', 10^(2^n)
 DEFB +31,duplicate x'', 10^(2^n), 10^(2^n)
 DEFB +04,multiply x'', 10^(2^(n+1))
 DEFB +38,end-calc x'', 10^(2^(n+1))
 POP AF Restore the rest of m in A.
 JR 2D60,E-LOOP Jump back for all bits of m.
2D7B E-END RST 0028,FP-CALC Use the calculator to delete the

165

 DEFB +02,delete final power of 10 reached,
 DEFB +28,end-calc leaving the 'last value' x*10^m
 RET on the stack

THE 'INT-FETCH' SUBROUTINE
This subroutine collects in DE a small integer n (-65535<=n<=65535) from the location addressed by HL: i.e. n is normally the first (or
second) number at the top of the calculator stack; but HL can alls access (by exchange with DE) a number which has been deleted
from the stack. The subroutine does not itself delete the number from the stack or from memory; it returns HL pointing to the fourth byte
of the number in its original position.

2D7F INT-FETCH INC HL Point to the sign byte of the
 number.
 LD C,(HL) Copy the sign byte to C.

The following mechanism will twos complement the number if it is negative (C is FF) but leave it unaltered if it is positive (C is 00)

 INC HL Point to the less significant
 byte.
 LD A,(HL) Collect the byte in A.
 XOR C Ones complement it if negative
 SUB C This adds 1 for negative
 numbers; it sets the carry unless
 the byte was 0.
 LD E,A Less significant byte to E now.
 INC HL Point to the more significant
 byte.
 LD A,(HL) Collect it in A.
 ADC A,C Finish two complementing in
 the case of a negative number;
 note that the carry is always
 left reset.
 LD D,A More significant byte to D now.
 RET Finished.

THE 'INT-STORE' SUBROUTINE
This subroutine stores a small integer n (-65535<=n<=65535) in the location addressed by HL and the four following locations: i.e. n
replaces the first (or second) number at the top of the calculator stack. The subroutine returns HL pointing to the first byte of n on the
stack.

2D8C P-INT-STO LD C,+00 This entry point would store a
 number known to be positive
2D8E INT-STORE PUSH HL The pointer to the first location
 is saved.
 LD (HL),+00 The first byte is set to zero.
 INC HL Point to the second location.
 LD (HL),C Enter the second byte.

The same mechanism is now used as in 'INT-FETCH' to twos complement negative numbers. This is needed e.g. before and after the
multiplication of small integers. Addition is however performed without any further twos complementing before or afterwards.

 INC HL Point to the third location.
 LD A,E Collect the less significant
 byte.
 XOR C Twos complement it if the
 SUB C number is negative
 LD (HL),A Store the byte.
 INC HL Point to the fourth location.
 LD A,D Collect the more significant
 byte.
 ADC A,C Twos complement it if the
 XOR C number is negative

166

 LD (HL),A Store the byte.
 INC HL Point to the fifth location.
 LD (HL),+00 The fifth byte is set to zero.
 POP HL Return with HL pointing to the
 RET first byte on n on the stack

THE 'FLOATING-POINT TO BC' SUBROUTINE
This subroutine is called from four different places for various purposes and is used to compress the floating-point 'last value' into the
BC register pair. If the result is too large, i.e. greater than 65536 decimal, then the subroutine returns with the carry flag set. If the 'last
value' is negative then the zero flag is reset. The low byte of the result is also copied to the A register.
2DA2 FP-TO-BC RST 0028,FP-CALC Use the calculator to make HL
 DEFB +38,end-calc point to STKEND-5
 LD A,(HL) Collect the exponent byte of
 AND A the 'last value'; jump if it is
 JR Z,2DAD,FP-DELETE zero, indicating a 'small integer'.
 RST 0028,FP-CALC Now use the calculator to round
 DEFB +A2,stk-half the 'last value' to the nearest
 DEFB +0F,addition integer, which also changes it to
 DEFB +27,int 'small integer' form on the
 DEFB +38,end-calc calculator stack if that is pos-
 sible, i.e. if -65535.5 <=
 x <65535.3
2DAD FP-DELETE RST 0028,FP-CALC Use the calculator to delete the
 DEFB +92,delete integer from the stack; DE still
 DEFB +38,end-calc points to it in memory (at
 STKEND).
 PUSH HL Save both stack pointers.
 PUSH DE
 EX DE,HL HL now points to the number.
 LD B,(HL) Copy the first byte to B.
 CALL 2D7F,INT-FETCH Copy bytes 2, 3 and 4 to C, E
 and D.
 XOR A Clear the A register.
 SUB B This sets the carry unless B is
 zero.
 BIT 7,C This sets the zero flag if the
 number is positive (NZ denotes
 negative).
 LD B,D Copy the high byte to B.
 LD C,E And the low byte to C.
 LD A,E Copy the low byte to A too.
 POP DE Restore the stack pointers.
 POP HL
 RET Finished.

THE 'LOG (2^A)' SUBROUTINE
This subroutine is called by the 'PRINT-FP' subroutine to calculate the approximate number of digits before the decimal in x, the
number to be printed, or, if there are no digits before the decimal, then the approximate number of leading zeros after the decimal. It is
entered with the A register containing e', the true exponent of x, or e'-2, and calculates z=log to the base 10 of (2^A). It then sets A
equal to ABS INT (Z + 0.5), as required, using FP-TO-A for this purpose.
2DC1 LOG(2^A) LD D,A The integer A is stacked, either
 RLA as 00 00 A 00 00 (for positive
 SBC A,A A) or as 00 FF A FF 00 (for
 negative A).
 LD E,A These bytes are first loaded into
 LD C,A A, E, D, C, B and then STK-
 XOR A STORE is called to put the
 LD B,A number on the calculator stack.

167

 CALL 2AB6,STK-STORE
 RST 0028,FP-CALC The calculator is used
 DEFB +34,stk-data Log 2 to the base 10 is now
 stacked.
 DEFB +EF,exponent +7F The stack now holds a, log 2.
 DEFB +1A,+20,+9A,+85
 DEFB +04,multiply A*log 2 i.e. log (2^A)
 DEFB +27,int INT log (2^A)
 DEFB +38,end-calc

The subroutine continues on into FP-TO-A to complete the calculation.

THE 'FLOATING-POINT TO A' SUBROUTINE
This short but vital subroutine is called at least 8 times for various purposes. It uses the last but one subroutine, FP-TO-BC, to get the
'last value' into the A register where this is possible. It therefore tests whether the modulus of the number rounds to more than 255 and
if it does the subroutine returns with the carry flag set. Otherwise it returns with the modulus of the number, rounded to the nearest
integer, in the A register, and the zero flag set to imply that the number was positive, or reset to imply that it was negative.

2DD5 FP-TO-A CALL 2DA2,FP-TO-BC Compress the 'last value' into
 BC.
 RET C Return if out of range already.
 PUSH AF Save the result and the flags.
 DEC B Again it will be out of range
 INC B if the B register does not hold
 zero.
 JR Z,2DE1,FP-A-END Jump if in range.
 POP AF Fetch the result and the flags
 SCF Signal the result is out of range.
 RET Finished - unsuccessful.
2DE1 FP-A-END POP AF Fetch the result and the flags.
 RET Finished - successful.

THE 'PRINT A FLOATING-POINT NUMBER' SUBROUTINE
This subroutine is called by the PRINT command routine at 2039 and by STR$ at 3630, which converts to a string the number as it
would be printed. The subroutine prints x, the 'last value' on the calculator stack. The print format never occupies more than 14 spaces.
The 8 most significant digits of x, correctly rounded, are stored in an ad hoc print buffer in mem-3 and mem-4. Small numbers,
numerically less than 1, and large numbers, numerically greater than 2 ^ 27, are dealt with separately. The former are multiplied by 10 ^
n, where n is the approximate number of leading zeros after the decimal, while the latter are divided by 10 ^ (n-7), where n is the
approximate number of digits before the decimal. This brings all numbers into the middle range, and the numbers of digits required
before the decimal is built up in the second byte of mem-5. Finally the printing is done, using E-format if there are more than 8 digits
before the decimal or, for small numbers, more than 4 leading zeros after the decimal.

The following program shows the range of print formats:
10 FOR a=-11 TO 12: PRINT SGN a*9^a,: NEXT a

i. First the sign of x is taken care of:
 If X is negative, the subroutine jumps to PF-NEGATIVE, takes ABS x and prints the minus sign.
 If x is zero, x is deleted from the calculator stack, a '0' is printed and a return is made from the subroutine.
 If x is positive, the subroutine just continues.

2DE3 PRINT-FP RST 0028,FP-CALC Use the calculator
 DEFB +31,duplicate x,x
 DEFB +36,less-0 x, (1/0) Logical value of x.
 DEFB +00,jump-true x
 DEFB +0B,to PF-NEGTVE x
 DEFB +31,duplicate x,x
 DEFB +37,greater-0 x, (1/0) Logical value of X.

168

 DEFB +00,jump-true x
 DEFB +0D,to PF-POSTVE x Hereafter x'=ABS x.
 DEFB +02,delete -
 DEFB +38,end-calc -
 LD A,+30 Enter the character code for '0'.
 RST 0010,PRINT-A-1 Print the '0'.
 RET Finished as the 'last value' is
 zero.
2DF2 PF-NEGTVE DEFB +2A,abs x' x'=ABS x.
 DEFB +38,end-calc x'
 LD A,+2D Enter the character code for '-'.
 RST 0010,PRINT-A-1 Print the '-'.
 RST 0028,FP-CALC Use the calculator again.
2DF8 PF-POSTVE DEFB +A0,stk-zero The 15 bytes of mem-3, mem-4
 DEFB +C3,st-mem-3 and mem-5 are now initialised to
 DEFB +C4,st-mem-4 zero to be used for a print
 DEFB +C5,st-mem-5 buffer and two counters.
 DEFB +02,delete The stack is cleared, except for
 x'.
 DEFB +38,end-calc x'
 EXX H'L', which is used to hold
 PUSH HL calculator offsets, (e.g. for
 EXX 'STR$') is saved on the machine
 stack.

ii. This is the start of a loop which deals with large numbers. However every number x is first split into its integer part i and the fractional
part f. If i is a small integer, i.e. if -65535 <= i <= 65535, it is stored in D'E' for insertion into the print buffer.

2E01 PF-LOOP RST 0028,FP-CALC Use the calculator again.
 DEFB +31,duplicate x' x'
 DEFB +27,int x', INT (x')=i
 DEFB +C2,st-mem-2 (i is stored in mem-2).
 DEFB +03,subtract x'-i=f
 DEFB +E2,get-mem-2 f,i
 DEFB +01,exchange i,f
 DEFB +C2,st-mem-2 (f is stored in mem-2).
 DEFB +03,delete i
 DEFB +38,end-calc i
 LD A,(HL) Is i a small integer (first byte
 AND A zero) i.e. is ABS i <= 65535?
 JR NZ,2E56,PF-LARGE Jump if it is not
 CALL 2D7F,INT-FETCH i is copied to DE (i, like x', >=0).
 LD B,+10 B is set to count 16 bits.
 LD A,D D is copied to A for testing:
 AND A Is it zero?
 JR NZ,2E1E,PF-SAVE Jump if it is not zero.
 OR E Now test E.
 JR Z,2E24,PF-SMALL Jump if DE zero: x is a pure
 fraction.
 LD D,E Move E to D and set B for 8
 LD B,+08 bits: D was zero and E was not.
2E1E PF-SAVE PUSH DE Transfer DE to D'E', via the
 EXX machine stack, to be moved
 POP DE into the print buffer at
 EXX PF-BITS.
 JR 2E78,PF-BITS Jump forward.

iii. Pure fractions are multiplied by 10^n, where n is the approximate number of leading zeros after the decimal; and -n is added to the
second byte of mem-5, which holds the number of digits needed before the decimals; a negative number here indicates leading zeros
after the decimal;

2E24 PF-SMALL RST 0028,FP-CALC i (i=zero here),
 DEFB +E2,get-mem-2 i,f

169

 DEFB +38,end-calc i, f

Note that the stack is now unbalanced. An extra byte 'DEFB +02, delete' is needed at 2E25, immediately after the RST 0028. Now an
expression like "2" +STR$ 0.5 is evaluated incorrectly as 0.5; the zero left on the stack displaces the "2" and is treated as a null string.
Similarly all the string comparisons can yield incorrect values if the second string takes the form STR$ x where x is numerically less
than 1; e.g. the expression "50"<STR$ 0 .1 yields the logical value "true"; once again "" is used instead of "50".

 LD A,(HL) The exponent byte e of f is
 copied to A.
 SUB +7E A becomes e - 126 dec i.e.
 e'+2, where e' is the true
 exponent of f.
 CALL 2DC1,LOG (2^A) The construction A = ABS INT
 (LOG (2^A)) is performed
 (LOG is to base 10); i.e. A=n,
 LD D,A say: n is copied from A to D.
 LD A,(mem-5-2nd) The current count is collected
 SUB D from the second byte of mem-5
 LD (mem-5-2nd),A and n is subtracted from it.
 LD A,D n is copied from D to A.
 CALL 2D4F,E-TO-FP y=f*10^n is formed and
 stacked.
 RST 0028,FP-CALC i, y
 DEFB +31,duplicate i, y, y
 DEFB +27,int i, y, (INT (y) = i2
 DEFB +C1,st-mem-1 (i2 is copied to mem-1).
 DEFB +03,subtract i, y - i2
 DEFB +E1,get-mem-1 i, y - i2, i2
 DEFB +38,end-calc i, f2, i2 (f2 = y - i2)
 CALL 2DD5,FP-TO-A i2 is transferred from the stack
 to A.
 PUSH HL The pointer to f2 is saved.
 LD (mem-3-1st),A i2 is stored in the first byte of
 mem-3: a digit for printing.
 DEC A i2 will not count as a digit for
 RLA printing if it is zero; A is
 SBC A,A manipulated so that zero will
 INC A produce zero but a non-zero
 digit will produce 1.
 LD HL,+5CAB The zero or one is inserted into
 LD (HL),A the first byte of mem-5 (the no.
 INC HL of digits for printing) and added
 ADD A,(HL) to the second byte of mem-5
 LD (HL),A (the number of digits before the
 decimal).
 POP HL The pointer to f2 is restored.
 JP 2ECF,PF-FRACTN Jump to store f2 in buffer (HL
 now points to f2, DE to i2).

iv. Numbers greater than 2 ^ 27 are similarly multiplied by 2 ^ (-n+7), reducing the number of digits before the decimal to 8, and the loop
is re-entered at PF-LOOP.

2E56 PF-LARGE SUB +80 e - 80 hex = e', the true
 exponent of i.
 CP +1C Is e' less than 28 decimal?
 JR C,2E6F,PF-MEDIUM Jump if it is less.
 CALL 2DC1,LOG (2^A) n is formed in A.
 SUB +07 And reduced to n - 7.
 LD B,A Then copied to B.
 LD HL,+5CAC n - 7 is added in to the second
 ADD A,(HL) byte of mem-5, the number of
 LD (HL),A digits required before the

170

 decimal in x.
 LD A,B Then i is multiplied by
 10^(-n+7)
 NEG This will bring it into medium
 CALL 2D4F,E-TO-FP range for printing.
 JR 2E01,PF-LOOP Round the loop again to deal
 with the now medium-sized
 number.

v. The integer part of x is now stored in the print buffer in mem-3 and mem-4.

2E6F PF-MEDIUM EX DE,HL DE now points to i, HL to f.
 CALL 2FBA,FETCH-TWO The mantissa of i is now in
 D',E',D,E.
 EXX Get the exchange registers.
 SET 7,D True numerical bit 7 to D'.
 LD A,L Exponent byte e of i to A.
 EXX Back to the main registers.
 SUB +80 True exponent e'=e - 80 hex to
 A.
 LD B,A This gives the required bit
 count.

Note that the case where i us a small integer (less than 65536) re-enters here.

2E7B PF-BITS SLA E The mantissa of i is now rotated
 RL D left and all the bits of i are thus
 EXX shifted into mem-4 and each
 RL E byte of mem-4 is decimal
 adjusted at each shift.
 RL D All four bytes of i.
 EXX Back to the main registers.
 LD HL,+5CAA Address of fifth byte of mem-4
 LD C,+05 to HL; count of 5 bytes to C.
2E8A PF-BYTES LD A,(HL) Get the byte of mem-4.
 ADC A,A Shift it left, taking in the new
 bit.
 DAA Decimal adjust the byte.
 LD (HL),A Restore it to mem-4.
 DEC HL Point to next byte of mem-4.
 DEC C Decrease the byte count by one.
 JR NZ,2E8A,PF-BYTES Jump for each byte of mem-4.
 DJNZ 2E7B,PF-BITS Jump for each bit of INT (x).

Decimal adjusting each byte of mem-4 gave 2 decimal digits per byte, there being at most 9 digits. The digits will now be re-packed,
one to a byte, in mem-3 and mem-4, using the instruction RLD.

 XOR A A is cleared to receive the digits.
 LD HL,+5CA6 Source address: first byte of
 mem-4.
 LD DE,+5CA1 Destination: first byte of
 mem-3.
 LD B,+09 There are at most 9 digits.
 RLD The left nibble of mem-4 is
 discarded.
 LD C,+FF FF in C will signal a leading
 zero, 00 will signal a non-leading
 zero.
2EA1 PF-DIGITS RLD Left nibble of (HL) to A, right
 nibble of (HL) to left.
 JR NZ,2EA9,PF-INSERT Jump if digit in A is not zero.
 DEC C Test for a leading zero:
 INC C it will now give zero reset.
 JR NZ,2EB3,PF-TEST-2 Jump it it was a leading zero.
2EA9 PF-INSERT LD (DE),A Insert the digit now.

171

 INC DE Point to next destination.
 INC (mem-5-1st) One more digit for printing, and
 INC (mem-5-2nd) one more before the decimal.
 LD C,+00 Change the flag from leading
 zero to other zero.
2EB3 PF-TEST-2 BIT 0,B The source pointer needs to be
 JR Z,2EB8,PF,ALL-9 incremented on every second
 INC HL passage through the loop, when
 B is odd.
2EB8 PF-ALL-9 DJNZ 2EA1,PF-DIGITS Jump back for all 9 digits.
 LD A,(mem-5-1st) Get counter: were there 9 digits
 SUB +09 excluding leading zeros?
 JR C,2ECB,PF-MORE If not, jump to get more digits.
 DEC (mem-5-1st) Prepare to round: reduce count
 to 8.
 LD A,+04 Compare 9th digit, byte 4 of
 CP (mem-4-4th) mem-4, with 4 to set carry for
 rounding up.
 JR 2F0C,PF-ROUND Jump forward to round up.
2ECB PF-MORE RST 0028,FP-CALC Use the calculator again.
 DEFB +02,delete - (i is now deleted).
 DEFB +E2,get-mem-2 f
 DEFB +38,end-calc f

vi. The fractional part of x is now stored in the print buffer.

2ECF PF-FRACTN EX DE,HL DE now points to f.
 CALL 2FBA,FETCH-TWO The mantissa of f is now in
 D',E',D,E.
 EXX Get the exchange registers.
 LD A,+80 The exponent of f is reduced to
 SUB L zero, by shifting the bits of f 80
 LD L,+00 hex - e places right, where L'
 contained e.
 SET 7,D True numerical bit to bit 7 of
 D'.
 EXX Restore the main registers.
 CALL 2FDD,SHIFT-FP Now make the shift.
2EDF PF-FRN-LP LP A,(mem-5-1st) Get the digit count.
 CP +08 Are there already 8 digits?
 JR C,2EEC,PR-FR-DGT If not, jump forward.
 EXX If 8 digits, just use f to round i
 RL D up, rotating D' left to set the
 carry.
 EXX Restore main registers and jump
 JR 2F0C,PF-ROUND forward to round up.
2EEC PF-FR-DGT LD BC,+0200 Initial zero to C, count of 2 to B.
2EEF PF-FR-EXX LD A,E D'E'DE is multiplied by 10 in 2
 CALL 2F8B,CA=10*A+C stages, first DE then D'E', each
 LD E,A byte by byte in 2 steps, and the
 LD A,D integer part of the result is
 CALL 2F8B,CA=10*A+C obtained in C to be passed into
 LD D,A the print buffer.
 PUSH BC The count and the result
 EXX alternate between BC and B'C'.
 POP BC
 DJNZ 2EEF,PF-FR-EXX Look back once through the
 exchange registers.
 LD HL,+5CA1 The start - 1st byte of mem-3.
 LD A,C Result to A for storing.
 LD C,(mem-5-1st) Count of digits so far in number
 to C.
 ADD HL,BC Address the first empty byte.
 LD (HL),A Store the next digit.

172

 INC (mem-5-1st) Step up the count of digits.
 JR 2EDF,PF-FRN-LP Loop back until there are 8
 digits.

vii. The digits stored in the print buffer are rounded to a maximum of 8 digits for printing.

2F0C PF-ROUND PUSH AF Save the carry flag for the
 rounding.
 LD HL,+5CA1 Base address of number: mem-3,
 byte 1.
 LD C,(mem-5-1st) Offset (number of digits in
 LD B,+00 number) to BC.
 ADD HL,BC Address the last byte of the
 number.
 LD B,C Copy C to B as the counter.
 POP AF Restore the carry flag.
2F18 PF-RND-LP DEC HL This is the last byte of the
 number.
 LD A,(HL) Get the byte into A.
 ADC A,+00 Add in the carry i.e. round
 up.
 LD (HL),A Store the rounded byte in the
 buffer.
 AND A If the byte is 0 or 10, B will be
 JR Z,2F25,PF-R-BACK decremented and the final zero
 CP +0A (or the 10) will not be counted
 for printing.
 CCF Reset the carry for a valid digit.
 JR NC,2F2D,PF-COUNT Jump if carry reset.
2F25 PF-R-BACK DJNZ 2F18,PF-RND-LP Jump back for more rounding
 or more final zeros.
 LD (HL),+01 There is overflow to the left;
 INC B an extra 1 is needed here.
 INC (mem-5-2nd) It is also an extra digit before
 the decimal.
2F2D PF-COUNT LD (mem-5-1st),B B now sets the count of the
 digits to be printed (final zeros
 will not be printed).
 RST 0028,FP-CALC f is to be deleted.

 DEFB +02,delete -
 DEFB +38,end-calc -
 EXX The calculator offset saved on
 POP HL the stack is restored to H'L'.
 EXX

viii. The number can now be printed. First C will be set to hold the number of digits to be printed, not counting final zeros, while B will
hold the number of digits required before the decimal.

