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Introduction

By the time you finish reading this book, you'll know how to write full-scale,

assembly language programs: text editors, utilities, and so on. Along the way,
you'll learn many techniques that professional programmers use to make their

work simpler. These techniques, which include modular design and step-wise

refinement, will double or triple your programming speed, as well as help you
write more readable and reliable programs.

The technique of step-wise refinement, in particular, takes a lot of the work
out of writing complex programs. If you've ever had that sinking, "where-do-I-

start feeling," you'll find that step-wise refinement gives you a simple and nat-

ural way to write programs. And it's also fun!

This book isn't all theory, though. We'll build a program, too. The program is

called Dskpatch (for Disk Patch), and you'll find it useful for several reasons.

First of all, you'll see step-wise refinement and modular design at work in a

real program, so you'll have an opportunity to see why these techniques are so

useful. Also, as you'll see shortly, Dskpatch is, in its own right, a general-pur-

pose, full-screen editor for disk sectors—one that you can continue to use both

in whole and in part long after you've finished with this book.

Why Assembly Language?

We'll assume that you've picked up this book because you're interested in

learning assembly language. But you may not be exactly certain why you want
to learn it.

One reason, perhaps the least obvious, is that assembly language programs

are at the heart ofany IBM PC (AT, PS/2, or compatible) computer. (IBM PC in

this book refers to any of the PC, AT, PS/2, or compatible computers.) In rela-

tion to all other programming languages, assembly language is the lowest com-

mon denominator. It takes you closer to the machine than higher level

languages do, so learning assembly language also means learning to under-

stand the microprocessor inside your computer, which may be an 8088, 80286,

or 80386 microprocessor. (8088 in this book refers to the 8088, 80286, and

80386 family of microprocessors.) We'll teach you the instructions of the 8088

microprocessor, as do the authors ofother introductory books, but we'll go much
farther and also cover advanced material that you'll find invaluable when you

start to write your own programs.

Once you understand the 8088 microprocessor inside your IBM PC, many ele-

ments you'll see in other programs and in high-level languages will have

greater meaning for you. For example, you may have noticed that the largest

XIII
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integer you can have in BASIC is 32767. Where did this number come from? It's

an odd number for an upper limit. But as you'll see later, the number 32767 is

directly related to the way your IBM PC stores numbers.

Then, too, you may be interested in speed or size. As a rule, assembly lan-

guage programs are much faster than those written in any other languages.

Typical assembly language programs are two to three times faster than equiva-

lent C or Pascal programs, and they generally outpace interpreted BASIC pro-

grams by 15 times or more. Assembly language programs are also smaller. The
Dskpatch program we'll build in this book will be full-grown at about one

kilobyte. Compared with programs in general, that's small. A similar program
written in C or Pascal would be about ten times that size. For these reasons,

among others, the Lotus Development Corporation wrote 1-2-3 entirely in

assembly language.

Assembly language programs also provide you with full access to the fea-

tures in your computer. A number of programs, such as SideKick, ProKey, and

SuperKey, stay in memory after you run them. Such programs change the way
your machine works, and they use system features available only to assembly

language programs. We'll show how to write such programs at the end of this

book.

Dskpatch

In our work with assembly language, we'll look directly at disk sectors, dis-

playing characters and numbers stored there by DOS in hexadecimal notation.

Dskpatch is a full-screen editor for disks, and it will allow us to change these

characters and numbers in a disk sector. Using Dskpatch you could, for exam-
ple, look at the sector where DOS stores the directory for a disk and you could

change file names or other information. Doing so is a good way to learn how
DOS stores information on a disk.

You'll get more out of Dskpatch than just one program, though. Dskpatch
contains about 50 subroutines. Many of these are general-purpose subroutines

you'll find useful when you write your own programs. Thus, not only is this

book an introduction to the 8088 and assembly language programming, it's also

a source of useful subroutines.

In addition, any full-screen editor needs to use features specific to the IBM
PC family of computers. Through the examples in this book, you'll also learn

how to write useful programs for IBM PCs, ATs, or compatible computers, such

as the Compaq.
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Equipment Requirements

What equipment will you need to run the examples in this book? You'll need
an IBM PC or compatible with at least 256K of memory and one disk drive.

You'll also need version 2.00 or later ofPC-DOS (or MS-DOS). And, starting in

Part II, you'll need an assembler, which can be the IBM or the Microsoft Macro
Assembler version 5.0 or later, the Turbo Assembler from Borland Interna-

tional, or OPTASM from SLR Systems.

Organization of This Book

This book is divided into four parts, each with a different emphasis. Whether
you know anything about microprocessors or assembly language you'll find sec-

tions of interest.

Part I focuses on the 8088 microprocessor. Here, you'll learn the mysteries of

bits, bytes, and machine language. Each of the seven chapters contains a

wealth of real examples that use a program called Debug, which comes on your
DOS disk. Debug will allow us to look inside the famous 8088 microprocessor

nestled deep in your IBM PC as it runs DOS. Part I assumes only that you have
a rudimentary knowledge of BASIC and know how to work with your com-

puter.

Part II, Chapters 8 through 16, moves on to assembly language and to writ-

ing programs in the assembler. The approach is gentle, and rather than cover

all the details of the assembler itself, we'll concentrate on a set of assembler

commands we need to write useful programs.

We'll use the assembler to rewrite some of the programs from Part I and then

move on to begin creating Dskpatch. We'll build this program slowly, so you'll

learn how to use step-wise refinement in building large programs. We'll also

cover techniques like modular design that help in writing clear programs. As
mentioned, these techniques will simplify programming by removing some of

the complexities usually associated with writing assembly language programs.

In Part III, which includes Chapters 17 to 28, we'll concentrate on using more

advanced features found in IBM PCs. These features include moving the cursor

and clearing the screen.

In Part III we'll also discuss techniques for debugging larger assembly lan-

guage programs. Assembly language programs grow very quickly and can eas-

ily be two or more pages long without doing very much (Dskpatch will be

longer). Even though we'll use these debugging techniques on programs larger

than a few pages, you'll find them useful with small programs, too.
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Part IV covers several advanced topics that will be of interest to you when
you start to write real programs. The first two chapters cover details about

.COM programs, which you'll need to write sometimes, and more on segments.

Then there is a chapter on writing directly to screen memory for very fast

screen displays. Next, there is a chapter on writing assembly language proce-

dures that you can use in your C programs. And finally, we finish Part IV with

a chapter on RAM-resident programs, complete with a program called DISK-
LITE that adds a disk light to your screen.

Now, without further ado, let'sjump into the 8088 and take a look at the way
it stores numbers.



Part

Machine Language





1

DEBUG AND ARITHMETIC

Elementary Counting 4

Hexadecimal Numbers 5

Debug 5

Hexarithmetic 6

Converting Hexadecimal to Decimal 8

Five-Digit Hex Numbers 1

1

Converting Decimal to Hex 1

2

Negative Numbers 13

Bits, Bytes, Words, and Binary Notation 15

Two's Complement—An Odd Sort of Negative

Number 17

Summary 18



4 Peter Norton's Assembly Language Book for the IBM PC, Revised & Expanded

B,'efore we begin to look at assembly language, a few words are in order about

microprocessors. Currently (as of 1989) there are three main microprocessors

used in the IBM PC, AT, PS/2, and compatible computers: the 8088, 80286, and
80386 microprocessors. The 8088 microprocessor was first used in the original

IBM PC and is the slowest and least powerful microprocessor. Next came the

80286 in the IBM AT, which was about four times faster, and the first computer

capable of running IBM's OS/2. Finally we have even faster computers built

around the 80386 microprocessor that are even faster and more powerful than

80286 computers.

Both the 80286 and the 80386 are supersets of the 8088 microprocessor,

which means any programs written for the 8088 microprocessor will run on any
of the others. In fact, programs written for MS-DOS (or PC-DOS) computers are

almost always written using just 8088 features so they'll run on all MS-DOS
computers. We'll cover the 8088 in this book, which means all the programs in

this book run on any MS-DOS computer. So whenever you see 8088, we're also

referring to the 8088 subset of features in the 80286 and 80386 (and someday
the 80486).

Elementary Counting

Let's begin our foray into assembly language by learning how computers

count. That may sound simple enough. After all, we count to 11 by starting at

one and counting up: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11.

But a computer doesn't count that way. Instead, it counts to five like this: 1,

10, 11, 100, 101. The numbers 10, 11, 100, and so on are binary numbers, based

a number system with only two digits, one and zero, instead of the ten associ-

ated with our more familiar decimal numbers. Thus, the binary number 10 is

equivalent to the decimal number we know as two.

We're interested in binary numbers because they are the form in which num-
bers are used by the 8088 microprocessor inside your IBM PC. But while com-

puters thrive on binary numbers, those strings of ones and zeros can be long

and cumbersome to write out. The solution? Hexadecimal numbers—a far more
compact way to write binary numbers. In this chapter, you'll learn both ways to

write numbers: hexadecimal and binary. And as you learn how computers

count, you'll also learn about how they store numbers—in bits, bytes, and
words.

Ifyou already know about binary and hexadecimal numbers, bits, bytes, and
words, you can skip to the chapter summary.
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Hexadecimal Numbers

Since hexadecimal numbers are easier to handle than binary numbers—at

least in terms of length—we'll begin with hexadecimal (hex for short), and use

DEBUG.COM, a program you'll find on your PC-DOS supplemental disk. We'll

be using Debug here and in later chapters to enter and run machine-language

programs one instruction at a time. Like BASIC, Debug provides a nice, inter-

active environment. But unlike BASIC, it doesn't know decimal numbers. To
Debug, the number 10 is a hexadecimal number—not ten. And since Debug
speaks only in hexadecimal, you'll need to learn something about hex numbers.

But first, let's take a short side trip and find out a little about Debug itself.

Debug

Why does this program carry the name Debug? Bugs, in the computer world,

are mistakes in a program. A working program has no bugs, while a non-work-

ing or "limping" program has at least one bug. By using Debug to run a pro-

gram one instruction at a time, and watching how the program works, we can

find mistakes and correct them. This is known as debugging, hence the name
Debug.

According to computer folklore, the term debugging stems from the early days

of computing—in particular, a day on which the Mark I computer at Harvard

failed. After a long search, the technicians found the source of their troubles: a

small moth caught between the contacts of a relay. The technicians removed the

moth and wrote a note in the log book about "debugging" the Mark I.

Find Debug on your DOS supplemental disk and we'll get started. If you're

not using a hard disk, you should also have a work disk handy, and you'll want

to copy DEBUG.COM to it. We'll make heavy use of Debug in Part I of this

book.

Note: From here on, in interactive sessions like this one, the

text you type will be against a gray background to distinguish

it from your computer's responses:

A>DEBOG

Type the gray text, (DEBUG in this example), press the Enter

key, and you should see a response similar to the ones we show

in these sessions. You won't always see exactly the same

responses, because your computer probably has a different

amount of memory from the computer on which we wrote this
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book. (We'll begin to encounter such differences in the next

chapter.) In addition, note that we use uppercase letters in all

examples. This is only to avoid any confusion between the

lowercase letter 1 (el) and the number 1 (one). If you prefer, you

can type all examples in lowercase letters.

Now, with those few conventions noted, start Debug by typing its name after

the DOS prompt (which is A> in this example):

A>DEBUG

The hyphen you see in response to your command is Debug's prompt symbol,

just as A> is a DOS prompt. It means Debug is waiting for a command.
To leave Debug and return to DOS, just type Q (for Quit) at the hyphen

prompt and press Enter. Try quitting now, if you like, and then return to

Debug:

-Q
A>DEBOG

Now we can get down to learning about hex numbers.

Hexarithmetic

We'll use a Debug command called H. H is short for Hexarithmetic, and, as its

name suggests, it adds and subtracts two hex numbers. Let's see how H works
by starting with 2 + 3. We know that 2 + 3 = 5 for decimal numbers. Is this

true for hex numbers? Make sure you're still in Debug and, at the hyphen
prompt, type the following screened text:

-H 3 2

000S D0D1

Debug prints both the sum (0005) and the difference (0001) of 3 and 2. The Hex-

arithmetic command always calculates the sum and difference of two numbers,

as it did here. And so far, the results are the same for hex and decimal numbers:

5 is the sum of 3 + 2 in decimal, and 1 is the difference (3 - 2). But sometimes,

you can encounter a few surprises.

For example, what ifwe typedH2 3, to add and subtract 2 and 3, instead of 3

and2?Ifwetryit:
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Number fl Number B

-H 5D5C 2B10

676C 134C

t \
n + b n - b

Figure 1-1. The Hexarithmetic Command.

-h e 3

ODDS FFFF

we get FFFF instead of - 1, for 2 - 3. Strange as it may look, however, FFFF is

a number. In fact, it is hex for - 1.

We'll come back to this rather unusual - 1 shortly. But first, let's explore the

realm of slightly larger numbers to see how an F can appear in a number.
To see what the Hexarithmetic command does with larger numbers, let's try

9 plus 1, which would give us the decimal number 10:

-h q i
DDDA ODDS

How does 9 + 1 = A? A is the hex number for ten. Now, what if we try for an
even larger number, such as 15:

-h q t

DDDF 0003

Ifyou try other numbers between 10 and 15, you'll find 16 digits altogether

—

through F (0 through 9 and A through F). The name hexadecimal comes from

hexa- (6), plus deca- (10) which, when combined, represent 16. The digits

through 9 are the same in both hexadecimal and decimal; the hexadecimal dig-

its A through F are equal to the decimals 10 through 15.

Why does Debug speak in hexadecimal? Soon you'll see that we can write 256

different numbers with two hex digits. As you may already suspect, 256 also

bears some relationship to the unit known as a byte, and the byte plays a major
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Decimal Hex digit

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 R

11 B

12 C

13 D

14 E

15 F

Figure 1-2. Hexadecimal Digits.

role in computers and in this book. You'll find out more about bytes near the

end of this chapter, but for now we'll continue to concentrate on learning hex,

the only number system known to Debug, and hex math.

Converting Hexadecimal to Decimal

So far we've looked at single-digit hex numbers. Now, let's see how to repre-

sent larger hex numbers and how to convert these numbers to decimal numbers.

Just as with decimal numbers, we build multiple-digit hex numbers by add-

ing more digits on the left. Suppose, for example, we add the number 1 to the

largest single-digit decimal number, 9. The result is a two-digit number, 10

(ten). What happens when we add 1 to the largest single-digit hex number, F?

We get 10 again.

But wait, 10 in hex is really 16, not ten. This could become rather confusing.

We need some way to tell these two 10s apart, so from now on we'll place the

letter h after any hex number. Thus, we'll know that lOh is hexadecimal 16 and
10 is decimal ten.
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7 —> 7 * 16 = 112

C —> 12 * 1 = 12

7Ch = 124

3 —

>

3 * 256 = 768

F --> 15 * 16 = 240

9 —

>

9 * 1 = 9

3F9h = 1,017

—> 10 * 4,096 = 40,960

F —> 15 * 256 = 3,840

1 --> 1
* 16 = 16

C —> 12 *
1

= 12

RFICh = 44,828

3 --> 3 * 65,536 = 196,608

B -> 11 * 4,096 = 45,056

8 --> 8 * 256 = 2,048

D —> 13 * 16 = 208

2 --> 2 +
1

= 2

3B8D2h = 243,922

Figure 1-3. More Hexadecimal to Decimal Conversions.

Now we come to the question of how to convert numbers between hex and
decimal. We know that lOh is 16, but how do we convert a larger hex number,

such as D3h, to a decimal number without counting up to D3h from lOh? Or,

how do we convert the decimal number 173 to hex?

We can't rely on Debug for help, because Debug can't speak in decimal. In

Chapter 10, we'll write a program to convert a hex number into decimal nota-

tion so that our programs can talk to us in decimal. But right now, we'll have to
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do these conversions by hand, so let's begin by returning to the familiar world

of decimal numbers.

What does the number 276 mean? In grade school, we learned that 276

means we have two hundreds, seven tens, and six ones. Or, more graphically:

5 * 1D0 = 500
7 * 10 = 70
b * 1 = b

57b = 57k

That certainly helps us visualize the meanings of those digits. Can we use the

same graphic method with a hex number? Of course.

Consider the number D3h we mentioned earlier. D is the hexadecimal digit

13, and there are 16 hex digits, versus 10 for decimal, so D3h is thirteen six-

teens and three ones. Or, presented graphically:

D -> 13 * lb = 508
3 -. 3*1= 3

D3h = 511

For the decimal number 276, we multiplied the digits by 100, 10, and 1; for the

hex number D3, we multiplied the digits by 16 and 1. If we had four decimal

digits we'd multiply by 1000, 100, 10, and 1. Which four numbers would we use

with four hex digits?

For decimal, the numbers 1000, 100, 10, and 1 are all powers of 10:

10 3 = 1000
10 5 = 100
10 1 = 10
10° = 1

We can use exactly the same method for hex digits, but with powers of 16,

instead of 10, so our four numbers are:

It 3 = <S0Rb

lb d = 55b
lb 1

It.

lb u 1

Let's convert 3AC8h to decimal using the four numbers we just calculated:

3 — 3 * AD9k = i55aa
A -~ 10 * 55b = 55b0
C -» 12 * lb 192
a — a * i a

3ACBh = 15048

Now let's discover what happens when we add hex numbers that have more
than one digit. For this, we'll use Debug and the numbers 3A7h and lEDh:

-H 3A7 1ED
0594 01BA
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1 1 1

3fl7 F451 C

+ 920 + CB03 + D

CD1 1BF54 19

1111 1 1

BCD8 BCD8
+ FfiE9 + 0509
1 B7C1 C1E1

Figure 1-4. More Examples of Hexadecimal Addition.

So we see that 3A7h + lEDh = 594h. You can check the results by con-

verting these numbers to decimal and doing the addition (and subtraction, if

you wish) in decimal form; if you're more adventurous, do the calculations

directly in hex.

Five-Digit Hex Numbers

So far, hex math is quite straightforward. What happens when we try adding

even larger hex numbers? Let's try a five-digit hex number:

-H SC3F0 4BCb
A Error

That's an unexpected response. Why does Debug say we have an error here?

The reason has to do with a unit of storage called the word. Debug's Hex-
arithmetic command works only with words, and words happen to be long

enough to hold four hex digits, no more.

We'll find out more about words in a few pages, but for now, remember that

you can work only with four hex digits. Thus, ifyou try to add two four-digit hex

numbers, such as COOOh and DOOOh (which should give you 19000h), you get

9000h, instead:

-H CDDD DODO
qooo fooo

Debug keeps only the four rightmost digits of the answer.
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Converting Decimal to Hex

So far we've only looked at the conversion from hex to decimal. Now we'll

learn how to convert decimal numbers to hex. As noted earlier, in Chapter 10

we'll create a program to write the 8088's numbers as decimal numbers; in

Chapter 23, we'll write another program to read decimal numbers into the

8088. But, as with decimal-to-hex conversions, let's begin by learning how to do

the conversions by hand. Again, we'll start by recalling a bit of grade-school

math.

When we first learned division, we would divide 9 by 2 to get 4 with a remain-

der of 1. We'll use the remainder to convert decimal numbers to hex.

Let's see what happens when we repeatedly divide a decimal number, in this

case 493, by 10:

<q3 / 10 = <q remainder 3

<q / 10 = A remainder q

4 / ID = D remainder <

< q 3

The digits of 493 appear as the remainder in reverse order—that is, starting

with the rightmost digit (3). We saw in the last section that all we needed for

our hex-to-decimal conversion was to replace powers of 10 with powers of 16.

For our decimal-to-hex conversion, can we divide by 16 instead of 10? Indeed,

that's our conversion method.

For example, let's find the hex number for 493. Dividing by 16, as shown
here:

<qs / lb - 30 remainder 13 (Dh)

30 / lb = 1 remainder 14 (Eh)

1 / lb = D remainder 1 (In)

AR3 = 1 E D h

We find that lEDh is the hex equivalent of decimal 493. In other words, keep

dividing by 16, and form the final hex number from the remainders. That's all

there is to it.
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1069/16 = 66 Remainder 13

f
66 / 16=4

f
4/16=

1069

Remainder 2

Remainder 4

4 2 D h

57,109 / 16 = 3,569

3,569 / 16 = 223

i
'

223 / 16 = 13

13 / 16 =

57,109

Remainder 5

Remainder 1

Remainder 1

5

Remainder \ 3

t t t

D F 1 5 h

1-5. More Examples of Hexadecimal Conversions.

Negative Numbers

If you recall, though, we still have an unanswered puzzle in the number
FFFFh. We said that FFFFh is actually - 1. Yet, if we convert FFFFh to deci-

mal, we get 65535. How can that be? Does it behave as a negative number?
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Well, ifwe add FFFFh (alias - 1) to 5, the result should be 4, because 5 - 1 =

4. Is that what happens? Using Debug's H command to add 5 and FFFFh, we
find:

-H 5 FFFF
0004 000b

Debug seems to treat FFFFh as - 1. But FFFFh won't always behave as -

1

in programs we'll write. To see why not, let's do this addition by hand.

When we add two decimal numbers, we often find ourselves carrying a 1 to

the next column, like this:

i i

+ 5 a

15 3

The addition of two hex numbers isn't much different. Adding 3 to F gives us

2, with a carry into the next column:

1 E h

Now, watch what happens when we add 5 to FFFFh:

1111
5 h

+ F F F F h

1 4 h

Since Fh + lh = lOh, the successive carries neatly move a 1 into the far left

position. And, ifwe ignore this 1, we have the correct answer for 5 — 1: namely,

4. Strange as it seems, FFFFh behaves as - 1 when we ignore this overflow. It's

called an overflow because the number is now five digits long, but Debug keeps

only the last (rightmost) four digits.

Is this overflow an error, or is the answer correct? Well, yes and yes. We can

choose either answer. Don't the answers contradict each other? Not really,

because we can view these numbers in either of two ways.

Let's suppose we take FFFFh as equal to 65536. This is a positive number,
and it happens to be the largest number we can write with four hex digits. We
say that FFFFh is an unsigned number. It is unsigned because we've just

defined all four digit numbers as positive. Adding 5 to FFFFh gives us 10004h;
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no other answer is correct. In the case of unsigned numbers, then, an overflow

is an error.

On the other hand, we can also treat FFFFh as a negative number, as Debug
did when we used the H command to add FFFFh to 5. FFFFh behaves as - 1 as

long as we ignore the overflow. In fact, the numbers 8000h through FFFFh all

behave as negative numbers. For signed numbers, as here, the overflow isn't an
error.

The 8088 microprocessor can view numbers either as unsigned or signed; the

choice is yours. There are slightly different instructions for each, and we'll

explore these differences in later chapters as we begin to use numbers on the

8088. Right now, before you can learn to actually write the negative of, say,

3C8h, we need to unmask the bit and see how it fits into the scheme of bytes,

words, and hex.

Bits, Bytes, Words, and Binary Notation

It's time for us to dig deeper into the intricacies of your IBM PC—time to

learn about the arithmetic of the 8088: binary numbers. The 8088 microproces-

sor, with all its power, is rather dumb. It knows only the two digits and 1, so

any number it uses must be formed from a long string of zeros and ones. This is

the binary (base 2) number system.

When Debug prints a number in hex, it uses a small program to convert its

internal numbers from binary to hexadecimal. In Chapter 5, we'll build such a

program to write binary numbers in hex notation, but first we need to learn

more about binary numbers themselves.

Let's take the binary number 1011b (the b stands for binary). This number is

equal to the decimal 11, or Bh in hex. To see why, multiply the digits of 1011b

by the number's base, 2:

Powers of 2:

5 3 = a

;1 =

2

5* = 5
= i.

So that:

i * a = a

a * a = a

i * a = 5

1*1 = 1

1011b = 11 or Bh
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Sign

bit

i

Binary Decimal Hexadecimal

0000
0001 1 1

0010 2 2

0011 3 3

0100 4 4

0101 5 5

0110 6 6

0111 7 7

1000 8 8

1001 9 9

1010 10 R

1011 11 B

1100 12 C

1101 13 D

1110 14 E

1111 15 F

Bit

i

Byte

I

0100 1101 0001 1010
V J \ ) I J ^ .

J

t

1

Word

R

t

Figure 1-7. A Word is Made Out of Bits and Bytes.
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Likewise, 1111b is Fh, or 15. And 1111b is the largest unsigned four-digit

binary number we can write, while 0000b is the smallest. Thus, with four

binary digits we can write 16 different numbers. There are exactly 16 hex dig-

its, so we can write one hex digit for every four binary digits.

A two-digit hex number, such as 4Ch, can be written as 0100 1100b. It's com-

posed of eight digits, which we separate into groups of four for easy reading.

Each one of these binary digits is known as a bit, so a number like 0100 1100b,

or 4Ch, is eight bits long.

Very often, we find it convenient to number each of the bits in a long string,

with bit farthest to the right. The 1 in 10b then is bit number 1, and the

leftmost bit in 1011b is bit number 3. Numbering bits in this way makes it eas-

ier for us to talk about any particular one, as we'll want to later on.

A group of eight binary digits is known as a byte, while a group of 16 binary

digits, or two bytes, is a word. We'll use these terms frequently throughout this

book, because bits, bytes, and words are all fundamental to the 8088.

We can see now why hexadecimal notation is convenient; two hex digits fit

exactly into one byte (four bits per hex digit), and four digits fit exactly into one

word. We can't say the same for decimal numbers. If we try to use two decimal

digits for one byte, we can't write numbers larger than 99, so we lose the values

from 100 to 255—more than half the range of numbers a byte can hold. And if

we use three decimal digits, we must ignore more than half the three-digit deci-

mal numbers, because the numbers 256 through 999 can't be contained in one

byte.

Two's Complement—An Odd Sort of Negative

Number

Now we're ready to learn more about negative numbers. We said before that

the numbers 8000h through FFFFh all behave as negative numbers when we
ignore the overflow. There is an easy way to spot negative numbers when we
write them in binary:

Positive numbers:
DDQQh DDDD DODO 000D ODDOb

7FFFh Dill 1111 1111 1111b

Negative numbers:
aDOOh 1000 000D 0000 0000b

FFFFh 1111 1111 1111 1111b
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In the binary forms for all the positive numbers, the left most bit (bit 15) is

always 0. For all negative numbers, this left most bit is always 1. This differ-

ence is, in fact, the way that the 8088 microprocessor knows when a number is

negative: It looks at bit 15, the sign bit. If we use instructions for unsigned

numbers in our programs, the 8088 will ignore the sign bit, and we will be free

to use signed numbers at our convenience.

These negative numbers are known as the two's complement of positive num-
bers. Why complement? Because the conversion from a positive number, such

as 3C8h, to its two's-complement form is a two-step process, with the first being

the conversion of the number to its complement.

We won't need to negate numbers often, but we'll do the conversion here just

so you can see how the 8088 microprocessor negates numbers. The conversion

will seem a bit strange. You won't see why it works, but you will see that it does

work.

To find the two's-complement form (negative of) any number, first write the

number in binary, ignoring the sign. For example, 4Ch becomes 0000 0000

0100 1100b.

To negate this number, first reverse all the zeros and ones. This process of

reversing is called complementing, and taking the complement of 4Ch, we find

that:

0DDD DDDQ D1QD X1DD
becomes:

1111 1111 1011 D011

In the second step of the conversion, we add 1:

i i

1111 1111 1011 0011
+_ 1

1111 1111 1011 0100
-<Ch = FFB4h

The answer, FFB4h, is the result we get if we use Debug's H command to sub-

tract 4Ch from Oh.

If you wish, you can add FFB4h to 4Ch by hand, to verify that the answer is

lOOOOh. And from our earlier discussion, you know that you should ignore this

leftmost 1 to get (4C + ( -4C) = 0) when you do two's-complement addition.

Summary

This chapter has been a fairly steep climb into the world of hexadecimal and
binary numbers, and it may have required a fair amount of mental exercise.



Debug and Arithmetic 19

Soon, in Chapter 3, we'll slow down to a gentler pace—once you've learned

enough to converse with Debug in hex. Now, let's take a breath of fresh air and
look back on where we've been and what we've found.

We started out by meeting Debug. In chapters to come, we'll become intimate

friends with Debug but, since it doesn't understand our familiar decimal num-
bers, we've begun the friendship by learning a new numbering system, hexa-

decimal notation.

In learning about hex numbers, you also learned how to convert decimal

numbers to hex, and hex numbers to decimal. We'll write a program to do these

translations later, but for now it's been necessary to learn the language itself.

Once we'd covered the basics of hexadecimal notation, we were able to

wander off for a look at bits, bytes, words, and binary numbers—important

characters you'll encounter frequently as we continue to explore the world of

the 8088 and assembly language programming.

Finally, we moved on to learn about negative numbers in hex—the two's-

complement numbers. They led us to signed and unsigned numbers, where we
also witnessed overflows of two different types: one in which an overflow leaves

the correct answer (addition oftwo signed numbers), and one in which the over-

flow leads to the wrong answer (addition of two unsigned numbers).

All this learning will pay off in later chapters, because we'll use our knowl-

edge ofhex numbers to speak with Debug, and Debug will act as an interpreter

between us and the 8088 microprocessor waiting inside your IBM PC.

In the next chapter, we'll use the knowledge we've gained so far to learn

about the 8088. We'll rely on Debug again, and use hex numbers, rather than

binary, to talk to the 8088. We'll learn about the microprocessor's registers

—

the places where it stores numbers—and in Chapter 3 we'll be ready to write a

real program that will print a character on the screen. We'll also learn more

about how the 8088 does its math; by the time we reach Chapter 10, we'll be

able to write a program to convert binary numbers to decimal.
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K,.nowing something of Debug's hex arithmetic and the 8088's binary arith-

metic, we can begin to learn how the 8088 does its math. It uses internal com-

mands called instructions.

Registers as Variables

Debug, our guide and interpreter, knows much about the 8088 microproces-

sor inside the IBM PC. We'll use it to delve into the inner workings of the 8088,

and begin by asking Debug to display what it can about small pieces ofmemory
called registers, in which we can store numbers. Registers are like variables in

BASIC, but they are not exactly the same. Unlike the BASIC language, the

8088 microprocessor contains a fixed number of registers, and these registers

are not part of your IBM PC's memory.
We'll ask Debug to display the 8088's registers with the R, for Register, com-

mand:

AX=0DDD BX=ODO0 CX=DDDD DX=DQDD SP=FFEE BP-ODDD SI=QDDD DI=0000
DS=375b ES=37Sb SS=37Sb CS=37Sb IP=D1DD NV DP DI PL NZ NA PO NC
375b:D100 E46S IN AL,flS

(You'll probably see different numbers in the second and third lines of your dis-

play; those numbers reflect the amount of memory in a computer. You'll con-

tinue to see such differences, and later we'll learn more about them.)

For now, Debug has certainly given us a lot of information. Let's concentrate

on the first four registers—AX, BX, CX, and DX—all of which Debug tells us

are equal to 0000, both here and on your display. These registers are the gen-

eral-purpose registers. The other registers, SP, BP, SI, DI, DS, ES, SS, CS, and
IP, are special-purpose registers we'll deal with in later chapters.

The four-digit number following each register name is in hex notation. In

Chapter 1, we learned that one word is described exactly by four hex digits.

Here, you can see that each of the 13 registers in the 8088 is one word, or 16

bits, long. This is why computers based on the 8088 microprocessor are known
as 16-bit machines.

We mentioned that the registers are like BASIC variables. That means we
should be able to change them, and we can. Debug's R command does more than
display registers. Followed by the name of the register, the command tells

Debug that we wish to view the register, and then change it. For example, we
can change the AX register like this:
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-R RX
AX OQDD
:3A?

Let's look at the registers again to see if the AX register now contains 3A7h:

-R
AX=03A7 BX=DDDD CX=DDDD DX=DQD0 SP=FFEE BP=0000 SI=DDDD DI=D000
DS=3757 ES=37Sb SS=375b CS=375b IP=D1DD NV DP DI PL NZ NA PO NC
37Sb:0100 EA6S IN AL, AS

It does. Furthermore, we can put any hex number into any register with the

R command by specifying the register's name and entering the new number
after the colon, as we just did. From here on, we'll be using this command when-
ever we need to place numbers into the 8088's registers.

You may recall seeing the number 3A7h in Chapter 1, where we used

Debug's Hexarithmetic command to add 3A7h and lEDh. Back then, Debug did

the work for us. This time, we'll use Debug merely as an interpreter so we can

work directly with the 8088. We'll give the 8088 instructions to add numbers
from two registers: We'll place a number in the BX register and then instruct

the 8088 to add the number in BX to the number in AX and put the answer
back into AX. First, we need a number in the BX register. This time, let's add
3A7h and 92Ah. Use the R command to store 92Ah into BX.

Memory and the 8088

The AX and BX registers should, respectively, contain 3A7h and 92Ah, as we
can verify with the R command:

AX=03A7 BX=0q2A CX=DD0D DX=QD0D SP=FFEE BP=DDDD SI=DQDD DI=DDDD
DS=375fc ES=375b SS=375fc> CS=375t IP=01DD NV UP DI PL NZ NA PO NC
375b:01DD E4SS IN AL, as

Now that we have our two numbers in the AX and BX registers, how do we tell

the 8088 to add BX to AX? We put some numbers into the computer's memory.

Your IBM PC probably has at least 128K of memory—far more than we'll

need to use here. We'll place two bytes of machine code into a corner of this vast

amount of memory. In this case, the machine code will be two binary numbers

that tell the 8088 to add the BX register to AX. Then, so we can watch what

happens, we'll execute this instruction with the help of Debug.

Where in memory should we place our two-byte instruction, and how will we
tell the 8088 where to find it? As it turns out, the 8088 chops memory into 64K
pieces known as segments. Most of the time, we'll be looking at memory within
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one of these segments without really knowing where the segment starts. We
can do this because of the way the 8088 labels memory.

All bytes in memory are labeled with numbers, starting with Oh and working

up. But remember the four-digit limitation on hex numbers? That means the

highest number the 8088 can use is the hex equivalent of 65535, which means
the maximum number of labels it can use is 64K. Even so, we know from expe-

rience that the 8088 can call on more than 64K of memory. How does it do this?

By being a little bit tricky: It uses two numbers, one for each 64K segment, and

one for each byte, or offset, within the segment. Each segment begins at a mul-

tiple of 16 bytes, so by overlapping segments and offsets, the 8088 effectively

can label more than 64K of memory. In fact, this is precisely how the 8088 uses

up to one million bytes of memory.
All the addresses (labels) we'll be using are offsets from the start of a seg-

ment. We'll write addresses as a segment number, followed by the offset within

the segment. For example, 3756:0100 will mean we are at an offset of lOOh

within segment 3756h.

Later, in Chapter 11, we'll learn more about segments and see more about

why we have such a high segment number. But for now, we'll simply trust

Debug to look after the segments for us so that we can work within one segment
without having to pay attention to segment numbers. And for the time being,

we'll refer to addresses only by their offsets. Each of these addresses refers to

one byte in the segment, and the addresses are sequential, so lOlh is the byte

following lOOh in memory.
Written out, our two-byte instruction to add BX to AX looks like this: ADD

AX,BX. We'll place this instruction at locations lOOh and lOlh, in whatever

segment Debug starts to use. In referring to our ADD instruction, we'll say that

it's at location lOOh, since this is the location of the first byte of the instruction.

Debug's command for examining and changing memory is called E, for Enter.

Use this command to enter the two bytes of the ADD instruction, as follows:

-E 100
37Sb:0100 E4.01
-E 101
375fc:0101 65. Dfl

The numbers Olh and D8h are the 8088's machine language for our ADD
instruction at memory locations 3756:0100 and 3756:0101. The segment
number you see will probably be different, but that difference won't affect our

program. Likewise, Debug probably displayed a different two-digit number for

each ofyour E commands. These numbers (E4h and 85h in our example) are the

old numbers in memory at offset addresses lOOh and 10 lh of the segment
Debug chose—that is, the numbers are data from previous programs left in
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Start of-

segment
3756

3756:0100

3756:0101

01 h

D8h

>

ODD HH,BH

J

Figure 2-1. Our instruction begins 100 bytes from the start of the segment.

memory when you started Debug. (If you just started your computer, the num-
bers should be 00.)

Addition, 8088 Style

Now your register display should look something like this:

AX=03A7 BX=0q5A CX=0000 DX=0DDD SP=FFEE BP=00D0 SI=DDDD DI=D0DD
DS=375fc ES=375b SS=37Sb CS=375b IP=0100 NV UP DI PL NZ NA PO NC
375b:0iaD OlDfl ADD AX,BX

Our ADD instruction is neatly placed in memory, just where we want it to be.

We know this from reading the third line of the display. The first two numbers,

3756:0100, give us the address (lOOh) for the first number of our ADD instruc-

tion. Next to this, we see the two bytes for ADD: 01D8. The byte equal to Olh is
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at address lOOh, while D8h is at lOlh. Finally, since we entered our instruction

in machine language—numbers that have no meaning to us, but that the 8088

will interpret as an add instruction—the message ADD AXJ3X confirms that

we entered the instruction correctly.

Even though we've placed our ADD instruction in memory, we're not quite

ready to run it through the 8088 (execute it). First, we need to tell the 8088

where to find the instruction.

The 8088 finds segment and offset addresses in two special registers, CS and

IP, which you can see listed in the preceding register display. The segment

number is stored in the CS, or Code Segment, register, which we'll discuss

shortly. If you look at the register display, you can see that Debug has already

set the CS register for us (CS = 3756, in our example). The full starting address

of our instruction, however, is 3756:0100.

The second part of this address (the offset within segment 3756) is stored in

the IP (Instruction Pointer) register. The 8088 uses the offset in the IP register

to actually find our first instruction. We can tell it where to look by setting the

IP register to the address of our first instruction—IP = 0100.

But the IP register is already set to lOOh. We've been clever: Debug sets IP to

lOOh whenever you first start it. Knowing this, we've deliberately chosen lOOh

as the address of our first instruction and have thus eliminated the need to set

the IP register in a separate step. It's a good point to keep in mind.

Now, with our instructions in place and the registers set correctly, we'll tell

Debug to execute our one instruction. We'll use Debug's T (Trace) command,
which executes one instruction at a time and then displays the registers. After

each trace, the IP should point to the next instruction. In this case, it will point

to 102h. We haven't put an instruction at 102h, so in the last line of the register

display you see an instruction left from some other program.

Let's ask Debug to trace one instruction with the T command:

-T
AX=0CD1 BX=0q2fl CX=DDDD DX=DD00 SP=FFEE BP=DDD0 SI=D0D0 DI=D0QQ
DS=375b ES=37Sb SS=375b CS=375b IP=0105 NV DP DI PL NZ AC PE NC
375b:010a AC LODSB

That's it. The AX register now contains CDlh, which is the sum of 3A7h and
92Ah. And the IP register points to address 102h, so the last line of the register

display shows some instruction at memory location 102h, rather than lOOh.

We mentioned earlier that the instruction pointer, together with the CS reg-

ister, always points to the next instruction for the 8088. If we typed T again,

we'd execute the next instruction, but don't do it just yet—your 8088 might
head for limbo.
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BX: 0CD1 BK: 092R

[
IP:1 02

HDD BH,BH
LODSB

Figure 2-2. Before we execute the ADD instruction.

RX:0CB1 BH: 092R

[IP:102
BOB BH,BH

LOBSB
Figure 2-3. After we execute the ADD instruction.

Instead, what ifwe want to execute our ADD instruction again, adding 92Ah
to CDlh and storing the new answer in AX? For that we need to tell the 8088

where to find its next instruction, which we want to be our ADD instruction at

OlOOh. Can we just change the IP register to OlOOh? Let's try it. Use the R com-

mand to set IP to 100 and look at the register display:

AX=0CD1 BX-DR5A CX=DDDD DX=DDD0 SP=FFEE BP=DDD0 SI=D0DD DI=DDDD
DS=37Sfc ES=3?Sb SS=3?5b CS=3?Sb IP=D1DD NV UP DI PL NZ AC PE NC
375b:01QD ADD AX,BX

That's done it. Try the T command again and see if the AX register contains

15FBh. It does.
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Note: You should always check the IP register and the

instruction at the bottom of an R display before using the T
command. That way, you'll be sure the 8088 executes the

instruction you want it to.

Now, set the IP register to lOOh once again, make certain the registers con-

tain AX = 15FB, BX = 092A, and let's try subtraction.

Subtraction, 8088 Style

We're going to write an instruction to subtract BX from AX so that, after two

subtractions, we'll have 3A7h in AX: the point from which we started before

our two additions. You'll also see how we can save a little effort in entering two

bytes into memory.
When we entered the two bytes for our ADD instruction, we typed the E com-

mand twice: once with OlOOh for the first address, and once with OlOlh for the

second address. The procedure worked, but as it turns out we can actually enter

the second byte without another E command ifwe separate it from the first byte

with a space. When you've finished entering bytes, pressing the Enter key will

exit from the Enter command. Try this method for our subtract instruction:

-E 100
37Sb:0100 01. eq D6.D6

The register display (remember to reset the IP register to lOOh) should now
show the instruction SUB AXJ3X, which subtracts the BX register from the

AX register and leaves the result in AX. The order of AX and BX may seem
backwards, but the instruction is like the BASIC statement AX = AX - BX
except that the 8088, unlike BASIC, always puts the answer into the first vari-

able (register).

Execute this instruction with the T command. AX should contain CD1.
Change IP to point back to this instruction, and execute it again (remember to

check the instruction at the bottom of the R display first). AX should now be

03A7.

Negative Numbers in the 8088

In the last chapter, we learned how the 8088 uses the two's-complement form
for negative numbers. Now, let's work directly with the SUB instruction to cal-

culate negative numbers. Let's put the 8088 to a little test, to see if we get
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FFFFh for — 1. We'll subtract one from zero and, if we're right, the subtraction

should place FFFFh ( - 1 ) into AX. Set AX equal to zero and BX to one, then

trace through the instruction at address OlOOh. Just what we expected: AX =

FFFFh.
While you have this subtraction instruction handy, you may wish to try some

different numbers to gain a better feel for two's-complement arithmetic. For

example, see what result you get for - 2.

Bytes in the 8088

All our arithmetic thus far has been performed on words, hence the four hex
digits. Does the 8088 microprocessor know how to perform math with bytes?

Yes, it does.

Since one word is formed from two bytes, each general-purpose register can

be divided into two bytes, known as the high byte (the first two hex digits) and
the low byte (the second two hex digits). Each of these registers can be called by

its letter (A through D), followed by X for a word, H for the high byte, or L for

the low byte. For example, DL and DH are byte registers, and DX is a word reg-

ister. (This terminology can become somewhat confusing, however, because

words stored in memory have their low byte first and the high byte second.)

Let's test byte-size math with an ADD instruction. Enter the two bytes OOh
and C4h, starting at location OlOOh. At the bottom ofthe register display, you'll

see the instruction ADD AH, AL, which will add the two bytes of the AX regis-

ter and place the result in the high byte, AH.
Next, load the AX register with 0102h. This places Olh in the AH register

and 02h in the AL register. Set the IP register to lOOh, execute the T command,

r~ nH "i r~ flL "i
0100 1101 0001 1010
V

,
> v

,
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,
/ <•
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^

4 D 1 fl
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Figure 2-4. A register (AX) can be split into two byte registers (AH and AL).
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1 1 P: 1 00
|^ MUL BH

LODSB
Figure 2-5. Before we execute the MUL instruction.

and you'll find that AX now contains 0302. The result ofOlh + 02h is 03h, and
that value is in the AH register.

But suppose you hadn't meant to add Olh and 02h. Suppose you really meant
to add Olh and 03h. If the AX register already contained 0102, could you use

Debug to change the AL register to 03h? No. You would have to change the

entire AX register to 0103h. Why? Because Debug allows us to change only

word registers. There isn't a way to change just the low or high part of a regis-

ter with Debug. But, as you saw in the last chapter, this isn't a problem. With
hex numbers, we can split a word into two bytes by breaking the four-digit hex

number in half. Thus, the word 0103h becomes the two bytes Olh and 03h.

To try this ADD instruction, load the AX register with 0103h. Your ADD
AH,AL instruction is still at memory location OlOOh, so reset the IP register to

lOOh and, with Olh and 03h now in the AH and AL registers, trace through this

instruction. This time, AX contains 0403h: 04h, the sum ofOlh + 03h is now in

the AH register.

Multiplication and Division, 8088 Style

We've seen the 8088 add and subtract two numbers. Now we'll see that it can

also multiply and divide—a clever processor. The multiply instruction is called



8088 Arithmetic 31

| IP:1 02 \m
MUL BH

LODSB
Figure 2-6. After we execute the MUL instruction: The result is in the DX:AX

pair of registers.

MUL, and the machine code to multiply AX and BX is F7h E3h. We'll enter this

into memory, but first a word about the MUL instruction.

Where does the MUL instruction store its answer? In the AX register? Not
quite; we have to be careful here. As you'll soon see, multiplying two 16-bit

numbers can give a 32-bit answer, so the MUL instruction stores its result in

two registers, DX and AX. The higher 16 bits are placed in the DX register; the

lower, into AX. We will write this register combination as DX:AX, from time to

time.

Let's get back to Debug and the 8088. Enter the multiply instruction, F7h
E3h, at location OlOOh, just as you did for the addition and subtraction instruc-

tions, and set AX = 7C4Bh and BX = lOOh. You'll see the instruction in the

register display as MUL BX, without any reference to the AX register. To mul-

tiply words, as here, the 8088 always multiplies the register you name in the

instruction by the AX register, and stores the answer in the DX:AX pair of reg-

isters.

Before we actually execute this MUL instruction, let's do the multiplication

by hand. How do we calculate lOOh * 7C4Bh? The three digits 100 have the

same effect in hex as in decimal, so to multiply by lOOh simply add two zeros to

the right of a hex number. Thus, lOOh * 7C4Bh = 7C4B00h. This result is too

long to fit into one word, so we'll split it into the two words 007Ch and 4B00h.
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F^fr> DILI BK

LODSB
Figure 2-7. Before we execute the DIV instruction. DIV BX calculates DX:AX /

BX.

DILI BK
U^F' LODSB

Figure 2-8. After we execute the DIV instruction, the result is in the AX, and
the remainder is in the DX register.
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Use Debug to trace through the instruction. You'll see that DX contains the

word 007Ch, and AX contains the word 4B00h. In other words, the 8088
returned the result of the word-multiply instruction in the DX:AX pair of regis-

ters. Since multiplying two words together can never be longer than two words

but will often be longer than one word (as we just saw), the word-multiply

instruction always returns the result in the DX:AX pair of registers.

And what about division? When we divide numbers, the 8088 keeps both the

result and the remainder of the division. Let's see how the 8088's division

works. First, place the instruction F7h F3h at OlOOh (and lOlh). Like the MUL
instruction, DIV uses DX:AX without being told, so all we see is DIV BX. Now,
load the registers so that DX = 007Ch and AX = 4B12h; BX should still con-

tain OlOOh.

Again, we'll first calculate the results by hand: 7C4B12h / lOOh = 7C4Bh,

with 12h left over. When we execute our division instruction at OlOOh, we find

that AX = 7C4Bh, the result of our division, and DX = 0012h, which is the

remainder. (We'll put this remainder to very good use in Chapter 10, when we
write a program to convert decimal numbers to hex by using the remainders,

just as we did in Chapter 1.)

Summary

It's almost time for us to write a real program—one to print a character on

the screen. We've put in our time learning the basics. Let's take a look at the

ground we've covered, and then we'll be all set to push on.

We began this chapter by learning about registers and noticing their similar-

ity to variables in BASIC. Unlike BASIC, however, we saw that the 8088 has a

small, fixed number of registers. We concentrated on the four general-purpose

registers (AX, BX, CX, and DX), with a quick look at the CS and IP registers,

which the 8088 uses to locate segment and offset addresses.

After learning how to change and read registers, we moved on to build some

single-instruction programs by entering the machine codes to add, subtract,

multiply, and divide two numbers with the AX and BX registers. In future

chapters we'll use much ofwhat we learned here, but you won't need to remem-

ber the machine codes for each instruction.

We also learned how to tell Debug to execute, or trace through, a single

instruction. We'll come to rely heavily on Debug to trace through our programs.
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Of course, as our programs grow in size, this tracing will become both more use-

ful and more tedious. Later on we'll build on our experience and learn how to

execute more than one instruction with a single Debug command.

Let's turn back to real programs and learn how to make a program that

speaks.
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N<ow we know enough to do something solid, so roll up your sleeves and flex

your fingers. We're going to begin by instructing DOS to send a character to the

screen, then we'll move on to even more interesting work. We'll build a small

program with more than one instruction and from there, learn another way to

put data into registers—this time, from within a program. Now, let's see if we
can get DOS to speak.

INT—The Powerful Interrupt

To our four math instructions, ADD, SUB, MUL, and DIV, we'll add a new
instruction called INT (for Interrupt). INT is something like BASIC'S GOSUB
statement. We'll use the INT instruction to ask DOS to print a character, A, on

the screen for us.

Before we learn how INT works, let's run through an example. Start Debug
and place 200h into AX and 41h into DX. The INT instruction for DOS func-

tions is INT 21h—in machine code, CDh 21h. This is a two-byte instruction like

the DIV instruction in the last chapter. Put INT 21h in memory, starting at

location lOOh, and use the R command to confirm that the instruction reads

INT 21 (remember to set IP to lOOh if it isn't already there).

Now we're ready to execute this instruction, but we can't use the trace com-

mand here as we did in the last chapter. The trace command executes one

instruction at a time, but the INT instruction calls upon a large program in

DOS to do the actual work, much as BASIC programs can call a subroutine

with the GOSUB statement.

We don't want to execute each of the instructions in the entire DOS "subrou-

tine" by tracing through it one instruction at a time. Instead, we want to run

our one-line program, but stop before executing the instruction at location

102h. We can do this with Debug's G {Go till) command, followed by the address

at which we want to stop:

-g ioe
A

AX=0241 BX=0DD0 CX=DD00 DX=00<1 SP=FFEE BP=DDDQ SI=Q0DD DI=DQD0
Ds=3q?o Es=aq?o ss=3q?o cs=aq?o ip=oioe nv dp di pl nz na po nc
3^70:0105 ABES MOV SP,BP

DOS printed the character A and then returned control to our small program.

(Remember, the instruction at 102h is just data left behind by another pro-

gram, so you'll probably see something different.)
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Our small program here is, in a sense, two instructions long, the second

instruction being whatever is at location 102h. That is, it is something like this:

INT 51
MOV SP,BP (Or whatever is on your computer)

We'll soon replace this random second instruction with one ofour own. For now,
since it isn't anything we want to execute, we told Debug to run our program,

stop execution when it reached this second instruction, and display the regis-

ters when it was done.

And how did DOS know to print the A? The 02h in the AH register told DOS
to print a character. Another number in AH would tell DOS to execute a differ-

ent function. (We'll see others later, but if you're curious right now, you can

find a list offunctions in your DOS Technical Manual. You can also find a list of

functions in Appendix E that we use in this book.)

As for the character itself, DOS uses the number in the DL register as the

ASCII code for the character to print when we ask it to send a character to the

screen. We stored 41h, the ASCII code for an uppercase A.

In Appendix^, you'll find a chart ofASCII character codes for all the charac-

ters your IBM PC can display. For your convenience, the numbers are in both

decimal and hex notation. But since Debug reads hex only, here is a good

chance for you to practice converting decimal numbers to hex. Pick a character

from the table and convert it to hex on your own. Then, verify your conversion

by typing your hex value into the DL register and running the INT instruction

again (remember to reset IP to lOOh).

You may have wondered what would have happened if you had tried the

trace command on the INT instruction. We'll pretend we had not executed the

G 102 command and, instead, trace a short distance through, to see what hap-

pens. If you try this yourself, don't go too far: You may find your IBM PC doing

something strange. After you've traced through a few steps, exit Debug with

the Q command. This will clean up any mess you've left behind.

-R
AX=0500 BX=0DQQ CX=DDDD DX=00<1 SP=FFEE BP=0000 SI=0000 DI=DQDQ
DS=3q?Q ES=3R70 SS=3R70 CS=3R70 IP=01DD NV OP DI PL NZ NA PO NC
3970:0100 CD51 INT 51
-T

AX=0500 BX=D0Q0 CX=0000 DX=00<1 SP=FFEfl BP=0000 SI=DDDD DI=0000
DS=3970 ES=3R70 SS=3q7D CS=3375 IP=01fl0 NV UP DI PL NZ NA PO NC
3375:0180 S0FC4B CMP AH,<B
-T

AX=0500 BX=0000 CX=0000 DX=00<1 SP=FFEfl BP=0000 SI=0000 DI=0000
05=3170 ES=3q70 SS=3R70 CS=3375 IP=0183 NV OP DI NG NZ AC PE CY
3375:0163 7AQ5 JZ OlfiA

-T

AX=05G0 BX=0000 CX=0000 DX=0041 SP=FFEA BP=0000 SI=0000 DI=0000
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DS=3S70 ES=3R70 SS=3q?Q CS=3375 IP=01fl5
3375:0135 2E CS:
3375:01flfa FF5EAB0B JMP FAR [OBAB]
-Q

NV UP DI NG NZ AC PE CY

CS:DBAB=DBFF

Notice that the first number of the address changed here, from 3970 to 3372.

These last three instructions were part of DOS, and the program for DOS is in

another segment. In fact, there are many, many more instructions that DOS
executes before it prints a single character; even such an apparently simple

task is not as easy as it sounds. Now you can see why we used the G command to

run our program to location 102h. Otherwise, we'd have seen a torrent of

instructions from DOS. (Ifyou're using a different version ofDOS than we used,

the instructions you see when you try this may be different.)

A Graceful Exit—INT 20h

Remember that our INT instruction was 21h? Ifwe changed the 21h to a 20h,

we'd have INT 20h, instead. INT 20h is another interrupt instruction, and it

tells DOS we want to exit our program, so DOS can take full control again. In

our case, INT 20h will send control back to Debug, since we're executing our

programs from Debug, rather than from DOS.
Enter the instruction CDh 20h, starting at location lOOh, then try the follow-

ing (remember to check the INT 20h instruction with the R command):

-G 105

Program terminated normally
-R
AX=0000 BX=0000 CX=0000 DX=0000
DS=3S70 ES=3q70 SS=3R70 CS=3q70
3970:0100 CD50 INT 50
-G

SP=FFEE
IP=0100

BP=0D00 SI=0000 DI=0000
NV UP DI PL NZ NA PO NC

Program terminated normally
-R
AX=0000 BX=0000 CX=0000 DX=0000
DS=3970 E3=3q70 SS=3R70 CS=3R70
3970:0100 CD50 INT 50

SP=FFEE
IP=0100

BP=0000 SI=0000 DI=0000
NV UP DI PL NZ NA PO NC

The command G, with no number after it, executes the entire program (which is

just one instruction now, because INT 20 is an exit instruction), and then
returns to the start. IP has been reset to lOOh, which is where we started. The
registers in this example are only because we started Debug afresh.

We can use this INT 20h instruction at the end of a program to return control

gracefully to DOS (or Debug), so let's put this instruction together with INT
21h and build a two-line program.
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A Two-Line Program—Putting the Pieces Together

Starting at location lOOh, enter the two instructions INT 2 In, INT 20h (CDh
21h CDh 20h) one after the other. (From now on, we'll always start programs at

location lOOh).

When we had only one instruction we could "list" that instruction with the R
command, but now we have two instructions. To see them, we have the U
(Unassemble) command, which acts like BASIC'S List command:

-U 1DD
3970:0100 CD21 INT 21
3970:0102 CD20 INT 50
3970:0104 D9flD4b0250Bfl ESC 09, [DI+05<b][DI+Bfl5D]
3970:010A flDOO LEA AX, [BX+SI]
3970:0100 50 POSH AX
3970:010D E62A23 CALL SA3h
3970:0110 6BE5 MOV SP,BP
3970:0112 S3C41A ADD SP.+1A
3970:0115 5D POP BP
3970:011b C3 RET
3970:0117 55 POSH BP
3970:0118 S3EC02 SOB SP,+05
3970:011B 6BEC MOV BP,SP
3970:011D S23E0E00O0 CMP BYTE PTR [000E],00

The first two instructions we recognize as the two instructions we just entered.

The other instructions are remnants left in memory. As our program grows,

we'll fill this display with more of our own code.

Now, fill the AH register with 02h and the DL register with the number for

any character (just as you did earlier when you changed the AX and DX regis-

ters), then simply type the G command to see your character. For example, if

you place 41h into DL, you'll see:

-G
A

Program terminated normally

Try this a few times with other characters in DL before we move on to other

ways to set these registers

Entering Programs

From here on, most of our programs will be more than one instruction long,

and to present these programs we'll use an unassemble display. Our last pro-

gram would thus appear like this:

3970:0100 CDB1 INT 21
3970:0105 CD20 INT 20
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So far, we've entered the instructions for our programs directly as numbers,

such as CDh, 21h. But that's a lot of work, and, as it turns out, there is a much
easier way to enter instructions.

Besides the unassemble command, Debug includes an A (Assemble) com-

mand, which allows us to enter the mnemonic, or human-readable, instructions

directly. So rather than entering those cryptic numbers for our short program,

we can use the assemble command to enter the following:

-A 1QD
3S70:Q100 INT SI
3170:0102 INT 50
3q?D:DlD<

When you've finished assembling instructions, all you have to do is press the

Enter key, and the Debug prompt reappears.

Here, the A command told Debug that we wished to enter instructions in

mnemonic form, and the 100 in our command told Debug to start entering

instructions at location lOOh. Since Debug's assemble command makes enter-

ing programs much simpler, we'll use it from now on to enter instructions.

MOVing Data into Registers

Although we've relied on Debug quite a bit so far, we won't always run pro-

grams with it. Usually, a program would set the AH and DL registers itself

before an INT 21h instruction. To do this, we'll learn about another instruction,

MOV. Once we know enough about this instruction, we'll be able to take our

small program to print a character and make a real program—one that we can

execute directly from DOS.
Soon, we'll use the MOV instruction to load numbers into registers AH and

DL. But let's start learning about MOV by moving numbers between registers.

Place 1234h into AX (12h into the AH register, and 34h in AL) and ABCDh into

DX (ABh in DH, and CDh in DL). Now, enter the following instruction with the

A command:

39bF:01G0 fiflD< MOV AH,DL

This instruction moves the number in DL into AH by putting a copy of it into

AH; DL is not affected. If you trace through this one line, you'll find that AX =

CD34h and DX = ABCDh. Only AH has changed. It now holds a copy of the

number in DL.
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Like the BASIC statement LET AH = DL, a MOV instruction copies a

number from the second register to the first, and for this reason we write AH
before DL. Although there are some restrictions, which we'll find out about

later, we can use other forms of the MOV instruction to copy numbers between

other pairs of registers. For example, reset IP and try this:

39fcF:0100 ASC3 MOV BX,AX

You've just moved words, rather than bytes, between registers. The MOV
instruction always works between words and words, or bytes and bytes; never

between words and bytes. It makes sense, for how would you move a word into a

byte?

We originally set out to move a number into the AH and DL registers. Let's

do so now with another form of the MOV instruction:

3HbF:0100 B<05 MOV AH, 02

This instruction moves 02h into the AH register without affecting the AL regis-

ter. The second byte of the instruction, 02h, is the number we wish to move. Try

moving a different number into AH: Change the second byte to another, such as

Clh, with the E 101 command.
Now, let's put all the pieces of this chapter together and build a longer pro-

gram. This one will print an asterisk, *, all by itself, with no need for us to set

the registers (AH and DL). The program uses MOV instructions to set the AH
and DL registers before the INT 21h call to DOS:

3RfcF 010D B<oe MOV AH 02
3qtF 0105 B25A MOV DL 2A
31bF 0104 CD51 INT 51
3qtF 010b CD50 INT 50

Enter the program and check it with the U command (U 100). Make sure IP

points to location lOOh, then try the G command to run the entire program. You
should see the * character appear on your screen:

-G
*

Program terminated normally

Now that we have a complete, self-contained program, let's write it to disk as

a .COM program, so we will be able to execute it directly from DOS. We can run

a .COM program from DOS simply by typing its name. Since our program

doesn't yet have a name, we need to give it one.
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The Debug command N (Name) gives a name to a file before we write it to

disk. Type:

-U WBITESTR.COH

to give the name WRITESTR.COM to our program. This command doesn't

write our file to the disk, though—it simply names the file.

Next, we must give Debug a byte count, telling it the number of bytes in our

program so it will know how much memory we want to write to our file. If you

refer to the unassemble listing of our program, you can see that each instruc-

tion is two bytes long (this won't always be true). We have four instructions, so

our program is 4 * 2 = 8 bytes long. (We could also put Debug's H command to

work and use Hexarithmetic to determine the number of bytes in our program.

TypingH 1 08 100 to subtract the first address after our program, 108, from 100

will produce 8.)

Once we have our byte count, we need somewhere to put it. Debug uses the

pair of registers BX:CX for the length of our file, so putting 8h into CX tells

Debug that our program is eight bytes long. Finally, since our file is only eight

bytes long, we also need to set BX to zero.

Once we've set the name and length of our program, we can then write it to

disk with Debug's W (for Write) command:

-w
Hriting OODfl bytes

We now have a program on our disk called WRITESTR.COM, so let's exit

Debug, with a Q, and look for it. Use the DOS Dir command to list the file:

IR WRITESTR.COB

Volume in drive A has no label
Directory of ft:\

HRITESTR COM
1 File(s)

a b-30-83 lD:D5a
16^35 bytes free

The directory listing tells us that WRITESTR.COM is on the disk and that

it's eight bytes long, just as it should be. To run the program, simply type

Writestr at the DOS prompt. You'll see a * appear on the display. Nothing to

it.
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Writing a String of Characters

As a final example for this chapter, we'll use INT 21h, with a different func-

tion number in the AH register, to write a whole string of characters. We'll

have to store our string of characters in memory and we'll have to tell DOS
where to find the string, so in the process, we'll also learn more about addresses

and memory.
We've already seen that function number 02h for INT 21H prints one charac-

ter on the screen. Another function, number 09h, prints an entire string, and
stops printing characters when it finds a $ symbol in the string. Let's put a

string into memory. We'll start at location 200h, so the string won't become
tangled with the code for our program. Enter the following numbers, using the

instruction E 200:

4& b5 bC bC
tp 5C 50 44
4Y 53 50 bfl

b5 75 b5 5E
34

The last number, 24h, is the ASCII code for a $ sign, and it tells DOS that this is

the end of our string of characters. You'll see what this string says in a minute,

when you run the program we'll enter now:

3RbF DIDO B40S MOV AH as
3RbF 0105 BA0002 MOV DX D5DD
3RbF 0105 CD51 INT 51
3SbF DID? CD50 INT 5D

200h is the address of the string we entered, and loading 200h into the DX reg-

ister tells DOS where to find the string of characters. Check your program with

the U command, then run it with a G command:

Hello, DOS here.
Program terminated normally

Now that we've stored some characters in memory, it's time to meet another

Debug command, D (for Dump). The dump command dumps memory to the

screen somewhat like U lists instructions. Just as when you use the U command,

simply place an address after D to tell Debug where to start the dump. For exam-

ple, type the command D 200 to see a dump of the string you just entered:

-D 500
3SbF:0500 46 bS bC bC bF 5C 5D «-4F 53 50 bfl bS ?5 bS 5E Hello, DOS here.
3qbF:0510 34 5D C3 55 A3 EC 3D SB-EC C7 0b 10 DO 00 00 E6 $]CU.10.1G h
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After each pair of address numbers (such as 396F:0200 in our example), we
see 16 hex bytes, followed by the 16 ASCII characters for these bytes. Thus, on

the first line you see most of the ASCII codes and characters you typed in. The
ending $ sign you typed is the first character on the second line; the remainder

of that line is a miscellaneous assortment of characters.

Wherever you see a period (.) in the ASCII window, it represents either a

period or a special character, such as the Greek letter pi. Debug's D command
displays only 96 of the 256 characters in the IBM PC character set, so a period is

used for the remaining 160 characters.

We'll use the D command in the future to check numbers we enter for data,

whether those data are characters or ordinary numbers. (For more information,

refer to the Debug section in your DOS manual.)

Our string-writing program is complete, so we can write it to the disk. The
procedure is the same one we used to write WRITESTR.COM to disk, except

this time we have to set our program length to a value long enough to include

the string at 200h. Our program begins at line lOOh, and we can see from the

memory dump just performed that the first character (]) following the $ sign

that ends our string is at location 211h. Again, we can use the H command to

find the difference between these two numbers. Find 21 lh - lOOh and store this

value into the CX register, again setting BX to zero. Use the N command to

give the program a name (add the .COM extension to run the program directly

from DOS), then use the W command to write the program and data to a disk

file.

That's it for writing characters to the screen—aside from one final note: You
may have noticed that DOS never sends the $ character. Quite so, because DOS
uses the $ sign to mark the end of a string of characters. That means we can't

use DOS to print a string with a $ in it, but in a later chapter, we'll see how to

print a string with a $ sign or any other special character.

Summary

Our preparations in the first two chapters brought us to the point where we
could work on a real program. In this chapter, we used our knowledge of hex
numbers. Debug, 8088 instructions, and memory to build short programs to

print a character and a string of characters on the screen. In the process we also

learned some new things.

First we learned about INT instructions—not in much detail, but enough for

us to write two short programs. In later chapters, we'll gain more knowledge
about interrupt instructions as we increase our understanding of the 8088
microprocessor tucked under the cover of your IBM PC.
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Debug has, once again, been a useful and faithful guide. We've been relying

heavily on Debug to display the contents of registers and memory, and in this

chapter we used its abilities even more. Debug ran our short programs with the

G command.
We also learned about the INT 20 exit instruction, and the MOV instruction

for moving numbers into and between registers. The exit instruction (INT 20)

allowed us to build a complete program that we could write to the disk and run

directly from DOS without the help of Debug. And the MOV instruction gave us

the ability to set registers before an INT 21 (print) instruction, so we could

write a self-contained program to print one character.

Finally, we rounded out the chapter with the INT 21h function to print an

entire string of characters. We'll use all these instructions heavily throughout

the rest of this book, but as you saw from using the Debug assemble and unas-

semble commands, you won't need to remember the machine codes for these

instructions.

Now we know enough to move on to printing binary numbers. In the next

chapter we'll build a short program to take one byte and print it on the screen

as a string of binary digits (zeros and ones).
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In this chapter we'll build a program to write binary numbers to the screen as

strings of zeros and ones. We have most ofthe knowledge we need, and our work
here will help solidify ideas we've already covered. We'll also add a few instruc-

tions to those we know, including another version of ADD and some instruc-

tions to help us repeat parts of our program. Let's begin by learning something

completely new.

Rotations and the Carry Flag

In Chapter 2, when we first encountered hex arithmetic, we found that add-

ing 1 to FFFFh should give lOOOOh, but doesn't. Only the four hex digits to the

right fit into one word; the 1 doesn't fit. We also found that this 1 is an overflow

and that it is not lost. Where does it go? It is put into something called a flag-^-

in this case, the Carry Flag, or CF. Flags contain one-bit numbers, so they can

hold either a zero or a one. If we need to carry a one into the fifth hex digit, it

goes into the carry flag.

Let's go back to our ADD instruction of Chapter 2 (ADD AX,BX). Put FFFFh
into AX and 1 into BX, then trace through the ADD instruction. At the end of

the second line of Debug's R display, you'll see eight pairs of letters. The last of

these, which can read either NC or CY, is the carry flag. Right now, because

your add instruction resulted in an overflow of 1, you'll see that the carry status

reads CY (Carry). The carry bit is now 1 (or, as we'll say, it's set).

Just to confirm that we've stored a seventeenth bit here (it would be the

ninth bit for a byte addition), ADD one to the zero in AX by resetting IP to lOOh
and tracing through the add instruction again. The carry flag is affected by
each ADD instruction, and this time there shouldn't be any overflow, so the

carry should be reset. And, indeed, the carry does become zero, as indicated by
the NC, which stands for No Carry, in the R display.

(We'll learn about the other status flags later, but if you're curious, you can

find information about them right now under Debug's R command in your DOS
manual.)

Let's review the task of printing a binary number to see how the carry infor-

mation could be useful. We print only one character at a time, and want to pick

off the bits of our number, one by one, from left to right. For example, the first

character we would want to print in the number 1000 0000b would be the one.

If we could move this entire byte left one place, dropping the one into the carry

flag and adding a to the right side, then repeat the process for each succeeding
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CF BL

110 110

Figure 4-1. The RCL BL,1 instruction moves the bits left one position through
the carry flag.

digit, the carry flag would pick off our binary digits. And we can do just this

with a new instruction called BChiRotate Carry Left).

To see how it works, enter the short program:

3RflS:010D DDD3 RCL BL,1

This instruction rotates the byte in BL to the left by one bit (hence the ,1), and it

does so through the carry flag. The instruction is called rotate, because RCL
moves the leftmost bit into the carry flag, while moving the bit currently in the

carry flag into the rightmost bit position (0). In the process, all the other bits

are moved, or rotated, to the left. After enough rotations (17 for a word, nine for

a byte) the bits are moved back into their original positions, and you get back

the original number.

Place B7h in the BX register, then trace through this rotate instruction sev-

eral times. Converting your results to binary, you'll see the following:

Carry

1

1

BL register

B?h
bEh
DDh
BAh

We start here

1 D 1 1 Dill B7h After 9 rotations

In the first rotation, bit 7 of BL moves into the carry flag, the bit in the carry

flag moves into bit of BL, and all the other bits move left one position. Suc-

ceeding moves continue rotating the bits to the left until, after nine rotations,

the original number is back in the BL register.
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We're getting closer to building our program to write binary numbers to the

screen, but we still need a few other pieces. Let's see how we can convert the bit

in the carry flag into the character or 1

.

Adding With the Carry Flag

The normal ADD instruction, for example, ADD AX,BX, simply adds two

numbers. Another instruction, ADC {Add with Carry) adds three numbers: the

two, as before, plus one bit from the carry flag. If you look in your ASCII table,

you'll discover that 30h is the character and 31h is the character 1. So, adding

the carry flag to 30h gives the character when the carry is clear, and 1 when
the carry is set. Thus, if DL = and the carry flag is set (1), executing:

ADC DL,3D

adds DL (0) to 30h CO') and to lh (the carry) to give 31h ('1'). And, with one

instruction we've converted the carry to a character we can print.

At this point, rather than run through an example of ADC, let's wait for

our complete program. Once we've built our program, we'll execute its

instructions one at a time, in a procedure called single -stepping, and through
this, we'll see both how the ADC instruction works and how it fits nicely into

0106:

Decrement
CH

LOOP 0106

Continue

when CH =

INT 20

Figure 4-2. The LOOP Instruction.
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our program. But first we need one more instruction, which we'll use to

repeat our RCL, ADC, and INT 21h (print) instructions eight times: once for

each bit in a byte.

Looping

As noted, the RCL instruction isn't limited to rotating bytes; it can also

rotate entire words. We'll use this ability to demonstrate the LOOP instruction.

LOOP is something like a FOR-NEXT loop in BASIC, but it's not as general. As
with BASIC'S FOR-NEXT loop, however, we need to tell LOOP how many
times to run through a loop. We do this by placing our repeat count in register

CX. Each time through the loop, the 8088 subtracts one from CX, and, when CX
becomes zero, LOOP ends the loop.

Why the CX register? The C in CX stands for Count. We can use this register

as a general-purpose register, but, as you'll see in the next chapter, the CX reg-

ister is used with other instructions when we wish to repeat operations.

Here's a simple program that rotates the BX register left eight times, moving
BL into BH (but not the reverse, since we rotate through the carry flag):

aqtF 01D0 BBC5A3 MOV BX,A3C5
39bF 0103 BROfiOO MOV CX,000fl
31bF 010b D1D3 RCL BX,1
aqtF OlOfl E5FC LOOP 010b
3RbF 010A CD50 INT 50

Our loop starts at 106h (RCL BX,1) and ends with the LOOP instruction. The
number following LOOP (106h) is the address of the RCL instruction. When we
run the program, LOOP subtracts one from CX, then jumps to address 106h if

CX is not zero. The instruction RCL BX,1 (Rotate Carry Left, one place) is exe-

cuted eight times here, because CX is set to eight before the loop.

You may have noted that, unlike the FOR-NEXT loop in BASIC, the LOOP
instruction is at the end of our loop (where we'd put the NEXT statement in

BASIC). And the start of the loop, the RCL instruction at 106h, has no special

instruction like FOR has in BASIC. Ifyou know a language like Pascal, you can

see that the LOOP instruction is somewhat akin to the REPEAT-UNTIL pair of

instructions, where the REPEAT instruction just labels the start of the block of

instructions to loop through.

There are different ways you could execute our small program. If you simply

type G, you won't see any change in the register display, because Debug saves

all the registers before it starts carrying out a G command. Then, if it

encounters an INT 20 instruction (as it will in our program), it restores all the
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registers. Try G. You'll see that IP has been reset to lOOh (where you started),

and that the other registers don't look any different, either.

If you have the patience, you can trace through this program, instead. Tak-

ing it one step at a time, you can watch the registers change at each step:

-B
AX=D00a BX=QQQQ
DS=0CDE ES=OCDE
0CDE:D1DD BBCSA3
-T

ftX=DDDD BX=A3CS
DS=DCDE ES=DCDE
DCDE:0103 B^OADO
-T

AX=Q000 BX=A3C5
DS=DCDE ES=DCDE
DCDE:DlQt D1D3
-T

AX=DD00 BX=<?6A
DS=0CDE ES=QCDE
0CDE:010fl E2FC
-T
AX=0DD0 BX=4?6A
DS=DCDE ES=DCDE
QCDE:aiOfe D1D3

CX=DDQQ DX=DDDD SP=FFEE
SS=QCDE CS=DCDE IP=01Q0

MOV BX,A3C5

CX=QDQD DX=DDDO SP=FFEE
SS=DCDE CS=0CDE IP=0103

MOV CX,DDQ6

CX=0008 DX=DDDD SP=FFEE
SS=DCDE CS=DCDE IP=0!Cb

RCL BX,1

CX=0008 DX=0DD0 SP=FFEE
SS=0CDE CS=DCDE IP=D10a

loop :::=

cx=00d7 dx=00dd sp=ffee
SS=DCDE CS=DCDE IP=010b

RCL BX,1

BP=0000 SI=DD00 DI=0D00
NV OP DI PL NZ NA PO NC

BP=D000 SI=DD00 DI=0DD0
NV OP DI PL NZ NA PO NC

BP=DDOD SI=0000 DI=QDQO
NV OP DI PL NZ NA PO NC

BP=00D0 SI=0000 DI=DDDD
OV OP DI PL NZ NA PO CY

BP=DD00 SI=DDD0 DI=D0DQ
OV OP DI PL NZ NA PO CY

AX=DD00 BX=C551
DS=DCDE ES=0CDE
OCDE:aiOS E2FC
-T

AX=DDDO BX=C551
DS=DCDE ES=DCDE
0CDE:D10A CDeO

cx=aaai dx=oood sp=ffee
ss=dcde cs=dcde ip=0108

loop :::=

CX=DDQQ DX=0DD0 SP=FFEE
SS=DCDE CS=DCDE IP=01DA

INT 2D

BP=OQOD SI=000D DI=DQDD
NV OP DI PL NZ NA PO CY

BP=D0D0 SI=0000 DI=0QDQ
NV OP DI PL NZ NA PO CY

Or, you can type G 10A to execute the program up to, but not including, the INT
20 instruction at lOAh; then the registers will show the result of our program.

If you try this, you'll see CX = and either BX = C551 or BX = C5D1,
depending on the value of the carry flag before you ran the program. The C5 our

program's MOV instruction put into BL at the start is now in the BH register,

but BL doesn't contain A3, because we rotated BX through the carry. Later,

we'll see other ways of rotating without going through the carry. Let's get back
to our goal of printing a number in binary notation.

Writing a Binary Number

We've seen how to strip off binary digits one at a time and convert them to

ASCII characters. If we add an INT 21h instruction to print our digits, our pro-
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gram will be done. Here's the program; the first instruction sets AH to 02 for

the INT 21h function call (recall, 02 tells DOS to print the character in the DL
register):

3985 DIDO B<05 MOV RH,05
3985 0105 B90800 MOV CX.0008
3985 0105 B500 MOV DL,00
3985 010? D0D3 BCL BL,1
3985 0109 80D530 RDC DL,30
3985 010C CD51 INT SI
3985 010E E2F5 LOOP 0105
3985 0110 CD50 INT 50

We've seen how all the pieces work and will put them together now. We rotate

BL (with the instruction RCL BL,1) to pick off the bits of a number, so pick a

number you want printed in binary, load it into the BL register, then run this

program with a G command. After the INT 20h instruction, the G command
restores the registers to the values they had before, so BL still contains the

number you see printed in binary.

