Peter Norton’s
Assembly Language

Book for the IBM'PC

~ REVISED AND EXPANDED

1\5. ,d F %
2z
>4

i

—
=_— - ———

.
, rl -

Peter Norton
John Socha

"\:::M\\\\\\\\\,\\\\\'&\\

Contents

Part I Machine Language
Chapter 1 Debug and Arithmetic

Elementary Counting

Hexadecimal Numbers

Debug

Hexarithmetic

Converting Hexadecimal to Decimal
Five-Digit Hex Numbers

Converting Decimal to Hex

Negative Numbers

Bits, Bytes, Words, and Binary Notation
Two’s Complement—An Odd Sort of Negative Number
Summary

Chapter 2 8088 Arithmetic

Registers as Variables

Memory and the 8088

Addition, 8088 Style

Subtraction, 8088 Style

Negative Numbers in the 8088

Bytes in the 8088

Multiplication and Division, 8088 Style
Summary

Chapter 3 Printing Characters

INT—The Powerful Interrupt

A Graceful Exit—INT 20h

A Two-Line Program—Putting the Pieces Together
Entering Programs

MOVing Data into Registers

Writing a String of Characters

Summary

o

0 O O O s

11

13
15
17
18

21

22
23
25
28
28
29
30
33

35

36
38
39
39
40
43
44

iv Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Chapter 4 Printing Binary Numbers

Rotations and the Carry Flag
Adding With the Carry Flag
Looping

Writing a Binary Number
The Proceed Command
Summary

Chapter 5 Printing in Hex

Compare and Status Bits
Printing a Single Hex Digit
Another Rotate Instruction
Logic and AND

Putting It All Together
Summary

Chapter 6 Reading Characters

Reading One Character

Reading a Single-Digit Hex Number
Reading a Two-Digit Hex Number
Summary

Chapter 7 Procedures—Cousins to Subroutines

Procedures

The Stack and Return Addresses
PUSHing and POPping

Reading Hex Numbers with More Class
Summary

Part II Assembly Language
Chapter 8 Welcome to the Assembler

A Program Without Debug
Creating Source Files
Linking

Back in Debug

47

48
50
51
52
54
54

o7

58
60
62
64
66
66

69

70
71
71
72

73

74
76
78
{5
81

83
85

86
89
89
91

Comments
Labels
Summary

Chapter 9 Procedures and the Assembler

The Assembler’s Procedures

The Hex-Output Procedures

The Beginnings of Modular Design
A Program Skeleton

Summary

Chapter 10 Printing in Decimal

Recalling the Conversion
Some Tricks

The Inner Workings
Summary

Chapter 11 Segments

Sectioning the 8088’s Memory

The Stack

The Program Segment Prefix (PSP)
The DOSSEG Directive

Near and Far CALLs

More on the INT Instruction
Interrupt Vectors

Summary

Chapter 12 Course Corrections

Diskettes, Sectors, and So Forth

The Game Plan
Summary

Chapter 13 Modular Design

Separate Assembling
The Three Laws of Modular Design
Summary

Contents vV

a1
92
94

95

96
98
101
101
102

103

104
106
108
109

111

112
116
117
118
119
122
124
124

127

128
131
132

133
134

137
140

vi Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Chapter 14 Dumping Memory

Addressing Modes

The Data Segment
Base-Relative Addressing
Setting Up DS

Adding Characters to the Dump
Dumping 256 Bytes of Memory
Summary

Chapter 15 Dumping a Disk Sector

Making Life Easier
Format of the Make File
OPTASM’s Make
Patching up Disp_sec
Reading a Sector

The .DATA? Directive
Summary

Chapter 16 Enhancing the Sector Display

Adding Graphics Characters
Adding Addresses to the Display
Adding Horizontal Lines
Adding Numbers to the Display
Summary

Part I1I The IBM PC’s ROM BIOS
Chapter 17 The ROM BIOS Routines

VIDEO_IO, the ROM BIOS Routines
Clearing the Screen

Moving the Cursor

Rewiring Variable Usage

Writing the Header

Summary

141

142
144
147
148
149
151
155

157

158
159
160
161
162
167
168

169

170
172
175
179
18%

183
185

186
190
194
192
196
198

Chapter 18 The Ultimate WRITE_CHAR

A New WRITE_CHAR
Clearing to the End of a Line
Summary

Chapter 19 The Dispatcher

The Dispatcher
Reading Other Sectors
Philosophy of the Following Chapters

Chapter 20 A Programming Challenge

The Phantom Cursors
Simple Editing
Other Additions and Changes to Dskpatch

Chapter 21 The Phantom Cursors

The Phantom Cursors
Changing Character Attributes
Summary

Chapter 22 Simple Editing

Moving the Phantom Cursors
Simple Editing
Summary

Chapter 23 Hex and Decimal Input

Hex Input
Decimal Input
Summary

Chapter 24 Improved Keyboard Input

A New READ_STRING
User vs Programmer Friendly
Summary

Contents vii

201

203
205
207

209

210
215
217

219

220
221
222

225

226
230
231

233

234
236
239

241
242
248
251

253
254

259
260

viii Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Chapter 25 In Search of Bugs 261
Fixing DISPATCHER 262
Summary 263
Chapter 26 Writing Modified Sectors - 265
Writing to the Disk 266
More Debugging Techniques 267
Building a Road Map 268
Tracking Down Bugs 271
Source-Level Debugging y. T8
Microsoft’s CodeView 273
Borland’s Turbo Debugger 275
Summary 280
Chapter 27 The Other Half Sector 281
Scrolling by Half a Sector 282
Summary 284
Part IV Advanced Topics 285
Chapter 28 Relocation 287
.COM Programs 288
Relocation 289
.COM versus .EXE Programs 292
Chapter 29 More on Segments and ASSUME 295
Segment Override 296
Summary 298
Chapter 30 A Very Fast WRITE_CHAR 299
Screen Segment 300
Organization of Screen Memory 302
High Speed 304

Summary 309

Contents jx

Chapter 31 C Procedures in Assembly 311
A Clear Screen for C 312
Parameter Passing 316
A Two-Parameter Example 320
Returning Function Values 322
Summary 323

Chapter 32 DISKLITE, a RAM-Resident Program 325

RAM-Resident Programs 326
Intercepting Interrupts 326
Disklite 328
Chapter 33 Closing Words and Bibliography 335
80x86 Reference Books 336
DOS and ROM BIOS Programming 337
RAM Resident Programs 338
Software Design 338
Appendix A Guide to the Disk 339
Chapter Examples 340
Advanced Version of Dskpatch 340
Appendix B Listing of Dskpatch 345
Descriptions of Procedures 346
Program Listings for the Dskpatch Procedures 351
Dskpatch Make File 351
Dskpatch Linkinfo File 351
CURSOR.ASM J02
DISK_10.ASM 355
DISPATCH.ASM 357
DISP_SEC.ASM 359
DSKPATCH.ASM 364
EDITOR.ASM 365
KBD_I0.ASM 367
PHANTOM.ASM 373

VIDEO_10.ASM 377

Trademarks

IBM, IBM PC, XT, and AT are registered trademarks of International Business
Machines Corporation.

COMPAQ is a registered trademark of Compaq Computer Corporation.
MS-DOS and Microsoft are registered trademarks of Microsoft Corporation.
SideKick and SuperKey are trademarks of Borland International.

ProKey is a trademark of Rosesoft.

Lotus and 1-2-3 are trademarks of Lotus Development Corporation.

Intel is a registered trademark of Intel Corporation.

Limits of Liability and Disclaimer of Warranty

The authors and publisher of this book have used their best efforts in prepar-
ing this book and the programs contained in it. These efforts include the devel-
opment, research, and testing of the theories and programs to determine their
effectiveness. The authors and publisher make no warranty of any kind,
expressed or implied, with regard to these programs or the documentation con-
tained in this book. The authors and publisher shall not be liable in any event
for incidental or consequential damages in connection with, or arising out of,
the furnishing, performance, or use of these programs.

Xi

Introduction

By the time you finish reading this book, you’ll know how to write full-scale,
assembly language programs: text editors, utilities, and so on. Along the way,
you’ll learn many techniques that professional programmers use to make their
work simpler. These techniques, which include modular design and step-wise
refinement, will double or triple your programming speed, as well as help you
write more readable and reliable programs.

The technique of step-wise refinement, in particular, takes a lot of the work
out of writing complex programs. If you’ve ever had that sinking, “where-do-I-
start feeling,” you’ll find that step-wise refinement gives you a simple and nat-
ural way to write programs. And it’s also fun!

This book isn’t all theory, though. We'll build a program, too. The program is
called Dskpatch (for Disk Patch), and you’ll find it useful for several reasons.
First of all, you'll see step-wise refinement and modular design at work in a
real program, so you’ll have an opportunity to see why these techniques are so
useful. Also, as you’ll see shortly, Dskpatch is, in its own right, a general-pur-
pose, full-screen editor for disk sectors—one that you can continue to use both
in whole and in part long after you’ve finished with this book.

Why Assembly Language?

We’ll assume that you’ve picked up this book because you're interested in
learning assembly language. But you may not be exactly certain why you want
to learn it.

One reason, perhaps the least obvious, is that assembly language programs
are at the heart of any IBM PC (AT, PS/2, or compatible) computer. (IBM PC in
this book refers to any of the PC, AT, PS/2, or compatible computers.) In rela-
tion to all other programming languages, assembly language is the lowest com-
mon denominator. It takes you closer to the machine than higher level
languages do, so learning assembly language also means learning to under-
stand the microprocessor inside your computer, which may be an 8088, 80286,
or 80386 microprocessor. (8088 in this book refers to the 8088, 80286, and
80386 family of microprocessors.) We'll teach you the instructions of the 8088
microprocessor, as do the authors of other introductory books, but we’ll go much
farther and also cover advanced material that you’ll find invaluable when you
start to write your own programs.

Once you understand the 8088 microprocessor inside your IBM PC, many ele-
ments you'll see in other programs and in high-level languages will have
greater meaning for you. For example, you may have noticed that the largest

xiii

Xiv Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

integer you can have in BASIC is 32767. Where did this number come from? It’s
an odd number for an upper limit. But as you’ll see later, the number 32767 is
directly related to the way your IBM PC stores numbers.

Then, too, you may be interested in speed or size. As a rule, assembly lan-
guage programs are much faster than those written in any other languages.
Typical assembly language programs are two to three times faster than equiva-
lent C or Pascal programs, and they generally outpace interpreted BASIC pro-
grams by 15 times or more. Assembly language programs are also smaller. The
Dskpatch program we’ll build in this book will be full-grown at about one
kilobyte. Compared with programs in general, that’s small. A similar program
written in C or Pascal would be about ten times that size. For these reasons,
among others, the Lotus Development Corporation wrote 1-2-3 entirely in
assembly language.

Assembly language programs also provide you with full access to the fea-
tures in your computer. A number of programs, such as SideKick, ProKey, and
SuperKey, stay in memory after you run them. Such programs change the way
your machine works, and they use system features available only to assembly
language programs. We’ll show how to write such programs at the end of this
book.

Dskpatch

In our work with assembly language, we’ll look directly at disk sectors, dis-
playing characters and numbers stored there by DOS in hexadecimal notation.
Dskpatch is a full-screen editor for disks, and it will allow us to change these
characters and numbers in a disk sector. Using Dskpatch you could, for exam-
ple, look at the sector where DOS stores the directory for a disk and you could
change file names or other information. Doing so is a good way to learn how
DOS stores information on a disk.

You’ll get more out of Dskpatch than just one program, though. Dskpatch
contains about 50 subroutines. Many of these are general-purpose subroutines
you’ll find useful when you write your own programs. Thus, not only is this
book an introduction to the 8088 and assembly language programming, it’s also
a source of useful subroutines.

In addition, any full-screen editor needs to use features specific to the IBM
PC family of computers. Through the examples in this book, you'll also learn
how to write useful programs for IBM PCs, ATs, or compatible computers, such
as the Compag.

Introduction XV

Equipment Requirements

What equipment will you need to run the examples in this book? You’ll need
an IBM PC or compatible with at least 256K of memory and one disk drive.
You’ll also need version 2.00 or later of PC-DOS (or MS-DOS). And, starting in
Part II, you’ll need an assembler, which can be the IBM or the Microsoft Macro
Assembler version 5.0 or later, the Turbo Assembler from Borland Interna-
tional, or OPTASM from SLR Systems.

Organization of This Book

This book is divided into four parts, each with a different emphasis. Whether
you know anything about microprocessors or assembly language you’ll find sec-
tions of interest.

Part I focuses on the 8088 microprocessor. Here, you'll learn the mysteries of
bits, bytes, and machine language. Each of the seven chapters contains a
wealth of real examples that use a program called Debug, which comes on your
DOS disk. Debug will allow us to look inside the famous 8088 microprocessor
nestled deep in your IBM PC as it runs DOS. Part I assumes only that you have
a rudimentary knowledge of BASIC and know how to work with your com-
puter.

Part II, Chapters 8 through 16, moves on to assembly language and to writ-
ing programs in the assembler. The approach is gentle, and rather than cover
all the details of the assembler itself, we’ll concentrate on a set of assembler
commands we need to write useful programs.

We’ll use the assembler to rewrite some of the programs from Part I and then
move on to begin creating Dskpatch. We’ll build this program slowly, so you’ll
learn how to use step-wise refinement in building large programs. We’ll also
cover techniques like modular design that help in writing clear programs. As
mentioned, these techniques will simplify programming by removing some of
the complexities usually associated with writing assembly language programs.

In Part ITI, which includes Chapters 17 to 28, we’ll concentrate on using more
advanced features found in IBM PCs. These features include moving the cursor
and clearing the screen.

In Part III we’ll also discuss techniques for debugging larger assembly lan-
guage programs. Assembly language programs grow very quickly and can eas-
ily be two or more pages long without doing very much (Dskpatch will be
longer). Even though we’ll use these debugging techniques on programs larger
than a few pages, you’ll find them useful with small programs, too.

xvi Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Part IV covers several advanced topics that will be of interest to you when
you start to write real programs. The first two chapters cover details about
.COM programs, which you’ll need to write sometimes, and more on segments.
Then there is a chapter on writing directly to screen memory for very fast
screen displays. Next, there is a chapter on writing assembly language proce-
dures that you can use in your C programs. And finally, we finish Part IV with
a chapter on RAM-resident programs, complete with a program called DISK-
LITE that adds a disk light to your screen.

Now, without further ado, let’s jump into the 8088 and take a look at the way
1t stores numbers.

DEBUG AND ARITHMETIC

Elementary Counting 4

Hexadecimal Numbers 5

Debug 5

Hexarithmetic 6

Converting Hexadecimal to Decimal 8

Five-Digit Hex Numbers 11

Converting Decimal to Hex 12

Negative Numbers 13

Bits, Bytes, Words, and Binary Notation 15

Two’s Complement—An Odd Sort of Negative
Number 17

Summary 18

4 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Before we begin to look at assembly language, a few words are in order about
microprocessors. Currently (as of 1989) there are three main microprocessors
used in the IBM PC, AT, PS/2, and compatible computers: the 8088, 80286, and
80386 microprocessors. The 8088 microprocessor was first used in the original
IBM PC and is the slowest and least powerful microprocessor. Next came the
80286 in the IBM AT, which was about four times faster, and the first computer
capable of running IBM’s OS/2. Finally we have even faster computers built
around the 80386 microprocessor that are even faster and more powerful than
80286 computers.

Both the 80286 and the 80386 are supersets of the 8088 microprocessor,
which means any programs written for the 8088 microprocessor will run on any
of the others. In fact, programs written for MS-DOS (or PC-DOS) computers are
almost always written using just 8088 features so they’ll run on all MS-DOS
computers. We'll cover the 8088 in this book, which means all the programs in
this book run on any MS-DOS computer. So whenever you see 8088, we're also
referring to the 8088 subset of features in the 80286 and 80386 (and someday
the 80486).

Elementary Counting

Let’s begin our foray into assembly language by learning how computers
count. That may sound simple enough. After all, we count to 11 by starting at
one and countingup: 1, 2, 3,4,5,6,7,8,9, 10, 11.

But a computer doesn’t count that way. Instead, it counts to five like this: 1,
10,11,100,101. The numbers 10, 11, 100, and so on are binary numbers, based
a number system with only two digits, one and zero, instead of the ten associ-
ated with our more familiar decimal numbers. Thus, the binary number 10 is
equivalent to the decimal number we know as two.

We're interested in binary numbers because they are the form in which num-
bers are used by the 8088 microprocessor inside your IBM PC. But while com-
puters thrive on binary numbers, those strings of ones and zeros can be long
and cumbersome to write out. The solution? Hexadecimal numbers—a far more
compact way to write binary numbers. In this chapter, you’ll learn both ways to
write numbers: hexadecimal and binary. And as you learn how computers
count, you’ll also learn about how they store numbers—in bits, bytes, and
words.

If you already know about binary and hexadecimal numbers, bits, bytes, and
words, you can skip to the chapter summary.

Debug and Arithmetic 5

Hexadecimal Numbers

Since hexadecimal numbers are easier to handle than binary numbers—at
least in terms of length—we’ll begin with hexadecimal (hex for short), and use
DEBUG.COM, a program you’ll find on your PC-DOS supplemental disk. We’ll
be using Debug here and in later chapters to enter and run machine-language
programs one instruction at a time. Like BASIC, Debug provides a nice, inter-
active environment. But unlike BASIC, it doesn’t know decimal numbers. To
Debug, the number 10 is a hexadecimal number—not ten. And since Debug
speaks only in hexadecimal, you’ll need to learn something about hex numbers.
But first, let’s take a short side trip and find out a little about Debug itself.

Debug

Why does this program carry the name Debug? Bugs, in the computer world,
are mistakes in a program. A working program has no bugs, while a non-work-
ing or “limping” program has at least one bug. By using Debug to run a pro-
gram one instruction at a time, and watching how the program works, we can
find mistakes and correct them. This is known as debugging, hence the name
Debug.

According to computer folklore, the term debugging stems from the early days
of computing—in particular, a day on which the Mark I computer at Harvard
failed. After a long search, the technicians found the source of their troubles: a
small moth caught between the contacts of a relay. The technicians removed the
moth and wrote a note in the log book about “debugging” the Mark I.

Find Debug on your DOS supplemental disk and we’ll get started. If you're
not using a hard disk, you should also have a work disk handy, and you’ll want
to copy DEBUG.COM to it. We’ll make heavy use of Debug in Part I of this
book.

Note: From here on, in interactive sessions like this one, the
text you type will be against a gray background to distinguish
it from your computer’s responses:

A>DEBUG
Type the gray text, (DEBUG in this example), press the Enter
key, and you should see a response similar to the ones we show
in these sessions. You won’t always see exactly the same
responses, because your computer probably has a different
amount of memory from the computer on which we wrote this

6 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

book. (We’ll begin to encounter such differences in the next
chapter.) In addition, note that we use uppercase letters in all
examples. This is only to avoid any confusion between the
lowercase letter 1(el) and the number 1 (one). If you prefer, you
can type all examples in lowercase letters.

Now, with those few conventions noted, start Debug by typing its name after
the DOS prompt (which is A> in this example):

A>DEBUG

The hyphen you see in response to your command is Debug’s prompt symbol,
just as A> is a DOS prompt. It means Debug is waiting for a command.

To leave Debug and return to DOS, just type Q (for Quit) at the hyphen
prompt and press Enter. Try quitting now, if you like, and then return to
Debug:

=0
A>DEBUG

Now we can get down to learning about hex numbers.

Hexarithmetic

We'll use a Debug command called H. H is short for Hexarithmetic, and, as its
name suggests, it adds and subtracts two hex numbers. Let’s see how H works
by starting with 2 + 3. We know that 2 + 3 = 5 for decimal numbers. Is this
true for hex numbers? Make sure you're still in Debug and, at the hyphen
prompt, type the following screened text:

—-HEane
0oos 0001

Debug prints both the sum (0005) and the difference (0001) of 3 and 2. The Hex-
arithmetic command always calculates the sum and difference of two numbers,
asit did here. And so far, the results are the same for hex and decimal numbers:
51isthe sum of 3 + 2in decimal, and 1 is the difference (3 — 2). But sometimes,
you can encounter a few surprises.

For example, what if we typed H 2 3, to add and subtract 2 and 3, instead of 3
and 2? If we try it:

Debug and Arithmetic 7

Number A Number B

N/

-H 3D05C 2A10
676C 134C

A

A+B A-B

Figure 1-1. The Hexarithmetic Command.

-H§e3
000S FFFF

we get FFFF instead of — 1, for 2 — 3. Strange as it may look, however, FFFF is
a number. In fact, it is hex for — 1.

We'll come back to this rather unusual — 1 shortly. But first, let’s explore the
realm of slightly larger numbers to see how an F can appear in a number.

To see what the Hexarithmetic command does with larger numbers, let’s try
9 plus 1, which would give us the decimal number 10:

-~y
000R 0008

How does 9 + 1 = A? A is the hex number for ten. Now, what if we try for an
even larger number, such as 15:

— B
000F 0003

If you try other numbers between 10 and 15, you’ll find 16 digits altogether—
0 through F (0 through 9 and A through F). The name hexadecimal comes from
hexa- (6), plus deca- (10) which, when combined, represent 16. The digits 0
through 9 are the same in both hexadecimal and decimal; the hexadecimal dig-
its A through F are equal to the decimals 10 through 15.

Why does Debug speak in hexadecimal? Soon you’ll see that we can write 256
different numbers with two hex digits. As you may already suspect, 256 also
bears some relationship to the unit known as a byte, and the byte plays a major

s ANEINGS

SR PE . . By I

8 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Decimal Hex digit
0 0
1 1
2 2
3 3
4 4
5 5
6 6
? 7
8 8
9 9
10 A
11 B
12 C
13 D
14 E
15]

Figure 1-2. Hexadecimal Digits.

role in computers and in this book. You’ll find out more about bytes near the
end of this chapter, but for now we’ll continue to concentrate on learning hex,
the only number system known to Debug, and hex math.

Converting Hexadecimal to Decimal

So far we've looked at single-digit hex numbers. Now, let’s see how to repre-
sent larger hex numbers and how to convert these numbers to decimal numbers.

Just as with decimal numbers, we build multiple-digit hex numbers by add-
ing more digits on the left. Suppose, for example, we add the number 1 to the
largest single-digit decimal number, 9. The result is a two-digit number, 10
(ten). What happens when we add 1 to the largest single-digit hex number, F?
We get 10 again.

But wait, 10 in hex is really 16, not ten. This could become rather confusing.
We need some way to tell these two 10s apart, so from now on we’ll place the
letter h after any hex number. Thus, we’ll know that 10h is hexadecimal 16 and
10 is decimal ten.

Debug and Arithmetic

P =on Bt o6 =41 2
C -->12 * 1 = 12
7Ch = 124

3 --> 3 * 256 = 768
F --> 15 * 16 = 240
9 =00 O Hallial= o 19
3F9h - 1,017
A --> 10 * 4,096 = 40,960
F --> 15 * 256 = 3,840
1T -=> 1 * 16 = 16
i ol g {] 12
AF1Ch = 44,828
3 --> 3 * 65,536 = 196,608
B --> 11 * 4,096 = 45,056
8§ --> 8 * 256 = 2,048
D --> 13 * 16 = 208
2 -=> 2 * = 2
3B8D2h = 243,922

Figure 1-3. More Hexadecimal to Decimal Conversions.

9

Now we come to the question of how to convert numbers between hex and
decimal. We know that 10h is 16, but how do we convert a larger hex number,
such as D3h, to a decimal number without counting up to D3h from 10h? Or,
how do we convert the decimal number 173 to hex?

We can’t rely on Debug for help, because Debug can’t speak in decimal. In
Chapter 10, we’ll write a program to convert a hex number into decimal nota-
tion so that our programs can talk to us in decimal. But right now, we’ll have to

o>

Py e)

70 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

do these conversions by hand, so let’s begin by returning to the familiar world
of decimal numbers.

What does the number 276 mean? In grade school, we learned that 276
means we have two hundreds, seven tens, and six ones. Or, more graphically:

& * 1,00 = <200
? * 10 = 70

b * L = [
2’k = 276

That certainly helps us visualize the meanings of those digits. Can we use the
same graphic method with a hex number? Of course.

Consider the number D3h we mentioned earlier. D is the hexadecimal digit
13, and there are 16 hex digits, versus 10 for decimal, so D3h is thirteen six-
teens and three ones. Or, presented graphically:

D — 13 * 1b

3 - 3 * 1
D3h = 211

f=01:)
3

([}

For the decimal number 276, we multiplied the digits by 100, 10, and 1; for the
hex number D3, we multiplied the digits by 16 and 1. If we had four decimal
digits we’d multiply by 1000, 100, 10, and 1. Which four numbers would we use
with four hex digits?

For decimal, the numbers 1000, 100, 10, and 1 are all powers of 10:

103

10¢

10}
100

1000
100
10

1

We can use exactly the same method for hex digits, but with powers of 16,
instead of 10, so our four numbers are:

163 = 409&
16€ = asg
16 = g
150 = 1

Let’s convert 3AC8h to decimal using the four numbers we just calculated:

3 — 3 * 4096 = 12288
A — 10 * 2S5t = @25k0
C = le * ik = 19¢

G, =) () = } = 8
JACA8h = 15048

Now let’s discover what happens when we add hex numbers that have more
than one digit. For this, we’ll use Debug and the numbers 3A7h and 1EDh:

-H 3A7? 1ED
0594 D01BA

Debug and Arithmetic 77

1 1 1
3A7 F451 C
+ 92A + CBO3 + D0
cDi1 1BF54 19
1111 11

BCDS8 BCDS

+ FAED + 0509

1B?C1 CI1E1

Figure 1-4. More Examples of Hexadecimal Addition.

So we see that 3A7h + 1EDh = 594h. You can check the results by con-
verting these numbers to decimal and doing the addition (and subtraction, if
you wish) in decimal form; if you’re more adventurous, do the calculations
directly in hex.

Five-Digit Hex Numbers

So far, hex math is quite straightforward. What happens when we try adding
even larger hex numbers? Let’s try a five-digit hex number:

—-H SC3F0 4BCG
S S RTOT

That’s an unexpected response. Why does Debug say we have an error here?
The reason has to do with a unit of storage called the word. Debug’s Hex-
arithmetic command works only with words, and words happen to be long
enough to hold four hex digits, no more.

We’ll find out more about words in a few pages, but for now, remember that
you can work only with four hex digits. Thus, if you try to add two four-digit hex
numbers, such as CO00h and DO0Oh (which should give you 19000h), you get
9000h, instead:

~-H CODD DDOD
9000 FooOo

Debug keeps only the four rightmost digits of the answer.

12 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Converting Decimal to Hex

So far we’ve only looked at the conversion from hex to decimal. Now we’ll
learn how to convert decimal numbers to hex. As noted earlier, in Chapter 10
we'll create a program to write the 8088’s numbers as decimal numbers; in
Chapter 23, we’ll write another program to read decimal numbers into the
8088. But, as with decimal-to-hex conversions, let’s begin by learning how to do
the conversions by hand. Again, we’ll start by recalling a bit of grade-school
math.

When we first learned division, we would divide 9 by 2 to get 4 with a remain-
der of 1. We’ll use the remainder to convert decimal numbers to hex.

Let’s see what happens when we repeatedly divide a decimal number, in this
case 493, by 10:

493 / 10 = 49 remainder 3

It

49 7 10 4 remainder 9

4 /7 10 0 remainder 4

The digits of 493 appear as the remainder in reverse order—that is, starting
with the rightmost digit (3). We saw in the last section that all we needed for
our hex-to-decimal conversion was to replace powers of 10 with powers of 16.
For our decimal-to-hex conversion, can we divide by 16 instead of 10? Indeed,
that’s our conversion method.

For example, let’s find the hex number for 493. Dividing by 16, as shown
here:

493 / 16 = 30 remainder 13 (Dh)
30 7 16 = 1 remainder 14 (Eh)
1L /7 16 = 0 remainder 1 (lh)
493 = LEDh

We find that 1EDh is the hex equivalent of decimal 493. In other words, keep
dividing by 16, and form the final hex number from the remainders. That’s all
there is to it.

Debug and Arithmetic 13

1069 /16 = 66 Remainder 13
|
6616 = 4 Remainder 2
|
4/16 = 0 Remainder 4
‘ v
1069 = 42D nh
57,109 /16 = 3,569 Remainder 5
3,569 /16 = 223 Remainder 1
|
223716 = 13 Remainder 15
|
13716 = 0 Remainder 13
l vyYyy

57,109 = DF 1 5h

1-5. More Examples of Hexadecimal Conversions.

Negative Numbers

If you recall, though, we still have an unanswered puzzle in the number
FFFFh. We said that FFFFh is actually —1. Yet, if we convert FFFFh to deci-
mal, we get 65535. How can that be? Does it behave as a negative number?

14 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Well, if we add FFFFh (alias —1) to 5, the result should be 4, because 5 — 1 =
4. Is that what happens? Using Debug’s H command to add 5 and FFFFh, we
find:

- G RRE
0004 0006

Debug seems to treat FFFFh as —1. But FFFFh won’t always behave as —1
in programs we’ll write. To see why not, let’s do this addition by hand.

When we add two decimal numbers, we often find ourselves carrying a 1 to
the next column, like this:

1

no e

S
+ 8
15

(V9]

The addition of two hex numbers isn’t much different. Adding 3 to F gives us
2, with a carry into the next column:

Now, watch what happens when we add 5 to FFFFh:

=

=)+
O 0
OY0 =
Of~0
N
= = -4

Since Fh + 1h = 10h, the successive carries neatly move a 1 into the far left
position. And, if we ignore this 1, we have the correct answer for 5 — 1: namely,
4. Strange as it seems, FFFFh behaves as —1 when we ignore this overflow. It's
called an overflow because the number is now five digits long, but Debug keeps
only the last (rightmost) four digits.

Is this overflow an error, or is the answer correct? Well, yes and yes. We can
choose either answer. Don’t the answers contradict each other? Not really,
because we can view these numbers in either of two ways.

Let’s suppose we take FFFFh as equal to 65536. This is a positive number,
and it happens to be the largest number we can write with four hex digits. We
say that FFFFh is an unsigned number. It is unsigned because we’ve just
defined all four digit numbers as positive. Adding 5 to FFFFh gives us 10004h;

Debug and Arithmetic 15

no other answer is correct. In the case of unsigned numbers, then, an overflow
is an error.

On the other hand, we can also treat FFFFh as a negative number, as Debug
did when we used the H command to add FFFFh to 5. FFFFh behaves as —1 as
long as we ignore the overflow. In fact, the numbers 8000h through FFFFh all
behave as negative numbers. For signed numbers, as here, the overflow isn’t an
error.

The 8088 microprocessor can view numbers either as unsigned or signed; the
choice is yours. There are slightly different instructions for each, and we’ll
explore these differences in later chapters as we begin to use numbers on the
8088. Right now, before you can learn to actually write the negative of, say,
3C8h, we need to unmask the bit and see how it fits into the scheme of bytes,
words, and hex.

Bits, Bytes, Words, and Binary Notation

It’s time for us to dig deeper into the intricacies of your IBM PC—time to
learn about the arithmetic of the 8088: binary numbers. The 8088 microproces-
sor, with all its power, is rather dumb. It knows only the two digits 0 and 1, so
any number it uses must be formed from a long string of zeros and ones. This is
the binary (base 2) number system.

When Debug prints a number in hex, it uses a small program to convert its
internal numbers from binary to hexadecimal. In Chapter 5, we’ll build such a
program to write binary numbers in hex notation, but first we need to learn
more about binary numbers themselves.

Let’s take the binary number 1011b (the b stands for binary). This number is
equal to the decimal 11, or Bh in hex. To see why, multiply the digits of 1011b
by the number’s base, 2:

Powers of 2:
23 - 8
2% = 4
2k = @
2l = 1

So that:
1 8 = 8
0*x4 = 0
1 x2 = @
1 *x1 = 1
1011b = 11 or Bh

Debug and Arithmetic 17

Likewise, 1111b is Fh, or 15. And 1111b is the largest unsigned four-digit
binary number we can write, while 0000b is the smallest. Thus, with four
binary digits we can write 16 different numbers. There are exactly 16 hex dig-
its, so we can write one hex digit for every four binary digits.

A two-digit hex number, such as 4Ch, can be written as 0100 1100b. It’s com-
posed of eight digits, which we separate into groups of four for easy reading.
Each one of these binary digits is known as a bit, so a number like 0100 1100b,
or 4Ch, is eight bits long.

Very often, we find it convenient to number each of the bits in a long string,
with bit O farthest to the right. The 1 in 10b then is bit number 1, and the
leftmost bit in 1011b is bit number 3. Numbering bits in this way makes it eas-
ier for us to talk about any particular one, as we’ll want to later on.

A group of eight binary digits is known as a byte, while a group of 16 binary
digits, or two bytes, is a word. We'll use these terms frequently throughout this
book, because bits, bytes, and words are all fundamental to the 8088.

We can see now why hexadecimal notation is convenient; two hex digits fit
exactly into one byte (four bits per hex digit), and four digits fit exactly into one
word. We can’t say the same for decimal numbers. If we try to use two decimal
digits for one byte, we can’t write numbers larger than 99, so we lose the values
from 100 to 255—more than half the range of numbers a byte can hold. And if
we use three decimal digits, we must ignore more than half the three-digit deci-
mal numbers, because the numbers 256 through 999 can’t be contained in one
byte.

Two’s Complement—An Odd Sort of Negative
Number

Now we’re ready to learn more about negative numbers. We said before that
the numbers 8000h through FFFFh all behave as negative numbers when we
ignore the overflow. There is an easy way to spot negative numbers when we
write them in binary:

Positive numbers:
CooCh pooC COOC 0OCo0 oooCb

?F%Fh 0112 2131 2111 111lb

Negative numbers:
800Ch 1000 COOCO 0oooO 0000b

FF%Fh 11213 2121 1121 1111lb

18 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

In the binary forms for all the positive numbers, the left most bit (bit 15) is
always 0. For all negative numbers, this left most bit is always 1. This differ-
ence is, in fact, the way that the 8088 microprocessor knows when a number is
negative: It looks at bit 15, the sign bit. If we use instructions for unsigned
numbers in our programs, the 8088 will ignore the sign bit, and we will be free
to use signed numbers at our convenience.

These negative numbers are known as the two’s complement of positive num-
bers. Why complement? Because the conversion from a positive number, such
as 3C8h, to its two’s-complement form is a two-step process, with the first being
the conversion of the number to its complement.

We won't need to negate numbers often, but we’ll do the conversion here just
so you can see how the 8088 microprocessor negates numbers. The conversion
will seem a bit strange. You won'’t see why it works, but you will see that it does
work.

To find the two’s-complement form (negative of) any number, first write the
number in binary, ignoring the sign. For example, 4Ch becomes 0000 0000
0100 1100b.

To negate this number, first reverse all the zeros and ones. This process of
reversing is called complementing, and taking the complement of 4Ch, we find
that:

0o0O0O 00O0O 0100 1100
becomes:

1111 1111 1011 0011

In the second step of the conversion, we add 1:

1111 1111 1011 0011

+ 1

1111 1111 1011 0100
-4Ch = FFB4h

The answer, FFB4h, is the result we get if we use Debug’s H command to sub-
tract 4Ch from Oh.

If you wish, you can add FFB4h to 4Ch by hand, to verify that the answer is
10000h. And from our earlier discussion, you know that you should ignore this
leftmost 1 to get 0 (4C + (—4C) = 0) when you do two’s-complement addition.

Summary

This chapter has been a fairly steep climb into the world of hexadecimal and
binary numbers, and it may have required a fair amount of mental exercise.

Debug and Arithmetic 79

Soon, in Chapter 3, we'll slow down to a gentler pace—once you’ve learned
enough to converse with Debug in hex. Now, let’s take a breath of fresh air and
look back on where we've been and what we’ve found.

We started out by meeting Debug. In chapters to come, we’ll become intimate
friends with Debug but, since it doesn’t understand our familiar decimal num-
bers, we’ve begun the friendship by learning a new numbering system, hexa-
decimal notation.

In learning about hex numbers, you also learned how to convert decimal
numbers to hex, and hex numbers to decimal. We’ll write a program to do these
translations later, but for now it’s been necessary to learn the language itself.

Once we'd covered the basics of hexadecimal notation, we were able to
wander off for a look at bits, bytes, words, and binary numbers—important
characters you’ll encounter frequently as we continue to explore the world of
the 8088 and assembly language programming.

Finally, we moved on to learn about negative numbers in hex—the two’s-
complement numbers. They led us to signed and unsigned numbers, where we
also witnessed overflows of two different types: one in which an overflow leaves
the correct answer (addition of two signed numbers), and one in which the over-
flow leads to the wrong answer (addition of two unsigned numbers).

All this learning will pay off in later chapters, because we’ll use our knowl-
edge of hex numbers to speak with Debug, and Debug will act as an interpreter
between us and the 8088 microprocessor waiting inside your IBM PC.

In the next chapter, we'll use the knowledge we’ve gained so far to learn
about the 8088. We'll rely on Debug again, and use hex numbers, rather than
binary, to talk to the 8088. We'll learn about the microprocessor’s registers—
the places where it stores numbers—and in Chapter 3 we’ll be ready to write a
real program that will print a character on the screen. We’ll also learn more
about how the 8088 does its math; by the time we reach Chapter 10, we’ll be
able to write a program to convert binary numbers to decimal.

Uy RPN WY o ¥ N |

22 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Knowing something of Debug’s hex arithmetic and the 8088’s binary arith-
metic, we can begin to learn how the 8088 does its math. It uses internal com-
mands called instructions.

Registers as Variables

Debug, our guide and interpreter, knows much about the 8088 microproces-
sor inside the IBM PC. We'll use it to delve into the inner workings of the 8088,
and begin by asking Debug to display what it can about small pieces of memory
called registers, in which we can store numbers. Registers are like variables in
BASIC, but they are not exactly the same. Unlike the BASIC language, the
8088 microprocessor contains a fixed number of registers, and these registers
are not part of your IBM PC’s memory.

We’'ll ask Debug to display the 8088’s registers with the R, for Register, com-
mand:

—R

AX=0000 BX=0000 CX=0000 DX=DD00 SP=FFEE BP=D000 SI=0000 DI=0000
DS=3756 ES=375t SS=37?56 CS=37?56 1IP=0100 NV UP DI PL NZ NA PO NC
3756:0100 E48S IN AL,85

(You’ll probably see different numbers in the second and third lines of your dis-
play; those numbers reflect the amount of memory in a computer. You’ll con-
tinue to see such differences, and later we’ll learn more about them.)

For now, Debug has certainly given us a lot of information. Let’s concentrate
on the first four registers—AX, BX, CX, and DX—all of which Debug tells us
are equal to 0000, both here and on your display. These registers are the gen-
eral-purpose registers. The other registers, SP, BP, SI, DI, DS, ES, SS, CS, and
IP, are special-purpose registers we’ll deal with in later chapters.

The four-digit number following each register name is in hex notation. In
Chapter 1, we learned that one word is described exactly by four hex digits.
Here, you can see that each of the 13 registers in the 8088 is one word, or 16
bits, long. This is why computers based on the 8088 microprocessor are known
as 16-bit machines.

We mentioned that the registers are like BASIC variables. That means we
should be able to change them, and we can. Debug’s R command does more than
display registers. Followed by the name of the register, the command tells
Debug that we wish to view the register, and then change it. For example, we
can change the AX register like this:

8088 Arithmetic 23

-R RX
AX 0000
Saibie

Let’s look at the registers again to see if the AX register now contains 3A7h:

-B

AX=03R? BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=375? ES=3?5& SS5=3?5t CS=3756t 1IP=0100 NV UP DI PL NZ NR PO NC
3756:0100 E485S IN AL, 85

It does. Furthermore, we can put any hex number into any register with the
R command by specifying the register’s name and entering the new number
after the colon, as we just did. From here on, we’ll be using this command when-
ever we need to place numbers into the 8088’s registers.

You may recall seeing the number 3A7h in Chapter 1, where we used
Debug’s Hexarithmetic command to add 3A7h and 1EDh. Back then, Debug did
the work for us. This time, we’ll use Debug merely as an interpreter so we can
work directly with the 8088. We’ll give the 8088 instructions to add numbers
from two registers: We’ll place a number in the BX register and then instruct
the 8088 to add the number in BX to the number in AX and put the answer
back into AX. First, we need a number in the BX register. This time, let’s add
3A7h and 92Ah. Use the R command to store 92Ah into BX.

Memory and the 8088

The AX and BX registers should, respectively, contain 3A7h and 92Ah, as we
can verify with the R command:

AX=03R? BX=092R CX=0000 DX=0D000 SP=FFEE BP=0000 SI=D0OD0 DI=D000
DS=3756 ES=3?56 SS=37?56 CS=3756 IP=0100 NV UP DI PL NZ NAR PO NC
3756:0100 E485 IN AL, 85

Now that we have our two numbers in the AX and BX registers, how do we tell
the 8088 to add BX to AX? We put some numbers into the computer’s memory.

Your IBM PC probably has at least 128K of memory—far more than we’ll
need to use here. We’ll place two bytes of machine code into a corner of this vast
amount of memory. In this case, the machine code will be two binary numbers
that tell the 8088 to add the BX register to AX. Then, so we can watch what
happens, we'll execute this instruction with the help of Debug.

Where in memory should we place our two-byte instruction, and how will we
tell the 8088 where to find it? As it turns out, the 8088 chops memory into 64K
pieces known as segments. Most of the time, we’ll be looking at memory within

24 Ppeter Norton’s Assembly Language Book for the 1IBM PC, Revised & Expanded

one of these segments without really knowing where the segment starts. We
can do this because of the way the 8088 labels memory.

All bytes in memory are labeled with numbers, starting with Oh and working
up. But remember the four-digit limitation on hex numbers? That means the
highest number the 8088 can use is the hex equivalent of 65535, which means
the maximum number of labels it can use is 64K. Even so, we know from expe-
rience that the 8088 can call on more than 64K of memory. How does it do this?
By being a little bit tricky: It uses two numbers, one for each 64K segment, and
one for each byte, or offset, within the segment. Each segment begins at a mul-
tiple of 16 bytes, so by overlapping segments and offsets, the 8088 effectively
can label more than 64K of memory. In fact, this is precisely how the 8088 uses
up to one million bytes of memory.

All the addresses (labels) we’ll be using are offsets from the start of a seg-
ment. We’ll write addresses as a segment number, followed by the offset within
the segment. For example, 3756:0100 will mean we are at an offset of 100h
within segment 3756h.

Later, in Chapter 11, we’ll learn more about segments and see more about
why we have such a high segment number. But for now, we’ll simply trust
Debug to look after the segments for us so that we can work within one segment
without having to pay attention to segment numbers. And for the time being,
we’ll refer to addresses only by their offsets. Each of these addresses refers to
one byte in the segment, and the addresses are sequential, so 101h is the byte
following 100h in memory.

Written out, our two-byte instruction to add BX to AX looks like this: ADD
AX,BX. We'll place this instruction at locations 100h and 101h, in whatever
segment Debug starts to use. In referring to our ADD instruction, we’ll say that
it’s at location 100h, since this is the location of the first byte of the instruction.

Debug’s command for examining and changing memory is called E, for Enter.
Use this command to enter the two bytes of the ADD instruction, as follows:

-E 100
3?56:0100 E4.01
-E 103
3?756:0101 &5.D&

The numbers 01h and D8h are the 8088’s machine language for our ADD
instruction at memory locations 3756:0100 and 3756:0101. The segment
number you see will probably be different, but that difference won’t affect our
program. Likewise, Debug probably displayed a different two-digit number for
each of your E commands. These numbers (E4h and 85h in our example) are the
old numbers in memory at offset addresses 100h and 101h of the segment
Debug chose—that is, the numbers are data from previous programs left in

8088 Arithmetic 25

Starthof——P 2o --
segment
3756

3?56:0100 —* 0O1h

ADD AH,BH '

3756:0101 —» D8h

CORD

PO,

Figure 2-1. Our instruction begins 100 bytes from the start of the segment.

memory when you started Debug. (If you just started your computer, the num-
bers should be 00.)

Addition, 8088 Style

Now your register display should look something like this:

AX=D3R7? BX=092R CX=0000 DX=D000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=37?S6 ES=37?SL SS=37?5k6 CS=3?Sk IP=0100 NV UP DI PL NZ NA PO NC
3756:0100 D1D8 ADD AX,BX

Our ADD instruction is neatly placed in memory, just where we want it to be.
We know this from reading the third line of the display. The first two numbers,
3756:0100, give us the address (100h) for the first number of our ADD instruc-
tion. Next to this, we see the two bytes for ADD: 01D8. The byte equal to 01h is

26 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

at address 100h, while D8h is at 101h. Finally, since we entered our instruction
in machine language—numbers that have no meaning to us, but that the 8088
will interpret as an add instruction—the message ADD AX ,BX confirms that
we entered the instruction correctly.

Even though we've placed our ADD instruction in memory, we're not quite
ready to run it through the 8088 (execute it). First, we need to tell the 8088
where to find the instruction.

The 8088 finds segment and offset addresses in two special registers, CS and
IP, which you can see listed in the preceding register display. The segment
number is stored in the CS, or Code Segment, register, which we’ll discuss
shortly. If you look at the register display, you can see that Debug has already
set the CS register for us (CS=3756, in our example). The full starting address
of our instruction, however, is 3756:0100.

The second part of this address (the offset within segment 3756) is stored in
the IP (Instruction Pointer) register. The 8088 uses the offset in the IP register
to actually find our first instruction. We can tell it where to look by setting the
IP register to the address of our first instruction—IP =0100.

But the IP register is already set to 100h. We've been clever: Debug sets IP to
100h whenever you first start it. Knowing this, we’ve deliberately chosen 100h
as the address of our first instruction and have thus eliminated the need to set
the IP register in a separate step. It’s a good point to keep in mind.

Now, with our instructions in place and the registers set correctly, we'll tell
Debug to execute our one instruction. We'll use Debug’s T (T'race) command,
which executes one instruction at a time and then displays the registers. After
each trace, the IP should point to the next instruction. In this case, it will point
to 102h. We haven'’t put an instruction at 102h, so in the last line of the register
display you see an instruction left from some other program.

Let’s ask Debug to trace one instruction with the T command:

—i

AX=0CD1 BX=0S92A CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=37?56 ES=37?S5b SS=37?5t CS=37?S6 IP=0102 NV UPRl DI IPL BNZEHCGIEE NG
3?756:0102 AC LODSB

That’s it. The AX register now contains CD1h, which is the sum of 3A7h and
92Ah. And the IP register points to address 102h, so the last line of the register
display shows some instruction at memory location 102h, rather than 100h.

We mentioned earlier that the instruction pointer, together with the CS reg-
ister, always points to the next instruction for the 8088. If we typed T again,
we'd execute the next instruction, but don’t do it just yet—your 8088 might
head for limbo.

8088 Arithmetic 27

AH: OCD1 BH: 092H

ADD AH,BH
LODSE

Figure 2-2. Before we execute the ADD instruction.

| AH: OCD1 BH: 092AH

ADD AH,BH
LODSE

Figure 2-3. After we execute the ADD instruction.

Instead, what if we want to execute our ADD instruction again, adding 92Ah
to CD1h and storing the new answer in AX? For that we need to tell the 8088
where to find its next instruction, which we want to be our ADD instruction at
0100h. Can we just change the IP register to 0100h? Let’s try it. Use the R com-
mand to set IP to 100 and look at the register display:

AX=0CD1l BX=092A CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=375& ES=3756 S§S=3756 CS=37S6t 1IP=0100 NV UP DI PL NZ AC PE NC
3756:0100 ADD AX,BX

That’s done it. Try the T command again and see if the AX register contains
15FBh. It does.

R

28 Peter Norton’s Assembly Language Book for the 1IBM PC, Revised & Expanded

Note: You should always check the IP register and the
instruction at the bottom of an R display before using the T
command. That way, you’ll be sure the 8088 executes the
instruction you want it to.

Now, set the IP register to 100h once again, make certain the registers con-
tain AX = 15FB, BX = 092A, and let’s try subtraction.

Subtraction, 8088 Style

We're going to write an instruction to subtract BX from AX so that, after two
subtractions, we’ll have 3A7h in AX: the point from which we started before
our two additions. You’'ll also see how we can save a little effort in entering two
bytes into memory.

When we entered the two bytes for our ADD instruction, we typed the E com-
mand twice: once with 0100h for the first address, and once with 0101h for the
second address. The procedure worked, but as it turns out we can actually enter
the second byte without another E command if we separate it from the first byte
with a space. When you’ve finished entering bytes, pressing the Enter key will
exit from the Enter command. Try this method for our subtract instruction:

-E 100
3756:0100 O0v.29 D&.D8

The register display (remember to reset the IP register to 100h) should now
show the instruction SUB AX,BX, which subtracts the BX register from the
AX register and leaves the result in AX. The order of AX and BX may seem
backwards, but the instruction is like the BASIC statement AX = AX — BX
except that the 8088, unlike BASIC, always puts the answer into the first vari-
able (register).

Execute this instruction with the T command. AX should contain CD1.
Change IP to point back to this instruction, and execute it again (remember to
check the instruction at the bottom of the R display first). AX should now be
03A7.

Negative Numbers in the 8088

In the last chapter, we learned how the 8088 uses the two’s-complement form
for negative numbers. Now, let’s work directly with the SUB instruction to cal-
culate negative numbers. Let’s put the 8088 to a little test, to see if we get

3 4 2 } !‘ [
Jen i \

Yy . . .
/‘W' d § 8088 Arithmetic 29

FFFFh for —1. We'll subtract one from zero and, if we're right, the subtraction
should place FFFFh (—1) into AX. Set AX equal to zero and BX to one, then
trace through the instruction at address 0100h. Just what we expected: AX =
FFFFh.

While you have this subtraction instruction handy, you may wish to try some
different numbers to gain a better feel for two’s-complement arithmetic. For
example, see what result you get for — 2.

Bytes in the 8088

All our arithmetic thus far has been performed on words, hence the four hex
digits. Does the 8088 microprocessor know how to perform math with bytes?
Yes, it does.

Since one word is formed from two bytes, each general-purpose register can
be divided into two bytes, known as the high byte (the first two hex digits) and
the low byte (the second two hex digits). Each of these registers can be called by
its letter (A through D), followed by X for a word, H for the high byte, or L for
the low byte. For example, DL and DH are byte registers, and DX is a word reg-
ister. (This terminology can become somewhat confusing, however, because
words stored in memory have their low byte first and the high byte second.)

Let’s test byte-size math with an ADD instruction. Enter the two bytes 00h
and C4h, starting at location 0100h. At the bottom of the register display, you’ll
see the instruction ADD AH, AL, which will add the two bytes of the AX regis-
ter and place the result in the high byte, AH.

Next, load the AX register with 0102h. This places 01h in the AH register

and 02h in the AL register. Set the IP register to 100h, execute the T command,

T T S T

0100 1101 0001 1010

EINE = DR KL E S e e it o C\allamies 5y
4 D 1 A

‘ o !

Figure 2-4. A register (AX) can be split into two byte registers (AH and AL).

30 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

DH AH BH
0000 | | /C4B 0100

Figure 2-5. Before we execute the MUL instruction.

and you’ll find that AX now contains 0302. The result of 01h + 02h is 03h, and
that value is in the AH register.

But suppose you hadn’t meant to add 01h and 02h. Suppose you really meant
to add 01h and 03h. If the AX register already contained 0102, could you use
Debug to change the AL register to 03h? No. You would have to change the
entire AX register to 0103h. Why? Because Debug allows us to change only
word registers. There isn’t a way to change just the low or high part of a regis-
ter with Debug. But, as you saw in the last chapter, this isn’t a problem. With
hex numbers, we can split a word into two bytes by breaking the four-digit hex
number in half. Thus, the word 0103h becomes the two bytes 01h and 03h.

To try this ADD instruction, load the AX register with 0103h. Your ADD
AH,AL instruction is still at memory location 0100h, so reset the IP register to
100h and, with 01h and 03h now in the AH and AL registers, trace through this
instruction. This time, AX contains 0403h: 04h, the sum of 01h + 03h is now in
the AH register.

Multiplication and Division, 8088 Style

We've seen the 8088 add and subtract two numbers. Now we’ll see that it can
also multiply and divide—a clever processor. The multiply instruction is called

8088 Arithmetic 37

D4 AH BH
00/sC | [4B0D 0100

MUL BH
LODSE

Figure 2-6. After we execute the MUL instruction: The result is in the DX:AX
pair of registers.

MUL, and the machine code to multiply AX and BX is F7h E3h. We'll enter this
into memory, but first a word about the MUL instruction.

Where does the MUL instruction store its answer? In the AX register? Not
quite; we have to be careful here. As you’ll soon see, multiplying two 16-bit
numbers can give a 32-bit answer, so the MUL instruction stores its result in
two registers, DX and AX. The higher 16 bits are placed in the DX register; the
lower, into AX. We will write this register combination as DX:AX, from time to
time.

Let’s get back to Debug and the 8088. Enter the multiply instruction, F7h
E3h, at location 0100h, just as you did for the addition and subtraction instruc-
tions, and set AX = 7C4Bh and BX = 100h. You'll see the instruction in the
register display as MUL BX, without any reference to the AX register. To mul-
tiply words, as here, the 8088 always multiplies the register you name in the
instruction by the AX register, and stores the answer in the DX:AX pair of reg-
isters.

Before we actually execute this MUL instruction, let’s do the multiplication
by hand. How do we calculate 100h * 7C4Bh? The three digits 100 have the
same effect in hex as in decimal, so to multiply by 100h simply add two zeros to
the right of a hex number. Thus, 100h * 7C4Bh = 7C4B00h. This result is too
long to fit into one word, so we’ll split it into the two words 007Ch and 4B00h.

8088 Arithmetic 33

Use Debug to trace through the instruction. You’ll see that DX contains the
word 007Ch, and AX contains the word 4B0Oh. In other words, the 8088
returned the result of the word-multiply instruction in the DX:AX pair of regis-
ters. Since multiplying two words together can never be longer than two words
but will often be longer than one word (as we just saw), the word-multiply
instruction always returns the result in the DX:AX pair of registers.

And what about division? When we divide numbers, the 8088 keeps both the
result and the remainder of the division. Let’s see how the 8088’s division
works. First, place the instruction F7h F3h at 0100h (and 101h). Like the MUL
instruction, DIV uses DX:AX without being told, so all we see is DIV BX. Now,
load the registers so that DX = 007Ch and AX = 4B12h; BX should still con-
tain 0100h.

Again, we'll first calculate the results by hand: 7C4B12h / 100h = 7C4Bh,
with 12h left over. When we execute our division instruction at 0100h, we find
that AX = 7C4Bh, the result of our division, and DX = 0012h, which is the
remainder. (We’'ll put this remainder to very good use in Chapter 10, when we
write a program to convert decimal numbers to hex by using the remainders,
just as we did in Chapter 1.)

Summary

It’s almost time for us to write a real program—one to print a character on
the screen. We’ve put in our time learning the basics. Let’s take a look at the
ground we’ve covered, and then we’ll be all set to push on.

We began this chapter by learning about registers and noticing their similar-
ity to variables in BASIC. Unlike BASIC, however, we saw that the 8088 has a
small, fixed number of registers. We concentrated on the four general-purpose
registers (AX, BX, CX, and DX), with a quick look at the CS and IP registers,
which the 8088 uses to locate segment and offset addresses.

After learning how to change and read registers, we moved on to build some
single-instruction programs by entering the machine codes to add, subtract,
multiply, and divide two numbers with the AX and BX registers. In future
chapters we’ll use much of what we learned here, but you won’t need to remem-
ber the machine codes for each instruction.

We also learned how to tell Debug to execute, or trace through, a single
instruction. We’ll come to rely heavily on Debug to trace through our programs.

R T——

36 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

N ow we know enough to do something solid, so roll up your sleeves and flex
your fingers. We’re going to begin by instructing DOS to send a character to the
screen, then we’ll move on to even more interesting work. We’ll build a small
program with more than one instruction and from there, learn another way to
put data into registers—this time, from within a program. Now, let’s see if we
can get DOS to speak.

INT—The Powerful Interrupt

To our four math instructions, ADD, SUB, MUL, and DIV, we’ll add a new
instruction called INT (for Interrupt). INT is something like BASIC’s GOSUB
statement. We'll use the INT instruction to ask DOS to print a character, A, on
the screen for us.

Before we learn how INT works, let’s run through an example. Start Debug
and place 200h into AX and 41h into DX. The INT instruction for DOS func-
tions is INT 21h—in machine code, CDh 21h. This is a two-byte instruction like
the DIV instruction in the last chapter. Put INT 21h in memory, starting at
location 100h, and use the R command to confirm that the instruction reads
INT 21 (remember to set IP to 100h if it isn’t already there).

Now we’re ready to execute this instruction, but we can’t use the trace com-
mand here as we did in the last chapter. The trace command executes one
instruction at a time, but the INT instruction calls upon a large program in
DOS to do the actual work, much as BASIC programs can call a subroutine
with the GOSUB statement.

We don’t want to execute each of the instructions in the entire DOS “subrou-
tine” by tracing through it one instruction at a time. Instead, we want to run
our one-line program, but stop before executing the instruction at location
102h. We can do this with Debug’s G (Go till) command, followed by the address
at which we want to stop:

-G 10¢
A

AX=0241 BX=0000 CX=0000 DX=D041 SP=FFEE BP=0000 SI=0000 DI=0000
DS=397?0 ES=397?0 SS=397?0 (€S=3970 IP=0102 NV UP DI PL NZ NA PO NC
3970:0102 8BES MOV SP,BP

DOS printed the character A and then returned control to our small program.
(Remember, the instruction at 102h is just data left behind by another pro-
gram, so you'll probably see something different.)

Printing Characters 37

Our small program here is, in a sense, two instructions long, the second
instruction being whatever is at location 102h. That is, it is something like this:

INT 2l
Mov SP,BP (Or whatever is on your computer)

We'll soon replace this random second instruction with one of our own. For now,
since it isn’t anything we want to execute, we told Debug to run our program,
stop execution when it reached this second instruction, and display the regis-
ters when it was done.

And how did DOS know to print the A? The 02h in the AH register told DOS
to print a character. Another number in AH would tell DOS to execute a differ-
ent function. (We’ll see others later, but if you’re curious right now, you can
find a list of functions in your DOS Technical Manual. You can also find a list of
functions in Appendi?E that we use in this book.)

As for the character itself, DOS uses the number in the DL register as the
ASCII code for the character to print when we ask it to send a character to the
screen. We stored 41h, the ASCII code for an uppercase A.

In Appendix'¥, you’ll find a chart of ASCII character codes for all the charac-
ters your IBM PC can display. For your convenience, the numbers are in both
decimal and hex notation. But since Debug reads hex only, here is a good
chance for you to practice converting decimal numbers to hex. Pick a character
from the table and convert it to hex on your own. Then, verify your conversion
by typing your hex value into the DL register and running the INT instruction
again (remember to reset IP to 100h).

You may have wondered what would have happened if you had tried the
trace command on the INT instruction. We'll pretend we had not executed the
G 102 command and, instead, trace a short distance through, to see what hap-
pens. If you try this yourself, don’t go too far: You may find your IBM PC doing
something strange. After you’ve traced through a few steps, exit Debug with
the Q command. This will clean up any mess you’ve left behind.

AX-0200 BX-0000 CX-0000 DX=004L SP=FFEE BP=0000 SI=0000 DI-0000

DS=3970 ES=3970 Ss=3970 <€S=3970 1IP=0100 NV UP DI PL NZ NAR PO NC

3970:0100 CDe21 INT 2l
—18

AX=0200 BX=0000 CX=0000 DX=0041 SP=FFE& BP=0000 SI=0000 DI=0000
DS=3970 ES=3970 SS=3970 CS=3372 IP=0140 NV UP DI PL NZ NA PO NC
3372:0180 BO0FC4B CMP RH,4B

-I

AX=0200 BX=0000 CX=0000 DX=0041 SP=FFE8 BP=0000 SI=0000 DI=0000
DS=39?0 ES=3970 SS=3970 Cs=3372 1IP=0143 NV UP DI NG NZ AC PE CY

3372:0183 7405 JZ 018A

-T

RX=0200 BX=0000 CX=0000 DX=0041 SP=FFE8 BP=0000 SI=0000 DI=0000

YR id i suie

Aivlid (£

Y Y

"I D)

ESSISTIAAE & IDL>

38 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

DS=397?0 ES=397?0 SS=39?0 CS=3372 IP=01&S NV UP DI NG NZ AC PE CY

3372:018S 2E Cs:
3372:0186 FFSZEABOB JMP FAR [OBABI] CS:0BAB=0BFF
-Q

Notice that the first number of the address changed here, from 3970 to 3372.
These last three instructions were part of DOS, and the program for DOS is in
another segment. In fact, there are many, many more instructions that DOS
executes before it prints a single character; even such an apparently simple
task is not as easy as it sounds. Now you can see why we used the G command to
run our program to location 102h. Otherwise, we’d have seen a torrent of
instructions from DOS. (If you're using a different version of DOS than we used,
the instructions you see when you try this may be different.)

A Graceful Exit—INT 20h

Remember that our INT instruction was 21h? If we changed the 21h to a 20h,
we’d have INT 20h, instead. INT 20h is another interrupt instruction, and it
tells DOS we want to exit our program, so DOS can take full control again. In
our case, INT 20h will send control back to Debug, since we’re executing our
programs from Debug, rather than from DOS.

Enter the instruction CDh 20h, starting at location 100h, then try the follow-
ing (remember to check the INT 20h instruction with the R command):

~G 102

Program terminated normally

-R

AX=0D00D0 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=397?0 ES=3970 SS=39?0 ((S=397?0 IP=0100 NV UP DI PL NZ NA PO NC
3970:0100 CD20 INT =]

—£

Program terminated normally

-R

AX=0000 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=397?0 E3=39?0 S5=39?0 (CS=397?0 IP=0100 NV UP DI PL NZ NA PO NC
3970:0100 CD2O INT 20

The command G, with no number after it, executes the entire program (which is
Jjust one instruction now, because INT 20 is an exit instruction), and then
returns to the start. IP has been reset to 100h, which is where we started. The
registers in this example are 0 only because we started Debug afresh.

We can use this INT 20h instruction at the end of a program to return control
gracefully to DOS (or Debug), so let’s put this instruction together with INT
21h and build a two-line program.