 LD BC,(mem-5-1st) The counters are set.
 LD HL,+5CA1 The start of the digits.
 LD A,B If more than 9, or fewer than
 CP +09 minus 4, digits are required
 JR C,2F46,PF-NOT-E before the decimal, then E-format
 will be needed.
 CP +FC Fewer than 4 means more than
 JR C,2F6C,PF-E-FRMT 4 leading zeros after the decimal.
2F46 PF-NOT-E AND A Are there no digits before the
 CALL Z,15EF,OUT-CODE decimal? If so, print an initial
 zero.

The next entry point is also used to print the digits needed for E-format printing.

2F4A PF-E-SBRN XOR A Start by setting A to zero.

173

 SUB B Subtract B: minus will mean
 JR M,2F52,PF-OUT-LP there are digits before the
 decimal; jump forward to print
 them.
 LD B,A A is now required as a counter.
 JR 2F5E,PF-DC-OUT Jump forward to print the
 decimal part.
2F52 PF-OUT-LP LD A,C Copy the number of digits to be
 AND A printed to A. If A is 0, there are
 JR Z,2F59,PF-OUT-DT still final zeros to print (B is
 non-zero), so jump.
 LD A,(HL) Get a digit from the print buffer.
 INC HL Point to the next digit.
 DEC C Decrease the count by one.
2F59 PF-OUT-DT CALL 15EF,OUT-CODE Print the appropriate digit.
 DJNZ 2F52,PF-OUT-LP Loop back until B is zero.
2F5E PF-DC-OUT LD A,C It is time to print the decimal,
 AND A unless C is now zero; in that
 RET Z case, return - finished.
 INC B Add 1 to B - include the
 decimal.
 LD A,+2E Put the code for '.' into A.
2F64 PF-DEC-0S RST 0010,PRINT-A-1 Print the '.'.
 LD A,+30 Enter the character code for
 '0'.
 DJNZ 2F64,PF-DEC-0S Loop back to print all needed
 zeros.
 LD B,C Set the count for all remaining
 digits.
 JR 2F52,PF-OUT-LP Jump back to print them.
2F6C PF-E-FRMT LD D,B The count of digits is copied to
 D.
 DEC D It is decremented to give the
 exponent.
 LD B,+01 One digit is required before the
 decimal in E-format.
 CALL 2F4A,PF-E-SBRN All the part of the number
 before the 'E' is now printed.
 LD A,+45 Enter the character code for
 'E'.
 RST 0010,PRINT-A-1 Print the 'E'.
 LD C,D Exponent to C now for printing.
 LD A,C And to A for testing.
 AND A Its sign is tested.
 JP P,2F83,PF-E-POS Jump if it is positive.
 NEG Otherwise, negate it in A.
 LD C,A Then copy it back to C for
 printing.
 LD A,+2D Enter the character code for '-'.
 JR 2F85,PF-E-SIGN Jump to print the sign.
2F83 PF-E-POS LD A,+2B Enter the character code for
 '+'.
2F85 PF-E-SIGN RST 0010,PRINT-A-1 Now print the sign: '+' or '-'.
 LD B,+00 BC holds the exponent for
 printing.
 JP 1A1B,OUT-NUM Jump back to print it and finish.

THE 'CA=10*A+C' SUBROUTINE'
This subroutine is called by the PRINT-FP subroutine to multiply each byte of D'E'DE by 10 and return the integer part of the result in
the C register. On entry, the A register contains the byte to be multiplied by 10 and the C register contains the carry over from the
previous byte. On return, the A register contains the resulting byte and the C register the carry forward to the next byte.

174

2F8B CA=10*A+C PUSH DE Save whichever DE pair is in use.
 LD L,A Copy the multiplicand from A
 LD H,+00 to HL.
 LD E,L Copy it to DE too.
 LD D,H
 ADD HL,HL Double HL.
 ADD HL,HL Double it again.
 ADD HL,DE Add in DE to give HL=5*A.
 ADD HL,HL Double again: now HL=10*A.
 LD E,C Copy C to DE (D is zero) for
 addition.
 ADD HL,DE Now HL=10*A+C.
 LD C,H H is copied to C.
 LD A,L L is copied to A, completing
 the task.
 POP DE The DE register pair is restored.
 RET Finished.

THE 'PREPARE TO ADD' SUBROUTINE.
This subroutine is the first of four subroutines that are used by the main arithmetic operation routines - SUBTRACTION, ADDITION,
MULTIPLICATION and DIVISION.
This particular subroutine prepares a floating-point number for addition, mainly by replacing the sign bit with a true numerical bit 1, and
negating the number (two's complement) if it is negative. The exponent is returned in the A register and the first byte is set to Hex.00 for
a positive number and Hex.FF for a negative number.

2F9B PREP-ADD LD A,(HL) Transfer the exponent to A.
 LD (HL),+00 Presume a positive number.
 AND A If the number is zero then the
 RET Z preparation is already finished.
 INC HL Now point to the sign byte.
 BIT 7,(HL) Set the zero flag for positive
 number.
 SET 7,(HL) Restore the true numeric bit.
 DEC HL Point to the first byte again.
 RET Z Positive numbers have been
 prepared, but negative numbers
 need to be twos complemented.
 PUSH BC Save any earlier exponent.
 LD BC,+0005 There are 5 bytes to be handled.
 ADD HL,BC Point one-past the last byte.
 LD B,C Transfer the '5' to B.
 LD C,A Save the exponent in C.
 SCF Set carry flag for negation.
2FAF NEG-BYTE DEC HL Point to each byte in turn.
 LD A,(HL) Get each byte.
 CPL One's complement the byte.
 ADC A,+00 Add in carry for negation.
 LD (HL),A Restore the byte.
 DJNZ 2FAF,NEG-BYTE Loop the '5' times.
 LD A,C Restore the exponent to A.
 POP BC Restore any earlier exponent.
 RET Finished.

THE 'FETCH TWO NUMBERS' SUBROUTINE
This subroutine is called by ADDITION, MULTIPLICATION and DIVISION to get two numbers from the calculator stack and put them
into the register, including the exchange registers.
On entry to the subroutine the HL register pair points to the first byte of the first number and the DE register pair points to the first byte
of the second number.
When the subroutine is called from MULTIPLICATION or DIVISION the sign of the result is saved in the second byte of the first
number.

175

2FBA FETCH-TWO PUSH HL HL is preserved.
 PUSH AF AF is preserved.

Call the five bytes of the first number - M1, M2, M3, M4 & M5.
and the second number - N1, N2, N3, N4 & N5.

 LD C,(HL) M1 to C.
 INC HL Next.
 LD B,(HL) M2 to B.
 LD (HL),A Copy the sign of the result to
 (HL).
 INC HL Next.
 LD A,C M1 to A.
 LD C,(HL) M3 to C.
 PUSH BC Save M2 & M3 on the machine
 stack.
 INC HL Next.
 LD C,(HL) M4 to C.
 INC HL Next.
 LD B,(HL) M5 to B.
 EX DE,HL HL now points to N1.
 LD D,A M1 to D.
 LD E,(HL) N1 to E.
 PUSH DE Save M1 & N1 on the machine
 stack.
 INC HL Next.
 LD D,(HL) N2 to D.
 INC HL Next.
 LD E,(HL) N3 to E.
 PUSH DE Save N2 &N3 on the machine
 stack.
 EXX Get the exchange registers.
 POP DE N2 to D' & N3 to E'.
 POP HL M1 to H' & N1 to L'.
 POP BC M2 to B' & M3 to C'.
 EXX Get the original set of registers.
 INC HL Next.
 LD D,(HL) N4 to D.
 INC HL Next.
 LD E,(HL) N5 to E.
 POP AF Restore the original AF.
 POP HL Restore the original HL.
 RET Finished.

Summary: M1 - M5 are in H', B', C', C, B.
 N1 - N5 are in: L', D', E', D, E.
 HL points to the first byte of the first number.

THE 'SHIFT ADDEND' SUBROUTINE
This subroutine shifts a floating-point number up to 32 decimal, Hex.20, places right to line it up properly for addition. The number with
the smaller exponent has been put in the addend position before this subroutine is called. Any overflow to the right, into the carry, is
added back into the number. If the exponent difference is greater than 32 decimal, or the carry ripples right back to the beginning of the
number then the number is set to zero so that the addition will not alter the other number (the augend).

2FDD SHIFT-FP AND A If the exponent difference is
 RET Z zero, the subroutine returns at
 CP +21 once. If the difference is greater
 JR NC,2FF9,ADDEND-0 than Hex.20, jump forward.
 PUSH BC Save BC briefly.
 LD B,A Transfer the exponent difference
 to B to count the shifts right.
2FE5 ONE-SHIFT EXX Arithmetic shift right for L',
 SRA L preserving the sign marker bits.

176

 RR D Rotate right with carry D', E',
 RR E D & E.
 EXX Thereby shifting the whole five
 RR D bytes of the number to the right
 RR E as many times as B counts.
 DJNZ 2FE5,ONE-SHIFT Loop back until B reaches zero.
 POP BC Restore the original BC.
 RET NC Done if no carry to retrieve.
 CALL 3004,ADD-BACK Retrieve carry.
 RET NZ Return unless the carry rippled
 right back. (In this case there is
 nothing to add).
2FF9 ADDEND-0 EXX Fetch L', D' & E'.
 XOR A Clear the A register.
2FFB ZEROS-4/5 LD L,+00 Set the addend to zero in D',E',
 LD D,A D & E, together with its marker
 LD E,L byte (sign indicator) L', which
 EXX was Hex.00 for a positive
 LD DE,+0000 number and Hex.FF for a
 negative number. ZEROS-4/5
 produces only 4 zero bytes
 when called for near underflow
 at 3160.
 RET Finished.

THE 'ADD-BACK' SUBROUTINE
This subroutine adds back into the number any carry which has overflowed to the right. In the extreme case, the carry ripples right back
to the left of the number.
When this subroutine is called during addition, this ripple means that a mantissa of 0.5 was shifted a full 32 places right, and the
addend will now be set to zero; when called from MULTIPLICATION, it means that the exponent must be incremented, and this may
result in overflow.

3004 ADD-BACK INC E Add carry to rightmost byte.
 RET NZ Return if no overflow to left.
 INC D Continue to the next byte.
 RET NZ Return if no overflow to left.
 EXX Get the next byte.
 INC E Increment it too.
 JR NZ,300D,ALL-ADDED Jump if no overflow.
 INC D Increment the last byte.
300D ALL-ADDED EXX Restore the original
 registers.
 RET Finished.

THE 'SUBTRACTION' OPERATION
(Offset 03 - see CALCULATE below: 'subtract')

This subroutine simply changes the sign of the subtrahend and carried on into ADDITION.
Note that HL points to the minuend and DE points to the subtrahend. (See ADDITION for more details.)

300F SUBTRACT EX DE,HL Exchange the pointers.
 CALL 346E,NEGATE Change the sign of the
 subtrahend.
 EX DE,HL Exchange the pointers back and
 continue into ADDITION.

THE 'ADDITION' OPERATION
(Offset 0F - see CALCULATE below: 'addition')

The first of three major arithmetical subroutines, this subroutine carries out the floating-point addition of two numbers, each with a 4-
byte mantissa and a 1-byte exponent. In these three subroutines, the two numbers at the top of the calculator stack are
added/multiplied/divided to give one number at the top of the calculator stack, a 'last value'.

177

HL points to the second number from the top, the augend/multiplier/dividend. DE points to the number at the top of the calculator stack,
the addend/multiplicand/divisor. Afterwards HL points to the resultant 'last value' whose address can also be considered to be STKEND
- 5.
But the addition subroutine first tests whether the 2 numbers to be added are 'small integers'. If they are, it adds them quite simply in HL
and BC, and puts the result directly on the stack. No twos complementing is needed before or after the addition, since such numbers
are held on the stack in twos complement form, ready for addition.

3014 addition LD A,(DE) Test whether the first bytes of
 OR (HL) both numbers are zero.
 JR NZ,303E,FULL-ADDN If not, jump for full addition.
 PUSH DE Save the pointer to the second
 number.
 INC HL Point to the second byte of the
 PUSH HL first number and save that
 pointer too.
 INC HL Point to the less significant
 byte.
 LD E,(HL) Fetch it in E.
 INC HL Point to the more significant
 byte.
 LD D,(HL) Fetch it in D.
 INC HL Move on to the second byte of
 INC HL the second number.
 INC HL
 LD A,(HL) Fetch it in A (this is the sign
 byte).
 INC HL Point to the less significant
 byte.
 LD C,(HL) Fetch it in C.
 INC HL Point to the more significant
 byte.
 LD B,(HL) Fetch is in B.
 POP HL Fetch the pointer to the sign
 EX DE,HL byte of the first number; put it
 in DE, and the number in HL.
 ADD HL,BC Perform the addition: result in
 HL.
 EX DE,HL Result to DE, sign byte to HL.
 ADC A,(HL) Add the sign bytes and the carry
 RRCA into A; this will detect any
 overflow.
 ADC A,+00 A non-zero A now indicates
 overflow.
 JR NZ,303C,ADDN-OFLW Jump to reset the pointers and
 to do full addition.
 SBC A,A Define the correct sign byte for
 the result.
3032 LD (HL),A Store it on the stack.
 INC HL Point to the next location.
 LD (HL),E Store the low byte of the result.
 INC HL Point to the next location.
 LD (HL),D Store the high byte of the
 result.
 DEC HL Move the pointer back to
 DEC HL address the first byte of the
 DEC HL result.
 POP DE Restore STKEND to DE.
 RET Finished.

Note that the number -65536 decimal can arise here in the form 00 FF 00 00 00 as the result of the addition of two smaller negative
integers, e.g. -65000 and -536. It is simply stacked in this form. This is a mistake. The Spectrum system cannot handle this number.

178

Most functions treat it as zero, and it is printed as -1E-38, obtained by treating is as 'minus zero' in an illegitimate format.
One possible remedy would be to test for this number at about byte 3032 and, if it is present, to make the second byte 80 hex and the
first byte 91 hex, so producing the full five byte floating-point form of the number, i.e. 91 80 00 00 00, which causes no problems. See
also the remarks in 'truncate' below, before byte 3225, and the Appendix.

303C ADDN-OFLW DEC HL Restore the pointer to the first
 number.
 POP DE Restore the pointer to the
 second number.
303E FULL-ADDN CALL 3293,RE-ST-TWO Re-stack both numbers in full
 five byte floating-point form.

The full ADDITION subroutine first calls PREP-ADD for each number, then gets the two numbers from the calculator stack and puts the
one with the smaller exponent into the addend position. It then calls SHIFT-FP to shift the addend up to 32 decimal places right to line it
up for addition. The actual addition is done in a few bytes, a single shift is made for carry (overflow to the left) if needed, the result is
twos complemented if negative, and any arithmetic overflow is reported; otherwise the subroutine jumps to TEST-NORM to normalise
the result and return it to the stack with the correct sign bit inserted into the second byte.

 EXX Exchange the registers.
 PUSH HL Save the next literal address.
 EXX Exchange the registers.
 PUSH DE Save pointer to the addend.
 PUSH HL Save pointer to the augend.
 CALL 2F9B,PREP-ADD Prepare the augend.
 LD B,A Save its exponent in B.
 EX DE,HL Exchange its pointers.
 CALL 2F9B,PREP-ADD Prepare the addend.
 LD C,A Save its exponent in C.
 CP B If the first exponent is smaller,
 JR NC,3055,SHIFT-LEN keep the first number in the
 LD A,B addend position; otherwise
 LD B,C change the exponents and the
 EX DE,HL pointers back again.
3055 SHIFT-LEN PUSH AF Save the larger exponent in A.
 SUB B The difference between the
 exponents is the length of the
 shift right.
 CALL 2FBA,FETCH-TWO Get the two numbers from the
 stack.
 CALL 2FDD,SHIFT-FP Shift the addend right.
 POP AF Restore the larger exponent.
 POP HL HL is to point to the result.
 LD (HL),A Store the exponent of the
 result.
 PUSH HL Save the pointer again.
 LD L,B M4 to H & M5 to L,
 LD H,C (see FETCH-TWO).
 ADD HL,DE Add the two right bytes.
 EXX N2 to H' & N3 to L',
 EX DE,HL (see FETCH-TWO).
 ADC HL,BC Add left bytes with carry.
 EX DE,HL Result back in D'E'.
 LD A,H Add H', L' and the carry; the
 ADC A,L resulting mechanisms will ensure
 LD L,A that a single shift right is called
 RRA if the sum of 2 positive numbers
 XOR L has overflowed left, or the sum
 EXX of 2 negative numbers has not
 overflowed left.

179

 EX DE,HL The result is now in DED'E.
 POP HL Get the pointer to the
 exponent.
 RRA The test for shift (H', L' were
 JR NC,307C,TEST-NEG Hex. 00 for positive numbers
 and Hex.FF for negative
 numbers).
 LD A,+01 A counts a single shift right.
 CALL 2FDD,SHIFT-FP The shift is called.
 INC (HL) Add 1 to the exponent; this
 JR Z,309F,ADD-REP-6 may lead to arithmetic overflow.

307C TEST-NEG EXX Test for negative result: get
 LD A,L sign bit of L' into A (this now
 AND +80 correctly indicates the sign of
 EXX the result).
 INC HL Store it in the second byte
 LD (HL),A position of the result on
 DEC HL the calculator stack.
 JR Z,30A5,GO-NC-MLT If it is zero, then do not
 twos complement the result.
 LD A,E Get the first byte.
 NEG Negate it.
 CCF Complement the carry for
 LD E,A continued negation, and store
 byte.
 LD A,D Get the next byte.
 CPL Ones complement it.
 ADC A,+00 Add in the carry for negation.
 LD D,A Store the byte.
 EXX Proceed to get next byte into
 LD A,E the A register.
 CPL Ones complement it.
 ADC A,+00 Add in the carry for negation.
 LD E,A Store the byte.
 LD A,D Get the last byte.
 CPL Ones complement it.
 ADC A,+00 Add in the carry for negation.
 JR NC,30A3,END-COMPL Done if no carry.
 RRA Else, get .5 into mantissa and
 EXX add 1 to the exponent; this will
 INC (HL) be needed when two negative
 numbers add to give an exact
 power of 2, and it may lead to
 arithmetic overflow.
309F ADD-REP-6 JP Z,31AD,REPORT-6 Give the error if required.
 EXX
30A3 END-COMPL LD D,A Store the last byte.
 EXX
30A5 GO-NC-MLT XOR A Clear the carry flag.
 JP 3155,TEST-NORM Exit via TEST-NORM.

THE 'HL=HL*DE' SUBROUTINE
This subroutine is called by 'GET-HL*DE' and by 'MULTIPLICATION' to perform the 16-bit multiplication as stated.
Any overflow of the 16 bits available is dealt with on return from the subroutine.

30A9 HL=HL*DE PUSH BC BC is saved.
 LD B,+10 It is to be a 16 bit multipli-
 cation.
 LD A,H A holds the high byte.
 LD C,L C holds the low byte.
 LD HL,+0000 Initialise the result to zero.
30B1 HL-LOOP ADD HL,HL Double the result.

180

 JR C,30BE,HL-END Jump if overflow.
 RL C Rotate bit 7 of C into the carry.
 RLA Rotate the carry bit into bit 0
 and bit 7 into the carry flag.
 JR NC,30BC,HL-AGAIN Jump if the carry flag is reset.
 ADD HL,DE Otherwise add DE in once.
 JR C,30BE,HL-END Jump if overflow.
30BC HL-AGAIN DJNZ 30B1,HL-LOOP Until 16 passes have been made.
30BE HL-END POP BC Restore BC.
 RET Finished.

THE 'PREPARE TO MULTIPLY OR DIVIDE' SUBROUTINE
This subroutine prepares a floating-point number for multiplication or division, returning with carry set if the number is zero, getting the
sign of the result into the A register, and replacing the sign bit in the number by the true numeric bit, 1.
30C0 PREP-M/D CALL 34E9,TEST-ZERO If the number is zero, return
 RET C with the carry flag set.
 INC HL Point to the sign byte.
 XOR (HL) Get sign for result into A (like
 signs give plus, unlike give
 minus); also reset the carry flag.
 SET 7,(HL) Set the true numeric bit.
 DEC HL Point to the exponent again.
 RET Return with carry flag reset.

THE 'MULTIPLICATION' OPERATION
(Offset 04 - see CALCULATE below: 'multiply')

This subroutine first tests whether the two numbers to be multiplied are 'small integers'. If they are, it uses INT-FETCH to get them from
the stack, HL=HL*DE to multiply them and INT-STORE to return the result to the stack. Any overflow of this 'short multiplication' (i.e. if
the result is not itself a 'small integer') causes a jump to multiplication in full five byte floating-point form (see below).
30CA multiply LD A,(DE) Test whether the first bytes of
 OR (HL) both numbers are zero.
 JR NZ,30F0,MULT-LONG If not, jump for 'long' multi-
 plication.
 PUSH DE Save the pointers: to the second
 number.
 PUSH HL And to the first number.
 PUSH DE And to the second number yet
 again.
 CALL 2D7F,INT-FETCH Fetch sign in C, number in DE.
 EX DE,HL Number to HL now.
 EX (SP),HL Number to stack, second
 pointer to HL.
 LD B,C Save first sign in B.
 CALL 2D7F,INT-FETCH Fetch second sign in C, number
 in DE.
 LD A,B Form sign of result in A: like
 XOR C signs give plus (00), unlike give
 minus (FF).
 LD C,A Store sign of result in C.
 POP HL Restore the first number to HL.
 CALL 30A9,HL=HL*DE Perform the actual multipli-
 cation.
 EX DE,HL Store the result in DE.
 POP HL Restore the pointer to the first
 number.
 JR C,30EF,MULT-OFLW Jump on overflow to 'full'
 multiplication.
30E5 LD A,D These 5 bytes ensure that

181

 OR E 00 FF 00 00 00 is replaced by
 JR NZ,30EA,MULT-RSLT zero; that they should not be
 LD C,A needed if this number were
 excluded from the system (see
 after 303B) above).
30EA MULT-RSLT CALL 2D8E,INT-STORE Now store the result on the
 stack.
 POP DE Restore STKEND to DE.
 RET Finished.
30EF MULT-OFLW POP DE Restore the pointer to the
 second number.
30F0 MULT-LONG CALL 3293,RE-ST-TWO Re-stack both numbers in full
 five byte floating-point form.
The full MULTIPLICATION subroutine prepares the first number for multiplication by calling PREP-M/D, returning if it is zero; otherwise
the second number is prepared by again calling PREP-M/D, and if it is zero the subroutine goes to set the result to zero. Next it fetches
the two numbers from the calculator stack and multiplies their mantissas in the usual way, rotating the first number (treated as the
multiplier) right and adding in the second number (the multiplicand) to the result whenever the multiplier bit is set. The exponents are
then added together and checks are made for overflow and for underflow (giving the result zero). Finally, the result is normalised and
returned to the calculator stack with the correct sign bit in the second byte.
 XOR A A is set to Hex.00 so that the
 sign of the first number will go
 into A.
 CALL 30C0,PREP-M/D Prepare the first number, and
 RET C return if zero. (Result already
 zero.)
 EXX Exchange the registers.
 PUSH HL Save the next literal address.
 EXX Exchange the registers.
 PUSH DE Save the pointer to the multi-
 plicand.
 EX DE,HL Exchange the pointers.
 CALL 30C0,PREP-M/D Prepare the 2nd number.
 EX DE,HL Exchange the pointers again.
 JR C,315D,ZERO-RSLT Jump forward if 2nd number is
 zero.
 PUSH HL Save the pointer to the result.
 CALL 2FBA,FETCH-TWO Get the two numbers from
 the stack.
 LD A,B M5 to A (see FETCH-TWO).
 AND A Prepare for a subtraction.
 SBC HL,HL Initialise HL to zero for the
 result.
 EXX Exchange the registers.
 PUSH HL Save M1 & N1 (see
 FETCH-TWO).
 SBC HL,HL Also initialise H'L' for the
 result.
 EXX Exchange the registers.
 LD B,+21 B counts 33 decimal, Hex.21,
 shifts.
 JR 3125,STRT-MLT Jump forward into the loop.