The ADC DL,30 instruction in our program converts the carry flag to a zero

or a one character. The instruction MOV DL,0 sets DL to zero first, then the

ADC instruction adds 30h to DL, and then finally adds the carry. Since 30h is

the ASCII code for a 0, the result ofADC DL,30 is the code for when the carry

is clear (NC) or 1 if the carry is set (CY).

Ifyou want to see what happens when you run this program, trace through it.

Keep in mind that you'll need to be a bit careful in single-stepping through it

with the T command. It contains an INT 21h instruction and, as you saw when
we first encountered INT 21h, DOS does a great deal of work for that one

instruction. That's why you can't use T on the INT 21.

You can, however, trace through all the other instructions in this program

except the final INT 20, which won't concern you until the very end. During

your tracing, each time you loop through and reach the INT 21h instruction,

type G 10E. Your G command, followed by an address, will tell Debug to con-

tinue running the program, but to stop when IP becomes the address (10E) you

entered. That is, Debug will execute the INT 21h instruction without your trac-

ing through it, but stops before executing the LOOP instruction at 10E, so you

can return to tracing through the program. (The number you type after G is

known as a breakpoint in the DOS manual; breakpoints are very useful when
you're trying to understand the inner workings of programs.)

Finally, terminate the program when you reach the INT 20h instruction by

typing the G command by itself.
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The Proceed Command

Whether or not you tried out the instructions to trace through our program,

you've seen that an instruction like G 10E allows us to trace over an INT
instruction that starts at, say, lOCh. But that means each time we want to

trace over an INT instruction, we need to find the address of the instruction

immediately following the INT instruction.

As it turns out, there is a Debug command that makes tracing through INT
instructions much simpler. The P (Proceed) command does all the work for us.

To see, trace through the program, but this time, when you reach the INT 21h

instruction, type P, rather than G 10E, as described before.

We'll make heavy use of the P command in the rest of this book, because it's a

very nice way to trace over commands like INT, which call on large programs,

such as the routines inside DOS. Before going on, though, we should mention
one thing about the P command—it wasn't documented in the DOS manuals for

versions of DOS before 3.00. This lack of documentation may have been an
oversight or, more likely, because Microsoft didn't have time to test the P com-

mand completely before delivering version 2.00 of DOS. Whatever the reason,

if you have a version of DOS before 3.00, you should be aware that the P com-
mand may not work all the time—although we've never had any problems
using it.

That's about all we'll do for printing binary numbers as strings of zeros and
ones, but here's a simple exercise for you to practice on: See if you can modify

this program to print a b at the end ofour binary number (Hint: The ASCII code

for b is 62h).

Summary

In this chapter, we had a chance to catch our breath a bit after our hard work
on new concepts in Chapters 1 through 3. So where have we been and what
have we seen?

We had our first encounter with flags and had a look at the carry flag, which
was of special interest here, because it made our job of printing a binary
number quite simple. It did so as soon as we learned about the rotate instruc-

tion RCL, which rotates a byte or word to the left, one bit at a time.

Once we learned about the carry flag and rotating bytes and words, we
tucked a new version of the ADD instruction, ADC, under our belts and were
almost ready to build our program to print a number in binary notation.
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This is where the LOOP instruction entered the scene. By loading the CX
register with a loop count, we could keep the 8088 executing a loop of instruc-

tions a number of times. We set CX to 8, to execute a loop eight times.

That's all we needed to write our program. We'll use these tools again in the

following chapters. In the next chapter we'll print a binary number in hexa-

decimal notation, just as Debug does, so by the time we finish Chapter 5, we'll

have a better idea of how Debug translates numbers from binary to hex. Then,

we'll move on to the other end of Debug: reading the numbers typed in hex and
converting them to the 8088's binary notation.

i
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our program in Chapter 4 was fairly straightforward. We were lucky

because the carry flag made it easy to print a binary number as a string of and

1 characters. Now we'll move on to printing numbers in hex notation. Here, our

work will be a bit less direct, and we'll begin to repeat ourselves in our pro-

grams, writing the same sequence of instructions more than once. But that type

of repetition won't last forever: In Chapter 7, we'll learn about procedures, or

subroutines, that eliminate the need to write more than one copy of a group of

instructions. First, let's learn some more useful instructions and see how to

print numbers in hex.

Compare and Status Bits

In the last chapter, we learned something about status flags and examined
the carry flag, which is represented as either CY or NC in Debug's R display.

The other flags, which are equally useful, keep track of the status for the last

arithmetic operation. There are eight flags altogether, and we'll learn about

them as they are needed.

Recall that CY means the carry flag is 1, or set, whereas NC means the carry

flag is 0. In all flags 1 means true and means false. For example, if a SUB
instruction results in 0, the flag known as the Zero Flag would be set to 1

—

true—and you would see it in the R display as ZR (Zero). Otherwise, the zero

flag would be reset to —NZ (Not Zero).

Let's look at an example that tests the zero flag. We'll use the SUB instruc-

tion to subtract two numbers. If the two numbers are equal, the result will be

zero, and the zero flag will appear as ZR on your display. Enter the following

subtract instruction:

3SbF:DlDQ glDfl SDB ftX,BX

Now, trace through the instruction with a few different numbers, watching for

ZR or NZ to appear in the zero flag. If you place the same number (F5h in the

following example) into both the AX and BX registers, you'll see the zero flag

set after one subtract instruction, and cleared after another:

-B
AX=0QFS BX=D0FS CX=00QD DX=QD0D SP=FFEE BP=D0DD SI=D0D0 DI=0DQQ
DS=0CDE ES=0CDE SS=0CDE CS=DCDE IP=DlQa NV OP DI PL NZ NA PO NC
0CDE:D1DD e^Dfl SDB AX,BX
-T

AX=00D0 BX=D0F5 CX=DDQD DX=D00D SP=FFEE BP=D0DD SI=D0Q0 DI=0Qa0
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DS=OCDE ES=OCDE SS=DCDE CS=DCDE IP=0105 NV UP DI PL ZB NA PE NC
0CDE:0105 3F AAS
-B IP
ip Dice
:1DD
-B
AX=OODO BX=ODFS CX=DDDO DX=ODOO SP=FFEE BP=QQDO SI=ODOD DI=QQOD
DS=DCDE ES=DCDE SS=OCDE CS=OCDE IP=0100 NV OP DI PL ZB NA PE NC
0CDE:D1D0 ZHDA
-T

SOB AX, BX

AX=FFOB BX=00F5 CX=DDOD DX=DOOO SP=FFEE BP=OOOD SI=DQDO DI=DDOD
DS=QCDE ES=DCDE SS=OCDE CS=DCDE IP=0105 NV OP DI NG NZ AC PO CY
OCDErOlDa 3F AAS

59

If we subtract one from zero, the result is FFFFh, which, as we saw in Chap-
ter 1, is — 1 in two's-complement form. Can we tell from the R display whether a

number is positive or negative? Yes, another flag, called the Sign Flag, changes
between NG (Negative) and PL (Plus), and is set to 1 when a number is a nega-

tive two's-complement number.

And another new flag we'll be interested in is the Overflow Flag, which
changes between OV (Overflow) when the flag is 1 and NV (No Overflow) when
the flag is 0. The overflow flag is set if the sign bit changes when it shouldn't.

For example, if we add two positive numbers, such as 7000h and 6000h, we get

a negative number, DOOOh, or - 12288. This is an error because the result over-

flows the word. The result should be positive, but isn't, so the 8088 sets the

overflow flag. (Remember, if we were dealing with unsigned numbers, this

wouldn't be an error, in which case we would ignore the overflow flag.)

Try several different numbers to see if you can set and reset each of these

flags, trying them out until you're comfortable with them. For the overflow,

subtract a large negative number from a large positive number— for example,

7000h - 8000h, since 8000h is a negative number equal to - 32768 in two's-

complement form.

Now we're ready to look at a set of instructions called the conditionaljump
instructions. They allow us to check status flags more conveniently than we've

been able to so far. The instruction JZ (Jump ifZero) jumps to a new address if

the last arithmetic result was zero. Thus, if we follow a SUB instruction with,

say, JZ 15A, a result ofzero for the subtraction would cause the 8088 tojump to,

and start executing, statements at address 15Ah, rather than at the next

instruction.

The JZ instruction tests the zero flag, and, if it's set (ZR), does ajump just like

a jump with the BASIC statement IF A = THEN 100. The opposite of JZ is

JNZ (Jump ifNot Zero). Let's look at a simple example that uses JNZ and sub-

tracts one from a number until the result is zero:

3qtF D1DD 2C01 SOB AL,01
3StF 0105 75FC JNZ 0100
3qt=F 0104 CD20 INT SO
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Put a number like three in AL, so you'll go through the loop a few times, then

trace through this program, one instruction at a time, to see how conditional

branches work. We put the INT 20h instruction at the end so typing G by acci-

dent won't drop off the end of our program: It's a good defensive practice.

You may have noticed that using SUB to compare two numbers, as we just

did, has the potentially undesirable side effect of changing the first number.

Another instruction, CMP (Compare) allows us to do the subtraction without

storing the result anywhere and without changing the first number. The result

is used only to set the flags, so we can use one of the many conditional jump
instructions after a compare. To see what happens, set both AX and BX to the

same number, F5h, and trace through this instruction:

-A 100
0CDE:010D CMP AX,BX
0CDE:0102
-T

AX=00FS BX=00FS CX=0000 DX=0000 SP=FFEE BP=0000 SI=Q000 DI=00DD
DS = 0CDE ES = 0CDE SS = 0CDE CS = 0CDE IP=0105 NV OP DI PL ZR NA PE NC
0CDE:0102 3F AAS

The zero flag is now set (ZR), but F5h remains in both registers.

Let's use CMP to print a single hex digit. We'll create a set of instructions

that use flags to alter the flow of our program, as LOOP did in the last chapter,

in a manner similar to BASIC'S IF-THEN statement. This new set of instruc-

tions will use the flags to test for such conditions as less than, greater than, and
so on. We won't have to worry about which flags are set when the first number
is less than the second; the instructions know which flags to look at.

Printing a Single Hex Digit

Let's start by putting a small number (between and Fh) into the BL regis-

ter. Since any number between and Fh is equivalent to one hex digit, we can

convert our choice to a single ASCII character and then print it. Let's look at

the steps we need to take to do the conversion.

The ASCII characters through 9 have the values 3Oh through 39h; the char-

acters A through F, however, have the values 41h through 46h. Herein lies a

problem: These two groups ofASCII characters are separated by seven charac-

ters. As a result, the conversion to ASCII will be different for the two groups of

numbers (0 through 9 and Ah through Fh), so we must handle each group dif-

ferently. A BASIC program to do this two-part conversion looks like this:

100 IF BL < SH0A
THEN BL = BL + &H30
ELSE BL = BL + S.H37
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Character RSCM Code (Hew

/ 2F

30

1 31

2 32

3 33

4 34
5 35

6 36

7 37
8 38

9 39

3fl

> 3B
< 3C
= 3D
> 3E

? 3F

@ 40

R 41

B 42

C 43

D 44
E 45

F 46

6 47

i

Figure 5-1. Part of the ASCII table showing the characters used by hex digits.

Our BASIC conversion program is fairly simple. Unfortunately, the 8088's

machine language doesn't include an ELSE statement; it's far more primitive than

BASIC is, so we'll need to be somewhat clever. Here's another BASIC program, this

time one that mimics the method we'll use for our machine-language program:

1QD BL = BL + SH3D
110 IF BL >= 6H3A

THEN BL = BL SB?
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You can convince yourself that this program works by trying it with some
choice examples. The numbers 0, 9, Ah, and Fh are particularly good because

these four numbers cover all the boundary conditions—areas where we often

run into problems.

Here, and Fh are, respectively, the smallest and largest single-digit hex

numbers, so by using and Fh, we check the bottom and top of our range. The
numbers 9 and OAh, although next to each other, require two different conver-

sion schemes in our program. By using 9 and OAh, we confirm that we've cho-

sen the correct place to switch between these two conversion schemes.

(Note that we wrote OAh for the number A, rather than AH, so we wouldn't

confuse the number Ah with the register AH. So, we'll often place a zero before

hex numbers in situations that could be confusing. In fact, since it never hurts

to place a zero before a hex number, it's a good idea to place a zero before all hex
numbers.)

The machine-language version of this program contains a few more steps,

but it's essentially the same as the BASIC version. It uses the CMP instruction,

as well as a conditional jump instruction called JL {Jump ifLess Than). Here's

the program to take a single-digit hex number in the BL register and print it in

hex:

3985 0100 B<05 MOV AH, OS
3985 0102 88DA MOV DL,BL
3985 0104 80C530 ADD DL,3D
3985 010? B0FA3A CMP DL,3A
3985 010A ?C03 JL 010F
3985 010C 8DC207 ADD DL,0?
3985 010F CD21 INT SI
3985 0111 CD50 INT 50

The CMP instruction, as we saw before, subtracts two numbers (DL - 3Ah) to

set the flags, but it doesn't change DL. So if DL is less than 3Ah, the JL 10F
instruction skips to the INT 21h instruction at lOFh. Place a single-digit hex
number in BL and trace through this example to get a better feeling for CMP
and our algorithm to convert hex to ASCII. Remember to use either the G com-
mand with a breakpoint or the P command when you run the INT instructions.

Another Rotate Instruction

Our program works for any single-digit hex number, but ifwe wish to print a
two-digit hex number, we need a few more steps. We need to isolate each digit

(four bits, which are often called a nibble) of this two-digit hex number. In this

section, we'll see that we can easily isolate the first, or higher, four bits, and in



Jump if
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0107 CMP DL,3fl

OlOfl JL 010F \

010C ROD DL,07

010F INT 21 * '

Figure 5-2. The JL Instruction.

the next section, we'll encounter a concept known as a logical operation, which
we'll use to isolate the lower four bits—the second of our two hex digits.

To begin, recall that the RCL instruction rotates a byte or a word to the left,

through the carry flag. In the last chapter we used the instruction RCL BL,1, in

which the 1 told the 8088 to rotate BL by one bit. We can rotate by more than

one bit if we want, but we can't simply write the instruction RCL BL,2. (Note:

Although RCL BL,2 isn't a legal 8088 instruction, it works just fine with the

80286 and 80386 processors found in IBM ATs and PS/2s. But since there are

still many IBM PCs, it's best to write your programs for the lowest common
denominator—the older 8088.) For rotations by more than one bit, we must
place a rotate count in the CL register.

The CL register is used here in much the same way as the CX register is used

by the LOOP instruction to determine the number oftimes to repeat a loop. The
8088 uses CL for the number of times to rotate a byte or word, rather than the

CX register, because it makes no sense to rotate more than 16 times; thus the

eight-bit CL register is more than large enough to hold our maximum shift

count.

How does all this tie in with printing a two-digit hex number? Our plan now
is to rotate the byte in DL four bits to the right. To do so, we'll use a slightly

different rotate instruction called SHR (Shift Right). Using SHR, we will be

able to move the upper four bits of our number to the rightmost nibble (four

bits).

We also want the upper four bits ofDL set to zero, so that the entire register

becomes equal to the nibble we are shifting into the right nibble. If we were to

enter SHR DL,1, our instruction would move the byte in DL one bit to the right,

and at the same time, it would move bit into the carry flag, while shifting a

zero into bit 7 (the highest, or leftmost, bit in DL). If we do that three more

times, we'll have just what we want: The upper four bits will end up shifted

right into the lower four bits, while the upper four bits will all have had zeroes
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DL

110 110
Figure 5-3. The SHR DL,1 instruction moves the bits right one position into the

carry flag.

shifted into them. We can do all that shifting in one instruction, using the CL
register as the shift count. By setting CL to four before the instruction SHR
DL,CL, we will ensure that DL becomes equal to the upper hex digit.

Let's see how this works. Place 4 into CL and 5Dh into DL, then enter and

trace through the following SHR instruction:

3965:0100 D2EA SHR DL,CL

DL should now be 05h, which is the first digit in the number 5Dh, and we can

now print this digit with a program like the one we used earlier. Thus, putting

together the pieces we have so far, we can build the following program to take a

number in the BL register and print the first hex digit:

3S65 0100 B<05 MOV AH, as
aqas oioe BflDA MOV DL,BL
BSflS 010< B104 MOV CL,0<
aqas QiOb D5EA SHR DL,CL
3qas 0108 A0C530 ADD DL,30
aqas 010B A0FA3A CMP DL,3A
3RA5 010E 7C03 JL 0113
aqas 0110 6DC5D? ADD DL,0?
3RflS 0113 CD51 INT 21
3R6S 0115 CD20 INT 20

Logic and AND
Now that we can print the first of the two digits in a hex number, let's see

how we can isolate and print the second digit. Here, we'll learn how to clear the

upper four bits of our original (unshifted) number to zero, leaving DL equal to

the lower four bits. It's simple: Set the upper four bits to zero with an instruc-

tion called AND. The AND instruction is one of the logical instructions—those

that have their roots in formal logic. Let's see how AND works.

In formal logic, we can say, "A is true, ifB and C are both true." But if either

B or C is false, then A must also be false. If we take this statement, substitute

one for true and zero for false, then look at the various combinations of A, B,

j
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and C, we can create what is known as a truth table. Here's the truth table for

ANDing two bits together:

AND F T
F F F
T F T

AND D 1

D D

1 1

Down the left and across the top are the values for the two bits. The results for

the AND are in the table, so you see that AND 1 gives 0.

The AND instruction works on bytes and words by ANDing together the bits

of each byte or word that are in the same position. For example, the statement

AND BL,CL successively ANDs bits of BL and CL, bits 1, bits 2, and so on,

and places the result in BL. Let's make this clearer with an example in binary:

1011 D1D1
AND Dill 0110

D011 0100

Furthermore, by ANDing OFh to any number, we can set the upper four bits to

zero:

Dili 1011
AND 0000 1111

0000 1011

Let's put this logic into a short program that takes the number in BL, isolates

the lower hex digit by ANDing OFh to the upper four bits, and then prints the

result as a character. We saw most of the details of this program when we
printed the upper hex digit; the only new detail is the AND instruction.

3965 0100 B<05 MOV AH, 02
3965 010? 66DA MOV DL,BL
3985 010< 80E50F AND DL,0F
3985 DID? 80C530 ADD DL,3D
3985 D10A 60FA3A CMP DL,3A
3965 D10D ?C03 JL 0115
3965 D1DF eoceo? ADD DL,0?
3965 0115 CD51 INT 51
3965 OIK CD50 INT 5D

Try this with some two-digit hex numbers in BL before we move on to put the

pieces together to print both digits. You should see the rightmost hex digit of

your number in BL on the screen.
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Putting It All Together

There really isn't much to change when we put all the pieces together. We
need only change the address of the second JL instruction we used to print the

second hex digit. Here is the complete program:

3^85 D1DD B405 MOV AH, 05
3965 0105 SflDA MOV DL,BL
3SA5 0104 B10< MOV CL,0<
3165 010b D5EA SHE DL.CL
3R65 Diaa AQC530 ADD DL,30
3^65 D1DB S0FA3A CMP DL,3A
3^65 010E 7C03 JL 0113
3R65 DUD S0C507 ADD DL,07
3R85 D113 CD51 INT 51
3165 D115 66DA MOV DL,BL
3RA5 0117 60E50F AND DL,0F
3^85 D11A SOC530 ADD DL,30
3165 011D S0FA3A CMP DL,3A
3165 0150 7C03 JL 0155
3R6S 0155 6DC507 ADD DL,07
3185 0155 CD51 INT 51
3RS5 0157 CD50 INT 50

Once you've entered this program, you'll have to type U 100, followed by U, to

see the entire unassembled listing. Note that we've repeated one set of five

instructions: the instructions at 108h through 113h, and 11Ah through 125h.

In Chapter 7 we'll see how to write this sequence of instructions just once by
using an instruction similar to BASIC'S GOSUB statement.

Summary

In this chapter, we learned more about how Debug translates numbers from

the 8088's binary format to a hex format we can read. What did we add to our

growing store of knowledge?
First, we learned about some of the two-letter flags we see on the right side of

the register (R) display. These status bits give us a great deal of information

about our last arithmetic operation. By looking at the zero flag, for example, we
could tell whether the result of the last operation was zero. We also found we
could compare two numbers with a CMP instruction.

Next, we learned how to print a single-digit hex number. And, armed with

this information, we went on to learn about the SHR instruction, which ena-

bled us to move the upper digit of a two-digit hex number into the lower four

bits of BL. That done, we could print the digit, just as we've done before.

Finally, we found that the AND instruction allowed us to isolate the lower

hex digit from the upper. And, putting all these pieces together, we wrote a pro-

gram to print a two-digit hex number.
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We could have continued on to print a four-digit hex number, but at this

point, we'd find ourselves repeating instructions. Before we try to print a four-

digit hex number, we'll learn about procedures in Chapter 7. Then, we'll know
enough to write a procedure to do the job. By then we'll also be ready to learn

about the assembler—a program that will do much ofour work for us. But now,

let's move on to reading hex numbers.
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Ncow that we know how to print a byte in hex notation, we're going to reverse

the process by reading two characters—hex digits—from the keyboard and con-

verting them into a single byte.

Reading One Character

The DOS INT 21h function call we've been using has an input function,

number 1, that reads a character from the keyboard. When we learned about

function calls in Chapter 4, we saw that the function number must be placed in

the AH register before an INT 21h call. Let's try function 1 for INT 21h. Enter

INT 21h at location OlOOh:

3qbF:QlDD CDE1 INT 51

Then, place Olh into AH and type either G 102 orP to run this one instruction.

Nothing happens? It doesn't seem to—all you'll see is the blinking cursor. But
actually, DOS has paused and is waiting until you press a key (don't do so yet).

Once you press a key, DOS will place the ASCII code for that character into the

AL register. We'll use this instruction later, to read the characters of a hex
number, but right now, let's see what happens when we press a key like the Fl
key.

Try pressing the Fl key. DOS will return a in AL, and you'll also see a semi-

colon (;) appear just after Debug's hyphen prompt.

This is what happened. Fl is one of a set of special keys with extended codes,

which DOS treats differently from the keys representing normal ASCII charac-

ters. (You'll find a table listing these extended codes in Appendix D, as well as

at the end of your BASIC manual.) For each of these special keys, DOS sends

two characters, one right after the other. The first character returned is always
zero, indicating that the next character is the scan code for a special key.

To read both characters, we'd need to execute INT 21h twice. But in our

example, we read only the first character, the zero, and left the scan code in

DOS. When Debug finished with the G 102 (or P) command, it began to read

characters, and the first character it read was the scan code left behind from the

Fl key: namely, 59, which is the ASCII code for a semicolon.

Later, when we develop our Dskpatch program, we'll begin to use these

extended codes to bring the cursor and function keys to life. Until then, we'll

just work with the normal ASCII characters.
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Reading a Single-Digit Hex Number

Let's reverse the conversion used in Chapter 5, when we transformed a sin-

gle-digit hex number to the ASCII code for one of the characters in through 9

or A through F. To convert one character, such as C or D, from a hex character

to a byte, we must subtract either 30h (for through 9) or 37h (for A through F).

Here is a simple program that will read one ASCII character and convert it to a

byte:

3965 0100 B<D1 MOV AH,01
3S65 010S CD51 INT SI
3RflS 0104 SC30 SUB AL,30
3R65 010b 3CDS CMP AL/OR
3RSS OlOfl 7E0S JLE 010C
3RS5 01DA SCO? SUB AL,0?
3SflS D10C CDSO INT SO

Most of these instructions should be familiar now, but there is one new one,

JLE {Jump ifLess than or Equal). In our program, this instruction jumps ifAL
is less than or equal to 9h.

To see the conversion from hex character to ASCII, you need to see the AL
register just before the INT 20h is executed. Since Debug restores the registers

when it executes the INT 20h, you'll need to set a breakpoint, as you did in

Chapter 4. Here, type G IOC, and you'll see that AL will contain the hex
number converted from a character.

Try typing some characters, such as k or a lowercase d, that are not hex dig-

its, to see what happens. You'll notice that this program works correctly only

when the input is one of the digits through 9 or the uppercase letters A
through F. We'll correct this minor failing in the next chapter, when we learn

about subroutines, or procedures. Until then, we'll be sloppy temporarily and
ignore error conditions: We'll have to type correct characters for our program to

work properly.

Reading a Two-Digit Hex Number

Reading two hex digits isn't much more complicated than reading one, but it

does require many more instructions. We'll begin by reading the first digit,

then we'll place its hex value in the DL register and multiply it by 16. To per-

form this multiplication, we'll shift the DL register left four bits, placing a hex

zero (four zero bits) to the right of the digit we just read. The instruction SHL
DL,CL, with CL set to four does the trick by inserting zeros at the right. In fact,

the SHL (Shift Left) instruction is known as an arithmetic shift, because it has
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DL

110 110
Figure 6-1. The SHL DL.l instruction moves the bits left one position into the

carry flag.

the same effect as an arithmetic multiplication by two, four, eight, and so on,

depending on the number (such as one, two, or three) in CL.

Finally, with the first digit shifted over, we'll add the second hex digit to the

number in DL (the first digit * 16). You can see and work through all these

details in this program:

3965 D1QD B4D1 MOV AH, 01
3965 0102 CD51 INT 51
3965 0104 88C5 MOV DL,AL
3965 010b 60EA30 SOB DL,30
3965 0109 80FA09 CMP DL,09
3965 010C ?ED3 JLE 0111
3965 010E 80EA07 SOB DL,0?
3965 0111 B1D4 MOV CL,0<
3965 0113 D5E5 SHL DL,CL
3965 0115 CD51 INT 51
3965 011? 5C30 SOB AL,30
3965 0119 3C09 CMP AL,09
3965 011B 7ED5 JLE 011F
3965 011D eco? SOB AL,0?
3965 011F ooce ADD DL,AL
3965 0151 CD50 INT 50

Now that we've got a working program, it's a good idea to check the boundary
conditions to confirm that it's working properly. For these boundary conditions,

use the numbers 00, 09, 0A, OF, 90, AO, FO, and some other number, such as 3C.

Use a breakpoint to run the program without executing the INT 20h instruc-

tion. (Make sure you use uppercase letters for your hex input.)

Summary

We've finally had a chance to practice what we learned in previous chapters

without being flooded with new information. Using a new INT 21 function

(number 1) to read characters, we developed a program to read a two-digit hex
number. Along the way, we emphasized the need to test programs with all the

boundary conditions.

Now we're ready to wrap up Part I by learning about procedures in the 8088.
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In the next chapter, we'll meet MASM, the macro assembler, and begin to use

assembly language. But before we leave Debug, we'll look at one last set of

examples, and learn about subroutines and a special place to store numbers
called the stack.

Procedures

A procedure is a list of instructions that we can execute from many different

places in a program, rather than having to repeat the same list of instructions

at each place they're needed. In BASIC such lists are called subroutines, but

we'll call them procedures for reasons that will become clear later.

We move to and from procedures just as we do in BASIC. We call a procedure

with one instruction, CALL, which is just like BASIC'S GOSUB. And we return

from the procedure with a RET instruction, which is just like BASIC'S
RETURN.

Here's a simple BASIC program we'll soon rewrite in machine language.

This program calls a subroutine ten times, each time printing one character,

starting with A and ending with J:

ID A = &H41 'ASCII for 'A'
SO FOR I = 1 TO ID
3D GOSUB 1000
40 A = A + 1

50 NEXT I

fc>0 END

1000 PRINT CHR$(A) ;

1200 RETURN

The subroutine, following a common practice in BASIC programs, begins at

line 1000 to leave room for us to add more instructions to the main program
without affecting our subroutine. We'll do the same with our machine-lan-

guage procedure by putting it at 200h, far away from our main program at

lOOh. We'll also replace GOSUB 1000 with the instruction CALL 200h, which

calls the procedure at memory location 200h. The CALL sets IP to 200h, and

the 8088 starts executing the instructions at 200h.

The FOR-NEXT loop of the BASIC program, as we saw in Chapter 4, can be

written as a LOOP instruction. The other pieces of the main program (except

for the INC instruction) should be familiar.
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0105: CALL 0200

0108: LOOP 0105

0200: M0U AH, 02

0202: INT 21

0204: INC DL

0206: RET

Figure 7-1. The CALL and RET Instructions.

3R65 0100 B541 MOV DL,<1
3985 0105 B90A00 MOV CX,000A
3985 0105 EflFflOO CALL 0200
3985 oioa FEC5 INC DL
3985 0108 E5FB LOOP 0105
3985 010A CD50 INT 50

The first instruction places 41h (ASCII for A) into the DL register, because the

INT 21h instruction prints the character given by the ASCII code in DL. The
INT 21h instruction itself is located some distance away, in the procedure at

location 200h. INC DL, the new instruction, increments the DL register. That
is, it adds one to DL, setting DL to the next character in the alphabet. Here's

the procedure you should enter at 200h:

3965:0500 B<05 MOV AH, 05
3965:0505 CD51 INT 51
3965:0504 C3 RET

Recall that the 02h in AH tells DOS to print the character in DL when we exe-

cute the INT 21h instruction. RET is a new instruction that returns to the first

instruction (LOOP) following the CALL in our main program.

Type G to see the output of this program, then single-step through it to see

how it works (remember to use either a breakpoint or the P command to run the

INT 21 instruction).

L
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Address Stack

|SP:100

0098:

0100:

0102:

0104:

0203

0103

Figure 7-2. The Stack Just Before Executing the CALL 400 Instruction.

The Stack and Return Addresses

The CALL instruction in our program needs to save the return address some-

where so the 8088 will know where to resume executing instructions when it

sees the RET instruction. For the storage place itself, we have a portion of

memory known as the stack. And for tracking what's on the stack, there are

two registers that we can see on the R display: the SP {Stack Pointer) register,

which points to the top of the stack, and the SS (Stack Segment), which holds

the segment number.
In operation, a stack for the 8088 is just like a stack of trays in a cafeteria,

where placing a tray on the top covers the trays underneath. The last tray on
the stack is the first to come off, so another name for a stack is LIFO, for Last In,



Procedures—Cousins to Subroutines 77

Address Stack

|SP:98
| ^

t t

0098: 0303

0100: 0203

0102: 0103

0104: •

•

•

Figure 7-3. The Stack Just After Executing the CALL 400 Instruction.

First Out. This order, LIFO, is precisely what we need for retrieving return

addresses after we make nested CALLs like this one:

3RbF 0100 EflFDOO CALL

39S.F oeoo EflFDDD CALL
3SbF 0503 C3 RET

3RbF 0300 EflFDOO CftLL
3RbF 0303 C3 RET

39bF 0<00 C3 RET

0200

0300

0400
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Here, the instruction at lOOh calls one at 200h, which calls one at 300h,

which calls one at 400h, where we finally see a return (RET) instruction. This

RET returns to the instruction following the previous CALL instruction, at

300h, so the 8088 resumes executing instructions at 303h. But there it

encounters a RET instruction at 303h, which pulls the next oldest address

(203h) off the stack. So the 8088 resumes executing instructions at 203h, and so

on. Each RET pops the topmost return address off the stack, so each RET fol-

lows the same path backward as the CALLs did forward.

Try entering a program like the preceding one. Use multiple calls and trace

through the program to see how the calls and returns work. Although the pro-

cess may not seem very interesting right now, there are other uses for this

stack, and a good understanding ofhow it works will come in handy. (In a later

chapter, we'll go looking for the stack in memory.)

PUSHing and POPping

The stack is a useful place to store words of data for a while, provided we're

careful to restore the stack before a RET instruction. We've seen that a CALL
instruction pushes the return address (one word) onto the top of the stack, while

a RET instruction pops this word off the top of the stack, loads it into the IP

register, and exposes the word that was lying underneath it. We can do much
the same thing with the instructions PUSH and POP, which allow us to push

and pop words. When might we want to do this?

It's often convenient to save the values of registers at the beginning of a pro-

cedure and restore them at the end, just before the RET instruction. Then we're

free to use these registers in any way we like within the procedure, as long as

we restore their values at the end.

Programs are built from many levels of procedures, with each level calling

the procedures at the next level down. By saving registers at the beginning of a

procedure and restoring them at the end, we remove unwanted interactions

between procedures at different levels, and this makes our job of programming
much easier. You'll see more about saving and restoring registers in Chapter

13, when we talk about modular design. But right now, here's an example
(don't enter it) that saves and restores CX and DX:

3RfcF:0500 51 POSH CX
3qbF:0£01 52 PUSH DX
3qfcF:0205 Bqoaoo MOV cx,oooa
3Rfc,F:0505 EfiFAOO CALL 0300
3qtF:oaoa FEC5 INC DL
3qt.F:020A E2FS LOOP 0505
3qbF:020C 5A POP DX
39bF:050D 5R POP CX
3qtF:D2QE C3 RET
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Notice that the POPs are in reverse order from the PUSHes, because a POP
removes the word placed most recently on the stack, and the old value of DX is

on top of the old CX.
Saving and restoring CX and DX allows us to change these registers in the

procedure that begins at 200h, but without changing the values used by any
procedure that calls this one. And once we've saved CX and DX, we can use

these registers to hold local variables—variables we can use within this proce-

dure without affecting the values used by the calling program.

We'll use such local variables to simplify our programming tasks. As long as

we're careful to restore the original values, we won't have to worry about our

procedures changing any of the registers used by the calling program. This will

become clearer in the next example, which is a procedure to read a hex number.

Unlike the program in Chapter 6, our program now will allow only valid char-

acters such as A, but not K.

Reading Hex Numbers with More Class

We want to create a procedure that keeps reading characters until it receives

one it can convert to a hex number between and Fh. We don't want to display

any invalid characters, so we'll sift our input by using a new INT 21h function,

number 8, that reads a character but doesn't pass it on to the screen. That way
we can echo (display) characters only if they are valid.

Place 8h into the AH register and run through this instruction, typing an A
just after you type G 102:

3985:0100 CD51 INT 51

The ASCII code for A (41h) is now in the AL register, but the A didn't appear on

the screen.

Using this function, our program can read characters without echoing them
until it reads a valid hex digit (0 through 9 or A through F), which it will then

echo. Here is the procedure to do this and to convert the hex character to a hex

number:

3965:0500 55
3985:0501 B<08
3965:0503 CD51
3965:0505 3C30
3965:0507 75FA
3965:0509 3C<b
3985.-050B 7?Fb
3965:050D 3C39
3965.-050F 770A
3965:0511 B405
3965:0513 66C5
3965:0515 CD51

PUSH DX
MOV AH, 06
INT 51
CMP AL,30
JB 0503
CMP AL,<b
JA 0503
CMP AL,39
JA 051B
MOV AH, 05
MOV DL, AL
INT 51



80 Peter Norton's Assembly Language Book for the IBM PC, Revised & Expanded

3965 Dei? 5C30 SUB ftL,30
3985 0519 5A POP DX
3985 051A C3 RET
3965 051B 3C41 CMP AL,<1
3985 051D 75E< JB 0503
3965 051F B<05 MOV AH, 05
3965 0221 66C5 MOV DL,AL
3965 0553 CD51 INT 51
3965 0255 5C37 SUB AL,3?
3965 055? 5A POP DX
3965 0256 C3 RET

The procedure reads a character in AL (with the INT 21h at 203h) and checks

to see if it's valid with the CMPs and conditional jumps. Ifthe characterjust read

is not a valid character, the conditional jump instructions send the 8088 back to

location 203, where the INT 21h reads another character. (JA is Jump ifAbove,

and JB is Jump if Below; both treat the two numbers as unsigned numbers,

whereas the JL instruction we used earlier treated both as signed numbers.)

By line 211h, we know that we have a valid digit between and 9, so we sub-

tract the code for the character and return the result in the AL register,

remembering to pop the DX register, which we saved at the beginning of the

procedure. The process for hex digits A through F is much the same. Note that

we have two RET instructions in this procedure; we could have had more, or we
could have had just one.

Here is a very simple program to test the procedure:

3965:0100 E6FD00 CALL 0500
3965:0103 CD20 INT 20

As you've done before, use either the G command, with a breakpoint, or use the

P command. You want to execute the CALL 200h instruction without execut-

ing the INT 20h instruction, so you can see the registers just before the pro-

gram terminates and the registers are restored.

You'll see the cursor at the left side ofthe screen, waiting patiently for a char-

acter. Type k, which isn't a valid character. Nothing should happen. Now, type

any of the uppercase hex characters. You should see the character's hex value

in AL and the character itself echoed on the screen. Test this procedure with

the boundary conditions: 'V (the character before zero), 0, 9, ':' (the character

just after 9), and so on.

Now that we have this procedure, the program to read a two-digit hex

number, with error handling, is fairly straightforward:

3985 0100 E8FD00 CALL 0500
3985 0103 88C5 MOV DL, AL
3985 0105 B104 MOV CL,0<
3985 DID? D5E5 SHL DL,CL
3985 0109 E8F400 CALL D500
3985 010C 00C2 ADD DL,AL
3985 010E B405 MOV AH, 05
3985 0110 CD51 INT 51
3985 0115 CD50 INT 50
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You can run this program from DOS, since it reads in a two-digit hex number
and then displays the ASCII character that corresponds to the number you
typed in.

Aside from the procedure, our main program is much simpler than the ver-

sion we wrote in the last chapter, and we haven't duplicated the instructions to

read characters. We did add error handling, though, and even if it did compli-

cate our procedure, it also ensures that the program now accepts only valid

input.

Here we can also see the reason for saving the DX register in the procedure.

The main program stores the hex number in DL, so we don't want our proce-

dure at 200h to change DL. On the other hand, the procedure at 200h must use

DL itself to echo characters. So, by using the instruction PUSH DX at the

beginning of the procedure, and POP DX at the end, we save ourselves from

problems.

From now on, to avoid complicated interactions between procedures, we'll be

very strict about saving any registers used by a procedure.

Summary

Our programming is becoming more sophisticated. We've learned about pro-

cedures, which allow us to reuse the same set of instructions without rewriting

them each time. We've also discovered the stack and seen that a CALL stores a

return address on the top of the stack, while a RET instruction returns to the

address on the top of the stack.

We saw how to use the stack for more than just saving return addresses. We
used the stack to store the values of registers (with a PUSH instruction) so we
could use them in a procedure. By restoring the registers (with a POP instruc-

tion) at the end of each procedure, we avoided unwanted interactions between

procedures. By always saving and restoring registers in procedures that we
write, we can CALL other procedures without worrying about which registers

are used within the other procedure.

And finally, armed with this knowledge, we moved on to build a better pro-

gram to read hex numbers—this time, with error checking. The program we
built here is similar to one we'll use in later chapters, when we begin to develop

the Dskpatch program.

Now we're ready to move on to Part II, where we'll learn how to use the

assembler. In the next chapter, we'll see how to use the assembler to convert a

program to machine language. We'll also see that there won't be any reason to

leave room between procedures, as we did in this chapter, when we put our pro-

cedure way up at location 200h.
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A,-t long last we're ready to meet the assembler, a DOS program that will

make our programming much simpler. From now on, we'll write mnemonic,
human-readable instructions directly, using the assembler to turn our pro-

grams into machine code.

Of necessity, this chapter and the next will be somewhat heavy with details

on the assembler, but learning these details will be well worth the effort. Once
we know how to use the assembler, we'll get back on course in learning how to

write assembly language programs. Meanwhile, let's jump right in.

A Program Without Debug

Up to this point, we've just typed DEBUG, and then typed in our program
instructions. Now we're about to leave Debug behind and to write programs

without it, and we'll have to use either an editor or a word processor to create

text, or human-readable, files containing our assembly language instructions.

We begin by creating a source file—the name for the text version of an assem-

bly language program. We'll create a source file now, for the program we built

and named Writestr back in Chapter 3. To refresh your memory, here is our

Debug version:

aqtF Q1DD B405 MOV AH 05
39bF 0105 B5E>1 MOV DL EA
aq^F 0104 CD51 INT 51
3RfcF 010b CD50 INT 50

Use your editor to enter the following lines of code into a file named
WRITESTR.ASM (the extension .ASM means this is an assembler source file).

Here, as with Debug, lowercase works just as well as uppercase, but we'll con-

tinue to use uppercase letters to avoid confusion between the number 1 (one)

and the lowercase letter 1 (el):

.MODEL SMALL

.CODE

MOV AH,5h
MOV DL,5Ah
INT 51h
INT 50h

END

This is the same program we created in Chapter 3, but it contains a few nec-

essary changes and additions. Ignoring for now the three new lines in our
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source file, notice that there is an h after each hex number. This h tells the

assembler that the numbers are in hexadecimal. Unlike Debug, which assumes
all numbers are in hexadecimal, the assembler assumes all numbers are deci-

mal. We tell it otherwise by placing an h after any hexadecimal number.

Note: Here's a warning before we move on: The assembler

can become confused by numbers, such as ACh, that look like a

name or an instruction. To avoid this, always type a zero before

a hex number that begins with a letter. For example, type

OACh—not ACh.

This is a label

l

MOLI DLHCh

This is a number

MOLI DL,ARCh

The tells MflSM

that this is a number

Figure 8-1: You must put a before hexadecimal numbers that start with a

letter, otherwise the assembler will treat the number as a name.
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Watch what happens when we assemble a program with ACh, rather than

OACh. Here's the program:

.MODEL SMALL

.CODE

MOV DL,ACh
INT 50h

END

Here's the output:

A>MASM TEST;
Microsoft (B) Macro Assembler Version 5. ID
Copyright (C) Microsoft Corp ISfll, ISflfl. All rights reserved.

test.ASM(<) : error A^OO^: Symbol not defined: ACH

^R&^S + 554473 Bytes symbol space free

Warning Errors
1 Severe Errors

A>

Definitely not encouraging. But changing the ACh to OACh satisfies the assem-

bler.

Also note the spacing of the commands in our assembler program. We used

tabs to align everything neatly and make the source text more readable. Com-
pare the program you entered with this version:

.MODEL SMALL

.CODE
MOV AH,2h
MOV DL,5Ah
INT Slh
INT ZOh
END

A bit of a mess; the assembler doesn't care but we do.

Now let's return to the three new lines in our source file. The three new lines

are all directives (also sometimes called pseudo-ops, or pseudo-operations).

They're called directives because, rather than generate instructions, they just

supply information and directions to the assembler. The END pseudo-op marks
the end of the source file, so the assembler knows it's done when it sees an END.
Later on, we'll see that END is useful in other ways, too. But right now, let's put

aside any further discussion of it or the other two directives and see how to use

the assembler.
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Creating Source Files

Even though you've entered the lines of WRITESTR.ASM, there's one more
consideration before we move on to actually assemble our program. The assem-

bler can use source files that contain standard ASCII characters only. Ifyou are

using a word processor, bear in mind that not all word processors write disk

files using only the standard ASCII characters. WordStar is one such culprit;

Microsoft Word is another. For both word processors, use the non-document, or

unformatted, mode when you save your files.

Before you try assembling WRITESTR.ASM, make sure it's still ASCII.

From DOS, type:

A>TTPE WRITESTR.ASM

You should see the same text you entered. If you see strange characters in your

program (many word processors put additional formatting information into the

file, which the assembler treats as errors) you may have to use a different editor

or word processor to enter programs. You'll also need a blank line after the

END statement in your file.

Now, let's begin to assemble Writestr. (If you're using Borland's Turbo

Assembler, type TASM whenever you see MASM; if you're using SLR Systems'

OPTASM, type OPTASM in place of MASM.) Be sure to type the semicolon:

A>HASM WRITESTR;
Microsoft (R) Macro Assembler Version j.ID
Copyright (C) Microsoft Corp ISfll, IRflfi. All rights reserved.

41655 + 511353 Bytes symbol space free

D Warning Errors
Severe Errors

A>

We're not done yet. At this point, the assembler has produced a file called

WRITESTR.OBJ, which you'll now find on your disk. This is an intermediate

file, called an object file. It contains our machine-language program, along with

a lot of bookkeeping information used by another DOS program called the

Linker.

Linking

Right now, we want the linker to take our .OBJ file and create an .EXE ver-

sion of it. Copy LINK.EXE from your DOS disk to the disk containing your
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source file and the assembler (or onto your hard disk). Then, link

WRITESTR.OBJ by typing:

A>LINK HBITESTR;

Microsoft (E) Overlay Linker Version 3 . b<
Copyright (C) Microsoft Corp 1183-1168. All rights reserved.

LINK: warning L4051: no stack segment

A>

Even though the linker warns us that there is no stack segment, we don't need

one right now. After we learn how to add more of the trappings, we'll see why
we might want a stack segment.

Now we have our .EXE file, but this still isn't the last step. We have one more
step—to create a .COM version, which is just what we created with Debug.

Again, you'll see later why we need all these steps. For now, let's create a .COM
version of Writestr.

For our final step, we need the program EXE2BIN.EXE from the DOS sup-

plemental disk. Exe2bin, as its name implies, converts an .EXE file to a .COM,
or binary (bin) file. There's a difference between .EXE and .COM files, but we
won't deal with the differences until Chapter 11; for now let's just create the

.COM file. Type:

A>EXE5BIN WRITESTR HRITESTR.COM

A>

The response didn't tell us very much. To see whether Exe2bin worked, let's list

all the Writestr files we've created so far:

A>DIR WRITESTR.*

Volume in drive A has no label
Directory of A:\

WRITESTR ASM ?t 4-57-81 4:<1p
WRITESTR OBJ 105 4-57-81 <:S5p
WRITESTR EXE 550 4-57-81 4:55p
WRITESTR COM fl 4-57-81 4 : 55p

4 File(s) 565756 bytes free

A>

This is quite a number of files, including WRITESTR.COM. Type writestr to

run the .COM version and verify that your program functions properly (recall

that it should print an asterisk on your screen). The exact sizes DOS reports for

the first three files may vary a bit.

The results may seem a little anticlimactic, since we are seemingly back

where we were in Chapter 3, but we aren't: We've gained a great deal. It will all
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become much clearer when we deal with calls again. Notice that we never once

had to worry about where our program was put in memory, as we did about IP

in Debug. The addresses were all taken care of for us.

Very soon you'll come to appreciate this feature of the assembler: It will

make programming much easier. For example, recall that in the last chapter

we wasted space by having our main program at lOOh and the procedure we
called at 200h. We'll see that using the assembler allows us to place the proce-

dure immediately after the main program without any gap. But first, let's see

how our program looks to Debug.

Back in Debug

Let's read our .COM file into Debug and unassemble it to see how Debug
reconstructs our program from the machine code ofWRITESTR.COM:

A>DEBDG HRITESTR.COM
-0
3q?F :D1DD B<0E MOV AH, 05
3q?F::0105 B55A MOV DL, 3k
aq?F :010< CD51 INT SI
aq?F :010b CD50 INT 20

Exactly what we had in Chapter 3. This is all Debug sees in WRITESTR.COM.
The END and the two lines at the start of our source file didn't make it through

at all. What happened to them?
These instructions don't appear in the final machine-language version of the

program because they are directives, and directives are for bookkeeping only.

The assembler takes care of much bookkeeping at the cost of some extra lines.

We'll make good use of directives to simplify our job and we'll see how they

affect our program when we take a closer look at segments in Chapter 11.

Comments

Since we are no longer operating directly with Debug, we're free to add more

to our program that the assembler sees but won't pass on to the 8088. Perhaps

the most important such additions we can make are comments, which are

invaluable in making a program clear. In assembly language programs, we
place comments after a semicolon, which works like a single quotation mark (')
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in BASIC. The assembler ignores anything on the line after a semicolon, so we
can add anything we want. Ifwe add comments to our brief program:

;Select DOS function 2, character output
;Load the ASCII code for '*' to be printed
;Print it with INT Slh
;And exit to DOS

MODEL SMALL
CODE

MOV AH, 5h
MOV DL,?Ah
INT 21h
INT aoh

END

we see quite an improvement—we can understand this program without hav-

ing to think back and remember what each line means.

Labels

To round off this chapter, let's look at another bookkeeping feature of the

assembler that makes programming smoother: labels.

Until now, when we wanted to jump from one part of a program to another

with one of the jump commands, we had to know the specific address we were

jumping to. In everyday programming, inserting new instructions forces us to

change the addresses in jump instructions. The assembler takes care of this

problem with labels—names we give to the addresses of any instructions or

memory locations. A label takes the place of an address. As soon as the assem-

bler sees a label, it replaces the label with the correct address before sending it

on to the 8088.

Labels can be up to 31 characters long and can contain letters, numbers, and
any ofthe following symbols: a question mark (?), a period ( .), an at symbol (@),

0111

010C JLE ^MrfFl

010E SUB DL

DIGIT1: 0111 MOU CL

0113 SHL DL,1

Figure 8-2. The assembler substitutes addresses for the labels that we write.
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an underline (_), or a dollar sign ($). They can't start with a digit (0 through 9),

and a period can be used only as the first character.

As a practical example, let's take a look at our program from Chapter 6 that

reads a two-digit hex number. It contains two jumps, JLE 0111 and JLE 01 IF.

Here's the old version:

3965 D1DD B<01
3965 0102 CD21
3965 0X04 66Ce
3985 010b 60EA30
3965 0109 60FA09
3935 010C 7E03
3965 010E 60EAO?
3965 0111 B104
3965 0113 D2E2
3965 0115 CD21
3965 0117 5C30
3965 0119 3C09
3965 011B 7E02
3965 011D 2C07
3965 011F 00C2
3965 0121 CD20

MOV AH, 01
INT 51
MOV DL,AL
SUB DL,30
CMP DL,09
JLE 0111
SUB DL,07
MOV CL,0<
SHL DL,CL
INT 51
SUB AL,30
CMP AL,09
JLE 011F
SUB AL,07
ADD DL,AL
INT ao

It's certainly not obvious what this program does, and if it's not fresh in your

mind, you may have to work a little to understand the program again. Let's add

labels and comments to clarify its function:

-MODEL SMALL
.CODE

MOV AH,lh
INT 21h
MOV DL, AL
SUB DL,30h
CMP DL,9h
JLE DIGIT1
SUB DL,7h

DIGIT1:
MOV CL,4h
SHL DL,CL
INT aih
SUB AL,30h
CMP AL,9h
JLE DIGIT8
SUB AL,7h

DIGIT?:
ADD DL, AL
INT 20h

Select DOS function 1, character input
Read a character, and return ASCII code in AL
Move ASCII code into DL
Subtract 30h to convert digit to - 9

Was it a digit between and 9?
Yes, we have the first digit (four bits)
No, subtract 7h to convert letter A - F

Prepare to multiply by lb
Multiply by shifting, becomes upper four bits
Get next character
Repeat conversion
Is it a digit 0-9?
Yes, so we have the second digit
No, subtract ?h

ADD second digit
And exit

END

The labels here, DIGIT1 and DIGIT2, are of a type known as NEAR labels,

because a colon (:) appears after the labels when they're defined. The term
NEAR has to do with segments, which we'll talk about in Chapter 11, along

with the .MODEL, and .CODE directives. Here, if you assembled the preceding

program and then unassembled it with Debug, you'd see DIGIT1 replaced by

Olllh and DIGIT2 replaced by OllFh.
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Summary

This has been quite a chapter. It's as if we've stepped into a new world, and,

in a sense, we have. The assembler's much simpler to work with than Debug
was, so we can now begin to write real programs, because the assembler does

much of the bookkeeping for us.

What have we learned here? We began by learning how to create a source file

and then go through the steps of assembling, linking, and converting it from an

.OBJ file to an .EXE, and then a .COM file, using a simple program from Chap-

ter 3. The assembly language program we created contained a few directives,

which we've never seen before. But they'll become familiar once we've become
more comfortable using the assembler. In fact, we'll place .MODEL, .CODE,
and END directives in all our programs from now on, since we need them, even

though we won't really see the reason why until Chapter 11.

Next, we learned about comments. You may have wondered how we could

survive without comments. We won't from now on. Comments add so much to

the readability of programs that we won't skimp on them.

Finally came labels, to make our programs even more readable. We'll use all

these ideas and methods throughout the rest of this book. Let's move on to the

next chapter and see how the assembler makes procedures easier to use.
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N<ow that we've met the assembler, let's become a little more comfortable

with writing assembly language programs. In this chapter, we'll return to the

subject of procedures. You'll see how we can write procedures much more easily

with the help ofour hard-working assembler. Then, we'll move on to build some
useful procedures, which we'll use when we begin to develop our Dskpatch pro-

gram a few chapters from now.

We'll begin with two procedures to print a byte in hexadecimal. Along the

way, we'll meet several directives. But, like .MODEL, .CODE, and END in the

last chapter, we'll leave them pretty much undefined until Chapter 11, where
we'll learn more about segments.

The Assembler's Procedures

When we first learned about procedures, we left a large gap between the

main program and its procedures, so that we'd have room for changes without

having to worry about our main program overlapping a procedure. But now we
have the assembler, and since it does all the work of assigning addresses to

instructions, we no longer need to leave a gap between procedures. With the

assembler, each time we make a change, we just assemble the program again.

In Chapter 7, we built a small program with one CALL. The program did

nothing more than print the letters A through J, and it looked like this:

3S85 100 B541 MOV DL,41
aqas 0105 BqOAOO MOV CX,000A
aqas 0105 EBFB00 CALL 0500
asas D1D8 FEC5 INC DL
aqas 010A E5Fq LOOP 0105
aqas 010C CD50 INT 50

3185 0500 B405 MOV AH, 05
3R85 0505 CD51 INT 51
3=185 0504 C3 RET

Let's turn this into a program for the assembler. It will be hard to read with-

out labels and comments, so we'll add those embellishments to make our pro-

gram far more readable:

Listing 9-1. The Program PRINTAJ.ASM

.MODEL

.CODE
SMALL

PRINT_A_J PROC
MOV DL, 'A'
MOV CX,10

;Start with the character A
;Print 10 characters, starting with A



Procedures and the Assembler 97

PRINT_LOOP:
CALL WRITE_CHAR ;Print character
INC DL ;Hove to the next char in the alphabet
LOOP PBINT_LOOP ;Continue for ID characters
INT 20h ;Return to DOS

PRINT_A_J ENDP

HRITE_CHAR PROC
MOV AH, 5 ;Set function code for character output
INT 2lh ;Print the character already in DL
RET ;Return from this procedure

HRITE_CHAR ENDP

END PRINT_A_J

There are two new directives here: PROC, and ENDP. PROC and ENDP are

directives for defining procedures. As you can see, both the main program and
the procedure at 200h are surrounded by matching pairs of the directives

PROC and ENDP.
PROC defines the beginning of a procedure; ENDP defines the end. The label

in front of each is the name we give to the procedure they define. Thus, in the

main procedure, PRINT_A_J, we can replace our CALL 200 instruction with

the more readable CALL WRITE_CHAR. Just insert the name of the procedure

and the assembler assigns the addresses.

Since we have two procedures, we need to tell the assembler which to use as

the main procedure—where the 8088 should start executing our program. The
END directive takes care of this detail. By writing END PRINT^AJ, we've

told the assembler that PRINT_A_J is the main procedure. Later in our work,

we'll see that the main procedure can be anywhere. Right now, however, we are

dealing with .COM files, and we'll need to place the main procedure first in our

source file.

You're ready to go, so if you haven't done so yet, enter the program into a file

called PRINTAJ.ASM and generate the .COM version, using the same steps

you did in the last chapter (remember to substitute TASM or OPTASM for

MASM if you're using either the Turbo Assembler or OPTASM):

BASH PBINTAJ;
LINK PRIRTAJ;
EXE2BIN PRINTAJ PRIRTAJ. COH

Then give Printaj a try. (Make sure you've run Exe2bin before you run Printaj.

Otherwise, you'll end up running the .EXE version of Printaj, which will crash

when it encounters the INT 20h instruction, for reasons we'll see in Chapter 11.)

Note: Ifyou encounter any error messages that you don't rec-

ognize, check that you've typed in the program correctly. If that

fails, you might want to check Appendix C, which lists some
common errors.



98 Peter Norton's Assembly Language Book for the IBM PC, Revised & Expanded

When you're satisfied, use Debug to unassemble the program and see how
the assembler fits the two procedures together. Recall that we can read a partic-

ular file into Debug by typing its name as part of the command line. For exam-

ple, we can type DEBUG PRINTAJ.COM, and when we do, we see:

-D
3985 DIDO B5<1 MOV DL,<1
3985 0105 BqQAOO MOV CX.OOOA
aqas D1D5 ESObOO CALL 01DE
aqas Dioa FEC5 INC DL
3R8S D1DA E5F9 LOOP 0105
sqas D1DC CD5D INT 50
3qas 01DE B405 MOV AH, 05
aqas QUO CD51 INT 51
3R8S one C3 RET

Our program is nice and snug, with no gap between the two procedures.

The Hex-Output Procedures

We've seen hex-output procedures twice before: once in Chapter 5, where we
learned how to print a number in hex, and again in Chapter 7, where we saw
how to simplify the program, using a procedure to print one hex digit. Now
we're going to add yet another procedure to print one character. Why? Well,

let's just call it foresight.

By using a central procedure to write a character to the screen, we can

change the way this procedure writes characters without affecting the rest of

the program. We will change it several times.

Enter the following program into the file VIDEOJO.ASM:

Listing 9-2. The New File VIDEOJO.ASM

.MODEL SMALL
-CODE

TEST_WRITE_HEX PROC
MOV DL,3Fh
CALL WRITE_HEX
INT 50h

TEST_WRITE_HEX ENDP

;Test with 3Fh

; Return to DOS

PUBLIC WRITE_HEX

; This procedure converts the byte
; the two hex digits at the current

in the DL register
cursor position.

to hex and writes ;

; On Entry: DL Byte to be converted to hex.

; Oses

:

WRITE_HEX_DIGIT

WRITE_HEX PROC
POSH CX
POSH DX

;Entry point
;Save registers used in this procedure



Procedures and the Assembler 99

0100 MOLI 0L,41

0102 MOLI CH,0R

0105 CALL 010C
0108 LOOP 0105
0100 INT 20

010C MOU RH,02

010E INT 21

0110 INC DL

0112 RET

Figure 9-1. MASM assembles separate procedures without a gap.

MOV DH,DL
MOV CX,<
SHR DL,CL
CALL WRITE HEX DIGIT
MOV DL,DH
AND DL,DFh
CALL WRITE HEX DIGIT
POP DX
POP CX
RET

WRITE_HEX ENDP

PUBLIC WRITE HEX DIGIT

;Make a copy of byte
;Get the upper nibble in DL

;Display first hex digit
;Get lower nibble into DL
;Remove the upper nibble
;Display second hex digit

This procedure converts the lower A bits of DL to a hex digit and
writes it to the screen.

On Entry: DL Lower A bits contain number to be printed
in hex.

Uses: WRITE CHAR

WRITE HEX DIGIT PROC
PUSH DX
CMP DL,10
JAE HEX LETTER
ADD DL, "0"
JMP Short WRITE DIGIT

HEX LETTER:
ADD DL, "A"-10

;Save registers used
;Is this nibble <1Q?
;No, convert to a letter
;Yes, convert to a digit
;Now write this character

;Convert to hex letter
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Listing 9-2. continued

;Display the letter on the screen
;Eestore old value of DX

WRITE DIGIT:
CftLL WRITE CHRR
POP DX
BET

WRITE_HEX_DIGIT I s : E

PUBLIC WRITE CHRR

; This procedure prints a character on the screen using the DOS ;

; function call.

; On Entry: DL Byte to print on screen.

WRITE CHRR PROC
POSH RX
MOV RH,5 ;Call for character output
INT 51h ;Output character in DL register
POP RX •.Restore old value in RX
RET ;find return

WRITE_CHRR END?

END TEST._WRITE_.HEX

The DOS function to print characters treats some characters specially. For

example, using the DOS function to output 07 results in a beep, without print-

ing the character for 07, which is a small diamond. We'll see a new version of

WRITE_CHAR that will print a diamond in Part III, where we'll learn about

the ROM BIOS routines inside your IBM PC. For now, though, we'll just use the

DOS function to print characters.

The new directive PUBLIC is here for future use: We'll use it in Chapter 13,

when we learn about modular design. PUBLIC simply tells the assembler to

generate some more information for the linker. The linker allows us to bring

separate pieces of our program, assembled from different source files, together

into one program. And PUBLIC informs the assembler that the procedure

named after the PUBLIC directive should be made public or available to proce-

dures in other files.

Right now, Video_io contains the three procedures to write a byte as a hex
number, and a short main program to test these procedures. We'll be adding

many procedures to the file as we develop Dskpatch, and by the end of this

book, VIDEO_IO.ASM will be filled with many general-purpose procedures.

The procedure TEST_WRITE_HEX that we've included does just what it

says: It's here to test WRITE_HEX, which, in turn, uses WRITEJHEX_DIGIT
and WRITE_CHAR. As soon as we've verified that these three procedures are

all correct, we'll remove TEST_WRITE_HEX from VIDEOJO.ASM.
Create the .COM version of Video_io, and use Debug to thoroughly test

WRITE_HEX. Change the 3Fh at memory location lOlh to each of the bound-
ary conditions we tried in Chapter 5, then use G to run TEST_WRITE_HEX.

We'll use many simple test programs to test new procedures we've written. In

this way, we can build a program piece by piece, rather than try to build and
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debug it all at once. This incremental method is much faster and easier, since

we can confine bugs to just the new code.

The Beginnings of Modular Design

Note that ahead of each procedure in Video_io we've included a block of com-

ments briefly describing the function of each procedure. More important, these

comments tell which registers the procedure uses to pass information back and
forth, as well as what other procedures it uses. As one feature of our modular
approach, the comment block allows us to use any procedure by looking at the

description. There's no need to relearn how the procedure does its work. This

also makes it fairly easy to rewrite one procedure without having to rewrite

any of the procedures that call it.

We've also used PUSH and POP instructions to save and restore any regis-

ters we use within each procedure. We'll do this for every procedure we write,

except for our test procedures. This approach, too, is part of the modular style

we'll use.

Recall that we save and restore any register used so that we never have to

worry about complex interactions between procedures trying to fight over the

small number of registers in the 8088. Each procedure is free to use as many
registers as it likes, provided that it restores them before the RET instruction.

It's a small price to pay for the added simplicity. In addition, without saving

and restoring registers, the task of rewriting procedures would be mind-rend-

ing. You'd be sure to lose much hair in the process.

We also try to use many small procedures, instead of one large one. This, too,

makes our programming task simpler, although we'll sometimes write longer

procedures when the design becomes particularly convoluted.

These ideas and methods will all be borne out more fully in the chapters to

come. In the next chapter, for example, we'll add another procedure to Video_io:

a procedure to take a word in the DX register and print the number in decimal

on the screen.

A Program Skeleton

As we've seen in this and the preceding chapter, the assembler imposes a cer-

tain amount of overhead on any programs we write. In other words, we need to

write a few directives that tell the assembler the basics. For future reference,

here is the absolute minimum you'll need for programs you write:
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.MODEL SMALL

.CODE

Some_procedure PROC

INT 5Qh
Some_procedure ENDP

END Some_procedure

We'll add some new directives to this program skeleton in later chapters, but

you can use it, as shown here, as the starting point for new programs you write.

Or, even better, you can use some of the programs and procedures from this

book as your starting point.

Summary

We're really making progress now. In this chapter, we learned how to write

procedures in assembly language. From now on we'll use procedures all the

time, and by using small procedures, we'll make our programs more manage-
able. We saw that a procedure begins with a PROC definition and ends with an
ENDP directive. We rewrote PFJNT_A_J to test our new knowledge of proce-

dures, then went on to rewrite our program to write a hex number—this time

with an extra procedure. Now that procedures are so easy to work with, there's

little reason not to break our programs into more procedures. In fact, we've seen

that there are ample reasons in favor of using many small procedures.

At the end of this chapter we talked briefly about modular design, a philos-

ophy that will save us a great deal of time and effort. Our modular programs
will be easier to write, easier to read, and easier for someone else to modify than

programs created with the well-worn technique of spaghetti logic: programs

written with very long procedures and many interactions.

We're now ready to build another useful procedure. Then, in Chapter 11,

we'll learn about segments. And from there, we'll move on to developing larger

programs, where we'll really start to use the techniques of modular design.
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Wer e promised to write a procedure to take a word and print it in decimal nota-

tion. WRITE—DECIMAL uses some new tricks—ways to save a byte here, a few

microseconds there. Perhaps such tricks will hardly seem to be worth the effort.

But if you memorize them, you'll find that you can use them to shorten and
speed up programs. Through our tricks, we'll also learn about two new types of

logical operations to add to the AND instruction we covered in Chapter 5. First,

let's review the process for converting a word to decimal digits.

Recalling the Conversion

Division is the key to converting a word to decimal digits. Recall that the DD7
instruction calculates both the integer answer and its remainder. So, calculat-

ing 12345/10 yields 1234 as the integer answer, and 5 as the remainder. In this

example, 5 is simply the rightmost digit. And ifwe divide by 10 again, we'll get

DK 12345

Stack

Figure 10-1. PUSHing the Digits Onto the Stack Reverses Their Order.



Printing in Decimal 705

the next digit to the left. Repeated division by 10 strips offthe digits from right

to left, each time putting them in the remainder.

Of course, the digits come out in reverse order, but in assembly language pro-

gramming, we have a fix for that. Remember the stack? It's just like a stack of

lunch trays: The first one to come off the top is the last tray that was set down. If

we substitute digits for trays and place the digits one on top of the other as they

come out of the remainder, we'll have it. We can pull out the digits in correct

order.

The top digit is the first digit in our number, and the other digits are under-

neath it. So, if we push the remainders as we calculate them and print them as

we pop them off the stack, the digits will be in the correct order.

The following program is the complete procedure to print a number in deci-

mal notation. As noted, there are a few tricks hiding in this procedure. We'll get

to them soon enough, but let's try WRITE_DECIMAL to see if it works before

we worry about how it works.

Place WRITE_DECIMAL into VIDECUO.ASM, along with the procedures

for writing a byte in hex. Make sure you place WRITE_DECIMAL after

TEST_WRITE_HEX, which we'll be replacing with TEST_WRITE_DECIMAL.
To save some work, WRITEJDECIMAL uses WRITE_HEX_DIGIT to convert

one nibble (four bits) into a digit.

Listing 10-1. Add to VIDEOJO.ASM

PUBLIC WRITE_DECIMAL

This procedure writes a lb-bit, unsigned number in decimal notation.

On Entry: DX N : lb-bit, unsigned number.

Uses: WRITE HEX DIGIT

WRITE DECIMAL PROC NEAR
PUSH AX
PUSH CX
PUSH DX
PUSH SI
MOV AX,DX
MOV SI, 10
XOR CX,CX

NON ZERO:
XOR DX,DX
DIV SI
PUSH DX
INC CX
OR AX, AX
JNE NON ZERO

WRITE DIGIT LOOP:
POP DX
CALL WRITE HEX DIGIT
LOOP WRITE DIGIT LOOP

END DECIMAL:
POP SI

;Save registers used here

;Will divide by 10 using SI
;Count of digits placed on stack

;Set upper word of N to
;Calculate N/1D and (N mod ID)
;Push one digit onto the stack
;One more digit added
;N = D yet?
;Nope, continue

;Get the digits in reverse order
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Listing 10-1. continued

POP DX
POP CX
POP AX
RET

WRITE_DECIMAL ENDP

Notice that we've included a new register, the SI (Source Index), register.

Later we'll see why it's been given that name, and we'll meet its brother, the

DI, or Destination Index, register. Both registers have special uses, but they

can also be used as if they were general-purpose registers. Since

WRITE_DECIMAL needs four general-purpose registers, we used SI, even

though we could have used BX, simply to show that SI (and DI) can serve as

general-purpose registers if need be.

Before we try out our new procedure, we need to make two other changes to

VIDEO-IO.ASM. First, we must remove the procedure TEST_WRITE_HEX
and insert this test procedure in its place:

Listing 10-2. Replace TEST_WRITE_HEX in VIDEO-IO.ASM with This Procedure

TEST_WRITE_DECIMAL PROC
MOV DX, 15345
CALL WRITE_DECIMAL
INT ?0h ;Return to DOS

TEST_WRITE_DECIHAL ENDP

This procedure tests WRITE_DECIMAL with the number 12345 (which the

assembler converts to the word 3039h).

Second, we need to change the END statement at the end ofVIDEO-IO.ASM
to read END TEST_WRITE_DECIMAL, because TEST_WRITE_DECIMAL is

now our main procedure.

Make these changes and give VIDEO_IO a whirl. Convert it to its .COM ver-

sion and see if it works. If it doesn't, check your source file for errors (and have a

look at the common errors in Appendix D). If you're adventurous, try to find

your bug with Debug. After all, that's what Debug is for.

Some Tricks

Hiding in WRITE-DECIMAL are two tricks of the trade garnered from the

people who wrote the ROM BIOS procedures we'll meet in Chapter 17. The first

is an efficient instruction to set a register to zero. It's not much more efficient

than MOV AX,0, and perhaps it's not worth the effort, but it's the sort of trick

you'll find people using, so here it is. The instruction:

XOR AX, AX
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sets the AX register to zero. How? To understand that, we need to learn about

the logical operation called an Exclusive OR, hence the name XOR.
The exclusive OR is similar to an OR (which we'll see next), but the result of

XORing two trues:

XOR 1

D D 1

1 1 D

is true if only one bit is true, not if both are true. Thus, if we exclusive OR a

number to itself, we get zero:

1011 01D1
XOR 1011 0101

0000 0000

That's the trick. We won't find other uses for the XOR instruction in this book,

but we thought you'd find it interesting.

As a short aside, you'll also find many people using another quick trick to set

a register to zero. Rather than using the XOR instruction, we could have used:

sub ax, ax

to set the AX register to zero.

Now for the other trick. It's just about as devious as our XOR scheme to clear

a register, and it uses a cousin to the Exclusive OR—the OR function.

We want to check the AX register to see if it's zero. To do this, we could use

the instruction CMP AX,0. But no, we'd rather use a trick: It's more fun and a

little more efficient, too. So, we write OR AX,AX and follow this instruction

with a JNE (Jump if Not Equal) conditional jump. (We could also have used

JNZ—Jump if Not Zero.)

The OR instruction, like any of the math instructions, sets the flags, includ-

ing the zero flag. Like AND, OR is a logical concept. But here, a result is true if

one OR the other bit is true:

OR 1

1

1 1

Ifwe take a number and OR it to itself, we get the original number back again:

1011 0101
OR 1011 0101

1011 0101
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The OR instruction is also useful for setting just one bit in a byte. For exam-

ple, we can set bit 3 in the number we just used:

1Q11 D1D1
OR DDDD 1DDD

1D11 1101

We'll have more tricks to play before we're through in this book, but these

two are the only ones entirely for fun.

The Inner Workings

To see how WRITE-DECIMAL performs its task, study the listing; we won't

cover more details here. We do need to point out a few more things.

First, the CX register is used to count how many digits we've pushed onto the

stack, so that we know how many to remove. The CX register is a particularly

convenient choice, because we can build a loop with the LOOP instruction and

use the CX register to store the repeat count. Our choice makes the digit-output

loop (WRITE_DIGIT_LOOP) almost trivial, because the LOOP instruction uses

the CX register directly. We'll use CX very often when we have to store a count.

Next, be careful to check the boundary conditions here. The boundary con-

dition at isn't a problem, as you can check. The other boundary condition

is 65535, or FFFFh, which you can check easily with Debug. Just load

VIDEO_IO.COM into Debug by typing DEBUG VIDE0-10.COM and change

the 12345 (3039h) at lOlh to 65535 (FFFFh). (WRITE.DECIMAL works with

unsigned numbers. See if you can write a version to write signed numbers).

You may have noticed a sticky point here, having to do with the 8088, not our

program. Debug works mostly with bytes (at least the E command does) but we
want to change a word. We must be careful, since the 8088 stores the bytes in a

different order. Here is an unassemble for the MOV instruction:

3qflS:0100 BA393Q MOV DX,303q

You can tell from the BA3930 part of this display that the byte at lOlh is 39h,

and the one at 102h is 30h (BA is the MOV instruction). The two bytes are the

two bytes of 3039h, but seemingly in reverse order. Confusing? Actually, the

order is logical, after a short explanation.

A word consists of two parts, the lower byte and the upper byte. The lower

byte is the least significant byte (39h in 3039h), while the upper byte is the

other part (30h). It makes sense, then, to place the lower byte at the lower

address in memory. (Many other computer architectures, such as the Motorola
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MOU PH.5059

0102

0101

0100

30

39

on

3039h

MOU instruction

Figure 10-2. The 8088 stores numbers with the lower byte first in memory.

68000 in the Apple Macintosh, actually reverse these two bytes, and this can be

a bit confusing if you're writing programs on several different types of com-

puters.)

Try different numbers for the word starting at lOlh, and you'll see how this

storage works. Use TEST_WRITE_DECIMAL to see ifyou got it right, or unas-

semble the first instruction.

Summary

We added a few new instructions to our repertoire here, as well as a few tricks

for fun. We also learned about two other registers, SI and DI, that we can use as

general-purpose registers. They also have other uses, which we'll see in later

chapters.

We learned about the XOR and OR logical instructions, which allow us to

work between individual bits in two bytes or words. And in our

WRITE_DECIMAL procedure, we used the XOR AX,AX instruction as a tricky

way to set the AX register to zero. We used OR AX,AX as a devious way to

write the equivalent ofCMP AX,0 to test the AX register and see if it is zero.

Finally, we learned about how the 8088 stores a word in memory by checking

the boundary conditions of our new procedure, WRITE_DECIMAL.
Here, at the end of this chapter, we now have another general-purpose proce-

dure, WRITE_DECIMAL, that we'll be able to use in the future for our own pro-

grams.

Take a breather now. We have a few different chapters scheduled next. Chap-

ter 11 covers segments in detail. Segments are perhaps the most complicated
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part of the 8088 microprocessor, so the chapter may prove to be rather heavy

going. Even so, we need to cover the topic for the chapters that follow.

After that, we'll make a slight course correction and get back on track by

learning about what we want to do with our program Dskpatch. We'll do a bit of

probing on disks and learn about sectors, tracks, and other such things.

From there, we can plot a simple course for preliminary versions of

Dskpatch. En route, you'll get a chance to see how to develop large programs.

Programmers don't write an entire program, then debug it. They write sections

and try each section before they move on—programming is much less work that

way. We've used this approach to a limited extent by writing and testing

WRITE_HEX and WRITE-DECIMAL, for which the test programs were very

simple. The test programs from here on will be more complex but more interest-

ing too.
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In the preceding chapters, we encountered several directives that deal with

segments. Now the time has come to look at segments themselves and at how
the 8088 manages to address a full megabyte (1,048,576 bytes) of memory.
From this, we'll begin to understand why segments need their own directives in

the assembler, and in later chapters we'll begin to use different segments (thus

far, we've used only one).

Let's start at the 8088 level by learning how it constructs the 20-bit addresses

needed for a full megabyte of memory.

Sectioning the 8088's Memory

Segments are about the only part of the 8088 we haven't covered yet, and
they are, perhaps, the most confusing part of this microprocessor to most peo-

ple. In fact, segments are what we call a kludge in this business: computerese

for a makeshift fix to a problem. (The 80386 microprocessor has additional

addressing modes that are much simpler and don't use segments, but unfortu-

nately we don't yet have an operating system from IBM or Microsoft that uses

these linear addressing modes. OS/2, which runs on both 80286 and 80386
microprocessors, uses a slightly different type of segment to address more than

1 megabyte of memory.)
The problem, in this case, is being able to address more than 64K of mem-

ory—the limit with one word, since 65535 is the largest number a single word
can hold. Intel, designers of the 8088, used segments and segment registers to

"fix" this problem and in the process made the 8088 more confusing.

So far, we haven't concerned ourselves with this problem. We've been using

the IP register to hold the address of the next instruction for the 8088 to execute

ever since we met Debug in Chapter 2. Back then, you may recall we said the

address is actually formed from both the CS register and the IP register. But we
never really said how. Let's find out.

Although the complete address is formed from two registers, the 8088 doesn't

form a two-word number for the address. If you were to take CS:IP as a 32-bit

number (two 16-bit numbers side by side), the 8088 would be able to address

about four billion bytes—far more than the one million bytes it can actually

address. The 8088's method is slightly more complicated: The CS register pro-

vides the starting address for the code segment, where a segment is 64K of

memory. Here's how it works.

As you can see in Figure 11-1, the 8088 divides memory into many overlap-

ping segments, with a new segment starting every 16 bytes. The first segment
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SEGMENT

0000:0000

0000:FFFF

0001:FFFF

Figure 11-1. Overlapping segments start every 16 bytes, and are 65536 bytes
long.

(segment 0) starts at memory location 0; the second (segment 1) starts at lOh

(16); the third starts at 20h (32), and so on.

The actual address is just CS * 16 + IP. For example, if the CS register con-

tains 3FA8 and IP contains D017, the absolute address is:

CS * It
+ IP

D 1 1 1111
110 1

10 10 10
1 111

D 1 D 1 1 D 10 10 10 1 111

We multiplied by 16 just by shifting CS left four bits and injecting zeros at the

right.
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1 1 1 1 1 1 1

Segment (CS)

Offset (IP)

01001 1001010100101 1 1

Figure 11-2. The absolute address of CS:IP is CS * 16 + IP.

