
Running	MS-DOS	Version	6.22,	20th	Anniversary	Edition
Van	Wolverton
PUBLISHED	BY	Microsoft	Press	A	Division	of	Microsoft	Corporation	
One	Microsoft	Way	,	
Redmond,	
Washington	98052-6399

Copyright	©	2003	by	Van	Wolverton

All	rights	reserved.	No	part	of	the	contents	of	this	book	may	be	reproduced	or	transmitted
in	any	form	or	by	any	means	without	the	written	permission	of	the	publisher.

Library	of	Congress	Cataloging-in-Publication	Data
Wolverton,	Van,	1939-
				Running	MS-DOS	/	Van	Wolverton.--6th	Rev.	ed.
							p.			cm.
				Includes	index.

ISBN	0-73561-812-7

ISBN	0-7356-1812-7	(20th	Anniversary	Ed.)

1.	MS-DOS	(Computer	file)	I.	Title.

QA76.76.O63W65	1993

005.4'469--dc20	93-37565

CIP

Printed	and	bound	in	the	United	States	of	America.

1	2	3	4	5	6	7	8	9	QWE	8	7	6	5	4	3

Distributed	in	Canada	by	H.B.	Fenn	and	Company	Ltd.

A	CIP	catalogue	record	for	this	book	is	available	from	the	British	Library.

Microsoft	Press	books	are	available	through	booksellers	and	distributors	worldwide.	For
further	information	about	international	editions,	contact	your	local	Microsoft	Corporation
office	or	contact	Microsoft	Press	International	directly	at	fax	(425)	936-7329.	Visit	our	Web
site	at	www.microsoft.com/mspress.	Send	comments	to	<mspinput@microsoft.com>.

DriveSpace,	Microsoft,	MS-DOS,	and	Windows	are	either	registered	trademarks	or
trademarks	of	Microsoft	Corporation	in	the	United	States	and/or	other	countries.	Other
product	and	company	names	mentioned	herein	may	be	the	trademarks	of	their	respective
owners.

mailto:mspinput@microsoft.com

The	example	companies,	organizations,	products,	domain	names,	e-mail	addresses,
logos,	people,	places,	and	events	depicted	herein	are	fictitious.	No	association	with	any
real	company,	organization,	product,	domain	name,	e-mail	address,	logo,	person,	place,
or	event	is	intended	or	should	be	inferred.

Acquisitions	Editor:	Alex	Blanton	Project	Editor:	Sandra	Haynes	Body	Part	No.	X08-
92504

For	Jeanne,	who	makes	it	all	worthwhile

VAN	WOLVERTON

A	professional	writer	since	1963,	Van	Wolverton	has	had	bylines	as	a	newspaper	reporter,
editorial	writer,	political	columnist,	and	technical	writer.	He	wrote	his	first	computer
program-one	that	tabulated	political	polls-for	the	Idaho	State	Journal	in	Pocatello,	Idaho,	in
1965.	His	interests	in	computers	and	writing	have	been	intertwined	ever	since.	As	a
computer	professional,	Wolverton	has	worked	at	IBM	and	Intel	and	has	written	software
documentation	for	national	software	companies,	including	Microsoft	Corporation.	He	is	the
author	of	Hard	Disk	Management	and	MS-DOS	Commands,	both	Microsoft	Press	Quick
Reference	Guides,	and	Supercharging	MS-DOS.	He	was	also	a	contributor	to	The	MS-
DOS	Encyclopedia.	Wolverton	and	his	wife,	Jeanne,	live	in	a	twenty-first-century	log	cabin
near	Alberton,	Montana.

javascript:Next(1)

Running	MS-DOS	Version	6.22,	20th	Anniversary	Edition
by	Van	Wolverton ISBN:0735618127

Microsoft	Press	©	2003	(612	pages)

The	classic	reference	to	the	classic	operating	system!

Table	of	Contents Back	Cover Comments

Table	of	Contents
Running	MS-DOS	Version	6.22,	20th
Anniversary	Edition

Preface	to	the	20th	Anniversary	Edition

Introduction

Part	I	-	Getting	to	Know	MS-DOS
Chapter	1 -What	is	MS-DOS?
Chapter	2 - Starting	MS-DOS
Chapter	3 - Getting	Your	Bearings

Chapter	4 - A	Look	at	Files	and	FloppyDisks
Part	II	-	Learning	to	Use	MS-DOS
Chapter	5 - Managing	Your	Files
Chapter	6 - Managing	Your	Floppy	Disks
Chapter	7 - Managing	Your	Devices
Chapter	8 - A	Tree	of	Files
Chapter	9 - Managing	Your	Hard	Disk
Chapter	10 - Protecting	Your	Disks	and	Files
Chapter	11 - The	MS-DOS	Shell

Chapter	12 - Creating	and	Editing	Files	ofText
Chapter	13 - Taking	Control	of	Your	System
Chapter	14 - Creating	Your	Own	Commands
Chapter	15 - Creating	Smart	Commands

javascript:Jump(0)
javascript:Jump(1)
javascript:Jump(2)
javascript:Jump(3)
javascript:Jump(4)
javascript:Jump(5)
javascript:Jump(6)
javascript:Jump(7)
javascript:Jump(8)
javascript:Jump(9)
javascript:Jump(10)
javascript:Jump(11)
javascript:Jump(12)
javascript:Jump(13)
javascript:Jump(14)
javascript:Jump(15)
javascript:Jump(16)
javascript:Jump(17)
javascript:Jump(18)
javascript:Jump(19)

Chapter	16 - Creating	More	SmartCommands
Chapter	17 - Tailoring	Your	System
Part	III	-	Appendixes
Appendix	A - Installing	MS-DOS
Appendix	B - Glossary
Appendix	C -MS-DOS	Command	Reference
Index

List	of	Figures

	

javascript:Jump(20)
javascript:Jump(21)
javascript:Jump(22)
javascript:Jump(23)
javascript:Jump(24)
javascript:Jump(25)
javascript:Jump(26)
javascript:Jump(27)

Running	MS-DOS	Version	6.22,	20th	Anniversary	Edition
by	Van	Wolverton ISBN:0735618127
Microsoft	Press	©	2003	(612	pages)

The	classic	reference	to	the	classic	operating	system!

Table	of	Contents Back	Cover Comments

Back	Cover

Get	the	book	that	set	the	standard	for	all	other	MS-DOS	books—now	celebrating
its	20th	anniversary!	Running	MS-DOS	is	the	best	selling	guide	to	the	operating
system	that	changed	personal	computing	history.	Featuring	Van	Wolverton’s	down-
to-earth	style	and	eloquent	applications,	this	one-step	reference	makes	MS-DOS
accessible	for	anyone	looking	to	optimize	PC	performance.	Whether	you	work	in
tech	support	or	simply	want	to	keep	your	classic	PC	in	top	form,	Van	shows	you
how	to	master	MS-DOS	with	unparalleled	clarity	and	expertise!

Discover	how	to	put	MS-DOS	functions	and	commands	to	work!

Tweak	your	system	so	it	runs	more	efficiently
Take	control	of	your	disk	drives	and	devices
Create	back	ups	and	rescue	deleted	work
Retrieve	files	faster	and	manage	memory
Run	legacy	applications—including	classic	games
Write	your	own	batch	files	and	smart	commands!

Plus,	check	out	the	comprehensive	MS-DOS	Command	Reference	in	the
appendix—great	for	answers	and	examples	on	the	spot!

About	the	Author

Van	Wolverton,	a	writer	since	1963,	has	had	bylines	as	a	newspaper	reporter,
editorial	writer,	political	columnist,	and	technical	writer.	He	wrote	his	first	computer
program—one	that	tabulated	political	polls—for	the	Idaho	State	Journal	in
Pocatello,	Idaho,	in1965.	His	interests	in	computers	and	writing	have	been
intertwined	ever	since.	As	a	computer	professional,	Wolverton	has	worked	at	IBM
and	Intel	and	has	written	software	documentation	for	national	software	companies,
including	Microsoft	Corporation.	He	is	the	author	of	Hard	Disk	Management	and
MS-DOS	Commands,	both	Microsoft	Press	Quick	Reference	Guides,	and

Supercharging	MS-DOS.	He	was	also	a	contributor	to	The	MS-DOS
Encyclopedia

.

Running	MS-DOS	Version	6.22,	20th	Anniversary	Edition
by	Van	Wolverton	 ISBN:0735618127
Microsoft	Press	©	2003	(612	pages)

The	classic	reference	to	the	classic	operating	system!

Table	of	Contents Back	Cover Comments

There	are	currently	no	comments	on	this	book.

	
	

Preface	to	the	20th	Anniversary	Edition
What	is	20	years?

To	a	writer	like	John	McPhee	[1],	awarded	a	Pulitzer	Prize	for	documenting	the	riffs	of
poetry,	the	lyrical	odes	and	sonnets	gracing	the	undending	hymn	of	the	epic,	tumbled	among
the	tuff	and	breccia	and	sandstone	and	mudstone	and	granite	and	diorite	and	all	the	other
rock	that	makes	up	a	slice	through	the	U.S.	roughly	along	the	path	of	Interstate	80	from
New	Jersey	to	California—to	a	writer	like	John	McPhee,	soldiering	away	at	presenting	540
million	years	(give	or	take),	20	years	doesn't	register,	unless	perhaps	as	a	possible	way	to
estimate	the	length	of	some	cataclysmic	event,	a	volcanic	eruption	or	sudden	draining	of
many	cubic	miles	of	rock—but	these	events	would	more	likely	be	measured	in	20	days	or
even	20	hours;	that's	what	made	them	cataclysmic.	No,	I	would	avoid	asking	John	McPhee
to	ponder	the	period	of	20	years	for	fear	of	evoking	the	same	sort	of	response	I	got	when	I
asked	Derry	Odonovan,	racing	enthusiast	and	true	son	of	Eire,	why	the	drag	racer	he	built
(and	drove)	didn't	have	a	tachometer	(although	I	said,	of	course,	tach):	Well,	let's	see	(rolls
his	eyes	a	bit),	I	make	it	through	the	quarter	in	something	less	than	5	seconds	and	the
engine's	turning	around	7	grand	most	of	the	time,	which	means	that	(longer	pause,	eyes
squinched	tight	shut	to	let	me	know	that	he	is	calculating...)	the	beast	will	turn	over	maybe
600	times.	Now	why	would	you	be	wantin'	me	to	count	them?	(Although	he	had	long	since
left	the	Emerald	Isle	for	California	and	supported	his	racing	by	masquerading	as	a	lineman
for	PG&E	and	sounded	as	though	he	was	born	and	raised	in	the	Santa	Clara	Valley,
whenever	I	asked	a	question	that	required	him	to	expend	more	than	15	or	20	words	in
showing	just	how	little	I	really	knew,	he	sounded	like	a	leprechaun	by	the	time	he	was
through.)

So,	I	won't	trouble	John	McPhee.

To	a	writer	like	Tracy	Kidder,	though,	the	problem	is	just	the	opposite.	In	Soul	of	a	New
Machine	[2],	Kidder	camps	out	for	months	in	the	offices	of	a	driven	team	of	programmers
and	engineers	at	Data	General	Corporation	as	they	labor	to	design	a	killer	new	computer.
(Come	to	think	of	it,	he	got	a	Pulitzer,	too—is	some	sort	of	envy	creeping	into	this	Preface?)
Kidder	shows	us	the	effect	on	each	member	of	this	happy	band	as	seemingly	inexplicable
timing	errors—the	semiconductor	equivalent	of	a	clock	every	once	in	a	while	going	tock
instead	of	tick-tock—keeps	their	elegantly	designed	creation	from	being	able	to	add	2	+2,
let	alone	thrust	DG	back	into	contention	in	the	minicomputer	market.	What	made	it	so	much
more	difficult	was	that	there	were	many	of	these	errant	clocks,	each	beating	millions	or
billions	of	times	each	second.	One	burnt-out	engineer	finally	disappeared	one	night,	leaving
a	note	on	his	chair	that	said	simply	"I'm	going	to	a	commune	in	Vermont	and	will	deal	with	no
unit	of	time	shorter	than	a	season."

Twenty	years?	I	don't	think	I'll	bother	Mr.	Kidder,	either.

A	human	generation	is	most	often	defined	as	20	years,	so	that's	one	way	to	look	at	the
period	of	time.	But	we're	concerned	not	just	with	humans,	but	with	their	creations,	among
them	the	computer,	in	considering	the	import	of	20	years	here.	And	generation	has	quite	a

different	meaning	when	we	talk	about	computers.

First-generation	computers	were	built	in	the	years	following	World	War	II.	These	behemoths
generated	enormous	amounts	of	heat	because	they	used	vacuum	tubes	to	do	their
calculations.	About	2,500	first-generation	computers	were	built	throughout	the	world
between	1946	and	(roughly)	1958.	Among	the	most	powerful	computers	of	this	period	were
those	in	the	SAGE	(Semi-Automated	Ground	Environment)	air	defense	centers,	three-story
buildings	scattered	around	the	U.S.	that	contained	two	computers,	each	with	55,000	vacuum
tubes.	A	SAGE	center	required	the	same	amount	of	electricity	as	a	small	city,	and	had
about	the	same	computing	power	as	an	early	PC	(of,	say,	about	20	years	ago).

Second-generation	computers	used	transistors	instead	of	vacuum	tubes.	They	were	still	big,
and	still	generated	a	lot	of	heat,	but	a	great	improvement,	and	ruled	the	roost	from	the	mid-
50s	to	the	mid-60s.	Third-generation	computers	came	along	in	the	mid-60s	when	integrated
circuits	were	developed,	putting	several	transistors	on	a	single	chip.	Third-generation
computers	reigned	until	the	early	80s,	almost	the	same	length	of	time	as	a	human
generation.

But	a	stealth	technology	was	creeping	into	the	computer	market.	Engineers	had	been
pushing	the	technology,	jamming	more	and	more	transistors	onto	a	chip,	finding	more	and
more	ways	to	increase	speed	and	decrease	size.	First	there	were	minicomputers,	those
desk-sized	(rather	than	room-sized)	machines	Kidder	described	so	well	in	his	book.	Then
Intel	Corporation	put	all	the	functions	of	a	simple	calculator	on	a	single	chip	in	1971;	the	use
of	"generation"	as	a	term	of	stability	and	orderly	progress	was	doomed.

Within	a	few	years,	Gordon	Moore	of	Intel	postulated	that	the	number	of	transistors	on—
and,	therefore,	the	capability	of—a	single	chip	would	double	every	18	months.	That	eerily
prescient	forecast	meant	that	there	was	no	point	in	trying	to	keep	track	of	"generations"	any
more.	Today's	microprocessors	have	more	than	40	million	transistors	on	a	single	chip.
Twenty	years	ago,	the	processor	that	powered	most	PCs	(Intel	80286)	had	134,000
transistors.	Twenty	years	before	that	there	were	no	microprocessors,	just	individual
transistors.	Twenty	years	is	a	long	time.

It	was	only	a	matter	of	time	before	someone	realized	that	if	you	could	make	a	calculator
with	a	chip,	keyboard,	and	a	display,	you	ought	to	be	able	to	make	a	computer	the	same
way.	And	so	it	came	to	pass.	The	January	1975	issue	of	Popular	Electronics	magazine
featured	on	its	cover	a	computer	kit	for	$395.	When	a	young	Harvard	student	named	Bill
Gates	saw	that	article,	it	didn't	take	him	long	to	decide	that	the	world	was	about	to	change
forever,	and	that	he	was	going	to	be	one	of	the	agents	of	that	change.	He	left	Harvard,	flew
to	Albuquerque	where	the	Altair	was	built,	and	formed	a	company	called	Microsoft	to
provide	software	for	the	Altair	and	all	the	other	personal	computers	he	knew	would	follow.

In	the	midst	of	all	this,	lesser	folk	toiled	away.	I	worked	for	IBM	for	10	years	as	a	technical
writer	and	editor,	and	then	left	in	1977	to	join	a	company	called	Intel.	There	I	learned	to	use
a	personal	computer	and	write	programs	in	Basic	(Microsoft	Basic,	as	it	happened)	by
taking	home	what	Intel	called	a	development	system	on	weekends.	It	consisted	of	three

large	cabinets	that	filled	a	5-foot-tall	equipment	rack,	plus	keyboard	and	a	monitor.	(Luckily,
we	had	a	van.)	My	first	contact	with	Microsoft	came	then,	when	I	spoke	on	the	telephone
with	Andrea	Lewis,	the	only	female	among	the	original	founders	of	Microsoft.	She	had
written	the	manual	for	Microsoft	Basic;	one	of	the	writers	who	worked	for	me	was	rewriting
it,	and	I	cleared	the	project	with	her	(and	cleared	up	some	technical	questions	we	had	in	the
process).

After	3	years	I	left	Intel	to	join	a	startup	so	I	could	become	a	millionaire	when	it	went	public.
Here	I	had	my	second	contact	with	Microsoft,	this	one	face-to-face	on	the	sixth	floor	of	a
bank	building	in	downtown	Bellevue,	Washington.	Our	company	bought	the	first	Basic	(what
else?)	compiler	that	Microsoft	had	done	for	the	Intel	8086	processor.	This	was	1979;
Microsoft	had	fewer	than	30	employees,	the	average	age	was	somewhere	south	of	20,	and
it	was	mightily	depressing	for	this	40-year-old	because	I	could	sense	something	big	was
happening	here.

Unfortunately,	instead	of	going	public	my	startup	went	belly-up	and	I	found	myself	an
unemployed	entrepreneur.	Turning	to	what	I	knew,	I	tried	freelance	technical	writing.	I	was
lucky:	the	time	was	right,	a	lot	was	happening,	and	I	was	able	to	find	work.	Within	a	few
weeks,	I	was	writing	a	manual	for	a	hush-hush	machine	being	built	by	a	company	called
Florida	Computer	Systems.	I	had	to	sign	in	at	a	security	desk,	get	the	key	to	a	locked	room,
and	sit	in	this	windowless	room	learning	to	use	a	program	called	VisiCalc,	the	first
spreadsheet	program.	The	computer	used	an	operating	system	called	DOS,	or	sometimes
PC-DOS.	(It	was	a	while	before	someone	told	me	that	DOS	was	written	not	by	IBM,	but	by
a	company	called	Microsoft.)

Within	a	year,	Microsoft	was	one	of	my	clients	and	I	was	writing	manuals	for	them	that
described	the	internal	workings	of	DOS	so	programmers	could	write	other	programs	to	run
on	the	IBM	PC	and	other	computers	that	used	DOS.	Because,	although	IBM	called	it	PC-
DOS,	Microsoft	had	retained	the	rights	to	sell	it	to	other	companies	and	they	called	it	MS-
DOS.	About	a	year	later,	I	made	one	of	several	trips	to	Seattle.	By	now	Microsoft	had
nearly	200	employees	and	occupied	a	building	just	inside	the	Redmond	city	limits	(next	to	a
Burgermaster	drive-in	that	remains	part	of	Microsoft's	Arthurian	legend).

Andrea	Lewis	was	one	of	my	contacts	at	Microsoft;	she	stopped	me	in	the	hall	one
afternoon,	told	me	that	Microsoft	was	going	to	establish	a	book-publishing	division,	and
asked	if	I'd	be	interested	in	writing	a	book	that	told	people	how	to	use	DOS.	I	said,	without
much	thought,	sure.	She	said	she'd	be	in	touch.

A	couple	of	months	later	I	got	a	call	from	the	publisher	of	what	was	now	called	Microsoft
Press	asking	if	I	could	meet	him	in	Palo	Alto	to	discuss	a	contract.	I	did,	signed	the	contract,
wrote	the	book,	and	began	a	long,	productive,	and	generally	happy	relationship	with
Microsoft	Press.

Acknowledgements
Twenty	years	is	a	long	time.	Hardly	anyone	I	know	is	left	at	Microsoft	Press,	let	alone	at
Microsoft,	where	I	used	to	track	down	the	DOS	programmers	in	their	lairs	to	try	to	figure
out	just	exactly	what	was	happening	under	the	covers	while	we	users	innocently	entered
commands	and	fiddled	with	our	files.	But	it's	never	too	late	to	thank	those	who	played
significant	roles	in	the	birth	and	long,	long	life	of	this	book	that	has	sold	several	million
copies	(no	one	seems	to	know	just	quite	how	many	million)	in	a	couple	of	dozen	languages.

The	first	would	have	to	be	Andrea	Lewis,	of	course,	for	asking	me	to	write	the	book,	and
then	Nahum	Stiskin,	the	founding	publisher	of	Microsoft	Press	who	established	a	standard	of
quality	of	writing,	editing,	and	design	that	set	the	computer-book	world	on	its	ear	in	the	early
1980s.	Nahum	and	I	sat	in	the	bar	of	Ricky's	Hyatt	House	in	Palo	Alto	the	summer	of	1982
for	a	couple	of	hours	talking	about	books,	trading	various	lies,	and	finally	agreeing	on	a
contract	that	required	virtually	no	haggling.

There	have	been	literally	dozens	at	Microsoft	Press	who	have	contributed	mightily	to	the
quality	and	success	of	Running	MS-DOS.	I	can't	remember	most	of	them	now;	twenty
years	is	a	long	time.	But	they	were	always	there	when	they	were	needed,	proofreaders	and
copy	editors	and	technical	editors,	marketing	mavens,	PR	wizards,	designers	and
illustrators,	publishers	and	assistant	publishers	who	put	up	with	my	carping	and
temperamental	artist's	frustrations.	You	done	good,	all	of	you.

I'm	in	serious	danger	of	writing	hagiography	when	it	comes	to	the	next	thank-you.	The	first
Microsoft	Press	editor	of	this	book,	JoAnne	Woodcock,	was	(and	still	is,	if	she's	wielding	a
blue	pencil)	the	finest	editor	on	the	face	of	this	earth.	Well,	I	might	be	persuaded	to	limit	that
to	the	finest	editor	of	computer	books	in	the	English	language—since	that's	the	extent	of	my
writing	experience—but	JoAnne,	you're	simply	the	best.	The	book	would	not	be	what	it	is
without	you.

The	last	acknowledgement,	and	the	greatest,	goes	to	the	one	person	most	responsible	for
the	existence	of	the	book,	not	to	mention	its	usability,	readability,	or	whatever	it	is	that	has
moved	people	to	say	that	Running	MS-DOS	made	computers	understandable	to	them.
Jeanne	Wolverton,	my	first	editor	for	over	40	years	now,	mother	of	my	children,
grandmother	of	my	grandchildren,	she's	read	drafts,	sat	at	computers	for	hours	on	end
working	the	exercises	and	pointing	out	when	they	didn't	work	(or	make	any	sense),	brought
me	coffee	by	the	Imperial	gallon,	soothed	my	fevered	brow	when	it	seemed	I	was	doomed
not	to	be	able	to	get	this	thing	done,	and	generally	made	sure	that	(1)	I	did	get	it	done	and
(2)	it	was	as	good	as	I	was	capable	of	doing.

I've	had	some	wonderful	memories	in	the	last	20	years	associated	with	Microsoft	and	this
book.	Shaking	Bill	Gates's	hand	at	a	couple	of	very	posh	parties	that	Microsoft	threw	when
Microsoft	Press	was	just	getting	started.	A	note	from	Brit	Hume	saying	that	the	book	really
worked	for	him.	A	letter	from	the	publisher	of	the	Spanish	edition	telling	me	that	he	had
presented,	at	her	request,	a	copy	of	the	book	to	Queen	Sofia	of	Spain.	Michael	Dell—a	very
young	Michael	Dell—grabbing	my	hand	at	Comdex	and	exclaiming	"You're	the	Van

Wolverton?"	My	daughter	Kay	putting	a	promotional	poster	of	her	dad's	book	on	her	dorm
room	wall.	Wow.

With	all	but	a	few	PCs	in	the	world	today	running	Windows,	it's	tempting	to	think	of	DOS	as
something	that	belongs	in	the	annals	of	a	former	world,	but	au	contraire—within	the	soul	of
every	new	machine	that	runs	Windows	is	DOS.	It's	still	there,	it	still	works,	and	it's	still	the
best	way	to	do	some	things.	True	to	form,	Jeanne	offers	an	appropriate	example	of	this:	A
couple	of	months	ago,	she	asked	me	how	to	print	the	list	of	files	displayed	by	Windows
Explorer,	because	there	was	no	Print	command	on	the	File	menu.	So	the	guru	poked	around
in	Windows	for	a	while	and	couldn't	find	a	way.	I	went	downstairs	to	try	on	my	machine,	and
on	the	way	down	I	thought:	DOS!	I	open	a	DOS	window	and	typed:
dir	>	fred.txt
copy	fred.txt	prn

Heh	heh.	See	Chapter	13,	"Taking	Control	of	Your	System."

[1]John	McPhee,	Annals	of	the	Former	World	(New	York:	Farrar,	Strauss,	and	Giroux,	2000)

[2]Tracy	Kidder,	Soul	of	a	New	Machine,	(New	York:	Little,	Brown,	1981)

	

javascript:Next(0)
javascript:Next(1)

Introduction
It	may	be	tempting	to	skip	these	opening	words	and	"get	to	the	meat	of	it,"	but	please	read
this	introduction	anyway.	The	information	included	here	is	useful	and	won't	take	long	to	read.

You	may	want	to	know	whether	this	book	applies	to	you.	It	does	if	your	computer	uses	MS-
DOS.	The	book	itself	was	written	with	an	IBM	personal	computer,	but	it	applies	equally	well
to	any	machine	that	uses	MS-DOS.

You	bought	this	book—or	at	least	took	the	time	to	pick	it	up	and	glance	through	it—despite
the	manual	you	got	with	your	copy	of	MS-DOS.	Why?	What	else	can	a	book	like	this	offer?
It	can	offer	simplicity.	The	MS-DOS	manual	is	thorough	and	complete.	It's	your	official,
comprehensive	reference	guide	to	MS-DOS,	but	its	goal	is	to	tell	you	about	MS-DOS	rather
than	how	to	use	MS-DOS	in	your	everyday	work.

This	book	does	not	show	you	how	to	set	up	your	computer,	nor	does	it	describe	in	detail	the
pieces	of	the	system,	such	as	the	keyboard	or	the	display.	These	matters	should	be
covered	thoroughly	in	the	manuals	that	came	with	your	computer.

The	book	assumes	neither	that	you	are,	nor	that	you	aspire	to	become,	a	programmer.	It
doesn't	try	to	explain	how	MS-DOS	works,	and	it	leaves	to	the	MS-DOS	manual	the	task	of
explaining	some	of	the	more	technical	features.	The	book	does	assume	that	you	have
access	to	an	IBM	personal	computer	or	one	of	the	many	other	machines	that	run	MS-DOS,
and	that	you	want	to	put	the	machine	to	work.	It	includes	scores	of	examples,	and	it	is
organized	by	what	you	want	the	computer	to	do,	not	(as	a	programmer	would	expect)	by
how	MS-DOS	itself	is	structured.	The	examples	reflect	real-life	situations.

You	don't	have	to	be	a	mechanical	engineer	to	drive	a	car	well,	but	you	do	need	experience.
You	don't	have	to	be	a	computer	scientist	to	use	MS-DOS	well,	either,	and	this	book	starts
you	on	your	way.

What's	in	the	Book	and	Where
This	book	covers	MS-DOS	through	version	6.22	as	it	is	used	on	machines	that	have	a	hard
disk	and	either	one	or	two	floppy	disk	drives.	Although	a	hard	disk	is	assumed,	the
examples	are	also	structured	to	work	on	computers	that	have	only	two	floppy	disk	drives.

Part	1,	Chapters	1	through	4,	describes	the	pieces	of	the	computer	system,	defines	some
terms	and	concepts,	and	provides	hands-on	examples	that	show	you	the	major	capabilities
of	MS-DOS.

Part	2,	the	bulk	of	the	book,	includes	Chapters	5	through	17.	These	chapters	show	you	how
to	operate	your	computer	system	and	manage	all	its	parts	with	the	MS-DOS	commands.

Chapters	5,	6,	and	7	show	you	how	to	manage	your	files,	floppy	disks,	and	computer
devices	such	as	the	printer	and	the	display.	Chapter	8	describes	the	MS-DOS	multilevel
filing	system	that	allows	you	to	set	up	a	personalized	computer	file	system	that	matches	the
way	you	work.	Chapter	9	shows	you	how	to	manage	the	files	and	directories	on	a	hard	disk,
and	Chapter	10	shows	you	some	ways	to	protect	both	the	disk	and	your	work	from	loss	or
damage.

Chapter	11	takes	you	through	a	menu-based	program	called	the	Shell	(shipped	with
versions	5	and	6.0	and	available	on	the	supplemental	disk	to	versions	6.2,	6.21	and	6.22)
that	makes	your	display	visually	more	interesting	and	your	work	with	the	computer	easier	in
many	ways.	Chapter	12	describes	another	menu-based	program,	the	MS-DOS	Editor
(available	in	versions	5	and	later).

Chapters	13	through	17	describe	ways	to	tailor	MS-DOS	to	your	own	needs.	Chapter	13
shows	you	how	to	take	control	of	your	system	with	a	special	set	of	commands	called	filter
commands;	it	also	shows	you	how	to	use	a	program	named	Doskey	that	can	save	time	and
work	by	recording	keystrokes	and	commands.	Chapters	14	through	16	show	you	how	to
create	your	own	sets	of	commands	and	save	them	in	special	files	called	batch	files.	Chapter
17	shows	you	several	techniques	you	can	use	to	make	MS-DOS	immediately	useful	in	its
own	right,	and	it	describes	ways	to	help	MS-DOS	run	your	computer	more	efficiently.

Finally,	in	Part	3,	Appendix	A	tells	you	how	to	install	MS-DOS,	Appendix	B	provides	a
glossary	of	commonly	used	terms,	and	Appendix	C	describes	the	MS-DOS	commands,	with
cross-references	to	the	discussions	in	the	preceding	chapters.

If	you	plan	to	use	your	computer	for	word	processing,	spreadsheets,	database
management,	games,	or	any	other	applications,	this	book	is	probably	all	you'll	need.	Not
only	does	it	show	you	how	to	use	MS-DOS	so	you	can	run	your	programs,	it	shows	you
how	to	make	good	use	of	MS-DOS	without	additional	software.

	

javascript:Next(0)
javascript:Next(1)

About	the	Examples
The	best	way	to	learn	how	to	put	MS-DOS	to	work	is	to	use	it.	This	book,	therefore,	is
devoted	primarily	to	examples.	Terms	and	concepts	are	defined	as	you	need	them	and	are
illustrated	with	hands-on	examples	that	help	you	see	both	what	you	do	and	why.	Because
the	book	covers	different	versions	of	MS-DOS	and	different	types	of	machines,	there	are
variations	in	some	examples;	these	alternatives	are	identified.	Unless	an	example	states	it	is
for	a	particular	version	or	computer	setup,	the	MS-DOS	displays	shown	in	this	book	are	the
MS-DOS	version	6	responses	on	a	computer	with	one	hard	disk	and	one	floppy	disk	drive.	If
you	are	using	a	different	version	of	MS-DOS	or	a	different	computer	setup,	the	responses
you	see	may	vary	somewhat.	Do	not	be	concerned.

What	to	Type	and	When

There's	an	awkward	mismatch	between	a	computer	and	a	book	that	shows	you	how	to	use
it.	The	computer	is	dynamic:	It	displays	messages,	moves	data	back	and	forth	between
disks	and	memory,	prints	words	and	pictures,	and	chirps	now	and	then	to	announce
completion	of	another	task.	When	you	use	the	computer,	you	enter	into	a	dialogue:	You	type
something,	the	computer	responds,	you	type	something	else,	and	so	on,	back	and	forth,
until	your	work	is	done.

A	book,	however,	is	static.	It	can	show	only	snapshots	of	your	dialogue	with	the	system,	yet
it	must	describe	that	dialogue	well	enough	so	that	you	can	take	part	in	it.	In	this	book,	we
have	to	show	what	you	type	and	how	the	computer	responds.	We	have	to	distinguish	parts
of	this	dialogue,	such	as	the	names	of	files	and	messages	displayed	on	the	screen,	from	the
surrounding	prose.	Here	are	the	conventions	we've	adopted:

Hands-on	examples	are	shown	in	different	type,	on	separate	lines,	just	as	you	would
see	them	on	your	display.	The	characters	you	type	are	printed	in	lowercase	colored
type;	MS-DOS	usually	doesn't	care	whether	you	type	in	uppercase	or	lowercase,
but	lowercase	seems	to	be	easier.	Here	is	a	sample	of	the	conventions	for	hands-on
examples:
C:\>format	b:
Insert	new	floppy	disk	for	drive	B:
and	press	ENTER	when	ready	.	.	.

Occasionally,	similar	information	occurs	in	text.	In	these	instances,	the	interaction
between	you	and	MS-DOS	is	printed	in	italics	to	distinguish	it	from	the	surrounding
text.	For	example,	you	may	see	"Type	n	when	MS-DOS	displays	Format	another
(Y/N)?"

Many	MS-DOS	commands	include	options,	or	parameters,	that	allow	you	to	specify
a	particular	disk	drive,	file,	or	piece	of	equipment,	or	to	use	a	particular	form	of	the
command.	Options	are	shown	in	angle	brackets	(<>)	when	they	represent	a	variable
entry,	such	as	the	name	of	a	file.	When	they	must	be	entered	exactly,	they	are

shown	in	the	form	you	must	use.	For	example,	here	are	some	options	of	the	Format
command	used	in	the	preceding	examples	(don't	worry	about	understanding	the
command	at	this	point):

format	<drive>	/4	/F:<size>	/Q

Now	it's	time	to	meet	MS-DOS.	This	book	was	written	to	be	used	alongside	the	system,	so
put	it	beside	your	keyboard,	turn	to	Chapter	1,	and	get	ready	to	put	MS-DOS	to	work.

	

javascript:Next(0)
javascript:Next(1)

Part	I:	Getting	to	Know	MS-DOS

Chapter	List

Chapter	1:	What	is	MS-DOS?

Chapter	2:	Starting	MS-DOS

Chapter	3:	Getting	Your	Bearings

Chapter	4:	A	Look	at	Files	and	Floppy	Disks

Part	Overview

Part	1	introduces	you	to	the	concept	of	an	operating	system:	what	it	is,	what	it	does,	and
why	you	need	it.	It	then	describes	the	terms	and	the	basic	operating	principles	of	MS-DOS.
These	four	chapters	show	you	how	to	start	MS-DOS	and	how	to	control	the	system	with
MS-DOS	commands.	They	give	you	the	foundation	for	using	MS-DOS	effectively	in	your
daily	work	with	the	computer.	The	information	is	primarily	tutorial,	and	many	examples	are
included.	Later	parts	of	the	book	contain	detailed	reference	information	that	describes	all
the	MS-DOS	commands	and	their	capabilities.

	

javascript:Next(0)
javascript:Next(1)

Chapter	1:	What	is	MS-DOS?
You've	got	your	computer,	and	you've	probably	got	one	or	two	programs,	such	as	a	word
processor	or	a	spreadsheet,	to	use	with	it.	But	what	is	this	thing	called	MS-DOS?	Why	do
you	hear	so	much	about	it,	and	why	have	hundreds	of	pages	of	instructions	been	written	for
it?

MS-DOS	Is	a	Program
MS-DOS	is	a	program,	but	it's	not	just	any	program.	Chances	are	none	of	your	other
programs	would	work	without	it	because	MS-DOS	controls	every	part	of	the	computer
system.	MS-DOS	not	only	makes	it	possible	for	your	other	programs	to	work,	it	also	gives
you	complete	control	over	what	your	computer	does,	and	how	MS-DOS	is	the	link	between
you	and	your	computer.

To	appreciate	the	role	MS-DOS	plays,	take	a	quick	look	at	the	pieces	of	your	computer
system	and	what	they	do.

	

javascript:Next(0)
javascript:Next(1)

Hardware	Makes	It	Possible
Your	computer	equipment,	called	hardware,	probably	includes	a	keyboard,	display,	printer,
and	one	or	more	disk	drives.	The	purposes	of	the	first	three	are	straightforward:	You	type
instructions	at	the	keyboard,	and	the	system	responds	by	displaying	or	printing	messages
and	results.

The	purpose	of	a	disk	drive	isn't	quite	so	obvious,	but	it	quickly	becomes	apparent	as	you
use	the	system:	A	disk	drive	records	and	plays	back	information,	much	as	a	tape	deck
records	and	plays	back	music.	The	computer's	information	is	recorded	in	files	on	disks;
you'll	find	that	disk	files	are	as	central	to	your	computer	work	as	paper	files	are	to	more
traditional	office	work.

	

javascript:Next(0)
javascript:Next(1)

Software	Makes	It	Happen
No	matter	how	powerful	the	hardware,	a	computer	can't	do	anything	without	programs,
called	software.	Computers	use	two	major	types	of	software:	system	programs,	which
control	the	operation	of	the	computer	system,	and	application	programs,	which	perform
more	obviously	useful	tasks,	such	as	word	processing.

Each	program	uses	the	hardware.	It	must	be	able	to	receive	instructions	from	the	keyboard,
display	and	print	results,	read	and	write	files	from	and	to	a	disk,	send	and	receive	data
through	the	computer's	communications	connections,	change	the	colors	on	a	color	display,
and	so	on,	through	all	the	capabilities	of	the	hardware.

So	that	each	program	doesn't	have	to	perform	all	these	functions	for	itself,	a	system
program	called	the	operating	system	manages	the	hardware.	The	operating	system	allows
an	application	program	to	concentrate	on	what	it	does	best,	whether	it's	moving	paragraphs
about,	tracking	accounts	receivable,	or	calculating	stress	in	a	bridge	beam.	MS-DOS	is	an
operating	system.

	

javascript:Next(0)
javascript:Next(1)

MS-DOS	Is	a	Disk	Operating	System
The	most	frequently	used	operating	system	for	IBM	and	IBM-compatible	computers	is	the
Microsoft	Disk	Operating	System—MS-DOS.	MS-DOS	is	called	a	disk	operating	system
because	much	of	its	work	involves	managing	disks	and	disk	files.

What	Does	an	Operating	System	Do?

An	operating	system	plays	a	role	something	like	a	symphony	conductor's.	When	the	score
calls	for	the	violins	to	play,	the	conductor	cues	the	violins;	when	the	score	says	the	cellos
should	play	more	softly,	the	tympani	should	stop,	or	the	entire	orchestra	should	pick	up	the
tempo,	the	conductor	so	instructs	the	musicians.

The	players	in	the	orchestra	and	their	instruments	represent	the	hardware.	The	experience
and	skill	of	the	conductor	represent	the	operating	system.	The	score	represents	an
application	program.

When	one	score	is	replaced	by	another—Beethoven's	Fifth	Symphony	is	put	aside	and
replaced	by	Haydn's	Surprise	Symphony,	for	example—the	same	musicians	use	the	same
instruments,	and	the	same	conductor	uses	the	same	experience	and	skills.	A	different
sound,	a	different	mood,	perhaps,	but	the	elements	are	the	same.

When	one	application	program	is	replaced	by	another—for	example,	an	accounting	program
is	put	aside	and	replaced	with	a	word	processor—the	same	hardware	carries	out	the
instructions	of	the	same	operating	system.	A	different	program,	a	different	purpose,
perhaps,	but	the	elements	are	the	same.

MS-DOS	coordinates	the	computer	system,	just	as	the	conductor	coordinates	the
orchestra.	Your	application	programs	run	in	concert	with	MS-DOS,	trusting	it	to	keep	the
system	humming.

Much	of	what	MS-DOS	does,	such	as	how	it	stores	a	file	on	a	disk	or	prints	on	the	printer,
is	invisible	to	you.	But	MS-DOS	lets	you	control	the	things	you	care	about,	such	as	which
program	to	run,	what	document	to	print,	or	what	files	to	erase.	These	functions	share	an
important	characteristic:	They	need	disks	and	disk	drives.

Disk	Drives

Personal	computers	use	two	main	types	of	disk:	a	flexible	disk	in	a	protective	plastic	jacket,
called	a	floppy	disk,	which	you	can	remove	from	the	drive,	and	a	permanently	mounted	unit
called	a	hard	disk.	There	are	two	types	of	floppy	disks:	5.25	inches	square	in	a	flexible
plastic	jacket,	and	3.5	inches	square	in	a	rigid	plastic	shell.

A	hard	disk	holds	much	more	information	than	a	floppy	disk—from	15	to	100	times	as	much,
or	even	more—and	is	much	faster.	Most	personal	computers	have	one	hard	disk	and	one	or
two	floppy	disk	drives.	Machines	without	a	hard	disk	usually	have	two	floppy	disk	drives.

To	distinguish	among	the	types	of	disks,	this	book	uses	floppy	disk	to	mean	either	type	of
flexible	disk,	hard	disk	to	mean	only	a	permanently	mounted	disk,	and	disk	to	refer	to	both.

Disk	Files

Just	as	you	organize	and	store	your	written	records	in	paper	files,	you	organize	and	store
computer	information	in	disk	files.

A	disk	file—usually	called	a	file—is	a	collection	of	related	information	stored	on	a	disk.	It
could	be	a	letter,	an	income	tax	return,	or	a	list	of	customers.	It	could	also	be	a	program,
because	the	programs	you	use	are	stored	in	files.

Virtually	all	your	computer	work	revolves	around	files.	Because	one	of	the	major	functions	of
MS-DOS	is	to	take	care	of	files,	much	of	this	book	is	devoted	to	showing	you	how	to
create,	print,	copy,	organize,	and	otherwise	manage	files.

Where	Is	MS-DOS?

When	your	computer	is	turned	off,	MS-DOS	is	stored	on	disk.	Although	it's	a	special	type	of
program,	MS-DOS	is	still	a	program,	and	that	means	it's	stored	on	disk	in	a	set	of	files	like
any	other	collection	of	computer	information.

If	your	computer	has	a	hard	disk,	MS-DOS	is	probably	already	on	it—placed	there,
perhaps,	by	your	computer	dealer,	or	by	someone	else	who	set	up	your	system.	If	your
computer	does	not	have	a	hard	disk,	it	must	use	MS-DOS	from	floppy	disks,	so	it	should
have	come	with	a	copy	of	MS-DOS	on	two	or	more	floppy	disks.

Different	Versions	of	MS-DOS

MS-DOS	has	been	revised	a	number	of	times	since	its	release	in	1981;	the	first	version	was
numbered	1.00.	MS-DOS	is	revised	to	add	more	capability,	to	take	advantage	of	more
sophisticated	hardware,	and	to	correct	errors.	When	you	start	up	your	system,	MS-DOS
may	display	the	version	number	you	are	using.

When	a	new	version	of	MS-DOS	appears,	a	change	in	the	number	following	the	decimal
point—6.0	to	6.2,	or	even	6.22,	for	example—marks	a	minor	change	that	leaves	the	new
version	of	MS-DOS	substantially	the	same	as	the	previous	version.	A	change	in	the	number
preceding	the	decimal	point	marks	a	major	change.	Version	6.0,	for	example,	adds	several
new	features	that	weren't	available	in	version	5.0.

Even	though	newer	versions	of	MS-DOS	can	do	a	lot	more	than	earlier	versions	of	MS-
DOS,	they	remain	compatible	with	the	earlier	versions.	Thus,	if	you	start	with	version	2.1,
you	can	still	use	all	your	knowledge	and	experience,	plus	your	files	and	disks,	when	you
move	to	a	newer	version	of	MS-DOS.

For	simplicity,	this	book	usually	refers	to	MS-DOS	by	major	version	number	only—for

example,	version	5	or	version	4,	rather	than	version	5.0	or	version	4.01.	It	also	omits
references	to	versions	of	MS-DOS	earlier	than	version	3,	but	much	of	the	information
applies	to	these	versions	too.	Remember,	version	2	is	just	as	much	a	part	of	MS-DOS	as
version	5.	It's	simply	older	and,	although	it	includes	many	of	the	features	described	here,	it
doesn't	provide	them	all.

What	Is	Compatibility?

You've	no	doubt	seen	the	term	IBM-compatible	in	an	article	or	an	advertisement.	What	does
compatibility	actually	mean?	Compatibility	essentially	refers	to	the	ability	of	one	computer	to
use	programs	and	data	created	for	or	stored	on	another	computer.	In	everyday	use,	the
most	meaningful	measure	of	compatibility	is	the	extent	to	which	you	can	use	the	same
programs,	data,	and	floppy	disks	in	computers	of	different	makes	or	different	models:

If	two	systems	are	totally	compatible,	they	can	freely	use	the	same	programs	and
floppy	disks.	This	is	the	type	of	compatibility	exhibited	among	different	models	of
IBM	Personal	Computers	and	the	IBM-compatible	machines	made	by	manufacturers
other	than	IBM.	On	these	machines,	such	full	compatibility	is	made	possible	in	part
by	MS-DOS:	Any	computer	that	can	run	MS-DOS	can	run	programs	designed	for
MS-DOS,	and	that	computer	can	(given	the	proper	application	programs)	freely	use
floppy	disks	from	any	other	MS-DOS	computer.

Incompatible	systems	might	use	different	versions	of	the	same	program,	but	they
can't	use	either	programs	or	floppy	disks	intended	for	the	other	computer.	This	is
typically	the	situation	between	IBM	and	Macintosh	computers.	An	IBM	machine	can,
for	example,	use	the	IBM	version	of	Microsoft	Word,	and	the	Macintosh	can	use	the
Macintosh	version	of	Microsoft	Word,	but	neither	computer	can	use	the	version
intended	for	the	other.

This	book	describes	how	MS-DOS	works	on	all	IBM	and	IBM-compatible	machines.

	

javascript:Next(0)
javascript:Next(1)

What	Can	You	Do	with	MS-DOS?
MS-DOS	coordinates	the	operation	of	the	computer	for	your	application	programs.	That's
valuable—essential,	really—but	MS-DOS	has	much	more	to	offer.	You	can	use	MS-DOS
itself,	controlling	it	with	instructions	called	commands,	to	manage	your	files,	control	the	work
flow,	and	perform	useful	tasks	that	might	otherwise	require	additional	software.

For	example,	MS-DOS	includes	a	program	that	lets	you	create	and	revise	files	of	text.
Although	it's	not	a	word	processor,	the	MS-DOS	Editor	is	fine	for	short	memos	and	lists.
Using	it,	you	can	write	short	documents	in	less	time	than	it	might	take	using	your	word
processing	program.

You	can	tailor	MS-DOS	to	your	specific	needs	by	creating	powerful	commands	made	up	of
other	MS-DOS	commands,	and	you	can	even	create	your	own	small	applications.	For
example,	this	book	shows	you	how	to	create	a	simple	file	manager—a	program	that	lets	you
search	a	file	for	specific	information—using	nothing	but	MS-DOS	commands.

MS-DOS	versions	4	through	6	also	include	a	separate	program,	called	the	Shell,	that	lets
you	choose	commands	and	files	from	on-screen	lists	called	menus.	If	you	want,	you	can
use	the	Shell	for	routine	work,	dispense	with	it	and	work	directly	with	MS-DOS,	or	move
freely	between	MS-DOS	and	the	Shell	as	your	work	requires.

Your	knowledge	of	MS-DOS	can	range	from	just	enough	to	use	a	single	application	program
to	mastery	of	the	full	range	of	capabilities	in	the	latest	version.	But	no	matter	how	far	you
go,	you	needn't	learn	to	program.	It's	all	MS-DOS,	and	it's	all	in	this	book.

	

javascript:Next(0)
javascript:Next(1)

Chapter	Summary
This	quick	tour	of	MS-DOS	may	have	introduced	several	new	terms	and	concepts.	Here	are
the	key	points	to	remember:

A	working	computer	system	needs	both	hardware	(equipment)	and	software
(programs).

MS-DOS	(the	Microsoft	Disk	Operating	System)	coordinates	the	operation	of	all
parts	of	the	computer	system.

A	file	is	a	collection	of	related	information	stored	on	a	disk.	Most	of	your	computer
work	will	involve	files.

Besides	running	your	application	programs,	MS-DOS	is	valuable	in	its	own	right.

The	next	chapter	starts	you	off	at	the	keyboard.

	

javascript:Next(0)
javascript:Next(1)

Chapter	2:	Starting	MS-DOS
Now	that	you	have	been	introduced	to	a	number	of	the	things	that	MS-DOS	does	for	you,
it's	time	to	start	your	system	and	do	something.	Whenever	you	start	your	computer,	whether
it	is	to	use	a	word	processor,	an	accounting	program,	or	MS-DOS	itself,	you	begin	by
loading	MS-DOS	into	the	computer's	memory,	its	workplace.	Loading	the	MS-DOS	program
and	starting	it	running	is	sometimes	called	"booting	the	system"	or	"booting	the	disk."	This
term	is	borrowed	from	the	phrase	"pulling	yourself	up	by	your	bootstraps"	because	MS-
DOS	essentially	pulls	itself	up	by	its	own	bootstraps,	loading	itself	from	disk	into	memory,
where	it	then	waits	for	a	command	from	you.

The	examples	from	here	on	assume	that	you	have	a	computer	with	a	hard	disk,	that	your
system	is	set	up	to	use	MS-DOS,	and	that	you	are	familiar	with	your	computer's	control
switches.	If	you	need	to	install	a	more	recent	version	of	MS-DOS	on	your	hard	disk,	refer	to
Appendix	A.	(If	your	computer	does	not	have	a	hard	disk	and	you're	using	MS-DOS	from
floppy	disks,	have	your	usual	startup	disk	ready.)

Starting	the	System
When	you	use	MS-DOS	from	a	hard	disk,	the	MS-DOS	program	must	be	copied	into	the
computer's	memory	from	the	hard	disk	(usually	known	to	MS-DOS	as	drive	C).	All	you	need
to	do	before	starting	the	system	is	make	sure	the	latch	on	drive	A	(the	floppy	disk	drive)	isn't
closed;	otherwise,	the	system	will	try	to	load	the	MS-DOS	program	into	the	computer's
memory	from	the	floppy	disk	in	drive	A.

If	you're	not	using	a	hard	disk,	the	MS-DOS	program	must	be	copied	into	the	computer's
memory	from	the	floppy	disk	in	drive	A.	Open	the	latch	of	drive	A	(usually	either	the	left-
hand	or	the	upper	floppy	disk	drive)	and	put	in	the	floppy	disk	you	use	to	start	MS-DOS—
called	the	system	disk	in	this	book—with	the	label	up	and	away	from	the	machine.	If	you're
using	a	5.25-inch	disk,	close	the	latch.

Turn	on	the	system.	The	computer	seems	to	do	nothing	for	several	seconds,	but	this	is
normal.	Each	time	you	turn	on	the	power	switch,	the	computer	checks	its	memory	and	all
attached	devices	to	be	sure	everything	is	working	properly.	The	system	beeps	after	it	has
made	sure	that	all	is	well,	the	drive	lights	flash,	and	the	computer	begins	loading	MS-DOS
into	memory.	As	soon	as	the	program	is	loaded,	MS-DOS	is	running	and	ready	to	go	to
work.

A	First	Look	at	MS-DOS

Both	MS-DOS	and	the	computers	it	runs	on	have	evolved	in	the	years	since	MS-DOS	and
the	IBM	PC	were	introduced.	The	examples	in	this	book	are	designed	to	work	correctly	with
your	computer	and	any	release	of	MS-DOS	that	supports	the	commands	described,	but
there	are	variations	in	the	way	computers	are	set	up	and	in	the	ways	MS-DOS	can	be
organized,	installed,	and	presented	to	the	person	who	uses	it.

One	highly	visible	difference	is	how	MS-DOS	looks	once	it	is	loaded	into	memory	and	ready
for	you	to	command.	The	following	sections	describe	the	major	variations,	one	of	which
should	explain	what	you	see	on	your	screen	when	you	start	the	system.

Many	computers	today	are	sold	with	Microsoft	Windows	already	installed	on	the	hard	disk.
In	some	cases,	the	system	is	configured	so	that	Windows	starts	automatically	each	time	the
computer	is	turned	on.	If	this	is	the	case,	you'll	see	a	screen	that	looks	something	like	the
one	shown	in	Figure	2-1.

	
Figure	2-1:	The	opening	(Program	Manager)	screen	of	Microsoft	Windows.

Windows	requires	MS-DOS	to	run,	so	you	can	leave	Windows	temporarily	to	use	this	book.
To	leave	Windows,	press	the	Alt	key,	then	F,	then	X;	when	Windows	displays	a	box	in	the
middle	of	the	screen	telling	you	that	this	will	end	your	Windows	session,	press	Enter.

The	screen	clears,	and	now	MS-DOS	is	in	control.	It	displays	the	following:
C:\>_

or	it	displays
C:\WINDOWS>_

You're	ready	to	start	using	MS-DOS.	Go	on	to	the	heading	"The	System	Prompt"	on	page
16.

Opening	with	a	Startup	Menu

If	version	6	is	installed	on	your	machine,	when	you	start	it	you	might	see	a	screen	titled	MS-
DOS	6	Startup	Menu.	Below	the	title	are	two	or	more	numbered	choices	(such	a	list	of
choices	is	called	a	menu);	menu	choices	might	include	Normal	or	Start	network.	Below	the
menu	is	the	line	Enter	a	choice	followed	by	the	number	of	the	default	choice.	This	screen
lets	you	choose	different	ways	of	starting	your	system;	you	can't	hurt	anything	no	matter
how	you	start	it,	so	press	Enter	to	choose	the	default	menu	item.	(The	default	might	be
chosen	for	you	after	a	few	seconds.)	After	you	press	Enter,	you'll	see	one	of	the	startup
variations	described	in	the	next	four	sections.

Opening	with	the	MS-DOS	Shell

If	you're	using	MS-DOS	version	4	or	later,	your	system	might	be	set	up	to	start	with	the	MS-
DOS	Shell.	If	so,	you'll	see	a	display	like	this	one:

This	illustration	shows	the	opening	screen	of	the	version	6.0	Shell	as	it	appears	in	the	form
called	text	mode,	in	which	the	display	is	made	up	of	letters,	numbers,	lines,	brackets,	and
other	text	characters	rather	than	graphic	images	such	as	file	folders	and	arrow-shaped
mouse	pointers.	Your	Shell	screen	might	differ	in	some	details.

Chapter	11,	"The	MS-DOS	Shell,"	shows	you	how	to	use	the	Shell.	Because	the	Shell	is
optional,	however,	and	because	you	sometimes	leave	it	to	use	parts	of	MS-DOS,	the
remainder	of	this	chapter—indeed,	much	of	this	book—takes	you	outside	the	Shell.	This
should	help	you	become	comfortable	with	MS-DOS	itself	and	should	enable	users	of	all
versions	of	MS-DOS	to	benefit	from	the	examples.

If	you	see	the	opening	Shell	screen,	leave	the	Shell	for	now	by	pressing	the	F3	key.	MS-
DOS	responds	by	clearing	the	screen	and	displaying	this:
C:\>_

or	this:
C:\DOS>_

(If	your	computer	doesn't	have	a	hard	disk,	you	see	A:\>	instead	of	C:\>.)

Now	you	have	a	direct	line	to	MS-DOS.	Go	on	to	the	section	called	"The	System	Prompt"
on	page	16.

Opening	Without	Windows	or	the	MS-DOS	Shell

On	many	systems,	regardless	of	the	version	of	MS-DOS	you	use,	MS-DOS	starts	out	by
rapidly	displaying	some	brief	messages.	In	version	6.0,	for	example,	the	first	message	you'll
see	looks	something	like	this:
Starting	MS-DOS...

If	you	see	such	a	message—or	any	others	that	don't	require	responses	from	you—you	can
assume	that	MS-DOS	is	settling	in	properly.

In	a	startup	routine	like	this,	MS-DOS	ends	by	displaying	this:
C:\>_

or	this:
C:\DOS>_

or	this	(if	you	don't	have	a	hard	disk):
A:\>_

and	waits	for	your	command.	If	your	startup	ends	like	this,	MS-DOS	is	ready	to	go	to	work.
Go	on	to	the	section	called	"The	System	Prompt"	on	page	16.

Opening	with	Date	and	Time	Requests

Regardless	of	the	version	you	use,	MS-DOS	checks	for	the	correct	date	and	time	as	part	of
its	standard	startup	routine.	If	your	computer	contains	a	battery-powered	internal	clock,	MS-
DOS	checks	the	clock	for	the	information	it	needs.	If	your	computer	does	not	have	a	clock,
however,	the	first	thing	that	MS-DOS	does	is	ask	you	for	the	date	and	time.	First,	it	asks	for
the	date:
Current	date	is	Tue	01-01-1980
Enter	new	date	(mm-dd-yy):	_

If	you	see	this	message,	press	the	Enter	key	for	now,	even	though	the	date	isn't	Tuesday,
January	1,	1980.	MS-DOS	requests	the	time	next:
Current	time	is	0:01:30.00a
Enter	new	time:	_

Again,	just	press	Enter;	you'll	see	how	to	set	or	change	both	the	date	and	time	later	in	this
chapter.	MS-DOS	should	now	display	a	message	showing	the	version	you're	using,	and	then
end	with	a	display	like	this:
C:\>_

or	this:
C:\DOS>_

or	this	(if	you	don't	have	a	hard	disk):
A:\>_

Go	on	to	the	section	called	"The	System	Prompt"	on	this	page.

None	of	the	Above

In	the	years	since	MS-DOS	appeared,	many	companies	have	developed	shell	programs	and
more	sophisticated	software	that	provide	alternative	ways	to	use	a	computer	and	manage
files	and	applications.	The	MS-DOS	Shell	in	versions	4	and	later	is	an	example	of	such	a
program.	Microsoft	Windows	is	another.

If	none	of	the	preceding	descriptions	match	what	you	see	when	you	start	your	computer,
check	the	documentation	that	came	with	your	computer,	or	ask	the	person	who	set	up	your
system	whether	a	shell	or	other	special	program	has	been	installed	and,	if	so,	how	you	can
leave	it	temporarily	to	use	this	book.

	

javascript:Next(0)
javascript:Next(1)

The	System	Prompt
The	C:\>	(or	A:\>	if	you're	not	using	a	hard	disk)	is	called	the	system	prompt	or	command
prompt,	because	the	system	program	(MS-DOS)	is	prompting	you	to	type	a	command.	At
this	point,	MS-DOS	is	at	what	is	often	called	command	level,	because	it's	ready	and	waiting
for	a	command.

The	system	prompt	identifies	the	current	drive,	the	drive	where	MS-DOS	looks	for	a	file.
MS-DOS	identifies	your	drives	by	letter.	On	a	system	with	one	floppy	disk	drive	and	one
hard	disk,	the	floppy	disk	drive	is	identified	as	both	A	and	B,	the	hard	disk	drive	as	drive	C.
On	a	system	with	two	floppy	disk	drives,	the	left-hand	or	upper	drive	is	usually	drive	A,	the
right-hand	or	lower	drive	is	usually	drive	B.

When	MS-DOS	is	loaded	from	the	hard	disk	(drive	C),	MS-DOS	assumes	drive	C	is	the
current	drive,	and	the	initial	system	prompt	is	C:\>	or	C:\DOS>.	If	you're	not	using	a	hard
disk,	MS-DOS	is	loaded	from	drive	A;	MS-DOS	assumes	that	drive	A	is	the	current	drive,
and	the	initial	system	prompt	on	your	system	is	A:\>.

This	book	contains	many	examples	for	you	to	try.	With	a	few	exceptions,	the	examples
show	the	system	prompt	as	C:\>	because	that	is	the	normal	system	prompt	on	a	computer
with	a	hard	disk	and	version	6	of	MS-DOS.	If	you're	not	using	a	hard	disk,	proceed	with	the
examples,	but	bear	in	mind	that	where	you	see	C:\>	in	the	book,	you	will	see	A:\>	on	your
screen.

	

javascript:Next(0)
javascript:Next(1)

Entering	MS-DOS	Commands
For	the	first	few	commands	you	enter	in	this	session,	you	need	only	the	standard	typewriter
keys	on	the	keyboard.	Three	of	those	keys,	Enter,	Backspace,	and	Up	arrow,	are	shown	on
the	keyboards	in	Figures	2-2	and	2-3	and	are	worth	separate	mention.

	
Figure	2-2:	The	Backspace,	Enter,	and	Up	arrow	keys	on	the	early	PC-compatible
keyboard.

	
Figure	2-3:	The	Backspace,	Enter,	and	Up	arrow	keys	on	the	enhanced	PC-compatible
keyboard.

The	Enter	Key

The	Enter	key	is	labeled	with	a	bent	left	arrow	(↲),	the	word	Enter,	or	both.	Like	the	return
key	on	a	typewriter,	it	marks	the	end	of	a	line.	In	general,	MS-DOS	doesn't	know	what	you
have	typed	until	you	press	Enter,	so	remember:	End	a	command	by	pressing	the	Enter	key.

The	Backspace	Key

The	Backspace	key	is	labeled	with	a	left	arrow	(←),	the	word	Backspace,	or	both.	It	erases
the	last	character	you	typed;	use	it	to	correct	typing	errors.

The	Up	Arrow	Key

The	Up	arrow	key	is	labeled	with	an	upward-pointing	arrow	(↑).	It	is	located	on	the	8	key	in
the	numeric	keypad,	which	resembles	a	calculator,	on	all	IBM-compatible	keyboards	and
also	appears	in	the	set	of	four	"direction"	keys	to	the	left	of	the	keypad	on	enhanced
keyboards.	The	Up	arrow	key	is	often	used	to	move	a	highlight	on	the	screen,	but	in	MS-
DOS	versions	5	and	6	it	also	lets	you	repeat	a	command,	as	you'll	see	in	a	moment.

	

javascript:Next(0)
javascript:Next(1)

Getting	Started
At	this	point,	MS-DOS	should	be	displaying	the	system	prompt,	followed	immediately	by	a
blinking	underline.	This	underline	is	the	cursor.	It	shows	where	MS-DOS	will	display
whatever	you	type	next.	It	also	tells	you	that	MS-DOS	is	waiting	for	you	to	type	something.
It's	time	to	put	MS-DOS	to	work.

The	MS-DOS	commands	you'll	try	in	this	chapter	are	easy	to	use	and	remember,	so	no
special	preparation	is	needed.	If	you	have	version	5	or	later	of	MS-DOS,	however,	you	have
an	"extra"—a	small	program	named	Doskey	that	you	can	load	into	your	computer's	memory
and	use	with	MS-DOS	to	make	some	tasks	more	efficient.	You	can	try	Doskey	in	this
chapter,	so	if	you	have	version	5	or	later,	type	this:
C:\>doskey

and	press	the	Enter	key.

Note
If	you're	using	MS-DOS	from	floppy	disks	and	see	the	message	Bad	command	or
file	name,	don't	worry.	The	floppy	disk	in	drive	A	doesn't	include	the	part	of	MS-
DOS	needed	to	carry	out	your	command.	Just	ignore	Doskey	for	now;	you'll	soon
be	able	to	use	it	without	a	second	thought.

Checking	on	Your	Version	of	MS-DOS

Some	of	the	examples	in	this	book	assume	you	know	which	version	of	MS-DOS	you're
using.	The	easiest	way	to	find	out	about	MS-DOS	is	to	ask	MS-DOS	itself.	Whether	you
know	your	MS-DOS	version	or	not,	try	out	the	Ver	(short	for	version)	command.	Type	this:
C:\>ver

and	press	the	Enter	key.

MS-DOS	responds	by	displaying	a	message	that	identifies	the	version.	The	exact	wording
depends	on	the	computer	and	version	of	MS-DOS	you	have.	In	the	Microsoft	release	of
version	6.20,	for	example,	the	message	you	see	is
MS-DOS	Version	6.20

	

javascript:Next(0)
javascript:Next(1)

Keeping	Track	of	the	Date	and	Time
It's	important	to	know	which	version	of	MS-DOS	you	use,	but	it's	more	important	to	know
your	computer	keeps	the	correct	date	and	time.	The	computer	has	an	electronic	clock	that
keeps	time	to	the	hundredth	of	a	second.	MS-DOS	uses	this	clock	to	keep	track	of	both	the
time	of	day	and	the	date.

In	some	computers,	the	clock	doesn't	run	when	the	system	is	shut	off,	so	each	time	you
start	the	system	MS-DOS	sets	the	date	to	January	1,	1980	(01-01-1980)	and	sets	the	time
to	midnight	(0:00:00.00	or	12:00:00.00a).	That's	why,	on	systems	without	a	battery-
powered	clock	of	some	type,	you	see	MS-DOS	prompting	for	the	correct	date	and	time	at
startup.

If	your	system	doesn't	keep	the	date	and	time	current,	and	you	just	press	Enter	in	response
to	the	date	and	time	prompts	when	you	start	the	system,	MS-DOS	assumes	that	it's
midnight	on	January	1,	1980.	Even	though	you	might	have	been	advised	(for	simplicity)	to
skip	setting	the	correct	date	and	time	earlier	in	the	chapter,	it	really	isn't	a	good	habit	to
form	because	MS-DOS	marks	each	file	you	create	or	change	with	the	current	time	and
date.	Such	information	is	useful,	so	it's	a	good	idea	to	set	the	correct	date	and	time—if
necessary—each	time	you	start	the	system.

Checking	or	Changing	the	Date

To	check	or	change	the	date,	you	use	the	MS-DOS	Date	command.	Type	this:
C:\>date

and	press	Enter.	MS-DOS	responds	like	this	(you	probably	see	a	different	date):
Current	date	is	Mon	11-21-1994
Enter	new	date	(mm-dd-yy):	_

The	cursor	now	follows	the	Enter	new	date	request.	Such	a	request	is	called	a	prompt;	MS-
DOS	frequently	prompts	you	to	enter	information	so	that	you	don't	have	to	memorize
operating	procedures.

To	enter	the	date,	you	type	the	numbers	that	represent	the	month,	day,	and	year,	separated
by	hyphens,	and	then	you	press	the	Enter	key.	You	don't	have	to	type	the	day	of	the	week;
MS-DOS	figures	out	the	day	for	you.

For	this	example,	set	the	date	to	January	5,	1995,	by	typing	the	information	you	see	at	the
top	of	the	next	page.	(Be	sure	to	press	Enter	after	the	last	number.)
Current	date	is	Mon	11-21-1994
Enter	new	date	(mm-dd-yy):	01-05-95

You	can	also	use	a	slash(/)	or	a	period	to	separate	the	numbers.	Whichever	you

Note use,	if	you	don't	do	it	exactly	right	(in	other	words,	in	a	way	that	MS-DOSrecognizes),	MS-DOS	displays	Invalid	date	and	prompts	you	to	try	again.	If	you
make	a	mistake	or	enter	the	wrong	date,	don't	be	alarmed.	As	you'll	soon	see,	it's
easy	to	fix	such	errors.

Check	the	date	again	to	be	sure	MS-DOS	changed	it	for	you.	If	you	don't	have	version	5	or
later,	you	repeat	your	last	command	by	typing	it	again.	Do	so	now;	MS-DOS	should	respond
with	its	normal	date	display.

If	you	have	version	5	or	later,	there's	an	easier	way	to	repeat	a	command:	Press	the	Up
arrow	key	once.	MS-DOS	displays	this:
C:\>date_

There's	the	Date	command	you	just	typed.	Remember	when	you	entered	a	Doskey
command	a	few	pages	ago?	Doskey	is	a	program	that	keeps	track	of	each	command	you
type	in	a	special	area	of	memory.	After	you	have	started	Doskey,	you	can	recycle	previous
commands	by	pressing	the	Up	arrow	key,	as	you	just	did.

Press	the	Enter	key,	and	MS-DOS	responds	just	as	if	you	had	typed	the	Date	command:
Current	date	is	Thu	01-05-1995
Enter	new	date	(mm-dd-yy):	_

By	pressing	just	two	keys,	you	have	repeated	your	last	MS-DOS	command.

You'll	correct	the	date	in	a	moment,	but	first	try	the	following	exercise	to	see	how	easily	you
can	fix	typing	errors.

Backspacing	to	Correct	Typing	Errors

Try	out	the	Backspace	key.	Type	some	characters,	such	as	the	following,	at	random,	but
don't	press	Enter:
Current	date	is	Thu	01-05-1995
Enter	new	date	(mm-dd-yy):	w710273_

This	isn't	a	valid	date.	If	you	were	to	press	Enter	now,	MS-DOS	would	display	the	message
Invalid	date	and	ask	you	to	try	again.	Correct	your	typing	"error"	by	pressing	the	Backspace
key	until	all	the	characters	are	erased	and	the	cursor	is	back	to	its	original	position,	just	to
the	right	of	the	colon.	The	screen	looks	exactly	like	it	did	before:
Current	date	is	Thu	01-05-1995
Enter	new	date	(mm-dd-yy):	_

This	time,	type	the	correct	date	and	press	Enter—for	example,
Current	date	is	Thu	01-05-1995
Enter	new	date	(mm-dd-yy):	4-19-95

for	April	19,	1995.

Checking	or	Changing	the	Time

Just	as	you	can	control	the	date	with	the	Date	command,	you	can	check	or	change	the	time
with	the	MS-DOS	Time	command.	If	your	computer	has	an	internal	clock/calendar	that
keeps	the	date	and	time	current	even	when	the	system	is	turned	off,	you	probably	won't
have	a	lot	of	use	for	either	Date	or	Time,	but	they	can	still	come	in	handy—when	the	time
changes	with	daylight	saving	time,	for	example,	or	when	you	want	to	know	what	day	of	the
week	a	certain	date	falls	on.

Once	you've	seen	the	Date	command,	the	Time	command	looks	quite	familiar.	To	try	it,	type
this:
C:\>time

MS-DOS	displays	its	version	of	the	time	and	prompts	for	a	new	time:
Current	time	is	8:22:33:55a
Enter	new	time:	_

If	MS-DOS	displays	the	correct	time	and	you	don't	want	to	tamper	with	it,	press	Enter
without	typing	a	response.	If	the	time	is	incorrect,	or	if	you	feel	like	experimenting,	type	the
time	in	the	appropriate	format	for	your	version	of	MS-DOS,	as	described	below:

MS-DOS	Version Time	Format Examples

1	through	3 24-hour	clock
8:30	(before	noon)	or
20:30	(after	noon)

4	and	later
12-hour	or
24-hour	clock

8:30a	and	8:30p	or
8:30	and	20:30

With	versions	1	through	3,	for	example,	you	would	type
Current	time	is	8:22:33:55a
Enter	new	time:	13:15

to	set	the	time	to	1:15	in	the	afternoon.	With	versions	4	and	later,	you	could	also	type	this:
Current	time	is	8:22:33:55a
Enter	new	time:	1:15p

Versions	4	and	later	accept	either	form.

If	you've	changed	to	an	incorrect	time,	reset	it	before	continuing:	If	you	have	version	5	or
later,	press	the	Up	arrow	key	to	recall	the	last	command.	If	you	don't	have	version	5	or
later,	type	time.	Now	type	the	correct	time	and	press	Enter	to	carry	out	the	command.

	

javascript:Next(0)
javascript:Next(1)

Changing	the	Current	Drive
You	can	change	the	current	drive	simply	by	typing	at	the	prompt	the	letter	of	the	new	drive,
followed	by	a	colon.	For	example,	try	changing	the	current	drive	to	B.

You'll	need	a	floppy	disk,	so	either	find	one	that	you	have	used	before	or	use	one	of	your
MS-DOS	floppy	disks	(be	careful	with	it).

If	you	have	one	floppy	disk	drive,	insert	the	floppy	disk	in	the	drive	with	the	label	up	and
away	from	the	machine.	If	you	have	two	floppy	disk	drives,	insert	the	floppy	disk	in	the	drive
that	does	not	currently	contain	your	MS-DOS	startup	disk.	Now	type	this:
C:\>b:

If	you	have	one	floppy	disk	drive,	MS-DOS	displays	this	message:
Insert	diskette	for	drive	B:	and	press	any	key	when	ready

The	floppy	disk	is	already	in	the	drive,	so	press	a	key.	MS-DOS	responds:
B:\>_

Now	the	system	prompt	is	B:\>,	confirming	that	MS-DOS	will	look	in	drive	B	unless	told
otherwise.

If	you're	using	a	hard	disk,	change	the	current	drive	back	to	drive	C	by	typing	the	following:
B:\>c:
C:\>_

The	system	prompt	returns	to	C:\>.

If	you're	not	using	a	hard	disk,	change	the	current	drive	back	to	drive	A	by	typing	the
following:
B:\>a:
A:\>_

The	system	prompt	returns	to	A:\>.

	

javascript:Next(0)
javascript:Next(1)

Printing	What's	on	the	Screen
The	screen	shows	you	a	record	of	your	commands	and	the	responses	from	MS-DOS;	it
normally	shows	a	maximum	of	25	lines.	When	all	the	lines	are	filled,	each	additional	line
causes	the	entire	screen	to	shift	up,	or	scroll,	to	make	room	for	the	new	line	at	the	bottom;
the	top	line	disappears	from	view.

Because	a	copy	of	what	is	on	the	display	is	often	useful,	MS-DOS	makes	it	easy	to	print
what's	on	the	screen.	Locate	the	Print	Screen	key,	which	is	labeled	with	an	abbreviation	like
PrtSc	or	Print	Scrn	(or	the	key	name	is	spelled	out)	depending	on	the	keyboard	you're
using.	Make	sure	your	printer	is	turned	on,	hold	down	the	Shift	key,	and	press	Print	Screen.
(This	combination	is	referred	to	in	text	as	Shift-Print	Screen.)	Each	line	of	the	screen	is
printed.

Note

If	Shift-Print	Screen	does	not	produce	a	printed	copy	of	what's	on	the	screen,	you
might	need	to	help	your	printer	understand	the	instruction.	With	most	Hewlett-
Packard	LaserJet	printers,	for	example,	you	press	the	button	on	the	printer	labeled
ON	LINE,	press	the	FORM	FEED	button	to	print	the	page,	and	then	press	ON
LINE	again	to	return	the	printer	to	its	earlier	status.	If	necessary,	check	the
documentation	that	came	with	your	printer.

	

javascript:Next(0)
javascript:Next(1)

Clearing	the	Screen
Sometimes,	when	the	screen	is	filled	with	commands	and	responses,	you	might	want	to
clear	it	before	continuing	with	your	work.	You	can	erase	everything	on	the	screen	with	the
Clear	Screen	(Cls)	command.	Try	it	by	typing	this:
C:\>cls

The	screen	is	cleared,	except	for	the	system	prompt	in	the	upper	left	corner.

	

javascript:Next(0)
javascript:Next(1)

Turning	the	System	Off
If	MS-DOS	is	displaying	the	system	prompt,	all	you	have	to	do	to	shut	the	system	down	is
turn	off	the	power	switch.	You	can	do	it	anytime,	except	when	the	light	on	a	disk	drive	is	on;
turning	the	power	off	while	a	drive	is	in	use	can	cause	you	to	lose	the	data	on	the	disk.	(If
you're	using	an	application	program	and	decide	to	shut	the	system	down,	first	follow	the
program's	instructions	for	saving	your	work	and	quitting.	When	the	program	returns	you	to
the	system	prompt,	you	can	shut	down	without	risking	loss	of	data.)	Some	devices	attached
to	your	system	may	have	special	requirements	for	shutting	down,	such	as	a	specific
sequence	in	which	they	should	be	turned	off.	Be	sure	you	know	any	special	instructions	for
the	devices	attached	to	your	system.

After	you	shut	the	system	down,	be	sure	to	remove	any	floppy	disks	you	are	using	and
store	them	where	they	will	be	safe.	You	can	remove	your	floppy	disks	before	you	turn	off
the	power,	provided	no	disk	drive	is	in	use.

	

javascript:Next(0)
javascript:Next(1)

Chapter	Summary
You	have	completed	your	first	session	with	MS-DOS.	It	wasn't	very	long,	but	you	started	the
system,	entered	a	few	MS-DOS	commands,	and	printed	what	was	on	the	screen.	These
are	the	key	points:

You	control	MS-DOS	by	typing	commands.

MS-DOS	doesn't	know	what	you	have	typed	until	you	press	the	Enter	key.

The	Backspace	key	erases	the	last	character	you	typed.

The	system	prompt	tells	you	that	MS-DOS	is	at	the	command	level,	ready	to	accept
a	command	from	you.

The	letter	in	the	system	prompt	identifies	the	current	drive;	you	can	change	the
current	drive	by	typing	the	new	drive	letter,	followed	by	a	colon.

You	can	check	to	see	what	your	version	of	MS-DOS	is	with	the	Ver	(for	version)
command.

The	computer	keeps	track	of	the	date	and	time.	You	can	also	set	them	with	the
Date	and	Time	commands.

In	versions	5	and	later,	Doskey	helps	you	repeat	commands	quickly	and	easily.

Pressing	Shift-Print	Screen	prints	the	contents	of	the	screen.

Typing	cls	clears	the	screen.

	

javascript:Next(0)
javascript:Next(1)

Chapter	3:	Getting	Your	Bearings

Overview
When	you	venture	into	new	territory—a	different	part	of	town,	a	park,	a	department	store,	a
building	you've	never	visited—you	know	where	you're	starting	from,	why	you're	there,	and
pretty	much	where	you	want	to	go.	You	took	your	first	steps	with	MS-DOS	in	the	previous
chapter.	Now	it's	time	to	get	your	bearings—time	to	begin	learning	your	way	around,	moving
in	the	direction	of	one	task	or	another,	and	calling	a	halt	if	you	want	or	need	to.

That's	what	this	chapter	is	all	about.	It	introduces	you	to	the	directory	of	files	that	MS-DOS
keeps	on	each	disk	and	shows	you	how	to	use	the	special	keys	on	your	keyboard.	You	use
these	keys	to	tell	MS-DOS	to	cancel	lines	or	commands,	to	freeze	the	display,	and	to
restart	MS-DOS	itself.	If	you	have	version	5	or	6,	you're	given	a	closer	look	at	Doskey,
which	extends	your	control	over	the	keyboard	and	enables	you	to	review	and	repeat
commands	you've	already	used.

To	try	the	examples,	start	MS-DOS	as	you	normally	do,	even	if	your	system	is	already
running.	Especially	with	version	6,	this	will	ensure	that	the	examples	work	as	described.	If
necessary,	press	F3	to	leave	the	MS-DOS	Shell.	Don't	worry	about	leaving	your	computer
on	while	you	read	the	text	between	examples;	MS-DOS	is	patient.

	

javascript:Next(0)
javascript:Next(1)

The	Directory
Recall	from	Chapter	1	that	information	stored	on	a	disk	is	stored	as	a	file.	For	every	disk
you	use,	MS-DOS	automatically	keeps	and	updates	a	list	of	all	the	files	you've	saved	on	the
disk.	This	list	is	called	the	directory.

If	you	create	and	save	a	new	file,	MS-DOS	adds	it	to	the	list	for	that	disk.	If	you	revise	an
old	file,	MS-DOS	keeps	track	of	that	too.	The	directory	eliminates	the	need	for	you	to	keep
a	separate	record	of	everything	you	save.	You	can	tell	MS-DOS	you	want	to	see	the
directory	of	a	particular	disk	whenever	MS-DOS	is	displaying	the	system	prompt	or,	as
explained	in	Chapter	11,	when	you're	using	the	MS-DOS	Shell.

The	examples	in	this	chapter	give	you	a	look	at	a	directory	and	show	you	different	ways	to
display	information	about	your	files.	But	before	you	begin	exploring	directories,	you	should
know	a	little	about	how	MS-DOS	saves	your	files.

Whenever	you	create	a	file,	you	give	it	a	descriptive	name,	called	the	file	name,	of	up	to
eight	characters.	If	you	want,	you	can	add	a	suffix,	called	the	extension,	of	up	to	three	more
letters.	The	file	name	and	extension	help	MS-DOS	distinguish	one	file	from	another	and
keep	information	where	it	belongs.

Whenever	you	ask	MS-DOS	to	show	you	the	directory	of	a	disk,	MS-DOS	lists	the	files	it
finds,	showing	each	file	name	(and	extension,	if	there	is	one).	It	also	shows	you	the	size	of
each	file,	in	units	called	bytes,	and	gives	the	date	and	the	time	the	file	was	created	or	last
changed.

Many	people	have	heard	of	a	byte	but	aren't	quite	certain	what	it	is.	The	easiest	way	to
think	of	a	byte	is	as	the	amount	of	storage	required	to	hold	one	character	in	computer
memory	or	on	disk.	Here	are	a	few	familiar	items	and	their	sizes,	in	bytes:	the	letters	abcd,
4	bytes,	1	byte	per	letter;	the	words	United	States,	13	bytes—spaces	count;	a	double-
spaced,	typewritten	page,	1500	bytes;	this	book,	approximately	1,000,000	bytes.

Depending	on	the	size	and	type	of	drives	you	use	(hard	disk,	floppy	disk,	or	both),	a	floppy
disk	can	hold	from	362,496	to	2,923,620	bytes,	and	a	hard	disk	can	hold	anywhere	from
20,000,000	to	1,200,000,000	bytes—even	more.	For	convenience,	such	large	quantities	are
usually	given	in	kilobytes	(KB),	megabytes	(MB),	or	gigabytes	(GB).	One	kilobyte	equals
1024	bytes,	one	megabyte	equals	1024	kilobytes,	and	one	gigabyte	equals	1024
megabytes,	so	disk	capacity	can	range	from	360	KB	to	1200	MB	(1.2	GB)	or	more.

A	Special	Kind	of	Directory

Left	to	itself,	MS-DOS	doesn't	group	files	logically	as	you	would,	categorizing	them	by	type,
content,	or	any	other	characteristic.	MS-DOS	doesn't,	for	example,	keep	all	program	files	in
one	place	and	all	documents	in	another.	To	MS-DOS,	a	file	is	just	a	file,	and	as	it	keeps
track	of	the	files	you	create,	it	keeps	adding	their	file	names	to	the	disk	directory.

The	main	disk	directory	cannot	simply	grow	without	limit,	however,	even	though	a	large	hard
disk	can	hold	thousands	of	files.	To	help	control	growth	and	give	you	a	way	to	keep	track	of
similar	groups	of	files,	MS-DOS	includes	commands	that	let	you	divide	disk	storage	space
into	smaller,	more	manageable	areas	called	subdirectories.	Subdirectories	are	the	disk
equivalent	of	dividers	in	a	file	drawer.

Although	you	won't	be	working	with	subdirectories	until	later	in	this	book,	you	do	need	to
know	that	MS-DOS	versions	4	and	later	normally	install	themselves	automatically,	on	a	hard
disk,	in	a	subdirectory	named	DOS.	Earlier	versions	of	MS-DOS,	though	they	did	not	install
themselves,	were	often	placed	in	a	subdirectory	by	the	people	who	installed	them.	The
tradition	of	keeping	MS-DOS	in	its	own	subdirectory	is,	in	fact,	so	commonplace	that	this
book	assumes	you	have	a	DOS	subdirectory	if	you	use	MS-DOS	from	a	hard	disk.

If	you	have	a	hard	disk,	you	can	easily	check	for	a	DOS	subdirectory.	If	your	system	prompt
looks	like	this,
C:\DOS>_

MS-DOS	itself	is	telling	you	that	you	have	a	DOS	subdirectory	and	it	is	looking	at	the
subdirectory	right	now.

If	your	system	prompt	looks	like	this,
C:\>_

you	need	to	check	a	little	further.	Use	the	Change	Directory	command,	which	tells	MS-DOS
to	find	and	focus	its	attention	on	the	subdirectory	you	name.	Type	this:
C:\>cd	dos

If	all	goes	well,	MS-DOS	turns	to	your	DOS	subdirectory,	and	your	system	prompt	probably
changes	to	C:\DOS>.	If	MS-DOS	can't	find	a	DOS	subdirectory,	it	responds	with	the
message	Invalid	directory	and	again	displays	the	system	prompt.

Note

The	preceding	two	examples	cover	the	majority	of	hard	disks	equipped	with
versions	3	through	6	of	MS-DOS.	If	you	received	the	Invalid	directory	message,
you	can	still	try	the	following	examples.	They'll	work	just	fine,	but	you	should	bear
in	mind	that	the	file	names	you	see	might	not	be	the	same	as	those	shown	in	the
book.

Chapter	8,	"A	Tree	of	Files,"	shows	you	how	to	create,	use,	manage,	and	remove
subdirectories.	The	next	part	of	this	chapter	shows	you	how	to	browse	through	directories
and	subdirectories,	finding	specific	files	they	contain.

	

javascript:Next(0)
javascript:Next(1)

Displaying	a	Directory
To	display	the	current	directory	(the	directory	MS-DOS	uses	unless	you	specify	otherwise),
you	simply	type	dir,	the	name	of	the	Directory	command.	Type	the	command	and	press
Enter	(remember,	if	you	don't	have	a	hard	disk,	your	system	prompt	is	A:\>):
C:\DOS>dir

If	you	have	a	hard	disk	and	have	displayed	the	DOS	directory,	the	directory	probably
scrolled	off	the	screen	faster	than	you	could	read	it.	There	are	several	ways	to	handle	that,
but	one	of	the	simplest	uses	what's	called	a	command	parameter.	As	you'll	see	in	the	next
chapter,	a	command	parameter	lets	you	refine	the	action	of	a	command.	Here,	with	the
Directory	command,	you	can	use	a	parameter	typed	as	/p	to	instruct	MS-DOS	to	pause
after	displaying	a	screenful	of	directory	entries.	Try	it.	If	your	directory	listing	was	too	long
to	fit	on	one	screen,	type	this:
C:\DOS>dir	/p

This	time,	scrolling	stops	when	the	screen	is	full.	Press	any	key	to	see	the	remainder	of	the
directory	listing,	one	screenful	at	a	time.	Figure	3-1	shows	a	sampling	of	the	MS-DOS	file
names	you	see	on	a	computer	with	a	hard	disk	and	version	6.0	of	MS-DOS.

	
Figure	3-1:	A	sample	directory	display	of	version	6.0	MS-DOS	files.

If	you're	using	floppy	disks	or	a	different	version	of	MS-DOS,	your	directory	listing	differs—
perhaps	a	little,	perhaps	a	lot.	The	list	might	be	shorter,	for	example,	or	it	might	show	some
different	names,	dates,	or	times.	Regardless,	certain	names,	such	as	FORMAT,
COMMAND,	DEBUG,	and	MODE	appear	consistently	across	different	versions	of	MS-DOS.
You	can	check	your	display	for	one	or	two	of	those	names	if	you	want,	but	the	real	point	of
this	example	is	simple:	The	result	of	a	Directory	command	is	always	a	list	of	files	stored	on
the	disk.

Note The	Directory	command	is	used	in	examples	throughout	the	book.	Unless	statedotherwise,	the	version	6.0	display	is	shown.

The	lines	at	the	top	of	a	directory	listing	give	information	about	the	disk	itself	and	are
explained	in	Chapter	6,	"Managing	Your	Floppy	Disks."	In	versions	5	and	later,	the	last	two
lines	of	a	directory	display	show	the	number	of	files	in	the	directory,	the	number	of	bytes	of
storage	they	occupy,	and—in	the	last	line—the	number	of	bytes	of	storage	remaining	on	the
disk.	(In	versions	before	5,	the	directory	listing	ends	with	a	single	line	that	gives	the	number
of	files	and	the	number	of	bytes	available	for	storage.)

Figure	3-2	shows	a	sample	entry	from	a	directory.	The	file	name	is	DISKCOPY;	note	that	it
is	eight	letters	long,	the	maximum	length	of	an	MS-DOS	file	name.	The	next	item,	COM,	is
the	file's	extension.	The	next	item	tells	you	the	file's	size,	and	the	final	two	entries	give	the
date	and	time	the	file	was	either	created	or	last	changed.

	
Figure	3-2:	A	sample	directory	entry.

	

javascript:Next(0)
javascript:Next(1)

Some	Important	Keys
In	the	examples	in	the	previous	chapter,	you	used	the	standard	typewriter	portion	of	the
keyboard	to	enter	commands.	Several	other	keys	have	important	meanings	to	MS-DOS.
Figures	3-3	and	3-4	show	where	these	keys	are	located	on	two	common	versions	of	the
IBM	keyboard.	If	your	keyboard	does	not	have	the	key	used	in	an	example,	check	your
system's	documentation	for	equivalent	keys.

	
Figure	3-3:	Special	keys	on	the	early	IBM	PC-compatible	keyboard.

	
Figure	3-4:	Special	keys	on	the	enhanced	IBM	PC-compatible	keyboard.

Shift

The	Shift	keys	are	labeled	with	an	open	arrow,	the	word	Shift,	or	both.	Like	the	Shift	keys
on	a	typewriter,	they	have	no	effect	by	themselves;	they	shift	the	keyboard	to	uppercase
letters	and	special	characters,	such	as	the	dollar	sign.

Escape

This	key,	usually	labeled	Esc,	cancels	a	line	you	have	typed.	To	see	how	it	works,	type
several	characters	(but	don't	press	Enter):
C:\DOS>Now	is	the	time

To	erase	this	line,	you	could	repeatedly	press	the	Backspace	key,	but	press	the	Escape	key
instead:
C:\DOS>_

If	you're	using	version	5	or	later	and	installed	Doskey	in	Chapter	2,	MS-DOS	erases	the	line
you	typed	and	moves	the	cursor	back	to	the	system	prompt.

If	you're	using	version	4	or	earlier,	or	if	you	haven't	installed	Doskey,	the	result	is	different:
C:\DOS>Now	is	the	time\

MS-DOS	displays	a	reverse	slash	(\)	to	indicate	that	the	line	was	canceled	and	moves	the
cursor	to	the	next	line.	MS-DOS	doesn't	repeat	the	system	prompt,	but	the	cursor	indicates
it	is	still	ready	for	you	to	type	a	command.	Press	the	Enter	key,	and	MS-DOS	displays	the
system	prompt	and	the	cursor	on	the	next	line:
C:\DOS>_

Pressing	the	Escape	key	is	the	quickest	way	to	cancel	a	line	you	have	typed.

Control

This	key,	usually	labeled	Ctrl,	has	no	effect	by	itself,	but	it	is	used	like	the	Shift	keys	to
change	the	effect	of	pressing	another	key.	The	combination	of	the	Control	key	and	some
other	key	is	represented	in	this	book	by	Ctrl-	followed	by	the	other	key.	Ctrl-Break,	for
example,	means	"hold	down	the	Control	key,	and	then	press	and	release	the	Break	key."
The	Control	key	combinations	are	described	under	the	heading	"Control	Key	Functions"	on
page	33.

Numeric	Lock

This	key,	familiarly	known	as	Num	Lock,	does	two	things.	It	switches	the	effect	of	the	keys
in	the	calculator-style	numeric	pad	at	the	right	side	of	the	keyboard	back	and	forth	between
cursor	movement	and	numbers.	On	early	PC	keyboards,	it	is	also	used	in	combination	with
the	Control	key	to	freeze	the	display.	To	test	the	first	function,	press	Num	Lock,	and	then
press	the	4	key	in	the	numeric	pad	several	times:
C:\DOS>444_

The	keys	produce	numbers	on	the	screen.	Now	press	Num	Lock	again	and	press	the	same
4	key	you	pressed	before:
C:\DOS>444

If	you're	using	version	5	or	6	and	installed	Doskey,	MS-DOS	moves	the	cursor	to	the	left
one	character	so	that	it	is	under	the	last	number	you	typed.

If	you're	using	version	4	or	earlier,	or	if	you're	using	version	5	or	6	and	Doskey	isn't	installed,
you'll	see	the	following	result:
C:\DOS>44_

Pressing	Num	Lock	a	second	time	switched	the	keys	to	their	cursor-movement	functions.
The	4	key	is	labeled	with	a	left	arrow	in	addition	to	the	number	4;	pressing	it	moves	the
cursor	left,	in	the	direction	of	the	arrow,	and	(if	you're	not	using	Doskey)	erases	a	character
just	as	the	Backspace	key	does.	Press	Num	Lock	and	the	same	4	key	again:

C:\DOS>444_

You	switched	back	to	numbers.	Press	Num	Lock	one	more	time	to	switch	back	to	cursor
movement,	press	Esc	to	cancel	the	line,	and	press	the	Enter	key	to	return	to	the	system
prompt:
C:\DOS>444\
C:\DOS>_

You	won't	often	use	the	arrow	keys	for	cursor	movement	with	MS-DOS,	but	many
application	programs,	such	as	word	processors,	require	frequent	cursor	movements.	If	you
have	version	5	or	6,	you'll	also	use	the	arrow	keys	for	giving	commands	to	Doskey.

Break

This	key	is	labeled	either	Scroll	Lock	and	Break	or	Pause	and	Break.	When	labeled	Scroll
Lock	and	Break	(as	on	early	PC-compatible	keyboards),	this	key	has	no	effect	on	MS-DOS
by	itself,	but	it	is	used	with	the	Control	key	to	cancel	a	command	you	have	entered.	If
labeled	Pause	and	Break	(as	on	the	enhanced	PC-compatible	keyboard),	this	key
temporarily	halts	the	display;	when	used	with	the	Control	key,	it	cancels	a	command.

Alternate	and	Delete

The	key	labeled	Alt	has	no	effect	on	MS-DOS	by	itself,	while	the	Del	key	is	used	to	delete
the	character	above	the	cursor.	Both	are	used	with	the	Control	key	to	restart	MS-DOS.

Print	Screen

This	key,	labeled	Print	Screen,	Prnt	Scrn,	PrtSc,	or	some	close	variation,	is	used	with	the
Shift	or	Control	key	to	print	the	contents	of	the	screen.	You	used	Shift-PrtSc	in	the	previous
chapter;	you'll	use	Ctrl-PrtSc	and	see	the	difference	in	a	short	while.	(If	you	have	an	IBM
PS/2	keyboard,	you	don't	have	to	press	Shift	with	PrtSc.)

Control	Key	Functions

Figure	3-5	shows	the	effects	produced	by	holding	down	the	Control	key	and	pressing
another	key.	You'll	probably	use	these	combinations	fairly	often	with	MS-DOS,	so	the	next
few	topics	show	you	examples	of	each	combination.	When	you	are	being	shown	exactly
what	to	type,	the	names	of	the	keys	are	separated	by	hyphens	and	enclosed	in	angle
brackets	to	represent	pressing	a	Control	key	combination.	Thus,	when	you	see	<Ctrl-
Break>	in	a	command,	it	means	"press	Ctrl-Break."

Ctrl-
Num
Lock	or
Pause

Halts	whatever	the	system	is	doing	until	you	press	another	key.	Typically	used	to
freeze	the	display	when	information	is	scrolling	by	too	fast	or	scrolling	off	the	top
of	the	screen.	Can	also	be	typed	as	Ctrl-S	(Ctrl	plus	the	letter	S).

Ctrl-
Break

Cancels	whatever	the	system	is	doing.	Use	this	when	you	really	don't	want	the
computer	to	continue	what	it's	doing.	Can	also	be	typed	as	Ctrl-C	(Ctrl	plus	the
letter	C).

Ctrl-
PrtSc

Pressing	this	key	combination	once	causes	MS-DOS	to	start	printing	every	line
as	it	is	displayed;	pressing	Ctrl-PrtSc	a	second	time	stops	simultaneous
displaying	and	printing.	Can	also	be	typed	as	Ctrl-P	(Ctrl	plus	the	letter	P).

Ctrl-Alt-
Del

Restarts	MS-DOS.	This	combination	is	unique;	no	other	keys	can	be	used	to	do
the	same	thing.

Figure	3-5:	Control	key	combinations.

Before	trying	the	examples,	you	should	also	note	that	MS-DOS	displays	the	Control	key	as
the	symbol	 .̂	MS-DOS	does	not	acknowledge	all	Control	key	commands	on	the	screen,	but
when	it	does,	it	uses	the	symbol	 	̂in	combination	with	a	letter.	Control-Break,	for	example,
shows	on	the	screen	as	^C	and	can	also	be	typed	by	holding	down	the	Control	key	and
typing	the	letter	C.

Freezing	the	Display

As	mentioned	earlier,	MS-DOS	lets	you	temporarily	halt	the	display	by	pressing	the	Pause
key	or,	if	you	have	an	early	PC	keyboard,	Ctrl-Num	Lock.	When	you	do	this,	the	display
remains	frozen,	giving	you	time	to	read	it.	To	start	the	display	moving	again,	you	simply
press	any	key.	Test	this	function	by	typing	this	to	display	the	directory:
C:\DOS>dir

When	the	entries	start	appearing	on	the	screen,	press	Pause	or	Ctrl-Num	Lock	to	freeze	the
display.	Press	any	key;	the	display	resumes.	You	can	press	Pause	or	Ctrl-Num	Lock	to	stop
and	start	the	display	as	many	times	as	you	like,	to	view	displays	many	screens	long.

Canceling	a	Command

If	you	enter	a	command	and	then	change	your	mind	or	realize	that	you	meant	to	enter	some
other	command,	you	can	cancel	the	command	you	entered	by	pressing	Ctrl-Break.	To	test
this	function,	type	the	Directory	command	again.	This	time,	however,	press	Ctrl-Break	when
MS-DOS	begins	to	display	the	directory	entries.

Here's	an	example:
C:\DOS>dir

	Volume	in	drive	C	is	HARD	DISK
	Volume	Serial	Number	is	1608-5A30
	Directory	of	C:\DOS
.												<DIR>					01-15-94					6:05p
..											<DIR>					01-15-94					6:05p

EGA							SYS					4885	02-01-93				12:00a
FORMAT				COM				33087	02-01-93				12:00a
COUNTRY			SYS				17069	02-01-93				12:00a
HIMEM					SYS				13984	02-01-93				12:00a
KEYB						COM				14986	02^C

C:\DOS>_

Your	display	probably	would	have	stopped	somewhere	else	in	the	directory,	but	when	you
press	Ctrl-Break,	MS-DOS	stops	what	it	is	doing,	displays	^C,	and	returns	to	the	command
level.

Printing	and	Displaying	Simultaneously

In	the	previous	chapter	you	printed	the	contents	of	the	screen	by	pressing	Shift-PrtSc.
There's	another	way	to	print	from	the	screen:	Pressing	Ctrl-PrtSc	tells	MS-DOS	to	start
printing	everything	it	displays.	MS-DOS	continues	to	print	and	display	simultaneously	until
you	press	Ctrl-PrtSc	again.

To	test	this	function,	make	sure	your	printer	is	turned	on,	press	Ctrl-PrtSc,	and	then	enter
the	Directory	command:
C:	\DOS><Ctrl-PrtSc>dir

MS-DOS	again	displays	the	directory	of	the	system	disk,	but	this	time	each	line	is	printed	as
it	is	displayed.	(If	you're	using	a	LaserJet	or	similar	printer,	you	might	have	to	press	Ctrl-P
instead.)

The	directory	is	displayed	more	slowly	than	when	you	use	the	Directory	command	alone
because	MS-DOS	waits	until	a	line	is	printed	before	displaying	and	printing	the	next	line.	You
can	cancel	the	Directory	command	before	the	complete	directory	is	printed	by	pressing	Ctrl-
Break.	Remember	to	press	Ctrl-PrtSc	as	well,	to	end	the	simultaneous	displaying	and
printing.

If	you	want	to	print	something	without	printing	the	command	that	creates	the	display,	type
the	command,	press	Ctrl-PrtSc,	and	then	press	Enter.	For	example,	when	you	printed	the
directory	in	the	preceding	example,	the	Directory	command	was	the	first	line	printed.	To
avoid	printing	the	command,	type	this:
C:\DOS>dir<Ctrl-PrtSc>

Now	printing	begins	with	the	first	line	of	the	directory;	the	Directory	command	isn't	printed.
Cancel	the	command	by	pressing	Ctrl-Break.	Be	sure	to	press	Ctrl-PrtSc	again	to	stop
printing;	otherwise,	MS-DOS	continues	to	print	everything	it	displays,	even	if	you	go	on	to	an
entirely	different	task.

Shift-PrtSc	Versus	Ctrl-PrtSc

These	two	methods	of	printing	from	the	screen	work	differently	and	have	different	uses.
Shift-PrtSc	prints	everything	on	the	screen	and	stops.	Ctrl-PrtSc,	as	you	just	saw,	alternates
displaying	and	printing,	line	by	line.	If	everything	you	want	appears	on	the	screen,	use	Shift-
PrtSc;	it's	faster.	But	if	you	want	to	print	something	longer	than	one	screenful,	use	Ctrl-
PrtSc.

Ctrl-PrtSc	is	better	for	printing	long	displays	because	you	press	it	once	to	tell	MS-DOS	to
start	simultaneous	displaying	and	printing,	enter	a	command—such	as	the	Directory
command—to	create	the	display,	and	then	press	Ctrl-PrtSc	again	when	you	want	to	stop
printing.	If	you	use	Shift-PrtSc	for	printing	displays	more	than	one	screen	long,	you	have	to
display	the	first	screen,	print	it,	display	the	second	screen,	print	it,	and	so	forth	until
everything	you	want	has	been	printed.

Repeating	Commands	with	Doskey

Versions	5	and	later	of	MS-DOS	include	the	Doskey	command	you	learned	about	in	Chapter
2.	Doskey	makes	your	work	with	MS-DOS	easier	and	more	efficient	by	letting	you	repeat
MS-DOS	commands	you've	used	recently	without	retyping	them.

To	help	you	minimize	keystrokes	(and	the	chance	of	mistyping	a	command),	Doskey	lets	you
use	several	special	keys,	among	them	the	arrow	and	function	keys	shown	in	Figures	3-6
and	3-7	on	the	next	page.

	
Figure	3-6:	Keys	on	the	early	PC-compatible	keyboards	that	have	special	meaning	to
Doskey.

	
Figure	3-7:	Keys	on	the	enhanced	PC-compatible	keyboard	that	have	special	meaning	to
Doskey.

Note

If	you're	using	MS-DOS	version	5	or	later	from	floppy	disks	and	saw	the	message
Bad	command	or	file	name	the	last	time	you	tried	to	start	Doskey,	you	need	to
insert	the	floppy	disk	that	contains	the	DOSKEY	file.	Now	that	you're	familiar	with
the	Directory	command,	check	your	Support	disk	(and	others,	if	necessary)	for	this

file	by	typing	dir	or	dir	/p.	When	you	see	DOSKEY	in	the	directory	list,	leave	the
floppy	disk	containing	the	file	in	drive	A	and	retype	the	doskey	command.

The	following	examples	show	you	some	of	Doskey's	basic	features.	Recall	that	you	start
Doskey	simply	by	typing	its	name	and	pressing	Enter:
C:\DOS>doskey

MS-DOS	responds:
DOSKey	installed.

As	you've	seen,	Doskey	lets	you	repeat	your	last	MS-DOS	command	in	a	simple	two-step
procedure:	Press	Up	arrow	to	redisplay	the	command,	and	then	press	Enter	to	carry	it	out.
But	you	won't	always	want	to	repeat	the	last	command	you	typed.	You	might	want	to	repeat
one	you	used	several	commands	ago.	Doskey	lets	you	do	that,	too.	To	try	it,	first	type	the
following	MS-DOS	commands	(just	press	Enter	when	MS-DOS	prompts	for	the	date	and
time):
C:\DOS>date
C:\DOS>time
C:\DOS>ver
C:\DOS>dir
C:\DOS>cls

Now	you've	entered	some	commands	Doskey	can	help	you	find	and	reuse.

Although	you	probably	wouldn't	have	much	trouble	remembering	five	commands,	Doskey
can	help	you	keep	track	of	dozens.	But	when	you've	typed	a	number	of	commands,	you
can't	always	remember	which	ones	you	typed	or	in	what	order.	Once	you've	started
Doskey,	you	can	simply	press	the	F7	function	key	to	see	a	list	of	your	previous	commands,
in	sequence.	Try	it	now.	Press	F7,	and	Doskey	displays	this:
C:\DOS>
1:	date
2:	time
3:	ver
4:	dir
5:	cls
C:\DOS>_

The	commands	are	numbered	and	in	the	same	order	you	typed	them.	Press	the	Up	arrow
key.	Doskey	displays	the	last	command:
C:\DOS>cls_

Press	the	Up	arrow	key	again,	and	Doskey	replaces	cls	with	dir,	the	next-to-last	command.
Whenever	you	press	the	Up	arrow	key,	Doskey	recalls	and	displays	the	previous	command.

Now	try	some	other	keys.	Press	the	Down	arrow	key.	The	display	changes	back	to	this:

C:\DOS>cls_

The	Down	arrow	key	does	the	opposite	of	the	Up	arrow	key:	It	tells	Doskey	to	retrieve	the
next	command	(as	opposed	to	the	previous	command)	in	the	list.

You	can	take	bigger	leaps	through	the	list,	too,	with	the	Page	Up	and	Page	Down	keys.
Press	the	Page	Up	key,	and	the	display	changes	to	this:
C:\DOS>date_

Page	Up	tells	Doskey	to	recall	the	first	command	in	the	current	list.	And,	predictably,	when
you	press	the	Page	Down	key,	the	display	changes	to	this:
C:\DOS>cls_

which	is	the	last	command	in	the	current	list.

You	can	also	request	a	specific	command	by	entering	its	line	number.	Press	the	F9	key.
Doskey	displays	this:
C:\DOS>Line	number:	_

This	time,	request	the	Ver	command,	which	is	number	3	in	the	list.	Type	this:
C:\DOS>Line	number:	3

and	press	Enter,	and	this	appears:
C:\DOS>ver_

Press	Enter.	MS-DOS	carries	out	the	Ver	command	and	displays	the	system	prompt.

Everybody	from	beginners	to	advanced	users	of	MS-DOS	can	find	many	uses	for	Doskey.
These	examples	showed	a	few	quick	ways	to	use	it;	later	chapters	show	you	how	to	use
Doskey	to	tailor	MS-DOS	to	the	way	you	work.

	

javascript:Next(0)
javascript:Next(1)

Restarting	the	System
Suppose	you	find	yourself	in	a	situation	where	your	computer	is	not	responding	as	you	think
it	should,	or	it	complains	about	something	you	don't	know	how	to	handle,	or	you	decide	it
would	be	best	to	scrap	what	you're	doing	and	start	over	from	the	beginning.	You	don't	have
to	turn	the	power	switch	off	and	on	to	restart	your	system;	you	can	do	it	by	pressing	Ctrl-
Alt-Del.

Try	it.	If	you're	using	MS-DOS	from	floppy	disks,	check	that	your	normal	Startup	disk	is	in
drive	A.	If	you	have	a	hard	disk,	be	sure	drive	A	is	open.

Now	hold	down	both	Ctrl	and	Alt	and	press	Del.

The	screen	clears,	the	drive	lights	blink,	the	system	beeps,	and	MS-DOS	is	loaded	just	as	it
was	when	you	turned	the	power	on.	Restarting	with	Ctrl-Alt-Del	takes	less	time,	though,
because	the	computer	doesn't	test	all	its	devices	and	memory	as	it	does	whenever	you
switch	the	power	off	and	on.	If	the	MS-DOS	Shell	appears,	press	F3	to	leave	it.

	

javascript:Next(0)
javascript:Next(1)

A	Short	Diversion
The	system	prompt	is	an	economical	way	for	MS-DOS	to	show	you	the	current	drive	and
directory	and	to	let	you	know	that	you	can	enter	a	command.	But	the	combination	of	the
current	drive	and	directory	and	the	greater-than	sign	(>)	is	only	one	possible	system
prompt.	The	MS-DOS	Prompt	command	lets	you	change	the	system	prompt	to	almost
anything	you	want.

For	example,	you	might	prefer	a	more	courteous	machine.	Type	the	following	and	press
Enter	(<space>	means	press	the	Spacebar):
C:\DOS>prompt	May	I	help	you?<space><Enter>

Now	the	system	prompt	isn't	quite	so	cryptic:
May	I	help	you?	_

Each	time	MS-DOS	returns	to	the	command	level,	it	displays	this	polite	phrase.	Try	it	by
pressing	the	Enter	key	once	or	twice	to	cause	MS-DOS	to	display	the	system	prompt	again.
Although	your	new	prompt	looks	significantly	different	from	C:\>	or	C:\DOS>	(and	actually
conveys	less	information),	the	meaning	is	the	same:	MS-DOS	is	at	the	command	level,
ready	for	you	to	enter	a	command.

To	see	how	much	you	can	cram	into	the	system	prompt,	type	the	following	example	as	a
single	line	(as	before,	<space>	means	press	the	Spacebar).	Although	the	example	is	shown
on	two	separate	lines	and	won't	fit	on	one	line	on	screen	anyway,	don't	press	the	Enter	key
until	you	come	to	<Enter>	at	the	end	of	the	second	line:
May	I	help	you?	prompt	The	time	is<space>t_The	date	is<space>
d_The	current	disk	is<space>n_Your	command:<space><Enter>

Now	the	system	prompt	is	three	lines	of	data	followed	by	a	request	for	a	command:
The	time	is	16:26:03.54
The	date	is	Thu	01-05-1995
The	current	disk	is	C
Your	command:	_

You	would	probably	quickly	tire	of	all	this,	but	the	exercise	shows	how	much	flexibility	MS-
DOS	gives	you.	You	don't	have	to	take	advantage	of	it	all,	but	the	possibilities	are	there	if
you	want	them.

To	return	the	system	prompt	to	a	more	normal	form,	simply	type	the	following	Prompt
command:
The	time	is	16:26:03.54
The	date	is	Thu	01-05-1995
The	current	disk	is	C
Your	command:	prompt	pg

Your	system	prompt	changes	to	the	familiar	C:\>	or	C:\DOS>.

	

javascript:Next(0)
javascript:Next(1)

Chapter	Summary
This	chapter	has	informed	you	of	the	following:

Each	disk	has	a	directory	that	lists	the	name,	extension,	and	size	of	each	file,	and
the	date	and	time	the	file	was	created	or	last	changed.

You	can	see	the	directory	by	typing	dir	and	pressing	Enter.

The	Escape	key	cancels	a	line	you	have	typed.

Pause	or	Ctrl-Num	Lock	freezes	the	display.	Ctrl-S	has	the	same	effect.

Ctrl-Break	cancels	a	command.	Ctrl-C	has	the	same	effect.

Ctrl-PrtSc	turns	simultaneous	displaying	and	printing	on	and	off.	Ctrl-P	has	the	same
effect.

Ctrl-Alt-Del	restarts	MS-DOS.

The	Doskey	command	helps	you	display,	choose	from,	and	repeat	commands
you've	already	used.

Now	that	you're	more	familiar	with	the	keyboard,	the	next	chapter	gives	you	a	closer	look	at
floppy	disks	and	files.

	

javascript:Next(0)
javascript:Next(1)

Chapter	4:	A	Look	at	Files	and	Floppy	Disks
The	computer's	memory	is	temporary	storage;	it	is	cleared	each	time	you	turn	off	the
computer.	The	only	way	you	can	save	data	permanently	is	to	store	it	in	a	file	on	a	disk.
When	MS-DOS	needs	data	that	is	stored	in	a	file,	it	reads	the	data	from	the	disk	into
memory.	If	you	change	the	data	and	want	to	keep	the	changed	version,	you	must	store	the
revised	version	on	disk	before	turning	off	the	system.

Types	of	Files
In	general,	a	file	contains	either	a	program	or	data.	A	program	is	a	set	of	instructions	for	the
computer.	Data	is	the	text	and	numbers,	such	as	a	project	proposal,	a	table	of	tax	rates,	or
a	list	of	customers,	that	the	program	needs	to	do	your	work.

Two	types	of	files	are	important	to	your	work:	text	files	and	command	files.	They	are	quite
different,	so	it's	important	to	look	more	closely	at	the	kind	of	information	these	files	contain
and	at	how	the	files	are	used.

Text	Files

Text	files	are	data	files	that	contain	characters	you	can	read	(everyday	letters,	numbers,
and	symbols).	Word	processing	programs	store	their	documents	in	text	files,	as	does	the
MS-DOS	Editor.	Many	files	you	use	in	your	work	with	the	computer—and	all	the	files	that
you	will	create	and	use	in	this	book—are	text	files.

The	definition	of	a	text	file	may	seem	self-evident	at	first,	but	it	actually	introduces	you	to	an
important	characteristic	of	computer	information	storage.	Your	computer	keeps	information
in	two	very	different	forms:	One	is	text,	the	characters	contained	in	text	files;	the	other	is
machine-readable	code,	which	looks	meaningless	to	most	people	but	is	quite	meaningful	to
computers.

Command	Files

Command	files	contain	the	instructions	MS-DOS	needs	to	carry	out	commands.	MS-DOS
command	files	can	be	programs,	such	as	DISKCOPY.COM,	or,	as	you	will	see	in	Chapter
14,	"Creating	Your	Own	Commands,"	they	can	be	a	series	of	commands	that	you	put
together	to	perform	a	specific	task	and	store	in	a	file.

Not	all	MS-DOS	commands	are	stored	in	separate	command	files,	however.	Some
commands,	such	as	the	Directory	command,	are	built	into	the	main	body	of	MS-DOS.	When
you	load	MS-DOS	into	memory,	you	load	these	commands	with	it.	When	you	want	to	use
these	commands,	MS-DOS	has	them	on	tap	for	immediate	use—it	does	not	need	to	look	up
a	separate	command	file	to	carry	them	out.

These	built-in	commands	are	called	permanent,	or	internal,	commands.	In	contrast,	the
commands	that	are	kept	in	command	files	until	they	are	requested	by	you	are	called
temporary,	or	external,	commands.	When	you	use	a	permanent	command,	you	simply
request	the	command,	and	MS-DOS	carries	it	out.	When	you	use	a	temporary	command,
MS-DOS	must	load	the	command	file	from	disk	into	memory	before	it	can	carry	out	the
command.

An	application	program,	such	as	a	word	processor,	is	also	stored	in	a	command	file;	it
stores	your	work,	such	as	documents,	in	data	files.

	

javascript:Next(0)
javascript:Next(1)

How	Files	Are	Named
No	matter	the	type	of	file,	each	file	must	have	a	file	name.	Recall	that	a	file	name	can	be	up
to	eight	characters	long.	You	can	use	almost	any	character	on	the	keyboard	when	you	name
your	files,	but	it's	a	good	idea	to	give	your	files	names,	such	as	BUDGET	or	SALESRPT,
that	describe	their	contents.

To	identify	a	file	more	completely,	a	three-character	suffix	called	the	file	extension	can	be
added	to	the	file	name;	this	suffix	is	separated	from	the	file	name	by	a	period.	So	that	you
and	MS-DOS	can	tell	your	files	apart,	each	file	on	a	disk	must	have	either	a	different	name
or	a	different	extension;	REPORT.JAN	and	REPORT.FEB,	for	example,	are	different	files	to
MS-DOS,	even	though	their	file	names	are	the	same.

Specifying	the	Drive

When	you	name	a	file	in	a	command,	MS-DOS	needs	to	know	which	drive	contains	the	disk
with	the	file	on	it.	If	you	don't	specify	a	drive,	MS-DOS	looks	on	the	disk	in	your	current
drive	(the	drive	letter	shown	in	the	system	prompt).	If	the	disk	containing	the	file	is	not	in	the
current	drive,	you	can	precede	the	file	name	with	the	letter	of	the	drive	and	a	colon.	For
example,	if	you	specify	the	file	as	b:report.doc,	MS-DOS	looks	for	it	on	the	disk	in	drive	B.

	

javascript:Next(0)
javascript:Next(1)

Preparing	for	the	Examples
The	following	pages	show	a	number	of	examples	to	help	you	become	more	comfortable	with
files	and	floppy	disks.	With	MS-DOS,	as	with	most	other	computer	programs,	doing	is	often
the	easiest	and	most	effective	way	of	learning.

If	you	have	a	hard	disk,	make	sure	the	latch	on	drive	A	is	open,	turn	on	or	restart	the
computer,	and	go	through	the	startup	routine	until	you	see	the	system	prompt	(C:\>	or
C:\DOS>).	If	the	MS-DOS	Shell	starts	automatically,	startup	instructions	from	here	on
assume	that	you	press	F3	to	leave	the	Shell.	You'll	be	working	with	files	in	the	DOS
subdirectory,	so	change	to	it	if	necessary	by	typing	this:
C:\>cd	\dos

Go	on	to	the	next	heading.

If	your	system	doesn't	have	a	hard	disk,	start	or	restart	your	computer	and	go	through	the
startup	routine	until	you	see	the	A:\>	prompt.	The	examples	use	several	external	MS-DOS
commands,	beginning	with	DISKCOPYCOM.	Use	the	Directory	command	to	check	your
MS-DOS	floppy	disks	for	this	file,	and	start	with	the	floppy	disk	containing	DISKCOPY.COM
in	drive	A.	Use	the	Directory	command	whenever	MS-DOS	responds	Bad	command	or	file
name	because	it	cannot	find	the	command	file	it	needs	for	a	particular	example.

Don't	Worry	About	Memorizing

You'll	use	several	commands	in	this	chapter,	but	you	needn't	remember	exactly	how	to	use
each	one;	all	the	commands	are	described	in	more	detail	in	the	remaining	chapters	of	the
book.	The	purpose	of	this	chapter	is	to	introduce	you	to	files	and	floppy	disks.

	

javascript:Next(0)
javascript:Next(1)

Qualifying	a	Command
Up	to	now,	most	commands	you	have	entered	have	consisted	of	a	single	word	or
abbreviation,	such	as	time	or	dir.	Many	commands,	however,	let	you	add	one	or	more
qualifiers	to	make	the	action	more	specific.	These	qualifiers	are	called	parameters.

Some	commands	require	parameters;	others	allow	you	to	add	parameters	if	you	want.	The
Directory	command,	for	example,	does	not	require	parameters,	but	it	lets	you	tailor	a
command	with	specifications	such	as	the	name	of	a	particular	file	you	want	to	see.	You'll
use	some	parameters	in	the	following	examples;	descriptions	of	commands	in	later	chapters
show	the	commands'	parameters,	both	required	and	optional.

	

javascript:Next(0)
javascript:Next(1)

Displaying	Specific	Directory	Entries
In	the	previous	chapter	you	used	the	Directory	command	to	display	the	directory	entries	of
the	files	in	your	DOS	subdirectory	or	on	your	startup	disk.	You	can	display	the	directory
entry	of	a	single	file	or	the	directory	entries	of	a	set	of	files	by	adding	a	parameter	to	the
Directory	command.

Displaying	the	Directory	Entry	of	a	Single	File

To	display	the	directory	entry	of	a	specific	file,	you	simply	type	the	file	name	(and	its
extension,	if	there	is	one)	after	the	command	name.	For	example,	the	command	to	copy	the
contents	of	one	floppy	disk	to	another	is	called	Diskcopy.	Its	command	file	is
DISKCOPY.COM.	To	display	the	directory	entry	for	only	DISKCOPYCOM,	type	the
following	command.	(If	you're	not	using	a	hard	disk,	the	floppy	disk	with	DISKCOPY.COM
should	be	in	drive	A;	remember	that	your	system	prompt	is	A:\>,	not	C:\DOS>.)
C:\DOS>dir		diskcopy.com

MS-DOS	displays	only	the	directory	entry	of	the	file	you	specified	(don't	worry	if	you	see	a
different	size,	date,	or	time):
Volume	in	drive	C	is	HARD	DISK
Volume	Serial	Number	is	1608-5A30
Directory	of	C:\DOS
DISKCOPY	COM						11879	02-01-93		12:00a
									1	file(s)						11879	bytes
																					36333568	bytes	free
C:\DOS>

If	the	file	you	name	isn't	on	the	disk,	or	if	you	don't	type	the	file	name	exactly	as	it	is	stored,
MS-DOS	responds	File	not	found.

Displaying	the	Directory	Entries	of	a	Set	of	Files

What	if	you	remember	most	of	a	file	name,	or	the	file	name	but	not	the	extension?	MS-DOS
helps	you	out	by	giving	you	two	wildcard	characters,	*	and	?,	that	you	can	substitute	for
actual	characters	in	a	file	name.	Like	wild	cards	in	a	poker	game,	the	wildcard	characters
can	represent	any	other	character.	They	differ	only	in	that	?	can	substitute	for	one
character,	whereas	*	can	substitute	for	more	than	one	character.

Suppose	you	remember	only	that	a	file's	name	begins	with	the	letter	F.	It	takes	only	a
moment	to	check	all	the	files	that	begin	with	F.

Use	the	MS-DOS	directory	as	an	example.	Type	the	following	command:
C:\DOS>dir	f*

MS-DOS	displays	the	directory	entries	of	all	file	names	that	begin	with	F:

Volume	in	drive	C	is	HARD	DISK
Volume	Serial	Number	is	1608-5A30
Directory	of	C:\DOS

FORMAT				COM				33087	02-01-93			12:00a
FDISK					EXE				57224	02-01-93			12:00a
FASTOPEN	EXE					12050	02-01-93			12:00a
FC								EXE				18650	02-01-93			12:00a
FIND						EXE					6770	02-01-93			12:00a
									5	file(s)				127781	bytes
																				36333568	bytes	free

C:\DOS>

(This	listing	shows	the	names	of	all	the	MS-DOS	files	that	begin	with	F.	If	you're	using	MS-
DOS	from	floppy	disks,	your	list	might	differ,	but	you	should	see	FORMAT.COM	or
FORMAT.EXE.)

Wildcard	characters	can	simplify	the	task	of	keeping	track	of	your	files.	Chapter	5,
"Managing	Your	Files,"	includes	several	examples	of	using	wildcard	characters.	Now	it's
time	to	stop	practicing	and	to	create	some	files	of	your	own.

	

javascript:Next(0)
javascript:Next(1)

Preparing	a	Floppy	Disk	for	Use
Before	MS-DOS	can	store	a	file	on	a	new	floppy	disk,	it	must	prepare	the	floppy	disk	for
use.	This	preparation,	in	which	MS-DOS	writes	certain	information	for	its	own	use	on	the
floppy	disk,	is	called	formatting.	You	tell	MS-DOS	to	do	this	formatting	with	the	Format
command.	You'll	need	two	formatted	floppy	disks	for	the	examples	in	this	book.	Now	is	a
good	time	to	format	them,	so	get	out	two	blank	floppy	disks	and	two	blank	labels	before
proceeding.	If	you	have	bought	floppy	disks	that	have	been	formatted	already,	there's	really
no	need	to	format	them	again.	But	go	ahead	and	practice	formatting	the	floppy	disks.	You'll
most	likely	have	to	format	one	sometime.

Type	the	following:
C:\DOS>format	b:

This	command	tells	MS-DOS	to	format	the	floppy	disk	in	drive	B.

Formatting	a	floppy	disk	effectively	deletes	any	files	that	may	be	stored	on	it,	so	MS-DOS
gives	you	a	chance	to	make	sure	you	haven't	put	the	wrong	floppy	disk	in	the	specified	drive
by	displaying	a	message	and	then	waiting	for	you	to	type	something:
Insert	new	diskette	for	drive	B:
and	press	ENTER	when	ready..._

If	you	discover	that	you	put	in	the	wrong	floppy	disk,	no	problem:	Just	take	out	the	wrong
one	and	put	in	the	right	one	before	you	press	the	Enter	key.

If	you	can't	find	a	floppy	disk	to	format,	and	you	want	to	cancel	the	command,	no	problem
again:	Don't	turn	the	system	off;	just	press	Ctrl-Break.

But	you	do	want	to	format	the	floppy	disk	now.	If	you	have	one	floppy	disk	drive,	place	a
blank	floppy	disk	in	drive	A	and	close	the	drive	latch	if	necessary.	If	you	have	two	floppy	disk
drives,	place	a	blank	floppy	disk	in	drive	B	and	then	close	the	latch.

Press	Enter.	If	you	have	version	5	or	later,	MS-DOS	begins	by	displaying	one	or	more
messages	telling	you	it	is	checking	the	disk	to	see	whether	it	was	previously	formatted.
After	these	steps,	MS-DOS	displays	a	constantly	changing	message	that	shows	you	the
progress	of	formatting	the	disk:
Checking	existing	disk	format.
Saving	UNFORMAT	information.
Verifying	1.44M

Formatting	1.44M
			8	percent	completed.

Version	4	of	MS-DOS	tells	you	x	percent	of	disk	formatted.	In	earlier	versions,	the	message
might	look	like	this:

Head:			0	Cylinder:				1

or	it	might	simply	read	Formatting....	In	any	case,	the	light	on	the	drive	goes	on,	and	MS-
DOS	begins	writing	on	the	floppy	disk.	When	MS-DOS	is	finished,	it	tells	you	Format
complete.	If	you	have	version	4	or	later,	it	then	displays	the	message:
Volume	label	(11	characters,	ENTER	for	none)?	_

A	volume	label	is	a	name	you	give	a	formatted	disk	to	help	identify	it	and	the	files	it	contains.
The	name	can	be	up	to	11	characters	long,	including	blanks,	but	cannot	include	certain
characters	MS-DOS	reserves	for	special	uses—characters	such	as	a	period	(used	between
a	file	name	and	an	extension),	an	asterisk	or	a	question	mark	(used	as	wildcard	characters),
or	a	forward	slash	(used	when	typing	command	parameters).

You	don't	have	to	assign	a	volume	label	to	a	disk,	but	because	MS-DOS	displays	the	volume
label	at	the	beginning	of	any	directory	listing	you	request,	the	few	seconds	you	spend
thinking	up	and	typing	a	volume	label	when	you	format	a	floppy	disk	can,	in	the	long	run,
save	you	time	by	helping	to	identify	what	the	disk	contains.	(If	you	don't	have	version	4	or
later,	you	can	assign	a	volume	label	after	formatting	with	the	/V	parameter	of	the	Format
command;	you'll	find	out	about	this	in	Chapter	6,	"Managing	Your	Floppy	Disks.")

If	MS-DOS	is	requesting	a	volume	label,	assign	one	to	the	disk	you	just	formatted.	Type	a
simple	but	descriptive	name,	such	as	this:
Volume	label	(11	characters,	ENTER	for	none)?	examples	1

and	press	Enter.

MS-DOS	then	displays	some	information	about	the	floppy	disk,	followed	by	a	final	message:
1,457,664	bytes	total	disk	space
				1,457,664	bytes	available	on	disk

										512	bytes	in	each	allocation	unit
								2,847	allocation	units	available	on	disk

Volume	Serial	Number	is	1A2C-13F5

Format	another	(Y/N)?_

The	numbers	shown	are	for	a	1.44-MB	floppy	disk.	Depending	on	the	type	of	floppy	disk
drives	you	have	and	the	version	of	MS-DOS	you're	using,	the	total	disk	space	in	your	report
might	differ—for	example,	1,213,952	or	730,112.