Now enter the multiplier loop.

3114 MLT-LOOP JR NC,311B,NO-ADD Jump forward to NO-ADD if no
 carry, i.e. the multiplier bit was
 reset.
 ADD HL,DE Else, add the multiplicand in
 EXX D'E'DE (see FETCH-TWO) into
 ADC HL,DE the result being built up on

182

 EXX H'L'HL.
311B NO-ADD EXX Whether multiplicand was added
 RR H or not, shift result right in
 RR L H'L'HL, i.e. the shift is done by
 EXX rotating each byte with carry, so
 RR H that any bit that drops into the
 RR L carry is picked up by the next
 byte, and the shift continued
 into B'C'CA.
3125 STRT-MLT EXX Shift right the multiplier in
 RR B B'C'CA (see FETCH-TWO &
 above).
 RR C A final bit dropping into the
 EXX carry will trigger another add of
 RR C the multiplicand to the result.
 RRA
 DJNZ 3114,MLT-LOOP Loop 33 times to get all the bits.
 EX DE,HL Move the result from:
 EXX
 EX DE,HL H'L'HL to D'E'DE.
 EXX

Now add the exponents together.

 POP BC Restore the exponents - M1
 & N1.
 POP HL Restore the pointer to the
 exponent byte.
 LD A,B Get the sum of the two
 ADD A,C exponent bytes in A, and the
 correct carry.
 JR NZ,313B,MAKE-EXPT If the sum equals zero then clear
 AND A the carry; else leave it
 unchanged.
313B MAKE-EXPT DEC A Prepare to increase the
 CCF exponent by Hex.80.

The rest of the subroutine is common to both MULTIPLICATION and DIVISION.

313D DIVN-EXPT RLA These few bytes very cleverly
 CCF make the correct exponent
 byte.
 RRA Rotating left then right gets the
 exponent byte (true exponent
 plus Hex.80) into A.
 JP P,3146,OFLW1-CLR If the sign flag is reset, no report
 of arithmetic overflow needed.
 JR NC,31AD,REPORT-6 Report the overflow if carry
 reset.
 AND A Clear the carry now.
3146 OFLW1-CLR INC A The exponent byte is now com-
 JR NZ,3151,OFLW2-CLR plete; but if A is zero a further
 JR C,3151,OFLW2-CLR check for overflow is needed.
 EXX If there is no carry set and the
 BIT 7,D result is already in normal form
 EXX (bit 7 of D' set) then there is
 JR NZ,31AD,REPORT-6 overflow to report; but if bit 7
 of D' is reset, the result in just in
 range, i.e. just under 2**127.
3151 OFLW2-CLR LD (HL),A Store the exponent byte, at last.
 EXX Pass the fifth result byte to A
 LD A,B for the normalisation sequence,
 EXX i.e. the overflow from L into B'.

183

The remainder of the subroutine deals with normalisation and is common to all the arithmetic routines.

3155 TEST-NORM JR NC,316C,NORMALISE If no carry then normalise now.
 LD A,(HL) Else, deal with underflow (zero
 AND A result) or near underflow
3159 NEAR-ZERO LD A,+80 (result 2**-128):
 JR Z,315E,SKIP-ZERO return exponent to A, test if A
315D ZERO-RSLT XOR A is zero (case 2**-128) and if so
315E SKIP-ZERO EXX produce 2**-128 if number is
 AND D normal; otherwise produce zero.
 CALL 2FFB,ZEROS-4/5 The exponent must then be set
 RLCA to zero (for zero) or 1 (for
 2**-128).
 LD (HL),A Restore the exponent byte.
 JR C,3195,OFLOW-CLR Jump if case 2**-128.
 INC HL Otherwise, put zero into second
 LD (HL),A byte of result on the calculator
 DEC HL stack.
 JR 3195,OFLOW-CLR Jump forward to transfer the
 result.

The actual normalisation operation.

316C NORMALISE LD B,+20 Normalise the result by up to 32
316E SHIFT-ONE EXX decimal, Hex.20, shifts left of
 BIT 7,D D'E'DE (with A adjoined) until
 EXX bit 7 of D' is set. A holds zero
 JR NZ,3186,NORML-NOW after addition so no precision is
 RLCA gained or lost; A holds the fifth
 RL E byte from B' after multiplica-
 RL D tion or division; but as only
 EXX about 32 bits can be correct, no
 RL E precision is lost. Note that A is
 RL D rotated circularly, with branch
 EXX at carry eventually a random
 process.
 DEC (HL) The exponent is decremented
 on each shift.
 JR Z,3159,NEAR-ZERO If the exponent becomes zero,
 then number from 2**-129 are
 rounded up to 2**-128.
 DJNZ 316E,SHIFT-ONE Loop back, up to 32 times.
 JR 315D,ZERO-RSLT If bit 7 never became 1 then the
 whole result is to be zero.

Finish the normalisation by considering the 'carry'.

3186 NORML-NOW RLA After normalisation add back
 JR NC,3195,OFLW-CLR any final carry that went into A.
 CALL 3004,ADD-BACK Jump forward if the carry does
 JR NZ,3195,OFLW-CLR not ripple right back.
 EXX If it should ripple right back
 LD D,+80 then set mantissa to 0.5 and
 EXX increment the exponent.
 INC (HL) This action may lead to arith-
 JR Z,31AD,REPORT-6 metic overflow (final case).

The final part of the subroutine involves passing the result to the bytes reserved for it on the calculator stack and resetting the pointers.

3195 OFLOW-CLR PUSH HL Save the result pointer.
 INC HL Point to the sign byte in the
 result.
 EXX The result is moved from its
 PUSH DE present registers, D'E'DE, to
 EXX BCDE; and then to ACDE.

184

 POP BC
 LD A,B The sign bit is retrieved from
 RLA its temporary store and trans-
 RL (HL) ferred to its correct position of
 RRA bit 7 of the first byte of the
 mantissa.
 LD (HL),A The first byte is stored.
 INC HL Next.
 LD (HL),C The second byte is stored.
 INC HL Next.
 LD (HL),D The third byte is stored.
 INC HL Next.
 LD (HL),E The fourth byte is stored.
 POP HL Restore the pointer to the
 result.
 POP DE Restore the pointer to second
 number.
 EXX Exchange the register.
 POP HL Restore the next literal address.
 EXX Exchange the registers.
 RET Finished.

Report 6 - Arithmetic overflow

31AD REPORT-6 RST 0008,ERROR-1 Call the error handling
 DEFB +05 routine.

THE 'DIVISION' OPERATION
(Offset 05 - see CALCULATE below: 'division')

This subroutine first prepared the divisor by calling PREP-M/D, reporting arithmetic overflow if it is zero; then it prepares the dividend
again calling PREP-M/D, returning if it is zero. Next fetches the two numbers from the calculator stack and divides their mantissa by
means of the usual restoring division, trial subtracting the divisor from the dividend and restoring if there is carry, otherwise adding 1 to
the quotient. The maximum precision is obtained for a 4-byte division, and after subtracting the exponents the subroutine exits by
joining the later part of MULTIPLICATION.

31AF division CALL 3293,RE-ST-TWO Use full floating-point forms.
 EX DE,HL Exchange the pointers.
 XOR A A is set to Hex.00, so that the
 sign of the first number will go
 into A.
 CALL 30C0,PREP-M/D Prepare the divisor and give the
 JR C,31AD,REPORT-6 report for arithmetic overflow if
 it is zero.
 EX DE,HL Exchange the pointers.
 CALL 30C0,PREP-M/D Prepare the dividend and return
 RET C if it is zero (result already zero).
 EXX Exchange the pointers.
 PUSH HL Save the next literal address.
 EXX Exchange the registers.
 PUSH DE Save pointer to divisor.
 PUSH HL Save pointer to dividend.
 CALL 2FBA,FETCH-TWO Get the two numbers from the
 stack.
 EXX Exchange the registers.
 PUSH HL Save M1 & N1 on the machine
 stack.
 LD H,B Copy the four bytes of the
 LD L,C dividend from registers B'C'CB
 EXX (i.e. M2, M3, M4 & M5; see
 LD H,C FETCH-TWO) to the registers
 H'L'HL.
 LD L,B

185

 XOR A Clear A and reset the carry flag.
 LD B,+DF B will count upwards from -33
 to -1, twos complement,
 Hex. DF to FF, looping on
 minus and will jump again on
 zero for extra precision.
 JR 31E2,DIV-START Jump forward into the division
 loop for the first trial
 subtraction.

Now enter the division loop.

31D2 DIV-LOOP RLA Shift the result left into B'C'CA,
 RL C shifting out the bits already
 EXX there, picking up 1 from the
 RL C carry whenever it is set, and
 RL B rotating left each byte with
 EXX carry to achieve the 32 bit
 shift.
31DB DIV-34TH ADD HL,HL Move what remains of the
 EXX dividend left in H'L'HL before
 ADC HL,HL the next trial subtraction; if a
 EXX bit drops into the carry, force
 no restore and a bit for the
 quotient, thus retrieving the lost
 JR C,31F2,SUBN-ONLY bit and allowing a full 32-bit
 divisor.
31E2 DIV-START SBC HL,DE Trial subtract divisor in D'E'DE
 EXX from rest of dividend in H'L'HL;
 SBC HL,DE there is no initial carry (see
 EXX previous step).
 JR NC,31F9,NO-RSTORE Jump forward if there is no
 carry.
 ADD HL,DE Otherwise restore, i.e. add back
 EXX the divisor. Then clear the carry
 ADC HL,DE so that there will be no bit for
 EXX the quotient (the divisor 'did
 AND A not go').
 JR 31FA,COUNT-ONE Jump forward to the counter.
31F2 SUBN-ONLY AND A Just subtract with no restore
 SBC HL,DE and go on to set the carry flag
 EXX because the lost bit of the divi-
 SBC HL,DE dend is to be retrieved and used
 EXX for the quotient.
31F9 NO-RSTORE SCF One for the quotient in B'C'CA.
31FA COUNT-ONE INC B Step the loop count up by one.
 JP M,31D2,DIV-LOOP Loop 32 times for all bits.
 PUSH AF Save any 33rd bit for extra
 precision (the present carry).
 JR Z,31E2,DIV-START Trial subtract yet again for any
 34th bit; the PUSH AF above
 saves this bit too.

Note: This jump is made to the wrong place. No 34th bit will ever be obtained without first shifting the dividend. Hence important results
like 1/10 and 1/1000 are not rounded up as they should be. Rounding up never occurs when it depends on the 34th bit. The jump
should have been to 31DB DIV-34TH above: i.e. byte 3200 hex in the ROM should read DA hex (128 decimal) instead of E1 hex (225
decimal).

 LD E,A Now move the four bytes that
 LD D,C form the mantissa bytes of the
 EXX result from B'C'CA to D'E'DE.
 LD E,C
 LD D,B
 POP AF Then put the 34th and 33rd bits

186

 RR B into ‘B' to be picked up on
 POP AF normalisation.
 RR B
 EXX
 POP BC Restore the exponent bytes, M1
 & N1.
 POP HL Restore the pointer to the result.
 LD A,B Get the difference between the
 SUB C two exponent bytes into A and
 set the carry flag if required.
 JP 313D,DIVN-EXPT Exit via DIVN-EXPT.

THE 'INTEGER TRUNCATION TOWARDS ZERO' SUBROUTINE
(Offset 3A - see CALCULATE below: 'truncate')
This subroutine (say I(x)) returns the result of integer truncation of x, the 'last value', towards zero. Thus I(2.4) is 2 and I(-2.4) is -2. The
subroutine returns at once if x is in the form of a 'short integer'. It returns zero if the exponent byte of x if less than 81 hex (ABS x is less
than 1). If I(x) is a 'short integer' the subroutine returns it in that form. It returns x if the exponent byte is A0 hex or greater (x has no
significant non-integral part). Otherwise the correct number of bytes of x are set to zero and, if needed, one more byte is split with a
mask.

3214 truncate LD A,(HL) Get the exponent byte of X into
 A.
 AND A If A is zero, return since x is
 RET Z already a small integer.
 CP +81 Compare e, the exponent, to
 81 hex.
 JR NC,3221,T-GR-ZERO Jump if e is greater than 80 hex.
 LD (HL),+00 Else, set the exponent to zero;
 LD A,+20 enter 32 decimal, 20 hex, into A
 JR 3272,NIL-BYTES and jump forward to NIL-
 BYTES to make all the bits of
 x be zero.
3221 T-GR-ZERO CP +91 Compare e to 91 hex, 145
 decimal.
3223 JR NZ,323F,T-SMALL Jump if e not 91 hex.

The next 26 bytes seem designed to test whether x is in fact -65536 decimal, i.e. 91 80 00 00 00, and if it is, to set it to 00 FF 00 00 00.
This is a mistake. As already stated at byte 303B above, the Spectrum system cannot handle this number. The result here is simply to
make INT (-65536) return the value -1. This is a pity, since the number would have been perfectly all right if left alone. The remedy
would seem to be simply to omit the 28 bytes from 3223 above to 323E inclusive from the program.

3225 INC HL HL is pointed at the fourth byte
 INC HL of x, where the 17 bits of the
 INC HL integer part of x end after the
 first bit.
 LD A,+80 The first bit is obtained in A.
 AND (HL) using 80 hex as a mask.
 DEC HL That bit and the previous 8 bits
 OR (HL) are tested together for zero.
 DEC HL HL is pointed at the second
 byte of x.
 JR NZ,3233,T-FIRST If already non-zero, the test can
 end.
 LD A,+80 Otherwise, the test for -65536 is
 XOR (HL) now completed: 91 80 00 00 00
 will leave the zero flag set now.
3233 T-FIRST DEC HL HL is pointed at the first byte of
 x.
 JR NZ,326C,T-EXPNENT If zero reset, the jump is made.
 LD (HL),A The first byte is set to zero.
 INC HL HL points to the second byte.

187

 LD (HL),+FF The second byte is set to FF.
 DEC HL HL again points to the first
 byte.
 LD A,+18 The last 24 bits are to be zero.
 JR 3272,NIL-BYTES The jump to NIL-BYTES
 completes the number 00 FF
 00 00 00.

If the exponent byte of x is between 81 and 90 hex (129 and 144 decimal) inclusive, I(x) is a 'small integer', and will be compressed into
one or two bytes. But first a test is made to see whether x is, after all, large.

323F T-SMALL JR NC,326D,X-LARGE Jump with exponent byte 92
 or more (it would be better to
 jump with 91 too).
 PUSH DE Save STKEND in DE.
 CPL Range 129 <= A <= 144 becomes
 126 >= A >= 111.
 ADD A,+91 Range is now 15 dec >= A >= 0.
 INC HL Point HL at second byte.
 LD D,(HL) Second byte to D.
 INC HL Point HL at third byte.
 LD E,(HL) Third byte to E.
 DEC HL Point HL at first byte again.
 DEC HL
 LD C,+00 Assume a positive number.
 BIT 7,D Now test for negative (bit 7
 set).
 JR Z,3252,T-NUMERIC Jump if positive after all.
 DEC C Change the sign.
3252 T-NUMERIC SET 7,D Insert true numeric bit, 1, in D.
 LD B,+08 Now test whether A >= 8 (one
 SUB B byte only) or two bytes needed.
 ADD A,B Leave A unchanged.
 JR C,325E,T-TEST Jump if two bytes needed.
 LD E,D Put the one byte into E.
 LD D,+00 And set D to zero.
 SUB B Now 1 <= A <= 7 to count the
 shifts needed.
325E T-TEST JR Z,3267,T-STORE Jump if no shift needed.
 LD B,A B will count the shifts.
3261 T-SHIFT SRL D Shift D and E right B times to
 RR E produce the correct number.
 DJNZ 3261,T-SHIFT Loop until B is zero.
3267 T-STORE CALL 2D8E,INT-STORE Store the result on the stack.
 POP DE Restore STKEND to DE.
 RET Finished.

Large values of x remains to be considered.

326C T-EXPNENT LD A,(HL) Get the exponent byte of x into
 A.
326D X-LARGE SUB +A0 Subtract 160 decimal, A0 hex,
 from e.
 RET P Return on plus - x has no
 significant non-integral part. (If
 the true exponent were reduced
 to zero, the 'binary point'
 would come at or after the end
 of the four bytes of the man-
 tissa).
 NEG Else, negate the remainder; this
 gives the number of bits to
 become zero (the number of
 bits after the 'binary point').

188

Now the bits of the mantissa can be cleared.

3272 NIL-BYTES PUSH DE Save the current value of DE
 (STKEND).
 EX DE,HL Make HL point one past the fifth
 byte.
 DEC HL HL now points to the fifth byte
 of x.
 LD B,A Get the number of bits to be set
 SRL B to zero in B and divide it by B
 SRL B to give the number of whole
 SRL B bytes implied.
 JR Z,3283,BITS-ZERO Jump forward if the result is
 zero.
327E BYTE-ZERO LD (HL),+00 Else, set the bytes to zero;
 DEC HL B counts them.
 DJNZ 327E,BYTE-ZERO
3283 BITS-ZERO AND +07 Get A (mod 8); this is the num-
 ber of bits still to be set to zero.
 JR Z,3290,IX-END Jump to the end if nothing
 more to do.
 LD B,A B will count the bits now.
 LD A,+FF Prepare the mask.
328A LESS-MASK SLA A With each loop a zero enters the
 DJNZ 328A,LESS-MASK mask from the right and thereby
 a mask of the correct length is
 produced.
 AND (HL) The unwanted bits of (HL) are
 LD (HL),A lost as the masking is performed.
3290 IX-END EX DE,HL Return the pointer to HL.
 POP DE Return STKEND to DE.
 RET Finished.

THE 'RE-STACK TWO' SUBROUTINE
This subroutine is called to re-stack two ‘small integers’ in full five byte floating-point form for the binary operations of addition,
multiplication and division. It does so by calling the following subroutine twice.

3293 RE-ST-TWO CALL 3269,RESTK-SUB Call the subroutine, and then
 continue into it for the second
 call.
3296 RESTK-SUB EX DE,HL Exchange the pointers at each
 call.

THE 'RE-STACK TWO' SUBROUTINE
(Offset 3D - see CALCULATE below: 're-stack')
This subroutine is called to re-stack one number (which could be a 'small integer') in full five byte floating-point form. It is used for a
single number by ARCTAN and also, through the calculator offset, by EXP, LN and 'get-argt'.

3297 RE-STACK LD A,(HL) If the first byte is not zero,
 AND A return - the number cannot be
 RET NZ a 'small integer'.
 PUSH DE Save the 'other' pointer in DE.
 CALL 2D7F,INT-FETCH Fetch the sign in C and the
 number in DE.
 XOR A Clear the A register.
 INC HL Point to the fifth location.
 LD (HL),A Set the fifth byte to zero.
 DEC HL Point to the fourth location.
 LD (HL),A Set the fourth byte to zero:
 bytes 2 and 3 will hold the man-
 tissa.

189

 LD B,+91 Set B to 145 dec for the
 exponent i.e. for up to 16 bits
 in the integer.
 LD A,D Test whether D is zero so that
 AND A at most 8 bits would be needed.
 JR NZ,32B1,RS-NRMLSE Jump if more than 8 bits needed.
 OR E Now test E too.
 LD B,D Save the zero in B (it will give
 zero exponent if E too is zero).
 JR Z,32BD,RS-STORE Jump if E is indeed zero.
 LD D,E Move E to D (D was zero, E
 not).
 LD E,B Set E to zero now.
 LD B,+89 Set B to 137 dec for the
 exponent - no more than 8 bits
 now.
32B1 RS-NRMLSE EX DE,HL Pointer to DE, number to HL.
32B2 RSTK-LOOP DEC B Decrement the exponent on
 each shift.
 ADD HL,HL Shift the number right one
 position.
 JR NC,32B2,RSTK-LOOP Until the carry is set.
 RRC C Sign bit to carry flag now.
 RR H Insert it in place as the number
 RR L is shifted back one place -
 normal now.
 EX DE,HL Pointer to byte 4 back to HL.
32BD RS-STORE DEC HL Point to the third location.
 LD (HL),E Store the third byte.
 DEC HL Point to the second location.
 LD (HL),D Store the second byte.
 DEC HL Point to the first location.
 LD (HL),B Store the exponent byte.
 POP DE Restore the 'other' pointer to
 DE.
 RET Finished.

190

THE FLOATING-POINT CALCULATOR

THE TABLE OF CONSTANTS
This first table holds the five useful and frequently needed numbers zero, one, a half, a half of pi and ten. The numbers are held in a
condensed form which is expanded by the STACK LITERALS subroutine, see below, to give the required floating-point form.

 data: constant when expanded gives:
 exp. mantissa: (Hex.)