Printing Characters 39

A Two-Line Program—Putting the Pieces Together

Starting at location 100h, enter the two instructions INT 21h, INT 20h (CDh
21h CDh 20h) one after the other. (From now on, we'll always start programs at
location 100h).

When we had only one instruction we could “list” that instruction with the R
command, but now we have two instructions. To see them, we have the U
(Unassemble) command, which acts like BASIC’s List command:

-U 100

3970:0100 CD2l INT 2l

3970:0102 CDeO INT 20

3970:0104 DQABD4LD250B8 ESC 09,(DI+02461[DI+BAS5S0O]
3970:010A 8DOO LEA AX,[BX+SI]
3970:010C SO PUSH AX

3970:010D EB82A23 CALL 243A

3970:0110 8BES Hov SP,BP

3970:0112 B83C41A ADD SP,+1A

3970:0115 SD POP BP

3970:0116 C3 RET

3970:0117 S5 PUSH BP

3970:0118 83ECO2 SUB Sp,+0e

3970:011B 8BEC Mov BP, SP

3970:011D 823EOEOOOO cHPp BYTE PTR (OOOE],00

The first two instructions we recognize as the two instructions we just entered.
The other instructions are remnants left in memory. As our program grows,
we’ll fill this display with more of our own code.

Now, fill the AH register with 02h and the DL register with the number for
any character (just as you did earlier when you changed the AX and DX regis-
ters), then simply type the G command to see your character. For example, if
you place 41h into DL, you'll see:

-G

A
Program terminated normally

Try this a few times with other characters in DL before we move on to other
ways to set these registers

Entering Programs

From here on, most of our programs will be more than one instruction long,
and to present these programs we’ll use an unassemble display. Our last pro-
gram would thus appear like this:

3970:0100 CD2l INT 2l
3970:0102 CDeO INT 20

PN e (i

)

F2PENI19 €035 1>

40 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

So far, we've entered the instructions for our programs directly as numbers,
such as CDh, 21h. But that’s a lot of work, and, as it turns out, there is a much
easier way to enter instructions.

Besides the unassemble command, Debug includes an A (Assemble) com-
mand, which allows us to enter the mnemonic, or human-readable, instructions
directly. So rather than entering those cryptic numbers for our short program,
we can use the assemble command to enter the following:

-A 100

J970:0100 INT 21
3970:0102 INT 20
3970:0104

When you’ve finished assembling instructions, all you have to do is press the
Enter key, and the Debug prompt reappears.

Here, the A command told Debug that we wished to enter instructions in
mnemonic form, and the 100 in our command told Debug to start entering
instructions at location 100h. Since Debug’s assemble command makes enter-
ing programs much simpler, we’ll use it from now on to enter instructions.

MOVing Data into Registers

Although we’ve relied on Debug quite a bit so far, we won’t always run pro-
grams with it. Usually, a program would set the AH and DL registers itself
before an INT 21h instruction. To do this, we’ll learn about another instruction,
MOV. Once we know enough about this instruction, we’ll be able to take our
small program to print a character and make a real program—one that we can
execute directly from DOS.

Soon, we’ll use the MOV instruction to load numbers into registers AH and
DL. But let’s start learning about MOV by moving numbers between registers.
Place 1234h into AX (12h into the AH register, and 34h in AL) and ABCDh into
DX (ABh in DH, and CDh in DL). Now, enter the following instruction with the
A command:

396F:0100 88D4 MoV AH,DL

This instruction moves the number in DL into AH by putting a copy of it into
AH; DL is not affected. If you trace through this one line, you’ll find that AX =
CD34h and DX = ABCDh. Only AH has changed. It now holds a copy of the
number in DL.

Printing Characters 41

Like the BASIC statement LET AH = DL, a MOV instruction copies a
number from the second register to the first, and for this reason we write AH
before DL. Although there are some restrictions, which we’ll find out about
later, we can use other forms of the MOV instruction to copy numbers between
other pairs of registers. For example, reset IP and try this:

396F:0100 89C3 MOV BX, AX

You’ve just moved words, rather than bytes, between registers. The MOV
instruction always works between words and words, or bytes and bytes; never
between words and bytes. It makes sense, for how would you move a word into a
byte?

We originally set out to move a number into the AH and DL registers. Let’s
do so now with another form of the MOV instruction:

396F:0100 B4Oe MOV AH, 02

This instruction moves 02h into the AH register without affecting the AL regis-
ter. The second byte of the instruction, 02h, is the number we wish to move. Try
moving a different number into AH: Change the second byte to another, such as
C1h, with the E 101 command.

Now, let’s put all the pieces of this chapter together and build a longer pro-
gram. This one will print an asterisk, *, all by itself, with no need for us to set
the registers (AH and DL). The program uses MOV instructions to set the AH
and DL registers before the INT 21h call to DOS:

J96F:0100 B40O2 MOV AH, 02
396F:0102 Be22A MOV DL,2A
396F:0104 CD2l INT 2l
396F:0106 CbeO INT c0

Enter the program and check it with the U command (U 100). Make sure IP
points to location 100h, then try the G command to run the entire program. You
should see the * character appear on your screen:

-G
*

Program terminated normally

Now that we have a complete, self-contained program, let’s write it to disk as
a .COM program, so we will be able to execute it directly from DOS. We can run
a .COM program from DOS simply by typing its name. Since our program
doesn’t yet have a name, we need to give it one.

RESGEAWCE

OIF8>, €A P

R4

42 Peter Norton’s Assembly Language Book for the 1IBM PC, Revised & Expanded

The Debug command N (Name) gives a name to a file before we write it to

disk. Type:

-N WRITESTR.COM

to give the name WRITESTR.COM to our program. This command doesn’t
write our file to the disk, though—it simply names the file.

Next, we must give Debug a byte count, telling it the number of bytes in our
program so it will know how much memory we want to write to our file. If you
refer to the unassemble listing of our program, you can see that each instruc-
tion is two bytes long (this won’t always be true). We have four instructions, so
our program is 4 * 2 = 8 bytes long. (We could also put Debug’s H command to
work and use Hexarithmetic to determine the number of bytes in our program.
Typing H 108 100 to subtract the first address after our program, 108, from 100
will produce 8.)

Once we have our byte count, we need somewhere to put it. Debug uses the
pair of registers BX:CX for the length of our file, so putting 8h into CX tells
Debug that our program is eight bytes long. Finally, since our file is only eight
bytes long, we also need to set BX to zero.

Once we've set the name and length of our program, we can then write it to
disk with Debug’s W (for Write) command:

-W
Rriting 0008 bytes

We now have a program on our disk called WRITESTR.COM, so let’s exit
Debug, with a Q, and look for it. Use the DOS Dir command to list the file:

E>DIR WRITESTR.COM

Volume in drive A has no label
Directory of A:\

WRITESTR COM 8 6-30-83 10:05a
1 File(s) 18432 bytes free

B>

The directory listing tells us that WRITESTR.COM is on the disk and that
it’s eight bytes long, just as it should be. To run the program, simply type
Writestr at the DOS prompt. You’'ll see a * appear on the display. Nothing to
it.

S

Printing Characters 43

Writing a String of Characters

As a final example for this chapter, we’ll use INT 21h, with a different func-
tion number in the AH register, to write a whole string of characters. We’ll
have to store our string of characters in memory and we’ll have to tell DOS
where to find the string, so in the process, we’ll also learn more about addresses
and memory.

We’ve already seen that function number 02h for INT 21H prints one charac-
ter on the screen. Another function, number 09h, prints an entire string, and
stops printing characters when it finds a $§ symbol in the string. Let’s put a
string into memory. We'll start at location 200h, so the string won’t become
tangled with the code for our program. Enter the following numbers, using the
instruction E 200:

48 ES &C &C
GF ce 20 44
4F S3 20 68
6S 72 65 =)
24

The last number, 24h, is the ASCII code for a $ sign, and it tells DOS that this is
the end of our string of characters. You’ll see what this string says in a minute,
when you run the program we’ll enter now:

386F:0100 B408 MOV AH,08
38cF:0102 BAROOOZ MOV DX,0200
386F:0105 CD21 INT 2l
386F:0107 CDE0 INT =)

200h is the address of the string we entered, and loading 200h into the DX reg-
ister tells DOS where to find the string of characters. Check your program with
the U command, then run it with a G command:

-G

Hello, DOS here.
Program terminated normally

Now that we’ve stored some characters in memory, it’s time to meet another
Debug command, D (for Dump). The dump command dumps memory to the
screen somewhat like U lists instructions. Just as when you use the U command,
simply place an address after D to tell Debug where to start the dump. For exam-
ple, type the command D 200 to see a dump of the string you just entered:

-D 200
386F:0200 48 bS 6C 6C BF 2C 20 44-4F 53 20 68 65 7?2 6S CE Hello, DOS here.
386F:0210 24 SD C3 SS 83 EC 30 8B-EC C? 06 10 00 0O 00 E8 $1CU.10.1G..... h

NS4 Are e

» KR I

4

R

44 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

After each pair of address numbers (such as 396F:0200 in our example), we
see 16 hex bytes, followed by the 16 ASCII characters for these bytes. Thus, on
the first line you see most of the ASCII codes and characters you typed in. The
ending $ sign you typed is the first character on the second line; the remainder
of that line is a miscellaneous assortment of characters.

Wherever you see a period (.) in the ASCII window, it represents either a
period or a special character, such as the Greek letter pi. Debug’s D command
displays only 96 of the 256 characters in the IBM PC character set, so a period is
used for the remaining 160 characters.

We'll use the D command in the future to check numbers we enter for data,
whether those data are characters or ordinary numbers. (For more information,
refer to the Debug section in your DOS manual.)

Our string-writing program is complete, so we can write it to the disk. The -
procedure is the same one we used to write WRITESTR.COM to disk, except
this time we have to set our program length to a value long enough to include
the string at 200h. Our program begins at line 100h, and we can see from the
memory dump just performed that the first character (]) following the $ sign
that ends our string is at location 211h. Again, we can use the H command to
find the difference between these two numbers. Find 211h —100h and store this
value into the CX register, again setting BX to zero. Use the N command to
give the program a name (add the .COM extension to run the program directly
from DOS), then use the W command to write the program and data to a disk
file.

That’s it for writing characters to the screen—aside from one final note: You
may have noticed that DOS never sends the $ character. Quite so, because DOS
uses the $ sign to mark the end of a string of characters. That means we can’t
use DOS to print a string with a $ in it, but in a later chapter, we’ll see how to
print a string with a $ sign or any other special character.

Summary

Our preparations in the first two chapters brought us to the point where we
could work on a real program. In this chapter, we used our knowledge of hex
numbers, Debug, 8088 instructions, and memory to build short programs to
print a character and a string of characters on the screen. In the process we also
learned some new things.

First we learned about INT instructions—not in much detail, but enough for
us to write two short programs. In later chapters, we’ll gain more knowledge
about interrupt instructions as we increase our understanding of the 8088
microprocessor tucked under the cover of your IBM PC.

Printing Characters 45

Debug has, once again, been a useful and faithful guide. We’ve been relying
heavily on Debug to display the contents of registers and memory, and in this
chapter we used its abilities even more. Debug ran our short programs with the
G command.

We also learned about the INT 20 exit instruction, and the MOV instruction
for moving numbers into and between registers. The exit instruction (INT 20)
allowed us to build a complete program that we could write to the disk and run
directly from DOS without the help of Debug. And the MOV instruction gave us
the ability to set registers before an INT 21 (print) instruction, so we could
write a self-contained program to print one character.

Finally, we rounded out the chapter with the INT 21h function to print an
entire string of characters. We'll use all these instructions heavily throughout
the rest of this book, but as you saw from using the Debug assemble and unas-
semble commands, you won’t need to remember the machine codes for these
instructions.

Now we know enough to move on to printing binary numbers. In the next
chapter we’ll build a short program to take one byte and print it on the screen
as a string of binary digits (zeros and ones).

RUESE Aivbzis

P

RIDMLE ORI

48 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

In this chapter we’ll build a program to write binary numbers to the screen as
strings of zeros and ones. We have most of the knowledge we need, and our work
here will help solidify ideas we’ve already covered. We’'ll also add a few instruc-
tions to those we know, including another version of ADD and some instruc-
tions to help us repeat parts of our program. Let’s begin by learning something
completely new.

Rotations and the Carry Flag

In Chapter 2, when we first encountered hex arithmetic, we found that add-
ing 1 to FFFFh should give 10000h, but doesn’t. Only the four hex digits to the
right fit into one word; the 1 doesn’t fit. We also found that this 1 is an overflow
and that it is not lost. Where does it go? It is put into something called a flag—-
in this case, the Carry Flag, or CF. Flags contain one-bit numbers, so they can
hold either a zero or a one. If we need to carry a one into the fifth hex digit, it
goes into the carry flag.

Let’s go back to our ADD instruction of Chapter 2 (ADD AX,BX). Put FFFFh
into AX and 1 into BX, then trace through the ADD instruction. At the end of /)
the second line of Debug’s R display, you’ll see eight pairs of letters. The last of
these, which can read either NC or CY, is the carry flag. Right now, because
your add instruction resulted in an overflow of 1 , you’ll see that the carry status
reads CY (Carry). The carry bit is now 1 (or, as we'll say, it’s set).

Just to confirm that we’ve stored a seventeenth bit here (it would be the
ninth bit for a byte addition), ADD one to the zero in AX by resetting IP to 100h
and tracing through the add instruction again. The carry flag is affected by
each ADD instruction, and this time there shouldn’t be any overflow, so the
carry should be reset. And, indeed, the carry does become zero, as indicated by
the NC, which stands for No Carry, in the R display.

(We'll learn about the other status flags later, but if you're curious, you can
find information about them right now under Debug’s R command in your DOS
manual.)

Let’s review the task of printing a binary number to see how the carry infor-
mation could be useful. We print only one character at a time, and want to pick b
off the bits of our number, one by one, from left to right. For example, the first
character we would want to print in the number 1000 0000b would be the one.

If we could move this entire byte left one place, dropping the one into the carry
flag and adding a O to the right side, then repeat the process for each succeeding

Why Take All the Time and Energy
to Do It Yourself When Someone
Else Has Done the Work for You?

This invaluable companion diskette gives you all of the
examples for Chapters 9 through 27 including the
changes introduced throughout the text—so you can
double-check what you've learned quickly and easily or let the diskette do
it for you!

The choice is yours...Why keyboard your fingers to the bone when you
can let this powerful diskette handle it for you?

To order your copy, enclose a check or money order for $30.00, plus sales
tax, for each disk. Or charge it to your VISA or MasterCard by completing
the information below.

D WD BN AT Gl L S ——— St —— i o) Pttt Dttt Ot ot s s o, e i s s e) WOMIS EIEEE ETWC CaE G Cmw e

Check One:

0O 3.5"diskette (0-13-661141-9)
O 5.25"high-density diskette (0-13-662461-8)

Payment:

O Check Enclosed

O Charge to my credit card
O MasterCard
O VISA

Account Number Expiration Date

Signature as it appears on card

Your Name

Address

City State Zip
Send to: Prentice Hall Mail Order Billing

Route 59 at Brook Hill Drive
West Nyack, NY 10995-9901

Pleasc allow 4-5 wecks for delivery.
For more information call 1 (800) 624-0023 (national) or 1 (800) 624-0024 (New Jersey).

T o 1

3R>

o

RO

Printing Binary Numbers 49

CF BL
1l ([«<— 0110110

Figure 4-1. The RCL BL,1 instruction moves the bits left one position through
the carry flag.

digit, the carry flag would pick off our binary digits. And we can do just this
with a new instruction called RCL (Rotate Carry Leﬂ)
To see how it works, enter the short: program:

3985:0100 DOD3 RCL BL,1

This instruction rotates the byte in BL to the left by one bit (hence the ,1), and it
does so through the carry flag. The instruction is called rotate, because RCL
moves the leftmost bit into the carry flag, while moving the bit currently in the
carry flag into the rightmost bit position (0). In the process, all the other bits
are moved, or rotated, to the left. After enough rotations (17 for a word, nine for
a byte) the bits are moved back into their original positions, and you get back
the original number.

Place B7h in the BX register, then trace through this rotate instruction sev-
eral times. Converting your results to binary, you’ll see the following:

Carry BL register
o 1011 01111 B7h We start here
1 0110 1110 EEh
o 1101 11001 DDh
1 1011 10110 BAh
0 10 @ T {0 e B7h After 9 rotations

In the first rotation, bit 7 of BL moves into the carry flag, the bit in the carry
flag moves into bit 0 of BL, and all the other bits move left one position. Suc-
ceeding moves continue rotating the bits to the left until, after nine rotations,
the original number is back in the BL register.

QORP

RIS

NESNE AL

50 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

We're getting closer to building our program to write binary numbers to the
screen, but we still need a few other pieces. Let’s see how we can convert the bit
in the carry flag into the character O or 1.

Adding With the Carry Flag

The normal ADD instruction, for example, ADD AX BX, simply adds two
numbers. Another instruction, ADC (Add with Carry) adds three numbers: the
two, as before, plus one bit from the carry flag. If you look in your ASCII table,
you’ll discover that 30h is the character 0 and 31h is the character 1. So, adding
the carry flag to 30h gives the character 0 when the carry is clear, and 1 when
the carry is set. Thus, if DL = 0 and the carry flag is set (1), executing:

ADC DL,30

adds DL (0) to 30h (‘0’) and to 1h (the carry) to give 31h (‘1’). And, with one
instruction we've converted the carry to a character we can print.

At this point, rather than run through an example of ADC, let’s wait for
our complete program. Once we’ve built our program, we’ll execute its
instructions one at a time, in a procedure called single-stepping, and through
this, we'll see both how the ADC instruction works and how it fits nicely into

0106: <
. Decrement
: CH
LOOP 0106
Continue
whenCH=20
INT 20

Figure 4-2. The LOOP Instruction.

Printing Binary Numbers 57

our program. But first we need one more instruction, which we’ll use to
repeat our RCL, ADC, and INT 21h (print) instructions eight times: once for
each bit in a byte.

Looping

As noted, the RCL instruction isn’t limited to rotating bytes; it can also
rotate entire words. We’ll use this ability to demonstrate the LOOP instruction.
LOOP is something like a FOR-NEXT loop in BASIC, but it’s not as general. As
with BASIC’s FOR-NEXT loop, however, we need to tell LOOP how many
times to run through a loop. We do this by placing our repeat count in register
CX. Each time through the loop, the 8088 subtracts one from CX, and, when CX
becomes zero, LOOP ends the loop.

Why the CX register? The C in CX stands for Count. We can use this register
as a general-purpose register, but, as you'll see in the next chapter, the CX reg-
ister 1s used with other instructions when we wish to repeat operations.

Here’s a simple program that rotates the BX register left eight times, moving
BL into BH (but not the reverse, since we rotate through the carry flag):

396F:0100 BBCSA3 MOV BX,A3CS
396F:0103 BA0A&O0O MoV CX,0008
396F:0106 D1D3 RCL BX,1
39LF:0108 ECFC LOOP 0106
396F:010A CDeEO INT 20

Our loop starts at 106h (RCL BX,1) and ends with the LOOP instruction. The
number following LOOP (106h) is the address of the RCL instruction. When we
run the program, LOOP subtracts one from CX, then jumps to address 106h if
CX is not zero. The instruction RCL BX,1 (Rotate Carry Left, one place) is exe-
cuted eight times here, because CX is set to eight before the loop.

You may have noted that, unlike the FOR-NEXT loop in BASIC, the LOOP
instruction is at the end of our loop (where we’d put the NEXT statement in
BASIC). And the start of the loop, the RCL instruction at 106h, has no special
instruction like FOR has in BASIC. If you know a language like Pascal, you can
see that the LOOP instruction is somewhat akin to the REPEAT-UNTIL pair of
instructions, where the REPEAT instruction just labels the start of the block of
instructions to loop through.

There are different ways you could execute our small program. If you simply
type G, you won'’t see any change in the register display, because Debug saves
all the registers before it starts carrying out a G command. Then, if it
encounters an INT 20 instruction (as it will in our program), it restores all the

Ly R =

R

52 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

registers. Try G. You'll see that IP has been reset to 100h (where you started),
and that the other registers don’t look any different, either.

If you have the patience, you can trace through this program, instead. Tak-
ing it one step at a time, you can watch the registers change at each step:

-R

AX=0000 BX=DODOOD CX=0000 DX=0000 SP=FFEE BP=0000 SI-0000 DI=0000
DS=0CDE ES=0OCDE SS=0CDE CS=0CDE IP=0100 NV UP DI PL NZ NA PO NC
OCDE:0100 BBCSA3 MOV BX,A3CS

—

AX=0000 BX=A3CS CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=DCDE ES=0OCDE SS=0CDE CS=0CDE IP=0103 NV UP DI PL NZ NA PO NC
OCDE:0103 BS0800 MoV CX,0008

—

AX=0000 BX=A3CS CX-=-0008 DX=-0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=0CDE ES=0CDE SS=0CDE CS=0CDE IP=01L& NV UP DI PL NZ NAR PO NC
OCDE:0106 D1D3 RCL BX,1

—

AX=0000 BX=47?8A CX=0008 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=0CDE ES=0CDE SS=0CDE CS=0CDE 1IP=0108 O¥ UE DI*PE_NZ INA_POSCY,
OCDE:0108 ECFC LOOP 0106

-4

AX=0000 BX=478A CX=000? DX=0D00D0 SP=FFEE BP=0000 SI=0000 DI=0000
DS=0CDE ES=DCDE SS=0OCDE CS=0CDE 1IP=0106 OV UP DI PL NZ NA PO CY
OCDE:0106 D1D3 RCL BX,1

-3

AX=0000 BX=CSS1 CX=0001 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=0CDE ES=0CDE SS=0OCDE CS=0CDE 1IP=0108 NV UP DI PL NZ NA PO CY
OCDE:0108 EZFC LOOP 0106

.

AX=0000 BX=CSS1 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=0CDE ES=0CDE SS=0OCDE CS=0CDE IP=010A NV UP DI PL NZ NA PO CY
OCDE:010A CD2O INT c0

Or, you can type G 10A to execute the program up to, but not including, the INT
20 instruction at 10Ah; then the registers will show the result of our program.

If you try this, you'll see CX = 0 and either BX = C551 or BX = C5D1,
depending on the value of the carry flag before you ran the program. The C5 our
program’s MOV instruction put into BL at the start is now in the BH register,
but BL doesn’t contain A3, because we rotated BX through the carry. Later,
we’ll see other ways of rotating without going through the carry. Let’s get back
to our goal of printing a number in binary notation.

Writing a Binary Number

We've seen how to strip off binary digits one at a time and convert them to
ASCII characters. If we add an INT 21h instruction to print our digits, our pro-

Printing Binary Numbers 53

gram will be done. Here’s the program,; the first instruction sets AH to 02 for
the INT 21h function call (recall, 02 tells DOS to print the character in the DL
register):

3985:0100 B40Oe MoV AH,02
3985:0102 BS0A&00 MOV CX,0008
39485:010S5 B20O MOV DL,00
3945:0107 DOD3 RCL BL,1
39485:0109 400230 ADC DL,30
3985:010C CD21 INT 2l
3985:010E EZFS Loop 010S
39485:0110 Cbe0 INT 20

We've seen how all the pieces work and will put them together now. We rotate
BL (with the instruction RCL BL,1) to pick off the bits of a number, so pick a
number you want printed in binary, load it into the BL register, then run this
program with a G command. After the INT 20h instruction, the G command
restores the registers to the values they had before, so BL still contains the
number you see printed in binary.

The ADC DL,30 instruction in our program converts the carry flag to a zero
or a one character. The instruction MOV DL,0 sets DL to zero first, then the
ADC instruction adds 30h to DL, and then finally adds the carry. Since 30h is
the ASCII code for a 0, the result of ADC DL,30 is the code for 0 when the carry
is clear (NC) or 1 if the carry is set (CY).

If you want to see what happens when you run this program, trace through it.
Keep in mind that you’ll need to be a bit careful in single-stepping through it
with the T command. It contains an INT 21h instruction and, as you saw when
we first encountered INT 21h, DOS does a great deal of work for that one
instruction. That’s why you can’t use T on the INT 21.

You can, however, trace through all the other instructions in this program
except the final INT 20, which won’t concern you until the very end. During
your tracing, each time you loop through and reach the INT 21h instruction,
type G 10E. Your G command, followed by an address, will tell Debug to con-
tinue running the program, but to stop when IP becomes the address (10E) you
entered. That is, Debug will execute the INT 21h instruction without your trac-
ing through it, but stops before executing the LOOP instruction at 10E, so you
can return to tracing through the program. (The number you type after G is
known as a breakpoint in the DOS manual; breakpoints are very useful when
you’re trying to understand the inner workings of programs.)

Finally, terminate the program when you reach the INT 20h instruction by
typing the G command by itself.

R

54 peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

The Proceed Command

Whether or not you tried out the instructions to trace through our program,
you’'ve seen that an instruction like G 10E allows us to trace over an INT
instruction that starts at, say, 10Ch. But that means each time we want to
trace over an INT instruction, we need to find the address of the instruction
immediately following the INT instruction.

As it turns out, there is a Debug command that makes tracing through INT
instructions much simpler. The P (Proceed) command does all the work for us.
To see, trace through the program, but this time, when you reach the INT 21h
instruction, type P, rather than G 10E, as described before.

We'll make heavy use of the P command in the rest of this book, because it’s a
very nice way to trace over commands like INT, which call on large programs,
such as the routines inside DOS. Before going on, though, we should mention
one thing about the P command—it wasn’t documented in the DOS manuals for
versions of DOS before 3.00. This lack of documentation may have been an
oversight or, more likely, because Microsoft didn’t have time to test the P com-
mand completely before delivering version 2.00 of DOS. Whatever the reason,
if you have a version of DOS before 3.00, you should be aware that the P com-
mand may not work all the time—although we’ve never had any problems
using it.

That’s about all we’ll do for printing binary numbers as strings of zeros and
ones, but here’s a simple exercise for you to practice on: See if you can modify
this program to print a b at the end of our binary number (Hint: The ASCII code
for b is 62h).

Summary

In this chapter, we had a chance to catch our breath a bit after our hard work
on new concepts in Chapters 1 through 3. So where have we been and what
have we seen?

We had our first encounter with flags and had a look at the carry flag, which
was of special interest here, because it made our job of printing a binary
number quite simple. It did so as soon as we learned about the rotate instruc-
tion RCL, which rotates a byte or word to the left, one bit at a time.

Once we learned about the carry flag and rotating bytes and words, we
tucked a new version of the ADD instruction, ADC, under our belts and were
almost ready to build our program to print a number in binary notation.

58 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Our program in Chapter 4 was fairly straightforward. We were lucky
because the carry flag made it easy to print a binary number as a string of 0 and
1 characters. Now we’ll move on to printing numbers in hex notation. Here, our
work will be a bit less direct, and we’ll begin to repeat ourselves in our pro-
grams, writing the same sequence of instructions more than once. But that type
of repetition won’t last forever: In Chapter 7, we'll learn about procedures, or
subroutines, that eliminate the need to write more than one copy of a group of
instructions. First, let’s learn some more useful instructions and see how to
print numbers in hex.

Compare and Status Bits

In the last chapter, we learned something about status flags and examined
the carry flag, which is represented as either CY or NC in Debug’s R display.
The other flags, which are equally useful, keep track of the status for the last
arithmetic operation. There are eight flags altogether, and we’ll learn about
them as they are needed.

Recall that CY means the carry flag is 1, or set, whereas NC means the carry
flag is 0. In all flags 1 means true and 0 means false. For example, if a SUB
instruction results in 0, the flag known as the Zero Flag would be set to 1—
true—and you would see it in the R display as ZR (Zero). Otherwise, the zero
flag would be reset to 0-—NZ (Not Zero).

Let’s look at an example that tests the zero flag. We’ll use the SUB instruc-
tion to subtract two numbers. If the two numbers are equal, the result will be
zero, and the zero flag will appear as ZR on your display. Enter the following
subtract instruction:

396F:0100 29D8 SUB AX,BX

Now, trace through the instruction with a few different numbers, watching for
ZR or NZ to appear in the zero flag. If you place the same number (F5h in the
following example) into both the AX and BX registers, you'll see the zero flag
set after one subtract instruction, and cleared after another:

-R

AX=00FS BX=00FS CX=0000 DX=D00D0 SP=FFEE BP=0000 SI=D000 DI=0000
DS=0CDE ES=0CDE SS=0CDE CS=0CDE IP=0100 NV UP DI PL NZ NA PO NC
OCDE:0100 2Sp& SUB AX,BX

—

AX=0000 BX=DO0FS CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000

Printing in Hex 59

DS=0CDE ES=0CDE SS=0CDE CS=0CDE IP=010¢2 NV UP DI PL ZR NAR PE NC
BCDE:0102 3F RAS

-R IP

IP D102

:100

-R

RX=0000 BX=D0FS CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=DCDE ES=0CDE SS=0CDE CS=0CDE 1IP=0100 NV UP DI PL ZR NA PE NC
OCDE:0100 29D8 SUB RX,BX

-7

RX=FFOB BX=00FS CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=0CDE ES=0CDE SS=0CDE CS=0CDE IP=0102 NV UP DI NG NZ AC PO CY
OCDE:0102 3F RAS

If we subtract one from zero, the result is FFFFh, which, as we saw in Chap-
ter 1,is —1 in two’s-complement form. Can we tell from the R display whether a
number is positive or negative? Yes, another flag, called the Sign Flag, changes
between NG (Negative) and PL (Plus), and is set to 1 when a number is a nega-
tive two’s-complement number.

And another new flag we’ll be interested in is the Overflow Flag, which
changes between OV (Overflow) when the flag is 1 and NV (No Overflow) when
the flag is 0. The overflow flag is set if the sign bit changes when it shouldn’t.
For example, if we add two positive numbers, such as 7000h and 6000h, we get
a negative number, DOOOh, or —12288. This is an error because the result over-
flows the word. The result should be positive, but isn’t, so the 8088 sets the
overflow flag. (Remember, if we were dealing with unsigned numbers, this
wouldn’t be an error, in which case we would ignore the overflow flag.)

Try several different numbers to see if you can set and reset each of these
flags, trying them out until you’re comfortable with them. For the overflow,
subtract a large negative number from a large positive number— for example,
7000h — 8000h, since 8000h is a negative number equal to —32768 in two’s-
complement form.

Now we're ready to look at a set of instructions called the conditional jump
instructions. They allow us to check status flags more conveniently than we’ve
been able to so far. The instruction JZ (Jump if Zero) jumps to a new address if
the last arithmetic result was zero. Thus, if we follow a SUB instruction with,
say,JZ 15A, a result of zero for the subtraction would cause the 8088 to jump to,
and start executing, statements at address 15Ah, rather than at the next
instruction.

The JZ instruction tests the zero flag, and, if it’s set (ZR), does a jump just like
a jump with the BASIC statement IF A = 0 THEN 100. The opposite of JZ is
JNZ (Jump if Not Zero). Let’s look at a simple example that uses JNZ and sub-
tracts one from a number until the result is zero:

39LF:0100 2col SUB AL, D1
396F:0102 ?SFC JNZ 0100
396F:0104 CDeo INT (=]

60 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Put a number like three in AL, so you’ll go through the loop a few times, then
trace through this program, one instruction at a time, to see how conditional
branches work. We put the INT 20h instruction at the end so typing G by acci-
dent won’t drop off the end of our program: It’s a good defensive practice.

You may have noticed that using SUB to compare two numbers, as we just
did, has the potentially undesirable side effect of changing the first number.
Another instruction, CMP (Compare) allows us to do the subtraction without
storing the result anywhere and without changing the first number. The result
is used only to set the flags, so we can use one of the many conditional jump
instructions after a compare. To see what happens, set both AX and BX to the
same number, F5h, and trace through this instruction:

-a 100

OCDE:0100 CMP AX,BX

0CDE: 0102
—a

AX=00FS BX=00F5 <CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=0CDE ES=0CDE SS=0CDE CS=0CDE IP=010¢ NV UP DI PL ZR NA PE NC
OCDE:010e 3F ARS

The zero flag is now set (ZR), but F5h remains in both registers.

Let’s use CMP to print a single hex digit. We'll create a set of instructions
that use flags to alter the flow of our program, as LOOP did in the last chapter,
in a manner similar to BASIC’s [F-THEN statement. This new set of instruc-
tions will use the flags to test for such conditions as less than, greater than, and
so on. We won’t have to worry about which flags are set when the first number
is less than the second; the instructions know which flags to look at.

Printing a Single Hex Digit

Let’s start by putting a small number (between 0 and Fh) into the BL regis-
ter. Since any number between 0 and Fh is equivalent to one hex digit, we can
convert our choice to a single ASCII character and then print it. Let’s look at
the steps we need to take to do the conversion.

The ASCII characters 0 through 9 have the values 30h through 39h; the char-
acters A through F, however, have the values 41h through 46h. Herein lies a
problem: These two groups of ASCII characters are separated by seven charac-
ters. As a result, the conversion to ASCII will be different for the two groups of
numbers (0 through 9 and Ah through Fh), so we must handle each group dif-
ferently. A BASIC program to do this two-part conversion looks like this:

100 IF BL < &HOA

THEN BL = BL + &H30
ELSE BL = BL + &H37?

Printing in Hex 61

Character | ASCII Code (Hey

2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F
40
41
42
43
44
45
46
47

OO AL OGN —=O ™~

MM OO®@DE ~ NV I A=

Figure 5-1. Part of the ASCII table showing the characters used by hex digits.

Our BASIC conversion program is fairly simple. Unfortunately, the 8088’s
machine language doesn’t include an ELSE statement; it’s far more primitive than
BASIC is, so we'll need to be somewhat clever. Here’s another BASIC program, this
time one that mimics the method we’ll use for our machine-language program:

100 BL = BL + &H30
110 IF BL >= &H3A
THEN BL = BL + &H?

62 peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

You can convince yourself that this program works by trying it with some
choice examples. The numbers 0, 9, Ah, and Fh are particularly good because
these four numbers cover all the boundary conditions—areas where we often
run into problems.

Here, 0 and Fh are, respectively, the smallest and largest single-digit hex
numbers, so by using 0 and Fh, we check the bottom and top of our range. The
numbers 9 and 0Ah, although next to each other, require two different conver-
sion schemes in our program. By using 9 and 0Ah, we confirm that we’ve cho-
sen the correct place to switch between these two conversion schemes.

(Note that we wrote O0Ah for the number A, rather than AH, so we wouldn'’t
confuse the number Ah with the register AH. So, we’ll often place a zero before
hex numbers in situations that could be confusing. In fact, since it never hurts
to place a zero before a hex number, it’s a good idea to place a zero before all hex
numbers.)

The machine-language version of this program contains a few more steps,
but it’s essentially the same as the BASIC version. It uses the CMP instruction,
as well as a conditional jump instruction called JL (Jump if Less Than). Here’s
the program to take a single-digit hex number in the BL register and print it in
hex:

39485:0100 B40Oe MoV AH, 02
3985:0102 88DA MoV DL,BL
3985:0104 80cCe30 ADD DL,30
3985:0107 BOFA3A CMP DL,3A
3985:010A 7CO3 JL 010F
3985:010C &0ce0v ADD DL, 07
3985:010F CD2l INT 2l

3985:0111 €Da0 INT 20

The CMP instruction, as we saw before, subtracts two numbers (DL — 3Ah) to
set the flags, but it doesn’t change DL. So if DL is less than 3Ah, the JL 10F
instruction skips to the INT 21h instruction at 10Fh. Place a single-digit hex
number in BL and trace through this example to get a better feeling for CMP
and our algorithm to convert hex to ASCIL. Remember to use either the G com-
mand with a breakpoint or the P command when you run the INT instructions.

Another Rotate Instruction

Our program works for any single-digit hex number, but if we wish to print a
two-digit hex number, we need a few more steps. We need to isolate each digit
(four bits, which are often called a nibble) of this two-digit hex number. In this
section, we’ll see that we can easily isolate the first, or higher, four bits, and in

Printing in Hex 63

0107 CMP DL,3R
010A JL 010F

010C ADD DL,07? e S

0O10F INT 21

Figure 5-2. The JL Instruction.

the next section, we’ll encounter a concept known as a logical operation, which
we’ll use to isolate the lower four bits—the second of our two hex digits.

To begin, recall that the RCL instruction rotates a byte or a word to the left,
through the carry flag. In the last chapter we used the instruction RCL BL,1, in
which the 1 told the 8088 to rotate BL by one bit. We can rotate by more than
one bit if we want, but we can’t simply write the instruction RCL BL,2. (Note:
Although RCL BL,2 isn’t a legal 8088 instruction, it works just fine with the
80286 and 80386 processors found in IBM ATs and PS/2s. But since there are
still many IBM PCs, it’s best to write your programs for the lowest common
denominator—the older 8088.) For rotations by more than one bit, we must
place a rotate count in the CL register.

The CL register is used here in much the same way as the CX register is used
by the LOOP instruction to determine the number of times to repeat a loop. The
8088 uses CL for the number of times to rotate a byte or word, rather than the
CX register, because it makes no sense to rotate more than 16 times; thus the
eight-bit CL register is more than large enough to hold our maximum shift
count.

How does all this tie in with printing a two-digit hex number? Our plan now
is to rotate the byte in DL four bits to the right. To do so, we’ll use a slightly
different rotate instruction called SHR (Shift Right). Using SHR, we will be
able to move the upper four bits of our number to the rightmost nibble (four
bits).

We also want the upper four bits of DL set to zero, so that the entire register
becomes equal to the nibble we are shifting into the right nibble. If we were to
enter SHR DL, 1, our instruction would move the byte in DL one bit to the right,
and at the same time, it would move bit 0 into the carry flag, while shifting a
zero into bit 7 (the highest, or leftmost, bit in DL). If we do that three more
times, we’ll have just what we want: The upper four bits will end up shifted
right into the lower four bits, while the upper four bits will all have had zeroes

64 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

DL CF

0—— 0110110 |—| 1

Figure 5-3. The SHR DL,1 instruction moves the bits right one position into the
carry flag.

shifted into them. We can do all that shifting in one instruction, using the CL
register as the shift count. By setting CL to four before the instruction SHR
DL,CL, we will ensure that DL becomes equal to the upper hex digit.

Let’s see how this works. Place 4 into CL and 5Dh into DL, then enter and
trace through the following SHR instruction:

3985:0100 DCEA SHR DL,CL

DL should now be 05h, which is the first digit in the number 5Dh, and we can
now print this digit with a program like the one we used earlier. Thus, putting
together the pieces we have so far, we can build the following program to take a
number in the BL register and print the first hex digit:

3945:0100 B402 MOV AH,0¢
39485:0102 88DA MOV DL,BL
3985:0104 B104 MOV CL,04
3985:0106 DCEA SHR DL,CL
3945:0108 80C230 ADD DL, 30
3985:010B B0FA3A CHMP DL,3A
3J9a85:010E 7c0O3 JL 0113
3945:0110 a0cen? ADD DL,0O7
3945:0113 CD2l INT 2l
3945:0115 CDeO INT 20

Logic and AND

Now that we can print the first of the two digits in a hex number, let’s see
how we can isolate and print the second digit. Here, we’ll learn how to clear the
upper four bits of our original (unshifted) number to zero, leaving DL equal to
the lower four bits. It’s simple: Set the upper four bits to zero with an instruc-
tion called AND. The AND instruction is one of the logical instructions—those
that have their roots in formal logic. Let’s see how AND works.

In formal logic, we can say, “A is true, if B and C are both true.” But if either
B or C is false, then A must also be false. If we take this statement, substitute
one for true and zero for false, then look at the various combinations of A, B,

Printing in Hex 65

and C, we can create what is known as a truth table. Here’s the truth table for
ANDing two bits together:

AND | F T AND 0 1
I Y = 0] 0 0
T e 1 0 1

Down the left and across the top are the values for the two bits. The results for
the AND are in the table, so you see that 0 AND 1 gives 0.

The AND instruction works on bytes and words by ANDing together the bits
of each byte or word that are in the same position. For example, the statement
AND BL,CL successively ANDs bits 0 of BL and CL, bits 1, bits 2, and so on,
and places the result in BL. Let’s make this clearer with an example in binary:

1011 0101
AND 01) 1) 01310
00111 0100

Furthermore, by ANDing OFh to any number, we can set the upper four bits to
zero:

0111 101311
AND 0 00O 11311
0000 1011

Let’s put this logic into a short program that takes the number in BL, isolates
the lower hex digit by ANDing OFh to the upper four bits, and then prints the
result as a character. We saw most of the details of this program when we
printed the upper hex digit; the only new detail is the AND instruction.

3985:0100 B40Oe Mov AH,02
3945:0102 88DA Mov DL,BL
3985:0104 80ECSOF AND DL,OF
3945:0107 80C230 ADD DL, 30
3985:010A 80FA3RA CcHP DL,3A
3985:010D 7CO3 JL 0112
39485:010F a80Ce07 ADD DL, 07
3985:0112 CD2l INT 2l
3985:0114 CD2O INT 20

Try this with some two-digit hex numbers in BL before we move on to put the
pieces together to print both digits. You should see the rightmost hex digit of
your number in BL on the screen.

66 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Putting It All Together

There really isn’t much to change when we put all the pieces together. We
need only change the address of the second JL instruction we used to print the
second hex digit. Here is the complete program:

3985:0100 B4O2 MOV AH,D2
3985:0102 B848DA MOV DL,BL
3985:0104 B1LO4 MOV CL,04
3985:010t D2EA SHR DL,CL
3985:0108 80C230 ADD DL, 30
3985:010B 80FA3A CMP DL,3A
3985:010E ?CO3 JL 0113
3985:0110 a0cC207 ADD DL, 07
3985:0113 CD2l INT 2l
3985:0115 88DA MOV DL,BL
3985:0117 BOECOF RND DL,OF
3985:011A8 80C230 RDD DL,30
3985:011D 80FA3A CHMP DL,3A
3985:0120 7CO3 JL 0125
3985:0122 a80CeOo? ADD DL,0O7
3985:0125 Cb2l INT 2l
3985:0127 Cbeo INT 20

Once you've entered this program, you’ll have to type U 100, followed by U, to
see the entire unassembled listing. Note that we’ve repeated one set of five
instructions: the instructions at 108h through 113h, and 11Ah through 125h.
In Chapter 7 we’ll see how to write this sequence of instructions just once by
using an instruction similar to BASIC’'s GOSUB statement.

Summary

In this chapter, we learned more about how Debug translates numbers from
the 8088’s binary format to a hex format we can read. What did we add to our
growing store of knowledge?

First, we learned about some of the two-letter flags we see on the right side of
the register (R) display. These status bits give us a great deal of information
about our last arithmetic operation. By looking at the zero flag, for example, we
could tell whether the result of the last operation was zero. We also found we
could compare two numbers with a CMP instruction.

Next, we learned how to print a single-digit hex number. And, armed with
this information, we went on to learn about the SHR instruction, which ena-
bled us to move the upper digit of a two-digit hex number into the lower four
bits of BL. That done, we could print the digit, just as we’ve done before.

Finally, we found that the AND instruction allowed us to isolate the lower
hex digit from the upper. And, putting all these pieces together, we wrote a pro-
gram to print a two-digit hex number.

70 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Now that we know how to print a byte in hex notation, we’re going to reverse
the process by reading two characters—hex digits—from the keyboard and con-
verting them into a single byte.

Reading One Character

The DOS INT 21h function call we've been using has an input function,
number 1, that reads a character from the keyboard. When we learned about
function calls in Chapter 4, we saw that the function number must be placed in
the AH register before an INT 21h call. Let’s try function 1 for INT 21h. Enter
INT 21h at location 0100h:

396F:0100 CD2l INT 2l

Then, place 01h into AH and type either G 102 or P to run this one instruction.
Nothing happens? It doesn’t seem to—all you’ll see is the blinking cursor. But
actually, DOS has paused and is waiting until you press a key (don’t do so yet).
Once you press a key, DOS will place the ASCII code for that character into the
AL register. We'll use this instruction later, to read the characters of a hex
number, but right now, let’s see what happens when we press a key like the F1
key.

Try pressing the F1 key. DOS will return a 0 in AL, and you’ll also see a semi-
colon (;) appear just after Debug’s hyphen prompt.

This is what happened. F1 is one of a set of special keys with extended codes,
which DOS treats differently from the keys representing normal ASCII charac-
ters. (You'll find a table listing these extended codes in Appendix D, as well as
at the end of your BASIC manual.) For each of these special keys, DOS sends
two characters, one right after the other. The first character returned is always
zero, indicating that the next character is the scan code for a special key.

To read both characters, we’d need to execute INT 21h twice. But in our
example, we read only the first character, the zero, and left the scan code in
DOS. When Debug finished with the G 102 (or P) command, it began to read
characters, and the first character it read was the scan code left behind from the
F1 key: namely, 59, which is the ASCII code for a semicolon.

Later, when we develop our Dskpatch program, we’ll begin to use these
extended codes to bring the cursor and function keys to life. Until then, we’ll
just work with the normal ASCII characters.

1

Reading Characters 771

Reading a Single-Digit Hex Number

Let’s reverse the conversion used in Chapter 5, when we transformed a sin-
gle-digit hex number to the ASCII code for one of the characters in 0 through 9
or A through F. To convert one character, such as C or D, from a hex character
to a byte, we must subtract either 30h (for 0 through 9) or 37h (for A through F).
Here is a simple program that will read one ASCII character and convert it to a

byte:

3985:0100 B40O1 MoV AH, 01
3985:0102 CD2l LNT 2l

3985:0104 2C30 SUB AL, 30
3985:0106 3CO09 cHp AL,09
3985:0108 ?EO02 JLE 010cC
398S:010A =2CO07 SUB AL,O7
3985:010C CDheO INT 20

Most of these instructions should be familiar now, but there is one new one,
JLE (Jump if Less than or Equal). In our program, this instruction jumps if AL
is less than or equal to 9h.

To see the conversion from hex character to ASCII, you need to see the AL
register just before the INT 20h is executed. Since Debug restores the registers
when it executes the INT 20h, you'll need to set a breakpoint, as you did in
Chapter 4. Here, type G 10C, and you’ll see that AL will contain the hex
number converted from a character.

Try typing some characters, such as % or a lowercase d, that are not hex dig-
its, to see what happens. You’'ll notice that this program works correctly only
when the input is one of the digits 0 through 9 or the uppercase letters A
through F. We'll correct this minor failing in the next chapter, when we learn
about subroutines, or procedures. Until then, we’ll be sloppy temporarily and
ignore error conditions: We'll have to type correct characters for our program to
work properly.

Reading a Two-Digit Hex Number

Reading two hex digits isn’t much more complicated than reading one, but it
does require many more instructions. We'll begin by reading the first digit,
then we’ll place its hex value in the DL register and multiply it by 16. To per-
form this multiplication, we’ll shift the DL register left four bits, placing a hex
zero (four zero bits) to the right of the digit we just read. The instruction SHL
DL,CL, with CL set to four does the trick by inserting zeros at the right. In fact,
the SHL (Shift Left) instruction is known as an arithmetic shift, because it has

72 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

CF DL

]l | «<— (0110110 | «— 0

Figure 6-1. The SHL DL,1 instruction moves the bits left one position into the
carry flag.

the same effect as an arithmetic multiplication by two, four, eight, and so on,
depending on the number (such as one, two, or three) in CL.

Finally, with the first digit shifted over, we’ll add the second hex digit to the
number in DL (the first digit * 16). You can see and work through all these
details in this program:

3985:0100 B401 MOV AH,01
3985:0102 CD21 INT 21
3985:0104 8ace MOV DL,AL
3965:0106 80EA30 SUB DL,30
3985:0109 80FAQ09 cMP DL, 09
3985:010C 7EO03 JLE 0111
3985:010E 80EAQ? SUB DL,07
3985:0111 Bl0O4 MOV CL,04
3985:0113 DCE2 SHL DL,CL
3985:0115 CD2l INT 21
3985:0117 2C30 SUB AL, 30
3985:0119 3cC09 CHMP AL, 09
3985:011B ?EQ2 JLE 0L1F
3985:011D 2CO7 SUB AL, 07
3985:011F 0OC2 ADD DL,AL
3985:0121 CD2O INT =)

Now that we've got a working program, it’s a good idea to check the boundary
conditions to confirm that it’s working properly. For these boundary conditions,
use the numbers 00, 09, 0A, OF, 90, A0, FO, and some other number, such as 3C.
Use a breakpoint to run the program without executing the INT 20h instruc-
tion. (Make sure you use uppercase letters for your hex input.)

Summary

We’ve finally had a chance to practice what we learned in previous chapters
without being flooded with new information. Using a new INT 21 function
(number 1) to read characters, we developed a program to read a two-digit hex
number. Along the way, we emphasized the need to test programs with all the
boundary conditions.

Now we'’re ready to wrap up Part I by learning about procedures in the 8088.

m~reae e

RN ITTERL

74 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

In the next chapter, we’ll meet MASM, the macro assembler, and begin to use
assembly language. But before we leave Debug, we’ll look at one last set of
examples, and learn about subroutines and a special place to store numbers
called the stack.

Procedures

A procedure is a list of instructions that we can execute from many different
places in a program, rather than having to repeat the same list of instructions
at each place they’re needed. In BASIC such lists are called subroutines, but
we’ll call them procedures for reasons that will become clear later.

We move to and from procedures just as we do in BASIC. We call a procedure
with one instruction, CALL, which is just like BASIC’'s GOSUB. And we return
from the procedure with a RET instruction, which is just like BASIC’s
RETURN.

Here’s a simple BASIC program we’ll soon rewrite in machine language.
This program calls a subroutine ten times, each time printing one character,
starting with A and ending with J:

10 B = &H4L 'ASCII for 'A'
20 FOR I = 1 TO 10

30 GOSUB 1000

40 R =R +1

S0 NEXT I

60 END

1000 PRINT CHRS$(R);
1200 RETURN

The subroutine, following a common practice in BASIC programs, begins at
line 1000 to leave room for us to add more instructions to the main program
without affecting our subroutine. We’ll do the same with our machine-lan-
guage procedure by putting it at 200h, far away from our main program at
100h. We'll also replace GOSUB 1000 with the instruction CALL 200h, which
calls the procedure at memory location 200h. The CALL sets IP to 200h, and
the 8088 starts executing the instructions at 200h.

The FOR-NEXT loop of the BASIC program, as we saw in Chapter 4, can be
written as a LOOP instruction. The other pieces of the main program (except
for the INC instruction) should be familiar.

Procedures—Cousins to Subroutines 75

0105: CALL 0200
0108: LOOP 0105

0200: MOD AH,D2
0202: INT 21
0204: INC DL
0206: RET

Figure 7-1. The CALL and RET Instructions.

3945:0100 Be4l MoV DL, 41

39485:0102 BAODADOD MoV CX,000A
39485:0105 EAFA00 CALL 0200
3985:0108 FECE INC DL
3985:0108 ECFB LOOP 0105
3985:010A CDeO INT 20

The first instruction places 41h (ASCII for A) into the DL register, because the
INT 21h instruction prints the character given by the ASCII code in DL. The
INT 21h instruction itself is located some distance away, in the procedure at
location 200h. INC DL, the new instruction, increments the DL register. That
is, it adds one to DL, setting DL to the next character in the alphabet. Here’s
the procedure you should enter at 200h:

39485:0200 B40Oe MOV AH, 02
3945:0202 €DCl INT 2l
39485:0204 C3 RET

Recall that the 02h in AH tells DOS to print the character in DL when we exe-
cute the INT 21h instruction. RET is a new instruction that returns to the first
instruction (LOOP) following the CALL in our main program.

Type G to see the output of this program, then single-step through it to see
how it works (remember to use either a breakpoint or the P command to run the
INT 21 instruction).

1 (e en

76 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Address Stack

0098:

0100: |p203

0102: | D103

0104: .

Figure 7-2. The Stack Just Before Executing the CALL 400 Instruction.

The Stack and Return Addresses

The CALL instruction in our program needs to save the return address some-
where so the 8088 will know where to resume executing instructions when it
sees the RET instruction. For the storage place itself, we have a portion of
memory known as the stack. And for tracking what’s on the stack, there are
two registers that we can see on the R display: the SP (Stack Pointer) register,
which points to the top of the stack, and the SS (Stack Segment), which holds
the segment number.

In operation, a stack for the 8088 is just like a stack of trays in a cafeteria,
where placing a tray on the top covers the trays underneath. The last tray on
the stack is the first to come off, so another name for a stack is LIFO, for Last In,

i Ceigden

re

78 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Here, the instruction at 100h calls one at 200h, which calls one at 300h,
which calls one at 400h, where we finally see a return (RET) instruction. This
RET returns to the instruction following the previous CALL instruction, at
300h, so the 8088 resumes executing instructions at 303h. But there it
encounters a RET instruction at 303h, which pulls the next oldest address
(203h) off the stack. So the 8088 resumes executing instructions at 203h, and so
on. Each RET pops the topmost return address off the stack, so each RET fol-
lows the same path backward as the CALLs did forward.

Try entering a program like the preceding one. Use multiple calls and trace
through the program to see how the calls and returns work. Although the pro-
cess may not seem very interesting right now, there are other uses for this
stack, and a good understanding of how it works will come in handy. (In a later
chapter, we'll go looking for the stack in memory.)

PUSHing and POPping

The stack is a useful place to store words of data for a while, provided we're
careful to restore the stack before a RET instruction. We've seen that a CALL
instruction pushes the return address (one word) onto the top of the stack, while
a RET instruction pops this word off the top of the stack, loads it into the IP
register, and exposes the word that was lying underneath it. We can do much
the same thing with the instructions PUSH and POP, which allow us to push
and pop words. When might we want to do this?

It’s often convenient to save the values of registers at the beginning of a pro-
cedure and restore them at the end, just before the RET instruction. Then we're
free to use these registers in any way we like within the procedure, as long as
we restore their values at the end.

Programs are built from many levels of procedures, with each level calling
the procedures at the next level down. By saving registers at the beginning of a
procedure and restoring them at the end, we remove unwanted interactions
between procedures at different levels, and this makes our job of programming
much easier. You'll see more about saving and restoring registers in Chapter
13, when we talk about modular design. But right now, here’s an example
(don’t enter it) that saves and restores CX and DX:

39:F:0200 S1 PUSH (09,6
39LF:0201 S2 PUSH DX
39tF:0202 BR0OAOO Mov CX,0008
395F:0205 EAFA00 CALL 0300
39LF:0208 FECE INC DL
396F:020A ECFQ LooP 020S
39LF:020C SA POP DX
39&F:020D SS9 POP CX

395F:020E C3 RET

Procedures—Cousins to Subroutines 79

Notice that the POPs are in reverse order from the PUSHes, because a POP
removes the word placed most recently on the stack, and the old value of DX is
on top of the old CX.

Saving and restoring CX and DX allows us to change these registers in the
procedure that begins at 200h, but without changing the values used by any
procedure that calls this one. And once we’ve saved CX and DX, we can use
these registers to hold /local variables—variables we can use within this proce-
dure without affecting the values used by the calling program.

We’ll use such local variables to simplify our programming tasks. As long as
we're careful to restore the original values, we won’t have to worry about our
procedures changing any of the registers used by the calling program. This will
become clearer in the next example, which is a procedure to read a hex number.
Unlike the program in Chapter 6, our program now will allow only valid char-
acters such as A, but not K.

Reading Hex Numbers with More Class

We want to create a procedure that keeps reading characters until it receives
one it can convert to a hex number between 0 and Fh. We don’t want to display
any invalid characters, so we'll sift our input by using a new INT 21h function,
number 8, that reads a character but doesn’t pass it on to the screen. That way
we can echo (display) characters only if they are valid.

Place 8h into the AH register and run through this instruction, typing an A
just after you type G 102:

39485:0100 CD2) INT 2l

The ASCII code for A (41h) is now in the AL register, but the A didn’t appear on
the screen.

Using this function, our program can read characters without echoing them
until it reads a valid hex digit (0 through 9 or A through F), which it will then
echo. Here is the procedure to do this and to convert the hex character to a hex
number:

3945:0200 52 PUSH DX

3945:0201) B408 MoV AH,08
3945:0203 C€b2l INT 2l
S8i85a0 205 3€30 cHp AL, 30
39485:0207 72FA JB 0203
39485:0209 3C46 CHMP AL, 46
3945:020B ?7Fb JA 0203
3985:020D 3€39 CHP AL, 39
3945:020F ?70A JA 021B
39485:021) B40O¢2 Mov AH,0e
3945:0213 84ace MoV DL,AL
3985:0215 CD2l INT 2l

42
V.ot

i

80 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

3985:0217 2C30 SUB AL,30
3985:0219 SA POP DX
3985:021A C3 RET

3985:021LB 3C41 (i) AL,41
3985:021D 72E4 JB 0203
3985:021F B40Oe Mov AH,0¢
3985:0221 B8acCe Mov DL,AL
3985:0223 CDh2l INT 2l
3985:02¢2S 2C37 SUB AL,37
3985:0227 SA POP DX
3985:02¢28 C3 RET

The procedure reads a character in AL (with the INT 21h at 203h) and checks
to see if it’s valid with the CMPs and conditional jumps. If the character just read
is not a valid character, the conditional jump instructions send the 8088 back to
location 203, where the INT 21h reads another character. (JA is Jump if Above,
and JB is Jump if Below; both treat the two numbers as unsigned numbers,
whereas the JL instruction we used earlier treated both as signed numbers.)

By line 211h, we know that we have a valid digit between 0 and 9, so we sub-
tract the code for the character 0 and return the result in the AL register,
remembering to pop the DX register, which we saved at the beginning of the
procedure. The process for hex digits A through F is much the same. Note that
we have two RET instructions in this procedure; we could have had more, or we
could have had just one.

Here is a very simple program to test the procedure:

3985:0100 EAFDOO CALL 0200
3985:0103 CDeO INT c0

As you’ve done before, use either the G command, with a breakpoint, or use the
P command. You want to execute the CALL 200h instruction without execut-
ing the INT 20h instruction, so you can see the registers just before the pro-
gram terminates and the registers are restored.

You'll see the cursor at the left side of the screen, waiting patiently for a char-
acter. Type %, which isn’t a valid character. Nothing should happen. Now, type
any of the uppercase hex characters. You should see the character’s hex value
in AL and the character itself echoed on the screen. Test this procedure with
the boundary conditions: ’\’ (the character before zero), 0, 9, ’’ (the character
just after 9), and so on.

Now that we have this procedure, the program to read a two-digit hex
number, with error handling, is fairly straightforward:

3985:0100 EAFDOO CALL 0200
3985:0103 8AacCe Mov DL,AL
3985:010S B10O4 Mov CL,04
3985:0107 DCES SHL DL,CL
3985:0109 EABF400 CALL 0200
3985:010C 00ce ADD DL,AL
3985:01L0E B40O¢2 Mov AH,0¢
3985:0110 CDCL INT 2l
3985:011¢ CD2O INT c0

. — —

B

Procedures—Cousins to Subroutines 87

You can run this program from DOS; since it reads in a two-digit hex number
and then displays the ASCII character that corresponds to the number you
typed in.

Aside from the procedure, our main program is much simpler than the ver-
sion we wrote in the last chapter, and we haven’t duplicated the instructions to
read characters. We did add error handling, though, and even if it did compli-
cate our procedure, it also ensures that the program now accepts only valid
input.

Here we can also see the reason for saving the DX register in the procedure.
The main program stores the hex number in DL, so we don’t want our proce-
dure at 200h to change DL. On the other hand, the procedure at 200h must use
DL itself to echo characters. So, by using the instruction PUSH DX at the
beginning of the procedure, and POP DX at the end, we save ourselves from
problems.

From now on, to avoid complicated interactions between procedures, we’ll be
very strict about saving any registers used by a procedure.

Summary

Our programming is becoming more sophisticated. We’ve learned about pro-
cedures, which allow us to reuse the same set of instructions without rewriting
them each time. We've also discovered the stack and seen that a CALL stores a
return address on the top of the stack, while a RET instruction returns to the
address on the top of the stack.

We saw how to use the stack for more than just saving return addresses. We
used the stack to store the values of registers (with a PUSH instruction) so we
could use them in a procedure. By restoring the registers (with a POP instruc-
tion) at the end of each procedure, we avoided unwanted interactions between
procedures. By always saving and restoring registers in procedures that we
write, we can CALL other procedures without worrying about which registers
are used within the other procedure.

And finally, armed with this knowledge, we moved on to build a better pro-
gram to read hex numbers—this time, with error checking. The program we
built here is similar to one we’ll use in later chapters, when we begin to develop
the Dskpatch program.

Now we’re ready to move on to Part II, where we’ll learn how to use the
assembler. In the next chapter, we’ll see how to use the assembler to convert a
program to machine language. We’ll also see that there won’t be any reason to
leave room between procedures, as we did in this chapter, when we put our pro-
cedure way up at location 200h.

&

86 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

At long last we’re ready to meet the assembler, a DOS program that will
make our programming much simpler. From now on, we’ll write mnemonic,
human-readable instructions directly, using the assembler to turn our pro-
grams into machine code.

Of necessity, this chapter and the next will be somewhat heavy with details
on the assembler, but learning these details will be well worth the effort. Once
we know how to use the assembler, we’ll get back on course in learning how to
write assembly language programs. Meanwhile, let’s jump right in.

A Program Without Debug

Up to this point, we've just typed DEBUG, and then typed in our program
instructions. Now we’re about to leave Debug behind and to write programs
without it, and we’ll have to use either an editor or a word processor to create
text, or human-readable, files containing our assembly language instructions.

We begin by creating a source file—the name for the text version of an assem-
bly language program. We’ll create a source file now, for the program we built
and named Writestr back in Chapter 3. To refresh your memory, here is our
Debug version:

396F:0100 B402 MOV AH,02
396F:0102 B2kl MOV DL,2A
396F:0104 €Dl INT 2l
396F:0106 CDeO INT 20

Use your editor to enter the following lines of code into a file named
WRITESTR.ASM (the extension .ASM means this is an assembler source file).
Here, as with Debug, lowercase works just as well as uppercase, but we’ll con-
tinue to use uppercase letters to avoid confusion between the number 1 (one)
and the lowercase letter 1 (el):

.MODEL SMALL

.CODE
MOV AH,ch
MOV DL,2Ah
INT 2lh
INT 20h

END

This is the same program we created in Chapter 3, but it contains a few nec-
essary changes and additions. Ignoring for now the three new lines in our

Welcome to the Assembler 87

source file, notice that there is an h after each hex number. This A tells the
assembler that the numbers are in hexadecimal. Unlike Debug, which assumes
all numbers are in hexadecimal, the assembler assumes all numbers are deci-
mal. We tell it otherwise by placing an 4 after any hexadecimal number.