Now, this may seem like a strange way to address more than 64K ofmemory,
and it is—but it works. Soon, we'll begin to see how well it really works.

The 8088 actually has four segment registers: CS (Code Segment), DS (Data

Segment), SS (Stack Segment), and ES (Extra Segment). The CS register we've

been looking at is used by the 8088 for the segment where the next instruction

is stored. In much the same way, DS is the segment where the 8088 looks for

data, and SS is where the 8088 places the stack.

Before we go on, let's look at a short program, quite different from any we've

seen before, that uses two different segments. Enter this program into the file

TEST_SEG.ASM:

Listing 11-1. The Program TEST_SEG.ASM

DOSSEG
.MODEL SMALL

.STACK ; Allocate a IK stack

.CODE

TEST SEGMENT PBOC
BOV AH,<Ch ;Ask for the exit-to-dos function
INT aih ;Return to DOS

TEST_SEGMENT ENDP

END TEST SEGMENT

Then assemble and link Test_seg, but don't generate a .COM file for it. The
result will be TEST_SEG.EXE, which is slightly different from a .COM file.

Note: We have to use a method other than INT 20h to exit

from .EXE files. For .COM files, INT 20h works perfectly well,

but it doesn't work at all for .EXE files because the organiza-

tion of segments is very different, as we'll see in this chapter;

more on this difference later. From now on we'll use INT 21h,

function 4Ch to exit our programs.
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When we use Debug on a .COM file, Debug sets all the segment registers to

the same number, with the program starting at an offset of lOOh from the start

of this segment. The first 256 bytes (lOOh) are used to store various pieces of

information which we really aren't that interested in, but we'll take a peek at

part of this area in a little bit.

Now, try loading TEST_SEG.EXE into Debug, to see what happens with seg-

ments in an .EXE file:

A>DEBOG TEST_SEG.EXE
-8
AX=0000 BX=0000 CX=0004 DX=0000 SP=0400
Ds=aqas Es=3qas ss=3qsb cs^rrs ip=odoo
3995:0000 B<4C MOV AH,<C

BP=0000 SI=0000 DI=0000
NV OP DI PL NZ NA PO NC

The values of the SS and CS registers are different from those for DS and ES.

3985:0000
PSP

3995:0000

3996:0000

CODE SEGMENT

STACK SEGMENT

Figure 11-3. Memory Layout for TEST_SEG.EXE.
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The Stack

In our program, we defined two segments. The STACK segment is where we
place the stack (hence, the .STACK), and the code segment (which is actually

called _TEXT) is where all our instructions are stored. The .STACK directive

tells the assembler to create a 1024-byte stack. (We could create a larger or

smaller stack by putting a number after .STACK. For example, .STACK 128

would create a stack 128 bytes long.)

The address for the top ofthe stack is given by SS:SP. SP is the Stack Pointer,

like IP and CS for code, and is an offset within the current Stack Segment.

Actually, "top-of-stack" is a misnomer, because the stack grows from high

memory toward low memory. Thus, the top of the stack is really at the bottom

of the stack in memory, and new entries to the stack are placed progressively

lower in memory. Here, SP is 400h, which is 1024 decimal, because we
defined a stack area 1024 bytes long. We haven't placed anything on the

stack as yet, so top-of-stack is still at the top of the memory we set aside for

the stack: 400h.

If you think back to the .COM programs in previous chapters, we never

declared a stack segment, which raises two questions: Why didn't we have to

declare a stack segment for .COM programs? And where was the stack in the

.COM programs? All the .COM programs we created had only one segment,

and all the segment registers (CS, DS, ES, and SS) pointed to this segment.

Since we had just one segment, we didn't need a separate stack segment.

As to where the stack was, if you look at the register display for

WRITESTR.COM, you'll see the stack is at the very end of the segment (SP =

FFEE):

-R
AX=DDDD BX=DQD0 CX=DDQ0 DX=DQD0 SP=FFEE BP=DDD0 SI=DDDD DI=0D0D
Ds=3Rqs Es=3qqs ss=3qqs cs=3qqs ip=oioo nv op ei pl nz na po nc
3115:0100 B<02 MOV AH, OS

DOS always sets the stack pointer to the very end of the segment when it loads

a .COM file into memory. For this reason, we don't need to declare a stack seg-

ment (with .STACK) for .COM files.

What would happen if we removed the .STACK directive from
TEST_SEG.ASM?

A>DEB0G TEST_SEG.EXE
-B
AX=0000 BX=0000 CX=000< DX=D00D SP=0000 BP=0000 SI=DDDD DI=DDDD
Ds=aqfl5 ES=3qas ss=3Rqs cs=3qqs ip=oooo nv op ei pl nz na po nc
3090:0000 B<<C MOV AH,4C
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The stack is now at 3995:0, which is the start ofour program (CS:0). This is very

bad news. We don't want the stack anywhere near our program's code. Also,

since the stack pointer is at SS:0, it has no room to grow (since the stack grows

down in memory). For these reasons, we must declare a stack segment for .EXE
programs.

Note: you must always declare a stack segment with

.STACK in .EXE programs.

Getting back to our two-segment example, note that the Stack Segment (SS)

is segment number 3996 (this will probably be different for you), while our

Code Segment (CS) is at segment 3995—one less than SS, or just 16 bytes lower

in memory. Since we didn't put any data into the stack segment, unassembling

starting at CS:0 will show our program (MOV AH,4C and INT 21) followed by
whatever happened to be in memory:

-0 CS:0
3qqs:oooo b«c
3915:0005 CD51
3qqs:ooD<; ts
3995:0005 5056
3195:0007 59
3995:0008 5F
3995:0009 <E
3995:000A 593F

MOV AB,<C
INT 51
DB b5
AND [BX+SI] ,CH
POP CX
DAS
DEC SI
SUB [BX],DI

The Program Segment Prefix (PSP)

In looking at the register display, you may have noticed that the ES and DS
registers contain 3985h, lOh less than the beginning ofthe program at segment

3995h. Multiplying by 16 to get the number of bytes, we can see that there are

lOOh (or 256) bytes before our program starts. This is the same scratch area

placed at the beginning of a .COM file.

Note: This "scratch area" is actually called a PSP (Program

Segment Prefix) and contains information for use by DOS. In

other words, you should not assume you can make use of this

area.
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Among other things, this 256-byte PSP at the start of programs contains the

characters we type after the name of our program. For example:

A>DEB0G TEST_SEG.EXE And now for some characters we'll see in the memory damp
-D DS:A0
3RfiS:00fl0 3R 50 41 bE t< 50 bE bF-77 50 bb bF 75 50 73 bF S find now for so
3Rfl5:0DRD bD b5 50 b3 bfl bl 75 bl-b3 14 bS 75 73 50 77 b5 me characters we
3qfl5:00A0 57 bC bC 50 73 b5 bS 50-bq bE 5D 14 bfl bS 50 bD '11 see in the m

3RflS:00B0 bS bD bF 75 7q 50 b< 75-bD 70 0D 50 bD bS bD bF emory dump, memo
3SflS:00C0 75 7R 50 b< 75 bD 70 0D-00 00 00 00 00 00 00 00 ry dump

The first byte tells us we typed 39h (or 57) characters, including the first space

after TEST_SEG.EXE. We won't use this information in this book, but it helps

show why you might want such a large PSP.

The PSP also contains information that DOS uses when we exit from a pro-

gram, with either the INT 20h or the INT 21h, function 4Ch, instructions. But
for reasons that are not at all clear, the INT 20h instruction expects the CS reg-

ister to point to the start of this PSP, which it does for a .COM program, but not

for a .EXE program. This is an historical question. And, in fact, the exit func-

tion (INT 21h, function 4Ch) was added to DOS with the introduction of version

2.00 to make it easier to exit from .EXE programs; function 4Ch doesn't expect

the CS register to point to the start of the PSP. We'll use INT 21h, function 4Ch
from now on to exit from our programs.

The code for .COM files must always start at an offset of lOOh in the code seg-

ment to leave room for this 256-byte PSP at the start. This is unlike the .EXE
file, which had its code start at IP = 0000, because the code segment started

lOOh bytes after the beginning of the area in memory.
In the early days of the IBM PC, most programs were written as .COM pro-

grams because they were slightly simpler to write. But today, most programs

are written as .EXE programs. So in the rest of this book, we'll be working
almost entirely with .EXE programs.

The DOSSEG Directive

If you take a look again at TESTSEG.EXE, you'll notice that the stack seg-

ment is higher in memory than the code segment. Yet in our source file we
defined the stack (.STACK) before any of the code (.CODE). So why is the stack

higher in memory than the code?

The DOSSEG directive at the start of our program tells the assembler that

we want the segments of our program loaded in a very specific order, with the

code segment appearing first, and the stack last. In Chapter 14 we'll see more
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Memory layout for
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Figure 11-4. .COM vs .EXE Programs.

about DOSSEG and the order of segments when we add another segment to

hold data.

Near and Far CALLs

The rest of the information in this chapter is purely for your interest, since

we won't be making use of it in this book. You can skip the next two sections

and read them later ifyou find the going tough or you're eager to return to pro-

gramming.
Let's step back for a minute and take a closer look at the CALL instructions

we used in previous chapters. Specifically, let's look at the short program in
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Chapter 7, where we first learned about the CALL instruction. Back then, we
wrote a very short program that looked like this (without the procedure at

200h):

3965 0100 B541 MOV DL,<1
3965 0105 B90A00 MOV CX,000A
3965 0105 EfiFflOO CALL 0500
3985 0106 E5FB LOOP 0105
3985 010A CD50 INT 50

You can see by looking at the machine code on the left that the CALL instruc-

tion occupies only three bytes (E8F800). The first byte (E8h) is the CALL
instruction, and the second two bytes form an offset. The 8088 calculates the

address of the routine we're calling by adding this offset of 00F8h (remember
that the 8088 stores the lower byte of a word in memory before the high byte, so

we have to reverse the bytes) to the address of the next instruction (108h in our

program). In this case, then, we have F8h + 108h = 200h. Just what we
expected.

The fact that this instruction uses a single word for the offset means that

CALLs are limited to a single segment, which is 64K bytes long. So how is it

that we can write a program like Lotus 1-2-3 that is larger than 64K? We do it

by using FAR, rather than NEAR, calls.

NEAR CALLs, as we've seen, are limited to a single segment. In other words,

they change the IP register without affecting the CS register. And for this rea-

son they're sometimes known as intrasegment CALLs.
But we can also have FAR CALLs that change both the CS and IP registers.

Such CALLs are often known as intersegment CALLs because they call proce-

dures in other segments.

Going along with these two versions of the CALL instruction are two ver-

sions of the RET instruction.

The NEAR CALL, as we saw in Chapter 7, pushes a single word onto the

stack for its return address. And the corresponding RET instruction pops this

word off the stack and into the IP register.

In the case ofFAR CALLs and RETs, a word is not sufficient, because we're

dealing with another segment. In other words, we need to save a two-word
return address on the stack: one word for the instruction pointer (IP) and the

other for the code segment (CS). The FAR RET, then, pops two words off the

stack—one for the CS register and the other for IP.

Now we come to a sticky issue. How does the assembler know which of these

two CALLs and RETs to use? When should it use the FAR CALL, and when
should it use the NEAR CALL? Answer—by putting a NEAR or FAR directive

after the PROC directive.
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PROC_TWO PROC NEAR

CALL PROC_ONE <

RET

PROC_TWO ENDP

PROC_ONE PROC FRR

RET

PROC_ONE ENDP

Figure 11-5. The assembler produces a FAR CALL.

By way of example, look at the following program:

PROC_ONE PROC FAR

RET
PROC_ONE ENDP

PROC TWO PROC NEAR
CALL PROC. ONE

RET
PROC TWO ENDP

When the assembler sees the CALL PROC_ONE instruction, it hunts in its

table for the definition of PROC.ONE, which, in this case, is PROCLONE
PROC FAR. This definition tells whether the procedure is a near or far proce-

dure.

In the case of a NEAR procedure, the assembler generates a NEAR CALL.
And conversely, it generates a FAR CALL if the procedure you're calling was
defined as a FAR procedure. In other words, the assembler uses the definition of

the procedure that you're calling to determine the type of CALL instruction

that's needed.
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PR0C_0NE PROC FRR

* J
RET

PR0C_0NE ENDP

Figure 11-6. The assembler produces a FAR RET.

For the RET instruction, on the other hand, the assembler looks at the defini-

tion of the procedure that contains the RET instruction. In our program, the

RET instruction for PROC_ONE will be a FAR RET, because PROC_ONE is

declared to be a FAR procedure. Likewise, the RET in PROC_TWO is a NEAR
RET.
What happens when we don't put a NEAR or FAR directive after the PROC?

It turns out the assembler uses the information in the .MODEL directive to

determine whether procedures are NEAR or FAR ifyou don't explicitly declare

a procedure as NEAR or FAR. We're using the .MODEL SMALL directive,

which tells the assembler that we only have one code segment, so all the proce-

dures are NEAR procedures. There are other .MODEL directives (such as

MEDIUM) that tell the assembler to make procedures FAR if they're not

explicitly declared as NEAR.

More on the INT Instruction

The INT instruction is much like a CALL instruction, but with a minor dif-

ference. The name INT comes from the word interrupt. An interrupt is an exter-

nal signal that causes the 8088 to execute a procedure and then return to what
it was doing before it received the interrupt. An INT instruction doesn't inter-

rupt the 8088, but it's treated as if it did.

When the 8088 receives an interrupt, it needs to store more information on

the stack than just the two words for the return address. It has to store the val-

ues ofthe status flags—the carry flag, the zero flag, and so on. These values are

stored in one word known as the Flag Register, and the 8088 pushes this infor-

mation onto the stack before the return address. Here's why we need to save the

status flags.

Your IBM PC regularly responds to a number of different interrupts. The
8088 inside your IBM PC receives an interrupt from the clock 18.2 times every

second, for example. Each of these interrupts causes the 8088 to stop what it's

doing and execute a procedure to count the clock pulses.
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Now, envision such an interrupt occurring between these two program
instructions:

CMP ftH,2

JNE NOT_2

Let's assume AH = 2, so the zero flag will be set after the CMP instruction,

which means that the JNE instruction will not branch to NOT_2.
Now, imagine that the clock interrupts the 8088 between these two instruc-

tions. That means the 8088 runs off to carry out the interrupt procedure before

it checks the zero flag (with the JNE instruction). If the 8088 didn't save and
restore the flag registers, the JNE instruction would use flags set by the inter-

rupt procedure, not from our CMP instruction. To prevent such disasters, the

8088 always saves and restores the flag register for interrupts. An interrupt

saves the flags, and an IRET (Interrupt Return) instruction restores the flags at

the end of the interrupt procedure.

The same is true for an INT instruction. Thus, after executing the instruc-

tion:

INT 51

the 8088's stack will look like this:

Top of stack -* Old IP (return address part I)
Old CS (return address part II)
Old Flag Register

(The stack grows into lower memory, so the Old Flag Register is actually high-

est in memory).

When we place an INT instruction in a program, however, the interrupt is no

surprise. Why, then, do we want to save the flags? Isn't saving the flags useful

only when we have an external interrupt that comes at an unpredictable time?

As it turns out, the answer is no. There is a very good reason for saving and

restoring the flags for INT instructions. In fact, without this feature, Debug
wouldn't be possible.

Debug uses a special flag in the flag register called the Trap Flag. This flag

puts the 8088 into a special mode known as single-step mode, which Debug uses

to trace through programs one instruction at a time. When the trap flag is set,

the 8088 issues an INT 1 after it executes any instruction.

The INT 1 also clears the trap flag, so the 8088 won't be in single-step mode
while we're inside Debug's INT 1 procedure. But since INT 1 saved the flags to

the stack, issuing an IRET to return to the program we're debugging restores

the trap flag. Then, we'll receive another INT 1 interrupt after the next instruc-

tion in our program. This is just one example ofwhen it's useful to save the flag
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registers. But, as we'll see next, this restore-flag feature isn't always appropri-

ate.

Some interrupt procedures bypass the restoration of the flag registers. For

example, the INT 21h procedure in DOS sometimes changes the flag registers

by short-circuiting the normal return process. Many of the INT 21h procedures

that read or write disk information return with the carry flag set if there was
an error of some sort (such as no disk in the drive).

Interrupt Vectors

Where do these interrupt instructions get the addresses for procedures? Each
interrupt instruction has an interrupt number, such as the 21h in INT 21h. The
8088 finds addresses for interrupt procedures in a table of interrupt vectors,

which is located at the very bottom of memory. For example, the two-word

address for the INT 21h procedure is at 0000:0084. We get this address by mul-

tiplying the interrupt number by 4 (4 * 21h = 84h), since we need four bytes,

two words, for each vector, or procedure address.

These vectors are exceedingly useful for adding features to DOS, because

they enable us to intercept calls to interrupt procedures by changing the

addresses in the vector table. We'll use exactly this trick at the end of this book

to add a disk light to your computer's screen.

All these ideas and methods should become clearer as we see more examples.

Most of this book from here on will be filled with examples, so there will be

plenty to study. If you've been feeling a bit overwhelmed by new information,

rest easy. We'll take a short breather in the next chapter and get ourselves

reoriented and back on course.

Summary

As we said, this chapter contained a lot of information. We won't use it all,

but we did need to learn more about segments. Chapter 13 will bring us to mod-
ular design, and we'll use some aspects of segments to make our job easier.

We began this chapter by learning how the 8088 divides memory into seg-

ments. To understand segments in more detail, we built an .EXE program with

two different segments. We also learned that we need to use INT 21h, function

4Ch rather than INT 20h to exit from .EXE programs. This is important since

we'll use .EXE programs from now on in this book.
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We also found that the lOOh (256-byte) PSP (Program Segment Prefix) at the

start of our programs contains a copy of what we typed on the command line.

We won't use this knowledge in this book, but it helps us see why DOS sets

aside such a large chunk of memory for the purpose.

And finally we learned more about the DOSSEG, .MODEL, .CODE, .STACK,
NEAR, and FAR directives. These directives help us work with segments. In

this book, we'll barely use the power of these directives, because our .EXE pro-

grams will use only two segments. But for programmers who write huge pro-

grams in assembly language (using the MEDIUM memory model), these

directives are invaluable. If you're interested, you'll find the details in your

macro assembler manual.

At the very end of this chapter we learned more about the roots of our helpful

INT instruction. Now, we're just about ready to slow down and learn how to

write larger and more useful assembly language programs.
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Wee've been poking our noses into a lot ofnew and interesting places, and you
may at times have wondered whether we're wandering about somewhat aim-

lessly. We haven't been, of course. We're now familiar enough with our new
surroundings to fix our sights and plot a course for the rest of this book. And
that's what we'll do in this chapter: We'll take a close look at a design for our

Dskpatch program. Then we'll spend the rest of this book developing Dskpatch,

much as you will later develop programs of your own.

We won't present the finished version of Dskpatch all at once; that isn't the

way we wrote it. Instead, we'll present short test programs to check each stage

of our program as we write it. To do this, we need to know where we want to go.

Hence, our course correction here.

Since Dskpatch will deal with information on disks, that's where we'll begin.

Diskettes, Sectors, and So Forth

The information on your floppy disks is divided into sectors, with each sector

holding 512 bytes of information. A double-sided, double-density 5 x/4-inch disk

formatted with DOS 2.0 or above has a total of 720 sectors, or 720 * 512 = 368,640

bytes (see Table 12-1 for other types of disks). If we could look directly at these

sectors, we could examine the directory directly, or we could look at the files on the

disk. We can't—not by ourselves—but Dskpatch will. Let's use Debug to learn

more about sectors and get an idea ofhow we'll display a sector with Dskpatch.

Debug has a command, L (Load), to read sectors from disk into memory,
where we can look at the data. As an example, let's look at the directory that

starts at sector 5 on a double-sided disk (use Table 12-1 to determine what
number to use for the directory if you have a different type of disk). Load sector

5 from the disk in drive A (that's drive to Debug) by using the L command.
Make sure you have a 360K (or 1.2M, 720K, or 1.44M) disk in drive A, then

enter the following:

-L 1DD D 5 1

Table 12-1. Starting Sector for the Root Directory

Disk Type Sectors/disk Directory

5V4", 360K 720 5
5V4", 1.2M 2,400 15
3V2", 720K 1,440 7
3V2", 1.44M 2,880 19
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Address to load

segment at.

Sector number
to read

/
-L 100 5 1

Disk to read

from (driue fl: = 0)

Number of

sectors to read :i

As you can see in Figure 12-1, this command loads sectors into memory, start-

ing with sector 5 and continuing through one sector at an offset of 100 within

the data segment. To display sector 5, we can use a Dump command:

-D 100
3qbF:0100
3SbF:0110
3qbF:0150
3StF:D13D
3qbF:0140
3qbF:0150
3RbF:01bO
3RbF:0170
-D
3RbF:01fl0
3<1bF:0iq0
3qbF:01A0
31bF:01B0
3qt.F:01CQ
3RbF:01D0
3qbF:DlED
3qbF:01F0

49 45 AD AS 41 AY 50 2D-43 AY AD 27 00 00 00 00 IBMBIO COM'...
00 00 00 00 00 00 00 b0-b8 0b 02 DO 00 IE 00 00 'h
A°i AS AD AA AY 53 50 50-43 AY 4D 5? 00 00 00 00 IBMD0S COM'...
00 DO 00 00 00 00 00 bO-bfl 0b 0? 00 00 43 00 00 -h....C.
43 AY 4D 4D Al AY. 44 50-43 4F AD 50 00 00 00 00 COMMAND COM ...
00 00 00 00 00 00 00 bO-bfi 0b 16 00 00 AS 00 00 -h....E.
41 53 53 45 4D 45 4C 45-55 50 50 06 00 00 00 00 ASSEMBLER ....
00 00 00 00 00 00 33 RC-BO Ob 00 00 00 OD 00 00 3.0

4b 5? 50 50 50 50 20 2D-43 4F 4D 50 00 00 00 00 FW COM ...

00 00 00 00 00 00 00 00-bF 05 5A 00 60 AF 00 DO o.*../.
4b 57 50 50 50 50 50 50-4F 5b 4C 50 00 00 00 OD FW OVL . . .

00 00 00 00 00 OD DO 00-75 05 5b OD 61 05 00 OD r.V
4b 57 50 50 50 50 50 20-53 57 50 50 00 00 00 DD FW SWP ...
00 00 DD 00 00 00 IB 6A-FF Ob 57 00 00 C6 00 00 W..H.
43 4F 4E 4b AH Al 50 20-44 41 54 2D DO 00 00 00 CONFIG DAT ...
00 00 DD 00 OD 00 ID 62-A1 Ob fll 00 00 58 00 DO ! (.

We'll use a format much like this for Dskpatch, but with many improve-

ments. Dskpatch will be the equivalent of a full-screen editor for disk sectors.

We'll be able to display sectors on the screen and move the cursor about the sec-

tor display, changing numbers or characters as we want. We'll also be able to

write this altered sector back to the disk, and this is why we call it Disk Patch

—
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Disk A Sector B

88 81 82 83 B4 B5 BG 87 88 89 BA BB BC BD BE BF B123456789ABCDEF

BB 1JE128 9B 49 42 40 2B 2833 2E 33 08 82 82 81 88 3f filBM 3.3 ee@

IB 82 78 BB DB B2 FD 82 BB 89 88 82 BB BB BB BB BB op iitfe o s

2B 88 BB 88 88 BB 88 BB BB BB BB Ffl C4 5C 88 33 ED

3B B8 CB 87 8E D8 33 C9 88 16 FD Bl Bfl D2 79 Bfl 89

4B IE 1C BB 8C 86 IE 88 Bl 82 8E C5 8E D5 BC BB 7C
n*6+fix i*\\\6 <f»T58 FC IE 36 C5 36 78 BB BF 2fl 7C B9 BB BB F3 A4 IF

6B C6 B6 2E BB BF BF 78 BB B8 2fl 7C ftB 91 AB FB 8fl \4. fr|x i*\Hritih

78 16 FD Bl CD 13 A8 IB BB 98 F7 26 16 BB B3 86 BE -
2
9=H!a> ya*. *J
§s to f *S§a J88 BB E8 73 88 E8 79 88 BB BB 85 53 E8 AB 88 5F BE

98 74 Bl B9 BB 88 98 F3 A6 75 57 83 C7 15 Bl BB 98 t0j|<? £<auUa|[SP
A8 98 F3 A6 75 4C 26 8B 47 1C 99 8B BE BB BB 83 CI tittuLiibJiijtf f1

B8 48 F7 Fl 3D 14 88 7F 82 B8 14 96 Al 11 BB Bl B4 h*±=i tmtuii |»

CB D3 E8 E8 32 BB FF 36 1C BB C4 IE 7B Bl E8 38 88 4$2 6- -*p@$B

DB E8 5B BB 2B FB 76 BD E8 ID BB 52 F7 26 BB BB 83 9. +3vg{» RsU t

E8 D8 5A EB E9 5B 8A 2E 15 BB 8A 16 FD Bl FF 2E 78 =f&fe[e.S e-
2
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Press function key, or enter character or hex byte:

Figure 12-2. Example of Dskpatch's Display.

or rather Dskpatch, since we can't have more than eight characters in the

name.
Dskpatch is the motivation for the procedures we write. It is by no means an

end in itself. In using Dskpatch as an example for this book, we'll also manage
to present many procedures that you'll find useful when you attempt to write

your own programs. That means you'll find many general-purpose procedures

for display output, display manipulation, keyboard input, and more.

Let's take a closer look at some improvements we'll make to Debug's sector

dump. The display from Debug only shows the "printable" characters—96

out of the 256 different characters that an IBM PC can display. Why is that?

Because MS-DOS, PC-DOS's cousin, runs on many different computers.

Some of these computers display only 96 characters, so Microsoft (the author

of Debug) chose to write one version of Debug that would work on all

machines.

Dskpatch is for IBM Personal Computers and near cousins, so we can dis-

play all 256 different characters; to do so will require a bit of work. Using the

DOS function 2 for character output, we can display almost all characters,

but DOS gives special meaning to some, such as 7, which rings the bell. There
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are characters for special codes like 7, and in Part III we'll see how to display

them.

We'll also make heavy use of the function keys so that, for example, we can

display the next sector just by pressing the F4 key. And we'll be able to change

any byte by moving the cursor to that byte and typing in a new number. It will

be just like using a word processor, where we can change characters very easily.

More of these details will appear as we slowly build Dskpatch. (Figure 12-2

shows what its normal display will look like—a vast improvement over the dis-

play from Debug.)

The Game Plan

In Chapter 13, we'll learn how to break our program into many different

source files. Then, we'll begin serious work on Dskpatch in Chapter 14. At the

end, we'll have nine source files for Dskpatch that have to be linked together.

And even if you don't enter and run all these programs now, they'll be here

when you're ready for them or when you want to borrow some of the general-

purpose procedures. In any case, you'll get a better idea of how to write long

programs as you read through the following chapters.

We've already created several useful procedures, such as WRITE_HEX to

write a byte as a two-digit hex number and WRITE_DECIMAL to write a

number in decimal. Now, we'll write some programs to display a block ofmem-
ory in much the same way Debug's D command does. We'll start by displaying

16 bytes ofmemory, one line of Debug's display, and then work toward display-

ing 16 lines of 16 bytes each (half a sector). A full sector won't fit on the display

at one time with the format we've chosen, so Dskpatch includes procedures for

scrolling through a sector using the ROM BIOS—not DOS—interrupts. That

will come much later, though, after we've built a full-screen display of half a

sector.

Once we can dump 256 bytes from memory, we'll build another procedure to

read a sector from the disk into our area ofmemory. We'll dump half a sector on

the screen, and we'll be able to use Debug to alter our program, so we can dump
different sectors. At that point, we'll have a functional, but not very attractive

display, so making it pretty comes next.

With a bit more work and some more procedures, we'll rebuild the half-sector

display to be much more pleasing aesthetically. It still won't be a full-screen

display, so it will just scroll past like Debug's dump did. But the full-screen dis-

play will come next, and through it, we'll learn about the ROM BIOS routines

that allow us to control the display, move the cursor—that sort of thing. Then,
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we'll be ready to learn how to use more ROM BIOS routines to print all 256 dif-

ferent characters.

Next will come the keyboard input and command procedures that will let us

start interacting with Dskpatch. About that time we'll also need another course

correction.

Summary

We've seen enough of the future here. You should have a better idea ofwhere
we're headed, so let's move on to the next chapter, where we'll lay the ground-

work for modular design and learn how to split a program into many different

source files. Then, in Chapter 14, we'll write some test procedures to display

sections of memory.
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w„ithout modular design, Dskpatch wouldn't have been much fun to write.

Using a modular design greatly eases the task of writing any but the smallest

program. We'll use this chapter to set some ground rules for modular design,

and we'll follow those rules throughout the rest of this book. Let's begin by

learning how to separate a large program into many different source files.

Separate Assembling

In Chapter 10, we added the procedure WRITE_DECIMAL to

VIDEOJO.ASM, and we also added a short test procedure called

TEST_WRITE_DECIMAL. Let's take this test procedure out of

VIDECUO.ASM and put it in a file of its own, called TEST.ASM. Then, we'll

assemble these two files separately and link them together into one program.

Here is the TEST.ASM file:

Listing 13-1. The File TEST.ASM

DOSSEG
.MODEL SMALL

.STACK

.CODE
EXTRA WEITE_DECIMAL:PROC

TEST_WRITE_DECIMAL PROC
MOV DX, 153AS
CALL WRITE_DECIMAL
MOV AH,<Ch ;Return to DOS
INT aih

TEST_WRITE_DECIMAL ENDP

END TEST_WRITE_DECIMAL

We've seen most of this source file before, but the EXTRN directive is new.

The statement EXTRN WRITE_DECIMAL:PROC tells the assembler two
things: that WRITE_DECIMAL is in another, external, file, and that it's a pro-

cedure. What kind of procedure (NEAR or FAR) depends on the .MODEL direc-

tive. Since we've used .MODEL SMALL, which defines procedures to be NEAR,
WRITE_DECIMAL is in the same segment. The assembler thus generates a

NEAR CALL for this procedure; it would generate a FAR CALL if we had
placed a FAR after WRITE_DECIMAL. (We can use NEAR or FAR in place of

the PROC in the EXTRN statement ifwe wanted to explicitly define the type of

procedure, but it's better to let the .MODEL directive define the procedure
types.)
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These are about the only changes we need for separate source files until we
begin to store data in memory. At that point, we'll introduce another segment
for data. Now, let's modify VIDEOJO.ASM and then assemble and link these

two files.

Code Segment

.CODE segment
(from file 1)

.CODE segment
(from file 2)

Data Segment

.DRTfl segment
(from file 1)

.DfiTfl segment
(from file 2)

Figure 13-1. LINK stitches together segments from different files.

EHTRN DJRITE_DECIMflL:PRO

TEST_UJRITE_DECIMRL
t

t
i

CALL "UJRLT|TjnECIMflL

LINK provides

the address

Figure 13-2. LINK assigns the addresses for external names.
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Remove the procedure TEST_WRITE_DECIMAL from VIDECUO.ASM.
We've placed this in TEST.ASM, so we don't need it in Video_io.

Finally, change END TEST_WRITE_DECIMAL at the end of

VIDEOJO.ASM to just END. Once again, we moved the main procedure to

TEST.ASM. The procedures in VIDEO_IO.ASM are now external procedures,

nothing more. That is, they have no function by themselves; they must be

linked to procedures that call them from other files. We don't need a name after

the END directive in VIDEO_IO.ASM, because our main program is now in

TEST.ASM.
When you've finished making these changes, your VIDEO_IO.ASM source

file should look something like this:

.MODEL SMALL

.CODE

PUBLIC WRITE HEX DIGIT

WRITE HEX DIGIT ENDP

PUBLIC WRITE_HEX

WRITE HEX ENDP

PUBLIC WRITE CHAR

WRITE_CHAR ENDP

PUBLIC WRITE DECIMAL

WRITE DECIMAL ENDP

END

Assemble these two files just as you assembled Video_io before. TEST.ASM
knows all it needs to know about VIDECUO.ASM through the EXTRN state-

ment. The rest will come when we link the two files.

You should now have the files TEST.OBJ and VIDEOJO.OBJ. Use the fol-

lowing command to link these two files into one program named TEST.EXE:

A>LINK TEST VIDEO_IO;

LINK stitches the procedures of these two files together to create one file con-

taining the entire program. It uses the first file name we entered as the name
for the resulting .EXE file, so we now have TEST.EXE.
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That's it; we created one program from two source files. The final .EXE pro-

gram is identical in function to the .COM version we created in Chapter 10

from the single file VIDEOJO.ASM, when it contained the main procedure

TEST_WRITE_DECIMAL.
We'll make heavy use of separate source files from here on, and their value

will become clearer as the procedures stack up. In the next chapter, we'll write

a test program to dump sections ofmemory in hex. We'll usually write a simple

test version of a procedure before we write the complete version. Doing so will

allow us to see how to write a good final version, as well as saving much effort

and mental turmoil in the process.

There are several other useful ways to save effort. We call them the Three

Laws ofModular Design.

The Three Laws of Modular Design

These laws are summarized in Table 13-1. They aren't really laws, they're

suggestions. But we'll use them throughout this book. Define your own laws if

you like, but either way, stick to the same ones all the time. Your job will be

much easier if you're consistent.

Table 1 3-1 . The Three Laws of Modular Design

1. Save and restore all registers, unless the procedure returns a value in that

register.

2. Be consistent about which registers you use to pass information. For exam-
ple:

• DL, DX—Send byte and word values.

• AL, AX—Return byte and word values.

• BX:AX—Return double-word values.

• DS:DX—Send and return addresses.

• CX—Repeat counts and other counts.

• CF—Set when there is an error; an error code should be returned in one of

the registers, such as AL or AX.
3. Define all external interactions in the comment header:

• Information needed on entry.

• Information returned (registers changed).

• Procedures called.

• Variables used (read, written, and so on).
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There's an obvious parallel between modular design in programming and

modular design in engineering. An electrical engineer, for example, can build a

very complicated piece of equipment from boxes that perform different func-

tions, without knowing how each box works. But if each box uses different volt-

ages and different connections, the lack of consistency creates a major

headache for the poor engineer, who must somehow provide a different voltage

for each box and create special connections between boxes. Not much fun, but

fortunately for the engineer, there are standards providing for only a small

number of standard voltages. So, perhaps only four different voltages need to be

provided, instead of a different voltage for each box.

Modular design and standard interfaces are just as important in assembly

language programs, and that's why we'll lay down the laws (so to speak) and

use those laws from here on. As you'll see by the end of this book, these rules

will make our task much simpler. Let's take a look at these laws in detail.

Save and restore all registers, unless the procedure returns a value in

that register. There aren't that many registers in the 8088. By saving regis-

ters at the start of a procedure, we free them for use within that procedure. But

we must be careful to restore them at the end of the procedure. You'll see us

doing this in all our procedures, with PUSH instructions appearing first in

each procedure, and POPs at the end.

The only exception is for procedures that must return some information to

the calling procedure. For example, a procedure that reads a character from the

keyboard must somehow return the character. We won't save any registers that

we use to return information.

Short procedures also help the register-shortage problem. At times, we'll

write a procedure that's used by only one other procedure. Not only does this

help with the shortage of registers, it also makes the program easier to write

and, often, easier to read. We'll see more of this as we write procedures for

Dskpatch.

Be consistent about which registers you use to pass information. Our
job becomes simpler if we set standards for exchanging information between

procedures. We'll use one register for sending information and one for receiving

information. We'll also need to send addresses for long pieces of data and for

this we'll use the pair of registers DS:DX, so that our data can be anywhere in

memory. You'll learn more about this when we introduce a new segment for

data and begin to make use of the DS register.

We reserve the CX register for repeat counts. We'll soon write a procedure to

write one character several times, so that we can write ten spaces by calling

this procedure (WRITE_CHAR_N_TIMES) with CX set to 10. We'll use the CX
register whenever we have a repeat count or when we want to return some
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count, such as the number of characters read from the keyboard (we'll do this

when we write a procedure named READJ3TRING).
Finally, we'll set the Carry Flag (CF) whenever there is an error, and we'll

clear it whenever there isn't an error. Not all procedures use the carry flags.

For example, WRITE_CHAR always works, so there's no reason to return an
error report. But a procedure that writes to the disk can encounter many errors

(no disk, write-protection, and so on). In this case, we'll use a register to return

an error code. There's no standard here, because DOS uses different registers

for different functions—its fault, not ours.

Define all external interactions in the comment header. There's no need

to learn how a procedure works if all we want to do is use it, and this is why we
place a detailed comment header before each procedure. This header contains

all the information we need to know. It tells us what to place in each register

before calling the procedure, and it tells what information the procedure

returns. Most procedures use registers for their variables, but some of the pro-

cedures we'll soon see use variables in memory. The comment header should

say which of these memory variables are read and which are changed. Finally,

each header should list other procedures called. Here is an example of a full-

blown header with much of this information:

This is an example of a full-blown header. This part would normally
be a brief description of what this procedure does. For example,
this procedure will write the message "Sector " on the first line.

On entry: DS:DX Address of the message "Sector "

Returns: AX Error code if there was an error

Calls: GOTO_XY, WRITE_STRING (procedures called)
Reads: STAT0S_LINE_NO (memory variables read only)
Writes: DUMMY (memory variables altered)

Whenever we want to use any procedure we've written, we can just glance at

this comment header to learn how to use it. There will be no need to delve into

the inner workings of the procedure to find out what it does.

These laws make assembly language programming easier, and we'll be cer-

tain to abide by them, but not necessarily on the first try—we often won't. The
first version ofa procedure or program is a test case. Frequently, we don't know
exactly how to write the program we have in mind, so on these "rough drafts,"

we'll write the program without concern for the laws of modular design. We'll

just plow through and get something that works. Then we can backtrack and do

a good job by rewriting each procedure to conform to these laws.

Programming is a process that goes by leaps and bounds. Throughout this

book we'll show much ofthe stuttering that went into writing Dskpatch, but we
certainly can't show it all. There isn't room enough to contain all the versions
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we wrote before we settled on the final version. Our first tries often bore very

little resemblance to the final versions you'll see, so when you write programs,

don't worry about getting everything right the first time. Be prepared to

rewrite each procedure as you learn more about what you really want.

In the next chapter, we'll build a simple test program to print a block ofmem-
ory. It won't be the final version; we'll go through others before we're satisfied,

and even then, there will be other changes we'd like to make. The moral is: A
program is never done, but we must stop somewhere.

Summary

This has been a chapter for you to remember and use in the future. We began

by learning how to separate a program into a number of different source files

that we can assemble independently, then stitch together with the linker. We
used the PUBLIC and EXTRN directives to inform the linker that there are

connections between different source files. PUBLIC says that other source files

can CALL the procedures named after PUBLICs, while EXTRN tells the

assembler that the procedure we want to use is in another file.

Then we moved on to the Three Laws of Modular Design. These rules are

meant to make your programming job simpler, so use them when you write

your own programs, just as you'll see us use them in this book. You'll find it

easier to write, debug, and read programs if they conform to these Three Laws.
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E<rom here on, we'll concentrate on building Dskpatch in much the same way
that we originally wrote it. Some of the instructions in procedures to come may
be unfamiliar; we'll explain each briefly as we come across them, but for

detailed information, you'll need a book that covers all of the instructions in

detail. Most reference books that cover the 8088, 80286, or 80386 have all the

information you should need.Rather than cover all the 8088 instructions, we'll

concentrate on new concepts, such as the different modes of addressing mem-
ory, which we'll cover in this chapter. In Part III, we'll move even farther away
from the details of instructions and begin to see information specific to the IBM
Personal Computer and its near cousins.

Now, let's learn about addressing modes by writing a short test program to

dump 16 bytes ofmemory in hex notation. To begin, we need to learn how to use

memory as variables.

Addressing Modes

We've seen two addressing modes; they're known as the register and immedi-
ate addressing modes. The first mode we learned about was the register mode,
which uses registers as variables. For example, the instruction:

MOV AX,BX

uses the two registers AX and BX as variables.

Then, we moved on to the immediate addressing mode, in which we moved a

number directly into a register, as in the example:

MOV fiX,

5

This moves the byte or word of memory immediately following the instruction

into a register. In this sense, the MOV instruction in our example is one byte

long, with two more bytes for the data (0002):

3qtF:D10D BSD5DD MOV fiX,0005

The instruction is B8h, and the two bytes of data (02h and OOh) follow this

(remember that the 8088 stores the low byte, 02h, first in memory).
Now, we'll learn how to use memory as a variable. The immediate mode

allows us to read the piece of fixed memory immediately following that one
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instruction, but it doesn't allow us to change memory. For this, we'll need other

addressing modes.

Let's begin with an example. The following program reads 16 bytes of mem-
ory, one byte at a time, and displays each byte in hex notation, with a single

space between each of the 16 hex numbers. Enter the program into the file

DISP-SEC.ASM and assemble it. Enter the following into the new file

DISP_SEC.ASM:

Listing 14-1. The New File DISP-SEC.ASM

DOSSEG
.MODEL SMALL

.STACK

.DATA

PUBLIC
SECTOR DB

DB

SECTOR
lOh, llh, 15h, 13h, Uh, ISh, Ibh, 17h
Iflh, iqh, lAh, IBh, ICh, IDh, lEh, IFh

;Test pattern

.CODE

EXTRN
EXTRN

WRITE_HEX:PROC
WRITE CHARrPROC

This is a simple test program to dump lb bytes of memory as hex
numbers, all on one line.

DISP LINE PROC
MOV AX,DGROUP ;Put data segment into AX
MOV DS,AX ;Set DS to point to data

XOR BX,BX ;Set BX to
MOV CX,lb ;Dump It. bytes

HEX LOOP:
MOV DL,SECTOR[BX] ;Get 1 byte
CALL WRITE HEX ;Dump this byte in hex
MOV DL, • ' ;Write a space between numbers
CALL WRITE CHAR
INC BX
LOOP HEX_LOOP

MOV AH,<Ch ; Return to DOS
INT 51h

DISP_LINE ENDP

END DISP_LINE

Let's try our new program to see how it works. Assemble Disp_sec.

We're ready to link DISP_SEC.OBJ and VIDECUO.OBJ and create an .EXE
file named DISP_SEC.EXE. LINK creates a program by putting the pieces

together in the same order as the names on the command line. Since we want
the main procedure to appear at the start of the program, the first file name in

the LINK command needs to be the name of the file that contains the main pro-
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0431 + BK

MOU DL,^Et™Ua«l

0434: 0013
0433: 0012
0432: 0011

SECTOR: 0431: 0010

Figure 14-1. Translation of SECTOR[BX].

cedure (Disp_sec in this case). And a semicolon must appear at the end of the

list of files, so type:

R>LINK DISP_SEC 7IDE0_I0;

Linking will always be the same, with more names before the semicolon

when we have more files, but the main procedure must always be in the first

file listed.

In general, the preceding step for the files filel, file2, and so on, looks like

this:

LINK filel files file3 . . . ;

Now, run the .EXE file. If you don't see:

ID 11 13 13 14 15 lb 1? 16 1R 1A IB 1C ID IE IF

when you run the program, go back and check carefully for a mistake.

Now, let's see how Disp_sec works. The instruction:

MOV DL,SECTOR[BX] ;Get 1 byte

uses a new addressing mode known as Indirect Memory Addressing—address-

ing memory through the Base register with offset, or more simply, Base Rela-

tive. To see what this really means, we need to first learn more about segments.

The Data Segment

Looking at Disp_sec, you'll see the label SECTOR appears after .DATA. The
.DATA directive declares a data segment that is used for memory variables.
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DS,SS

Figure 14-2. Both the stack and data are in one segment group (DGROUP).

(By the way, the name of the segment created by .DATA is _DATA. Any time

we want to store and read data in memory, we'll set aside some space in this

segment. We'll get back to memory variables in just a minute, but first let's

learn a little more about segments.

The .MODEL SMALL directive creates what Microsoft calls a small memory-
model program. Small programs are defined as programs that have up to 64K of

code, and up to 64K of data. In other words, one segment for code and one seg-

ment for data. Since both the data (defined by .DATA) and the stack (defined by

.STACK) are data, they're put into a single segment.
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Start of file End of file

Disk File EXE File Header .CODE DRTfl .STACK

Memory

PSP

Code

Data

Stack

Figure 14-3. The stack segment uses no disk space.

This grouping of the stack and data segments into one segment is handled by

a mechanism in the assembler called groups. In particular, the assembler cre-

ates a group called DGROUP that creates a single segment out of all the seg-

ments used for data. So far we've seen the .DATA and .STACK directive, and

there are several other data directives that create segments in this group (we'll

see another later in this book). Fortunately, the .MODEL, .DATA, and .STACK
directives handle all of this behind the scenes. Knowing some of what happens
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behind the scenes, however, will come into use later when we look at memory
maps to see how our programs are put together.

Another thing that happens automatically, as a result of the DOSSEG direc-

tive, is that the STACK segment is loaded into memory above the DATA seg-

ment. And there is a very good reason for this. The data segment we created has

data in it (lOh, llh, 12h, and so on) that needs to be in the .EXE file so it can be

copied into memory when our program is run by DOS. The stack, on the other

hand, needs to take space in memory, but the stack's memory doesn't need to be

initialized (only SS:SP has to be set). So by putting the stack segment after the

data segment, we don't need to set aside space on the disk for the stack (see Fig-

ure 14-3).

Base-Relative Addressing

It's time to get back to our base-relative addressing mode. The two lines:

SECTOR DB lOh, llh, lEh, 13h, Kh, 15h, Ibh, 17h ;Test pattern
DB Iflh, iqh, lAh, IBh, ICh, IDh, lEh, IFh

set aside 16 bytes of memory in the data segment starting at SECTOR, which
the assembler converts to an address. DB, you may recall, stands for Define

Byte; the numbers after each DB are initial values. So, when we first start

DISPJSEC.COM, the memory starting at SECTOR will contain lOh, llh, 12h,

and so on. If we wrote:

MOV DL, SECTOR

the instruction would move the first byte (lOh) into the DL register. This is

known as direct memory addressing. But we didn't write that. Instead, we
placed [BX] after SECTOR. This may look suspiciously like an index into an
array, like the BASIC statement:

K = L(1D)

which moves the 10th element of L into K.

In fact, our MOV instruction is much the same. The BX register contains an

offset in memory from SECTOR. So if BX is 0, the MOV DL,SECTOR[BX]
moves the first byte (lOh here) into DL. If BX is OAh, this MOV instruction

moves the eleventh byte (lAh—remember, we started at 0) into DL.
On the other hand, the instruction MOV DX,SECTOR[BX] would move the

sixth word into DX, since an offset of 10 bytes is the same as 5 words, and the
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first word is at offset zero. (For enthusiasts: This last MOV instruction isn't

legal, because SECTOR is a byte label, whereas DX is a word register. We
would have to write MOV DX,Word Ptr SECTOR[BX] to tell the assembler

that we really want to use SECTOR as a word label in this instruction.)

There are many other addressing modes; some we'll encounter later, but

most we won't. All the addressing modes are summarized in Table 14-1.

Table 14-1. Addressing Modes

Addressing Mode Format of Address Segment Register Used

Register register (such as AX) None

Immediate data (such as 12345)

Memory Addressing Modes

None

Register Indirect [BX]

[BP]

[DI]

[SI]

DS
SS
DS
DS

Base Relative* label[BX]

label[BP]

DS
SS

Direct Indexed* label[DI]

label[SI]

DS
DS

Base Indexed* label[BX + SI]

label[BX + DI]

label [BP + SI]

label[BP + DI]

DS
DS
SS
SS

String Commands:
(MOVSW, LODSB, and soon)

Read from DS:SI

Write to ES:DI

* Label[...] can be replaced by [disp + ...], where disp is a displacement. Thus,
we could write [10 + BX] and the address would be 10 + BX.

Setting Up DS

There's one minor detail we've glossed over. In Chapter 11 we noted that both
the DS and ES registers point to the PSP, not to our data segment, when DOS
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starts our program. How do we set DS so it points to our data segment? Using

the first two lines in DISP_LINE:

MOV AX, DGROUP ;Put data segment into AX
MOV DS,AX ;Set DS to point to data

These two lines set the DS register so it points to our data segment. The first

line moves the segment address for our data group (called DGROUP) that con-

tains .DATA and .STACK into the AX register. And the second line sets DS so

it points to our data.

But there's one sticky point here. If you remember back to the discussions

about the segment registers, we said the segment used for our programs
depends on how much of our memory is already in use. In other words, we can't

know the value of DGROUP until DOS loads our program in memory. How,
then do we know what number to load into AX?
As it turns out, there is a small header at the start of each .EXE file that con-

tains a list of addresses in our program that have to be calculated. DOS uses

this information to calculate the value ofDGROUP and update the value in the

MOV AX,DGROUP instruction when it loads DISP_SEC.EXE into memory.
This process is known as relocation, and we'll see exactly how it works in Chap-

ter 28.

There is another fine point of writing programs for the 8088 family of micro-

processor. You'll notice we set the value of DS with two instructions, rather

than the single instruction:

MOV DS, DGROUP

Why do we need two instructions? It turns out that you can't move a number
directly into a segment register on the 8088, so we have to move the segment
number first into the AX register. Requiring two instructions, rather than one,

simplified the design of the 8088 microprocessor, which made it less expensive

to manufacture but more difficult to program.

Adding Characters to the Dump

We're almost finished writing the procedure that creates a dump display sim-

ilar to Debug's. So far, we've dumped the hex numbers for one line; in the next

step, we'll add the character display following the hex display. It's not very

involved, so without further delay, here's the new version of DISPJLINE (in

DISP_SEC.ASM), with a second loop added to display the characters:
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Listing 14-2. Changes to DISP_LINE in DISP_SEC.ASM

DISP LINE PROC
MOV AX,DGRO0P ;Put data segment into AX
MOV DS, AX ;Set DS to point to data

XOR BX,BX ;Set BX to D

MOV CX,lb ;Dump lb bytes
HEX LOOP:

MOV DL,SECTOR[BX] ;Get 1 byte
CALL WRITE HEX ;Dump this byte in hex
MOV DL, ' ' ;Write a space between numbers
CALL HRITE CHAR
INC BX
LOOP HEX_LOOP

MOV DL, ' ' ;Add another space before char
CALL WRITE CHAR
MOV CX,lb
XOR BX,BX ;Set BX back to

ASCII LOOP:
MOV DL, SECTOR
CALL WRITE CHAR
INC BX
LOOP ASCII_LOOP

MOV AH,4Ch ; Return to DOS
INT eih

DISP LINE ENDP

Assemble this, link it to Video_io, and try it. Just the display we wanted. (See

Figure 14-4.)

Try changing the data to include a ODh or a OAh. You'll see a rather strange

display. Here's why: OAh and ODh are the characters for the line-feed and car-

riage-return characters. DOS interprets these as commands to move the cursor,

but we'd like to see them as just ordinary characters for this part of the display.

To do this, we'll have to change WRITE_CHAE to print all characters, without

applying any special meaning. We'll do that in Part III, but for now, let's

rewrite WRITE_CHAR slightly so that it prints a period in place of the low

characters (between and lFh):

fl>disp_sec

10 11 12 13 14 15 16 17 18 19 lfl IB 1C ID IE IF

A>_

Mt!!HS-lti-»H-»*t

Figure 14-4. DISP_LINE's Output.

fl>disp_sec

10 11 12 13 14 15 16 17 18 19 lfl IB 1C ID IE IF .

A>-

Figure 14-5. Modified Version of DISP Line.
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Replace the WRITE_CHAR in VIDE0_IO.ASM with this new procedure:

Listing 14-3. A New WRITE_CHAR in VIDEOJO.ASM

PUBLIC WRITE CHAR

This procedure
function call,
a period.

On entry: DL

prints
WRITE,

byte

a character on the
CHAR replaces the c

to print on screen

screen using
haracters

the
throi

DOS
gh IFh w i th ;

WRITE CHAR PROC
PUSH AX
PUSH DX
CMP DL,35
JAE IS PRINTABLE
MOV DL, '

.

'

IS PRINTABLE:
MOV AH, S

INT 21h
POP DX
POP AX
RET

WRITE CHAR ENDP

;Is character before a space?
;No, then print as is
;Yes, replace with a period

;Call for character output
;Output character in DL register
; Restore old value in AX and DX

Try this new procedure with Disp_sec and change the data to various charac-

ters to check the boundary conditions.

Dumping 256 Bytes of Memory

Now we've managed to dump one line, or 16 bytes, of memory. The next step

is to dump 256 bytes of memory. This happens to be exactly half the number of

bytes in a sector, so we're working toward building a display of half a sector. We
still have many more improvements to make; this is just a test version.

We'll need two new procedures here, and a modified version of DISP-LINE.
The new procedures are DISP_HALF_SECTOR, which will soon evolve into a

finished procedure to display half a sector, and SEND_CRLF, which just sends

the cursor to the beginning of the next line (CRLF stands for Carriage Return-

Line Feed, the pair of characters that move the cursor to the next line).

SEND_CRLF is very simple, so let's start with it. Place the following proce-

dure into a file called CURSOR.ASM:

Listing 14-4. The New File CURSOR.ASM

CR
LF

EQU
EQU

13
10

;Carriage return
;Line feed

.MODEL

.CODE
SMALL
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Listing 14-4. continued

PUBLIC SEND CRLF

This routine just sends a carriage return-line feed pair to the
display, using the DOS routines so that scrolling will be handled
correctly

.

SEND CRLF PROC
PUSH AX
POSH DX
MOV AH,

2

MOV DL,CR
INT 51h
MOV DL.LF
INT Elh
POP DX
POP AX
RET

SEND CRLF ENDP

END

This procedure sends a Carriage Return and Line Feed pair, using the DOS
function 2 to send characters. The statement:

CR EQO 13 ;Carriage return

uses the EQU directive to define the name CR to be equal to 13. So the instruc-

tion MOV DL,CR is equivalent to MOV DL,13. As shown in Figure 14-6, the

assembler substitutes 13 whenever it sees CR. Likewise, it substitutes 10

whenever it sees LF.

Note: From here on, we'll use color to show the changes in

our programs so you won't have to check each line to see if it's

new or different. Additions to our programs will be shown
against a gray background, and text you should delete will be

printed in blue with a line through the text:

Add or change lines against a gray background.

Dolcto toxt ohown in blue

CR EQU 13

MOU Dj/^R

Figure 14-6. The EQU directive lets us use names in places of numbers.
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The file Disp_sec now needs much work. Here's the new version of

DISPJSEC.ASM:

Listing 14-5. The New Version of DISP_SEC.ASM

DOSSEG
.MODEL SMALL

.STACK

.DftTA

SECTOD &B-

SECTOR

.CODE

-&£-

DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

IBh, llh , Igh, 13h, l .̂ h, 15h, Ibh, 17h ;Toct pattern
.Ah ,—t«4t-,

—

WUh—«*->—ICh, IPh,—l£fc,—Lth-
It DUP (lOh)
It DUP (llh)
It DOP (ieh)
lb DOP (13h)
It DOP (Kh)
It DOP (ISh)
It DOP (1th)
It DOP (l?h)
It DOP (Iflh)

It DOP (llh)
It DOP <lAh)
It DOP (IBh)
It DOP (ICh)
It DOP (IDh)
It DOP (IBh)
It DOP (IFh)

: i

POBLIC DISP_HBLF_SECTOR
EXTRN SEND_CRLF:PROC

This procedure displays half a sector (25t bytes)

Oses: DISPLINE, SEND CBLF

DISP_HALF_SECTOR PROC
MOV AX.DGROOP
MOV DS,AX

XOR DX,DX
80 ¥ CX,lt

HALF SECTOR:
CALL DISP LIKE
CALL SBKD CRLF
ADD DX,lt
LOOP HALF_SECTOR

HOV AH,<Ch
IHT eih

DISP_HALF SECTOR ENDP

;Put data segaent into AX
;Set DS to point to data

;Start at beginning of SECTOR
; Display It lines

; Return to DOS

POBLIC DISP_LIHE
EXTRN WRITE_HEX:PROC
EXTRN HRITE_CHAR:PROC

This procedure displays one line of data, or It bytes, first in hex,
then in ASCII.

On entry:

Oses:
Reads:

DS:DX Offset into sector, in bytes.

SRITE_CBAR, »RITE_HBX
SECTOR
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Listing 14-5. continued

DISP_LINE
MOV
y. c v

. : ;

POSB
POSH
POSH
aov
BOV
POSB

HEX_LOOP:
MOV
CALL
MOV
CALL
INC
LOOP

MOV
CALL
MOV
POP
-%&*—

ASCII_LOOP:
MOV
CALL
INC
LOOP

MOV
INT

PEOC
AX.DGROBP
DSi AX

BX
CX
DX
BX,DX
CX,lb
BX

DL, SECTOR [BX]
WRITE_HEX
DL, ' '

WRITE_CHAR
BX
HEX LOOP

DL, ' '

HRITE_CHAR
CX,lt
BX
BX,BX

DL,SECTOR[BX]
WRITE_CHAR
BX
ASCII LOOP

POP DX
POP CX
POP BX
BET

AH, * Ch

;Put data segment into AX
iSot DS—to point to data

;Offset is more nseful in BX
;Dump It. bytes
;Save the offset for ASCII_LOOP

;Get 1 byte
;Dump this byte in hex
;Hrite a space between numbers

;Add another space before characters

;Get back offset into SECTOR

;Rcturn to DOS

DISP_LINE ENDP

END DISP HALF SECTOR

The changes are all fairly straightforward. In DISP_LINE, we've added a

PUSH BX and POP BX around the HEX_LOOP, because we want to reuse the

initial offset in ASCILLOOP. We've also added PUSH and POP instructions to

save and restore all the registers we use within DISP—LINE. Actually,

DISP_LINE is almost done; the only changes we have left are aesthetic, to add

spaces and graphics characters so we'll have an attractive display; those will

come later.

When you link the files, remember that we now have three files: Disp_sec,

Video_io, and Cursor. Disp_sec should be first in this list. You should see a dis-

play like the one in Figure 14-7 when you run Disp_sec.exe.

We'll have more files before we're done, but now, let's move on to the next
chapter, where we'll read a sector directly from the disk before we dump half a

sector.
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A>disp_sec

IB 18 10 18 IB IB 18 IB 18 10 18 10 10 IB 18 IB

11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11

12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12

13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13

14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14

15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

16 IB 16 16 16 16 16 16 16 1G 16 16 16 16 1G 16

17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17

18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18

19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19

lfi 1A 1A lfl lfl 1A lfllfl 1A 1A lfl 1A lfllfilfl lfi

IB IB IB IB IB IB 18 16 IB IB IB IB IB IB IB IB

1C 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C

IB IB IB IB IB IB IB IB ID IB IB IB IB IB IB IB

IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE

IF IF IF IF IF IF IF IF IF IF IF IF IF IF IF IF
*•

Figure 14-7. Output From Disp_sec.

Summary

We know more about the different memory modes for addressing memory
and registers in the 8088 microprocessor. We learned about indirect memory
addressing, which we first used to read 16 bytes of memory.
We also used indirect memory addressing in several programs we wrote in

this chapter, starting with our program to print 16 hex numbers on the screen.

These 16 numbers came from an area in memory labeled SECTOR, which we
expanded a bit later so we could display a memory dump for 256 bytes—half a

sector.

And, at last, we've begun to see dumps of the screen, as they appear on your

display, rather than as they are set in type. We'll use these screen dumps to

more advantage in the following chapters.
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N<ow that we have a program that dumps 256 bytes of memory, we can add

some procedures to read a sector from the disk and place it in memory starting

at SECTOR. Then, our dump procedures will dump the first half of this disk

sector.

Making Life Easier

With the three source files we had in the last chapter, life becomes somewhat
complicated. Did we change all three of the files we were working on, or just

two? You probably assembled all three, rather than checking to see ifyou made
any changes since the last assemble.

But assembling all our source files when we've changed only one of them is

rather slow and will become even slower as Dskpatch grows in size. What
we'd really like to do is assemble only the files that we've changed.

Fortunately, all the assemblers covered in this book (MASM, Turbo Assem-
bler, and OPTASM) allow you to do just that. Borland and Microsoft provide a

program called Make that does exactly what we want. (OPTASM includes a

very simple Make inside its assembler, which we'll describe at the end of the

next section.) To use it, we create a file (we'll call it Makefile) that tells Make
how to do its work, then just type:

A>HAKE DSKPfiTCB

Note: If you're using Borland's Make, you'll type just

MAKE.) Make then assembles only the files you've changed.

The file you create (Makefile) tells Make which files depend on which other

files. Every time you change a file, DOS updates the modify time for this file

(you can see this in the DIR display). Make simply looks at both the .ASM and
.OBJ versions of a file. If the .ASM version has a more recent modify time than
the .OBJ version, Make knows that it needs to assemble that file again.

That's all there is to it, but there is one caveat we need to point out: Make will

work correctly only if you're diligent about setting DOS's date and time each
time you start your computer or if your computer has a built-in clock (as most
computers do these days). Without this information, Make won't always know
when you've made changes to a file.

.
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Format of the Make File

The format for our file, Makefile, that we'll use with Make is fairly simple:

Listing 15-1. The Make File MAKEFILE

disp_sec.obj : disp_sec.asm
masm disp_sec;

video_io.obj : video_io. asm
masm video_io;

cursor. obj : cursor. asm
masm cursor;

disp_sec.exe: disp_sec.obj video_io.obj cursor. obj
link disp_sec video_io cursor;

Note: If you're using Borland's Make, the last two lines must
be at the beginning of the file rather than at the end, as here.

Each entry has a file name on the left (before the colon) and one

or more file names on the right. If any of the files on the right

(such as DISP-SEC.ASM in the first line) are more recent than

the first file (DISP_SEC.OBJ), Make will execute all the

indented commands that appear on the following lines.

If your assembler has the Make program, enter these lines into the file

Dskpatch (without an extension) and make a small change to DISP-SEC.ASM.
Then type:

A>MAKE MAKEFILE

(type just MAKE if you're using Borland's Make) and you'll see something like

the following:

Microsoft (R) Program Maintenance Utility Version 4.0b
Copyright (C) Microsoft Corp ISfl^-lSA?. all rights reserved.

masm disp_sec;
Microsoft (B) Macro Assembler Version S. 10
Copyright (C) Microsoft Corp 19A1, IRflfl. All rights reserved.

<qb2D + E333Q3 Bytes symbol space free

Warning Errors
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D Severe Errors

link disp_sec video_io cursor;

Microsoft (R) Overlay Linker Version 3 . l>4

Copyright (C) Microsoft Corp 1983-1^66. All rights reserved.

A>

Make has done the minimum amount of work necessary to rebuild our pro-

gram.

If you have an older version of the Microsoft Macro Assembler that doesn't

include Make, you'll find this program worth the price of an upgrade. And
you'll get a nice replacement for Debug, too. It's called CodeView, and we'll

take a look at it later.

OPTASM's Make

SLR Systems's OPTASM includes a Make built into the assembler itself. But
unlike Microsoft's, IBM's, and Borland's Make, OPTASM's Make can assemble

only files that have changed: It can't run the linker to build a new .EXE file.

Nonetheless, it's very convenient to use OPTASM's Make to assemble only the

files we've changed.

The format for OPTASM's make file is a little different from the format for

the Make program:

Listing 15-2. OPTASM's Make File MAKEFILE

disp_sec.obj disp_sec.asm
disp_sec;

video_io.obj video_io.asm
video_lo;

cursor. obj cursor. asm
cursor;

Each entry has the name of an object file (such as disp_sec.obj) followed by
the files that affect it. If any of the files on the line after the object file are more
recent (if you've changed disp_sec.asm in the first line), OPTASM will assem-
ble the file that appears on the next line. You can see this is slightly different

from the file that Make uses, but it gets the same job done.

To assemble all the files you've changed, type:

A>OPTASH iHAKEFILE
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This tells OPTASM to use the information in MAKEFILE to decide which files

to assemble.

You'll then need to run Link after this to create a new .EXE file:

A>LIKK DISP_SEC VIDEO_IO CURSOR;

That's all there is to using OPTASM's built-in Make feature. (You'll find more
information in the OPTASM manual.) Now on with Dskpatch.

Patching Up Disp_sec

Disp_sec, as we left it, included a version ofDISP_HALF_SECTOR, which we
used as a test procedure, and the main procedure. Now, we'll change
DISP_HALF_SECTOR to an ordinary procedure so we can call it from a proce-

dure we'll name READ-SECTOR. Our test procedure will be in Disk_io.

First, let's modify Disp_sec to make it a file of procedures, just as we did with

Video_io. Change the END DISP_HALF_SECTOR to just END, since our main
procedure will now be in Disk_io. Then remove the .STACK and DOSSEG
directives near the top of Disp_sec.asm, again because we're moving these to a

different file.

Then, since we plan to read a sector into memory starting at SECTOR, there

is no need for us to supply test data. We can replace all the 16 DB statements

after SECTOR with one line:

SECTOR DB 6195 DDP (0)

which reserves 8192 bytes for storing a sector.

Recall our earlier statement that sectors are 512 bytes long. So why do we
need such a large storage area? It turns out that some hard disks (300-

megabyte, for example) use very large sector sizes. These large sector sizes are

by no means common, but we still want to be certain that we don't read in a

sector that is too large to fit into the memory we've reserved for SECTOR. So, in

the interest of safety, we've reserved 8192 bytes for SECTOR. In the rest of this

book, with the exception ofSECTOR, which we'll cover soon, we'll assume that

sectors are only 512 bytes long.

Now what we need is a new version of DISP_HALF_SECTOR. The old ver-

sion is nothing more than a test procedure that we used to test DISP—LINE. In

the new version, we'll want to supply an offset into the sector so that we can

display 256 bytes, starting anywhere in the sector. Among other things, this

means we could dump the first half, the last half, or the middle 256 bytes. Once

i
u
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again, we'll supply this offset in DX. Here is the new—and final—version of

DISP-HALFJ3ECT0R in Disp_sec:

Listing 15-3. The Final Version of DISP_HALF_SECTOR in DISP_SEC.ASM

PDBLIC DISP HALF SECTOR
EXTEN SEND_CRLF:PROC

; This procedure displays half a sector (25k bytes) ;

; On entry: DS:DX Offset into sector, in bytes -

; multiple of It.

- should be ;

; Uses: DISP_LINE, SEND_CRLF ;

DISP_HALF_SECTOR PROC
-XQV AX.DGRQUP
MOV PS, AX

DX.DX
POSH cx
POSH DX
MOV CX,lfc

HALF SECTOR:
CALL DISP LINE
CALL SEND CRLF
ADD DX,lt
LOOP HALF SECTOR
POP DX
POP CX
RET

MOV AH,4Ch
-i*S —&ii-

DISP HALF SECTOR ENDP

;Put data segm e nt into AX
;S et P S to point to data

i
Start at b eginning of SECTOR

;Display It. lines

; R e turn to DOS

Let's move on now to our procedure to read a sector.

Reading a Sector

In this first version ofREAD_SECTOR we'll deliberately ignore errors, such

as having no disk in the disk drive. This is not good practice, but this isn't the

final version of READ_SECTOR. We won't be able to cover error handling in

this book, but you will find error-handling procedures in the version of

Dskpatch on the disk that is available for this book. For now, though, we just

want to read a sector from the disk. Here is the test version of the file

DISIOO.ASM:

Listing 15-4. The New File DISKJO.ASM

DOSSEG
.MODEL SMALL

.STACK
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.DATA

.CODE

EXTRN SECTOR: BYTE

EXTRN DISP HALF SECTOR : PROC

This procedure reads the first sector on disk A and dumps the first
half of this sector.

READ]SECTOR
MOV
MOV

MOV
MOV
MOV
LEA
INT
POPF
XOR
CALL

MOV
INT

READ SECTOR

PROC
AX,DGROUP
DS, AX

AL,D
CX,1
DX,0
BX, SECTOR
ash

DX,DX

;Put data segment into AX
;Set DS to point to data

;Disk drive A (number D)
;Read only 1 sector
;Read sector number D

;Hhere to store this sector
;Read the sector
;Discard flags put on stack by DOS
;Set offset to D within SECTOR

DISP_HALF_SECTOR; Dump the first half

AH,4Ch
eih
ENDP

;Return to DOS

I

END READ SECTOR

There are three new instructions in this procedure. The first:

LEA BX, SECTOR

moves the address, or offset, ofSECTOR (from the start ofDGROUP data group

created by .DATA) into the BX register; LEA stands for Load Effective Address.

After this LEA instruction, DS:BX contains the full address of SECTOR, and
DOS uses this address for the second new instruction, the INT 25h call, as we'll

see after a few more words about SECTOR. (Actually, LEA loads the offset into

the BX register without setting the DS register; we have to ensure that DS is

pointing to the correct segment.)

SECTOR isn't in the same source file as READ-SECTOR. It's over in

DISP_SEC.ASM. How do we tell the assembler where it is? We use the EXTRN
directive:

.DATA

EXTRN SECTOR: BYTE

This set of instructions tells the assembler that SECTOR is defined in the data

segment created by .DATA, that it's defined in another source file, and that

SECTOR is a variable of bytes (rather than words). We'll be using such

EXTRNs often in following chapters; it's the way we use the same variables in
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0000:

t

0381:

DGR0UP

.DflTfl segment

SECTOR:

.STACK segment

LEB DK,SECTOR M0U BK,0381

Figure 15-1. LEA loads the effective address.

a number of source files. We just need to be careful that we define our variables

in only one place.

Let's return to the INT 25h instruction. INT 25h is a special function call to

DOS for reading sectors from a disk. When DOS receives a call from INT 25h, it

uses the information in the registers as follows:

AL Drive number (0 = A, 1 = B, and so on)

CX Number of sectors to read at one time



Dumping a Disk Sector 765

DX Number of the first sector to read (the first sector is 0)

DS:BX Transfer address: where to write the sectors read

The number in the AL register determines the drive from which DOS will read

sectors. IfAL = 0, DOS reads from drive A.

Note: Some recent versions ofDOS (COMPAQ DOS 3.31 and
DOS 4.0 and above) support hard disks larger than 32

megabytes by changing the way the INT 25h function call

works. This isn't a problem for reading from a floppy disk, as

we're doing in this book, but it can be if you want to use

Dskpatch on a hard disk.

A
DOS can read more than one sector with a single call, and it reads the

number of sectors given by CX. Here, we set CX to one so DOS will readjust one

sector of 512 bytes.

We set DX to zero, so DOS will read the very first sector on the disk. You can

change this number ifyou want to read a different sector; later on, we will.

DS:BX is the full address for the area in memory where we want DOS to store

the sector(s) it reads. In this case, we've set DS:BX to the address of SECTOR,
so that we can call DISP_HALF_SECTOR to dump the first half ofthe first sec-

tor read from the disk in drive A.

Finally, you'll notice a POPF instruction immediately following the INT 21h.

As noted, the 8088 has a status register that contains the various flags, like the

zero and carry flags. POPF is a special POP instruction that pops a word into

the status register. Why do we need this POPF instruction?

.DflTfi

EHTRN SECT0R:BYTE

R byte uariable.

LINK mill prouide

the address.

Figure 15-2. The EXTRN Directive.
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A>disk_io

EB 28 96 49 42 4D 26 26 33 2E 32 66 62 62 61 66 <ft£lBT1 3.2

62 76 66 D6 62 FD 82 86 69 66 62 88 86 66 86 68 .p.
11

.

2

66 66 68 88 88 88 88 88 66 66 FA C4 5C 88 33 ED -V3*
B8 C8 87 8E D8 33 C9 88 1G FD 81 8fl D2 79 Bfl 89 =|

L .A±3[je.
2

. .^.e

IE 1C 86 8C 66 IE 68 Bl 82 8E C5 8E D5 BC 88 7C . . . t. . .|.ftjfl^.

!

FC IE 3B C5 3G 78 86 BF 2A 7C B9 8B 88 F3 A4 IF n
.6-f€x.-|*i{|. .<n.

CG 6G 2E 68 8F BF 78 68 B8 2A 7C AB 91 AB FB 8A (=. . . .-|X.=|*! .__Je

16 FD 61 CD 13 A8 18 86 98 F7 26 16 68 63 86 BE .* .=.a. ,y=*

66 E8 73 88 E8 79 66 BB 68 65 53 E8 AB 66 5F BE .{s.$y.i|. .SJa.J

74 81 B9 BB 68 96 F3 A6 75 57 83 C7 15 Bl 8B 98 t.f ._<_!uUat.|._

98 F3 A6 75 4C 26 8B 47 1C 99 8B 8E 6B 88 83 CI _:<_!uL_iG.0i.

.

..
L

48 F7 Fl 3D 14 88 7F 62 B8 14 96 Al 11 BB Bl 64 H=+=. .-.J.fif. I
D3 E8 E8 32 88 FF 36 1C BB C4 IE 78 Bl E8 3B 68 H$2. 6. .-.p. $8.

E8 5B 66 2B F8 76 BD E8 ID B8 52 F7 26 8B 66 83 §[ ,+3v.$. .R=S. .

.

D8 5A ED E9 5B 8A 2E 15 88 8A 16 FD 81 FF 2E 7B #tfe[e. . .e.
2

. .p

61 DE 8D 81 EB 54 98 81 66 1C BB 11 2E IE BB C3 Ji.tilt |-

fl>_

Figure 15-3: Screen Dump from DISK_JO.COM.

The INT 25h instruction pushes first the status registers, then the return

address onto the stack. When DOS returns from this INT 25h, it leaves the sta-

tus register on the stack. DOS does this so that it can set the carry flag on

return if there was a disk error, such as trying to read from drive A with no disk

in the drive. We won't be checking for errors in this book, but we have to

remove the status register from the stack—hence the POPF instruction. (Note:

INT 25h, along with INT 24h which writes a disk sector, are the only DOS rou-

tines that leave the status register on the stack.)

Now you can assemble DISK_IO.ASM, and reassemble DISP_SEC.ASM.
Then, link the four files Disk_io, Disp_sec, Video_io, and Cursor, with Disk_io

listed first. Or, if you have Make, add these two lines to your Makefile:

disk_io. obj

:

disk_io.asm
asm disk_io;

(for OPTASM's Make, you'll need to indent the first line, and remove the lead-

ing spaces from the second line) and change the last two lines (first two lines for

Borland's Make) to:

disk_io.exe: disk_io.obj disp_sec.obj video_io.obj cursor. obj
link disk_io disp_sec video_io cursor;

After you create your .EXE version of Disk_io, you should see a display some-

thing like Figure 15-3 (remember to put a disk in drive A before you run
Disk_io).
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The .DATA? Directive

Ifyou look back at our definition ofSECTOR in Disp_sec.asm, you'll see that

we reserved 8192 bytes of zeros. Which means we have to reserve room in the

DISK_IO.EXE file on your disk:

A>DIB DISK_IO.EXE

Volume in drive A has no label
Directory of A:

DISK_IO EXE QR52 S-lb-fll 10:<Sa
1 File(s) 20704 bytes free

A>

As you can see, Disk_io.exe is 8,922 bytes long, which is mostly filled with

zeros. That's a lot of space to reserve just for zeros, especially since we don't care

what's in SECTOR before we read a sector into memory. So does SECTOR
really need to take space on the disk? No.

There is another directive, .DATA?, that allows to define memory variables

that take space in memory, but not on the disk. We can do this by telling the

assembler we don't care what value a memory variable has.

Change the three lines in DISP-SEC that define SECTOR to the following:

.DATA?

SECTOR DB 81S5 DUP (?)

There are two changes here. First, there is a ? after the .DATA directive, which

tells the assembler we're about to define variables that don't have initial values

and, therefore, don't need to take space in the disk file. Second there is a ?

rather than a for the value of each byte in SECTOR. The DUP (?) tells the

assembler that we don't care what value each byte has.

Note: You need to define variables in the .DATA? section

with DUP (?). If you define any variables with a value (such as

VAR DB 0), or if you use VAR DB ?, the assembler will reserve

room in the .EXE file for all the variables in .DATA?. In other

words, put all the variables that have initial values into

.DATA, and all variables with DUP (?) in .DATA?.

After making these changes, rebuild Disk_io.exe. It should now be only 729

bytes long. The .DATA? directive allows us to keep our programs quite small on
the disk.
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We'll come back later to add more to Disk_io; we have enough for now. In the

next chapter, we'll build a nicer sector display by adding some graphics charac-

ters to the display, and then adding a few more pieces of information.

Summary

Now that we have four different source files, Dskpatch is becoming some-

what more involved. In this chapter, we looked at the program Make, which
helps make life simpler by assembling only the files we've changed.