32C5 stk-zero DEFB +00 zero 00 00 00 00 00
 DEFB +B0
 DEFB +00

32C8 stk-one DEFB +40 one 00 00 01 00 00
 DEFB +B0
 DEFB +00
 DEFB +01

32CC stk-half DEFB +30 a half 80 00 00 00 00
 DEFB +00

32CE stk-pi/2 DEFB +F1 a half of pi 81 49 0F DA A2
 DEFB +49
 DEFB +0F
 DEFB +DA
 DEFB +A2

32D3 stk-ten DEFB +40 ten 00 00 0A 00 00
 DEFB +B0
 DEFB +00
 DEFB +0A

THE TABLE OF ADDRESSES:
This second table is a look-up table of the addresses of the sixty-six operational subroutines of the calculator. The offsets used to index
into the table are derived either from the operation codes used in SCANNING, see 2734, etc., or from the literals that follow a RST 0028
instruction.

 offset label address offset label address
32D7 00 jump-true 8F 3319 21 tan DA
 36 37
32D9 01 exchange 3C 331B 22 asn 33
 34 38
32DB 02 delete A1 331D 23 acs 43
 33 38
32DD 03 subtract 0F 331F 24 atn E2
 30 37
32DF 04 multiply CA 3321 25 ln 13
 30 37
32E1 05 division AF 3323 26 exp C4
 31 36
32E3 06 to-power 51 3325 27 int AF
 38 36
32E5 07 or 1B 3327 28 sqr 4A
 35 38
32E7 08 no-&-no 24 3329 29 sgn 92
 35 34
32E9 09 no-l-eql 3B 332B 2A abs 6A
 35 34

191

32EB 0A no-gr-eq 3B 332D 2B peek AC
 35 34
32ED 0B nos-neql 3B 332F 2C in A5
 35 34
32EF 0C no-grtr 3B 3331 2D usr-no B3
 35 34
32F1 0D no-less 3B 3333 2E str$ 1F
 35 36
32F3 0E nos-eql 3B 3335 2F chr$ C9
 35 35
32F5 0F addition 14 3337 30 not 01
 30 35
32F7 10 str-&-no 2D 3339 31 duplicate C0
 35 33
32F9 11 str-l-eql 3B 333B 32 n-mod-m A0
 35 36
32FB 12 str-gr-eq 3B 333D 33 jump 86
 35 36
32FD 13 strs-neql 3B 333F 34 stk-data C6
 35 33
32FF 14 str-grtr 3B 3341 35 dec-jr-nz 7A
 35 36
3301 15 str-less 3B 3343 36 less-0 06
 35 35
3303 16 strs-eql 3B 3345 37 greater-0 F9
 35 34
3305 17 strs-add 9C 3347 38 end-calc 9B
 35 36
3307 18 val$ DE 3349 39 get-argt 83
 35 37
3309 19 usr-$ BC 334B 3A truncate 14
 34 32
330B 1A read-in 45 334D 3B fp-calc-2 A2
 36 33
330D 1B negate 6E 334F 3C e-to-fp 4F
 34 2D
330F 1C code 69 3351 3D re-stack 97
 36 32
3311 1D val DE 3353 3E series-06 49
 45 etc. 34
3313 1E len 74 3355 3F stk-zero 1B
 36 etc. 34
3315 1F sin B5 3357 40 st-mem-0 2D
 37 etc. 34
3317 20 cos AA 3359 41 get-mem-0 0F
 37 etc. 34

Note: The last four subroutines are multi-purpose subroutines and are entered with a parameter that is a copy of the right hand five bits
of the original literal. The full set follows:
Offset 3E: series-06, series-08, & series-0C; literals 86,88 & 8C.
Offset 3F: stk-zero, stk-one, stk-half, stk-pi/2 & stk-ten; literals A0 to A4.
Offset 40: st-mem-0, st-mem-1, st-mem-2, st-mem-3, st-mem-4 & st-mem-5;
 literals C0 to C5.
Offset 41: get-mem-0, get-mem-1, get-mem-2, get-mem-3, get-mem-4 & get-mem-5;
 literals E0 to E5.

192

THE 'CALCULATE' SUBROUTINE

This subroutine is used to perform floating-point calculations. These can be considered to be of three types:

I. Binary operations, e.g. addition, where two numbers in floating-point form are added together to give one 'last value'.

II. Unary operations, e.g. sin, where the 'last value' is changed to give the appropriate function result as a new 'last value'.

III. Manipulatory operations, e.g. st-mem-0, where the 'last value' is copied to the first five bytes of the calculator's memory area.

The operations to be performed are specified as a series of data-bytes, the literals, that follow an RST 0028 instruction that calls this
subroutine. The last literal in the list is always '38' which leads to an end to the whole operation.

In the case of a single operation needing to be performed, the operation offset can be passed to the CALCULATOR in the B register,
and operation '3B', the SINGLE CALCULATION operation, performed.

It is also possible to call this subroutine recursively, i.e. from within itself, and in such a case it is possible to use the system variable
BREG as a counter that controls how many operations are performed before returning.

The first part of this subroutine is complicated but essentially it performs the two tasks of setting the registers to hold their required
values, and to produce an offset, and possibly a parameter, from the literal that is currently being considered.

The offset is used to index into the calculator's table of addresses, see above, to find the required subroutine address.
The parameter is used when the multi-purpose subroutines are called.

Note: A floating-point number may in reality be a set of string parameters.

335B CALCULATE CALL 35BF,STK-PNTRS Presume a unary operation and
 therefore set HL to point to the
 start of the 'last value' on the
 calculator stack and DE one-
 past this floating-point number
 (STKEND).
335E GEN-ENT-1 LD A,B Either, transfer a single
 LD (BREG),A operation offset to BREG
 temporarily, or, when using the
 subroutine recursively pass the
 parameter to BREG to be used
 as a counter.
3362 GEN-ENT-2 EXX The return address of the sub-
 EX (SP),HL routine is store in H'L'. This
 EXX saves the pointer to the first
 literal. Entering the CALCUL-
 ATOR at GEN-ENT-2 is used
 whenever BREG is in use as a
 counter and is not to be
 disturbed.
3365 RE-ENTRY LD (STKEND),DE A loop is now entered to handle
 each literal in the list that
 follows the calling instruction;
 so first, always set to STKEND.
 EXX Go to the alternate register set,
 LD A,(HL) and fetch the literal for this
 loop.

193

 INC HL Make H'L' point to the next
 literal.
336C SCAN-ENT PUSH HL This pointer is saved briefly on
 the machine stack. SCAN-ENT
 is used by the SINGLE CAL-
 CULATION subroutine to find
 the subroutine that is required.
 AND A Test the A register.
 JP P,3380,FIRST-3D Separate the simple literals from
 the multi-purpose literals. Jump
 with literals 00 - 3D.
 LD D,A Save the literal in D.
 AND +60 Continue only with bits 5 & 6.
 RRCA Four right shifts make them
 RRCA now bits 1 & 2.
 RRCA
 RRCA
 ADD A,+7C The offsets required are 3E-41.
 LD L,A and L will now hold double the
 required offset.
 LD A,D Now produce the parameter by
 AND +1F taking bits 0,1,2,3 & 4 of the
 literal; keep the parameter in A.
 JR 338E,ENT-TABLE Jump forward to find the
 address of the required sub-
 routine.
3380 FIRST-3D CP +18 Jump forward if performing a
 JR NC,338C,DOUBLE-A unary operation.
 EXX All of the subroutines that per-
 LD BC,+FFFB form binary operations require
 LD D,H that HL points to the first operand
 LD E,L and DE points to the second
 ADD HL,BC operand (the 'last value') as they
 EXX appear on the calculator stack.
338C DOUBLE-A RLCA As each entry in the table of
 LD L,A addresses takes up two bytes the
 offset produced is doubled.
338E ENT-TABLE LD DE,+32D7 The base address of the table.
 LD H,+00 The address of the required
 ADD HL,DE table entry is formed in HL; and
 LD E,(HL) the required subroutine address
 INC HL is loaded into the DE register
 LD D,(HL) pair.
 LD HL,+3365 The RE-ENTRY address of 3365
 EX (SP),HL is put on the machine stack
 PUSH DE underneath the subroutine
 address.
 EXX Return to the main set of
 registers.
 LD BC,(STKEND-hi) The current value of BREG is
 transferred to the B register
 thereby returning the single
 operation offset.
 (See COMPARISON at 353B)
33A1 delete RET An indirect jump to the
 required subroutine.

194

THE 'DELETE' SUBROUTINE
(Offset 02: 'delete)

This subroutine contains only the single RET instruction at 33A1, above. The literal '02' results in this subroutine being considered as a
binary operation that is to be entered with a first number addressed by the HL register pair and a second number addressed by the DE
register pair, and the result produced again addressed by the HL register pair.
The single RET instruction thereby leads to the first number being considered as the resulting 'last value' and the second number
considered as being deleted. Of course the number has not been deleted from the memory but remains inactive and will probably soon
be overwritten.

THE 'SINGLE OPERATION' SUBROUTINE
(Offset 3B: 'fp-calc-2')

This subroutine is only called from SCANNING at 2757 hex and is used to perform a single arithmetic operation. The offset that
specifies which operation is to be performed is supplied to the calculator in the B register and subsequently transferred to the system
variable BREG.

The effect of calling this subroutine is essentially to make a jump to the appropriate subroutine for the single operation.

33A2 fp-calc-2 POP AF Discard the RE-ENTRY address.
 LD A,(BREG) Transfer the offset to A.
 EXX Enter the alternate register set.
 JR 336C,SCAN-ENT Jump back to find the required
 address; stack the RE-ENTRY
 address and jump to the
 subroutine for the operation.

THE 'TEST 5-SPACES' SUBROUTINE
This subroutine tests whether there is sufficient room in memory for another 5-byte floating-point number to be added to the calculator
stack.

33A9 TEST-5-SP PUSH DE Save DE briefly.
 PUSH HL Save HL briefly.
 LD BC,+0005 Specify the test is for 5 bytes.
 CALL 1F05,TEST-ROOM Make the test.
 POP HL Restore HL.
 POP DE Restore DE.
 RET Finished.

THE 'STACK NUMBER' SUBROUTINE
This subroutine is called by BEEP and SCANNING twice to copy STKEND to DE, move a floating-point number to the calculator stack,
and reset STKEND from DE. It calls 'MOVE-FP' to do the actual move.

33B4 STACK-NUM LD DE,(STKEND) Copy STKEND to DE as
 destination address.
 CALL 33C0,MOVE-FP Move the number.
 LD (STKEND),DE Reset STKEND from DE.
 RET Finished.

195

THE 'MOVE A FLOATING-POINT NUMBER' SUBROUTINE
(Offset 31: 'duplicate')

This subroutine moves a floating-point number to the top of the calculator stack (3 cases) or from the top of the stack to the calculator's
memory area (1 case). It is also called through the calculator when it simply duplicates the number at the top of the calculator stack, the
'last value', thereby extending the stack by five bytes.

33C0 MOVE-FP CALL 33A9,TEST-5-SP A test is made for room.
 LDIR Move the five bytes involved.
 RET Finished.

THE 'STACK LITERALS' SUBROUTINE
(Offset 34: 'stk-data')

This subroutine places on the calculator stack, as a 'last value', the floating-point number supplied to it as 2, 3, 4 or 5 literals.
When called by using offset '34' the literals follow the '34' in the list of literals; when called by the SERIES GENERATOR, see below,
the literals are supplied by the sub-routine that called for a series to be generated; and when called by SKIP CONSTANTS & STACK A
CONSTANT the literals are obtained from the calculator's table of constants (32C5-32D6).
In each case, the first literal supplied is divided by Hex.40, and the integer quotient plus 1 determines whether 1, 2, 3 or 4 further literals
will be taken from the source to form the mantissa of the number. Any unfilled bytes of the five bytes that go to form a 5-byte floating-
point number are set to zero. The first literal is also used to determine the exponent, after reducing mod Hex.40, unless the remainder
is zero, in which case the second literal is used, as it stands, without reducing mod Hex.40. In either case, Hex.50 is added to the literal,
giving the augmented exponent byte, e (the true exponent e' plus Hex.80). The rest of the 5 bytes are stacked, including any zeros
needed, and the subroutine returns.

33C6 STK-DATA LD H,D This subroutine performs the
 LD L,E manipulatory operation of
 adding a 'last value' to the cal-
 culator stack; hence HL is set to
 point one-past the present
 'last value' and hence point to
 the result.
33C8 STK-CONST CALL 33A9,TEST-5-SP Now test that there is indeed
 room.
 EXX Go to the alternate register set
 PUSH HL and stack the pointer to the
 EXX next literal.
 EX (SP),HL Switch over the result pointer
 and the next literal pointer.
 PUSH BC Save BC briefly.
 LD A,(HL) The first literal is put into A
 AND +C0 and divided by Hex.40 to give
 RLCA the integer values 0, 1, 2 or 3.
 RLCA
 LD C,A The integer value is transferred
 INC C to C and incremented, thereby
 giving the range 1, 2, 3 or 4 for
 the number of literals that will
 be needed.
 LD A,(HL) The literal is fetch anew,
 AND +3F reduced mod Hex.40 and dis-
 JR NZ,33DE,FORM-EXP carded as inappropriate if the
 INC HL remainder if zero; in which case

196

 LD A,(HL) the next literal is fetched and
 used unreduced.
33DE FORM-EXP ADD A,+50 The exponent, e, is formed by
 LD (DE),A the addition of Hex.50 and
 passed to the calculator stack as
 the first of the five bytes of the
 result.
 LD A,+05 The number of literals specified
 SUB C in C are taken from the source
 INC HL and entered into the bytes of
 INC DE the result.
 LD B,+00
 LDIR
 POP BC Restore BC.
 EX (SP),HL Return the result pointer to HL
 EXX and the next literal pointer to
 POP HL its usual position in H' & L'.
 EXX
 LD B,A The number of zero bytes
 XOR A required at this stage is given by
33F1 STK-ZEROS DEC B 5-C-1; and this number of zeros
 RET Z is added to the result to make
 LD (DE),A up the required five bytes.
 INC DE
 JR 33F1, STK-ZEROS

THE 'SKIP CONSTANTS' SUBROUTINE
This subroutine is entered with the HL register pair holding the base address of the calculator's table of constants and the A register
holding a parameter that shows which of the five constants is being requested.
The subroutine performs the null operations of loading the five bytes of each unwanted constant into the locations 0000, 0001, 0002,
0003 and 0004 at the beginning of the ROM until the requested constant is reached.
The subroutine returns with the HL register pair holding the base address of the requested constant within the table of constants.

33F7 SKIP-CONS AND A The subroutine returns if the
33F8 SKIP-NEXT RET Z parameter is zero, or when the
 requested constant has been
 reached.
 PUSH AF Save the parameter.
 PUSH DE Save the result pointer.
 LD DE,+0000 The dummy address.
 CALL 33C8,STK-CONST Perform imaginary stacking of
 an expanded constant.
 POP DE Restore the result pointer.
 POP AF Restore the parameter.
 DEC A Count the loops.
 JR 33F8,SKIP-NEXT Jump back to consider the value
 of the counter.

THE 'MEMORY LOCATION' SUBROUTINE
This subroutine finds the base address for each five byte portion of the calculator's memory area to or from which a floating-point
number is to be moved from or to the calculator stack. It does this operation by adding five times the parameter supplied to the base
address for the area which is held in the HL register pair.
Note that when a FOR-NEXT variable is being handled then the pointers are changed so that the variable is treated as if it were the
calculator's memory area (see address 1D20).
3406 LOC-MEM LD C,A Copy the parameter to C.
 RLCA Double the parameter.
 RLCA Double the result.
 ADD A,C Add the value of the parameter
 to give five times the original

197

 value.
 LD C,A This result is wanted in the
 LD B,+00 BC register pair.
 ADD HL,BC Produce the new base address.
 RET Finished.

THE 'GET FROM MEMORY AREA' SUBROUTINE
(Offsets E0 to E5: 'get-mem-0' to 'get-mem-5')

This subroutine is called using the literals E0 to E5 and the parameter derived from these literals is held in the A register. The
subroutine calls MEMORY LOCATION to put the required source address into the HL register pair and MOVE A FLOATING-POINT
NUMBER to copy the five bytes involved from the calculator's memory area to the top of the calculator stack to form a new 'last value'.

340F get-mem-0 PUSH DE Save the result pointer.
 etc. LD HL,(MEM) Fetch the pointer to the current
 memory area (see above).
 CALL 3406,LOC-MEM The base address is found.
 CALL 33C0,MOVE-FP The five bytes are moved.
 POP HL Set the result pointer.
 RET Finished.

THE 'STACK A CONSTANT' SUBROUTINE
(offsets A0 to A4: 'stk-zero','stk-one','stk-half','stk-pi/2' & 'stk-ten')

This subroutine uses SKIP CONSTANTS to find the base address of the requested constants from the calculator's table of constants
and then calls STACK LITERALS, entering at STK-CONST, to make the expanded form of the constant the 'last value' on the calculator
stack.

341B stk-zero LD H,D Set HL to hold the result
 etc. pointer.
 LD L,E
 EXX Go to the alternate register set
 PUSH HL and save the next literal pointer.
 LD HL,+32C5 The base address of the calcul-
 ator's table of constants.
 EXX Back to the main set of registers.
 CALL 33F7,SKIP-CONS Find the requested base address.
 CALL 33C8,STK-CONST Expand the constant.
 EXX
 POP HL Restore the next literal pointer.
 EXX
 RET Finished.

THE 'STORE IN MEMORY AREA' SUBROUTINE
(Offsets C0 to C5: 'st-mem-0' to 'st-mem-5')

This subroutine is called using the literals C0 to C5 and the parameter derived from these literals is held in the A register. This
subroutine is very similar to the GET FROM MEMORY subroutine but the source and destination pointers are exchanged.

342D st-mem-0 PUSH HL Save the result pointer.
 etc. EX DE,HL Source to DE briefly.
 LD HL,(MEM) Fetch the pointer to the current
 memory area.
 CALL 3406,LOC-MEM The base address is found.
 EX DE,HL Exchange source and
 destination pointers.
 CALL 33C0,MOVE-FP The five bytes are moved.
 EX DE,HL 'Last value' +5, i.e. STKEND, to
 DE.
 POP HL Result pointer to HL.
 RET Finished.

198

Note that the pointers HL and DE remain as they were, pointing to STKEND-5 and STKEND respectively, so that the 'last value'
remains on the calculator stack. If required it can be removed by using 'delete'.

THE 'EXCHANGE' SUBROUTINE
(Offset 01: 'exchange')

This binary operation 'exchanges' the first number with the second number, i.e. the topmost two numbers on the calculator stack are
exchanged.

343C EXCHANGE LD B,+05 There are five bytes involved.
343E SWAP-BYTE LD A,(DE) Each byte of the second number.
 LD C,(HL) Each byte of the first number.
 EX DE,HL Switch source and destination.
 LD (DE),A Now to the first number.
 LD (HL),C Now to the second number
 INC HL Move to consider the next pair
 INC DE of bytes.
 DJNZ 343E,SWAP-BYTE Exchange the five bytes.
 EX DE,HL Get the pointers correct as the
 number 5 is an odd number.
 RET Finished.

THE 'SERIES GENERATOR' SUBROUTINE
(Offsets 86,88 & 8C: 'series-06','series-08' & 'series-0C')

This important subroutine generates the series of Chebyshev polynomials which are used to approximate to SIN, ATN, LN and EXP
and hence to derive the other arithmetic functions which depend on these (COS, TAN, ASN, ACS, ** and SQR).
The polynomials are generated, for n=1,2,..., by the recurrence relation:

Tn+1(z) = 2zTn(z) - Tn-1(z), where Tn(z) is the nth Chebyshev polynomial in z.

The series in fact generates:
T0, 2T1, 2T2,.... , 2Tn-1, where n is 6 for SIN, 8 for EXP and 12 decimal, for LN and ATN.

The coefficients of the powers of z in these polynomials may be found in the Handbook of Mathematical Functions by M. Abramowitz
and I.A. Stegun (Dover 1965), page 795.
BASIC programs showing the generation of each of the four functions are given here in the Appendix.
In simple terms this subroutine is called with the 'last value' on the calculator stack, say Z, being a number that bears a simple
relationship to the argument, say X, when the task is to evaluate, for instance, SIN X. The calling subroutine also supplies the list of
constants that are to be required (six constants for SIN). The SERIES GENERATOR then manipulates its data and returns to the calling
routine a 'last value' that bears a simple relationship to the requested function, for instance, SIN X.
This subroutine can be considered to have four major parts:

 i. The setting of the loop counter:
The calling subroutine passes its parameters in the A register for use as a counter. The calculator is entered at GEN-ENT-1 so that the
counter can be set.

3449 series-06 LD B,A Move the parameter to B.
 etc. CALL 335E,GEN-ENT-1 In effect a RST 0028
 instruction but sets the counter.

 ii. The handling of the 'last value', Z:
The loop of the generator requires 2*Z to be placed in mem-0, zero to be placed in mem-2 and the 'last value' to be zero.
 calculator stack
 DEFB +31,duplicate Z,Z
 DEFB +0F,addition 2*Z
 DEFB +C0,st-mem-0 2*Z mem-0 holds 2*Z
 DEFB +02,delete -

199

 DEFB +A0,stk-zero 0
 DEFB +C2,st-mem-2 0 mem-2 holds 0

iii. The main loop:

The series is generated by looping, using BREG as a counter; the constants in the calling subroutine are stacked in turn by calling
STK-DATA; the calculator is re-entered at GEN-ENT-2 so as not to disturb the value of BREG; and the series is built up in the form:
B(R) = 2*Z*B(R-1) - B(R-2) + A(R), for R = 1,2,...,N, where A(1), A(2),..., A(N) are the constants supplied by the calling subroutine
(SIN, ATN, LN and EXP) and B(0) = 0 = B(-1).
The (R+1)th loop starts with B(R) on the stack and with 2*Z, B(R-2) and B(R-1) in mem-0, mem-1 and mem-2 respectively.

3453 G-LOOP DEFB +31,duplicate B(R),B(R)
 DEFB +E0,get-mem-0 B(R),B(R),2*Z
 DEFB +04,multiply B(R),2*B(R)*Z
 DEFB +E2,get-mem-2 B(R),2*B(R)*Z,B(R-1)
 DEFB +C1,st-mem-1 mem-1 holds B(R-1)
DEFB +38,end-calc DEFB +03,subtract B(R),2*B(R)*Z-B(R-1)

The next constant is placed on the calculator stack.

 CALL 33C6,STK-DATA B(R),2*B(R)*Z-B(R-1),A(R+1)

The Calculator is re-entered without disturbing BREG.