The	messages	about	allocation	units	and	the	volume	serial	number	are	provided	by	MS-
DOS	beginning	with	version	4.	Allocation	units	are	groups	of	bytes	used	by	MS-DOS	in
storing	information;	the	volume	serial	number	is	assigned	as	part	of	the	formatting
procedure.	Neither	is	likely	to	be	significant	in	your	day-to-day	use	of	MS-DOS.

The	final	message,	Format	another	(Y/N)?,	means	that	MS-DOS	is	now	waiting	for	you	to
say	whether	you	want	to	format	another	floppy	disk.	Type	y	and	press	Enter.	The	message
asking	you	to	put	the	floppy	disk	in	drive	B	and	press	Enter	is	repeated,	so	go	through	the
same	process	to	format	the	second	floppy	disk;	name	it	examples	2.	When	MS-DOS
finishes,	it	asks	you	again	whether	you	want	to	format	another.

Now	type	n	and	press	Enter.	MS-DOS	displays	the	system	prompt	(C:\DOS>),	telling	you
that	the	Format	command	is	complete	and	that	MS-DOS	is	waiting	for	you	to	type	another
command.

You	now	have	two	formatted	floppy	disks.	It's	time	to	put	one	of	them	to	use	by	creating	a
file;	if	you	removed	the	floppy	disk	you	just	formatted,	put	it	in	your	floppy	disk	drive	(drive	B
if	you	have	two	floppy	disk	drives).

	

javascript:Next(0)
javascript:Next(1)

Creating	a	Text	File
An	easy	way	to	create	a	text	file	is	by	using	the	MS-DOS	Copy	command.	As	you	might
guess	from	its	name,	the	Copy	command	can	be	used	to	make	a	copy	of	a	file.	It	can	also
be	used	to	copy	characters	from	the	keyboard	into	a	file.

MS-DOS	refers	to	the	parts	of	your	computer,	such	as	the	keyboard,	display,	and	printer,
as	devices.	To	MS-DOS,	devices,	like	files,	have	names.	For	example,	the	keyboard	is
known	to	MS-DOS	as	CON	(for	CONsole).

You	are	going	to	create	a	file	by	telling	MS-DOS	to	copy	what	you	type	from	the	keyboard
onto	the	blank	floppy	disk	in	drive	B.

To	create	a	file	named	NOTE.DOC	on	the	floppy	disk	in	drive	B,	type	the	following	example.
End	each	line	by	pressing	Enter;	where	you	see	a	blank	line,	press	Enter	to	tell	MS-DOS	to
insert	an	extra	line:
C:\DOS>copy	con	b:note.doc
January	5,	1995

Dear	Fred,
Just	a	note	to	remind	you
that	our	meeting	is	at	9.

Jack

That's	the	end	of	the	file.	To	tell	MS-DOS	that	it's	the	end	of	the	file,	press	Ctrl-Z	(hold	down
the	Control	key	and	press	Z),	then	press	Enter:
<Ctrl-Z><Enter>

When	you	press	Ctrl-Z,	MS-DOS	displays	^Z	(the	 ,̂	remember,	represents	the	Control	key).
After	you	press	Enter,	MS-DOS	acknowledges	that	it	copied	a	file:
1	file(s)	copied

C:\DOS>_

To	verify	that	the	file	is	there,	display	the	directory	of	the	floppy	disk	in	drive	B:
C:\DOS>dir	b:

Sure	enough,	NOTE.DOC	is	on	the	floppy	disk:
Volume	in	drive	B	is	EXAMPLES	2
	Volume	Serial	Number	is	1839-10EE
	Directory	of	B:\

NOTE					DOC								94	01-05-95			2:03p

								1	file(s)									94	bytes
																			1,457,152	bytes	free

C:\DOS>_

(This	directory	listing	was	generated	with	MS-DOS	version	6.2,	which	sets	off	values
greater	than	999	with	thousands	separators,	when	the	data	comes	from	the	Dir,	Mem,
Chkdsk,	or	Format	command).

This	method	of	creating	a	text	file	is	quick	and	convenient	and	is	used	in	examples
throughout	the	book.

Displaying	a	Text	File

Because	you	can	read	the	characters	in	text	files,	you'll	often	want	to	display	a	text	file	on
the	screen.	It's	even	easier	to	display	one	than	it	is	to	create	it.	Just	use	the	MS-DOS	Type
command.	To	display	your	file,	type	the	following:
C:\DOS>type	b:note.doc

MS-DOS	displays	each	line	and	returns	to	the	command	level:
January	5,	1995

Dear	Fred,
Just	a	note	to		remind	you
that	our	meeting	is	at	9.

Jack

C:\DOS>_

This	is	the	quickest	way	to	see	what's	in	a	file;	you'll	probably	use	the	Type	command	often.
But	displaying	a	file	isn't	always	helpful	because	not	all	files	are	text	files;	they	don't	all
contain	readable	characters.	See	for	yourself.	(If	you're	using	MS-DOS	from	floppy	disks,
place	the	floppy	disk	with	MORE.COM	in	drive	A.)	Type	this:
C:\DOS>type	more.com

Yes,	the	display	is	correct.	It's	hard	to	tell	from	that	jumble	what	is	in	the	file	because	the	file
contains	a	program	stored	in	machine	code,	not	text.	Don't	worry	about	the	beeps	you	hear.

Printing	a	Text	File

One	of	the	main	reasons	you	write	documents,	of	course,	is	to	have	a	printed	copy.	You	can
print	your	file	by	copying	it	to	the	printer.	You've	already	copied	from	the	keyboard	to	a	disk.
Now,	copy	from	the	disk	to	the	printer.	The	printer	is	known	to	MS-DOS	as	PRN.	Make

certain	the	printer	is	turned	on,	and	type	the	following:
C:\DOS>copy	b:note.doc	prn

The	file	is	printed.	When	you	print	a	file,	you'll	probably	want	to	position	the	paper	by	hand
before	you	enter	the	command	so	that	the	printing	will	begin	where	you	want	it	to	on	the
page.

There's	an	easier	way,	however,	to	print	a	file:	the	Print	command.

Note

If	you're	using	MS-DOS	from	floppy	disks,	you	need	the	floppy	disk	containing	the
file	PRINT.COM.	Remember,	if	MS-DOS	cannot	find	a	file,	it	displays	the	message
Bad	command	or	file	name	and	waits	for	you	to	try	again.	When	necessary,
remember	to	check	your	MS-DOS	disks	for	appropriate	command	files.	Examples
from	here	on	assume	that	MS-DOS	can	find	the	files	it	needs	to	carry	out	your
commands.

To	print	your	file	with	the	Print	command,	type	the	following:
C:\DOS>print	b:note.doc

If	MS-DOS	responds	this	way,
Name	of	list	device	⌊PRN⌋:	_

press	the	Enter	key.	MS-DOS	displays	one	or	both	of	the	following	messages	and	prints	the
file	you	specified:
Resident	part	of	PRINT	installed

		B:\NOTE.DOC	is	currently	being	printed

C:\DOS>_

These	messages	are	explained	in	more	detail	in	Chapter	5,	"Managing	Your	Files."

The	Print	command	makes	most	printers	advance	to	the	next	page	after	printing.	Although
this	file	is	too	short	to	show	it,	you	can	continue	to	use	the	system	to	do	other	work	while
the	Print	command	is	printing	a	file.

Copying	a	Text	File

The	Copy	command	is	one	of	the	more	versatile	MS-DOS	commands.	You	have	already
used	it	to	create	and	print	a	text	file.	The	Copy	command	also	duplicates	files.

To	copy	the	file	named	NOTE.DOC	into	another	file	named	LETTER.DOC,	type	the
following:
C:\DOS>copy	b:note.doc	b:letter.doc

When	you	press	Enter,	MS-DOS	copies	the	file;	then	it	acknowledges	that	it	did	so:

1	file(s)	copied

C:\DOS>_

Display	the	directory	of	the	floppy	disk	in	drive	B	again	to	verify	the	copy:
C:\DOS>dir	b:

Now	you	have	two	text	files:
Volume	in	drive	B	is	EXAMPLES	2
	Volume	Serial	Number	is	1839-10EE
	Directory	of	B:\

NOTE					DOC									94	01-05-95		2:03p
LETTER			DOC									94	01-05-95		2:03p
								2	file(s)								188	bytes
																					1,456,640	bytes	free

C:\DOS>_

If	you	wanted,	you	could	make	changes	to	one	file	and	continue	to	have	a	copy	of	the
original	version	on	disk.	You'll	find	the	Copy	command	quite	useful	when	you	need	several
files	that	differ	only	slightly	or	when	you	have	several	small	files	that	can	be	combined	in
different	ways	to	create	other	files:	often-used	paragraphs,	for	example,	that	can	be
recombined	in	different	letters,	contracts,	or	other	documents.

Deleting	a	Text	File

Just	as	you	get	rid	of	paper	files,	you	can	get	rid	of	disk	files.	To	delete	NOTE.DOC	from
the	floppy	disk	in	drive	B,	type	this:
C:\DOS>del	b:note.doc

C:\DOS>_

Now	check	the	directory	one	more	time	as	it	appears	at	the	top	of	the	next	page:
C:\DOS>dir	b:

	Volume	in	drive	B	is	EXAMPLES	2
	Volume	Serial	Number	is	1839-10EE
	Directory	of	B:\

LETTER			DOC									94	01-05-95		2:03p
								1	file(s)									94	bytes
																					1,457,152	bytes	free

C:\DOS>_

It's	gone.

	

javascript:Next(0)
javascript:Next(1)

Some	Advanced	Features
Several	commands	and	features	give	you	much	greater	control	over	the	way	MS-DOS	does
its	work.	You	can	do	all	this:

Sort	lines	of	data—for	example,	sort	alphabetically	the	list	of	directory	entries
produced	by	the	Directory	command.

View	a	long	display	one	screenfull	at	a	time,	without	having	to	freeze	the	display	by
pressing	Pause	or	Ctrl-Num	Lock.

Tell	MS-DOS	to	send	the	results,	or	output,	of	a	command	to	the	printer	instead	of
to	the	display,	simply	by	adding	a	few	characters	to	the	command.

Search	lines	of	data	for	a	series	of	characters.

Now	you'll	get	a	glimpse	of	these	features,	described	in	detail	in	later	chapters.

Sorting	Lines	of	Data

You	have	probably	arranged	card	files	or	lists	in	some	sequence,	such	as	alphabetic	or
numeric	order.	The	Sort	command	sorts,	or	arranges,	lines	of	data	such	as	a	list	of	names.
To	see	how	this	works,	sort	the	lines	of	the	text	file	LETTER.DOC.

Type	the	following:
C:\DOS>sort	<	b:letter.doc

The	less-than	symbol	(<)	tells	MS-DOS	to	send	a	copy	of	the	file	LETTER.DOC	to	the	Sort
command,	which	then	displays	the	lines	of	the	file	after	rearranging	(sorting)	them	into
alphabetic	order:
Dear	Fred,
Jack
January	5,	1995
Just	a	note	to	remind	you
that	our	meeting	is	at	9.

C:\DOS>_

Although	you	probably	don't	want	to	sort	the	lines	of	your	letters,	you	can	put	whatever	you
like	in	a	text	file—for	example,	a	list	of	customers	or	employees.	The	Sort	command	is	a
powerful	addition	to	your	kit	of	computer	tools.

Viewing	a	Long	Display	One	Screenful	at	a	Time

When	you	displayed	a	directory	in	Chapter	3,	lines	might	have	scrolled	off	the	top	of	the
screen	because	the	display	was	too	long	to	fit.	You	saw	that	you	can	freeze	the	display	by

pressing	Pause	or	Ctrl-Num	Lock	or	by	using	the	/P	parameter	of	the	Directory	command.
There's	another	way	to	stop	scrolling:	The	More	command	displays	one	screenful,	with	--
More--	at	the	bottom	of	the	screen,	then	waits	for	you	to	press	any	key	to	continue	to	the
next	screenful.	Display	the	current	directory	again,	this	time	using	the	More	command.	Type
the	vertical	bar	by	holding	down	a	Shift	key	and	pressing	the	key	labeled	with	the	|
character:
C:\DOS>dir	œ	more

MS-DOS	displays	the	first	screenful,	but	the	last	lines	aren't	displayed	yet	(notice	the	--
More--	in	the	last	line):
Volume	in	drive	C	is	HARD	DISK
	Volume	Serial	Number	is	1608-5A30
	Directory	of	C:\DOS
.												<DIR>					01-15-94					6:05p
..											<DIR>					01-15-94					6:05p
EGA						SYS						4885	02-01-93				12:00a
FORMAT			COM					33087	02-01-93				12:00a
NLSFUNC		EXE						7052	02-01-93				12:00a
COUNTRY		SYS					17069	02-01-93				12:00a
EGA						CPI					58873	02-01-93				12:00a
HIMEM				SYS					13984	02-01-93				12:00a
KEYB					COM					14986	02-01-93				12:00a
KEYBOARD	SYS					34697	02-01-93				12:00a
ANSI					SYS						9029	02-01-93				12:00a
DEBUG				EXE					20634	02-01-93				12:00a
EXPAND			EXE					16885	02-01-93				12:00a
FDISK				EXE					57224	02-01-93				12:00a
SYS						COM					13440	02-01-93				12:00a
NFORMAT		COM					18560	02-01-93				12:00a
ATTRIB			EXE					15796	02-01-93				12:00a
CHOICE			COM						1733	02-01-93				12:00a
-		More		-

To	see	the	rest	of	the	directory,	press	any	key.	If	MS-DOS	once	again	displays	--More--	at
the	bottom	of	the	screen,	press	Ctrl-Break	to	end	the	command.

The	More	command	displays	long	output	one	screenful	at	a	time,	giving	you	a	chance	to
view	it	all	at	your	convenience.

Note
When	you	use	More	and	certain	other	commands	that	require	MS-DOS	to
manipulate	files,	you	might	see	directory	entries	for	files	with	odd	names,	such	as
ALCJDEAO,	1106002B,	or	%PIPE1.$$$.	These	are	temporary	files	that	MS-DOS
creates	and	then	erases	when	it	no	longer	needs	them.

Sending	Command	Output	to	the	Printer

In	earlier	examples,	you	printed	the	output	of	the	Directory	command	by	using	the	Print
Screen	key.	There's	a	more	direct	way	to	print	the	output	of	a	command:	Simply	follow	the
command	with	a	greater-than	symbol	(>)	and	the	name	of	the	printer,	PRN.	To	print	the
current	directory,	make	sure	the	printer	is	turned	on	and	type	this:
C:\DOS>dir	>	prn

If	you	don't	want	to	wait	for	the	whole	directory	to	be	printed,	cancel	the	printing	by	pressing
Ctrl-Break.	This	same	technique	can	be	used	to	send	the	output	of	a	command	to	some
other	device	or	to	a	file,	by	substituting	the	device	name	or	file	name	for	PRN.

Note If	you're	using	MS-DOS	from	floppy	disks,	try	using	this	command	to	print	a	list	ofthe	command	files	on	each	floppy	disk.	Such	lists	are	useful	for	reference.

Finding	a	Series	of	Characters	in	a	File

How	many	times	have	you	searched	through	a	pile	of	letters	or	notes,	looking	for	a
particular	item	or	reference?	If	you	have	to	look	through	MS-DOS	files	or	the	output	of	MS-
DOS	commands,	the	Find	command	will	do	the	looking	for	you.	For	example,	suppose	you
want	to	see	the	directory	entries	of	all	MS-DOS	files	with	SK	in	their	names.	Try	the
following	(the	quotation	marks	tell	MS-DOS	which	letters—known	technically	as	a	character
string,	or	just	string—to	look	for).

(If	you	don't	have	a	hard	disk,	check	to	see	which	of	your	MS-DOS	floppy	disks	contains
command	files	with	the	letters	SK	in	their	names.)

Type	this	(and	be	sure	to	use	uppercase	characters	when	you	type	"SK"):
C:\DOS>dir	œ	find	"SK"

MS-DOS	displays	only	the	entries	with	SK	in	their	names	(your	list	might	differ):
FDISK				EXE					57224	02-01-93		12:00a
CHKDSK			EXE					16216	02-01-93		12:00a
DISKCOMP	COM					10636	02-01-93		12:00a
DISKCOPY	COM					11879	02-01-93		12:00a
DOSKEY			COM						5883	02-01-93		12:00a

C:\DOS>_

The	Find	command	is	even	more	useful	when	you	search	for	a	series	of	characters	in	a	text
file.	If	a	file	contains	a	list	of	names	and	telephone	numbers,	for	example,	you	can	quickly
display	one	particular	entry	or	all	entries	that	contain	a	particular	series	of	characters	(such
as	an	area	code).	You	can	even	display	all	entries	that	don't	contain	a	particular	series	of
characters.	Chapter	13,	"Taking	Control	of	Your	System,"	shows	you	how	to	create	such	an
automated	index	of	names	and	telephone	numbers	with	nothing	but	MS-DOS	commands.

Combining	Features

These	advanced	features	of	MS-DOS	can	also	be	used	together	in	a	single	command,
giving	you	even	more	flexibility	in	controlling	MS-DOS.	Combining	these	features	makes	it
possible	to	do	a	great	deal	with	just	one	command.	For	example,	suppose	you	want	to	print
the	directory	entries	of	all	files	in	the	current	directory	whose	names	include	the	letter	U;
further,	you	want	the	entries	sorted	alphabetically.	Type	the	following:
C:\DOS>dir	œ	find	"U"	œ	sort	>	prn

The	whole	command	translates	easily	into	this:	Look	at	the	directory,	find	all	files	with	the
letter	U	in	their	names,	sort	those	files	alphabetically,	and	send	the	results	to	the	printer.
MS-DOS	does	as	it	is	told,	as	you	see	here:
COUNTRY		SYS					17069	02-01-93		12:00a
DEBUG				EXE					20634	02-01-93		12:00a
NLSFUNC		EXE						7052	02-01-93		12:00a
SUBST				EXE					18478	02-01-93		12:00a
UNDELETE	EXE					25916	02-01-93		12:00a
UNFORMAT	COM					18560	02-01-93		12:00a
VIRULIST	CPS					35520	02-01-93		12:00a
WNUNDEL		EXE				129792	02-01-93		12:00a
WNUNDEL		HLP					32329	02-01-93		12:00a

(Your	list	might	differ,	and	you	might	see	the	name	of	a	temporary	file	whose	size	is	0,	but
the	files	should	still	be	sorted	alphabetically.)

You	may	rarely	search	your	directories	this	carefully,	but	such	combinations	make	MS-DOS
a	powerful	tool	for	handling	text	files.

	

javascript:Next(0)
javascript:Next(1)

Chapter	Summary
This	chapter	concludes	the	portion	of	the	book	designed	to	give	you	a	feel	for	running	MS-
DOS,	including	some	of	its	advanced	features.	The	key	points	to	remember	include	these:

The	computer's	memory	is	cleared	each	time	you	turn	the	system	off.	To	save	your
work	permanently,	you	must	store	it	in	a	file	on	a	disk.

A	text	file	contains	ordinary	characters	you	can	read.

A	command	file	contains	instructions	that	MS-DOS	uses	to	carry	out	a	command.

A	file	name	can	be	up	to	eight	characters	long;	you	can	add	an	extension	of	up	to
three	characters,	separated	from	the	file	name	by	a	period.

Each	file	on	a	disk	must	have	a	different	name	or	a	different	extension.

The	remainder	of	the	book	shows	you	how	to	use	MS-DOS	to	manage	your	files,	disks,	and
devices;	use	the	MS-DOS	text	editors;	and	create	your	own	commands.

	

javascript:Next(0)
javascript:Next(1)

Part	II:	Learning	to	Use	MS-DOS

Chapter	List

Chapter	5:	Managing	Your	Files

Chapter	6:	Managing	Your	Floppy	Disks

Chapter	7:	Managing	Your	Devices

Chapter	8:	A	Tree	of	Files

Chapter	9:	Managing	Your	Hard	Disk

Chapter	10:	Protecting	Your	Disks	and	Files

Chapter	11:	The	MS-DOS	Shell

Chapter	12:	Creating	and	Editing	Files	of	Text

Chapter	13:	Taking	Control	of	Your	System

Chapter	14:	Creating	Your	Own	Commands

Chapter	15:	Creating	Smart	Commands

Chapter	16:	Creating	More	Smart	Commands

Chapter	17:	Tailoring	Your	System

Part	Overview

Part	2	shows	you	how	to	use	MS-DOS	to	manage	your	work	with	the	computer.	The
chapters	in	Part	2	include	extensive	examples	that	use	real-life	situations	to	illustrate	each
MS-DOS	command,	but	the	information	is	organized	so	that	you	can	quickly	find	a	particular
topic	to	refresh	your	memory.

These	chapters	present	many	different	features,	and	much	of	the	material	is	relevant	to	all
versions	of	MS-DOS.	Chapters	5,	6,	and	7	describe	managing	your	files,	floppy	disks,	and
devices.	Chapter	8	explains	a	tree-structured	file	system.	Chapter	9	covers	the	use	of	a
hard	disk	in	detail.	Chapter	10	shows	you	how	to	safeguard	your	disks	and	files	against	loss
or	damage.	Chapter	11	introduces	the	MS-DOS	Shell.	Chapter	12	describes	the	MS-DOS
text	editor,	and	Chapters	13	through	17	show	you	how	to	use	advanced	features.

	

javascript:Next(0)
javascript:Next(1)

Chapter	5:	Managing	Your	Files
The	previous	chapters	defined	a	file	as	a	named	collection	of	related	information	stored	on	a
disk	and	showed	you	several	ways	to	create,	copy,	display,	print,	and	otherwise	work	with
your	computer	files.	This	chapter	describes	the	MS-DOS	filing	system	in	detail,	showing	you
more	about	how	files	are	named	and	how	you	can	use	MS-DOS	to	manage	your	computer
files.

Note

A	few	of	the	examples	in	the	remaining	chapters	of	this	book	may	look	familiar
because	they	repeat	some	of	the	examples	in	Chapters	2,	3,	and	4.	This	repetition
is	intentional	so	that	Chapters	5	through	17	present	a	complete	guide	to	MS-DOS
commands.	You	won't	have	to	refer	back	to	any	of	the	earlier	chapters	for
command	descriptions.

The	MS-DOS	File	Commands
To	be	useful,	a	filing	system—whether	it	contains	disk	files	or	paper	files—must	be	kept
orderly	and	up	to	date.	Using	the	MS-DOS	file	commands,	you	can	manage	your	disk	files
much	as	you	manage	your	paper	files.	This	chapter	covers	the	MS-DOS	commands	you	use
most	often	on	a	day-to-day	basis.	It	shows	you	how	to	do	the	following:

Display	directory	entries	in	different	ways	with	the	Directory	command

Display	a	file	with	the	Type	command

Copy	and	combine	files	with	the	Copy	command

Send	a	copy	of	a	file	to	a	device	with	the	Copy	command

Remove	a	file	from	a	disk	with	the	Delete	command

Change	the	name	of	a	file	with	the	Rename	command

Compare	two	files	with	the	Compare	command

Print	a	file	with	the	Print	command

	

javascript:Next(0)
javascript:Next(1)

File	Names	and	Extensions
As	Chapter	4,	"A	Look	at	Files	and	Floppy	Disks,"	pointed	out,	files	are	named	so	that	you
(and	MS-DOS)	can	tell	them	apart;	each	file	on	a	disk	must	have	a	different	name.	You
know	that	a	file	name	can	be	up	to	eight	characters	long,	made	up	of	any	letters	or
numbers;	you	can	also	use	the	following	symbols:
`	'	~	!	@	#	$	%	 	̂&	();	_	-	{	}	\´

You	can	add	a	suffix—called	an	extension—to	the	file	name	to	describe	its	contents	more
precisely.	The	extension	can	be	up	to	three	characters	long	and	can	include	any	of	the
characters	that	are	valid	for	the	file	name.	It	must	be	separated	from	the	name	by	a	period.
The	extension	distinguishes	one	file	from	another	just	as	the	name	does:	REPORT	and
REPORT.JAN,	for	example,	are	two	different	files,	as	are	REPORT.JAN	and	REPORT.FEB.
Figure	5-1	shows	some	valid	and	invalid	file	names.

These	File	Names	Are	Valid These	Are	Invalid... Because

B 1994BUDGET Name	too	long

94BUDGET BUDGET.1994 Extension	too	long

BUDGET.94 .94 No	file	name

BUDGET.95 SALES	94.DAT Space	not	allowed

BDGT(95) $1,300.45 Comma	not	allowed

Figure	5-1:	Some	valid	and	invalid	file	names.

Try	to	make	file	names	and	extensions	as	descriptive	as	possible.	A	short	name	might	be
easy	to	type,	but	you	can	have	difficulty	remembering	what	the	file	contains	if	you	haven't
used	it	for	a	while.	The	more	descriptive	the	name,	the	more	easily	you	can	identify	the
contents	of	the	file.

Special	Names	and	File	Name	Extensions

Some	names	and	file	name	extensions	have	special	meanings	to	MS-DOS.	As	you'll	see	in
Chapter	7,	"Managing	Your	Devices,"	MS-DOS	refers	to	the	parts	of	your	computer	system
by	certain	reserved	names	known	as	device	names.	The	keyboard	and	screen,	for
example,	are	named	CON,	and	the	system	clock	is	called	CLOCK$.	You	cannot	use	any	of
these	device	names	as	file	names.

Similarly,	certain	file	name	extensions	have	special	meanings	to	MS-DOS.	These	extensions
either	are	created	by	MS-DOS	or	cause	MS-DOS	to	assume	that	the	file	contains	a
particular	type	of	program	or	data.	You	should	avoid	giving	files	any	of	these	extensions.	A
number	of	the	most	important	ones	are	listed	in	Figure	5-2.

Name Meaning	to	MS-DOS

BAS Short	for	Basic.	Contains	a	program	written	in	the	Basic	programming	language.
You	run	the	program	while	using	Basic.

BAT Short	for	Batch.	Identifies	a	text	file	you	create	that	contains	a	set	of	MS-DOS
commands	that	are	run	when	you	type	the	name	of	the	file.

COM Short	for	Command.	Identifies	a	command	file	that	contains	a	program	MS-DOS
runs	when	you	type	the	file	name.

EXE Short	for	Executable.	Like	COM,	identifies	a	command	file	that	contains	a
program	MS-DOS	runs	when	you	type	the	file	name.

HLP Short	for	Help.	Contains	a	file	of	help	text	displayed	by	certain	programs,
including	the	MS-DOS	Shell	and	the	versions	5	and	6	Editor	and	Basic	programs.

OVL Short	for	Overlay.	Identifies	a	command	file	that	contains	part	of	a	large
program.

SYS Short	for	System.	Identifies	a	file	that	can	be	used	only	by	MS-DOS.

Figure	5-2:	Some	special	MS-DOS	file	name	extensions.

Application	programs	also	usually	recognize	special	extensions.	For	example,	Microsoft
Word,	the	Microsoft	word	processor,	uses	DOC	to	identify	a	document,	BAK	to	identify	a
backup	version	of	a	document,	and	STY	to	identify	a	file	that	contains	a	style	sheet	of	print
specifications.	Again,	avoid	using	extensions	that	have	special	meaning	for	your	application
programs;	these	extensions	are	usually	listed	in	the	documentation	that	comes	with	each
program.

Specifying	the	Drives

You	can	tell	MS-DOS	to	look	for	a	file	in	a	specific	drive	by	typing	the	drive	letter	and	a
colon	before	the	file	name.	If	you	specify	a	file	as	a:report,	for	example,	MS-DOS	searches
in	drive	A	for	a	file	named	REPORT;	if	instead	you	specify	the	file	as	report,	MS-DOS	looks
for	the	file	in	the	current	drive.

	

javascript:Next(0)
javascript:Next(1)

Preparing	for	the	Examples
If	your	system	isn't	running,	start	it.	Place	a	blank,	formatted	floppy	disk	in	drive	A.	Then
type	the	following	to	change	the	current	drive	to	A:
C:\>a:

MS-DOS	acknowledges	by	changing	the	system	prompt:
A:\>_

Now	you're	ready	to	create	a	set	of	sample	files	on	this	floppy	disk.	Type	the	following;
where	you	see	^Z,	press	F6	or	hold	down	the	Ctrl	key	and	press	Z,	then	press	Enter:
A:\>copy	con	report.doc
This	is	a	dummy	file.
^Z

MS-DOS	responds:
1	file(s)	copied
A:\>_

Now	that	you've	created	this	file,	you	can	use	it	and	the	MS-DOS	Copy	command	to	create
some	more.	Type	the	following	Copy	commands	(described	in	detail	later	in	this	chapter)	to
create	some	other	sample	files.
A:\>copy	report.doc	report.bak
								1	file(s)	copied
A:\>copy	report.doc	bank.doc
								1	file(s)	copied
A:\>copy	report.doc	budget.jan
								1	file(s)	copied
A:\>copy	report.doc	budget.feb
								1	file(s)	copied
A:\>copy	report.doc	budget.mar
								1	file(s)	copied

Now	check	the	directory.
A:\>dir

It	should	list	six	files:
Volume	in	drive	A	is	EXAMPLES	1
	Volume	Serial	Number	is	1A2C-13F5
	Directory	of	A:\
REPORT			DOC								23	01-05-95			9:16a
REPORT			BAK								23	01-05-95			9:16a
BANK					DOC								23	01-05-95			9:16a

BUDGET			JAN								23	01-05-95			9:16a
BUDGET			FEB								23	01-05-95			9:16a
BUDGET			MAR								23	01-05-95			9:16a
									6	file(s)							138	bytes
																					1454592	bytes	free

Remember,	the	time	and	date	in	your	list	will	be	different,	but	the	file	names	and	sizes	(23
bytes)	should	be	the	same.

	

javascript:Next(0)
javascript:Next(1)

Wildcard	Characters
To	make	it	easier	to	manage	your	disk	files,	most	file	commands	let	you	use	wildcard
characters	to	handle	several	files	at	once.	That	way,	when	you	want	to	do	the	same	thing	to
several	files—change	their	names,	perhaps,	or	erase	them—you	don't	have	to	enter	a
separate	command	for	each	file.	You	can	use	wildcard	characters	to	tell	MS-DOS	you	mean
a	set	of	files	with	similar	names	or	extensions.	Just	as	a	wild	card	in	a	poker	game	can
represent	any	other	card	in	the	deck,	a	wildcard	character	can	represent	any	other
character	in	a	file	name	or	extension.

There	are	two	wildcard	characters,	the	asterisk	(*)	and	the	question	mark	(?).	The	following
examples	use	the	Directory	command	to	illustrate	ways	you	can	use	wildcard	characters	to
specify	groups	of	files.

Using	the	Asterisk	Wildcard	Character:	*

The	asterisk	makes	it	easy	to	carry	out	commands	on	sets	of	files	with	similar	names	or
extensions;	it	can	represent	up	to	all	eight	characters	in	a	file	name	or	up	to	all	three
characters	in	an	extension.	If	you	use	the	asterisk	to	represent	the	entire	name	or	extension,
you	are	specifying	all	file	names	or	all	extensions.

The	following	examples	illustrate	several	ways	to	use	the	asterisk	character	to	find	selected
directory	entries.	You	can	use	the	asterisk	in	the	same	ways	with	other	MS-DOS	commands
as	well.

To	specify	all	files	named	BUDGET,	regardless	of	extension,	type	the	following:
A:\>dir	budget.*

MS-DOS	displays	the	directory	entry	of	each	sample	file	named	BUDGET,	regardless	of	its
extension:
Volume	in	drive	A	is	EXAMPLES	1
	Volume	Serial	Number	is	1A2C-13F5
	Directory	of	A:\

BUDGET			JAN								23	01-05-95			9:16a
BUDGET			FEB								23	01-05-95			9:16a
BUDGET			MAR								23	01-05-95			9:16a
								3	file(s)									69	bytes
																					1454592	bytes	free

To	specify	all	file	names	beginning	with	B,	type	the	following:
A:\>dir	b*

If	you	don't	specify	an	extension,	the	Directory	command	displays	the	entry	for	each	file	that

matches	the	name,	regardless	of	extension.	(It's	the	equivalent	of	specifying	the	extension
as	*.)	There	are	four	such	files:
Volume	in	drive	A	is	EXAMPLES	1
	Volume	Serial	Number	is	1A2C-13F5
	Directory	of	A:\
BANK					DOC								23	01-05-95			9:16a
BUDGET			JAN								23	01-05-95			9:16a
BUDGET			FEB								23	01-05-95			9:16a
BUDGET			MAR								23	01-05-95			9:16a
									4	file(s)								92	bytes
																					1454592	bytes	free

To	specify	all	files	with	the	same	extension,	regardless	of	name,	you	replace	the	name	with
*.	For	example,	to	specify	each	file	with	the	extension	DOC,	type	the	following:
A:\>dir	*.doc

MS-DOS	displays	just	those	entries:
Volume	in	drive	A	is	EXAMPLES	1
	Volume	Serial	Number	is	1A2C-13F5
	Directory	of	A:\

REPORT			DOC								23	01-05-95			9:16a
BANK					DOC								23	01-05-95			9:16a
												2	file(s)									46	bytes
																													1454592	bytes	free

Using	the	Question	Mark	Wildcard	Character:	?

The	question	mark	replaces	only	one	character	in	a	file	name	or	extension.	You'll	probably
use	the	asterisk	more	frequently,	using	the	question	mark	only	when	one	or	two	characters
vary	in	the	middle	of	a	name	or	extension.

To	see	how	the	question	mark	works,	type	the	following:
A:\>dir	budget.?a?

This	command	specifies	all	files	named	BUDGET	that	have	extensions	beginning	with	any
character,	followed	by	the	letter	a,	and	ending	with	any	character.	MS-DOS	displays	two
entries:
Volume	in	drive	A	is	EXAMPLES	1
	Volume	Serial	Number	is	1A2C-13F5
	Directory	of	A:\

BUDGET			JAN								23	01-05-95			9:16a
BUDGET		MAR									23	01-05-95			9:16a

								2	file(s)									46	bytes
																					1454592	bytes	free

A	Warning	About	Wildcard	Characters

Be	careful	using	wildcard	characters	with	commands	that	can	change	files.	Suppose	you
spent	several	days	entering	a	year's	worth	of	budget	data	into	12	files	named
BUDGET.JAN,	BUDGET.FEB,	BUDGET.MAR,	and	so	on.	On	the	same	disk	you	also	have
three	files	that	you	don't	need,	named	BUDGET.OLD,	BUDGET.TST,	and	BUDGET.BAD.
The	disk	is	getting	full,	so	you	decide	to	delete	the	three	unneeded	files.	It's	2	A.M.,	you're
tired,	and	you're	in	a	hurry,	so	you	quickly	type	del	budget.*	and	press	Enter.	You	have	told
MS-DOS	to	do	more	than	you	wanted.

You	may	realize	immediately	what	you	have	done,	or	it	may	not	dawn	on	you	until	you	try	to
use	one	of	the	12	good	budget	files	and	MS-DOS	replies	File	not	found.	You	display	the
directory;	there	isn't	a	single	file	named	BUDGET,	because	you	told	MS-DOS	to	delete	them
all.

With	commands	that	can	change	or	delete	a	file,	use	wildcard	characters	with	extreme
caution.

This	warning	applies	even	if	you	have	version	5	or	later	of	MS-DOS,	which	includes	a
command	named	Undelete	that	can	help	you	recover	deleted	files.	Bear	this	in	mind:
Undelete	cannot	always	recover	files	completely.	As	you'll	see	later	in	this	book,	Undelete
can	be	valuable.	But	don't	let	it	lull	you	into	a	false	sense	of	security.

	

javascript:Next(0)
javascript:Next(1)

Help	When	You	Need	It

Note
If	you	don't	have	version	5	or	later	of	MS-DOS,	your	version	of	MS-DOS	doesn't
include	the	help	feature	described	here.	Skip	to	the	section	called	"Displaying
Directory	Entries."

As	you	work	with	MS-DOS,	you'll	find	that	some	commands	become	so	familiar	you	type
them	without	thinking.	Others,	which	you	need	less	often,	will	linger	in	your	mind,	but	you
may	have	to	refresh	your	memory	to	use	them	correctly.	If	you	have	version	5	or	later	of
MS-DOS,	you	have	a	feature	called	online	help	that	you	can	call	on	whenever	you	want
help	with	a	command.	Online	help	isn't	intended	to	teach	you	how	to	use	MS-DOS,	but	it	is
a	handy	guide	that	can	remind	you	of	the	form	of	a	command	you	haven't	used	in	a	while.

To	see	a	list	of	the	commands	for	which	you	can	request	help,	type	help	and	press	Enter:
A:\>help

Version	6	of	MS-DOS	responds	by	displaying	three	columns	of	topics,	each	topic	enclosed
in	angle	brackets,	as	you	can	see	at	the	top	of	the	next	page.

You	can	scroll	through	this	list	one	row	at	a	time	with	the	Up	and	Down	arrow	keys,	or	a
screen	at	a	time	with	the	PgUp	and	PgDn	keys.	Press	Tab	to	move	from	one	column	to	the
next,	and	press	a	letter	to	move	the	cursor	to	the	first	command	that	begins	with	that	letter.
To	display	information	about	any	of	the	commands	listed,	move	the	cursor	to	the	command
name	and	press	Enter.

For	example,	you	used	the	Date	command	in	a	previous	chapter.	Date	is	the	third	entry
below	Copy	in	the	first	column;	press	the	Down	arrow	key	until	the	cursor	is	under	Date	and
press	Enter.	Now	MS-DOS	displays	the	help	information	about	the	Date	command:

In	addition	to	this	description	of	the	form	of	the	command	(MS-DOS	calls	this	the
command's	syntax),	online	help	also	includes	notes	about	how	you	can	use	the	command.
Notice	that	the	cursor	is	on	the	item	Notes;	press	Enter.	Now	you	see	the	notes	about	the
Date	command,	and	the	cursor	is	on	the	item	Syntax.	Press	Enter	again,	and	once	again
MS-DOS	displays	the	syntax	of	the	command.	Some	commands	also	include	examples	that
you	can	select	just	as	you	selected	Notes	and	Syntax.

Press	the	Esc	key	until	you	return	to	the	list	of	commands	(the	Contents).	To	leave	online
help,	press	Alt-F-X.	That	is,	press	the	Alt	key,	then	press	F	to	display	the	File	menu,	and
then	press	X	to	choose	Exit.	MS-DOS	displays	the	system	prompt.

You	can	display	the	help	for	a	specific	command	directly	by	typing	help	followed	by	the
name	of	the	command.	This	has	the	same	effect	as	typing	help	and	then	choosing	the
command	from	the	list.	Try	it	by	typing	the	following:
A:\>help	date

Now	MS-DOS	displays	the	syntax	screen	for	the	Date	command.	When	you're	through	with
the	command	information,	you	can	either	display	the	contents	list	by	pressing	Alt-C	or	return
to	MS-DOS	by	pressing	Alt-F-X.	Press	Alt-F-X	now	to	return	to	MS-DOS.

You	can	display	a	different	sort	of	help	information	for	a	command	by	typing	the	name	of	the
command	followed	by	a	space	and	/?.	Type	the	following	to	see	this	kind	of	help	information
for	the	Date	command:
A:\>date	/?

MS-DOS	simply	displays	information	about	the	command	you	specified,	followed	by	the
system	prompt;	there	are	no	items	to	choose,	nor	is	there	a	list	of	commands:
Displays	or	sets	the	date.

DATE	[mm-dd-yy]

mm-dd-yy				Sets	the	date	you	specify.

Type	DATE	without	parameters	to	display	the	current	date	setting

and	a	prompt	for	a	new	one.	Press	ENTER	to	keep	the	same	date.

If	you're	using	version	5	and	you	type	help,	MS-DOS	displays	a	list	of	the	commands	for
which	you	can	request	help,	along	with	a	brief	description	of	what	each	command	does.	The
list	is	several	screens	long;	press	any	key	to	move	to	the	next	screen.	If	you're	using	version
5	and	you	type	help	followed	by	a	command's	name,	or	a	command's	name	followed	by	/?,
MS-DOS	displays	the	same	information	as	does	version	6	when	you	type	the	name	of	the
command	followed	by	/?,	as	shown	above.

Now	on	to	the	MS-DOS	file-management	commands.

	

javascript:Next(0)
javascript:Next(1)

Displaying	Directory	Entries
As	you	have	seen,	the	Directory	(dir)	command	displays	entries	from	the	directory	that	MS-
DOS	keeps	on	each	disk.	Each	entry	includes	the	name	and	extension	of	the	file,	its	size	in
bytes,	and	the	date	and	time	it	was	created	or	last	updated.	You	can	use	the	Directory
command	to	display	all	entries	or	just	the	entries	of	selected	files.

In	the	descriptions	of	the	commands	here	and	throughout	the	remaining	chapters,	you	are
shown	the	general	form	of	the	command—the	name	of	the	command	and	most	or	all	of	its
parameters—before	you	try	the	examples.	If	a	parameter	has	an	exact	form,	such	as	/W,
the	form	is	shown.	If	a	parameter	is	something	you	specify,	such	as	a	file	name,	you'll	see	it
named	and	shown	enclosed	in	angle	brackets—for	example,	<filename>.

The	Directory	Command	and	Its	Parameters

Depending	on	your	version	of	MS-DOS,	the	Directory	command	has	either	three	parameters
or	more.	All	versions	allow	you	to	specify	a	file	name	and	two	parameters	typed	as	/W	and
/P.	Versions	5	and	later	have	more	parameters,	among	them	one	that	allows	you	to	display
only	the	file	name	and	extension	of	the	directory	entries	and	another	that	arranges	directory
entries	by	name,	extension,	size,	or	date	and	time.

Written	out,	the	format	of	the	Directory	command	and	these	parameters	looks	like	this:
dir	<filename>	/W	/P	/O<sortorder>	/B	/S

(Other	parameters	of	the	Directory	command	are	described	later,	and	a	complete	summary
appears	in	Appendix	C,	"MS-DOS	Command	Reference.")

If	you	include	<filename>,	MS-DOS	searches	the	current	directory	for	the	file	you	specify.
You	can	also	do	the	following:

Precede	<filename>	with	a	drive	letter.	For	example,	dir	a:report.doc	tells	MS-DOS
to	look	on	drive	A	rather	than	on	the	current	drive.

Use	wildcard	characters	to	specify	a	group	of	files.	For	example,	dir	budget.*	tells
MS-DOS	to	display	the	entries	for	all	files	named	budget	regardless	of	extension.

Omit	<filename>	to	tell	MS-DOS	to	display	the	entries	for	all	files	in	the	current
directory.	For	example,	dir	displays	all	entries	for	the	current	directory	of	the	current
drive;	dir	b:	displays	all	entries	for	the	current	directory	of	drive	B.

The	/W	(Wide)	parameter	tells	MS-DOS	to	display	only	the	file	names	and	extensions	in	five
columns	across	the	screen.	This	display	contains	less	information	than	does	a	complete
directory	listing	because	it	omits	file	sizes,	dates,	and	times,	but	it	is	useful	when	a	directory
listing	is	quite	long	and	you	only	want	to	see	what	files	are	in	the	directory.

The	/P	(Pause)	parameter	tells	MS-DOS	to	display	the	entries	one	screenful	at	a	time;	a
message	at	the	bottom	of	the	screen	tells	you	to	press	any	key	to	continue.	The	/P

parameter	provides	complete	file	information,	including	size,	date,	and	time,	so	it	is	useful
when	you	want	a	detailed	look	at	a	long	directory	listing.

The	/O<sortorder>	parameter,	in	versions	5	and	later,	tells	MS-DOS	to	sort	(arrange)	a
directory	listing	by	name,	extension,	size,	or	date	and	time:

Typing	dir	/on	sorts	the	files	alphabetically	by	file	name.

Typing	dir	/oe	sorts	the	files	alphabetically	by	extension.

Typing	dir	/os	sorts	the	files	by	size,	smallest	to	largest.

Typing	dir	/od	sorts	the	files	by	date	(earliest	to	latest)	and,	within	the	same	date,
sorts	by	the	time	(morning	to	evening)	the	file	was	created	or	last	changed.	You
cannot	sort	by	time	only;	that	is,	you	cannot	type	dir	/ot	to	sort	by	time	but	not	by
date.

The	/B	(Bare)	parameter,	in	versions	5	and	later,	tells	MS-DOS	to	display	only	the	names
and	extensions	of	the	files	you	specify.

The	/S	(Subdirectory)	parameter,	in	versions	5	and	later,	tells	MS-DOS	to	display	the	files	in
the	directory	you	specify	and	in	all	subdirectories	of	the	directory.

Examples	of	Displaying	Directory	Entries

Because	you	have	already	used	the	Directory	command	several	times,	only	the	options	are
shown	here.	First,	use	the	/W	parameter	to	see	a	wide	directory	display	showing	the	files
on	your	sample	floppy	disk.	Type	the	following:
A:\>dir	/w

MS-DOS	arranges	just	the	name	and	extension	of	each	file	in	five	columns	across	the
screen.	If	you	have	version	5	or	later,	the	display	looks	something	like	this	(only	three	of	the
five	columns	are	shown):
Volume	in	drive	A	is	EXAMPLES	1
	Volume	Serial	Number	is	1A2C-13F5
	Directory	of	A:\

REPORT.DOC						REPORT.BAK						BANK.DOC		...
BUDGET.MAR
								6	file(s)									138	bytes
																						1454592	bytes	free

If	you	have	version	4	or	earlier,	your	display	is	similar	but	doesn't	include	quite	as	much
detail.	Such	a	display	doesn't	contain	as	much	information	as	the	standard	directory	display,
but	it	packs	a	lot	of	entries	onto	the	screen.	The	wide	format	is	particularly	handy	when	all
you	want	is	a	quick	look	at	the	names	of	the	files	on	a	crowded	disk.

Pausing	the	Directory	Display

To	display	the	directory	of	a	disk	one	screenful	at	a	time,	you	use	the	/P	option.	MS-DOS
displays	the	first	screenful	of	entries,	followed	by	either	Press	any	key	to	continue...	or
Strike	a	key	when	ready...,	depending	on	your	version	of	MS-DOS.	To	see	the	next
screenful,	press	any	key.	This	option	lets	you	view	the	entire	directory	without	using	Pause
or	Ctrl-Num	Lock	to	freeze	the	display	periodically.

Your	sample	disk	contains	less	than	one	screenful	of	file	names,	but	you	can	see	the	effect
by	using	the	/P	parameter	to	list	the	MS-DOS	files	on	your	hard	disk.	Type	the	following:
A:\>dir	c:\dos	/p

MS-DOS	responds	by	displaying	the	first	screenful	of	its	files	and	waiting	for	you	to	press	a
key:
Volume	in	drive	C	is	HARD	DISK
	Volume	Serial	Number	is	1608-5A30
	Directory	of	C:\DOS
.												<DIR>					01-15-94			6:05p
..											<DIR>					01-15-94			6:05p
EGA						SYS						4885	02-01-93		12:00a
FORMAT			COM					33087	02-01-93		12:00a
NLSFUNC		EXE						7052	02-01-93		12:00a
COUNTRY		SYS					17069	02-01-93		12:00a
EGA						CPI					58873	02-01-93		12:00a
HIMEM				SYS					13984	02-01-93		12:00a
KEYB					COM					14986	02-01-93		12:00a
KEYBOARD	SYS					34697	02-01-93		12:00a
ANSI					SYS						9029	02-01-93		12:00a
DEBUG				EXE					20634	02-01-93		12:00a
EXPAND			EXE					16885	02-01-93		12:00a
FDISK				EXE					57224	02-01-93		12:00a
SYS						COM					13440	02-01-93		12:00a
UNFORMAT	COM					18560	02-01-93		12:00a
ATTRIB			EXE					15796	02-01-93		12:00a
CHOICE			COM					1733	02-01-93			12:00a
CHKDSK			EXE					12267	02-01-93		12:00a
Press	any	key	to	continue	.	.	.

Press	any	key	to	see	the	next	screenful.	Continue	pressing	the	key	until	MS-DOS	displays
the	system	prompt,	or	press	Ctrl-Break	to	cancel	the	command.

Sorting	the	Directory	Display

As	described	earlier,	starting	with	version	5,	MS-DOS	has	added	new	ways	for	you	to
display	a	directory.	Suppose	you	have	a	floppy	disk	full	of	files	with	different	extensions,	and

you	want	to	group	them	to	get	a	better	idea	of	what	the	floppy	disk	contains.

The	/O	parameter	of	the	Directory	command	does	the	job.	If	you	have	version	5	or	later,	try
it.	Type	the	following:
A:\>dir	/oe

MS-DOS	responds:
Volume	in	drive	A	is	EXAMPLES	1
	Volume	Serial	Number	is	1A2C-13F5
	Directory	of	A:\

REPORT			BAK									23	01-05-95			9:16a
REPORT			DOC									23	01-05-95			9:16a
BANK					DOC									23	01-05-95			9:16a
BUDGET			FEB									23	01-05-95			9:16a
BUDGET			JAN									23	01-05-95			9:16a
BUDGET			MAR									23	01-05-95			9:16a
								6	file(s)									138	bytes
																						1454592	bytes	free

The	files	are	arranged	alphabetically	by	extension.	Remember,	you	can	also	group	files	by
file	name,	by	size,	or	by	date	and	time.	The	last	is	particularly	useful	when	you	have	more
than	one	version	of	a	file	and	you	want	to	look	at	the	versions	in	chronological	order.

Listing	Only	Files

If	you	simply	want	to	see	what	files	are	on	a	disk,	the	/B	parameter	gives	you	a	bare-bones
look	at	its	contents.	With	the	sample	files,	for	instance,	typing
A:\>dir	/b

produces	this	display:
REPORT.DOC
REPORT.BAK
BANK.DOC
BUDGET.JAN
BUDGET.FEB
BUDGET.MAR

Finally—and	this	applies	to	any	MS-DOS	command—remember	that	in	MS-DOS	versions	5
and	later	you	can	type	help	or	use	the	universal	/?	parameter	to	refresh	your	memory	about
a	command	and	its	parameters.

	

javascript:Next(0)
javascript:Next(1)

Displaying	a	File
Many	of	the	files	you	use	are	text	files,	and	there	will	be	times	when	you	want	to	check	the
contents	of	a	file	but	don't	need	a	printed	copy.	MS-DOS	gives	you	a	quick	way	to	see
what's	in	a	file:	the	Type	command.	(The	name	Type	is	a	carryover	from	the	days	when
most	computers	had	only	consoles	that	looked	like	typewriters.)

When	you	use	the	Type	command,	MS-DOS	displays	the	file	without	stopping;	if	the	file	is
longer	than	one	screenful	and	you	want	to	read	the	entire	file,	freeze	the	display	by	pressing
Pause	or	Ctrl-Num	Lock,	or	by	using	the	More	command.

The	Type	command	has	one	parameter:
type	<filename>

<filename>	is	the	name	of	the	file	to	be	displayed.	The	Type	command	displays	just	one	file
at	a	time,	so	you	can't	use	wildcard	characters	in	the	file	name.	If	you	do	use	a	wildcard
character,	MS-DOS	displays	Invalid	filename	or	file	not	found	and	returns	to	the	command
level.	If	the	file	you	name	doesn't	exist,	MS-DOS	displays	File	not	found	and,	again,	returns
to	the	command	level.

An	Example	of	Displaying	a	File

To	display	the	file	named	REPORT.DOC	on	the	floppy	disk	in	the	current	drive,	verify	that
your	sample	disk	is	in	drive	A	and	type	this:
A:\>type	report.doc

MS-DOS	displays	the	file:
This	is	a	dummy	file.

You'll	probably	use	the	Type	command	frequently	to	check	your	text	files.

	

javascript:Next(0)
javascript:Next(1)

Making	Copies	of	Files
Just	as	you	sometimes	make	copies	of	your	paper	files,	you'll	find	yourself	needing	copies
of	your	disk	files.

You	may	want	to	share	a	file	with	a	colleague	who	has	a	computer,	you	may	want	to	alter
the	copy	slightly	to	produce	a	different	version,	or	you	may	want	to	copy	a	file	from	your
hard	disk	to	a	floppy	disk	you	can	carry	with	you.	The	Copy	command	can	make	a	copy	of	a
file	on	the	same	disk	(with	a	different	file	name)	or	on	a	different	disk	(with	any	valid	file
name).

When	used	to	make	copies	of	files,	the	Copy	command	has	two	major	parameters,	<file1>
and	<file2>.	The	format	of	the	Copy	command	is	this:

copy	<file1>	<file2>

<file1>	is	the	name	of	the	file	to	be	copied	(the	source	file),	and	<file2>	is	the	name	of	the
copy	to	be	made	(the	target	file).	You	can	use	wildcard	characters	to	copy	a	set	of	files.

Note Four	additional,	seldom-used	parameters	(/A,	/B,	/V,	and	/Y)	are	described	in	theCopy	command	entries	in	Appendix	C,	"MS-DOS	Command	Reference."

When	you	copy	files,	pay	attention	to	these	conditions:

If	you	specify	a	<file1>	(including	the	drive	letter)	that	is	not	on	the	disk	in	the
current	drive	and	omit	<file2>,	MS-DOS	copies	<file1>	to	the	disk	in	the	current
drive	and	gives	the	copy	the	same	name	as	the	original.	Example	(if	the	current
drive	is	C):	copy	a:report.mar.

If	you	specify	only	a	drive	letter	as	<file2>,	the	file	is	copied	to	the	disk	in	the	drive
you	specify	and	MS-DOS	gives	it	the	same	name	as	<file1>.	Example:	copy
report.feb	a:.

If	you	specify	a	<file1>	that	doesn't	exist,	MS-DOS	responds	File	not	found,
followed	by	the	name	you	typed	for	<file1>	and	0	file(s)	copied,	and	it	returns	to
command	level.

If	<file2>	doesn't	exist,	MS-DOS	creates	it	as	a	copy	of	<file1>.

If	you	specify	a	<file2>	that	does	exist	and	you're	using	version	6.0	or	earlier,	MS-
DOS	replaces	its	contents	with	<file1>.	This	is	the	same	as	deleting	the	existing
target	file,	so	be	careful	not	to	give	the	target	the	same	name	as	an	existing	file	you
want	to	keep.	Versions	6.2	and	later	will	warn	you	with	the	message	Overwrite
<file2>	(Yes/No/All)?	if	<file2>	already	exists	in	the	target	location,	giving	you	the
opportunity	to	cancel	the	copy.

The	following	practice	session	illustrates	different	ways	to	copy	files;	this	section	also
describes	the	type	of	situation	in	which	you	might	want	to	use	each	form	of	the	command.

Examples	of	Copying	Files

You	want	to	change	a	document	you	already	have	on	disk,	but	you	want	to	keep	the	original
as	well	as	the	changed	version.	For	example,	to	make	a	copy	of	the	file	REPORT.DOC	on
the	same	floppy	disk	and	to	name	the	copy	RESULTS,	type	this:
A:\>copy	report.doc	results

MS-DOS	acknowledges	1	file(s)	copied.

To	verify	that	both	files,	REPORT.DOC	and	RESULTS,	are	on	the	floppy	disk,	display	the
directory	by	typing	this:
A:\>dir

MS-DOS	now	shows	seven	files	on	the	floppy	disk:
Volume	in	drive	A	is	EXAMPLES	1
	Volume	Serial	Number	is	1A2C-13F5
	Directory	of	A:\

REPORT			DOC								23	01-05-95			9:16a
REPORT			BAK								23	01-05-95			9:16a
BANK					DOC								23	01-05-95			9:16a
BUDGET			JAN								23	01-05-95			9:16a
BUDGET			FEB								23	01-05-95			9:16a
BUDGET			MAR								23	01-05-95			9:16a
RESULTS													23	01-05-95			9:16a
									7	file(s)							161	bytes
																					1454080	bytes	free

Any	time	you	want	to	verify	the	results	of	an	example,	use	the	Directory	command	to	see
what	files	are	on	the	floppy	disk.

Suppose	you	want	to	copy	a	file	from	another	disk	and	store	it,	under	the	same	file	name,
on	the	disk	in	the	current	drive.	For	example,	your	current	drive	is	drive	A.	To	copy	a	file
from	a	different	drive	to	the	floppy	disk	in	drive	A,	all	you	need	to	specify	is	the	drive	letter
and	name	of	the	source	file	because	MS-DOS	assumes	you	want	to	copy	the	source	file	to
the	disk	in	the	current	drive	and	give	the	target	file	the	same	name	unless	you	specify
otherwise.

Try	it.	One	of	the	files	in	the	DOS	subdirectory	on	your	hard	disk	is	named	README.TXT.
To	copy	it	from	drive	C	(the	hard	disk)	to	the	floppy	disk	in	drive	A	(the	current	drive),	type
the	following:
A:\>copy	c:\dos\readme.txt

MS-DOS	responds	1	file(s)	copied.

Next,	suppose	you	want	to	change	a	file	and	store	the	new	version	under	the	same	file
name	and	on	the	same	disk	as	the	original,	but	you	want	to	be	able	to	distinguish	between
the	two	versions.	Simply	make	a	copy	of	the	file	on	the	same	disk,	with	the	same	file	name
but	a	different	extension.	You	can	use	the	asterisk	wildcard	character	to	tell	MS-DOS	to	use
the	same	file	name.	For	example,	to	make	a	copy	of	BUDGET.MAR	and	call	it
BUDGET.APR,	type	the	following:
A:\>copy	budget.mar	*.apr

MS-DOS	acknowledges	that	it	copied	one	file.

You	have	several	files	named	REPORT	stored	on	disk.	Suppose	you	want	to	keep	the
originals	but	make	copies	of	them	all	for	a	new	project;	to	avoid	confusion,	you	want	to	give
the	copies	a	new	file	name	but	keep	the	same	extension.	For	example,	to	make	a	copy	of
each	file	named	REPORT,	giving	each	copy	the	name	FORECAST,	type	the	following:
A:\>copy	report.*	forecast.*

MS-DOS	displays	the	name	of	each	source	file	as	it	makes	the	copies:
REPORT.DOC

REPORT.BAK
								2	file(s)	copied

You	can	copy	all	the	files	on	a	floppy	disk	by	specifying	the	source	file	as	*.*	and	specifying
the	target	as	just	a	drive	letter.	This	procedure	is	not	the	same	as	copying	the	floppy	disk
with	the	Diskcopy	command;	the	difference	is	explained	in	the	section	called	"Comparing
Two	Floppy	Disks"	that	begins	on	page	110	in	Chapter	6,	"Managing	Your	Floppy	Disks."

In	addition	to	the	Copy	command,	MS-DOS	versions	3.2	and	later	include	two	additional
commands	for	copying	files	selectively:	Replace,	which	lets	you	copy	only	files	that	already
exist	on	the	target	disk,	and	Xcopy,	which	lets	you	copy	entire	subdirectories	in	addition	to
files	in	a	directory.	Both	of	these	commands	are	described	in	Chapter	9,	"Managing	Your
Hard	Disk."

	

javascript:Next(0)
javascript:Next(1)

Sending	Files	to	Devices
In	Chapter	4,	"A	Look	at	Files	and	Floppy	Disks,"	you	printed	a	file	by	using	the	Copy
command	to	send	a	copy	of	the	file	to	the	printer.	You	can	also	send	a	copy	of	a	file	to	any
other	output	device.	If,	for	example,	you	copy	a	file	to	a	communications	connection,	or	port,
on	the	computer,	the	file	goes	to	whatever	device	is	attached	to	the	port—such	as	a
telecommunications	line	to	another	computer.

When	it	is	used	to	send	a	copy	of	a	file	to	an	output	device,	the	Copy	command	has	two
parameters:

copy	<filename>	<device>

<filename>	is	the	name	of	the	file	to	be	sent;	<device>	is	the	name	of	the	device	to	which
the	file	is	to	be	sent.

Be	sure	<device>	exists.	If	you	try	to	send	a	file	to	a	device	that	doesn't	exist	or	isn't	ready,
MS-DOS	might	stop	running.	You	won't	hurt	anything,	but	you'll	have	to	restart	the	system.

An	Example	of	Sending	Files	to	a	Device

To	send	a	copy	of	each	sample	file	with	the	extension	DOC	to	the	printer,	make	certain	your
printer	is	turned	on	and	type	this:
A:\>copy	*.doc	prn

MS-DOS	displays	the	name	of	each	file	as	it	sends	the	file	to	the	printer:
REPORT.DOC
BANK.DOC
FORECAST.DOC
								1	file(s)	copied

The	files	are	printed	with	no	separation	between	them.	MS-DOS	reports	only	one	file	copied
because,	in	effect,	only	one	output	file	was	created:	the	printed	copy	of	the	three	files.

	

javascript:Next(0)
javascript:Next(1)

Combining	Files
Sometimes,	it's	useful	to	combine	several	files.	Perhaps	you	have	several	short	documents,
and	you	decide	it	would	be	easier	and	more	convenient	to	work	with	a	single	document	that
includes	all	the	shorter	ones.	If	you	have	several	sets	of	files	with	similar	names	or
extensions,	you	can	combine	each	set	into	a	new	file.	The	Copy	command	allows	you	to
copy	several	files	into	a	new	file	without	destroying	the	original	versions.

When	it	is	used	to	combine	files,	the	Copy	command	has	two	parameters:
copy	<source>	<target>

<source>	represents	the	files	to	be	combined.	You	can	use	wildcard	characters	to	name	the
source	files	to	be	combined,	or	you	can	list	several	file	names,	separating	each	from	the
next	with	a	plus	sign	(+).	If	any	file	in	the	list	doesn't	exist,	MS-DOS	goes	on	to	the	next
name	without	telling	you	the	file	doesn't	exist.

<target>	represents	the	file	that	results	from	combining	the	source	files.	If	you	specify	a
target,	MS-DOS	combines	the	source	files	into	the	target	file.	If	you	don't	specify	a	target
but	do	specify	individual	source	files,	MS-DOS	combines	all	the	source	files	into	the	first	file
in	the	<source>	list,	changing	its	contents.	Before	the	copy	is	actually	performed,	MS-DOS
versions	6.2	and	later	will	warn	you	about	overwriting	the	first	file.

Examples	of	Combining	Files

Suppose	you	have	two	files	you	want	to	use	as	the	basis	for	a	single	new	file,	but	you	want
to	keep	the	originals	intact.	For	example,	to	combine	the	files	BANK.DOC	and
REPORT.DOC	into	a	new	file	named	BANKRPT.DOC,	type	this:
A:\>copy	bank.doc+report.doc	bankrpt.doc

MS-DOS	displays	the	names	of	the	source	files	as	it	copies	them:
BANK.DOC
REPORT.DOC
								1	file(s)	copied

Again,	MS-DOS	reports	one	file	copied	because	the	command	created	only	one	file.

You	can	also	copy	several	files	into	an	already	existing	file.	To	combine	BUDGET.JAN,
BUDGET.FEB,	and	BUDGET.MAR	into	the	first	file,	BUDGET.JAN,	type	this:
A:\>copy	budget.jan+budget.feb+budget.mar

MS-DOS	displays	the	name	of	each	source	file	as	it	copies:
BUDGET.JAN
BUDGET.FEB
BUDGET.MAR
								1	file(s)	copied

Now,	suppose	you've	been	keeping	monthly	budget	files.	It's	the	end	of	the	year.	You	still
need	separate	monthly	files	for	comparison	with	next	year's	figures,	but	right	now	you	want
to	work	with	all	the	files	together.	To	combine	all	the	files	named	BUDGET	into	a	file	named
ANNUAL.BGT,	type	this:
A:\>copy	budget.*	annuaI.bgt

MS-DOS	responds:
BUDGET.JAN
BUDGET.FEB
BUDGET.MAR
BUDGET.APR
								1	file(s)	copied

Or	suppose	you	want	to	combine	pairs	of	files	with	the	same	file	names	but	different
extensions.	You	can	combine	them	under	the	same	file	names,	with	new	extensions,	and
end	up	with	both	the	original	and	combined	versions.	For	example,	if	you	have	entered	all
the	examples,	among	the	files	on	the	floppy	disk	in	drive	A	are	REPORT.DOC	and
REPORT.BAK,	FORECAST.DOC	and	FORECAST.BAK.	To	combine	each	pair	of	files	with
the	same	name	and	the	extensions	DOC	and	BAK	into	a	single	file	with	the	same	name	and
the	extension	MIX,	type	this:
A:\>copy	*.bak+*.doc	*.mix

MS-DOS	displays	the	names	of	the	files	as	it	copies	them:
REPORT.BAK
REPORT.DOC
FORECAST.BAK
FORECAST.DOC
								2	file(s)	copied

This	time	MS-DOS	reports	two	files	copied	because	the	command	created	two	files:
REPORT.MIX	and	FORECAST.MIX.

	

javascript:Next(0)
javascript:Next(1)

Moving	Files
The	Move	command,	new	to	version	6.0,	moves	a	file	from	one	place	to	another.	Move
works	much	like	the	Copy	command	except	that	it	doesn't	leave	a	copy	of	the	file	in	the
original	location.	Because	the	Move	command	is	most	useful	in	managing	directories	of	files,
it	is	described	in	Chapter	8,	"A	Tree	of	Files,"	under	the	heading	"Moving	Files	from	One
Directory	to	Another."

	

javascript:Next(0)
javascript:Next(1)

Deleting	Files
Just	as	you	have	to	clean	out	a	file	drawer	once	in	a	while,	you'll	occasionally	have	to	clear
your	disks	of	files	you	no	longer	need.	The	Delete	command	(you	can	type	it	either	as	del	or
as	erase)	deletes	one	or	more	files	from	a	disk.

The	Delete	command	has	two	parameters:
del	<filename>	/P

<filename>	is	the	name	of	the	file	to	be	deleted.	If	you	use	wildcard	characters,	MS-DOS
deletes	all	files	that	match	<filename>.	If	the	file	doesn't	exist,	MS-DOS	displays	File	not
found	and	returns	to	command	level.

/P,	in	versions	4	and	later,	tells	MS-DOS	to	prompt	you	for	verification	before	deleting	the
file.	If	you	use	wildcard	characters	to	delete	more	than	one	file,	MS-DOS	prompts	you	to
verify	the	deletion	of	each	file.

Safeguards

When	you	delete	files,	MS-DOS	assumes	you	know	what	you're	doing—that	you	know
exactly	which	files	you're	eliminating	and	that	you	really	don't	want	them	anymore.	But	being
human,	you	sometimes	make	mistakes,	so	you	need	ways	to	protect	your	files.

One	good	safeguard	is	the	Copy	command.	MS-DOS	doesn't	limit	the	number	of	times	you
can	copy	a	file,	so	you	can	think	of	the	Copy	command	as	the	computer-based	equivalent	of
your	photocopy	machine.	Copy	a	file,	preferably	onto	a	different	disk,	whenever	its	value
outweighs	the	minimal	time	and	effort	required	to	copy	it.

When	you	delete	files,	use	the	/P	parameter,	especially	if	you	use	wildcard	characters	to
specify	a	set	of	files.	If	you	don't	use	this	parameter	to	tell	MS-DOS	to	prompt	for
confirmation,	the	only	time	it	hesitates	before	carrying	out	a	Delete	command	is	when	you
type	del	*.*.	Because	this	form	of	the	Delete	command	removes	all	files	in	a	directory,	MS-
DOS	prompts	you	All	files	in	directory	will	be	deleted!	Are	you	sure	(Y/N)?

If	your	version	of	MS-DOS	doesn't	include	the	/P	parameter,	double-check	the	command	on
the	screen	before	pressing	Enter.	Verify	the	drive	letter	(if	necessary),	the	file	name,	and
the	extension	you	typed.	If	you	used	wildcard	characters,	either	be	certain	you	know	exactly
which	files	will	be	deleted	or	consider	using	this	safety	check:	Press	Esc	to	cancel	the
Delete	command,	and	then	use	the	same	wildcard	characters	with	a	Directory	command.
The	Directory	command	lists	all	the	files	that	match	the	wildcard	characters.	If	the	file
names	you	see	match	the	ones	you	expected	to	see,	you	can	reenter	the	original	Delete
command	with	confidence.

Another	safeguard,	particularly	helpful	for	those	using	versions	of	MS-DOS	that	do	not
support	the	/P	parameter,	involves	setting	the	Read-Only	attribute	for	files	you	want	to
keep.	(See	page	178,	"Changing	the	Attributes	of	a	File	or	a	Directory".)	Be	aware	that	if

wildcards	are	used	to	identify	a	group	of	files	for	deletion,	any	candidate	files	that	have	the
Read-Only	attribute	set	will	not	be	deleted,	but	no	message	is	provided	to	this	effect.

Examples	of	Deleting	Files

Cautionary	statements	aside,	Delete	itself	is	one	of	the	easiest	MS-DOS	commands	to	use.
For	example,	to	delete	the	file	named	BUDGET.APR	on	the	floppy	disk	in	the	current	drive,
type	this:
A:\>del	budget.apr

Press	the	Enter	key,	and	the	file's	gone.

Similarly,	type	this	to	delete	the	MS-DOS	file	you	copied	from	the	hard	disk:
A:\>del	readme.txt

The	next	example	deletes	all	files	on	the	sample	floppy	disk	whose	extension	is	BAK.	If	you
have	version	4	or	later,	use	the	/P	parameter	to	ask	MS-DOS	to	prompt	you	for	verification.
Type	the	following	command	(omit	the	/P	if	you're	using	an	earlier	version):
A:\>del	*	.	bak	/p

With	the	/P	parameter,	MS-DOS	responds	by	displaying	the	name	of	the	first	file	whose
extension	is	BAK	and	asking	you	whether	to	delete	it:
A:\REPORT.BAK,					Delete	(Y/N)?_

Type	y	to	delete	it.	Now	MS-DOS	shows	you	the	name	of	the	next	file	and	again	asks:
A:\FORECAST.BAK,					Delete	(Y/N)?_

Type	y	again	to	delete	the	file.	If	you	had	typed	n	in	response	to	either	prompt,	MS-DOS
would	have	left	the	file	alone	and	moved	on	to	the	next	file	(if	any)	that	matched	the	file
name	you	typed	as	part	of	the	Delete	command.	The	/P	option	is	thus	handy	when	you	want
to	delete	several—but	not	all—files	that	have	similar	names	or	extensions.	The	prompt	lets
you	avoid	the	work	of	entering	a	separate	command	for	each	file.

But	what	if	your	version	of	MS-DOS	doesn't	have	the	/P	option?	If	you	typed	the	Delete
command	as	del	*.bak,	your	disk	drive	became	active	for	a	brief	time	after	you	pressed	the
Enter	key,	and	then	the	system	prompt	returned	to	the	screen.	In	that	short	time,	MS-DOS
deleted	the	two	sample	files	whose	extension	was	BAK	without	telling	you	the	names	of	the
files.	This	example	underscores	the	need	for	you	to	be	sure	you	have	typed	the	correct	file
name	and	the	correct	drive	letter	or	extension	(if	necessary)	whenever	you	use	wildcard
characters	with	the	Delete	command.

Whether	or	not	you	use	the	/P	parameter,	be	particularly	careful	when	you	use	the	question
mark	in	a	file	extension.	To	see	why,	create	two	additional	test	files	by	typing	the	following:
A:\>copy	results	*.1

							1	file(s)	copied

A:\>copy	results	*.12
							1	file(s)	copied

This	gives	you	three	files	with	the	same	name	but	different	extensions:	RESULTS,
RESULTS.1,	and	RESULTS.12.	Now	type	a	Directory	command,	using	a	single	question
mark	as	the	extension.	Before	you	press	Enter,	decide	which	files	you	think	MS-DOS	will
list:
A:\>dir	results.?

MS-DOS	lists	two	files:
Volume	in	drive	A	is	EXAMPLES	1
	Volume	Serial	Number	is	1A2C-13F5
	Directory	of	A:\

RESULTS	1											23	01-05-95			9:46a
RESULTS													23	01-05-95			9:46a
							2	file(s)										46	bytes
																					1451008	bytes	free

If	you	expected	to	see	only	RESULTS.1,	the	response	to	this	Directory	command	is	a
surprise.	If	you	had	typed	a	Delete	command	instead	of	a	Directory	command,	the	files	you
see	listed	are	the	files	MS-DOS	would	have	erased.	An	unexpected	directory	listing	can	be
momentarily	confusing,	but	unintentionally	deleting	files	is	definitely	an	unpleasant	surprise.

To	delete	both	of	the	files	you	just	created	but	leave	your	original	RESULTS	file	untouched,
type	the	following	command:
A:\>del	results.1?

Typing	1	as	the	first	character	of	the	extension	ensures	that	the	file	RESULTS	isn't	affected.
Note,	however,	that	even	though	you	included	a	question	mark	(which	takes	the	place	of	a
single	character)	after	the	1,	MS-DOS	deleted	RESULTS.1	as	well	as	RESULTS.12.	Be
careful	whenever	you	use	wildcard	characters	with	commands	that	change	or	delete	files.

	

javascript:Next(0)
javascript:Next(1)

Changing	File	Names
There	will	be	times	when	you	want	to	change	the	name	of	a	file.	You	might	simply	change
your	mind,	or	perhaps	you'll	have	changed	the	contents	of	a	file	so	much	that	you	want	to
give	it	a	name	that	more	closely	describes	its	new	contents.	For	example,	if	your	word
processing	program	automatically	makes	a	backup	copy	whenever	you	edit	and	save	a	file,
the	Rename	command	can	be	valuable	when	(as	happens)	your	working	copy	is
inadvertently	lost	or	damaged—perhaps	the	power	fails,	you	have	a	problem	with	the
program	itself,	or	you've	mangled	the	file	with	editing	changes	and	want	to	start	all	over
from	scratch.

The	Rename	command	changes	a	file's	name	or	extension,	or	both.	You	can	use	wildcard
characters	to	rename	a	set	of	files.

You	can	abbreviate	the	Rename	command	as	ren.	It	has	two	parameters:
rename	<oldname>	<newname>

<oldname>	is	the	name	of	an	existing	file.	If	the	file	doesn't	exist,	MS-DOS	displays
Duplicate	file	name	or	file	not	found	and	returns	to	command	level.

<newname>	is	the	name	you	want	to	give	to	the	file	specified	by	<oldname>.	If	there	is
already	a	file	with	the	new	name,	MS-DOS	displays	Duplicate	file	name	or	file	not	found
and	returns	to	command	level.	Two	files	on	the	same	disk	can't	have	the	same	name,	and
MS-DOS	would	have	to	erase	the	existing	file	to	carry	out	the	command,	so	this	built-in
safeguard	keeps	you	from	inadvertently	erasing	one	file	in	the	process	of	renaming	another.

The	Rename	command	simply	changes	the	name	of	a	file;	it	doesn't	copy	a	file	to	a	different
disk.	Both	the	old	name	and	the	new	name	must	refer	to	a	file	on	the	same	drive.	If	you
specify	a	different	drive	letter	with	the	new	file	name,	MS-DOS	responds	Invalid	parameter.

Examples	of	Changing	File	Names

To	change	the	name	of	the	file	ANNUAL.BGT	to	FINAL	on	the	disk	in	the	current	drive,	type
this:
A:\>ren	annual.bgt	final

MS-DOS	changes	the	name	and	displays	the	system	prompt.

To	change	the	extension	of	the	file	BUDGET.MAR	from	MAR	to	003	on	the	disk	in	the
current	drive,	you	can	use	the	*	wildcard	character	for	the	new	file	name.	Type	the	following:
A:\>ren	budget.mar	*.003

The	file	is	now	named	BUDGET.003.

To	change	the	extension	DOC	to	TXT	for	all	files	on	the	disk	in	the	current	drive,	use	the	*
for	both	the	old	and	new	file	names.	Type	the	following:

A:\>ren	*.doc	*.txt

Verify	this	change	with	the	Directory	command	by	typing	this:
A:\>dir	*.txt

MS-DOS	shows	four	files,	all	of	which	used	to	have	the	extension	DOC:
Volume	in	drive	A	is	EXAMPLES	1
	Volume	Serial	Number	is	1A2C-13F5
	Directory	of	A:\

REPORT			TXT									23	01-05-95			9:16a
BANK					TXT									23	01-05-95			9:16a
FORECAST	TXT									23	01-05-95			9:16a
BANKRPT		TXT									47	01-05-95		10:51a
									4	file(s)								116	bytes
																						1452032	bytes	free

If	you	use	the	Directory	command	now	to	display	the	entries	of	all	files	with	the	extension
DOC,	MS-DOS	responds	File	not	found.

	

javascript:Next(0)
javascript:Next(1)

Comparing	Files
Sometimes	you'll	want	to	know	whether	two	files	are	exactly	the	same.	Suppose	you	have
two	files	named	BUDGET	on	different	disks.	They're	the	same	length—but	are	they	different
budgets	or	two	copies	of	the	same	one?	You	could	display	or	print	both	files	and	compare
them,	but	that	could	take	quite	a	while,	and	you	still	might	miss	some	small	difference.	It's
quicker	and	more	accurate	to	use	the	File	Compare	(fc)	command.

File	Compare	has	two	main	parameters.	See	Appendix	C,	"MS-DOS	Command	Reference,"
for	a	listing	of	all	the	parameters.

fc	<file1>	<file2>

<file1>	and	<file2>	are	the	file	names	of	the	files	to	be	compared.

File	Compare	displays	different	results	depending	on	the	types	of	files	you	are	comparing.	If
both	files	contain	only	text,	File	Compare	compares	the	lines	of	the	first	file	with	the	lines	of
the	second	file.	If	it	finds	differences,	it	displays	the	last	line	in	each	file	that	matched,	the
lines	that	don't	match,	and	the	first	lines	in	each	file	that	once	again	match.	File	Compare
then	continues	to	compare	the	file	until	it	comes	across	another	unmatching	portion,
whereupon	it	displays	another	set	of	lines.	If	File	Compare	checks	100	lines	without	finding
a	match,	it	displays	the	message	Resync	failed.	Files	are	too	different.	(Some	versions	of
MS-DOS	display	the	message	***Files	are	different***.)

If	one	or	both	of	the	files	you	want	to	compare	are	nontext	files	(such	as	program	files)	that
have	the	extension	EXE,	COM,	SYS,	OBJ,	LIB,	or	BIN,	File	Compare	performs	a	byte-by-
byte	comparison.	File	Compare	compares	the	two	files	from	beginning	to	end,	always
checking	to	see	whether	the	bytes	in	corresponding	positions	in	the	files	match.	It	does	not
display	mismatched	lines	but	lists	the	characters	that	differ	and	how	far	each	is	from	the
beginning	of	the	file.	If	one	file	is	shorter	than	the	other,	File	Compare	displays	the	message
FC:	FILEx	longer	than	FILEy	at	the	end	of	the	comparison.

NoteMS-DOS	versions	3.3	through	5	also	include	the	Compare	command.	See	theCompare	entry	in	Appendix	C	for	more	information.

Examples	of	Comparing	Files

The	following	examples	show	the	MS-DOS	prompts	and	responses	as	they	appear	in
version	6.	If	you	have	an	earlier	version	of	MS-DOS,	your	messages	may	differ,	but	the
command	works	as	described.	Type	the	commands	as	shown,	but	bear	in	mind	that	you
may	not	see	exactly	what	is	shown	here.

To	compare	REPORT.TXT	with	BUDGET.FEB,	type	this:
A:\>fc	report.txt	budget.feb

The	files	are	identical,	so	MS-DOS	replies	as	follows:

Comparing	files	REPORT.TXT	and	BUDGET.FEB
FC:	no	differences	encountered

Because	all	the	sample	files	contain	the	same	words,	you'll	have	to	create	two	different	files
to	see	how	File	Compare	notifies	you	of	differences.	To	create	a	file	named
COMPARE1.TXT,	type	the	following:
A:\>copy	con	compare1.txt
This	is	line	1.
This	is	line	2.
This	is	line	3.
This	is	line	4.
^Z
						1	file(s)	copied

Now	create	a	file	named	COMPARE2.TXT	that	skips	line	3	and	adds	some	lines	at	the	end.
Type	the	following:
A:\>copy	con	compare2.txt
This	is	line	1.
This	is	line	2.
This	is	line	4.
This	is	line	5.
This	is	line	6.
^Z
						1	file(s)	copied

Now	compare	COMPARE1.TXT	with	COMPARE2.TXT.	Type	this:
A:\>fc	compare1.txt	compare2.txt

The	File	Compare	command	compares	the	files	and	then	reports	the	differences:
Comparing	files	COMPARE1.TXT	and	COMPARE2.TXT
*****	COMPARE1.TXT
This	is	line	2.
This	is	line	3.
This	is	line	4.
*****	COMPARE2.TXT
This	is	line	2.
This	is	line	4.

*****	COMPARE1.TXT
*****	COMPARE2.TXT
This	is	line	5.
This	is	line	6.

As	you	can	see,	File	Compare	found	the	two	mismatching	portions	of	the	files.	The	first
section	of	the	display	points	out	the	absence	of	line	3	in	COMPARE2.TXT.	The	second
section	lists	the	two	added	lines.	Because	you	won't	need	these	two	files	again,	delete	them
now	by	typing	this:
A:\>del	compare?.txt

To	see	the	difference	between	comparing	text	files	and	comparing	nontext	files,	compare
two	nontext	files	found	in	the	DOS	subdirectory	on	your	hard	disk.	To	compare	the	files
EDIT.COM	and	HELP.COM,	type	the	following:
A:\>fc	c:\dos\edit.com	c:\dos\help.com

MS-DOS	quickly	displays	the	differences	it	finds:
Comparing	files	C:\DOS\EDIT.COM	and	C:\DOS\HELP.COM
00000196:	45	51
00000197:	44	48
00000198:	43	45
00000199:	4F	4C
0000019A:	4D	50

Each	line	gives	the	location	in	the	files	of	the	mismatching	characters	and	the	values
representing	the	characters.	The	numbers	are	combinations	of	the	digits	0	through	9	and	the
letters	A	through	F.	These	characters	are	from	the	base-16	number	system,	usually	called
hexadecimal,	in	which	A	through	F	are	used	to	represent	the	decimal	numbers	10	through
15.	If	you	must	know	what	the	differing	characters	are,	or	if	you	must	calculate	the	exact
locations,	you	need	a	chart	of	the	American	Standard	Code	for	Information	Interchange
(ASCII),	which	shows	how	characters	are	encoded,	and	you	need	a	guide	to	hexadecimal
arithmetic.	The	manuals	that	came	with	your	computer	might	contain	both.

You	can	use	wildcard	characters	to	compare	two	sets	of	files	with	one	command.	To
compare	all	files	with	the	extension	TXT	against	all	files	with	the	same	file	name	but	the
extension	MIX,	type	the	following:
A:\>fc	*.txt	*.mix

There	are	now	four	files	with	the	extension	TXT,	but	only	two	(REPORT.MIX	and
FORECAST.MIX)	with	the	extension	MIX.	MS-DOS	tells	you	which	files	it	can	find	and	which
ones	it	is	unable	to	compare:
Comparing	files	REPORT.TXT	and	REPORT.MIX
*****	REPORT.TXT
*****	REPORT.MIX
This	is	a	dummy	file.

Comparing	files	BANK.TXT	and	BANK.MIX
FC:	cannot	open	BANK.MIX	-	No	such	file	or	directory

Comparing	files	FORECAST.TXT	and	FORECAST.MIX
*****	FORECAST.TXT
*****	FORECAST.MIX
This	is	a	dummy	file.

Comparing	files	BANKRPT.TXT	and	BANKRPT.MIX
FC:	cannot	open	BANKRPT.MIX	-	No	such	file	or	directory

	

javascript:Next(0)
javascript:Next(1)

Printing	Files
You	can	print	files	at	the	same	time	you're	using	the	computer	to	do	other	things.	The	Print
command	keeps	a	list—called	the	print	queue—of	files	to	be	printed,	and	it	prints	the	files	in
the	order	in	which	they	appear	in	the	queue.	The	print	queue	normally	can	hold	up	to	10
files.

In	addition	to	printing	files,	the	Print	command	lets	you	change	some	characteristics	of	its
operation—notably,	the	size	of	the	print	queue	and	the	printer	that	MS-DOS	uses.	For	a
description	of	these	uses	of	the	Print	command,	see	"Changing	Operation	of	the	Print
Command"	later	in	this	chapter.

Because	the	computer	can	really	do	only	one	thing	at	a	time,	MS-DOS	prints	when	nothing
else	is	happening,	such	as	when	you	pause	to	think	between	keystrokes.	You'll	notice	that
printing	slows	and	sometimes	even	stops	when	something	else	is	going	on—especially	when
MS-DOS	is	using	a	disk	drive.

You	use	the	Print	command	to	add	a	file	to	the	print	queue,	delete	a	file	from	the	queue,
cancel	all	printing,	and	display	the	names	of	the	files	in	the	queue.	When	used	to	print	a	file,
the	Print	command	has	four	main	parameters:

print	<filename>	/P	/C	/T

<filename>	is	the	name	of	the	file	to	be	added	to	or	deleted	from	the	print	queue.	You	can
enter	more	than	one	file	name	with	a	Print	command;	just	type	the	list	of	file	names,
separating	each	from	the	next	with	a	blank.

/P	(Print)	tells	MS-DOS	to	add	<filename>	to	the	print	queue.	MS-DOS	assumes	this
parameter	if	all	you	specify	is	<filename>.

/C	(Cancel)	tells	MS-DOS	to	remove	<filename>	from	the	print	queue.	If	the	file	is	being
printed,	printing	stops.

/T	(Terminate)	stops	all	printing.	If	a	file	is	being	printed,	printing	stops	and	all	files	are
removed	from	the	print	queue.

If	you	enter	the	Print	command	with	no	parameters,	MS-DOS	displays	the	list	of	files	in	the
print	queue.

Examples	of	Printing	a	File

The	following	examples	work	best	with	a	dot-matrix	printer	equipped	with	a	tractor	feed	that
uses	fanfold	paper.	If	you	don't	have	such	a	printer,	or	if	you	use	a	network	printer,	you
might	prefer	to	read	through	these	examples	rather	than	try	them	for	yourself.	On	cut-sheet
printers	and	network	printers	some	examples	might	not	work	as	described,	and	several	can
cause	a	fast	printer	to	use	many	sheets	of	paper.

MS-DOS	advances	the	paper	to	the	next	page	each	time	it	prints	a	new	file,	so	check	what

each	example	does	before	you	try	it.	You	can	then	be	ready	to	stop	the	printing	process,
and	you'll	save	both	time	and	paper.	First,	a	bit	of	preparation.

Most	of	the	sample	files	you	created	in	this	chapter	consist	of	a	single	line	and	would	print
too	quickly	for	you	to	try	using	all	the	Print	parameters	in	the	following	examples.	Copy	the
README.TXT	file	from	the	DOS	directory	on	your	hard	drive	to	your	floppy	disk:
A:\>copy	c:\dos\readme.txt

This	file	is	significantly	larger	than	the	others	on	your	floppy	disk	and	will	certainly	take
plenty	of	time	to	print.

To	print	the	file	README.TXT,	type	this:
A:\>print	readme.txt

The	first	time	you	enter	the	Print	command	after	starting	the	system,	MS-DOS	might	prompt
you	for	the	name	of	the	printer	to	use:
Name	of	list	device	[PRN]:	_

The	brackets	around	PRN	mean	that	MS-DOS	will	use	the	device	named	PRN	if	you	press
the	Enter	key.	Unless	you	have	more	than	one	printer	attached	to	your	system,	or	you	are
using	a	printer	with	a	serial	interface,	just	press	the	Enter	key.	If	you	have	never	printed	with
your	printer,	press	the	Enter	key.

When	you	respond	to	the	prompt,	MS-DOS	loads	the	Print	command	file	into	memory	and
keeps	it	there	until	you	either	turn	the	system	off	or	restart	MS-DOS.	MS-DOS	reports	that
the	program	is	loaded:
Resident	part	of	PRINT	installed

When	MS-DOS	begins	to	carry	out	your	Print	command,	it	displays	the	names	and	print
status	of	the	files	in	the	print	queue:
A:\README.TXT	is	currently	being	printed

There	is	one	file	in	the	print	queue	(README.TXT),	and	it's	now	being	printed.

When	you	printed	a	file	in	Chapter	4	by	copying	it	to	the	printer,	MS-DOS	didn't	display	the
system	prompt—and	you	couldn't	use	the	system—until	the	file	had	been	printed.	This	time
the	system	prompt	returned	as	soon	as	printing	started.	As	soon	as	MS-DOS	starts	printing
a	file	with	the	Print	command,	MS-DOS	is	ready	to	accept	another	command	from	you.

If	you	decide	you	don't	want	to	print	a	file	after	all,	you	can	remove	it	from	the	print	queue
with	the	/C	parameter;	type	the	command	you	see	at	the	top	of	the	next	page	while
README.TXT	is	being	printed:
A:\>print	readme.txt	/c

MS-DOS	displays	a	terse	acknowledgment	of	your	command:

PRINT	queue	is	empty

and	stops	sending	lines	to	your	printer,	even	though	your	printer	will	probably	continue	to
operate	until	it	finishes	printing	the	characters	it	has	already	received.	At	that	point,	the
printer	stops	and	advances	the	paper	to	a	new	page.	If	you	check	the	last	line	of	the
printout,	you	might	see	a	message	like	this:
NOTES	ON	MS-DOS	VERSION	6
=========================

This	file	provides	important	information	not	included	in	the
Microsoft	MS-DOS	User's	Guide	or	in	MS-
File	A:\README.TXT	canceled	by	operator

You	can	put	more	than	one	file	into	the	print	queue	with	a	single	Print	command.	To	tell	MS-
DOS	to	print	both	README.TXT	and	BUDGET.JAN,	type	this:
A:\>print	readme.txt	budget.jan

MS-DOS	starts	printing	README.TXT	and	displays	the	print	queue:
A:\README.TXT	is	currently	being	printed
									A:\BUDGET.JAN	is	in	queue

If	you	want	to	stop	printing,	you	can	remove	all	files	from	the	print	queue	with	the	/T
parameter.	Type	the	following,	again	while	README.TXT	is	being	printed:
A:\>print	/t

Again	MS-DOS	displays	the	acknowledgment	PRINT	queue	is	empty.	This	time	it	also	prints
the	message	All	files	canceled	by	operator	at	the	point	where	it	stopped	printing	and,	again,
advances	the	paper	and	removes	all	remaining	files	from	the	queue.

You	can	also	put	several	files	in	the	print	queue	at	once	by	using	wildcard	characters.	To
print	all	the	files	whose	extension	is	TXT,	type	this:
A:\>print	*.txt

Now	MS-DOS	tells	you	that	there	are	five	files	in	the	queue	(the	order	might	vary),	as	you
see	here:
A:\REPORT.TXT	is	currently	being	printed
									A:\BANK.TXT	is	in	queue
									A:\README.TXT	is	in	queue
									A:\FORECAST.TXT	is	in	queue
									A:\BANKRPT.TXT	is	in	queue

MS-DOS	prints	the	files	in	the	order	shown.	Stop	all	printing	again	by	typing	this:
A:\>print	/t

Again	MS-DOS	stops	printing	the	current	file,	prints	the	cancellation	message,	advances	the
paper,	removes	all	remaining	files	from	the	queue,	and	acknowledges	on	the	screen	PRINT
queue	is	empty.

The	next	example	uses	several	sheets	of	paper.	If	you're	not	using	continuous-form	paper	or
an	automatic	sheet	feeder,	you	shouldn't	try	this	example	because	it	could	easily	print	on	the
platen	of	your	printer;	skip	to	the	section	called	"Changing	Operation	of	the	Print	Command."

The	print	queue	normally	holds	up	to	10	files.	To	fill	it,	tell	MS-DOS	to	print	all	the	files	on
the	floppy	disk	in	drive	A;	there	are	12	text	files,	of	which	MS-DOS	puts	the	first	10	in	the
queue.	Type	the	following:
A:\>print	*.*

MS-DOS	tells	you	the	queue	is	full	and	displays	the	list	of	files	in	the	queue	(again,	the	order
might	vary):
PRINT	queue	is	full

									A:\REPORT.TXT	is	currently	being	printed
									A:\BANK.TXT	is	in	queue
									A:\BUDGET.JAN	is	in	queue
									A:\BUDGET.FEB	is	in	queue
									A:\BUDGET.003	is	in	queue
									A:\RESULTS	is	in	queue
									A:\README.TXT	is	in	queue
									A:\FORECAST.TXT	is	in	queue
									A:\BANKRPT.TXT	is	in	queue
									A:\FINAL	is	in	queue

You	really	don't	need	to	print	all	these	files.	Stop	all	printing	by	typing	this:
A:\>print	/t

MS-DOS	empties	the	queue	and	alerts	you	as	before:
PRINT	queue	is	empty

Changing	Operation	of	the	Print	Command

MS-DOS	initially	limits	the	print	queue	to	10	files,	but	you	can	increase	the	size	of	the	queue
and	can	also	tell	MS-DOS	to	use	a	printer	other	than	the	standard	printer,	PRN.	(More
details	on	printers	are	in	Chapter	7,	"Managing	Your	Devices.")

You	can	change	Print	command	operations	only	the	first	time	you	use	the	Print	command
during	a	session	at	your	computer;	if	you	try	to	use	these	options	again	before	restarting
MS-DOS	or	turning	the	computer	off,	MS-DOS	displays	the	message	Invalid	switch	and
ignores	the	command.

When	used	to	change	the	size	of	the	print	queue	or	the	name	of	the	printer,	the	Print
command	has	two	parameters:

print	/D:<printer>	/Q:<size>

/D:<printer>	tells	MS-DOS	to	use	the	printer	named	<printer>.	If	you	omit	/D:<printer>,	MS-
DOS	uses	the	standard	printer,	named	PRN.

/Q:<size>	tells	MS-DOS	the	number	of	files	the	print	queue	can	hold;	the	minimum	number
is	4,	and	the	maximum	number	is	32.	If	you	omit	/Q:<size>,	the	print	queue	holds	10	files.

If	you	wanted	to	increase	the	size	of	the	print	queue	to	15	files,	you	would	type	print	/q:15
the	first	time	you	used	the	Print	command.	If	you	wanted	to	tell	MS-DOS	to	use	the	printer
named	LPT2,	you	would	type	print	/d:lpt2.	You	can	combine	these	parameters	in	the	same
Print	command,	but	you	cannot	combine	them	with	other	parameters	unless	you	are	entering
the	Print	command	for	the	first	time	since	starting	MS-DOS.

The	Print	command	lets	you	print	text	files	without	losing	the	use	of	your	system	during
printing;	it	can	make	both	you	and	your	system	more	productive.

Be	aware	that	when	you're	using	the	Print	command	to	print	one	or	more	files	stored	on	a
floppy	disk,	MS-DOS	will	continue	to	read	the	floppy	disk	even	though	the	system	prompt
has	been	displayed.	Do	not	remove	the	floppy	disk	until	the	printing	task	has	been
completed.	If	MS-DOS	attempts	to	read	the	floppy	disk,	but	the	disk	has	been	removed
from	the	drive,	no	message	is	displayed	on	the	screen	(another	program	could	now	be	using
the	screen)	but	the	printed	output	will	contain	this	message:
Not	ready	error	reading	file
a:\<filename.ext>

Several	infrequently	used	parameters	that	give	you	more	precise	control	over	how	the	print
program	interacts	with	MS-DOS	are	described	in	Appendix	C,	"MS-DOS	Command
Reference."

	

javascript:Next(0)
javascript:Next(1)

Chapter	6:	Managing	Your	Floppy	Disks

Overview
Disks	are	the	computer's	filing	cabinets.	Managing	your	computer	filing	system	includes	not
only	keeping	track	of	your	files,	as	described	in	the	previous	chapter,	but	also	taking	care	of
your	floppy	disks.	There	are	many	ways	to	prepare	and	store	information	on	floppy	disks;
the	concepts	underlying	floppy	disk	handling,	however,	apply	to	all	microcomputers.

Several	MS-DOS	commands	deal	with	entire	floppy	disks,	not	with	individual	files.	For
example,	you	must	prepare	a	new	floppy	disk	for	use;	this	process	is	called	formatting	(or,
less	commonly,	initializing).	Or,	should	you	need	an	exact	copy	of	a	floppy	disk,	you	don't
copy	each	file	separately;	you	copy	the	entire	floppy	disk	with	one	command.

This	chapter	suggests	ways	to	handle	your	floppy	disks,	briefly	describes	how	MS-DOS
stores	files	on	floppy	disks,	and	shows	you	how	to	do	the	following:

Prepare	a	floppy	disk	for	use	with	the	Format	command

Duplicate	a	floppy	disk	with	the	Diskcopy	command

Compare	the	contents	of	two	floppy	disks	with	the	Diskcomp	command

Analyze	and	report	on	the	use	of	floppy	disk	storage	space	with	the	Check	Disk
command

Assign,	change,	or	delete	the	volume	label	(identifying	name)	of	a	disk	with	the
Label	command

Display	the	volume	label	of	a	disk	with	the	Volume	command

The	Diskcopy	and	Diskcomp	commands	are	for	floppy	disks	only.	A	number	of	other	MS-
DOS	commands,	such	as	Format,	Check	Disk,	Label,	and	Volume,	are	used	with	both
floppy	disks	and	hard	disks.	Additional	commands,	such	as	Backup	and	Restore,	are	used
exclusively	or	primarily	with	hard	disks.	Depending	on	which	chapter	is	most	appropriate,
these	disk-management	commands	are	described	in	this	chapter,	in	Chapter	9,	"Managing
Your	Hard	Disk,"	or	in	Chapter	10,	"Protecting	Your	Disks	and	Files."

	

javascript:Next(0)
javascript:Next(1)

Handling	Floppy	Disks
Floppy	disks	are	remarkably	durable,	especially	the	3.5-inch	type	in	a	hard	plastic	shell.	The
useful	life	of	a	floppy	disk	depends	on	how	often	you	use	it,	of	course,	but	even	more
important	is	how	you	treat	it.	Handle	your	floppy	disks	with	the	same	care	you	use	when
handling	valuable	recording	tapes	or	photographs:

Avoid	touching	the	floppy	disk	surfaces	that	show	through	the	openings	in	the
protective	jacket.	Dirt,	fingerprints,	or	dust	can	shorten	the	life	of	a	floppy	disk	and
can	damage	or	destroy	the	data.

Keep	floppy	disks	away	from	magnets	and	other	sources	of	magnetic	influence,
such	as	telephones,	electric	motors,	and	televisions.

Keep	food	and	drinks	away	from	floppy	disks.	The	same	goes	for	cigarettes,	cigars,
pipes,	and	ashtrays.

Don't	fold,	spindle,	or	mutilate	floppy	disks.	Don't	pile	any	other	objects	on	them.

Don't	write	on	5.25-inch	floppy	disk	labels	with	a	pencil,	ballpoint	pen,	or	other	sharp
instrument;	use	a	felt-tipped	marker.

Store	your	floppy	disks	in	a	safe	place	when	you're	not	using	them.	Protect	them
from	extreme	heat	and	cold,	humidity,	and	contact	with	other	objects.

Many	products	are	available	for	storing	floppy	disks,	including	plastic	boxes,	vinyl	pockets
that	fit	a	three-ring	binder,	and	hanging	file	folders.	All	offer	good	protection;	they	aren't
necessary,	but	they	can	make	it	easier	for	you	to	organize	your	floppy	disks	and	store	them
safely,	rather	than	leaving	them	scattered	around	your	desk.

Although	an	office	is	a	mild	environment	compared	to	a	factory	or	a	shop	floor,	data	on	a
floppy	disk	can	be	damaged	by	such	innocuous	objects	as	a	paper	clip	that	has	been	stored
in	a	magnetic	paper-clip	holder,	a	magnetized	letter	opener,	an	electric	pencil	sharpener,	or
a	telephone-answering	machine.	If	you	put	a	letter	down	on	top	of	a	floppy	disk	lying	on
your	desk,	it's	all	too	easy	to	put	a	hot	coffee	cup	or	a	heavy	object	on	the	letter	without
realizing	that	the	floppy	disk	is	underneath.

The	safest	places	for	a	floppy	disk	are	in	the	computer	and	in	protective	storage.
Information	and	time	are	two	of	your	most	valuable	assets.	A	damaged	floppy	disk	can	cost
you	both,	so	protect	your	floppy	disks	accordingly.

	

javascript:Next(0)
javascript:Next(1)

Backing	Up	Your	Floppy	Disks
Even	though	you	treat	your	floppy	disks	with	care,	they	can	still	be	mislaid	or	damaged	by
accident.	Files	can	be	inadvertently	changed	or	erased,	and	eventually	floppy	disks	simply
wear	out.	Making	backup	copies	of	your	floppy	disks	limits	the	amount	of	information	and
time	you	lose	if	something	goes	wrong.	The	time	it	takes	to	make	these	copies	could	be	one
of	your	better	investments.

Unless	a	floppy	disk	containing	a	program	is	copy	protected	so	that	you	cannot	duplicate	the
original,	make	a	copy	of	the	program	before	you	ever	use	it—even	if	you	plan	to	install	the
program	on	your	hard	disk.	Store	the	original	floppy	disk	in	a	safe	place,	and	use	the	copy.
If	something	happens	to	the	copy,	make	another	copy	from	the	original.	Always	keep	the
original	stored	safely.

Your	collection	of	data	files	will	grow	as	you	use	application	programs	such	as	a	word
processor	or	a	spreadsheet.	Back	up	a	floppy	disk	containing	data	whenever	the	value	of
the	information	it	contains—or	the	time	it	would	take	to	re-create	it—is	greater	than	the
value	of	a	blank	floppy	disk	and	the	few	minutes	it	takes	to	make	a	copy.	Keep	your	backup
copies	in	a	safe	place,	and	use	your	computer	with	the	comforting	thought	that,	should
something	unforeseen	happen,	you're	protected.

	

javascript:Next(0)
javascript:Next(1)

How	Information	Is	Stored	on	a	Floppy	Disk
Information	is	stored	on	a	floppy	disk	much	as	music	or	video	is	recorded	on	tape.	A
description	of	how	MS-DOS	uses	a	floppy	disk	helps	you	understand	the	commands	you
use	to	manage	your	floppy	disks.

What	Is	a	Floppy	Disk?

What	we	call	a	floppy	disk	actually	consists	of	two	parts:	a	disk	of	thin	plastic	coated	with
magnetic	material	and	a	protective	plastic	jacket	or	hard	shell.	Figure	6-1	shows	a	5.25-inch
floppy	disk	in	its	flexible	jacket,	and	Figure	6-2	on	the	next	page	shows	both	the	front	and
back	of	a	3.5-inch	floppy	disk	in	its	hard	shell.

	
Figure	6-1:	A	5.25-inch	floppy	disk.

	
Figure	6-2:	A	3.5-inch	floppy	disk.

The	dashed	lines	in	Figures	6-1	and	6-2	show	how	the	coated	disk	lies	inside	the	protective
jacket.	The	magnetic	coating	itself	is	visible	through	the	openings	in	the	jacket	of	a	5.25-inch
floppy	disk	(the	dark	areas	in	Figure	6-1).	The	spring-loaded	shutter	that	normally	covers
the	opening	in	a	3.5-inch	floppy	disk	is	moved	aside	by	the	floppy	disk	drive	to	provide
access	to	the	magnetic	coating.	The	hole	in	the	center	of	the	disk	goes	around	the	drive
motor,	which	spins	the	disk	so	that	data	can	be	written	(recorded)	or	read	(played	back).

The	write-protect	notch	or	slide	lets	you	protect	all	the	files	on	a	floppy	disk	from	being
erased	or	changed.	To	protect	a	5.25-inch	floppy	disk,	cover	the	write-protect	notch	with
one	of	the	small	tabs	of	tape	included	with	the	box	of	floppy	disks.	To	protect	a	3.5-inch
floppy	disk,	move	the	write-protect	slide	up	(toward	the	edge	of	the	floppy	disk)	until	the

hole	through	the	floppy	disk	shell	is	open.	To	permit	files	on	the	floppy	disk	to	be	changed	or
erased,	remove	the	tape	or	move	the	slide	down	until	the	hole	is	closed.	Protect	your	MS-
DOS	floppy	disks	in	this	way;	protect	each	of	your	application	program	floppy	disks,	too,
unless	the	application	program	manual	tells	you	otherwise.

How	Does	MS-DOS	Keep	Track	of	Files?

Information	is	recorded	on	a	floppy	disk	in	narrow	concentric	circles	called	tracks;	there	are
40	such	tracks	on	a	low-density	360-kilobyte	(360	KB)	floppy	disk	and	80	tracks	on	the
high-density	5.25-inch	and	all	3.5-inch	floppy	disks.	A	track	is	divided	into	smaller	areas
called	sectors,	each	of	which	can	hold	512	bytes.	Figure	6-3	shows	how	tracks	and	sectors
are	laid	out	on	a	floppy	disk.	For	simplicity,	the	illustration	shows	only	four	tracks.

	
Figure	6-3:	Tracks	and	sectors	on	a	floppy	disk.

The	side,	track,	and	sector	numbers	of	the	beginning	of	a	file	are	stored	as	part	of	its
directory	entry.	You	don't	see	this	information	when	you	use	the	Directory	command,	but
MS-DOS	can	find	any	sector	on	a	floppy	disk	by	its	side,	track,	and	sector	numbers,	just	as
you	can	find	any	seat	in	a	theater	by	its	section,	row,	and	seat	numbers.

Floppy	Disk	Capacity

Tracks	on	a	low-density	5.25-inch	floppy	disk	are	numbered	0	through	39	(making	40	in	all);
sectors	are	numbered	1	through	9,	for	a	total	of	360	sectors	(40	tracks	times	9	sectors	per
track)	on	each	side.	Each	sector	holds	512	bytes,	so	the	two	sides	of	a	low-density	floppy
disk	have	an	actual	capacity	of	368,640	bytes	(though	not	all	of	it	is	available	for	files).

A	high-density	5.25-inch	floppy	disk	has	80	tracks	(numbered	0	through	79),	each	of	which
has	15	sectors,	for	a	total	of	1200	sectors	per	side.	A	sector	still	stores	512	bytes,	so	the
two	sides	of	a	high-density	floppy	disk	can	hold	1,228,800	bytes	(1.2	MB).

A	3.5-inch	floppy	disk	has	80	tracks	per	side.	Depending	on	its	capacity,	however,	it	has	9,
18,	or	36	sectors	per	track—still	with	512	bytes	per	sector.	The	9-sector	floppy	disks	can
hold	737,280	bytes	(720	KB);	the	18-sector	floppy	disks	can	hold	1,474,560	bytes	(1.44
MB).	The	36-sector	floppy	disks	can	hold	2,949,120	bytes,	which	equals	2.88	MB.

Volume	Label

Any	disk	can	be	assigned	a	name,	or	volume	label,	to	identify	its	contents.	The	volume	label
can	be	up	to	11	characters	long,	and	you	can	use	the	same	characters	allowed	in	a	file
name,	plus	a	space.	You	can	assign	a	volume	label	when	you	format	a	disk	or	at	any	time
later	on.	MS-DOS	stores	the	volume	label	on	the	disk	and	displays	it	when	you	use	the
Directory,	Check	Disk,	Label,	or	Volume	command.	The	volume	label	is	for	identification
only;	you	can't	use	it	in	a	command	to	specify	a	disk.

	

javascript:Next(0)
javascript:Next(1)

Preparing	for	the	Examples
The	examples	in	this	chapter	require	one	floppy	disk.	If	you	have	version	5	or	later	of	MS-
DOS,	the	Format	command	is	more	sophisticated	than	in	earlier	versions,	so	use	a	new
floppy	disk	that's	never	been	formatted.	If	you	have	an	earlier	version	of	MS-DOS,	use	any
floppy	disk	that	doesn't	contain	any	files	you	want	to	keep	(the	examples	erase	any	data	on
the	floppy	disk).	Put	the	floppy	disk	in	drive	A.

	

javascript:Next(0)
javascript:Next(1)

Preparing	a	Floppy	Disk	for	Use
As	you've	seen,	the	Format	command	prepares	a	floppy	disk	for	use.	The	floppy	disk	can
be	either	new	or	previously	formatted.	However,	formatting	means	you	can	no	longer	use
existing	files,	so	don't	format	a	floppy	disk	that	contains	files	you	need.

In	carrying	out	the	Format	command,	MS-DOS	normally	checks	for	flaws	on	the	recording
surface	of	the	floppy	disk	and	marks	any	bad	sectors	so	they	won't	be	used.	After
formatting,	MS-DOS	displays	a	message	that	tells	you	the	maximum	number	of	bytes	the
floppy	disk	can	hold,	how	many	bytes	(if	any)	are	defective,	and	how	many	bytes	are
available	for	storing	files.	Beginning	with	version	4,	MS-DOS	also	tells	you	how	much
storage	space	the	floppy	disk	has	in	terms	of	allocation	units	(a	term	for	packages	of	bytes
MS-DOS	uses	instead	of	reading	from	or	writing	to	disk	one	byte	at	a	time),	and	it	displays
the	floppy	disk's	volume	serial	number	(a	disk	identifier	MS-DOS	assigns	during
formatting).	As	mentioned	earlier,	this	information	is	unlikely	to	be	of	any	concern	to	you.

MS-DOS	knows	the	type	of	floppy	disk	drive	you	have	and	formats	the	floppy	disk
accordingly.	That	is,	it	can	tell	whether	the	drive	uses	3.5-inch	or	5.25-inch,	low-density	or
high-density	floppy	disks,	and	it	formats	the	floppy	disk	to	match	the	drive's	maximum
capabilities	unless	you	specify	otherwise.

This	does	not	mean,	however,	that	you	can	simply	put	any	floppy	disk	in	any	drive	and	leave
all	the	details	to	MS-DOS.	It	is	up	to	you	to	provide	the	appropriate	floppy	disk	for
formatting.	You	cannot	expect	a	half-gallon	bucket	to	hold	a	gallon	of	water,	nor	can	you
expect	MS-DOS	to	format	a	360-KB	or	720-KB	floppy	disk	to	reliably	hold	1.2	MB	or	1.44
MB	of	information.

You	can,	however,	format	and	use	low-density	floppy	disks	in	a	high-density	drive.	For
example,	if	you	have	a	high-density	3.5-inch	drive	and	run	out	of	1.44-MB	floppy	disks,	you
can	format	720-KB	floppy	disks	in	the	drive	and	use	them	reliably	in	a	720-KB	or	a	1.44-MB
drive.	If	you	have	a	5.25-inch	drive,	you	can	format,	read,	and	write	360-KB	floppy	disks	in
it.	In	this	case,	though,	you	should	expect	to	use	your	360-KB	floppy	disks	only	in	another
high-density	drive	because	a	standard	360-KB	drive	cannot	read	these	floppy	disks	reliably.

The	Format	command	reserves	space	on	the	floppy	disk	for	the	directory,	thus	reducing	the
amount	of	storage	available	for	files.	Because	the	size	of	the	directory	varies,	depending	on
whether	the	floppy	disk	is	low	or	high	density,	the	storage	capacity	of	your	floppy	disks
depends	on	the	type	of	floppy	disk	you	use.	Figure	6-4	shows	floppy	disk	sizes,	tracks	per
side,	number	of	sectors	per	track,	and	total	disk	capacity	for	standard	two-sided	floppy	disk
drives.

Size Tracks	per
Side

Sectors	per
Track

Total	Capacity	in
Bytes

First	Used	in	MS-DOS
Version

3.5-
inch 80 36 2,949,120	(2.88	MB) 5.0

3.5-
inch 80 18 1,474,560	(1.44	MB) 3.3

3.5-
inch 80 9 737,280	(720	KB) 3.2

5.25-
inch 80 15 1,228,800	(1.2	MB) 3.0

5.25-
inch 40 9 368,640	(360	KB) 2.0

Figure	6-4:	Storage	capacity	of	different	floppy	disks.

Format	Command	Parameters

When	used	to	prepare	a	floppy	disk,	the	Format	command	has	the	following	six	main
parameters:

format	<drive>	/4	/F:<size>	/V:<label>	/Q	/U

<drive>	is	the	letter,	followed	by	a	colon,	of	the	drive	that	contains	the	floppy	disk	to	be
formatted	(such	as	b:).	With	version	3.1	or	earlier,	if	you	omit	<drive>,	MS-DOS	formats	the
floppy	disk	in	the	current	drive.	If	you	omit	<drive>	with	later	versions,	MS-DOS	responds
either	Drive	letter	must	be	specified	or	Required	parameter	missing	and	returns	to	the
system	prompt.

/4	formats	a	360-KB	floppy	disk	in	a	high-density	5.25-inch	drive.

/F:<size>,	in	versions	4	and	later,	formats	a	floppy	disk	for	the	capacity	indicated	by	<size>.
You	can	specify	any	appropriate	floppy	disk	capacity	from	160	KB	to	2.88	MB,	and	you	can
type	<size>	in	any	of	the	forms	shown	in	Figure	6-5.	If	you	are	using	version	3.2	or	3.3,	two
alternative	parameters,	/N:<sectors>	and	/T:<tracks>,	let	you	specify	floppy	disk	capacity
by	giving	MS-DOS	the	number	of	sectors	and	tracks	to	format;	examples	are	given	in
Appendix	C,	"MS-DOS	Command	Reference."

Disk
Capacity

Type	in	Any	of	the	Following	Forms	(No	Space	Preceding	K,	KB,	M,
MB)

360	KB 360 360K 360KB

720	KB 720 720K 720KB

1.2	MB 1200 1200K 1200KB 1.2 1.2M 1.2MB

1.44	MB 1440 1440K 1440KB 1.44 1.44M 1.44MB

2.88	MB[a] 2880 2880K 2880KB 2.88 2.88M 2.88MB

[a]Versions	5	and	later.

Figure	6-5:	Ways	to	type	<size>	as	part	of	the	/F:<size>	parameter	of	the	Format
command	in	versions	4	and	later.

/V:<label>,	in	versions	4	and	later,	assigns	the	floppy	disk	the	volume	label	<label>.	This
parameter	speeds	formatting	by	letting	you	specify	the	volume	label	ahead	of	time	and	thus
skip	the	usual	request	for	a	volume	label	that	MS-DOS	otherwise	displays	at	the	end	of	the
format	procedure.	If	you	have	an	earlier	version	of	MS-DOS,	/V	(without	<label>)	works	in
reverse,	telling	MS-DOS	to	request	a	volume	label	at	the	end	of	the	format	procedure.

/Q,	in	versions	5	and	later,	tells	MS-DOS	to	perform	a	quick	format.	You	can	perform	a
quick	format	only	on	a	previously	formatted	disk.	MS-DOS	clears	the	records	on	the	disk
that	tell	it	where	files	are	stored,	but	it	doesn't	prepare	the	disk	for	use	in	any	other	way,	nor
does	it	check	the	disk	for	bad	sectors.	A	quick	format	is	very	fast,	and	even	though	it	isn't
as	thorough	as	a	normal	format,	it	does	make	all	of	the	usable	disk	space	available	for
storing	new	files.

/U,	also	in	versions	5	and	later,	instructs	MS-DOS	to	perform	an	unconditional	format—one
that	clears	the	disk	completely	and	cannot	be	reversed	with	the	Unformat	command.

Warning

If	you're	not	using	version	3.2	or	later	and	you	type	a	Format	command	without
specifying	a	drive	letter,	MS-DOS	formats	the	disk	in	the	current	drive.	If	the
current	drive	is	a	floppy	disk	drive	that	contains	your	system	disk	and	you
haven't	covered	the	write-protect	notch,	MS-DOS	erases	every	file	on	your
system	floppy	disk.

If	the	current	drive	is	a	hard	disk,	formatting	erases	every	file	on	it—not	just
the	MS-DOS	files	but	every	program	and	data	file	you	have	stored.	Be	certain
you	know	which	disk	is	going	to	be	formatted	before	you	press	the	Enter	key
after	typing	in	a	Format	command.

Examples	of	Preparing	a	Floppy	Disk

Format	the	floppy	disk	in	drive	A,	and	give	it	a	volume	label.	If	you	have	version	4	or	later,
type	the	following:
C:\>format	a:	/v:dosdisk

If	you	have	an	earlier	version,	type	this:
C:\>format	a:	/v

MS-DOS	asks	you	to	put	the	floppy	disk	in	drive	A:
Insert	new	diskette	for	drive	A:
and	press	ENTER	when	ready..._

Make	sure	the	right	floppy	disk	is	in	the	drive,	and	then	press	Enter.

If	you're	using	version	5	or	later,	MS-DOS	first	displays	a	message	telling	you	it's	checking	the
existing	format	(if	any)	of	the	disk.	Then	it	begins	the	formatting	and	tells	the	size	of	the	disk	it's
formatting.	Versions	4	and	later	then	report	on	their	progress	with	a	message	that	xx	percent	of
the	disk	has	been	formatted.

If	you're	using	version	3.1	or	an	earlier	version,	MS-DOS	displays	Formatting...	while	it	formats
the	disk.	If	you're	using	version	3.2	or	3.3,	MS-DOS	displays	Head:	0	Cylinder:	0	and	changes
the	head	and	cylinder	numbers	to	show	you	its	progress	(the	term	cylinder	is	another	way	of
referring	to	a	track).

When	MS-DOS	has	formatted	the	floppy	disk,	it	displays	Format	complete.	If	you	have	version
4	or	later,	this	message	is	followed	by	a	report	on	available	storage	space	and,	on	a	separate
line,	the	volume	serial	number	assigned	by	MS-DOS	(which,	if	you're	curious,	is	based	on	the
current	date	and	time).	As	you'll	see	in	a	moment,	MS-DOS	has	also	used	the	parameter
/v:dosdisk	to	name	the	floppy	disk	DOSDISK.	At	the	end	of	the	report,	MS-DOS	asks	if	you
want	to	format	another	floppy	disk:
Format	another	(Y/N)?_

Type	n	and	press	Enter.

If	you're	using	an	earlier	version	of	MS-DOS,	the	Format	complete	message	is	followed	by	a
prompt	for	the	volume	label:
Volume	label	(11	characters,	ENTER	for	none)?	_

Name	the	floppy	disk	DOSDISK	by	typing	the	following:
dosdisk

MS-DOS	displays	the	report	of	available	storage	on	the	floppy	disk	and	asks	if	you	want	to
format	another.	Reply	n.

Now	display	the	directory	of	the	disk:	It's	empty,	but	you	can	see	the	volume	label	on	the	first
line.
C:\>dir	a:

	Volume	in	drive	A	is	DOSDISK
	Volume	Serial	Number	is	2F49-1AFF
	Directory	of	A:\

File	not	found

(If	you	don't	have	version	4	or	later,	you	don't	see	the	volume	serial	number.)

	

javascript:Next(0)
javascript:Next(1)

Copying	a	Complete	Floppy	Disk
The	Diskcopy	command	makes	an	exact	duplicate	of	any	floppy	disk.	If	the	target	floppy
disk	isn't	formatted,	later	versions	of	MS-DOS	format	it	before	copying.	Diskcopy	in	earlier
versions	requires	formatted	floppy	disks.	Diskcopy	works	only	with	floppy	disks	of	the	same
size	and	capacity.	For	example,	you	cannot	use	it	to	copy	from	a	360-KB	floppy	disk	to	a
formatted	1.2-MB,	5.25-inch	floppy	disk,	nor	can	you	use	it	to	copy	from	a	hard	disk	to	any
floppy	disk.

The	Diskcopy	command	has	three	main	parameters:
diskcopy	<source>	<target>	/V

<source>	is	the	letter,	followed	by	a	colon,	of	the	drive	that	contains	the	floppy	disk	to	be
copied	(such	as	a:).

<target>	is	the	letter,	followed	by	a	colon,	of	the	drive	that	contains	the	floppy	disk	that	is	to
receive	the	copy	(such	as	b:).	If	you	have	only	one	floppy	disk	drive,	<source>	and	<target>
can	be	the	same	letter	(for	example,	diskcopy	a:	a:).

/V	(verify)	ensures	that	the	floppy	disk	is	copied	correctly.

If	you	omit	<target>,	MS-DOS	copies	from	the	floppy	disk	in	<source>	to	the	floppy	disk	in
the	current	drive;	if	you	omit	<target>	and	you	specify	the	current	drive	as	<source>,	MS-
DOS	assumes	you	want	to	use	only	the	current	drive	and	prompts	you	to	switch	floppy
disks	during	the	copy.	If	you	don't	specify	either	<source>	or	<target>,	MS-DOS	assumes
you	want	to	use	only	the	current	drive	and	prompts	you	to	switch	floppy	disks	during	the
copy.

Examples	of	Copying	a	Floppy	Disk

This	example	copies	an	existing	floppy	disk,	duplicating	information	from	the	source	floppy
disk	to	the	target	floppy	disk.	Use	one	of	your	MS-DOS	floppy	disks	as	the	source.	If	your
MS-DOS	floppy	disks	are	not	close	at	hand,	use	a	floppy	disk	for	one	of	your	application
programs	or	use	a	data	floppy	disk—the	one	you	used	for	the	examples	in	Chapter	5,
"Managing	Your	Files,"	will	do.	Put	the	source	floppy	disk	in	drive	A.

Before	proceeding,	be	sure	that	your	target	floppy	disk	is	either	unformatted	or	formatted
for	the	same	capacity	as	the	source	floppy	disk.	Remember,	Diskcopy	works	only	if	the
target	floppy	disk	is	or	can	be	formatted	for	the	same	capacity	as	the	source.

If	You	Have	One	Floppy	Disk	Drive

Because	you	have	only	one	floppy	disk	drive,	MS-DOS	must	use	it	for	both	the	source	and
the	target	floppy	disks,	prompting	you	to	exchange	floppy	disks	as	required.	Check	that	the
source	floppy	disk	is	in	the	floppy	disk	drive.

To	copy	the	floppy	disk,	type	this:
C:\>diskcopy	a:	a:

MS-DOS	prompts	you	to	put	in	the	source	floppy	disk:
Insert	SOURCE	diskette	in	drive	A:
Press	any	key	to	continue	.	.	.

You	put	the	floppy	disk	in	already,	so	press	any	key.	MS-DOS	tells	you	how	many	tracks,
sectors,	and	sides	it's	copying,	then	prompts	you	to	put	the	target	floppy	disk	in	the	drive:
Insert	TARGET	diskette	in	drive	A:
Press	any	key	to	continue	.	.	.

Remove	the	source	floppy	disk,	put	in	the	target	floppy	disk,	and	press	a	key.	If	the	floppy
disk	is	unformatted	and	your	version	of	MS-DOS	formats	as	it	copies,	a	message	tells	you
what	is	happening.	If	you're	using	version	6.0	or	earlier,	MS-DOS	will	also	prompt	you	to
exchange	floppy	disks	until	it	has	finished	copying	the	original.	When	MS-DOS	has	finished,
it	asks	if	you	want	to	copy	another:
Copy	another	diskette	(Y/N)?		_

Reply	n.

MS-DOS	versions	6.2	and	later	can	read	the	entire	source	floppy	disk	(using	the	hard	disk
for	temporary	storage),	then	write	the	entire	target	floppy	disk,	eliminating	the	numerous
floppy	disk	changes	required	in	previous	versions.

If	You	Have	Two	Floppy	Disk	Drives

If	your	system	has	two	disk	drives	of	different	types	(a	3.5-inch	and	a	5.25-inch),	you	can't
use	both	drives	because	the	Diskcopy	command	only	works	with	identical	floppy	disks.	You
can,	however,	copy	a	disk	by	using	just	one	drive;	follow	the	instructions	under	the
preceding	heading,	"If	You	Have	One	Floppy	Disk	Drive."

If	your	system	has	two	identical	floppy	disk	drives,	your	source	floppy	disk	should	be	in
drive	A.	To	copy	the	source	floppy	disk	in	drive	A	to	the	target	floppy	disk	in	drive	B,	type
this:
A:\>diskcopy	a:	b:

MS-DOS	prompts	you	to	put	in	the	floppy	disks.	Put	the	target	floppy	disk	in	drive	B	and
press	a	key.	MS-DOS	tells	you	how	many	tracks,	sectors,	and	sides	it's	copying,	then	asks
if	you	want	to	copy	another;	reply	n.

	

javascript:Next(0)
javascript:Next(1)

Comparing	Two	Floppy	Disks
Occasionally	you'll	want	to	know	whether	two	floppy	disks	are	identical.	The	Diskcomp
command	compares	two	floppy	disks	track	by	track.	Diskcomp	can	be	used	only	with	floppy
disks	of	the	same	size	and	capacity;	you	cannot	use	it	to	compare	a	hard	disk	with	a	floppy
disk.

Note

Just	because	two	floppy	disks	contain	the	same	files,	they're	not	necessarily
identical—the	files	might	be	stored	in	different	sectors.	If	you	want	to	compare	all
the	files	on	two	floppy	disks,	rather	than	the	floppy	disks	themselves,	use	the	File
Compare	(fc)	command	described	in	Chapter	5,	"Managing	Your	Files,"	and
specify	all	files	(*.*).

The	Diskcomp	command	has	two	main	parameters:
diskcomp	<drive1>	<drive2>

<drive1>	and	<drive2>	are	the	drive	letters,	each	followed	by	a	colon,	of	the	drives
containing	the	floppy	disks	to	be	compared	(such	as	a:	and	b:).

If	MS-DOS	finds	any	differences,	it	displays	the	side	and	track	of	each—as	you	see	here:
Compare	error	on
side	0,	track	33

Examples	of	Comparing	Two	Floppy	Disks

Follow	the	instructions	under	the	heading	that	describes	your	system.

If	You	Have	One	Floppy	Disk	Drive

To	compare	the	source	floppy	disk	to	the	copy	you	just	made,	type	this:
C:\>diskcomp	a:	a:

MS-DOS	prompts	you	to	put	in	the	first	floppy	disk:
Insert	FIRST	diskette	in	drive	A:
Press	any	key	to	continue	.	.	.

Make	sure	the	copy	you	just	made	is	in	the	drive,	then	press	a	key.	You	will	see	something
like	this:
Comparing	80	tracks

18	sectors	per	track,	2	side(s)

MS-DOS	prompts	you	to	put	in	the	second	floppy	disk:
Insert	SECOND	diskette	in	drive	A:

Press	any	key	to	continue	.	.	.

