
basic

compiler

user's manual

Introduction

Introduction to Compilation

Demonstration Run

Editing

Debugging with the Interpreter

Compiling

Linking

Running a Program

A Compiler/ Interpreter Comparison

Error Messages

Information in this document is subject to change without notice and does not represent a
commitment on the part of Microsoft. The software described in this document is furnished
under a license agreement or non-disclosure agreement. The software may be used or copied
only in accordance with the terms of that agreement. It is against the law to copy the software
in this package on cassette tape, disk, or any other medium for any purpose other than backing
up your software.

© Microsoft, 1981

LIMITED WARRANTY
MICROSOFT shall have no liability or responsibility to purchaser or any other person or entity
with respect to any liability, loss or damage caused or alleged to be caused directly or indirectly
by this product, including but not limited to any interruption of service, loss of business or
anticipatory profits or consequential damages resulting from the use or operation of this

product. This product will be exchanged within twelve months from date of purchase if

defective in manufacture, labeling or packaging, but except for such replacement the sale or
subsequent use of this program is without warranty or liability.

THE ABOVE IS A LIMITED WARRANTY AND THE ONLY WARRANTY MADE BY MICROSOFT.
ANY AND ALL WARRANTIES FOR MERCHANTABILITY AND/OR FITNESS FOR A PARTIC-
ULAR PURPOSE ARE EXPRESSLY EXCLUDED.

To report software bugs or errors in the documentation, please complete and return the
Problem Report at the back of this manual.

CP/M is a registered trademark of Digital Research

8102-530-02

Microsoft BASIC Compiler, Version 5.3 July, 1981

ADDENDA TO: The BASIC Compiler User's Manual

There are significant differences between version 5.3 of the
Microsoft BASIC Compiler and previous versions. Major
differences are listed below:

1. CHAINing with COMMON is supported.

2. Runtime support is now organized so that a single
large module contains most of the runtime library.

3. In conjunction with points 1. and 2., now large
systems of programs can be created that share
common data and use a single runtime environment.

4. Larger programs (16K larger on the average) can be
compiled and linked.

5. Programs take up significantly less disk space.

See Appendix D of this manual for a further discussion of
these and other changes.

SYSTEM REQUIREMENTS

The Microsoft BASIC Compiler can be used with most
microcomputers with a minimum of 48K RAM and one disk drive.
We recommend two drives, however, for easier operation. The
compiler operates under the CP/M operating system, which is
required.

CP/M is a registered trademark of Digital Research

Royalty Information

For those who want to market application programs, use of
the BASIC Compiler provides you with three major benefits:

1. Increased speed of execution for most programs,

2. Decreased program size for most programs, and

3. Source code security.

When you distribute a compiled program, you distribute
highly optimized machine code, not source code.
Consequently, you distribute your program in very compact
form and protect your source program from unauthorized
alteration.

The policy for distribution of parts of the BASCOM package
is as follows:

1. Any application program that you generate by
linking to either of the two runtime libraries
(BASLIB.REL and OBSLIB.REL) may be distributed
without payment of royalties. A copyright notice
reading "PORTIONS COPYRIGHTED BY MICROSOFT, 1981"
must be displayed on the media.

2. However, the BRUN.COM runtime module cannot be
distributed without first entering into a license
agreement with Microsoft for such distribution. A
copy of the license agreement can be readily
obtained by writing to Microsoft. Also, a
copyright notice reading "PORTIONS COPYRIGHTED BY
MICROSOFT, 1981" must be displayed on the media.

3. All other software in your BASIC Compiler package
cannot be duplicated except for purposes of backing
up your software. Other duplication of any of the
software in the BASIC Compiler package is illegal.

All of the above information is included in the
Non-Disclosure Agreement, which must be signed and returned
to Microsoft at the time the BASIC Compiler is purchased.
In order to provide you anv updates or fixes, we must have
your completed form on file. Failure to register and sign
the non-disclosure agreement voids any warranty expressed or
implied.

CONTENTS

CHAPTER 1

1.2

1.3

1.4

1.5

INTRODUCTION

How to Use this Manual

Contents of the BASIC Compiler Package

Software
Documentation

Software

BASCOM - The BASIC Compiler
L80 - The LINK-80 Linking Loader
M80 - The MACRO-80 Macro-assembler
BRUN.COM - The Runtime Module
BASLIB.REL - The Runtime Library
OBSLIB.REL - The Alternate Runtime Library

Documentation

The BASIC Compiler User's Manual
The BASIC-80 Reference Manual
The Utility Software Manual

Resources for Learning BASIC

CHAPTER 2 INTRODUCTION TO COMPILATION

2.1 Compilation vs. Interpretation
2.2 Vocabulary
2.3 The Program Development Process

CHAPTER 3 DEMONSTRATION RUN

3.1 Compiling
3.2 Linking
3.3 Running a Program

CHAPTER 4 EDITING

CHAPTER 5 DEBUGGING WITH THE BASIC INTERPRETER

CHAPTER COMPILING

6.1 Command Line Syntax
6.2 Sample Compiler Invocations
6.3 Compiler Switches

CHAPTER 7 LINKING

7.1 Sample Linker Sessions
7.2 Linking to Compiled BASIC . REL Files
7.3 Runtime Support

CHAPTER 8 RUNNING A PROGRAM

CHAPTER 9 COMPILER/INTERPRETER COMPARISON

9.1 Operational Differences
9.2 Language Differences
9.3 Other Differences

CHAPTER 10 ERROR MESSAGES AND DEBUGGING

10.1 BASIC Compiletime Error Messages
10.2 BASIC Runtime Error Messages

APPENDIX A Creating a System of Programs with
the BRUN.COM Runtime Module

APPENDIX B ROM-able Code

APPENDIX C Memory Map

APPENDIX D Differences Between Version 5.3 and
Previous Versions of the BASIC Compiler

CHAPTER 1

INTRODUCTION

The Microsoft BASIC Compiler is an optimizing compiler
designed to complement Microsoft's BASIC-80 interpreter.
Since BASIC-80 is the recognized standard for microcomputer
BASIC, the BASIC compiler can support programs written for a
wide variety of microcomputers.

In addition, the BASIC Compiler allows you to create
programs that:

1.

2.

Execute faster in most cases than the
interpreted programs,

same

Require less memory in most cases than the same
interpreted programs, and are

3. Source-code secure.

These benefits can be critical for real-time applications
such as graphics, where execution speed can often make or
break an application; business applications, where several
CHAINED programs can be supported by a main menu in a single
runtime environment; and commercial applications, where
software is being sold in a competitive marketplace and
source-code security is essential.

There is another major advantage that you gain by owning the
compiler. Because the BASIC Compiler has been created to
support most of the interpreted BASIC-80 language, the
interpreter and the compiler complement each other, and
provide you with an extrememly powerful BASIC programming
environment. In this environment, you can quickly RUN and
debug programs from within BASIC-80, and then later compile
those programs to increase their speed of execution and to
decrease their space in memory.

Although the language supported by the BASIC Compiler is not
identical to that supported by the interpreter; the
compiler has been designed so that compatibility is
maintained where ever possible. Note also, that the file
named BRUN.COM contains the majority of the runtime

INTRODUCTION Page 1-2

environment. For this reason, BRUN.COM is called the
runtime module. The runtime module is loaded when program
execution begins; later execution of CHAINed programs does
not require reloading. This allows you to develop a system
of related programs that can all be run using the same
runtime environment. The runtime environment required by
your program need not be saved on disk as part of your
executable .COM file. For a system of four programs, this
can save at least 48K of disk space—a substantial savings.

This version (5.3) of the BASIC Compiler is substantially
different from previous versions. These differences are
summarized in Appendix D.

INTRODUCTION Page 1-3

1.1 HOW TO USE THIS MANUAL

The BASIC Compiler User's Manual is designed for users who
are unfamiliar with the compiler as a programming tool.
Therefore, this manual provides both a step-by-step
introduction and a detailed technical guide to the BASIC
Compiler and its use. After a few compilations, the User's
Manual then serves as both a refresher on procedures and as
a technical reference.

This manual assumes that the user has a working knowledge of
the BASIC language. For reference information, consult the
BASIC-80 Reference Manual. If you need additional
information on BASIC programming, refer to Section 1.5 of
this manual, RESOURCES FOR LEARNING BASIC.

Organization

This manual contains the following chapters:

Chapter 1, INTRODUCTION. Provides brief descriptions of the
contents of the BASIC Compiler package, and gives a list of
references for learning BASIC programming.

Chapter 2, AN INTRODUCTION TO COMPILATION. Gives you an
introduction to the vocabulary associated with compilers, a

comparison of interpretation and compilation, and an
overview of program development with the compiler.

Chapter 3, DEMONSTRATION RUN. Takes you step by step
through the compiling, linking, and running of a
demonstration program.

Chapter 4, EDITING. Describes how to create a BASIC source
program for later compilation, and how to use the % INCLUDE
compiler directive.

Chapter 5, DEBUGGING WITH THE INTERPRETER. Describes how to
debug the BASIC source file with the BASIC-80 interpreter
before compiling it. Note that Chapter 9, A
COMPILER/INTERPRETER COMPARISON describes differences
between the language supported by the compiler and that
supported by the BASIC-80 interpreter.

Chapter 6, COMPILING. Describes use of the BASIC Compiler
in detail, including descriptions of the command line syntax
and the various compiler options.

Chapter 7, LINKING. Describes how to use LINK-80 to link
your programs to needed runtime support. (Note that the
Utility Software Manual contains further reference material
on LINK-80.)

INTRODUCTION Page 1-4

Chapter 8 f RUNNING A PROGRAM,
final executable program.

Describes how to run your

Chapter 9, A COMPILER/INTERPRETER COMPARISON. Describes all
of the language, operational, and other differences between
the language supported by the BASIC Compiler and that
supported by the BASIC-80 interpreter. It is important to
study these differences and to make the necessary editing
changes in your BASIC program before you use the compiler.

Chapter 10, ERROR MESSAGES. Describes each error message.

Appendices that show you how to create a system of programs
with the BRUN.COM runtime module, and how to generate a

ROM-able program are also provided. Two other appendices
give you a" memory map of the BRUN.COM runtime environment,
and describe the differences between this and pre-5.3
versions of the compiler.

INTRODUCTION Page 1-5

NOTATION USED IN THIS MANUAL

For the most part, any punctuation marks or other special
characters used, especially in command formats, are to be
taken literally. Consider these marks as part of the
command format.

However, some special characters used in command formats
have special meanings:

capital letters F00 Indicate that the parameter or
command must be entered exactly as shown.

angle brackets <> Indicate that enclosed text
specifies a class of parameters. Any
parameter that you enter in this position
must be a valid member of that parameter
class. Hence, <filename> means that you
must enter a legal filename.

Capital letters enclosed by angle brackets
are used to specify non-displayable ASCII
characters. For example, <CR> specifies
entry of a carriage return.

square brackets [] Indicate that the enclosed parameter
is optional. For instance,
<f ilename> [,<f ilename>] specifies entry of
either one filename or two filenames.

ellipses ... Indicate that the symbols preceding
the ellipses can be entered as many times
as needed. For example, <f ilename> . .

.

indicates entry of one or more filenames.

INTRODUCTION Page 1-6

1.2 CONTENTS OF THE BASIC COMPILER PACKAGE

The BASIC Compiler Package contains:

One disk containing the following files:

BASCOM.COM - The BASIC Compiler
BRUN.COM - The Runtime Module
BASLIB.REL -The Runtime Library
OBSLIB.REL - The Alternate Runtime Library
BCLOAD - Runtime load information file
L80.COM - The LINK-80 Linking Loader
M80.COM - The MACRO-80 Macro-assembler
CREF.COM - The Cross-reference Utility
LIB80.COM - The Library Manager
DEMO.BAS - A Demonstration program

hi Binder with three Manuals including the following:

The BASIC Compiler User's Manual (this manual)
The BASI -80 Reference Manual
The Utility Software Manual

1 . 3 SOFTWARE

A description follows of the function of the software on
your disk:

1. BASC0M.COM - (The BASIC Compiler) Compiles BASIC
source files into relocatable and linkable . REL
files.

2. BRUN.C0M - (The Runtime Module) A single module
containing most of the routines called from your
compiled .REL file. So that the entire BRUN.COM
module is not loaded into memory at linktime, a
dummy module that resolves all of the references to
routines in BRUN.C0M resides in BASLIB.REL.

3. BASLIB.REL - (The Runtime Library) A collection of
routines implementing functions of the BASIC
language not found in BRUN.C0M. Your .REL file may
contain calls to these routines.

4. OBSLIB.REL -(The Old Runtime Library) A collection
of modules containing routines that are similar to
the routines found in BASLIB.REL and BRUN.C0M,
above. This library should be used for
applications that you wish to make ROM-able, or for
those that you want to execute as single .COM files
without the BRUN.C0M runtime module. This librarv

INTRODUCTION Page 1-7

does not support CHAIN with COMMON, CLEAR, or RUN
<linenumber>. Additional differences are described
in Chapter 6, Linking.

5. BCLOAD - (Runtime load information file) Tells at
what address to load your program at linktime, and
where to find BRUN.COM at runtime.

6. L80.COM - (The Linking Loader) Links and loads
compiled .REL files, library modules, and assembly
language routines to create an executable .COM
file.

7. M80.COM - (The Macro-Assembler) Assembles assembly
language routines into .REL files that can later be
linked to your compiled .REL file.

8. CREF.COM - (The Cross-Reference Utility) Creates a
cross-referenced listing of the use of variables in
assembly language programs.

9. LIB80.COM - (The Library Manager) Allows you to
create and modify user runtime libraries.

10. DEMO . COM - (A Demonstration Program) Used in
Chapter 3 to demonstrate program development with
the BASIC Compiler.

1 . 4 DOCUMENTATION

Three manuals come with the BASIC Compiler package: the
BASIC Compiler User's Manual (this manual), the BASIC-80
Reference Manual, and the Utility Software Manual. Each
manual provides specific information necessary for the
successful creation of an executable compiled BASIC program.

THE BASIC COMPILER USER'S MANUAL

This manual is described above in Section 1.1, How To Use
This Manual. See that section for more information.

INTRODUCTION Page 1-8

BASIC-80 REFERENCE MANUAL

The BASIC-80 Reference Manual describes syntax and usage of
Microsoft's standard BASIC language. This is the language
supported by the BASIC Compiler, with the exceptions noted
in Chapter 9 of the BASIC Compiler User's Manual. Note that
the BASIC-80 interpreter itself is not supplied as part of
the BASIC Compiler package.

The BASIC Compiler supports, in some form, all of the
statements and commands described in the BASIC-80 manual,
except:

AUTO CLOAD CSAVE CONT DELETE EDIT
ERASE LIST LLIST LOAD MERGE NEW
RENUM SAVE

IMPORTANT

Language, operational, and other differences
between the BASIC Compiler and the BASIC-80
interpreter are described in Chapter 9, A BASIC
COMPILER/INTERPRETER COMPARISON. You should
review the information in that chapter before
compiling any of your programs that already run
without problem when interpreted by BASIC-80.
Only then make any necessary changes.

UTILITY SOFTWARE MANUAL

The Utility Software Manual provides descriptions of the
following pieces of software in your BASIC Compiler package:

1. LINK-80

2. MACRO- 80

3. LIB-80

4. CREF-80

1.5 RESOURCES FOR LEARNING BASIC

Microsoft provides complete instructions for using the BASIC
Compiler. However, no teaching material for BASIC
programming has been supplied. The BASIC-80 Reference
Manual is strictly a syntax and semantics reference for the
Microsoft BASIC-80 language.

INTRODUCTION Page 1-9

If you are new to BASIC and need help learning to program in
this language, we suggest the following texts:

1. Dwyer, Thomas A. and Margot Critchfield. BASIC
and the Personal Computer . Add i son-Wesley , 1978.

2. Simon, David E. BASIC from the Ground Up . Hayden,
1978.

3. Albrecht, Robert L. , LeRoy Finkel, and Jerry Brown.
BASIC . John Wiley & Sons, 1973.

CHAPTER 2

INTRODUCTION TO COMPILATION

2.1 COMPILATION VS. INTERPRETATION

A microprocessor can execute only its own machine
instructions? it cannot execute BASIC statements directly.
Therefore, before a program can be executed, some type of
translation must occur from the statements contained in your
BASIC program to the machine language of your
microprocessor. Compilers and interpreters are two types of
programs that perform this translation. This discussion
explains the difference between these two translation
schemes, and explains why and when you want to use the
compiler.

Interpretation

An interpreter performs translation line by line during
runtime. To execute a BASIC statement, the interpreter must
analyze the statement, check for errors, then perform the
BASIC function requested.

If a statement must be executed repeatedly (inside a

FOR/NEXT loop, for example) , this translation process must
be repeated each time the statement is executed.

In addition, BASIC programs are stored as a linked list of
numbered lines, and each line is not available as an

absolute memory address during interpretation. Therefore,
branches such as GOTOs and GOSUBs cause the interpreter to

examine every line number in a program, starting with the
first, until the line referred to is found.

Similarly, a list of all variables is maintained by the
interpreter. When a reference to a variable is made in a

BASIC statement, this list must be searched from the
beginning until the variable referred to is found. Thus,
absolute memory addresses are not associated with the
variables in your program.

INTRODUCTION TO COMPILATION Page 2-2

Compilation

A compiler, on the other hand, takes a source program and
translates it into an object file. The object file contains
relocatable machine code. All translation takes place
before runtime; no translation of your BASIC source file
occurs during the execution of your program. In addition,
absolute memory addresses are associated with variables and
with the targets of GOTOs and GOSUBs, so that lists of
variables or of line numbers do not have to be searched
during execution of your program.

Note also, that the compiler is an optimizing compiler.
Optimizations such as expression re-ordering or
sub-expression elimination are made to either increase speed
of execution or to decrease the size of your program.

These factors all combine to measurably increase the
execution speed of your program. In most cases, execution
of BASIC programs is 3 to 10 times faster than execution of
the same program under the interpreter. If maximum use of
integer variables is made, execution can be up to 30 times
E3S tcL

.

2 . 2 VOCABULARY

Before you read any farther in this manual, you need to
become familiar with some of the vocabulary that is commonly
used when discussing compilers.

To begin with, you should understand that a BASIC program is
more commonly called a BASIC "source." This source file is
the input file to the compiler and must be in ASCII format.
The compiler translates this source and creates as output, a
new file, called a relocatable "object" file. These two
files have the default extensions .BAS and .REL,
respectively.

Other terms that you should know are related to stages in
the development and execution of a compiled program. These
stages are described below:

Compiletime - That period of time during which the
compiler is executing, and during which it is
compiling a BASIC source file and creating a
relocatable object file.

Linktime - That period of time during which the
linker is executing, and during which it is
loading and linking together relocatable object
files and library files.

INTRODUCTION TO COMPILATION Page 2-3

Runtime - That period of time during which a

compiled and linked program is executing. By
convention, runtime refers to the execution time
of your program and not to the execution time of
the compiler or the linker.

You should also learn the following terms pertaining to the
linking process and to the runtime support library:

Module - A fundamental unit of code. There are several
types of modules, including relocatable and executable
modules. Relocatable modules are manipulated by the linker.
Your final executable program and BRUN.COM are executable
modules. Note that BRUN.COM is special since it is

executable only so that you can see its version number. Its
main purpose is to serve as a library of routines that can
be called at runtime from your compiled program.

Global Reference - A variable name or label in a given
module that is referred to by a routine in another module.
Global labels are entry points into modules.

Unbound Global Reference - A global reference in a module
that is not declared in that module. The linker tries to
"resolve" this situation by searching for the declaration of
that reference in other modules. These other modules are
usually library modules in the runtime library. If the
variable or label is found, the address associated with it

is substituted for the reference in the first module, and is

then said to be "bound." When a variable is not found, it is
said to be "undefined."

Relocatable - A module is relocatable if the code within it
can be "relocated" and run at different locations in memory.
Relocatable modules contain labels and variables represented
as offsets relative to the start of the module. These
labels and variables are said to be "code relative." When
the module is loaded by the linker, an address is associated
with the start of the module. The linker then computes an
absolute address that is equal to the associated address
plus the code relative offset for each label or variable.
These new computed values become the absolute addresses that
are used in the binary .COM file.

.REL files and library files are all relocatable modules.
Note that normally a relocatable module contains global
references as well: these are resolved after all local
labels and variables have been computed within other
relocatable modules. This process of computing absolute
relocated values and resolving global references is what is
meant by "linking."

INTRODUCTION TO COMPILATION Page 2-4

Routine - Executable code residing in a module. More than
one routine may reside in a module. The BRUN.COM module
contains a majority of the library routines needed to
implement the BASIC language. A library routine usually
corresponds to a feature or sub-feature of the BASIC
language.

Runtime Support - The body of routines that may be linked to
your compiled .REL file. These routines implement various
features of the BASIC language. BRUN.COM, OBSLIB. REL, and
BASLIB.REL all contain runtime support routines. See
Chapter 6, LINKING, for more information on runtime support.

The BRUN.COM Module - A module containing most of the
routines needed to implement the BASIC language. It is a
peculiarity of the BRUN.COM module that it is an executable
.COM file. BRUN.COM, for the most part, is a library of
routines: it is made executable so that you can see the
version number of the module.

Use of BRUN.COM gives you the following advantages:

1. True CHAINing is allowed.

2. COMMON can be used to communicate between CHAINed
programs, not just between subroutines.

3. Linktime is reduced, since unbound globals do not
have to be searched for in multiple library
modules.

4. The BRUN.COM module is not explicitly loaded at
link-time, allowing considerably larger programs to
be linked and loaded, since an extra 16K is not
contained in your final .COM file.

Note, however, that BRUN.COM must be accessible on disk when
you execute your final .COM file.

The BASLIB.REL Runtime Library- A collection of modules
containing routines for BASIC functions that often are not
used in a program. The transcendental functions, the PRINT
USING function, some error handling code, and other
miscellaneous functions are contained in this library.
These functions are linked to your program only if needed.

BASLIB.REL also contains a module consisting of all the
global references in the BRUN.COM module. This module
exists so that the routines in BRUN.COM can be linked to
your compiled .REL file without BRUN.COM itself being
brought into memory at linktime.

The OBSLIB. REL Runtime Library - A collection of modules
containing routines almost identical in function to similar
routines contained in BRUN.COM and BASLIB.REL. However,

INTRODUCTION TO COMPILATION Page 2-5

this library does not support the CLEAR command, the RUN
<line-number> option of the RUN command, and COMMON between
CHAINed subprograms. It does support a version of CHAIN
that is semantically equivalent to the simple RUN command.

Link Loading - The process in which the LINK-80 linking
loader loads modules into memory, computes absolute
addresses for labels and variables in relocatable modules,
and then resolves all global references by searching the
BASLIB.REL runtime library. After loading and linking, the
linker saves the modules that it has loaded into memory as a
single .COM file on your disk. This entire process is
called link loading.

Complete understanding of all the above terms is not
essential for continued reading. You may want to refer back
to these terms later, as you become familiar with the
compiler and with the linker. We now discuss the program
development process.

INTRODUCTION TO COMPILATION Page 2-6

2.3 THE PROGRAM DEVELOPMENT PROCESS

This discussion of the program development process is keyed
to figure 2.1. Use it for reference when reading this text.

Program development begins with (1.) the creation of a BASIC
source file. The best way to create a BASIC source file is
with the editing facilities of BASIC-80, although you can
use any general purpose text editor if you wish. Note that
files must be SAVEd with the ,A option from BASIC-80.

Once you have written a program, you should use BASIC-80
(2.) to debug the program by RUNning it to check for syntax
and program logic errors. There are a few differences in

the languages understood by the compiler and the
interpreter, but for the most part they are identical.
Because of this similarity, running a program provides you
with a much quicker syntactic and semantic check of your
program than does compiling, linking, and finally executing
a program. Therefore, you should strive to make the
interpreter your chief debugging tool.

After you have debugged your program with the interpreter,
(3.) compile it to check out differences that may exist
between interpreted and compiled BASIC. The compiler flags
all syntax errors as it reads your source file. If
compilation is successful, the compiler creates a
relocatable . REL file.

The .REL file is not executable, and needs to be linked to
the BASLIB.REL runtime library. You may want to include
your own assembly language routines to increase the speed of
execution of a particular algorithm, or to handle operations
that require a more intimate relationship with the
microprocessor. For these cases, use MACRO-80, the
macro-assembler, (4.) to assemble routines that you can
later link to your program. Similarly, separately compiled
Microsoft FORTRAN subroutines can be linked to your program.
(FORTRAN is a separate product available from Microsoft.
Macro-80 is discussed in the Utility Software Manual.) The
linker (5.) links all modules needed by your program, and
produces as output an executable object file with .COM as
the default extension. This file can be (6.) executed like
any .COM file by simply typing the file's base name (the
file name less its .COM extension)

.

This program development process is demonstrated in the
following chapter, Chapter 3, DEMONSTRATION RUN.

INTRODUCTION TO COMPILATION Page 2-7

BASIC-80
Interpreter

i

1. Create
and edit
BASIC
source

Other
Text Editor

BASIC Source «

BASIC-80
Interpreter

iyes
«- bugs?

v no

BASIC
Compiler

yes v
bugs?

i
no

Relocatable
object file

v

LINK-80
Linker

COM file

i

2. RUN and
debug program
with interpreter

3. Compile BASIC
Source, creating
• REL rile

4. Assemple ASM
sources if anv

BASLIB.REL

Assembler
Source

MACRO-80
Assembler

i
ASM. REL

5. Link compiled .REL file to
library, and ASM routines

BRUN.COM

6. Execute .COM file
(BRUN.COM and .COM file are
loaded into memory from disk

Figure 2.1 The Program Development Process

CHAPTER 3

DEMONSTRATION RUN

IMPORTANT

Before beginning this
demonstration run, make a
backup copy of your BASIC
Compiler disk. Next, COPY
CP/M on to your copied disk so
that it can be booted up by
itself. Store your master
disk in a safe place and work
with this backup copy.

This chapter provides step by step instructions for using
the BASIC Compiler. These steps are outlined using a
demonstration program.

We strongly recommend that you compile the demonstration
program before compiling any other programs, because this
demonstration run gives you an overview of the compilation
process. Also, you should read Chapters 4 through 9. They
contain important information that is crucial to successful
development of a program.

If you enter commands exactly as described in this chapter,
you should have a successful session with the BASIC
Compiler. If a problem does arise, check and redo each step
carefully.

DEMONSTRATION RUN Page 3-2

The five steps in developing a program with the BASIC
Compiler are:

1. Editing (entering and correcting the BASIC program)

2. Debugging with the Interpreter (using BASIC-80 to
RUN your program)

3. Compiling (creating a relocatable object file)

4. Linking (creating an executable object file)

5. Running (executing the program)

Because we have prepared a special debugged demonstration
program on disk, you do not have to perform the first two
steps in the program development process. Therefore, the
demonstration run begins with compilation. Note that we
have SAVEd the demonstration program on disk with the ,A
option, since all files must be in ASCII format to be
readable by the compiler.

3.1 COMPILING

To begin compiling a program, insert a copy of your BASCOM
disk in drive A: and boot up your system. The BASCOM disk
contains all of the files that you need to carry out this
demonstration run, including the demonstration program named
DEM0.COM. In this demonstration all files produced by the
compiler and by the linker will be placed on this disk.
Perform the following steps to compile your program:

!• Enter the BASIC Compiler command line .

Invoke the compiler by typing:

BASCOM DEMO , DEM0=DEM0

This command line begins compilation of the source
file. The source file is the last parameter on the
command line, and the .BAS default extension is
assumed.

The compiler generates relocatable object code that
is stored in the file specified by the first
parameter on the command line. This file is
created with the default . REL extension.

At the same time, a listing file is written out to
your disk. Its file name is that specified by the
second parameter on the command line (following the
comma). This file is created with the default . PRN
extension.

DEMONSTRATION RUN Page 3-3

2. Look for error messages .

When the compiler has finished, it displays the
message "00000 FATAL ERROR(S)" r and program control
is returned to CP/M.

At this point, you should see two new files listed
in the A: directory: DEMO.REL and DEMO.PRN.

3. Delete the listing file .

You may want to view or print out the listing file
(DEMO.PRN) at this juncture in the demonstration
run. In any event, you should delete the listing
file to gain additional disk space. To do this,
type:

ERA DEMO.PRN

Further information on listing files is given in Chapter 6,

COMPILING. You are now ready for the next step—Linking.

3.2 LINKING

Linking is accomplished with the LINK-80 linking loader (the
file named L80.COM). Perform the following steps to link
DEMO.REL to needed runtime support.

1. Invoke LINK-80 .

To invoke LINK-80, simply type:

L80

Your computer will search your disk for LINK-80,
load it, and then return the asterisk (*) prompt.

If you want to stop the linking process, and you
have entered only L80 and nothing more, you can
exit to CP/M by entering Control-C.

DEMONSTRATION RUN Page 3-4

2. Enter the filename (s) you want loaded and linked .

LINK-80 performs the following operations:

Loads relocatable object (.REL) modules,

Computes absolute addresses for all local
references within modules,

Resolves all unbound global references between
loaded modules, and

Saves the linked and loaded modules as an
executable (.COM) file on disk.

After the asterisk prompt, type the following line
to cause loading, linking, and saving of the
program DEM0.COM:

DEMO, DEMO/N/E

The first part of the command (DEMO) causes loading
of the program called DEMO. REL. The /N switch
causes an executable image of the linked file to be
saved on your disk with the Name DEM0.COM. This
occurs after an automatic search of the BASLIB.REL
runtime library. The file is only saved after a /E
or a /G switch is entered on the command line. You
may enter as many command lines as needed before
you enter a /E or /G switch. Note that the /E
switch, causes an Exit back to CP/M. If you
substitute /G for /E here, you cause execution of
the new .COM file after linking. In either case,
BASLIB.REL is automatically searched to satisfy any
unbound global references before linking ends.

3. Wait .

The linking process requires several minutes.
During this time, the following messages will
appear on your screen:

DATA <program-start> <program-end> <bytes>

<free-bytes> BYTES FREE
[<start-address> <program-end> <num-of-pages>]

This information is described in Chapter 7,
LINKING.

DEMONSTRATION RUN Page 3-5

4. Examine your directory

Type as follows:

DIR A:

You should see a file named DEM0.COM. This is an
executable file.

3.3 RUNNING A PROGRAM

Once you have compiled and linked your program, it is simple
to run it. From CP/M, enter the program filename, less its
.COM extension. In the case of DEM0.COM, type:

DEMO

The speed of execution of your program should be quite fast
relative to execution of the same program with the BASIC-80
interpreter. Compare speeds of execution by running the
BASIC source program with the interpreter.

LEARNING MORE ABOUT DEVELOPING A PROGRAM

You have successfully developed and run a simple BASIC
program. You are now ready to learn the more technical
details that you need to know to compile other BASIC
programs. Chapters 4-8 contain more extensive descriptions
of each of the steps you followed in this chapter. Chapter
9 describes all of the language, operational, and other
differences between the BASIC Compiler and the BASIC
interpreter

.

CHAPTER 4

EDITING A SOURCE PROGRAM

The creation of your BASIC source program requires the use
of a text editor. Most any text editor will do, but the
obvious choice is the line editor available from within
BASIC-80. If you have previous experience with BASIC-80,
then there is little need to learn how to use a new editor.

It is important to note that the compiler expects its source
file in ASCII format. If you edit a file from within
BASIC-80, it must be SAVEd with the ,A option; otherwise,
the compiler will attempt to read a tokenized encoding of
your BASIC program. For more information on editing,
saving, and loading files with BASIC-80, you should refer to
the BASIC-80 Reference Manual.

The BASIC Compiler supports a useful feature that is not
available when you run a BASIC program under the
interpreter. This is the %INCLUDE <filename> compiler
directive. It is called a compiler directive rather than a
BASIC command because it is not really a part of the BASIC
language. Rather, it is a command to the compiler, thus its
distinctive "%" prefix.

The %INCLUDE <filename> directive allows you to switch
compilation of BASIC source files in mid-stream. It
switches from the source file you specify on invoking the
compiler, to the file you specify as <filename> in the
%INCLUDE directive (the <filename> parameter does not
require surrounding quotes) . When compilation of the
external file is complete, the compiler switches back to the
original BASIC source and continues compilation.

This process is equivalent to having the text of <filename>
expanded at the location of the %INCLUDE directive in your
BASIC source. (Note that %INCLUDEs cannot be nested.) Any
file that is %INCLUDEd in your BASIC program is called an
INCLUDE file. All INCLUDE files must be SAVEd with the ,A
option if edited within BASIC-80. If you use another
editor, this is not the case.

EDITING A SOURCE PROGRAM Page 4-2

You may want to create %INCLUDE files for any COMMON
declarations existing in more than one program, or for
subroutines that you might have in an external library of
subroutines. Note that the BASIC-80 interpreter does not
support the %INCLUDE directive, thus a syntax error occurs
when %INCLUDE is encountered during interpretation.

To make INCLUDE files easily included in large numbers of
programs, you may want to edit the INCLUDE file so that it
has no line numbers. The compiler supports sequences of
lines without line numbers if the /C is used during
compilation. However, the BASIC-80 interpreter does not
allow you to create lines without line numbers, so you need
an external editor to do so. Also, line numbers must exist
for any lines that are targets for GOTOs or GOSUBs.

A word here about the differences between the languages
supported by the interpreter and the compiler. The
interpreter supports a number of editing and file
manipulation commands that are useful mainly when creating a
program. Examples are LOAD, SAVE, LIST, and EDIT. These
are operational commands not supported by the compiler.
Some differences also exist for some of the other statements
and functions. Realize that it is during editing that you
should account for language differences. See Chapter 9, A
COMPILER/INTERPRETER COMPARISON for a full description of
these differences.

Note also, that the interpreter cannot accept physical lines
greater than 254 characters in length. A physical line is
the unit of input to the interpreter. Interpreter logical
lines can contain as many physical lines as desired.

In contrast to the interpreter, the BASIC Compiler accepts
logical lines of up to only 253 characters in length. If
you are using an external editor, you can create logical
lines containing sequences of physical lines by ending your
lines with an underscore. The underscore removes the
significance of the carriage return in the <CR><LF> sequence
that ends each line (underscore characters in quoted strings
do not count) . This results in just a linefeed being
presented to the compiler. The linefeed, <LF>, is the line
continuation character understood by the compiler and the
interpreter. The ASCII key code for a linefeed is
Control-J.

CHAPTER 5

DEBUGGING WITH THE BASIC INTERPRETER

You should use BASIC-80 to interpret your BASIC source, and
thus to check for syntax and program logic errors. Note
that debugging with BASIC-80 is an optional step.

It is possible that you do not have the Microsoft BASIC-80
interpreter, and only own the BASIC Compiler. If this is
the case, you must edit your program with any general
purpose text editor and check for any errors at compiletime.
We strongly urge you to complement the compiler with the
BASIC-80 interpreter because the combination of the two
gives you an extremely powerful BASIC programming
environment.

You may use some commands or functions in your compiled
program that execute differently with the interpreter. In
those cases, you need to use the compiler for debugging.
Note that % INCLUDE is the only statement supported by the
compiler that is not supported in some form by the BASIC-80
interpreter. Also, the interpreter does not support double
precision transcendental functions as does the BASIC
Compiler.

Nevertheless, the language supported by the compiler is
intended to be as similar to BASIC-80 as possible. This
allows you to make BASIC-80 your prime debugging tool, and
to save you debugging time by avoiding lengthy compilations
and links. Also, the RUN, CONT, and TRON/TROFF statements
make BASIC-80 a very powerful interactive debugging tool.
See your BASIC-80 Reference Manual for more information on
these statements.

Note that the interpreter stops execution of a program when
an error is encountered. Any subsequent errors are not
caught until the first detected error is corrected and the
program re-RUN. This differs from the compiler where all
lines are scanned and all detected errors are reported at
compiletime.

CHAPTER 6

COMPILING

After creating a BASIC source program that you have debugged
with the interpreter, your next step is compilation. This
chapter covers:

1. Compiler command line syntax,

2. Sample compiler invocations, and

3. Compiler switches.

6.1 COMMAND LINE SYNTAX

Unlike the BASIC-80 interpreter, the compiler is not
interactive. It accepts only a single command line
containing filenames and extensions, appropriate
punctuation, optional device designations, and switches.
The placement of these elements when entering the command
line determines which processes the compiler performs. To
allow users of single-drive system configurations to use the
compiler, the command line can be separated into two command
lines if desired: one to invoke the compiler and the other
to specify compilation parameters.

COMPILING Page 6-2

The general format for the BASIC Compiler command line is

;<objectf ile>] [, [<listf ile>]

;

=<sourcef ile>

output files input file

<objectf ile> Specifies the name of the relocatable
(.REL) object file,

<listf ile> Specifies the name of the listing (.PRN)
file,

<sourcef ile> Specifies the name of the BASIC (.BAS)
source file.

When filenames are entered as parameters, the compiler reads
them according to the syntax described above, and assigns
them to the appropriate input and output parameters.

Note that the above syntax is concise and accurate, but can
be fairly cryptic. We will clear up questions in the
following paragraphs, by examining several sample compiler
invocations.

6.2 SAMPLE COMPILER INVOCATIONS

You can specify on the compiler command line, creation of
four possible combinations of files. These are listed
below:

1. A .REL (relocatable object) file only.

2. A .PRN (listing) file only.

3. Both a .REL and a .PRN file.

4. Neither a .REL file nor a .PRN file.

COMPILING Page 6-3

Sample compiler invocations are given below for these
combinations of file productions.

1. How to Generate both Object and Listing Files

To generate both object and listing files, invoke
the compiler as shown below:

BASCOM <objectf ile>,<listf ile>=<sourcef ile>

The <objectfile> and <listfile> parameters default
to the currently logged drive. You may prefix the
file specifications for these parameters with
optional device designations.

At the end of your compilation, the following
message is displayed:

<number-of-errors> FATAL ERROR(S)
<free-bytes> BYTES FREE

2. How to Generate an Object (. REL) File Only

The simplest way to create only a .REL file is to
invoke the compiler as shown below:

BASCOM =<sourcef ile>

The above example creates an <objectfile> (not
explicitly specified) on the same disk as that
containing the <sourcef ile>. The <objectfile> will
have the same base name as your <sourcef ile>. For
example, if your <sourcefile> is named A:PROG.BAS,
then the <objectfile> will be created with the name
A: PROG. REL. Another way to generate only an
<objectfile> is to enter:

BASCOM <objectf ile>=<sourcef ile>

In this invocation, <objectfile> defaults to the
disk in the currently logged drive. This may or
may not be the disk on which <sourcefile> resides.
An optional device designation may also be given to
either <objectfile> or <sourcef ile>.

COMPILING Page 6-4

3. How to Generate a Listing (.PRN) File Only

To create only a listing file, invoke the BASIC
Compiler as follows:

BASCOM ,<listf ile>=<sourcef ile>

The generated <listfile> contains a line-by-line
listing of the BASIC source. Also, the object code
generated for each BASIC statement is disassembled
and listed along with the corresponding BASIC
statements in your program. If you use the /N
compiler switch described later in this section,
listing of the object code is suppressed. Note
that the actual .REL file is not in a
human-readable form.

As an alternative, you may have the listing file
printed out on a line printer. There are two ways
to do this. The first way is to enter Control-P
(to turn on the printer) , then enter TYPE DEMO. PRN.
The listing file is simultaneously printed on the
line printer and displayed on your screen. When
the file has been printed, enter Control-P again
(to turn off the printer)

.

Another way to print out a listing file is to enter
the command line once again, but this time with the
name of the line printer device (LST:) in place of
the listing filename:

BASCOM ,LST:=<sourcef ile>

The second method is the faster of the two since it
does not require the creation of a disk file.

When you examine your listing, notice the two
hexadecimal numbers preceding each line of the
source program. The first number is the relative
address of the code associated with that line,
using the start of the program as 0. The second
number is the cumulative data area needed so far
during the compilation. These two columns are
totaled at the end of the listing. The left column
total is the actual size of the generated .REL file
in bytes. The right column total is the total data
area required in bytes.

COMPILING Page 6-5

4. How to Suppress Generation of Any Output Files

To perform a syntax check of your <sourcef ile>, and
to suppress generation of either an <objectfile> or
a <listfile>, invoke the compiler as follows:

BASCOM , =<sourcef ile>

In the above example, the compiler simply compiles
the source program and reports the number of errors
and the number of free bytes. This is the fastest
way to perform a syntax check of your program with
the compiler. RUNning a program with the
interpreter allows you to perform an accurate
syntax check only insofar as the language of the
BASIC-80 supports the same language as the BASIC
Compiler.

You may want to create output files on a disk other than the
defaults provided by the compiler, or you may want to create
output files with different extensions or base names than
that of of your BASIC source file. To do so, you must
actually specify the filenames with the desired extensions
or device designations, as described below:

Filename Extensions

You may append up to three-characters to filenames as
filename extensions. These extensions may contain any
alphanumeric character, given in any position in the
extension. Lowercase letters are converted to uppercase.
Extensions must be preceded by a period (.).

Keep in mind that the BASIC Compiler and L80 recognize
certain extensions by default. If you give your filenames
unique extensions, you must always remember to include the
extension as part of the filename for any filename
parameter

.

When filename extensions are omitted, default extensions are
assumed.

The relevant default filename extensions under CP/M are:

EXTENSION TYPE OF FILE

.BAS BASIC source file

. REL Relocatable object file

.COM Executable object file

. PRN Listing file

.MAC MACRO-80 source file

COMPILING Page 6-6

Device Designations

Each command line field may include device designations that
instruct the compiler where to find files or where to output
files.

The device designation is placed in front of a filename.
For example:

B : DEMO

A device designation may be up to three alphanumeric
characters. Note also that the device name must always
include the colon (:).

For the input file, (the <sourcef ile>) , the device
designation indicates from which device the file is read.
For output files (<objectf ile>, <listf ile>) , the device
designation indicates where the files are written.

Device names supported under CP/M are:

DESIGNATIONS DEVICES

r\ • , Jo • , \~* • , StC •

LST:
TTY:

Disk Drives
Line Printer
CRT (or Teletype)

When device names are omitted, the command scanner defaults
to the currently logged disk drive. The only exception to
this occurs if a drive is specified as the device for
<sourcef ile>, but no filenames are specified for
<objectfile> or <listfile>. In this case, the compiler
writes the output files to the drive specified for the
<sourcef ile>.

Take for example, the following command line:

BASCOM =B:DEMO

This command line directs the compiler to write the object
file to the disk in drive B:, regardless of the location of
the currently logged drive.

In all other cases, the
logged drive . This may,
compiler resides.

default device is
or mav not be the disk

the currently
on which the

COMPILING Page 6-7

For instance, in the following examples, if A: is the
currently logged drive, then the output files are written to
drive A:

.

BASCOM DEMO, DEMOB: DEMO
BASCOM ,DEMO=B:DEMO

When the compiler has finished compilation, it exits to C/PM
and the currently logged drive.

Device Names as Filenames

Giving a device name in place of a filename is a command
line option. The result of this option depends on which
device you specify, and for which command line parameter.
Figure 6.1 illustrates the possibilities:

DEVICE <objectf ile> <listf ile> <sourcef ile>

A: , B:

,

C: , D:
writes file
to drive
specified

writes file
to drive
specified

N/A

LST: N/A
(unreadable
file format)

writes
listing to
line printer

N/A
(output only)

TTY: N/A
(unreadable
file format)

"writes"
listing to CRT

Reads state-
ments from
keyboard

N/A = Not Allowed

Figure 6.1 Effects of Using Device Designations
in Place of File Names

Of special interest is the interactive ability you gain by
using the ,TTY:=TTY: command line. In this mode, you can
type single BASIC statements at your terminal to check them
individually for syntax errors. No disk files are created
or read.

6.3 COMPILER SWITCHES

In addition to specifying filenames, extensions, and devices
to direct the compiler to produce object and listing files,
you can direct BASCOM to perform additional or alternate
functions by adding switches to the command line.

COMPILING Page 6-8

Switches may be placed after source file names or after
other switches, as in the following command line:

BASCOM F00,F00=F00/T/4/X

Switches signal special instructions to be used during
compilation. The switch tells the compiler to "switch on" a
special function or to alter a normal compiler function.
More than one switch may be used, but all must begin with a
slash (/) . Do not confuse these switches with the linker
switches.

Compiler switches fall into one of three categories:

1. Conventions

2. Error Trapping

3. Special Code

Conventions

The BASIC Compiler allows you to specify which of two
lexical and execution conventions you want applied during
compilation: version 4.51 or version 5.0. You need to use
the lexical convention switches only if you have older
programs that you are trying to convert to version 5.0 BASIC
conventions. You specify which conventions you want with
either or both of the switches /4 and /T.

Error Trapping

If your BASIC source program contains error trapping
routines that involve the ON ERROR GOTO statement plus some
form of a RESUME statement, you need to use one of the two
error trapping switches, /E and /X. Error trapping routines
require line numbers in the binary (.REL) file. If you do
not use one of the error trapping switches, the compiler
does not place line numbers in the binary file, and a fatal
compiler error will result.

COMPILING Page 6-9

Special Code

The BASIC Compiler can generate special code for special
uses or situations. Be aware that some of these special
code switches cause BASIC Compiler to generate larger and
slower code. Examples of special code switches are /D, /S,
and /0.

Let's go over the compiler switches by category. First,
we'll give you a chart that summarizes the function of each
switch. Following that, you'll find detailed descriptions
of each switch.

COMPILING Page 6-10

Table 6.1 Compiler Switches

CATEGORY SWITCH ACTION

Conven-
tions

/4

/T

/c

Use Microsoft 4.51 lexical conventions
(not allowed together with /C) .

Use 4.51 execution conventions.

Relax line numbering constraints
(Not allowed together with /4)

.

*Use /4/T together for 4.51 lexical
and execution conventions.

Error
Trapping

/E

/x

Program has ON ERROR GOTO
with RESUME <line number >.

Program has ON ERROR GOTO with RESUME,
RESUME 0, or RESUME NEXT.

Special
Code

/z

/N

/o

/D

/s

Use Z80 opcodes.

Suppress listing of disassembled
object code in the listing file.

Substitute the OBSLIB.REL runtime
library for BASLIB.REL as the default
runtime library searched by the linker
after a linker /E or /G switch.

Generate debug code for runtime
error checking.

Write quoted strings to . REL file on
disk and not to data area in RAM.

Each of the switches shown in table 6.1 is explained in
detail in the following pages.

COMPILING Page 6-11

CONVENTIONS

The convention switches may be given together (/4/T) to
request 4.51 lexical and execution conventions. The
individual action of each switch is described below:

Switch Action

/4 The /4 switch directs the compiler to use the
lexical conventions of the Microsoft 4.51 BASIC-80
interpreter. Lexical conventions are the rules
that the compiler uses to recognize the BASIC
language.

The following conventions are observed:

1. Spaces are not significant.

2. Variables with embedded reserved words are
illegal.

3. Variable names are restricted to two
significant characters.

The /4 switch is needed to correctly compile a

source program in which spaces do not delimit
reserved words, as in the following statement.

FORI=ATOBSTEPC

Without the /4 switch, the compiler would assign
the variable "ATOBSTEPC" to the variable "FORI".
With the /4 switch set, the compiler recognizes
the line as a FOR statement.

We recommend that you edit such programs to 5.0
lexical standards, rather than compile them with
the /4 switch. Delimiting reserved words with
spaces causes no increase in generated code while
greatly improving program readability.

NOTE

The /4 and /C switches may not be used
together.

COMPILING Page 6-12

/T The /T switch tells the compiler to use BASIC-80
Version 4.51 execution conventions. Execution
conventions refer to the implementation of BASIC
functions and commands and what they actually do
at runtime. With /T specified, the following 4.51
execution conventions are switched on:

1. FOR/NEXT loops are always executed at least
one time.

2. TAB, SPC, POS, and LPOS perform according to
4.51 conventions.

3. Automatic floating point to integer
conversions use truncation instead of
rounding, except in the case where a floating
point number is being converted to an integer
in an INPUT statement.

4. The INPUT statement leaves the variables in

the input list unchanged if only a carriage
return is entered. If a "?Redo from start"
message is issued, then a valid input list
must be given. A carriage return in this case
generates another "?Redo from start" message.

/C The /C switch tells the compiler to relax line
numbering constraints. When /C is specified, line
numbers in your source file may be in any order,
or they may be eliminated entirely.

With /C, lines are compiled normally, but
unnumbered lines cannot be targets for GOTOs or
GOSUBs. Be aware that while /C is set, the
underline character causes the remainder of the
physical line to be ignored. Also, /C causes the
underline character to act as a line feed so that
the next physical line becomes a continuation of
the current logical line. (See Chapter 4 for more
information on physical and logical lines.)

There are three advantages to using /C:

1. Elimination of line numbers increases program
readability.

2. The BASIC Compiler optimizes over entire
blocks of code rather than single lines (for
example in FOR. ..NEXT loops.)

3. BASIC source code can more easily be included
in a file with %INCLUDE.

Note that /C and /4 may not be used together.