 CALL 3362,GEN-ENT-2
 DEFB +0F,addition B(R),2*B(R)*Z-B(R-1)+A(R+1)
 DEFB +01,exchange 2*B(R)*Z-B(R-1)+A(R+1),B(R)
 DEFB +C2,st-mem-2 mem-2 holds B(R)
 DEFB +02,delete 2*B(R)*Z-B(R-1)+A(R!1) =
 B(R!1)
 DEFB +35,dec-jr-nz B(R+1)
 DEFB +EE,to 3453,G-LOOP

iv. The subtraction of B(N-2):

The loop above leaves B(N) on the stack and the required result is given by B(N) - B(N-2).
 DEFB +E1,get-mem-1 B(N),B(N-2)
 DEFB +03,subtract B(N)-B(N-2)
 DEFB +38,end-calc
 RET Finished

THE 'ABSOLUTE MAGNITUDE' FUNCTION
(Offset 2A: 'abs')
This subroutine performs its unary operation by ensuring that the sign bit of a floating-point number is reset.
'Small integers' have to be treated separately. Most of the work is shared with the 'unary minus' operation.

346A abs LD B,+FF B is set to FF hex.
 JR 3474,NEG-TEST The jump is made into 'unary
 minus'.

THE 'UNARY MINUS' OPERATION
(Offset 1B: 'negate')
This subroutine performs its unary operation by changing the sign of the 'last value' on the calculator stack.
Zero is simply returned unchanged. Full five byte floating-point numbers have their sign bit manipulated so that it ends up reset (for
'abs') or changed (for 'negate'). 'Small integers' have their sign byte set to zero (for 'abs') or changed (for 'negate').

346E NEGATE CALL 34E9,TEST-ZERO If the number is zero, the
 RET C subroutine returns leaving
 00 00 00 00 00 unchanged.

200

 LD B,+00 B is set to +00 hex for 'negate'.

'ABS' enters here.

3474 NEG-TEST LD A,(HL) If the first byte is zero, the
 AND A jump is made to deal with a
 JR Z,3483,INT-CASE 'small integer'.
 INC HL Point to the second byte.
 LD A,B Get +FF for 'abs', +00 for
 'negate'.
 AND +80 Now +80 for 'abs', +00 for
 'negate'.
 OR (HL) This sets bit 7 for 'abs', but
 changes nothing for 'negate'.
 RLA Now bit 7 is changed, leading to
 CCF bit 7 of byte 2 reset for 'abs',
 RRA and simply changed for 'negate'.
 LD (HL),A The new second byte is stored.
 DEC HL HL points to the first byte
 again.
 RET Finished.

The 'integer case' does a similar operation with the sign byte.

3483 INT-CASE PUSH DE Save STKEND in DE.
 PUSH HL Save pointer to the number in
 HL.
 CALL 2D7F,INT-FETCH Fetch the sign in C, the number
 in DE.
 POP HL Restore the pointer to the
 number in HL.
 LD A,B Get +FF for 'abs', +00 for
 'negate'.
 OR C Now +FF for 'abs', no change for
 'negate'
 CPL Now +00 for 'abs', and a changed byte
 LD C,A for 'negate': store it in C.
 CALL 2D8E,INT-STORE Store result on the stack.
 POP DE Return STKEND to DE.
 RET

THE 'SIGNUM' FUNCTION
(Offset 29: 'sgn')

This subroutine handles the function SGN X and therefore returns a 'last value' of 1 if X is positive, zero if X is zero and -1 if X is
negative.

3492 sgn CALL 34E9,TEST-ZERO If X is zero, just return with
 RET C zero as the 'last value'.
 PUSH DE Save the pointer to STKEND.
 LD DE,+0001 Store 1 in DE.
 INC HL Point to the second byte of X.
 RL (HL) Rotate bit 7 into the carry flag.
 DEC HL Point to the destination again.
 SBC A,A Set C to zero for positive X and
 LD C,A to FF hex for negative X.
 CALL 2D8E,INT-STORE Stack 1 or -1 as required.
 POP DE Restore the pointer to
 STKEND'
 RET Finished.

THE 'IN' FUNCTION
(Offset 2C: 'in')

This subroutine handles the function IN X. It inputs at processor level from port X, loading BC with X and performing the instruction IN
A,(C).

201

34A5 in CALL 1E99,FIND-INT2 The 'last value', X, is
 compressed into BC.
 IN A,(C) The signal is received.
 JR 34B0,IN-PK-STK Jump to stack the result.

THE 'PEEK' FUNCTION
(Offset 2B: 'peek')

This subroutine handles the function PEEK X. The 'last value' is unstacked by calling FIND-INT2 and replaced by the value of the
contents of the required location.

34AC peek CALL 1E99,FIND-INT2 Evaluate the 'last value',
 rounded to the nearest integer;
 test that it is in range and return
 it in BC.
 LD A,(BC) Fetch the required byte.
34B0 IN-PK-STK JP 2D28,STACK-A Exit by jumping to STACK-A.

THE 'USR' FUNCTION
(Offset 2D: 'usr-no')

This subroutine ('USR number' as distinct from 'USR string') handles the function USR X, where X is a number. The value of X is
obtained in BC, a return address is stacked and the machine code is executed from location X.

34B3 usr-no CALL 1E99,FIND-INT2 Evaluate the 'last value',
 rounded to the nearest integer;
 test that it is in range and return
 it in BC.
 LD HL,+2D2B Make the return address be that
 PUSH HL of the subroutine STACK-BC.
 PUSH BC Make an indirect jump to the
 RET required location.

Note: It is interesting that the IY register pair is re-initialised when the return to STACK-BC has been made, but the important H'L' that
holds the next literal pointer is not restored should it have been disturbed. For a successful return to BASIC, H'L' must on exit from the
machine code contain the address in SCANNING of the 'end-calc' instruction, 2758 hex (10072 decimal).

THE 'USR-STRING' FUNCTION
(Offset 19: 'usr-$')

This subroutine handles the function USR X$, where X$ is a string. The subroutine returns in BC the address of the bit pattern for the
user-defined graphic corresponding to X$. It reports error A if X$ is not a single letter between a and u or a user-defined graphic.

34BC usr-$ CALL 2BF1,STK-FETCH Fetch the parameters of the
 string X$.
 DEC BC Decrease the length by 1 to test
 it.
 LD A,B If the length was not 1, then
 OR C jump to give error report A.
 JR NZ,34E7,REPORT-A
 LD A,(DE) Fetch the single code of the
 string.
 CALL 2C8D,ALPHA Does it denote a letter?
 JR C,34D3,USR-RANGE If so, jump to gets its address.
 SUB +90 Reduce range for actual user-
 defined graphics to 0 - 20
 decimal.
 JR C,34E7,REPORT-A Give report A if out of range.
 CP +15 Test the range again.
 JR NC,34E7,REPORT-A Give report A if out of range.
 INC A Make range of user-defined
 graphics 1 to 21 decimal, as for
 a to u.

202

34D3 USR-RANGE DEC A Now make the range 0 to 20
 decimal in each case.
 ADD A,A Multiply by 8 to get an offset
 ADD A,A for the address.
 ADD A,A
 CP +A8 Test the range of the offset.
 JR NC,34E7,REPORT-A Give report A if out of range.
 LD BC,(UDG) Fetch the address of the first
 user-defined graphic in BC.
 ADD A,C Add C to the offset.
 LD C,A Store the result back in C.
 JR NC,34E4,USR-STACK Jump if there is no carry.
 INC B Increment B to complete the
 address.
34E4 USR-STACK JP 2D2B,STACK-BC Jump to stack the address.

REPORT A - Invalid argument.

34E7 REPORT-A RST 0008,ERROR-1 Call the error handling
 DEFB +09 routine.

THE 'TEST-ZERO' SUBROUTINE
This subroutine is called at least nine times to test whether a floating-point number is zero. This test requires that the first four bytes of
the number should each be zero. The subroutine returns with the carry flag set if the number was in fact zero.

34E9 TEST-ZERO PUSH HL Save HL on the stack.
 PUSH BC Save BC on the stack.
 LD B,A Save the value of A in B.
 LD A,(HL) Get the first byte.
 INC HL Point to the second byte.
 OR (HL) OR first byte with second.
 INC HL Point to the third byte.
 OR (HL) OR the result with the third
 byte.
 INC HL Point to the fourth byte.
 OR (HL) OR the result with the fourth
 byte.
 LD A,B Restore the original value of A.
 POP BC And of BC.
 POP HL Restore the pointer to the
 number to HL.
 RET NZ Return with carry reset if any of
 the four bytes was non-zero.
 SCF Set the carry flag to indicate
 RET that the number was zero, and
 return.

THE 'GREATER THAN ZERO' OPERATION
(Offset 37: 'greater-0')

This subroutine returns a 'last value' of one if the present 'last value' is greater than zero and zero otherwise. It is also used by other
subroutines to 'jump on plus'.

34F9 GREATER-0 CALL 34E9,TEST-ZERO Is the 'last-value' zero?
 RET C If so, return.
 LD A,+FF Jump forward to LESS THAN
 JR 3507,SIGN-TO-C ZERO but signal the opposite
 action is needed.

THE 'NOT' FUNCTION
(Offset 30: 'not')

This subroutine returns a 'last value' of one if the present 'last value' is zero and zero otherwise. It is also used by other subroutines to
'jump on zero'.

203

3501 NOT CALL 34E9,TEST-ZERO The carry flag will be set only if
 the 'last value' is zero; this gives
 the correct result.
 JR 350B,FP-0/1 Jump forward.

THE 'LESS THAN ZERO' OPERATION
(Offset 36: 'less-0')

This subroutine returns a 'last value' of one if the present 'last value' is less than zero and zero otherwise. It is also used by other
subroutines to 'jump on minus'.

3506 less-0 XOR A Clear the A register.
3507 SIGN-TO-C INC HL Point to the sign byte.
 XOR (HL) The carry is reset for a positive
 DEC HL number and set for a negative
 RLCA number; when entered from
 GREATER-0 the opposite sign
 goes to the carry.

THE 'ZERO OR ONE' SUBROUTINE
This subroutine sets the 'last value' to zero if the carry flag is reset and to one if it is set. When called from 'E-TO-FP' however it creates
the zero or one not on the stack but in mem-0.

350B FP-0/1 PUSH HL Save the result pointer.
 LD A,+00 Clear A without disturbing the
 carry.
 LD (HL),A Set the first byte to zero.
 INC HL Point to the second byte.
 LD (HL),A Set the second byte to zero.
 INC HL Point to the third byte.
 RLA Rotate the carry into A, making
 A one if the carry was set, but
 zero if the carry was reset.
 LD (HL),A Set the third byte to one or
 zero.
 RRA Ensure that A is zero again.
 INC HL Point to the fourth byte.
 LD (HL),A Set the fourth byte to zero.
 INC HL Point to the fifth byte.
 LD (HL),A Set the fifth byte to zero.
 POP HL Restore the result pointer.
 RET

THE 'OR' OPERATION
(Offset 07: 'or')

This subroutine performs the binary operation 'X OR Y' and returns X if Y is zero and the value 1 otherwise.

351B or EX DE,HL Point HL at Y, the second
 number.
 CALL 34E9,TEST-ZERO Test whether Y is zero.
 EX DE,HL Restore the pointers.
 RET C Return if Y was zero; X is now
 the 'last value'.
 SCF Set the carry flag and jump back
 JR 350B,FP-0/1 to set the 'last value' to 1.

THE 'NUMBER AND NUMBER' OPERATION
(Offset 08: 'no-&-no')

This subroutine performs the binary operation 'X AND Y' and returns X if Y is non-zero and the value zero otherwise.

204

3524 no-&-no EX DE,HL Point HL at Y, DE at X.
 CALL 34E9,TEST-ZERO Test whether Y is zero.
 EX DE,HL Swap the pointers back.
 RET NC Return with X as the 'last value'
 if Y was non-zero.
 AND A Reset the carry flag and jump
 JR 350B,FP-0/1 back to set the 'last value' to
 zero.

THE 'STRING AND NUMBER' OPERATION
(Offset 10: 'str-&-no')

This subroutine performs the binary operation 'X$ AND Y' and returns X$ if Y is non-zero and a null string otherwise.

352D str-&-no EX DE,HL Point HL at Y, DE at X$
 CALL 34E9,TEST-ZERO Test whether Y is zero.
 EX DE,HL Swap the pointers back.
 RET NC Return with X$ as the 'last
 value' if Y was non-zero.
 PUSH DE Save the pointer to the number.
 DEC DE Point to the fifth byte of the
 string parameters i.e. length-
 high.
 XOR A Clear the A register.
 LD (DE),A Length-high is now set to zero.
 DEC DE Point to length-low.
 LD (DE),A Length-low is now set to zero.
 POP DE Restore the pointer.
 RET Return with the string
 parameters being the 'last value'.

THE 'COMPARISON' OPERATIONS
(Offsets 09 to 0E & 11 to 16: 'no-l-eql', 'no-gr-eq', 'nos-neql', 'no-grtr', 'no-less', 'nos-eql', 'str-l-eql', 'str-gr-eq', 'strs-neql', 'str-grtr', 'str-
less' & 'strs-eql')

This subroutine is used to perform the twelve possible comparison operations. The single operation offset is present in the B register at
the start of the subroutine.

353B no-l-eql LD A,B The single offset goes to the
 etc. A register.
 SUB +08 The range is now 01-06 &
 09-0E.
 BIT 2,A This range is changed to:
 JR NZ,3543,EX-OR-NOT 00-02, 04-06, 08-0A &
 DEC A 0C-0E.
3543 EX-OR-NOT RRCA Then reduced to 00-07 with
 carry set for 'greater than or
 equal to' & 'less than'; the
 operations with carry set are
 JR NC,354E,NU-OR-STR then treated as their
 PUSH AF complementary operation once
 PUSH HL their values have been exchanged.
 CALL 343C,EXCHANGE
 POP DE
 EX DE,HL
 POP AF
354E NU-OR-STR BIT 2,A The numerical comparisons are
 JR NZ,3559,STRINGS now separated from the string
 comparisons by testing bit 2.
 RRCA The numerical operations now
 have the range 00-01 with carry
 set for 'equal' and 'not equal'.
 PUSH AF Save the offset.
 CALL 300F,SUBTRACT The numbers are subtracted for

205

 JR 358C,END-TESTS the final tests.
3559 STRINGS RRCA The string comparisons now
 have the range 02-03 with carry
 set for 'equal' and 'not equal'.
 PUSH AF Save the offset.
 CALL 2BF1,STK-FETCH The lengths and starting
 PUSH DE addresses of the strings are
 PUSH BC fetched from the calculator
 CALL 2BF1,STK-FETCH stack.
 POP HL The length of the second string.
3564 BYTE-COMP LD A,H
 OR L
 EX (SP),HL
 LD A,B
 JR NZ,3575,SEC-PLUS Jump unless the second string
 OR C is null.
356B SECND-LOW POP BC Here the second string is either
 null or less than the first.
 JR Z,3572,BOTH-NULL
 POP AF
 CCF The carry is complemented to
 JR 3588,STR-TEST give the correct test results.
3572 BOTH-NULL POP AF Here the carry is used as it
 JR 3588,STR-TEST stands.
3575 SEC-PLUS OR C
 JR Z,3585,FRST-LESS The first string is now null,
 the second not.
 LD A,(DE) Neither string is null, so their
 SUB (HL) next bytes are compared.
 JR C,3585,FRST-LESS The first byte is less.
 JR NZ,356B,SECND-LOW The second byte is less.
 DEC BC The bytes are equal; so the
 INC DE lengths are decremented and a
 INC HL jump is made to BYTE-COMP
 EX (SP),HL to compare the next bytes of
 DEC HL the reduced strings.
 JR 3564,BYTE-COMP
3585 FRST-LESS POP BC
 POP AF
 AND A The carry is cleared here for the
 correct test results.
3588 STR-TEST PUSH AF For the string tests, a zero is
 RST 0028,FP-CALC put on to the calculator stack.
 DEFB +A0,stk-zero
 DEFB +38,end-calc
358C END-TESTS POP AF These three tests, called as
 PUSH AF needed, give the correct results
 CALL C,3501,NOT for all twelve comparisons. The
 POP AF initial carry is set for 'not equal'
 PUSH AF and 'equal', and the final carry
 CALL NC,34F9,GREATER-0 is set for 'greater than', 'less
 POP AF than' and 'equal'.
 RRCA
 CALL NC,3501,NOT
 RET Finished.

THE 'STRING CONCATENATION' OPERATION
(Offset 17: 'strs-add')

This subroutine performs the binary operation 'A$+B$. The parameters for these strings are fetched and the total length found.
Sufficient room to hold both the strings is made available in the work space and the strings are copied over. The result of this
subroutine is therefore to produce a temporary variable A$+B$ that resides in the work space.

206

359C strs-add CALL 2BF1,STK-FETCH The parameters of the second
 PUSH DE string are fetched and saved.
 PUSH BC
 CALL 2BF1,STK-FETCH The parameters of the first
 string are fetched.
 POP HL
 PUSH HL The lengths are now in HL and
 BC.
 PUSH DE The parameters of the first
 PUSH BC string are saved.
 ADD HL,BC The total length of the two
 LD B,H strings is calculated and passed
 LD C,L to BC.
 RST 0030,BC-SPACES Sufficient room is made
 available.
 CALL 2AB2,STK-STORE The parameters of the new
 string are passed to the
 calculator stack.
 POP BC The parameters of the first
 POP HL string are retrieved and the
 LD A,B string copied to the work space
 OR C as long as it is not a null string.
 JR Z,35B7,OTHER-STR
 LDIR
35B7 OTHER-STR POP BC Exactly the same procedure is
 POP HL followed for the second string
 LD A,B thereby giving 'A$+B$'.
 OR C
 JR Z,35BF,STK-PNTRS
 LDIR

THE 'STK-PNTRS' SUBROUTINE
This subroutine resets the HL register pair to point to the first byte of the 'last value', i.e. STKEND-5, and the DE register pair to point
one-past the 'last value', i.e. STKEND.

35BF STK-PNTRS LD HL,(STKEND) Fetch the current value of
 STKEND.
 LD DE,+FFFB Set DE to -5, twos complement.
 PUSH HL Stack the value for STKEND.
 ADD HL,DE Calculate STKEND-5.
 POP DE DE now holds STKEND and HL
 RET

THE 'CHR$' FUNCTION
(Offset 2F: 'chrs')

This subroutine handles the function CHR$ X and creates a single character string in the work space.

35C9 chrs CALL 2DD5,FP-TO-A The 'last value' is compressed
 into the A register.
 JR C,35DC,REPORT-B Give the error report if X was
 greater than 255 decimal, or
 JR NZ,35DC,REPORT-B X was a negative number.
 PUSH AF Save the compressed value of X.
 LD BC,+0001 Make one space available in the
 POP AF Fetch the value.
 LD (DE),A Copy the value to the work
 space.
 CALL 2AB2,STK-STORE Pass the parameters of the new
 string to the calculator stack.
 EX DE,HL Reset the pointers.
 RET Finished.

207

REPORT-B - Integer out of range
35DC REPORT-B RST 0008,ERROR-1 Call the error handling
 DEFB +0A routine.

THE 'VAL' AND 'VAL$' FUNCTION
(Offsets 1D: 'val' and 18: 'val$')

This subroutine handles the functions VAL X$ and VAL$ X$. When handling VAL X$, it return a 'last value' that is the result of
evaluating the string (without its bounding quotes) as a numerical expression. when handling VAL$ X$, it evaluates X$ (without its
bounding quotes) as a string expression, and returns the parameters of that string expression as a 'last value' on the calculator stack.

35DE val LD HL,(CH-ADD) The current value of CH-ADD is
 (also val$) PUSH HL preserved on the machine stack.
 LD A,B The 'offset' for 'val' or 'val$'
 must be in the B register; it is
 now copied to A.
 ADD A,+E3 Produce +00 and carry set for
 'val', +FB and carry reset for
 'val$'.
 SBC A,A Produce +FF (bit 6 therefore
 set) for 'val', but +00 (bit 6
 reset) for 'val$'.
 PUSH AF Save this 'flag' on the machine
 stack.
 CALL 2BF1,STK-FETCH The parameters of the string are
 PUSH DE fetched; the starting address is
 INC BC saved; one byte is added to the
 RST 0030,BC-SPACES length and room made available
 for the string (+1) in the work
 space.
 POP HL The starting address of the
 string goes to HL as a source
 address.
 LD (CH-ADD),DE The pointer to the first new
 PUSH DE space goes to CH-ADD and to
 the machine stack.
 LDIR The string is copied to the work
 space, together with an extra
 byte.
 EX DE,HL Switch the pointers.
 DEC HL The extra byte is replaced by a
 LD (HL),+0D 'carriage return' character.
 RES 7,(FLAGS) The syntax flag is reset and the
 CALL 24FB,SCANNING string is scanned for correct
 syntax.
 RST 0018,GET-CHAR The character after the string is
 fetched.
 CP +0D A check is made that the end of
 the expression has been reached.
 JR NZ,360C,V-RPORT-C If not, the error is reported.
 POP HL The starting address of the
 string is fetched.
 POP AF The 'flag' for 'val/val$' is
 XOR (FLAGS) fetched and bit 6 is compared
 AND +40 with bit 6 of the result of the
 syntax scan.
360C V-RPORT-C JP NZ,1C8A,REPORT-C Report the error if they do not
 match.
 LD (CH-ADD),HL Start address to CH-ADD again.
 SET 7,(FLAGS) The flag is set for line
 execution.

208

 CALL 24FB,SCANNING The string is treated as a 'next
 expression' and a 'last value'
 produced.
 POP HL The original value of CH-ADD is
 LD (CH-ADD),HL restored.
 JR 35BF,STK-PNTRS The subroutine exits via STK-
 PNTRS which resets the pointers.

THE 'STR$' FUNCTION
(Offset 2E: 'str$')

This subroutine handles the function STR$ X and returns a 'last value' which is a set of parameters that define a string containing what
would appear on the screen if X were displayed by a PRINT command.

361F str$ LD BC,+0001 One space is made in the work
 RST 0030,BC-SPACES space and its address is copied
 LD (K-CUR),HL to K-CUR, the address of the
 cursor.
 PUSH HL This address is saved on the
 stack too.
 LD HL,(CURCHL) The current channel address is
 PUSH HL saved on the machine stack.
 LD A,+FF Channel 'R' is opened, allowing
 CALL 1601,CHAN-OPEN the string to be 'printed' out
 into the work space.
 CALL 2DE3,PRINT-FP The 'last value', X, is now
 printed out in the work space
 and the work space is expanded
 with each character.
 POP HL Restore CURCHL to HL and
 CALL 1615,CHAN-FLAG restore the flags that are
 appropriate to it.
 POP DE Restore the start address of the
 string.
 LD HL,(K-CUR) Now the cursor address is one
 AND A past the end of the string and
 SBC HL,DE hence the difference is the
 length.
 LD B,H Transfer the length to BC.
 LD C,L
 CALL 2AB2,STK-STO-$ Pass the parameters of the new
 string to the calculator stack.
 EX DE,HL Reset the pointers.
 RET Finished.