Remove	the	floppy	disk,	put	in	the	source	floppy	disk	you	used	for	the	Diskcopy	example,
and	then	press	a	key.	If	necessary,	MS-DOS	continues	to	prompt	you	to	exchange	floppy
disks	until	it	finally	tells	you	it's	done	and	asks	if	you	want	to	compare	more	floppy	disks:
Compare	OK

Compare	another	diskette	(Y/N)	?_

Reply	n.

If	You	Have	Two	Floppy	Disk	Drives

If	your	system	has	two	disk	drives	of	different	types	(a	3.5-inch	and	a	5.25-inch),	you	can't
use	both	drives	because	the	Diskcomp	command	works	only	with	identical	floppy	disks.	You
can,	however,	compare	disks	by	using	just	one	drive;	follow	the	instructions	under	the
preceding	heading,	"If	You	Have	One	Floppy	Disk	Drive."

If	your	system	has	two	identical	floppy	disk	drives,	you	can	compare	the	floppy	disk	in	drive
B	(the	copy	you	just	made)	to	the	floppy	disk	in	drive	A	(the	floppy	disk	you	used	as	your
source)	by	typing	this:
C:\>diskcomp	a:	b:

MS-DOS	prompts	you	to	put	in	the	floppy	disks:
Insert	FIRST	diskette	in	drive	A:
Insert	SECOND	diskette	in	drive	B:
Press	any	key	to	continue	.	.	.

The	floppy	disks	are	already	in	the	drives,	so	press	a	key.	MS-DOS	reports	how	many
tracks,	sectors,	and	sides	it	is	comparing,	then	reports	the	results	of	the	comparison	and
asks	if	you	want	to	compare	more	floppy	disks:
Comparing	80	tracks
18	sectors	per	track,	2	side(s)
Compare	OK
Compare	another	diskette	(Y/N)	?_

Reply	n.

	

javascript:Next(0)
javascript:Next(1)

Checking	the	Condition	of	a	Disk
Computers	aren't	infallible;	malfunctions	can	produce	errors	in	the	directory	of	a	disk.	Such
errors	are	rare,	but	the	Check	Disk	(chkdsk)	command	helps	by	making	sure	that	all	files
are	recorded	properly.

Note
If	you're	using	version	6.2	or	later,	the	ScanDisk	program	is	a	better	tool	for
detecting	and	correcting	disk	errors.	ScanDisk	is	described	in	Chapter	9,
"Managing	Your	Hard	Disk,"	in	the	section	called	"Checking	a	Disk	for	Errors."

Check	Disk	analyzes	the	directory	on	a	disk,	comparing	the	directory	entries	with	the
locations	and	lengths	of	the	files,	and	reports	any	errors	it	finds.	The	Check	Disk	report
includes	the	following	items:

The	total	amount	of	space	on	the	disk

The	number	of	files	and	directories	and	how	much	space	they	use

How	much	space	on	the	disk	remains	available	for	files

In	versions	4	and	later,	the	size	of	each	allocation	unit,	the	number	of	such	units	on
the	disk,	and	the	number	available	for	storage

The	size	of	the	computer's	memory	(up	to	640	KB)	and	how	many	bytes	remain	free
for	use

You	can	also	ask	the	command	to	display	the	name	of	each	file	on	the	disk	and	to	check
whether	any	files	are	stored	inefficiently.

If	possible,	MS-DOS	stores	files	in	adjacent,	or	contiguous,	sectors.	As	files	are	deleted
and	new	files	are	stored,	however,	they	can	become	fragmented	(stored	in	nonadjacent
sectors).	A	fragmented	file	isn't	a	cause	for	worry;	the	worst	that	can	happen	is	that	MS-
DOS	will	take	slightly	longer	to	read	the	file.	If	several	files	on	a	floppy	disk	are	fragmented,
you	can	restore	them	to	contiguous	sectors	by	copying	all	the	files	to	an	empty,	formatted
floppy	disk	with	the	Copy	command.	(Remember,	don't	use	the	Diskcopy	command	because
it	makes	a	faithful	sector-by-sector	copy	of	the	floppy	disk,	storing	the	files	in	exactly	the
same	nonadjacent	sectors	in	which	they	are	stored	on	the	original	floppy	disk.)

The	Check	Disk	command	has	four	parameters:
chkdsk	<drive><filename>	/V	/F

<drive>	is	the	letter,	followed	by	a	colon,	of	the	drive	that	contains	the	disk	to	be	checked.	If
you	omit	<drive>,	MS-DOS	checks	the	disk	in	the	current	drive.

<filename>	is	the	name	of	the	file	whose	storage	you	want	MS-DOS	to	check.	MS-DOS
displays	a	message	if	the	file	is	stored	in	noncontiguous	sectors.	You	can	use	wildcard
characters	to	check	a	set	of	files.

/V	displays	the	name	of	each	directory	and	file	on	the	disk.

/F	tells	MS-DOS	to	correct	any	errors	it	finds	in	the	directory	if	you	so	specify	when	the
error	is	found.

Examples	of	Checking	a	Disk

Check	the	floppy	disk	in	drive	A	by	typing	this:
C:\>chkdsk	a:

Press	any	key	if	MS-DOS	prompts	you	to	insert	a	floppy	disk	in	drive	A.

MS-DOS	displays	its	report.	(The	report	you	see	might	be	different;	this	example	is	for	a
360-KB	floppy	disk.)
Volume	DOSDISK						created	on	01-05-1995	12:00a
Volume	Serial	Number		is	1BC6-425F

					362496	bytes	total	disk	space
					350208	bytes	in	10	user	files
						12288	bytes	available	on	disk

							1024	bytes	in	each	allocation	unit
								354	total	allocation	units	on	disk
									12	available	allocation	units	on	disk

					655360	total	bytes	memory
					562384	bytes	free

Note
The	Check	Disk	report	for	MS-DOS	6.2	and	later	includes	a	paragraph	at	the	end
of	the	report	advising	you	to	use	the	Scan	Disk	command	instead	of	Check	Disk.
See	Chapter	9	for	more	information	on	Scan	Disk.

To	check	the	floppy	disk	in	drive	A,	and	to	check	whether	all	files	on	it	are	stored	in
contiguous	sectors,	type	this:
C:\>chkdsk	a:*.*

MS-DOS	displays	the	same	report	as	the	preceding	but	adds	the	following	message:
All	specified	file(s)	are	contiguous

If	any	files	were	stored	in	noncontiguous	sectors,	MS-DOS	would	display	their	names	and
the	number	of	noncontiguous	blocks	of	storage	in	place	of	this	message.

To	check	the	floppy	disk	in	drive	A	and	at	the	same	time	display	the	name	of	each	file	on	it,
type	this:

C:\>chkdsk	a:	/v

MS-DOS	displays	the	name	of	each	file	on	the	floppy	disk	and	then	adds	its	usual	report	of
disk	space	and	memory	available.	If	the	list	of	files	scrolls	off	the	top	of	the	screen,
remember	that,	to	view	it	all,	you	can	freeze	the	display	by	pressing	the	Pause	key	or	Ctrl-
Num	Lock,	or	use	the	More	command.

Note
If	the	files	on	the	floppy	disk	are	organized	into	directories,	the	/V	parameter	of	the
Check	Disk	command	lists	the	directories,	as	well	as	the	files	they	contain.
Directories	are	described	in	Chapter	8,	"A	Tree	of	Files."

You	can	combine	the	Check	Disk	parameters	in	one	command;	for	example,	chkdsk	a:*.*	/v
would	check	the	floppy	disk	in	drive	A,	check	all	files	on	it	for	fragmentation,	and	display	the
names	of	all	files.

If	the	Check	Disk	command	finds	an	error	in	the	directory,	it	displays	a	message	such	as	xx
lost	allocation	units	found	in	yy	chains.	Convert	lost	chains	to	files	(Y/N)?	Although	this
message	might	look	confusing,	it	simply	means	that	Check	Disk	has	found	some	storage
units	on	the	disk	that	have	been	used	but,	because	of	a	program	or	system	problem,	aren't
linked	with	any	particular	files.	If	you	type	the	Check	Disk	command	with	the	/F	parameter
and	then	type	y	when	the	Convert	lost	chains...	message	appears,	MS-DOS	turns	these
"lost"	units	into	files	with	the	file	name	and	extension	FILEnnnn.CHK	(where	nnnn	is	a
number	such	as	0001).	Depending	on	the	type	of	error	that	caused	these	units	to	be	lost,
MS-DOS	may	or	may	not	be	able	to	recover	the	data	in	them.	When	the	Check	Disk
command	is	complete,	you	can	look	at	the	contents	of	these	files	with	the	MS-DOS	Editor
and	decide	whether	or	not	they	contain	information	you	want	to	save.	If	you	don't	want	to
save	the	information,	delete	the	files	to	make	the	storage	space	available	for	new	files.

	

javascript:Next(0)
javascript:Next(1)

Assigning	or	Changing	a	Disk's	Volume	Label
The	Label	command	assigns,	changes,	or	deletes	the	volume	label	of	a	floppy	disk	or	a
hard	disk.	It	has	two	parameters:

label	<drive><newlabel>

<drive>	is	the	letter,	followed	by	a	colon,	of	the	drive	(such	as	a:)	that	contains	the	disk
whose	volume	label	is	to	be	changed.

<newlabel>	is	the	volume	label	to	be	assigned	to	the	disk	in	<drive>.

If	you	omit	<drive>,	MS-DOS	assumes	you	want	to	change	the	label	of	the	disk	that's	in	the
current	drive.	If	you	omit	<newlabel>,	MS-DOS	prompts	you	to	enter	the	new	label.

Examples	of	Changing	a	Disk's	Volume	Label

At	the	beginning	of	this	chapter,	you	used	the	/V	option	of	the	Format	command	to	assign
the	volume	label	DOSDISK	to	a	floppy	disk.	Sometimes	you'll	want	to	change	a	volume
label.	You	can	do	so	with	the	Label	command.	Put	your	sample	floppy	disk	in	drive	A,	and
then	type	the	Label	command:
C:\>label	a:

MS-DOS	responds	with	something	like	this:
Volume	in	drive	A	is	DOSDISK
Volume	Serial	Number	is	2F49-1AFF
Volume	label	(11	characters,	ENTER	for	none)?	_

The	sample	disk	isn't	really	an	MS-DOS	disk,	so	change	its	name	to	MYDISK	by	typing	this:
mydisk

and	press	Enter.

If	the	floppy	disk	had	a	volume	label	and	you	wanted	to	delete	it,	you	would	reply	to	the
prompt	by	pressing	the	Enter	key	without	typing	a	name.	MS-DOS	would	next	ask	you
Delete	current	volume	label	(Y/N)?	You	would	then	reply	y	to	delete	the	volume	label.

	

javascript:Next(0)
javascript:Next(1)

Displaying	a	Disk's	Volume	Label
The	Volume	(vol)	command	also	displays	the	volume	label	and	volume	serial	number	of	a
hard	disk	or	a	floppy	disk	but	doesn't	ask	for	a	new	label	as	the	Label	command	does.	If
you	assign	descriptive	volume	labels	to	your	floppy	disks	when	you	format	them,	you	can
use	the	Volume	command	to	make	sure	that	you're	using	the	correct	floppy	disks.	It's	faster
and	easier	than	checking	the	directory.

The	Volume	command	has	one	parameter:
vol	<drive>

<drive>	is	the	letter,	followed	by	a	colon,	of	the	drive	(such	as	a:)	that	contains	the	floppy
disk	whose	volume	label	is	to	be	displayed.	If	you	omit	<drive>,	MS-DOS	displays	the
volume	label	of	the	disk	in	the	current	drive.

To	display	the	volume	label	of	the	floppy	disk	in	drive	A,	type	this:
C:\>vol	a:

MS-DOS	displays	the	volume	label:
Volume	in	drive	A	is	MYDISK
Volume	Serial	Number	is	2F49-1AFF

If	the	floppy	disk	had	no	volume	label,	MS-DOS	would	respond	Volume	in	drive	A	has	no
label,	followed	by	the	volume	serial	number.

	

javascript:Next(0)
javascript:Next(1)

Chapter	7:	Managing	Your	Devices

Overview
Data	flows	into	and	out	of	a	computer	system	through	pieces	of	equipment	called	devices.
Devices	are	categorized	by	whether	they	handle	data	coming	in	(input)	or	going	out	(output)
or	both.	The	keyboard,	for	example,	is	an	input	device;	the	computer	gets	information	from
it.	A	printer	is	an	output	device;	the	computer	sends	information	to	it.	A	disk	drive	is	both	an
input	device	and	an	output	device;	the	computer	can	either	read	a	file	from	a	disk	or	write	a
file	onto	a	disk.

Some	devices,	such	as	the	keyboard,	don't	usually	need	much	attention	from	you	because
MS-DOS	requires	no	special	instructions	to	operate	them.	You	can,	however,	fine-tune	their
performance,	as	you'll	see	later	in	this	chapter.	Other	devices	can	be	operated	in	different
ways	and	so	allow	you	to	tell	MS-DOS	how	you	want	to	use	them.	For	example,	modems
follow	certain	rules	in	transferring	information,	and	some	displays	allow	you	to	change	the
number	of	lines	shown	on	the	screen.	With	MS-DOS,	you	can	set	up	a	modem	to	work	as	it
should	and	just	as	easily	alter	your	display	to	work	as	you	want.

Displays,	keyboards,	printers,	and	the	computer's	communications	channels,	called	ports,
can	all	be	used	in	a	variety	of	ways.	This	chapter	shows	you	how	to	do	the	following	with
the	MS-DOS	commands	that	help	you	manage	your	system:

Check	on	system	memory	with	the	Mem	command

Clear	the	screen	with	the	Clear	Screen	(Cls)	command

Set	with	the	Mode	command	the	speed	at	which	your	keyboard	repeats	a	key	that
is	held	down

Specify	the	number	of	characters	and	lines	appearing	on	the	screen	with	the	Mode
command

Control	the	width	and	line	spacing	of	your	printer	with	the	Mode	command

Define	the	settings	of	the	communications	ports	with	the	Mode	command

Copy	from	a	device	to	a	file	or	to	another	device	with	the	Copy	command

Enable	MS-DOS	to	print	graphics	with	the	Graphics	command

Change	your	keyboard	layout	for	use	with	a	different	language	with	the	Keyboard
(Keyb)	command

	

javascript:Next(0)
javascript:Next(1)

Device	Names
Just	as	files	have	names,	so	do	devices.	You	can	use	a	device	name	in	many	MS-DOS
commands	just	as	you	would	use	a	file	name.	MS-DOS	assigns	all	device	names,	however.
You	can't	name	a	device	yourself.	Figure	7-1	on	the	following	page	shows	the	devices	that
make	up	a	typical	system,	with	the	names	assigned	to	them	by	MS-DOS.

	
Figure	7-1:	MS-DOS	device	names.

CON	is	short	for	Console.	It	is	both	an	input	device	and	an	output	device	and	refers	to	both
the	keyboard	(input)	and	the	display	(output).	Because	the	keyboard	is	input	only	and	the
display	is	output	only,	MS-DOS	can	tell	which	one	to	use	by	the	way	you	use	the	name	CON
in	a	command.

PRN	is	short	for	Printer.	It	is	an	output	device	and	refers	to	the	parallel	printer	that	MS-DOS
uses	unless	you	specify	otherwise	(much	as	MS-DOS	looks	for	files	on	the	current	drive
unless	you	specify	otherwise).	You	can	attach	as	many	as	three	parallel	printers	(named
LPT1,	LPT2,	and	LPT3)	to	your	computer;	PRN	usually	means	LPT1.

AUX	is	short	for	Auxiliary.	It	is	for	both	input	and	output	and	refers	to	the	communications
port	that	MS-DOS	uses	unless	you	instruct	otherwise.	You	can	attach	devices	to	one	or	two
communications	ports,	named	COM1	and	COM2,	with	any	version	of	MS-DOS;	if	you're
using	version	3.3	or	later,	you	can	attach	devices	to	up	to	four	communications	ports	(COM1
through	COM4).	Unless	you	or	a	program	specifies	otherwise,	MS-DOS	assumes	that	AUX
means	COM1.	On	a	typical	system,	COM1	could	be	used	for	a	modem,	and	COM2	could
be	used	for	a	serial	printer—or	vice	versa.

MS-DOS	reserves	these	names	for	use	with	devices	only;	you	cannot	give	any	of	these
names	to	a	file.

	

javascript:Next(0)
javascript:Next(1)

Preparing	for	the	Examples

Note
Devices	on	a	network	are	shared	resources	set	up	to	respond	to	requests	from
more	than	one	authorized	user.	If	your	computer	is	part	of	a	network,	check	with
your	network	administrator	before	attempting	to	manipulate	or	change	the	settings
of	shared	printers	or	other	shared	devices.

Devices	often	need	very	specific	setup	instructions	and	operating	parameters.	All	the
examples	in	this	chapter	work	with	IBM	and	IBM-compatible	personal	computers,	displays,
and	printers.	If	you're	not	using	one	of	these	machines,	you	might	need	to	use	different
instructions	to	manage	your	devices.	Refer	to	your	documentation	for	specific	information.

When	you	try	the	examples,	make	sure	the	devices	you	name	are	attached	to	the	system
and	are	turned	on.	You	won't	hurt	anything	by	entering	a	command	naming	a	device	that	isn't
present	or	isn't	ready,	but	the	command	may	cause	an	error	that	requires	you	to	restart
MS-DOS.

	

javascript:Next(0)
javascript:Next(1)

Checking	System	Memory	with	the	Mem	Command
Even	though	computer	memory	isn't	a	device	as	you	would	normally	think	of	the	term,	it	can
be	both	useful	and	reassuring	to	know	how	much	memory	a	system	contains,	what
programs	have	been	loaded	into	memory,	and	how	much	can	be	used	by	another	program.
Beginning	with	version	4	of	MS-DOS,	you	can	use	the	Mem	command	to	request	a	report
on	memory	and	memory	usage.	Type	this:
C:\>mem

MS-DOS	quickly	produces	a	report	like	this	one:
Memory	Type								Total	=			Used		+	Free
_________			___										___										___
Conventional								640K							26K			614K
Upper															147K							53K				94K
Adapter	RAM/ROM					237K						237K					OK
Extended	(XMS)					3072K					2424K			648K
Expanded	(EMS)								OK								OK					OK
_______								___											___						___
Total	memory							4096K					2740K		1356K

Total	under	1	MB				787K							79K			708K

Largest	executable	program	size						614K		(629120	bytes)
Largest	free	upper	memory	block							64K			(65552	bytes)
MS-DOS	is	resident	in	the	high	memory	area.

This	is	the	type	of	report	you	see	with	version	6.0	on	an	IBM	or	compatible	computer	that
has	640	KB	of	regular,	or	conventional,	memory	plus	3.4	MB	of	extended	memory	(4	MB
total	memory).

The	upper	part	of	the	report—the	table—tells	how	much	memory	of	each	type	is	installed,
how	much	is	used,	and	how	much	is	free:

Conventional	memory	is	the	regular	memory	used	by	MS-DOS	and	application
programs.	The	report	shows	that	640	KB	of	memory	is	installed	in	the	computer;	26
KB	is	being	used	and	614	KB	is	free	(available	for	use	by	other	programs).

Upper	memory	is	the	memory	previously	(before	version	5)	available	only	to	devices
such	as	displays	but	now	available	to	programs.	The	report	shows	that	the
computer	has	147	KB	of	upper	memory;	53	KB	is	being	used	and	94	KB	is	free.

Adapter	RAM/ROM	is	memory	installed	on	printed-circuit	cards	that	operate	devices
(such	as	display	adapters)	attached	to	the	computer.	The	report	shows	that	the
cards	installed	in	the	computer	have	a	total	of	237	KB	of	memory,	and	all	of	it	is
being	used.	(In	versions	6.2	and	later,	the	memory	type	Adapter	RAM/ROM	is
identified	as	Reserved).

Extended	(XMS)	memory	is	additional	memory	installed	in	a	computer	that	can	be
used	by	application	programs,	as	well	as	by	MS-DOS.	The	report	shows	that	3072
KB	of	extended	memory	is	installed	in	the	computer;	2424	KB	is	being	used	and	648
KB	is	free.

Note

Expanded	(EMS)	memory	is	anothertype	of	additional	memory	that	can	be
installed	in	a	computer.	It	also	can	be	used	under	certain	circumstances	by
both	application	programs	and	MS-DOS.	Mem	reports	the	amount	of
expanded	memory,	if	you	have	any.	See	Appendix	C,	"MS-DOS	Command
Reference,"	for	a	full	description.

The	middle	two	lines	of	the	report	summarize	the	total	memory	figures.	Following	these	lines
there	are	two	lines	that	tell	you	the	largest	block	of	memory	available	in	conventional
memory	and	the	largest	block	of	memory	available	in	upper	memory.	The	figures	for	the
largest	blocks	of	conventional	and	upper	memory	available	will	vary	with	the	amount	of
memory	installed	in	a	computer,	the	version	of	MS-DOS	it	runs,	and	the	types	of	programs
being	used.

The	last	line	of	the	report	confirms	that	MS-DOS	is	loaded	in	the	high	memory	area.	(The
high	memory	area,	or	HMA,	is	a	special	portion	of	extended	memory.)	This	information	is
really	quite	important:	It	tells	you	that	MS-DOS	has	placed	a	large	part	of	itself	outside	the
computer's	640	KB	of	conventional	memory	in	order	to	give	application	programs	more
room	to	work.	In	MS-DOS,	this	ability	to	use	high	memory	is	a	significant	feature	available
only	in	versions	5	and	later.	More	details	on	extended	memory	and	high	memory	are	in
Chapter	17,	"Tailoring	Your	System."

In	MS-DOS	version	6,	the	Mem	command	includes	five	parameters,	most	of	which	cause
MS-DOS	to	produce	a	more	detailed	report	of	memory	use.	The	detailed	reports	probably
won't	seem	very	meaningful	unless	you're	interested	in	programming	or	in	learning	about	the
inner	workings	of	your	computer.	The	parameters	are	discussed	in	Appendix	C,	"MS-DOS
Command	Reference."

	

javascript:Next(0)
javascript:Next(1)

Clearing	the	Screen
Sometimes	you	might	want	to	erase	distracting	clutter	from	the	screen:	old	directory	listings,
perhaps,	or	the	display	of	commands	MS-DOS	has	already	completed	for	you.	You	can
clean	things	up	with	the	Clear	Screen	(Cls)	command,	which	erases	everything	on	the
screen	and	then	displays	the	system	prompt	in	the	upper	left	corner.

The	Clear	Screen	command	has	one	form:
cls

To	test	it,	type	its	name:
C:\>cls

The	screen	is	cleared,	except	for	the	system	prompt,	which	is	placed	in	the	upper	left
corner	of	the	screen.

	

javascript:Next(0)
javascript:Next(1)

Fine-Tuning	the	Keyboard
Beginning	with	version	4	of	MS-DOS,	you	can	control	how	quickly	a	keystroke	repeats	when
you	press	and	hold	a	key.	To	change	the	way	your	keyboard	operates,	you	use	the	Mode
command,	an	all-purpose	device-control	command	that	lets	you	tell	MS-DOS	how	you	want
to	use	not	only	your	keyboard	but	many	other	parts	of	your	computer	system,	including	your
display	and	printer.

To	control	your	keyboard,	the	Mode	command	has	three	parameters:
mode	con	rate=<speed>	delay=<pause>

con	is	the	name	of	the	console	device	(here,	the	keyboard).

rate=<speed>	specifies	the	speed	at	which	MS-DOS	is	to	repeat	the	keystroke.	You	can
specify	any	number	from	1	through	32,	with	32	being	the	fastest	rate.

delay=<pause>	specifies	how	long	MS-DOS	is	to	wait	before	starting	to	repeat	the
keystroke.	You	can	specify	1	for	a	0.25-second	delay,	2	for	a	0.5-second	delay,	3	for	a
0.75-second	delay,	or	4	for	a	1-second	delay.

You	must	specify	both	a	rate	and	a	delay.	For	example,	the	average	keyboard	repeats
about	20	times	per	second	with	a	delay	of	0.5	second	before	repeating	begins.	To	see	the
effect	of	this	version	of	the	Mode	command,	slow	the	keyboard	repeat	rate	and	delay.	Type
this:
C:\>mode	con	rate=1	delay=4

and	try	holding	down	the	X	key	to	see	the	result.

If	you	are	a	fast	typist,	impatient	with	a	too-slow	keyboard,	set	the	rate	to	a	high	value,
such	as	32,	and	set	the	delay	to	a	low	number,	such	as	1.	To	slow	keyboard	repetition,
lower	the	rate	and,	if	you	want,	increase	the	delay	time.	To	reset	the	keyboard	to	its	regular
repeat	rate	and	delay,	type	this:
C:\>mode	con	rate=20	delay=2

	

javascript:Next(0)
javascript:Next(1)

Controlling	the	Display
A	number	of	different	displays	and	display	adapters	(the	printed-circuit	cards	that	operate
the	display)	are	used	with	IBM	personal	computers	and	compatible	machines.	Figure	7-2
describes	the	most	commonly	used	types	of	displays	and	display	adapters.

Short
Name

Product
Name Description

MDA
Monochrome
Display
Adapter

Text	only,	medium	resolution,	one	color	(usually	green	on	a	dark
background).

CGA Color/Graphics
Adapter Text	and	graphics,	low	resolution,	up	to	16	colors.

Hercules

None	(works
with
monochrome
display)

Displays	graphics	on	monochrome	display.	(Not	compatible	with
CGA.	An	application	program	must	specifically	support	the
Hercules	board,	but	most	major	applications	do	because	of	its
popularity.)

EGA
Enhanced
Graphics
Adapter

Text	and	graphics,	medium	resolution,	up	to	16	colors.

MCGA
Multicolor
Graphics
Array

Text	and	graphics,	low	to	medium	resolution,	up	to	256	colors.

VGA
Video
Graphics
Array

Text	and	graphics,	medium	to	high	resolution,	up	to	256	colors.

SVGA
Super	Video
Graphics
Array

Text	and	graphics,	medium	to	very	high	resolution,	up	to	256
colors	and	beyond.

Figure	7-2:	Common	displays	and	adapters.

The	Mode	command	has	several	display-related	options.	Which	one	you	use	depends	on
the	type	of	display	you	have	and	how	much	you	want	to	see	on	the	screen.

Normally,	a	computer	screen	displays	80	columns	(characters)	across	and	25	lines	down.	If
you	have	an	EGA	or	a	VGA	display,	you	can,	beginning	with	version	4,	change	the	size	of
the	characters	on	your	display	and	the	number	of	lines	on	the	screen.	When	used	in	this
way,	the	Mode	command	has	three	parameters:

mode	con	cols=<columns>	lines=<lines>

con	is	the	name	of	the	console	device	(here,	it	means	the	display).

cols=<columns>	sets	the	number	of	characters	displayed	on	each	line.	The	<columns>
parameter	can	be	either	40	(for	extra-large	characters)	or	80	(for	normal-size	characters).

lines=<lines>	sets	the	number	of	lines	on	the	screen.	<lines>	can	be	25,	43,	or	50,	but	not
all	display	adapters	can	handle	all	three	choices.

To	set	the	screen	to	display	40	characters	per	line,	type	this:
C:\>mode	con	cols=40

To	display	80	characters	per	line	and	43	lines	per	screen,	type	this:
C:\>mode	con	cols=80	lines=43

Note

If	you	try	this	command	and	MS-DOS	displays	the	message	Function	not	supported
on	this	computer,	the	command	does	not	work	on	your	computer	system.	If	you	see
the	message	ANSI.SYS	must	be	installed	to	perform	requested	function,	you	need	to
add	a	reference	to	a	program	named	ANSI.SYS	in	the	startup	file	named
CONFIG.SYS.	Chapter	17,	"Tailoring	Your	System,"	tells	you	how	to	do	this.

In	all	versions	of	MS-DOS,	you	can	also	use	another	form	of	the	Mode	command	to	control	the
number	of	characters	per	line.	When	used	to	control	the	number	of	columns,	the	Mode
command	has	one	form:

mode	<characters>

<characters>	is	either	40	or	80.

To	display	40	columns	with	this	command,	type	this:
C:\>mode	40

MS-DOS	clears	the	screen	and	displays	the	system	prompt	in	large	characters	in	the	upper	left
corner	of	the	screen.

	

javascript:Next(0)
javascript:Next(1)

Controlling	the	Printer	Width	and	Spacing
A	dot-matrix	printer	normally	prints	a	maximum	of	80	characters	per	line	and	6	lines	per	inch.
It	can	also	print	in	a	smaller	type,	called	condensed,	that	fits	132	characters	on	a	line.	This
ability	to	change	widths	can	be	useful	for	printing	documents	wider	than	80	characters.	The
printer	can	also	print	8	lines	per	inch,	to	fit	more	lines	on	a	page.

Note

If	you	have	a	laser	printer,	note	that	the	documentation	that	came	with	the	printer
tells	you	how	to	set	the	printer	to	work	with	MS-DOS	and	how	to	control	the
printer's	characteristics,	such	as	line	and	character	spacing.	The	examples	here
most	likely	won't	work	unless	your	laser	printer	can	emulate	an	IBM	or	an	Epson
dot-matrix	printer.

If	your	printer	is	attached	to	a	parallel	port,	you	can	use	the	Mode	command	to	specify	the
line	width	(80	or	132)	and	spacing	(6	or	8).

When	used	to	control	a	dot-matrix	printer	attached	to	a	parallel	port,	the	Mode	command
has	three	main	parameters,	which	you	type	in	one	of	the	following	two	forms.	The	first	form
applies	to	versions	4	and	later;	the	second	applies	to	any	version	of	MS-DOS:

mode	<printer>	cols=<width>	lines=<spacing>

or:
mode	<printer>	<width>,<spacing>

<printer>	is	the	name	of	the	printer,	followed	by	an	optional	colon	(lpt1:,	lpt2:,	or	lpt3:).

<width>	is	either	80	or	132.

<spacing>	is	either	6	or	8.	Notice	the	comma	preceding	<spacing>	in	the	second	form	of	the
command.

You	must	always	include	<printer>.	You	can	omit	either	<width>	or	<spacing>,	and	MS-DOS
will	leave	the	current	width	or	spacing	unchanged.	In	the	second	form	of	the	command,
however,	if	you	omit	<width>	you	must	still	type	the	comma	before	<spacing>	to	tell	MS-
DOS	you	omitted	<width>.

Examples	of	Controlling	a	Dot-Matrix	Printer

The	following	examples	work	with	a	dot-matrix	printer	connected	to	the	computer's	first
parallel	printer	port	(LPT1:).	If	this	describes	your	equipment,	be	sure	your	printer	is	turned
on	before	proceeding	with	the	following	examples.	If	you	have	a	different	type	of	printer	or
printer	setup,	you	might	prefer	to	read	through	the	examples	or	skip	ahead	to	the	next
section,	"Controlling	the	Serial	Communications	Port."

Note
Because	different	versions	of	MS-DOS	accept	different	forms	of	the	command,
the	examples	first	show	the	command	used	with	versions	4	and	later	and	then

show	the	command	form	for	earlier	versions	of	MS-DOS.

To	cause	a	printer	attached	to	LPT1	to	print	in	small	type	(up	to	132	characters	per	line	if
the	printer	can	do	so),	use	the	command	appropriate	to	your	version	of	MS-DOS,
designated	at	the	top	of	the	next	page.

If	you	have	version	4	or	later,	type	this:
C:\>mode	lpt1:	cols=132

If	you	have	an	earlier	version	of	MS-DOS,	type	this:
C:\>mode	lpt1:	132

MS-DOS	replies	with	a	display	like	this	one:
LPT1:	not	rerouted

LPT1:	set	for	132

No	retry	on	parallel	printer	time-out

The	second	line	of	this	message,	which	you	see	with	any	version	of	MS-DOS,	tells	you	that
the	command	worked	correctly	and	your	printer	is	now	set	for	small	characters.	If	you	have
version	4	or	later,	the	other	lines	are	additional	messages	telling	you	that	MS-DOS	will,
indeed,	use	your	parallel	printer	for	output	and	that,	if	the	printer	is	busy	or	turned	off,	it	will
not	keep	trying	to	send	data	to	it.

To	test	the	new	printer	setting,	print	the	contents	of	the	screen	by	pressing	Shift-PrtSc.	(If
you	have	an	IBM	PS/2	keyboard,	press	Print	Screen,	not	Shift-PrtSc.)

To	set	the	spacing	of	the	same	printer	to	8	lines	per	inch	but	leave	the	width	unchanged,	use
one	of	the	following	commands.

If	you	have	version	4	or	later,	type	this:
C:\>mode	lpt1:	lines=8

If	you	have	an	earlier	version	of	MS-DOS,	type	this:
C:\>mode	lpt1:	,8

MS-DOS	replies	with	a	message	like	this:
LPT1:	not	rerouted

Printer	lines	per	inch	set

No	retry	on	parallel	printer	time-out

(Again,	if	you	don't	have	version	4	or	later,	your	message	is	shorter.)

To	see	the	effect	of	this	setting,	print	the	contents	of	the	screen	again	by	pressing	Shift-
PrtSc.	This	time	the	text	is	printed	both	in	small	type	(as	set	in	the	previous	example)	and
with	closer	line	spacing.

To	restore	the	printer	to	normal	width	and	line	spacing	with	version	4	or	later,	type	this:
C:\>mode	lpt1:	cols=80	lines=6

If	you	have	an	earlier	version	of	MS-DOS,	type	this:
C:\>mode	lpt1:	80,6

MS-DOS	displays	a	message	similar	to	those	you've	already	seen:
LPT1:	not	rerouted

LPT1:	set	for	80

Printer	lines	per	inch	set

No	retry	on	parallel	printer	time-out

	

javascript:Next(0)
javascript:Next(1)

Controlling	the	Serial	Communications	Port
Serial	communications	is	controlled	by	several	characteristics,	or	communications
parameters,	that	define	how	fast	and	in	what	form	data	is	transmitted.	Different	devices
often	require	different	parameter	settings.	The	parameters	of	your	serial	port	must	match
those	of	the	device	or	computer	service	with	which	you	want	to	communicate.	Before	you
can	use	a	communications	port,	you	must	set	these	parameters	with	the	Mode	command.

The	main	communications	parameters	you	can	set	include	these:

Baud,	how	quickly	characters	are	sent	or	received

Parity,	the	kind	of	error-checking	technique	used

Data	bits,	the	number	of	electrical	signals	required	to	define	a	character

Stop	bits,	the	amount	of	time	between	electrical	signals	that	marks	the	end	of	a
character

A	more	complete	definition	of	these	parameters	is	beyond	the	scope	of	this	book.	Figure	7-
3	lists	the	main	parameters	you	can	set	with	the	Mode	command.	The	documentation	of	the
device	or	computer	service	you	want	to	use	shows	the	required	setting.	Compare	each	of
these	settings	with	the	values	MS-DOS	assumes,	shown	in	Figure	7-3,	to	see	which
parameters	you	must	change.

Name Valid	Settings How	You	Specify
Value	MS-
DOS
Assumes

Baud
110,	150,	300,	600,	1200,
2400,	4800,	9600,	19,200	[a]

You	can	abbreviate	to	the	first	two
digits	(11	for	110,	24	for	2400)

None	(you
must	set	a
value)

Parity None,	Odd,	Even,	Mark,	[b]

or	Space[b]
N,	O,	E,	M,	or	S Even	(E)

Databits 5,[b]	6,[b]	7,[b]	or	8 5,	6,	7,	or	8 7

Stopbits 1,	1.5,[b]	or	2 1,	1.5,	or	2
2	if	baud	=
110;
1	otherwise

[a]19,200	is	available	from	version	3.3	onward	and	can	be	used	only	with	a	computer
capable	of	that	speed.

[b]Versions	4	and	later.

Figure	7-3:	Serial	communications	parameters.

When	used	to	set	the	parameters	of	a	serial	communications	port,	the	Mode	command	has
the	following	form	in	versions	4	and	later:

mode	<port>	baud=<baud>	parity=<parity>	data=<databits>	stop=<stopbits>

In	earlier	versions,	the	command	is	the	following:
mode	<port>	<baud>,<parity>,<databits>,<stopbits>

<port>	is	the	name	of	the	communications	port	followed	by	an	optional	colon—com1:
through	com4:	(com1:	or	com2:	if	you're	using	a	version	earlier	than	3.3).	The	remaining
parameters,	separated	by	commas,	are	those	described	in	Figure	7-3.

You	must	specify	a	value	for	<baud>	each	time	you	enter	this	form	of	the	Mode	command.
MS-DOS	assumes	the	values	for	the	other	parameters	listed	in	the	last	column	of	Figure	7-3
unless	you	specifically	change	them;	you	needn't	specify	these	parameters	unless	the
device	or	service	with	which	you	want	to	communicate	requires	values	different	from	those
that	MS-DOS	assumes.

If	you	omit	any	parameter	from	the	second	form	of	the	Mode	command	shown	above,	you
must	still	type	the	comma	that	precedes	it,	to	show	MS-DOS	that	you	omitted	the
parameter.

Examples	of	Controlling	the	Serial	Communications	Port

These	examples	show	you	different	uses	of	the	Mode	command.	Don't	enter	them	unless
you	have	a	serial	communications	port	and	you	want	to	change	the	settings.

To	set	the	baud	rate	for	COM1	to	1200	(and	let	MS-DOS	assume	values	for	the	other
parameters),	you	would	type	one	of	the	following	commands.

If	you	have	version	4	or	later,	type	this:
C:\>mode	com1:	baud=1200

If	you	have	an	earlier	version	of	MS-DOS,	type	this:
C:\>mode	com1:		1200

MS-DOS	would	reply	by	reporting	the	current	setting	of	each	parameter:
COM1:	1200,e,7,1,-

This	report	informs	you	that	<baud>	is	1200,	<parity>	is	even,	<databits>	is	7,	and
<stopbits>	is	1.	The	hyphen	at	the	end	tells	you	that	MS-DOS	will	not	keep	trying	to	send	to
a	device	that	isn't	ready	but	will	stop	after	a	brief	time.

To	set	<baud>	for	COM1	to	2400,	set	<parity>	to	none,	leave	<databits>	set	to	7,	and	set
<stopbits>	to	2,	you	would	type	one	of	the	following	commands.

If	you	have	version	4	or	later,	type	this:
C:\>mode	com1:	baud=2400	parity=n	stop=2

If	you	have	an	earlier	version	of	MS-DOS,	type	this:
C:\>mode	com1:	2400,n,,	2

(Note	the	two	commas	before	the	2,	telling	MS-DOS	that	you	omitted	<databits>.)	MS-DOS
confirms	the	settings:
COM1:	2400,n,7,2,-

	

javascript:Next(0)
javascript:Next(1)

Connecting	a	Serial	Printer
If	you	want	to	use	a	serial	printer	attached	to	a	communications	port,	you	must	use	the
Mode	command	to	tell	MS-DOS	to	send	printer	output	to	the	communications	port	instead
of	to	the	regular	(parallel)	printer	port.	This	is	called	redirecting	or	rerouting	the	printer
output.	(You	might	recall	from	the	earlier	examples	of	controlling	a	dot-matrix	printer	that	the
MS-DOS	responses	to	the	Mode	command	included	the	line	LPT1:	not	rerouted.	Here,	you
can	see	the	meaning	of	that	message:	MS-DOS	was	reporting	that	output	to	the	regular
printer	port	was	not	redirected	to	a	serial	port.)	Before	you	redirect	the	printer	output,	you
must	first	set	the	parameters	of	the	serial	communications	port	to	the	values	required	by	the
printer,	as	described	in	the	preceding	section.

When	used	to	redirect	printer	output	to	a	serial	communications	port,	the	Mode	command
has	one	form:

mode	<printer>=<port>

<printer>	is	the	name	of	the	printer	port	(lpt1:,	lpt2:,	or	lpt3:)	whose	output	is	to	be
redirected.

<port>	is	the	name	of	the	serial	communications	port	(com1:	or	com2:	in	all	versions	of	MS-
DOS,	com1:	through	com4:	in	3.3	and	later	versions).	To	redirect	printer	output,	you	must
enter	both	parameters.

Example	of	Connecting	a	Serial	Printer

To	redirect	printer	output	from	LPT1	to	serial	port	COM1,	you	would	first	set	the	serial	port
to	match	the	communications	parameters	of	your	printer	and	then	type	this:
C:\>mode		lpt1:=com1:

MS-DOS	would	acknowledge	the	change:
LPT1:		rerouted	to	COM1:

Now	all	output	that	would	normally	go	to	LPT1:	would	be	sent	to	COM1:	instead.	To	cancel
the	redirection	and	restore	the	printer	output	to	LPT1:,	you	would	type	this:
C:\>mode		lpt1:

	

javascript:Next(0)
javascript:Next(1)

Finding	Out	About	Your	System
You	have,	up	to	this	point,	seen	a	number	of	ways	to	use	the	Mode	command	to	control	the
devices	on	your	system.	But	just	as	it's	useful	to	know	how	to	control	your	devices,	it's	also
helpful	to	know	what	devices	MS-DOS	is	prepared	to	use	and	how	it	"sees"	them.	Beginning
with	version	4,	you	can	use	the	Mode	command	not	only	to	describe	devices	to	MS-DOS
but	to	find	out	about	them.

To	check	on	the	status	of	any	or	all	devices	on	your	system,	you	can	use	this	command:
mode	<device>	/status

<device>	is	the	name	of	a	particular	device	you	want	to	check	on.	If	you	omit	<device>,	MS-
DOS	reports	on	all	the	devices	it	recognizes.

/status,	which	you	can	abbreviate	as	/sta,	is	needed	only	when	you	want	to	check	the	status
of	a	parallel	printer	you've	redirected.	(The	/sta	is	needed	because	simply	typing	mode	lpt1:
would	cancel	the	redirection.)

To	check	on	the	status	of	a	single	device,	you	type	mode	and	the	name	of	the	device.	For
example,	if	the	display	were	set	to	show	80	characters	per	line	and	43	lines	per	screen,	the
command
C:\>mode		con

would	produce	a	report	like	this:
Status	for	device	CON:
-	-	-	-	-	-	-	-	-	-	-
Columns=80
Lines=43

Code	page	operation	not	supported	on	this	device

(The	message	Code	page	operation	not	supported	on	this	device	simply	means	that	MS-
DOS,	on	this	computer,	has	not	been	told	to	recognize	international	language,	date,	decimal,
and	currency	conventions.	If	you	need	this	capability,	refer	to	the	online	help	for	the	Mode
command.

To	check	on	all	the	devices	on	your	system,	you	would	type	this:
C:\>mode

and	MS-DOS	would	respond	with	a	report	like	this:
Status	for	device	LPT1:
-	-	-	-	-	-	-	-	-	-	-
LPT1:	not	rerouted
Retry=NONE

Code	page	operation	not	supported	on	this	device

Status	for	device	LPT2:
-	-	-	-	-	-	-	-	-	-	-
LPT2:	not	rerouted

Status	for	device	LPT3:
-	-	-	-	-	-	-	-	-	-	-
LPT3:	not	rerouted

Status	for	device	CON:
-	-	-	-	-	-	-	-	-	-	-
Columns=80
Lines=25

Code	page	operation	not	supported	on	this	device

Status	for	device	COM1:
-	-	-	-	-	-	-	-	-	-	-
Retry=NONE

Although	parts	of	the	report	might	look	unfamiliar,	here's	what	it	means:

The	report	covers	five	devices:	three	parallel	ports	(LPT1,	LPT2,	and	LPT3),	the
display	(CON),	and	a	serial	port	(COM1).

The	message	LPTx:	not	rerouted	simply	means	that	information	sent	to	any	of	these
output	channels	has	not	been	diverted	to	a	serial	port.

The	message	Retry=NONE	means	that,	if	the	device	connected	to	a	port	is	busy,
MS-DOS	will	not	keep	trying	to	send	information	to	the	device	(a	printer	or	modem,
for	example).

The	Code	page...	message	means	that	MS-DOS	has	not	been	told	to	recognize
international	language,	date,	decimal,	and	currency	conventions.

	

javascript:Next(0)
javascript:Next(1)

Copying	from	a	Device	to	a	File	or	Another	Device
As	you	saw	in	earlier	examples,	you	can	use	the	Copy	command	to	copy	from	a	device	to	a
file.	You	have	used	this	technique	several	times	to	create	sample	files	by	copying	from	the
keyboard	to	a	file,	and	you	will	find	it	handy	for	creating	short	text	files.

You	can	also	copy	from	one	device	to	another.	Copying	from	the	keyboard	to	the	printer,	for
example,	is	a	convenient	way	to	print	short	notes	or	lists.

When	you	copy	from	one	device	to	a	file	or	another	device,	MS-DOS	continues	to	copy	until
it	encounters	the	character	(Ctrl-Z)	that	marks	the	end	of	a	file.	Whenever	you	copy	from
the	keyboard,	you	can	send	this	end-of-file	character	by	pressing	the	key	labeled	F6	and
then	pressing	the	Enter	key	(or,	as	you've	done	before,	by	pressing	Ctrl-Z	and	Enter).

When	used	to	copy	from	a	device	to	a	file	or	another	device,	the	Copy	command	has	two
parameters:

copy	<source>	<target>

<source>	is	the	name	of	the	source	device.

<target>	is	the	name	of	the	target	file	or	device.

Examples	of	Copying	from	a	Device	to	a	File	or	Another	Device

To	copy	from	the	keyboard	(CON)	to	the	printer	(PRN),	make	certain	the	printer	is	turned	on
and	type	this:
C:\>copy	con	prn

Now	everything	you	type	will	be	both	displayed	and	sent	to	the	printer.	Type	a	few	lines,	and
then	end	the	copy	by	pressing	F6	or	Ctrl-Z	(shown	as	^Z	in	the	example	because	that's	how
MS-DOS	displays	it):
These	lines	are	being
copied	from	the
keyboard	to	the	printer.
^Z
							1	file(s)	copied

C:\>_

Note
If	this	command	doesn't	produce	a	printed	copy,	you	might	need	to	tell	the	printer
to	eject	the	printed	page	and	move	to	a	new	page.	Try	taking	your	printer	off	line
and	pressing	the	formfeed	button.

	

javascript:Next(0)
javascript:Next(1)

Printing	Graphics	Images
Pressing	Shift-PrtSc	prints	the	text	displayed	on	either	a	monochrome	or	a	color	display,	but
it	does	not	print	graphics	images	from	a	display	that	is	attached	to	a	graphics	adapter.	The
Graphics	command	enables	MS-DOS	to	print	these	graphics	images	on	any	of	several
different	printers.

You	need	enter	the	Graphics	command	only	once.	After	you	enter	it,	pressing	Shift-PrtSc
prints	everything	on	the	screen	of	the	active	display,	including	graphics	images,	accented
characters,	lines,	and	boxes.	Color	on	noncolor	printers	is	simulated	with	shading.
Depending	on	the	resolution	of	the	display,	the	graphics	image	itself	may	be	printed	across
the	page	(as	you	see	it	on	screen),	or	it	may	be	printed	sideways	(rotated	90	degrees)	and
enlarged.

The	Graphics	command	loads	a	program	that	increases	the	amount	of	memory	that	MS-
DOS	uses.	The	command	has	four	main	parameters:

graphics	<printer>	/R	/B	/lcd

<printer>	can	be	any	of	the	IBM	and	non-IBM	printers	listed	in	Figure	7-4.

Specify For	Printer	Model

color1 IBM	Personal	Computer	Color	Printer	with	a	black	ribbon	or	the
black	band	of	a	color	ribbon

color4 IBM	Personal	Computer	Color	Printer	with	a	red-green-blue
ribbon

color8 IBM	Personal	Computer	Color	Printer	with	a	cyan-magenta-
yellow	ribbon

compact IBM	Personal	Computer	Compact	Printer	(MS-DOS	versions
prior	to	4)

graphics IBM	Graphics	Printer,	Proprinter,	Pageprinter,	or	Quietwriter

graphicswide IBM	Quietwriter	or	Proprinter	with	an	11-inch	carriage	(MS-DOS
versions	4	and	later)

thermal IBM	PC	Convertible	Printers	(MS-DOS	versions	3.3	and	later)

hpdefault Any	Hewlett-Packard	PCL	printer	(MS-DOS	versions	5	and
later)

deskjet Hewlett-Packard	DeskJet	(MS-DOS	versions	5	and	later)

laserjet Hewlett-Packard	LaserJet	(MS-DOS	versions	5	and	later)

Hewlett-Packard	LaserJet	Series	II	(MS-DOS	versions	5	and

laserjetII later)

paintjet Hewlett-Packard	PaintJet	(MS-DOS	versions	5	and	later)

quietjet Hewlett-Packard	Quietjet	(MS-DOS	versions	5	and	later)

quietjetplus Hewlett-Packard	Quietjet	Plus	(MS-DOS	versions	5	and	later)

ruggedwriter Hewlett-Packard	Rugged	Writer	(MS-DOS	versions	5	and	later)

ruggedwriterwide Hewlett-Packard	Rugged	Writer	with	wide	carriage	(MS-DOS
versions	5	and	later)

thinkjet Hewlett-Packard	ThinkJet	(MS-DOS	versions	5	and	later)

Figure	7-4:	Printers	supported	by	the	Graphics	command.

/R	(Reverse)	tells	MS-DOS	to	print	the	screen	as	you	see	it—in	other	words,	light
characters	on	a	dark	background.

/B	tells	MS-DOS	to	print	the	background	color	if	you	have	specified	color4	or	color8	for
<printer>.	If	you	don't	specify	/B,	then	MS-DOS	doesn't	print	the	background	color.

/lcd	tells	MS-DOS	to	print	the	contents	of	the	liquid	crystal	display	of	the	IBM	PC
Convertible	computer.

When	you	enter	the	Graphics	command,	MS-DOS	loads	the	program,	adds	it	to	the	parts	of
the	system	kept	in	memory,	and	displays	the	system	prompt.	You	needn't	enter	the
command	again	until	the	next	time	you	start	MS-DOS.

If	you're	using	a	color	display	and	you	have	a	printer	that	can	print	graphics,	you	can	test
the	Graphics	command	by	entering	the	command	and	all	appropriate	parameters,	loading	a
graphics	image	on	your	display,	and	then	pressing	Shift-PrtSc.

	

javascript:Next(0)
javascript:Next(1)

Changing	the	Keyboard	Layout
Whenever	you	start	MS-DOS,	it	assumes	the	language	and	keyboard	layout	of	the	country
for	which	your	computer	was	manufactured.	Since	the	mid-1980s,	however,	successive
releases	of	MS-DOS	have	offered	increasing	amounts	of	support	for	languages	other	than
its	original	American	English.	As	part	of	this	international	support,	MS-DOS	versions	3	and
later	include	a	Keyboard	(Keyb)	command	that	changes	the	keyboard	layout	to
accommodate	the	special	characters	of	different	languages	and	to	match	the	arrangement
of	keys	used	in	different	countries.

The	first	time	the	Keyboard	command	is	carried	out,	it	loads	a	small	program	that	increases
the	size	of	MS-DOS	in	memory	by	about	5000	bytes.	Subsequent	Keyboard	commands
then	tell	MS-DOS	to	use	different	sets	of	characters	that	correspond	to	different	country-
specific	keyboard	layouts.

Keyboard	Layouts

When	you	use	the	Keyb	command,	you	tell	MS-DOS	which	keyboard	layout	you	want	by
adding	a	two-letter	country	code	to	the	command.	If	you're	using	any	of	IBM's	PC-DOS
releases	3.0	through	3.2	or	MS-DOS	version	3.2,	you	can	choose	from	six	layouts	by	typing
the	command	as	shown	in	the	center	column:

Code Command Country/Language

dv keybdv Dvorak	(an	alternative	English-language	layout)

fr keybfr France

gr keybgr Germany

it keybit Italy

sp keybsp Spain

uk keybuk United	Kingdom

If	you're	using	version	3.3	or	later,	you	have	a	significantly	expanded	group	of	keyboard
codes	to	choose	from	because	these	versions	of	MS-DOS	offer	much	more	international
support.	The	following	table	shows	the	keyboard	codes	readily	available	for	IBM	and
compatible	computers	in	most	countries.

Code Command Country/Language

be keyb	be Belgium

bg keyb	bg	[a] Bulgaria	(version	6.22)

br keyb	br Brazil	(versions	5	and	later)

cf keyb	cf French-speaking	Canada

cz keyb	cz Czech	Republic—Czech	(versions	5	and	later)

dk keyb	dk Denmark

fr keyb	fr France

gk keyb	gk[a] Greece	(version	6.22)

gr keyb	gr Germany

hu keyb	hu Hungary	(versions	5	and	later)

is keyb	is[a] Iceland	(versions	6.0	and	later)

it keyb	it Italy

la keyb	la Latin	America

nl keyb	nl Netherlands

no keyb	no Norway

pl keyb	pl Poland	(versions	5	and	later)

po keyb	po Portugal

ro keyb	ro[a] Romania	(version	6.22)

ru keyb	ru[a] Russia	(version	6.22)

sf keyb	sf French-speaking	Switzerland

sg keyb	sg German-speaking	Switzerland

sl keyb	sl Slovakia—Slovak	(versions	5	and	later)

sp keyb	sp Spain

su keyb	su Finland

sv keyb	sv Sweden

tr keyb	tr[a] Turkey	(version	6.22)

uk keyb	uk United	Kingdom

us keyb	us United	States,	Australia,	English-speaking	Canada

yc keyb	yc Macedonia	and	Serbia/Montenegro	(version	6.22)

yu keyb	yu Yugoslavia	(versions	5	and	later)

[a]See	the	COUNTRY.TXT	file	in	your	DOS	directory	for	more	information	on	using	this
keyboard	code.

Because	entering	a	Keyboard	command	changes	the	location	of	common	keys	(especially

punctuation	marks),	the	character	that	results	from	pressing	a	key	doesn't	always	match	the
label	on	the	key,	as	you'll	see	shortly.

Typing	Accented	Characters	with	Dead	Keys

Many	languages	use	accented	characters	that	combine	an	accent	mark	and	a	common
character	(such	as	Å	or	ñ).	Some	of	these	accented	characters	are	assigned	locations	on
the	keyboard;	on	the	French	keyboard,	for	example,	you	type	è	by	pressing	the	7	key	in	the
top	row	of	the	keyboard	(to	type	the	number	7,	you	press	Shift-7).

Often	there	aren't	enough	available	keys	to	provide	all	the	accented	characters,	however,	so
MS-DOS	also	uses	dead	keys	to	combine	accent	marks	and	characters.	Some	typewriters
use	this	same	technique,	so	dead	keys	might	be	familiar.

A	dead	key	is	one	that	represents	just	an	accent	mark.	Pressing	a	dead	key	doesn't
produce	any	apparent	result,	but	it	tells	MS-DOS	to	combine	the	accent	mark	with	the	next
key	you	press.	On	the	French	keyboard,	for	example,	you	type	ô	by	pressing	the	key
labeled	with	a	{	and	a	[,	which	is	the	dead	key	for	the	circumflex	(ô),	and	then	pressing	the
key	labeled	O.

If	you	press	a	dead	key	and	then	press	a	character	that	cannot	be	combined	with	the
accent	mark	represented	by	the	dead	key,	MS-DOS	beeps	and	displays	the	accent	mark,
followed	by	the	key	you	pressed,	to	show	you	it	can't	combine	them	as	an	accented
character.	For	example,	^p	indicates	that	MS-DOS	cannot	put	a	circumflex	over	the	letter	P.
If	the	dead	key	represents	the	diaeresis	(¨),	MS-DOS	displays	a	small	dot	(.)	or	a	filled-in
square	(■)	followed	by	the	second	key	you	pressed	in	an	incorrect	dead-key	sequence.

To	correct	the	error,	backspace	to	erase	the	two	characters	and	type	the	correct	dead-key
sequence.

Example	of	Using	the	Keyboard	Command

If	you're	using	MS-DOS	version	3.0	through	3.2,	type	this:
C:\>keybfr

If	you're	using	MS-DOS	version	3.3	or	later,	type	the	following	to	change	the	keyboard
arrangement	to	French:
C:\>keyb	fr

If	MS-DOS	responds	Bad	or	missing	Keyboard	Definition	File,	you	need	to	expand	the
command	to	tell	MS-DOS	where	to	find	the	command	file	it	needs.	The	file	is	named
KEYBOARD.SYS,	and	it	should	be	in	your	MS-DOS	directory.	Retype	the	command	as
follows,	substituting	the	name	of	your	MS-DOS	directory	if	it	is	not	C:\DOS:
C:\>keyb			fr,,c:\dos\keyboard.sys

If	you	are	accustomed	to	the	United	States	layout,	here	are	the	most	obvious	changes	with	the

French	layout:	You	must	hold	down	the	Shift	key	to	type	a	number;	the	locations	of	two	pairs	of
letter	keys	are	reversed	(Q-A	and	W-Z);	M	is	to	the	right	of	L	(where	the	semicolon	is	located
on	the	American	English	keyboard);	and	most	symbols	and	punctuation	marks	are	in	different
places.

Now	that	you	have	switched	keyboards,	you	must	follow	the	new	layout.	For	example,	the
command	to	display	a	directory	in	wide	format	is	dir	/w.	If	you	don't	follow	the	French	keyboard
layout,	you'll	type	something	like	dir	=z	because	the	equal	sign	or	another	character	is	where
the	forward	slash	used	to	be,	and	the	W	and	Z	have	also	changed	places.

Suppose	you	wanted	to	type	the	sentence	L'hôtel	célèbre	est	grand	(meaning	The	famous
hotel	is	big).	Both	the	é	and	the	è	are	on	the	keyboard	(2	and	7,	respectively),	but	the	ô	is	not,
so	you	must	use	the	dead	key	for	the	circumflex	(to	the	right	of	P).	And	remember,	the	Q	and
the	A	keys	have	changed	places.	Here,	step	by	step,	is	how	you	would	type	the	phrase:
C:\>L

For	the	apostrophe,	press	the	4	key	in	the	top	row.	After	the	apostrophe,	type	h:
C:\>L'h

Now	you	have	to	use	the	circumflex	dead	key,	which	is	to	the	right	of	the	P.	Press	the
circumflex	dead	key	([).	Nothing	happens	yet.	Now	type	o;	MS-DOS	displays	ô.	Continue	by
typing	tel	c:
C:\>L'hôtel		c

For	é,	press	the	2	key	in	the	top	row;	then	type	l:
C:\>L'h\ôtel		cél

For	è,	press	the	7	key	in	the	top	row;	then	type	bre	est	gr:
C:\>L'h\ôtel		célèbre	est	gr

And	finally,	press	Q	to	get	the	a,	and	type	nd:
C:\>L'h\ôtel	célèbre	est	grand

Although	that's	a	painfully	long	list	of	instructions	just	to	type	a	simple	sentence,	in	fact	it	goes
quite	quickly	after	a	bit	of	practice.	Press	Esc	to	clear	the	line,	and	type	keyb	us	to	return	to
the	United	States	layout.

If	your	computer	was	manufactured	for	use	in	the	United	States	and	you	have	an	IBM	keyboard
or	a	strict	compatible,	you	can	switch	from	a	foreign	layout	to	the	United	States	configuration
by	pressing	Ctrl-Alt-F1	(hold	down	both	the	Ctrl	and	Alt	keys	and	press	the	F1	function	key).
Notice	that	MS-DOS	is	still	set	to	the	foreign	layout,	even	though	functionally	it	uses	the	United
States	configuration.	To	switch	back	to	the	foreign	configuration,	press	Ctrl-Alt-F2.

	

javascript:Next(0)
javascript:Next(1)

Chapter	8:	A	Tree	of	Files

Overview
As	you	have	seen,	when	MS-DOS	formats	a	disk	it	creates	a	directory	that	describes	each
of	the	files	on	the	disk.	The	directory	holds	a	fixed	number	of	entries:	112	on	a	360-KB	or
720-KB	floppy	disk,	224	on	a	1.2-MB	or	1.44-MB	floppy	disk,	240	on	a	2.88-MB	floppy
disk,	and	512	or	more	on	a	hard	disk.	(The	number	varies	with	the	size	of	the	disk.)	To
make	your	computer	filing	system	more	flexible,	MS-DOS	lets	you	create	additional
directories,	called	subdirectories,	on	a	disk.	The	subdirectories	divide	the	disk	into	different
storage	areas,	each	of	which	you	can	use	as	if	it	were	a	different	disk.

To	distinguish	the	main	directory	that	MS-DOS	creates	from	the	subdirectories	that	you
create,	the	main	directory	is	known	as	the	root	directory	(root	because	a	multilevel	directory
structure	can	grow	from	it).

As	you	add	levels	to	your	file	structure,	a	block	diagram	would	show	it	spreading	from	the
root	directory	and	branching	to	other	directories,	like	a	tree	branching	from	its	root.	This
type	of	file	structure	is	often	called	a	tree-structured	file	system.

	

javascript:Next(0)
javascript:Next(1)

Defining	a	Subdirectory
To	MS-DOS,	a	subdirectory	is	simply	a	file	that	contains	directory	entries;	these	entries	are
identical	in	form	to	the	entries	in	the	main	directory,	but	there	is	no	limit	to	the	number	of
entries	you	can	put	in	a	subdirectory.

You	name	a	subdirectory	the	way	you	name	any	other	file,	but	because	the	subdirectory
defines	other	files,	you	cannot	use	the	normal	file	commands	to	copy	or	erase	a
subdirectory.	This	chapter	shows	you	how	to	use	several	commands	that	enable	you	to	do
the	following:

Create	a	subdirectory	with	the	Make	Directory	(md)	command

Change	or	display	the	name	of	the	current	directory	with	the	Change	Directory	(cd)
command

Move	files	from	one	directory	to	another	and	rename	directories	with	the	Move
command	(6.0	and	later	versions)

Delete	a	subdirectory	with	the	Remove	Directory	(rd)	command

Delete	a	directory	structure	with	the	Deltree	command

Display	a	list	of	files	and	the	directories	on	a	disk	with	the	Directory	(dir)	and	Tree
commands

Tell	MS-DOS	where	to	look	for	a	command	file	if	it's	not	in	the	current	directory	by
using	the	Path	command

Tell	MS-DOS	where	to	look	for	a	data	file	if	it's	not	in	the	current	directory	by	using
the	Append	command	(3.3	and	later	versions)

Using	these	features	of	MS-DOS,	you	can	create	and	manage	a	computer	filing	system	that
is	tailored	to	the	way	you	work.

	

javascript:Next(0)
javascript:Next(1)

Preparing	for	the	Examples
The	examples	in	this	chapter	require	one	formatted	floppy	disk.	Put	the	formatted	floppy
disk	in	drive	A.	If	any	files	from	earlier	examples	are	stored	on	the	floppy	disk,	delete	them
by	typing	the	following;	be	sure	to	include	the	a:	in	the	command:
C:\>del	a:*.*

MS-DOS	asks	you	to	confirm	that	you	want	to	erase	all	the	files:
All	files	in	directory	will	be	deleted!
Are	you	sure	(Y/N)?_

Before	you	respond,	check	the	command	you	entered	and	be	certain	that	you	typed	the
drive	letter	(a:).	If	you	didn't,	press	Ctrl-Break	to	cancel	the	Delete	command,	and	retype
the	command	correctly.	If	you	did	type	the	drive	letter,	respond	y.	Because	a	mistake	in
using	the	Delete	command	in	this	way	could	cause	the	loss	of	valuable	files,	you	must	also
press	the	Enter	key	after	typing	y	before	MS-DOS	will	carry	out	the	command.

After	you	have	deleted	the	files,	change	the	current	drive	to	A	by	typing	this:
C:	\>a:

This	completes	the	preparation.

	

javascript:Next(0)
javascript:Next(1)

Creating	a	Multilevel	File	Structure
Suppose	you	work	at	a	small	company	and	provide	services	to	two	departments,	Marketing
and	Engineering.	You	keep	all	your	papers	in	a	file	drawer.	You	keep	miscellaneous	items	in
the	front	of	the	drawer,	and	dividers	labeled	MKT	and	ENG	separate	the	parts	where	you
store	papers	that	relate	to	each	department.

Now	that	you're	going	to	be	using	a	computer,	you	can	set	up	your	computer	file	system	to
match	your	paper	files	by	creating	two	subdirectories,	named	MKT	and	ENG.	You	can	store
miscellaneous	computer	files	in	the	main,	or	root,	directory	of	the	disk,	and	you	can	store
the	files	that	relate	to	each	department	in	separate	subdirectories.	Figure	8-1	on	the	next
page	shows	the	filing	cabinet	and	a	block	diagram	of	this	corresponding	MS-DOS	file
structure.

	
Figure	8-1:	Two-level	file	system.

Creating	a	Subdirectory

The	Make	Directory	(md	or	mkdir)	command	creates	a	subdirectory.	The	only	parameter
that	you	must	include	is	the	name	of	the	subdirectory	you	want	to	create.	The	command	is
described	later	in	more	detail;	for	now,	type	the	following	to	create	two	subdirectories,
named	MKT	and	ENG:
A:\>md	mkt

A:\>md	eng

You	can	see	the	subdirectories	you	just	created	by	displaying	the	entries	in	the	root
directory.	Type	this:
A:\>dir

MS-DOS	shows	two	files,	named	MKT	and	ENG:
Volume	in	drive	A	is	EXAMPLES	2
	Volume	Serial	Number	is	1839-10EE
	Directory	of	A:\

MKT										<DIR>					01-05-95		10:54a
ENG										<DIR>					01-05-95		10:54a
								2	file(s)										0	bytes
																					1456640	bytes	free

Note	that	the	directory	identifies	the	files	as	subdirectories	by	displaying	<DIR>	after	their
names.	The	backslash	(\)	in	the	third	line	of	the	display	is	the	character	that	MS-DOS	uses
to	refer	to	the	root	directory	of	a	disk.	You've	seen	the	backslash	as	part	of	the	system
prompt	throughout	this	book;	you'll	see	more	of	it	and	its	uses	in	later	examples.

Because	MKT	is	a	subdirectory,	you	can	display	its	contents	with	the	Directory	command,
just	as	you	can	display	the	contents	of	the	root	directory.	Type	this:
A:\>dir	mkt

MS-DOS	displays	the	contents	of	MKT:
Volume	in	drive	A	is	EXAMPLES	2
	Volume	Serial	Number	is	1839-10EE
	Directory	of	A:\MKT

.														<DIR>					01-05-95		10:54a

..													<DIR>					01-05-95		10:54a
								2	file(s)						0	bytes
																	1456640	bytes	free

Even	though	you	just	created	it,	MKT	seems	to	contain	subdirectories	named	.	(dot)	and	..
(double	dot).	These	really	aren't	subdirectories;	they're	abbreviations	you	use	to	refer	to
other	directories.	The	dot	and	double-dot	subdirectories	do	not	occur	in	the	root	directory.
You'll	see	how	these	abbreviations	are	used	a	bit	later.

The	Path	to	a	Directory

The	third	line	of	the	preceding	directory	display	tells	you	that	you're	looking	at	the	directory
of	A:\MKT.	The	\	(backslash)	refers	to	the	root	directory,	and	MKT	is	the	name	of	the
subdirectory	whose	contents	you're	displaying.	Together,	they	are	called	the	path	name	of
the	directory,	or	just	the	path,	because	they	describe	the	path	MS-DOS	follows	to	find	the
directory.	The	path	names	of	the	two	subdirectories	you	created,	\MKT	and	\ENG,	tell	MS-
DOS	that	the	subdirectories	are	in	the	root	directory.

You	can	also	include	a	path	name	with	a	file	name,	to	tell	MS-DOS	where	to	find	a	file.	The
path	name	goes	just	before	the	file	name	(after	the	drive	letter,	if	one	is	included)	and	is

separated	from	the	file	name	by	a	backslash.	For	example,	if	the	subdirectory	\MKT
contained	a	file	named	BUDGET.JAN,	the	full	path	and	file	name	would	be
\MKT\BUDGET.JAN.

The	Current	Directory

Just	as	MS-DOS	keeps	track	of	the	current	drive,	it	also	keeps	track	of	the	current
directory.	If	you	start	MS-DOS	from	a	hard	disk,	the	current	directory	after	startup	is	usually
either	the	root	directory	(C:\)	or	your	MS-DOS	directory	(C:\DOS).	If	you	start	MS-DOS
from	a	floppy	disk,	the	current	directory	after	startup	is	normally	the	root	directory	of	the
floppy	disk	drive	(A:\).

Just	as	you	can	change	the	current	drive,	you	can	change	the	current	directory	so	that	you
don't	have	to	type	the	path	name	each	time	you	want	to	work	with	a	directory	other	than	the
current	one.	The	Change	Directory	(cd	or	chdir)	command	changes	or	displays	the	name	of
the	current	directory.	If	you	enter	the	command	with	no	parameter,	it	displays	the	name	of
the	current	directory.	To	see	what	the	current	directory	is,	type	this:
A:\>cd

The	current	directory	is	the	root	directory,	so	the	response	is	short:
A:\

It	tells	you	that	any	command	you	enter	will	apply	to	the	root	directory	of	the	floppy	disk	in
drive	A,	unless	you	specify	a	different	path	name.	Change	the	current	directory	to	the
subdirectory	named	MKT	by	typing	this:
A:\>cd	mkt

If	your	system	prompt	normally	shows	the	current	directory,	MS-DOS	acknowledges
A:\MKT>

as	soon	as	it	carries	out	the	Change	Directory	command.

If	your	system	prompt	doesn't	display	the	current	directory,	MS-DOS	acknowledges	the
command	merely	by	displaying	the	system	prompt.	But	if	you	display	the	current	directory
again	by	typing	this:
A>cd

MS-DOS	responds	this	way:
A:\MKT

Note
When	you	work	with	subdirectories,	it's	useful	to	show	the	current	directory	as	part
of	the	system	prompt.	If	your	system	prompt	doesn't	include	the	current	directory,
change	it:	Type	prompt	pg.	Chapter	14,	"Creating	Your	Own	Commands,"	tells
you	how	to	make	this	command	a	normal	part	of	your	system's	startup	routine.

You've	changed	the	current	directory	to	\MKT,	so	any	command	you	enter	applies	to	the
subdirectory	MKT	in	the	root	directory.	Type	the	Directory	command	again:
A:\MKT>dir

MS-DOS	displays	the	entries	in	the	subdirectory	\MKT:
Volume	in	drive	A	is	EXAMPLES	2
	Volume	Serial	Number	is	1839-10EE
	Directory	of	A:\MKT

.												<DIR>					01-05-95		10:54a

..											<DIR>					01-05-95		10:54a
								2	file(s)										0	bytes
																					1456640	bytes	free

This	display	is	the	same	as	the	one	you	saw	earlier	when	you	typed	dir	mkt,	but	this	time
you	didn't	have	to	name	the	subdirectory	because	you	had	changed	the	current	directory	to
\MKT.

Using	Subdirectories

Your	floppy	disk	now	has	the	directory	structure	shown	in	Figure	8-1.	You	can	use	each	of
these	directories	as	if	it	were	a	separate	disk.	The	current	directory	is	\MKT.	Create	a	file
named	SAMPLE.TXT	in	the	root	directory	by	typing	the	following	lines:
A:\MKT>copy	con	\sample.txt
This	is	a	sample	file.
^Z
								1	file(s)	copied

Notice	that	you	included	the	backslash	to	tell	MS-DOS	to	put	the	file	in	the	root	directory.
You	also	use	the	backslash	to	display	the	contents	of	the	root	directory	when	it's	not	the
current	directory.	Type	the	following:
A:\MKT>dir	\

Again	MS-DOS	displays	the	entries	in	the	root	directory:
Volume	in	drive	A	is	EXAMPLES	2
	Volume	Serial	Number	is	1839-10EE
	Directory	of	A:\

MKT										<DIR>					01-05-95		10:54a
ENG										<DIR>					01-05-95		10:54a
SAMPLE			TXT								24	01-05-95		11:13a
								3	file(s)									24	bytes
																					1456128	bytes	free

The	root	directory	contains	two	subdirectories	and	the	file	you	just	created.

Copying	from	One	Directory	to	Another

Because	you	can	treat	directories	as	if	they	were	separate	disks,	you	can	copy	a	file	from
one	directory	to	another.	Copy	SAMPLE.TXT	from	the	root	directory	of	drive	A	to	a	file
named	ACCOUNT	in	the	current	directory	(\MKT)	by	typing	this:
A:\MKT>copy		\sample.txt	account
									1	file(s)	copied

You	included	the	path	(the	backslash,	meaning	the	root	directory)	in	front	of	SAMPLE.TXT
to	tell	MS-DOS	where	to	find	the	file;	you	didn't	have	to	include	a	path	for	ACCOUNT
because	you	were	putting	it	in	the	current	directory.	Now	display	the	current	directory	by
typing	the	following:
A:\MKT>dir

	Volume	in	drive	A	is	EXAMPLES	2
	Volume	Serial	Number	is	1839-10EE
	Directory	of	A:\MKT

.												<DIR>					01-05-95		10:54a

..											<DIR>					01-05-95		10:54a
ACCOUNT													24	01-05-95		11:13a
								3	file(s)									24	bytes
																					1455616	bytes	free

The	file	is	there.	You	can	copy	files	from	one	directory	to	another	as	easily	as	you	can	copy
them	from	one	disk	to	another.

Just	as	MS-DOS	doesn't	confuse	two	files	with	the	same	name	on	different	disks,	it	doesn't
confuse	two	files	with	the	same	name	in	different	directories.	MS-DOS	can	tell	the	latter
apart	because	their	paths	are	different.	You	can	demonstrate	this	by	copying	the	file	named
ACCOUNT	from	\MKT	to	the	subdirectory	\ENG,	giving	it	the	same	file	name.	Type	the
following:
A:\MKT>copy	account		\eng
									1	file(s)	copied

You	didn't	include	the	file	name	after	the	path	name	of	the	target	directory	because	you
wanted	to	give	the	copy	the	same	name	as	the	original.	Assure	yourself	that	the	file	was
copied	correctly	by	displaying	the	directory	of	\ENG:
A:\MKT>dir		\eng
	Volume	in	drive	A	is	EXAMPLES	2
	Volume	Serial	Number	is	1839-10EE
	Directory	of	A:\ENG

.												<DIR>					01-05-95		10:54a

..											<DIR>					01-05-95		10:54a
	ACCOUNT												24	01-05-95		11:13a
								3	file(s)									24	bytes
																					1455104	bytes	free

You	now	have	two	files	named	ACCOUNT	on	the	same	disk,	but	they	are	in	different
subdirectories,	and	their	different	path	names	make	them	as	different	to	MS-DOS	as	if	you
had	given	them	different	file	names.

Time	Out	for	a	Quick	Review

Before	completing	your	multilevel	file	structure,	review	the	following	definitions.	They
summarize	the	terms	and	concepts	introduced	in	the	preceding	examples.

Directory	entry:	A	description	of	a	file	that	includes	the	name,	extension,	and	size	of	the	file,
and	the	date	and	time	it	was	created	or	last	updated.

Directory:	A	list	of	directory	entries.	You'll	also	see	it	used	with	a	sense	of	place:	"Which
directory	am	I	in?"

Root	directory:	The	list	of	directory	entries	that	MS-DOS	creates	and	maintains	on	each
disk.	It	is	called	the	root	directory	(or	simply	the	root)	because	the	entire	directory	structure
on	the	disk	grows	from	it.	Because	the	root	has	no	name	to	MS-DOS,	it	is	represented	by	a
backslash	(\).

Subdirectory:	A	file	that	contains	directory	entries.	Like	the	term	directory,	it	is	also
sometimes	used	with	a	sense	of	place:	"Which	subdirectory	is	that	file	in?"

Path	name:	The	list	of	directory	names	that	defines	the	path	to	a	subdirectory.	The	directory
names	are	separated	by	backslashes	(\).	The	root	directory	is	represented	by	a	backslash
at	the	beginning	of	the	path.	If	a	file	name	is	included	at	the	end	of	the	path,	it	is	separated
from	the	last	directory	name	by	a	backslash.

Current	directory:	The	directory	that	MS-DOS	assumes	you	want	to	use	unless	you	specify
another	in	a	command.	The	current	directory	is	similar	in	concept	and	effect	to	the	current
drive.

	

javascript:Next(0)
javascript:Next(1)

Adding	More	Levels	to	Your	File	Structure
The	subdirectories	you	create	can	contain	any	type	of	file,	including	other	subdirectories.
Like	putting	dividers	between	other	dividers	in	a	file	drawer,	this	further	structuring	narrows
the	subject	of	a	storage	area.	Suppose	you	do	the	following	kinds	of	work	for	the	Marketing
and	Engineering	departments:

Marketing Engineering

Word	processingWord	processing

Budgets Budgets

Customer	lists Project	scheduling

Sales	forecasts

You	decide	to	set	up	your	file	structure	to	match	your	work.	The	following	list	shows	the
subdirectories	you	could	create	to	match	your	computer	files	to	the	work	you	do	(MKT	and
ENG	are	the	departmental	subdirectories	you	created):

In	MKT: In	ENG:

WP WP

BUDGET BUDGET

CUSTOMERSCHEDULE

SALES

You	would	then	have	created	the	file	structure	shown	in	Figure	8-2.

	
Figure	8-2:	Three-level	file	system.

Making	a	Subdirectory:	The	Md	Command

As	you	saw	earlier	in	this	chapter,	the	Make	Directory	(md	or	mkdir)	command	creates	a

subdirectory.	The	Make	Directory	command	has	three	parameters:
md	<drive><path><directory>

<drive>	is	the	letter,	followed	by	a	colon,	of	the	drive	(such	as	a:)	that	contains	the	disk	on
which	the	subdirectory	is	to	be	created.	If	you	omit	<drive>,	MS-DOS	creates	the
subdirectory	on	the	disk	in	the	current	drive.

<path>	is	the	path	name	of	the	directory	in	which	the	subdirectory	is	to	be	created.	If	you
omit	<path>,	the	subdirectory	is	created	in	the	current	directory.

<directory>	is	the	name	of	the	new	directory.

The	current	directory	is	\MKT.	For	the	example	in	this	chapter,	you	want	four	subdirectories
in	\MKT,	named	WP,	BUDGET,	CUSTOMER,	and	SALES.	Type	the	following	Make
Directory	commands	to	create	the	subdirectories:
A:\MKT>md	wp

A:\MKT>md	budget

A:\MKT>md	customer

A:\MKT>md	sales

Display	the	directory	of	\MKT	by	typing	this:
A:\MKT>dir

	Volume	in	drive	A	is	EXAMPLES	2
	Volume	Serial	Number	is	1839-10EE
	Directory	of	A:\MKT

.												<DIR>					01-05-95		10:54a

..											<DIR>					01-05-95		10:54a
ACCOUNT													24	01-05-95		11:13a
WP											<DIR>					01-05-95		11:22a
BUDGET							<DIR>					01-05-95		11:22a
CUSTOMER					<DIR>					01-05-95		11:23a
SALES								<DIR>					01-05-95		11:23a
								7	file(s)									24	bytes
																					1453056	bytes	free

The	directory	shows	the	file	you	copied	a	few	minutes	ago	(ACCOUNT)	and	the	four
subdirectories	you	just	created.

Your	file	structure	calls	for	subdirectories	named	WP	and	BUDGET	in	\ENG	as	well.
Remember,	MS-DOS	can	distinguish	between	\MKT\WP	and	\ENG\WP,	and	\MKT\BUDGET

and	\ENG\BUDGET,	because	their	paths	are	different.

To	create	the	subdirectory	\ENG\WP,	type	this:
A:\MKT>md	\eng\wp

You	included	the	path	(\ENG)	because	the	current	directory	is	\MKT.	The	Make	Directory
command	doesn't	change	the	current	directory,	so	it's	still	\MKT,	but	you	can	verify	that	the
subdirectory	\ENG\WP	was	created	by	displaying	the	contents	of	\ENG.	Include	the	path
here,	too,	by	typing	this:
A:\MKT>dir	\eng

	Volume	in	drive	A	is	EXAMPLES	2
	Volume	Serial	Number	is	1839-10EE
	Directory	of	A:\ENG

.												<DIR>					01-05-95		10:54a

..											<DIR>					01-05-95		10:54a
ACCOUNT													24	01-05-95		11:13a
WP											<DIR>					01-05-95		11:25a
								4	file(s)									24	bytes
																					1452544	bytes	free

Now	you're	going	to	start	moving	around	from	subdirectory	to	subdirectory,	so	before
creating	the	last	two	subdirectories	in	\ENG,	here's	a	closer	look	at	your	navigator,	the
Change	Directory	command.

Changing	the	Current	Directory:	The	Cd	Command

You	have	already	used	the	Change	Directory	(cd	or	chdir)	command	to	change	and	display
the	current	directory.	The	Change	Directory	command	has	two	parameters:

cd	<drive><path>

<drive>	is	the	letter,	followed	by	a	colon,	of	the	drive	(such	as	a:)	that	contains	the	disk	on
which	the	current	directory	is	to	be	changed.	If	you	omit	<drive>,	MS-DOS	changes	the
current	directory	of	the	disk	in	the	current	drive.

<path>	is	the	path	name	of	the	directory	that	is	to	become	the	current	directory.	If	you	omit
<path>,	MS-DOS	displays	the	current	directory	on	<drive>.

If	you	omit	both	<drive>	and	<path>	(enter	the	command	with	no	parameters),	MS-DOS
displays	the	name	of	the	current	directory	of	the	disk	in	the	current	drive.

Keeping	Track	of	Where	You	Are

As	a	note	earlier	in	this	chapter	showed,	you	can	change	the	system	prompt	to	display	not

only	the	current	drive	but	also	other	information,	such	as	the	current	directory.

Up	to	this	point,	the	system	prompt	has	shown	the	current	drive	and	directory	in	abbreviated
form	(for	example,	A:\MKT	>).	In	the	remainder	of	the	chapter,	you'll	be	changing	directories
fairly	often,	so	change	the	prompt	to	one	that	helps	you	identify	the	current	directory	at	a
glance.	Type	the	following,	including	a	space	at	the	end	of	the	line,	just	before	you	press	the
Enter	key:
A:\MKT>prompt	Current	Directory	is	p_Command:	<Enter>

Now	the	system	prompt	becomes:
Current	Directory	is	A:\MKT
Command:	_

You	could	restore	the	system	prompt	to	its	more	familiar	form	by	typing	the	Prompt
command	with	no	parameters	(prompt)	or	by	typing	prompt	pg,	but	leave	it	this	way	for
the	rest	of	the	chapter.	The	prompt	takes	up	a	bit	more	space,	but	it	helps	you	keep	track
of	where	you	are—a	useful	feature,	especially	if	you	are	still	adjusting	to	the	idea	of	moving
from	one	directory	to	another.

Using	the	Subdirectory	Markers

Remember	those	markers	(.	and	..)	listed	in	each	subdirectory?	They're	designed	to	let	you
move	quickly	up	and	down	a	directory	structure,	particularly	when	several	levels	make	the
path	names	long.

The	..	marker	represents	the	directory	that	contains	the	current	directory	(sometimes	called
the	parent	of	the	current	directory).	The	current	directory	is	\MKT;	to	move	the	current
directory	up	one	level	(toward	the	root	directory),	type	this:
Current	Directory	is	A:\MKT
Command:	cd	..

Current	Directory	is	A:\
Command:	_

The	system	prompt	still	shows	you	the	current	directory,	but,	as	you	can	see,	the	current
directory	has	changed	to	the	root	directory,	which	is	one	level	above	\MKT.

To	complete	your	file	structure,	you	need	two	more	subdirectories	in	\ENG.	First	change	the
current	directory	to	\ENG,	and	then	create	\ENG\BUDGET	and	\ENG\SCHEDULE	by	typing
the	following:
Current	Directory	is	A:\
Command:	cd	eng

Current	Directory	is	A:\ENG
Command:	md	budget

Current	Directory	is	A:\ENG
Command:	md	schedule

This	completes	the	structure	of	your	multilevel	file	system.

You	have	nine	subdirectories,	plus	the	root	directory,	any	of	which	you	can	use	as	if	it	were
a	separate	disk.	To	show	you	how	easy	this	is,	the	next	few	examples	have	you	put	sample
files	in	several	of	the	subdirectories.	Figure	8-3	shows	how	your	final	file	system	will	look,
including	the	path	names	of	all	directories	(above	the	boxes)	and	the	names	of	the	files	you'll
add	(inside	the	shaded	boxes).

	
Figure	8-3:	Two-department	file	structure.

To	create	the	sample	files	in	\ENG\WP,	first	change	the	current	directory	to	\ENG\WP	and
copy	the	file	named	ACCOUNT	from	\ENG,	naming	it	LET1.DOC,	by	typing	the	following:
Current	Directory	is	A:\ENG
Command:	cd	wp

Current	Directory	is	A:\ENG\WP
Command:	copy	\eng\account	let1.doc
								1	file(s)	copied

Notice	that	you	have	to	use	\ENG	in	the	command,	even	though	\ENG\WP	is	a	subdirectory
of	\ENG.

Now	copy	LET1.DOC	twice,	to	create	LET2.DOC	and	LET3.DOC,	and	display	the	directory
by	typing	this:
Current	Directory	is	A:\ENG\WP
Command:	copy	let1.doc	let2.doc
								1	file(s)	copied

Current	Directory	is	A:\ENG\WP
Command:	copy	let1.doc	let3.doc
								1	file(s)	copied

Current	Directory	is	A:\ENG\WP
Command:	dir

	Volume	in	drive	A	is	EXAMPLES	2
	Volume	Serial	Number	is	1839-10EE
	Directory	of	A:\ENG\WP

.												<DIR>					01-05-95		11:25a

..											<DIR>					01-05-95		11:25a
LET1					DOC								24	01-05-95		11:13a
LET2					DOC								24	01-05-95		11:13a
LET3					DOC								24	01-05-95		11:13a
								5	file(s)									72	bytes
																					1449984	bytes	free

From	this	subdirectory,	you	can	copy	all	three	of	these	files	to	\MKT\WP	with	one
command.	Type	the	following:
Current	Directory	is	A:\ENG\WP
Command:	copy	*.*	\mkt\wp

MS-DOS	lists	the	source	files	as	it	copies	them:
LET1.DOC
LET2.DOC
LET3.DOC
								3	file(s)	copied

These	files	could	be	word	processing	files	that	contain	letters.	Now	create	three	more	files
in	\MKT\WP	that	could	represent	word	processing	files	that	contain	reports.	First,	change
the	directory	to	\MKT\WP,	then	copy	the	three	files	whose	names	begin	with	LET,	changing
their	names	so	they	begin	with	RPT.	Type	this:
Current	Directory	is	A:\ENG\WP
Command:	cd	\mkt\wp

Current	Directory	is	A:\MKT\WP
Command:	copy	let?.doc	rpt?.doc

MS-DOS	again	lists	the	source	files	as	it	makes	the	copies:
LET1.DOC
LET2.DOC
LET3.DOC
								3	file(s)	copied

To	complete	the	files	in	this	subdirectory,	copy	the	same	three	files	again,	this	time	changing
their	extension	to	STY,	which	could	identify	word	processing	files	that	contain	style	sheets
for	formatting	and	printing	documents.	Type	the	following:
Current	Directory	is	A:\MKT\WP
Command:	copy	let?.doc	let?.sty

Now	display	the	directory	to	verify	that	all	nine	files	are	there	by	typing	this:
Current	Directory	is	A:\MKT\WP
Command:	dir

	Volume	in	drive	A	is	EXAMPLES	2
	Volume	Serial	Number	is	1839-10EE
	Directory	of	A:\MKT\WP

.												<DIR>					01-05-95		11:22a

..											<DIR>					01-05-95		11:22a
LET1					DOC								24	01-05-95		11:13a
LET2					DOC								24	01-05-95		11:13a
LET3					DOC								24	01-05-95		11:13a
RPT1					DOC								24	01-05-95		11:13a
RPT2					DOC								24	01-05-95		11:13a
RPT3					DOC								24	01-05-95		11:13a
LET1					STY								24	01-05-95		11:13a
LET2					STY								24	01-05-95		11:13a
LET3					STY								24	01-05-95		11:13a
							11	file(s)								216	bytes
																					1445376	bytes	free

To	complete	the	file	system,	you'll	need	three	files	in	\MKT\BUDGET,	named	BGT1.XLS,
BGT2.XLS,	and	BGT3.XLS,	and	you'll	need	three	files	in	\ENG\BUDGET,	named
BGT1.NEW,	BGT2.NEW,	and	BGT3.NEW.	First,	use	the	Copy	command	to	create	the	files
in	\MKT\BUDGET	by	typing	this:
Current	Directory	is	A:\MKT\WP
Command:	copy		let?.doc	\mkt\budget\bgt?.xls

MS-DOS	lists	three	source	files	as	it	makes	the	copies	and	then	displays	the	prompt.

To	finish,	you	could	create	the	files	for	\ENG\BUDGET	from	the	current	directory,	but	that
would	mean	typing	the	full	path	and	file	name.	To	save	some	keystrokes,	change	to	the
\MKT\BUDGET	directory	by	typing	this:
Current	Directory	is	A:\MKT\WP
Command:	cd	..\budget

The	..	marker	tells	MS-DOS	to	move	up	to	the	parent	(\MKT)	of	the	current	directory	and,

from	there,	to	move	down	to	the	\BUDGET	directory.	The	prompt	changes	to	the	following:
Current	Directory	is	A:\MKT\BUDGET
Command:	_

Now	you	can	finish	creating	the	sample	files	by	typing	this:
Current	Directory	is	A:\MKT\BUDGET
Command:	copy		*.xls	\eng\budget*.new

MS-DOS	lists	three	source	files	copied:	BGT1.XLS,	BGT2.XLS,	and	BGT3.XLS.	Your	file
system	now	has	the	directories	and	files	shown	in	Figure	8-3.

Moving	Files	from	One	Directory	to	Another

Like	the	Copy	command,	the	Move	command	(available	in	versions	6.0	and	later)	makes	a
copy	of	one	or	more	files	on	a	different	directory	or	disk;	unlike	Copy,	Move	doesn't	leave
the	original	in	place.	You	can	also	use	Move	to	change	the	name	of	a	directory.

The	Move	command	requires	two	parameters:
move	/Y	<source>	<target>

/Y	tells	Move	not	to	prompt	you	before	creating	the	directory	into	which	the	specified	files
are	moved.

<source>	is	the	name	of	the	file	to	be	moved,	and	<target>	is	the	name	for	the	file	in	its	new
location.	You	can	specify	a	drive	letter	and	path	name	with	both	<source>	and	<target>.
You	can	use	wildcard	characters	to	move	a	set	of	files,	but	if	you	do	so	you	cannot	change
the	files'	names;	if	you	want	to	give	a	file	a	different	name	in	its	new	location,	you	can	move
only	one	file	at	a	time.

If	you	are	using	version	6.2	or	later	and	<target>	is	the	name	of	an	existing	file,	MS-DOS
prompts	you	to	confirm	that	you	want	to	replace	the	existing	file	with	<source>,	unless
you've	included	the	/Y	parameter,	which	turns	off	the	prompt.

If	you	make	<source>	the	name	of	a	directory,	you	can	rename	the	directory	by	specifying	a
different	name	in	<target>.	You	cannot,	however,	move	a	directory	to	a	different	location	in
the	directory	structure.

Examples	of	Moving	Files

The	next	three	examples	show	you	how	to	use	the	Move	command	and	let	you	use	the	dot
(.)	and	double-dot	(..)	markers	listed	in	the	subdirectories.	First	move	the	file	BGT1.XLS
from	\MKT\BUDGET	to	\MKT\SALES	by	typing	this:
Current	Directory	is	A:\MKT\BUDGET
Command:	move	bgt1.xls	\mkt\sales

MS-DOS	responds	by	displaying	the	source	and	target	file	names:
a:\mkt\budget\bgt1.xls	=>	a:\mkt\sales\bgt1.xls	[ok]

Use	the	Directory	command	to	verify	that	BGT1.XLS	now	has	been	moved	to	the	new
directory.

You	can	use	wildcard	characters	to	move	more	than	one	file	with	similar	file	names	or
extensions.	Notice	that	in	this	example,	instead	of	typing	the	full	path	name	of	the	target,
you'll	use	the	double-dot	representation	for	the	directory	that	contains	the	current	directory.
Type	the	following	Move	command	to	move	both	BGT2.XLS	and	BGT3.XLS	to
\MKT\SALES:
Current	Directory	is	A:\MKT\BUDGET
Command:	move	bgt?.xls	..\sales
a:\mkt\budget\bgt2.xls	=>	a:\mkt\sales\bgt2.xls	[ok]
a:\mkt\budget\bgt3.xls	=>	a:\mkt\sales\bgt3.xls	[ok]

The	Move	command	lists	only	BGT2.XLS	and	BGT3.XLS	because	you	already	moved
BGT1.XLS	with	the	first	Move	command.

Now	suppose	you	tell	MS-DOS	(version	6.2	or	later)	to	move	BGT1.XLS	to	BGT2.XLS.
Type	the	following:
move	..\sales\bgt1.xls	..\sales\bgt2.xls

MS-DOS	responds	by	prompting	you	to	confirm	that	you	want	to	replace	(overwrite)
BGT2.XLS	with	BGT1.XLS:
Overwrite	a:\mkt\sales\bgt2.xls	(Yes/No/All)?_

Yes	means	yes	and	No	means	no,	but	what	does	All	mean?	Well,	if	you	had	used	a	wildcard
character	to	move	a	series	of	files	with	one	command	and	knew	that	you	wanted	to
overwrite	an	existing	file	in	every	instance,	you	could	type	A	for	All;	if	you	type	Y,	MS-DOS
prompts	you	for	each	instance	in	which	a	file	would	be	overwritten.

Type	N;	MS-DOS	cancels	the	Move	command	and	displays	the	system	prompt.

The	last	Move	command	moves	all	three	files	back	to	the	current	directory.	This	time	you'll
use	the	single	dot	to	represent	the	current	directory	instead	of	typing	its	complete	path
name:
Current	Directory	is	A:\MKT\BUDGET
Command:	move	..\sales*.xls	.
a:\mkt\sales\bgt1.xls	=>	a:\mkt\budget\bgt1.xls	[ok]
a:\mkt\sales\bgt2.xls	=>	a:\mkt\budget\bgt2.xls	[ok]
a:\mkt\sales\bgt3.xls	=>	a:\mkt\budget\bgt3.xls	[ok]

Example	of	Renaming	a	Directory

Suppose	you	decide	that	a	better	name	for	the	directory	A:\ENG\WP	is	A:\ENG\EDIT.	To
change	the	name	of	the	directory,	type	this:
Current	Directory	is	A:\MKT\BUDGET
Command:	move	a:\eng\wp	a:\eng\edit

MS-DOS	responds	by	displaying	the	old	and	new	names	of	the	directory:
a:\eng\wp	=>	a:\eng\edit	[ok]

Now	when	you	use	the	Directory	command	to	view	the	contents	of	the	ENG	directory,	you'll
see	on	the	following	page	that	the	name	has	changed.
Current	Directory	is	A:\MKT\BUDGET
Command:	dir	a:\eng

	Volume	in	drive	A	is	EXAMPLES	2
	Volume	Serial	Number	is	1839-10EE
	Directory	of	A:\ENG

.											<DIR>					01-05-95		10:54a

..										<DIR>					01-05-95		10:54a
ACCOUNT											24		01-05-95		11:13a
EDIT								<DIR>					01-05-95		11:30a
BUDGET						<DIR>					01-05-95		11:30a
SCHEDULE				<DIR>					01-05-95		11:30a

	

javascript:Next(0)
javascript:Next(1)

Managing	Your	Subdirectories
Once	subdirectories	become	part	of	your	work	with	MS-DOS,	they	quickly	become
essential	for	organizing	your	programs	and	data	files,	especially	on	a	hard	disk.	But	the
more	subdirectories	and	files	you	create,	the	harder	it	is	to	keep	track	of	where	they	are
and	what	they	contain.	Giving	descriptive	names	to	your	subdirectories	and	files	is	one	way
to	maintain	order.	Another	way	is	to	group	your	files—especially	data	files—logically.	At
times,	however,	you'll	still	find	yourself	wondering	what	an	old	subdirectory	contains	and
whether	you	still	need	it.	And	even	if	you're	tremendously	well	organized,	you'll	also
sometimes	forget	just	where	you	saved	that	file	(usually	when	you're	in	a	desperate	hurry	to
find	it).

As	you	would	expect,	MS-DOS	includes	several	commands	that	help	you	manage	your
subdirectories	and	the	files	they	contain.	You've	already	seen	the	Directory	and	Change
Directory	commands,	which	allow	you	to	move	around	through	your	directory	structure.	The
remainder	of	this	chapter	describes	other	commands	that	help	you:

Eliminate	unneeded	subdirectories	(the	Remove	Directory	command)

Delete	an	entire	directory	structure,	files	and	all	(the	Deltree	command)

Use	command	files	from	any	subdirectory	(the	Path	command)

Search	for	particular	files	by	name	(the	/S	parameter	of	the	Directory	command),	or
attribute	(the	/A	parameter	of	the	Directory	command)

View	the	directory	structure	of	a	disk	(the	Tree	and	Check	Disk	commands)

Help	MS-DOS	find	data	files	in	different	subdirectories	(the	Append	command)

Removing	a	Subdirectory:	The	Rd	Command

As	you	work	with	a	multilevel	filing	system,	you	might	find	that	you	no	longer	need	a
particular	subdirectory,	or	that	you	want	to	combine	the	files	from	several	subdirectories	into
one	and	then	delete	the	unneeded	subdirectories	from	your	file	structure.	The	Remove
Directory	(rd	or	rmdir)	command	removes	a	subdirectory.	A	subdirectory	cannot	be	removed
with	this	command	if	it	contains	any	files	or	any	other	subdirectories.

The	Remove	Directory	command	has	two	parameters:
rd	<drive><path>

<drive>	is	the	letter,	followed	by	a	colon,	of	the	drive	that	contains	the	disk	with	the
subdirectory	to	be	removed.	You	can	omit	<drive>	if	the	subdirectory	is	on	the	disk	in	the
current	drive.

<path>	is	the	path	name	of	the	subdirectory	to	be	removed.	You	must	specify	<path>
because	MS-DOS	will	not	remove	the	current	directory.

Suppose	you	decide	you	don't	need	the	subdirectory	\ENG\EDIT.	Tell	MS-DOS	to	remove	it
by	typing	this:
Current	Directory	is	A:\MKT\BUDGET
Command:	rd	\eng\edit

MS-DOS	responds	Invalid	path,	not	directory,	or	directory	not	empty	because	\ENG\EDIT
isn't	empty:	You	previously	put	three	files—LET1.DOC,	LET2.DOC,	and	LET3.DOC—in	it.

This	example	points	out	the	difference	in	the	ways	you	handle	files	and	subdirectories.	As
you	saw	in	earlier	chapters,	you	use	the	Delete	command	to	delete	a	file	from	a	disk.	To
remove	a	directory,	however,	you	use	the	Remove	Directory	command.	Version	6	of	MS-
DOS	offers	the	Delete	Tree	command	for	deleting	directories	and	anything	contained	in
them.	See	the	next	section	for	more	information.

In	the	next	example,	you	will	delete	three	files	with	the	Delete	command	and	then	remove	a
directory	with	the	Remove	Directory	command.	First,	change	the	current	directory	to	\ENG,
and	then	delete	the	files	with	the	Delete	command	by	typing	this:
Current	Directory	is	A:\MKT\WP
Command:	cd	\eng

Current	Directory	is	A:\ENG
Command:	del	edit*.doc

You	changed	the	current	directory	to	\ENG,	rather	than	to	\ENG\EDIT,	because	MS-DOS
won't	remove	the	current	directory.	Now	that	\ENG\EDIT	is	empty,	type	the	Remove
Directory	command	and	verify	the	change	by	displaying	the	directory:
Current	Directory	is	A:\ENG
Command:	rd	edit

Current	Directory	is	A:\ENG
Command:	dir

	Volume	in	drive	A	is	EXAMPLES	2
	Volume	Serial	Number	is	1839-10EE
	Directory	of	A:\ENG
.												<DIR>					01-05-95		10:54a
..											<DIR>					01-05-95		10:54a
ACCOUNT													24	01-05-95		11:13a
BUDGET							<DIR>					01-05-95		11:30a
SCHEDULE					<DIR>					01-05-95		11:30a
								5	file(s)									24	bytes
																					1444352	bytes	free

The	subdirectory	\ENG\EDIT	is	gone.

If	you	want	to	remove	a	directory	but	need	some	of	the	files	it	contains,	copy	the	files	you
need	to	another	subdirectory,	then	erase	all	the	files	and	remove	the	unneeded	directory.

Note
The	next	few	topics	cover	features	in	version	5	or	later	of	MS-DOS.	If	you	don't
have	version	5	or	later,	skip	to	the	heading	"The	Path	to	a	Command:	The	Path
Command."

Deleting	a	Subdirectory	and	Its	Contents:	Deltree

The	Remove	Directory	command	is	perfectly	adequate	for	getting	rid	of	directories,	but
deleting	several	directories	can	get	tedious,	especially	if	some	of	the	directories	contain
subdirectories	and	all	of	the	directories	and	subdirectories	contain	files.	Starting	with	version
6.0,	MS-DOS	gives	you	a	way	to	cut	through	all	the	delays	and	rid	yourself	of	all	those
directories	in	one	fell	swoop:	the	Deltree	command.	Deltree	deletes	a	directory	and	all	its
contents,	even	if	those	contents	include	subdirectories	with	their	own	files	and
subdirectories.	It	deletes	an	entire	branch,	or	subtree,	from	the	directory	tree	structure.
Because	of	Deltree's	potential	for	damage,	MS-DOS	prompts	you	to	confirm	the	action	just
as	it	does	when	you	tell	it	to	delete	all	the	files	in	a	directory.	If	you	told	MS-DOS	to	delete
a	directory	named	SALES,	for	example,	Deltree	would	respond	Delete	directory	"sales"	and
all	its	subdirectories?	[yn].	If	you	reply	by	typing	N	(uppercase	or	lowercase),	MS-DOS
cancels	the	Deltree	command.

Suppose	you	wanted	to	delete	all	the	directories	you	created	for	the	examples	in	this
chapter.	Using	the	Remove	Directory	command,	you'd	have	to	delete	the	directories	one	at
a	time,	starting	with	the	lowest	in	the	directory	structure,	deleting	the	files	with	the	Delete
command	before	removing	the	directories	with	the	Remove	Directory	(rd)	command.	Using
Deltree,	you	could	get	rid	of	all	the	directories	and	files	with	just	one	command.

But	there's	a	price	to	be	paid	for	all	this	convenience:	the	danger	that	you'll	inadvertently
wipe	out	dozens,	hundreds,	even	all	of	your	files.	Suppose	that	your	root	directory	contained
a	directory	named	RUNBAS	that	contained	several	subdirectories	and	files—like	the	file
structure	you	created	for	the	examples	in	this	chapter.	You're	ready	to	delete	these
directories	and	files,	and	you	decide	to	save	time	by	using	the	Deltree	command	instead	of
deleting	the	files	and	directories	using	several	Delete	and	Remove	Directory	commands.
You're	tired,	or	rushed,	or	not	paying	attention,	and	you	type	deltree	\	but	forget	to	type
runbas.	If	you	were	to	respond	affirmatively	to	the	prompt,	you'd	erase	every	single	file	and
directory	on	your	disk.

So	use	Deltree	with	care.	Make	certain	that	you	understand	what	you're	telling	MS-DOS	to
do	before	you	use	the	command,	and	then	go	over	it	one	more	time	before	you	press	Y	and
Enter.

Viewing	Files	in	More	Than	One	Subdirectory

If	you	have	version	5	or	later,	display	the	contents	of	the	current	subdirectory	and	all
subdirectories	below	it	by	using	the	/S	parameter	of	the	Directory	command.	When	used	to

display	the	contents	of	more	than	one	subdirectory,	the	command	is	this:
dir	<filename>	/S

If	you	include	<filename>,	MS-DOS	searches	for	the	file	in	the	current	directory	and	all
subdirectories	below	it.	You	can	use	wildcards	to	specify	a	group	of	files.	If	you	don't
include	<filename>,	MS-DOS	displays	the	names	of	all	files	in	the	current	directory	and	all
its	subdirectories.

You	can	also	combine	/S	with	other	parameters	of	the	Directory	command.	For	example,
you	can	include	/P	to	halt	the	display	after	each	screenful,	and	you	can	include	the	/W
parameter	to	display	the	directories	in	wide	format.

To	see	how	the	/S	parameter	works,	begin	by	changing	to	the	root	directory	of	the	disk	in
drive	A	to	start	at	the	highest	level	of	your	directory	tree.	Type	the	following	Change
Directory	command	(remember,	\	means	the	root	directory):
Current	Directory	is	A:\ENG
Command:	cd	\

Now	request	a	listing	of	all	subdirectories	and	files	stored	in	the	root	directory.	The	list	is
long,	so	use	the	/P	parameter	as	well	as	/S	so	that	MS-DOS	will	pause	after	each
screenful.	Type	this:
Current	Directory	is	A:\
Command:	dir	/s	/p

The	first	screenful	looks	like	the	following:
Volume	in	drive	A	is	EXAMPLES	2
	Volume	Serial	Number	is	1839-10EE

	Directory	of	A:\

MKT										<DIR>					01-05-95		10:54a
ENG										<DIR>					01-05-95		10:54a
SAMPLE			TXT								24	01-05-95		11:13a
								3	file(s)									24	bytes
	Directory	of	A:\ENG

.												<DIR>					01-05-95		10:54a

..											<DIR>					01-05-95		10:54a
ACCOUNT													24	01-05-95		11:13a
BUDGET							<DIR>					01-05-95		11:30a
SCHEDULE					<DIR>					01-05-95		11:30a
								5	file(s)									24	bytes

Directory	of	A:\ENG\BUDGET

.												<DIR>					01-05-95		11:30a

..											<DIR>					01-05-95		11:30a
Press	any	key	to	continue	.	.	.

Notice	that	MS-DOS	displays	the	name	of	each	subdirectory	on	a	separate	line	above	the
list	of	subdirectory	entries.	If	you	want	to	display	another	screenful,	press	any	key.	If	you
want	to	cancel,	press	Ctrl-Break.

Viewing	Specified	Files	in	More	Than	One	Subdirectory

A	listing	of	every	file	in	every	subdirectory	on	a	disk	can	be	very	long.	You	can	limit	the
display	by	telling	MS-DOS	to	show	only	the	names	of	files	that	you	specify.	For	example,
use	the	asterisk	wildcard	to	tell	MS-DOS	to	list	any	file	in	any	subdirectory	whose	extension
is	DOC.	Type	this:
Current	Directory	is	A:\
Command:	dir	*.doc	/s

MS-DOS	responds:
Volume	in	drive	A	is	EXAMPLES	2
	Volume	Serial	Number	is	1839-10EE

Directory	of	A:\MKT\WP

LET1					DOC								24	01-05-95		11:13a
LET2					DOC								24	01-05-95		11:13a
LET3					DOC								24	01-05-95		11:13a
RPT1					DOC								24	01-05-95		11:13a
RPT2					DOC								24	01-05-95		11:13a
RPT3					DOC								24	01-05-95		11:13a
								6	file(s)								144	bytes

Total	files	listed:
								6	file(s)								144	bytes
																					1444352	bytes	free

Only	the	subdirectory	\MKT\WP	contains	files	with	the	extension	DOC.

The	/S	parameter	can	be	particularly	useful	if	you	remember	the	name	of	a	file	but	you	can't
remember	where	you	put	it.	Change	to	the	root	directory	of	the	disk,	and	use	the	/S
parameter	to	search	every	subdirectory.	Use	wildcards,	if	needed,	to	search	for	a	group	of
files	or	for	a	file	whose	name	you're	not	sure	of.

The	Path	to	a	Command:	The	Path	Command

In	a	multilevel	filing	system,	you'll	probably	change	the	current	directory	as	you	use	data
files	in	different	subdirectories.	But	you'll	use	command	files	too,	such	as	the	external	MS-
DOS	commands	and	application	programs.	When	you	type	a	command,	MS-DOS	looks	for
the	command	file	in	the	current	directory.	If	you've	changed	directories,	chances	are	the
current	directory	won't	contain	the	command	file	you	need.

The	Path	command	lets	you	tell	MS-DOS	where	to	look	for	a	command	file	if	it's	not	in	the
current	directory.	You	can	name	one	or	more	directories—the	root	directory	or	any
subdirectory	on	the	disk	in	any	disk	drive.	This	command	lets	you	work	in	any	subdirectory
you	want	and	still	be	able	to	use	any	command	file.

The	Path	command	has	three	parameters:
path	<drive><path>	;

<drive>	is	the	letter,	followed	by	a	colon,	of	the	drive	(such	as	a:)	with	the	disk	that	contains
the	command	file.	If	you	omit	<drive>,	MS-DOS	looks	on	the	disk	in	the	current	drive.

<path>	is	the	path	name	of	the	directory	that	contains	the	command	file.

You	can	specify	several	command	paths	in	one	command,	separating	them	with	semicolons.
If	you	enter	a	Path	command	with	no	parameters	(just	type	path),	MS-DOS	displays	the
command	paths	you	have	defined.	If	you	type	path	followed	only	by	a	semicolon,	MS-DOS
cancels	any	command	paths	you	have	defined.

If	you	have	a	hard	disk,	the	root	directory	probably	contains	a	special	file	named
AUTOEXEC.BAT	that	MS-DOS	reads	each	time	you	start	or	restart	your	computer.
AUTOEXEC.BAT	contains	instructions	that	help	MS-DOS	work	well	for	you.	One	of	those
instructions	is	probably	a	Path	command	that	enables	you	to	use	application	programs,	as
well	as	external	MS-DOS	commands,	no	matter	what	the	current	directory	is.	For	example,
suppose	you	use	Microsoft	Word,	Lotus	1-2-3,	R:BASE,	and	MaxThink,	and	your	MS-DOS
files	are	in	a	directory	named	\DOS.	Your	Path	command	probably	looks	something	like	this:
path		c:\dos;c:\word;c:\123;c:\rbfiles;c:\max

The	order	in	which	the	directory	names	are	specified	determines	the	order	in	which	MS-
DOS	searches	for	the	command	file.	Because	the	drive	letter	and	root-directory	symbol	(\)
precede	each	subdirectory	name,	MS-DOS	knows	where	to	find	each	program,	and	you
can	use	any	program	in	any	of	these	directories	even	if	the	current	drive	isn't	C.

If	MS-DOS	has	no	trouble	starting	application	programs	or	carrying	out	external	commands
when	drive	A	is	the	current	drive,	you	can	be	certain	you	have	an	AUTOEXEC.BAT	file	with
a	Path	command	in	it.	You	can	check	on	your	own	command	path	by	typing	path	with	no
parameters.	Type	this:
Current	Directory	is	A:\
Command:	path

If	you	do	have	any	problems	starting	programs	from	another	drive,	consult	Chapter	14,

"Creating	Your	Own	Commands,"	which	describes	how	you	can	create	or	modify	an
AUTOEXEC.BAT	file.

Displaying	the	Directory	Structure:	Tree	and	Check	Disk

As	described	in	Chapter	11,	"The	MS-DOS	Shell,"	the	Shell	lets	you	quickly	display	a
diagram	of	the	directory	structure	of	any	disk	and	use	that	diagram	to	move	from	one
directory	to	another.	Tree	and	Check	Disk	are	commands	that	allow	you	to	view	your
directory	structure	from	the	system	prompt.

The	Tree	command	has	two	main	parameters:
tree	<drive>	/F

<drive>	is	the	letter	of	the	drive,	followed	by	a	colon,	that	contains	the	disk	whose	directory
structure	is	to	be	displayed.

/F	displays	a	list	of	the	files	in	each	directory.

Checking	the	Directory	Structure	of	a	Disk

Note
The	next	two	examples	use	the	Tree	command.	If	your	version	of	MS-DOS	does
not	include	this	command,	a	later	example	shows	you	how	to	use	the	Check	Disk
command	to	see	a	list	of	directories	and	files	on	a	disk.

Suppose	you're	about	to	create	a	new	file	and	you	want	to	check	on	the	most	appropriate
subdirectory	for	it.	As	its	name	implies,	the	Tree	command	shows	you	the	structure	of	the
directory	tree	on	whichever	disk	you	specify.	For	example,	check	the	directories	on	your
sample	disk.	To	be	sure	you	see	the	entire	structure,	first	check	that	the	current	directory	is
the	root	directory.	If	it	isn't,	change	directories	by	typing	cd	\.	Now	ask	MS-DOS	to	show
you	the	names	and	relative	levels	of	the	directories	on	the	disk.	Type	this:
Current	Directory	is	A:\
Command:	tree

If	you're	using	version	4	or	later	of	MS-DOS,	you	see	a	report	like	this:
Directory	PATH	listing	for	Volume	EXAMPLES	2
Volume	Serial	Number	is	1839-10EE

If	you're	using	an	earlier	version	of	MS-DOS,	you	see	a	report	like	the	following.	(Several

line	spaces	that	appear	on	the	screen	have	been	removed	to	condense	the	display.)

DIRECTORY	PATH	LISTING
Path:	\MKT
Sub-directories:		WP
																		BUDGET
																		CUSTOMER
																		SALES
Path:	\MKT\WP
Sub-directories:		None
Path:	\MKT\BUDGET
Sub-directories:		None
Path:	\MKT\CUSTOMER
Sub-directories:		None
Path:	\MKT\SALES
Sub-directories:		None
Path:	\ENG
Sub-directories:		BUDGET
																		SCHEDULE
Path:	\ENG\BUDGET
Sub-directories:		None
Path:	\ENG\SCHEDULE
Sub-directories:	None

But	suppose	a	report	on	the	directory	structure	isn't	detailed	enough.	You	want	to	know	the
name	of	each	file	in	each	subdirectory—perhaps	because	there	is	one	file	in	particular	you
need.	To	do	this,	you	use	the	/F	parameter,	which	shows	not	only	the	directory	structure	of
the	disk	but	also	the	names	of	the	files	in	each	directory.	For	example,	versions	4	and	later
produce	a	report	like	this	when	you	type	tree	/f.
Directory	PATH	listing	for	Volume	EXAMPLES	2
Volume	Serial	Number	is	1839-10EE

Now	the	tree	shows	the	names	of	your	files	beneath	the	names	of	the	subdirectories	that
contain	them.

If	your	version	of	the	Tree	command	doesn't	produce	the	graphic	type	of	report	shown
above,	or	if	your	version	of	MS-DOS	doesn't	include	a	Tree	command,	you	can	use	the	/V
parameter	of	the	Check	Disk	command	to	see	a	list	of	files	and	directories.	(Note	that	you
should	not	use	Check	Disk	if	Microsoft	Windows	is	running.)	Type	this:
Current	Directory	is	A:\
Command:	chkdsk	/v

MS-DOS	responds	with	a	report	like	this:
Volume	Serial	Number	is	1839-10EE
Directory	A:\
Directory	A:\MKT
A:\MKT\ACCOUNT
Directory	A:\MKT\WP
A:\MKT\WP\LET1.DOC
A:\MKT\WP\LET2.DOC
A:\MKT\WP\LET3.DOC
A:\MKT\WP\RPT1.DOC
A:\MKT\WP\RPT2.DOC
A:\MKT\WP\RPT3.DOC
A:\MKT\WP\LET1.STY
A:\MKT\WP\LET2.STY
A:\MKT\WP\LET3.STY
Directory		A:\MKT\BUDGET
A:\MKT\BUDGET\BGT1.XLS

A:\MKT\BUDGET\BGT2.XLS
A:\MKT\BUDGET\BGT3.XLS
Directory		A:\MKT\CUSTOMER
Directory		A:\MKT\SALES
Directory		A:\ENG
A:\ENG\ACCOUNT
Directory		A:\ENG\BUDGET
A:\ENG\BUDGET\BGT1.NEW
A:\ENG\BUDGET\BGT2.NEW
A:\ENG\BUDGET\BGT3.NEW
Directory	A:\ENG\SCHEDULE
A:\SAMPLE.TXT

			1457664	bytes	total	disk	space
						4096	bytes	in	8	directories
						9216	bytes	in	18	user	files
			1444352	bytes	available	on	disk

							512	bytes	in	each	allocation	unit
						2847	total	allocation	units	on	disk
						2821	available	allocation	units	on	disk

			655360	total	bytes	memory
			528688	bytes	free

Here,	the	directories	are	identified	by	Directory	preceding	the	path	and	file	name.	The	file	in
the	root	directory	(SAMPLE.TXT)	is	listed	at	the	end,	above	the	usual	Check	Disk	reports
on	disk	space	and	memory.

A	printed	copy	of	either	of	these	reports	can	be	helpful,	especially	if	your	filing	system	has
several	levels.	For	a	hard	disk	with	several	hundred	files,	however,	bear	in	mind	that	either	a
Tree	or	a	Check	Disk	report	showing	both	directories	and	files	could	be	several	pages	long.
Here	are	some	ways	you	can	print	the	reports	of	either	the	Tree	or	the	Check	Disk
command,	or	both.

If	you	want	to	print	a	list	of	both	directories	and	files,	use	the	Tree	command	with	the	/F
parameter	or	the	Check	Disk	command	with	the	/V	parameter.	If	you	have	version	4	or	later
and	your	printer	is	not	an	IBM	or	IBM-compatible	printer,	either	use	the	Check	Disk
command	or	use	the	/A	parameter	of	the	Tree	command,	which	tells	MS-DOS	to	use
hyphens,	backslashes,	and	other	common	characters	to	print	the	diagram.	Without	the	/A
parameter,	your	printout	might	include	accented	letters,	small	open	circles,	or	other	such
characters	in	place	of	the	horizontal	and	vertical	lines	showing	the	branches	of	your
directory	tree.

For	example,	to	print	a	complete	report	for	the	disk	in	drive	A,	type	this:

Current	Directory	is	A:\
Command:	tree	/f	>	prn

or:
Current	Directory	is	A:\
Command:	tree	/f	/a	>	prn

or:
Current	Directory	is	A:\
Command:	chkdsk	/v	>	prn

To	print	only	a	list	of	directories	on	the	disk	in	drive	A,	you	can	use	either	of	the	following
commands.

With	the	Tree	command,	type	this:
Current	Directory	is	A:\
Command:	tree	>	prn

With	the	Check	Disk	command,	you	use	techniques	described	in	Chapter	13,	"Taking	Control
of	Your	System,"	to	filter	out	all	the	file	names	from	the	output	of	the	Check	Disk	command.
Filtering	leaves	just	the	subdirectory	names,	which	are	then	sent	to	the	printer.	Try	it.	(Notice
that	a	slash,	not	a	backslash,	precedes	the	v.)	Type	this:
Current	Directory	is	A:\
Command:	chkdsk	/v	œ	find	"Di"	>	prn

The	significant	printed	output	of	this	command	shows	only	the	names	of	the	directories	(the
lines	that	contain	Di).

Any	of	these	guides	to	your	file	system	can	help	you	keep	track	of	both	files	and
subdirectories	and	can	help	you	use	your	system	more	efficiently.

Another	Type	of	Path:	The	Append	Command

If	you're	using	3.3	or	a	later	version	of	MS-DOS,	you	can	use	the	Append	command	as	well
as	the	Path	command	to	tell	MS-DOS	where	to	look	for	a	file	if	it's	not	in	the	current
directory.	Although	it	seems	redundant	to	have	two	commands	that	can	set	a	search	path,
there's	a	significant	difference	between	Path	and	Append:	Path	sets	the	path	to	command
files;	Append	sets	the	path	to	data	files	too.	Just	as	with	the	Path	command,	you	can	name
one	or	more	directories	on	any	disk	drive.

The	Append	command	has	three	main	parameters	related	to	helping	MS-DOS	find	data	files
(and	program	files):
append	<drive><path>	;

<drive>	is	the	letter,	followed	by	a	colon,	of	the	drive	(such	as	c:)	with	the	disk	that	contains

the	files.	If	you	omit	<drive>,	MS-DOS	looks	on	the	current	drive.

<path>	is	the	path	name	of	the	directory	that	contains	the	files.

You	can	specify	several	appended	paths	in	one	command,	separating	them	with	semicolons.
If	you	enter	an	Append	command	with	no	parameters	(just	type	append),	MS-DOS	displays
the	paths	you	have	defined.	If	you	type	append	followed	only	by	a	semicolon,	MS-DOS
cancels	any	paths	you	have	defined.

It's	easy	to	try	the	Append	command.	The	root	directory	is	the	current	directory,	and	the	file
RPT1.DOC	is	in	the	directory	\MKT\WP.	First,	try	to	display	the	file	by	using	the	Type
command:
Current	Directory	is	A:\
Command:	type	rpt1.doc

MS-DOS	replies	File	not	found	because	RPT1.DOC	isn't	in	the	current	directory.	Now	type
two	Append	commands	to	set	the	data	path	to	\MKT\WP	and	display	the	data	path:
Current	Directory	is	A:\
Command:	append	\mkt\wp

Current	Directory	is	A:\
Command:	append
APPEND=\MKT\WP

Now	try	the	Type	command	again:
Current	Directory	is	A:\
Command:	type	rpt1.doc
This	is	a	sample	file.

This	time	MS-DOS	finds	the	file	because	you	told	it	where	to	look.	Cancel	the	appended
path	by	typing	append	with	just	a	semicolon,	then	check	again:
Current	Directory	is	A:\
Command:	append	;

Current	Directory	is	A:\
Command:	append
No	Append

The	Path	and	Append	commands	are	valuable	tools	for	improving	the	efficiency	and
convenience	of	using	a	hard	disk.	Appendix	C,	"MS-DOS	Command	Reference,"	includes	a
complete	description	of	each.

If	you're	going	to	continue	using	your	system,	restart	your	computer	or	type	the	following	to
restore	the	system	prompt:
Current	Directory	is	A:\

Command:	prompt	pg

A:\>

NoteBe	sure	to	save	the	examples	disk;	you'll	use	it	again	in	Chapter	9.

	

javascript:Next(0)
javascript:Next(1)

Chapter	Summary
Although	this	chapter	introduced	several	new	terms	and	concepts,	it	doesn't	take	many
commands	to	set	up	a	multilevel	file	system.	The	structure	shown	in	Figure	8-3,	for	example,
required	only	the	11	commands	listed	here.	(Don't	enter	them;	this	list	is	just	to	show	you
the	commands	you	entered.)

md	mkt md	sales

md	eng md	\eng\wp

cd	mkt cd	\eng

md	wp md	budget

md	budget md	schedule

md	customer

You	might	not	create	a	file	structure	with	this	many	levels	on	a	floppy	disk,	although	it's
certainly	possible	if	you	use	high-density	floppy	disks.	As	you	noticed,	subdirectories	require
a	great	deal	of	work	from	the	floppy	disk	drive.	But	you	might	find	that	two	or	three
subdirectories	reduce	the	number	of	floppy	disks	you	use,	or	that	they	let	you	use	your
system	more	efficiently.	The	examples	in	this	chapter	showed	you	how	to	use	all	the
commands	you	need	to	create	and	manage	a	multilevel	filing	system.

Save	the	floppy	disk	that	contains	the	file	system	you	created	in	this	chapter.	You'll	use	it
again	to	copy	sample	files	in	the	next	chapter,	"Managing	Your	Hard	Disk."

	

javascript:Next(0)
javascript:Next(1)

Chapter	9:	Managing	Your	Hard	Disk

Overview
A	hard	disk	holds	far	more	data	than	a	floppy	disk,	and	MS-DOS	can	use	it	much	more
quickly.	You	don't	remove	a	hard	disk;	it's	permanently	fixed	in	the	drive.	Like	a	floppy	disk,
a	hard	disk	stores	data	in	tracks	and	sectors;	unlike	a	floppy	disk,	however,	a	hard	disk
stores	data	on	magnetically	coated,	rigid	metal—not	plastic—disks	that	are	enclosed	in	a
nonremovable	case.

A	typical	hard	disk	drive	contains	two	or	more	separate	disks	that	give	it	a	total	storage
capacity	of	250	to	500	megabytes,	but	hard	disks	with	even	higher	capacities	are	becoming
common.	Several	computers	offer	a	hard	disk	that	can	hold	1024	MB	or	more.	This	chapter
focuses	on	how	to	use	your	hard	disk	efficiently.

Managing	your	hard	disk	requires	more	thought	and	planning	than	managing	your	floppy
disks,	simply	because	of	the	sheer	number	of	files	involved.	But	properly	organized	and
managed,	your	hard	disk	is	a	fast	and	effective	tool	you	use	with	a	minimum	of	fuss.	Two
tasks	are	more	important	than	any	others	in	managing	your	hard	disk	efficiently.	One	is
setting	up	a	filing	system	that	lets	you	take	advantage	of	the	disk's	capacity	without	losing
track	of	all	your	files;	this	chapter	shows	you	how	to	plan	a	structure	and	use	the	commands
to	create	that	structure.	The	other	task	is	backing	up	the	files	periodically,	both	to	protect
your	data	in	the	event	your	hard	disk	is	inadvertently	erased	or	damaged	and	to	clear	out
old	files	you	no	longer	use	regularly;	the	topic	of	backing	up	is	covered	in	the	next	chapter,
"Protecting	Your	Disks	and	Files."

The	previous	chapter	covered	setting	up	and	using	a	multilevel	filing	system.	Everything	you
learned	there	applies	to	managing	your	hard	disk	properly.	This	chapter	covers	the
additional	tasks	of	organizing	directories	and	files	on	your	hard	disk	and	managing	large
numbers	of	files.

In	most	ways,	you	treat	a	hard	disk	as	if	it	were	a	large	floppy	disk,	using	the	MS-DOS
directory	commands	to	create,	change,	and	remove	directories,	and	the	MS-DOS	file
commands	to	copy,	erase,	rename,	and	otherwise	work	with	your	files.	The	Volume	and
Label	commands	described	in	Chapter	6,	"Managing	Your	Floppy	Disks,"	can	also	be	used
with	a	hard	disk.	But	two	commands—Diskcopy	and	Diskcomp—don't	work	with	the	hard
disk	because	they	are	designed	to	work	only	with	entire	floppy	disks.

