intel

C-86 COMPILER USER’S GUIDE

Copyright © 1983 Intel Corporation
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 Order Number: 122085-001

CELS e

pwe/a/""“‘

MCS-86 8086 — 8088 — 80C86 — 80C88

Ceibo
In-Circuit DS-186
Emulator
Supporting http://ceibo.com/eng/products/ds186.shtml
MCS-86:

www.ceibo.com

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation

3065 Bowers Avenue
Santa Clara, CA 95051

Intel retains the right to make changes to these specifications at any time, without notice. Contact your
local sales office to obtain the latest specifications before placing your order.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation assumes
no responsibility for any errors that may appear in this document. Intel Corporation makes no commitment
to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, dupli-
cation or disclosure is subject to restrictions stated in Intel’s software license, or as defined in ASPR
7-104.9(2)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and-its affiliates and may be used to identify Intel

products:
AEDIT iDIS Intellink MICROMAINFRAME
BITBUS iLBX iOSP MULTIBUS
BXP im iPDS MULTICHANNEL
COMMputer iMMX iRMX MULTIMODULE
CREDIT Insite iSBC Plug-A-Bubble
i intel iSBX PROMPT
12ICE int,IBOS iSDM Ripplemode
IATC Intelevision iSXM RMX/80
iCE intcligent Identifier Library Manager RUPI
iCS intgligent Programming MCS SYSTEM 2000
iDBP Intellec Megachassis UPI

Copyright © 1982, 1983 Mark Williams Co.
Reprinted by permission.

The information contained herein is subject to change without notice.

A948/ 583 /15K DD

REV.

REVISION HISTORY

DATE

-001

Original issue.

6/83

iii

PREFACE

Notational Conventions

italic Italic indicates a meta symbol that may be replaced with an
item that fulfills the rules for that symbol. The actual symbol
may be any of the following:

filename Is a valid name for the part of a pathname that names a file.
[1 Brackets indicate optional arguments or parameters.
{ 1. At least one of the enclosed items must be selected unless the

field is also surrounded by brackets, in which case it is
optional. The items may be used in any order unless other-
wise noted.

[,-r] The preceding item may be repeated, but each repetition must
be separated by a comma.

punctuation Punctuation other than ellipses, braces, and brackets must be
entered as shown. For example, the punctuation shown in the
following command must be entered:

SUBMIT PLMBG6(PROGA,SRC,*9 SEPT 81')

In interactive examples, user input lines are printed in white
on black to differentiate them from system output.

<cr)d Indicates a carriage return.

CONTENTS

CHAPTER 1 PAGE
INTRODUCTION
CHAPTER 2
COMPILING A PROGRAM
Under RSX-11M Compatibility Mode of

VAX/VMS e 2-1
Under RUN on the Series I1I Development System . 2-2
Under RMX 86 ..o 2-3
CHAPTER 3
LINKING C PROGRAMS
ON THE SERIES III
Floating Pointc.ccocoiiiiriiiieecceeeee e 3-2
CHAPTER 4
USING THE STANDARD LIBRARIES
Standard Definitionscccocoeiiiiiieiiiiiienie s 4-1
Overall Structure of Programsc.cccccoeeieiennen. 4-1
SEINZS oo 4-1
INPut/OUtPUL .o 4-2
SOTLINE ..o 4-8
Dynamic Memory Allocationccccooeviieiniinn. 4-9
The System Interfacec.cccocooeeniiiiiiniieiicenen 4-9
Odds and Ends .ocooooiiiiiiiiie e 4-9
CHAPTER 5
RUNTIME ISSUES
Small Modeloooiiiiiiiicie e S-1
Large Modelcccoooiiiiiniiiiiis e 5-5
CHAPTER 6
SHORTCOMINGS AND CAVEATS
Binary Filesccooooiiiiiiiiie e 6-1
Running out of Memoryccccocooovevivioviciieee e 6-1
FIelds .ooooiiiic e 6-1
CHAPTER 7
THE STANDARD (libc) LIBRARY
Character Classificationc..ccocooveoivirneneeieieene 7-1
String Manipulation ..., 7-2
Creating, Deleting, and Manipulating

FILE Objects ..c..cooccoiveiiininiieiceeeeeeeeee 7-3

PAGE
Byte by Byte I/O oo, 7-4
Word by Word I/O ... 7-4
String I/O oo 7-5
BIOCK I/O oo 7-5
Formatted I/O ..o 7-5
Random ACCESSccooveeiiiieiieeee e 77
SOTHNE ittt e eeee 7-8
Dynamic Memory Allocationc.ccocceiirnenciennns 7-8
Odds and Endsocoooiiiiiiiiie e 7-9
CHAPTER 8
THE SYSTEM INTERFACE
(DQ$) LIBRARY
Segment Managementcccoceviveciiiniiniece s 8-1
Exception Handling ..., 8-1
EXIt o e e 8-2
Get Time and Datecccoocieviiiiniiiee e 8-2
Get System Identificationccccocvviiieieiiiiinieiiee 8-3
Delete a File ...ocoooiiiiiiiiiceiiccce e 8-3
Rename a File ..., 8-3
Connection Managementccccoccvveivenveenninecnnens 8-3
Read from a File ..o, 8-4
Write toa File ..o 8-4
Seek 2 CONNECHION ...c.eeiiiiiiiieiceiee e 8-4
Truncate a Filecoocoviiiiiiiii e 8-4
Get Connection Statusoocceoeevveniiiinienicinereee e 8-5
Change EXtensioncccccocevoiniiiiiiiiiniiecee e 8-5
Load an Overlayccccocviiviniiniiiiceicccneerenns 8-5
Perform Special I/O Functionc..cccccvrvieennnne 8-5
Command Tail Parsingccccevvecimnieinineieeeeee 8-6
APPENDIX A
KEYWORDS
APPENDIX B
ERROR MESSAGES
APPENDIX C
ASCII CODES
INDEX

vii

CHAPTER 1
INTRODUCTION

This manual is a user’s guide for the C compiler and runtime system for the Intel
8086, 8087, and 8088 microprocessors. This compiler may be used as a cross compiler
running under RSX-11M compatibility mode VAX/VMS, as a native compiler
running under ISIS on the Intel series III microcomputer development system, or
under iRMX86 on supported boards and systems.

CC86 compiles programs written in the C programming language, as described in
the reference The C Programming Language by Brian W. Kernighan and Dennis M.
Ritchie (Prentice-Hall, 1978). The fundamental data types supported include char
(8 bits), short (16), int (16), long (32), float (32), and double (64); the modifier
unsigned may be applied to char, short, int, and long. Storage classes supported include
auto, extern, register, static, and typedef. The modifier readonly may be applied to
objects in extern and static classes to indicate that no value will be written to the
object. Additional data types may be derived from the fundamental types by means
of arrays, functions, pointers, structures, and unions.

Lines beginning with # are preprocessor directives. The CC86 preprocessor supports
the directives #define, #else, #endif, #if, #fdef, #ifndef, #include, #line, and #undef,
as described in The C Programming Language.

CC86 supports several advanced features in addition to the full range of features
described in The C Programming Language. The data type void is a special type that
may not be used in expressions; typically, it is used in the definition of a function
that returns no value, to prevent its use in a value context. The derived type enum
specifies an enumerated data type. CC86 also supports structure assignment and allows
functions to take structure arguments and to return structure values.

CC86 translates programs into either relocatable object files or assembly language
source files. The generated relocatable object code may then be transferred to the
Series III development system, where it can be linked with the standard C runtime
support libraries (using LINK86) and, if necessary, con verted into an absolute module
(using LOCS86).

CC86 supports both the SMALL and LARGE models of segmentation. A SMALL
model program can have up to 64K bytes of code and 64K bytes of data. All pointers
occupy two bytes (16 bits). This model is recommended for programs that can satisfy
these size requirements, because the two byte pointers permit the generation of very
compact and efficient code.

The LARGE segmentation model is used by programs that require access to the full
addressing capabilities of the 8086 and 8088 processors. In this model, each source
file generates a distinct pair of code and data segments. A single source file can
generate up to 64K bytes of code and 64K bytes of data. All pointers occupy four
bytes (32 bits). The generated code in the LARGE model is not as compact or efficient
as that in the SMALL model: the large pointers are more difficult to manipulate and
the compiler .must generate code to adjust the segmentation registers whenever it
detects a reference to an object in an unknown segment.

CC86 does not support the MEDIUM or COMPACT models of segmentation.

The runtime system includes a full implementation of the standard I/O package, a
large number of generally useful routines for manipulating strings and a complete set
of routines for interfacing with the DQ$ entry points of Intel’s Universal Develop-
ment Interface (UDI) libraries.

Introduction C-86 Compiler User’s Guide

There are two different versions of the runtime library: one is used by SMALL model
programs and the other by LARGE model programs. The libraries are completely
compatible; in fact, they are just two compilations (one SMALL, the other LARGE)
of the same C source code.

The C language has been slightly changed to make programming easier in the 8086
and 8088 environment. There is no limit to the number of characters in an identifier,
other than the 39-character limit imposed by LINK86 and LOCS86. The dollar sign
$ is accepted in identifiers in exactly the same fashion as it is in PLM86 (it is silently
thrown away). This makes it possible for calls to the system interface library routines
to look exactly like the corresponding PLM86 system calls.

CHAPTER 2
COMPILING A PROGRAM

2.1 Under RSX-11M Compatibility Mode of VAX/VMS

The CC86 (Intel C Compiler) command provides an MCR interface to the C compi-
ler. This command is simply a driver task that runs the actual compiler phases using
the RSX-11M SPAWN directives.

The general syntax of the CC86 command is

OR-NCHN [swifches] file [file ...

The command syntax is modeled after the DCL command language on the VAX,
RSTS/E and RT-11. Any switches present on the command line persist for the entire
command.

/DEBUG The /DEBUG switch causes CC86 to place debugging
information (local symbol and line number records) into
the object module. These symbols are of use to
DEBUGS86 and ICES86.

/KEEP The /KEEP switch suppresses the deletion of the tempo-
rary files used to pass in formation between the compiler
phases. This option is used to retain a temporary file for
examination, should one of the compiler’s phases
malfunction.

/LARGE The /LARGE switch causes CC86 to generate code that
uses the LARGE model segmentation assumptions.

/ASM86 The /ASMS86 switch causes CC86 to generate assembly
language. The output file has a file type of .A86 (instead
of .OBJ). The code is formatted in a style that is easily
understandable by users of ASM86; however, it is not an
acceptable ASM86 program.

/VERBOSE The /VERBOSE switch causes the CC86 command to
print a running trace of the compiler phases as they are
executed. This is useful if one wishes to see the exact
command line that is passed to a phase (most often the
preprocessor) or to provide a step-by-step trace of
progress through a very large compilation on a very slow
system.

/INCLUDE:name The directory name is added to the list of directories
searched by the preprocessor to locate #include files. The
extra directories are searched in the order specified on
the command line, before the default directory.

/DEFINE:name [:value] The name name is defined to have value value just as if
a #define line appeared in the source program. If the
value parameter is omitted, the name is defined to have
value | (so it can be used as a flag in a #if preprocessor
line).

Compiling a Program C-86 Compiler User’s Guide

JUNDEFINE:name The specified name is undefined, just as if a #undef
preprocessor directive appeared in the source program.
This is most often used to remove one of the preproces-
sor’s built-in definitions.

2.2 Under RUN on the Series lll Development System

The C compiler is a native mode program for the resident 8086 processor in the
Series III development system. The Series III must be in 8086 execution mode when
the compiler is invoked. Details on how to place the Series 111 into 8086 execution
mode and how to execute commands in this mode may be found in the Series 111
Console Operating Instructions.