We also wrote a new procedure, READJ3ECTOR. It's in a different source

file from SECTOR, so we used an EXTRN definition in DISK_JO.ASM to tell

the assembler about SECTOR and let it know that SECTOR is a byte variable.

We also learned about the LEA (Load Effective Address) instruction, which

we used to load the address ofSECTOR into the BX register.

DISK—IO uses a new INT number, INT 25h, to read sectors from a disk to

memory. We used INT 25h to read one sector into our memory variable, SEC-
TOR, so we could dump it on the screen with DISP_HALF_SECTOR.
We also learned about the POPF instruction to pop a word off the stack and

into the status register. We used this instruction to remove the flags which

DOS didn't remove from the stack when it returned from INT 25h.

Our half-sector display isn't very attractive yet, in the next chapter we'll use

some of the graphics characters available on the IBM PC to make it more aes-

thetically pleasing.
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We'e've come to the last chapter in Part II. Everything we've done so far has

been applicable to MS-DOS and the 8088 (or the 8086, 80286, and so on). In

Part III, we'll begin to write procedures that work more closely with your com-

puter's screen.

But before we move on, we'll use this chapter to add several more proce-

dures to Video_io. We'll also modify DISP_LINE in Disp_sec. All our modifi-

cations and additions will be to the display. Most of them will be to improve

the appearance of the display, but one will add new information: It will add

numbers on the left that act like the addresses in Debug's dump. Let's begin

with graphics.

Adding Graphics Characters

The IBM Personal Computer has a number of line-drawing characters we can

use to draw boxes around various parts of our dump display. We'll draw one box

around the hex dump, and another around the ASCII dump. This change

requires very little thought, just work.

Enter the following definitions near the top of the file DISP_SEC.ASM,
between the .MODEL directive and the .DATA? directive, leaving one or two

blank lines before and after these definitions:

Listing 16-1. Add to the Top of DISP_SEC.ASM

Graphics characters for border of sector.

VERTICAL BAR EQD DBAh
HORIZONTAL BAR EQO OCDh
OPPER LEFT EQO OCIh
UPPER RIGHT EQD OBBh
LOWER LEFT EQU OCflh
LOWER RIGHT EQO DBCh
TOP T BAR EQO DCBh
BOTTOM T BAR EQO OCAh
TOP TICK EQO ODlh
BOTTOM TICK EQO QCFh

These are the definitions for the graphics characters. Note that we put a zero

before each hex number so the assembler will know these are numbers, rather

than labels.

We could just as easily have written hex numbers instead of these definitions

in our procedure, but the definitions make the procedure easier to understand.

For example, compare the following two instructions:
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MOV DL,VERTICftL_BAR
MOV DL,0BAh

Most people find the first instruction clearer.

Now, here is the new DISP_LINE procedure to separate the different parts of

the display with the VERTICAL_BAR character, number 186 (OBAh). As
before, additions are shown against a gray background:

Listing 16-2. Changes to DISP_LINE in DISP_SEC.ASM

DISP LINE PROC
POSH BX
POSH CX
POSH DX
MOV BX,DX

MOV DL, ' «

CALL WRITB CHAR
MOV DL,VEBTICAL BAR
CALL WRITE CHAR
MOV DL, '

CALL KRITE_CHAR

MOV CX,lb
POSH BX

HEX LOOP:
MOV DL,SECTOR[BX]
CALL WRITE HEX
MOV DL, ' •

CALL WRITE CHAR
INC BX
LOOP HEX_LOOP

MOV DL, VERTICAL BAB
CM.L WRITE_CHAR
MOV DL, '

'

CALL WRITE_CHAR

MOV CX,lb
POP BX

ASCII LOOP:
MOV DL,SECTOR[BX]
CALL WRITE CHAR
INC BX
LOOP ASCII_LOOP

ROT DL, ' i

CALL WRITE CHAR
MOV DL, VERTICAL BAR
CALL WRITE_CHAR

POP DX
POP CX
POP BX
RET

DISP LINE ENDP

;Offset is more useful in BX
;Write separator

;Dra» left side of box

;Now write out It bytes
;Dump lb bytes
;Save the offset for ASCII_LOOP

;Get 1 byte
;Dump this byte in hex
;Write a space between numbers

;Write separator

;Add another space before characters

;Get back offset into SECTOR

Assemble this new version of Disp_j3ec and link your four files (remember to

place DiskJo first in the list of files following the LINK command). You'll see

nice double bars separating the display into two parts, as you can see in Figure

16-1.
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A>disk_io

EB 28 9B 49

82 78 BB D8

88 88 88 BB

B8 C8 87 8E

IE 1C 88 8C

FC IE 3G C5

CG 86 2E 88

16 FD 81 CD

BB E8 73 88

74 81 B9 BB

98 F3 A6 75

48 F7 Fl 3D

D3 E8 E8 32

E8 5B 88 2B

D8 5fl EB E9

81 BE 8B 81

A>

42 4D

82 FD

BB B8

D8 33

86 IE

36 78

8F BF

13 ne

E8 79

88 98

4C 26

14 88

86 FF

F8 76

5B 8A

EB 54

28 28

82 BB

88 86

C9 88

86 Bl

88 BF

78 86

16 68

88 BB

F3 A6

8B 47

7F 82

36 1C

6D E8

2E 15

98 81

33 2E 32

89 88 82

88 88 FA

16 FD 81

82 8E C5

2A 7C B9

B8 2A 7C

98 F7 26
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Figure 16-1. Adding Vertical Bars.

Adding Addresses to the Display

Now let's try something a bit more challenging: Let's add the hex addresses

down the left side of the display. These numbers will be the offset from the

beginning of the sector, so the first number will be 00, the next 10, then 20, and
soon.

The process is fairly simple, since we already have the procedure

WRITE—HEX for writing a number in hex. But we do have a problem in dealing

with a sector 512 bytes long: WRITE_HEX prints only two-digit hex numbers,

whereas we need three hex digits for numbers greater than 255.

Here's the solution. Since our numbers will be between zero and 511 (Oh to

IFFh), the first digit will either be a space, ifthe number (such as BCh) is below

lOOh, or it will be a 1. So, if the number is larger than 255, we'll simply print a

1, followed by the hex number for the lower byte. Otherwise, we'll print a space

first. These are the additions to DISP_LINE that will print this leading three-

digit hex number:

Listing 16-3. Additions to DISP_LINE in DISP-SEC.ASM

SP LINE PROC
POSH BX
POSH cx
POSH DX
MOV BX,DX
HOV DL, •

;Offset is more useful in BX
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cup BX,lDOh
IB WRITE ONE
MOV DL, '1'

WRITE.ODE:
CALL WRITE CHAR
BOV DL,BL
CALL WRITB_HEX

MOV DL, '

CftLL WRITE CHAR
MOV DL, VERTICAL BAR

gfJBJjKMW

;Write offset in hex
;Is the first digit a 1?
;No, white space already in DL
;Yes, then place ' 1' into DL for output

;Copy lower byte into DL for hex output

;Write separator

;Draw left side of box

A>disk_io
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Figure 16-2. Adding Numbers on the Left.

You can see the result in Figure 16-2.

We're getting closer to our full display. But on the screen, our display isn't

quite centered. We need to move it to the right by about three spaces. Let's

make this one last change; then we'll have our finished version of DISP_LINE.
We could make the change by calling WRITE_CHAR three times with a

space character, but we won't. Instead, we'll add another procedure, called

WRITE_CHAR_N_TIMES, to Video_io. As its name implies, this procedure

writes one character N times. That is, we place the number N into the CX regis-

ter and the character code into DL, and we call WRITE_CHAR_N_TIMES to

write N copies of the character whose ASCII code we placed in DL. Thus, we'll

be able to write three spaces by placing 3 into CX and 20h (the ASCII code for a

space) into DL.

Here's the procedure to add to VIDECUO.ASM:



174 Peter Norton's Assembly Language Book for the IBM PC, Revised & Expanded

Listing 16-4. Add this Procedure to VIDEOJO.ASM

POBLIC WRITE_CHAR_N_TIHES

This procedure writes lore than one copy of a character

On entry:

Dses:

DL
CX

Character code
Nuiber of tiies to write the character

WRITE CHAR

WRITE CHRR N TIMES PR
POSH CX

N TIMES:
CALL WRITE CHAR
LOOP N TIMES
POP CX
RET

WRITE CHAR N TIMES EN

You can see how simple this procedure is, since we already have
WRITE_CHAR. If you're wondering why we bothered to write a procedure for

something so simple, it's because our program Dskpatch is much clearer when
we call WRITE_CHAR_N_TIMES, rather than write a short loop to print mul-

tiple copies of a character. Besides, we'll find use for this procedure several

times again.

Here are the changes to DISP—LINE to add three spaces on the left of our dis-

play. Make the changes to DISP_SEC.ASM:

Listing 16-5. Changes to DISPJJNE in DISP-SEC.ASM

PDBLIC DISP_LINE
EXTRN WRITE_HEX:PROC
EXTRN WRITE_CHAR:PROC
EXTRN WRITE_CHAR_H_TISES:PROC

This procedure displays one line of data, or lb bytes, first in hex,
then in ASCII.

On entry:

Oses:
Reads:

DS:DX Offset into sector, in bytes

HRITE_CHAR, WRITE_HEX, WRITE_CHAR_H_TIBES
SECTOR

DISP LINE PROC
POSH BX
POSH CX
F D s a DX
MOV BX,DX
MOV DL, • '

MOV CX,3
CALL WBITE_CHAR N TIMES

CMP BX.lOQh
JB WRITE ONE
MOV DL, '1'

WRITE ONE:

;Offset is aore useful in BX

; Write 3 spaces before line

; Write offset in hex
;Is the first digit a 1?
;No, white space already in DL
;Tes, then place '1' into DL for output
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We made changes in three places. First, we had to add an EXTRN statement for

WRITE_CHAR_N_TIMES, because the procedure is in Video_io, and not in

this file. We also changed the comment block, to show that we use this new pro-

cedure. Our third change, the two lines that use WRITE_CHAR_N_TIMES, is

quite straightforward and needs no explanation.

Try this new version of our program to see how the display is now centered.

Next we'll move on to add more features to our display—the top and bottom

lines of our boxes.

Adding Horizontal Lines

Adding horizontal lines to our display is not quite as simple as it sounds,

because we have a few special cases to think about. We have the ends, where
the lines must go around corners, and we also have T-shaped junctions at the

top and bottom of the division between the hex and ASCII windows.

We could write a long list of instructions (with WRITE_CHAR_N_TIMES) to

create our horizontal lines, but we won't. We have a shorter way. We'll intro-

duce another procedure, called WRITE-PATTERN, which will write a pattern

on the screen. Then, all we'll need is a small area of memory to hold a descrip-

tion of each pattern. Using this new procedure, we can also easily add tick

marks to subdivide the hex window, as you'll see when we finish this section.

WRITE_PATTERN uses two entirely new instructions, LODSB and CLD.
We'll describe them after we see more about WRITE_PATTERN and how we
describe a pattern. Right now, enter this procedure into the file

VIDEOJO.ASM:

Listing 16-6. Add This Procedure to VIDEOJO.ASM

PUBLIC WBITE_PATTERN

This procedure writes a line to the screen, based on data in the
form

DB (character, number of times to write character), D
Where Ix) means that x can be repeated any number of times

On entry: DS:DX address of the pattern to draw

OSes: WRITE CHAR N TIMES

WRITE PATTERN PROC
POSH AX
POSH CX
POSH DX
POSH SI
POSHF
CLD
MOV SI,D

PATTERN LOOP:

;Save the direction flag
;Set direction flag for increment
;Move offset into SI register for LODSB
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Listing 16-6. continued

LODSB ;Get character data into AL
;Is it the end of data (Oh)?
;Yes, return
;No, set up to write character N times
;Get the repeat count into AL
;And put in CX for WRITE_CHAR_N_TIMES
;Zero upper byte of CX

N_TIMES
P

; Restore direction flag

OR AL,AL
JZ END PATTERN
MOV DL,AL
LODSB
MOV CL, AL
XOR CH,CH
CALL WRITE CHAR
JMP PATTERN_LOO

ND PATTERN:
POPF
POP SI
POP DX
POP CX
POP AX
RET

RITE PATTERN ENDP

Before we see how this procedure works, let's see how to write data for pat-

terns. We'll place the data for the top-line pattern into the file Disp_sec, which
is where we'll use it. To this end, we'll add another procedure, called

INIT_SEC_DISP, to initialize the sector display by writing the half-sector dis-

play, then we'll modify READ_SECTOR to call our INIT_SEC_DISP procedure.

First, place the following data before the .DATA? where we defined SECTOR
(in DISP_SEC.ASM):

Listing 16-7. Additions to DISP-SEC.ASM

.DATA

TOP_LIHE_PATTERN LABEL BYTE
DB ' '/?
DB UPPER LEPT,1
DB HORIZONTAL BAR, 12
DB TOP TICK.l
DB HORIZONTAL BAB, 11
DB TOP TICK,!
DB HORIZONTAL BAR, 11
DB TOP TICK,1
DB HORIZONTAL BAB, 15
DB TOP_T BAR,1
DB HORIZONTAL BAR, IS
DB DPPER BIGHT,

1

DB
BOTTOM LIME .PATTERN LABEL BYTE

DB • *,?
DB LOHEB_LEFT,l
DB HORIZONTAL BAR, 13
DB BOTTOM TICK,1
DB HORIZONTAL BAB, 11
DB BOTTOM TICK,1
DB HORIZONTAL BAR, 11
DB BOTTOM TICK,1
DB HORIZONTAL BAR, 12
DB BOTTOM T BAH/1
DB HORIZONTAL BAR,lfi
DB LOHBR RIGHT,

1

DB

.DATA?

SECTOR DB &ms DDP (?)
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(Note that we put all the new data into .DATA rather than .DATA? because we
need to set values for all these variables.)

Each DB statement contains part of the data for one line. The first byte is the

character to print; the second byte tells WRITE_PATTERN how many times to

repeat that character. For example, we start the top line with seven blank

spaces, followed by one upper-left corner character, followed by twelve horizon-

tal-bar characters, and so on. The last DB is a solitary hex zero, which marks
the end of the pattern.

Let's continue our modifications and see the result before we discuss the

inner workings of WRITE_PATTERN. Here is the test version of

INIT_SEC_DISP. This procedure writes the top-line pattern, the half-sector

display, and finally the bottom-line pattern. Place it in the file

DISP-SEC.ASM, just before DISP_HALF_J3ECTOR:

Listing 16-8. Add This Procedure to DISP_SEC.ASM

PUBLIC INIT_SEC_DISP
EXTRN WRITE_PATTERN:PROC, SEND_CRLF: PROC

This procedure initializes the half-sector display.

Uses: WRITE_PATTERN, SEND_CRLF, DISP_H ALF_SECTOR
Reads: TOP_LINE_PATTERN, BOTTOM_LINE_PATTERN

INIT SEC DISP PROC
POSH DX
LEA DX,TOP LINE PATTERN
CALL WRITE PATTERN
CALL SEND CRLF
XOR DX,DX
CALL DISP HALF SECTOR
LEA DX, BOTTOM LINE PATTERN
CALL WRITE PATTERN
POP DX
RET

INIT SEC DISP ENDP

;Start at the beginning of the sector

We used the LEA instruction to load an address into the DX register, thus

WRITE_PATTERN knows where to find the pattern data.

Finally, we need to make a small change to READ-SECTOR in the file

DISKJO.ASM, to call INIT_SECTOR_DISP, rather than
WRITE_HALF_SECTOR_DISP, so that a full box will be drawn around our

half-sector display:

Listing 16-9. Changes to READ_SECTOR in DISK_IO.ASM

EXTRH I»IT_SBC_DISP:PROC

This procedure reads the first sector on disk A and dumps the first
half of this sector.
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Listing 16-9. continued

BEfiD SECTOR PROC
MOV AX.DGROOP
MOV DS,AX

MOV AL,Q
MOV CX,1
MOV DX,Q
LEA BX, SECTOR
INT 55h
POPF

CALL INIT_SEC_DISP

MOV AH,4Ch
INT Elh

READ SECTOR ENDP

;Put data segment into AX
;Set DS to point to data

;Disk drive A (number 0)
; Read only 1 sector
; Read sector number D

;Where to store this sector
;Read the sector
;Discard flags put on stack by DOS
;Sot offcot to D within SECTOR
;Dnap the first half

;Return to DOS

That's all we need to write the top and bottom lines for our sector display.

Assemble and link all these files (remember to assemble the three files we
changed), and give it a try. Figure 16-3 shows the output we now have.

Let's see how WRITE_PATTERN works. As mentioned, it uses two new
instructions. LODSB stands for Load String Byte, and it is one of the string

instructions: specially designed instructions that work with strings of charac-

ters. That's not quite what we're doing here, but the 8088 doesn't care whethei

we're dealing with a string of characters or just numbers, so LODSB suits oui

purposes just fine.

LODSB moves (loads) a single byte into the AL register from the memory
location given by DS:SI, a register pair we haven't used before. (We already sei
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Figure 16-3. The Display with Closed Boxes.
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DS in READ_SECTOR to point to our data.) And, before the LODSB instruc-

tion, we moved the offset into the SI register with the instruction MOV SI,DX.

The LODSB instruction is somewhat like the MOV instruction, but more
powerful. With one LODSB instruction, the 8088 moves one byte into the AL
register and then either increments or decrements the SI register. Increment-

ing the SI register points to the following byte in memory; decrementing the

register points to the previous byte in memory.
The former (incrementing) is exactly what we want to do. We want to go

through the pattern, one byte at a time, starting at the beginning, and that is

what our LODSB instruction does, because we used the other new instruction,

CLD (Clear Direction Flag) to clear the direction flag. Ifwe had set the direction

flag, the LODSB instruction would decrement the SI register, instead. We'll

use the LODSB instruction in a few other places in Dskpatch, always with the

direction flag cleared, to increment.

Aside from LODSB and CLD, note that we also used the PUSHF and POPF
instructions to save and restore the flag register. We did this just in case we
later decide to use the direction flag in a procedure that calls

WRITE_PATTERN.

Adding Numbers to the Display

We're almost through with Part II of this book now. We'll create one more
procedure, then we'll move on to Part III, and bigger and better things.

Right now, notice that our display lacks a row of numbers across the top.

Such numbers—00 01 02 03 and so forth—would allow us to sight down the col-

umns to find the address for any byte. So, let's write a procedure to print this

row of numbers. Add this procedure, WRITE_TOP_HEX_NUMBERS, to

DISPJ3EC.ASM, just after INIT_SEC_DISP:

Listing 16-10. Add This Procedure to DISP-SEC.ASM

EXTRN WRITE_CHAR_N_TIMES:PROC, WRITE_HEX : PROC, WRITE_CHAR : PROC
EXTRN WRITE_HEX_DIGIT:PROC, SEND_CRLF: PROC

This procedure writes the index numbers (0 through F) at the top of
the half-sector display.

Oses: WRITE_CHAR_N_TIMES, WRITE_HEX, WRITE_CHAR
WRITE_HEX_DIGIT, SEND_CRLF

to

WRITE TOP HEX NUMBERS PROC
POSH CX
PUSH DX
MOV DL, ' ' ;Write R spac
MOV cx,r
CALL WRITE CHAR N TIMES
XOR DH,DH ;Start with D
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Listing 16-10. continued

BEX NUMBER LOOP
HOV DL,DB
CALL WRITE HEX
MOV DL,
CALL WRITE CHAR
INC DH
CMP DH,10h ;Done yet?
JB HEX_NOMBER_LOOP

MOV DL, • ' ;Write hex nuabers over ASCII window
MOV CX,5
CALL WRITE CHAR N TIMES
XOB DL,DL

BEX DIGIT LOOP:
CALL WRITE HEX DIGIT
INC DL
CMP DL,lDh
JB HEX DIGIT LOOP
CALL SEND CRLF
POP DX
POP CX
EET

WRITE TOP HEX NUMBERS ENDP

Modify INIT_SEC_DISP (also in DISP_SEC.ASM) as follows, so it calls

WRITEJTOP_HEX_NUMBERS before it writes the rest of the half-sector dis-

play:

Listing 16-11. Changes to INIT_SEC_DISP in DISP-SEC.ASM

Dses:

Reads

:

WRITE_PATTERN, SEND_CRLF, DISP_BALF_SECTOR
WBITE_TOP_HEX_HUHBBHS
TOP_LINE_PATTERN , BOTTOM_LINE_PATTERN

INIT SEC DISP PBOC
POSH DX
CALL WRITE TOP HEX HOBBBBS
LEA DX,TOP LINE PATTERN
CALL WRITE PATTERN
CALL SEND CRLF
XOB DX,DX
CALL DISP_HALF_SECTOB
LEA DX, BOTTOM LINE PATTERN
CALL WBITE PATTEBN
POP DX
RET

INIT SEC DISP ENDP

;Start at the beginning of the sector

Now we have a complete half-sector display, as you can see in Figure 16-4.

There are still some differences between this display and the final version.

We'll change WRITE_CHAR so it will print all 256 characters the IBM PC
can display, and then we'll clear the screen and center this display vertically,

using the ROM BIOS routines inside the IBM Personal Computer. We'll do

that next.
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Figure 16-4. A Complete Half Sector Display.

Summary

We've done a lot of building on our Dskpatch program, adding new proce-

dures, changing old ones, and moving from one source file to another. From now
on, if you find yourself losing track of what you're doing, refer to the complete

listing of Dskpatch in Appendix B. The listing there is the final version, but

you'll probably see enough resemblances to help you along.

Most of our changes in this chapter didn't rely on tricks, just hard work. But
we did learn two new instructions: LODSB and CLD. LODSB is one of the

string instructions that allows us to use one instruction to do the work of sev-

eral. We used LODSB in WRITE_PATTERN to read consecutive bytes from the

pattern table, always loading a new byte into the AL register. CLD clears the

direction flag, which sets the direction for increment. Each following LODSB
instruction loads the next byte from memory.

In the next part of this book, we'll learn about the IBM PC's ROM BIOS rou-

tines. They will save us a lot of time.

5°
(si
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inside your IBM Personal Computer are some computer chips, or ICs (Inte-

grated Circuits), known as ROMs (Read-Only Memory). One of these ROMs
contains a number of routines, very much like procedures, that provide all the

basic routines for doing input and output to several different parts of your IBM
PC. Because this ROM provides routines for performing input and output at a

very low level, it is frequently referred to as the BIOS, for Basic Input Output

System. DOS uses the ROM BIOS for such activities as sending characters to

the screen and reading and writing to the disk, and we're free to use the ROM
BIOS routines in our programs.

We'll concentrate on the BIOS routines we need for Dskpatch. Among them
is a set for video display, which includes a number of functions we couldn't oth-

erwise reach without working directly with the hardware—a very difficult job.

VIDECUO, the ROM BIOS Routines

We refer to the elements of the ROM BIOS as routines to distinguish them
from procedures. We use procedures with a CALL instruction, whereas we call

routines with INT instructions, not CALLs. We'll use an INT lOh instruction,

for example, to call the video I/O routines, just as we used an INT 21h instruc-

tion to call routines in DOS.
Specifically, INT lOh calls the routine VIDEOJO in the ROM BIOS. Other

numbers call other routines, but we won't see any ofthem; VIDEO_10 provides

all the functions we need outside of DOS. (Just for your information, however,

DOS calls one of the other ROM BIOS routines when we ask for a sector from

the disk.)

In this chapter, we'll use ROM BIOS routines to add two new procedures to

Dskpatch: one to clear the screen, and the other to move the cursor to any
screen location we choose. Both are very useful functions, but neither is avail-

able directly through DOS. Hence, we'll use the ROM BIOS routines to do the

job. Later, we'll see even more interesting things we can do with these ROM
routines, but let's begin by using INT lOh to clear the screen before we display

our half sector.

The INT lOh instruction is our entry to a number of different functions.

Recall that, when we used the DOS INT 21h instruction, we selected a particu-

lar function by placing its function number in the AH register. We select a

VTDEO_[0 function in just the same way: by placing the appropriate function

number in the AH register (a full list of these functions is given in Table 17-1).
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Table 17-1. INT 1 0h Functions

(AH) = Set the display mode. The AL register contains the mode
number.

TEXT MODES

(AL) = 40 by 25, black and white mode
(AL) = 1 40 by 25, color

(AL) = 2 80 by 25, black and white

(AL) = 3 80 by 25, color

(AL) = 7 80 by 25, monochrome display adapter

GRAPHICS MODE

(AL) = 4 320 by 200, color

(AL) = 5 320 by 200, black and white

(AL) = 6 640 by 200, black and white

(AH) = 1 Set the cursor size.

(CH) Starting scan line of the cursor. The top line is

on both the monochrome and color graphics

displays, while the bottom line is 7 for the

color graphics adapter and 13 for the

monochrome adapter. Valid range: to 31.

(CL) Last scan line of the cursor.

The power-on setting for the color graphics adapter is

CH = 6 and CL = 7. For the monochrome display: CH = 11

andCL = 12.

(AH) = 2 Set the cursor position.

(DH,DL) Row, column of new cursor position; the upper

left corner is (0,0).
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Table 17-1. continued

(BH) Page number. This is the number of the

display page. The color-graphics adapter has

room for several display pages, but most
programs use page 0.

(AH) = 3 Read the cursor position.

(BH) Page number
On exit (DH,DL) Row, column of cursor

(CH,CL) Cursor size

(AH) = 4 Read light pen position (see Tech. Ref. Man.).

(AH) = 5 Select active display page.

(AL) New page number (from to 7 for modes and

1; from to 3 for modes 2 and 3)

(AH) = 6 Scroll up.

(AL) Number of lines to blank at the bottom of the

window. Normal scrolling blanks one line. Set

to zero to blank entire window.

(CH,CL) Row, column of upper, left corner of window
(DH,DL) Row, column of lower, right corner of window
(BH) Display attribute to use for blank lines

(AH) = 7 Scroll down.

Same as scroll up (function 6), but lines are left blank at

the top of the window instead of the bottom
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(AH) = 8 Read attribute and character under the cursor.

(BH) Display page (text modes only)

(AL) Character read

(AH) Attribute of character read (text modes only)

(AH) = 9 Write attribute and character under the cursor.

(BH) Display page (text modes only)

(CX) Number of times to write character and
attribute on screen

(AL) Character to write

(BL) Attribute to write

(AH) = 10 Write character under cursor (with normal attribute).

(BH) Display page

(CX) Number of times to write charactei

(AL) Character to write

(AH) = 11 to 13 Various graphics functions. (See Tech. Ref. Man. for the

details)

(AH) = 14 Write teletype. Write one character to the screen and
move the cursor to the next position.

(AL) Character to write

(BL) Color of character (graphics mode only)

(BH) Display page (text mode)

(AH) = 15 Return current video state.

(AL) Display mode currently set

(AH) Number of characters per line

(BH) Active display pages
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Clearing the Screen

We'll use the INT lOh function number 6, SCROLL ACTIVE PAGE UP, to

clear the screen. We don't actually want to scroll the screen, but this function

also doubles as a clear-screen function. Here is the procedure; enter it into the

file CURSOR.ASM:

Listing 17-1. Add This Procedure to CURSOR.ASM

PUBLIC CLEAR SCREEN

This procedure clears the entire screen.

CLEAR SCREEN PROC
POSH AX
POSH BX
POSH cx
POSH DX
XOR AL,AL
XOR CX,CX
MOV DH,2<
MOV DL,?9
MOV BH,?
MOV AH,b
INT iah
POP DX
POP CX
POP BX
POP AX
RET

CLEAR SCREEN ENDP

;Blank entire window
;Dpper left corner is at (0,0)
;Bottom line of screen is line 3*5

;Right side is at column 79
;0se normal attribute for blanks
;Call for SCROLL-OP function
;Clear the window

It appears that INT lOh function number 6 needs quite a lot of information,

even though all we want to do is clear the display. This function is rather pow-

erful: It can actually clear any rectangular part of the screen—window, as it's

called. We have to set the window to the entire screen by setting the first and
last lines to and 24, and setting the columns to and 79. The routines we are

using here can also clear the screen to all white (for use with black characters),

or all black (for use with white characters). We want the latter, and that is what
is specified with the instruction MOV BH,7. Then, too, setting AL to 0, the

number of lines to scroll, tells this routine to clear the window, rather than to

scroll it.

Now we need to modify our test procedure, READ-SECTOR, to call

CLEAR_SCREEN just before it starts to write the sector display. We didn't

place this CALL in INIT_SEC_DISP, because we'll want to use
INIT_SEC_DISP to rewrite just the half-sector display, without affecting the

rest of the screen.

To modify READJ3ECTOR, add an EXTRN declaration for

CLEAR_SCREEN and insert the CALL to CLEAR_SCREEN. Make the follow-

ing changes in the file DISK_IO.ASM:
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Listing 17-2. Changes to READ_SECTOR in DISK_IO.ASM

BXTRH IHIT_SBC_DISP:PROC, CLBAR.SCREEH :PBOC

This procedure reads the first sector on disk A and dumps the first
half of this sector.

READ SECTOR PROC
MOV AX,DGROUP
MOV DS, AX
MOV AL,0
MOV CX,1
MOV DX,D
LEA BX, SECTOR
INT 55h
POPF
CALL CLBAR_SCR
CALL INIT_SEC_

MOV AH,<Ch
INT 21h

READ SECTOR ENDP

;Put data segment into AX
;Set DS to point to data
;Disk drive A (number D)
; Read only 1 sector
; Read sector number
; Where to store this sector
;Read the sector
;Discard flags put on stack by DOS

;Dump the first half

; Return to DOS

Just before you run the new version ofDisk_io, note where the cursor is located.

Then, run Disk_io. The screen will clear, and Disk_io will start writing the half

sector display wherever the cursor happened to be before you ran the pro-

gram—probably at the bottom of the screen.

Even though we cleared the screen, we didn't mention anything about mov-
ing the cursor back to the top. In BASIC, the CLS command clears the screen in

two steps: It clears the screen, then it moves the cursor to the top of the screen.

Our procedure doesn't do that; we'll have to move the cursor ourselves.

t

s

Moving the Cursor

The INT lOh function number 2 sets the cursor position in much the same
way BASIC'S LOCATE statement does. We can use GOTO-KY to move the cur-

sor anywhere on the screen (such as to the top after a clear). Enter this proce-

dure into the file CURSOR.ASM:

Listing 17-3. Add This Procedure to CURSOR.ASM

PUBLIC GOTO_XT

This procedure moves the cursor

On entry: DH
DL

Row (T)
Column (X)

GOTO XT PROC
POSH AX
POSH BX
MOV BH,
MOV ah, a

INT IDh

;Display page
;Call for SET CURSOR POSITION
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Listing 17-3. continued

POP BX
POP AX
RET

GOTO XY ENDP

We'll use GOTO_XY in a revised version ofINIT_SEC_DISP to move the cur-

sor to the second line just before we write the half-sector display. Here are the

modifications to INIT_SEC_DISP in DISP_SEC.ASM:

Listing 17-4. Changes to INIT_SEC_DISP in DISP_SEC.ASM

PUBLIC INIT_SEC_DISP
EXTRN WRITE_PftTTERN:PROC, SEND_CRLF : PROC
BXTHH GOTO_XT : PROC

This procedure initializes the half-sector display.

Dses: WRITE_PATTERN, SEND_CRLF, DISP_HALF_SECTOR
WBITB_T0P_BEX_NU8BERS, GOTO_XI

Reads: TOP_LINE_PATTERN, BOTTOM_LINE_PATTERN

INIT_SEC_DISP PROC
POSH DX ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
XOR DL,DL ;Bo7e cursor into position at beginni
HOV DB,5 ;of 3rd line
CALL GOTO_XI
CALL WRITE_TOP_HEX_NUMBERS
LEA DX,TOP_LINE_PATTERN

ing

Ifyou try it now, you'll see that the half-sector display is nicely centered.

As you can see now, it's easy to work with the screen when we have the ROM
BIOS routines. In the next chapter, we'll use another routine in the ROM BIOS
to improve WRITE_CHAR, so that it will write any character to the screen. But
before we continue, let's make some other changes to our program, then finish

up with a procedure called WRITE_HEADER, which will write a status line at

the top of the screen, to show the current disk drive and sector number.

Rewiring Variable Usage

There is much that we need to revamp before we create WRITE_HEADER.
Many of our procedures, as they are now, have numbers hard-wired into them;
for example, READ-SECTOR reads sector on drive A. We want to place the

disk-drive and sector numbers into memory variables, so more than one proce-

dure can read them.
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We'll need to change these procedures so they'll use memory variables, but

let's begin by putting all memory variables into one file, DSKPATCH.ASM, to

make our work simpler. Dskpatch.asm will be the first file in our program

Dskpatch, so the memory variables will be easy to find there. Here is

DSKPATCH.ASM, complete with a long list ofmemory variables:

Listing 17-5. The New File DSKPATCH.ASM

DOSSEG
.MODEL SHALL

.STACK

.DATA

PDBLIC SECTOR OFFSET

SECTOR_OFFSET is the offset of the half-
sector display into the full sector. It must
be a multiple of It, and not greater than E5t

SECTOR OFFSET DW

PDBLIC LINES_BEFORE_SECTOR, HE ADER_LINE_NO
PUBLIC HEADER_PART_1, HEADER_PART_E

LINES_BEFORE_SECTOR is the number of lines
at the top of the screen before the half-
sector display.

LINES BEFORE SECTOR DB S

HEADER LINE NO DB Q

HEADER PART 1 DB 'Disk ,0
HEADER_PART S DB i Sector ,0

.DATA?

PDBLIC SECTOR

The entire sector (up to fll^e bytes) is
stored in this part of memory.

SECTOR DB fliqe DDP (?)

.CODE

EXTRN CLEAR_SCREEN:PROC, READ_SECTOR : PROC
EXTRN INIT_SEC_DISP:PROC

DISK_PATCH PROC
HOV AX,DGRODP ;Put data segment into AX
HOV DS,AX ;Set DS to point to data

CALL CLEAR_SCREEN
CALL READ_SECTOR
CALL INIT_SEC_DISP

HOV AH,<Ch ;Return to DOS
INT eih

DISK_PATCH ENDP

END DISK_PATCH

<

PDBLIC CDRRENT_SECTOR_NO, DISK_DRI VE_NO
C0RRENT_SECTOR_NO DW ;Initially sector D

DISK_DRIVE_NO DB D ;Initially Drive A:

1

(M



194 Peter Norton's Assembly Language Book for the IBM PC, Revised & Expanded

The main procedure, DISK_PATCH, calls three other procedures. We've seen

them all before, soon we'll rewrite both READ_SECTOR and INlT_SEC_DISP
to use the variables just placed into the data segment.

Before we can use Dskpatch, we need to modify Disp_sec, to replace the defi-

nition of SECTOR with an EXTRN. We also need to alter Disk_io, to change

READ-SECTOR into an ordinary procedure we can call from Dskpatch.

Let's take SECTOR first. Since we've placed it in DSKPATCH.ASM as a

memory variable, we need to change the definition of SECTOR in Disp_sec to

an EXTRN declaration. Make these changes in DISP_SEC.ASM:

Listing 17-6. Changes to DISP_SEC.ASM

.DATA?
EXTRH SECTOR: BITS
FUDLIC GECTOB

3ector—ee one ddp(?)

Let's rewrite the file DISK_IO.ASM so that it contains only procedures, and
READ-SECTOR uses memory variables (not hard-wired numbers) for the sec-

tor and disk-drive numbers. Here is the new version of DISK-JO.ASM:

Listing 17-7. Changes to DISK-IO.ASM

D033EG
.MODEL SMALL

. STACK

.DATA

EXTRN SECTOR:BYTE
EXTRN DISK_DRIVE_NO:BTTE
EXTRN CDRRENT_SECTOR_NO:SORD

PUBLIC READ_SECTOR
EXTRN INIT_3EC_DI3P:PR0C, CLEAR_3C8EEN . PROC

This procedure reads one sector (SIB bytes) into SBCTOR.

Reads:
Writes:

READ_SECTOR
MOV
MOV

C0RREST_SBCTOR_NO, DISK_DRIVE_NO
SECTOR

PROC -

AX,DOnOUP
r**-

; Put dala segment—inLu AX

POSH AX
PUSH BX
POSH CX
POSH DX
HOV AL,DISK DRIVE NO
MOV CX,1
MOV DX,CORRENT SECTOR NO
LEA BX, SECTOR
INT 2Sh
POPF
POP DX
POP CX
POP BX

;3et D3—Lu puinL—Lu data

;Drive naaber
;Read only 1 sector
; Log leal sector noaber
; Where to store this sector
;Read the sector
;Discard flags put on stack by DOS
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POP AX
RET
CALL CLSAR_SCREEM
CALL IHIT_SEC_DISP iDump tho first half

-HW All .
'

. Ch ( R e t u rn to COS
-1*3 &lh-

BEAD_SECTOR ENDP

END

This new version of Disk_Jo uses the memory variables DISK_DRIVE_NO
and CURRENT_SECTOR_NO as the disk drive and sector numbers for the sec-

tor to read. Since these variables are already defined in DSKPATCH.ASM, we
won't have to change Disk_io when we start reading different sectors from

other disk drives.

If you're using the Make program to rebuild DSKPATCH.COM, you'll need

to make some additions to your Make file named Makefile:

Listing 17-8. The New Version of MAKEFILE

dskpatch .obi : dskpatch . asm
asa dskpatch; 1

disk_io.obj: disk_io. asm
asi disk_io;

disp_sec.obj : disp_sec.asm
masm disp_sec;

video_io.obj : video_io. asm
masm video_io;

cursor. obj: cursor. asm
masm cursor;

dskpatch.exe: dskpatch. obj dlsk_io.obj dlsp_sec.obj yideo_io.obj cursor. obj
link dskpatch disk_io dlsp_sec video_io carsor;

(Remember that if you're using Borland's Make, the last two lines shown
here must be at the start of your Makefile. And if you're using OPTASM, you'll

just add the first two lines, with the first line indented, and the second line

flush left.) If you're not using Make, be sure to reassemble all three files we've

changed (Dskpatch, Disk_io, and Disp_sec) and to link our five files, with

Dskpatch listed first:

LINK DSKPATCH DISK_IO DISP_SEC VIDEO_IO CDRSOR;

We've made quite a few changes, so test Dskpatch and make sure it works
correctly before you move on.
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Writing the Header

Now that we've converted the hard-wired numbers into direct references to

memory variables, we can write the procedure WRITE_rIEADER to write a

status line, or header, at the top of the screen. Our header will look like this:

Disk A Sector

WRITE_HEADER will use WRITE-DECIMAL to write the current sector

number in decimal. It will also write two strings of characters, Disk and Sector

(each followed by a blank space), and a disk letter, such as A. We'll place the

procedure in the file DISP_SEC.ASM.
To begin, place the following procedure in DISP_SEC.ASM.

Listing 17-9. Add This Procedure to DISP_SEC.ASM.

.DATA

.CODE

PDBLIC WRITE_HEADER

EXTRN HEADER_LINE_NO:BYTE
EXTRN HEADER_PART_1:BYTE
EXTRN HEADER_PART_2:BYTE
EXTRN DISK_DRIVE_NO:BYTE
EXTRN C0RRENT_SECTOR_NO:WORD

EXTRN WRITE_STRING:PROC, WRITE_DECIM AL : PROC
EXTRN GOTO XY:PROC

This procedure writes the header with disk-drive and sector number.

Dses

:

Reads

:

GOTO_XY, WRITE_STRING, WRITE_CHAR, WRITE_DECIMAL
HEADER_LINE_NO, HEADER_PART_1 , HEADER_PART_2
DISK_DRIVE_NO, CDRRENT_SECTOR_NO

;Move cursor to header line number

WRITE HEADER PROC
POSH DX
XOR DL,DL
MOV DH, HEADER LINE NO
CALL GOTO_XY
LEA DX, HEADER PART 1

CALL WRITE STRING
MOV DL,DISK DRIVE NO
ADD DL, 'A'
CALL WRITE CHAR
LEA DX, HEADER PART 5

CALL WRITE_STRING
MOV DX, CURRENT SECTOR NO
CALL WRITE DECIMAL
POP DX
RET

WRITE HEADER ENDP

;Print drives A, B,

The procedure WRITE_STRING doesn't exist yet. As you can see, we plan to

use it to write a string of characters to the screen. The two strings,

HEADER_PART_1 and HEADER_PART_2, are already defined in

DSKPATCH.ASM. WRITE_STRING will use DS:DX as the address for the

string.
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We've chosen to supply our own string-output procedure so that our strings

can contain any character, including the $, which we couldn't print with the

DOS function 9. Where DOS uses a $ to mark the end of a string, we'll use a hex

0. Here is the procedure. Enter it into VIDEOJO.ASM:

Listing 17-10. Add This Procedure to VIDEOJO.ASM

PUBLIC WRITE_STRING

This procedure writes a string of characters to the screen. The
string must end with DB D

On entry: DS.-DX Address of the string

Oses: WRITE CHAR

;Save direction flag
;Set direction for increment (forward)
;Place address into SI for LODSB

;Get a character into the AL register
;Have we found the yet?
;Yes, we are done with the string
;No, write character

WRITE STRING PROC
POSH AX
POSH DX
POSH SI
POSHF
CLD
MOV SI,DX

STRING LOOP:
LODSB
OR AL, AL
JZ END OF STRING
MOV DL,AL
CALL WRITE CHAR
JMP STRING_LOOP

END OF STRING:
POPF
POP SI
POP DX
POP AX
RET

WRITE STRING ENDP

;Restore direction flag

5°

As it stands now, WRITE_STRING will write characters with ASCII codes

below 32 (the space character) as a period (.), because we don't have a version of

WRITE_CHAR that will write any character. We'll take care of that detail in

the next chapter, and—here's the advantage ofmodular design—we won't have
to change WRITE_STRING in the process.

After all our work in this chapter, let's put the icing on the cake. Change
DISK_PATCH in DSKPATCH.ASM to include the CALL to

WRITE_HEADER:

Listing 17-11. Changes to DISK_PATCH in DSKPATCH.ASM

EXTRN CLEAR_SCREEN:PROC, READ_SECTOR : PROC
EXTRH IHIT_SEC_DISP:PROC, »BITB_HEADER:PBOC

DISK_PATCH PROC
MOV ACDGROOP ;Put data segment into AX
MOV DS,AX ;Set DS to point to data

CALL CLEAR_SCREEN
C»LL »RITB_8B*I>BB
CALL READ SECTOR
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Listing 17-11. continued

C&LL IHIT SEC DISP

MOV
INT

DISK PftTCH

AH,4Ch
Bib
ENDP

;Return to DOS

Dskpatch should now produce a display like this one:

Disk A Sector 8

fi>
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H EB 28 98 49 42 4D 28 28 33 2E 32 88 82 82 81 88 <H£"IB!1 3.2

IB 02 70 08 DB 82 FD 82 BB 89 BB 82 BB 88 B8 88 B6 pA 2

28 B8 BB 00 00 00 00 00 80 00 00 Ffl C4 5C 08 33 ED

B8 C0 07 8E D8 33 C9 88 16 FD 81 Bfl D2 79 8fl 89

--V30

30 ^.S^ne-^-'ny-e
48 IE 1C 88 8C B6 IE 00 Bl 02 8E C5 8E D5 BC 00 7C ...f..J.fijl r

l.l
n
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Figure 17-1. Dskpatch with the Header at the Top.

Summary

At last, we've met the ROM BIOS routines inside our IBM PCs and already

used two of these routines to help us toward our goal of a full Dskpatch pro-

gram.

First we learned about INT lOh, function number 6, which we used to clear

the screen. We also saw (though very briefly) that this function has more uses

than we'll take advantage of in this book. For example, you may eventually

find it helpful for scrolling portions of the screen—in Dskpatch or in your own
programs.

We then used function 2 ofINT lOh to move the cursor to the third line on the

screen (line number 2), where we started writing our sector dump.
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To make our programs easier to work with, we also rewrote several proce-

dures so they would use memory variables, rather than hard-wired numbers.

Now, we'll be able to read other sectors and change the way our program works

in other ways, just by changing a few central numbers in DSKPATCH.ASM.
Finally, we wrote the procedures WRITE_HEADER and WRITE_STRING,

so we could write a header at the top of the screen. As noted we'll write an
improved version of WRITE_CHAR in the next chapter, replacing the dots in

the ASCII window of our display with graphics characters. And thanks to mod-

ular design, we'll do this without changing any of the procedures that use

WRITE_CHAR.

C"
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We'e made good use of the ROM BIOS routines in the last chapter to clear the

screen and move the cursor. But there are many more uses for the ROM BIOS,

and we'll see some of them in this chapter.

Using DOS alone, we haven't been able to display all 256 of the characters

that the IBM PC can display. So, in this chapter, we'll present a new version of

WRITE_CHAR that displays any character, thanks to another VIDEO-IO
function.

Then, we'll add another useful procedure, called CLEAR_TO_END_
OFJLINE, that clears the line from the cursor to the right edge of the screen.

We'll put this to use in WRITE_HEADER, so that it will clear the rest of the

line.

Blink

= Normal
1 = Blinking text

R G E I

Background
Color

Intensity
= normal intensity

1 = bright

I B

Te»t Color

RGB
Ualue

1

2

3

4

5

6

7

Color

Black

Blue

Green

Cyan
Red

Uiolet

Brown
White

Attribute = background color * 16 + tent color

Figure 18-1. Color Table.
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Suppose we go from sector number 10 (two digits) to sector number 9. A zero

would be left over from the 10 after we call WRITE_HEADER with the sector

set to 9. CLEAR_TO_END_OF_LINE will clear this zero, as well as anything

else on the remainder of the line.

A New WRITE_CHAR

The ROM BIOS function 9 for INT lOh writes a character and its attribute at

the current cursor position. The attribute controls such features as under-

lining, blinking, and color (See Figure 18-1). We'll use only two attributes for

Dskpatch: attribute 7, which is the normal attribute, and attribute 70h, which

is a foreground color of zero and background of 7 and produces inverse video

(black characters on a white background). We can set the attributes individu-

ally for each character, and we'll do this later to create a block cursor in inverse

video—known as a phantom cursor. For now, though, we'll just use the normal

attribute when we write a character.

INT lOh, function 9 writes the character and attribute at the current cursor

position. Unlike DOS, it doesn't advance the cursor to the next character posi-

tion unless it writes more than one copy of the character. We'll use this fact

later, in a different procedure, but now we only want one copy ofeach character,

so we'll move the cursor ourselves.

Here is the new version ofWRITE_CHAR, which writes a character and then

moves the cursor right one character. Enter it into the file VIDE0_IO.ASM:

Listing 18-1. Changes to WRITEXHAR in VIDEOJO.ASM

PUBLIC WRITE_CHAR
EXTRN C0BSOB RIGHT:PROC

This procedure outputs a character to the screea using the HOH BIOS
routines < so characters such as the backspace are treated as
any other character and are displayed.

This procedure nust do a bit of work to update the cursor position.

On entry: DL Byte to print on screen

Oses: CURSOR RIGHT

WRITE_CHAR
PUSH
POSH
POSH
POSH

-eft?

—

JAE
MOV

I3_PRI N TABLE.
-MOT

—

IN"

PROC
AX
BX
CX
DX
DL,30

.
* •

< I ' I A D L L

Sin

AH,g
-Stir

;
I3 character b e fore n space'

rite-;

—

then print aa io
;

Y

e s,—rep lace w ith a period

,Call tor charact e r o utput
.Output. Uiairacle r in DL r eg ister
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Listing 18-1. continued

SOT AH,«1 ;Call for outpat of character/attribute
MOV BB,0 ;Set to display page
80V CX,i ; Write only one character
aov AL,DL ; Character to write
aov BL,? ; Normal attribute
INT lQh ;»rite character and attribute
CALL COBSOR RIGHT ;Now move to next cursor position
POP
POP
POP
POP
RET

WRITE CHAR ENDP

In reading through this procedure, you may have wondered why we included

the instruction MOV BH,0. If you have a graphics display adapter, your

adapter has four text pages in normal text mode. We'll only use the first page,

page 0; hence, the instruction.

As for the cursor, WRITE_CHAR uses the procedure CURSOR-RIGHT to

move the cursor right one character position or to the beginning ofthe next line

ifthe movement would take the cursor past column 79. Place the following pro-

cedure into CURSOR.ASM:

Listing 18-2. Add This Procedure to CURSOR.ASM

PDBLIC C0RSOR_RIGHT

This procedure moves the cursor one position to the right or to the
next line if the cursor was at the end of a line.

Uses: SEND CRLF

CURSOR. RIGHT PROC
POSH AX
POSH BX
POSH CX
POSH DX
MOV AH, 3

MOV BH,Q
INT lOh
MOV AH,

5

INC DL
CMP DL,?q
JBE OK
CALL SEND CRLF
JMP DONE

OK: INT lOh
DONE: POP DX

POP CX
POP BX
POP AX
RET

CURSOR. RIGHT ENDP

;Read the current cursor position
;0n page
; Read cursor position
; Set new cursor position
;Set column to next position
;Make sure column <= 79

;Go to next line

CURSOR_RIGHT uses two new INT lOh functions. Function 3 reads the

position of the cursor, and function 2 changes the cursor position. The proce-

dure first uses function 3 to find the cursor position, which is returned in two
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Figure 18-2. Dskpatch with the New WRITE_CHAR.

bytes, the column number in DL, and the line number in DH. Then, CUR-
SOR-RIGHT increments the column number (in DL) and moves the cursor. If

DL was at the last column (79), the procedure sends a carriage-return/line-feed

pair to move the cursor to the next line. We don't need this column 79 check in

Dskpatch, but including it makes CURSOR-RIGHT a general-purpose proce-

dure you can use in any of your own programs.

With these changes, Dskpatch should now display all 256 characters as

shown in Figure 18.2.

You can verify that it does by searching for a byte with a value less than 20h

and seeing whether some strange character has replaced the period that value

formerly produced in the ASCII window.

Now let's do something perhaps even more interesting: Let's write a proce-

dure to clear a line from the cursor position to the end.

\.i

Clearing to the End of a Line

In the last chapter, we used INT lOh, function 6, to clear the screen in the

CLEAR_SCREEN procedure. At that time, we mentioned that function 6 could

be used to clear any rectangular window. That capability applies even if a win-
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dow is only one line high and less than one line long, so we can use function 6 to

clear part of a line—to the end of the line.

The left side of the window, in this case, is the column number of the cursor,

which we get with a function 3 call (also used by CURSOR-EIGHT). The right

side of the window is always at column 79. You can see the details in

CLEAR_TO_END_OF_LINE; place the procedure in CURSOR.ASM:

Listing 18-3. Add This Procedure to CURSOR.ASM

POBLIC CLEAR_T0_END_0F_LINE

This procedure clears the line from the current cursor position to
the end of that line.

CLEAR TO END OF LINE
POSH AX
POSH BX
POSH CX
POSH DX
MOV AH,

3

XOR BH,BH
INT IDh
MOV AH,b
XOR AL, AL
MOV CH,DH
MOV CL,DL
MOV DL,7q
MOV BH,7
INT lOh
POP DX
POP CX
POP BX
POP AX
RET

CLEAR TO END _0F_LINE

PROC

;Read current cursor position
; on page D

;Now have (X,Y) in DL, DH
;Set up to clear to end of line
;Clear window
;A11 on same line
;Start at the cursor position
;And stop at the end of the line
; Ose normal attribute

ENDP

We'll use this procedure in WRITE_HEADER, to clear the rest of the line

when we start reading other sectors (we'll do that very soon). There isn't any
way for you to see CLEAR_TO_END_OF_LINE work with WRITEJHEADER
until we add the procedures that allow us to read a different sector and update

the display, but let's revise WRITE-HEADER now, just to get it out ofthe way.

Make the following changes to WRITE_HEADER in VIDECUO.ASM, to call

CLEAR_TO_END_OF_LINE at the end of the procedure:

Listing 18-4. Changes to WRITEJHEADER in VIDECUO.ASM

POBLIC WRITE HEADER
DATA SEG SEGMENT POBLIC

EXTRN HEADER LINE N0:BYTE
EXTRN HEADER PART 1 : BYTE
EXTRN HEADER PART S : BYTE
EXTRN DISK DRIVE N0:BYTE
EXTRN CORRENT SECTOR N0:W0RD

DATA SEG ENDS
EXTRN GOTO_XY : NEAR , CLEAR_TO_END_OF_LINE : NEAR
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This procedure writes the header with disk-drive and sector number.

Oses: GOTO_XY, WRITE_STBING , WRITE_CHRR, WRITE_DECIMAL
CLEAR_TO_END_OF_LINE

Reads: HEADER_LINE_NO, HEADER_PART_1 , HEADER_PART_5
DISK_DRIVE_NO, CURRENT_SECTOR_NO

WRITE HEADER PROC NEAR
POSH DX
XOR DL,DL

number
MOV DH, HEADER LINE NO
CALL GOTO XY
LEA DX, HEADER PART 1

CALL WRITE STRING
MOV DL,DISK DRIVE NO
ADD DL, 'A'
CALL WRITE CHAR
LEA DX, HEADER PART B

CALL WRITE STRING
MOV DX, CURRENT SECTOR NO
CALL WRITE DECIMAL
CALL CLEAR TO END OF LINE
POP DX
RET

WRITE HEADER ENDP

;Move cursor to header line

;Print drives A, B,

;Clear rest of sector number

This revision marks both the final version ofWRITE_HEADER and the com-

pletion of the file CURSOR.ASM. We are still missing several important parts

of Dskpatch, though. In the next chapter, we'll continue on and add the central

dispatcher for keyboard commands, we'll be able to press F3 and F4 to read

other sectors on the disk.

Summary

This chapter has been relatively easy, without much in the way ofnew infor-

mation or tricks. We did learn how to use INT lOh, function number 9, in the

ROM BIOS to write any character to the screen.

In the process, we also saw how to read the cursor position with INT lOh func-

tion 3, so we could move the cursor right one position after we wrote a charac-

ter. The reason: INT lOh function 9 doesn't move the cursor after it writes just

one character, unless it writes more than one copy of the character. Finally, we
put INT lOh function 6 to work clearing part ofjust one line.

In the next chapter, we'll get down to business again as we build the central

dispatcher.
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In any language it's nice to have a well-written program that does something,

but to really bring a program to life we need to make it interactive. It's human
nature to say, "If I do this, you do that," so we'll use this chapter to add some
interactivity to Dskpatch.

We'll write a simple keyboard-input procedure and a central dispatcher. The
dispatcher's job will be to call the correct procedure for each key pushed. For

example, when we press the F3 key to read and display the previous sector, the

dispatcher will call a procedure called PREVIOUS-SECTOR. To do this, we'll

be making many changes to Dskpatch. We'll start by creating DISPATCHER,
the central dispatcher, and some other procedures for display formatting. Next,

we'll add two new procedures, PREVIOUS_SECTOR and NEXT_SECTOR,
which we'll call through DISPATCHER.

The Dispatcher

The Dispatcher will be the central control for Dskpatch, so all keyboard input

and editing will be done through it. DISPATCHER'S job will be to read charac-

ters and call other procedures to do the work. You'll soon see how the dispatcher

does its work, but first let's see how it fits into Dskpatch.

DISPATCHER will have its own prompt line, just under the half-sector dis-

play where the cursor waits for keyboard input. You won't be able to enter hex

numbers in our first version of the keyboard-input procedure, but later on you
will. Here are our first modifications to DSKPATCH.ASM; these add the data

for a prompt line:

Listing 19-1. Additions to DATA_SEG in DSKPATCH.ASM

HEADER LINE NO DB D

HEADER PART 1 DB 'Disk ' ,0
HEADER_PART_5 DB ' Sector ' ,0

PUBLIC PROMPT LINE HO, EDITOR_PROBPT
PROMPT LIKE NO DB 51
EDITOB_PBOHPT DB 'Press fuaction key, or eoter'

DB • character or hex byte: ',0

We'll add more prompts later to take care of such matters as inputting a new
sector number, so we'll make our job simpler by using a common procedure,

WRITE_PROMPT_LINE, to write each prompt line. Each procedure that uses

WRITE_PROMPT_LINE will supply it with the address of the prompt (here,

the address of EDITORJPROMPT), and then write the prompt on line 21

(because PROMPT_LINE_NO is 21). For example, this new version of
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DISK_PATCH (in DSKPATCH.ASM) uses WRITE_PROMPT_LINE just

before it calls DISPATCHER:

Listing 19-2. Additions to DISK-PATCH in DSKPATCH.ASM

EXTRN
EXTRN
EXTRN

DISK_PATCH
MOV
MOV

CALL
CALL
CALL
CALL
LEA
CALL
CALL

MOV
INT

DISK PATCH

CLEAR_SCREEN:PROC, READ_SECTOR : PROC
INIT_SEC_DISP:PROC, WRITE_HEADER : PROC
WBITE_PROMPT_tISB : PBOC, DISPATCHER :P80C
PROC
AX,DGROUP ;Put data segment into AX
DS,AX ;Set DS to point to data

CLEAR_SCREEN
WRITE_HEADER
READ_SECTOR
INIT_SEC_DISP
DX,EDITOB_PBOHPT
WBITE_PBOMPT_LIHE
DISPATCHES

AH,<C
Slh
ENDP

;Return to DOS

The dispatcher itself is a fairly simple program, but we do use some new
tricks in it. The following listing is our first version of the file DIS-

PATCH.ASM:

Listing 19-3. The New File DISPATCH.ASM.

;In DISK_IO.ASM
;In DISK_IO.ASM

MODEL SMALL

CODE

EXTRN NEXT SECT0R:PROC
EXTRN PREVIOUS SECTOR:PROC

.DATA

This table contains the legal extended ASCII keys and the addresses
of the procedures that should be called when each key is pressed.

The format of the table is
DB ?a
DW OFFSET TEXT: PHANTOM UP

;Extended code for cursor up

DISPATCH TABLE LABEL BYTE
DB bl ;F3
DW OFFSET_TEXT:PREVIOUS_SECTOR
DB bS ;F<
DW OFFSET_TEXT:NEXT_SECTOR
DB ;End of the table

.CODE

PUBLIC
EXTRN

DISPATCHER
READ BYTE:PROC

This is the central dispatcher. During normal editing and viewing,
this procedure reads characters from the keyboard and, if the char
is a command key (such as a cursor key), DISPATCHER calls the
procedures that do the actual work. This dispatching is done for
special keys listed in the table DISPATCH_TABLE , where the procedure
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Listing 19-3. continued

addresses are stored just after the key names.

If the character is not a special key, then it should be placed
directly into the sector buffer—this is the editing mode.

Uses

:

READ BYTE

DISPATCHER PROC
POSH AX
POSH BX

DISPATCH LOOP:
CALL READ BYTE
OR AH, AH

JS DISPATCH LOOP
JNZ SPECIAL_KEY

; do nothing with the character for
JMP DISPATCH_LOOP

SPECIAL KEY:
CMP AL,fcfl

JE END_DISPATCH

LEA BX,DISPATCH_TABLE
SPECIAL LOOP:

CMP BYTE PTR [BX],0
JE NOT IN TABLE
CMP AL,[BX]
JE DISPATCH
ADD BX,3
JMP SPECIAL_LOOP

DISPATCH:
INC BX
CALL WORD PTR [BX]
JMP DISPATCH_LOOP

NOT IN TABLE:
JMP DISPATCH_LOOP

END DISPATCH:
POP BX
POP AX
RET

DISPATCHER ENDP

; Read character into AX
;AX = -ID if no character read,
; for an extended code.
;No character read, try again
;Read extended code

now
;Read another character

;F10—exit?
;Yes, leave
;0se BX to look through table

;End of table?
;Yes, key was not in the table
;Is it this table entry?
;Yes, then dispatch
;No, try next entry
;Check next table entry

; Point to address of procedure
;Call procedure
;Wait for another key

;Do nothing, Just read next character

END

DISPATCH_TABLE holds the extended ASCII codes for the F3 and F4 keys.

Each code is followed by the address of the procedure DISPATCHER should call

when it reads that particular extended code. For example, when READ_BYTE,
which is called by DISPATCHER, reads an F3 key (extended code 61), DIS-

PATCHER calls the procedure PREVIOUS_SECTOR.
The addresses of the procedures we want DISPATCHER to call are in the dis-

patch table, so we used a new directive, OFFSET, to obtain them. The line

DW OFFSET _TEXT: PREVIOUS SECTOR

for example, tells the assembler to use the offset of our PREVIOUS-SECTOR
procedure. This offset is calculated relative to the start of our code segment
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3

-TEXT, which is why we put the _TEXT: in front of the procedure name. (As it

turns out here, this _TEXT: isn't absolutely necessary. Still, in the interest of

clarity, we'll write OFFSET _TEXT: anyway.)

Notice that DISPATCH_TABLE contains both byte and word data. This

raises a few considerations. In the past, we've always dealt with tables of one

type or the other: either all words, or all bytes. But here, we have both, so we
have to tell the assembler which type of data to expect when we use a CMP or

CALL instruction. In the case of an instruction written like this:

CMP CBX],0

the assembler doesn't know whether we want to compare words or bytes. But by
writing the instruction like this:

i" '

|

CMP BYTE PTR [BX],D

we tell the assembler that BX points to a byte and that we want a byte compare.

Similarly, the instruction CMP WORD PTR [BX],0 would compare words. On
the other hand, an instruction like CMP AL,[BX] doesn't cause any problems,

because AL is a byte register, and the assembler knows without being told that

we want a byte compare.

Then, too, remember that a CALL instruction can be either a NEAR or a

FAR CALL. A NEAR CALL needs one word for the address, while the FAR
CALL needs two. Here, the instruction:

CALL WORD PTR [BX]

tells the assembler, with WORD PTR, that [BX] points to one word, so it should

generate a NEAR CALL and use the word pointed to by [BX] as the address,

that being the address we stored in DISPATCH_TABLE. (For a FAR CALL,
which uses a two-word address, we would use the instruction CALL DWORD
PTR [BX]. DWORD stands for Double Word, or two words.)

As you'll see in Chapter 22, we can easily add more key commands to

Dskpatch simply by adding more procedures and placing new entries in DIS-

PATCH_TABLE. Right now, however, we still need to add four procedures

before we can test this new version of Dskpatch. We're missing READJBYTE,
WRITE_PROMPT_LINE, PREVIOUS_SECTOR, and NEXT_SECTOR.
READ_BYTE is a procedure to read characters and extended ASCII codes

from the keyboard. The final version will be able to read special keys (such as

the function and cursor keys), ASCII characters, and two-digit hex numbers. At
this point, we'll write a simple version ofREAD_BYTE—to read either a char-
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acter or a special key. Here is the first version of KBD_IO.ASM, which is the

file in which we'll store all our procedures to read from the keyboard:

Listing 19-4. The New File KBDJO.ASM

.MODEL SMALL

.CODE

PUBLIC READ_BYTE

; This procedure reads a single ASCII character.
; a test version of READ_BYTE.

; Returns: AL Character code (unless AH
; AH if read ASCII char
; 1 if read a special key

This is just ;

= 1) 1

READ BYTE PROC
XOR AH, AH
INT 1th
OR AL,AL
JZ EXTENDED CODE

NOT EXTENDED:
XOR AH, AH

DONE READING:
RET

EXTENDED CODE:
MOV AL,AH
MOV AH,1
JMP DONE READING

READ BYTE ENDP

;Ask for keyboard read function
;Read character/scan code from keyboard
;Is it an extended code?
; Yes

;Return just the ASCII code

;Put scan code into AL
;Signal extended code

END

READ_BYTE uses a new interrupt, INT 16h, which is an interrupt that

gives us access to the keyboard services in the ROM BIOS. Function reads a

character from the keyboard without echoing it to the screen. It returns the

character code in AL, and the scan code in the AH register.

The scan code is the code assigned to each key on the keyboard. Some keys,

such as F3 haven't been assigned ASCII codes (which means AL will be 0), but

they do have scan codes (you'll find a table of scan codes in Appendix D).

READ_BYTE puts this scan code into the AL register for special keys, and sets

AHtol.
Next, add the new procedure WRITE_PROMPT_LINE to DISP_SEC.ASM:

Listing 19-5. Add This Procedure to VIDEOJO.ASM

PDBLIC HRITE_PROMPT_LINE
EXTRN CLEAR_TO_END_OF_LINE:PROC, WRITE_STRING : PROC
EXTRN GOTO XY : PROC

.DATA

.CODE
EXTRN PROMPT LINE NO:BYTE

This procedure writes the prompt line to the screen and clears the
end of the line.
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On entry DS:DX Address of the prompt-line message ;

Uses

:

WRITE STRING, CLEAR TO END OF LINE GOTO XY ;

Reads

:

PROHPT_LINE_NO

WRITE_PROMPT_LINE PROC
PUSH DX
XOR DL,DL
MOV DH, PROMPT LINE NO
CALL GOTO XY
POP DX
CALL WRITE STRING
CALL CLEAR TO END OF LINE
RET

WRITE PROMPT LINE ENDP

;Write the prompt line and
; move the cursor there

There really isn't much to this procedure. It moves the cursor to the begin-

ning of the prompt line, which we set (in DSKPATCH.ASM) to line 21. Then, it

writes the prompt line and clears the rest of the line. The cursor is at the end of

the prompt when WRITE_PROMPT_LINE is done, and the rest of the line is

cleared by CLEAR_TO_END_OF_LINE.

Reading Other Sectors

Finally, we need the two procedures PREVIOUS-SECTOR and
NEXT_SECTOR, to read and redisplay the previous and next disk sectors. Add
these two procedures to DISKUO.ASM:

Listing 19-6. Add These Procedures to DISKJO.ASM
s

PUBLIC PREVIOUS_SECTOR
EXTRN INIT_SEC_DISP:PROC, WRITE_HEADER : PROC
EXTRN WRITE PROMPT LINE:PROC

.DATA

.CODE
EXTRN CURRENT_SECTOR_NO:WORD, EDITOR_PROMPT : BYTE

; This procedure reads the previous sector, if possible.

; Uses

:

WRITE HEADER, READ SECTOR, INIT SEC DISP
WRITE PROMPT LINE

; Reads: CURRENT SECTOR NO, EDITOR PROMPT
; Writes: CURRENT SECTOR NO

PREVIOUS SECTOR PROC
PUSH AX
PUSH DX
MOV AX, CURRENT SECTOR NO
OR AX, AX
JZ DONT DECREMENT SECTOR
DEC AX
MOV CURRENT SECTOR NO, AX
CALL WRITE HEADER
CALL READ SECTOR
CALL INIT SEC DISP
LEA DX, EDITOR PROMPT
CALL WRITE PROMPT LINE

DONT DECREMENT SECTOR:
POP DX
POP AX

;Get current sector number
;Don't decrement if already D

;Save new sector number

;Display new sector
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Listing 19-6. continued

RET
PREVIOUS SECTOR ENDP

PUBLIC NEXT_SECTOR
EXTRN INIT_SEC_DISP:PROC, WRITE_HEADER : PROC
EXTRN WRITE PROMPT LINE:PROC

.DATA

.CODE
EXTRN CURRENT SECTOR_NO:WORD, EDIT0R_PROMPT : BYTE

Reads the next sector.

Uses

:

Reads

:

Writes:

WRITE_HEADER, READ_SECTOR, INIT_SEC_DISP
WRITE_PROMPT_LINE
CURRENT_SECTOR_NO, EDITOR_PROMPT
CURRENT SECTOR NO

NEXT SECTOR PROC
PUSH AX
PUSH DX
MOV AX, CURRENT SECTOR NO
INC AX
MOV CURRENT SECTOR NO, AX
CALL WRITE HEADER
CALL READ SECTOR
CALL INIT SEC DISP
LEA DX, EDITOR PROMPT
CALL WRITE PROMPT LINE
POP DX
POP AX
RET

NEXT SECTOR ENDP

;Move to next sector

;Display new sector

Now, you're ready to assembly all the files we created or changed: Dskpatch,

Video_io, KbcLJo, Dispatch, and Disk_io. When you link the Dskpatch files,

remember there are now seven of them: Dskpatch, Disp_sec, Disk_io, Video_io,

KbcLio, Dispatch, and Cursor.

If you are using Make, here are the additions you need to make to the

Makefile Dskpatch (the backslash at the end of the fourth line from the bottom

tells Make we're continuing the list of files onto the next line):

Listing 19-7. Changes to the Make File MAKEFILE

cursor. obj: cursor. asm
masm cursor;

dispatch. obj : dispatch. asm
last dispatch

;

kbd_io.obj: kbd_.io.aso
aasB kbd_io;

dskpatch.exe dskpatch. obj disk_io.obj disp_.sec.0b3 video_io.obj cursor. obj \

dispatch. obj kbd_io.obj
link dskpatch disk_io disp_sec video_io cursor dispatch kbd_io;
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Press function key, or enter character or hex byte:

Figure 19-1. Dskpatch with the Prompt Line.

(Remember that the last three lines heed to be at the top of your file if you're

using Borland's Make. If you're using OPTASM, you need to add four lines to

assemble dispatch and kbcLio.) Ifyou do not have Make, you may wish to write

the following short batch file to link and create your .EXE file:

LINK DSKPftTCH DISK_IO DISP_SEC VIDEO_IO CURSOR DISPATCH KBD_IO

;

As we add more files, you'll only need to change this batch file, rather than type

this long link list each time you rebuild the .EXE program.

This version of Dskpatch has three active keys: F3 reads and displays the

previous sector, stopping at sector 0; F4 reads the next sector; F10 exits from

Dskpatch. Give these keys a try. Your display should now look something like

Figure 19-1.

Philosophy of the Following Chapters

We covered far more ground than usual in this chapter, and in that respect

you've had a taste of the philosophy we'll be following in Chapters 20 through

27. From now on, we'll clip along at a fairly rapid pace, so that we can get
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through more examples of how to write large programs. You'll also find more
procedures that you can use in your own programs.

These chapters are here for you to learn from, hence the rather high density

ofnew procedures. But in the chapters in Part IV of the book, we'll come back to

learning new subjects, so hang on, or (if you wish) skip the remaining chapters

on Dskpatch until you're ready to write your own programs. When you're ready

to come back again, you'll find many useful tidbits for programming.

Of course, if you're champing at the bit and eager to write your own proce-

dures, read the next chapter. There, you'll find a number of hints, and we'll give

you a chance to write the procedures in following chapters by giving you

enough details to forge ahead.

From Chapter 21 on, we'll present many different procedures and let you dis-

cover how they work. Why? There are two reasons, both related to setting you

on your feet and on your way to assembly language programming. First, we
want you to have a library of procedures you can use in your own programs; to

use them comfortably, you need to exercise your own skills. Second, by present-

ing this large programming example, we want to show you not only how to

write a large program, but to give you a feel for it as well.

So take the rest of this book in the way that suits you best. Chapter 20 is for

those of you eager to write your own programs. In Chapter 21, we'll return to

Dskpatch and build the procedures to write and move what we call a phantom
cursor: a reverse-video cursor for the hex and ASCII displays.
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.his book contains six more chapters ofprocedures. Ifyou want to try navigat-

ing on your own, read this chapter. We'll chart a course for you here, and plot

your way through Chapters 21 and 22. Then you can try to write the procedures

in each chapter before you read it. If you don't wish to try writing pieces of

Dskpatch just yet, skip this chapter for now. It's very brief and leaves many
details to your imagination.

If you decide to read through this chapter, here's a suggestion on how to pro-

ceed: Read one section and then try to make your own corresponding changes to

Dskpatch. When you feel you've made enough progress, read the chapter with

the same name as the section title. After you've read the corresponding chap-

ter, then you can go on to read the next section.

Note: You may want to make a copy of all your files before

you start making changes. Then when you get to Chapter 21,

you'll have the choice of following along with the changes, or

using your own version.

The Phantom Cursors

In Chapter 21 we'll place two phantom cursors on the screen: one in the hex

window and one in the ASCII window. A phantom cursor is similar to a normal

cursor, but it doesn't blink and the background turns white, with the charac-

ters black, as you can see in Figure 20-1.

The phantom cursor in the hex window is four characters wide, while the one

in the ASCII window is only one character wide.

How do we create a phantom cursor? Each character on the screen has an
attribute byte. This byte tells your IBM PC how to display each character. An
attribute code of 7h displays a normal character, while 70h displays a character

in inverse video. The latter is exactly what we want for the phantom cursor, so

the question is: How can we change the attribute of our characters to 70h?
INT lOh function 9 writes both a character and an attribute to the screen,

and INT lOh function 8 reads the character code at the current cursor position.

We can create a phantom cursor in the hex window with the following steps:

• Save the position of the real cursor (use INT lOh function 3 to read the

cursor position and save this in variables).

• Move the real cursor to the start ofthe phantom cursor in the hex window.



A Programming Challenge 221

• For the next four characters, read the character code (function 8) and

write both the character and its attribute (setting the attribute to 70h).

• Finally, restore the old cursor position.

Disk A Sector 8
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uBlHu
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EB 88 E4 83 74 84 FE C4 8A CC 5B 58 FF 2E 6F 81 BE SZ»t»i-e|}[X .<&
FB 89 81 EB 55 98 Bl 66 IE 88 11 2E 28 88 C3 Al 18

l i i i
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Press function key, or enter character or hex byte!

Figure 20-1. A Display with Phantom Cursors.

We write a phantom cursor in the ASCII window in much the same way.

Once you have a working phantom cursor in the hex window, you can add the

extra code for the ASCII window.

Keep in mind that your first try is only temporary. Once you have a working

program with phantom cursors, you can go back and rewrite your changes, so

you have a number of small procedures to do the work. Look at the procedures

in Chapter 21 when you're done, to see one way of doing this.

Simple Editing

Once we have our phantom cursors, we'll want to move them around on the

screen. We have to pay attention here to boundary conditions to keep the phan-

tom cursors inside each ofthe two windows. We also want our two phantom cur-



222 Peter Norton's Assembly Language Book for the IBM PC, Revised & Expanded

sors to move together, since they represent the hex and ASCII representations

of the same thing.

How can we move each phantom cursor? Each of the four cursor keys on the

keypad sends out a special function number: 72 for cursor up, 80 for cursor

down, 75 for cursor left, and 77 for cursor right. These are the numbers we need

to add to DISPATCH_TABLE, along with the addresses of the four procedures

to move the phantom cursors in each of these four directions.

To actually move each phantom cursor, erase it, then change its two coordi-

nates and write it again. If you've been careful about how you wrote the phan-

tom cursors, the four procedures to move them should be fairly simple.

Whenever you type a character on the keyboard, Dskpatch should read this

character and replace the byte under the phantom cursor with the character

just read. Here are the steps for simple editing:

• Read a character from the keyboard.

• Change the hex number in the hex window and the character in the

ASCII window to match the character just read.

• Change the byte in the sector buffer, SECTOR.

Here's a simple hint: You don't have to make many changes to add editing.

Dispatch requires little more than calling a new procedure (we've called it

EDIT_BYTE) that does most ofthe work. EDIT_BYTE is responsible for chang-

ing both the screen and SECTOR.

Other Additions and Changes to Dskpatch

From Chapter 23 through Chapter 27, the changes start to become somewhat
trickier and more involved. If you're still interested in writing your own ver-

sion, consider this: What more would you like to see Dskpatch do than it does

right now? We've used the following ideas in the remaining chapters.

We want a new version ofREAD_BYTE that will read either one character or

a two-digit hex number and wait for us to press the Enter key before it returns a

character to Dispatch. This part of our "wish list" isn't as simple as it sounds,

and we'll spend two chapters (Chapters 23 and 24) working on this problem.

In Chapter 25, we'll go bug hunting, then in Chapter 26 we'll learn how to

write modified sectors back to the disk using the DOS INT 26h function, which
is analogous to the INT 25h that we used to read a sector from the disk. (In
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Chapter 26 we won't check for read errors, but you'll find such checks in the

disk version of Dskpatch that is available with this book.)

Finally, in Chapter 27, we'll make some changes to Dskpatch so we can see

the other half of our sector display. These changes won't allow us to scroll

through the sector display as freely as we'd like but, again, those changes are

on the disk version of Dskpatch.
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In this chapter we'll build the procedures to write and erase a phantom cursor

in the hex window, and another in the ASCII window. A phantom cursor is so

called because it's not the PC's hardware cursor; it's a shadow—albeit a rather

unusual shadow, since it inverts the character, turning the background to

white and the character to black. In the hex window, we have the room to make
this cursor four characters wide so it will be easy to read. In the ASCII window,

our phantom cursor will be just one character wide, because there is no room
between characters.

We have a lot ofprocedures and code to cover here, so we'll describe these pro-

cedures only briefly.

The Phantom Cursors

INIT_SEC_DISP is the only procedure we have that changes the sector dis-

play. A new display appears when we start Dskpatch, and each time we read a

new sector. Since our phantom cursors will be in the sector display, we'll begin

our work here by placing a call to WRITE_PHANTOM in INIT_SEC_DISP.
That way, we'll write the phantom cursors every time we write a new sector

display.