This	chapter	suggests	some	guidelines	to	simplify	the	job	of	managing	your	hard	disk;	it
shows	you	how	to	set	up	a	filing	system,	control	the	archive	attribute	of	a	file	with	the
Attribute	command,	and	copy	files	selectively	with	the	Replace	and	Xcopy	commands.	If	you
are	running	MS-DOS	version	6,	you	can	increase	the	capacity	and	efficiency	of	your	hard
disk	with	the	DoubleSpace	(MS-DOS	version	6.0	and	6.2)	or	DriveSpace	(MS-DOS	version
6.22)	and	Defrag	programs,	and,	if	you	have	version	6.2	or	later,	use	a	program	called
ScanDisk	to	check	for	and	correct	disk	errors.	See	the	section	later	in	this	chapter	named
"Checking	a	Disk	for	Errors"	for	more	information	about	ScanDisk.

	

javascript:Next(0)
javascript:Next(1)

Putting	Application	Programs	on	Your	Hard	Disk
When	you	set	up	your	directory	structure,	you'll	have	to	copy	the	command	and	data	files	of
your	application	programs	onto	the	hard	disk.	Most	application	programs	install	themselves
in	their	own	subdirectories	on	a	hard	disk;	others	don't	include	an	installation	(or	setup)
program,	leaving	it	to	you	to	create	the	subdirectories	and	copy	the	files.	You	shouldn't	put
all	your	programs	in	the	root	directory	or	in	a	single	large	program	directory.	If	you	do,	you'll
have	difficulty	telling	one	program	file	from	another,	and	you'll	end	up	with	as	much
disorganization	as	you	would	if	you	tossed	all	your	program	floppy	disks	into	one	big
drawer.

Remember,	too,	that	MS-DOS	itself	is	a	collection	of	command	(program)	files.	Like
application-program	files,	the	MS-DOS	files	can	be	stored	in	a	variety	of	places	on	your
hard	disk,	including	the	root	directory.	Versions	4	and	later,	in	fact,	install	themselves	in	a
\DOS	subdirectory.	If,	for	some	reason,	your	MS-DOS	files	are	in	the	root	directory,	you
should	move	them	to	a	subdirectory	named	\DOS	so	they'll	be	easy	to	find	and	won't	clutter
up	either	your	root	directory	or	your	directory	displays.	Instructions	for	doing	this	are	in
Appendix	A,	"Installing	MS-DOS."

	

javascript:Next(0)
javascript:Next(1)

Preparing	for	the	Examples
The	examples	in	this	chapter	rely	on	the	information	presented	in	the	preceding	chapter,	"A
Tree	of	Files,"	and	use	the	directory	structure	and	files	you	created	there.	If	you	haven't
completed	those	examples,	do	so	before	continuing.

The	examples	in	this	chapter	require	the	sample	subdirectories	and	files	you	see	in	Figure	9-
1	on	the	next	page.	You	will	create	these	on	the	hard	disk	in	a	subdirectory	named
\RUNDOS,	which	will	keep	all	your	examples	in	one	place	for	easy	removal.

	
Figure	9-1:	Subdirectories	and	files	for	hard	disk	examples.

If	your	system	prompt	doesn't	show	the	current	directory,	change	it	to	an	abbreviated
version	of	the	Current	Directory	is...	prompt	you	used	in	the	last	chapter.	Type	the	following:
C>prompt	pg<Enter>

C:\>

Now	your	system	prompt	shows	both	the	current	drive	and	the	current	directory	and	will
help	you	keep	track	of	where	you	are	in	your	directory	structure.

To	create	the	\RUNDOS	subdirectory,	type	this:
C:\>md	\rundos

Now	change	the	current	directory	to	\RUNDOS	by	typing	this:
C:\>cd	\rundos

Copying	Files	to	Your	Hard	Disk

The	remainder	of	your	preparation	depends	on	which	version	of	MS-DOS	you're	using.	If
you	have	version	3.2	or	later,	follow	the	instructions	under	the	heading	"Copying	Files	with
the	Xcopy	Command."	If	you	have	a	version	of	MS-DOS	prior	to	3.2,	follow	the	instructions

under	the	heading	"Copying	Files	with	the	Copy	Command."

Copying	Files	with	the	Xcopy	Command

If	you're	using	version	3.2	or	later	of	MS-DOS,	copying	everything	from	your	practice	floppy
disk	to	the	\RUNDOS	directory	is	simple.	All	you	need	is	one	Xcopy	command,	which	copies
subdirectories	and	files	from	the	source	disk	to	the	target	disk.	The	Xcopy	parameter	you
use	here,	/S,	copies	all	subdirectories	as	well	as	all	files.	Xcopy	is	described	in	more	detail
later.	For	now,	put	the	floppy	disk	that	contains	your	sample	files	in	drive	A	and	type	this:
C:\RUNDOS>xcopy	a:	/s

MS-DOS	responds:
Reading	source	file(s)...
A:SAMPLE.TXT
A:MKT\ACCOUNT
A:MKT\WP\LET1.DOC
A:MKT\WP\LET2.DOC
A:MKT\WP\LET3.DOC
A:MKT\WP\RPT1.DOC
A:MKT\WP\RPT2.DOC
A:MKT\WP\RPT3.DOC
A:MKT\WP\LET1.STY
A:MKT\WP\LET2.STY
A:MKT\WP\LET3.STY
A:MKT\BUDGET\BGT1.XLS
A:MKT\BUDGET\BGT2.XLS
A:MKT\BUDGET\BGT3.XLS
A:ENG\ACCOUNT
A:ENG\BUDGET\BGT1.NEW
A:ENG\BUDGET\BGT2.NEW
A:ENG\BUDGET\BGT3.NEW
							18	File(s)	copied

You	don't	need	the	file	named	SAMPLE.TXT,	the	directories	named	\ENG	and
\ENG\BUDGET,	or	the	files	they	contain.	If	you	have	version	6	of	MS-DOS,	remove	them	by
typing	this:
C:\RUNDOS>del		sample.txt

C:\RUNDOS>deltree		eng
Delete	directory	"eng"	and	all	its	subdirectories?	[yn]	y
Deleting	eng...

If	you	have	an	earlier	version	of	MS-DOS,	type	this:
C:\RUNDOS>del		sample.txt
C:\RUNDOS>del		eng\account

C:\RUNDOS>del		eng\budget*.new
C:\RUNDOS>rd		eng\budget
C:\RUNDOS>rd		eng

You're	through.

Copying	Files	with	the	Copy	Command

If	you're	using	a	version	of	MS-DOS	prior	to	3.2,	put	the	floppy	disk	that	contains	your
sample	files	in	drive	A	and	type	the	following	commands	to	duplicate	a	part	of	the	floppy
disk's	directory	structure	on	your	hard	disk:
C:\RUNDOS>md		mkt
C:\RUNDOS>md		mkt\wp
C:\RUNDOS>md		mkt\budget

Now	type	the	following	to	copy	the	files	from	the	floppy	disk	to	the	hard	disk:
C:\RUNDOS>copy	a:\mkt\account	mkt
										1	File(s)	copied

C:\RUNDOS>copy	a:\mkt\wp*.*	mkt\wp
A:\MKT\WP\LET1.DOC
A:\MKT\WP\LET2.DOC
A:\MKT\WP\LET3.DOC
A:\MKT\WP\RPT1.DOC
A:\MKT\WP\RPT2.DOC
A:\MKT\WP\RPT3.DOC
A:\MKT\WP\LET1.STY
A:\MKT\WP\LET2.STY
A:\MKT\WP\LET3.STY
									9	File(s)	copied

C\RUNDOS>copy	a:\mkt\budget*.*	mkt\budget
A:\MKT\BUDGET\BGT1.XLS
A:\MKT\BUDGET\BGT2.XLS
A:\MKT\BUDGET\BGT3.XLS
										3	File(s)	copied

This	completes	the	preparation.

	

javascript:Next(0)
javascript:Next(1)

Changing	the	Attributes	of	a	File	or	a	Directory
The	Attribute	command	lets	you	control	the	following	attributes	of	a	file	or	directory:	read-
only,	hidden,	archive,	and	system.	You	can	use	the	Attribute	command	to	control	access	to
a	file	or	a	group	of	files	by	using	read-only	and	hidden	attributes.	In	short,	if	a	file	has	the
read-only	attribute,	you	can	view	the	contents	of	a	file	but	can't	change	it.	If	a	file	has	the
hidden	attribute,	the	file	is	hidden	from	view;	you	won't	see	it	listed	when	you	use	the
Directory	command.

The	hidden	attribute	is	particularly	useful	with	directories,	both	because	it	can	help	reduce
screen	clutter	by	omitting	hidden	directories	from	directory	listings	and	because	it	can	help
you	hide	directories	and	the	files	they	contain	from	casual	view.

If	you're	using	version	3.2	or	a	later	version	of	MS-DOS,	you	can	also	use	the	Attribute
command	to	control	the	archive	attribute	of	a	file,	which	tells	MS-DOS	(or	any	other
program	that	checks	it)	whether	the	file	has	been	changed	since	the	last	time	it	was	backed
up	for	archival	storage.	Another	attribute	is	the	system	attribute	that	is	used	to	tell	MS-DOS
to	treat	a	file	as	a	system	(program)	file.	If	you	have	version	5	or	later,	you	can	use	the
system	attribute.	This	attribute	is	normally	used	only	by	programmers.

This	chapter	describes	the	Attribute	command	in	more	detail	and	shows	other	examples	of
its	use.	The	command	has	the	following	parameters:

attrib	+R	-R	+A	-A	+H	-H	+S	-S	<filename>	/S

+R	turns	on	the	read-only	attribute;	-R	turns	it	off.

+A	turns	on	the	archive	attribute	(sometimes	called	the	archive	bit);	-A	turns	it	off.

+H	turns	on	the	hidden	attribute;	-H	turns	it	off.	If	you	have	version	5	or	later,	you	can	use
the	hidden	attribute.

+S	turns	on	the	system	attribute;	-S	turns	it	off.	If	you	have	version	5	or	later,	you	can	use
the	system	attribute.

<filename>	is	the	drive,	path,	and	name	of	the	file	or	directory	whose	attributes	are	to	be
changed	or	displayed.	You	can	use	wildcard	characters	to	specify	a	group	of	files.	In
versions	5	and	later,	you	can	omit	<filename>	to	view	or	change	the	attributes	of	all	files	in
the	current	directory.	In	effect,	omitting	the	<filename>	parameter	in	versions	5	and	later	is
the	same	as	specifying	<filename>	as	*.*.

/S,	in	versions	3.3	and	later,	applies	the	Attribute	command	to	every	file	in	each	subdirectory
contained	in	<filename>.	If	you	specify	<filename>	as	the	root	directory	of	a	disk	and
include	/S,	the	Attribute	command	is	applied	to	every	file	in	every	subdirectory	on	the	disk.

Through	version	4	of	MS-DOS,	if	you	omit	all	parameters	except	<filename>,	MS-DOS
displays	the	name	or	names	of	the	files	preceded	by	an	A	if	the	file	has	the	archive	attribute,
an	R	if	the	file	has	the	read-only	attribute,	or	both	if	the	file	has	both	attributes	set.

In	versions	5	and	later,	omitting	all	parameters,	including	<filename>	if	you	choose,	causes
MS-DOS	to	display	the	name	or	names	of	all	files	in	the	current	directory.	It	precedes	the
file	names	with	A	and	R	for	archive	and	read-only	as	it	does	in	earlier	versions,	and	uses	H
and	S	to	indicate	the	hidden	and	system	attributes.

Examples	of	Changing	the	Archive	Attribute

The	archive	attribute	is	a	part	of	the	directory	entry	that	isn't	displayed	by	the	Directory
command	but	that	can	be	examined	or	changed	by	MS-DOS	or	another	program	that
checks	it.	This	attribute	can	be	used	by	the	Xcopy	command	described	later	in	this	chapter
under	the	heading	"Using	the	Xcopy	Command"	and	by	some	programs	that	back	up	files
from	a	hard	disk.	The	archive	attribute	is	turned	on	by	MS-DOS	whenever	a	file	is	created
or	changed.	Because	the	archive	attribute	tells	MS-DOS	or	another	program	whether	a	file
has	been	changed	since	the	last	time	(if	ever)	it	was	backed	up,	it	is	used	principally	by
Xcopy	and	other	programs	to	determine	which	files	must	be	backed	up.

To	complete	the	examples	on	the	following	pages,	change	the	current	directory	to
\RUNDOS\MKT\WP	by	typing	this:
C:\RUNDOS>cd	mkt\wp

As	a	first	step,	check	the	attributes	of	the	files	in	the	current	directory.	Type	the	following
command	if	you	have	version	5	or	later:
C:\RUNDOS\MKT\WP>attrib

Type	this	command	if	you	have	an	earlier	version:
C:\RUNDOS\MKT\WP>attrib	*.*

MS-DOS	responds	with	a	display	like	the	following:
A										C:\RUNDOS\MKT\WP\LET1.DOC
A										C:\RUNDOS\MKT\WP\LET2.DOC
A										C:\RUNDOS\MKT\WP\LET3.DOC
A										C:\RUNDOS\MKT\WP\RPT1.DOC
A										C:\RUNDOS\MKT\WP\RPT2.DOC
A										C:\RUNDOS\MKT\WP\RPT3.DOC
A										C:\RUNDOS\MKT\WP\LET1.STY
A										C:\RUNDOS\MKT\WP\LET2.STY
A										C:\RUNDOS\MKT\WP\LET3.STY

MS-DOS	displays	the	name	of	each	file	with	an	A	in	column	3	because	the	files	have	never
been	backed	up.

To	turn	off	the	archive	attribute	of	all	files	with	the	extension	DOC	and	check	the	result,	type
the	following	(in	this	and	the	following	examples,	you	can	omit	the	*.*	if	you're	using	version
5	or	later):

C:\RUNDOS\MKT\WP>attrib	-a	*.doc

C:\RUNDOS\MKT\WP>attrib	*.*
															C:\RUNDOS\MKT\WP\LET1.DOC
															C:\RUNDOS\MKT\WP\LET2.DOC
															C:\RUNDOS\MKT\WP\LET3.DOC
															C:\RUNDOS\MKT\WP\RPT1.DOC
															C:\RUNDOS\MKT\WP\RPT2.DOC
															C:\RUNDOS\MKT\WP\RPT3.DOC
		A												C:\RUNDOS\MKT\WP\LET1.STY
		A												C:\RUNDOS\MKT\WP\LET2.STY
		A												C:\RUNDOS\MKT\WP\LET3.STY

Now	only	those	files	whose	extension	is	STY	have	the	archive	attribute.

If	you're	using	3.3	or	a	later	version	of	MS-DOS,	you	can	use	the	/S	parameter	to	apply	the
Attribute	command	to	all	the	files	in	subdirectories.	To	turn	off	the	archive	attribute	of	all	files
in	the	directories	\RUNDOS\MKT,	\RUNDOS\MKT\WP,	and	\RUNDOS\MKT\BUDGET	and
then	check	the	results	in	all	three,	type	the	following	commands	to	change	the	directory	to
\RUNDOS\MKT,	turn	off	the	archive	attribute	of	all	files	in	all	subdirectories,	and	check	the
attributes	of	all	files	in	all	subdirectories:
C:\RUNDOS\MKT\WP>cd		..

C:\RUNDOS\MKT>attrib	-a	*.*	/s

C:\RUNDOS\MKT>attrib	*.*	/s
															C:\RUNDOS\MKT\WP\LET1.DOC
															C:\RUNDOS\MKT\WP\LET2.DOC
															C:\RUNDOS\MKT\WP\LET3.DOC
															C:\RUNDOS\MKT\WP\RPT1.DOC
															C:\RUNDOS\MKT\WP\RPT2.DOC
															C:\RUNDOS\MKT\WP\RPT3.DOC
															C:\RUNDOS\MKT\WP\LET1.STY
															C:\RUNDOS\MKT\WP\LET2.STY
															C:\RUNDOS\MKT\WP\LET3.STY
															C:\RUNDOS\MKT\BUDGET\BGT1.XLS
															C:\RUNDOS\MKT\BUDGET\BGT2.XLS
															C:\RUNDOS\MKT\BUDGET\BGT3.XLS
															C:\RUNDOS\MKT\ACCOUNT

The	response	to	the	second	Attribute	command	shows	that	you	turned	off	the	archive
attribute	of	all	the	files	in	\RUNDOS\MKT\WP,	\RUNDOS\MKT\BUDGET,	and
\RUNDOS\MKT.

If	you	don't	have	version	5	or	later,	type	the	following	command	to	turn	on	the	archive
attribute	of	all	files	in	all	subdirectories	in	\RUNDOS\MKT.	(Examples	later	in	the	chapter

assume	the	attribute	is	turned	on.)
C:\RUNDOS\MKT>attrib	+a	*.*	/s

Now	go	on	to	the	heading	"Copying	Selected	Files."

If	you	do	have	version	5	or	later,	the	following	examples	give	you	practice	with	other	file
attributes.

Examples	of	Changing	Other	Attributes

As	already	mentioned,	the	hidden	attribute	can	be	useful	in	minimizing	screen	clutter	and,	to
some	extent,	in	hiding	files	and	directories	from	casual	view.	Because	an	experienced	user
of	MS-DOS	would	know	how	to	search	for	hidden	files	and	directories,	however,	consider
this	attribute	more	of	a	convenience	than	a	security	measure.

To	apply	and	change	the	hidden	attribute	with	both	directories	and	files,	begin	by	hiding	the
\RUNDOS\MKT\BUDGET	directory.	Type	this:
C:\RUNDOS\MKT>attrib	+h	budget

Now	tell	MS-DOS	to	show	the	directory	for	\RUNDOS	and	all	its	subdirectories,	pausing
after	each	screenful:
C:\RUNDOS\MKT>dir	\rundos	/s	/p

MS-DOS	lists	\RUNDOS,	\RUNDOS\MKT,	and	\RUNDOS\MKT\WP	and	all	the	files	they
contain,	but	it	does	not	list	the	BUDGET	directory	or	any	of	its	files.	However,	if	you	use	the
/A	parameter	of	the	Directory	command	to	tell	MS-DOS	to	list	all	hidden	files	and	directories
in	\RUNDOS	and	its	subdirectories:
C:\RUNDOS\MKT>dir	\rundos	/ah	/s

MS-DOS	displays	this:
Volume	in	drive	C	is	HARD	DISK
	Volume	Serial	Number	is	1608-5A30

Directory	of	C:\RUNDOS\MKT

BUDGET							<DIR>					01-05-95		8:21a
								1	file(s)										0	bytes

Total	files	listed:
								1	file(s)										0	bytes
																				15159296	bytes	free

And	if	you	check	the	attributes	of	\RUNDOS\MKT\BUDGET
C:\RUNDOS\MKT>attrib	budget

you	see	this:
H					C:\RUNDOS\MKT\BUDGET

Next,	to	see	how	hiding	files	differs	from	hiding	a	directory,	first	remove	the	hidden	attribute
from	\RUNDOS\MKT\BUDGET:
C:\RUNDOS\MKT>attrib	-h	budget

To	reduce	your	typing	chores,	change	to	the	\RUNDOS\MKT\BUDGET	directory:
C:\RUNDOS\MKT>cd	budget

Now	apply	the	hidden	attribute	to	the	three	files	in	the	directory:
C:\RUNDOS\MKT\BUDGET>attrib	+h	*.xls

Type	the	command	dir	\rundos	/s	/p	to	again	display	the	directory	for	\RUNDOS	and	all	its
subdirectories.	This	time,	MS-DOS	shows	that	\RUNDOS\MKT\BUDGET	exists,	but	notice
that	the	directory	doesn't	seem	to	contain	any	files.	You	removed	the	hidden	attribute	from
the	directory,	so	MS-DOS	has	no	trouble	including	it	in	the	listing,	but	you	added	the	hidden
attribute	to	the	files	in	the	directory,	so	now	MS-DOS	refuses	to	report	on	the	contents	of
the	directory.	Even	when	you	display	the	directory	itself,	MS-DOS	does	not	show	the	hidden
files:
C:\RUNDOS\MKT\BUDGET>dir

	Volume	in	drive	C	is	HARD	DISK
	Volume	Serial	Number	is	1608-5A30
	Directory	of	C:\RUNDOS\MKT\BUDGET

.												<DIR>					01-05-95			8:21a

..											<DIR>					01-05-95			8:21a
								2	file(s)										0	bytes
																				15159296	bytes	free

Check	the	attributes	of	the	files	in	this	directory,	however,	and	MS-DOS	responds:
C:\RUNDOS\MKT\BUDGET>attrib		*.xls
							H							C:\RUNDOS\MKT\BUDGET\BGT1.XLS
							H							C:\RUNDOS\MKT\BUDGET\BGT2.XLS
							H							C:\RUNDOS\MKT\BUDGET\BGT3.XLS

When	files	are	hidden,	you	can't	change	their	other	attributes.	For	example,	suppose	you
decide	to	make	the	files	read-only;	try	it	by	typing	this:
C:\RUNDOS\MKT\BUDGET>attrib	+r	*.xls

MS-DOS	refuses:
Not	resetting	hidden	file	C:\RUNDOS\MKT\BUDGET\BGT1.XLS
Not	resetting	hidden	file	C:\RUNDOS\MKT\BUDGET\BGT2.XLS

Not	resetting	hidden	file	C:\RUNDOS\MKT\BUDGET\BGT3.XLS

You	can,	however,	change	other	attributes	if	you	also	specify	the	hidden	attribute.	Make	the
files	both	read-only	and	hidden	with	one	Attribute	command:
C:\RUNDOS\MKT\BUDGET>attrib	+r	+h	*.xls

Check	the	attributes	again:
C:\RUNDOS\MKT\BUDGET>attrib		*.xls
							HR						C:\RUNDOS\MKT\BUDGET\BGT1.XLS
							HR						C:\RUNDOS\MKT\BUDGET\BGT2.XLS
							HR						C:\RUNDOS\MKT\BUDGET\BGT3.XLS

MS-DOS	reports	the	files	are	now	both	hidden	(H)	and	read-only	(R).

To	return	all	the	files	in	RUNDOS	and	its	subdirectories	to	their	original	state,	first	remove
the	hidden	and	read-only	attributes	from	the	budget	files:
C:\RUNDOS\MKT\BUDGET>attrib	-r	-h	*.xls

Now	change	the	current	directory	to	C:\RUNDOS\MKT,	and	turn	on	the	archive	attribute	of
all	files	in	C:\RUNDOS\MKT	and	all	its	subdirectories:
C:\RUNDOS\MKT\BUDGET>cd	..
C:\RUNDOS\MKT>attrib	+a	*.*	/s

	

javascript:Next(0)
javascript:Next(1)

Copying	Selected	Files
In	earlier	chapters,	you	saw	that	you	can	copy	files	with	similar	names	or	extensions	by
using	the	Copy	command	and	wildcard	characters.	If	you're	using	3.2	or	a	later	version	of
MS-DOS,	you	have	even	more	flexibility	in	copying	files:

The	Replace	command	lets	you	replace	all	files	in	every	subdirectory	of	a	target
disk	that	have	the	same	name	as	the	files	on	a	source	disk.	The	Replace	command
also	lets	you	copy	only	the	files	on	a	source	disk	that	don't	exist	on	the	target	disk
or	in	a	target	directory.	Beginning	with	version	4,	the	Replace	command	also	lets
you	update	files	by	replacing	only	those	on	the	target	disk	that	are	older	than	those
of	the	same	name	on	the	source	disk.

The	Xcopy	command,	as	you	saw	in	preparing	for	this	chapter's	examples,	lets	you
copy	whole	subdirectories	and	the	files	in	them.	It	also	lets	you	copy	only	files	that
have	changed	since	they	were	last	backed	up	or	those	that	have	changed	since	a
particular	date.

Replacing	Files	on	a	Disk

The	Replace	command,	like	the	Copy	command,	copies	files	from	one	disk	or	directory	to
another.	The	Replace	command,	however,	is	more	selective:

If	used	without	the	/A	or	/U	parameter,	the	Replace	command	copies	only	source
files	that	also	exist	on	the	target;	it	replaces	files,	hence	its	name.

If	used	with	the	/A	parameter,	it	lets	you	reverse	the	operation	of	the	Replace
command	and	tell	it	to	copy	only	source	files	that	don't	exist	on	the	target;	with	this
option,	it	only	adds	files.

If	used	with	the	/U	parameter,	the	Replace	command	lets	you	copy	only	source	files
that	are	newer	than	files	of	the	same	name	on	the	target;	with	this	option,	it	updates
files.

The	Replace	command	has	eight	parameters:
replace	<source>	<target>	/A	/S	/R	/P	/U	/W

<source>	is	the	name	of	the	file	to	be	copied.	You	can	use	wildcard	characters	to	replace	a
set	of	files	that	have	similar	file	names	or	extensions.

<target>	specifies	where	<source>	is	to	be	copied.	You	can	include	a	drive	letter	and	a	path
name.

/A	(for	add)	copies	only	the	files	specified	in	<source>	that	don't	exist	in	<target>.	This	lets
you	add	files	to	<target>	without	replacing	files	that	already	exist.	If	you	don't	specify	/A,
only	files	specified	in	<source>	that	also	exist	in	<target>	are	copied.	If	you	specify	/A,	you
cannot	specify	/S	or	/U.

/S	applies	the	Replace	command	to	all	subdirectories	contained	in	<target>.	If	you	specify
<target>	as	the	root	directory	of	a	disk,	the	command	is	applied	to	every	subdirectory	on
the	disk.	If	you	specify	/S,	you	cannot	specify	/A.

/R	replaces	those	files	in	<target>	that	are	read-only	in	addition	to	those	that	are	normally
replaced.

/P	prompts	you	for	confirmation	before	it	replaces	or	adds	each	file.

/U	(for	update)	replaces	only	those	files	on	the	target	disk	that	are	older	than	the
corresponding	files	on	the	source	disk.	If	you	specify	/U,	you	cannot	specify	/A.

/W	prompts	you	to	press	a	key	before	the	Replace	command	begins.	This	lets	you	put	in
the	correct	floppy	disk	before	starting	to	replace	or	add	files.

To	see	how	the	Replace	command	works,	copy	the	file	named	LET1.DOC	from
\RUNDOS\MKT\WP	to	\RUNDOS\MKT\BUDGET	and	then	check	the	directory	by	typing
this:
C:\RUNDOS\MKT>copy		wp\let1.doc	budget
									1	file(s)	copied

C:\RUNDOS\MKT>dir	budget

	Volume	in	drive	C	is	HARD	DISK
	Volume	Serial	Number	is	1608-5A30
	Directory	of	C:\RUNDOS\MKT\BUDGET

.												<DIR>					01-05-95			8:21a

..											<DIR>					01-05-95			8:21a
BGT1					XLS								24	01-05-95			8:17a
BGT2					XLS								24	01-05-95			8:17a
BGT3					XLS								24	01-05-95			8:17a
LET1					DOC								24	01-05-95			8:17a
								6	file(s)									96	bytes
																				15157248	bytes	free

Now	use	the	Replace	command	with	only	the	<source>	and	<target>	parameters	to	replace
every	file	in	the	directory	\RUNDOS\MKT\BUDGET	whose	name	begins	with	LET	and
whose	extension	is	DOC	that	also	exists	in	\RUNDOS\MKT\WP.	Type	this:
C:\RUNDOS\MKT>replace	wp\let*.doc	budget

MS-DOS	responds:
Replacing		C:\RUNDOS\MKT\BUDGET\LET1.DOC

1	file(s)	replaced

The	Replace	command	copied	only	the	file—the	one	you	copied	at	the	beginning	of	this
example—that	already	existed	in	\RUNDOS\MKT\BUDGET.	The	message	tells	you	that	MS-
DOS	replaced	one	existing	file.

Now	type	the	Replace	command	again,	but	this	time	include	the	/A	parameter,	which	tells
MS-DOS	to	copy	only	those	files	that	do	not	exist	in	the	target;	you're	doing	the	opposite	of
what	you	did	with	the	previous	Replace	command:
C:\RUNDOS\MKT>replace	wp\let*.doc	budget	/a

MS-DOS	responds:
Adding		C:\RUNDOS\MKT\BUDGET\LET2.DOC

Adding		C:\RUNDOS\MKT\BUDGET\LET3.DOC

2	file(s)	added

This	time	the	Replace	command	copied	the	files	that	it	didn't	copy	in	the	previous	example.
The	message	tells	you	that	MS-DOS	added	files	to	the	target	directory.

Finally,	if	you	have	version	4	or	later	of	MS-DOS,	see	how	you	can	update	files.	Begin	by
creating	a	newer	version	of	LET1.DOC	in	the	directory	\RUNDOS\MKT\WP	(if	you	have
version	6.2	or	later	of	MS-DOS	you'll	be	asked	whether	you	want	to	replace	the	existing	file;
answer	yes	here	and	for	later	examples	in	this	chapter):
C:\RUNDOS\MKT>copy	con	wp\let1.doc
This	is	a	newer	file.
^Z
								1	file(s)	copied

Now	you	have	one	version	of	the	file	in	\RUNDOS\MKT\BUDGET	and	a	newer	version	with
the	same	file	name	in	\RUNDOS\MKT\WP.	Update	all	files	in	the	BUDGET	subdirectory	by
typing	this:
C:\RUNDOS\MKT>replace	wp\let*.doc	budget	/u

MS-DOS	responds:
Replacing		C:\RUNDOS\MKT\BUDGET\LET1.DOC

1	file(s)	replaced

MS-DOS	compared	matching	file	names	and	updated	only	the	one,	LET1.DOC,	that	had,
this	time,	a	more	recent	version	in	the	source	directory	than	in	the	target	directory.

Using	the	Xcopy	Command

In	preparing	for	this	chapter,	you	used	the	Xcopy	command	to	move	an	entire	directory
structure	from	one	disk	to	another.	If	the	corresponding	subdirectories	don't	exist	on	the

target	disk	or	directory,	the	Xcopy	command	creates	them.

Unlike	Copy	and	Replace,	Xcopy	includes	the	ability	to	copy	only	files	whose	archive
attribute	is	on	or	files	that	have	been	changed	since	a	date	you	specify.

The	Xcopy	command	has	10	main	parameters:
xcopy	<source>	<target>	/A	/M	/D:<date>	/E	/P	/S	/V	/W

<source>	is	the	name	of	the	file	to	be	copied.	You	can	include	a	path	name,	and	you	can
use	wildcard	characters	to	copy	a	set	of	files	with	similar	file	names	or	extensions.

<target>	specifies	where	<source>	is	to	be	copied.	You	can	include	any	combination	of
drive	letter,	path	name,	and	file	name.	If	you	specify	different	drives,	the	target	directory	is
then	allowed	to	have	the	same	name	as	the	source	directory.

/A	copies	only	those	files	whose	archive	attribute	is	on	and	leaves	the	archive	attribute	of
the	source	unchanged.

/M	copies	only	those	files	whose	archive	attribute	is	on	and	turns	off	the	archive	attribute	of
the	source.	This	tells	MS-DOS	(or	any	other	program)	that	the	file	hasn't	been	changed
since	it	was	last	backed	up	and	therefore	doesn't	need	to	be	backed	up	again.

/D:<date>	copies	only	files	created	or	changed	on	or	after	<date>.	(The	date	of	creation	or
last	change	is	the	date	shown	in	the	directory	entry	for	any	file.	Enter	<date>	just	as	you
would	for	the	Date	command.)

/E	creates	subdirectories	in	<target>	even	if	they're	empty	in	<source>.	This	parameter	can
be	used	only	when	/S	is	used.

/P	prompts	for	confirmation	before	each	file	specified	in	<source>	is	copied.

/S	applies	the	Xcopy	command	to	all	subdirectories	contained	in	<source>	that	are	not
empty.	If	you	specify	<source>	as	the	root	directory	of	a	disk,	the	Xcopy	command	is
applied	to	every	non-empty	subdirectory	on	the	disk.

/V	verifies	that	the	copy	of	the	file	on	<target>	was	stored	correctly.	This	can	slow	the
operation	of	the	Xcopy	command	somewhat,	but	it's	good	insurance	if	you're	copying	critical
data	and	must	be	certain	that	it	was	copied	correctly.

/W	prompts	you	to	press	a	key	before	the	Xcopy	command	begins.	This	wait	gives	you	a
chance	to	put	in	the	correct	floppy	disk	before	starting	to	copy	files.

Be	aware	that	in	MS-DOS	version	6.0	and	later,	Xcopy	does	not	copy	files	that	have	hidden
or	system	attributes.	This	is	a	change	from	how	version	5	and	earlier	handled	such	files.	To
have	Xcopy	copy	these	files,	first	use	the	Attribute	command	to	turn	off	hidden	and	system
attributes,	then	perform	the	Xcopy.	After	that,	you	can	use	the	Attribute	command	to	set
one	or	the	other	or	both	of	the	attributes	back	on.

For	this	example,	you	create	a	temporary	subdirectory	named	FRED	in	the	root	directory
and	dispose	of	it	at	the	end	of	the	example.	First,	change	the	current	directory	to	\RUNDOS:
C:\RUNDOS\MKT>cd	..

Now	type	the	following	Make	Directory	command,
C:\RUNDOS>md	\fred

and	add	the	sample	file	you	see	at	the	top	of	the	next	page	to	\RUNDOS.
C:\RUNDOS>copy	con	test.doc
This	is	a	test	file.
^Z
								1	file(s)	copied

All	the	files	in	\RUNDOS	and	its	subdirectories	have	the	archive	attribute	turned	on.	For	the
first	Xcopy	command,	use	the	/A	parameter	to	copy	all	the	files	in	\RUNDOS	whose
extension	is	DOC	and	whose	archive	attribute	is	turned	on:
C:\RUNDOS>xcopy	*.doc	\fred	/a

MS-DOS	responds	by	displaying	the	name	of	each	source	file	as	it	is	copied:
Reading	source	file(s)...
TEST.DOC
								1	File(s)	copied

MS-DOS	copied	TEST.DOC,	the	only	file	in	\RUNDOS	whose	extension	is	DOC.	Verify	this
by	displaying	the	directory	of	\FRED:
C:\RUNDOS>dir	\fred

	Volume	in	drive	C	is	HARD	DISK
	Volume	Serial	Number	is	1608-5A30
	Directory	of	C:\FRED

.												<DIR>					01-05-95		12:28p

..											<DIR>					01-05-95		12:28p
TEST					DOC								22	01-05-95		12:35p
								3	file(s)									22	bytes
																				14096384	bytes	free

Now	type	the	same	Xcopy	command,	but	add	the	/S	parameter	to	copy	all	files	whose
extension	is	DOC	and	whose	archive	attribute	is	turned	on,	not	only	in	\RUNDOS	but	also	in
all	its	subdirectories:
C:\RUNDOS>xcopy	*.doc	\fred	/a	/s
Reading	source	file(s)...
TEST.DOC
MKT\WP\LET1.DOC

MKT\WP\LET2.DOC
MKT\WP\LET3.DOC
MKT\WP\RPT1.DOC
MKT\WP\RPT2.DOC
MKT\WP\RPT3.DOC
MKT\BUDGET\LET1.DOC
MKT\BUDGET\LET2.DOC
MKT\BUDGET\LET3.DOC
								10	File(s)	copied

This	time	MS-DOS	copied	10	files;	it	also	copied	the	subdirectories	named	MKT\WP	and
MKT\BUDGET.	Verify	this	by	displaying	the	directory	of	\FRED\MKT:
C:\RUNDOS>dir		\fred\mkt

	Volume	in	drive	C	is	HARD	DISK
	Volume	Serial	Number	is	1608-5A30
	Directory	of	C:\FRED\MKT

.												<DIR>					01-05-95		12:28p

..											<DIR>					01-05-95		12:28p
WP											<DIR>					01-05-95		12:39p
BUDGET							<DIR>					01-05-95		12:39p
								4	file(s)										0	bytes
																				14071808	bytes	free

The	Xcopy	command	created	the	subdirectories	named	WP	and	BUDGET	in	the	\FRED
directory,	then	copied	the	files	whose	extension	is	DOC	and	whose	archive	attribute	is	on
from	the	\RUNDOS\MKT\WP	directory	to	\FRED\MKT\WP	and	from	the
\RUNDOS\MKT\BUDGET	directory	to	\FRED\MKT\BUDGET.

The	value	of	the	archive	attribute,	however,	is	that	it	can	tell	you	which	files	have	changed
since	they	were	last	backed	up—if	the	archive	attribute	is	turned	off	when	a	file	is	backed
up	and	it	is	turned	on	when	a	file	is	changed.	The	/M	parameter,	like	the	/A	parameter,	tells
Xcopy	to	copy	only	those	files	whose	archive	attribute	is	on;	but	it	also	turns	the	archive
attribute	off	on	the	source	file	so	that	you	can	mark	the	files	as	backed	up.	Type	another
Xcopy	command	to	copy	the	files	whose	extension	is	DOC,	but	this	time	use	/M	instead	of
/A:
C:\RUNDOS>xcopy	*.doc	\fred	/m	/s

MS-DOS	responds	just	as	it	did	to	the	previous	Xcopy	command	because	it	copied	the
same	10	files,	but	this	time	it	turned	their	archive	attributes	off.	It's	easy	to	check	this;
retype	the	last	Xcopy	command:
C:\RUNDOS>xcopy	*.doc	\fred	/m	/s
									0	File(s)	copied

This	time	no	files	were	copied	because	the	previous	command	turned	off	the	archive
attributes	of	the	files.

Now	suppose	you	change	one	of	the	files.	A	new	file's	archive	attribute	is	on,	just	as	if	it
were	an	existing	file	you	changed	with	the	MS-DOS	Editor	or	with	a	word	processor,	so
type	this	to	create	a	different	version	of	\RUNDOS\TEST.DOC:
C:\RUNDOS>copy	con	test.doc
A	new	version	of	TEST.DOC.
^Z
								1	file(s)	copied

Type	the	same	Xcopy	command	you	typed	twice	before;	the	first	time	Xcopy	copied	10
files,	the	second	time	it	copied	no	files,	and	this	time	it	should	copy	one	file:
C:\RUNDOS>xcopy	*.doc	\fred	/m	/s
Reading	source	file(s)...
TEST.DOC
								1	file(s)	copied

Xcopy	copied	only	the	file	whose	archive	attribute	was	on.

You'll	be	using	only	the	RUNDOS	directory	structure	in	later	chapters,	so	if	you	have	version
6	of	MS-DOS,	type	the	following	command	to	dispose	of	the	directory	you	added	for	this
example:
C:\RUNDOS>deltree	\fred
Delete	directory	"\fred"	and	all	its	subdirectories?	[yn]	y
Deleting	\fred...

If	you	have	an	earlier	version,	type	the	following	commands:
C:\RUNDOS>del		\fred\mkt\wp*.doc
C:\RUNDOS>rd		\fred\mkt\wp
C:\RUNDOS>del		\fred\mkt\budget*.doc
C:\RUNDOS>rd		\fred\mkt\budget
C:\RUNDOS>rd		\fred\mkt
C:\RUNDOS>del		\fred\test.doc
C:\RUNDOS>rd		\fred

Next	change	the	current	directory	back	to	\RUNDOS\MKT:
C:\RUNDOS>cd	mkt

And,	finally,	clean	up	your	\RUNDOS\MKT\BUDGET	directory:
C:\RUNDOS\MKT>del		budget\let*.doc

	

javascript:Next(0)
javascript:Next(1)

Stretching	Your	Hard	Disk
A	hard	disk	is	fast,	durable,	holds	a	lot	more	than	a	floppy	disk,	and	generally	does	its	job
with	little	attention	from	you.	It	has	one	drawback,	though:	Hard	disks,	like	garages	and
kitchen	drawers,	tend	to	fill	up	much	more	quickly	than	we	expect	(or	would	like).

When	your	hard	disk	fills	up,	the	quickest	way	to	alleviate	the	problem	is	to	delete	files	you
no	longer	need	and	archive	files	you	might	need	at	some	point	in	the	future.	This
housekeeping	is	time	consuming,	but	you	should	do	it	periodically	to	make	sure	that	you
don't	lose	track	of	important	files	in	the	welter	of	other	files	that	inevitably	accumulate.

For	a	longer	term	solution,	you	can	attack	the	problem	from	either	the	hardware	side	or	the
software	side.	On	the	hardware	side,	you	can	buy	a	larger	hard	disk	and	transfer	your	files
to	it	or	buy	another	hard	disk	and	add	it	to	your	system.	Both	of	these	are	fairly	expensive
propositions,	and	transferring	your	files	to	a	new	hard	disk	can	take	quite	a	while.

The	software	solution	is	simpler	and	more	appealing:	Using	mathematical	techniques,	a
program	can	reduce	the	number	of	bytes	in	a	file—compress	the	file—without	losing	any	of
the	information	in	the	file.	Starting	with	version	6.0,	MS-DOS	includes	a	hard	disk
compression	program;	in	MS-DOS	version	6.0	and	6.2,	it's	known	as	DoubleSpace,	while	in
version	6.22	it's	called	DriveSpace.	A	compression	program	compresses	all	the	files	on	your
hard	disk.	If	you	have	version	6.21,	go	on	to	the	heading	"Checking	a	Disk	for	Errors."
However,	if	you	have	version	5	or	earlier,	go	on	to	the	heading	"MS-DOS	and	Your	Hard
Disk."

Although	the	files	on	your	disk	will	be	compressed,	the	only	difference	you'll	see	on	your
disk	will	be	a	lot	more	available	space.	MS-DOS	does	the	compressing	behind	the	scenes.
When	you	write	a	file	to	the	disk,	MS-DOS	automatically	compresses	it.	When	you	read	the
file,	MS-DOS	expands	it,	returning	the	file	to	its	original	state.	For	example,	when	you	use
the	MS-DOS	Editor	to	read	a	file,	MS-DOS	expands	that	file	so	that	Edit	can	read	its
contents.	You'll	also	notice	that	when	you	use	the	Directory	command	to	see	a	list	of	the
files	in	a	directory	on	your	compressed	disk,	MS-DOS	displays	the	files'	expanded	sizes.
And,	if	you	copy	a	file	from	your	compressed	disk	to	an	uncompressed	floppy	disk,	MS-
DOS	will	expand	the	file	before	copying	it.

Compression	Isn't	Free

DriveSpace	or	DoubleSpace	will,	indeed,	make	your	disk	seem	about	twice	as	large	as	it
was	before.	Although	the	physical	capacity	of	the	disk	doesn't	change,	compressing	the	files
lets	the	disk	hold	about	twice	as	much.

Nothing	is	free,	of	course.	The	price	you	pay	for	doubling	the	capacity	of	your	hard	disk	is
as	much	as	50	KB	of	memory	that	the	compression	program	requires.	The	compression
program,	DriveSpace	or	DoubleSpace,	will	always	be	running,	after	you	compress	your
disk,	so	that	MS-DOS	can	compress	and	expand	files	as	they're	read	from	and	written	to
the	disk.	Thanks	to	the	memory	management	capabilities	of	MS-DOS,	however,	you	can	run

the	compression	program	in	upper	memory	so	that	you	can	minimize	the	effect	of	using	up	a
lot	of	memory.	In	fact,	if	you're	running	MS-DOS	version	6.2	or	later,	and	have	DOS=HIGH
in	CONFIG.SYS,	MS-DOS	will	attempt	to	load	part	of	the	compression	program	into	the
high	memory	area	(HMA)	during	the	startup	process.

Compressing	Your	Hard	Disk

The	remainder	of	this	section	covers	the	DriveSpace	disk	compression	program	introduced
with	MS-DOS	version	6.22.	The	DoubleSpace	program	shipped	in	version	6.2	has	for	the
DoubleSpace	command	and	the	DBLSPACE.SYS	device	driver	exactly	the	same	switches
and	parameters	as	those	used	for	the	DriveSpace	command	and	the	DRVSPACE.SYS
device	driver.	The	switches	and	parameters	for	the	version	6.0	DoubleSpace	command	and
DBLSPACE.SYS	device	driver	are	slightly	different;	for	all	versions,	the	online	Help	is	a
huge	collection	of	relevant	information.

To	compress	your	hard	disk,	run	the	DriveSpace	Setup	program	by	typing	drvspace	at	the
system	prompt.	DriveSpace	displays	its	opening	setup	screen,	which	lets	you	choose	to
continue,	learn	more	about	DriveSpace	Setup,	or	quit.	Press	Enter	to	continue.	The	next
screen	tells	you	that	you	can	either	let	DriveSpace	make	most	of	the	decisions	about	the
setup	for	you	(Express	Setup)	or	make	the	decisions	yourself	(Custom	Setup):

Press	Enter	to	accept	Express	Setup.

The	next	screen	gives	you	a	chance	to	turn	back	before	installing	DriveSpace	and
compressing	your	disk.	Press	C	to	start	the	process.

The	DriveSpace	setup	program	first	runs	the	ScanDisk	program	to	make	sure	that	your	hard
disk	is	free	of	errors.	(You'll	read	more	about	ScanDisk	later	in	this	chapter	under	the
heading	"Checking	a	Disk	for	Errors.")	The	setup	program	then	examines	your	system	and
restarts	your	computer.	Next,	DriveSpace	defragments	and	compresses	the	files	on	your
hard	drive,	which	Express	Setup	assumes	is	drive	C.	This	might	take	a	long	time;	the	larger
your	hard	disk,	the	longer	it	will	take.	DriveSpace	lets	you	know	how	much	time	it	estimates
the	process	will	take.	During	the	compression	process,	DriveSpace	displays	the	name	of	the
file	it	is	currently	compressing.	When	it	finishes	with	the	compression,	DriveSpace	restarts

your	system	to	complete	the	process.

After	your	system	restarts,	everything	should	work	just	as	it	did	before.	In	normal	use,	the
only	difference	you'll	notice	is	a	lot	more	room	on	your	hard	disk.	A	bit	of	checking,	though,
will	reveal	an	extra	disk	drive	that	wasn't	there	before.	For	example,	if	you	had	no	drives
beyond	drive	C,	now	you	have	a	drive	H	too.	(Your	computer	might	use	another	drive	letter
such	as	I.)

But	you	haven't	added	a	hard	disk	drive,	of	course,	so	how	can	there	be	another	disk	drive?
DriveSpace	is	responsible.	To	perform	its	magic,	DriveSpace	creates	a	file	called	a
compressed	volume	file	or	CVF,	which	acts	as	drive	C	(the	compressed	drive).	Drive	H	is
the	uncompressed	drive,	or	host	drive,	that	contains	the	compressed	volume	file.	Drive	H
also	stores	hidden	system	files	that	MS-DOS	uses	when	you	start	your	machine	and	any
other	files	that	you	don't	want	compressed.	If	DriveSpace	finds	a	Windows	permanent	swap
file	on	the	drive	being	compressed,	DriveSpace	will	move	the	file	to	the	uncompressed	drive.
By	default,	DriveSpace	leaves	2	MB	of	disk	space	free	on	drive	H.	Copy	files	to	drive	H	only
if	you	don't	want	them	compressed.

Compressing	a	Floppy	Disk

You	can	use	DriveSpace	to	compress	a	high-density	floppy	disk	just	as	you	compressed
your	hard	disk.	Insert	the	floppy	disk	in	drive	A,	and	type	drvspace.	This	time,	you	see
DriveSpace's	main	screen	(Figure	9-2),	which	shows	you	that	drive	C	is	a	compressed
drive.

	
Figure	9-2:	DriveSpace's	main	screen.

The	bar	at	the	top	of	the	main	screen	contains	four	menus:	Drive,	Compress,	Tools,	and
Help.	These	menus	contain	commands	that	cause	DriveSpace	to	perform	actions.	To
access	a	menu,	press	the	Alt	key	and	then	the	first	letter	of	the	menu's	name.	(If	you	have	a
mouse,	you	can	access	a	menu	by	positioning	the	mouse	pointer	over	the	menu	name	and
pressing	the	left	mouse	button.)	To	compress	a	floppy	disk,	first	open	the	Compress	menu
by	pressing	Alt	and	then	C,	and	then	choose	the	Existing	drive	command	in	the	menu	by
pressing	Enter.	(You	can	access	the	other	commands	in	a	menu	by	pressing	the	Down
arrow	key	until	the	command	you	want	is	highlighted.)	DriveSpace	checks	to	see	whether

any	drives	can	be	compressed	and	then	tells	you	which	ones	it	found.	Chances	are	your	list
includes	only	drive	A,	but	if	you	have	another	hard	disk	that	you	didn't	compress	or	if	you've
defined	a	RAM	disk,	the	list	might	include	more	than	one	drive	letter.	Using	the	arrow	keys	if
necessary,	highlight	the	line	for	the	A	drive	and	press	Enter.

Now	DriveSpace	gives	you	a	chance	to	change	your	mind;	press	C	to	start	compressing	the
floppy	disk	in	drive	A.	DriveSpace	tells	you	approximately	how	long	the	process	will	take
and	then	starts	compressing.	When	it	finishes,	it	displays	the	list	of	compressed	drives
again,	this	time	adding	drive	A	and	identifying	it	as	a	Compressed	floppy	disk.

Now	your	floppy	disk	has	nearly	twice	as	much	space	available	as	it	did	before.	If	it	had
files	on	it	before	you	compressed	the	drive,	you'll	see	that	the	files	are	still	available.	As
when	you	compressed	your	hard	disk,	your	system	has	another	disk	drive:	drive	G.
DriveSpace	uses	this	uncompressed	drive	for	maintaining	the	files	on	the	disk.	Because	it
doesn't	contain	much	free	space,	drive	G	isn't	much	use	for	storing	uncompressed	files.	If
you	need	to	put	uncompressed	files	on	a	disk,	simply	use	an	uncompressed	disk.

Note	that	you	can	use	DriveSpace-compressed	floppy	disks	only	on	machines	that	are
running	DriveSpace.	If	you	want	to	transfer	files	to	a	computer	that	isn't	using	DriveSpace,
be	sure	to	copy	the	files	to	an	uncompressed	floppy	disk.	Also,	MS-DOS	doesn't	allow	you
to	use	the	Format	command	to	format	a	compressed	disk.	Instead,	use	the	/format
parameter	with	the	DriveSpace	command.	For	example,	when	you	type	this,
C:\>drvspace	/format	a:

DriveSpace	reformats	the	compressed	disk	in	drive	A.	It	deletes	all	the	files	but	keeps	the
information	that	makes	it	compressed.

Mounting	or	Unmounting	a	Drive

NoteDriveSpace	automatically	recognizes,	or	mounts,	a	compressed	floppy	disk	unlessyou	choose	to	turn	off	automatic	mounting.

When	you	first	compress	a	floppy	disk,	DriveSpace	makes	it	available	to	MS-DOS	for	you,
a	process	DriveSpace	calls	mounting	the	disk.	The	process	of	making	the	disk	unavailable
to	MS-DOS	is	called	unmounting.

The	terms	mount	and	unmount	may	seem	odd.	They	are	names	that	have	survived	from	the
earliest	days	of	computing,	long	before	personal	computers	were	even	imagined.	Think
about	how	computers	are	usually	pictured	in	movies	or	cartoons:	a	refrigerator-like
appliance	with	two	large	round	devices	at	about	eye	level.	This	machine	is	a	tape	drive,
used	on	early	mainframe	computers	for	most	data	storage	because	disk	drives	were
enormously	expensive.	The	round	devices	are	the	supply	and	take-up	reels	for	the	magnetic
tape,	and	the	act	of	loading	a	reel	of	tape	into	a	tape	drive	was	(and	still	is)	called	mounting
the	tape.	You	can	see	that	DriveSpace	uses	the	term	a	bit	differently.

Your	hard	disk	should	remain	mounted	at	all	times.	In	fact,	DriveSpace	won't	let	you

unmount	the	drive	from	which	you	start	MS-DOS.

To	mount	a	compressed	floppy	disk	from	the	main	DriveSpace	screen	(Figure	9-2),	insert
the	floppy	disk	in	a	drive.	Use	drive	A	for	this	example.	Choose	the	Mount	command	from
the	Drive	menu.	(Press	Alt	then	D	to	open	the	menu,	then	press	the	Down	arrow	key	three
times	and	press	Enter.)	DriveSpace	searches	for	unmounted	compressed	drives	and
displays	the	ones	it	finds,	as	shown	here.

In	addition	to	the	name	of	the	uncompressed	drive,	DriveSpace	lists	the	name	of	the
compressed	volume	file,	which	is	the	file	on	your	disk	that	contains	the	compressed	drive.
Next	use	the	Up	or	Down	arrow	keys	to	select	the	compressed	disk	you	want	to	mount.	In
this	example,	you	would	select	A:\DRVSPACE.000.	DriveSpace	mounts	the	floppy	disk	and
then	updates	the	list	of	compressed	drives	on	the	main	DriveSpace	screen.	Quit	DriveSpace
by	choosing	Exit	from	the	Drive	menu.	The	compressed	floppy	disk	remains	mounted.

To	mount	a	compressed	floppy	disk	at	the	system	prompt,	insert	the	floppy	disk	in	a	drive.
Type	drvspace	/mount	and	the	letter	of	the	drive	the	floppy	disk	is	in.	For	example,	if	you're
using	drive	A,	type	this:
C:\>drvspace	/mount	a:

DriveSpace	displays	messages	telling	you	it	is	mounting	the	drive	and	then	that	it	has
mounted	the	drive	successfully.

Although	it	means	a	bit	more	effort	when	you	use	compressed	floppy	disks,	DriveSpace	is
nonetheless	a	virtually	cost-free	way	to	double	the	storage	capacity	of	all	the	disks	you	use.

Note
You	can	use	DriveSpace	to	further	manage	your	compressed	drives.	You	can
change	their	sizes,	create	new	drives	from	free	disk	space,	view	information	about
all	your	drives,	and	more.	See	Appendix	C,	"MS-DOS	Command	Reference,"	the
online	help	for	DRVSPACE,	and	your	MS-DOS	User's	Guide	for	more	information.

Removing	DriveSpace

If	you	decided	that	you	wanted	to	stop	using	file	compression	and	return	to	the	normal
capacity	of	your	hard	disk,	you	could	use	the	/Uncompress	parameter	of	the	DriveSpace
command.	The	process	takes	about	the	same	amount	of	time	that	it	took	to	compress	the
disk.	The	/Uncompress	can	work	only	if	there	is	enough	free	space	on	the	uncompressed
(host)	drive	to	hold	all	the	files	from	the	compressed	drive	as	they	are	decompressed.	You
may	need	to	delete	some	unnecessary	files	or	copy	certain	files	you	wish	to	keep	to	another
hard	drive	or	a	floppy,	in	order	to	get	the	size	of	the	uncompressed	files	to	fit	on	the
uncompressed	drive.

When	the	last	mounted	drive	is	uncompressed,	DriveSpace	will	remove	itself	from	memory.

Note

If	you're	not	yet	familiar	with	MS-DOS,	you	should	probably	get	some	assistance
from	a	more	experienced	user	before	you	delete	DriveSpace.	When	you
uncompress	a	drive,	the	host	drive's	letter	will	no	longer	be	valid	(unless	there
were	multiple	compressed	drives	on	the	same	host	drive),	which	will	cause
problems	for	any	programs	which	have	set	up	explicit	path	names	and	drive	letters
referring	to	the	now-deleted	host	drive.

If	your	hard	disk	was	less	than	half	full	when	you	installed	DriveSpace	and	you	haven't
stored	a	lot	of	new	files	on	the	compressed	disk	since	then,	you	can	probably	use
DriveSpace	to	reduce	the	amount	of	available	space	on	the	compressed	disk	and	increase
the	amount	of	uncompressed	space.

To	decrease	the	amount	of	compressed	space,	you	start	DriveSpace	by	typing	drvspace,
then	choose	Change	Size	from	the	Drive	menu.	DriveSpace	displays	a	dialog	box	showing
the	current,	minimum,	and	maximum	sizes	of	the	volume	file	(DRVSPACE.000)	on	both	the
uncompressed	drive	and	the	compressed	drive	(probably	drive	C).	The	cursor	is	in	the	field
labeled	New	size,	which	should	contain	the	same	value	as	the	Current	Size	field	for
DRVSPACE.000.	Enter	a	value	a	bit	larger	than	the	Minimum	Size	field	for
DRVSPACE.000,	and	press	Enter.	DriveSpace	tells	you	that	it's	changing	the	size	of	drive
C,	then	tells	you	that	it's	remounting	drive	C.	By	reducing	the	size	of	the	compressed	drive,
the	size	of	the	uncompressed	drive	is	increased,	providing	more	space	for	uncompressing
files.

If	you	don't	have	enough	space	on	your	hard	disk	to	hold	uncompressed	versions	of	the	files
you	want	to	save,	you'll	have	to	back	them	up	to	floppy	disks	or	another	hard	disk,	using
MSbackup	or	Xcopy.	When	you've	backed	them	up,	delete	the	compressed	volume	file
(probably	named	DRVSPACE.000)	from	the	host	drive.	Remember	to	restore	these
backed-up	files	after	DriveSpace	has	been	completely	removed	from	the	system.	Now	you
must	delete	the	Device	command	that	DriveSpace	puts	in	CONFIG.SYS	and	the	files	it
creates	in	the	root	directory.	You	can	use	Edit	to	delete	the	line	in	CONFIG.SYS	that	reads
device=c:\dos\drvspace.sys	/	move.	The	line	might	read	devicehigh=	instead	of	device=,
and	the	command	might	include	some	parameters,	such	as	/L:2,52272.

Before	you	can	delete	the	DriveSpace	files	in	the	root	directory	of	drive	C,	you'll	have	to
make	the	files	accessible	with	the	Attribute	command	(attrib	-s	-h	-r	c:\drvspace.*),	then

delete	them	with	the	Delete	command	(del	c:\drvspace.*).	Press	Ctrl-Alt-Del	to	restart	the
system,	then	type	a	Directory	command	and	see	how	many	bytes	are	available	on	the	disk;
your	disk	should	be	back	to	its	uncompressed	size.

Checking	a	Disk	for	Errors

Starting	with	version	6.2,	MS-DOS	includes	a	program	called	ScanDisk	that	does	a	more
thorough	job	of	checking	for	and	correcting	disk	errors	than	the	Check	Disk	(chkdsk)
command	of	earlier	versions.	Both	of	the	disk	compression	programs	use	ScanDisk	to	make
sure	that	the	files	on	a	disk	can	safely	be	compressed.	(The	Check	Disk	command	is	still
delivered	as	a	part	of	MS-DOS,	but	you	should	use	ScanDisk	whenever	you	want	to	check
your	disks,	compressed	and	uncompressed.)

ScanDisk	checks	both	the	directory	structure	information	of	the	files	on	a	disk	and	the
surface	of	the	disk	itself	for	errors.	In	many	cases,	ScanDisk	can	correct	structure	errors—
thereby	recovering	lost	data—or	move	files	from	areas	where	the	disk	surface	is	damaged
to	undamaged	locations.	You	can	also	use	ScanDisk	to	check	the	compressed	volume	file
that	contains	the	files	stored	on	a	disk	compressed	with	DriveSpace	or	DoubleSpace.

Like	some	other	MS-DOS	programs,	such	as	MSbackup	and	DriveSpace,	ScanDisk
displays	its	own	menus	and	dialog	boxes,	letting	you	choose	your	options	with	either	the
keyboard	or	a	mouse.

Note

You	can	specify	all	the	ScanDisk	options	with	command	parameters,	but	that
method	of	using	ScanDisk	is	much	less	convenient	and	is	included	primarily	to	let
you	run	the	program	from	a	batch	file.	If	you	would	like	to	do	this,	the	MS-DOS
online	help	contains	a	complete	description	of	all	the	parameters.	Type	help
scandisk	for	this	information.

The	command	to	start	ScanDisk	has	one	parameter:
scandisk	<drive>

<drive>	is	the	letter,	followed	by	a	colon,	of	the	drive	to	be	checked.	If	you	don't	specify
<drive>,	MS-DOS	checks	the	current	drive.

Start	ScanDisk	by	typing	scandisk.	ScanDisk	displays	its	opening	screen	and	begins
checking	the	disk.	This	screen	tells	you	which	area	of	the	disk	ScanDisk	is	checking.	The
process	takes	just	a	few	moments.

If	ScanDisk	detects	errors	in	the	file	structure,	it	displays	a	dialog	box	titled	Problem	Found
that	lets	you	save	the	questionable	data	in	a	file	in	the	root	directory	(just	as	the	Check	Disk
command	does),	delete	the	data,	or	ignore	it	(leaving	the	disk	unchanged).	Unless	you're
missing	data,	choose	the	Delete	option.

If	you	choose	to	delete	the	data,	ScanDisk	displays	another	dialog	box,	titled	Create	Undo
Disk,	that	gives	you	the	option	of	having	ScanDisk	create	a	file	on	a	floppy	disk—one	that
you	can	later	use	to	reverse	the	steps	that	ScanDisk	takes	to	delete	the	unwanted	data	and
restore	the	disk	to	its	previous	condition.	This	only	works	if	you	use	the	undo	disk	before
making	any	other	changes	to	the	disk,	however.	If	you	try	to	undo	the	deletion	after
changing	the	disk,	ScanDisk	won't	be	able	to	reconstruct	the	data	and	may	damage	the
data	structure,	causing	the	loss	of	important	files.	Because	the	least	bit	of	activity	can	cause
one	or	two	files	to	change	on	the	disk,	you	probably	shouldn't	create	an	undo	disk.

When	ScanDisk	finishes	checking	the	file	structure	on	the	disk,	it	asks	you	whether	you	want
to	check	the	surface	of	the	disk	for	defects.	Although	the	estimates	it	displays	are	overly
pessimistic,	the	process	can	still	take	several	minutes.	For	now,	choose	No	and	return	to	the
system	prompt.	You	should,	however,	use	ScanDisk	to	check	the	surface	of	your	disk	every
couple	of	months	to	correct	any	problems	that	might	develop	before	they	cause	the	loss	of
valuable	data.

	

javascript:Next(0)
javascript:Next(1)

Storing	Files	Efficiently	on	Disk
As	described	in	Chapter	6,	"Managing	Your	Floppy	Disks,"	files	on	a	disk	can	become
fragmented	(stored	in	two	or	more	chunks	in	different	parts	of	the	disk)	as	you	work	with
them,	leaving	unused	spaces	scattered	around	the	disk.	This	can	slow	down	your	system,
especially	if	many	files	are	fragmented,	because	it	takes	MS-DOS	longer	to	read	and	write
files	that	aren't	stored	neatly	in	one	place.	You	could	experience	a	significant	slowdown	if	all
the	available	space	on	a	disk	were	broken	up	into	many	small	unused	areas,	requiring	MS-
DOS	to	break	up	every	file	you	work	with.

If	you	have	version	6,	you	can	use	the	MS-DOS	Defrag	program	to	pack	all	the	files	on	a
disk	into	one	compact	area,	with	each	file	stored	in	one	location.	Defrag	lets	you	choose
your	options	from	menus;	to	start	it,	type	defrag.	After	displaying	a	copyright	notice,	the
Defrag	program	tells	you	it's	testing	system	memory	and	then	displays	its	opening	screen:

Most	likely,	Defrag	will	have	highlighted	the	line	containing	C:,	suggesting	that	you	optimize
(or	reorganize	the	files	on)	drive	C.	If	it	did,	press	Enter;	if	not,	use	the	arrow	keys	to
highlight	C:	and	then	press	Enter.	(If	you	prefer	using	the	mouse,	you	can	double-click	on	C:
to	choose	it.)	Defrag	reads	the	files	on	the	disk	and	then	displays	a	box	titled
Recommendation	that	suggests	whether	you	should	optimize	only	the	files,	do	a	full
optimization	(moving	directories,	too,	if	necessary),	or	possibly	not	optimize	at	all.

Map	of	a	Fragmented	Disk

Regardless	of	the	recommendation	displayed	in	the	dialog	box,	the	main	part	of	the	screen
shows	a	map	of	how	the	space	on	your	disk	is	used.	Each	rectangle	represents	a	portion	of
your	disk.	The	map	legend	is	in	the	lower	right	corner.	Used	areas	appear	white	and	unused
areas	appear	shaded,	so	if	you	see	any	large	white	areas	that	contain	smaller	shaded
areas,	you're	probably	looking	at	a	fragmented	disk:

If	your	disk	isn't	badly	fragmented,	Defrag	might	recommend	that	you	optimize	only	the	files.
Doing	so	will	leave	a	few	unused	areas	on	the	disk.	To	gain	the	maximum	benefit	from
packing	the	files	(and	to	see	how	full	optimization	works),	you	can	request	a	full
optimization.	This	isn't	necessary,	though;	in	most	cases,	if	Defrag	recommends	that	you
optimize	only	the	files,	doing	so	will	be	sufficient.

If	Defrag	recommends	full	optimization,	press	Enter,	and	then	go	on	to	the	next	paragraph
here.	If	Defrag	does	not	recommend	full	optimization,	press	Esc	to	clear	the
Recommendation	box.	Defrag	immediately	displays	the	Optimize	menu.	Press	the	Down
arrow	key	twice	and	then	press	Enter	to	choose	Optimization	Method.	Now	Defrag	displays
a	box	titled	Select	Optimization	Method	with	Full	Optimization	selected.	Press	Enter,	and
then,	when	Defrag	displays	the	Optimize	menu	again,	highlight	Begin	Optimization	by
pressing	the	Up	arrow	key	twice,	and	press	Enter.

Now	the	optimization	process	begins.	Defrag	reorganizes	all	the	files	on	the	disk	in	order	to
pack	them	together.	It	displays	a	lowercase	r	in	place	of	a	white	rectangle	when	it's	reading
a	portion	of	a	file	to	be	moved,	and	an	uppercase	W	when	it	writes	the	file	in	its	new
location.	As	you	watch,	any	gray	areas	surrounded	by	white	on	the	map	should	be
disappearing,	starting	at	the	beginning	of	the	disk	(the	upper	left	of	the	map).

Defrag	displays	Finished	condensing	when	it	finishes	the	defragmentation	process.	Press
Enter	to	acknowledge	the	message.	Next	Defrag	displays	a	dialog	box	that	offers	you	the
choice	of	condensing	another	drive,	configuring	the	program,	or	exiting.	Press	the	Right
arrow	key	twice	and	press	Enter	to	choose	<Exit>,	or	press	Esc	to	leave	Defrag	and	return
to	MS-DOS.

You	can	also	run	Defrag	by	typing	a	command	at	the	MS-DOS	prompt	and	using
parameters	to	specify	the	options.	(The	form	of	the	command	is	shown	in	Appendix	C,	"MS-
DOS	Command	Reference.")	If	you	use	a	program	that	routinely	modifies	many	files	every
day—for	example,	a	word	processor	or	data	base	program—and	you	want	your	system	to
run	as	quickly	as	possible,	you	could	put	the	command	defrag	c:	/f	in	your	AUTOEXEC.BAT
file.	The	/F	parameter	specifies	a	full	optimization,	so	Defrag	would	fully	optimize	your	hard
disk	every	time	you	restarted	your	system.

	

javascript:Next(0)
javascript:Next(1)

MS-DOS	and	Your	Hard	Disk
Now	that	you're	familiar	with	directories	and	with	the	commands	you	use	to	manage	them,
you	can	look	at	your	own	system	and	put	some	of	your	knowledge	to	work.

Because	a	hard	disk	can	hold	so	many	files,	it's	important	to	create	a	directory	structure
that	lets	you	keep	track	of	your	files	and	programs.	You	can	set	up	your	subdirectories	to
match	the	way	you	use	your	computer,	organizing	them	by	department,	application	program,
people's	names,	or	any	other	way	that's	comfortable.

Until	you	get	a	directory	structure	established,	however,	files	have	a	tendency	to	collect	in
the	root	directory,	making	it	difficult	to	find	a	file	you	need.	If	you	reserve	the	root	directory
for	nothing	but	subdirectories	and	files	that	must	be	there,	finding	your	way	around	your
hard	disk	becomes	much	easier.

If	you've	been	using	your	hard	disk	for	some	time	and	haven't	known	about	or	paid	much
attention	to	the	idea	of	creating	a	directory	structure	on	it,	it's	possible	that	the	root
directory	of	your	hard	disk	contains	many	files	that	don't	need	to	be	there:	MS-DOS	files,
for	example,	if	MS-DOS	is	not	in	a	subdirectory	of	its	own;	program	files;	data	files;	and
perhaps	files	inherited	from	a	former	user	of	the	computer.	Some	of	these	files,	such	as	the
MS-DOS	command	files,	are	essential	but	need	not	all	be	in	the	root	directory;	others,	such
as	files	you've	inherited,	might	be	unnecessary	to	your	work;	still	others,	such	as	application
program	files	and	data	files,	might	be	much	easier	to	find	and	keep	track	of	in	directories	of
their	own.

Few	people,	and	certainly	no	book,	can	tell	you	the	best	way	to	organize	your	directories
and	files.	If	your	own	root	directory	contains	many	files	that	should	be	in	subdirectories	of
their	own,	the	Make	Directory,	Copy,	Xcopy,	and	(when	you've	copied	files	to	new
subdirectories)	Delete	commands	can	help	you	with	your	housekeeping.	MS-DOS	6
provides	the	Move	command	which	can	copy	files,	then	delete	them	from	the	source
location,	all	in	one	operation.	Ultimately,	you	are	the	best	judge	of	your	own	work	and	work
habits,	but	on	the	next	page	are	some	general	guidelines	you	can	follow,	either	in	setting	up
a	new	hard	disk	or	in	organizing	one	you've	been	using.

Keep	your	MS-DOS	command	files	in	a	subdirectory	of	their	own.	The	only	files	that
MS-DOS	requires	you	to	keep	in	the	root	directory	are	named	COMMAND.COM,
CONFIG.SYS,	and	AUTOEXEC.BAT.	Versions	4	and	later	of	MS-DOS	install
themselves	so	that	these	files	are	in	the	root	directory,	but	all	other	MS-DOS	files
are	in	a	separate	subdirectory	named	\DOS.	If	you	have	an	earlier	version	of	MS-
DOS	and	all	of	the	MS-DOS	files	are	in	your	root	directory,	read	Appendix	A,
"Installing	MS-DOS,"	to	find	out	how	to	set	up	and	move	files	to	a	\DOS
subdirectory.

Some	application	programs	also	require	files	in	the	root	directory;	the
documentation	that	came	with	the	program	should	tell	you	about	this,	and	the
program	itself	might	create	the	necessary	files	when	you	install	it.	When	in	doubt,

follow	the	advice	given	in	the	documentation.

If	your	hard	disk	has	been	used	by	someone	else,	print	a	listing	of	the	root	directory
before	you	try	reorganizing	or	deleting	the	files	in	it.	Be	particularly	careful	about
removing	any	files	with	the	extensions	COM,	SYS,	or	EXE;	remember,	they	are
program	files.	If	you	don't	know	what	a	particular	program	file	is	supposed	to	do,
ask	someone	who	does	know.

When	you	install	a	new	program,	put	it	in	its	own	subdirectory	if	you	can.	Some
programs	propose	this	during	the	installation	procedure.	If	yours	doesn't,	you	might
still	be	able	to	put	it	in	a	subdirectory,	provided	it	can	be	installed	on	a	hard	disk	and
has	the	ability	to	work	with	different	drives	and	subdirectories.	Check	the	program's
documentation	for	instructions.	After	a	program	is	installed	in	a	subdirectory,	all	you
need	do	is	add	the	subdirectory	name	to	the	command	path	in	order	to	make	the
program's	command	files	available	at	any	time.

Think	about	the	data	files	you	create.	These	are	generally	the	files	that	take	up	the
most	room	on	a	hard	disk.	They	are	also	the	ones	that	can	become	the	most
confusing	as	file	names	begin	to	proliferate	and	come	close	to	duplicating	one
another.	Although	this	book	uses	files	with	the	names	LET1.DOC,	LET2.DOC,	and
so	on,	real	data	files	with	such	names	would	mean	little	in	a	root	directory	cluttered
with	a	hundred	other	letters.	On	the	other	hand,	such	names	might	mean	a	great
deal	in	subdirectories	named	for	clients,	projects,	proposals,	and	the	like.	In	short,
pay	as	much	attention	to	organizing	your	hard	disk	as	you	would	to	organizing	a
large	set	of	files	in	a	file	cabinet.

Taking	Care	of	Your	Hard	Disk

Although	MS-DOS	can't	help	you	physically	protect	your	hard	disk,	there	are	some
common-sense	approaches	you	can	use.	Dire	warnings	aside,	a	hard	disk	is	neither	fragile
nor	temperamental.	Many	people	use	the	same	hard	disk	for	years	without	encountering	any
problems.	In	fact,	considering	the	close	tolerances	involved—the	read/write	heads	literally
float	on	air	a	tiny	fraction	of	an	inch	above	the	disk	itself—a	hard	disk	is	remarkably	sturdy
and	reliable.	All	it	normally	needs	is	a	little	help	from	you.	You	might	follow	these	practices,
for	example:

Don't	turn	your	system	off	and	on	repeatedly	during	the	day.	Leaving	the	system	on
minimizes	wear	on	the	mechanical	parts	of	your	hard	disk.

Don't	turn	the	system	off	while	the	hard	disk	is	active.	By	the	same	token,	avoid
bumping	or	jostling	the	system	at	those	times	too.	You'll	help	preserve	both	disk	and
data.

Keep	the	system	and	its	surroundings	reasonably	clean.	You	don't	have	to	sterilize
anything;	just	clean	and	relatively	dust-free	will	do.

Save	your	work	and	turn	off	your	system	during	storms	and	at	other	times	when	the

power	is	likely	to	surge	or	be	interrupted.	An	unexpected	loss	of	electricity	or	a
sudden	surge	of	excess	power	can	cause	problems,	especially	if	the	computer	is
reading	from	or	writing	to	the	hard	disk	at	the	time.

If	you	have	extra	memory	on	your	system,	consider	using	some	of	it	for	a	RAM	disk.
Not	only	will	you	reduce	stress	on	your	hard	disk,	you'll	find	that	file	access
becomes	noticeably	quicker.

Shut	the	system	down	before	moving	it.	Don't	worry	about	sliding	it	across	your
desk,	but	do	be	careful	not	to	drop	it	or	bang	it	into	walls	or	furniture.

Barring	equipment	failure,	about	all	it	takes	to	keep	your	hard	disk	running	smoothly	are	a
little	common	sense	and	the	same	type	of	care	you'd	give	your	VCR	or	stereo	system.

	

javascript:Next(0)
javascript:Next(1)

Chapter	Summary
This	chapter	showed	you	how	to	set	up	a	filing	system,	control	the	archive	attribute,	and
copy	files	selectively	with	the	Replace	and	Xcopy	commands.	It	also	showed	how	using	the
DriveSpace,	or	DoubleSpace,	and	Defrag	programs	lets	you	increase	the	capacity	and
efficiency	of	your	hard	disk	and	how	using	ScanDisk	can	help	you	check	for	and	correct	disk
errors.

Because	you	can't	see	it,	it's	easy	to	take	your	hard	disk	for	granted.	But	the	hard	disk	is	an
essential	part	of	your	computer	system.	If	you	organize	your	file	structure	to	match	the	way
you	work,	the	hard	disk	lets	you	move	from	job	to	job	or	program	to	program	with	a
minimum	of	effort.	Setting	up	a	filing	system	and	doing	some	periodic	housekeeping	takes	a
bit	of	time	but	pays	off	by	letting	you	work	more	efficiently.	More	than	any	other	part	of	the
system,	the	hard	disk	determines	how	well	your	computer	works	for	you.

	

javascript:Next(0)
javascript:Next(1)

Chapter	10:	Protecting	Your	Disks	and	Files

Overview
You've	seen	that	a	hard	disk	is	much	faster	and	more	convenient	to	use	than	floppy	disks,
even	the	latest	high-capacity	floppy	disks	that	hold	nearly	three	megabytes.	But	the	same
features	that	make	a	hard	disk	so	valuable	can	also	make	loss	of	the	disk	or	the	files	stored
on	it	more	distressing.	It's	bad	enough	to	discover	that	MS-DOS	either	can't	find	or	can't
use	files	you	stored	on	a	floppy	disk.	It's	almost	always	worse	when	the	same	thing
happens	to	your	hard	disk.

MS-DOS	tries	to	help	protect	your	files	by	requesting	confirmation	before	it	carries	out	a
Delete	command	that	would	remove	all	files	in	a	directory.	Recent	versions	of	MS-DOS
protect	you	from	accidentally	formatting	a	disk	by	requiring	you	to	type	a	drive	letter	and,	if
you	specify	a	hard	disk,	by	prompting	you	to	verify	the	command.	In	addition	to	these
attempts	to	make	you	think	twice	before	carrying	out	a	potentially	destructive	command,
MS-DOS	also	provides	some	commands	that	help	you	protect	your	valuable	files.

The	MSbackup	command	in	version	6	(and	the	Backup	and	Restore	commands	in	earlier
versions)	lets	you	copy	files	from	your	hard	disk	to	floppy	disks	for	safekeeping	and	then
copy	them	back	to	the	hard	disk	if	you	need	them.

If,	despite	these	safeguards,	you	still	lose	files	accidentally,	MS-DOS,	starting	with	version
5,	includes	the	Undelete	and	Unformat	commands	that	recover	a	file	after	you	delete	it	or
restore	the	contents	of	a	disk	you	inadvertently	format.	Version	6	continues	this	emphasis	on
guarding	against	or	recovering	from	file	damage	by	adding	two	extra	levels	of	file	protection
to	the	Undelete	command	and	by	adding	Undelete	for	Windows,	a	program	that	provides	the
same	protection	in	Windows	as	the	MS-DOS	version	of	Undelete.	Version	6	also	offers	anti-
virus	programs	that	run	under	both	MS-DOS	and	Windows.

This	chapter	shows	you	how	to	use	these	protective	features,	including	the	MS-DOS
versions	of	Undelete	and	anti-virus	protection.	See	the	documentation	that	comes	with	MS-
DOS	for	a	description	of	how	to	use	the	Windows	versions	of	these	programs.

The	examples	in	this	chapter	require	some	preparation.	If	you	still	have	the	floppy	disk	you
used	for	the	examples	in	Chapter	5,	"Managing	Your	Files,"	put	it	in	drive	A	and	go	on	to	the
section	called	"Recovering	Deleted	Files."	If	you	don't	have	the	example	floppy	disk,	put	a
formatted	floppy	disk	in	drive	A	and	type	the	following	commands:

C:\>copy	con	a:report.txt
This	is	a	dummy	file.
^Z
					1	file(s)	copied
C:\>a:
A:\>copy	report.txt	bank.txt
					1	file(s)	copied
A:\>copy	report.txt	forecast.txt
					1	file(s)	copied

A:\>copy	report.txt	budget.jan
					1	file(s)	copied
A:\>copy	report.txt	budget.feb
					1	file(s)	copied

Use	the	Directory	command	to	check	that	all	five	files	are	on	the	floppy	disk:

A:\>dir
	Volume	in	drive	A	is	EXAMPLES	1
	Volume	Serial	Number	is	1A2C-13F5
	Directory	of	A:\

REPORT			TXT									23	01-05-95			9:16a
BANK					TXT									23	01-05-95			9:16a
FORECAST	TXT									23	01-05-95			9:16a
BUDGET			JAN									23	01-05-95			9:16a
BUDGET			FEB									23	01-05-95			9:16a
				5	file(s)							115	bytes
																				1455104	bytes	free

Depending	on	which	floppy	disk	you	put	in	drive	A,	your	report	may	show	more	files	than
this,	but	the	five	file	names	shown	here	should	appear	there.	The	times	and	dates	will	be
different,	too,	but	the	file	names	and	sizes	(23	bytes)	should	be	the	same.

This	completes	preparation	for	the	examples	in	this	chapter.

	

javascript:Next(0)
javascript:Next(1)

Recovering	Deleted	Files
Beginning	with	version	5,	MS-DOS	includes	an	Undelete	command	that	can	help	you	recover
a	file	you've	deleted.	In	most	cases,	when	you	delete	a	file,	MS-DOS	marks	its	storage
space	on	the	disk	as	available	for	reuse,	but	it	doesn't	physically	remove	the	information
contained	in	that	space.	When	MS-DOS	manages	storage	space	in	this	way,	it's	possible	to
use	the	Undelete	command	to	recover	a	deleted	file	until	(and	only	until)	MS-DOS	reuses
part	or	all	of	the	file's	disk	space	for	another	file.	MS-DOS	version	6	substantially	changes
the	Undelete	command	by	introducing	two	levels	of	file	protection	in	addition	to	the	one
available	in	version	5.	If	you	have	version	5,	skip	to	the	section	called	"Undelete	and	Delete
Tracking."	The	following	section	covers	version	6.

Undelete's	Levels	of	Protection

MS-DOS	version	6	offers	an	enhanced	Undelete	command	that	helps	you	recover	a	file
you've	deleted.	It	includes	three	levels	of	protection:	standard,	Delete	Tracker,	and	Delete
Sentry.	Standard	uses	information	recorded	by	MS-DOS	to	recover	a	deleted	file.	It	works
by	reinstating	the	information	about	the	disk	location	where	the	deleted	file	was	stored.	Of
the	three	levels	of	guarding	against	file	deletion,	standard	provides	the	lowest	level	of
protection.	You	can	use	it	to	recover	a	deleted	file	as	long	as	MS-DOS	has	not	placed
another	file	in	any	portion	of	the	deleted	file's	location.	The	standard	level	of	protection	is
available	when	you	switch	on	your	computer.

Delete	Tracker	offers	the	next	higher	level	of	Undelete's	file	protection.	It	uses	a	hidden	file
named	PCTRACKR.DEL	to	hold	disk-storage	information	about	the	files	you	delete.	Once
you	start	Delete	Tracker	for	a	disk	drive,	Undelete	records	storage	information	for	all
subsequent	deleted	files.	Undelete	can	then	use	this	information	to	try	to	recover	one	or
more	deleted	files.	If	MS-DOS	has	placed	another	file	over	part	of	the	deleted	file's	location,
Undelete	attempts	to	restore	part	of	the	file.	Note	that	Delete	Tracker	in	version	6	works	in
the	same	way	as	the	delete	tracking	feature	in	version	5,	which	is	discussed	in	the	next
section,	"Undelete	and	Delete	Tracking."

To	choose	the	Delete	Tracker	level	of	protection,	type	the	Undelete	command	and	specify
the	/T	switch	and	the	drive	you	want	to	protect.	For	example,	to	activate	Delete	Tracker	on
drive	A,	you	would	type	the	following	at	the	command	prompt	(do	not	type	this	command
now):
A:\>undelete	/ta

Delete	Sentry	offers	the	highest	level	of	protection	against	accidental	file	deletion.	It	creates
a	hidden	directory	named	SENTRY	to	which	a	deleted	file	is	moved	without	changing	the
record	of	the	file's	location.	When	you	undelete	the	file,	MS-DOS	moves	the	file	back	to	its
original	location.	With	Delete	Sentry	protection,	you	don't	have	to	worry	about	MS-DOS
placing	another	file	in	the	deleted	file's	place.	The	deleted	file	remains	tucked	away	on	your
disk,	safe	and	sound.	Undelete	truly	removes	the	file	from	your	hard	disk	either	after	seven
days	or	when	Undelete	needs	more	room	in	the	SENTRY	directory.

To	activate	the	Delete	Sentry	level	of	protection,	specify	the	/S	switch	and	the	drive	you
want	to	protect.	If	you're	selecting	the	current	drive,	you	don't	need	to	include	the	drive
letter	designation.	For	example,	if	the	current	drive	is	A,	type	the	following	at	the	command
prompt	(type	this	command	now	after	you're	sure	Microsoft	Windows	is	not	running):
A:\>undelete	/s

Now	delete	the	test	files	you	created	earlier:
A:\>del		report.txt
A:\>del		bank.txt
A:\>del		forecast.txt
A:\>del		budget.jan
A:\>del		budget.feb

Now	check	the	directory	again:
A:\>dir
Volume	in	drive	A	is	EXAMPLES	1
Volume	Serial	Number	is	1A2C-13F5
Directory	of	A:\

File	not	found

If	there	were	other	files	on	the	floppy	disk	you	put	in	drive	A,	they'll	still	appear	in	the	report,
but	the	five	files	you	deleted	should	be	gone.

If	you	have	version	6,	try	using	the	Undelete	command	to	retrieve	all	the	files	you	deleted.
The	following	list	describes	most	of	the	parameters	for	the	version	6	Undelete	command.	To
find	out	about	Undelete's	advanced	parameters,	see	Appendix	C,	"MS-DOS	Command
Reference."

undelete	<filename>	/ds	/dt	/dos	/all	/list	/status	/U	/S<drive>	/T<drive>

<filename>	is	the	name	of	the	file	or	files	you	want	to	restore.	You	can	specify	a	drive	and
path,	and	you	can	use	wildcards	to	specify	a	set	of	files.	If	you	don't	include	<filename>,
Undelete	assumes	you	want	to	recover	all	deleted	files	in	the	current	directory	of	the	current
drive.

/ds	recovers	only	those	files	protected	by	the	Delete	Sentry	level,	prompting	for	confirmation
on	each	file.	Undelete	assumes	/ds	if	the	SENTRY	directory	exists,	even	if	you	don't	include
this	parameter.

/dt	recovers	only	those	files	protected	by	the	Delete	Tracker	level,	prompting	for
confirmation	on	each	file.

/dos	recovers	only	those	files	that	are	internally	listed	as	being	deleted	by	MS-DOS,
prompting	for	confirmation	on	each	file.	If	a	deletion-tracking	file	exists,	this	switch	causes
Undelete	to	ignore	it.

/all	recovers	all	deleted	files	without	prompting	for	confirmation	on	each.

/list	lists	the	deleted	files	that	are	available	to	be	recovered	but	does	not	recover	any	files.
You	can	restrict	the	resulting	list	by	using	the	<filename>	parameter	and	the	/ds	/dt,	and
/dos	switches.

/U	disables	the	Delete	Tracker	or	Delete	Sentry	protection.

/status	displays	the	type	of	delete	protection	in	effect	for	each	drive.	You	cannot	specify	any
other	parameters	when	you	use	/status.

/S<drive>	enables	the	Delete	Sentry	level	of	protection	and	loads	the	memory-resident
portion	of	the	Undelete	program.	If	you	omit	<drive>,	Undelete	will	protect	the	files	on	the
current	drive.	You	cannot	specify	any	other	parameters	when	you	use	/S<drive>.

/T<drive>	enables	the	Delete	Tracker	level	of	protection	and	loads	the	memory-resident
portion	of	the	Undelete	program.	If	you	omit	<drive>,	Undelete	will	protect	the	files	on	the
current	drive.	You	cannot	specify	any	other	parameters	when	you	use	/T<drive>.

You	just	deleted	several	files	from	the	disk	in	drive	A.	To	request	a	list	of	these	files,	type
this:
A:\>undelete	/list

The	Undelete	command	responds	with	a	display	like	this:
UNDELETE	-	A	delete	protection	facility
Copyright	(C)	1987-1993	Central	Point	Software,	Inc.
All	rights	reserved.

Directory:	A:\
File	Specifications:	*.*

				Delete	Sentry	control	file	contains				5	deleted	files.

				Deletion-tracking	file	not	found.

				MS-DOS	directory	contains				5	deleted	files.
				Of	those,					0	files	may	be	recovered.

Using	the	Delete	Sentry	method.

						REPORT			TXT								23	01-05-95	9:16a		...A	Deleted:		01-06-95	3:24p
						BANK					TXT								23	01-05-95	9:16a		...A	Deleted:		01-06-95	3:24p
						FORECAST	TXT								23	01-05-95	9:16a		...A	Deleted:		01-06-95	3:25p
						BUDGET			JAN								70	01-05-95	9:16a		...A	Deleted:		01-06-95	3:25p

						BUDGET			FEB								23	01-05-95	9:16a		...A	Deleted:		01-06-95	3:25p

Let's	examine	this	report.	Although	it's	long,	it's	not	difficult	to	interpret.	After	three	lines	of
introductory	text,	Undelete	lets	you	know	where	it	is	searching	for	the	deleted	files	and	what
type	of	files	it	is	searching	for.	In	this	case,	it's	looking	in	the	root	directory	of	the	disk	in
drive	A,	and	it's	looking	for	all	deleted	files.

The	next	section	of	the	report	gives	information	about	each	level	of	protection.	You	can	see
that	Undelete	found	five	files	protected	by	the	Delete	Sentry	level,	no	files	protected	by	the
Delete	Tracker	level,	and	five	files	protected	by	the	standard	level	(MS-DOS).	Notice	that	in
this	case	Undelete	says	that	it	can't	recover	the	five	files	by	using	the	standard	method.	You
need	to	use	the	Delete	Sentry	method.

Finally,	the	report	lists	the	five	deleted	files,	giving	their	names,	sizes,	and	dates	and	times
of	creation.	The	...A	tells	you	that	the	files	have	not	been	backed	up	(archived),	and	the
remainder	of	each	line	tells	you	the	date	and	time	the	file	was	deleted.

Suppose	you	want	to	use	the	Undelete	command	to	recover	the	file	REPORT.TXT.	By
default,	Undelete	recovers	only	those	files	protected	by	the	Delete	Sentry	level.	Because
you	have	been	using	the	Delete	Sentry	level	of	protection,	all	you	have	to	do	is	type	the
following:
A:>undelete	report.txt

(Because	we're	now	running	under	the	Delete	Sentry	level	of	protection,	if	you	had	been
using	Delete	Tracker	when	the	file	was	deleted,	you	would	have	had	to	add	the	/dt
parameter,	and	if	you	had	been	using	the	standard	level	when	the	file	was	deleted,	you
would	have	had	to	add	/dos.)	You	see	the	same	introductory	text	as	before,	and	then
Undelete	displays	this:
Directory:	A:>
File	Specifications:	REPORT.TXT

				Delete	Sentry	control	file	contains				1	deleted	files.

				Deletion-tracking	file	not	found.

				MS-DOS	directory	contains				1	deleted	files.
				Of	those,					0	files	may	be	recovered.

Using	the	Delete	Sentry	method.

						REPORT			TXT								23	01-05-95		9:16a	...A	Deleted:	01-06-95	3:24p
This	file	can	be	100%	undeleted.	Undelete	(Y/N)?

Type	y,	and	in	a	moment	the	recovery	process	ends:
File	successfully	undeleted.

To	recover	all	deleted	files	on	this	disk,	or	to	search	through	the	deleted	files	and	recover
only	those	you	want,	you	would	then	type	undelete.	For	each	file	that	Undelete	could
recover,	it	would	display	a	message	and	prompt	similar	to	those	you	just	saw.	In	each	case,
you	would	type	y	or	n	to	tell	Undelete	whether	to	recover	or	to	ignore	the	file.

Before	continuing,	delete	REPORT.TXT	once	again	to	return	your	sample	disk	to	its	earlier
state.

Undelete	and	Delete	Tracking

In	version	5,	Undelete	works	by	reinstating	the	information	about	the	disk	locations	where
the	deleted	file	was	stored.	Bear	in	mind,	however,	that	MS-DOS	does	not	necessarily	store
an	entire	file	in	a	single	location	on	disk.	Sometimes,	especially	on	much-used	disks,	it	tucks
sections	of	a	file	into	widely	separated	storage	areas	in	order	to	make	the	best	possible	use
of	available	space.	As	you	save	files,	even	small	ones,	MS-DOS	assigns	and	reassigns
these	storage	areas.	Because	disk	storage	is	so	changeable,	Undelete	is	successful	only	if
it	can	follow	a	file's	chain	of	storage	locations	from	beginning	to	end.	If,	as	often	happens,
MS-DOS	uses	a	link	in	this	chain	for	storing	part	of	another	file,	Undelete	reaches	a	dead
end	and	cannot	recover	the	entire	file.

Note
If	you	need	Undelete,	use	it	as	soon	as	possible	after	realizing	that	you	need	to
recover	a	deleted	file.	Each	time	MS-DOS	saves	another	file	on	the	disk,	your
chances	of	recovering	the	file	are	reduced.

You	can	use	the	MS-DOS	5	version	of	Undelete	either	on	its	own	or	with	a	feature	called
delete	tracking.	Delete	tracking	is	activated	by	the	Mirror	command,	which	creates	a	special
file	named	PCTRACKR.DEL	for	holding	disk-storage	information	about	the	files	you	delete.
(MS-DOS	version	6	does	not	include	the	Mirror	command	because	its	functionality	was
added	to	Undelete.)	Once	you	start	delete	tracking	for	a	disk	drive,	the	Mirror	command
records	storage	information	for	all	subsequent	deleted	files.	Undelete	uses	this	information
to	try	to	recover	one	or	more	deleted	files.	Because	delete	tracking	uses	a	file	for	holding
disk-storage	information,	it	tends	to	be	more	effective	than	using	MS-DOS—based
information	in	recovering	files.	The	following	examples	show	you	how	to	start	delete	tracking
and	use	it	to	restore	deleted	files.

When	used	for	tracking	deleted	files,	the	Mirror	command	has	this	form:
mirror	/T<drive>-<files>

<drive>	is	the	letter	(without	a	colon)	of	the	drive	for	which	you	want	to	start	delete	tracking.
You	must	include	this	parameter.

<files>	is	the	number	of	deleted	files	you	want	to	track.	If	you	include	<files>,	you	can
specify	from	1	through	999,	separating	it	from	<drive>	with	a	hyphen.	If	you	omit	<files>,	the
delete	tracker	assumes	a	generous	number	based	on	the	size	of	the	disk:	25	for	a	360-KB
floppy	disk,	50	for	a	720-KB	floppy	disk,	75	for	a	1.2-MB	or	a	1.44-MB	floppy	disk,	and	101
to	303	for	a	hard	disk,	depending	on	its	capacity.

To	start	delete	tracking	for	the	sample	floppy	disk	in	drive	A,	type	this:
A:\>mirror	/ta

Mirror	responds	with	a	set	of	messages,	among	them	Drive	A	being	processed	and,	when
all	goes	well,	The	MIRROR	process	was	successful	and	Installation	complete.

Now	delete	the	test	files	you	created	earlier:
A:\>del		report.txt
A:\>del		bank.txt
A:\>del		forecast.txt
A:\>del		budget.jan
A:\>del		budget.feb

Now	check	the	directory	again:
A:\>dir
	Volume	in	drive	A	is	EXAMPLES	1
	Volume	Serial	Number	is	1A2C-13F5
	Directory	of	A:\

File	not	found

If	there	were	other	files	on	the	floppy	disk	you	put	in	drive	A,	they'll	still	appear	in	the	report,
but	the	five	files	you	deleted	should	be	gone.

If	you	have	version	5	or	later,	try	out	the	Undelete	command	to	retrieve	the	files	you	deleted.
(If	you	don't	have	version	5,	skip	to	the	section	called	"Reformatting	and	Unformatting
Disks.")

The	version	5	Undelete	command	has	the	following	parameters	(version	6	uses	the	same
parameters	for	delete-tracking	file	recovery):

undelete	<filename>	/dt	/dos	/all	/list

<filename>	is	the	name	of	the	file	or	files	you	want	to	restore.	You	can	specify	a	drive	and
path,	and	you	can	use	wildcards	to	specify	a	set	of	files.	If	you	don't	include	<filename>,
Undelete	assumes	you	want	to	recover	all	deleted	files	in	the	current	directory	of	the	current
drive.

/dt	tells	Undelete	to	use	the	delete-tracking	file	recorded	by	the	Mirror	command.	The	/dt
parameter	causes	the	Undelete	command	to	prompt	for	confirmation	before	undeleting	each
file.	Undelete	assumes	/dt	if	a	delete-tracking	file	exists,	even	if	you	don't	include	this
parameter.

/dos	tells	Undelete	to	use	information	recorded	by	MS-DOS.	Like	the	/dt	parameter,	/dos
causes	Undelete	to	prompt	for	confirmation.	Because	of	the	way	MS-DOS	deletes	files,	the
/dos	parameter	also	causes	Undelete	to	ask	you	to	provide	the	first	character	in	the	name

of	the	file.	Undelete	assumes	the	/dos	parameter	if	a	delete-tracking	file	does	not	exist,
even	if	you	omit	this	parameter.

/all	causes	Undelete	to	recover	all	possible	deleted	files	without	stopping	to	prompt	for
confirmation.

/list	causes	Undelete	to	display	a	list	of	files	it	can	recover,	without	actually	undeleting	them.

You	just	deleted	several	files	from	the	disk	in	drive	A.	To	request	a	list	of	these	files,	type
this:
A:\>undelete	/list

The	Undelete	command	responds	with	a	display	like	this:
Directory:	A:\
File	Specifications:	*.*
					Searching	deletion-tracking	file...
					Deletion-tracking	file	contains				5	deleted	files.
					Of	those,					5	files	have	all	clusters	available,
												0	files	have	some	clusters	available,
												0	files	have	no	clusters	available.

					MS-DOS	directory	contains				3	deleted	files.
					Of	those,				3	files	may	be	recovered.

Using	the	deletion-tracking	file.

						REPORT			TXT							23	01-05-95		9:16a		...A	Deleted:	01-06-95		3:24p
						BANK					TXT							23	01-05-95		9:16a		...A	Deleted:	01-06-95		3:24p
						FORECAST	TXT							23	01-05-95		9:16a		...A	Deleted:	01-06-95		3:25p
						BUDGET			JAN							23	01-05-95		9:16a		...A	Deleted:	01-06-95		3:25p
						BUDGET			FEB							23	01-05-95		9:16a		...A	Deleted:	01-06-95		3:25p

Although	longer	and	more	detailed	than	most	MS-DOS	reports,	this	display	is	not	difficult	to
interpret.	First,	Undelete	tells	you	that	it	is	checking	the	disk	in	drive	A	for	all	deleted	files
(File	Specifications:	*.*).

The	middle	section	of	the	report	tells	you	what	Undelete	has	found.	If	you	use	the	delete-
tracking	file,	Undelete	can	completely	restore	the	five	deleted	files.	(The	message	all
clusters	available	means	that	Undelete	can	find	all	storage	units	allotted	to	each	file.)	On
the	other	hand,	if	you	use	the	information	recorded	by	MS-DOS	(by	specifying	the	/dos
parameter),	Undelete	can	find	and	recover	three	of	the	deleted	files.

Because	you	started	delete	tracking,	Undelete	gives	precedence	to	the	delete-tracking	file,
so	the	bottom	section	of	the	report	lists	the	five	deleted	files,	giving	their	names,	sizes,	and
dates	and	times	of	creation.	The	...A	tells	you	that	the	files	have	not	been	backed	up

(archived),	and	the	remainder	of	each	line	tells	you	the	date	and	time	the	file	was	deleted.

Note

The	delete-tracking	file	can	help	you	recover	files	deleted	after	you	have	started
delete	tracking	with	the	Mirror	command.	If	you	delete	a	file	when	this	feature	is
not	turned	on,	the	delete-tracking	file	cannot	help	you	recover	it.	However,
because	MS-DOS	also	records	deletions,	you	might	still	be	able	to	use	the	/dos
parameter	of	the	Undelete	command	instead.

Suppose	you	want	to	recover	one	of	the	deleted	files,	REPORT.TXT,	on	the	disk	in	drive	A.
Type	this:
A:\>undelete	report.txt

You	see	some	preliminary	messages	telling	you	the	recovery	process	has	been	started,	and
then	Undelete	displays	this:
Using	the	deletion-tracking	file.

						REPORT			TXT							23	01-05-95		9:16a		...A	Deleted:	01-06-95		3:24p
All	of	the	clusters	for	this	file	are	available.	Undelete	(Y/N)?

Type	y,	and	in	a	moment	the	recovery	process	ends:
File	successfully	undeleted.

To	recover	all	deleted	files	on	this	disk,	or	to	search	through	the	deleted	files	and	recover
those	you	wanted,	you	would	type	undelete.	For	each	file	that	Undelete	could	recover,	it
would	display	a	message	and	prompt	similar	to	those	you	just	saw.	In	each	case,	you	would
type	y	or	n	to	tell	Undelete	whether	to	recover	or	to	ignore	the	file.

Before	continuing,	delete	REPORT.TXT	once	again	to	return	your	sample	disk	to	its	earlier
state.	Change	the	current	directory	to	C:\	by	typing	these	commands:
A:\>c:
C:\>cd	\

Inadvertently	deleting	a	file	or	files	isn't	the	only	way	to	lose	valuable	data.	Until	version	5,
formatting	a	disk	meant	irretrievably	erasing	any	files	on	the	disk.	Now,	however,	you	can
recover	from	that	error	too.

	

javascript:Next(0)
javascript:Next(1)

Reformatting	and	Unformatting	Disks
If	you	have	version	5	or	later	of	MS-DOS,	insert	a	new	floppy	disk	in	drive	A	to	experiment
with	the	Unformat	command.	If	you	don't	have	version	5	or	later,	skip	to	the	section	called
"Developing	a	Backup	Procedure."

You	should	always	be	careful	about	formatting	disks	that	already	contain	program	or	data
files.	Starting	with	version	5,	however,	MS-DOS	can	help	you	recover	from	an	inadvertent
format.	As	you	have	seen,	the	Undelete	command	can	often	restore	the	deleted	files.	In
much	the	same	way,	the	Unformat	command	can	help	you	restore	the	disk	to	its	earlier
state	after	you've	mistakenly	formatted	it.	The	following	examples	show	you	how	to
reformat	a	disk	with	the	/Q	(quick)	parameter	of	the	Format	command	and	then	reverse	the
format	with	the	Unformat	command.

Note
Version	5	of	MS-DOS	includes	the	Mirror	command,	which	can	be	used	to	record
the	current	status	of	a	disk.	This	information	can	be	used	later	when	you	unformat
the	disk.	For	more	information	about	Mirror,	see	Appendix	C,	"MS-DOS	Command
Reference."

If	you	have	version	5	or	later,	type	the	following	to	create	a	small	file	on	the	floppy	disk	in
drive	A	so	that	you	can	see	a	change	when	you	reformat	it:
C:\>copy	con	a:myfile.doc
This	is	my	sample	file.
^Z

Use	the	Directory	command	to	verify	that	MYFILE.DOC	is	on	the	floppy	disk	in	drive	A.
While	you're	looking	at	the	display,	also	make	a	note	of	the	volume	serial	number.

Reformatting	the	Floppy	Disk

Now	reformat	the	floppy	disk,	this	time	using	the	/Q	parameter	of	the	Format	command.
Type	this:
C:\>format	a:	/q

MS-DOS	responds	much	as	it	does	when	you	don't	use	/Q.	First,	it	asks	you	to	insert	a
floppy	disk	in	drive	A.	The	floppy	disk	is	in	the	drive,	so	press	Enter.	Next,	MS-DOS	checks
the	existing	disk	format	and,	because	the	floppy	disk	has	already	been	formatted,	it	tells	you
it's	Saving	UNFORMAT	information.	This	message	appears	whenever	you	reformat	a	disk
because	MS-DOS	itself	saves	disk-storage	information.

When	the	quick	format	starts,	your	floppy	disk	drive	becomes	active	for	a	short	time,	and
MS-DOS	tells	you	the	size	of	the	disk	it's	quick-formatting.	This	message	is	followed	almost
immediately	by	this:
Format	complete

MS-DOS	should	now	be	asking	you	for	a	volume	label:
Volume	label	(11	characters,	ENTER	for	none)?	_

Name	the	disk	DOSDISK,	and	type	n	if	MS-DOS	asks	this:
QuickFormat	another		(Y/N)?

If	you	try	using	the	Directory	command	again,	you'll	notice	two	changes:	MYFILE.DOC	no
longer	appears	in	the	directory,	and	the	volume	serial	number	is	now	different.	The	changes
show	that	the	floppy	disk	has,	indeed,	been	reformatted.

Unformatting	the	Floppy	Disk

Note

The	following	example	shows	how	you	can	try	to	rebuild	a	floppy	disk	after
mistakenly	formatting	it.	Don't	assume	that	you	can	reformat	and	rebuild	floppy
disks	whenever	you	want.	As	you'll	see	shortly	from	some	of	the	messages	MS-
DOS	displays,	rebuilding	a	disk	can	cause	loss	of	stored	data.	Examples	are
included	here	to	help	you	in	emergencies.	Copying	and	careful	handling	are	still
your	best	methods	of	protecting	the	information	on	your	floppy	disks.

Suppose	now	that	you've	just	realized	you	formatted	the	wrong	floppy	disk.	The	one	in	drive
A	contained	some	valuable	files	that	you	want	to	recover.	The	Format	command	saves
information	that	can	be	used	to	restore	the	disk	to	its	former	condition.

You	can	use	the	Unformat	command	to	rebuild	a	disk,	as	long	as	you	didn't	use	the	/U
parameter	of	the	Format	command	to	format	the	disk.	This	example	uses	only	one
parameter,	the	letter	of	the	drive	containing	the	disk	to	be	unformatted.	Other	parameters
for	Unformat	are	described	in	Appendix	C,	"MS-DOS	Command	Reference."

To	unformat	the	sample	floppy	disk	in	drive	A,	type	this:
C:\>unformat	a:

MS-DOS	responds	with	the	message	asking	you	to	insert	the	floppy	disk	to	rebuild.	The
floppy	disk	is	in	the	drive,	so	press	Enter	to	begin	unformatting.

Now	you	see	a	rather	wordy	response	from	MS-DOS,	but	read	through	it	all.	The	message
tells	you	that	the	information	needed	to	rebuild	the	disk	has	been	found	in	a	file	named
MIRROR.FIL	and	that	MS-DOS	will	use	the	file	in	attempting	to	unformat	the	disk.	You	also
see	a	message	telling	you	that	rebuilding	the	disk	could	cause	loss	of	information.	Keep	this
message	in	mind;	rely	on	this	command	to	rebuild	a	disk,	but	don't	make	it	part	of	your
everyday	work	with	MS-DOS.	That's	not	how	it's	meant	to	be	used.

If	you're	using	version	5,	MS-DOS	tells	you	the	last	time	the	Mirror	file	was	updated	and
asks	you	to	press	/	(lowercase	L)	if	you	want	to	rebuild	the	disk	using	the	file	it	found,	p	if
you	want	to	use	the	prior	file	(you	rarely	will),	or	Esc	to	end	the	command.	You	want	to
continue,	so	press	/.

Versions	5	and	later	give	you	one	more	chance	to	change	your	mind	(the	following	message
appears	on	one	line	on	your	screen):
Are	you	sure	you	want	to	update	the	system	area	of	your	drive	A
(Y/N)?	_

This	time	you're	sure,	so	press	y.	The	drive	becomes	busy	for	a	few	moments,	and	MS-
DOS	finishes	up	with	the	message:
The	system	area	of	drive	A	has	been	rebuilt.

You	may	need	to	restart	the	system.

(You	don't	have	to	restart	the	system	with	this	disk.)

It's	done.	If	you	check	the	directory	of	drive	A,	you'll	find	that	Unformat	has	not	only
recovered	MYFILE.DOC,	it	has	even	restored	the	original	volume	serial	number	of	the	disk.

Rebuilding	a	Hard	Disk

Because	of	the	extent	of	potential	loss	in	terms	of	programs	and	data,	recent	versions	of
MS-DOS	require	deliberate	effort	on	your	part	to	format	a	hard	disk.	It's	not	a	step	to	be
taken	lightly,	and	the	most	experienced	computer	user	feels	at	least	a	small	twinge	after
pressing	Enter	to	start	the	process.	Beginning	with	version	5,	the	Unformat	command
provides	a	means	for	you	to	undo	the	format	of	either	a	floppy	disk	or	a	hard	disk.

Earlier	in	this	chapter	you	used	the	Unformat	command	with	floppy	disks.	You	unformat	a
hard	disk	in	the	same	way.	Be	aware,	however,	that	files	stored	on	a	hard	disk	become
unavailable	after	the	disk	has	been	formatted.	In	order	for	Unformat	to	work	on	a	system
with,	for	example,	one	hard	disk	and	one	floppy	disk	drive,	you	need	a	startup	floppy	disk
with	which	you	can	start	MS-DOS	from	drive	A.	You	can	create	such	a	floppy	disk	with	the
Format	/S	command.	Copy	to	this	floppy	disk	the	MS-DOS	file	UNFORMAT.COM	as	well	as
accurate	copies	of	the	files	named	AUTOEXEC.BAT	and	CONFIG.SYS,	which	are	in	the
root	directory	of	your	startup	disk.

You	can	use	Unformat	for	one	other	task	with	your	hard	disk:	rebuilding	a	damaged	partition
table.	A	damaged	partition	table	means	that	MS-DOS	can't	find	(and	therefore	start	from)
your	hard	disk.	If	you	are	unable	to	access	your	hard	drive	and	you're	using	version	6	of
MS-DOS,	start	your	machine	with	a	startup	floppy	disk	and	run	the	Unformat	command.
Unformat	checks	for	a	damaged	partition	table	and	fixes	it	if	possible.	If	you	are	using
version	5,	you	can	use	the	Mirror	command	to	save	a	copy	of	the	partition	table	on	a	floppy
disk.	Then,	if	your	hard	disk's	partition	table	becomes	damaged,	you	can	specify	the	/partn
parameter	with	the	Undelete	command	to	rebuild	the	partition	table	from	the	copy.	See
Appendix	C,	"MS-DOS	Command	Reference,"	for	more	information	about	Mirror	and	the
version	5	parameters	of	Undelete.

	

javascript:Next(0)
javascript:Next(1)

Guarding	Against	Virus	Programs
Computer	virus	is	a	term	used	to	describe	a	program	that	hides	itself	on	a	disk—usually
inside	a	program	file—and	can	spread	itself	from	system	to	system;	a	virus	eventually	does
something	to	irritate	you	or	even	destroy	your	files.

There	are	now	thousands	of	such	programs,	but	the	danger	from	them	has	been
exaggerated	in	recent	years.	A	virus	can	be	introduced	to	your	computer	only	if	you	use	an
"infected"	floppy	disk	or	if	your	computer	is	connected	to	another	machine	that	has	a	virus	or
if	you	run	a	program	that	has	been	infected	with	a	virus.	Most	software	manufacturers
check	their	disks	for	virus	programs	before	boxing	them,	so	if	your	machine	isn't	connected
to	any	others	and	if	you	use	only	your	disks	and	disks	from	programs	you've	bought,	you
shouldn't	have	to	worry	about	viruses.	However,	it	always	makes	sense	to	be	cautious.	We
know	that	virus	programs	do	exist	and	sometimes	cause	inconvenience	or	damage	to	your
programs	and	data.

To	let	you	protect	your	system	against	a	virus,	version	6	of	MS-DOS	includes	programs	that
run	under	both	MS-DOS	and	Windows	to	detect	and	remove	virus	programs	from	your
disks.	MS-DOS	even	includes	a	program	you	can	install	that	runs	all	the	time,	guarding	your
system	against	a	virus	program	that	might	wreak	havoc	on	your	files.	We'll	discuss	the	MS-
DOS	versions	of	these	programs.	See	the	MS-DOS	User's	Guide,	which	comes	with	MS-
DOS,	for	a	description	of	how	to	use	the	versions	that	were	written	for	Microsoft	Windows.

Checking	Your	Hard	Disk

It's	easy	to	check	your	hard	disk	for	a	virus;	to	start	Microsoft	Anti-Virus,	the	anti-virus
program,	type	msav.	You'll	notice	that	the	program	first	gets	information	about	your	disk.	As
it	does	so,	a	box	on	the	screen	titled	"Reading	disk	information"	displays	which	disk	the
program	is	reading	and	how	many	directories	it	has	read	so	far.	When	it's	done,	Anti-Virus
displays	its	opening	screen:

The	window	titled	Main	Menu	offers	five	options,	which	are	listed	in	the	left	half	of	the
window:	Detect,	Detect	&	Clean,	Select	new	drive,	Options,	and	Exit.	At	this	point	the	pane
in	the	right	half	of	the	window	describes	the	Detect	option,	which	is	the	currently	selected

option.	It	lets	you	know	that	if	you	choose	Detect,	Anti-Virus	will	scan	the	disk	for	viruses
and	give	you	the	choice	of	correcting	the	problem	(cleaning),	continuing	without	cleaning,	or
quitting	the	scan.

For	this	example,	you're	going	to	scan	the	disk	and	get	rid	of	any	virus	that	Anti-Virus	finds.
Press	the	Tab	key	once	to	select	the	second	option,	Detect	&	Clean.	As	the	pane	to	the
right	explains,	if	you	choose	Detect	&	Clean,	Anti-Virus	scans	your	disk	for	viruses	and,	if	it
finds	any,	cleans	them	without	giving	you	a	choice.	Press	Enter	to	begin	the	process	now.

Anti-Virus	first	checks	that	there	isn't	a	virus	already	running	on	your	machine	in	memory.	It
then	checks	every	file	on	the	hard	disk,	showing	you	its	progress	in	the	pane	on	the	right
and	displaying	the	name	of	the	file	it's	currently	checking	in	the	upper	left	corner	of	the
screen:

When	Anti-Virus	finishes,	it	displays	a	summary	report	showing	how	many	disks	and	files	it
scanned	and	how	many	files	it	cleaned.	Chances	are	your	report	shows	that	Anti-Virus
found	no	infected	files.	If	Anti-Virus	does	find	an	infected	file,	it	cleans	the	file,	adjusting	for
any	changes	the	virus	made	to	the	file,	and	may	prompt	you	to	take	additional	action.

After	checking	the	summary	report	(and	taking	any	action	recommended	by	Anti-Virus),
close	the	report	by	pressing	Enter	to	choose	OK.	Now	quit	the	program	by	pressing	the	Tab
key	three	times	to	select	the	Exit	option.	Then	press	Enter.	Anti-Virus	will	display	a	box
letting	you	know	that	you	are	closing	Anti-Virus.	If	you're	certain	you	want	to	quit,	press
Enter.	If	not,	press	Tab	to	select	Cancel	and	then	press	Enter.

Checking	a	Floppy	Disk

As	mentioned	earlier,	floppy	disks	can	be	the	transportation	method	of	viruses	from	one
computer	to	another.	If	you're	using	a	disk	whose	origins	you	don't	know,	you	would	be	wise
to	check	the	disk	for	viruses	before	copying	anything	from	it	to	your	hard	disk.

Insert	the	disk	you	want	to	check	in	the	disk	drive.	For	this	example,	we'll	use	the	A	drive.
Start	Anti-Virus	by	typing	msav.	Choose	the	Select	New	Drive	option	by	pressing	the	Tab
key	until	the	option	is	highlighted	and	then	pressing	Enter.	A	list	of	your	disk	drives	appears

in	the	upper	left	corner	of	your	screen:

Press	the	Left	arrow	key	twice	to	select	the	A	drive,	and	then	press	Enter.	Anti-Virus	gets
information	about	your	floppy	disk	the	same	way	it	gets	information	about	your	hard	disk.
After	it	finishes	getting	information,	Anti-Virus	is	ready	to	check	the	disk.	Choose	the	Detect
option	or	the	Detect	&	Clean	option	to	start	the	scan.

Checking	for	Unknown	Viruses

Anti-Virus	checks	for	every	virus	that	it	knows.	Of	course,	there	are	some	new	viruses	that
Anti-Virus	doesn't	recognize.	Anti-Virus	has	a	way	to	combat	those	as	well.	As	mentioned
earlier,	most	viruses	infect	program	files.	The	first	time	Anti-Virus	runs,	it	notes	the	size,
attributes,	date,	and	time	of	all	the	program	files	on	your	disk.	The	next	time	you	check	the
disk	with	Anti-Virus,	it	checks	that	none	of	those	program	files	have	changed.	A	change
might	indicate	the	presence	of	a	virus.	If	it	finds	a	modified	program	file	as	it	scans,	Anti-
Virus	displays	a	box	like	the	following	one:

Anti-Virus	lets	you	know	that	a	program	file	has	changed	and	gives	you	some	choices	of
action.	If	you	know	why	the	file	has	changed—for	example,	if	you've	updated	your	program
—press	Enter	to	select	Update	and	let	Anti-Virus	know	that	the	file	was	legitimately
changed.	Be	sure	to	check	the	name	of	the	directory	that	contains	the	program	file.	It	might
give	you	a	clue	to	a	reason	the	file	was	changed.	Suppose	you	have	recently	updated	your

version	of	MS-DOS.	You	can	see	in	the	example	above	that	the	file	HIMEM.SYS	is	in	the
MS-DOS	directory.	Even	if	you	don't	know	what	HIMEM.SYS	does,	the	fact	that	it's	in	the
MS-DOS	directory	gives	you	ample	reason	not	to	worry	that	it	has	been	changed	since	the
last	time	you	checked	for	viruses.	You	should	leave	that	file	alone	and	simply	select	the
Update	choice.	If	you	are	absolutely	positive	that	a	file	shouldn't	have	changed,	then	it	might
very	well	have	a	virus.	Press	Tab	twice	to	select	Continue,	and	then	press	Enter.	If	Anti-
Virus	finds	a	virus	in	the	file	you	should	delete	the	file	and	restore	it	from	a	backup.

Using	Anti-Virus	When	Updating	Software

If	you	update	any	software,	such	as	your	word	processor	or	spreadsheet	program,	or	even
MS-DOS,	many	files	will	be	changed	legitimately.	When	you	run	Anti-Virus	after	updating	the
software,	you	will	be	prompted	to	accept	the	changes	for	every	one	of	those	files.	You	can
avoid	this	time-consuming	task	by	deleting	the	information	Anti-Virus	has	saved	about	your
program	files	before	you	update	your	software.

First,	type	msav	to	start	Anti-Virus.	Next	choose	the	Detect	&	Clean	option	to	scan	your
disk	for	viruses.	When	Anti-Virus	completes	its	scan,	press	the	F7	function	key.	A	message
box	appears	asking	whether	you're	sure	that	you	want	to	delete	the	checklist	files.	Press
Enter	to	begin	the	process.	(Press	Tab	and	then	Enter	to	cancel	the	operation.)	Anti-Virus
runs	through	the	directories	on	your	disk	and	deletes	the	information	it	saved	about	the
program	files.	A	box	on	the	right	side	of	the	window	keeps	you	informed	of	the	progress.
When	the	procedure	is	complete,	exit	Anti-Virus	by	pressing	Tab	until	the	Exit	option	is
highlighted	and	then	pressing	Enter.	Now	you're	ready	to	update	your	software.	Follow	the
installation	instructions	that	came	with	the	software.

When	your	software	update	is	complete,	run	Anti-Virus	one	more	time	to	reinstate	the
information	about	your	program	files.	Simply	choose	the	Detect	&	Clean	option	again.
Because	you	deleted	the	information	about	the	older	versions	of	your	program	files,	Anti-
Virus	won't	prompt	you	to	accept	the	new	versions.

Running	Anti-Virus	with	a	Command

You	can	also	run	Anti-Virus	by	typing	a	single	command	at	the	command	prompt	and	using
parameters	to	specify	the	options.	The	complete	form	of	the	command	is	shown	in	Appendix
C,	"MS-DOS	Command	Reference."	For	example,	if	you	type	the	following:
C:\>msav	c:	/c

the	/C	parameter	tells	Anti-Virus	to	scan	your	memory	and	hard	disk	for	viruses	and	clean
any	infected	files	it	finds.	If	you	want	to	be	vigilant	against	viruses,	you	could	run	this
command	every	time	you	start	your	computer.	You	can	do	this	automatically	by	adding	the
command	to	your	file	named	AUTOEXEC.BAT.	See	Chapter	14,	"Creating	Your	Own
Commands,"	for	details	about	this	special	file.	You	probably	don't	need	to	run	Anti-Virus	that
often,	however,	unless	you	routinely	use	a	lot	of	disks	or	programs	from	other	computer
systems.

Constant	Protection	with	Vsafe

If	you	want	your	system	continuously	monitored	against	the	unwanted	effects	of	a	virus
program,	you	can	run	the	Vsafe	program,	available	in	version	6.	This	program	monitors
everything	that	happens	in	your	system	and	makes	sure	that	no	unwanted	programs	are	run.
If	Vsafe	discovers	something	suspect,	it	will	immediately	display	a	message	box	containing
a	warning	on	your	screen.

To	load	Vsafe,	type	vsafe.	After	Vsafe	displays	a	message	telling	you	it	has	successfully
loaded,	press	Alt-V	to	display	the	Vsafe	control	menu,	which	contains	a	list	of	the	actions
Vsafe	will	protect	against.	The	actions	that	are	followed	by	an	X	are	currently	protected.	An
explanation	of	these	actions	and	of	the	parameters	that	you	can	use	with	Vsafe	is	included
in	Appendix	C,	"MS-DOS	Command	Reference."	To	change	whether	a	particular	action	is
protected,	type	the	number	corresponding	to	the	action.	If	the	action	is	protected	when	you
type	the	number,	it	will	become	unprotected;	if	the	action	is	not	protected,	it	will	become
protected.	When	you	have	finished	making	your	selections,	press	Esc	to	return	to	the
command	line.

Vsafe	uses	quite	a	bit	of	memory	(about	23	KB)	and	slows	down	your	system	because	it
checks	all	disk	and	memory	activity.	Note	that	you	probably	don't	need	the	level	of
protection	offered	by	Vsafe	unless	you	routinely	use	a	lot	of	disks	or	programs	from	other
computer	systems.	You	can	unload	Vsafe	by	typing	vsafe	/u	or	by	pressing	Alt-U	when	the
control	menu	is	displayed	on	the	screen.

	

javascript:Next(0)
javascript:Next(1)

Developing	a	Backup	Procedure
It	could	take	a	drawerful	of	floppy	disks	to	back	up	all	the	files	on	a	hard	disk.	If	your
average	file	were	10,000	bytes	long	(about	61/2	double-spaced	typed	pages),	a	full	40-MB
hard	disk	would	have	more	than	4000	files,	and	you'd	need	almost	35	high-density	(1.2-MB)
floppy	disks	to	back	them	all	up.	A	full	120-MB	hard	disk	could	require	more	than	one
hundred	1.2-MB	floppy	disks.

But	you	don't	have	to	back	up	all	your	files.	You	needn't	back	up	program	files,	for	example,
because	you	already	have	the	original	MS-DOS	and	application-program	floppy	disks.	Some
data	files,	such	as	a	spelling	dictionary,	don't	usually	change,	so	it	isn't	necessary	to	back
them	up	either.

How	often	you	back	up	your	other	data	files,	such	as	word	processing	documents	or
spreadsheets,	depends	on	how	often	they	change.	For	example,	spreadsheets	might
change	often	while	the	budget	is	being	prepared	but	remain	unchanged	the	rest	of	the	year.
The	backup	procedures	you	use	depend	on	how	you	use	your	computer.	But	no	matter	how
you	decide	to	back	up	your	files,	be	certain	to	do	so	regularly.	A	system	failure	can	happen,
but	if	you	back	up	your	files	regularly,	such	a	failure	will	be	merely	an	inconvenience	instead
of	a	disaster.

	

javascript:Next(0)
javascript:Next(1)

Backing	Up	and	Restoring	Files	with	MSbackup
If	you're	using	version	6,	you	can	use	the	MS-DOS	program	MSbackup	(Microsoft	Backup)
to	make	backup	copies	of	your	files	on	floppy	disks	and	restore	files	from	the	backup	floppy
disks	to	your	hard	disk.	MSbackup	does	not	require	you	to	type	commands.	Instead	it
presents	you	with	menus	from	which	you	choose	the	tasks	you	want	the	program	to	carry
out.

To	see	how	MSbackup	works,	make	sure	you	have	two	formatted	floppy	disks.	Both	floppy
disks	must	be	the	same	type.	Type	msbackup	at	the	system	prompt.	If	this	is	the	first	time
MSbackup	has	been	run	on	your	system,	it	tells	you	that	Backup	requires	configuration	for
this	computer	and	starts	a	series	of	steps	that	let	it	determine	what	sort	of	hardware	you're
using	(especially	what	sort	of	floppy	disk	drives	you	have).	Press	Enter	to	proceed	with
configuration.

The	configuration	process	is	an	automated	run-through	of	many	of	the	MSbackup
commands,	flashing	through	the	screens	almost	faster	than	you	can	read	them.
Occasionally	it	will	pause,	display	a	message,	and	wait	for	you	to	press	Enter.	The	fourth
such	instance	occurs	when	MSbackup	displays	a	box	titled	Floppy	Disk	Compatibility	Test.
The	message	explains	that	to	ensure	that	MSbackup	will	create	reliable	backups,	it	is
necessary	to	perform	a	test	backup.	Press	Enter	to	start	the	test.	This	is	the	portion	of	the
configuration	in	which	you'll	need	the	two	disks.	MSbackup	automatically	backs	up	some
files	from	the	MS-DOS	directory.	In	the	middle	of	the	test,	MSbackup	displays	a	box	titled
Backup	To	in	which	you	should	specify	which	floppy	disk	drive	you	will	use:

If	you	see	a	dot	between	the	parentheses	at	the	beginning	of	the	line	describing	your	floppy
disk	drive,	your	drive	is	selected.	Simply	press	Enter.	To	select	a	different	disk	drive,	type
the	character	that	is	highlighted	(if	you	have	color,	the	letter	is	red)	in	the	line	you	want	to
choose.	You'll	see	that	the	dot	between	the	parentheses	moves	to	the	correct	line.	Now
press	Enter	to	continue	the	process.	MSbackup	asks	you	to	insert	first	one	and	then	the
other	floppy	disk	in	the	drive	you	selected.	After	completing	the	backup,	Msbackup	will
confirm	the	accuracy	of	the	backup	by	comparing	the	files	on	the	disks	to	the	original	files.
The	whole	configuration	process	should	take	five	minutes	or	so.

When	configuration	finishes,	MSbackup	displays	a	dialog	box	titled	Configure	with	the	option
Save	highlighted.	Press	Enter	to	save	the	configuration	so	that	MSbackup	will	know	how
your	system	is	configured	from	now	on.	This	ends	the	configuration	process.

Now,	whether	or	not	MSbackup	checked	the	configuration	of	your	system,	it	displays	its
main	menu	in	a	box	titled	Backup	followed	by	a	version	number.	The	menu	displays	five
choices:	Backup,	Restore,	Compare,	Configure,	and	Quit.	Because	Backup	is	highlighted,
you	can	choose	it	now	by	pressing	Enter.	MSbackup	displays	the	Backup	screen:

This	is	the	window	from	which	you'll	do	most	of	your	work.

Online	Help

Like	Anti-Virus	and	other	menu-based	MS-DOS	programs,	MSbackup	includes	online	help
that	describes	every	function	of	the	program.	To	see	how	it	works,	press	F1.	MSbackup
displays	a	window	titled	Backup	Help,	which	explains	how	to	get	help.