COMPILING Page 6-13

ERROR TRAPPING

The error trapping switches allow you to use ON
ERROR GOTO statements in your program. These
statements can aid you greatly in debugging your
BASIC programs. Note, however, that extra code is
generated by the compiler to handle ON ERROR GOTO
statements.

Switch Action

/E The /E switch tells the compiler that the program
contains an ON ERROR GOTO/RESUME <line-number>
construction. To handle ON ERROR GOTO properly,
the compiler must generate extra code for the
GOSUB and RETURN statements. Also a line number
address table (one entry per line number) must be
included in the binary file, so that each runtime
error message includes the number of the line in
which the error occurs. To save memory space and
execution time, do not use this switch unless your
program contains an ON ERROR GOTO statement.

NOTE

If a RESUME statement other than RESUME
<line-number> is used with the ON ERROR
GOTO statement, use the /X switch
instead.

/X The /X switch tells the BASIC Compiler that the
program contains one or more RESUME, RESUME NEXT,
or RESUME statements.

The /X switch performs all the functions of the /E
switch, so the two need never be used at the same
time. For instance, the /X switch, like the /E
switch, causes a line number address table (one
entrv per statement) to be included in your binary
object file, so that each runtime error message
includes the number of the line in which the error
occurs. Nevertheless, the /X switch performs
additional functions not performed by the /E
switch.

Note that to handle RESUME statements properly,
the compiler cannot optimize across statements.
Therefore, do not use /X unless your program
contains RESUME statements other than RESUME
<line-number>.

COMPILING Page 6-14

SPECIAL CODE

Switch Action

/Z The /Z switch tells the compiler to use Z80
opcodes whenever possible. When the /Z switch is
set, additional Z80 opcodes are allowed, and Z80
mnemonics are used when listing these
instructions. All other opcodes are listed using
8080 mnemonics.

/N The /N switch suppresses listing of the
disassembled object code for each source line.
Instead, you get a simple BASIC source listing
plus the relative locations of your code and the
size of your accumulated data area. If this
switch is not set, the source listing produced by
the compiler contains the disassembled object code
generated by each statement. Use this switch when
you want a shorter listing file, and want to list
your BASIC source file along with the code
relative locations of your program and the size of
your accumulated data area.

/O The /O switch tells the compiler to substitute the
OBSLIB.REL runtime library for BASLIB.REL as the
default runtime library searched by the linker.
When you use this switch you cannot use the
BRUN.COM module.

Note that you can create ROM-able code when you
link to OBSLIB.REL, something you cannot do if you
link to BASLIB.REL. Also, .COM files created by
linking to OBSLIB.REL do not need BRUN.COM on disk
at runtime.

/D The /D switch causes debugging and error handling
code to be generated at runtime. Use of /D allows
you to use TRON and TROFF in the compiled file.
Without /D set, TRON and TROFF are ignored.

COMPILING Page 6-15

With /D, the BASIC Compiler generates somewhat
larger and slower code to perform the following
checks:

1. Arithmetic overflow . All arithmetic
operations, integer and floating point, are
checked for overflow and underflow.

2. Array bounds . All array references are
checked to see if the subscripts are within
the bounds specified in the DIM statement.

3. Line numbers . The generated binary code
includes line numbers so that the runtime
error listing can indicate on which line each
error occurs.

4. RETURN . Each RETURN statement is checked for
a prior GOSUB statement.

Without the /D switch set, array bound errors,
RETURN without GOSUB errors, and arithmetic
overflow errors do not generate error messages at
compile time. At runtime, no error messages are
generated either, and erroneous program execution
results. Use the /D switch to make sure that you
have thoroughly debugged your program.

/S The /S switch forces the compiler to write quoted
strings greater than 4 characters in length to
your .REL file on disk as they are encountered,
rather than retaining them in memory during the
compilation of your program. If this switch is
not set, and your program contains a large number
of long quoted strings, you may run out of memory
at compiletime.

Although the /S switch allows programs with many
quoted strings to take up less memory at
compiletime, it may increase the amount of memory
needed in the runtime environment, since multiple
instances of identical strings will exist in your
program. Without /S, references to multiple
identical strings are combined so that only one
instance of the string is necessary in your final
compiled program.

CHAPTER 7

LINKING

To load and link a compiled program, use the Microsoft
LINK-80 Linking Loader. Refer to the LINK-80 section of the
Utility Software Manual for information on how to use the
linker, before you read, this chapter. This chapter
supplements the Utility Software Manual, by providing:

1. Sample linker sessions,

2. A discussion of linking compiled BASIC programs,
and

3. A discussion of the BASIC runtime support
environment.

We begin with some sample linker sessions.

7.1 SAMPLE LINKER SESSIONS

A simple link might look like this on your screen:

>L80
*PROG . COM/N , PROG . REL/E

The caret (>) is the CP/M prompt; the asterisk (*) is the
linker prompt. Note that linker switches have no relation
whatsoever to the compiler switches discussed in the
preceding chapter.

If you use default extensions, a link session might look
like this:

>L80
*PROG/N,PROG/E

LINKING Page 7-2

The L80 invocation line can also be used for specifying
linker parameters. So, the following command would perform
the same functions as the preceding example:

>L80 PROG/N,PROG/E

In any of the above cases, the /E switch tells the linker to
exit to CP/M and store a .COM file on disk. Before exiting,
the linker automatically searches BASLIB.REL on the
currently logged drive for any as yet undefined global
references. The final linked .COM file has the name
specified by your last <filename>/N command. The /N switch
is essential if you want to create a .COM file.

The /G switch is similar to the /E switch. The only
difference between the two is that the /G switch causes
execution of the .COM file after it is stored on disk. In
either case, you must specify the name of the file to store
on disk. If you do not, no .COM file is stored.

If you choose to link an assembly language routine to your
BASIC program, a sample linker invocation might look like
this:

>L80
*PROG , MYASM , PROG/N/E

In the above case, MYASM. REL is the name of the assembly
language routine and PROG. REL is the name of your program.
The routine MYASM. REL cannot be assembled with an END
<label> statement since the linker will assume that <label>
is the start address of a separate program . The linker will
refuse to link two programs together since their two
separate start addresses will conflict.

When you link a BASIC .REL file to BASLIB.REL, the BCLOAD
file must be on disk in the currently logged drive. If it
is not, the following error message is generated:

7BCL0AD not found, please create header file

More information about BCLOAD can be found later in this
chapter

.

LINKING Page 7-3

When your linking session is complete, the following message
is generated:

DATA <program-start> <program-end> <bytes>

<free-bytes> BYTES FREE
[<start-address> <program-end> <num-of-pages>]

The values displayed provide the information shown in Figure
7.1 for a program linked to BASLIB.REL and using BRUN.COM.
If you link to OBSLIB.REL and use the /P and /D linker
switches, some of this information is not accurate.

Memory
Top Rest of Memory

Extra Runtime Code & Data

User Program Code

User Program Data

i _— *>

COMMON

RUNTIME MODULE

DOu'com
of

Mpmnrv
CPM vectors

- 3.

-- 6

Figure 7.1 Link Data Map

1. <program-start> - Hexadecimal address of the
beginning of your program.

2. <program-end> - Hexadecimal address of the end of
your program.

3. <bytes> - Decimal size of program in bytes.

4. <free-bytes> - Decimal size of unused memory in

bytes during linking.

5. <start-address> - Hexadecimal start address of your
program (not necessarily the same as
<program-start>)

.

6. <num-of-pages> - Decimal number of 256-byte pages
used by program.

LINKING Page 7-4

For programs linked to BASLIB.REL and using the BRUN.COM
runtime module, the size of your .COM file in bytes is equal
to:

<program-end> - <start-address> + 128

At runtime, remember that BRUN.COM also resides in memory
along with your program. The 128 bytes in the above
equation is for a small relocator routine that begins every
.COM file. When you invoke a program, this relocator
routine is the first routine executed. All it does is move
the rest of your .COM file to the start address shown above.
Execution of your program then begins. The first thing your
program does is load the runtime module to establish the
runtime support environment.

We now discuss linking to compiled BASIC . REL files.

7.2 LINKING TO COMPILED BASIC .REL FILES

Because of the way the BASIC runtime environment is
implemented with the BRUN.COM runtime module, there are a
number of peculiarities that you must account for at
linktime.

First of all, before you can link any BASIC .REL file, you
must have the file BCLOAD on the currently logged disk.
BCLOAD contains two pieces of information: the hexadecimal
load address of your program, and the drive in which to find
BRUN.COM at runtime.

BCLOAD looks like this if you TYPE it out:

+4000 [Program Load Address]
: [A:, B:, C:, etc., or : for default]

At runtime, you must have BRUN.C0M on the disk specified in
BCLOAD or an error is generated. Note that the plus sign
(+) is necessary to tell the linker to write the .COM file
beginning at the start address of your program instead of
the program load address. (The start address is the address
at which your program begins execution.) The default
location of the BRUN.COM runtime module is the currently
logged drive. You can alter BCLOAD, before linktime , to
specify the disk on which you want BRUN.C0M to reside at
runtime.

LINKING Page 7-5

There are two other peculiarities associated with linking
programs that require the BRUN.COM runtime module. Namely,
these linking procedures may not work:

L80 FOO/G

L80 FOO/E followed by SAVE xxx F00.COM

L80 FOO/G may not work if BRUN.COM does not reside on the
disk you have specified in BCLOAD. CHAINing of programs
does not work properly if you use SAVE after a link.

We now move to a discussion of the runtime support that is
linked to your program.

7.3 RUNTIME SUPPORT

Once you have compiled a . REL file, you need to link your
program to modules that contain runtime support routines.
Runtime support is the body of routines that, in essence,
implement the BASIC language. Your compiled .REL file, on
the other hand, implements the particular algorithm that
makes your program a unique BASIC program.

Runtime support is essential to the execution of all
compiled BASIC programs. It is found in BRUN.COM and the
runtime library. As a rule, only a portion of all possible
runtime routines is linked to your .REL file. The length of
time necessary to link all these needed runtime support
routines is often a problem on microcomputers.

Partly for this reason, the BRUN.COM runtime module contains
all of the more frequently used routines in one module.
Since they all reside in one module, they are linked all at
once, and need not be searched for in later linker searches.
Note that the BRUN.COM module is automatically linked to
every program via a dummy module in BASLIB.REL: it is not
present in memory at linktime. Thus, a minimal program at
runtime is at least 16K long. If your program uses other
less frequently used routines, these routines are searched
for and found in BASLIB.REL. At linktime, you cannot use
the /P and /D linker switches, since they will cause errors
at program runtime.

When you specify the /0 switch at runtime , the alternate
runtime library (OBSLIB.REL) is substituted for BASLIB.REL
as the default library to be searched at linktime . At
linktime you can then use /P and /D as described in the
Utility Software Manual. Note that when OBSLIB.REL is
selected as the library to be searched, BRUN.COM is not used
by your program at all.

LINKING Page 7-6

There are several advantages to using OBSLIB.REL:

1. Programs not using BRUN.COM can be put in ROM,
since separate instruction and data areas can be
created when linking to routines in OBSLIB.REL with
the /P and /D switches.

2. For small and simple programs, you may be able to
compile and link smaller programs than the 16K
minimum required to accommodate the BRUN.COM
module. This can be of importance in compiling a

program for a ROM-based application, where space
can be a critical factor.

3. Execution of a compiled and linked .COM file does
not require the existence of BRUN.COM on disk at
runtime.

There are, however, some distinct disadvantages to using
OBSLIB.REL:

1. COMMON is not supported between programs.

2. The CHAIN command is semantically equivalent to the
RUN command.

3. COMMON and CHAIN commands cannot be used to support
a system of programs sharing common data. (See 1.

and 2. above.)

4. The CLEAR command is not implemented.

5. The RUN <linenumber> option to RUN is not
implemented.

6. The linker cannot load programs as large as those
that use the BRUN.COM module.

7. All required runtime support functions are included
in every .COM file generated, thus increasing the
size of each of your .COM files. This is not the
case for .COM files using the BRUN.COM runtime
module.

For more information on using CHAIN and COMMON with a system
of programs, see Appendix A. For more information on
ROM-able code, see Appendix B.

CHAPTER 8

RUNNING A COMPILED PROGRAM

To run a compiled program, simply enter the filename without
its .COM filename extension. For example:

DEMO

The above command causes execution of the program DEM0.COM.
At runtime, BRUN.COM must be accessible from disk. BRUN.COM
is loaded from the disk in the drive you specify in BCLOAD
at linktime .

Programs can also be executed immediately after linking is
complete by using the /G linker switch. This works only if
BRUN.COM is on the disk you have selected in BCLOAD.

The executable binary file can also be executed from within
a program, as in the following statement:

10 RUN "PROG"

The default extension is .COM. The .COM file can be a
program created in any programming language. The CHAIN
command is used in a similar fashion. In either case, an
executable binary file is loaded. The BRUN.COM runtime
module is not reloaded when you use CHAIN; it is when you
use RUN.

It is important to realize that the bulk of the runtime
environment is taken up by the BRUN.COM runtime module.
This module is automatically loaded when you initially
invoke an executable .COM file requiring BRUN.COM. When you
RUN a program, the .COM file is loaded into memory and
BRUN.COM is also loaded to create a fresh runtime
environment. Both files reside in memory simultaneously.

CHAPTER 9

A COMPILER/INTERPRETER COMPARISON

There are differences between the languages supported by the
BASIC Compiler and the BASIC-80 interpreter that must be
taken into account when compiling existing or new BASIC
programs. This is why we strongly recommend that you
compile the demonstration program in Chapter 3 first; read
Chapters 4-8; and only then begin compiling other programs.

The differences between the languages supported by the BASIC
Compiler and the BASIC interpreter fall into three
categories: operational differences, language differences,
and other differences. The tables on the next page serve as
a reference guide to these differences. All commands and
functions except %INCLUDE are described in the BASIC-80
Reference Manual. Where differences exist, those commands
and functions are also discussed in the following
paragraphs.

A COMPILER/INTERPRETER COMPARISON Page 9-2

9.1 OPERATIONAL DIFFERENCES

Those BASIC-80 commands used to operate in the BASIC-80
programming environment are not acceptable input to the
compiler. These include the following:

AUTO CLOAD CSAVE CONT DELETE
EDIT LIST LLIST LOAD MERGE
NEW RENUM SAVE

9.2 LANGUAGE DIFFERENCES

Most programs that run under the BASIC-80 interpreter will
compile under the BASIC Compiler with little or no change.
However, it is necessary to note differences in the
following commands:

CALL % INCLUDE
CHAIN ON ERROR GOTO
CLEAR REM
COMMON RESUME
DEFxxx RUN
DIM STOP
END TRON/TROFF
ERASE USRn
FOR/NEXT WHILE/WEND

These differences are described below:

1 . CALL
The CALL statement allows you to call and transfer
program control to a precompiled FORTRAN-80
subroutine, or to an assembly language routine that
you have created with MACRO-80. The format of the
CALL Statement is:

CALL <variable-name> [<argument-list>. . .

]

The <variable-name> parameter is the name of the
subroutine that you wish to call. This name must
be 1 to 6 characters long and must be recognized by
LINK-80 as a global symbol. That is,
<variable-name> must be the name of the subroutine
in a FORTRAN SUBROUTINE statement, or a PUBLIC
symbol in an assembly language routine. Refer to
the MACRO-80 Reference Manual and the FORTRAN-80
Reference Manual for definitions of these terms.
(See NOTE below.)

A COMPILER/INTERPRETER COMPARISON Page 9-3

The <argument-list> parameter is optional. It
contains arguments that are passed to an assembly
language or FORTRAN subroutine.

Example: 120 CALL MYSUBR (I r J,K)

NOTE

FORTRAN-80 is a separate product available
from Microsoft and is not part of the BASIC
Compiler package. If you do not have
FORTRAN-80, then the CALL statement can
only be used with assembly language
subroutines.

Further information on assembly language
subroutines is contained in in the discussion of
the USR function that follows in this chapter.
Also, more information is provided on creating and
interfacing assembly language routines in the
Utility Software Manual.

CHAIN
The BASIC Compiler does not support the ALL, MERGE,
DELETE, and <line number> options to CHAIN. If you
wish to pass variables, it is recommended that the
COMMON statement be used. Note that files are left
open during CHAINing.

A COMPILER/INTERPRETER COMPARISON Page 9-4

CLEAR
The BASIC Compiler supports the CLEAR command as
described in the BASIC-80 Reference Manual, with
the restriction that <expressionl> and
<expression2> must be integer expressions. If a
value of is given for either expression, the
appropriate default is used. The default stack
size is 256 bytes and the default top of memory is
the current top of memory. The CLEAR statement
performs the following actions:

Closes all files
Clears all COMMON and user variables
Resets the stack and string space
Releases all disk buffers

See Appendix C for a memory map showing the
location of the stack, string space, and disk
buffers discussed above.

Note that CLEAR is supported only for programs
using the BRUN.COM module, and not for programs
linked to the OBSLIB.REL runtime library.

COMMON
The BASIC Compiler supports a modified version of
the COMMON statement. The COMMON statement must
appear in a program before any executable
statements. A list of non-executable statements
follows:

COMMON
DEFDBL, DEFINT, DEFSNG, DEFSTR
DIM
OPTION BASE
REM
% INCLUDE

All other statements are executable. Arrays in
COMMON must be declared in preceding DIM
statements.

The standard form of the COMMON statement is
referred to as blank COMMON. FORTRAN-style named
COMMON areas are also supported; however, the
named COMMON variables are not preserved across
CHAINS.

The syntax for named COMMON is as follows:

COMMON /<name>/ <list of variables>

The parameter <name> is 1 to 6 alphanumeric
characters starting with a letter. This is useful
for communicating with FORTRAN and assembly

A COMPILER/INTERPRETER COMPARISON Page 9-5

language routines without having to explicitly pass
parameters in the CALL statement.

IMPORTANT

For blank COMMON statements communicating
between CHAINing and CHAINed-to programs,
both the size of the COMMON area, and the
order of variables must be the same.

To ensure that COMMON areas can be shared between
programs, place blank COMMON declarations in a
single INCLUDE file and use the % INCLUDE statement
in each program. For example:

MENU.BAS
10 % INCLUDE COMDEF

1000 CHAIN "PROG1"

PROG1.BAS
10 % INCLUDE COMDEF

2000 CHAIN "MENU"

COMDEF. BAS
100 DIM A(100) ,B$(200)
110 COMMON I,J,K,A()
120 COMMON A$,B$() ,X,Y,Z

DEFINT/SNG/DBL/STR
DEFxxx statements designate the storage class and
data type of variables listed as parameters. The
compiler does not "execute" DEFxxx statements as it
does a PRINT statement, for example.

A COMPILER/INTERPRETER COMPARISON Page 9-6

Instead, the compiler allocates memory for storage
of designated variables, and assigns them one of
the following data types:

1. INTeger

,

2. SiNGle precision floating point,

3. DouBLe precision floating point, or

4. STRing.

A DEFxxx statement takes effect as soon as it is
encountered in your program during compilation .

Once the type has been defined for the listed
variables, that type remains in effect either until
the end of the program or until another DEFxxx
statement alters the type of the variable. Unlike
the interpreter, the compiler cannot circumvent the
DEFxxx statement by directing flow of control
around it with a GOTO. For variables given with a
precision designator (i.e., %, !, #, as in A%=B) ,

the type is not affected by the DEFxxx statement.

6. DIM
The DIM statement is similar to the DEFxxx
statement in that it is scanned rather than
executed. That is, DIM takes effect when it is
encountered at compiletime and remains in effect
until the end of the program: it cannot be
re-executed at runtime. If the default dimension
(10) has already been established for an array
variable, and that variable is later encountered in
a DIM statement, an "Array Already Dimensioned"
error results. Therefore, the practice of putting
a collection of DIM statements in a subroutine at
the end of your program generates fatal errors. In
that case, the compiler sees the DIM statement only
after it has already assigned the default dimension
to arrays declared earlier in the program.

Also note that the values of the subscripts in a
DIM statement must be integer constants ; they may
not be variables, arithmetic expressions, or
floating point values. For example, each of the
following DIM statements is illegal:

DIM Al(I)

DIM Al(3+4)
DIM AM3.4E5)

A COMPILER/INTERPRETER COMPARISON Page 9-7

END
During execution of a compiled program, an END
statement closes files and returns control to the
operating system. The compiler assumes an END
statement at the end of the program, so "running
off the end" (omitting an END statement at the end
of the program) produces proper program termination
by default.

ERASE
The ERASE statement is not implemented for the
compiler. ERASE in BASIC-80 allows you to
re-dimension arrays, something that is not done in

the compiled environment.

FOR/NEXT
Double precision FOR/NEXT loops can be used with
the compiler. Also, FOR/NEXT loops must be
statically nested. Static nesting means that each
FOR must have a single corresponding NEXT.

Static nesting also means that each FOR/NEXT pair
must reside within an outer FOR/NEXT pair.
Therefore, the following construction is not
allowed:

FOR I

FOR J
FOR K

NEXT
NEXT K

NEXT I

This construction is the correct form:

FOR I

FOR J
FOR K

NEXT K
NEXT J

NEXT I

A COMPILER/INTERPRETER COMPARISON Page 9-8

Also, you should not direct program flow into a
FOR/NEXT loop with a GOTO statement. The result of
such a jump is undefined, as in the following
example:

50 GOTO 100

90 FOR I = 1 to 10

100 PRINT "INLOOP"

200 NEXT I

10. % INCLUDE
The format of the %INCLUDE compiler directive is:

% INCLUDE <filename>

% INCLUDE allows the compiler to include source code
from an alternate BASIC file. These BASIC source
files may be subroutines, single lines, or any type
of partial program. No assembly language or
FORTRAN files are allowed as arguments to the
%INCLUDE statement. Note that <filename> does not
require quotes and that the default extension is
.BAS.

The programmer should take care that any variables
in the included files match their counterDarts in
the main program, and that included lines do not
contain GOTOs to non-existent lines, END
statements, or similarly erroneous code.

These further restrictions must be observed:

(a.) The INCLUDEd file must be SAVEd with the ,A
option if created from within BASIC-80.

(b.) The INCLUDEd lines must be in ascending order.

(c.) The lowest line number of the included lines
must be higher than the line number of the INCLUDE
statement in the main program.

(d.) The range of line numbers in the INCLUDEd file
must numerically precede subsequent line numbers in
the main program. These restrictions are removed
if the main program is compiled with the /C switch
set, since line numbers need not be in ascending
order in this case. For more information, see
Section 6.3, Compiler Switches.

A COMPILER/INTERPRETER COMPARISON Page 9-9

(e.) %INCLUDE directives cannot be nested inside
INCLUDE files. This means that %INCLUDE can only
be used in the file containing your main BASIC
program.

(f.) The %INCLUDE directive must be the last
statement on a line, as in the following statement:

999 DEFINT I-N : % INCLUDE COMMON. BAS

11. ON ERROR GOTO
If a program contains ON ERROR GOTO and RESUME
<line number> statements, the /E compilation switch
must be given in the compiler command line. If the
RESUME NEXT, RESUME, or RESUME form is used, the
/X switch must be used instead.

The basic function of these switches is to allow
the compiler to function correctly when error
trapping routines are included in a program. See
Section 6.3, Compiler Switches, for a detailed
explanation of these switches. Note, however, that
the use of these switches increases the size of the
.REL and .COM files.

12. REM
REM statements are REMarks starting with a single
quotation mark or the word REM. Since REM
statements do not take up time or space during
execution, REM may be used as freely as desired.
This practice is encouraged for improving the
readability of your programs.

13. RESUME
See the preceding discussion of ON ERROR GOTO.

14. RUN
The compiler supports both the RUN and RUN <line
number > forms of the RUN statement. The BASIC
Compiler does not support the "R" option with RUN.
If this feature is desired, the CHAIN statement
should be used. Note that RUN is used to execute
.COM files created by the BASIC Compiler, and does
not support the execution of BASIC source files as
does the interpreter.

Other .COM files not created with the BASIC
Compiler are executable with the RUN statement.
These can be .COM files created in other languages
besides BASIC.

A COMPILER/INTERPRETER COMPARISON Page 9-10

15. STOP
The STOP statement is identical to the END
statement, except that it terminates your program
at a point that is not necessarily its end. It
also prints a message telling you at which
hexadecimal address you have stopped. If the /D,
/E, or /X compiler switches are turned on, then the
message prints the line number at which you have
stopped. As with the END statement, STOP closes
all open files and returns control to the operating
system. STOP is normally used for debugging
purposes.

16. TRON/TROFF
In order to use TRON/TROFF, the compiler /D Debug
switch must be switched on. Otherwise, TRON and
TROFF are ignored and a warning message is
generated.

17. USRn Functions
Although the USRn function is implemented in the
compiler to call machine language subroutines,
there is no way to pass parameters, except through
the use of POKEs to protected memory locations that
are later accessed by the machine language routine.

When the compiler sees X = USRn (0) , it generates
the following code:

CALL $U%+const
SHLD X%

If you have compiled the program with the /Z switch
on, then the compiler generates instead similar Z80
code:

CALL $U%+const
LD (X%) ,HL

During execution, the program encounters this code,
jumps to the address of the CALL, performs the
steps of your subroutine and returns. Your routine
should place the integer result of the routine in
the H,L register pair prior to returning to the
compiled BASIC program. On return, as shown above,
the contents of the H,L register pair are placed in
the location of the variable X. Any other
parameters to be passed must be PEEKed from the
main BASIC program, and POKEd into protected memory
locations. With this method of passing parameters,
the USRn function is quite usable. You must take
responsibility, though, to ensure that your code
and any variables you use are protected.

A COMPILER/INTERPRETER COMPARISON Page 9-11

If you do not want to use the above method of
passing parameters, you have two other choices:

1. If your machine language routine is short
enough, you can store it by making the first
string defined in the program contain the ASCII
values corresponding to the hexadecimal values
of your routine. Use the CHR$ function to
insert ASCII values in the string. You can
then find the start of your routine by using
the VARPTR function. For example, for the
string A$, VARPTR (A$) will return the address
of the length of the string. The next two
addresses are (first) the least significant
byte and (then) the most significant byte of
the actual address of the string. This set-up
of the string space for the compiler differs
from the set-up for the interpreter in this
respect. Thus, to find the actual start
address of your routine, you would use the
following BASIC instructions:

A$ = "String containing routine"
1% = VARPTR (A$)
AD% = PEEK(I% + 2) * 256 + PEEK(I% + 1)

AD% is the start address of your routine.

Note that strings move around in the string
space, so any absolute references must be
adjusted to reflect the current memory location
of the routine. To make your code position
independent for the Z80, you should use
relative, rather than absolute jumps.

The second method is to reset the default value
of the load address in the BCLOAD file. The
BCLOAD file's main purpose is to direct loading
of your executable program in memory after
BRUN.COM has been loaded. By increasing the
load address by 100H, for example, 256 bytes of
free protected space are created between the
end of BRUN.COM and the start of the loading
area. Machine language routines or data can
then be safely POKEd into this area.

A better alternative is to use MACRO-80 to
assemble your subroutines. Then, your
subroutines can be linked directly to the
compiled program and referenced using the CALL
statement.

A COMPILER/INTERPRETER COMPARISON Page 9-12

18. WHILE/WEND
WHILE/WEND constructions should be statically
nested. Static nesting means that each WHILE/WEND
pair, when nested within other FOR/NEXT or
WHILE/WEND pairs, cannot reside partly in, and
partly outside, the nesting pair. For example, the
following construction is not allowed:

FOR I = 1 to 10
A = COUNT
WHILE A = 1 -

NEXT I —
A = A - 1

WEND

You should also not direct program flow into a

WHILE/WEND loop without entering through the WHILE
statement. See FOR/NEXT, above, for an example of
this restriction.

9.3 OTHER DIFFERENCES

Other differences between BASIC-80 and the BASIC Compiler
include the following:

1. Expression Evaluation - The BASIC Compiler performs
optimizations, if possible, when evaluating
expressions.

2. Use of Integer Variables - The BASIC Compiler can
make optimum use of integer variables as loop
control variables. This allows some functions (and
programs) to execute up to 30 times faster than
when interpreted.

3. Double Precision Arithmetic Functions - The BASIC
Compiler implements double precision arithmetic
functions, including all of the transcendental
functions.

4. String Space Implementation - To increase the speed
of garbage collection, the implementation of the
string space for the compiler differs from its
implementation for the interpreter.

A COMPILER/INTERPRETER COMPARISON Page 9-13

EXPRESSION EVALUATION

During expression evaluation, the BASIC Compiler converts
operands of different types to the type of the more precise
operand.

QR=J%+A!+Q#

The above expression causes J% to be converted to single
precision and added to A!. This double precision result is
added to Q#.

The BASIC Compiler is more limited than the interpreter in
handling numeric overflow. For example, when run on the
interpreter, the following statements yield 10000 for M%

.

I%=20000
J%=20000
K%=-30000
M%=I%+J%-K%

That is, J% is added to 1%. Because the number is too
large, it converts the result into a floating point number.
K% is then coverted to a floating point number and
subtracted. The result, 10000, is found, and converted back
to an integer and saved as M%.

The BASIC Compiler, however, must make type conversion
decisions during compilation. It cannot defer until actual
values are known. Thus, the compiler generates code to
perform the entire operation in integer mode and arithmetic
overflow occurs. If the /D Debug switch is set, the error
is detected. Otherwise, an incorrect answer is produced.

Besides the above type conversion decisions, the compiler
performs certain valid optimizing algebraic transformations
before generating code. For example, the following program
could produce an incorrect result when run:

I%=20000
J%=-18000
K%=20000
M%=I%+J%+K%

If the compiler actually performs the arithmetic in the
order shown, no overflow occurs. However, if the compiler
performs I%+K% first and then adds J% , overflow does occur.
The compiler follows the rules of operator precedence, and
parentheses may be used to direct the order of evaluation.
No other guarantee of evaluation order can be made.

A COMPILER/INTERPRETER COMPARISON Page 9-14

INTEGER VARIABLES

To produce the fastest and most compact object code
possible, you should make maximum use of integer variables.
For example, the following program executes approximately 30
times faster by replacing "I", the loop control variable,
with "I%" or by declaring I an integer variable with DEFINT.

FOR 1=1 TO 10
A(I)=0
NEXT I

Also, it is especially advantageous to use integer variables
to compute array subscripts. The generated code is
significantly faster and more compact.

DOUBLE PRECISION ARITHMETIC FUNCTIONS

The BASIC Compiler allows you to use double precision
floating point numbers as operands for arithmetic functions,
including all of the transcendental functions (SIN, COS,
TAN, ATN, LOG, EXP, SQR) . Only single precision arithmetic
functions are supported by the interpreter.

Your program development strategy when designing a program
with double precision arithmetic functions should be the
following:

1. Implement your BASIC program using single precision
operands for all functions that you later intend to
be double precision.

2. Debug your program with the interpreter to
determine the soundness of your algorithm before
converting variables to double precision.

3. Declare all desired variables as double precision.
Your algorithm should be sound at this point.

4. Compile and link your program. It should implement
the algorithm that you have already debugged with
the interpreter, now with double the precision in
your arithmetic functions.

STRING SPACE IMPLEMENTATION

The compiler and interpreter differ in their implementation
and maintenance of the string space. Using PEEK, POKE,
VARPTR, or assembly language routines to change string
descriptors may result in a String Space Corrupt error. See
more information on the string space in the discussion of
the USR function earlier in this chapter.

CHAPTER 10

ERROR MESSAGES

During development of a BASIC program with the BASIC
Compiler, three different kinds of errors may occur: BASIC
Compiler fatal errors, BASIC Compiler warning errors, and
BASIC runtime errors. This chapter lists error codes, error
numbers, and error messages for each type of error.

10.1 BASIC COMPILETIME ERROR MESSAGES

For errors that occur at compiletime, the compiler outputs
the line containing the error, an arrow beneath that line
pointing to the place in the line where the error occurred,
and a two-character code for the error. In some cases, the
compiler reads ahead on a line to determine whether an error
has actually occurred. In those cases, the arrow points a
few characters beyond the error, or to the end of the line.

The BASIC Compiletime errors described below are divided
into Fatal Errors and Warning Errors.

ERROR MESSAGES Page 10-2

FATAL ERRORS

CODE MESSAGE

BS Bad Subscript
Illegal dimension value
Wrong number of subscripts

CD Duplicate COMMON variable

CN COMMON array not dimensioned

CO COMMON out of order

DD Array Already Dimensioned

FD Function Already Defined

FN FOR/NEXT Error
FOR loop index variable already in use
FOR without NEXT
NEXT without FOR

IN INCLUDE Error
% INCLUDE file not found

LL Line Too Long

LS String Constant Too Long

OM Out of Memory
Array too big
Data memory overflow
Too many statement numbers
Program memory overflow

OV Math Overflow

SN Syntax error - caused by one of the following
Illegal argument name
Illegal assignment target
Illegal constant format
Illegal debug request
Illegal DEFxxx character specification
Illegal expression syntax
Illegal function argument list
Illegal function name
Illegal function formal parameter
Illegal separator
Illegal format for statement number
Illegal subroutine syntax
Invalid character
Missing AS
Missing equal sign

ERROR MESSAGES Page 10-3

Missing GOTO or GOSUB
Missing comma
Missing INPUT
Missing line number
Missing left parenthesis
Missing minus sign
Missing operand in expression
Missing right parenthesis
Missing semicolon
Missing slash
Name too long
Expected GOTO or GOSUB
String assignment required
String expression required
String variable required
Illegal syntax
Variable required
Wrong number of arguments
Formal parameters must be unique
Single variable only allowed
Missing TO
Illegal FOR loop index variable
Illegal COMMON name
Missing THEN
Missing BASE
Illegal subroutine name

SQ Sequence Error
Duplicate statement number
Statement out of sequence

TC Too Complex
Expression too complex
Too many arguments in function call
Too many dimensions
Too many variables for LINE INPUT
Too many variables for INPUT

TM Type Mismatch
Data type conflict
Variable must be of same type

UC Unrecognizable Command
Statement unrecognizable
Command not implemented

UF Function Not Defined

WE WHILE/WEND Error
WHILE without WEND
WEND without WHILE

/0 Division by Zero

ERROR MESSAGES Page 10-4

/E Missing "/E" Switch

/X Missing "/X" Switch

WARNING ERRORS

CODE MESSAGE

ND Array not Dimensioned

SI Statement Ignored
Statement ignored
Unimplemented command

ERROR MESSAGES Page 10-5

10.2 BASIC RUNTIME ERROR MESSAGES

The following errors may occur at program runtime. The
error numbers match those issued by the BASIC-80
interpreter. The compiler runtime system prints long error
messages followed by an address, unless /D, /E, or /X is
specified in the compiler command line. In those cases, the
error message is also followed by the number of the line in
which the error occurred.

NUMBER MESSAGE

2 Syntax Error
A line is encountered that contains an incorrect
sequence of characters in a DATA statement.

3 RETURN without GOSUB
A RETURN statement is encountered for which
there is no previous, unmatched GOSUB statement.

4 Out of Data
A READ statement is executed when there are no
DATA statements with unread data remaining in
the program.

5 Illegal Function Call
A parameter that is out of range is passed to a

math or string function. A function call error
may also occur as the result of:

A negative or unreasonably large subscript

A negative or zero argument with LOG

A negative argument to SQR

A negative mantissa with a non-integer
exponent

A call to a USR function for which the
starting address has not yet been given

An improper argument to ASC, CHR$, MID$,
LEFT$, RIGHT$, INP, OUT, WAIT, PEEK, POKE,
TAB, SPC, STRING$, SPACE$, INSTR, or
ON. . .GOTO

A string concatenation that is longer than
255 characters

6 Floating Overflow or Integer Overflow
The result of a calculation is too large to be
represented within the range allowed for
floating point numbers.

ERROR MESSAGES Page 10-6

9 Subscript Out of Range
An array element is referenced with a subscript
that is outside the dimensions of the array.

11 Division by Zero
A division by zero is encountered in an
expression, or the operation of involution
results in zero being raised to a negative
power.

14 Out of String Space
String variables exceed the allocated amount of
string space.

20 RESUME without Error
A RESUME statement is encountered before an
error trapping routine is entered.

21 Unprintable Error
An error message is not available for the error
condition that exists. This is usually caused
by an ERROR with an undefined error code.

50 Field Overflow
A FIELD statement is attempting to allocate more
bytes than were specified for the record length
of a random file.

51 Internal Error
An internal malfunction occurs in the BASIC
Compiler. Report to Microsoft the conditions
under which the message appeared.

52 Bad File Number
A statement or command references a file with a
file number that is not OPEN or is out of the
range of file numbers specified at
initialization.

53 File Not Found
A LOAD, KILL, or OPEN statement references a

file that does not exist on the current disk.

54 Bad File Mode
An attempt is made to use PUT, GET, or LOF with
a sequential file, to LOAD a random file, or to
execute an OPEN with a file mode other than I,

O, or R.

55 File Already Open
A sequential output mode OPEN is issued for a
file that is already open; or a KILL is given
for a file that is open.

ERROR MESSAGES Page 10-7

57 Disk I/O Error
An I/O error occurred on a disk I/O operation.
The operating system cannot recover from the
error.

58 File Already Exists
The filename specified in a NAME statement is
identical to a filename already in use on the
disk.

61 Disk Full
All disk storage space is in use.

62 Input Past End
An INPUT statement reads from a null (empty)
file, or from a file in which all data has
already been read. To avoid this error, use the
EOF function to detect the end of file.

63 Bad Record Number
In a PUT or GET statement, the record number is
either greater than the maximum allowed (32767)
or is equal to 0.

64 Bad File Name
An illegal form is used for the filename with
LOAD, SAVE, KILL, or OPEN (e.g., a filename with
too many characters)

.

67 Too Many Files
The 255 file directory maximum is exceeded by an
attempt to create a new file with SAVE or OPEN.

The following additional runtime error messages are fatal
and cannot be trapped:

Internal Error - String Space Corrupt

Internal Error - String Space Corrupt during G.C.

Internal Error - No Line Number

The first two errors usually occur because a string
descriptor has been improperly modified. (G.C stands for
garbage collection.) The last error occurs when the error
address cannot be found in the line number table during
error trapping.

APPENDIX A

Creating a System of Programs
with the BRUN.COM Runtime Module

The CHAINing with COMMON feature and the BRUN.COM runtime
module are designed for creating large systems of BASIC
programs that interact with each other. A hypothetical
system will be described to show the interactions in a large
system design. In particular, the distinction between CHAIN
and RUN will be highlighted.

Consider the following integrated accounting system
containing three packages for general ledger, accounts
payable, and accounts receivable. Entry into each package
is controlled by a main menu program. The system structure
is shown below:

MENU

GL AP
4-

AR

+ +

I I I

GL01 GL02 GL03

+ + + +

I I
I III

AP01 AP02 AP03 AR01 AR0 2 AR0 3

In order to use CHAINing with COMMON effectively, it is

important to logically structure the system and the COMMON
information. In the system pictured above, COMMON
information exists within each of the packages GL, AP, and
AR. Each package contains a system of three separately
compiled "programs. Furthermore, there may be COMMON
information between MENU and each of the packages. Note
that there may be overlapping sets of COMMON information.
The compiler's COMMON statement is not as flexible as the
interpreter's: COMMON areas must be the same size in

programs that CHAIN to each other.

Page A-2

Two solutions to this problem of communicating between
programs are given below, though others are possible:

1. Use the same COMMON declarations in all programs so
that all common information may be shared, or

2. Use the same set of COMMON declarations within each
of the three packages with no common information
shared via COMMON with the other packages or the
main MENU program. In this case, there are three
sets of COMMON declarations, one for each package.

For a large integrated set of systems of programs, the
second method gives more flexibility with the compiler.
Since program control is switched from package to package
through the main MENU, there is little loss of flexibility
with this method. Any common information that could be
obtained in MENU should be obtained in the main program for
each of the packages GL, AP, and AR. This is the same
approach you would use with a single package.

For the above diagram, the use of CHAIN and RUN in each of
the major programs is outlined in the following program
fragments:

MENU.BAS
1000 If MENU=1 THEN RUN "GL"
1010 IF MENU=2 THEN RUN "AP"
1020 IF MENU=3 THEN RUN "AR"

GL.BAS General Ledger
10 %INCLUDE GLCOMDEF (GL) COMMON declarations
1000 CHAIN "GL01"
1010 CHAIN "GL02"
1020 CHAIN "GL0 3"

1030 IF MENU=YES THEN RUN "MENU"

AP.BAS Accounts Payable
10 %INCLUDE APCOMDEF (AP) COMMON declarations
1000 CHAIN "AP01"
1010 CHAIN "AP02"
1020 CHAIN "AP03"
1030 IF MENU=YES THEN RUN "MENU"

AR.BAS Accounts Receivable
10 % INCLUDE ARCOMDEF (AR) COMMON declarations
1000 CHAIN "AR01"
1010 CHAIN "AR02"
1020 CHAIN "AR03"
1030 IF MENU=YES THEN RUN "MENU"

Each of the lower level programs XXYY (XX=GL, AP, AR, YY =

01, 02, 03) should CHAIN back to the package main program
XX.

Page A-3

The RUN statement in the above programs loads the specified
program as a normal .COM file and starts execution. For
compiled BASIC programs, a new copy of the BRUN.COM runtime
module is reloaded. This allows a new system of CHAINed
programs to be started. During CHAINS, the BRUN.COM runtime
module is in control, like the BASIC interpreter during
interpretation, and BRUN.COM is not reloaded.

APPENDIX B

ROM-able Code

To create a program that can be burned into ROM, you should
note the following:

1. Constant data and instructions can go into ROM.

2. Variable data cannot go into ROM.

Therefore, it is necessary that ROM-able code have separate
data and instruction areas. You can specify these areas at
linktime by using the /D and /P switches (D for Data and P
for Program) . See the Utility Software Manual for more
information on the use of these switches.

Unfortunately, you cannot use the /P and /D switches if you
choose to link a program that uses the BRUN.COM runtime
module. Furthermore, any program that requires BRUN.COM
cannot be put into ROM.

The only way that you can put a compiled BASIC program into
ROM is by linking to the OBSLIB.REL runtime library. This
library is searched by default at linktime only if at
compiletime you compile with the /0 switch.

The disadvantages of using OBSLIB.REL are discussed in
Chapter 7.

APPENDIX C

Memory Map

Top
of

Memory

Load
address
in
BCLOAD

Bottom
of

Memory

CPM

Stack Grows Downward
AAAAAAAAAAA/VV

File Buffers Grow Downward
AAAAAAAAAAAA/V
\AAAAAAAAAAAAA
String Space Grows Upward

Extra Runtime Code & Data

User Program Code

User Program Data

Named COMMON

Blank COMMON

RUNTIME MODULE
16K

Contains most
commonly used
library routines

CPM vectors

--.COM file

.. «.

-BRUN.COM

Figure 1 Runtime Memory Map

Runtime memory map of a program using the BRUN.COM runtime
module.

APPENDIX D

Differences between Version 5.3 and
Previous Versions of the BASIC Compiler

Described below are the major differences between this
version of the BASIC Compiler (5.3) and previous versions of
the compiler:

1. Your compiled programs now rely on a large runtime
module for most of the runtime support that you
need during program execution. This module is
named BRUN.COM.

2. What used to be called BASLIB. REL, is now called
OBSLIB.REL (short for Old BaSlib) . The runtime
library on your disk called BASLIB. REL contains a
dummy module containing references to all the
routines in the BRUN.COM module. BRUN.COM is never
in memory at linktime.

3. The COMMON statement now works between CHAINed
subprograms, as well as between functions in the
same program.

4. The CHAIN statement is no longer semantically
equivalent to RUN, and true chaining is allowed.
Note that CHAIN <filename> does not cause reloading
of the runtime module. In fact, BRUN.COM acts much
like the interpreter in this case, supervising the
change of control from one program to the next.

5. The CLEAR command is now implemented.

6. The RUN <line-number > form of the RUN command is
now implemented.

As a result of the above changes to the BASIC compiler
package, the royalty requirements have been altered. The
old runtime library (what used to be BASLIB. REL and is now
OBSLIB.REL) can be used in your applications without payment
of royalties. However, notice must exist within your
application that portions of your software are copyrighted
by Microsoft.

Page D-2

However, any distribution of the BRUN.COM runtime module
requires payment of royalties. Examine your non-disclosure
agreement or contact Microsoft for more specific information
on the nature of royalty payments.

INDEX

Page Index-1

%INCLUDE 4-1 , 9-9

,A - save option 3-2 , 4-1
,TTY:=TTY: 6-7

/4
/C
/D
/D
/E
/E
/G
/N
/N
/0
/P
/S
/T
/X
/Z

switch
switch
switch
switch
switch
switch
switch
switch
switch
switch
switch
switch
switch
switch
switch

compiler) 6-10 to 6-11
6-12
6-14 f 9-10, 9-13

compiler) 6-10 f

compiler) 6-10,
linker) 7-5
compiler) 6-10, 6-13, 9-9
linker) 7-1
linker) 7-1
compiler) 6-10, 6-14
linker) 7-1
compiler) 6-14
linker) 7-5, 9-11
compiler) 6-10, 6-15
compiler) 6-10, 6-12
compiler) 6-10, 6-13, 9-9
compiler) 6-10, 6-14

4.51 execution switch - /T
4.51 lexical switch - /4 .

6-10, 6-12
6-10 to 6-11

Array Variables 9-14
ASCII - source file format . . 3-2, 4-1

BASIC Compiler procedures . . 3-2
BASIC Compiler User's Manual . 1-7
BASIC Learning Resources . . . 1-8
BASIC Runtime Errors 10-5
BASIC Statements not implemented 1-8
BASIC-80 Reference Manual . . 1-8
BASLIB.REL 2-4
BCLOAD 7-4
BCLOAD - Format 7-4
BRUN.COM 2-4, 9-11

CALL 9-2, 9-10 to 9-11
CAPITAL LETTERS 1-5
CHAIN 9-3
CHR$ 9-11
CLEAR 9-4
Code Relative 2-3
Command line syntax 6-1
Commands not implemented . . . 9-2
COMMON 9-4
COMMON - blank 9-4
COMMON - named 9-4
Compilation 3-2

Compiler Fatal Errors 10-2
Compiletime 2-2
Compiletime Error Messages . . 10-1
Compiling - output files . . . 6-2
Compiling - technical details 6-1
Contents of Package 1-6
Convention switches 6-8
Copyright Requirement 4

Debug code switch - /D 6-10, 6-14
DEFDBL 9-5
DEFINT 9-5
DEFSNG 9-5
DEFSTR 9-5
Device Designations 6-6
Device names as files 6-7
Devices as Parameters 6-7
Differences 9-2
DIM 9-6
Documentation 1-7
Double Precision Arithmetic . 9-14

Editing - technical details . 9-1
Ellipses (...) 1-5
END 9-7
Error Messages 10-1
Error Trapping 9-9
Error Trapping switches . . . 6-8
Errors - Fatal 10-2
Errors - Runtime 10-5
Errors - Warning 10-4
Expression Evaluation 9-13
Extensions - filename 6-5

Fatal Errors - Compiler . . . 10-2
Filename Extensions 6-5
FOR/NEXT 9-7

Global Reference 2-3

Global Reference - Unbound . . 2-3
Global Reference - Undefined . 2-3

How to use this manual 1-3

INCLUDE 4-1, 9-9
Integer Variables 9-14

Language Differences 9-2
Learning BASIC 1-8
Line Length 4-2
Line number switch - /C ... 6-10, 6-12
Link Loading 2-5, 3-3
Link Loading - basic steps . . 3-3
Linking - restrictions 7-4
Linking - technical details . 7-1
Linktime 2-2
Long string switch - /S ... 6-10, 6-15

Manual descriptions 1-7
Manuals - BASIC-80 Reference . 1-8
Manuals - Compiler User's . . 1-7
Manuals - User's Manual . . . 1-3
Manuals - Utility Software . . 1-8

Memory Map C-l
Message - finished linking . . 3-4
Module 2-3
Module - BRUN.COM 2-4

Non-Disclosure Agreement ... 4

Notation used in Manual . . . 1-5

OBSLIB.REL 2-4, 6-14
OBSLIB.REL - Advantages . . . 7-5
OBSLIB.REL - Disadvantages . . 7-6
ON ERROR GOTO 9-9
ON ERROR GOTO switch - /E . . 6-10, 6-13
ON ERROR GOTO switch - /X . . 6-10, 6-13
Operational Differences . . . 9-2

Operators 9-13
Optimizations 2-2
Other Differences 9-12
Overflow 9-13

POKE 9-10 to 9-11
Procedures - BASIC Compiler . 3-2
Program Development Process . 2-6

Relocatable 2-3
REM 9-9
Resources for BASIC 1-8
RESUME 9-9
Routine 2-3
Royalty Information 4

RUN 9-9
Running a Compiled Program . . 8-1
Running a Program 3-5
Runtime 2-2
Runtime Errors - BASIC 10-5
Runtime library - BASLIB.REL 2-4
Runtime library - OBSLIB.REL . 2-4
Runtime support 2-4
Runtime support routines . . . 2-4

SAVE 3-2, 4-1
Source file - format 3-2, 4-1
Special Code switches 6-9
Statements not implemented . . 9-2
Static nesting 9-7
STOP 9-10
String Space 9-14
Subroutine 9-2
Subscripts 9-6
Suppress code switch - /N . . 6-10, 6-14
Switch - /4 (compiler) 6-10 to 6-11
Switch - /C (compiler) 6-10, 6-12
Switch - /D (compiler) 6-10, 6-14

Switch
Switch
Switch
Switch
Switch
Switch
Switch
Switch
Switch
Switch
Switch
Switch
Switch
Switch
Switch
Syntax
Syntax
System

TROFF
TRON .