Note: See PRINT-FP for an explanation of the 'PRINT "A"+STR$ 0.1' error.

THE 'READ-IN' SUBROUTINE
(Offset 1A: 'read-in')

This subroutine is called via the calculator offset through the first line of the S-INKEY$ routine in SCANNING. It appears to provide for
the reading in of data through different streams from those available on the standard Spectrum. Like INKEY$ the subroutine returns a
string.

3645 read-in CALL 1E94,FIND-INT1 The numerical parameter is
 compressed into the A register.
 CP +10 Is it smaller than 16 decimal?
 JP NC,1E9F,REPORT-B If not, report the error.
 LD HL,(CURCHL) The current channel address is
 PUSH HL saved on the machine stack.
 CALL 1601,CHAN-OPEN The channel specified by the
 parameter is opened.

209

 CALL 15E6,INPUT-AD The signal is now accepted, like
 a 'key-value'.
 LD BC,+0000 The default length of the
 resulting string is zero.
 JR NC,365F,R-I-STORE Jump if there was no signal.
 INC C Set the length to 1 now.
 RST 0030,BC-SPACES Make a space in the work space.
 LD (DE),A Put the string into it.
365F R-I-STORE CALL 2AB2,STK-STO-$ Pass the parameters of the string
 to the calculator stack.
 POP HL Restore CURCHL and the
 CALL 1615,CHAN-FLAG appropriate flags.
 JP 35BF,STK-PNTRS Exit, setting the pointers.

THE 'CODE' FUNCTION
(Offset 1C: 'code')

This subroutine handles the function CODE A$ and returns the Spectrum code of the first character in A$, or zero if A$ should be null.

3669 code CALL 2BF1,STK-FETCH The parameters of the string are
 fetched.
 LD A,B The length is tested and the A
 OR C register holding zero is carried
 JR Z,3671,STK-CODE forward is A$ is a null string.
 LD A,(DE) The code of the first character is
 put into A otherwise.
3671 STK-CODE JP 2D28,STACK-A The subroutine exits via
 STACK-A which gives the
 correct 'last value'.

THE 'LEN' FUNCTION
(Offset 1E: 'len')

This subroutine handles the function LEN A$ and returns a 'last value' that is equal to the length of the string.

3674 len CALL 2BF1,STK-FETCH The parameters of the string are
 fetched.
 JP 2D2B,STACK-BC The subroutine exits via
 STACK-BC which gives the
 correct 'last value'.

THE 'DECREASE THE COUNTER' SUBROUTINE
(Offset 35: 'dec-jr-nz')

This subroutine is only called by the SERIES GENERATOR subroutine and in effect is a 'DJNZ' operation but the counter is the system
variable, BREG, rather than the B register.

367A dec-jr-nz EXX Go to the alternative register set
 PUSH HL and save the next literal pointer
 on the machine stack.
 LD HL,+5C67 Make HL point to BREG.
 DEC (HL) Decrease BREG.
 POP HL Restore the next literal pointer.
 JR NZ,3687,JUMP-2 The jump is made on non-zero.
 INC HL The next literal is passed over.
 EXX Return to the main register set.
 RET Finished.

THE 'JUMP' SUBROUTINE
(Offset 33: 'jump')

This subroutine executes an unconditional jump when called by the literal '33'. It is also used by the subroutines DECREASE THE
COUNTER and JUMP ON TRUE.

210

3686 JUMP EXX Go to the next alternate register set.
3687 JUMP-2 LD E,(HL) The next literal (jump length) is
 put in the E' register.
 LD A,E The number 00 hex or FF hex
 RLA is formed in A according as E'
 SBC A,A is positive or negative, and is
 LD D,A then copied to D'.
 ADD HL,DE The registers H' & L' now hold
 EXX the next literal pointer.
 RET Finished.

THE 'JUMP ON TRUE' SUBROUTINE
(Offset 00: 'jump-true')

This subroutine executes a conditional jump if the 'last value' on the calculator stack, or more precisely the number addressed currently
by the DE register pair, is true.

368F jump-true INC DE Point to the third byte, which is
 INC DE zero or one.
 LD A,(DE) Collect this byte in the A
 register.
 DEC DE Point to the first byte once
 DEC DE again.
 AND A Test the third byte: is it zero?
 JR NZ,3686,JUMP Make the jump if the byte is
 non-zero, i.e. if the number is
 not-false.
 EXX Go to the alternate register set.
 INC HL Pass over the jump length.
 EXX Back to the main set of
 registers.
 RET Finished.

THE 'END-CALC' SUBROUTINE
(Offset 38: 'end-calc')

This subroutine ends a RST 0028 operation.

369B end-calc POP AF The return address to the
 calculator ('RE-ENTRY') is
 discarded.
 EXX Instead, the address in H'L' is
 EX (SP).HL put on the machine stack and
 EXX an indirect jump is made to it.
 H'L' will now hold any earlier
 address in the calculator chain
 of addresses.
 RET Finished.

THE 'MODULUS' SUBROUTINE
(Offset 32: 'n-mod-m')

This subroutine calculates M (mod M), where M is a positive integer held at the top of the calculator stack, the 'last value', and N is the
integer held on the stack beneath M.
The subroutine returns the integer quotient INT (N/M) at the top of the calculator stack, the 'last value', and the remainder N-INT (N/M)
in the second place on the stack.
This subroutine is called during the calculation of a random number to reduce N mod 65537 decimal.

36A0 n-mod-m RST 0028,FP-CALC N,M
 DEFB +C0,st-mem-0 N,M mem-0 holds M
 DEFB +02,delete N
 DEFB +31,duplicate N, N
 DEFB +E0,get-mem-0 N, N, M
 DEFB +05,division N, N/M
 DEFB +27,int N, INT (N/M)

211

 DEFB +E0,get-mem-0 N, INT (N/M),M
 DEFB +01,exchange N, M, INT (N/M)
 DEFB +C0,st-mem-0 N, M, INT (N/M) mem-0 holds
 INT (N/M)
 DEFB +04,multiply N, M*INT (N/M)
 DEFB +03,subtract n-M*INT (N/M)
 DEFB +E0,get-mem-0 n-M*INT (N/M), INT (N/M)
 DEFB +38,end-calc
 RET Finished.

THE 'INT' FUNCTION
(Offset 27: 'int')

This subroutine handles the function INT X and returns a 'last value' that is the 'integer part' of the value supplied. Thus INT 2.4 gives 2
but as the subroutine always rounds the result down INT -2.4 gives -3.
The subroutine uses the INTEGER TRUNCATION TOWARDS ZERO subroutine at 3214 to produce I (X) such that I (2.4) gives 2 and I
(-2.4) gives -2. Thus, INT X is gives by I (X) for values of X that are greater than or equal to zero, and I (X)-1 for negative values of X
that are not already integers, when the result is, of course, I (X).

36AF int RST 0028,FP-CALC X
 DEFB +31,duplicate X, X
 DEFB +36,less-0 X, (1/0)
 DEFB +00,jump-true X
 DEFB +04, to 36B7,X-NEG X

For values of X that have been shown to be greater than or equal to zero there is no jump and I (X) is readily found.

 DEFB +3A,truncate I (X)
 DEFB +38,end-calc
 RET Finished.

when X is a negative integer I (X) is returned, otherwise I (X)-1 is returned.
36B7 X-NEG DEFB +31,duplicate X, X
 DEFB +3A,truncate X, I (X)
 DEFB +C0,st-mem-0 X, I (X) mem-0 holds I (X)
 DEFB +03,subtract X-I (X)
 DEFB +E0,get-mem-0 X-I (X), I (X)
 DEFB +01,exchange I (X), X-I (X)
 DEFB +30,not I (X), (1/0)
 DEFB +00,jump-true I (X)
 DEFB +03,to 36C2,EXIT I (X)

The jump is made for values of X that are negative integers, otherwise there is no jump and I (X)-1 is calculated.

 DEFB +A1,stk-one I (X), 1
 DEFB +03,subtract I (X)-1

In either case the subroutine finishes with;

36C2 EXIT DEFB +38,end-calc I (X) or I (X)-1
 RET

THE 'EXPONENTIAL' FUNCTION
(Offset 26: 'exp')

This subroutine handles the function EXP X and is the first of four routines that use SERIES GENERATOR to produce Chebyshev
polynomials.
The approximation to EXP X is found as follows:

i. X is divided by LN 2 to give Y, so that 2 to the power Y is now the required result.

ii. The value N is found, such that N=INT Y.

iii. The value W is found, such that W=Y-N, where 0 <=W <=1, as required for the series to converge.

212

iv. The argument Z if formed, such that Z=2*w-1.

v. The SERIES GENERATOR is used to return 2**W.

vi. Finally N is added to the exponent, giving 2**(N+W), which is 2**Y and therefore the required answer for EXP X.

The method is illustrated using a BASIC program in the Appendix.

36C4 EXP RST 0028,FP-CALC X
Perform step i.

 DEFB +3D,re-stack X (in full floating-point form)
 DEFB +34,stk-data X, 1/LN 2
 DEFB +F1,exponent+81
 DEFB +38,+AA,+3B,+29
 DEFB +04,multiply X/LN 2 = Y

Perform step ii.

 DEFB +31,duplicate Y, Y
 DEFB +27,int,1C46 Y, INT Y = N
 DEFB +C3,st-mem-3 Y, N mem-3 holds N

Perform step iii.

 DEFB +03,subtract Y-N = W

Perform step iv.

 DEFB +31,duplicate W, W
 DEFB +0F,addition 2*W
 DEFB +A1,stk-one 2*W, 1
 DEFB +03,subtract 2*W-1 = Z

Perform step v, passing to the SERIES GENERATOR the parameter '8' and the eight constants required.

 DEFB +88,series-08 Z
 1. DEFB +13,exponent+63
 DEFB +36,(+00,+00,+00)
 2. DEFB +58,exponent+68
 DEFB +65,+66,(+00,+00)
 3. DEFB +9D,exponent+6D
 DEFB +78,+65,+40,(+00)
 4. DEFB +A2,exponent+72
 DEFB +60,+32,+C9,(+00)
 5. DEFB +E7,exponent+77
 DEFB +21,+F7,+AF,+24
 6. DEFB +EB,exponent+7B
 DEFB +2F,+B0,+B0,+14
 7. DEFB +EE,exponent +7E
 DEFB +7E,+BB,+94,+58
 8. DEFB +F1,exponent+81
 DEFB +3A,+7E,+F8,+CF

At the end of the last loop the 'last value' is 2**W.

Perform step vi.

 DEFB +E3,get-mem-3 2**W, N
 DEFB +38,end-calc
 CALL 2DD5,FP-TO-A The absolute value of N mod
 256 decimal, is put into the A
 register.
 JR NZ,3705,N-NEGTV Jump forward if N was negative.
 JR C,3703,REPORT-6 Error if ABS N greater than 255
 dec.
 ADD A,(HL) Now add ABS N to the
 exponent.
 JR NC,370C,RESULT-OK Jump unless e greater than 255
 dec.

213

Report 6 - Number too big

3703 REPORT-6 RST 0008,ERROR-1 Call the error handling
 DEFB +05 routine.

3705 N-NEGTV JR C,370E,RSLT-ZERO The result is to be zero if N is
 less than -255 decimal.
 SUB (HL) Subtract ABS N from the
 exponent as N was negative.
 JR NC,370E,RSLT-ZERO Zero result if e less than zero.
 NEG Minus e is changed to e.
370C RESULT-OK LD (HL),A The exponent, e, is entered.
 RET
370E RSLT-ZERO RST 0028,FP-CALC Use the calculator to make the
 DEFB +02,delete 'last value' zero.
 DEFB +A0,stk-zero
 DEFB +38,end-calc
 RET Finished, with EXP X = 0.

THE 'NATURAL LOGARITHM' FUNCTION
(Offset 25: 'ln')

This subroutine handles the function LN X and is the second of the four routines that use SERIES GENERATOR to produce Chebyshev
polynomials.
The approximation to LN X is found as follows:

I. X is tested and report A is given if X is not positive.

II. X is then split into its true exponent, e', and its mantissa X' = X/(2**e'), where X' is greater than, or equal to, 0.5 but still less than
1.

III. The required value Y1 or Y2 is formed. If X' is greater than 0.8 then Y1=e'*LN 2 and if otherwise Y2 = (e'-1)*LN 2.

IV. If X' is greater than 0.8 then the quantity X'-1 is stacked; otherwise 2*X'-1 is stacked.

V. Now the argument Z is formed, being if X' is greater than 0.8, Z = 2.5*X'-3; otherwise Z = 5*X'-3. In each case, -1 <=Z <=1, as
required for the series to converge.

VI. The SERIES GENERATOR is used to produce the required function.

VII. Finally a simply multiplication and addition leads to LN X being returned as the 'last value'.

3713 ln RST 0028,FP-CALC X

Perform step i.

 DEFB +3D,re-stack X (in full floating-point form)
 DEFB +31,duplicate X, X
 DEFB +37,greater-0 X, (1/0)
 DEFB +00,jump-true X
 DEFB +04,to 371C, VALID X
 DEFB +38,end-calc X

Report A - Invalid argument

371A REPORT-A RST 0008,ERROR-1 Call the error handling
 DEFB +09 routine.

Perform step ii.

371C VALID DEFB +A0,stk-zero X,0 The deleted 1 is
 DEFB +02,delete X overwritten with zero.
 DEFB +38,end-calc X
 LD A,(HL) The exponent, e, goes into A.
 LD (HL),+80 X is reduced to X'.
 CALL 2D28,STACK-A The stack holds: X', e.
 RST 0028,FP-CALC X', e
 DEFB +34,stk-data X', e, 128 (decimal)
 DEFB +38,exponent+88

214

 DEFB +00,(+00,+00,+00)
 DEFB +03,subtract X', e'

Perform step iii.

 DEFB +01,exchange e', X'
 DEFB +31,duplicate e', X', X'
 DEFB +34,stk-data e', X', X',0.8 (decimal)
 DEFB +F0,exponent+80
 DEFB +4C,+CC,+CC,+CD
 DEFB +03,subtract e', X', X'-0.8
 DEFB +37,greater-0 e', X', (1/0)
 DEFB +00,jump-true e', X'
 DEFB +08,to 373D, GRE.8 e', X'
 DEFB +01,exchange X', e'
 DEFB +A1,stk-one X', e', 1
 DEFB +03,subtract X', e'-1
 DEFB +01,exchange e'-1, X'
 DEFB +38,end-calc e'-1, X'
 INC (HL) Double X' to give 2*X'.
 RST 0028,FP-CALC e'-1,2*X'
373D GRE.8 DEFB +01,exchange X',e' - X' large.
 2*X',e'-1 - X' small.
 DEFB +34,stk-data X',e',LN 2
 DEFB +F0,exponent+80 2*X',e'-1, LN 2
 DEFB +31,+72,+17,+F8
 DEFB +04,multiply X',e'*LN 2 = Y1
 2*X', (e'-1)*LN 2 = Y2

Perform step iv.

 DEFB +01,exchange Y1, X' - X' large.
 Y2, 2*X' - X' small.
 DEFB +A2,stk-half Y1, X', .5 (decimal)
 Y2, 2*X', .5
 DEFB +03,subtract Y1, X'-.5
 Y2, 2*X'-.5
 DEFB +A2,stk-half Y1, X'-.5, .5
 Y2, 2*X'-.5, .5
 DEFB +03,subtract Y1, X'-1
 Y2, 2*X'-1

Perform step v.

 DEFB +31,duplicate Y, X'-1, X'-1
 Y2, 2*X'-1, 2*X'-1
 DEFB +34,stk-data Y1, X'-1, X'-1, 2.5 (decimal)
 Y2, 2*X'-1, 2*X'-1, 2.5
 DEFB +32,exponent+82
 DEFB +20,(+00,+00,+00)
 DEFB +04,multiply Y1, X'-1,2.5*X'-3 = Z
 Y2, 2*X'-1, 5*X'-3 = Z

Perform step vi, passing to the SERIES GENERATOR the parameter '12' decimal, and the twelve constant required.

 DEFB +8C,series-0C Y1, X'-1, Z or Y2, 2*X'-1, Z
 1. DEFB +11,exponent+61
 DEFB +AC,(+00,+00,+00)
 2. DEFB +14,exponent+64
 DEFB +09,(+00,+00,+00)
 3. DEFB +56,exponent+66
 DEFB +DA,+A5,(+00,+00)

215

 4. DEFB +59,exponent+69
 DEFB +30,+C5,(+00,+00)
 5. DEFB +5C,exponent+6C
 DEFB +90,+AA,(+00,+00)
 6. DEFB +9E,exponent+6E
 DEFB +70,+6F,+61,(+00)
 7. DEFB +A1,exponent+71
 DEFB +CB,+DA,+96,(+00)
 8. DEFB +A4,exponent+74
 DEFB +31,+9F,+B4,(+00)
 9. DEFB +E7,exponent+77
 DEFB +A0,+FE,+5C,+FC
 10. DEFB +EA,exponent+7A
 DEFB +1B,+43,+CA,+36
 11. DEFB +ED,exponent+7D
 DEFB +A7,+9C,+7E,+5E
 12. DEFB +F0,exponent+80
 DEFB +6E,+23,+80,+93

At the end of the last loop the 'last value' is:

 either LN X'/(X'-1) for the larger values of X'
 or LN (2*X')/(2*X'-1) for the smaller values of X'.

Perform step vii.

 DEFB +04,multiply Y1=LN (2**e'), LN X'
 Y2=LN (2**(e'-1)), LN (2*X')
 DEFB +0F,addition LN (2**e')*X') = LN X
 LN (2**(e'-1)*2*X') = LN X
 DEFB +38,end-calc LN X
 RET Finished: 'last value' is LN X.

THE 'REDUCE ARGUMENT' SUBROUTINE
(Offset 39: 'get-argt')

This subroutine transforms the argument X of SIN X or COS X into a value V.
The subroutine first finds a value Y such that:

Y = X/(2*PI) - INT (X/2*PI) + 0.5), where Y is greater than, or equal to, -.5 but less than +.5.
The subroutine returns with:
V = 4*Y if -1 <=4*Y <=1- case i.
or, V = 2-4*Y if 1 <4*Y <2 - case ii.
or, V = -4*Y-2 if -2 <=4*Y < -1. - case iii.

In each case, -1 < =V <=1 and SIN (PI*V/2) = SIN X

3783 get-argt RST 0028,FP-CALC X
 DEFB +3D,re-stack X (in full floating-point form)
 DEFB +34,stk-data X, 1/(2*PI)
 DEFB +EE,exponent+7E
 DEFB +22,+F9,+83,+6E
 DEFB +04,multiply X/(2*PI)
 DEFB +31,duplicate X/(2*PI), X/(2*PI)
 DEFB +A2,stk-half X/(2*PI), X/(2*PI), 0.5
 DEFB +0F,addition X/(2*PI), X/(2*PI)+0.5
 DEFB +27,int,1C46 X/(2*PI), INT (X/(2*PI)+0.5)
 DEFB +03,subtract,174C X/(2*PI)-INT (X/(2*PI)+0.5)=Y

216

Note: Adding 0.5 and taking INT rounds the result to the nearest integer.

 DEFB +31,duplicate Y, Y
 DEFB +0F,addition 2*Y
 DEFB +31,duplicate 2*Y, 2*Y
 DEFB +0F,addition 4*Y
 DEFB +31,duplicate 4*Y, 4*Y
 DEFB +2A,abs 4*Y, ABS (4*Y)
 DEFB +A1,stk-one 4*Y, ABS (4*Y), 1
 DEFB +03,subtract 4*Y, ABS (4*Y)-1 = Z
 DEFB +31,duplicate 4*Y, Z, Z
 DEFB +37,greater-0 4*Y, Z, (1/0)
 DEFB +C0,st-mem-0 Mem-0 holds the result of the
 test.
 DEFB +00,jump-true 4*Y, Z
 DEFB +04, to 37A1,ZPLUS 4*Y, Z
 DEFB +02,delete 4*Y
 DEFB +38,end-calc 4*Y = V - case i.
 RET Finished.

If the jump was made then continue.

37A1 ZPLUS DEFB +A1,stk-one 4*Y, Z, 1
 DEFB +03,subtract 4*Y, Z-1
 DEFB +01,exchange Z-1,4*Y
 DEFB +36,less-0 Z-1,(1/0)
 DEFB +00,jump-true Z-1
 DEFB +02,to 37A8,YNEG Z-1
 DEFB +1B,negate 1-Z
37A8 YNEG DEFB +38,end-calc 1-Z = V - case ii.
 Z-1 = V - case iii.
 RET Finished.

THE 'COSINE' FUNCTION
(Offset 20: 'cos')

This subroutine handles the function COS X and returns a 'last value' 'that is an approximation to COS X.
The subroutine uses the expression:
COS X = SIN (PI*W/2), where -1 <=W <=1.
In deriving W for X the subroutine uses the test result obtained in the previous subroutine and stored for this purpose in mem-0. It then
jumps to the SINE, subroutine, entering at C-ENT, to produce a 'last value' of COS X.

37AA cos RST 0028,FP-CALC. X
 DEFB +39,get-argt V
 DEFB +2A,abs ABS V
 DEFB +A1,stk-one ABS V, 1
 DEFB +03,subtract ABS V-1
 DEFB +E0,get-mem-0 ABS V-1, (1/0)
 DEFB +00,jump-true ABS V-1
 DEFB +06, to 37B7,C-ENT ABS V-1 = W

If the jump was not made then continue.
 DEFB +1B,negate 1-ABS V
 DEFB +33,jump 1-ABS V
 DEFB +03, to 37B7,C-ENT 1-ABS V = W

THE 'SINE' FUNCTION
(Offset 1F: 'sin')

This subroutine handles the function SIN X and is the third of the four routines that use SERIES GENERATOR to produce Chebyshev
polynomials.
The approximation to SIN X is found as follows:

i. The argument X is reduced and in this case W = V directly.

217

Note that -1 <=W <=1, as required for the series to converge.
ii. The argument Z is formed, such that Z=2*W*W-1.
iii. The SERIES GENERATOR is used to return (SIN (PI*W/2))/W
iv. Finally a simple multiplication gives SIN X.

37B5 sin RST 0028 FP-CALC X

Perform step i.

 DEFB +39,get-argt W

Perform step ii. The subroutine from now on is common to both the SINE and COSINE functions.