Here is the revised—and final—version of INIT_SEC_DISP in

DISP-SEC.ASM:

Listing 21-1. Changes to INIT_SEC_DISP in DISP-SEC.ASM

.D&TA

PUBLIC
EXTRN
EXTTtK

S

EXTRN
EXT8N

INIT_SEC_DISP
WRITE_PATTERN:PROC, SEND_CRLF : PROC
GOTO_XT:PBOC, WBITE_1?HftHTOH:PROC

LIHES_BEFORE_SECTOB : BYTE
SECTOROFFSET : BOBD

.CODE

This procedure initializes the half-sector display.

Uses: KRITE_PATTERN, SEND_CRLF, DISP_HALF_SECTOR
WBITE_T0P_HEX_ND8BERS, GOTO_XT, »RITE_PHRHTOM

Reads: TOP_LINE_PATTERN, BOTTOM_LINE_PATTERN
LINES_BBFORE_SECTOR

Writes: SECTOB_OFFSET

INIT_SEC_DISP PROC
PUSH DX
XOR DL.DL
NOV DH,LINES_BEFOBE_SECTOR
CALL GOTO_XY
CALL WRITE_TOP_HEX_NUMBERS
LEA DX,TOP_LINE_PATTERN
CALL WRITE_PATTERN
CALL SEND_CRLF
XOR DX,DX

;Hove cursor into position

;Start at the beginning of the sector
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NOV SECTOB_OFFSET,DX ;Set sector offset to
CALL DISP_HALF_SECTOR
LEA DX,BOTTOM_LINE_PATTERN
CALL WRITE_PATTERN
CALL WBITE_PHftMTOM ;Display the phantom cursor
POP DX
RET

INIT_SEC_DISP ENDP

Note that we've also updated INIT_SEC_DISP to use and initialize variables.

It now sets SECTOR-OFFSET to zero to display the first half of a sector.

Let's move on to WRITE_PHANTOM itself. This will take quite a bit ofwork.

Altogether, we have to write six procedures, including WRITE_PHANTOM.
The idea is fairly simple, though. First, we move the real cursor to the position

of the phantom cursor in the hex window and change the attribute of the next

four characters to inverse video (attribute 70h). This creates a block of white,

four characters wide, with the hex number in black. Then we do the same in the

ASCII window, but for a single character. Finally, we move the real cursor back

to where it was when we started. All the procedures for the phantom cursors

will be in PHANTOM.ASM, with the exception of WRITE^VTTRIBUTE_N_
TIMES, the procedure that will set the attribute of characters.

Enter the following procedures into the file PHANTOM.ASM:

Listing 21-2. The New File PHANTOM.ASM

.MODEL SMALL

.DATA

REAL_CDRSOR_X DB
REAL_CDRSOR_Y DB D

PUBLIC PHANTOM_CURSOR_X, PHANTOM_CURSOR_Y
PHANTOM_CURSOR_X DB D

PHANTOM_C0RSOR_Y DB D

.CODE

PUBLIC MOV_TO_HEX_POSITION
EXTRN GOTO_XY:PROC

.DATA
EXTRN LINES_BEFORE_SECTOR:BYTE

.CODE

This procedure moves the real cursor to the position of the phantom
cursor in the hex window.

Uses: GOTO_XY
Reads: LINES_BEF0RE_SECTOR, PHANTOM_CURSOR_X, PH ANTOM_CURSOR_Y

MOV_TO_HEX_POSITION PROC

;Find row of phantom (0/0)
;Plus row of hex and horizontal bar
;DH = row of phantom cursor
;Indent on left side
;Each column uses 3 characters, so
; we must multiply CURS0R_X by 3

PUSH AX
PUSH CX
PUSH DX
MOV DH, LINES BEFORE SECTOR
ADD DH,5
ADD DH, PHANTOM CURSOR Y
MOV DL,fl
MOV CL,3
MOV AL, PHANTOM CURSOR X
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Listing 21-2. continued

MUL CL
ADD DL,AL
CALL GOTO XY
POP DX
POP CX
POP AX
RET

TO HEX POSITION ENDP

;And add to the indent, to get column
; for phantom cursor

PUBLIC MOV_TO_ASCII_POSITION
EXTRN G0T0_XY:PROC

.DATA
EXTRN LINES BEFORE SECTOR :BYTE

.CODE

This procedure moves the real cursor to the beginning of the phantom
cursor in the ASCII window.

Uses:
Reads

:

GOTO_XY
LINES_BEFORE_SECTOR, PH ANTOM_CURSOR_X , PHANTOM_CURSOR_Y

MOV TO ASCII POSITION PROC
PUSH
PUSH
MOV
ADD
ADD
MOV
ADD
CALL
POP
POP
RET

AX
DX
DH,LINES_BEFORE_SECTOR ;Find row of phantom (0,0)
DH,e
DH, PHANTOM_CURSOR_Y
DL,5q
DL,PH
GOTO
DX
AX

1ANT0M_CURS0R_X
XY

;Plus row of hex and horizontal bar
;DH = row of phantom cursor
;Indent on left side
;Add CURS0R_X to get X position
; for phantom cursor

M0V_T0_ASCII POSITION ENDP

PUBLIC SAVE_REAL_CURSOR

This procedure saves the position of the real cursor in the two
variables REAL_CURSOR X and REAL_CURSOR Y.

; Writes: REAL_CURSOR_X, RE AL_CURSOR_Y

SAVE REAL CURSOR PROC
PUSH AX
PUSH BX
PUSH CX
PUSH DX
MOV AH,

3

XOR BH,BH
INT lOh
MOV REAL_CURSOR_Y,DL
MOV REAL_CURSOR_X,DH
POP DX
POP CX
POP BX
POP AX
RET

SAVE_REAL_CURSOR ENDP

; Read cursor position
; on page
;And return in DL,DH
;Save position

PUBLIC RESTORE_REAL_CURSOR
EXTRN G0T0_XY:PR0C

This procedure restores the real cursor to its old position, saved in
REAL_CDRSOR_X and REAL CURSOR Y.

Uses:
Reads

:

GOTO_XY
REAL_CURSOR_X, REAL_CURSOR_Y



The Phantom Cursors 229

RESTORE REAL_CURSOR PROC
PUSH
NOV
MOV
CALL
POP
RET

DX
DL,REAL_CURSOR_Y
DH,REAL_CURSOR_X
GOTO_XY
DX

RESTORE REAL_CURSOR ENDP

PDBLIC
EXTRN

WRITE_PHANTOM
WRITE ATTRIBUTE N TIMES:PROC

This procedure uses CURSOR_X and CDRSOR_Y, through MOV_TO_. . . , as the
coordinates for the phantom cursor. WRITE_PHANTOM writes this
phantom cursor.

Uses: WRITE_ATTRIBUTE_N_TIMES, S AVE_RE AL_CURSOR
RESTORE_REAL_C0RSOR, MOV_TO_HEX_POSITION
MOV TO ASCII POSITION

WRITE_PHANTOM PROC
PUSH
PUSH
CALL
CALL
MOV
MOV
CALL
CALL
MOV
CALL
CALL
POP
POP
RET

cx
DX
SA
MO
CX
DL
WR
MO
CX
WR
RE
DX
CX

VE_REAL_CURSOR
V_TO_HEX_POSITION
,A

,?0h
ITE_ATTRIBUTE_N_TIMES
V_TO_ASCII_POSITION
,1
ITE_ATTRIBUTE_N_TIMES
STORE REAL CURSOR

;Coord. of cursor in hex window
;Make phantom cursor four chars wide

;Coord. of cursor in ASCII window
;Cursor is one character wide here

WRITE PHANTOM ENDP

PUBLIC
EXTRN

ERASE_PHANTOM
WRITE_ATTRIBUTE_N_TIMES:PROC

This procedure erases the phantom cursor, just the opposite of
WRITE_PHANTOM.

Uses: WRITE_ATTRIBUTE_N_TIMES, S AVE_RE AL_CURSOR
RESTORE_REAL_CURSOR, MOV_TO_HEX_POSITION
MOV_TO_ASCII_P0SITION

ERASE PHANTOM PROC
PUSH CX
PUSH DX
CALL SA
CALL MO
MOV CX
MOV DL
CALL WR
CALL MO
MOV CX
CALL WR
CALL RE
POP DX
POP CX
RET

VE_REAL_CURSOR
V_TO_HEX_POSITION

,?

ITE_ATTRIBUTE_N_TIMES
V_TO_ASCII_POSITION
,1
ITE_ATTRIBUTE_N_TIMES
STORE_REAL_CURSOR

;Coord. of cursor in hex window
;Change back to white on black

ERASE_PHANTOM ENDP

END
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WRITE_PHANTOM and ERASE_PHANTOM are much the same. In fact,

the only difference is in the attribute used: WRITEJPHANTOM sets the attri-

bute to 70h for inverse video, while ERASE_PHANTOM sets to attribute back

to the normal attribute (7).

Both of these procedures save the old position of the real cursor with

SAVE_REAL_CURSOR, which uses the INT lOh function number 3 to read the

position of the cursor and then saves this position in the two bytes

REAL_CURSOR_X and REAL_CURSOR_Y.
After saving the real cursor position, both WRITE_PHANTOM and

ERASEJPHANTOM then call MOV_TO_HEX_POSITION, which moves the

cursor to the start of the phantom cursor in the hex window. Next,

WRITE^TTRIBUTE_N_TIMES writes the inverse-video attribute for four

characters, starting at the cursor and moving to the right. This writes the

phantom cursor in the hex window. In much the same way, WRITE—PHAN-
TOM then writes a phantom cursor one character wide in the ASCII window.

Finally, RESTORE_REAL_CURSOR restores the position of the real cursor to

the position it was in before the call to WRITE_PHANTOM.
The only procedure we have left unwritten is WRITE^.TTRIBUTE_

N_TIMES, so let's take care of it now.

Changing Character Attributes

We're going to use WRITE_ATTRIBUTEJNLTIMES to do three things. First,

it will read the character under the cursor position. We'll do this because the

INT lOh function we use to set a character's attribute, function number 9,

writes both the character and the attribute under the cursor. Thus,

WRITE^TTRIBUTE_N_TIMES will change the attribute by writing the new
attribute along with the character just read. Finally, the procedure will move
the cursor right to the next character position, so we can repeat the whole pro-

cess N times. You can see the details in the procedure itself; place

WRITE^TTRIBUTE_N_TIMES in the file VIDEOJO.ASM:

Listing 21-3. Add This Procedure to VIDEOJO.ASM

PUBLIC WRITE_ATTRIBUTE_N_TIMES
EXTRN CURSOR RIGHT:PROC

This procedure sets the attribute for N characters, starting at the
current cursor position.

On entry: CX Number of characters to set attribute for
DL New attribute for characters

Uses: CURSOR RIGHT
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Press function key, or enter character or hex byte:

Figure 21-1. Screen Display with Phantom Cursors.

WRITE_ATTRIBUTE_N_TIMES PROC
POSH AX
PUSH BX
PUSH CX
PUSH DX
MOV BL,DL
XOR BH,BH
MOV DX,CX
MOV CX,1

R LOOP:
MOV AH,fl

INT lOh
MOV AH,q
INT IDh
CALL CURSOR RIGHT
DEC DX
JNZ ATTR LOOP
POP DX
POP CX
POP BX
POP AX
RET

;Set attribute to new attribute
;Set display page to D

;CX is used by the BIOS routines
;Set attribute for one character

;Read character under cursor

;Write attribute/character

;Set attribute for N characters?
;No, continue

WRITE_ATTRIBUTE_N_TIMES ENDP

This is both the first and final version of WRITE_ATTRIBUTE_N_TIMES.
With it, we've also created the final version of VIDEO_IO.ASM, so you won't

need to change or assemble it again.



232 Peter Norton's Assembly Language Book for the IBM PC, Revised & Expanded

Summary

We now have eight files to link, with the main procedure still in Dskpatch. Of
these, we've changed two files, Disp_sec and Video_io, and created one, Phan-

tom. If you're using Make or the short batch file we suggested in Chapter 20,

remember to add your new file, Phantom, to the list.

When you run Dskpatch now, you'll see it write the sector display, just as

before, but Dskpatch will also write in the two phantom cursors. (See Figure

21-1.) Notice that the real cursor is back where it should be at the very end.

In the next chapter, we'll add procedures to move our newly formed phantom
cursors, and we'll add a simple editing procedure to allow us to change the byte

under the phantom cursor.
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w.e've almost reached the point at which we can begin to edit our sector dis-

play—change numbers in our half sector display. We'll soon add simple ver-

sions of the procedures for editing bytes in our display, but before we do, we
need some way to move the phantom cursors to different bytes within the half

sector display. This task turns out to be fairly simple, now that we have the two

procedures ERASE_PHANTOM and WRITE_PHANTOM.

Moving the Phantom Cursors

Moving the phantom cursors in any direction depends on three basic steps:

Erasing the phantom cursor at its current position; changing the cursor posi-

tion by changing one of the variables, PHANTOM_CURSOR_X or PHAN-
TOM_CURSOR_Y; and using WRITE_PHANTOM to write the phantom
cursor at this new position. In the process, however, we must be careful not to

let the cursor move outside the window, which is 16 bytes wide and 16 bytes

high.

To move the phantom cursors, we'll need four new procedures, one for each of

the arrow keys on the keyboard. DISPATCHER needs no changes, because all

the information on procedures and extended codes is in the table DIS-

PATCH_TABLE. We just need to add the extended ASCII codes and addresses

of the procedures for each of the arrow keys. Here are the additions to DIS-

PATCH.ASM that will bring the cursor keys to life:

Listing 22-1. Changes to DISPATCH.ASM

.MODEL SHALL

.CODE
EXTRN NEXT_SECTOR:PROC ;In DISK_IO.ASM
EXTRN PREVIOUS_SECTOR:PROC ;In DISK_IO.ASM
EXTBH PHA8TOH_UP:PROC, PHARTOH_DOHK : PROC ;In PHAHTOM.ASH
EXTBM PHiNTOH_LEFT:PBOC, PB,ARTOS_BIGHT:PBOC

.DATA

This table contains the legal extended ASCII keys and the addresses
of the procedures that should be called when each key is pressed.

The fornat of the table is
DB 75 ;Extended code for cursor up
DH OFFSET TEXT:PHANTOM DP

DISPATCHJTABLE LABEL BTTE
DB fcl ;F3
DH OFFSET _TEXT:PREVIOUS_SECTOR
DB be ;TA
DH OFFSET _TEXT:NEXT SECTOR
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DB 75 ;Cursor up
DW OFFSET _TEXT PHANTOM_0P
DB ao ;Cursor flown

DW OFFSET _TEXT PHANTOM_DOWN
DB ?S ;Cursor left
DW OFFSET _TEXT PHANTOHJLEFT
DB 77 ;Carsor right
DW OFFSET _TEXT PHANTOHJRIGHT
DB ;End of the ta

As you can see, it's simple to add commands to Dskpatch: We merely place the

procedure names in DISPATCtLTABLE and write the procedures.

Speaking of writing procedures, the procedures PHANTOM_UP, PHAN-
TOM—DOWN, and so on are fairly simple. They're also quite similar to one

another, differing only in the boundary conditions used for each. We've already

described how they work; see if you can write them yourself, in the file PHAN-
TOM.ASM, before you read on.

Here are our versions of the procedures to move the phantom cursors:

Listing 22-2. Add These Procedures to PHANTOM.ASM

These four procedures move the phantom cursors

Uses

:

ERASE PHANTOM, WRITE PHANTOM
Reads

:

PHANTOM CURSOR X PHANTOM CURSOR v ;

Writes PHANTOM .CURSOR..X PHANTOM _CURSOR._y ;

PUBLIC PHANTOM UP
PHANTOM UP PROC

CALL ERASE PHANTOM
DEC PHANTOM CURSOR _Y

JNS WASNT AT TOP
MOV PHANTOM_CURSOR_„Y D

WASNT AT TOP:
CALL WRITE_PHANTOM
RET

PHANTOM_UP ENDP

PUBLIC PHANTOM DOWN
PHANTOM DOWN PROC

CALL ERASE PHANTOM
INC PHANTOM CURSOR Y
CMP PHANTOM_CURSOR._Y It
JB WASNT AT BOTTOM
MOV PHANTOM_CURSOR__Y 15

WASNT AT_BOTTOM
CALL WRITE_PHANTOM
RET

PHANTOM_DOWN ENDP

PUBLIC PHANTOM LEFT
PHANTOM LEFT PROC

CALL ERASE PHANTOM
DEC PHANTOM CURSOR .X

JNS WASNT_AT_LEFT
MOV PHANTOM_CURSOR..X a

WASNT AT LEFT:
CALL WRITE_PHANTOM
RET

PHANTOM LEFT ENDP

;Erase at current position
;Move cursor up one line
;Was not at the top, write cursor
;Was at the top, so put back there

;Write the phantom at new position

;Erase at current position
;Move cursor down one line
;Was it at the bottom?
;No, so write phantom
;Was at bottom, so put back there

;Write the phantom cursor

;Erase at current position
;Move cursor left one column
;Was not at the left side, write cursor
;Was at left, so put back there

;Write the phantom cursor
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Listing 22-2. continued

PDBLIC PHANTOM RIGHT
PHANTOM RIGHT PROC NEAR

CALL ERASE PHANTOM
INC PHANTOM CURSOR X

CMP PHANTOM CURSOR X,lb
JB HASNT AT RIGHT
MOV PHANTOM_CURSOR_X,15

WASNT AT BIGHT:
CALL HRITE_PHANTOM
RET

PHANTOM RIGHT ENDP

;Erase at current position
;Move cursor right one column
;Was it already at the right side?

;Was at right/ so put back there

;Write the phantom cursor

PHANTOM_LEFT and PHANTOM_RIGHT are the final versions, but we'll

have to change PHANTOM_UP and PHANTOM_DOWN when we begin to

scroll the display.

Test Dskpatch now to see ifyou can move the phantom cursors around on the

screen. They should move together, and they should stay within their own win-

dows.

As Dskpatch stands now, we can see only the first half of a sector. In Chapter

27, we'll make some additions and changes to Dskpatch so we can scroll the dis-

play to see other parts of the sector. At that time, we'll change both PHAN-
TOM_UP and PHANTOMJDOWN to scroll the screen when we try to move the

cursor beyond the top or bottom of the screen. For example, when the cursor is

at the bottom of the half-sector display, pushing the cursor-down key again

should scroll the display up one line, adding another line at the bottom, so that

we see the next 16 bytes. Scrolling is rather messy, however, so we'll keep these

procedures until almost last. Through Chapter 26, we'll develop the editing and

keyboard-input sections of Dskpatch by using only the first half sector. Now,
we'll go on to add editing, so we can change bytes on our display.

Simple Editing

We already have a simple keyboard-input procedure, READ_BYTE, which
reads just one character from the keyboard without waiting for you to press the

Enter key. We'll use this old, test version of READ_BYTE to develop editing.

Then, in the next chapter, we'll write a more sophisticated version ofthe proce-

dure that will wait until we press either the Enter key or a special key, such as

a function or cursor key.

Our editing procedure will be called EDIT_BYTE, and it will change one byte

both on the screen and in memory (SECTOR). EDIT_BYTE will take the char-

acter in the DL register, write it to the memory location within SECTOR that is

currently pointed to by the phantom cursor, and then change the display.



Simple Editing 237

DISPATCHER already has a nice niche where we can place a CALL to

EDIT_BYTE. Here is the new version of DISPATCHER in DISPATCH.ASM,
with the CALL to EDIT_BYTE and the changes to go along with it:

Listing 22-3. Changes to DISPATCHER in DISPATCH.ASM

PUBLIC DISPATCHER
EXTRN READ_BYTE:PROC, EDIT_BYTE: PROC

This is the central dispatcher. During normal editing and viewing, ;

this procedure reads characters from the keyboard and/ if the character
is a command key (such as a cursor key), DISPATCHER calls the
procedures that do the actual work. This dispatching is done for
special keys listed in the table DISPATCH_TABLE, where the procedure
addresses are stored just after the key names.

If the character is not a special key, then it should be placed
directly into the sector buffer— this is the editing mode.

Oses: READ_BYTE, EDIT_BYTE

DISPATCHER
PUSH
PUSH
P0S8

DISPATCH_LOOP:
CALL
OR

PROC
AX
BX
DX

READ_BYTE
AH, AH

; Read character into AL
;AX = -1 if no character read, 1

for an extended code.
;No character read, try again
;Read extended code

JS DISPATCH_LOOP
JNZ SPECIAL_KEY

Ou iiuUiiuy—wi Ll i

—Llm u l ia r acler—for—now
MOV DL.AL
CALL EDIT_BYTE ;»as noroal character, edit byte
JMP DISPATCH LOOP ;Read another character

I
I
C

•

SPECIAL KEY:
CMP AL,bfl
JE END_DISPATCH

LEA BX,DISPATCH_TAB
SPECIAL LOOP:

CMP BYTE PTR [BX] ,0
JE NOT IN TABLE
CMP AL, [BX]
JE DISPATCH
ADD BX,3
JMP SPECIAL_LOOP

DISPATCH:
INC BX
CALL WORD PTR [BX]
JMP DISPATCH_L00P

NOT IN TABLE:
JMP DISPATCH_L00P

END DISPATCH:
POP DX
POP BX
POP AX
RET

DISPATCHER ENDP

;F10—exit?
;Yes, leave
;Use BX to look through table

;End of table?
;Yes, key was not in the table
;Is it this table entry?
;Yes, then dispatch
;No, try next entry
;Check next table entry

;Point to address of procedure
;Call procedure
;Wait for another key

;Do nothing, just read next character
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The EDIT_BYTE procedure itself does a lot of work, almost entirely by call-

ing other procedures, and this is one feature of modular design. With modular
design, we can often write rather complex procedures simply by giving a list of

CALLs to other procedures that do the work. Many of the procedures in

EDIT_BYTE work with a character in the DL register, but this is already set

when we call EDIT_BYTE, so the only instruction other than a CALL (or

PUSH, POP) is the LEA instruction to set the address of the prompt for

WRITE_PROMPT_LINE. Most of the procedure calls in EDIT_BYTE are for

updating the display when we edit a byte. You'll see the other details of

EDIT_BYTE when we come to the procedure listing in a moment.
Since EDITJBYTE changes the byte on screen, we need another procedure,

WRITE_TO_MEMORY, to change the byte in SECTOR. WRITE_TOJVIEM-
ORY uses the coordinates in PHANTOM_CURSOR_X and PHANTOM_CUR-
SOR_Y to calculate the offset into SECTOR of the phantom cursor, then it

writes the character (byte) in the DL register to the correct byte within SEC-
TOR.
Here is the new file, EDITOR.ASM, which contains the final versions ofboth

EDIT_BYTE and WRITE_TO_MEMORY:

Listing 22-4. The New File EDITOR.ASM

MODEL SMALL

CODE

DATA
EXTRN SECTOR: BYTE
EXTRN SECTOR OFFSET:WORD
EXTRN PHANTOM CURSOR X:BYTE
EXTRN PHANTOM CURSOR Y:BYTE

.CODE

This procedure writes one byte to SECTOR, at the memory location
pointed to by the phantom cursor.

On entry: DL Byte to write to SECTOR

The offset is calculated by
OFFSET = SECTOR_OFFSET + (lb * PHANTOM_CURSOR_Y

)

PHANTOM CURSOR X

Reads

:

Writes

:

PHANTOM_CURSOR_X, PHANTOM_CURSOR_Y , SECTOR_OFFSET
SECTOR

WRITE TO MEMORY PROC
PUSH AX
PUSH BX
PUSH CX
MOV BX, SECTOR OFFSET
MOV AL, PHANTOM CURSOR Y

XOR AH, AH
MOV CL,4
SHL AX,CL
ADD BX,AX
MOV AL, PHANTOM CURSOR X
XOR AH, AH
ADD BX, AX

; Multiply PHANTOM_CURSOR_Y by It

;BX = SECTOR_OFFSET + (lb * Y)

;That's the address!
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MOV
POP
POP
POP
RET

WRITE_TO_MEMORY

SECTOR[BX],DL
CX
BX
AX

ENDP

;Now, store the byte

.DATA

.CODE

PUBLIC EDIT_BYTE
EXTRN SAVE_REAL_CURSOR:PROC, RESTORE_REAL_CURSOR : PROC
EXTRN MOV_TO_HEX_POSITION:PROC, MOV_TO_ASCII_POSITION : PROC
EXTRN WRITE_PHANTOM:PROC, WRITE_PROMPT_LINE : PROC
EXTRN CURSOR_RIGHT:PROC, WRITE_HEX : PROC, WRITE_CHAR : PROC

EXTRN EDITOR PROMPT:BYTE

; This proce dure changes a byte in memory and on the screen. ;

; On entry

:

DL Byte to write into SECTOR, and change on screen ;

; Uses: SAVE REAL CURSOR, RESTORE REAL_CURSOR ;

MOV TO HEX POSITION, MOV TO ASCII POSITION ;

WRITE PHANTOM, WRITE PROMPT_LINE, CURSOR_RIGHT ;

WRITE HEX, WRITE CHAR, WRITE TO MEMORY ;

; Reads

:

EDITOR PROMPT ;

EDIT BYTE PROC
PUSH DX
CALL SAVE REAL CURSOR
CALL MOV TO HEX POSITION
CALL CURSOR RIGHT
CALL WRITE HEX
CALL MOV TO ASCII POSITION
CALL WRITE CHAR
CALL RESTORE REAL CURSOR
CALL WRITE PHANTOM
CALL WRITE TO MEMORY
LEA DX, EDITOR PROMPT
CALL WRITE PROMPT LINE
POP DX
RET

EDIT BYTE ENDP

;Move to the hex number in the
; hex window
;Write the new number
;Move to the char, in the ASCII window
;Write the new character
;Move cursor back where it belongs
;Rewrite the phantom cursor
;Save this new byte in SECTOR

END

Summary

Dskpatch now consists of nine files: Dskpatch, Dispatch, Disp_sec, Disk_Jo,

Video_io, KbcLio, Phantom, Cursor, and Editor. In this chapter, we changed
Dispatch and added Editor. None of these files is very long, so none takes very

long to assemble. Furthermore, we can make changes fairly quickly by editing

just one of these files, reassembling it, and then linking all the files together

again.

In terms of our current version of Dskpatch, when you push any key, you'll

see a change in the number and character under the phantom cursor. Our edit-

ing works, but it's not very safe as yet, since we can change a byte by hitting
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any key. We need to build in some type of safeguard, such as pressing Enter to

change a byte, so we don't make an accidental change by leaning on the key-

board unintentionally.

In addition, the current version of READ_BYTE doesn't allow us to enter a

hex number to change a byte. In Chapter 24, we'll rewrite READ_BYTE, both

so we'll have to push the Enter key before it will accept a new character, and to

allow us to enter a two-digit hex number. First, we need to write a hex input

procedure; in the next chapter, we'll write input procedures for both hex and
decimal.
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Hex Input

We'll encounter two new procedures for keyboard input in this chapter: one

procedure for reading a byte by reading either a two-digit hex number or a sin-

gle character, and another for reading a word by reading the characters of a

decimal number. These will be our hex and decimal input procedures.Both pro-

cedures are sufficiently tricky that we need to use a test program with them
before we even consider linking them into Dskpatch. We'll be working with

READ_BYTE, and a test procedure will be particularly important here,

because this procedure will (temporarily) lose its ability to read special func-

tion keys. Since Dskpatch relies on the function keys, we won't be able to use

our new READ_BYTE with Dskpatch. We'll also find out why we can't read

special function keys with the READ_BYTE developed here, and in the next

chapter we'll modify the file to make our function-key problems go away.

Let's begin by rewriting READ_BYTE. In the last chapter, READ_BYTE
would read either an ordinary character or a special function key and return

one byte to Dispatch. Dispatch then called the Editor if READ_BYTE read an
ordinary character, and EDIT_BYTE modified the byte pointed to by the phan-

tom cursor. Otherwise, Dispatch looked for special function keys in DIS-

PATCH_TABLE to see if the byte was there; if so, Dispatch called the

procedure named in the table.

But, as mentioned in the last chapter, the old version ofREAD_BYTE makes
it much too easy to change a byte by accident. If you unintentionally hit any
key on the keyboard (other than special keys), EDIT_BYTE will change the

byte under the phantom cursor. All of us are sometimes clumsy, and such an
inadvertent change in a sector can lead to disaster.

We'll change READ_BYTE so that, henceforth, it won't return the character

we type until we press the Enter key. We'll provide this feature by using the

DOS INT 21h function OAh to read a string of characters. DOS returns this

string only when we press Enter, so we get our fix for clumsiness. But along the

way, we lose special function keys, for reasons you'll see later.

To see exactly how our changes affect READ_BYTE, we need to write a test

program to test READ_BYTE in isolation. That way, if anything strange hap-

pens, we'll know it's READ_BYTE and not some other part of Dskpatch. Our
job of writing a test procedure will be simpler if we use a few procedures from
KbcLio, Video_io, and Cursor to print information on the progress of

READ_BYTE. We'll use such procedures as WRITE_HEX and WRITE_DECI-
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MAL to print the character code returned and the number of characters read.

The details are here, in TEST.ASM:

Listing 23-1. The Test Program TEST.ASM

.MODEL SMALL

.STACK

.DATA
ENTER_PROMPT DB 'Enter characters: ',0
CHARACTER_PROMPT DB 'Character code: ',D
SPECIAL_CHAR_PROMPT DB 'Special character read: ',0

.CODE
EXTRN WRITE_HEX:PROC, WRITE_DECIMAL : PROC
EXTRN WRITE_STRING:PROC, SEND_CRLF : PROC
EXTRN READ_BYTE:PROC

TEST_READ_BYTE PROC
MOV AX,DGRO0P
MOV DS,AX 5'

LEA DX,ENTER_PROMPT
CALL WRITE_STRING
CALL READ_BYTE
CALL SEND_CRLF
LEA DX,CHARACTER_PROMPT
CALL HRITE_STRING
MOV DL,AL
CALL WRITE_HEX
CALL SEND_CRLF
LEA DX,SPECIAL_CHAR_PROMPT
CALL HRITE_STRING '

MOV DL,AH
XOR DH,DH
CALL WRITE_DECIMAL
CALL SEND_CRLF

MOV AH,<Ch ;Return to DOS
INT 51h

TEST_READ_BYTE ENDP

END TEST_READ_BYTE

Try linking this with your current versions of KbcLio, Video_io, and Cursor

(place Test first in the LINK list). If you press any special function key, Test

will display the scan code, and a 1 to tell you that you typed a special character.

Otherwise it will display (no special key).

The bulk of the instructions in TEST.ASM are for formatting—making the

display look nice. One thing you may have noticed is that we've used some of

the procedures in kbcLio, video_io, and cursor without regard to the other files

in our project. We could do this because we were careful to place only general-

purpose procedures into these files. In other words, kbd_io, video_io, and cursor

are designed to be used by any program you write. In general, it's a good idea to

separate your procedures by source file into general-purpose and specific proce-
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dures so that you can easily reuse general-purpose procedures in new programs

you write.

Let's move on to rewriting READ—BYTE to accept a string of characters. Not
only will this save us from our clumsiness when we use Dskpatch, it will also

allow us to use the Backspace key to delete characters if we change our mind
about what we want to type in—another nice feature since it's easy to make
mistakes. READ_BYTE will use the procedure READ_STRING to read a string

of characters.

READ_STRING is very simple, almost trivial, but we've placed it in a sepa-

rate procedure so you can rewrite it in the next chapter to read special function

keys without having to press the Enter key. To save time, we'll also add three

other procedures that READ_BYTE uses: STRING_TO_UPPER, CON-
VERT_HEX_DIGIT, and HEX_TO_BYTE.
STRING_TO_UPPER and HEX_TO_BYTE both work on strings.

STRING_TO_UPPER converts all the lowercase letters in a string to upper-

case. That means we can type either f3 or F3 for the hex number F3h. By
allowing hex numbers to be typed in either lower- or uppercase letters, we add

user-friendliness to Dskpatch.

HEX_TO_BYTE takes the string read by DOS, after we call

STRING_TO_UPPER, and converts the two-digit hex string to a single-byte

number. HEX_TO_BYTE makes use of CONVERT_HEX_DIGIT to convert

each hex digit to a four-bit number.
How do we ensure that DOS won't read more than two hex digits? The DOS

function OAh reads an entire string of characters into an area of memory
defined like this:

CHAR_NOM_LIMIT DB D
NUM_CHAKS_BEAD DB D

STRING DB 60 DOP (0)

The first byte ensures that we don't read too many characters.

CHAR_NUM_LIMIT tells DOS how many characters, at most, to read. Ifwe set

this to three, DOS will read up to two characters, plus the carriage-return char-

acter (DOS always counts the carriage return). Any characters we type after

that will be discarded—thrown away—and for each extra character, DOS will

beep to let us know we've passed the limit. When we press the Enter key, DOS
sets the second byte, NUM_CHARS_READ, to the number of characters it

actually read, not including the carriage return.

STRING_TO_UPPER, READ_BYTE, and STRING_TO_UPPER all use

NUM_CHARS_READ. For example, READ_BYTE checks NUM_CHARS
—READ to find out whether you typed a single character or a two-digit hex
number. IfNUM_CHARS_READ was set to one, READ_BYTE returns a single
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character in the AL register. If NUM_CHARS_READ was set to two,

READ_BYTE uses HEX_TO_BYTE to convert the two-digit hex string to a

byte.

Without further ado, here is the new file KBD_TO.ASM, with all four new
procedures (note that we kept the old READ_BYTE by renaming it to

READ-KEY, which we'll use in the next chapter):

Listing 23-2. The New Version of KBDJO.ASM

.MODEL SMALL

.DATA

KEYBOARD_INPUT LABEL BYTE
CHAR_NUM_LIMIT DB D

NUM_CHARS_READ DB
CHARS DB flD DUP (D)

.CODE

PUBLIC STRING TO UPPER

;Length of input buffer
;Number of characters read
;A buffer for keyboard input

This procedure converts the string, using the DOS format for strings,
to all uppercase letters.

On entry: DS:DX Address of string buffer

STRING_TO UPPER PROC
PUSH AX
PUSH BX
PUSH CX
MOV BX,DX
INC BX
MOV CL, [BX]
XOR CH,CH

UPPER LOOP:
INC BX
MOV AL, [BX]
CMP AL, 'a'
JB NOT LOWER
CMP AL, 'z'
JA NOT LOWER
ADD AL, ' A'-'a'
MOV [BX],AL

NOT LOWER:
LOOP UPPER LOOP
POP CX
POP BX
POP AX
RET

STRING TO UPPER ENDP

;Point to character count
;Character count in 2nd byte of buffer
;Clear upper byte of count

;Point to next character in buffer

;See if it is a lowercase letter
; Nope

;Convert to uppercase letter

This procedure converts a character from ASCII (hex) to a nibble << ;

bits)

.

On entry: AL Character to convert
Returns: AL Nibble

CF Set for error, cleared otherwise

CONVERT_HEX_DIGIT PROC
CMP AL, 'D'
JB BAD_DIGIT
CMP AL, 'q'

;Is it a legal digit?
; Nope
;Not sure yet
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Listing 23-2. continued

JA TRY HEX
SOB AL, 'D'

CLC
RET

TRY HEX:
CMP AL, '

A

1

JB BAD DIGIT
CMP AL, 'F'

JA BAD DIGIT
SOB AL, '

A'-10
CLC
BET

BAD DIGIT:
STC
RET

CONVERT_HEX_ DIGIT ENDP

POBLIC HEX TO BYTE

;Might be hex digit
; Is decimal digit, convert to nibble
;Clear the carry, no error

;Not sure yet
;Hot hex
;Not sure yet
;Not hex
;Is hex, convert to nibble
;Clear the carry, no error

This procedure converts the two
byte.

On entry:
Returns:

Oses:

DS:DX
AL
CF

Address
Byte
Set for

;Set the carry, error

characters at DS:DX from hex to one

of two characters for hex number

error, clear if no error

CONVERT HEX DIGIT

HEX TO BYTE PROC
PUSH BX
POSH CX
MOV BX,DX
MOV AL, [BX]
CALL CONVERT HEX DIGIT
JC BAD HEX
MOV CX,<
SHL AL,CL
MOV AH,AL
INC BX
MOV AL, [BX]
CALL CONVERT HEX DIGIT
JC BAD HEX
OR AL,AH
CLC

DONE HEX:
POP CX
POP BX
RET

BAD HEX:
STC
JMP DONE HEX

HEX TO BYTE ENDP

;Put address in BX for indirect addr
;Get first digit

;Bad hex digit if carry set
;Now multiply by lb

; Retain a copy
;Get second digit

;Bad hex digit if carry set
;Combine two nibbles
;Clear carry for no error

;Set carry for error

This is a simple version of READ_STRING.

On entry: DS:DX Address of string area

READ STRING PROC
PUSH AX
MOV AH,0Ah
INT 51h
POP AX
RET

READ_STRING ENDP

POBLIC READ BYTE

;Call for buffered keyboard input
;Call DOS function for buffered input

;
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This procedure reads either a single ASCII character or a two-digit
hex number. This is just a test version of READ_BYTE.

Returns :

Uses:
Reads:
Writes

:

AL
AH

Character code (unless AH 0)
D if read ASCII char
1 if read a special key
-1 if no characters read

HEX_TO_BYTE, STRING_TO_UPPER , READ_STRING
KEYBOARD_INPUT, etc.
KEYBOARD_INPUT, etc.

READ_BYTE
PUSH
MOV
LEA
CALL
CMP
JE
JB
CALL
LEA
CALL
JC
XOR

DONE_READ:
POP
RET

NO_CHARACTERS:
XOR
NOT

DONE_READ
ASCII_INPUT:

MOV
XOR
JMP

READ BYTE

PROC
DX
CHA
DX
REA
NUM
ASC
NO
STR
DX,
HEX
N0_
AH,

DX

R_NUM_LIMIT,3
KEYBOARD_INPUT
D_STRING
CHARS_READ,1
II_INPUT
CHARACTERS
ING_TO_UPPER
CHARS
TO_BYTE

CHARACTERS
AH

AH, AH
AH

AL, CHARS
AH, AH
DONE_READ

ENDP

;Allow only two characters (plus Enter)

;See how many characters
;Just one, treat as ASCII character
;Only Enter key hit
;No, convert string to uppercase
;Address of string to convert
;Convert string from hex to byte
;Error, so return 'no characters read 1

; Signal read one character

;Set to 'no characters read'
;Return -1 in AH JMP

;Load character read
;Signal read one byte

PUBLIC READ_KEY

This procedure reads one key from the keyboard.

Returns: AL Character code (unless AH = 1)
AH if read ASCII char

1 if read a special key

READ KEY PROC
XOR AH, AH
INT 1th
OR AL,AL
JZ EXTENDED CODE

NOT EXTENDED:
XOR AH, AH

DONE READING:
RET

EXTENDED CODE:
MOV AL, AH
MOV AH,1
JMP DONE READING

READ KEY ENDP

;Ask for keyboard read function
;Read character/scan code from keyboard
;Is it an extended code?
;Yes

;Return just the ASCII code

;Put scan code into AL
-.Signal extended code

END

Reassemble KbcLio and link the four files Test, Kbd_io, Video_io, and Cursor to

try this version of READ_BYTE.
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At this point, we have two problems with READ_BYTE. Remember the spe-

cial function keys? We can't read them with DOS function OAh; it just doesn't

work. Try pressing a function key when you run Test. DOS doesn't return two

bytes, with the first set to zero as you might expect. Instead, our test program
reports 255 for the special key (1 in AH), which means READ-BYTE didn't

read any characters.

We have no way to read extended codes with DOS's buffered input, using

function OAh. We used this function so that we could use the Backspace key to

delete characters before we press the Enter key. But now, since we can't read

special function keys, we have to write our own READ_STRING procedure.

We'll have to replace function OAh to ensure that we can press a special func-

tion key without pressing Enter.

The other problem with DOS's function OAh for keyboard input has to do

with the line-feed character. Press Control-Enter (line feed) after you type

one character and then try the Backspace key. You'll find that you're on the

next line, with no way to return to the one above. Our new version of KbcLJo
in the next chapter will treat the line-feed character (Control-Enter) as an
ordinary character; then, pressing line feed won't move the cursor to the next

line.

But before we move on to fix the problems with READ_BYTE and
READ_STRING, let's write a procedure to read an unsigned decimal number.

We won't use the procedure in this book, but the version of Dskpatch on the

companion disk does use it so that we can, for example, ask Dskpatch to display

sector number 567.

Decimal Input

Recall that the largest unsigned decimal number we can put into a single

word is 65536. When we use READ_STRING to read a string of decimal digits,

we'll tell DOS to read no more than six characters (five digits and a carriage

return at the end). Of course, that means READ_DECIMAL will still be able to

read numbers from 65536 to 99999, even though these numbers don't fit into

one word. We'll have to keep watch for such numbers and return an error code if

READ_DECIMAL tries to read a number larger than 65535, or if it tries to read

a character that is not between zero and nine.

To convert our string of up to five digits into a word, we'll use multiplication

as we did in Chapter 1: We'll take the first (leftmost) digit, multiply it by ten,

tack on the second digit, multiply it by ten, and so on. Using this method, we
could, for example, write 49856 as:
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<»1D 4 + S»1D 3 + fl*10 2 + 5*1D 1 + b*10 D

or, as we'll do the calculation:

10«( 1D*( 10*(lD*<+q) +6) +5) +b

Ofcourse, we must watch for errors as we do these multiplications and return

with the carry flag set whenever an error occurs. How do we know when we try

to read a number larger than 65535? With larger numbers, the last MUL will

overflow into the DX register. The CF flag is set when DX is not zero after a

word MUL, so we can use a JC (Jump if Carry set) instruction to handle an
error. Here is READ_DECIMAL, which also checks each digit for an error (a

digit that is not between and 9). Place this procedure in the file

KBD_IO.ASM:

Listing 23-3. Add This Procedure to KBDJO.ASM

PUBLIC READ DECIMAL

This procedure takes the output buffer of READ_STRING and converts
the string of decimal digits to a word.

Returns: AX Word converted from decimal
CF Set if error, clear if no error

Uses

:

READ STRING
Reads

:

KEYBOARD INPUT, etc.
Writes: KEYBOARD INPUT, etc.

READ_DECIMAL
PUSH
PUSH
PUSH
MOV
LEA
CALL
MOV
XOR
CMP
JLE
XOR
XOR

CONVERT_DIGIT:
MOV
MUL
JC
MOV
SUB
JS
CMP
JA
ADD
INC
LOOP

DONE_DECIMAL:
POP
POP
POP
RET

PROC
BX
CX
DX
CHAR_NUM_LIMIT,b
DX,KEYBOARD_INPUT
READ_STRING
CL,NUM_CHARS_READ
CH,CH
CL,D
BAD_DECIMAL_DIGIT
AX, AX
BX,BX

DX,1D
DX
BAD_DECIMAL_DIGIT
DL,CHARS[BX]
DL, '0 I

BAD_DECIMAL_DIGIT
DL,q
BAD_DECIMAL_DIGIT
AX,DX
BX
CONVERT_DIGIT

DX
CX
BX

;Max number is 5 digits (tS535)

;Get number of characters read
;Set upper byte of count to D

;Return error if no characters read
;No chars read, signal error
;Start with number set to D

;Start at beginning of string

•.Multiply number by 10
;Multiply AX by 10
;CF set if MUL overflowed one word
;Get the next digit
;And convert to a nibble (4 bits)
;Bad digit if <

;Is this a bad digit?
;Yes
;No, so add it to number
;Point to next character
;Get the next digit
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Listing 23-3. continued

BAD_DECIMAL_DIGIT:
STC
JMP DONE_DECIMAL

EEAD_DECIMAL ENDP

;Set carry to signal error

To make certain it works properly, we need to test this procedure with all the

boundary conditions. Here is a simple test program for READ_DECIMAL that

uses much the same approach we used to test READ_BYTE:

Listing 23-4. Changes to TEST.ASM

.MODEL SHALL

.STACK

.DATA
ENTER PROMPT
K0KBER READ PROMPT

DB
DB

'Eater decisal number: '

1 Kaaber read: • ,0
,0

- -

SPECIf.L CHAR PROMPT . .-...

. :::z
EXTRN
EXTRN
EXTB8

WRITE_HEX:PROC, WRITE_DECIMAL : PROC
HRITE_STRING:PROC, SEND_CRLF : PROC
READ DECIMALrPROC

TEST_READ_DECIBAL PROC
MOV AX,DGR0DP
MOV DS,AX

LEA DX,ENTER_PROMPT
CALL WRITE_STRING
CALL READ_DECIBAL
JC ERROR
CALL SEND_CRLF
LEA DX,S0BBER_READ_PROMPT
CALL WRITE_STRING
MOV DX,AX
CALL S8ITE_DECISAL
CALL SESD CRLFEBBO

p ? 2 '.'. ? Z

'i~z_3z:.zsj

: :::_di:cihal
:c?vE_crLr

MOV AH,<Ch

TEST_REAB_DECIMAL EHDP

; Return to DOS

BIO TEST READ DECIMAL

Again, we need to link four files: Test (the preceding file), KbcLJo, Video_io,

and Cursor. Try the boundary conditions, using both valid digits and invalid

ones (such as A, which is not a valid decimal digit t, and with such numbers as 0,

65535, and 65536.
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Summary

We'll return to the two simple test procedures later on, when we discuss ways
you can write your own programs. Then, we'll see how you can use a slightly

more advanced version of TEST.ASM to write a program that will convert

numbers between hex and decimal.

But now, we're ready to move on to the next chapter, where we'll write

improved versions ofREADJBYTE and READ_STRING.

i

I

I
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Wer e mentioned we would present the development ofDskpatch just as we first

wrote it—including bugs and clumsily designed procedures, some of which

you've already seen. In this chapter, we'll write a new version ofREAD_BYTE,
and it will place a subtle bug into Dskpatch. In the next chapter, we'll find a can

of insecticide to exorcise this small bug, but see if you can find it yourself first.

(Hint: Carefully check all the boundary conditions for READ_BYTE when it's

attached to Dskpatch.)

A New READ_STRING

Our modular-design philosophy calls for short procedures so that no single

procedure is too difficult to understand. The new version of READ-STRING
will be an example of a clumsy procedure: much too long. It should be rewritten

with more procedures, but we'll leave this rewrite to you. This book is quickly

drawing to an end, and we still have a few more procedures left to write before

Dskpatch is a useful program. Right now, we can still edit only the first half of

any sector, and we can't write this sector back to the disk yet.

In this chapter, we'll give READ-STRING a new procedure, BACK_SPACE,
to emulate the function of the Backspace key found in the DOS function OAh.

When we push the Backspace key, BACK_SPACE will erase the last character

typed, from both the screen and the string in memory.
On screen, BACK_SPACE will erase the character by moving the cursor left

one character, writing a space over it, and then moving right one character

again. This sequence will perform the same backspace deletion provided by
DOS.

In the buffer, BACK_SPACE will erase a character by changing the buffer

pointer, DS:SI + BX, so it points to the next lower byte in memory. In other

words, BACK-SPACE will simply decrement BX: (BX = BX - 1). The charac-

ter will still be in the buffer, but our program won't see it. Why not?

READJ3TRING tells us how many characters it's read. If we try to read more
than this number from the buffer, we'll see characters we erased. Otherwise,

we won't.

We have to be careful not to erase any characters when the buffer is empty.

Remember that our string-data area looked something like this:

CHAR NOM LIMIT DB
NOM CHARS READ DB D
STRING DB 60 DDP (D)
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The string buffer starts at the second byte of this data area or at an offset of 2

from the start. So, BACK_SPACE won't erase a character ifBX is set to 2, the

start of the string buffer, because the buffer is empty when BX equals 2.

Here is BACK-SPACE; place it into KBDJO.ASM:

Listing 24-1. Add This Procedure to KBDJO.ASM

PUBLIC
EXTRN

BACK SPACE
WRITE_CHAR: PROC

This procedure deletes characters, one at a time, from the buffer and ;

the screen when the buffer is not empty. BACK_SPACE simply returns ;

when the buffer is empty. ;

On entry:
Returns

:

DS:SI+BX
DS:SI+BX

Most recent character still in buffer ;

Points to next most recent character ;

Uses

:

HRITE_CHAR

BACK SPACE PROC
PUSH AX
PUSH DX
CMP BX,2
JE END BS
DEC BX
MOV AH,

5

MOV DL,BS
INT 21h
MOV DL,50h
CALL WRITE CHAR
MOV DL,BS
INT 51h

END BS: POP DX
POP AX
RET

BACK SPACE ENDP

;Delete one character

; Is buffer empty?
;Yes, read the next character
;Remove one character from buffer
; Remove character from screen

;Write space there

;Back up again

Let's move on to the new version ofREAD_STRING. It will be a large mouth-
ful; the listing you'll see is for only one procedure. By far the longest procedure

we've written, READ_STRING is, as we said, too large. That's because it's com-

plicated by so many possible conditions.

Why does READ-STRING do so many things? We added a few more features.

If you press the Escape key, READ_STRING will clear the string buffer and
remove all the characters from the screen. DOS also erases all the characters in

the string buffer when you press Escape, but it doesn't erase any characters

from the screen. Instead, it simply writes a backslash (\) character at the end of

the line and moves to the next line. Our version ofREAD_STRING will be more
versatile than the DOS READ_STRING function.

READ-STRING uses three special keys: the Backspace, Escape, and Enter

keys. We could write the ASCII codes for each of these keys in READ-STRING
whenever we need them, but instead we'll add a few definitions to the begin-

ning of KBD-IO.ASM to make READJ3TRING more readable. Here are the

definitions:
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Listing 24-2. Additions to KBDJO.ASM

.MODEL SMALL

BS EQ(J

CR EQU
BSCAPB EQO

.DATA

8

13
5?

;Backspace character
;Carriage-return character
; Escape character

Here is READ_STRING. Although it's rather long, you can see from the list-

ing that it's not very complicated—just long. Replace the old version of

READJ3TRING in KBDJO.ASM with this new version:

Listing 24-3. The New READ_STRING in KBDJO.ASM

PUBLIC
EXTEN

READ_STRING
WRITE CHAR:NEAR

This procedure performs a function very similar to the DOS DAh
function. But this function will return a special character if a
function or keyboard key is pressed--no return for these keys. And
ESCAPE will erase the input and start over again.

DS:DX Address for keyboard buffer. The first byte must
contain the maximum number of characters to read (plus
one for the return). And the second byte will be used
by this procedure to return the number of characters
actually read.

D No characters read
-1 One special character read
otherwise number actually read (not including

Enter key)

Dses: BACK_SPACE, WRITE_CHAR, READ_KEY

READ STRING PROC PROC
PUSH AX
PUSH BX
PUSH SI
MOV SI,DX Use SI for index register and

START_OVER:
MOV BX,2 BX for offset to beginning of buffer
CALL READ KEY Read one key from the keyboard
OR AH, AH Is character extended ASCII?
JNZ EXTENDED Yes, the process it.

STRING NOT EXTENDED: Extnd char is error unless buf empty
CMP AL,CR Is this a carriage return?
JE END INPUT Yes, we are done with input
CMP AL,BS Is it a backspace character?
JNE NOT BS Nope
CALL BACK SPACE Yes, delete character
CMP BL,e Is buffer empty?
JE START_OVER Yes, can now read extended ASCII again
JMP SHORT READ NEXT CHAR No, continue reading normal characters

NOT BS: CMP AL, ESCAPE Is it an ESC— purge buffer?
JE PURGE BUFFER Yes, then purge the buffer
CMP BL, [SI] Check to see if buffer is full
JA BUFFER FULL Buffer is full
MOV [SI+BX],AL Else save char in buffer
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INC BX
PUSH DX
MOV DL, AL
CALL WRITE CHAR
POP DX

AD NEXT CHAR:
CALL READ KEY
OR AH, AH

JZ STRING_NOT_EXTENDED

;Point to next free character in buffer

;Echo character to screen

An extended ASCII char is not valid
when the buffer is not empty

Char is valid

Signal an error condition by sending a beep
character to the display: chr$(7).

SIGNAL ERROR:
PUSH DX
MOV DL,7
MOV AH,

2

INT eih
POP DX
JMP SHORT READ NEXT CHAR

;Sound the bell by writing chr$(7;

;Now read next character

Empty the string buffer and erase all the
characters displayed on the screen.

PURGE BUFFER:
PUSH CX
MOV CL,[SI]
XOR CH,CH

PURGE LOOP:
CALL BACK SPACE
LOOP PURGE LOOP
POP CX
JMP START OVER

;Backspace over maximum number of

; characters in buffer. BACK_SPACE
; will keep the cursor from moving too
; far back

;Can now read extended ASCII characters
; since the buffer is empty

-

The buffer was full, so can't read another
character. Send a beep to alert user of
buffer-full condition.

BUFFER_FULL:
JMP SHORT SIGNAL ERROR ;If buffer full, just beep

Read the extended ASCII code and place this
in the buffer as the only character, then
return -1 as the number of characters read.

EXTENDED:
MOV [SI+2],AL
MOV BL,0FFh
JMP SHORT END_STRING

;Read an extended ASCII code
;Place just this char in buffer
;Num chars read = -1 for special

Save the count of the number of characters
read and return.

END INPUT:
SUB BL,5

END STRING:
MOV [SI+1],BL
POP SI
POP BX
POP AX
RET

READ STRING ENDP

;Done with input
;Count of characters read

;Return number of chars read



; This proce d ure reads a single ASCII character of a hex number. ;

; Returns: AL Character code (unless AH = D) ;

AH D if read ASCII char or hex number ;

1 if read a special key ;

-1 if no characters read ;

; Dses

:

; Reads:
; Writes:

HEX_TO_BYTE, STRING_TO_UPPER , READ STRING ;

KEYBOARD INPUT, etc. ;

KEYBOARD INPUT, etc. ;

READ BYTE PROC
PUSH DX
MOV CHAR NUM LIMIT,

3

LEA DX, KEYBOARD INPUT
CALL READ STRING
CMP NUM CHARS READ,1
JE ASCII INPUT
JB NO CHARACTERS

;Allow only two characters (plus Enter)

;See how many characters
;Just one, treat as ASCII character
;Only Enter key hit
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Stepping through the procedure, we can see that READJ3TRING first checks

to see if we pressed a special function key. It allows us to do so only when the

string is empty. For example, if we press the F3 key after we press the a key,

READJ3TRING will ignore the F3 key and beep to tell us we pressed a special

key at the wrong time (we'll come back to this later in this chapter). We can,

however, press Escape, then F3, because the Escape key causes READ_
STRING to clear the string buffer.

IfREAD_STRING reads a carriage-return character, it places the number of

characters it read into the second byte of the string area and returns. Our new
version of READ_BYTE looks at this byte to see how many characters

READ_STRING actually read.

Next, READ_STRING checks to see if we typed a backspace character. If so,

it CALLs BACK_SPACE to erase one character. If the string buffer becomes

empty (BX becomes equal to 2—the start of the string buffer), then

READ_STRING goes back to the start, where it can read a special key. Other-

wise, it just reads the next character.

Finally, READ_STRING checks for the ESC character. BACK-SPACE
erases characters only when there are characters in the buffer, so we can clear

the string buffer by calling the BACKSPACE procedure CHAR_NUM_LIMIT
times, because READ_STRING can never read more than CHAR_NUM_
LIMIT characters. Any other character is stored in the string buffer and echoed

to the screen with WRITE_CHAR. Unless, that is, the buffer is full.

In the last chapter, we changed READ_BYTE in such a way that it couldn't

read special function keys. We need only add a few lines here to allow

READ_BYTE to work with our new version ofREAD_STRING, which can read

special function keys. Here are the changes to make to READ_BYTE in

KBDJO.ASM:

Listing 24-4. Changes to READ_BYTE in KBDJO.ASM

PUBLIC READ BYTE
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CMP BYTE PTE NUM_CRARS_READ,OFFh
;Yes

;Special function key?
JE SPECIAL_KEY
CULL STRING TO UPPER
LEA DX, CHARS
CALL HEX_TO BYTE
JC NO CHARACTERS
XOE AH, AH

DONE BEAD:
POP DX
RET

NO CHARACTERS:
XOR AH, AH
NOT AH
JMP DONE_READ

ASCII INPUT:
MOV AL, CHARS
XOR AH, AH
JMP DONE_READ

SPECIAL_KEY:
MOV AL,CHARSt03
MOV AH,1
JMP DONE_READ

READ BYTE ENDP

;No, convert string to uppercase
; Address of string to convert
;Convert string from hex to byte
;Error, so return 'no characters read 1

;Signal read one byte

;Set to 'no characters read'
;Return -1 in AH

;Load character read
;Signal read one character

; Return the scan code
;Signal special key with 1

Dskpatch, with the new versions of READ_BYTE and READ_STRING,
should be much nicer to use. But there is a bug here, as we said. To try to find it,

run Dskpatch and try all the boundary conditions for READ-BYTE and
HEX_TO_BYTE. (Remember there are nine files that must be linked and con-

verted to a .EXE program: Dskpatch, Dispatch, Disp_sec, Disk_io, Video_io,

Kbd_io, Phantom, Cursor, and Editor.)

User vs Programmer Friendly

We made a design decision in READ_STRING that made Dskpatch easier to

write, but isn't very friendly to the user. Run Dskpatch and try the following:

Type a letter, such as f, then press one of the cursor keys. Dskpatch will beep at

you. Why?
As the programmers of Dskpatch, we know exactly why: Our

READ_STRING procedure doesn't return control once you've started entering

a hex number until you press either the Escape or the Enter keys. But will the

user know why Dskpatch is beeping at them? Probably not, which is problem

number one. Problem number two is that users tend to become rather irritated

and ornery when programs beep at them for no apparent reason. After all, they

know that they should be able to move the cursor before they've finished enter-

ing a hex number—and they should!

Cases like this we call Programmer Friendly since they're simple for the pro-

grammer to write. User-Friendly programs, on the other hand, often require a

considerable effort in programming to make them feel simple and natural.

Here are a few words of advice on writing user-friendly programs:



260 Peter Norton's Assembly Language Book for the IBM PC, Revised & Expanded

• Avoid beeps except to alert the user of a critical error condition (such as a

disk error). There is almost never cause to beep when you press a key that

isn't allowed.

• Try to keep in mind what users will want, rather than what is simple to

write. Sometimes they will be one and the same, but more often than not,

you'll find you have to expend additional effort and development time to

write user-friendly programs.

• Try to write modeless programs. By doing so, you'll eliminate many error

conditions such as the one we placed (artificially) into READ_STRING.
• And above all, try out your ideas on real users, not just on other program-

mers, who can easily figure out how your program really works. Users

don't want to understand your assumptions; they want your programs to

be "obvious." And if a user has trouble running your program, try to

understand why so you can make it easier to use.

Of course, these words of advice just scratch the surface on the issue of writ-

ing user-friendly programs. There are a number of books devoted entirely to

design; we've recommended a few books in the bibliography that you'll find in

the last chapter of this book (Chapter 32).

Summary

We wrote a new version ofREADJ3TRING in this chapter that allowed us to

read special characters again, in addition to strings. And with the exception of

the small bug that we'll find and fix in the next chapter, READ-STRING works

as advertised.

We then looked at several problems with READ_STRING. First of all, it is

too long and complicated. We should rewrite it to be more modular.

Finally, we saw that READ_STRING isn't very user friendly since it beeps

when you try to move the cursor after you've started to type a hex number. We
won't fix this problem in this book, but you might want to try your hand at

making Dskpatch less modal and therefore more user friendly.

Now its time to go on a little bug hunt to see ifwe can find and remove a small

bug that lurks in Dskaptch.
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If you try the new version of Dskpatch with ag, which isn't a valid hex

number, you'll notice that Dskpatch doesn't do anything when you press the

Enter key. Since the string ag isn't a hex number, there is nothing wrong with

Dskpatch ignoring it, but the program should, at least, erase it from the screen.

This error is the sort we can find only by thoroughly checking the boundary

conditions of a program. Not just the pieces, but the entire program. The bug
here isn't the fault of READ_BYTE, even though it appeared when we rewrote

that procedure. Rather, the problem is in the way we wrote DISPATCHER and

EDIT_BYTE.
EDIT_BYTE is designed so it calls WRITE_PROMPT_LINE to rewrite the

editor prompt line and clear the rest of the line. This will remove any character

we typed. But if we type a string like ag, READ_BYTE reports that it read a

string of zero length, and DISPATCH doesn't call EDIT_BYTE. What's the

solution?

Fixing DISPATCHER

There are actually two ways to solve this problem. The best solution would be

to rewrite Dskpatch to be more modular and to redesign DISPATCHER. We
won't do that. Remember: Programs are never complete, but we have to stop

somewhere. Instead, we'll add a fix to DISPATCHER so it will rewrite the

prompt line whenever READ_BYTE reads a string of zero length.

Here are the modifications to DISPATCHER (in DISPATCH.ASM) to fix the

bug:

Listing 25-1. Changes to DISPATCHER in DISPATCH.ASM

PUBLIC DISPATCHER
EXTRN FEAD_BYTE:PROC, EDIT_BYTE : PROC
EXTRN VRITE PBOHPT LINE: PROC

.DATA

-CODE
EXTFN EDITOR PROMPT :BYTE

This is the central dispatcher. During normal editing and viewing, ;

this procedure reads characters from the keyboard and, if the character
is a command key (such as a cursor key), DISPATCHER calls the
procedures that do the actual work. This dispatching is done for
special keys listed in the table DISPATCH_TABLE, where the procedure
addresses are stored just after the key names.

If the character is not a special key, then it should be placed
directly into the sector buffer—this is the editing mode.

Uses: READ_BYTE, EDIT_BYTE, WRITE_P808PT_LINE
Reads: EDITOR PROMPT



In Search of Bugs 263

DISPATCHER PROC
PUSH AX
PUSH BX
PUSH DX

DISPATCH LOOP:
CALL READ BYTE
OR AH, AH

JS 80 CHARS READ
JNZ SPECIAL KEY
MOV DL, AL
CALL EDIT BYTE
JMP DISPATCH_LOOP

SPECIAL KEY:
CMP AL,bfl
JE END_DISPATCH

LEA BX,DISPATCH_TABLE
SPECIAL LOOP:

CMP BYTE PTR [BX],D
JE NOT IN TABLE
CMP AL, [BX]
JE DISPATCH
ADD BX,3
JMP SPECIAL_LOOP

DISPATCH:
INC BX
CALL WORD PTR [BX]
JMP DISPATCH_LOOP

NOT IN_TABLE:
JMP DISPATCH_LOOP

NO CHARS HEAD:
LEA DX, EDITOR PROMPT
CALL WRITE PROMPT LINE
JMP DISPATCH_LOOP

END DISPATCH:
POP DX
POP BX
POP AX
RET

DISPATCHER ENDP

;Read character into AX
;AX = -1 if no character read, 1

; for an extended code.
;No character read, try again
;Read extended code

;Was normal character, edit byte
;Read another character

;F1D—exit?
;Yes, leave
;Use BX to look through table

;End of table?
;Yes, key was not in the table
;Is it this table entry?
;Yes, then dispatch
;No, try next entry
;Check next table entry

;Point to address of procedure
;Call procedure
;Wait for another key

;Do nothing, just read next character

;Brase any invalid characters typed
;Try again

This bug fix doesn't create any great problems, but it does make DIS-

PATCHER slightly less elegant. Elegance is a virtue to strive for. Elegance and
clarity often go hand in hand, and our rules of modular design are aimed at

increasing elegance.

Summary

DISPATCHER is elegant because it's such a simple solution to a problem.

Rather than using many comparisons for each special character we might type,

we built a table we can search. Doing so made DISPATCHER simpler, and
hence more reliable, than a program containing different instructions for each

possible condition that might arise. By adding our small fix, we complicated
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DISPATCHER—not by much in this case, but some bugs might require us to

really complicate a procedure.

If you find yourself adding fixes that make a procedure too complicated,

rewrite whichever procedures you must to remove this complexity. And always

check the boundary conditions both before and after you add a procedure to

your main program. You'll save yourself a lot of debugging effort if you do.

We can't overemphasize the importance of testing procedures with boundary

conditions and of following the rules of modular design. Both techniques lead to

better and more reliable programs. In the next chapter, we'll look at another

method for debugging programs.
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w.e almost have a usable Dskpatch program. In this chapter, we'll build the

procedure to write a modified sector back to disk, and in the next chapter, we'll

write a procedure to show the second half of a sector.

Writing to the Disk

Writing a modified sector back to the disk can be disastrous if it's not done

intentionally. All of Dskpatch's functions so far depend on the function keys F3,

F4, and F10, and on the cursor keys. But any of these keys could be pressed

quite by accident. Fortunately, the same doesn't hold true for the shifted func-

tion keys, so we'll use the shifted F2 key for writing a disk sector (we've chosen

Shift F2 because F2 is often used in programs to save changes). This will pre-

vent us from writing a sector back to disk unless we really want to.

Make the following changes to DISPATCH.ASM, to add WRITE_SECTOR to

the table:

Listing 26-1. Changes to DISPATCH.ASM

.CODE
EXTRN NEXT_SECTOR:PROC ;In DISK_IO.ASM
EXTRN PREVIOUS_SECTOR:PROC ;In DISK_IO.ASM
EXTRN PHANTOM_UP:PROC, PHANTOM_DOHN : PROC ;In PHANTOM. ASH
EXTRN PHANTOM_LEFT:PROC, PHANTOM_RIGHT : PROC
EXTRN HRITE_SECTOR:PBOC ;In DISK_IO.ASB

-DATA

; This
; of tr

table contains the legal extended ASCII keys and
e procedures that should be called when each key

The format of the table is
DB 75 ;Extended code
DH OFFSET PHANTOM OP

the addresses ;

is pressed. ;

Eor cursor up ;

DISPATCH_TABLE LABEL BYTE
DB bl ;F3
DW OFFSET _TEXT PREVIOUS_SECTOR
DB E.S ;F<
DH OFFSET _TEXT NEXT_SECTOR
DB 75 ;Cursor up
DW OFFSET _TEXT PHANTOM_0P
DB ao ;Cursor down
DH OFFSET _TEXT PHANTOM_DOHN
DB 75 ;Cursor left
DH OFFSET _TEXT PHANTOM_LEFT
DB 77 ;Cursor right
DH OFFSET _TEXT PHANTOM_RIGHT
DB as ;Shift F8
DH OFFSET TEXT HRITE_SECTOB
DB : ;End of the table



Writing Modified Sectors 267

WRITE_SECTOR itself is almost identical to READ_SECTOR. The only

change is that we wish to write, rather than read, a sector. Whereas the INT
25h asks DOS to read one sector, its companion function, INT 26h, asks DOS to

write a sector to the disk. Here is WRITE_SECTOR; place it into

DISKJO.ASM:

Listing 26-2. Add This Procedure to DISK_IO.ASM

PUBLIC WRITE_SECTOR

; This proced are writes the sector back to the disk. ;

; Reads: DISK_DRIVE_NO, CURRENT.SECTOR_NO, SECTOR ;

WRITE SECTOR PROC
PUSH AX
PUSH BX
PUSH CX
PUSH DX
MOV AL,DISK DRIVE NO ;Drive number
MOV CX,1 ;Write 1 sector
MOV DX, CURRENT SECTOR NO ;Logical sector
LEA BX, SECTOR
INT Eth ;Write the sector to disk
POPF ;Discard the flag information
POP DX
POP CX
POP BX
POP AX
RET

WRITE SECTOR ENDP

Now, reassemble both Dispatch and Disk_io, but don't try Dskpatch's write

function just yet. Find an old disk you don't care much about and put it in drive

A, with your program disk in another drive, such as C. Run Dskpatch from

drive C (or whatever drive you choose), so that Dskpatch reads the first sector

from your scratch disk in drive A. Before you go on, make sure this is a scratch

disk you have no qualms about destroying.

Change one byte in your sector display and make a note of the one you
changed. Then, press the shifted F5 key. You'll see the red drive light come on:

You've just written a modified sector back to drive A.

Next, press F4 to read the next sector (sector 1), then F3 to read the previous

sector (your original sector, number 0). You should see the modified sector back

again. Restore this sector and write it back to Drive A to restore the integrity of

your scratch disk.

More Debugging Techniques

What would happen if we had made a small error in our program? Dskpatch
is sufficiently large that we'd expect to have problems using Debug to find the
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bug. Besides, Dskpatch is composed of nine different files we must link to form

DSKPATCH.EXE. How do we find any one procedure in this large program
without tracing slowly through much of the program? As you'll see in this chap-

ter, there are two ways to find procedures: by using a road map we can get from

LINK, or by using a source-level debugger, such as Microsoft's CodeView or

Borland's Turbo Debugger.

When we, the authors, originally wrote Dskpatch, something went wrong
when we added WRITE_SECTOR; pressing the Shift-F2 key caused our

machine to hang. But we couldn't find anything wrong with WRITE_SECTOR
and the only other changes were to DISPATCH_TABLE. Everything appeared

to be correct.

Finally, we traced the bug to a faulty definition in the dispatcher. The bug

turned out to be an error in the DISPATCH_TABLE entry for

WRITE_SECTOR. Somehow, we had typed a DW rather than a DB in the table,

so WRITE_SECTOR's address was stored one byte higher in memory than it

should have been. You can see the bug shown against a gray background here:

DISPATCH TABLE LABEL BYTE

DB ?? Cursor right
DW OFFSET _TEXT:PHANTOH_RIGHT
DW as Shift F5
DW

'

OFFSET _TEXT:WBITE_SECTOR
DB End of the table

DATA SEG ENDS

As an exercise in debugging, make this change to your file DISPATCH.ASM,
then follow the directions in the next section.

Building a Road Map

Let's learn how to use LINK to build a map of Dskpatch. This map will help

us find procedures and variables in memory.
The LINK command we've used so far has grown to be fairly long:

LINK DSKPATCH DISK_IO DISP_SEC VIDEO_IO CURSOR DISPATCH KBD_IO PHANTOM EDITOR;

and we'll want to add even more to it. Does that mean we'll have to keep typing

file after file after file? No, there is a much easier way. LINK allows us to sup-

ply an automatic response file containing all the information. With such a file,

which we'll call linkinfo, we can simply type:
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LINK ^LINKINFO

and LINK will read all of its information from this file.

With the file names that we've used so far, linkinfo looks like this:

DSKPATCH DISK_IO DISP_SEC VIDEO_IO CURSOR +

DISPATCH KBD_IO PHANTOM EDITOR

The plus ( + ) at the end of the first line tells LINK to continue reading file

names from the next line.

We can also add some more information that tells LINK to create a map of

the procedures and variables in our program to this simple linkinfo file. Here is

the entire linkinfo file:

DSKPATCH DISK_IO DISP_SEC VIDEO_IO CURSOR +

DISPATCH KBD_IO PHANTOM EDITOR
DSKPATCH
DSKPATCH /MAP;

The last two lines are new parameters. The first, dskpatch, tells LINK we want
the .EXE file to be named DSKPATCH.EXE; the second new line tells LINK to

create a listing file called DSKPATCH.MAP—to create our road map. The
Imap switch tells LINK to provide a list of all the procedures and variables that

we've declared to be public.

Create the map file by relinking Dskpatch with this linkinfo response file.

The map file produced by the linker is about 130 lines long. That's a bit too long

for us to reproduce in its entirety, so we'll reproduce the parts that are of partic-

ular interest. Here is our partial listing of the map file, DSKPATCH.MAP:

Start Stop Length Name Class
DDDDDH OOSCSH O0SCAH TEXT CODE
DD5CAH OObBBH 000F5H DATA DATA
OObBCH 02bBBH 05000H BSS BSS
05bC0H 05ABFH 00400H STACK STACK

Origin Group
D05C:Q DGROUP

Address Publics by Name

0000:03EA BACK SPACE
0000:057E CLEAR SCREEN
0000:02C0 CLEAR TO END OF LINE
D05C:00DC CURRENT SECTOR NO
aD00:08A0 CURSOR_RIGHT
005C:000E DISK DRIVE NO
0000:02EC DISPATCHER
0000:0131 DISP HALF SECTOR
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DDDD 01EB WRITE HEX DIGIT
000D 025F WRITE PATTERN
0000 0S<b WRITE PHANTOM
0000 01A1 WRITE PROMPT LINE
0000 OOfifc WRITE SECTOR
0000 01BC WRITE_STRING
OOSC OOFC _edata
005C 5100 _end

Address Publics by Value

0000 0030 PREVIOUS SECTOR
ooao 0050 NEXT SECTOR
0000 OOfcC READ SECTOR
0000 OOflfc WRITE SECTOR
0000 OOAO INIT SEC DISP
ooao oocc WRITE HEADER
0000 0131 DISP_HALF_SECTOR

OOSC OOOF LINES BEFORE SECTOR
D05C 0010 HEADER LINE NO
005C 0011 HEADER PART 1

005C 0017 HEADER PART 5

005C ooea PROMPT LINE NO
OOSC ooeq EDITOR PROMPT
005C OOFA PHANTOM CURSOR X

005C OOFB PHANTOM_CURSOR_Y
D05C ODFC edata
OOSC OOFC SECTOR
D05C 51D0 _end

Program entry point at 0000:0010

There are three main parts to this load map (so called because it tells us

where our procedures are loaded in memory). The first shows a list of segments

in our program. Dskpatch has several segments: _TEXT (which contains all our

code) and _DATA. _BSS, and STACK, which are grouped together into the

group DGROUP, and contain all our data. For those of you interested in more
detail, _DATA contains all the memory variables defined in the .DATA seg-

ment (such as HEADER_LINE_NO), _BSS contains variables defined in the

.DATA? segment (such as SECTOR), and STACK contains the stack defined by

.STACK.

Note: You may see slightly different numbers here if your

procedures are in a different order than our procedures ( you can

check the order in Appendix B).

The next part of the load map shows our public procedures and variables,

listed in alphabetical order. LINK lists only those procedures and variables

you've declared to be PUBLIC—visible to the outside world. If you're debug-

ging a long program, you may want to declare all procedures and variables to

be public, just so you can find them in this map.
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The final section of the map lists all the procedures and memory variables

again, but this time in the order they appear in memory.
Both these lists include the memory address for each PUBLIC procedure or

variable. If you check this list, you'll find that our procedure DISPATCHER
starts at address 2ECh. We'll use this address now, to track down the bug in

Dskpatch.

Tracking Down Bugs

If you were to try running the version of Dskpatch with the bug in it, you'd

find that everything works, with the exception of Shift-F2, which on our

machine caused Dskpatch to hang. You probably don't want to try Shift-F2;

there's no telling what it will do on your machine.

Since everything worked (and works now) except for Shift-F2, our first guess

when we wrote the program was that we had introduced a bug into

WRITE_SECTOR. To find this bug, we could start debugging Dskpatch by trac-

ing through WRITE_SECTOR. Instead, we'll take a somewhat different tack.

We know that DISPATCHER works correctly, because everything else (the

cursor keys, F3, F4, and F10) all work correctly. That means DISPATCHER is

a good starting point to search for the bug in Dskpatch. In other words, start

your bug search with code you know works properly.

If you look at the program listing for DISPATCHER (in Chapter 25), you'll

see that the instruction:

CALL WORD PTB [BX]

is the heart ofDISPATCHER, because it calls all the other routines. In particu-

lar, this CALL instruction will call WRITE_SECTOR when we press Shift-F2.

Let's start our search here.

We'll use Debug to start Dskpatch with a breakpoint set on this instruction.

Of course, that means we need the address of this instruction, and we can find

that by unassembling DISPATCHER, which starts at 2ECh. After a U 2EC, fol-

lowed by another U command, you should see the CALL command:

3E05 0313 EBF5 JMP 030?
3ED5 031S A3 INC BX
3E05 031b FF17 CALL [BX]
3E0S 03ia EBDS JMP 05EF
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Now that we know the CALL instruction is at location 316h, we can set a

breakpoint at this address, then single-step into and through

WRITEJ3ECTOR.
First, use the command G 316 to execute Dskpatch up to this instruction.

You'll see Dskpatch start up, then wait for you to type a command. Press Shift-

F2, since this is the command that is causing problems, and you'll see the fol-

lowing:

-G 31b

AX=01SS BX=00A3 CX=0bBC DX=0D5R SP=03Ffl BP=7SF0 SI=DDDQ DI=0FflA
DS=3Etl ES=3DF5 SS=4071 CS=3E05 IP=D31b NV UP EI PL NZ NA PE NC
3ED5:D31t FF17 CALL [ BX

]

DS : 00A3=00fib

At this point the BX register is pointing to a word that should contain the

address ofWRITE_SECTOR. Let's see if it does:

-D A3 L 5
3Efcl:D0A0 DD fib

In other words, we're trying to CALL a procedure located at 8600h (remember
the lower byte is displayed first). But ifwe look at our memory map, we can see

that WRITE_SECTOR should be at 86h. In fact, we can also tell from this load

map that we don't have any procedures at 8600h. The address is totally wrong!