(linker) .

(compiler)
(linker) .

(linker) .

(compiler)
(linker) .

(compiler)
(linker) .

(compiler)
(compiler)
(compiler)
(compiler)

- Conventions .

- Error Trapping
- Special Code
- Command Line
Notation . . .

Requirements

/D
/E
/E
/G
/N
/N
/0
/P
/S
/T
/X
/Z

7-5
6-10, 6-13
7-1
7-1
6-10, 6-14
7-1
6-14
7-5
6-10, 6-15
6-10, 6-12
6-10, 6-13
6-10, 6-14
6-8
6-8
6-9
6-1
1-5
3

9-10
9-10

Unbound Global Reference . 2-3
Undefined Global Reference 2-3
USRn Functions 9-10
Utility Software Manual . . . 1-8

VARPTR 9-11

Warning errors 10-4
Warranty 2

WHILE... WEND 9-12

Z80 switch - /Z 6-10, 6-14

<> (angle brackets) 1-5

[] (square brackets) 1-5
. . . (ellipses) 1-5

basic-80

reference

manual

This manual is a reference for Microsoft's BASIC-80 language, release 5.0 and later.

There are significant differences between the 5.0 release of BASIC-80 and the previous releases

(release 4.51 and earlier). If you have programs written under a previous release of BASIC-80,

check Appendix A for new features in 5.0 that may affect execution.

Information in this document is subject to change without notice and does not represent a
commitment on the part of Microsoft. The software described in this document is furnished
under a license agreement or non-disclosure agreement. The software may be used or copied
only in accordance with the terms of the agreement. It is against the law to copy Microsoft
BASIC on cassette tape, disk, or any other medium for any purpose other than personal
convenience.

© Microsoft, 1979

LIMITED WARRANTY

MICROSOFT shall have no liability or responsibility to purchaser or any other person or entity

with respect to any liability, loss or damage caused or alleged to be caused directly or indirectly

by this product, including but not limited to any interruption of service, loss of business or
anticipatory profits or consequential damages resulting from the use or operation of this

product. This product will be exchanged within twelve months from date of purchase if

defective in manufacture, labeling or packaging, but except for such replacement the sale or
subsequent use of this program is without warranty or liability.

THE ABOVE IS A LIMITED WARRANTY AND THE ONLY WARRANTY MADE BY MICROSOFT.
ANY AND ALL WARRANTIES FOR MERCHANTABILITY AND/OR FITNESS FOR A PARTIC-
ULAR PURPOSE ARE EXPRESSLY EXCLUDED.

To report software bugs or errors in the documentation, please complete and return the
Problem Report at the back of this manual.

CP/M is a registered trademark of Digital Research

8101-530-07

BASIC-80 Reference Manual

CONTENTS

INTRODUCTION

CHAPTER 1 General Information About BASIC-80

CHAPTER 2 BASIC-80 Commands and Statements

CHAPTER 3 BASIC-80 Functions

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

APPENDIX F

APPENDIX G

APPENDIX H

APPENDIX I

APPENDIX J

APPENDIX K

APPENDIX L

APPENDIX M

New Features in BASIC-80, Release 5.0

BASIC-80 Disk I/O

Assembly Language Subroutines

BASIC-80 with the CP/M Operating System

BASIC-80 with the ISIS-II Operating System

BASIC-80 with the TEKDOS Operating System

BASIC-80 with the Intel SBC and MDS Systems

Standalone Disk BASIC

Converting Programs to BASIC-80

Summary of Error Codes and Error Messages

Mathematical Functions

Microsoft BASIC Compiler

ASCII Character Codes

Introduction

BASIC-80 is the most extensive implementation of BASIC
available for the 8080 and Z80 microprocessors. In its
fifth major release (Release 5.0), BASIC-80 meets the ANSI
qualifications for BASIC, as set forth in document
BSRX3. 60-1978. Each release of BASIC-80 consists of three
upward compatible versions: 8K, Extended and Disk . This
manual is a reference for all three versions of BASIC-80,
release 5.0 and later. This manual is also a reference for
Microsoft BASIC-86 and the Microsoft BASIC Compiler.
BASIC-86 is currently available in Extended and Disk
Standalone versions, which are comparable to the BASIC-80
Extended and Disk Standalone versions.

There are significant differences between the 5.0 release of
BASIC-80 and the previous releases (release 4.51 and
earlier) . If you have programs written under a previous
release of BASIC-80, check Appendix A for new features in
5.0 that may affect execution.

The manual is divided into three large chapters plus a
number of appendices. Chapter 1 covers a variety of topics,
largely pertaining to information representation when using
BASIC-80. Chapter 2 contains the syntax and semantics of
every command and statement in BASIC-80, ordered
alphabetically. Chapter 3 describes all of BASIC-80'

s

intrinsic functions, also ordered alphabetically. The
appendices contain information pertaining to individual
operating systems; plus lists of error messages, ASCII
codes, and math functions; and helpful information on
assembly language subroutines and disk I/O.

CHAPTER 1

GENERAL INFORMATION ABOUT BASIC-80

1.1 INITIALIZATION

The procedure for initialization will vary with different
implementations of BASIC-80. Check the appropriate appendix
at the back of this manual to determine how BASIC-80 is
initialized with your operating system.

1.2 MODES OF OPERATION

When BASIC-80 is initialized, it types the prompt "Ok".
"Ok" means BASIC-80 is at command level, that is, it is
ready to accept commands. At this point, BASIC-80 may be
used in either of two modes: the direct mode or the
indirect mode.

In the direct mode, BASIC statements and commands are not
preceded by line numbers. They are executed as they are
entered. Results of arithmetic and logical operations may
be displayed immediately and stored for later use, but the
instructions themselves are lost after execution. This mode
is useful for debugging and for using BASIC as a
"calculator" for quick computations that do not require a

complete program.

The indirect mode is the mode used for entering programs.
Program lines are preceded by line numbers and are stored in
memory. The program stored in memory is executed by
entering the RUN command.

1.3 LINE FORMAT

Program lines in a BASIC program have the following format
(square brackets indicate optional)

:

nnnnn BASIC statement [:BASIC statement...] <carriage return>

GENERAL INFORMATION ABOUT BASIC-80 Page 1-2

At the programmer's option, more than one BASIC statement
may be placed on a line, but each statement on a line must
be separated from the last by a colon.

A BASIC program line always begins with a line number, ends
with a carriage return, and may contain a maximum of:

72 characters in 8K BASIC-80
255 characters in Extended and Disk BASIC-80.

In Extended and Disk versions, it is possible to extend a
logical line over more than one physical line by use of the
terminal's <line feed> key. <Line feed> lets you continue
typing a logical line on the next physical line without
entering a <carriage return>. (In the 8K version, <line
feed> has no effect.)

1.3.1 Line Numbers

Every BASIC program line begins with a line number.
. Line

numbers indicate the order in which the program lines are
stored in memory and are also used as references when
branching and editing. Line numbers must be in the range
to 65529. In the Extended and Disk versions, a period (.)
may be used in EDIT, LIST, AUTO and DELETE commands to refer
to the current line.

GENERAL INFORMATION ABOUT BASIC-80 Page 1-3

1.4 CHARACTER SET

The BASIC-80 character set is comprised of alphabetic
characters, numeric characters and special characters.

The alphabetic characters in BASIC-80 are the upper case and
lower case letters of the alphabet.

The numeric characters in BASIC-80 are the digits through
9.

The following special characters and terminal keys are
recognized by BASIC-80:

Character Name

Blank
Equal sign or assignment symbol

+ Plus sign
Minus sign

* Asterisk or multiplication symbol
/ Slash or division symbol

Up arrow or exponentiation symbol
(Left parenthesis
) Right parenthesis
% Percent
Number (or pound) sign
$ Dollar sign
i Exclamation point
[Left bracket
] Right bracket
, Comma

Period or decimal point
' Single quotation mark (apostrophe)
; Semicolon
: Colon
& Ampersand
? Question mark
< Less than
> Greater than
\ Backslash or integer division symbol
@ At-sign
_ Underscore

<rubout> Deletes last character typed.
<escape> Escapes Edit Mode subcommands.

See Section 2.16.
<tab> Moves print position to next tab stop.

Tab stops are every eight columns.
<line feed> Moves to next physical line.
<carriage

return> Terminates input of a line.

GENERAL INFORMATION ABOUT BASIC-80 Page 1-4

1.4.1 Control Characters

The following control characters are in BASIC-80:

Control-A Enters Edit Mode on the line being typed.

Control-C

Control-G

Control-H

Control-I

Control-0

Control-R

Control-S

Control-Q

Control-U

Interrupts program execution and returns to
BASIC-80 command level.

Rings the bell at the terminal.

Backspace. Deletes the last character typed.

Tab. Tab stops are every eight columns.

Halts program output while execution
continues. A second Control-0 restarts
output.

Retypes the line that is currently being
typed.

Suspends program execution.

Resumes program execution after a Control-S.

Deletes the line that is currently being
typed.

1.5 CONSTANTS

Constants are the actual values BASIC uses during execution.
There are two types of constants: string and numeric.

A string constant is a sequence of up to 255 alphanumeric
characters enclosed in double quotation marks. Examples of
string constants:

"HELLO"
"$25,000.00"
"Number of Employees"

Numeric constants are positive or negative numbers. Numeric
constants in BASIC cannot contain commas. There are five
types of numeric constants:

1. Integer constants

2. Fixed Point
constants

Whole numbers between -32768 and
+32767. Integer constants do not
have decimal points.

Positive or negative real numbers,
i.e., numbers that contain decimal
points.

GENERAL INFORMATION ABOUT BASIC-80 Page 1-5

3. Floating Point
constants

Positive or negative numbers repre-
sented in exponential form (similar
to scientific notation) . A
floating point constant consists of
an optionally signed integer or
fixed point number (the mantissa)
followed by the letter E and an
optionally signed integer (the
exponent) . The allowable range for
floating point constants is 10-38
to 10+38.
Examples:

235.988E-7 = .0000235988
2359E6 = 2359000000

(Double precision floating point
constants use the letter D instead
of E. See Section 1.5.1.)

Hex constants Hexadecimal numbers with the prefix
&H. Examples:

&H76
&H32F

Octal constants Octal numbers with the prefix &0 or
&. Examples:

&0347
&1234

1.5.1 Single And Double Precision Form For Numeric Constants

In the 8K version of BASIC-80, all numeric constants are
single precision numbers. They are stored with 7 digits of
precision, and printed with up to 6 digits.

In the Extended and Disk versions, however, numeric
constants may be either single precision or double precision
numbers. With double precision, the numbers are stored with
16 digits of precision, and printed with up to 16 digits.

GENERAL INFORMATION ABOUT BASIC-80 Page 1-6

A single precision constant is any numeric constant that
has:

1. seven or fewer digits, or

2. exponential form using E, or

3. a trailing exclamation point (!)

A double precision constant is any numeric constant that
has:

1. eight or more digits, or

2. exponential form using D, or

3. a trailing number sign (#)

Examples:

Single Precision Constants Double Precision Constants

46.8 345692811
-1.09E-06 -1.09432D-06
3489.0 3489. 0#
22.5! 7654321.1234

1.6 VARIABLES

Variables are names used to represent values that are used
in a BASIC program. The value of a variable may be assigned
explicitly by the programmer, or it may be assigned as the
result of calculations in the program. Before a variable is
assigned a value, its value is assumed to be zero.

1.6.1 Variable Names And Declaration Characters

BASIC-80 variable names may be any length, however, in the
8K version, only the first two characters are significant.
In the Extended and Disk versions, up to 40 characters are
significant. The characters allowed in a variable name are
letters and numbers, and the decimal point is allowed in
Extended and Disk variable names. The first character must
be a letter. Special type declaration characters are also
allowed — see below.

A variable name may not be a reserved word. The Extended
and Disk versions allow embedded reserved words; the 8K
version does not. If a variable begins with FN, it is
assumed to be a call to a user-defined function. Reserved
words include all BASIC-80 commands, statements, function

GENERAL INFORMATION ABOUT BASIC-80 Page 1-7

names and operator names.

Variables may represent either a numeric value or a string.
String variable names are written with a dollar sign ($) as
the last character. For example: A$ = "SALES REPORT". The
dollar sign is a variable type declaration character, that
is, it "declares" that the variable will represent a string.

In the Extended and Disk versions, numeric variable names
may declare integer, single or double precision values.
(All numeric values in 8K are single precision.) The type
declaration characters for these variable names are as
follows

:

% Integer variable

I Single precision variable

Double precision variable

The default type for a numeric variable name is single
precision.

Examples of BASIC-80 variable names follow.

In Extended and Disk versions:

PI# declares a double precision value
MINIMUM! declares a single precision value
LIMIT% declares an integer value

In 8K, Extended and Disk versions:

N$ declares a string value
ABC represents a single precision value

In the Extended and Disk versions of BASIC-80, there is a
second method by which variable types may be declared. The
BASIC-80 statements DEFINT, DEFSTR, DEFSNG and DEFDBL may be
included in a program to declare the types for certain
variable names. These statements are described in detail in
Section 2.12.

1.6.2 Array Variables

An array is a group or table of values referenced by the
same variable name. Each element in an array is referenced
by an array variable that is subscripted with an integer or
an integer expression. An array variable name has as many
subscripts as there are dimensions in the array. For
example V(10) would reference a value in a one-dimension
array, T(l,4) would reference a value in a two-dimension
array, and so on. The maximum number of dimensions for an

GENERAL INFORMATION ABOUT BASIC-80 Page 1-8

array is 255. The maximum number of elements per dimension
is 32767.

1.6.3 Space Requirements

VARIABLES:

INTEGER
SINGLE PRECISION
DOUBLE PRECISION

BYTES

2

4

8

ARRAYS

:

INTEGER
SINGLE PRECISION
DOUBLE PRECISION

BYTES

2 per element
4 per element
8 per element

STRINGS:

3 bytes overhead plus the present contents of the string

1.7 TYPE CONVERSION

When necessary, BASIC will convert a numeric constant from
one type to another. The following rules and examples
should be kept in mind.

1. If a numeric constant of one type is set equal to a
numeric variable of a different type, the number
will be stored as the type declared in the variable
name. (If a string variable is set equal to a
numeric value or vice versa, a "Type mismatch"
error occurs.)
Example:

10 A% = 23.42
20 PRINT A%
RUN
23

2. During expression evaluation, all of the operands
in an arithmetic or relational operation are
converted to the same degree of precision, i.e.,
that of the most precise operand. Also, the result
of an arithmetic operation is returned to this
degree of precision.
Examples:

10 D# = 6#/7 The arithmetic was performed

GENERAL INFORMATION ABOUT BASIC-80 Page 1-9

20 PRINT D# in double precision and the
RUN result was returned in D#
.8571428571428571 as a double precision value.

10 D = 6#/7 The arithmetic was performed
20 PRINT D in double precision and the
RUN result was returned to D (single
.857143 precision variable), rounded and

printed as a single precision
value.

3. Logical operators (see Section 1.8.3) convert their
operands to integers and return an integer result.
Operands must be in the range -32768 to 32767 or an
"Overflow" error occurs.

4. When a floating point value is converted to an
integer, the fractional portion is rounded.
Example

:

10 C% = 55.88
20 PRINT C%
RUN
56

5. If a double precision variable is assigned a single
precision value, only the first seven digits,
rounded, of the converted number will be valid.
This is because only seven digits of accuracy were
supplied with the single precision value. The
absolute value of the difference between the
printed double precision number and the original
single precision value will be less than 6.3E-8
times the original single precision value.
Example

:

10 A = 2.04
20 B# = A
30 PRINT A;B#
RUN
2.04 2.039999961853027

1.8 EXPRESSIONS AND OPERATORS

An expression may be simply a string or numeric constant, or
a variable, or it may combine constants and variables with
operators to produce a single value.

Operators perform mathematical or logical operations on
values. The operators provided by BASIC-80 may be divided
into four categories:

GENERAL INFORMATION ABOUT BASIC-80 Page 1-10

1. Arithmetic

2. Relational

3. Logical

4. Functional

1.8.1 Arithmetic Operators

The arithmetic operators, in order of precedence, are:

Operator Operation Sample Expression

Exponentiation X~Y

Negation -X

*,/ Multiplication, Floating X*Y
Point Division X/Y

+,- Addition, Subtraction X+Y

To change the order in which the operations are performed,
use parentheses. Operations within parentheses are
performed first. Inside parentheses, the usual order of
operations is maintained.

Here are some sample algebraic expressions and their BASIC
counterparts.

BASIC Expression

X+Y*2

X-Y/Z

X*Y/Z

(X+Y)/Z

(X~2) ~Y

X"(Y"Z)

X(_y) X*(-Y) Two consecutive
operators must
be separated by
parentheses.

Algeibraic Expression

X+2Y

X YX- —
XY
Z

X+Y
Z

(X
2

)

Y

Y
Z

X

GENERAL INFORMATION ABOUT BASIC-80 Page 1-11

1.8.1.1 Integer Division And Modulus Arithmetic -

Two additional operators are available in Extended and Disk
versions of BASIC-80: Integer division and modulus
arithmetic.

Integer division is denoted by the baskslash (\) . The
operands are rounded to integers (must be in the range
-32768 to 32767) before the division is performed, and the
quotient is truncated to an integer.
For example

:

10\4 = 2

25.68\6.99 = 3

The precedence of integer division is just after
multiplication and floating point division.

Modulus arithmetic is denoted by the operator MOD. It gives
the integer value that is the remainder of an integer
division. For example:

10.4 MOD 4=2 (10/4=2 with a remainder 2)

25.68 MOD 6.99 = 5 (26/7=3 with a remainder 5)

The precedence of modulus arithmetic is just after integer
division.

1.8.1.2 Overflow And Division By Zero -

If, during the evaluation of an expression, a division by
zero is encountered, the "Division by zero" error message is
displayed, machine infinity with the sign of the numerator
is supplied as the result of the division, and execution
continues. If the evaluation of an exponentiation results
in zero being raised to a negative power, the "Division by
zero" error message is displayed, positive machine infinity
is supplied as the result of the exponentiation, and
execution continues.

If overflow occurs, the "Overflow" error message is
displayed, machine infinity with the algebraically correct
sign is supplied as the result, and execution continues.

1.8.2 Relational Operators

Relational operators are used to compare two values. The
result of the comparison is either "true" (-1) or "false"
(0) . This result may then used to make a decision regarding
program flow. (See IF, Section 2.26.)

'ORMATION ABOIJT EiASI:c-tJO Page 1-12

Relation Tested Expression

Equality X=Y

Inequality- X<>Y

Less than X<Y

Greater than X>Y

Less than or equlal to X<=Y

Greater than or equ al to X>=Y

Operator

<>

<

>

< =

> =

(The equal sign is also used to assign a value to a
variable. See LET, Section 2.30.)

When arithmetic and relational operators are combined in one
expression, the arithmetic is always performed first. For
example, the expression

X+Y < (T-l)/Z

is true if the value of X plus Y is less than the value of
T-l divided by Z. More examples:

IF SIN(X) <0 GOTO 1000
IF I MOD J <> THEN K=K+1

1.8.3 Logical Operators

Logical operators perform tests on multiple relations, bit
manipulation, or Boolean operations. The logical operator
returns a bitwise result which is either "true" (not zero)
or "false" (zero) . In an expression, logical operations are
performed after arithmetic and relational operations. The
outcome of a logical operation is determined as shown in the
following table. The operators are listed in order of
precedence.

GENERAL INFORMATION ABOUT BASIC-80 Page 1-13

NOT
X NOT X
1

1

AND
X Y X AND Y
1 1 1

1

1

OR
X Y X OR Y
1 1 1

1 1

1 1

XOR
X Y X XOR Y
1 1
1 1

1 1

IMP
X Y X IMP Y
1 1 1

1

1 1

EQV
X Y X EQV Y
1 1 1
1

1

1

Just as the relational operators can be used to make
decisions regarding program flow, logical operators can
connect two or more relations and return a true or false
value to be used in a decision (see IF, Section 2.26). For
example

:

IF D<200 AND F<4 THEN 80
IF I>10 OR K<0 THEN 50
IF NOT P THEN 100

Logical operators work by converting their operands to
sixteen bit, signed, two's complement integers in the range
-32768 to +32767. (If the operands are not in this range,
an error results.) If both operands are supplied as or -1

,

logical operators return or -1. The given operation is

GENERAL INFORMATION ABOUT BASIC-80 Page 1-14

performed on these integers in bitwise fashion, i.e., each
bit of the result is determined by the corresponding bits in
the two operands.

Thus, it is possible to use logical operators to test bytes
for a particular bit pattern. For instance, the AND
operator may be used to "mask" all but one of the bits of a
status byte at a machine I/O port. The OR operator may be
used to "merge" two bytes to create a particular binary
value. The following examples will help demonstrate how the
logical operators work.

63 AND 16=16 63 = binary 111111 and 16 = binary
10000, so 63 AND 16 = 16

15 AND 14=14 15 = binary 1111 and 14 = binary 1110,
so 15 AND 14 = 14 (binary 1110)

-1 AND 8=8 -1 = binary 1111111111111111 and
8 = binary 1000, so -1 AND 8=8

4 OR 2=6 4 = binary 100 and 2 = binary 10,
so 4 OR 2 = 6 (binary 110)

10 OR 10=10 10 = binary 1010, so 1010 OR 1010 =

1010 (10)

-1 OR -2=-l -1 = binary 1111111111111111 and
-2 = binary 1111111111111110,
so -1 OR -2 = -1. The bit
complement of sixteen zeros is
sixteen ones, which is the
two's complement representation of -1.

NOT X=-(X+1) The two's complement of any integer
is the bit complement plus one.

1-8.4 Functional Operators

A function is used in an expression to call a predetermined
operation that is to be performed on an operand. BASIC-80
has "intrinsic" functions that reside in the system, such as
SQR (square root) or SIN (sine). All of BASIC-80 's
intrinsic functions are described in Chapter 3.

BASIC-80 also allows "user defined" functions that are
written by the programmer. See DEF FN, Section 2.11.

GENERAL INFORMATION ABOUT BASIC-80 Page 1-15

1.8.5 String Operations

Strings may be concatenated using +. For example:

10 A$="FILE" : B$="NAME"
20 PRINT A$ + B$
30 PRINT "NEW " + A$ + B$
RUN
FILENAME
NEW FILENAME

Strings may be compared using the same relational operators
that are used with numbers:

<> < = >=

String comparisons are made by taking one character at a

time from each string and comparing the ASCII codes. If all
the ASCII codes are the same, the strings are equal. If the
ASCII codes differ, the lower code number precedes the
higher. If, during string comparison, the end of one string
is reached, the shorter string is said to be smaller.
Leading and trailing blanks are significant. Examples:

"AA" < "AB"
"FILENAME" = "FILENAME"
"X&" > "X#"
"CL " > "CL"
"kg" > "KG"
"SMYTH" < "SMYTHE"
B$ < "9/12/78" where B$ = "8/12/78"

Thus, string comparisons can be used to test string values
or to alphabetize strings. All string constants used in
comparison expressions must be enclosed in quotation marks.

1.9 INPUT EDITING

If an incorrect character is
typed, it can be deleted
Control-H. Rubout surrounds
backslashes, and Control-H
over a character and erasing

entered as a line is being
with the RUBOUT key or with
the deleted character (s) with
has the effect of backspacing

it. Once a character (s) has
been deleted, simply continue typing the line as desired.

To delete a line that is in the process of being typed, type
Control-U. A carriage return is executed automatically
after the line is deleted.

To correct program lines for a program that is currently in
memory, simply retype the line using the same line number.
BASIC-80 will automatically replace the old line with the
new line.

GENERAL INFORMATION ABOUT BASIC-80 Page 1-16

More sophisticated editing capabilities are provided in the
Extended and Disk versions of BASIC-80. See EDIT, Section
2.16.

To delete the entire program that is currently residing in

memory, enter the NEW command. (See Section 2.41.) NEW is

usually used to clear memory prior to entering a new
program.

1.10 ERROR MESSAGES

If BASIC-80 detects an error that causes program execution
to terminate, an error message is printed. In the 8K
version, only the error code is printed. In the Extended
and Disk versions, the entire error message is printed. For
a complete list of BASIC-80 error codes and error messages,
see Appendix J.

CHAPTER 2

BASIC-80 COMMANDS AND STATEMENTS

All of the BASIC-80 commands and statements are described in
this chapter. Each description is formatted as follows:

Format: Shows the correct format for the instruction.
See below for format notation.

Versions: Lists the versions of BASIC-80
in which the instruction is available.

Purpose: Tells what the instruction is used for.

Remarks: Describes in detail how the instruction
is used.

Example: Shows sample programs or program segments
that demonstrate the use of the instruction.

Format Notation
Wherever the format for a statement or command is given, the
following rules apply:

1. Items in capital letters must be input as shown.

2. Items in lower case letters enclosed in angle
brackets (< >) are to be supplied by the user.

3. Items in square brackets ([]) are optional.

4. All punctuation except angle brackets and square
brackets (i.e., commas, parentheses, semicolons,
hyphens, equal signs) must be included where shown.

5. Items followed by an ellipsis (...) may be repeated
any number of times (up to the length of the line)

.

BASIC-80 COMMANDS AND STATEMENTS Page 2-2

2 . 1 AUTO

Format:

Versions

Purpose

:

Remarks:

AUTO [<line number> [
, <increment>]

]

Example

:

Extended, Disk

To generate a line number
every carriage return.

automatically after

AUTO begins numbering at <line number> and
increments each subsequent line number by
<increment>. The default for both values is 10.
If <line number> is followed by a comma but
<increment> is not specified, the last increment
specified in an AUTO command is assumed.

If AUTO generates a line number that is already
being used, an asterisk is printed after the
number to warn the user that any input will
replace the existing line. However, typing a
carriage return immediately after the asterisk
will save the line and generate the next line
number.

AUTO is terminated by typing Control-C. The
line in which Control-C is typed is not saved.
After Control-C is typed, BASIC returns to
command level.

AUTO 100,50

AUTO

Generates line numbers 100,
150, 200 ...

Generates line numbers 10,
20, 30, 40 ...

BASIC-80 COMMANDS AND STATEMENTS Page 2-3

2.2 CALL

Format: CALL <variable name> [(<argument list>)

]

Version: Extended, Disk

Purpose: To call an assembly language subroutine.

Remarks: The CALL statement is one way to transfer
program flow to an external subroutine. (See
also the USR function, Section 3.40)

<variable name> contains an address that is the
starting point in memory of the subroutine.
<variable name> may not be an array variable
name. <argument list> contains the arguments
that are passed to the external subroutine.
<argument list> may contain only variables.

The CALL statement generates the same calling
sequence used by Microsoft's FORTRAN, COBOL and
BASIC compilers.

Example: 110 MYROUT=&HD000
120 CALL MYROUT(I,J,K)

NOTE: For a BASIC Compiler program, line 110 is not
needed because the address of MYROUT will be
assigned by the linking loader at load time.

BASIC-80 COMMANDS AND STATEMENTS Page 2-4

2.3 CHAIN

Format:

Version:

Purpose:

Remarks:

CHAIN [MERGE] <f ilename> [, [<line number exp>]

[,ALL] [,DELETE<range>]

]

Disk

To call a program and pass variables to it from
the current program.

<filename> is the name of the
called. Example:

CHAIN" PR0G1"

program that is

<line number exp> is a line number or an
expression that evaluates to a line number in
the called program. It is the starting point
for execution of the called program. If it is
omitted, execution begins at the first line.
Example:

CHAIN"PROG1",1000

<line number exp> is not affected by a
command

.

RENUM

With the ALL option, every variable in the
current program is passed to the called program.
If the • ALL option is omitted, the current
program must contain a COMMON statement to list
the variables that are passed. See Section 2.7.
Example:

CHAIN" PR0G1", 1000, ALL

If the MERGE option is included, it allows a

subroutine to be brought into the BASIC program
as an overlay. That is, a MERGE operation is
performed with the current program and the
called program. The called program must be an
ASCII file if it is to be MERGEd. Example:

CHAIN MERGE" OVRLAY ",1000

After an overlay is brought in, it is usually
desirable to delete it so that a new overlay may
be brought in. To do this, use the DELETE
option. Example:

CHAIN MERGE "OVRLAY2", 10 00, DELETE 1000-5000

The line numbers in <range> are affected by the
RENUM command.

BASIC-8 COMMANDS AND STATEMENTS Page 2-5

NOTE

NOTE:

NOTE

The CHAIN statement with MERGE option leaves the
files open and preserves the current OPTION BASE
setting.

If the MERGE option is omitted, CHAIN does not
preserve variable types or user-defined
functions for use by the chained program. That
is, any DEFINT, DEFSNG, DEFDBL, DEFSTR, or DEFFN
statements containing shared variables must be
restated in the chained program.

The Microsoft BASIC compiler does not support
the ALL, MERGE,
options to CHAIN.
CHAIN <filename>.
compatibility with
recommended that

DELETE, and <line number exp>
Thus, the statement format is

If you wish to maintain
the BASIC compiler, it is
COMMON be used to pass

variables and that overlays not be used. The
CHAIN statement leaves the files open during
CHAINing.

BASIC-80 COMMANDS AND STATEMENTS Page 2-6

2.4 CLEAR

Format:

Versions:

Purpose:

Remarks

:

NOTE:

NOTE

CLEAR [, [<expressionl>] [, <expression2>]

]

8K, Extended, Disk

To set all numeric variables to zero, all string
variables to null, and to close all open files;
and, optionally, to set the end of memory and
the amount of stack space.

<expressionl> is a memory location which, if
specified, sets the highest location available
for use by BASIC-80.

<expression2> sets aside stack space for BASIC.
The default is 256 bytes or one-eighth of the
available memory, whichever is smaller.

In previous versions of BASIC-80, <expressionl>
set the amount of string space, and
<expression2> set the end of memory. BASIC-80,
release 5.0 and later, allocates string space
dynamically. An "Out of string space error"
occurs only if there is no free memory left for
BASIC to use.

The BASIC Compiler supports the CLEAR statement
with the restriction that <expressionl> and
<expression2> must be integer expressions. If a
value of is given for either expression, the
appropriate default is used. The default stack
size is 256 bytes, and the default top of memory
is the current top of memory. The CLEAR
statement performs the following actions:

Closes all files
Clears all COMMON and user variables
Resets the stack and string space
Releases all disk buffers

Examples: CLEAR

CLEAR ,32768

CLEAR ,,2000

CLEAR ,32768,2000

BASIC-80 COMMANDS AND STATEMENTS Page 2-7

2.5 CLOAD

Formats: CLOAD <filename>

CLOAD? <filename>

CLOAD* <array name>

Versions: 8K (cassette), Extended (cassette)

Purpose: To load a program or an array from cassette tape
into memory.

Remarks: CLOAD executes a NEW command before it loads the
program from cassette tape. <filename> is the
string expression or the first character of the
string expression that was specified when the
program was CSAVEd.

CLOAD? verifies tapes by comparing the program
currently in memory with the file on tape that
has the same filename. If they are the same,
BASIC-80 prints Ok. If not, BASIC-80 prints NO
GOOD.

CLOAD* loads a numeric array that has been saved
on tape. The data on tape is loaded into the
array called <array name> specified when the
array was CSAVE*ed.

CLOAD and CLOAD? are always entered at command
level as direct mode commands. CLOAD* may be
entered at command level or used as a program
statement. Make sure the array has been
DIMensioned before it is loaded. BASIC-80
always returns to command level after a CLOAD,
CLOAD? or CLOAD* is executed. Before a CLOAD
is executed, make sure the cassette recorder is
properly connected and in the Play mode, and the
tape is possitioned correctly.

See also CSAVE, Section 2.9.

NOTE: CLOAD and CSAVE are not included in all
implementations of BASIC-80.

Example: CLOAD "MAX2"

Loads file "M" into memory.

BASIC-80 COMMANDS AND STATEMENTS Page 2-8

2.6 CLOSE

Format:

Version:

Purpose:

Remarks

:

CLOSE[[#]<file number> [, [#] <f ile number... >]]

Disk

To conclude I/O to a disk file.

<file number> is the number under which the file
was OPENed. A CLOSE with no arguments closes
all open files.

The association between a particular file and
file number terminates upon execution of a
CLOSE. The file may then be reOPENed using the
same or a different file number; likewise, that
file number may now be reused to OPEN any file.

A CLOSE for a sequential output file writes the
final buffer of output.

The END statement and the NEW command always
CLOSE all disk files automatically. (STOP does
not close disk files.)

Example See Appendix B.

BASIC-80 COMMANDS AND STATEMENTS Page 2-9

2 . 7 COMMON

Format: COMMON <list of variables>

Version: Disk

Purpose: To pass variables to a CHAINed program.

Remarks: The COMMON statement is used in conjunction with
the CHAIN statement. COMMON statements may
appear anywhere in a program, though it is
recommended that they appear at the beginning.
The same variable cannot appear in more than one
COMMON statement. Array variables are specified
by appending "

(

)
" to the variable name. If all

variables are to be passed, use CHAIN with the
ALL option and omit the COMMON statement.

Example: 100 COMMON A,B,C,D(),G$
110 CHAIN "PROG3" ,10

NOTE: The BASIC Compiler supports a modified version
of the COMMON statement. The COMMON statement
must appear in a program before any executable
statements. The current non-executable
statements are:

COMMON
DEFDBL, DEFINT, DEFSNG, DEFSTR
DIM
OPTION BASE
REM
% INCLUDE

Arrays in COMMON must be declared
DIM statements,

in preceding

The standard form of the COMMON statement is
referred to as blank COMMON. FORTRAN style
named COMMON areas are also supported; however,
the variables are not preserved across CHAINS.
The syntax for named COMMON is as follows:

COMMON /<name>/ <list of variables>

where <name> is 1 to 6 alphanumeric characters
starting with a letter. This is useful for
communicating with FORTRAN and assembly language
routines without having to pass explicit
parameters in the CALL statement.

BASIC-80 COMMANDS AND STATEMENTS Page 2-10

The blank COMMON size and order of variables
must be the same in the CHAINing and CHAINed-to
programs. With the BASIC Compiler, the best way
to insure this is to place all blank COMMON
declarations in a single include file and use
the %INCLUDE statement in each program. For
example:

MENU . BAS
10 % INCLUDE COMDEF

1000 CHAIN "PROG1"

PROG1.BAS
10 % INCLUDE COMDEF

. 2000 CHAIN "MENU"

COMDEF. BAS
100 DIM A(100) ,B$(200)
110 COMMON I,J,K,A, ()

120 COMMON A$,B$, () ,X,Y,Z

BASIC-80 COMMANDS AND STATEMENTS Page 2-11

2 . 8 CONT

Format: CONT

Versions: 8K, Extended, Disk

Purpose: To continue program execution after a Control-C
has been typed, or a STOP or END statement has
been executed.

Remarks: Execution resumes at the point where the break
occurred. If the break occurred after a prompt
from an INPUT statement, execution continues
with the reprinting of the prompt (? or prompt
string) .

CONT is usually used in conjunction with STOP
for debugging. When execution is stopped,
intermediate values may be examined and changed
using direct mode statements. Execution may be
resumed with CONT or a direct mode GOTO, which
resumes execution at a specified line number.
With the Extended and Disk versions, CONT may be
used to continue execution after an error.

CONT is invalid if the program has been edited
during the break,
cannot be CONTinued
occurred during the

In 8K BASIC-80, execution
if a direct mode error has
break

.

Example: See example Section 2.61, STOP.

BASIC-80 COMMANDS AND STATEMENTS Page 2-12

2.9 CSAVE

Formats: CSAVE <string expression>

CSAVE* <array variable name>

Versions: 8K (cassette) , Extended (cassette)

Purpose: To save the program or an array currently in

memory on cassette tape.

Remarks: Each program or array saved on tape is

identified by a filename. When the command
CSAVE <string expression> is executed, BASIC-80
saves the program currently in memory on tape
and uses the first character in <string
expression> as the filename. <string
expression> may be more than one character, but
only the first character is used for the
filename

.

When the command CSAVE* <array variable name> is
executed, BASIC-80 saves the specified array on
tape. The array must be a numeric array. The
elements of a multidimensional array are saved
with the leftmost subscript changing fastest.

CSAVE may be used as a program statement or as a

direct mode command.

Before a CSAVE or CSAVE* is executed, make sure
the cassette recorder is properly connected and
in the Record mode.

See also CLOAD, Section 2.5.

NOTE: CSAVE and CLOAD are not included in
implementations of BASIC-80.

Example: CSAVE "TIMER"

Saves the program currently in memory on
cassette under filename "T".

all

BASIC-80 COMMANDS AND STATEMENTS Page 2-13

2.10 DATA

Format:

Versions:

Purpose

:

Remarks:

DATA <list of constants>

8K, Extended, Disk

To store the numeric and string constants that
are accessed by the program's READ statement (s)

.

(See READ, Section 2.54)

DATA statements are nonexecutable and may be
placed anywhere in the program. A DATA
statement may contain as many constants as will
fit on a line (separated by commas) , and any
number of DATA statements may be used in a
program. The READ statements access the DATA
statements in order (by line number) and the
data contained therein may be thought of as one
continuous list of items, regardless of how many
items are on a line or where the lines are
placed in the program.

<list of constants> may contain numeric
constants in any format, i.e., fixed point,
floating point or integer. (No numeric
expressions are allowed in the list.) String
constants in DATA statements must be surrounded
by double quotation marks only if they contain
commas, colons or significant leading or
trailing spaces. Otherwise, quotation marks are
not needed.

The variable type (numeric or string) given in
the READ statement must agree with the
corresponding constant in the DATA statement.

DATA statements may be reread from the beginning
by use of the RESTORE statement (Section 2.57).

Example

:

See examples in Section 2.54, READ.

BASIC-80 COMMANDS AND STATEMENTS Page 2-14

2.11 DEF FN

Format: DEF FN<name> [(<parameter list>)] =<function definition>

Versions: 8K, Extended, Disk

Purpose: To define and name a function that is written by
the user.

Remarks: <name> must be a legal variable name. This
name, preceded by FN, becomes the name of the
function. <parameter list> is comprised of
those variable names in the function definition
that are to be replaced when the function is
called. The items in the list are separated by
commas. <function definition> is an expression
that performs the operation of the function. It
is limited to one line. Variable names that
appear in this expression serve only to define
the function; they do not affect program
variables that have the same name. A variable
name used in a function definition may or may
not appear in the parameter list. If it does,
the value of the parameter is supplied when the
function is called. Otherwise, the current
value of the variable is used.

The variables in the parameter list represent,
on a one-to-one basis, the argument variables or
values that will be given in the function call.
(Remember, in the 8K version only one argument
is allowed in a function call, therefore the DEF
FN statement will contain only one variable.)

In Extended and Disk BASIC-80, user-defined
functions may be numeric or string; in 8K,
user-defined string functions are not allowed.
If a type is specified in the function name, the
value of the expression is forced to that type
before it is returned to the calling statement.
If a type is specified in the function name and
the argument type does not match, a "Type
mismatch" error occurs.

A DEF FN statement must
function it defines
function is called before
an "Undefined user function" error
FN is illegal in the direct mode.

be executed before the
may be called. If a

it has been defined,
occurs. DEF

BASIC-80 COMMANDS AND STATEMENTS Page 2-15

Example:

410 DEF FNAB(X,Y)=X~3/Y"2
420 T=FNAB(I,J)

Line 410 defines the function FNAB. The
function is called in line 420.

BASIC-80 COMMANDS AND STATEMENTS Page 2-16

2.12 DEFINT/SNG/DBL/STR

Format: DEF<type> <range(s) of letters>
where <type> is INT, SNG, DBL, or STR

Versions: Extended, Disk

Purpose: To declare variable types as integer, single
precision, double precision, or string.

Remarks: A DEFtype statement declares that the variable
names beginning with the letter (s) specified
will be that type variable. However, a type
declaration character always takes precedence
over a DEFtype statement in the typing of a

variable.

If no type declaration statements are
encountered, BASIC-80 assumes all variables
without declaration characters are single
precision variables.

Examples: 10 DEFDBL L-P All variables beginning with
the letters L, M, N, O, and P
will be double precision
variables.

10 DEFSTR A All variables beginning with
the letter A will be string
variables.

10 DEFINT I-N,W-Z
All variable beginning with
the letters I, J, K, L, M,
N, W, X, Y, Z will be integer
variables.

BASIC-80 COMMANDS AND STATEMENTS Page 2-17

2.13 DEF USR

Format:

Versions

Purpose

:

Remarks:

DEF USR[<digit>] =<integer expression>

Extended, Disk

To specify the starting address of
language subroutine.

an assembly

<digit> may be any digit from to 9. The digit
corresponds to the number of the USR routine
whose address is being specified. If <digit> is
omitted, DEF USRO is assumed. The value of
<integer expression> is the starting address of
the USR routine. See Appendix C, Assembly
Language Subroutines.

Any number of DEF USR statements may appear in a
program to redefine subroutine starting
addresses, thus allowing access to as many
subroutines as necessary.

Example

200 DEF USR0=24000
210 X=USR0 (¥"2/2.89)

BASIC-80 COMMANDS AND STATEMENTS Page 2-18

2.14 DELETE

Format: DELETE[<line number>] [-<line number>]

Versions: Extended, Disk

Purpose: To delete program lines.

Remarks: BASIC-80 always returns to command level after a

DELETE is executed. If <line number> does not
exist, an "Illegal function call" error occurs.

Examples: DELETE 40 Deletes line 40

DELETE 40-100 Deletes lines 40 through
100, inclusive

DELETE-40 Deletes all lines up to
and including line 40

BASIC-80 COMMANDS AND STATEMENTS Page 2-19

2.15 DIM

Format: DIM <list of subscripted variables>

Versions: 8K, Extended, Disk

Purpose: To specify the maximum values for array variable
subscripts and allocate storage accordingly.

Remarks: If an array variable name is used without a DIM
statement, the maximum value of its subscript (s)
is assumed to be 10. If a subscript is used
that is greater than the maximum specified, a
"Subscript out of range" error occurs. The
minimum value for a subscript is always 0,
unless otherwise specified with the OPTION BASE
statement (see Section 2.46).

The DIM statement sets all the elements of the
specified arrays to an initial value of zero.

Example: 10 DIM A(20)
20 FOR 1=0 TO
30 READ A(I)
40 NEXT I

20

BASIC-80 COMMANDS AND STATEMENTS Page 2-20

2.16 EDIT

Format: EDIT <line number

>

Versions: Extended, Disk

Purpose: To enter Edit Mode at the specified line.

Remarks: In Edit Mode, it is possible to edit portions of
a line without retyping the entire line. Upon
entering Edit Mode, BASIC-80 types the line
number of the line to be edited, then it types a
space and waits for an Edit Mode subcommand.

Edit Mode Subcommands

Edit Mode subcommands are used to move the
cursor or to insert, delete, replace, or search
for text within a line. The subcommands are not
echoed. Most of the Edit Mode subcommands may
be preceded by an integer which causes the
command to be executed that number of times.
When a preceding integer is not specified, it is
assumed to be 1.

Edit Mode subcommands may be categorized
according to the following functions:

1. Moving the cursor

2. Inserting text

3. Deleting text

4. Finding text

5. Replacing text

6. Ending and restarting Edit Mode

NOTE

In the descriptions that follow, <ch>
represents any character, <text>
represents a string of characters of
arbitrary length, [i] represents an
optional integer (the default is 1) , and
$ represents the Escape (or Altmode)
key.

BASIC-80 COMMANDS AND STATEMENTS Page 2-21

1. Moving the Cursor

Space Use the space bar to move the cursor to the
right. [i] Space moves the cursor i spaces to
the right. Characters are printed as you space
over them.

Rubout In Edit Mode, [i] Rubout moves the cursor i

spaces to the left (backspaces) . Characters are
printed as you backspace over them.

2. Inserting Text

I Ktext>$ inserts <text> at the current cursor
position. The inserted characters are printed
on the terminal. To terminate insertion, type
Escape. If Carriage Return is typed during an
Insert command, the effect is the same as typing
Escape and then Carriage Return. During an
Insert command, the Rubout, Delete, or
Underscore key on the terminal may be used to
delete characters to the left of the cursor.
Rubout will print out the characters as you
backspace over them. Delete and Underscore will
print an Underscore for each character that you
backspace over. If an attempt is made to insert
a character that will make the line longer than
255 characters, a bell (Control-G) is typed and
the character is not printed.

X The X subcommand is used to extend the line. X
moves the cursor to the end of the line, goes
into insert mode, and allows insertion of text
as if an Insert command had been given. When
you are finished extending the line, type Escape
or Carriage Return.

3. Deleting Text

D [i]D deletes i characters to the right of the
cursor. The deleted characters are echoed
between backslashes, and the cursor is
positioned to the right of the last character
deleted. If there are fewer than i characters
to the right of the cursor, iD deletes the
remainder of the line.

H H deletes all characters to the right of the
cursor and then automatically enters insert
mode. H is useful for replacing statements at
the end of a line.

4. Finding Text

S The subcommand [i]S<ch> searches for the ith

BASIC-80 COMMANDS AND STATEMENTS Page 2-22

occurrence of <ch> and positions the cursor
before it. The character at the current cursor
position is not included in the search. If <ch>
is not found, the cursor will stop at the end of
the line. All characters passed over during the
search are printed.

K The subcommand [i]K<ch> is similar to [i]S<ch>,
except all the characters passed over in the
search are deleted. The cursor is positioned
before <ch>, and the deleted characters are
enclosed in backslashes.

5. Replacing Text

C The subcommand C<ch> changes the next character
to <ch>. If you wish to change the next i

characters, use the subcommand iC, followed by i

characters. After the ith new character is
typed, change mode is exited and you will return
to Edit Mode.

6. Ending and Restarting Edit Mode

<cr> Typing Carriage Return prints the remainder of
the line, saves the changes you made and exits
Edit Mode.

E The E subcommand has the same effect as Carriage
Return, except the remainder of the line is not
printed.

Q The Q subcommand returns to BASIC-80 command
level, without saving any of the changes that
were made to the line during Edit Mode.

L The L subcommand lists the remainder of the line
(saving any changes made so far) and repositions
the cursor at the beginning of the line, still
in Edit Mode. L is usually used to list the
line when you first enter Edit Mode.

A The A subcommand lets you begin editing a line
over again. It restores the original line and
repositions the cursor at the beginning.

NOTE

If BASIC-80 receives an unrecognizable
command or illegal character while in
Edit Mode, it prints a bell (Control-G)
and the command or character is ignored.

BASIC-80 COMMANDS AND STATEMENTS Page 2-23

Syntax Errors

When a Syntax Error is encountered during
execution of a program, BASIC-80 automatically
enters Edit Mode at the line that caused the
error. For example:

10 K = 2(4)
RUN
?Syntax error in 10
10

When you finish editing the line and type
Carriage Return (or the E subcommand) , BASIC-80
reinserts the line, which causes all variable
values to be lost. To preserve the variable
values for examination , first exit Edit Mode
with the Q subcommand. BASIC-80 will return to
command level, and all variable values will be
preserved.

Control-A

To enter Edit Mode on the line you are currently
typing, type Control-A. BASIC-80 responds with
a carriage return, an exclamation point (!) and
a space. The cursor will be positioned at the
first character in the line. Proceed by typing
an Edit Mode subcommand.

NOTE

Remember, if you have just entered a
line and wish to go back and edit it,
the command "EDIT." will enter Edit Mode
at the current line. (The line number
symbol "." always refers to the current
line.

)

BASIC-80 COMMANDS AND STATEMENTS Page 2-24

2.17 END

Format: END

Versions: 8K, Extended, Disk

Purpose: To terminate program execution, close all files
and return to command level.

Remarks: END statements may be placed anywhere in the
program to terminate execution. Unlike the STOP
statement, END does not cause a BREAK message to
be printed. An END statement at the end of a

program is optional. BASIC-80 always returns to
command level after an END is executed.

Example: 520 IF K>1000 THEN END ELSE GOTO 20

BASIC-80 COMMANDS AND STATEMENTS Page 2-25

2.18 ERASE

Format:

Versions:

Purpose:

Remarks:

NOTE:

Example:

ERASE <list of array variables>

Extended, Disk

To eliminate arrays from a program.

Arrays may be redimensioned after they are
ERASEd, or the previously allocated array space
in memory may be used for other purposes. If an
attempt is made to redimension an array without
first ERASEing it, a "Redimensioned array" error
occurs.

The Microsoft BASIC compiler does not support
ERASE.