The general syntax of the invocation line is:
[0 :Jgd: 1cceel . 8c I MBIl TO outputfilel [controls]

The inputfile is a standard ASCII file containing a C source program prepared with
one of the standard text editors (EDIT or CREDIT).

Normally, the output of the compiler, be it object code or an assembly language
program, is written to a file on the same device and with the same name as the source
file, but with the file type changed to .OBJ or .A86 (using a standard
DQSCHANGESEXTENSION call). The TO outputfile control may be used to place
the output in any desired file.

CCB86 uses two temporary files. These are allocated on the :WORK: device. The
WORKFILES control (described below) may be used to place the temporary files in
specific places.

The controls may be one or more of the following compiler control arguments:

DEBUG The DEBUG control causes CC86 to place debugging
information (local symbol and line number records) into
the object module. These symbols are of use to
DEBUGS86 and ICES86.

KEEP The KEEP control suppresses the deletion of the tempo-
rary files used to pass in formation between the compiler
phases. This option is used to retain a temporary file for
examination should one of the compiler’s phases
malfunction. CC86 uses the : WORK: device for tempo-
rary files by default, so an explicit WORKFILES control
(described below) must be used in conjunction with the
KEEP control.

LARGE The LARGE control causes CC86 to generate code that
uses the LARGE model segmentation assumptions.

ASMS86 The ASMB86 control causes CC86 to generate assembly
language. The output file has a file type of . A86 (instead
of .OBJ). The code is formatted in a style that is easily
understandable by users of ASM86; however, it is not an
acceptable ASM86 program.

2-2

C-86 Compiler User’s Guide

VERBOSE

INCLUDE(name)

DEFINE(name [,value])

UNDEFINE(name)

Compiling a Program

The VERBOSE control causes the CC86 command to
print a running trace of the compiler phases as they are
executed. This may be used to get a step-by-step trace of
progress through a very large compilation on a very slow
system.

The INCLUDE control directs the preprocessor in its
search for #include files. Because the UDI specification
does not allow programs to know the syntax of file names,
the search rules are slightly different from those speci-
fied by the language.

In the source file, #include requests are of two types:
#include “file” and #include < file> . In both cases, there
may be additional names supplied by INCLUDE direc-
tives: INCLUDE (namel), ..., INCLUDE (nameN). In
either case, if no additional names have been supplied,
the preprocessor will attempt to open file. If names have
been supplied by INCLUDE controls, the treatments
differ as follows. In the case #include “file”, the prepro-
cessor will first attempt to open file. If it fails, it then
prefixes the names specified in the INCLUDE directives
to the name file and attempts, in sequence, to open the
files namelfile, ..., nameNfile. In the case #include
< file > , the preprocessor will first attempt to open the
files namelfile, ..., nameNfile, and will attempt to open
file last.

The name is defined to have the given value, just as if a
#define line appeared in the source program. If the value
parameter is omitted, the name is defined to have value
1 (so it can be used as a flag in a #if preprocessor line).

The specified name is undefined, just as if a #undef
preprocessor directive appeared in the source program.
This is only used to remove one of the preprocessor’s
built-in definitions.

WORKFILES(file1],file2]) The WORKFILES control is used to specify the names

ROM

of the two temporary files used by CC86. If only one
name is specified, that file name is used for the first
temporary file and the :WORK: device issed for the
second temporary file.

The ROM control specifies that the compiled object will
be read only. The impact of this control on the segmen-
tation of the generated code is described in Chapter 3,
“Runtime Issues.”

2.3 Under iRMX™ 86

The invocation and control instructions for CC86 under iRMX86 are the same as

under RUN on Series I11.

NOTE

CC86 requires version 5.0 or later of iIRMX86.

2-3

CHAPTER 3
LINKING C PROGRAMS
ON THE SERIES i

The C compiler distribution kit includes two C runtime libraries (SCLIB.LIB for the
SMALL segmentation model and LCLIB.LIB for the LARGE segmentation model).
It also includes two runtime startoff routines (SQMAIN.OBJ for the SMALL model
and LQMAIN.OBJ for the LARGE model). The object modules produced by the C
compiler must be linked with the appropriate runtime star toff routine, the appropri-
ate C library and the appropriate Intel interface library (SMALL.LIB or
LARGE.LIB).

A typical command sequence for linking a SMALL model program called SMALLP
with the standard libraries would be:

There are a number of things to note. First, note that a load time locatable image
(LTL) is being created (the BIND control is used). This is necessary in the SMALL
model for the dynamic memory allocation routines, which are used by the standard
I/0 library to function correctly. The size of the MEMORY segment is determined
by a call to DQSGETSSIZE, which does not return a reasonable value on absolute
programs in the SMALL model. The amount of raw memory available for the dynamic
allocation routines is determined by the SEGSIZE control that adjusts the size of the
MEMORY segment. If there is insufficient free space available, it will not be possi-
ble to open files or perform other operations that require space in the dynamic storage
allocation pool.

The stack used by the program is normally defined by the SYSTEMSTACK module
in the SMALL library. The size of the stack can be determined from the link map.
If more stack is required by an application, a SEGSIZE control may be used to
increase the size of the STACK segment.

The following rough guidelines may be of use in estimating stack requirements. In
the LARGE model, the overhead is 14 bytes per function call, plus 2 bytes per int
and char, 4 bytes per long, float and pointer, and 8 bytes per double. In the SMALL
model, the overhead is 8 bytes per function call, plus 2 bytes per int, char, and pointer,
4 bytes per long and float, and 8 bytes per double. Additional stack space will be
needed for recursive function calls (the same amount of space is required for each
level of recursion) and the local buffers used by UDI system calls.

The link command for a LARGE model program is similar. Here is an example:

Once again, the BIND control has been used to create a load time locatable module.
This speeds program development because a LOCATE step is not required; however,
the actual loading of the program (by RUN) is quite slow because all of the absolute
segment bases in the image must be fixed up. Absolute programs do, however, work
properly in the LARGE model, since system calls (DQSALLOCATE and DQS$FREE)
are used to perform all dynamic memory allocation.

3-1

Linking C Programs on the Series III C-86 Compiler User’s Guide

The SEGSIZE control that adjusts the size of the STACK segment is almost always
required. The default stack provided by the SYSTEMSTACK module in LARGE.LIB
is seldom large enough for the (substantially) larger stack frames in the LARGE
model.

Of course, the more elaborate features of LINK86 and LOCS86 all work with the
object modules produced by the C compiler. Detailed descriptions of the fancy features
(such as building libraries, creating overlaid programs or writing code that is scattered
all over physical memory) are beyond the scope of this manual. The Intel publications
provide numerous examples of the complex features of LINK86 and LOCS6.

3.1 Floating Point

Several special considerations apply to programs using floating point. The link
command must include the appropriate floating point library, either 8087.LIB for
hardware floating point with the 8087 or E8087.LIB for software emulation. The
floating point library should be included after the C library (either SCLIB.LIB or
LCLIB.LIB) in the LINK86 command.

NOTE

If your program does not use floating point, include the library 87NULL.LIB
instead to avoid loading the emulator.

With either hardware or software floating point, the runtime startoff routine issues a
call to INIT87 for initialization. A control word of 3BFH is loaded to mask excep-
tions and select round to nearest mode. Code generated by C routines may change
the 8087 rounding mode, but the mode will always be restored.

Operation of the 8086 and 8087 processors is unsychronized. All C code manipulat-
ing floating point objects directly will check for termination of previous 8087 opera-
tions correctly. However, any C code that manipulates floating point objects in non-
floating point contexts (for example, by casting a float * to char * and accessing the
object through the char *) must explicitly check for termination of 8087 operation to
assure correct results.

The code to output floating point numbers is quite bulky. Since most C programs do
not need floating point output, the conversion routine in the standard library is a
fake, which always prints the string { Float} ”. The real floating point output
conversion routines are contained in the files SDTEFG.OBJ (SMALL model) and
LDTEFG.OBJ (LARGE model). The appropriate object file should be included in
the LINK86 command line immediately before the standard library.

Some users will always want floating point output conversion. These users may wish

to delete the fake floating point output module (FDTEFG) from the standard library
and replace it with the real version.

3-2

CHAPTER 4
USING THE STANDARD LIBRARIES

The standard C runtime libraries provide a large number of useful routines that make
it easy to manipulate some common data structures (such as strings), dynamically
allocate memory, and perform I/O operations to files on all devices supported by the
operating system.

The purpose of this section is to provide a quick overview of the features and facilities
of the library. The library routines are all listed in later chapters (along with their
calling sequences and the types of their arguments).

The routines in the standard library on all hosts are identical, so it is easy to write
programs that can be transported from system to system without change.

4.1 Standard Definitions

There are a number of header (.h) files supplied with the libraries. These files, which
are intended to be included (using the #include preprocessor directive) by applica-
tions programs, provide a number of useful definitions for using the routines in the
standard libraries. The most important of these is stdio.h. This header file contains
all of the definitions used by the I/O routines, some symbolic constants (the value of
the NULL pointer, for example) and external definitions for the library routines that
return non-integer objects.

4.2 Overall Structure of Programs

A C program consists of a set of functions, one and only one of which must be called
main. This function is called from the runtime startoff routine (SQMAIN.OBJ or
LQMAIN.OBJ) after all of the required initialization of the runtime environment
has been performed.

Programs may terminate in two ways. The easiest is to simply have the main routine
terminate, returning control to the runtime startoff code, which performs some cleanup
operations and returns control to the operating system. In some situations (errors,
perhaps), it may be necessary to terminate a program, and it may not be desired (or
even possible) to return to the main routine. In these situations, the exit routine can
be used. This routine performs the standard cleanup and returns control to the
operating system.

There is also a second exit routine called _exit that quickly returns control to the
operating system without performing any cleanup. It should be used only in disaster
situations, since bypassing the cleanup will leave files open and buffers of write data
in memory.

4.3 Strings

A very common data structure in C programs is the character string. The usual
runtime representation for a string is an array of characters delimited by a 0 byte
(“\ 0’). This is, in fact, the representation used by the C compiler when a program
contains a string constant (like “I am a string constant”). The address of the first
character in the string is used as the handle for the string. Note that an array of 20
characters will hold a string of 19 (not 20) nonnull characters, delimited by a 0 byte.

Using the Standard Libraries C-86 Compiler User’s Guide

Often strings can be assigned simply by shuffling pointers. If, however, it is necessary
to actually move the characters, the library routine strcpy can be used. This is a
function of two arguments; the first (a pointer to a string) points to the destination
array and the second (also a pointer to a string) points to the source array. All
characters, up to and including the O byte, are copied and the first argument is
returned.

extern char *strcpy();
char buf[20];
strepy(buf, “hello’);

The length of a string may be determined by using the library routine strlen. This
function takes one argument, a pointer to a string, and returns the number of charac-
ters in the string, up to but not including the O byte.

The strcat library function performs simple string concatenation. It takes two strings
as arguments and appends a copy of the second string to the end of the first string.
The first string is assumed to have enough extra space at the end to hold the new
characters. Strcat returns a pointer to the new result, O byte delimited.

A typical use of strcat would be the creation of file names. Here a specific file type
must be appended to a name that changes at runtime. For example, the following
program fragment puts the file name “mumble.c” in the buffer buf.

char buf[20];

extern char *strcpy(), *strcat();
strepy(buf, “mumble’);
strcat(buf, “.”);

strcat(buf, “c”);

Often strings must be compared. This must be done, for example, if a list of strings
is being sorted. The strcmp library function performs string comparison. It takes two
arguments (both pointers to strings) and returns an integer. This integer is less than
0 if the first string is less than the second string (using native machine character
comparisons), equal to 0 if the two strings are equal and greater than O if the first
string is greater than the second string.