Note: Here's a warning before we move on: The assembler
can become confused by numbers, such as ACh, that look like a
name or an instruction. To avoid this, always type a zero before

a hex number that begins with a letter. For example, type
0ACh—not ACh.

This is a label

I_‘_I
MO DL,ACH

This is a number
I

MOU DL.OAChH

The 0 tells MASM
that this is a number

Figure 8-1: You must put a 0 before hexadecimal numbers that start with a
letter, otherwise the assembler will treat the number as a name.

- oy AEmeee e
RESFARGH Ceivien

-

88 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Watch what happens when we assemble a program with ACh, rather than
OACh. Here’s the program:

.MODEL SMALL

.CODE
MOV DL,ARCh
INT 20h
END
Here’s the output:

E>MASM TEST;
Microsoft (R) Macro Assembler Version 5.10
Copyright (C) Microsoft Corp 1981, 1S988. BAll rights reserved.

test.BRSM(4) : error R2009: Symbol not defined: RACH
49842 + 224473 Bytes symbol space free

0 Warning Errors
1 Severe Errors

Definitely not encouraging. But changing the ACh to 0ACh satisfies the assem-
bler.

Also note the spacing of the commands in our assembler program. We used
tabs to align everything neatly and make the source text more readable. Com-
pare the program you entered with this version:

.MODEL SMALL
.CODE

MOV RH,2h
MOV DL,2Rh
INT 21h

INT 20h

END

A bit of a mess; the assembler doesn’t care but we do.

Now let’s return to the three new lines in our source file. The three new lines
are all directives (also sometimes called pseudo-ops, or pseudo-operations).
They’re called directives because, rather than generate instructions, they just
supply information and directions to the assembler. The END pseudo-op marks
the end of the source file, so the assembler knows it’s done when it sees an END.
Later on, we'll see that END is useful in other ways, too. But right now, let’s put

aside any further discussion of it or the other two directives and see how to use
the assembler.

e i —— ey I

Welcome to the Assembler 89

Creating Source Files

Even though you've entered the lines of WRITESTR.ASM, there’s one more
consideration before we move on to actually assemble our program. The assem-
bler can use source files that contain standard ASCII characters only. If you are
using a word processor, bear in mind that not all word processors write disk
files using only the standard ASCII characters. WordStar is one such culprit;
Microsoft Word is another. For both word processors, use the non-document, or
unformatted, mode when you save your files.

Before you try assembling WRITESTR.ASM, make sure it’s still ASCII.
From DOS, type:

A>TYPE WRITESTR.ASHM

You should see the same text you entered. If you see strange characters in your
program (many word processors put additional formatting information into the
file, which the assembler treats as errors) you may have to use a different editor
or word processor to enter programs. You’'ll also need a blank line after the
END statement in your file.

Now, let’s begin to assemble Writestr. (If you're using Borland’s Turbo
Assembler, type TASM whenever you see MASM,; if you're using SLR Systems’
OPTASM, type OPTASM in place of MASM.) Be sure to type the semicolon:

A>MASM WRITESTR;
Microsoft (R) Macro Assembler Version 5.10
Copyright (C) Microsoft Corp 1981, 1988. All rights reserved.

49822 + 219323 Bytes symbol space free

0 Warning Errors
D Severe Errors

A>

We're not done yet. At this point, the assembler has produced a file called
WRITESTR.OBJ, which you’ll now find on your disk. This is an intermediate
file, called an object file. It contains our machine-language program, along with
a lot of bookkeeping information used by another DOS program called the
Linker.

Linking

Right now, we want the linker to take our .OBJ file and create an .EXE ver-
sion of it. Copy LINK.EXE from your DOS disk to the disk containing your

;‘1.4 tER

£

RO

90 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

source file and the assembler (or onto your hard disk). Then, link
WRITESTR.OBJ by typing:

A>LINK WRITESTR;

Microsoft (R) Overlay Linker Version 3.b4
Copyright (C) Microsoft Corp 1883-1988. Rll rights reserved.

LINK: warning L402l: no stack segment

A>

Even though the linker warns us that there is no stack segment, we don’t need
one right now. After we learn how to add more of the trappings, we’ll see why
we might want a stack segment.

Now we have our .EXE file, but this still isn’t the last step. We have one more
step—to create a .COM version, which is just what we created with Debug.
Again, you’ll see later why we need all these steps. For now, let’s create a .COM
version of Writestr.

For our final step, we need the program EXE2BIN.EXE from the DOS sup-
plemental disk. Exe2bin, as its name implies, converts an .EXE file to a .COM,
or binary (bin) file. There’s a difference between .EXE and .COM files, but we
won’t deal with the differences until Chapter 11; for now let’s just create the
.COM file. Type:

A>EXEZ2BIN WRITESTR WRITESTR.COHM

B>

The response didn’t tell us very much. To see whether Exe2bin worked, let’s list
all the Writestr files we’ve created so far:

A>DIR WRITESTR.*

Volume in drive A has no label
Directory of A:\

WRITESTR ASHM ks 4-27-89 4:49p
WRITESTR OBJ 105 4-27-89 4:52p
WRITESTR EXE 520 4-27-89 4:52p
WRITESTR COM 8 4-27-89 4:52p

4 File(s) 585728 bytes free
B>

This is quite a number of files, including WRITESTR.COM. Type writestr to
run the .COM version and verify that your program functions properly (recall
that it should print an asterisk on your screen). The exact sizes DOS reports for
the first three files may vary a bit.

The results may seem a little anticlimactic, since we are seemingly back
where we were in Chapter 3, but we aren’t: We've gained a great deal. It will all

Welcome to the Assembler 97

become much clearer when we deal with calls again. Notice that we never once
had to worry about where our program was put in memory, as we did about IP
in Debug. The addresses were all taken care of for us.

Very soon you’ll come to appreciate this feature of the assembler: It will
make programming much easier. For example, recall that in the last chapter
we wasted space by having our main program at 100h and the procedure we
called at 200h. We'll see that using the assembler allows us to place the proce-
dure immediately after the main program without any gap. But first, let’s see
how our program looks to Debug.

Back in Debug

Let’s read our .COM file into Debug and unassemble it to see how Debug
reconstructs our program from the machine code of WRITESTR.COM:

A>DEBUG WRITESTR.COM
=0

397F:0100 B4OC MoV AH,DcC
397F:0102 BeEcA Mov DL,cA
39?F:0104 CDCl INT cl
397F:0106 CDeO INT c0

Exactly what we had in Chapter 3. This is all Debug sees in WRITESTR.COM.
The END and the two lines at the start of our source file didn’t make it through
at all. What happened to them?

These instructions don’t appear in the final machine-language version of the
program because they are directives, and directives are for bookkeeping only.
The assembler takes care of much bookkeeping at the cost of some extra lines.
We'll make good use of directives to simplify our job and we’ll see how they
affect our program when we take a closer look at segments in Chapter 11.

Comments

Since we are no longer operating directly with Debug, we're free to add more
to our program that the assembler sees but won’t pass on to the 8088. Perhaps
the most important such additions we can make are comments, which are
invaluable in making a program clear. In assembly language programs, we
place comments after a semicolon, which works like a single quotation mark ()

Gif Cenieid

- o o~

NYSEAR

92 Peter Norton's Assembly Language Book for the IBM PC, Revised & Expanded

in BASIC. The assembler ignores anything on the line after a semicolon, so we
can add anything we want. If we add comments to our brief program:

.MODEL SMALL

.CODE
MOV AH,2h ;Select DOS function 2, character output
MOV DL,2Ah ;Load the ASCII code for '*' to be printed
INT 2ih ;Print it with INT 21h
INT 20h ;And exit to DOS
END

we see quite an improvement—we can understand this program without hav-
ing to think back and remember what each line means.

Labels

To round off this chapter, let’s look at another bookkeeping feature of the
assembler that makes programming smoother: labels.

Until now, when we wanted to jump from one part of a program to another
with one of the jump commands, we had to know the specific address we were
jumping to. In everyday programming, inserting new instructions forces us to
change the addresses in jump instructions. The assembler takes care of this
problem with labels—names we give to the addresses of any instructions or
memory locations. A label takes the place of an address. As soon as the assem-
bler sees a label, it replaces the label with the correct address before sending it
on to the 8088.

Labels can be up to 31 characters long and can contain letters, numbers, and
any of the following symbols: a question mark (?), a period (.), an at symbol (@),

010C JLE T

O10E SuB DL
DIGITI: 0111 M™MOD CL

0113 SHL DL,1

Figure 8-2. The assembler substitutes addresses for the labels that we write.

Welcome to the Assembler 93

an underline (_), or a dollar sign ($). They can’t start with a digit (0 through 9),
and a period can be used only as the first character.

As a practical example, let’s take a look at our program from Chapter 6 that
reads a two-digit hex number. It contains two jumps, JLE 0111 and JLE 011F.
Here’s the old version:

3985:0100
3985:0102
3985:0104
3985:0106
3985:0109
3985:010C
398S:010E
3985:0111
3985:0113
3985:0115
3985:0117
3985:0119
398S:011B
3985:011D
3985:011F
3985:0121

B40D1
CD2l
88Ce
80EAR3D
80FRDY
?ED3
80ERD?
B10D4
D2Ee
CD2l
2C30
3cos
7EDZ2
2co?
poce
CDeD

Mov
INT
Mov
SUB
CHMP
JLE
SUB
Mov
SHL
INT
SUB
CMP
JLE
SUB
ADD
INT

RH,D1

DL,AL
DL, 3D
DL,D9
0111
DL,O7
CL,D4
DL,CL

AL,30
AL,D9
011F
AL,D7
DL,AL
20

It’s certainly not obvious what this program does, and if it’s not fresh in your
mind, you may have to work a little to understand the program again. Let’s add
labels and comments to clarify its function:

.MODEL SMALL

.CODE

MoV
INT
MOV
SUB
cup
JLE
SUB

DIGITL:

Mov
SHL
INT
SUB
CMP
JLE
SUB

DIGITZ:

RDD
INT

END

AH,1h
2lh

DL,AL
DL,30h
DL,9h
DIGIT1
DL, ?h

CL,4h
DL,CL
2lh

AL, 30h
AL,Sh
DIGITZ
AL,?h

DL,AL
20h

;Select DOS function 1, character input

;Read a character, and return ASCII code in AL
;Move ASCII code into DL

;Subtract 30h to convert digit to D - 9

;Was it a digit between D and 9?

;Yes, we have the first digit (four bits)

;No, subtract ?h to convert letter R - F

;Prepare to multiply by 16

;Multiply by shifting, becomes upper four bits
;Get next character

;Repeat conversion

;Is it a digit 0D - 9?2

;Yes, so we have the second digit

:No, subtract ?h

;ADD second digit
;And exit

The labels here, DIGIT1 and DIGIT2, are of a type known as NEAR labels,
because a colon (:) appears after the labels when they’re defined. The term
NEAR has to do with segments, which we’ll talk about in Chapter 11, along
with the MODEL, and .CODE directives. Here, if you assembled the preceding
program and then unassembled it with Debug, you'd see DIGIT1 replaced by
0111h and DIGIT2 replaced by 011Fh.

'] L.r:l’lhl-

94 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Summary

This has been quite a chapter. It’s as if we’ve stepped into a new world, and,
in a sense, we have. The assembler’s much simpler to work with than Debug
was, so we can now begin to write real programs, because the assembler does
much of the bookkeeping for us.

What have we learned here? We began by learning how to create a source file
and then go through the steps of assembling, linking, and converting it from an
.OBJ file to an .EXE, and then a .COM file, using a simple program from Chap-
ter 3. The assembly language program we created contained a few directives,
which we’ve never seen before. But they’ll become familiar once we've become
more comfortable using the assembler. In fact, we’ll place . MODEL, .CODE,
and END directives in all our programs from now on, since we need them, even
though we won’t really see the reason why until Chapter 11.

Next, we learned about comments. You may have wondered how we could
survive without comments. We won’t from now on. Comments add so much to
the readability of programs that we won’t skimp on them.

Finally came labels, to make our programs even more readable. We'll use all
these ideas and methods throughout the rest of this book. Let’s move on to the
next chapter and see how the assembler makes procedures easier to use.

Lik

. RESEANUH ohivien

R

96 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Now that we’ve met the assembler, let’s become a little more comfortable
with writing assembly language programs. In this chapter, we’ll return to the
subject of procedures. You’ll see how we can write procedures much more easily
with the help of our hard-working assembler. Then, we’ll move on to build some
useful procedures, which we’ll use when we begin to develop our Dskpatch pro-
gram a few chapters from now.

We’ll begin with two procedures to print a byte in hexadecimal. Along the
way, we’ll meet several directives. But, like MODEL, .CODE, and END in the
last chapter, we’ll leave them pretty much undefined until Chapter 11, where
we’ll learn more about segments.

The Assembler’s Procedures

When we first learned about procedures, we left a large gap between the
main program and its procedures, so that we’d have room for changes without
having to worry about our main program overlapping a procedure. But now we
have the assembler, and since it does all the work of assigning addresses to
instructions, we no longer need to leave a gap between procedures. With the
assembler, each time we make a change, we just assemble the program again.

In Chapter 7, we built a small program with one CALL. The program did
nothing more than print the letters A through J, and it looked like this:

3985:0100 B241l Mov DL,41
39485:0102 BADADD Mov CX,D0DA
39485:0105 EAFA00 CALL D200
3945:0108 FEC2 INC DL
3985:010R E2FAQ LOOP D10S
3985:010C CD2OD INT 20
3985:0200 B402 MoV AR, D2
3985:0202 CD2l INT 2l
3985:0204 C3 RET

Let’s turn this into a program for the assembler. It will be hard to read with-
out labels and comments, so we’ll add those embellishments to make our pro-
gram far more readable:

Listing 9-1. The Program PRINTAJ.ASM

.MODEL SMALL
.CODE

PRINT_A_J PROC
MOV DL, t*'A? ;Start with the character A
MOV CX,1lD yPrint 10 characters, starting with A

N — —

Procedures and the Assembler 97

PRINT_LOOP:
CALL WRITE_CHAR ;Print character
dINCp BDIL ;Move to the next char in the alphabet
LOOP PRINT_LOOP ;Continue for 10 characters
INT <20h ;Return to DOS
PRINT_A_J ENDP
WRITE_CHAR PROC
MOV AH,2 ;Set function code for character output
INT 21lh ;Print the character already in DL
RET ;Return from this procedure
WRITE_CHAR ENDP

END PRINT_A_J

There are two new directives here: PROC, and ENDP. PROC and ENDP are
directives for defining procedures. As you can see, both the main program and
the procedure at 200h are surrounded by matching pairs of the directives
PROC and ENDP.

PROC defines the beginning of a procedure; ENDP defines the end. The label
in front of each is the name we give to the procedure they define. Thus, in the
main procedure, PRINT_A_J, we can replace our CALL 200 instruction with
the more readable CALL WRITE_CHAR. Just insert the name of the procedure
and the assembler assigns the addresses.

Since we have two procedures, we need to tell the assembler which to use as
the main procedure—where the 8088 should start executing our program. The
END directive takes care of this detail. By writing END PRINT_A_J, we've
told the assembler that PRINT_A_J is the main procedure. Later in our work,
we’ll see that the main procedure can be anywhere. Right now, however, we are
dealing with .COM files, and we’ll need to place the main procedure first in our
source file.

You're ready to go, so if you haven’t done so yet, enter the program into a file
called PRINTAJ.ASM and generate the .COM version, using the same steps
you did in the last chapter (remember to substitute TASM or OPTASM for
MASM if you're using either the Turbo Assembler or OPTASM):

MASH PRINTAJ;

LINK PRINTAJ;
EXE2BIN PRINTAJ PRINTAJ.COHM

Then give Printaj a try. (Make sure you've run Exe2bin before you run Printaj.
Otherwise, you'll end up running the .EXE version of Printaj, which will crash
when it encounters the INT 20h instruction, for reasons we’ll see in Chapter 11.)

Note: If you encounter any error messages that you don’t rec-
ognize, check that you've typed in the program correctly. If that
fails, you might want to check Appendix C, which lists some
€Ommon errors.

teivien

yEANLGH

t

o BN

R

98 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

When you're satisfied, use Debug to unassemble the program and see how
the assembler fits the two procedures together. Recall that we can read a partic-
ular file into Debug by typing its name as part of the command line. For exam-
ple, we can type DEBUG PRINTAJ.COM, and when we do, we see:

-5

3985:0100 B24l MOV DL,41
3985:0102 BY90AODOD Mov CX,D0DA
3945:0105 EAOGLOD CALL 010E
3985:0108 FECeE INC DL
3985:010A ECEF9 Loop 010S
3985:010C CbeD INT =)
3985:010E B40¢e Mov AH, D¢
39485:0110 CD2l INT cl
3985:0112 C3 RET

Our program is nice and snug, with no gap between the two procedures.

The Hex-Output Procedures

We've seen hex-output procedures twice before: once in Chapter 5, where we
learned how to print a number in hex, and again in Chapter 7, where we saw
how to simplify the program, using a procedure to print one hex digit. Now
we're going to add yet another procedure to print one character. Why? Well,
let’s just call it foresight.

By using a central procedure to write a character to the screen, we can
change the way this procedure writes characters without affecting the rest of
the program. We will change it several times.

Enter the following program into the file VIDEO_I0O.ASM:

Listing 9-2. The New File VIDEO_IO.ASM

.MODEL SMALL

.CODE

TEST_WRITE_HEX PROC
Mov DL,3Fh ;Test with 3Fh
CALL WRITE_HEX
INT 20h ;Return to DOS

TEST_WRITE_HEX ENDP

PUBLIC WRITE_HEX

This procedure converts the byte in the DL register to hex and writes
the two hex digits at the current cursor position.

On Entry: DL Byte to be converted to hex.
Uses: WRITE_HEX_DIGIT
P T T T T T T T T T T T T e e e e e e e e e e e e R o ’
WRITE_HEX PROC ;Entry point
PUSH CX ;Save registers used in this procedure
PUSH DX

Figure 9-1. MASM assembles separate procedures without a gap.

MOV
MOV
SHR
CALL
MOV
AND
CALL
POP
POP
RET
WRITE_HEX ENDP

PUBLIC

Procedures and the Assembler

0100 MOU DL,41
0102 M™MOU CH,0R
0105 CALL 010C
0108 LOOP 0105
010R INT 20

‘
010C MOl AH,02
010E INT 21
0110 INC DL
0112 RET

DH,DL
CX,4

DL,CL
WRITE_HEX_DIGIT
DL, DH

DL,OFh
WRITE_HEX_DIGIT
DX

o™

WRITE_HEX_DIGIT

This procedure converts the lower 4 bits of DL to a hex digit and
writes it to the screen.

;Make a copy of byte

;Get the uppe

;Display firs

r nibble in DL

t hex digit

;Get lower nibble into DL
;Remove the upper nibble

;Display seco

nd hex digit

Lower 4 bits contain number to be printed

FROD' EntLy : DL
1 in hex.
; Uses: WRITE_CHAR
WRITE_HEX_DIGIT PROC
PUSH DX
CMP DL, 10
JAE HEX_LETTER
ADD i WD)
JMP Short WRITE_DIGIT

HEX_LETTER:
ADD

DL,"a"-10

;Save registe
;Is this nibb
;No, convert
;Yes, convert
;Now write th

;Convert to h

rs used

le <107

to a letter

to a digit

is character

ex letter

99

KU OEATLD URivERR

7100 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Listing 9-2. continued

WRITE_DIGIT:

CALL WRITE_CHAR ;Display the letter on the screen
POP DX ;Restore old value of DX
RET
WRITE_HEX_DIGIT ENDP
PUBLIC WRITE_CHAR

; This procedure prints a character on the screen using the DOS
; function call.

; On Entry: DL Bytes to ‘print§on IseEeen .
WRITE_CHAR PROC
PUSH RX
MOV AH, 2 ;Call for character output
KR 2lh ;Output character in DL register
POP RX ;Restore old value in BAX
RET ;And return
WRITE_CHAR ENDP
END TEST_WRITE_HEX

The DOS function to print characters treats some characters specially. For
example, using the DOS function to output 07 results in a beep, without print-
ing the character for 07, which is a small diamond. We'll see a new version of
WRITE_CHAR that will print a diamond in Part III, where we’ll learn about
the ROM BIOS routines inside your IBM PC. For now, though, we’ll just use the
DOS function to print characters.

The new directive PUBLIC is here for future use: We’ll use it in Chapter 13,
when we learn about modular design. PUBLIC simply tells the assembler to
generate some more information for the linker. The linker allows us to bring
separate pieces of our program, assembled from different source files, together
into one program. And PUBLIC informs the assembler that the procedure
named after the PUBLIC directive should be made public or available to proce-
dures in other files.

Right now, Video_io contains the three procedures to write a byte as a hex
number, and a short main program to test these procedures. We'll be adding
many procedures to the file as we develop Dskpatch, and by the end of this
book, VIDEO_IO.ASM will be filled with many general-purpose procedures.

The procedure TEST_WRITE_HEX that we’ve included does just what it
says: It’s here to test WRITE_HEX, which, in turn, uses WRITE_HEX DIGIT
and WRITE_CHAR. As soon as we've verified that these three procedures are
all correct, we’ll remove TEST_WRITE_HEX from VIDEO_IO.ASM.

Create the .COM version of Video_io, and use Debug to thoroughly test
WRITE_HEX. Change the 3Fh at memory location 101h to each of the bound-
ary conditions we tried in Chapter 5, then use G to run TEST_WRITE_HEX.

We'll use many simple test programs to test new procedures we’ve written. In
this way, we can build a program piece by piece, rather than try to build and

Procedures and the Assembler 70171

debug it all at once. This incremental method is much faster and easier, since
we can confine bugs to just the new code.

The Beginnings of Modular Design

Note that ahead of each procedure in Video_io we've included a block of com-
ments briefly describing the function of each procedure. More important, these
comments tell which registers the procedure uses to pass information back and
forth, as well as what other procedures it uses. As one feature of our modular
approach, the comment block allows us to use any procedure by looking at the
description. There’s no need to relearn how the procedure does its work. This
also makes it fairly easy to rewrite one procedure without having to rewrite
any of the procedures that call it.

We've also used PUSH and POP instructions to save and restore any regis-
ters we use within each procedure. We’ll do this for every procedure we write,
except for our test procedures. This approach, too, is part of the modular style
we’ll use.

Recall that we save and restore any register used so that we never have to
worry about complex interactions between procedures trying to fight over the
small number of registers in the 8088. Each procedure is free to use as many
registers as it likes, provided that it restores them before the RET instruction.
It’s a small price to pay for the added simplicity. In addition, without saving
and restoring registers, the task of rewriting procedures would be mind-rend-
ing. You’d be sure to lose much hair in the process.

We also try to use many small procedures, instead of one large one. This, too,
makes our programming task simpler, although we’ll sometimes write longer
procedures when the design becomes particularly convoluted.

These ideas and methods will all be borne out more fully in the chapters to
come. In the next chapter, for example, we’ll add another procedure to Video_io:
a procedure to take a word in the DX register and print the number in decimal
on the screen.

A Program Skeleton

As we've seen in this and the preceding chapter, the assembler imposes a cer-
tain amount of overhead on any programs we write. In other words, we need to
write a few directives that tell the assembler the basics. For future reference,
here is the absolute minimum you’ll need for programs you write:

i Leivren

Sy = 4

102 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

.MODEL SHALL
.CODE

Some_procedure PROC

INT 20h
Some_procedure ENDP

END Some_procedure

We’ll add some new directives to this program skeleton in later chapters, but
you can use it, as shown here, as the starting point for new programs you write.
Or, even better, you can use some of the programs and procedures from this
book as your starting point.

Summary

We're really making progress now. In this chapter, we learned how to write
procedures in assembly language. From now on we’ll use procedures all the
time, and by using small procedures, we’ll make our programs more manage-
able. We saw that a procedure begins with a PROC definition and ends with an
ENDP directive. We rewrote PRINT_A_J to test our new knowledge of proce-
dures, then went on to rewrite our program to write a hex number—this time
with an extra procedure. Now that procedures are so easy to work with, there’s
little reason not to break our programs into more procedures. In fact, we’ve seen
that there are ample reasons in favor of using many small procedures.

At the end of this chapter we talked briefly about modular design, a philos-
ophy that will save us a great deal of time and effort. Our modular programs
will be easier to write, easier to read, and easier for someone else to modify than
programs created with the well-worn technique of spaghetti logic: programs
written with very long procedures and many interactions.

We're now ready to build another useful procedure. Then, in Chapter 11,
we’ll learn about segments. And from there, we’ll move on to developing larger
programs, where we’ll really start to use the techniques of modular design.

L LRI eER

SEAS

hY

104 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

W promised to write a procedure to take a word and print it in decimal nota-
tion. WRITE_DECIMAL uses some new tricks—ways to save a byte here, a few
microseconds there. Perhaps such tricks will hardly seem to be worth the effort.
But if you memorize them, you’ll find that you can use them to shorten and
speed up programs. Through our tricks, we’ll also learn about two new types of
logical operations to add to the AND instruction we covered in Chapter 5. First,
let’s review the process for converting a word to decimal digits.

Recalling the Conversion

Division is the key to converting a word to decimal digits. Recall that the DIV
instruction calculates both the integer answer and its remainder. So, calculat-
ing 12345/10 yields 1234 as the integer answer, and 5 as the remainder. In this
example, 5 1s simply the rightmost digit. And if we divide by 10 again, we'll get

i [> 12345

- Stack

NN

5

Figure 10-1. PUSHing the Digits Onto the Stack Reverses Their Order.

Printing in Decimal 705

the next digit to the left. Repeated division by 10 strips off the digits from right
to left, each time putting them in the remainder.

Of course, the digits come out in reverse order, but in assembly language pro-
gramming, we have a fix for that. Remember the stack? It’s just like a stack of
lunch trays: The first one to come off the top is the last tray that was set down. If
we substitute digits for trays and place the digits one on top of the other as they
come out of the remainder, we’ll have it. We can pull out the digits in correct
order.

The top digit is the first digit in our number, and the other digits are under-
neath it. So, if we push the remainders as we calculate them and print them as
we pop them off the stack, the digits will be in the correct order.

The following program is the complete procedure to print a number in deci-
mal notation. As noted, there are a few tricks hiding in this procedure. We’ll get
to them soon enough, but let’s try WRITE_DECIMAL to see if it works before
we worry about how it works.

Place WRITE_DECIMAL into VIDEO_IO.ASM, along with the procedures
for writing a byte in hex. Make sure you place WRITE_DECIMAL after
TEST_WRITE_HEX, which we’ll be replacing with TEST_WRITE_DECIMAL.
To save some work, WRITE_DECIMAL uses WRITE_HEX_DIGIT to convert
one nibble (four bits) into a digit.

Listing 10-1. Add to VIDEO_IO.ASM

PUBLIC WRITE_DECIMAL

; This procedure writes a 16-bit, unsigned number in decimal notation.

; On Entry: DX N : 1b-bit, unsigned number.
; Uses: WRITE_HEX_DIGIT
WRITE_DECIMAL PROC NEAR
PUSH AX ;Save registers used here
PUSH CcX
PUSH DX
PUSH SI
Mov AX,DX
MOV SI,10 ;Will divide by 10 using SI
XOR CX,CX ;Count of digits placed on stack
NON_ZERO:
XOR DX, DX ;Set upper word of N to O
DIV SI ;Calculate N/10 and (N mod 10)
PUSH DX ;Push one digit onto the stack
INC CcX ;0ne more digit added
OR AX,AX PNe =00 tyet?
JNE NON_ZERO ;Nope, continue
WRITE_DIGIT_LOOP:
POP DX ;Get the digits in reverse order
CALL WRITE_HEX_DIGIT
LOOP WRITE_DIGIT_LOOP

END_DECIMAL:
POP SI

A1 T8 A i

7106 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Listing 10-1. continued

POP DX
POP CX
POP AX

RET
WRITE_DECIMAL ENDP

Notice that we've included a new register, the SI (Source Index), register.
Later we’ll see why it’s been given that name, and we’ll meet its brother, the
DI, or Destination Index, register. Both registers have special uses, but they
can also be used as if they were general-purpose registers. Since
WRITE_DECIMAL needs four general-purpose registers, we used SI, even
though we could have used BX, simply to show that SI (and DI) can serve as
general-purpose registers if need be.

Before we try out our new procedure, we need to make two other changes to
VIDEO_IO.ASM. First, we must remove the procedure TEST_WRITE_HEX
and insert this test procedure in its place:

Listing 10-2. Replace TEST_WRITE_HEX in VIDEO_IO.ASM with This Procedure

TEST_WRITE_DECIMAL PROC

MOV DX,12345%

CALL WRITE_DECIMAL

INT 20h ;Return to DOS
TEST_WRITE_DECIMAL ENDP

This procedure tests WRITE_DECIMAL with the number 12345 (which the
assembler converts to the word 3039h).

Second, we need to change the END statement at the end of VIDEO_10.ASM
to read END TEST_WRITE_DECIMAL, because TEST_WRITE_DECIMAL is
now our main procedure.

Make these changes and give VIDEO_IO a whirl. Convert it to its .COM ver-
sion and see if it works. Ifit doesn’t, check your source file for errors (and have a
look at the common errors in Appendix D). If you're adventurous, try to find
your bug with Debug. After all, that’s what Debug is for.

Some Tricks

Hiding in WRITE_DECIMAL are two tricks of the trade garnered from the
people who wrote the ROM BIOS procedures we’ll meet in Chapter 17. The first
is an efficient instruction to set a register to zero. It’s not much more efficient
than MOV AX,0, and perhaps it’s not worth the effort, but it’s the sort of trick
you’ll find people using, so here it is. The instruction:

XOR AX,RX

Printing in Decimal 707

sets the AX register to zero. How? To understand that, we need to learn about
the logical operation called an Exclusive OR, hence the name XOR.

The exclusive OR is similar to an OR (which we’ll see next), but the result of
XORing two trues:

XOR 8] 1
D D 1
1 1 D

is true if only one bit is true, not if both are true. Thus, if we exclusive OR a
number to itself, we get zero:

1011 D101
XOR 1 D 1 1 D1 D1
DDDOD DDDD

That'’s the trick. We won’t find other uses for the XOR instruction in this book,
but we thought you’d find it interesting.

As a short aside, you’ll also find many people using another quick trick to set
a register to zero. Rather than using the XOR instruction, we could have used:

SUB AX,AX

to set the AX register to zero.

Now for the other trick. It’s just about as devious as our XOR scheme to clear
a register, and it uses a cousin to the Exclusive OR—the OR function.

We want to check the AX register to see if it’s zero. To do this, we could use
the instruction CMP AX,0. But no, we’d rather use a trick: It’s more fun and a
little more efficient, too. So, we write OR AX,AX and follow this instruction
with a JNE (Jump if Not Equal) conditional jump. (We could also have used
JNZ—Jump if Not Zero.)

The OR instruction, like any of the math instructions, sets the flags, includ-
ing the zero flag. Like AND, OR is a logical concept. But here, a result is true if
one OR the other bit is true:

OR 8] 1
D 8] 1
1 1 8]

If we take a number and OR it to itself, we get the original number back again:

1011 D1D1
OR 1011 D101
1 D11 D101

7108 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

The OR instruction is also useful for setting just one bit in a byte. For exam-
ple, we can set bit 3 in the number we just used:

1011 01001
OR 0000O 1 000
1011 12101

We’ll have more tricks to play before we’re through in this book, but these
two are the only ones entirely for fun.

The Inner Workings

To see how WRITE_DECIMAL performs its task, study the listing; we won’t
cover more details here. We do need to point out a few more things.

First, the CX register is used to count how many digits we’ve pushed onto the
stack, so that we know how many to remove. The CX register is a particularly
convenient choice, because we can build a loop with the LOOP instruction and
use the CX register to store the repeat count. Our choice makes the digit-output
loop (WRITE_DIGIT_LOOP) almost trivial, because the LOOP instruction uses
the CX register directly. We’ll use CX very often when we have to store a count.

Next, be careful to check the boundary conditions here. The boundary con-
dition at 0 isn’t a problem, as you can check. The other boundary condition
is 65535, or FFFFh, which you can check easily with Debug. Just load
VIDEO_IO.COM into Debug by typing DEBUG VIDEO_10.COM and change
the 12345 (3039h) at 101h to 65535 (FFFFh). (WRITE_DECIMAL works with
unsigned numbers. See if you can write a version to write signed numbers).

You may have noticed a sticky point here, having to do with the 8088, not our
program. Debug works mostly with bytes (at least the E command does) but we
want to change a word. We must be careful, since the 8088 stores the bytes in a
different order. Here is an unassemble for the MOV instruction:

3985:0100 BA3930 MOV DX,3039

You can tell from the BA3930 part of this display that the byte at 101h is 39h,
and the one at 102h is 30h (BA is the MOV instruction). The two bytes are the
two bytes of 3039h, but seemingly in reverse order. Confusing? Actually, the
order is logical, after a short explanation.

A word consists of two parts, the lower byte and the upper byte. The lower
byte is the least significant byte (39h in 3039h), while the upper byte is the
other part (30h). It makes sense, then, to place the lower byte at the lower
address in memory. (Many other computer architectures, such as the Motorola

I e e

Printing in Decimal 709

MOU DH.3039

0102: | 30
o101: | 39

3039h

0100: | BA | «— MoOU instruction

Figure 10-2. The 8088 stores numbers with the lower byte first in memory.

68000 in the Apple Macintosh, actually reverse these two bytes, and this can be
a bit confusing if you’re writing programs on several different types of com-
puters.)

Try different numbers for the word starting at 101h, and you’ll see how this
storage works. Use TEST_WRITE_DECIMAL to see if you got it right, or unas-
semble the first instruction.

Summary

We added a few new instructions to our repertoire here, as well as a few tricks
for fun. We also learned about two other registers, SI and DI, that we can use as
general-purpose registers. They also have other uses, which we’ll see in later
chapters.

We learned about the XOR and OR logical instructions, which allow us to
work between individual bits in two bytes or words. And in our
WRITE_DECIMAL procedure, we used the XOR AX,AX instruction as a tricky
way to set the AX register to zero. We used OR AX,AX as a devious way to
write the equivalent of CMP AX,0 to test the AX register and see if it is zero.

Finally, we learned about how the 8088 stores a word in memory by checking
the boundary conditions of our new procedure, WRITE_DECIMAL.

Here, at the end of this chapter, we now have another general-purpose proce-
dure, WRITE_DECIMAL, that we’ll be able to use in the future for our own pro-
grams.

Take a breather now. We have a few different chapters scheduled next. Chap-
ter 11 covers segments in detail. Segments are perhaps the most complicated

110 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

part of the 8088 microprocessor, so the chapter may prove to be rather heavy
going. Even so, we need to cover the topic for the chapters that follow.

After that, we’ll make a slight course correction and get back on track by
learning about what we want to do with our program Dskpatch. We'll do a bit of
probing on disks and learn about sectors, tracks, and other such things.

From there, we can plot a simple course for preliminary versions of
Dskpatch. En route, you’ll get a chance to see how to develop large programs.
Programmers don’t write an entire program, then debug it. They write sections
and try each section before they move on—programming is much less work that
way. We've used this approach to a limited extent by writing and testing
WRITE_HEX and WRITE_DECIMAL, for which the test programs were very
simple. The test programs from here on will be more complex but more interest-
ing too.

112 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

In the preceding chapters, we encountered several directives that deal with
segments. Now the time has come to look at segments themselves and at how
the 8088 manages to address a full megabyte (1,048,576 bytes) of memory.
From this, we’ll begin to understand why segments need their own directives in
the assembler, and in later chapters we’ll begin to use different segments (thus
far, we’ve used only one).

Let’s start at the 8088 level by learning how it constructs the 20-bit addresses
needed for a full megabyte of memory.

Sectioning the 8088’s Memory

Segments are about the only part of the 8088 we haven’t covered yet, and
they are, perhaps, the most confusing part of this microprocessor to most peo-
ple. In fact, segments are what we call a kludge in this business: computerese
for a makeshift fix to a problem. (The 80386 microprocessor has additional
addressing modes that are much simpler and don’t use segments, but unfortu-
nately we don’t yet have an operating system from IBM or Microsoft that uses
these linear addressing modes. OS/2, which runs on both 80286 and 80386
microprocessors, uses a slightly different type of segment to address more than
1 megabyte of memory.)

The problem, in this case, is being able to address more than 64K of mem-
ory—the limit with one word, since 65535 is the largest number a single word
can hold. Intel, designers of the 8088, used segments and segment registers to
“fix” this problem and in the process made the 8088 more confusing.

So far, we haven’t concerned ourselves with this problem. We’ve been using
the IP register to hold the address of the next instruction for the 8088 to execute
ever since we met Debug in Chapter 2. Back then, you may recall we said the
address is actually formed from both the CS register and the IP register. But we
never really said how. Let’s find out.

Although the complete address is formed from two registers, the 8088 doesn’t
form a two-word number for the address. If you were to take CS:IP as a 32-bit
number (two 16-bit numbers side by side), the 8088 would be able to address
about four billion bytes—far more than the one million bytes it can actually
address. The 8088’s method is slightly more complicated: The CS register pro-
vides the starting address for the code segment, where a segment is 64K of
memory. Here’s how it works.

As you can see in Figure 11-1, the 8088 divides memory into many overlap-
ping segments, with a new segment starting every 16 bytes. The first segment

Segments 71173

0000:0000

“H N 0

SEGMENT
0

——

65535

0001:0000

16

SEGMENT
1

—/ 000O:FFFF

\/
65551

O0D1:FFFF

Figure 11-1. Overlapping segments start every 16 bytes, and are 65536 bytes
long.

(segment 0) starts at memory location 0; the second (segment 1) starts at 10h
(16); the third starts at 20h (32), and so on.

The actual address is just CS * 16 + IP. For example, if the CS register con-
tains 3FAS8 and IP contains D017, the absolute address is:

CS *16 : 0011 1111 L0110 L0000 ooooo
+ 1IP 5 1101 0Oo0ooao 0001 01 11
Dr00D L1200 L0110 L0001 0111

We multiplied by 16 just by shifting CS left four bits and injecting zeros at the
right.

114 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

@& [ofo i ['['[i[2 1]+ o 1o 1 o]o]o] < segment (CS)

+ [1]1]o]1]o]ojofoloofo|1{o1]1]1] < offset P

o10011001010100101 11
Figure 11-2. The absolute address of CS:IP is CS * 16 + IP.

Now, this may seem like a strange way to address more than 64K of memory,
and it is—but it works. Soon, we’ll begin to see how well it really works.

The 8088 actually has four segment registers: CS (Code Segment), DS (Data
Segment), SS (Stack Segment), and ES (Extra Segment). The CS register we've
been looking at is used by the 8088 for the segment where the next instruction
is stored. In much the same way, DS is the segment where the 8088 looks for
data, and SS is where the 8088 places the stack.

Before we go on, let’s look at a short program, quite different from any we’ve

seen before, that uses two different segments. Enter this program into the file
TEST_SEG.ASM:

Listing 11-1. The Program TEST_SEG.ASM

DOSSEG

.MODEL SMALL

.STACK ;Allocate a 1K stack

.CODE

TEST_SEGMENT PROC
MOV AH,4Ch ;Ask for the exit-to-dos function
INT 2lh ;Return to DOS

TEST_SEGMENRT ENDP

END TEST_SEGMENT

Then assemble and link Test_seg, but don’t generate a .COM file for it. The
result will be TEST_SEG.EXE, which is slightly different from a .COM file.

Note: We have to use a method other than INT 20h to exit
from .EXE files. For .COM files, INT 20h works perfectly well,
but it doesn’t work at all for .EXE files because the organiza-
tion of segments is very different, as we’ll see in this chapter;
more on this difference later. From now on we’ll use INT 21h,
function 4Ch to exit our programs.

Segments 1715

When we use Debug on a .COM file, Debug sets all the segment registers to
the same number, with the program starting at an offset of 100h from the start
of this segment. The first 256 bytes (100h) are used to store various pieces of
information which we really aren’t that interested in, but we’ll take a peek at
part of this area in a little bit.

Now, try loading TEST_SEG.EXE into Debug, to see what happens with seg-
ments in an .EXE file:

A>DEBUG TEST_SEG.EXE

-R

AX=0000 BX=0000 CX=0004 DX=0000 sP=0400 BP=0000 SI=0000 DI=0000
DS=3985 ES=3945 SS5=3996 C€S=3995 IP=0000 NV UP DI PL NZ NA PO NC
3995:0000 B44C Mov AH,4C

The values of the SS and CS registers are different from those for DS and ES.

3985:0000
PSP

3995:0000
CODE SEGMENT

3996:0000
STACK SEGMENT

Figure 11-3. Memory Layout for TEST_SEG.EXE.

116 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

The Stack

In our program, we defined two segments. The STACK segment is where we
place the stack (hence, the .STACK), and the code segment (which is actually
called _TEXT) is where all our instructions are stored. The .STACK directive
tells the assembler to create a 1024-byte stack. (We could create a larger or
smaller stack by putting a number after .STACK. For example, .STACK 128
would create a stack 128 bytes long.)

The address for the top of the stack is given by SS:SP. SP is the Stack Pointer,
like IP and CS for code, and is an offset within the current Stack Segment.

Actually, “top-of-stack” is a misnomer, because the stack grows from high
memory toward low memory. Thus, the fop of the stack is really at the bottom
of the stack in memory, and new entries to the stack are placed progressively
lower in memory. Here, SP is 400h, which is 1024 decimal, because we
defined a stack area 1024 bytes long. We haven’t placed anything on the
stack as yet, so top-of-stack is still at the top of the memory we set aside for
the stack: 400h.

If you think back to the .COM programs in previous chapters, we never
declared a stack segment, which raises two questions: Why didn’t we have to
declare a stack segment for .COM programs? And where was the stack in the
.COM programs? All the .COM programs we created had only one segment,
and all the segment registers (CS, DS, ES, and SS) pointed to this segment.
Since we had just one segment, we didn’t need a separate stack segment.

As to where the stack was, if you look at the register display for
WRITESTR.COM, you'll see the stack is at the very end of the segment (SP =
FFEE):

=R

AX=0000 BX=0000 CXx=0000 DX=0000 SP=FPFEE BP=0000 SI=0000 DI=000C
DS=3995 ES=3995 S5S=3995 C€S=3995 I1P=0100 NV UP EI PL NZ NA PO NC
3995:0100 B402 MOV AH,02

DOS always sets the stack pointer to the very end of the segment when it loads
a .COM file into memory. For this reason, we don’t need to declare a stack seg-
ment (with .STACK) for .COM files.

What would happen if we removed the .STACK directive from
TEST_SEG.ASM?

A>DEBUG TEST_SEG.EXE
-R

AX=0000 BX=0000 CX=0004 DX=0000 SP=0000 BP=0000 SI=0000 DI=D000
DS=3985 ES=3985 SS5=3995 C€S=3995 IP=0000 NV UP EI PL NZ NA PO NC
3D90:0000 B44C MOV AH,4C

Segments 717

The stack is now at 3995:0, which is the start of our program (CS:0). This is very
bad news. We don’t want the stack anywhere near our program’s code. Also,
since the stack pointer is at SS:0, it has no room to grow (since the stack grows
down in memory). For these reasons, we must declare a stack segment for EXE
programs.

Note: you must always declare a stack segment with
STACK in .EXE programs.

Getting back to our two-segment example, note that the Stack Segment (SS)
is segment number 3996 (this will probably be different for you), while our
Code Segment (CS) is at segment 3995—one less than SS, or just 16 bytes lower
in memory. Since we didn’t put any data into the stack segment, unassembling
starting at CS:0 will show our program (MOV AH,4C and INT 21) followed by
whatever happened to be in memory:

-g-Ccs:0o

3995:0000 B44C Mov AH,4C
3995:0002 CDb2l INT 2l
3995:0004 &S DB ES
3995:000S 2028 AND [BX+SI1,CH
3995:0007 SAQ POP CX
3995:0008 2F DAS

3995:0009 4E DEC SI

3995:000A 293F SUB [BX1,DI

The Program Segment Prefix (PSP)

In looking at the register display, you may have noticed that the ES and DS
registers contain 3985h, 10h less than the beginning of the program at segment
3995h. Multiplying by 16 to get the number of bytes, we can see that there are
100h (or 256) bytes before our program starts. This is the same scratch area
placed at the beginning of a .COM file.

Note: This “scratch area” is actually called a PSP (Program
Segment Prefix) and contains information for use by DOS. In
other words, you should not assume you can make use of this
area.

118 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Among other things, this 256-byte PSP at the start of programs contains the
characters we type after the name of our program. For example:

A>DEBUG TEST_SEG.EXE And now for some characters we'll see in the memory dump
-b DS:80

3985:0080 39 é0 41 bLE L4 é0 LE LF-?7 é0 bb LF 7?2 é0 7?3 &F 9 And now for so
3985:0090 6D 6S 20 63 68 b)Y 72 bl-63 ?4 LS 7?2 7?3 20 77 &S me characters we
398S:00A0 &7 6LC 6C é0 7?3 6S LS 20-69 LE @0 7?4 68 LS 20 kD 1l see in the m
3985:00B0 LS LD LF 7?2 79 20 k4 ?5-6D 7?0 OD 20 6D LS LD GLF emory dump. memo
3985:00C0 72 7?9 @0 L4 ?5 LD 7?0 OD-00 00D 0O 0O OO OO DO OO Yo s Y1002 0y o omononn oo

The first byte tells us we typed 39h (or 57) characters, including the first space
after TEST_SEG.EXE. We won’t use this information in this book, but it helps
show why you might want such a large PSP.

The PSP also contains information that DOS uses when we exit from a pro-
gram, with either the INT 20h or the INT 21h, function 4Ch, instructions. But
for reasons that are not at all clear, the INT 20h instruction expects the CS reg-
ister to point to the start of this PSP, which it does for a .COM program, but not
for a .EXE program. This is an historical question. And, in fact, the exit func-
tion (INT 21h, function 4Ch) was added to DOS with the introduction of version
2.00 to make it easier to exit from .EXE programs; function 4Ch doesn’t expect
the CS register to point to the start of the PSP. We’ll use INT 21h, function 4Ch
from now on to exit from our programs.

The code for .COM files must always start at an offset of 100h in the code seg-
ment to leave room for this 256-byte PSP at the start. This is unlike the .EXE
file, which had its code start at IP = 0000, because the code segment started
100h bytes after the beginning of the area in memory.

In the early days of the IBM PC, most programs were written as .COM pro-
grams because they were slightly simpler to write. But today, most programs
are written as .EXE programs. So in the rest of this book, we’ll be working
almost entirely with .EXE programs.

The DOSSEG Directive

If you take a look again at TESTSEG.EXE, you’ll notice that the stack seg-
ment is higher in memory than the code segment. Yet in our source file we
defined the stack ((STACK) before any of the code (.CODE). So why is the stack
higher in memory than the code?

The DOSSEG directive at the start of our program tells the assembler that
we want the segments of our program loaded in a very specific order, with the
code segment appearing first, and the stack last. In Chapter 14 we’ll see more

Segments 179

Memory layout for Memory layout for
.COM program .EHE program
CS, DS, ES, SS —— 256 byte PSP
T AR 256 byte PSP yte
L 3o Program
Program, data S
and stack
Data segment
SS
Stack area
SP F--mmeiiiiieees
SP

Figure 11-4. .COM vs .EXE Programs.

about DOSSEG and the order of segments when we add another segment to
hold data.

Near and Far CALLs

The rest of the information in this chapter is purely for your interest, since
we won't be making use of it in this book. You can skip the next two sections
and read them later if you find the going tough or you’re eager to return to pro-
gramming.

Let’s step back for a minute and take a closer look at the CALL instructions
we used in previous chapters. Specifically, let’s look at the short program in

120 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Chapter 7, where we first learned about the CALL instruction. Back then, we
wrote a very short program that looked like this (without the procedure at
200h):

3945:0100 B241 MOV DL, 41
3945:0102 BQOROO MOV CX,000R
3945:0105 EAFA00 CALL 0200
3945:0108 E2FB LOOP 010S
3985:010R CD20 INT c0

You can see by looking at the machine code on the left that the CALL instruc-
tion occupies only three bytes (ES8F800). The first byte (E8h) is the CALL
instruction, and the second two bytes form an offset. The 8088 calculates the
address of the routine we’re calling by adding this offset of 00F8h (remember
that the 8088 stores the lower byte of a word in memory before the high byte, so
we have to reverse the bytes) to the address of the next instruction (108h in our
program). In this case, then, we have F8h + 108h = 200h. Just what we
expected.

The fact that this instruction uses a single word for the offset means that
CALLs are limited to a single segment, which is 64K bytes long. So how is it
that we can write a program like Lotus 1-2-3 that is larger than 64K? We do it
by using FAR, rather than NEAR, calls.

NEAR CALLs, as we've seen, are limited to a single segment. In other words,
they change the IP register without affecting the CS register. And for this rea-
son they’re sometimes known as intrasegment CALLs.

But we can also have FAR CALLs that change both the CS and IP registers.
Such CALLs are often known as intersegment CALLs because they call proce-
dures in other segments.

Going along with these two versions of the CALL instruction are two ver-
sions of the RET instruction.

The NEAR CALL, as we saw in Chapter 7, pushes a single word onto the
stack for its return address. And the corresponding RET instruction pops this
word off the stack and into the IP register.

In the case of FAR CALLs and RETSs, a word is not sufficient, because we’re
dealing with another segment. In other words, we need to save a two-word
return address on the stack: one word for the instruction pointer (IP) and the
other for the code segment (CS). The FAR RET, then, pops two words off the
stack—one for the CS register and the other for IP.

Now we come to a sticky issue. How does the assembler know which of these
two CALLs and RETSs to use? When should it use the FAR CALL, and when
should it use the NEAR CALL? Answer—by putting a NEAR or FAR directive
after the PROC directive.

Segments

PROC_TWO PROC NEAR

CALL PROC_ONE oo)

RET
PROC_TWO ENDP

PROC_ONE PROC

RET
PROC_ONE ENDP

Figure 11-5. The assembler produces a FAR CALL.

By way of example, look at the following program:

PROC_ONE PROC FAR
RET

PROC_ONE ENDP

PROC_TWO PROC NEARR

CALL PROC_ONE

RET
PROC_TWO ENDP

121

FAR

When the assembler sees the CALL PROC_ONE instruction, it hunts in its
table for the definition of PROC_ONE, which, in this case, is PROC_ONE
PROC FAR. This definition tells whether the procedure is a near or far proce-

dure.

In the case of a NEAR procedure, the assembler generates a NEAR CALL.
And conversely, it generates a FAR CALL if the procedure you're calling was
defined as a FAR procedure. In other words, the assembler uses the definition of
the procedure that you'’re calling to determine the type of CALL instruction

that’s needed.

122 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

PROC_ONE PROC FAR
I\

/
O 7
RET <+—

PROC_ONE ENDP
Figure 11-6. The assembler produces a FAR RET.

For the RET instruction, on the other hand, the assembler looks at the defini-
tion of the procedure that contains the RET instruction. In our program, the
RET instruction for PROC_ONE will be a FAR RET, because PROC_ONE is
declared to be a FAR procedure. Likewise, the RET in PROC_TWO is a NEAR
RET.

What happens when we don’t put a NEAR or FAR directive after the PROC?
It turns out the assembler uses the information in the .MODEL directive to
determine whether procedures are NEAR or FAR if you don’t explicitly declare
a procedure as NEAR or FAR. We're using the . MODEL SMALL directive,
which tells the assembler that we only have one code segment, so all the proce-
dures are NEAR procedures. There are other MODEL directives (such as
MEDIUM) that tell the assembler to make procedures FAR if they're not
explicitly declared as NEAR.

More on the INT Instruction

The INT instruction is much like a CALL instruction, but with a minor dif-
ference. The name INT comes from the word interrupt. An interrupt is an exter-
nal signal that causes the 8088 to execute a procedure and then return to what
it was doing before it received the interrupt. An INT instruction doesn’t inter-
rupt the 8088, but it’s treated as if it did.

When the 8088 receives an interrupt, it needs to store more information on
the stack than just the two words for the return address. It has to store the val-
ues of the status flags—the carry flag, the zero flag, and so on. These values are
stored in one word known as the Flag Register, and the 8088 pushes this infor-
mation onto the stack before the return address. Here’s why we need to save the
status flags.

Your IBM PC regularly responds to a number of different interrupts. The
8088 inside your IBM PC receives an interrupt from the clock 18.2 times every
second, for example. Each of these interrupts causes the 8088 to stop what it’s
doing and execute a procedure to count the clock pulses.

Segments 123

Now, envision such an interrupt occurring between these two program
instructions:

CMP AH, 2
JNE NOT_¢@

Let’s assume AH = 2, so the zero flag will be set after the CMP instruction,
which means that the JNE instruction will not branch to NOT_2.

Now, imagine that the clock interrupts the 8088 between these two instruc-
tions. That means the 8088 runs off to carry out the interrupt procedure before
it checks the zero flag (with the JNE instruction). If the 8088 didn’t save and
restore the flag registers, the JNE instruction would use flags set by the inter-
rupt procedure, not from our CMP instruction. To prevent such disasters, the
8088 always saves and restores the flag register for interrupts. An interrupt
saves the flags, and an IRET (Interrupt Return) instruction restores the flags at
the end of the interrupt procedure.

The same is true for an INT instruction. Thus, after executing the instruc-
tion:

INT 2l

the 8088’s stack will look like this:

Top of stack — 01d IP (return address part I)
01ld CS (return address part II)
01d Flag Register

(The stack grows into lower memory, so the Old Flag Register is actually high-
est in memory).

When we place an INT instruction in a program, however, the interrupt is no
surprise. Why, then, do we want to save the flags? Isn’t saving the flags useful
only when we have an external interrupt that comes at an unpredictable time?
As it turns out, the answer is no. There is a very good reason for saving and
restoring the flags for INT instructions. In fact, without this feature, Debug
wouldn’t be possible.

Debug uses a special flag in the flag register called the Trap Flag. This flag
puts the 8088 into a special mode known as single-step mode, which Debug uses
to trace through programs one instruction at a time. When the trap flag is set,
the 8088 issues an INT 1 after it executes any instruction.

The INT 1 also clears the trap flag, so the 8088 won’t be in single-step mode
while we're inside Debug’s INT 1 procedure. But since INT 1 saved the flags to
the stack, issuing an IRET to return to the program we're debugging restores
the trap flag. Then, we’ll receive another INT 1 interrupt after the next instruc-
tion in our program. This is just one example of when it’s useful to save the flag

124 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

registers. But, as we’ll see next, this restore-flag feature isn’t always appropri-
ate.

Some interrupt procedures bypass the restoration of the flag registers. For
example, the INT 21h procedure in DOS sometimes changes the flag registers
by short-circuiting the normal return process. Many of the INT 21h procedures
that read or write disk information return with the carry flag set if there was
an error of some sort (such as no disk in the drive).

Interrupt Vectors

Where do these interrupt instructions get the addresses for procedures? Each
interrupt instruction has an interrupt number, such as the 21h in INT 21h. The
8088 finds addresses for interrupt procedures in a table of interrupt vectors,
which is located at the very bottom of memory. For example, the two-word
address for the INT 21h procedure is at 0000:0084. We get this address by mul-
tiplying the interrupt number by 4 (4 * 21h = 84h), since we need four bytes,
two words, for each vector, or procedure address.

These vectors are exceedingly useful for adding features to DOS, because
they enable us to intercept calls to interrupt procedures by changing the
addresses in the vector table. We’ll use exactly this trick at the end of this book
to add a disk light to your computer’s screen.

All these ideas and methods should become clearer as we see more examples.
Most of this book from here on will be filled with examples, so there will be
plenty to study. If you've been feeling a bit overwhelmed by new information,
rest easy. We'll take a short breather in the next chapter and get ourselves
reoriented and back on course.

Summary

As we said, this chapter contained a lot of information. We won’t use it all,
but we did need to learn more about segments. Chapter 13 will bring us to mod-
ular design, and we’ll use some aspects of segments to make our job easier.

We began this chapter by learning how the 8088 divides memory into seg-
ments. To understand segments in more detail, we built an .EXE program with
two different segments. We also learned that we need to use INT 21h, function
4Ch rather than INT 20h to exit from .EXE programs. This is important since
we’ll use .EXE programs from now on in this book.

— —

Segments 125

We also found that the 100h (256-byte) PSP (Program Segment Prefix) at the
start of our programs contains a copy of what we typed on the command line.
We won’t use this knowledge in this book, but it helps us see why DOS sets
aside such a large chunk of memory for the purpose.

And finally we learned more about the DOSSEG, .MODEL, .CODE, .STACK,
NEAR, and FAR directives. These directives help us work with segments. In
this book, we’ll barely use the power of these directives, because our .EXE pro-
grams will use only two segments. But for programmers who write huge pro-
grams in assembly language (using the MEDIUM memory model), these
directives are invaluable. If you're interested, you’ll find the details in your
macro assembler manual.

At the very end of this chapter we learned more about the roots of our helpful
INT instruction. Now, we’re just about ready to slow down and learn how to
write larger and more useful assembly language programs.

128 Ppeter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

W’ve been poking our noses into a lot of new and interesting places, and you
may at times have wondered whether we're wandering about somewhat aim-
lessly. We haven't been, of course. We're now familiar enough with our new
surroundings to fix our sights and plot a course for the rest of this book. And
that’s what we’ll do in this chapter: We'll take a close look at a design for our
Dskpatch program. Then we’ll spend the rest of this book developing Dskpatch,
much as you will later develop programs of your own.

We won't present the finished version of Dskpatch all at once; that isn’t the
way we wrote it. Instead, we’ll present short test programs to check each stage
of our program as we write it. To do this, we need to know where we want to go.
Hence, our course correction here.

Since Dskpatch will deal with information on disks, that’s where we’ll begin.

Diskettes, Sectors, and So Forth

The information on your floppy disks is divided into sectors, with each sector
holding 512 bytes of information. A double-sided, double-density 5Y4-inch disk
formatted with DOS 2.0 or above has a total of 720 sectors, or 720 * 512 = 368,640
bytes (see Table 12-1 for other types of disks). If we could look directly at these
sectors, we could examine the directory directly, or we could look at the files on the
disk. We can’t—not by ourselves—but Dskpatch will. Let’s use Debug to learn
more about sectors and get an idea of how we'll display a sector with Dskpatch.

Debug has a command, L (Load), to read sectors from disk into memory,
where we can look at the data. As an example, let’s look at the directory that
starts at sector 5 on a double-sided disk (use Table 12-1 to determine what
number to use for the directory if you have a different type of disk). Load sector
5 from the disk in drive A (that’s drive 0 to Debug) by using the L command.
Make sure you have a 360K (or 1.2M, 720K, or 1.44M) disk in drive A, then
enter the following:

-L 100 0 S5 1

Table 12-1. Starting Sector for the Root Directory

Disk Type Sectors/disk Directory
514", 360K 720 5
514", 1.2M 2,400 15
312", 720K 1,440 7

312", 1.44M 2,880 19

Course Corrections 129

Address to load Sector number
segment at. to read

-L 100 0 5 1

i

Disk to read Number of
from (drive A: = 0) sectors to read

As you can see in Figure 12-1, this command loads sectors into memory, start-
ing with sector 5 and continuing through one sector at an offset of 100 within
the data segment. To display sector 5, we can use a Dump command:

-D 100

396F:0100 49 42 4D 42 49 4F 20 20-43 4F 4D 27 00 00 0O OO IBMBIO CONM'....
396F:0110 00 00 OO0 OO OO OO OO0 60-66 O6 02 OO OO 12 OO OO SIiC 606l
396F:0120 49 42 4D 44 4F S3 20 20-43 4F 4D 27 00 00 0O 0O IBMDOS COM'....
396F:0130 00 DO OO OO OO OO OO0 60-66 O6 O7 OO OO 43 00O OO ¥ilgo60Gs0
396F:0140 43 4F 4D 4D 41 4E 44 20-43 4F 4D 20 00 OO0 0O 0O COMMAND CO
396F:0150 00 OO OO OO OO OO OO 60-66 06 18 OO OO 45 00O OO o 66 olB5p
396F:0160 41 S3 S3 45 4D 42 4C 45-52 20 20 08 00 00 OO OO ASSEMBLER
396F:0170 00 00 OO OO OO OO 33 9C-BO O6 OO OO OO OO OO OO 2o [0 opom. o 5 a0
-D

396F:0180 46 S? 20 20 20 20 20 20-43 4F 4D 20 00 00 OO OO FW (€0l cooo
396F:0190 00 0O OO0 OO OO OO OO OD-6F OS 2A 0O 80 AF OD OO @5 "o 04/ oo
396F:0LA0 46 S? 20 20 20 20 20 20-4F S6 4C 20 00 00 OO OO FW OVIDar S o
396F:01B0 00 OO OO0 OO OO OO OO OD-72 0OS S6 OO 81 02 0D OO 1% o\go o g
396F:01C0 46 S? 20 20 20 20 20 20-S3 S? SO 20 00O OO OO OO FW SWP
396F:01D0 00 OO0 OO OD OO OO 9B B8A-FF O6 S? 00 00 €8 DO DO W..H..
396F:0LE0 43 4F 4E 4b 49 47 20 20-44 41 S4 20 00 00 OO OO CONFIG DAT
396F:0LF0 0O OO OO0 OO OO OO 1D 82-A1L 06 69 OO OO 26 OO OO cormnoncoleolas (oo

We’ll use a format much like this for Dskpatch, but with many improve-
ments. Dskpatch will be the equivalent of a full-screen editor for disk sectors.
We'll be able to display sectors on the screen and move the cursor about the sec-
tor display, changing numbers or characters as we want. We’ll also be able to
write this altered sector back to the disk, and this is why we call it Disk Patch—

130 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Disk A Sector @

8@ @1 82 83 84 @5 @6 @7 @8 @9 @A @B AC @D AE @F @123456789ABCDEF
80 ([EEJE8 99 49 42 4D 2@ 29 33 2E 33 0@ 62 @2 @1 6@ ||) EIBM 3.3 683
10 | 62 70 6@ DB B2 FD A2 AA A9 AR B2 AA PG PA 6A PR | Bp ‘¥B 0 B8
20 | 0@ PP AA AA AA AA A A @@ @@ FA C4 SC B8 33 ED g
30 | B8 CA @7 BE D8 33 C9 88 16 FD A1 BA D2 79 BA 89 || 3 L+At3ne.2CRyEe
48 | 1E 1C @@ 8C @6 1E @@ B1 @2 8E CS 8E DS BC 8@ 7C | a- i#a pﬁfn,él :
S@ | FC 1E 36 C5 36 78 @@ BF 2A 7C B9 @B @@ F3 A4 1F || Nabibx *1i)d Giv
68 | C6 86 2E @@ BF BF 78 @@ B8 2A 7C AB 91 AB FB BA || M. #qx y*i¥%akle
78 | 16 FD 81 CD 13 A@ 18 @@ 98 F7 26 16 6@ B3 B6 BE || .2E=l13) §~2. Mf
8@ | @@ E8 73 @@ E8 79 A BB @@ @S 53 E8 AA @@ SF BE | 3s fy g 4534 _
9@ | 74 @1 B9 @B @@ 9@ F3 A6 75 57 83 C7 15 B1 @B 90 | &4 E<aula||SKE
AB | 98 F3 AB 75 4C 26 8B 47 1C 99 8B OE @B @@ @3 C1 | E<aul8iG-Oid ot
B || 48 F7 F1 3D 14 @@ 7F @2 BB 14 96 A1 11 88 B1 84 || H=:=9 ~BEWii(Je
Ca || D3 E8 E8 32 @@ FF 36 1C @@ C4 1E 7@ @1 E8 38 8@ || 562 G- —+pB30
D@ | E8 5B @@ 2B F@ 76 @D E8 1D @@ 52 F7 26 @B 8@ 83 || 3 +=vEle R~2S ¢
EA || D8 SA EB E9 5B 8A 2E 15 @@ 8A 16 FD @1 FF 2E 78 || $2dele.§ &.20 .p
Fe || 81 BE 8B @1 EB 54 90 B1 86 1C 89 11 2E 1E 08 (3 & O TEGM (.o |

Press function key, or enter character or hex byte:

Figure 12-2. Example of Dskpatch’s Display.

or rather Dskpatch, since we can’t have more than eight characters in the
name.