450 ERASE A,B
460 DIM B(99)

BASIC-80 COMMANDS AND STATEMENTS Page 2-26

2.19 ERR AND ERL VARIABLES

When an error handling subroutine is entered,
the variable ERR contains the error code for the
error, and the variable ERL contains the line
number of the line in which the error was
detected. The ERR and ERL variables are usually
used in IF. . .THEN statements to direct program
flow in the error trap routine.

If the statement that caused the error was a

direct mode statement, ERL will contain 65535.
To test if an error occurred in a direct
statement, use IF 65535 = ERL THEN ...
Otherwise, use

IF ERR = error code THEN . .

.

IF ERL = line number THEN ...

If the line number is not on the right side of
the relational operator, it cannot be renumbered
by RENUM. Because ERL and ERR are reserved
variables, neither may appear to the left of the
equal sign in a LET (assignment) statement.
BASIC-80' s error codes are listed in Appendix J.

(For Standalone Disk BASIC error codes, see
Appendix H.)

BASIC-80 COMMANDS AND STATEMENTS Page 2-27

2.20 ERROR

Format

:

Versions

Purpose

:

Remarks:

Example 1

ERROR <integer expression>

Extended, Disk

1) To simulate the
error; or 2) to
defined by the user.

occurrence of a BASIC-80
allow error codes to be

The value of <integer expression> must be
greater than and less than 255. If the value
of <integer expression> equals an error code
already in use by BASIC-80 (see Appendix J) , the
ERROR statement will simulate the occurrence of
that error, and the corresponding error message
will be printed. (See Example 1.)

To define your own error code, use a value that
is greater than any used by BASIC-80' s error
codes. (It is preferable to use the highest
available values, so compatibility may be
maintained when more error codes are added to
BASIC-80.) This user-defined error code may then
be conveniently handled in an error trap
routine. (See Example 2.)

If an ERROR statement specifies a code for which
no error message has been defined, BASIC-80
responds with the message UNPRINTABLE ERROR.
Execution of an ERROR statement for which there
is no error trap routine causes an error message
to be printed and execution to halt.

LIST
10 S = 10
20 T = 5

30 ERROR S + T
40 END
Ok
RUN
String too long in line 30

Or, in direct mode:

Ok
ERROR 15
String too long
Ok

(you type this line)
(BASIC-80 types this line;

BASIC-80 COMMANDS AND STATEMENTS Page 2-28

Example 2

:

110 ON ERROR GOTO 400
120 INPUT "WHAT IS YOUR BET" ;B
130 IF B > 5000 THEN ERROR 210

400 IF ERR = 210 THEN PRINT "HOUSE LIMIT IS $5000"
410 IF ERL = 130 THEN RESUME 120

BASIC-80 COMMANDS AND STATEMENTS Page 2-29

2.21 FIELD

Format: FIELD [#] <file number >, <field width> AS <string variable>

Version: Disk

Purpose: To allocate space for variables in a random file
buffer

.

Remarks: To get data out of a random buffer after a GET
or to enter data before a PUT, a FIELD statement
must have been executed.

<file number> is the number under which the file
was OPENed. <field width> is the number of
characters to be allocated to <string variable>.
For example,

FIELD 1, 20 AS N$, 10 AS ID$, 40 AS ADD$

allocates the first 20 positions (bytes) in the
random file buffer to the string variable N$,
the next 10 positions to ID$, and the next 40
positions to ADD$. FIELD does NOT place any
data in the random file buffer. (See LSET/RSET
and GET.)

The total number of bytes allocated in a FIELD
statement must not exceed the record length that
was specified when the file was OPENed.
Otherwise, a "Field overflow" error occurs.
(The default record length is 128.)

Any number of FIELD statements may be executed
for the same file, and all FIELD statements that
have been executed are in effect at the same
time

.

Example: See Appendix B.

NOTE: Do not use a FIELDed variable name in an INPUT
or LET statement . Once a variable name is
FIELDed, it points to the correct place in the
random file buffer. If a subsequent INPUT or
LET statement with that variable name is
executed, the variable's pointer is moved to
string space.

BASIC-80 COMMANDS AND STATEMENTS Page 2-30

2 • 2 2 FOR • • • NEXT

Format: FOR <variable>=x TO y [STEP z]

NEXT [<variable>] [,<variable>. . .

]

where x, y and z are numeric expressions.

Versions: 8K, Extended, Disk

Purpose: To allow a series of instructions to be
performed in a loop a given number of times.

Remarks: <variable> is used as a counter. The first
numeric expression (x) is the initial value of
the counter. The second numeric expression (y)
is the final value of the counter. The program
lines following the FOR statement are executed
until the NEXT statement is encountered. Then
the counter is incremented by the amount
specified by STEP. A check is performed to see
if the value of the counter is now greater than
the final value (y) . If it is not greater,
BASIC-80 branches back to the statement after
the FOR statement and the process is repeated.
If it is greater, execution continues with the
statement following the NEXT statement. This is
a FOR. ..NEXT loop. If STEP is not specified,
the increment is assumed to be one. If STEP is
negative, the final value of the counter is set
to be less than the initial value. The counter
is decremented each time through the loop, and
the loop is executed until the counter is less
than the final value.

The body of the loop is skipped if the initial
value of the loop times the sign of the step
exceeds the final value times the sign of the
step.

Nested Loops
FOR. . .NEXT loops may be nested, that is, a
FOR... NEXT loop may be placed within the context
of another FOR. . .NEXT loop. When loops are
nested, each loop must have a unique variable
name as its counter. The NEXT statement for the
inside loop must appear before that for the
outside loop. If nested loops have the same end
point, a single NEXT statement may be used for
all of them.

The variable (s) in the NEXT statement may be

BASIC-80 COMMANDS AND STATEMENTS Page 2-31

omitted, in which case the NEXT statement will
match the most recent FOR statement. If a NEXT
statement is encountered before its
corresponding FOR statement, a "NEXT without
FOR" error message is issued and execution is
terminated.

Example 1: 10 K=10
20 FOR 1=1 TO K STEP 2

30 PRINT I;
40 K=K+10
50 PRINT K
60 NEXT
RUN
1 20
3 30
5 40
7 50
9 60

Ok

Example 2: 10 J=0
20 FOR 1=1 TO J
30 PRINT I

40 NEXT I

In this example, the loop does not execute
because the initial value of the loop exceeds
the final value.

Example 3 : 10 1=5
20 FOR 1=1 TO 1+5
30 PRINT I;

40 NEXT
RUN
12 3 4 5 6

Ok
10

In this example, the loop executes ten times.
The final value for the loop variable is always
set before the initial value is set. (Note:
Previous versions of BASIC-80 set the initial
value of the loop variable before setting the
final value; i.e., the above loop would have
executed six times.)

BASIC-80 COMMANDS AND STATEMENTS Page 2-32

2.23 GET

Format: GET [#]<file number >[, <record number>]

Version: Disk

Purpose: To read a record from a random disk file into a
random buffer.

Remarks: <file number> is the number under which the file
was OPENed. If <record number> is omitted, the
next record (after the last GET) is read into
the buffer. The largest possible record number
is 32767.

Example: See Appendix B.

NOTE: After a GET statement, INPUT# and LINE INPUT*
may be done to read characters from the random
file buffer.

BASIC-80 COMMANDS AND STATEMENTS Page 2-33

2.24 GOSUB . .

.

RETURN

Format: GOSUB <line number

>

RETURN

Versions: 8K, Extended, Disk

Purpose: To branch to and return from a subroutine.

Remarks: <line number> is the first line of the
subroutine.

A subroutine may be called any number of times
in a program, and a subroutine may be called
from within another subroutine. Such nesting of
subroutines is limited only by available memory.

The RETURN statement (s) in a subroutine cause
BASIC-80 to branch back to the statement
following the most recent GOSUB statement. A
subroutine may contain more than one RETURN
statement, should logic dictate a return at
different points in the subroutine. Subroutines
may appear anywhere in the program, but it is
recommended that the subroutine be readily
distinguishable from the main program. To
prevent inadvertant entry into the subroutine,
it may be preceded by a STOP, END, or GOTO
statement that directs program control around
the subroutine.

Example: 10 GOSUB 40
20 PRINT "BACK FROM SUBROUTINE"
30 END
40 PRINT "SUBROUTINE";
50 PRINT " IN";
60 PRINT " PROGRESS"
70 RETURN
RUN
SUBROUTINE IN PROGRESS
BACK FROM SUBROUTINE
Ok

BASIC-80 COMMANDS AND STATEMENTS Page 2-34

2.25 GOTO

Format:

Versions

Purpose

:

Remarks

:

GOTO <line number

>

8K f Extended, Disk

To branch unconditionally out of the normal
program sequence to a specified line number.

If <line number> is an executable statement,
that statement and those following are executed.
If it is a nonexecutable statement, execution
proceeds at the first executable statement
encountered after <line number>.

Example: LIST
10 READ R
20 PRINT "R =";R,
30 A = 3.14*R~2
40 PRINT "AREA =" ;A
5 GOTO 10
60 DATA 5,7,12
Ok
RUN
R = 5 AREA = 78.5
R = 7 AREA = 153.86
R = 12 AREA = 452.16
?Out of data in 10
Ok

BASIC-80 COMMANDS AND STATEMENTS Page 2-35

2.26 IF. . ,THEN[. . .ELSE] AND IF. . .GOTO

Format: IF <expression> THEN <statement (s) >
|
<line number>

[ELSE <statement (s) >
|
<line number>]

Format: IF <expression> GOTO <line number

>

[ELSE <statement (s) >
|
<line number>]

Versions: 8K f Extended, Disk

NOTE: The ELSE clause is allowed only in Extended and
Disk versions.

Purpose: To make a decision regarding program flow based
on the result returned by an expression.

Remarks: If the result of <expression> is not zero, the
THEN or GOTO clause is executed. THEN may be
followed by either a line number for branching
or one or more statements to be executed. GOTO
is always followed by a line number. If the
result of <expression> is zero, the THEN or GOTO
clause is ignored and the ELSE clause, if
present, is executed. Execution continues with
the next executable statement. (ELSE is allowed
only in Extended and Disk versions.) Extended
and Disk versions allow a comma before THEN.

Nesting of IF Statements

In the Extended and Disk versions,
IF. . .THEN. . .ELSE statements may be nested.
Nesting is limited only by the length of the
line. For example

IF X>Y THEN PRINT "GREATER" ELSE IF Y>X
THEN PRINT "LESS THAN" ELSE PRINT "EQUAL"

is a legal statement. If the statement does not
contain the same number of ELSE and THEN
clauses, each ELSE is matched with the closest
unmatched THEN. For example

IF A=B THEN IF B=C THEN PRINT "A=C"
ELSE PRINT "A<>C"

will not print "A<>C" when A<>B.

If an IF... THEN statement is followed by a line
number in the direct mode, an "Undefined line"
error results unless a statement with the
specified line number had previously been
entered in the indirect mode.

BASIC-80 COMMANDS AND STATEMENTS Page 2-36

NOTE: When using IF to test equality for a value that
is the result of a floating point computation,
remember that the internal representation of the
value may not be exact. Therefore, the test
should be against the range over which the
accuracy of the value may vary. For example, to
test a computed variable A against the value
1.0, use:

IF ABS (A-1.0) <1.0E-6 THEN ...

This test returns true if the value of A is 1.0
with a relative error of less than 1.0E-6.

Example 1: 200 IF I THEN GET#1,I

This statement GETs record number I if I is not
zero.

Example 2: 100 IF (K20) * (I>10) THEN DB=1979-1 :GOTO 300
110 PRINT "OUT OF RANGE"

In this example, a test determines if I is
greater than 10 and less than 20. If I is in
this range, DB is calculated and execution
branches to line 300. If I is not in this
range, execution continues with line 110.

Example 3: 210 IF IOFLAG THEN PRINT A$ ELSE LPRINT A$

This statement causes printed output to go
either to the terminal or the line printer,
depending on the value of a variable (IOFLAG)

.

If IOFLAG is zero, output goes to the line
printer, otherwise output goes to the terminal.

BASIC-80 COMMANDS AND STATEMENTS Page 2-37

2.27 INPUT

Format: INPUT[;] [<"prompt str ing"> ;] <list of variables>

Versions: 8K, Extended, Disk

Purpose: To allow input from the terminal during program
execution.

Remarks: When an INPUT statement is encountered, program
execution pauses and a question mark is printed
to indicate the program is waiting for data. If
<"prompt string"> is included, the string is
printed before the question mark. The required
data is then entered at the terminal.

A comma may be used instead of a semicolon after
the prompt string to suppress the question mark.
For example, the statement INPUT "ENTER
BIRTHDATE",B$ will print the prompt with no
question mark.

If INPUT is immediately followed by a semicolon,
then the carriage return typed by the user to
input data does not echo a carriage return/line
feed sequence.

The data that is entered is assigned to the
variable (s) given in <variable list>. The
number of data items supplied must be the same
as the number of variables in the list. Data
items are separated by commas.

The variable names in the list may be numeric or
string variable names (including subscripted
variables) . The type of each data item that is
input must agree with the type specified by the
variable name. (Strings input to an INPUT
statement need not be surrounded by quotation
marks.

)

Responding to INPUT with too many or too few
items, or with the wrong type of value (numeric
instead of string, etc.) causes the messsage
"?Redo from start" to be printed. No assignment
of input values is made until an acceptable
response is given.

In the 8K version, INPUT is illegal in the
direct mode.

BASIC-80 COMMANDS AND STATEMENTS Page 2-38

Examples: 10 INPUT X
20 PRINT X "SQUARED IS" X"2
30 END
RUN
? 5 (The 5 was typed in by the user

in response to the question mark.)
5 SQUARED IS 25

Ok

LIST
10 PI=3.14
20 INPUT "WHAT IS THE RADIUS" ;R
30 A=PI*R"2
40 PRINT "THE AREA OF THE CIRCLE IS";A
50 PRINT
60 GOTO 20
Ok
RUN
WHAT IS THE RADIUS? 7.4 (User types 7.4)
THE AREA OF THE CIRCLE IS 171.946

WHAT IS THE RADIUS?
etc.

BASIC-80 COMMANDS AND STATEMENTS Page 2-39

2.28 INPUT#

Format: INPUT#<file number >, <variable list>

Version: Disk

Purpose: To read data items from a sequential disk file
and assign them to program variables.

Remarks: <file number> is the number used when the file
was OPENed for input. <variable list> contains
the variable names that will be assigned to the
items in the file. (The variable type must
match the type specified by the variable name.)
With INPUT#, no question mark is printed, as
with INPUT.

The data items in the file should appear just as
they would if data were being typed in response
to an INPUT statement. With numeric values,
leading spaces, carriage returns and line feeds
are ignored. The first character encountered
that is not a space, carriage return or line
feed is assumed to be the start of a number.
The number terminates on a space, carriage
return, line feed or comma.

If BASIC-80 is scanning the sequential data file
for a string item, leading spaces, carriage
returns and line feeds are also ignored. The
first character encountered that is not a space,
carriage return, or line feed is assumed to be
the start of a string item. If this first
character is a quotation mark (") , the string
item will consist of all characters read between
the first quotation mark and the second. Thus,
a quoted string may not contain a quotation mark
as a character. If the first character of the
string is not a quotation mark, the string is an
unquoted string, and will terminate on a comma,
carriage or line feed (or after 255 characters
have been read) . If end of file is reached when
a numeric or string item is being INPUT, the
item is terminated.

Example: See Appendix B.

BASIC-80 COMMANDS AND STATEMENTS Page 2-40

2.29 KILL

Format: KILL <filename>

Version: Disk

Purpose: To delete a file from disk.

Remarks: If a KILL statement is given for a file that is

currently OPEN, a "File already open" error
occurs.

KILL is used for all types of disk files:
program files, random data files and sequential
data files.

Example: 200 KILL "DATAl"

See also Appendix B.

BASIC-80 COMMANDS AND STATEMENTS Page 2-41

2.30 LET

Format: [LET] <var iable>=<expression>

Versions: 8K f Extended, Disk

Purpose: To assign the value of an expression to a

variable.

Remarks: Notice the word LET is optional, i.e., the equal
sign is sufficient when assigning an expression
to a variable name.

Example: 110 LET D=12
120 LET E=12"2
130 LET F=12"4
140 LET SUM=D+E+F

or

110 D=12
120 E=12"2
130 F=12~4
140 SUM=D+E+F

BASIC-80 COMMANDS AND STATEMENTS Page 2-42

2.31 LINE INPUT

Format: LINE INPUTf ;] [<"prompt str ing"> ;] <str ing variable>

Versions: Extended, Disk

Purpose: To input an entire line (up to 254 characters)
to a string variable, without the use of
delimiters.

Remarks: The prompt string is a string literal that is
printed at the terminal before input is
accepted. A question mark is not printed unless
it is part of the prompt string. All input from
the end of the prompt to the carriage return is
assigned to <string variables However, if a

line feed/carriage return sequence (this order
only) is encountered, both characters are
echoed; but the carriage return is ignored, the
line feed is put into STRING variable>, and data
input continues.

If LINE INPUT is immediately followed by a

semicolon, then the carriage return typed by the
user to end the input line does not echo a

carriage return/line feed sequence at the
terminal

.

A LINE INPUT may be escaped by typing Control-C.
BASIC-80 will return to command level and type
Ok. Typing CONT resumes execution at the LINE
INPUT.

Example: See Example, Section 2.32, LINE INPUT#

.

BASIC-80 COMMANDS AND STATEMENTS Page 2-43

2.32 LINE INPUT#

Format

:

Version

Purpose

Remarks

Example

LINE INPUT#<file number

>

f <string variable>

Disk

To read an entire line (up to 254 characters)

,

without delimiters, from a sequential disk data
file to a string variable.

<file number>
was OPENed.
name to which
INPUT# reads
file up to a
over the carr
the next LINE
the next
feed/carriage
is preserved.

is the number
<string varia

the line will
all characte

carriage retur
iage return/lin
INPUT# reads a

carriage retu
return sequenc

)

under which th
ble> is the va
be assigned,
rs in the sequ
n. It then
e feed sequenc
11 characters
rn. (If a
e is encounter

e file
riable

LINE
ential
skips

e, and
up to

line
ed, it

LINE INPUT# is especially useful if each line of
a data file has been broken into fields, or if a
BASIC-80 program saved in ASCII mode is being
read as data by another program.

10 OPEN "0",1,"LIST"
20 LINE INPUT "CUSTOMER INFORMATION? " ;C$
30 PRINT #1, C$
40 CLOSE 1

50 OPEN "I", 1, "LIST"
60 LINE INPUT #1, C$
70 PRINT C$
80 CLOSE 1

RUN
CUSTOMER INFORMATION? LINDA JONES 234,4 MEMPHIS
LINDA JONES 234,4 MEMPHIS
Ok

BASIC-80 COMMANDS AND STATEMENTS Page 2-44

2.33 LIST

Format 1: LIST [<line number>]

Versions: 8K, Extended, Disk

Format 2: LIST [<line number> [- [<line number >]]

]

Versions: Extended, Disk

Purpose: To list all or part of the program currently in
memory at the terminal.

Remarks: BASIC-80 always returns to command level after a
LIST is executed.

Format 1: If <line number> is omitted, the
program is listed beginning at the lowest line
number. (Listing is terminated either by the
end of the program or by typing Control-C.) If
<line number> is included, the 8K version will
list the program beginning at that line; and
the Extended and Disk versions will list only
the specified line.

Format 2: This format allows the following
options:

1. If only the first number is specified, that
line and all higher-numbered lines are
listed.

2. If only the second number is specified, all
lines from the beginning of the program
through that line are listed.

3. If both numbers are specified, the entire
range is listed.

BASIC-80 COMMANDS AND STATEMENTS Page 2-45

Examples: Format 1

LIST

LIST 500

Lists the program currently
in memory.

In the 8K version, lists
all programs lines from
500 to the end.
In Extended and Disk,
lists line 500.

Format 2

:

LIST 150-

LIST -1000

Lists all lines from 150
to the end.

Lists all lines from the
lowest number through 1000.

LIST 150-1000 Lists lines 150 through
1000, inclusive.

BASIC-80 COMMANDS AND STATEMENTS Page 2-46

2.34 LLIST

Format:

Versions

Purpose

:

Remarks:

NOTE :

LLIST [<line number> [- [<line number>]]]

Extended, Disk

To list all or part of the program currently in

memory at the line printer.

LLIST assumes a 132-character wide printer.

BASIC-80 always returns to command level after
an LLIST is executed. The options for LLIST are
the same as for LIST, Format 2.

LLIST and LPRINT are not included in all
implementations of BASIC-80.

Example: See the examples for LIST, Format 2.

BASIC-80 COMMANDS AND STATEMENTS Page 2-47

2.35 LOAD

Format

:

Version:

Purpose:

Remarks:

LOAD <f ilename>[,R]

Disk

To load a file from disk into memory.

<filename> is the name that was used when the
file was SAVEd. (With CP/M, the default
extension .BAS is supplied.)

LOAD closes all open files and deletes all
variables and program lines currently residing
in memory before it loads the designated
program. However, if the "R" option is used
with LOAD, the program is RUN after it is
LOADed, and all open data files are kept open.
Thus, LOAD with the "R" option may be used to
chain several programs (or segments of the same
program) . Information may be passed between the
programs using their disk data files.

Example LOAD "STRTRK" ,R

BASIC-80 COMMANDS AND STATEMENTS Page 2-48

2.3 6 LPRINT AND LPRINT USING

Format:

Versions

Purpose:

Remarks:

NOTE

LPRINT [<list of expressions>]

LPRINT USING <string exp>;<list of expressions>

Extended, Disk

To print data at the line printer.

Same as PRINT and PRINT USING, except output
goes to the line printer. See Section 2.49 and
Section 2.50.

LPRINT assumes a 132-character-wide printer.

LPRINT and LLIST are not included in all
implementations of BASIC-80.

BASIC-80 COMMANDS AND STATEMENTS Page 2-49

2.37 LSET AND RSET

Format:

Version:

Purpose:

Remarks:

Examoles

NOTE:

LSET <string variable>
RSET <string variable>

Disk

<string expression>
<string expression>

To move data from memory to a random file buffer
(in preparation for a PUT statement).

If <string expression> requires fewer bytes than
were FIELDed to <string variable> r LSET
left-justifies the string in the field, and RSET
right-justifies the string. (Spaces are used to
pad the extra positions.) If the string is too
long for the field, characters are dropped from
the right. Numeric values must be converted to
strings before they are LSET or RSET. See the
MKI$, MKS$, MKD$ functions, Section 3.25.

150 LSET A$=MKS$(AMT)
160 LSET D$=DESC($)

a non-fielded
right-justify
example, the

See also Appendix B.

LSET or RSET may also be used with
string variable to left-justify or
a string in a given field. For
program lines

110 A$=SPACE$(20)
120 RSET A$=N$

right-justify the string N$ in a 20-character
field. This can be very handy for formatting
printed output.

BASIC-80 COMMANDS AND STATEMENTS Page 2-50

2.38 MERGE

Format:

Version

Purpose

Remarks

MERGE <filename>

Disk

To merge a specified disk file into the
currently in memory.

program

<filename> is the name used when the file was
SAVEd. (With CP/M, the default extension . BAS
is supplied.) The file must have been SAVEd in
ASCII format. (If not r a "Bad file mode" error
occurs.

)

If any lines in the disk file have the same line
numbers as lines in the program in memory, the
lines from the file on disk will replace the
corresponding lines in memory. (MERGEing may be
thought of as "inserting" the program lines on
disk into the program in memory.)

Example

BASIC-80 always returns to command
executing a MERGE command.

MERGE "NUMBRS"

level after

BASIC-80 COMMANDS AND STATEMENTS Page 2-51

2.39 MID$

Format: MID$(<string expl> ,n [,m]) =<str ing exp2>

Versions

Purpose:

Remarks:

Example

m are integer expressions and
and <string exp2> are string

where n and
<string expl>
expressions.

Extended, Disk

To replace a portion of one string with
string.

another

The characters in <string expl>, beginning at
position n, are replaced by the characters in
<string exp2>. The optional m refers to the
number of characters from <string exp2> that
will be used in the replacement. If m is
omitted, all of <string exp2> is used. However,
regardless of whether m is omitted or included,
the replacement of characters never goes beyond
the original length of <string expl>.

10 A$="KANSAS CITY, MO"
20 MID$(A$,14) ="KS"
30 PRINT A$
RUN
KANSAS CITY, KS

MID$ is also a function that returns a substring
of a given string. See Section 3.24.

BASIC-80 COMMANDS AND STATEMENTS Page 2-52

2.40 NAME

Format: NAME <old filename> AS <new filename>

Version: Disk

Purpose: To change the name of a disk file.

Remarks: <old filename> must exist and <new filename>
must not exist; otherwise an error will result.
After a NAME command, the file exists on the
same disk, in the same area of disk space, with
the new name.

Example: Ok
NAME "ACCTS" AS "LEDGER"
Ok

In this example, the file that was
formerly named ACCTS will now be named LEDGER.

BASIC-80 COMMANDS AND STATEMENTS Page 2-5 3

2.41 NEW

Format : NEW

Versions: 8K, Extended, Disk

Purpose: To delete the program currently in memory and
clear all variables.

Remarks: NEW is entered at command level to clear memory
before entering a new program. BASIC-80 always
returns to command level after a NEW is
executed.

BASIC-80 COMMANDS AND STATEMENTS Page 2-54

2.42 NULL

Format:

Versions

Purpose

:

Remarks:

NULL <integer expression>

8K, Extended, Disk

To set the number of nulls to be printed at
end of each line.

the

For 10-character-per-second tape punches,
<integer expression> should be >=3. When tapes
are not being punched, <integer expression>
should be or 1 for Teletypes and
Teletype-compatible CRTs. <integer expression>
should be 2 or 3 for 30 cps hard copy printers.
The default value is 0.

Example: Ok
NULL 2

Ok
100 INPUT X
200 IF X<50 GOTO 800

Two null characters will be printed after each
line.

BASIC-80 COMMANDS AND STATEMENTS Page 2-55

2.43 ON ERROR GOTO

Format

:

Versions

Purpose:

Remarks:

NOTE:

ON ERROR GOTO <line number

>

Extended, Disk

To enable error trapping and specify the first
line of the error handling subroutine.

Once error trapping has been enabled all errors
detected, including direct mode errors (e.g.,
Syntax errors) , will cause a jump to the
specified error handling subroutine. If <line
number> does not exist, an "Undefined line"
error results. To disable error trapping,
execute an ON ERROR GOTO 0. Subsequent errors
will print an error message and halt execution.
An ON ERROR GOTO statement that appears in an
error trapping subroutine causes BASIC-80 to
stop and print the error message for the error
that caused the trap. It is recommended that
all error trapping subroutines execute an ON
ERROR GOTO if an error is encountered for
which there is no recovery action.

If an error occurs during execution of an error
handling subroutine, the BASIC error message is
printed and execution terminates. Error
trapping does not occur within the error
handling subroutine.

Example: 10 ON ERROR GOTO 1000

BASIC-80 COMMANDS AND STATEMENTS Page 2-56

2.44 ON. ..GOSUB AND ON. . .GOTO

Format: ON <expression> GOTO <list of line number s>

ON <expression> GOSUB <list of line numbers>

Versions: 8K, Extended, Disk

Purpose: To branch to one of several specified line
numbers, depending on the value returned when an
expression is evaluated.

Remarks: The value of <expression> determines which line
number in the list will be used for branching.
For example, if the value is three, the third
line number in the list will be the destination
of the branch. (If the value is a non-integer,
the fractional portion is rounded.)

In the ON... GOSUB statement, each line number in
the list must be the first line number of a

subroutine.

If the value of <expression> is zero or greater
than the number of items in the list (but less
than or equal to 255) , BASIC continues with the
next executable statement. If the value of
<expression> is negative or greater than 255, an
"Illegal function call" error occurs.

Example: 100 ON L-l GOTO 150,300,320,390

BASIC-80 COMMANDS AND STATEMENTS Page 2-57

2.45 OPEN

Format

:

Version

Purpose

Remarks

NOTE:

Example

OPEN <mode>, [#] <file number >, <filename>, [<reclen>]

Disk

To allow I/O to a disk file.

A disk file must be OPENed before any disk I/O
operation can be performed on that file. OPEN
allocates a buffer for I/O to the file and
determines the mode of access that will be used
with the buffer.

<mode> is a string expression whose
character is one of the following:

first

O

I

R

specifies sequential output mode

specifies sequential input mode

specifies random input/output mode

<file number> is an integer expression whose
value is between one and fifteen. The number is
then associated with the file for as long as it
is OPEN and is used to refer other disk I/O
statements to the file.

<filename> is a string expression containing a
name that conforms to your operating system's
rules for disk filenames.

<reclen> is an integer expression which, if
included, sets the record length for random
files. The default record length is 128 bytes.
See also page A-3.

A file can be OPENed for sequential input or
random access on more than one file number at a
time. A file may be OPENed for output, however,
on only one file number at a time.

10 OPEN "I",2,"INVEN"

See also Appendix B.

BASIC-80 COMMANDS AND STATEMENTS Page 2-58

2.46 OPTION BASE

Format: OPTION BASE n
where n is 1 or

Versions: 8K, Extended, Disk

Purpose: To declare the minimum value for array
subscripts.

Remarks: The default base is 0. If the statement

OPTION BASE 1

is executed, the lowest value an array subscript
may have is one.

BASIC-80 COMMANDS AND STATEMENTS Page 2-59

2.47 OUT

Format: OUT I,

J

where I and J are integer expressions in the
range to 255.

Versions: 8K r Extended, Disk

Purpose: To send a byte to a machine output port.

Remarks: The integer expression I is the port number, and
the integer expression J is the data to be
transmitted.

Example: 100 OUT 32,100

BASIC-80 COMMANDS AND STATEMENTS Page 2-60

2.48 POKE

Format: POKE I,

J

where I and J are integer expressions

Versions: 8K, Extended, Disk

Purpose: To write a byte into a memory location.

Remarks: The integer expression I is the address of the
memory location to be POKEd. The integer
expression J is the data to be POKEd. J must be
in the range to 255. In the 8K version, I

must be less than 32768. In the Extended and
Disk versions, I must be in the range to
65536.

With the 8K version, data may be POKEd into
memory locations above 32768 by supplying a
negative number for I. The value of I is
computed by subtracting 65536 from the desired
address. For example, to POKE data into
location 45000, I = 45000-65536, or -20536.

The complementary function to POKE is PEEK. The
argument to PEEK is an address from which a byte
is to be read. See Section 3.27.

POKE and PEEK are useful for efficient data
storage, loading assembly language subroutines,
and passing arguments and results to and from
assembly language subroutines.

Example: 10 POKE &H5A00,&HFF

BASIC-80 COMMANDS AND STATEMENTS Page 2-61

2.49 PRINT

Format: PRINT [<list of expressions>]

Versions: 8K, Extended, Disk

Purpose: To output data at the terminal.

Remarks: If <list of expressions> is omitted, a blank
line is printed. If <list of expressions> is
included, the values of the expressions are
printed at the terminal. The expressions in the
list may be numeric and/or string expressions.
(Strings must be enclosed in quotation marks.)

Print Positions

The position of each printed item is determined
by the punctuation used to separate the items in
the list. BASIC-80 divides the line into print
zones of 14 spaces each. In the list of
expressions, a comma causes the next value to be
printed at the beginning of the next zone. A
semicolon causes the next value to be printed
immediately after the last value. Typing one or
more spaces between expressions has the same
effect as typing a semicolon.

If a comma or a semicolon terminates the list of
expressions, the next PRINT statement begins
printing on the same line, spacing accordingly.
If the list of expressions terminates without a
comma or a semicolon, a carriage return is
printed at the end of the line. If the printed
line is longer than the terminal width, BASIC-80
goes to the next physical line and continues
printing.

Printed numbers are always followed by a space.
Positive numbers are preceded by a space.
Negative numbers are preceded by a minus sign.
Single precision numbers that can be represented
with 6 or fewer digits in the unsealed format no
less accurately than they can be represented in
the scaled format, are output using the unsealed
format. For example, 1E-7 is output as .0000001
and lE-8(-7) is output as 1E-08. Double
precision numbers that can be represented with
16 or fewer digits in the unsealed format no
less accurately than they can be represented in
the scaled format, are output using the unsealed
format. For example, 1D-15 is output as
.0000000000000001 and 1D-16 is output as 1d-16.

BASIC-80 COMMANDS AND STATEMENTS Page 2-62

A question mark may be used in place of the word
PRINT in a PRINT statement.

Example 1: 10 X=5
20 PRINT X+5, X-5, X*(-5), X~5
30 END
RUN
10 -25 3125

Ok

In this example, the commas in the PRINT
statement cause each value to be printed at the
beginning of the next print zone.

Example 2 : LIST
10 INPUT X
20 PRINT X "SQUARED IS" X"2 "AND";
30 PRINT X "CUBED IS" X"3
40 PRINT
50 GOTO 10
Ok
RUN
? 9

9 SQUARED IS 81 AND 9 CUBED IS 729

? 21
21 SQUARED IS 441 AND 21 CUBED IS 9261

In this example, the semicolon at the end of
line 20 causes both PRINT statements to be
printed on the same line, and line 40 causes a
blank line to be printed before the next prompt.

Example 3: 10 FOR X = 1 TO 5

20 J=J+5
30 K=K+10
40 ?J;K;
50 NEXT X
Ok
RUN
5 10 10 20 15 30 20 40 25 50

Ok

In this example, the semicolons in the PRINT
statement cause each value to be printed
immediately after the preceding value. (Don't
forget, a number is always followed by a space
and positive numbers are preceded by a space.)
In line 40, a question mark is used instead of
the word PRINT.

BASIC-80 COMMANDS AND STATEMENTS Page 2-63

2.50 PRINT USING

Format: PRINT USING <string exp>;<list of expressions>

Versions: Extended, Disk

Purpose: To print strings or numbers using a specified
format.

Remarks <list of expressions> is comprised of the string
and expressions or numeric expressions that are to
Examples: be printed, separated by semicolons. <string

exp> is a string literal (or variable) comprised
of special formatting characters. These
formatting characters (see below) determine the
field and the format of the printed strings or
numbers.

String Fields

When PRINT USING is used to print strings, one
of three formatting characters may be used to
format the string field:

ii | it Specifies that only the first character
given string is to be printed.

in the

"\n spaces\" Specifies that 2+n characters from the string
are to be printed,
with no spaces, two
with one space,
printed, and so on.
than the field,
ignored. If the

If the backslashes are typed
characters will be printed;
three characters will be
If the string is longer
the extra characters are

field is lonnger than the
string, the string will be left-justified in the
field and padded with spaces on the right.
Example:

10 A$="LOOK" :B$="OUT"
30 PRINT USING " !";A$;B$
40 PRINT USING "\ \" ;A$;B$
50 PRINT USING "\ \" ; A$;B$;

" !
!

"

RUN
LO
LOOKOUT
LOOK OUT !

!

BASIC-80 COMMANDS AND STATEMENTS Page 2-64

"&" Specifies a variable length string field. When
the field is specified with "&"

f the string is
output exactly as input. Example:

10 A$ = ,,LOOK":B$ = ,,OUT ,,

20 PRINT USING " !" ;A$;
30 PRINT USING "&";B$
RUN
LOUT

Numeric Fields

When PRINT USING is used to print numbers, the
following special characters may be used to
format the numeric field:

A number sign is used to represent each digit
position. Digit positions are always filled.
If the number to be printed has fewer digits
than positions specified, the number will be
right-justified (preceded by spaces) in the
field.

A decimal point may be inserted at any position
in the field. If the format string specifies
that a digit is to precede the decimal point,
the digit will always be printed (as if
necessary) . Numbers are rounded as necessary.

PRINT USING "##.##";. 78
0.78

PRINT USING "###. ##",-987.654
987.65

PRINT USING "##.## ";10. 2, 5. 3, 66. 789, .234
10.20 5.30 66.79 0.23

In the last example, three spaces were inserted
at the end of the format string to separate the
printed values on the line.

+ A plus sign at the beginning or end of the
format string will cause the sign of the number
(plus or minus) to be printed before or after
the number.

BASIC-80 COMMANDS AND STATEMENTS Page 2-65

A minus sign at the end of the format field will
cause negative numbers to be printed with a
trailing minus sign.

PRINT USING "+##.## ";-68.95,2.4,55.6,-.9
-68.95 +2.40 +55.60 -0.90

PRINT USING "##.##- ";-68.95,22.449,-7.01
68.95- 22.45 7.01-

** A double asterisk at the beginning of the format
string causes leading spaces in the numeric
field to be filled with asterisks. The ** also
specifies positions for two more digits.

PRINT USING "**#.# ";12. 39,-0. 9,765.1
*12.4 *-0.9 765.1

$$ A double dollar sign causes a dollar sign to be
printed to the immediate left of the formatted
number. The $$ specifies two more digit
positions, one of which is the dollar sign. The
exponential format cannot be used with $$.
Negative numbers cannot be used unless the minus
sign trails to the right.

PRINT USING "$$###. ##";456. 78
$456.78

**$ The **$ at the beginning of a format string
combines the effects of the above two symbols.
Leading spaces will be asterisk-filled and a
dollar sign will be printed before the number.
**$ specifies three more digit positions, one of
which is the dollar sign.

PRINT USING "**$##. ##";2. 34
***$2.34

, A comma that is to the left of the decimal point
in a formatting string causes a comma to be
printed to the left of every third digit to the
left of the decimal point. A comma that is at
the end of the format string is printed as part
of the string. A comma specifies another digit
position. The comma has no effect if used with
the exponential (~~~~) format.

PRINT USING "####,. ##";1234.

5

1,234.50

PRINT USING "####. ##,";1234.

5

1234.50,

BASIC-80 COMMANDS AND STATEMENTS Page 2-66

/\ /\ *\ /N Four carats (or up-arrows) may be placed after
the digit position characters to specify
exponential format. The four carats allow space
for E+xx to be printed. Any decimal point
position may be specified. The significant
digits are left-justified, and the exponent is
adjusted. Unless a leading + or trailing + or -

is specified, one digit position will be used to
the left of the decimal point to print a space
or a minus sign.

PRINT USING "##.## ";234.56
2.35E+02

PRINT USING ".####""-";888888
.8889E+06

PRINT USING " +.##""" ;123
+.12E+03

An underscore in the format string causes the
next character to be output as a literal
character

.

PRINT USING "_!##. ##_!";12. 34
112.34!

The literal character itself may be an
underscore by placing " " in the format string.

If the number to be printed is larger than the
specified numeric field, a percent sign is
printed in front of the number. If rounding
causes the number to exceed the field, a percent
sign will be printed in front of the rounded
number

.

PRINT USING "##.##" ;111. 22

%111.22

PRINT USING ".##";. 999
%1.00

If the number of digits specified exceeds 24, an
"Illegal function call" error will result.

BASIO80 COMMANDS AND STATEMENTS Page 2-67

2.51 PRINT# AND PRINT# USING

Format: PRINT#<f ilenumber>, [USING<string exp>;]<list of exps>

Version: Disk

Purpose: To write data to a sequential disk file.

Remarks: <file number> is the number used when the file
was OPENed for output. < string exp> is
comprised of formatting characters as described
in Section 2.50, PRINT USING. The expressions
in <list of expressions> are the numeric and/or
string expressions that will be written to the
file.

PRINT# does not compress data on the disk. An
image of the data is written to the disk, just
as it would be displayed on the terminal with a
PRINT statement. For this reason, care should
be taken to delimit the data on the disk, so
that it will be input correctly from the disk.

In the list of expressions, numeric expressions
should be delimited by semicolons. For example,

PRINT#1,A;B;C;X;Y;Z

(If commas are used as delimiters, the extra
blanks that are inserted between print fields
will also be written to disk.)

String expressions must be separated by
semicolons in the list. To format the string
expressions correctly on the disk, use. explicit
delimiters in the list of expressions.

For example, let A$="CAMERA" and B$="93604-l"

.

The statement

PRINT#1,A$;B$

would write CAMERA93604-1 to the disk. Because
there are no delimiters, this could not be input
as two separate strings. To correct the
problem, insert explicit delimiters into the
PRINT# statement as follows:

PRINT#1,A$;" ," ;B$

The image written to disk is

CAMERA, 93604-1

BASIC-80 COMMANDS AND STATEMENTS Page 2-68

which can be read back into two string
variables.

If the strings themselves contain commas,
semicolons, significant leading blanks, carriage
returns, or line feeds, write them to disk
surrounded by explicit quotation marks,
CHR$(34)

.

For example, let A$="CAMERA, AUTOMATIC" and
B$ = " 93604-1". The statement

PRINT#1,A$;B$

would write the following image to disk:

CAMERA, AUTOMATIC 93604-1

and the statement

INPUT#1,A$,B$

would input "CAMERA" to A$ and
"AUTOMATIC 93604-1" to B$. To separate these
strings properly on the disk, write double
quotes to the disk image using CHR$(34). The
statement

PRINT#1,CHR$(34) ;A$;CHR$ (34) ;CHR$(34) ;B$;CHR$ (34)

writes the following image to disk:

"CAMERA, AUTOMATIC"" 93604-1"

and the statement

INPUT#1,A$,B$

would input "CAMERA, AUTOMATIC" to A$ and
93604-1" to B$.

The PRINT# statement may also be used with the
USING option to control the format of the disk
file. For example:

PRINT#1, USING" $$###.##,"; J; K;L

For more examples using PRINT# , see Appendix B.

See also WRITE#, Section 2.68.

BASIC-80 COMMANDS AND STATEMENTS Page 2-69

2.52 PUT

Format: PUT [#]<file number> [
, <record number>]

Version: Disk

Purpose: To write a record from a random buffer to a

random disk file.

Remarks: <file number> is the number under which the file
was OPENed. If <record number> is omitted, the
record will have the next available record
number (after the last PUT) . The largest
possible record number is 32767. The smallest
record number is 1.

Example: See Appendix B.

NOTE: PRINT#, PRINT* USING, and WRITE# may be used to
put characters in the random file buffer before
a PUT statement.

In the case of WRITE# , BASIC-80 pads the buffer
with spaces up to the carriage return. Any
attempt to read or write past the end of the
buffer causes a "Field overflow" error.

BASIC-80 COMMANDS AND STATEMENTS Page 2-70

2.53 RANDOMIZE

Format: RANDOMIZE [<expression>]

Versions: Extended, Disk

Purpose: To reseed the random number generator.

Remarks: If <expression> is omitted, BASIC-80 suspends
program execution and asks for a value by-

printing

Random Number Seed (-32768 to 32767)?

before executing RANDOMIZE.

If the random number generator is not reseeded,
the RND function returns the same sequence of
random numbers each time the program is RUN. To
change the sequence of random numbers every time
the program is RUN, place a RANDOMIZE statement
at the beginning of the program and change the
argument with each RUN.

Example: 10 RANDOMIZE
20 FOR 1=1 TO 5

30 PRINT RND;
40 NEXT I

RUN
Random Number Seed (-32768 to 32767)? 3 (user
types 3)

.88598 .484668 .586328 .119426 .709225
Ok
RUN
Random Number Seed (-32768 to 32767)? 4 (user
types 4 for new sequence)
.803506 .162462 .929364 .292443 .322921

Ok
RUN
Random Number Seed (-32768 to 32767)? 3 (same
sequence as first RUN)
.88598 .484668 .586328 .119426 .709225

Ok

BASIC-80 COMMANDS AND STATEMENTS Page 2-71

2.54 READ

Format

:

Versions:

Purpose:

Kemar k s

:

Example 1

READ <list of variables>

8K, Extended, Disk

To read values from a DATA statement and assign
them to variables. (See DATA, Section 2.10.)

A READ statement must always be used in
conjunction with a DATA statement. READ
statements assign variables to DATA statement
values on a one-to-one basis. READ statement
variables may be numeric or string, and the
values read must agree with the variable types
specified. If they do not agree, a "Syntax
error" will result.

A single READ statement may access one or more
DATA statements (they will be accessed in
order) , or several READ statements may access
the same DATA statment. If the number of
variables in <list of variables> exceeds the
number of elements in the DATA statement (s) , an
OUT OF DATA message is printed. If the number
of variables specified is fewer than the number
of elements in the DATA statement (s) , subsequent
READ statements will begin reading data at the
first unread element. If there are no
subsequent READ statements, the extra data is
ignored.

To reread DATA statements from the start, use
the RESTORE statement (see RESTORE, Section
2.57)

80 FOR 1=1 TO 10
90 READ A(I)
100 NEXT I

110 DATA 3.08,5.19,3.12,3.98,4.24
120 DATA 5.08,5.55,4.00,3.16,3.37

This program segment READS the values from the
DATA statements into the array A. After
execution, the value of A(l) will be 3.08, and
so on.

BASIC-80 COMMANDS AND STATEMENTS Page 2-72

Example 2 : LIST
10 PRINT "CITY", "STATE", " ZIP"
20 READ C$,S$,Z
30 DATA "DENVER, ", COLORADO, 80211
40 PRINT C$,S$,Z
Ok
RUN
CITY STATE ZIP
DENVER, COLORADO 80 211
Ok

This program READS string and numeric data from
the DATA statement in line 30.

BASIC-80 COMMANDS AND STATEMENTS Page 2-73

2.55 REM

Format: REM <remark>

Versions: 8K, Extended, Disk

Purpose: To allow explanatory remarks to be inserted in a
program.

Remarks: REM statements are not executed but are output
exactly as entered when the program is listed.

REM statements may be branched into (from a GOTO
or GOSUB statement) , and execution will continue
with the first executable statement after the
REM statement.

In the Extended and Disk versions, remarks may
be added to the end of a line by preceding the
remark with a single quotation mark instead of
:REM.

WARNING: Do not use this in a data statement as
it would be considered legal data.

Example:

120 REM CALCULATE AVERAGE VELOCITY
130 FOR 1=1 TO 20
140 SUM=SUM + V(I)

or, with Extended and Disk versions

120 FOR 1=1 TO 20 'CALCULATE AVERAGE VELOCITY
130 SUM=SUM+V(I)
140 NEXT I

BASIC-80 COMMANDS AND STATEMENTS Page 2-74

2.56 RENUM

Format:

Versions

Purpose:

Remarks:

NOTE :

RENUM [[<new number >] [, [<old number >][, <increment>]]

]

Extended, Disk

To renumber program lines.

<new number> is the first line number to be used
in the new sequence. The default is 10. <old
number> is the line in the current program where
renumbering is to begin. The default is the
first line of the program. <increment> is the
increment to be used in the new sequence. The
default is 10.

RENUM also changes all line number references
following GOTO, GOSUB, THEN, ON. . .GOTO,
ON...GOSUB and ERL statements to reflect the new
line numbers. If a nonexistent line number
appears after one of these statements, the error
message "Undefined line xxxxx in yyyyy" is
printed. The incorrect line number reference
(xxxxx) is not changed by RENUM, but line number
yyyyy may be changed.

RENUM cannot be used to change the order of
program lines (for example, RENUM 15,30 when the
program has three lines numbered 10, 20 and 30)

or to create line numbers greater than 65529.
An "Illegal function call" error will result.

Examples RENUM

RENUM 300, ,50

Renumbers the entire program
The first new line number
will be 10. Lines will
increment by 10.

Renumbers the entire pro-
gram. The first new line
number will be 300. Lines
will increment by 50.

RENUM 1000,900,20 Renumbers the lines from
900 up so they start with
line number 1000 and
increment by 20.

BASIC-80 COMMANDS AND STATEMENTS Page 2-75

2.57 RESTORE

Format:

Versions

Purpose:

Remarks:

Example:

RESTORE [<line number >]

8K, Extended, Disk

To allow DATA statements to
specified line.

be reread from

After a RESTORE statement is executed, the next
READ statement accesses the first item in the
first DATA statement in the program. If <line
number> is specified, the next READ statement
accesses the first item in the specified DATA
statement.

10 READ A,B,C
20 RESTORE
30 READ D,E,F
40 DATA 57, 68, 79

BASIC-80 COMMANDS AND STATEMENTS Page 2-76

2.58 RESUME

Formats: RESUME

RESUME

RESUME NEXT

RESUME <line number

>

Versions: Extended, Disk

Purpose: To continue program execution after an error
recovery procedure has been performed.

Remarks: Any one of the four formats shown above may be
used, depending upon where execution is to
resume

:

RESUME
or

RESUME

RESUME NEXT

Example:

Execution resumes at the
statement which caused the
error

.

Execution resumes at the
statement immediately fol-
lowing the one which
caused the error.

RESUME <line number> Execution resumes at
<line number>.

A RESUME statement that is not in an error trap
routine causes a "RESUME without error" message
to be printed.

10 ON ERROR GOTO 900

900 IF (ERR=2 30) AND(ERL=90) THEN PRINT "TRY
AGAIN": RESUME 80

BASIC-80 COMMANDS AND STATEMENTS Page 2-77

2.59 RUN

Format 1: RUN [<line number >]

Versions: 8K, Extended, Disk

Purpose: To execute the program currently in memory.

Remarks: If <line number> is specified, execution begins
on that line. Otherwise, execution begins at
the lowest line number. BASIC-80 always returns
to command level after a RUN is executed.