37B7 C-ENT DEFB +31,duplicate W, W
 DEFB +31,duplicate W, W, W
 DEFB +04,multiply W, W*W
 DEFB +31,duplicate W, W*W, W*W
 DEFB +0F,addition W, 2*W*W
 DEFB +A1,stk-one W, 2*W*W, 1
 DEFB +03,subtract W, 2*W*W-1 = Z

Perform step iii, passing to the SERIES GENERATOR the parameter '6' and the six constants required.

 DEFB +86,series-06 W, Z
 1. DEFB +14,exponent+64
 DEFB +E6,(+00,+00,+00)
 2. DEFB +5C,exponent+6C
 DEFB +1F,+0B,(+00,+00)
 3. DEFB +A3,exponent+73
 DEFB +8F,+38,+EE,(+00)
 4. DEFB +E9,exponent+79
 DEFB +15,+63,+BB,+23
 5. DEFB +EE,exponent+7E
 DEFB +92,+0D,+CD,+ED
 6. DEFB +F1,exponent+81
 DEFB +23,+5D,+1B,+EA

At the end of the last loop the 'last value' is (SIN (PI*W/2))/W.

Perform step v.

 DEFB +04,multiply SIN (PI*W/2) = SIN X (or =
 COS X)
 DEFB +38,end-calc
 RET Finished: 'last value' = SIN X.
 or ('last value' = COS X)

THE 'TAN' FUNCTION
(Offset 21: 'tan')

This subroutine handles the function TAN X. The subroutine simply returns SIN X/COS X, with arithmetic overflow if COS X = 0.

37DA tan RST 0028,FP-CALC X
 DEFB +31,duplicate X, X
 DEFB +1F,sin X, SIN X
 DEFB +01,exchange SIN X, X
 DEFB +20,cos SIN X,COS X
 DEFB +05,division SIN X/COS X = TAN X
 Report arithmetic overflow if
 needed.
 DEFB +38,end-calc TAN X
 RET Finished: 'last value' = TAN X.

218

THE 'ARCTAN' FUNCTION
(Offset 24: 'atn')

This subroutine handles the function ATN X and is the last of the four routines that use SERIES GENERATOR to produce Chebyshev
polynomials. It returns a real number between -PI/2 and PI/2, which is equal to the value in radians of the angle whose tan is X.
The approximation to ATN X is found as follows:

i. The values W and Y are found for three cases of X, such that:
if -1 < X < 1 then W = 0 & Y = X - case i.
if -1 < =X then W = PI/2 & Y = -1/X - case ii.
if X < =-1 then W = -PI/2 & Y = -1/X - case iii.

In each case, -1 < =Y < =1, as required for the series to converge.

ii. The argument Z is formed, such that:
if -1 < X < 1 then Z = 2*Y*Y-1 = 2*X*X-1 - case i.
if 1 < X then Z = 2*Y*Y-1 = 2/(X*X)-1 - case ii.
if X < =-1 then Z = 2*Y*Y-1 = 2/(X*X)-1 - case iii.

iii. The SERIES GENERATOR is used to produce the required function.

iv. Finally a simple multiplication and addition give ATN X.

Perform stage i.

37E2 atn CALL 3297,RE-STACK Use the full floating-point form
 of X.
 LD A,(HL) Fetch the exponent of X.
 CP +81
 JR C,37F8,SMALL Jump forward for case i: Y = X.
 RST 0028,FP-CALC X
 DEFB +A1,stk-one X, 1
 DEFB +1B,negate X,-1
 DEFB +01,exchange -1, X
 DEFB +05,division -1/X
 DEFB +31,duplicate -1/X, -1/X
 DEFB +36,less-0 -1/X, (1/0)
 DEFB +A3,stk-pi/2 -1/X, (1/0), PI/2
 DEFB +01,exchange -1/X, PI/2, (1/0)
 DEFB +00,jump-true -1/X, PI/2
 DEFB +06, to 37FA,CASES Jump forward for case ii:
 Y = -1/X W = PI/2
 DEFB +1B,negate -1/X, -PI/2
 DEFB +33,jump -1/X, -PI/2
 DEFB +03,to 37FA,CASES Jump forward for case iii:
 Y = -1/X W = -PI/2
37F8 SMALL RST 0028,FP-CALC Y
 DEFB +A0,stk-zero Y, 0
 Continue for case i: W = 0

Perform step ii.

37FA CASES DEFB +01,exchange W, Y
 DEFB +31,duplicate W, Y, Y
 DEFB +31,duplicate W, Y, Y, Y
 DEFB +04,multiply W, Y, Y*Y
 DEFB +31,duplicate W, Y, Y*Y, Y*Y
 DEFB +0F,addition W, Y, 2*Y*Y
 DEFB +A1,stk-one W, Y, 2*Y*Y, 1
 DEFB +03,subtract W, Y, 2*Y*Y-1 = Z

Perform step iii, passing to the SERIES GENERATOR the parameter '12' decimal, and the twelve constants required.

 DEFB +8C,series-0C W, Y, Z
 1. DEFB +10,exponent+60
 DEFB +B2,(+00,+00,+00)

219

 2. DEFB +13,exponent+63
 DEFB +0E,(+00,+00,+00)
 3. DEFB +55,exponent+65
 DEFB +E4,+8D,(+00,+00)
 4. DEFB +58,exponent+68
 DEFB +39,+BC,(+00,+00)
 5. DEFB +5B,exponent+6B
 DEFB +98,+FD,(+00,+00)
 6. DEFB +9E,exponent+6E
 DEFB +00,+36,+75,(+00)
 7. DEFB +A0,exponent+70
 DEFB +DB,+E8,+B4,(+00)
 8. DEFB +63,exponent+73
 DEFB +42,+C4,(+00,+00)
 9. DEFB +E6,exponent+76
 DEFB +B5,+09,+36,+BE
 10. DEFB +E9,exponent+79
 DEFB +36,+73,+1B,+5D
 11. DEFB +EC,exponent+7C
 DEFB +D8,+DE,+63,+BE
 12. DEFB +F0,exponent+80
 DEFB +61,+A1,+B3,+0C

At the end of the last loop the 'last value' is:

 ATN X/X - case i.
 ATN (-1/X)/(-1/X) - case ii.
 ATN (-1/X)/(-1/X) - case iii.

Perform step iv.

 DEFB +04,multiply W, ATN X - case i.
 W, ATN (-1/X) - case ii.
 W, ATN (-1/X) - case iii.
 DEFB +0F,addition ATN X - all cases now.
 DEFB +38,end-calc
 RET Finished: 'last value' = ATN X.

THE 'ARCSIN' FUNCTION
(Offset 22: 'asn')

This subroutine handles the function ASN X and return a real real number from -PI/2 to PI/2 inclusive which is equal to the value in
radians of the angle whose sine is X. Thereby if Y = ASN X then X = SIN Y.
This subroutine uses the trigonometric identity:
TAN (Y/2) = SIN Y/1(1+COS Y)
to obtain TAN (Y/2) and hence (using ATN) Y/2 and finally Y.

3833 asn RST 0028,FP-CALC X
 DEFB +31,duplicate X, X
 DEFB +31,duplicate X, X, X
 DEFB +04,multiply X, X*X
 DEFB +A1,stk-one X, X*X, 1
 DEFB +03,subtract X, X*X-1
 DEFB +1B,negate X,1-X*X
 DEFB +28,sqr X,SQR (1-X*X)
 DEFB +A1,stk-one X,SQR (1-X*X), 1
 DEFB +0F,addition X, 1+SQR (1-X*X)
 DEFB +05,division X/(1+SQR (1-X*X)) = TAN
 (Y/2)
 DEFB +24,atn Y/2
 DEFB +31,duplicate Y/2, Y/2
 DEFB +0F,addition Y = ASN X
 DEFB +38,end-calc
 RET Finished: 'last value' = ASN X.

220

THE 'ARCCOS' FUNCTION
(Offset 23: 'acs')

This subroutine handles the function ACS X and returns a real number from zero to PI inclusive which is equal to the value in radians of
the angle whose cosine is X.
 This subroutine uses the relation:
 ACS X = PI/2 - ASN X

3843 acs RST 0028,FP-CALC X
 DEFB +22,asn ASN X
 DEFB +A3,stk-pi/2 ASN X,PI/2
 DEFN +03,subtract ASN X-PI/2
 DEFB +1B,negate PI/2-ASN X = ACS X
 DEFB +38,end-calc
 RET Finished: 'last value' = ACS X.

THE 'SQUARE ROOT' FUNCTION
(Offset 28: 'sqr')

This subroutine handles the function SQR X and returns the positive square root of the real number X if X is positive, and zero if X is
zero. A negative value of X gives rise to report A - invalid argument (via In in the EXPONENTIATION subroutine).

This subroutine treats the square root operation as being X**.5 and therefore stacks the value .5 and proceeds directly into the
EXPONENTIATION subroutine.

384A sqr RST 0028,FP-CALC X
 DEFB +31,duplicate X,X
 DEFB +30,not X,(1/0)
 DEFB +00,jump-true X
 DEFB +1E,to 386C,LAST X

The jump is made if X = 0, otherwise continue with:

 DEFB +A2,stk-half X,.5
 DEFB +38,end-calc

and then find the result of X**.5.

THE 'EXPONENTIATION' OPERATION
(Offset 06: 'to-power')

This subroutine performs the binary operation of raising the first number, X, to the power of the second number, Y.

The subroutine treats the result X**Y as being equivalent to EXP (Y*LN X). It returns this value unless X is zero, in which case it
returns 1 if Y is also zero (0**0=1), returns zero if Y is positive and reports arithmetic overflow if Y is negative.

3851 to-power RST 0028,FP-CALC X,Y
 DEFB +01,exchange Y,X
 DEFB +31,duplicate Y,X,X
 DEFB +30,not Y,X,(1/0)
 DEFB +00,jump-true Y,X
 DEFB +07,to 385D,XIS0 Y,X

The jump is made if X = 0, otherwise EXP (Y*LN X) is formed.

 DEFB +25,ln Y,LN X

Giving report A if X is negative.

 DEFB +04,multiply Y*LN X
 DEFB +38,end-calc
 JP 36C4,EXP Exit via EXP to form EXP
 (Y*LN X).

The value of X is zero so consider the three possible cases involved.

385D XIS0 DEFB +02,delete Y
 DEFB +31,duplicate Y,Y
 DEFB +30,not Y,(1/0)
 DEFB +00,jump-true Y

221

 DEFB +09,to 386A,ONE Y

The jump is made if X = 0 and Y = 0, otherwise proceed.
 DEFB +A0,stk-zero Y,0
 DEFB +01,exchange 0,Y
 DEFB +37,greater-0 0,(1/0)
 DEFB +00,jump-true 0
 DEFB +06,to 386C,LAST 0

The jump is made if X = 0 and Y is positive, otherwise proceed.
 DEFB +A1,stk-one 0,1
 DEFB +01,exchange 1,0
 DEFB +05,division Exit via 'division' as dividing by
 zero gives 'arithmetic overflow'.

The result is to be 1 for the operation.

386A ONE DEFB +02,delete -
 DEFB +A1,stk-one 1

Now return with the 'last value' on the stack being 0**Y.

386C LAST DEFB +38,end-calc (1/0)
 RET Finished: 'last value' is 0 or 1.

386E - 3CFF These locations are 'spare'. They all hold +FF.

3D00 - 3FFF These locations hold the 'character set'. There are 8 byte representations for all the characters with codes +20 (space) to
+7F (©).

e.g. the letter 'A' has the representation 00 3C 42 42 7E 42 42 00 and thereby the form:

00000000
00111100
01000010
01000010
01111110
01000010
01000010
00000000

222

APPENDIX

BASIC PROGRAMS FOR THE MAIN SERIES
The following BASIC programs have been included as they give a good illustration of
how Chebyshev polynomials are used to produce the approximations to the functions
SIN, EXP, LN and ATN.

The series generator:
This subroutine is called by all the 'function' programs.

 500 REM SERIES GENERATOR, ENTER
 510 REM USING THE COUNTER BREG
 520 REM AND ARRAY-A HOLDING THE
 530 REM CONSTANTS.
 540 REM FIRST VALUE IN Z.
 550 LET M0=2*Z
 560 LET M2=0
 570 LET T=0
 580 FOR I=BREG TO 1 STEP -1
 590 LET M1=M2
 600 LET U=T*M0-M2+A(BREG+1-I)
 610 LET M2=T
 620 LET T=U
 630 NEXT I
 640 LET T=T-M1
 650 RETURN
 660 REM LAST VALUE IN T.

In the above subroutine the variable are:
 Z - the entry value.
 T - the exit value.
 M0 - mem-0
 M1 - mem-1
 M2 - mem-2
 I - the counter for BREG.
 U - a temporary variable for T.
 A(1) to
 A(BREG) - the constants.
 BREG - the number of constants to be used.

To see how the Chebyshev polynomials are generated, record on paper the values of U,
M1, M2 and T through the lines 550 to 630, passing, say, 6 times through the loop, and
keeping the algebraic expressions for A(1) to A(6) without substituting numerical values.
Then record T-M1. The multipliers of the constants A(1) to A(6) will then be the re-
quired Chebyshev polynomials. More precisely, the multiplier of A(1) will be 2*T5(Z),
for A(2) it will be 2*T4(Z) and so on to 2*T1(Z) for A(5) and finally T0(Z) for A(6).

Note that T0(Z)=1, T1(Z)=Z and, for n>=2, Tn(Z)=2*Z*Tn-1(Z)-Tn-2(Z).

223

SIN X

 10 REM DEMONSTRATION FOR SIN X
 20 REM USING THE 'SERIES GENERATOR'.
 30 DIM A(6)
 40 LET A(1)=-.000000003
 50 LET A(2)=0.000000592
 60 LET A(3)=-.000068294
 70 LET A(4)=0.004559008
 80 LET A(5)=-.142630785
 90 LET A(6)=1.276278962
 100 PRINT
 110 PRINT "ENTER START VALUE IN DEGREES"
 120 INPUT C
 130 CLS
 140 LET C=C-10
 150 PRINT "BASIC PROGRAM","ROM PROGRAM"
 160 PRINT "-------------","-----------"
 170 PRINT
 180 FOR J=1 TO 4
 190 LET C=C+10
 200 LET Y=C/360-INT (C/360+.5)
 210 LET W=4*Y
 220 IF W > 1 THEN LET W=2-W
 230 IF W < -1 THEN LET W=-W-2
 240 LET Z=2*W*W-1
 250 LET BREG=6
 260 REM USE 'SERIES GENERATOR'
 270 GO SUB 550
 280 PRINT TAB 6; "SIN ";C;" DEGREES"
 290 PRINT
 300 PRINT T*W,SIN (PI*C/180)
 310 PRINT
 320 NEXT J
 330 GO TO 100

NOTES:

I. When C is entered this program calculates and prints SIN C degrees, SIN (C+10) degrees, SIN (C+20) degrees and SIN (C+30)
degrees. It also prints the values obtained by using the ROM program. For a specimen of results, try entering these values in
degrees: 0; 5; 100; -80; -260; 3600; -7200.

II. The constants A(1) to A(6) in lines 40 to 90 are given (apart from a factor of 1/2) in Abramowitz and Stegun Handbook of
Mathematical Functions (Dover 1965) page 76. They can be checked by integrating (SIN (PI*X/2))/X over the interval U=0 to PI,
after first multiplying by COS (N*U) for each constant (i.e. N=1,2,...,6) and substituting COS U=2*X*X-1. Each result should then
be divided by PI. (This integration can be performed by approximate methods e.g. using Simpson's Rule if there is a reasonable
computer or programmable calculator to hand.)

224

EXP X

 10 REM DEMONSTRATION FOR EXP X
 20 REM USING THE 'SERIES GENERATOR'
 30 LET T=0 (This makes T the first variable.)
 40 DIM A(8)
 50 LET A(1)=0.000000001
 60 LET A(2)=0.000000053
 70 LET A(3)=0.000001851
 80 LET A(4)=0.000053453
 90 LET A(5)=0.001235714
 100 LET A(6)=0.021446556
 110 LET A(7)=0.248762434
 120 LET A(8)=1.456999875
 130 PRINT
 140 PRINT "ENTER START VALUE"
 150 INPUT C
 160 CLS
 170 LET C=C-10
 180 PRINT "BASIC PROGRAM", "ROM PROGRAM"
 190 PRINT "-------------", "-----------"
 200 PRINT
 210 FOR J=1 TO 4
 220 LET C=C+10
 230 LET D=C*1.442695041 (D=C*(1/LN 2);EXP C=2**D).
 240 LET N=INT D
 250 LET Z=D-N (2**(N+Z) is now required).
 260 LET Z=2*Z-1
 270 LET BREG=8
 280 REM USE "SERIES GENERATOR"
 290 GO SUB 550
 300 LET V=PEEK 23627+256*PEEK 23628+1 (V=(VARS)+1)
 310 LET N=N+PEEK V
 320 IF N > 255 THEN STOP (STOP with arithmetic overflow).
 330 IF N < 0 THEN GO TO 360
 340 POKE V,N
 350 GO TO 370
 360 LET T=0
 370 PRINT TAB 11;"EXP ";C
 380 PRINT
 390 PRINT T,EXP C
 400 PRINT
 410 NEXT J
 420 GO TO 130

NOTES:

I. When C is entered this program calculates and prints EXP C, EXP (C+10), EXP (C+20) and EXP (C+30). It also prints the
values obtained by using the ROM program. For a specimen of results, try entering these values: 0; 15; 65 (with overflow at the
end); -100; -40.

II. The exponent is tested for overflow and for a zero result in lines 320 and 330. These tests are simpler in BASIC than in machine
code, since the variable N, unlike the A register, is not confined to one byte.

III. The constants A(1) to A(8) in lines 50 to 120 can be obtained by integrating 2**X over the interval U=0 to PI, after first
multiplying the COS (N*U) for each constant (i.e. for N=1,2,...,8) and substituting COS U = 2*X-1. Each result should then be
divided by PI.

225

LN X:

 10 REM DEMONSTRATION FOR LN X
 20 REM USING THE 'SERIES GENERATOR'
 30 LET D=0 (This makes D the first variable).
 40 DIM A(12)
 50 LET A(1)= -.0000000003
 60 LET A(2)=0.0000000020
 70 LET A(3)= -.0000000127
 80 LET A(4)=-0.0000000823
 90 LET A(5)= -.0000005389
 100 LET A(6)=0.0000035828
 110 LET A(7)= -.0000243013
 120 LET A(8)=0.0001693953
 130 LET A(9)= -.0012282837
 140 LET A(10)=0.0094766116
 150 LET A(11)= -.0818414567
 160 LET A(12)=0.9302292213
 170 PRINT
 180 PRINT "ENTER START VALUE"
 190 INPUT C
 200 CLS
 210 PRINT "BASIC PROGRAM", "ROM PROGRAM"
 220 PRINT "-------------", "-----------"
 230 PRINT
 240 LET C=SQR C
 250 FOR J=1 TO 4
 260 LET C=C*C
 270 IF C=0 THEN STOP (STOP with 'invalid argument'.)
 280 LET D=C
 290 LET V=PEEK 23627+256*PEEK 23628+1
 300 LET N=PEEK V-128 (N holds e').
 310 POKE V,128
 320 IF D<=0.8 THEN GO TO 360 (D holds X').
 330 LET S=D-1
 340 LET Z=2.5*D-3
 350 GO TO 390
 360 LET N=N-1
 370 LET S=2*D-1
 380 LET Z=5*D-3
 390 LET R=N*0.6931471806 (R holds N*LN 2).
 400 LET BREG=12
 410 REM USE 'SERIES GENERATOR'
 420 GO SUB 550
 430 PRINT TAB 8;"LN ";C
 440 PRINT
 450 PRINT S*T+R,LN C
 460 PRINT
 470 NEXT J
 480 GO TO 170

NOTES:

I. When C is entered this program calculates and prints LN C, LN (C**2), LN (C**4) and LN (C**8). It also prints the values
obtained by using the ROM program. For a specimen of results, try entering these values: 1.1; 0.9; 300; 0.004; 1E5 (for
overflow) and 1E-5 (STOP as 'invalid argument').

II. The constants A(1) to A(12) in lines 50 to 160 can be obtained by integrating 5*LN (4* (X+1)/5)/(4*X-1) over the interval U=0 to
PI, after first multiplying by COS (N*U) for each constant (i.e. for N=1,2,...,12) and substituting COS U=2*X-1. Each result
should then be divided by PI.

226

ATN X:

 10 REM DEMONSTRATION FOR ATN X
 20 REM USING THE 'SERIES GENERATOR'
 30 DIM A(12)
 40 LET A(1)= -.0000000002
 50 LET A(2)=0.0000000010
 60 LET A(3)= -.0000000066
 70 LET A(4)=0.0000000432
 80 LET A(5)= -.0000002850
 90 LET A(6)=0.0000019105
 100 LET A(7)= -.0000131076
 110 LET A(8)=0.0000928715
 120 LET A(9)= -.0006905975
 130 LET A(10)=0.0055679210
 140 LET A(11)= -.0529464623
 150 LET A(12)=0.8813735870
 160 PRINT
 170 PRINT "ENTER START VALUE"
 180 INPUT C
 190 CLS
 200 PRINT "BASIC PROGRAM", "ROM PROGRAM"
 210 PRINT "-------------", "-----------"
 220 PRINT
 230 FOR J=1 TO 4
 240 LET B=J*C
 250 LET D=B
 260 IF ABS B>=1 THEN LET D= -1/B
 270 LET Z=2*D*D-1
 280 LET BREG=12
 290 REM USE "SERIES GENERATOR"
 300 GO SUB 550
 310 LET T=D*T
 320 IF B > =1 THEN LET T=T+PI/2
 330 IF B < =-1 THEN LET T=T-PI/2
 340 PRINT TAB 8;"ATN ";B
 350 PRINT
 360 PRINT T,ATN B (or PRINT T*180/PI,ATN B*180/PI
 370 PRINT to obtain the answers in degrees)
 380 NEXT J
 390 GO TO 160

NOTES:

I. When C is entered this program calculates and prints ATN C, ATN (C*2), ATN (C*3) and ATN (C*4). For a specimen of results,
try entering these values: 0.2; -1; 10 and -100. The results may be found more interesting if converted to yield degrees by
multiplying the answers in line 360 by 180/PI.

II. The constants A(1) to A(12) in lines 40 to 150 are given (apart from a factor of 1/2) in Abramowitz and Stegun Handbook of
Mathematical Functions (Dover 1965) page 82. They can be checked by integrating ATN X/X over the interval U=0 to PI, after
first multiplying by COS (N*U) for each parameter (i.e. for n=1,2,...,12) and substituting COS U=2*X*X-1. Each result should
then be divided by PI.