Dskpatch is the motivation for the procedures we write. It is by no means an
end in itself. In using Dskpatch as an example for this book, we’ll also manage
to present many procedures that you’ll find useful when you attempt to write
your own programs. That means you’ll find many general-purpose procedures
for display output, display manipulation, keyboard input, and more.

Let’s take a closer look at some improvements we’ll make to Debug’s sector
dump. The display from Debug only shows the “printable” characters—96
out of the 256 different characters that an IBM PC can display. Why is that?
Because MS-DOS, PC-DOS’s cousin, runs on many different computers.
Some of these computers display only 96 characters, so Microsoft (the author
of Debug) chose to write one version of Debug that would work on all
machines.

Dskpatch is for IBM Personal Computers and near cousins, so we can dis-
play all 256 different characters; to do so will require a bit of work. Using the
DOS function 2 for character output, we can display almost all characters,
but DOS gives special meaning to some, such as 7, which rings the bell. There

Course Corrections 131

are characters for special codes like 7, and in Part III we’ll see how to display
them.

We’ll also make heavy use of the function keys so that, for example, we can
display the next sector just by pressing the F4 key. And we’ll be able to change
any byte by moving the cursor to that byte and typing in a new number. It will
be just like using a word processor, where we can change characters very easily.
More of these details will appear as we slowly build Dskpatch. (Figure 12-2
shows what its normal display will look like—a vast improvement over the dis-
play from Debug.)

The Game Plan

In Chapter 13, we’ll learn how to break our program into many different
source files. Then, we’ll begin serious work on Dskpatch in Chapter 14. At the
end, we’ll have nine source files for Dskpatch that have to be linked together.
And even if you don’t enter and run all these programs now, they’ll be here
when you'’re ready for them or when you want to borrow some of the general-
purpose procedures. In any case, you’ll get a better idea of how to write long
programs as you read through the following chapters.

We’ve already created several useful procedures, such as WRITE_HEX to
write a byte as a two-digit hex number and WRITE_DECIMAL to write a
number in decimal. Now, we’ll write some programs to display a block of mem-
ory in much the same way Debug’s D command does. We’ll start by displaying
16 bytes of memory, one line of Debug’s display, and then work toward display-
ing 16 lines of 16 bytes each (half a sector). A full sector won’t fit on the display
at one time with the format we’ve chosen, so Dskpatch includes procedures for
scrolling through a sector using the ROM BIOS—not DOS—interrupts. That
will come much later, though, after we’ve built a full-screen display of half a
sector.

Once we can dump 256 bytes from memory, we’ll build another procedure to
read a sector from the disk into our area of memory. We’ll dump half a sector on
the screen, and we’ll be able to use Debug to alter our program, so we can dump
different sectors. At that point, we’ll have a functional, but not very attractive
display, so making it pretty comes next.

With a bit more work and some more procedures, we’ll rebuild the half-sector
display to be much more pleasing aesthetically. It still won’t be a full-screen
display, so it will just scroll past like Debug’s dump did. But the full-screen dis-
play will come next, and through it, we’ll learn about the ROM BIOS routines
that allow us to control the display, move the cursor—that sort of thing. Then,

132 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

we'll be ready to learn how to use more ROM BIOS routines to print all 256 dif-
ferent characters.

Next will come the keyboard input and command procedures that will let us
start interacting with Dskpatch. About that time we’ll also need another course
correction.

Summary

We've seen enough of the future here. You should have a better idea of where
we're headed, so let’s move on to the next chapter, where we’ll lay the ground-
work for modular design and learn how to split a program into many different
source files. Then, in Chapter 14, we’ll write some test procedures to display
sections of memory.

134 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Wthout modular design, Dskpatch wouldn’t have been much fun to write.
Using a modular design greatly eases the task of writing any but the smallest
program. We'll use this chapter to set some ground rules for modular design,
and we’ll follow those rules throughout the rest of this book. Let’s begin by
learning how to separate a large program into many different source files.

Separate Assembling

In Chapter 10, we added the procedure WRITE_DECIMAL to
VIDEO_I0.ASM, and we also added a short test procedure called
TEST_WRITE_DECIMAL. Let’s take this test procedure out of
VIDEO_IO.ASM and put it in a file of its own, called TEST.ASM. Then, we’ll
assemble these two files separately and link them together into one program.

Here is the TEST.ASM file;

Listing 13-1. The File TEST.ASM

DOSSEG
-MODEL SMALL

.STACK

.CODE
EXTRA WRITE_DECIMAL:PROC

TEST_WRITE_DECIMAL PROC
MOV DX, 12345
CALL WRITE_DECIMAL
MOV AH,4Ch ;Return to DOS
INT 2lh
TEST_WRITE_DECIMAL ENDP
END TEST_WRITE_DECIMAL

We've seen most of this source file before, but the EXTRN directive is new.
The statement EXTRN WRITE_DECIMAL:PROC tells the assembler two
things: that WRITE_DECIMAL is in another, external, file, and that it’s a pro-
cedure. What kind of procedure (NEAR or FAR) depends on the MODEL direc-
tive. Since we've used MODEL SMALL, which defines procedures to be NEAR,
WRITE_DECIMAL is in the same segment. The assembler thus generates a
NEAR CALL for this procedure; it would generate a FAR CALL if we had
placed a FAR after WRITE_DECIMAL. (We can use NEAR or FAR in place of
the PROC in the EXTRN statement if we wanted to explicitly define the type of
procedure, but it’s better to let the .MODEL directive define the procedure
types.)

Modular Design 135

These are about the only changes we need for separate source files until we
begin to store data in memory. At that point, we’ll introduce another segment
for data. Now, let’s modify VIDEO_IO.ASM and then assemble and link these

two files.
Code Segment Data Segment
.CODE segment .DATA segment
(from file 1) (from file 1)

.CODE segment
(from file 2)

.DATA segment
(from file 2)

Figure 13-1. LINK stitches together segments from different files.

EXTRN WRITE_DECIMAL:PROC
TEST_WRITE_DEC IMAL b

!
* !
/ ‘-"./ LINK provides
CALL IWRLJE_ DECIMAL the address

Figure 13-2. LINK assigns the addresses for external names.

136 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Remove the procedure TEST_WRITE_DECIMAL from VIDEO_IO.ASM.
We’ve placed this in TEST.ASM, so we don’t need it in Video_io.

Finally, change END TEST WRITE_DECIMAL at the end of
VIDEO_IO.ASM to just END. Once again, we moved the main procedure to
TEST.ASM. The procedures in VIDEO_IO.ASM are now external procedures,
nothing more. That is, they have no function by themselves; they must be
linked to procedures that call them from other files. We don’t need a name after
the END directive in VIDEO_IO.ASM, because our main program is now in
TEST.ASM.

When you’ve finished making these changes, your VIDEO_10.ASM source
file should look something like this:

.MODEL SHMALL
.CODE

PUBLIC WRITE_HEX_DIGIT

WRITE_HEX_DIGIT ENDP
PUBLIC WRITE_HEX
WRITE_HEX ENDP

PUBLIC WRITE_CHAR

WRITE_CHAR ENDP

PUBLIC WRITE_DECIMAL

WRITE_DECIMAL ENDP

END

Assemble these two files just as you assembled Video_io before. TEST.ASM
knows all it needs to know about VIDEO_IO.ASM through the EXTRN state-
ment. The rest will come when we link the two files.

You should now have the files TEST.OBJ and VIDEO_IO.OBJ. Use the fol-
lowing command to link these two files into one program named TEST.EXE:

A>LINK TEST VIDEO_IO;
LINK stitches the procedures of these two files together to create one file con-

taining the entire program. It uses the first file name we entered as the name
for the resulting .EXE file, so we now have TEST.EXE.

Modular Design 137

That’s it; we created one program from two source files. The final .EXE pro-
gram is identical in function to the .COM version we created in Chapter 10
from the single file VIDEO_IO.ASM, when it contained the main procedure
TEST_WRITE_DECIMAL.

We’ll make heavy use of separate source files from here on, and their value
will become clearer as the procedures stack up. In the next chapter, we’ll write
a test program to dump sections of memory in hex. We'll usually write a simple
test version of a procedure before we write the complete version. Doing so will
allow us to see how to write a good final version, as well as saving much effort
and mental turmoil in the process.

There are several other useful ways to save effort. We call them the Three
Laws of Modular Design.

The Three Laws of Modular Design

These laws are summarized in Table 13-1. They aren’t really laws, they’re
suggestions. But we’ll use them throughout this book. Define your own laws if
you like, but either way, stick to the same ones all the time. Your job will be
much easier if you're consistent.

Table 13-1. The Three Laws of Modular Design

1. Save and restore all registers, unless the procedure returns a value in that
register.
2. Be consistent about which registers you use to pass information. For exam-
ple:
* DL, DX—Send byte and word values.
» AL, AX—Return byte and word values.
* BX:AX—Return double-word values.
* DS:DX—Send and return addresses.
» CX—Repeat counts and other counts.
¢ CF—Set when there is an error; an error code should be returned in one of
the registers, such as AL or AX.
3. Define all external interactions in the comment header:
* Information needed on entry.
» Information returned (registers changed).
* Procedures called.
» Variables used (read, written, and so on).

e —

138 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

There’s an obvious parallel between modular design in programming and
modular design in engineering. An electrical engineer, for example, can build a
very complicated piece of equipment from boxes that perform different func-
tions, without knowing how each box works. But if each box uses different volt-
ages and different connections, the lack of consistency creates a major
headache for the poor engineer, who must somehow provide a different voltage
for each box and create special connections between boxes. Not much fun, but
fortunately for the engineer, there are standards providing for only a small
number of standard voltages. So, perhaps only four different voltages need to be
provided, instead of a different voltage for each box.

Modular design and standard interfaces are just as important in assembly
language programs, and that’s why we’ll lay down the laws (so to speak) and
use those laws from here on. As you’ll see by the end of this book, these rules
will make our task much simpler. Let’s take a look at these laws in detail.

Save and restore all registers, unless the procedure returns a value in
that register. There aren’t that many registers in the 8088. By saving regis-
ters at the start of a procedure, we free them for use within that procedure. But
we must be careful to restore them at the end of the procedure. You’'ll see us
doing this in all our procedures, with PUSH instructions appearing first in
each procedure, and POPs at the end.

The only exception is for procedures that must return some information to
the calling procedure. For example, a procedure that reads a character from the
keyboard must somehow return the character. We won’t save any registers that
we use to return information.

Short procedures also help the register-shortage problem. At times, we’ll
write a procedure that’s used by only one other procedure. Not only does this
help with the shortage of registers, it also makes the program easier to write
and, often, easier to read. We’ll see more of this as we write procedures for
Dskpatch.

Be consistent about which registers you use to pass information. Our
job becomes simpler if we set standards for exchanging information between
procedures. We’ll use one register for sending information and one for receiving
information. We’'ll also need to send addresses for long pieces of data and for
this we’ll use the pair of registers DS:DX, so that our data can be anywhere in
memory. You’'ll learn more about this when we introduce a new segment for
data and begin to make use of the DS register.

We reserve the CX register for repeat counts. We'll soon write a procedure to
write one character several times, so that we can write ten spaces by calling
this procedure (WRITE_CHAR_N_TIMES) with CX set to 10. We’ll use the CX

register whenever we have a repeat count or when we want to return some

I

Modular Design 739

count, such as the number of characters read from the keyboard (we’ll do this
when we write a procedure named READ_STRING).

Finally, we’ll set the Carry Flag (CF) whenever there is an error, and we’ll
clear it whenever there isn’t an error. Not all procedures use the carry flags.
For example, WRITE_CHAR always works, so there’s no reason to return an
error report. But a procedure that writes to the disk can encounter many errors
(no disk, write-protection, and so on). In this case, we’ll use a register to return
an error code. There’s no standard here, because DOS uses different registers
for different functions—its fault, not ours.

Define all external interactions in the comment header. There’s no need
to learn how a procedure works if all we want to do is use it, and this is why we
place a detailed comment header before each procedure. This header contains
all the information we need to know. It tells us what to place in each register
before calling the procedure, and it tells what information the procedure
returns. Most procedures use registers for their variables, but some of the pro-
cedures we’ll soon see use variables in memory. The comment header should
say which of these memory variables are read and which are changed. Finally,
each header should list other procedures called. Here is an example of a full-
blown header with much of this information:

This is an example of a full-blown header. This part would normally
be a brief description of what this procedure does. For example, 5
this procedure will write the message "Sector " on the first line. ;

Oon entry: DS:DX Address of the message "Sector " g

vt el es vl ve vt ws s ws s

Returns: AX Error code if there was an error 8
Calls: GOTO_XY, WRITE_STRING (procedures called) H
Reads: STATUS_LINE_NO (memory variables read only) g
Writes: DUMMY (memory variables altered) 5

Whenever we want to use any procedure we’ve written, we can just glance at
this comment header to learn how to use it. There will be no need to delve into
the inner workings of the procedure to find out what it does.

These laws make assembly language programming easier, and we’ll be cer-
tain to abide by them, but not necessarily on the first try—we often won’t. The
first version of a procedure or program is a test case. Frequently, we don’t know
exactly how to write the program we have in mind, so on these “rough drafts,”
we’ll write the program without concern for the laws of modular design. We'll
just plow through and get something that works. Then we can backtrack and do
a good job by rewriting each procedure to conform to these laws.

Programming is a process that goes by leaps and bounds. Throughout this
book we’ll show much of the stuttering that went into writing Dskpatch, but we
certainly can’t show it all. There isn’t room enough to contain all the versions

-y

140 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

we wrote before we settled on the final version. Our first tries often bore very
little resemblance to the final versions you’ll see, so when you write programs,
don’t worry about getting everything right the first time. Be prepared to
rewrite each procedure as you learn more about what you really want.

In the next chapter, we'll build a simple test program to print a block of mem-
ory. It won't be the final version; we’ll go through others before we’re satisfied,
and even then, there will be other changes we’d like to make. The moral is: A
program is never done, but we must stop somewhere.

Summary

This has been a chapter for you to remember and use in the future. We began
by learning how to separate a program into a number of different source files
that we can assemble independently, then stitch together with the linker. We
used the PUBLIC and EXTRN directives to inform the linker that there are
connections between different source files. PUBLIC says that other source files
can CALL the procedures named after PUBLICs, while EXTRN tells the
assembler that the procedure we want to use is in another file.

Then we moved on to the Three Laws of Modular Design. These rules are
meant to make your programming job simpler, so use them when you write
your own programs, just as you’ll see us use them in this book. You'll find it
easier to write, debug, and read programs if they conform to these Three Laws.

142 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Eom here on, we’ll concentrate on building Dskpatch in much the same way
that we originally wrote it. Some of the instructions in procedures to come may
be unfamiliar; we’ll explain each briefly as we come across them, but for
detailed information, you'll need a book that covers all of the instructions in
detail. Most reference books that cover the 8088, 80286, or 80386 have all the
information you should need.Rather than cover all the 8088 instructions, we’ll
concentrate on new concepts, such as the different modes of addressing mem-
ory, which we’ll cover in this chapter. In Part III, we’ll move even farther away |
from the details of instructions and begin to see information specific to the IBM
Personal Computer and its near cousins.
Now, let’s learn about addressing modes by writing a short test program to
dump 16 bytes of memory in hex notation. To begin, we need to learn how to use l
memory as variables. '

Addressing Modes

We've seen two addressing modes; they’re known as the register and immedi-
ate addressing modes. The first mode we learned about was the register mode,
which uses registers as variables. For example, the instruction:

MOV AX,BX

uses the two registers AX and BX as variables.
Then, we moved on to the immediate addressing mode, in which we moved a
number directly into a register, as in the example:

MOV RX,c

This moves the byte or word of memory immediately following the instruction
into a register. In this sense, the MOV instruction in our example is one byte
long, with two more bytes for the data (0002):

396F:0100 B&0O20O MOV AX,000¢

The instruction is B8h, and the two bytes of data (02h and 00h) follow this
(remember that the 8088 stores the low byte, 02h, first in memory).

Now, we’ll learn how to use memory as a variable. The immediate mode
allows us to read the piece of fixed memory immediately following that one

-

Dumping Memory 7143

instruction, but it doesn’t allow us to change memory. For this, we’ll need other
addressing modes.

Let’s begin with an example. The following program reads 16 bytes of mem-
ory, one byte at a time, and displays each byte in hex notation, with a single
space between each of the 16 hex numbers. Enter the program into the file
DISP_SEC.ASM and assemble it. Enter the following into the new file
DISP_SEC.ASM:

Listing 14-1. The New File DISP_SEC.ASM

DOSSEG

.MODEL SMALL

.STACK

.DATA
PUBLIC SECTOR

SECTOR DB 10h, 11h, 22h, 13h, 14h, 15h, 1bh, L7?h ;Test pattern
DB L8h, 19h, 1Ah, 1Bh, 1Ch, 1Dh, LEh, 1Fh

-CODE

EXTRN WRITE_HEX:PROC

EXTRN WRITE_CHAR:PROC
; This is a simple test program to dump 1t bytes of memory as hex 5
7 numbers, all on one line. H

DISP_LINE PROC

MOV AX,DGROUP ;Put data segment into AX
MOV DS, AX ;Set DS to point to data
XOR BX,BX ;Set BX to O
MOV CX,16 ;Dump 1k bytes

HEX_LOOP:
MOV DL,SECTOR{BX] ;Get 1 byte
CALL WRITE_HEX ;Dump this byte in hex
MOV DL, 0 ! ;Write a space between numbers
CALL WRITE_CHAR
INC BX
LOOP HEX_LOOP
MOV AH,4Ch ;Return to DOS
INT 2lh

DISP_LINE ENDP

END DISP_LINE

Let’s try our new program to see how it works. Assemble Disp_sec.

We're ready to link DISP_SEC.OBJ and VIDEO_IO.OBJ and create an .EXE
file named DISP_SEC.EXE. LINK creates a program by putting the pieces
together in the same order as the names on the command line. Since we want
the main procedure to appear at the start of the program, the first file name in
the LINK command needs to be the name of the file that contains the main pro-

144 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

0431 + BR

MoV DL,SECTORIBH]

0434: 0013
0433: 0012
0432: 0011
SECTOR: 0431: 0010

Figure 14-1. Translation of SECTOR[BX].

cedure (Disp_sec in this case). And a semicolon must appear at the end of the
list of files, so type:

A>LINK DISP_SEC VIDEO_IO;

Linking will always be the same, with more names before the semicolon
when we have more files, but the main procedure must always be in the first
file listed.

In general, the preceding step for the files filel, file2, and so on, looks like
this:

LINK filel file2 file3d ...;

Now, run the .EXE file. If you don’t see:

10 21 12 13 14 1S 1& 1?7 18 19 1A 1B 1C 1D 1E 1F

when you run the program, go back and check carefully for a mistake.
Now, let’s see how Disp_sec works. The instruction:

Mov DL,SECTOR[BX] ;Get 1 byte
uses a new addressing mode known as Indirect Memory Addressing—address-

ing memory through the Base register with offset, or more simply, Base Rela-
tive. To see what this really means, we need to first learn more about segments.

The Data Segment

Looking at Disp_sec, you’ll see the label SECTOR appears after DATA. The
DATA directive declares a data segment that is used for memory variables.

Dumping Memory 145

Ds,$8 — DGROUP

—DATA

STACK

Figure 14-2. Both the stack and data are in one segment group (DGROUP).

(By the way, the name of the segment created by .DATA is _DATA. Any time
we want to store and read data in memory, we’ll set aside some space in this
segment. We’'ll get back to memory variables in just a minute, but first let’s
learn a little more about segments.

The MODEL SMALL directive creates what Microsoft calls a small memory-
model program. Small programs are defined as programs that have up to 64K of
code, and up to 64K of data. In other words, one segment for code and one seg-
ment for data. Since both the data (defined by .DATA) and the stack (defined by
.STACK) are data, they’re put into a single segment.

146 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Start of file End of file

Disk File| EHE File Header|.CODE .DATA STACK]l

Memory

PSP

Code

Data

L]

Stack

Figure 14-3. The stack segment uses no disk space.

This grouping of the stack and data segments into one segment is handled by
a mechanism in the assembler called groups. In particular, the assembler cre-
ates a group called DGROUP that creates a single segment out of all the seg-
ments used for data. So far we’ve seen the DATA and .STACK directive, and
there are several other data directives that create segments in this group (we’ll
see another later in this book). Fortunately, the MODEL, .DATA, and .STACK
directives handle all of this behind the scenes. Knowing some of what happens

Dumping Memory 147

behind the scenes, however, will come into use later when we look at memory
maps to see how our programs are put together.

Another thing that happens automatically, as a result of the DOSSEG direc-
tive, is that the STACK segment is loaded into memory above the DATA seg-
ment. And there is a very good reason for this. The data segment we created has
data in it (10h, 11h, 12h, and so on) that needs to be in the .EXE file so it can be
copied into memory when our program is run by DOS. The stack, on the other
hand, needs to take space in memory, but the stack’s memory doesn’t need to be
initialized (only SS:SP has to be set). So by putting the stack segment after the
data segment, we don’t need to set aside space on the disk for the stack (see Fig-
ure 14-3).

Base-Relative Addressing

It’s time to get back to our base-relative addressing mode. The two lines:

SECTOR DB 10h, 11h, 1eh, 13h, 14h, 1Sh, 16h, 1?h ;Test pattern
DB 18h, 19h, 1Ah, 1Bh, L1Ch, LDh, 1Eh, LFh

set aside 16 bytes of memory in the data segment starting at SECTOR, which
the assembler converts to an address. DB, you may recall, stands for Define
Byte; the numbers after each DB are initial values. So, when we first start
DISP_SEC.COM, the memory starting at SECTOR will contain 10h, 11h, 12h,
and so on. If we wrote:

MOV DL, SECTOR

the instruction would move the first byte (10h) into the DL register. This is
known as direct memory addressing. But we didn’t write that. Instead, we
placed [BX] after SECTOR. This may look suspiciously like an index into an
array, like the BASIC statement:

K = L(10)

which moves the 10th element of L into K.

In fact, our MOV instruction is much the same. The BX register contains an
offset in memory from SECTOR. So if BX is 0, the MOV DL,SECTOR[BX]
moves the first byte (10h here) into DL. If BX is 0Ah, this MOV instruction
moves the eleventh byte (1Ah—remember, we started at 0) into DL.

On the other hand, the instruction MOV DX,SECTOR[BX] would move the
sixth word into DX, since an offset of 10 bytes is the same as 5 words, and the

L T T T T ST e

148 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

first word is at offset zero. (For enthusiasts: This last MOV instruction isn’t
legal, because SECTOR is a byte label, whereas DX is a word register. We
would have to write MOV DX,Word Ptr SECTOR[BX] to tell the assembler
that we really want to use SECTOR as a word label in this instruction.)

There are many other addressing modes; some we’ll encounter later, but
most we won’t. All the addressing modes are summarized in Table 14-1.

Table 14-1. Addressing Modes

Addressing Mode Format of Address Segment Register Used
Register register (such as AX) None
Immediate data (such as 12345) None

Memory Addressing Modes
Register Indirect [(BX] DS
[BP] SS
[DI] DS
(SI] DS
Base Relative* label[BX] DS
label[BP] SS
Direct Indexed* label[DI] DS
label[SI] DS
Base Indexed* label [BX + SI] DS
label[BX + DI] DS
label [BP + SI] SS
label[BP + DI] SS
String Commands: Read from DS:SI
(MOVSW, LODSB, and so on) Write to ES:DI

* Label[...] can be replaced by [disp +...], where disp is a displacement. Thus,
we could write [10 + BX] and the address would be 10 + BX.

Setting Up DS

There’s one minor detail we’ve glossed over. In Chapter 11 we noted that both
the DS and ES registers point to the PSP, not to our data segment, when DOS

L T E—

Dumping Memory 749

starts our program. How do we set DS so it points to our data segment? Using
the first two lines in DISP_LINE:

MOV AX,DGROUP ;Put data segment into AX
MOV DS,AX ;Set DS to point to data

These two lines set the DS register so it points to our data segment. The first
line moves the segment address for our data group (called DGROUP) that con-
tains .DATA and .STACK into the AX register. And the second line sets DS so
it points to our data.

But there’s one sticky point here. If you remember back to the discussions
about the segment registers, we said the segment used for our programs
depends on how much of our memory is already in use. In other words, we can’t
know the value of DGROUP until DOS loads our program in memory. How,
then do we know what number to load into AX?

As it turns out, there is a small header at the start of each .EXE file that con-
tains a list of addresses in our program that have to be calculated. DOS uses
this information to calculate the value of DGROUP and update the value in the
MOV AX,DGROUP instruction when it loads DISP_SEC.EXE into memory.
This process is known as relocation, and we’ll see exactly how it works in Chap-
ter 28.

There is another fine point of writing programs for the 8088 family of micro-
processor. You'll notice we set the value of DS with two instructions, rather
than the single instruction:

Mov DS,DGROUP

Why do we need two instructions? It turns out that you can’t move a number
directly into a segment register on the 8088, so we have to move the segment
number first into the AX register. Requiring two instructions, rather than one,
simplified the design of the 8088 microprocessor, which made it less expensive
to manufacture but more difficult to program.

Adding Characters to the Dump

We're almost finished writing the procedure that creates a dump display sim-
ilar to Debug’s. So far, we've dumped the hex numbers for one line; in the next
step, we’ll add the character display following the hex display. It’s not very
involved, so without further delay, here’s the new version of DISP_LINE (in
DISP_SEC.ASM), with a second loop added to display the characters:

o2 €

7150 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Listing 14-2. Changes to DISP_LINE in DISP_SEC.ASM

DISP_LINE PROC
MOV AX,DGROUP ;Put data segment into AX
Hov DS, RX ;Set DS to point to data
XOR BX,BX ;Set BX to O
MOV CX,16 ;Dump 1E bytes

HEX_LOOP:
MOV DL,SECTOR(BX] ;Get 1 byte
CALL WRITE_BREX ;Dump this byte in hex
MOV DL,' ' ;Write a space between numbers
CALL WRITE_CHAR
INC BX

LOOP HEX_LOOP

MOV DL,"' ! ;Add another space before characters
CALL WRITE_CHAR
MOV CX, 1t
XOR BX,BX ;Set BX back to O
ASCII_LOOP:
Mov DL,SECTOR
CALL WRITE_CHAR
INC BX
LOOP ASCII_LOOP

MoV AH,4Ch ;Return to DOS
INT 2kh
DISP_LINE ENDP

Assemble this, link it to Video_io, and try it. Just the display we wanted. (See
Figure 14-4.)

Try changing the data to include a ODh or a 0Ah. You'll see a rather strange
display. Here’s why: 0Ah and 0Dh are the characters for the line-feed and car-
riage-return characters. DOS interprets these as commands to move the cursor,
but we’d like to see them as just ordinary characters for this part of the display.
To do this, we’ll have to change WRITE_CHAR to print all characters, without
applying any special meaning. We’ll do that in Part III, but for now, let’s
rewrite WRITE_CHAR slightly so that it prints a period in place of the low
characters (between 0 and 1Fh):

A>disp_sec

18 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F D»3IB.Etscioay
A>_

Figure 14-4. DISP_LINE’s Output.

A>disp_sec
16 11 1213141516 171819 1A IBICID1E1F
A>_

Figure 14-5. Modified Version of DISP_Line.

Dumping Memory 157

Replace the WRITE_CHAR in VIDEO_IO.ASM with this new procedure:

Listing 14-3. A New WRITE_CHAR in VIDEO_10.ASM

PUBLIC WRITE_CHAR

; This procedure prints a character on the screen using the DOS
; function call. WRITE_CHAR replaces the characters D through 1Fh with ;

; a period. S
+ On entry: DL byte to print on screen. 8
" ’
WRITE_CHAR PROC

PUSH AX

PUSH DX

CMP DL,3¢ ;Is character before a space?

JAE IS_PRINTABLE +No, then print as is

MOV DL,'.! ;Yes, replace with a period
IS_PRINTABLE:

MOV AH,2 ;Call for character output

INT 2lh ;Output character in DL register

POP DX ;Restore o0ld value in AX and DX

POP AX

RET
WRITE_CHAR ENDP

Try this new procedure with Disp_sec and change the data to various charac-
ters to check the boundary conditions.

Dumping 256 Bytes of Memory

Now we've managed to dump one line, or 16 bytes, of memory. The next step
is to dump 256 bytes of memory. This happens to be exactly half the number of
bytes in a sector, so we're working toward building a display of half a sector. We
still have many more improvements to make; this is just a test version.

We’ll need two new procedures here, and a modified version of DISP_LINE.
The new procedures are DISP_HALF_SECTOR, which will soon evolve into a
finished procedure to display half a sector, and SEND_CRLF, which just sends
the cursor to the beginning of the next line (CRLF stands for Carriage Return-
Line Feed, the pair of characters that move the cursor to the next line).

SEND_CRLF is very simple, so let’s start with it. Place the following proce-
dure into a file called CURSOR.ASM:

Listing 14-4. The New File CURSOR.ASM
CR EQU 13 ;Carriage return
LF EQU 10 ;Line feed

.MODEL SMALL
.CODE

PBRE2 St w3

152 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Listing 14-4. continued

PUBLIC SEND_CRLF

; This routine just sends a carriage return-line feed pair to the ;
; display, using the DOS routines so that scrolling will be handled 3

; correctly.

SEND_CRLF PROC
PUSH RX
PUSH DX
MOV AH,¢2
MOV DL,CR
INT 2lh
MOV DL,LF
INT 2lh
POP DX]
POP AX
RET

SEND_CRLF ENDP
END

This procedure sends a Carriage Return and Line Feed pair, using the DOS
function 2 to send characters. The statement:

CR EQU 13 ;Carriage return

uses the EQU directive to define the name CR to be equal to 13. So the instruc-
tion MOV DL,CR is equivalent to MOV DL,13. As shown in Figure 14-6, the
assembler substitutes 13 whenever it sees CR. Likewise, it substitutes 10
whenever it sees LF.

Note: From here on, we’ll use color to show the changes in
our programs so you won’t have to check each line to see if it’s
new or different. Additions to our programs will be shown
against a gray background, and text you should delete will be
printed in blue with a line through the text:

Add or change lines against a gray background. .

Deletetextshownin blue

CR EQU 13

MOU ny,(n'3

Figure 14-6. The EQU directive lets us use names in places of numbers.

Dumping Memory 153

The file Disp_sec now needs much work. Here’s the new version of
DISP_SEC.ASM:

Listing 14-5. The New Version of DISP_SEC.ASM

DOSSEG
.MODEL SMALL

.STACK

.DATA

—SEEEOR BBk, k. oh b, Loh Sk Lk, b Teet matiera.
———— e

T

e e)

.CODE

pman

EXTRN WRITE_HEX:PROC
EXTRN WRITE_CHAR:PROC

154 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Listing 14-5. continued

DISP_LINE PROC
MOU ?\v'r\t‘DnnP P sTTE - BN 3 r=3 gu‘a et ;u& JAL
MOY RS _AY ~Sat DS+ ind &+ data
22 T nJ r -
S R——— BB
PUSH BX
PUSH | CX
PUSH DX
MOV BX,DX : ;0ffset is more useful in BX
MOV CX,1lb ;Dump 16 bytes
PUSH BX ;Save the offset for ASCII_LOOP
HEX_LOOP:
MOV DL, SECTOR[BX] ;Get 1 byte
CAEE WRITE_HEX ;Dump this byte in hex
MOV DFERYY ;Hrite a space between numbers
CALL WRITE_CHAR
IKNC BX
LOOP HEX_LOOP
MoV DL,"' ! ;ARdd another space before characters
CALL WRITE_CHAR
MOV CX, 16
POP BX ;Get back offset into SECTOR
———
ASCII_LOOP:
MOV DL, SECTORIBX]
CALL WRITE_CHAR
INC BX
LOOP ASCII_LOOP
POP DX
POP CX
POP BX
RET

MOY
v

DISP,LINE.ENDP

END DISP_HALF_SECTOR

The changes are all fairly straightforward. In DISP_LINE, we’ve added a
PUSH BX and POP BX around the HEX_LOOP, because we want to reuse the
initial offset in ASCIL_LOOP. We've also added PUSH and POP instructions to
save and restore all the registers we use within DISP_LINE. Actually,
DISP_LINE is almost done; the only changes we have left are aesthetic, to add
spaces and graphics characters so we’ll have an attractive display; those will
come later.

When you link the files, remember that we now have three files: Disp_sec,
Video_io, and Cursor. Disp_sec should be first in this list. You should see a dis-
play like the one in Figure 14-7 when you run Disp_sec.exe.

We'll have more files before were done, but now, let’s move on to the next

chapter, where we’ll read a sector directly from the disk before we dump half a
sector.

———

R

A>disp_sec

18 18 10
111111
12 12 12
13 13 13
14 14 14
1515 15
16 16 16
17 17 17
18 18 18
19 13 13
1A 1A 1A
1B 1B 1B
iC 1C 1C
1D 1D 1D
iE 1E 1E
iF 1F 1F

A>_

16 10
11 11
12 12
13 13
14 14
15 15
16 16
7 17
18 18
19 19
1A 1A
1B 1B
iC 1C
1D 1D
1E 1E
iF 1F

Summary

10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F

Dumping Memory 155

616161818 1818181818
15U U A A N
1212121212 1212121212
13131313 131313131313
1414 14 14 14 14 14 14 14 14
BHHBHBHBI1B151515 ...
1616 16 16 16 16 16 16 16 16
SIS TP 7 17 17 oo
1818181818 1818181818
1919191919191919 1919
MIAAIAIAIATIATIATIAIA ... it
1B1B1B1B1B1B1B1B1B 1B
iCIC1C1ICICICICICICICcvvvenn
1iD1D1D DD 1D ID1ID 1D 1Dccvvettt
fE1E1EIEIEIE1E1E1E1E
fIFIFIFIFIFIFIFIFIFIF ..ot

Figure 14-7. Output From Disp_sec.

We know more about the different memory modes for addressing memory
and registers in the 8088 microprocessor. We learned about indirect memory
addressing, which we first used to read 16 bytes of memory.

We also used indirect memory addressing in several programs we wrote in
this chapter, starting with our program to print 16 hex numbers on the screen.
These 16 numbers came from an area in memory labeled SECTOR, which we
expanded a bit later so we could display a memory dump for 256 bytes—half a

sector.

And, at last, we've begun to see dumps of the screen, as they appear on your
display, rather than as they are set in type. We'll use these screen dumps to
more advantage in the following chapters.

158 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Now that we have a program that dumps 256 bytes of memory, we can add
some procedures to read a sector from the disk and place it in memory starting
at SECTOR. Then, our dump procedures will dump the first half of this disk

sector.

Making Life Easier

With the three source files we had in the last chapter, life becomes somewhat
complicated. Did we change all three of the files we were working on, or just
two? You probably assembled all three, rather than checking to see if you made
any changes since the last assemble.

But assembling all our source files when we’ve changed only one of them is
rather slow and will become even slower as Dskpatch grows in size. What
we’d really like to do is assemble only the files that we’ve changed.

Fortunately, all the assemblers covered in this book (MASM, Turbo Assem-
bler, and OPTASM) allow you to do just that. Borland and Microsoft provide a
program called Make that does exactly what we want. (OPTASM includes a
very simple Make inside its assembler, which we’ll describe at the end of the
next section.) To use it, we create a file (we’ll call it Makefile) that tells Make
how to do its work, then just type:

A>MAKE DSKPATCH

Note: If you're using Borland’s Make, you'll type just
MAKE.) Make then assembles only the files you’ve changed.

The file you create (Makefile) tells Make which files depend on which other
files. Every time you change a file, DOS updates the modify time for this file
(you can see this in the DIR display). Make simply looks at both the .ASM and
.OBJ versions of a file. If the .ASM version has a more recent modify time than
the .OBJ version, Make knows that it needs to assemble that file again.

That’s all there is to it, but there is one caveat we need to point out: Make will
work correctly only if you're diligent about setting DOS’s date and time each
time you start your computer or if your computer has a built-in clock (as most
computers do these days). Without this information, Make won’t always know
when you’ve made changes to a file.

Dumping a Disk Sector 159

Format of the Make File

The format for our file, Makefile, that we’ll use with Make is fairly simple:

Listing 15-1. The Make File MAKEFILE

disp_sec.obj:

masm

video_io.obj:

masm

cursor.obj:
masm

disp_sec.exe:

link

disp_sec.asnm
disp_sec;

video_io.asm
video_io;

Cursor.asm
cursor;

disp_sec.obj video_io.obj cursor.obj
disp_sec video_io cursor;

Note: If you're using Borland’s Make, the last two lines must
be at the beginning of the file rather than at the end, as here.
Each entry has a file name on the left (before the colon) and one
or more file names on the right. If any of the files on the right
(such as DISP_SEC.ASM in the first line) are more recent than
the first file (DISP_SEC.OBJ), Make will execute all the
indented commands that appear on the following lines.

If your assembler has the Make program, enter these lines into the file
Dskpatch (without an extension) and make a small change to DISP_SEC.ASM.

Then type:

R>MAKE MAKEFILE

(type just MAKE if you’re using Borland’s Make) and you’ll see something like

the following:

Microsoft (R) Program Maintenance Utility Version 4.06
Copyright (C) Microsoft Corp 1984-13987?. Bll rights reserved.

masm disp_sec;
Microsoft (R) Macro Assembler Version 5.10
Copyright (C) Microsoft Corp 1981, 1888. BRll rights reserved.

49620 + 233303 Bytes symbol space free

0 Warning Errors

pBa2 <

I A

S Yeu

160 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

0 Severe Errors
link disp_sec video_io cursor;

Microsoft (R) Overlay Linker Version 3.b4
Copyright (C) Microsoft Corp 1983-1988. All rights reserved.

A>

Make has done the minimum amount of work necessary to rebuild our pro-
gram.

If you have an older version of the Microsoft Macro Assembler that doesn’t
include Make, you’ll find this program worth the price of an upgrade. And
you’ll get a nice replacement for Debug, too. It’s called CodeView, and we’ll
take a look at it later.

OPTASM’s Make

SLR Systems’s OPTASM includes a Make built into the assembler itself. But
unlike Microsoft’s, IBM’s, and Borland’s Make, OPTASM’s Make can assemble
only files that have changed: It can’t run the linker to build a new .EXE file.
Nonetheless, it’s very convenient to use OPTASM’s Make to assemble only the
files we’ve changed.

The format for OPTASM’s make file is a little different from the format for
the Make program:

Listing 15-2. OPTASM'’s Make File MAKEFILE

disp_sec.obj disp_sec.asm
disp_sec;

video_io.obj video_io.asm
video_io;

cursor.obj cursor.asm
CUrsor;

Each entry has the name of an object file (such as disp_sec.obj) followed by
the files that affect it. If any of the files on the line after the object file are more
recent (if you've changed disp_sec.asm in the first line), OPTASM will assem-
ble the file that appears on the next line. You can see this is slightly different
from the file that Make uses, but it gets the same job done.

To assemble all the files you've changed, type:

R>OPTASM IMAKEFILE

——

Dumping a Disk Sector 7617

This tells OPTASM to use the information in MAKEFILE to decide which files
to assemble.
You’ll then need to run Link after this to create a new .EXE file:

A>LINK DISP_SEC VIDEO_IO CURSOR;

That’s all there is to using OPTASM’s built-in Make feature. (You'll find more
information in the OPTASM manual.) Now on with Dskpatch.

Patching Up Disp_sec

Disp_sec, as we left it, included a version of DISP_HALF_SECTOR, which we
used as a test procedure, and the main procedure. Now, we’ll change
DISP_HALF_SECTOR to an ordinary procedure so we can call it from a proce-
dure we’ll name READ_SECTOR. Our test procedure will be in Disk_io.

First, let’s modify Disp_sec to make it a file of procedures, just as we did with
Video_io. Change the END DISP_HALF_SECTOR to just END, since our main
procedure will now be in Disk_io. Then remove the .STACK and DOSSEG
directives near the top of Disp_sec.asm, again because we’re moving these to a
different file.

Then, since we plan to read a sector into memory starting at SECTOR, there

is no need for us to supply test data. We can replace all the 16 DB statements
after SECTOR with one line:

SECTOR DB 4192 DUP (0)

which reserves 8192 bytes for storing a sector.

Recall our earlier statement that sectors are 512 bytes long. So why do we
need such a large storage area? It turns out that some hard disks (300-
megabyte, for example) use very large sector sizes. These large sector sizes are
by no means common, but we still want to be certain that we don’t read in a
sector that is too large to fit into the memory we’ve reserved for SECTOR. So, in
the interest of safety, we've reserved 8192 bytes for SECTOR. In the rest of this
book, with the exception of SECTOR, which we’ll cover soon, we’ll assume that
sectors are only 512 bytes long.

Now what we need is a new version of DISP_HALF_SECTOR. The old ver-
sion is nothing more than a test procedure that we used to test DISP_LINE. In
the new version, we’ll want to supply an offset into the sector so that we can
display 256 bytes, starting anywhere in the sector. Among other things, this
means we could dump the first half, the last half, or the middle 256 bytes. Once

7162 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

again, we'll supply this offset in DX. Here is the new—and final—version of
DISP_HALF_SECTOR in Disp_sec:

Listing 15-3. The Final Version of DISP_HALF_SECTOR in DISP_SEC.ASM

PUBLIC DISP_HALF_SECTOR
EXTRN SEND_CRLF:PROC

This procedure displays half a sector (25b bytes) ;

H
H
B e
; On entry: DS:DX Offset into sector, in bytes -- should be
5 multiple of 1k. -
; ;
; Uses: DISP_LINE, SEND_CRLF s
= o
DISP_HALF_SECTOR PROC

MOV nv'nr'nnnp ;Dn+ data cngman-}- SR + o SR

MOV DS DX ;Qof DS_to {_\nin+ + data

XOR e ;Qf;rt vt h_agjnning of SECTOR.

PUSH CX

PUSH bX

MOV CX,16 ;Display 1& lines

HALF_SECTOR:
CALL DISP_LINE
CALL SEND_CRLF
ADD DX, 16

LOOP HALF_SECTOR

pOP bX

POP cX

RET

MOV AH,4Ch +Roturn to DOS-
—————

DISP_HALF_SECTOR ENDP

Let’s move on now to our procedure to read a sector.

Reading a Sector

In this first version of READ_SECTOR we’ll deliberately ignore errors, such
as having no disk in the disk drive. This is not good practice, but this isn’t the
final version of READ_SECTOR. We won’t be able to cover error handling in
this book, but you will find error-handling procedures in the version of
Dskpatch on the disk that is available for this book. For now, though, we just
want to read a sector from the disk. Here is the test version of the file
DISK _JO.ASM:

Listing 15-4. The New File DISK_1O.ASM

DOSSEG
.MODEL SMALL

.STACK

Dumping a Disk Sector 7163

.DATA
EXTRN SECTOR:BYTE
.CODE

EXTRN DISP_HALF_SECTOR:PROC

This procedure reads the first sector on disk A and dumps the first
; half of this sector. ;

READ)SECTOR PROC

MOV AX,DGROUP ;Put data segment into AX
MOV DS,AX ;Set DS to point to data
MOV AL, D ;Disk drive A (number 0O)
MoV CX,1 ;Read only 1 sector
Mov DX,0 ;Read sector number O
LEA BX,SECTOR ;Where to store this sector
ISNIT 2Sh ;Read the sector
POPF ;Discard flags put on stack by DOS
XOR DX,DX ;Set offset to 0O within SECTOR
CALL DISP_HALF_SECTOR; Dump the first half
MOV AH,4Ch ;Return to DOS
INT 2lh
READ_SECTOR ENDP

END READ_SECTOR

There are three new instructions in this procedure. The first:

LEA BX,SECTOR

moves the address, or offset, of SECTOR (from the start of DGROUP data group
created by .DATA) into the BX register; LEA stands for Load Effective Address.
After this LEA instruction, DS:BX contains the full address of SECTOR, and
DOS uses this address for the second new instruction, the INT 25h call, as we’ll
see after a few more words about SECTOR. (Actually, LEA loads the offset into
the BX register without setting the DS register; we have to ensure that DS is
pointing to the correct segment.)

SECTOR isn’t in the same source file as READ_SECTOR. It’s over in
DISP_SEC.ASM. How do we tell the assembler where it is? We use the EXTRN
directive:

.DATA

EXTRN SECTOR:BYTE

This set of instructions tells the assembler that SECTOR is defined in the data
segment created by .DATA, that it’s defined in another source file, and that
SECTOR is a variable of bytes (rather than words). We’ll be using such
EXTRNs often in following chapters; it’s the way we use the same variables in

164 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

0000:

DGROUP
.DATA segment
v
0381: SECTOR:

STACK segment

LEA DH,SECTOR <+—» M™MOU BH,0381
Figure 15-1. LEA loads the effective address.

a number of source files. We just need to be careful that we define our variables
in only one place.

Let’s return to the INT 25h instruction. INT 25h is a special function call to
DOS for reading sectors from a disk. When DOS receives a call from INT 25h, it
uses the information in the registers as follows:

AL Drive number (0=A, 1 =B, and so on)
CX Number of sectors to read at one time

s ——— e — R R

|

Dumping a Disk Sector 165

DX Number of the first sector to read (the first sector is 0)
DS:BX Transfer address: where to write the sectors read

The number in the AL register determines the drive from which DOS will read
sectors. If AL = 0, DOS reads from drive A.

Note: Some recent versions of DOS (COMPAQ DOS 3.31 and
DOS 4.0 and above) support hard disks larger than 32
megabytes by changing the way the INT 25h function call
works. This isn’t a problem for reading from a floppy disk, as

we're doing in this book, but it can be if you want to use
Dskpatch on a hard disk.

DOS can read more than one sector with a single call, and it reads the
number of sectors given by CX. Here, we set CX to one so DOS will read just one
sector of 512 bytes.

We set DX to zero, so DOS will read the very first sector on the disk. You can
change this number if you want to read a different sector; later on, we will.

DS:BX is the full address for the area in memory where we want DOS to store
the sector(s) it reads. In this case, we’ve set DS:BX to the address of SECTOR,
so that we can call DISP_HALF_SECTOR to dump the first half of the first sec-
tor read from the disk in drive A.

Finally, you’ll notice a POPF instruction immediately following the INT 21h.
As noted, the 8088 has a status register that contains the various flags, like the
zero and carry flags. POPF is a special POP instruction that pops a word into
the status register. Why do we need this POPF instruction?

.DATA

EHTRN SECTOR:BYTE

A byte variable.
LINK will provide
the address.

Figure 15-2. The EXTRN Directive.

PROD Omest ssag o

7166 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

fxdisk_io
EB 28 98 49 42 4D 28 28 33 2E 32 06 62 62 B1 A8 G(EIBM 3.2.....
82 79 86 D8 62 FD 62 06 B9 66 B2 66 06 98 BB 8O .p.1.2..........
A6 60 60 BB 66 P8 66 BB BB BB FA C4 SC A8 33 ED -\.39
B8 CB 87 8E D8 33 C9 89 16 FD 81 BA D2 79 BA 83 ;L.A432.%..1v.8
1E 1C @6 8C 86 1E @8 B1 82 8E C5 8E DS BC 88 7¢ ...1...R.A{AA.!
FC 1E 36 C5 36 78 88 BF 24 7C B9 8B 08 F3 A4 1F N.6t6x.1+!. .G

C6 86 2E 8@ BF BF 78 0@ B8 28 7C AB 91 AB FB 8A F....7x.q*i%e4le
16 FD 81 CD 13 A8 16 86 98 F7 26 16 80 83 86 B .%.=.3..j=3.....
@8 £8 73 98 E8 79 66 BB 08 85 53 ES AB 88 SF BE .Js.ly.7..S83.
74 81 B3 BB 88 98 F3 A6 75 57 83 C7 15 B1 @B 98 t.)..E<auls].F.E
98 F3 A6 75 4C 26 8B 47 1C 99 8B OF @B 8B B3 C1 F<aul&iC.fi....
48 F7 F1 3D 14 @8 7F 82 B8 14 96 A1 11 80 B1 B4 Hzs=..s.5.01.]
D3 E8 E8 32 86 FF 35 1C 88 C4 1E 76 81 £8 38 08 '3%2. 6..-.p.08.
E8 SB 88 2B F8 76 @D ES 1D 88 52 F7 26 8B 88 83 3 .+=v.3..R=8...
D8 SR EB E9 SB 8A 2E 15 88 84 16 FD @1 FF 2E 78 <2del...2.2. .p
@1 BE 8B @1 EB 54 98 81 86 1C 0@ 11 2E 1E 88 C3 .J%.6T6........ F
f>

Figure 15-3: Screen Dump from DISK 10.COM.

The INT 25h instruction pushes first the status registers, then the return
address onto the stack. When DOS returns from this INT 25h, it leaves the sta-
tus register on the stack. DOS does this so that it can set the carry flag on
return if there was a disk error, such as trying to read from drive A with no disk
in the drive. We won’t be checking for errors in this book, but we have to
remove the status register from the stack—hence the POPF instruction. (Note:
INT 25h, along with INT 24h which writes a disk sector, are the only DOS rou-
tines that leave the status register on the stack.)

Now you can assemble DISK_I0.ASM, and reassemble DISP_SEC.ASM.
Then, link the four files Disk_io, Disp_sec, Video_io, and Cursor, with Disk_io
listed first. Or, if you have Make, add these two lines to your Makefile:

disk_io.obj: disk_io.asm
masm disk_io; -

(for OPTASM’s Make, you’ll need to indent the first line, and remove the lead-
ing spaces from the second line) and change the last two lines (first two lines for
Borland’s Make) to:

disk_io.exe: disk_io.obj disp_sec.obj video_io.obj cursor.obj
link disk_io disp_sec video_io cursor;

Af.ter you create your .EXE version of Disk_io, you should see a display some-
thing like Figure 15-3 (remember to put a disk in drive A before you run
Disk_io).

Dumping a Disk Sector 767

The .DATA? Directive

If you look back at our definition of SECTOR in Disp_sec.asm, you'll see that
we reserved 8192 bytes of zeros. Which means we have to reserve room in the
DISK_IO.EXE file on your disk:

A>DIR DISK_IO.EXE

Volume in drive A has no label
Directory of A:

DISK_IO EXE 8922 S-16-89 10:42a
1 File(s) 20?04 bytes free

A>

As you can see, Disk_io.exe is 8,922 bytes long, which is mostly filled with
zeros. That’s a lot of space to reserve just for zeros, especially since we don’t care
what’s in SECTOR before we read a sector into memory. So does SECTOR
really need to take space on the disk? No.

There is another directive, DATA?, that allows to define memory variables
that take space in memory, but not on the disk. We can do this by telling the
assembler we don’t care what value a memory variable has.

Change the three lines in DISP_SEC that define SECTOR to the following:

.DATA?

SECTOR DB 8192 DUP (?)

There are two changes here. First, there is a ? after the .DATA directive, which
tells the assembler we're about to define variables that don’t have initial values
and, therefore, don’t need to take space in the disk file. Second there is a ?
rather than a 0 for the value of each byte in SECTOR. The DUP (?) tells the
assembler that we don’t care what value each byte has.

Note: You need to define variables in the .DATA? section
with DUP (?). If you define any variables with a value (such as
VAR DB 0), or if you use VAR DB ?, the assembler will reserve
room in the .EXE file for all the variables in .DATA?. In other
words, put all the variables that have initial values into
.DATA, and all variables with DUP (?) in .DATA?.

After making these changes, rebuild Disk_io.exe. It should now be only 729

bytes long. The DATA? directive allows us to keep our programs quite small on
the disk.

168 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

We’ll come back later to add more to Disk io; we have enough for now. In the
next chapter, we’ll build a nicer sector display by adding some graphics charac-
ters to the display, and then adding a few more pieces of information.

Summary

Now that we have four different source files, Dskpatch is becoming some-
what more involved. In this chapter, we looked at the program Make, which
helps make life simpler by assembling only the files we’ve changed.

We also wrote a new procedure, READ_SECTOR. It’s in a different source
file from SECTOR, so we used an EXTRN definition in DISK_I0.ASM to tell
the assembler about SECTOR and let it know that SECTOR is a byte variable.

We also learned about the LEA (Load Effective Address) instruction, which
we used to load the address of SECTOR into the BX register.

DISK_IO uses a new INT number, INT 25h, to read sectors from a disk to
memory. We used INT 25h to read one sector into our memory variable, SEC-
TOR, so we could dump it on the screen with DISP_HALF_SECTOR.

We also learned about the POPF instruction to pop a word off the stack and
into the status register. We used this instruction to remove the flags which
DOS didn’t remove from the stack when it returned from INT 25h.

Our half-sector display isn’t very attractive yet, in the next chapter we’ll use
some of the graphics characters available on the IBM PC to make it more aes-
thetically pleasing.

170 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

We’ve come to the last chapter in Part II. Everything we’ve done so far has
been applicable to MS-DOS and the 8088 (or the 8086, 80286, and so on). In
Part III, we’ll begin to write procedures that work more closely with your com-
puter’s screen.

But before we move on, we’ll use this chapter to add several more proce-
dures to Video_io. We'll also modify DISP_LINE in Disp_sec. All our modifi-
cations and additions will be to the display. Most of them will be to improve
the appearance of the display, but one will add new information: It will add
numbers on the left that act like the addresses in Debug’s dump. Let’s begin
with graphics.

Adding Graphics Characters

The IBM Personal Computer has a number of line-drawing characters we can
use to draw boxes around various parts of our dump display. We’ll draw one box
around the hex dump, and another around the ASCII dump. This change
requires very little thought, just work.

Enter the following definitions near the top of the file DISP_SEC.ASM,
between the MODEL directive and the .DATA? directive, leaving one or two
blank lines before and after these definitions:

Listing 16-1. Add to the Top of DISP_SEC.ASM

; Graphics characters for border of sector.

>
VERTICRL_BAR EQU 0BAh

HORIZONTRL_BAR EQU OCDh
UPPER_LEFT EQU 0C9h
UPPER_RIGHT EQU 0BBh
LOWER_LEFT EQU 0C8h
LOWER_RIGHT EQU 0BCh
TOP_T_BAR EQU 0CBh
BOTTOM_T_BAR EQU "0CRh
TOP_TICK EQU dD1h
BOTTOM_TICK EQU OCFh

These are the definitions for the graphics characters. Note that we put a zero
before each hex number so the assembler will know these are numbers, rather
than labels.

We could just as easily have written hex numbers instead of these definitions
in our procedure, but the definitions make the procedure easier to understand.
For example, compare the following two instructions:

MOV DL,VERTICAL_BAR

MOV DL,0BAh

Enhancing the Sector Display 1717

Most people find the first instruction clearer.

Now, here is the new DISP_LINE procedure to separate the different parts of
the display with the VERTICAL_BAR character, number 186 (0BAh). As
before, additions are shown against a gray background:

Listing 16-2. Changes to DISP_LINE in DISP_SEC.ASM

DISP_LINE
PUSH
PUSH
PUSH
MOV

MOV
CaLL
MOV
CALL
(o)}
CALL

MOV
PUSH
HEX_LOOP:
MOV
CALL
MOV
CALL
INC
LOOP

MOV
CALL
MOV
CALL

MOV
POP
ASCII_LOOP:
MOV
CALL
INC
LOOP
MOV
CALL
. MOV
CALL

POP
POP
POP
RET
DISP_LINE

DL,' !
WRITE_CHAR
DL,VERTICAL_BAR
WRITE_CBAR

DL,' !
WRITE_CHAR

CX,16
BX

DL,SECTOR([BX]
WRITE_HEX
Dty 0 47
WRITE_CHAR

BX

HEX_LOOP

DL, VERTICAL_BAR
WRITE_CHAR

DL, "' !
WRITE_CHAR

CX, 16
BX

DL, SECTORI[BX]
WRITE_CHAR

BX

ASCII_LOOP

iegy 0 20
WRITE_CHAR
DL,VERTICAL_BAR
WRITE_CHAR

DX
(09,6
BX

ENDP

;0ffset is more useful in BX
;Hrite separator

;braw left side of box

yNow write out 1t bytes

;Dump 1& bytes

;Save the offset for ASCII_LOOP
;Get 1 byte

;Dump this byte in hex
;Hrite a space between numbers

;Write separator

;Bdd another space before characters

;Get back offset into SECTOR

;Draw right side of box

Assemble this new version of Disp_sec and link your four files (remember to
place Disk _io first in the list of files following the LINK command). You’ll see
nice double bars separating the display into two parts, as you can see in Figure

16-1.

172 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Axdisk_io
EB 28
82 78

MOQS

00~ == 0
EEIBI2RBIELIITIS
SEERETEISIRIRIES
BE3ITEVTSSBIBII[/D
LTI IBI=LI=IS&
SHEBSSI8s3ITBII|S
20BN TZEIIN
FTSITESTSEBIV2IY
S8R BIFTIBS3IIIH
SRR ERERITRTI[/
SS332EUBazSTRILS
HERBRDE oI FRLES
FAEBE8R2IIBIBIII
SN ZTEIBIRIIEI2
BITITIREEEBRIBEI

4
Il
U\~

REBE58RsR33mES

A>

Figure 16-1. Adding Vertical Bars.

Adding Addresses to the Display

Now let’s try something a bit more challenging: Let’s add the hex addresses
down the left side of the display. These numbers will be the offset from the
beginning of the sector, so the first number will be 00, the next 10, then 20, and
so on.

The process is fairly simple, since we already have the procedure
WRITE_HEX for writing a number in hex. But we do have a problem in dealing
with a sector 512 bytes long: WRITE_HEX prints only two-digit hex numbers,
whereas we need three hex digits for numbers greater than 255.

Here’s the solution. Since our numbers will be between zero and 511 (Oh to
1FFh), the first digit will either be a space, if the number (such as BCh) is below
100h, or it will be a 1. So, if the number is larger than 255, we’ll simply print a
1, followed by the hex number for the lower byte. Otherwise, we’ll print a space
first. These are the additions to DISP_LINE that will print this leading three-
digit hex number:

Listing 16-3. Additions to DISP_LINE in DISP_SEC.ASM

DISP_LINE PROC
PUSH BX
PUSH CX
PUOSH DX
MOV BX,DX ;0ffset is more useful in BX

KoV DL,® !

Enhancing the Sector Display 173

;Arite offset in hex

CcHP BX,100h ;Is the first digit a 1?

JB WRITE_ONE ;No, white space already in DL

MOV DL,'1! ;Yes, then place '1i' into DL for output
WRITE_ONE:

CALL WRITE_CHAR

MOV DL,BL ;Copy lower byte into DL for hex output

CALL WRITE_HEX
;Write separator

MOV DL,' !

CALL WRITE_CHAR

MOV DL,VERTICAL_BAR ;Draw left side of box
A>disk_io

@0 || EB 28 9@ 49 42 4D 28 26 33 2E 32 @@ 82 82 01 8@ || o(EIBM 3.2.....
10 | @2 70 @@ D6 62 FD B2 A B9 PP 62 @0 06 6@ @0 B8 | .p.L.2..........
20 | 00 @@ @0 BG @G PG PP O 0@ 0@ FA C4 5C 88 33 ED | -\ 3¢
30 || B8 Co @7 BE D8 33 C9 88 16 FD @1 BA D2 79 BA 89 || 1 L.A+378.%. .1v.8
48 (| 1E 1C 0@ BC @6 1E 8@ B1 62 8E CS5 8E DS BC 68 7C i...L ﬁTﬁ
5@ || FC 1E 36 C5 36 78 @ BF 2A 7C B9 @B 8@ F3 A4 1F "Hﬁx1*|

68 || C6 86 2E @@ @F BF 78 @@ B8 2A 7C AB 91 AB FB 8A | F... wwM&
70 || 16 FD 81 CD 13 A@ 10 0@ 98 F7 26 16 8@ @3 @6 OE .2.= 3.2, ...,
80 || 80 E8 73 @@ E8 79 80 BB 00 85 53 E8 AR @@ SF BE || .3s.dy.7..S%a. 4
9@ || 74 81 B9 @B @@ 9@ F3 A6 75 57 83 C7 15 B1 @B 9@ ﬂ ﬁ<auuau 3 ﬁ
fB || 98 F3 AB 75 dC 26 8B 47 1C 99 8B OE @B 0@ 83 C1 | E<AuL&i6.0i...

BA || 48 F7 F1 3D 14 0@ 7F 82 BA 14 96 A1 11 88 B1 B4 || Hz:=..s.0.0d..
Co || D3 E8 E8 32 @@ FF 36 1C @A C4 1E 7@ @1 E8 30 @@ || '32. 6..-.p. 3.