After	reading	this	screen,	press	PgDn	to	move	to	the	next	screen,	which	shows	a	list	of	help
topics	(the	choices	on	the	Backup	screen).	Choose	Select	Files	button	by	pressing	the	Tab
key	until	it's	highlighted	and	then	pressing	Enter;	now	MSbackup	displays	a	description	of
the	Select	Backup	Files	screen	and	states	how	to	select	the	files	you	want	to	back	up.	You'll
see	the	Select	Backup	Files	screen	on	page	228.

Scroll	through	the	description;	when	you	finish	reading	it,	press	Esc	to	return	to	the	Backup
screen.	Remember,	you	can	use	online	help	to	view	a	description	of	everything	that
MSbackup	does.

Types	of	Backup

MSbackup	offers	three	types	of	backup:

Full,	which	backs	up	every	file	you	select.

Incremental,	which	backs	up	every	file	you	select	that	has	changed	since	the	last	full
or	incremental	backup.

Differential,	which	backs	up	every	file	you	select	that	has	changed	since	the	last	full
backup.

If	you	start	by	doing	a	full	backup	and	then	do	an	incremental	backup	each	night,	you'd
need	the	floppy	disks	for	the	full	backup	and	all	incremental	backups	to	recover	all	the	files.
If	you	start	by	doing	a	full	backup	and	then	do	a	differential	backup	each	night,	you'd	need
only	the	floppy	disks	for	the	full	backup	and	the	latest	incremental	backup	to	recover	all	the
files.	The	method	you	choose	depends	on	how	many	files	you	want	to	back	up	and	how
many	of	those	files	you	change	in	a	typical	work	day.

If	you	don't	change	many	files-and	especially	if	the	files	you	change	tend	to	be	the	same
files-then	a	differential	backup	is	probably	the	most	effective	for	you.	You'll	have	the	most
current	copies	of	your	files	saved.	But	if	you	change	quite	a	few	files	every	day,	you're
probably	better	off	doing	incremental	backups	and	keeping	all	the	incremental	backup	floppy
disks	until	you	do	your	next	full	backup.

Accessing	the	Parts	of	the	Backup	Screen

The	Backup	screen	contains	eight	elements.	The	highlighted	element	is	the	one	that	is
currently	selected.	To	select	a	different	element,	press	the	Tab	key	until	that	element	is
highlighted.	In	most	cases,	once	the	highlight	is	on	the	element,	you	can	press	Enter	to
choose	the	element	and	perform	an	action.	For	example,	press	Tab	until	the	highlight	is	on
the	element	labeled	Backup	Type,	and	then	press	Enter.	MSbackup	displays	a	box	that	lets
you	choose	the	type	of	backup	you	want	to	perform:

This	box	contains	a	list	of	choices	preceded	by	a	set	of	parentheses,	one	of	which	contains
a	dot.	The	dot	represents	a	selected	item,	and	you	can	select	only	one	item	in	this	kind	of
list.	There	are	two	ways	to	select	the	item	you	want:	You	can	press	the	key	of	the
highlighted	character	in	the	line	you	want	to	select,	or	you	can	use	the	Up	and	Down	arrow
keys	to	move	the	highlight	to	the	line	you	want	to	select	and	then	press	the	Spacebar	to
move	the	dot	to	the	highlighted	line.	If	you	want	to	cancel	your	selection	and	return	to	the
Backup	screen,	either	press	Tab	until	the	word	Cancel	is	selected	and	press	Enter	or	press
the	Esc	key.	To	accept	your	selection,	simply	press	Enter.

Now	that	you	have	an	idea	of	how	to	move	around	in	MSbackup,	press	Esc	to	return	to	the
Backup	screen.

Note

This	tutorial	gives	instructions	for	using	the	keyboard.	If	you	have	a	mouse,	feel
free	to	use	it.	For	example,	with	a	mouse,	choosing	elements	in	the	Backup	screen
is	easy.	All	you	have	to	do	is	position	the	mouse	pointer	over	the	element	you
would	like	to	choose	and	then	click	(press	and	release)	the	left	mouse	button	once.
You	can	just	as	easily	choose	items	from	a	list.

Selecting	Files	to	Back	Up

The	examples	that	follow	require	the	directory	structure	and	files	you	created	in	the	previous
chapter.	If	you	haven't	completed	those	examples,	do	so	before	continuing.

You're	going	to	back	up	some	files	now,	so	first	choose	Select	Files...	from	the	Backup
screen.	MSbackup	reads	all	the	file	names	from	the	current	hard	disk	drive,	then	displays
the	Select	Backup	Files	screen	(you	read	the	online	help	description	of	this	screen	on	page
226):

As	you	can	see,	this	screen	contains	a	list	of	the	directories	on	your	disk	and	a	list	of	the
files	in	the	currently	selected	directory.	When	MSbackup	first	displays	this	screen,	the
highlight	is	in	the	list	of	directories.	Press	the	Down	arrow	key	until	you	highlight	the	WP
subdirectory	in	the	C:\RUNDOS\MKT	directory.	The	following	figure	shows	the	resulting
display.	The	directories	shown	on	your	screen	will	most	certainly	be	different	from	the	ones
shown	here.	However,	your	list	of	files	in	the	WP	directory	should	be	the	same.

Now	press	the	Tab	key	to	move	the	highlight	to	the	section	of	the	screen	that	contains	the
file	names.	To	select	a	file	for	backup,	use	the	Up	and	Down	arrow	keys	to	select	the	file
name	and	then	press	the	Spacebar.	(If	you're	using	a	mouse,	position	the	mouse	pointer	on
the	file	name	and	press	the	right	mouse	button.)	Try	it:	Press	the	Down	arrow	key	twice	to
select	the	file	named	let2.doc,	and	then	press	the	Spacebar;	a	check	mark	should	appear	to
the	left	of	the	file	name.	In	the	same	way,	select	the	files	RPT1.DOC,	RPT2.DOC,	and
RPT3.DOC.

Note
If	you	have	a	mouse,	MSbackup	makes	it	easy	to	select	a	series	of	files.	All	you
have	to	do	is	position	the	mouse	pointer	over	the	first	file	name,	press	and	hold	the
right	mouse	button,	move	the	mouse	pointer	down	to	the	last	file	in	the	series,	and
release	the	right	mouse	button.

Once	you	select	it,	a	file	stays	selected.	You	can	reverse	the	selection	of	a	file	by
highlighting	the	file	name	and	pressing	the	Spacebar	again.

You	can	also	select	all	the	files	in	a	directory.	Press	Tab	until	the	highlight	is	back	on	the	list
of	directories.	Now	press	the	Up	arrow	key	once	to	select	the	directory	named	BUDGET,
and	then	press	the	Spacebar.	Now	look	at	the	list	of	file	names	on	the	right	side;	each	one
is	preceded	by	a	check	mark.	Press	the	Spacebar	again.	All	the	check	marks	disappear.
Move	back	to	the	WP	directory.

Backing	Up	the	Files

You've	marked	four	files	to	back	up:	They	are	LET2.DOC,	RPT1.DOC,	RPT2.DOC,	and
RPT3.DOC.	The	screen	should	look	like	this:

Press	the	Tab	key	until	OK	is	selected,	and	then	press	Enter.	MSbackup	returns	to	the
Backup	screen.	In	the	lower	middle,	the	screen	tells	you	that	five	files	are	to	be	backed	up
(the	four	you	marked	plus	a	catalog	file	that	MSbackup	creates),	that	you'll	need	one	floppy
disk,	and	that	it	will	take	about	15	seconds	to	back	up	the	files.	Insert	one	of	the	floppy
disks	that	MSbackup	used	when	it	checked	the	configuration	of	your	system,	and	then
choose	Start	Backup	at	the	upper	right	corner	of	the	screen	by	highlighting	it	and	pressing
Enter.

Because	you	already	have	a	disk	in	the	drive,	simply	press	Enter	when	MSbackup	tells	you
to	insert	a	disk	in	drive	A.	Because	you're	using	a	floppy	disk	that	MSbackup	wrote	on	while
checking	your	system	configuration,	you	will	see	a	message	telling	you	that	you	have
inserted	a	disk	that	already	contains	backup	files	and	asking	whether	to	retry	or	to	overwrite
the	disk.	Because	you	won't	need	the	files	currently	on	the	disk,	select	Overwrite	and	press
Enter	to	continue.

It	doesn't	take	long	to	back	up	the	four	files	(probably	less	than	the	estimated	15	seconds).
When	MSbackup	finishes,	it	displays	a	summary	report	and	waits	for	you	to	press	Enter.
Now	it	returns	once	again	to	MSbackup's	main	menu.

MSbackup	includes	more	options,	but	these	are	the	basic	functions	you	need	to	set	up	a
backup	procedure.	The	names	of	the	files	you	chose	to	back	up	for	this	example	are	stored
in	a	file	named	DEFAULT.SET.	To	make	sure	that	these	files	won't	be	included	in	your
backup	procedure	from	now	on,	choose	Backup	to	return	to	the	Backup	screen,	choose
Select	Files...,	and	then	remove	the	check	marks	from	the	four	files	(choose	the	directory
\RUNDOS\MKT\WP,	and	then	use	the	Spacebar	to	remove	the	check	marks	from	the	file
names).	Now	choose	OK,	and	check	the	description	in	the	lower	middle	of	the	Backup
screen;	it	should	say	you	have	zero	(0)	files	selected.

Quit	MSbackup	by	pressing	Esc,	pressing	Enter	when	MSbackup	asks	if	you	want	to	save
the	changes	to	the	DEFAULT.SET,	and	then	finally	choosing	Quit	from	MSbackup's	main
menu.

Restoring	Files	Using	MSbackup

Restoring	files	works	just	about	the	same	as	backing	them	up.	Now	type	the	following	to

delete	three	files	whose	file	names	start	with	RPT:
C:\>cd		rundos\mkt\wp
C:\RUNDOS\MKT\WP>del			rpt?.doc

Start	MSbackup	again	by	typing	msbackup.	This	time,	choose	Restore	from	the	main	menu
by	selecting	it	and	pressing	Enter.	The	Restore	screen	looks	very	much	like	the	Backup
screen.	Choose	Select	Files...	at	the	lower	left.

Again,	the	display	of	directories	and	files	looks	much	as	it	does	when	you're	backing	up
files.	Highlight	the	directory	\RUNDOS\MKT\WP.	The	names	of	the	four	files	you	backed	up
should	appear:

As	you	did	in	the	Select	Backup	Files	screen,	put	check	marks	next	to	rpt1.doc,	rpt2.doc,
and	rpt3.doc.	Then	choose	OK.	The	Restore	screen	tells	you	3	files	selected	for	restore.
Choose	Start	Restore	at	the	upper	right	of	the	screen.	When	MSbackup	prompts	you	to	put
the	disk	in	drive	A,	press	Enter	to	choose	OK	because	the	floppy	disk	you	used	for	the
backup	is	still	there.

Again,	the	restore	process	itself	takes	just	a	few	seconds,	and	then	MSbackup	displays	a
summary	report.	Press	Enter,	and	MSbackup	returns	to	the	main	menu.

You	have	used	the	main	features	of	both	the	Backup	and	Restore	parts	of	MSbackup.	You
can	experiment	with	the	other	features	just	as	you	did	here.	Whenever	the	meaning	of	a
term	or	the	purpose	of	a	choice	isn't	clear,	use	the	online	help	to	get	an	explanation.

MSbackup	for	Windows

MSbackup	for	Windows	works	in	much	the	same	way	as	the	version	described	here,
although	the	appearance	of	the	screens	match	Windows.	It,	too,	offers	online	help;	you
should	be	able	to	use	the	Windows	version,	if	you	prefer,	with	no	difficulty.

	

javascript:Next(0)
javascript:Next(1)

Backing	Up	Files	with	the	Backup	Command
If	you're	using	version	5	or	earlier,	you	must	use	the	Backup	command	to	back	up	files.
Although	it	lacks	the	convenient	menus	and	mouse	features	of	the	MSbackup	program
included	with	versions	6.0	and	later,	the	Backup	command	(and	its	companion,	the	Restore
command)	nonetheless	offers	all	the	capability	you	need	to	back	up	your	files.

The	Backup	command	lets	you	select	files	on	the	basis	of	their	path	name,	their	file	name,
whether	they	have	been	changed	since	the	last	backup,	or	whether	they	have	been	changed
since	a	particular	date.	The	parameters	can	be	combined,	so	you	can	back	up	files	in	just
about	any	way	you	like.

The	Backup	command	can	have	as	many	as	nine	parameters:
backup	<source>	<drive>	/A	/S	/M	/F	/D:<date>	/T:<time>	/L:<logfile>

<source>	is	the	file	or	set	of	files	you	want	to	back	up.	You	can	specify	a	drive	(such	as	a:),
a	path	(such	as	a:\myfiles),	a	file	name	with	or	without	wildcards	(such	as	a:*.doc),	or	a
combination	of	these	elements	(such	as	a:\myfiles\report.doc).

<drive>	is	the	letter,	followed	by	a	colon,	of	the	drive	(such	as	a:)	that	contains	the	disk	that
receives	the	backup	files.	You	must	specify	<drive>.

/A	adds	the	backup	files	to	the	backup	disk,	rather	than	erasing	all	files	on	the	backup	disk
as	the	command	usually	does	before	making	the	backup	copies.

/S	backs	up	files	from	all	subdirectories.

/M	backs	up	only	the	files	that	have	been	modified	since	the	last	backup.

/F,	in	versions	prior	to	4,	formats	the	target	disk	if	it	isn't	already	formatted.	The	/F
parameter	uses	the	Format	command	file	(FORMAT.COM)	to	format	the	target	disk,	so
FORMAT.COM	must	be	in	either	the	current	directory	or	a	directory	that	is	in	the	command
path.	The	/F	parameter	isn't	required	in	versions	4	and	5.	If	you	haven't	already	formatted
the	disk,	note	that	MS-DOS	automatically	formats	the	floppy	disk	for	the	normal	capacity	of
the	drive,	again	assuming	that	it	can	find	FORMAT.COM.	You	can,	however,	use	the	/F
parameter	either	to	format	a	set	of	floppy	disks	or	to	format	one	or	more	floppy	disks	with	a
capacity	other	than	the	one	MS-DOS	assumes	for	the	floppy	disk	drive	(for	example,
specify	/f:360	to	format	360-KB	floppy	disks	in	a	1.2-MB	drive).	When	MS-DOS	finishes
whatever	formatting	you	choose,	it	moves	on	to	the	backup	procedure	you've	requested	in
your	Backup	command.

/D:<date>	backs	up	all	files	that	have	changed	since	<date>.	Enter	<date>	just	as	you
would	for	the	Date	command.

/T:<time>	backs	up	all	files	that	have	changed	since	<time>	on	<date>.	Enter	<time>	just	as
you	would	for	the	Time	command.

/L:<logfile>	creates	a	log	file	on	the	disk	in	the	source	drive.	The	log	file	contains	the	date
and	time	of	the	backup	procedure	and,	for	each	file	that	is	backed	up,	the	path	name,	the
file	name,	and	the	number	(assigned	by	MS-DOS)	of	the	floppy	disk	that	contains	the	file.	If
a	log	file	already	exists,	the	backup	information	is	added	at	the	end,	creating	a	history	of
backups	for	the	source	drive.	If	you	include	/L	but	omit	the	colon	and	<logfile>,	MS-DOS
names	the	log	file	BACKUP.LOG	and	stores	it	in	the	root	directory	of	the	source	drive.

Note

Although	the	Backup	command	exists	in	versions	2	and	later	of	MS-DOS,	not	all
the	versions	include	all	the	parameters	described	here,	nor	are	all	the	versions	and
releases	of	MS-DOS	compatible	with	one	another.	For	a	list	of	the	parameters
available	to	you,	check	the	documentation	that	came	with	your	version	of	MS-
DOS.	You	should	use	the	same	version	of	MS-DOS	both	to	back	up	and	to	restore
files.

Backing	Up	All	the	Files	in	a	Directory

The	simplest	way	to	back	up	files	is	by	directory.	You	back	up	all	files	in	a	directory	by
specifying	just	the	path	of	the	directory	and	the	letter	of	the	floppy	disk	drive	that	contains
the	backup	floppy	disk.	To	ensure	that	the	examples	proceed	smoothly,	have	ready	either	a
formatted	blank	floppy	disk	or	a	new	floppy	disk	that	matches	the	capacity	of	your	floppy
disk	drive.	(Remember,	if	you	have	version	3	or	earlier,	the	floppy	disk	must	be	formatted
before	you	back	up	any	files.)

To	back	up	all	the	files	in	the	directory	named	\RUNDOS\MKT\BUDGET,	type	the	following:
C:\RUNDOS\MKT>backup	budget	a:

MS-DOS	displays	a	warning:
Insert	backup	floppy	disk	01	in	drive	A:

WARNING!	Files	in	the	target	drive
A:\	root	directory	will	be	erased
Press	any	key	to	continue	.	.	.

If	you	don't	use	the	/A	parameter,	MS-DOS	erases	any	files	on	the	backup	floppy	disk
before	it	makes	the	backup	copies.	This	warning	gives	you	a	chance	to	make	certain	the
correct	floppy	disk	is	in	the	drive.	Put	your	blank	floppy	disk	in	drive	A,	and	press	any	key.

If	you	have	version	4	or	5	and	are	using	an	unformatted	floppy	disk,	MS-DOS	begins	the
backup	procedure	by	formatting	the	floppy	disk	to	the	maximum	capacity	of	the	drive,	unless
you	used	the	/F	parameter,	or	the	/T	and	/N	parameters.	When	the	backup	procedure
begins,	MS-DOS	displays	the	name	of	each	file	as	it	makes	the	copies:
***	Backing	up	files	to	drive	A:	***
Floppy	disk	Number:	01

\RUNDOS\MKT\BUDGET\BGT1.XLS

\RUNDOS\MKT\BUDGET\BGT2.XLS
\RUNDOS\MKT\BUDGET\BGT3.XLS

The	directory	of	the	backup	floppy	disk	shows	one	or	two	files	you	might	not	expect.	Type
the	following:
C:\RUNDOS\MKI>dir		a:

If	you're	using	version	3.3	or	later,	the	MS-DOS	response	to	your	directory	command	looks
something	like	this:
Volume	in	drive	A	is	BACKUP		001
	Volume	Serial	Number	is	2543-14F7
	Directory	of	A:\

BACKUP			001								72	01-05-95			1:48p
CONTROL		001							311	01-05-95			1:48p
				2	file(s)								383	bytes
																					1456640	bytes	free

MS-DOS	has	stored	all	the	backed-up	files	in	the	file	named	BACKUP.001	and	all	the	path
names	in	the	file	named	CONTROL.001.	(On	a	second	backup	floppy	disk,	the	extensions
would	be	002;	on	a	third	backup	floppy	disk,	they	would	be	003.)	Note	that	the	size	of
BACKUP.001	corresponds	to	the	total	number	of	bytes	in	the	three	files	it	contains;
CONTROL.001	contains	all	the	extra	information	MS-DOS	needs	to	restore	those	files.

If	you're	using	version	3.2	or	earlier,	on	a	360-KB	floppy	disk,	MS-DOS	responds:
Volume	in	drive	A	has	no	label
	Directory	of		A:\

BACKUPID	@@@						128		01-05-95		1:48p
BGT1					XLS						152		01-05-95		8:17a
BGT2					XLS						152		01-05-95		8:17a
BGT3					XLS						152		01-05-95		8:17a
								4	File(s)			358400	bytes	free

BACKUPID.@@@	is	a	small	file	that	MS-DOS	stores	on	a	backup	floppy	disk	to	identify	it.
Also,	note	that	MS-DOS	has	added	128	bytes	to	each	of	the	files	you	backed	up;	this
addition	contains	the	path	and	file	name	of	the	file	that	was	backed	up	and	is	used	by	the
Restore	command.	The	Restore	command	deletes	the	path	and	file	name	information,	so
the	restored	version	of	the	file	is	identical	to	the	one	you	backed	up.	You'll	work	with	the
Restore	command	later	in	the	chapter.

If	a	Backup	command	fills	the	floppy	disk	before	backing	up	all	the	files	you	specified,	MS-
DOS	prompts	you	to	put	in	another	floppy	disk.	It	displays	the	same	warning	but	refers	to
the	second	floppy	disk	as	Floppy	Disk	Number	02.

If	another	floppy	disk	is	required,	MS-DOS	prompts	again,	increasing	the	floppy	disk

number	each	time.	If	you	were	actually	backing	up	files,	you	would	label	the	floppy	disk	you
just	used	with	the	contents	and	date	and	store	it	in	a	safe	place.

Backing	Up	All	Subdirectories

You	can	back	up	the	files	in	the	current	directory	and	all	its	subdirectories	with	the	/S
parameter.	For	example,	the	current	directory	is	\RUNDOS\MKT.	To	back	up	all	the	files	in	it
and	all	its	subdirectories,	you	would	type	backup	*.*	a:	/s.	MS-DOS	would	display	the
names	of	all	13	files	it	backed	up	from	the	directories	\RUNDOS\MKT,	\RUNDOS\MKT\WP,
and	\RUNDOS\MKT\BUDGET.	This	backup	floppy	disk	would	contain	all	your	marketing
files,	not	just	the	files	from	one	of	the	subdirectories.

Backing	Up	a	Specific	File

You	can	back	up	a	specific	file	by	including	a	file	name	with	the	Backup	command.	For
example,	if	the	current	directory	were	\RUNDOS\MKT\WP,	you	would	type	backup	let1.doc
a:	to	back	up	just	the	file	LET1.DOC.	You	can	use	wildcard	characters	to	back	up	a	set	of
files	with	the	same	name	or	extension.	For	example,	typing	backup	*.doc	a:	would	back	up
all	files	whose	extension	is	DOC.

Backing	Up	Only	Files	That	Have	Changed

As	the	number	of	your	files	increases,	you	might	want	to	be	even	more	selective	about	the
ones	you	back	up.	For	example,	a	word	processing	directory	might	contain	hundreds	of
documents,	but	only	a	few	you're	working	with	now.	The	/M	(Modify)	parameter	of	the
Backup	command	backs	up	only	those	files	that	have	changed	since	the	directory	was	last
backed	up.	To	see	how	this	parameter	is	used,	you	need	a	file	that	has	changed	since	you
backed	up	\RUNDOS\MKT	in	the	last	example.	Create	a	short	file	by	copying	from	the
console:
C:\RUNDOS\MKT>copy	con	new.doc
This	file	has	changed
since	the	last	backup.
^Z
								1	file(s)	copied

Now	tell	MS-DOS	to	back	up	any	file	that	has	changed	since	the	directory	was	last	backed
up:
C:\RUNDOS\MKT>backup	*.*	a:	/m

MS-DOS	displays	its	warning	and,	when	you	press	a	key,	displays	the	backed	up	files:
***	Backing	up	files	to	drive	A:	***
Floppy	disk	Number:	01

\RUNDOS\MKT\NEW.DOC

Only	the	new	file	is	backed	up.

You	can	also	back	up	only	those	files	that	have	changed	since	a	particular	date	with	the	/D:
<date>	parameter.	For	example,	if	you	typed	the	command	backup	*.*	/d:01-05-95,	MS-
DOS	would	back	up	all	files	that	were	created	or	changed	on	or	after	January	5,	1995,
whether	or	not	they	had	been	backed	up	before.

Adding	Files	to	a	Backup	Floppy	Disk

Each	form	of	the	Backup	command	you	have	used	so	far	starts	by	erasing	any	files	on	the
backup	floppy	disk.	There	might	be	times,	however,	when	you	want	to	back	up	files	from
several	different	directories	on	one	floppy	disk	or	add	a	file	or	two	to	an	existing	backup
floppy	disk.	The	/A	parameter	adds	a	file	to	a	backup	floppy	disk	without	erasing	any
backup	files	it	contains.

If	you	periodically	back	up	a	few	files	from	several	different	directories,	you	can	use	the	/A
parameter	to	put	all	the	backup	files	on	one	floppy	disk.	A	word	of	caution	about	this
technique:	With	versions	of	MS-DOS	through	3.2,	if	a	file	you	add	to	a	backup	floppy	disk
has	the	same	name	and	extension	as	a	file	already	on	the	floppy	disk,	MS-DOS	changes
the	extension	of	the	added	file	to	@01,	regardless	of	what	it	was	before.

	

javascript:Next(0)
javascript:Next(1)

Restoring	Files	to	the	Hard	Disk	with	the	Restore	Command
It's	easy	to	restore	a	file	from	a	backup	floppy	disk	to	the	hard	disk	using	the	Restore
command.	Simply	insert	the	backup	floppy	disk	in	the	floppy	disk	drive	and	type	Restore,
specifying	the	name	of	the	file	or	files	to	be	restored.	The	Restore	command	needs	the	path
and	file	name	information	added	to	files	by	the	Backup	command,	so	you	can	restore	only
files	that	were	backed	up	with	the	Backup	command.	The	Restore	command	in	versions	5
and	later	can	restore	files	backed	up	with	the	Backup	command	in	any	prior	version	of	MS-
DOS.	If	you	don't	have	version	5	or	later,	however,	you	should	use	the	same	version	of	MS-
DOS	for	both	the	Backup	and	Restore	commands.

The	Restore	command	can	have	as	many	as	12	parameters:
restore	<drive>	<path><filename>	/S	/P	/M	/N	/D	/A:<date>	/B:<date>	/E:
<time>	/L:<time>

<drive>	is	the	letter,	followed	by	a	colon,	of	the	drive	(such	as	a:)	that	contains	the	backup
floppy	disk.	You	must	include	<drive>.

<path>	is	the	path	name,	preceded	by	a	drive	letter	and	a	colon,	if	appropriate,	of	the
directory	to	which	the	file	is	to	be	restored.	If	you	omit	<path>,	the	file	is	restored	to	the
current	directory.	Note	that	the	file	must	be	restored	to	the	same	directory	from	which	it	was
backed	up.

<filename>	is	the	name	of	the	file	to	be	restored.	You	can	use	wildcard	characters	to
restore	a	set	of	files.	You	must	specify	either	<path>	or	<filename>.

/S	restores	files	to	all	subdirectories.

/P	tells	MS-DOS	to	prompt	you	for	confirmation	before	restoring	read-only	files	or	files	that
have	changed	since	they	were	last	backed	up.

/M	restores	files	that	were	modified	since	they	were	backed	up.

/N	restores	files	that	have	been	deleted	from	the	original	source	disk	since	they	were
backed	up.

/D	doesn't	restore	any	files;	it	displays	a	list	of	the	files	stored	on	the	backup	floppy	disk
that	match	the	path	and	file	names	you	specified	as	part	of	the	Restore	command	(version	5
and	later,	only).	<path>	must	be	specified,	even	though	no	files	will	be	restored.

/B:<date>	restores	only	those	files	that	were	changed	on	or	before	<date>.	Enter	<date>
just	as	you	would	for	the	Date	command.

/A:<date>	restores	only	those	files	that	were	changed	on	or	after	<date>.	Enter	<date>	just
as	you	would	for	the	Date	command.

/E:<time>	restores	only	those	files	that	were	changed	at	or	earlier	than	<time>	on	<date>.

Enter	<time>	just	as	you	would	for	the	Time	command.

/L:<time>	restores	only	those	files	that	were	changed	at	or	later	than	<time>	on	<date>.
Enter	<time>	just	as	you	would	for	the	Time	command.

Note
Although	the	Restore	command	exists	in	versions	of	MS-DOS	numbered	2	and
later,	not	all	the	versions	include	all	the	parameters	described	here.	For	a	list	of
the	parameters	available	to	you,	check	the	documentation	that	came	with	your
version	of	MS-DOS.

Warning
Don't	use	the	Backup	or	Restore	command	if	you	have	entered	an	Assign,
Join,	or	Substitute	command	to	alter	the	way	MS-DOS	interprets	drive	letters.
Because	these	commands	can	mask	the	type	of	drive,	MS-DOS	could	damage
or	delete	the	files	you	specify	in	the	commands	or	other	files	on	the	disk.

To	prepare	for	the	Restore	command	examples	that	follow,	type	the	following	command	to
back	up	all	the	files	in	\RUNDOS\MKT\WP:
C:\RUNDOS\MKT\WP>backup	*.*	a:	/I

MS-DOS	issues	the	usual	warnings;	press	a	key	to	back	up	the	files.	After	MS-DOS
displays	the	names	of	the	files	it	backed	up,	delete	all	the	files	from	the	hard	disk	by	typing
this:
C:\RUNDOS\MKT\WP>del	*.*

This	completes	preparation	for	the	Restore	examples.

Restoring	a	Specific	File

Inadvertently	erasing	or	changing	a	file	is	probably	the	most	common	reason	for	restoring	a
file.	You	can	restore	a	specific	file	by	specifying	the	source	drive	and	the	target	drive,	path
name,	and	file	name	with	the	Restore	command.	(You	must	include	the	path	if	you	are
restoring	a	file	to	a	directory	other	than	the	current	directory,	and	the	path	you	specify	must
be	the	same	as	the	path	from	which	the	file	was	originally	backed	up.)

For	example,	if	the	current	directory	were	\RUNDOS\MKT\WP,	you	would	type	restore	a:
let1.sty	to	restore	only	the	file	LET1.STY	(You	can	omit	the	path	because	you're	restoring
the	file	to	the	current	directory.)

You	can	use	wildcard	characters	to	restore	a	set	of	files	with	the	same	name	or	extension.
For	example,	to	restore	all	the	files	whose	extension	is	DOC	that	you	backed	up	from	the
current	directory	(\RUNDOS\MKT\WP),	you	would	type	restore	a:*.doc.

If	you	enter	the	Restore	command	with	a	path	name	and	the	wildcard	specification	*.*,	MS-
DOS	restores	all	files	that	belong	in	that	directory.

Restoring	All	Subdirectories

Just	as	the	/S	parameter	of	the	Backup	command	backs	up	the	files	in	a	directory	and	all	its
subdirectories,	the	/S	parameter	of	the	Restore	command	restores	the	files	in	a	directory
and	all	its	subdirectories.	To	restore	the	files	in	\RUNDOS	and	all	its	subdirectories,	you
would	type	restore	a:	\rundos*.*	/s.

Selecting	Files	to	Be	Restored

A	file	you	restore	replaces	a	file	with	the	same	name	on	the	hard	disk.	You	might	not	want
this	replacement,	especially	if	you	have	changed	the	file	on	the	hard	disk	since	the	backup
floppy	disk	was	made.	You	can	protect	yourself	from	unwanted	changes	by	using	the	/P
(Prompt)	parameter	of	the	Restore	command,	which	tells	MS-DOS	to	prompt	for
confirmation	if	the	file	on	the	hard	disk	has	changed	since	the	backup	was	made.

Warning

If	you're	using	version	3.2	or	earlier	and	are	restoring	files	that	were	backed
up	with	a	previous	version	of	MS-DOS,	be	sure	to	use	the	/P	parameter.	If
MS-DOS	asks	whether	to	restore	files	named	MSDOS.SYS,	IO.SYS,
IBMBIO.COM,	IBMDOS.COM,	or	COMMAND.COM,	reply	n	(no).	Otherwise,
you	would	replace	parts	of	your	MS-DOS	program	with	portions	of	an	earlier
version,	and	MS-DOS	wouldn't	start	from	your	hard	disk.

Remember,	backing	up	your	files	is	your	best	and	cheapest	insurance	against	hard	disk
problems	and	those	occasional	lapses	that	lead	us	to	make	mistakes.	It	doesn't	matter	how
well	you	know	how	to	use	the	backup	capabilities	if	you	don't	use	them.

	

javascript:Next(0)
javascript:Next(1)

Chapter	11:	The	MS-DOS	Shell

Overview
Versions	4	through	6.0	of	MS-DOS	include	a	program	called	the	MS-DOS	Shell	that	lets	you
use	menus	and	small	on-screen	images	to	manage	your	files	and	disks	without	typing	MS-
DOS	commands	or	file	names	at	the	system	prompt.	With	the	Shell,	you	can	see	your
directory	structure	outlined	onscreen,	and	you	can	navigate	from	one	directory	to	another
with	the	keyboard	or	a	mouse.	You	can	also	set	up	your	application	programs	so	you	can
run	them	by	selecting	from	a	list.	If	you	have	the	Shell	for	version	5	or	later	of	MS-DOS,	you
can	even	switch	among	multiple	programs	without	having	to	quit	one	before	you	start
another.

This	program	is	called	a	shell	because	it	surrounds	MS-DOS.	When	you	use	it,	you	see	the
Shell	and	its	menus	rather	than	MS-DOS	or	its	system	prompt.	The	Shell	even	adds	some
capabilities	that	older	versions	of	MS-DOS	don't	offer.	For	example,	you	can	rename	a
directory,	move	one	or	more	files	without	having	to	copy	and	erase	them,	and	view	the
contents	of	two	disks	or	directories	at	the	same	time.

This	chapter	gives	you	a	quick	tour	of	the	Shell	for	versions	5	and	later.	It	shows	you	how	to
use	the	Shell's	major	capabilities	with	either	the	keyboard	or	the	mouse.	If	you	have	version
4	of	MS-DOS,	your	Shell	is	visually	similar	but	differs	in	some	significant	respects.	You	can
use	this	chapter	as	a	general	guide	to	the	Shell,	but	refer	to	your	documentation	and	to
online	Help	in	your	Shell	for	specifics.	If	you	have	version	6.2	or	later	of	MS-DOS	and	would
like	to	use	the	Shell,	you	can	order	the	Supplemental	Disk.	(See	the	manual	that	came	with
MS-DOS.)

	

javascript:Next(0)
javascript:Next(1)

Starting	the	Shell
MS-DOS	can	be	installed	so	that	it	runs	the	Shell	whenever	you	start	or	restart	your
computer,	or	so	that	it	waits	until	you	give	the	command	to	run	the	Shell.	If	MS-DOS	runs
the	Shell	automatically,	the	Shell	appears	as	soon	as	MS-DOS	finishes	its	startup	routine.	If
MS-DOS	does	not	run	the	Shell	automatically,	you	see	the	normal	MS-DOS	startup,	ending
with	the	system	prompt.	In	this	case,	you	start	the	Shell	by	typing	its	name:
C:\>dosshell

NoteBe	sure	that	Microsoft	Windows	is	not	running	before	you	start	the	Shell.

When	you	start	the	Shell,	the	program	begins	by	reading	the	name	of	each	directory	and	file
from	the	disk	in	the	current	drive.	If	the	disk	contains	many	directories	and	files,	the	Shell
reports	on	its	progress	in	a	box	headed	Reading	Disk	Information.	The	Shell	then	displays
its	opening	screen,	which	looks	like	the	illustration	below.	For	simplicity,	the	illustration
shows	only	the	files	most	likely	to	be	in	the	root	directory	of	a	hard	disk.	You	might	see
others.

Note
If	your	opening	Shell	screen	doesn't	show	areas	headed	Directory	Tree	and	Main,
you	can	change	the	display	by	choosing	Program/File	Lists	from	the	View	menu	at
the	top	of	the	screen.	If	you	don't	know	how	to	do	this,	refer	to	the	illustrations	and
disregard	your	display	for	a	few	minutes.

The	Shell	operates	either	in	text	mode,	as	shown	in	the	preceding	illustration,	or	in	graphics
mode.	Text	mode	uses	text	characters	only—no	pictures—to	create	the	display	you	see.
Graphics	mode,	which	you	can	use	on	EGA,	VGA,	and	similar	displays,	combines	text
characters	and	some	graphic	images.	Figure	11-1	on	the	next	page	shows	how	the	screen
in	the	preceding	illustration	looks	in	graphics	mode.	Notice	that	the	mouse	pointer	is	arrow-
shaped	instead	of	rectangular	and	that	small	images	of	disk	drives	and	file	folders	replace
the	square	brackets	used	in	text	mode.

	
Figure	11-1:	Parts	of	the	MS-DOS	Shell	window	in	versions	5	and	later.

The	rest	of	this	chapter	shows	screens	in	graphics	mode.	If	you	would	like	to	switch	to
graphics	mode,	press	the	Alt	key,	then	press	the	letter	O,	and	then	press	the	letter	D.	When
a	box	labeled	Screen	Display	Mode	appears,	press	the	Down	arrow	key	until	the	dark
highlight	rests	on	the	choice	that	begins	with	the	word	Graphics.	Press	Enter,	and	your
screen	will	change	to	graphics	mode.

Parts	of	the	Shell	Window

The	opening	Shell	screen	shows	a	large	window	containing	a	number	of	different	elements.
This	window	also	shows	two	major	parts	of	the	Shell,	the	File	List	at	the	top	and	the
Program	List	below	it.	From	top	to	bottom,	the	principal	elements	in	the	Shell's	opening
window	are	listed	and	labeled	in	Figure	11-1.

The	top	line	of	the	screen	(title	bar)	identifies	the	MS-DOS	Shell.

The	second	line	(menu	bar)	displays	the	names	of	the	available	menus:	File,
Options,	View,	Tree,	and	Help.	You	choose	commands	from	these	menus.

The	next	two	lines	identify	the	current	drive	and	directory	(probably	C:\,	as	shown
earlier	on	page	243)	and	show	the	disk	drives	attached	to	your	system.

The	next	one-third	to	one-half	of	the	window	comprises	the	File	List	area,	which	is
divided	vertically	into	two	smaller	sections.

The	left-hand	portion,	titled	Directory	Tree,	shows	all	the	directories	on	the	current
disk,	arranged	with	subdirectories	indented	to	the	right	and	connected	by	lines	that
show	the	directory	structure.	This	display	is	like	the	output	of	the	Tree	command.	A
minus	sign	inside	the	symbol	that	represents	a	directory	(for	example,	the	symbol	to
the	left	of	C:\)	means	the	directory	contains	one	or	more	subdirectories	that	are
currently	displayed	in	the	directory	tree.	A	plus	sign	inside	the	symbol	that
represents	a	directory	means	that	the	directory	contains	one	or	more	subdirectories
that	are	not	currently	displayed.

The	right-hand	portion	lists	the	files	in	the	current	drive	and	the	current	directory
(C:*.*	in	the	illustration	on	page	243).	Like	a	directory	listing,	these	entries	list	the
name,	size,	and	date	of	creation	or	last	change	of	each	file	in	the	selected	directory.

The	lower	section	of	the	Shell	window,	titled	Main,	is	the	Program	List	area.	It
displays	a	list	of	programs	you	can	run.	Until	you	add	your	own	programs	to	this
window,	it	contains	at	least	two	basic	choices,	Command	Prompt	and	Disk	Utilities.

Finally,	the	bottom	line	of	the	screen	(status	line)	shows	you	the	time	of	day	and	the
effect	of	using	two	shortcut	keystrokes,	F10	and	Shift-F9	(produced	by	holding
down	either	Shift	key	and	pressing	F9).	The	F10	key	activates	the	menus	in	the
menu	bar;	Shift-F9	lets	you	temporarily	leave	the	Shell	and	work	at	the	MS-DOS
system	prompt.	(To	return	to	the	MS-DOS	Shell	from	the	system	prompt,	type	exit
and	press	Enter.)

Using	the	Keyboard	and	the	Mouse

Before	you	begin	to	explore	the	Shell,	it's	useful	to	know	how	to	get	around	in	it	with	a
mouse	or	with	the	keyboard.

If	you	have	a	mouse,	you	already	know	that	using	one	is	easy	and	relatively	standard
among	different	application	programs.	In	the	Shell,	maneuvering	is	as	simple	as	you'd
expect:	Just	roll	the	mouse	on	your	desktop	until	the	pointer	is	wherever	you	want	it	to	be	on
the	screen.	Once	you've	pointed	to	the	item	or	to	the	part	of	the	window	you	want,	you	can
select	it	by	clicking	the	left	mouse	button.	(The	right	button	is	inactive	in	the	Shell.)	For
certain	tasks,	you	double-click	on	an	item	by	pressing	the	left	button	twice	in	rapid
succession.	In	addition,	you	sometimes	drag	an	item,	as	when	you	move	a	file	from	one
directory	to	another,	by	positioning	the	mouse	pointer	on	the	desired	file	name,	then
pressing	and	holding	the	left	button	and	moving	the	mouse	pointer	to	a	new	location	before
releasing	the	button.

With	the	keyboard,	you	use	the	Tab	key	to	move	from	one	area	of	the	Shell	to	another—for
example,	to	move	from	the	list	of	drives	to	the	Directory	Tree	and	then	to	the	list	of	files	in
the	current	directory.	To	reverse	direction,	press	Shift-Tab.

Figure	11-2	on	the	next	page	describes	basic	techniques	you	can	use	to	perform	the	most
common	Shell	operations	with	the	keyboard	or	a	mouse.

Keyboard Mouse

To	select	a	menu

Press	either	Alt	or	F10	to	activate	the	menu	bar;	press	the	key	letter
of	the	menu	name	(underlined	in	graphics	mode,	highlighted	in	text
mode).

Click	on	the	menu
name.

To	select	a	menu	command

Press	the	key	letter	of	the	command	you	want	(underlined	in	the
command	name).

Click	on	the
command.

To	select	a	file

Highlight	the	file	name	by	using	the	arrow	keys.
Click	on	the	file
name.

To	choose	(carry	out)	a	command

Highlight	the	command	name	by	using	the	arrow	keys,	then	press	the
Enter	key.

Double-click	on
the	command
name.

Figure	11-2:	Basic	keyboard	and	mouse	techniques.

If	you're	a	keyboard	user	who	is	unfamiliar	with	menu-based	programs,	don't	be	concerned
if	the	techniques	don't	have	much	meaning	as	yet;	they	soon	will.	For	both	mouse	and
keyboard,	the	hands-on	examples	in	this	chapter	also	help	you	along	when	necessary.

Note
For	the	sake	of	standardization,	this	chapter	assumes	a	computer	with	a	hard	disk
(drive	C)	and	at	least	one	subdirectory	(C:\DOS).	If	your	system	differs,	the
examples	are	still	appropriate	but	might	not	work	exactly	as	described.

	

javascript:Next(0)
javascript:Next(1)

Help	Is	a	Keystroke	Away
The	Shell	includes	on-screen	help	information	that	can	guide	you	through	most	of	its
features.	You	can	request	either	general	information	or	direct	help	with	a	specific	situation.
General	help	is	a	good	way	of	finding	out	about	the	Shell	and	how	it	works—which	keys	you
use,	what	procedures	are	available,	and	so	on.	Direct	help	provides	details	about	whatever
task	you're	working	on	at	the	time	you	request	help.	To	request	general	help,	you	use	the
Help	menu	at	the	top	of	the	screen.	To	request	direct	help,	you	choose	the	item	or
command	you	want	and	then	press	F1.	You'll	try	both	types	of	help	in	the	following
examples.

Start	with	general	help	by	choosing	the	Help	menu	using	one	of	the	methods	described
below:

With	the	keyboard,	press	Alt	or	F10	to	activate	the	menus,	and	then	press	H.

With	the	mouse,	click	on	Help.

The	Help	menu	opens,	showing	a	list	of	choices	with	Index	highlighted.	Press	Enter,	and	the
Shell	displays	a	window	headed	MS-DOS	Shell	Help:

The	top	line	of	the	Help	window	contains	the	title	of	the	screen.	The	main	part	of	the	Help
window,	titled	MS-DOS	Shell	Help	Index,	describes	what	you	can	do	next.	The	bottom	line
of	the	Help	window—no	matter	what	Help	information	is	displayed—offers	you	five	choices:

Close	ends	Help,	removes	the	Help	window,	and	returns	you	to	whatever	you	were
doing.

Back	returns	to	the	previous	Help	display	if	you've	moved	from	one	topic	to	another
within	Help.

Keys	displays	a	list	of	topics	related	to	using	the	keyboard	with	the	Shell.

Index	displays	the	Help	index	you're	looking	at	now.

Help	displays	help	on	Help.

Right	now,	notice	that	the	box	labeled	MS-DOS	Shell	Help	Index	starts	with	a	few	lines	that
tell	you	how	to	choose	an	index	topic.	Immediately	below	this	is	the	heading	Keyboard	Help,
which	is	followed	by	a	group	of	topics	beginning	with	General	MS-DOS	Shell	Keys.	The
index	breaks	Help	information	into	broad	categories	with	related	topics	grouped	under	them.
To	see	what	help	is	available,	press	the	PgDn	key	a	few	times,	stopping	when	you	see	the
heading	MS-DOS	SHELL	BASICS	HELP	and	the	topic	Welcome	to	MS-DOS	Shell.	Now	try
requesting	some	help	using	one	of	the	two	methods	listed	below:

With	the	keyboard,	press	the	Tab	key	as	many	times	as	necessary	to	move	the
highlight	or	the	small	arrow	at	the	left	edge	of	the	window	to	Welcome	to	MS-DOS
Shell;	press	Enter.

With	the	mouse,	double-click	on	Welcome	to	MS-DOS	Shell.

The	title	at	the	top	of	the	window	changes	to	Welcome	to	MS-DOS	Shell,	and	the	old
display	is	quickly	replaced	by	a	description	of	the	Shell.	Press	the	PgDn	key	several	times.
At	the	end	of	the	description,	you	see	the	words	Next	topic	followed	by	Scroll	Bars.	Press
the	Tab	key	to	select	this	new	topic	and	press	Enter,	or	double-click	on	it	with	the	mouse.
The	window	changes	again,	this	time	to	one	that	tells	you	how	to	use	the	scroll	bar	the	Shell
displays	along	the	right	edge	of	certain	windows.

Instead	of	moving	deeper	into	Help,	now	try	moving	back	the	way	you	came.	Choose	the
button	marked	Back	at	the	bottom	of	the	window.	Either	press	the	Tab	key	until	the	mouse
pointer	is	on	Back	and	press	Enter,	or	click	on	Back	with	the	mouse.	The	Help	display
changes	to	the	previous	screenful	of	information,	Welcome	to	MS-DOS	Shell.	Choose	Back
again,	and	you	see	the	original	index	screen.

If	you	want,	experiment	with	other	Help	topics	or	with	the	other	buttons	at	the	bottom	of	the
window.	When	you're	ready	to	stop,	either	press	Esc	or	use	the	Close	button	by	tabbing	to
it	and	pressing	Enter	or	by	clicking	on	the	button	with	the	mouse.

Before	leaving	the	subject	of	Help	entirely,	try	requesting	some	direct	help.	First,	choose	the
File	menu	(press	Alt-F	or	click	on	File).	Notice	that	the	Open	command	is	highlighted.	Ask
Help	what	this	command	does.	Press	the	F1	key,	and	a	Help	window	appears,	this	one
telling	you	not	only	about	the	File	Open	command,	but	also	referring	you	to	additional
information	if	you	need	it.	Press	Esc	to	close	the	Help	window.

If	you	plan	to	use	the	Shell	frequently,	consider	browsing	through	Help	as	you	just	did.	It's	a
good	way	to	learn	to	use	the	Shell.	And	remember	the	F1	key;	it's	all	you	need	to	request
help	on	a	particular	task.

	

javascript:Next(0)
javascript:Next(1)

The	File	List
If	you're	using	the	keyboard	to	operate	the	Shell,	you	use	the	Tab	key	to	activate	the	screen
area	you	want	to	work	in.	If	you're	using	a	mouse,	clicking	in	an	area	is	enough	to	activate
that	portion	of	the	window.

The	current	drive—probably	drive	C—should	be	highlighted.	To	prepare	for	the	next
examples,	select	the	Directory	Tree	by	pressing	the	Tab	key	or	by	clicking	the	mouse
anywhere	in	that	area.	If	the	highlight	is	on	the	root	directory	(for	example,	C:\),	use	the
Down	arrow	key	or	the	mouse	to	highlight	a	different	directory.

Note

If	you're	using	the	Shell	with	a	monochrome	display	and	you	see	only	two	colors,
one	dark	and	one	light,	you	can	make	your	screen	more	closely	match	the	shading
in	the	illustrations	in	this	chapter	by	changing	to	four-color	monochrome.	To	do	this,
press	the	Alt	key	and	then	press	the	letter	O	twice.	When	a	box	labeled	Color
Scheme	appears,	press	the	Down	arrow	key	until	the	dark	highlight	is	on
Monochrome-4	Colors.	Press	Enter,	and	your	screen	will	change	to	shades	of	light
and	dark.

The	File	Menu

The	Shell	menus	are	lists	of	choices.	Although	they	are	menus	like	those	in	a	restaurant,
they	show	you	both	what	items	you	can	choose	and	whether	the	Shell	will	ask	for	more
information	when	you	make	a	choice.	To	see	this,	select	the	File	menu	again.	The	screen
should	look	like	this:

Notice	that	the	menu	items	are	displayed	in	both	light	(grayed)	and	dark	characters.	The
Shell	uses	grayed	characters	to	let	you	know	which	menu	options	you	can't	choose	because
they're	not	appropriate	for	what	you're	doing	at	the	time.

Right	now,	the	File	menu	tells	you	that	you	can	open	a	file	(to	work	with),	run	a	program	file,
search	for	a	file,	delete	(careful!)	or	rename	the	current	directory,	create	a	directory,	or	exit
the	Shell.	Until	you	select	one	or	more	files,	these	are	the	only	actions	you	can	perform	from
the	File	menu.	You	can't	print,	for	example,	because	you	haven't	selected	a	file	to	print.

The	ellipsis	(…)	following	certain	choices,	such	as	Run,	means	that	the	Shell	needs	a	little
more	information	before	it	can	carry	out	the	command.	When	you	see	an	ellipsis	following	a
command	name,	you	can	expect	the	Shell	to	prompt	you	for	more	information	before	it
carries	out	the	command.	You'll	see	how	this	works	a	bit	later.	Keys	and	key	combinations,
such	as	F8	and	Alt-F4	along	the	right	edge	of	the	menu,	represent	shortcut	keys	you	can
press	instead	of	using	the	menu	to	choose	the	commands	they	carry	out.

Press	Esc	to	close	the	File	menu.

Selecting	a	Directory

The	Directory	Tree	outlines	the	directory	structure	of	the	disk	in	the	current	drive.	If	it's	not
already	highlighted,	select	your	\DOS	directory.	There	are	faster	ways	to	move	through	a
list,	but	for	now,	press	an	arrow	key	until	DOS	or	the	name	of	your	MS-DOS	directory	is
highlighted,	or	click	on	DOS	(press	the	PgDn	key,	if	necessary,	to	bring	the	directory	into
view).	The	area	to	the	right	should	show	the	MS-DOS	files.	(If	you	don't	have	a	hard	disk,
substitute	the	root	directory	of	your	startup	disk	for	the	\DOS	directory	unless	the
instructions	here	tell	you	otherwise.)	Select	the	files	area	to	the	right	of	the	Directory	Tree
by	pressing	the	Tab	key	or	by	clicking	anywhere	in	that	portion	of	the	screen.

Scrolling	Through	the	Directories

The	list	of	files	in	\DOS	is	probably	too	long	to	fit	on	the	screen,	so	to	see	it	all	you	need	to
scroll	through	the	directory.	Using	the	keyboard,	you	can	scroll	through	this	or	any	other
long	list	of	files	or	directories	in	any	of	several	ways:

By	pressing	the	Down	(or	Up)	arrow	key	to	move	a	line	at	a	time

By	pressing	the	PgDn	(or	PgUp)	key	to	move	a	screen	at	a	time

By	pressing	a	letter	key	to	move	directly	to	the	first	entry	that	begins	with	that	letter

By	pressing	the	Home	key	to	move	to	the	first	entry	in	the	list	or	by	pressing	the	End
key	to	move	to	the	last	entry

If	you're	using	a	mouse,	the	Shell	includes	a	mechanism	that	makes	scrolling	even	easier:
the	scroll	bar,	for	which	you	saw	Help	earlier.	The	scroll	bar	is	the	vertical	bar	at	the	right
margin	of	each	window.	It	has	an	arrow	at	the	top	and	at	the	bottom	and	contains	a	shaded
box.	Clicking	on	one	of	the	arrows	moves	a	list	one	line	in	the	direction	of	the	arrow.	Clicking
in	the	blank	part	of	the	scroll	bar	moves	a	screenful,	and	dragging	the	shaded	box	to	any
position	between	the	top	and	bottom	moves	you	the	same	relative	distance	in	the	list.

To	try	scrolling	through	a	list,	use	one	of	the	techniques	described	in	the	list	above	to	view
different	parts	of	the	\DOS	directory.

Selecting	Files

In	order	to	work	with	your	files,	both	MS-DOS	and	the	Shell	require	you	to	indicate	which
files	you	want	to	affect	with	any	particular	command.	From	the	MS-DOS	command	prompt,
you	type	a	file	name,	with	or	without	wildcards,	to	specify	files.	Within	the	Shell,	you	mark
the	names	of	the	files	you	want	to	affect.

With	the	mouse,	a	file	is	selected	as	soon	as	you	point	to	it	and	click	the	left	button.	With
the	keyboard,	you	tab	to	the	list	of	file	names	and	use	the	arrow	keys	to	highlight	the	file
name	you	want.	In	graphics	mode,	the	symbol	to	the	left	of	the	file	name	is	highlighted	as
soon	as	you	select	the	file.	In	text	mode,	an	arrow	and	a	triangle	appear	before	the	file
name.	Your	next	file-oriented	action	will	affect	that	particular	file.

With	a	file	selected,	open	the	File	menu	again.	Notice	that	all	of	the	choices	except	Create
Directory	are	now	available.	That's	because	all	the	other	commands	on	the	menu	can	be
applied	to	a	selected	file.	Press	Esc	to	close	the	menu.

You	can	select	more	than	one	file	at	a	time—for	copying,	perhaps,	or	moving	to	another
directory:

To	select	a	series	of	files	with	the	keyboard,	move	the	highlight	to	the	name	of	the
first	file,	press	and	hold	the	Shift	key,	and	extend	the	selection	with	the	arrow	keys.

To	select	a	series	of	files	with	the	mouse,	click	on	the	first	file	name,	press	and	hold
the	Shift	key,	and	click	on	the	last	file	in	the	group	you	want	to	select.

To	use	the	keyboard	to	select	files	scattered	throughout	a	list,	press	and	release
Shift	and	the	F8	key.	When	you	do	this,	the	word	ADD	appears	near	the	right	edge
of	the	status	line	at	the	bottom	of	the	screen.	Using	the	arrow	keys	to	highlight	file
names,	press	the	Spacebar	to	select	each	file	you	want.	To	switch	back	to	normal
selection,	press	Shift-F8	again.

To	use	the	mouse	to	select	files	scattered	throughout	a	list,	hold	down	the	Ctrl	key
instead	of	the	Shift	key	as	you	click	on	each	file	name	you	want.

If	you've	practiced	selecting	groups	of	files,	reduce	the	selection	to	one	file	by	choosing
Deselect	All	from	the	File	menu.	(Press	Alt,	then	F,	then	L,	or	click	on	File	and	then	on
Deselect	All.)

The	next	few	topics	show	you	some	of	the	File	menu	items;	you	can	explore	the	rest.	Most
of	the	items	are	self-explanatory,	but	a	few	might	not	seem	obvious.	Associate,	for	example,
lets	you	tell	the	Shell	to	run	an	application	program	when	you	choose	a	file	with	a	particular
file	extension.	You	might	associate	your	word	processing	program,	for	example,	with	files
whose	extension	is	DOC.	If	you	need	explanations	you	don't	find	here,	remember	that	Help
is	always	available.

Copying	a	File

To	see	how	the	Shell	prompts	you	for	additional	information,	move	to	the	files	area	and

highlight	README.TXT	(or	any	other	TXT	file)	from	your	\DOS	directory.	Now	press	F8	or
select	Copy	from	the	File	menu.

Your	screen	should	look	like	the	graphic	you	see	at	the	top	of	the	next	page.

The	Shell	displays	a	box	titled	Copy	File	in	the	middle	of	the	screen.	The	box,	called	a
dialog	box,	is	what	the	Shell	uses	to	ask	for	any	additional	information	it	needs	in	order	to
carry	out	a	menu	command.	As	you	can	see,	the	Shell	makes	some	assumptions.	Here,	for
example,	the	From	field	is	already	filled	in	with	README.TXT,	the	file	you	selected	to	copy.

Because	you	can	include	a	drive	letter	and	path	name	when	you	copy	files,	the	Shell	tries	to
help	here	too	by	suggesting	the	current	directory,	placing	the	cursor	at	the	end,	and
highlighting	its	guess.	To	add	to	this	drive	and	path,	you	would	press	the	Right	arrow	or	the
End	key	and	start	typing.	To	replace	the	suggested	drive	and	path,	you	would	simply	start
typing;	the	characters	you	typed	would	replace	what	the	Shell	displayed.

You're	going	to	copy	README.TXT	to	a	file	named	README.NEW	in	the	current	directory,
so	type	readme.new	and	press	Enter.	The	dialog	box	disappears,	and	README.NEW	is
added	to	the	list	of	files.	It's	as	if	you	had	typed	the	command	copy	readme.txt	readme.new
at	the	system	prompt.

Moving	a	file	with	the	Move	command	works	just	like	copying	a	file,	but	the	Shell	deletes	the
original	file	after	making	the	new	copy.	If	you	used	the	Shell	to	move	README.NEW	from
the	current	directory	(\DOS)	to	the	root	directory,	for	example,	the	result	would	be	the	same
as	if	you	had	typed	in	MS-DOS	version	6	move	readme.new	\	or,	in	earlier	versions	of	MS-
DOS,	copy	readme.new	\	and	del	readme.new.

Note

If	you're	using	a	mouse,	you	can	move	a	file	easily	by	selecting	it	and,	holding
down	the	left	mouse	button,	dragging	the	file	to	the	name	of	a	different	directory.
When	you	do	this,	the	Shell	asks	if	you're	sure	you	want	to	move	the	file.	If	you
are,	click	on	Yes	or	press	Enter.	The	file	is	moved.	No	need	to	copy	and	delete;	no
need	even	to	choose	the	Move	command	from	the	File	menu.

Viewing	a	File

Viewing	a	file	is	a	quick	way	to	see	what's	in	it;	you	can't	change	the	file—you	can	only	look
at	it.	DOSSHELL.INI	is	a	text	file	created	when	you	install	MS-DOS	version	4,	5,	or	6.0.
Among	other	things,	this	file	tells	the	Shell	about	your	system	and	the	way	it	should	look
when	it	starts.	Select	DOSSHELL.INI	from	the	list	of	files,	then	select	View	File	Contents
from	the	File	menu.	The	screen	should	look	like	this:

The	top	line	identifies	the	file	(DOSSHELL.INI),	the	next	line	lists	the	menus	available
(Display,	View,	Help),	and	the	third	line	tells	you	which	keys	you	can	press	to	scroll	through
the	file.	(If	you're	using	a	mouse,	you	can	also	scroll	by	clicking	on	the	PgUp,	PgDn,	and
arrow	symbols	on	this	third	line	of	the	screen.)	The	main	part	of	the	screen	shows	part	of
DOSSHELL.INI.

The	Shell	can	display	files	in	either	of	two	modes,	ASCII	or	hexadecimal.	As	you	see	it	now,
the	file	is	displayed	as	an	ASCII	file,	so	called	because	it	is	translated	into	readable	text
characters	according	to	the	American	Standard	Code	for	Information	Interchange,	or	ASCII.
In	hexadecimal	format,	the	characters	in	a	file	are	translated	into	the	mathematical	language
of	computers—specifically,	the	base-16	numbering	system	often	used	by	programmers.	To
see	the	hexadecimal	view,	press	F9.

It's	certainly	different.	Each	line	of	the	hexadecimal	view	shows	16	characters.	The	first
column	of	numbers	at	the	left	margin	is	the	address—in	hexadecimal,	of	course—of	the
beginning	of	each	line,	starting	at	0	at	the	beginning	of	the	file.	Each	of	the	middle	four
columns	of	numbers	is	the	hexadecimal	representation	of	four	characters,	two	digits	per
character.	The	16	columns	at	the	right	show	the	ASCII	characters	that	correspond	to	the
hexadecimal	digits	in	the	line.

Press	F9	again,	and	the	display	returns	to	the	ASCII	view.	Press	Esc	to	return	to	the	File
List	display.

Deleting	a	File

Using	the	Shell,	you	can	delete	one	file,	several	files,	all	files	in	a	directory,	or	any	directory
except	the	root	(\)	simply	by	selecting	the	file,	files,	or	empty	directory	you	want	to	delete,
and	then	pressing	Del	or	selecting	Delete	from	the	File	menu.	Because	it's	so	easy	to

change	directories	and	select	files	in	the	Shell,	using	the	Shell	to	delete	files	you	no	longer
need	is	a	snap	compared	to	typing	comparable	commands	at	the	MS-DOS	system	prompt.

Simply	because	the	Shell	makes	it	so	quick	and	easy	to	delete	files,	however,	it's	a	good
idea	to	give	yourself	some	protection	by	making	sure	that	the	Shell	asks	you	to	confirm	each
deletion.	With	the	Shell,	in	fact,	you	can	protect	yourself	not	only	from	inadvertently	deleting
a	file	with	the	Delete	command,	but	also	against	inadvertently	replacing	a	file	by	copying
another	in	its	place.

Protecting	Yourself

To	protect	yourself	against	inadvertently	deleting	a	file,	select	the	Options	menu,	then
choose	Confirmation.	The	Shell	displays	the	dialog	box	shown	here:

The	brackets	to	the	left	of	each	option	contain	an	X	if	the	option	is	active.	Selecting	an
active	option	turns	it	off;	selecting	an	inactive	option	turns	it	on.

Confirm	On	Delete	determines	whether	the	Shell	prompts	you	for	confirmation	before
deleting	a	file.	Confirm	On	Replace	protects	you	against	a	less	obvious	way	of	losing	a	file:
It	determines	whether	the	Shell	prompts	you	for	confirmation	before	copying	over	an	existing
file.	Confirm	On	Mouse	Operation	determines	whether	the	Shell	warns	you	before	carrying
out	a	mouse	operation	that	moves	or	copies	a	file.

All	three	options	should	be	on	(contain	an	X	between	the	brackets).	If	one	is	off,	tab	to	it
and	press	the	Spacebar	to	turn	it	on.	When	you're	finished,	press	Enter	to	close	the	dialog
box.

Now	to	delete	a	file.	Some	time	ago	you	created	README.NEW	by	copying	README.TXT.
You	don't	need	README.NEW,	so	select	it	(don't	select	README.TXT	by	mistake),	then
press	Del	or	choose	Delete	from	the	File	menu.	The	Shell	displays	a	dialog	box	headed
Delete	File	Confirmation.

This	is	how	the	Shell	gives	you	a	second	chance.	The	dialog	box	shows	the	name	of	the	file
to	be	deleted,	and	the	buttons	at	the	bottom	ask	you	to	choose	Yes,	No,	or	Cancel.	Press
Enter	to	choose	Yes.	The	Shell	deletes	README.NEW	and	returns	you	to	the	File	List

display.

You	can	delete	an	entire	directory	and	its	contents	in	two	quick	steps	with	the	Shell.
Because	the	Shell	refuses	to	delete	a	directory	that	contains	files,	you	first	select	the
directory	in	the	Directory	Tree,	and	then	select	and	delete	all	files	in	it	with	the	Select	All	and
Delete	commands	on	the	File	menu.	Once	the	files	are	gone,	you	can	use	Delete	again,	this
time	to	remove	the	directory	itself.	Because	it's	so	easy,	make	sure	you	do,	indeed,	want	to
erase	both	the	directory	and	everything	in	it—a	few	valuable	files	might	be	hidden	in	a	welter
of	unnecessary	ones.

Whether	or	not	you	have	set	Confirm	On	Delete,	you	must	delete	all	files	in	a	directory
before	you	can	delete	the	directory,	just	as	when	you	use	the	MS-DOS	Remove	Directory
command.	Likewise,	you	cannot	delete	any	directory	that	contains	subdirectories,	nor	can
you	delete	(or	rename)	the	root	directory,	because	each	disk	must	contain	this	directory.

Using	the	Options	and	View	Menus

You	just	used	the	Confirmation	command	from	the	Options	menu	to	protect	against
inadvertently	deleting	or	copying	over	a	file.	Other	choices	on	the	Options	and	View	menus
let	you	display	file	names	in	a	particular	order;	display	information	about	the	selected	file,
directory,	and	disk;	display	the	files	in	two	directories	at	once;	display	all	the	files	on	the
selected	disk;	display	only	the	File	List;	or	display	the	Program	List	and	File	List	at	the	same
time,	as	the	Shell	is	doing	now.

Controlling	the	Order	in	Which	File	Names	Are	Displayed

When	you	first	start	the	Shell,	the	File	List	displays	the	file	names	in	alphabetic	order.	You
can	change	this	order	to	display	the	files	arranged	(sorted)	by	extension,	date,	size,	or	even
the	order	in	which	they	are	stored	on	the	disk.	To	display	the	files	arranged	by	extension,
choose	File	Display	Options	from	the	Options	menu.	The	Shell	displays	the	File	Display
Options	dialog	box,	which	you	can	see	at	the	top	of	the	next	page.

In	addition	to	specifying	the	order	in	which	files	are	to	be	displayed,	this	dialog	box	lets	you
tell	the	Shell	whether	to	display	hidden	and	system	files	and	whether	to	display	files	in

ascending	(A	to	Z)	or	descending	(Z	to	A)	order.

To	change	Display	Hidden/System	Files	or	Descending	Order	with	the	keyboard,	you	tab	to
the	option	and	press	the	Spacebar.	With	the	mouse,	you	simply	click	anywhere	on	the
option.	Either	way,	if	the	option	is	turned	on,	an	X	appears	in	the	brackets;	if	the	option	is
off,	as	it	should	be	now,	the	brackets	are	empty.

The	different	ways	you	can	sort	files	are	in	the	list	at	the	right	side	of	the	dialog	box.	These
options	are	mutually	exclusive,	so	only	one	can	be	active	at	any	time.	The	active	choice	is
indicated	by	a	dark	dot	inside	the	circle	(a	dot	between	parentheses	in	text	mode).

To	try	changing	one	of	the	settings,	press	Tab	to	move	to	the	list	and	press	the	Down	arrow
key	once	to	select	Extension.	Then	press	Enter	or	click	on	OK	to	close	the	dialog	box.
When	the	full	window	reappears,	the	files	are	listed	alphabetically	by	extension—BAS	files
before	COM	files,	and	so	on—rather	than	by	name	as	they	were	before.	Finding	files
arranged	alphabetically	by	name	is	generally	easier	than	if	they're	arranged	by	extension,	so
use	the	File	Display	Options	command	again	and	return	to	sorting	by	name.

Displaying	File,	Directory,	and	Disk	Information

The	Show	Information	command	on	the	Options	menu	displays	information	about	the
currently	selected	file,	directory,	and	disk.	Highlight	README.TXT	(or	any	other	TXT	file.
The	file-specific	data	will	be	different,	but	the	layout	and	interpretation	will	be	the	same),
then	choose	the	Show	Information	command.	The	screen	should	look	like	this:

There's	nothing	in	this	window	for	you	to	type	or	select;	it	simply	shows	you	the	following
information:

File	shows	the	name	and	attributes	of	the	selected	file.

Selected	shows	the	letter	of	the	selected	disk	drive	and	the	number	and	total	size	of
all	selected	files.	If	you're	displaying	directories	from	two	disks,	it	shows	both	disk
letters	and	the	number	and	total	size	of	all	selected	files	on	both	disks.

Directory	shows	the	name	of	the	directory	that	contains	the	file	named	under	File,

the	number	of	bytes	taken	up	by	all	the	files	in	the	directory,	and	the	number	of	files
in	the	directory.	Knowing	the	size	of	a	directory	can	be	quite	useful	in	certain
operations,	such	as	copying	a	directory	from	a	hard	disk	to	a	floppy	disk.

Disk	shows	the	name	(volume	label),	capacity,	available	space,	number	of	files,	and
number	of	directories	on	the	disk	that	contains	File.

You	can	press	Esc	or	click	on	Close	to	remove	the	Show	Information	window	from	the
screen.

Changing	the	View

The	Shell	lets	you	display	the	File	List,	the	Program	List,	or	both	(as	you're	doing	now).	You
choose	what	you	want	to	see	with	the	View	menu.	To	change	the	view,	open	the	View
menu.	Your	screen	should	look	like	the	screen	at	the	top	of	the	next	page.

The	first	choice	(Single	File	List)	is	highlighted;	the	item	Program/File	Lists	is	grayed
because	that's	what	the	Shell	is	displaying	now,	so	you	can't	choose	it.	Press	Enter	to
select	the	highlighted	choice.	Now	the	File	List	takes	up	the	entire	window:

Displaying	Two	Directories	at	Once

The	Shell	lets	you	display	the	files	in	two	directories,	on	the	same	or	on	different	drives.	To

see	this,	choose	Dual	File	Lists	from	the	View	menu.	The	Shell	divides	the	middle	portion	of
the	screen	horizontally	into	two	areas,	one	above	the	other.	The	areas	are	identical:	Each
includes	the	disk-drive	icons,	the	Directory	Tree,	and	the	names	of	the	files	in	the	selected
directory.

In	the	example	shown	below,	the	upper	file	area	lists	the	names	of	the	files	in	the	\DOS
directory	on	drive	C,	and	the	lower	file	area	lists	the	names	of	the	files	in	the	root	directory.

When	you're	viewing	a	dual	file	list,	you	can	select	files	in	either	list	for	copying,	deleting,
moving,	and	so	on.	You	can	select	files	in	more	than	one	directory	by	displaying	two
directories	and	activating	Select	Across	Directories	on	the	Options	menu,	and	you	can	even
view	directories	on	two	disks	by	selecting	different	drives	for	the	two	areas.

Choose	the	Single	File	List	command	again	to	return	the	display	to	one	directory.

Finding	That	File

The	bigger	the	disk,	the	more	you	can	store	on	it.	That's	the	good	part.	The	more	you	store,
the	harder	it	can	be	to	find	a	particular	file.	That's	the	bad	part.	Eventually,	everyone	who
uses	a	computer	for	a	while	confronts	the	same	frustrating	question:	Where	did	I	save	that
file?

If	you	use	the	Shell	in	MS-DOS	version	5	or	later,	that	question	becomes,	if	not	negligible,	at
least	less	irritating.	Rather	than	search	through	each	directory,	you	can	tell	the	Shell	to	do
the	work	with	the	Search	command	on	the	File	menu.	Suppose,	for	example,	that	you	wrote
a	bid	proposal	last	year,	and	you	think	you	saved	it	as	PROPOSAL.DOC.	You're	pretty	sure
the	proposal	is	still	on	your	hard	disk	somewhere,	and	now	you'd	like	to	resurrect	the
document,	change	it	a	bit,	and	submit	it	as	a	different	bid.	With	one	command,	you	can	tell
the	Shell	to	go	look	for	what	you	want.	When	you	choose	Search	from	the	File	menu,	you
see	a	dialog	box	like	the	one	on	the	next	page.

Notice	that	the	Shell	initially	proposes	to	search	the	entire	disk	for	all	files	(*.*).	That
approach	can	be	useful	in	some	situations,	particularly	because	the	Shell's	report	on	what	it
finds	includes	the	path	to	each	file.	In	this	example,	however,	you're	interested	in	a	particular
file	name	and	extension,	so	you'd	type	proposal.doc	in	the	field	labeled	Search	For.	(To	find

a	set	of	files,	you	could	use	wildcard	characters—type,	for	example,	*.doc	to	see	a	list	of	all
files	on	the	disk	with	the	extension	DOC.)	To	search	the	entire	disk,	leave	the	X	next	to	the
Search	entire	disk	option.	To	limit	the	search	to	the	current	directory	and	its	subdirectories,
you	turn	off	this	option.

To	try	this	command,	tell	the	Shell	to	search	the	entire	disk	for	the	file	UNDELETE.EXE.
When	you	press	Enter	or	click	on	OK	to	start	the	search,	the	Shell	might	become	still	for	a
short	time.	Don't	be	concerned;	it's	working,	just	as	MS-DOS	is	working	when	you	use
Check	Disk	or	a	similar	command.	When	the	search	is	complete,	a	new	window	appears,
displaying	a	list	of	all	files	that	match	the	path	(if	any),	file	name,	and	extension	you
specified.	Press	Esc	to	clear	the	window.

Displaying	All	the	File	Names	on	a	Disk

Whereas	the	Search	command	gives	you	a	way	to	find	one	or	more	needles	in	a	haystack,
the	All	Files	command	on	the	View	menu	lets	you	see	the	whole	pile	of	hay—every	file	in
every	subdirectory	on	a	disk.	Choose	the	All	Files	command	from	the	View	menu.

When	you	choose	the	All	Files	command,	the	Shell	combines	two	types	of	displays	in	one.
At	the	right	side	of	the	screen,	it	lists	the	names	of	all	files	on	the	disk,	showing	the	same
directory	information	it	normally	shows	in	the	File	List	area.	Along	the	left	side	of	the	screen,
it	provides	the	same	information	you	see	when	you	choose	the	Show	Information	command
from	the	Options	menu.	This	combined	display	not	only	lets	you	see	the	directory
information	for	each	file	on	the	disk,	it	also	provides	you	with	the	directory	name,	attributes,
directory	size,	and	other	details	displayed	by	the	Show	Information	command.	As	you	select
different	file	names,	the	Shell	updates	the	information	on	the	left	side	of	the	screen	to	tell
you	about	the	currently	selected	file.

Return	to	displaying	the	directory	tree	by	choosing	Program/File	Lists	from	the	View	menu.

Viewing	the	Directory	Tree

When	you	use	directories	and	subdirectories	to	organize	your	files,	you	can	create	a
directory	tree	with	many	levels.	The	Tree	menu	lets	you	control	how	many	directory	levels

are	displayed	in	the	Directory	Tree	area	of	the	File	List.	If	you	want,	you	can	choose	to	see
only	the	root	directory	of	a	disk.	On	the	other	hand,	you	can	tell	the	Shell	to	outline	the
entire	tree,	including	every	subdirectory	of	every	directory	on	the	disk.	Between	these
extremes,	you	can	selectively	collapse	and	expand	single	directories	or	subdirectories
according	to	the	level	of	detail	that	interests	you	at	the	time.

You	can	use	the	various	commands	on	the	Tree	menu	to	expand	and	collapse	directories,
but	the	Shell	also	recognizes	certain	keys	that	make	your	work	much	easier.	Here	are	the
commands	on	the	Tree	menu	and	what	they	do,	as	well	as	the	keys	you	use:

Expand	One	Level	expands	the	selected	directory	to	display	the	next	directory
level.	Speed	key:	+	(plus).

Expand	Branch	expands	the	selected	directory	to	show	all	directory	levels	under	it.
Speed	key:	*	(asterisk).

Expand	All	expands	the	entire	directory	tree	to	show	all	subdirectories	under	all
directories.	Speed	key:	Ctrl-*	(hold	down	Ctrl	and	press	asterisk).

Collapse	Branch	collapses	the	selected	directory.	Speed	key:	-	(minus).

The	Tree	menu	does	not	include	a	command	or	a	key	combination	that	collapses	the	entire
directory	tree	once	you've	expanded	all	levels.	You	don't	have	to	collapse	the	branches	one
by	one,	however.	To	return	to	the	Shell's	normal	display	of	the	directory	tree,	select	the	root
directory	and	press	the	minus	key	to	collapse	the	entire	tree.	Once	that's	done,	press	the
plus	key	to	expand	the	root	directory	one	level.

Beyond	this	description,	all	you	need	is	a	little	bit	of	experimentation	with	your	own	directory
tree	in	order	to	become	comfortable	with	the	Shell's	ability	to	show	you	different	levels	of
your	directory	structure	from	the	root	directory	to	the	entire	tree.	Notice,	as	you	select
different	directories,	that	the	file	list	at	the	right	side	of	the	File	List	area	changes	to	show
the	files	in	the	selected	directory.

Although	the	Shell	isn't	suited	for	everything	you'll	do	with	MS-DOS,	you	can	see	that	it
makes	many	routine	file-management	tasks	much	simpler	and	quicker.

The	next	part	of	this	chapter	deals	with	a	different	side	of	the	Shell—the	Program	List.	If
you	want	to	stop	temporarily,	you	can	leave	the	Shell	and	return	to	MS-DOS	by	pressing	F3
or	choosing	Exit	from	the	File	menu.

	

javascript:Next(0)
javascript:Next(1)

The	Program	List
If	you	think	of	the	File	List	area	as	the	part	of	the	Shell	window	that	provides	information,
you	can	think	of	the	Program	List	area	as	the	part	that	provides	functionality.	The	Program
List	area	can	contain	two	different	types	of	items:	programs	and	program	groups.	Although
both	represent	applications	and	other	programs	you	can	run	directly	from	the	Shell,
programs	are	stand-alone	items	that	run	as	soon	as	you	activate	them.	Program	groups	are
umbrella	items	that	include	several	programs.	(In	graphics	mode,	a	program	group	has	a
different	icon	from	a	program.	In	text	mode,	a	program	group	is	enclosed	in	square
brackets	[].)

When	you	start	the	Shell,	the	Program	List	area	displays	a	list	of	programs	and	the	name	of
one	program	group.	Typically,	the	programs	and	the	program	group	are	the	following:

Command	Prompt,	which	temporarily	stops	the	Shell	and	displays	the	MS-DOS
system	prompt	so	that	you	can	type	MS-DOS	commands.	You	return	to	the	Shell	by
typing	exit.

Editor,	which	starts	the	versions	5	and	later	MS-DOS	Editor	program	that	you	meet
briefly	here	and	learn	about	in	more	detail	in	the	next	chapter.

MS-DOS	QBasic,	which	starts	the	QBasic	program,	a	version	of	the	Microsoft
QuickBasic	programming	language.

Disk	Utilities,	which	is	a	program	group	that	displays	another	list	of	choices	when
you	select	it.	In	this	case,	Disk	Utilities	groups	a	set	of	commonly	used	MS-DOS
disk	and	file	operations.

You'll	experiment	with	these	and	add	programs	and	a	group	of	your	own.	Before	you	start,
however,	prepare	for	one	of	the	later	examples	by	copying	one	file	to	a	floppy	disk	in	drive
A.	Put	a	formatted	floppy	disk	in	drive	A,	then	highlight	the	file	named	DOSSHELL.INI,	which
you	viewed	earlier,	in	your	\DOS	directory.	Now	press	F8	or	choose	Copy	from	the	File
menu	to	copy	DOSSHELL.INI	to	A:\.	You	won't	need	the	File	List	area	for	now,	so	clear	the
window	a	bit	by	choosing	Program	List	from	the	View	menu.

Starting	a	Program

To	start	a	program	or	display	the	items	in	a	program	group,	you	simply	choose	from	the
Program	List.	For	example,	Command	Prompt	should	be	highlighted	now.	Although	you
wouldn't	necessarily	consider	this	the	name	of	a	program,	it	does	in	fact	start	a	program
that	causes	MS-DOS	to	temporarily	leave	the	Shell	and	display	the	system	prompt.	Press
Enter	or	double-click	on	Command	Prompt,	and	in	a	few	moments	the	screen	clears,	MS-
DOS	displays	an	opening	message,	and	you	see	the	MS-DOS	prompt.

To	return	to	the	Shell,	type	this:
C:\DOS>exit

Unless	you're	running	a	program	that	has	its	own	quit	command,	this	is	the	command	you
use	to	return	to	the	Shell.

Switching	Among	Programs

Have	you	ever,	while	using	one	program	(a	word	processor,	for	example),	needed	to	use
another	program	(a	spreadsheet,	say,	or	a	graphics	program)?	If	so,	you	had	to	leave	the
first	program,	start	the	second,	finish	with	the	second	program,	leave	it,	and	start	the	first
program	again.	Sometimes	this	can	happen	fairly	often,	making	you	spend	too	much	time
just	starting	and	stopping	programs.

The	Shell	includes	a	feature	called	the	Task	Swapper,	which	lets	you	start	one	or	more
programs	and	then	switch	from	the	Shell	to	each	program	with	just	a	few	keystrokes.	You'll
test	this	with	the	MS-DOS	Editor	and	QBasic,	both	of	which	come	with	MS-DOS.

Note

If	you're	interested	in	trying	the	Task	Swapper	with	your	own	application	programs,
you	can	follow	the	instructions	given	here	by	substituting	the	names	of	your
application	programs	when	you're	told	to	activate	the	Editor	and	QBasic.	A	word
processing	program,	such	as	Microsoft	Word,	will	do.	But	try	not	to	use	a
memory-resident	("pop-up")	program,	such	as	Doskey;	you	might	see	a	message
telling	you	to	quit	the	program	before	returning	to	the	Shell.

To	start	the	Task	Swapper,	open	the	Options	menu.	The	fifth	item	is	Enable	Task	Swapper,
and	this	choice	is	turned	either	on	or	off.	If	it's	on,	it's	preceded	by	a	dot.	If	it's	off,	select	it
and	press	Enter	to	turn	it	on,	otherwise	press	Esc	to	close	the	Options	menu.

Now	the	Program	List	area	should	be	divided	into	two	parts:	The	left	half	should	be	titled
Main;	the	right	half	should	be	titled	Active	Task	List.	The	right	side	displays	the	names	of	all
programs	that	you	have	started	and	left	running;	you	haven't	left	any	running,	so	the	list
should	be	blank.

Start	the	Editor	by	choosing	Editor	from	the	Main	window.	When	the	Editor	dialog	box	asks
you	which	file	to	edit,	type	edfile	and	press	Enter	or	click	on	OK.	When	the	Editor	starts,	it
displays	a	blank	window.	So	that	your	applications	will	be	easy	to	recognize,	type	the
following	line:
This	is	my	Editor	file.

Now	return	to	the	Shell	without	stopping	the	Editor.	To	do	this,	press	Ctrl-Esc.	In	a	few
moments	the	Shell	displays	the	Program	List	screen	again.	This	time,	Editor	appears	in	the
Active	Task	List	to	tell	you	that	you	can	rejoin	the	Editor	any	time	you	like.	To	do	so,	you
simply	select	it	from	the	Active	Task	List.

Start	a	second	program	by	choosing	MS-DOS	QBasic	from	the	Main	window.	When	the
program	asks	you	the	name	of	the	file	to	edit,	type	basfile	and	press	Enter	or	click	on	OK.
When	QBasic	starts,	type	this:
This	is	my	QBasic	file.

Again,	press	Ctrl-Esc	to	return	to	the	Shell.	Now	the	Active	Task	List	shows	two	entries,
MS-DOS	QBasic	and	Editor.

To	switch	to	the	Editor,	select	it	from	the	Active	Task	List.	There's	the	Editor	again,	just	as
when	you	left	it.	Now	suppose	you	were	using	the	Editor	and	remembered	that	you	wanted
to	check	something	with	QBasic.	Hold	down	the	Alt	key	and	press	Tab	until	the	title	bar	at
the	top	of	the	screen	displays	MS-DOS	QBasic.	Release	the	Alt	key;	you're	back	to	your
other	program.	Press	Ctrl-Esc	to	return	to	the	Shell.

You	can	switch	among	your	programs	and	the	Shell	at	will	by	pressing	Alt-Tab.	When	you
press	Alt-Tab,	the	Shell	cycles	through	the	name	of	each	active	program	(including	itself)	in
round-robin	fashion.	Unless	you	have	started	several	programs,	Alt-Tab	is	the	only	key
combination	you	need	to	switch	back	and	forth.	If	you'd	like	to	see	what	other	key
combinations	you	can	use,	choose	Keyboard	from	the	Help	menu,	then	choose	Active	Task
List	Keys.

If	you	want	to	start	a	program	but	won't	use	it	right	away,	you	can	add	it	to	the	Active	Task
List	without	ever	leaving	the	Shell.	Highlight	Command	Prompt,	but	press	Shift-Enter	instead
of	just	Enter.	Now	the	Active	Task	List	should	contain	Command	Prompt,	MS-DOS	QBasic,
and	MS-DOS	Editor.

When	you're	through	using	a	program,	just	end	it	as	you	normally	would;	the	Shell	displays
the	Program	List	screen	again,	but	now	the	name	of	the	program	you	left	doesn't	appear	in
the	Active	Task	List.

To	stop	the	three	tasks	you've	started,	do	the	following:	Choose	Command	Prompt	from	the
Active	Task	List,	and	type	exit	when	MS-DOS	displays	the	system	prompt.	When	the	Shell
reappears,	Command	Prompt	is	gone	from	the	list	of	tasks.	Next,	switch	to	QBasic,	and
choose	Exit	from	the	File	menu.	Choose	No	when	QBasic	asks	if	you	want	to	save	the
sample	file.	When	you	return	to	the	Shell,	switch	to	the	Editor,	choose	Exit	from	the	File
menu,	and	again	choose	No	when	asked	if	you	want	to	save	the	file.	This	time	when	you
return	to	the	Shell,	there	are	no	entries	in	the	Active	Task	List.

You'll	find	that	switching	among	programs	like	this	lets	you	make	much	better	use	of	your
time	at	the	computer.

Selecting	a	Program	Group

The	symbol	or	brackets	associated	with	Disk	Utilities	in	the	Main	area	tells	you	that
selecting	this	item	displays	a	different	list	of	choices.	To	see	the	list,	choose	Disk	Utilities.

The	area	of	the	screen	is	now	titled	Disk	Utilities—the	name	of	the	program	group	you
selected—rather	than	Main,	and	you	see	a	different	list	of	choices:	Main	(which	returns	you
to	the	Main	Program	List	screen),	Disk	Copy,	Backup	Fixed	Disk,	Restore	Fixed	Disk,	Quick
Format,	Format,	and	Undelete.	As	you'll	see	shortly,	you	can	customize	this	list	of	choices
by	adding	your	own	program	items	and	program	groups.	Choose	Main	to	return	to	the	Main
screen.

When	the	Program	List	area	is	active,	the	menus	aren't	the	same	as	when	the	File	List	is
active.	The	Tree	menu	disappears	because	it	isn't	needed	here.	The	Options	and	Help
menus	remain	the	same,	and	the	View	menu	remains	almost	the	same.	(Refresh	is	not
available	from	the	Program	List	area.)	The	File	menu,	however,	contains	a	number	of
different	choices.

The	Program	List	File	Menu

Rather	than	offering	choices	that	deal	with	files,	the	Program	List's	File	menu	lets	you
manage	its	list	of	program	items	and	program	groups.	Display	the	File	menu;	the	choices
include	these:

New,	which	adds	a	new	program	item	or	program	group	to	the	Program	List.

Open,	which	starts	the	highlighted	program	item	or	displays	the	items	in	a	selected
program	group.	(It	has	the	same	effect	as	highlighting	an	item	and	pressing	Enter.)

Copy,	which	copies	a	program	item	to	a	program	group	you	specify.

Delete,	which	deletes	a	program	item	or	a	program	group	(from	which	you've
already	deleted	all	program	items).

Properties,	which	lets	you	specify	the	title,	startup	command,	and	other	definitions
of	a	program	item	or	program	group.

Reorder,	which	lets	you	change	the	order	in	which	the	program	items	and	program
groups	are	displayed.

Run,	which	lets	you	start	any	program,	whether	or	not	it	is	displayed	in	the	list	of
program	items	and	program	groups.

Exit,	which	leaves	the	Shell.

Adding	a	Program	Item

Adding	a	program	item	to	the	Shell	can	be	simple.	You	can	even	add	a	program	that
requires	more	than	one	command	simply	by	separating	the	commands	with	semicolons.

Suppose	you	wanted	to	add	an	entry	called	Memory	Check	that	would	carry	out	the	MS-
DOS	Mem	command.	Choose	New	from	the	File	menu.	The	Shell	displays	a	dialog	box	that
gives	you	the	choice	of	adding	a	Program	Group	or	a	Program	Item.	The	Shell	assumes	you
want	to	add	a	Program	Item,	which	you	do,	so	press	Enter	or	click	on	OK.

Now	the	Shell	displays	the	Add	Program	dialog	box:

The	Shell	requires	that	you	fill	out	only	the	Program	Title	and	Commands	fields	to	define	a
new	entry.	The	Program	Title	field	specifies	how	the	Program	List	item	will	be	displayed;
type	Memory	Check.	Press	Tab	to	move	to	the	Commands	field,	which	specifies	the
command	(or	commands)	to	be	carried	out;	type	mem	and	press	Enter.	The	Add	Program
dialog	box	disappears,	and	the	item	Memory	Check	is	added	to	the	list	of	programs.

Choose	the	new	item	by	highlighting	it	and	pressing	Enter	or	by	double-clicking	on	it;	the
screen	clears,	and	in	a	few	moments	MS-DOS	displays	the	report	of	the	Mem	command,
followed	by	the	message	Press	any	key	to	return	to	MS-DOS	Shell.	Press	any	key	to	return
to	the	Shell.

Changing	a	Program	Item

You	can	change	any	of	the	characteristics	of	a	program	item—the	title,	commands	to	be
carried	out,	and	so	forth.	The	Shell	refers	to	these	characteristics	as	properties;	to	change
them,	you	highlight	the	program	item	to	be	changed	and	select	Properties	from	the	File
menu.	Highlight	Memory	Check,	and	then	select	Properties	from	the	File	menu.	The	Shell
displays	the	Program	Item	Properties	dialog	box:

This	dialog	box	contains	the	same	fields	as	the	Add	Program	dialog	box.	Because	it	lets	you
change	an	existing	definition,	however,	fields	to	which	values	have	been	assigned—in	this
case,	Program	Title	and	Commands—are	filled	in.

To	change	one	of	the	properties	or	add	a	new	one,	you	simply	enter	the	new	value	in	the

appropriate	field.	Suppose,	for	example,	you	decide	that	you	want	the	program	item	to	be
named	Mem	Command	instead	of	Memory	Check.	You	also	want	to	assign	it	the	password
IQ.

Type	Mem	Command	in	the	Program	Title	field,	type	IQ	(notice	the	capitals)	in	the
Password	field,	and	press	Enter	to	carry	out	the	change.	Try	the	command	again.	This	time,
a	dialog	box	appears,	asking	for	the	password.	Type	IQ—be	sure	to	type	in	capital	letters,
because	the	Shell	can	tell	the	difference—then	press	Enter.	Once	you've	entered	the
password,	the	dialog	box	disappears,	the	screen	clears,	and	the	memory	report	is
displayed.	Your	program	item	is	the	same	command,	but	you've	now	given	it	a	new
definition.

Deleting	a	Program	Item

This	Mem	Command	example	has	served	its	purpose,	so	you'll	delete	it.	Make	sure	that
Mem	Command	is	highlighted,	and	select	Delete	from	the	File	menu.	The	Shell	displays	the
Delete	Item	dialog	box	shown	on	the	next	page.

Like	the	Delete	File	dialog	box,	the	Delete	Item	dialog	box	lets	you	confirm	the	name	of	the
item	to	be	deleted.	Because	you've	assigned	a	password	to	Mem	Command,	the	dialog	box
reminds	you	of	the	fact.	The	dialog	box	offers	two	choices,	Delete	and	Do	Not	Delete.	The
Delete	option	is	highlighted,	and	you	are	asked	to	choose	OK,	Cancel,	or	Help.	You	want	to
delete	the	item,	so	press	Enter.	The	dialog	box	disappears,	and	the	Shell	continues	to
display	the	Main	Program	List	screen,	but	Mem	Command	is	gone.

Customizing	the	Program	List

You	can	customize	the	list	of	program	items	and	program	groups	that	the	Shell	displays,
tailoring	the	Shell	to	reflect	the	programs	you	use.	You	might	add	a	program	group	named
Word	Processing,	for	example,	to	include	your	word	processor	and	associated	programs,
or	you	might	add	a	program	group	named	Financial	for	your	spreadsheet	or	accounting
programs.	Once	you	create	the	groups,	you	will	add	program	items	to	them.	The	program
items	run	the	programs.

Adding	a	Program	Group

Suppose	you	wanted	to	create	a	separate	program	group	named	Text	Files	that	would	let
you	edit,	display,	and	print	files	from	the	Shell.	You'll	add	the	program	group	and	then	add
the	MS-DOS	Editor	to	it.

Note

If	you	want,	you	can	try	adding	your	word	processor	as	the	program	item.
Assuming	that	your	word	processor	accepts	a	file	name	as	part	of	the	startup
command,	the	following	instructions	should	work	for	you.	Just	remember	to	use	the
command	that	starts	your	program	instead	of	the	Edit	command	that	starts	the
MS-DOS	Editor.

To	create	the	program	group,	choose	New	from	the	File	menu	just	as	when	you	added	the
Memory	Check	program	item.	As	before,	the	Shell	displays	the	New	Program	Object	dialog
box.	This	time,	however,	you	don't	want	to	accept	the	Shell's	choice	of	the	Program	Item
option,	so	select	Program	Group	instead	and	then	press	Enter	(or	click	on	OK).	The	Shell
displays	the	Add	Group	dialog	box:

As	the	dialog	box	shows,	the	only	field	you	must	complete	is	Title,	which	specifies	the	group
name	you	want	in	the	Program	List	area.	If	you	wish,	you	can	also	specify	the	Help	text	that
the	Shell	displays	if	F1	is	pressed	when	the	group	name	is	highlighted,	and	(as	before)	you
can	designate	a	password	that	must	be	entered	in	order	to	use	the	group.	For	this	program
group,	you'll	enter	a	title	and	some	help	text.

First	type	Text	Files	in	the	Title	field,	then	tab	to	the	Help	Text	field.	Type	This	group	lets
you	edit	text	files,	and	press	Enter	to	save	these	entries;	the	Shell	displays	the	Program	List
area	again,	with	the	added	group	Text	Files.

Now	activate	the	Text	Files	group	by	highlighting	it	and	pressing	Enter	or	by	double-clicking
on	it.	The	title	line	at	the	top	of	the	display	changes	from	Main	to	Text	Files,	and	even
though	you	haven't	added	any	program	items	yet,	the	list	contains	one	choice:	Main.	The
Shell	adds	this	program	item	for	you	so	you	can	return	to	the	Main	Program	List	screen.
(You	can	also	return	by	pressing	Esc.)

Specifying	a	Command	Parameter

The	first	program	item	you'll	add	to	the	Text	Files	program	group	will	run	the	MS-DOS	Editor
or	the	alternative	you've	chosen.	(Yes,	you	can	already	run	the	Editor	from	the	Main	list,	but
it's	used	as	an	example	here	because	most	computer	users	have	a	text-handling	program	of
some	type.)

Choose	the	New	command	from	the	File	menu.	The	Shell	displays	the	New	Program	Object
dialog	box,	just	as	it	did	when	you	added	Memory	Check	and	Text	Files.	Press	Enter	or	click
on	OK	to	create	a	program	item.	The	Shell	displays	the	Add	Program	dialog	box.	Type	Text
Editor	and	tab	to	the	Commands	field.

When	you	specified	the	Memory	command	in	the	earlier	example,	you	entered	just	the
command	name	in	the	Commands	field.	A	text	editor,	however,	normally	lets	you	specify	the
name	of	a	file	you	want	to	work	on.	For	example,	if	you	include	a	file	name	with	the
command	that	starts	the	MS-DOS	Editor,	MS-DOS	opens	the	file	if	it	exists	or	creates	the
file	if	it	doesn't	exist;	if	you	don't	include	a	file	name,	MS-DOS	starts	the	Editor	without
opening	or	creating	a	file.

To	tell	the	Shell	that	you	want	a	program	item	to	accept	one	parameter,	such	as	a	file	name,
you	include	a	percent	sign	followed	by	the	numeral	1	(%1)	in	the	Commands	field.	For	the
MS-DOS	Editor,	type	edit	%1.	(For	a	different	editor	or	a	word	processor,	type	the
appropriate	startup	command.	For	example,	type	word	%1	if	you	are	using	Microsoft
Word.)	This	process	of	creating	a	parameter	is	explained	on	the	next	page	in	"Designing
Your	Own	Dialog	Box."	Now	tab	to	the	Startup	Directory	field.

Specifying	a	Path

If	you	routinely	use	directories	in	your	work,	you	probably	organize	your	data	files	in
different	directories,	depending	on	what	they	contain	or	what	type	of	application	you	use
them	with.	Your	word	processing	files,	for	example,	might	be	categorized	by	type	(letters,
memos,	reports),	client,	department,	or	in	any	of	a	number	of	other	ways.

In	setting	up	a	program	to	run	from	the	Shell,	you	can	use	the	Startup	Directory	field	in	the
Add	Program	dialog	box	to	change	to	a	particular	drive	or	directory	whenever	you	start	the
associated	program.	If	you	write	a	lot	of	letters,	for	example,	you	might	change	to	your
LETTERS	directory	when	you	start	your	word	processor.

To	see	how	the	startup	directory	works,	tell	the	Shell	to	use	the	root	directory	of	drive	A
whenever	it	starts	by	typing	a:\	in	the	Startup	Directory	field.	Now	tab	to	the	Application
Shortcut	Key	field.

Specifying	a	Shortcut	Key

Just	as	some	Shell	menu	selections	have	keyboard	shortcuts—F8	for	Copy	in	the	File	Menu
of	the	File	List,	for	example—you	can	specify	a	shortcut	key	combination	for	a	program	item
or	program	group.	The	shortcut	key	must	be	Shift,	Alt,	or	Ctrl,	combined	with	another	key
on	the	keyboard.	To	make	Alt-E	the	shortcut	key	for	the	Editor,	press	Alt	plus	the	E	key.	Alt-
E	appears	in	the	Application	Shortcut	Key	field.	Finally,	tab	to	the	Pause	After	Exit	field.

Controlling	the	Pause	Message

When	you	tried	the	Memory	Check	examples,	you	saw	that	the	Shell	displayed	Press	any
key	to	return	to	MS-DOS	Shell	and	waited	to	let	you	read	the	message	and	press	a	key.
This	pause	isn't	required,	however,	and	you	can	control	it	with	the	Pause	After	Exit	field.
There's	an	X	between	the	brackets	now,	to	show	that	the	option	is	turned	on.	Press	the
Spacebar	(or	click	on	the	X)	to	turn	the	option	off.

Chances	are	you	won't	want	to	keep	anyone	from	using	the	Editor,	so	there's	no	need	for	a
password.	Besides,	you've	already	seen	how	the	password	option	works,	so	press	Enter	to
tell	the	Shell	you've	finished	with	the	dialog	box.	Instead	of	returning	to	the	Program	List,
however,	the	Shell	displays	another	dialog	box	titled	Add	Program.

Designing	Your	Own	Dialog	Box

The	command	you	entered	for	the	Editor	was	edit	%1,	telling	the	Shell	that	you	wanted	the
command	to	accept	one	parameter	(a	file	name)	of	your	choice.	The	Shell	will	have	to
prompt	for	this	parameter,	and	the	dialog	box	you're	looking	at	now	lets	you	specify	the
contents	of	the	dialog	box	that	displays	the	prompt.

The	cursor	is	at	the	beginning	of	the	Window	Title	field;	this	field	specifies	the	title	displayed
in	the	bar	at	the	top	of	the	dialog	box	(Add	Program	in	the	dialog	box	you're	working	with
now).	Type	File	To	Edit	and	tab	to	the	Program	Information	field.

You	use	the	Program	Information	field	to	specify	the	instructional	or	explanatory	text	that
appears	below	the	title	but	still	at	the	top	of	the	dialog	box.	(In	the	box	you're	working	in
now,	the	text	reads	Fill	in	information	for	%1	prompt	dialog.)	Type	Enter	the	name	of	the
file	to	be	edited	(or	press	Enter	to	start	the	Editor	with	no	file).	Tab	to	the	Prompt	Message
field.

The	Prompt	Message	field	specifies	the	text	that	appears	to	the	left	of	the	field	to	be	filled
in.	(Here	it's	Prompt	Message	for	the	field	you're	working	in	now.)	The	Edit	command
parameter	must	be	a	file	name,	so	type	File	name:	and	tab	to	the	Default	Parameters	field.

The	Default	Parameters	field	lets	you	specify	a	value	that	the	Shell	fills	in	for	the	command
parameter.	(You'll	see	how	this	works	shortly.)	Type	fred,	then	press	Enter	to	complete	the
definition	of	the	Text	Editor	program	item.	The	Shell	displays	the	Text	Files	program	list
again,	this	time	with	two	items:	Main	and	Text	Editor.

Testing	the	New	Program	Item

To	try	out	your	new	program	item,	check	that	the	floppy	disk	with	DOSSHELL.INI	is	in	drive
A.	Highlight	Text	Editor	and	press	Enter	to	start	the	program.	First,	the	Shell	displays	the
File	To	Edit	dialog	box	that	you	just	designed:

Check	the	title	of	the	dialog	box,	the	instruction	line	at	the	top,	and	the	prompt	to	the	left	of
the	entry	field.	They	should	match	the	text	you	entered	in	the	Window	Title,	Program
Information,	and	Prompt	Message	fields	a	moment	ago.

The	entry	field	contains	fred,	the	default	parameter	you	specified	in	the	Default	Parameters
field.	If	you	were	to	press	Enter	now,	the	Shell	would	tell	MS-DOS	to	run	the	Edit	command,
using	FRED	as	the	name	of	the	file	to	edit.	Because	there	is	no	such	file,	first	MS-DOS
would	create	it,	and	then	the	Editor	would	show	you	a	blank	screen.

Instead,	request	the	DOSSHELL.INI	file	that	you	copied	to	the	floppy	disk	in	drive	A	earlier
in	the	chapter.	The	Shell	erases	the	default	file	name	as	soon	as	you	start	typing,	so	just
type	dosshell.ini.

Now	press	Enter.	Drive	A	becomes	active,	and	soon	the	screen	fills	with	the	lines	of
DOSSHELL.INI.

Right	now	you're	just	verifying	that	the	Text	Editor	program	item	works,	so	select	Exit	from
the	Editor's	File	menu	(or	use	the	appropriate	Quit	command	if	you're	using	a	different
program).	The	Editor	quits,	and	the	Shell	screen	returns,	showing	your	Text	Files	group	and
its	two	choices.

The	Disk	Utilities	Program	Group

You	can	learn	still	more	about	defining	program	items	and	groups	by	selecting	a	program
item	from	the	Disk	Utilities	group	and	seeing	how	the	fields	are	filled	out.	Just	don't	change
anything.	For	example,	return	to	the	Main	screen,	and	select	Format	in	the	Disk	Utilities
group.	The	screen	looks	like	this:

Notice	that	the	Parameters	field	is	filled	in	with	a:,	suggesting	that	the	floppy	disk	in	drive	A
should	be	formatted.	Now	press	Esc	(not	Enter)	to	return	to	the	Program	List	and,	with
Format	still	highlighted,	choose	Properties	from	the	File	menu	to	see	how	the	Format
program	item	is	defined.	The	screen	should	look	like	this:

One	parameter,	%1,	is	specified	in	this	dialog	box.	To	see	how	this	parameter	is	defined,
press	Enter	or	click	on	OK.	The	Shell	displays	the	Program	Item	Properties	dialog	box	for
%1:

Compare	the	fields	of	this	dialog	box	with	the	dialog	box	itself,	as	illustrated	earlier;	the	text
in	the	fields	matches	the	text	that	defines	the	title,	instructions,	and	prompt	of	the	Format

dialog	box.	Press	Enter	or	click	on	OK	to	clear	the	screen.

The	Editor	example	showed	the	degree	to	which	you	can	tailor	the	Shell	to	your	own	use.
Although	the	example	prepared	only	one	command	for	MS-DOS	to	carry	out	(the	Edit
command	with	a	file	name	as	a	parameter),	remember	that	you	can	specify	more	than	one
command,	if	necessary,	by	separating	the	commands	with	a	semicolon	(surround	each	with
blank	spaces).

You've	also	seen	how	to	specify	and	define	a	parameter	for	the	Edit	command.	In	your	own
work,	you	can	specify	more	than	one	parameter,	each	of	which	has	its	own	dialog	box	with
separate	instructions,	prompts,	and	default	values.	Together,	multiple	commands	and
multiple	parameters	should	let	you	add	any	program	you	like	to	the	Shell	Program	List,
providing	all	the	startup	information	the	program	might	need.

You	added	only	one	program	item	to	the	Text	Files	group,	but	you	could	add	several	more,
using	the	same	method	you	used	to	add	the	Editor.	If	you	want,	you	can	experiment	with
programs	that	are	part	of	MS-DOS.	You	could,	for	example,	add	an	item	named	Display	File
that	runs	a	Type	command.

Using	the	same	techniques,	you	could	add	program	groups	such	as	Desktop	Publishing	or
Financial	Management	to	run	all	the	application	programs	you	use.	With	the	Task	Swapper,
you	could	then	start	several	of	your	application	programs	and	switch	among	them	without
having	to	exit	from	one	to	start	another.	With	the	help	of	the	Associate	command	on	the	File
List's	File	menu,	you	can	even	set	up	your	system	so	that	the	Shell	starts	a	particular
program	and	opens	the	specified	file	whenever	you	choose	a	file	name	with	a	specified
extension.

Just	as	you	can	structure	your	file	system	to	match	your	work,	you	can	structure	the
program	choices	of	the	Shell	to	run	the	programs	that	you	use.

Deleting	a	Program	Group

When	you're	through	experimenting	with	the	MS-DOS	Editor	program	item,	you	can	delete
the	program	item	from	the	Text	Files	group,	and	you	can	delete	the	Text	Files	group	itself.	A
short	while	ago,	you	deleted	the	Mem	Command	program	item.	Deleting	a	program	group	is
just	as	easy;	the	only	catch	is	that	you	cannot	delete	a	group	that	contains	any	program
items.	In	this	respect,	deleting	a	program	group	is	like	using	the	Remove	Directory
command	to	delete	a	directory:	It	works	only	if	the	group	or	directory	is	empty.

To	return	the	Program	List	to	its	original	state,	return	to	the	Main	Program	List	screen	if
necessary.	Next,	activate	your	Text	Files	group	and	highlight	the	Text	Editor	program	item.
Choose	Delete	from	the	File	menu,	and	press	Enter	or	click	on	OK	when	the	Shell	displays
the	Delete	Item	dialog	box.	(If	you've	added	other	program	items	to	this	group,	delete	them,
too.)

Once	you've	deleted	all	of	the	program	items	in	a	group,	you	can	delete	the	group	itself.	It's
the	same	procedure	you	just	followed.	First,	return	to	the	Main	Program	List	screen.	Next,

highlight	Text	Files,	choose	Delete	from	the	File	menu,	and	press	Enter	or	click	on	OK	to
delete	the	group.	When	you're	finished,	the	Shell	displays	the	Main	Program	List	screen
again,	this	time	without	the	Text	Files	group.

This	chapter	hasn't	covered	all	the	features	of	the	Shell,	but	it	has	shown	you	the	most
common	ones.	Because	the	operating	techniques	are	fairly	consistent	throughout	the	Shell
and	because	the	Help	information	is	quite	thorough,	you	should	be	able	to	learn	what	isn't
covered	by	selecting	the	menu	items	and	using	the	Help	feature	to	guide	you.

	

javascript:Next(0)
javascript:Next(1)

Chapter	12:	Creating	and	Editing	Files	of	Text

Overview
Although	computers	were	once	thought	of	primarily	as	machines	for	mathematics—you	still
occasionally	hear	them	referred	to	as	"number	crunchers"—word	processing	is	the	most
common	use	of	personal	computers	today.	Word	processing	programs	offer	a	stunning
array	of	features,	accommodating	not	only	the	usual	memos	and	reports,	but	even	book-
length	documents	that	include	multiple	columns,	a	table	of	contents,	an	index,	and	many
graphics.

But	this	array	of	capabilities	is	a	mixed	blessing	because	a	high-end	word	processor	is	a
large	program	requiring	a	significant	commitment	from	both	the	computer	(memory	and	disk
space)	and	the	person	using	it	(learning	time).

Beginning	with	version	5,	MS-DOS	includes	a	simple	menu-based	text	editor	that	offers	a
good	alternative	to	a	word	processor	for	smaller	jobs.	The	official	name	for	this	program	is
the	MS-DOS	Editor,	but	this	chapter	will	use	the	name	Edit	instead,	both	because	it's
simpler	and	because	that's	the	name	of	the	command	that	starts	the	MS-DOS	Editor.

Edit	lacks	many	of	the	capabilities	of	a	word	processor:	You	must	press	Enter	at	the	end	of
each	line,	for	example,	and	you	can't	control	the	capabilities	of	your	printer	much	beyond	the
simple	printing	of	text.	These	very	limitations,	however,	make	Edit	small,	fast,	and	easy	to
learn.	It's	admirably	suited	for	writing	short	memos	and	lists	and	for	creating	sets	of	MS-
DOS	commands	known	as	batch	files.	If	you	have	used	a	word	processor,	especially	one
with	drop-down	menus,	Edit's	basic	operation	should	feel	familiar.

This	chapter	shows	you	around	Edit	by	using	an	example	situation	that	could	occur	in	any
office:	You're	in	charge	of	a	project,	and	your	team	has	completed	several	spreadsheets,	a
10-page	proposal,	and	a	cover	letter.	You've	copied	these	files	to	a	floppy	disk	and	want	the
team	to	review	the	results	one	last	time	before	the	presentation.	You're	going	to	send
copies	of	the	floppy	disk	to	the	team	members,	and	you	need	a	short	memo	to	tell	them
what's	on	it.

Note
If	you	don't	have	version	5	or	later,	you	have	a	different	editor,	called	Edlin,	which
is	not	described	in	this	book.	For	a	description	of	how	to	use	Edlin,	see	the	manual
that	came	with	your	computer.

	

javascript:Next(0)
javascript:Next(1)

Using	the	Keyboard	and	the	Mouse
Like	many	application	programs,	Edit	responds	to	either	the	keyboard	or	a	mouse	for	most
operations.	On	screen,	the	keyboard	cursor	is	represented,	as	usual,	by	a	flashing
underline;	the	mouse	is	represented	by	a	rectangular	block	(the	mouse	pointer).	You	use	the
keyboard	and	the	mouse	much	as	you	do	in	the	Shell,	so	if	you	haven't	yet	tried	out	the
Shell,	turn	to	the	heading	"Using	the	Keyboard	and	the	Mouse"	near	the	beginning	of
Chapter	11	for	a	description	of	how	to	display	a	menu	and	select	a	menu	item	or	a	file
name.	The	text	you	find	there,	plus	Figure	11-2,	summarizes	the	techniques	and	defines
possibly	unfamiliar	mouse	terms,	such	as	click,	double-click,	drag,	and	select.	The	first	few
examples	in	this	chapter	give	instructions	for	both	keyboard	and	mouse,	but	the	remaining
examples	simply	ask	you	to	open	a	menu	or	choose	a	menu	command.

In	addition	to	choosing	from	menus,	however,	you'll	frequently	use	two	techniques	with	Edit
that	you	don't	need	in	the	Shell:	positioning	the	cursor	where	you	want	to	edit	text	and
selecting	a	block	of	text.	The	following	descriptions	provide	some	needed	background
information.	Examples	later	in	the	chapter	provide	specifics.

Positioning	the	Cursor

You	can	use	either	the	keyboard	or	the	mouse	to	position	the	cursor.	You'll	probably	find
yourself	using	both	at	different	times,	depending	upon	where	your	hands	are	positioned
when	you	have	to	move	the	cursor.	Figure	12-1	shows	the	main	cursor-movement	keys	and
their	effect.

Key Moves	the	Cursor	to

Right	arrow Next	character

Left	arrow Previous	character

Up	arrow Previous	line

Down	arrow Next	line

PgUp Previous	screen

PgDn Next	screen

End Last	character	(including	spaces)	in	the	line

Home First	nonspace	character	in	the	line

Ctrl-Right	arrow Beginning	of	the	next	word

Ctrl-Left	arrow Beginning	of	the	previous	word

Ctrl-Enter Beginning	of	the	next	line

Ctrl-End End	of	the	document

Ctrl-Home Beginning	of	the	document

Figure	12-1:	Edit's	cursor-movement	keys.

To	position	the	cursor	with	the	mouse,	move	the	mouse	pointer	to	the	text	location	you	want,
and	then	click	the	left	mouse	button.

Selecting	a	Block	of	Text

Some	edit	operations,	such	as	moving	and	copying	text,	require	you	to	select	the	block	of
text	to	be	affected.	Other	operations,	such	as	printing,	let	you	select	a	portion	of	the
document	if	you	wish;	otherwise,	the	action	applies	to	the	entire	document.

To	select	a	block	of	text	with	the	keyboard,	position	the	cursor	at	the	first	character	to	be
selected,	hold	down	the	Shift	key,	and	then	use	any	of	the	cursor-movement	keys	described
in	Figure	12-1	to	choose	the	text	you	want.	Edit	highlights	the	text	you	select	as	you	move
the	cursor.	When	you	release	the	Shift	key,	the	block	remains	selected	until	you	change	the
position	of	the	cursor.

To	select	a	block	of	text	with	the	mouse,	position	the	mouse	pointer	on	the	first	character	to
be	selected,	press	and	hold	the	left	mouse	button,	and	move	the	mouse	pointer	to	the	last
character	of	the	block.	The	selected	text	is	highlighted	as	you	move	the	mouse.	Just	as
when	you	select	text	with	the	keyboard,	the	text	remains	selected	until	you	move	the	cursor
again	or	click	the	left	mouse	button.

	

javascript:Next(0)
javascript:Next(1)

Starting	Edit
To	start	Edit	from	the	MS-DOS	system	prompt,	type	its	name:
C:\>edit

MS-DOS	copies	the	Edit	program	into	memory,	and	after	a	moment	Edit	displays	its
opening	screen.

The	screen	looks	substantially	different	from	a	normal	MS-DOS	display	and	is	noticeably
different	from	the	opening	Shell	screen	too.	If	you	take	a	closer	look,	however,	you	can	see
that	the	Edit	screen	has	the	same	essential	features	as	the	Shell:	a	large	window	in	which
you	work,	a	menu	bar	across	the	top,	scroll	bars	along	the	edges,	and	a	bar	across	the
bottom	telling	you	how	to	carry	out	basic	operations.	For	the	most	part,	you	can	think	of	the
differences	between	Edit	and	the	Shell	as	comparable	to	the	differences	between	a	sedan
and	a	station	wagon:	They	don't	look	the	same,	but	if	you	can	drive	one,	you	can	drive	the
other.	And,	as	you'll	soon	see,	Edit	is	easy	to	work	with.

	

javascript:Next(0)
javascript:Next(1)

Help
Right	now,	you	should	be	looking	at	a	large	dialog	box	in	the	middle	of	the	screen.	As	in	the
Shell,	dialog	boxes	are	Edit's	means	of	displaying	and	requesting	information.	The	flashing
cursor	suggests	that	you	<Press	Enter	to	see	the	Survival	Guide>,	so	press	Enter.	The

screen	changes	to	this:	

The	Survival	Guide	is	the	introductory	screen	to	Edit's	online	help.	(Online	is	a	venerable
computer	term	meaning	that	a	program	or	a	device	is	available;	hence,	online	help.)	Most	of
the	information	you	need	for	operating	Edit	is	available	from	the	online	help	whenever	Edit	is
running.

As	in	the	Shell,	Edit's	help	feature	explains	what	you	can	do	at	any	point	in	using	the
program.	And,	as	in	the	Shell,	you	can	request	two	types	of	help:	general	information	and
specific	instructions	(known	as	context-sensitive	help)	for	using	a	particular	command	or
dialog	box.	The	examples	in	this	chapter	direct	you	to	display	both	types	of	help,	but	you
can	also	request	assistance	any	time	you	want	by	pressing	F1	or	by	choosing	a	command
from	the	Help	menu.	Because	Edit's	Help	differs	substantially	from	the	Shell's,	the	next	few
pages	describe	Edit's	Help	in	some	detail.

Some	help	screens	include	several	topics	from	which	you	can	choose.	These	topics	are
enclosed	in	left-pointing	and	right-pointing	arrowheads.	The	cursor	right	now,	for	example,	is
under	the	G	in	the	topic	Getting	Started.	To	see	Edit's	own	description	of	how	to	use	it	and
its	help	feature,	select	this	topic	by	pressing	Enter	or	by	moving	the	mouse	pointer
anywhere	between	the	arrowheads	and	clicking	the	right	mouse	button.	Edit	responds	by
displaying	a	set	of	topics	on	Getting	Started.

At	the	top	of	the	Help	window,	Edit	displays	HELP:	Getting	Started	to	remind	you	of	the
topic	you	chose.	Below	this	are	three	choices:	Getting	Started,	Keyboard,	and	Back.
Getting	Started	is	highlighted	to	show	that	it	is	the	current	topic;	its	choices	are	displayed	in
the	lower	part	of	the	Help	window.	Keyboard	displays	additional	help,	and	Back	returns	you
to	the	previous	help	screen.

To	see	a	little	more	help,	select	Using	Help.	Either	press	the	Tab	key	until	the	cursor	is
under	the	U	and	then	press	Enter,	or	move	the	mouse	pointer	anywhere	between	the
arrowheads	and	press	the	right	mouse	button.	Edit	now	displays	the	Using	Help	screen:	

This	screen	describes	the	help	capabilities	and	how	you	use	them.	After	you	have	read	the
description,	press	Enter	or	select	Back	to	return	to	the	Getting	Started	screen.

The	bottom	line	of	the	screen	displays	some	additional	help	information—in	this	case,	the	effect
of	pressing	the	function	key	and	other	special	keys.	No	matter	what	you're	doing	with	Edit,	the
bottom	line	displays	information	specific	to	what	you're	doing.	Right	now,	the	bottom	line	tells
you	what	happens	if	you	press	the	following	keys:

Key Description Effect	of	Pressing

F1 Help Displays	the	help	screen	of	the	selected	item.

F6 Window
Switches	windows.	In	this	case,	moves	the	cursor	to	the	Edit	window	(now
labeled	Untitled);	if	the	cursor	were	in	the	Edit	window,	F6	would	move	it	to
the	Help	window.

Esc Cancel Closes	the	Help	window,	and	returns	to	the	Edit	window.

Ctrl-
F1 Next Displays	the	next	help	topic.	(Steps	through	all	the	help	topics,	whether	or

not	they	apply	to	what	you're	doing	right	now.)

Alt-
F1 Back Displays	the	previous	help	topic.

Customizing	Help

Right	now,	the	Edit	window	where	you	create	documents	is	between	the	Help	window	and	the
bottom	line.	If	you're	using	a	color	display,	the	background	color	of	the	Edit	window	probably
isn't	the	same	as	that	of	the	Help	window.	The	Edit	window	is	labeled	Untitled	because	you
didn't	name	a	file	when	you	started	Edit.

When	you're	using	Help,	you	can	leave	all	or	part	of	its	current	display	visible	and	move
between	the	Edit	window	and	the	Help	window	by	pressing	F6	or	by	placing	the	mouse	pointer
in	the	window	you	want	and	clicking	the	left	button.	That	way,	you	can	work	on	a	file	and	yet
refer	to	help	whenever	you	need	it.	As	you	may	already	have	noticed,	however,	the	help
screens	vary	in	size.	Some,	like	the	one	you're	looking	at	now,	take	about	half	the	screen.
Others	take	only	a	line	or	two,	and	some,	like	the	Using	Help	screen,	take	almost	all	the
available	space.

To	help	you	control	your	workspace,	Edit	lets	you	increase	or	decrease	the	size	of	the	active
window—the	one	that	contains	the	cursor.	Using	the	keyboard,	press	Alt-Plus	(hold	down	Alt
and	press	the	plus	sign)	to	make	the	active	window	larger;	press	Alt-Minus	to	make	the	active
window	smaller.	With	the	mouse,	simply	place	the	pointer	at	the	top	of	the	Edit	window,	hold
down	either	mouse	button,	and	move	the	window	border	up	or	down	until	the	Help	and	Edit
windows	are	the	size	you	want.

If	you	resize	windows	and	find	that	either	window	is	too	small	to	display	an	entire	help	topic	or
the	file	you're	working	on,	you	can	either	change	the	size	again	or	use	the	PgUp,	PgDn,	and
arrow	keys	to	scroll	through	the	text	with	the	keyboard.	You	can	also	scroll	with	the	mouse	by
using	the	scroll	bar	at	the	right	edge	of	the	active	window.

Viewing	both	windows	can	be	helpful	when	you're	exploring	Edit	on	your	own,	but	for	now	press
Esc	to	clear	the	Help	window.

	

javascript:Next(0)
javascript:Next(1)

Entering	Lines
It's	time	to	enter	the	first	few	lines	of	the	sample	memo.	If	you	make	a	typing	error,	you	can
backspace	and	correct	it	before	pressing	Enter.	But	don't	worry	if	you	press	Enter	before
you	realize	a	line	contains	errors;	as	you'll	learn,	it's	easy	to	correct	mistakes.	Type	the
following	lines,	pressing	Enter	at	the	end	of	each	line	(press	Enter	without	typing	anything
where	there's	a	line	space):
This	floppy	disk	has	5	files	on	it.
Please	check	the	spreadsheets	and	print	the
documents	to	make	sure	they	agree	with	our
assumptions.

You	can	review	the	documents	on	the
screen.	To	check	the	proposal,	type	this:

TYPE	A:PROPOSAL.DOC	œ	MORE

This	displays	one	screen	at	a	time.
Press	the	Spacebar	to	display	the
next	screen,	or	press	Ctrl-Break	to	stop.

Let's	do	this	quickly;	it's	due	Thursday.

Tom

The	screen	shows	the	lines	you	have	entered.

	

javascript:Next(0)
javascript:Next(1)

Adding	Text	to	a	File
You	insert	text	in	a	file	by	positioning	the	cursor	where	the	text	is	to	be	inserted	and	typing
the	new	text.	For	example,	to	insert	the	phrase	and	recommendations	after	the	word
assumptions,	use	the	arrow	keys	or	the	mouse	to	position	the	cursor	under	the	period	that
follows	assumptions,	and	type	and	recommendations	(but	don't	press	Enter).

Now	suppose	you	also	decide	to	add	a	title	to	your	memo.	Use	the	mouse	or	press	Ctrl-
Home	to	move	the	cursor	to	the	beginning	of	the	file,	the	T	in	the	word	This.	Type	the
following	lines	(press	Enter	twice	after	team	to	add	a	line	space):
Final	Project	Review	-	01/05/95
To:	Project	team

Oops.	You	also	wanted	a	line	space	between	the	title	lines.	Move	the	cursor	to	the	T	in	To
and	press	Enter.

Now	you	decide	you	want	to	include	a	list	of	file	names	after	the	first	sentence.	Position	the
cursor	at	the	beginning	of	the	line	that	starts	Please	check.	Press	Enter	to	insert	a	line
space,	press	Tab	to	indent	the	line,	and	then	type	the	following	(don't	forget	to	press	Enter
at	the	end	of	the	line):
FORECAST.WKS

Look	at	the	cursor.	It	moved	down	to	the	next	line,	but	it	isn't	at	the	left	margin.	It's	indented
so	that	it's	directly	below	the	beginning	of	the	line	you	just	inserted.	What's	going	on?

	

javascript:Next(0)
javascript:Next(1)

Where's	the	Margin?
If	you	indent	a	line	with	spaces	or	tabs	(which	Edit	converts	to	spaces),	Edit	assumes	that
you	want	the	next	line	to	start	with	the	same	indent.	This	assumption	can	be	quite	a
convenience	when	you're	writing	an	outline	or	other	type	of	document	that	has	many
indented	lines,	and	that's	why	pressing	the	Home	key	moves	the	cursor	to	the	first	nonspace
character	in	a	line,	not	to	the	left	margin.

Type	the	following	lines	to	enter	four	more	file	names	in	the	indented	list,	pressing	Enter	at
the	end	of	each:
OPTION1.WKS
OPTION2.WKS
LETTER.DOC
PROPOSAL.DOC

The	assumption	that	you	want	to	continue	an	indent	isn't	always	true,	of	course,	so
sometimes	you'll	have	to	erase	the	spaces	Edit	inserts	at	the	beginning	of	a	line.	To	reduce
the	inconvenience,	Edit	lets	you	erase	all	the	spaces	at	the	beginning	of	a	line	by	pressing
Backspace	once	when	the	cursor	is	under	the	first	nonspace	character	in	an	indented	line.

Try	it.	Press	Enter	once	to	put	a	blank	line	between	the	last	file	name	in	the	list	and	the	first
line	of	the	following	paragraph.	Check	that	the	cursor	is	under	the	P	in	Please,	which	should
be	indented	eight	spaces.	Press	Backspace;	Edit	erases	the	indent	and	moves	the	cursor
and	the	line	beginning	with	Please	to	the	left	margin.

This	completes	the	first	draft	of	the	memo.	The	following	illustration	shows	how	your	screen
should	look.

	

javascript:Next(0)
javascript:Next(1)

Printing	a	File
A	file	stored	on	disk	is	perfect	for	distribution	but	is	otherwise	of	limited	value.	In	most
cases,	you	want	a	printed	copy	of	the	documents	you	create.	To	print	this	version	of	the
memo,	make	sure	your	printer	is	turned	on,	and	then	choose	Print	from	the	File	menu	using
one	of	the	two	methods	described	below:

Using	the	keyboard,	press	Alt,	F,	and	then	P.

Using	the	mouse,	click	on	File	in	the	menu	bar	at	the	top	of	the	screen,	then	click	on
Print.

Note From	now	on,	use	keystroke	or	mouse	sequences	like	this	wheneveryou're	asked	to	choose	a	command	from	a	particular	menu.

Edit	responds	with	a	dialog	box	asking	whether	you	want	to	print	the	entire	document	or	just
the	part	that	is	selected.	The	small	dot	in	parentheses	tells	you	that	Edit	proposes	to	print
the	complete	document.	This	is	what	you	want,	so	press	Enter	or	click	on	OK;	Edit	should
print	the	file.	If	your	printer	isn't	ready,	Edit	displays	the	message	Device	fault.	Check	the
printer,	and	try	again	by	pressing	the	Enter	key.

	

javascript:Next(0)
javascript:Next(1)

Saving	a	File
Your	memo	so	far	is	stored	only	in	the	computer's	memory,	not	on	disk.	If	you	turned	the
computer	off,	the	document	would	be	lost.	To	save	the	file	on	disk,	choose	Save	As	from
the	File	menu.	Edit	displays	a	dialog	box	that	asks	you	to	name	the	file:

The	cursor	is	in	the	text	box	titled	File	Name	because	Edit	is	waiting	for	you	to	type	a	file
name.	Below	File	Name	is	the	name	of	the	current	directory	(it	should	read	C:\).	The	box
that	follows,	titled	Dirs/Drives,	lets	you	save	the	file	in	a	different	directory	or	even	on	a	disk
in	a	different	drive.