Applications that deal with fixed length strings can use the strncat, strncpy, and
strncmp routines. These routines perform the same functions as their variable length
(without the n) counterparts; however, they all take an additional (third) argument
that specifies the maximum length of the string.

4.4 Input/Output

The standard library provides routines that do I/O at a number of levels to all devices
supported by the operating system. Facilities exist for byte by byte, word by word,
string, block, and formatted transfers. All [/O modes may be freely intermixed.

4.4.1 The FILE type

Included in the standard I/O header file stdio.h is a type definition (typedef) for the
FILE type. A FILE is a structure that contains all of the information needed by the
[/O routines to perform I/O operations on a connection. A pointer to a FILE is the
external name of an I/0 stream (much like the file variables of PASCAL or the unit
numbers of FORTRAN) and is passed to the various routines in the I/O library to
specify which stream participates in the transfer.

42

C-86 Compiler User’s Guide Using the Standard Libraries

4.4.2 Opening (Creating) a FILE

A file is opened (and a FILE allocated) by the routines fopen and freopen. The most
frequently used open routine is fopen. It takes two arguments. The first is a string
that contains the name of the file to be opened. The second is a mode string that
specifies the access mode required. The mode string is one of r (for plain reading), w
(for plain writing), r+w (read and write, or update) or a (append). In addition, the
mode string can contain the character b (for binary), which specifies that this is a
binary (as opposed to an ASCII) stream, and specifies that newline characters should
not be mapped into a carriage return/line feed sequence.

If the mode is w or a and the named file does not exist, it will be created. If the mode
is w and the file does exist, it will be truncated to zero length.

If the open is successful, fopen will return a pointer to a FILE object. If unsuccessful,
it will return NULL.

When control is passed to the main routine, the runtime startoff has aiready created
three FILE objects. The first, called stdin (for standard input), is always attached to
the :CI: device. The second, called stdout (for standard output), is always attached
to the :CO: device. The third, called stderr (for standard error), is always attached
to the video display device :VO:. A write to the standard error stream will always be
seen, no matter how the :CO: stream is redirected.

The three names stdin, stdout, and stderr are defined as macros in the stdio.h header
file. They cannot appear on the left-hand side of an assignment.

The alternate open routine freopen is just like fopen except that it takes a third
argument. This argument is a pointer to a FILE that is closed and reopened, using
the file name and access mode specified in the freopen call. It is most often used to
redirect one of the standard streams to another file.

4.4.3 Closing a FILE

When all processing on a FILE is completed the stream must be closed by calling
fclose. This routine takes one argument, a pointer to a FILE. Any data buffered in
the stream is flushed; any buffers are released and the connection is detached.

All open files are automatically closed when a program terminates (via internal calls
to fclose in exit).

4.4.4 Byte by Byte 1/0

The lowest level of 1/O is the byte-by-byte level. At this level, a call to the /0O
routine either reads a single character from a FILE or writes a single character to a
FILE.

All higher level 1/0 routines use these byte-by-byte routines to actually read and
write data.

The most basic read routine is getc(fp). This function takes a single argument, a
pointer to a FILE, and returns either the next character from the FILE or EOF. The
definition of EOF is in the stdio.h header file. In ASCII mode, all carriage return
characters (ODH) are thrown away, and the line feeds at the end of the lines (OAH)
mark the end of the lines (the \ ‘n’ in C is equal to 0AH). In binary mode, all charac-
ters are passed without interpretation.

4-3

Using the Standard Libraries C-86 Compiler User’s Guide

There is also a routine getchar that is equivalent to getc(stdin); it reads characters
from the standard input FILE, which is normally the keyboard.

The routine ungetc(c, fp) returns ¢ to the FILE fp. This is useful for looking ahead
at the next input character and then returning it to the input file. Only a single
character can be unread with ungetc.

The most basic write routine is putc(c, fp). The function takes two arguments: ¢ is
an integer containing the byte to be written and fp is a pointer to an output FILE.
The first argument is returned unless there is some kind of write error, in which case
EOF is returned.

There is also a routine putchar(c) that is equivalent to putc(c, stdout). It writes
characters to the standard output FILE, which is normally the video display.

Here is a simple example that uses the I/O routines discussed so far. It copies the
characters in the file “mumble.c” to the display. It prints a rude diagnostic if the file
cannot be opened.

#include <stdio.h >

main()
{
FILE *fp;
int c;
fp = fopen(“mumble.c”, “r’);
if (fp == NULL) {
putchar(‘N’);
putchar(‘o’);
putchar(‘?’);
putchar(‘ \ n’);
exit(1);
}
while ((c=getc(fp)) '= EOF)
putchar(c);
fclose(fp);
}

4.4.5 Word by Word I/0

A program may read the next word (16-bit object, low byte first) from a FILE by
using the routine getw(fp). This routine takes one argument, a pointer to a FILE.
The word read is returned.

Note that all bit patterns are legal return values for getw. A special token like EOF
cannot be returned on end of file.

Instead, the program must explicitly test for end of file by using the macro feof(fp)
(from stdio.h). This macro looks at the FILE pointed to by fp and returns true if the
last call to getw ran into end of file. If a file has an odd size, the last call to getw will
return the data and an error will be posted to the FILE. This error may be detected
by using the ferror(fp) macro. End of file is posted only if a call to getw gets no data.

Of course, there is a similar routine putw(w, fp) that writes a word to a file. The
ferror macro must be used to check for I/O errors.

C-86 Compiler User’s Guide Using the Standard Libraries

4.4.6 String1/0
There are a number of routines that perform I1/0 on strings.

The most basic string read routine is fgets(b, n, fp). This routine reads a newline
delimited string from the FILE pointed to by fp and stores it into the array of charac-
ters b. The newline character is transferred to the buffer. A O byte is placed in the
buffer immediately after the newline. The integer n specifies the length of the buffer;
this prevents fgets from writing beyond the array if a long line is encountered in the
mput.

Theére is also a routine gets(b). This routine reads a newline delimited string from the
standard input stream and stores it into the array of characters b. The newline is
deleted (this is different from fgets). A O byte is placed in the buffer immediately
after the last byte read from the FILE.

The most basic string output routine is fputs(s, fp). This routine writes out the string
s to the FILE pointed to by fp. There is also a routine puts(s) that writes the string
pointed to by s, followed by a newline, to the standard output.

Here is another example. This program reads a filename from the keyboard, opens
the file and copies it, line by line, to the video display.

#include < stdio.h >

char b[128];
char f[128];
main()
{
FILE *fp;
char *p;
int c;
puts(“Enter a file name”);
gets(f);
if ((fo=fopen(f, “r’)) == NULL) {
puts(““Go away”);
exit(1);
}
while (fgets(b, sizeof(b), fp) != NULL) {
p=b;
do {
c = *p++;
putchar(c);
} while (¢ !'= ‘n’);
}
}

4.4.7 Block I/0

The standard library provides facilities for transferring blocks of memory to and from
user programs. These are most often used on binary streams to move raw binary
information to and from files. However, they may be used on ASCII streams with no
ill effects, with the possible exception of newline interpretation.

The function fread(b, size, nitems, fp) reads nitems objects of size size bytes into the

buffer pointed to by b from the FILE pointed to by fp. The number of items actually
read is returned.

45

Using the Standard Libraries C-86 Compiler User’s Guide

The analogous routine fwrite(b, size, nitems, fp) writes nitems objects, each of size
size byte from the buffer b to the FILE pointed to by fp. The number of items actually
written is returned.

The feof and ferror macros can be used to check for end of file and transmission
errors on block reads and writes.

4.4.8 Formatted I/0

Routines are provided that permit formatted I/O to and from FILE streams. Data
may be read in and written out in a number of formats and bases (decimal, octal,
hexadecimal), strings may be truncated or padded, and fields may be justified to the
left or to the right.

Although these routines are usually used on ASCII streams, they work perfectly well
on binary streams (they are, after all, just interfaces to putc and getc). This facility
is sometimes useful when dealing with strange command sequences that get sent to
terminals, which often are mixtures of ASCII characters and binary values.

The formatted I/O routines printf and scanf are complex (to say the least!). The
details of all their formatting options are described in detail in section 7.8.

Briefly, all formatted I/O routines work by interpreting one of their arguments as a
format string. This string consists of format specifications (introduced by a ‘%’
character) and ordinary characters (everything else). For each format specification
encountered in the format string, an argument is extracted from the parameter list
of the formatted 1/O routine and interpreted in a fashion determined by the format
specification. The type of the argument must agree with that expected by the format
specification. If this is not the case (for example, a long integer is placed in the
argument list where a normal integer is expected), the result is undefined.

The most commonly used format directives are %d (for decimal numbers), %o (for
octal numbers), %x (for hexadecimal numbers) and %s (for strings).

Here is an example that uses the basic formatted output routine printf. This program
prints out the numbers from 0 to 100 in decimal, octal, and hexadecimal.

#include <stdio.h >
main()
int i;
for (i=0; 1< =100; + +1)

printf(“%d, %o, %x’n”, i, i, 1);
}

Note that the format string contains one format directive for each argument in the
list, and that it also contains some literal characters that get copied directly into the
output.

4.4.9 Random Access

All of the examples seen so far deal with sequential access FILE streams. However,
the I/0 library supports random access transfers as well. Associated with every FILE
is a seek pointer. This pointer starts off at the beginning of the file (except, of course,
when a stream is opened for append, where it starts off at the end of the file) and
moves along as data is read from or written to the FILE.

4-6

C-86 Compiler User’s Guide Using the Standard Libraries

The value of this pointer (as a 32-bit long integer) can be obtained with the routine
ftell(fp). This routine returns the current value of the seek pointer for the FILE pointed
to by fp.

The seek pointer can be moved about in the file by using the routine fseek(fp, where,
how). This resets the seek pointer in the FILE pointed to by fp to where (also a 32-
bit long integer). The how argument specifies if the seek is front of file relative (how
= 0), current seek position relative (how = 1) or end of file relative (how = 2).
Fseek has no defined return value.

Of course, some FILE streams (like the standard output, which is attached to the
video display) cannot perform random access operations. If ftell is pointed at one of
these streams, it returns garbage.

The special case of returning the seek pointer to the start of a file is made a little
casier by the routine rewind(fp). This routine is equivalent to fseek(fp, OL, 0).

Another example. This program opens a file on the disk and then lets the user display
eight-byte fixed length records, by number.

#include < stdio.h >
char rec[8];

main()

{
FILE *fp;
int rn;
char b[20];

fp = fopen(“database”, “rb”);

if (fp == NULL) {
puts(“No database™);
exit(1);

}

while (gets(b) '= NULL) {
rn = atoi(b);
fseek(fp, (long)8*rn, 0);
fread(rec, sizeof(char), 8, fp);
printf(“‘Record %d:”, rn);
print();

exit(0);
}

atoi(s)
char *s;
{

int ¢, n;

n = 0;
while ((c=*s+ +) 1= 0)

n = 10*n + ¢ -0
return (n);

}

char hex|[] = {
‘0?’ 619, 52’, §3’7 ‘47’ ‘5” ﬂ6’, ‘7”
‘8” ‘9” EA” ‘Bﬂ’ ‘C” LD” ‘E” AF’

4-7

Using the Standard Libraries C-86 Compiler User’s Guide

print()
{
int 1i;
int byte;

for (i=0;i¢8; ++i) {
if (i!1=0)
putchar(* ’);
byte = recfi];
putchar(hex[(byte > > 4)&0x0F]);
putchar(hex|[byte &0x0F]);
}
putchar(‘ \ n’);
}

4.5 Sorting

Often it is necessary to sort data. However, good sorting routines are tricky and diffi-
cult to debug, so the standard library contains two sort functions. These functions are
general in that they implement only the skeleton of the sort algorithm. The user must
provide a comparison function and tell the sort function the size of the objects being
sorted.