D@ || E8 5B 8@ 2B F@ 76 @D E8 1D 0@ 52 F7 26 @B 88 @3 || &[.+=v...R=8..

E@ | D8 SA EB E9 SB 8A 2E 15 88 BA 16 FD @1 FF 2E 78 | i26el&...e.?. .p
F@ || 81 BE 8B @1 EB 54 94 @1 66 1C 6@ 11 2E 1E @@ C3 || .41.6TE........ F

A>

Figure 16-2. Adding Numbers on the Left.

You can see the result in Figure 16-2.

We're getting closer to our full display. But on the screen, our display isn’t
quite centered. We need to move it to the right by about three spaces. Let’s
make this one last change; then we’ll have our finished version of DISP_LINE.

We could make the change by calling WRITE_CHAR three times with a
space character, but we won'’t. Instead, we’ll add another procedure, called
WRITE_CHAR_N_TIMES, to Video_io. As its name implies, this procedure
writes one character N times. That is, we place the number N into the CX regis-
ter and the character code into DL, and we call WRITE_CHAR_N_TIMES to
write N copies of the character whose ASCII code we placed in DL. Thus, we’ll
be able to write three spaces by placing 3 into CX and 20h (the ASCII code for a
space) into DL.

Here’s the procedure to add to VIDEO_IO.ASM:

174 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Listing 16-4. Add this Procedure to VIDEO_IO.ASM

PUBLIC

WRITE_CHAR_N_TIMES

This procedure writes more than one copy of a character

L]
; On entry: DL Character code
B CX Number of times to write the character
L]
; Uses WRITE_CHAR
WRITE_CHAR_N_TIMES PROC

PUSH CX
N_TIMES:

CARLL WRITE_CHAR

LOOP N_TIMES

POP CX

RET
WRITE_CHAR_N_TIMES ENDP

You can see how simple this procedure is, since we already have
WRITE_CHAR. If you're wondering why we bothered to write a procedure for
something so simple, it’s because our program Dskpatch is much clearer when
we call WRITE_CHAR_N_TIMES, rather than write a short loop to print mul-

tiple copies of a character. Besides, we’ll find use for this procedure several

times again.

Here are the changes to DISP_LINE to add three spaces on the left of our dis-

play. Make the changes to DISP_SEC.ASM:

Listing 16-5. Changes to DISP_LINE in DISP_SEC.ASM

PUBLIC
EXTRN
EXTRN
EXTRN

DISP_LINE
WRITE_HEX:PROC
WRITE_CHAR:PROC
WRITE_CHAR_N_TIXES:PRCC

On entry:

Uses:
Reads:

This procedure displays one line of data, or 1k bytes, first in hex,
then in ASCII.

DS:DX Offset into sector, in bytes

WRITE_CHAR, WRITE_HEX, WRITE_CHAR_K_TIMES
SECTOR

ISP_LINE
PUSH
PUSH
PUSH
MoV
MOV
KoV
CALL

CMP

JB

MOV
WRITE_ONE:

PROC
BX
EX
DX
BX, DX ;0ffset is more useful in BX
DL,|]
CX,3 ;Write 3 spaces before line
WBITE_CHRR_K_TIMES
;Write offset in hex

BX,100h ;Is the first digit a 1?
WRITE_ONE ;No, white space already in DL
DL, 'L’ ;Yes, then place 'l' into DL for output

we e me et we we we s

Enhancing the Sector Display 175

We made changes in three places. First, we had to add an EXTRN statement for
WRITE_CHAR_N_TIMES, because the procedure is in Video_io, and not in
this file. We also changed the comment block, to show that we use this new pro-
cedure. Our third change, the two lines that use WRITE_CHAR_N_TIMES, is
quite straightforward and needs no explanation.

Try this new version of our program to see how the display is now centered.
Next we’ll move on to add more features to our display—the top and bottom
lines of our boxes.

Adding Horizontal Lines

Adding horizontal lines to our display is not quite as simple as it sounds,
because we have a few special cases to think about. We have the ends, where
the lines must go around corners, and we also have T-shaped junctions at the
top and bottom of the division between the hex and ASCII windows.

We could write a long list of instructions (with WRITE_CHAR_N_TIMES) to
create our horizontal lines, but we won’t. We have a shorter way. We'll intro-
duce another procedure, called WRITE_PATTERN, which will write a pattern
on the screen. Then, all we’ll need is a small area of memory to hold a descrip-
tion of each pattern. Using this new procedure, we can also easily add tick
marks to subdivide the hex window, as you’ll see when we finish this section.

WRITE_PATTERN uses two entirely new instructions, LODSB and CLD.
We'll describe them after we see more about WRITE_PATTERN and how we
describe a pattern. Right now, enter this procedure into the file
VIDEO_IO.ASM:

Listing 16-6. Add This Procedure to VIDEO_IO.ASM

PUBLIC WRITE_PATTERN

’

; This procedure writes a line to the screen, based on data in the
; form

’

3 DB {character, number of times to write character}, O
; Where {x]} means that x can be repeated any number of times

; On entry: DS:DX Address of the pattern to draw
: Uses: WRITE_CHAR_N_TIMES
WRITE_PATTERN PROC
PUSH AX
PUSH CX
PUSH DX
PUSH ST
PUSHF ;Save the direction flag
CLD ;Set direction flag for increment
MOV SI,DX ;Move offset into SI register for LODSB

PATTERN_LOOP:

176 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Listing 16-6. continued

LODSB ;6et character data into AL
OR AL, AL ;Is it the end of data (Dh)?
Jz END_PATTERN ;Yes, return
MOV DL,AL ;No, set up to write character N times
LODSB ;Get the repeat count into AL
MOV CL,AL ;And put in CX for WRITE_CHAR_N_TIMES
XOR CH,CH ;Zero upper byte of CX
CALL WRITE_CHAR_N_TIMES
JMP PATTERN_LOOP
END_PATTERN:
POPF ;Restore direction flag
POP SI
pPOP DX
POP Cx
POP RX
RET

WRITE_PATTERN ENDP

Before we see how this procedure works, let’s see how to write data for pat-
terns. We'll place the data for the top-line pattern into the file Disp_sec, which
is where we’ll use it. To this end, we’ll add another procedure, called
INIT_SEC_DISP, to initialize the sector display by writing the half-sector dis-
play, then we’ll modify READ_SECTOR to call our INIT_SEC_DISP procedure.

First, place the following data before the .DATA? where we defined SECTOR
(in DISP_SEC.ASM):

Listing 16-7. Additions to DISP_SEC.ASM

.DATA
TOP_LINE_PATTERN LABEL BYTE
DB 0w, 7
DB UPPER_LEFT,1
DB HORIZONTAL_BAR,12
DB TOP_TICK,1
DB HORIZONTAL_BAR, 11
DB TOP_TICK,1
DB AORIZONTAL_BAR, 11
DB TOP_TICK,1
DB HORIZONTAL_BAaR,12
DB TOP_T_BAR,1
DB AORIZONTAL_BAR, 18
DB UPPER_RIGHT, 1
DB o
BOTTOM_LINE_PATTERN _ LABEL BYTE
DB v,
DB LOWER_LEFT, 1
DB HORIZONTAL_BAR, 12
DB BOTTOM_TICK, 1
DB HORIZONTAL_BAR, 11
DB BOTTOM_TICK,1
DB HORIZONTAL_BAR,11
DB BOTTOM_TICK,
DB HORIZONTAL_BAR,12
DB BOTTOM_T_BAR, 1
DB HORIZONTAL_BAR, 18
DB LOWER_RIGHT, 1
DB [¢]
.DATA?

SECTOR DB 8192 DUP (?)

Enhancing the Sector Display 177

(Note that we put all the new data into .DATA rather than .DATA? because we
need to set values for all these variables.)

Each DB statement contains part of the data for one line. The first byte is the
character to print; the second byte tells WRITE_PATTERN how many times to
repeat that character. For example, we start the top line with seven blank
spaces, followed by one upper-left corner character, followed by twelve horizon-
tal-bar characters, and so on. The last DB is a solitary hex zero, which marks
the end of the pattern.

Let’s continue our modifications and see the result before we discuss the
inner workings of WRITE_PATTERN. Here is the test version of
INIT_SEC_DISP. This procedure writes the top-line pattern, the half-sector
display, and finally the bottom-line pattern. Place it in the file
DISP_SEC.ASM, just before DISP_HALF_SECTOR:

Listing 16-8. Add This Procedure to DISP_SEC.ASM

PUBLIC INIT_SEC_DISP
EXTRN WRITE_PATTERN:PROC, SEND_CRLF:PROC

This procedure initializes the half-sector display.

; Uses: WRITE_PATTERN, SEND_CRLF, DISP_HALF_SECTOR
; Reads: TOP_LINE_PATTERN, BOTTOM_LINE_PATTERN

INIT_SEC_DISP PROC
PUSH DX
LEA DX,TOP_LINE_PATTERN
CALL WRITE_PATTERN
CALL SEND_CRLF

XOR DX,DX ;Start at the beginning of the sector
CALL DISP_HALF_SECTOR

LEA DX,BOTTOM_LINE_PATTERN

CALL WRITE_PATTERN

POP DX

RET

INIT_SEC_DISP ENDP

We used the LEA instruction to load an address into the DX register, thus
WRITE_PATTERN knows where to find the pattern data.

Finally, we need to make a small change to READ_SECTOR in the file
DISK_10.ASM, to call INIT_SECTOR_DISP, rather than
WRITE_HALF_SECTOR_DISP, so that a full box will be drawn around our
half-sector display:

Listing 16-9. Changes to READ_SECTOR in DISK_IO.ASM

EXTRN INIT_SEC_DISP:PROC

; This procedure reads the first sector on disk A and dumps the first
; half of this sector.

178 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Listing 16-9. continued

READ_SECTOR
MOV
MOV

MOV
MOV
MOV
LER
INT
POPF

XOR

PROC
RX,DGROUP
DS, AX

AL,0

CX,1

DX,0
BX,SECTOR
25h

ny ny

;Put data segment into AX
;Set DS to point to data

;Disk drive B (number 0)

;Read only 1 sector

;Read sector number O

;Where to store this sector

;Read the sector

;Discard flags put on stack by DOS

Sat ffcet to O within SECTOR-

CALL

MOV
INT
READ_SECTOR

INIT_SEC_DISP

RH,4Ch
21h
ENDP

T

;Duep the first half

;Return to DOS

That’s all we need to write the top and bottom lines for our sector display.
Assemble and link all these files (remember to assemble the three files we
changed), and give it a try. Figure 16-3 shows the output we now have.

Let’s see how WRITE_PATTERN works. As mentioned, it uses two new
instructions. LODSB stands for Load String Byte, and it is one of the string
instructions: specially designed instructions that work with strings of charac-
ters. That’s not quite what we’re doing here, but the 8088 doesn’t care whethe:
we're dealing with a string of characters or just numbers, so LODSB suits om
purposes just fine.

LODSB moves (loads) a single byte into the AL register from the memory
location given by DS:SI, a register pair we haven’t used before. (We already sef

A>disk_io
B8 | EB 28 98 49 42 4D 28 28 33 2F 32 86 82 B2 81 @8 | (EiBH 3.2.....
10 | 82 70 6@ DB B2 FD B2 96 A3 88 62 06 08 88 88 88 | .p.L1.%..........
26 | 66 00 6B 60 0P B0 BB B6 BB BA FA C4 SC @8 33 ED | -\.3¢
30 | B8 CO 87 BE DB 33 C3 88 16 FD B1 BA D2 79 BA 89 | 3 L.A43£.2. .qv.é
48 | 1E 1C @@ 8C @6 1E 8@ B1 B2 8E C5 8E DS BC 88 7C ‘ifnj-ﬁ,ill
58 | FC 1E 36 C5 36 78 88 BF 2A 7C B9 @B 88 F3 A4 1F | N.646x.q*1i.. 4.
68 | C6 B6 2E @@ BF BF 78 @@ B8 2A 7C AB 91 AB FB B8R | k....1x.3*i%zkle |
78 || 16 FD 81 CD 13 A@ 18 @B 98 F7 26 16 8@ 83 86 BE | .2.=.3..y=3.....
89 | 88 ES 73 8@ E8 79 P8 BB B8 85 53 EB A@ B@ SF BE Js.8y.q..8%3.
98 || 74 81 B9 BB 8@ 98 F3 A6 75 57 83 C7 15 B1 @B 98 | t.J..E<auda}. k£
AB || 98 F3 A6 75 4C 26 8B 47 1C 99 8B OE BB 8@ B3 C1 | E<3ul8iC.6i....t
BA || 48 F7 F1 3D 14 @@ 7F 62 BB 14 96 A1 11 @8 B1 B4 zs=,.a.5.01. .}
Co || D3 E8 E8 32 8@ FF 36 1C B@ C4 1E 76 @1 EB 38 @8 | '3%2. 6..-.p.%@.
D@ || E8 5B 86 2B F@ 76 BD EB 1D 8@ 52 F7 26 OB 00 83 || & .+=v.§..R=4...
E8 || DB 5A EB E9 SB 8A 2E 15 @8 8A 16 FD @1 FF 2E 78 | +2dele...e.%. .p
F@ || 61 BE 8B BllEB 24 90 81|86 1C 68 11'22 1E 88 C3 || Ji.6TE........ b

f>_

Figure 16-3. The Display with Closed Boxes.

Enhancing the Sector Display 779

DS in READ_SECTOR to point to our data.) And, before the LODSB instruc-
tion, we moved the offset into the SI register with the instruction MOV SI,DX.

The LODSB instruction is somewhat like the MOV instruction, but more
powerful. With one LODSB instruction, the 8088 moves one byte into the AL
register and then either increments or decrements the SI register. Increment-
ing the SI register points to the following byte in memory; decrementing the
register points to the previous byte in memory.

The former (incrementing) is exactly what we want to do. We want to go
through the pattern, one byte at a time, starting at the beginning, and that is
what our LODSB instruction does, because we used the other new instruction,
CLD (Clear Direction Flag) to clear the direction flag. If we had set the direction
flag, the LODSB instruction would decrement the SI register, instead. We’ll
use the LODSB instruction in a few other places in Dskpatch, always with the
direction flag cleared, to increment.

Aside from LODSB and CLD, note that we also used the PUSHF and POPF
instructions to save and restore the flag register. We did this just in case we

later decide to use the direction flag in a procedure that calls
WRITE_PATTERN.

Adding Numbers to the Display

We're almost through with Part II of this book now. We’'ll create one more
procedure, then we’ll move on to Part III, and bigger and better things.

Right now, notice that our display lacks a row of numbers across the top.
Such numbers—~00 01 02 03 and so forth—would allow us to sight down the col-
umns to find the address for any byte. So, let’s write a procedure to print this
row of numbers. Add this procedure, WRITE_TOP_HEX_NUMBERS, to
DISP_SEC.ASM, just after INIT_SEC_DISP:

Listing 16-10. Add This Procedure to DISP_SEC.ASM

EXTRN WRITE_CHAR_N_TIMES:PROC, WRITE_HEX:PROC, WRITE_CHAR:PROC
EXTRN WRITE_HEX_DIGIT:PROC, SEND_CRLF:PROC

; This procedure writes the index numbers (0 through F) at the top of
; the half-sector display.

; Uses: WRITE_CHAR_N_TIMES, WRITE_HEX, WRITE_CHAR
g WRITE_HEX_DIGIT, SEND_CRLF

WRITE_TOP_HEX_NUMBERS PROC

PUSH cX
PUSH DX
MoV DL,' ! ;Write 9 spaces for left side

MOV cx,9q
CALL WRITE_CHAR_N_TIMES
XOR DH,DH ;Start with O

180 Peter Norton’

s Assembly Language Book for the IBM PC, Revised & Expanded

Listing 16-10. continued

HEX_NUMBER_LOOP:

MOV
CALL
MOV
CALL

INC

CMP

JB

MOV
MOV
CALL
XOR
HEX_DIGIT_LOOP:

CALL
INC
CHMP
JB
CALL
POP
POP
RET

DL,DH

WRITE_HEX

DL,' !

WRITE_CHAR

DH

DH,10h ;Done yet?
HEX_NUMBER_LOOP

DL,' ! ;Write hex numbers over ASCII window
CX 2

WRITE_CHAR_N_TIMES

DL,DL

WRITE_HEX_DIGIT
DL

DL,10h
HEX_DIGIT_LOOP
SEND_CRLF

DX

CX

WRITE_TOP_HEX_NUMBERS ENDP

Modify INIT_SEC_DISP (also in DISP_SEC.ASM) as follows, so it calls
WRITE_TOP_HEX NUMBERS before it writes the rest of the half-sector dis-

play:

Listing 16-11. Changes to INIT_SEC_DISP in DISP_SEC.ASM

Uses:

Reads:

WRITE_PATTERN, SEND_CRLF, DISP_HALF_SECTOR
WRITE_TOP_BEX_NUMBERS
TOP_LINE_PATTERN, BOTTOM_LINE_PRTTERN

[R

NIT_SEC_DISP
PUSH
CALL
LEA
CALL
CRLL
XOR
CALL
LEA
CRLL
POP
RET

INIT_SEC_DISP

PROC

DX
WRITE_TOP_HEX_NUMBERS
DX,TOP_LINE_PATTERN
WRITE_PATTERN
SEND_CRLF

DX, DX ;Start at the beginning of the sector
DISP_HALF_SECTOR
DX,BOTTOM_LINE_PATTERN
WRITE_PATTERN

DX

ENDP

Now we have a complete half-sector display, as you can see in Figure 16-4.
There are still some differences between this display and the final version.
We’ll change WRITE_CHAR so it will print all 256 characters the IBM PC

can display, and

then we’ll clear the screen and center this display vertically,

using the ROM BIOS routines inside the IBM Personal Computer. We’ll do

that next.

Enhancing the Sector Display 787

A>disk_io
00 61 B2 A3 A4 B5 A6 A7 B8 B9 6A BB AC 6D GE OF ©B123456789ABCDEF

P | EB 28 99 49 42 4D 20 20 33 2E 32 08 62 02 81 A8 | A(EIBM 3.2.....
10 || 82 70 @8 D@ @2 FD @2 0@ B9 9@ B2 69 @6 69 A 8O | .p.L.0..........
20 | 9@ 6O B9 PG BP BO 6@ 6O PG PR FA C4 5C B8 33 ED | -\.3g
36 | B8 CB 87 SE DB 33 C9 88 16 FD @1 A D2 79 BA 89 | q L.Ak3

48 | 1E 1C 9@ 8C @6 1E 8@ B1 82 8E C5 SE D5 BC 80 7C | .

58 | FC {E 36 CS 36 78 8@ BF 27 7C B9 @B 80 F3 Ad 1F Il N,
68 | C6 06 2E @@ BF BF 78 0B B8 2A 7C AB 91 AB FB 8A | F...
70 | 16 FD 81 CD 13 AB 19 @@ 98 F7 26 16 80 03 86 OF .2.=.
89 | B9 ES 73 08 ES 79 60 BB 00 05 53 E8 AG 00 SF BE | .fs.by.q..S04, 4
98 | 74 81 BY BB @9 98 F3 A6 75 57 83 C7 15 B1 @B 98 | t.1. ﬁ<auuau ﬁ ;
AB | 98 F3 AG 75 4C 26 8B 47 1C 99 8B OE 6B 89 63 C1 | ECAuL&iC i

BB | 48 F7 F1 3D 14 08 7F 82 BO 14 96 A1 11 08 B1 B4 | Hze=..a.%,
CO | D3 EG E8 32 08 FF 36 1C 86 C4 1E 70 61 ES 36 06 || 382, 6..-.p.30.
D | ES 5B @@ 2B F@ 76 6D ES 1D @8 52 F7 26 OB 80 83 || & .+=v.3. m4

E@ || D8 5A EB E9 5B 8A 2E 15 @@ 8A 16 FD @1 FF 2E 7@ || $2dele. .. .p
F@ || 81 BE 8B BllEB 54 99 81186 iC 08 11L2E 1E 08 C3 || .47.0TE........ F
A>_
Figure 16-4. A Complete Half Sector Display.
Summary

We’ve done a lot of building on our Dskpatch program, adding new proce-
dures, changing old ones, and moving from one source file to another. From now
on, if you find yourself losing track of what you're doing, refer to the complete
listing of Dskpatch in Appendix B. The listing there is the final version, but
you’ll probably see enough resemblances to help you along.

Most of our changes in this chapter didn’t rely on tricks, just hard work. But
we did learn two new instructions: LODSB and CLD. LODSB is one of the
string instructions that allows us to use one instruction to do the work of sev-
eral. We used LODSB in WRITE_PATTERN to read consecutive bytes from the
pattern table, always loading a new byte into the AL register. CLD clears the
direction flag, which sets the direction for increment. Each following LODSB
instruction loads the next byte from memory.

In the next part of this book, we’ll learn about the IBM PC’s ROM BIOS rou-
tines. They will save us a lot of time.

186 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Inside your IBM Personal Computer are some computer chips, or ICs (Inte-
grated Circuits), known as ROMs (Read-Only Memory). One of these ROMs
contains a number of routines, very much like procedures, that provide all the
basic routines for doing input and output to several different parts of your IBM
PC. Because this ROM provides routines for performing input and output at a
very low level, it is frequently referred to as the BIOS, for Basic Input Output
System. DOS uses the ROM BIOS for such activities as sending characters to
the screen and reading and writing to the disk, and we'’re free to use the ROM
BIOS routines in our programs.

We'll concentrate on the BIOS routines we need for Dskpatch. Among them
is a set for video display, which includes a number of functions we couldn’t oth-
erwise reach without working directly with the hardware—a very difficult job.

VIDEO_IO, the ROM BIOS Routines

We refer to the elements of the ROM BIOS as routines to distinguish them
from procedures. We use procedures with a CALL instruction, whereas we call
routines with INT instructions, not CALLs. We’ll use an INT 10h instruction,
for example, to call the video I/O routines, just as we used an INT 21h instruc-
tion to call routines in DOS.

Specifically, INT 10h calls the routine VIDEO_IO in the ROM BIOS. Other
numbers call other routines, but we won’t see any of them; VIDEO_IO provides
all the functions we need outside of DOS. (Just for your information, however,
DOS calls one of the other ROM BIOS routines when we ask for a sector from
the disk.)

In this chapter, we’ll use ROM BIOS routines to add two new procedures to
Dskpatch: one to clear the screen, and the other to move the cursor to any
screen location we choose. Both are very useful functions, but neither is avail-
able directly through DOS. Hence, we’ll use the ROM BIOS routines to do the
job. Later, we’ll see even more interesting things we can do with these ROM
routines, but let’s begin by using INT 10h to clear the screen before we display
our half sector.

The INT 10h instruction is our entry to a number of different functions.
Recall that, when we used the DOS INT 21h instruction, we selected a particu-
lar function by placing its function number in the AH register. We select a
VIDEO_IO function in just the same way: by placing the appropriate function
number in the AH register (a full list of these functions is given in Table 17-1).

(AH)=0

(AH)=1

(AH)=2

The ROM BIOS Routines 187

Table 17-1. INT 10h Functions

Set the display mode. The AL register contains the mode

number.

(AL)=0
(AL)=1
(AL)=2
(AL)=3
(AL)=7

(AL)=4
(AL)=5
(AL)=6

TEXT MODES

40 by 25, black and white mode

40 by 25, color

80 by 25, black and white

80 by 25, color

80 by 25, monochrome display adapter

GRAPHICS MODE

320 by 200, color
320 by 200, black and white
640 by 200, black and white

Set the cursor size.

(CH)

(CL)

Starting scan line of the cursor. The top line is
0 on both the monochrome and color graphics
displays, while the bottom line is 7 for the
color graphics adapter and 13 for the
monochrome adapter. Valid range: 0 to 31.
Last scan line of the cursor.

The power-on setting for the color graphics adapter is
CH =6 and CL="7. For the monochrome display: CH=11

and CL=12.

Set the cursor position.

(DH,DL)

Row, column of new cursor position; the upper
left corner is (0,0).

188 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Table 17-1. continued

(AH)=3

(AH)=4

(AH)=5

(AH)=6

(AH)=7

(BH) Page number. This is the number of the
display page. The color-graphics adapter has
room for several display pages, but most
programs use page 0.

Read the cursor position.

(BH) Page number
On exit (DH,DL) Row, column of cursor
(CH,CL) Cursor size

Read light pen position (see Tech. Ref. Man.).

Select active display page.

(AL) New page number (from 0 to 7 for modes 0 and
1; from O to 3 for modes 2 and 3)

Scroll up.

(AL) Number of lines to blank at the bottom of the
window. Normal scrolling blanks one line. Set
to zero to blank entire window.

(CH,CL) Row, column of upper, left corner of window

(DH,DL) Row, column of lower, right corner of window

(BH) Display attribute to use for blank lines

Scroll down.

Same as scroll up (function 6), but lines are left blank at
the top of the window instead of the bottom

(AH)=8
(AH)=9
(AH)=10
(AH)=11t013
(AH)=14
(AH)=15

The ROM BIOS Routines 189

Read attribute and character under the cursor.

(BH) Display page (text modes only)
(AL) Character read
(AH) Attribute of character read (text modes only)

Write attribute and character under the cursor.

(BH) Display page (text modes only)

(CX) Number of times to write character and
attribute on screen

(AL) Character to write

(BL) Attribute to write

Write character under cursor (with normal attribute).

(BH) Display page
(CX) Number of times to write characte:
(AL) Character to write

Various graphics functions. (See Tech. Ref. Man. for the
details)

Write teletype. Write one character to the screen and
move the cursor to the next position.

(AL) Character to write
(BL) Color of character (graphics mode only)
(BH) Display page (text mode)

Return current video state.

(AL) Display mode currently set
(AH) Number of characters per line
(BH) Active display pages

190 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Clearing the Screen

We'll use the INT 10h function number 6, SCROLL ACTIVE PAGE UP, to
clear the screen. We don’t actually want to scroll the screen, but this function
also doubles as a clear-screen function. Here is the procedure; enter it into the

file CURSOR.ASM:

Listing 17-1. Add This Procedure to CURSOR.ASM

PUBLIC CLEAR_SCREEN

;
; This procedure clears the entire screen.

CLEAR_SCREEN PROC

PUSH RX

PUSH BX

PUSH CX

PUSH DX

XOR ARG ;Blank entire window

XOR CX,CX ;Upper left corner is at (0,0)
MOV DH, 24 ;Bottom line of screen is line 24
MOV DL, 7?9 ;Right side is at column 79

MOV BH,? ;Use normal attribute for blanks
MOV RH,& ;Call for SCROLL-UP function

INT 10h ;Clear the window

POP DX

POP CX

POP BX

POP RX

RET

CLEAR_SCREEN ENDP

It appears that INT 10h function number 6 needs quite a lot of information,
even though all we want to do is clear the display. This function is rather pow-
erful: It can actually clear any rectangular part of the screen—window, as it’s
called. We have to set the window to the entire screen by setting the first and
last lines to 0 and 24, and setting the columns to 0 and 79. The routines we are
using here can also clear the screen to all white (for use with black characters),
or all black (for use with white characters). We want the latter, and that is wnat
1s specified with the instruction MOV BH,7. Then, too, setting AL to O, the
number of lines to scroll, tells this routine to clear the window, rather than to
scroll it.

Now we need to modify our test procedure, READ_SECTOR, to call
CLEAR_SCREEN just before it starts to write the sector display. We didn’t
place this CALL in INIT_SEC_DISP, because we’ll want to use
INIT_SEC_DISP to rewrite just the half-sector display, without affecting the
rest of the screen.

To modify READ_SECTOR, add an EXTRN declaration for
CLEAR_SCREEN and insert the CALL to CLEAR_SCREEN. Make the follow-
ing changes in the file DISK_I0.ASM:

The ROM BIOS Routines 197

Listing 17-2. Changes to READ_SECTOR in DISK_10.ASM

EXTRN INIT_SBC_DISP:PROC, CLEAR_SCREEN:PROC
This procedure reads the first sector on disk A and dumps the first
half of this sector.

T

EAD_SECTOR PROC
MOV RX,DGROUP ;Put data segment into AX
MOV DS,RX ;Set DS to point to data
MOV AL,O ;Disk drive A (number 0)
MOV CX,1 ;Read only 1 sector
MoV bDX,0 ;Read sector number O
LERA BX,SECTOR ;Where to store this sector
INT 25h ;Read the sector
POPF ;Discard flags put on stack by DOS
CALL CLEAR_SCRERN
CALL INIT_SEC_DISP ;Dump the first half
MOV AH,4Ch ;Return to DOS
INT 2lh

READ_SECTOR ENDP

Just before you run the new version of Disk_io, note where the cursor is located.
Then, run Disk_io. The screen will clear, and Disk_io will start writing the half
sector display wherever the cursor happened to be before you ran the pro-
gram—probably at the bottom of the screen.

Even though we cleared the screen, we didn’t mention anything about mov-
ing the cursor back to the top. In BASIC, the CLS command clears the screen in
two steps: It clears the screen, then it moves the cursor to the top of the screen.
Our procedure doesn’t do that; we’ll have to move the cursor ourselves.

Moving the Cursor

The INT 10h function number 2 sets the cursor position in much the same
way BASIC’s LOCATE statement does. We can use GOTO_XY to move the cur-
sor anywhere on the screen (such as to the top after a clear). Enter this proce-
dure into the file CURSOR.ASM:

Listing 17-3. Add This Procedure to CURSOR.ASM

PUBLIC GOTO_XY

This procedure moves the cursor

On entry: DH Row (Y)
DL Column (X)
GOTO_XY PROC
PUSH RX
PUSH BX
MoV BH,0 ;Display page O
MoV RR,2 ;Call for SET CURSOR POSITION

INT 10h

Iy XY

192 peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Listing 17-3. continued

POP BX
POP AX
RET

GOTO_XY ENDP

We’ll use GOTO_XY in arevised version of INIT_SEC_DISP to move the cur-
sor to the second line just before we write the half-sector display. Here are the
modifications to INIT_SEC_DISP in DISP_SEC.ASM:

Listing 174. Changes to INIT_SEC_DISP in DISP_SEC.ASM

PUBLIC INIT_SEC_DISP
EXTRN WRITE_PATTERN:PROC, SEND_CRLF:PROC
EXTRF GOTO_XY:PROC

This procedure initializes the half-sector display.

; Uses: WRITE_PATTERN, SEND_CRLF, DISP_HALF_SECTOR ;
; FRITE_TOP_BEX_NUMBERS, GOTO_XY H
; Reads: TOP_LINE_PATTERN, BOTTOM_LINE_PATTERN :

INIT_SEC_DISP PROC
PUSH DX

XOR DL.DL ;Move cursor into position at begimning
%oV DH,2 ;of 3réd line

CALL GOTO_XY B
CALL WRITE_TOP_HEX_NUMBERS

LEA DX,TOP_LINE_PATTERN

If you try it now, you’ll see that the half-sector display is nicely centered.

As you can see now, it’s easy to work with the screen when we have the ROM
BIOS routines. In the next chapter, we’ll use another routine in the ROM BIOS
to improve WRITE_CHAR, so that it will write any character to the screen. But
before we continue, let’s make some other changes to our program, then finish
up with a procedure called WRITE_HEADER, which will write a status line at
the top of the screen, to show the current disk drive and sector number.

Rewiring Variable Usage

There is much that we need to revamp before we create WRITE_HEADER.
Many of our procedures, as they are now, have numbers hard-wired into them;
for example, READ_SECTOR reads sector 0 on drive A. We want to place the
disk-drive and sector numbers into memory variables, so more than one proce-
dure can read them.

The ROM BIOS Routines 7193

We'll need to change these procedures so they’ll use memory variables, but
let’s begin by putting all memory variables into one file, DSKPATCH.ASM, to
make our work simpler. Dskpatch.asm will be the first file in our program
Dskpatch, so the memory variables will be easy to find there. Here is
DSKPATCH.ASM, complete with a long list of memory variables:

Listing 17-5. The New File DSKPATCH.ASM
DOSSEG
.MODEL SMALL
.STACK
.DATA

PUBLIC SECTOR_OFFSET

SECTOR_OFFSET is the offset of the half-
sector display into the full sector. It must
be a multiple of 1t, and not greater than 256

Ulwe wo wo wo e

ECTOR_OFFSET DW 0

PUBLIC CURRENT_SECTOR_NO, DISK_DRIVE_NO
CURRENT_SECTOR_NO DW 0] ;Initially sector O
DISK_DRIVE_NO DB 0 ;Initially Drive A:

PUBLIC LINES_BEFORE_SECTOR, HEADER_LINE_NO
PUBLIC HEADER_PART_1, HEADER_PART_?2
; LINES_BEFORE_SECTOR is the number of lines
; at the top of the screen before the half-

sector display.

LINES_BEFORE_SECTOR DB 2

HEADER_LINE_NO DB 0

HEADER_PART_1 DB 'Disk !',0
HEADER_PART_Z DB ! Sector ',0
.DATA?

PUBLIC SECTOR

; The entire sector (up to 8192 bytes) is
; stored in this part of memory.

SECTOR DB 8192 DUP (?)

.CODE
EXTRN CLEAR_SCREEN:PROC, READ_SECTOR:PROC
EXTRN INIT_SEC_DISP:PROC

DISK_PATCH PROC
MOV AX,DGROUP ;Put data segment into AX
MOV DS, RX ;Set DS to point to data

CALL CLEAR_SCREEN
CALL READ_SECTOR
CALL INIT_SEC_DISP

MOV AH,4Ch ;Return to DOS
INT <2ih
DISK_PATCH ENDP

END DISK_PATCH

194 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

The main procedure, DISK_PATCH, calls three other procedures. We've seen
them all before, soon we’ll rewrite both READ_SECTOR and INIT_SEC_DISP
to use the variables just placed into the data segment.

Before we can use Dskpatch, we need to modify Disp_sec, to replace the defi-
nition of SECTOR with an EXTRN. We also need to alter Disk_io, to change
READ_SECTOR into an ordinary procedure we can call from Dskpatch.

Let’s take SECTOR first. Since we've placed it in DSKPATCH.ASM as a
memory variable, we need to change the definition of SECTOR in Disp_sec to
an EXTRN declaration. Make these changes in DISP_SEC.ASM:

Listing 17-6. Changes to DISP_SEC.ASM

.DATAR?
EXTRN SECTOR:BYTE
SEEBEFC S SHEECRS
“SECEOR—DPB— 63D

Let’s rewrite the file DISK_10.ASM so that it contains only procedures, and
READ_SECTOR uses memory variables (not hard-wired numbers) for the sec-
tor and disk-drive numbers. Here is the new version of DISK_TIO.ASM:

Listing 17-7. Changes to DISK_10.ASM

—POSSES—
.MODEL SMALL

—SEREK—
.DATA

EXTRN SECTOR:BYTE
EXTRN DISK_DRIVE_NO:BYTE
EXTRN CUBRENT_SECTOR_NO:WORD

PUBLIC READ_SECTOR

; This procedure reads one sector (5i2 bytes} into SECTOR.

; Reads: CURBENT_SECTOR_NO, DISK_DRIVE_KNO H
y BEites SECTOR H
READ_SECTOR PROC

MO X DEROGE Put—datar—segment—into &%

135"A 4 I HA yool US U T LU Uatca

PUSH AX ' 4

PUSH BX

PUSH cX

PUSH DX

MOV AL,DISK_DRIVE_NO ;Drive number

MOV CX,1 ;Read only 1 sector :

MOV DX,CURRENT_SECTOR_NO ;Logical sector number

LERA BX,SECTOR ;Where to store this sector

INT 2Sh ;Read the sector

POPF ;Discard flags put on stack by DOS

POP DX

POP (¢

POP BX

The ROM BIOS Routines 795

POP AX
RET
—CALL CLEAR_SCREEXN
CALL INIT SEC-BISR +Busp—the £irst half
_*el'! PIIY/PK ;DAQ’“PH +to DOS
INT— 21h
READ_SECTOR ENDP
END

This new version of Disk_io uses the memory variables DISK_DRIVE_NO
and CURRENT_SECTOR_NO as the disk drive and sector numbers for the sec-
tor to read. Since these variables are already defined in DSKPATCH.ASM, we
won’t have to change Disk_io when we start reading different sectors from
other disk drives.

If you're using the Make program to rebuild DSKPATCH.COM, you’ll need
to make some additions to your Make file named Makefile:

Listing 17-8. The New Version of MAKEFILE

dskpktch.obj: dsk?atcﬁ.asn
lasnrdskpatch;

disk_jio.obj: disk_io.asm
masm disk_io;

disp_sec.obj: disp_sec.asm
masm disp_sec;

video_io.obj: video_io.asm
masm video_io;

cursor.obj: cursor.asm
masm CUCSOr;

dskpateh.exe: dskpatch.obj disk_io.obj disp_sec.obj video_io.obj cursor.obj
link dskpatch disk_io disp_sec video_io carser;

(Remember that if you're using Borland’s Make, the last two lines shown
here must be at the start of your Makefile. And if you're using OPTASM, you’ll
just add the first two lines, with the first line indented, and the second line
flush left.) If you're not using Make, be sure to reassemble all three files we’ve

changed (Dskpatch, Disk_io, and Disp_sec) and to link our five files, with
Dskpatch listed first:

LINK DSKPATCH DISK_IO DISP_SEC VIDEO_IO CURSOR;

We’ve made quite a few changes, so test Dskpatch and make sure it works
correctly before you move on.

196 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Writing the Header

Now that we’ve converted the hard-wired numbers into direct references to
memory variables, we can write the procedure WRITE_HEADER to write a
status line, or header, at the top of the screen. Our header will look like this:

Disk A Sector O

WRITE_HEADER will use WRITE_DECIMAL to write the current sector
number in decimal. It will also write two strings of characters, Disk and Sector
(each followed by a blank space), and a disk letter, such as A. We’ll place the
procedure in the file DISP_SEC.ASM.

To begin, place the following procedure in DISP_SEC.ASM.

Listing 17-9. Add This Procedure to DISP_SEC.ASM.

PUBLIC WRITE_HEADER

.DATA
EXTRN HEADER_LINE_NO:BYTE
EXTRN HEADER_PART_1:BYTE
EXTRN HEADER_PART_2:BYTE
EXTRN DISK_DRIVE_NO:BYTE
EXTRN CURRENT_SECTOR_NO:WORD
CODE

EXTRN WRITE_STRING:PROC, WRITE_DECIMAL:PROC
EXTRN GOTO_XY : PROC

; This procedure writes the header with disk-drive and sector number.

; Uses: GOTO_XY, WRITE_STRING, WRITE_CHAR, WRITE_DECIMAL ;
: Reads: HEADER_LINE_NO, HEADER_PART_1, HEADER_PART 2 ;
: DISK_DRIVE_NO, CURRENT_SECTOR_NO

PUSH DX

XOR DL,DL ;Move cursor to header line number
MOV DH,HEADER_LINE_NO

CALL GOTO_XY

LER DX,HEADER_PART_1

CALL WRITE_STRING

MOV DL,DISK_DRIVE_NO

ADD DL, 'A! ;Print drives R, B, ...
CALL WRITE_CHAR

FER DX,HEADER_PART_Z2

CALL WRITE_STRING

MOV DX,CURRENT_SECTOR_NO

CALL WRITE_DECIMAL

POP DX

RET

WRITE_HEADER ENDP

The procedure WRITE_STRING doesn’t exist yet. As you can see, we plan to
use it to write a string of characters to the screen. The two strings,
HEADER_PART_1 and HEADER_PART_2, are already defined in
DSKPATCH.ASM. WRITE_STRING will use DS:DX as the address for the
string.

i

The ROM BIOS Routines 197

We’ve chosen to supply our own string-output procedure so that our strings
can contain any character, including the $, which we couldn’t print with the
DOS function 9. Where DOS uses a $ to mark the end of a string, we’ll use a hex
0. Here is the procedure. Enter it into VIDEO_I0.ASM:

Listing 17-10. Add This Procedure to VIDEO_IO.ASM

PUBLIC WRITE_STRING

This procedure writes a string of characters to the screen. The

; string must end with DB o] ;
; On entry: DS:DX Rddress of the string ;
; Uses: WRITE_CHAR ;
WRITE_STRING PROC

PUSH AX

PUSH DX

PUSH SI

PUSHF ;Save direction flag

CLD ;Set direction for increment (forward)

MOV SI,DX sPlace address into SI for LODSB
STRING_LOOP:

LODSB ;Get a character into the AL register

OR AL,AL ;Have we found the 0 yet?

Jz END_OF_STRING ;Yes, we are done with the string

MOV DL, AL sNo, write character

CALL WRITE_CHAR

JHP STRING_LOOP
END_OF_STRING:

POPF ;Restore direction flag

POP SI

POP DX

POP AX

RET

WRITE_STRING ENDP

As it stands now, WRITE_STRING will write characters with ASCII codes
below 32 (the space character) as a period (.), because we don’t have a version of
WRITE_CHAR that will write any character. We'll take care of that detail in
the next chapter, and—here’s the advantage of modular design—we won’t have
to change WRITE_STRING in the process.

After all our work in this chapter, let’s put the icing on the cake. Change
DISK_PATCH in DSKPATCH.ASM to include the CALL to
WRITE_HEADER:

Listing 17-11. Changes to DISK_PATCH in DSKPATCH.ASM

EXTRN CLEAR_SCREEN:PROC, READ_SECTOR:PROC
EXTRN INIT_SEC_DISP:PROC, WRITE_HEADER:PROC

DISK_PATCH PROC
MOV AC,DGROUP ;Put data segment into AX
MOV DS,AX ;Set DS to point to data

_CALL CLEAR_SCREEN
" CRLL WRITE_HEADER
CALL READ_SECTOR

1<)

A

198 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Listing 17-11. continued

CALL

MOV

INT
DISK_PATCH

Dskpatch should now produce a display like this one:

INIT_SEC_DISP

AH,4Ch ;Return to DOS
2lh
ENDP

Disk A Sector 8

66 81 62 B3 64 85 66 B7 68 B9 B6A BB 6C 8D BE BF B123456789ABCDEF
88 | EB 28 98 49 42 4D 28 28 33 2E 32 86:82 82 61 68 "ﬂfJBﬂ BE2L .
18 | 82 79 BA D6 82 FD B2 8@ B9 B B2 BG 68 86 86 B8 | .p.L1.%..........
20 || 06 06 06 BP BB 0A 0@ 6@ BB BB FA C4 5C B8 33 ED ceesseeies -\.,3¢
30 | BB CB 87 8E D8 33 C9 88 16 FD 81 8A D2 79 BA 89 || ; -.A+32.% . .1v.8
48 | 1E 1C 88 8C 86 1E B@ B1 B2 8E C5 8E DS BC 88 7C || ...1 lﬁj-ﬁ#’l
58 | FC 1E 36 C5 36 78 8@ BF 2A 7C B9 @B B8 F3 A4 1F | N.616x. *}i..&A.
60 || C6 B6 2E BB BF BF 78 88 B8 2A 7C AB 91 AB FB 8A | F....7x.3*i%z4le
78 || 16 FD 81 CD 13 AB 18 6@ 98 F7 26 16 B@ @3 86 BE | .*.=.a..y=3.....
89 | 88 £8 73 88 ES 79 86 BB 8@ 85 53 ES AB 88 SF BE 3s.3y.q..884. 4
98 || 74 81 B9 @B B8 98 F3 A6 75 57 83 C7 15 B1 8B 9 | t.J..Ecaula]. I.E
AB | 98 F3 A6 75 4C 26 8B 47 1C 99 8B OE BB 88 63 C1 ﬁS_auL&'iG;O'i...."-
B8 | 48 F7 F1 3D 14 8@ 7F 82 BB 14 96 A1 11 88 B1 B4 | H=:=..s.Z.0i..}.
CA || D3 E8 E8 32 8@ FF 36 1C 88 C4 1E 78 81 E8 38 88 || '332. 6..-.p.%8.
D8 || E8 5B 8@ 2B F@ 76 @D ES 1D B8 52 F7 26 6B 86 83 | & .+=v.}..R=3...
E@ | D8 5A EB E9 5B 8A 2E 15 8@ 8A 16 FD 81 FF 2E 78 | f2delé...e.%. .p
F@ || 81 BE 88 81|EB 54 96 BiJBG 1C 66 1112}: 1E 88 C3 | .Ji.6TE........

A>_
Figure 17-1. Dskpatch with the Header at the Top.
Summary |

At last, we’ve met the ROM BIOS routines inside our IBM PCs and already |
used two of these routines to help us toward our goal of a full Dskpatch pro-
gram.
First we learned about INT 10h, function number 6, which we used to clear |
the screen. We also saw (though very briefly) that this function has more uses
than we’ll take advantage of in this book. For example, you may eventually
find it helpful for scrolling portions of the screen—in Dskpatch or in your own
programs.
We then used function 2 of INT 10h to move the cursor to the third line on the
screen (line number 2), where we started writing our sector dump.

The ROM BIOS Routines 799

To make our programs easier to work with, we also rewrote several proce-
dures so they would use memory variables, rather than hard-wired numbers.
Now, we’ll be able to read other sectors and change the way our program works
in other ways, just by changing a few central numbers in DSKPATCH.ASM.

Finally, we wrote the procedures WRITE_HEADER and WRITE_STRING,
so we could write a header at the top of the screen. As noted we’ll write an
improved version of WRITE_CHAR in the next chapter, replacing the dots in
the ASCII window of our display with graphics characters. And thanks to mod-
ular design, we’ll do this without changing any of the procedures that use
WRITE_CHAR.

202 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

“Ie made good use of the ROM BIOS routines in the last chapter to clear the
screen and move the cursor. But there are many more uses for the ROM BIOS,
and we’ll see some of them in this chapter.

Using DOS alone, we haven’t been able to display all 256 of the characters
that the IBM PC can display. So, in this chapter, we’ll present a new version of
WRITE_CHAR that displays any character, thanks to another VIDEO_IO
function.

Then, we’ll add another useful procedure, called CLEAR_TO_END._
OF_LINE;, that clears the line from the cursor to the right edge of the screen.
We'll put this to use in WRITE_HEADER, so that it will clear the rest of the
line.

Blink Intensity
0 = Normal 0 = normal intensity
1 = Blinking text 1 = bright
RGB
Value Color
0 Black
1 Blue
BlRI 6 BI| R [B 2 Green
L | | 3 Cyan
4 Red
9 Violet
6 Brown
Background L s
Color Text Color

Attribute = background color * 16 + text color

Figure 18-1. Color Table.

The Ultimate WRITE_.CHAR 203

Suppose we go from sector number 10 (two digits) to sector number 9. A zero
would be left over from the 10 after we call WRITE_HEADER with the sector

set to 9. CLEAR_TO_END_OF_LINE will clear this zero, as well as anything
else on the remainder of the line.

A New WRITE_CHAR

The ROM BIOS function 9 for INT 10h writes a character and its attribute at
the current cursor position. The attribute controls such features as under-
lining, blinking, and color (See Figure 18-1). We'll use only two attributes for
Dskpatch: attribute 7, which is the normal attribute, and attribute 70h, which
is a foreground color of zero and background of 7 and produces inverse video
(black characters on a white background). We can set the attributes individu-
ally for each character, and we’ll do this later to create a block cursor in inverse
video—known as a phantom cursor. For now, though, we’ll just use the normal
attribute when we write a character.

INT 10h, function 9 writes the character and attribute at the current cursor
position. Unlike DOS, it doesn’t advance the cursor to the next character posi-
tion unless it writes more than one copy of the character. We'll use this fact
later, in a different procedure, but now we only want one copy of each character,
so we’ll move the cursor ourselves.

Here is the new version of WRITE_CHAR, which writes a character and then
moves the cursor right one character. Enter it into the file VIDEO_IO.ASM:

Listing 18-1. Changes to WRITE_CHAR in VIDEO_IO.ASM

PUBLIC WRITE_CHAR
EXTRN CURSOR_RIGHT:PROC

; This procedure outputs a character to the screen using the ROM BIOS 3
; routines, so characters sach as the backspace are treated as
; any other character and are displayed.

; This procedure must do a bit of work to update the cursor position.

; Oon entry: DL Byte to print on screen
; Uses: CURSOR_RIGHT
WRITE_CHAR PROC

PUSH AX

PUSH BX

PUSH [09 4

PUSH DX

- - — - - . . 3o - v
e VETIT TS mreracter—netore—a paceT

JAE TS—PRINTABEE NoT—then pfr&bﬁﬁ}ﬁﬁ?
P S 7 3 3t -1
YA A4 U7 - yIeS7 repracte—wItn—oa perTow

—IS—PRINTABLET

115AT Bt TCxti—for——character—output

3 PR - 3 " L o4
TNl =224 youlLpuUt Character It DG rTegiSter

204 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Listing 18-1. continued

MOV RH,9 ;Call for output of characterfﬂ:ti“
MOV BH.O ;Set to display o . I
¥ov CX,3 ;¥rite only one racter
MOV AL,DL ;Character to write u
. {0} 4 BL,? ;Normal attribute
INT 10h ;Write character and attribute |
CALL CURSOR_RIGHT ;Now move to next cursor position
POP DX
POP CX
POP BX
POP AX
RET

WRITE_CHAR ENDP

In reading through this procedure, you may have wondered why we included
the instruction MOV BH,0. If you have a graphics display adapter, your
adapter has four text pages in normal text mode. We’ll only use the first page,
page 0; hence, the instruction.

As for the cursor, WRITE_CHAR uses the procedure CURSOR_RIGHT to
move the cursor right one character position or to the beginning of the next line
if the movement would take the cursor past column 79. Place the following pro-
cedure into CURSOR.ASM:

Listing 18-2. Add This Procedure to CURSOR.ASM

PUBLIC CURSOR_RIGHT

This procedure moves the cursor one position to the right or to the
next line if the cursor was at the end of a line.

et vs vt vsviwe

Uses: SEND_CRLF
URSOR_RIGHT PROC

PUSH ARX
PUSH BX
PUSH CX
PUSH DX
MOV AH,3 ;Read the current cursor position
MOV BH,O ;0n page O
INT 10h ;Read cursor position
MOV AH,2 ;Set new cursor position
INC DL ;Set column to next position
CMP DL, 79 ;Make sure column <= 79
JBE OK
CALL SEND_CRLF ;Go to next line
JMP DONE

OK: INT 10h

DONE: POP DX
POP CX
POP BX
POP RX
RET

CURSOR_RIGHT ENDP

CURSOR_RIGHT uses two new INT 10h functions. Function 3 reads the
position of the cursor, and function 2 changes the cursor position. The proce-
dure first uses function 3 to find the cursor position, which is returned in two

The Ultimate WRITE_LCHAR 205

Disk A Sector @

00 81 82 B3 A4 A5 A6 A7 B8 B3 BA BB AC AD OE OF @123456789ABCDEF

T L] |

80 || EB 28 98 49 42 4D 20 20 33 2E 32 0@ @2 82 61 0@ || J(EIBM 3.2 883
10 | 62 70 8@ D@ 82 FD 62 00 B9 6P 02 00 6O 60 00 09 | B ‘&6 o 8

20 || 60 A0 PP AP OO AA PG AB 6@ @@ FA C4 SC B8 33 ED -—\%
30 (| B8 CA @7 8E D8 33 C9 88 16 FD @1 BA D2 79 @A 89 1L0§+3[33.2%9 £
48 || 1E 1C 80 8C 66 1E 6@ B1 82 8E CS 8E DS BC 88 7C || a- i pnfn,il i
58 || FC 1E 36 CS 36 78 @6 BF 2A 7C BS @B 88 F3 Ad 1F || MaBi6x *ii¢ Siv
68 (| C6 6 2E 80 BF BF 78 @@ B8 2A 7C AB 91 AB FB 8A | . Mqyx 3x*ik%ekle

70 || 16 FD @1 CD 13 AB 10 88 98 F7 26 16 80 B3 86 OF | *G=N4) j=d. ”f
8 | 80 ES 73 80 ES 79 P BB 89 05 53 ES AP 88 SF BE | s dy q #8584 _

9 || 74 B1 B9 BB 0@ 99 F3 A6 75 57 83 C7 15 B1 0B 98 | 16)j¢ E<aula|SksE
AB | 98 F3 A6 75 4C 26 8B 47 1C 99 8B O OB B B3 C1 | EAULRIG-i) o
BO | 48 F7 F1 3D 14 80 7F 82 B 14 96 A1 11 @ B1 B4 | H=:=1 BETi{(Jo
CO | D3 ES E8 32 0@ FF 36 1C 80 C4 1E 70 @1 E8 30 00 || U532 6- -apdi@

D || ES 5B 80 2B F@ 76 AD ES 1D 08 52 F7 26 @B 80 83 || & +=vte R<83 #
E@ || DB SA EB E9 5B 8A 2E 15 8@ 8A 16 FD 81 FF 2E 78 || 42del&.S &.20 .p
FO || @1 BE 8B 81 EB 54 99 01 86 1C B8 11 2E E 80 C3 || O/i0HTEON- (.o |

A>_

Figure 18-2. Dskpatch with the New WRITE_CHAR.

bytes, the column number in DL, and the line number in DH. Then, CUR-
SOR_RIGHT increments the column number (in DL) and moves the cursor. If
DL was at the last column (79), the procedure sends a carriage-return/line-feed
pair to move the cursor to the next line. We don’t need this column 79 check in
Dskpatch, but including it makes CURSOR_RIGHT a general-purpose proce-
dure you can use in any of your own programs.

With these changes, Dskpatch should now display all 256 characters as
shown in Figure 18.2.

You can verify that it does by searching for a byte with a value less than 20h
and seeing whether some strange character has replaced the period that value
formerly produced in the ASCII window.

Now let’s do something perhaps even more interesting: Let’s write a proce-
dure to clear a line from the cursor position to the end.

Clearing to the End of a Line

In the last chapter, we used INT 10h, function 6, to clear the screen in the
CLEAR_SCREEN procedure. At that time, we mentioned that function 6 could
be used to clear any rectangular window. That capability applies even if a win-

206 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

dow is only one line high and less than one line long, so we can use function 6 to
clear part of a line—to the end of the line.

The left side of the window, in this case, is the column number of the cursor,
which we get with a function 3 call (also used by CURSOR_RIGHT). The right
side of the window is always at column 79. You can see the details in
CLEAR_TO_END_OF_LINE,; place the procedure in CURSOR.ASM:

Listing 18-3. Add This Procedure to CURSOR.ASM

PUBLIC CLEAR_TO_END_OF_LINE

; This procedure clears the line from the current cursor position to
; the end of that line.

CLEAR_TO_END_OF_LINE PROC

PUSH X
PUSH BX
PUSH CX
PUSH DX
MOV &H,3 ;Read current cursor position
XOR BH, BH ; on page O
INT 10h ;Now have (X,Y) in DL, DH
MOV AH,6 ;Set up to clear to end of line
XOR AL,AL ;Clear window
MOV CH,DH ;All on same line
MOV CL,DL ;Start at the cursor position
MOV DL, 79 ;And stop at the end of the line
MOV BH,? ;Use normal attribute
INT 10h
POP DX
POP CcX
POP BX
POP AX
RET
CLEAR_TO_END_OF_LINE ENDP

We'll use this procedure in WRITE_HEADER, to clear the rest of the line
when we start reading other sectors (we’ll do that very soon). There isn’t any
way for you to see CLEAR_TO_END_OF_LINE work with WRITE_HEADER
until we add the procedures that allow us to read a different sector and update
the display, but let’s revise WRITE_HEADER now, just to get it out of the way.
Make the following changes to WRITE_HEADER in VIDEO_IO.ASM, to call
CLEAR_TO_END_OF_LINE at the end of the procedure:

Listing 18-4. Changes to WRITE_HEADER in VIDEO_IO.ASM

PUBLIC WRITE_HEADER
DATA_SEG SEGMENT PUBLIC
EXTRN HEADER_LINE_NO:BYTE
EXTRN HEADER_PART_1:BYTE
EXTRN HEADER_PART_2:BYTE
EXTRN DISK_DRIVE_NO:BYTE
EXTRN CURRENT_SECTOR_NO:WORD
DATA_SEG ENDS
EXTRN GOTO_XY:NEAR, CLEAR_TO_END_OF_LINE:NEAR

The Ultimate WRITE_LCHAR 207

This procedure writes the header with disk-drive and sector number.

; Uses: GOTO_XY, WRITE_STRING, WRITE_CHAR, WRITE_DECIMAL
'

CLEAR_TO_END_OF_LINE 0
; Reads: HEADER_LINE_NO, HEADER_PARRT_L1, HEADER_PART_¢2 0
DISK_DRIVE_NO, CURRENT_SECTOR_NO 0

WRITE_HEADER PROC NEAR

PUSH DX

XOR DL,DL ;Move cursor to header line
number

MOV DH,HEADER_LINE_NO

CALL GOTO_XY

LEA DX,HEARDER_PART_L

CALL WRITE_STRING

MOV DL,DISK_DRIVE_NO

RDD DL, 'A? ;Print drives A, B,

CALL WRITE_CHAR

LEA DX, HEADER_PART_2

CALL WRITE_STRING

MOV DX,CURRENT_SECTOR_NO

CALL WRITE_DECIMAL

CALL CLEAR_TO_END_OF_LINE ;Clear rest of sector number

pPOP DX

RET

WRITE_HEADER ENDP

This revision marks both the final version of WRITE_HEADER and the com-
pletion of the file CURSOR.ASM. We are still missing several important parts
of Dskpatch, though. In the next chapter, we’ll continue on and add the central
dispatcher for keyboard commands, we’ll be able to press F3 and F4 to read
other sectors on the disk.

Summary

This chapter has been relatively easy, without much in the way of new infor-
mation or tricks. We did learn how to use INT 10h, function number 9, in the
ROM BIOS to write any character to the screen.

In the process, we also saw how to read the cursor position with INT 10h func-
tion 3, so we could move the cursor right one position after we wrote a charac-
ter. The reason: INT 10h function 9 doesn’t move the cursor after it writes just
one character, unless it writes more than one copy of the character. Finally, we
put INT 10h function 6 to work clearing part of just one line.

In the next chapter, we’ll get down to business again as we build the central
dispatcher.

[

1 AR RN Ay

TAG T YA

210 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

In any language it’s nice to have a well-written program that does something,
but to really bring a program to life we need to make it interactive. It's human
nature to say, “If I do this, you do that,” so we’ll use this chapter to add some
interactivity to Dskpatch.

We’ll write a simple keyboard-input procedure and a central dispatcher. The
dispatcher’s job will be to call the correct procedure for each key pushed. For
example, when we press the F3 key to read and display the previous sector, the
dispatcher will call a procedure called PREVIOUS_SECTOR. To do this, we'll
be making many changes to Dskpatch. We’ll start by creating DISPATCHER,
the central dispatcher, and some other procedures for display formatting. Next,
we’ll add two new procedures, PREVIOUS_SECTOR and NEXT_SECTOR,
which we’ll call through DISPATCHER.

The Dispatcher

The Dispatcher will be the central control for Dskpatch, so all keyboard input
and editing will be done through it. DISPATCHER’s job will be to read charac-
ters and call other procedures to do the work. You'll soon see how the dispatcher
does its work, but first let’s see how it fits into Dskpatch.

DISPATCHER will have its own prompt line, just under the half-sector dis-
play where the cursor waits for keyboard input. You won’t be able to enter hex
numbers in our first version of the keyboard-input procedure, but later on you
will. Here are our first modifications to DSKPATCH.ASM; these add the data

for a prompt line:

Listing 19-1. Additions to DATA_SEG in DSKPATCH.ASM

HEADER_LINE_NO DB o
HEADER_PART_1 DB 'Disk ',0
HEADER_PART_2 DB ¢ Sector ',O
PUBLIC PROMPT_LINE_NO, EDITOR_PROMPT
PROMPT_LINE_NO DB 2l
EDITOR_PROMPT DB tPress function key, or eater!’
DB ' character or hex byte: ',0

We’ll add more prompts later to take care of such matters as inputting a new
sector number, so we’'ll make our job simpler by using a common procedure,
WRITE_PROMPT_LINE, to write each prompt line. Each procedure that uses
WRITE_PROMPT_LINE will supply it with the address of the prompt (here,
the address of EDITOR_PROMPT), and then write the prompt on line 21
(because PROMPT_LINE_NO is 21). For example, this new version of

The Dispatcher 277

DISK_PATCH (in DSKPATCH.ASM) uses WRITE_PROMPT_LINE just
before it calls DISPATCHER:

Listing 19-2. Additions to DISK_PATCH in DSKPATCH.ASM

EXTRN CLEAR_SCREEN:PROC, READ_SECTOR:PROC
EXTRN INIT_SEC_DISP:PROC, WRITE_HEADER:PBOC -
EXTRN WRITE_PROMPT_LINE:PROC, DISPATCHER:PROC

DISK_PATCH PROC
MOV AX,DGROUP ;Put data segment into AX
MOV DS, AX ;Set DS to point to data
CALL CLEAR_SCREEN
CALL WRITE_HEADER
CALL READ_SECTOR
CALL INIT_SEC_DISP
LER DX,EDITOR_PROMPT

CALL WRITE_PROMPT_LINE
CALL DISPATCHER

MOV RH,4C ;Return to DOS
INT 2lh
DISK_PATCH ENDP

The dispatcher itself is a fairly simple program, but we do use some new

tricks in it. The following listing is our first version

PATCH.ASM:

Listing 19-3. The New File DISPATCH.ASM.

.MODEL SMALL
.CODE
EXTRN NEXT_SECTOR: PROC ;In DISK_IO

EXTRN PREVIOUS_SECTOR:PROC ;In DISK_IO
.DATA

This table contains the legal extended ASCII keys
of the procedures that should be called when each

.ASH
.ASH

and the addresses
key is pressed.

D

-

.t ws s wr .

DB
DW

ISPATCH_TABLE LABEL
DB
DW
DB
DW
DB

CODE

The format of the table is

7@ ;Extended code for cursor up
OFFSET_TEXT:PHANTOM_UP

BYTE

Bl F133

OFFSET_TEXT: PREVIOUS_SECTOR

k2 ;F4
OFFSET_TEXT:NEXT_SECTOR

8} ;End of the table

PUBLIC DISPATCHER
EXTRN READ_BYTE:PROC

This is the central dispatcher. During normal editing and viewing,
this procedure reads characters from the keyboard and, if the char
is a command key (such as a cursor key), DISPATCHER calls the
procedures that do the actual work. This dispatching is done for
special keys listed in the table DISPATCH_TABLE, where the procedure

of the file DIS-

LTt

o

Lo ot mat

212 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Listing 19-3. continued

addresses are stored just after the key names.

If the character is not a special key, then it should be placed
; directly into the sector buffer--this is the editing mode.