Example : RUN

Format 2: RUN <f ilename> [,R]

Version: Disk

Purpose: To load a file from disk into memory and run it.

Remarks: <filename> is the name used when the file was
SAVEd. (With CP/M and ISIS-II, the default
extension . BAS is supplied.)

RUN closes all open files and deletes the
current contents of memory before loading the
designated program. However, with the "R"
option, all data files remain OPEN.

Example: RUN "NEWFIL" ,R

See also Appendix B.

NOTE: The BASIC Compiler supports the RUN and RUN
<line number> forms of the RUN statement. The
BASIC Compiler does not support the "R" option
with RUN. If you want this feature, the CHAIN
statement should be used.

BASIC-80 COMMANDS AND STATEMENTS Page 2-78

2.60 SAVE

Format: SAVE <f ilename> [, A
|

,P]

Version: Disk

Purpose: To save a program file on disk.

Remarks: <filename> is a quoted string that conforms to
your operating system's requirements for
filenames. (With CP/M, the default extension
.BAS is supplied.) If <filename> already exists,
the file will be written over.

Examples

the file in ASCII
saves the file in a

ASCII format takes
but some disk access
ASCII format. For

Use the A option to save
format. Otherwise, BASIC
compressed binary format.
more space on the disk,
requires that files be in
instance, the MERGE command requires and ASCII
format file, and some operating system commands
such as LIST may require an ASCII format file.

Use the P option to protect the file by saving
it in an encoded binary format. When a

protected file is later RUN (or LOADed) , any
attempt to list or edit it will fail.

SAVE "COM2",

A

SAVE" PROG ",P

See also Appendix B.

BASIC-80 COMMANDS AND STATEMENTS Page 2-79

2.61 STOP

Format: STOP

Versions: 8K, Extended, Disk

Purpose: To terminate program execution and return to
command level.

Remarks: STOP statements may be used anywhere in a
program to terminate execution. When a STOP is
encountered, the following message is printed:

Break in line nnnnn

Unlike the END statement, the STOP statement
does not close files.

BASIC-80 always returns to command level after a
STOP is executed. Execution is resumed by
issuing a CONT command (see Section 2.8).

Example: 10 INPUT A,B,C
20 K=A"2*5.3:L=B~3/.26
30 STOP
40 M=C*K+100:PRINT M
RUN
? 1,2,3
BREAK IN 30
Ok
PRINT L
30.7692

Ok
CONT
115.9

Ok

BASIC-80 COMMANDS AND STATEMENTS Page 2-80

2.62 SWAP

Format: SWAP <variable>, <var iable>

Versions: Extended, Disk

Purpose: To exchange the values of two variables.

Remarks: Any type variable may be SWAPped (integer,
single precision, double precision, string) , but
the two variables must be of the same type or a

"Type mismatch" error results.

Example: LIST
10 A$=" ONE " : B$=" ALL
20 PRINT A$ C$ B$
30 SWAP A$, B$
40 PRINT A$ C$ B$
RUN
Ok
ONE FOR ALL
ALL FOR ONE

Ok

C$="FOR"

BASIC-80 COMMANDS AND STATEMENTS Page 2-81

2.63 TRON/TROFF

Format

:

TRON

TROFF

Versions: Extended, Disk

Purpose: To trace the execution of program statements.

Remarks: As an aid in debugging, the TRON statement
(executed in either the direct or indirect mode)
enables a trace flag that prints each line
number of the program as it is executed. The
numbers appear enclosed in square brackets. The
trace flag is disabled with the TROFF statement
(or when a NEW command is executed)

.

Example: TRON
Ok
LIST
10 K=10

FOR J=l TO 2

L=K + 10
PRINT J;K;L
K=K+10
NEXT
END

20
30
40
50
60
70
Ok
RUN
[10] [20] [30] [40]
[50] [60] [30] [40]
[50] [60] [70]
Ok
TROFF
Ok

10
20

20
30

BASIC-80 COMMANDS AND STATEMENTS Page 2-82

2.64 WAIT

Format:

Versions

Purpose:

Remarks:

CAUTION:

WAIT <port number >, I[,J]
where I and J are integer expressions

8K, Extended, Disk

To suspend program execution while monitoring
the status of a machine input port.

The WAIT
suspended
develops a
at the por
expression
result is
the data at
nonzero,
statement

.

zero

statement causes executi
until a specified machine
specified bit pattern. Th
t is exclusive OR'ed with
J, and then AND'ed with I

zero, BASIC-80 loops bac
the port again. If the

execution continues with
If J is omitted, it is as

on to
input

e data

be
port
read

the in'

If
k and :

teger
the

reads
result is
the next

sumed to be

It is possible to enter an infinite loop with
the WAIT statement, in which case it will be
necessary to manually restart the machine.

Example: 100 WAIT 32,2

BASIC-80 COMMANDS AND STATEMENTS Page 2-83

2.65 WHILE. ..WEND

Format: WHILE <expression>

[<loop statements>]

WEND

Versions: Extended, Disk

Purpose: To execute a series of statements in a loop as
long as a given condition is true.

Remarks: If <expression> is not zero (i.e., true), <loop
statements> are executed until the WEND
statement is encountered. BASIC then returns to
the WHILE statement and checks <expression>. If
it is still true, the process is repeated. If
it is not true, execution resumes with the
statement following the WEND statement.

WHILE/WEND loops may be nested to any level.
Each WEND will match the most recent WHILE. An
unmatched WHILE statement causes a "WHILE
without WEND" error, and an unmatched WEND
statement causes a "WEND without WHILE" error.

Example: 90 'BUBBLE SORT ARRAY A$
100 FLIPS=1 'FORCE ONE PASS THRU LOOP
110 WHILE FLIPS
115 FLIPS=0
120 FOR 1=1 TO J-l
130 IF A$(I) >A$(I+1) THEN

SWAP A$(I) ,A$ (1+1) :FLIPS=1
140 NEXT I

150 WEND

BASIC-80 COMMANDS AND STATEMENTS Page 2-84

2.66 WIDTH

Format: WIDTH [LPRINT] <integer expression>

Versions: Extended, Disk

Purpose: To set the printed line width in number of
characters for the terminal or line printer.

Remarks: If the LPRINT option is omitted, the line width
is set at the terminal. If LPRINT is included,
the line width is set at the line printer.

<integer expression> must have a value in the
range 15 to 255. The default width is 72

characters.

If <integer expression> is 255, the line width
is "infinite," that is, BASIC never inserts a

carriage return. However, the position of the
cursor or the print head, as given by the POS or
LPOS function, returns to zero after position
255.

Example: 10 PRINT "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
RUN
ABCDEFGHIJKLMNOPQRSTUVWXYZ
Ok
WIDTH 18
Ok
RUN
ABCDEFGHIJKLMNOPQR
STUVWXYZ
Ok

BASIC-80 COMMANDS AND STATEMENTS Page 2-85

2.67 WRITE

Format: WRITE[<list of expressions>]

Version: Disk

Purpose: To output data at the terminal.

Remarks: If <list of expressions> is omitted, a blank
line is output. If <list of expressions> is
included, the values of te expressions are
output at thee terminal. The expressions in the
list may be numeric and/or string expressions,
and they must be separated by commas.

When the printed items are output, each item
will be separated from the last by a comma.
Printed strings will be delimited by quotation
marks. After the last item in the list is
printed, BASIC inserts a carriage return/line
feed.

WRITE outputs numeric values using the same
format as the PRINT statement. Section 2.49.

Example: 10 A=80 :B=90 :C$="THAT'S ALL"
20 WRITE A,B,C$
RUN
80, 90,"THAT'S ALL"

Ok

BASIC-80 COMMANDS AND STATEMENTS Page 2-86

2.68 WRITE#

Format:

Version

Purpose

Remarks

Example

WRITE#<file number> , <list of expressions>

Disk

To write data to a sequential file.

<file number> is the number under which the file
was OPENed in "0" mode. The expressions in the
list are string or numeric expressions, and they
must be separated by commas.

The difference between WRITE# and PRINT# is that
WRITE# inserts commas between the the items as
they are written to disk and delimits strings
with quotation marks. Therefore, it is not
necessary for the user to put explicit
delimiters in the list. A carriage return/line
feed sequence is inserted after the last item in
the list is written to disk.

Let A$="CAMERA"
statement:

and B$="93604-l" The

WRITE#1,A$,B$

writes the following image to disk:

"CAMERA" ,"93604-1"

A subsequent INPUT# statement, such as:

INPUT#1,A$,B$

would input "CAMERA" to A$ and "93604-1" to B$.

CHAPTER 3

BASIC-80 FUNCTIONS

The intrinsic functions provided by BASIC-80 are presented
in this chapter. The functions may be called from any
program without further definition.

Arguments to functions are always enclosed in parentheses.
In the formats given for the functions in this chapter, the
arguments have been abbreviated as follows:

X and Y Represent any numeric expressions

I and J Represent integer expressions

X$ and Y$ Represent string expressions

If a floating point value is supplied where an integer is
required, BASIC-80 will round the fractional portion and use
the resulting integer.

NOTE

With the BASIC-80 and BASIC-86
interpreters, only integer and
single precision resullts are
returned by funtions. Double
precision functions are
supported only by the BASIC
compiler

.

BASIC-80 FUNCTIONS Page 3-2

3.1 ABS

Format: ABS(X)

Versions: 8K, Extended, Disk

Action: Returns the absolute value of the expression X,

Example: PRINT ABS(7*(-5))
35

Ok

3 .

2

ASC

Format: ASC(X$)

Versions: 8K, Extended, Disk

Action: Returns a numerical value that is the ASCII code
of the first character of the string X$. (See
Appendix M for ASCII codes.) If X$ is null, an
"Illegal function call" error is returned.

Example: 10 X$ = "TEST"
20 PRINT ASC(X$)
RUN
84

Ok

See the CHR$ function
conversion.

for ASCII-to-string

BASIC-80 FUNCTIONS Page 3-3

3 . 3 ATN

Format: ATN(X)

Versions: 8K, Extended, Disk

Action: Returns the arctangent of X in radians. Result
is in the range -pi/2 to pi/2. The expression X
may be any numeric type, but the evaluation of
ATN is always performed in single precision.

Example: 10 INPUT X
20 PRINT ATN(X)
RUN
? 3

1.24905
Ok

3.4 CDBL

Format: CDBL(X)

Versions: Extended, Disk

Action: Converts X to a double precision number

Example: 10 A = 454.67
20 PRINT A;CDBL(A)
RUN
454.67 454.6700134277344

Ok

BASIC-80 FUNCTIONS Page 3-4

3.5 CHR$

Format: CHR$(I)

Versions: 8K f Extended, Disk

Action: Returns a string whose one element has ASCII
code I. (ASCII codes are listed in Appendix M.)
CHR$ is commonly used to send a special
character to the terminal. For instance, the
BEL character could be sent (CHR$(7)) as a
preface to an error message, or a form feed
could be sent (CHR$(12)) to clear a CRT screen
and return the cursor to the home position.

Example: PRINT CHR$(66)
B
Ok
See the ASC function for
conversion.

ASCI I-to-numeric

3.6 CINT

Format: CINT(X)

Versions: Extended, Disk

Action: Converts X to an integer by rounding the
fractional portion. If X is not in the range
-32768 to 32767, an "Overflow" error occurs.

Example: PRINT CINT(45.67)
46

Ok

See the CDBL and CSNG functions for converting
numbers to the double precision and single
precision data type. See also the FIX and INT
functions, both of which return integers.

BASIC-80 FUNCTIONS Page 3-5

3.7 COS

Format: COS(X)

Versions: 8K f Extended, Disk

Action: Returns the cosine of X in radians. The
calculation of COS(X) is performed in single
precision.

Example: 10 X = 2*COS(.4)
20 PRINT X
RUN
1.84212

Ok

3.8 CSNG

Format: CSNG(X)

Versions: Extended, Disk

Action: Converts X to a single precision number.

Example: 10 A# = 975.3421#
20 PRINT A#; CSNG(A#)
RUN
975.3421 975.342

Ok

See the CINT and CDBL functions for converting
numbers to the integer and double precision data
types.

BASIC-80 FUNCTIONS Page 3-6

3.9 CVI, CVS, CVD

Format:

Version

Action:

Example

CVI(<2-byte
CVS(<4-byte
CVD(<8-byte

Disk

string>)
string>)
string>)

Convert string values to numeric values.
Numeric values that are read in from a random
disk file must be converted from strings back
into numbers. CVI converts a 2-byte string to
an integer. CVS converts a 4-byte string to a
single precision number. CVD converts an 8-byte
string to a double precision number.

70 FIELD #1,4 AS N$, 12 AS B$,
80 GET #1
90 Y=CVS(N$)

See also MKI$, MKS$, MKD$, Section 3.25 and
Appendix B.

3.10 EOF

Format: EOF(<file number>)

Version: Disk

Action: Returns -1 (true) if the end of a sequential
file has been reached. Use EOF to test for
end-of-file while INPUTting, to avoid "Input
past end" errors.

Example: 10 OPEN "I",1,"DATA"
20 C=0
30 IF EOF(l) THEN 100
40 INPUT #1,M(C)
50 C=C+l:GOTO 30

BASIC-80 FUNCTIONS Page 3-7

3.11 EXP

Format: EXP(X)

Versions: 8K, Extended, Disk

Action: Returns e to the power of X. X must be
<=87.3365. If EXP overflows, the "Overflow"
error message is displayed, machine infinity
with the appropriate sign is supplied as the
result, and execution continues.

Example: 10 X = 5

20 PRINT EXP (X-l)
RUN
54.5982

Ok

3.12 FIX

Format

:

Versions:

Action:

Examples

:

FIX(X)

Extended, Disk

Returns the truncated integer part of
is equivalent to SGN (X) *INT (ABS (X))

.

difference
not return

X. FIX(X)
The major

between FIX and INT is that FIX does
the next lower number for negative X.

PRINT
58

Ok

PRINT
-58
Ok

FIX(58.75)

FIX(-58.75)

BASIC-80 FUNCTIONS Page 3-8

3.13 FRE

Format: FRE(O)
FRE(X$)

Versions: 8K, Extended, Disk

Action: Arguments to FRE are dummy arguments. FRE
returns the number of bytes in memory not being
used by BASIC-80.

FRE(" ") forces a garbage collection before
returning the number of free bytes. BE
PATIENT: garbage collection may take 1 to 1-1/2
minutes. BASIC will not initiate garbage
collection until all free memory has been used
up. Therefore, using FRE(" ") periodically will
result in shorter delays for each garbage
collection.

Example: PRINT FRE(O)
14542

Ok

3.14 HEX$

Format: HEX$ (X)

Versions: Extended, Disk

Action: Returns a string which represents the
hexadecimal value of the decimal argument. X is
rounded to an integer before HEX$(X) is
evaluated.

Example: 10 INPUT X
20 A$ = HEX$(X)
30 PRINT X "DECIMAL IS " A$ " HEXADECIMAL"
RUN
? 32
32 DECIMAL IS 20 HEXADECIMAL

Ok

See the OCT$ function for octal conversion.

BASIC-80 FUNCTIONS Page 3-9

3.15 INKEY$

Format : INKEY$

Action: Returns either a one-character string containing
a character read from the terminal or a null
string if no character is pending at the
terminal. No characters will be echoed and all
characters are passed through tto the program
except for Control-C f which terminates the
program. (With the BASIC Compiler, Control-C is
also passed through to the program.)

Example: 1000 'TIMED INPUT SUBROUTINE
1010 RESP0NSE$=""
1020 FOR I%=1 TO TIMELIMIT%
1030 A$=INKEY$: IF LEN(A$)=0 THEN 1060
1040 IF ASC(A$)=13 THEN TIMEOUT%=0 : RETURN
1050 RESPONSE$=RESPONSE$+A$
1060 NEXT 1%
1070 TIME0UT%=1 : RETURN

3.16 INP

Format: INP (I)

Versions: 8K, Extended, Disk

Action: Returns the byte read from port I. I must be in
the range to 255. INP is the complementary
function to the OUT statement, Section 2.47.

Example: 100 A=INP(255)

BASIC-80 FUNCTIONS Page 3-10

3.17 INPUT$

Format: INPUT$(X[, [#]Y])

Version: Disk

Action: Returns a string of X characters, read from the
terminal or from file number Y. If the terminal
is used for input, no characters will be echoed
and all control characters are passed through
except Control-C, which is used to interrupt the
execution of the INPUT$ function.

Example 1: 5 'LIST THE CONTENTS OF A SEQUENTIAL
HEXADECIMAL
10 OPEN n I" ,1,"DATA"
20 IF EOF(l) THEN 50
30 PRINT HEX$(ASC(INPUT$(1,#1)))

;

40 GOTO 20
50 PRINT
60 END

Example 2

:

•

FILE IN

100 PRINT "TYPE P TO PROCEED OR S TO STOP"
110 X$=INPUT$(1)
120 IF X$="P" THEN 500
130 IF X$="S" THEN 700 ELSE 100

BASIC-80 FUNCTIONS Page 3-11

3.18 INSTR

Format:

Versions

Action:

Example

NOTE

INSTR([I,]X$,Y$)

Extended, Disk

Searches for the first occurrence of string Y$
in X$ and returns the position at which the
match is found. Optional offset I sets the
position for starting the search. I must be in
the range 1 to 255. If I>LEN(X$) or if X$ is
null or if Y$ cannot be found, INSTR returns 0.

If Y$ is null, INSTR returns I or 1. X$ and Y$
may be string variables, string expressions or
string literals.

10 X$ = "ABCDEB"
20 Y$ = "B"
30 PRINT INSTR(X$,Y$) ; INSTR (4 ,X$, Y$)
RUN
2 6

Ok

If 1=0 is specified, error message "ILLEGAL
ARGUMENT IN <line number >" will be returned.

BASIC-80 FUNCTIONS Page 3-12

3.19 INT

Format

:

Versions:

Action:

Examples

:

INT(X)

8K f Extended, Disk

Returns the largest integer <=X.

PRINT INT (99. 89)
99

Ok

PRINT INT (-12. 11)
-13
Ok

See the FIX and CINT functions which also return
integer values.

3.20 LEFT$

Format: LEFT$(X$,I)

Versions: 8K, Extended, Disk

Action: Returns a string comprised of the leftmost I

characters of X$. I must be in the range to
255. If I is greater than LEN(X$) , the entire
string (X$) will be returned. If 1=0, the null
string (length zero) is returned.

Example: 10 A$ = "BASIC-80"
20 B$ = LEFT$(A$,5)
30 PRINT B$
BASIC
Ok

Also see the MID$ and RIGHT$ functions.

BASIC-80 FUNCTIONS Page 3-13

3.21 LEN

Format: LEN(X$)

Versions: 8K, Extended, Disk

Action: Returns the number of characters in X$
Non-printing characters and blanks are counted.

Example: 10 X$ = "PORTLAND, OREGON"
20 PRINT LEN(X$)
16

Ok

3.22 LOC

Format: LOC(<file number >)

Version: Disk

Action: With random disk files, LOC returns the record
number just read or written from a GET or PUT.
If the file was opened but no disk I/O has been
performed yet, LOC returns a 0. With sequential
files, LOC returns the number of sectors (128
byte blocks) read from or written to the file
since it was OPENed.

Example: 200 IF LOC(1)>50 THEN STOP

BASIC-80 FUNCTIONS Page 3-14

3.23 LOG

Format: LOG(X)

Versions: 8K, Extended, Disk

Action: Returns the natural logarithm of X. X must be
greater than zero.

Example: PRINT LOG (45/7)
1.86075

Ok

3.24 LPOS

Format: LPOS(X)

Versions: Extended, Disk

Action: Returns the current position of the line printer
print head within the line printer buffer. Does
not necessarily give the physical position of
the print head. X is a dummy argument.

Example: 100 IF LPOS(X)>60 THEN LPRINT CHR${13)

BASIC-80 FUNCTIONS Page 3-15

3.25 MID$

Format: MID$ (X$, I [, J]

)

Versions: 8K, Extended, Disk

Action: Returns a string of length J characters from X$
beginning with the Ith character. I and J must
be in the range 1 to 255. If J is omitted or if
there are fewer than J characters to the right
of the Ith character, all rightmost characters
beginning with the Ith character are returned.
If I>LEN(X$) , MID$ returns a null string.

Example: LIST
10 A$="GOOD "

20 B$="MORNING EVENING AFTERNOON"
30 PRINT A$;MID$(B$,9,7)
Ok
RUN
GOOD EVENING
Ok

NOTE:

Also see the LEFT$ and RIGHT$ functions.

If 1=0 is specified, error message "ILLEGAL
ARGUMENT IN <line number >" will be returned.

3.26 MKI$, MKS$, MKD$

Format: MKI$ (<integer expression>)
MKS$(<single precision expression>)
MKD$(<double precision expression>)

Version: Disk

Action: Convert numeric values to string values. Any
numeric value that is placed in a random file
buffer with an LSET or RSET statement must be
converted to a string. MKI$ converts an integer
to a 2-byte string. MKS$ converts a single
precision number to a 4-byte string. MKD$
converts a double precision number to an 8-byte
string.

Example: 90 AMT=(K+T)
100 FIELD #1, 8 AS D$, 20 AS N$
110 LSET D$ = MKS$(AMT)
120 LSET N$ = A$
130 PUT #1

See also CVI, CVS, CVD, Section 3.9 and Appendix
B.

BASIC-80 FUNCTIONS Page 3-16

3.27 OCT$

Format: OCT$ (X)

Versions: Extended, Disk

Action: Returns a string which represents the octal
value of the decimal argument. X is rounded to
an integer before OCT$(X) is evaluated.

Example: PRINT OCT$(24)
30

Ok

See the HEX$
conversion.

function for hexadecimal

3.28 PEEK

Format: PEEK (I)

Versions: 8K, Extended, Disk

Action: Returns the byte (decimal integer in the range
to 255) read from memory location I. With the
8K version of BASIC-80, I must be less than
32768. To PEEK at a memory location above
32768, subtract 65536 from the desired address.
With Extended and Disk BASIC-80, I must be in
the range to 65536. PEEK is the complementary
function to the POKE statement, Section 2.48.

Example: A=PEEK(&H5A00)

BASIC-80 FUNCTIONS Page 3-17

3.29 POS

Format: POS (I)

Versions: 8K, Extended, Disk

Action: Returns the current cursor position. The
leftmost position is 1. X is a dummy argument.

Example: IF POS(X)>60 THEN PRINT CHR$(13)

Also see the LPOS function.

3.30 RIGHT$

Format: RIGHT$(X$ f I)

Versions: 8K f Extended, Disk

Action: Returns the rightmost I characters of string X$.
If I=LEN(X$) f returns X$. If 1=0, the null
string (length zero) is returned.

Example: 10 A$="DISK BASIC-80"
20 PRINT RIGHT$(A$,8)
RUN
BASIC-80
Ok

Also see the MID$ and LEFT$ functions.

BASIC-80 FUNCTIONS Page 3-18

3.31 RND

Format: RND [(X)

]

Versions: 8K, Extended, Disk

Action: Returns a random number between and 1. The
same sequence of random numbers is generated
each time the program is RUN unless the random
number generator is reseeded (see RANDOMIZE,
Section 2.53). However, X<0 always restarts the
same sequence for any given X.

X>0 or X omitted generates the next random
number in the sequence. X=0 repeats the last
number generated.

Example: 10 FOR 1=1 TO 5

20 PRINT INT(RND*100)

;

30 NEXT
RUN
24 30 31 51 5

Ok

3.32 SGN

Format:

Versions:

Action:

Example:

SGN(X)

8K, Extended, Disk

If X>0,
If X=0,
If X<0,

SGN(X)
SGN(X)
SGN(X)

returns 1.

returns 0.
returns -1.

ON SGN(X)+2 GOTO 100,200,300 branches to 100 if
X is negative, 200 if X is and 300 if X is
positive.

BASIC-80 FUNCTIONS Page 3-19

3.33 SIN

Format: SIN(X)

Versions: 8K f Extended, Disk

Action: Returns the sine of X in radians
calculated in single
COS(X) =SIN(X+3. 14159/2)

.

Example: PRINT SIN (1.5)
.997495

Ok

SIN(X) is
precision.

3.34 SPACE$

Format:

Versions:

Action:

Example:

SPACE$(X)

Extended, Disk

Returns a string of spaces of length X. The
expression X is rounded to an integer and must
be in the range to 255.

10 FOR I = 1 TO 5

20 X$ = SPACE$(I)
30 PRINT X$;I
40 NEXT I

RUN
1

2

3

4

5

Ok

Also see the SPC function.

BASIC-80 FUNCTIONS Page 3-20

3.35 SPC

Format:

Versions:

Action:

Example:

SPC(I)

8K, Extended, Disk

Prints I blanks on the terminal. SPC may only
be used with PRINT and LPRINT statements. I

must be in the range to 255.
to follow the SPC (I) command.

PRINT "OVER" SPC (15) "THERE"
OVER THERE
Ok

Also see the SPACE$ function.

A is assumed

3.36 SQR

Format: SQR(X)

Versions: 8K, Extended, Disk

Action: Returns the square root of X. X must be >=0

Example: 10 FOR X = 10 TO 2 5 STEP 5

20 PRINT X, SQR(X)
30 NEXT
RUN
10 3.16228
15 3.87298
20 4.47214
25 5

Ok

BASIC-80 FUNCTIONS Page 3-21

3.37 STR$

Format: STR$(X)

Versions: 8K, Extended, Disk

Action: Returns a string representation of the value of
X.

Example: 5 REM ARITHMETIC FOR KIDS
10 INPUT "TYPE A NUMBER" ;N
20 ON LEN(STR$(N)) GOSUB 30,100,200,300,400,500

Also see the VAL function.

3.38 STRING$

Formats : STRING$ (I , J)
STRING$ (I,X$)

Versions: Extended, Disk

Action: Returns a string of length I whose characters
all have ASCII code J or the first character of
X$.

Example: 10 X$ = STRING$ (10 , 45)
20 PRINT X$ "MONTHLY REPORT" X$
RUN

MONTHLY REPORT
Ok

BASIC-80 FUNCTIONS Page 3-22

3.39 TAB

Format: TAB (I)

Versions: 8K, Extended, Disk

Action: Spaces to position I on the terminal. If the
current print position is already beyond space
I, TAB goes to that position on the next line.
Space 1 is the leftmost position, and the
rightmost position is the width minus one. I

must be in the range 1 to 255. TAB may only be
used in PRINT and LPRINT statements.

Example: 10 PRINT "NAME" TAB (25) "AMOUNT"
20 READ A$,B$
30 PRINT A$ TAB (25) B$
40 DATA "G. T. JONES" , "$25 . 00

"

RUN
NAME AMOUNT

: PRINT

3.40 TAN

G. T. JONES
Ok

$25.00

Format: TAN(X)

Versions: 8K, Extended, Disk

Action: Returns the tangent of X in radians. TAN(X) is
calculated in single precision. If TAN
overflows, the "Overflow" error message is
displayed, machine infinity with the appropriate
sign is supplied as the result, and execution
continues.

Example: 10 Y = Q*TAN(X)/2

BASIC-80 FUNCTIONS Page 3-23

3.41 USR

Format :

Versions

Action:

Example:

USR[<digit>] (X)

8K, Extended, Disk

Calls the user's assembly language subroutine
with the argument X. <digit> is allowed in the
Extended and Disk versions only. <digit> is in
the range to 9 and corresponds to the digit
supplied with the DEF USR statement for that
routine. If <digit> is omitted, USRO is
assumed. See Appendix x.

40 B
50 C
60 D

T*SIN(Y)
USR(B/2)
USR(B/3)

3.42 VAL

Format: VAL(X$)

Versions: 8K, Extended, Disk

Action: Returns the numerical value of string X$. The
VAL function also strips leading blanks, tabs,
and linefeeds from the argument string. For
example,

VAL(" -3)

returns -3.

Example: 10 READ NAME$,CITY$,STATE$, ZIP$
20 IF VAL(ZIP$)<90000 OR VAL (ZIP$) >96699 THEN
PRINT NAME$ TAB (25) "OUT OF STATE"
30 IF VAL(ZIP$) >=90801 AND VAL (ZIP$) <=90815 THEN
PRINT NAME$ TAB (25) "LONG BEACH"

See the STR$
conversion.

function for numeric to string

BASIC-80 FUNCTIONS Page 3-24

3.43 VARPTR

Format 1

Versions

Format 2

Version:

Action:

NOTE:

VARPTR (<variable name>)

Extended, Disk

VARPTR(#<file number>)

Disk

Format 1: Returns the address of the first byte
of data identified with <variable name>. A
value must be assigned to <variable name> prior
to execution of VARPTR. Otherwise an "Illegal
function call" error results. Any type variable
name may be used (numeric, string, array) , and
the address returned will be an integer in the
range 32767 to -32768. If a negative address is
returned, add it to 65536 to obtain the actual
address.

VARPTR is usually used to obtain the address of
a variable or array so it may be passed to an
assembly language subroutine. A function call
of the form VARPTR (A (0)) is usually specified
when passing an array, so that the
lowest-addressed element of the array is
returned.

All simple variables should be assigned before
calling VARPTR for an array, because the
addresses of the arrays change whenever a new
simple variable is assigned.

Format 2: For sequential files, returns the
starting address of the disk I/O buffer assigned
to <file number>. For random files, returns the
address of the FIELD buffer assigned to <file
number >.

In Standalone Disk BASIC, VARPTR(#<f ile number>)
returns the first byte of the file block. See
Appendix H.

Example 100 X=USR (VARPTR (Y)

)

APPENDIX A

New Features in BASIC-80, Release 5.0

The execution of BASIC programs written under Microsoft
BASIC, release 4.51 and earlier may be affected by some of
the new features in release 5.0. Before attempting to run
such programs, check for the following:

1. New reserved words: CALL, CHAIN, COMMON, WHILE,
WEND, WRITE, OPTION BASE, RANDOMIZE.

2. Conversion from floating point to integer values
results in rounding, as opposed to truncation.
This affects not only assignment statements (e.g.,
I%=2.5 results in I%=3) , but also affects function
and statement evaluations (e.g., TAB(4.5) goes to
the 5th position, A(1.5) yeilds A(2) , and X=11.5
MOD 4 yields for X)

.

3. The body of a FOR. . .NEXT loop is skipped if the
initial value of the loop times the sign of the
step exceeds the final value times the sign of the
step. See Section 2.22.

4. Division by zero and overflow no longer produce
fatal errors. See Section 1.8.1.2.

5. The RND function has been changed so that RND with
no argument is the same as RND with a positive
argument. The RND function generates the same
sequence of random numbers with each RUN, unless
RANDOMIZE is used. See Sections 2.53 and 3.30.

6. The rules for PRINTing single precision and double
precision numbers have been changed. See Section
2.49.

7. String space is allocated dynamically, and the
first argument in a two-argument CLEAR statement
sets the end of memory. The second argument sets
the amount of stack space. See Section 2.4.

Page A-2

8. Responding to INPUT with too many or too few items,
or with non-numeric characters instead of digits,
causes the message "?Redo from start" to be
printed. If a single variable is requested, a
carriage return may be entered to indicate the
default values of for numeric input or null for
string input. However, if more than one variable
is requested, entering a carriage return will cause
the "?Redo from start" message to be printed
because too few items were entered. No assignment
of input values is made until an acceptable
response is given.

9. There are two new field formatting characters for
use with PRINT USING. An ampersand is used for
variable length string fields, and an underscore
signifies a literal character in a format string.

10. If the expression supplied with the WIDTH statement
is 255, BASIC uses an "infinite" line width, that
is, it does not insert carriage returns. WIDTH
LPRINT may be used to set the line width at the
line printer. See Section 2.66.

11. The at-sign and underscore are no longer used as
editing characters.

12. Variable names are significant up to 40 characters
and can contain embedded reserved words. However,
reserved words must now be delimited by spaces. To
maintain compatibility with earlier versions of
BASIC, spaces will be automatically inserted
between adjoining reserved words and variable
names. WARNING: This insertion of spaces may
cause the end of a line to be truncated if the line
length is close to 255 characters.

13. BASIC programs may be saved in a protected binary
format. See SAVE, Section 2.60.

APPENDIX B

BASIC-80 Disk I/O

Disk I/O procedures for the beginning BASIC-80 user are
examined in this appendix. If you are new to BASIC-80 or if
you're getting disk related errors, read through these
procedures and program examples to make sure you're using
all the disk statements correctly.

Wherever a filename is required in a disk command or
statement, use a name that conforms to your operating
system's requirements for filenames. The CP/M operating
system will append a default extension .BAS to the filename
given in a SAVE, RUN, MERGE or LOAD command.

B.l PROGRAM FILE COMMANDS

Here is a review of the commands
program file manipulation.

and statements used in

SAVE <f ilename> [,A] Writes to disk the program that is
currently residing in memory.
Optional A writes the program as a
series of ASCII characters.
(Otherwise, BASIC uses a compressed
binary format.)

LOAD <f ilename> [,R] Loads the program from disk into
memory. Optional R runs the program
immediately. LOAD always deletes the
current contents of memory and closes
all files before LOADing. If R , is
included, however, open data files are
kept open. Thus programs can be
chained or loaded in sections and
access the same data files.

RUN <f ilename> [,R]

Page B-2

RUN <filename> loads the program from
disk into memory and runs it. RUN
deletes the current contents of memory
and closes all files before loading
the program. If the R option is
included, however, all open data files
are kept open.

MERGE <filename> Loads the program fr
memory but does not del
contents of memory. Th
numbers on disk are
line numbers in memory,
have the same number
from the disk program i

a MERGE command, the "

resides in memory, and
to command level.

om disk into
ete the current
e program line
merged with the

If two lines
, only the line
s saved. After
merged" program
BASIC returns

KILL <filename> Deletes the file from the disk.
<filename> may be a program file, or a

sequential or random access data file.

NAME <old filename> To change the name of a disk file,
AS<new filename> execute the NAME statement, NAME

<oldfile> AS <newfile>. NAME may be
used with program files, random files,
or sequential files.

B.2 PROTECTED FILES

If you wish to save a program in an encoded binary format,
use the "Protect" option with the SAVE command. For
example:

SAVE "MYPROG" ,P

A program saved this way cannot be listed or edited. You
may also want to save an unprotected copy of the program for
listing and editing purposes.

B - 3 DISK DATA FILES - SEQUENTIAL AND RANDOM I/O

There are two types of disk data files that may be created
and accessed by a BASIC-80 program: sequential files and
random access files.

Page B-3

B.3.1 Sequential Files

Sequential files are easier to create than random files but
are limited in flexibility and speed when it comes to
accessing the data. The data that is written to a
sequential file is stored, one item after another
(sequentially) , in the order it is sent and is read back in
the same way.

The statements and functions that are used with sequential
files are:

OPEN PRINT# INPUT# WRITE#
PRINT* USING LINE INPUT#

CLOSE EOF LOC

The following program steps are required to create a
sequential file and access the data in the file:

1. OPEN the file in "0" mode. OPEN "0"
, #1 , "DATA"

2. Write data to the file PRINT#1 ,A$;B$;C$
using the PRINTt statement.
(WRITE# may be used instead.)

3. To access the data in the CLOSE #1
file, you must CLOSE the file OPEN "I" , #1 , "DATA"
and reOPEN it in "I" mode.

4. Use the INPUT* statement to INPUT#1 ,X$ r Y$, Z$
read data from the sequential
file into the program.

Program B-l is a short program that creates a sequential
file, "DATA", from information you input at the terminal.

Page B-4

10 OPEN "0",#1,"DATA"
20 INPUT "NAME" ;N$
25 IF N$="DONE" THEN END
30 INPUT "DEPARTMENT" ;D$
40 INPUT "DATE HIRED" ;H$
50 PRINT#1 , N$;

"
,
" ;D$

;
"

,
" ;H$

60 PRINT: GOTO 20
RUN
NAME? MICKEY MOUSE
DEPARTMENT? AUDIO/VISUAL AIDS
DATE HIRED? 01/12/72

NAME? SHERLOCK HOLMES
DEPARTMENT? RESEARCH
DATE HIRED? 12/03/65

NAME? EBENEEZER SCROOGE
DEPARTMENT? ACCOUNTING
DATE HIRED? 04/27/78

NAME? SUPER MANN
DEPARTMENT? MAINTENANCE
DATE HIRED? 08/16/78

NAME? etc.

PROGRAM B-l - CREATE A SEQUENTIAL DATA FILE

Page B-5

Now look at Program B-2. It accesses the file "DATA" that
was created in Program B-l and displays the name of everyone
hired in 1978.

10 OPEN "I ",#1, "DATA"
20 INPUT#1,N$,D$,H$
30 IF RIGHT$(H$,2)="78" THEN PRINT N$
40 GOTO 20
RUN
EBENEEZER SCROOGE
SUPER MANN
Input past end in 20
Ok

PROGRAM B-2 - ACCESSING A SEQUENTIAL FILE

Program B-2 reads, sequentially, every item in the file.
When all the data has been read, line 20 causes an "Input
past end" error. To avoid getting this error, insert line
15 which uses the EOF function to test for end-of-file:

15 IF EOF(l) THEN END

and change line 40 to GOTO 15.

A program that creates a sequential file can also write
formatted data to the disk with the PRINT# USING statement.
For example, the statement

PRINT#1, USING" ####.##,"; A, B, C,D

could be used to write numeric data to disk without explicit
delimiters. The comma at the end of the format string
serves to separate the items in the disk file.

The LOC function, when used with a sequential file, returns
the number of sectors that have been written to or read from
the file since it was OPENed. A sector is a 128-byte block
of data.

B.3.1.1 Adding Data To A Sequential File -

If you have a sequential file residing on disk and later
want to add more data to the end of it, you cannot simply
open the file in "O" mode and start writing data. As soon
as you open a sequential file in "O" mode, you destroy its
current contents. The following procedure can be used to
add data to an existing file called "NAMES".

Page B-6

1. OPEN "NAMES" in "I" mode.

2. OPEN a second file called "COPY" in "0" mode.

3. Read in the data in "NAMES" and write it to "COPY".

4. CLOSE "NAMES" and KILL it.

5. Write the new information to "COPY".

6. Rename "COPY" as' "NAMES" and CLOSE.

7. Now there is a file on disk called "NAMES" that
includes all the previous data plus the new data
you just added.

Program B-3 illustrates this technique. It can be used to
create or add onto a file called NAMES. This program also
illustrates the use of LINE INPUT# to read strings with
embedded commas from the disk file. Remember, LINE INPUT#
will read in characters from the disk until it sees a

carriage return (it does not stop at quotes or commas) or
until it has read 255 characters.

Page B-7

10 ON ERROR GOTO 2000
20 OPEN "I n ,#l f "NAMES"
30 REM IF FILE EXISTS, WRITE IT TO "COPY"
40 OPEN "O", #2, "COPY"
50 IF EOF(l) THEN 90
60 LINE INPUT#l f A$
70 PRINT#2,A$
80 GOTO 50
90 CLOSE #1
100 KILL "NAMES"
110 REM ADD NEW ENTRIES TO FILE
120 INPUT "NAME";N$
130 IF N$="" THEN 200 'CARRIAGE RETURN EXITS INPUT LOOP
140 LINE INPUT "ADDRESS? ";A$
150 LINE INPUT "BIRTHDAY? ";B$
160 PRINT#2,N$
170 PRINT#2,A$
180 PRINT#2,B$
190 PRINT:GOTO 120
200 CLOSE
205 REM CHANGE FILENAME BACK TO "NAMES"
210 NAME "COPY" AS "NAMES"
2000 IF ERR=53 AND ERL=20 THEN OPEN "O" , #2 , "COPY" : RESUME 120
2010 ON ERROR GOTO

PROGRAM B-3 - ADDING DATA TO A SEQUENTIAL FILE

The error trapping routine in line 2000 traps a "File does
not exist" error in line 20. If this happens, the
statements that copy the file are skipped, and "COPY" is
created as if it were a new file.

B.3.2 Random Files

Creating and accessing random files requires more program
steps than sequential files, but there are advantages to
using random files. One advantage is that random files
require less room on the disk, because BASIC stores them in
a packed binary format. (A sequential file is stored as a
series of ASCII characters.)

The biggest advantage to random files is that data can be
accessed randomly, i.e., anywhere on the disk — it is not
necessary to read through all the information, as with
sequential files. This is possible because the information
is stored and accessed in distinct units called records and
each record is numbered.

The statements and functions that are used with random files
are:

Page B-8

OPEN FIELD LSET/RSET GET

PUT CLOSE LOC

MKI$
MKS$
MKD$

CVI
CVS
CVD

B.3.2. 1 Creating A Random File -

The following program steps are required to create a

file.
random

OPEN the file for random OPEN
access ("R" mode) . This example
specifies a record length of 32
bytes. If the record length is
omitted, the default is 128
bytes.

R , tf 1 , FILE f3Z

2. Use the FIELD statement to
allocate space in the random
buffer for the variables that
will be written to the random
file.

3. Use LSET to move the data
into the random buffer.
Numeric values must be made
into strings when placed in
the buffer. To do this, use the
"make" functions: MKI$ to
make an integer value into a
string, MKS$ for a single
precision value, and MKD$ for
a double precision value.

4. Write the data from
the buffer to the disk
using the PUT statement.

FIELD #1 20 AS N$

,

4 AS A$, 8 AS P$

LSET N$=X$
LSET A$=MKS$(AMT)
LSET P$=TEL$

PUT #l,CODE%

Look at Program B-4. It takes information that is input at

the terminal and writes it to a random file. Each time the
PUT statement is executed, a record is written to the file.
The two-digit code that is input in line 30 becomes the
record number.

Page B-9

NOTE

Do not use a FIELDed string
variable in an INPUT or LET
statement. This causes the
pointer for that variable to
point into string space
instead of the random file
buffer.

10 OPEN "R" ,#l,"FILE" r 32
20 FIELD #1,20 AS N$ f 4 AS A$, 8 AS P$
30 INPUT "2-DIGIT CODE";CODE%
40 INPUT "NAME";X$
50 INPUT "AMOUNT" ;AMT
60 INPUT "PHONE" ;TEL$: PRINT
70 LSET N$=X$
80 LSET A$=MKS$(AMT)
90 LSET P$=TEL$
100 PUT #l f CODE%
110 GOTO 30

PROGRAM B-4 - CREATE A RANDOM FILE

B.3.2.2 Access A Random File -

The following program steps are required to access a random
file:

1. OPEN the file in "R" mode. OPEN "R" , #1 , "FILE" , 32

2. Use the FIELD statement to FIELD #1 20 AS N$,
allocate space in the random 4 AS A$, 8 AS P$
buffer for the variables that
will be read from the file.

NOTE:
In a program that performs both
input and output on the same random
file, you can often use just one
OPEN statement and one FIELD
statement.

Page B-10

GET #1,C0DE%

PRINT N$
PRINT CVS(A$)

3. Use the GET statement to move
the desired record into the
random buffer.

4. The data in the buffer may
now be accessed by the program.
Numeric values must be converted
back to numbers using the
"convert" functions: CVI for
integers, CVS for single
precision values, and CVD
for double precision values.

Program B-5 accesses the random file "FILE" that was created
in Program B-4. By inputting the three-digit code at the
terminal, the information associated with that code is read
from the file and displayed.

10 OPEN "R",#1,"FILE",32
20 FIELD #1, 20 AS N$, 4 AS A$, 8 AS P$
30 INPUT "2-DIGIT CODE";CODE%
40 GET #1, CODE%
50 PRINT N$
60 PRINT USING "$$###.##" ;CVS (A$)

70 PRINT P$: PRINT
80 GOTO 30

PROGRAM B-5 - ACCESS A RANDOM FILE

The LOC function, with random files, returns the "current
record number." The current record number is one plus the
last record number that was used in a GET or PUT statement.
For example, the statement

IF LOC(1)>50 THEN END

ends program execution if

file#l is higher than 50.
the current record number in

Program B-6 is an inventory program that illustrates random
file access. In this program, the record number is used as
the part number, and it is assumed the inventory will
contain no more than 100 different part numbers. Lines
900-960 initialize the data file by writing CHR$(255) as the
first character of each record. This is used later (line
270 and line 500) to determine whether an entry already
exists for that part number.

Lines 130-220 display the different inventory functions that
the program performs. When you type in the desired function
number, line 230 branches to the appropriate subroutine.

Page B-ll

120
125
130
135
140
150
160
170
180
220
225

230
240
250
260
270

280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630

OPEN"R",#l," INVEN.DAT", 39
FIELD#1,1 AS F$,30 AS D$, 2 AS Q$,2 AS R$,4 AS P$
PRINT: PRINT "FUNCTIONS :": PRINT
PRINT 1, "INITIALIZE FILE"
PRINT 2 /'CREATE A NEW ENTRY"
PRINT 3

, "DISPLAY INVENTORY FOR ONE PART"
PRINT 4, "ADD TO STOCK"
PRINT 5 /'SUBTRACT FROM STOCK"
PRINT 6 /'DISPLAY ALL ITEMS BELOW REORDER LEVEL"
PRINT : PRINT : INPUT"FUNCTION" ; FUNCTION
IF (FUNCTI0N<1) OR(FUNCTION>6) THEN PRINT

"BAD FUNCTION NUMBER" :GO TO 130
ON FUNCTION GOSUB 900,250,390,480,560,680
GOTO 220
REM BUILD NEW ENTRY
GOSUB 840
IF ASC(F$)<>255 THEN INPUT"OVERWRITE" ;A$

:

IF A$o"Y" THEN RETURN
LSET F$=CHR$(0)
INPUT "DESCRIPTION" ;DESC$
LSET D$=DESC$
INPUT "QUANTITY IN STOCK" ;Q%
LSET Q$=MKI$(Q%)
INPUT "REORDER LEVEL" ;R%
LSET R$=MKI$(R%)
INPUT "UNIT PRICE" ;P
LSET P$=MKS$ (P)

PUT#1,PART%
RETURN
REM DISPLAY ENTRY
GOSUB 840
IF ASC(F$)=255 THEN PRINT "NULL ENTRY" : RETURN
PRINT USING "PART NUMBER ###";PART%
PRINT D$
PRINT USING
PRINT USING
PRINT USING
RETURN
REM ADD TO STOCK
GOSUB 840
IF ASC(F$) =255
PRINT D$: INPUT
Q%=CVI(Q$)+A%
LSET Q$=MKI$(Q%)
PUT#1,PART%
RETURN
REM REMOVE FROM STOCK
GOSUB 840
IF ASC(F$)=255 THEN PRINT "NULL ENTRY" : RETURN
PRINT D$
INPUT "QUANTITY TO SUBTRACT" ;S%
Q%=CVI(Q$)
IF (Q%-S%)<0 THEN PRINT "ONLY";Q%;
Q%=Q%-S%

"QUANTITY ON HAND #####" ;CVI (Q$)
"REORDER LEVEL #####" ;CVI (R$)
"UNIT PRICE $$##.##";CVS(P$)

THEN PRINT "NULL
"QUANTITY TO ADD

ENTRY": RETURN
";A%

IN STOCK": GOTO 600

Page B-12

640 IF Q%=<CVI(R$) THEN PRINT "QUANTITY NOW" ;Q%;
" REORDER LEVEL" ; CVI (R$)

650 LSET Q$=MKI$(Q%)
660 PUT#1,PART%
670 RETURN
680 DISPLAY ITEMS BELOW REORDER LEVEL
690 FOR 1=1 TO 100
710 GET#1,I
720 IF CVI(Q$)<CVI(R$) THEN PRINT D$;

" QUANTITY";
CVI(Q$) TAB (50) "REORDER LEVEL" ;CVI (R$)

730 NEXT I

740 RETURN
840 INPUT "PART NUMBER" ;PART%
850 IF(PART%<1)OR(PART%>100) THEN PRINT "BAD PART NUMBER"

GOTO 840 ELSE GET#1 f PART %: RETURN
890 END
900 REM INITIALIZE FILE
910 INPUT "ARE YOU SURE";B$:IF B$o"Y" THEN RETURN
920 LSET F$=CHR$(255)
930 FOR 1=1 TO 100
940 PUT#1,I
950 NEXT I

960 RETURN

PROGRAM B-6 - INVENTORY

APPENDIX C

Assembly Language Subroutines

All versions of BASIC-80 have provisions for interfacing
with assembly language subroutines. The USR function allows
assembly language subroutines to be called in the same way
BASIC'S intrinsic functions are called.

NOTE

The addresses of the DEINT,
GIVABF, MAKINT and FRCINT
routines are stored in
locations that must be
supplied individually for
different implementations of
BASIC.

C.l MEMORY ALLOCATION

Memory space must be set aside for an assembly language
subroutine before it can be loaded. During initialization,
enter the highest memory location minus the amount of memory
needed for the assembly language subroutine (s) . BASIC uses
all memory available from its starting location up, so only
the topmost locations in memory can be set aside for user
subroutines.

When an assembly language subroutine is called, the stack
pointer is set up for 8 levels (16 bytes) of stack storage.
If more stack space is needed, BASIC'S stack can be saved
and a new stack set up for use by the assembly language
subroutine. BASIC'S stack must be restored, however, before
returning from the subroutine.