The gsort(b, n, size, f) routine implements Hoare’s quicksort. The argument b points
to the base of the block of data being sorted. The n argument specifies number of
elements to be sorted. Each of these objects has size size (the routine needs the size
to be able to move the objects around and to update its internal pointers). The f is a
pointer to a function that performs comparisons. It is called with two arguments
(pointers to objects being compared) and it returns an integer that is less than 0,
equal to O or greater than 0 to indicate the ordering.

The shellsort(b, n, size, f) routine has exactly the same calling sequence but uses
Shell’s sorting method. For most purposes, gsort is preferable.

The quicksort routine is recursive; it also uses a somewhat surprising amount of stack
if presented with data that is almost sorted. The SEGSIZE control can be used on
the LINK86 command line to allocate enough stack.
Here is an example. The quicksort routine is used to sort an array of integers.
#define NINTS 20
int ints[NINTS];
main()
{

int compare();

gsort((char *)ints, NINTS, sizeof(int), &compare);
}

compare(pl, p2)
char *pl, *p2;
{

return (*(int *)pl - *(int *)p2);

C-86 Compiler User’s Guide Using the Standard Libraries

4.6 Dynamic Memory Allocation

When building linked data structures or when dealing with arrays whose size can
only be determined at runtime, it is very useful to be able to allocate blocks of memory
dynamically. The standard functions malloc, calloc, and free implement a general
purpose memory allocation system. This system is used by user programs and by the
1/0 library routines to allocate buffers.

The basic allocator is malloc(n). This routine allocates a block of memory of at least
n bytes and returns a (character) pointer to it. The block may be larger than requested,
if allocating the exact size would create a very small (and probably unusable) block
on the list of free memory. The block contains garbage; it is not initialized in any
way. If there is no memory left in the free space pool, a NULL pointer will be returned.

The function calloc(n, size) allocates (with malloc) a block of memory large enough
to hold n objects of size size; this memory is zeroed. If there is insufficient free
memory, a NULL pointer is returned.

Blocks of memory that are no longer needed may be returned to the free pool by
passing a pointer to the block to free(p). This routine puts the block back in the free
list and merges adjacent free areas into single, larger free areas. It is a grave error to
pass a nonsense pointer to free. No checking is done; a subsequent call to one of the
allocation functions will probably return a very strange value.

4.7 The System Interface

The standard library provides a complete set of routines for dealing with the system.
These permit the renaming and deletion of files, the catching of exceptions (including
the control C key) and other low level system operations.

All of these routines, along with their calling sequences, are described in Section 8
below. More detail may be found in the Intel Series I11 System Programmer’s Refer-
ence Manual.

4.8 Odds and Ends

There are some other routines in the library that perform conversions between
character strings and binary values, generate random numbers and perform other
commonly required actions. The Chapter 7 reference pages describe all of these
routines. .

4-9

CHAPTER 5
RUNTIME ISSUES

This section of the manual is intended to assist those users who must interface code
generated by CC86 with code generated by other Intel translators such as PL/M-86
or ASMS86. It describes, in detail, the calling sequence used by C functions, the
conventions regarding the use of machine registers, how the segment registers are set
up and other low level issues. This section may be ignored by most users.

The runtime environment used by the SMALL model of segmentation is quite differ-
ent from that used by the LARGE model. Mixtures of the two models may work
(and, in fact, be necessary) in some circumstances. However, mixing models should
not be attempted by anyone short of a very experienced user.

5.1 Small Model
5.1.1 Segment Names and Attributes

In the SMALL model, a program has two segments, each 64K bytes (maximum) in
size. One of these, mapped by the CS segment register and spanned by the group
CGROUP, contains all of the machine code generated by CC86. The second, mapped
by the DS, ES, and SS segment registers (which must contain the same value at all
times) and spanned by the group DGROUP, contains all the pure and impure data,
the stack, and the pool of free memory (the MEMORY segment) used by the dynamic
storage allocation functions malloc and free.

CC86 places all instructions in a segment called CODE, which has a class name of
CODE and is a member of the CGROUP. All pure data and readonly data is placed
in a segment called CONST that has a class name of CONST. If the ROM control
is specified, strings are also placed in CONST. All impure data (including strings,
unless the ROM control is specified) is placed in a segment called DATA that has a
class name of DATA. The CODE, CONST, and DATA segments, along with the
machine stack (in a segment called STACK) and the free memory pool (in a segment
called MEMORY), are members of the DGROUP.

Users of PL/M-86 will recognize these names as those used by the PL/M-86 compi-
ler in the SMALL model. CC86 is completely compatible with PL/M-86 in terms of
segment names, class names, groups, and attributes. The rules in the ASM86 manual

that describe how to set up the segments for assembly language subroutines for
PL/M-86 also apply to C.

5.1.2 Calling Sequence

Although call compatibility with PL /M-86 was an early design goal of the C imple-
mentation, this goal was not achieved. The C calling sequence is different from that
used by PL/M-86 (and other Intel translators) for a number of reasons. First and
foremost, the C language does not require that the number of arguments passed to 4
function be the same as the number of arguments specified in the function’s decla-
ration. Routines with a variable number of arguments are not uncommon. The two
formatted I/O routines in the standard library (printf and scanf) are, in fact, routines
that take a variable number of arguments. Given this requirement, the PL/M-86
convention of having the called routine remove the arguments from the stack is not
usable. Further, the standard PL/M-86 calling sequence pushes the arguments from

5-1

Runtime Issues C-86 Compiler User’s Guide

left to right, making it difficult to locate the first argument if the number of arguments
is unknown. A secondary consideration in the design of the C calling sequence was
the availability of variables of the register storage class.

Therefore, the following calling sequence is used. The function arguments are pushed,
right to left, onto the stack. Long integers are pushed high half first; this makes the
word order compatible with the DD assembly directive in ASM86. Doubles are pushed
so that the byte order on the stack is compatible with the 8087. The function is then
called with a NEAR CALL instruction (either directly or indirectly). An ADD
instruction after the call removes the arguments from the stack.

For example, the function call

int a;
long b;
char c;
f(a, b, ¢);

generates the code

movb al,c
cbw

push ax
push b+2
push b
push a
call f_
add sp,8

Note that an underbar character (‘_") has been appended to the function name. This
serves two functions. First, it makes it harder to call a PL/M-86 routine by accident.
Secondly, it means that there can be two routines, both with (apparently) the same
name, that are called from C and PL/M-86 in (apparently) identical fashions. This
facility is used in the UDI support library, where the DQ functions in the C library
(whose names end in an underbar) and are simply interfaces to the routines in the
Intel library that reverse the argument list and (sometimes) convert null terminated
C strings to leading count PL/M-86 strings.

The parameters and local variables in the called function are referenced as offsets
from the BP; the arguments begin at offset 8 and continue toward higer addresses,
whereas the locals begin at offset —2 and continue toward lower addresses. The SP
points at the local variable with the lowest address.

Functions return integers in the AX register, long integers in the DX:AX register
pair, pointers in the AX register, and doubles on the top of the stack of the 8087.

f(a, b, ¢)
nt a;
int b;
int c;
{
return (a*b — ¢);
}
f_ proc near
push si
push di

5-2

C-86 Compiler User’s Guide Runtime Issues

push bp
mov bp,sp
sub sp,N_autos

mov ax,a
imul b
sub ax,c

mov sp,bp

pop bp

pop di

pop si

ret
f_ endp
a equ word ptr [bp+8§]
b equ word ptr [bp+10]
c equ word ptr [bp+12]

5.1.3 Stack Allocation

The stack used by C programs is provided by the SYSTEMSTACK module in
SMALL.LIB. The C runtime startoff routine contains a zero length stack segment
with a symbol at the end of it, which gets relocated to the very top of the stack
segment by LINKS86. The stack may be set to any size by using the SEGSIZE direc-
tive in LINK&6.

5.1.4 Segment Register Initialization

The runtime startoff routine always initializes the segment registers DS, ES and SS.
It also sets up SP. Interrupts are disabled before touching any of these registers and
are unconditionally enabled when the initialization is completed. The same startup
routine will handle both absolute images and LTL images.

5.1.5 Command Line Processing

The command line that invoked the C program is obtained by calling
DQSGETSARGUMENT until an argument string delimited by a carriage return is
encountered. These command arguments are collected in a static buffer in SQMAIN.
When control is passed to the user’s main routine, three arguments are passed to it.
The first, argc, is the number of arguments. The second, argv, is a pointer to an array
of character pointers that point to the beginnings of the command strings in
SQMAIN’s buffer. This argument array is also statically allocated in SQMAIN. The
third argument, envp, is always 0.

5.1.6 Heap Allocation

The MEMORY segment provides the raw material for the dynamic storage manage-
ment functions. The size of the MEMORY segment is determined by subtracting the
base address of the segment in the.- DGROUP (obtained by simply placing a label
into the segment in SQMAIN) from the size of the data segment (obtained by a call
to DQSGETSSIZE). All of the MEMORY segment is linked into the free memory
pool on the first call to malloc.

5-3

Runtime Issues

5-4

C-86 Compiler User’s Guide

The size of the MEMORY segment may be adjusted by using the SEGSIZE control
on LINKSg6.

Note that DQSGETS$SIZE does not return a useful result if the program has been
bound as an absolute image (that is, has been processed by LOCATES86). Conse-
quently, the storage allocator will malfunction if used by an absolute program. This
means that absolute programs may not use the standard 1/O package without provid-
ing their own versions of malloc and free, since the I/O routines use the dynamic
space allocator to obtain and release I/O buffers.

5.1.7 Interfacing with Intel Supplied Routines

Most routines supplied by Intel use the PL/M-86 calling con ventions. As was previ-
ously mentioned, the code generated by the C compiler cannot, because of the seman-
tics of C, use these conventions. If it is necessary to call such routines (for example,
the interface routines of RMX86), the linkage must be written in ASM86.

Here is a simple example. Assume that it is necessary to call the PL/M-86 function
USEFUL, which has the following declaration:

USEFUL: PROCEDURE (A, B, C) EXTERNAL POINTER,;
DECLARE (A, B, C) INTEGER;
END;

The ASM86 linkage to this function would look like this:

name useful

cgroup group code

dgroup group const, data, stack, memory
assume cs:cgroup
assume ds:dgroup, es:dgroup, ss:dgroup

code segment public ‘code’
public useful_ ; Note the “_”
extrn useful:near

useful_ proc near
push si ; C save code
push di
push bp
mov sp, bp
sub sp, N_autos ; Claim locals
push word ptr [bp+ 8] ; Push parameters
push word ptr [bp+10] ; from left
push word ptr [bp+12] ; to right, and
call useful ; call routine.
mov ax, bx ; Move return value.

; At this point, the SI and DI registers
; may have been altered.

mov sp, bp ; C return code
pop bp

pop di

pop si

ret

C-86 Compiler User’s Guide

useful_ endp
code ends
end

5.2 Large Model
5.2.1 Segment Names and Attributes

Object modules generated by CC86 in LARGE model always contain two segments.
One of these holds all of the code produced by the functions in the file. The other
generally contains all of the data actually allocated by the functions in the file. These
segments are called ‘name_CODE’ and ‘name_DATA’, where name is the name of
the source file (with all leading devices, UIC, and directory information stripped off).
The code segment always has class name CODE, and the data segment always has
class name DATA; these are the same naming conventions used by PL/M-86 in the
LARGE model.