; Uses: READ_BYTE
D

ISPATCHER PROC
PUSH AX
PUSH BX
DISPATCH_LOOP:
CALL READ_BYTE ;Read character into AX
OR AH,AH ;AX = -10 if no character read, 1}
; for an extended code.
JS DISPATCH_LOOP ;No character read, try again

JNZ

SPECIAL_KEY

;Read extended code

; do nothing with the character for now

JMP DISPATCH_LOOP ;Read another character
SPECIAL_KEY:

CMP AL,b8 ;Fl0--exit?

JE END_DISPATCH ;Yes, leave

;0se BX to look through table

IHER BX,DISPATCH_TABLE
SPECIAL_LOOP:

CMP BYTE PTR (BXJ].,0 ;End of table?

JE NOT_IN_TABLE ;Yes, key was not in the table

CMP AL, (BX] ;Is it this table entry?

JE DISPATCH ;Yes, then dispatch

ADD BX,3 wNo, "try“next®entry

JMP SPECIAL_LOOP ;Check next table entry
DISPATCH:

INC BX ;Point to address of procedure

I WORD PTR ([BX] ;Call procedure

JMP DISPATCH_LOOP ;Wait for another key

NOT_IN_TABLE:

;Do nothing, just read next character

JMP DISPATCH_LOOP
END_DISPATCH:

POP BX

POP AX

RET
DISPATCHER ENDP

END

DISPATCH_TABLE holds the extended ASCII codes for the F3 and F4 keys.
Each code is followed by the address of the procedure DISPATCHER should call
when it reads that particular extended code. For example, when READ_BYTE,
which is called by DISPATCHER, reads an F3 key (extended code 61), DIS-
PATCHER calls the procedure PREVIOUS_SECTOR.

The addresses of the procedures we want DISPATCHER to call are in the dis-
patch table, so we used a new directive, OFFSET, to obtain them. The line

DW OFFSET _TEXT:PREVIOUS_SECTOR

for example, tells the assembler to use the offset of our PREVIOUS_SECTOR
procedure. This offset is calculated relative to the start of our code segment

The Dispatcher 213

_TEXT, which is why we put the _TEXT: in front of the procedure name. (As it
turns out here, this _TEXT: isn’t absolutely necessary. Still, in the interest of
clarity, we’ll write OFFSET _TEXT: anyway.)

Notice that DISPATCH_TABLE contains both byte and word data. This
raises a few considerations. In the past, we've always dealt with tables of one
type or the other: either all words, or all bytes. But here, we have both, so we
have to tell the assembler which type of data to expect when we use a CMP or
CALL instruction. In the case of an instruction written like this:

cmp (BX1,0

the assembler doesn’t know whether we want to compare words or bytes. But by
writing the instruction like this:

cMPpP BYTE PTR (BX],0

we tell the assembler that BX points to a byte and that we want a byte compare.
Similarly, the instruction CMP WORD PTR [BX],0 would compare words. On
the other hand, an instruction like CMP AL,[BX] doesn’t cause any problems,
because AL is a byte register, and the assembler knows without being told that
we want a byte compare.

Then, too, remember that a CALL instruction can be either a NEAR or a
FAR CALL. A NEAR CALL needs one word for the address, while the FAR
CALL needs two. Here, the instruction:

CALL WORD PTR (BX]

tells the assembler, with WORD PTR, that [BX] points to one word, so it should
generate a NEAR CALL and use the word pointed to by [BX] as the address,
that being the address we stored in DISPATCH_TABLE. (For a FAR CALL,
which uses a two-word address, we would use the instruction CALL DWORD
PTR [BX]. DWORD stands for Double Word, or two words.)

As you’ll see in Chapter 22, we can easily add more key commands to
Dskpatch simply by adding more procedures and placing new entries in DIS-
PATCH_TABLE. Right now, however, we still need to add four procedures
before we can test this new version of Dskpatch. We’re missing READ_BYTE,
WRITE_PROMPT_LINE, PREVIOUS_SECTOR, and NEXT_SECTOR.

READ_BYTE is a procedure to read characters and extended ASCII codes
from the keyboard. The final version will be able to read special keys (such as
the function and cursor keys), ASCII characters, and two-digit hex numbers. At
this point, we’ll write a simple version of READ_BYTE—to read either a char-

S

2

¥

214 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

acter or a special key. Here is the first version of KBD_I0.ASM, which is the
file in which we’ll store all our procedures to read from the keyboard:

Listing 19-4. The New File KBD_IO.ASM

.MODEL SMALL
.CODE

PUBLIC REARD_BYTE

This procedure reads a single ASCII character. This is Jjust
a test version of READ_BYTE.

Returns: AL Character code (unless AH = 1)
RH 0 if read ASCII char
1 if read a special key
EARD_BYTE PROC
XOR RH, AH ;Bsk for keyboard read function
INT 1Eh ;Read character/scan code from keyboard
OR AL,AL ;Is it an extended code?
Jz EXTENDED_CODE ;Yes
NOT_EXTENDED:
XOR RH,RH ;Return just the ASCII code
DONE_READING:
RET
EXTENDED_CODE:
MOV AL, AH ;Put scan code into AL
MoV AH,1 ;Signal extended code
JMp DONE_READING
READ_BYTE ENDP
END

READ_BYTE uses a new interrupt, INT 16h, which is an interrupt that
gives us access to the keyboard services in the ROM BIOS. Function 0 reads a
character from the keyboard without echoing it to the screen. It returns the
character code in AL, and the scan code in the AH register.

The scan code is the code assigned to each key on the keyboard. Some keys,
such as F3 haven’t been assigned ASCII codes (which means AL will be 0), but
they do have scan codes (you’ll find a table of scan codes in Appendix D).
READ_BYTE puts this scan code into the AL register for special keys, and sets
AHto 1.

Next, add the new procedure WRITE_PROMPT_LINE to DISP_SEC.ASM:

Listing 19-5. Add This Procedure to VIDEO_IO.ASM

PUBLIC WRITE_PROMPT_LINE
EXTRN CLEAR_TO_END_OF_LINE:PROC, WRITE_STRING:PROC
EXTRN GOTO_XY:PROC

EXTRN PROMPT_LINE_NO:BYTE

; This proccedure writes the prompt line to the screen and clears the H
; end of the line. H

The Dispatcher 215

5 ontlentry DS:DX Address of the prompt-line message 0
. Uses: WRITE_STRING, CLEAR_TO_END_OF_LINE, GOTO_XY E
; Reads: PROMPT_LINE_NO ;
WRITE_PRONPT_LINE PROC

PUSH DX

XOR DL,DL ;Write the prompt line and

MOV DH, PROMPT_LINE_NO ; move the cursor there

CRLL GOTO_XY

POP DX

CALL WRITE_STRING
CALL CLEAR_TO_END_OF_LINE
RET

WRITE_PROMPT_LINE ENDP

There really isn’t much to this procedure. It moves the cursor to the begin-
ning of the prompt line, which we set (in DSKPATCH.ASM) to line 21. Then, it
writes the prompt line and clears the rest of the line. The cursor is at the end of
the prompt when WRITE_PROMPT_LINE is done, and the rest of the line is
cleared by CLEAR_TO_END_OF_LINE.

Reading Other Sectors

Finally, we need the two procedures PREVIOUS_SECTOR and
NEXT_SECTOR, to read and redisplay the previous and next disk sectors. Add
these two procedures to DISK_T10.ASM:

Listing 19-6. Add These Procedures to DISK_IO.ASM

PUBLIC PREVIOUS_SECTOR
EXTRN INIT_SEC_DISP:PROC, WRITE_HEADER:PROC
EXTRN WRITE_PROMPT_LINE:PROC

EXTRN CURRENT_SECTOR_NO:WORD, EDITOR_PROMPT:BYTE

This procedure reads the previous sector, if possible.

; Uses: WRITE_HEADER, READ_SECTOR, INIT_SEC_DISP ’
E WRITE_PROMPT_LINE ;
; Reads: CURRENT_SECTOR_NO, EDITOR_PROMPT H
; Writes: CURRENT_SECTOR_NO H
PREVIOUS_SECTOR PROC

PUSH AX

PUSH DX

MOV AX,CURRENT_SECTOR_NO ;Get current sector number

OR AX,AX ;Don't decrement if already O

Jz DONT_DECREMENT_SECTOR

DEC AX

MOV CURRENT_SECTOR_NO, AX ;Save new sector number

CALL WRITE_HEADER

CALL READ_SECTOR

CALL INIT_SEC_DISP ;Display new sector

LEA DX,EDITOR_PROMPT

CALL WRITE_PROMPT_LINE
DONT_DECREMENT_SECTOR:

POP DX

POP AX

N

FEW R Vorey

wa

Sat¥y

v

216 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Listing 19-6. continued

RET
PREVIOUS_SECTOR ENDP

PUBLIC NEXT_SECTOR
EXTRN INIT_SEC_DISP:PROC, WRITE_HEADER:PROC
EXTRN WRITE_PROMPT_LINE:PROC
.DATA
EXTRN CURRENT_SECTOR_NO:WORD, EDITOR_PROMPT:BYTE
.CODE

Reads the next sector.

;. Uses: WRITE_HEADER, READ_SECTOR, INIT_SEC_DISP

o WRITE_PROMPT_LINE 8
; Reads: CURRENT_SECTOR_NO, EDITOR_PROMPT B
; HWrites: CURRENT_SECTOR_NO H
NEXT_SECTOR PROC

PUSH AX

PUSH DX

MoV AX,CURRENT_SECTOR_NO

INC AX ;Move to next sector

MOV CURRENT_SECTOR_NO, AX

CALL WRITE_HEADER

CALL READ_SECTOR

CALL INIT_SEC_DISP ;Display new sector

LEA DX,EDITOR_PROMPT

CALL WRITE_PROMPT_LINE

POP DX

POP AX

RET
NEXT_SECTOR ENDP

Now, you're ready to assembly all the files we created or changed: Dskpatch,
Video_io, Kbd_io, Dispatch, and Disk_io. When you link the Dskpatch files,
remember there are now seven of them: Dskpatch, Disp_sec, Disk_io, Video_io,
Kbd_io, Dispatch, and Cursor.

If you are using Make, here are the additions you need to make to the
Makefile Dskpatch (the backslash at the end of the fourth line from the bottom
tells Make we’re continuing the list of files onto the next line):

Listing 19-7. Changes to the Make File MAKEFILE

cursor.obj: cursor.asm
masm cursor,

The Dispatcher

17

Disk A Sector 8
80 81 82 83 84 85 86 87 88 B9 BA BB AC 8D BE BF B123456789ABCDEF
f 1 T

80 | EB 28 98 49 42 4D 20 20 33 2E 32 80 82 B2 81 08 | G(LIBM 3.2 883
18 | 82 78 68 DB B2 FD 82 9@ B9 6@ B2 0 00 60 66 68 | Bp ‘F¥B 0 B
20 | 60 00 00 09 AP PP PP AP PP BB FA C4 SC B8 33 ED --\géz
30 | B8 CO 87 8E D8 33 C9 88 16 FD 81 BA D2 79 BA 89 || 3 “A{d. Brvie
49 | 1E 1C 80 8C 86 1E @0 B1 82 8E CS5 8E DS BC 88 7C || ac 14 hﬁj-n,él '
58 | FC 1E 36 C5 36 78 8@ BF 2A 7C BS BB B8 F3 A4 1F || Mab{6x 11 v
68 | C6 86 2E 8@ OF BF 78 8@ B8 2A 7C AB 91 AB FB 8A | M. #yx q*i%a%le
70 | 16 FD 81 CD 13 AP 10 8@ 98 F7 26 16 8@ B3 86 BE | .2B<13) y=8. n?
80 | 80 E8 73 8@ ES 79 8@ BB 8@ 85 53 E8 AP B8 SF BE | Is Jy 7 4533 _:
98 | 74 81 B9 @B @@ 98 F3 A6 75 57 83 C7 15 B1 8B 98 | 13!¢ F<aulal|SkE
f@ | 98 F3 A6 75 4C 26 8B 47 1C 99 8B OE @B @@ 83 C1 | E<aul&iG-Gije ot
BA || 48 F7 F1 3D 14 8@ 7F 82 BA 14 96 A1 11 88 B1 B4 | H=:=T sB Wii¢ Jo
Ca || D3 E8 E8 32 8@ FF 36 1C 88 C4 1E 78 81 E8 38 80 | 32 6- -+pB38
DO || E8 5B 8@ 2B F@ 76 @D ES 1D 8@ 52 F7 26 @B 88 83 || 3l +=vE%e R=&(¢
E@ || D8 5A EB E9 SB 8A 2E 15 @@ 8A 16 FD @1 FF 2E 78 || 42dele.S &.20 .p
F@ || @1 BE 8B 1 EB 54 99 B1 86 1C 80 11 2E 1E 0 C3 © IDOTEDM ¢.a |

Press function key, or enter character or hex byte:

Figure 19-1. Dskpatch with the Prompt Line.

(Remember that the last three lines need to be at the top of your file if you're
using Borland’s Make. If you're using OPTASM, you need to add four lines to
assemble dispatch and kbd_io.) If you do not have Make, you may wish to write
the following short batch file to link and create your .EXE file:

LINK DSKPATCH DISK_IO DISP_SEC VIDEO_IO CURSOR DISPATCH KBD_IO;

As we add more files, you’ll only need to change this batch file, rather than type
this long link list each time you rebuild the .EXE program.

This version of Dskpatch has three active keys: F3 reads and displays the
previous sector, stopping at sector 0; F4 reads the next sector; F10 exits from
Dskpatch. Give these keys a try. Your display should now look something like
Figure 19-1.

Philosophy of the Following Chapters

We covered far more ground than usual in this chapter, and in that respect
you’ve had a taste of the philosophy we’ll be following in Chapters 20 through
27. From now on, we’ll clip along at a fairly rapid pace, so that we can get

218 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

through more examples of how to write large programs. You’ll also find more
procedures that you can use in your own programs.

These chapters are here for you to learn from, hence the rather high density
of new procedures. But in the chapters in Part IV of the book, we’ll come back to
learning new subjects, so hang on, or (if you wish) skip the remaining chapters
on Dskpatch until you're ready to write your own programs. When you're ready
to come back again, you’ll find many useful tidbits for programming.

Of course, if you’re champing at the bit and eager to write your own proce-
dures, read the next chapter. There, you’ll find a number of hints, and we’ll give
you a chance to write the procedures in following chapters by giving you
enough details to forge ahead.

From Chapter 21 on, we’ll present many different procedures and let you dis-
cover how they work. Why? There are two reasons, both related to setting you
on your feet and on your way to assembly language programming. First, we
want you to have a library of procedures you can use in your own programs; to
use them comfortably, you need to exercise your own skills. Second, by present-
ing this large programming example, we want to show you not only how to
write a large program, but to give you a feel for it as well.

So take the rest of this book in the way that suits you best. Chapter 20 is for
those of you eager to write your own programs. In Chapter 21, we’ll return to
Dskpatch and build the procedures to write and move what we call a phantom
cursor: a reverse-video cursor for the hex and ASCII displays.

220 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

This book contains six more chapters of procedures. If you want to try navigat-
ing on your own, read this chapter. We’ll chart a course for you here, and plot
your way through Chapters 21 and 22. Then you can try to write the procedures
in each chapter before you read it. If you don’t wish to try writing pieces of
Dskpatch just yet, skip this chapter for now. It’s very brief and leaves many
details to your imagination.

If you decide to read through this chapter, here’s a suggestion on how to pro-
ceed: Read one section and then try to make your own corresponding changes to
Dskpatch. When you feel you’ve made enough progress, read the chapter with
the same name as the section title. After you've read the corresponding chap-
ter, then you can go on to read the next section.

Note: You may want to make a copy of all your files before
you start making changes. Then when you get to Chapter 21,
you’ll have the choice of following along with the changes, or
using your own version.

The Phantom Cursors

In Chapter 21 we’ll place two phantom cursors on the screen: one in the hex
window and one in the ASCII window. A phantom cursor is similar to a normal
cursor, but it doesn’t blink and the background turns white, with the charac-
ters black, as you can see in Figure 20-1.

The phantom cursor in the hex window is four characters wide, while the one
in the ASCII window is only one character wide.

How do we create a phantom cursor? Each character on the screen has an
attribute byte. This byte tells your IBM PC how to display each character. An
attribute code of 7h displays a normal character, while 70h displays a character
in inverse video. The latter is exactly what we want for the phantom cursor, so
the question is: How can we change the attribute of our characters to 70h?

INT 10h function 9 writes both a character and an attribute to the screen,
and INT 10h function 8 reads the character code at the current cursor position.
We can create a phantom cursor in the hex window with the following steps:

® Save the position of the real cursor (use INT 10h function 3 to read the
cursor position and save this in variables).
® Move the real cursor to the start of the phantom cursor in the hex window.

A Programming Challenge 227

® For the next four characters, read the character code (function 8) and
write both the character and its attribute (setting the attribute to 70h).
e Finally, restore the old cursor position.

Disk A Sector B

88 81 82 83 84 85 86 87 88 B9 BA BB AC 8D BE OF B8123456789ABCDEF

1 I 1
88 {ITH21 98 49 42 4D 28 28 33 2E 31 88 82 82 81 88 | [EIpM 3.1 889
18 | 82 70 88 DB 82 FD B2 8@ 89 93 82 8@ 83 83 8 88 | Gp lat@ o 8
28 | 98 88 88 C4 SC 88 33 ED B8 C@ 87 8E D8 33 (9 8A -\J3¢q Loaf3
38 § D2 79 BE 89 1E 1E 88 BC 86 28 88 88 16 22 88 B1 | yyfcaa 1¢ &."
48 | 82 BE CS 8E DS BC 88 7C 51 FC 1E 36 CS 36 78 88 | OALAFY :Qab}6x
S8 | BF 23 7C B9 8B 88 F3 A4 1F 88 BE 2C 88 AB 18 88 | RiJ¢ ¢Aven, at
68 | A2 27 88 BF 78 88 B8 23 7C AB 91 AB A1 16 88 D1 | &' x yRiXa%i. ¥
78 | E@ 48 E 8@ 88 EB 86 83 BB 8@ 8S 53 B 81 E8 AB | «03C 3i j 4SiE¥Y
88 | 88 SF BE 73 81 B9 8B 88 98 F3 A6 75 62 83 C7 15 | _4s6J¢ E¢®ubi§
98 | B1 8B 98 98 F3 A6 75 57 26 8B 47 1C 99 8B OE 8B | JOEE<*uWaiGUiNg
AB | 88 B3 C1 48 F7 F1 88 3E 71 81 68 75 82 BA 14 96 | #lH=+C)qR'uBiTd
BB | A1 11 88 B1 84 D3 EB E8 3B 88 FF 36 1E 88 C4 1E | i< Jel83: 64 -a
C8 | 6F 81 EB 39 88 EB 64 88 2B F@ 76 8D EB8 26 88 52 | o939 34 +=v/3& R
D8 | F?7 26 8B 8@ 83 D8 54 EB E9 CD 11 B9 82 88 D3 EB | =8¢ e4256=4]8 L¢
EB | 88 E4 83 74 84 FE C4 8A CC 5B 58 FF 2E 6F 81 BE | GTetes—efIX .oBH
Fo { 89 81 EB 55 98 81 86 1E 89 11 2E 28 88 C3 A1 18 | EQ3UEGs J. Ht

Press function key, or enter character or hex byte:

Figure 20-1. A Display with Phantom Cursors.

We write a phantom cursor in the ASCII window in much the same way.
Once you have a working phantom cursor in the hex window, you can add the
extra code for the ASCII window.

Keep in mind that your first try is only temporary. Once you have a working
program with phantom cursors, you can go back and rewrite your changes, so
you have a number of small procedures to do the work. Look at the procedures
in Chapter 21 when you’re done, to see one way of doing this.

Simple Editing

Once we have our phantom cursors, we’ll want to move them around on the
screen. We have to pay attention here to boundary conditions to keep the phan-
tom cursors inside each of the two windows. We also want our two phantom cur-

222 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

sors to move together, since they represent the hex and ASCII representations
of the same thing.

How can we move each phantom cursor? Each of the four cursor keys on the
keypad sends out a special function number: 72 for cursor up, 80 for cursor
down, 75 for cursor left, and 77 for cursor right. These are the numbers we need
to add to DISPATCH_TABLE, along with the addresses of the four procedures
to move the phantom cursors in each of these four directions.

To actually move each phantom cursor, erase it, then change its two coordi-
nates and write it again. If you've been careful about how you wrote the phan-
tom cursors, the four procedures to move them should be fairly simple.

Whenever you type a character on the keyboard, Dskpatch should read this
character and replace the byte under the phantom cursor with the character
just read. Here are the steps for simple editing:

Read a character from the keyboard.

® Change the hex number in the hex window and the character in the
ASCII window to match the character just read.

® Change the byte in the sector buffer, SECTOR.

Here’s a simple hint: You don’t have to make many changes to add editing.
Dispatch requires little more than calling a new procedure (we’ve called it
EDIT_BYTE) that does most of the work. EDIT_BYTE is responsible for chang-
ing both the screen and SECTOR.

Other Additions and Changes to Dskpatch

From Chapter 23 through Chapter 27, the changes start to become somewhat
trickier and more involved. If you're still interested in writing your own ver-
sion, consider this: What more would you like to see Dskpatch do than it does
right now? We’ve used the following ideas in the remaining chapters.

We want a new version of READ_BYTE that will read either one character or
a two-digit hex number and wait for us to press the Enter key before it returns a
character to Dispatch. This part of our “wish list” isn’t as simple as it sounds,
and we’ll spend two chapters (Chapters 23 and 24) working on this problem.

In Chapter 25, we’ll go bug hunting, then in Chapter 26 we’ll learn how to
write modified sectors back to the disk using the DOS INT 26h function, which
is analogous to the INT 25h that we used to read a sector from the disk. (In

226 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

In this chapter we’ll build the procedures to write and erase a phantom cursor
in the hex window, and another in the ASCII window. A phantom cursor is so
called because it’s not the PC’s hardware cursor; it’s a shadow—albeit a rather
unusual shadow, since it inverts the character, turning the background to
white and the character to black. In the hex window, we have the room to make
this cursor four characters wide so it will be easy to read. In the ASCII window,
our phantom cursor will be just one character wide, because there is no room
between characters.

We have a lot of procedures and code to cover here, so we’ll describe these pro-
cedures only briefly.

The Phantom Cursors

INIT_SEC_DISP is the only procedure we have that changes the sector dis-
play. A new display appears when we start Dskpatch, and each time we read a
new sector. Since our phantom cursors will be in the sector display, we’ll begin
our work here by placing a call to WRITE_PHANTOM in INIT_SEC_DISP.
That way, we’ll write the phantom cursors every time we write a new sector
display.

Here is the revised—and final—version of INIT_SEC_DISP in
DISP_SEC.ASM:

Listing 21-1. Changes to INIT_SEC_DISP in DISP_SEC.ASM

PUBLIC INIT_SEC_DISP

EXTRN WRITE_PATTERN:PROC, SEND_CRLF:PROC

EXTRE GOTO_XY:PROC, WRITE_PHANTOM:PROC
.DaTa ik

EXTRN LIKES_BEFORE_SECTOR:BYTE

EXTRE SECTOR_OFFSET: RORD .

; This procedure initializes the half-sector display.

S ESE WRITE_PATTERN, SEND_CRLF, DISP_HALF_SECTOR

3 WRITE_TOP_HEX_NUMBERS, GOTO_XY, WRITE_PHANTOM
; Reads: TOP_LINE_PATTERN, BOTTOM_LINE_PATTERN

3 LINES_BEFORE_SECTOR

; Writes: SECTOR_OFFSET

INIT_SEC_DISP PROC

PUSH DX - =

XOR DL,DL ;Move cursor into position
MOV DH,LINES_BEFORE_SECTOR

CALL GOTO_XY

CALL WRITE_TOP_HEX_NUMBERS

LERA DX, TOP_LINE_PATTERN

CALL WRITE_PATTERN

CALL SEND_CRLF

XOR DX,DX ;Start at the beginning of the sector

The Phantom Cursors 227

MOV SECTOR_OFFSET,DX ;Set sector offset to 0
CALL DISP_HALF_SECTOR

LEA DX,BOTTOM_LINE_PATTERN

CALL WRITE_PATTERN

'CALL WRITE_PHANTOM ;Display the phantom cursor
POP DX

RET

INIT_SEC_DISP ENDP

Note that we’ve also updated INIT_SEC_DISP to use and initialize variables.
It now sets SECTOR_OFFSET to zero to display the first half of a sector.

Let’s move on to WRITE_PHANTOM itself. This will take quite a bit of work.
Altogether, we have to write six procedures, including WRITE_PHANTOM.
The idea is fairly simple, though. First, we move the real cursor to the position
of the phantom cursor in the hex window and change the attribute of the next
four characters to inverse video (attribute 70h). This creates a block of white,
four characters wide, with the hex number in black. Then we do the same in the
ASCII window, but for a single character. Finally, we move the real cursor back
to where it was when we started. All the procedures for the phantom cursors
will be in PHANTOM.ASM, with the exception of WRITE_ATTRIBUTE_N_
TIMES, the procedure that will set the attribute of characters.

Enter the following procedures into the file PHANTOM.ASM:

Listing 21-2. The New File PHANTOM.ASM

.MODEL SMALL
.DATA
REAL_CURSOR_X DB O
REAL_CURSOR_Y DB O
PUBLIC PHANTOM_CURSOR_X, PHANTOM_CURSOR_Y
PHANTOM_CURSOR_X DB O
PHANTOM_CURSOR_Y DB O
.CODE
PUBLIC MOV_TO_HEX_POSITION
EXTRN GOTO_XY:PROC
DATA
EXTRN LINES_BEFORE_SECTOR :BYTE
CODE

This procedure moves the real cursor to the position of the phantom
cursor in the hex window.

IR R

Uses: GOTO_XY
Reads: LINES_BEFORE_SECTOR, PHANTOM_CURSOR_X,PHANTOM_CURSOR_Y 5
MOV_TO_HEX_POSITION PROC
PUSH AX
PUSH cX
PUSH DX
MOV DH,LINES_BEFORE_SECTOR ;Find row of phantom (0,0)
ADD DH,2 ;Plus row of hex and horizontal bar
ADD DH, PHANTOM_CURSOR_Y ;DH = row of phantom cursor
MoV DL,8 ;Indent on left side
MOV CL,3 ;Each column uses 3 characters, so
MOV ARL,PHANTOM_CURSOR_X ; we must multiply CURSOR_X by 3

_te Tallsl

228 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Listing 21-2. continued

MUL CL

ADD DL,AL ;And add to the indent, to get column
CALL GOTO_XY ; for phantom cursor

POP DX

POP CcX

POP AX

RET

MOV_TO_HEX_POSITION ENDP

PUBLIC MOV_TO_ASCII_POSITION
EXTRN GOTO_XY :PROC
.DATA
EXTRN LINES_BEFORE_SECTOR:BYTE
.CODE

This procedure moves the real cursor to the beginning of the phantom
cursor in the ASCII window.

; Reads: LINES_BEFORE_SECTOR, PHANTOM_CURSOR_X, PHANTOM_CURSOR_Y
M

Uses: GOTO_XY
OV_TO_ASCII_POSITION PROC
PUSH AX
PUSH DX
MoV DH,LINES_BEFORE_SECTOR ;Find row of phantom (0,0)
ADD DH,2 ;Plus row of hex and horizontal bar
ADD DH,PHANTOM_CURSOR_Y ;DH = row of phantom cursor
MOV DL,59 ;Indent on left side
ADD DL,PHANTOM_CURSOR_X ;Bdd CURSOR_X to get X position
CALL GOTO_XY ; for phantom cursor
POP DX
POP AX
RET

MOV_TO_ASCII_POSITION ENDP
PUBLIC SAVE_REAL_CURSOR

This procedure saves the position of the real cursor in the two

1 »
; variables REAL_CURSOR_X and REAL_CURSOR_Y. 8
* 1
; Writes: REAL_CURSOR_X, REAL_CURSOR_Y H
T T T T T T e e e e T T W T T T 1)
SAVE_REAL_CURSOR PROC

PUSH AX

PUSH BX

PUSH CX

PUSH DX

MOV AH,3 ;Read cursor position

XOR BH, BH ; on page O

INT 10h ;And return in DL,DH

MOV REAL_CURSOR_Y,DL ;Save position

MOV REAL_CURSOR_X,DH

POP DX

POP CX

POP BX

POP RX

RET

SAVE_REAL_CURSOR ENDP

PUBLIC RESTORE_REAL_CURSOR
EXTRN GOTO_XY :PROC

This procedure restores the real cursor to its old position, saved in
REAL_CURSOR_X and REAL_CURSOR_Y.

Uses: GOTO_XY
Reads: REAL_CURSOR_X, REAL_CURSOR_Y

RESTORE_REAL_CURSOR PROC

PUSH
MOV
MOV
CALL
POP
RET

DX
DL,REAL_CURSOR_Y
DH,REAL_CURSOR_X
GOTO_XY

DX

RESTORE_REAL_CURSOR ENDP

The Phantom Cursors

PUBLIC WRITE_PHANTOM
EXTRN WRITE_ATTRIBUTE_N_TIMES:PROC
This procedure uses CURSOR_X and CURSOR_Y, through MOV_TO_..., as the

Uses:

coordinates for the phantom cursor.
phantom cursor.

WRITE_ATTRIBUTE_N_TIMES,

WRITE_PHANTOM writes this

SAVE_REAL_CURSOR

RESTORE_REAL_CURSOR, MOV_TO_HEX_POSITION

MOV_TO_ASCII_POSITION

W

PUSH
PUSH
CALL
CALL
MOV
MOV
CALL
CALL
MOV
CALL
CALL
POP
POP
RET
WRITE_PHANTOM

PUBLIC
EXTRN

RITE_PHANTOM PROC

(5

DX

SAVE_REAL_CURSOR
MOV_TO_HEX_POSITION
IS

DL, 70h
WRITE_ATTRIBUTE_N_TIMES
MOV_TO_ASCII_POSITION
CXir il
WRITE_RTTRIBUTE_N_TIMES
RESTORE_REAL_CURSOR

DX

@5

ENDP

ERARSE_PHANTOM

;Coord. of cursor in hex window

;Make phantom cursor four chars wide

;Coord. of cursor in ASCII window
;Cursor is one character wide here

WRITE_ATTRIBUTE_N_TIMES:PROC

WRITE_PHANT

Uses:

on.

WRITE_ATTRIBUTE_N_TIMES,

This procedure erases the phantom cursor, just the opposite of

SAVE_RERL_CURSOR

RESTORE_REAL_CURSOR, MOV_TO_HEX_POSITION

MOV_TO_ASCII_POSITION

Dodis o dlal wo ws wo ws wo s

RASE_PHANTONM
PUSH
PUSH
CALL
CALL
MOV
MOV
CALL
CALL
MOV
CALL
CALL
POP
POP
RET

ERASE_PHANTOM

END

PROC
CX
DX
SAVE_RERL_CURSOR
MOV_TO_HEX_POSITION
CX,4
DL,?
WRITE_ATTRIBUTE_N_TIMES
MOV_TO_ASCII_POSITION
CX,1
WRITE_ATTRIBUTE_N_TIMES
RESTORE_REAL_CURSOR
DX
CX

ENDP

;Coord. of cursor in hex window
;Change back to white on black

229

P TE VWY

©va

At

.

nay

230 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

WRITE_PHANTOM and ERASE_PHANTOM are much the same. In fact,
the only difference is in the attribute used: WRITE_PHANTOM sets the attri-
bute to 70h for inverse video, while ERASE_PHANTOM sets to attribute back
to the normal attribute (7).

Both of these procedures save the old position of the real cursor with
SAVE_REAL_CURSOR, which uses the INT 10h function number 3 to read the
position of the cursor and then saves this position in the two bytes
REAL_CURSOR_X and REAL_CURSOR_Y.

After saving the real cursor position, both WRITE_PHANTOM and
ERASE_PHANTOM then call MOV_TO_HEX_ POSITION, which moves the
cursor to the start of the phantom cursor in the hex window. Next,
WRITE_ATTRIBUTE_N_TIMES writes the inverse-video attribute for four
characters, starting at the cursor and moving to the right. This writes the
phantom cursor in the hex window. In much the same way, WRITE_PHAN-
TOM then writes a phantom cursor one character wide in the ASCII window.
Finally, RESTORE_REAL_CURSOR restores the position of the real cursor to
the position it was in before the call to WRITE_PHANTOM.

The only procedure we have left unwritten is WRITE_ATTRIBUTE_
N_TIMES, so let’s take care of it now.

Changing Character Attributes

We're going to use WRITE_ATTRIBUTE_N_TIMES to do three things. First,
it will read the character under the cursor position. We'll do this because the
INT 10h function we use to set a character’s attribute, function number 9,
writes both the character and the attribute under the cursor. Thus,
WRITE_ATTRIBUTE_N_TIMES will change the attribute by writing the new
attribute along with the character just read. Finally, the procedure will move
the cursor right to the next character position, so we can repeat the whole pro-

cess N times. You can see the details in the procedure itself;, place
WRITE_ATTRIBUTE_N_TIMES in the file VIDEO_IO.ASM:

Listing 21-3. Add This Procedure to VIDEO_IO.ASM

PUBLIC WRITE_ATTRIBUTE_N_TIMES
EXTRN CURSOR_RIGHT:PROC

; This procedure sets the attribute for N characters, starting at the
; current cursor position.

; On entry: (094 Number of characters to set attribute for
B DL New attribute for characters

; Uses: CURSOR_RIGHT

Disk A

Sector @

88 81 82 83 84 85 86 87 88 69 8A BB AC 8D BE OF

The Phantom Cursors

0123456789ABCDEF

00
18
29
30
49
o8
68
78
89
99
Ao
B
Cca
D
E8
Fa

T T ¥
I8 90 49 42 4D 20 208 33 2E 32 88 62 82 81 88
82 70 88 D@ 82 FD B2 6@ B9 09 82 06 PR 8O 8 0O
@0 60 PP B9 0O A 0O BA BA BB FA C4 SC 88 33 ED
B8 C@ 87 8E D8 33 C9 88 16 FD 81 8A D2 79 8A 89
1E 1C 8@ 8C 86 1E 8@ B1 82 8E C5 8E DS BC 88 7C
FC 1E 36 C5 36 78 88 BF 2A 7C B9 @B 88 F3 A4 1F
C6 06 2E 8@ 8F BF 78 88 B8 2A 7C AB 91 AB FB 8A
16 FD 81 CD 13 AB 18 88 98 F7 26 16 6@ 83 86 OF
8@ E8 73 89 ES 79 98 BB 88 85 53 E8 A@ 88 SF BE
74 81 B9 @B 88 98 F3 A6 75 57 83 C7 15 B1 @B 98
98 F3 A6 75 4C 26 8B 47 1C 99 8B 8E @B 88 83 C1
48 F7 F1 3D 14 8@ 7F 82 B8 14 96 A1 11 88 B1 84
D3 E8 E8 32 @@ FF 36 1C 88 C4 1E 78 81 ES 30 88
E8 SB 6@ 2B F@ 76 6D E8 1D 8@ 52 F7 26 @B 8@ 83
D8 SA EB E9 SB 8A 2E 15 8@ 8A 16 FD @1 FF 2E 70
81 BE 8B 81 EB 54 98 B1 86 1C 88 11 2E 1E £0 C3

NEIBH 3.2 880
& lweos

L°F*i=3rre- @Env%e
AL]Pa

N.646x 1*!5? Snv
FQ. ¥yx 1*l5&5f§
o2 E=E) 78 09?
s v 7 4804 _
168 ﬁ<auHaHS‘€ﬁ
£<auL8iG-07d¢ oL
Hes=0 o8 Wiid o
U352 B -apB}0
§0 +=vide R=&% #
$200¢.5 .70 .p
B IOOTEDN (.o |

Press function key, or enter character or hex byte:

Figure 21-1. Screen Display with Phantom Cursors.

HRITE _ATTRIBUTE_N_TIMES PROC

PUSH AX

PUSH BX

PUSH CX

PUSH DX

MOV BL,DL ;Set attribute to new attribute

XOR BH, BH ;Set display page to O

MOV DX,CX ;CX is used by the BIOS routines

MOV CX,2 ;Set attribute for one character
ATTR_LOOP:

MOV AH,8 ;Read character under cursor

INT 10h

MOV AH,9 ;Write attribute/character

INT 10h

CALL CURSOR_RIGHT

DEC DX ;Set attribute for N characters?

JNZ ATTR_LOOP ;No, continue

POP DX

POP CX

POP BX

POP AX

RET

WRITE_ATTRIBUTE_N_TIMES ENDP

231

This is both the first and final version of WRITE_ATTRIBUTE_N_TIMES.

With it, we've also created the final version of VIDEO_IO.ASM, so you won'’t
need to change or assemble it again.

232 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Summary

We now have eight files to link, with the main procedure still in Dskpatch. Of
these, we’ve changed two files, Disp_sec and Video_io, and created one, Phan-
tom. If you’re using Make or the short batch file we suggested in Chapter 20,
remember to add your new file, Phantom, to the list.

When you run Dskpatch now, you’ll see it write the sector display, just as
before, but Dskpatch will also write in the two phantom cursors. (See Figure
21-1.) Notice that the real cursor is back where it should be at the very end.

In the next chapter, we’ll add procedures to move our newly formed phantom
cursors, and we’ll add a simple editing procedure to allow us to change the byte
under the phantom cursor.

234 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

We’ve almost reached the point at which we can begin to edit our sector dis-
play—change numbers in our half sector display. We’ll soon add simple ver-
sions of the procedures for editing bytes in our display, but before we do, we
need some way to move the phantom cursors to different bytes within the half
sector display. This task turns out to be fairly simple, now that we have the two
procedures ERASE_PHANTOM and WRITE_PHANTOM.

Moving the Phantom Cursors

Moving the phantom cursors in any direction depends on three basic steps:
Erasing the phantom cursor at its current position; changing the cursor posi-
tion by changing one of the variables, PHANTOM_CURSOR_X or PHAN-
TOM_CURSOR_Y; and using WRITE_PHANTOM to write the phantom
cursor at this new position. In the process, however, we must be careful not to
let the cursor move outside the window, which is 16 bytes wide and 16 bytes
high.

To move the phantom cursors, we’ll need four new procedures, one for each of
the arrow keys on the keyboard. DISPATCHER needs no changes, because all
the information on procedures and extended codes is in the table DIS-
PATCH_TABLE. We just need to add the extended ASCII codes and addresses
of the procedures for each of the arrow keys. Here are the additions to DIS-
PATCH.ASM that will bring the cursor keys to life:

Listing 22-1. Changes to DISPATCH.ASM

.MODEL SHALL

.CODE
EXTRN NEXT_SECTOR:PROC ;In DISK_IO.ASH
EXTRN PREVIQUS_SECTOR:PROC ;In DISK_TIO.ASHM
EXTBN PHANTOM_UP:PROC, PEAKTOM_DOWK:PROC :In PHARTOM.ASH
EXTRX PHANTOM_LEPT:PROC, PBAKTOX_RIGHT:PROC IS LNy !
DATA

; This table contains the legal extended ASCII keys and the addresses
; of the procedures that should be called when each key is pressed.

; The format of the table is ;
3 DB 7c ;Extended code for cursor up H
DW OFFSET _TEXT:PHANTOM_UP)

DISPATCH_TABLE LABEL BYTE

DB &l 31z
DW OFFSET _TEXT:PREVIOUS_SECTOR
DB &2 ;P4

Dw OFFSET _TEXT:NEXT_SECTOR

22

'D¥ OFFSET

DB 80

D¥ OFFSET

DB 75
OFFSET

,EE 27

'D¥_ OFFSET

DB D

Simple Editing 235

;Cursor up
TEXT:PHANTOM_UP

;Cursor down
_TEXT:PHANTOM_DOWN

;Cursor left
_TEXT:PHANTOM_LEFT

;Cursor right
_TEXT:PHANTOM_RIGHT -

;End of the table

As you can see, it’s simple to add commands to Dskpatch: We merely place the

procedure names

in DISPATCH_TABLE and write the procedures.

Speaking of writing procedures, the procedures PHANTOM_UP, PHAN-
TOM_DOWN, and so on are fairly simple. They’re also quite similar to one
another, differing only in the boundary conditions used for each. We've already
described how they work; see if you can write them yourself, in the file PHAN-
TOM.ASM, before you read on.

Here are our versions of the procedures to move the phantom cursors:

Listing 22-2. Add These Procedures to PHANTOM.ASM

These four pro

cedures move the phantom cursors.

Uses: ERASE_PHANTOM, WRITE_PHANTOM ;
Reads: PHANTOM_CURSOR_X, PHANTOM_CURSOR_Y J
Writes: PHANTOM_CURSOR_X, PHANTOM_CURSOR_Y H
PUBLIC PHANTOM_UP
PHANTOM_UP PROC
CALL ERASE_PHANTOM ;Erase at current position
DEC PHANTOM_CURSOR_Y ;Move cursor up one line
JNS WASNT_AT_TOP ;#as not at the top, write cursor
MOV PHANTOM_CURSOR_Y,O ;Was at the top, so put back there
WASNT_AT_TOP:
CALL WRITE_PHANTOM ;Write the phantom at new position
RET
PHANTOM_UP ENDP
PUBLIC PHARNTOM_DOWN
PHANTOM_DOWN PROC
CALL ERARSE_PHANTOM ;Erase at current position
INC PHANTOM_CURSOR_Y ;Move cursor down one line
CHP PHRANTOM_CURSOR_Y, 1k ;Was it at the bottom?
JB WASNT_AT_BOTTOM ;No, so write phantom
MOV PHANTOM_CURSOR_Y,15S ;Was at bottom, so put back there
WASNT_AT_BOTTOM:
CALL WRITE_PHANTOM ;Write the phantom cursor
RET
PHANTOM_DOWN ENDP
PUBLIC PHANTOM_LEFT
PHANTOM_LEFT PROC
CALL ERASE_PHANTOM ;Erase at current position
DEC PHANTOM_CURSOR_X ;Move cursor left one colunmn
JNS WASNT_AT_LEFT ;Was not at the left side, write cursor
MOV PHANTOM_CURSOR_X, O ;Was at left, so put back there
WASNT_AT_LEFT:
CALL WRITE_PHANTOM ;Write the phantom cursor
RET

PHANTOM_LEFT

ENDP

ne b

236 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Listing 22-2. continued

PUBLIC PHANTOM_RIGHT
PHANTOM_RIGHT PROC NEAR

CALL ERASE_PHANTOM ;Erase at current position

INC PHANTOM_CURSOR_X ;Move cursor right one column

CMP PHANTOM_CURSOR_X,1b ;Has it already at the right side?

JB WASNT_AT_RIGHT

MOV PHANTOM_CURSOR_X, 1S ;Was at right, so put back there
WASNT_AT_RIGHT:

CALL WRITE_PHANTOM ;Arite the phantom cursor

RET
PHANTOM_RIGHT ENDP

PHANTOM_LEFT and PHANTOM_RIGHT are the final versions, but we’ll
have to change PHANTOM_UP and PHANTOM_DOWN when we begin to
scroll the display.

Test Dskpatch now to see if you can move the phantom cursors around on the
screen. They should move together, and they should stay within their own win-
dows.

As Dskpatch stands now, we can see only the first half of a sector. In Chapter
27, we'll make some additions and changes to Dskpatch so we can scroll the dis-
play to see other parts of the sector. At that time, we’ll change both PHAN-
TOM_UP and PHANTOM_DOWN to scroll the screen when we try to move the
cursor beyond the top or bottom of the screen. For example, when the cursor is
at the bottom of the half-sector display, pushing the cursor-down key again
should scroll the display up one line, adding another line at the bottom, so that
we see the next 16 bytes. Scrolling is rather messy, however, so we'll keep these
procedures until almost last. Through Chapter 26, we’ll develop the editing and
keyboard-input sections of Dskpatch by using only the first half sector. Now,
we'll go on to add editing, so we can change bytes on our display.

Simple Editing

We already have a simple keyboard-input procedure, READ_BYTE, which
reads just one character from the keyboard without waiting for you to press the
Enter key. We'll use this old, test version of READ_BYTE to develop editing.
Then, in the next chapter, we’ll write a more sophisticated version of the proce-
dure that will wait until we press either the Enter key or a special key, such as
a function or cursor key.

Our editing procedure will be called EDIT_BYTE, and it will change one byte
both on the screen and in memory (SECTOR). EDIT_BYTE will take the char-
acter in the DL register, write it to the memory location within SECTOR that is
currently pointed to by the phantom cursor, and then change the display.

Simple Editing 237

DISPATCHER already has a nice niche where we can place a CALL to
EDIT_BYTE. Here is the new version of DISPATCHER in DISPATCH.ASM,
with the CALL to EDIT_BYTE and the changes to go along with it:

Listing 22-3. Changes to DISPATCHER in DISPATCH.ASM

PUBLIC DISPATCHER E —

EXTRN READ_BYTE:PROC, EDIT_BYTE:PROC
This is the central dispatcher. During normal editing and viewing, 1
this procedure reads characters from the keyboard and, if the character;

I

|

) o ws me ws wo uo o ws ws wo ws wo ws

is a command key (such as a cursor Kkey),
procedures that do the actual work.
special keys listed in the table DISPATCH_TABLE, where the procedure
addresses are stored just after the key names.

If the character is not a special key,
directly into the sector buffer--this is the editing mode.

DISPATCHER calls the H
This dispatching is done for

then it should be placed ;

Uses: READ_BYTE, EDIT_BYTE
ISPATCHER PROC
PUSH AX
PUSH BX
PUSB DX
DISPATCH_LOOP:
CALL READ_BYTE ;Read character into AL
OR AH,AH yAX = -1 if no character read, 1
an extended code.
Js DISPATCH_LOOP +No character read, try again
JNZ SPECIAL_KEY ;Read extended code
» ay xlULhJ‘.ng W.i.(_:l Lil€ L,ILIGL(I\JL,C'L RIRA
MOV DL, AL
CALL EDIT_BYTE ;Was normal character, edit byte
JMP DISPATCH_LOOP ;Read another character
SPECIAL_KEY:
CMP AL,E8 ;FlLO0--exit?
JE END_DISPATCH ;Yes, leave
;Use BX to look through table
LEA BX,DISPATCH_TABLE
SPECIAL_LOOP:
CMP BYTE PTR (BX1,0 ;End of table?
JE NOT_IN_TABLE ;Yes, key was not in the table
CHP AL, [BX] ;Is it this table entry?
JE DISPATCH ;Yes, then dispatch
ADD BX,3 ;No, try next entry
JMP SPECIAL_LOOP ;Check next table entry
DISPATCH:
INC BX ;Point to address of procedure
CALL WORD PTR [BX] ;Call procedure
JHP DISPATCH_LOOP ;Hait for another Kkey

NOT_IN_TABLE:

JHMP DISPATCH_LOOP
END_DISPATCH:

"POP DX

POP BX

POP AX

RET
DISPATCHER ENDP

;Do nothing,

just read next character

TR &N

238 Peter Norton's Assembly Language Book for the IBM PC, Revised & Expanded

The EDIT_BYTE procedure itself does a lot of work, almost entirely by call-
ing other procedures, and this is one feature of modular design. With modular
design, we can often write rather complex procedures simply by giving a list of
CALLs to other procedures that do the work. Many of the procedures in
EDIT_BYTE work with a character in the DL register, but this is already set
when we call EDIT_BYTE, so the only instruction other than a CALL (or
PUSH, POP) is the LEA instruction to set the address of the prompt for
WRITE_PROMPT_LINE. Most of the procedure calls in EDIT_BYTE are for
updating the display when we edit a byte. You'll see the other details of
EDIT_BYTE when we come to the procedure listing in a moment.

Since EDIT_BYTE changes the byte on screen, we need another procedure,
WRITE_TO_MEMORY, to change the byte in SECTOR. WRITE_TO_MEM-
ORY uses the coordinates in PHANTOM_CURSOR_X and PHANTOM_CUR-
SOR_Y to calculate the offset into SECTOR of the phantom cursor, then it
writes the character (byte) in the DL register to the correct byte within SEC-
TOR.

Here is the new file, EDITOR.ASM, which contains the final versions of both
EDIT_BYTE and WRITE_TO_MEMORY:

Listing 22-4. The New File EDITOR.ASM

.MODEL SMALL

.CODE
.DATA
EXTRN SECTOR:BYTE
EXTRN SECTOR_OFFSET:WORD
EXTRN PHANTOM_CURSOR_X:BYTE
EXTRN PHANTOM_CURSOR_Y:BYTE
CODE

’
; This procedure writes one byte to SECTOR, at the memory location
; pointed to by the phantom cursor.

; On entry: DL Byte to write to SECTOR

; The offset is calculated by H
OFFSET = SECTOR_OFFSET + (1t * PHANTOM_CURSOR_Y) + PHANTOM_CURSOR_X ;

; Reads: PHANTOM_CURSOR_X, PHANTOM_CURSOR_Y, SECTOR_OFFSET

; Writes: SECTOR
WRITE_TO_MEMORY PROC
PUSH AX
PUSH BX
PUSH cX
MoV BX,SECTOR_OFFSET
Mov AL,PHANTOM_CURSOR_Y
XOR AH,AH
MOV CL,4 ;Multiply PHANTOM_CURSOR_Y by 1&
SHIE AX,CL
ADD BX,AX ;BX = SECTOR_OQOFFSET + (1t * Y)
Mov AL,PHANTOM_CURSOR_X
XOR AH,RH
ADD BX,AX ;That's the address!

Simple Editing 239

MOV SECTOR(BX1,DL sNow, store the byte
POP CX
POP BX
POP AX
RET
WRITE_TO_MEMORY ENDP
PUBLIC EDIT_BYTE
EXTRN SAVE_REAL_CURSOR:PROC, RESTORE_REAL_CURSOR:PROC
EXTRN MOV_TO_HEX_POSITION:PROC, MOV_TO_ASCII_POSITION:PROC
EXTRN WRITE_PHANTOM:PROC, WRITE_PROMPT_LINE:PROC
EXTRN CURSOR_RIGHT:PROC, WRITE_HEX:PROC, WRITE_CHAR:PROC
.DATA
EXTRN EDITOR_PROMPT:BYTE
.CODE

; This procedure changes a byte in memory and on the screen.

; On entry: DL Byte to write into SECTOR, and change on screen

; Uses: SAVE_REAL_CURSOR, RESTORE_REARL_CURSOR

4 MOV_TO_HEX_POSITION, MOV_TO_ASCII_POSITION

H WRITE_PHANTOM, WRITE_PROMPT_LINE, CURSOR_RIGHT
o WRITE_HEX, WRITE_CHAR, WRITE_TO_MEMORY

; Reads: EDITOR_PROMPT
E

DIT_BYTE PROC

PUSH DX
CALL SAVE_REAL_CURSOR
CALL MOV_TO_HEX_POSITION ;Move to the hex number in the
CALL CURSOR_RIGHT ; hex window
CALL WRITE_HEX ;Write the new number
CALL MOV_TO_ARSCII_POSITION ;Move to the char. in the ASCII window
CALL WRITE_CHAR ;Write the new character
CALL RESTORE_REAL_CURSOR ;Move cursor back where it belongs
CALL WRITE_PHANTOM ;Rewrite the phantom cursor
CALL WRITE_TO_MEMORY ;Save this new byte in SECTOR
LEA DX,EDITOR_PROMPT
CALL WRITE_PROMPT_LINE
POP DX
RET

EDIT_BYTE ENDP
END

Summary

Dskpatch now consists of nine files: Dskpatch, Dispatch, Disp_sec, Disk_io,
Video_io, Kbd io, Phantom, Cursor, and Editor. In this chapter, we changed
Dispatch and added Editor. None of these files is very long, so none takes very
long to assemble. Furthermore, we can make changes fairly quickly by editing
Jjust one of these files, reassembling it, and then linking all the files together
again.

In terms of our current version of Dskpatch, when you push any key, you'll
see a change in the number and character under the phantom cursor. Our edit-
ing works, but it’s not very safe as yet, since we can change a byte by hitting

242 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

W’ll encounter two new procedures for keyboard input in this chapter: one
procedure for reading a byte by reading either a two-digit hex number or a sin-
gle character, and another for reading a word by reading the characters of a
decimal number. These will be our hex and decimal input procedures.Both pro-
cedures are sufficiently tricky that we need to use a test program with them
before we even consider linking them into Dskpatch. We’'ll be working with
READ_BYTE, and a test procedure will be particularly important here,
because this procedure will (temporarily) lose its ability to read special func-
tion keys. Since Dskpatch relies on the function keys, we won’t be able to use
our new READ_BYTE with Dskpatch. We’ll also find out why we can’t read
special function keys with the READ_BYTE developed here, and in the next
chapter we’ll modify the file to make our function-key problems go away.

Hex Input

Let’s begin by rewriting READ_BYTE. In the last chapter, READ_BYTE
would read either an ordinary character or a special function key and return
one byte to Dispatch. Dispatch then called the Editor if READ_BYTE read an
ordinary character, and EDIT_BYTE modified the byte pointed to by the phan-
tom cursor. Otherwise, Dispatch looked for special function keys in DIS-
PATCH_TABLE to see if the byte was there; if so, Dispatch called the
procedure named in the table.

But, as mentioned in the last chapter, the old version of READ_BYTE makes
it much too easy to change a byte by accident. If you unintentionally hit any
key on the keyboard (other than special keys), EDIT_BYTE will change the
byte under the phantom cursor. All of us are sometimes clumsy, and such an
inadvertent change in a sector can lead to disaster.

We’ll change READ_BYTE so that, henceforth, it won’t return the character
we type until we press the Enter key. We’ll provide this feature by using the
DOS INT 21h function 0Ah to read a string of characters. DOS returns this
string only when we press Enter, so we get our fix for clumsiness. But along the
way, we lose special function keys, for reasons you’ll see later.

To see exactly how our changes affect READ_BYTE, we need to write a test
program to test READ_BYTE in isolation. That way, if anything strange hap-
pens, we'll know it’'s READ_BYTE and not some other part of Dskpatch. Our
job of writing a test procedure will be simpler if we use a few procedures from
Kbd_io, Video_io, and Cursor to print information on the progress of
READ_BYTE. We’ll use such procedures as WRITE_HEX and WRITE_DECI-

Hex and Decimal Input

243

MAL to print the character code returned and the number of characters read.
The details are here, in TEST.ASM:

Listing 23-1. The Test Program TEST.ASM

.MODEL SMALL

.STACK
.DATA
ENTER_PROMPT DB ‘Enter characters: !',0
CHARACTER_PRONMPT DB 'Character code: ',0
SPECIAL_CHAR_PROMPT DB 'Special character read:
.CODE
EXTRN WRITE_HEX:PROC, WRITE_DECIMAL:PROC
EXTRN WRITE_STRING:PROC, SEND_CRLF:PROC
EXTRN READ_BYTE:PROC
TEST_READ_BYTE PROC
Mov AX,DGROUP
MOV DS, AX
LEA DX,ENTER_PROMPT
CALL WRITE_STRING
CALL READ_BYTE
CALL SEND_CRLF
LEA DX,CHARACTER_PROMPT
CALL WRITE_STRING
MOV DL,AL
CALL WRITE_HEX
CALL SEND_CRLF
LEA DX,SPECIAL_CHAR_PROMPT
CALL WRITE_STRING
Mov DL, RH
XOR DH,DH
CALL WRITE_DECIMAL
CALL SEND_CRLF
MOV AH,4Ch ;Return to DOS
INT 21lh

TEST_READ_BYTE ENDP

END

TEST_READ_BYTE

Try linking this with your current versions of Kbd_io, Video_io, and Cursor
(place Test first in the LINK list). If you press any special function key, Test
will display the scan code, and a 1 to tell you that you typed a special character.
Otherwise it will display 0 (no special key).

The bulk of the instructions in TEST.ASM are for formatting—making the
display look nice. One thing you may have noticed is that we’ve used some of
the procedures in kbd_io, video_io, and cursor without regard to the other files
in our project. We could do this because we were careful to place only general-
purpose procedures into these files. In other words, kbd_io, video_io, and cursor
are designed to be used by any program you write. In general, it’s a good idea to
separate your procedures by source file into general-purpose and specific proce-

VA DAY

244 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

dures so that you can easily reuse general-purpose procedures in new programs
you write.

Let’s move on to rewriting READ_BYTE to accept a string of characters. Not
only will this save us from our clumsiness when we use Dskpatch, it will also
allow us to use the Backspace key to delete characters if we change our mind
about what we want to type in—another nice feature since it’s easy to make
mistakes. READ_BYTE will use the procedure READ_STRING to read a string
of characters.

READ_STRING is very simple, almost trivial, but we’ve placed it in a sepa-
rate procedure so you can rewrite it in the next chapter to read special function
keys without having to press the Enter key. To save time, we’ll also add three
other procedures that READ_BYTE uses: STRING_TO_UPPER, CON-
VERT_HEX_DIGIT, and HEX_TO_BYTE.

STRING_TO_UPPER and HEX_TO_BYTE both work on strings.
STRING_TO_UPPER converts all the lowercase letters in a string to upper-
case. That means we can type either f3 or F3 for the hex number F3h. By
allowing hex numbers to be typed in either lower- or uppercase letters, we add
user-friendliness to Dskpatch.

HEX_TO_BYTE takes the string read by DOS, after we call
STRING_TO_UPPER, and converts the two-digit hex string to a single-byte
number. HEX_TO_BYTE makes use of CONVERT_HEX_DIGIT to convert
each hex digit to a four-bit number.

How do we ensure that DOS won’t read more than two hex digits? The DOS
function 0Ah reads an entire string of characters into an area of memory
defined like this:

CHAR_NUM_LIMIT DB 0
NUM_CHARS_REARD DB 0
STRING DB 80 DUP (0)

The first byte ensures that we don’t read too many characters.
CHAR_NUM_LIMIT tells DOS how many characters, at most, to read. If we set
this to three, DOS will read up to two characters, plus the carriage-return char-
acter (DOS always counts the carriage return). Any characters we type after
that will be discarded—thrown away—and for each extra character, DOS will
beep to let us know we've passed the limit. When we press the Enter key, DOS
sets the second byte, NUM_CHARS_READ, to the number of characters it
actually read, not including the carriage return.

STRING_TO_-UPPER, READ_BYTE, and STRING_TO_UPPER all use
NUM_CHARS_READ. For example, READ_BYTE checks NUM_CHARS
_READ to find out whether you typed a single character or a two-digit hex
number. f NUM_CHARS_READ was set to one, READ_BYTE returns a single

Hex and Decimal Input 245

character in the AL register. If NUM_CHARS_READ was set to two,
READ_BYTE uses HEX_TO_BYTE to convert the two-digit hex string to a
byte.

Without further ado, here is the new file KBD_10.ASM, with all four new
procedures (note that we kept the old READ_BYTE by renaming it to
READ_KEY, which we’ll use in the next chapter):

Listing 23-2. The New Version of KBD_IO.ASM

.MODEL SMALL

.DATA

KEYBOARRD_INPUT LABEL BYTE

CHAR_NUM_LIMIT DB 0] ;Length of input buffer
NUM_CHARS_READ DB 8] sNumber of characters read
CHARS DB 80 DUP (D) ;3 buffer for keyboard input
.CODE

PUBLIC STRING_TO_UPPER

This procedure converts the string, using the DOS format for strings,
to all uppercase letters.

’

’
’
’
’

On entry: DS: DX Rddress of string buffer
’
STRING_TO_UPPER PROC
PUSH RX
PUSH BX
PUSH CcX
MOV BX, DX
INC BX ;Point to character count
MOV CL, [BX] ;Character count in 2nd byte of buffer
XOR CH,CH ;Clear upper byte of count
UPPER_LOOQP:
INC BX ;Point to next character in buffer
MOV AL, [BX]
CMP AL, 'a! ;See if it is a lowercase letter
JB NOT_LOWER ; Nope
CMP AL, 'z!
JA NOT_LOWER
RDD AL, 'A'-ta! ;Convert to uppercase letter
MOV [BX]1,AL
NOT_LOWER:
LOOP UPPER_LOOP
POP CX
POP BX
POP AX
RET
STRING_TO_UPPER ENDP

This procedure converts a character from ASCII (hex) to a nibble (4

s bits). {
; On entry: AL Character to convert H
; Returns: AL Nibble H
H CF Set for error, cleared otherwise 5
| == s meeesemees === == 5
CONVERT_HEX_DIGIT PROC

CMP AL, 'O ;Is it a legal digit?

JB BAD_DIGIT ;Nope

CMP RL,'q! ;Not sure yet

246 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Listing 23-2. continued

JA TRY_HEX ;Might be hex digit

SUB AL, 'O’ yIs decimal digit, convert to nibble

CLC ;Clear the carry, no error

RET
TRY_HEX:

CHMP AL, 'A! ;Not sure yet

JB BAD_DIGIT ;Not hex

CMP AL, 'F! ;Not sure yet

JA BAD_DIGIT ;Not hex

SUB AL,'A'-10 ;Is hex, convert to nibble

CLC ;Clear the carry, no error

RET
BAD_DIGIT:

SIRC ;Set the carry, error

RET
CONVERT_HEX_DIGIT ENDP

PUBLIC HEX_TO_BYTE
; This procedure converts the two characters at DS:DX from hex to one M
; byte. ;
; On entry: DS:DX Address of two characters for hex number o
; Returns: AL Byte H
3 CF Set for error, clear if no error
; Uses: CONVERT_HEX_DIGIT 7
HEX_TO_BYTE PROC

PUSH BX

PUSH CX

MOV BX,DX ;Put address in BX for indirect addr

MoV AL, [BX] ;Get first digit

©Lic CONVERT_HEX_DIGIT

Jc BAD_HEX ;Bad hex digit if carry set

MOV CX,4 ;Now multiply by 16

SHL AL,CL

MoV AH,AL ;Retain a copy

INC BX ;Get second digit

Mov AL, [BX]

CRAEL CONVERT_HEX_DIGIT

Jc BAD_HEX ;Bad hex digit if carry set

OR AL, AH ;Combine two nibbles

CLC ;Clear carry for no error
DONE_HEX:

POP CX

POP BX

RET
BAD_HEX:

STC ;Set carry for error

JHMP DONE_HEX

HEX_TO_BYTE ENDP

This is a simple version of REARD_STRING.