In our original bug-hunting, once we discovered that this address was wrong,

it didn't take us very long to find the error. We knew that DISPATCHER and
the table were basically sound, because all the other keys worked, so we took a

closer look at the data for Shift-F2 and found the DW where we should have had
a DB. Having a road map makes debugging much simpler. Now let's take a look

at some more powerful tools.

Source-Level Debugging

Both Microsoft and Borland have been hard at work providing the ultimate in

programming tools. Microsoft's CodeView and Borland's Turbo Debugger are

both debuggers of a type called Source-Level Debuggers. In other words,

whereas Debug shows you just addresses in CALLs and JMPs, these two debug-

gers show you the actual source code.

You may only want to read one of the next two sections, since one section cov-

ers Microsoft's CodeView and the other Borland's Turbo Debugger, and there is

some repetition of material between the two sections. (Those of you using

:
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OPTASM need not despair: it also has a source-level debugger, which wasn't

available in time for us to write about it in this edition.

Microsoft's CodeView

CodeView, the older of the two debuggers, was introduced in 1986, about two

years before Borland's Turbo Debugger. It is now included with every Microsoft

Macro Assembler package (we're using version 5.1) as well as most of the com-

pany's other language products. As you'll see in this section, CodeView is so

useful that you may want to consider upgrading your macro assembler if you

don't already have the latest version.

CodeView shares some similarities with Debug, since Microsoft wrote both

programs. But there are more differences than similarities. We'll use two of the

new features here: source-level debugging and screen swapping.

Source-level debugging lets us see the actual source code complete with com-

ments, rather than just instructions and addresses, in our display. For exam-
ple, if we use Debug to unassemble the first line in Dskpatch, we see:

2C1<:0100 EflflCOa CALL D<flF

With CodeView, on the other hand, we see the following (as you can also see

in Figure 26-1):

CftLL CLEAR_SCREEN

Which of these is easier to read? We rest our case.

The second new feature, screen swapping, is handy for debugging Dskpatch.

Dskpatch moves the cursor around the screen, writing in different places. In

the last section, where we used Debug, Debug started writing to this same
screen and we eventually lost the Dskpatch screen.

CodeView, however, maintains two separate screens: one for Dskpatch and
one for itself. Whenever Dskpatch is active, we see its screen; whenever
CodeView is active, we see its screen. You'll get a clearer idea of screen swap-

ping as we run through the following examples.

Before we can use CodeView's symbolic debugging features, we need to tell

both the assembler and the linker to save debugging information, which we do

with the /Zi switch in the assembler and the /CO (COdeview) switch in the

linker.

Modify each line in your Makefile (or reassemble each file by hand) so it has

the /Zi switch before the semicolon, and so we use a response file for LINK:
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Listing 26-3. Make These Changes to MAKEFILE

dskpatch .obj : dskpatch .asm
easa dskpatch /Zi;

disk_io.obj: disk_io.asm
Basra disk_io /Zi;

dskpatch.exe: dskpatch. obj disk_io.obj disp_sec.obj video_io.obj cursor. obj \

dispatch. obj kbd_io.obj phantom. obj editor. obj
link giinkinfo

Then change the linker response file LINKINFO as follows:

Listing 26-4. Changes to the Response File LINKINFO

dskpatch disk_io disp_sec video_io cursor +

dispatch kbd_io phantom editor
dskpatch
dskpatch /map /CO;

Finally, delete all the *.obj files and remake Dskpatch.exe.

We're now ready to start CodeView. Type:

C>CV DSKPATCH

and you should see a display like the one in Figure 26-1. Notice that you're

viewing the actual source filel This is why CodeView is known as a source-level

debugger.

Now that we have CodeView up and running, we can look at the procedure

DISPATCHER without knowing where it is. Press Alt-S (to pull down the

Search menu), then L (Label. . .) to search for a label. Next, type dispatcher into

the dialog box that pops up and press Enter to see the code for DISPATCHER.
Finally, use the cursor keys to scroll the CALL WORD PTR [BX] instruction on

the second page.

Once you have the cursor on the line with CALL WORD PTR [BX] instruc-

tion, press F7 (which will run the program until it reaches the CALL). You'll

see Dskpatch draw its screen. Then, you'll be returned to CodeView after you
push Shift-F2. This time, though, we won't see any of Dskpatch's screen

because CodeView swapped screens. To flip back to the Dskpatch screen, press

the F4 key. Once you're looking at Dskpatch's screen, pressing any key will

return you to CodeView's screen.

Ifyou look on the lower, right part of the screen in Figure 26-2, you'll see two
short lines that say:

DS:D0R3
flfeOO
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File View Search Run Hatch Options Language Calls Help
|
F8= Trace F5=Go

45

46

47

48

49

58

52

53

54

55

56

57

58

59

68

61

62

dskpatch.ASM

.CODE

EXTRN CLEAR_SCREEN:PROC, READ_SECTOR:PROC

EXIRN INIT_SECJISP:PROC, URITEJ1EADER:PR0C

EXTRH URITEJ>ROnPT_LIHE:PROC, DISPATCHER :PR0C

DISKJPAICH PROC

MOV AX.DGROUP

nov Ds.flx

CALL CLEAR.SCREEN

CALL wRITE.HEADER

CALL READ_SECIOR

CALL INIT_SEC_DISP

LEA DX,EDIIOR_PROMPT

CALL URIIEJ'ROMPTJ.INE

CALL DISPATCHER

MOV AH,4Ch

;Put data segnent int

;Set DS to point

; Return to DOS

AX = 8888

BX = 8888

CX = 8888

DX = 8888

SP = 8488

BP = 8888

SI

1DI
DS = 7465

ES = 7465

SS = 76E1

I CS = 7475

IP = B81B

m UP

EI PL

N2 NA

PO NC

Microsoft (R) CodeView (R) Version 2.2

(C) Copyright Microsoft Corp. 1986-1988.

>

All rights reserved.

IT'

t-

Figure 26-1. The Initial View of Dskpatch.exe Inside CodeView.

This area of the display is used to show the value in memory pointed to by the

current instruction, which is the CALL instruction under the inverse-video

cursor bar. In this case, it is the value at memory location [BX]. As you can

clearly see, 8600 is exactly the value we found using Debug with the help of

Link's memory map. But here we found this value much more quickly.

Type Alt-F (to pull down the File menu) and X (eXit) to exit from CodeView.
You may want to skip the next section and go directly to the Summary. Don't

forget to change the DW back to a DB in Dispatch.asm.

You may also want to change back the linkinfo file. We added the /CO switch

so Link would add the debugging information to the .EXE file. But this debug-

ging information makes the .EXE file quite a bit larger. In any case, you will

probably want to remove the /CO switch before you give your programs to other

people.

Borland's Turbo Debugger

Turbo Debugger shares few similarities with Debug. As you'll see in this sec-

tion, Turbo Debugger's uses Borland's multiple-window style of user interface,
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File View Search Run Match Options Language Calls Help
|
F8=Trace F5=Go

dispatch. ASH
|

81

82

83

84

85

87:

88:

89:

36:

91:

32:

33:

34:

95:

96:

97:

JE

ADD

JhT

DISPATCH:

INC

JHP

NOTJNJTABLE:

JHP

NO_CHARS_READ:

LEA

CALL

JUP

ENDJISPAICH:

DISPATCH

BX.3

SPECIALJJMP

BX

DISPATCH_L00P

CALL U0RD PIR [BX]

DISPATCHJ.00P

DX,EDIT0R_PROHPT

HRITEJ'ROnTTJ.INE

DISPATCHJ.00P

Yes, then dispatch AX

No, try next entry

Check next table ent

; Point to address of

;Call procedure

;Uait for another key

8155

BX = B8A3

CX = 8888

DX = 8829

SP = B3F8

BP = 75F8

SI = 8866

DI = eF8A

DS = 7463

;Do nothing, just rea| ES = 73F7

SS = 7673

CS = 7487

IP = 8316

; Erase any invalid ch

;Try again

Microsoft (R) CodeView (R) version 2.2

(C) Copyright Microsoft Corp. 1386-1388. All rights reserved.

>

NV UP

EI PL

NZ NA

PE NC

DS:86A3

8688

Figure 26-2. CodeView After the F7 (Go) Command.

as opposed to Debug's command-line interface. Borland has also added many
debugging features not present in Debug. We'll use two of the new features

here: source-level debugging and screen swapping.

Source level debugging lets us see the actual source code complete with com-

ments, rather than just instructions and addresses, in our display. For exam-
ple, ifwe use Debug to unassemble the first line in Dskpatch, we see:

5C1<:0100 EflflCQB CALL :-:•

With Turbo Debugger, on the other hand, we see the following (as you can

also see in Figure 26-3):

CALL CLEAR SCREEN

Which of these is easier to read? We rest our case.

The second new feature, screen swapping, is handy for debugging Dskpatch.

Dskpatch moves the cursor around the screen, writing in different places. In

the last section, where we used Debug, Debug started writing to this same
screen, and we eventually lost the Dskpatch screen.
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Turbo Debugger, however, maintains two separate screens: one for Dskpatch

and one for itself. Whenever Dskpatch is active, we see its screen; whenever

Turbo Debugger is active, we see its screen. You'll get a clearer idea of screen

swapping as we run through the following examples.

Before we can use Turbo Debugger's symbolic debugging features, we need to

tell both the assembler and the linker to save debugging information, which we
do with the -zi switch in the assembler and the /z switch in the linker.

Modify each line in your Makefile (or reassemble each file by hand) so that it

has the -zi switch before the semicolon, and so we use a response file for TLINK
(note that we're using TLINK):

Listing 26-5. Make These Changes to Makefile

dskpatch.exe: dskpatch. obj disk_io.obj disp_sec.obj video_io.obj cursor. obj \

dispatch. obj kbd_io.obj phantom. obj editor. obj
tlink (alinkinfo

dskpatch .obj : dskpatch . asm
tasffl dskpatch -zi;

disk_io.obj: disk_io.asm
tasa disk_io -zl;

Then change the linker response file LINKINFO as follows:

Listing 26-6. Changes to the Response File LINKINFO

dskpatch disk_io disp_sec video_io cursor +

dispatch kbd_io phantom editor
dskpatch
dskpatch /aap /v;

Finally, delete all the *.obj files and remake Dskpatch.exe.

We're now ready to start Turbo Debugger. Type:

OTD DSKPRTCH.EXE

and you should see a display like the one in Figure 26-3. Notice that you're

viewing the actual source file\ This is why Turbo Debugger is known as a

source-level debugger.

Now that we have Turbo Debugger up and running, we can look at the proce-

dure DISPATCHER without knowing where it is. Press Alt-V to pulldown the

View menu, followed by V to show the variable window (Figure 26-5). Then use

the cursor up and down keys to move the cursor to dispatcher, and press Enter
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File View tun Breakpoints Data Window Options liTCiTTO

module: dskpatch File: dskpatch . asn
L*4 ^1 i_

_SEC TOR: PROCEXTRN CLEAR_SCREEN:PROC, READ

EXTRN INIT_SECJ)ISP:PROC , URITE_rlEADER:PROC

EXTRN URITE_PR0h?T_UNE:PR0C, DISPATCHER: PROC

DISK_PATCH PROC

nov AX.DGROUP ;Put data segnent into AX

110V DS,AX ;Set DS to point to data

CALL CLEAR.SCREEN

CALL URITE_HEADER

CALL READ_SECT0R

CALL INIOECJISP
LEA DX,EDIT0RJ>R0h*PT

CALL URITE_PROh?T_MNE

CALL DISPATCHER

nov AH,4Ch ; Return to DOS

INT 21h

DISKJAICH ENDP

rUatches-

F2-Dkpt F3-Close F4-Here F5-Zoon F6-Next F7-Trace F8-Step F9-Run FIB-Menu

Figure 26-3. The Initial View of Dskpatch.exe Inside Turbo Debugger.

Q-,

disp_line @6F4F:0134 disk_patch

sector_offset

curren t_sec tor_no

@6F4F:0000

(0h)

(0h)

dispatcher (36F4F:B2DC

edit_byte @6F4F:0595

editor_pronpt "Press function k disk_drive_no ' ' (00h)

erase_phanton @6F4F:0555 1 ines_before_sector
J 8' 2 (02h)

goto_xy @6F4F:0285 header_line_no • ' (00h)

header_line_no ' ' (00h) header_part_l "Disk
"

header_part_l "Disk
"
header_part_2

"
Sector

"

Figure 26-4. Turbo Debugger's variable window allows us to jump to a
procedure.

to show the code for DISPATCHER. You can then use the cursor keys to scroll

to the CALL Word Ptr [BX] instruction on the second page.

Once you have the cursor on the line with the CALL WORD PTR [BX]

instruction, press F4, and follow that with Shift-F2. You'll see Dskpatch draw
its screen. Then, you'll be returned to Turbo Debugger after you push Shift-F2.
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File View Run Breakpoints Data HindoH Options

Slodule: dispatch File: dispatch. asn 8G h
;F1B—exit?CMP AL.68

JE EHDJISPATCH ;Ves, leave

;Use BX to look through table

LEA BX,DISPATCH_TABLE

SPECIAL_L00P:

en? BYTE PTR [BX1.8 ;End of table?

JE NOT_IN_TABLE ;Ves, key Has not in the table

CMP AL.IBX1 ;Is it this table entry?

JE DISPATCH ;Ves, then dispatch

ADD BX,3 ;Ho, try next entry

JflP SPECIAL_L00P ;Check next table entry

DISPATCH:

INC BX ; Point to address of procedure

CALL UORD PTR [BX] ;Call procedure

JhT DISPATCHJ-OOP ;Uait for another key

NOT_IN_IABLE: ;Do nothing, just read next characte

rUatches-

[bxl

-2i

Kord 38288 (7G8Bh)

FZ-Bkpt F3-Close F4-Here F5-Zoon FB-Hext F7-Trace F8-Step F9-Run F18-Henu

Figure 26-5. Turbo Debugger After Executing Dskpatch up to the CALL
Instruction.

T
Oj

This time, though, we won't see any of Dskpatch's screen because Turbo Debug-

ger swapped screens. To flip back to the Dskpatch screen, press the Alt-F5 key.

Once you're looking at Dskpatch's screen, pressing any key will return you to

Turbo Debugger's screen.

At this point we want to see the value of [BX] so we'll know which procedure

Dskpatch is about to call. For this we'll add a watch, which allows us to watch a

value. Press Ctrl-W to bring up a dialog box that asks for an expression and
type in [BX]. As you can see in the Watches window, 8600 is exactly the value

we found using Debug with the help of Link's memory map. But here we found

this value much more quickly.

Type Alt-X to exit from Turbo Debugger. Don't forget to change the DW back
to a DB in Dispatch.asm.

You may also want to change back the linkinfo file. We added the /v switch so

Link would add the debugging information to the .EXE file. But this debugging

information makes the .EXE file quite a bit larger. In any case, you will prob-

ably want to remove the /v switch before you give your programs to other peo-

ple.
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Summary

That ends our discussion of debugging techniques. In the next chapter, we'll

add the procedures to scroll the screen between the two half sectors. Then, in

the final part of this book we'll cover a number of advanced topics.

By the way: Don't forget to fix the bug we placed in DISPATCH_TABLE.
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Ideally, Dskpatch should behave like a word processor when you try to move
the cursor below the bottom of the half-sector display: The display should move
up one line, with a new line appearing at the bottom. The version of Dskpatch

on the disk available with this book does just that, but we won't get quite so

sophisticated here. In this chapter, we'll add skeletal versions of the two proce-

dures, SCROLL_UP and SCROLL_DOWN, that scroll the screen. In the disk

version of Dskpatch, SCROLL_UP and SCROLL_DOWN can scroll by any
number of lines from one to sixteen (there are sixteen lines in our half-sector

display). The versions of SCROLL_UP and SCROLL_DOWN that we'll add to

Dskpatch here scroll by full half sectors, so we'll see either the first or second

half of the sector.

Scrolling by Half a Sector

Our old versions ofPHANTOM_UP and PHANTOM_DOWN restore the cur-

sor to the top or bottom of the half-sector display whenever we try to move the

cursor off the top or bottom of the display. We'll change PHANTOM_UP and
PHANTOM_DOWN so that we call either SCROLL_UP or SCROLL_DOWN
when the cursor moves off the top or bottom of the display. These two new pro-

cedures will scroll the display and place the cursor at its new position.

Here are the modified versions of PHANTOM_UP and PHANTOM_DOWN
(in PHANTOM.ASM):

Listing 27-1. Changes to PHANTOM.ASM

PHANTOH_DP
CALL
DEC
JNS—,-

CALL
WASNT_RT_TOP:

CALL
RET

PHANTOM OP

PROC
ERASE_PHANTOM
PHANTOM_CURSOR_Y
WASNT_AT_TOP
PHAHI0M_n.IB'5QB Y,0

;Erase at current position
;Move cursor up one line
;Was not at the top, write cursor
"ac j t t- ho tup , -io put back thoro

SCROLL_DO«S

WRITE_PHANTOM

ENDP

;Has at the top, scroll

;Write the phantom at new position

PHANTOM_DOWN
CALL
INC
CMP
JB
-S&V &H,'i N'TGM_C
CiLL SC80LL_0P

WASNT_AT_BOTTOM:

PROC
ERASE_PHANTOM
PHANTOM_CURSOR_Y
PHANTOM_CURSOR_Y , Ifc

WASNT AT BOTTOM

;Erase at current position
;Move cursor up one line
;Was it at the bottom?
;No, so write phantom

uu

—

back:

—

th e re

CALL
RET

PHANTOM DOWN

WRITE_PHANTOM

ENDP

;Was at bottom, scroll

;Write the phantom cursor
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Don't forget to change the comment header for PHANTOM_UP and PHAN-
TOM_DOWN, to mention that these procedures now use SCROLL_UP and
SCROLL_DOWN:

Listing 27-2. Changes to PHANTOM.ASM

These four procedures move the phantom cursors.

Uses

:

Reads

:

Writes:

ERASE_PHANTOM, WRITE_PH ANTOM
SCROLL_DOWN, SCROLL.OP
PHANTOM_CURSOR_X, PH ANTOM_CURSOR_Y
PHANTOM_CURSOR_X, PHANTOM_CURSOR_Y

SCROLL-UP and SCROLL_DOWN are both fairly simple procedures, since

they switch the display to the other half sector. For example, ifwe're looking at

the first half sector, and PHANTOM_DOWN calls SCROLL_UP, we'll see the

second half sector. SCROLL_UP changes SECTOR_OFFSET to 256, the start of

the second half sector, moves the cursor to the start of the sector display, writes

the half sector display for the second half, and finally writes the phantom cur-

sor at the top of this display.

You can see all the details for both SCROLLJJP and SCROLL_DOWN in the

following listing. Add these two procedures to PHANTOM.ASM.

:

I

u'

<'
I

>>

Listing 27-3. Add These Procedures to PHANTOM.ASM

.DATA

.CODE

EXTRN DISP_HALF_SECTOR:PROC, GOTO_XY:PROC

EXTRN SECTOR_OFFSET:WORD
EXTRN LINES_BEFORE_SECTOR:BYTE

These two procedures move between the two half-sector displays.

Uses

:

Reads

:

Writes

:

WRITE_PHANTOM, DISP_H ALF_SECTOR , ERASE_PHANTOH , GOTO_XY
SAVE_REAL_CURSOR, RESTORE_REAL_CURSOR
LINES_BEFORE_SECTOR
SECTOR_OFFSET, PHANTOM_CURSOR_Y

SCROLL UP PROC
PUSH DX
CALL ERASE PHANTOM
CALL SAVE REAL CURSOR
XOR DL,DL
MOV DH, LINES BEFORE SECTOR
ADD DH,B
CALL GOTO XY
MOV DX,55t
MOV SECTOR OFFSET, DX
CALL DISP HALF SECTOR
CALL RESTORE REAL CURSOR
MOV PHANTOM CURSOR Y,D
CALL WRITE PHANTOM
POP DX
RET

SCROLL UP ENDP

;Remove the phantom cursor
;Save the real cursor position
;Set cursor for half-sector display

;Display the second half sector

; Restore the real cursor position
;Cursor at top of second half sector
;Restore the phantom cursor
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Listing 27-3. continued

SCROLL DOWN PROC
POSH DX
CALL ERASE PHANTOM
CALL SAVE REAL CURSOR
XOR DL,DL
MOV DH, LINES BEFORE SECTOR
ADD DH,5
CALL GOTO XY
XOR DX,DX
MOV SECTOR OFFSET, DX
CALL DISP HALF SECTOR
CALL RESTORE REAL CURSOR
MOV PHANTOM CURSOR Y,15
CALL WRITE PHANTOM
POP DX
RET

SCROLL DOWN ENDP

; Remove the phantom cursor
;Save the real cursor position
;Set cursor for half-sector display

;Display the first half sector

;Restore the real cursor position
;Cursor at bottom of first half sector
; Restore the phantom cursor

SCROLLJJP and SCROLL_DOWN both work nicely, although there is one

minor problem with them as Dskpatch stands now. Start Dskpatch and leave

the cursor at the top of the screen. Press the cursor-up key, and you'll see

Dskpatch rewrite the first half-sector display. Why? We didn't check for this

boundary condition. Dskpatch rewrites the screen whenever you try to move
the cursor off the top or bottom of the half-sector display.

Here's a challenge for you: Modify Dskpatch so that it checks for two bound-

ary conditions. If the phantom cursor is at the top of the first half-sector display

and you press the cursor-up key, Dskpatch should do nothing. If you're at the

bottom of the second half-sector display and press the cursor-down key, again

Dskpatch should do nothing.

Summary

This ends our work on Dskpatch in this book (with the exception of Chapter

30, where we'll modify Dskpatch for faster screen writing). Our intent was to

use Dskpatch as a "live" example of the evolution of an assembly language pro-

gram, at the same time provide you with a usable program, and a set of proce-

dures you'll find helpful in your own programming. But the Dskpatch you've

developed here isn't as finished as it could be. You'll find more features in the

disk version of Dskpatch available with this book. And you may find yourself

changing that disk version, for "a program is never done . . . but there comes a

time when it has to be shipped to users."

We'll wrap up this book with a number ofadvanced topics: relocation, writing

.COM programs, writing directly to the screen, writing C procedures in assem-

bly language, and TSR or RAM-resident programs.
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IVAost of the programs in Parts II and III of this book have been .EXE pro-

grams with two segments, one for code and one for data. There is one point in

dealing with such programs that we've glossed over: relocation. In this chapter,

we'll take a closer look at the relocation process, and we'll look at the steps DOS
takes when it loads an .EXE program into memory.
To show something of the relocation process, we'll build a .COM program

that does its own relocation (since DOS provides no relocation support for .COM
programs). Because we haven't dealt yet with using the assembler to build

.COM programs, we'll start with a short look at some new directives that we'll

need to write .COM programs.

.COM Programs

Throughout this book we've been using the assembler to build .EXE pro-

grams, which is what you'll probably write most of the time. Some programs,

however, need to be .COM programs (such as RAM-resident programs like the

one we'll write in Chapter 32 and our example program in this chapter). For

such programs, we can't use the simplified segment definitions (such as

.CODE) since these directives support only .EXE programs. Instead, we have to

use full segment definitions.

Full segment directives look very much like procedure definitions, as you can

see in this example that defines the code segment:

.TEXT SEGMENT

TEXT ENDS

Rather than start a code segment with .CODE, we need to bracket the code with

a SEGMENT and an ENDS (END Segment) directive. We also have to provide

the name of the segment (_TEXT in this example).

Besides the segment definitions, we need to use another directive called the

ASSUME directive. When we're using the simplified segment directives, the

assembler knows from the .MODEL directive which segments the segment reg-

isters will point to. With full segment directives, however, we need to provide

this information to the assembler ourselves (since we can't use the .MODEL
directive). For this we use a new directive, ASSUME, as in this example:

ASSUME CS:_TEXT, DS:_DATA, SSrSTACK
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This statement tells the assembler that the CS register will be pointing to our

code (which is certainly the case when our program starts to run), that the DS
register points to the data segment, and that SS points to the stack segment.

The .MODEL directive automatically provides this information to the assem-

bler (the last two we'll have to set up ourselves).

Finally, a .COM program, being contained entirely in a single segment,

begins with the 256-byte PSP. To reserve room for the PSP, .COM programs

must begin with ORG lOOh. The ORG tells the assembler to start the program

code at lOOh (or 256) bytes into the segment. You'll see all these details in the

next section, as well as in Chapter 32.

Relocation

Each of our .EXE programs begins with the following code that sets the DS
register so it points to the data segment (which actually consists of a group of

segments called DGROUP):

MOV AX, DGROUP
MOV DS,AX

The question is, where does the value for DGROUP come from? If you think

about it, our programs can be loaded anywhere into memory, which means the

value ofDGROUP won't be known until we know where our program is loaded

into memory. As it turns out, DOS performs an operation known as relocation

when it loads an .EXE program into memory. This relocation processes patches

numbers such as DGROUP so they reflect the actual location of the program in

memory.
To understand this process, we'll write a .COM program that does its own

relocation. Our goal is to set the DS register to the beginning of the _DATA seg-

ment, and the SS register to the beginning of the STACK segment. We can do

this with a bit of trickery. First, we need to ensure that our three segments are

loaded into memory in the correct order:

Code segment (_TEXT)
Data segment (_DATA)
Stack segment (STACK)

Fortunately, we've already taken care of this. When we're using the full seg-

ment directives, segments are loaded in the order in which they appear in our

source file. A word of warning though: If you ever use the following technique

to set segment registers, make sure you know the order in which LINK loads

your segments (you can use the .MAP file to check the segment order).
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How do we calculate the value for DS? Let's begin by looking at three labels

we've placed into various segments in the following listing. Those labels are

END_OF_CODE_SEG, END_OF_DATA_SEG, and END_OF_STACK_SEG.
They aren't exactly where you might have expected them to be. Why not? Well,

when we define a segment like this:

_TEXT SEGMENT

(we need to use full segment definitions for .COM programs), we don't really

tell the linker how to stitch together various segments. So, it starts each new
segment on a paragraph boundary—at a hex address that ends with a zero,

such as 32C40h. Because the Linker skips to the next paragraph boundary to

start each segment, there will very often be a short, blank area between seg-

ments. By placing the label END_OF_CODE_SEG at the beginning ofJDATA,
we include this blank area. If we had put END_OF_CODE_SEG at the end of

_TEXT, we wouldn't include the blank area between segments. (Look at the

unassemble listing of our program on page 295. You'll see a blank area filled

with zeros that is nine bytes long.)

As for the value of the DS register, JDATA starts at 39AF:0130, or

39C2:0000. The instruction OFFSET _TEXT:END_OF_CODE_SEG will

return 130h, which is the number of bytes used by _TEXT. Divide this number
by 16 to get the number we need to add to DS so that DS points to _DATA. We
use the same technique to set SS.

Here's the listing for our program, including the relocation instructions

needed for a .COM file:

ASSUME CS:_TEXT, DS:_DATA, SS:STACK

TEXT SEGMENT
ORG IDOh

WRITE STRING PROC FAR
MOV AX, OFFSET
MOV CL,4
SHR AX,CL

MOV BX,CS
ADD AX,BX
MOV DS.AX

MOV BX, OFFSET
SHR BX,CL
ADD AX,BX
MOV SS,AX
MOV AX, OFFSET
MOV SP,AX

MOV AH,q
LEA DX, STRING
INT aih

MOV AH,<Ch
INT Elh

;Reserve data area for .COM program

_TEXT:END_OF_CODE_SEG
;Calculate number of paragraphs
; (lb bytes) used by the code segment

;Add CS to this
;Set the DS register to _DATA

_DATA:END_OF_DATA_SEG
;Calculate paras used by data segment
;Add to value used for data segment
;Set the SS register for STACK

STACK : END_OF_STACK_SEG
;Set SP to end of stack area

;Call for string output
;Load address of string
;Write string

;Ask to Exit back to DOS
;Return to DOS
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WRITE_STRING ENDP

_TEXT ENDS

_DATft SEGMENT
END_OF_CODE_SEG LABEL BYTE
STRING DB "Hello, DOS here.S"
DATA ENDS

STACK SEGMENT
END_OF_DATA_SEG LABEL BYTE

DB ID DUP ( 'STACK

)

END_OF_STACK_SEG LABEL BYTE
STACK ENDS

;' STACK' followed by three spaces

END WRITE STRING

Assemble and link this program, just as you would a .EXE program, and then

type:

EXE2BIN WRITESTR WRITESTR.COM

to convert writestr.exe into a .COM program. EXE2BIN stands for convert an

EXE file into (2) a BINary (.COM) file; in other words, EXE to BINary.

You can see the results of all this work in the following Debug session:

V.

A>DEB0G WRITESTR. COM

MOV
-0
3E0S:0100 Bfl3DDl AX, 0130
3E05:0103 B10< MOV CL,D<
3E05:0105 D3E6 SHR AX,CL
3E0S:010? flCCB MOV BX,CS
3E05:Q10q D3C3 ADD AX,BX
3ED5:Q1DB flEDfl MOV DS,AX
3ED5:D1DD BB2000 MOV BX,0020
3E0S:0110 D3EB SHR BX,CL
3E0S:Q115 Q3C3 ADD AX,BX
3E05:D11< SEDD MOV SS,AX
3E0S:011b BflSOOO MOV AX,DD5D
3E0S:011R ABED MOV SP, AX
3E05:Q11B B<oq MOV rh,di
3ED5:Q11D
-0
3E05:0121

flDlbOOOO LEA DX, [1000]

CD21 INT 21
3E05:0123 B44C MOV AH,4C
3E05:012S CD21 INT 51
3E05:012? DDOQ ADD [BX+SI], AL
3ED5:ai2q 0000 ADD [BX+SI] , AL
3E05.-D15B DDDD ADD [BX+SI] ,AL
3E0S:015D DDDD ADD [BX+SI] , AL
3E05:012F OO^flbS ADD [BX+SI+bS] ,CL
3EDS:0132 bC DB bC
3E0S:0133 bC DB bC
3E05:013< bF DB bF
3ED5:D135 2C20 SUB AL,20
3E0S:013? 44 INC SP
3E0S:013fl 4? DEC DI
3ED5:D13q 53 PUSH BX
3E0S:013A 20bflb5 AND [BX+SI+b5] ,CH
3ED5:Q13D ?2bS JB 01A4
3ED5:013F 2E CS:
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3E0S:01<0 54DD AND AL,0D
-G 151

AX=0q50 BX=DDQ5 CX=010< DX=DQQQ SP=00S0 BP=QDQD SI=QD0D DI=DDOD
DS=3Elfl ES=3DF5 SS=3E1A CS=3E0S IP=0151 NV UP EI PL NZ NA PO NC
3E0S:0151 CD51 INT 51

You'll rarely need to do this type of relocation yourself since DOS handles

this automatically for .EXE programs. But it helps to understand what's hap-

pening behind the scenes.

.COM versus .EXE Programs

We'll finish this chapter by summarizing the difference between .COM and
.EXE files and how DOS loads both types of programs into memory.
A .COM program stored on disk is essentially a memory image of the pro-

gram. Because of this, a .COM program is restricted to a single segment, unless

it does its own relocation, as we did in this chapter.

An .EXE program, on the other hand, lets DOS take care of the relocation.

This delegating makes it very easy for .EXE programs to use multiple seg-

ments. For this reason, most large programs are .EXE rather than .COM pro-

grams.

For our final look at .COM versus .EXE programs, let's take a closer look at

how DOS loads and starts both of them. This should make the differences

between these types of program clearer and more concrete. We'll begin with

.COM programs.

When DOS loads a .COM program into memory, it follows these steps:

• First, DOS creates the program segment prefix (PSP), which is the 256-

byte area we saw in Chapter 11. Among other things, this PSP contains

the command line typed.

• DOS next copies the entire .COM file from the disk into memory, immedi-

ately after the 256-byte PSP.
• DOS then sets the three segment registers DS, ES, and SS to the start of

the PSP.

• DOS sets the SP register to the end of the segment—usually FFFE, which
is the last word in the segment.

• Finally, DOSjumps to the start of the program, which sets the CS register

to the start of the PSP and the IP register to lOOh (the start of the .COM
program).



Relocation 293

In cont/ast, the steps involved in loading an .EXE file are somewhat more
involved, because DOS does the relocation. Where does DOS finds the informa-

tion it needs to do the relocation?

As it turns out, every .EXE file has a header that's stored at the start of the

file. This header, or relocation table, is always at least 512 bytes long, and con-

tains all the information DOS needs to do the relocation. With recent releases

of its macro assembler, Microsoft has included a program called EXEMOD that

we can use to look at some of the information in this header. For example, here

is the header we get for an .EXE version ofWRITESTR:

»>EJEHOD H8ITESTB
Microsoft (R) EXE File Header Utility Version ^.05
Copyright (C) Microsoft Corp IRAS-iqfl?. All rights reserved.

WRITESTR (hex) (dec)

.EXE size (bytes)
Minimum load size (bytes) 90 144
Overlay number D

Initial CS:IP
Initial SS:SP
Minimum allocation (para)
Maximum allocation (para)
Header size (para)
Relocation table offset
Relocation entries

A>

At the bottom of this table, you can see that we have a single relocation entry

for the MOV AX,DGROUP instruction. Anytime we make a reference to a seg-

ment address, as with 'MOV AX,DGROUP, LINK' will add a relocation entry

to the table. The segment address isn't known until DOS loads our program
into memory, so we must let DOS supply the segment number.
There are also some other interesting pieces of information in the table; for

example, the initial CS:IP and SS:SP values. These pairs tell us the initial val-

ues for IP and SP. The table also tells DOS how much memory our program
needs before it can run: the Minimum load size.

Because DOS uses this relocation table to supply absolute addresses for such

locations as segment addresses, there are a few extra steps it takes when load-

ing a program into memory. Here are the steps DOS follows in loading an .EXE
program:

• DOS creates the program-segment prefix (PSP), just as it does for a .COM
program.

• Second, DOS checks the .EXE header to find where the header ends and
the program starts. It then loads the rest of the program into memory
after the PSP.

2qa bSt
RD 144
D

0000:0000
0004:0050 SO

FFFF tssas
eo 33
IE 30
1 1
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Next, using the header information, DOS finds and patches all the refer-

ences in the program that need to be relocated, such as references to seg-

ment addresses.

DOS then sets the ES and DS registers so they point to the start of the

PSP. If your program has its own data segment, your program needs to

change DS and/or ES so they point to your data segment.

DOS sets SS:SP according to the information in the .EXE header. In the

case illustrated, the header states that SS:SP will be placed at 0004:0050.

That means DOS will set SP to 0050, and set SS so it is four paragraphs

higher in memory than the end of the PSP.

Finally, DOS jumps to the start of the program using the address pro-

vided in the .EXE header. This sets the CS register to the start of the code

segment, and IP to the offset given in the .EXE header.
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in this chapter we'll learn about a feature called segment overrides, which

we'll use in the next chapter when we write directly to the screen. In the pro-

cess, we'll also take a closer look at ASSUME statements and full segment defi-

nitions.

Segment Override

So far we've always read and written data located in the data segment. We've

been dealing with a single data segment in this book (which is actually several

segments grouped into a single segment called DGROUP), so we've had no rea-

son to read or write data in other segments.

But, in some cases, we'll need more than one data segment. A classic example

is writing directly to the screen: Many commercial programs write to the screen

by moving the data directly into screen memory and completely bypassing the

ROM BIOS routines in the interest of speed. Screen memory on the IBM PC is

located at segment B800h for a color/graphics adapter and at segment BOOOh
for monochrome display adapters. To write directly to the screen means we'd

want to write in different segments.

In this section, we'll write a short program showing how we can write to two

different segments, using the DS and ES registers to point to the two segments.

In fact, many programs that write directly to screen memory do use the ES reg-

ister to point to screen memory, as we'll do in the next chapter.

In this example, we use full segment definitions to give us more control over

segments than the simplified segment definitions give us. Most of the time

you'll be able to use the simplified segment definitions (as we will when we
write directly to the screen in the next chapter). But we chose to use the full

segment definitions in this chapter to give you more examples of how to use

them and to give you a better understanding of the ASSUME statement that

you'll need along with the full segment definitions.

Here is our program. It's very short, and you can see that it has two data seg-

ments, along with one variable in each data segment:

DOSSEG

_DATA SEGMENT
DS_VAR DW 1

_DATA ENDS

EXTRA_SEG SEGMENT PUBLIC
ES_VAR DW 5
EXTRA_SEG ENDS
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STACK SEGMENT STACK
DB 10 DOP ( 'STACK

STftCK ENDS

_TEXT SEGMENT
ASSUME CS:_TEXT, DS:_

TEST_SEG PROC
MOV AX, DATA
MOV DS,AX
MOV AX, EXTRA SEG
MOV ES, AX

MOV AX,DS VAR
MOV BX,ES:ES_VAR

MOV AH,4Ch
INT 51h

TEST_SEG ENDP

_TEXT ENDS

END TEST_SEG

') ; 'STACK' followed by three spaces

•.Segment address for _DATA
;Set up DS register for _DATA
; Segment address for EXTRA_SEG
;Set up ES register for EXTRA_SEG

;Read a variable from data segment
; Read a variable from extra segment

;Ask to Exit back to DOS
;Return to DOS

We'll use this program to learn about both segment overrides and the ASSUME
directive.

Note that we've put both data segments and the stack segment before our

code segment, and that we've also put the ASSUME directive after all the seg-

ment declarations. As we'll see in this section, this arrangement is a direct

result of using two data segments.

Let's take a look at the two MOV instructions in this program:

MOV AX,DS_VAR
MOV BX,ES:ES_VAR

The ES: in front of the second instruction tells the 8088 to use the ES, rather

than the DS, register for this operation (to read the data from our extra seg-

ment). Every instruction has a default segment register it uses when it refers to

data. But, as we've done with the ES register here, we can also tell the 8088 we
want to use some other segment register for data.

Here's how it works: The 8088 has four special instructions, one for each of

the four segment registers. These instructions are the segment-override

instructions, and they tell the 8088 to use a specific segment register, rather

than the default, when the instruction following the segment override tries to

read or write memory.
For example, the instruction MOV AX,ES:ES_VAR is actually encoded as

two instructions. You'll see the following if you unassemble our test program:

?CF<:D0DD ES:
5CF<:00DE 8B1E0000 MOV BX/CDOQO]
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This shows that the assembler translated our instruction into a segment-over-

ride instruction, followed by the MOV instruction. Now the MOV instruction

will read its data from the ES, rather than the DS, segment.

If you trace through this program, you'll see that the first MOV instruction

sets AX equal to 1 (DS_VAR) and the second MOV sets BX equal to 2

(ES_VAR). In other words: We've read data from two different segments.

Another Look at ASSUME
Let's take a look at what happens when we remove the ES: from our program.

Change the line:

MOV BX,ES:ES_VAR

so it reads:

MOV BX,ES_VAR

We're no longer telling the assembler we want to use the ES register when we
read from memory, so it should go back to using the default segment (DS),

right? Wrong. Use Debug to look at the result of this change. You'll see that we
still have the ES: segment override in front of our MOV instruction. How could

the assembler possibly have known that our variable is in the extra, rather

than the data, segment? By using the information we gave it in the ASSUME
directive.

Our ASSUME statement tells the assembler that the DS register points to the

segment DATA_SEG, while ES points to EXTRA_SEG. Each time we write an
instruction that uses a memory variable, the assembler searches for a declaration

of this variable to see which segment it's declared in. Then, it searches through the

ASSUME list to find out which segment register is pointing to this segment. The
assembler uses this segment register when it generates the instruction.

In the case of our MOV BX,ES_VAR instruction, the assembler noticed

ES_VAR was in the segment called EXTRA_SEG and that the ES register was
pointing to that segment, so it generated an ES: segment-override instruction

on its own. Ifwe were to move ES_VAR into STACK_SEG, the assembler would

generate an SS: segment-override instruction. The assembler automatically

generates any segment-override instructions we need, provided, of course, that

our ASSUME directives reflect the actual contents of the segment registers.

Summary
In this chapter we learned more about segments and how the assembler

works with them. First we learned about segment overrides, which allow us to

read and write data in other segments. We'll use such overrides in the next

chapter when we write characters directly to the screen. Finally, we learned

more about the ASSUME directive.

The next chapter covers writing directly to screen memory. We'll do this to

dramatically increase the speed of writing characters to the screen.
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A,..t the very start of this book, we mentioned that many people who write pro-

grams in assembly language often do so for speed. Assembly language pro-

grams are almost always faster than programs written in other languages. But

you may have noticed that our Dskpatch program doesn't draw the screen as

quickly as many commercial programs. Why is it so much slower?

So far we've been using the ROM BIOS routines to display characters on the

screen. But as we'll see in this chapter, the ROM BIOS routines can be quite

slow. Most programs these days bypass the ROM BIOS and write characters

directly to screen memory in favor of raw speed.

In this chapter we'll modify Dskpatch so it writes characters very quickly to

the screen. Unfortunately, we'll have to make a number ofchanges to Dskpatch

to obtain faster screen display: We can't just write a new WRITE_CHAR for

reasons we'll cover soon.

Screen Segment

Before we can write characters directly to screen memory, we need a few

pieces of information, like: Where is the display memory and how are charac-

ters stored in display memory?
The first question has a simple, two-part answer. Screen memory has its own

segment, which is either B800h or BOOOh. Why do we have two different seg-

ments? There are two classes of display adapters, monochrome display adapters

and color graphics adapters (CGA, EGA, and VGA), and you can have one

adapter of each class in your computer at the same time (but few people do). So

IBM gave them non-overlapping screen segments.

Monochrome refers to IBM's monochrome display adapter, Hercules graphics

cards, and EGA and VGA cards attached to an IBM monochrome display. Mon-
ochrome cards display characters on the screen in green, white, or amber (it

depends on the display), and have only a limited set of "colors" they can display:

normal, bright, inverse, and underlined. Monochrome cards have their screen

segment at BOOOh.

Color graphics adapters, on the other hand, can display 16 different text col-

ors at one time, and they can also be switched into graphics mode (which we
won't talk about in this book). The most common color graphics adapters are

EGA and VGA cards, although there are still CGA cards from the earlier days.

Color graphics adapters have their screen memory at B800h.
Many users these days don't know which type of display adapter they have

and they shouldn't need to know. It is up to our program to determine which
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RL Returned

by INT 1 1h:

7 6 5 4 3 2 1

00 No display adapter

01 40 k 25 color

10 80 k 25 color

11 80 h 25 monochrome

Figure 30-1. The INT llh Equipment Flags.

display adapter is active. For this we can use INT llh, which returns a list of

equipment that we have installed. As you can see from Figure 30-1, bits 4 and 5

tell us ifthe display is a monochrome or color display. In other words, the screen

segment will be at BOOOh (monochrome) if both bits are 1, and B800h (color)

otherwise (we'll ignore the case when no display adapter is installed).

Since we won't know which screen segment to use until we run our program,

we'll need to call a procedure, INIT_WRITE_CHAR, that determines the screen

segment before we make any calls to WRITE_CHAR. We'll place this call at the

start of Disk_patch to make sure we call it before writing any characters on the

screen. Here are the changes to DSKPATCH.ASM to add this call:

Listing 30-1. Changes to DSKPATCH.ASM

EXTRN
EXTRN

DISK_PATCH
MOV
MOV

CALL
CALL
CALL

WRITE_PROMPT_LINE:PROC, DISPATCHER : PROC
INIT_HRITE_CHAR:PBOC
PROC
AX,DGROUP ;Put data segment into AX
DS,AX ;Set DS to point to data

INIT_WRITE_CHBR
CLEAR_SCREEN
WRITE HEADER

Then add INIT_WRITE_CHAR to VIDECUO.ASM:

Listing 30-2. Add This Procedure to VIDECUO.ASM

PUBLIC INIT_WRITE CHAR
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Listing 30-2. continued

You need to call this procedure before you call WRITE_CHAR since
WRITE_CHAR uses information set by this procedure.

Writes

:

SCREEN SEG

INIT WRITE CHAR PROC
POSH AX
PUSH BX
MOV BX,0BB00h
INT llh
AND AL,3Qh
CMP AL,3Qh
JNE SET BASE
MOV BX,DB030h

SET BASE:
MOV SCREEN SEG,BX
POP BX
POP AX
RET

INIT WRITE CHAR ENDP

;Set for color graphics display
;Get equipment information
; Keep just the video display type
;Is this a monochrome display adapter?
;No, it's color, so use BflDO
;Yes, it's monochrome, so use BDDQ

;Save the screen segment

Note that we're saving the screen segment in SCREEN_SEG (which we'll

add below). WRITE_CHAR will use this variable when we modify it to write

directly to screen memory.
Now that we know how to find the screen memory, we need to know how the

characters and their attributes are stored.

Organization of Screen Memory

If you were to use Debug to look at screen memory when the first line of the

screen is:

DSKPATCH ASM

you would see the following (for a color graphics card):

-B600:0
BflOOlDDOD 44 07 53 0? 4B 07 50 07-41 07 54 07 <3 07 4& 07 D . S . K . P . A . T . C . H

.

Ba0Q:0010 50 07 41 07 53 07 4D 07-20 07 50 07 50 07 20 07 .A.S.M

In other words, there is a 07 between each character on the screen. As you'll

recall from Chapter 18, 7 is the character attribute for normal text (and 70h is

the attribute for inverse text). Each 7 in the debug display is the attribute for

one character, with the character lower in memory. In other words, every char-

acter on the screen uses one word of screen memory, with the character code in

the lower byte and the attribute in the upper byte. Let's write a new version of
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WRITE_CHAR that writes characters directly to screen memory. Make these

changes to Video_io.asm:

Listing 30-3. Changes to VIDEOJO.ASM

PUBLIC WRITE_CHAR
EXTRN CURSOR_RIGHT:PROC

This procedure outputs a character to the screen by writing directly
into screen memory, so that characters such as the backspace are
treated as any other characters and are displayed.

This procedure must do a bit of work to update the cursor position.

On entry: DL Byte to print on screen

Uses:
Beads:

CURSOR_RIGHT
SCREENSEG

WRITE CHAR PROC
PUSH AX
PUSH BX
PUSH CX
PUSH DX
POSH KSPOSH KS

HOV »X, SCREEN SEG ;Get segment for screen memory
MOV ES,AX ; Point ES to screen memory

POSH DX ;Save the character to write
MOV AH,

3

;Ask for the cursor position
XOR BH,BH ;On page
INT lOh ;Get row, column
HOV AL,DH ;Put row into AL
HOV BL,flO ; There are fiO characters per line
HOL BL ;AX » row * ao
ADD AL,DL ; Add the column
ADC AH,0 ;Propagate carry into AH
SHL AX,1 ;Convert to byte offset
HOV BX, AX ;Put byte offset of cursor into BX
POP sx ; Restore the character

HOV DH,? ;0se the normal attribute
HOV ES:[BX] ,DX ;»rite character/attribute to screen
CALL CORSOR_RIGHT ;Now move to next cursor position

POP ESPOP ES
POP DX
POP CX
POP BX
POP AX
RET

WRITE CHAR END

Finally, we need to add a memory variable to VIDEO_IO.ASM:

Listing 30-4. Add DATA-SEG to the Start of VIDEOJO.ASM

.HODEL SMALL

-DATA
SCREEN_SEG

.CODE

DW rjBSOOh ;Segment of the screen buffer
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After you've made these changes, rebuild Dskpatch (you'll need to assemble

DSKPATCH and VIDECUO) and try the new version. What you'll find is that

Dskpatch doesn't write to the screen any faster than before. And for a very sim-

ple reason. We're moving the cursor after we write each character, which is a

slow process.

High Speed

The solution is to rewrite the routines in VIDEO_10 and CURSOR to keep

track ofwhere the cursor should be instead ofmoving the cursor; we'll move the

cursor only when we need to. For this we'll introduce two new memory vari-

ables: SCREEN_X and SCREEN_Y. Now this may sound simple, but as you'll

see here, we'll have to change a number ofprocedures and write a few new ones.

There is another optimization we can make while we're at it. Right now
WRITE_CHAR calculates the offset of the cursor into the screen buffer each

time you call it. But since we'll be keeping track of where the cursor should be,

we can also keep track of this offset in the variable SCREEN_PTR:

Listing 30-5. Changes to WRITLCHAR in VIDECUO.ASM

Uses

:

Beads:
C0RSOR_RIGHT
SCHEEH_SEG, SCREEH_PTR

WRITE_CHAR PROC
POSH AX
POSH BX
push e#—
POSH
POSH

DX
ES

MOV AX,SCREEN_SEG
MOV ES,AX
BOV BX,SCREEN_PTB

—

-

—
*QV-

—
—
-&#Z^

—

———

-

—
—

—i

AL,DL

'. >: 1

1

DX,ftX

;Get segment for screen memory
; Point ES to screen memory
; Pointer to character in screen memory

;5i '

.'e
—

Line UididcUdi—lu willy

—

; Ask—ftrr—lliy tmbui—put- '...:.

—

.Oil pdtjb

: Get—row,—colu m n—
. L.fci.fc!—die 00 Ll.dldCLUlb \>UL—line

—

:ax - r'j-w * a o

, Auu Tire u'j I li !!! n

;P : oatc.iLb n.ii luiu AH—
: :: :.':>= L . ,j I. .b mibtrl
.Put byie offset o r cursor into BX
: g e s i o i a—Liitj ihdidi mi—
; Ose the normal attribute
;Write character/attribute to screen
;Now move to next cursor position

MOV DH,7
MOV ES:tBX],DX
CALL C0RSOR_RIGHT

POP ES
POP DX

-pop es

—
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POP BX
POP AX
RET

WRITE CHAR ENDP

You can see that WRITE_CHAR has become quite simple.

You'll also need to add our three new memory variables to the DATA_SEG in

VIDECUO.ASM:

Listing 30-6. Changes to .DATA in VIDECUO.ASM

.DATA _____________,^__^_
PUBLIC
PUBLIC

SCREEN PTR
SCREEN X, SC8EEN_I

SCREEN SEG
SCREEN PTB
SCREES X

SCREEN Y

DW
D»
DB
DB

OBSOOh ;Segment of the screen buffer
;Offset into screen memory of cursor
; Position of the screen cursor

.CODE

And finally (in VIDEOJO.ASM, that is) here are the changes to

WRITE_ATTRIBUTE_N_TIMES so it will write directly to the screen:

Listing 30-7. Changes to WRITE^\TTRIBUTE_N_TIMES in VIDECUO.ASM

Uses

:

Reads:
CURSOR_RIGHT
SCREEN_SEG, SCBBEN_PTB

WRITE_ATTRIBUTE_N] TIMES
PUSH AX
PUSH &X-

PROC

PUSH CX
PUSH DX
POSH DI
PUSH ES

MOV AX, SCREEN SEG ;Set ES to point to screen segment
MOV ES,AX
MOV DI, SCREEN .PTR ;Character under cursor
INC DI ;Point to the attribute under cursor
HO V AL,DL ;Put attribute into AL

ATTR_LOOP:
STOSB ;Save one attribute
INC DI ;Move to next attribute
INC SCREEN X ;Move to next column
LOOP ATTR_LOOP ;Write N attributes

DEC DI ; Point to start of next character
MOV SCREEN_PTf ,DI ; Remember where we are

POP ES
POP DI
POP -E«-
POP
POP
POP
RET

CX
-BJ(-

AX

WRITE_ATTRIBUTE N TIMES ENDP



306 Peter Norton's Assembly Language Book for the IBM PC, Revised & Expanded

Most of this procedure should be fairly clear, with the exception of a new
instruction: STOSB (STOre String Byte). STOSB is basically the opposite ofthe

LODSB string instruction that loaded a byte from DS:SI and incremented the

SI register. STOSB, on the other hand, stores the byte from AL into the address

at ES:DI, then increments DI.

All the other changes we need to make (with the exception of a simple fix in

KBDJO) are to procedures in CURSOR.ASM. First, we'll need to change

GOTO-XY so it sets SCREEN_X and SCREEN_Y and calculates the value of

SCREEN_PTR:

Listing 30-8. Changes to GOTO-XY in CURSOR.ASM

PUBLIC GOTO XT
.DATA

-CODE

BXTRN
BXTRH

SCREEN_PTR:WORD ;PoInter to character under cursor
SCBBBN_X:BYTE, SCREEN_Y:BYXE

This procedure moves the cursor

On entry: DH
DL

Row (Y)
Column (X)

GOTO XY PROC
POSH AX
POSH BX
MOV BH,D
MOV AH,

a

INT lOh

POP
POP
RET

GOTO_XY ENDP

BX
AX

;Dlsplay page D

;Call for SET CURSOR POSITION

HOV AL,DH ;Get the row nueber
MOV BL,6Q Multiply by 60 chars per line
MOL BL ;AX = row * 80
ADD AL,DL ;Add column
ADC AB,0 ;ax » row * 60 + column
SHI AX,1 ; Convert to a byte offset
MOV SCREEN PTR,AX ;Save the cursor offset
MOV SCBEEN X,DL ;Save the cursor position
MOV SCREEN Y,DB

As you can see, weVe moved the calculation of the offset to the character

under the cursor from WRITE_CHAR, where it was before, to here.

We also need to modify CURSOR—RIGHT so it updates these memory vari-

ables:

Listing 30-9. Changes to CURSOR-RIGHT in CURSOR.ASM

PUBLIC CURSOR_RIGHT
.DATA

EXTRB
EXTRN

.CODE

HHBHHnH|
SCREEN_PTR:»ORD ;Pointer to character under cursor
SCREEN_X:BYTE, SCREEN_Y :BITE
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This procedure moves the cursor one position to the right or to the
next line if the cursor was at the end of a line.

Uses:
Writes:

SEND_CRLF
SCREENJPTR, SCBEEN_X, SCREEN_Y

CURSOR RIGHT PROC
INC SCREEN PTR ;Hove to next character position (word)
INC SCREEN PTR
INC SCREEN X ;Move to next coluian
CMP SCREEN X,?q ;Make sure column <» 79
JBE OK
CALL SEND CRLF ;Go to next line

OK:

CU
RET

RSOR_RIGHT ENDP

We'll also need to change CLEAR_TO_END_OF_LINE so it uses

SCREEN_X and SCREEN_Y rather than the location of the real cursor:

Listing 30-10. Changes to CLEAR_TO_END_OF_LINE in CURSOR.ASM

PUSH
PUSH
M OV

CX
DX
AM, 3

;
R e ad curr e nt cursor position

XOR
INT
MOV
MOV
MOV
XOR

DM, DM
-frfrh

DL,SCREER_X
DH,SCREEN_Y
AH,t
AL,AL

-efl

—

page—B-

;
Now h av e (X,Y) in DL, -&#

;Set up to clear to end of line
;Clear window

The next few steps need some explaining. Because we're no longer updating

the position of the real cursor, the real and virtual cursors will often be out of

synchronization. Most of the time this isn't a problem. But there are a few cases

when we have to synchronize both cursors; sometimes we'll want to move the

real cursor to where we think the cursor is, and sometimes we'll want to move
our virtual cursor. For example, before we ask the user for input, we need to

move the cursor to where we think the cursor should be. We'll perform this with

the procedure UPDATE_REAL_CURSOR, which moves the real cursor.

On the other hand, SEND_CRLF moves the real cursor, so we'll need to call

UPDATE_VIRTUAL_CURSOR to move the virtual cursor to where the real

cursor is after SEND_CRLF.
Here are the two procedures you'll need to add to CURSOR.ASM:

Listing 30-11. Add These Procedures to CURSOR.ASM

PUBLIC UPDATE_REAL_CURSOR

This procedure moves the real cursor to the current virtual cursor
position. You'll want to call it just before you wait for keyboard
input

.

UPDATE_REAL_CURSOR
PUSH DX

PROC



308 Peter Norton's Assembly Language Book for the IBM PC, Revised & Expanded

Listing 30-11. continued

MOV DL,SCBEEN_X
MOV DH,SCREEN_Y
CALL G0T0_XY
POP DX
RET

UPDATE_REAL_CURSOR ENDP

;Get position of the virtual cursor

;Move real cursor to this position

PUBLIC UPDATE_VIRTUAL_CURSOR

This procedure updates the position of our virtual cursor to agree
with the position of the real cursor.

UPDATE_VIRTUAL_CURSOR
PUSH
PUSH
PUSH
PUSH
MOV
XOR
INT
CALL
POP
POP
POP
POP
RET

AX
BX
CX
DX
AH,

3

BH,BH
lOh
GOTO_XY
DX
CX
BX
AX

PROC

;Ask for the cursor position
;On page
;Get cursor position into DH, DL
;Move virtual cursor to this position

UPDATE_VIRTUAL_CURSOR ENDP

Note that we're using GOTCLXY to update the three variables SCREEN_X,
SCREEN_Y, and SCREEN_PTR.

Finally, we need to modify several procedures to use the preceding two proce-

dures. Here are the changes to SEND_CRLF:

Listing 30-12. Changes to SEND_CRLF in CURSOR.ASM

SEND_CRLF
PUSH
PUSH
MOV
MOV
INT
MOV
INT
CALL
POP
POP
RET

SEND_CRLF ENDP

PROC
AX
DX
AH,5
DL,CR
51h
DL,LF
5 In

;

UPDATE_VIRTUftL_C0RSOB
DX
AX

;Update position of virtual curator

This makes sure we know where the cursor is once we've moved the real cur-

sor to the next line.

Finally, here are the changes to READ_STRING that keep the virtual and
real cursors in synchronization during keyboard input:
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Listing 30-13. Changes to READ_STRING in KBDJO.ASM

EXTRH UPDATE BEftL CURSOR :PBOC

; Dses: BACKSPACE, WRITE.CHAR, UPDATE_8EAL_CDRSOR ;

READ STRING PROC
PUSH AX
PUSH BX
PUSH SI
MOV SI,DX

START OVER:
CALL UPDATE REAL CURSOR
MOV BX,5

READ NEXT CHAR:
CALL UPDATE_REAL_CURSOR
MOV AH,?
INT Slh

;Use SI for index register and

;Hove to position of virtual cursor
;BX for offset to beginning of buffer

;Move real cursor to virtual cursor

That should do it. Reassemble all three files that we changed this time

(VIDEOJO, CURSOR, and KBD_IO), then link Dskpatch. You'll notice that

screen output is much faster than before.

Summary

Speeding up WRITE_CHAR turned out to be quite a bit ofwork since we had
to change a number of procedures, but the results were well worth the effort.

Programs that have snappy screen updates feel much nicer to work with than

programs that take longer to paint the screen. When speed comes at this low a

price, it's almost always worth the effort.

The next chapter moves on to another advanced subject that will probably

interest many of you: writing procedures and functions for the C language in

assembly language. For those of you using another language, the next chapter

should be a useful starting point as well.





31

C PROCEDURES IN ASSEMBLY

A Clear Screen for C 312

Parameter Passing 316
A Two-Parameter Example 320
Returning Function Values 322

Summary 323

311



312 Peter Norton's Assembly Language Book for the IBM PC, Revised & Expanded

In this chapter we'll show you how to write assembly language procedures you

can use in your C programs. We're concentrating on C because C is one of the

most popular high-level programming languages (most of our programs here at

Norton Computing are written in both C and assembly language). (If you want
to write procedures for other languages, such as Pascal or BASIC, you'll proba-

bly find the procedures in this chapter work without change; you need change

only the .MODEL statement.)

Originally written by Dennis Ritchie at Bell Laboratories, C has become
quite popular because it is a modern high-level language that nonetheless pro-

vides many assembly language type functions (such as the + + increment

operator). But because it is a general-purpose programming language, there

are times you'll want to write parts of your program in assembly language,

whether for speed, low-level access to your machine, or other reasons.

A Clear Screen for C

We'll start by rewriting a fairly simple procedure, CLEAR_SCREEN, so we
can call it directly from C. As you'll see, writing assembly language programs
for use in C programs is actually quite simple.

Note: To assemble the programs in this chapter, you'll need

Microsoft MASM version 5.1 or later, Turbo Assembler, or the

latest version of OPTASM (which wasn't available when we
wrote this book) that supports the MASM 5.1 mixed language

programming extensions. We're also using the Microsoft C
compiler for the examples in this chapter.

The .MODEL directive we've been using so far allows us to define the mem-
ory model of the program we're building. (We've only used the SMALL memory
model in this book.) Starting with version 5.1 of MASM, Microsoft added an
extension to the .MODEL directive that allows us to write programs to attach

to a number of different languages (including C and Pascal). To tell MASM that

we're writing a C procedure, we simply append a ",C" to the end:

-MODEL SMALL,

C
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Let's start our rewrite of CLEAR_SCREEN by taking another look at the

assembly language version we wrote in Part II of this book:

PUBLIC CLEAR SCREEN

This procedure clears the entire screen.

CLEAR_SCREEN
PUSH
PUSH
PUSH
PUSH
XOR
XOR
MOV
MOV
MOV
MOV
INT
POP
POP
POP
POP
RET

CLEAR SCREEN

PROC
AX
BX
CX
DX
AL, AL
CX,CX
dh,2<
DL,7R
BH,7
AH,b
10b
DX
CX
BX
AX

ENDP

;Blank entire window
;Upper left corner is at (0,0)
;Bottom line of screen is line 5<
;Right side is at column 7R
;Use normal attribute for blanks
;Call for SCROLL-UP function
;Clear the window

This is a fairly simple assembly language procedure, as far as assembly lan-

guage procedures are concerned. All we have to do to convert this into a C pro-

cedure, as you can see from the following, is remove a number of instructions.

Here is the new file, CLIB.ASM, that we'll use to hold all our C procedures writ-

ten in assembly language:

Listing 31-1. The New File CLIB.ASM

.MODEL SMALL,

C

.CODE

This procedure clears the entire screen.

CLEAR_SCREEN
XOR
XOR
MOV
MOV
MOV
MOV
INT
RET

CLEAR_SCREEN

END

PROC
AL, AL
cx,cx
DH,a<
DL,?S
BH,7
AH,b
lOh

ENDP

;Blank entire window
;Upper left corner is at (0,0)
;Bottom line of screen is line 54
;Right side is at column 7R
;Use normal attribute for blanks
;Call for SCROLL-UP function
;Clear the window

(If you're using Turbo Assembler, you'll need to add two lines after .MODEL
with MASM51 on the first line, and QUIRKS on the second line.) You'll note

that we've removed all the PUSH and POP instructions we used to save and
restore registers. We used these instructions in our assembly language pro-
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grams so we wouldn't have to keep track of which registers were changed by

procedures we called. This made programming in assembly language much
simpler. C procedures, on the other hand, don't need to save the AX, BX, CX, or

DX registers at all since the C compiler always assumes procedures change

these four registers or use them to return values, as we'll see later. So we're free

to use these four procedures for anything we want without having to save and

restore them.

Note: You don't need to save and restore the AX, BX, CX, or

DX registers in any C procedures you write in assembly lan-

guage. You do, however, need to save and restore the SI, DI, BP,

and segment registers if you change them in your procedures.

Can Change:
Must Preserve:

AX, BX, CX, DX, ES
SI, DI, BP, SP, CS, DS, SS

Here is a very short C program that uses clear_screen(). In fact, that's all this

program does.

Listing 31-2. The File test.c

main(

)

I

clear_screen (

)

)

Use the following steps to assemble CLIB.ASM, compile test.c, and link both

files together to form test.exe:

MASM CLIB;
CL -C TEST.C
LINK TEST+CLIB, TEST, TEST/MAP;

(The CL -C command compiles a file without linking it.) The last line is a bit

more complicated than normal because we've asked Link to create a map file so

that we'll know where to find clear_screen() in Debug. Even though test.exe is a

fairly small program, the memory map (test.map) turns out to be rather long

because of some extra overhead present in all C programs. Here is an abbrevi-

ated version of this map that shows the pieces of information we're interested

in:

Address Publics by Name
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005< :DOEC STKHQQ
0000:00XA clear screen
005<:01D6 edata
00S<:01E0 end
005<:00DA environ
00S<:00B3 errno
0000:01A2 exit
0000:0010 main

Program entry point at 0000:002A

As you can see, our procedure is actually called _clear_screen instead of

clear_screen. Most C compilers put an underscore in front of all procedure

names for historical reasons we've long since forgotten (C compilers also put an
underscore in front of variable names).

You may have noticed also that we didn't include a PUBLIC
CLEAR_SCREEN to make CLEAR_SCREEN available to other files. This is

another change that ",C" makes for us. The ",C" addition to .MODEL changes

the PROC directive so it automatically defines every procedure as a PUBLIC
procedure. In other words, if you're writing a C procedure in assembly language

(using .MODEL SMALL,C), all your procedures will be declared PUBLIC for

you, automatically.

Let's load test.exe into Debug to see ifMASM made any other changes for us.

Using the address in the load map above (1A), here is the code for

_clear_screen:

A > DEBUG TliST.EXE
-0 1ft

<ASA:001A 3EC0 X0R AL,AL
<AAA:001C aacq X0R ex, ex
4AfiA:001E Btlfl MOV DH,lfl
<A6A:0050 B54F MOV DL,4F
<AflA:00a2 B707 MOV BH,07
<A6A:00a< BAUy MOV AH, 0b
<AflA:002b CD10 INT ID
<AflA:005fl C3 BET

This is exactly what we've written in CLIB.ASM. In other words, the ",C" at the

end of the .MODEL directive only changed the name of our procedure from

clear_screen to _clear_screen and declared it as PUBLIC. If this were the only

help we got from ",C", we wouldn't be very impressed. Fortunately, there are a

number of other areas where MASM helps writing C procedures in assembly

language, all having to do with passing parameters to procedures.
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Parameter Passing

Throughout this book we've used registers to pass parameters to procedures,

which worked well since we never had more than six parameters (which would
require the six registers—AX, BX, CX, DX, SI, and DI). C programs, however,

use the stack to pass parameters to procedures. And this is where the MASM
5.1 .MODEL extensions really come into play. MASM automatically generates

much of the code we'll need to work with parameters passed on the stack.

To see how this all works, we'll convert several procedures into C procedures.

We'll start with a procedure to write a string of characters on the screen. We
could simply convert WRITE_STRING, but since write string actually uses a

number of other procedures (WRITE_CHAR, CURSOR_RIGHT,
INIT_WRITE_CHAR, and so on), we'll write a new WRITE_STRING that uses

the ROM BIOS to write each character to the screen. This new
WRITE_STRING uses INT lOh, function 14 to write each character on the

screen. This certainly won't be as fast as our WRITE_STRING is now, but it is

simple enough so that we won't get lost in a lot of code.

Here is our slow, C version of WRITE_STRING that you should add to

CLIB.ASM:

Listing 31-3. Add This Procedure to CLIB.ASM

; This procedure writes a string of characters to the screen. The
; string must end with DB D

; write_string(string )

;

; char *string;

WRITE_STRING PROC USES SI, STRING:PTR BYTE
PHSHF ;Save the direction flag
CLD ; Set direction for increment (forward)
MOV SI, STRING ;Place address into SI for LODSB

;Get a character into the AL register
;Have we found the D yet?
;Yes, we are done with the string
;Ask for write character function
;Write to page
;Write one character to the screen

STRING LOOP:
LODSB
OR AL,AL
JZ END OF STRING
MOV AH, 14
XOR BH,BH
INT lOh
JMP STRING_LOOP

END OF STRING:
POPF
RET

WRITE STRING ENDP

;Restore direction flag

Most of this code should be familiar since we lifted it mostly verbatim from our

fast WRITE_STRING. One line, however, is quite different. You'll note that

we've added two pieces of information onto the end of the PROC statement.
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The first piece, USES SI, tells MASM we're using the SI register in our proce-

dure. As we mentioned above, C procedures must save and restore the SI and DI

registers if they modify them. As we'll see soon, the USES SI causes MASM to

generate code to save and restore the SI register—automatically!

The second piece is used to pass one parameter to our program, which is a

pointer to a string, or bytes of characters. STRING:PTR BYTE simply says that

we want to call the parameter STRING and that it's a pointer (PTR) to a charac-

ter (BYTE), which is the first character in the string. By giving this parameter

a name, we can use the parameter's value simply by writing its name, as in

MOV SI.STRING.
The magic of all this will become clear as soon as we look at the code gener-

ated by MASM. Assemble the new CLIB.ASM, then make the following change

to test.c:

main(

)

(

clear_screen( ) ;

vrite_string( n This is a string!");
)

Recompile test.c (with cl -c test.c) and link again (with LINK TEST +
CLIB,TEST,TEST/MAP;).
Looking at the new map file we see that _write_string is at 33h (you may see

a different number since this number will depend on the compiler you use):

0000 0054 clear screen
005b 01EA edata
005fc 01F0 end
005b 00DA environ
005b 00B3 errno
0000 OlCb exit
0000 0010 main
0000 0033 _write_string

Here is the code actually generated by MASM for the write_string we just

added to CLIB.ASM (the instructions added by MASM are against a gray back-

ground):

-0 33
<AflA:0033 55
<A6fi:003< fiBEC
4AflA:003b 5b
<AflA:0037 RC
<ASA:0036 FC
<AflA:0Q3q 8B?fcO<
4AAA:003C AC
4A6A:003D 0AC0
<AQA:003F 7406
<A6A:00<1 B40E
aa»:0D« 35FF
4AflA:00<5 CD10
<A6A:00<7 EBF3
<AflA:00<q SD

POSH BP
HOV BP,SP
PUSB SI
P0SHF
CLD
MOV SI,[BP+0<]
LODSB
OR AL,AL
JZ oo<q
MOV AH,0E
X0B BH,BH
INT 10
JMP 003C
P0PF
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44flR:00<A 5E POP SI
<Aafi:OO^B SD POP BP
4ftflfl:D0<C C3 RET

As you can see, MASM added quite a few instructions to the ones we wrote. The
PUSH SI and POP SI instructions should be clear since we said that MASM
would save and restore the SI register in response to USES SI. The other

instructions, on the other hand, take some explanation.

The BP register is a special-purpose register we haven't said much about. If

you look at the table of addressing modes in Appendix D, however, you'll notice

that BP is a little different from other registers in that the default segment for

[BP] is the SS register rather than the DS register. This is of interest here

because, as we said earlier, C programs pass parameters on the stack rather

than in registers. So the instruction:

MOV SI,[BP+0<]

will always read from the stack, even if SS isn't the same as DS or ES (which it

often won't be for memory models other than SMALL). Because the BP register

is so convenient for working with the stack, C procedures use the BP register to

access the parameters passed to them on the stack.

To use the BP register, we need to set it to the current value of SP, which the

MOV BP,SP instruction does for us. But since the C procedure that called us

also uses the BP register to access its parameters, we need to save and restore

the BP register. So the assembler automatically generates these instructions

(without the comments, of course) that allow us to use the BP register to read

parameters from the stack:

POSH BP ;Save the current BP register
MOV BP,SP ;Set BP to point to our parameters

POP BP ;Restore the old value of BP

Figure 31-1 shows how the stack would look for a procedure, with two parame-

ters, that uses the SI register. The C call, c_call(paraml, param2), pushes the

parameters onto the stack, from right to left. By pushing the rightmost param-

eter first, and the leftmost parameter last, the first parameter will always be

closest to the "top of the stack," in other words, closest to SP.

Next the CALL instruction created by the c_call(paraml, param2) statement

pushes the return address onto the stack, at which point our procedure gains

control. You'll notice at this point that the PUSH SI instruction appears after

the MOV BP,SP instruction. Once we've set the value of BP, we're free to

change the stack as much as we want by PUSHing and POPing registers and by



C Procedures in Assembly 3/9

c_calllpar ami , param2l

\
[BP+6]

[BP+4]

Stack
High memory

BP

SP

Parameter 2

Parameter 1

Return Address

Old BP ualue

Old SI ualue

Stack grows
down in memory

Low Memory

Figure 31-1. How C Passes Parameters on the Stack.

calling other procedures. Because MASM generates all the needed instruc-

tions, we need not concern ourselves with writing these instructions in the cor-

rect order.

The first parameter will always be at the same offset from BP, which is 4 for

the SMALL memory model (it would be 6 for memory models that require a

FAR return address, since a FAR return requires both the old CS and IP values

to be on the stack). Looking at the preceding unassemble listing, you'll note

that the assembler translated the MOV SI,STRING instruction into MOV
SI,[BP + 4]. Ifwe had used a memory model with FAR procedures, this would be

translated into MOV SI,[BP + 6].

Just for your interest, C passes parameters on the stack in the opposite order

from most other high-level languages. Pascal, BASIC, and FORTRAN, for exam-

ple, push the first parameter onto the stack first, with the last parameter last,
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WRITE_STRING PROC STRINGlPTR BVTE

This is the first

MOD SI,<STRING parameter, which
is at [BP+4]

8B7604 MOD SI, [BP + 4]

Figure 31-2. The assembler knows where to find the parameter.

which means the last parameter would be closest to the top of the stack (SP). If

you think about this for a moment, you'll realize the offset from BP to the first

parameter will depend on the number of parameters we pushed onto the stack.

This isn't a problem in Pascal, BASIC, or FORTRAN where procedure calls must
have the same number of parameters as defined in the procedure.

In C procedures, however, you can pass more parameters on the stack than

are defined in the procedure. The C printfO function is a very good example.

The number ofparameters you pass to printfO depends entirely on how many %
arguments you have in the string. And to allow C procedures to have a variable

number of parameters, we need to push the parameters in reverse order so the

first parameter will always be closest to SP and won't depend on the number of

parameters we actually pushed onto the stack.

A Two-Parameter Example

Before we move on, here's another short procedure you'll find useful in your C
programs:

Listing 31-4. Add this Procedure to CLIB.ASM.

This procedure moves the cursor

goto_xy(x, y);
int x, y;
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GOTO XY PROC X:WORD, Y:WORD
MOV AH,e ;Call for SET CURSOR POSITION
MOV BH,Q ;Display page
MOV DH,BYTE PTR (Y) ;Get the line number (D..N)
MOV DL,BYTE PTR (X) ;Get the column number (D..7S)
INT IDh ;Move the cursor
RET

GOTO XY ENDP

And here is the change to make in test.c to use goto_xy():

main(

)

I

clear_screen( )

;

goto_xy(35,10);
wrlte_string( "This is a string!")

There are two items of interest in goto_xy(). First, you'll note that we
declared the two parameters (X and Y) in the order we write them in the proce-

dure call: goto_xy(x, y). We would write these parameters in the same order for

a language, like Pascal, that pushes parameters in a different order: MASM
handles the differences in order on the stack so we don't have to change our code

or know in what order parameters are pushed onto the stack.

The other change is a bit more subtle. You'll notice that we defined X and Y
to be words, rather than bytes. We did this because C (and other high-level lan-

guages) never push a byte onto the stack: they always push words onto the

stack. And there is a very good reason for this: The PUSH instructions push

words, and not bytes, onto the stack. In goto_xy, this isn't a problem except that

we want to move a byte into the DH and DL registers. Writing:

MOV DL,X

won't work because the assembler would report an error. Instead, we have to

use BYTE PTR X to access X as a byte. But this also doesn't work because of

how the MASM 5.1 extensions are written inside the assembler.

As it turns out, the X:WORD, Y:WORD definitions in the PROC statement

are implemented inside the assembler as macros. Macros, which we won't cover

in this book, are a way to add features to the assembler. The parameters X and
Y are actually macros, so when we write MOV DL,X, X is expanded into the

text defined by MASM:

X —

>

HORD PTR [BP+4]

If we then put BYTE PTR in front of this, we get something the assembler

doesn't know how to handle:

BYTE PTR X BYTE PTR HORD PTR [BP+4]
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We fix this problem by putting parentheses around the X and Y, which tells the

assembler that [BP + 4] refers to a word, but we wish to treat it as a byte:

BYTE PTE (X) BYTE PTB (WORD PTR [BP+4])

The parentheses simply tell the assembler to process everything between the

I and ) first.

Returning Function Values

Besides writing C procedures in assembly language, you'll probably also

want to write C functions in assembly, which is quite simple. C functions

return values in the following registers: bytes in AL, words in AX, and long

words (two bytes) in DX:AX, with the low word in AX. (If you want to return

types with three bytes or more than four bytes, you'll need to consult the

Microsoft Mixed-Language Programming Guide or the Turbo Assembler User's

Guide for details.)

Note: Here are the registers to use to return values to C pro-

grams:

Byte AL
Word AX
Long DX:AX

The following procedure, which you should add to CLIB.ASM, is a rewrite of

READ_KEY that returns the extended key code to C programs:

Listing 31-5. Add this Procedure to CLIB.ASM.