Edit	can	save	a	file	to	any	directory	or	drive	on	your	system.	For	this	example,	you'll	simply
type	a	drive	letter	and	a	file	name	in	the	File	Name	text	box.	Make	sure	that	a	formatted
floppy	disk	is	in	drive	A	and	type	this:
a:memo.txt

Now	press	Enter,	or	choose	OK	at	the	bottom	of	the	dialog	box.	The	file	is	saved,	as	you
can	see	from	the	title	block	at	the	top	of	the	screen,	which	has	changed	from	Untitled	to
MEMO.TXT.

More	About	Directories	and	Drives

As	you	saw	in	Chapters	8	and	9,	directories	are	invaluable	tools.	Before	you	move	on,
choose	the	Save	As	and	Open	commands	from	the	File	menu,	and	take	a	few	moments	to
examine	the	dialog	boxes	they	display	a	little	more	closely.	(Press	Esc	or	choose	Cancel	to
clear	the	screen	when	you're	through.)

To	help	you	find	or	save	a	file	in	any	directory	on	any	drive,	the	Dirs/Drives	text	box	in	these
dialog	boxes	lists	the	names	of	all	subdirectories	of	the	current	directory	and	ends	with	the
names	of	all	the	drives	on	your	system.	The	drives	are	easy	to	recognize	because	they	are
enclosed	in	square	brackets	like	this:	[-A-].

To	use	the	Dirs/Drives	text	box,	you	move	the	cursor	to	the	text	box	with	the	Tab	key,	use
the	arrow	keys	to	highlight	the	directory	or	drive	you	want,	and	press	Enter	(or	double-click

with	the	mouse)	to	change	the	current	drive/directory.	To	move	farther	down	the	directory
tree,	you	repeat	the	same	steps.

Once	you've	chosen	a	new	drive	or	directory	in	the	Save	As	dialog	box,	the	highlight	returns
to	the	File	Name	text	box	so	that	you	can	type	the	name	you	want	to	give	the	file.	If	you're
using	the	Open	dialog	box,	you	can	either	type	a	file	name	or	choose	a	drive	or	directory	to
display	a	list	of	files	in	the	Files	box.	The	list	will	contain	all	of	the	files	from	that	drive	or
directory	that	match	the	pattern	in	the	File	Name	box,	such	as	*.txt.	You	can	then	choose	a
file	from	this	list.	The	Dirs/Drives	text	box	is	particularly	useful	when	you	want	to	scan	your
drives	and	directories,	either	to	store	a	file	or	to	load	one	whose	location	you're	not	sure	of.

	

javascript:Next(0)
javascript:Next(1)

Deleting	Text
To	delete	the	character	at	the	location	of	the	cursor,	press	Del.	To	delete	more	than	one
character,	select	them	all	and	either	press	Del	or	choose	the	Clear	command	from	the	Edit
menu.	Using	either	the	keyboard	or	the	mouse,	you	can	select	any	amount	of	text,	from	a
single	character	to	the	entire	document,	as	described	early	in	this	chapter.

To	practice	deleting	text,	you'll	return	to	the	file	MEMO.TXT	Begin	by	deleting	the	words	on
it	at	the	end	of	the	line	that	precedes	the	list	of	file	names.	Position	the	cursor	under	the
period	at	the	end	of	the	line.	Although	it	seems	as	if	you're	starting	at	the	wrong	end,
remember	that	you	can	extend	the	selection	either	to	the	left	or	to	the	right.	Hold	down	the
Shift	key,	and	press	the	Left	arrow	key	until	on	it	and	the	preceding	space	are	highlighted.
Now	simply	press	Del	or	choose	Clear	from	the	Edit	menu.	The	words	are	gone.

To	delete	an	entire	line	and	not	leave	any	odd	line	spacing	in	your	document,	you	delete
everything:	text,	spaces,	even	the	invisible	carriage	return	that	Edit	uses	to	mark	the	end	of
a	line.	Suppose,	for	example,	you	decide	not	to	include	the	file	named	LETTER.DOC	and
want	to	delete	the	entire	line	from	the	memo.	Simply	highlighting	the	file	name	won't	do	the
job	because	the	carriage	return	will	still	be	there,	creating	a	blank	line.	Instead,	start	by
positioning	the	cursor.	If	you're	using	the	keyboard,	hold	down	Ctrl	and	press	Enter	several
times	to	move	the	cursor	to	the	L	in	LETTER.	Press	Backspace	to	delete	the	indent.	Now
hold	down	the	Shift	key	and	press	the	Down	arrow	key	once.	The	entire	line	is	selected.

With	the	mouse	it's	even	easier:	Position	the	cursor	at	the	left	edge	of	the	line,	press	and
hold	the	left	mouse	button,	and	move	the	mouse	slightly	to	drag	the	mouse	pointer	one	row
down.

When	the	line	is	selected,	press	Del	or	choose	the	Clear	command	to	delete	the	line.

	

javascript:Next(0)
javascript:Next(1)

Ending	an	Editing	Session
To	leave	Edit	and	return	to	MS-DOS,	choose	Exit	from	the	File	menu.	You	have	changed	the
file	since	the	last	time	you	saved	it,	so	Edit	asks	you	whether	it	should	save	the	file	first;
select	Yes.	Edit	saves	the	file,	then	ends	and	returns	to	MS-DOS,	which	displays	the
system	prompt.

If	you	make	some	changes	to	a	file,	then	decide	you	don't	want	to	change	the	file	after	all,
you	can	cancel	the	editing	session	without	saving	the	changes	by	selecting	No	when	Edit
asks	whether	it	should	save	the	file.

	

javascript:Next(0)
javascript:Next(1)

Editing	an	Existing	Text	File
When	you	type	edit	followed	by	the	name	of	a	file,	Edit	checks	to	see	whether	the	file	you
named	exists.	If	the	file	exists,	Edit	copies	the	file	into	memory;	if	the	file	doesn't	exist,	Edit
shows	you	an	empty	window	but	uses	the	file	name	as	a	title	and	remembers	the	file	name
when	you	save	the	file.

To	work	with	the	file	you	just	created,	type	the	following:
C:\>edit	a:memo.txt

Edit	starts	and	displays	the	memo.

Copying	and	Moving	Text

You	can	copy	or	move	text	from	one	place	in	a	document	to	another	by	using	a	special	area
of	Edit's	memory	called	the	Clipboard.	Copying,	of	course,	leaves	the	text	in	the	original
location	unchanged,	while	moving	deletes	the	text	from	its	original	location.

To	copy	text,	you	first	copy	it	to	the	Clipboard,	then	copy	it	from	the	Clipboard	to	the	cursor
location.	(When	you	insert	your	text	in	the	new	location,	you	paste	it,	from	the	phrase	cut
and	paste.)	Suppose	you	wanted	to	copy	the	list	of	file	names	in	MEMO.TXT	to	the	end	of
the	memo,	following	the	signature	line.	First,	select	the	file	names.	To	use	the	keyboard,
position	the	cursor	under	the	F	in	FORECAST.WKS,	hold	down	either	Shift	key,	and	press
the	Down	arrow	key	four	times;	to	use	the	mouse,	move	the	mouse	pointer	to	the	F,	hold
down	the	left	mouse	button,	and	move	the	mouse	down	until	all	four	lines	are	highlighted.

Next,	open	the	Edit	menu.	All	the	choices	show	a	highlighted	letter;	the	second	choice	is
Copy,	with	a	highlighted	C	(notice	that	the	shortcut	key	for	copying	to	the	Clipboard	is	Ctrl-
Ins);	click	on	Copy	or	press	C.	The	Edit	menu	disappears.	There's	no	indication	that
anything	has	happened,	but	Edit	has	copied	the	four	lines	to	the	Clipboard.

Now	move	the	cursor	down	to	the	line	that	follows	Tom,	and	open	the	Edit	menu	again.	This
time,	only	Paste	shows	a	highlighted	letter,	meaning	that	it's	the	only	valid	choice	from	the
menu	(its	shortcut	key	is	Shift-Ins).	Paste	is	an	option	only	when	something	is	on	the
Clipboard,	so	the	dark	characters	and	the	highlighted	P	tell	you	that	the	lines	were	indeed
copied	to	the	Clipboard.	Press	P,	and	the	four	file	names	appear	in	the	new	location.

Moving	text	is	almost	the	same	as	copying;	the	only	difference	is	that	you	select	Cut	instead
of	Copy	from	the	Edit	menu.	To	move	the	new	set	of	file	names	back	immediately	following
the	original	list,	select	the	lines	you	just	pasted	and	choose	Cut	from	the	Edit	menu	(the
shortcut	key	for	Cut	is	Shift-Del).	The	lines	disappear	from	the	screen,	just	as	if	you	had
deleted	them.	But	move	the	cursor	up	to	the	blank	line	that	follows	the	last	file	name	in	the
original	location	and	press	Shift-Ins	(the	shortcut	key	for	Paste).	The	second	list	of	file
names	appears	immediately	below	the	first.

Pasting	from	the	Clipboard	doesn't	erase	its	contents.	Press	Shift-Ins	again,	and	the	four

lines	of	file	names	are	inserted	again.	You	should	now	see	12	file	names.

Copying,	cutting,	and	pasting	make	it	easy	to	rearrange	a	document.	You	don't	want	to	keep
this	version	of	the	memo,	so	select	Open	from	the	File	menu,	type	a:memo.txt	in	the	File
Name	text	box,	and	select	No	when	Edit	asks	if	you	want	to	save	the	loaded	file.	The
changed	version	of	the	file	is	replaced	by	the	original.

	

javascript:Next(0)
javascript:Next(1)

Searching	for	a	Group	of	Characters
As	a	file	gets	longer,	it	takes	you	longer	to	find	a	particular	word	or	line,	and	there's	more
chance	that	you'll	miss	it.	Edit	eliminates	this	problem	by	searching	for	any	character	or
group	of	characters	you	specify.

This	memo	isn't	long	enough	to	require	that	sort	of	help,	but	you	can	still	see	how	it	works.
Suppose	you	wanted	to	check	the	names	of	all	the	files	whose	extension	is	DOC.	Choose
Find	from	the	Search	menu.	Edit	asks	you	what	you	want	to	find	and	proposes	whatever
word	the	cursor	is	currently	beneath.	Type	doc	in	the	Find	What	text	box	and	press	Enter.

Almost	immediately,	Edit	has	highlighted	DOC	in	PROPOSAL.DOC.	Notice	that	although	you
typed	doc,	Edit	found	DOC	too.	As	you'll	see	in	a	moment,	you	can	tell	Edit	whether	to
distinguish	between	uppercase	and	lowercase	letters.

If	you	want	to	find	the	same	characters	again,	you	don't	have	to	repeat	the	whole	process:
Just	press	F3,	which	tells	Edit	to	repeat	the	last	search.	This	time	it	highlights	doc	in	the
word	documents.	That's	not	quite	what	you	had	in	mind,	but	it's	perfectly	normal	behavior
for	Edit:	It	searches	for	the	characters	you	specify	in	either	uppercase	or	lowercase,
anywhere	within	a	word,	unless	you	specify	otherwise.

Choose	Find	from	the	Search	menu	again	(it	should	show	doc	in	the	Find	What	text	box).
First,	type	DOC	to	replace	doc.	Next,	notice	the	option	labeled	Match	Upper/Lowercase.
Select	the	option	by	pressing	Tab	and	then	pressing	the	Spacebar	or	by	clicking	the	mouse
anywhere	in	the	option.	An	X	appears	inside	the	brackets.

Now	press	Enter	or	choose	OK	to	search	again.	Edit	jumps	down	and	highlights	DOC	in	the
line	beginning	TYPE	A:PROPOSAL.DOC.	Press	F3	to	repeat	the	search,	and	the	highlight
moves	up	to	the	preceding	PROPOSAL.DOC.	Now	press	F3	again;	instead	of	highlighting
doc	in	documents,	Edit	again	highlights	DOC	in	the	line	beginning	TYPE.	You	told	Edit	you
didn't	want	to	find	doc,	just	DOC.

	

javascript:Next(0)
javascript:Next(1)

Replacing	One	Group	of	Characters	with	Another
One	of	the	most	common	reasons	you'll	want	to	find	a	particular	word	or	group	of
characters	in	a	document	is	so	that	you	can	change	it.	Edit	will	not	only	find	the	characters
for	you,	as	you	just	saw,	it	will	also	make	the	change	for	you.	Suppose	you	want	to	change
the	file	extension	WKS	to	XLS	wherever	it	occurs	in	the	memo.

Choose	Change	from	the	Search	menu.	Edit	displays	the	Change	dialog	box,	as	shown
below.

In	addition	to	the	Find	What	text	box	you	saw	in	the	Find	dialog	box,	there's	a	Change	To
text	box.	The	Find	What	text	box	should	contain	DOC;	you	want	to	change	every	occurrence
of	WKS	to	XLS,	so	type	WKS.	Move	to	the	Change	To	text	box	and	type	XLS.	Leave	the
Match	Upper/Lowercase	option	turned	on	so	that	Edit	will	search	only	for	WKS	and	not	wks.
Find	And	Verify	is	highlighted	at	the	bottom	of	the	dialog	box	as	the	action	to	take,	so	press
Enter	to	start	the	search.

Edit	highlights	the	first	occurrence	of	WKS	(in	FORECAST.WKS)	and	asks	you	whether	to
change	or	skip	this	occurrence.	Press	Enter	(or	click	on	Change)	to	change	it;	Edit	displays
the	next	occurrence	of	WKS	and	repeats	the	question.	Change	this	occurrence	too.	When
Edit	displays	the	last	occurrence	of	WKS	(in	OPTION2.WKS),	change	it	as	well.	Press
Enter	or	click	OK	when	Edit	tells	you	Change	complete.	The	screen	shows	that	all	three	file
extensions	have	changed	from	WKS	to	XLS.

To	tell	Edit	to	change	all	occurrences	without	prompting	for	verification,	you	would	select
Change	All	instead	of	Find	And	Verify	in	the	Change	dialog	box.

	

javascript:Next(0)
javascript:Next(1)

Inserting	and	Overstriking	Text
You	probably	used	the	Backspace	key	to	correct	typing	errors	while	you	were	entering	the
memo.	After	writing	a	memo	or	a	report,	however,	you'll	usually	want	to	make	some
changes	after	you	read	through	the	first	draft.	To	change	text	after	you	have	entered	it,	you
start	by	positioning	the	cursor	where	you	want	to	make	the	change.	At	that	point	you	can
delete	incorrect	characters,	insert	new	ones,	or	type	correct	characters	in	place	of	the
incorrect	ones	(the	latter	is	called	overstriking).	The	next	few	examples	show	you	how	to
make	typical	changes	in	a	document.

To	change	the	word	Project	to	Product	in	the	first	line	of	the	memo,	move	the	cursor	to	the	j
and	press	the	Insert	key.	The	cursor	changes	from	an	underline	to	a	flashing	block.	Each
time	you	press	Insert,	you	alternate	back	and	forth	between	inserting	characters	(signified
by	the	flashing	underline)	and	replacing	characters	(signified	by	the	flashing	block).	Now,
with	the	flashing	block	showing,	whatever	you	type	won't	be	inserted;	it	will	replace	what	is
on	the	screen.	Type	du;	the	new	characters	replace	the	old,	changing	Project	to	Product.

Press	Insert	again	to	change	the	cursor	back	to	an	underline	so	that	characters	you	type
are	inserted.

Insert	the	word	New	before	Project	in	the	second	title	line	by	moving	the	cursor	to	the	P	and
typing	New	followed	by	a	space	(but	don't	press	Enter,	because	you	don't	want	to	enter	a
carriage	return	character).	The	remainder	of	the	line	moves	over	to	make	room	for	the	new
characters.

Next,	change	the	5	to	a	4	in	the	third	line,	and	change	the	period	at	the	end	of	the	third	line
to	a	colon.	Position	the	cursor	under	the	5,	press	Insert	to	change	to	overstrike,	and	type	4.
Then	move	the	flashing	block	to	the	period,	and	type	a	colon.	Press	Insert	to	return	to
inserting	rather	than	overstriking	characters.

Finally,	add	a	file	description	to	the	second	file	name	(OPTION1.XLS).	Move	the	cursor	to
the	space	after	XLS,	press	the	Spacebar	three	times,	and	type	Higher	sales.	Do	the	same
to	add	the	file	description	No	staff	increase	three	spaces	after	the	third	file	name
(OPTION2.XLS).

	

javascript:Next(0)
javascript:Next(1)

Copying	from	Another	File
Suppose	you	had	another	file	that	contained	the	mailing	address	of	the	project	team
members,	and	you	wanted	to	include	that	list	at	the	beginning	of	the	memo.	You	wouldn't
have	to	type	the	list;	you	could	simply	copy	it	from	the	other	file.	You	can	try	this	feature	by
creating	another	file	of	addresses	and	copying	it	into	MEMO.TXT.

You'll	create	a	file	named	ADDRESS.TXT	that	contains	six	dummy	address	lines.	First,	save
MEMO.TXT	by	choosing	Save	from	the	File	menu,	and	then	remove	the	file	from	memory	by
choosing	New	from	the	File	menu.	Edit	clears	the	screen	to	show	you	that	you're	starting	a
new	file.

Next,	type	the	following	line:
XXX	ADDRESS	LIST	XXX

Now	make	five	more	copies	of	the	line.	To	do	this,	select	the	line	(make	sure	that	the	entire
line,	from	the	left	margin	to	the	right	edge	of	the	screen,	is	highlighted),	press	Ctrl-Ins	to
copy	it	to	the	Clipboard,	press	Home	to	remove	the	highlight,	and	press	Shift-Ins	five	times
to	copy	the	lines.	You	should	see	six	identical	lines.	Copy	all	six	of	the	lines	to	the	Clipboard,
and	then	save	the	file	by	choosing	Save	As	from	the	File	menu,	typing	a:address.txt,	and
pressing	Enter.

Now	copy	the	lines	from	the	Clipboard	into	a	different	file.	Load	the	MEMO.TXT	file	by
choosing	Open	from	the	File	menu,	typing	a:memo.txt	in	the	File	Name	text	box,	and
pressing	Enter.	You	want	to	paste	the	address	list	just	after	To:	New	Project	team,	so
position	the	cursor	at	the	beginning	of	the	blank	line	below	To.	Press	Enter	to	add	an	extra
blank	line	for	spacing.	Now	press	Shift-Ins	to	insert	the	six	lines	from	the	Clipboard.	This	is
the	final	version	of	the	memo;	the	screen	should	look	like	this:

Save	this	final	version	of	the	memo.	Now	for	something	a	bit	less	tedious	before	you	leave
Edit.

	

javascript:Next(0)
javascript:Next(1)

Changing	the	Screen	Display
If	you	have	a	color	monitor,	Edit	probably	displayed	white	text	against	a	blue	background
when	you	first	started	it.	You	can	change	this	color	scheme	to	any	combination	of
foreground	(text)	and	background	(screen)	color	your	display	and	MS-DOS	are	capable	of
showing.	Select	Display	from	the	Options	menu.	The	screen	should	look	like	this:

Before	you	start	customizing	your	display,	turn	to	Edit's	Help	again,	this	time	to	see	how	Edit
can	advise	you	on	the	Display	dialog	box.	Press	F1,	and	Edit	displays	the	Help	window	that
tells	you	how	to	use	the	Display	dialog	box.	Read	the	explanation,	and	then	press	Esc	to
remove	the	Help	window.

The	cursor	is	now	in	the	text	box	that	lists	possible	foreground	colors.	Using	the	arrow	keys
or	the	mouse,	select	different	colors	(you	can	move	the	cursor	between	the	foreground	and
background	color	boxes	by	pressing	Tab	and	Shift-Tab).	The	text	block	to	the	left	of	the
color	boxes	changes	to	show	the	effect	of	each	color	selection.

When	you	find	a	combination	you	like,	press	Enter	to	return	to	Edit.	It	will	use	these	colors
the	next	time	you	start	it.	(If	you	prefer	the	standard	combination,	press	Esc	to	cancel	the
dialog	box;	Edit	leaves	the	colors	unchanged.)	Leave	Edit	by	choosing	Exit	from	the	File
menu.

	

javascript:Next(0)
javascript:Next(1)

Chapter	Summary
This	chapter	showed	you	the	basics	of	using	Edit.	You're	ready	to	use	it	for	many	of	the
short	text-editing	jobs	that	don't	require	a	word	processor.

There's	more	to	Edit,	such	as	different	methods	of	cutting	and	pasting	text	and	shortcut
keys	based	on	the	WordStar	word	processor.	You	can	explore	further	on	your	own,	using
Help	as	your	guide:	Display	a	help	screen—the	Keyboard	help	screens	are	a	good	place	to
start—and	use	the	F6	key	to	switch	back	and	forth	between	the	Help	and	Edit	windows	as
you	try	out	new	features.	You'll	find	that	Help	is	the	most	patient	instructor	you've	ever	had.

	

javascript:Next(0)
javascript:Next(1)

Chapter	13:	Taking	Control	of	Your	System

Overview
Up	until	now	in	this	book,	you	have	used	the	MS-DOS	commands	in	their	standard	form.
MS-DOS,	however,	gives	you	a	great	deal	of	flexibility	in	controlling	the	way	some
commands	do	their	work	for	you.	This	chapter	describes	two	ways	in	which	you	can	take
control	of	your	system.

The	beginning	of	this	chapter	introduces	the	concept	of	input	and	output	redirection.
Essentially,	redirection	is	a	form	of	traffic	control	that	allows	you	to	route	input	and	output
between	devices	and	files	you	specify.	You'll	also	see	in	this	chapter	how	to	use	redirection
with	MS-DOS	commands	that	let	you	control	both	the	form	and	the	content	of	command
input	and	output.

If	you	have	version	5	or	later	of	MS-DOS,	the	second	part	of	this	chapter	takes	you	further
into	the	Doskey	program	introduced	in	Chapter	3,	"Getting	Your	Bearings."	Using	Doskey,
you'll	see	not	only	how	to	edit	commands	you've	already	used,	but	also	how	to	enter	and
carry	out	more	than	one	command	at	a	time.

	

javascript:Next(0)
javascript:Next(1)

Redirecting	Command	Output
It	is	easy	to	visualize	what	happens	with	command	output,	so	even	though	it	might	seem	odd
to	discuss	results	before	discussing	causes,	this	section	on	command	output	gives	you	a
foundation	for	understanding	command	input	as	well.

The	result,	or	output,	of	most	commands	is	some	action,	such	as	copying	a	file	(with	the
Copy	command)	or	controlling	the	operation	of	a	device	(with	the	Mode	command).	The
output	of	some	commands,	however,	such	as	Directory,	Check	Disk,	and	Tree,	is	a	report.
Up	to	now,	you	have	used	these	reports	primarily	as	displays—MS-DOS	has	sent	them	to
the	standard	output	device,	the	console.	(Recall	from	Chapter	7,	"Managing	Your	Devices,"
that	MS-DOS	uses	the	name	CON,	or	console,	for	both	the	keyboard,	which	is	input	only,
and	the	display,	which	is	output	only.)

As	you'll	see	in	this	chapter,	MS-DOS	lets	you	send	reports	and	other	output	to	a	different
device,	such	as	a	printer,	or	to	a	file.	This	is	called	redirecting	the	output	of	the	command;
you	did	it	a	few	times	in	previous	chapters	with	such	commands	as	dir	>	prn.	The	technique
is	simple:	To	redirect	the	output	of	a	command	that	normally	sends	its	results	to	standard
output	(the	display),	you	type	the	command	name	followed	by	>	and	the	name	of	the	device
or	file	to	which	the	output	is	to	be	sent.	The	>	looks	something	like	an	arrowhead	pointing
toward	the	alternate	output	device	or	file.	If	you	redirect	output	to	a	file	that	doesn't	exist,
MS-DOS	will	create	the	file.

You	can	easily	redirect	output	to	print	a	copy	of	the	directory	as	you	did	in	Chapter	4,	"A
Look	at	Files	and	Floppy	Disks,"	for	example.	To	repeat	that	example,	but	this	time	with	an
understanding	of	what	happens,	be	sure	the	printer	is	turned	on	and	type	the	following:
C:\>dir	>	prn

The	>	tells	MS-DOS	to	redirect	the	output	of	the	Directory	command,	and	PRN	tells	MS-
DOS	where	to	send	it:	to	the	printer.	The	directory	should	be	printing	now.	If	it's	long	and
you	want	to	cancel	the	printing,	press	Ctrl-Break.

	

javascript:Next(0)
javascript:Next(1)

Redirecting	Command	Input
You've	seen	how	quickly	and	easily	you	can	redirect	output	to	a	device	or	a	file.	You	can	just
as	easily	redirect	input,	in	effect	telling	certain	MS-DOS	commands	to	get	their	data	from	a
source	other	than	the	one	(often	called	standard	input	device)	they	would	normally	use.	To
redirect	input,	follow	the	command	name	with	the	<	character	and	the	name	or	the	device
from	which	the	input	is	coming.

Together,	redirected	input	and	output	are	known	as	redirection.	Although	redirection	might
sound	complicated,	it	is	easy	to	understand,	as	the	examples	in	this	chapter	show.

Three	MS-DOS	commands,	known	collectively	as	filter	commands,	make	particularly
effective	use	of	redirection.

	

javascript:Next(0)
javascript:Next(1)

Filter	Commands
Filter	commands	take	input	from	a	device	or	a	file,	change	the	input	in	some	way,	and	send
the	result	to	an	output	device	or	file.	They	are	called	filter	commands	because	they	work
much	like	a	filter	in	a	water	system,	which	takes	incoming	water,	changes	it	in	some	way,
and	sends	it	along	the	system.

MS-DOS	includes	three	filter	commands:

Sort	arranges	lines	in	ascending	or	descending	order.

Find	searches	for	a	string	of	characters.

More	temporarily	halts	the	display	after	one	screenful	(to	give	you	a	chance	to	read
the	lines).

You	can	redirect	both	the	input	and	the	output	of	a	filter	command.	The	filter	commands
aren't	really	intended	to	be	used	with	keyboard	input.	Rather,	they	are	designed	to	get	their
input	from	a	file	or	even	from	the	output	of	another	command.	This	chapter	shows	you	how
to	use	and	combine	the	filter	commands	to	create	your	own	powerful,	specialized
commands.

	

javascript:Next(0)
javascript:Next(1)

Preparing	for	the	Examples
Redirection	and	filter	commands	give	you	the	elements	of	a	simple	file-management
program.	While	they	won't	replace	a	file	manager,	they	let	you	use	MS-DOS	to	search	and
sort	simple	lists	without	spending	extra	money	or	time	on	another	program.

The	examples	in	this	chapter	use	a	sample	file	that	almost	everyone	needs:	a	list	of	names
and	telephone	numbers.	Too	often,	files	of	telephone	numbers	and	business	cards	are	out	of
date,	incomplete,	or	in	the	other	office.	Questions	arise:	"Was	that	number	in	the	telephone
index	or	the	business-card	file?"	Or	"Did	I	file	the	number	under	Jones	or	under
Accountants?"	This	example	shows	you	how	to	let	MS-DOS	keep	track	of	your	phone	list
and	eliminate	these	questions.

Change	the	current	directory	to	\RUNDOS	by	typing	the	following:
C:\>cd	\rundos

Entering	the	Sample	File

The	sample	file	is	named	PH.TXT.	You	can	use	Edit	to	create	it	from	MS-DOS,	or	you	can
use	your	own	word	processor	if	it	can	save	documents	as	unformatted	text	files—that	is,
files	that	don't	contain	any	of	the	program's	own	formatting	codes.

Each	line	of	the	file	contains	six	items	of	data:	last	name,	first	name,	area	code,	telephone
number,	a	key	word	that	identifies	a	category,	and	a	short	description.	The	key	words	are:
cust	for	customer,	cons	for	consultant,	and	vend	for	vendor.	You'll	enter	the	items	in	specific
columns	so	you	can	sort	the	list	by	any	item.

To	use	Edit	to	create	the	file,	start	Edit	and	name	the	file	in	a	single	command	by	typing	the
following:
C:\RUNDOS>edit	ph.txt

Now	you	can	begin	to	enter	the	items	in	the	file.	To	help	you	get	the	items	in	the	correct
columns,	the	following	entry	shows	the	first	line,	with	a	period	marking	each	space.	Type	the
line	as	shown,	pressing	the	Spacebar	once	for	each	period	shown:
Jones.....Michele...(747).429-6360..cons.chemist

End	the	line	by	pressing	Enter.

Enter	the	remaining	lines	in	the	sample	file,	shown	in	Figure	13-1,	using	the	spacing	of	the
first	line	as	a	guide.	When	you've	typed	all	the	lines,	save	the	file	and	quit	the	editor.

	
Figure	13-1:	Telephone	and	business-card	list.

Now	you're	ready	to	use	the	file.	To	see	the	entry	for	Alice	White,	type	the	following	(notice
the	capital	W):
C:\RUNDOS>find	"Wh"	ph.txt

----------		PH.TXT
White						Alice				(747)	425-7692		cust	Accountant

That's	fast,	but	it's	just	the	beginning.

	

javascript:Next(0)
javascript:Next(1)

The	Sort	Filter	Command
The	Sort	filter	command	arranges,	or	sorts,	lines	of	input	and	sends	them	to	standard	output
(the	display)	unless	you	redirect	the	output—for	example,	to	the	printer.	If	you	enter	the
command	with	no	options,	it	sorts	the	lines	of	input	in	ascending	order	(alphabetically	from	A
to	Z,	or	numerically	from	lowest	to	highest	number),	starting	the	sort	on	the	character	in	the
first	column.

The	Sort	command	has	two	parameters:
sort	/R	/+<column>

/R	(Reverse)	sorts	the	lines	in	reverse	order	(Z	to	A,	or	highest	to	lowest	number).

/	+	<column>	sorts	the	lines	starting	at	the	specified	column,	rather	than	starting	in	the	first
column.

To	sort	a	particular	file,	you	can	redirect	the	input	of	the	Sort	command	by	following	the
command	name	with	<	and	the	name	of	the	file	to	be	sorted.	If	you	don't	have	version	4	or
later	of	MS-DOS,	be	sure	to	use	a	space	both	before	and	after	the	<.	If	you	don't	redirect
the	input,	the	Sort	command	sorts	lines	that	you	type	at	the	keyboard	(standard	input).

Sort	Command	Examples

Figure	13-2	shows	the	column	number	of	each	of	the	six	items	in	the	telephone	list:	last
name,	first	name,	area	code,	telephone	number,	key	word,	and	description.	You'll	use	these
column	numbers	to	sort	the	file	in	different	ways.

	
Figure	13-2:	Column	numbers	of	items	in	the	telephone	list.

The	simplest	way	to	sort	the	file	is	in	ascending	order,	starting	in	the	first	column.	(In	the
sample	file,	this	sorts	the	entries	by	last	name.)	Type	this:
C:\RUNDOS>sort	<	ph.txt

MS-DOS	quickly	displays	the	sorted	result:
Black					Alice							(747)	426-7145		cust	Elec	eng
Black					John								(747)	426-3385		cons	mech	eng	pkg
Green					Fred								(541)	926-4921		cust	math	teach
Hill						Dave								(747)	463-2000		vend	IBM	sales
Jones					Alison						(747)	429-5584		cons	Chem	engineer
Jones					James							(747)	636-3541		cust	architect
Jones					Michele					(747)	429-6360		cons	chemist
Smith					Ed										(541)	835-8747		vend	caterer

Smith					John								(747)	926-2945		vend	furniture
White					Alice							(747)	425-7692		cust	Accountant

The	file	itself	hasn't	changed;	what	you	see	is	simply	the	result	of	MS-DOS	reading,	sorting,
and	displaying	the	lines	of	the	file.

To	sort	the	file	in	reverse	order,	use	the	/R	option:
C:\RUNDOS>sort	/r	<	ph.txt

It	doesn't	take	MS-DOS	any	longer	to	sort	backward:
White					Alice							(747)	425-7692		cust	Accountant
Smith					John								(747)	926-2945		vend	furniture
Smith					Ed										(541)	835-8747		vend	caterer
Jones					Michele					(747)	429-6360		cons	chemist
Jones					James							(747)	636-3541		cust	architect
Jones					Alison						(747)	429-5584		cons	Chem	engineer
Hill						Dave								(747)	463-2000		vend	IBM	sales
Green					Fred								(541)	926-4921		cust	math	teach
Black					John								(747)	426-3385		cons	mech	eng	pkg
Black					Alice							(747)	426-7145		cust	Elec	eng

Suppose	you	wanted	to	arrange	the	list	by	the	key	word—first	the	consultants,	then	the
customers,	then	the	vendors.	The	first	letter	of	the	key	word	is	in	column	37,	so	use	the
column	option:
C:\RUNDOS>sort	/+37	<	ph.txt

Now	it's	easy	to	pick	out	the	different	categories:
Jones					Alison							(747)	429-5584		cons	Chem	engineer
Jones					Michele						(747)	429-6360		cons	chemist
Black					John									(747)	426-3385		cons	mech	eng	pkg
White					Alice								(747)	425-7692		cust	Accountant
Jones					James								(747)	636-3541		cust	architect
Black					Alice								(747)	426-7145		cust	Elec	eng
Green					Fred									(541)	926-4921		cust	math	teach
Smith					Ed											(541)	835-8747		vend	caterer
Smith					John									(747)	926-2945		vend	furniture
Hill						Dave									(747)	463-2000		vend	IBM	sales

Sorting	is	fast,	easy,	and	useful.

	

javascript:Next(0)
javascript:Next(1)

The	Find	Filter	Command
The	Find	filter	command	searches	lines	of	input	for	a	string	of	characters	you	specify.	If	you
enter	the	command	with	no	parameters	other	than	the	string	and	the	file	name,	the	Find
command	displays	all	lines	that	contain	the	string.

The	Find	command	has	six	parameters:
find	/V	/C	/N	/I	"<string>"	<filename>

/V	displays	all	lines	that	do	not	contain	the	string.

/C	(Count)	displays	just	the	number	of	lines	found,	not	the	lines	themselves.

/N	(Number)	displays	the	input	line	number	with	each	line	found.

/I	(Ignore),	in	versions	5	and	later,	causes	the	Find	command	to	ignore	differences	between
uppercase	and	lowercase—for	example,	to	treat	a	and	A	as	the	same	letter.

"<string>"	is	the	string	of	characters	you	want	to	find;	it	must	be	enclosed	in	quotation
marks.	Keep	in	mind	that	unless	you	specify	the	/I	parameter,	the	Find	command
distinguishes	between	uppercase	and	lowercase	letters,	so	"cons"	and	"CONS",	for
example,	are	different	strings.

<filename>	is	the	name	of	the	file	to	be	searched.	If	you	omit	<filename>,	the	Find
command	searches	standard	input.	You	can	include	several	different	file	names	in	a	single
Find	command	simply	by	separating	the	file	names	with	spaces.	If	some	of	the	files	are	in	a
different	directory	or	on	a	disk	in	a	different	drive,	precede	the	file	name	with	the
appropriate	path	name	or	drive	letter.

Find	Command	Examples

To	display	the	entries	for	all	consultants	in	the	file	named	PH.TXT,	type	the	following:
C:\RUNDOS>find	cons"	ph.txt

The	first	line	of	output	identifies	the	input	file,	PH.TXT.	Each	line	that	contains	the	string	cons
is	displayed	immediately	after:
----------			PH.TXT
Jones							Michele				(747)	429-6360		cons	chemist
Black							John							(747)	426-3385		cons	mech	eng	pkg
Jones							Alison					(747)	429-5584		cons	Chem	engineer

To	see	how	the	Find	command	works	with	more	than	one	file,	type	the	following	to	make	a
duplicate	copy	of	the	phone	list:
C:\RUNDOS>copy	ph.txt	ph1.txt

Now	type	the	Find	command	you	used	in	the	preceding	example,	but	this	time	include	both
files:
C:\RUNDOS>find	"cons"	ph.txt	ph1.txt

MS-DOS	displays	the	name	of	each	file	as	it	finds	cons	in	PH.TXT	and	PH1.TXT:
----------	PH.TXT
Jones					Michele				(747)	429-6360		cons	chemist
Black					John							(747)	426-3385		cons	mech	eng	pkg
Jones					Alison					(747)	429-5584		cons	Chem	engineer

----------	PH1.TXT
Jones					Michele				(747)	429-6360		cons	chemist
Black					John							(747)	426-3385		cons	mech	eng	pkg
Jones					Alison					(747)	429-5584		cons	Chem	engineer

Obviously,	using	the	Find	command	to	search	for	a	character	string	in	several	files	is	more
productive	when	the	contents	of	the	files	differ,	but	this	example	shows	the	method,	if	not
the	full	capability,	of	the	command.	You	don't	need	PH1.TXT	anymore,	so	type	del	ph1.txt	to
keep	your	disk	uncluttered.

Return	now	to	the	original	phone	list,	PH.TXT.	If	you	just	want	to	know	how	many
consultants	are	in	the	list,	use	the	/C	option:
C:\RUNDOS>find	/c	cons"	ph.txt

This	time,	the	line	that	identifies	the	input	file	also	shows	the	number	of	lines	that	contain	the
string:
----------	PH.TXT:	3

Three	lines	in	the	file	contain	cons.

As	often	happens	in	a	real	telephone	index,	the	sample	file	uses	different	words	or
abbreviations	to	mean	the	same	thing.	Both	engineer	and	eng	are	used,	for	example,	to
describe	an	engineer.	Both	words	contain	eng,	however,	so	you	can	find	all	the	engineers	by
typing	the	following:
C:\RUNDOS>find	"eng"	ph.txt

----------	PH.TXT
Black					John							(747)	426-3385		cons	mech	eng	pkg
Jones					Alison					(747)	429-5584		cons	Chem	engineer
Black					Alice						(747)	426-7145		cust	Elec	eng

As	also	happens	in	real	life,	capitalization	in	the	sample	file	is	not	consistent.	One	entry,	for
example,	contains	the	notation	Chem	engineer,	and	another	contains	the	all-lowercase
chemist.	You	could	avoid	the	inconsistency	by	specifying	the	string	as	hem	rather	than	as
chem	or	Chem.	But	if	you	have	version	5	or	later,	you	can	use	the	/I	parameter	instead	to

tell	the	Find	command	to	ignore	uppercase/lowercase	differences.	If	you	have	version	5	or
later,	type	this:
C:\RUNDOS>find	/i	"chem"	ph.txt

MS-DOS	quickly	responds:
----------	PH.TXT
Jones					Michele					(747)	429-6360		cons	chemist
Jones					Alison						(747)	429-5584		cons	Chem	engineer

Finding	Lines	That	Don't	Contain	the	String

With	any	version	of	MS-DOS,	you	can	also	use	the	/V	parameter	to	display	lines	that	don't
contain	a	string.	For	example,	to	display	the	entries	not	in	the	747	area	code,	typ	e	this:
C:\RUNDOS>find	/v	"(747"	ph.txt

----------	PH.TXT
Green					Fred						(541)	926-4921		cust	math	teach
Smith					Ed								(541)	835-8747		vend	caterer

Including	the	left	parenthesis	with	747	distinguishes	between	entries	with	an	area	code	of
747	and	entries	that	might	contain	747	in	the	phone	number.	Try	the	example	without	the	left
parenthesis:
C:\RUNDOS>find	/v	"747"	ph.txt

----------	PH.TXT
Green					Fred							(541)	926-4921		cust	math	teach

Ed	Smith's	telephone	number	is	835-8747,	so	his	entry	wasn't	displayed	even	though	his
area	code	is	541.	When	you	enter	the	characters	to	find,	be	sure	to	include	enough
information	to	specify	what	you're	looking	for.	In	the	sample	file,	for	example,	typing	"(7"
would	be	enough	to	specify	the	747	area	code;	it	wouldn't	be	enough,	however,	if	the	file
contained	another	area	code	beginning	with	7.	And,	as	you	saw,	you	must	include	the	left
parenthesis	to	distinguish	an	area	code	from	some	other	set	of	numbers.

Including	Line	Numbers	with	the	Output

To	display	the	entries	for	people	named	Smith	and	to	include	the	line	numbers	of	the	entries,
use	the	/N	option:
C:\RUNDOS>find	/n	"Smith"	ph.txt

----------	PH.TXT
[2]Smith					John							(747)	926-2945		vend	furniture
[6]Smith					Ed									(541)	835-8747		vend	caterer

The	two	entries	displayed	are	the	second	and	sixth	lines	of	the	sample	file.

Combining	Find	Command	Options

You	can	combine	Find	command	options.	For	example,	to	display	the	entries	not	in	the	747
area	code	and	to	include	their	line	numbers,	use	both	the	/V	and	/N	options:
C:\RUNDOS>find	/v	/n	"(7"	ph.txt

----------	PH.TXT
[4]Green					Fred							(541)	926-4921		cust	math	teach
[6]Smith					Ed									(541)	835-8747		vend	caterer

(If	you	used	Edit	to	create	the	sample	file,	you	might	also	see	[11]	appear	at	the	end	of	this
report.	That's	probably	because	you	pressed	Enter	when	you	finished	typing	the	last	entry
and,	in	doing	so,	created	a	blank	line	that	Find	has	included	in	its	search.	The	blank	line	is
listed	because	you	told	Find	to	show	the	numbers	of	all	lines	that	don't	contain	the	747	area
code.)

	

javascript:Next(0)
javascript:Next(1)

More	on	Redirecting
Earlier	in	this	chapter,	you	redirected	input	to	the	Sort	command	by	specifying	the	file
PH.TXT.	You	can	also	redirect	the	output	of	a	filter	command.	To	print	the	entries	for	all
vendors	(that	is,	to	redirect	output	from	the	display	to	the	printer),	type	the	following:
C:\RUNDOS>find	"vend"	ph.txt	>	prn

The	entries	are	printed.	If	your	phone	list	has	two	or	three	hundred	entries,	this	technique	of
using	options	and	redirecting	output	is	a	quick	way	to	print	a	copy	showing	a	selected	group
of	entries.

Redirecting	Both	Input	and	Output

You	can	redirect	both	input	and	output	by	following	the	command	name	with	<	and	the	name
of	the	input	file	or	device	and	then	>	followed	by	the	name	of	the	output	file	or	device.	(Be
sure	to	include	spaces	before	and	after	both	<	and	>	if	you	don't	have	version	4	or	later	of
MS-DOS.)

For	example,	to	print	the	alphabetized	version	of	PH.TXT,	check	that	your	printer	is	on	and
then	type	this:
C:\RUNDOS>sort	<	ph.txt	>	prn

The	input	for	the	Sort	command	comes	from	PH.TXT,	and	the	output	is	redirected	to	the
printer.

MS-DOS	allows	you	to	redirect	both	the	input	and	the	output	of	a	single	command	from	and
to	the	same	file.	That	is,	MS-DOS	does	not	report	any	error	if,	for	example,	you	type	the
command	sort	<	ph.txt	>	ph.txt.	Don't	do	this,	however;	you	might	destroy	your	data.	If	you
want	to	sort	a	file	and	keep	the	same	file	name,	do	the	following:

1.	 Redirect	the	output	to	a	temporary	file,	such	as	PH-TMP.TXT.	To	sort	PH.TXT	in
reverse	order,	you	would	type	sort	/r	<	ph.txt	>	ph-tmp.txt.

2.	 If	you're	certain	you	don't	need	it,	delete	the	original	file	(del	ph.txt).	If	you	want	to
keep	the	original,	give	it	a	different	name,	such	as	OLDPH.TXT,	using	the	Rename
command	(ren	ph.txt	oldph.txt).

3.	 Then	use	the	Rename	command	to	give	the	temporary	file	the	original	file	name
(ren	ph-tmp.txt	ph.txt).

4.	 The	new	version	of	PH.TXT	would	contain	the	telephone	list	sorted	in	reverse
order.	You	could	verify	the	contents	by	displaying	PH.TXT	with	the	Type	command.

Adding	Redirected	Output	to	a	File

When	you	redirect	output	to	an	existing	file,	the	redirected	output	replaces	the	original	file.

But	you	can	also	add	redirected	output	to	the	end	of	an	existing	file	by	using	>>	instead	of
>.	If	the	file	doesn't	already	exist,	it	is	created,	just	as	when	you	use	>.

	

javascript:Next(0)
javascript:Next(1)

Connecting	Commands	with	a	Pipe
A	powerful	way	of	using	a	filter	command	is	to	redirect	the	output	of	some	other	command
to	the	input	of	the	filter	command.	In	effect,	the	two	commands	are	connected,	with	the
output	of	the	first	command	feeding	directly	into	the	filter	command.	Continuing	the	analogy
to	a	water	system,	this	connection	is	called	a	pipe.

You	tell	MS-DOS	to	pipe	the	output	of	one	command	to	the	input	of	another	by	typing	|
between	the	names	of	the	two	commands;	the	|	provides	the	connection	between	the	two
commands.	The	More	filter	command	provides	a	simple	example.

The	More	Filter	Command

The	More	filter	command	displays	one	screenful	(24	lines	unless	you've	specified	otherwise
with	the	Mode	command)	followed	by	the	line	--	More	--,	and	then	it	pauses.	When	you
press	any	key,	More	displays	the	next	screenful	and	pauses	again	if	necessary,	continuing	in
the	same	way	until	all	the	input	has	been	displayed.

For	the	following	example,	you	need	a	disk	or	a	directory	that	contains	more	than	one
screenful	of	files.	Your	\DOS	directory	will	do;	type	the	following:
C:\RUNDOS>dir	\dos	|	more

This	command	tells	MS-DOS	to	redirect	the	output	of	the	Directory	command	to	the	input	of
the	More	command.	The	More	command	displays	the	first	screenful	of	the	directory	and	--
More	--	at	the	bottom	of	the	screen.	Press	any	key	to	see	the	rest	of	the	directory,	or	press
Ctrl-Break	to	cancel	the	More	command	and	return	to	the	system	prompt.	The	More
command	lets	you	review	a	long	output	sequence	or	file	without	having	to	press	Pause	or
Ctrl-Num	Lock	to	start	and	stop	the	display.

Combining	Filter	Commands

You	can	pipe	the	output	of	one	Find	command	to	the	input	of	another	Find	command	to
make	a	more	specific	search.	A	real-life	list	like	the	sample	phone	list,	for	example,	might
include	several	dozen	customers.	Suppose	you	want	to	display	the	names	of	customers	in
the	747	area	code	only.	To	do	this,	pipe	the	output	of	a	Find	command	that	searches	for
cust	to	another	Find	command	that	searches	for	(7.	Type	this:
C:\RUNDOS>find	cust"	ph.txt	|	find		"(7"
White						Alice				(747)	425-7692		cust	Accountant
Jones						James				(747)	636-3541		cust	architect
Black						Alice				(747)	426-7145		cust	Elec	eng

If	you	check	an	earlier	list	of	the	file,	you'll	see	that	Fred	Green	is	a	customer,	but	his	area
code	is	541,	so	the	second	Find	command	eliminated	the	entry	for	his	name.	Notice	that	the
line	that	identifies	the	file	(----------PH.TXT)	isn't	displayed.	The	first	Find	command	pipes	---
-------PH.TXT	as	part	of	its	output	to	the	second	Find	command,	but	because	the	line	does

not	contain	the	string	(7,	it	is	not	included	as	part	of	the	output	of	the	second	Find	command.

You	can	also	pipe	the	output	of	the	Find	command	to	the	Sort	command.	To	see	all	the
consultants	sorted	by	last	name,	type	the	following:
C:\RUNDOS>find	"cons"	ph.txt	|	sort

----------	PH.TXT
Black					John							(747)	426-3385		cons	mech	eng	pkg
Jones					Alison					(747)	429-5584		cons	Chem	engineer
Jones					Michele				(747)	429-6360		cons	chemist

You	can	combine	as	many	commands	as	you	like.	Suppose	you	want	to	print	a	list	of	all
customers	in	the	747	area	code,	sorted	by	telephone	number.	You	can	search	PH.TXT	for
cust,	pipe	that	output	to	a	Find	command	that	searches	for	(7,	pipe	that	output	to	a	Sort
command	that	sorts	at	column	27	(the	telephone	number),	and	redirect	the	output	to	the
printer.	Try	this	by	typing	the	following:
C:\RUNDOS>find	"cust"	ph.txt	|	find	"(7"	|	sort	/+27	>	prn

The	printed	output	includes	this:
White					Alice							(747)	425-7692		cust	Accountant
Black					Alice							(747)	426-7145		cust	Elec	eng
Jones					James							(747)	636-3541		cust	architect

If	your	list	included	several	dozen	customers,	this	could	be	a	handy	way	to	organize	a	calling
campaign.

The	Difference	Between	>	and	|

Sometimes	the	distinction	between	>	and	|	isn't	readily	apparent.	>	redirects	output	to	a	file
or	device;	|	redirects	output	to	another	command.	This	difference	is	easy	to	demonstrate.
Sort	is	a	filter	command.	To	make	the	output	of	the	Directory	command	the	input	to	the	Sort
command,	type	the	following:
C:\RUNDOS>dir	c:\	|	sort

If	you're	using	MS-DOS	6.2	or	later,	add	/-p	/-w	after	dir.	(The	/-p	ensures	that	the
Directory	command	does	not	pause	after	one	screenful	of	information	and	the	/-w	ensures
that	the	directory	entries	are	displayed	in	a	single	column.)

As	you	would	expect,	MS-DOS	displays	the	directory	sorted	in	alphabetic	order.	If	the
directory	includes	two	files	whose	names	look	like	072F2321	or	%PIPE1.$$$,	don't	be
alarmed.	These	are	temporary	files	MS-DOS	creates	in	order	to	pipe	the	output	of	one
command	to	the	input	of	another;	MS-DOS	deletes	the	files	automatically.

Now	type	this:
C:\RUNDOS>dir	c:\	>	sort

If	you're	using	MS-DOS	6.2	or	later,	add	/-p	/-w	after	dir.	(The	/-p	ensures	that	the
Directory	command	does	not	pause	after	one	screenful	of	information	and	the	/-w	ensures
that	the	directory	entries	are	displayed	in	a	single	column.)

This	time	you	don't	see	anything	on	the	screen	because	you	told	MS-DOS	to	redirect	the
output	of	the	Directory	command	to	a	file	named	SORT.	Confirm	this	by	displaying	the	file
with	the	Type	command:
C:\RUNDOS>type	sort

The	file	contains	the	directory,	which	is	not	sorted.	You	created	the	file	when	you	redirected
the	output	of	the	Directory	command.	You	don't	need	this	file,	so	delete	it	by	typing	del	sort.

	

javascript:Next(0)
javascript:Next(1)

Editing	an	MS-DOS	Command	with	Doskey
As	you've	seen,	commands	that	redirect	and	filter	input,	output,	or	both	can	become	long
and	complex,	especially	if	you	also	include	subdirectory	names,	file	names,	and	extensions.
By	now	you've	also	used	many	MS-DOS	commands	over	and	over	again—to	the	point
where	you	probably	have	no	idea,	other	than	"a	lot,"	of	the	number	of	times	you've	typed	dir
followed	by	a	drive	letter,	path	name,	or	file	name.

If	you	have	version	5	or	later,	you	can	repeat	(or	edit)	any	recent	command	by	using	the
small	program	named	Doskey	that	you	first	encountered	in	Chapter	3,	"Getting	Your
Bearings."	(If	you	don't	have	version	5	or	later,	you	don't	have	Doskey,	so	you	can	go	on	to
Chapter	14,	"Creating	Your	Own	Commands.")

Typing	doskey	for	the	first	time	during	a	session	with	your	computer	causes	MS-DOS	to
load	the	Doskey	program	into	memory.	Once	in	memory,	Doskey	keeps	track	of	the
commands	you	type	and	allows	you	to	go	back	and	review	or	repeat	them	by	pressing	the
arrow	and	function	keys.

But	even	though	Doskey	lets	you	reuse	a	command	you	typed	earlier,	you	might	want	to
change	it	slightly,	to	specify	a	different	drive	or	file	name.	When	you've	recalled	a	previous
command,	Doskey	lets	you	use	the	keys	described	in	Figure	13-3	to	edit	the	command.

Key Action

Home Moves	the	cursor	to	the	beginning	of	the	command

Ctrl-
Home Deletes	from	the	cursor	location	to	the	beginning	of	the	command

End Moves	the	cursor	to	the	end	of	the	command

Ctrl-
End Deletes	from	the	cursor	location	to	the	end	of	the	command

Left
arrow Moves	the	cursor	one	character	left

Ctrl-
Left
arrow

Moves	the	cursor	one	"word"	(group	of	characters	without	spaces)	left

Right
arrow Moves	the	cursor	one	character	right

Ctrl-
Right
arrow

Moves	the	cursor	one	"word"	(group	of	characters	without	spaces)	right

Adds	typed	characters	at	the	location	of	the	cursor	the	first	time	you	press	it;

Ins overstrikes	existing	characters	the	next	time	you	press	it;	toggles	between	these
two	actions

Del Deletes	the	character	at	the	location	of	the	cursor;	does	not	move	the	cursor

Esc Erases	the	displayed	command

Figure	13-3:	The	Doskey	editing	keys.	A	number	of	function	keys	are	also	available	for
editing;	see	the	online	Help	Doskey.

To	see	how	to	edit	commands	with	Doskey,	start	by	loading	the	program	into	memory.	Type
this:
C:\RUNDOS>doskey
DOSKey	installed.

Now	type	a	command	and	press	Enter	to	carry	it	out:
C:\RUNDOS>find	"Smith"	ph.txt	|	sort	/+11

What	if	you	wanted	to	type	another	command	almost	like	that	one?	Instead	of	having	to	retype
the	whole	thing,	Doskey	lets	you	recall	the	command	to	the	screen,	make	any	changes	you	like,
then	press	Enter	to	carry	out	the	command	again.	You	start	by	using	the	Up	arrow	key	to
display	the	command	you	want	to	reuse,	so	press	the	Up	arrow	key.	MS-DOS	dutifully
redisplays	the	Find	command	you	just	typed.

Your	first	edit	will	change	Smith	to	Black.	Press	Home,	which	moves	the	cursor	to	the	beginning
of	the	command.	Press	Ctrl-Right	arrow	once	to	place	the	cursor	under	the	quotation	mark
preceding	Smith,	and	then	press	the	Right	arrow	key	to	move	the	cursor	under	the	S	in	Smith:
C:\RUNDOS>find	"Smith"	ph.txt	|	sort	/+11

Now	type	Black.	Notice	that	the	characters	you	type	replace	the	characters	that	were	there.	To
insert	characters	rather	than	replace	them,	you	would	press	Ins	before	beginning	to	type.	To
delete	characters,	you	would	press	Del	once	for	each	character	you	wanted	to	remove.

Your	command	should	look	like	this:
C:\RUNDOS>find	"Black"	ph.txt	|	sort	/+11

Press	Enter,	and	this	time	MS-DOS	lists	all	people	named	Black,	alphabetizing	them	by	their
first	names.	Press	the	Up	arrow	key	again	to	display	the	last	command.	Now	try	moving	the
cursor	around.

Press	Home	to	move	the	cursor	to	the	beginning	of	the	command.	Next,	press	Ctrl-Right	arrow
three	times	to	move	the	cursor	right	three	words:
C:\RUNDOS>find	"Black"	ph.txt	|	sort	/+11

As	a	final	exercise,	try	deleting	parts	of	the	command.	Press	Ctrl-End,	and	all	characters	from

the	cursor	to	the	end	of	the	line	vanish:
C:\RUNDOS>find	"Black"	ph.txt

Press	Ctrl-Left	arrow	to	move	the	cursor	to	the	p	in	ph.txt:
C:\RUNDOS>find	"Black"	ph.txt

Press	Ctrl-Home.	This	time,	you	delete	all	characters	between	the	cursor	and	the	beginning	of
the	command:
C:\RUNDOS>ph.txt

What's	left	isn't	very	meaningful,	so	clean	up	by	pressing	Esc	to	erase	the	entire	line:
C:\RUNDOS>_

	

javascript:Next(0)
javascript:Next(1)

Entering	Multiple	Commands	with	Doskey
In	this	chapter,	you've	seen	many	ways	to	use	the	redirection	(<	and	>)	and	pipe	(|)	symbols
to	carry	out	more	than	one	command	at	the	same	time.	But	what	about	other	commands?
While	using	MS-DOS	you	might	sometimes	have	thought	it	would	be	nice	to	type	two	or
more	related	(or	unrelated)	commands	and	have	MS-DOS	carry	them	out	one	after	the
other.	With	Doskey,	you	can	type	as	many	commands	as	you	want,	up	to	a	maximum	of	128
characters.	To	tell	Doskey	where	one	command	ends	and	the	next	begins,	you	press	Ctrl-T,
which	is	displayed	as	a	paragraph	mark	(¶).

To	see	how	this	feature	works,	go	through	the	following	example,	which	clears	the	screen,
creates	a	new	directory	named	TEST,	makes	TEST	the	current	directory,	and	displays	the
directory	listing.	You'll	enter	all	four	commands	on	the	same	line,	separating	them	by
pressing	Ctrl-T:
C:\RUNDOS>cls	<Ctrl-T>	md	test	<Ctrl-T>	cd	test	<Ctrl-T>	dir

When	you	press	Enter,	the	screen	clears	and	the	commands	are	carried	out	one	at	a	time.
It	happens	quickly,	but	each	command	is	displayed	as	it	is	carried	out,	so	you	can	see	the
results:
C:\RUNDOS>	md	test

C:\RUNDOS>	cd	test

C:\RUNDOS\TEST>	dir

	Volume	in	drive	C	is	HARD	DISK
	Volume	Serial	Number	is	1608-5A30
	Directory	of	C:\RUNDOS\TEST

																		01-05-95		11:27a
																		01-05-95		11:27a
									2	file(s)									0	bytes
																				14069807	bytes	free

The	next	example	uses	the	Copy	command	to	create	a	sample	file	by	copying	from	the
console	(CON).	Type	this:
C:\RUNDOS\TEST>copy	con	example	<Ctrl-T>	type	example

When	you	press	Enter	this	time,	the	system	pauses	after	the	first	command	is	displayed.
MS-DOS	is	waiting	for	you	to	create	the	sample	file,	so	type	the	following:
This	is	a	sample	file	named	EXAMPLE.
<Ctrl-Z>

When	you	press	Enter,	you	see	the	familiar	1	file(s)	copied	message	followed	by	your

second	command:
C:\RUNDOS\TEST>	type	example
This	is	a	sample	file	named	EXAMPLE.

This	time,	you	created	a	file	and	displayed	it.

Finally,	clean	up	your	directory	by	typing	the	following	set	of	commands:
C:\RUNDOS\TEST>del	example	<Ctrl-T>	cd	..	<Ctrl-T>	rd	test

	

javascript:Next(0)
javascript:Next(1)

Chapter	Summary
As	you've	seen,	redirection,	filter	commands,	and	pipes	let	you	create	powerful,	specific
commands.	When	you	consider	these—and	all	the	other	MS-DOS	commands	you've
encountered—you	can	begin	to	see	ways	in	which	you	can	adapt	MS-DOS	to	your	own
needs	and	circumstances.

This	chapter	ends	the	part	of	the	book	that	deals	with	MS-DOS	as	it	is	provided	on	disk.
The	next	three	chapters	show	you	how	to	combine	MS-DOS	commands	in	sets	known	as
batch	files	to	put	more	of	the	power	of	MS-DOS	to	work.	You	have	the	building	blocks.	Now
it's	time	to	use	them	to	customize	MS-DOS.

	

javascript:Next(0)
javascript:Next(1)

Chapter	14:	Creating	Your	Own	Commands

Overview
As	the	preceding	chapters	show,	MS-DOS	gives	you	a	great	deal	of	control	over	your
computer	system.	But	MS-DOS	is	necessarily	general	purpose,	because	many	people	use	it
for	many	different	tasks.	So	that	you	can	adapt	the	computer	to	your	work,	MS-DOS	lets
you	combine	existing	MS-DOS	commands	to	create	your	own	special-purpose	commands.

The	technique	is	simple:	To	make	your	own	command,	you	create	a	text	file	that	contains
MS-DOS	commands.	And	you	can	give	such	a	file—called	a	batch	file—any	valid	name
except	the	name	of	an	existing	command;	the	extension	of	the	file	must	be	BAT.	To	use	your
command,	simply	type	the	name	of	the	batch	file;	MS-DOS	carries	out	the	commands
contained	in	the	file	as	if	you	had	typed	each	of	them	separately.	Commands	that	you	create
in	this	way	are	called	batch	commands.

This	chapter	describes	how	to	create	batch	files	and	batch	commands.	It	also	describes	the
Remark	command,	which	is	intended	for	batch	files,	and	it	shows	you	how	to	modify	the
MS-DOS	startup	procedure	if	there	are	certain	commands	you	always	want	MS-DOS	to
carry	out	when	you	start	your	system.

	

javascript:Next(0)
javascript:Next(1)

A	Batch	of	What?
The	term	batch	has	its	origins	in	the	early	days	of	large	computers,	when	most	work	was
done	by	submitting	a	deck	of	punched	cards	to	the	data-processing	department.	The
punched	cards	had	to	contain	all	the	instructions	required	for	the	program	to	run	correctly.
There	was	no	chance	to	interact	with	the	system.	The	data-processing	personnel	ran	these
jobs	in	batches	and	delivered	the	output.

In	effect,	you	do	the	same	thing	when	you	use	a	batch	command	because	a	batch	file
contains	all	the	instructions	needed	to	carry	out	a	job.	Batch,	then,	is	used	to	describe	a	set
of	commands	that	are	run	one	after	the	other.	You	can	use	batch	files	to	automate
frequently	used	command	sequences	and	to	make	the	system	more	accessible	to
colleagues	who	use	application	programs	but	might	not	know	MS-DOS	as	well	as	you	do.

	

javascript:Next(0)
javascript:Next(1)

How	MS-DOS	Searches	for	a	Command
If	you	type	something	when	MS-DOS	is	displaying	the	system	prompt,	MS-DOS	assumes
you	have	typed	a	command	name.	It	then	follows	a	particular	sequence	in	trying	to	carry	out
the	command:

1.	 It	checks	to	see	whether	you	typed	the	name	of	a	built-in	command,	such	as	dir	or
copy.	If	you	did,	MS-DOS	carries	out	that	command.

2.	 If	what	you	typed	isn't	the	name	of	a	built-in	command,	MS-DOS	checks	to	see	if
you	typed	the	name	of	a	file	with	the	extension	COM	or	EXE	(a	command	file).	If
you	did,	MS-DOS	searches	the	current	directory	for	the	file	and,	if	it	finds	the	file,
loads	the	program	contained	in	the	file	and	runs	it.

3.	 If	what	you	typed	isn't	the	name	of	a	command	file,	MS-DOS	checks	to	see	if	you
typed	the	name	of	a	file	with	the	extension	BAT	(a	batch	file).	If	you	did,	MS-DOS
searches	the	current	directory	for	the	file	and,	if	it	finds	the	file,	carries	out	the
commands	in	the	batch	file.

4.	 If	MS-DOS	doesn't	find	the	file	in	the	current	directory,	it	performs	steps	2	and	3
of	this	sequence	in	each	of	the	directories	specified	in	the	Path	command.

The	sequence	is	important	because	it	explains	why	MS-DOS	won't	carry	out	a	command	file
with	the	same	name	as	a	built-in	command	and	why	it	won't	carry	out	a	batch	file	that	has
the	same	name	as	either	a	built-in	command	or	a	command	file.

	

javascript:Next(0)
javascript:Next(1)

Creating	the	Sample	Files
Change	to	the	\RUNDOS	directory:
C:\>cd	\rundos

Because	you'll	be	creating	your	own	commands	in	this	chapter,	the	system	prompt	will	be
shown	as	a	simple	C>	to	keep	it	unobtrusive.	If	your	system	prompt	normally	shows	the
current	directory,	you	can	simplify	it	temporarily	by	typing	this:
C:\RUNDOS>prompt

When	you	next	start	or	restart	your	computer,	the	system	prompt	will	revert	to	showing	both
the	current	drive	and	the	current	directory.

You'll	use	three	sample	files	in	this	chapter:	LETR1.DOC,	LETR2.DOC,	and	LETR3.DOC.	Type
the	text	shown	below	to	create	the	sample	files.	(Remember,	press	either	F6	or	Ctrl-Z,	and
then	press	Enter	where	you	see	^Z.)
C>copy	con	letr1.doc
This	is	the	sample	file.
^Z
								1	file(s)	copied

C>copy	letr1.doc	letr2.*
								1	file(s)	copied

C>copy	letr1.doc	letr3.*
								1	file(s)	copied

C>_

	

javascript:Next(0)
javascript:Next(1)

Creating	a	Batch	File
A	batch	file	is	simply	a	text	file,	whose	extension	is	BAT,	that	contains	MS-DOS	commands.
There	are	several	ways	to	create	a	batch	file.	If	the	batch	file	is	short	and	you're	confident
that	it	will	work	correctly,	you	can	simply	copy	from	the	console	to	a	file.	If	you	think	you
might	want	to	tinker	with	the	file	before	saving	it,	you	can	use	Edit	or	a	word	processor	that
can	store	files	without	inserting	its	own	formatting	codes.	If	you	want	to	see	how	the
commands	work	together,	you	can	use	Doskey	for	a	test-as-you-go	approach	as	described
later	in	this	chapter	under	the	heading	"Using	Doskey	to	Create	a	Batch	File."

Because	the	examples	in	this	chapter	are	short	and	have	already	been	checked	for	usability,
you'll	copy	from	the	console	to	create	your	first	batch	files.	You	can't	go	back	to	correct	an
error	after	you	press	Enter	at	the	end	of	a	line,	but	if	you	make	a	typing	error	you	can
recover	easily	by	pressing	Ctrl-Break	and	reentering	the	batch	file.

Suppose	one	of	the	application	programs	you	use	is	a	word	processor,	and	you	name	the
files	that	contain	letters	LETR1.DOC,	LETR2.DOC,	LETR3.DOC,	and	so	forth.	You	use	the
Directory	command	fairly	often	to	display	the	names	of	those	particular	files.	Instead	of
typing	dir	letr*.doc	each	time,	you	could	put	the	Directory	command	in	a	batch	file	named
DIRLET.BAT.

Type	the	following	to	create	the	batch	file:
C>copy	con	dirlet.bat
dir	letr*.doc
^Z
								1	file(s)	copied

C>_

The	first	line	you	typed	names	the	batch	file;	the	second	line	contains	the	command	MS-
DOS	carries	out.	Test	your	batch	command	by	typing	its	name:
C>dirlet

C>dir	letr*.doc

	Volume	in	drive	C	is	HARD	DISK
	Volume	Serial	Number	is	1608-5A30
	Directory	of	C:\RUNDOS

LETR1			DOC								26	01-05-95			3:13p
LETR2			DOC								26	01-05-95			3:13p
LETR3			DOC								26	01-05-95			3:13p
							3	file(s)									78	bytes
																			13277184	bytes	free

It's	possible	that	you'll	see	a	double	prompt	like	the	following	when	your	batch	file	finishes
running:
C>
C>_

Don't	worry	about	this	prompt.

The	first	line	displayed	after	you	type	your	batch	command	is	the	Directory	command	that
you	entered	into	your	batch	file.	MS-DOS	displays	the	commands	in	a	batch	file	as	they	are
carried	out,	as	if	you	had	typed	the	commands	yourself.

You	could	make	the	batch	command	even	easier	to	type	by	naming	the	batch	file	simply
LDIR.BAT.	In	the	long	run,	however,	it's	usually	better	to	make	the	name	long	enough	to	give
a	good	hint	of	what	the	command	does,	especially	if	you	create	a	large	number	of	batch
files.

Displaying	Messages	from	a	Batch	File

The	Remark	(rem)	command	doesn't	cause	MS-DOS	to	do	anything,	but	it	is	a	valid
command.	You	can	include	a	message	with	the	Remark	command.	The	command	form	is
this:

rem	<message>

Although	this	command	isn't	especially	useful	at	the	MS-DOS	command	level,	it	lets	you
insert	a	message	into	a	batch	file.	To	see	how	the	Remark	command	works,	create	another
version	of	DIRLET.BAT	that	contains	a	descriptive	message;	type	the	following:
C>copy	con	dirlet.bat
rem	DIRECTORY	OF	LETTERS
dir		letr*.doc
^Z
									1	file(s)	copied

The	new	version	of	DIRLET.BAT	replaces	the	first	version	you	created	a	few	minutes	ago.
(Your	version	of	MS-DOS	might	ask	whether	you	want	to	overwrite	the	file;	choose	yes.)
Test	this	new	version	by	typing	this:
C>dirlet

The	Remark	command	you	included	causes	MS-DOS	to	display	the	message	before	it
displays	the	directory	shown	on	the	following	page.
C>rem	DIRECTORY	OF	LETTERS

C>dir	letr*.doc

	Volume	in	drive	C	is	HARD	DISK
	Volume	Serial	Number	is	1608-5A30

	Directory	of	C:\RUNDOS

LETR1				DOC								26	01-05-95			3:13p
LETR2				DOC								26	01-05-95			3:13p
LETR3				DOC								26	01-05-95			3:13p
							3	file(s)										78	bytes
																				13277184	bytes	free
C>_

Carrying	Out	the	Same	Batch	Command	with	Different	Data

You	have	seen	that	most	MS-DOS	commands	include	one	or	more	parameters	that	you	can
use	to	make	your	instructions	more	specific.	When	you	enter	a	Directory	command,	for
example,	you	can	specify	a	file	name	to	display	some	portion	of	the	files	on	a	disk	and	the
/W	option	to	display	the	wide	form	of	the	directory.	The	Copy	command	is	another	example.
It	requires	two	parameters:	the	name	of	the	file	to	be	copied	and	the	name	to	be	given	to
the	new	copy.

Parameters	let	you	use	the	same	MS-DOS	command	with	different	data.	You	can	give	a
batch	file	the	same	capability	with	a	feature	called	a	replaceable	parameter.	A	replaceable
parameter	is	a	special	symbol	you	put	in	a	batch	file.	When	you	use	the	batch	file,	MS-DOS
replaces	the	symbol	with	a	parameter	you	include	when	you	type	the	batch	command.	The
symbol	consists	of	a	percent	sign	followed	by	a	one-digit	number,	such	as	%1.	You	can	use
the	numbers	1	through	9	in	replaceable	parameters,	and	you	can	include	more	than	one
replaceable	parameter	in	a	batch	file.	(MS-DOS	also	recognizes	%0	as	a	replaceable
parameter	but	reserves	this	parameter	to	mean	the	drive,	path,	and	file	name	of	the	batch
file	itself.)

The	number	of	the	symbol	identifies	which	parameter	replaces	the	symbol.	If	a	batch
command	takes	two	parameters,	for	example,	MS-DOS	replaces	%1	wherever	it	occurs	in
the	batch	file	with	the	first	parameter	you	type	with	the	batch	command,	and	it	replaces	%2
with	the	second	parameter	you	type.	Replaceable	parameters	can	be	used	anywhere	in	a
batch	command.

For	example,	suppose	you	wanted	a	batch	command	that	would	print	a	file	by	copying	it	to
the	printer.	(You	already	have	an	MS-DOS	Print	command,	but	go	through	the	example
anyway;	it	illustrates	the	use	of	replaceable	parameters.)	All	the	batch	file	needs	is	a	Copy
command	and	one	replaceable	parameter	that	identifies	the	file	to	be	printed.	The	batch
command	is	called	Prnt	to	avoid	confusion	with	the	Print	command.	Type	the	following:
C>copy	con	prnt.bat
copy	%1	prn
^Z
								1	file(s)	copied

To	test	your	Prnt	batch	command,	make	certain	the	printer	is	turned	on	and	type	the
following:

C>prnt	letr1.doc

MS-DOS	displays	the	command	after	replacing	%1	with	the	batch-command	parameter,
LETR1.DOC,	and	prints	the	file:
C>copy	letr1.doc	prn
								1	file(s)	copied

Figure	14-1	shows	several	versions	of	PRNT.BAT	that	you	might	create	for	printing	other
documents.	Each	version	contains	at	least	one	replaceable	parameter;	the	last	version
contains	two.	To	the	left	of	each	version	is	an	example	of	how	the	batch	command	would	be
typed,	and	to	the	right	are	the	corresponding	commands	that	would	be	carried	out	after	MS-
DOS	replaced	the	replaceable	parameters.	The	batch-command	parameters,	the
replaceable	parameters	in	each	version	of	the	batch	file,	and	the	result	after	MS-DOS
replaces	them	with	the	batch-command	parameters	are	shown	in	italics.

Batch	Command	You	Would
Type

Contents	of
PRNT.BAT

Commands	That	Would	Be
Carried	Out

C>prnt	memo.doc copy	%1	prn copy	memo.doc	prn

C>prnt	memo copy	%1.doc	prn copy	memo.doc	prn

C>prnt	memo	rept
copy	%1.doc	prn
copy	%2.doc	prn

copy	memo.doc	prn
copy	rept.doc	prn

Figure	14-1:	Replaceable	parameters	in	a	batch	file.

Replaceable	parameters	make	batch	files	much	more	flexible.	Your	batch	commands
needn't	be	limited	to	handling	the	same	files	or	devices	all	the	time—they	can	be	used	just
like	MS-DOS	commands	to	operate	with	any	file	or	device.

Canceling	a	Batch	Command

As	with	other	MS-DOS	commands,	you	press	Ctrl-Break	to	cancel	a	batch	command.	But
when	you	cancel	a	batch	command,	MS-DOS	prompts	you	to	confirm.	To	see	this,	create	a
short	new	batch	file	named	DIRS.BAT	that	first	displays	the	entries	in	your	\DOS	directory
and	then	displays	the	entries	in	the	current	directory	(\RUNDOS).

Create	the	DIRS.BAT	file	by	typing	the	following:
C>copy	con	dirs.bat
dir	\dos
dir
^Z
								1	file(s)	copied

The	directory	displays	should	be	long	enough	to	give	you	time	to	press	Ctrl-Break.	Type	the

name	of	the	Dirs	batch	command,	then	press	Ctrl-Break	as	soon	as	MS-DOS	starts
displaying	the	file	names:
C>dirs

C>dir	\dos

	Volume	in	drive	C	is	HARD	DISK
	Volume	Serial	Number	is	1608-5A30
	Directory	of	C:\DOS

.												<DIR>									01-15-94			6:05p

..											<DIR>									01-15-94			6:05p
EGA						SYS								4885			02-01-94		12:00a
DISPLAY		SYS							15682			02-01-94		12:00a
FORMAT			COM							32285			02-01-94		12:00a
PACKING		LST								3492			02-01-94^C

Terminate	batch	job	(Y/N)?_

If	you	respond	n,	the	command	being	carried	out	is	canceled,	but	MS-DOS	continues	with
the	next	command	in	the	batch	file.	Type	n;	MS-DOS	carries	out	the	next	command,	which
displays	the	current	directory:
C>dir

	Volume	in	drive	C	is	HARD	DISK
	Volume	Serial	Number	is	1608-5A30
	Directory	of	C:\RUNDOS

.												<DIR>									01-05-95			8:21a

..											<DIR>									01-05-95			8:21a
PH								TXT								526						01-05-95			1:43p
LETR1					DOC									26						01-05-95			3:13p
LETR2					DOC									26						01-05-95			3:13p
LETR3					DOC									26						01-05-95			3:13p
DIRLET				BAT									41						01-05-95			3:17p
PRNT						BAT									13						01-05-95			3:24p
DIRS						BAT									15						01-05-95			3:30p
									9	file(s)														673	bytes
																											13265422	bytes	free

If	you	respond	y	to	the	"Terminate?"	question,	MS-DOS	cancels	the	entire	batch	command
and	displays	the	system	prompt.	Type	the	Dirs	batch	command,	and	cancel	it	again,	but	this
time	respond	y:
C>dirs

C>dir	\dos

	Volume	in	drive	C	is	HARD	DISK
	Volume	Serial	Number	is	1608-5A30
	Directory	of	C:\DOS

.												<DIR>									01-15-94			6:05p

..											<DIR>									01-15-94			6:05p
EGA							SYS					4885					02-01-94		12:00a
DISPLAY			SYS				15682					02-01-94		12:00a
FORMAT				COM				32285					02-01-94		12:00a
PACKING			LST					3492					02-01-94		12:00a
ANSI						SYS					8868					02-01-94^C

Terminate	batch	job	(Y/N)?y

MS-DOS	returns	to	command	level	without	completing	the	batch	command.

	

javascript:Next(0)
javascript:Next(1)

Developing	Your	Own	Startup	Procedure
Each	time	you	start	or	restart	the	system,	MS-DOS	goes	through	a	startup	procedure	that
includes	searching	the	root	directory	of	the	startup	disk	for	a	special	batch	file	named
AUTOEXEC.BAT.	If	it	finds	the	file,	MS-DOS	carries	out	whatever	commands	the	file
contains.	Typically,	AUTOEXEC.BAT	is	used	to	hold	the	commands	you	don't	want	to	have
to	type	each	time	you	start	or	restart	the	system—a	Path	command,	for	example,	that	tells
MS-DOS	where	to	find	command	files	on	a	hard	disk	and	a	Prompt	command	that	sets	the
system	prompt	to	show	the	current	directory.

Versions	4	and	later	of	MS-DOS	create	AUTOEXEC.BAT	(or	modify	the	existing	version)	as
part	of	the	installation	procedure.	Earlier	versions	of	MS-DOS	don't	create	the	file
automatically,	but	because	AUTOEXEC.BAT	is	so	useful,	most	systems	include	one.

Although	MS-DOS	gives	special	treatment	to	AUTOEXEC.BAT,	that	doesn't	mean	the	file	is
untouchable.	You	can	add	commands	to	it	at	any	time,	but	you	should	always	be	careful	not
to	change	or	delete	any	existing	commands,	especially	those	you	don't	clearly	understand.
(You	can	encounter	such	commands	in	AUTOEXEC.BAT,	particularly	on	systems	that
connect	to	a	network	and	those	that	have	been	set	up	by	someone	else.)

The	following	examples	show	you	some	commands	you	might	want	to	include	in
AUTOEXEC.BAT	to	tailor	MS-DOS	and	your	computer	more	closely	to	your	needs	or
preferences.	If	you	follow	these	examples,	however,	you'll	be	replacing	the
AUTOEXEC.BAT	file	you	have	now,	so	before	you	start,	you'll	check	for,	and	protect,	your
existing	file.

A	Safety	Check

It's	easy	to	check	for	AUTOEXEC.BAT.	Remember,	it	must	always	be	in	the	root	directory
of	the	system	disk,	so	a	simple	Directory	command	does	the	job.	The	current	directory
should	still	be	C:\RUNDOS,	so	type	the	following	command	to	check	the	root	directory:
C>dir	\autoexec.bat

If	MS-DOS	responds	File	not	found,	you	don't	have	an	AUTOEXEC.BAT	file,	and	you	won't
hurt	a	thing	by	trying	the	following	examples.	If,	however,	MS-DOS	responds	by	showing	an
entry	for	AUTOEXEC.BAT,	type	the	following	to	rename	your	existing	file	so	that	you	won't
lose	it:
C>ren	\autoexec.bat	autoexec.sav

Type	the	Directory	command	again	to	search	for	AUTOEXEC.BAT	in	the	root	directory.	This
time,	MS-DOS	should	respond	File	not	found.

You'll	restore	your	original	AUTOEXEC.BAT	later.

Creating	an	AUTOEXEC.BAT	File

Depending	on	how	your	system	is	set	up	and	what	you	want	to	do	with	it,	an
AUTOEXEC.BAT	file	can	contain	anywhere	from	a	few	to	many	commands.	As	mentioned
earlier,	however,	two	that	are	usually	included	are	a	Path	command	that	tells	MS-DOS
where	to	find	command	files	and	a	Prompt	command	that	sets	the	system	prompt	to	display
the	current	directory.

Although	your	normal	AUTOEXEC.BAT	file	might	well	include	more	than	these	two
commands,	the	following	example	shows	you	how	to	create	just	such	a	simple
AUTOEXEC.BAT	file.	The	file	is	short,	so	copy	from	the	console	to	create	it.	Type	the
following:
C>copy	con	\autoexec.bat
rem	SAMPLE	STARTUP	PROCEDURE
path		c:\;c:\dos;c:\rundos
prompt	pg
^Z

You	created	the	file	in	the	root	directory	of	the	system	disk	because	that's	where	MS-DOS
always	looks	for	AUTOEXEC.BAT.	To	test	your	startup	procedure,	you	must	restart	the
system.

NoteBe	sure	to	open	the	latch	or	remove	any	floppy	disk	in	the	floppy	disk	drive	so	thatMS-DOS	restarts	from	the	hard	disk.

Now	restart	the	system	by	pressing	Ctrl-Alt-Del.	MS-DOS	might	display	some	messages
before	carrying	out	the	commands	in	your	new	AUTOEXEC.BAT	file,	but	regardless	of	your
version	of	MS-DOS,	the	end	of	the	startup	screen	looks	like	this:
C>rem	SAMPLE	STARTUP	PROCEDURE

C>path	c:\;c:\dos;c:\rundos

C>prompt	pg

C:\>_

So	far	so	good,	but,	as	you've	probably	realized,	a	simple	batch	file	like	this	just	begins	to
tap	the	power	of	AUTOEXEC.BAT.	Suppose,	now,	that	you	want	MS-DOS	to	clear	the
screen	and	display	its	version	number	each	time	you	start	your	computer.	You	also	want
MS-DOS	to	change	to	a	particular	directory	and	display	a	directory	listing.	Here's	a	new
AUTOEXEC.BAT	file	that	does	what	you	want.	You	can	use	Edit	or	a	word	processor	if	you
want	to	try	your	editing	skills.	Otherwise,	simply	copy	from	the	console	again	(as	shown	in
the	example)	to	replace	the	sample	AUTOEXEC.BAT	file	with	a	new	version.

Type	the	following:
C:\>copy	con	autoexec.bat
rem	SAMPLE	STARTUP	PROCEDURE

path	c:\;c:\dos;c:\rundos
prompt	pg
cls
ver
cd	\rundos
dir
^Z

Again,	restart	the	system	to	test	your	new	AUTOEXEC.BAT	file.	This	time,	you	see	(though
briefly)	this:
C>rem	SAMPLE	STARTUP	PROCEDURE

C>path	c:\;c:\dos;c:\rundos

C>prompt	pg

C>cls

The	screen	clears,	and	then	MS-DOS	displays	this:
C:\>ver

MS-DOS	Version	6.0

C:\>cd	\rundos

C:\RUNDOS>dir

	Volume	in	drive	C	is	HARD	DISK
	Volume	Serial	Number	is	1608-5A30
	Directory	of	C:\RUNDOS

.												<DIR>									01-05-95			8:21a

..											<DIR>									01-05-95			8:21a
PH							TXT							526					01-05-95			1:43p	
LETR1				DOC								26					01-05-95			3:13p
LETR2				DOC								26					01-05-95			3:13p
LETR3				DOC								26					01-05-95			3:13p
DIRLET			BAT								41					01-05-95			3:17p
PRNT					BAT								13					01-05-95			3:24p
DIRS					BAT								15					01-05-95			3:30p
								9	file(s)												673	bytes
																								13265422	bytes	free

Your	new	startup	procedure	not	only	tells	MS-DOS	where	to	find	the	files	it	needs,	it	also

clears	the	screen,	displays	the	version	number,	changes	the	current	directory,	and	then
displays	the	entries	in	the	current	directory.

You	can	also	use	AUTOEXEC.BAT	to	handle	special	startup	requirements.	For	example,	if
your	system	has	equipment	options	that	require	special	setup	instructions	with	the	Mode
command,	put	the	commands	in	AUTOEXEC.BAT	so	that	you	needn't	type	them	each	time
you	start	or	restart	the	system.	Or,	if	you	have	a	device	attached	to	your	system	that
requires	a	special	program	to	operate	it	(such	as	a	CD-ROM	drive	or	a	scanner),	you	can
put	the	command	in	your	AUTOEXEC.BAT	file	so	that	you	don't	have	to	enter	the	command
each	time	you	start	the	system.	And	by	all	means,	put	the	command	to	load	Doskey	in
AUTOEXEC.BAT	if	it	isn't	there	already.

If	you	renamed	your	existing	AUTOEXEC.BAT	file	at	the	beginning	of	this	example,	type	the
following	to	save	the	example	as	AUTOEXEC.TST	and	restore	the	original:
C:\RUNDOS>ren	\autoexec.bat		autoexec.tst

C:\RUNDOS>ren	\autoexec.sav		autoexec.bat

Now	your	real	AUTOEXEC.BAT	will	be	executed	the	next	time	you	start	up	your	system.
The	version	you	created	in	the	example	is	still	in	the	root	directory	as	AUTOEXEC.TST,	in
case	you	want	to	experiment	with	it	further.

If	you	didn't	have	an	AUTOEXEC.BAT	file	to	begin	with,	type	the	following	so	that	MS-DOS
won't	carry	out	your	example	file	the	next	time	you	start	your	system:
C:\RUNDOS>ren	autoexec.bat	autoexec.tst

The	version	you	created	in	the	example	is	still	present	in	the	root	directory	as
AUTOEXEC.TST,	in	case	you	want	to	experiment	with	it	further.

Finally,	to	rid	your	system	of	a	possibly	invalid	Path	command,	restart	your	computer	by
pressing	Ctrl-Alt-Del.

	

javascript:Next(0)
javascript:Next(1)

Some	Useful	Commands
The	following	examples	describe	a	few	batch	commands	you	might	find	useful;	they	might
also	give	you	some	ideas	for	other	commands	you	could	create.	Each	topic	includes	a
description	of	what	the	command	does,	the	contents	of	the	batch	file,	and	one	or	two
examples	of	its	use.

These	examples	are	illustrative;	they	are	not	hands-on	exercises	because	you	might	not
have	the	necessary	files	or	devices	to	use	them.	But	remember	that	they're	here;	you'll
probably	find	a	situation	in	which	they	can	be	helpful.

Printing	a	File

Earlier	in	the	chapter	you	created	the	Prnt	batch	command,	which	prints	a	file	by	copying	it
to	the	printer.	PRNT.BAT	contains	copy	%1	prn.	To	use	it,	you	type	the	name	of	the	batch
file	followed	by	the	name	of	the	file	to	be	printed.	(For	example,	to	print	a	file	named
REPORT.DOC,	you	would	type	prnt	report.doc.)

As	the	examples	in	Figure	14-1	showed,	you	can	make	batch	commands	more	specific	by
including	common	parts	of	a	file	name	or	extension	in	the	batch	file.	For	example,	if	you
frequently	print	files	that	have	the	extension	DOC,	you	could	enter	the	command	in	the	batch
file	as	copy	%1.doc,	to	print	the	file	named	REPORT.DOC,	you	would	only	have	to	type	prnt
report.

Printing	a	File	in	Small	Type

If	your	printer	is	compatible	with	Epson	or	IBM	dot-matrix	printers,	you	can	use	the	Mode
command	to	print	132	characters	on	a	line.	This	type	size	is	handy	for	wide	reports	or
spreadsheets,	and	putting	the	Mode	and	Copy	commands	in	a	batch	file	named
SMALL.BAT	makes	them	easy	to	use.	SMALL.BAT	contains:
mode	lpt1:		132
copy	%1		lpt1:
mode	lpt1:		80

If	your	printer	is	attached	to	a	different	port,	change	lpt1	to	lpt2	or	lpt3,	as	necessary.	The
Small	command	takes	one	parameter,	the	name	of	the	file	to	be	printed	in	small	type.	To
use	the	Small	command	to	print	the	file	REPORT.DOC,	you	would	type
C:\>small		report.doc

MS-DOS	would	display	the	Mode	and	Copy	commands	and	print	the	file	in	small	type:
C:\>mode	lpt1:	132

LPT1:	not	rerouted

LPT1:	set	for	132

No	retry	on	parallel	printer	time-out

C:\>copy	report.doc		lpt1:
									1	file(s)	copied

C:\>mode	lpt1:	80

LPT1:	not	rerouted

LPT1:	set	for	80

No	retry	on	parallel	printer	time-out

The	second	Mode	command	resets	the	printer	to	normal	type.

Eliminating	Old	BAK	Files

Because	many	word	processors	create	a	backup	file	with	an	extension	of	BAK	each	time
you	edit	a	file,	your	disks	can	get	crowded	with	files	you	might	not	need.	The	two	batch	files
here	work	together	to	let	you	find	all	the	BAK	files	on	your	disk	and	erase	the	ones	you	don't
need.

First,	FINDBAK.BAT	consists	of	one	Directory	command	that	uses	the	/S	parameter	to	look
in	all	subdirectories	of	the	root	directory	and	the	/B	parameter	to	display	only	the	path	and
file	name	of	each	file	it	finds:
dir	*.bak	/s	/b

The	backslash	before	*.bak	starts	the	search	in	the	root	directory	and,	because	all	other
subdirectories	are	contained	in	the	root,	the	/S	parameter	makes	the	command	find	every
BAK	file	on	the	disk.	Use	the	Findbak	command	to	locate	the	files	you	want	to	delete.

Next,	CLEAN.BAT	consists	of	one	Delete	command	that	erases	all	files	in	the	specified
directory	that	have	the	extension	BAK:
del	%1	*.bak

The	Clean	command	takes	one	parameter,	the	directory	name	followed	by	a	backslash.	If
you	omit	the	parameter,	the	command	cleans	up	the	current	directory.	You	can	clean	up	the
disk	in	a	different	drive	by	preceding	the	path	name	with	the	drive	letter	and	a	colon.	For
example,	after	using	FINDBAK.BAT	to	find	your	BAK	files,	you	would	erase	all	files	whose
extension	is	BAK	in	the	current	directory,	simply	by	typing	clean.	If	you	wanted	to	erase	all
the	BAK	files	in	the	directory	\MKT\WP,	you	would	type	clean	\mkt\wp\.	To	erase	all	BAK
files	in	the	directory	\LASTYEAR\RPT	on	the	disk	in	drive	A,	you	would	type	clean
a:\lastyear\rpt\.

	

javascript:Next(0)
javascript:Next(1)

Creating	Commands	with	Doskey

NoteDoskey	is	included	with	versions	5	and	later	of	MS-DOS.	If	you	have	an	earlierversion	of	MS-DOS,	go	on	to	Chapter	15,	"Creating	Smart	Commands."

You've	seen	how	batch	files	can	help	you	customize	MS-DOS	by	combining	commands	to
perform	special	tasks.	To	create	a	batch	file,	you	can	copy	from	the	console,	as	in	the
preceding	examples,	or	use	a	text	editor	or	a	word	processor.	If	you	have	version	5	or	later,
you	can	also	use	Doskey.

Chapters	3	and	13	showed	how	Doskey	can	help	you	edit	and	repeat	MS-DOS	commands
you've	already	used.	This	section	introduces	several	Doskey	parameters	that	help	you	not
only	view	but	save	commands	in	either	of	two	forms:	as	batch	files	or	as	keyboard	shortcuts
called	macros.

Batch	Files	and	Macros

You	know	that	batch	files	are	sets	of	MS-DOS	commands	that	you	save	in	a	text	file	and
carry	out	by	typing	the	name	of	the	batch	file.	A	macro	is	a	similar	type	of	work	saver.	You
create	a	macro	by	assigning	a	descriptive	name	to	one	or	more	commands.	Once	you've
defined	a	macro	in	this	way,	you	simply	type	the	name	to	carry	out	the	commands.	You
benefit	by	saving	time	and	keystrokes,	especially	with	often-used,	long,	or	complicated	sets
of	commands.

In	some	respects,	macros	are	very	much	like	batch	files.	Both	are	your	creations;	both
cause	MS-DOS	to	carry	out	one	or	more	commands	to	do	a	specific	job;	and	both	let	you
start	the	command	sequence	by	typing	a	short,	descriptive	name.

Doskey	Command	Parameters

In	earlier	chapters,	you've	typed	doskey	to	start	the	Doskey	program,	and	you've	used
function	and	editing	keys	to	retrieve,	display,	and	edit	commands.	Doskey	also	includes
several	parameters	you	can	use	to	create	and	view	commands	and	macros.	Three
important	ones	are	these:

doskey	/history	<macro>=<command>	/macros

Doskey	is	the	name	of	the	program.	When	you	type	doskey	by	itself,	MS-DOS	loads	the
program	into	memory,	where	it	remains	until	you	turn	the	system	off	or	restart	MS-DOS.

/history,	which	you	can	abbreviate	as	/H,	tells	Doskey	to	show	you	a	list	of	all	commands
currently	in	memory.	You	can	use	the	/history	parameter	to	create	a	batch	file	by	redirecting
the	commands	from	memory	to	a	file.

<macro>=<command>	tells	Doskey	to	create	a	macro.	As	already	mentioned,	you	assign	a
name	(shown	here	as	macro)	to	one	or	more	commands	(command).	An	equal	sign	must
follow	the	macro	name.

/macros,	which	you	can	abbreviate	as	/M,	tells	Doskey	to	display	the	macros	currently	in
memory.	You	can	use	the	/macros	parameter	to	save	macros	by	redirecting	them	from	the
computer's	memory,	where	they	will	be	lost	when	you	shut	down	the	system,	to	a	file.

Doskey	includes	a	few	other	parameters	you	can	use	to	control	its	behavior.	You	don't	need
these	parameters	here;	the	details	are	in	Appendix	C,	"MS-DOS	Command	Reference."

Using	Doskey	to	Create	a	Batch	File

When	you	use	Doskey,	you	can	retrieve	and	edit	commands	you	typed	earlier	because	the
commands	remain	in	a	special	portion	of	your	computer's	memory	until	you	turn	off	the
computer	or	restart	Doskey,	or	until	you've	typed	so	many	commands	that	the	oldest	ones
are	discarded	to	make	room	for	newer	ones.

Because	commands	remain	in	memory,	you	can	use	Doskey	as	an	alternative	to	a	text
editor	for	creating	some	batch	files.	The	following	example	shows	how	to	redirect	Doskey's
list	of	commands	to	a	batch	file.	Begin	by	starting	Doskey.	Type	this:
C:\>doskey

(If	Doskey	is	already	running,	press	Alt-F7.	This	clears	the	list	of	commands	Doskey	has
recorded	and	assures	you	of	a	fresh	start.)

Now	type	some	commands:
C:\>cd	\rundos

C:\RUNDOS>dir	/oe	>	prn

C:\RUNDOS>cd	\

These	three	commands	change	the	current	directory,	print	a	directory	listing	sorted	by
extension,	and	return	to	the	root	directory	of	drive	C.	These	commands	could	form	a	small
but	useful	batch	file	for	keeping	track	of	the	files	you	create	with	your	applications,
especially	if	you	can	specify	the	directory	you	want	to	list	and	print.	You	can	create	the	file
in	a	two-step	process.

First,	use	the	Doskey	/H	parameter	to	redirect	the	commands	to	a	file.	This	example	uses
the	extension	BAT,	but	you	could	just	as	easily	save	the	commands	as	a	standard	text	file
with	an	extension	such	as	TXT	or	DOC.	Type	this:
C:\>doskey	/h	>	list.bat

That's	really	all	there	is	to	using	Doskey	to	save	a	sequence	of	commands	you've	typed.	If
you	want	to	save	the	commands	as	a	usable	batch	file,	however,	your	work	isn't	quite	done,
so	use	Edit	to	add	a	few	finishing	touches.	Type	this:
C:\>edit	list.bat

When	Edit	displays	the	file,	change	\RUNDOS	to	a	replaceable	parameter	so	you	can
specify	any	directory	you	choose.	Change	this:
cd	\rundos

to	this:
cd	%1

Notice,	too,	that	Doskey	has	included	the	command	you	typed	to	create	the	batch	file.	You
have	to	omit	this	command	to	avoid	accidentally	redirecting	some	future	list	of	unrelated
Doskey	commands	to	your	batch	file,	so	delete	the	line	that	contains	doskey	/h	>	list.bat.
Save	the	file,	and	you're	done.	From	now	on,	whenever	you	want	to	print	the	directory
entries	of	the	files	in	a	particular	directory,	sorted	by	extension,	just	type	list	followed	by	the
name	of	the	directory.

Using	Doskey	in	this	way	can	be	especially	useful	when	you're	developing	a	batch	file	and
aren't	certain	the	commands	you're	putting	together	will	do	the	job	you	have	in	mind.	Start
Doskey,	and	type	each	command	you	intend	to	use.	Because	each	command	is	carried	out
immediately,	you	can	see	exactly	what	it	does,	and	you	can	see	how	all	the	commands	work
together	before	you	save	them	as	a	batch	file.

Using	Doskey	to	Create	a	Macro

Creating	a	macro	with	Doskey	is	just	as	easy	as	creating	a	batch	file,	perhaps	even	easier.
To	define	a	macro	to	Doskey,	you	type	a	macro	name,	an	equal	sign,	and	the	command	or
commands	you	want	the	macro	to	carry	out.	You	can	use	replaceable	parameters	as	you	do
in	batch	files,	but	instead	of	%1,	%2,	%3,	and	so	on,	you	use	$1,	$2,	$3,	and	so	on	through
$9.

The	following	examples	use	the	Directory	and	Mode	commands	to	create	some	macros	you
might	want	to	use.

In	versions	5	and	later,	the	/O	parameter	of	the	Directory	command	allows	you	to	sort	a
directory	in	a	number	of	ways:	by	name,	extension,	size,	or	date	and	time,	or	with
subdirectories	grouped	at	the	beginning	of	the	listing.	Depending	on	what	you're	doing,	you
might	choose	to	look	at	a	directory	in	any	of	these	ways.	To	keep	typing	to	a	minimum,	you
can	create	a	macro	for	each	type	of	listing	and	add	the	/P	parameter	so	that	MS-DOS	will
pause	after	each	screenful.

If	you	haven't	turned	off	or	restarted	your	computer,	clear	Doskey's	memory	by	pressing
Alt-F7.	If	you	have	turned	off	your	computer,	turn	it	back	on,	and	type	doskey	to	load	the
program.	Now	create	the	macros	by	typing	the	following:
C:\>doskey	dname=dir	$1	/on	/p

C:\>doskey	dext=dir	$1	/oe	/p

C:\>doskey	dsize=dir	$1	/os	/p

C:\>doskey	ddate=dir	$1	/od	/p

C:\>doskey	dsubs=dir	$1	/og	/p

Now	try	them	out.	Using	your	\DOS	directory	as	an	example,	type	dname	\dos	to	list	the
entries	alphabetically	by	file	name,	dext	\dos	to	list	them	by	extension,	dsize	\dos	to	list
them	by	size,	and	ddate	\dos	to	list	them	by	date	and	time.	If	you	want,	type	dsubs	c:	to	list
the	subdirectories	in	the	current	directory	on	drive	C	before	the	files.

If	you	have	a	monitor	that	can	change	between	a	normal	display	(25	lines)	and	a	condensed
display	(43	or	50	lines)	with	the	Mode	command,	you	can	create	macros	that	switch	you
quickly	back	and	forth.	You	might,	for	example,	prefer	a	condensed	display	for	directory
listings	but	a	regular	25-line	display	for	most	other	work.	Type	the	following:
C:\>doskey	big=mode	con	lines=25

C:\>doskey	little=mode	con	lines=43

Now,	when	you	want	a	condensed	display,	simply	type	little.	To	switch	back	to	25	lines,	type
big.	(If	you	try	these	examples	and	MS-DOS	responds	ANSI.SYS	must	be	installed	to
perform	requested	function,	you	need	to	identify	a	file	named	ANSI.SYS	to	MS-DOS	as
part	of	your	startup	procedure.	Chapter	17,	"Tailoring	Your	System,"	tells	you	how.)

You	can	also	combine	the	screen	macros	with	the	directory-display	macros	by	taking
advantage	of	Doskey's	ability	to	accept	more	than	one	command	on	a	line.	At	the	system
prompt,	you	separate	commands	by	pressing	Ctrl-T.	In	a	macro,	you	do	the	same	thing	by
typing	$T	(or	$t).	For	example,	the	following	macro	changes	the	screen	to	a	condensed
display,	lists	by	size	the	entries	in	the	directory	you	specify,	waits	for	you	to	press	a	key,
and	then	returns	to	a	25-line	display.	Note	the	$t	separating	the	Mode,	Pause,	and	Directory
commands.	Although	the	macro	is	shown	on	two	lines	here,	don't	press	Enter	until	you	reach
the	end:
doskey	dir43=mode	con	lines=43	$t	dir	$1	/os	/p
$t	pause	$t	mode	con	lines=25<enter>

To	see	a	condensed	listing	of	your	\DOS	directory,	you	would	type	dir43	\dos.

Saving	Macros	for	Later	Use

Although	macros	act	much	like	batch	files,	they're	stored	in	your	computer's	memory,	not	on
disk;	they	aren't	saved	when	you	turn	off	or	restart	the	computer.	You	can	save	the	macros
you	create	by	using	either	the	/H	or	the	/M	parameter	to	redirect	the	macros	into	a	file.	The
difference	between	the	two	parameters	is	important:

If	the	macro-definition	commands	are	in	the	list	of	commands	Doskey	can	retrieve,
/H	saves	the	commands	that	create	the	macros.

If	the	macros	are	currently	in	your	computer's	memory,	/M	saves	the	macros.

To	see	how	these	parameters	work,	first	use	the	/H	parameter	to	save	the	macro	definitions
currently	in	your	computer's	memory.	Type	this:
C:\>doskey	/h	>	macros1.txt

Now,	save	the	macros	themselves	by	typing	this:
C:\>doskey	/m	>	macros2.txt

Use	the	Type	command	to	view	the	two	files	you	just	saved.	The	commands	saved	with	/H
look	something	like	this	(you	probably	won't	see	them	all	if	you've	been	trying	out	the
macros	because	other	commands	will	take	up	space	in	the	list):
doskey	dname=dir	$1	/on	/p
doskey	dext=dir	$1	/oe	/p
doskey	dsize=dir	$1	/os	/p
doskey	ddate=dir	$1	/od	/p
doskey	dsubs=dir	$1	/og	/p
doskey	big=mode	con	lines=25
doskey	little=mode	con	lines=43
doskey	dir43=mode	con	lines=43	$t	dir	$1	/os	/p
		$t	pause	$t	mode	con	lines=25
doskey	/h	>	macros1.txt

The	file	saved	with	/M	looks	like	this:
DNAME=dir	$1	/on	/p
DEXT=dir	$1	/oe	/p
DSIZE=dir	$1	/os	/p
DDATE=dir	$1	/od	/p
DSUBS=dir	$1	/og	/p
BIG=mode	con	lines=25
LITTLE=mode	con	lines=43
DIR43=mode	con	lines=43	$t	dir	$1	/os	/p
		$t	pause	$t	mode	con	lines=25

The	first	file	contains	the	commands	that	created	the	macros.	You	can	easily	turn	such	a	file
into	a	batch	file	by	entering	the	macro-definition	commands,	giving	the	file	a	BAT	extension,
and	deleting	the	last	line	(which	will	be	something	like	doskey	/h	>	macros1.txt).

The	second	file	contains	the	macros	you	created.	It	forms	a	useful	record	of	your	macros,
but	in	order	to	run	the	macros	again	in	your	next	session	with	MS-DOS,	you	must	edit	the
file,	adding	doskey	in	front	of	each	one	to	turn	the	macro	into	the	command	that	creates	it.
You	can	then	turn	the	file	of	macro-definition	commands	into	a	batch	file	by	giving	the	file	a
BAT	extension.

Thus,	although	the	/M	parameter	might	appear	to	be	more	useful	because	it	saves	the
actual	macros,	the	reverse	is	true.	Each	time	you	start	MS-DOS,	you	must	also	define	any
macros	you	want	to	use.	If	you're	going	to	save	a	macro,	you'll	want	to	save	the	macro
definition	because	you	must	run	the	command	that	creates	the	macro	before	you	can	use
the	macro	itself.	You	can	put	a	macro-definition	command	in	a	batch	file	and	run	it	without
any	problems.	You	cannot,	however,	run	the	macro	itself	from	a	batch	file,	even	if	you	first
define	it	in	the	same	batch	file.	Macro	names	can	be	typed	only	at	the	MS-DOS	system
prompt.

	

javascript:Next(0)
javascript:Next(1)

Chapter	15:	Creating	Smart	Commands

Overview
The	previous	two	chapters	showed	how	redirection,	filter	commands,	pipes,	batch	files,	and
macros	let	you	build	your	own	commands	or	change	the	way	that	MS-DOS	commands
work.	This	chapter	shows	how	MS-DOS	gives	you	more	control	over	the	way	it	carries	out
the	commands	you	build	into	a	batch	file.	The	techniques	in	this	chapter	help	you	create
powerful	commands	tailored	to	your	needs.

You	can	make	your	commands	display	their	own	instructions	or	warning	messages.	Or	you
can	specify	the	circumstances	under	which	MS-DOS	carries	out	one	command—or	a
different	sequence	of	commands	altogether.	You	can	even	make	the	system	pause	until	you
tell	it	to	proceed.

This	chapter	shows	you	how	to	develop	a	batch	file	that	uses	most	of	these	capabilities.
The	next	chapter	extends	the	example,	describes	two	additional	batch	commands,	and
shows	several	useful	commands	you	can	create.	When	you	complete	these	two	chapters,
you'll	be	ready	to	apply	the	full	power	of	MS-DOS	to	your	needs.

	

javascript:Next(0)
javascript:Next(1)

Preparing	for	the	Examples
For	these	examples,	you'll	need	a	formatted	floppy	disk	and	some	sample	files.	If	you
completed	the	examples	in	Chapter	13,	"Taking	Control	of	Your	System,"	use	the	\RUNDOS
directory,	which	contains	the	phone-list	file.	Put	the	formatted	floppy	disk	in	drive	A,	and
change	the	current	directory	to	\RUNDOS	by	typing	this:
C:\>cd	\rundos

If	you	want,	change	the	prompt	to	C>,	as	shown	in	the	following	examples,	by	typing
prompt.	You'll	use	six	sample	files	in	this	chapter	and	the	next	chapter:

P.DOCQ.DOC

P.BAK Q.BAK

P.OLD Q.OLD

Type	the	following	to	create	the	files	(as	usual,	press	F6	or	Ctrl-Z	and	Enter	where	you	see
^Z):
C>copy	con	p.doc
This	is	a	sample	file.
^Z
								1	file(s)	copied

C>copy	p.doc	p.bak
								1	file(s)	copied

C>copy	p.doc	p.old
								1	file(s)	copied

C>copy	p.*	q.*
P.DOC
P.BAK
P.OLD
								3	file(s)	copied

This	completes	the	preparation	for	the	examples.

	

javascript:Next(0)
javascript:Next(1)

Creating	an	Archive	Command
Disk	files	proliferate	as	you	use	your	computer.	You'll	probably	archive	files	from	time	to
time,	copying	them	to	long-term-storage	floppy	disks	and	then	erasing	them	from	your
working	disks,	just	as	you	occasionally	remove	documents	from	your	paper	files	and	put
them	in	long-term	storage.

Although	MS-DOS	version	6	includes	the	MSbackup	command	and	earlier	versions	include
the	Backup	and	Restore	commands	to	help	you	archive	old	files,	this	chapter	shows	you
how	to	use	the	MS-DOS	batch	commands	to	develop	an	Archive	command	that	all	users
can	use,	whether	or	not	they're	comfortable	with	MS-DOS	commands.

You	start	with	a	batch	file	that	contains	a	single	Copy	command,	and	then	you	expand	the
batch	file	to	display	instructions,	provide	a	safeguard	against	inadvertently	erasing	a
previously	archived	file,	and	erase	the	file	after	it	is	archived.

The	floppy	disk	in	drive	A	is	the	archive	floppy	disk,	the	one	you	store	in	a	safe	place.	Your
hard	disk	is	the	working	disk	that	contains	files	you	want	to	archive.

Your	Archive	command	will	be	a	file	named	ARCHIVE.BAT.	The	initial	version	contains	only	a
Copy	command.	To	create	the	file,	type	the	following:
C>copy	con	archive.bat
copy	%1	a:%1
^Z
								1	file(s)	copied

This	file	is	the	starting	point	for	your	Archive	command.	It	requires	only	one	parameter,	the
name	of	the	file	to	be	archived.	The	Copy	command	copies	this	file	(%1	in	the	Copy
command)	to	the	floppy	disk	in	drive	A,	giving	it	the	same	name	(a:%1)	as	the	original.	To
see	how	the	batch	file	works,	make	certain	the	archive	floppy	disk	is	in	drive	A;	archive
P.DOC	by	typing	this:
C>archive	p.doc

MS-DOS	responds	by	displaying	and	carrying	out	the	Copy	command	in	the	batch	file:
C>copy	p.doc	a:p.doc
								1	file(s)	copied

This	isn't	much,	but	then	it's	only	a	starting	point.	You'll	add	significantly	to	this	simple
command	as	you	go	through	the	examples	in	this	chapter.

	

javascript:Next(0)
javascript:Next(1)

Modifying	the	Sample	Batch	File
This	chapter	describes	four	batch	commands:	Echo,	Pause,	If,	and	Goto.	Each	command
description	explains	the	purpose	of	the	batch	command,	then	adds	it	to	ARCHIVE.BAT.	The
modified	version	of	the	batch	file	is	shown	with	the	changed	or	added	lines	shaded.	Either
use	the	MS-DOS	editor	(Edit)	to	make	the	indicated	changes	or	enter	each	updated	version
by	copying	from	the	console.

	

javascript:Next(0)
javascript:Next(1)

Controlling	System	Messages
The	Echo	command	controls	whether	commands	in	a	batch	file	are	displayed,	and	it	lets	you
display	your	own	messages.	It	has	three	parameters:

echo	on	off	<message>

on	causes	commands	to	be	displayed	as	they	are	carried	out.	(This	is	called	"turning	echo
on.")	Echo	is	on	unless	you	turn	it	off.

off	causes	commands	not	to	be	displayed	as	they	are	carried	out.	(This	is	called	"turning
echo	off.")	Eliminating	the	commands	from	the	display	can	make	a	batch	file	easier	to	use
by	reducing	clutter	on	the	screen.

<message>	is	a	string	of	characters,	such	as	a	reminder	or	a	warning,	that	you	want	to
display.	<message>	is	displayed	whether	echo	is	turned	on	or	off.

You	can	include	only	one	parameter	with	an	Echo	command.	If	you	omit	all	parameters	(just
type	echo),	MS-DOS	displays	the	status	of	echo	(either	ECHO	is	on	or	ECHO	is	off).

The	first	changes	to	your	Archive	command	add	an	Echo	command	at	the	beginning	to	turn
echo	off	and	another	Echo	command	after	it	to	display	a	title	message.

Here	is	the	modified	version	of	ARCHIVE.BAT:
echo	off
echo	Archive	Procedure
copy	%1	a:%1

To	archive	P.DOC	with	your	new	Archive	command,	type	the	name	of	the	batch	file	and	the
name	of	the	file	to	be	archived:
C>archive	p.doc

Because	echo	is	always	on	when	MS-DOS	starts	carrying	out	the	commands	in	a	batch	file,
MS-DOS	displays	the	first	Echo	command,	which	turns	echo	off.	Then	it	carries	out	the
second	Echo	command,	which	displays	the	title	Archive	Procedure.	Finally,	it	carries	out	the
Copy	command	from	the	original	ARCHIVE.BAT	and	copies	the	file:
C>echo	off
Archive	Procedure
								1	file(s)	copied

Messages	produced	by	a	command	itself	(such	as	1	file(s)	copied	in	the	preceding
example)	are	displayed	whether	echo	is	on	or	off.

Starting	with	version	3.3,	you	can	prevent	any	individual	command	from	being	echoed	by
preceding	it	with	the	@	symbol.	This	means	that	you	can	eliminate	even	that	first	echo	off
message	by	changing	the	first	line	of	ARCHIVE.BAT	to	@echo	off.	If	you're	using	3.3	or	a

later	version,	edit	the	file	again	to	add	the	@	symbol	at	the	beginning	of	line	1.	From	now
on,	all	examples	will	show	the	@	symbol;	if	you're	not	using	3.3	or	a	later	version,	simply
ignore	it.

Your	Archive	command	is	starting	to	take	shape.	It's	time	to	add	some	instructions	for	the
person	who	uses	it.

	

javascript:Next(0)
javascript:Next(1)

Making	the	System	Pause
Some	MS-DOS	commands,	such	as	Format	and	Diskcopy,	display	a	message	and	wait	for
you	to	respond,	giving	you	a	chance	to	confirm	your	intention	or	to	complete	preparation	by
inserting	a	floppy	disk	or	by	turning	on	the	printer.	You	can	have	your	batch	files	do	the
same	by	using	the	Pause	command,	which	displays	the	message	Press	any	key	to
continue...	and	makes	the	system	wait	until	you	press	any	key.	(The	message	is	Strike	a
key	when	ready...	in	versions	prior	to	4.)

The	format	of	the	Pause	command	is	as	follows:
pause	<message>

You'll	add	a	Pause	command	to	ARCHIVE.BAT	now.	You'll	also	add	a	message—a	reminder
to	make	certain	that	the	archive	floppy	disk	is	in	drive	A	before	the	file	is	copied.

The	modified	version	of	ARCHIVE.BAT	is	this:
@echo	off
echo	Archive	Procedure
echo	Make	sure	archive	floppy	disk	is	in	drive	A
pause
copy	%1	a:%1

Remember,	if	you're	not	using	version	3.3	or	later,	ignore	the	@	in	line	1.	Test	this	version
by	typing	the	following:
C>archive	p.doc
Archive	Procedure
Make	sure	archive	floppy	disk	is	in	drive	A
Press	any	key	to	continue	.	.	.
_

The	Echo	command	displays	the	reminder,	the	Pause	command	displays	its	message	telling
you	to	press	a	key,	and	the	system	waits.	Complete	the	command	by	pressing	any	key.
MS-DOS	copies	the	file	and	acknowledges	this:
1	file(s)	copied

	

javascript:Next(0)
javascript:Next(1)

Controlling	Which	Commands	Are	Carried	Out
Besides	carrying	out	MS-DOS	commands	as	though	you	had	typed	them	individually,	batch
files	let	you	specify	that	a	command	should	be	carried	out	only	if	some	condition	is	true—for
example,	only	if	a	specific	file	exists.	This	capability	makes	your	batch	files	more	flexible,
letting	you	adapt	them	to	a	variety	of	situations.

The	If	command	specifies	the	condition	to	be	checked	and	the	MS-DOS	command	to	be
carried	out.	It	has	three	parameters:

if	not	<condition>	<command>

not	reverses	the	meaning	of	the	If	command	so	that	<command>	is	carried	out	only	if
<condition>	is	not	true.

<condition>	is	the	condition	to	check.	It	has	two	commonly	used	forms:

exist	<filename>	checks	whether	the	named	file	exists.	You	can	include	a	path
name,	if	necessary.	If	<filename>	exists,	the	condition	is	true.

<string1>	=	=	<string2>	compares	the	two	character	strings	you	specify.	If	they	are
identical,	the	condition	is	true.	Note	that	there	are	two	equal	signs.

<command>	is	any	MS-DOS	command.

You'll	add	an	If	command	to	ARCHIVE.BAT	to	control	when	it	displays	a	warning	message.

Adding	Protection	to	Your	Archive	Command

MS-DOS	6.2	and	later	warn	you	if	you	attempt	to	copy	a	file	onto	another	with	the	same
name.	For	earlier	versions	of	MS-DOS,	the	following	exercise	can	provide	a	valuable	tool.
For	users	of	all	versions,	it	is	a	good	learning	exercise.

When	you	copy	a	file	with	the	Copy	command,	you	tell	MS-DOS	the	name	of	the	original
and	the	name	to	be	given	to	the	new	copy.	MS-DOS	checks	to	see	whether	there	is	already
a	file	with	the	same	name	as	the	copy	on	the	target	disk;	if	there	is,	MS-DOS	replaces	the
existing	file	with	the	copy.	What	if	you	didn't	realize	that	a	file	with	the	same	name	existed	on
the	disk?	You	might	inadvertently	lose	a	valuable	file.

To	protect	yourself	against	such	an	oversight,	you'll	include	two	more	commands	in
ARCHIVE.BAT.	First,	you'll	add	an	If	command	that	checks	to	see	whether	the	file	to	be
archived	already	exists	on	the	archive	floppy	disk	in	drive	A.	If	it	does,	an	Echo	command	in
the	second	part	of	the	If	command	displays	a	warning	message	telling	you	that	you	can
cancel	the	command	by	pressing	Ctrl-Break.	You'll	also	add	a	Pause	command	to	give	you
time	to	read	the	warning	message	and,	if	necessary,	cancel	the	Archive	command	by
pressing	Ctrl-Break.

Here	is	the	modified	version	of	ARCHIVE.BAT.	Type	the	fifth	and	sixth	lines	on	one	line,	even

though	they	are	shown	on	two	lines	in	the	text:
@echo	off
echo	Archive	Procedure
echo	Make	sure	archive	floppy	disk	is	in	drive	A
pause
if	exist	a:%1	echo	a:%1	exists.	Press
CTRL-BREAK	to	cancel,	or
pause
copy	%1	a:%1

Test	this	version	of	your	Archive	command	by	typing	the	following:
C>archive	p.doc
Archive	Procedure
Make	sure	archive	floppy	disk	is	in	drive	A
Press	any	key	to	continue	.	.	.
_

Press	any	key	to	continue	the	command:
a:p.doc	exists.	Press	CTRL-BREAK	to	cancel,	or
Press	any	key	to	continue	.	.	.
_

Don't	press	any	key	yet.

You	might	not	want	to	replace	the	copy	of	the	file	in	drive	A.	Press	Ctrl-Break	to	cancel	the
command.	MS-DOS	asks	whether	you	really	mean	it:
Terminate	batch	job	(Y/N)?_

Type	y	to	confirm.	MS-DOS	cancels	the	rest	of	your	Archive	command	and	displays	the
system	prompt	without	copying	the	file.	If	you	had	not	pressed	Ctrl-Break,	the	file	would
have	been	copied	as	before,	erasing	the	previously	archived	version	of	P.DOC.

Smoothing	a	Rough	Edge

Your	Archive	command	is	getting	more	useful;	you've	protected	yourself	from	inadvertently
erasing	an	existing	file.	But	there's	a	problem	now.	See	what	happens	if	the	name	of	the	file
to	be	archived	isn't	the	name	of	a	file	already	on	the	floppy	disk	in	drive	A.	Delete	P.DOC
from	drive	A,	and	archive	it	again:
C>del	a:p.doc

C>archive	p.doc
Archive	Procedure
Make	sure	archive	floppy	disk	is	in	drive	A
Press	any	key	to	continue	.	.	.

_

Fine	so	far.	Press	the	Spacebar	to	continue:
Press	any	key	to	continue	.	.	.
_

That's	not	too	good.	The	system	comes	right	back	and	pauses	again,	even	though
everything	is	OK,	because	the	Pause	command	that	follows	the	If	command	is	always
carried	out.	Press	the	Spacebar	again:
1	file(s)	copied

MS-DOS	copies	the	file	as	it	should.	Your	Archive	command	is	working	properly,	but	the	two
pauses	could	be	confusing,	especially	if	someone	else	uses	your	batch	command.	How	can
you	fix	this?

You	could	delete	the	first	Pause	command,	but	if	you	did,	you	wouldn't	have	a	chance	to
make	certain	that	the	correct	floppy	disk	had	been	placed	in	drive	A.	That's	not	a	very	good
solution.

Or	you	could	delete	the	second	Pause	command	and	change	the	If	command,	making	the
"file	exists"	warning	a	Pause	message	instead	of	an	Echo	message,	as	it	is	now.	But	then,
recall	that	you	would	have	to	delete	the	command	@echo	off	at	the	beginning	of	the	batch
file	so	that	the	message	following	the	new	Pause	command	would	be	displayed.	And	that
would	mean	all	your	commands	in	the	file	would	be	displayed.	This	solution	would	make	the
response	to	your	Archive	command	cluttered	and	confusing,	so	it	isn't	very	good	either.

There	is,	however,	a	way	to	change	your	Archive	command	so	that	the	second	Pause
command	is	carried	out	only	if	the	file	to	be	archived	is	already	on	the	floppy	disk	in	drive	A.
This	solution	requires	using	another	command	for	batch	files—the	Goto	command.

	

javascript:Next(0)
javascript:Next(1)

Changing	the	Sequence	of	Commands
The	batch	files	you	have	created	up	to	now	carry	out	the	MS-DOS	commands	they	contain
in	the	order	in	which	the	commands	appear.	Your	batch	commands	would	be	more	flexible	if
you	could	control	the	order	in	which	the	commands	are	carried	out.	The	Goto	command
gives	you	this	control	by	telling	MS-DOS	to	go	to	a	specific	line	in	the	command	file,	rather
than	to	the	next	command	in	the	sequence.

You	tell	MS-DOS	where	to	go	in	the	batch	file	by	specifying	a	label.	A	label,	which	is	located
on	a	line	in	a	batch	file,	consists	of	a	colon	(:)	immediately	followed	by	a	string	of	characters
(for	example,	:start).	A	label	is	not	a	command.	It	merely	identifies	a	location	in	a	batch	file.
When	MS-DOS	goes	to	a	label,	it	carries	out	whatever	commands	follow	the	line	on	which
the	label	appears.

The	Goto	command	has	one	parameter:
goto	<label>

<label>	is	the	label	that	identifies	the	line	in	the	batch	file	where	MS-DOS	is	to	go.

The	Goto	command	is	often	used	as	part	of	an	If	command.	For	example,	the	If	command
checks	some	condition.	If	the	condition	is	not	true,	MS-DOS	carries	out	the	next	command;
if	the	condition	is	true,	MS-DOS	carries	out	the	Goto	command	and	moves	to	some	other
part	of	the	batch	file.

Remember	the	problem	with	your	Archive	command?	If	the	file	to	be	archived	is	already	on
the	floppy	disk	in	drive	A,	you	want	MS-DOS	to	display	a	warning	message	and	pause;
otherwise,	you	just	want	to	copy	the	file.	This	situation	is	tailor-made	for	an	If	command	that
includes	a	Goto	command.

The	modified	version	of	ARCHIVE.BAT	is	this:
@echo	off
echo	Archive	Procedure
echo	Make	sure	archive	floppy	disk	is	in	drive	A
pause
if	not	exist	a:%1	goto	safe
echo	a:%1	exists.	Press	CTRL-BREAK	to	cancel,	or
pause
:safe
copy	%1	a:%1

These	changes	warrant	a	bit	more	explanation:

The	If	command	still	checks	whether	the	file	to	be	archived	exists	on	the	floppy	disk
in	drive	A.	Now,	however,	the	command	includes	the	parameter	not,	which	means
that	the	command	in	the	second	part	of	the	If	command	is	carried	out	only	if	the
reverse	of	the	condition	is	true	(that	is,	if	the	file	does	not	exist	on	the	floppy	disk	in

drive	A).

The	second	part	of	the	If	command—the	command	to	be	carried	out	if	the	condition
is	true—is	changed	to	a	Goto	command	that	tells	MS-DOS	to	skip	to	a	label	called
:safe.

If	the	file	to	be	archived	doesn't	exist	on	the	floppy	disk	in	drive	A,	MS-DOS	carries
out	the	Goto	command	and	then	jumps	to	the	label	:safe,	skipping	the	Echo	and
Pause	commands.	The	Copy	command	following	:safe	copies	the	file.

If	the	file	to	be	archived	does	exist	on	the	floppy	disk	in	drive	A,	the	Goto	command
is	not	carried	out	and	MS-DOS	continues	with	the	Echo	and	Pause	commands.	If
you	don't	cancel	by	pressing	Ctrl-Break,	MS-DOS	carries	out	the	Copy	command.
In	this	instance,	MS-DOS	ignores	the	line	that	contains	the	label	:safe	because	the
only	purpose	of	the	label	is	to	identify	a	location	in	a	batch	file.

P.DOC	is	on	the	floppy	disk	in	drive	A	(you	archived	it	again	a	bit	earlier),	so	first	see	if	this
version	of	your	Archive	command	warns	you	that	the	file	exists.	Type	the	code	on	the
following	page.
C>archive	p.doc
Archive	Procedure
Make	sure	archive	floppy	disk	is	in	drive	A
Press	any	key	to	continue	.	.	.
_

Press	any	key	to	continue	the	command:
a:p.doc	exists.	Press	CTRL-BREAK	to	cancel,	or
Press	any	key	to	continue	.	.	.
_

There's	the	warning.	Press	any	key	to	complete	the	command:
1	file(s)	copied

But	the	problem	came	up	when	the	file	wasn't	on	the	archive	floppy	disk:	You	got	the	second
pause	anyway.	Test	your	revised	Archive	command	in	this	situation	by	archiving	P.BAK,
which	hasn't	yet	been	archived:
C>archive	p.bak
Archive	Procedure
Make	sure	archive	floppy	disk	is	in	drive	A
Press	any	key	to	continue	.	.	.
_

Press	a	key:
1	file(s)	copied

Problem	solved.	Because	P.BAK	wasn't	on	the	archive	floppy	disk	in	drive	A,	the	Goto
command	was	carried	out;	the	Goto	command	caused	MS-DOS	to	skip	over	the	intervening
Echo	and	Pause	commands	and	to	copy	the	file.

Your	Archive	command	works	properly.	You	had	to	do	a	little	more	work	to	avoid	the	double
pause,	but	now	the	command	is	less	confusing	and	easier	to	use.	You'll	probably	encounter
this	kind	of	circumstance	fairly	often	as	you	create	batch	commands.	Just	remember:	It
takes	a	little	more	time	to	make	a	command	easy	to	use,	but	the	investment	is	usually
worthwhile,	especially	if	other	people	will	be	using	the	command.

Using	Wildcard	Characters	with	a	Batch	File

You	can	use	wildcard	characters	to	archive	a	series	of	files	with	your	Archive	command.
Type	the	following	command	to	archive	all	the	files	named	P:
C>archive	p.*
Archive	Procedure
Make	sure	archive	floppy	disk	is	in	drive	A
Press	any	key	to	continue	.	.	.
_

Press	any	key:
a:p.*	exists.	Press	CTRL-BREAK	to	cancel,	or
Press	any	key	to	continue	.	.	.
_

You	archived	P.DOC	and	P.BAK	in	earlier	examples,	so	they're	on	the	archive	floppy	disk.
The	Archive	command	doesn't	identify	the	specific	file	that	exists,	but	it	does	give	you	a
chance	to	cancel	if	you	don't	want	to	overwrite	a	file.