Page C-2

The assembly language subroutine may be loaded into memory
by means of the system monitor, or the BASIC POKE statement,
or (if the user has the MACRO-80 or FORTRAN-80 package)
routines may be assembled with MACRO-80 and loaded using
LINK-80.

C.2 USR FUNCTION CALLS - 8K BASIC

The starting address of the assembly language subroutine
must be stored in USRLOC, a two-byte location in memory that
is supplied individually with different implementations of
BASIC-80. With 8K BASIC, the starting address may be POKEd
into USRLOC. Store the low order byte first, followed by
the high order byte.

The function USR will call the routine whose address is in

USRLOC. Initially USRLOC contains the address of ILLFUN,
the routine that gives the "Illegal function call" error.
Therefore, if USR is called without changing the address in
USRLOC, an "Illegal function call" error results.

The format of a USR function call is

USR(argument)

where the argument is a numeric expression. To obtain the
argument, the assembly language subroutine must call the
routine DEINT. DEINT places the argument into the D,E
register pair as a 2-byte, 2's complement integer. (If the
argument is not in the range -32768 to 32767, an "Illegal
function call" error occurs.)

To pass the result back from an assembly language
subroutine, load the value in register pair [A,B] , and call
the routine GIVABF. If GIVABF is not called, USR(X) returns
X. To return to BASIC, the assembly language subroutine
must execute a RET instruction.

For example, here is an assembly language subroutine that
multiplies the argument by 2:

USRSUB: CALL DEINT ;put arg in D,E
XCHG ;move arg to H,L
DAD H ;H,L=H,L+H,L
MOV A,H ;move result to A,B
MOV B,L
JMP GIVABF ;pass result back and RETurn

Note that valid results will be obtained from this routine
for arguments in the range -16384<=x<=16383 . The single
instruction JMP GIVABF has the same effect as:

Page C-3

CALL GIVABF
RET

To return additional values to the program, load them into
memory and read them with the PEEK function.

There are several methods by which a program may call more
than one USR routine. For example, the starting address of
each routine may be POKEd into USRLOC prior to each USR
call, or the argument to USR could be an index into a table
of USR routines.

C.3 USR FUNCTION CALLS - EXTENDED AND DISK BASIC

In the Extended and Disk versions, the format of the USR
function is

USR[<digit>] (argument)

where DIGIT> is from to 9 and the argument is any numeric
or string expression. <digit> specifies which USR routine
is being called, and corresponds with the digit supplied in
the DEF USR statement for that routine. If <digit> is
omitted, USRO is assumed. The address given in the DEF USR
statement determines the starting address of the subroutine.

When the USR function call is made, register A contains a
value that specifies the type of argument that was given.
The value in A may be one of the following:

Value in A Type of Argument

2 Two-byte integer (two's complement)

3 String

4 Single precision floating point number

8 Double precision floating point number

If the argument is a number, the [H,L] register pair points
to the Floating Point Accumulator (FAC) where the argument
is stored.

If the argument is an integer:

FAC-3 contains the lower 8 bits of the argument and
FAC-2 contains the upper 8 bits of the argument.

If the argument is a single precision floating point number:

FAC-3 contains the lowest 8 bits of mantissa and

Page C-4

FAC-2 contains the middle 8 bits of mantissa and
FAC-1 contains the highest 7 bits of mantissa
with leading 1 suppressed (implied) . Bit 7 is
the sign of the number (0=positive f l=negative)

.

FAC is the exponent minus 128, and the binary-
point is to the left of the most significant
bit of the mantissa.

If the argument is a double precision floating point number:

FAC-1 through FAC-4 contain four more bytes
of mantissa (FAC-7 contains the lowest 8 bits)

.

If the argument is a string, the [D,E] register pair points
to 3 bytes called the "string descriptor." Byte of the
string descriptor contains the length of the string (0 to
255). Bytes 1 and 2, respectively, are the lower and upper
8 bits of the string starting address in string space.

CAUTION: If the argument is a string literal in the
program, the string descriptor will point to program text.
Be careful not to alter or destroy your program this way.
To avoid unpredictable results, add +"" to the string
literal in the program. Example:

A$ = "BASIO80" + ""

This will copy the string literal into string space and will
prevent alteration of program text during a subroutine call.

Usually, the value returned by a USR function is the same
type (integer, string, single precision or double precision)
as the argument that was passed to it. However, calling the
MAKINT routine returns the integer in [H,L] as the value of
the function, forcing the value returned by the function to
be integer. To execute MAKINT, use the following sequence
to return from the subroutine:

PUSH H ;save value to be returned
LHLD xxx ;get address of MAKINT routine
XTHL ;save return on stack and

;get back [H,L]
RET ;return

Also, the argument of the function, regardless of its type,
may be forced to an integer by calling the FRCINT routine to
get the integer value of the argument in [H,L] . Execute the
following routine:

LXI H ;get address of subroutine
;continuation
;place on stack
;get address of FRCINTLHLD XXX

PCHL

Page C-5

C.4 CALL STATEMENT

Extended and Disk BASIC-80 user function calls may also be
made with the CALL statement. The calling sequence used is
the same as that in Microsoft's FORTRAN, COBOL and BASIC
compilers.

A CALL statement with no arguments generates a simple "CALL"
instruction. The corresponding subroutine should return via
a simple "RET." (CALL and RET are 8080 opcodes - see an 8080
reference manual for details.)

A subroutine CALL with arguments results in a somewhat more
complex calling sequence. For each argument in the CALL
argument list, a parameter is passed to the subroutine.
That parameter is the address of the low byte of the
argument. Therefore, parameters always occupy two bytes
each, regardless of type.

The method of passing the parameters depends upon the number
of parameters to pass:

1. If the number of parameters is less than or equal
to 3, they are passed in the registers. Parameter
1 will be in HL, 2 in DE (if present) , and 3 in BC
(if present)

.

2. If the number of parameters is greater than 3, they
are passed as follows:

1. Parameter 1 in HL.

2. Parameter 2 in DE.

3. Parameters 3 through n in a contiguous data
block. BC will point to the low byte of this
data block (i.e., to the low byte of parameter
3).

Note that, with this scheme, the subroutine must know how
many parameters to expect in order to find them.
Conversely, the calling program is responsible for passing
the correct number of parameters. There are no checks for
the correct number or type of parameters.

If the subroutine expects more than 3 parameters, and needs
to transfer them to a local data area, there is a system
subroutine which will perform this transfer. This argument
transfer routine is named $AT (located in the FORTRAN
library, FORLIB.REL), and is called with HL pointing to the
local data area, BC pointing to the third parameter, and A
containing the number of arguments to transfer (i.e., the
total number of arguments minus 2) . The subroutine is

Page C-6

responsible for saving the first two parameters before
calling $AT. For example, if a subroutine expects 5

parameters, it should look like:

SUBR: SHLD PI
XCHG
SHLD P2
MVI A, 3

LXI H,P3
CALL $AT

;SAVE PARAMETER 1

SAVE PARAMETER 2

NO. OF PARAMETERS LEFT
POINTER TO LOCAL AREA
TRANSFER THE OTHER 3 PARAMETERS

[Body of subroutine]

RET
PI: DS 2

P2: DS 2

P3: DS 6

RETURN TO CALLER
SPACE FOR PARAMETER 1

SPACE FOR PARAMETER 2

SPACE FOR PARAMETERS 3-5

A listing of the argument transfer routine $AT follows

00100
00200
00300
00400
00500
00600
00700
00800
00900
01000
01100
01200
01300
01400
01500
01600
01700
01800
01900
02000
02100
02200
02300

[B,C]
[H,L]
[A]

$AT:

ATI:

ARGUMENT TRANSFER
POINTS TO 3RD PARAM.
POINTS TO LOCAL STORAGE FOR PARAM 3

CONTAINS THE # OF PARAMS TO XFER (TOTAL-2

ENTRY
XCHG
MOV
MOV
MOV
INX
MOV
INX
XCHG
MOV
INX
MOV
INX
XCHG
DCR
JNZ
RET

$AT

H,B
L,C
C,M
H
B,M
H

M,C
H
M,B
H

A
ATI

;SAVE [H,L] IN [D,E]

;[H,L] = PTR TO PARAMS

; [B,C] = PARAM ADR
;[H,L] POINTS TO LOCAL STORAGE

; STORE PARAM IN LOCAL AREA
; SINCE GOING BACK TO ATI
; TRANSFERRED ALL PARAMS?
;NO, COPY MORE
;YES, RETURN

Page C-7

When accessing parameters in a subroutine, don't forget that
they are pointers to the actual arguments passed.

NOTE

It is entirely up to the
programmer to see to it that
the arguments in the calling
program match in number , type ,

and length with the parameters
expected by the subroutine.
This applies to BASIC
subroutines, as well as those
written in assembly language.

C.5 INTERRUPTS

Assembly language subroutines can be written to handle
interrupts. All interrupt handling routines should save the
stack, register A-L and the PSW. Interrupts should always
be re-enabled before returning from the subroutine., since
an interrupt automatically disables all further interrupts
once it is received. The user should be aware of which
interrupt vectors are free in the particular version of
BASIC that has been supplied. (Note to CP/M users: In CP/M
BASIC, all interrupt vectors are free.)

APPENDIX D

BASIC-80 with the CP/M Operating System

The CP/M version of BASIC-80 (MBASIC) is supplied on a
standard size 3740 single density diskette. The name of the
file is MBASIC.COM. (A 28K or larger CP/M system is
recommended.

)

To run MBASIC, bring up CP/M and type the following:

A>MBASIC <carriage return>

The system will reply:

xxxx Bytes Free
BASIC-80 Version 5.0
(CP/M Version)
Copyright 1978 (C) by Microsoft
Created: dd-mmm-yy
Ok

MBASIC is the same as Disk BASIC-80 as described in this
manual, with the following exceptions:

D.l INITIALIZATION

The initialization dialog has been replaced by a set of
options which are placed after the MBASIC command to CP/M.
The format of the command line is:

A>MBASIC [<filename>] [/F:<number of files>] [/M:<highest memory location>]
[/S:<maximum record size>]

If <filename> is present, MBASIC proceeds as if a RUN
<filename> command were typed after initialization is
complete. A default extension of .BAS is used if none is
supplied and the filename is less than 9 characters long.
This allows BASIC programs to be executed in batch mode
using the SUBMIT facility of CP/M. Such programs should
include a SYSTEM statement (see below) to return to CP/M
when they have finished, allowing the next program in the

Page D-2

batch stream to execute.

If /F:<number of files> is present, it sets the number of
disk data files that may be open at any one time during the
execution of a BASIC program. Each file data block
allocated in this fashion requires 166 bytes of memory. If

the /F option is omitted, the number of files defaults to 3.

The /M:<highest memory location> option sets the highest
memory location that will be used by MBASIC. In some cases
it is desirable to set the amount of memory well below the
CP/M's FDOS to reserve space for assembly language
subroutines. In all cases, <highest memory location> should
be below the start of FDOS (whose address is contained in
locations 6 and 7). If the /M option is omitted, all memory
up to the start of FDOS is used.

/S:<maximum record size> may be added at the end of the
command line to set the maximum record size for use with
random files. The default record size is 128 bytes.

NOTE

<number of files>, <highest
memory location>, and <maximum
record size> are numbers that
may be either decimal, octal
(preceded by SO) or
hexadecimal (preceded by &H)

.

Examples

:

A>MBASIC PAYROLL. BAS

A>MBASIC INVENT/F:6

A>MBASIC /M:32768

Use all memory and 3 files,
load and execute PAYROLL. BAS.

Use all memory and 6 files,
load and execute INVENT. BAS.

Use first 32K of memory and
3 E llcS

A>MBASIC DATACK/F:2/M:&H9000
Use first 36K of memory, 2

files, and execute DATACK.BAS

D.2 DISK FILES

Disk filenames follow the normal CP/M naming conventions.
All filenames may include A: or B: as the first two
characters to specify a disk drive, otherwise the currently
selected drive is assumed. A default extension of .BAS is

Page D-3

used on LOAD, SAVE, MERGE and RUN <filename> commands if no
"." appears in the filename and the filename is less than 9

characters long.

For systems with CP/M 2.x, large random files are supported.
The maximum logical record number is 32767. If a record
size of 256 is specified, then files up to 8 megabytes can
be accessed.

D.3 FILES COMMAND

Format: FILES [<filename>]

Purpose: To print the names of files residing on the
current disk.

Remarks: If <filename> is omitted, all the files on the
currently selected drive will be listed.
<filename> is a string formula which may contain
question marks (?) to match any character in the
filename or extension. An asterisk (*) as the
first character of the filename or extension
will match any file or any extension.

Examples: FILES
FILES "*.BAS"
FILES "B:*.*"
FILES "TEST7.BAS"

D.4 RESET COMMAND

Format:

Purpose:

Remarks:

RESET

To close all disk files and write the
information to a diskette before it
from a disk drive.

directory
is removed

Always execute a RESET command before removing a

diskette from a disk drive. Otherwise, when the
diskette is used again, it will not have the
current directory information written on the
directory track.

RESET closes all open files on all drives and
writes the directory track to every diskette
with open files.

D.5 LOF FUNCTION

Page D-4

Format:

Action:

Example:

LOF(<file number >)

Returns the number of records present in
last extent read or written. If the file
not exceed one extent (128 records) , then
returns the true length of the file.

the
does
LOF

110 IF NUM%>LOF(l) THEN PRINT "INVALID ENTRY"

D.6 EOF

With CP/M, the EOF function may be used with random files.
If a GET is done past the end of file, EOF will return -1.
This may be used to find the size of a file using a binary
search or other algorithm.

D.7 MISCELLANEOUS

1. CSAVE and CLOAD are not implemented.

2. To return to CP/M, use the SYSTEM command or
statement. SYSTEM closes all files and then
performs a CP/M warm start. Control-C always
returns to MBASIC, not to CP/M.

3. FRCINT is at 103 hex and MAKINT is at 105 hex.
(Add 1000 hex for ADDS versions, 4000 for SBC CP/M
versions.

)

APPENDIX E

BASIC-80 with the ISIS-II Operating System

With ISIS-II, BASIC-80 is the same as described in this
manual, with the following exceptions:

E.l INITIALIZATION

The initialization dialog has been replaced by a set of
options which are placed after the MBASIC command to
ISIS-II. The format of the command line is:

-MBASIC [<filename>] [/F:<number of files>] [/M:<highest memory location>]
[/S:<maximum record size>]

If <filename> is present, BASIC proceeds as if a RUN
<filename> command were typed after initialization is
complete. A default extension of .BAS is used if none is
supplied.

If /F:<number of files> is present, it sets the number of
disk data files that may be open at any one time during the
execution of a BASIC program. The maximum is six and the
default is three. The /M:<highest memory location> option
sets the highest memory location that will be used by BASIC.
Use this option to reserve memory locations above BASIC for
assembly language subroutines. /S:<maximum record size> may
be added at the end of the command line to set the maximum
record size for use with random files. The default record
size is 128 bytes.

At initialization, the system will reply:

xxxx Bytes Free
BASIC-80 Version x.x
(ISIS-II Version)
Copyright 1978 (C) by Microsoft

Page E-2

E.2 LINE PRINTER I/O

To send output to the printer during execution of a BASIC
program, open the line printer as if it were a disk file:

50 N=4
100 OPEN "0",N r ":LP:"

120 PRINT #N,A,B,C

Since BASIC buffers disk I/O, you may want to force buffers
out by CLOSEing the printer channel.

To LIST a program on the line printer, use:

SAVE":LP:",A

E.3 ATTRIB STATEMENT

In ISIS-II BASIC-80, the ATTRIB statement sets file
attributes. The format of the statement is:

ATTRIB <filename str ing> , <attr ibute string>

The attribute string consists of F, W, S or I for the
attribute, followed by a 1 to set the attribute or a to
reset.

Examples:

ATTRIB " INFO. DAT ","W1"
ATTRIB "GHOST. BAS" ,"Il"
ATTRIB " : Fl : SYSFIL" , "WlFlSl II

"

ATTRIB A$,B$

E.4 MISCELLANEOUS

Note these other differences for ISIS-II BASIC:

1. MAKINT is located at 3903 hex, and GIVINT is
located at 3905 hex.

2. There is no FILES command in ISIS-II BASIC.
Filenames do not default to .BAS on SAVEs, LOADS,
and MERGES.

APPENDIX F

BASIC-80 with the TEKDOS Operating System

The operation of BASIC-80 with the TEKDOS operating system
is the same as described in this manual with the following
exceptions:

1. At initialization, BASIC asks MEMORY SIZE? If you
respond with a carriage return, BASIC will use all
available memory. If you respond with a memory
location (in decimal) , BASIC will use memory only
up to that location. This lets you reserve space
at the top of memory for assembly language
subroutines.

2. The number of disk files that may be open at one
time defaults to 5.

3. LPRINT and LLIST are not implemented. Instead,
open a file to the printer.

4. TEKDOS does not support random disk I/O. The
corresponding BASIC-80 statements (PUT, GET,
OPEN"R", etc.) are inoperable under TEKDOS.

5. Control-C works only once due to a bug in TEKDOS.
If you interrupt a running program or a LIST
command with Control-C, BASIC appears to be in
"single statement" mode. To clear this condition,
exit BASIC with a SYSTEM command and re-enter BASIC
with an XEQ BASIC. Avoid using the AUTO command,
since it requires a Control-C to return to BASIC
command level.

APPENDIX G

BASIC-80 with the INTEL SBC and MDS Systems

G.l INITIALIZATION

The paper tape of BASIC-80 supplied for SBC and MDS systems
is in Intel-compatible hex format. Use the monitor's R
command to load the tape, then execute the G command to
start BASIC-80. The command is:

.G4000

BASIC will respond:

Memory size?

If you want BASIC to use all available RAM, just type a
carriage return. If you want to reserve space at the top of
memory for machine language subroutines, enter the highest
memory address (in decimal) that BASIC may use.

Terminal Width?

(8K versions only) Respond with the number of characters for
the output line width in PRINT statements. The default is
72 characters. (Extended versions use WIDTH command.)

Want SIN-COS-TAN-ATN?

Type Y to retain these functions, type N to delete them, or
type A to delete ATN only.

G.2 SUBROUTINE ADDRESSES

In the 8K version of SBC and MDS BASIC-80, DEINT is located
at 0043 hex and GIVABF is located at 0045 hex. USRLOC is at
xxxx hex. In the Extended version, FRCINT is located at
xxxx hex, and MAKINT is located at xxxx hex.

Page G-2

G.3 LLIST AND LLPRINT

LLIST and LPRINT are not implemented.

APPENDIX H

Standalone Disk BASIC

Standalone Disk BASIC is an easily implemented,
self-contained version of BASIC-80 that runs on almost any
8080 or Z80 based disk hardware without an operating system.
Standalone Disk BASIC incorporates several unique disk I/O
methods that make faster and more efficient use of disk
access and storage.

Random access with Standalone BASIC is faster than other
disk operating systems because the file allocation table is
kept in memory and updated periodically on the diskette.
Therefore, there is no need for index blocks for random
files, and there is no need to distinguish between random
and sequential files. Because there are no index blocks,
there is no large per-f ile-overhead either in memory or on
disk. Binary SAVEs and LOADS are also faster because they
are optimized by cluster, i.e., an entire cluster is read or
written at one time, instead of a single sector.

To initialize Standalone Disk BASIC, insert the BASIC
diskette and power up the system. In one- or two-drive
systems, BASIC asks if there are two drives. In systems
with more than two drives, BASIC asks for the number of
drives. BASIC then asks how many files, i.e., how many disk
files may be open at one time. Answer with a number from
to 15, or, for a default of 1 file per drive, just enter a
carriage return.

The operation of Standalone Disk BASIC is the same as Disk
BASIC-80 as described in this manual, with the following
exceptions:

H.l FILENAMES

The format for disk filenames is:

[dr ive# :] filename [.extension]

The first drive is 1.

Page H-2

Disk filenames are six characters with an optional
three-character extension that is preceded by a decimal
point. If a decimal point appears in a filename after fewer
than six characters, the name is blank-filled to six
characters and the next three characters are the extension.
If the filename is six or fewer characters with no decimal
point, there is no extension. If the filename is more than
six characters, BASIC inserts a decimal point after the
sixth character and uses the next three characters as an
extension. (Any additional characters are ignored.)

H.2 DISK FILES

The FILES command prints the names of the files residing on

a disk. The format is: [L] FILES [<drive number>]
LFILES outputs to the line printer. In addition to the
filename, the size of each file, in clusters, is output. A
cluster is the minimum unit of allocation for a file ~ it

is one-half of a track. Filenames of files created with
OPEN or ASCII SAVE are listed with a space between the name
and extension. Filenames of binary files created with
binary SAVE are listed with a decimal point between the name
and extension. The protected file option with SAVE is not
supported in Standalone Disk BASIC.

H.3 FPOS

The FPOS function:

FPOS(<file number >)

is the same as BASIC-80*s LOC function except it returns the
number of the physical sector where <filenumber> is located.
(BASIC-80's LOC function and CP/M BASIC-80's LOF function
are also implemented.)

H.4 DSKI$/DSKO$

The DSKO$ statement:

DSKO$ <dr ive>, < tr ack>,< sector >,< string expression>

writes the string on the specified sector. The maximum
length for the string is 128 characters. A string of fewer
than 128 characters is zero-filled at the end to 128
characters.

Page H-3

DSKI$ is the complementary function to the DSKO$ statement.
DSKI$ returns the contents of a sector to a string variable
name. The format is:

DSKI$ (<drive>, <track>,< sector >)

Example: A$=DSKI$ (0 , I, J)

H.5 MOUNT COMMAND

Before a diskette can be used for file operations (i.e., any
disk I/O besides DSKI$ r DSKO$, or IBM or USR modes), it must
be MOUNTed. The format of the command is:

MOUNT[<drive> [,<drive>. . .]

]

MOUNT with no arguments mounts all drives. When a diskette
is mounted, BASIC reads the File Allocation Table (see
Section H.11.2) from the diskette into memory and checks it
for errors. If there are no errors, the disk is mounted.
If an error is found, BASIC reads one or both of the back-up
allocation tables from the diskette in an attempt to mount
the disk; and a warning message, "x copies of allocation
bad on drive y" , is issued. x is 1 or 2 and y is the drive
number. When a warning occurs, it is a good idea to make a
new copy of the diskette. If all copies of the allocation
table are bad or if a free entry is encountered in the file
chain, a fatal error— "bad allocation table"— is given and
the diskette will not be mounted.

While a disk is mounted, BASIC occasionally writes the
allocation table to the directory track, but it does not
check for errors unless the read after write attribute is
set for that drive (see SET statement)

.

H.6 REMOVE COMMAND

REMOVE is the complement of MOUNT. Before a diskette can be
taken out of the drive, a REMOVE command must be executed.
The format of the command is:

REMOVE [<drive>[,<drive>. . .]

]

REMOVE writes three copies of the current allocation table
to disk and follows the same error-check procedure as MOUNT.
MOUNT and REMOVE replace the RESET command that is in
BASIC-80.

Page H-4

NOTE

ALWAYS do a REMOVE before
taking a diskette out of a
drive. If you do not, the
diskette you took out will not
have an updated and checked
allocation table, and the data
on the next diskette inserted
will be destroyed when the
wrong allocation table is
written to the directory
track.

H.7 SET STATEMENT

The SET statement determines the attributes of the currently
mounted disk drive, a currently open file, or a file that
need not be open. The format of the SET statement is:

SET<drive>
|
#<file>

|
<f ilename>, <attr ibute string>

<attribute string> is a string of characters that determines
what attributes are set. Any characters other than the
following are ignored:

R Read after write
P Write protect
E EBCDIC conversion (if available)

Attributes are assigned in the following order:

1. MOUNT command
When a MOUNT is done for a particular drive, the
first byte of the information sector on the
diskette (track 35, sector 20 for floppy; track
18, sector 13 for minifloppy) contains the
attributes for the disk. (octal values: R=100,
P=20, E=40)

2. SET<drive>,<attribute string> Statement
This statement sets the current attributes for the
disk, in memory, while it is mounted. The
attributes are not permanently recorded and apply
only while the disk is mounted.

3. When a file is created, the permanent file
attributes recorded on the disk will be the same as
the current drive attributes.

Page H-5

4. SET<f ilename>, <attribute string> Statement
This statement changes the permanent file
attributes that are stored in the directory entry
for that file. It does not affect the drive
attributes.

5. When an existing file is OPENed, the attributes of
the file number are those of the directory entry.

6. SET#<file number >, <attribute string> Statement
This statement changes the attributes for that file
number but does not change the directory entry.

Examples:

SET l, n R" Force read after write checking on all
output to drive 1

SET #1,"R" Force read after write for all output to
file 1 while it is open

SET #1,"P" Give write protect error if any output is
attempted to file 1

SET "TEST n
f "P" Protect TEST from deletion and

modification

SET 1,"" Turn off all attributes for drive 1

H.8 ATTR$ FUNCTION

ATTR$ returns a string of the current attributes for a
drive, currently open file, or file that need not be open.
The format of ATTR$ is:

ATTR$ (<drive>
|
#<file number>

|
<filename>)

For example:

SET 1,"R":A$=ATTR$(1) :PRINT A$
R
Ok

H.9 OPEN STATEMENT

The format for the OPEN statement in Standalone BASIC is:

OPEN <filename> [FOR <mode>] AS [#]<file number>

where <mode> is one of the following:

INPUT
OUTPUT
APPEND
IBM
USR

Page H-6

The mode determines only the initial positioning within the
file and the actions to be taken if the file does not exist.
The action taken in each mode is:

INPUT The initial position is at the start of the file.
An error is returned if the file is not found.

OUTPUT The initial position is at the start of the file.
A new file is always created.

APPEND The initial position is at the end of the file.
An error is returned if the file is not found.

IBM The initial position is after the last DSKI$ or
DSKO$. The file is then set up to write
contiguous. No file search is done. (The same
effect may be achieved in many cases by altering
the FORMAT program. See Section H. 11. 2.1.)

USR Same as IBM mode except, instead of write
contiguous, USRO is called and returns the next
track/sector number. The USRO routine should read
the current track/sector from B,C and return the
next location in B,C. When USRO is first called,
B,C contains the track and sector number of the
previous DSKI$ or DSKO$.

If the FOR <mode> clause is omitted, the initial position is
at the start of the file. If the file is not found, it is
created.

Note that variable length records are not supported in
Standalone Disk BASIC. All records are 128 bytes in length.

USR mode is especially useful for creating diskettes that
require sector mapping. This is the case if the diskette is
intended for use on another system, for example, a CP/M
system. Instead of opening the file for write contiguous
(IBM mode) , the USRO routine may be used to map the sectors
logically, as required by the other system.

When a file is OPENed FOR APPEND, the file mode is set to
APPEND and the record number is set to the last record of
the file. The program may subsequently execute disk I/O
statements that move the pointer elsewhere in the file.
When the last record is read, the file mode is reset to FILE
and the pointer is left at the end of the file. Then, if
you wish to append another record, execute:

GET#n,LOF(n)

This positions the pointer at the end of the file in
preparation for appending.

At any one time, it is possible to have a particular

Page H-7

filename OPEN under more than one file number. This allows
different attributes to be used for different purposes. Or,
for program clarity, you may wish to use different file
numbers for different methods of access. Each file number
has a different buffer, so changes made under one file are
not accessible to (or affected by) the other numbers until
that record is written (e.g., GET#n,LOC (n))

.

H.10 DISK I/O

A GET or PUT (i.e., random access) cannot be done on a file
that is OPEN FOR IBM or OPEN FOR USR. Otherwise, GET/PUT
may be executed along with PRINT#/INPUT# on the same file,
which makes midfile updating possible. The statement
formats for GET, PUT, PRINT* , and INPUT# are the same as
those in BASIC-80. The action of each statement in
Standalone BASIC is as follows:

GET

PUT

INPUT#

PRINT#

If the "buffer changed" flag is set, write the
buffer, to disk. Then execute the GET (read the
record into the buffer) , and reset the position
for sequential I/O to the beginning of the buffer.

Execute the PUT (write the buffer to the specified
record number) , and set the "sequential I/O is
illegal" flag until a GET is done.

If the buffer is empty, write it if the "buffer
changed" flag is set, then read the next buffer.

Set the "buffer changed" flag. If the buffer is
full, write it to disk. Then, if end of file has
not been reached, read the next buffer.

H.10.1 File Format

For a single density floppy, each file requires 137 bytes:
9 bytes plus the 128-byte buffer. Because the File
Allocation Table keeps random access information for all
files, random and sequential files are identical on the
disk. The only distinction is that sequential files have a
Control-Z (32 octal) as the last character of the last
sector. When this sector is read, it is scanned from the
end for a non-zero byte. If this byte is Control-Z, the
size of the buffer is set so that a PRINT overwrites this
byte. If the byte is not Control-Z, the size is set so the
last null seen is overwritten.

Any sequential file can be copied in random mode and remain
identical. If a file is written to disk in random mode

Page H-8

(i.e., with PUT instead of PRINT) and then read in
sequential mode, it will still have proper end of file
detection.

H.ll DISK ALLOCATION INFORMATION

With Standlone Disk BASIC, storage space on the diskette is

allocated beginning with the cluster closest to the current
position of the head. (This method is optimized for
writing. Custom versions can be optimized for reading.)
Disk allocation information is placed in memory when the
disk is mounted and is periodically written back to the
disk. Because this allocation information is kept in
memory, there is no need for index blocks for random files,
and there is no need to distinguish between random and
sequential files.

H.ll.l Directory Format

On the diskette, each sector of the directory track contains
eight file entries. Each file entry is 16 bytes long and
formatted as follows:

Bytes Usage

0-8 Filename, 1 to 9 characters. The
first character may not be or 255.

9 Attribute:
Octal
200 Binary file
100 Force read after write check
40 EBCDIC file
20 Write protected file

Excluding 200, these bits are the same
for the disk attribute byte which is the
first byte of the information sector.

10 Pointer into File Allocation Table
to the first cluster of the file's
cluster chain.

11-15 Reserved for future expansion.

If the first byte of a filename is zero, that file entry
slot is free. If the first byte is 255, that slot is the
last occupied slot in the directory, i.e., this flags the
end of the directory.

Page H-9

H.11.2 Drive Information

For each disk drive that is MOUNTed, the following
information is kept in memory:

1. Attributes
Drive attributes are read from the information
sector when the drive is mounted and may be changed
with the SET statement. Current attributes may be
examined with the ATTR$ function.

2. Track Number
This is the current track while the disk is
mounted. Otherwise, track number contains 255 as a
flag that the disk is not mounted.

3. Modification Counter
This counter is incremented whenever an entry in
the File Allocation Table is changed. After a
given number of changes has been made, the File
Allocation Table is written to disk.

4. Number of Free Clusters
This is calculated when the drive is mounted, and
updated whenever a file is deleted or a cluster is
allocated.

5. File Allocation Table
The File Allocation Table has a one-byte entry for
every cluster allocated on the disk. If the
cluster is free, this entry is 255. If the cluster
is reserved, this entry is 254. If the cluster is
the last cluster of the file, this entry is 300
(octal) plus the number of sectors from this
cluster that were used. Otherwise, the entry is a
pointer to the next cluster of the file. The File
Allocation Table is read into memory when the drive
is mounted, and updated:

1. When a file is deleted

2. When a file is closed

3. When modifications to the table total twice the
number of sectors in a cluster (this can be
changed in custom versions)

4. When modifications to the table have been made
and the disk head is on (or passes) the
directory track.

Page H-10

H. 11. 2.1 FORMAT Program - Before mounting a
drive with a new diskette, run BASIC'S FORMAT program to
initialize the directory (set all bytes to 255) , set the
information sector to 0, and set all the File Allocation
Table entries (except the directory track entry (254)) to
"free" (255).

The FORMAT program is:

10 CLEAR 1500
20 A$=STRING$ (128,255)
30 B$=STRING$ (35*2,255) +STRING$ (2,254) +STRING$ (56,255)
40 FOR S=l TO 19:DSKO$ 1, 35 ,S, A$:NEXT
50 FOR S=21 TO 25 STEP 2:DSKO$ 1,35,S,B$
60 DSKO$ 1,35,S+1,A$:NEXT
70 DSKO$ 1,35,20,CHR$(0)

After running FORMAT and MOUNTing the drive, files will be
allocated as usual, i.e., on either side of the directory
track.

The FORMAT program may be altered to pre-allocate selected
files. For instance, you may wish to use the FORMAT program
to pre-allocate files contiguously (as they would be
allocated in IBM mode) . Then IBM and BASIC files may both
exist on the diskette. The altered FORMAT program must also
write the name of the file(s) to the directory track (i.e.,
files 1-8 in sector 1, files 9-16 in sector 2, etc.), so
BASIC knows where the files start.

H.11.3 File Block

Each file on the disk has a file block that contains the
following information:

1. File Mode (byte 0)

This is the first byte (byte 0) of the file block,
and its location may be read with
VARPTR(#f ilenumber) . The location of any other
byte in the file block is relative to the file mode
byte. The file mode byte is one of the following:

(octal)
1 Input only
2 Output only
4 File mode

10 Append mode
20 Delete file
40 IBM mode

100 Special format (USR)
200 Binary save

NOTE

It is not recommended that the user attempt
to modify the next four bytes of the File
Allocation Table. Many unforeseen
complications may result.

2. Pointer to the File Allocation Table entry for the
first cluster allocated to the file (+1)

3. Pointer to the File Allocation Table entry for the
last cluster accessed (+2)

4. Last sector accessed (+3)

5. Disk number of file (+4)

6. The size of the last buffer read (+5) . This is 128
unless the last sector of the file is not full
(i.e., Control-Z)

.

7. The current position in the buffer (+6) . This is
the offset within the buffer for the next print or
input.

8. File flag (+7), is one of the following:
Octal
100 Read after write check
40 Read/Write EBCDIC, not ASCII

(Not available in all versions.)
20 File write protected
10 Buffer changed by PRINT
4 PUT has been done. PRINT/INPUT are

errors until a GET is done.
(See Section H.10.)

2 Flags buffer is empty

9. Terminal position for TAB function and comma in
PRINT statements (+8)

10. Beginning of sector buffer (+9) , 128 bytes in
length

H.12 ADVANCED USES OF FILE BUFFERS

1. Information may be passed from one program to
another by FIELDing it to an unopened file number
(not #0) . The FIELD buffer is not cleared as long
as the file is not OPENed.

Page H-12

2. The FIELDed buffer for an unopened file can also be
used to format strings. For example, an
80-character string could be placed into a FIELDed
buffer with LSET. The strings could then be
accessed as four 20-character strings using their
FIELDed variable names. For example:

100 FIELD#1, 80 AS A$
200 FIELD#l f 20 AS Al$ r 20 AS A2$, 20 AS A3$, 20 AS A4$
300 LINE INPUT "CUSTOMER INFORMATION: ";B$
400 LSET A$=B$
500 PRINT "NAME " ; Al$; "SSN: ";A2$

3. FIELD#0 may be used as a temporary buffer, but note
that this buffer is cleared after each of the
following commands: FILES, LOAD, SAVE, MERGE, RUN,
DSKO$, MOUNT, OPEN.

4. The effect of PRINT[USING] # into a string may be
achieved by printing to a FIELDed buffer and then
accessing it without reopening the file. To assure
that this temporary buffer is not written to the
disk, return the pointer to the beginning of the
buffer and reset the "buffer changed" flag as
follows:

10 OPEN "D" FOR IBM AS 1 : REM THIS DOESN'T USE SPACE
20 PRINT USING#1 ..

.

30 P=PEEK(6+VARPTR(#1)) : REM OPTIONAL, TO GET LENGTH OF PRINT
USING
40 FIELD#1 ... AS ...
50 Y=7+VARPTR(#1)
60 POKE Y,PEEK(Y AND &360):REM RESET BUFFER CHANGED FLAG
70 POKE 6+VARPTR,0:REM CLEAR POSITION IN BUFFER

Page H-13

H.13 STANDALONE BASIC DISK ERRORS

50 FIELD overflow
51 Internal error
52 Bad file number
53 File not found
54 File already open
55 Disk not mounted
56 Disk I/O error
57 File already exists
59 Disk already mounted
61 Input past end
62 Bad file name
63 Direct statement in file
64 Bad allocation table
65 Bad drive number
66 Bad track/sector
67 File write protected
68 Disk offline
69 Deleted record
70 Rename across disks
71 Sequential after PUT
72 Sequential I/O only
73 File not OPEN

H.14 DOUBLE DENSITY, DOUBLE SIDED DISKETTES

For diskettes with 256-byte sectors, DSKI$ and DSKO$ are
modified.

The DSKI$ function returns as its value the first 255 bytes
of the sector read.

The DSKO$ statement does not use the <string expression>
field. The format is:

DSKO$ <drive> f <track> , <sector>

In order to specify the data to write with DSKO$ and to
retrieve all 256 bytes of the data read by DSKI$, the user
must FIELD two or more variables (for a total of 256 bytes)
to the file#0 buffer. The FIELDed variables will be
identical to the data read with DSKI$ and written with
DSKO$. For example:

FIELD#0,128 AS A$,128 AS B$

For double-sided diskettes, the formats of DSKI$ and DSKO$
must also include the surface number:

DSKI$ (<drive>,<surface>,<track>,<sector>)

DKSO$ <drive>,<surface>,< track >,< sector

>

or
DKSO$ <drive>,<surface>,<track>,<sector>,<string exp>

APPENDIX I

Converting Programs to BASIC-80

If you have programs written in a BASIC other than BASIC-80,
some minor adjustments may be necessary before running them
with BASIC-80. Here are some specific things to look for
when converting BASIC programs.

1.1 STRING DIMENSIONS

Delete all statements that are used to declare the length of
strings. A statement such as DIM A$(I,J), which dimensions
a string array for J elements of length I, should be
converted to the BASIC-80 statement DIM A$(J).

Some BASICS use a comma or ampersand for string
concatenation. Each of these must be changed to a plus
sign, which is the operator for BASIC-80 string
concatenation.

In BASIC-80, the MID$, RIGHT$ f and LEFT$ functions are used
to take substrings of strings. Forms such as A$(I) to
access the Ith character in A$

,

or A$(I,J) to take a
substring of A$ from position I to position J, must be
changed as follows:

Other BASIC BASIC-80

X$=A$(I) X$=MID$(A$, 1,1)
X$=A$ (I, J) X$=MID$ (A$,I, J-I+l)

If the substring reference is on the left side of an
assignment and X$ is used to replace characters in A$

,

convert as follows:

Other BASIC 8K BASIC-80

A$ (I) =X$ A$=LEFT$ (A$, 1-1) +X$+MID$ (A$, 1+1)
A$ (I , J) =X$ A$=LEFT$ (A$, 1-1) ; X$;MID$ (A$, J+l)

Ext, and Disk BASIC-80

A$ (I) =X$ MID$ (A$, 1 , 1) =X$
A$ (I , J9=X$ MID$ (A$, I , J-I+l) =X$

Page 1-2

1.2 MULTIPLE ASSIGNMENTS

Some BASICS allow statements of the form:

10 LET B=C=0

to set B and C equal to zero. BASIC-80 would interpret the
second equal sign as a logical operator and set B equal to
-1 if C equaled 0. Instead, convert this statement to two
assignment statements:

10 C=0:B=0

1.3 MULTIPLE STATEMENTS

Some BASICS use a backslash (\) to separate multiple
statements on a line. With BASIC-80, be sure all statements
on a line are separated by a colon (:).

1.4 MAT FUNCTIONS

Programs using the MAT functions available in some BASICS
must be rewritten using FOR. . .NEXT loops to execute
properly.

APPENDIX J

Summary of Error Codes and Error Messages

Code Number Message

NF 1 ' NEXT without FOR
A variable in a NEXT statement does not
correspond to any previously executed,
unmatched FOR statement variable.

SN 2 Syntax error
A line is encountered that contains some
incorrect sequence of characters (such as
unmatched parenthesis, misspelled command or
statement, incorrect punctuation, etc.).

RG 3 Return without GOSUB
A RETURN statement is encountered for which
there is no previous, unmatched GOSUB
statement.

OD 4 Out of data
A READ statement is executed when there are
no DATA statements with unread data remaining
in the program.

FC 5 Illegal function call
A parameter that is out of range is passed to
a math or string function. An FC error may
also occur as the result of:

1. a negative or unreasonably large
subscript

2. a negative or zero argument with LOG

3. a negative argument to SQR

4. a negative mantissa with a non-integer
exponent

Page J-2

5. a call to a USR function for which the
starting address has not yet been given

6. an improper argument to MID$, LEFT$,
RIGHT$, INP, OUT, WAIT, PEEK, POKE, TAB,
SPC, STRING$, SPACE$, INSTR, or
ON. . .GOTO.

OV 6 Overflow
The result of a calculation is too large to
be represented in BASIC-80's number format.
If underflow occurs, the result is zero and
execution continues without an error.

OM 7 Out of memory
A program is too large, has too many FOR
loops or GOSUBs, too many variables, or
expressions that are too complicated.

UL 8 Undefined line
A line reference in a GOTO, GOSUB,
IF. . .THEN. . .ELSE or DELETE is to a
nonexistent line.

BS 9 Subscript out of range
An array element is referenced either with a
subscript that is outside the dimensions of
the array, or with the wrong number of
subscripts.

DD 10 Redimensioned array
Two DIM statements are given for the same
array, or a DIM statement is given for an
array after the default dimension of 10 has
been established for that array.

/0 11 Division by zero
A division by zero is encountered in an
expression, or the operation of involution
results in zero being raised to a negative
power. Machine infinity with the sign of the
numerator is supplied as the result of the
division, or positive machine infinity is
supplied as the result of the involution, and
execution continues.

ID 12 Illegal direct
A statement that is illegal in direct mode is
entered as a direct mode command.

TM 13 Type mismatch
A string variable name is assigned a numeric
value or vice versa; a function that expects
a numeric argument is given a string argument
or vice versa.

Page J-3

OS 14 Out of string space
String variables have caused BASIC to exceed
the amount of free memory remaining. BASIC
will allocate string space dynamically, until
it runs out of memory.

LS 15 String too long
An attempt is made to create a string more
than 255 characters long.

ST 16 String formula too complex
A string expression is too long or too
complex. The expression should be broken
into smaller expressions.

CN 17 Can't continue
An attempt is made to continue a program
that:

1. has halted due to an error,

2. has been modified during a break in
execution, or

3. does not exist.

UF 18 Undefined user function
A USR function is called before the function
definition (DEF statement) is given.

Extended and Disk Versions Only

19 No RESUME
An error trapping routine is entered but
contains no RESUME statement.

20 RESUME without error
A RESUME statement is encountered before an
error trapping routine is entered.

21 Unprintable error
An error message is not available for the
error condition which exists. This is
usually caused by an ERROR with an undefined
error code.

22 Missing operand
An expression contains an operator with no
operand following it.

23 Line buffer overflow
An attempt is made to input a line that has
too many characters.

Page J-4

26 FOR without NEXT
A FOR was encountered without a matching
NEXT.

29 WHILE without WEND
A WHILE statement does not have a matching
WEND.

30 WEND without WHILE
A WEND was encountered without a matching
WHILE.

Disk Errors

50 Field overflow
A FIELD statement is attempting to allocate
more bytes than were specified for the record
length of a random file.

51 Internal error
An internal malfunction has occurred in Disk
BASIC-80. Report to Microsoft the conditions
under which the message appeared.

52 Bad file number
A statement or command references a file with
a file number that is not OPEN or is out of
the range of file numbers specified at
initialization.

53 File not found
A LOAD, KILL or OPEN statement references a
file that does not exist on the current disk.

54 Bad file mode
An attempt is made to use PUT, GET, or LOF
with a sequential file, to LOAD a random file
or to execute an OPEN with a file mode other
than I, O, or R.

55 File already open
A sequential output mode OPEN is issued for a
file that is already open; or a KILL is
given for a file that is open.

57 Disk I/O error
An I/O error occurred on a disk I/O
operation. It is a fatal error, i.e., the
operating system cannot recover from the
error

.

Page J-5

58 File already exists
The filename specified in a NAME statement is
identical to a filename already in use on the
disk.

61 Disk full
All disk storage space is in use.

62 Input past end
An INPUT statement is exeucted after all the
data in the file has been INPUT, or for a
null (empty) file. To avoid this error, use
the EOF function to detect the end of file.

63 Bad record number
In a PUT or GET statement, the record number
is either greater than the maximum allowed
(32767) or equal to zero.

64 Bad file name
An illegal form is used for the filename with
LOAD, SAVE, KILL, or OPEN (e.g., a filename
with too many characters)

.

66 Direct statement in file
A direct statement is encountered while
LOADing an ASCII-format file. The LOAD is
terminated.

67 Too many files
An attempt is made to create a new file
(using SAVE or OPEN) when all 255 directory
entries are full.

APPENDIX K

Mathematical Functions

Derived Functions

Functions
calculated

Function

that are not
as follows.

intrinsic to BASIC-80 may be

SECANT
COSECANT
COTANGENT
INVERSE SINE
INVERSE COSINE
INVERSE SECANT

INVERSE COSECANT

INVERSE COTANGENT
HYPERBOLIC SINE
HYPERBOLIC COSINE
HYPERBOLIC TANGENT
HYPERBOLIC SECANT
HYPERBOLIC COSECANT
HYPERBOLIC COTANGENT
INVERSE HYPERBOLIC
SINE
INVERSE HYPERBOLIC
COSINE
INVERSE HYPERBOLIC
TANGENT
INVERSE HYPERBOLIC
SECANT
INVERSE HYPERBOLIC
COSECANT
INVERSE HYPERBOLIC
COTANGENT

BASIC-80 Equivalent

SEC(X)=l/COS(X)
CSC(X)=1/SIN(X)
COT(X)=l/TAN(X)
ARCSIN(X)=ATN(X/SQR(-X*X+1)

)

ARCCOS(X)=-ATN (X/SOR (-X*X+1)) +1.5708
ARCSEC(X)=ATN(X/SQR(X*X-1)

)

+SGN(SGN(X)-1) *1.5708
ARCCSC(X)=ATN(X/SQR(X*X-1))

+(SGN(X)-1) *1.5708
ARCCOT(X)=ATN(X) +1.5708
SINH (X) = (EXP (X) -EXP (-X)) /2
COSH (X) = (EXP (X) +EXP (-X)) /2
TANH (X) =EXP (-X) /EXP (X) +EXP (-X)) *2+l
SECH (X) =2/ (EXP (X) +EXP (-X)

)

CSCH (X) =2/ (EXP (X) -EXP (-X)

)

COTH(X)=EXP(-X)/(EXP(X)-EXP(-X)) *2+l

ARCSINH (X) =LOG (X+SQR (X*X+1)

)

ARCCOSH (X) =LOG (X+SQR (X*X-1)

ARCTANH(X)=LOG((1+X)/(1-X))/2

ARCSECH(X)=LOG((SQR(-X*X+l)+l)/X)

ARCCSCH(X)=LOG((SGN(X)*SQR(X*X+l)+l)/X

ARCCOTH (X) =LOG ((X+l) / (X-l)) /2

APPENDIX L

Microsoft BASIC Compiler

The Microsoft BASIC Compiler package contains the following
software: BASIC Compiler, MACRO-80 assembler, and LINK-80
loader. The following manuals are also supplied: BASIC-80
Reference Manual, BASIC Compiler User's Manual, Utility
Software Manual. The Utility Software Manual is the
reference manual for MACRO-80 and LINK-80. The BASIC
Compiler User's Manual describes the use of the compiler,
its command format, compilation switches and error messages.
The BASIC language that is used with the Microsoft BASIC
Compiler is the same as described in this manual for Disk
BASIC-80 with the following exceptions:

L.l OPERATIONAL DIFFERENCES

The Compiler interacts with the console only to read
compiler commands. These specify what files are to be
compiled. There is no "direct mode," as with the BASIC-80
interpreter. Commands that are usually issued in the direct
mode with the BASIC-80 interpreter are not implemented on
the Compiler.

The following statements and commands are not implemented
and will generate an error message:

AUTO CLOAD CSAVE CONT DELETE
EDIT ERASE LIST LLIST LOAD
MERGE NEW RENUM SAVE

Because there is no direct mode for typing in programs or
edit mode for editing programs, use Microsoft's EDIT-80 Text
Editor or BASIC-80 interpreter for creating and editing
programs. If you use the interpreter, be sure to SAVE the
file with the A (ASCII format) option.

The compiler cannot accept a physical line that is more than
253 characters in length. A logical statement, however, may
contain as may physical lines as desired. Use line feed to
start a new physical line within a logical statement.

Page L-2

To reduce the size of the compiled program, there are no
program line numbers included in the object code generated
by the compiler unless the /D, /X, or /E switch is set in
the compiler command. Error messages, therefore, contain
the address where the error occurred, instead of a line
number. The compiler listing and the map generated by
LINK-80 are used to identify the line that has the error.
It is always a good idea to debug programs using the
BASIC-80 interpreter before attempting to compile them. See
the BASIC Compiler User's Manual for more information.