O e o we wo e

On entry: DS:DX Address of string area
EARD_STRING PROC
PUSH AX
MOV AH,0Rh ;Call for buffered keyboard input
INT 2lh ;Call DOS function for buffered input
POP AX
RET

READ_STRING ENDP

PUBLIC READ_BYTE

Hex and Decimal Input 247

L e =3 ;
; This procedure reads either a single ASCII character or a two-digit 2
; hex number. This is just a test version of READ_BYTE. 5
; Returns: AL Character code (unless AH = 0) w
H AH 0 if read ASCII char H
$ 1 if read a special key :
d -1 if no characters read b
’ ¥
5 Uses: HEX_TO_BYTE, STRING_TO_UPPER, REARD_STRING K
; Reads: KEYBOARD_INPUT, etc. K
; Writes: KEYBOARD_INPUT, etc. ;
. *
READ_BYTE PROC

PUSH DX

MOV CHAR_NUM_LIMIT,3 ;Allow only two characters (plus Enter)

LEA DX,KEYBOARD_INPUT

CALL READ_STRING

CMP NUM_CHARS_RERD, 1 ;See how many characters

JE ASCII_INPUT ;Just one, treat as ASCII character

JB NO_CHARACTERS ;Only Enter key hit

CALL STRING_TO_UPPER ;No, convert string to uppercase

LEA DX,CHARS ;Address of string to convert

CALL HEX_TO_BYTE ;Convert string from hex to byte

JC NO_CHARACTERS sError, so return 'no characters read'’

XOR RH, RH ;Signal read one character
DONE_READ:

POP DX

RET
NO_CHARACTERS:

XOR AH,AH ;Set to 'no characters read'

NOT AH ;Return -1 in AH JMP
DONE_READ
ASCII_INPUT:

MOV AL,CHARS 1Load character read

XOR RH, RH ;Signal read one byte

JNP DONE_READ
READ_BYTE ENDP

PUBLIC REARD_KEY
; This procedure reads one key from the keyboard.
; Returns: AL Character code (unless RAH = 1) 8
5 AH D if read ASCII char ;
; 1 if read a special key H
READ_KEY PROC

XOR RH, AH ;Ask for keyboard read function

INT 1Eh ;Read character/scan code from keyboard

OR AL,AL +Is it an extended code?

Jz EXTENDED_CODE ;Yes
NOT_EXTENDED:

XOR AH,AH ;Return just the ASCII code
DONE_READING:

RET
EXTENDED_CODE:

MOV AL, AH yPut scan code into AL

MOV AH, 1 ;Signal extended code

JNP DONE_RERDING
READ_KEY ENDP

END

Reassemble Kbd_io and link the four files Test, Kbd_io, Video_io, and Cursor to
try this version of READ_BYTE.

bt DA - DAMNGY

LS L OSS 2

248 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

At this point, we have two problems with READ_BYTE. Remember the spe-
cial function keys? We can’t read them with DOS function 0Ah; it just doesn’t
work. Try pressing a function key when you run Test. DOS doesn’t return two
bytes, with the first set to zero as you might expect. Instead, our test program
reports 255 for the special key (1 in AH), which means READ_BYTE didn’t
read any characters.

We have no way to read extended codes with DOS’s buffered input, using
function 0Ah. We used this function so that we could use the Backspace key to
delete characters before we press the Enter key. But now, since we can’t read
special function keys, we have to write our own READ_STRING procedure.
We'll have to replace function OAh to ensure that we can press a special func-
tion key without pressing Enter.

The other problem with DOS’s function 0Ah for keyboard input has to do
with the line-feed character. Press Control-Enter (line feed) after you type
one character and then try the Backspace key. You’'ll find that you're on the
next line, with no way to return to the one above. Our new version of Kbd_io
in the next chapter will treat the line-feed character (Control-Enter) as an
ordinary character; then, pressing line feed won’t move the cursor to the next
line.

But before we move on to fix the problems with READ_BYTE and
READ_STRING, let’s write a procedure to read an unsigned decimal number.
We won't use the procedure in this book, but the version of Dskpatch on the
companion disk does use it so that we can, for example, ask Dskpatch to display
sector number 567.

Decimal Input

Recall that the largest unsigned decimal number we can put into a single
word is 65536. When we use READ_STRING to read a string of decimal digits,
we’ll tell DOS to read no more than six characters (five digits and a carriage
return at the end). Of course, that means READ_DECIMAL will still be able to
read numbers from 65536 to 99999, even though these numbers don’t fit into
one word. We’ll have to keep watch for such numbers and return an error code if
READ_DECIMAL tries to read a number larger than 65535, or if it tries to read
a character that is not between zero and nine.

To convert our string of up to five digits into a word, we’ll use multiplication
as we did in Chapter 1: We'll take the first (leftmost) digit, multiply it by ten,
tack on the second digit, multiply it by ten, and so on. Using this method, we
could, for example, write 49856 as:

e

—

- = _—— -

Hex and Decimal Input 249

4+*10% + 9*103 + 8+10° + 5x10' + Bx200

or, as we’ll do the calculation:

L0*(10*(10*(10*4+9) +8) +5) +b

Of course, we must watch for errors as we do these multiplications and return
with the carry flag set whenever an error occurs. How do we know when we try
to read a number larger than 655357 With larger numbers, the last MUL will
overflow into the DX register. The CF flag is set when DX is not zero after a
word MUL, so we can use a JC (Jump if Carry set) instruction to handle an
error. Here is READ_DECIMAL, which also checks each digit for an error (a
digit that is not between 0 and 9). Place this procedure in the file

KBD_IO.ASM:

Listing 23-3. Add This Procedure to KBD_IO.ASM

PUBLIC

READ_DECIMAL

Returns:

Uses:
Reads:
Writes:

the string of decimal digits to a word.

AX Word converted from decimal H
CF Set if error, clear if no error B

READ_STRING
KEYBOARD_INPUT, etc.
KEYBOARD_INPUT, etc.

READ_DECIMAL
PUSH
PUSH
PUSH
Mov
LEA
CALL
MoV
XOR
CMP
JLE
XOR
XOR

CONVERT_DIGIT:
MOV
MUL
Jc
MOV
SUB
Js
CMP
JA
ADD
INC
LOOP

DONE_DECIMAL:
POP
POP
POP
RET

DX

CHAR_NUM_LIMIT,b ;Max number is 5 digits (&5535)
DX,KEYBOARD_INPUT

READ_STRING

CL,NUM_CHARS_READ ;Get number of characters read
CH,CH ;Set upper byte of count to O

CL,D ;Return error if no characters read
BAD_DECIMAL_DIGIT ;No chars read, signal error

AX,RX ;Start with number set to O

BX,BX ;Start at beginning of string
DX,10 ;Multiply number by 10

DX ;Multiply AX by 10
BAD_DECIMAL_DIGIT ;CF set if MUL overflowed one word
DL,CHARRS{BX] ;Get the next digit

DL,'0! ;And convert to a nibble (4 bits)
BAD_DECIMAL_DIGIT ;Bad digit if < O

DL.,9 ;Is this a bad digit?
BAD_DECIMAL_DIGIT ;Yes

AX,DX ;No, so add it to number

BX ;Point to next character
CONVERT_DIGIT ;Get the next digit

DX

CX

BX

A

250 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Listing 23-3. continued

BAD_DECIMAL_DIGIT:
STC ;Set carry to signal error
JMP DONE_DECIMAL

READ_DECIMAL ENDP

To make certain it works properly, we need to test this procedure with all the
boundary conditions. Here is a simple test program for READ_DECIMAL that
uses much the same approach we used to test READ_BYTE:

Listing 23-4. Changes to TEST.ASM

-MODEL SMALL

-STACK
.DATA
ENTER_PROMPT DB 'Eater decimal number: ',0
KUXBER_READ_PROMPT DB 'Nusber reaéd: ',0
OReLsCoBRe TNo AW (%Y Lo - —
SRECIAL_clan nnowns =3 —————
.CODE
EXTRN WRITE_HEX:PROC, WRITE_DECIMAL:PROC
EXTRN WRITE_STRING:PROC, SEND_CRLF:PROC
EXTIRX RERD_DECIMAL: PROC
TEST_RERD_DECIHAL PROC
Mov AX,DGROOP
Mov DS, AX
LEA DX,ENTER_PROMPT
CALL WRITE_STRING
CALL READ_DECIHNAL
JC EREOR
CALL SEND_CRLF
LE: DX,ROMBER_READ_PROMPT
CALL RRITE_STRING
BONT= DX, 53X
CALL "WRITE_DECIZAL
ERROR: CRLL SEXD_CRLF
= B S PEET AT SHAT PRONTT
MOV AH,4Ch ;Return to DOS
INT 21lh
TEST_READ_DECI¥AL ENKDP.

Again, we need to link four files: Test (the preceding file), Kbd_io, Video_io,
and Cursor. Try the boundary conditions, using both valid digits and invalid
ones (such as A, which is not a valid decimal digit), and with such numbers as 0,
65535, and 65536.

254 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

W mentioned we would present the development of Dskpatch just as we first
wrote it—including bugs and clumsily designed procedures, some of which
you’ve already seen. In this chapter, we’ll write a new version of READ_BYTE,
and it will place a subtle bug into Dskpatch. In the next chapter, we’ll find a can
of insecticide to exorcise this small bug, but see if you can find it yourself first.
(Hint: Carefully check all the boundary conditions for READ_BYTE when it’s
attached to Dskpatch.)

A New READ_STRING

Our modular-design philosophy calls for short procedures so that no single
procedure is too difficult to understand. The new version of READ_STRING
will be an example of a clumsy procedure: much too long. It should be rewritten
with more procedures, but we’ll leave this rewrite to you. This book is quickly
drawing to an end, and we still have a few more procedures left to write before
Dskpatch is a useful program. Right now, we can still edit only the first half of
any sector, and we can’t write this sector back to the disk yet.

In this chapter, we'll give READ_STRING a new procedure, BACK_SPACE,
to emulate the function of the Backspace key found in the DOS function 0Ah.
When we push the Backspace key, BACK_SPACE will erase the last character
typed, from both the screen and the string in memory.

On screen, BACK_SPACE will erase the character by moving the cursor left
one character, writing a space over it, and then moving right one character
again. This sequence will perform the same backspace deletion provided by
DOS.

In the buffer, BACK_SPACE will erase a character by changing the buffer
pointer, DS:SI+BX, so it points to the next lower byte in memory. In other
words, BACK_SPACE will simply decrement BX: (BX = BX — 1). The charac-
ter will still be in the buffer, but our program won’t see it. Why not?
READ_STRING tells us how many characters it’s read. If we try to read more
than this number from the buffer, we’ll see characters we erased. Otherwise,
we won't.

We have to be careful not to erase any characters when the buffer is empty.
Remember that our string-data area looked something like this:

CHAR_NUM_LIMIT DB 0
NUM_CHARS_READ DB 0
STRING DB 80 DUP (O)

Improved Keyboard Input 255

The string buffer starts at the second byte of this data area or at an offset of 2
from the start. So, BACK_SPACE won'’t erase a character if BX is set to 2, the
start of the string buffer, because the buffer is empty when BX equals 2.

Here is BACK_SPACE; place it into KBD_10.ASM:

Listing 24-1. Add This Procedure to KBD_IO.ASM

PUBLIC BACK_SPACE

EXTRN WRITE_CHAR:PROC
; This procedure deletes characters, one at a time, from the buffer and ;
; the screen when the buffer is not empty. BACK_SPACE simply returns
; when the buffer is empty.

; On entry: DS:SI+BX Most recent character still in buffer

; Returns: DS:SI+BX Points to next most recent character
; Uses: WRITE_CHAR
BACK_SPACE PROC ;Delete one character
PUSH AX
PUSH DX
CMP BX,2 ;Is buffer empty?
JE END_BS ;Yes, read the next character
DEC BX ;Remove one character from buffer
MOV AH, 2 ;Remove character from screen
MOV DL,BS
INT 2lh
MOV DL,20h ;Write space there
CALL WRITE_CHAR
MOV DL,BS ;Back up again
INT 21lh
END_BS: POP DX
POP AX
RET
BACK_SPACE ENDP

Let’s move on to the new version of READ_STRING. It will be a large mouth-
ful; the listing you’ll see is for only one procedure. By far the longest procedure
we've written, READ_STRING is, as we said, too large. That’s because it’s com-
plicated by so many possible conditions.

Why does READ_STRING do so many things? We added a few more features.
If you press the Escape key, READ_STRING will clear the string buffer and
remove all the characters from the screen. DOS also erases all the characters in
the string buffer when you press Escape, but it doesn’t erase any characters
from the screen. Instead, it simply writes a backslash (\) character at the end of
the line and moves to the next line. Our version of READ_STRING will be more
versatile than the DOS READ_STRING function.

READ_STRING uses three special keys: the Backspace, Escape, and Enter
keys. We could write the ASCII codes for each of these keys in READ_STRING
whenever we need them, but instead we’ll add a few definitions to the begin-
ning of KBD_10.ASM to make READ_STRING more readable. Here are the
definitions:

256 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Listing 24-2. Additions to KBD_10.ASM

.MODEL SMALL
JBS EQU 8 ;Backspace character

CR EQU 13 ;Carriage-return character
ESCAPE EQU 27 ;Escape character

.DATA

Here is READ_STRING. Although it’s rather long, you can see from the list-
ing that it’s not very complicated—just long. Replace the old version of
READ_STRING in KBD_IO.ASM with this new version:

Listing 24-3. The New READ_STRING in KBD_IO.ASM

PUBLIC
EXTRN

READ_STRING
WRITE_CHAR:NEAR

This procedure performs a function very similar to the DOS OAh

function.

function or keyboard key is pressed--no return for these keys. And
ESCAPE will erase the input and start over again.
DS:DX Address for keyboard buffer. The first byte must
contain the maximum number of characters to read (plus
the return). BAnd the second byte will be used
by this procedure to return the number of characters

actually read.

;
H
H
’
’
’
’
’
H one for
H
H
H
’
H
)
H
H

But this function will return a special character if a

0 No characters read
-1 One special character read
otherwise number actually read (not including
Enter key)
Uses BACK_SPACE, WRITE_CHAR, READ_KEY
READ_STRING PROC PROC
PUSH AX
PUSH BX
PUSH SI
MOV SI,DX ;Use SI for index register and
STRART_OVER:
MOV BX,2 ;BX for offset to beginning of buffer
CRLL READ_KEY ;Read one key from the keyboard
OR RH,AH ;Is character extended ASCII?
JNZ EXTENDED ;Yes, the process it.
STRING_NOT_EXTENDED: ;Extnd char is error unless buf empty
CHMP AL,CR ;Is this a carriage return?
JE END_INPUT ;Yes, we are done with input
CMP AL,BS ;Is it a backspace character?
JNE NOT_BS ;Nope
CALL BACK_SPACE ;Yes, delete character
CMP BL,2 ;Is buffer empty?
JE START_OVER ;Yes, can now read extended ASCII again
JMP SHORT READ_NEXT_CHAR ;No, continue reading normal characters
NOT_BS: CMP ARL,ESCAPE ;Is it an ESC--purge buffer?
JE PURGE_BUFFER ;Yes, then purge the buffer
CMP BL,£SI] sCheck to see if buffer is full
JA BUFFER_FULL ;Buffer is full
MOV [SI+BX],AL 1Else save char in buffer

INC BX
PUSH DX
Mov DL,AL
CALL WRITE_CHAR
POP DX

READ_NEXT_CHAR:

CALL READ_KEY
OR AH, AH
Jz

STRING_NOT_EXTENDED

Signal an error condition by sending a beep
character to the display: chr$(7).

Improved Keyboard Input 257

;Point to next free character in buffer

;Echo character to screen

;An extended ASCII char is not valid
; when the buffer is not empty
;Char is valid

LN =0 = vs =0

PUSH
MOV
MOV
INT
POP
JMP

Mgee me me =

PUSH
MOV
XOR
PURGE_LOOP:
CALL
LOOP
POP
JMP

IGNAL_ERROR:

DX
DL,?
AH,2
2lh
DX

SHORT READ_NEXT_CHAR

;Sound the bell by writing chr$(?)

;Now read next character

URGE_BUFFER:

Empty the string buffer and erase all the
characters displayed on the screen.

CcX
CL,{ST])
CH,CH

BACK_SPACE
PURGE_LOOP
CX

START_OVER

;Backspace over maximum number of

; characters in buffer. BACK_SPACE
; wWill keep the cursor from moving too
; far back

;Can now read extended ASCII characters
; Since the buffer is empty

character.

The buffer was full,

so can't read another
Send a beep to alert user of
buffer-full condition.

W=e =0 =0 =0 =0

UFFER_FULL:
JMP

SHORT SIGNAL_ERROR

;If buffer full, just beep

return -1 as the number of characters read.

E in the buffer as the only character, then ;

EXTENDED:
MOV
MoV
JMP

[sI+2],AL
BL,OFFh

SHORT END_STRING

;Read an extended ASCII code
;Place just this char in buffer
;Num chars read = -1 for special

Save the count of the number of characters

read and return.

END_INPUT:
SUB
END_STRING:
Mov
POP
POP
POP
RET
READ_STRING

BL,2
{sI1+11,BL
SI

BX
AX

ENDP

;Done with input
;Count of characters read

;Return number of chars read

P TR YOIV

g
°Y

258 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Stepping through the procedure, we can see that READ_STRING first checks
to see if we pressed a special function key. It allows us to do so only when the
string is empty. For example, if we press the F3 key after we press the a key,
READ_STRING will ignore the F3 key and beep to tell us we pressed a special
key at the wrong time (we’ll come back to this later in this chapter). We can,
however, press Escape, then F3, because the Escape key causes READ_
STRING to clear the string buffer.

If READ_STRING reads a carriage-return character, it places the number of
characters it read into the second byte of the string area and returns. Our new
version of READ_BYTE looks at this byte to see how many characters
READ_STRING actually read.

Next, READ_STRING checks to see if we typed a backspace character. If so,
it CALLs BACK_SPACE to erase one character. If the string buffer becomes
empty (BX becomes equal to 2—the start of the string buffer), then
READ_STRING goes back to the start, where it can read a special key. Other-
wise, it just reads the next character.

Finally, READ_STRING checks for the ESC character. BACK_SPACE
erases characters only when there are characters in the buffer, so we can clear
the string buffer by calling the BACK_SPACE procedure CHAR_NUM_LIMIT
times, because READ_STRING can never read more than CHAR_NUM_
LIMIT characters. Any other character is stored in the string buffer and echoed
to the screen with WRITE_CHAR. Unless, that is, the buffer is full.

In the last chapter, we changed READ_BYTE in such a way that it couldn’t
read special function keys. We need only add a few lines here to allow
READ_BYTE to work with our new version of READ_STRING, which can read
special function keys. Here are the changes to make to READ_BYTE in
KBD_IO.ASM:

Listing 24-4. Changes to READ_BYTE in KBD_IO.ASM

PUBLIC READ_BYTE

; This procedure reads a single ASCII character of a hex number.

’
; Returns: AL Character code (unless AH = 0)
RH : 0 if read ASCII char or hex number
1 if read a special key
-1 1f no characters read

; Uses: HEX_TO_BYTE, STRING_TO_UPPER, READ_STRING

; Reads: KEYBOARD_INPUT, etc.
; Writes: KEYBOARD_INPUT, etc.
READ_BYTE PROC
PUSH DX
MOV CHAR_NUM_LIMIT,3 ;Allow only two characters (plus Enter)
LEA DX,KEYBOARD_INPUT
CALL READ_STRING
CMP NUM_CHARS_READ, 1 ;See how many characters
JE ASCII_INPUT ;Just one, treat as ASCII character
JB NO_CHARACTERS ;Only Enter key hit

—_—

Pt ol

Improved Keyboard input 259

CHP BYTE PTR NUM_CHARS_READ,OFFh ;Special function key?
JE SPECIAL_KEY ;Yes
CALL STRING_TO_UPPER yNo, convert string to uppercase
LEA DX,CHARS ;Address of string to convert
CALL HEX_TO_BYTE ;Convert string from hex to byte
Jc NO_CHARACTERS ;Error, so return 'no characters read’
XOR AH,AH ;Signal read one byte
DONE_READ:
POP DX
RET
NO_CHARRACTERS:
XOR AH, RH ;Set to 'no characters read'
NOT AH ;Return -1 in AH
JMp DONE_READ
ASCII_INPUT:
MOV AL,CHARS ;Load character read
XOR AH, AH ;Signal read one character
JNP DONE_READ
SPECIAL_KEY: .
MoV AL,CRRRS(O} ;BReturns the scan code
uov AH, 1 ;Signal special key with 1
JMP DONE_RERD
READ_BYTE ENDP

Dskpatch, with the new versions of READ_BYTE and READ_STRING,
should be much nicer to use. But there is a bug here, as we said. To try to find it,
run Dskpatch and try all the boundary conditions for READ_BYTE and
HEX_TO_BYTE. (Remember there are nine files that must be linked and con-
verted to a .EXE program: Dskpatch, Dispatch, Disp_sec, Disk_io, Video_io,
Kbd_io, Phantom, Cursor, and Editor.)

User vs Programmer Friendly

We made a design decision in READ_STRING that made Dskpatch easier to
write, but isn’t very friendly to the user. Run Dskpatch and try the following:
Type a letter, such as f, then press one of the cursor keys. Dskpatch will beep at
you. Why?

As the programmers of Dskpatch, we know exactly why: Our
READ_STRING procedure doesn’t return control once you’ve started entering
a hex number until you press either the Escape or the Enter keys. But will the
user know why Dskpatch is beeping at them? Probably not, which is problem
number one. Problem number two is that users tend to become rather irritated
and ornery when programs beep at them for no apparent reason. After all, they
know that they should be able to move the cursor before they’ve finished enter-
ing a hex number—and they should!

Cases like this we call Programmer Friendly since they’re simple for the pro-
grammer to write. User-Friendly programs, on the other hand, often require a
considerable effort in programming to make them feel simple and natural.
Here are a few words of advice on writing user-friendly programs:

260 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

® Avoid beeps except to alert the user of a critical error condition (such as a
disk error). There is almost never cause to beep when you press a key that
isn’t allowed.

® Try to keep in mind what users will want, rather than what is simple to
write. Sometimes they will be one and the same, but more often than not,
you’ll find you have to expend additional effort and development time to
write user-friendly programs.

® Try to write modeless programs. By doing so, you’ll eliminate many error
conditions such as the one we placed (artificially) into READ_STRING.

® And above all, try out your ideas on real users, not just on other program-
mers, who can easily figure out how your program really works. Users
don’t want to understand your assumptions; they want your programs to
be “obvious.” And if a user has trouble running your program, try to
understand why so you can make it easier to use.

Of course, these words of advice just scratch the surface on the issue of writ-
ing user-friendly programs. There are a number of books devoted entirely to
design; we've recommended a few books in the bibliography that you’ll find in
the last chapter of this book (Chapter 32).

Summary

We wrote a new version of READ_STRING in this chapter that allowed us to
read special characters again, in addition to strings. And with the exception of
the small bug that we’ll find and fix in the next chapter, READ_STRING works
as advertised.

We then looked at several problems with READ_STRING. First of all, it is
too long and complicated. We should rewrite it to be more modular.

Finally, we saw that READ_STRING isn’t very user friendly since it beeps
when you try to move the cursor after you've started to type a hex number. We
won’t fix this problem in this book, but you might want to try your hand at
making Dskpatch less modal and therefore more user friendly.

Now its time to go on a little bug hunt to see if we can find and remove a small
bug that lurks in Dskaptch.

262 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

If you try the new version of Dskpatch with ag, which isn’t a valid hex
number, you’ll notice that Dskpatch doesn’t do anything when you press the
Enter key. Since the string ag isn’t a hex number, there is nothing wrong with
Dskpatch ignoring it, but the program should, at least, erase it from the screen.

This error is the sort we can find only by thoroughly checking the boundary
conditions of a program. Not just the pieces, but the entire program. The bug
here isn’t the fault of READ_BYTE, even though it appeared when we rewrote
that procedure. Rather, the problem is in the way we wrote DISPATCHER and
EDIT_BYTE.

EDIT_BYTE is designed so it calls WRITE_PROMPT_LINE to rewrite the
editor prompt line and clear the rest of the line. This will remove any character
we typed. But if we type a string like ag, READ_BYTE reports that it read a
string of zero length, and DISPATCH doesn’t call EDIT_BYTE. What’s the
solution?

Fixing DISPATCHER

There are actually two ways to solve this problem. The best solution would be
to rewrite Dskpatch to be more modular and to redesign DISPATCHER. We
won’t do that. Remember: Programs are never complete, but we have to stop
somewhere. Instead, we’ll add a fix to DISPATCHER so it will rewrite the
prompt line whenever READ_BYTE reads a string of zero length.

Here are the modifications to DISPATCHER (in DISPATCH.ASM) to fix the
bug:

Listing 25-1. Changes to DISPATCHER in DISPATCH.ASM

PUBLIC DISPATCHER
EXTRN READ_BYTE:PROC, EDIT_BYTE:PROC
EXTRN WRITE_PROMPT_LINE:PROC

EXTRN EDITOR_PROMPT:BYTE

; This is the central dispatcher. During normal editing and viewing,
; this procedure reads characters from the keyboard and, if the character;
; is a command key (such as a cursor key), DISPATCHER calls the

i procedures that do the actual work. This dispatching is done for

; special keys listed in the table DISPATCH_TABLE, where the procedure
; addresses are stored just after the key names.

3 If the character is not a special key, then it should be placed

; directly into the sector buffer--this is the editing mode.

; Uses: READ_BYTE, EDIT_BYTE, WRITE_PRO¥PT_LINE
; Reads: EDITOR_PROMPT

DISPATCHER
PUSH
PUSH
PUSH

DISPATCH_LOOP:
CALL
OR

Js
JNZ
MOV
CALL
JMP

SPECIAL_KEY:
cne
JE

LEA
SPECIAL_LOOP:

CHMP
JE

CMP
JE

ADD
JMP

DISPATCH:
INC
CALL
JNP

NOT_IN_TABLE:
JMp

NO_CHARRS_READ:
LEA
CALL
JMPp

END_DISPATCH:
POP
POP
POP
RET
DISPATCHER

PROC
AX
BX
DX

READ_BYTE
AH,AH

NO_CHARS_READ
SPECIAL_KEY
DL,AL
EDIT_BYTE
DISPATCH_LOOP

AL, b8
END_DISPATCH

BX,DISPATCH_TABLE

BYTE PTR [BXJ,O
NOT_IN_TABLE
AL, [BX]
DISPATCH

BX,3
SPECIAL_LOOP

BX
WORD PTR (BX]
DISPATCH_LOOP

DISPATCH_LOOP

DX,EDITOR_PROMPT
WRITE_PROMPT_LIKE
DISPATCH_LOOP

DX
BX
AX

ENDP

In Search of Bugs 263

;Read character into AX

+AX = -1 if no character read, 1
; for an extended code.

;No character read, try again
;Read extended code

;WNas normal character, edit byte
;Read another character

;Fl0--exit?
;Yes, leave
;Use BX to look through table

;End of table?

;Yes, key was not in the table
;Is it this table entry?

;Yes, then dispatch

;No, try next entry

;Check next table entry

;Point to address of procedure
;Call procedure
;Wait for another key

;Do nothing, just read next character

;Erase any invalid characters typed
;ITry again

This bug fix doesn’t create any great problems, but it does make DIS-
PATCHER slightly less elegant. Elegance is a virtue to strive for. Elegance and
clarity often go hand in hand, and our rules of modular design are aimed at
increasing elegance.

Summary

DISPATCHER is elegant because it’s such a simple solution to a problem.
Rather than using many comparisons for each special character we might type,
we built a table we can search. Doing so made DISPATCHER simpler, and
hence more reliable, than a program containing different instructions for each
possible condition that might arise. By adding our small fix, we complicated

(e

1223

264 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

DISPATCHER—not by much in this case, but some bugs might require us to
really complicate a procedure.

If you find yourself adding fixes that make a procedure too complicated,
rewrite whichever procedures you must to remove this complexity. And always
check the boundary conditions both before and after you add a procedure to
your main program. You’'ll save yourself a lot of debugging effort if you do.

We can’t overemphasize the importance of testing procedures with boundary
conditions and of following the rules of modular design. Both techniques lead to
better and more reliable programs. In the next chapter, we’ll look at another
method for debugging programs.

266 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

U V e almost have a usable Dskpatch program. In this chapter, we’ll build the
procedure to write a modified sector back to disk, and in the next chapter, we'll
write a procedure to show the second half of a sector.

Writing to the Disk

Writing a modified sector back to the disk can be disastrous if it’s not done
intentionally. All of Dskpatch’s functions so far depend on the function keys F'3,
F4, and F10, and on the cursor keys. But any of these keys could be pressed
quite by accident. Fortunately, the same doesn’t hold true for the shifted func-
tion keys, so we'll use the shifted F2 key for writing a disk sector (we’ve chosen
Shift F2 because F2 is often used in programs to save changes). This will pre-
vent us from writing a sector back to disk unless we really want to.

Make the following changes to DISPATCH.ASM, to add WRITE_SECTOR to
the table:

Listing 26-1. Changes to DISPATCH.ASM

.CODE
EXTRN NEXT_SECTOR:PROC ;In DISK_IO.ASH
EXTRN PREVIOUS_SECTOR:PROC ;In DISK_IO.ASHM
EXTRN PHANTOM_UP:PROC, PHANTOM_DOWN:PROC ;In PHANTOM.ASH
EXTRN PHANTOM_LEFT:PROC, PHANTOM_RIGHT:PROC
EXTRK WRITE_SECTOR:PROC IR DESKSTIO-ASH:

-.DARTR

This table contains the legal extended ASCII keys and the addresses
of the procedures that should be called when each Key 1is pressed.

: The format of the table is

DB 72 ;Extended code for cursor up
DW OFFSET PHAKTOM_UP
DISPATCH_TABLE LABEL BYTE

DB bl ;F3

DW OFFSET _TEXT:PREVIOUS_SECTIOR

DB 62 ;Fa

DW OFFSET _TEXT:NEXT_SECTOR

DB 72 ;Cursor up

DW OFFSET _TEXT:PHANTOM_UP

DB a0 ;Cursor down

DW OFFSET _TEXT:PHANTOM_DOWN

DB 75 ;Cursor left

DW OFFSET _TEXT:PHANTOM_LEFT

DB ?7? ;Cursor right

DW OFFSET _TEXT:PHANTOM_RIGHT

DB as ;Shift Fe

D# OFFSET _TEXT:WRITE_SECTOR

DB [b] ;End of the table

e ——

Writing Modified Sectors 267

WRITE_SECTOR itself is almost identical to READ_SECTOR. The only
change is that we wish to write, rather than read, a sector. Whereas the INT
25h asks DOS to read one sector, its companion function, INT 26h, asks DOS to
write a sector to the disk. Here is WRITE_SECTOR; place it into
DISK_10.ASM:

Listing 26-2. Add This Procedure to DISK_IO.ASM

PUBLIC WRITE_SECTOR

; This procedure writes the sector back to the disk.

; Reads: DISK_DRIVE_NO, CURRENT_SECTOR_NO, SECTOR

WRITE_SECTOR PROC
PUSH AX
PUSH BX
PUSH CX
PUSH DX
MOV AL,DISK_DRIVE_NO ;Drive nunmber
MOV CX,1 ;Write 1 sector
MOV DX,CURRENT_SECTOR_NO 1Logical sector
LEA BX,SECTOR
INT 2th ;Write the sector to disk
POPF ;Discard the flag information
POP DX
POP CX
POP BX
POP AX
RET

WRITE_SECTOR ENDP

Now, reassemble both Dispatch and Disk_io, but don’t try Dskpatch’s write
function just yet. Find an old disk you don’t care much about and put it in drive
A, with your program disk in another drive, such as C. Run Dskpatch from
drive C (or whatever drive you choose), so that Dskpatch reads the first sector
from your scratch disk in drive A. Before you go on, make sure this is a scratch
disk you have no qualms about destroying.

Change one byte in your sector display and make a note of the one you
changed. Then, press the shifted F5 key. You'll see the red drive light come on:
You've just written a modified sector back to drive A.

Next, press F4 to read the next sector (sector 1), then F3 to read the previous
sector (your original sector, number 0). You should see the modified sector back
again. Restore this sector and write it back to Drive A to restore the integrity of
your scratch disk.

More Debugging Techniques

What would happen if we had made a small error in our program? Dskpatch
is sufficiently large that we’d expect to have problems using Debug to find the

AL

268 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

bug. Besides, Dskpatch is composed of nine different files we must link to form
DSKPATCH.EXE. How do we find any one procedure in this large program
without tracing slowly through much of the program? As you’ll see in this chap-
ter, there are two ways to find procedures: by using a road map we can get from
LINK, or by using a source-level debugger, such as Microsoft’s CodeView or
Borland’s Turbo Debugger.

When we, the authors, originally wrote Dskpatch, something went wrong
when we added WRITE_SECTOR; pressing the Shift-F2 key caused our
machine to hang. But we couldn’t find anything wrong with WRITE_SECTOR
and the only other changes were to DISPATCH_TABLE. Everything appeared
to be correct.

Finally, we traced the bug to a faulty definition in the dispatcher. The bug
turned out to be an error in the DISPATCH_TABLE entry for
WRITE_SECTOR. Somehow, we had typed a DW rather than a DB in the table,
so WRITE_SECTOR’s address was stored one byte higher in memory than it
should have been. You can see the bug shown against a gray background here:

DISPATCH_TABLE LABEL BYTE

DB 7 ;Cursor right

DW OFFSET _TEXT:PHANTOM_RIGHT

DWil, a5 ;Shift Fe

DW OFFSET _TEXT:WRITE_SECTOR

DB 0 ;End of the table
DATA_SEG ENDS

As an exercise in debugging, make this change to your file DISPATCH.ASM,
then follow the directions in the next section.

Building a Road Map

Let’s learn how to use LINK to build a map of Dskpatch. This map will help
us find procedures and variables in memory.
The LINK command we’ve used so far has grown to be fairly long:

LINK DSKPATCH DISK_IO DISP_SEC VIDEO_IC CURSOR DISPATCH KBD_IO PHANTOM EDITOR;

and we’ll want to add even more to it. Does that mean we’ll have to keep typing
file after file after file? No, there is a much easier way. LINK allows us to sup-
ply an automatic response file containing all the information. With such a file,
which we’ll call linkinfo, we can simply type:

e — T

Writing Modified Sectors 269

LINK @LINKINFO

and LINK will read all of its information from this file.
With the file names that we’ve used so far, linkinfo looks like this:

DSKPATCH DISK_IO DISP_SEC VIDEO_IO CURSOR +
DISPATCH KBD_IO PHANTOM EDITOR

The plus (+) at the end of the first line tells LINK to continue reading file
names from the next line.

We can also add some more information that tells LINK to create a map of
the procedures and variables in our program to this simple linkinfo file. Here is
the entire linkinfo file:

DSKPATCH DISK_IO DISP_SEC VIDEO_IO CURSOR +
DISPATCH KBD_IO PHANTOM EDITOR

DSKPATCH

DSKPATCH /MAP;

The last two lines are new parameters. The first, dskpatch, tells LINK we want
the .EXE file to be named DSKPATCH.EXE; the second new line tells LINK to
create a listing file called DSKPATCH.MAP—to create our road map. The
/map switch tells LINK to provide a list of all the procedures and variables that
we've declared to be public.

Create the map file by relinking Dskpatch with this linkinfo response file.
The map file produced by the linker is about 130 lines long. That’s a bit too long
for us to reproduce in its entirety, so we’ll reproduce the parts that are of partic-
ular interest. Here is our partial listing of the map file, DSKPATCH.MAP:

Start Stop Length Name Class
0O0O0OO0OH 00S5CAH OO0OSCAH _TEXT CODE
O0OSCAH OOGBBH OOOF2H _DATA DATA
OOGBCH O2EBBH 0O2000H _BSS BSS

026C0OH OCABFH 0O0400H STACK STACK

Origin Group
0osc:o DGROUP

Address Publics by Name
0000:03EA BACK_SPACE

0000:027E CLEAR_SCREEN
0000:0eco CLEAR_TO_END_OF_LINE
00SC:000C CURRENT_SECTOR_NO
0000:02A0 CURSOR_RIGHT
00S5C:000E DISK_DRIVE_NO
0000:0CQEC DISPATCHER

0000:0131 DISP_HALF_SECTOR

270 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

O0D0O:01EB WRITE_HEX_DIGIT
0000:02SF WRITE_PATTERN
0000:0546 WRITE_PHANTOM
D000:01A8 WRITE_PROMPT_LINE
0000:0086 WRITE_SECTOR
0000:01BC WRITE_STRING
00SC:00FC _edata

00SC:2100 _end

Address Publics by Value
0000:0030 PREVIOUS_SECTOR
0000 :0050 NEXT_SECTOR
0000:006C READ_SECTOR
0D00:0086 WRITE_SECTOR

D000 :00AD INIT_SEC_DISP
0000:00CC WRITE_HEADER
0000:0132 DISP_HALF_SECTOR
00SC:000F LINES_BEFORE_SECTOR
00SC:0010 HEADER_LINE_NO
00S5C:0011 HEADER_PART_1
00sC:0017 HEADER_PART_Z
00SC:00c28 PROMPT_LINE_NO
00SC:0029 EDITOR_PROMPT
00SC:00FA PHANTOM_CURSOR_X
00SC:00FB PHANTOM_CURSOR_Y
00SC:00FC _edata

00SC:00FC SECTOR

00SC:2100 _end

Program entry point at 0000:0010

There are three main parts to this load map (so called because it tells us
where our procedures are loaded in memory). The first shows a list of segments
in our program. Dskpatch has several segments: _.TEXT (which contains all our
code) and _DATA, _BSS, and STACK, which are grouped together into the
group DGROUP, and contain all our data. For those of you interested in more
detail, _DATA contains all the memory variables defined in the .DATA seg-
ment (such as HEADER_LINE_NO), _BSS contains variables defined in the
.DATA? segment (such as SECTOR), and STACK contains the stack defined by
STACK.

Note: You may see slightly different numbers here if your
procedures are in a different order than our procedures (you can
check the order in Appendix B).

The next part of the load map shows our public procedures and variables,
listed in alphabetical order. LINK lists only those procedures and variables
you've declared to be PUBLIC—visible to the outside world. If you're debug-
ging a long program, you may want to declare all procedures and variables to
be public, just so you can find them in this map.

Writing Modified Sectors 277

The final section of the map lists all the procedures and memory variables
again, but this time in the order they appear in memory.

Both these lists include the memory address for each PUBLIC procedure or
variable. If you check this list, you'll find that our procedure DISPATCHER
starts at address 2ECh. We'll use this address now, to track down the bug in
Dskpatch.

Tracking Down Bugs

If you were to try running the version of Dskpatch with the bug in it, you'd
find that everything works, with the exception of Shift-F2, which on our
machine caused Dskpatch to hang. You probably don’t want to try Shift-F2;
there’s no telling what it will do on your machine.

Since everything worked (and works now) except for Shift-F2, our first guess
when we wrote the program was that we had introduced a bug into
WRITE_SECTOR. To find this bug, we could start debugging Dskpatch by trac-
ing through WRITE_SECTOR. Instead, we’ll take a somewhat different tack.

We know that DISPATCHER works correctly, because everything else (the
cursor keys, F3, F4, and F10) all work correctly. That means DISPATCHER is
a good starting point to search for the bug in Dskpatch. In other words, start
your bug search with code you know works properly.

If you look at the program listing for DISPATCHER (in Chapter 25), you'll
see that the instruction:

CALL WORD PTR [BX]

1s the heart of DISPATCHER, because it calls all the other routines. In particu-
lar, this CALL instruction will call WRITE_SECTOR when we press Shift-F2.
Let’s start our search here.

We'll use Debug to start Dskpatch with a breakpoint set on this instruction.
Of course, that means we need the address of this instruction, and we can find
that by unassembling DISPATCHER, which starts at 2ECh. After a U 2EC, fol-
lowed by another U command, you should see the CALL command:

JE05:0313 EBFe JMP 0307
JED0S:0315 43 INC BX

JE0S:0316 FF17 CALL [BX1]
3E05:0318 EBDS JMP 02EF

272 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Now that we know the CALL instruction is at location 316h, we can set a
breakpoint at this address, then single-step into and through
WRITE_SECTOR.

First, use the command G 316 to execute Dskpatch up to this instruction.
You'll see Dskpatch start up, then wait for you to type a command. Press Shift-
F2, since this is the command that is causing problems, and you’ll see the fol-
lowing:

-G 316

RX=0155 BX=DOAR3 CX=0EBC DX=0029 SP=03F8 BP=7?SFO0 SI=0000 DI=0OF8&a
DS=3Ek&l ES=3DFS SS=407?1 CS=3E05 IP=031b NV UP EI PL NZ NR PE NC
3JEO0S5:0316 FF17 CALL [BX] DS:00AR3=0086

At this point the BX register is pointing to a word that should contain the
address of WRITE_SECTOR. Let’s see if it does:

-D A3 L 2
JEbL1:00AD 00 86

In other words, we're trying to CALL a procedure located at 8600h (remember
the lower byte is displayed first). But if we look at our memory map, we can see
that WRITE_SECTOR should be at 86h. In fact, we can also tell from this load
map that we don’t have any procedures at 8600h. The address is totally wrong!

In our original bug-hunting, once we discovered that this address was wrong,
it didn’t take us very long to find the error. We knew that DISPATCHER and
the table were basically sound, because all the other keys worked, so we took a
closer look at the data for Shift-F2 and found the DW where we should have had
a DB. Having a road map makes debugging much simpler. Now let’s take a look
at some more powerful tools.

Source-Level Debugging

Both Microsoft and Borland have been hard at work providing the ultimate in
programming tools. Microsoft’s CodeView and Borland’s Turbo Debugger are
both debuggers of a type called Source-Level Debuggers. In other words,
whereas Debug shows you just addresses in CALLs and JMPs, these two debug-
gers show you the actual source code.

You may only want to read one of the next two sections, since one section cov-
ers Microsoft’s CodeView and the other Borland’s Turbo Debugger, and there is
some repetition of material between the two sections. (Those of you using

Writing Modified Sectors 273

OPTASM need not despair: it also has a source-level debugger, which wasn’t
available in time for us to write about it in this edition.

Microsoft’s CodeView

CodeView, the older of the two debuggers, was introduced in 1986, about two
years before Borland’s Turbo Debugger. It is now included with every Microsoft
Macro Assembler package (we're using version 5.1) as well as most of the com-
pany’s other language products. As you’ll see in this section, CodeView is so
useful that you may want to consider upgrading your macro assembler if you
don’t already have the latest version.

CodeView shares some similarities with Debug, since Microsoft wrote both
programs. But there are more differences than similarities. We'll use two of the
new features here: source-level debugging and screen swapping.

Source-level debugging lets us see the actual source code complete with com-
ments, rather than just instructions and addresses, in our display. For exam-
ple, if we use Debug to unassemble the first line in Dskpatch, we see:

2C14:0100 E&ACD3 CALL 048F

With CodeView, on the other hand, we see the following (as you can also see
in Figure 26-1):

CALL CLEAR_SCREEN

Which of these is easier to read? We rest our case.

The second new feature, screen swapping, is handy for debugging Dskpatch.
Dskpatch moves the cursor around the screen, writing in different places. In
the last section, where we used Debug, Debug started writing to this same
screen and we eventually lost the Dskpatch screen.

CodeView, however, maintains two separate screens: one for Dskpatch and
one for itself. Whenever Dskpatch is active, we see its screen; whenever
CodeView is active, we see its screen. You'll get a clearer idea of screen swap-
ping as we run through the following examples.

Before we can use CodeView’s symbolic debugging features, we need to tell
both the assembler and the linker to save debugging information, which we do
with the /Zi switch in the assembler and the /CO (COdeview) switch in the
linker.

Modify each line in your Makefile (or reassemble each file by hand) so it has
the /Zi switch before the semicolon, and so we use a response file for LINK:

274 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Listing 26-3. Make These Changes to MAKEFILE

dskpatch.obj: dskpatch.asm
Basa dskpatch /Zi;

disk_jo.obj: disk_io.asm
masm disk_1io /2i;

dskpatch.exe: éskpatch.obj disk_io.obj disp_sec.obj video_io.obj cursor.obj \
dispatch.obj kbd_io.obj phantom.obj editor.obj
link elinkinfo

Then change the linker response file LINKINFO as follows:

Listing 26-4. Changes to the Response File LINKINFO

dskpatch disk_io disp_sec video_io cursor +
dispatch kbd_io phantom editor

dskpatch

dskpatch /map /CO;

Finally, delete all the *.obj files and remake Dskpatch.exe.
We're now ready to start CodeView. Type:

C>CV DSKPATCH

and you should see a display like the one in Figure 26-1. Notice that you're
viewing the actual source file! This is why CodeView is known as a source-level
debugger.

Now that we have CodeView up and running, we can look at the procedure
DISPATCHER without knowing where it is. Press Alt-S (to pull down the
Search menu), then L (Label. . .) to search for a label. Next, type dispatcher into
the dialog box that pops up and press Enter to see the code for DISPATCHER.
Finally, use the cursor keys to scroll the CALL WORD PTR [BX] instruction on
the second page.

Once you have the cursor on the line with CALL WORD PTR [BX] instruc-
tion, press F7 (which will run the program until it reaches the CALL). You’ll
see Dskpatch draw its screen. Then, you'll be returned to CodeView after you
push Shift-F2. This time, though, we won’t see any of Dskpatch’s screen
because CodeView swapped screens. To flip back to the Dskpatch screen, press
the F4 key. Once you're looking at Dskpatch’s screen, pressing any key will
return you to CodeView’s screen.

If you look on the lower, right part of the screen in Figure 26-2, you'll see two
short lines that say:

DS:0D0R3
8600

Writing Modified Sectors 275

File View Search Run Hatch Options Language Calls Help | F8=Trace F5=Co
| dskpatch.ASH |

45; .CODE I AX = 0660
46: i BX = 0008
47: EXTRN CLEAR_SCREEN:PROC, READ_SECTOR:PROC . CX = 000
48: EXTRN INIT_SEC_DISP:PROC, WRITE_HEADER:PROC ¢ DX = oo
49:; EXTRN WRITE_PROMPT_LINE:PROC, DISPATCHER:PROC SP = 848
58: DISK_PATCH PROC | BP = 0006
g AX, DGROUP ;Put ‘data segment int BYEEE[L]
92: Hov DS,AX ;Set DS to point to di DI = 6660
93: ¢ DS = 7465
24: CALL CLEAR_SCREEN ¢ ES = 7465
555 CALL WRITE_HERDER SS = 76E1
%: CALL RERD_SECTOR = CS = 7475
58 CALL INIT_SEC_DISP IP = 8818
98: LEA DX ,EDITOR_PROMPT
99: CALL WRITE_PROMPT_LINE NV UP
60: CALL DISPATCHER EI PL
61: NZ NA
62: HoY fAH,4Ch ;Return to DOS PO NC

)

Microsoft (R) CodeView (R) Version 2.2
(C) Copyright Microsoft Corp. 1986-1988. AII rights reserved.
> Il

Figure 26-1. The Initial View of Dskpatch.exe Inside CodeView.

This area of the display is used to show the value in memory pointed to by the
current instruction, which is the CALL instruction under the inverse-video
cursor bar. In this case, it is the value at memory location [BX]. As you can
clearly see, 8600 is exactly the value we found using Debug with the help of
Link’s memory map. But here we found this value much more quickly.

Type Alt-F (to pull down the File menu) and X (eXit) to exit from CodeView.
You may want to skip the next section and go directly to the Summary. Don’t
forget to change the DW back to a DB in Dispatch.asm.

You may also want to change back the linkinfo file. We added the /CO switch
so Link would add the debugging information to the .EXE file. But this debug-
ging information makes the .EXE file quite a bit larger. In any case, you will
probably want to remove the /CO switch before you give your programs to other
people.

Borland’s Turbo Debugger

Turbo Debugger shares few similarities with Debug. As you'll see in this sec-
tion, Turbo Debugger’s uses Borland’s multiple-window style of user interface,

276 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

File View Search Run Hatch Options Language Calls Help [F8=Trace F5=Co

| dispatch.AsH |
88 JE DISPATCH ;Yes, then dispatch Y AX = 8135
81: ADD BX,3 :No, try next entry BX = BBA3
82: JHP SPECIAL_LOOP ;Check next table ent§ CX = 6680
83: DX = 9829
84: DISPATICH: SP = B3F8
85: INC BX ;Point to address of § BP = 75F0

WORD PTR [BX] SI = pooe

;:Call procedure

JHP DISPATCH_LOOP ;Hait for another keyg DI = @BF8A

DS = 7483

NOT_IN_TABLE: ;Do nothing, just reaf ES = 73F7
Jip DISPATCH_LOOP S8 = 7673

CS = 7487

[P = 8316

87

88

89

98

2ilg

92: NO_CHARS_READ:
93: LEA DX,EDITOR_PROMPT

94 CALL WRITE_PROMPTI_LINE ;Erase any invalid
95 JMP DISPATCH_LOOP ;Try again

96

97

END_DISPATCH:

Hicrosoft (R) CodeView (R) Version 2.2
(C) Copyright Microsoft Corp. 1986-1988. AII rights reserved.
>

_IIIH]:}JEKAIIHII
LRk
EF=E2S

Figure 26-2. CodeView After the F7 (Go) Command.

as opposed to Debug’s command-line interface. Borland has also added many
debugging features not present in Debug. We'll use two of the new features
here: source-level debugging and screen swapping.

Source level debugging lets us see the actual source code complete with com-
ments, rather than just instructions and addresses, in our display. For exam-
ple, if we use Debug to unassemble the first line in Dskpatch, we see:

2C14:0100 EAA8CO3 CALL 048F

With Turbo Debugger, on the other hand, we see the following (as you can
also see in Figure 26-3):

CALL CLEARR_SCREEN

Which of these is easier to read? We rest our case.

The second new feature, screen swapping, is handy for debugging Dskpatch.
Dskpatch moves the cursor around the screen, writing in different places. In
the last section, where we used Debug, Debug started writing to this same
screen, and we eventually lost the Dskpatch screen.

Writing Modified Sectors 277

Turbo Debugger, however, maintains two separate screens: one for Dskpatch
and one for itself. Whenever Dskpatch is active, we see its screen; whenever
Turbo Debugger is active, we see its screen. You'll get a clearer idea of screen
swapping as we run through the following examples.

Before we can use Turbo Debugger’s symbolic debugging features, we need to
tell both the assembler and the linker to save debugging information, which we
do with the -zi switch in the assembler and the /z switch in the linker.

Modify each line in your Makefile (or reassemble each file by hand) so that it
has the -zi switch before the semicolon, and so we use a response file for TLINK
(note that we’re using TLINK):

Listing 26-5. Make These Changes to Makefile

dskpatch.exe: dskpatch.obj disk_io.obj disp_sec.obj video_io.obj cursor.obj \
dispatch.obj kbd_io.obj phantom.obj editor.obj
tlink elinkinfo

dskpatch.obj: dskpatch.asm
tasm dskpatch -zi;

disk_io.obj: disk_io.asm
tasm disk_io ~zi;

Then change the linker response file LINKINFO as follows:

Listing 26-6. Changes to the Response File LINKINFO

dskpatch disk_io disp_sec video_io cursor +
dispatch kbd_io phantom editor

dskpatch

dskpatch /map /v;

Finally, delete all the *.obj files and remake Dskpatch.exe.
We're now ready to start Turbo Debugger. Type:

C>TD DSKPATICH.EXE

and you should see a display like the one in Figure 26-3. Notice that you're
viewing the actual source file! This is why Turbo Debugger is known as a
source-level debugger.

Now that we have Turbo Debugger up and running, we can look at the proce-
dure DISPATCHER without knowing where it is. Press Alt-V to pulldown the
View menu, followed by V to show the variable window (Figure 26-5). Then use
the cursor up and down keys to move the cursor to dispatcher, and press Enter

278 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

File View Run Breakpoints Data Hindow Options I'm
Module: dskpatch File: dskpatch.asn Sl 1
EXTRN CLEAR_SCREEN:PROC, READ_SECTOR:PROC
EXTRN INIT_SEC_DISP:PROC, WRITE_HEARDER:PROC
EXTRN WRITE_PROMPT_LINE:PROC, DISPAICHER:PROC
DISK_PAICH PROC
) MoV AxX, DGROUP ;Put data segnent into AX
MoV DS, Ax ;Set DS to point to data
CALL CLEAR_SCREEN
CALL WRITE_HEADER
CALL READ_SECTOR
CALL INIT_SEC_DISP
LEA DX,EDITOR_PROMPT
CALL WRITE_PROMPT_LINE
CALL DISPATICHER
MOV AH,4Ch ;Return to DOS
INT 21h
DISK_PAICH ENDP
FuatChca 21

F2-Bkpt F3-Close F4-Here Fo-Zoon F6-Next F7-Trace F8-Step F3-Run F18-Menu

Figure 26-3. The Initial View of Dskpatch.exe Inside Turbo Debugger.

3

disp_line @BF4F:0134 |disk_patch @6F4F ;0000
ispatcher ENLIE IR sector_of fset B (Bh)
edit_byte @6F4F 8939 |current_sector_no B (Bh)
editor_prompt "Press function k|disk_drive_no '’ @ (86h)
erase_phanton @6F4F :8595 | lines_before_sector '8’ 2 (82h)
goto_xy @BF4F :8285 | header_line_no '8 (88h)
header_l ine_no ' ' @ (86h)|header_part_1 “Disk “
header_part_1 "Disk "|header_part_2 " Sector “

Figure 26-4. Turbo Debugger’s variable window allows us to jump to a
procedure.

to show the code for DISPATCHER. You can then use the cursor keys to scroll
to the CALL Word Ptr [BX] instruction on the second page.

Once you have the cursor on the line with the CALL WORD PTR [BX]
instruction, press F4, and follow that with Shift-F2. You’ll see Dskpatch draw
its screen. Then, you’ll be returned to Turbo Debugger after you push Shift-F2.

T

Writing Modified Sectors 279

File View Run Breakpoints Data Hindow Options KEADY]
odule: dispatch File: dispatch.asn 8 — 1
CHP AL,68 ;F16--exit?
JE END_DISPAICH :Yes, leave
;Use BX to look through table
LEA BX,DISPATCH_TABLE
SPECIAL_LOOP:
CMP BYTE PTR [BX1,8 ;End of table?
JE NOT_IN_TABLE ;Yes, key was not in the table
CHP AL,[BX] ;Is it this table entry?
JE DISPATCH :Yes, then dispatch
ADD BX,3 :No, try next entry
JHP SPECIAL_LOOP ;Check next table entry
DISPATCH:
INC BX ;Point to address of procedure
] CALL WORD PTR [BX] ;Call procedure
JHP DISPATCH_LOOP ;Hait for another key
NOT_IN_TABLE: ;Do nothing, just read next characte
Hatches 27
[bx] word 38268 (7688h)

F2-Bkpt F3-Close F4-Here F3-Zoon F&-Next F7?-Trace F8-Step F3-Run F18-Menu

Figure 26-5. Turbo Debugger After Executing Dskpatch up to the CALL
Instruction.

This time, though, we won’t see any of Dskpatch’s screen because Turbo Debug-
ger swapped screens. To flip back to the Dskpatch screen, press the Alt-F5 key.
Once you're looking at Dskpatch’s screen, pressing any key will return you to
Turbo Debugger’s screen.

At this point we want to see the value of [BX] so we’ll know which procedure
Dskpatch is about to call. For this we’ll add a watch, which allows us to watch a
value. Press Ctrl-W to bring up a dialog box that asks for an expression and
type in [BX]. As you can see in the Watches window, 8600 is exactly the value
we found using Debug with the help of Link’s memory map. But here we found
this value much more quickly.

Type Alt-X to exit from Turbo Debugger. Don't forget to change the DW back
to a DB in Dispatch.asm.

You may also want to change back the linkinfo file. We added the /v switch so
Link would add the debugging information to the .EXE file. But this debugging
information makes the .EXE file quite a bit larger. In any case, you will prob-
ably want to remove the /v switch before you give your programs to other peo-
ple.

282 Ppeter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Ideally, Dskpatch should behave like a word processor when you try to move
the cursor below the bottom of the half-sector display: The display should move
up one line, with a new line appearing at the bottom. The version of Dskpatch
on the disk available with this book does just that, but we won’t get quite so
sophisticated here. In this chapter, we’ll add skeletal versions of the two proce-
dures, SCROLL_UP and SCROLL_DOWN, that scroll the screen. In the disk
version of Dskpatch, SCROLL_UP and SCROLL_DOWN can scroll by any
number of lines from one to sixteen (there are sixteen lines in our half-sector
display). The versions of SCROLL_UP and SCROLL_DOWN that we’ll add to
Dskpatch here scroll by full half sectors, so we’ll see either the first or second
half of the sector.

Scrolling by Half a Sector

Our old versions of PHANTOM_UP and PHANTOM_DOWN restore the cur-
sor to the top or bottom of the half-sector display whenever we try to move the
cursor off the top or bottom of the display. We’ll change PHANTOM_UP and
PHANTOM_DOWN so that we call either SCROLL_UP or SCROLL_DOWN
when the cursor moves off the top or bottom of the display. These two new pro-
cedures will scroll the display and place the cursor at its new position.

Here are the modified versions of PHANTOM_UP and PHANTOM_DOWN
(in PHANTOM.ASM):

Listing 27-1. Changes to PHANTOM.ASM

PHANTOM_UP PROC
CALL ERASE_PHANTOM ;Erase at current position
DEC PHANTOM_CURSOR_Y ;Move cursor up one line
JNS WASNT_AT_TOP ;Was not at the top, write cursor
[Fadiz REANTOM CURSOR Y 0 ;H:c 2t the *n: :nf bEack +highe
CALL SCROLL_DOWN ;Was at the top, scroll
WASNT_AT_TOP:
CALL WRITE_PHANTOM ;Write the phantom at new position
RET
PHANTOM_UP ENDP

PHANTOM_DOWN PROC

CRIA ERASE_PHANTOM ;Erase at current position

INC PHANTOM_CURSOR_Y ;Move cursor up one line

CMP PHANTOM_CURSOR_Y, 16 ;Was it at the bottom?

JB WASNT_AT_BOTTOM ;No, so write phantom

MOY RUANTAM ~UUDCAD V"‘C ;":c at _hottonm SO :-'~+ back thoro

CRLL SCROLL_UP - ;Was at bottom, scroll
WASNT_AT_BOTTOM:

CALL WRITE_PHANTOM ;Write the phantom cursor

RET

PHANTOM_DOWN

ENDP

The Other Half Sector 283

Don’t forget to change the comment header for PHANTOM_UP and PHAN-
TOM_DOWN, to mention that these procedures now use SCROLL_UP and
SCROLL_DOWN:

Listing 27-2. Changes to PHANTOM.ASM

These four procedures move the phantom cursors.

Uses: ERASE_PHANTOM, WRITE_PHANTOM
SCROLL_DOWN, SCROLL_UP
Reads: PHANTOM_CURSOR_X, PHANTOM_CURSOR_Y

Writes: PHANTOM_CURSOR_X, PHANTOM_CURSOR_Y

SCROLL_UP and SCROLL_DOWN are both fairly simple procedures, since
they switch the display to the other half sector. For example, if we're looking at
the first half sector, and PHANTOM_DOWN calls SCROLL_UP, we’ll see the
second half sector. SCROLL_UP changes SECTOR_OFFSET to 256, the start of
the second half sector, moves the cursor to the start of the sector display, writes
the half sector display for the second half, and finally writes the phantom cur-
sor at the top of this display.

You can see all the details for both SCROLL_UP and SCROLL_DOWN in the
following listing. Add these two procedures to PHANTOM.ASM.

Listing 27-3. Add These Procedures to PHANTOM.ASM

EXTRN DISP_HALF_SECTOR:PROC, GOTO_XY:PROC
.DATA

EXTRN SECTOR_OFFSET:WORD

EXTRN LINES_BEFORE_SECTOR:BYTE
.CODE

; These two procedures move between the two half-sector displays.

; Uses: WRITE_PHANTOM, DISP_HALF_SECTOR, ERASE_PHANTOM, GOTO_XY ;
L SAVE_REAL_CURSOR, RESTORE_REAL_CURSOR 5
i Reads: LINES_BEFORE_SECTOR N
; Writes: SECTOR_OFFSET, PHANTOM_CURSOR_Y H
SCROLL_UP PROC

PUSH DX

CALL ERASE_PHANTOM ;Remove the phantom cursor

CALL SAVE_REAL_CURSOR ;Save the real cursor position

XOR DL,DL ;Set cursor for half-sector display

MOV DH,LINES_BEFORE_SECTOR

ADD DH, 2

CALL GOTO_XY

MOV DX,256 ;Display the second half sector

MOV SECTOR_OFFSET, DX

CALL DISP_HALF_SECTOR

CALL RESTORE_REARL_CURSOR iRestore the real cursor position

MOV PHANTOM_CURSOQOR_Y, O Cursor at top of second half sector

CALL WRITE_PHANTOM ;Restore the phantom cursor

POP DX

RET

SCROLL_UP ENDP

284 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Listing 27-3. continued

SCROLL_DOWN PROC
PUSH DX
CALL ERASE_PHANTOM ;Remove the phantom cursor
CALL SAVE_REAL_CURSOR ;Save the real cursor position
XOR DL,DL ;Set cursor for half-sector display
MOV DH,LINES_BEFORE_SECTOR
ADD DH, 2
CALL GOTO_XY
XOR DX,DX ;Display the first half sector
MOV SECTOR_OFFSET, DX
CALL DISP_HALF_SECTOR
CALL RESTORE_REAL_CURSOR ;Restore the real cursor position
MoV PHANTOM_CURSOR_Y, 15 ;Cursor at bottom of first half sector
CALL WRITE_PHANTOHN ;Restore the phantom cursor
POP DX
RET

SCROLL_DOWN ENDP

SCROLL_UP and SCROLL_DOWN both work nicely, although there is one
minor problem with them as Dskpatch stands now. Start Dskpatch and leave
the cursor at the top of the screen. Press the cursor-up key, and you’ll see
Dskpatch rewrite the first half-sector display. Why? We didn’t check for this
boundary condition. Dskpatch rewrites the screen whenever you try to move
the cursor off the top or bottom of the half-sector display.

Here’s a challenge for you: Modify Dskpatch so that it checks for two bound-
ary conditions. If the phantom cursor is at the top of the first half-sector display
and you press the cursor-up key, Dskpatch should do nothing. If you're at the
bottom of the second half-sector display and press the cursor-down key, again
Dskpatch should do nothing.