The ‘name_CODE’ segment includes code, linkage vectors, literals, switch tables, and
readonly data. If the ROM control is specified, it also includes strings. The
‘name_DATA’ segment in cludes ordinary external and static impure data items. If
the ROM control is not specified, it also includes strings.

There are no group definitions in the object code produced by the LARGE model
CC86.

5.2.2 Calling Sequence

The LARGE model calling sequence is similar in spirit to the SMALL model
sequence. Arguments are passed in exactly the same way, except that pointers are
two-word objects. The base part of the pointer is pushed first, followed by the offset
part. This makes the pointer object on the stack compatible with the standard 8086
pointer.

As a consequence of the fact that the return address pushed by the FAR CALL
instruction is now a double word, the first argument is at offset 10 from the BP
(rather than at offset 8 as in the SMALL model).

Functions return pointer objects in the DX:AX register pair. This is different from
PL/M-86, which returns pointer objects in the ES:BX register pair.

The following example copies a character string from the location pointed to by pl
to that pointed to by p2, changing all upper case letters to the ‘" character.

f(pl, p2)
char *pl, *p2;
{

int c;

while ((c=*pl++) 1= 0) {
if (c> =A’ && c < =*2")

c ="
*p2++ =g
}
*p2 = 0;

Runtime Issues

Runtime Issues

5-6

p2

10:

11:

12:

proc

push
push
push
mov

sub

equ
equ
equ

les
inc
mov
cbw
mov
or
j€

cmp
jl
cmp
jg
mov

les
inc
mov
movb
jmp

les
mov

pop
pop
pop
ret

endp

sp,2

dword ptr [bp+10]
dword ptr [bp+14]
word ptr [bp-2]

si,pl
word ptr pl
al,es:[si]

c,ax
ax,ax
12

C,'A’
11
'z’
11
c,’r

si,p2

word ptr p2
ax,c
es:[si],al

10

si,p2
es:byte ptr {si], 0

bp
di
si

5.2.3 Runtime Startoff

C-86 Compiler User’s Guide

The runtime startoff routine works exactly the same way in the LARGE model as it
does in the SMALL model. Only the SS and the SP registers are set up (the DS and
ES registers are set up to access internal data while the LQMAIN routine is running).

5.2.4 Heap Allocation

The standard allocation routines malloc and free are simply interfaces to the library
functions DQSALLOCATE and DQSFREE. LARGE model programs may be bound

in any fashion in which these Intel supplied routines function correctly.

C-86 Compiler User’s Guide

Runtime Issues

5.2.5 Interfacing with Intel Supplied Routines

The LARGE model interface to Intel supplied routines is similar to that used in the
SMALL model. Because of differences between the C and PL/M-86 calling sequences,
the linkage must be written in ASM86.

Here is an example. Assume a LARGE model interface is required for the same
USEFUL PL/M-86 routine used as an example in the SMALL model. The following
ASMS86 routine will perform the linkage:

name

extrn

useful

useful:far

useful_code segment public ‘code’

assume
public

useful_ proc
push
push
push
mov
sub

push
push
push
call

mov
mov

; At this point, the SI, DI,
; may have been altered.

mov
pop
pop
pop
ret
useful_ endp

useful_ code ends

end

cs:useful__code
useful_

far

si

di

bp

sp, bp

sp, N_autos

word ptr [bp+10]
word ptr [bp+12]
word ptr [bp+14]
useful
dx, es
ax, bx

DS and ES registers

; Note the “_”

; C save code

; Claim locals

; Push parameters
; from left

; to right, and

; call routine.

; Return pointer
;in dx:ax

; C return code

CHAPTER 6
SHORTCOMINGS AND CAVEATS

This section is an attempt to document the known shortcomings in the compiler and
its runtime system and to warn the new user of some of the more common difficulties.

6.1 Binary Files

The ISIS file structures maintain a distinction between ASCII and binary files. In a
binary file, all characters are simply read and written as encountered. However, in
an ASCII file, all newlines must be expanded to carriage return/line feed sequence
on output, and the carriage return/line feed sequence must be converted to newline
on input. The fopen routine takes an extra format specifier in the mode field (a b) to
specify a binary stream; forgetting to specify the b will make extra ODh bytes appear
in output files and will make ODh bytes disappear on input files. This class of problems
happens most frequently when one is moving a program from COHERENT (where
there is no distinction between ASCII and binary I/0O) to ISIS.

6.2 Running out of Memory

Care should be taken when writing programs that allocate memory with the dynamic
memory allocation functions malloc and free. Typically, a program simply prints a
message and exits when it discovers that no more dynamic memory is available.
However, I/O buffers are claimed on demand. If the error message is the very first
write to a stream, there may not be enough space to claim the I/O buffer. To make
programming a little easier, the standard error stream preallocates its buffers.
However, programs that write diagnostics to the standard output or to some other
stream should be cautious.

The setbuf routine may be used to force the allocation of the buffer.

6.3 Fields

The C language requires only that fields be implemented in integers. It also allows
the implementation considerable liberty with respect to the zero or sign extension of
fields.

CC86 allows fields of char, of unsigned char, of short, of unsigned short, of int, and
of unsigned int. Fields in signed types are sign extended to integers when referenced.
Fields in unsigned types are zero extended to integers when referenced.

No attempt has been made to implement fields in long integers or unsigned long
integers.

6-1

CHAPTER 7
THE STANDARD (libc) LIBRARY

The standard libraries contain a large number of routines that perform many common
programming tasks. This section describes each of the routines in the libraries. For
each routine, it describes the calling sequence (the type of the return value and the
types of each of the arguments) and gives a quick explanation of the routine’s function.

The library routines are divided into functional groups. These groups correspond
(roughly) to the topics in Chapter 4 of this manual.

7.1 Character Classification

The include file ctype.h contains definitions for a number of character classification
macros. These macros permit the lexical class of a character to be easily determined.

The macros use a character classification table so that all class determinations are
short and efficient.

The isascii macro is defined on all integers. All other macros are defined only on the
special value EOF and legal ASCII characters (as determined by isascii).
isalnum(c); int ¢,

The isalnum macro tests if ¢ is either an alphabetic character or a numeric character
(as defined by the isalpha and isdigit macros).

isalpha(c); int c;

The isalpha macro tests if ¢ is alphabetic. In this context, alphabetic means the upper
and lower case letters and the underbar(_).

isascii(c¢); int ¢;

The isascii macro tests if the integer ¢ is in the legal ASCII range (0 to 127 decimal).
It is normally used to check the legality of a character before presenting it to one of
the other macros, which malfunction on out of range arguments.

isentrl(c); int ¢,

The isentrl macro tests if ¢ is a rubout (7FH) or a control character (less then 20H).

isdigit(c); int ¢;

The isdigit macro tests if ¢ is a digit (between 0 and 9).

islower(c); int ¢,

The islower macro tests if ¢ is a lower case letter (between a and z).

isprint(c); int c;

The isprint macro tests if ¢ is a printing character (between a blank space and ~).

ispunct(c); int ¢c;

The ispunct macro tests if ¢ is a punctuation character. A punctuation character is
defined as a character that is neither a control character nor an alphanumeric
character.

7-1

The Standard (libc) Library C-86 Compiler User’s Guide

isspace(c); int ¢,

The isspace macro tests if ¢ is a whitespace character (space, tab, carriage return,
newline, line feed or form feed).

-

isupper(c); int ¢,

The isupper macro tests if ¢ is an upper case letter (A through Z).

7.2 String Manipulation

The string manipulation routines work on 0 byte terminated strings stored in arrays
of characters. They all assume that their arguments are well formed. If any of the
routines are called with ill-formed strings (strings without the 0-byte termination),
they may test, compare or move all of memory!

char *strcat(s1, s2); char *s1, *s2,

The strcat routine concatenates a copy of the string pointed to by s2 to the end of
the string pointed to by s7. The destination string is assumed to have enough memory
allocated past its end to hold the extra characters. The s7 argument (a pointer to the
result) is returned.

char *strncat(s7, s2, n); char *s1, *s2, n;

The strncat routine is just like strcat, except that it will never copy more than n
characters from the second string.

int stremp(s7, s2); char *s1, *s2,

The stremp routine performs lexicographic string comparison. It takes pointers to two
strings as arguments and returns an integer that is less than zero if the first string is
less than the second string, equal to zero if the first string is the same as the second
string or greater than zero if the first string is greater than the second string.

int strncmp(s7, s2, n); char *s1, *s2, int n,

The strncmp routine is just like stremp, except that it does not compare more than n
characters.

int strlen(s7); char *sf7,

The strlen routine returns the number of characters in the string pointed to by s7.

char *strepy(s7, s2); char *s1, *s2,

The strcpy routine copies the string pointed to by s2 into the string pointed to by s7.
The s7 argument (a pointer to the result string) is returned.

char *strncpy(s7, s2, n); char *s1, *s2, int n,

The strnepy routine is just like strepy, except that no more than n characters are
copied.

char *index(s1, ¢); char *s7; int c;

The index routine returns a pointer to the first occurrence of the character ¢ in the
string s7. A NULL pointer is returned if the character is not present in the string.
char *rindex(s1, ¢); char *s7; int ¢,

The rindex routine returns a pointer to the last occurrence of the character ¢ in the
string s1. A NULL pointer is returned if the character is not present in the string.

C-86 Compiler User’s Guide The Standard (libc) Library

7.3 Creating, Deleting and Manipulating FILE Objects

FILE *fopen(name, mode); char * name, * mode;
FILE *freopen(name, mode, fp); char *name, * mode; FILE *fp;

The fopen routine creates a new FILE object and attaches the device and/or file
specified by the name argument to it.

The name argument is a string. Any device and/or file name, as defined by the
operating system, is acceptable.

The mode string must be one of one of r (for reading), w (for writing), r+w (for
updating) or a (for appending). If the file does not exist and the mode is w or a, it
will be created. If the mode is w and the file does exist, it will be truncated to zero
length (the old contents are destroyed).

The mode string may also contain the character b to specify that the new FILE should
be set up for binary I/O. A binary FILE is the same as a default (ASCII) file, except
that the special processing of the newline character (0AH) is disabled.

A pointer to the new FILE object is returned. A NULL pointer is returned on any
kind of error.

The freopen routine is like fopen routine, except that it takes a third argument fp.
This FILE object will be closed, and the named file will be attached to it. This routine
is normally used to associate one of the standard streams (stdin, stdout or stderr)
with a specific file.

int fclose(fp); FILE *fp;

The fclose routine destroys the FILE object pointed to by fp, after finishing up any
I/O operations associated with the FILE, releasing any I/O buffers and detaching
the connection. It returns O if all went well, or —1 on any type of error.

int fflush(7p); FILE *fp;

The fflush routine writes out any data that has been buffered in a FILE object. It
returns O if all went well, and — 1 on any kind of error. The fflush performs no opera-
tion on an input stream; it always returns a successful status.

void setbuf(fp, b); FILE *fp; char [BUFSIZ];

The setbuf routine causes the buffer b to be associated with the specified FILE. It
must be called before buffers are dynamically allocated to the FILE (that is, before
the first read or write operation is performed).

This routine is most often used to prevent 1/0 buffers from being allocated in the
dynamic storage pool in programs that require very precise control of their memory
usage.

feof(fp); FILE *fp;

The feof macro tests the _FEOF flag in the FILE fp. This flag is set when an input
FILE hits end of file.

ferror(fp); FILE *fp;

The ferror macro tests the _FERR flag in the FILE fp. This flag is set on any kind
of I/O error.

clearerr(fp); FILE *fp;

The clearerr macro clears the _FERR flag in the FILE fp. It is used by programs
that recover from 1/O errors.