227

An alternative subroutine for SIN X:
It is straightforward to produce the full expansion of the Chebyshev polynomials and this can be written in BASIC as follows:

 550 LET T =(32*Z*Z*Z*Z*Z-40*Z*Z*Z+10*Z)*A(1)
 +(16*Z*Z*Z*Z-16*Z*Z+2)*A(2)
 +(8*Z*Z*Z-6*Z)*A(3)
 +(4*Z*Z-2)*A(4)
 +2*Z *A(5)
 +A(6)
 560 RETURN

This subroutine is called instead of the SERIES GENERATOR and can be seen to be of a similar accuracy.

An alternative subroutine for EXP X:
 The full expansion for EXP X is:

 550 LET T =(128*Z*Z*Z*Z*Z*Z*Z-224*Z*Z*Z*Z*Z+112*Z*Z*Z-14*Z)*A(1)
 +(64*Z*Z*Z*Z*Z*Z-96*Z*Z*Z*Z+36*Z*Z-2)*A(2)
 +(32*Z*Z*Z*Z*Z-40*Z*Z*Z+10*Z)*A(3)
 +(16*Z*Z*Z*Z-16*Z*Z+2)*A(4)
 +(8*Z*Z*Z-6*Z)*A(5)
 +(4*Z*Z-2)*A(6)
 +2*Z*A(7)
 +A(8)
 560 RETURN

The expansion for LN X and A TN X, given algebraically, will be:

 (2048z11-5632z9+5632z7-2464z5+440z3-22z) * A (1)

 + (1024z10-2560z8+2240z6-800z4+100z2-2) * A(2)
 + (512z9-1152z7+864z5-240z3+18z) * A(3)
 + (256z8-512z6+320z4-64z2+2) * A(4)
 + (128z7-224z5+112z3-14z) * A(5)
 + (64z6-96z4+36z2-2) * A(6)
 + (32z5-40z3+10z) * A(7)
 + (16z4-16z2+2) * A(8)
 + (8z3-6z) * A(9)
 + (4z2-2) * A(10)
 + (2z) * A(11)
 + A(12)

228

THE 'DRAW' ALGORITHM
The following BASIC program illustrates the essential parts of the DRAW operation when being used to produce a straight line. The
program in its present form only allows for lines where X > Y.

 10 REM DRAW 255,175 PROGRAM
 20 REM SET ORIGIN
 30 LET PLOTx=0: LET PLOTy=0
 40 REM SET LIMITS
 50 LET X=255: LET Y=175
 60 REM SET INCREMENT,i
 70 LET i=X/2
 80 REM ENTER LOOP
 90 FOR B=X TO 1 STEP -1
 100 LET A=Y+i
 110 IF X> A THEN GO TO 160
 120 REM UP A PIXEL ON THIS PASS
 130 LET A=A-X
 140 LET PLOTy=PLOTy+1
 150 REM RESET INCREMENT,i
 160 LET i=A
 170 REM ALWAYS ALONG ONE PIXEL
 180 LET PLOTx=PLOTx+1
 190 REM NOW MAKE A PLOT
 200 PLOT PLOTx,PLOTy
 210 NEXT B

A complete algorithm is to found in the following program, as a subroutine that will 'DRAW A LINE' from the last position to X,Y.

THE 'CIRCLE' ALGORITHM
The following BASIC program illustrates how the CIRCLE command produces its circles.

Initially the number of arcs required is calculated. Then a set of parameters is prepared in the 'memory area' and the 'calculator
stack'.

The arcs are then drawn by repeated calls to the line drawing subroutine that on each call draws a single line from the 'last position'
to the position 'X,Y'.

Note: In the ROM program there is a final 'closing' line but this feature has not been included here.

 10 REM A CIRCLE PROGRAM
 20 LET X=127: LET Y=87: LET Z=87
 30 REM How many arcs?
 40 LET Arcs=4*INT (INT (ABS (PI*SQR Z)+0.5)/4)+4
 50 REM Set up memory area; M0-M5
 60 LET M0=X+Z
 70 LET M1=0
 80 LET M2=2*Z*SIN (PI/Arcs)
 90 LET M3=1-2*(SIN (PI/Arcs)) ^ 2
 100 LET M4=SIN (2*PI/Arcs)
 110 LET M5=2*PI
 120 REM Set up stack; Sa-Sd
 130 LET Sa=X+Z
 140 LET Sb=Y-Z*SIN (PI/Arcs)
 150 LET Sc=Sa
 160 LET Sd-Sb
 170 REM Initialise COORDS
 180 POKE 23677,Sa: POKE 23678,Sb
 190 LET M0=Sd
 200 REM 'DRAW THE ARCS'
 210 LET M0=M0+M2
 220 LET Sc=Sc+M1
 230 LET X=Sc-PEEK 23677
 240 LET Y=M0-PEEK 23678

229

 250 GO SUB 510
 260 LET Arcs=Arcs-1: IF Arcs=0 THEN STOP
 270 LET MM1=M1
 280 LET M1=M1*M3-M2*M4
 290 LET M2=MM1*M4+M2*M3
 300 GO TO 210

 500 REM 'DRAW A LINE' from last position to X,Y
 510 LET PLOTx=PEEK 23677: LET PLOTy=PEEK 23678
 520 LET dx=SGN X: LET dy=SGN Y
 530 LET X=ABS X: LET Y=ABS Y
 540 IF X> =Y THEN GO TO 580
 550 LET L=X: LET B=Y
 560 LET ddx=0: LET ddy=dy
 570 GO TO 610
 580 IF X+Y=0 THEN STOP
 590 LET L=Y: LET B=X
 600 LET ddx=dx: LET ddy=0
 610 LET H=B
 620 LET i=INT (B/2)
 630 FOR N=B TO 1 STEP -1
 640 LET i=i+L
 650 IF i < H THEN GO TO 690
 660 LET i=i-H
 670 LET ix=dx: LET iy=dy
 680 GO TO 700
 690 LET ix=ddx: LET iy=ddy
 700 LET PLOTy=PLOTy+iy
 710 IF PLOTy <0 OR PLOTy > 175 THEN STOP
 720 LET PLOTx=PLOTx+ix
 730 IF PLOTx <0 OR PLOTx > 255 THEN STOP
 740 PLOT PLOTx,PLOTy
 750 NEXT N
 760 RETURN

NOTE ON SMALL INTEGERS AND -65536.

1. Small integers n are those for which -65535 is less than or equal to n which is less than or equal to 65535. The form in which they
are held is described in 'STACK-BC'. Note that the manual is inaccurate when it says that the third and fourth bytes hold n plus 131072
if n is negative. Since the range of n is then -1 to -65535, the two bytes can only hold n plus 131072 if it is taken mod 65536; i.e. they
hold n plus 65536. The manual is fudging the issue. The fact is that this is not a true twos complement form (as the form n plus 131072,
in other circumstances, could be). Here the same number can stand for two different numbers according to the sign byte: e.g. 00 01
stands for 1 if the sign byte is 00 and for -65535 if the sign byte is FF; similarly FF FF stands for 65535 if the sign byte is 00 and for -1 if
the sign byte is FF.

2. Accepting that negative numbers are given a special 'twos complement' form, the main feature about this method of holding numbers
is that they are ready for 'short addition' without any further twos complementing. They are simply fetched and stored direct by the
addition subroutine. But for multiplication they need to be fetched by INT-FETCH and stored afterwards by INT-STORE. These
subroutines twos complement the number when fetching or storing it. The calls to INT-STORE are from 'multiply' (after 'short
multiplication'), from 'truncate' (after forming a 'small integer' between -65535 and 65535 inclusive), from 'negate'/'abs' for the 'integer
case' and from 'sgn' to store 1 or -1. The calls to INT-FETCH are from PRINT-FP to fetch the integer part of the number when it is
'small', from 'multiply' twice to fetch two 'small integers', from 'RE-STACK' to fetch a 'small integer' for re-stacking, from 'negate'/'abs' to
fetch a 'small integer' for manipulation and from FP-TO-BC to fetch the integer for transfer to BC.

230

The Number -65536.

3. The number -65536 can fit into the 'small integer' format as 00 FF 00 00 00. It is then the 'limiting number', the one which when twos
complemented overflows (cf. 80 hex in a simple one byte or 7 bit system, i.e. -128 decimal, which when twos complemented still gives
80 hex i.e. -128 decimal since the positive number 128 decimal does not fit into the system).

4. Some awareness of this may have inspired the abortive attempt to create 00 FF 00 00 00 in 'truncate'. It is abortive since it does not
even survive the INT routine of which 'truncate' is a part. It just leads to the mistake INT (-65536) equals -1.

5. But the main error is that this number has been allowed to arise from 'short addition' of two smaller negative integers and then simply
put on the stack as 00 FF 00 00 00. The system cannot cope with this number. The solution proposed in 'addition' is to form the full five
byte floating-point form at once; i.e. test for the number first, at about byte 3032, as follows:

3032 PUSH AF Save the sign byte in A.
3033 INC A Make any FF in A into 00.
3034 OR E Test all 3 bytes now for zero.
3035 OR D
3036 JR NZ,3040,ADD-STORE Jump if not -65536.
3038 POP AF Clear the stack.
3039 LD (HL),+80 Enter 80 hex into second byte.
303B DEC HL Point to the first byte.
303C LD (HL),+91 Enter 91 hex into the first byte.
303E JR 3049,ADD-RSTOR Jump to set the pointer and exit.
3040 ADD-STORE POP AF Restore the sign byte in A.
3041 LD (HL),A Store it on the stack.
3042 INC HL Point to the next location.
3043 LD (HL),E Store the low byte of the result.
3044 INC HL Point to the next location.
3045 LD (HL),D Store the high byte of the result.
3046 DEC HL Move the pointer back to
3047 DEC HL address the first byte of the
3048 DEC HL result.
3049 ADD-RSTOR POP DE Restore STKEND to DE.
304A RET Finished.

6. The above amendment (i.e. 15 extra bytes) with the omission of bytes 3223 to 323E inclusive from 'truncate' should solve the
problems. It would be nice to be able to test this. The calls of INT-STORE should not lead to 00 FF 00 00 00 being stacked. In 'multiply'
the number will lead to overflow if it occurs, since 65536 will set the carry flag; so 'long' multiplication will be used. As noted at 30E5, the
5 bytes starting there could probably be omitted if the above amendments were made. 'Negate' avoids stacking 00 FF 00 00 00 by
treating zero separately and returning it unaltered. Truncate deals separately with -65536, as noted above. SGN stores only 1 and -1.

231

INDEX TO ROUTINES

address routine page

THE RESTART ROUTINES and TABLES
0000 START 1
0008 Error 1
0010 Print a character 1
0018 Collect character 1
0020 Collect next character 1
0028 Calculator 1
0030 Make BC spaces 1
0038 Maskable interrupt 1
0053 ERROR-2 2
0066 Non-maskable Interrupt 2
0074 CH-ADD+1 2
007D SKIP-OVER 2
0095 Token tables 3
0205 Key tables 4

THE KEYBOARD ROUTINES
028E Keyboard scanning 5
02BF KEYBOARD 6
0310 Repeating key 7
031E K-TEST 7
0333 Keyboard decoding 8

THE LOUDSPEAKER ROUTINES
03B5 BEEPER 11
03F8 BEEP 12
046E Semi-tone table 14

THE CASSETTE HANDLING ROUTINES
04C2 SA-BYTES 15
053F SA/LD-RET 17
0556 LD-BYTES 17
05E3 LD-EDGE-2 20
0605 SAVE-ETC 21
07CB VERIFY control 26
0802 Load a data block 26
0808 LOAD control 27
08B6 MERGE control 29
0970 SAVE control 32
09A1 Cassette messages 32

THE SCREEN & PRINTER HANDLING ROUTINES
09F4 PRINT-OUT 33
0A11 Control character table 33
0A23 Cursor left 33
0A3D Cursor right 33
0A4F Carriage return 34
0A5F Print comma 34
0A69 Print a question mark 34
0A6D Control characters with operands 34
0AD9 PO-ABLE 35
0ADC Position store 36
0B03 Position fetch 36
0B24 Print any character 36
0B7F Print all characters 37
0BDB Set attribute byte 39
0C0A Message printing 39
0C3B PO-SAVE 40
0C41 Table search 40

232

address routine page

0C55 Test for scroll 40
0CF8 'scroll?' message 42
0D4D Temporary colour items 43
0D6B CLS command 43
0DAF Clearing the whole display area 44
0DD9 CL-SET 45
0DFE Scrolling 45
0E44 Clear lines 46
0E88 CL-ATTR 48
0E9B CL-ADDR 48
0EAC COPY command 48
0ECD COPY-BUFF 49
0EF4 COPY-LINE 49
0F2C EDITOR 50
0F81 ADD-CHAR 51
0FA0 Editing keys table 52
0FA9 EDIT key 52
0FF3 Cursor down editing 53
1007 Cursor left editing 53
100C Cursor right editing 53
1015 DELETE editing 53
101E ED-IGNORE 53
1024 ENTER editing 53
1031 ED-EDGE 53
1059 Cursor up editing 54
1076 ED-SYMBOL 54
107F ED-ERROR 54
1097 CLEAR-SP 55
10A8 Keyboard input 55
111D Lower screen copying 56
1190 SET-HL 57
11A7 REMOVE-FP 58

THE EXECUTIVE ROUTINES
11B7 NEW command 59
11CB Main entry (Initialisation) 59
11DA RAM-CHECK 59
12A2 Main execution loop 61
1391 Report messages 63
155D MAIN-ADD 64
15AF Initial channel information 65
15C6 Initial stream data 65
15D4 WAIT-KEY 65
15E6 INPUT-AD 66
15EF Main printing 66
1601 CHAN-OPEN 66
1615 CHAN-FLAG 67
162D Channel code look -up table 67
1634 Channel K flag 67
1642 Channel S flag 67
164D Channel P flag 67
1652 ONE-SPACE 67
1655 MAKE-ROOM 67
1664 POINTERS 68
168F Collect a line number 69
169E RESERVE 69
16B0 SET-MIN 69
16D4 Reclaim the edit-line 70
16DB INDEXER 70
16E5 CLOSE # commend 70

233

address routine page

1716 CLOSE stream look-up table 71
171E Stream data 71
1736 OPEN # command 71
177A OPEN stream look-up table 72
1793 CAT, ERASE, FORMAT & MOVE commands 73
1795 LIST & LLIST commands 73
1795 AUTO-LIST 73
17F5 LLIST 74
17F9 LIST 74
1855 Print a whole BASIC line 75
18B6 NUMBER 76
18C1 Print a flashing character 77
18E1 Print the cursor 77
190F LN-FETCH 77
1925 Printing characters in a BASIC line 78
196E LINE-ADDR 79
1980 Compare line numbers 79
1988 Find each statement 79
19B8 NEXT-ONE 80
19DD Difference 81
19E5 Reclaiming 81
19FB E-LINE-NO 82
1A1B Report and line number printing 82

BASIC LINE AND COMMAND INTERPRETATION
1A48 Syntax tables 84
1B17 Main parser (BASIC interpreter) 86
1B28 Statement loop 87
1B52 SCAN-LOOP 87
1B6F SEPARATOR 88
1B76 STMT-RET 88
1B8A LINE-RUN 88
1B9E LINE-NEW 88
1BB2 REM command 89
1BB3 LINE-END 89
1BBF LINE-USE 89
1BD1 NEXT-LINE 89
1BEE CHECK-END 90
1BF4 STMT-NEXT 90
1C01 Command class table 90
1C0D Command classes - 00, 03 & 05 90
1C16 JUMP-C-R 91
1C1F Command classes - 01, 02 & 04 91
1C22 Variable In assignment 91
1C56 Fetch a value 92
1C79 Expect numeric/string expressions 93
1C96 Set permanent colours (class 07) 93
1CBE Command class - 09 94
1CDB Command class - 0B 94
1CDE Fetch a number 94
1CEE STOP command 95
1CF0 IF command 95
1D03 FOR command 95
1D86 LOOK-PROG 96
1DAB NEXT command 97
1DDA NEXT-LOOP 97
1DEC READ command 99
1E27 DATA command 100
1E39 PASS-BY 100
1E42 RESTORE command 100

234

address routine page

1E4F RANDOMIZE command 100
1E5F CONTINUE command 101
1E67 GO TO command 101
1E7A OUT command 101
1E80 POKE command 101
1E85 TWO-PARAM 101
1E94 Find integers 101
1EA1 RUN command 102
1EAC CLEAR command 102
1EED GO SUB command 103
1F05 TEST-ROOM 103
1F1A Free memory 103
1F23 RETURN command 104
1F3A PAUSE command 104
1F54 BREAK-KEY 104
1F60 DEF FN command 105
1FC3 UNSTACK-Z 106
1FC9 LPRINT command 106
1FCF PRINT command 106
1FF5 Print a carriage return 107
1FFC Print items 107
2045 End of printing 108
204E Print position 108
2070 Alter stream 108
2089 INPUT command 109
21B9 IN-ASSIGN 111
21D6 IN-CHAN-K 112
21E1 Colour item routines 112
226C CO-CHANGE 114
2294 BORDER command 115
22AA Pixel address 115
22CB Point 116
22DC PLOT command 116
2307 STK-TO-BC 117
2314 STK-TO-A 117
2320 CIRCLE command 117
2382 DRAW command 119
247D Initial parameters 123
24B7 Line drawing 124

EXPRESSION EVALUATION
24FB SCANNING 127
2530 SYNTAX-Z 128
2535 Scanning SCREEN$ 128
2580 Scanning ATTR 129
2596 Scanning function table 129
25AF Scanning function routines 130
26C9 Scanning variable routine 133
2734 Scanning main loop 135
2795 Table of operators 137
27B0 Table of priorities 137
27BD Scanning function (FN) 137
28AB FN-SKPOVR 141
28B2 LOOK-VARS 141
2951 Stack function argument 144
2996 STK-VAR 145
2A52 SLICING 148
2AB6 STK-STORE 150
2ACC INT-EXP 150
2AEE DE,(DE+1) 151

235

address routine page

2AF4 GET-HL*DE 151
2AFF LET command 151
2BF1 STK-FETCH 157
2C02 DIM command 157
2C88 ALPHANUM 159
2C8D ALPHA 159
2C9B Decimal to floating-point 160
2D1B NUMERIC 161
2D22 STK-DIGIT 162
2D28 STACK-A 162
2D2B STACK-BC 162
2D3B Integer to floating-point 162

THE ARITHMETIC ROUTINES
2D4F E-format to floating-point 164
2D7F INT-FETCH 165
2D8E INT-STORE 165
2DA2 Floating-point to BC 166
2DC1 LOG (2^A) 166
2DD5 Floating-point to A 167
2DE3 Print a floating-point number 167
2F8B CA=10*A+C 173
2F9B Prepare to add 174
2FBA Fetch two numbers 174
2FDD Shift addend 175
3004 ADD-BACK 176
300F Subtraction (03) 176
3014 Addition (0F) 176
30A9 HL=HL*DE 179
30C0 Prepare to multiply or divide 180
30CA Multiplication (04) 180
31AF Division (05) 184
3214 Integer truncation towards zero (3A) 186
3293 Re-stack two 188
3297 RE-STACK (3D) 188

THE FLOATING-POINT CALCULATOR
32C5 Table of constants 190
32D7 Table of addresses 190
335B CALCULATE 192
33A1 Delete (02) 194
33A2 Single operation (3B) 194
33A9 Test 5-spaces 194
33B4 Stack number 194
33C0 Move a floating-point number (31) 195
33C6 Stack literals (34) 195
33F7 Skip constants 196
3406 Memory location 196
340F Get from memory area (E0 etc.) 197
341B Stack a constant (A0 etc.) 197
342D Store in memory area (C0 etc.) 197
343C EXCHANGE (01) 198
3449 Series generator (86 etc.) 198
346A Absolute magnitude (2A) 199
346E Unary minus (1B) 199
3492 Signum (29) 200
34A5 IN (2C) 200
34AC PEEK (2B) 201
34B3 USR number (2D) 201
34BC USR string (19) 201

236

address routine page

34E9 TEST-ZERO 202
34F9 Greater than zero (37) 202
3501 NOT (30) 202
3506 Less than zero (36) 203
350B Zero or one 203
351B OR (07) 203
3524 Number AND number (08) 203
352D String AND number (10) 204
353B Comparison (09-0E, 11-16) 204
359C String concatenation (17) 205
35BF STK-PNTRS 206
35C9 CHR$ (2F) 206
35DE VAL and VAL$ (1D,18) 207
361F STR$ (2E) 208
3645 Read-in (1A) 208
3669 CODE (1C) 209
3674 LEN (1E) 209
367A Decrease the counter (35) 209
3686 Jump (33) 209
368F Jump on true (00) 210
369B END-CALC (38) 210
36A0 Modulus (32) 210
36AF INT (27) 211
36C4 Exponential (26) 211
3713 Natural logarithm (25) 213
3783 Reduce argument (39) 215
37AA Cosine (20) 216
37B5 SINE (1 F) 216
37DA Tan (21) 217
37E2 ARCTAN (24) 218
3833 Arcsin (22) 219
3843 Arccos (23) 220
384A Square root (28) 220
3851 Exponentiation (06) 220

APPENDIX
BASIC programs for the main series.
 - Series generator 222
 - SIN X 223
 - EXP X 224
 - LN X 226
 - ATN X 228
The 'DRAW' algorithm 228
The 'CIRCLE' algorithm 229
Note on Small Integers and -65536 229

237

238

239

Spectrum ROM Disassembly

Customer Registration Card

Please fill out this page (or a photocopy of it) and return it so that we may keep you informed of new books,
software and special offers. Post to the appropriate address on the back.

 Date.................. 19…...

Name..

Street & No...

City............................Postcode/Zipcode...............

Model of computer owned.....................................

Where did you learn of this book:

 O FRIEND O RETAIL SHOP

 O MAGAZINE (give name)

 O OTHER (specify)

Age? O 10-15 O 16-19 O 20-24 O 25 and over

How would you rate this book?

 QUALITY: O Excellent O Good O Poor

 VALUE: O Overpriced O Good O Underpriced

What other books and software would you like to see produced for your
computer?

……………...

...

...

EDITION 7 6 5 4 3 2 1

240

Melbourne House addresses

Put this Registration Card (or photocopy) in an envelope and post it to the appropriate
address:

United Kingdom
 Melbourne House (Publishers) Ltd
 Castle Yard House
 Castle Yard
 Richmond, TW10 6TF

Australia and New Zealand
 Melbourne House (Australia) Pty Ltd
 2nd Floor, 70 Park Street
 South Melbourne, Victoria 3205

241