Press	Ctrl-Break	to	cancel	the	rest	of	the	command,	and	respond	to	the	MS-DOS	prompt
for	confirmation	with	y:
Terminate	batch	job	(Y/N)?y

If	you	had	pressed	any	key	other	than	Ctrl-Break,	all	the	files	named	P	would	have	been
copied	to	the	floppy	disk	in	drive	A,	replacing	any	that	were	already	there.

Erasing	the	Original	of	an	Archived	File

Archiving	involves	not	only	copying	a	file	to	an	archive	floppy	disk	but	also	means	deleting
the	original.	Your	Archive	command	only	copies;	now	it's	time	to	make	it	delete	too.	But	just
as	it's	prudent	to	check	whether	the	file	exists	on	the	archive	floppy	disk	before	you	make
the	copy,	it's	also	prudent	to	check	again	before	deleting	the	original,	just	to	be	sure	the	file
was	copied	to	the	archive	floppy	disk.

You	need	only	one	additional	If	command	to	check	whether	the	file	to	be	archived	is	on	the
archive	floppy	disk	and,	if	it	is,	to	delete	the	original	from	the	working	disk.	Here	is	this
modified	version	of	ARCHIVE.BAT:
@echo	off
echo	Archive	Procedure
echo	Make	sure	archive	floppy	disk	is	in	drive	A
pause
if	not	exist	a:%1	goto	safe
echo	a:%1	exists.	Press	CTRL-BREAK	to	cancel,	or
pause
:safe
copy	%1	a:%1
if	exist	a:%1	del	%1

The	screen	responses	of	this	version	of	your	Archive	command	are	the	same	as	in	the
previous	version,	but	the	new	command	deletes	the	original	file	after	copying	it.	Test	it	by
archiving	P.DOC	again:
C>archive	p.doc
Archive	Procedure
Make	sure	archive	floppy	disk	is	in	drive	A
Press	any	key	to	continue	.	.	.
_

Press	any	key:
a:p.doc	exists.	Press	CTRL-BREAK	to	cancel,	or
Press	any	key	to	continue	.	.	.
_

You	want	to	copy	the	file	to	the	archive	floppy	disk,	so	press	any	key:
1	file(s)	copied

See	if	the	original	version	of	P.DOC	still	exists	by	typing	this:
C>dir	p.doc

	Volume	in	drive	C	is	HARD	DISK
	Volume	Serial	Number	is	1608-5A30
	Directory	of	C:\RUNDOS

File	not	found

The	original	is	gone.	Your	Archive	command	does	copy	the	specified	file	to	the	archive
floppy	disk	and	then	deletes	the	original.

Functionally,	the	command	is	complete.

If	you	are	using	MS-DOS	version	6.0	or	later,	the	Move	command	can	be	used,	eliminating
the	need	to	delete	the	original	file	after	a	successful	copy.	Users	of	MS-DOS	versions	6.2
and	later	will	find	that	the	Move	command	will	warn	them	if	the	file	name	already	exists	on
the	archive	floppy	disk,	eliminating	the	need	for	the	if	(not)	exist	command.

	

javascript:Next(0)
javascript:Next(1)

Dressing	Up	Your	Archive	Command
The	value	of	your	batch	files	depends	not	only	on	what	they	do	but	also	on	how	easy	it	is	to
use	them	correctly.	This	ease	of	use	is	particularly	important	if	you	use	a	batch	file	only
occasionally	or	if	someone	else	uses	it;	it's	vital	if	the	batch	file	deletes	other	files,	as	your
Archive	command	does.

That's	why,	for	example,	your	Archive	command	starts	by	turning	echo	off:	An	uncluttered
screen	helps	to	make	the	responses	less	confusing.	You	can	also	do	some	other	things	to
make	a	batch	file	easy	to	use:

Clear	the	screen.

Use	the	Echo	command	to	display	messages	that	report	on	progress	or	results.

Use	spaces	or	insert	tabs	so	you	can	position	messages	displayed	by	the	Echo
command	where	they	are	prominent	on	the	screen.

Use	the	Echo	command	to	include	line	spaces	that	further	improve	the	readability	of
the	screen.

You	can	also	use	the	Remark	command	to	put	notes	to	yourself	in	the	batch	file.	As	long	as
echo	is	off,	these	remarks	aren't	displayed.	Remarks	can	help	you	remember	how	a	batch
file	works,	in	case	you	have	to	change	it	or	you	want	to	create	a	similar	command	using	the
same	technique.	Remarks	are	especially	useful	if	the	batch	file	is	long	or	if	it's	one	you	may
not	look	at	very	often.

Echoing	a	Line	Space

Up	to	now,	you	have	used	the	Echo	command	either	to	turn	echo	off	or	to	display	a
message.	You	can	also	use	the	Echo	command	to	display	a	line	space—something	you'll
probably	want	to	do	fairly	often	to	improve	the	appearance	of	the	display.

You've	seen	that	you	turn	echo	on	or	off	by	following	echo	with	either	on	or	off.	If	you	follow
echo	with	some	other	words,	they	are	displayed	as	a	message,	and	if	you	simply	type
echo,	MS-DOS	tells	you	whether	echo	is	on	or	off.	How	do	you	tell	MS-DOS	to	echo	a	line
space?	Beginning	with	version	3.1,	typing	echo,	(echo	and	a	period,	with	no	space
between)	causes	MS-DOS	to	display	a	line	space.	If	this	does	not	work	with	your	version	of
MS-DOS,	you	can	also	type	echo,	press	the	Spacebar	once,	hold	down	the	Alt	key,	and
use	the	numeric	keypad	(not	the	numbers	in	the	top	row	of	the	keyboard)	to	type	255.	When
you	release	the	Alt	key,	the	cursor	moves	over	one	column.	You	don't	see	any	characters
displayed,	but	when	MS-DOS	carries	out	your	Echo	command,	it	will	echo	a	line	space	on
the	screen.

The	following	example	modifies	ARCHIVE.BAT.	If	your	version	of	MS-DOS	doesn't	respond
to	echo.,	substitute	Alt-255	in	the	appropriate	lines.	The	changes	in	this	batch	file	don't	add
any	capability	to	your	Archive	command,	but	they	do	make	it	easier	for	someone	to

understand	what's	happening.	The	changes	are	described	in	more	detail	in	a	moment.	Here
is	the	modified	version	of	ARCHIVE.BAT:
@echo	off
cls
Rem	Three	tabs	in	the	following	echo	command
echo<tab><tab><tab>***ARCHIVE		PROCEDURE***
echo.
echo	Make	sure	archive	floppy	disk	is	in	drive	A
pause
Rem	Branch	around	warning	if	file	not	archived
if	not	exist	a:	%1	goto	safe
echo.
echo	a:%1	exists.	Press	CTRL-BREAK	to	cancel,	or
pause
:safe
copy	%1	a:%1
if	exist	a:%1	del	%1
echo.
echo	%1	archived

The	purpose	of	each	change	is	as	follows:

In	line	2,	the	Clear	Screen	command	starts	your	Archive	command	off	with	a	blank
screen,	giving	you	complete	control	over	what	is	displayed.

In	line	3,	the	Remark	command	reminds	you	that	the	space	at	the	beginning	of	the
Echo	command	in	line	4	is	created	by	pressing	the	Tab	key	three	times.

In	line	4,	the	title	(***ARCHIVE	PROCEDURE***)	is	made	more	prominent	and	is
displayed	in	the	center	of	the	screen	by	the	insertion	of	three	tabs.

In	line	5,	an	Echo	command	displays	a	line	space	below	the	title.

In	line	8,	the	Remark	command	explains	the	purpose	of	the	Goto	command	included
in	line	9.

In	line	10,	another	Echo	command	displays	a	line	space	to	make	the	warning
message	in	line	11	more	visible.

In	line	16,	the	Echo	command	displays	another	line	space	to	make	the	message	in
line	17	more	visible.

In	line	17,	the	Echo	command's	message	tells	which	file	has	been	archived.

Make	the	necessary	changes,	and	compare	your	batch	file	with	the	modified	form	of
ARCHIVE.BAT	shown	earlier.	If	there	are	any	differences,	correct	them	before	saving	the

revised	version.

Although	you	haven't	changed	anything	your	Archive	command	does,	its	screen	responses
are	quite	different	now.	Test	the	new	version	by	archiving	P.OLD	(which	isn't	on	the	archive
floppy	disk):
C>archive	p.old

Because	ARCHIVE.BAT	now	starts	by	clearing	the	screen,	everything	you	see	from	this
point	on	is	displayed	by	your	Archive	command.	When	the	command	prompts	you	to	check
the	floppy	disk	in	drive	A,	press	any	key.	The	screen	now	looks	like	this:
ARCHIVE	PROCEDURE

Make	sure	archive	floppy	disk	is	in	drive	A
Press	any	key	to	continue	.	.	.

										1	file(s)	copied

p.old	archived

Test	ARCHIVE.BAT	again	to	see	how	it	responds	when	the	file	already	exists	on	the	archive
floppy	disk.	P.DOC	and	P.OLD	are	no	longer	on	the	disk	in	drive	C	(you	archived	them	after
making	the	change	that	erases	the	file),	so	archive	P.BAK.	Type	the	following,	pressing	any
key	to	continue	the	command	after	each	pause:
C>archive	p.bak

The	screen	looks	like	this:
ARCHIVE	PROCEDURE

Make	sure	archive	floppy	disk	is	in	drive	A
Press	any	key	to	continue	.	.	.

a:p.bak	exists.	Press	CTRL-BREAK	to	cancel,	or
Press	any	key	to	continue	.	.	.

											1	file(s)	copied

p.bak		archived

Notice,	though,	that	line	15	was	added	to	ensure	the	copy	was	successful	before	the
original	was	deleted,	but	lines	16	and	17	will	be	run	even	if	the	copy	had	not	been
successful.	To	solve	this	problem,	again	use	some	inverse	logic	and	modify	ARCHIVE.BAT,
starting	at	line	15,	to	read	this	way:
@echo	off
cls

Rem	Three	tabs	in	the	following	echo	command
echo<tab><tab><tab>***ARCHIVE	PROCEDURE***
echo.
echo	Make	Sure	archive	floppy	disk	is	in	drive	A
pause
Rem	Branch	around	warning	if	file	not	archived
if	not	exist	a:%1	goto	safe
echo.
echo	a:%1	exists.	Press	CTRL-BREAK	to	cancel,	or
pause
:safe
copy	%1	a:%1
if	not	exist	a:%1	goto	nocopy
del	%1
echo.
echo	%1	archived
goto	end
:nocopy
echo.
echo	%1	NOT	archived
echo	Check	floppy	disk	in	drive	A	before	preceding
:end

ARCHIVE.BAT	is	quite	a	bit	longer	than	it	was	when	you	began,	but	your	Archive	command
doesn't	look	much	like	a	homemade	command	anymore.	Although	you	needn't	always	go	to
such	lengths	when	you	create	a	command,	it's	nice	to	know	that	a	little	extra	effort	can
make	your	work	look	professional.	If	others	will	use	the	batch	files	you	create,	the
investment	of	your	effort	can	quickly	pay	off	in	shorter	training	time,	more	efficient	use	of	the
system,	and	fewer	mistakes.

	

javascript:Next(0)
javascript:Next(1)

Chapter	Summary
This	chapter	covered	a	lot	of	ground.	Experimenting	is	the	best	way	to	put	what	you	learned
here	into	practice.	Just	be	certain	to	use	floppy	disks	that	don't	contain	files	you	need	until
you're	sure	your	batch	commands	are	working	properly.

The	next	chapter	describes	two	additional	batch	commands	that	let	you	create	even	more
flexible	batch	files,	and	it	shows	you	several	useful	batch	files	you	can	use	to	start	your
personal	collection.	You'll	need	the	archive	floppy	disk	in	drive	A.	Remove	this	floppy	disk,
and	label	it	ARCHIVED	FILES.

	

javascript:Next(0)
javascript:Next(1)

Chapter	16:	Creating	More	Smart	Commands
The	previous	chapter	showed	you	how	to	use	the	advanced	capability	of	batch	files.
Knowing	how	to	create	batch	files	is	only	half	the	job,	however;	the	other	half	is	finding	uses
for	them.	This	chapter	shows	you	how	to	create	some	commands	to	search	through	the
phone-list	file	you	created	in	Chapter	13,	"Taking	Control	of	Your	System";	it	also	describes
four	advanced	batch	commands	and	shows	several	useful	batch	files	to	give	you	some
ideas	for	your	own	use.

Preparing	for	the	Examples
For	the	first	examples	in	this	chapter,	you	need	the	phone-list	file	(PH.TXT)	that	you	created
in	Chapter	13.	If	you	haven't	gone	through	the	examples	in	Chapters	13,	14,	and	15,	you
should	do	so	before	proceeding.	PH.TXT	should	already	be	in	the	directory	named
\RUNDOS.	Change	the	current	directory	to	\RUNDOS	by	typing:
C>cd	\rundos

If	your	prompt	doesn't	appear	as	C>,	you	can	change	it	to	match	the	following	examples	by
typing	prompt.	This	completes	the	preparation	for	the	examples.

	

javascript:Next(0)
javascript:Next(1)

Commands	for	Searching	Through	a	File
In	Chapter	13,	you	created	a	file	of	names,	addresses,	and	telephone	numbers,	and	you
used	the	Find	and	Sort	commands	to	display	entries.	You	can	also	put	the	Find	and	Sort
commands	in	batch	files	to	create	your	own	search	commands	and	achieve	some	of	the
capabilities	of	a	simple	record-management	program.

For	example,	the	simplest	search	uses	the	Find	command	to	display	all	records	that	contain
a	particular	string.	Create	a	batch	file	named	SHOW.BAT	by	typing	the	following:
C>copy	con	show.bat
@echo	off
find	"%1"	ph.txt
^Z
									1	file(s)	copied

This	batch	file	gives	you	a	Show	command	that	displays	all	records	from	PH.TXT	that
contain	the	string	you	specify	as	the	parameter	to	your	Show	command.	To	search	the
phone	list,	type	show	followed	by	the	string.	For	example,	to	display	the	entries	for	all
consultants	(entries	that	contain	the	string	cons),	type	this:
C>show	cons

MS-DOS	displays	all	entries	for	consultants:
-----								PH.TXT
Jones					Michele			(747)	429-6360		cons	chemist
Black					John						(747)	426-3385		cons	mech	eng	pkg
Jones					Alison				(747)	429-5584		cons	Chem	engineer

Note

As	it	stands,	your	Show	command	requires	that	you	specify	the	string	in	the	same
combination	of	uppercase	and	lowercase	letters	that	appears	in	the	file.	If	you
have	version	5	or	later	of	MS-DOS,	remember	that	you	can	include	the	/I
parameter	to	tell	the	Find	command	to	ignore	differences	in	case.	For	example,	if
you	entered	the	Find	command	as	find	/i	"%1"	ph.txt,	you	could	type	the	Show
command	in	the	preceding	example	as	show	cons,	show	Cons,	or	show	CONS
and	still	be	assured	of	finding	the	entries	you	wanted.	For	simplicity,	the	following
examples	omit	the	/I	parameter	of	the	Find	command.	If	you	want,	however,	you
can	include	it	to	make	your	batch	files	even	more	flexible.

As	you've	seen,	typing	show	cons	is	easier	than	typing	find	"cons"	ph.txt.	Read	on,	and
you'll	find	that	you	can	use	similar	batch	files	to	conduct	even	more	powerful	searches	just
as	easily.

Compound	Searches

As	the	examples	in	Chapter	13,	"Taking	Control	of	Your	System,"	showed,	you	can	also

combine	Find	commands	to	search	for	records	that	contain	various	combinations	of
character	strings—for	example,	all	consultants	named	Jones	or	all	entries	that	are	outside
the	747	area	code.	Putting	these	Find	commands	in	a	batch	file	saves	even	more	typing
than	the	Show	command	you	just	created.

For	example,	suppose	you	want	to	create	a	command	to	show	all	entries	that	contain	both
one	string	and	another.	This	requires	two	Find	commands,	with	the	output	of	the	first	piped
to	the	second.	You	could	call	such	a	command	Showand.	Create	a	file	named
SHOWAND.BAT	by	typing	this:
C>copy	con	showand.bat
@echo	off
find	"%1"	ph.txt	|	find	"%2"
^Z
									1	file(s)	copied

This	batch	command	takes	two	parameters—the	two	strings	the	Find	command	searches
for.	Now	you	can	search	the	phone	list	for	entries	that	contain	two	strings	as	easily	as	you
can	search	it	for	entries	containing	one	string;	just	type	showand	followed	by	the	two
strings.	For	example,	to	display	all	consultants	named	Jones,	type	the	command	at	the	top
of	the	next	page.
C>showand	cons	Jones

MS-DOS	displays	the	records	that	contain	both	strings:
Jones					Michele			(747)	429-6360		cons	chemist
Jones					Alison				(747)	429-5584		cons	Chem	engineer

This	is	definitely	easier	than	typing	find	"cons"	pb.txt	|	find	"Jones".

What	if	you	want	to	create	a	command	that	shows	all	entries	except	those	that	contain	a
particular	string?	Use	a	Find	command	with	the	/V	parameter.	You	could	call	this	command
Showxcpt;	create	SHOWXCPT.BAT	by	typing	the	following:
C>copy	con	showxcpt.bat
@echo	off
find	/v	"%1"	ph.txt
^Z
								1	file(s)	copied

This	batch	command	requires	one	parameter,	the	string	you	don't	want	to	see.	For	example,
to	display	all	entries	not	in	the	747	area	code,	type	the	following:
C>showxcpt	(7

MS-DOS	displays	all	lines	from	PH.TXT	that	don't	contain	(7.
-----							PH.TXT
Green						Fred						(541)	926-4921		cust	math	teach
Smith						Ed								(541)	835-8747		vend	caterer

These	three	batch	files—SHOW,	SHOWAND,	and	SHOWXCPT—let	you	search	a	file
quickly	in	several	ways.	You	can	combine	all	three	searches	into	a	single	command	just	by
changing	SHOWBAT.

Chaining	Batch	Files	to	Create	Powerful	Commands

As	your	skill	in	creating	batch	files	grows,	you'll	sometimes	find	that	you	want	to	use	one
batch	file	to	carry	out	the	commands	in	another	batch	file.	One	way	to	do	this	is	to	chain	the
batch	files.	Another,	described	later	in	this	chapter,	is	to	use	the	Call	command.

When	you	chain	batch	files,	you	use	the	name	of	one	batch	file	as	a	command	in	another.
MS-DOS	then	carries	out	the	commands	in	the	second	batch	file	as	if	you	had	typed	its
name;	if	the	second	batch	file	contains	the	name	of	a	third	batch	file,	MS-DOS	carries	out
its	commands,	and	so	on.	When	the	commands	in	the	last	chained	batch	file	have	been
carried	out,	MS-DOS	returns	to	the	system	prompt.

To	see	how	this	works,	modify	SHOW.BAT	to	cover	all	three	types	of	searches	you	just
performed	by	chaining	it	to	either	SHOWAND.BAT	or	SHOWXCPT.BAT.	When	you	do	this,
the	parameters	you	type	with	the	revised	Show	command	must	specify	the	type	of	search
as	well	as	the	string	or	strings	to	search	for.

You're	creating	your	own	Show	command	with	the	following	parameters:
show	xcpt	and	<string1>	<string2>

xcpt	searches	for	entries	that	don't	contain	the	specified	string.

and	searches	for	entries	that	contain	two	specified	strings.

<string1>	and	<string2>	are	the	strings	to	search	for.	If	you	include	and,	you	must	include
both	<string1>	and	<string2>;	otherwise	just	include	<string1>.

If	you	don't	specify	either	xcpt	or	and,	your	Show	command	searches	for	all	entries	that
contain	<string1>.

This	more	powerful	version	of	SHOW.BAT	is	still	fairly	short.	Type	the	following:
C>copy	con	show.bat
@echo	off
if	%1==xcpt	showxcpt	%2
if	%1==and	showand	%2	%3
find	"%1"	ph.txt
^Z
								1	file(s)	copied

The	first	If	command	checks	whether	the	first	parameter	(%1)	typed	with	the	Show
command	is	xcpt	(recall	that	the	==	compares	two	strings	to	see	if	they	are	identical).	If	%1
is	the	same	as	xcpt,	SHOWXCPT.BAT	is	carried	out.	The	second	parameter	(%2)	you	type

with	the	Show	command	is	the	string	to	search	for;	it	is	the	single	parameter	that
SHOWXCPT.BAT	requires.

The	second	If	command	checks	whether	the	first	parameter	typed	with	the	Show	command
is	and.	If	it	is,	SHOWAND.BAT	is	carried	out.	The	second	and	third	parameters	(%2	and
%3)	typed	with	the	Show	command	are	the	two	strings	to	search	for;	they	are	the	two
parameters	that	SHOWAND.BAT	requires.

If	the	first	parameter	(%1)	typed	with	the	Show	command	is	neither	xcpt	nor	and,	the	Find
command	is	carried	out	to	perform	a	simple	search.

Except	for	the	Echo	command,	only	one	of	the	commands	in	SHOW.BAT	is	carried	out	in
any	particular	search.	Figure	16-1	shows	the	contents	of	SHOW.BAT	and	an	example	of
each	type	of	search	you	can	make.	For	each	example,	the	figure	lists	the	Show	command
as	you	would	type	it	and	substitutes	values	for	the	replaceable	parameters	in	SHOW.BAT.
The	command	in	SHOW.BAT	that	is	carried	out	is	not	shaded.	An	arrow	to	the	right
represents	chaining	to	SHOWXCPT	or	SHOWAND;	the	contents	of	each	chained	batch	file,
with	values	substituted	for	its	replaceable	parameters,	are	shown	below	the	chained	batch
file.

	
Figure	16-1:	Chaining	batch	files.

Now	you	can	perform	any	of	the	three	types	of	searches	with	the	Show	command.	The
simple	search	works	as	it	did	in	the	earlier	Show	command.	For	example,	to	display	all
entries	that	contain	Jones,	type	this:
C>show	Jones

-----								PH.TXT
Jones							Michele			(747)	429-6360		cons	chemist
Jones							Alison				(747)	429-5584		cons	Chem	engineer
Jones							James					(747)	636-3541		cust	architect

To	display	all	entries	that	don't	contain	a	particular	string,	type	xcpt	as	the	first	parameter.
For	example,	to	display	all	entries	outside	the	747	area	code,	type	the	command	you	see	at
the	top	of	the	next	page.
C>show	xcpt	(7

-----						PH.TXT
Green					Fred								(541)	926-4921	cust	math	teach
Smith					Ed										(541)	835-8747	vend	caterer

Or,	to	search	for	two	strings,	type	and	as	the	first	parameter.	For	example,	to	see	all
engineers	named	Jones,	type	this:
C>show	and	Jones	eng
Jones					Alison						(747)	429-5584		cons	Chem	engineer

If	you	put	your	telephone	numbers	and	business	cards	in	a	text	file	like	this,	these	three
batch	files	put	the	contents	of	the	file	at	your	fingertips.	Not	only	can	you	search	for	an	entry
quickly,	you	can	easily	display	groups	of	related	entries.

This	application,	like	Edit,	is	another	example	of	how	MS-DOS	can	make	your	computer
more	useful	without	additional	software.

	

javascript:Next(0)
javascript:Next(1)

Some	Useful	Batch	Files
To	give	you	some	ideas	about	the	sort	of	batch	commands	that	might	help	you	from	day	to
day,	several	useful	batch	files	are	shown	here.	These	are	not	step-by-step	examples;	each
description	gives	the	purpose	of	the	batch	file,	shows	its	contents,	explains	how	it	works,
and	describes	how	you	would	use	it.

An	effective	way	to	become	familiar	with	batch	commands	is	to	experiment.	You	could	enter
the	following	batch	files,	for	example,	then	experiment	with	them,	making	changes	and
seeing	the	effects	of	the	changes.	If	your	batch	files	include	commands	that	can	modify	or
delete	files,	be	sure	to	test	the	batch	files	on	disks	that	contain	files	you	don't	need.

You	can	create	the	batch	files	by	copying	from	the	console	to	a	file	or	by	using	a	text	editor.
Most	of	the	batch	files	include	one	or	more	Echo	commands	to	add	a	line	space	to	the
display	(for	readability);	they	are	shown	as	echo	followed	by	a	period	(echo.).	If	you	don't
have	version	3.1	or	later,	echo	a	line	space	by	typing	echo,	holding	down	the	Alt	key,	and
typing	255	using	the	numeric	keypad.

Viewing	a	Long	Directory	Listing

Even	though	you	back	up	old	files	and	clear	out	unneeded	ones	regularly,	a	directory	can
soon	contain	more	files	than	MS-DOS	can	list	on	one	screen.	And	some	often-used
directories—word	processing	directories,	for	example,	or	collections	of	spreadsheets	and
charts—can	become	quite	large.

If	you	have	version	4	or	later	of	MS-DOS	and	an	EGA	or	VGA	display,	you	can	use	the
LONGDIR.BAT	file	described	here	to	change	the	display	to	43	lines	per	screen,	display	a
long	directory	one	screenful	at	a	time,	and	then	change	the	display	back	to	25	lines.

LONGDIR.BAT	contains	this:
@echo	off
cls
mode	con	lines=43
dir	%1	/p
pause
mode	con	lines=25

The	first	Mode	command	switches	the	display	to	43	lines.	The	Directory	command	then
finds	the	listings	for	the	directory	(%1)	you	specify	as	a	parameter	with	the	Longdir
command,	displays	the	entries	43	lines	at	a	time,	and	waits	for	you	to	press	a	key.	The
Pause	command	displays	Press	any	key	to	continue	when	the	directory	listing	is	complete.
The	second	Mode	command	returns	the	screen	display	to	25	lines.

To	use	the	command,	you	type	longdir	followed	by	the	directory	listing	you	want	to	see.	You
can	include	a	drive	letter,	followed	by	a	colon,	a	path	name,	and	a	file	name	including
wildcard	characters.	For	example,	you	can	type	the	command	as	longdir	a:,	longdir

\clients\wp	or	longdir	\clients\wp*.doc.	If	you	don't	include	a	drive,	path,	or	file	name	(type
just	longdir),	the	command	displays	the	current	directory.

Your	system	could	be	set	up	so	that	LONGDIR.BAT	lists	the	directory	you	want	but	doesn't
change	to	43	lines	per	screen	after	telling	you	that	ANSI.SYS	must	be	installed	to	perform
requested	function.	If	this	happens,	you	need	to	identify	a	file	named	ANSI.SYS	to	MS-
DOS.	Chapter	17,	"Tailoring	Your	System,"	tells	how	to	do	this.

Cleaning	Up	Disk	Storage

Because	many	word	processors	and	other	application	programs	create	a	backup	file	with
the	extension	BAK	each	time	you	change	a	file,	your	disks	can	get	crowded	with	backup
files	you	don't	need.	The	CLEANUP.BAT	batch	file	described	here	replaces	one	you	created
earlier;	it	displays	the	directory	entries	of	all	files	with	an	extension	of	BAK	and	then	pauses.
At	that	point,	you	can	cancel	the	command	by	pressing	Ctrl-Break;	if	you	press	any	key	to
proceed,	the	command	erases	the	files.

CLEANUP.BAT	contains	this:
@echo	off
cls
echo	***	Will	erase	the	following	files:	***
dir	%1*.bak
echo.
echo	Press	CTRL-BREAK	to	cancel,	or
pause
del	%1*.bak

Notice	that	there	is	no	space	between	%1	and	*.bak	in	the	Directory	and	Delete	commands;
this	lets	you	specify	a	drive	letter	or	a	path	name	as	a	parameter	with	the	file	name.	Be	sure
to	end	a	path	name	with	a	backslash	(\).

To	erase	all	BAK	files	from	the	current	directory	on	the	disk	in	the	current	drive,	type
cleanup	and	press	any	key	when	the	Pause	command	prompts	you.

To	erase	all	BAK	files	from	another	directory,	type	the	path	name	followed	by	\	as	a
parameter;	you	can	also	precede	the	path	name	with	a	drive	letter	and	colon	(for	example,
cleanup	a:\	or	cleanup	\mkt\wp\).

Directory	of	Subdirectories

If	a	directory	contains	many	subdirectories	and	files,	sometimes	you'd	like	to	see	just	the
subdirectories.	The	DIRSUB	batch	file	described	here	lets	you	do	just	that;	it	uses	different
techniques	depending	on	the	version	of	MS-DOS	you're	using.

If	you're	using	version	5	or	later,	DIRSUB.BAT	contains	this:
@echo	off

echo	***	Subdirectories	in	%1	***
echo.
dir	%1	/ad

The	/AD	(Attribute	Directory)	parameter	tells	MS-DOS	to	display	just	the	subdirectories.

You	can	type	one	parameter	(%1)	with	the	Dirsub	command	to	specify	the	directory	whose
entries	are	to	be	displayed.	The	parameter	can	include	a	drive	letter	and	colon,	a	path
name,	or	both.	If	you	don't	include	a	parameter,	this	Dirsub	command	displays	the
subdirectories	in	the	current	directory	(but	doesn't	display	the	directory	name	because	you
didn't	type	any	characters	to	replace	%1	in	the	message	line).

If	you're	using	an	earlier	version	of	MS-DOS,	you	can	take	advantage	of	the	fact	that	the
Directory	command	displays	<DIR>	to	identify	a	subdirectory.	This	version	of	DIRSUB.BAT
contains	the	following:
@echo	off
echo	***	Subdirectories	in	%1	***
echo.
dir	%1	œ	find	"<"

In	this	file,	the	output	of	the	Directory	command	is	piped	to	a	Find	command	that	displays	all
directory	lines	that	contain	a	less-than	sign	(<).

With	either	version	of	DIRSUB.BAT,	to	see	the	subdirectories	in	the	current	directory	you
would	type	dirsub.	To	see	those	in	the	current	directory	of	drive	A,	you	would	type	dirsub
a:,	and	to	see	the	subdirectories	in	\MKT\WP,	you	would	type	dirsub	\mkt\wp.

The	two	special	entries	.	and	..,	which	the	Directory	command	identifies	as	subdirectories,
are	in	all	directories	except	the	root.	You	can	modify	DIRSUB.BAT	so	that	it	doesn't	display
these	entries.	To	do	this,	pipe	the	output	of	the	Directory	command	to	a	Find	command	that
uses	the	/V	parameter	to	eliminate	all	lines	that	contain	a	period.	For	version	5	or	later,	the
command	would	be	this:
dir	%1	/ad	œ	find	/v	"."

For	an	earlier	version	of	MS-DOS,	the	command	would	be	this:
dir	%1	œ	find	"<"	œ	find	/v	"."

The	added	Find	command	uses	the	/V	parameter	to	eliminate	all	lines	that	contain	a	period.
You	would	use	this	version	of	the	Dirsub	command	just	as	you	would	use	the	earlier	version.

If	you	created	DIRSUB.BAT,	it's	a	snap	to	reverse	the	action	so	that	it	displays	only	files
instead	of	subdirectories.	The	DIRFIL	batch	file	requires	that	you	make	only	a	simple
change	to	the	last	line	of	DIRSUB.BAT.

If	you're	using	version	5	or	later,	simply	put	a	hyphen	before	the	D	in	the	/AD	parameter	to

reverse	its	meaning:
dir	%1	/a-d

If	you're	using	an	earlier	version,	add	the	/V	parameter	to	the	Find	command	to	reverse	its
meaning:
dir	%1	œ	find	/v			"<"

You	would	use	this	command	just	as	you	used	Dirsub.

Moving	Files	from	One	Directory	to	Another

In	a	tree-structured	file	system,	you'll	sometimes	want	to	move	files	from	one	directory	to
another.	Versions	6.0	and	later	of	MS-DOS	include	the	Move	command,	which	makes	it
simple	to	move	files.	If	you	have	an	earlier	version,	you	can	move	files	only	by	copying	the
file	to	the	new	directory	with	the	Copy	command	and	then	erasing	the	original	with	the
Delete	command.	MOVE.BAT	combines	these	in	one	command.	If	you	are	running	MS-DOS
6.0	or	later,	and	want	to	experiment	with	this	file,	save	the	file	as	MOVER.BAT.	Given	the
Move	command,	MS-DOS	version	6.0	or	later	will	find	MOVE.EXE	before	even	looking	for
MOVE.BAT.

MOVE.BAT	contains	this:
@echo	off
copy	%1	%2
cls
echo	Files	in	target	directory:
echo.
dir	%2	/p
echo.
echo	If	files	to	be	moved	are	not	in	directory,
echo	press	CTRL-BREAK	to	cancel.	Otherwise
pause
del	%1

Here	is	how	the	batch	file	works,	line	by	line:

In	line	1,	the	Echo	command	turns	echo	off.

In	line	2,	the	Copy	command	copies	the	files	to	the	target	directory.

In	line	3,	the	Clear	Screen	command	clears	the	screen.

In	lines	4	and	5,	Echo	commands	display	a	message	and	a	line	space.

In	line	6,	the	Directory	command	displays	the	contents	of	the	target	directory.	The
/P	parameter	is	included	to	ensure	time	enough	to	view	even	a	very	long	directory.

In	lines	7	through	9,	Echo	commands	display	a	line	space	and	a	warning	message.

In	line	10,	the	Pause	command	makes	the	system	pause	to	let	you	cancel	the
Delete	command	in	line	11	if	the	files	you	moved	are	not	displayed	in	the	listing	of
the	target	directory.

You	have	created	a	command	with	two	parameters:
move	<source>	<target>

<source>	is	the	name	of	the	file	to	be	moved	(copied	and	then	deleted).	You	can	include	a
drive	letter	and	path	name.	If	you	use	wildcard	characters	in	the	file	name,	MS-DOS
displays	the	name	of	each	file	it	copies.

<target>	is	the	name	of	the	directory	to	which	the	<source>	files	are	to	be	copied.	If	you
omit	<target>,	the	files	are	copied	to	the	current	directory.

For	example,	assume	that	the	current	directory	is	\MKT\WP.	To	move	the	file	REPORT.DOC
to	the	directory	\ENG\WP,	you	would	type	move	report.doc	\eng\wp.	To	move	the	file
BUDGET.JAN	from	\ENG\WP	to	\MKT\WP,	you	type	the	command	as	move
\eng\wp\budget.jan.	To	move	all	files	from	\MKT\WP	to	\WORD\MKT,	you	would	type	move
.	\word\mkt.

	

javascript:Next(0)
javascript:Next(1)

Four	Advanced	Batch	Commands

Note

The	batch	commands	you	have	worked	with	up	to	this	point	are	sufficient	for	you
to	create	useful	batch	files	like	the	search	commands	for	the	phone-list	file.	Rather
than	continue	with	the	rest	of	this	chapter	right	now,	you	might	want	to	put	the
book	aside	for	awhile	and	experiment,	and	then	return	to	learn	the	last	four	batch
commands	this	book	discusses.

The	four	remaining	batch	commands—Shift,	For,	Call,	and	Choice—give	you	even	more
control	over	how	your	batch	files	work.	They're	somewhat	more	complicated	than	the	other
batch	commands,	but	the	examples	should	make	their	use	clear.

Preparing	for	the	Advanced	Examples

The	remaining	examples	in	the	chapter	require	the	P.*	and	Q.*	files	that	should	still	be	in
your	RUNDOS	directory	from	the	exercises	you	did	in	Chapter	15,	"Creating	Smart
Commands."	You	also	need	to	put	the	floppy	disk	you	labeled	ARCHIVED	FILES	in	drive	A.

The	Shift	Command:	Shifting	the	List	of	Parameters

The	Shift	command	moves	the	list	of	parameters	you	type	with	a	batch	command	one
position	to	the	left.	For	example,	suppose	you	type	a	Shift	command	with	three	parameters.
After	the	Shift	command	is	carried	out	once,	what	was	%3	becomes	%2	and	what	was	%2
becomes	%1;	what	was	%1	is	gone.	After	a	second	Shift	command,	what	started	out	as
%3	is	%1;	what	started	as	%2	and	%1	are	both	gone.

This	command	lets	a	short	batch	file	handle	any	number	of	parameters;	the	following	sample
batch	file	illustrates	the	technique.	ARCH1.BAT	archives	any	number	of	files.	Here	are	its
contents:
@echo	off
:start
if	"%1"=="	"	goto	done
echo	***	Archiving	%1	***
if	not	exist	a:%1	copy	%1	a:
shift
goto	start
:done

Here's	a	description	of	how	it	works:

As	usual,	the	first	line	is	an	Echo	command	to	turn	echo	off.

The	label	:start	marks	the	beginning	of	the	commands	that	will	be	repeated	for	each
parameter.

The	If	command	checks	to	see	whether	a	parameter	was	entered	for	%1.	It	does

this	by	comparing	"%1"	with	two	quotation	marks	enclosing	nothing	at	all	("").	You're
telling	MS-DOS	to	compare	the	first	parameter	(if	one	was	typed)	with	nothing,	or
no	parameter.	When	the	comparison	is	true,	meaning	that	there	are	no	more
parameters,	the	Goto	command	sends	MS-DOS	to	the	label	:done	in	line	8.

The	Echo	command	displays	the	name	of	the	file	that	is	being	archived.

The	If	command	checks	whether	the	file	to	be	archived	exists	on	drive	A;	if	it
doesn't,	the	Copy	command	copies	the	file	from	the	current	drive	to	drive	A.

The	Shift	command	moves	the	list	of	parameters	one	position	left.

The	Goto	command	sends	MS-DOS	back	to	the	label	:start.

The	label	:done	marks	the	end	of	the	command	file.

To	use	this	batch	file	you	type	arch1	followed	by	the	names	of	the	files	to	be	archived.	The
command	stops	when	"%1"	equals	"	"—in	other	words,	when	there	are	no	more	file	names
to	be	substituted	for	%1.

To	test	the	command,	copy	the	file	named	P.OLD	(which	you	archived	in	Chapter	15,
"Creating	Smart	Commands")	from	the	floppy	disk	in	drive	A	to	the	current	drive	by	typing
this:
C>copy	a:p.old

Now	archive	P.OLD,	Q.DOC,	and	Q.OLD	by	typing	the	command	shown	here:
C>arch1	p.old	q.doc	q.old
***	Archiving	p.old	***
***	Archiving	q.doc	***
								1	file(s)	copied
***	Archiving	q.old	***
								1	file(s)	copied

The	confirming	messages	show	that	MS-DOS	did	not	copy	the	file	that	was	already	on	the
floppy	disk	in	drive	A	(P.OLD)	but	that	it	did	copy	the	files	that	weren't	on	the	floppy	disk
(both	Q.DOC	and	Q.OLD).

This	short	archive	command	doesn't	display	instructions	or	warnings	like	the	batch	file	you
created	in	Chapter	15,	"Creating	Smart	Commands,"	but	it	does	show	how	you	can	use	the
Shift	command	to	write	a	batch	file	that	handles	any	number	of	parameters.	The	technique
is	simple:	Do	something	with	%1,	shift	the	parameters,	then	use	a	Goto	command	to	send
MS-DOS	back	to	the	beginning	to	do	it	all	over	again.	Just	make	sure	you	define	a	way	to
stop	the	process,	or	MS-DOS	will	carry	out	the	command	forever.

The	For	Command:	Carrying	Out	a	Command	More	than	Once

Sometimes	you	might	want	MS-DOS	to	carry	out	a	command	more	than	once	in	a	batch	file

—for	instance,	to	carry	out	a	command	for	each	file	that	matches	a	file	name	with	wildcard
characters.	The	For	command	does	just	that.	Like	the	If	command,	the	For	command	has
two	parts:	The	first	part	defines	how	often	a	command	is	to	be	carried	out,	and	the	second
part	is	the	command	to	be	carried	out.

The	For	command	is	somewhat	more	complex	than	the	other	batch	commands.	If	you	don't
fully	understand	the	description	of	its	parameters,	read	on	and	try	the	examples.	As	with
many	other	aspects	of	using	a	computer,	it's	easier	to	use	the	For	command	than	it	is	to
read	about	it.

The	For	command	has	three	parameters:
for	%%p	in	(<set>)	do	<command>

The	words	in	and	do	are	required	in	the	command;	they	are	not	parameters.

%%p	is	a	replaceable	parameter	used	inside	the	For	command.	MS-DOS	assigns	to	it,	in
turn,	each	value	included	in	(<set>).

(<set>)	is	the	list	of	possible	values	that	can	be	given	to	%%p.	You	separate	the	values	with
spaces,	and	you	must	enclose	the	entire	list	in	parentheses—for	example,	(1	2	3).	You	can
also	specify	a	set	of	values	with	a	file	name	that	includes	wildcard	characters—for	example,
(a:*.doc).

<command>	is	any	MS-DOS	command	other	than	another	For	command.	You	can	use	both
batch-command	parameters	(such	as	%1)	and	the	For	command	replaceable	parameter
(%%p)	in	<command>.

It's	all	less	complicated	than	it	sounds.	When	MS-DOS	carries	out	a	For	command,	it
assigns	to	%%p,	in	turn,	each	value	that	you	specify	in	(<set>),	then	it	carries	out
<command>.	Each	time	it	carries	out	<command>,	MS-DOS	first	substitutes	for	%%p	the
current	value	taken	from	(<set>).

A	brief	example	shows	how	the	For	command	works.	The	following	batch	command	carries
out	an	Echo	command	three	times,	displaying	each	of	the	three	words	enclosed	in
parentheses.	Create	FOR1.BAT	by	typing	this:
C>copy	con	for1.bat
for	%%p	in	(able	baker	charlie)	do	echo	%%p
^Z
								1	file(s)	copied

In	this	particular	For	command,	(able	baker	charlie)	is	(<set>)	and	echo	%%p	is
<command>.	The	For	command	tells	MS-DOS	to	carry	out	the	Echo	command	once	for
each	word	in	parentheses,	substituting,	in	turn,	able,	baker,	and	charlie	for	%%p.	Test	it	by
typing	this:
C>for1

For	a	change,	this	batch	file	doesn't	begin	by	turning	echo	off,	so	MS-DOS	displays	each
command	it	carries	out,	starting	with	the	For	command:
C>for	%p	in	(able	baker	charlie)	do	echo	%p

MS-DOS	then	displays	and	carries	out	the	Echo	command	once	for	each	value	in	the	set,
each	time	substituting	the	next	value	from	the	set	for	the	replaceable	parameter	in	the	Echo
command:
C>echo	able
able

C>echo	baker
baker

C>echo	charlie
charlie

Instead	of	specifying	actual	values	in	the	set,	you	can	use	replaceable	parameters,	such	as
%1.	This	technique	works	as	it	does	in	any	other	batch	command	but	can	be	confusing	in
this	case	because	now	you	can	have	%1	and	%%p	in	the	same	command.	Here's	how	it
works:	%1	refers	to	the	first	parameter	typed	with	the	batch	command,	%2	refers	to	the
second	parameter	typed	with	the	batch	command,	and	so	forth;	%%p	refers	to	the	value
MS-DOS	selects	from	the	set	enclosed	in	parentheses	within	the	For	command.

The	next	example	shows	you	the	difference.	Here,	the	words	to	be	displayed	are	typed	as
parameters	of	the	batch	command,	instead	of	being	included	as	part	of	the	For	command.
Create	FOR2.BAT	by	typing	this:
C>copy	con	for2.bat
for	%%p	in	(%1	%2	%3)	do	echo	%%p
^Z
								1	file(s)	copied

This	For	command	tells	MS-DOS	to	carry	out	the	Echo	command	(echo	%%p)	once	for
each	value	in	parentheses,	substituting	for	%%p	the	first,	then	the	second,	and	finally	the
third	parameter	you	type	with	the	For2	command.	Test	it	by	typing	this:
C>for2	dog	easy	fox

MS-DOS	displays	each	command	it	carries	out.	First	it	displays	the	For	command:
C>for	%p	in	(dog	easy	fox)	do	echo	%p

Note	that	MS-DOS	has	substituted	values	for	all	replaceable	parameters.	The	set	in
parentheses	is	now	(dog	easy	fox)	because	those	are	the	three	parameters	you	typed;	they
have	replaced	(%1	%2	%3).	As	you	may	have	noticed	in	the	preceding	example,	MS-DOS
has	also	dropped	one	of	the	percent	signs	from	%%p.	MS-DOS	removes	the	first	percent
sign	when	it	substitutes	the	parameters	you	type	with	the	command	for	%1,	%2,	and	so
forth.	It	does,	however,	leave	one	percent	sign	to	show	that	a	value	must	still	be	substituted

for	%p.

MS-DOS	then	displays	and	carries	out	three	Echo	commands,	each	time	substituting	one
value	from	the	set	in	parentheses	for	%p:
C>echo	dog
dog

C>echo	easy
easy

C>echo	fox
fox

If	you	wish,	you	can	specify	the	set	in	a	For	command	with	a	file	name	and	wildcard
characters.	MS-DOS	then	assigns	to	%%p,	in	turn,	each	file	name	that	matches	the
wildcard	characters.	You	can	use	this	technique	to	create	a	simple	Archive	batch	file	using
only	a	For	command.	The	following	command	doesn't	display	instructions	and	warnings,	but
it	does	show	you	how	much	can	be	done	with	a	single	batch	command.

Create	a	batch	file	named	ARCH2.BAT	by	typing	the	following:
C>copy	con	arch2.bat
for	%%p	in	(%1)	do	if	not	exist	a:	%%p	copy	%%p	a:
^Z
								1	file(s)	copied

Q.DOC	and	Q.OLD	are	on	the	floppy	disk	in	drive	A	(you	copied	them	in	the	example	of	the
Shift	command).	Use	them	to	test	ARCH2.BAT	by	archiving	all	Q	files:
C>arch2	q.	*

MS-DOS	displays	each	command	it	carries	out,	starting	with	the	For	command	(remember,
you	have	not	turned	echo	off):
C>for	%p	in	(q.*)	do	if	not	exist	a:%p	copy	%p	a:

MS-DOS	then	displays	and	carries	out	three	If	commands,	each	time	substituting	a	file
name	that	matches	the	set	enclosed	in	parentheses	for	the	replaceable	parameter	in	the	If
command:
C>if	not	exist	a:	Q.DOC	copy	Q.DOC	a:

C>if	not	exist	a:Q.BAK	copy	Q.BAK	a:
									1	file(s)	copied

C>if	not	exist	a:	Q.OLD	copy	Q.OLD	a:

The	messages	displayed	by	the	Copy	command	confirm	that	MS-DOS	did	not	copy	either

Q.DOC	or	Q.OLD	because	they	were	already	on	the	archive	floppy	disk,	but	did	copy
Q.BAK,	which	hadn't	been	archived.

The	For	command	gives	you	a	quick	way	to	carry	out	an	MS-DOS	command	several	times.
As	shown	in	some	of	the	sample	batch	files	that	conclude	this	chapter,	the	For	command
makes	it	possible	to	create	powerful	batch	commands.

The	Call	Command:	Using	a	Batch	Command	in	a	Batch	File

Earlier	in	this	chapter,	in	the	final	version	of	SHOW.BAT,	you	used	batch	commands
(Showand	and	Showxcpt)	in	a	batch	file.	MS-DOS	didn't	return	to	SHOW.BAT	after	carrying
out	these	batch	commands	even	though	neither	command	was	actually	the	last	command	in
SHOW.BAT;	the	last	command	was	Find.	You	can	use	this	capability,	called	chaining,	with
any	version	of	MS-DOS.	Once	you	chain	to	another	batch	command,	you	can't	go	back	to
the	first.

If	you're	using	version	3.3	or	later,	however,	you	can	also	use	the	Call	command	in	a	batch
file	to	tell	MS-DOS	to	carry	out	the	commands	in	another	batch	file.	Unlike	chaining,	the	Call
command	causes	MS-DOS	to	come	back	and	continue	with	the	next	command	in	the
original	batch	file.	This	lets	you	use	a	batch	command	of	your	own	making	in	a	batch	file,
just	as	you	would	use	an	MS-DOS	command.

The	Call	command	has	two	parameters:
call	<batchfile>	<parameters>

<batchfile>	is	the	name	of	a	batch	command	that	you	want	MS-DOS	to	carry	out	from	within
the	calling	batch	file.

<parameters>	represents	any	parameters	that	<batchfile>	requires.

Two	short	batch	files	demonstrate	the	usefulness	of	the	Call	command.	First,	create	a	batch
file	named	ECHOIT.BAT	by	typing	the	following:
C>copy	con	echoit.bat
@echo	off
echo	%1
^Z
								1	file(s)	copied

ECHOIT.BAT	simply	echoes	the	parameter	you	enter	with	it.	For	example,	to	echo	fred,
type	the	following:
C>echoit	fred
fred
C>_

Now	create	another	batch	file	named	ECHOALL.BAT	that	uses	a	For	command	to	carry	out
ECHOIT.BAT	for	each	of	up	to	three	parameters,	pauses	until	you	press	a	key,	and	displays

an	ending	message:
C>copy	con	echoall.bat
@echo	off
for	%%p	in	(%1	%2	%3)	do	call	echoit	%%p
pause
echo	End	of	ECHOALL.BAT
^Z
								1	file(s)	copied

The	For	command	carries	out	the	Call	command	for	each	of	up	to	three	parameters	that	can
be	entered	with	the	Echoall	batch	command.	The	Call	command	carries	out	the	batch
command	ECHOIT.BAT,	specifying,	in	turn,	each	parameter	entered	with	the	Echoall	batch
command.

Now	type	the	following	to	echo	the	words	xray,	yankee,	and	zulu:
C>echoall	xray	yankee	zulu
xray
yankee
zuIu
Press	any	key	to	continue	.	.	.
_

Press	a	key,	and	MS-DOS	displays	the	final	message	in	ECHOALL.BAT:
End	of	ECHOALL.BAT

If	you	hadn't	included	the	Call	command,	MS-DOS	would	have	carried	out	ECHOIT.BAT
once	to	display	the	first	parameter	(xray)	and	then	would	have	returned	to	the	system
prompt.	Because	you	did	use	the	Call	command,	MS-DOS	carried	out	ECHOIT.BAT	three
times,	once	for	each	parameter,	and	then	returned	to	the	final	lines	of	ECHOALL.BAT
before	displaying	the	system	prompt.

The	Choice	Command:	Writing	an	Interactive	Batch	Command

Most	of	the	programs	you	use	are	interactive.	They	occasionally	ask	you	for	some
information	(such	as	the	name	of	a	file	or	whether	you	want	to	exit	the	program),	wait	for
you	to	respond,	then	take	some	action	based	on	your	answer.	Starting	with	version	6.0	of
MS-DOS,	you	can	give	your	batch	commands	the	same	capability	with	the	Choice
command.

The	Choice	command	lets	you	list	the	one-character	responses	that	are	acceptable	and,	if
you	like,	the	text	of	a	message	to	be	displayed.	When	it's	carried	out,	the	Choice	command
displays	the	message	(if	you	specify	one)	and	a	prompt	that	lists	the	characters	that	can	be
chosen,	then	waits	for	a	keyboard	response.

So	that	you	can	determine	which	response	was	entered,	Choice	sets	a	variable	called

errorlevel	to	1	if	the	first	response	you	listed	was	chosen,	2	if	the	second	response	was
chosen,	and	so	forth.	You	use	the	errorlevel	option	of	the	If	command	to	check	what	the
response	was	and	take	the	appropriate	action	in	the	batch	file.

The	Choice	command	has	three	commonly	used	parameters.	(See	Appendix	C,	"MS-DOS
Command	Reference,"	for	an	explanation	of	all	the	parameters.)

choice	/C:<keys>	/N	<text>

/C:<keys>	specifies	which	characters	(letters,	numbers,	or	punctuation	marks)	are
permitted	as	responses.	Don't	separate	the	characters	with	spaces	or	commas.

/N	tells	Choice	not	to	display	the	prompt.

<text>	specifies	a	message	to	be	displayed	before	the	prompt.

You	can	use	the	Choice	command	to	make	a	simple	menu	system.	Suppose	that	you	use
Procomm	Plus,	Microsoft	Money,	and	Microsoft	Works	and	want	to	display	a	menu	that	lets
you	start	any	of	these	three	programs	just	by	pressing	a	letter.	The	single	batch	file
MENU.BAT	would	let	you	do	just	that:
@echo	off
cls
echo	CHOOSE	A	PROGRAM
echo.
echo	Procomm	Plus
echo	Money
echo	Works
echo.

choice	/c:pmwq	/n	Press	P,	M,	W,	or	Q	to	quit:

if	errorlevel	4	goto	end
if	errorlevel	3	goto	works
if	errorlevel	2	goto	money
if	errorlevel	1	goto	pcplus

:works
\msworks\msworks
menu

:money
\msmoney\msmoney
menu

:pcplus
\pcplus\pcplus

menu

:end

The	first	section	of	the	batch	file	clears	the	screen	and	displays	the	menu	of	your	three
programs.	The	Choice	command	then	waits	for	a	reply	and	sets	errorlevel	to	the	proper
value.	Here's	a	closer	look	at	the	three	parameters	of	this	Choice	command:

/c:pmwq	specifies	the	four	permitted	responses:	P	(for	Procomm	Plus),	M	(for
Money),	W	(for	Works),	and	Q	(for	Quit).

/n	tells	the	Choice	command	not	to	display	the	prompt	(which,	in	this	case,	would	be
[P,M,	W,Q]?).

Press	P,	M,	W,	or	Q	to	quit	is	the	message	that	the	Choice	command	displays
before	waiting	for	a	reply.

Next	the	batch	file	checks	the	value	of	errorlevel	set	by	the	Choice	command	and	runs	the
appropriate	program.	Because	the	If	command	actually	checks	whether	errorlevel	is	equal
to	or	greater	than	the	specified	value,	you	check	for	the	largest	possible	value	first,	then	the
next	largest,	and	so	forth.	The	first	reply	listed	in	the	Choice	command's	/C	parameter	is	P,
so	Choice	assigns	errorlevel	the	value	of	1	if	someone	presses	P;	the	fourth	reply	listed	is
Q,	so	Choice	assigns	errorlevel	the	value	of	4	if	Q	is	pressed.

After	you're	done	running	the	program	you	chose,	the	batch	file	runs	Menu,	a	batch
command	that	carries	out	this	batch	file.	How	can	a	batch	file	carry	out	itself?	When	MS-
DOS	finds	a	batch	command	in	a	batch	file,	it	stops	carrying	out	the	current	batch	file	and
starts	the	one	named.	In	this	case,	MS-DOS	stops	MENU.BAT	and	starts	it	again	at	the
beginning;	it	doesn't	matter	that	the	same	batch	file	is	being	started	again.	Because	this
batch	command	appears	before	the	end	of	the	batch	file,	it	causes	the	menu	to	be
displayed	again	after	you	exit	one	of	the	program	choices.	The	only	way	to	leave	the	menu
is	to	press	Q	(or	Ctrl-Break,	which	stops	any	batch	file).

When	you	type	menu,	MS-DOS	clears	the	screen	and	displays	your	menu:
CHOOSE	A	PROGRAM

Procomm	Plus
Money
Works

Press	P,	M,	W,	or	Q	to		quit:_

If	you	press	any	key	other	than	one	of	the	four	listed,	MS-DOS	beeps	and	waits	for	you	to
press	another	key.	If	you	press	W,	MS-DOS	carries	out	the	command	that	starts	Microsoft
Works	because	the	Choice	command	set	errorlevel	to	3.	When	you	exit	Microsoft	Works,
MS-DOS	displays	your	menu	again.	To	leave	the	menu,	press	the	Q	key.

You	can	adapt	this	batch	file	to	your	own	programs	by	replacing	the	program	names	in	the
first	part	of	the	file	(using	more	lines	if	necessary)	and	changing	the	commands	that	start	the
programs	(again,	add	more	commands	if	you	add	items	to	the	menu).

	

javascript:Next(0)
javascript:Next(1)

Some	More	Useful	Batch	Files
The	following	batch	files	use	the	advanced	batch	commands.	Again,	they	aren't	step-by-step
examples;	they're	working	samples	to	give	you	an	idea	of	what	can	be	done	with	the	full	set
of	batch	commands.	You	can	enter	the	batch	files	by	copying	from	the	console	or	by	using	a
text	editor.

Displaying	a	Series	of	Small	Text	Files

If	you	work	with	many	small	text	files,	such	as	batch	files	or	boilerplate	paragraphs	for	word
processor	documents,	it's	handy	to	be	able	to	review	several	files	with	one	command,	rather
than	having	to	print	or	display	them	one	at	a	time.	The	batch	file	shown	here,	REVIEW.BAT,
uses	the	Shift,	Type,	and	Pause	commands	to	display	any	number	of	files	one	at	a	time.
Remember,	echo.	(or	echo	Alt-255)	echoes	a	line	space.	REVIEW.BAT	contains	this:
@echo	off
:start
if	"%1"=="	"	goto	done
cls
echo<space><tab><tab>***	FILENAME:	%1	***
echo.
type	%1
echo.
echo.
pause
shift
goto	start
:done

This	batch	file	uses	the	same	technique	as	the	earlier	examples	of	the	Shift	command.	The
first	Echo	command	displays	the	file	name	(moved	toward	the	center	of	the	screen	with	two
tabs)	so	that	you'll	know	what	file	is	displayed.	The	last	two	Echo	commands	display	two
blank	lines	to	separate	the	file	from	the	Pause	command	message.

With	this	Review	command,	you	type	the	names	of	the	files	as	parameters.	To	display	the
P.*	files,	for	example,	you	type	review	p.doc	p.old	p.bak.	MS-DOS	clears	the	screen	and
displays	the	first	file,	then	displays	the	Pause	command	message	and	waits	for	you	to	press
any	key	before	clearing	the	screen	and	displaying	the	next	file.	When	the	If	command	finds	a
null	parameter	("	"),	MS-DOS	returns	to	command	level.

Searching	Files	for	a	String	of	Characters

Have	you	ever	searched	through	your	paper	files	to	find	a	specific	letter	or	reference?	To
help	you	find	all	lines	that	contain	a	particular	string,	SCAN.BAT	lets	you	specify	a	file	to	be
searched	and	a	string	to	search	for.	It	displays	each	line	in	the	file	that	contains	the	string.
You	can	also	use	wildcard	characters	to	search	a	set	of	files.	Here	are	the	contents	of

SCAN.BAT:
@echo	off
cls
echo<space><tab><tab>***LINES	IN	%1	THAT	CONTAIN	%2***
echo.
for	%%p	in	(%1)	do	find	"%2"	%%p

All	the	work	here	is	done	in	the	last	line	of	the	batch	file.	The	earlier	lines	clear	the	screen
and	display	a	title.	The	For	command	actually	carries	out	the	Find	command	for	each	file
name	that	matches	the	first	parameter	you	type	with	the	Scan	command;	the	Find	command
is	the	one	that	searches	for	the	string	that	you	type	as	the	second	parameter.

As	mentioned	earlier	in	the	chapter,	remember	that	if	you	have	version	5	or	later	of	MS-
DOS,	you	can	use	the	/I	parameter	to	tell	the	Find	command	to	ignore	differences	between
uppercase	and	lowercase	characters	(for	%%p	in	(%1)	do	find	/i	"%2"	%%p).

To	display	each	line	that	contained	the	word	sales	in	all	files	with	an	extension	of	DOC,	you
would	type	scan	*.doc	sales.	MS-DOS	would	clear	the	screen	and	display
LINES	IN	*.doc	THAT	CONTAINS	sales

followed	by	each	line	that	contained	the	word	sales.

Displaying	a	Sorted	Directory

Beginning	with	version	5,	you	can	use	the	/O	parameter	of	the	Directory	command	to	sort	a
directory	by	name,	extension,	size,	or	date	and	time.	If	you	don't	have	version	5,	however,
you	can	sort	a	directory	by	name,	extension,	or	size	by	creating	the	four	small	batch	files
described	here.

Because	the	items	in	a	directory	entry	always	begin	in	the	same	column	(unless	you	specify
a	wide	directory	listing),	you	can	sort	the	directory	entries	by	extension	or	size	by	using	the
column	parameter	(/+<number>)	of	the	Sort	command.	(Sorting	by	name	doesn't	require	the
column	parameter	because	the	file	name	starts	in	column	1.)	These	are	the	columns	where
the	information	begins:

Name—column	1	(doesn't	need	to	be	specified)

Extension—column	10

Size—column	16

Although	directory	entries	include	the	date	and	time,	sorting	them	by	date	(column	24)	or
time	(column	34)	doesn't	work	properly.	Sorting	by	date,	for	example,	would	cause	January
of	one	year	to	appear	in	the	list	before	December	of	the	preceding	year	(that	is,	1-1-95
would	precede	12-31-94).	If	you	sorted	by	time,	a	file	created	at	9	in	the	morning	on
January	5,	1995,	would	appear	in	the	list	before	a	file	created	at	11	in	the	morning	a	month

earlier.	Then,	too,	if	you're	using	version	4	of	MS-DOS,	which	displays	time	based	on	a	12-
hour	clock	rather	than	a	24-hour	clock,	a	file	created	at	5	in	the	evening	would	be	listed
before	a	file	created	at	9	that	morning.

Sorting	by	date	or	time,	therefore,	is	not	particularly	useful.	On	the	other	hand,	the	benefits
of	sorting	a	directory	alphabetically	by	file	name	or	by	extension	are	obvious.	Furthermore,	if
you	need	to	delete	some	files	to	make	space	on	a	disk,	or	if	you're	just	interested	in	the
relative	sizes	of	files,	sorting	by	size	is	useful.

To	create	a	command	that	displays	a	directory	sorted	by	name,	extension,	or	size,	you
create	three	batch	files	that	sort	and	display	the	directory,	and	you	create	a	fourth	batch	file
that	chains	to	the	correct	one	of	the	other	three.

First,	copy	from	the	console,	as	you	have	done	before,	to	create	the	following	one-line
batch	files;	their	names	tell	how	they	sort	the	directory:

DIRNAME.BAT:
dir	%1	œ	sort	œ	find	"-"	œ	more

DIREXT.BAT:
dir	%1	œ	sort	/+10	œ	find	"-"	œ	more

DIRSIZE.BAT:
dir	%1	œ	sort	/+16	œ	find	"-"	œ	more

Note If	you	have	MS-DOS	version	6.2	or	later,	add	/-p	/-w	after	the	%1	in	these	batch
files.

Each	of	these	batch	files	sorts	and	displays	the	contents	of	the	directory	specified	in	the
parameter	%1	and	pipes	the	output	of	the	Sort	command	to	a	Find	command	that	selects
only	the	lines	that	contain	a	hyphen,	limiting	the	output	to	just	those	lines	that	contain	an
entry.	(The	hyphens	separate	the	parts	of	the	date.)	The	output	of	the	Find	command	is	then
piped	to	the	More	command	to	handle	directories	more	than	one	screen	long.	If	no
parameter	is	specified,	the	batch	command	sorts	and	displays	the	current	directory.	The
only	difference	among	the	batch	files	is	the	column	in	which	sorting	begins.

You	now	need	the	batch	file	that	chains	to	the	correct	one	of	the	previous	three.	Name	the
file	DIRSORT.BAT;	it	contains:
@echo	off
for	%%p	in	(name	ext	size)	do	if	"%1"=="%%p"	dir%%p	%2
echo	First	parameter	must	be	name,	ext,	or	size

Be	sure	not	to	put	a	blank	between	dir	and	%%p	in	the	second	line,	or	the	result	won't	be	a
valid	file	name	for	any	of	the	chained	batch	files.	The	quotation	marks	around	%1	and	%%p
prevent	MS-DOS	from	displaying	an	error	message	if	no	parameter	is	typed	with	the

command.

In	the	DIRSORT	batch	file,	the	For	command	sets	%%p,	in	turn,	to	each	of	the	words	in	the
set	in	parentheses,	then	carries	out	the	If	command,	which	compares	%%p	to	the	first
parameter	typed	with	the	Dirsort	command.	If	there	is	a	match,	the	If	command	adds	the
value	of	%%p	to	dir	to	produce	the	name	of	one	of	the	three	sort	batch	files	and	chains	to
that	file	(for	example,	dir	+	name	would	become	dirname).	The	second	parameter	(%2),	if
any,	typed	with	the	Dirsort	command	is	the	%1	parameter	(the	directory	name)	needed	by
the	chained	batch	file.

If	the	first	parameter	you	type	with	the	Dirsort	command	isn't	one	of	the	three	words	in	the
set	in	parentheses,	the	condition	in	the	If	command	is	not	true.	Then	the	Echo	command	in
the	next	line	is	carried	out,	displaying	a	message	that	lists	the	correct	parameters,	and	the
Dirsort	batch	command	ends	without	chaining	to	one	of	the	files	that	display	a	sorted
directory.

To	display	a	sorted	directory,	you	would	type	the	Dirsort	command	with	one	or	two
parameters:	The	first,	which	is	required,	would	specify	how	to	sort	and	would	have	to	be
name,	ext,	or	size;	the	second	parameter,	which	is	optional,	would	be	the	drive	letter,	path
name,	or	name	of	the	directory	to	be	displayed.	If	you	didn't	include	the	second	parameter,
the	command	would	display	the	current	directory	of	the	disk	in	the	current	drive.

For	example,	to	display	the	current	directory	of	the	disk	in	the	current	drive,	sorted	by	size,
you	would	type	dirsort	size.	To	display	the	root	directory,	sorted	by	name,	of	the	disk	in
drive	A,	you	would	type	dirsort	name	a:\.

	

javascript:Next(0)
javascript:Next(1)

Chapter	Summary
These	batch	files	should	give	you	a	good	start	on	a	collection	of	special-purpose
commands,	and	they	might	give	you	some	ideas	for	creating	more	of	your	own.	This	is
where	the	flexibility	of	MS-DOS	really	becomes	apparent:	The	wide	range	of	MS-DOS
commands	and	capabilities	is	only	the	starting	point	for	putting	this	operating	system	to
work.	With	redirection,	filter	commands,	batch	files,	and	macros,	you	can	combine	all	the
other	MS-DOS	commands	into	a	set	of	custom-tailored	commands	to	make	your	personal
computer	truly	personal.

	

javascript:Next(0)
javascript:Next(1)

Chapter	17:	Tailoring	Your	System

Overview
If	you	have	followed	the	examples	in	the	book,	you	have	used	all	the	major	features	of	MS-
DOS.	Although	it	might	sometimes	seem	that	MS-DOS	offers	more	options	than	you	need,
those	options	give	you	flexibility	in	tailoring	MS-DOS;	they	let	you	adapt	the	computer	to
yourself	rather	than	adapt	yourself	to	the	computer.

This	chapter	shows	several	ways	you	can	tailor	MS-DOS	to	your	needs	or	preferences.	Not
only	does	this	tailoring	make	MS-DOS	fit	your	work	needs	better,	but	some	of	the
techniques	described	here	can	also	make	your	system	immediately	useful	without	your
having	to	buy	an	application	program.	Some	of	these	techniques	can	also	make	the	system
more	accessible	to	people	who	may	need	to	use	the	computer	but	who	don't	have	your
experience	with	MS-DOS.	And	tailoring	can	also	make	it	easier	to	achieve	consistency	in
procedures	such	as	backing	up	a	hard	disk	when	several	people	use	the	computer.

This	chapter	describes	the	following:

How	to	define	configuration	commands,	which	you	put	in	the	file	named
CONFIG.SYS	to	tell	MS-DOS	how	to	use	the	hardware	devices	that	make	up	your
system

How	to	use	the	MemMaker	program,	which	helps	you	maximize	the	amount	of
available	conventional	memory

How	to	run	MS-DOS,	device	drivers,	and	other	programs	in	upper	memory,	leaving
conventional	memory	for	application	programs

How	to	manage	your	portable	computer	with	two	programs:	Power,	which	can
conserve	battery	life,	and	Interlnk,	which	transfers	files	quickly	over	a	serial	cable
between	two	computers

How	to	start	your	system	without	carrying	out	the	commands	in	CONFIG.SYS	or
AUTOEXEC.BAT

How	to	step	through	the	commands	in	CONFIG.SYS	and	AUTOEXEC.BAT	one	at	a
time,	choosing	whether	or	not	to	carry	out	each	one

How	to	set	up	multiple	configurations	and	choose	the	one	you	want	when	you	start
or	restart	the	system

Some	less	frequently	used	MS-DOS	commands

Examples	are	included,	but	they're	not	step-by-step	exercises.	This	chapter	gives	you	some
ideas	about	how	to	tailor	MS-DOS	by	applying	what	you	have	learned	in	previous	chapters.

	

javascript:Next(0)
javascript:Next(1)

Defining	Your	System	Configuration
Unlike	the	other	MS-DOS	commands,	which	tell	MS-DOS	what	to	do,	the	configuration
commands	tell	MS-DOS	how	to	do	something,	such	as	using	a	device	or	communicating
with	a	disk	drive.	These	commands	help	define	the	computer	setup,	or	configuration,	so	that
MS-DOS	can	work	well	with	your	equipment.	You	don't	type	the	configuration	commands	at
the	keyboard	as	you	do	other	MS-DOS	commands.	You	put	them	in	a	special	file	called
CONFIG.SYS,	which	must	be	in	the	root	directory	of	your	MS-DOS	disk.	MS-DOS	carries
out	the	commands	in	CONFIG.SYS	only	when	you	start	or	restart	the	system,	so	if	you
change	a	command	in	this	file,	you	must	restart	MS-DOS	for	the	command	to	take	effect.

If	you	purchase	an	application	program	or	an	accessory	device	that	requires	certain
commands	in	CONFIG.SYS,	either	the	installation	program	adds	or	modifies	the	needed
commands	or	the	documentation	provides	step-by-step	instructions.	Most	other	times,
however,	the	system	configuration	remains	stable,	so	you	don't	change	the	configuration
commands	very	often.	But	as	you	become	more	familiar	with	MS-DOS	and	your	computer,
you	might	want	to	experiment	with	commands	in	CONFIG.SYS	as	a	means	of	speeding	up
or	refining	the	way	your	system	works.

In	version	5	or	later,	MS-DOS	itself	either	creates	a	basic	CONFIG.SYS	file	(and	an
AUTOEXEC.BAT	file)	for	you	or	it	modifies	the	existing	version	of	each	file	as	part	of	its
installation	procedure.	In	version	4,	MS-DOS	creates	CONFIG.SYS	and	AUTOEXEC.BAT	if
they	don't	already	exist;	if	they	do	exist,	MS-DOS	creates	versions	named	CONFIG.400
and	AUTOEXEC.400,	which	you	can	later	combine	with	your	existing	CONFIG.SYS	and
AUTOEXEC.BAT	files.	Earlier	versions	of	MS-DOS	do	not	automatically	create	either
CONFIG.SYS	or	AUTOEXEC.BAT.

You	create	or	edit	CONFIG.SYS	with	a	text	editor	just	as	you	create	or	edit	a	batch	file.
The	following	topics	describe	some	of	the	configuration	commands	you	might	use	on	your
system.

The	Device	Command	and	Device	Drivers

The	Device	configuration	command	specifies	a	program	(a	special	type	of	file	whose
extension	is	usually	SYS)	that	tells	MS-DOS	how	to	use	a	particular	device.	Such	a	program
is	called	a	device	driver.	The	form	of	the	Device	command	is	this:

device	=	<filename>

<filename>	is	the	name	of	the	file	that	contains	the	device	driver.	You	can	include	a	path
name	if	the	file	is	not	in	the	root	directory.	If	you	have	a	mouse,	for	example,	and	the
program	that	tells	MS-DOS	how	to	use	it	is	named	MOUSE.SYS	in	the	C:\MOUSE
directory,	the	device	command	you	put	in	your	CONFIG.SYS	file	would	be
device=c:\mouse\mouse.sys.

Although	the	word	device	brings	hardware	to	mind,	a	Device	command	needn't	always	refer
to	a	piece	of	equipment	you	can	touch	or	carry.	In	certain	instances,	a	"device"	is	actually	a

program	that	simulates	hardware.	For	example,	MS-DOS	includes	a	special	program	file
that	enables	it	to	use	a	portion	of	memory	on	your	system	as	if	that	memory	were	disk-
based	storage.	The	file,	RAMDRIVE.SYS,	enables	MS-DOS	to	use	memory	as	if	it	were	an
extremely	fast	disk	drive	instead.	RAMDRIVE.SYS	is	described	shortly.	First,	though,	a	little
information	about	your	computer's	memory	will	help	you	understand	how	and	when	to	use
these	device	drivers.

Types	of	Memory	and	How	They	Differ

Your	computer	uses	memory	for	temporary	storage	of	calculations,	data,	active	programs,
and	for	other	work	in	progress.	Computer	memory	comes	in	three	flavors:	conventional,
extended,	and	expanded.

Conventional	Memory

Conventional	memory	is	the	type	sometimes	referred	to	as	RAM	(for	random	access
memory).	Computers	that	run	MS-DOS	usually	come	with	1	MB	of	conventional	memory.
This	memory	can	be	used	to	hold	MS-DOS,	application	programs,	and	data.	All	computer
programs	can	use	conventional	memory,	but	IBM	and	compatible	computers	running	MS-
DOS	are	limited	to	a	maximum	of	1	MB	(1024	KB)	of	this	type	of	memory.

Even	if	your	computer	has	1	MB	of	conventional	memory,	however,	not	all	of	it	is	freely
available	for	applications,	data,	or	even	MS-DOS.	MS-DOS	normally	uses	only	the	first	640
KB	of	conventional	memory	for	applications	and	data.	The	remaining	384	KB	of	conventional
memory	is	known	as	the	upper	memory	area	or	reserved	memory	and	is	set	aside	for
special	purposes	such	as	hardware	control	and	video	memory.	This	reserved	portion	of
memory	is	used	by	memory-management	software	in	units	called	upper	memory	blocks,	or
UMBs.	Beginning	with	version	5,	MS-DOS	can	load	device	drivers	and	programs	such	as
Doskey	into	unused	UMBs,	thus	helping	you	conserve	as	much	as	possible	of	your
computer's	first	640	KB	of	memory	for	applications	and	data.

Extended	Memory

Extended	memory	is	additional	memory	that	begins	at	the	1-MB	boundary	where
conventional	memory	ends,	so	it	literally	extends	beyond	the	limits	of	conventional	memory.
You	can	add	many	megabytes'	worth	of	extended	memory	to	a	computer,	but	that	does	not
necessarily	mean	you	can	use	it.	Extended	memory	can	be	used	for	storage	only	by
programs	specifically	designed	to	find	and	take	advantage	of	it.	If	your	programs	cannot	use
extended	memory,	you	might	as	well	not	have	any.	Extended	memory	is	often	managed	by	a
program	called	an	extended	memory	manager,	which	keeps	two	applications	from	trying	to
use	the	same	portion	of	extended	memory	at	the	same	time.

Expanded	Memory

If	you	think	of	extended	memory	as	"high"	memory	that	a	program	can	reach	with	the	right
tools,	you	can	think	of	expanded	memory	as	a	separate	reservoir	from	which	a	program	can

draw	through	a	pipeline.	Expanded	memory	must	be	handled	by	a	program	called	an
expanded	memory	manager.	An	expanded	memory	manager	should	come	with	any
expanded	memory	you	install	in	your	system.

Once	your	computer	is	set	up	with	extended	memory,	expanded	memory,	or	both,	you	really
needn't	worry	about	what	type	you	have	or	how	it's	used.	It's	the	job	of	the	managing
software	to	do	all	that	for	you.	But	you	can	use	MS-DOS,	especially	version	5	or	later,	to
take	advantage	of	extended,	expanded,	and	reserved	memory	to	make	your	system	run
faster	and	more	efficiently.

Note

If	you	don't	have	version	5	or	later	of	MS-DOS,	the	following	few	topics	don't	apply
to	your	system.	Skip	to	the	section	called	"Creating	a	Disk	Cache	with
SMARTDRV"	if	you	have	the	Microsoft	release	of	version	4.	Skip	to	the	section
called	"Simulating	a	Disk	Drive	in	Memory	with	RAMDRIVE.SYS"	if	you	have
version	3	or	IBM's	version	4	of	MS-DOS.

Managing	Memory

Your	computer	needs	nothing	more	than	MS-DOS	to	manage	conventional	memory,	but
when	you	add	extended	or	expanded	memory	to	a	system,	MS-DOS	needs	some	extra
help.	In	version	5,	help	appeared	in	the	form	of	two	device	drivers	named	HIMEM.SYS	and
EMM386.EXE.

HIMEM.SYS	is	an	extended	memory	manager.	If	extended	memory	is	installed	in	your
system	when	MS-DOS	version	5	(or	later)	is	installed,	MS-DOS	finds	the	memory	and	adds
to	CONFIG.SYS	an	appropriate	Device	command	that	names	this	device	driver.	If	you	install
extended	memory	after	installing	MS-DOS,	you	can	add	your	own	Device	command	to
CONFIG.SYS.	For	example,	if	HIMEM.SYS	is	in	the	C:\DOS	directory,	the	command	would
be	as	follows:
device=c:\dos\himem.sys

Once	you've	identified	HIMEM.SYS	(or	another	extended	memory	manager)	in
CONFIG.SYS,	you	can	turn	some	of	the	extended	memory	into	a	fast-access	storage	area,
a	simulated	disk	drive,	or	a	home	for	MS-DOS	itself.

On	a	computer	with	an	80386,	80486,	or	a	Pentium	microprocessor,	you	can	accomplish
additional	memory	management	with	EMM386.EXE.	This	memory	manager	performs	two
tasks:

If	your	system	has	extended	memory	but	your	applications	require	expanded
memory,	EMM386.EXE	can	help	MS-DOS	treat	some	of	that	extended	memory	as
if	it	were	expanded	memory.

If	your	system	has	unused	portions	of	the	upper	memory	area	available	after	all
necessary	amounts	have	been	parceled	out	for	hardware	control,	video,	and	other
special	purposes,	EMM386.EXE	can	make	those	unused	portions	of	memory

available	to	MS-DOS	for	loading	device	drivers	and	programs.

EMM386.EXE	includes	a	number	of	parameters,	most	of	which	are	needed	only	by
programmers.	Three	that	you	might	use,	however,	are	described	here.	Assuming	that
EMM386.EXE	is	in	the	C:\DOS	directory,	the	Device	command	and	the	three	parameters
look	like	this:

device	=	c:\dos\emm386.exe	<memory>	ram	noems

<memory>	tells	MS-DOS	how	much	extended	memory,	in	kilobytes,	to	treat	as	expanded
memory.	You	can	specify	16	to	32768.	If	you	don't	include	<memory>,	MS-DOS	assumes
all	available	memory,	rounding	down	to	the	nearest	multiple	of	16	if	necessary.	When	you
use	this	parameter,	MS-DOS	sets	aside	the	required	amount	of	extended	memory	for	use
as	expanded	memory.	It	also	sets	up	your	system's	upper	memory	area	so	that	part	can	be
used	to	make	the	expanded	memory	available	to	programs,	and	the	remainder	can,	if
requested,	be	used	for	loading	device	drivers	and	programs.

ram	tells	MS-DOS	to	provide	access	to	both	expanded	memory	and	upper	memory
(UMBs).

noems	tells	MS-DOS	to	set	aside	all	available	upper	memory	for	loading	device	drivers	and
programs.	If	you	use	this	parameter,	you	cannot	use	any	expanded	memory.

Include	either	ram	or	noems	in	the	Device	command	that	names	EMM386.EXE.	For
example,	a	basic	Device	command	in	CONFIG.SYS	would	be	this:
device=c:\dos\emm386.exe

To	treat	640	KB	of	extended	memory	as	expanded	memory	and	make	UMBs	available,	the
command	would	be	this:
device=c:\dos\emm386.exe	640	ram

To	set	aside	all	available	reserved	memory	for	loading	programs	and	device	drivers,	the
command	would	be	this:
device=c:\dos\emm386.exe	noems

Once	you	give	MS-DOS	access	to	upper	memory,	you	can	use	this	memory	with	either	the
Loadhigh	command	or	the	Devicehigh	configuration	command	described	in	the	section
headed	"Using	the	Upper	Memory	Area."

Running	MS-DOS	in	High	Memory

Through	version	4,	MS-DOS	loaded	itself	into	conventional	memory,	reducing	the	amount	of
memory	available	for	applications	and	data	by	the	amount	of	space	it	needed.	Beginning
with	version	5,	MS-DOS	includes	a	simple	configuration	command	named	Dos	that	can	help
you	conserve	conventional	memory	on	a	system	with	extended	memory,	upper	memory,	or
both.

If	your	system	has	at	least	64	KB	of	extended	memory,	you	can	use	the	Dos	command	to
tell	MS-DOS	to	position	itself	in	a	portion	of	extended	memory	called	the	high	memory	area
(HMA).	If	your	system	has	at	least	350	KB	of	extended	memory	(typical	of	80386	systems
with	1	MB	of	RAM),	you	can	use	the	Dos	command	to	make	part	or	all	of	the	upper	memory
area	available	for	use	by	device	drivers	and	programs.	By	moving	MS-DOS,	device	drivers,
and	utility	programs	such	as	Doskey	and	other	memory-resident	software	out	of
conventional	memory,	you	leave	as	much	of	that	valuable	storage	space	as	possible	for	your
applications	and	data	to	use.

The	Dos	configuration	command	is	this:
dos	=	high/low,umb/noumb

high	tells	MS-DOS	to	load	itself	into	the	high	memory	area	if	it	can.	(The	high	memory	area
is	approximately	the	first	64	KB	of	extended	memory.)	low	tells	MS-DOS	to	load	itself	into
conventional	memory.	If	you	don't	specify	high,	or	if	MS-DOS	can't	load	itself	into	the	high
memory	area,	MS-DOS	automatically	moves	into	conventional	memory.

umb	(short	for	upper	memory	blocks)	tells	MS-DOS	to	make	use	of	the	upper	memory	area
for	device	drivers	and	programs.	noumb	tells	MS-DOS	not	to	use	that	area.	If	you	don't
specify	umb,	MS-DOS	does	not	use	the	upper	memory	area.

You	can	put	this	command	anywhere	in	CONFIG.SYS,	and	you	can	specify	both	parameters
in	one	command	by	separating	them	with	a	comma.	If	you	use	the	high	parameter,	however,
also	include	a	Device	command	that	names	HIMEM.SYS	so	that	you	can	be	sure	MS-DOS
can	find	and	use	extended	memory.	If	you	use	the	umb	parameter,	also	include	a	Device
command	that	names	EMM386.EXE	or	another	manager	that	makes	the	upper	memory
area	available	for	use.	The	following	two	examples	show	different	ways	to	use	these
commands	in	CONFIG.SYS.

To	load	MS-DOS	into	the	high	memory	area	on	a	system	with	at	least	64	KB	of	extended
memory,	you	would	include	these	commands	in	CONFIG.SYS:
device=c:\dos\himem.sys
dos=high

To	load	MS-DOS	into	the	high	memory	area	and	provide	access	to	all	of	the	available	upper
memory	area	on	an	80386,	80486,	or	a	Pentium	system	with	no	less	than	350	KB	of
extended	memory,	you	would	include	the	following	commands	in	CONFIG.SYS:
device=c:\dos\himem.sys
dos=high,umb
device=c:\dos\emm386.exe	noems

Note The	Device	command	naming	HIMEM.SYS	must	precede	the	Dos	command	andthe	Device	command	naming	EMM386.EXE	in	MS-DOS	5.0.

If	you	tell	MS-DOS	to	load	itself	into	extended	memory,	you	can	check	its	position	with	the

Mem	command.	MS-DOS	should	respond	MS-DOS	is	resident	in	high	memory	area.	If
MS-DOS	cannot	find	the	high	memory	area	and	load	itself	in	extended	memory,	you	don't
have	to	worry.	It	will	load	into	conventional	memory	just	as	it	always	has.

Letting	MS-DOS	Help	You	Manage	Memory

To	take	full	advantage	of	the	MS-DOS	memory-management	features	in	version	5	and	later,
the	proper	configuration	commands	must	be	placed	in	CONFIG.SYS,	specific	device	drivers
should	be	loaded	into	high	memory	with	the	Devicehigh	command,	and	memory-resident
programs	should	be	loaded	into	upper	memory	with	Loadhigh	commands	in
AUTOEXEC.BAT.	You	can	add	these	commands	yourself,	or	an	experienced	MS-DOS	user
can	do	it	for	you.

Starting	with	version	6.0,	MS-DOS	itself	offers	the	same	sort	of	help	that	the	experienced
user	would.	The	MemMaker	program	analyzes	your	computer's	memory	and	other
programs	that	you	use,	and	then	adds	the	appropriate	commands	to	CONFIG.SYS	and
AUTOEXEC.BAT	to	make	best	use	of	the	memory	installed	in	your	system.

You	should	run	MemMaker	early	in	your	quest	to	develop	the	perfect	configuration.	As	you'll
see	later	in	this	chapter,	versions	6.0	and	later	of	MS-DOS	allow	you	to	specify	multiple
configurations	in	your	CONFIG.SYS	file.	MemMaker	doesn't	take	the	multiple	configurations
into	account	when	it	performs	its	memory	optimization,	so	if	you	run	it	after	breaking	your
CONFIG.SYS	file	into	multiple	configurations,	your	work	might	be	lost.

To	start	MemMaker,	just	type	memmaker	at	the	system	prompt.	In	a	moment,	MemMaker
displays	its	opening	screen,	which	describes	the	process	it	follows:

After	you	press	Enter	to	continue,	MemMaker	displays	a	screen	that	allows	you	to	choose
between	letting	MemMaker	use	its	default	settings	(Express	Setup)	or	specifying	the
settings	yourself	(Custom	Setup).	Press	Enter	to	choose	Express	Setup.	The	default
settings	will	do	a	good	job	of	optimizing	your	memory.

There	isn't	much	for	you	to	do	from	here	on.	As	the	instructions	say,	you'll	be	given	a	few
choices,	but	these	are	mostly	limited	to	decisions	such	as	choosing	between	continuing	with

MemMaker	or	returning	to	MS-DOS.	In	the	course	of	deciding	how	best	to	manage	your
system's	memory	and	putting	the	required	commands	in	CONFIG.SYS	and
AUTOEXEC.BAT,	MemMaker	restarts	your	system	twice.

After	the	second	restart,	MemMaker	displays	a	summary	of	its	actions,	letting	you	know
how	much	memory	it	freed	for	you.	If	your	system	wasn't	set	up	for	memory	management
before,	you	should	now	see	significantly	more	conventional	memory	available.	(It	isn't
unusual	for	610	KB	or	even	more	to	be	free.)	You	might	be	able	to	free	a	bit	more
conventional	memory	by	fine-tuning	the	commands	in	CONFIG.SYS	and	AUTOEXEC.BAT,
but,	by	and	large,	MemMaker	should	do	the	job	well	enough	by	itself.

Creating	a	Disk	Cache	with	SMARTDRV

If	your	computer	has	a	hard	disk,	either	extended	or	expanded	memory,	and	version	6.0	or
later	of	MS-DOS,	you	can	load	SMARTDRV	in	AUTOEXEC.BAT	to	turn	part	of	this
additional	memory	into	a	rapid-access	storage	area	known	as	a	disk	cache.	(If	you	have
version	4	or	5,	you	can	use	the	Device	command	and	the	device	driver	SMARTDRV.SYS	in
CONFIG.SYS	to	do	the	same	thing.)	A	disk	cache	speeds	up	your	system	because
information	that	your	computer	reads	from	disk	into	memory	remains	in	the	cache.	It's	much
faster	for	your	computer	to	read	information	that's	already	in	memory,	so	a	disk	cache	can
substantially	reduce	the	amount	of	time	your	computer	spends	going	out	to	disk,	finding	the
information	you	need,	and	reading	it	into	memory.

Note
If	you're	using	the	DriveSpace	or	DoubleSpace	program	to	compress	your	hard
disk,	don't	use	SmartDrive	to	create	a	disk	cache	on	the	compressed	disk.	It	will
actually	slow	down	access	to	that	disk.	You	should,	however,	use	SmartDrive	on
your	uncompressed	hard	disk	drive.

To	create	a	disk	cache	with	SMARTDRV,	add	a	command	in	the	following	form	to
AUTOEXEC.BAT:

smartdrv	<size>	<minsize>

If	the	program	SMARTDRV.EXE	is	not	in	the	root	directory	of	the	current	disk,	precede	the
name	with	a	drive	and	path—for	example,	c:\dos\smartdrv.

<size>	is	the	size	you	want	the	cache	to	be,	in	kilobytes.	It	can	be	any	value	from	128	to
8192	(8	MB).	If	you	don't	specify	<size>,	SMARTDRV	sets	the	cache	size,	depending	on
the	amount	of	extended	memory	available.	When	the	cache	is	created,	MS-DOS	rounds
<size>	to	the	nearest	multiple	of	16.	If	there	is	too	little	memory	to	create	the	size	cache
you	specify,	SMARTDRV	creates	a	smaller	one,	using	all	the	memory	that	is	available.

<minsize>	is	the	smallest	size	you	want	the	cache	to	be,	again	in	kilobytes.	You	don't	have
to	specify	<minsize>,	but	if	you	don't,	and	you	use	a	program	such	as	Microsoft	Windows
version	3	or	later,	the	program	might	be	able	to	reduce	the	size	of	your	cache	to	suit	its	own
purposes.	In	some	cases,	the	program	might	reduce	the	cache	size	to	0.

In	MS-DOS	versions	6.0	and	later,	the	disk	cache	is	always	created	in	extended	memory,
unless	you	specify	otherwise.	In	versions	4	and	5,	you	can	specify	the	/A	parameter	to
create	the	cache	in	expanded	memory.	Because	the	disk	cache	is	created	in	extended	or
expanded	memory,	you	must	include	a	command	in	your	CONFIG.SYS	file	that	identifies
your	extended	or	expanded	memory	manager.	If	you	have	version	4	or	5	of	MS-DOS,	the
Device	command	specifying	SMARTDRV.SYS	must	appear	after	the	memory	manager
command	in	CONFIG.SYS.

Also,	when	you	specify	the	size,	leave	enough	memory	for	other	programs	that	also	run	in
extended	or	expanded	memory.	If	you're	not	certain	how	much	of	this	memory	you	have	(or
have	available),	use	the	Mem	command	to	ask	MS-DOS	to	report	on	memory	usage.

Note
SMARTDRV	has	other	parameters	that	further	specify	how	the	disk	cache	is
created	and	managed.	See	Appendix	C,	"MS-DOS	Command	Reference,"	for
details.

The	following	example	creates	a	1-MB	(1024-KB)	disk	cache	with	a	minimum	size	of	256
KB.	The	example	assumes	that	SMARTDRV.EXE	is	in	the	C:\DOS	directory:
c:\dos\smartdrv	1024	256

Simulating	a	Disk	Drive	in	Memory	with	RAM	DRIVE.SYS

Disk	drives	are	mechanical	and	quite	slow	compared	to	the	computer's	memory.	Starting
with	version	3.2,	MS-DOS	lets	you	set	aside	a	portion	of	the	computer's	memory	for	use	as
a	simulated	disk,	making	it	possible	for	disk	operations	to	be	performed	at	memory	speeds.

This	simulated	disk	is	called	a	RAM	disk	or	RAM	drive	because	it	exists	in	your	computer's
memory	(RAM)	rather	than	as	a	solid	piece	of	hardware.	It's	also	known	as	a	virtual	disk
because	having	a	RAM	disk	is	virtually	the	same	as	having	another	disk	drive.	A	RAM	disk	is
particularly	useful	on	a	system	with	extended	or	expanded	memory	because	MS-DOS	can
create	the	RAM	disk	in	either	of	these	types	of	memory,	leaving	the	computer's	conventional
memory	for	other	uses.

On	the	surface,	a	RAM	disk	might	not	seem	much	different	from	a	disk	cache,	described	in
the	preceding	section.	However,	it	is	different.	You	can	think	of	a	disk	cache—one	created
either	by	SMARTDRV	or	by	a	separate	disk-caching	program—as	a	warehousing	area	for
information	you've	already	used.	In	contrast,	creating	a	RAM	disk	is	like	adding	an
extremely	fast	disk	drive	to	your	system.

A	RAM	disk	behaves	like	any	other	disk:	It	has	a	drive	letter	and	a	directory,	and	you	can
specify	it	in	any	command	that	refers	to	a	disk.	It	is	much	faster	than	a	real	disk	drive,
however,	and	the	difference	is	especially	noticeable	when	you	use	commands,	such	as
Copy,	that	work	with	disk	drives	or	when	you	use	application	programs	that	access	the	disk
frequently,	as	many	word	processors	and	database	programs	do.	To	use	a	RAM	disk,	you
copy	the	files	you	need	from	a	physical	disk	to	the	RAM	disk	after	MS-DOS	has	started,
then	copy	them	back	to	the	disk	after	you	have	completed	the	work.	Copying	them	back	is

particularly	important	because	any	changes	you	make	to	the	files	are	recorded	only	in
memory	when	you	are	using	a	RAM	disk,	and	the	contents	of	memory	disappear	whenever
you	turn	off	your	computer.

MS-DOS	assigns	the	next	available	drive	letter	to	the	RAM	disk.	On	a	system	with	one	or
two	floppy	disk	drives	and	a	hard	disk,	the	next	available	letter	is	usually	D.

Although	a	real	disk	drive	has	a	fixed	capacity,	such	as	360	KB	or	1.44	MB,	a	RAM	disk	can
have	whatever	capacity	you	want,	within	the	limits	described	below	for	the	command
parameters.	If	your	computer	has	enough	memory,	you	can	define	more	than	one	RAM	disk
by	including	more	than	one	RAM-disk	Device	command	in	CONFIG.SYS.

If	your	computer	is	equipped	with	expanded	or	extended	memory,	you	should	tell	MS-DOS
to	use	this	additional	memory	for	your	RAM	disk,	leaving	your	computer's	conventional
memory	space	for	programs	to	use.	If	you	have	version	5	or	later	of	MS-DOS	and	an
80386,	80486,	or	Pentium	computer,	you	can	also	use	the	Devicehigh	configuration
command	described	later	to	load	the	program	that	creates	the	RAM	disk	into	the	upper
memory	area.	(You	can	check	on	available	upper	memory	blocks	with	the	/C	parameter	of
the	Mem	command.)

As	efficient	as	it	is,	the	remarkable	increase	in	speed	offered	by	RAM	disks	can	have	some
drawbacks.	If	your	computer	doesn't	have	expanded	or	extended	memory	(or	if	you	don't
tell	MS-DOS	to	use	it),	the	memory	used	for	a	RAM	disk	reduces	the	amount	of	memory
available	to	programs.	Furthermore,	the	contents	of	a	RAM	disk	are	lost	each	time	you	turn
the	computer	off.

If	the	RAM	disk	is	large	enough,	you	can	speed	operations	by	copying	both	programs	and
data	files	to	it.	Make	certain	that	your	RAM	disk	leaves	enough	memory	for	the	programs
you	use.	In	either	case,	be	sure	to	copy	the	files	you	want	to	keep	onto	a	real	disk	before
you	turn	the	computer	off.	You	can	automate	this	process	by	using	a	batch	file	to	copy	your
working	files	to	the	RAM	disk,	to	start	the	application	program,	and	then	to	copy	the	revised
working	files	back	to	the	real	disk	after	you	leave	the	application	program.

Depending	on	your	version	of	MS-DOS,	the	file	that	creates	a	RAM	disk	is	called	either
RAMDRIVE.SYS	or	VDISK.SYS.	To	avoid	excessive	detail,	the	following	description	applies
to	RAMDRIVE.SYS	as	it	can	be	used	with	versions	6.0	and	later	of	MS-DOS.	Differences	in
earlier	versions	and	in	VDISK.SYS	are	not	major,	but	they	do	exist.	If	you	need	exact
values,	refer	to	Appendix	C,	"MS-DOS	Command	Reference."

To	define	a	RAM	disk,	the	Device	command	is	this:
device	=	ramdrive.sys	<size>	<sector>	<directory>	/E	/A

RAMDRIVE.SYS	(or	VDISK.SYS)	is	the	name	of	the	device-driver	program.	If	it	isn't	in	the
root	directory	of	the	MS-DOS	disk,	you	must	include	the	drive	letter	and	path	name	of	its
directory—for	example,	c:\dos\ramdrive.sys.

<size>	is	the	size,	in	kilobytes,	of	the	RAM	disk.	The	minimum	is	4	KB,	and	the	maximum	is

32,767	KB	(32	MB).	If	you	omit	<size>	or	specify	an	incorrect	value,	RAMDRIVE.SYS	sets
<size>	to	64.

<sector>	is	the	size,	in	bytes,	of	each	sector	on	the	RAM	disk.	You	can	specify	128,	256,	or
512.	If	you	omit	<sector>	or	specify	an	incorrect	value,	RAMDRIVE.SYS	sets	<sector>	to
512.	If	you	use	<sector>,	you	must	also	use	<size>.

<directory>	is	the	number	of	directory	entries	allowed	in	the	root	directory	of	the	RAM	disk.
You	can	specify	any	value	from	2	to	1024.	Each	directory	entry	takes	up	32	bytes	of	the
RAM	disk.	If	you	omit	<directory>	or	specify	an	incorrect	value,	RAMDRIVE.SYS	sets
<directory>	to	64.	If	you	use	<directory>,	you	must	also	use	<size>	and	<sector>.

/E	puts	the	RAM	disk	in	extended	memory.	It	is	valid	only	if	the	computer	contains	extended
memory.	Using	extended	memory	for	a	RAM	disk	leaves	the	maximum	amount	of
conventional	memory	for	programs.	If	you	use	/E,	you	cannot	use	/A.

/A	puts	the	RAM	disk	in	expanded	memory.	Like	the	/E	option,	it	leaves	the	maximum
amount	of	conventional	memory	available	for	programs.	If	you	use	/A,	you	cannot	use	/E.

If	there	isn't	enough	memory	to	create	the	RAM	disk	as	you	specify	it,	and	you're	creating
the	disk	in	conventional	memory,	RAMDRIVE.SYS	doesn't	create	the	disk.	If	you're	creating
the	disk	in	extended	or	expanded	memory,	RAMDRIVE.SYS	creates	a	disk	using	all
available	memory.

The	following	examples	show	the	commands	that	would	create	RAM	disks	in	conventional,
extended,	and	expanded	memory.	All	three	examples	assume	that	RAMDRIVE.SYS	is	in	the
C:\DOS	directory.

To	create	a	small	(64-KB)	RAM	disk	in	conventional	memory,	accepting	the	values	MS-DOS
assumes	for	<sector>	and	<directory>,	you	would	place	either	of	the	following	commands	in
CONFIG.SYS:
device=c:\dos\ramdrive.sys	64

or:
device=c:\dos\ramdrive.sys

To	create	a	much	larger	(720-KB)	RAM	disk	in	extended	memory,	again	accepting	the
values	MS-DOS	assumes	for	<sector>	and	<directory>,	you	would	need	two	commands:
first,	a	Device	command	to	identify	the	extended	memory	manager	to	MS-DOS,	and
second,	a	Device	command	to	create	the	RAM	disk	in	extended	memory.	The	commands
would	look	like	this:
device=c:\dos\himem.sys
device=c:\dos\ramdrive.sys	720	/e

Finally,	if	you	were	to	create	the	RAM	disk	described	in	the	preceding	example,	but	in

expanded	rather	than	extended	memory,	the	commands	would	be	these:
device=<manager>
device=c:\dos\ramdrive.sys	720	/a

When	you	create	this	RAM	disk	on	your	own	system,	you	need	to	replace	manager	with	the
drive,	path,	and	file	name	of	your	expanded	memory	manager.

Using	the	Upper	Memory	Area

If	you	have	an	80386,	80486,	or	Pentium	computer,	chances	are	your	system	has	more	than
1	MB	of	memory.	If	you	have	version	5	or	later	of	MS-DOS,	you	can	use	the	Loadhigh	and
Devicehigh	commands	to	load	programs	and	certain	device	drivers	into	upper	memory
blocks	(UMBs).	Both	commands	can	help	you	conserve	regular	memory	for	applications	and
data.

Loadhigh	is	an	MS-DOS	command	that	you	type	or	use	in	a	batch	file.	Devicehigh	is	a
configuration	command	that	you	put	in	CONFIG.SYS.	Because	MS-DOS	doesn't	normally
treat	the	upper	memory	area	as	part	of	your	computer's	available	memory,	you	can	use	the
Loadhigh	and	Devicehigh	commands	only	after	you	have	loaded	the	following:

The	HIMEM.SYS	device	driver,	which	enables	MS-DOS	to	use	high	memory

The	Dos	configuration	command,	which	tells	MS-DOS	whether	to	use	available
upper	memory	blocks	(UMBs)

The	EMM386.EXE	device	driver	or	a	similar	device	driver	that	makes	unused	blocks
of	the	upper	memory	area	available

Once	you've	used	the	Dos	command	and	have	identified	the	appropriate	memory	managers
to	MS-DOS	with	Device	configuration	commands,	you	can	use	the	Loadhigh	and	Devicehigh
commands	to	tell	MS-DOS	what	to	load	into	the	upper	memory	area.	To	see	if	you	have
enough	memory	for	a	particular	program	or	device	driver,	compare	the	file's	size	with	the
free	upper	memory	reported	by	the	Mem	/C	command.

The	following	sample	CONFIG.SYS	file	shows	the	Dos	and	Device	commands	you	need	to
use	Loadhigh	and	Devicehigh.	Files	are	assumed	to	be	in	the	C:\DOS	directory.	In	this
example,	the	Dos	command	also	tells	MS-DOS	to	run	in	high	memory,	and	the	noems
parameter	of	the	Device	command	naming	EMM386.EXE	indicates	that	the	system	has	no
need	for	expanded	memory:
device=c:\dos\himem.sys
dos=high,umb
device=c:\dos\emm386.exe	noems

Loading	Programs	with	Loadhigh

The	Loadhigh	command	can	be	used	either	from	the	system	prompt	or,	for	programs	you
want	to	load	regularly	into	the	upper	memory	area,	from	your	AUTOEXEC.BAT	file.
Loadhigh,	which	can	be	abbreviated	lh,	is	particularly	well	suited	for	use	with	the	type	of
program	known	as	a	TSR	(terminate	and	stay	resident).	Such	programs	sit	in	memory	but
usually	reside	quietly	in	the	background,	as	opposed	to	word	processors	and	other
application	programs	that	remain	in	control	of	the	system	as	long	as	they	are	active.	MS-
DOS	includes	a	number	of	TSRs,	among	them	Doskey,	Graphics,	Mode,	and	Append.

To	load	a	program	into	upper	memory,	the	form	of	the	Loadhigh	command	is	this:
loadhigh	<filename>	<parameters>

<filename>	is	the	name	of	the	program	you	want	to	load,	including	a	drive	and	path	if
necessary.

<parameters>	represents	any	parameters	you	type	when	starting	the	program.

For	example,	after	starting	with	the	CONFIG.SYS	file	described	earlier,	you	would	load
Doskey	into	upper	memory	with	this	command:
loadhigh	doskey

MS-DOS	would	then	attempt	to	load	the	program	into	the	upper	memory	area.	If	there
weren't	enough	room,	MS-DOS	would	load	Doskey	into	conventional	memory	instead.

Loading	Device	Drivers	with	Devicehigh

The	Devicehigh	command	lets	you	load	device	drivers,	such	as	RAMDRIVE.SYS,	into	the
upper	memory	area	and	thus	conserve	as	much	of	your	computer's	conventional	memory	as
possible.	Device	drivers	that	are	included	with	MS-DOS	and	that	can	be	loaded	into	the
upper	memory	area	are	EGA.SYS,	DISPLAY.SYS,	DRVSPACE.SYS,	DBLSPACE.SYS,
INTERLNK.SYS,	ANSI.SYS,	RAMDRIVE.SYS,	and	DRIVER.SYS.	(MS-DOS	versions	prior
to	6.0	also	included	PRINTER.SYS.)

Note

Before	experimenting,	create	a	startup	floppy	disk	(use	the	/S	parameter	of	the
Format	command),	and	copy	your	CONFIG.SYS	and	AUTOEXEC.BAT	files	to	it.
Then	if	you	experience	difficulties	with	a	device	driver,	you	have	an	alternative
means	of	starting	your	computer	so	that	you	can	correct	the	situation.	Versions	6.0
and	later	of	MS-DOS	makes	it	possible	to	skip	the	loading	of	CONFIG.SYS	and
AUTOEXEC.BAT,	so	there's	no	need	to	create	the	startup	disk.	See	the	section
"Starting	Without	CONFIG.SYS	or	AUTOEXEC.BAT"	later	in	this	chapter.

You	can	also	load	device	drivers	that	aren't	part	of	MS-DOS	into	reserved	memory.	Some,
however,	need	more	memory	than	expected	when	they're	loaded	and	might	cause	your
system	to	halt.	If	this	happens,	you	might	be	able	to	fix	the	problem	by	using	the	<minsize>
parameter	of	the	Devicehigh	command	to	specify	the	amount	of	memory	the	driver	needs.

The	form	of	the	Devicehigh	command	in	versions	6.0	and	later	is	this:

devicehigh	=	/L:<region>,<minsize>	/S	<filename>

/L:<region>,<minsize>	lets	you	specify	where	in	upper	memory	you	want	to	place	the	driver
and	the	minimum	amount	of	memory	needed	by	the	device	driver.	<region>	specifies	the
region	in	upper	memory	into	which	you	want	to	put	the	device	driver.	To	list	the	regions
available	in	upper	memory,	use	the	Mem	command	with	the	/F	parameter.	<minsize>	tells
MS-DOS	the	smallest	amount	of	memory	into	which	the	device	driver	will	fit.	If	a	device
driver	needs	two	or	more	regions	of	memory,	separate	the	region	numbers	with	semicolons;
if	<minsize>	is	used	with	the	first	<region>	specification,	then	the	semicolon	follows	the
<minsize>	specification.	Use	<minsize>	if	you	experience	problems	loading	a	device	driver
into	the	upper	memory	area.

/S	shrinks	the	UMB	to	its	smallest	size	as	MS-DOS	loads	the	device	driver.	This	switch	is
normally	used	only	by	the	MemMaker	program.

<filename>	is	the	name,	including	extension,	of	the	device	driver	you	want	to	load.	Include	a
path	if	the	driver	is	not	in	the	root	directory	of	the	disk	from	which	you	start	MS-DOS.	You
can	also	include	parameters	required	by	the	device	driver.

Version	5	of	MS-DOS	has	a	slightly	different	form:
devicehigh	size	=	<memsize>	<filename>

size=<memsize>	is	the	amount	of	memory,	given	as	a	hexadecimal	value,	required	by	the
device	driver.	Use	size	if	you	experience	problems	loading	a	device	driver	into	the	upper
memory	area.	Although	the	value	must	be	a	hexadecimal	(base	16)	number,	you	don't	have
to	calculate	it	yourself;	you	can	use	the	Mem	command	with	the	/C	parameter	to	list	the	size
of	the	driver.	The	second	column	of	the	Mem	command	report	gives	the	size	of	the	device
driver	in	decimal;	the	third	column	gives	the	size	in	hexadecimal.	If	hexadecimal	is	new	to
you,	don't	be	disconcerted	if	you	see	a	combination	of	letters	and	numerals;	both	0004A0
and	0038E0,	for	example,	are	valid	hexadecimal	numbers.

<filename>	is	the	name,	including	extension,	of	the	device	driver	you	want	to	load.	Include	a
path	if	the	driver	is	not	in	the	root	directory	of	the	disk	from	which	you	start	MS-DOS.	You
should	also	include	parameters	that	are	required	by	the	device	driver.

When	you	use	Devicehigh,	MS-DOS	attempts	to	load	the	specified	device	driver	in	the
upper	memory	area.	If	there	isn't	enough	room,	MS-DOS	loads	the	driver	into	conventional
memory	instead.

The	following	sample	CONFIG.SYS	file	for	version	6.0	or	later	of	MS-DOS	includes	the
commands	shown	earlier	as	well	as	a	Devicehigh	command	that	loads	RAMDRIVE.SYS	into
the	upper	memory	area	and	creates	a	640-KB	RAM	disk	in	extended	memory:
device=c:\dos\himem.sys
dos=high,umb
device=c:\dos\emm386.exe		noems
devicehigh=c:\dos\ramdrive.sys		640	/E

Controlling	the	Display	with	ANSI.SYS

MS-DOS	includes	a	device	driver	called	ANSI.SYS	that	defines	a	standard	set	of	methods
for	managing	a	display,	including	how	to	display	and	erase	characters,	move	the	cursor,	and
select	colors.	Some	programs,	including	parts	of	the	MS-DOS	Mode	command,	require	your
system	disk	to	have	a	CONFIG.SYS	file	that	contains	the	command	device=c:\dos\ansi.sys
(assuming	the	file	is	in	your	C:\DOS	directory).	ANSI	is	an	acronym	for	American	National
Standards	Institute.

Configuration	Commands	for	Your	Portable	Computer

Portable	computers	have	special	needs,	some	of	which	are	met	by	two	device	drivers
introduced	in	version	6.0	of	MS-DOS:

POWER.EXE	extends	battery	life	by	shutting	down	portions	of	the	computer's
circuitry	when	no	activity	is	taking	place.	If	the	computer	conforms	to	the	Advanced
Power	Management	(APM)	specification,	POWER.EXE	can	extend	battery	life	as
much	as	25	percent.

INTERLINK.EXE	lets	you	connect	a	portable	computer	to	a	desktop	computer	with
a	cable	and	quickly	copy	files	back	and	forth.

Both	programs	are	fairly	simple	to	use.	To	take	advantage	of	POWER.EXE,	for	example,
add	the	configuration	command	devicehigh=c:\dos\power.exe	to	your	CONFIG.SYS	file.
After	you	start	the	system,	type	the	command	power.	If	you	plan	on	using	these	power-
saving	features	permanently,	add	the	Power	command	to	AUTOEXEC.BAT.

To	use	INTERLNK.EXE,	you	must	have	a	cable	to	connect	the	computers;	the	most
common	is	a	3-wire	serial	cable,	but	you	can	also	use	a	7-wire	null	modem	cable	or	a
bidirectional	parallel	cable.	If	version	6.0	or	later	is	installed	on	both	computers,	add	the
configuration	command	devicehigh=c:\dos\interlnk.exe	to	CONFIG.SYS	on	the	portable
computer.	On	the	desktop	computer,	simply	type	the	command	intersvr	(you	don't	have	to
add	a	command	to	CONFIG.SYS).	Disk	drives	attached	to	the	larger	computer	appear	as
drives	to	the	portable;	copying	from	one	machine	to	the	other	is	simply	a	matter	of	using	the
Copy	or	Xcopy	commands	to	copy	files	from	one	drive	to	another.

For	more	information	about	using	these	two	device	drivers,	use	the	MS-DOS	Help	facility
(for	example,	type	help	power.exe,	help	interlnk.exe,	or	help	intersvr)	or	consult	the	manual
that	came	with	MS-DOS	version	6.0	or	later.

	

javascript:Next(0)
javascript:Next(1)

Other	Configuration	Commands
Several	configuration	commands	control	internal	operating	characteristics	of	your	system
and	usually	deal	with	how	MS-DOS	handles	files	or	reads	disks.	Some	application	programs
or	devices	include	detailed	instructions	for	adding	or	changing	these	configuration
commands.	The	configuration	commands	discussed	in	this	section	are	described	in	more
detail	in	Appendix	C,	"MS-DOS	Command	Reference."

Defining	Temporary	Work	Areas

The	Buffers	configuration	command	defines	the	number	of	work	areas	in	memory	(buffers)
that	MS-DOS	uses	to	read	from	and	write	to	a	disk.	The	effect	of	this	configuration
command	on	system	performance	depends	on	the	type	of	disk	drive	you	use	and	the	types
of	programs	you	use.	The	form	of	the	Buffers	command	is	this:

buffers	=	<number>

Unless	otherwise	noted,	versions	of	MS-DOS	through	3.2	use	two	or	three	buffers,
depending	on	your	system	and	the	amount	of	memory	it	has.	If	you're	using	version	3.3,
MS-DOS	sets	the	number	of	buffers	primarily	according	to	the	amount	of	memory	your
system	has.	You	can,	of	course,	override	these	values	by	including	or	changing	the	Buffers
configuration	command	in	CONFIG.SYS.	For	optimum	performance,	some	programs	require
you	to	set	buffers	to	a	higher	number	than	MS-DOS	assumes.	Fastback,	for	example,
needs	40.	For	a	list	of	values	that	MS-DOS	uses,	see	the	description	of	the	Buffers
command	in	Appendix	C.

Specifying	the	Maximum	Number	of	Open	Files

The	Files	configuration	command	tells	MS-DOS	how	many	files	it	can	use	at	one	time.
Unless	otherwise	instructed,	MS-DOS	can	use	a	maximum	of	eight	files	at	a	time.	The	form
of	the	Files	command	is	this:

files	=	<number>

<number>	can	be	any	number	from	8	through	255.

Setting	the	Highest	Drive	Letter

The	Lastdrive	configuration	command	specifies	the	highest	drive	letter	that	MS-DOS
recognizes	as	valid.	If	CONFIG.SYS	doesn't	contain	a	Lastdrive	command,	the	highest	drive
letter	MS-DOS	recognizes	is	E.	This	command	is	usually	used	to	specify	a	higher	letter	(up
to	Z)	if	MS-DOS	needs	more	than	five	drive	letters.	MS-DOS	might	need	more	drive	letters
because	the	computer	is	part	of	a	network,	because	it	uses	many	RAM	disks,	or	because	a
large	hard	disk	is	divided	into	sections,	each	of	which	is	referred	to	by	a	different	drive
letter.	The	form	of	the	Lastdrive	command	is	this:

lastdrive	=	<letter>

<letter>	is	any	letter	from	A	to	Z.

Troubleshooting	and	Tailoring	System	Startup

When	your	system	behaves	erratically—one	or	more	programs	won't	run	or	one	or	more
runs	incorrectly,	or	perhaps	a	device	doesn't	work	properly—one	of	the	most	valuable
troubleshooting	techniques	is	to	remove	commands	from	CONFIG.SYS	and
AUTOEXEC.BAT	until	the	problem	goes	away.	Starting	with	version	6.0,	MS-DOS	takes
much	of	the	tedium	out	of	this	procedure	by	letting	you	start	the	system	without	carrying	out
any	of	the	commands	in	CONFIG.SYS	or	AUTOEXEC.BAT	or	by	letting	you	choose,
command	by	command,	whether	to	carry	out	the	commands	in	CONFIG.SYS	and
AUTOEXEC.BAT.

In	MS-DOS	version	6.0	or	later,	you	can	also	structure	the	commands	in	CONFIG.SYS	so
that	MS-DOS	displays	a	menu	of	alternate	configurations	and	lets	you	choose	which
combination	of	configuration	commands	to	carry	out.

Starting	Without	CONFIG.SYS	or	AUTOEXEC.BAT

If	you	install	a	new	program	or	device	and	your	system	stops	working	properly—or	if
someone	else	uses	your	system	and	now	it	won't	do	what	it's	supposed	to—there's	a
chance	that	either	a	configuration	command	in	CONFIG.SYS	or	a	command	in
AUTOEXEC.BAT	is	causing	the	problem.

If	you're	using	version	6.0	or	later,	confirm	the	diagnosis	by	pressing	Ctrl-Alt-Del	to	restart
the	system	and	when	MS-DOS	displays	Starting	MS-DOS,	press	F5;	MS-DOS	skips	both
CONFIG.SYS	and	AUTOEXEC.BAT.	If	the	system	starts	properly	(although	it	may	behave
differently	from	the	way	it	usually	does	because	you	aren't	carrying	out	your	normal
configuration	or	startup	commands),	edit	your	CONFIG.SYS	and	AUTOEXEC.BAT	files	to
double-check	any	commands	you	might	have	added.	If	you	didn't	add	any	commands
recently,	you'll	need	to	do	further	investigating.	The	next	topic	tells	you	how	to	use	another
feature	to	pinpoint	the	problem.

Choosing	Individual	Startup	Commands

If	there's	a	problem	in	CONFIG.SYS	(MS-DOS	version	6.0	or	later)	or	AUTOEXEC.BAT
(MS-DOS	version	6.2	or	later),	you	can	test	their	commands	one	at	a	time	by	pressing	F8
when	MS-DOS	displays	Starting	MS-DOS	at	startup.	In	response,	MS-DOS	displays	each
configuration	command	in	CONFIG.SYS,	starting	with	the	first,	and	prompts	you	[Y,N]?	Step
through	the	file	this	way	until	you	locate	the	offending	configuration	command;	then	either
correct	it	or	remove	it.

When	MS-DOS	has	completed	processing	CONFIG.SYS,	it	prompts	you	with	Process
AUTOEXEC.BAT	[Y,N]?	In	MS-DOS	versions	6.2	and	later,	to	step	through	each	command
in	AUTOEXEC.BAT	just	as	you	did	in	CONFIG.SYS,	press	Y.	(In	version	6.0,	the
AUTOEXEC.BAT	file	will	be	processed,	but	you	will	not	be	able	to	step	through	it	one

command	at	a	time).

Note
If	you	call	or	chain	to	other	batch	files	in	AUTOEXEC.BAT,	MS-DOS	versions	6.2
and	later	step	through	those	files	one	command	at	a	time,	too,	giving	you	complete
control	of	your	diagnostic	process.

Defining	a	Menu	of	Configurations

Suppose	you	have	a	device	that	you	use	rarely—for	example,	a	color	scanner—whose
device	driver	is	very	large	and	cannot	run	in	high	memory.	You	have	also	found	that	it	runs
much	better	if	you	create	a	RAM	drive	to	hold	some	temporary	files	created	during	the
scan,	which	uses	more	memory.	But	because	the	driver	and	the	created	RAM	drive	take	up
memory	that	otherwise	would	be	available	for	other	programs,	you'd	like	to	load	the	device
driver	and	set	up	the	RAM	drive	only	when	you're	going	to	use	the	scanner.	Versions	6.0
and	later	let	you	do	just	that	by	adding	some	commands	to	your	CONFIG.SYS	file.

Let's	look	at	an	example.	When	you	start	your	machine	using	MS-DOS	version	6.2	and	the
following	CONFIG.SYS	file,	MS-DOS	displays	a	screen	titled	"MS-DOS	6.2	Startup	Menu"
that	lists	two	menu	items—NoScanner	and	Scanner.	MS-DOS	reads	different	parts	of	your
CONFIG.SYS	file	depending	on	the	item	you	choose.
device	=	c:\dos\himem.sys
device	=	c:\dos\emm386.exe	noems
dos	=	high,umb
lastdrive	=	f

[Menu]
menuitem	=	NoScanner
menuitem	=	Scanner

[NoScanner]

[Scanner]
device	=	c:\scan\colrscan.sys
devicehigh	=	c:\dos\ramdrive.sys	1024	512	64	/e

[Common]
devicehigh	=	c:\dos\drvspace.sys	/move
devicehigh	=	c:\dos\ansi.sys
buffers	=	20
files	=	40

The	first	four	commands	set	up	upper	memory	management	and	specify	the	highest	drive
letter	that	MS-DOS	will	recognize;	these	configuration	commands	are	always	carried	out.

The	line	that	contains	[Menu]	marks	the	beginning	of	the	list	of	menu	choices.	There	are	two

choices	in	this	configuration	menu—NoScanner	and	Scanner.	You'll	need	a	separate	section
in	CONFIG.SYS	for	each	of	these	choices	to	specify	what	configuration	commands,	if	any,
are	to	be	carried	out	when	each	choice	is	made.

The	first	menu	item	section	starts	out	with	the	line	[NoScanner].	This	section	contains	no
configuration	commands	because	you	don't	want	to	take	any	special	action	if	you're	not
going	to	use	the	scanner.

The	second	menu	item	section	also	starts	with	the	line	[Scanner].	This	section	contains	two
configuration	commands	that	are	carried	out	if	you	choose	Scanner	from	the	startup	menu.
They	load	the	device	driver	named	COLRSCAN.SYS	and	create	a	1-megabyte	RAM	drive.

The	four	configuration	commands	following	[Common]	are	carried	out	regardless	of	what
you	choose	from	the	startup	menu.	These	commands	complete	the	job	of	specifying	to	MS-
DOS	how	your	system	is	set	up	and	how	to	manage	its	resources.

By	setting	up	your	CONFIG.SYS	file	this	way,	you	don't	have	to	give	up	the	use	of	the
memory	required	to	run	your	scanner	when	you	don't	use	it.	Each	time	you	start	your
system,	you'll	have	the	chance	to	tell	MS-DOS	how	to	configure	the	system.	You	can	use
this	technique	to	handle	any	special	configurations,	such	as	running	a	network	or	installing
drivers	for	seldom-used	hardware.

	

javascript:Next(0)
javascript:Next(1)

Commands	for	Occasional	Use
So	far	this	book	has	described	all	the	commands	you	routinely	use	to	operate	MS-DOS.
There	are	a	few	remaining	commands	you	might	occasionally	need,	and	there	are	several
commands	that	you	won't	need	unless	you	plan	to	program	or	use	some	of	the	advanced
capabilities	of	MS-DOS.	The	less	commonly	used	commands	are	described	briefly	here	and
in	more	detail	in	Appendix	C,	"MS-DOS	Command	Reference."

Displaying	the	MS-DOS	Version	Number

The	Version	command	displays	the	number	of	the	version	of	MS-DOS	you're	using.	If	you
use	more	than	one	version,	or	if	you	are	using	someone	else's	machine,	this	gives	you	a
quick	way	to	check	the	version.

The	Version	command	has	no	parameters:
ver

If	you're	using	version	6.0,	for	example,	MS-DOS	replies	MS-DOS	Version	6.00	in	response
to	the	command.

Changing	the	System	Prompt

As	shown	in	examples	in	earlier	chapters,	you	can	change	the	system	prompt	with	the
Prompt	command	to	display	much	more	than	just	the	current	drive	letter.	The	change	takes
effect	as	soon	as	you	enter	the	command.

The	Prompt	command	has	one	parameter:
prompt	<string>

<string>	is	a	string	of	characters	that	defines	the	new	system	prompt.	You	can	use	any
characters	you	want.	You	can	also	instruct	the	new	prompt	to	include	one	or	more	items	of
useful	information	by	including	a	dollar	sign	and	one	of	the	following	characters	to	specify
what	you	want	the	prompt	to	contain:

Character Produces

d The	current	date

p The	current	drive	and	directory

n The	current	drive

t The	current	time

v The	MS-DOS	version	number

g A	greater-than	sign	(>)

1 A	less-than	sign	(<)

b A	vertical	bar	(|)

q An	equal	sign	(=)

e An	escape	character

h A	backspace

$ A	dollar	sign	($)

_ A	signal	to	end	the	current	line	and	start	a	new	one	(The	character	is	an
underscore,	not	a	hyphen.)

You	can	include	as	many	combinations	of	$,	followed	by	a	character,	as	you	wish.	MS-DOS
ignores	any	combination	of	$	followed	by	a	character	that	is	not	in	the	preceding	list.

If	you	enter	the	Prompt	command	with	no	parameter	(you	just	type	prompt),	MS-DOS
restores	the	prompt	to	the	letter	of	the	current	drive	followed	by	a	greater-than	sign	(for
example,	C>).

The	Prompt	command	takes	effect	immediately,	so	it's	easy	to	experiment.	You	saw	how	to
change	the	system	prompt	to	a	courteous	request	(May	I	help	you?)	in	Chapter	3,	"Getting
Your	Bearings,"	and	you've	changed	it	to	suit	your	needs	in	other	chapters.	To	restore	the
system	prompt	to	its	most	common	form,	type	prompt	pg.

Several	examples	follow.	Notice	how	the	system	prompt	changes	each	time	to	show	the
effect	of	the	previous	Prompt	command.	Press	the	Spacebar	before	pressing	the	Enter	key
to	end	each	command	in	order	to	leave	a	space	between	the	end	of	the	system	prompt	and
the	beginning	of	the	command	that	you	type	next.

To	define	the	system	prompt	as	the	current	drive	and	directory,	type	this:
C:\MKT\WP>prompt	$p

C:\MKT\WP	_

The	example	assumes	that	the	current	drive	is	C	and	that	the	directory	is	\MKT\WP.	To
define	the	system	prompt	as	two	lines	that	show	the	date	and	time,	type	this:
C:\MKT\WP	prompt	d_$t

Thu	01-05-1995
14:57:10.11	_

The	time	and	date	will	vary,	depending	on	how	you	have	set	them	in	your	system.	Press	the
Enter	key	several	times	to	see	that	MS-DOS	keeps	the	time	current.

Finally,	combining	several	of	the	options	shows	just	how	much	you	can	include	in	a	prompt:
Thu	01-05-1995
15:02:10.11	prompt	v_$d	t_Current	directory	$q	p_Command:

MS-DOS	Version	6.00
Thu	01-05-1995	15:02:57.68
Current	directory	=	C:\MKT\WP
Command:	_

The	Prompt	command	lets	you	easily	tailor	the	system	prompt	to	the	balance	of	information
that	you	prefer.	When	you	design	a	system	prompt	that	you	like,	put	it	in	AUTOEXEC.BAT,	and
you'll	never	have	to	type	it	again;	MS-DOS	will	carry	out	the	command	every	time	you	start	the
system.

Speeding	Up	File	Access

Each	time	you	(or	an	application	program)	need	a	file,	MS-DOS	might	first	need	to	search	for
the	subdirectory	that	contains	the	file	and	then	search	the	directory	entries	for	the	file	itself.	On
a	hard	disk	with	hundreds	or	thousands	of	files,	all	this	searching	can	take	some	time.

The	Fastopen	command	tells	MS-DOS	to	keep	track	(in	memory)	of	the	locations	of
subdirectories	and	files	as	it	uses	them.	The	next	time	it's	asked	for	a	file	or	subdirectory,	MS-
DOS	checks	in	memory	before	it	searches	the	disk.	If	it	finds	the	location	of	the	file	or
subdirectory	in	memory,	MS-DOS	can	go	directly	to	it	on	the	disk	instead	of	searching	for	it.