L.2 LANGUAGE DIFFERENCES

Most programs that run on the Microsoft BASIC-80 interpreter
will run on the BASIC Compiler with little or no change.
However, it is necessary to note differences in the use of
the following program statements:

1

.

CALL
The <variable name> field in the CALL statement
must contain an External symbol, i.e., one that is
recognized by LINK-80 as a global symbol. This
routine must be supplied by the user as an assembly
language subroutine or a routine from the
FORTRAN-80 library.

2. CHAIN and RUN
The CHAIN statement is used to chain to a new
program overlay using the runtime module. The RUN
statement is to be used to execute any executable
file. (Under CP/M, any .COM file may be RUN.)

3

.

CLEAR
The CLEAR statement is only supported in compiled
programs using the runtime module.

4

.

COMMON
The COMMON statement must appear before any
executable statements. See section 2.7 for further
details.

5

.

DEFINT/SNG/DBL/STR
The compiler does not "execute" DEFxxx statements;
it reacts to the static occurrence of these
statements, regardless of the order in which
program lines are executed. A DEFxxx statement
takes effect as soon as its line is encountered.
Once the type has been defined for a given
variable, it remains in effect until the end of the
program or until a different DEFxxx statement with
that variable takes effect.

Page L-3

6. DIM and ERASE
The DIM statement is similar to the DEFxxx
statement in that it is scanned rather than
executed. That is, DIM takes effect when its line
is encountered. If the default dimension (10) has
already been established for an array variable and
that variable is later encountered in a DIM
statement, a "Redimensioned array" error results.

There is no ERASE statement in the compiler, so
arrays cannot be erased and redimensioned. An
ERASE statement will produce a fatal error.

Also note that the values of the subscripts in a
DIM statement must be integer constants; they may
not be variables, arithmetic expessions, or
floating point values. For example,

DIM A1(I)
DIM Al(3+4)

are both illegal.

7. END
During execution of a compiled program, an END
statement closes files and returns control to the
operating system. The compiler assumes an END
statement at the end of the program, so "running
off the end" produces proper program termination.

8. FOR/NEXT and WHILE/WEND
FOR/NEXT and WHILE/WEND loops must be statically
nested.

9. ON ERROR GOTO/RESUME <line number

>

If a program contains ON ERROR GOTO and RESUME
<line number> statements, the /E compilation switch
must be used. If the RESUME NEXT, RESUME, or
RESUME form is used, the /X switch must also be
included. See the BASIC Compiler User's Manual for
an explanation of these switches.

10. REM
REM statements or remarks starting with a single
quotation mark do not take up time or space during
execution, and so may be used as freely as desired.

11. STOP
The STOP statement is identical to the END
statement. Open files are closed and control
returns to the operating system.

12. TRON/TROFF
In order to use TRON/TROFF, the /D compilation
switch must be used. Otherwise, TRON and TROFF are
ignored and a warning message is generated.

Page L-4

13. USRn Functions
USRn Functions are significantly different from the
interpreter versions. The argument to the USRn
function is ignored and an integer result is
returned in the HL registers. It is recommended
that USRn functions be replaced by the CALL
statement.

14. %INCLUDE
The %INCLUDE <filename> statement allows the
compiler to include source from an alternate file.
The %INCLUDE statement must be the last statement
on a line. The format of the %INCLUDE statement
is

:

<line number> %INCLUDE <filename>

For example,

999 %INCLUDE SUB1000.BAS

15. Double Precision Transcendental Functions
SIN, COS, TAN, SQR, LOG, and EXP return double
precision results if given a double precision
argument. Exponentiation with double precision
operands will return a double precision result.

16. String Variables
The string space is maintained differently with the
BASIC Compiler than with the interpreter. Using
PEEK, POKE, VARPTR, or assembly language routines
to change string descriptors will result in a
String Space Corrupt error.

L.3 EXPRESSION EVALUATION

During expression evaluation, the operands of each operator
are converted to the same type, that of the most precise
operand. For example,

QR=J%+A!+Q#

causes J% to be converted to single precision and added to
A!. This result is converted to double precision and added
to Q#.

The Compiler is more limited than the interpreter in
handling numeric overflow. For example, when run on the
interpreter the following program

Page L-5

I%=20000
J%=20000
K%=-30000
M%=I%+J%-K%

yields 10000 for M% . That is, it adds 1% to J% and, because
the number is too large, it converts the result into a
floating point number. K% is then coverted to floating
point and subtracted. The result of 10000 is found, and is
converted back to integer and saved as M%

.

The compiler, however, must make type conversion decisions
during compilation. It cannot defer until the actual values
are known. Thus, the compiler would generate code to
perform the entire operation in integer mode. If the /D
switch were set, the error would be detected. Otherwise, an
incorrect answer would be produced.

In order to produce optimum efficiency in the compiled
program, the compiler may perform any number of valid
algebraic transformations before generating the code. For
example, the program

I%=20000
J%=-18000
K%=20000
M%=I%+J%+K%

could produce an incorrect result when run. If the compiler
actually performs the arithmetic in the order shown, no
overflow occurs. However, if the compiler performs I%+K%
first and then adds J% , an overflow will occur. The
compiler follows the rules for operator precedence and
parenthetic modification of such precedence, but no other
guarantee of evaluation order can be made.

L.4 INTEGER VARIABLES

In order to produce the fastest and most compact object code
possible, make maximum use of integer variables. For
example, this program

FOR 1=1 TO 10
A(I)=0
NEXT I

can execute approximately 30 times faster by simply
substituting "I%" for "I". It is especially advantageous to
use integer variables to compute array subscripts. The
generated code is significantly faster and more compact.

APPENDIX M

ASCII Character Codes

ASCII npL J. X ASCII
Code Character Code Character Code Character

000 NUL 043 + 086 V
001 SOH 044 r 087 iW
002 STX 045 088 X
003 ETX 046 • 089 Y
004 EOT 047 / 090 Z

005 ENQ 048 091 [

006 ACK 049 1 092 \
007 BEL 050 2 093]

008 BS 051 3 094 /\

009 HT 052 4 095 <

010 LF 053 5 096 i

Oil VT 054 6 097 a

012 FF 055 7 098 1b

013 CR 056 8 099 <

014 SO 057 9 100 <a

015 SI 058 • 101 g

016 DLE 059 7 102 f

017 DC1 060 < 103 (3
018 DC 2 061 = 104]h

019 DC 3 062 > 105 i

020 DC4 063 p 106 J

021 NAK 064 @ 107 ^

022 SYN 065 A 108 L

023 ETB 066 B 109 m
024 CAN 067 C 110 ii

025 EM 068 D 111 o
026 SUB 069 E 112 p
027 ESCAPE 070 F 113 q
028 FS 071 G 114]

•

029 GS 072 H 115 i3

030 RS 073 I 116 1t

031 US 074 J 117 u
032 SPACE 075 K 118 v
033 i 076 L 119 w
034 ii 077 M 120 x
035 # 078 N 121 y
036 $ 079 O 122 z

037 % 080 P 123
038 & 081 Q 124
039 i 082 R 125
040 (083 S 126
041) 084 T 127 I)EL
042 * 085 U

ASCII codes are in decimal.
LF=Line Feed, FF=Form Feed, CR=Carriage Return, DEL=Rubout

INDEX

% INCLUDE L-4

ABS 3-2

Addition 1-10
ALL 2-4, 2-9
Arctangent 3-3
Array variables 1-7, 2-9, 2-19, L-5
Hrray s • « • • • • • • • • • • x— / , z.~~ I f z.~ x z. , tL™ ^ d

ASC 3-2
ASCII codes 3-2, 3-4
ASCII format 2-4, 2-50, 2-78, L-l
Assembly language subroutines 2-3, 2-17, 2-60, 3-23 to 3-24,

C—X , L— 2.

ATN 3-3, L-4
ATTR$ H-5
ATTRIB E-2
AUTO 1-2, 2-2

Boolean operators 1-12

CALL 2-3, C-5, L-2
Carriage return 1-3, 2-37, 2-42 to 2-43,

2-84 to 2-86
Cassette tape 2-7, 2-12
CDBL 3-3
CHAIN 2-4, 2-9, L-2
Character set 1-3
CHR$ 3-4
CINT 3-4
CLEAR 2-6, A-l, L-2
CLOAD 2-7
CLOAD* 2-7
CLOAD? 2-7
CLOSE 2-8, B-3, B-8
Command level 1-1
COMMON 2-4, 2-9, L-2
Concatenation 1-15
Constants 1-4
CONT 2-11, 2-42
Control characters 1-4
Control-A 2-23
COS 3-5, L-4
CP/M 2-47, 2-50, 2-77 to 2-78,

B-l, D-l
CSAVE 2-12
CSAVE* 2-12
CSNG 3-5
CVD 3-6, B-8
CVI 3-6, B-8
CVS 3-6, B-8

DATA 2-13, 2-75
DEF FN 2-14
DEF USR 2-17, 3-23
DEFDBL 1-7, 2-16, L-2
DEFINT 1-7, 2-16, L-2
DEFSNG 1-7, 2-16, L-2
DEFSTR 1-7, 2-16, L-2
DEINT C-l, G-l
DELETE 1-2, 2-4, 2-18
DIM 2-19, L-3
Direct mode 1-lr 2-35, 2-55, L-l
Division 1-10
Double precision 1-5, 2-16, 2-61, 3-3, A-l,

L-4
DSKI$ H-2, H-13
DSKO$ H-2, H-13

EDIT 1-2, 2-20
Edit mode 1-4, 2-20, L-l
END 2-8, 2-11, 2-24, 2-33,

L-3
EOF 3-6, B-3, B-5, D-4
ERASE 2-25, L-3
ERL 2-26
ERR 2-26
ERROR 2-27
Error codes 1-16, 2-26 to 2-27, J-l
Error messages 1-16, J-l, L-2
Error trapping 2-26 to 2-27, 2-55, 2-76,

B-7, L-3
Escape 1-3, 2-20
EXP 3-7, L-4
Exponentiation 1-10 to 1-11, L-4
Expressions 1-9

FIELD 2-29, B-8 , H-ll
FILES D-3, H-2
FIX 3-7
FOR... NEXT 2-30, A-l, L-3
FORMAT program H-10
FPOS .

". H-2
FRCINT C-l, C-4, D-4, G-l
FRE 3-8
Functions 1-14, 2-14, 3-1, K-l

GET 2-29, 2-32, B-8, D-4,
H-7

GIVABF C-l to C-2, G-l
GIVINT E-2
GOSUB 2-33
GOTO 2-33 to 2-34

HEX$ 3-8

Hexadecimal 1-5, 3-8

IF... GOTO 2-35
IF... THEN 2-26, 2-35
IF. • .THEN. • .ELSE 2—35

Indirect mode 1-1
INKEY$ 3-9
INP 3-9
INPUT 2-11, 2-29, 2-37, A-2

,

B-9
INPUT$ 3-10
INPUT* H-7
INPUT* B-3
INPUT* 2-39
INSTR 3-11
INT 3-7, 3-12
Integer 3-4, 3-7, 3-12
Integer division 1-11
INTEL G-l
Interrupts C-7
lolb~11 • • • • • • • • « Z.

mm I I , E—

1

KILL 2-40, B-2

LEFT$ 3-12
LEN 3-13
LET 2-29, 2-41, B-9
LFILES H-2
Line feed 1-2, 2-37, 2-42 to 2-43,

2-85 to 2-86, L-l
LINE INPUT 2-42
LINE INPUT* B-3
LINE INPUT* 2-43
Line numbers 1-1 to 1-2, 2-2, 2-74,

L-2
Line printer 2-46, 2-48, 2-84, 3-14,

A-2, E-2
Lines 1-1, L-l
LIST 1-2, 2-44
LLIST 2-46, F-l, G-2
LOAD 2-47, 2-78, B-l
LOC 3-13, B-3, B-5, B-8, H-2
LOF D-4, H-2
LOG 3-14, L-4
Logical operators 1-12
Loops 2-30, 2-83
LPOS 2-84, 3-14
LPRINT 2-48, 2-84, F-l, G-2
LPRINT USING 2-48
LSET 2-49, B-8

MAKINT C-l, C-4, D-4, E-2, G-l
MBASIC D-l
MDS G-l
MERGE 2-4, 2-50, B-2
MID$ 2-51, 3-15, 1-1
MKD$ 3-15, B-8
MKI$ 3-15, B-8
MKS$ 3-15, B-8
MOD operator 1-11
Modulus arithmetic 1-11
MOUNT H-3
Multiplication 1-10

NAME 2-52
Negation 1-10
NEW 2-8, 2-53

NULL 2-54
Numeric constants 1-4

Numeric variables 1-7

0CT$ 3-16

Octal 1-5 f 3-16

ON ERROR GOTO 2-55, L-3
ON...GOSUB 2-56

ON... GOTO 2-56
OPEN 2-8, 2-29, 2-57, B-3,

B-8, H-5 to H-6
Operators 1-9/ 1-11 to 1-13, 1-15,

L-4
OPTION BASE 2-58
OUT 2-59
Overflow 1-11, 3-7, 3-22, A-l,

L-4
Overlay 2-4

Paper tape 2-54

PEEK 2-60, 3-16
POKE 2-60, 3-16
POS 2-84, 3-17
PRINT 2-61, A-l
PRINT USING 2-63, A-2
PRINT# H-7
PRINT# USING B-5
PRINT* USING B-3
PRINT# B-3
PRINT* USING 2-67
PRINT* 2-67
Protected files 2-78, A-2, B-2
PUT 2-29, 2-69, B-8, H-7

Random files 2-29, 2-32, 2-40, 2-49,
2-57, 2-69, 3-13, 3-15,
B-7, D-4

Random numbers 2-70, 3-18
RANDOMIZE 2-70, 3-18, A-l
READ 2-71, 2-75
Relational operators 1-11
REM 2-73, L-3
REMOVE H-3
RENUM 2-4, 2-26, 2-74
RESET D-3
RESTORE 2-75
RESUME 2-76, L-3
RETURN 2-33
RIGHT$ 3-17
RND 2-70, 3-18, A-l
RSET 2-49, B-8
Rubout 1-3, 1-15, 2-21
RUN 2-77 to 2-78, B-2, L-2

SAVE 2-47, 2-77 to 2-78, B-l

SBC G-l
Sequential files 2-39 to 2-40, 2-43, 2-57,

2-67, 2-86, 3-6, 3-13,
B-3

SET H-4
SGN 3-18
SIN 3-19, L-4
Single precision 1-5, 2-16, 2-61, 3-5, A-l
Space Requirements for variables 1-8
SPACE$ 3-19
SPC 3-20
SQR 3-20, L-4
Standalone Disk BASIC H-l
STOP 2-11, 2-24, 2-33, 2-79,

L-3
STR$ 3-21
String constants 1-4
String functions 3-6, 3-11 to 3-13, 3-15,

.5 —X / , «3"~'A 1. f j— £, j , J.
-
"J.

String operators 1-15
String space 2-6, 3-8, A-l, B-9
String Variables L-4
String variables 1-7, 2-16, 2-42 to 2-43
STRING$ 3-21
Subroutines 2-3, 2-33, 2-56, C-l
Subscripts 1-7, 2-19, 2-58, L-3
Subtraction 1-10
SWAP 2-80
SYSTEM D-4, F-l

TAB 3-22
Tab 1-3 to 1-4
TAN 3-22, L-4
TEKDOS F-l
TROFF 2-81, L-3
TRON 2-81, L-3

USR 2-17, 3-23, C-l
USRLOC C-2, G-l

VAL 3-23
Variables 1-6, L-5
VARPTR 3-24, H-10

WAIT 2-82
WEND 2-83, L-3
WHILE 2-83, L-3
WIDTH 2-84, A-2
WIDTH LPRINT 2-84, A-2
WRITE 2-85
WRITE# B-3
WRITE# 2-86

MACRO-80 Assembler

LINK-80 Loader

CREF-80 Cross Reference Facility

LIB-80 Library Manager (CP/M Versions)

utility

software

manual

Information in this document is subject to change without notice and does not represent a

commitment on the part of Microsoft. The software described in this document is

furnished under a license agreement or non-disclosure agreement. The software may be
used or copied only in accordance with the terms of the agreement.

(C) Microsoft, 1979

CP/M is a registered trade mark of Digital Research

8401-340-03

Microsoft

CONTENTS

CHAPTER 1 Introduction

CHAPTER 2 MACRO-80 Assembler

2.1 Running MACRO-80
2.2 <Command Format
2.2.1 Devices
2.2.2 Switches
2.3 Format of MACRO-80 Source Files
•ta • <3 • X. Statements
2.3.2 Symbols
2.3.3 Numeric Constants
2.3.4 Strings
2.4 Expression Evaluation
2.4.1 Arithmetic and Logical Operators
2.4.2 Modes
2.4.3 Externals
2.5 (Opcodes as Operands
2.6 Pseudo Operations
2.6.1 ASEG
2.6.2 COMMON
2.6.3 CSEG
2.6.4 DB - Define Byte
2.6.5 DC - Define Character
2.6.6 DS - Define Space
2.6.7 DSEG
2.6.8 DW - Define Word
2.6.9 END
2.6.10 ENTRY/PUBLIC
2.6.11 EQU
£* • ID • JL ^< EXT/EXTRN
2.6.13 INCLUDE
2.6.14 NAME
2.6.15 ORG - Define Origin
2.6.16 PAGE
2.6.17 SET
2.6.18 SUBTTL
2.6.19 TITLE
2.6.20 .COMMENT
2.6.21 .PRINTX
2.6.22 .RADIX
2.6.23 .Z80
2.6.24 .8080
2.6.25 . REQUEST
2.6.26 Conditional Pseudo Operations
2.6.26, 1 ELSE
2 . 6 . 2 6 <.2 ENDIF
2.6.27 Listing Control Pseudo Operations

2.6.28 Relocation Pseudo Operations
2.6.28.1 ORG Pseudo-op
2.6.28.2 LINK-80
2.6.29 Relocation Before Loading
2.7 Macros and Block Pseudo Operations
2.7.1 Terms
2.7.2 REPT-ENDM
2.7.3 IRP-ENDM
2.7.4 IRPC-ENDM
2.7.5 MACRO
2.7.6 ENDM
2. ml ml EXITM
2.7.8 LOCAL
2.7.9 Special Macro Operators and Forms
2.8 Using Z80 Pseudo-ops
2.9 Sample Assembly
2.10 MACRO-80 Errors
2.11 Compatability with Other Assemblers
2.12 Format of Listings
2.12.1 Symbol Table Listing

CHAPTER 3 CREF-80 Cross Reference Facility

CHAPTER 4 LINK-80 Linking Loader

4.1 Running LINK-80
4.2 Command Format
4.2.1 LINK-80 Switches
4.2.2 Sample Link
4.3 Format of LINK Compatible Object Files
4.4 LINK-80 Error Messages
4.5 Program Break Information

CHAPTER 5 LIB-80 Library Manager

5.1 LIB-80 Commands
5.1.1 Modules
5.2 LIB-80 Switches
5.3 LIB-80 Listings
5.4 Sample LIB Session
5.5 Summary of Switches and Syntax

APPENDIX A TEKDOS Operating System

A.l TEKDOS Command Files
A.

2

MACRO-80
A.

3

CREF-80
A.

4

LINK-80

CHAPTER 1

INTRODUCTION

MACRO-80 is a relocatable macro assembler for 8080 and Z80
microcomputer systems. It assembles 8080 or Z80 code on any
8080 or Z80 development system running the CP/M f ISIS-II,
TRSDOS or TEKDOS operating system. The MACRO-80 package
includes the MACRO-80 assembler, the LINK-80 linking loader,
and the CREF-80 cross reference facility. CP/M versions
also include the LIB-80 Library Manager. MACRO-80 resides
in approximately 14K of memory and has an assembly rate of
over 1000 lines per minute.

MACRO-80 incorporates almost all "big computer" assembler
features without sacrificing speed or memory space. The
assembler supports a complete, Intel standard macro
facility, including IRP, IRPC, REPEAT, local variables and
EXITM. Nesting of macros is limited only by memory. Code
is assembled in relocatable modules that are manipulated
with the flexible linking loader. Conditional assembly
capability is enhanced by an expanded set of conditional
pseudo operations that include testing of assembly pass,
symbol definition, and parameters to macros. Conditionals
may be nested up to 255 levels.

MACRO-80 's linking loader provides a versatile array of
loader capabilities, which are executed by means of easy
command lines and switches. Any number of programs may be
loaded with one command, relocatable modules may be loaded
in user-specified locations, and external references between
modules are resolved automatically by the loader. The
loader also performs library searches for system subroutines
and generates a load map of memory showing the locations of
the main program and subroutines. The cross reference
facility that is included in this package supplies a
convenient alphabetic list of all program variable names,
along with the line numbers where they are referenced and
defined.

INTRODUCTION Page 1-2

This manual is designed to serve as a reference guide to the
MACRO-80 package. It defines, explains and gives examples
of all the features in MACRO-80 in terms that should be
understandable to anyone familiar with assembly language
programming. It is not intended, however, to serve as
instructional material and presumes the user has substantial
knowledge of assembly language programming. The user should
refer to instructional material available from a variety of
sources for additional tutorial information.

CHAPTER 2

MACRO-80 ASSEMBLER

2.1 RUNNING MACRO-80

The command to run MACRO-80 is

M80

MACRO-80 returns the prompt "*"
, indicating it is ready to

accept commands.

NOTE

If you are using the TEKDOS
operating system, see Appendix
A for proper command formats.

2.2 COMMAND FORMAT

A command to MACRO-80 consists of a string of filenames with
optional switches. All filenames should follow the
operating system's conventions for filenames and extensions.
The default extensions supplied by Microsoft software are as
follows:

File CP/M ISIS-II

Relocatable object file REL REL
Listing file PRN LST
MACRO-80 source file MAC MAC
FORTRAN source file FOR FOR
COBOL source COB COB
Absolute file COM

MACRO-80 ASSEMBLER PAGE 2-2

A command to MACRO-80 conveys the name of the source file to
be assembled, the names of the file(s) to be created, and
which assembly options are desired. The format of a
MACRO-80 command is:

objf ile, lstf ile=source file

Only the equal sign and the source file field are required
to create a relocatable object file with the default
(source) filename and the default extension REL.

Otherwise, an object file is created only if the objfile
field is filled, and a listing file is created only if the
lstfile field is filled.

To assemble the source file without producing an object file
or listing file, place only a comma to the left of the equal
sign. This is a handy procedure that lets you check for
syntax errors before assembling to an object file.

Examples:

*=TEST

*,=TEST

rnTporn rpTPCP— T'TI'Cf

*OBJECT=TEST

Assemble the source file TEST. MAC
and place the object file in TEST. REL,

Assemble the source file TEST. MAC
without creating an object or listing
file. Useful for error checking.

Assemble the source file TEST. MAC,
placing the object file in TEST. REL
and the listing file in TEST.PRN.
(With ISIS-II, the listing file is
TEST.LST.)

Assemble the source file TEST. MAC
and place the object file in
OBJECT. REL.

OBJECT, LIST=TEST Assemble the source file TEST. MAC,
placing the object file in OBJECT. REL
and the listing file in LIST.PRN.
(With ISIS-II, the listing file is
LIST.LST.)

MACRO-80 also supports command lines; that is, the
invocation and command may be typed on the same line. For
example:

M80 ,=TEST

MACRO-80 ASSEMBLER PAGE 2-3

2.2.1 Devices

Any field in the MACRO-80 command string can also specify a
device name. The default device name with the CP/M
operating system is the currently logged disk. The default
device name with the ISIS-II operating system is disk drive
0. The command format is:

dev:objf ile,dev:lstf ile=dev: source file

The device names are as follows:

CP/M

t\ . , Oaf K^ • , «

LST:
TTY:
HSR

ISIS-II

:F0: f :F1:, :F2:,
LST:
TTY:

Device

Disk drives
Line printer
Teletype or CRT
High speed reader

Examples

:

*,TTY:=TEST Assemble the source file TEST. MAC
and list the program on the
console. No object code is
generated. Useful for error check.

* SMALL, TTY :=B: TEST Assemble TEST. MAC (found
on disk drive B) , place
the object file in SMALL. REL,
and list the program on the console.

2.2.2 Switches

A switch is a letter that is appended to the command string,
preceded by a slash. It specifies an optional task to be
performed during assembly. More than one switch can be
used, but each must be preceded by a slash. (With the
TEKDOS operating system, switches are preceded by commas or
spaces. See Appendix A.) All switches are optional. The
available switches are:

Switch Action

Octal listing

H Hexadecimal listing (default)

R Force generation of an object file

L Force generation of a listing file

C Force generation of a cross reference file

MACRO-80 ASSEMBLER PAGE 2-4

Z Assemble Z80 opcodes (default for Z80 operating
systems)

I Assemble 8080 opcodes (default for 8080 operating
systems)

P Each /P allocates an extra 256 bytes of stack
space for use during assembly. Use /P if stack
overflow errors occur during assembly. Otherwise,
not needed.

M Initialize Block Data Areas. If the programmer
wants the area that is defined by the DS (Define
Space) speudo-op initialized to zeros, then the
programmer should use the /M switch in the command
line. Otherwise, the space is not guaranteed to
contain zeros. That is, DS does not automatically
initialize the space to zeros.

X Usually used to suppress the listing of false
conditionals. The following paragraph describes
the /X switch more completely but in very
technical terms.

The presence or absence of /X in the command line
sets the initial current mode and the initial
value of the default for listing or suppressing
lines in false conditional blocks. /X sets the
current mode and initial value of default to
not-to-list. No /X sets current mode and initial
value of default to list. Current mode determines
whether false conditionals will be listed or
suppressed. The initial value of the default is
used with the .TFCOND pseudo-op so that . TFCOND is
independent of .SFCOND and .LFCOND. If the
program contains .SFCOND or .LFCOND, /X has no
effect after .SFCOND or .LFCOND is encountered
until a .TFCOND is encountered in the file. So /X
has an effect only when used with a file that
contains no conditional listing pseudo-ops or when
used with .TFCOND.

MACRO-80 ASSEMBLER PAGE 2-5

Examples:

*=TEST/L Assemble TEST. MAC, place the object file in
TEST.REL and a listing file in TEST.PRN.
(With ISIS-II, the listing file is
TEST.LST.)

*=TEST/L/0 Same as above, but listing file addresses
will be in octal.

*LAST=TEST/C Assemble TEST. MAC, place the object file in
LAST.REL and cross reference file in
TEST.CRF. (See Chapter 3.)

2.3 FORMAT OF MACRO-80 SOURCE FILES

Input source lines of up to 132 characters in length are
acceptable.

MACRO-80 preserves lower case letters in quoted strings and
comments. All symbols, opcodes and pseudo-opcodes typed in
lower case will be converted to upper case.

If the source file includes line numbers from an editor,
each byte of the line number must have the high bit on.
Line numbers from Microsoft's EDIT-80 Editor are acceptable.

2.3.1 Statements

Source files input to MACRO-80 consist of statements of the
form

:

[label: [:]] [operator] [arguments] [;comment]

With the exception of the ISIS assembler $ controls (see
Section 2.11), it is not necessary that statements begin in
column 1. Multiple blanks or tabs may be used to improve
readability.

If a label is present, it is the first item in the statement
and is immediately followed by a colon. If it is followed
by two colons, it is declared as PUBLIC (see ENTRY/PUBLIC,
Section 2.6.10). For exmple

:

FOO:: RET

is equivalent to

PUBLIC FOO
FOO: RET

MACRO-8 ASSEMBLER PAGE 2-6

The next item after the label, or the first item on the line
if no label is present, is an operator. An operator may be
an 8086 mnemonic, pseudo-op, macro call or expression. The
evaluation order is as follows:

1. Macro call

2. Mnemonic/Pseudo operation

3. Expression

Instead of flagging an expression as an error, the assembler
treats it as if it were a DB statement (see Section 2.6.4).

The arguments following the operator will, of course, vary-

in form according to the operator.

A comment always begins with a semicolon and ends with a
carriage return. A comment may be a line by itself or it
may be appended to a line that contains a statement.
Extended comments can be entered using the .COMMENT pseudo
operation (see Section 2.6.20).

2.3.2 Symbols

MACRO-80 symbols may be of any length, however, only the
first six characters are significant. The following
characters are legal in a symbol:

A-Z 0-9 $. ? @

With Microsoft's 8080/Z80/8086 assemblers, the underline
character is also legal in a symbol. A symbol may not start
with a digit. When a symbol is read, lower case is
translated into upper case. If a symbol reference is
followed by ## it is declared external (see also the
EXT/EXTRN pseudo-op, Section 2.6.12).

2.3.3 Numeric Constants

The default base for numeric constants is decimal. This may
be changed by the .RADIX pseudo-op (see Section 2.6.22).
Any base from 2 (binary) to 16 (hexadecimal) may be
selected. When the base is greater than 10, A-F are the
digits following 9. If the first digit of the number is not
numeric the number must be preceded by a zero.

MACRO-80 ASSEMBLER PAGE 2-7

Numbers are 16-bit unsigned quantities. A number is always
evaluated in the current radix unless one of the following
special notations is used:

nnnnB Binary
nnnnD Decimal
nnnnO Octal
nnnnQ Octal
nnnnH Hexadecimal

X'nnnn' Hexadecimal

Overflow of a number beyond two bytes is ignored and the
result is the low order 16-bits.

A character constant is a string comprised of zero, one or
two ASCII characters, delimited by quotation marks, and used
in a non-simple expression. For example, in the statement

DB 'A' + 1

'A' is a character constant. But the statement

DB »A'

uses 'A' as a string because it is in a simple expression.
The rules for character constant delimiters are the same as
for strings.

A character constant comprised of one character has as its
value the ASCII value of that character. That is, the high
order byte of the value is zero, and the low order byte is
the ASCII value of the character. For example, the value of
the constant 'A 1 is 41H.

A character constant comprised of two characters has as its
value the ASCII value of the first character in the high
order byte and the ASCII value of the second character in
the low order byte. For example, the value of the character
constant "AB" is 41H*256+42H.

2.3.4 Strings

A string is comprised of zero or more characters delimited
by quotation marks. Either single or double quotes may be
used as string delimiters. The delimiter quotes may be used
as characters if they appear twice for every character
occurrence desired. For example, the statement

DB "I am ""great"" today"

stores the string

I am "great" today

MACRO-80 ASSEMBLER PAGE 2-8

If there are zero characters between the delimiters, the
string is a null string.

2.4 EXPRESSION EVALUATION

2.4.1 Arithmetic And Logical Operators

The following operators are allowed in expressions. The
operators are listed in order of precedence.

NUL

LOW, HIGH

*, /, MOD, SHR, SHL

Unary Minus

+ ,
-

EQ, NE, LT, LE, GT, GE

NOT

AND

OR, XOR

Parentheses are used to change the order of precedence.
During evaluation of an expression, as soon as a new
operator is encountered that has precedence less than or
equal to the last operator encountered, all operations up to
the new operator are performed. That is, subexpressions
involving operators of higher precedence are computed first.

All operators except +, -, *, / must be separated from their
operands by at least one space.

The byte isolation operators (HIGH, LOW) isolate the high or
low order 8 bits of an Absolute 16-bit value. If a
relocatable value is supplied as an operand, HIGH and LOW
will treat it as if it were relative to location zero.

2.4.2 Modes

All symbols used as operands in expressions are in one of
the following modes: Absolute, Data Relative, Program
(Code) Relative or COMMON. (See Section 2.6 for the ASEG,
CSEG, DSEG and COMMON pseudo-ops.) Symbols assembled under
the ASEG, CSEG (default) , or DSEG pseudo-ops are in
Absolute, Code Relative or Data Relative mode respectively.

MACRO-80 ASSEMBLER PAGE 2-9

The number of COMMON modes in a program is determined by the
number of COMMON blocks that have been named with the COMMON
pseudo-op. Two COMMON symbols are not in the same mode
unless they are in the same COMMON block. In any operation
other than addition or subtraction, the mode of both
operands must be Absolute.

If the operation is addition, the following rules apply:

1. At least one of the operands must be Absolute.

2. Absolute + <mode> = <mode>

If the operation is subtraction, the following rules apply:

1. <mode> - Absolute = <mode>

2. <mode> - <mode> = Absolute
where the two <mode>s are the same.

Each intermediate step in the evaluation of an expression
must conform to the above rules for modes, or an error will
be generated. For example, if F00, BAZ and ZAZ are three
Program Relative symbols, the expression

F00 + BAZ - ZAZ

will generate an R error because the first step (F00 + BAZ)
adds two relocatable values. (One of the values must be
Absolute.) This problem can always be fixed by inserting
parentheses. So that

F00 + (BAZ - ZAZ)

is legal because the first step (BAZ - ZAZ) generates an
Absolute value that is then added to the Program Relative
value, F00.

2.4.3 Externals

Aside from its classification by mode, a symbol is either
External or not External. (See EXT/EXTRN, Section 2.6.12.)
An External value must be assembled into a two-byte field.
(Single-byte Externals are not supported.) The following
rules apply to the use of Externals in expressions:

1. Externals are legal only in addition and
subtraction.

2. If an External symbol is used in an expression, the
result of the expression is always External.

3. When the operation is addition, either operand (but
not both) may be External.

MACRO-80 ASSEMBLER PAGE 2-10

4. When the operation is subtraction, only the first
operand may be External.

2.5 OPCODES AS OPERANDS

8080 opcodes are valid one-byte operands. Note that only
the first byte is a valid operand. For example:

MVI A, (JMP)
AD I (CPI)
MVI B, (RNZ)
CPI (INX H)

AC I (LiXI B)

MVI C,MOV A f B

Errors will be generated if more than one byte is included
in the operand — such as (CPI 5) , LXI B f LABELl) or (JMP
LABEL2)

.

Opcodes used as one-byte operands need not be enclosed in
parentheses.

NOTE

Opcodes are not valid operands
in Z80 mode.

MACRO-80 ASSEMBLER PAGE 2-11

2.6 PSEUDO OPERATIONS

2.6.1 ASEG

ASEG

ASEG sets the location counter to an absolute segment of
memory. The location of the absolute counter will be that
of the last ASEG (default is 0) , unless an ORG is done after
the ASEG to change the location. The effect of ASEG is also
achieved by using the code segment (CSEG) pseudo operation
and the /P switch in LINK-80. See also Section 2.6.28

2.6.2 COMMON

COMMON /<block name>/

COMMON sets the location counter to the selected common
block in memory. The location is always the beginning of
the area so that compatibility with the FORTRAN COMMON
statement is maintained. If <block name> is omitted or
consists of spaces, it is considered to be blank common.
See also Section 2.6.28.

2.6.3 CSEG

CSEG

CSEG sets the location counter to the code relative segment
of memory. The location will be that of the last CSEG
(default is 0) , unless an ORG is done after the CSEG to
change the location. CSEG is the default condition of the
assembler (the INTEL assembler defaults to ASEG) . See also
Section 2.6.28.

2.6.4 DB - Define Byte

DB <exp> [,<exp>. . .

]

DB <string> [<string>. . .

]

The arguments to DB are either expressions or strings. DB
stores the values of the expressions or the characters of
the strings in successive memory locations beginning with
the current location counter.

MACRO-80 ASSEMBLER PAGE 2-12

Expressions must evaluate to one byte. (If the high byte of
the result is or 255, no error is given; otherwise, an A
error results.)

Strings of three or more characters may not be used in
expressions (i.e., they must be immediately followed by a
comma or the end of the line) . The characters in a string
are stored in the order of appearance, each as a one-byte
value with the high order bit set to zero.

ample

:

0000' 41 42 DB •AB 1

0002' 42 DB 'AB' AND 0FFH
0003' 41 42 43 DB 'ABC

2.6.5 DC - Define Character

DC <string>

DC stores the characters in <string> in successive memory
locations beginning with the current location counter. As
with DB, characters are stored in order of appearance, each
as a one-byte value with the high order bit set to zero.
However, DC stores the last character of the string with the
high order bit set to one. An error will result if the
argument to DC is a null string.

2.6.6 DS - Define Space

DS <exp>

DS reserves an area of memory. The value of <exp> gives the
number of bytes to be allocated. All names used in <exp>
must be previously defined (i.e., all names known at that
point on pass 1) . Otherwise, a V error is generated during
pass 1 and a U error may be generated during pass 2. If a U
error is not generated during pass 2, a phase error will
probably be generated because the DS generated no code on
pass 1.

2.6.7 DSEG

DSEG

DSEG sets the location counter to the Data Relative segment
of memory. The location of the data relative counter will
be that of the last DSEG (default is 0) , unless an ORG is

MACRO-80 ASSEMBLER PAGE 2-13

done after the DSEG to change the location. See also
Section 2.6.28.

2.6.8 DW - Define Word

DW <exp> [
, <exp>. . .

]

DW stores the values of the expressions in successive memory
locations beginning with the current location counter.
Expressions are evaluated as 2-byte (word) values.

2.6.9 END

END [<exp>]

The END statement specifies the end of the program. If
<exp> is present, it is the start address of the program.
If <exp> is not present, then no start address is passed to
LINK-80 for that program.

NOTE

If an assembly language
program is the main program, a
start address (label) must be
specified. If not, LINK-80
will issue a "no start
address" error. If the
program is a subroutine to a
FORTRAN program (for example)

,

the start address is not
required because FORTRAN has
supplied one.

2.6.10 ENTRY/PUBLIC

ENTRY <name> [,<name>. . .

]

or
PUBLIC <name> [,<name>. . .

]

ENTRY or PUBLIC declares each name in the list as internal
and therefore available for use by this program and other
programs to be loaded concurrently. All of the names in the
list must be defined in the current program or a U error
results. An M error is generated if the name is an external
name or common-blockname.

MACRO-80 ASSEMBLER PAGE 2-14

2.6.11 EQU

<name> EQU <exp>

EQU assigns the value of <exp> to <name>. If <exp> is
external, an error is generated. If <name> already has a
value other than <exp> f an M error is generated.

2.6.12 EXT/EXTRN

EXT <name> [,<name>. . .

]

or
EXTRN <name> [, <name>. . .

]

EXT or EXTRN declares that the name(s) in the list are
external (i.e., defined in a different program). If any
item in the list references a name that is defined in the
current program, an M error results. A reference to a name
where the name is followed immediately by two pound signs
(e.g., NAME##) also declares the name as external.

2.6.13 INCLUDE

INCLUDE <filename>

The INCLUDE pseudo-op applies only to CP/M versions of
MACRO-80. The pseudo-ops INCLUDE, $ INCLUDE and MACLIB are
synonymous.

The INCLUDE pseudo-op assembles source statements from an
alternate source file into the current source file. Use of
INCLUDE eliminates the need to repeat an often-used sequence
of statements in the current source file.

<filename> is any valid specification, as determined by the
operating system. Defaults for filename extensions and
device names are the same as those in a MACRO-80 command
line.

The INCLUDE file is opened and assembled into the current
source file immediately following the INCLUDE statement.
When end-of-file is reached, assembly resumes with the
statement following INCLUDE.

On a MACRO-80 listing, a plus sign is printed between the
assembled code and the source line on each line assembled
from an INCLUDE file. (See Section 2.12.)

Nested INCLUDES are not allowed. If encountered, they will
result in an objectionable syntax error '0'.

MACRO-80 ASSEMBLER PAGE 2-15

The file specified in the operand field must exist. If the
file is not found, the error 'V (value error) is given, and
the INCLUDE is ignored.

2.6.14 NAME

NAME (' modname '

)

NAME defines a name for the module. Only the first six
characters are significant in a module name. A module name
may also be defined with the TITLE pseudo-op. In the
absence of both the NAME and TITLE pseudo-ops, the module
name is created from the source file name.

2.6.15 ORG - Define Origin

ORG <exp>

The location counter is set to the value of <exp> and the
assembler assigns generated code starting with that value.
All names used in <exp> must be known on pass 1, and the
value must either be absolute or in the same area as the
location counter.

2.6.16 PAGE

PAGE [<exp>]

PAGE causes the assembler to start a new output page. The
value of <exp>, if included, becomes the new page size
(measured in lines per page) and must be in the range 10 to
255. The default page size is 50 lines per page. The
assembler puts a form feed character in the listing file at
the end of a page.

2.6.17 SET

<name> SET <exp>

SET is the same as EQU, except no error is generated if
<name> is already defined.

MACRO-80 ASSEMBLER PAGE 2-16

2.6.18 SUBTTL

SUBTTL <text>

SUBTTL specifies a subtitle to be listed on the line after
the title (see TITLE, Section 2.6.19) on each page heading.
<text> is truncated after 60 characters. Any number of
SUBTTLs may be given in a program.

2.6.19 TITLE

TITLE <text>

TITLE specifies a title to be listed on the first line of
each page. If more than one TITLE is given, a Q error
results. The first six characters of the title are used as
the module name unless a NAME pseudo operation is used. If
neither a NAME or TITLE pseudo-op is used, the module name
is created from the source filename.

2.6.20 . COMMENT

.COMMENT <delim><text><delim>

The first non-blank character encountered after .COMMENT is
the delimiter. The following <text> comprises a comment
block which continues until the next occurrence of
<delimiter> is encountered. For example, using an asterisk
as the delimiter, the format of the comment block would be:

. COMMENT *

any amount of text entered
here as the comment block

; return to normal mode

MACRO-80 ASSEMBLER PAGE 2-17

2.6.21 .PRINTX

.PRINTX <delim><text><delim>

The first non-blank character encountered after .PRINTX is
the delimiter. The following text is listed on the terminal
during assembly until another occurrence of the delimiter is
encountered. .PRINTX is useful for displaying progress
through a long assembly or for displaying the value of
conditional assembly switches. For example:

IF CPM
.PRINTX /CPM version/
ENDIF

NOTE

.PRINTX will output on both
passes. If only one printout
is desired, use the IF1 or IF2
pseudo-op. For example:

IF2
IF CPM
.PRINTX /CPM version/
ENDIF
ENDIF

will only print if CPM is true
and M80 is in pass 2.

2.6.22 .RADIX

.RADIX <exp>

The default base (or radix) for all constants is decimal.
The .RADIX statement allows the default radix to be changed
to any base in the range 2 to 16. For example:

MOVI BX,0FFH
• RADIX 16
MOVI BX,0FF

The two MOVIs in the example are identical. The <exp> in a
.RADIX statement is always in decimal radix, regardless of
the current radix.

MACRO-80 ASSEMBLER PAGE 2-18

2.6.23 .Z80

. Z80 enables the assembler to accept Z80 opcodes. This is
the default condition when the assembler is running on a Z80
operating system. Z80 mode may also be set by appending the
Z switch to the MACRO-80 command string — see Section

2.6.24 .8080

.8080 enables the assembler to accept 8080 opcodes. This is
the default condition when the assembler is running on an
8080 operating system. 8080 mode may also be set by
appending the I switch to the MACRO-80 command string — see
Section 2.2.2.

2.6.25 . REQUEST

.REQUEST <f ilename> [, <f ilename>. . .

]

.REQUEST sends a request to the LINK-80 loader to search the
filenames in the list for undefined globals. The filenames
in the list should be in the form of legal symbols. They
should not include filename extensions or disk
specifications. LINK-80 supplies a default extension and
assumes the default disk drive.

MACRO-80 ASSEMBLER PAGE 2-19

2.6.26 Conditional Pseudo Operations

The conditional pseudo operations are:

IF/IFT <exp>

IFE/IFF <exp>

IF1

IF2

IFDEF < symbol

>

IFNDEF <symbol>

IFB <arg>

IFNB <arg>

IFIDN <argl> f <arg2>

IFDIF <argl>, <arg2>

True if <exp> is not 0.

True if <exp> is 0.

True if pass 1.

True if pass 2.

True if <symbol> is defined or
has been declared External.

True if <symbol> is undefined
or not declared External.

True if <arg> is blank. The
angle brackets around <arg>
are required.

True if <arg> is not blank.
Used for testing when dummy
parameters are supplied. The
angle brackets around <arg>
are required.

True if the string <argl> is
IDeNtical to the string
<arg2>.
The angle brackets around
<argl> and <arg2> are
required.

True if the string <argl> is
DIFferent from the string
<arg2>.
The angle brackets around
<argl> and <arg2> are
required.

All conditionals use the following format

IFxx [argument]

[ELSE

ENDIF

MACRO-80 ASSEMBLER PAGE 2-20

Conditionals may be nested to any level. Any argument to a
conditional must be known on pass 1 to avoid V errors and
incorrect evaluation. For IF, IFT, IFF, and IFE the
expression must involve values which were previously defined
and the expression must be absolute. If the name is defined
after an IFDEF or IFNDEF, pass 1 considers the name to be
undefined, but it will be defined on pass 2.

2.6.26.1 ELSE - Each conditional pseudo operation may
optionally be used with the ELSE pseudo operation which
allows alternate code to be generated when the opposite
condition exists. Only one ELSE is permitted for a given
IF, and an ELSE is always bound to the most recent, open IF.
A conditional with more than one ELSE or an ELSE without a
conditional will cause a C error.

2.6.26.2 ENDIF - Each IF must have a matching ENDIF to
terminate the conditional. Otherwise, an ' Unterminated
conditional 1 message is generated at the end of each pass.
An ENDIF without a matching IF causes a C error.

2.6.27 Listing Control Pseudo Operations

Output to the listing file can be controlled by two
pseudo-ops:

.LIST and .XLIST

If a listing is not being made, these pseudo-ops have no
effect. .LIST is the default condition. When a .XLIST is
encountered, source and object code will not be listed until
a .LIST is encountered.

The output of false conditional blocks is controlled by
three pseudo-ops: .SFCOND, .LFCOND, and .TFCOND.

These pseudo-ops give the programmer control over four
cases.

1. Normally list false conditionals
For this case, the programmer simply allows the
default mode to control the listing. The default
mode is list false conditionals. If the programmer
decides to suppress false conditionals, the /X
switch can be issued in the command line instead of
editing the source file.

MACRO-80 ASSEMBLER PAGE 2-21

2. Normally suppress false conditionals
For this case, the programmer issues the .TFCOND
pseudo-op in the program file. .TFCOND reverses
(toggles) the default, causing false conditionals
to be suppressed. If the programmer decides to
list false conditionals, the /X switch can be
issued in the command line instead of editing the
source file.

3. Always suppress/list false conditionals
For these cases, the programmer issues either the
.SFCOND pseudo-op to always suppress false
conditionals, or the .LFCOND pseudo-op to always
list all false conditionals.

4. Suppress/list some false conditionals
For this case, the programmer has decided for most
false conditionals whether to list or suppress, but
for some false conditionals the programmer has not
yet decided. For the false conditionals decided
about, use .SFCOND or .LFCOND. For those not yet
decided, use .TFCOND. .TFCOND sets the current and
default settings to the opposite of the default.
Initially, the default is set by giving /X or no /X
in the command line. Two subcases exist:

1. The programmer wants some false conditionals
not to list unless /X is given. The programmer
uses the .SFCOND and .LFCOND pseudo-ops to
control which areas always suppress or list
false conditionals. To selectively suppress
some false conditionals, the programmer issues
.TFCOND at the beginning of the conditional
block and again at the end of the conditional
block. (NOTE: The second .TFCOND should be
issued so that the default setting will be the
same as the initial setting. Leaving the
default equal to the initial setting makes it
easier to keep track of the default mode if
there are many such areas.) If the conditional
block evaluates as false, the lines will be
suppressed. In this subcase, issuing the /X
switch in the command line causes the
conditional block affected by .TFCOND to list
even if it evaluates as false.

MACRO-80 ASSEMBLER PAGE 2-22

2. The programmer wants some false conditionals to
list unless /X is given. Two consecutive
.TFCONDs places the conditional listing setting
in initial state which is determined by the
presence or absence of the /X switch in the
command line (the first .TFCOND sets the
default to not initial; the second to
initial) . The selected conditional block then
responds to the /X switch: if a /X switch is
issued in the command line, the conditional
block is suppressed if false; if no /X switch
is issued in the command line, the conditional
block is listed even if false.

The programmer then must reissue the . SFCOND or
.LFCOND conditional listing pseudo-op to
restore the suppress or list mode. Simply
issuing another .TFCOND will not restore the
prior mode, but will toggle the default
setting. Since in this subcase, the next area
of code is supposed to list or suppress false
conditionals always, the programmer must issue
.SFCOND or .LFCOND.

The three
below.

conditional listing pseudo-ops are summarized

PSEUDO-OP DEFINITION

. SFCOND Suppresses the listing of conditional blocks
that evaluate as false.

. LFCOND Restores the listing of conditional blocks that
evaluate as false.

. TFCOND Toggles the current setting which controls the
listing false conditionals. .TFCOND sets the
current and default setting to not default. If
a /X switch is given in the MACRO-80 run
command line for a file which contains .TFCOND,
/X reverses the effect of .TFCOND.

MACRO-80 ASSEMBLER PAGE 2-23

The following chart illustrates the effects of the three
pseudo-ops when encountered under /X and under no /X.