This procedure reads on key fro» the keyboard,

key = read_key ( )

;

READ KEY PROC
XOR AH, AH
INT 1th
OR AL,AL
JZ EXTENDED CODE

NOT EXTENDED

:

XOR AH, AH
JMP DONE_READING

EXTENDED CODE:
MOV AL,AH
MOV AH,1

DONE HERDING:

;Ask for keyboard read function
;Read character/scan code froi keyboard
;Is it an extended code?
;Yes

;Return just the ASCII code

;Put scan code into AL
;Signal extended code
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RET
READ_KEY ENDP

Here is a version of test.c that will clear the screen, display a string near the

center, and wait until you press the space bar before exiting back to DOS:

main(

)

clear_screen ( )

;

goto_xy (35,10) ;

write_string( "This is a string!")
while (reafl_key() S» ' « )

Summary

That wraps up our discussion of writing C procedures in assembly language.

If you want to write procedures for other languages, you'll need to consult the

documentation on your language, or in the assembler that you're using. Not all

compilers for the same language (such as Pascal) use the same conventions. So

even though MASM (and Turbo Assembler) support the Pascal conventions,

there may be differences if you're not using both an assembler and a compiler

from the same company.

The next chapter, our last technical chapter, covers perhaps the most
advanced material in this book: writing RAM-resident programs.
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In this, our final chapter of programming, we're going to cover a fairly

advanced topic: writing RAM-resident programs. In doing so we'll use much of

what we've learned in this book, and you'll have a nice little program as well.

RAM-Resident Programs

RAM-resident programs are almost always written in assembly language to

allow maximum access to the ROM BIOS and memory, and to make them com-

pact. The Disklite program we'll build here, for example, weighs in at just 247

bytes. Since RAM-resident programs stay in memory until you restart your com-

puter and more and more programs need 512K or more ofmemory to run, keeping

RAM-resident programs compact is very important. For if a program is too large,

users won't be willing to keep a copy in memory, and that's the whole point.

RAM-resident programs usually need to work very closely with the ROM
BIOS or with your computer's hardware to change how existing functions work
or to add new functions. Disklite, for example, watches the ROM BIOS routines

that read from and write to disks so it can display a disk drive "light" on the

screen. Why would we want to do this?

Many programmers like to watch the disk drive light during compiles to keep

track of the compiler's progress. When a compile takes 30 seconds or a minute,

there isn't much else you can do. We also like to watch the disk drive light when
we're testing programs that read from or write to a disk to see ifthey're actually

accessing the disk. Fair enough. But what happens if you place your computer

on its side by your desk (or you have an IBM PS/2 Model 60)? Or you have a

hard disk card, which doesn't have a drive light? In either case, Disklite pro-

vides an on-screen drive light that lights up whenever you read to or write from

a disk. And it also tells you which disk you're accessing.

Intercepting Interrupts

As we mentioned above, Disklite displays the drive light by watching the

ROM BIOS routines that read to and write from disk. How can Disklite do that?

All disk reading and writing is performed by the INT 13h ROM BIOS rou-

tine. DOS uses this service by issuing an INT 13h instruction. Interrupts, as we
saw in Chapter 11, use a vector table at the start of memory to determine what
routine to call. Each interrupt vector in this table is two words long since it
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0000:000 UNTO uector

INT 13h

0000:004 : INT 13h uecto

Interrupt uector table

in low memory

Figure 32-1. INT 13h uses the interrupt vector at 4Ch to determine the address
of the routine to call.

holds the FAR address of the routine that will handle the interrupt. So the INT
13h instruction will use the address at 0:4Ch (13h times 4) in memory as the

address of the routine that will handle the INT 13h function. In other words, we
could change this address to point to our routine instead of the ROM BIOS's

routine. In fact, this is precisely what we'll do.

Figure 32-1 shows how INT 13h calls the routine in the ROM BIOS. Now
imagine that we change the interrupt vector to point to our procedure. Then the

vector will point to us instead of the ROM BIOS. We've now taken control ofthe

INT 13h function. But this isn't quite what we want. Ifwe completely take over

INT 13h, we have to write a program that will do everything INT 13h did, as

well as the new functions we want to add. We'd really like to use the ROM BIOS
INT 13h routines to do most of the work. As it turns out, this is very simple.

Instead of blindly replacing the INT 13h vector, we'll first save the vector in

our own program. Then we can use the ROM BIOS INT 13h routines by simu-

lating an INT call to the ROM routines. Recall that an INT is like a CALL
instruction, but it saves the flags on the stack so they'll be restored by an IRET
(Interrupt RETurn) instruction. All we need to do, then, is save the address of

the INT 13h routines in the variable ROM_DISKETTE_INT, so we can pass

control on to the ROM BIOS INT 13h routines with this pair of instructions:

P0SHF
CALL ROM_DISKETTE INT

When the ROM finishes accessing the disk, we'll receive control again. This

means we can execute some code before as well as after we call the ROM's disk
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INTERCEPT_DISKETTE_INT

entry code

PUSHF

CALL R0M_DI

INT 13h

JC DISK_ERROR
END

ROM RIOS

Disk

Seruices

Figure 32-2. Intercepting INT 13h.

functions, which is exactly what we need if we're going to display, then remove
a drive letter. Figure 32-2 shows these steps in more detail.

Note: The technique we've presented here will work with

most ROM BIOS routines. But there is a major caveat. Since

DOS is not a multitasking operating system, you can't make
DOS function calls from within an interrupt service routine

unless you can be can be absolutely certain DOS wasn't in the

middle of processing a function request. There are ways to

ensure this, but they're rather difficult, so we won't cover them
in this book. You'll find some references to this kind of informa-

tion in the bibliography at the end of the last chapter.

Disklite

Most of the other details of Disklite should either be familiar or well enough
documented that you can figure them out. There are a few details, however,

that are new or a bit out of the ordinary.

First of all, note that we're not saving or restoring registers in the procedures

of Disklite. Instead, we clearly mark which registers are altered. Then we save
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all the registers that can be altered at the start of INTER-
CEPT_DISKETTE_INT and nowhere else. We save them only once so we keep

the stack usage to a minimum.
Interrupt service routines generally need to be written so they don't use

much of the stack since they're borrowing someone else's stack, and there may
not be much space left on the stack. We never worried about stack space in our

own programs because we gave ourselves a large enough stack. We can't guar-

antee that everyone will give us a large stack when we get an INT 13h request.

For these reasons, many RAM-resident programs set up their own stack.

The two procedures GET_DISPLAY_BASE, SAVE_SCREEN and

WRITE_TO_SCREEN should be fairly clear. GET_DISPLAY_BASE we've

seen before, and the other two should be clear from the last chapter:

SAVE_SCREEN saves the two characters in the upper-right corner, and

WRITE_TO_SCREEN writes two characters in the upper-right corner.

WRITE_TO_SCREEN is used both to display the drive letter and to restore the

two characters that were on the screen before we displayed the drive letter.

DISPLAY_DRIVE_LETTER is also fairly simple. INT 13h takes a drive

number in the DL register. For floppy disk drives, DL will contain for drive A,

1 for drive B, and so on. For hard disks, on the other hand, DL starts at 80h. So

to get the actual drive letter for a hard disk we subtract 80h, then add the

number of floppy disk drives since the first hard disk appears after the last

floppy disk.

That leaves us with INIT_VECTORS and GET_NUM_FLOPPIES.
INIT_VECTORS shows the details of installing a procedure to intercept an

interrupt vector and to keep such a program in memory after we've returned to

DOS. First we display an author message. Then we call

GET_NUM_FLOPPIES to set NUM_FLOPPIES to the number of floppy disk

drives attached to your computer. Next we read and set the INT 13h vector with

the INT 21h functions 35h and 25h that read and set interrupt vectors.

Note that we put both initialization routines at the very end of Disklite. As it

turns out, both these procedures are used only once, when we first load Disklite

into memory, so we don't need to keep them in memory after we load Disklite.

This is exactly why we've put them at the end. The DOS function call INT 27h

called Terminate but Stay Resident exits our program and keeps most of the

program in memory. This function call takes an offset in DX to the first byte we
don't want to keep in memory. So by setting DX so it points to INITJVECTORS,
we tell DOS to keep all of Disklite in memory except for INIT_VECTORS and

GET_NUM_FLOPPIES. You could place as much initialization code here as

you want without it consuming any memory after Disklite's been installed; this

is a very handy feature.
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Enter the following program into DISKLITE.ASM. Then assemble, link, and

convert it into a .COM program (by typing EXE2BIN DISKLITE DIS-

KLITE.COM). After you run this program, an inverse X: (where X can be any

drive letter) will appear on the very right side of the first line whenever you
access a disk drive. To test it, run CHKDSK on any drive.

Listing 32-1. DISKLITE.ASM Program.

Disklite creates an on-screen version of the disk lie ht that is

usually on disk drives. The lifference, however, is that this liq ht ;

will only be on as long as it takes to read or write to the dis k. In ;

other words, it does not stay on while the disk spins Wlthout any
activity

.

This program intercepts the INT 13h vector, which is the entry point ;

for the ROM BIOS's diskette routine On entry, Disklite displa ys
the drive letter in the upper -right corner of the screen , and
restores this section of the screen on exit.

Here is the DISKLITE's entry point. It jumps to the initialization
routine which is at the very end so we can throw it out of memory
after we've used it.

CODE SEG SEGMENT
ASSUME CS:CODE SEG, DS :CODE SEG
ORG lODh

BEGIN: JMP INIT_VECTORS

AUTHOR STRING DB "Install
DB DDh, OAh

; Reserve for DOS Program Segment Prefix

'Installed Disklite, by John Socha"
' $ •

ROM_DISKETTE INT DD

DISPLAY BASE DW 7

OLD DISPLAY CHARS DB A DUP (?)
DISPLAY CHARS DB ' A' , 70h,
NUM FLOPPIES DB 7

UPPER LEFT EQU (60 * 5

: '
, ?0h

;Number of floppy drives

;0ffset to drive light

This procedure intercepts calls to the ROM BIOS's diskette I/O ;

vector, and it does several things: ;

1 Checks to see if the screen is in an 60 column text mode ;

so we can write to the screen. Disklite won't write any ;

characters to the screen if it's not in an 60 column mode. ;

5 Displays the disk drive letter, "A:" for example, in the ;

upper-right corner of the screen. ;

3 Calls the old ROM BIOS routine to do the actual work. ;

A Restores the two characters in the upper-right corner of the ;

screen. ;

INTERCEPT_DISKETTE_INT PROC
Assume CS:CODE_SEG,

FAR
DS:Nothing

PUSHF
PUSH AX
PUSH SI
PUSH DI
PUSH DS

;Save the old flags
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1

PUSH ES
CfiLL GET DISPLAY BASE
CALL SAVE SCREEN
CALL DISPLAY DRIVE LETTER
POP ES
POP DS
POP DI
POP SI
POP AX
POPF

PUSHF
CALL ROM_DISKETTE_INT

POSHF
PUSH AX
PUSH SI
PUSH DI
PUSH DS
PUSH ES
LEA SI, OLD DISPLAY CHARS
CALL WRITE TO SCREEN
POP ES
POP DS
POP DI
POP SI
POP AX
POPF
RET S

INTERCEPT_DISKETTE_INT ENDP

;Calculates the screen's display base
;Save two chars in upper right
;Display the drive letter

;Restore the old flags

;Simulate an INT call
; to the old ROM BIOS routine

;Save the returned flags

;Point to the old screen image
; Restore two chars in upper right

;Recover the returned flags
;Leave the status flags intact

This procedure calculates the segment address for the display adapter
that we're using.

Destroys

:

AX

GET DISPLAY_BASE PROC NEAR
Assume CS:CODE_SEG, DS:Nothing
INT
AND
CMP
MOV
JNE
MOV

DONE_GET_BASE:
MOV
RET

GET_DISPLAY_BASE

llh
AX,3Qh
AX,30h
AX/DBflDDh
DONE_GET_BASE
AX,0B000h

DISPLAY_BASE, AX

ENDP

;Get the current equipment flag
;Isolate the display flags
;Is this a monochrome display?
;Set for a color graphics adapter
;Color graphics, base already set
;Set for monochrome display

;Save this display base

This procedure saves the two characters in the upper right corner of
the screen so that we can restore them later.

Destroys

:

SAVE_SCREEN
Assume
MOV
LEA
MOV
MOV
MOV
MOV
CLD
MOVSW
MOVSW
RET

SAVE_SCREEN

AX, SI, DI, DS, ES

PROC NEAR
CS:CODE_SEG, DS:Nothing
SI,UPPER_LEFT
DI,OLD_DISPLAY_CHARS
AX,DISPLAY_BASE
DS, AX
AX,CS
ES, AX

;Read chars from the screen
;Write chars to local memory
;Get segment address of screen

;Point to the local data

;Set for auto-increment
;Move two characters

ENDP
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Listing 32-1. continued

This procedure displays the drive letter in the upper-right corner of ;

the screen.

Destroys: AX, SI

DISPLAY_DRIVE_LETTER PBOC NEAR
Assume CS:CODE_SEG, DS:Nothing
MOV AL,DL
CMP AL,flOh
JB DISPLAY LETTER
SOB AL.SDh
ADD AL,NDM FLOPPIES

DISPLAY LETTER:
ADD AL, '

A'

LEA SI, DISPLAY CHARS
MOV CS: tSI], AL
CALL HRITE TO SCREEN
RET

;Get the drive number
;Is this a hard disk drive?
;No, then continue
;Convert to hard disk number
;Convert to correct disk nuiber

;Convert this into a drive letter
; Point to new char image
;Save this character

DISPLAY DRIVE LETTER ENDP

This procedure writes two characters in the upper-right corner of the
screen.

On entry:
Destroys:

CS:SI Screen image for two characters
AX, SI, DI, DS, ES

HRITE TO SCREEN PROC NEAR
Assume CS:CODE_SEG, DS:Nothing
MOV DI DPPER LEFT
MOV AX DISPLAY BASE
MOV ES AX
MOV AX CS
MOV DS AX
CLD
MOVSH
MOVSW
RET

HRITE TO SCREEN in:?

;Hrite chars to the screen
;Get segment address of screen

;Point to the local data

;Set for auto-increment
;Move two characters

This procedure daisy-chains Dlsklite onto the diskette I/O vector
so that we can monitor the disk activity.

INIT_VECTORS
Assume
LEA
MOV
INT

PROC SEA?
CS:CODE_SEG, DS:CODE_SEG
DX,A0THOR_STRING ;Print out the author notice
AH, 1

! ;Display this string
21h

CALL GET NDM FLOPPIES ;See how many floppy drives installed

MOV AH,35h ; Ask for an interrupt vector
MOV AL,13h ;Get the vector for INT 13h
INT 21h ;Put vector in ES:BX
MOV Hord Ptr ROM_DISKETTE_INT,BX
MOV Hord Ptr R0M_DISKETTE_INT[2 ] ,ES

MOV AH,5Sh ;Ask to set an interrupt vector
MOV AL,13h ;Set the INT 13h vector to DS:DX
MOV DX, Offset INTERCEPT_DISKETTE_INT
INT aih ;Set INT 13h to point to our procedure

MOV DX, Offset INIT_VECTORS ;End of resident portion
INT 57h ;Terminate but stay resident

INIT_VECTORS ENDP
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This procedure determines how many logical floppy disk drives are in
the system. The next drive letter will be used for hard disk drives.

GET_NUM_FLOPPIES PROC NEAR
Assume CS:CODE_SEG, DS:CODE_SEG
INT llh ;Get the equipment flag
MOV CL,b
SHR AX,CL
AND AL,3
INC AL
CMP AL,1
JA DONE GET FLOPPIES

MOV AL,2
DONE_GET_FLOPPIES:

MOV NUM_FLOPPIES,AL
RET

GET_NUM_FLOPPIES ENDP

;Right justify num of floppies
;Strip all the other flags
;Returns Q for 1 floppy
;Is this a one floppy system?
;No, then this is the correct number

;Yes, there are 5 logical drives

;Save this number

CODE SEG

END

ENDS

BEGIN
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B>y now you've seen many examples of assembly language programs.

Throughout this book, we've constantly emphasized programming, rather than

the details of the 8088 microprocessor inside your IBM Personal Computer. As
a result, you haven't seen all the 8088 instructions, nor all the assembler direc-

tives. But most assembly language programs can be written with what you've

learned here and no more. Your best approach to learning more about writing

assembly language programs is to take the programs in this book and modify

them.

If you think of a better way to write any part of Dskpatch, by all means do so.

This is how we first learned to write programs. Back then the programs were in

BASIC, but the idea still holds. We found programs written in BASIC, and
began to learn about the language itself by rewriting bits and pieces of those

programs. You can do the same with Dskpatch.

After you've tried some of these examples, you'll be ready to write your own
programs. Don't start from scratch here, either; that's rather difficult for your

first time out. To begin with, use the programs in this book as a framework.

Don't build a completely new structure or technique (your equivalent of modu-
lar design) until you feel comfortable with writing assembly language pro-

grams.

If you really become enthralled by assembly language, you'll also need a

more complete book for use as a reference to the 8088 instruction set. What fol-

lows is a list of books we've read and liked that you'll find useful as references

or further reading. This list is by no means complete, as the books listed here

are only ones we've read. Also, some of these references are older than you

might expect since we learned assembly language programming several years

ago (more than we'd like to admit).

80x86 Reference Books

The following three books are good programmers' references:

iAPX 88 Book. Intel, 1981. This is the definitive sourcebook and a very good
reference.

iAPX 286 Programmer's Reference Manual. Intel, 1984. The definitive

sourcebook for the 80286 microprocessor.
Rector, Russel, and Alexy, George, The 8086 Book. Osborne/McGraw-Hill,

1980. This is another good reference, but rather thick and dense.
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The next three books were all written for the IBM PC. Much of the informa-

tion in each of these is generic; only the examples in the latter part of these

books are specific to the IBM PC. We recommend that you look at all three

books in a bookstore to see which one you find most interesting:

Scanlon, Leo J. IBM PC & XT Assembly Language: A Guide for Program-
mers, Enhanced and Enlarged. Brady Communication Co., 1985. This book
is easy reading. It's a complete introduction to 8088 assembly language,

but it's not very useful as a reference. If you're still feeling somewhat
shaky about assembly language, this might be a good book for you. Other-

wise, look at Morse's book.

Willen, David C, and Krantz, Jeffrey I. 8088 Assembler Language Program-
ming: TheIBMPC. Howard W. Sams & Co., 1983. This is another good sec-

ond book on the 8088 microprocessor, written for the IBM PC.
Bradley, David J. Assembly Language Programming for the IBM Personal

Computer. Prentice-Hall, 1984. The author helped design the IBM PC, and
he's included many examples for the IBM PC. These examples aren't com-
plete, but they may give you ideas of programs to work on. He also talks

more about advanced subjects, such as the 8087 numeric processor, than do

the authors of the preceding two books.

The next recommendation is neither a reference book, nor an introduction for

the IBM PC. It's an introduction to the 8088 microprocessor, written by a mem-
ber of the design team at Intel:

Morse, Stephen P. The 8086/8088 Primer. Hayden, 1982. This is a delightful

book. As one of the designers at Intel, Morse provides many insights into

the design of the 8088 and also talks about some of the design flaws and
bugs in the 8088. While not very good as a reference, this book is complete,

and it's very readable and informative.

DOS and ROM BIOS Programming

The references in this section are useful to anyone programming the IBM PC.

Norton, Peter. Programmer's Guide to the IBM PC, Microsoft Press, 1985.

Includes a complete reference to all DOS and BIOS functions, descriptions

ofimportant memory locations, a summary of 8086 instructions, and a host
of other useful (or at least interesting) information.

Duncan, Ray. Advanced MS-DOS. Microsoft Press, 1986. Covers almost eve-

rything you'll want to know about using the DOS services in your pro-

,
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grams. It also includes a number of sample programs. A nice companion to

Peter's Programmer's Guide.

RAM-Resident Programs

There aren't many good references for people who want to write RAM-resi-

dent programs since much of the material hasn't been published in a single

place. But there are two good sources for information:

The MS-DOS Encyclopedia, edited by Ray Duncan. Microsoft Press, 1988.

This book has a wealth of information. It has a nice article that covers

many of the aspects of writing RAM-resident programs.

PC Magazine, published by Ziff-Davis, New York, N.Y. often prints informa-

tion on RAM-resident programs, as well as example programs. A subscrip-

tion to this magazine will provide you with many good assembly language
programs.

Software Design

We have a few favorite books when it comes to software design. The books we
recommend are a bit out of the ordinary, enjoyable, and well worth the read.

Brooks, Frederick P., Jr. The Mythical Man-Month: Essays on Software
Engineering. Addison-Wesley, 1982. Everyone connected with a software

project should read this book, especially your manager. A classic.

Normal, Donald A. The Psychology ofEveryday Things. Basic Books, 1988.

This book provides a lot of useful insight into what does and doesn't create

problems with programs that interact with people.

Heckel, Paul. The Elements of Friendly Software Design. Warner Books,
1984.
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T,he companion disk to this book contains most of the Dskpatch examples

you've seen in the preceding chapters, as well as an advanced version of the pro-

gram that includes many improvements. The files are in two groups: the chap-

ter examples and the advanced Dskpatch program. This appendix will explain

what's on the disk and why.

Chapter Examples

All the chapter examples are from Chapters 9 through 27, 30, and 32. The
examples in earlier chapters are short enough that you can type them in

quickly. But starting in Chapter 9, we began to build Dskpatch, which, by the

end of this book, had grown to nine different files.

In any one chapter, only a few of these nine files changed. Since they do

evolve throughout each chapter, however, there wasn't enough room on the

disk to store each version of each example. So you will find the examples on the

disk, as they stand after each chapter. Thus, if we modify a program several

times in, say, Chapter 19, the disk contains the final version.

The table in the following guide shows when each file changes. It also shows

the name of the disk file for that chapter. If you want to make sure you're still

on course or don't feel like typing in the changes for some chapter, just look at

this table to find the names of the new files. Then you can either check your

work or copy the file(s) to your disk.

Here's the complete list of all the files on the companion disk (not including

the advanced version of Dskpatch):

VIDEO_q.ftSM
VIDE0_1D.ASM
VIDEO_13.ASM
TESTIS. fiSfi

DISP_S14. ASM
CDRSORK. ASM
VIDEO_l£. ASM
DISP_S1S. ASM
DISK_I15.ASM
DISP_Slb. ASM
DSKPATiq.ASM

VIDE0_lb.
DISK_Ilt,.
DSKPAT17.
DISP_S17.
C0RSOR17.
VIDEO_17.
DISK_I17.
DISP_Slfl.
CURSORlfl.
VIDEO_18.
DISPATiq.

ASM
ASM
ASM
ASM
ASM
ASM
ASM
ASM
ASM
ASM
ASM

DISP_S1
KBD_I01
DISK_I1
DISP_SE
PHANT05
VIDEO_5
DISPAT5
EDIT0R5
PHANT02
KBD_I05
TEST53

.ASM

.ASM
ASM
.ASM
.ASM
.ASM

?5.ASM
?5.ASH
?2.ASM
?3. ASM
.ASM

KBD_I05<.
DISPATES.
DISPATEb.
DISK_I2t.
PHANT027,
DSKPAT3Q,
KBD_I03Q,
CDRSOR3Q,
VIDEO_30.
CLIB.ASM
DISKLITE.

ASM
ASM
ASM
ASM
ASM
ASM
ASM
ASM
ASM

ASM

Advanced Version of Dskpatch

As we said, the disk contains more than just the examples in this book. We
didn't really finish Dskpatch by the end of Chapter 27, and there are many
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things we should have put into Dskpatch to make it a usable program. The disk

contains an almost-finished version. Here's a quick overview ofwhat you'll find

there.

As it stands (in this book), Dskpatch can only read the next or previous sec-

tor. Thus, if you wanted to read sector 576, you'd have to push the F4 key 575

times. That's too much work. And what ifyou wanted to look at sectors within a

file? Right now, you'd have to look at the directory sector and figure out where

to look for the sectors of that file. Again, not much fun. The disk version of

Dskpatch can read either absolute sectors, just as the book version can, or it can

read sectors within a file. In its advanced form, Dskpatch is a very usable pro-

gram.

The advanced version of Dskpatch has too many changes to describe in detail

here, so we'll take just a quick look at the new functions we added to the disk

version. You'll find many of the changes by exploring Dskpatch and making
your own changes.

The advanced Dskpatch still has nine files, all of which you'll find on the

disk:

DSKPATCH. ASM DISPATCH. ASM DISP_SEC.ASM KBD_IO.ASM
CURSOR. ASM EDITOR. ASM PHANTOM. ASM VIDEO_IO.ASM
DISK_IO.ASM DSKPATCH.COM

You'll also find an assembled and linked .COM version ready to run, so you can

try out the new version without assembling it.

When you do, you'll be able to tell that there are several improvements just

by looking at the screen display. The advanced Dskpatch now uses eight func-

tion keys. That's more than you can remember, if you don't use Dskpatch very

often, so the advanced Dskpatch has a "key line" at the bottom of the display.

Here's a description of the function keys:

F2 we've seen in this book. Press the Shift key and F2 to write a sector

back to the disk.

F3, F4 We already know about F2 and F3, because we used them in this

book. F2 reads the previous sector, and F3 reads the next sector.

F5 changes the disk-drive number or letter. Just press F5 and enter a
letter, such as A (without a colon, :), or enter a drive number, such
as 0. When you press the Enter key, Dskpatch will change drives

and read a sector from the new disk drive. You may want to change
Dskpatch so that it doesn't read a new sector when you change
drives. We just set it up so that it's very difficult to write a sector to

the wrong disk.

F6 changes the sector number. Just press F6 and type a sector number,
in decimal. Dskpatch will read that sector.



342 Peter Norton's Assembly Language Book for the IBM PC, Revised & Expanded

F7 changes Dskpatch to file mode. Just enter the file name and
Dskpatch will read a sector from that file. From then on, F3 (Previ-

ous Sector) and F4 (Next Sector) read sectors from within that file.

F5 ends file mode and switches back to absolute-sector mode.
F8 asks for an offset within a file. This is just like F4 (Sector) except

that it reads sectors within a file. If you enter an offset of 3,

Dskpatch will read the fourth sector in your file.

F10 exits from Dskpatch. If you accidentally press this key, you'll find

yourself back in DOS, and you'll lose any changes you've made to

the last sector. You may want to change Dskpatch so that it asks if

you really want to leave Dskpatch.

A number of other changes aren't as obvious as those we just mentioned. For

example, Dskpatch now scrolls the screen one line at a time. So, ifyou move the

cursor to the bottom line of the display and press the Cursor-Down key,

Dskpatch will scroll the display by one line, putting a new line at the bottom.

In addition, some of the other keys on the keyboard also work now:

Home moves the phantom cursor to the top of the half-sector display and
scrolls the display so you see the first half-sector.

End moves the phantom cursor to the bottom right of the half-sector display

and scrolls the display so you see the second half-sector.

PgUp scrolls the half-sector display by four lines. This is a nice feature when
you want to move part way through the sector display. If you press PgUp
four times, you'll see the last half sector.

PgDn scrolls the half-sector display by four lines in the opposite direction

from PgUp.

If you like, you can modify the advanced Dskpatch to better suit your own
needs. That's why the disk has all the source files for the advanced Dskpatch:

So you can modify Dskpatch any way you like and learn from a complete exam-
ple. For instance, you might spruce up the error-checking capabilities. As it

stands, if pressing F4 causes you to fall off the end of a disk or file, Dskpatch
doesn't reset the sector to the last sector on the disk or file. Ifyou feel ambitious,

see if you can modify Dskpatch so it catches and corrects such errors.

Or, you may want to speed up screen updates. To do this you'd have to rewrite

some of the procedures, such as WRITE_CHAR and WRITE^VTTRIBUTE_N_
TIMES, to write directly to screen memory. Now, they use the very slow ROM
BIOS routines. If you're really ambitious, try to write your own character-out-

put routines that send characters to the screen very quickly.

Good luck.
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Disk ft Sector

00 01 02 03 04 05 06 07 08 09 0fl 0B 0C 0D 0E 0F 0123456789ABCDEF

08 F5JTM28 90 49 42 4D 20 50 4E 43 49 08 02 02 01 08 SCfilBH PNCI 66®

10 02 70 00 D0 02 FD 02 00 09 00 02 00 00 00 00 00 Op Jtfao o

20 00 00 00 00 00 00 00 00 00 00 Ffi 33 CB 8E D0 BC •3W
30 F0 7B FB B8 C8 07 8E D8 BE 5B 00 90 FC AC 0fl C8 ~{i

l

L.fi^[ ^g L

40 74 0B 56 B4 0E BB 07 00 CD 10 5E EB F0 32 E4 CD wv fa* =rrfs2E=

50 16 B4 0F CD 10 32 E4 CD 10 CD 19 0D 0fl 0D 0ft 0D -jfc*2E=MjBffi
60 0fl 0D 0fl 0D 0fl 0D 0fl 0D 0fl 00 0fl 20 20 20 20 54 l&UZM T

70 68 69 73 20 64 69 73 6B 20 69 73 20 6E 6F 74 20 his disk is not

80 62 6F 6F 74 61 62 6C 65 0E 0ft 0E 0fl 20 49 66 20 bootabled If

90 79 6F 75 20 77 69 73 68 20 74 6F 20 6D 61 6B 65 you wish to nake

m 20 69 74 20 62 6F 6F 74 61 62 6C 65 2C 0D 0fl 72 it bootable, j^
B0 75 6E 20 74 68 65 20 44 4F 53 20 70 72 6F 67 72 un the DOS progr

C0 61 6D 20 53 59 53 20 61 66 74 65 72 20 74 68 65 an SVS after the

D0 0D 0fl 20 20 20 20 20 73 79 73 74 65 6D 20 68 61 •2 systen ha

E0 73 20 62 65 65 6E 20 6C 6F 61 64 65 64 0D 0ft 0D s been loadedjgj
F0 0ft 50 6C 65 61 73 65 20 69 6E 73 65 72 74 20 61

i i i

JP lease insert a

Press function key, or enter character or hex byte:

2\m'l-M 3'iiW 4 ,"5T 5 IIJWJ 62352 ?"" R IUCT5J 9|

Figure A-l. The Advanced Version ofDskpatch
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Descriptions of Procedures

This appendix contains the final version of Dskpatch. If you're writing your

own programs, you'll find many general-purpose procedures in this appendix

that will help you on your way. We've included short descriptions of each proce-

dure to help you find such procedures.

CURSOR.ASM

CLEAR_SCREEN Like the BASIC CLS command; clears the text screen.

CLEAR_TO_END_OF_LINE Clears all the characters from the cursor

position to the end of the current line.

CURSOR-RIGHT Moves the cursor one character position to the right,

without writing a space over the old character.

GOTO_XY Very much like the BASIC LOCATE command; moves the

cursor on the screen.

SEND_CRLF Sends a carriage-return/line-feed pair of characters to the

screen. This procedure simply moves the cursor to the start of the next line.

UPDATE_REAL_CURSOR Moves the real cursor to the location of the

virtual cursor.

UPDATE_VIRTUAL_CURSOR Moves the virtual cursor to the position

of the real cursor.

DISICIO.ASM

NEXT_SECTOR Adds one to the current sector number, then reads that

sector into memory and rewrites the Dskpatch screen.

PREVIOUS_SECTOR Reads the previous sector. That is, the procedure

subtracts one from the old sector number (CURRENT_SECTOR_NO) and
reads the new sector into the memory variable SECTOR. It also rewrites the

screen display.
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READ_SECTOR Reads one sector (512 bytes) from the disk into the mem-
ory buffer, SECTOR.

WRITE_SECTOR Writes one sector (512 bytes) from the memory buffer,

SECTOR, to the disk.

DISPATCH.ASM

DISPATCHER The central dispatcher, reads characters from the key-

board and then calls on other procedures to do all the work of Dskpatch. Add
any new commands to DISPATCH_TABLE in this file.

DISP_SEC.ASM

DISP_HALF_SECTOR Does the work of displaying all the hex and ASCII
characters that appear in the half-sector display by calling DISP_LINE 16

times.

DISP_LINE Displays just one line of the half-sector display.

DISP_HALF_SECTOR calls this procedure 16 times to display all 16 lines of

the half-sector display.

INIT_SEC_DISP Initializes the half-sector display you see in Dskpatch.

This procedure redraws the half-sector display, along with the boundaries and
top hex numbers, but does not write the header or the editor prompt.

WRITE_HEADER Writes the header at the top of the screen you see in

Dskpatch. There, the procedure displays the disk-drive number and the

number of the sector you see in the half-sector display.

WRITE_PROMPT_LINE Writes a string at the prompt line, then clears

the rest of the line to remove any characters from the old prompt.

WRITE_TOP_HEX_NUMBERS Writes the line of hex numbers across

the top of the half-sector display. The procedure is not useful for much else.

DSKPATCH.ASM

DISK_PATCH The (very short) main program of Dskpatch.

DISK_PATCH simply calls a number of other procedures, which do all the

work. It also includes many of the definitions for the variables that are used

throughout Dskpatch.
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EDITOR.ASM

EDIT_BYTE Edits a byte in the half-sector display by changing one byte

both in memory (SECTOR) and on the screen. Dskpatch uses this procedure to

change bytes in a sector.

WRITE_TO_MEMORY Called upon by EDIT_BYTE to change a single

byte in SECTOR. This procedure changes the byte pointed to by the phantom
cursor.

KBD_IO.ASM

BACK_SPACE Used by the READ_STRING procedure to delete one char-

acter, both from the screen and from the keyboard buffer, whenever you press

the Backspace key.

CONVERT_HEX_DIGIT Converts a single ASCII character into its

hexadecimal equivalent. For example, the procedure converts the letter A into

the hex number OAH. Note: CONVERT_HEX_DIGIT works only with upper-

case letters.

HEX_TO_BYTE Converts a two-character string of characters from a

hexadecimal string, such as A5, into a single byte with that hex value.

HEX_TO_BYTE expects the two characters to be digits or uppercase letters.

READ_BYTE Uses READJ3TRING to read a string of characters. This

procedure returns the special function key, a single character, or a hex byte if

you typed a two-digit hex number.

READ_DECIMAL Reads an unsigned decimal number from the key-

board, using READ_STRING to read the characters. READ_DECIMAL can

read numbers from to 65535.

READ_KEY Reads a single key from the keyboard and returns through

255 for ordinary characters, and lOOh plus the scan code for special keys.

READ_STRING Reads a DOS-style string of characters from the key-

board. This procedure also reads special function keys, whereas the DOS
READ_STRING function does not.
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STRING_TO_UPPER A general-purpose procedure, converts a DOS-
style string to all uppercase letters.

PHANTOM.ASM

ERASE_PHANTOM Removes the two phantom cursors from the screen

by returning the character attribute to normal (7) for all characters under the

phantom cursors.

MOV_TO_ASCI l_POSITION Moves the real cursor to the start of the

phantom cursor in the ASCII window of the half-sector display.

MOV_TO_HEX_POSITION Moves the real cursor to the start of the

phantom cursor in the hex window of the half-sector display.

PHANTOM_DOWN Moves the phantom cursor down and scrolls the

screen ifyou try to move past the sixteenth line of the half-sector display.

PHANTOM_LEFT Moves the phantom cursor left one entry but not past

the left side of the half-sector display.

PHANTOM_RIGHT Moves the phantom cursor right one entry but not

past the right side of the half-sector display.

PHANTOM_UP Moves the phantom cursor up one line in the half-sector

display, or scrolls the display if you try to move the cursor off the top.

RESTORE_REAL_CURSOR Moves the cursor back to the position rec-

orded by SAVE_REAL_CURSOR.

SAVE_REAI CURSOR Saves the position of the real cursor in two vari-

ables. Call this procedure before you move the real cursor ifyou want to restore

its position when you've finished making changes to the screen.

SCROLLDOWN Rather than scrolling the half-sector display, displays

the first half of the sector. You'll find a more advanced version of

SCROLLJDOWN on the disk available with this book. The advanced version

scrolls the half-sector display by just one line.

SCROLLUP Called by PHANTOM_DOWN when you try to move the

phantom cursor off the bottom of the half-sector display. The version in this

book doesn't actually scroll the screen: It writes the second half of the sector. On
the disk, more advanced versions of SCROLL_UP and SCROLL-DOWN scroll

the display by one line, instead of 16.
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WRITE_PHANTOM Draws the phantom cursors in the half-sector dis-

play: one in the hex window and one in the ASCII window. This procedure sim-

ply changes the character attributes to 70H to use black characters on a white

background.

VIDECUO.ASM

Contains most of the general-purpose procedures you'll want to use in your

own programs.

IN IT_WRITE_CHAR Call this procedure before you call any of the other

procedures in this file. It initializes the data used by the routines that write

directly to screen memory.

WRITE_ATTRIBUTE_N_TIMES A handy procedure you can use to

change the attributes for a group of N characters. WRITE_PHANTOM uses

this procedure to draw the phantom cursors, and ERASE_PHANTOM uses it to

remove the phantom cursors.

WRITE_CHAR Writes a character to the screen. Since it uses the ROM
BIOS routines, this procedure doesn't attach special meaning to any charac-

ters. So, a carriage-return character will appear on the screen as a musical note

(the character for ODH). Call SEND_CRLF if you want to move the cursor to

the start of the next line.

WRITE_CHAR_N_TIMES Writes N copies ofone character to the screen.

This procedure is useful for drawing lines of characters, such as the ones used

in patterns.

WRITE_DECIMAL Writes a word to the screen as an unsigned decimal

number in the range to 65535.

WRITE_HEX Takes a one-byte number and writes it on the screen as a

two-digit hex number.

WRITE_HEX_DIGIT Writes a single-digit hex number on the screen.

This procedure converts a 4-bit nibble into the ASCII character and writes it to

the screen.

WRITE_PATTERN Draws boxes around the half-sector display, as

defined by a pattern. You can use WRITE_PATTERN to draw arbitrary pat-

terns of characters on the screen.
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WRITE_STRING A very useful, general-purpose procedure with which

you can write a string of characters to the screen. The last character in your

string must be a zero byte.

Program Listings for Dskpatch Procedures

DSKPATCH Make File

Here is the makefile that you can use with Microsoft's Make utility to build

Dskpatch automatically.

DSKPATCH. OBJ: DSKPATCH. ASM
MASM DSKPATCH;

DISK_IO.OBJ: DISK_IO.ASM
MASM DISK_IO;

DISP_SEC.OBJ: DISP_SEC.ASM
MASM DISP_SEC;

VIDEO_IO.OBJ: VIDEO_IO.ASM
MASM VIDEO_IO;

CURSOR. OBJ: CURSOR. ASM
MASM CURSOR;

DISPATCH. OBJ: DISPATCH. ASM
MASM DISPATCH;

KBD_IO.OBJ: KBD_IO.ASM
MASM KBD_IO;

PHANTOM. OBJ: PHANTOM. ASM
MASM PHANTOM;

EDITOR. OBJ: EDITOR. ASM
MASM EDITOR;

DSKPATCH.EXE: DSKPATCH. OBJ DISK_IO.OBJ DISP_SEC.OBJ VIDEO_IO.OBJ CURSOR. OBJ \

DISPATCH. OBJ KBD_IO.OBJ PHANTOM. OBJ EDITOR. OBJ
LINK @ LINKINFO

DSKPATCH Linkinfo File

And here is the linkinfo file:

DSKPATCH DISK_IO DISP_SEC VIDEO_IO CURSOR +

DISPATCH KBD_IO PHANTOM EDITOR
DSKPATCH
DSKPATCH /MAP;
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CURSOR.ASM

CR
LF

EQU
EQU

13
10

;Carriage return
;Line feed

.MODEL SMALL

.CODE

PDBLIC CLEAR SCREEN

This procedure clears the entire screen.

CLEAR SCREEN PROC
POSH AX
PUSH BX
PUSH CX
PUSH DX
XOR AL,AL
XOR CX,CX
MOV DH,5<
MOV DL,?R
MOV BH,?
MOV AH,b
INT IDh
POP DX
POP CX
POP BX
POP AX
RET

CLEAR_SCREEN ENDP

PUBLIC GOTO XY
.DATA

EXTRN SCREEN
EXTRN SCREEN

;Blank entire window
;Upper left corner is at (0,0)
;Bottom line of screen is line 24
;Right side is at column 7R
; Use normal attribute for blanks
;Call for SCROLL-UP function
;Clear the window

PTR:WORD ;Pointer to character under cursor
X:BYTE, SCREEN_Y : BYTE

.CODE

This procedure moves the cursor

On entry: DH
DL

Row (Y)
Column (X)

GOTO_XY
PUSH
PUSH

PROC
AX
BX

MOV BH,0 ;Display page
MOV AH,

5

;Call for SET CURSOR POSITION
INT lOh

MOV AL,DH ;Get the row number
MOV BL,flO ;Multiply by 60 chars per line
MUL BL ;AX = row * SO
ADD AL,DL ;Add column
ADC AH, ;AX = row * BO + column
SHL AX,1 ;Convert to a byte offset
MOV SCREEN PTR, AX ;Save the cursor offset
MOV SCREEN .X DL ;Save the cursor position
MOV SCREEN._Y DH

POP BX
POP AX
RET

GOTO_XY ENDP

PUBLIC CURSOR..RIGHT
.DATA

EXTRN SCREEN PTR:WORD ;Pointer to character under cu
EXTRN SCREEN..X BYTE, SCREE N Y:BYTE
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.CODE

This procedure moves the cursor one position to the right or to the
next line if the cursor was at the end of a line.

Uses

:

Writes:
SEND_CRLF
SCREEN_PTR, SCREEN_X, SCREEN_Y

CURSOR RIGHT PROC
INC SCREEN PTR
INC SCREEN PTR
INC SCREEN X

CMP SCREEN X/7S
JBE OK
CALL SEND CRLF

OK:
RET

CURSOR RIGHT ENDP

;Move to next character position (word)

;Move to next column
;Make sure column <= 7S

;Go to next line

PUBLIC UPDATE_REAL_CURSOR

This procedure moves the real cursor to the current virtual cursor
position. You'll want to call it just before you wait for keyboard
input .

UPDATE REAL CURSOR PROC
PUSH
MOV
MOV
CALL
POP
RET

UPDATE REAL CURSOR

DX
DL,SCREEN_X
DH,SCREEN_Y
GOTO_XY
DX

ENDP

;Get position of the virtual cursor

;Move real cursor to this position

PUBLIC UPDATE_VIRTUAL_CURSOR

This procedure updates the position of our virtual cursor to agree
with the position of the real cursor.

UPDATE VIRTUAL CURSOR PROC
PUSH AX
PUSH BX
PUSH CX
PUSH DX
MOV AH,

3

XOR BH, BH
INT lOh
CALL GOTO XY
POP DX
POP CX
POP BX
POP AX
RET

UPDATE VIRTUAL CURSOR

;Ask for the cursor position
;0n page
;Get cursor position into DH, DL
;Move virtual cursor to this position

ENDP

PUBLIC CLEAR TO END OF LINE

This procedure clears the line from the current cursor position to
the end of that line.

CLEAR_TO_END_OF_LINE PROC
PUSH AX
PUSH BX
PUSH CX
PUSH DX
MOV DL SCREEN X
MOV DH SCREEN Y
MOV AH h

XOR AL AL
MOV CH DH

;Set up to clear to end of line
;Clear window
;A11 on same line
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MOV CL,DL
MOV DL,?q
MOV BH,7
INT lOh
POP DX
POP CX
POP BX
POP AX
RET

;Start at the cursor position
;And stop at the end of the line
;0se normal attribute

CLEAR TO END OF LINE ENDP

PUBLIC SEND_CRLF

This routine just sends a carriage return-line feed pair to the
display, using the DOS routines so that scrolling will be handled
correctly

.

Uses

:

OPDATE VIRTUAL CURSOR

SEND CRLF PROC
POSH AX
POSH DX
MOV ah, a

MOV DL,CR
INT 51h
MOV DL,LF
INT 51h
CALL OPDATE
POP DX
POP AX
RET

SEND CRLF ENDP

_VIRT0AL_C0RSOR ; Opdate position of virtual cursor

END
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DISK_IO.ASM

.MODEL

.DATA

.CODE

.DATA

.CODE

SMALL

EXTRN SECTOR:BYTE
EXTRN DISK_DRIVE_NO:BYTE
EXTRN CURRENT_SECTOR_NO:WORD

PUBLIC PREVIOUS_SECTOR
EXTRN INIT_SEC_DISP:PROC, WRITE_HEADER : PROC
EXTRN WRITE_PROMPT_LINE:PROC

EXTRN CURRENT SECTOR NO:WORD, EDITOR_PROMPT : BYTE

This proced ure reads the previous sector, if possible. ;

Uses

:

WRITE HEADER, READ SECTOR, INIT SEC DISP ;

WRITE PROMPT LINE ;

Reads

:

CURRENT SECTOR NO, EDITOR PROMPT ;

Writes: CURRENT SECTOR NO ;

PREVIOUS_SECTOR
PUSH
PUSH
MOV
OR
JZ
DEC
MOV
CALL
CALL
CALL
LEA
CALL

DONT_DECREMENT_SECTOR

:

POP DX
POP AX
RET

PREVIOUS SECTOR

PROC
AX
DX
AX,CURRENT_SECTOR_NO
AX, AX
DONT_DECREMENT_SECTOR
AX
CURRENT_SECTOR_NO,AX
WRITE_HEADER
READ_SECTOR
INIT_SEC_DISP
DX,EDITOR_PROMPT
WRITE PROMPT LINE

;Get current sector number
;Don't decrement if already D

;Save new sector number

;Display new sector

ENDP

.DATA

.CODE

PUBLIC NEXT_SECTOR
EXTRN INIT_SEC_DISP:PROC, WRITE_HE ADER : PROC
EXTRN WRITE_PROMPT_LINE:PROC

EXTRN CURRENT_SECTOR_NO:WORD, EDITOR_PROMPT : BYTE

Reads the next sector. ;

Uses

:

WRITE HEADER, READ SECTOR, INIT SEC DISP ;

WRITE PROMPT LINE ;

Reads

:

CURRENT SECTOR NO, EDITOR PROMPT ;

Writes: CURRENT_SECTOR_NO ;

NEXT SECTOR PROC
PUSH AX
PUSH DX
MOV AX, CURRENT SECTOR NO
INC AX
MOV CURRENT SECTOR NO, AX
CALL WRITE HEADER
CALL READ SECTOR
CALL INIT SEC DISP

;Move to next sector

;Display new sector
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LEA DX, EDITOR PROMPT
CALL WRITE PROMPT LINE
POP DX
POP AX
RET

NEXT SECTOR ENDP

PDBLIC READ_SECTOR

This procedure reads one sector (515 bytes) into SECTOR.

Reads

:

Writes

:

CURRENT_SECTOR_NO, DISK_DRI VE_NO
SECTOR

READ SECTOR PROC
PUSH AX
PUSH BX
PDSH CX
POSH DX
MOV AL,DISK DRIVE NO
MOV CX,1
MOV DX, CURRENT SECTOR NO
LEA BX, SECTOR
INT 55h
POPF
POP DX
POP CX
POP BX
POP AX
RET

READ SECTOR ENDP

;Drive number
; Read only 1 sector
; Logical sector number
;Where to store this sector
;Read the sector
;Discard flags put on stack by DOS

PUBLIC WRITE SECTOR

This procedure writes the sector back to the disk.

Reads: DISK_DRIVE_NO, CUFRENT_SECTOR_NO, SECTOR

WRITE SECTOR PROC
PUSH AX
PUSH BX
PUSH CX
PUSH DX
MOV AL,DISK DRIVE _NO ;Drive number
MOV CX,1 ;Write 1 sector
MOV DX, CURRENT _SECT( ;Logical sector
LEA BX, SECTOR
INT 5th ;Write the sect
POPF ;Discard the fl
POP DX .

POP CX
POP BX
POP AX
RET

WRITE_SECTOR ENDP

END
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DISPATCH.ASM

.MODEL SMALL

.CODE

.DATA

EXTRN
EXTRN
EXTRN
EXTRN
EXTRN

NEXT_SECTOR:PROC
PREVIOUS_SECTOR:PROC
PHANTOM_UP:PROC, PHANTOM_DOWN : PROC
PHANTOM_LEFT:PROC, PHANTOM_RIGHT : PROC
WRITE SECTOR:PROC

;In DISK_IO.ASM
;In DISK_IO.ASM
;In PHANTOM. ASM

;In DISK_IO.ASM

This table contains the legal extended ASCII keys and the addresses
of the procedures that should be called when each key is pressed.

The format of the table is
DB 72
DW OFFSET PHANTOM_UP

;Extended code for cursor up

DISPATCH TABLE LABEL BYTE
DB LI
DW OFFSET _TEXT : PREVIOUS_SECTOR
DB te
DW OFFSET _TEXT:NEXT_SECTOR
DB 75
DW OFFSET _TEXT:PHANTOM_UP
DB fiO

DW OFFSET _TEXT:PHANTOM_DOWN
DB 75
DW OFFSET _TEXT:PHANTOM_LEFT
DB 77
DW OFFSET _TEXT:PHANTOM_RIGHT
DB AS
DW OFFSET _TEXT:WRITE_SECTOR
DB D

F3

YA

Cursor up

Cursor down

Cursor left

Cursor right

Shift F5

End of the table

.CODE

.DATA

.CODE

PUBLIC DISPATCHER
EXTRN READ_BYTE:PROC, EDIT_BYTE : PROC
EXTRN WRITE_PROMPT_LINE:PROC

EXTRN EDITOR_PROMPT:BYTE

This is the central dispatcher. During normal editing and viewing,
this procedure reads characters from the keyboard and, if the char
is a command key (such as a cursor key), DISPATCHER calls the
procedures that do the actual work. This dispatching is done for
special keys listed in the table DISPATCH_TABLE, where the procedure
addresses are stored just after the key names.

If the character is not a special key, then it should be placed
directly into the sector buffer— this is the editing mode.

Uses:
Reads

:

READ_BYTE, EDIT_BYTE, WRITE_PROMPT_LINE
EDITOR PROMPT

DISPATCHER
PUSH
PUSH
PUSH

DISPATCH_LOOP:
CALL
OR

JS
JNZ
MOV

PROC
AX
BX
DX

READ_BYTE
AH, AH

NO_CHARS_READ
SPECIAL_KEY
DL, AL

;Read character into AX
;AX = -1 if no character read, 1

; for an extended code.
; No character read, try again
;Read extended code
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SPATCH.ASM continued

CALL EDIT BYTE
JMP DISPATCH_LOOP

SPECIAL KEY:
CMP AL,t,a
JE END_DISPATCH

LEA BX,DISPATCH_TABLE
SPECIAL LOOP:

CMP BYTE PTR [BX],0
JE NOT IN TABLE
CMP AL, [BX]
JE DISPATCH
ADD BX,3
JMP SPECIAL_LOOP

DISPATCH:
INC BX
CALL WORD PTR [BX]
JMP DISPATCH_LOOP

NOT IN TABLE:
JMP DISPATCH_LOOP

NO CHARS READ:
LEA DX,EDITOR_PROMPT
CALL WRITE PROMPT_LINE
JMP DISPATCH_LOOP

END DISPATCH:
POP DX
POP BX
POP AX
RET

DISPATCHER ENDP

;Was nornal character, edit byte
:Read another character

;F10—exit?
;Yes, leave
;0se BX to look through table

;End of table?
;Yes, key was not in the table
;Is it this table entry?
;Yes, then dispatch
;No, try next entry
;Check next table entry

;Point to address of procedure
;Call procedure
;Hait for another key

;Do nothing, just read next character

;Erase any invalid characters typed
;Try again

END
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.MODEL SMALL
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Graphics characters for border of sector.

VEBTICAL_BAE
H0RIZONTAL_BAR
UPPER_LEFT
UPPER_RIGHT
LOWER_LEFT
LOWER_RIGHT
TOP_T_BAR
BOTTOM_T_BAR
TOP_TICK
BOTTOM TICK

EQU DBAh
EQU CDh
EQU DCSh
EQU DBBh
EQU DCflh

EQU DBCh
EQU DCBh
EQU DCAh
EQU DDlh
EQU DCFh

.DATA

TOP LINE PATTERN LABEL B

DB ' ' r?
DB UPPER LEFT, 1

DB HORIZONTAL BAR 15
DB TOP TICK,1
DB HORIZONTAL BAR 11
DB TOP TICK,1
DB HORIZONTAL_BAR 11
DB TOP TICK,1
DB HORIZONTAL BAR 15
DB TOP T BAR,1
DB HORIZONTAL BAR Ifl

DB UPPER RIGHT,

1

DB D

BOTTOM LINE PATTERN LABEL B

DB ' ' ,?
DB LOWER LEFT, 1

DB HORIZONTAL BAR ie
DB BOTTOM TICK,1
DB HORIZONTAL BAR ii
DB BOTTOM TICK,1
DB HORIZONTAL BAR ii
DB BOTTOM TICK,1
DB HORIZONTAL BAR is
DB BOTTOM T BAR,1
DB HORIZONTAL BAR ia
DB LOWER RIGHT,

1

DB

BYTE

.DATA?

EXTRN SECTORrBYTE

.CODE

.DATA

.CODE

PUBLIC INIT_SEC_DISP
EXTRN WRITE_PATTERN:PROC, SEND_CRLF : PROC
EXTRN GOTO_XY:PROC, WRITE_PH ANTOM : PROC

EXTRN
EXTRN

LINES_BEFORE_SECTOR :BYTE
SECTOR_OFFSET:WORD

This procedure initializes the half-sector display.

Uses: WRITE_PATTERN, SEND_CRLF, DISP_HALF_SECTOR
WRITE_TOP_HEX_NUMBERS, GOTO_XY, WRITE_PH ANTOM
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Reads

:

Writes:

TOP_LINE_PATTERN, B0TTOM_LINE_PATTERN
LINES_BEFORE_SECTOR
SECTOR OFFSET

INIT_SEC_DISP
PUSH
XOR
MOV
CALL
CALL
LEA
CALL
CALL
XOR
MOV
CALL
LEA
CALL
CALL
POP
RET

INIT SEC DISP

PROC
DX
DL,DL
DH,LINES_BEFORE_SECT0R
GOTO_XY
WRITE_TOP_HEX_NUMBERS
DX,TOP_LINE_PATTERN
WRITE_PATTERN
SEND_CRLF
DX,DX
SECT0R_0FFSET,DX
DISP_HALF_SECTOR
DX,B0TT0M_LINE_PATTERN
WRITE_PATTERN
WRITE_PHANTOM
DX

ENDP

;Move cursor into position

;Start at the beginning of the sector
;Set sector offset to Q

•.Display the phantom cursor

.DATA

.CODE

PUBLIC WRITE_HEADER

EXTRN HEADER_LINE_NO:BYTE
EXTRN HEADER_PART_1:BYTE
EXTRN HEADER_PART_5:BYTE
EXTRN DISK_DRIVE_NO:BYTE
EXTRN CURRENT_SECTOR_NO:WORD

EXTRN HRITE_STRING:PROC, WRITE_DECIMAL : PROC
EXTRN GOTO_XY:PROC, CLEAR_TO_END_OF_LINE : PROC

This procedure writes the header with disk-drive and sector number.

Uses: GOTO_XY, WRITE_STRING, WRITE_CHAR, WRITE_DECIMAL
CLEAR_TO_END_0F_LINE

Reads: HEADER_LINE_N0, HEADER_PART_1 , HEADER_PART_5
DISK_DRIVE_N0, CURRENT_SECT0R_N0

WRITE_HEADER
PUSH
XOR
MOV
CALL
LEA
CALL
MOV
ADD
CALL
LEA
CALL
MOV
CALL
CALL
POP
RET

WRITE HEADER

PROC
DX
DL,DL
DH,HEADER_LINE_NO
GOT0_XY
DX,HEADER_PART_1
WRITE_STRING
DL,DISK_DRIVE_NO
DL, 'A'
WRITE_CHAR
DX,HEADER_PART_5
WRITE_STRING
DX,CURRENT_SECTOR_NO
WRITE_DECIMAL
CLEAR_T0_END_0F_LINE
DX

ENDP

;Move cursor to header line number

; Print drives A, B,

.

;Clear rest of sector number

EXTRN
EXTRN

WRITE_CHAR_N_TIMES:PR0C, WRITE_HEX : PROC , WRITE_CH AR : PROC
WRITE_HEX_DIGIT:PROC, SEND_CRLF : PROC

This procedure writes the index numbers (0 through F) at the top of
the half-sector display.

Uses: WRITE_CHAR_N_TIMES, WRITE_HEX, WRITE_CHAR
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WRITE_HEX_DIGIT, SEND_CRLF

WRITE TOP HEX NUMBERS PROC
POSH CX
PUSH DX
MOV DL, '

'

MOV cx,q
CALL WRITE CHAR N TIMES
XOR DH,DH

HEX NUMBER LOOP
MOV DL,DH
CALL WRITE HEX
MOV DL, ' •

CALL WRITE CHAR
INC DH
CMP DH,10h
JB HEX_NDMBER_LOOP

MOV DL, '
'

MOV CX,2
CALL WRITE CHAR N TIMES
XOR DL,DL

HEX DIGIT LOOP:
CALL WRITE HEX DIGIT
INC DL
CMP DL,10h
JB HEX DIGIT LOOP
CALL SEND CRLF
POP DX
POP CX
RET

WRITE_TOP_HEX_NUMBERS ENDP

PUBLIC DISP HALF SECTOR
EXTRN SEND CRLF:PROC

;Write R spaces for left side

;Start with D

;Done yet?

;Write hex numbers over ASCII window

This procedure displays half a sector (25k bytes)

On entry:

Uses

:

DISP_HALF_SECTOR
PUSH
PUSH
MOV

HALF_SECTOR:
CALL
CALL
ADD
LOOP
POP
POP
RET

DISP HALF SECTOR

DS:DX Offset into sector, in bytes
multiple of lb.

DISP_LINE, SEND_CRLF

should be

PROC
CX
DX
CX.lb

DISP_LINE
SEND_CRLF
DX,lb
HALF_SECTOR
DX
CX

ENDP

•.Display It lines

PUBLIC DISP_LINE
EXTRN WRITE_HEX:PROC
EXTRN WRITE_CHAR:PROC
EXTRN WRITE_CHAR_N_TIMES:PROC

This procedure displays one line of data, or lb bytes, first in hex,
then in ASCII.

On entry: DS:DX Offset into sector, in bytes.

Uses: WRITE_CHAR, WRITE_HEX, WRITE_CHAR_N_TIMES
Reads: SECTOR
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DISP LINE PROC
PUSH BX
PUSH CX
POSH DX
MOV BX,DX
MOV DL, ' '

MOV CX,3
CALL WRITE_CHAR_N_TIMES

CMP BX,lD0h
JB WRITE ONE
MOV DL, '1'

WRITE_ONE:
CALL WRITE CHAR
MOV DL,BL
CALL WRITE_HEX

MOV DL, •

CALL WRITE CHAR
MOV DL,VERTICAL_BAR
CALL WRITE CHAR
MOV DL, •

CALL WRITE_CHAR

MOV CX,lt
POSH BX

HEX LOOP:
MOV DL,SECTOR[BX]
CALL WRITE HEX
MOV DL, ' •

CALL WRITE CHAR
INC BX
LOOP HEX_LOOP

MOV DL, VERTICAL BAR
CALL WRITE CHAR
MOV DL, ' I

CALL WRITE_CHAR

MOV CX,lt
POP BX

ASCII_LOOP:
MOV DL,SECTOR[BX]
CALL WRITE CHAR
INC BX
LOOP ASCII_LOOP

MOV DL, ' '

CALL WRITE CHAR
MOV DL, VERTICAL BAR
CALL WRITE_CHAR

POP DX
POP CX
POP BX
RET

DISP LINE ENDP

•.Offset is more useful in BX

;Write 3 spaces before line

;Write offset in hex
;Is the first digit a 1?
;No, write space already in DL
;Yes, then place '!' into DL for output

;Copy lower byte into DL for hex output

; Write separator

;Draw left side of box

;Now write out It bytes
;Dump It bytes
;Save the offset for ASCII_LOOP

;Get 1 byte
;Dump this byte in hex
;Write a space between numbers

;Write separator

;Add another space before characters

;Get back offset into SECTOR

;Draw right side of box

. r kin

.CODE

PUBLIC WRITE_PROMPT_LINE
EXTRN CLEAR_TO_END_OF_LINE:PROC, WRITE_STRING : PROC
EXTRN GOT0_XY:PROC

EXTRN PROMPT LINE NOrBYTE

This procedure writes the prompt line to the screen and clears the
end of the line.
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On entry: DS:DX Address of the prompt-line message

Uses: WRITE_STRING, CLEAR_TO_END_OF_LINE , GOT0_XY
Reads: PROMPT LINE NO

WRITE PROMPT LINE PROC
PUSH DX
XOR DL,DL
MOV DH,PROMPT_LINE_NO
CALL GOTO_XY
POP DX
CALL HRITE_STRING
CALL CLEAR_TO_END_OF_LINE
RET

;Write the prompt line and
; move the cursor there

WRITE PROMPT LINE ENDP

END
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DSKPATCH.ASM

DOSSEG
.MODEL SMALL

.STACK

.DATA

PUBLIC SECTOR OFFSET

SECTOR_OFFSET is the offset of the half-
sector display into the full sector. It must
be a multiple of lb, and not greater than 55b

SECTOR OFFSET DW

PUBLIC CURRENT_SECTOR_NO, DISK_DRIVE_NO
CURRENT_SECTOR_NO
DISK DRIVE NO

DW
DB

;Initially sector D

;Initially Drive A:

PUBLIC
PUBLIC

LINES_BEFORE_SECTOR, HEADER_LINE_NO
HEADER_PART_1, HEADER_PART_5

LINES_BEFORE_SECTOR is the number of lines
at the top of the screen before the half-
sector display.

LINES_BEFORE_SECTOR
HEADER_LINE_NO
HEADER_PART_1
HEADER_PART_5

PUBLIC
PROMPT_LINE_NO
EDITOR PROMPT

.DATA?

DB
DB
DB
DB

PROMPT_LINE_NO,
DB
DB
DB

,0

5

'Disk ',D
Sector

EDIT0R_PR0MPT
21
'Press function key, or enter'
' character or hex byte: ',0

PUBLIC SECTOR

The entire sector (up to 6192 bytes) is
stored in this part of memory.

SECTOR DB

.CODE

6195 DUP (?)

EXTRN
EXTRN
EXTRN
EXTRN

DISK_PATCH
MOV
MOV

CALL
CALL
CALL
CALL
CALL
LEA
CALL
CALL
MOV

INT
DISK_PATCH

END

CLEAR_SCREEN : PROC , READ_SECT0R : PROC
INIT_SEC_DISP : PROC, WRITE_HEADER : PROC
WRITE_PROMPT_LINE:PROC, DISPATCHER : PROC
INIT_WRITE_CHAR:PROC
PROC
AX,DGROUP ;Put data segment into AX
DS,AX ;Set DS to point to data

INIT_WRITE_CHAR
CLEAR_SCREEN
WRITE_HEADER
READ_SECT0R
INIT_SEC_DISP
DX,EDITOR_PR0MPT
WRITE_PROMPT_LINE
DISPATCHER
AH,4Ch

51h
ENDP

DISK PATCH

; Return to DOS
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EDITOR.ASM

.MODEL SMALL

.CODE

.DATA

.CODE

EXTRN SECTOR:BYTE
EXTRN SECTOR_0FFSET:WORD
EXTRN PHANTOM_CURSOR_X:BYTE
EXTRN PHANTOM CURSOR_Y : BYTE

This procedure writes one byte to SECTOR, at the memory location
pointed to by the phantom cursor.

On entry: DL Byte to write to SECTOR

The offset is calculated by
OFFSET = SECTOR_OFFSET + (lb * PH ANTOM_CURSOR_Y ) + PHANTOM_CURSOR_X

Reads

:

Writes

:

PHANTOM_CURSOR_X, PH ANTOM_CURSOR_Y , SECTOR_OFFSET
SECTOR

WRITE TO_MEMORY PROC
PUSH AX
PUSH BX
PUSH cx
MOV BX, SECTOR OFFSET
MOV AL, PHANTOM CURSOR Y

XOR AH, AH
MOV CL,4
SHL AX,CL
ADD BX, AX
MOV AL, PHANTOM CURSOR X

XOR AH, AH
ADD BX, AX
MOV SECTORCBX] ,DL
POP CX
POP BX
POP AX
RET

;Multiply PHANTOM_CURSOR_Y by lb

;BX = SECTOR_OFFSET + (lb * Y)

;That's the address!
;Now, store the byte

WRITE TO MEMORY ENDP

.DATA

-CODE

PUBLIC EDIT_BYTE
EXTRN SAVE_REAL_CURSOR:PROC, RESTORE_REAL_CURSOR : PROC
EXTRN MOV_TO_HEX_POSITION:PROC, MOV_TO_ASCII_POSITION : PROC
EXTRN WRITE_PHANTOM:PROC, WRITE_PROMPT_LINE : PROC
EXTRN CURSOR_RIGHT:PROC, WRITE_HEX : PROC , WRITE_CH AR : PROC

EXTRN EDITOR PROMPT:BYTE

This proce dure changes a byte in memory and on the screen. ;

DL Byte to write into SECTOR, and change on screen ;

Uses

:

SAVE_REAL CURSOR, RESTORE REAL CURSOR I

MOV TO HEX POSITION, MOV TO ASCII POSITION ;

WRITE PHANTOM, WRITE PROMPT LINE, CURSOR RIGHT ;

WRITE HEX, WRITE CHAR, WRITE TO MEMORY ;

Reads: EDITOR PROMPT ;

EDIT_BYTE
PUSH
CALL
CALL
CALL
CALL

PROC
DX
SAVE_REAL_CURSOR
MOV_T0_HEX_POSITION
CURSOR_RIGHT
WRITE HEX

Move to the hex number in the
hex window

Write the new number
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CALL MOV TO ASCII POSITION
CALL WRITE CHAR
CALL RESTORE REAL CURSOR
CALL WRITE_PHANTOM
CALL WRITE TO MEMORY
LEA DX, EDITOR PROMPT
CALL WRITE PROMPT LINE
POP DX
RET

DIT BYTE ENDP

;Move to the char, in the ASCII window
;Write the new character
;Move cursor back where it belongs
;Rewrite the phantom cursor
;Save this new byte in SECTOR

END



KBDJO.ASM

.MODEL SMALL
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BS EQU
CB EQU
ESCAPE EQU

a

13
a?

-.Backspace character
;Carriage-return character
;Escape character

.DATA

KEYBOABD_INPUT
CHAR_NUM_LIMIT
NUM_CHARS_READ
CHARS

LABEL BYTE
DB
DB
DB

D

D

fiO DUP (D)

;Length of input buffer
;Number of characters read
;A buffer for keyboard input

.CODE

PUBLIC STRING TO UPPER

This procedure converts the string, using the DOS format for strings,
to all uppercase letters.

DS:DX Address of string buffer

STRING TO UPPER PR
PUSH AX
PUSH BX
PUSH CX
MOV BX,DX
INC BX
MOV CL,[BX]
XOR CH,CH

UPPER LOOP:
INC BX
MOV AL, [BX]
CMP AL, 'a'

JB NOT LOWER
CMP AL, 'z'
JA NOT LOWER
ADD AL, ' A'-'a'
MOV [BX] , AL

NOT LOWER:
LOOP UPPER LOOP
POP CX
POP BX
POP AX
RET

STRING TO UPPER EN

;Point to character count
;Character count in 2nd byte of buffer
;Clear upper byte of count

;Point to next character in buffer

;See if it is a lowercase letter
; Nope

;Convert to uppercase letter

This procedure converts a character from ASCII (hex) to a nibble (4
bits)

.

Returns

:

AL Character to convert
AL Nibble
DF Set for error, cleared otherwise

CONVERT HEX DIGIT PROC
CMP AL, '0'

JB BAD DIGIT
CMP AL, '9'

JA TRY HEX
SUB AL, D'
CLC
RET

TRY HEX:
CMP AL, '

A

1

;Is it a legal digit?
;Nope
;Not sure yet
;Might be hex digit
;Is decimal digit, convert to nibble
;Clear the carry, no error

; Not sure yet

,
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JB BAD DIGIT
CMP AL, 'F'

JA BAD DIGIT
SOB AL, ' A'-ID
CLC
RET

BAD DIGIT:
STC
RET

; Not hex
;Not sure yet
;Not hex
;Is hex, convert to nibble
;Clear the carry, no error

;Set the carry, error

CONVERT_HEX_DIGIT ENDP

PUBLIC HEX_TO_BYTE

This procedure converts the two characters at DS:DX from hex
byte.

DS:DX Address of two characters for hex number
Returns

:

AL Byte
CF Set for error, clear if no error

to one ;

HEX TO BYTE PROC
POSH BX
POSH CX
H C V BX,DX
MOV AL, [BX]
CALL CONVERT HEX DIGIT
JC BAD HEX
MOV CX,4
SHL AL,CL
MOV AH,AL
INC BX
MOV AL, [BX]
CALL CONVERT HEX DIGIT
JC BAD HEX
OR AL,AH
CLC

DONE HEX:
POP CX
POP BX
RET

BAD HEX:
STC
JMP DONE HEX

HEX TO BYTE ENDP

;Put address in BX for indirect addr
;Get first digit

;Bad hex digit if carry set
;Now multiply by It.

;Retain a copy
;Get second digit

;Bad hex digit if carry set
;Combine two nibbles
;Clear carry for no error

;Set carry for error

POBLIC READ_STRING
EXTRN WRITE_CHAR:PROC
EXTRN OPDATE REAL C0RSOR:PROC

This procedure performs a function very similar to the DOS DAh
function. But this function will return a special character if a
function or keyboard key is pressed—no return for these keys. And
ESC will erase the input and start over again.

DS:DX Address for keyboard buffer. The first byte must
contain the maximum number of characters to read (plus
one for the return). And the second byte will be used
by this procedure to return the number of characters
actually read.

No characters read
-1 One special character read
otherwise number actually read (not including

Enter key)

Oses: BACK_SPACE, HRITE_CHAR, READ_KEY, 0PDATE_REAL_C0RSOR

READ_STRING PROC
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PUSH
PUSH
PUSH
MOV

START_OVER:
CALL
MOV
CALL
OR
JNZ

STRING_NOT_E
CMP
JE
CMP
JNE
CALL
CMP
JE
JMP

NOT_BS: CMP
JE
CMP
JA
MOV
INC
PUSH
MOV
CALL
POP

READ_NEXT_CH
CALL
CALL
OR

JZ

AX
BX
SI
SI,DX

UPDATE_REAL_CURSOR
BX,2
READ_KEY
AH, AH
EXTENDED

XTENDED:
AL.CR
END_INPUT
AL,BS
NOT_BS
BACK_SPACE
BL,5
START_OVER
SHORT READ_NEXT_CHAR
AL, ESCAPE
PURGE_BUFFER
BL, [SI]
BUFFER_FULL
[SI+BX],AL
BX
DX
DL, AL
WRITE_CHAR
DX

AR :

UPDATE_REAL_CURSOR
READ_KEY
AH, AH

STRING NOT EXTENDED

Use SI for index register and

Move to position of virtual cursor
BX for offset to beginning of buffer
Read one key from the keyboard
Is character extended ASCII?
Yes, then process it.
Extnd char is error unless buf empty
Is this a carriage return?
Yes, we are done with input
Is it a backspace character?
Nope
Yes, delete character
Is buffer empty?
Yes, can now read extended ASCII again
No, continue reading normal characters
Is it an ESC--purge buffer?
Yes, then purge the buffer
Check to see if buffer is full
Buffer is full
Else save char in buffer
Point to next free character in buffer

Echo character to screen

;Move real cursor to virtual cursor

;An extended ASCII char is not valid
; when the buffer is not empty
;Char is valid

Signal an error condition by sending a beep
character to the display: chr$(7).

SIGNAL ERROR:
PUSH DX
MOV DL,7
MOV AH, 5

INT 51h
POP DX
JMP SHORT READ NEXT CHAR

;Sound the bell by writing chr$(7)

;Now read next character

Empty the string buffer and erase all the
characters displayed on the screen.

PURGE BUFFER:
PUSH cx
MOV CL, [SI]
XOR CH,CH

PURGE LOOP:
CALL BACK SPACE
LOOP PURGE LOOP
POP CX
JMP START OVER

-.Backspace over maximum number of

; characters in buffer. BACK_SPACE
; will keep the cursor from moving too
; far back

;Can now read extended ASCII characters
; since the buffer is empty

The buffer was full, so can't read another
character. Send a beep to alert user of
buffer-full condition.

BUFFER_FULL:
JMP SHORT SIGNAL ERROR ;If buffer full, just beep
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Read the extended ASCII code and place this
in the buffer as the only character, then
return -1 as the number of characters read.

EXTENDED:
MOV
MOV
JMP

[SI+S],AL
BL,0FFh
SHORT END STRING

;Read an extended ASCII code
;Place just this char in buffer
;Num chars read = -1 for special

Save the count of the number of characters
read and return.

END INPOT:
SOB BL,5

END STRING:
MOV [SI+1],BL
POP SI
POP BX
POP AX
RET

READ STRING ENDP

;Done with input
;Count of characters read

:Return number of chars read

PUBLIC BACKSPACE
EXTRN WRITE CHAR:PROC

This procedure deletes characters, one at a time, from the buffer and
the screen when the buffer is not empty. BACK_SPACE simply returns
when the buffer is empty.

DS:SI+BX Most recent character still in buffer

Uses: WRITE_CHAR

BACK SPACE PROC
POSH AX
POSH DX
CMP BX,2
JE END BS
DEC BX
MOV AH,

2

MOV DL,BS
INT 51h
MOV DL,eOh
CALL WRITE CHAR
MOV DL,BS
INT 21h

END BS: POP DX
POP AX
RET

BACK SPACE ENDP

;Delete one character

;Is buffer empty?
;Yes, read the next character
; Remove one character from buffer
; Remove character from screen

;Write space there

;Back up again

POBLIC READ_BYTE

This procedure reads
hex number. This is

either a single ASCII character or
just a test version of READ_BYTE.

a two-digit ;

Returns byte in AL Character code (unless AH
AH D if read ASCII char

1 if read a special key
-1 if no characters read

= 0) ';

Oses: HEX TO BYTE, STRING TO OPPER, READ STRING
Reads: KEYBOARD INPOT, etc.
Writes: KEYBOARD INPOT, etc.
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READ BYTE PROC
PUSH DX
MOV CHAR_NUM_LIMIT,3
LEA DX,KEYBOARD_INPUT
CALL READ_STRING
CMP NUM CHARS READ,1
JE ASCII INPUT
JB NO_CHARACTERS
CMP BYTE PTR NUM CHARS READ
JE SPECIAL_KEY
CALL STRING TO UPPER
LEA DX, CHARS
CALL HEX TO BYTE
JC NO CHARACTERS
XOR AH, AH

DONE READ:
POP DX
RET

NO CHARACTERS:
XOR AH, AH
NOT AH
JMP DONE_READ

ASCII INPDT:
MOV AL, CHARS
XOR AH, AH
JMP DONE_READ

SPECIAL KEY:
MOV AL,CHARS[0]
MOV AH,1
JMP DONE READ

READ BYTE ENDP

;Allow only two characters (plus Enter)

;See how many characters
;Just one, treat as ASCII character
;Only Enter key hit
OFFh ;Special function key?
;Yes
;No, convert string to uppercase
; Address of string to convert
;Convert string from hex to byte
;Error, so return 'no characters read 1

;Signal read one byte

;Set to 'no characters read'
;Return -1 in AH

;Load character read
;Signal read one byte

;Return the scan code
;Signal special key with 1

PUBLIC READ_KEY

This procedure reads one key from the keyboard.

Returns: AL Character code (unless AH = 1)
AH D if read ASCII char

1 if read a special key

READ_KEY
XOR
INT
OR
JZ

NOT_EXTENDED:
XOR

DONE_READING:
RET

PROC
AH, AH
1th
AL,AL
EXTENDED_CODE

AH, AH

;Ask for keyboard read function
;Read character/scan code from keyboard
;Is it an extended code?
;Yes

;Return just the ASCII code

EXTENDED_CODE:
MOV
MOV
JMP

READ_KEY

AL, AH
AH,1
DONE_READING
ENDP

;Put scan code into AL
;Signal extended code

PUBLIC READ_DECIMAL

This procedure takes the output buffer of READ_STRING and converts
the string of decimal digits to a word.

AX Word converted from decimal
CF Set if error, clear if no error

Uses

:

Reads

:

Writes

:

READ_STRING
KEYBOARD_INPUT, etc.
KEYBOARD_INPUT, etc.