The Standard (libc) Library

7-4

fileno(fp); FILE *fp;

The fileno macro extracts the operating system’s connection number from the FILE
fo. It might be used, for example, to obtain the connection number so that it could
be passed to dqSspecial or dgSget$connection$status.

7.4 Byte by Byte 1/0

int fgete(fp); FILE *fp;

The fgetc routine reads and returns the next byte from the input FILE fp. The special
value EOF (—1) is returned on end of file or error.

int fputc(c, fp); int ¢; FILE *fp;

The fputc routine writes the byte ¢ onto the output FILE fp. The ¢ argument is
returned, if all went well. An EOF is returned on any kind of error.

The fgetc and fputc routines are the actual, low level byte-by-byte 1/0O functions.
However, they are normally not called by users. User programs call these routines
through four standard macros.

getchar()
The getchar() macro is identical to fgetc(stdin).

getc(fp)
The gete(fp) macro is identical to fgetc(fp).

putchar(c)

The putchar(c) macro is identical to fpute(c, stdout).

putc(c, fp)
The pute(c, fp) macro is identical to fputc(c, fp).

int ungetc(c, fp); int c; FILE *fp;

The ungetc routine pushes the character ¢ back into the input FILE fp. Only one
character may be pushed back. This routine is useful in situations (such as the reading
of numbers) where an extra character must be read in order to determine that the
end of the input has been reached.

7.5 Word by Word 1/0

int getw(fp); FILE *fp;

The getw routine reads and returns the next (16-bit) word from the input FILE fp.
It returns EOF on end of file. However, since EOF is a legal word value, the feof or
ferror macros must be used to determine the success or failure of a getw.

int putw(/, fp); int i, FILE *fp;

The putw routine writes the (16-bit) word J to the output FILE fp. It returns i if the
write was successful, and EOF on any kind of error. Since EOF is a legal word, the
ferror macro must be used to check the success of a putw.

C-86 Compiler User’s Guide

C-86 Compiler User’s Guide The Standard (libc) Library

7.6 String1/0

char *fgets(b, n, fp); char *b; int n; FILE *fp;

The fgets routine reads characters from the input FILE fp and stores them into the
buffer b. It stops reading on end of file, when a newline character is read or after
n-1 bytes have been stored in the buffer. Newlines are stored in the buffer. A 0 byte
is stored in the buffer immediately after the last character read.

The b argument is returned unless reading was terminated by end of file, in which
case NULL is returned.

char *gets(b); char *b;

The gets routine is much like fgets, except that it always reads from the standard
input FILE. There is no n parameter to specify the length of the buffer, and delim-
iting newlines are NOT stored in the buffer.

int *fputs(b, fp); char *b; FILE *fp;

The fputs routine writes the 0 byte terminated string in the buffer b onto the output
FILE fp.

int *puts(b);

The puts routine writes the 0 byte terminated string in the buffer b, followed by a
newline, to the standard output FILE.

7.7 Block 1/0

int fread(b, s, n, fp); char *b; int s, n; FILE *fp;

The fread routine reads (up to) n objects, each of size s bytes, from the input FILE
fp into the buffer b. The number of items actually read is returned.

The feof and ferror macros must be used to check for end of file or error conditions.

int fwrite(b, s, n, fp); char *b; int s, n; FILE *fp;

The fwrite routine writes n items, each of size s bytes, from the buffer b onto the
output FILE fp. The number of items actually written is returned.

The ferror macro must be used to check for error conditions.

7.8 Formatted 1/0

printf(format [, list]); char *format,
fprintf(fp, format [, list]); FILE *fp; char *format,
sprintf(sp, format [, list]); char *sp, *fp;

These three routines perform formatted output conversion. The printf routine writes
characters to the standard output FILE, the fprintf routine writes characters to the
FILE fp, and the sprintf routine stores characters into the string sp.

The format argument is a character string that controls the interpretation of the

additional arguments in the comma separated list. Ordinary characters (characters
that are not part of a format specification) are simply copied to the output.

7-5

The Standard (libc) Library C-86 Compiler User’s Guide

7-6

Format specifications are introduced by a percent sign (%). After the % there may
be:

1. A minus sign (—) that specifies left adjustment of the data in the output field,
instead of the default right adjustment.

2. A string of decimal digits that specify the width of the output field. Normally, a
field is padded to its field width with space characters (blank spaces). However,
if the first character of the field width is a 0, the field will be padded with O
characters; the leading 0 does not cause the field width specification to be taken
as an octal number. If the field width is an *, the next int from the /list is used as
the field width.

A period (.) that serves only to separate the two decimal digit strings.

4. A string of decimal digits that specifies the precision of an e, f, or g conversion

item, or the maximum number of characters that will be output by an s conver-
sion item. If the maximum number 1s an *, the next int from the list is used as
the maximum width.

5. An | that specifies that the argument from the list is a long object rather than an
int object. Making the conversion character uppercase has the same effect.

6. A conversion character that specifies the exact form of the data conversion. The

legal conversion characters are:

% The character % is output; the sequence %% is used to print a single %
character.
c The next int from the list is output as a character.

d(D) The next int (long) from the /ist is output in decimal.

e The next float or double from the list is output in the format [— |d.ffffffE
[+ — Jee, where the length of the fraction string ffffff is given by the preci-
sion (default 6).

f The next float or double from the /istis output in the format [— |ddd. ffffff,
where the length of the fraction string ffffffis given by the precision (default
6).

g The next float or double from the /ist is output in the shorter of either the

e or the f conversion format.
0o(O) The next int (long) from the fist is output in octal.

r The next char * from the listis taken as a pointer to the argument list of
a function. A recursive invocation of printf, fprintf, or sprintf is created
to process this list as a printf argument list, with the pointer pointing at
the format argument. This format item is used to implement functions
that take printf style format lists as arguments.

S The next item from the /istis taken to be a (character) pointer to a string.
This string is output, subject to the maximum length specification.

u(U) The next int (long) from the list is output as an unsigned decimal integer.

x(X) The next int (long) from the list is output in hexadecimal. The characters
A through F (uppercase) are used for the digits with values 10 through
15.

Users requiring floating point output should read the remarks in section 3.1 above.
Floating point output may print several strings in addition to the usual numbers. The
string { Float } indicates that the real floating point output routine was not included
in the link, as described above. The string { s Unnormal }, where s is + or —,
indicates that the floating point object is unnormalized. The string {s NAN}
indicates that the floating point object is not a legitimate floating point number. The
string { s Infinity } indicates that the floating point object represents infinity or
—infinity. The string { s Denormal} indicates that the floating point object is
denormalized.

C-86 Compiler User’s Guide

scanf(format [, list]); char *format,
fscanf(fp, format [, list]); FILE *fp, char * format,
sscanf(sp, format [, list]); char *sp *format,

These three routines perform formatted input conversion. The scanf routine reads
characters from the standard input FILE, interprets them according to the given
format and stores the results in the argument list. fscanf reads from the FILE fp, and
sscanf reads from string sp.

The format argument is a character string that controls the interpretation of the input.
The list arguments must be pointers that indicate where the corresponding input item
will be stored. White space characters (space, tab, newline) in format are ignored.
Other characters except % match non-white space characters in the input. The %
character identifies the start of a conversion specification. Each conversion may use
one or more of the remaining arg arguments. It is essential for users to ensure type
matching between the arguments and the conversion specifications.

Each routine terminates when it encounters the end of the format string or when the
input does not match a specification. Each returns the number of successful assign-
ments.

After the % character, there may be characters indicating the width of the input field
and the conversion type. A field is delimited by white space (space, tab, newline) or
by the given field width, if any. Newlines are white space, so the input can include
more than one line. The following modifiers, in this order, may precede the conver-
sion type:

1. An optional *, indicating that the next input field should be skipped (rather than
assigned to the next variable in list).

2. An optional string of decimal digits, specifying a maximum field width.

An |, specifying that the next input item is a long object rather than an int object.
Making the conversion character uppercase has the same effect.

4. A conversion character that specifies the exact form of the data conversion. The
legal conversion characters are:

c The next input character is assigned to the next list member, which should
be char *.

d(D) The next input field is a decimal (Jong) integer; the next /ist member should
be int * (long *).

e The next input field is a floating point number; the next list member should
be float * or double *.
f Same as e.

0o(O) The next input field is an octal (long) integer; the next list member should
be int * (long *).

s The next input field is a string; the next list member should be char *.

7.9 Random Access

Associated with every FILE is a long integer containing the seek pointer. This pointer
is an origin 0 offset, in bytes, from the start of the file. It specifies the next byte that
will be read or written and is advanced as I/O is actually performed. This seek pointer
may be manipulated by programs to perform random access file operations.

The Standard (libc) Library

7-7

The Standard (libc) Library C-86 Compiler User’s Guide

int fseek(fp, offset, how); FILE *fp; long offset; int how ;

The fseek routine adjusts the seek pointer associated with the FILE fp. If how is 0,
the seek pointer is set to offset. If howis 1, offsetis added to the seek pointer (permit-
ting relative seeking). If how is 2, the seek pointer is set to the sum of offset and the
size of the file (in bytes). This permits seeking relative to the end of file.

long ftell(fp); FILE *fp;
The ftell routine returns the seek pointer associated with the FILE fp.

FILE *rewind(fp); FILE *fp;

The rewind(fp) routine is identical to fseek(fp, OL, 0). It is provided only for
programming convenience.

7.10 Sorting

The standard library provides two completely general sorting routines. These routines
implement only the framework of the sort. The user program must provide a routine
to perform key comparison.

void shellsort(b, n, s, p); char *b; int n, s; int (*p)();

The shellsort is a general purpose sorting function that uses Shell’s sorting algorithm.
The argument b is a pointer to the base of the data block to be sorted. The block
contains n items, each of size s bytes. The p argument is a pointer to a function that
takes two arguments (both pointers to the objects being compared) and returns an
integer that is less than zero if the first object is less than the second, equal to zero if
the objects are identical, and greater than zero if the first object is greater than the
second object.

void gsort(b, n, s, p); char *b; int n, s; int (*p)();

The gsort routine is just like the shellsort routine, except that it uses C. A. R. Hoare’s
quicksort algorithm.

7.11 Dynamic Memory Allocation

The standard library provides a general purpose dynamic memory allocation system.
This system is used both by user programs and by the /0 routines contained within
the standard library to dynamically allocate and release blocks of memory.

char *calloc(n, s); unsigned int n, s;

The calloc routine allocates (via an internal call to malloc) enough memory to contain
n objects each of size s bytes. It clears this memory to binary zeros and returns a
pointer to it. It returns NULL if the memory cannot be allocated.

void free(p); char *p;

The free routine takes a pointer p to a block of memory, which has been allocated by
malloc or calloc, and returns the block to the free memory pool. Passing random
pointers, or pointers to blocks of memory not allocated by malloc or calloc to free,
brings speedy disaster.

char *malloc(n); unsigned int n;

The malloc routine allocates and returns a pointer to a block of memory at least n
bytes in length. The memory is not cleared. It returns NULL if the memory cannot
be allocated.