PSEUDO-OP NO /X /X

(none) ON OFF
• • •

• • •

• • •

. SFCOND OFF OFF
• • •

• • •

• • •

. LFCOND ON ON
• • •

• • •

• • •

. TFCOND OFF ON
• •

• • •

. TFCOND ON OFF
• • •

• • •

• • •

. SFCOND OFF OFF

TFCOND OFF ON
TFCOND ON OFF

TFCOND OFF ON

The output of cross reference information is controlled by
.CREF and .XCREF. If the cross reference facility (see
Chapter 3) has not been invoked, .CREF and .XCREF have no
effect. The default condition is .CREF. When a .XCREF is
encountered, no cross reference information is output until
.CREF is encountered.

The output of MACRO/REPT/IRP/IRPC expansions is controlled
by three pseudo-ops: .LALL f .SALL, and .XALL. . LALLlists
the complete macro text for all expansions. .SALL
suppresses lsiting of all text and object code produced by
macros. .XALL is the default condition; a source line is
listed only if it generates object code.

MACRO-80 ASSEMBLER PAGE 2-24

2.6.28 Relocation Pseudo Operations

The ability to create relocatable modules is one of the
major features of Microsoft assemblers. Relocatable modules
offer the advantages of easier coding and faster testing,
debugging and modifying. In addition, it is possible to
specify segments of assembled code that will later be loaded
into RAM (the Data Relative segment) and ROM/PROM (the Code
Relative segment) . The pseudo operations that select
relocatable areas are CSEG and DSEG. The ASEG pseudo-op is
used to generate non-relocatable (absolute) code. The
COMMON pseudo-op creates a common data area for every COMMON
block that is named in the program.

The default mode for the assembler is Code Relative. That
is, assembly begins with a CSEG automatically executed and
the location counter in the Code Relative mode, pointing to
location in the Code Relative segment of memory. All
subsequent instructions will be assembled into the Code
Relative segment of memory until an ASEG or DSEG or COMMON
pseudo-op is executed. For example, the first DSEG
encountered sets the location counter to location zero in
the Data Relative segment of memory. The following code is
assembled in the Data Relative mode, that is, it is assigned
to the Data Relative segment of memory. If a subsequent
CSEG is encountered, the location counter will return to the
next free location in the Code Relative segment and so on.

The ASEG, DSEG, CSEG pseudo-ops never have operands. If you
wish to alter the current value of the location counter, use
the ORG pseudo-op.

2.6.28.1 ORG Pseudo-op - At any time, the value
of the location counter may be changed by use of the the ORG
pseudo-op. The form of the ORG statement is:

ORG <exp>

where the value of <exp> will be the new value of the
location counter in the current mode. All names used in
<exp> must be known on pass 1 and the value of <exp> must be
either Absolute or in the current mode of the location
counter. For example, the statements

DSEG
ORG 50

set the Data Relative location counter to 50, relative to
the start of the Data Relative segment of memory .

MACRO-80 ASSEMBLER PAGE 2-2 5

2.6.28.2 LINK-80 - The LINK-80 linking loader (see
Chapter 4 of this manual) combines the segments and creates
each relocatable module in memory when the program is
loaded. The origins of the relocatable segments are not
fixed until the program is loaded and the origins are
assigned by LINK-80. The command to LINK-80 may contain
user-specified origins through the use of the /P (for Code
Relative) and /D (for Data and COMMON segments) switches.

For example, a program that begins with the statements

ASEG
ORG 800H

and is assembled entirely in Absolute mode will always load
beginning at 800 unless the ORG statement is changed in the
source file. However, the same program, assembled in Code
Relative mode with no ORG statement, may be loaded at any
specified address by appending the /P:<address> switch to
the LINK-80 command string.

2.6.29 Relocation Before Loading

Two pseudo-ops, .PHASE and .DEPHASE, allow code to be
located in one area, but executed only at a different,
specified area.

For example:

0000' .PHASE 100H
0100 E8 0003 FOO: CALL BAZ
0103 E9 FF01 JMP ZOO
0106 C3 BAZ: RET

. DEPHASE
0007' E9 FFFB ZOO: JMP 5

All labels within a .PHASE block are defined as the absolute
value from the origin of the phase area. The code, however,
is loaded in the current area (i.e., from 1 in this
example) . The code within the block can later be moved to
100H and executed.

2.7 MACROS AND BLOCK PSEUDO OPERATIONS

The macro facilities provided by MACRO-80 include three
repeat pseudo operations: repeat (REPT) , indefinite repeat
(IRP) , and indefinite repeat character (IRPC) . A macro
definition operation (MACRO) is also provided. Each of
these four macro operations is terminated by the ENDM pseudo
operation.

MACRO-80 ASSEMBLER PAGE 2-26

2.7.1 Terms

For the purposes of discussion of macros and block
operations, the following terms will be used:

1. <dummy> is used to represent a dummy parameter.
All dummy parameters are legal symbols that appear
in the body of a macro expansion.

2. <dummylist> is a list of <dummy>s separated by
commas.

3. <arglist> is a list of arguments separated by
commas. <arglist> must be delimited by angle
brackets. Two angle brackets with no intervening
characters (<>) or two commas with no intervening
characters enter a null argument in the list.
Otherwise an argument is a character or series of
characters terminated by a comma or >. With angle
brackets that are nested inside an <arglist>, one
level of brackets is removed each time the
bracketed argument is used in an <arglist>. See
example, Section 2.7.5.) A quoted string is an
acceptable argument and is passed as such. Unless
enclosed in brackets or a quoted string, leading
and trailing spaces are deleted from arguments.

4. <paramlist> is used to represent a list of actual
parameters separated by commas. No delimiters are
required (the list is terminated by the end of line
or a comment) , but the rules for entering null
parameters and nesting brackets are the same as
described for <arglist>. (See example, Section
2.7.5)

2.7.2 REPT-ENDM

REPT <exp>

ENDM

The block of statements between REPT and ENDM is repeated
<exp> times. <exp> is evaluated as a 16-bit unsigned
number. If <exp> contains any external or undefined terms,
an error is generated. Example:

SET
REPT 10 ;generates DB 1 - DB 10
SET X+l
DB X
ENDM

MACRO-80 ASSEMBLER PAGE 2-27

2.7.3 IRP-ENDM

IRP <dummY>,<arglist>

ENDM

The <arglist> must be enclosed in angle brackets. The
number of arguments in the <arglist> determines the number
of times the block of statements is repeated. Each
repetition substitutes the next item in the <arglist> for
every occurrence of <dummy> in the block. If the <arglist>
is null (i.e., <>) , the block is processed once with each
occurrence of <dummy> removed. For example:

IRP X,<l f 2,3,4,5,6,7,8, 9, 10>
DB X
ENDM

generates the same bytes as the REPT example.

2.7.4 IRPC-ENDM

IRPC <dummy>, string (or <string>)

ENDM

IRPC is similar to IRP but the arglist is replaced by a
string of text and the angle brackets around the string are
optional. The statements in the block are repeated once for
each character in the string. Each repetition substitutes
the next character in the string for every occurrence of
<dummy> in the block. For example:

IRPC X, 0123456789
DB X+l
ENDM

generates the same code as the two previous examples.

MACRO-80 ASSEMBLER PAGE 2-28

2.7.5 MACRO

Often it is convenient to be able to generate a given
sequence of statements from various places in a program,
even though different parameters may be required each time
the sequence is used. This capability is provided by the
MACRO statement.
The form is

<name> MACRO <dummylist>

ENDM

where <name> conforms to the rules for forming symbols.
<name> is the name that will be used to invoke the macro.
The <dummy>s in <dummylist> are the parameters that will be
changed (replaced) each time the MACRO is invoked. The
statements before the ENDM comprise the body of the macro.
During assembly, the macro is expanded every time it is
invoked but, unlike REPT/IRP/IRPC, the macro is not expanded
when it is encountered.

The form of a macro call is

<name> <paramlist>

where <name> is the name supplied in the MACRO definition,
and the parameters in <paramlist> will replace the <dummy>s
in the MACRO <dummylist> on a one-to-one basis. The number
of items in <dummylist> and <paramlist> is limited only by
the length of a line. The number of parameters used when
the macro is called need not be the same as the number of
<dummy>s in <dummylist>. If there are more parameters than
<dummmy>s, the extras are ignored. If there are fewer, the
extra <dummy>s will be made null. The assembled code will
contain the macro expansion code after each macro call.

NOTE

A dummy parameter in a
MACRO/REPT/IRP/IRPC is always
recognized exclusively as a
dummmy parameter. Register
names such as A and B will be
changed in the expansion if
they were used as dummy
parameters.

MACRO-80 ASSEMBLER PAGE 2-29

Here is an example of a MACRO definition that defines a
macro called F00:

F00 MACRO X
Y SET

REPT X
Y SET Y+l

DB Y
ENDM
ENDM

This macro generates the same code as the previous three
examples when the call

FOO 10

is executed.

Another example, which generates the same code, illustrates
the removal of one level of brackets when an argument is
used as an arglist:

FOO MACRO X
IRP Y,<X>
DB Y
ENDM
ENDM

When the call

FOO <1,2,3,4,5,6,7,8,9,10>

is made, the macro expansion looks like this

IRP
DB
ENDM

Y,<1,2,3,4,5,6,7,8,9,10>
Y

2.7.6 ENDM

Every REPT, IRP, IRPC and MACRO pseudo-op must be terminated
with the ENDM pseudo-op. Otherwise, the 'Unterminated
REPT/IRP/IRPC/MACRO' message is generated at the end of each
pass. An unmatched ENDM causes an error.

2.7.7 EXITM

The EXITM pseudo-op is used to terminate a REPT/IRP/IRPC or
MACRO call. When an EXITM is executed, the expansion is
exited immediately and any remaining expansion or repetition
is not generated. If the block containing the EXITM is
nested within another block, the outer level continues to be
expanded.

MACRO-80 ASSEMBLER PAGE 2-30

2.7.8 LOCAL

LOCAL <dummylist>

The LOCAL pseudo-op is allowed only inside a MACRO
definition. When LOCAL is executed, the assembler creates a
unique symbol for each <dummy> in <dummylist> and
substitutes that symbol for each occurrence of the <dummy>
in the expansion. These unique symbols are usually used to
define a label within a macro, thus eliminating
multiply-defined labels on successive expansions of the
macro. The symbols created by the assembler range from
..0001 to ..FFFF. Users will therefore want to avoid the
form ..nnnn for their own symbols. If LOCAL statements are
used, they must be the first statements in the macro
definition.

2.7.9 Special Macro Operators And Forms

& The ampersand is used in a macro expansion to
concatenate text or symbols. A dummy parameter that
is in a quoted string will not be substituted in the
expansion unless it is immediately preceded by &.
To form a symbol from text and a dummy, put &

between them. For example:

ERRGEN MACRO X
ERROR&X:PUSH BX

MOVI BX, *&X'
JMP ERROR
ENDM

In this example, the call ERRGEN A will generate:

ERRORA: PUSH B
MOVI BX ,

'
A

'

JMP ERROR

In a block operation, a comment preceded by two
semicolons is not saved as part of the expansion
(i.e., it will not appear on the listing even under
. LALL) . A comment preceded by one semicolon,
however, will be preserved and appear in the
expansion.

When an exclamation point is used in an argument,
the next character is entered literally (i.e., !;

and <;> are equivalent).

MACRO-80 ASSEMBLER PAGE 2-31

NUL NUL is an operator that returns true if its argument
(a parameter) is null. The remainder of a line
after NUL is considered to be the argument to NUL.
The conditional

IF NUL argument

is false if, during the expansion, the first
character of the argument is anything other than a
semicolon or carriage return. It is recommended
that testing for null parameters be done using the
IFB and IFNB conditionals.

% The percent sign is used only in a macro argument.
% converts the expression that follows it (usually a
symbol) to a number in the current radix. During
macro expansion, the number derived from converting
the expression is substituted for the dummy. Using
the % special operator allows a macro call by value.
(Usually, a macro call is a call by reference with
the text of the macro argument substituting exactly
for the dummy.)

The expression following the % must conform to the
same rules as the DS (Define Space) pseudo-op. A
valid expression returning a non-relocatable
constant is required.

EXAMPLE: Normally, LB, the argument to MAKLAB,
would be substituted for Y, the argument to MACRO,
as a string. The % causes LB to be converted to a
non-relocatable constant which is then substituted
for Y. Without the % special operator, the result
of assembly would be 'Error LB 1 rather than 'Error
1

' , etc.

MAKLAB MACRO Y
ERR&Y: DB 'Error &Y ' ,

ENDM
MAKERR MACRO X
LB SET

REPT X
LB SET LB+1

MAKLAB %LB
ENDM
ENDM

When called by MAKERR 3, the assembler will
generate:

ERR1: DB 'Error l',0
ERR2 : DB 'Error 2',0
ERR3: DB 'Error 3',0

MACRO-80 ASSEMBLER PAGE 2-32

TYPE The TYPE operator returns a byte that describes two
characteristics of its argument: 1) the mode, and
2) whether it is External or not. The argument to
TYPE may be any expression (string, numeric,
logical) . If the expression is invalid, TYPE
returns zero.

The byte that is returned is configured as follows:

The lower two bits are the mode. If the lower two
bits are:

the mode is Absolute
1 the mode is Program Relative
2 the mode is Data Relative
3 the mode is Common Relative

The high bit (80H) is the External bit. If the high
bit is on, the expression contains an External. If
the high bit is off, the expression is local (not
External)

.

The Defined bit is 20H. This bit is on if the
expression is locally defined, and it is off if the
expression is undefined or external. If neither bit
is on, the expression is invalid.

TYPE is usually used inside macros, where an
argument type may need to be tested to make a
decision regarding program flow. For example:

F00 MACRO X
LOCAL Z

Z SET TYPE X
IF CI • • .

MACRO-80 ASSEMBLER PAGE 2-33

2.8 USING Z80 PSEUDO-OPS

When using the MACRO-80 assembler, the following Z80
pseudo-ops are valid. The function of each pseudo-op is
equivalent to that of its counterpart.

Z80 pseudo-op Equivalent pseudo-op

COND IFT
ENDC ENDIF
*EJECT PAGE
DEFB DB
DEFS DS
DEFW DW
DEFM DB
DEFL SET
GLOBAL PUBLIC
EXTERNAL EXTRN

The formats, where different, conform to the previous
format. That is, DEFB and DEFW are permitted a list of
arguments (as are DB and DW) , and DEFM is permitted a string
or numeric argument (as is DB)

.

MACRO-80 ASSEMBLER PAGE 2-3 4

2.9 SAMPLE ASSEMBLY

A>M80

*EXMPL1 , TTY : ==EXMPL1

MAC80' 3,,2 PAGE 1

00100 ;CSL3 (Pl,P2)
00200 ; SHIFT PI LEFT CIRCULARLY 3 BITS
00300 ; RETURN RESULT IN P2
00400 ENTRY CSL3
00450 ;GET VALUE OF FIRST PARAMETER
00500 CSL3 z

0000' 7E 00600 MOV A,M
0001' 23 00700 INX H
0002' 66 00800 MOV H f M
0003' 6F 00900

01000
MOV

; SHIFT COUNT
L,A

0004 1 06 03 01100 MVI B,3
0006' AF 01200

01300
LOOP : XRA
; SHIFT LEFT

A

0007* 29 01400 DAD H
01500 ; ROTATE IN CY BIT

0008' 17 01600 RAL
0009' 85 01700 ADD L
000A 1 6F 01800 MOV L,A

01900 ; DECREMENT COUNT
000B' 05 02000

02100
DCR

;ONE MORE TIME
B

000C C2 0006' 02200 JNZ LOOP
000F» EB 02300 XCHG

02400 ;SAVE RESULT IN SECOND PARAMETER
0010' 73 02500 MOV M,E
0011' 23 02600 INX H
0012' 72 02700 MOV M,D
0013' C9 02800

02900
RET
END

MAC80 3. 2 PAGE S

CSL3 00001' LOOP 0006'

No Fatal error (s)

MACRO-80 ASSEMBLER PAGE 2-3 5

2.10 MACRO-80 ERRORS

MACRO-80 errors are indicated by a one-character flag in
column one of the listing file. If a listing file is not
being printed on the terminal, each erroneous line is also
printed or displayed on the terminal. Below is a list of
the MACRO-80 Error Codes:

A Argument error
Argument to pseudo-op is not in correct format or
is out of range (.PAGE 1; .RADIX 1; PUBLIC 1;
JMPS TOOFAR)

.

C Conditional nesting error
ELSE without IF, ENDIF without IF, two ELSEs on
one IF.

D Double Defined symbol
Reference to a symbol which is multiply defined.

E External error
Use of an external illegal in context (e.g., FOO
SET NAME##; MOVI AX, 2-NAME##)

.

M Multiply Defined symbol
Definition of a symbol which is multiply defined.

N Number error
Error in a number, usually a bad digit (e.g., 8Q) .

Bad opcode or objectionable syntax
ENDM, LOCAL outside a block; SET, EQU or MACRO
without a name; bad syntax in an opcode; or bad
syntax in an expression (mismatched parenthesis,
quotes, consecutive operators, etc.).

P Phase error
Value of a label or EQU name is different on pass
2.

Q Questionable
Usually means a line is not terminated properly.
This is a warning error (e.g. MOV AX,BX,).

R Relocation
Illegal use of relocation in expression, such as
abs-rel. Data, code and COMMON areas are
relocatable.

U Undefined symbol
A symbol referenced in an expression is not
defined. (For certain pseudo-ops, a V error is
printed on pass 1 and a U on pass 2.)

MACRO-80 ASSEMBLER PAGE 2-3 6

V Value error
On pass 1 a pseudo-op which must have its value
known on pass 1 (e.g., .RADIX, .PAGE, DS, IF, IFE,
etc.), has a value which is undefined. If the
symbol is defined later in the program, a U error
will not appear on the pass 2 listing.

Error Messages:

'No end statement encountered on input file 1

No END statement: either it is missing or it is
not parsed due to being in a false conditional,
unterminated IRP/IRPC/REPT block or terminated
macro.

•Unterminated conditional*
At least one conditional is unterminated at the
end of the file.

'Unterminated REPT/IRP/IRPC/MACRO'
At least one block is unterminated.

[xx] [No] Fatal error (s) [,xx warnings]
The number of fatal errors and warnings. The
message is listed on the CRT and in the list file.

2.11 COMPATIBILITY WITH OTHER ASSEMBLERS

The $EJECT and $TITLE controls are provided for
compatability with INTEL'S ISIS assembler. The dollar sign
must appear in column 1 only if spaces or tabs separate the
dollar sign from the control word. The control

$EJECT

is the same as the MACRO-80 PAGE pseudo-op.
The control

$TITLE('text')

is the same as the MACRO-80 SUBTTL <text> pseudo-op.

The INTEL operands PAGE and INPAGE generate Q errors when
used with the MACRO-80 CSEG or DSEG pseudo-ops. These
errors are warnings; the assembler ignores the operands.

When MACRO-80 is entered, the default for the origin is Code
Relative 0.

With the INTEL ISIS assembler, the default is Absolute 0.

MACRO-80 ASSEMBLER PAGE 2-3 7

With MACRO-80, the dollar sign ($) is a defined constant
that indicates the value of the location counter at the
start of the statement. Other assemblers may use a decimal
point or an asterisk. Other constants are defined by
MACRO-80 to have the following values:

A=7 B=0 C=l D=2 E=3
H=4 L=5 M=6 SP=6 PSW=6

2.12 FORMAT OF LISTINGS

On each page of a MACRO-80 listing, the first two lines have
the form:

[TITLE text] M80 3.3 PAGE x[-y]
[SUBTTL text]

where:

1. TITLE text is the text supplied with the TITLE
pseudo-op, if one was given in the source program.

2. x is the major page number, which is incremented
only when a form feed is encountered in the source
file. (When using Microsoft's EDIT-80 text editor,
a form feed is inserted whenever a page mark is
done.) When the symbol table is being printed, x =

S.

3. y is the minor page number, which is incremented
whenever the .PAGE pseudo-op is encountered in the
source file, or whenever the current page size has
been filled.

4. SUBTTL text is the text supplied with the SUBTTL
pseudo-op, if one was given in the source program.

Next, a blank line is printed, followed by the first line of
output.

A line of output on a MACRO-80 listing has the following
form:

[crf#] [error] loc#m |xx
|
xxxx | . . . source

If cross reference information is being output, the first
item on the line is the cross reference number, followed by
a tab.

A one-letter error code followed by a space appears next on
the line, if the line contains an error. If there is no
error, a space is printed. If there is no cross reference
number, the error code column is the first column on the
listing.

MACRO- 80 ASSEMBLER PAGE 2-38

The value of the location counter appears next on the line.
It is a 4-digit hexadecimal number or 6-digit octal number,
depending on whether the /O or /H switch was given in the
MACRO-80 command string.

The character at the end of the location counter value is
the mode indicator. It will be one of the following
symbols:

1 Code Relative
" Data Relative
! COMMON Relative

<space> Absolute
* External

Next, three spaces are printed followed by the assembled
code. One-byte values are followed by a space. Two-byte
values are followed by a mode indicator. Two-byte values
are printed in the opposite order they are stored in, i.e.,
the high order byte is printed first. Externals are either
the offset or the value of the pointer to the next External
in the chain.

If a line of output on a MACRO-80 listing is from an INCLUDE
file, the character 'C is printed after the assembled code
on that line. If a line of output is part of a text
expansion (MACRO, REPT, IRP, IRPC) a plus sign ' + * is
printed after the assembled code on that line.

The remainder of the line contains the line of source code,
as it was input.

Example:

0C49 3A A91Z' C+ LDA LCOUNT

'C+' indicates this line is from an INCLUDE file and part of
a macro expansion.

MACRO-80 ASSEMBLER PAGE 2-39

2.12.1 Symbol Table Listing

In the symbol table listing, all the macro names in the
program are listed alphabetically, followed by all the
symbols in the program, listed alphabetically. After each
symbol, a tab is printed, followed by the value of the
symbol. If the symbol is Public, an I is printed
immediately after the value. The next character printed
will be one of the following:

U Undefined symbol.

C COMMON block name. (The "value" of the
COMMON block is its length (number of
bytes) in hexadecimal or octal.)

* External symbol.

<space> Absolute value.

1 Program Relative value.

" Data Relative value.

! COMMON Relative value.

CHAPTER 3

CREF-80 CROSS REFERENCE FACILITY

NOTE

If you are using the TEKDOS
operating system, see Appendix
A for proper command formats.

In order to generate a cross reference listing, the
assembler must output a special listing file with embedded
control characters. The MACRO-80 command string tells the
assembler to output this special listing file. /C is the
cross reference switch. When the /C switch is encountered
in a MACRO-80 command string, the assembler opens a .CRF
file instead of a .LST file. (See Section 2.6.27 for the
.CREF and .XCREF pseudo-ops.)

Examples:

*=TEST/C Assemble file TEST. MAC and
create object file TEST.REL
and cross reference file
TEST. CRF.

*T,U=TEST/C Assemble file TEST. MAC and
create object file T.REL
and cross reference file
U.CRF.

When the assembler is finished, run the cross reference
facility by typing CREF80. CREF80 prompts the user with an
asterisk. CREF80 generates a cross reference listing from
the .CRF file that was created during assembly. The CREF80
command format is:

listing file=source file

The default extension for the source file is .CRF. There
are no switches in CREF80 commands.

CREF-80 CROSS REFERENCE FACILITY PAGE 3-2

Examples of CREF-80 command strings:

*=TEST Examine file TEST.CRF and
generate a cross reference
listing file TEST.LST.

*T=TEST Examine file TEST.CRF and
generate a cross reference
listing file T.LST.

Cross reference listing files differ from ordinary listing
files in that:

1. Each source statement is numbered with a cross
reference number.

2. At the end of the listing, variable names appear in
alphabetic order along with the numbers of the
lines on which they are referenced or defined.
Line numbers on which the symbol is defined are
flagged with '#

'

.

CHAPTER 4

LINK-80 LINKING LOADER

NOTE

If you are using the TEKDOS
operating system, see Appendix
A for proper command formats.

4.1 RUNNING LINK-80

The command to run LINK-80 is

L80

LINK-80 returns the prompt "*", indicating it is ready to
accept commands.

4.2 COMMAND FORMAT

Each command to LINK-80 consists of a string of object
filenames separated by commas. These are the files to be
loaded by LINK-80. The command format is:

objf ilel, objf ile2, . . .objf ilen

The default extension for all filenames is REL. Command
lines are supported, that is, the invocation and command may
be typed on the same line.

Example:

L80 MYPROG,YRPROG

LINK-80 LINKING LOADER PAGE 4-2

Any filename in the LINK-80 command string can also specify
a device name. The default device name with the CP/M
operating system is the currently logged disk. The default
device with the ISIS-II operating system is disk drive 0.

The format is:

devlrobjf ilel,dev2 :objf ile2, . . .devnrobjf ilen

The device names are as listed in Section 2.2.1.

Example:

L80 MYPROG,A:YRPROG

After each line is typed, LINK-80 will load the specified
files. After LINK finishes this process, it will list all
symbols that remained undefined followed by an asterisk.

Example:

*MAIN

DATA 0100 0200

SUBR1* (SUBR1 is undefined)

*SUBR1

DATA 0100 0300

Typically, to execute a MACRO-80 program and subroutines,
the user types the list of filenames followed by /G (begin
execution) . To resolve any external, undefined symbols, you
can first search your library routines (See Chapter 5,

LIB-80) by appending the filenames, followed by /S, to the
loader command string.

*MYLIB/S

VG

Searches MYLIB.REL for unresolved
global symbols

Starts execution

4.2.1 LINK-80 Switches

A number of switches may be given in the LINK-80 command
string to specify actions affecting the loading or execution
of the program (s). Each switch must be preceded by a slash
(/) . (With the TEKDOS operating system, switches are
preceded by hyphens . See Appendix A.)

LINK-80 LINKING LOADER PAGE 4-3

Switches may be placed wherever applicable in the command
string:

1. At command level. It is possible for a switch to
be the entire LINK-80 command, or to appear first
in the command string. For example:

*/G Tells LINK-80 to begin execution
of program (s) already loaded

*/M List all global references
from program (s) already loaded

*/P:200 f FOO Load F00 f with program area
beginning at address 200

2. Immediately after a filename. An S or N switch may
refer to only one filename in the command string.
Therefore, when the S or N switch is required, it
is placed immediately after that filename,
regardless of where the filename appears in the
command string. For example:

*MYLIB/S,MYPROG
Search MYLIB.REL and load necessary
library modules, then load MYPROG.REL.

*MYPROG/N , MYPROG/E
Load MYPROG.REL, save MYPROG.COM
on disk and exit LINK-80.

3. At the end of the command string. Any required
switches that affect the entire load process may be
appended at the end of the command string. For
example:

*MYPR0G/N ,MYPR0G/M/E
Open a CP/M COM file called
MYPR0G.COM, load MYPROG.REL
and list all global refer-
ences. Exit LINK-80 and save
the COM file.

MYL IB/S , MYSUB ,MYPROG/N , MYPR0G/M/G
Search MYLIB.REL, load and link
MYSUB. REL and MYPROG.REL,
open a CP/M COM file
called MYPROG.C0M, list
all global references, save the
COM file, and execute MYPROG.

LINK-80 LINKING LOADER PAGE 4-4

The available switches are:

Switch Action

R

E or E:Name

Reset. Put loader back in its initial state.
Use /R if you loaded the wrong file by
mistake and want to restart. /R takes effect
as soon as it is encountered in a command
string.

Exit LINK-80 and return
system. The system libra
on the current disk to sat
undefined globals. Befo
prints three numbers: the
address of the next avai
number of 256-byte pages u

form E:Name (where Name
previously defined in one
uses Name for the star
program. Use /E to load a
back to the monitor.

to the operating
ry will be searched
isfy any existing
re exiting, LINK-80
start address, the

lable byte, and the
sed. The optional
is a global symbol
of the modules)

t address of the
program and exit

G or G:Name

N

Start execution of the program as soon as the
current command line has been interpreted.
The system library will be searched on the
current disk to satisfy any existing
undefined globals if they exist. Before
execution actually begins, LINK-80 prints
three numbers and a BEGIN EXECUTION message.
The three numbers are the start address, the
address of the next available byte, and the
number of 256-byte pages used. The optional
form G:Name (where Name is a global symbol
previously defined in one of the modules)
uses Name for the start address of the
program.

If a <filename>/N is specified, the program
will be saved on disk under the selected name
(with a default extension of .COM for CP/M)
when a /E or /G is done. A jump to the start
of the program is inserted if needed so the
program can run properly (at 100H for CP/M)

.

LINK-80 LINKING LOADER PAGE 4-5

P and D /P and /D allow the origin (s) to be set for
the next program loaded. /P and /D take
effect when seen (not deferred) , and they
have no effect on programs already loaded.
The form is /P:<address> or /D:<address>

,

where <address> is the desired origin in the
current typeout radix. (Default radix is
hex. /0 sets radix to octal; /H to hex.)
LINK-80 does a default /P:<link origin>+3
(i.e., 103H for CP/M and 4003H for ISIS) to
leave room for the jump to the start address.
NOTE: Do not use /P or /D to load programs
or data into the locations of the loader's
jump to the start address (100H to 102H for
CP/M) unless it is to load the start of the
program there. If programs or data are
loaded into these locations, the jump will
not be generated.

If no /D is given, data areas are loaded
before program areas for each module. If a
/D is given, all Data and Common areas are
loaded starting at the data origin and the
program area at the program origin. Example:

*/P:200,FOO
Data 200 300
*/R
*/P:200 /D:400,FOO
Data 400 480
Program 200 280

U List the origin and end of the program and
data area and all undefined globals as soon
as the current command line has been
interpreted. The program information is only
printed if a /D has been done. Otherwise,
the program is stored in the data area.

M List the origin and end of the program and
data area, all defined globals and their
values, and all undefined globals followed by
an asterisk. The program information is only
printed if a /D has been done. Otherwise,
the program is stored in the data area.

S Search the filename immediately preceding the
/S in the command string to satisfy any
undefined globals.

LINK-80 LINKING LOADER PAGE 4-6

4.2.2 CP/M LINK-80 Switches

The following switches apply to CP/M versions only.

X If a filename/N was specified, /X will cause
the file to be saved in Intel ASCII HEX
format with an extension of HEX.

Example: FOO/N/X/E will create an Intel
ASCII HEX formatted load module named
FOO.HEX.

Y If a filename/N was specified, /Y will create
a filename. SYM file when /E is entered. This
file contains the names and addresses of all
Globals for use with Digital Research's
Symbolic Debugger, SID and ZSID.

Example: FOO/N/Y/E creates F00.COM and
FOO.SYM. MYPROG/N/X/Y/E creates MYPROG.HEX
and MYPROG.SYM.

4.2.3 Sample Links

LINK AND GO

A>L80
*EXAMPL,EXMPL1/G
DATA 3000 30AC
[304F 30AC 49]

[BEGIN EXECUTION]

1792 14336
14336 -16383

-16383 14
14 112

112 896
A>

LINK AND SAVE

A>L80
*EXAMPL , EXAMPL1 , EXAM/N/E
DATA 3000 30AC
[304F 30AC 49]
A>

Loads and links EXAMPL.REL, EXMPLl.REL and creates
EXAM.COM.

LINK-80 LINKING LOADER PAGE 4-7

4.3 FORMAT OF LINK COMPATIBLE OBJECT FILES

NOTE

Section 4.3 is reference
material for users who wish to
know the load format of
LINK-80 relocatable object
files. Most users will want
to skip this section, as it
does not contain material
necessary to the operation of
the package.

LINK-compatible object files consist of a bit stream.
Individual fields within the bit stream are not aligned on
byte boundaries, except as noted below. Use of a bit stream
for relocatable object files keeps the size of object files
to a minimum, thereby decreasing the number of disk
reads/writes.

There are two basic types of load items: Absolute and
Relocatable. The first bit of an item indicates one of
these two types. If the first bit is a 0, the following 8

bits are loaded as an absolute byte. If the first bit is a
1, the next 2 bits are used to indicate one of four types of
relocatable items:

00 Special LINK item (see below)

.

01 Program Relative. Load the following 16 bits
after adding the current Program base.

10 Data Relative. Load the following 16 bits after
adding the current Data base.

11 Common Relative. Load the following 16 bits
after adding the current Common base.

Special LINK items consist of the bit stream 100 followed
by:

a four-bit control field

an optional A field consisting of a two-bit
address type that is the same as the two-bit
field above except 00 specifies absolute address

an optional B field consisting of 3 bits that
give a symbol length and up to 8 bits for each
character of the symbol

LINK-80 LINKING LOADER PAGE 4-8

A general representation of a special LINK item is:

1 00 xxxx yy nn zzz + characters of symbol name

A field B field

xxxx Four-bit control field (0-15 below)

yy Two-bit address type field
nn Sixteen-bit value
zzz Three-bit symbol length field

The following special types have a B-field only:

Entry symbol (name for search)
1 Select COMMON block
2 Program name
3 Request library search
4 Extension LINK items (see below)

The following special LINK items have both an A field and a
B field:

5 Define COMMON size
6 Chain external (A is head of address chain, B is

name of external symbol)
7 Define entry point (A is address, B is name)

The following special LINK items have an A field only:

8 External - offset. Used for JMP and CALL to
externals

9 External + offset. The A value will be added to
the two bytes starting at the current location
counter immediately before execution.

10 Define size of Data area (A is size)
11 Set loading location counter to A
12 Chain address. A is head of chain, replace all

entries in chain with current location counter.
The last entry in the chain has an address field
of absolute zero.

13 Define program size (A is size)
14 End program (forces to byte boundary)

LINK-80 LINKING LOADER PAGE 4-9

The following special Link item has neither an A nor a B
field:

15 End file

An Extension LINK item follows the general format of a
B-field-only special LINK item, but contents of the B-field
are not a symbol name. Instead, the symbol area contains
one character to identify the type of Extension LINK item,
followed by from 1 to 7 characters of additional
information.

Thus, every Extension LINK item has the format:

1 00 0100 zzz i jjjjjjj

where

zzz may be any three bit integer (with 000
representing 8)

,

i is an eight bit Extension LINK item type
identifier, and

jjjjjjj are zzz-1 eight bit characters of
information whose significance depends on i

At present, there is only one Extension LINK item:

i = X'35' COBOL overlay segment sentinel

zzz = 010 (binary)

j = COBOL segment number -49 (decimal)

When the overlay segment sentinel is encountered by the
linker, the current overlay segment number is set to the
value of j+49. If the previously existing segment
number was non-zero and a /N switch is in effect, the
data area is written to disk in a file whose name is the
current program name and whose extension is Vnn, where
nn are the two hexadecimal digits representing the
number j+49 (decimal)

.

LINK-80 LINKING LOADER PAGE 4-10

4.4 LINK-80 ERROR MESSAGES

LINK-80 has the following error messages:

?No Start Address A /G switch was issued, but no main
program had been loaded.

?Loading Error The last file given for input was not a
properly formatted LINK-80 object file.

?Out of Memory Not enough memory to load program.

?Command Error Unrecognizable LINK-80 command.

?<file> Not Found <file>, as given in the command string,
did not exist.

%2nd COMMON Larger /XXXXXX/
The first definition of COMMON block
/XXXXXX/ was not the largest definition.
Reorder module loading sequence or
change COMMON block definitions.

%Mult. Def. Global YYYYYY
More than one definition for the global
(internal) symbol YYYYYY was encountered
during the loading process.

%Overlaying(Program! Area ,Start = xxxx

\ Data { , Public = <symbol name> (xxxx)
, External = <symbol name>(xxxx)

A /D or /P will cause already loaded
data to be destroyed.

?Intersecting
J
Program) Area

| Data)

The program and data area intersect and
an address or external chain entry is in
this intersection. The final value
cannot be converted to a current value
since it is in the area intersection.

?Start Symbol - <name> - Undefined
After a /E: or /G: is given, the
symbol specified was not defined.

LINK-80 LINKING LOADER PAGE 4-11

Origin Above \ Loader Memory, Move Anyway (Y or N)

?

Below
j

After a /E or /G was given, either the
data or program area has an origin or
top which lies outside loader memory
(i.e., loader origin to top of memory).
If a Y <cr> is given, LINK-80 will move
the area and continue. If anything else
is given, LINK-80 will exit. In either
case, if a /N was given, the image will
already have been saved.

?Can't Save Object File
A disk error
being saved.

occurred when the file was

4.5 PROGRAM BREAK INFORMATION

LINK-80 stores the address of the first free location in a
global symbol called $MEMRY if that symbol has been defined
by a program loaded. $MEMRY is set to the top of the data
area +1.

NOTE

If /D is g
origin i

program ar
sure ther
keep the
destroyed,
particular
disk dri
which uses
disk buffe

iven and the data
s less than the
ea, the user must be
e is enough room to
program from being

Th i s is
ly true with the
ver for FORTRAN-80
$MEMRY to allocate

rs and FCB's.

CHAPTER 5

LIB-80 LIBRARY MANAGER

(CP/M Versions Only)

LIB-80 is the object time library manager for CP/M versions
of FORTRAN-80 and COBOL-80. LIB-80 will be interfaced to
other operating systems in future releases of FORTRAN-80 and
COBOL-80.

WARNING

Read this chapter carefully
and make a back-up copy of
your libraries before using
LIB. It is not difficult to
destroy a library with LIB-80.

5.1 LIB-80 COMMANDS

To run LIB-80, type LIB followed by a carriage return.
LIB-80 will return the prompt "*" indicating it is ready to
accept commands. Each command in LIB-80 either lists
information about a library or adds new modules to the
library under construction.

Commands to LIB-80 consist of an optional destination
filename which sets the name of the library being created,
followed by an equal sign, followed by module names
separated by commas. The default destination filename is
FORLIB.LIB. Examples:

*NEWLIB=FILE1 <M0D2>, FILE3,TEST

*SIN,COS,TAN,ATAN

LIB-80 LIBRARY MANAGER PAGE 5-2

Any command specifying a set of modules concatenates the
modules selected onto the end of the last destination
filename given. Therefore,

*FILE1,FILE2 <BIGSUB>, TEST

is equivalent to

*FILE1
*FILE2 <BIGSUB>
*TEST

5.1.1 Modules

A module is typically a FORTRAN or COBOL subprogram, main
program or a MACRO-80 assembly that contains ENTRY
statements.

The primary function of LIB-80 is to concatenate modules in
. REL files to form a new library. In order to extract
modules from previous libraries or .REL files, a powerful
syntax has been devised to specify ranges of modules within
a . xvhiL ius t

The simplest way to specify a module within a file is simply
to use the name of the module. For example:

SIN

But a relative quantity plus or minus 255 may also be used.
For example:

SIN+1

specifies the module after SIN and

SIN-1

specifies the one before it.

Ranges of modules may also be specified by using two dots:

..SIN means all modules up to and including
SIN.

SIN. . means all modules from SIN to the end
of the file.

SIN.. COS means SIN and COS and all the
modules in between.

LIB-80 LIBRARY MANAGER PAGE 5-3

Ranges of modules and relative offsets may also be used in
combination:

SIN+1. .COS-1

To select a given module from a file, use the name of the
file followed by the module (s) specified enclosed in angle
brackets and separated by commas:

FORLIB <SIN. ,COS>

or

MYLIB.REL <TEST>

or

BIGLIB.REL <FIRST, MIDDLE, LAST>

etc.

If no modules are selected from a file, then all the modules
in the file are selected:

TESTLIB.REL

5.2 LIB-80 SWITCHES

NOTE

/E will destroy your current
library if there is no new
library under construction.
Exit LIB-80 using Control-C if
you are not revising the
library.

A number of switches are used to control LIB-80 operation
These switches are always preceded by a slash:

/0 Octal - set Octal typeout mode for /L
command

.

/H Hex - set Hex typeout mode for /L
command (default)

.

/U List the symbols which would remain
undefined on a search through the
file specified.

LIB-80 LIBRARY MANAGER PAGE 5-4

/L List the modules in the files specified
and symbol definitions they contain.

/C (Create) Throw away the library under
construction and start over.

/E Exit to CP/M. The library under
construction (.LIB) is revised to .REL
and any previous copy is deleted.

NOTE

/E will destroy your current
library if there is no new
library under construction.
Exit LIB-80 using Control-C if
you are not revising the
library.

/R Rename - same as /E but does not exit
to CP/M on completion.

5.3 LIB-80 LISTINGS

To list the contents of a file in cross reference format,
use /L:

*FORLIB/L

When building libraries, it is important to order the
modules such that any intermodule references are "forward."
That is, the module containing the global reference should
physically appear ahead of the module containing the entry
point. Otherwise, LINK-80 may not satisfy all global
references on a single pass through the library.

Use /U to list the symbols which could be undefined in a
single pass through a library. If a module in the library
makes a backward reference to a symbol in another module, /U
will list that symbol. Example:

*SYSLIB/U

NOTE: Since certain modules in the standard FORTRAN and
COBOL systems are always force-loaded, they will be listed
as undefined by /U but will not cause a problem when loading
FORTRAN or COBOL programs.

Listings are currently always sent to the terminal; use
control-P to send the listing to the printer.

LIB-80 LIBRARY MANAGER PAGE 5-5

5.4 SAMPLE LIB SESSION

BUILDING A LIBRARY:

A>LIB
*TRANLIB=SIN,COS,TAN,ATAN,ACOG
*EXP
*/E
A>

LISTING A LIBRARY:

A>LIB *TRANLIB.LIB/U
*TRANLIB.LIB/L

(List of symbols in TRANLIB.LIB)

*Control-C
A>

5.5 SUMMARY OF SWITCHES AND SYNTAX

/0 Octal - set listing radix
/H Hex - set listing radix
/U List undefineds
/L List cross reference
/C Create - start LIB over
/E Exit - Rename .LIB to .REL and exit
/R Rename - Rename .LIB to .REL

module: :=module name {+ or - number}

module sequence ::=

module
|
..module

|
module..

|
modulel. .module2

file specif ication: :=filename {<module sequence>{ ,<module sequence>}}

command: := {library filename=} (list of file specifications}
{list of switches}

APPENDIX A

TEKDOS Operating System

The command formats for MACRO-80, LINK-80 and CREF-80 differ
slightly under the TEKDOS operating system.

A.l TEKDOS COMMAND FILES

The files F80 f M80, and C80 are actually TEKDOS command
files for the compiler, assembler, loader, and cross
reference programs, respectively. These command files set
the emulation mode to and select the Z-80 assembler
processor (see TEKDOS documentation) , then execute the
appropriate program file. You will note that all of these
command files are set up to execute the Microsoft programs
from drive 1. LINK-80 will also look for the library
(FORLIB) on drive 1. If you wish to execute any of this
software from drive 0, the command file must be edited and
LINK-80 should be given an explicit library search directive
"FORLIB-S". (See Section 4.2.1 of this manual.)

A. 2 MACRO-80

The M80 assembler accepts command lines only. A prompt is
not displayed and interactive commands are not" accepted.
Commands have the same format as TEKDOS assembler commands;
i.e., three filename or device name parameters plus optional
switches.

M80 [objfile] [lstfile] sourcefile [swl] [sw2...]

The object and listing file parameters are optional. These
files will not be created if the parameters are omitted,
however any error messages will still be displayed on the
console. The available switches are as described in Chapter
2 of this manual. except that the switches are delimited by
commas or spaces instead of slashes.

PAGE A-

2

A. 3 CREF-80

The form of commands to CREF80 is:

C80 lstfile sourcefile

Both filename parameters are required. The sourcefile
parameter is always the name of a CREF80 file created during
assembly, by use of the C switch.

Example:

Create a CREF80 file using MACRO-80:

M80 , , TSTCRF TSTMAC C

Create a cross reference listing from the CREF80 file:

C80 TSTLST TSTCRF

A. 4 LINK-80

With TEKDOS, the LINK-80 loader accepts interactive commands
only. Command lines are not supported.

When LINK-80 is invoked, and whenever it is waiting for
input, it will prompt with an asterisk. Commands are lists
of filenames and/or devices separated by commas or spaces
and optionally interspersed with switches. The input to
LINK-80 must be Microsoft relocatable object code (not the
same as TEKDOS loader format)

.

Switches to LINK-80 are delimited by hyphens under TEKDOS,
instead of slashes. All LINK-80 switches (as documented in
Chapter 3) are supported, except "G" and "N" , which are not
implemented at this time.

Examples:

1. Assemble a MACRO-80 program named XTEST, creating
an object file called XREL and a listing file
called XLST:

>M80 XREL XLST XTEST

2. Load XTEST and save the loaded module:

>L80
*XREL-E
[04AD 22B8]
*DOS*ERROR 4 6

L80 TERMINATED
>M XMOD 400 22B8 04AD

PAGE A-

3

Note that "-E" exits via an error message due to execution
of a Halt instruction. The memory image is intact, however,
and the "Module" command may be used to save it. Once a
program is saved in module format, it may then be executed
directly without going through LINK-80 again.

The bracketed numbers printed by LINK-80 before exiting are
the entry point address and the highest address loaded,
respectively. The loader default is to begin loading at
400H. However, the loader also places a jump to the start
address in location 0, thereby allowing execution to begin
at 0. The memory locations between 0003 and 0400H are
reserved for SRB's and I/O buffers at runtime.

INDEX

$INCLUDE 2-14
$MEMRY 4-11

.COMMENT 2-16

.CREF 2-23

.DEPHASE 2-25

.LALL 2-23

.LFCOND 2-20

.LIST 2-20

.PAGE 2-37

.PHASE 2-25

.PRINTX 2-17

.RADIX 2-6, 2-17

.REQUEST 2-18

.SALL 2-23

.SFCOND 2-20

.TFCOND 2-20

.XALL 2-23

.XCREF 2-23

.XLIST 2-20

Absolute memory 2-8, 2-11, 2-38
Arithmetic operators 2-8
ASEG 2-8, 2-11, 2-24

Block pseudo ops 2-25

Character constants 2-7
Code Relative 2-11, 2-24 to 2-25, 2-38
Command format 2-1, 3-1, 4-1, 5-1
Comments 2-6, 2-16
COMMON 2-8, 2-11, 2-24 to 2-25,

2-38 to 2-39
Conditionals 2-19
Constants 2-6
CP/M 2-2 to 2-3, 4-4 to 4-6,

5-1, 5-4
Cross reference facility . . . 2-4, 2-23, 2-37, 3-1
CSEG 2-8, 2-11, 2-24, 2-36

Data Relative 2-8, 2-12, 2-24 to 2-25,
2-38

DB 2-6, 2-11
DC 2-12
Define Byte 2-6, 2-11
Define Character 2-12
Define Origin 2-15
Define Space 2-12
Define Word 2-13
DS 2-12
DSEG 2-8, 2-12, 2-24, 2-36
DW 2-13

EDIT=80 2-5, 2-37
ELSE 2-20
END 2-13
ENDIF 2-20
ENDM 2-25, 2-29
ENTRY 2-13, 5-2
EQU 2-14 to 2-15
Error codes 2-35, 2-37
Error messages 2-36, 4-10
EXITM 2-29
EXT 2-14
Externals 2-9, 2-14, 2-35, 2-38
EXTRN 2-14

IF 2-19
IF1 2-19
IF2 2-19
IFB 2-19
IFDEF 2-19
IFDIF 2-19
IFE 2-19
IFF 2-19
IFIDN 2-19
IFNB 2-19
IFT 2-19
INCLUDE 2-14
INTEL 2-36
IRP 2-23, 2-25, 2-27
IRPC 2-23, 2-25, 2-27
ISIS-II 2-2 to 2-3, 2-5, 4-5

LIB-80 5-1
Library manager 5-1
LINK-80 2-11, 2-13, 2-18, 2-25,

4-1, 5-4
Listings 2-14, 2-20, 2-37 to 2-38,

3-2, 5-4
LOCAL 2-30
Logical operators 2-8

MACLIB 2-14
MACRO 2-23, 2-25 to 2-26, 2-28 to 2-29
Macro operators 2-30
Modes 2-8
Modules 5-2

NAME 2-15

Operators 2-8
ORG 2-11, 2-13, 2-15, 2-24

PAGE 2-15, 2-36
Program Relative 2-8
PUBLIC 2-5, 2-13, 2-39

REPT 2-23, 2-25 to 2-26

SET 2-15

Strings 2-7
SUBTTL 2-16, 2-36 to 2-37
Switches 2-3 f 3-1, 4-2, 5-3, 5-5
Symbol table 2-37, 2-39

TEKDOS 2-1, 3-1, 4-1, A-l
TITLE 2-15 to 2-16, 2-37

Microsoft
Software Problem Report

Use this form to report errors or problems in: Q] Microsoft BASIO80

| |
Microsoft BASIC-86

Date Microsoft BASIC
Compiler

Report only one problem per form.

Describe your hardware and operating system:

BASIC Release number:

Please supply a concise description of the problem and the
circumstances surrounding its occurrence. If possible, reduce
the problem to a simple test case. Otherwise, include all
programs and data in machine readable form (preferably on a
diskette). If a patch or interim solution is being used,
please describe it.

This form may also be used to describe suggested enhancements
to Microsoft BASIC.

Problem Description:

-over-

Did you find errors in the documentation supplied with the
software? If so, please include page numbers and describe:

Fill in the following information before returning this form

Name Phone

Organization

Address City __ State Zip^

Return form to: Microsoft
10300 NE Eighth, Suite 319
Bellevue, WA 98004