READ DECIMAL PROC
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POSH BX
POSH CX
POSH DX
MOV CHAR NOM LIMIT,

b

LEA DX, KEYBOARD INPUT
CALL READ STRING
MOV CL,N0M CHARS_READ
XOR CH,CH
CMP CL,0
JLE BAD DECIMAL DIGIT
XOE AX, AX
XOR BX,BX

CONVERT DIGIT:
MOV DX,10
MOL DX
JC BAD DECIMAL DIGIT
MOV DL,CHARS[BX]
SOB DL, '0'

JS BAD DECIMAL DIGIT
CMP DL,R
JA BAD DECIMAL DIGIT
ADD AX,DX
INC BX
LOOP CONVERT_DIGIT

DONE DECIMAL:
POP DX
POP CX
POP BX
RET

BAD DECIMAL DIGIT:
STC
JMP DONE DECIMAL

READ DECIMAL ENDP

;Max number is 5 digits (b5535)

;Get number of characters read
;Set upper byte of count to D

;Return error if no characters read
;No chars read, signal error
;Start with number set to
;Start at beginning of string

;Multiply number by ID
;Multiply AX by 10
;CF set if MOL overflowed one word
;Get the next digit
;And convert to a nibble (< bits)
;Bad digit if <

; Is this a bad digit?
;Yes
;No, so add it to number
; Point to next character
;Get the next digit

;Set carry to signal error

END
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PHANTOM.ASM

.MODEL SHALL

.DATA

REAL_CURSOB_X
REAL_C0RSOB_Y

PUBLIC
PHANTOM_CURSOR_X
PHANTOM CURSOR Y

DB
DB

PHANTOM_CURSOR_X,
( DB D

DB

PHANTOM CURSOR Y

.CODE

These four procedures move the phantom cursors.

Uses: ERASE_PHANTOM, WRITE_PHANTOM
SCROLL_DOHN, SCROLL_UP

Reads: PHANTOM_CURSOR_X, PH ANTOM_CURSOR_Y
Writes: PHANTOM_CURSOR_X, PHANTOM_CURSOR_Y

PUBLIC PHANTOM UP
PHANTOM_UP

CALL
DEC
JNS
CALL

WASNT_AT_TOP:
CALL
RET

PHANTOM UP

PROC
ERASE_PHANTOM
PHANTOM_CURSOR_Y
WASNT_AT_TOP
SCROLL_DOWN

WRITE_PHANTOM

ENDP

;Erase at current position
;Move cursor up one line
;Was not at the top, write cursor
;Was at the top, scroll

;Write the phantom at new position

PUBLIC
PHANTOM_DOWN

CALL
INC
CMP
JB
CALL

WASNT_AT_BOTTOM:
CALL HRITE_PHANTOM
RET

PHANTOM DOWN ENDP

PHANTOM_DOWN
PROC
ERASE_PHANTOM
PHANTOM_CURSOR_Y
PHANTOM_CURSOR_Y, lb
WASNT_AT_BOTTOM
SCROLL UP

;Erase at current position
;Move cursor down one line
;Was it at the bottom?
;No, so write phantom
;Has at bottom, so put back there

;Write the phantom cursor

PUBLIC
PHANTOM_LEFT

CALL
DEC
JNS
MOV

WASNT_AT_LEFT:
CALL
RET

PHANTOM LEFT

PHANTOM_LEFT
PROC
ERASE_PHANTOM
PHANTOM_CURSOR_X
WASNT_AT_LEFT
PHANTOM_CURSOR_X,

WRITE_PHANTOM

ENDP

;Erase at current position
;Move cursor left one column
;Was not at the left side, write cursor
;Was at left, so put back there

;Write the phantom cursor

PUBLIC
PHANTOM_RIGHT

CALL
INC
CMP
JB
MOV

WASNT_AT_RIGHT:
CALL
RET

PHANTOM_RIGHT

PHANTOM_RIGHT
PROC
ERASE_PHANTOM
PHANTOM_CURSOR_X
PHANTOM_CURSOR_X,lb
WASNT_AT_RIGHT
PHANT0M_CURS0R_X,15

WRITE_PHANT0M

ENDP

;Erase at current position
;Move cursor right one column
;Was it already at the right side?

;Was at right, so put back there

;Write the phantom cursor



374 Peter Norton's Assembly Language Book for the IBM PC, Revised & Expanded

PHANTOM.ASM continued

PUBLIC M0V_10_HEX_P0SITI0N
EXTRN GOTO_XY:PBOC

.DATA

.CODE
EXTRN LINES BEFORE SECTORrBYTE

This procedure moves the real cursor to the position of the phantom
cursor in the hex window.

Uses

:

Reads

:

GOTO_XY
LINES_BEF0RE_SECTOR, PHANTOM_CURSOR_X , PHANTOM_CURSOR_Y

MOV TO HEX POSITION PROC
PUSH AX
PUSH CX
PUSH DX
MOV DH,LINES_BEFORE_SECTOR
ADD DH,5
ADD DH,PHANTOM_CURSOR_Y
MOV DL,fl
MOV CL,3
MOV AL,PHANTOM_CURSOR_X
MUL CL
ADD DL,AL
CALL GOTO_XY
POP DX
POP CX
POP AX
RET

;Find row of phantom (D,D)
;Plus row of hex and horizontal bar
;DH = row of phantom cursor
;Indent on left side
;Each column uses 3 characters, so
; we must multiply CURSOR_X by 3

;And add to the indent, to get column
; for phantom cursor

MOV TO HEX POSITION ENDP

PUBLIC MOV_T0_ASCII_POSITION
EXTRN GOTO XY : PROC

-DATA

.CODE
EXTRN LINES BEFORE SECTORrBYTE

This procedure moves the real cursor to the beginning of the phantom
cursor in the ASCII window.

Uses

:

Reads

:

GOTO_XY
LINES_BEFORE_SECTOR, PHANTOM_CURSOR_X , PHANTOM_CURSOR_Y

MOV_TO_ASCII_POSITION PROC
PUSH AX
PUSH DX
MOV DH,LINES_BEFORE_SECTOR
ADD DH,5
ADD DH,PHANTOM_CURSOR_Y
MOV DL,5S
ADD DL,PHP
CALL GOTO.
POP DX
POP AX
RET

1ANTOM_CURSOR_X
XY

;Find row of phantom (0,0)
;Plus row of hex and horizontal bar
;DH = row of phantom cursor
;Indent on left side
;Add CURSOR_X to get X position
; for phantom cursor

M0V_T0_ASCII_POSITI0N ENDP

PUBLIC SAVE_REAL_CURSOR

This procedure saves the position of the real cursor in the two
variables REAL_CURSOR_X and REAL_CURSOR Y.

Writes: REAL_CURSOR_X, REAL_CURSOR_Y

SAVE_REAL_CURSOR
PUSH AX
PUSH BX
PUSH CX

PROC
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POSH DX
MOV AH,

3

Read cursor position
XOR BH,BH on page
INT lOh And return in DL,DH
MOV REAL CURSOR Y,DL Save position
MOV REAL CURSOR X,DH
POP DX
POP CX
POP BX
POP AX
RET
L_CURSOR ENDP

PUBLIC RESTORE REAL CURSOR
EXTRN GOTO XY:PROC

This procedure restores the real cursor to its old position, saved in
REAL_CURSOR_X and REAL_CURSOR_Y

.

Uses

:

Reads

:

GOTO_XY
REAL_CURSOR_X, REAL_CURSOR_Y

RESTORE REAL_CURSOR PROC
POSH
MOV
MOV
CALL
POP
RET

DX
DL,REAL_CURSOR_Y
DH,REAL_CURSOR_X
GOTO_XY
DX

RESTORE REAL CURSOR ENDP

POBLIC
EXTRN

WRITE_PHANTOM
WRITE ATTRIBUTE N TIMES:PROC

This procedure uses C0RSOR_X and CORSOR_Y, through MOV_TO_..., as the
coordinates for the phantom cursor. WRITE_PHANTOM writes this

Uses: WRITE_ATTRIBUTE_N_TIMES, SAVE_REAL_CURSOR
RESTORE_REAL_CURSOR, MOV_TO_HEX_POSITION
MOV TO ASCII POSITION

WRITE_PHANTOM PROC
PUSH CX
PUSH DX
CALL SA
CALL MO
MOV CX
MOV DL
CALL WR
CALL MO
MOV CX
CALL WR
CALL RE
POP DX
POP CX
RET

VE_REAL_CURSOR
V_T0_HEX_POSITION
tt
,70h
ITE_ATTRIBUTE_N_TIMES
V_TO_ASCII_POSITION
,1
ITE_ATTRIBUTE_N_TIMES
STORE_REAL_CURS0R

;Coord. of cursor in hex window
;Make phantom cursor four chars wide

;Coord. of cursor in ASCII window
;Cursor is one character wide here

WRITE PHANTOM ENDP

PUBLIC
EXTRN

ERASE_PHANTOM
WRITE_ATTRIBUTE_N_TIMES:PROC

This procedure erases the phantom cursor, just the opposite of
WRITE_PHANTOM.

Uses

:

WRITE_ATTRIBUTE_N_TIMES, SAVE_REAL_CURSOR
RESTORE_REAL_CURSOR , MOV_TO_HEX_POSITION
MOV_TO_ASCII_POSITION

ERASE_PHANTOM
PUSH
PUSH

PROC
CX
DX
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CftLL
CRLL
MOV
MOV
CALL
CRLL
MOV
CRLL
CRLL
POP
POP
RET

ERRSE PHRNTOM

SRVE_RERL_CDRSOR
MOV_TO_HEX_POSITION
cx,<
DL,7
WRITE_ATTRIBUTE_N_TIMES
M0V_TO_RSCII_POSITION
CX,1
WRITE_RTTRIBOTE_N_TIMES
RESTORE_RERL_CURSOR
DX
CX

ENDP

;Coord. of cursor in hex window
;Change back to white on black

.DATA

.CODE

EXTRN DISP_HALF_SECTOR:PROC, GOTO_XY:PROC

EXTRN
EXTRN

SECTOR_OFFSET:HORD
LINES BEFORE SECTOR:BYTE

These two procedures move between the two half-sector displays.

Dses

:

Reads:
Writes:

WRITE_PHANTOM, DISP_HALF_SECTOR , ERASE_PHANTOM, GOTO_XY
SAVE_REAL_CORSOR, RESTORE_REAL_C0RSOR
LINES_BEF0RE_SECT0R
SECTOR_OFFSET, PHANTOM_CURSOR_Y

SCROLL_0P
POSH
CALL
CALL
XOR
MOV
ADD
CALL
MOV
MOV
CALL
CALL
MOV
CALL
POP
RET

SCROLL DP

PROC
DX
ERASE_PHANTOM
SAVE_REAL_C0RSOR
DL,DL
DH,LINES_BEFORE_SECTOR
DH,5
G0TO_XY
DX,25b
SECTOR_OFFSET,DX
DISP_HALF_SECTOR
RESTORE_REAL_C0RS0R
PHANTOM_C0RSOR_Y,D
WRITE_PHANTOM
DX

ENDP

;Remove the phantom cursor
;Save the real cursor position
; Set cursor for half-sector display

;Display the second half sector

;Restore the real cursor position
;Cursor at top of second half sector
; Restore the phantom cursor

SCROLL_DOWN
POSH
CALL
CALL
XOR
MOV
ADD
CALL
XOR
MOV
CALL
CALL
MOV
CALL
POP
RET

SCROLL DOWN

PROC
DX
ERASE_PHANTOM
SAVE_REAL_C0RSOR
DL,DL
DH,LINES_BEFORE_SECTOR
DH,e
GOTO_XY
DX,DX
SECTOR_OFFSET,DX
DISP_HALF_SECTOR
RESTORE_REAL_C0RSOR
PHANT0M_CDRS0R_Y,15
WRITE_PHANT0M
DX

ENDP

; Remove the phantom cursor
;Save the real cursor position
;Set cursor for half-sector display

-.Display the first half sector

; Restore the real cursor position
;Cursor at bottom of first half sector
; Restore the phantom cursor

END
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.MODEL SMALL
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.DATA
PUBLIC
PUBLIC

SCREEN_SEG
SCREEN_PTR
SCREEN_X
SCREEN Y

SCREEN_PTR
SCREEN_X, SCREEN_Y
DH OBflDQh
DW D

DB
DB

;Segment of the screen buffer
;Offset into screen memory of cursor
;Position of the screen cursor

.CODE

PUBLIC WRITE STRING

This procedure writes a string of characters to the screen. The
string must end with DB D

On entry: DS:DX Address of the string

Uses: WRITE CHAR

WRITE STRING PROC
PUSH AX
PUSH DX
PUSH SI
PUSHF
CLD
MOV SI,DX

STRING LOOP:
LODSB
OR AL, AL
JZ END OF STRING
MOV DL, AL
CALL WRITE CHAR
JMP STRING LOOP

END OF STRING:
POPF
POP SI
POP DX
POP AX
RET

WRITE STRING ENDP

;Save direction flag
;Set direction for increment (forward)
;Place address into SI for LODSB

;Get a character into the AL register
;Have we found the D yet?
;Yes, we are done with the string
;No, write character

;Restore direction flag

PUBLIC WRITE_HEX

This procedure converts the byte in the DL register to hex and writes ;

the two hex digits at the current cursor position.

On entry: DL Byte to convert to hex.

Uses: WRITE_HEX_DIGIT

WRITE HEX PROC
PUSH CX
PUSH DX
MOV DH,DL
MOV CX,4
SHR DL,CL
CALL WRITE HEX DIGIT
MOV DL,DH
AND DL.DFh
CALL WRITE HEX DIGIT
POP DX
POP CX
RET

WRITE HEX ENDP

;Entry point
;Save registers used in this procedure

;Make a copy of byte
;Get the upper nibble in DL

;Display first hex digit
;Get lower nibble into DL
;Remove the upper nibble
•.Display second hex digit
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PUBLIC WRITE_HEX_DIGIT

This procedure converts the lower < bits of DL to a hex digit and
writes it to the screen.

On entry:

Uses:

DL Lower < bits contain number to be printed
in hex.

WRITE CHAR

WRITE_HEX_DIGIT
POSH DX
CMP
JAE
ADD
JMP

HEX_LETTER:
ADD

WRITE_DIGIT:
CALL
POP
RET

HRITE_HEX_DIGIT

PROC

DL,1D
HEX_LETTER
DL, "0"
Short WRITE DIGIT

DL,"A"-1D

WRITE_CHAR
DX

;Save registers used
;Is this nibble <1D?
;No, convert to a letter
;Yes, convert to a digit
; Now write this character

;Convert to hex letter

;Display the letter on the screen
;Restore old value of DX

E N D P

PUBLIC INIT_HRITE_CHAR

You need to call this procedure before you call WRITE_CHAR since
WRITE_CHAR uses information set by this procedure.

Writes: SCREEN_SEG

INIT_WRITE CHAR PROC
PDSH AX
POSH BX
MOV BX,0B600h
INT llh
AND AL,30h
CMP AL,30h
JNE SET BASE
MOV BX,0Ba00h

SET BASE:
MOV SCREEN SEG,BX
POP BX
POP AX
RET

INIT_WRITE_CHAR ENDP

PUBLIC WRITE CHAR
EXTRN C0RS0R RIGHT:PROC

;Set for color graphics display
;Get equipment information
; Keep just the video display type
; Is this a monochrome display adapter?
;No, it's color, so use B800
;Yes, it's monochrome, so use BDOD

;Save the screen segment

This procedure outputs a character to the screen by writing directly
into screen memory, so that characters such as the backspace are
treated as any other characters and are displayed.

This procedure must do a bit of work to update the cursor position.

On entry: DL Byte to print on screen.

Oses:
Reads:

C0RS0R_RIGHT
SCREEN_SEG, SCREEN_PTR

WRITE CHAR PROC
POSH AX
POSH BX
POSH DX
POSH ES

MOV AX,SCREEN_SEG ;Get segment for screen memory
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MOV ES, AX
MOV BX,SCREEN_PTR

MOV DH,?
MOV ES: [BX],DX
CALL CURSOR_RIGHT

POP ES
POP DX
POP BX
POP AX
RET

WBITE CHAR ENDP

;Point ES to screen memory
;Pointer to character in screen memory

; Use the normal attribute
;Write character/attribute to screen
;Now move to next cursor position

PUBLIC WRITE_DECIMAL

This procedure writes a lb-bit, unsigned number in decimal notation.

On entry: DX N : It-bit, unsigned number.

Uses: WRITE HEX DIGIT

WRITE DECIMAL PROC
PUSH AX
PUSH CX
PUSH DX
PUSH SI
MOV AX, DX
MOV SI, ID
XOR CX, CX

NON ZER<
XOR DX, DX
DIV SI
PUSH DX
INC CX
OR AX, AX
JNE NOh ZERO

WRITE DIGIT LOOP:
POP DX
CALL WRITE HEX DIGIT
LOOP WRITE DIGIT LOOP

end dec:
POP SI
POP DX
POP CX
POP AX
RET

WRITE DECIMAL ENDP

;Save registers used here

;Will divide by 10 using SI
;Count of digits placed on stack

;Set upper word of N to
;Calculate N/1D and (N mod ID)
;Push one digit onto the stack
;One more digit added
;N = yet?
;Nope, continue

;Get the digits in reverse order

PUBLIC WRITE_CHAR_N_TIMES

This procedure writes more than one copy of a character ;

On entry: DL Character code ;

CX Number of times to write the character ;

Uses: WRITE_CHAR ;

WRITE_CHAR_N_TIMES PROC
PUSH CX

N_TIMES:
CALL WRITE_CHAR
LOOP N_TIMES
POP CX
RET

WRITE_CHAR N TIMES ENDP

PUBLIC WRITE_ATTRIBUTE_N_TIMES
EXTRN CURSOR_RIGHT:PROC
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This procedure sets the attribute for N characters, starting at the
current cursor position.

cx
DL

Number of characters to set attribute for
New attribute for characters

Dses

:

Reads

:

C0RSOR_RIGHT
SCREEN_SEG, SCREEN_PTR

WRITE_ATTRIBUTE_N_TIMES
POSH RX
POSH CX
POSH DI
POSH ES

PROC

MOV
MOV
MOV
INC
MOV

flTTR_LOOP:
STOSB
INC
INC
LOOP

DEC
MOV

POP
POP
POP
POP
RET

RX,SCREEN_SEG
ES,fiX
DI,SCREEN_PTR
DI
fiL,DL

DI
SCREEN_X
fiTTR_LOOP

DI
SCREEN_PTR,DI

ES
DI
CX
fiX

;Set ES to point to screen segment

;Character under cursor
; Point to the attribute under cursor
;Put attribute into fiL

;Save one attribute
;Move to next attribute
;Move to next column
;Write N attributes

;Point to start of next character
;Remember where we are

WRITE_fiTTRIBDTE_N_TIMES ENDP

POBLIC WRITE_PfiTTERN

This procedure writes a line to the screen, based on data in the
form

DB {character, number of times to write character),
Where fx) means that x can be repeated any number of times

On entry: DS:DX address of the pattern to draw

Uses: WRITE_CHfiR N TIMES

WRITE PfiTTERN PROC
POSH AX
POSH CX
POSH DX
POSH SI
PUSHF
CLD
MOV SI,DX

PATTERN LOOP:
LODSB
OR fiL, AL
JZ END PfiTTERN
MOV DL,fiL
LODSB
MOV CL,fiL
XOR CH,CH
CALL WRITE CHRR N TIMES
JMP PfiTTERN LOOP

;Save the direction flag
;Set direction flag for increment
;Move offset into SI register for LODSB

;Get character data into AL
;Is it the end of data (Qh)?
;Yes, return
;No, set up to write character N times
;Get the repeat count into AL
;find put in CX for WRITE_CHfiR_N_TIMES
;Zero upper byte of CX



Listing of DSKPATCH 381

END_PflTTERN:
POPF
POP SI
POP DX
POP CX
POP AX
BET

WRITE PATTERN ENDP

;Restore direction flag

END
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A his appendix lists many common error messages you may encounter as you

use MASM, LINK, and EXE2BIN. If you don't find an error message listed

here, check your macro assembler or your DOS manual.

The error messages are in three groups: one for MASM, one for LINK, and
one for EXE2BIN. Within each section, error messages are listed alphabeti-

cally.

MASM

Block nesting error: You'll probably see this error message along with either

an Open procedures or an Open segments message. See the following descrip-

tions for these two error messages.

End of file, no END directive: This means you're either missing the END
statement at the end of your file, or you need to add a blank line after the

existing END statement. The Microsoft versions ofthe macro assembler expect

to find a blank line at the very end of the file. If you don't have at least one

blank line after END, MASM won't read the END statement.

Open procedures: This error message means that either you're missing a

PROC or an ENDP statement, or that the names aren't the same on one

PROC/ENDP pair. Make sure every PROC has a matching ENDP statement,

and check the procedure name in both the PROC and the ENDP statements to

make sure they match.

Open segments: This error message should only appear when you're using the

full segment definitions. It means either that you're missing a SEGMENT or

an ENDS statement, or that the names aren't the same on one SEG-
MENT/ENDS pair. Make sure every SEGMENT has a matching ENDS state-

ment, and check the segment name in both the SEGMENT and ENDS
statements to make sure they match.

Symbol not defined: There are three things you should look for ifyou see this

error message:
1. You may have misspelled a name. Check the line you see in the error

display to make certain you've typed the name correctly.

2. You may have misspelled the name when you first declared a PROC or

a variable. Check the spelling of the names you see in the faulty line

against the names in the PROC or variable declarations.

3. You may be missing an EXTRN declaration, or the name in the
EXTRN may be misspelled.
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LINK

Fixup offset exceeds field width: This is a tricky one, and it's often the hardest

bug to swat. This message usually means you've declared some procedure as

a FAR procedure, but later declared that same procedure as a NEAR proce-

dure in an EXTRN declaration.

It can also mean that your program has grown larger than the 64K limit for

small programs. You can check for such errors by looking at the size field in

the map file.

You should only see this message if you're using full segment definitions.

This message can also appear when a segment has become fragmented. In

such cases, the two fragments may be more than 64K apart, which means
that CALLs must be FAR CALLs to work.

If that doesn't seem to be the problem, you'll have to search deeper. You may
find a hint in the map file. For example, check the order ofthe segments. You
may find they are out of order.

Symbol defined more than once: This message means you've probably defined

the same procedure or variable in two source files. Make sure you've defined

each name in only one source file, then use EXTRNs in other places where
you need to use the same procedure or variable.

Unresolved externals: When you see this message, either a PUBLIC is miss-

ing from the file in which you declared the procedure or variable, or you mis-

spelled the name in an EXTRN declaration and the CALLs in some other

source file.

This error can also be caused by forgetting to link in a file. You may need to

add the new file to your Make file or to the batch file you're using.

Warning: no stack segment: This isn't really an error message, it's simply a

warning. You'll always see this message when creating .COM files. Ignore it

in such cases.

EXE2BIN

You probably won't use EXE2BIN very often since you'll need it only when
you're creating .COM programs. But when you do use it, there is probably only

one error message you'll see:

File cannot be converted: This is not a very helpful message. Most of the time

it can mean one of three things:
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Your segments are in the wrong order, so you have a segment in mem-
ory before CODESEG. Check the load map to see if this is your prob-

lem.

Your main program is not the first file you listed in your LINK list. It

must be, so try relinking to make sure this isn't the problem. Again,

you can often spot this type of problem by looking at the load map.
Your main program does not have an ORG lOOh as the first statement
after the CODESEG SEGMENT PUBLIC declaration. Also, make
sure the END statement in your main source file includes the label of

the instruction at which you want to start—for example, END
DSKPATCH.
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Table D-1. ASCII Character Codes

Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char

e 8 43 2B + 86 56 y 129 81 li

1 1 S 44 2C i 87 57 W 138 82
/

e

2 2 45 2D - 88 58 X 131 83 a

3 3 46 2E , 89 59 Y 132 84 a

4 4 47 2F / 98 SA Z 133 85 a

5 5 48 35 8 91 5B [ 134 86
•

a

6 6 49 31 1 92 5C \ 135 8? S

7 7 t 58 32 2 93 5D ] 136 88
A
e

8 8 D 51 33 3 94 5E
A

137 89 e

9 9 52 34 4 95 5F 138 8A e

IB A S 53 35 5 96 68
1

139 8B l

11 B i 54 36 6 97 61 a 148 8C
A
1

12 C ? 55 37 7 98 62 b 141 8D
\

1

13 D T 56 38 8 99 63 c 142 8E A

14 E n 57 39 9 188 64 i 143 8F
•

A

15 F * 58 3A 1 181 65 e 144 98
/

E

16 8 59 3B f 182 66 f 145 91 I
17 11 i 68 3C < 183 67 9 146 92 ft

18 12 t 61 3D = 184 68 h 147 93
*

19 13 ij 62 3E > 185 69 i 148 94 b

28 14 i 63 3F ? 186 6A J 149 95
\

21 15 § 64 48 I 187 6B k 158 96
A
U

22 16 65 41 A 188 6C 1 151 97 u

23 17 i 66 42 B 189 6D 152 98 y
24 18 t 67 43 C 118 6E n 153 99 e

25 19 i 68 44 D 111 6F 154 9A u

26 1A » 69 45 E 112 78 P 155 9B e

27 IB « 78 46 F 113 71 q 156 9C £

28 1C i. 71 47 G 114 72 r 157 9D ¥

29 ID m 72 48 H 115 73 s 158 9E s

38 IE A 73 49 I 116 74 t 159 9F f
31 IF T 74 4A J 117 75 u 168 AB a

32 28 75 4B X 118 76 V 161 Al i

33 21 f 76 4C L 119 77 w 162 A2
/

34 22
•i

77 4D H 128 78 X 163 A3 u

35 23 I 78 4E N 121 79 y 164 A4 n

36 24 $ 79 4F 122 7A z 165 A5 N

37 25 •/ 88 58 P 123 7B { 166 A6 s

38 26 1 81 51 q 124 7C
1

1 167 A7
•

39 27
i

82 52 i 125 7D } 168 A8 I

48 28 ( 83 53 s 126 7E
•

169 A9 r

41 29 ) 84 54 T 127 7F 6 178 AA -\

42 2A 85 55 U 128 88 S 171 AB %
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Table D-1. ASCII Character Codes continued

Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char

172 AC V
i 193 CI J- 214 D6

|
235 EB 1

173 AD i 194 C2 , 215 D7 1 236 EC •

174 AE <' 195 C3 216 D8
f

237 ED i

175 AF i 196 C4 217 D9 J 238 EE i

176 M 197 C5 218 DA

i

239 EF n

177 Bl 198 C6 219 DB 248 F8 =

178 B2 199 C7 228 DC 241 Fl +

179 B3 288 C8 221 DD r 242 F2 >

188 B4 281 C9 | 222 DE
j

243 F3 <

181 B5 282 CA f[- 223 DF 244 F4

i182 B6
1 283 CB ir 224 E8 c 245 F5

183 B7 !I 284 CC 225 El p 246 F6 T

184 B8 285 CD 226 E2 r 247 F7 Z

185 B9 286 CE * 227

CF * 228

E3 248 F8
•

186 BA 287 E4 i 249 F9 •

187 BB
] 288

289

D8 JI 229 E5 r 258 FA

188 BC *

Dl , 238 E6 V 251 FB 4

189 BD J1 218 D2
1

D3 1

r 231 E7 T 252 FC i

198 BE 1 211 I 232 E8 s 253 FD t

191 BF
i 212 D4 1 233 E9 e 254 FE

192 CB L 213 D5 , 234 EA ft 255 FF



390 Peter Norton's Assembly Language Book for the IBM PC, Revised & Expanded

Table D-2. Color Codes

Black

1 Blue

2 Green

3 Cyan
4 Red
5 Violet

6 Brown
7 White

Attribute = background color * 16 + foreground color

Add 8 to the forground color for the bright versions, or add 8 to the to the back-

ground color to turn on blinking.



Miscellaneous Tables 391

M..any of the keys on the keyboard (such as the function keys) return a two-

character code when you read the keys through DOS: A decimal followed by a

scan code. The following table shows the scan codes for all the keys that have no

equivalent ASCII code.

Table D-3. Extended Keyboard Codes

15 Shift Tab
16-25 Alt keys for Q, W, E, R, T, Y, U, I, O, P
30-38 Alt keys for A, S, D, F, G, H, J, K, L
44-50 Alt keys for Z, X, C, V, B, N, M
59-68 Fl through F10
71 Home
72 Cursor Up
73 PgUp
75 Cursor Left

77 Cursor Right

79 End
80 Cursor Down
81 PgDn
82 Ins

83 Del

84-93 Shift Fl through F10
94-103 Control Fl through F10
104-113 Alt Fl through F10
114 Control PrtSc

115 Control Left Cursor

116 Control Right Cursor

117 Control End
118 Control PgDn
119 Control Home
120-131 Control Alt for 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, -,

132 Control PgUp
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Table D-4. Table of Addressing Modes

Addressing Mode Format of Address Segment Register Used

Register register (such as AX) None

Immediate data (such as 12345)

Memory Addressing Modes

None

Register Indirect [BX]

[BP]

[DI]

[SI]

DS
ss
DS
DS

Base Relative* label[BX]

labeUBP]

DS
SS

Direct Indexed* label[DI]

label[SI]

DS
DS

Base Indexed* label[BX + SI]

label[BX + DI]

label [BP + SI]

labeUBP + DI]

DS
DS
SS
ss

String Commands:
(MOVSW, LODSB, and so on)

Read from DS:SI

Write to ES:DI

* Label[...] can be replaced by [disp + ...], where disp is a displacement. Thus,

we could write [10 + BX] and the address would be 10 + BX.
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Table D-5. INT 10h Functions

(AH) = Set the display mode. The AL registers contains the mode
number.

TEXT MODES

(AL) = 40 by 25, black and white mode
(AL) = 1 40 by 25, color

(AL) = 2 80 by 25, black and white

(AL) = 3 80 by 25, color

(AL) = 7 80 by 25, monochrome display adapter

GRAPHICS MODE

(AL) = 4 320 by 200, color

(AL) = 5 320 by 200, black and white

(AL) = 6 640 by 200, black and white

(AH) = 1 Set the cursor size.

(CH) Starting scan line of the cursor. The top line is

on both the monochrome and color graphics

displays, while the bottom line is 7 for the color

graphics adapter and 13 for the monochrome
adapter. Valid range: to 31.

(CL) Last scan line of the cursor.

The power-on setting for the color graphics adapter is CH = 6

and CL = 7. For the monochrome display: CH =11 and

CL=12.

(AH) = 2 Set the cursor position.

(DH,DL) Row, column of new cursor position; the upper,

left corner is (0,0).

(BH) Page number. This is the number of the display

page. The color-graphics adapter has room for

several display pages, but most programs use

page 0.
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Table D-5. INT 10h Functions continued

(AH) = 3 Read the cursor position.

(BH) Page number
On exit (DH,DL) Row, column of cursor

(CH,CL) Cursor size

(AH) = 4 Read light pen position ( see Tech. Ref. Man.).

(AH) = 5 Select active display page.

(AL) New page number ( from to 7 for modes and

1; from to 3 for modes 2 and 3)

(AH) = 6 Scroll up.

(AL) Number of lines to blank at the bottom of the

window. Normal scrolling blanks one line. Set

to zero to blank entire window.

(CH,CL) Row, column of upper, left corner of window
(DH,DL) Row, column of lower, right corner of window
(BH) Display attribute to use for blank lines

(AH) = 7 Scroll down.

Same as scroll up (function 6), but lines are left blank at the

top of the window instead of the bottom

(AH) = 8 Read attribute and character under the cursor.

(BH) Display page (text modes only)

(AL) Character read

(AH) Attribute of character read ( text modes only)

(AH) = 9 Write attribute and character under the cursor.

(BH) Display page (text modes only)

(CX) Number of times to write character and

attribute on screen

(AL) Character to write

(BL) Attribute to write
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(AH) = 10 Write character under cursor (with normal attribute).

(BH) Display page

(CX) Number of times to write character

(AL) Character to write

(AH) = 11 to 13 Various graphics functions. (See Tech. Ref. Man. for the

details)

(AH) = 14 Write teletype. Write one character to the screen and move
the cursor to the next position.

(AL) Character to write

(BL) Color of character (graphics mode only)

(BH) Display page (text mode)

(AH) = 15 Return current video state.

(AL) Display mode currently set

(AH) Number of characters per line

(BH) Active display pages
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A his table contains the INT 16h functions used in this book to read characters

from the keyboard.

Table D-6. INT 16h Functions

(AH) = Keyboard read. This function waits for you to type a

character on the keyboard. It returns the ASCII code in AL
and the scan code in AH. For extended keys, AL will be set to

0. See Table D-2 for a list of scan codes for such keys.

(AH) = 1

(AH) -2

(AL)

(AH)

ASCII code of the key you press (0 for special

keys).

Scan code for the key you pressed.

Keyboard status. This function checks to see if there are

any keys waiting to be read.

ZF

(AL)

(AH)

0, if a character is waiting

1, if there are no characters waiting.

ASCII code of character waiting to be read.

Scan code of character waiting to be read.

Shift status. This function returns a byte with the state of

the various shift keys:

(AL) Status of the shift keys:

7 6 5 4 3 2 1

1 Insert on

Caps Lock on

Num Lock on

Scroll Lock on

Alt key down
Left shift down

1 Right shift down
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A his table contains the INT 21h functions used in this book. For a more com-

plete list, you should buy the IBM DOS Technical Reference manual.

Table D-7. INT21h Functions

(AH) = 1 Keyboard input. This function waits for you to type a

character on the keyboard. It echos the character to the

screen, and returns the ASCII code in the AL register. For

extended keyboard codes, this function returns two

characters: an ASCII followed by the scan code (see Table

D-2).

(AL) Character read from the keyboard.

(AH) = 2 Display output. Displays one character on the screen.

Several characters have special meaning to this function:

7 Beep: Send a one-second tone to the speaker.

8 Backspace: move the cursor left one character

position.

9 Tab: Move to the next tab stop. Tab stops are

set to every 8 characters.

OAh Line feed: Move to the next line.

ODh Carriage return: Move to the start of the

current line.

(DL) Character to display on the screen.

(AH) = 8 Keyboard input without echo. Reads a character from the

keyboard, but doesn't display the character on the screen.

(AL) Character read from keyboard.

(AH) = 9 Display string. Displays the string pointed to by the DS:DX
pair of registers. You must mark the end of the string with

the $ character.

DS:DX Points to the string to display.

(AH) = OAh Read string. Reads a strings from the keyboard. See

Chapter 23 for more details.
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Table D-7. INT 21 h Functions continued

(AH) = 25h Set interrupt vector. Sets an interrupt vector to point to a

new routine.

(AL) Interrupt number.

DS:DX Address of the new interrupt handler.

(AH) = 35h Get interrupt vector. Gets the address of the interrupt

service routine for the interrupt number given in AL.

(AL) Interrupt number.

ES:BX Address of the interrupt handler.

(AH) = 4Ch Exit to DOS. Returns to DOS, like INT 20h, but it works for

both .COM and .EXE programs. The INT 20h function only

works for .COM programs.

(AL) Return code. Normally set to 0, but you can set

it to any other number and use the DOS batch

commands IF and ERRORLEVEL to detect

errors.
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A he following two interrupts are DOS calls for reading and writing disk sec-

tors.

Table D-8. Sector Read/Write Functions

INT 25h—Read Disk Sector

On entry:

(AL) Drive number (0 = A, 1 = B, and so on)

(CX) Number of sectors to read at one time

(DX) Number of the first sector to read (the first sector is 0)

DS:BX Transfer address: where to write the sectors read

INT 26h—Write Disk Sector

On entry:

(AL) Drive number (0 = A, 1 = B, and so on)

(CX) Number of sectors to write at one time

(DX) Number of the first sector to write (the first sector is 0)

DS:BX Transfer address: start of the data we want to write to

the disk.

Information Returned by INT 25h, INT 26h

Both INT 25h and INT 26h return the following information in the AX regis-

ter. They also leave the flags on the stack, so you'll want to use a POP or POPF
to remove this word from the stack (see Chapter 15 for an example).

Returns:

Carry Flag Set if there was an error, in which case the error

information will be in AX.
(AL) DOS error code

(AH) Contains one of the following:

80h The drive did not respond

40h The Seek operation failed

08h Bad CRC when we read the disk

04h Could not find the sector we asked for

03h Tried to write to a write-protected disk

02h Some other error

Destroys

AX, BX, CX, DX, SI, DI, BP
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80286/80386 microprocessors, 4

A, Debug's assemble command, 40
ADC, 50
ADD, 24
Add, text to is against grey, 152
Adding one, INC, 75
Addition with carry, 50
Addition, hexarithmetic command, 6
Addresses
CALL and segments, 120
CS:IP pair, 112
effective and LEA, 163
interrupt instruction vectors, 124, 326
labels, 93
locations in memory, 24
map files, 269
memory, 24
modes, 142, 148, 392
base indexed, 148
base relative, 144, 147
direct mode, 148
direct indexed, 148
immediate, 148
indirect memory, 144, 148
register, 148
register indirect, 148
table, 148, 392

OFFSET directive, 212
PUBLIC directive, 100, 315
RET and segments, 120
segment override, 297
segments, 112, 114, 288

AL register

the LODSB instruction, 178
the STOSB instruction, 306

AND instruction, 64
Area in front of programs, PSP, 118
Arithmetic shift, SHL, 63, 71
ASCII characters, 37
ASCII codes, 388
ASCII, extended, 391
Asm, ".asm" source file, 86
Assemble in Debug, 40
Assembler

automatic, 158
comments, 91
directives, 88, 91
ASSUME, 288, 298
BYTE, 213
.CODE, 118, 135, 288
.DATA, 144
.DATA?, 167
DB, 147, 167
DOSSEG, 118
DUP (?), 167
END, 88
ENDP and PROC, 97, 316
ENDS and SEGMENT, 288
EQU, 152

EXTRN, 134
FAR and NEAR, 120
.MODEL, 312
NEAR and FAR, 120
OFFSET, 212
ORG, 289
PUBLIC, 100, 315
PROC and ENDP, 97, 316
PTR, 148, 213
.STACK, 116
SEGMENT, 288
USES, 316
WORD, 213

labels, 92
output, object file, 89
segment override, 297
segment, full definitions, 288

Assembly language procedures for C, 312
Assignment, EQU directive, 152
Assignment, the MOV instruction, 41
ASSUME directive, 288, 298
Attributes, character

color table, 202
in memory, 302
inverse and normal, 202
WRITE_ATTRIBUTEJSLTIMES, 230, 305
writing, 305
writing characters and, 203

Automatic assembly, 158
Automatic response, LINK, 269
AX, general purpose register, 22

B, binary numbers, 15
BACK_SPACE, 255
Base 16, hex, 7

Base 2, binary, 15
Base Relative addressing mode, 144, 147
BASIC CLS command, 191
Basic input output system, ROM BIOS, 186
Binary files, EXE2BIN, 291
Binary numbers, 15
converting to decimal, 104
group of four bits, Nibble, 62

BIOS, Basic input output system in ROM, 186
INT lOh VIDEOJO functions, 187, 393

function 2, set cursor position, 191
function 3, read cursor position, 204
function 6, scroll page up, 190, 393
function 9, write char./attribute, 203

INT llh, equipment flags, 301
INT 13h, disk I/O services, 326
INT 16h, keyboard services, 214, 396

Bits, 17
group of four, Nibble, 62
setting with OR, 108

Block nesting error, 384
Blue text, 152
Borland Turbo Debugger, 275
Boundary conditions, 62, 72

407
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Boundary conditions, printing a number in hex,

62
BP register, 318
Breakpoint for Debugs G, 53
BS, back space constant, 256
Bugs, finding, 271
Bugs, finding in large programs, 267
BX, general purpose register, 22
Byte, 17
BYTE directive, 213
BYTE PTR, 213
Byte registers, changing in Debug, 29
Bytes and words, mixing, 213

C and assembly language, 312
C parameters, 316, 320
C procedure names, 315
C procedures
CLEAR-SCREEN, 313
GOTO_XY, 320
READ_KEY, 322
WRITE-STRING, 316

C register usage, 314
C return values, 322
C variable names, 315
CALL instruction, 74
NEAR and FAR, 120, 134
segments, 120
the stack, 76

Carry Flag, 48
Central dispatcher, 210, 237, 262
CF, the Carry Flag, 48

error reporting with, 139
CGA screen memory, 300
Changing memory in Debug, 24, 28
Changing registers in Debug, R. 23
Character attributes in memory, 302
Character attributes,

WRITE_ATTRIBUTE_N_TIMES, 230,
305

Character codes, 388
extended, 391
reading a string, 256
reading with INT 16h, 214, 396
reading with READ_BYTE, 214, 247, 258
special codes, 70
writing attributes and, 203
writing strings of, 197

CL, count register and rotates, 63, 71
CLD instruction, 179
Clear direction flag, CLD, 179
Clearing registers with XOR, 106
Clearing the screen, 190
BASIC CLS, 191
from C, 313

Clearing windows, 190
CLEAR-SCREEN, 190
CLEAR_SCREEN for C, 313
CLEAR_TO_END_OF_LINE, 206, 307
CLIB.ASM, 313
Clock interrupt, 122
CLS, the BASIC command, 191
CMP, compare instruction, 60
comparing to with OR, 107

Code segment, 26, 114, 288
-TEXT, 116

register, CS, 112
CodeView, 273

screen swapping, 273
Color codes, 202, 390
Color graphics adapters, memory, 300
Color Table, 202
COM, ".com" files, 90, 118

creating ".com" files, 144
EXE2BIN, 291
and ASSUME, 288, 298
and ORG, 289
and segments, 288

Command file, LINK, 269
Command line, 117
Comment header, 139
Comments and modular design, 101
Comments, the ;, 91
Common error messages, 384
COMPAQ DOS 3.31, 165
Compare with OR, 107
Computerese, kludge, 112
Conditional jump instructions, 59
JA, Jump if Above, 80
JB, Jump if Below, 80
JL, Jump if Less than, 62
JLE, Jump if Less or Equal, 71
JNZ, Jump if Not Zero, 59
JZ, Jump if Zero, 59

Constants, CR, BS, and ESCAPE, 256
Constants, EQU directive, 152
Converting binary to decimal numbers, 104
Converting Decimal to Hex, 12
Converting Hex to Decimal, 8
Converting negative numbers to two's

complement, 18
CONVERT_HEX_DIGIT, 245
CR, carriage return constant, 256
CR, carriage return or enter, 151
CRLF, carriage return/line feed, 151
CS, code segment, 26, 112, 288
CSRLIN, reading cursor position, 204
CURRENT_SECTOR_NO, 193
Cursor
movement, INT lOh function 2, 187, 191, 393
position, read, 204
moving from C, 320
moving the, 191
moving to right, 204
virtual, 304, 307

Cursor.asm, 151, 190, 204
CURSOR-RIGHT, 204, 306
CX, general purpose register, 22
CX, the count register, 138
CY, the carry flag, 48

D, Debug's dump command, 43
.DATA directive, 144
.DATA? directive, 167
Data segment, 114, 288
and groups, 146
for memory variables, 144
multiple, 296

Data types, mixing, 213
Data
ASSUME directive, 288, 298
DISPATCHJTABLE, 211, 266
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immediate addressing mode, 142
segment override, 297

DB, define byte, 147, 167
Debug, 5
and MS-DOS, 130
G command, breakpoints, 53
how tracing works, 123
load command, L, 128
starting and leaving, 6
trace command, 26

Debugger
CodeView, 273
Debug, 5

Turbo, 275
Debugging, 5
PUBLIC, 100, 315
source level, 272
symbolic, 272, 276
techniques, 267, 271

Decimal numbers, converting from binary, 104
Decimal, converting Hex to, 8
Decimal, converting to Hex, 12
Define byte, DB directive, 147, 167

Define with EQU directive, 152
Deleting characters, BACK_SPACE, 255
Designers of the 8088, Intel, 112
Destination Index register, 106
DI register, 106
Direct addressing mode, 147
Direction flag, 179
Directives, 88
assembler commands, 88
ASSUME, 288, 298
BYTE, 213
.DATA, 144
.DATA?, 167
DUP(?), 167
DOSSEG, 118
END 88
ENDS, 288
full SEGMENT, 288
.MODEL, 122, 312
OFFSET, 212
ORG, 289
PROC and ENDP, 97, 134, 316
PTR, 213
PUBLIC, 100, 315
SMALL, 122
.STACK, 116
USES, 316
WORD, 213

Directories, diskette, 129
Directory, start on a disk, 128
Disk directories, 129
Disk sectors, 128

reading sectors with INT 25h, 164, 399
reading with READ_SECTOR, 178
writing, 267, 399
writing modified sectors with F2, 266

Disk size table, 128
Diskette, INT 13h, 326
Disklite, 330
Disks, number of floppy, 329
DISK_DRIVE_NO, 193
Disk_io.asm, 162, 177, 191, 215, 267
DISK_PATCH, 193, 197, 211, 301

Dispatch.asm, 211, 234, 262, 266
Dispatcher, 210, 237, 262
DISPATCH_TABLE, 211, 266
Display header, 196
Display memory, 300
Display registers, 22
Display, INIT_SEC_DISP, 177, 226
Display, using ROM BIOS with, 190
DISP_HALF_SECTOR, 153, 162
DISP-LINE, 143, 150, 154, 171
Disp_sec.asm, 143, 150, 162, 170, 192, 214, 226
DIV, 33
Dividing memory into segments, 23
Division, 33
remainder, 12

Documentation, comment header, 139
DOS 4.0, 165
DOS function 25h, reading sectors, 164, 399
DOS functions, 397-9
DOS, exit to, 114
DOSSEG and groups, 146
DS, data segment, 114
Dskpatch.asm, 193, 197, 211, 301
Dumping memory with Debug's D, 43
DUP(?) directive, 167
DX, general purpose register, 22

E, Debug's enter command, 24, 28
Echoing characters, 79
Editing memory, EDIT_BYTE, 239
Editor.asm, 238
EDITOR-PROMPT, 210
EDIT-BYTE, 239
Effective address, LEA, 163
EGA screen memory, 300
END directive, 88
End of file, no END directive, 384
End of lines, clear to, 206
END, use in separate source files, 136
End-of-string marker, 197
Endless, see Loop
ENDP directive, procedures 97, 316
Enter, Debug's enter command, 24, 28
Entering programs, 39
EQU directive, 152
Equate, the EQU directive, 152
Equipment flags, 301
ERASE-PHANTOM, 229
Erasing characters, BACK-SPACE, 255
Error messages
EXE2BIN, 385
LINK, 385
MASM, 384
possible causes, 384

Errors, debugging to remove, 5
Errors, the carry flag, 139
ES, extra segment, 114
ES, segment override, 297
ESCAPE constant, 256
Exclusive OR, 107
EXE programs, relocation, 289
EXE programs, the stack, 117
EXE to COM, EXE2BIN, 291
EXE, ".exe" and ".com" files, 118
EXE, ".exe" files, 90
Exe2bin, 90, 291
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Execute, 26
Execution, single-step, 26
Exit dskpatch—F10, 217
Exit to DOS, INT 21h, function 4Ch, 114
Exit, the INT 20h instruction, 38
Extended keyboard codes, 70, 391
External, EXTRN directive, 134
Extra segment, 114
EXTRN directive, 134

linking files together, 136

F1-F10, special function key input, 70
F2—key to write modified sectors, 266
F3—read previous sector, 217
F4—read next sector, 217
F10—exit dskpatch, 217

Far CALL, 120
FAR directive, 120
Far RET, 120
Fast screen writing
GOTO_XY, 306
INIT_WRITE_CHAR, 301

File cannot be converted, 385
File directories, 129
File, make format, 159
Files, names in Debug, 42
Files, writing in Debug, 42
Finding procedures in memory, 271
Fixup offset exceeds field width, 385
Flag register, 122

carry, 48
direction flag, 179
INT instruction and, 122
IRET, 123
overflow, 59
POPF instruction, 165
sign, 59
saving and restoring, 78, 179
zero, 58

Floppy disks
directories, 129
number of, 329
sectors, 128

reading with INT 25h, 164, 399
reading with READ-SECTOR, 178
writing, 267, 399

FOR-NEXT, the LOOP instruction, 51
Fragmented segments, 385
Full segment definitions, 288
Function keys

character codes, 70
F2—key to write modified sectors, 266
F3—read previous sector, 217
F4—read next sector, 217
F10—exit dskpatch, 217

Function numbers for ROM BIOS VIDEO-JO.
187, 393

function 2, set cursor position, 191
function 3, read cursor position, 204
function 6, scroll page up, 190, 393
function 9, write char./attribute, 203

Function return values, 322

G, Debug's go command, 36, 38
breakpoints, 53
see also Proceed trace, 54

General purpose registers, 22
GET_NUM_FLOPPIES, 329
Go, see G, 36
GOSUB
CALL instruction, 74
procedures, 74
see also INT, 36

GOTO-XY, 191, 306
for C, 320

Graphics characters, 388
Gray text, 5, 152
Groups, 146

H, hexarithmetic, 6
hexadecimal numbers, 8

H, for hexadecimal numbers in the assembler,
87

Hard disks, reading sectors, 165, 399
Header at top of screen, 196
HEADER_LINE_NO, 193
HEADER_PART_1, 193
HEADER_PART_2, 193
Hercules display memory, 300
Hexadecimal, 7

converting Decimal to, 12
converting to Decimal, 8
numbers in the assembler, 87
origins, 7

printing in, 66
reading a single digit, 71

Hexarithmetic, 6
HEX_TO_BYTE, 246
High-level languages, 315
.MODEL, 312

Humans, 40
Hyphen, Debug's prompt, 6

IF-THEN, conditional jumps, 59
CMP instruction, 60
status flags, 60

Immediate mode, 142
INC instruction, 75
Incrementing, INC, 75
Index registers, SI and DI, 106
Indirect memory addressing mode, 144
INIT_SECJDISP, 177, 180, 191, 226
INIT_WRITE_CHAR, 301
Installed equipment, 301
Installing RAM-resident programs, 329
Instruction addresses, CS:IP, 112
Instruction Pointer, 26
IP register, 112

Instructions, machine language, 23
LEA, 163
LODSB, 178
segment override, 297
STOSB, 306

INT instruction, 36, 122
INT 1, single-step interrupt, 123
INT lOh functions, 187, 393

function 2, set cursor position, 191
function 3, read cursor position, 204
function 6, scroll page up, 190, 393
function 9, write char./attribute, 203

INT 13h diskette functions, 326
INT 16h keyboard services, 214, 396
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INT 20h, 38
INT21h,36,397

function 1, read character, 70
function 8, reading characters without echo,

79
function 9, write string, 43
function 25h, reading INT vectors, 329
function 35h, setting INT vectors, 329
function 4Ch, exit to DOS, 114

INT 25h, read disk sector, 164, 399
INT 26h, write disk sector, 267, 399
INT 27h, terminate but stay resident, 329
simulating, 327
tracing with the P command, 54

Intel, 112
Intercepting interrupt vectors, 326
Interrupts

clock, 122
INT instruction, 122
return from, 123
stack after an, 123
stack size, 329
vectors, 124

intercepting, 326
reading and setting, 329

Intersegment CALL, 120
Intersegment RET, 120
Intrasegment CALL, 120
Intrasegment RET, 120
Inverse video, 202
IP register, 26, 112
IP, instruction pointer, 112
IRET, return from interrupt, 123

JA, jump if above, 80
JB, jump if below, 80
JL, jump if less than, 62
JLE, jump if less than or equal, 7

1

JNZ, jump if not zero, 59
JZ, jump if zero, 59

Kbd-io.asm, 214, 245, 255
Keyboard codes, extended, 391
Keyboard functions, 396
Keyboard input without echo, 79
Keyboard input, INT 21h function 1, 70
Keyboard, reading, 214
Keyboard, reading from C, 322
Keys, function codes, 70
Kludge, a make-shift fix, 112

L, Debug's load command, 128
Labels, 92

addresses, 24
CodeView and, 273
Turbo Debugger and, 276

Large hard disks, 165
Large programs, 134, 144
debugging, 267

Laws, the three of modular design, 137
LEA instruction, 163
Leaving dskpatch—F10, 217
LET, the MOV instruction, 41
LF, line feed, 151
LIFO, last in first out, 76

the stack, 76

Light, disk, 330
Limbo, 26
Line, writing prompt, 214
Lines, clear to end of, 206
LINES_BEFORE_SECTOR, 193
LINK, 89
automatic response, 269
map files and, 269
/map switch, 269
PUBLIC directives, 100, 315
load order, 144

Linkinfo, LINK response file, 269
Linking, 89

separate files, 136, 144
together files, 144

Listing a program, Debug's U, 39
Load map, 269
Load order, Link, 144
LOad String Byte, LODSB instruction, 178
Loading a byte with LODSB, 178
Loading sectors, Debug's L, 128
Local variables , 79, 101
LOCATE, cursor movement, 191
Locations in memory, addresses, 24
LODSB instruction, 178
Logical instructions, AND, 64
Logical operations, the XOR, 107
Long CALL, 120
Long RET, 120
LOOP, 51
Loop, see endless

Machine Code, 23
Machine language, 23, 26
Macros, 321
Make, 158
Make file, format, 159

Make-shift fix, kludge, 112
Makefile, new version, 216
Map files, creating, 269
MASM
ASSUME directive, 288, 298
error messages, 384
segment load order, 144
segment override, 297

Memory, 24
addressing instructions with CS:IP, 112
addressing modes, 142, 392
ASSUME directive, 288, 298
base relative addressing, 144, 147
CodeView and, 273
data segment, 114, 144
DB directive, 147, 167
direct addressing, 147
dividing into segments, 23
editing with EDIT_BYTE, 239
groups, 146
how words are stored, 108
indirect memory addressing, 144
locations, 24
labels for, 24
map, 269
models, 134
.MODEL, 122,312

offset, 24, 212
order of segments, 144
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ROM chip, 186
screen and attributes, 300-2
segment overrides, 297
segment registers, 114
segmenting, 112
the stack in, 116
Turbo Debugger and, 276
writing to with WRITE_TO_MEMORY, 238

Memory variables, 192
.DATA?, 167
CURRENT_SECTOR_NO. 193
DISK_DRIVE_NO, 193
DISPATCH_TABLE, 211, 266
EDITORJPROMPT. 210
PHANTOM_CURSOR_X, 227
PHANTOM_CURSOR_Y, 227
PROMPT_LINE_NO. 210
REAL_CURSOR_X, 227
REAL_CURSOR_Y, 227
SCREEN_PTR, 305
SCREEN_SEG, 303
SCREEN_X and SCREEN_Y, 305
SECTOR, 153

Microsoft and Debug, 130
Microsoft CodeView, 273
Minimum program, 101
Mixing different data types, 213
Mixing words and bytes, 213
Mnemonic, 40
Modified sectors, writing with F2, 266
MODEL directive, 122, 134
high-level languages and. 312
PUBLIC and. 315

Modular design, 137
comment blocks, 101

Monochrome display memory, 300
ROM BIOS functions, 187

MOV, 40
its cousin LODSB, 178
its cousin STOSB. 306

Move, the MOV instruction, 40
Moving the cursor
CURSOR-RIGHT. 204, 306
GOTO-XY, 191, 306. 320
INT lOh function 2. 187, 191, 393

MOV_TO^SCII_POSITION, 228
MOV_TO_HEX_POSITION, 227
MS-DOS and Debug, 130
MUL, 30
Multiple segments, 296
Multiplication, 30
by shifting, SHL. 71

Multiplying two words, 33

N, Debug's name command, 42
Names and CodeView, 273
Names and Turbo Debugger, 276
Names inC, 315
Names in Debug, 42
NC, the carry flag. 48
NEAR and FAR procedures, 134
Near CALL, 120
NEAR directive. 120
NEAR labels, 93
Near RET, 120

Negative numbers, 18, 28
sign flag, 59
the sign bit, 18

New programs, starting point, 101
Next instruction, 26
Next sector. F4, 217
NEXT_SECTOR, 215
NG, sign flag, 59
Nibble, a group of four bits, 62
Normal attribute, 202
Numbers, converting binary to decimal, 104
Numbers, overflow flag, 59
Numbers, sign flag. 59
NV. overflow flag, 59
NZ, zero flag, 58

OBJ, ".obj" files, 90
Object file, assembler output, 89
OFFSET directive, 212
Offset within segment, 24, 212
Open procedures, 384
Open segments, 384
OR instruction, 107
CMP a number with 0, 107
seting bits, 108

Order of segments, 144
ORG directive, 289
OV, overflow flag, 59
Overflow flag, 59

the Carry Flag, 48
Override, segment, 297

P. the proceed trace command. 54
Parameters and BP, 318
Parameters and C, 316, 320
Passing information, standards, 138
Passing parameters and BP, 318
Patterns, WRITE_PATTERN, 175
PC-DOS and Debug, 130
Phantom.asm. 227. 235, 282
PHANTOM_CURSOR_Y, 227
PHANTOM_DOWN, 235, 282
PHANTOM_LEFT, 235
PHANTOM_RIGHT. 236
PHANTOM_UP, 235, 282
PL. sign flag, 59
POP and PUSH to save and restore registers,

138
Pop off the stack, 78
POPF instruction, 165, 179
POS, reading cursor position, 204
Position, read cursor, 204
Positive numbers, overflow flag, 59
Positive numbers, sign flag, 59
Preserving registers in C, 314
Previous sector, F3, 217
PREVIOUS-SECTOR, 215
PRINT, INT 21h function 9, 43
Printaj.asm, 97
Printing in hexadecimal, 66
PRINT^^J, 96
PROC and parameters, 316, 320
PROC directive, 97, 134, 316
Procedures, 74

addresses, OFFSET directive, 212
CodeView and, 273
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external, 134
finding in memory, 271
load order, 144
local variables, 79
make 'em short, 138
.MODEL, 122,312
names in C, 315
NEAR and FAR, 134
parameters, 316, 320
PROC and ENDP, 97, 316
return values, 322
saving and restoring registers, 78, 138
Turbo Debugger and, 276

Procedures, source
BACK-SPACE, 255
CLEAR-SCREEN, 190
CLEAR-SCREEN for C, 313
CLEAR_TO_END-OF_LINE, 206, 307
CONVERT_HEX_DIGIT, 245
CURSOR-RIGHT, 204, 306
DISK-PATCH, 211,301
DISPATCHER, 211, 237, 262
EDIT-BYTE, 239
ERASE-PHANTOM, 229
GET_NUM_FLOPPIES, 329
GOTO-XY, 306
GOTO-XY for C, 320
HEX_TO_BYTE, 246
INIT_SEC_DISP, 177, 226
INIT_WRITE_CHAR, 301
MOV_TO_ASCII_POSITION, 228
MOV_TO_HEX_POSITION, 227
NEXT-SECTOR, 215
PHANTOM_DOWN, 235, 282
PHANTOM-LEFT, 235
PHANTOM-RIGHT, 236
PHANTOM-UP, 235, 282
PREVIOUS-SECTOR, 215
READ-BYTE, 214, 247, 258
READ-DECIMAL, 249
READ_KEY, 247
READ-KEY for C, 322
READ-STRING, 246, 256, 309
RESTORE_REAL_CURSOR, 228
SAVE_REAL_CURSOR, 228
SCROLL-DOWN, 284
SCROLL-UP, 283
SEND.CRLF, 308
STRING_TO_UPPER, 245
TEST, 243, 250
UPDATE_REAL_CURSOR, 308
UPDATE_VIRTUAL-CURSOR, 308
WRITE_ATTRIBUTE_N_TIMES, 230, 305
WRITE-CHAR, 203, 304
WRITE-HEADER, 196, 206
WRITE-PHANTOM, 229
WRITE-PROMPT-LINE, 214
WRITE-SECTOR, 267
WRITE-STRING, 197
WRITE-STRING for C, 316
WRITE-TOJVIEMORY, 238

Proceed, the P trace command, 54
Program header, PSP, 117
Program Segment Prefix, 117
Program text, source file, 86
Program trace, the P command, 54

Programs, Disklite, 330
Programs, RAM-resident, 326
Programs, skeletal, 101
Prompt line, writing, 214
PROMPT_LINE_NO, 210
Pseudo-ops, see directives, 88
PSP in front of programs, 118
PSP, Program Segment Prefix, 117
PTR directive, 148, 213
PUBLIC directive, 100
C and, 315
map files and, 269

PUSH and POP to save and restore registers,

138
Push onto stack, 78
PUSHF instruction, 179

Quitting dskpatch—F10, 217

R, Debug's register command, 22
changing byte registers, 29
changing registers, 22

RAM-resident programs, 326
RCL, 49
Read cursor position, 204
Read next sector, F4, 217
Read only memory chip, ROM, 186
Read previous sector, F3, 217
Read sector, 399
Reading a string of characters, 256
Reading characters
INT 21h function 1,70
READ-BYTE, 214, 247, 258
strings of characters, 256
without echo, 79

Reading disk sectors, DOS function 25h, 164,

399
Reading from the keyboard, 214
Reading hexadecimal digits, 71
Reading INT vectors, 329
Reading memory, LODSB, 178
Reading sectors

Debug's L, 128
DOS function 25h, 164, 399
PREVIOUS-SECTOR and NEXT-SECTOR,

215
READ-SECTOR, 178

READ_BYTE, 214, 247, 258
READ-DECIMAL, 249

testing, 250
READ_KEY, 247
READ-KEY for C, 322
READ-SECTOR, 162, 178, 194
READ-STRING, 245, 256, 309
REAL_CURSOR_X, 227
REAL_CURSOR_Y, 227
Registers, 22
ASSUME and segment, 288, 298
BP, 318
changing bytes with Debug's R, 29
changing them in Debug, 23
CS, 112
display with Debug's R, 22
flag, 123
general purpose, 22
IP, 112
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modes
base indexed. 148
base relative, 144, 147
direct mode. 148
direct indexed, 148
immediate. 148
indirect memory. 148
register. 142
register indirect. 148

saving and restoring. 78, 138
segment. 114
ASSUME, 288, 298
overrides, 297

special purpose, 22
SI and DI registers. 106
usage, 139

in C. 314
Relocation. 289
REM. comment statements. 91
Remainder. 12. 33
Removing errors, debugging, 5
Repeat count, the LOOP instruction, 51
Resident programs. 326
Response file. LINK. 269
RESTORE_REAL_CURSOR. 228
Restoring flags. POPF. 179
Restoring registers from the stack, 78
Restoring registers in C. 314
RET instruction, 74
NEAR and FAR. 134
segments. 120
the stack. 76

Return address, the stack. 76
Return from interrupt, IRET, 123
Return values in C. 322
RETURN, the RET instruction, 74
Reverse video. 202
Road map. map files. 269
ROM. read onlv memorv chip. 186
ROM BIOS functions
INT lOh VIDEO-IO functions. 187. 393
INT 13h disk functions. 326
INT 16h keyboard services. 214. 396

Rotate instruction. 49
Rotate through carry. 49
Rotates. SHL. 63
Rotates, the count register. 63
Routines, in ROM BIOS. 186

SAVE_REAL_CURSOR, 228
Saving a file to disk from Debug. 42
Saving and restoring registers, 78. 101, 138
Saving flags with INT instruction. 122
Saving registers in C, 314
Saving registers on the stack, 78
Saving the flags, PUSHF. 179
Scan code. 70
INT 16h. 214. 396

Scratch area, PSP, 117
Screen functions, 393

see also ROM BIOS
Screen memory. 300

organization, 302
Screen swapping
CodeView. 273
Turbo Debugger, 276

Screen writing, fast with GOTO-XY, 306
Screen writing, fast with WRITE-CHAR, 304
Screen, clearing from C, 313
Screen, clearing the. 190
Screen, using ROM BIOS with. 190
Screened text. 152
SCREEN_PTR. 305
SCREENJ3EG. 303
SCREEN-X and SCREEN_Y. 305
Scrolling the sector displav, 283
Scrolling. SCROLL_UP and SCROLL-DOWN,

283
SECTOR. 143. 153, 194
Sector display. INIT_SEC_DISP, 177, 226
Sector display, scrolling the. 283
Sectors per disk. 128
Sectors, disk. 128

editing with EDIT_BYTE. 239
F2 key to write modified, 266
previous and next with F3 and F4, 217
reading, 399
Debugs L. 128
DOS DSTT 25h function. 164. 399
PREVIOUS-SECTOR and
NEXT-SECTOR. 215

READJSECTOR. 178
writing disk. 267. 399

SECTOR-OFFSET. 193
SEG. segment override. 297
SEGMENT directive, full. 288
Segment directives

.CODE. 118, 135. 288

.DATA. 144

.STACK. 116
Segment load order. DOSSEG directive, 118
Segment offset, 24
Segment overrides
ASSUME. 297
instruction, 297

Segment registers, 114
CS. 112
DS. 114

Segments. 23, 112
.COM programs and. 288
ASSUME. 288. 298
CALL and RET. 120
.CODE. 118, 135. 288
.DATA. 144
.DATA?, 167
fragmented. 385
full definitions. 288
groups, 146
labeling, 24
multiple, 296
NEAR. 93
NEAR and FAR, 120
screen, 300
STACK, 116
_TEXT code. 116

SEND-CRLF. 151.308
Separate files. 134
Link, 89
linking, 136
modular design. 137

Setting bits with OR. 108
Setting LNT vectors. 329
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Shift, SHL, 63
SHL, shift left instruction, 63
Short CALL, 120
Short RET, 120
SI register, 106
Sign bit, 18
Sign flag, 59
Signed numbers, 15
Simulating INT, 327
Single-step execution, 26

breakpoints, 53
trap flag and, 123

Size, disks, 128
Skeletal program, 101
SMALL memory model, 122
.MODEL directive, 134

Software interrupt, INT instruction, 122
Source file, 86
Cursor.asm, 151, 190, 204
Disk_io.asm, 162, 177, 191, 215, 267
Dispatch.asm, 211, 234, 262, 266
Disp_sec.asm, 143, 150, 162, 170, 192, 214,

226
Dskpatch.asm, 193, 211, 301
Editor.asm, 238
KbcLio.asm, 214, 245, 255
Phantom.asm, 227, 235, 282
separate, 134
Test.asm, 134, 243, 250
I^GSt S6£7 3SIT1 114
Video_io.asmi 136, 151, 174, 197, 203, 230,

301
Source Index register, 106
Source level debugging, 272, 276
SP, stack pointer, 76, 116
Special function keys
keyboard input, 70
reading with READ_BYTE, 214, 247, 258
table, 391

Special purpose registers, 22
SS, stack segment, 76, 114

SS:SP, top of stack, 116
Stack, 76

after an INT instruction, 123
BP and, 318
.EXE programs and, 117
groups and, 146
LIFO, 76
pointer, SP, 76, 116
pop off the, 78
push onto, 78
saving and restoring registers, 78
saving flags on the, 122
segment, 76, 114
top of stack, 116
.STACK directive, 116
size, interrupts, 329

Standards, 138
Starting point for new programs, 101
Status flags, 58, 122
CMP instruction, 60
direction flag, 179
JA, 80
JB, 80
JL,62
JLE, 71

JNZ, 59
JZ,59
OR instruction, 107
overflow, 59
saving and restoring, 179
sign, 59

Status register, POPF, 165
see also, status flags

STore String Byte, STOSB instruction, 306
Storing memory, STOSB, 306
STOSB instruction, 306
String instructions

LODSB, 178
STOSB, 306

String, reading a, 256
Strings, writing from C, 316
Strings, writing with WRITE_STRING, 197
STRING_TO_UPPER, 245
SUB, 28
Subroutines, or procedures, 74
Subtraction, 28

the CMP instruction, 60
Swapping screens
CodeView, 273
Turbo Debugger, 276

Switch, LINK and /map, 269
Symbol defined more than once, 385
Symbol not defined, 384
Symbolic debugging, 272, 276

T, Debug's trace command, 26
Tables

ROM BIOS functions for VIDEO_IO, 187, 393
addressing modes, 392
color codes, 202, 390
disk size, 128
extended keyboard codes, 391
INT lOh functions, 187, 393
INT 16h functions, 214, 396
INT 21h functions, 397
sector functions, 399

Temporary storage, the stack, 76, 116
Terminate but stay resident, 329
TEST, 243, 250
Test.asm, 243, 250
Testing limits, boundary conditions, 62, 72
Testing READ_BYTE with TEST, 243
Testing READ_DECIMAL, 250
Test_seg.asm, 114
TEST_WRITE_DECIMAL, 106, 134
TEST_WRITE_HEX, 98
Text to add, 152
Text to delete, 152
Text, source file, 86
The three laws of modular design, 137
Top of stack, 116
Trace, 26
Tracing with the P command, 54
Tracking down bugs, 271
Trap flag, single stepping, 123
Truth table, AND, 65
TSR Programs, 326
Turbo Assembler, 276, 313
Turbo Debugger, 275

screen swapping, 276
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Two screens

CodeView's screen swapping, 273

Turbo Debugger's screen swapping, 276
Two's complement, negative numbers, 18, 28

overflow flag, 59
sign flag, 59

VIDEO_K) ROM BIOS functions 187, 393
VideoJo.asm, 98, 136, 151, 174, 197. 203, 230,

301
Virtual cursor, 304. 307

U, Debug's Unassemble, 39
Unassemble, 39
Uninitialized variables. .DATA?. 167
Unresolved externals. 385
Unsigned numbers, 14

JA and JB. 80
overflow flag, 59

UPDATE_REAL_CURSOR. 308
UPDATE_VIRTUAL_CURSOR. 308

Variable names in C, 315
Variable usage, 139
Variables and CodeView, 273
Variables and Turbo Debugger, 276
Variables

addressing modes. 142
data segment, 144
DB, DW directives, 147, 167
labels, 92
memory, 192
registers as, 22
segment overrides, 297
uninitialized with .DATA?, 167

Variables. Dskpatch
BOTTOM_LINE_PATTERN, 176
CURRENT_SECTOR_NO, 193
DISK_DRIVE_NO, 193
DISPATCH-TABLE, 211, 266
EDITOR-PROMPT, 210
HEADER_LINE_NO, 193
HEADER_PART_1, 193
HEADER_PART_2, 193
LINESJBEFORE-SECTOR. 193
PHANTOM_CURSOR_X, 227
PHANTOM_CURSOR_Y, 227
PROMPT_LINE_NO. 210
REAL_CURSOR_X, 227
REAL_CURSOR_Y, 227
SECTOR, 143, 153, 194
SECTOR_OFFSET. 193
SCREEN_PTR, 305
SCREEN_SEG, 303
SCREEN_X and SCREEN_Y, 305
TOP_LINE_PATTERN, 176

Vectors, interrupt, 124
intercepting, 326
reading and setting, 329

VGA screen memory, 300

W. Debug's write command, 42
Warning messages, possible sources, 384
Warning:no stack segment. 385
Windows, clearing, 190
Word, 17
WORD directive. 213
Word multiplv. 33
WORD PTR, 213
Words and bytes, mixing, 213
Words, how thev're stored in memory, 108
Write sector, 399
Writestr.asm, 86
WRITE_ATTRIBUTE_N_TIMES. 230, 305
WRITE_CHAR. 96. 100. 136, 151, 203, 304
WRITE_CHAR_N_TIMES. 174
WRITE_DECIMAL, 105, 136
WRITE_HEADER, 196. 206
WRITE_HEX, 98
WRITE_HEX_DIGIT. 99. 136
WRITE_PATTERN, 175
WRITE_PHANTOM, 229
WRITE_PROMPT_LINE. 214
WRITE_SECTOR. 267
WRITEJSTRING. 197
WRITE_STRING for C, 316
WRITE_TOP_HEX_NUMBERS, 179
WRITE_TO_MEMORY, 238
Writing a file in Debug, 42
Writing a string, 43
Writing attributes,

WRITE^lTTRIBUTE_N_TIMES. 230,
305

Writing characters and attributes, 203
Writing disk sectors. 267. 399
Writing memory, STOSB, 306
Writing modified sectors, F2 key. 266
Writing strings of characters, 197
Writing to memory. WRITE_TO_MEMORY. 238

XOR instruction, 106
clearing registers, 106

Zero flag, 58
JNZ. 59
JZ, 59

ZR, zero flag, 58

.TEXT code segment, 116
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CUSTOMER SUPPORT PLAN

It is important that you register your purchase of any Simon & Schuster software

package. By completing and returning your Owner Registration Card, you become
eligible for:

• Software support directly from S & S.

• Diskette replacement when applicable.

• Purchase of future product upgrades at special prices.

• Subscriptions to Hint Books and newsletters where applicable.

Software Support Options

S & S will provide support to registered owners under the following programs:

30-day Startup Service - For the first 30 days after you purchase an S & S Software

package, we will answer questions by telephone through our Technical Support Depart-

ment. There is no additional charge for this service, but you must have registered your

copy of the S & S Software package by sending the Owner Registration Card, or by
calling S & S to register your purchase. During the 30-day Startup period, we will

respond to your first call without having already received your Owner Registration

Card.

Extended Support Service - Registered owners may purchase S & S Extended Support

Service. This service provides up to three hours of telephone support from the S & S

Technical Support Department for a period of one year. Extended Support costs $60, is

renewable, and may be paid for when calling for support by Visa, Mastercard, Ameri-

can Express, or in advance by check.

Single-call Support Service - After the 30-day startup period, registered owners may
obtain telephone support from the S & S Technical Support Department for $60 per

hour, $10 minimum per call. These calls must be charged to an approved credit card.

The customer must have card information available at the beginning of the call.

Mail-in Support Service - Registered owners may write to us with questions. We will

respond in writing. There is no additional charge for this service.

We realize that our software packages are put to a wide variety of uses, however, we can

only answer questions about the software package itself. You are required to have

minimal experience using the hardware and operating system required to run our

software packages. While we will do our best to answer your questions about the

product, we must charge an extra $60 per hour fee for extensive consulting on problems

not directly related to our products.



Before Calling Customer Support

Before calling our Technical Support Department, please make sure you have followed

the steps in the "Pre-call Checklist" below.

Fre-call Checklist

1. If you are having difficulty understanding the program, have you read and per-

formed the suggestions listed in the manual?

2. If you are not sure how to operate the program, have you used the help system

(where available) to find the answer?

3. If there seems to be a problem in the software, can you reproduce the problem by
following your steps again?

4. If the program displayed an error message, please write down the exact message.

5. You should be familiar with the hardware configuration you are using. We may
need to know the brand/model of your computer, printer, the total amount of

memory available, what video adaptor(s) you have in the system, the operating

system version, etc.

6. When you call our Technical Support Department, please be at your computer or be

prepared to repeat the sequence of steps leading up to the problem.

7. If applicable, please have your Visa, MasterCard, or American Express number and
expiration date ready.

8. Our technical support number is (212) 373-7770. It is staffed on working days

during normal business hours, 9:00 am to 5:00 pm, Eastern time.

Services and Prices

The above services and prices are subject to change without prior notice.





The Winn Rosch
Hardware Bible

"Enhancing a computer is a matter of fitting connectors

together and, at most, operating a screwdriver—almost any-

one can do it, and that includes you."

—From the Introduction

PC journalist Winn Rosch walks you safely through the hardware

jungle ... from processors to ports, from displays to storage. More

than a guided tour, The Hardware Bible is hands-on all the way.

Whether you want to just get along with your current system, or

you're ready to enhance, upgrade, or even build a new machine.

• Covers the IBM PC, PC compatibles and IBM PS/2 hardware.

• ExplainsPC design and technology—you'll save time andmoney

by making the right decisions up front.

• Spells out the standards for settings, adjustments, and compati-

bilities

• Offers you step-by-step install procedures with worry-free

instructions.

ISBN 0-13-160979-3

$29.95

IIIBrady
Look for this and other Brady titles at your

local book or computer store.To

order directly call 1 (800) 624-0023,

in New Jersey 1 (800) 624-0024

Visa/MC accepted
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IBM / Programming

Revised and expanded:

Peter Norton's best-selling introduction to

assembly language programming.

Assembly language lets you write the fastest, most compact code to take

direct control over your PC hardware. When speed and size are at a

premium, assembly language programming outstrips even the most

advanced high-level languages.

Peter Norton's Assembly Language Book for the IBM PC, Revised and

Expanded quickly dispels the notion that assembly language programming

is difficult or tedious. It brings you to the heart of your computer's micro-

processor and makes the beauty and logic of efficient assembly language

code immediately accessible.

Following the book you will:

build a full-scale program—a screen editor for disk sectors

learn the techniques and procedures for writing clear, professional-

level code

work with about 50 general-purpose subroutines—ones that you will be

able to use time and again when you write your own programs.

You can use this book with a PC with 256K, one disk drive, and DOS Version 2.0 or

higher. You will also need an assembler: Microsoft's MASM (Version 5.0 or later), the

Turbo Assembler from Borland, or OPTASM from SLR Systems.

The easiest and most enjoyable way to learn assembly language is with

the master programmer himself—Peter Norton.

The Peter Norton Foundation Series

Brady Books Distributed by Prentice Hall Trade New York

Cover photo by Douglas Kirkland/Sygma

ASSEMBLY LANG CS
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ISBN Q-13-bb2M53-7