7-8

C-86 Compiler User’s Guide The Standard (libc) Library

7.12 Odds and Ends

The standard library contains routines to convert numbers (stored in character strings)
from ASCII to binary, to generate random numbers and to perform nonlocal flow
control.

int abs(/); int i

The abs routine computes the absolute value of its argument i. No overflow checking
is performed; the absolute value of the largest negative number is itself.

double atof(s); char *s;
int atoi(s); char *s;
long atol(s); char *s;

The atof, atoi and atol routines convert a number stored as an ASCII character string
to a double, an int, or a long respectively. Leading whitespace is ignored. Leading
signs (‘+’ and ‘—’) are accepted and correctly interpreted. The first unrecognized
character (usually the O byte at the end of the string) stops the conversion. No overflow
checking is performed.

int rand();
void srand(seed); int seed,

The rand routine is a random number generator. Every time it is called, it returns a
new random number in the range 0 to 2°15-1. The generator has a period of 2732.
The srand routine can be called to seed (reset) the random number generator. Often
a timing device (Intel 8253, for example) can be used as a source of random seeds.

int setjmp(env); jmp_buf env,
void longjmp(env, value); jmp_buf env; int value;

The setjmp and longjmp routines manipulate machine environments and provide a
simple scheme for performing nonlocal transfers of control. An environment (env) is
an array of some sort. The include file setjmp.h contains a typedef (jmp_buf) for this
object.

The setjmp routine saves the state of the runtime stack (SP, BP, and IP, plus the CS
in the LARGE model) in the supplied environment and returns 0.

The longjmp routine restores the state of the runtime stack from the env, and then
makes the call to setjmp that set up the environment return again. However, this
time, the setjmp routine returns value.

The caller of setjmp must not have returned when longjmp is called, or the runtime
stack will be destroyed.

7-9

CHAPTER 8
THE SYSTEM INTERFACE (DQS$) LIBRARY

Both C libraries contain a complete set of system interface (DQS$) routines. These
routines have the same names as their PL/M-86 counterparts described in the Series
111 System Programmer’s Reference Manual. In almost all cases, the calling sequences
are identical.

The interface routines perform some minor transformations upon their parameters to
make it easier to call the system from C programs. In particular, they transform the
0-byte terminated strings of C into the leading count strings of PL/M-86 by moving
the data into a buffer on the stack.

The header file udi.h contains definitions and macros useful for dealing with the
system interface. Included in this file are symbolic names for the system error codes,
some structures for dealing with the time, date, and status of a connection, and
definitions for the types (such as token and Boolean) used by the interface routines.

The following subsections contain brief descriptions of each routine. Experienced
Series III programmers will find this information sufficient. Less experienced
programmers are well advised to refer to the Intel publications for more elaborate
descriptions.

8.1 Segment Management

token dq$allocate(size, excep$p);
unsigned int size; int *excep$p;

This function allocates a new segment at least size bytes in length (with 0 meaning
64K) and returns a token representing the base of the new segment. If the operation
fails, a token of OXxFFFF is returned. This routine is probably of very little use to
programs running in the SMALL segmentation model, since the new segment may
not be addressable. However, this routine is used (almost directly) as a dynamic
memory allocator by LARGE model programs.

void dq$free(segment, excep$p);

token segment, int *excep$p;

This routine returns the segment (previously obtained via a call to dq$allocate) whose
base is segment to the system’s free memory pool.

unsigned dqgetsize(segment, excep$p);

token segment, int * excep$p;

This function obtains the size in bytes (with O representing 64K) of the segment

whose base is segment.

Programs using the SMALL segmentation model can use this function to obtain the
size of their expanding DATA segment. This is, in fact, how the standard memory
allocation routines (malloc and free) determine the size of the free storage pool.

8.2 Exception Handling

int (*dqStrapSexception(handler$p, excep$p))();
int (*handler$p)(); int *excep$p;

The System Interface (DQS$) Library C-86 Compiler User’s Guide

This function makes the function pointed to by handler$p the current exception
handler. The exception handling function is called, with a single integer argument
(the exception code), when an exception occurs. A pointer to the old exception handling
function, or NULL if no handler has yet been established, is returned.

This function has the same calling sequence in both segmentation models. The actual
exception handler is, in both cases, a FAR procedure concealed in the interface routine.
This hidden routine makes an indirect call to the user’s handler (using either a NEAR
or FAR call, as is appropriate). The hidden routine saves all of the 8086 registers. It
does not, however, save or restore the status of the numeric coprocessor (8087).

int (*dgq$getSexception$handler(excep$p))();
int *excep$p;

This function returns a pointer to the current execption handling function, or NULL
if no handler has yet been established. It is not a system interface function. It simply
returns the pointer to the exception handler that has been saved by dq$trap$exception.

The excep$p argument is present only for calling sequence compatibility; it is
completely ignored.

void dg$decodeSexception(code, buf, excep$p);

int code; char buf{81]; int *excep$p;

This routine obtains, from the system, an error message describing the error code
passed in code and stores the message, as a PL/M-86 string, in the buffer buf.

int (*dq$trapScc(handler$p, excep$p))();

int (*handler$p)(); int *excep$p;

This function makes the function pointed to by handler$p the current control C trap
handling function. It returns a pointer to the old handler, or NULL if no handler has
yet been established. The handler function is called with no arguments.

As with dqS$trapS$Sexception, this routine is the same in both segmentation models; it
handles all of the register saving and long pointer fabrication.

8.3 Exit
void dqSexit(code);
int code;

This routine terminates the current program. All connections are detached and all
resources are released. The code is a completion status, which is thrown away by the
system.

8.4 Get Time and Date
void dqSgetS$time(gt$p, excep$p);
struct gt *gt$p; int *excepdp;

This routine asks the system for the current time and date. This information is
returned, as PL/M-86 format strings, in the supplied gt structure (which is defined
in udi.h).

8-2

C-86 Compiler User’s Guide The System Interface (DQ$) Library

8.5 Get System Identification

void dqgetsystemSid(id, excep$p);
char id[21]; int *excep$p;

This routine obtains the system identification and stores it, as a standard C string, in
the supplied id buffer.

8.6 Delete a File

void dq$delete(path$p, excep$p);
char *path$p; int *excep$p;

This routine deletes the file whose pathname is the string path$p. This C string is
transformed into a PL/M-86 string by the interface routine via a buffer on the stack.

8.7 Rename a File

void dq$rename(o/d$p, new$p, excep$p);
char *old$p; char *new$p; int *excep$p;

This routine renames the file whose pathname is in the C string old$p to the new
name in the C string new$p.

8.8 Connection Management

connection dqS$attach(path$p, excep$p);
char *path$p; int *excep$p,

This function establishes a connection to an existing file. An error will be returned if
the file does not exist. The path$p argument is a C string containing the pathname
of the file.

connection dgScreate(path$p, excep$p);
char *path$p; int *excep$p;

This function establishes a connection to a new file. If the named file exists, it is
deleted and recreated (truncating it to O length). The path$p argument is a C string
containing the pathname of the new file.

void dqSopen(conn, mode, num$buf, excep$p);
connection conm, int mode, num$buf, int * excep$p;

This routine takes a connection object and prepares it for I/O operations. This involves
checking access rights, allocating buffers, and, in general, preparing for actual read
and/or write commands.

The conn argument is a connection object returned by a call to dq$attach or dq$create.

The mode argument specifies the desired access mode. Legal modes are 1
(DQ$SMREAD) for read access only, 2 (DQSMWRITE) for write access only, and 3
(DQSMUPDATE) for read and write access. The symbolic definitions of the access
modes are in the udi.h header file.

The num$buf argument specifies the number of buffers. The console is usually run
unbuffered (num$buf = 0). Double buffering (num$buf = 2) is appropriate for
sequentially processed connections. Single buffering (num$buf = 1) may be more
appropriate for connections used in a random fashion.

8-3

The System Interface (DQ$) Library C-86 Compiler User’s Guide

void dgS$clese(conn, excep$p);
connection conn; int *excep$p;

This routine undoes the actions of a dq$Sopen. All buffers are flushed and released.
void dg$detach(conn, excep$p);
connection conn; int *excep$p;

This routine undoes the actions of a dg$Sattach or dq$create. If the connection is open,
it is automatically closed before it is detached.

8.9 Read from a File
unsigned dq$read(conn, buf$p, count, excep$p);
connection conn; char *buf$p; unsigned count, int *excep$p;

This function obtains up to count bytes from the connection conn and stores them
into successive bytes starting at buf$p. The number of bytes actually read is returned.
On end of file, a count of 0 is returned.

The number of bytes read is never larger than count, although on line edited connec-
tions it may be less than count.

8.10 Write to a File
void dqS$write(conn, buf$p, count, excep$p);
connection conn, char *bufép; unsigned count, int *excep$p;

This routine writes count bytes beginning at buf$p to the connection specified by
conn. Files are automatically extended if the write goes beyond end of file.

8.11 Seek a Connection

void dgS$seek(conn, mode, offset, excep$p);
connection conn; int mode; long offset; int *excep$p;

This system interface routine moves the seek pointer in the connection specified by
conn to the position specified by the mode and offset. The mode may be 1 (DQ$BACK)
to seek backwards by offset bytes, 2 (DQSSET) to set the seek pointer to offset, 3
(DQSFORWARD) to seek forwards by offset bytes, or 4 (DQSENDBACK) to seek
backwards by offset bytes from the end of file.

Note that the offset is a long integer. This is different from the PL/M-86 interface,
where the high and low halves of the offset are passed as separate arguments.

8.12 Truncate a File

void dq$truncate(conn, excep$p);
connection conn; int *excep$p;

This routine truncates the file open on the connection conn at the current seek position.
The connection must be open for write or update.

8-4

C-86 Compiler User’s Guide The System Interface (DQ$) Library

8.13 Get Connection Status

void dq$getSconnection$status(conn, gs$p, excep$p);
connection conn, struct gs *gs$p; int *excep$p;

This routine fills in the supplied gs structure with status information obtained from
the connection conn.

The gs structure definition is in the udi.h header file and looks like this:

struct gs {
char gs_open; /* Open flag */
char gs_access; /* Access modes */
char gs_seek; /* Seek modes */
long gs_offset; /* Seek pointer */
}

If the connection is open, the gs_open field is set true (not zero); if the connection is
not open, the field is set false (zero).

The gs_access field indicates the access mode of the connection. The gs_seek field
indicates the seek operations that are legal on the connection. The udi.h header file
contains the symbolic names of the bits in these bytes.

The gs_offset field is set to the current seek position. If the connection is not open or
cannot perform a backward seek, it is set to garbage.

8.14 Change Extension

void dg$changeSextension(path$p, new, excep$p);
char *path$p; char new[3]; int *excep$p,

This routine changes the extension of the filename in the string path$p to that speci-
fied by the new argument. If new[0] is a blank, the extension is stripped from the
path$p.

8.15 Load an Overlay

void dqSoverlay(/ink$p, excep$p);
char *link$p;
int *excep$p;

This routine loads the overlay whose link name is contained in the C string link$p
from the current load file.

8.16 Perform Special |/0 Function

void dqSspecial(type, parm$p, excep$p);
int type; connection *parm$p; int *excep$p;

This routine permits the setting and/or resetting of the line edit mode on the console.
The type argument is either 1, which makes console input transparent, or 2, which
makes it line edited. The dgS$special routine does not check that the type argument is
one of these values. Any additional codes accepted by the operating system are
acceptable to this routine.

8-5

The System Interface (DQS) Library C-86 Compiler User’s Guide

The parm$p argument is a pointer to a connection that represents a dq$attach of the
:CI: device.

8.17 Command Tail Parsing

int dg$getSargument(buf, excep$p);
char buf[81]; int *excep$p;

This routine gets the next argument from the command tail and stores it into the
supplied buffer as a PL/M-86 format string. It returns the character that terminated
the argument.

This routine is not normally used by C programs. Instead, the command tail has been
preparsed by the runtime startoff and passed as arguments to the main routine.

unsigned dq$switch$buffer(buf$p, excep$p);
char *buf$p; int *excep$p;

This routine switches the input buffer used by dqgetargument to a user specified
area in memory. It is useful for parsing imbedded ‘$’ control lines and other related

tasks.