If	you	or	your	application	programs	tend	to	use	the	same	files	or	directories	over	and	over,	the
Fastopen	command	can	make	MS-DOS	visibly	faster.	The	Fastopen	command	works	only	with
hard	disks.	(Note	that	you	shouldn't	use	Fastopen	if	you're	running	Microsoft	Windows.	You
should	also	avoid	using	a	defragmentation	program	such	as	Defrag	while	Fastopen	is	loaded.)
Fastopen	has	three	parameters:

fastopen	<drive>	=	<files>	/X

<drive>	is	the	drive	letter,	followed	by	a	colon,	of	the	hard	disk	whose	files	and	subdirectories
you	want	MS-DOS	to	track	(for	example,	c:).

<files>	is	the	number	of	files	and	subdirectories	whose	location	MS-DOS	will	keep	in	memory;
it	must	be	preceded	by	an	equal	sign.	You	can	specify	a	value	for	<files>	from	10	through	999
(the	default	value	is	48).	For	example,	if	you	had	one	hard	disk,	drive	C,	and	you	wanted	MS-
DOS	to	keep	track	of	the	last	75	files	and	subdirectories	used,	you	would	type	fastopen	c:=75.

/X	tells	MS-DOS	to	keep	track	of	the	locations	in	expanded	memory.	If	you	use	/X,	check	to	be
sure	your	expanded	memory	conforms	to	the	current	standard,	which	is	LIM	EMS	4.0.

If	you're	using	MS-DOS	from	a	hard	disk,	the	installation	program	might	have	set	up	a
Fastopen	command	telling	MS-DOS	to	keep	track	of	the	last	x	files	and	subdirectories	you
have	used.	This	command	would	have	been	placed	in	your	CONFIG.SYS	file	in	a	form	like	this:
install=c:\dos\fastopen.exe	c:=50.	Although	the	command	looks	a	bit	more	complicated	than
fastopen	c:=50,	its	purpose	is	the	same.	The	install	part	of	the	command	(described	in
Appendix	C,	"MS-DOS	Command	Reference")	simply	tells	MS-DOS	to	use	your	computer's

memory	as	efficiently	as	it	can.	If	you	want	to	change	the	number	of	files,	you	can	change	the
command	in	CONFIG.SYS.	For	example,	to	keep	track	of	the	last	75	files	and	subdirectories,
change	the	command	to	install=c:\dos\fastopen.exe	c:=75.

Treating	a	Directory	as	if	It	Were	a	Disk	Drive

The	Substitute	(subst)	command	lets	you	treat	a	directory	as	if	it	were	a	separate	disk.	If	your
directory	structure	includes	long	path	names,	or	if	you	use	application	programs	that	accept	a
drive	letter	but	not	a	path	name,	you	can	use	the	Substitute	command	to	tell	MS-DOS	to	treat
all	future	references	to	a	particular	drive	as	references	to	a	directory	on	the	disk	in	a	different
drive.

After	naming	a	drive	letter	in	a	Substitute	command,	you	cannot	assign	to	that	drive	letter	in	any
other	command,	so	you	will	want	to	use	a	drive	letter	that	doesn't	refer	to	an	existing	drive.	In
order	to	do	this,	you	must	tell	MS-DOS	to	accept	more	drive	letters	than	there	are	disk	drives.
You	can	put	a	Lastdrive	command	in	the	CONFIG.SYS	file	in	the	root	directory	of	your	MS-
DOS	system	disk.	The	Substitute	command	has	three	parameters:

subst	<drive>	<pathname>	/D

<drive>	is	the	letter,	followed	by	a	colon,	to	be	used	to	refer	to	<pathname>.

<pathname>	is	the	path	name	of	the	directory	to	be	referred	to	by	<drive>.

/D	deletes	any	substitutions	that	involve	<drive>.	If	you	include	/D,	you	cannot	include
<pathname>.

If	you	omit	all	parameters	and	type	only	subst,	MS-DOS	displays	a	list	of	any	substitutions	in
effect.	For	example,	suppose	you	find	yourself	frequently	referring	to	a	directory	whose	path
name	is	C:\SPREAD\SALES\FORECAST	and	you	would	like	to	use	a	shorter	synonym.	To
substitute	x:	for	the	path	name,	you	would	make	certain	that	your	CONFIG.SYS	file	contained	a
Lastdrive	command	that	specified	the	letter	x,	y,	or	z,	and	then	you	would	type	subst	x:
c:\spread\sales\forecast.	The	substitution	would	remain	in	effect	until	you	restarted	MS-DOS	or
canceled	the	substitution	by	typing	subst	x:	/d.

	

javascript:Next(0)
javascript:Next(1)

Part	III:	Appendixes

Appendix	List

Appendix	A:	Installing	MS-DOS

Appendix	B:	Glossary

Appendix	C:	MS-DOS	Command	Reference

Part	Overview

Part	3	consists	of	three	appendixes.	Appendixes	A	and	B	contain	reference	material	for	your
occasional	use	or	for	background	information.	Appendix	A,	"Installing	MS-DOS,"	is	a	guide
to	installing	and	upgrading	to	versions	3	through	6.22	of	MS-DOS.	It	supplements	the	step-
by-step	instructions	you	receive	with	each	new	version	of	MS-DOS.	Appendix	B,	"Glossary,"
contributes	to	your	background	knowledge	by	defining	commonly	used	terms	and	those
presented	in	the	main	portion	of	this	book.	Appendix	C,	"MS-DOS	Command	Reference,"	is
a	comprehensive	reference	to	MS-DOS	commands	and	their	parameters.	It	provides	easy-
to-find	answers	to	questions	about	the	form	and	use	of	commands.

	

javascript:Next(0)
javascript:Next(1)

Appendix	A:	Installing	MS-DOS
This	appendix	shows	you	how	to	install	versions	3	through	6.22	of	MS-DOS.	Although	MS-
DOS	was	probably	preinstalled	on	your	system,	someday	you	might	need	to	reinstall	MS-
DOS	or	upgrade	to	a	newer	version.	If	you	need	more	background	information	or	specific
instructions,	refer	to	the	documentation	that	comes	with	your	version	of	MS-DOS.

Installing	or	Upgrading	to	Version	5	or	Later
Although	MS-DOS	has	grown	in	capability	over	the	years,	it	has	also	become	easier	to
install.	Versions	5	and	later	are	the	easiest	to	set	up,	whether	you're	installing	MS-DOS	on	a
brand-new	system	or	upgrading	from	an	earlier	version.	The	first	of	the	several	floppy	disks
on	which	versions	5	and	later	are	supplied	contains	a	setup	program	(SETUP.EXE)	that
does	almost	all	the	work	for	you.

Whether	you're	upgrading	or	installing	MS-DOS	on	a	brand-new	machine,	use	the	Setup
program.	Even	if	you've	installed	earlier	versions	of	MS-DOS	by	copying	files	from	the	MS-
DOS	floppy	disks,	you	can't	install	version	5	or	later	in	this	way.	Many	of	the	MS-DOS	files
are	shipped	in	a	special	condensed	format	that	Setup	expands	during	the	installation
procedure.	In	addition,	Setup	checks	the	memory	and	devices	on	your	system	(so	you	don't
have	to),	offers	help	at	each	stage,	prompts	whenever	it	needs	a	response	from	you,
displays	an	indicator	showing	how	much	of	the	installation	is	complete,	and	even	tells	you
what	it's	doing	as	it	prepares	MS-DOS	to	work	on	your	computer.

Installing	Version	5	or	Later	for	the	First	Time

If	your	system	is	new,	chances	are	that	MS-DOS	has	already	been	installed	for	you,
especially	if	your	computer	has	a	hard	disk.	If	MS-DOS	is	not	installed,	start	by	inserting	the
floppy	disk	labeled	Disk	1	in	drive	A.	Then	start	or	restart	your	computer.

Setup	guides	you	through	the	entire	installation	process,	asking	you	to	provide	some
responses	and	to	make	a	few	choices	(for	example,	whether	you	want	to	install	the	MS-
DOS	or	Microsoft	Windows	versions	of	some	features,	or	both).	Setup	proposes	a
response	whenever	it	asks	you	to	make	a	choice,	usually	either	the	one	most	people	choose
or	the	one	that	Setup	has	determined	suits	your	system	best.	If	you	need	further	information
before	deciding	to	accept	or	change	a	proposed	response,	press	the	F1	key.	Accepting	all
the	choices	Setup	proposes	will	set	up	a	basic	working	system	for	you.	Once	you're
comfortable	with	this	system,	you	can	make	any	necessary	modifications	by	tailoring	the
files	AUTOEXEC.BAT	and	CONFIG.SYS	to	suit	your	own	preferences.	These	files	are
described	in	Chapter	14,	"Creating	Your	Own	Commands";	Chapter	17,	"Tailoring	Your
System";	and	Appendix	C,	"MS-DOS	Command	Reference."	After	it's	done	installing	MS-
DOS,	Setup	restarts	your	machine.

Upgrading	to	Version	5	or	Later

If	you	have	a	hard	disk	and	are	upgrading	from	an	earlier	version	of	MS-DOS,	you	can
upgrade	without	a	worry.	Setup	provides	the	Uninstall	program,	which	is	a	built-in	program
that	lets	you	restore	your	earlier	version	of	MS-DOS	if	the	installation	fails	or	if	you	find	that
some	of	your	programs	cannot	work	with	the	new	version.

Label	a	blank	floppy	disk	Uninstall	1	(more	than	one	may	be	necessary	if	you	are	using	low-
density	floppy	disks).	Then	place	the	floppy	disk	labeled	Disk	1	in	drive	A,	and	type	the

following:
C>a:
A>setup

After	generating	a	preinstallation	report	of	your	machine's	configuration	and	checking	your
system,	Setup	displays	a	welcoming	message	and	tells	you	which	keys	to	press	to	request
help,	continue	with	the	installation,	or	quit.	From	this	point	on,	follow	the	on-screen
instructions.	If	you	are	uncertain	about	any	responses,	press	the	F1	key	for	help	and	further
information.	After	it's	done	installing	MS-DOS,	Setup	restarts	your	machine.

After	the	new	version	is	installed,	place	the	Uninstall	floppy	disk(s)	in	a	safe	place.	It's
unlikely	that	you'll	need	to	return	to	your	old	version	of	MS-DOS,	but	if	you	do,	place	the
Uninstall	1	floppy	disk	in	drive	A,	restart	the	system,	and	follow	the	instructions	that	appear
on	the	screen.

	

javascript:Next(0)
javascript:Next(1)

Installing	or	Upgrading	to	Version	4
Version	4	of	MS-DOS	comes	with	an	installation	program	that	prompts	you	through	the
installation	process.	The	installation	program	includes	online	help	that	explains	most	of	the
choices.

Essentially,	all	you	do	is	place	the	floppy	disk	labeled	Install	in	drive	A,	start	or	restart	your
computer,	and	then	press	the	Enter	key	to	begin.	From	that	point	onward,	the	installation
program,	named	Select,	asks	you	questions	about	your	computer	system	and	tells	you
which	of	the	original	MS-DOS	floppy	disks	it	needs.	Before	you	start,	however,	there	are	a
few	things	you	should	know	or	prepare	for	to	make	the	procedure	as	easy	as	possible.

Your	Computer

Find	out	(roughly)	how	much	memory	your	system	has.	The	Select	program	doesn't	ask	you
for	the	exact	amount,	but	during	installation	it	asks	you	to	choose	how	you	want	to	balance
the	memory	used	by	MS-DOS	and	by	your	programs.

If	your	system	contains	less	than	512	KB	of	memory,	choose	the	first	option	(Minimum	MS-
DOS	function;	maximum	program	workspace)	to	give	your	programs	as	much	working
room	as	possible.	If	your	system	has	512	KB	of	memory,	choose	the	option	Select
proposes	(Balance	MS-DOS	function	with	program	workspace).	If	your	system	has	more
than	512	KB	of	memory,	choose	the	third	option	(Maximum	MS-DOS	function;	minimum
program	workspace)	so	that	both	MS-DOS	and	your	programs	have	plenty	of	room	to	work
in.

Check	the	make	and	model	of	printer	you	use.	Also,	find	out	whether	it	is	a	serial	or	a
parallel	printer,	and	find	out	the	number	of	the	port	it	is	connected	to	(for	example,	LPT1:	for
a	parallel	printer	or	COM1:	for	a	serial	printer).	The	Select	program	will	ask	you	to	choose
your	printer	from	a	list.	It	will	also	propose	a	printer	port,	so	it	is	up	to	you	to	know	whether
Select	is	correct.

The	Installation/Upgrade	Process

Note

If	you're	using	a	hard	disk	and	are	upgrading	to	version	4	from	an	earlier	version	of
DOS,	don't	try	to	install	IBM's	release	of	DOS	if	your	computer	is	currently	running
a	version	of	DOS	released	by	another	manufacturer.	There	is	a	small	but
significant	difference	between	IBM's	release	and	others	that	prevents	successful
installation.	You	can	install	the	IBM	release,	but	to	do	so	you	must	back	up	your
hard	disk,	reformat	it,	and	then	install	DOS.	If	you're	not	sure	whose	release	of
DOS	you	have,	start	your	computer	to	display	the	information;	if	DOS	doesn't
display	the	manufacturer's	name	and	the	version	number,	type	ver	(the	Version
command).

Whether	you	install	MS-DOS	on	a	hard	disk	or	on	floppy	disks,	Select	needs	one	or	more
blank	floppy	disks	for	the	installation.	One	of	the	first	things	Select	does	is	display	a	list

showing	the	number	and	capacity	of	floppy	disks	it	needs	for	installing	MS-DOS	on	various
types	of	disk	drives.

	

javascript:Next(0)
javascript:Next(1)

AUTOEXEC.BAT	and	CONFIG.SYS
When	Select	finishes	putting	MS-DOS	on	a	hard	disk	that	contains	an	earlier	version	of	MS-
DOS,	its	final	message	might	tell	you	that	Select	has	saved	information	about	your
computer,	printer,	display,	screen,	and	the	MS-DOS	Shell	in	two	files	that	it	named
AUTOEXEC.400	and	CONFIG.400.	You'll	want	MS-DOS	to	be	able	to	find	this	information
whenever	you	start	or	restart	your	computer,	and	for	that	to	happen,	you'll	have	to	merge
those	files	with	the	existing	AUTOEXEC.BAT	and	CONFIG.SYS	files.	Only	then	will	MS-
DOS	automatically	search	for	the	information	saved	by	the	Select	program.

	

javascript:Next(0)
javascript:Next(1)

Installing	Version	3
Versions	3.3	and	earlier	of	MS-DOS	do	not	include	an	installation	program,	so	it's	up	to	you
to	determine	how	you	want	to	set	up	MS-DOS	to	work	on	your	system.	If	your	computer
doesn't	have	a	hard	disk,	all	you	really	need	to	do	is	make	copies	of	your	MS-DOS	floppy
disks	using	the	Diskcopy	command	you	saw	described	in	Chapter	6,	"Managing	Your	Floppy
Disks."	Diskcopy	makes	an	exact	duplicate	of	a	floppy	disk,	so	once	you've	copied	your
original	MS-DOS	floppy	disks,	you	can	store	them	safely	away	and	use	the	copies	in	your
everyday	work	with	MS-DOS.

If	you	have	a	hard	disk,	you	use	a	two-step	procedure	to	copy	MS-DOS	from	your	MS-DOS
floppy	disk(s)	to	the	hard	disk.	The	first	step	uses	the	System	(sys)	command	to	copy	two
hidden	files	that	MS-DOS	needs	in	order	to	start	from	your	hard	disk.	The	second	step	uses
the	Copy	command	to	copy	the	remaining	MS-DOS	files	to	your	hard	disk.

Note

The	following	instructions	assume	that	your	hard	disk	has	already	been	formatted
(prepared	for	use).	If	it	has	not,	or	if	you	want	to	wipe	it	clean	and	start	anew,	you
can	boot	from	the	MS-DOS	startup	floppy	disk,	and	then	use	the	command	format
c:	/s	to	prepare	the	disk	and	copy	the	system	files.	If	you	try	this	command,
however,	and	MS-DOS	displays	a	WARNING	message	followed	by	a	request	for
you	to	confirm	the	format,	be	very	sure	you	want	to	continue.	Once	MS-DOS
begins	formatting	the	hard	disk,	you'll	lose	whatever	files	it	contains—forever.

Copying	the	System	Files

Place	your	MS-DOS	startup	floppy	disk	in	drive	A.	Depending	on	the	version	you're
installing,	this	floppy	disk	is	labeled	either	Startup	or	MS-DOS.	Turn	on	the	computer	or
restart	it	by	simultaneously	pressing	the	keys	marked	Ctrl,	Alt,	and	Del.

If	you're	upgrading	to	a	newer	release	of	version	3,	or	if	your	hard	disk	is	already	formatted,
use	the	System	command	to	move	the	hidden	MS-DOS	files	to	your	hard	disk.	Type	the
following:
A>sys	c:

MS-DOS	responds	System	transferred.

Note

If	you're	installing	version	3.3	on	a	system	using	version	3.1	or	earlier,	MS-DOS
might	display	the	message	Insufficient	memory	for	system	transfer.	If	you	see
this,	it	means	that	MS-DOS	cannot	transfer	the	files	properly.	You	must	back	up	all
the	files	on	your	hard	disk,	format	it,	and	later	restore	all	the	files	you've	backed
up.

Whether	you	use	the	Format	or	System	command,	your	next	step	is	to	copy	the	MS-DOS
files	from	the	MS-DOS	floppy	disks	to	a	directory	named	\DOS	on	your	hard	disk.	The
question	now	is,	Where	do	they	go?	If	you're	working	with	a	new	or	newly	formatted	hard
disk,	follow	the	instructions	in	the	next	section,	"Copying	MS-DOS	to	a	DOS	Directory."	If

you're	upgrading	an	existing	MS-DOS	version	from	one	release	to	another	(for	example,
from	3.1	to	3.3),	skip	to	the	section	called	"Upgrading	with	Version	3."

Copying	MS-DOS	to	a	DOS	Directory

If	you've	just	formatted	your	hard	disk,	it's	an	empty	storage	area	you	can	use	as	you	like,
so	make	your	future	work	easier	by	copying	MS-DOS	to	a	special	section—a	directory—of
its	own.	Doing	this	keeps	your	MS-DOS	files	separate	from	application	and	data	files,	and	it
generally	helps	keep	your	hard	disk	neat	and	organized.

If	you're	new	to	MS-DOS,	the	following	commands	probably	won't	mean	much	to	you,	but	if
you	type	them	exactly	as	shown,	you	should	be	able	to	install	any	release	of	version	3
without	problems.

First,	check	that	your	startup	disk	is	still	in	drive	A,	and	copy	the	MS-DOS	file	named
COMMAND.COM	to	the	base	(root)	directory	or	your	hard	disk,	where	it	normally	goes.
Type	this:
A>copy	command.com	c:\

Now	create	the	MS-DOS	directory	by	typing	this:
A>md	c:\dos

Copy	the	files	from	your	MS-DOS	disk	to	the	new	DOS	directory:
A>copy	*.*	c:\dos

If	you	have	more	than	one	MS-DOS	disk,	repeat	the	Copy	command	to	copy	the	rest	of
your	MS-DOS	files.

When	you	typed	*.*	(meaning	"all	files")	in	your	Copy	command,	you	recopied
COMMAND.COM.	You	don't	need	two	copies	of	this	file,	so	delete	the	one	in	your	DOS
directory	by	typing	this:
A>del	c:\dos\command.com

Finally,	create	a	special	file,	again	in	the	root	directory	of	your	hard	disk,	that	tells	MS-DOS
where	to	find	its	own	command	files.	Type	the	following.	Press	Enter	at	the	end	of	each	line,
and	press—at	the	same	time—the	two	keys	marked	Ctrl	and	Z	where	you	see	^Z.
A>copy	con	c:\autoexec.bat
path=c:\dos
^Z

If	all	goes	well,	MS-DOS	should	respond	1	File(s)	copied.	If	it	does	not,	retype	the
preceding	lines.

Your	new	version	of	MS-DOS	should	now	be	ready	for	use.	Remove	any	disk	from	drive	A,
and	restart	the	computer	by	pressing	Ctrl,	Alt,	and	Del.	When	MS-DOS	starts	up,	the

system	prompt	should	be	C>.	You	can	verify	that	MS-DOS	can	find	its	own	command	files
by	typing	this:
C>chkdsk

If	MS-DOS	produces	a	report	on	your	hard	disk,	you're	all	set.	If	it	does	not	start	from	drive
C,	repeat	the	setup	procedure.	If	MS-DOS	responds	File	not	found	to	your	Check	Disk
command,	retype	the	preceding	commands	that	start	with	copy	con	c:\autoexec.bat.

Upgrading	with	Version	3

If	you're	upgrading	from	one	version	of	MS-DOS	to	another,	your	earlier	version	might	be	in
a	DOS	directory,	or	it	might	be	in	the	main	(root)	directory	of	your	hard	disk.	It	all	depends
on	how	your	hard	disk	was	organized.

Checking	on,	and	possibly	reorganizing,	your	hard	disk	assumes	some	knowledge	of	disks,
directories,	and	directory	commands.	If	this	is	familiar	territory,	the	following	instructions
should	help	you	out.	If	you	and	MS-DOS	are	relative	strangers	and	you	have	a	currently
functional	system,	you	might	prefer	to	work	through	the	examples	in	this	book	or	ask
someone	for	advice	before	trying	to	organize	your	hard	disk.

If	You	Have	a	DOS	Directory

If	you	already	have	a	DOS	directory	and	you	are	installing	MS-DOS	version	3.2	or	3.3,	use
the	Replace	command	to	replace	all	the	old	MS-DOS	files	with	those	in	the	new	version.
Change	the	current	drive	to	C	by	typing	this:
A>c:

Now,	for	each	new	MS-DOS	disk	you	place	in	drive	A,	type	the	following	two	commands.	If
necessary,	change	dos	to	the	name	of	your	DOS	directory:
C>replace	a:*.*	c:\dos	/s
C>replace	a:*.*	c:\dos	/a

The	first	command	replaces	existing	files;	the	second	adds	any	files	from	the	MS-DOS	disk
that	don't	exist	in	the	DOS	subdirectory	on	drive	C.

You	also	need	to	copy	COMMAND.COM	to	the	root	directory	on	drive	C	by	typing	the
following:
copy	a:command.com	c:\

That's	it.	You're	done.

If	You	Don't	Have	a	DOS	Directory

If	you	don't	have	a	DOS	directory	and	all	your	MS-DOS	files	are	in	the	root	directory	of	the
hard	disk,	you	have	two	tasks	to	perform:	first,	to	upgrade	your	current	version	of	MS-DOS;
second,	to	clear	old	MS-DOS	files	out	of	the	root	directory.

You've	already	moved	the	two	new	system	files	to	your	hard	disk.	Now	upgrade	your
current	version	and	place	your	MS-DOS	files	in	a	DOS	directory;	start	by	creating	the	new
DOS	directory:
A>md	c:\dos

Next,	copy	the	file	named	COMMAND.COM	to	the	root	directory	of	your	hard	disk:
A>copy	command.com	c:\

Now	copy	the	other	MS-DOS	files	from	the	MS-DOS	disk	to	the	DOS	directory:
A>copy	*.*	c:\dos

If	you	have	another	MS-DOS	disk,	repeat	the	preceding	Copy	command.	Next,	check	for	an
AUTOEXEC.BAT	file	by	typing	this:
A>type	c:\autoexec.bat

If	MS-DOS	displays	a	file	and	one	of	the	lines	is	a	Path	command	like	this,
PATH=C:\;C:\WP;C:\SPREAD;C:\DB

use	Edlin	or	your	word	processor	(if	it	can	save	unformatted	files)	to	add	your	new	DOS
directory	to	the	Path	command:
PATH=C:\;C:\DOS;C:\WP;C:\SPREAD;C:\DB

If	MS-DOS	responds	File	not	found	to	your	Type	command,	you	need	to	create	a	basic
AUTOEXEC.BAT	file	with	a	Path	command	as	follows	(press	Ctrl	and	Z	together	where	you
see	^Z):
A>copy	con	c:\autoexec.bat
path=c:\dos
^Z

Use	the	Type	command	again,	this	time	to	check	for	a	file	named	CONFIG.SYS.	If	MS-DOS
displays	a	file,	use	Edlin	or	your	word	processor	to	edit	it,	adding	the	name	of	the	DOS
directory	to	all	references	to	MS-DOS	files	like	this:
DEVICE=C:\DOS\ANSI.SYS
DEVICE=C:\DOS\VDISK.SYS

(If	MS-DOS	responds	File	not	found	to	this	command,	you	don't	have	to	create	a
CONFIG.SYS	file	for	it	to	use.	You	might	want	to	at	some	point,	but	for	now	your	system
will	work	without	such	a	file.)

Finally,	for	the	second	stage	in	reorganizing	your	hard	disk,	turn	on	your	printer,	and	print	a
listing	of	the	root	directory	with	this	command:
A>dir	c:\	sort	>	prn

Using	the	files	in	your	MS-DOS	directory	or	the	files	on	the	disks	for	your	old	version	of	MS-

DOS	as	a	guide,	carefully	mark	the	printout,	noting	all	MS-DOS	files	in	the	root	directory
other	than	COMMAND.COM,	AUTOEXEC.BAT,	and	CONFIG.SYS.	That	is,	mark	files	such
as	FORMAT.COM,	PRINT.COM,	DISKCOPY.COM,	and	so	on.

Once	you've	marked	these	file	names	(and	double-checked	them	to	be	sure	you	didn't
include	any	non-DOS	files),	type	a	Delete	command	for	each	to	remove	it	from	the	root
directory.	For	example,	type	this:
A>del	c:\format.com
A>del	c:\print.com
A>del	c:\diskcopy.com

When	you're	finished,	the	root	directory	should	contain	only	COMMAND.COM,
AUTOEXEC.BAT,	and	CONFIG.SYS,	as	well	as	the	non-DOS	files	and	directories	it	held
before.	The	remainder	of	your	MS-DOS	files	should	all	be	in	C:\DOS.

	

javascript:Next(0)
javascript:Next(1)

Appendix	B:	Glossary

A
Adapter

A	term	sometimes	used	to	refer	to	printed-circuit	cards	that	plug	into	a	computer
and	control	a	device,	such	as	a	display	or	a	printer.

Anti-Virus
A	program	in	versions	6.0	and	later	that	checks	your	system	for	the	presence	of
virus	programs.	If	it	finds	a	virus,	it	alerts	you	and,	if	possible,	eliminates	the
offending	file	or	files	that	contain	the	program.

See	also	Virus.

Application	program
A	program,	such	as	a	word	processor	or	spreadsheet,	that	performs	a	specific
task;	an	application	of	the	computer	to	a	particular	type	of	work.

Archive
To	transfer	files	to	a	separate	disk	or	a	backup	tape	for	safekeeping.	In	versions
6.0	and	later	of	MS-DOS,	the	MSbackup	command	helps	archive	files,	and	if
necessary,	it	can	be	used	to	return	archived	files	to	the	disk	from	which	they	were
backed	up.	(In	earlier	versions,	you	use	the	Backup	and	Restore	commands.)

Argument

See	Parameter.

ASCII
A	standardized	coding	scheme	that	uses	numeric	values	to	represent	letters,	digits,
symbols,	and	so	on.	ASCII	is	an	acronym	for	American	Standard	Code	for
Information	Interchange	and	is	widely	used	in	coding	information	for	computers.

AUTOEXEC.BAT
A	name	reserved	for	a	batch	file	that	contains	commands	that	are	carried	out	by
MS-DOS	each	time	the	system	is	started.	An	AUTOEXEC.BAT	file	can	be	used	to
perform	a	desired	set	of	startup	procedures	without	your	having	to	type	the
commands	each	time.

AUX
Short	for	auxiliary.	The	communications	port	MS-DOS	uses	unless	instructed
otherwise.	AUX	can	be	either	COM1	or	COM2	in	versions	of	MS-DOS	through	3.2;
it	can	be	COM1,	COM2,	COM3,	or	COM4	in	versions	3.3	and	later.

	

javascript:Next(0)
javascript:Next(1)

B
Backspace	key

The	key	labeled	with	a	single,	left-pointing	arrow	and,	often,	the	word	Backspace;
erases	characters	to	the	left	of	the	cursor,	one	at	a	time.

Back	up
To	copy	one	or	more	files	to	disks	or	to	tapes	for	safekeeping.

BAK
An	extension	assigned	by	Edlin	and	by	many	word	processors	to	the	next-most-
recent	(penultimate)	version	of	a	text	file.	If	the	working	copy	of	a	file	is	damaged,
the	BAK	file	can	be	used	to	salvage	a	near-current	version	of	the	document.

Basic
A	programming	language	included	with	MS-DOS.	When	originally	developed,	Basic
was	an	acronym	for	Beginner's	All-purpose	Symbolic	Instruction	Code.	Through
version	4,	MS-DOS	includes	either	Basic	and	BASICA	(Advanced	Basic)	or	GW-
BASIC.	Versions	5	and	later	include	a	more	sophisticated,	visually	oriented	form
called	QBasic.

Batch	file
A	text	file	whose	extension	is	BAT;	contains	MS-DOS	commands.	When	you	type
the	name	of	a	batch	file	while	MS-DOS	is	at	the	command	level,	MS-DOS	carries
out	the	commands	in	the	file.

Baud
Broadly,	the	rate	at	which	data	is	transmitted	over	a	communications	link;	more
specifically,	baud	refers	to	the	number	of	changes	per	second	(representing	coded
data)	carried	by	the	signal.	For	commonly	used	modem	rates,	approximately	one
character	per	second	is	transmitted	for	each	10	baud.

Binary
The	base-2	numbering	system	whose	only	digits	are	0	and	1.	The	binary	system	is
particularly	well	suited	to	use	with	computers	because	the	two	digits	can	be
represented	by	the	presence	or	absence	of	a	voltage.

Bit
The	smallest	unit	of	information	used	with	computers;	corresponds	to	a	binary	digit
(either	0	or	1).	Eight	bits	make	up	one	byte.

Boot
To	start	up	a	computer;	derived	from	the	saying	"pull	yourself	up	by	your	own
bootstraps."

Byte
The	unit	of	measure	used	for	computer	memory	and	data	storage.	One	byte
contains	eight	bits	and	can	store	one	character	(a	letter,	number,	punctuation	mark,
or	other	symbol).

	

javascript:Next(0)
javascript:Next(1)

C
Character	string

A	group	of	characters	that	you	tell	MS-DOS	to	treat	as	a	set	of	letters	or	numbers
rather	than	as	a	command.	The	Find	filter	command	searches	for	character	strings
enclosed	in	quotation	marks	("").	In	other	commands,	such	as	Search	and	Replace,
the	quotation	marks	are	not	needed.

Chip

See	Integrated	circuit.

Color	Graphics	Adapter	(CGA)
A	printed-circuit	card	in	the	system	unit	of	a	computer	that	controls	the	display;
processes	both	text	and	graphics	at	low	resolution	in	up	to	16	colors.

COM1,	COM2,	COM3,	COM4
Short	for	communications.	The	names	of	the	serial	communications	ports.	All
versions	of	MS-DOS	recognize	COM1	and	COM2;	versions	3.3	and	later	also
recognize	COM3	and	COM4.

Command
An	instruction	you	give	to	control	a	computer	program,	such	as	MS-DOS	or	an
application	program.

Command	file
A	file	that	contains	the	program	or	instructions	required	to	carry	out	a	command.	If
the	file's	extension	is	COM	or	EXE,	the	command	file	contains	machine	instructions;
if	its	extension	is	BAT,	the	command	file	is	a	batch	file	and	contains	MS-DOS
commands.

Communications
The	transmission	of	data	between	computers;	also	called	telecommunications.

Communications	port

See	Port.

Compression

See	File	compression.

CON
Short	for	console.	The	name	by	which	MS-DOS	refers	to	the	keyboard	(input)	and
the	display	(output).

Control	key
The	key	labeled	Ctrl;	use	it	as	you	do	the	Shift	key	by	holding	it	down	while	pressing
another	key.	The	Ctrl	key	in	combination	with	another	key	can	prompt	an	action	or
create	a	character	with	special	significance.	For	example,	when	the	Ctrl	key	is
pressed	with	Break,	any	command	that	was	being	executed	is	interrupted.	The	Ctrl
key	pressed	with	Z	creates	a	special	character	called	the	end-of-file	marker.	If
displayed	on	the	screen,	Ctrl	is	shown	as	 ,̂	as	in	the	end-of-file	marker	^Z	(Ctrl-Z).

Conventional	memory
The	name	used	for	the	first	megabyte	of	random	access	memory	in	an	IBM	or
compatible	computer.	MS-DOS	and	application	programs	can	freely	use	the	first
640	KB	of	conventional	memory.	Portions	of	the	memory	between	640	KB	and	1
MB	can	be	used	by	versions	5	and	later	of	MS-DOS.

CPU
An	abbreviation	for	central	processing	unit.	The	part	of	a	computer	that	performs
calculations	and	processes	information.	In	microcomputers	that	use	MS-DOS,	the
CPU	is	an	8086/8088,	80186,	80286,	80386,	80486,	or	a	Pentium	microprocessor.

Ctrl

See	Control	key.

Ctrl-Break
The	key	combination	that	cancels	a	command;	entered	by	holding	down	the	Ctrl	key
and	pressing	the	Break	key.

Ctrl-C
Same	as	Ctrl-Break.

Ctrl-Num	Lock
The	key	combination	that	stops	MS-DOS	until	you	press	any	other	key.	On
keyboards	without	a	Pause	key,	Ctrl-Num	Lock	is	used	to	freeze	the	display	so	you
can	view	long	displays.	Entered	by	holding	down	the	Ctrl	key	and	pressing	the	Num
Lock	key.

Ctrl-P
Same	as	Ctrl-PrtSc.

Ctrl-PrtSc
The	key	combination	that	controls	simultaneous	printing	and	displaying.	Pressing
Ctrl-PrtSc	once	causes	MS-DOS	to	print	everything	that	is	displayed;	pressing	Ctrl-
PrtSc	again	causes	MS-DOS	to	stop	printing	everything	that	is	displayed.	Entered
by	holding	down	the	Ctrl	key	and	pressing	the	PrtSc	key.

Ctrl-S
Same	as	Ctrl-Num	Lock.

Ctrl-Z
The	key	combination	that	creates	the	special	character	(displayed	as	^Z)	that	MS-
DOS	uses	to	mark	the	end	of	a	file.	Created	by	holding	down	the	Ctrl	key	and
pressing	Z	or	by	pressing	the	function	key	labeled	F6.

Current	directory
The	directory	in	which	MS-DOS	looks	for	and	writes	files	unless	otherwise
instructed.

Current	drive
The	drive	containing	the	disk	on	which	MS-DOS	looks	for	and	saves	files	unless
otherwise	instructed.

	

javascript:Next(0)
javascript:Next(1)

D
Data

The	information	available	for	processing	by	a	computer	in	doing	its	work.

Data	bit
A	signal	used	in	serial	communications	to	represent	part	of	a	character.	Seven	or
eight	data	bits	can	be	used	to	represent	one	transmitted	character.

Data	file
A	file	that	contains	the	data	needed	by	a	program;	the	data	can	be	numbers,	text,
graphics	images,	sound	clips,	video	clips,	or	a	combination.

Defragment
The	process	of	rearranging	the	files	on	a	disk	so	that	all	available	space	is
combined	into	a	single	area.

See	also	Fragment.

Device
A	piece	of	computer	equipment,	such	as	a	display	or	a	printer,	that	performs	a
specific	task.	The	program	that	controls	a	device	is	called	a	device	driver.

Device	name
The	name	by	which	MS-DOS	refers	to	a	device	(for	example,	PRN,	LPT1,	LPT2,	or
LPT3	for	a	printer).	Device	names	are	treated	like	file	names	by	MS-DOS.

Directory
The	index	of	files	that	MS-DOS	maintains	on	a	disk.	The	directory	entry	for	each	file
includes	the	file's	name,	extension,	size,	date	and	time	it	was	created	or	last
changed,	attributes,	and	the	location	of	the	beginning	of	the	file.	All	but	the	file
attributes	and	the	beginning	location	can	be	displayed	by	the	Directory	command,
though	file	entries	can	be	displayed	based	on	attribute	type.

Disk
A	magnetically	coated	disk	used	to	store	information.	The	term	is	used	when	no
distinction	need	be	made	between	a	floppy	disk	and	a	hard	disk.

Disk	cache
A	portion	of	memory	set	aside	for	use	as	a	temporary,	rapid-access	storage	area
for	information	read	from	disk.	MS-DOS	versions	6.0	and	later	also	allow	this	area
to	be	used	for	caching	information	to	be	written	to	a	disk.	A	disk	cache	speeds
operations	by	cutting	down	on	the	number	of	times	the	computer	must	perform
relatively	slow	disk	operations.

Disk	drive
The	device	that	rotates	a	disk	in	order	to	read	(retrieve)	and	write	(store)
information.

Diskette

See	Floppy	disk.

Display
The	screen	on	which	the	computer	shows	both	what	you	type	at	the	keyboard	and
the	result	of	its	work;	assumed	by	MS-DOS	to	be	the	standard	output	device	unless
a	different	device	is	specified.

Doskey
A	program	in	versions	5	and	later	of	MS-DOS	that	records	commands	and	enables
you	to	repeat,	edit,	or	store	them	as	batch	files	or	keyboard	macros.

DoubleSpace
A	program	in	versions	6.0	and	6.2	that	compresses	the	files	on	your	hard	disk,
increasing	the	effective	capacity	of	your	hard	disk	by	up	to	100	percent.

Drive	letter
The	letter	that	identifies	a	disk	drive;	can	be	any	letter	from	A	to	Z.

DriveSpace
A	program	in	version	6.22	that	compresses	the	files	on	your	hard	disk,	increasing
the	effective	capacity	of	your	hard	disk	by	up	to	100	percent.	DriveSpace	is	the
replacement	for	the	DoubleSpace	program	offered	in	version	6.0	and	6.2.

	

javascript:Next(0)
javascript:Next(1)

E
Edit

As	a	verb,	to	change	the	contents	of	a	file,	usually	with	a	word	processor	or	an
editing	program.	As	a	noun,	Edit	is	the	name	of	the	command	that	starts	the	MS-
DOS	Editor,	the	menu-based	text	editor	included	with	versions	5	and	later	of	MS-
DOS.

Editor
A	program	used	to	create	or	change	text	files;	also	called	a	text	editor.

Edlin
One	of	the	two	MS-DOS	text	editors.	(The	other,	new	with	version	5,	is	the	MS-
DOS	Editor.)	Edlin	numbers	the	lines	in	a	file	and	uses	those	numbers	as	references
in	finding,	changing,	adding,	or	deleting	lines.

See	also	Edit.

Electronic	disk

See	RAM	disk.

Enhanced	Graphics	Adapter	(EGA)
A	printed-circuit	card	in	the	system	unit	of	a	computer	that	controls	the	display.
Processes	both	text	and	graphics	at	medium	resolution	in	up	to	64	colors.

Enter	key
The	key	you	press	to	tell	MS-DOS	that	you	have	finished	typing	a	line.	Labeled
Return	on	some	keyboards.

Escape	key
The	key	labeled	Esc;	cancels	a	line	you	have	typed	but	have	not	yet	entered	by
pressing	the	Enter	key.

Expanded	memory
Additional	memory	installable	on	any	early	PC-compatible	computer.	Use	of	this
memory	requires	a	special	program	called	an	expanded	memory	manager,	and
programs	must	be	written	specifically	for	such	memory.	Standardized	use	of
expanded	memory	is	governed	by	the	Lotus-Intel-Microsoft	(LIM)	specification.

Extended	memory
Memory	above	1	MB	that	can	be	installed	on	an	IBM	PC/AT,	IBM	PS/2	Models	50
or	above,	or	any	computer	compatible	with	those	models	that	has	an	80286,	80386,
80486,	or	a	Pentium	microprocessor.	Extended	memory	is	typically	handled	by	a

program	called	an	extended	memory	manager.

Extension
A	suffix	of	up	to	three	characters	that	can	be	added	to	a	file	name	to	identify	the
contents	of	the	file	more	precisely.

	

javascript:Next(0)
javascript:Next(1)

F
File

A	named	collection	of	information	stored	on	a	disk;	usually	contains	data,	graphics,
or	a	program.

File	compression
The	technique	of	reducing	the	amount	of	space	a	file	requires	on	a	disk	or	tape	by
replacing	common	character	combinations	with	shorter	codes.	If	you	compress	all
files	on	a	disk	or	tape,	the	effect	is	to	increase	the	apparent	capacity,	often	by	a
factor	of	two	or	more.

File	name
A	name	of	up	to	eight	characters	that	you	assign	and	that	MS-DOS	uses	to	find	a
file	on	a	disk;	can	be	followed	by	a	period	and	three	additional	characters	called	the
file-name	extension.

Filespec
The	complete	specification	of	a	file;	can	include	a	drive	letter,	path	name,	file	name,
and	extension.

Filter	command
An	MS-DOS	command	that	reads	standard	input,	processes	it	some	way	(for
example,	sorts	it	alphabetically),	and	writes	the	result	to	standard	output.

Fixed	disk

See	Hard	disk.

Floppy	disk
A	removable	disk	for	storing	files,	made	of	thin	plastic	and	enclosed	in	a	protective
jacket.

Floppy	disk	drive
A	disk	drive	used	for	floppy	disks.

Format
To	prepare	a	disk	for	use.

Fragment
The	division	of	the	existing	files	on	a	disk	into	discontiguous	segments,	generally	the
result	of	enlarging	portions	of	those	files.	This	results	in	breaking	the	available
storage	space	on	a	disk	into	smaller	and	smaller	pieces.	Such	a	condition	slows
down	MS-DOS	file	operations.	A	fragmented	disk	can	be	corrected	by	moving	files

into	the	unused	areas	until	all	available	storage	space	is	combined	into	a	single,
contiguous	area.

See	also	Defragment.

Function	key
One	of	10	or	more	keys—usually	labeled	F1,	F2,	and	so	on—that	cause	MS-DOS
(or	an	application	program)	to	perform	a	certain	application-specific	function,	such
as	copying	characters	in	a	line	of	text.

	

javascript:Next(0)
javascript:Next(1)

G
Gigabyte

A	value	equal	to	1024	×	1024	×	1024,	or	1,073,741,824	bytes.

		 			
	

javascript:Next(0)
javascript:Next(1)

H
Hard	disk

A	disk	of	large	capacity	(10	MB	or	more)	that	cannot	be	removed	from	its	drive.
Also	called	a	fixed	disk.

Hardware
The	equipment	that	makes	up	a	computer	system,	as	opposed	to	the	programs,	or
software.

Hexadecimal
The	base-16	numbering	system	whose	digits	are	0	through	9	and	A	through	F	(the
letters	A	through	F	correspond	to	the	decimal	numbers	10	through	15);	often	used	in
computer	programming	because	it	is	easily	converted	to	and	from	binary,	the	base-
2	numbering	system	the	computer	uses.

Hidden	file
A	file	that	is	not	normally	listed	when	you	display	the	directory.	MS-DOS	uses	two
special,	hidden	files	on	any	startup	disk.	They	are	hidden	so	that	they	cannot	be
altered	or	deleted	under	normal	circumstances.	Beginning	with	version	5,	directories
and	data	files	can	also	be	hidden	for	a	certain	amount	of	privacy.	MS-DOS	versions
6.0,	6.2,	and	6.22	also	add	hidden	files	for	supporting	file	compression.

Hierarchical	filing	system

See	Multilevel	filing	system.

High	Memory	Area	(HMA)
The	name	given	to	the	first	64	KB	of	extended	memory	(additional	memory	starting
at	1	MB).	On	a	computer	with	extended	memory,	versions	5	and	later	of	MS-DOS
can	run	in	the	HMA,	leaving	more	conventional	memory	available	for	applications
and	data.

	

javascript:Next(0)
javascript:Next(1)

I
Initialize

See	Format.

Input
The	data	that	a	program	reads.

Input/output
A	term	that	refers	to	the	devices	and	processes	involved	in	the	computer's	reading
(input)	and	writing	(output)	of	data.

Integrated	circuit
An	electronic	device	that	has	thousands	of	transistors	on	a	wafer	of	silicon.	Such
devices	are	the	building	blocks	of	computers.	Also	called	a	chip.

Interface
The	boundary	between	two	systems	or	entities,	such	as	a	disk	drive	and	the
computer,	or	the	user	and	a	program.

I/O
Abbreviation	for	input/output.

I/O	redirection

See	Redirection.

	

javascript:Next(0)
javascript:Next(1)

K
Keyboard

The	device	consisting	of	alphabetic	keys	and	other	keys	on	which	instructions	and
data	are	typed	into	the	computer;	assumed	by	MS-DOS	to	be	the	standard	input
device	unless	a	different	device	is	specified.

Kilobyte
A	value	equal	to	1024	bytes.

		 			
	

javascript:Next(0)
javascript:Next(1)

L
LPT1,	LPT2,	LPT3

Short	for	line	printer.	The	names	that	MS-DOS	uses	to	refer	to	the	three	ports	to
which	parallel	printers	can	be	attached.

		 			
	

javascript:Next(0)
javascript:Next(1)

M
Macro

A	set	of	keystrokes	or	commands	that	you	assign	a	name	and	store	either
temporarily	in	memory	or	permanently	on	disk.	A	macro	is	a	means	of	saving	time
by	assigning	a	short	name	to	a	long	or	involved	set	of	commands	you	use
frequently.	You	can	create	macros	with	the	Doskey	program	in	versions	5	and	later
of	MS-DOS.

Megabyte
A	value	equal	to	1024	×	1024,	or	1,048,576	bytes.

Memory
A	type	of	electronic	circuitry	that	the	computer	uses	to	store	programs	and	data.
Unlike	disk	storage,	which	is	permanent,	a	computer's	working	memory	is
temporary—its	contents	are	lost	when	power	is	removed.	Memory	is	usually
measured	in	units	of	1024	bytes,	called	kilobytes	and	abbreviated	K	or	KB;	a
megabyte	(M	or	MB)	is	equal	to	1024	kilobytes,	or	1,048,576	bytes,	and	a	gigabyte
(G	or	GB)	is	equal	to	1024	megabytes,	or	1,073,741,824	bytes.

Microcomputer
A	small	computer	system	whose	central	processing	unit	is	a	microprocessor;	usually
used	by	only	one	person.

Microprocessor
An	integrated	circuit,	or	chip,	that	contains	the	circuits	needed	to	carry	out	program
instructions.	The	microprocessor	performs	calculations,	briefly	stores	instructions
and	data,	and	transfers	information	to	and	from	a	computer's	memory.	In	the	world
of	MS-DOS,	this	includes	the	8086	through	Pentium	processors,	and	their	clones.

Modem
Contraction	of	modulator-demodulator.	A	device	that	enables	transmission	of
computer	data	over	telephone	lines.

Monitor
A	television-like	device	that	displays	computer	input	and	output;	often	used
synonymously	with	display.

Monochrome
A	term	used	to	describe	a	computer	display	capable	of	displaying	one	color	(usually
white,	green,	or	amber).

Monochrome	Display	Adapter	(MDA)
A	printed-circuit	card,	in	the	system	unit	of	a	computer,	that	controls	a	monochrome

display.	Processes	text	only,	not	graphics,	at	medium	resolution	in	one	color.

Multicolor	Graphics	Array	(MCGA)
A	printed-circuit	card,	in	the	system	unit	of	a	computer,	that	controls	the	display.
Processes	both	text	and	graphics	at	low	to	medium	resolution	in	up	to	256	colors;
used	in	some	early	low-end	IBM	PS/2	model	computers.

Multilevel	filing	system
A	computer	filing	system	that	lets	you	define	directories	within	other	directories,
creating	a	structure	with	many	levels.	Also	called	a	tree-structured	or	hierarchical
filing	system.

	

javascript:Next(0)
javascript:Next(1)

N
Network

A	group	of	computers	that	are	linked	by	printed-circuit	cards,	cables,	and	network
software	and	can	share	resources,	such	as	programs,	data,	disk	drives,	and
printers.

		 			
	

javascript:Next(0)
javascript:Next(1)

O
Operating	system

A	program	that	coordinates	the	operation	of	all	parts	of	a	computer	system.	MS-
DOS	is	an	operating	system.

Option

See	Parameter.

Output
The	result	of	a	program's	processing	of	input	data.

		 			
	

javascript:Next(0)
javascript:Next(1)

P
Parallel	communications

A	communications	technique	that	uses	multiple	wires	to	send	all	eight	bits	of	a	byte
at	once	(in	parallel).

Parallel	port
A	port	for	parallel	communications;	the	port	to	which	the	printer	is	usually	attached.

Parameter
A	qualifier	that	you	include	with	a	command	to	define	more	specifically	what	you
want	MS-DOS	to	do;	also	called	an	argument	or	an	option.

Parity
An	error-detection	technique	that	is	used	to	ensure	accuracy	during	data
communication.	Some	microcomputers	also	use	parity	to	ensure	the	integrity	of
data	in	RAM.

Path
The	list	of	directory	names	that	defines	the	location	of	a	directory	or	file.

Path	name
The	portion	of	a	file	specification	that	defines	the	path	to	the	file;	can	include	a	drive
letter	followed	by	a	colon.

Pipe
To	direct	the	output	of	one	command	for	use	as	the	input	of	another	command.	The
pipe	symbol	MS-DOS	uses	is	the	broken	vertical	bar	(œ).

Port
The	electrical	connection	through	which	the	computer	sends	and	receives	data	to
and	from	devices	or	other	computers.

Printed-circuit	card
A	thin,	rectangular	card	or	board,	usually	made	of	fiberglass	or	epoxy	and	coated
with	copper.	Electrical	circuits	and	connections	are	etched	into	the	copper,	and
electronic	devices,	such	as	integrated	circuits,	are	soldered	to	the	circuits.	These
cards	are	at	the	heart	of	a	computer	system,	giving	the	machine	its	ability	to
perform	calculations,	store	and	transfer	data,	and	use	the	display,	disk	drives,
mouse,	printer,	modem,	and	other	devices.

Printer
A	device	that	produces	images	of	text	and	graphics	on	paper.

Print	queue
The	list	of	files	to	be	printed;	you	can	create,	examine,	and	modify	the	print	queue
with	the	Print	command.

PRN
Short	for	printer.	The	printer	MS-DOS	uses	unless	instructed	otherwise.	Can	refer
to	LPT1,	LPT2,	or	LPT3.

Program
A	set	of	instructions	for	a	computer.

Prompt
A	request	displayed	by	the	computer	for	you	to	provide	some	information	or
perform	an	action.

	

javascript:Next(0)
javascript:Next(1)

Q
Queue

See	Print	queue.

		 			
	

javascript:Next(0)
javascript:Next(1)

R
RAM

Short	for	random	access	memory.	The	memory	that	MS-DOS	uses	for	programs
and	data;	RAM	content	changes	often	while	you	use	the	computer	and	is	lost	when
the	computer	is	turned	off.

RAM	disk
A	portion	of	the	computer's	random	access	memory	reserved	for	use	as	a
simulated	disk	drive.	Also	called	an	electronic	or	virtual	disk.	Unless	saved	on	a
physical	disk,	the	contents	of	a	RAM	disk	are	lost	when	the	computer	is	turned	off.

Read-only	file
A	file	whose	read-only	attribute	is	set	so	that	its	contents	can	be	displayed	and	read
but	not	changed	or	deleted.

Redirection
The	process	of	making	a	command	or	program	take	its	input	from	a	file	or	device
other	than	the	keyboard	(standard	input),	or	of	causing	output	of	a	command	or
program	to	be	sent	to	a	file	or	device	other	than	the	display	(standard	output).	The
MS-DOS	redirection	symbols	are	the	greater-than	(>)	and	less-than	(<)	signs.

Replaceable	parameter
A	symbolic	reference,	consisting	of	a	percent	sign	followed	by	a	one-digit	number
(such	as	%1),	that	can	be	included	with	commands	in	a	batch	file	to	refer	to	the
parameters	entered	with	the	batch	command.	In	versions	5	and	later	of	MS-DOS,
replaceable	parameters	can	also	be	used	with	Doskey;	they	are	represented	by	a
dollar	sign	followed	by	a	one-digit	number	(such	as	$1).

Return	key
The	Enter	key.

ROM
Short	for	read-only	memory.	A	type	of	computer	memory	that	is	permanently
recorded	in	hardware.	ROM	contains	instructions	that	help	a	computer	carry	out
routine	tasks,	such	as	starting	itself.	The	contents	of	ROM	cannot	be	changed	and
are	not	lost	when	the	computer	is	turned	off.	On	some	computers,	such	as	some
models	of	the	IBM	PS/1	series,	MS-DOS	is	contained	in	ROM.

Root	directory
The	main	directory	that	MS-DOS	creates	on	each	disk;	the	top	directory	in	a
multilevel	filing	system.

	

javascript:Next(0)
javascript:Next(1)

S
ScanDisk

A	program	in	versions	6.2	and	later	that	checks	both	the	structure	of	the	files	on	a
disk	and	the	surface	of	the	disk	itself	for	errors.	In	many	cases,	it	can	correct	the
structure	errors	(recovering	lost	data)	or	move	files	from	areas	where	the	disk
surface	is	damaged	to	undamaged	locations.

Serial	communications
A	communications	technique	that	transfers	information	one	bit	at	a	time	(serially)
rather	than	one	byte	at	a	time	(in	parallel);	used	in	modem	communications	and	with
some	printers	and	other	devices,	such	as	mice.

Serial	port
The	communications	port	(COM1,	COM2,	COM3,	or	COM4)	to	which	a	device,
such	as	a	modem	or	a	serial	printer,	can	be	attached.

Shell
A	program	that	shows	itself	to	the	person	using	the	computer	and	then	passes
commands	to	a	different	program	to	be	carried	out.	It's	called	a	shell	because	it
effectively	surrounds	the	other	program,	hiding	it	from	view.	Versions	4	through	6.0
of	MS-DOS	include	the	Dosshell	program	that	lets	you	use	many	MS-DOS
commands	without	having	to	type	commands	or	file	names	at	the	system	prompt.
Other	MS-DOS	shell	programs	are	also	available.

Software
The	programs,	as	opposed	to	the	equipment	or	hardware,	that	are	used	with	a
computer	system.

Standard	input
The	device	from	which	a	program	reads	its	input	unless	the	input	is	redirected;	in
normal	MS-DOS	operation,	standard	input	is	the	keyboard.

Standard	output
The	device	to	which	a	program	sends	its	output	unless	the	output	is	redirected;	in
normal	MS-DOS	operation,	standard	output	is	the	display.

Stop	bit
A	signal	used	in	serial	communications	that	marks	the	end	of	a	character.

Subdirectory
A	file	that	contains	directory	entries;	sometimes	also	used	to	refer	to	the	group	of
files	whose	directory	entries	are	in	the	same	file.

Super	VGA	(SVGA)
A	printed-circuit	board,	in	the	system	unit	of	a	computer,	that	controls	a	high-
resolution	display.	Processes	both	text	and	graphics,	and	is	capable	of	millions	of
colors.

Switch
A	term	used	by	MS-DOS	to	identify	those	parameters	which	are	preceded	by	a
forward	slash,	such	as	/w	when	used	with	the	Directory	command.

System	program
A	program	whose	purpose	is	to	control	the	operation	of	all	or	part	of	the	computer
system,	such	as	managing	the	printer	or	interpreting	commands.	Generally,	system
programs	are	components	of	an	operating	system.

System	prompt
The	characters	MS-DOS	displays	when	it	is	at	the	command	level	(ready	to	accept
a	command).	Unless	you	specify	otherwise,	the	system	prompt	usually	shows	the
current	drive	and	directory	followed	by	a	greater-than	sign	(for	example,	C:\DOS>).

System	unit
That	part	of	a	microcomputer	which	contains	the	microprocessor,	power	supply,
disk	drives,	RAM,	and	adapter	cards,	and	provides	for	the	attachment	of	other	input
and	output	devices.

	

javascript:Next(0)
javascript:Next(1)

T
Telecommunications

See	Communications.

Temporary	file
A	file	that	MS-DOS	or	an	application	program	creates	for	holding	interim	data.	MS-
DOS,	for	example,	creates	temporary	files	when	redirecting	input	or	output.
Temporary	files	are	deleted	by	the	program	when	they	are	no	longer	needed.

Text
Ordinary,	readable	characters,	including	the	uppercase	and	lowercase	letters	of	the
alphabet,	the	numerals	0	through	9,	and	punctuation	marks.

Text	editor
A	program	that	you	use	to	create	or	change	text	files.	Also	called	simply	an	editor.

Text	file
A	file	that	you	can	read	(contains	ordinary	letters,	numerals,	and	punctuation
marks).

Tree-structured	filing	system

See	Multilevel	filing	system.

	

javascript:Next(0)
javascript:Next(1)

U
Update

To	change	a	file,	creating	a	new	(or	updated)	version.

Upper	memory	area
The	area	of	memory	between	640	KB	and	1	MB,	portions	of	which	can	be	used	by
versions	5	and	later	of	MS-DOS.

Upper	Memory	Block	(UMB)
A	portion	of	the	upper	memory	area	that	can	be	allocated	for	use	by	MS-DOS.

	

javascript:Next(0)
javascript:Next(1)

V
Video	Graphics	Array	(VGA)

A	printed-circuit	card,	in	the	system	unit	of	a	computer,	that	controls	the	display.
Processes	both	text	and	graphics	at	medium	to	high	resolution	in	up	to	256	colors.

Virtual	disk

See	RAM	disk.

Virus
A	program	that	hides	itself	on	a	disk	or	inside	a	file	and	can	spread	itself	from
system	to	system.	Virus	programs	eventually	do	something	irritating	or	even
destructive,	such	as	destroying	files	or	formatting	a	disk.

Volume	label
An	identifying	name	of	up	to	11	characters	that	you	can	assign	to	a	disk.

	

javascript:Next(0)
javascript:Next(1)

W
Wildcard	character

A	special	character	that,	like	the	wild	card	in	a	poker	game,	can	be	used	to
represent	any	other	character.	MS-DOS	recognizes	two	wildcard	characters:	the
question	mark	(?),	which	can	represent	any	single	character,	and	the	asterisk	(*),
which	can	represent	any	number	of	characters.

Write-protect
To	cover	the	small	notch	on	a	5.25-inch	floppy	disk	or	to	uncover	the	opening	on	a
3.5-inch	floppy	disk	so	that	new	or	changed	information	cannot	be	written	onto	the
floppy	disk.

	

javascript:Next(0)
javascript:Next(1)

Appendix	C:	MS-DOS	Command	Reference

<Command>	/?
Command	Help

See	Help	(versions	5	and	later).

		 			
	

javascript:Next(0)

Index

Special	Characters
$	(Doskey	replaceable	parameter),	331,	474–75
$	(Prompt	operator),	395–96,	474,	553–54
$T	(Doskey	command	separator),	332
%	(batch	replaceable	parameter),	320–21
%	(Dosshell	parameter),	270
%%	(batch	replaceable	parameter),	364–66,	504–5
*	(Dosshell	directory	operator),	261
*	(wildcard	character),	45,	69–70,	344–45
+	(Copy	file-combining	operator),	82
+	(Dosshell	directory	operator),	244,	261
-	(Dosshell	directory	operator),	244,	261
.	(current	directory	marker),	145,	153–58
.	(date	separator),	20
..	(parent	directory	marker),	145,	153–58
...	(Dosshell	symbol),	249
/	(date	separator),	20
/?	(command	help	parameter),	73,	512
:	(batch	file	label	operator),	342
<	(redirection	operator),	52,	300,	515
>	(redirection	operator),	54,	299,	310,	515
>>	(redirection	operator),	308,	515
?	(wildcard	character),	45,	70–71,	85–86
@	(batch	display-suppression	operator),	339,	435
\	(canceled	command	symbol),	31
\	(path	name	separator),	149
\	(root	directory	marker),	145,	149
	̂(control	key	symbol),	33
œ	(piping	operator),	53,	308–10,	515–16

	

javascript:Next(1)

Index

A
accented	characters,	137–38
access,	file	and	directory.	See	attributes,	file	and	directory
access,	speeding	disk.	See	disk	buffers;	disk	caches;	Fastopen	command
adapter	RAM/ROM	memory,	122
Advanced	Power	Management	(APM),	390,	550
allocation	units,	47,	104
Alt-255	keys,	347,	357
Alternate	key	(Alt),	32,	246
Alt-F1	keys,	284
Alt-F7	keys,	332
Alt-Minus	keys,	284
Alt-Plus	keys,	284
Alt-Tab	keys,	264
ampersand	(@)	as	batch	display-suppression	operator,	339,	435
ANSI.SYS	device	driver
command	reference,	428
installing,	390,	463
Mode	and,	125,	332–33,	358

anti-virus.	See	virus	protection
APM	(Advanced	Power	Management),	390,	550
Append	command,	171–72,	428–29
application	programs,	6,	175–78,	222–23.	See	also	program	files
archive	attributes,	178,	179–81,	186–90
archiving.	See	backing	up	files	and	directories
arrow	keys
activating,	31–32
Doskey	use	of,	20,	37–38
Dosshell	use	of,	250–55
Edit	use	of,	280
Up	Arrow,	17,	18,	20,	37

ASCII	(American	Standard	Code	for	Information	Interchange),	90,	253
Assign	command,	430

associating	files	with	programs,	251
asterisk	(*),	45,	69–70,	261,	344–45
Attribute	command	(attrib),	178–83,	187,	431–32
attributes,	file	and	directory
archive	status,	179–81
changing,	178–83,	431–32
hidden	status,	181–83
read-only	status,	84,	183
Xcopy	and,	187

AUTOEXEC.400	file,	377,	406
AUTOEXEC.BAT	file
batch	file	commands	and,	435
CONFIG.SYS	and,	376–77,	392
creating,	323–27
disk	caches,	383–84
memory	management	(see	memory)
MS-DOS	installation,	377,	406
paths,	165–66,	408,	410
root	directory	requirement,	202
starting	MS-DOS	without,	392

AUX	device	name,	120
Auxiliary	devices.	See	serial	ports

	

javascript:Next(0)
javascript:Next(1)

Index

B
backing	up	files	and	directories.	See	also	restoring	files	and	directories
with	Backup,	232–36,	432–34
with	batch	files,	336–50,	362–63,	366
developing	procedures,	224
duplicating	floppies,	100–101
with	MSbackup	(see	MSbackup	command)
MS-DOS	versions	and,	233,	434

backslash	character	(\),	31,	145,	147
Backspace	key,	18,	20–21
BACKUP.001	file,	234–35
Backup	command,	232–36,	432–34.	See	also	Restore	command
BACKUPID.@@@	file,	235
BACKUP.LOG	file,	233
BAS	extension,	67
Basic	language,	262,	555
batch	files,	316.	See	also	files
archiving	files	with,	336–37,	362–63,	366
calling	other,	366–68,	438–39
canceling,	322–23
chaining,	354–57,	366–67
changing	command	sequences	in,	342–46,	508
command	reference,	435–36
conditional	execution,	340–42,	514–15
copying	files	between	directories	with,	360–61
creating,	with	Copy,	318–19
creating,	with	Doskey,	329–34	(see	also	Doskey	command)
creating,	with	Edit,	279	(see	also	Edit	command)
creating,	with	Edlin,	489–95
deleting	files	with,	328–29,	358–59
displaying	directories	of	subdirectories	with,	359–60
displaying	line	spaces	with	Echo,	347–50,	357
displaying	long	directories	with,	357–58
displaying	messages	with	Echo,	338–39,	486–87
displaying	messages	with	Pause,	339,	549
displaying	messages	with	Remark,	319–20,	558
displaying	multiple	files	with,	370–71
displaying	sorted	directories	with,	372–74

interactive,	368–70,	443–44
labels,	342–43
macros	vs.,	329
MS-DOS	command	search	order	and,	316–17
printing	files	with,	327–28
repeating	commands	with	For	command,	363–66,	504–5
repeating	commands	with	replaceable	parameters,	320–21
searching	through	files	with,	352–57,	371–72
shifting	command	parameters,	362–63,	569
starting	MS-DOS	with	(see	AUTOEXEC.BAT	file)
wildcard	characters	and,	344–45

BAT	extension,	67,	317
baud	rate,	128–29
blank	lines,	displaying,	with	batch	files,	347–50,	357
booting	MS-DOS.	See	starting	MS-DOS
Break	command,	436.	See	also	Ctrl-Break	keys
Break	configuration	command,	437.	See	also	Ctrl-Break	keys
Break	key,	32
Buffers	configuration	command,	391,	437–38
built-in	commands,	316
bytes,	26–27

	

javascript:Next(0)
javascript:Next(1)

Index

C
caches,	disk,	383–84,	570–73
Call	batch	command,	366–68,	438–39
capacities	of	disks,	7,	27,	103,	105,	106,	174,	506
case	of	characters,	353,	372
cd.	See	Change	Directory	command	(cd,	chdir)
CD-ROM	drives,	546
chaining	batch	files,	354–57,	366–67
chains,	442
Change	Code	Page	command	(chcp),	439–40
Change	Directory	command	(cd,	chdir),	27,	146–47,	153–58,	440–41
characters.	See	also	keys
accented,	137–38
ASCII,	90,	253
case	of,	353,	372
end-of-file,	48,	133
foreign-language	(see	foreign	languages)
graphics	(see	graphics)
grayed,	249
hexadecimal,	253
replacing,	with	Edit,	292
searching	text	for,	54–55,	304–7,	352–57,	371–72,	503–4
system	prompt	definition,	395,	554
wildcard,	45,	69–71,	344–45

character	strings,	54
chcp.	See	Change	Code	Page	command	(chcp)
Check	Disk	command	(chkdsk)
checking	disk	condition,	111–14
command	reference,	441–43
displaying	directory	structure,	166–70,	579
DoubleSpace	and,	442
ScanDisk	and,	112,	113,	441	(see	also	ScanDisk	command)
Windows	and,	168,	441

Choice	batch	command,	368–70,	435,	443–44
Clear	Screen	command	(cls),	23,	123,	348,	445
client-server	connections,	517–18

Clipboard,	Edit,	290–91,	293–94
clock,	system.	See	date;	time
CLOCK$	device	name,	66
cls.	See	Clear	Screen	command	(cls)
clusters,	442
code	pages.	See	also	COUNTRY.TXT	file;	foreign	languages
changing,	439–40
date,	time,	currency,	and	decimal	formats,	454–58,	547–48
displaying	status	of,	131–32,	543
enabling	graphics	characters,	508–9
keyboard	layouts,	135–39,	520–23
preparing,	541–42
restoring,	543
selecting,	542

colon	(:),	342
color	options
Dosshell,	248
Edit,	294–95
Startup	Menu,	529–30

COM1-COM4	device	names,	120.	See	also	serial	ports
combining	text	files,	82–83,	453–54
COM	extension,	67,	316
COM	files,	converting	EXE	files	to,	497
COMMAND.COM	file,	202,	239,	408,	445–46,	497,	568
Command	command,	445–46
command	files,	42–43.	See	also	batch	files;	commands,	MS-DOS;	Doskey	command;
program	files
command	history.	See	Doskey	command
command	level,	16
command	macros.	See	Doskey	command
command	processor.	See	COMMAND.COM	file
command	prompt.	See	system	prompt
commands,	MS-DOS,	9–10,	42–43.	See	also	Dosshell	command
canceling,	31,	32,	34
configuration	(see	CONFIG.SYS	configuration	file)	entering,	16–18
external	vs.	internal,	42–43
file	management,	65	(see	also	files)
filter	(see	filter	commands)

help	on,	71–73
parameters,	28,	44
redirecting	input	and	output	of	(see	input	and	output	redirection)
search	order,	316–17
search	paths,	165–66,	548–49	(see	also	paths)
sorting	ouput	of,	52–53,	573–74
user-defined	(see	batch	files;	Doskey	command)
wildcard	characters,	45,	69–71,	344–45

communications	parameters,	128–30,	537–38
communications	ports.	See	serial	ports
Compare	command	(comp),	88,	446–48
comparing	disks,	110–11,	469–70
comparing	files
with	Compare,	88,	446–48
with	File	Comparison,	88–91,	110,	499–501

compatibility,	9.	See	also	versions,	MS-DOS
compressed	files,	expanding	MS-DOS,	498
compression,	disk
with	DoubleSpace,	476–81
with	DriveSpace,	190–97,	481–86
of	floppy	disks,	193–94
of	hard	disks,	191–93
memory	and,	191,	480–81,	486
mounting	and	unmounting	drives	for,	194–96
MS-DOS	versions	and,	191
removing,	196–97
ScanDisk	and,	192

computers
configuring	portable,	390–91,	517–18,	549–50
displaying	information	about,	546–47

condensed	print,	125
CON	device	name,	48,	66,	119–20
CONFIG.400	file,	377,	406
CONFIG.SYS	configuration	file,	376–91
AUTOEXEC.BAT	and,	376–77,	392
checking	for	Ctrl-C	(Ctrl-Break),	437
code-page	switching	(see	code	pages)
command	reference,	448–49
console	control,	125,	390,	428
date	and	currency	formats,	454–58,	547–48
defining	characteristics	of	disks	or	tapes,	481

device	drivers	(see	device	drivers)
disk	buffers,	391,	437–38
disk	caches,	383–84,	572–73
disk	compression,	191,	480–81,	486
emulating	earlier	versions	of	MS-DOS,	567–68
highest	drive	letter,	391–92,	524
including	other	configuration	blocks,	515
installing	fast	file	access,	396–97,	499
loading	device	drivers,	377,	388–90,	462–66
loading	memory-resident	programs,	516
loading	MS-DOS	in	high	memory,	380–81,	472–73
memory	management	(see	memory)
menus,	393–94,	529–31,	574
MS-DOS	installation	and,	377,	406
MS-DOS	options,	576
Num	Lock	key	state,	548
open	files,	391,	501,	503
portable	computer	settings,	390–91,	518,	550
RAM	disks,	384–87,	555–57,	585
reserving	memory	for	temporary	program	use,	574
root	directory	requirement,	202
specifying	command	processor,	568
starting	MS-DOS	without,	392

confirmation	options,	Dosshell,	254–55
consoles.	See	also	keyboards;	screens
changing,	458
control	program	(see	ANSLSYS	device	driver)
creating	batch	files	from,	318–19
creating	text	files	from,	48–49
device	name,	48,	66,	119–20
displaying	status	of,	131–32

CONTROL.001file,	234–35
Control	key	(Ctrl),	31,	33–35,	251
conventional	memory,	122,	378
Copy	command
combining	text	files,	82–83,	453–54
command	reference,	450–54
copying	files,	51,	78–81,	177–78
copying	files	between	directories,	148–49
copying	from	devices	to	devices	or	text	files,	133,	453
copying	text	files	to	devices,	50,	81,	452
creating	batch	files,	318–19
creating	text	files,	48–49,	67–68

installing	MS-DOS	files,	408–9,	410–11
copying	files.	See	also	moving	files
with	Copy	(see	Copy	command)
with	Dosshell,	251–52
with	Replace,	81,	184–86,	409,	560–61
with	Xcopy,	81,	176–77,	186–90,	588–89

copying	floppy	disks,	108–10
country	codes.	See	also	foreign	languages
code	pages,	439–40
date,	time,	currency,	and	decimal	formats,	454–58,	547–48
keyboard	layouts,	135–39,	520–23
system	floppy	disks,	564–65

Country	configuration	command,	454–58
COUNTRY.SYS	file,	458,	547–48
COUNTRY.TXT	file,	137,	439
Ctrl-*	keys,	261
Ctrl-Alt-Del	keys,	33,	38
Ctrl-Alt-F1	keys,	139
Ctrl-Alt-F2	keys,	139
Ctrl-Break	keys,	33,	34,	322–23,	436–37
Ctrl-Esc	keys,	263–64
Ctrl-F1	keys,	284
Ctrl-Ins	keys,	290
Ctrl	key,	31,	33–35,	251
Ctrl-Num	Lock	keys,	33
Ctrl-P	keys,	35
Ctrl-PrtSc	keys,	33,	33,	34–35
Ctrl-T	keys,	313
Ctrl-Z	keys,	48,	133
CTTY	command,	458
currency	formats,	454–58,	547–48
current	directory	(.),	149
changing,	146–47,	440–41
marker,	145
as	system	prompt,	146,	153,	175

current	disk	drive,	16,	22
cursor,	18,	279,	280

cursor-movement	keys.	See	arrow	keys
cut	and	paste,	290–91

	

javascript:Next(0)
javascript:Next(1)

Index

D
data	bits,	128–29
data	files,	42,	251
data	file	search	paths,	171–72,	428–29
date
changing,	19–21,	459
formats,	454–58,	547–48
starting	MS-DOS	with,	15–16

Date	command,	19–21,	72–73,	459
dblspace.	See	DoubleSpace	command	(dblspace)
DBLSPACE.SYS	device	driver,	191,	480–81
dead	keys,	137–38
decimal	formats,	454–58,	547–48
Defrag	command,	174,	199–201,	397,	459–61
defragmentation,	199–201,	459–61
Delete	command	(del,	erase),	51–52,	83–86,	461–62
Delete	key	(Del),	32
Delete	Sentry,	208–11,	581
Delete	Tracker,	208,	211–15,	581
deleting	directories,	160–63,	462,	559
deleting	files.	See	also	undeleting	files
with	batch	files,	328–29,	358–59
with	Delete,	51–52,	83–86,	461–62
with	DelTree,	162–63,	462
with	Dosshell,	254–55
wildcard	characters	and,	71

DelTree	command,	162–63,	462
Device	configuration	command,	377,	462–65
device	drivers.	See	also	CONFIG.SYS	configuration	file
loading,	377,	462–65
loading,	into	reserved	memory,	388–90,	465–66

Devicehigh	configuration	command,	380,	382,	385,	387–90,	465–66
devices,	48,	119.	See	also	consoles;	disks;	display	adapters;	keyboards;	memory;	parallel
ports;	printers;	screens;	serial	ports

code-page	switching	(see	code	pages)
controlling	modes	of	(see	Mode	command)
copying	files	to,	50,	81,	452
copying	from,	to	files	or	devices,	48–49,	67–68,	133,	318–19,	453
displaying	status	of,	131–32,	540–41
drivers	(see	device	drivers)
names,	66,	119–20
on	networks,	120,	390–91,	517–18
redirection	of	(see	input	and	output	redirection)

diagnostics,	546–47
dialog	boxes,	252,	271
differential	backups,	227
dir.	See	Directory	command	(dir)
direction	keys.	See	arrow	keys
directories,	26–28.	See	also	files;	tree-structured	file	systems
backing	up	(see	backing	up	files	and	directories)
controlling	access	(see	attributes,	file	and	directory)
copying	files	between	(see	copying	files)
creating,	142–45,	150–53,	526–27
current	(see	current	directory	(.))
displaying	(see	Directory	command	(dir);	File	List,	Dosshell)
displaying	information	about,	256–57
displaying	structure	of,	166–70,	578–80
joining	disks	to,	519
markers,	145,	153–58
moving	files	between	(see	moving	files)
for	MS-DOS	files,	27–28,	175,	201–2,	408–11
naming,	as	disks,	397–98,	574–75
path	names	(see	paths)
removing,	160–62,	559
removing,	with	Dosshell,	254
removing,	with	files,	162–63,	462
renaming,	159–60,	544–45
restoring	(see	restoring	files	and	directories)
root	(see	root	directory)
scrolling	and	selecting,	with	Dosshell,	250–55
speeding	access	(see	disk	buffers;	disk	caches;	Fastopen	command)
subdirectories,	27–28,	142,	149
using,	147–49

Directory	command	(dir)
command	reference,	466–69
directory-only	subdirectories,	359–60
displaying	long	directories,	53–54,	357–58

displaying	specific	files	or	sets	of	files,	44–45,	54–55,	69–70
file-only	displays,	77
multiple-directory	displays,	163–65
parameters,	74–75
pausing	displays,	28–29,	53–54,	76
printing	displays,	34–35,	54
sorting	displays,	76–77
sorting	displays	with	batch	files,	372–74
wide	displays,	75

disk	access	speedup.	See	disk	buffers;	disk	caches;	Fastopen	command
disk	buffers,	391,	437–38
disk	caches,	383–84,	570–73
Disk	Compare	command	(diskcomp),	110–11,	469–70
Diskcopy	command,	108–10,	471–72
disk	drives.	See	disks
diskettes.	See	floppy	disks
disk	files.	See	files
disk	operating	systems.	See	Microsoft	MS-DOS;	Microsoft	Windows
disks.	See	also	floppy	disks;	hard	disks
changing	current,	22
checking,	for	errors,	192,	197–98,	563–64
compressing	(see	compression,	disk)
defining	characteristics	of,	481
defining	highest	letter	for,	391–92,	524
directory	structure	(see	directories;	files;	tree-structured	file	systems)
displaying	information	about,	256–57
displaying	status	of,	111–14,	168–70,	441–43,	579
file	names	and,	43,	67
formatting	(see	Format	command;	Select	command)
installing	or	upgrading	MS-DOS	(see	versions,	MS-DOS)
joining,	to	directories,	519
naming	directories	as,	397–98,	574–75
RAM	or	virtual,	384–87,	555–57,	585
recovering	files	from	damaged,	557–58
reformatting,	215–18
routing	operations	to	different,	430
saving	recovery	information,	212,	216,	531–33,	583–85
speeding	access	(see	disk	buffers;	disk	caches;	Fastopen	command)
system	(see	system	disks)
system	prompt	as	current,	16
types	and	capacities,	7,	27,	105,	106,	174,	506
unformatting,	106,	217–18,	583–85

verifying	data	written	to,	585–86
virus	protection	(see	virus	protection)
volume	labels	(see	labels,	disk	volume)
volume	serial	numbers,	47,	104,	115

Disk	Utilities	Program	Group,	Dosshell,	262,	272–74
display	adapters.	See	also	consoles;	screens
changing	display	characteristics,	124–25,	534–35
changing	display	columns	or	lines,	535–36
Dosshell	and,	248
memory,	122

dollar	sign	($),	331,	395–96,	474–75,	553–54
DOS.	See	Microsoft	MS-DOS
Dos	configuration	command,	380–81,	387,	472–73
Doshelp	command,	512.	See	also	Help	command
Doskey	command
canceling	commands,	31
command	parameters,	330
command	reference,	473–75
creating	batch	files,	330–31	(see	also	batch	files)
creating	macros,	331–33
editing	commands,	310–14
macros	vs.	batch	files,	329
repeating	commands,	20,	35–38
replaceable	parameters,	331–33
saving	macros,	333–34
starting,	18
using	multiple	commands,	313–14

Dosshell	command,	9
color	options,	248
command	reference,	475–76
File	List	(see	File	List,	Dosshell)
File	menu,	249,	265–68
Help	menu,	246–47
keyboard	and	mouse	use	in,	245–46
Options	menu,	254–57,	263–64
Program	List	(see	Program	List,	Dosshell)
starting,	242–46
starting	MS-DOS	with	and	without,	14–15
text	mode	vs.	graphics	mode,	243
Tree	menu,	261
View	menu,	257–61
window,	parts	of,	243–45

Windows	and,	242
DOSSHELL.INI	file,	253
DOS	subdirectory,	27–28,	175,	201–2,	408–11
dot-matrix	printers.	See	printers
DoubleSpace	command	(dblspace)
Check	Disk	and,	442
command	reference,	476–81
DriveSpace	and,	174,	191	(see	also	DriveSpace	command	(drvspace))
formatting	disks,	505
memory	and,	191,	480–81
Smartdrv	and,	383

Drive	Parameters	configuration	command	(drivparm),	481
drivers.	See	device	drivers
drives.	See	CD-ROM	drives;	disks;	tape
drivesDriveSpace	command	(drvspace)
command	reference,	481–85
compressing	floppy	disks,	193–94
compressing	hard	disks,	191–93
DoubleSpace	and,	174,	191	(see	also	DoubleSpace	command	(dblspace))
formatting	disks,	505
memory	and,	191,	486
mounting	and	unmounting	drives,	194–96
removing,	196–97
ScanDisk	and,	192
Smartdrv	and,	383

drivparm.	See	Drive	Parameters	configuration	command	(drivparm)
drvspace.	See	DriveSpace	command	(drvspace
DRVSPACE.000	file,	196–97
DRVSPACE.SYS	device	driver,	191–92,	486
duplication.	See	copying	files;	Diskcopy	command

	

javascript:Next(0)
javascript:Next(1)

Index

E
Echo	batch	command,	338–39,	347–50,	357,	435,	486–87
Edit	command
accessing,	from	Dosshell,	262
changing	screen	display,	294–95
command	reference,	487–89
copying	or	moving	text,	290–91
copying	text	from	another	file,	293–94
deleting	text,	288
editing	files,	290–91
entering	text,	285
exiting,	290
inserting	text,	285–86
inserting	vs.	overstriking,	293
keyboard	and	mouse	use	in,	279–81
margins,	286–87
printing	files,	287
replacing	text,	292
saving	files,	288–89
searching	files,	291
selecting	text,	281
starting,	281
Survival	Guide	help,	281–85

editors.	See	Edit	command;	Edlin	command
Edlin	command,	279,	489–95
EGA	(Enhanced	Graphics	Adapter),	124–25
ellipsis	(...),	249
EMM386	command,	495–96
EMM386.EXE	device	driver,	379–81,	387–90,	496–97
end-of-file	character,	48,	133
Enhanced	Graphics	Adapter	(EGA),	124–25
enhanced	keyboards,	576
Enter	key,	17
environment	variables,	566
erase.	See	Delete	command	(del,	erase)
errorlevel	values
Backup,	433–34

batch	file	testing	of,	368–70,	514–15
Replace,	561
Restore,	562–63

Escape	key	(Esc),	31,	284
Exe2bin	command,	497
EXE	extension,	67,	316
EXE	files,	converting,	to	COM	files,	497
Exit	command,	245,	263,	497
Expand	command,	498
expanded	memory	(EMS),	122,	378–79
disk	caches,	384,	572–73
emulating	IBM	PS/2,	589
enabling	and	disabling,	495–96
Fastopen	use	of,	397
LIM	EMS,	589
managers,	378–81,	589
RAM	disks,	386–87,	557
simulating,	with	extended	memory,	495–97

extended	memory	(XMS),	122,	378
disk	caches,	383–84,	570–72
disk	compression	in,	191,	480–81,	486
manager,	378,	513–14
memory-resident	programs	in,	388,	525–26
MS-DOS	in,	380–81,	472–73
RAM	disks,	386,	556–57
simulating	expanded	memory	with,	495–97

extensions,	filename,	26,	43,	65–67,	202
external	commands,	42–43

	

javascript:Next(0)
javascript:Next(1)

Index

F
F1	function	key,	246,	248,	284
F3	function	key,	14,	26
F5	function	key,	392,	576
F6	function	key,	133,	284
F7	function	key,	37
F8	function	key,	392,	576
F9	function	key,	38,	253
F10	function	key,	245
Fasthelp	command,	512.	See	also	Help	command
Fastopen	command,	396–97,	498–99
fc.	See	File	Comparison	command	(fc)
FCBS	configuration	command,	501
Fdisk	command,	501–2
File	Comparison	command	(fc),	88–91,	110,	499–501
file	control	blocks,	501
file	handles,	503
File	List,	Dosshell,	242
copying	files,	251–52
deleting	files,	254–55
displaying	directories,	248
displaying	directory	structures,	261
displaying	files,	260–61
displaying	files	in	sorted	order,	255–56
displaying	two	directories,	258–59
expanding	and	collapsing	directories,	261
file	information	options,	256–57
File	menu,	249
finding	files,	259–60
Options	menu,	254–57
scrolling	directories,	250–55
selecting	directories,	250
selecting	files,	250–51
Tree	menu,	261
viewing	file	contents,	253
view	options,	257–61

file-management	example,	300–312,	352–57
File	menu
Dosshell,	249,	265–68
Edit,	488

FILEnnnn.CHK	files,	114
files,	8.	See	also	batch	files;	program	files;	text	files
associating	data	files	with	program,	251
backing	up	(see	backing	up	files	and	directories)
comparing,	88–91,	446–48,	499–501
compressing	(see	compression,	disk)
controlling	access	(see	attributes,	file	and	directory)
converting	EXE	files	to	COM,	497
copying	(see	copying	files)
defragmenting,	199–201,	459–61
deleting	(see	deleting	files)
directories	of,	26–28	(see	also	directories;	tree-structured	file	systems)
displaying	information	about,	256–57
expanding	compressed	MS-DOS,	498
finding,	with	Dosshell,	259–60
fragmented,	112,	199
moving	(see	moving	files)
MS-DOS	as,	8
MS-DOS	temporary,	54,	310
naming	(see	names,	file)
overwriting	(see	overwriting	files)
recovering,	from	damaged	disks,	557–58
required	in	root	directory,	202,	411
restoring	(see	restoring	files	and	directories)
search	paths	(see	paths)
selecting,	with	Dosshell,	250–51
sharing,	568
specifying	number	of	open,	391,	501,	503
speeding	access	(see	disk	buffers;	disk	caches;	Fastopen	command)
system,	407–8,	576–77
types,	42–43
undeleting	(see	undeleting	files)
virus	protection	(see	virus	protection)

Files	configuration	command,	391,	503
filter	commands
combining,	54–55,	309
pausing	displays,	49,	53–54,	308,	543–44
redirection	and,	300–302,	307–8,	310
searching	text	for	characters,	54–55,	304–7,	352–57,	371–72,	503–4

sorting,	52–53,	302–4,	573–74
Find	filter	command,	54–55,	304–7,	352–57,	371–72,	503–4
fixed	disks.	See	hard	disks
floppy	disks.	See	also	disks
capacities,	7,	27,	103,	105,	106,	506
checking,	for	viruses,	221	(see	also	virus	protection)
comparing,	110–11,	469–70
composition	of,	101–2
compressing,	193–94	(see	also	compression,	disk)
displaying	status	of,	111–14
duplicating,	100–101,	108–10,	471–72
formatting,	46–48,	104–8	(see	also	Format	command;	Select	command)
formatting,	during	backup,	233
handling,	99–100
information	storage	on,	101–4
system	(see	system	disks)
unformatting,	217–18
volume	labels,	104,	106,	114–15

For	batch	command,	363–66,	435,	504–5
foreign	languages
character	sets	(see	code	pages)
country-specific	information,	547–48
country-specific	system	floppy	disks,	564–65
date,	time,	currency,	and	decimal	formats,	454–58,	547–48
keyboard	layouts,	135–39,	520–23

Format	command.	See	also	Unformat	command
Backup	and,	233
command	reference,	505–7
compressed	floppy	disks	and,	194
floppy	disks,	46–48,	104–8
hard	disks,	106–7,	407
parameters,	105–7
reformatting	or	quick	formatting,	216

formatting	disks.	See	Format	command;	Select	command
fragmented	files,	112,	199–201
full	backups,	226–27
function	keys.	See	also	individual	function	key	names
Doskey	use	of,	36
Dosshell	use	of,	14,	26
Edit	Survival	Guide	use	of,	284
end-of-file	character,	48,	133

	

javascript:Next(0)
javascript:Next(1)

Index

G
Goto	batch	command,	342–46,	435,	508
graftable.	See	Load	Graphics	Table	command	(graftable)
graphics
enabling	display	of,	508–9
enabling	printing	of,	134–35,	509–11

Graphics	command,	134–35,	509–11
graphics	mode,	243
grayed	characters,	249
greater-than	symbol	(>),	54,	299,	307–8,	310,	515

		 			
	

javascript:Next(0)
javascript:Next(1)

Index

H
hard	disks.	See	also	disks
backing	up	(see	backing	up	files	and	directories)
capacities,	7,	27,	174
checking,	for	viruses,	219–21	(see	also	virus	protection)
compressing,	191–93	(see	also	compression,	disk)
configuring,	501–2
defragmenting	files,	199–201,	459–61
directory	structure	(see	directories;	files;	tree-structured	file	systems)
formatting,	106–7,	407	(see	also	Format	command)
installing	applications,	175–78
installing	or	upgrading	MS-DOS	(see	versions,	MS-DOS)
installing	selected	files,	184–90
maintenance	tips,	202–3
management	tips,	174,	201–3
MS-DOS	files	on,	201–2
partitions	(see	partitions,	hard	disk)
rebuilding,	218	(see	also	Unformat	command)
restoring	(see	restoring	files	and	directories)
saving	recovery	information	for,	216,	531–33,	583–85
speeding	access	(see	disk	buffers;	disk	caches;	Fastopen	command)

hardware,	6.	See	also	devices;	disks;	display	adapters;	keyboards;	printers
Help	command,	71–73,	512–13
help	features
Dosshell,	246–47
Dosshell	program	items,	269
Edit,	281–85
MSbackup,	226
MS-DOS	commands,	71–73,	512–13

Hewlett-Packard	Laserjet	Plus	printer,	23,	35
hexadecimal	format,	253
hidden	attributes,	178,	181–83,	187
high	memory	area	(HMA),	122.	See	also	extended	memory	(XMS)
disk	compression	in,	191,	480–81,	486
MS-DOS	in,	380–81,	472–73

HIMEM.SYS	device	driver,	379,	381,	387,	513–14
history,	command.	See	Doskey	command
HLP	extension,	67

	

javascript:Next(0)
javascript:Next(1)

Index

I
IBMBIO.COM	and	IBMDOS.COM	files,	239,	576
IBM-compatible	computers,	9
IBM-compatible	keyboards,	17,	30,	36
IBM	printers,	134–35
IBM	PS/2	computers,	589
If	batch	command,	340–42,	435,	514–15
Include	configuration	command,	515
incremental	backups,	227
index,	Dosshell	help,	247
initializing	disks.	See	Format	command;	Select	command
input,	standard,	300,	515–16
input	and	output	redirection
appending	redirected	output	to	files,	308
command	input,	300
command	output,	299
command	output	to	parallel	printer,	54,	170,	307–8
command	reference,	515–16
filter	commands	and,	300–302,	307–8,	310	(see	also	filter	commands)
parallel	printer	output	to	serial	printers,	130–31,	540
piping	and,	53–54,	308–10
redirecting	both	input	and	output,	307–8

inserting	vs.	overstriking	text,	293
Install	configuration	command,	397,	516
installing	or	upgrading	MS-DOS.	See	versions,	MS-DOS
InterInk	command,	517
INTERLNK.EXE	device	driver,	390–91,	517–18
internal	commands,	42–43
international	support.	See	foreign	languages
Intersvr	command,	518
IO.SYS	file,	236,	576

	

javascript:Next(0)
javascript:Next(1)

Index

J–K
Join	command,	519
Keyboard	command	(keyb),	135–39,	520–22
Keyboard	command	(keybxx),	522–23
keyboards.	See	also	consoles;	keys
blocking	functions	of	enhanced,	576
changing	layouts	of,	135–39,	520–23
control	program	(see	ANSI.SYS	device	driver)
country-specific	system	floppy	disks	and,	564–65
device	name,	48,	66,	119–20
Dosshell	use	of,	245–46,	250,	251
Edit	use	of,	279–81
PC-compatible,	17,	30,	36
printing	from,	133
repeat	rate,	123–24,	536–37

KEYBOARD.SYS	file,	138
keybxx.	See	Keyboard	command	(keybxx)
keys.	See	also	characters;	keyboards
Alternate,	32,	246
arrow	(see	arrow	keys)
Backspace,	18,	20–21
Break,	32
Control,	31,	33–35,	251
dead,	137–38
Delete,	32
Doskey	use	of,	35–38,	311
Dosshell	use	of,	250,	263–64,	270
Edit	use	of,	290–91
Enter,	17
Escape,	31,	284
function	(see	function	keys)
Num	Lock,	31–32,	548
Pause,	32,	33
screen-printing,	22–23,	33,	127
Shift,	31,	251,	281
Spacebar,	251
special,	17–18,	20–21,	30–38
Tab,	245
Up	Arrow,	17,	18,	20,	37

	

javascript:Next(0)
javascript:Next(1)

Index

L
Label	command,	114–15,	523–24
labels,	batch	file,	342–43,	508
labels,	disk	volume
changing	or	deleting,	114–15,	523–24
displaying,	115,	586
formatting	and,	47,	104,	106

language,	Basic,	262,	555
languages,	foreign.	See	foreign	languages
laser	printers,	23,	35,	126
Lastdrive	configuration	command,	391–92,	524
less-than	symbol	(<),	52,	300,	515
lh.	See	Loadhigh	command	(lh)
LIM	EMS	(Lotus-Intel-Microsoft	Expanded	Memory	Specification),	589.	See	also	expanded
memory	(EMS)
line	editor,	489–95
line	spaces,	displaying,	with	batch	files,	347–50,	357
Loadfix	command,	524
Load	Graphics	Table	command	(graftabl),	508–9
Loadhigh	command	(lh),	380,	382,	387–88,	525–26
loading	MS-DOS.	See	starting	MS-DOS
look-ahead	buffers,	391,	437–38
LPT1-LPT3	device	names,	120.	See	also	parallel	ports

	

javascript:Next(0)
javascript:Next(1)

Index

M
macros.	See	Doskey	command
maintenance,	hard	disk,	202–3
Make	Directory	command	(md,	mkdir),	144–45,	150–53,	526–27
margins,	Edit,	286–87
markers,	directory,	145,	153–58
md.	See	Make	Directory	command	(md,	mkdir)
mem.	See	Memory	command	(mem)
MemMaker	command,	382–83,	529
memory
adapter,	122
balancing,	during	MS-DOS	installation,	405–6
conventional,	122,	378
disk	buffers,	391,	437–38
disk	caches,	383–84,	570–73
disk	compression	and,	191,	480–81,	486
displaying	usage	of,	121–23,	527–28
expanded	(see	expanded	memory	(EMS))
extended	(see	extended	memory	(XMS))
loading	programs	above	first	64	KB	of,	524
managers,	378–81,	495–97,	513–14,	589
optimizing	use	of,	382–83,	529
RAM	disks,	384–87
reserved	or	upper	(see	reserved	memory)
reserving,	for	temporary	program	use,	574
running	MS-DOS	in	high	memory	area,	380–81,	472–73
types	of,	122,	378–81

Memory	command	(mem),	121–23,	381,	527–28
memory-resident	programs,	263,	388,	516,	525–26
Menucolor	configuration	command,	529–30
Menudefault	configuration	command,	530
Menuitem	configuration	command,	530–31
menu	systems,	9
of	configurations,	13,	393–94,	529–31,	574
Dosshell	(see	Program	List,	Dosshell)
interactive	batch	files	as,	368–70

messages
displaying,	with	Echo,	338–39,	347–50,	357,	435,	486–87
displaying,	with	Pause,	339,	435,	549
displaying,	with	Remark,	319–20,	348,	436,	558

Microsoft	Anti-Virus	command	(msav).	See	also	Vsafe	command
checking	floppy	disks,	221
checking	for	unknown	viruses,	221–22
checking	hard	disks,	219–21
command	line	parameters,	223
command	reference,	545–46
updating	software	using,	222–23

Microsoft	Backup.	See	MSbackup	command
Microsoft	CD	Extension.	See	MS	cd	extension	command	(mscdex)
Microsoft	Diagnostics	command	(msd),	546–47
Microsoft	MS-DOS
commands	(see	commands,	MS-DOS)
configuration	(see	CONFIG.SYS	configuration	file)
devices	(see	devices)
disk	management	(see	disks;	floppy	disks;	hard	disks)
as	disk	operating	system,	6–10
DOS	subdirectory	for,	27–28,	175,	201–2,	408–11
editors	(see	Edit	command;	Edlin	command)
file	management	(see	directories;	files;	tree-structured	file	systems)
installing	or	upgrading	(see	versions,	MS-DOS)
international	support	(see	foreign	languages)
memory	management	(see	memory)
memory-resident	programs,	263,	388,	516,	525–26
optimization	(see	optimization)
QBasic,	262,	555
root	directory	files,	202,	411
running,	in	high	memory,	380–81,	472–73
shell	(see	Dosshell	command)
starting	(see	starting	MS-DOS)
system	prompt	(see	system	prompt)
temporary	files,	54,	310
virus	protection	(see	virus	protection)

Microsoft	Windows
Check	Disk	and,	168,	441
Dosshell	and,	242
MSbackup	for,	232
opening	screen,	13
starting	MS-DOS	without,	15
Undelete	for,	206

WINA20.386	file,	576
minus	sign	(-),	244,	261
Mirror	command,	212,	216,	531–33,	584
MIRROR.FIL	file,	217,	531–32
mkdir.	See	Make	Directory	command	(md,	mkdir)
Mode	command,	119
ANSI.SYS	and,	125,	332–33,	358
changing	display	characteristics,	124–25,	534–35
changing	display	columns	or	lines,	535–36
changing	keyboard	repeat	rate,	123–24,	536–37
changing	parallel	printer	width	and	spacing,	125–28,	328,	539–40
command	reference,	534–43
connecting	serial	printers,	130–31,	540
displaying	and	changing	code-page	status,	543
displaying	device	status,	131–32,	540–41
preparing	code	pages,	541–42
restoring	code	pages,	543
selecting	code	pages,	542
setting	communications	parameters,	128–30,	537–38

More	filter	command,	49,	53–54,	308,	543–44
mounting	drives,	194–96
mouse
Dosshell	use	of,	245–46,	250,	251,	252,	254
Edit	use	of,	279–81
MSbackup	use	of,	228,	229

Move	command,	83,	158–60,	201,	346,	544–45
moving	files.	See	also	copying	files
with	batch	files,	360–61
with	Dosshell,	252
with	Move,	83,	158–59,	201,	544–45

msav.	See	Microsoft	Anti-Virus	command	(msav)
MSbackup	command
backing	up	files,	230–31
backup	types,	226–27
command	reference,	546
configuration,	224–26
online	help,	226
restoring	files,	231–32
screen	elements,	227–28
selecting	files,	228–30

MS	cd	extension	command	(mscdex),	546

msd.	See	Microsoft	Diagnostics	command	(msd)
MS-DOS.	See	Microsoft	MS-DOS
MSDOS.SYS	file,	239,	576

	

javascript:Next(0)
javascript:Next(1)

Index

N
names,	device,	66,	119–20
names,	directory,	159–60
names,	disk	volume.	See	labels,	disk	volume
names,	file.	See	also	paths
changing,	86–87,	559–60
of	data	files,	202
special,	66–67,	202
valid,	26,	43,	65–67

national	language	support,	547–48.	See	also	foreign	languages
National	Language	Support	Function	command	(nlsfunc),	547–48
networks,	120,	390–91,	517–18,	568
nlsfunc.	See	National	Language	Support	Function	command	(nlsfunc)
Numlock	configuration	command,	548
Num	Lock	key,	31–32,	548

	

javascript:Next(0)
javascript:Next(1)

Index

O
online	help,	71,	226,	282,	512.	See	also	help	features
operating	systems.	See	Microsoft	MS-DOS;	Microsoft	Windows
optimization
disk	buffers,	391,	437–38
disk	caches,	383–84,	570–73
disk	compression	(see	compression,	disk)
file	and	directory	access,	396–97,	498–99
file	defragmentation,	199–201,	459–61
memory,	382–83,	529	(see	also	memory)
RAM	disks,	384–87,	555–57,	585

Options	menu
Dosshell,	254–57,	263–64
Edit,	489

output.	See	also	input	and	output	redirection;	printing;	screens
command,	52
standard,	299,	515–16

overstriking	vs.	inserting	text,	293
overwriting	files
with	Copy,	79,	82,	451,	454
with	Move,	158–59,	545
with	Replace,	186

OVL	extension,	67

	

javascript:Next(0)
javascript:Next(1)

Index

P
parallel	ports,	120.	See	also	printers
redirecting	output	to	serial	ports,	130–31,	540

parameters
command,	28,	44
command,	Dosshell	program	item,	269–70
communications,	128–30,	537–38
replaceable	(see	replaceable	parameters)
shifting,	in	batch	files,	362–63,	569

parent	directory	(..),	145,	153–58
parity,	128–29
partitions,	hard	disk
configuring,	501–2
rebuilding,	218,	583–85
saving	recovery	information,	212,	216,	531–33

PARTNSAV.FIL	file,	584
passwords,	Dosshell,	267
paste,	cut	and,	290–91
Path	command,	165–66,	171,	324–26,	548–49
paths
AUTOEXEC.BAT	and,	324–26,	408,	410
command	search,	165–66,	548–49
data	search,	171–72,	428–29
directory	names	and,	145–47,	149
Dosshell	program	items,	270

Pause	batch	command,	339,	435,	549
Pause	key,	32,	33
pause	messages,	Dosshell	program	item,	270
PC-compatible	keyboards,	17,	30,	36
PCTRACKR.DEL	file,	208,	212,	532,	582
percent	sign	(%)	as	batch	replaceable	parameter,	320–21
percent	signs	(%%)	as	batch	replaceable	parameter,	364–66
period	(.)	as	date	separator,	20
permanent	commands,	42–43
phone-list	example,	300–312,	352–57

piping,	53–54,	308–10,	515–16
plus	sign	(+),	82,	244,	261
pop-up	programs,	263,	388,	516,	525–26
portable	computers,	configuring,	390–91,	517–18,	549–50
ports.	See	parallel	ports;	serial	ports
Power	command,	549–50
POWER.EXE	device	driver,	390–91,	550
Print	command,	50,	91–95,	551–53
printers.	See	also	printing
changing	width	and	spacing	for	parallel,	125–28,	328,	539–40
connecting	serial,	130–31,	540
copying	files	to,	81
copying	from	keyboard	to,	133
device	names,	50,	54,	92,	120
graphics	support	for,	134–35,	510
laser,	23,	35,	126
redirecting	command	output	to,	170

printing.	See	also	printers
command	output,	54,	170,	307–8
graphics,	134–35,	509–11
from	keyboards,	133
screens,	22–23,	33,	34–35,	127
text	files,	in	queues,	50,	91–95,	551–53
text	files,	with	batch	files,	327–28
text	files,	with	Copy,	50,	81
text	files,	with	Edit,	287

print	queue,	91.	See	also	Print	command
Print	Screen	key	(PrtSc,	Print	Scrn),	23,	33,	127
PRN	device	name,	50,	54,	92,	120.	See	also	parallel	ports
program	files,	6,	42.	See	also	commands,	MS-DOS;	files;	Program	List,	Dosshell
associating	data	files	with,	251
converting	EXE	programs	to	COM,	497
displaying	memory	use	by,	121–23,	381
expanding	compressed	MS-DOS,	498
installing	applications,	175–78
installing	MS-DOS,	564,	566–67
loading,	above	first	64	KB	of	memory,	524
loading,	into	reserved	memory,	388,	516,	525–26
MS-DOS	as,	6
reserving	memory	for	temporary	use	by,	574
search	paths	(see	paths)

starting,	from	Dosshell,	262–63
switching	between,	263–64
updating,	with	Microsoft	Anti-Virus,	222–23	(see	also	Microsoft	Anti-Virus	command
(msav))

program	groups,	262
adding,	268–69
deleting,	274–75
Disk	Utilities,	272–74
selecting,	264–65

program	items,	262
adding,	265–66
changing,	266–67
controlling	pause	message,	270
deleting,	267–68
designing	dialog	boxes,	271
specifying	parameters,	269–70
specifying	paths,	270
specifying	shortcut	keys,	270
testing,	271–72

Program	List,	Dosshell,	243
adding	program	groups,	268–69
adding	program	items,	265–66
changing	program	items,	266–67
controlling	pause	messages,	270
deleting	program	groups,	274–75
deleting	program	items,	267–68
designing	dialog	boxes,	271
Disk	Utilities	Program	Group,	272–74
File	menu,	265–68
selecting	program	group,	264–65
specifying	command	parameters,	269–70
specifying	paths,	270
specifying	shortcut	keys,	270
starting	programs,	262–63
switching	programs,	263–64
testing	program	items,	271–72

prompt,	system.	See	system	prompt
Prompt	command,	39,	153,	324–26,	395–96,	553–54
properties,	Dosshell	program	item,	266–67
PrtSc	key,	23,	33,	127
PS/2	computers,	589

	

javascript:Next(0)
javascript:Next(1)

Index

Q
QBasic	command,	262,	555
question	mark	character	(?),	45,	70-71,	85-86
queue,	print,	91.	See	also	Print	commmand
quick	formatting	disks,	106,	216,	507

		 			
	

javascript:Next(0)
javascript:Next(1)

Index

R
RAM	(random	access	memory),	378
RAM	disks,	384–87,	555–57,	585
RAMDRIVE.SYS	device	driver,	384–87,	555–57,	585
rd.	See	Remove	Directory	command	(rd,	rmdir)
read-only	attributes,	84,	178,	183
rebooting	MS-DOS,	32,	33,	38
Recover	command,	557–58
recovering	deleted	files.	See	undeleting	files
redirection.	See	input	and	output	redirection
reformatting	disks,	106,	216,	507
Remark	batch	command	(rem),	319–20,	348,	436,	558
Remove	Directory	command	(rd,	rmdir),	160–62,	559
Rename	command	(ren),	86–87,	559–60
renaming	directories,	159–60
replaceable	parameters
batch	files,	320–21,	364–66
Doskey	macros,	331–33

Replace	command,	81,	184–86,	409,	560–61
rerouting.	See	input	and	output	redirection
reserved	memory,	122,	378
enabling,	387,	495–97
loading	device	drivers	into,	388–90,	465–66
loading	programs	into,	388,	525–26
managing,	380–81,	387–90

resizing	Help	windows,	284–85
restarting	MS-DOS,	32,	33,	38
Restore	command,	237–39,	561–63.	See	also	Backup	command
restoring	files	and	directories.	See	also	backing	up	files	and	directories
with	MSbackup,	231–32,	546
with	Restore,	237–39,	561–63

reverse	slash	character	(\),	31
rmdir.	See	Remove	Directory	command	(rd,	rmdir)

root	directory,	142,	149
marker,	145,	149
required	MS-DOS	files,	202,	411

	

javascript:Next(0)
javascript:Next(1)

Index

S
ScanDisk	command,	174,	197–98,	563–64
Check	Disk	and,	112,	113,	441	(see	also	Check	Disk	command	(chkdsk))
DriveSpace	and,	192

screens.	See	also	consoles;	display	adapters
changing,	in	Dosshell,	248
changing,	in	Edit,	294–95
clearing,	23,	123,	348,	445
control	program	(see	ANSI.SYS	device	driver)
device	name,	48,	66,	119–20
displaying	graphics	characters,	508–9
pausing	displays,	49,	53–54,	308,	543–44
printing,	22–23,	33,	34–35,	127
printing	graphics	images,	134–35,	509–11

scroll	bar,	250
searching	text	for	characters,	54–55,	304–7,	352–57,	371–72,	503–4
Search	menu,	Edit,	488–89
search	paths.	See	paths
sectors,	102–3,	112
Select	command,	405–6,	564–65
serial	numbers,	volume,	47,	104,	115
serial	ports,	81,	119
device	names,	120
displaying	status	of,	131–32
redirecting	parallel	port	output	to,	130–31,	540
setting	communications	parameters,	128–30,	537–38

serial	printers,	130–31,	540
server-client	connections,	517–18
Set	command,	468,	566
Setup	command,	404–5,	566–67,	578
SETVER.EXE	device	driver,	567
Set	Version	command	(setver),	567–68
Share	command,	568
Shell	configuration	command,	568
shell	programs,	14–16,	242.	See	also	Dosshell	command

Shift	batch	command,	362–63,	436,	569
Shift-Del	keys,	291
Shift-Enter	keys,	264
Shift-F8	keys,	251
Shift-F9	keys,	245
Shift-Ins	keys,	290–91
Shift	keys,	31,	251,	281
Shift-Print	Screen	keys,	23,	33,	35,	127,	134–35
Shift-Tab	keys,	245
shortcut	keys
Dosshell,	250,	270
Edit,	290–91

slash	(/)	as	date	separator,	20
Smartdrv	command,	383–84,	570–72
SMARTDRV.EXE	device	driver,	572
SMARTDRV.SYS	device	driver,	383–84,	572–73
software,	6,	175–78,	222–23.	See	also	program	files
Sort	filter	command,	52–53,	302–4,	573–74
sorting
directory	displays,	76–77
directory	displays	in	Dosshell,	255–56
directory	displays	with	batch	files,	372–74
text	lines,	52–53,	302–4,	573–74

Spacebar	key,	251
special	keys,	17–18,	20–21,	30–38.	See	also	keys
spooling.	See	Print	command
Stacks	configuration	command,	574
standard	input,	300,	515–16
standard	output,	299,	515–16
starting	MS-DOS.	See	also	system	prompt
with	AUTOEXEC.BAT,	323–27
with	date	and	time	requests,	15–16
with	(or	without)	Dosshell,	14–15	(see	also	Dosshell	command)
from	floppy	disk,	12
in	high	memory,	380–81,	472–73
with	menu	of	configurations,	13,	393–94,	529–31,	574
restarting,	32,	33,	38

with	shell	programs,	16
without	Windows,	15

Startup	Menu,	13,	393–94,	529–31,	574
stop	bits,	128–29
strings,	54
subdirectories,	27–28,	142,	149.	See	also	directories
Submenu	configuration	command,	574
Substitute	command	(subst),	397–98,	574–75
Supplemental	Disk,	242,	475,	489,	497,	519,	531
Survival	Guide,	Edit,	281–85
Switches	configuration	command,	576
syntax,	command,	73
sys.	See	System	command	(sys)
SYS	extension,	67
system	attributes,	178,	187
system	clock.	See	date;	time
System	command	(sys),	407–8,	576–77
system	configuration.	See	CONFIG.SYS	configuration	file
system	date.	See	date
system	disks
copying	system	files,	407–8,	576–77
country-specific	floppy	disks,	564–65
formatting	(see	Format	command;	Select	command)
starting	MS-DOS	from,	12,	388

system	files,	407–8,	576–77
system	memory.	See	memory
system	messages.	See	messages
system	programs,	6
system	prompt
accessing,	from	Dosshell,	245,	262–63
AUTOEXEC.BAT	and,	324–26
changing,	39,	153,	395–96,	553–54
current	directory	as,	146,	153,	175
current	drive	as,	16

system	setup.	See	starting	MS-DOS;	versions,	MS-DOS
system	shutdown,	23

system	time.	See	time

	

javascript:Next(0)
javascript:Next(1)

Index

T
Tab	key,	245
tape	drives,	481
Task	Swapper,	Dosshell,	263–64
telephone	file	example,	300–312,	352–57
temporary	commands,	42–43
temporary	files,	MS-DOS,	54,	310
terminate-and-stay-resident	(TSR)	programs,	263,	388,	516,	525–26
text	files,	42.	See	also	batch	files;	files
appending	redirected	output	to,	308
combining,	82–83,	453–54
copying	(see	copying	files)
creating,	with	Copy,	48–49,	67–68
creating,	with	Edit	(see	Edit	command)
creating,	with	Edlin,	279,	489–95
deleting	(see	deleting	files)
printing,	in	queues,	50,	91–95,	551–53
printing,	with	batch	files,	327–28
printing,	with	Copy,	50,	81
searching	for	characters	in,	54–55,	304–7,	352–57,	371–72,	503–4
sorting	lines,	52–53,	573–74
viewing	contents	of,	with	batch	files,	370–71
viewing	contents	of,	with	Dosshell,	253
viewing	contents	of,	with	Type,	49–50,	77–78,	580

text	mode,	14,	243
time
changing,	21–22,	577–78
formats,	454–58,	547–48
starting	MS-DOS	with,	15–16

Time	command,	21–22,	577–78
tracks,	102–3
Tree	command,	166–70,	578–80
Tree	menu,	Dosshell,	261
tree-structured	file	systems.	See	also	directories
adding	levels	to,	150–60
creating,	143–49
defining	directories,	142–43

displaying	structure	of,	166–70,	578–80
managing,	160–72

TSR	(terminate	and	stay	resident)	programs,	263,	388,	516,	525–26
Type	command,	49–50,	77–78,	580

	

javascript:Next(0)
javascript:Next(1)

Index

U
UMBs	(upper	memory	blocks).	See	reserved	memory
uncompressing	disks,	196-97.	See	also	compression,	disk
unconditional	format,	106,	507
Undelete	command,	71,	206-15,	580-83
undeleting	files,	206-15.	See	also	deleting	files
command	reference,	580-83
delete	tracking,	211-15,	531-33
levels	of	protection,	207-11

Unformat	command,	106,	217-18,	583-85.	See	also	Format	command
Uninstall	command,	405
unmounting	disk	drives,	194-96
Up	Arrow	key,	17,	18,	20,	37.	See	also	arrow	keys
updating	software	using	Microsoft	Anti-Virus,	222-23
upgrading	MS-DOS.	See	versions,	MS-DOS
upper	memory	blocks	(UMBs).	See	reserved	memory
user-defined	commands.	See	batch	files;	Doskey	command

	

javascript:Next(0)
javascript:Next(1)

Index

V
variables,	environment,	566
VDISK.SYS	device	driver,	384–87,	555–57,	585
ver.	See	Version	command	(ver)
Verify	command,	585
Version	command	(ver),	18–19,	394,	585–86
versions,	MS-DOS,	8
backup	files,	233,	434
checking	disk	condition,	112,	113
choosing	startup	commands,	392–93
directory	listings,	49
disk	compression,	191
displaying	version	numbers,	18–19,	394,	585
Doskey,	329
Dosshell,	242
DOS	subdirectory,	28
editors,	279
emulating	earlier,	567,	567–68
floppy	disk	duplication,	109
hard	disk	management,	174
help	features,	71
installation	commands,	404,	404–6,	564,	566–67
installing	or	upgrading	to	version	3,	407–11
installing	or	upgrading	to	version	4,	405–6
installing	or	upgrading	to	version	5	or	later,	404–5
memory	management	features,	379
overwriting	files	(see	overwriting	files)
time	formats,	21
Xcopy	and	file	attributes,	187

Video	Graphics	Array	(VGA),	124–25
View	menu,	Dosshell,	257–61
virtual	disks.	See	RAM	disks
virus	protection,	218–24
checking	floppy	disks,	221
checking	for	unknown	viruses,	221–22
checking	hard	disks,	219–21
command	line	parameters,	223
constant	protection	with	Vsafe,	223–24,	586–87

Microsoft	Anti-Virus	command	reference,	545–46
updating	software,	222–23

Volume	command	(vol),	115,	586
volume	file,	compressed,	193
volume	labels.	See	labels,	disk	volume
volume	serial	numbers,	47,	104,	115
Vsafe	command,	223–24,	586–87.	See	also	Microsoft	Anti-Virus	command	(msav)

	

javascript:Next(0)
javascript:Next(1)

Index

W
wildcard	characters,	45,	69–71,	344–45
WINA20.386	file,	576
windows
parts	of	Dosshell,	243–45
sizing	Edit	help,	284–85
switching	Edit,	284

Windows	(operating	system).	See	Microsoft	Windows
word	processing.	See	Edit	command

		 			
	

javascript:Next(0)
javascript:Next(1)

Index

X
Xcopy	command,	81,	176–77,	186–90,	588–89
XMA2	EMS.SYS	device	driver,	589
XMAEM.SYS	device	driver,	589

		 			
	

javascript:Next(0)
javascript:Next(1)

List	of	Figures

Chapter	2:	Starting	MS-DOS
Figure	2-1:	The	opening	(Program	Manager)	screen	of	Microsoft	Windows.

Figure	2-2:	The	Backspace,	Enter,	and	Up	arrow	keys	on	the	early	PC-compatible
keyboard.

Figure	2-3:	The	Backspace,	Enter,	and	Up	arrow	keys	on	the	enhanced	PC-compatible
keyboard.

Chapter	3:	Getting	Your	Bearings
Figure	3-1:	A	sample	directory	display	of	version	6.0	MS-DOS	files.

Figure	3-2:	A	sample	directory	entry.

Figure	3-3:	Special	keys	on	the	early	IBM	PC-compatible	keyboard.

Figure	3-4:	Special	keys	on	the	enhanced	IBM	PC-compatible	keyboard.

Figure	3-5:	Control	key	combinations.

Figure	3-6:	Keys	on	the	early	PC-compatible	keyboards	that	have	special	meaning	to
Doskey.

Figure	3-7:	Keys	on	the	enhanced	PC-compatible	keyboard	that	have	special	meaning	to
Doskey.

Chapter	5:	Managing	Your	Files
Figure	5-1:	Some	valid	and	invalid	file	names.

Figure	5-2:	Some	special	MS-DOS	file	name	extensions.

Chapter	6:	Managing	Your	Floppy	Disks
Figure	6-1:	A	5.25-inch	floppy	disk.

Figure	6-2:	A	3.5-inch	floppy	disk.

Figure	6-3:	Tracks	and	sectors	on	a	floppy	disk.

Figure	6-4:	Storage	capacity	of	different	floppy	disks.

Figure	6-5:	Ways	to	type	<size>	as	part	of	the	/F:<size>	parameter	of	the	Format
command	in	versions	4	and	later.

Chapter	7:	Managing	Your	Devices
Figure	7-1:	MS-DOS	device	names.

Figure	7-2:	Common	displays	and	adapters.

Figure	7-3:	Serial	communications	parameters.

Figure	7-4:	Printers	supported	by	the	Graphics	command.

Chapter	8:	A	Tree	of	Files
Figure	8-1:	Two-level	file	system.

Figure	8-2:	Three-level	file	system.

Figure	8-3:	Two-department	file	structure.

Chapter	9:	Managing	Your	Hard	Disk
Figure	9-1:	Subdirectories	and	files	for	hard	disk	examples.

Figure	9-2:	DriveSpace's	main	screen.

Chapter	11:	The	MS-DOS	Shell
Figure	11-1:	Parts	of	the	MS-DOS	Shell	window	in	versions	5	and	later.

Figure	11-2:	Basic	keyboard	and	mouse	techniques.

Chapter	12:	Creating	and	Editing	Files	of	Text
Figure	12-1:	Edit's	cursor-movement	keys.

Chapter	13:	Taking	Control	of	Your	System
Figure	13-1:	Telephone	and	business-card	list.

Figure	13-2:	Column	numbers	of	items	in	the	telephone	list.

Figure	13-3:	The	Doskey	editing	keys.	A	number	of	function	keys	are	also	available	for
editing;	see	the	online	Help	Doskey.

Chapter	14:	Creating	Your	Own	Commands
Figure	14-1:	Replaceable	parameters	in	a	batch	file.

Chapter	16:	Creating	More	Smart	Commands
Figure	16-1:	Chaining	batch	files.

Appendix	C:	MS-DOS	Command	Reference
Figure	C-1:	Valid	country	codes	and	code	pages	for	different	versions	of	MS-DOS.

Figure	C-2:	Device	drivers	shipped	with	MS-DOS

Figure	C-3:	Doskey	special	character	combinations.

javascript:Next(0)

Running	MS-DOS	Version	6.22,	20th	Anniversary	Edition
by	Van	Wolverton ISBN:0735618127

Microsoft	Press	©	2003	(612	pages)

The	classic	reference	to	the	classic	operating	system!

Table	of	Contents Back	Cover Comments

Table	of	Contents
Running	MS-DOS	Version	6.22,	20th
Anniversary	Edition

Preface	to	the	20th	Anniversary	Edition

Introduction

Part	I	-	Getting	to	Know	MS-DOS
Chapter	1 -What	is	MS-DOS?
Chapter	2 - Starting	MS-DOS
Chapter	3 - Getting	Your	Bearings

Chapter	4 - A	Look	at	Files	and	FloppyDisks
Part	II	-	Learning	to	Use	MS-DOS
Chapter	5 - Managing	Your	Files
Chapter	6 - Managing	Your	Floppy	Disks
Chapter	7 - Managing	Your	Devices
Chapter	8 - A	Tree	of	Files
Chapter	9 - Managing	Your	Hard	Disk
Chapter	10 - Protecting	Your	Disks	and	Files
Chapter	11 - The	MS-DOS	Shell

Chapter	12 - Creating	and	Editing	Files	ofText
Chapter	13 - Taking	Control	of	Your	System
Chapter	14 - Creating	Your	Own	Commands
Chapter	15 - Creating	Smart	Commands

javascript:Jump(0)
javascript:Jump(1)
javascript:Jump(2)
javascript:Jump(3)
javascript:Jump(4)
javascript:Jump(5)
javascript:Jump(6)
javascript:Jump(7)
javascript:Jump(8)
javascript:Jump(9)
javascript:Jump(10)
javascript:Jump(11)
javascript:Jump(12)
javascript:Jump(13)
javascript:Jump(14)
javascript:Jump(15)
javascript:Jump(16)
javascript:Jump(17)
javascript:Jump(18)
javascript:Jump(19)

Chapter	16 - Creating	More	SmartCommands
Chapter	17 - Tailoring	Your	System
Part	III	-	Appendixes
Appendix	A - Installing	MS-DOS
Appendix	B - Glossary
Appendix	C -MS-DOS	Command	Reference
Index

List	of	Figures

	

javascript:Jump(20)
javascript:Jump(21)
javascript:Jump(22)
javascript:Jump(23)
javascript:Jump(24)
javascript:Jump(25)
javascript:Jump(26)
javascript:Jump(27)

	Running MS-DOS Version 6.22, 20th Anniversary Edition
	Table of Content
	Back Cover
	Comments
	Preface to the 20th Anniversary Edition
	Introduction
	About the Examples

	Part I: Getting to Know MS-DOS
	Chapter 1: What is MS-DOS?
	Hardware Makes It Possible
	Software Makes It Happen
	MS-DOS Is a Disk Operating System
	What Can You Do with MS-DOS?
	Chapter Summary

	Chapter 2: Starting MS-DOS
	The System Prompt
	Entering MS-DOS Commands
	Getting Started
	Keeping Track of the Date and Time
	Changing the Current Drive
	Printing What's on the Screen
	Clearing the Screen
	Turning the System Off
	Chapter Summary

	Chapter 3: Getting Your Bearings
	The Directory
	Displaying a Directory
	Some Important Keys
	Restarting the System
	A Short Diversion
	Chapter Summary

	Chapter 4: A Look at Files and Floppy Disks
	How Files Are Named
	Preparing for the Examples
	Qualifying a Command
	Displaying Specific Directory Entries
	Preparing a Floppy Disk for Use
	Creating a Text File
	Some Advanced Features
	Chapter Summary

	Part II: Learning to Use MS-DOS
	Chapter 5: Managing Your Files
	File Names and Extensions
	Preparing for the Examples
	Wildcard Characters
	Help When You Need It
	Displaying Directory Entries
	Displaying a File
	Making Copies of Files
	Sending Files to Devices
	Combining Files
	Moving Files
	Deleting Files
	Changing File Names
	Comparing Files
	Printing Files

	Chapter 6: Managing Your Floppy Disks
	Handling Floppy Disks
	Backing Up Your Floppy Disks
	How Information Is Stored on a Floppy Disk
	Preparing for the Examples
	Preparing a Floppy Disk for Use
	Copying a Complete Floppy Disk
	Comparing Two Floppy Disks
	Checking the Condition of a Disk
	Assigning or Changing a Disk's Volume Label
	Displaying a Disk's Volume Label

	Chapter 7: Managing Your Devices
	Device Names
	Preparing for the Examples
	Checking System Memory with the Mem Command
	Clearing the Screen
	Fine-Tuning the Keyboard
	Controlling the Display
	Controlling the Printer Width and Spacing
	Controlling the Serial Communications Port
	Connecting a Serial Printer
	Finding Out About Your System
	Copying from a Device to a File or Another Device
	Printing Graphics Images
	Changing the Keyboard Layout

	Chapter 8: A Tree of Files
	Defining a Subdirectory
	Preparing for the Examples
	Creating a Multilevel File Structure
	Adding More Levels to Your File Structure
	Managing Your Subdirectories
	Chapter Summary

	Chapter 9: Managing Your Hard Disk
	Putting Application Programs on Your Hard Disk
	Preparing for the Examples
	Changing the Attributes of a File or a Directory
	Copying Selected Files
	Stretching Your Hard Disk
	Storing Files Efficiently on Disk
	MS-DOS and Your Hard Disk
	Chapter Summary

	Chapter 10: Protecting Your Disks and Files
	Recovering Deleted Files
	Reformatting and Unformatting Disks
	Guarding Against Virus Programs
	Developing a Backup Procedure
	Backing Up and Restoring Files with MSbackup
	Backing Up Files with the Backup Command
	Restoring Files to the Hard Disk with the Restore Command

	Chapter 11: The MS-DOS Shell
	Starting the Shell
	Help Is a Keystroke Away
	The File List
	The Program List

	Chapter 12: Creating and Editing Files of Text
	Using the Keyboard and the Mouse
	Starting Edit
	Help
	Entering Lines
	Adding Text to a File
	Where's the Margin?
	Printing a File
	Saving a File
	Deleting Text
	Ending an Editing Session
	Editing an Existing Text File
	Searching for a Group of Characters
	Replacing One Group of Characters with Another
	Inserting and Overstriking Text
	Copying from Another File
	Changing the Screen Display
	Chapter Summary

	Chapter 13: Taking Control of Your System
	Redirecting Command Output
	Redirecting Command Input
	Filter Commands
	Preparing for the Examples
	The Sort Filter Command
	The Find Filter Command
	More on Redirecting
	Connecting Commands with a Pipe
	Editing an MS-DOS Command with Doskey
	Entering Multiple Commands with Doskey
	Chapter Summary

	Chapter 14: Creating Your Own Commands
	A Batch of What?
	How MS-DOS Searches for a Command
	Creating the Sample Files
	Creating a Batch File
	Developing Your Own Startup Procedure
	Some Useful Commands
	Creating Commands with Doskey

	Chapter 15: Creating Smart Commands
	Preparing for the Examples
	Creating an Archive Command
	Modifying the Sample Batch File
	Controlling System Messages
	Making the System Pause
	Controlling Which Commands Are Carried Out
	Changing the Sequence of Commands
	Dressing Up Your Archive Command
	Chapter Summary

	Chapter 16: Creating More Smart Commands
	Commands for Searching Through a File
	Some Useful Batch Files
	Four Advanced Batch Commands
	Some More Useful Batch Files
	Chapter Summary

	Chapter 17: Tailoring Your System
	Defining Your System Configuration
	Other Configuration Commands
	Commands for Occasional Use

	Part III: Appendixes
	Appendix A: Installing MS-DOS
	Installing or Upgrading to Version 4
	AUTOEXEC.BAT and CONFIG.SYS
	Installing Version 3

	Appendix B: Glossary
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

	Appendix C: MS-DOS Command Reference
	List of Figures