The first time that this routine is called, it returns 0. On subsequent calls, it returns
the offset, in bytes, from the start of the buffer of the first character past the last
delimiter returned by dq$getSargument.

APPENDIX A
KEYWORDS

CC86 uses the following identifiers as keywords. They may not be used for any other

purpose.

auto
break
case
char
continue
default
do
double
else
entry
enum

extern
float

for

goto

if

int

long
readonly
register
return

short
sizeof
static
struct
switch
typedef
union
unsigned
void
while

APPENDIX B
ERROR MESSAGES

The following error messages may be printed by CC86. ‘%s’ will be replaced by a
string and ‘%d’ by a decimal number.

arg. list syntax

array bound must be a constant
array bound must be positive

array row has 0 length

bad argument storage class

bad base type for field

bad external storage class

bad field width

bad filler field width

call of non function

cannot add two pointers

cannot assign unlike structures
cannot declare flexible automatic array
cannot initialize fields

cannot initialize unions

cannot specify class in cast

‘case’ not in ‘switch’

class not allowed in structure body
compound statement required
constant expression required
declarator syntax

‘default’ not in ‘switch’

end of file in comment

enumeration constant *%s’ is changing value
enumeration list syntax error
expression syntax

external syntax

extra ‘long’ or ‘short’

field too wide

function cannot be an argument
‘goto’ statement syntax

identifier ‘*%¥s’ is not a label
identifier ‘%s is not a tag
identifier ‘s is undefined
identifier ‘Xs not a formal
identifier ‘%s not an enumeration tag
identifier ‘*¥s’ not legal in expression
identifier *%Xs’ redeclared
identifier ‘s reinitialized
identifier ‘%s’ semantically forbidden
illegal character (2d)

illegal character constant

illegal label ‘¥%s’

illegal operation on ‘void’ type
illegal pointer subtraction

illegal use of ‘void’

illegal use of ‘void’ in cast
illegal use of floating point
illegal use of pointer

illegal use of structure
indirection through non pointer
initializer too complex

left context required

left side of ‘3’ not usable

’
’
’
,

’

Error Messages C-86 Compiler User’s Guide

member ‘%15’ is changing offset
member ‘%s’ is changing width
member ‘%¥s’ is5s undefined
mismatched conditional
misplaced *:’ operator

misplaced ‘long’

misplaced ‘short’

misplaced ‘unsigned’

missing %s

missing member

missing right brace

missing semicolon

multiple ‘default’ labels

multiple classes

multiple types

no ‘break’ context

no ‘continue’ context

non scalar field

nonterminated string or character constant
number too long

registers lack an address

returnCe) illegal in ‘void’ function
size of ¥%¥s ‘%s’ is not known
structure or union in truth context
tag mismatch

too many case labels

too many initializers

too many structure initializers

type clash

type required in cast

undefined label ‘%s’

unexpected end of enumeration list
unexpected end of file

The following warning messages may be printed by CC86. ‘%s’ will be replaced by a
string.

divide by zero

empty switch

missing ‘=1

nested comments

possible missing initializer
sizeof(function) set to 1

sizeof(void) set to 0

switch of non integer

symbol ‘%s’ truncated to 39 characters
zero modulus

The following strict warning messages may be printed by CC86. ‘%s’ will be replaced
by a string.

%s ‘%4s’%s 1is unused

constant *%s’ is long

construction not in Kernighan and Ritchie
identifier ‘%5’ not bound to register
questionable structure access

risky type in truth context

structure ‘%5’ does not contain member ‘%5’
union ‘%s’ does not contain member ‘%s’

B-2

APPENDIX C
ASCIl CODES

ASCI HEX PL/M-286 ASCII HEX PL/M-286
CHARACTER CHARACTER? CHARACTER CHARACTER?
NUL 00 no © 40 yes
SOH 01 no A 41 yes
STX 02 no B 42 yes
ETX 03 no C 43 yes
EOT 04 no D 44 yes
ENQ 05 no E 45 yes
ACK 06 no F 46 yes
BEL 07 no G 47 yes
BS 08 no H 48 yes
HT 09 no | 49 yes
LF 0A no J 4A yes
VT 0B no K 4B yes
FF oC no L 4C yes
CR 0D no M 4D yes
SO OE no N 4E yes
Si OF no o} 4F yes
DLE 10 no P 50 yes
DCI 11 no Q 51 yes
DC2 12 no R 52 yes
DC3 13 no S 53 yes
DC4 14 no T 54 yes
NAK 15 no U 55 yes
SYN 16 no \" 56 yes
ETB 17 no W 57 yes
CAN 18 no X 58 yes
EM 19 no Y 59 yes
SuB 1A no 4 5A yes
ESC 1B no [58 no
FS 1C no \ 5C no
GS 1D no] 5D no
RS 1E no A(1) 5E no
us 1F no _— S5F yes
space 20 yes * 60 no
! 21 no a 61 yes
¢ 22 no b 62 yes
23 no c 63 yes
$ 24 yes d 64 yes
%o 25 no e 65 yes
& 26 no f 66 yes
’ 27 yes g 67 yes
(28 yes h 68 yes
) 29 yes i 69 yes
* 2A yes i 6A yes
+ 2B yes k 6B yes
, 2C yes | 6C yes
— 2D yes m 6D yes
. 2E yes n 6E yes
/ 2F yes o) 6F yes
0 30 yes p 70 yes
1 31 yes q 71 yes
2 32 yes r 72 yes
3 33 yes s 73 yes
4 34 yes t 74 yes
5 35 yes u 75 yes
6 36 yes v 76 yes
7 37 yes w 77 yes
8 38 yes X 78 yes
9 39 yes y 79 yes
: 3A yes z 7A yes
; 3B yes { 7B no
< 3C yes I 7C no
= 3D yes } 7D no
> 3E yes ~ 7E no
? 3F no DEL 7F no

INDEX

8087.LIB, 3-2

ASCII character set, C-1

ASCII file, 6-1

ASMS86, 2-1, 2-2, 5-1, 5-4, 5-7
assembly language source files, 1-1
assembly option, 2-1, 2-2

binary file, 6-1
block 1/0, 4-5, 7-5
byte 1/0, 4-3, 7-4

calling sequence, 5-1 thru 5-3, 5-5, 5-6
CC86, 2-1 thru 2-3

change extension, 8-5

character classification, 7-1, 7-2
closing a FILE, 4-3, 7-3, 7-4
CODE segment, 5-1, 5-5
command line processing, 5-3
command tail parsing, 8-6
COMPACT model, 1-1
connection management, 8-3
connection status, 8-5

CONST segment, 5-1
conversion routines, 4-9, 7-9
creating a FILE, 1-1, 7-3

DATA segment, 5-1 thru 5-3, 5-5

data types, 1-1

debug option, 2-1, 2-2

define option, 2-1, 2-3

delete file, 8-3

derived data types, 1-1

directives, 1-1

dollar sign, 1-1

DQS$ library, 1-1, 8-1 thru 8-6

dynamic memory allocation, 4-9, 6-1, 7-8

E8087.LIB, 3-2

error messages, B-1 thru B-2
exception handling, 8-1, 8-2
exit, 8-2

fields, 6-1

FILE type, 4-2

floating point, 3-2, 7-5 thru 7-7
floating point output, 3-2, 7-5 thru 7-7
format specification, 4-6, 7-5 thru 7-8
formatted I/0, 4-6, 7-5 thru 7-7

hardware floating point, 3-2
header files, 4-1
heap allocation, 5-3, 5-4, 5-6

identifier, 1-1

include option, 2-1 thru 2-3
input/output, 4-2, 4-3 thru 4-8, 8-5, 8-6
Intel supplied routines, 5-4, 5-5
iRMX86 system, 1-1

ISIS, 1-1, 6-1

keep option, 2-1, 2-2
keywords, A-1

LARGE model, 1-1, 3-1, 5-1 thru 5-7
large option, 2-1, 2-2

LARGE.LIB, 3-1

LCLIB.LIB, 3-1, 3-2
LDTEFG.OBJ, 3-2

link, 1-1, 3-1, 3-2

LINKSS6, 1-1, 3-1, 3-2

load overlay, 8-5

LOCS86, 1-1

LQMAIN.OBJ, 3-1, 3-2, 4-1

MEDIUM model, 1-1
memory allocation, 4-9, 6-1
MEMORY segment, 3-1, 5-1

opening a FILE, 4-3, 7-3

perform I/0 function, 8-5
PL/M-86, 1-2, 5-1, 5-4 thru 5-7
preprocessor, 1-1

printf, 4-6, 7-5 thru 7-7

random access, 4-6 thru 4-8, 7-7, 7-8
read from file, 8-4

relocatable object files, 1-1

rename file, 8-3

ROM control, 2-2, 5-1, 5-5
RSX-11M, 1-1, 2-1, 2-2

RUN, 2-2

runtime issues, 5-1

runtime library, 1-1, 3-1, 4-1 thru 4-9
runtime startoff routines, 3-1

scanf, 4-6, 7-7

SCLIB.LIB, 3-1

SDTEFG.OBJ, 3-2

seek connection, 8-4

segment management, 8-1
Segmentation model, 1-1, 3-1, 5-1, 5-5
Series III development system, 1-1, 2-2
SMALL model, 1-1, 3-1, 5-1

Index-1

Index

SMALL.LIB, 3-1

software floating point, 3-2
sorting, 4-8, 7-8
SQMAIN.OBJ, 3-1, 4-2
stack allocation, 5-3

Stack requirements, 3-1, 4-8
STACK segment, 3-1, 4-8, 5-1
standard library, 4-1

storage classes, 1-1

strict warning messages, B-2
string, 4-1, 4-2, 4-5, 7-2
string I/0, 4-5, 7-5

system identification, 7-5
system interface, 4-9, 8-1

Index-2

time and date, 8-2
truncate file, 8-4

UDI library, 1-1
undefine option, 2-2, 2-3

C-86 Compiler User’s Manual

universal Development Interface (UDI) library, 1-1

verbose option, 2-1, 2-3

warning messages, B-2
word 1/0, 4-4, 7-4
WORK device, 2-2, 2-3
workfiles control, 2-2, 2-3
write to file, 8-4

- ® C-86 Compiler User’'s Guide
an 122085-001

REQUEST FOR READER’S COMMENTS

Intel’s Technical Publications Departments attempt to provide publications that meet the needs of all Intel product
users. This form lets you participate directly in the publication process. Your comments will help us correct and
improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this publi-
cation. If you have any comments on the product that this publication describes, please contact your Intel repre-
sentative. If you wish to order publications, contact the Intel Literature Department (see page ii of this manual).

1. Please describe any errors you found in this publication (include page number).

2. Does the publication cover the information you expected or required? Please make suggestions for improve-
ment.

3. s this the right type of publication for your needs? Is it at the right level? What other types of publications are
needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating).

NAME R DATE

TITLE o

COMPANY NAME/DEPARTMENT ___

ADDRESS oo — o

eIy ... STATE ZIP CODE
(COUNTRY)

Please check here if you require a written reply. (]

WE’D LIKE YOUR COMMENTS ...

This document is one of a series describing Intel products. Your comments on the back of this form will
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All

comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL

FIRSTCLASS PERMITNO.1040 SANTA CLARA,CA

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation

Attn: Technical Publications M/S 6-2000
3065 Bowers Avenue

Santa Clara, CA 95051

NO POSTAGE
NECESSARY
IF MAILED
INU.S.A.

] l I®
INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