Summary

This ends our work on Dskpatch in this book (with the exception of Chapter
30, where we’ll modify Dskpatch for faster screen writing). OQur intent was to
use Dskpatch as a “live” example of the evolution of an assembly language pro-
gram, at the same time provide you with a usable program, and a set of proce-
dures you’ll find helpful in your own programming. But the Dskpatch you’ve
developed here isn’t as finished as it could be. You’ll find more features in the
disk version of Dskpatch available with this book. And you may find yourself
changing that disk version, for “a program is never done . . . but there comes a
time when it has to be shipped to users.”

We’ll wrap up this book with a number of advanced topics: relocation, writing
.COM programs, writing directly to the screen, writing C procedures in assem-
bly language, and TSR or RAM-resident programs.

288 peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Most of the programs in Parts II and III of this book have been .EXE pro-
grams with two segments, one for code and one for data. There is one point in
dealing with such programs that we’ve glossed over: relocation. In this chapter,
we’ll take a closer look at the relocation process, and we’ll look at the steps DOS
takes when it loads an .EXE program into memory.

To show something of the relocation process, we’ll build a .COM program
that does its own relocation (since DOS provides no relocation support for COM
programs). Because we haven’t dealt yet with using the assembler to build
.COM programs, we’ll start with a short look at some new directives that we’ll
need to write .COM programs.

.COM Programs

Throughout this book we've been using the assembler to build .EXE pro-
grams, which is what you’ll probably write most of the time. Some programs,
however, need to be .COM programs (such as RAM-resident programs like the
one we’ll write in Chapter 32 and our example program in this chapter). For
such programs, we can’'t use the simplified segment definitions (such as
.CODE) since these directives support only .EXE programs. Instead, we have to
use full segment definitions.

Full segment directives look very much like procedure definitions, as you can
see in this example that defines the code segment:

_TEXT SEGMENT

_TEXT ENDS

Rather than start a code segment with .CODE, we need to bracket the code with
a SEGMENT and an ENDS (END Segment) directive. We also have to provide
the name of the segment (_TEXT in this example).

Besides the segment definitions, we need to use another directive called the
ASSUME directive. When we're using the simplified segment directives, the
assembler knows from the . MODEL directive which segments the segment reg-
isters will point to. With full segment directives, however, we need to provide
this information to the assembler ourselves (since we can’t use the .MODEL
directive). For this we use a new directive, ASSUME, as in this example:

ASSUME CS:_TEXT, DS:_DATA, SS:STACK

.y Sy oy e

R

Relocation 289

This statement tells the assembler that the CS register will be pointing to our
code (which is certainly the case when our program starts to run), that the DS
register points to the data segment, and that SS points to the stack segment.
The .MODEL directive automatically provides this information to the assem-
bler (the last two we’ll have to set up ourselves).

Finally, a .COM program, being contained entirely in a single segment,
begins with the 256-byte PSP. To reserve room for the PSP, .COM programs
must begin with ORG 100h. The ORG tells the assembler to start the program
code at 100h (or 256) bytes into the segment. You'll see all these details in the
next section, as well as in Chapter 32.

Relocation

Each of our .EXE programs begins with the following code that sets the DS
register so it points to the data segment (which actually consists of a group of
segments called DGROUP):

MOV AX,DGROUP
MOV DS, AX

The question is, where does the value for DGROUP come from? If you think
about it, our programs can be loaded anywhere into memory, which means the
value of DGROUP won’t be known until we know where our program is loaded
into memory. As it turns out, DOS performs an operation known as relocation
when it loads an .EXE program into memory. This relocation processes patches
numbers such as DGROUP so they reflect the actual location of the program in
memory.

To understand this process, we’ll write a .COM program that does its own
relocation. Our goal is to set the DS register to the beginning of the _DATA seg-
ment, and the SS register to the beginning of the STACK segment. We can do
this with a bit of trickery. First, we need to ensure that our three segments are
loaded into memory in the correct order:

Code segment (_TEXT)
Data segment (_DATA)
Stack segment (STACK)

Fortunately, we've already taken care of this. When we’re using the full seg-
ment directives, segments are loaded in the order in which they appear in our
source file. A word of warning though: If you ever use the following technique
to set segment registers, make sure you know the order in which LINK loads
your segments (you can use the .MAP file to check the segment order).

290 Peter Norton’s Assembly Language Book for the 1BM PC, Revised & Expanded

How do we calculate the value for DS? Let’s begin by looking at three labels
we’ve placed into various segments in the following listing. Those labels are
END_OF_CODE_SEG, END_OF_DATA_SEG, and END_OF_STACK_SEG.
They aren’t exactly where you might have expected them to be. Why not? Well,
when we define a segment like this:

_TEXT SEGMENT

(we need to use full segment definitions for .COM programs), we don’t really
tell the linker how to stitch together various segments. So, it starts each new
segment on a paragraph boundary-—at a hex address that ends with a zero,
such as 32C40h. Because the Linker skips to the next paragraph boundary to
start each segment, there will very often be a short, blank area between seg-
ments. By placing the label END_OF_CODE_SEG at the beginning of _DATA,
we include this blank area. If we had put END_OF_CODE_SEG at the end of
_TEXT, we wouldn’t include the blank area between segments. (Look at the
unassemble listing of our program on page 295. You'll see a blank area filled
with zeros that is nine bytes long.)

As for the value of the DS register, _.DATA starts at 39AF:0130, or
39C2:0000. The instruction OFFSET _TEXT:END_OF_CODE_SEG will
return 130h, which is the number of bytes used by _-TEXT. Divide this number
by 16 to get the number we need to add to DS so that DS points to _-DATA. We
use the same technique to set SS.

Here’s the listing for our program, including the relocation instructions
needed for a .COM file:

ARSSUME CS:_TEXT, DS:_DATAR, SS:STACK

_TEXT SEGMENT

ORG 100h ;Reserve data area for .COM program
WRITE_STRING PROC FAR

MOV AX,OFFSET _TEXT:END_OF_CODE_SEG

MOV CL,4 ;Calculate number of paragraphs

SHR AX,CL ; (16 bytes) used by the code segment

MOV BX,CS.

ADD AX,BX ;Add CS to this

MOV DS, AX ;Set the DS register to _DATA

MOV BX,OFFSET _DATA:END_OF_DATA_SEG

SHR BX,CL ;Calculate paras used by data segment

ADD AX,BX ;Add to value used for data segment

MOV SS,AX ;Set the SS register for STACK

MOV AX,OFFSET STACK:END_OF_STACK_SEG

MOV SP,RX ;Set SP to end of stack area

MOV AH,9 ;Call for string output

LEA DX,STRING ;Load address of string

INT 2lh ;Write string

MOV AH,4Ch ;Ask to Exit back to DOS

INT 21h ;Return to DOS

Relocation 297

WRITE_STRING ENDP

_TEXT ENDS

_DATA SEGMENT

END_OF_CODE_SEG LABEL BYTE

STRING DB "Hello, DOS here.$"
DATA ENDS

STACK SEGMENT

END_OF_DATA_SEG LABEL BYTE
DB 10 DUP ('STACK ") ;'STACK' followed by three spaces
END_OF_STACK_SEG LABEL BYTE

STACK ENDS

END WRITE_STRING
Assemble and link this program, just as you would a .EXE program, and then
type:

EXEZBIN WRITESTR WRITESTR.COHM

to convert writestr.exe into a .COM program. EXE2BIN stands for convert an
EXE file into (2) a BINary (.COM) file; in other words, EXE to BINary.
You can see the results of all this work in the following Debug session:

A>DEBUG WRITESTR.COM

JE0S5:0100 BA300L MOV AX,D0130
JE0S5:0103 B1LO4 MOV CL,04
JE0DS5:0105 D3EA SHR AX,CL
JE0S5:0107 ACCB MOV BX,CS
3E05:0109 03C3 ADD AX,BX
JEDS5:010B AEDA MOV DS,AX
3E0S:010D BB20OOO MOV BX,0020
JE05:0110 D3EB SHR BX,CL
3E0S5:0112 D3C3 ADD AX,BX
3E0D5:0114 AEDO MOV SS,AX
JEO0S5:0116 BASO00O0 MOV AX,D0050
3JE05:0119 ABED MOV SP,AX
JE0S5:011B B40O9 MOV AH, D09
JE0S5:011D 4D1&0000 LEA DX,[10001]
-0

3EO0S:0121 CD2l INT 21
JEO0S5:0123 B44C MOV AH,4C
3EO05:0125 CD2l INT 21
JE0S:0127 0000 ADD [BX+SI1,AL
JE05:0129 0000 ADD [BX+SIJ,AL
3JE0S5:012B 0000 ADD [BX+SI],AL
JE0S:012D 0000 ADD {BX+SI1,AL
JE0S:012F 0048ES ADD [BX+SI+ES],CL
3E0DS:0132 &C DB &C
3E0S:0133 &C DB &C
3JE05:0134 &F DB &F
3E05:0135 2cei SUB AL, 20
3EDS5:0137 44 INC SP
JE0S5:0138 4F DEC DI
JE05:0139 53 PUSH BX
JE0S5:013A 206AES AND [BX+SI+k51,CH
JE0S5:013D 7265 JB O1R4
3E0S:013F CE €S8

Lemadraay

e

292 Peter Norton’s Assembly Language Book for the 1BM PC, Revised & Expanded

3E05:0140 2400 AND AL,00
-G 121

AX=0950 BX=0002 CX=0104 DX=0000 SP=0050 BP=0000 SI=0000 DI=0000
DS=3E18 ES=3DF5 SS=3E1A CS=3E0S5 1IP=0121 NV UP EI PL NZ NA PO NC
3E0S5:0121 CD2l INT 2l

You'll rarely need to do this type of relocation yourself since DOS handles
this automatically for .EXE programs. But it helps to understand what’s hap-
pening behind the scenes.

.COM versus .EXE Programs

We'll finish this chapter by summarizing the difference between .COM and
.EXE files and how DOS loads both types of programs into memory.

A .COM program stored on disk is essentially a memory image of the pro-
gram. Because of this, a .COM program is restricted to a single segment, unless
it does its own relocation, as we did in this chapter.

An EXE program, on the other hand, lets DOS take care of the relocation.
This delegating makes it very easy for .EXE programs to use multiple seg-
ments. For this reason, most large programs are .EXE rather than .COM pro-
grams.

For our final look at .COM versus .EXE programs, let’s take a closer look at
how DOS loads and starts both of them. This should make the differences
between these types of program clearer and more concrete. We’ll begin with
.COM programs.

When DOS loads a .COM program into memory, it follows these steps:

® First, DOS creates the program segment prefix (PSP), which is the 256-
byte area we saw in Chapter 11. Among other things, this PSP contains
the command line typed.

® DOS next copies the entire .COM file from the disk into memory, immedi-
ately after the 256-byte PSP.

® DOS then sets the three segment registers DS, ES, and SS to the start of
the PSP.

® DOS sets the SP register to the end of the segment—usually FFFE, which
is the last word in the segment.

e Finally, DOS jumps to the start of the program, which sets the CS register
to the start of the PSP and the IP register to 100h (the start of the .COM
program).

Relocation 293

In cont.ast, the steps involved in loading an .EXE file are somewhat more
involved, because DOS does the relocation. Where does DOS finds the informa-
tion it needs to do the relocation?

As it turns out, every .EXE file has a header that’s stored at the start of the
file. This header, or relocation table, is always at least 512 bytes long, and con-
tains all the information DOS needs to do the relocation. With recent releases
of its macro assembler, Microsoft has included a program called EXEMOD that
we can use to look at some of the information in this header. For example, here
is the header we get for an .EXE version of WRITESTR:

e

Microsoft (R) EXE“File Header Utility Version 4.0¢&
Copyright (C) Microsoft Corp 1985-1987. All rights reserved.

WRITESTR (hex) (dec)
.EXE size (bytes) 290 656
Minimum load size (bytes) q0 144
Overlay number 0 0
Initial CS:IP 0000:0000

Initial SS:SP 0004 :0050 80
Minimum allocation (para) 0 0
Maximum allocation (para) FFFF 65535
Header size (para) 20 32
Relocation table offset 1E 30
Relocation entries 1 1

A>

At the bottom of this table, you can see that we have a single relocation entry
for the MOV AX,DGROUP instruction. Anytime we make a reference to a seg-
ment address, as with ‘MOV AX,DGROUP, LINK’ will add a relocation entry
to the table. The segment address isn’t known until DOS loads our program
into memory, so we must let DOS supply the segment number.

There are also some other interesting pieces of information in the table; for
example, the initial CS:IP and SS:SP values. These pairs tell us the initial val-
ues for IP and SP. The table also tells DOS how much memory our program
needs before it can run: the Minimum load size.

Because DOS uses this relocation table to supply absolute addresses for such
locations as segment addresses, there are a few extra steps it takes when load-
ing a program into memory. Here are the steps DOS follows in loading an .EXE
program:

® DOS creates the program-segment prefix (PSP), just as it does for a .COM
program.

® Second, DOS checks the .EXE header to find where the header ends and
the program starts. It then loads the rest of the program into memory
after the PSP.

294

Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Next, using the header information, DOS finds and patches all the refer-
ences in the program that need to be relocated, such as references to seg-
ment addresses.

DOS then sets the ES and DS registers so they point to the start of the
PSP. If your program has its own data segment, your program needs to
change DS and/or ES so they point to your data segment.

DOS sets SS:SP according to the information in the .EXE header. In the
case illustrated, the header states that SS:SP will be placed at 0004:0050.
That means DOS will set SP to 0050, and set SS so it is four paragraphs
higher in memory than the end of the PSP.

Finally, DOS jumps to the start of the program using the address pro-
vided in the .EXE header. This sets the CS register to the start of the code
segment, and IP to the offset given in the .EXE header.

296 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

In this chapter we’ll learn about a feature called segment overrides, which
we’ll use in the next chapter when we write directly to the screen. In the pro-
cess, we'll also take a closer look at ASSUME statements and full segment defi-
nitions.

Segment Override

So far we’ve always read and written data located in the data segment. We’ve
been dealing with a single data segment in this book (which is actually several
segments grouped into a single segment called DGROUP), so we’ve had no rea-
son to read or write data in other segments.

But, in some cases, we’ll need more than one data segment. A classic example
is writing directly to the screen: Many commercial programs write to the screen
by moving the data directly into screen memory and completely bypassing the
ROM BIOS routines in the interest of speed. Screen memory on the IBM PC is
located at segment B800h for a color/graphics adapter and at segment BOOOh
for monochrome display adapters. To write directly to the screen means we’d
want to write in different segments.

In this section, we’ll write a short program showing how we can write to two
different segments, using the DS and ES registers to point to the two segments.
In fact, many programs that write directly to screen memory do use the ES reg-
ister to point to screen memory, as we’ll do in the next chapter.

In this example, we use full segment definitions to give us more control over
segments than the simplified segment definitions give us. Most of the time
you’ll be able to use the simplified segment definitions (as we will when we
write directly to the screen in the next chapter). But we chose to use the full
segment definitions in this chapter to give you more examples of how to use
them and to give you a better understanding of the ASSUME statement that
you’ll need along with the full segment definitions.

Here is our program. It’s very short, and you can see that it has two data seg-
ments, along with one variable in each data segment:

DOSSEG

_DATA SEGMENT

DS_VAR DH 1

_DATA ENDS

EXTRA_SEG SEGMENT PUBLIC
ES_VAR DH 2

EXTRA_SEG ENDS

More on Segments and ASSUME 297

STACK SEGMENT STACK
DB 10 DUP ('STACK ') ;'STACK' followed by three spaces
STACK ENDS
_TEXT SEGMENT
ASSUME CS:_TEXT, DS:_DATA, ES:EXTRA_SEG, SS:STACK
TEST_SEG PROC
MOV AX,_DATA ;Segment address for _DATA
MOV DS, AX ;Set up DS register for _DATA
MOV AX,EXTRA_SEG ;Segment address for EXTRA_SEG
MOV ES, AX ;Set up ES register for EXTRA_SEG
MOV AX,DS_VAR ;Read a variable from data segment
MOV BX,ES:ES_VAR ;Read a variable from extra segment
MOV AH,4Ch ;Ask to Exit back to DOS
INT 21h ;Return to DOS
TEST_SEG ENDP
_TEXT ENDS

END TEST_SEG

We'll use this program to learn about both segment overrides and the ASSUME
directive.

Note that we've put both data segments and the stack segment before our
code segment, and that we’ve also put the ASSUME directive after all the seg-
ment declarations. As we’ll see in this section, this arrangement is a direct
result of using two data segments.

Let’s take a look at the two MOV instructions in this program:

MOV AX,DS_VAR
MOV BX,ES:ES_VAR

The ES: in front of the second instruction tells the 8088 to use the ES, rather
than the DS, register for this operation (to read the data from our extra seg-
ment). Every instruction has a default segment register it uses when it refers to
data. But, as we’'ve done with the ES register here, we can also tell the 8088 we
want to use some other segment register for data.

Here’s how it works: The 8088 has four special instructions, one for each of
the four segment registers. These instructions are the segment-override
instructions, and they tell the 8088 to use a specific segment register, rather
than the default, when the instruction following the segment override tries to
read or write memory.

For example, the instruction MOV AX ES:ES_VAR is actually encoded as
two instructions. You'll see the following if you unassemble our test program:

2CF4:000D ES:
2CF4:000E 8B1EOOOO MOV BX,[0000)

298 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

This shows that the assembler translated our instruction into a segment-over-
ride instruction, followed by the MOV instruction. Now the MOV instruction
will read its data from the ES, rather than the DS, segment.

If you trace through this program, you’ll see that the first MOV instruction
sets AX equal to 1 (DS_VAR) and the second MOV sets BX equal to 2
(ES_VAR). In other words: We've read data from two different segments.

Another Look at ASSUME

Let’s take a look at what happens when we remove the ES: from our program.
Change the line:

MOV BX,ES:ES_VAR

so it reads:
MOV BX,ES_VAR

We're no longer telling the assembler we want to use the ES register when we
read from memory, so it should go back to using the default segment (DS),
right? Wrong. Use Debug to look at the result of this change. You’ll see that we
still have the ES: segment override in front of our MOV instruction. How could
the assembler possibly have known that our variable is in the extra, rather
than the data, segment? By using the information we gave it in the ASSUME
directive.

Our ASSUME statement tells the assembler that the DS register points to the
segment DATA_SEG, while ES points to EXTRA_SEG. Each time we write an
instruction that uses a memory variable, the assembler searches for a declaration
of this variable to see which segment it’s declared in. Then, it searches through the
ASSUME list to find out which segment register is pointing to this segment. The
assembler uses this segment register when it generates the instruction.

In the case of our MOV BX,ES_VAR instruction, the assembler noticed
ES_VAR was in the segment called EXTRA_SEG and that the ES register was
pointing to that segment, so it generated an ES: segment-override instruction
on its own. If we were to move ES_VAR into STACK_SEG, the assembler would
generate an SS: segment-override instruction. The assembler automatically
generates any segment-override instructions we need, provided, of course, that
our ASSUME directives reflect the actual contents of the segment registers.

Summary

In this chapter we learned more about segments and how the assembler
works with them. First we learned about segment overrides, which allow us to
read and write data in other segments. We’ll use such overrides in the next
chapter when we write characters directly to the screen. Finally, we learned
more about the ASSUME directive.

The next chapter covers writing directly to screen memory. We’ll do this to
dramatically increase the speed of writing characters to the screen.

——— —e———

300 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

At the very start of this book, we mentioned that many people who write pro-
grams in assembly language often do so for speed. Assembly language pro-
grams are almost always faster than programs written in other languages. But
you may have noticed that our Dskpatch program doesn’t draw the screen as
quickly as many commercial programs. Why is it so much slower?

So far we’ve been using the ROM BIOS routines to display characters on the
screen. But as we'll see in this chapter, the ROM BIOS routines can be quite
slow. Most programs these days bypass the ROM BIOS and write characters
directly to screen memory in favor of raw speed.

In this chapter we’ll modify Dskpatch so it writes characters very quickly te
the screen. Unfortunately, we’ll have to make a number of changes to Dskpatch
to obtain faster screen display: We can’t just write a new WRITE_CHAR for
reasons we’ll cover soon.

Screen Segment

Before we can write characters directly to screen memory, we need a few
pieces of information, like: Where is the display memory and how are charac-
ters stored in display memory?

The first question has a simple, two-part answer. Screen memory has its own
segment, which is either B800h or BOOOh. Why do we have two different seg-
ments? There are two classes of display adapters, monochrome display adapters
and color graphics adapters (CGA, EGA, and VGA), and you can have one
adapter of each class in your computer at the same time (but few people do). So
IBM gave them non-overlapping screen segments.

Monochrome refers to IBM’s monochrome display adapter, Hercules graphics
cards, and EGA and VGA cards attached to an IBM monochrome display. Mon-
ochrome cards display characters on the screen in green, white, or amber (it
depends on the display), and have only a limited set of “colors” they can display:
normal, bright, inverse, and underlined. Monochrome cards have their screen
segment at BOOOh.

Color graphics adapters, on the other hand, can display 16 different text col-
ors at one time, and they can also be switched into graphics mode (which we
won't talk about in this book). The most common color graphics adapters are
EGA and VGA cards, although there are still CGA cards from the earlier days.
Color graphics adapters have their screen memory at B80Oh.

Many users these days don’t know which type of display adapter they have
and they shouldn’t need to know. It is up to our program to determine which

Py

A Very Fast WRITE_CHAR 301

AL Returned
by INT 11h:

00 No display adapter
01 401 25 color

10 80 x 25 color

11 801 25 monochrome

Figure 30-1. The INT 11h Equipment Flags.

display adapter is active. For this we can use INT 11h, which returns a list of
equipment that we have installed. As you can see from Figure 30-1, bits 4 and 5
tell us if the display is a monochrome or color display. In other words, the screen
segment will be at BOOOh (monochrome) if both bits are 1, and B800h (color)
otherwise (we'll ignore the case when no display adapter is installed).

Since we won’t know which screen segment to use until we run our program,
we’ll need to call a procedure, INIT_WRITE_CHAR, that determines the screen
segment before we make any calls to WRITE_CHAR. We'll place this call at the
start of Disk_patch to make sure we call it before writing any characters on the
screen. Here are the changes to DSKPATCH.ASM to add this call:

Listing 30-1. Changes to DSKPATCH.ASM

EXTRN WRITE_PROMPT_LINE:PROC, DISPATCHER:PROC
EXTRE INIT_WRITE_CHAR:PROC

DISK_PATCH PROC
MOV AX,DGROUP ;Put data segment into AX
MOV DS, AX ;Set DS to point to data
CALL INIT_WRITE_CHEAR
CALL CLEAR_SCREEN

CALL WRITE_HEADER

Then add INIT_WRITE_CHAR to VIDEO_IO.ASM:

Listing 30-2. Add This Procedure to VIDEO_10.ASM

PUBLIC INIT_WRITE_CHAR

302 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Listing 30-2. continued

; You need to call this procedure before you call WRITE_CHAR since
; WRITE_CHAR uses information set by this procedure.

; Writes: SCREEN_SEG

INIT_WRITE_CHAR PROC
PUSH 9.4
PUSH BX
MOV BX,0B&00I :Set for color graphics display
INT 11lh ;Get equipment information
RND AL,30h ;Keep just the video display type
CHMP RL,30h ;Is this a monochrome display adapter?
JNE SET_BASE ;No, it's color, so use Ba0O0O
MOV BX,0BOJ0Oh ;Yes, it's monochrome, so use BOOO
SET_BASE:
MOV SCREEN_SEG, BX ;Save the screen segment
POP BX
POP 9.4
RET
INIT_WRITE_CHAR ENDP

Note that we're saving the screen segment in SCREEN_SEG (which we’ll
add below). WRITE_CHAR will use this variable when we modify it to write
directly to screen memory.

Now that we know how to find the screen memory, we need to know how the
characters and their attributes are stored.

Organization of Screen Memory

If you were to use Debug to look at screen memory when the first line of the
screen is:

DSKPATCH ASHM

you would see the following (for a color graphics card):

-B&00:0
B800:0000 44 0?7 53 07 4B 07 50 07-41 0?7 54 07 43 07 48 07 D.
B800:0010 <20 07 41 07 53 07 4D 07?-20 07 20 07 20 07 20 07

In other words, there is a 07 between each character on the screen. As you’ll
recall from Chapter 18, 7 is the character attribute for normal text (and 70h is
the attribute for inverse text). Each 7 in the debug display is the attribute for
one character, with the character lower in memory. In other words, every char-
acter on the screen uses one word of screen memory, with the character code in
the lower byte and the attribute in the upper byte. Let’s write a new version of

A Very Fast WRITE_CHAR 303

WRITE_CHAR that writes characters directly to screen memory. Make these
changes to Video_io.asm:

Listing 30-3. Changes to VIDEO_IO.ASM

PUBLIC WRITE_CHAR

EXTRN CURSOR_RIGHT:PROC
This procedure outputs a character to the screen by writing directly
into screen memory, so that characters such as the backspace are
treated as any other characters and are displayed.

; This procedure must do a bit of work to update the cursor position.

On entry: DL Byte to print on screen

Uses: CURSOR_RIGHT

Reads: SCREEN_SEG

WRITE_CHAR PROC
PUSH AX
PUSH BX
PUSH CX
PUSH DX
PUSH BS
nov AX,SCREEN_SEG ;Get segment for screen memory
nov ES,AX I K ;Boint ES to screen memory
PUSH DX s;Save the character to vwrite
MOV aH,3 ;Ask for the curser position
XOR RH,BH ;0n page O
INT 10h ;Get row, column
MoV AL,DH sPut row into AL
MoV BL,40 ;There are A0 characters per line
MUL BL +RX = row * A0
ADD AL,DL ;Add the column
ADC AH,O ;Propagate carry into AH
SHL AX, L ;Convert te byte offset
nov BX, 2X ;Put byte offset of cursor isto BX
POP DX ;Restore the character
MOV DH,? ;Use the normal attribuote
Mov ES:[BX1],DX ;Write character/attribute to screen
CALL CURSOR_RIGHT ;Now move to next cursor position
BOE. . Es
POP DX
POP CX
POP BX
POP AX
RET
WRITE_CHAR ENDP

Finally, we need to add a memory variable to VIDEO_IO.ASM:

Listing 30-4. Add DATA_SEG to the Start of VIDEO_IO.ASM

.MODEL SMALL

.DATA
SCREEN_SEG DW GBAGGCH ;Segment of the screen buffer

.CODE

304 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

After you’ve made these changes, rebuild Dskpatch (you’ll need to assemble
DSKPATCH and VIDEO_IO) and try the new version. What you’ll find is that
Dskpatch doesn’t write to the screen any faster than before. And for a very sim-
ple reason. We’re moving the cursor after we write each character, which is a

slow process.

High Speed

The solution is to rewrite the routines in VIDEO_IO and CURSOR to keep
track of where the cursor should be instead of moving the cursor; we’'ll move the
cursor only when we need to. For this we’ll introduce two new memory vari-
ables: SCREEN_X and SCREEN_Y. Now this may sound simple, but as you’ll
see here, we’ll have to change a number of procedures and write a few new ones.

There is another optimization we can make while we're at it. Right now
WRITE_CHAR calculates the offset of the cursor into the screen buffer each
time you call it. But since we’ll be keeping track of where the cursor should be,
we can also keep track of this offset in the variable SCREEN_PTR:

Listing 30-5. Changes to WRITE_CHAR in VIDEO_IO.ASM

; Uses: CURSOR_RIGHT i
; Reads: SCREEN_SEG, SCREEN_PTR H
ﬁRITE_CHAR PROC '

PUSH AX

PUSH BX

PUSH DX

PUSH BS

MOV AX,SCREEN_SEG ;Get segment for screen memory

MOV ES,AX ;Point ES to screen RemOry

¥ov BX,SCREEN_PTR ;Pointer to ch

s Sere—thecharacter—t0 wIITE

TESK—foUr tire TUTLSOUr pPUSICiOn
TOTTpage ©

- 3
T e T IORW T e =Tunen

P rt—rov—into—=E

sImere are OO0 ThardctersS peEr 1ine
s8A = TUwW [=1¥]

Aadthe—cotown

TPrUpEgSteCarT T on to N

y SV CLTCT LU Oy uE T ULLISEL
yfoL Uyce OZIsSel OL CULSOL 1atd DA
Thestore—theTharacTeT

MOV DH,? ;Use the normal attribute

MOV ES:(BX1,DX iWrite character/attribute to screen
CALL CURSOR_RIGHT ;Now move to next cursor position
POP ES

POP DX
SeEi—— ==

POP

POP

RET
WRITE_CHAR

BX
ax

ENDP

A Very Fast WRITE_CHAR 305

You can see that WRITE_CHAR has become quite simple.

You'll also need to add our three new memory variables to the DATA_SEG in
VIDEO_IO.ASM:

Listing 30-6. Changes to .DATA in VIDEO_IO.ASM

.DATA

PUBLIC
PUBLIC

SCREEN_SEG
'SCREEN_PTR
'SCRBEN_X

SCREER_Y

.CODE

SCREEN_PTR

SCREEN_X, SCREEN_Y.

DW 0BAOOh

DW)
DB 1}
DB V]

jSegment of the screen buffer .
;0ffset into screen memory of cursor
;Position of the screen cursor

And finally (in VIDEO_IO.ASM, that is) here are the changes to
WRITE_ATTRIBUTE_N_TIMES so it will write directly to the screen:

Listing 30-7. Changes to WRITE_ATTRIBUTE_N_TIMES in VIDEO_1O.ASM

; Uses:
; Reads:

CURSOR_RIGHT

SCREEN_SEG, SCREEN_PTR

WRITE_ATTRIBUTE_NITIMES

PUSH ax
—_—
PUSH CX
Slm i
PUSH DI
PUSH ES
MOV RX,SCREEN_SEG
MOV ES . AX
HOV DI,SCREEN_PTR
INC Dl
MOV AL,DL
ATTR_LOOP:
STOSB
INC 208
INC SCREEN_X
LOOP ATTR_LOOP
DEC DI
HOV SCREEN_PTR, DI
POP ES
POP DI
———
POP CX
PQp Bx
POP ax
RET

WRITE_ATTRIBUTE_N_TIMES

ENDP

PROC

. ;Set ES to'point to screen seghent

;Character under cursor
;Point to the attribate under cursor
sPut attribute into AL

;Save one attribute
;Move to next attribute
yHove to next column
;¥rite N attributes

;Point to start of next character
;Remember where we are

306 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Most of this procedure should be fairly clear, with the exception of a new
instruction: STOSB (STOre String Byte). STOSB is basically the opposite of the
LODSB string instruction that loaded a byte from DS:SI and incremented the
SI register. STOSB, on the other hand, stores the byte from AL into the address
at ES:DI, then increments DI.

All the other changes we need to make (with the exception of a simple fix in
KBD_IO) are to procedures in CURSOR.ASM. First, we’ll need to change
GOTO_XY so it sets SCREEN_X and SCREEN_Y and calculates the value of
SCREEN_PTR:

Listing 30-8. Changes to GOTO_XY in CURSOR.ASM

PUBLIC GOTO_XY

5
; This procedure moves the cursor

; On entry: DH Row (Y)
g DL Column (X)
GOTO_XY PROC
PUSH AX
PUSH BX
MOV BH, O ;Display page O
MoV AH,2 ;Call for SET CURSOR POSITION
INT 10h

POP BX
POP AX
RET

GOTO_XY ENDP

As you can see, we've moved the calculation of the offset to the character
under the cursor from WRITE_CHAR, where it was before, to here.

We also need to modify CURSOR_RIGHT so it updates these memory vari-
ables:

Listing 30-9. Changes to CURSOR_RIGHT in CURSOR.ASM

PUBLIC CURSOR_RIGHT

A Very Fast WRITE_LCHAR 307

This procedure moves the cursor one position to the right or to the
next line if the cursor was at the end of a line.

()00 OO 50 00 OO GO o

Uses: SEND_CRLF

Writes: SCREEN_PTR, SCREEN_X, SCREEN_Y

URSOR_RIGHT PROC
INC SCREEN_PTR ;Move to next character position (word)
INC SCREEN_PTR
INC SCREEN_X ;Move to next column
cHp SCREEN_X, 74 ;Make sure column <= 79
JBE OK
CALL SEND_CRLF ;Go to next line

OK: -

RET

CURSOR_RIGHT ENDP

We'll also need to change CLEAR_TO_END_OF_LINE so it uses
SCREEN_X and SCREEN_Y rather than the location of the real cursor:

Listing 30-10. Changes to CLEAR_TO_END_OF_LINE in CURSOR.ASM

PUSH CX
PUSH DX

MOy A8
oy T

£33

YOR R

AT o)
l

INT N 1 P TR | NI nee
v T yNoWN—nave (A7) I DL Ut

MOV DL,SCREENR_X

MoV DH, SCREEN_Y

MOV AH, b ;Set up to clear to end of line
XOR AL,AL ;Clear window

R a > T
et CH T et CUrSOT poSYTtIon

1 0
T yoh—page—uo

The next few steps need some explaining. Because we're no longer updating
the position of the real cursor, the real and virtual cursors will often be out of
synchronization. Most of the time this isn’t a problem. But there are a few cases
when we have to synchronize both cursors; sometimes we’ll want to move the
real cursor to where we think the cursor is, and sometimes we’ll want to move
our virtual cursor. For example, before we ask the user for input, we need to
move the cursor to where we think the cursor should be. We’ll perform this with
the procedure UPDATE_REAL_CURSOR, which moves the real cursor.

On the other hand, SEND_CRLF moves the real cursor, so we’ll need to call
UPDATE_VIRTUAL_CURSOR to move the virtual cursor to where the real
cursor 1s after SEND_CRLF.

Here are the two procedures you’ll need to add to CURSOR.ASM:

Listing 30-11. Add These Procedures to CURSOR.ASM

PUBLIC UPDATE_REAL_CURSOR

; This procedure moves the real cursor to the current virtual cursor
; position. You'll want to call it just before you wait for keyboard
; input.

UPDATE_REAL_CURSOR PROC
PUSH DX

308 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Listing 30-11. continued

MOV DL,SCREEN_X ;Get position of the virtual cursor
MoV DH, SCREEN_Y

CALL GOTO_XY ;Move real cursor to this position
POP DX

RET

UPDATE_REAL_CURSOR ENDP

PUBLIC UPDATE_VIRTUAL_CURSOR

This procedure updates the position of our virtual cursor to agree H
with the position of the real cursor. 5

(=100 o000 50

PDATE_VIRTUARL_CURSOR PROC
PUSH RX
PUSH BX
PUSH @X:
PUSH DX
MOV RH,3 ;Bsk for the cursor position
XOR BH, BH ;0n page O
INT 10h ;Get cursor position into DH, DL
CALL GOTO_XY ;Move virtual cursor to this position
POP DX
POP CX
POP BX
POP AX
RET

UPDATE_VIRTUAL_CURSOR ENDP

Note that we’re using GOTO_XY to update the three variables SCREEN_X,
SCREEN_Y, and SCREEN_PTR.

Finally, we need to modify several procedures to use the preceding two proce-
dures. Here are the changes to SEND_CRLF:

Listing 30-12. Changes to SEND_CRLF in CURSOR.ASM

i Uses: UPDATE_VIRTUAL_CURSOR ;

SEND_CRLF PROC
PUSH AX
PUSH DX
MOV AH,2
MoV DL,CR
INT 2lh
MoV DL,LF
INT 21h - . :
‘CALL UPDATE_VIRTUAL_CURSOR ;Update position of virtual curser
POP DX
POP AX
RET

SEND_CRLF ENDP

This makes sure we know where the cursor is once we’ve moved the real cur-
sor to the next line.

Finally, here are the changes to READ_STRING that keep the virtual and
real cursors in synchronization during keyboard input:

A Very Fast WRITE_CHAR 309

Listing 30-13. Changes to READ_STRING in KBD_IO.ASM

EXTRN UPDBTE_RERL_CURSOR:PRGC

; Uses: BACK_SPACE, WRITE_CHAR, UPDATE_REAL_CURSOR 5
READ_STRING PROC

PUSH AX

PUSH BX

PUSH SI

MOV SI,DX ;Use SI for index register and
START_OVER: — - -

CALL UPDATE_REAL_CURSOCR ;Move to position of virtuwal cursor

Mov BX, 2 ;BX for offset to beginning of buffer

READ_NEXT_CHAR:

CALL~ UPDATE_REAL_CURSOR " ;Move real cursor to virtwnal cursor
nov RH,?
INT 2lh

That should do it. Reassemble all three files that we changed this time

(VIDEO_IO, CURSOR, and KBD_IO), then link Dskpatch. You’ll notice that
screen output is much faster than before.

Summary

Speeding up WRITE_CHAR turned out to be quite a bit of work since we had
to change a number of procedures, but the results were well worth the effort.
Programs that have snappy screen updates feel much nicer to work with than
programs that take longer to paint the screen. When speed comes at this low a
price, it’s almost always worth the effort.

The next chapter moves on to another advanced subject that will probably
interest many of you: writing procedures and functions for the C language in
assembly language. For those of you using another language, the next chapter
should be a useful starting point as well.

3712 Ppeter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

In this chapter we’ll show you how to write assembly language procedures you
can use in your C programs. We're concentrating on C because C is one of the
most popular high-level programming languages (most of our programs here at
Norton Computing are written in both C and assembly language). (If you want
to write procedures for other languages, such as Pascal or BASIC, you’ll proba-
bly find the procedures in this chapter work without change; you need change
only the MODEL statement.)

Originally written by Dennis Ritchie at Bell Laboratories, C has become
quite popular because it is a modern high-level language that nonetheless pro-
vides many assembly language type functions (such as the + + increment
operator). But because it is a general-purpose programming language, there
are times you’ll want to write parts of your program in assembly language,
whether for speed, low-level access to your machine, or other reasons.

A Clear Screen for C

We'll start by rewriting a fairly simple procedure, CLEAR_SCREEN, so we
can call it directly from C. As you'll see, writing assembly language programs
for use in C programs is actually quite simple.

Note: To assemble the programs in this chapter, you’ll need
Microsoft MASM version 5.1 or later, Turbo Assembler, or the
latest version of OPTASM (which wasn’t available when we
wrote this book) that supports the MASM 5.1 mixed language
programming extensions. We're also using the Microsoft C
compiler for the examples in this chapter.

The .MODEL directive we've been using so far allows us to define the mem-
ory model of the program we’re building. (We’ve only used the SMALL memory
model in this book.) Starting with version 5.1 of MASM, Microsoft added an
extension to the .MODEL directive that allows us to write programs to attach
to a number of different languages (including C and Pascal). To tell MASM that
we're writing a C procedure, we simply append a “,C” to the end:

.MODEL SMALL,C

C Procedures in Assembly 373

Let’s start our rewrite of CLEAR_SCREEN by taking another look at the
assembly language version we wrote in Part II of this book:

PUBLIC CLEAR_SCREEN

; This procedure clears the entire screen.

éLEAR_SCREEN PROC

PUSH AX
PUSH BX
PUSH CX
PUSH DX
XOR AL,AL ;Blank entire window
XOR CX,CX ;Upper left corner is at (0,0)
MOV DH, 24 ;Bottom line of screen is line 24
MOV DL, 7?9 ;Right side is at column 7?8
MOV BH,? ;Use normal attribute for blanks
MOV AH,E ;Call for SCROLL-UP function
INT 10h ;Clear the window
POP DX
POP CX
POP BX
POP AX
RET
CLEARR_SCREEN ENDP

This is a fairly simple assembly language procedure, as far as assembly lan-
guage procedures are concerned. All we have to do to convert this into a C pro-
cedure, as you can see from the following, is remove a number of instructions.
Here is the new file, CLIB.ASM, that we’ll use to hold all our C procedures writ-
ten in assembly language:

Listing 31-1. The New File CLIB.ASM

.MODEL SMALL,C

.CODE

; This procedure clears the entire screen.

éLEAR_SCREEN PROC

XOR AL,AL ;Blank entire window

XOR CX,CXx ;Upper left corner is at (0,0)
MOV DH, 24 ;Bottom line of screen is line 24
MOV DL,?9 sRight side is at column 79

MOV BH,? ;Use normal attribute for blanks
MOV AH,E ;Call for SCROLL-UP function

INT 10h ;Clear the window

RET

CLEAR_SCREEN ENDP

END

(If you're using Turbo Assembler, you’ll need to add two lines after MODEL
with MASM51 on the first line, and QUIRKS on the second line.) You’ll note
that we’ve removed all the PUSH and POP instructions we used to save and
restore registers. We used these instructions in our assembly language pro-

374 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

grams so we wouldn’t have to keep track of which registers were changed by
procedures we called. This made programming in assembly language much
simpler. C procedures, on the other hand, don’t need to save the AX, BX, CX, or
DX registers at all since the C compiler always assumes procedures change
these four registers or use them to return values, as we’ll see later. So we're free
to use these four procedures for anything we want without having to save and
restore them.

Note: You don’t need to save and restore the AX, BX, CX, or
DX registers in any C procedures you write in assembly lan-
guage. You do, however, need to save and restore the SI, DI, BP,
and segment registers if you change them in your procedures.

Can Change: AX, BX, CX, DX, ES
Must Preserve: SI, DI, BP, SP, CS, DS, SS

Here is a very short C program that uses clear_screen(). In fact, that’s all this
program does.

Listing 31-2. The File test.c

main()
{

}

clear_screen()

Use the following steps to assemble CLIB.ASM, compile test.c, and link both
files together to form test.exe:

MASM CLIB;
g5 =E 1051 €
LINK TEST+CLIB,TEST,TEST/MAP;

(The CL -C command compiles a file without linking it.) The last line is a bit
more complicated than normal because we’ve asked Link to create a map file so
that we’ll know where to find clear_screen() in Debug. Even though test.exeisa
fairly small program, the memory map (test.map) turns out to be rather long
because of some extra overhead present in all C programs. Here is an abbrevi-
ated version of this map that shows the pieces of information we're interested
in:

Address Publics by Name

C Procedures in Assembly 375

0054 :00EC STKHQOQO

0000:001R8 _clear_screen
00S4:01D8 _edata

| 0054:01EQ “end

\ 00S4:00DA _environ

\ 00S4:00B3 _errno

| 0000:01A2 _exit

, 0000:0010 _main

Program entry point at 0000:002R

As you can see, our procedure is actually called _clear_screen instead of
clear_screen. Most C compilers put an underscore in front of all procedure
names for historical reasons we’ve long since forgotten (C compilers also put an
underscore in front of variable names).

You may have noticed also that we didn’t include a PUBLIC
CLEAR_SCREEN to make CLEAR_SCREEN available to other files. This is
another change that “,C” makes for us. The “,C” addition to .MODEL changes
the PROC directive so it automatically defines every procedure as a PUBLIC
procedure. In other words, if you’re writing a C procedure in assembly language
(using MODEL SMALL,C), all your procedures will be declared PUBLIC for
you, automatically.

Let’s load test.exe into Debug to see if MASM made any other changes for us.
Using the address in the load map above (1A), here is the code for

| —clear_screen:

A>DEBUG TEST.EXE

-5 1A
4ABR:001A 32C0 XOR AL, AL
4ABA:00LC 33CY XOR CX,CX
1 4AB8AR:001E BGL1A MOV DH,18
‘ 4RAB8R:0020 B24F MOV DL, 4F
l 4A8A:0022 B707 nov BH,07
4ABA:0024 B40b MoV AH, 06
! 4RB8R:002k CD1O INT 10
i 4ABA:0028 C3 RET
I
!
] This is exactly what we’ve written in CLIB.ASM. In other words, the “,C” at the
b end of the .MODEL directive only changed the name of our procedure from

clear_screen to _clear_screen and declared it as PUBLIC. If this were the only
” help we got from “,C”, we wouldn’t be very impressed. Fortunately, there are a
number of other areas where MASM helps writing C procedures in assembly
" language, all having to do with passing parameters to procedures.

.

376 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Parameter Passing

Throughout this book we’ve used registers to pass parameters to procedures,
which worked well since we never had more than six parameters (which would
require the six registers—AX, BX, CX, DX, SI, and DI). C programs, however,
use the stack to pass parameters to procedures. And this is where the MASM
5.1 .MODEL extensions really come into play. MASM automatically generates
much of the code we’ll need to work with parameters passed on the stack.

To see how this all works, we’ll convert several procedures into C procedures.
We'll start with a procedure to write a string of characters on the screen. We
could simply convert WRITE_STRING, but since write string actually uses a
number of other procedures (WRITE_CHAR, CURSOR_RIGHT,
INIT_WRITE_CHAR, and so on), we'll write a new WRITE_STRING that uses
the ROM BIOS to write each character to the screen. This new
WRITE_STRING uses INT 10h, function 14 to write each character on the
screen. This certainly won’t be as fast as our WRITE_STRING is now, but it is
simple enough so that we won’t get lost in a lot of code.

Here is our slow, C version of WRITE_STRING that you should add to
CLIB.ASM:

Listing 31-3. Add This Procedure to CLIB.ASM

; This procedure writes a string of characters to the screen. The 5
; string must end with DB 0] 5

write_string(string);
char *string;

WRITE_STRING PROC USES SI, STRING:PTR BYTE

PUSHF ;Save the direction flag
CLD ;Set direction for increment (forward)
Mov SI,STRING ;Place address into SI for LODSB
STRING_LOOP:
LODSB ;Get a character into the AL register
OR AL,AL ;Have we found the 0 yet?
Jz END_OF_STRING ;Yes, we are done with the string
MOV AH, 14 ;Ask for write character function
XOR BH,BH ;Write to page O
INT 10h ;Write one character to the screen
JMP STRING_LOOP
END_OF_STRING:
POPF ;Restore direction flag
RET
WRITE_STRING ENDP

Most of this code should be familiar since we lifted it mostly verbatim from our
fast WRITE_STRING. One line, however, is quite different. You’ll note that
we've added two pieces of information onto the end of the PROC statement.

C Procedures in Assembly 377

The first piece, USES SI, tells MASM we’re using the SI register in our proce-
dure. As we mentioned above, C procedures must save and restore the SI and DI
registers if they modify them. As we'll see soon, the USES SI causes MASM to
generate code to save and restore the SI register—automatically!

The second piece is used to pass one parameter to our program, which is a
pointer to a string, or bytes of characters. STRING:PTR BYTE simply says that
we want to call the parameter STRING and that it’s a pointer (PTR) to a charac-
ter (BYTE), which is the first character in the string. By giving this parameter
a name, we can use the parameter’s value simply by writing its name, as in
MOV SI,STRING.

The magic of all this will become clear as soon as we look at the code gener-
ated by MASM. Assemble the new CLIB.ASM, then make the following change
to test.c:

main()
{

clear_screen();
write_string("This is a string!"®);
}

Recompile test.c (with cl -c test.c) and link again (with LINK TEST +
CLIB,TEST,TEST/MAP;).

Looking at the new map file we see that _write_string is at 33h (you may see
a different number since this number will depend on the compiler you use):

D000 :D024 _clear_screen
D056 :01EA _edata

0056 :01FD _end
DDS6:00DA _environ

DDS56 :00B3 _errno
000D:D1Chk _exit
0000:0010 _main

0000 :0033 _write_string

Here is the code actually generated by MASM for the write_string we just
added to CLIB.ASM (the instructions added by MASM are against a gray back-
ground):

S U

4BBR:0033 SS PUSH BP
4B81:0034 8BEC Hov BP,SP
4R8A:0036 SG PUSH SI |
4R8A:0037 SQC PUSHF
4ABA:0038 FC CLD

4ABA:0039 8B?604 MoV SI,[(BP+D41
4ABA:D003C AC LODSB
4A8A:003D DACD OR AL,AL
4RBA:003F 7408 JZ b049
4ABA:D041 B4DE MOV AH,DE
4RBA:0043 3CFF XOR BH,BH
4ABA:0045 CDIOD INT 10
4ABA:0047 EBF3 JMP bD03C

4RBA:0049 9D POPF

318 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

4RBA:004A SE POP SI
4R8A:004B SD PoP BP
4A8A:004C C3 RET

As you can see, MASM added quite a few instructions to the ones we wrote. The
PUSH SI and POP SI instructions should be clear since we said that MASM
would save and restore the SI register in response to USES SI. The other
instructions, on the other hand, take some explanation.

The BP register is a special-purpose register we haven’t said much about. If
you look at the table of addressing modes in Appendix D, however, you'll notice
that BP is a little different from other registers in that the default segment for
[BP] is the SS register rather than the DS register. This is of interest here
because, as we said earlier, C programs pass parameters on the stack rather
than in registers. So the instruction:

MOV SI,[(BP+041}

will always read from the stack, even if SS isn’t the same as DS or ES (which it
often won’t be for memory models other than SMALL). Because the BP register
is so convenient for working with the stack, C procedures use the BP register to
access the parameters passed to them on the stack.

To use the BP register, we need to set it to the current value of SP, which the
MOV BP,SP instruction does for us. But since the C procedure that called us
also uses the BP register to access its parameters, we need to save and restore
the BP register. So the assembler automatically generates these instructions
(without the comments, of course) that allow us to use the BP register to read
parameters from the stack:

PUSH BP ;Save the current BP register
MOV BP,SP ;Set BP to point to our parameters
POP BP ;Restore the o0ld value of BP

Figure 31-1 shows how the stack would look for a procedure, with two parame-
ters, that uses the SI register. The C call, c_call(paraml, param2), pushes the
parameters onto the stack, from right to left. By pushing the rightmost param-
eter first, and the leftmost parameter last, the first parameter will always be
closest to the “top of the stack,” in other words, closest to SP.

Next the CALL instruction created by the c_call(param1, param?2) statement
pushes the return address onto the stack, at which point our procedure gains
control. You’ll notice at this point that the PUSH SI instruction appears after
the MOV BP,SP instruction. Once we've set the value of BP, we’re free to
change the stack as much as we want by PUSHing and POPing registers and by

C Procedures in Assembly 379

c_call(param1, param?2)

N\

[BP+6] Parameter 2

Stack High memory

[BP+4] Parameter 1

Return Address

BP —% | 0Id BP value

Stack grows
sp —% | 0Id S| value down in memory

Low Memory

Figure 31-1. How C Passes Parameters on the Stack.

calling other procedures. Because MASM generates all the needed instruc-
tions, we need not concern ourselves with writing these instructions in the cor-
rect order.

The first parameter will always be at the same offset from BP, which is 4 for
the SMALL memory model (it would be 6 for memory models that require a
FAR return address, since a FAR return requires both the old CS and IP values
to be on the stack). Looking at the preceding unassemble listing, you'll note
that the assembler translated the MOV SI,STRING instruction into MOV
SI,[BP +4]. If we had used a memory model with FAR procedures, this would be
translated into MOV SI,|BP +6].

Just for your interest, C passes parameters on the stack in the opposite order
from most other high-level languages. Pascal, BASIC, and FORTRAN, for exam-
ple, push the first parameter onto the stack first, with the last parameter last,

320 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

WRITE_STRING PROC STRING:PTR BYTE

. This is the first
MOU SISTRING parameter, which
is at [BP+4]

8B7604 MoOU SI1,[BP+4]
Figure 31-2. The assembler knows where to find the parameter.

which means the last parameter would be closest to the top of the stack (SP). If
you think about this for a moment, you'll realize the offset from BP to the first
parameter will depend on the number of parameters we pushed onto the stack.
Thisisn’t a problem in Pascal, BASIC, or FORTRAN where procedure calls must
have the same number of parameters as defined in the procedure.

In C procedures, however, you can pass more parameters on the stack than
are defined in the procedure. The C printf() function is a very good example.
The number of parameters you pass to printf() depends entirely on how many %
arguments you have in the string. And to allow C procedures to have a variable
number of parameters, we need to push the parameters in reverse order so the
first parameter will always be closest to SP and won’t depend on the number of
parameters we actually pushed onto the stack.

A Two-Parameter Example

Before we move on, here’s another short procedure you’ll find useful in your C
programs:

Listing 31-4. Add this Procedure to CLIB.ASM.

;
; This procedure moves the cursor
5

goto_xy(x, Y);
int X, Y5

C Procedures in Assembly 327

GOTO_XY PROC X :WORD, Y:WORD
MOV RH, 2 ;Call for SET CURSOR POSITION
MOV BH, 0 ;Display page O
MOV DH,BYTE PTR (Y) ;Get the line number (0..N)
MOV DL,BYTE PTR (X) ;Get the column number (0..79)
INT 10h ;Move the cursor
RENT

GOTO_XY ENDP

And here is the change to make in test.c to use goto_xy():

main()
{

clear_screen();

goto_xy(35,10);

write_string("This is a string!");
}

There are two items of interest in goto_xy(). First, you’ll note that we
declared the two parameters (X and Y) in the order we write them in the proce-
dure call: goto_xy(x, y). We would write these parameters in the same order for
a language, like Pascal, that pushes parameters in a different order: MASM
handles the differences in order on the stack so we don’t have to change our code
or know in what order parameters are pushed onto the stack.

The other change is a bit more subtle. You'll notice that we defined X and Y
to be words, rather than bytes. We did this because C (and other high-level lan-
guages) never push a byte onto the stack: they always push words onto the
stack. And there is a very good reason for this: The PUSH instructions push
words, and not bytes, onto the stack. In goto_xy, this isn’t a problem except that
we want to move a byte into the DH and DL registers. Writing:

MOV DL, X

won’t work because the assembler would report an error. Instead, we have to
use BYTE PTR X to access X as a byte. But this also doesn’t work because of
how the MASM 5.1 extensions are written inside the assembler.

As it turns out, the X:WORD, Y:WORD definitions in the PROC statement
are implemented inside the assembler as macros. Macros, which we won’t cover
in this book, are a way to add features to the assembler. The parameters X and
Y are actually macros, so when we write MOV DL,X, X is expanded into the
text defined by MASM:

X ==5 WORD PTR [BP+4]

If we then put BYTE PTR in front of this, we get something the assembler
doesn’t know how to handle:

BYTE PTR X ==5 BYTE PTR WORD PTR [BP+4]

322 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

We fix this problem by putting parentheses around the X and Y, which tells the
assembler that [BP + 4] refers to a word, but we wish to treat it as a byte:

BYTE PTR (X) == BYTE PTR (WORD PTR {BP+41])

The parentheses simply tell the assembler to process everything between the
(and) first.

Returning Function Values

Besides writing C procedures in assembly language, you’ll probably alse
want to write C functions in assembly, which is quite simple. C functions
return values in the following registers: bytes in AL, words in AX, and long
words (two bytes) in DX:AX, with the low word in AX. (If you want to return
types with three bytes or more than four bytes, you'll need to consult the
Microsoft Mixed-Language Programming Guide or the Turbo Assembler User’s
Guide for details.)

Note: Here are the registers to use to return values to C pro-

grams:
Byte AL
Word AX

Long DX:AX

The following procedure, which you should add to CLIB.ASM, is a rewrite of
READ_KEY that returns the extended key code to C programs:

Listing 31-5. Add this Procedure to CLIB.ASM.

: This procedure reads on key from the keyboard.

key = read_Key():

éEAD_KEY PROC

XOR AH,AH 1Bsk for keyboard read function
INT 16h 1Read character/scan code from keyboard
OR AL,AL ;Is it an extended code?
Jz EXTENDED_CODE ;Yes
NOT_EXTENDED:

XOR AH,RH ;Return just the ASCII code
JMP DONE_READING

EXTENDED_CODE:
MOY AL, RH ;Put scan code into AL
MOV AH,1 ;Signal extended code
DONE_READING:

C Procedures in Assembly 323

RET
READ_KEY ENDP

Here is a version of test.c that will clear the screen, display a string near the
center, and wait until you press the space bar before exiting back to DOS:

main()

clear_screen();

goto_xy(35,10);

write_string("This is a string!");
while (read_key() = ' 1)

v

Summary

That wraps up our discussion of writing C procedures in assembly language.
If you want to write procedures for other languages, you’ll need to consult the
documentation on your language, or in the assembler that you’re using. Not all
compilers for the same language (such as Pascal) use the same conventions. So
even though MASM (and Turbo Assembler) support the Pascal conventions,
there may be differences if you're not using both an assembler and a compiler
from the same company.

The next chapter, our last technical chapter, covers perhaps the most
advanced material in this book: writing RAM-resident programs.

326 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

In this, our final chapter of programming, we’re going to cover a fairly
advanced topic: writing RAM-resident programs. In doing so we’ll use much of
what we’ve learned in this book, and you’ll have a nice little program as well.

RAM-Resident Programs

RAM-resident programs are almost always written in assembly language to
allow maximum access to the ROM BIOS and memory, and to make them com-
pact. The Disklite program we’ll build here, for example, weighs in at just 247
bytes. Since RAM-resident programs stay in memory until you restart your com-
puter and more and more programs need 512K or more of memory to run, keeping
RAM-resident programs compact is very important. For if a program is too large,
users won’t be willing to keep a copy in memory, and that’s the whole point.

RAM:-resident programs usually need to work very closely with the ROM
BIOS or with your computer’s hardware to change how existing functions work
or to add new functions. Disklite, for example, watches the ROM BIOS routines
that read from and write to disks so it can display a disk drive “light” on the
screen. Why would we want to do this?

Many programmers like to watch the disk drive light during compiles to keep
track of the compiler’s progress. When a compile takes 30 seconds or a minute,
there isn’t much else you can do. We also like to watch the disk drive light when
we're testing programs that read from or write to a disk to see if they’re actually
accessing the disk. Fair enough. But what happens if you place your computer
on its side by your desk (or you have an IBM PS/2 Model 60)? Or you have a
hard disk card, which doesn’t have a drive light? In either case, Disklite pro-
vides an on-screen drive light that lights up whenever you read to or write from
a disk. And it also tells you which disk you’re accessing.

Intercepting Interrupts

As we mentioned above, Disklite displays the drive light by watching the
ROM BIOS routines that read to and write from disk. How can Disklite do that?
All disk reading and writing is performed by the INT 13h ROM BIOS rou-
tine. DOS uses this service by issuing an INT 13h instruction. Interrupts, as we
saw in Chapter 11, use a vector table at the start of memory to determine what
routine to call. Each interrupt vector in this table is two words long since it

DISKLITE, a RAM-Resident Program 327

0000:000D INT 0 vector

INT 13h

. ROM
\ _ /’ B10S

0000:004L INT 13h vector

Interrupt vector table
in low memory

Figure 32-1. INT 13h uses the interrupt vector at 4Ch to determine the address
of the routine to call.

holds the FAR address of the routine that will handle the interrupt. So the INT
13h instruction will use the address at 0:4Ch (13h times 4) in memory as the
address of the routine that will handle the INT 13h function. In other words, we
could change this address to point to our routine instead of the ROM BIOS’s
routine. In fact, this is precisely what we’ll do.

Figure 32-1 shows how INT 13h calls the routine in the ROM BIOS. Now
imagine that we change the interrupt vector to point to our procedure. Then the
vector will point to us instead of the ROM BIOS. We've now taken control of the
INT 13h function. But this isn’t quite what we want. If we completely take over
INT 13h, we have to write a program that will do everything INT 13h did, as
well as the new functions we want to add. We’d really like to use the ROM BIOS
INT 13h routines to do most of the work. As it turns out, this is very simple.

Instead of blindly replacing the INT 13h vector, we’ll first save the vector in
our own program. Then we can use the ROM BIOS INT 13h routines by simu-
lating an INT call to the ROM routines. Recall that an INT is like a CALL
instruction, but it saves the flags on the stack so they’ll be restored by an IRET
(Interrupt RETurn) instruction. All we need to do, then, is save the address of
the INT 13h routines in the variable ROM_DISKETTE_INT, so we can pass
control on to the ROM BIOS INT 13h routines with this pair of instructions:

PUSHF
CALL ROM_DISKETTE_INT

When the ROM finishes accessing the disk, we’ll receive control again. This
means we can execute some code before as well as after we call the ROM’s disk

328 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

INTERCEPT_DISKETTE_INT
entry code

PUSHF
CALL ROM_DISKETTE_INT

INT 13h — exrit co

JC DISK_ERROR RET
END

ROM BIOS
Disk

Services

Figure 32-2. Intercepting INT 13h.

functions, which is exactly what we need if we’re going to display, then remove
a drive letter. Figure 32-2 shows these steps in more detail.

Note: The technique we’ve presented here will work with
most ROM BIOS routines. But there is a major caveat. Since
DOS is not a multitasking operating system, you can’t make
DOS function calls from within an interrupt service routine
unless you can be can be absolutely certain DOS wasn’t in the
middle of processing a function request. There are ways to
ensure this, but they’re rather difficult, so we won’t cover them
in this book. You’ll find some references to this kind of informa-
tion in the bibliography at the end of the last chapter.

Disklite

Most of the other details of Disklite should either be familiar or well enough
documented that you can figure them out. There are a few details, however,
that are new or a bit out of the ordinary.

First of all, note that we’re not saving or restoring registers in the procedures
of Disklite. Instead, we clearly mark which registers are altered. Then we save

DISKLITE, a RAM-Resident Program 329

all the registers that can be altered at the start of INTER-
CEPT_DISKETTE_INT and nowhere else. We save them only once so we keep
the stack usage to a minimum.

Interrupt service routines generally need to be written so they don’t use
much of the stack since they’re borrowing someone else’s stack, and there may
not be much space left on the stack. We never worried about stack space in our
own programs because we gave ourselves a large enough stack. We can’t guar-
antee that everyone will give us a large stack when we get an INT 13h request.
For these reasons, many RAM-resident programs set up their own stack.

The two procedures GET_DISPLAY_BASE, SAVE_SCREEN and
WRITE_TO_SCREEN should be fairly clear. GET_DISPLAY_BASE we've
seen before, and the other two should be clear from the last chapter:
SAVE_SCREEN saves the two characters in the upper-right corner, and
WRITE_TO_SCREEN writes two characters in the upper-right corner.
WRITE_TO_SCREEN is used both to display the drive letter and to restore the
two characters that were on the screen before we displayed the drive letter.

DISPLAY_DRIVE_LETTER is also fairly simple. INT 13h takes a drive
number in the DL register. For floppy disk drives, DL will contain O for drive A,
1 for drive B, and so on. For hard disks, on the other hand, DL starts at 80h. So
to get the actual drive letter for a hard disk we subtract 80h, then add the
number of floppy disk drives since the first hard disk appears after the last
floppy disk.

That leaves us with INIT_VECTORS and GET_NUM_FLOPPIES.
INIT_VECTORS shows the details of installing a procedure to intercept an
interrupt vector and to keep such a program in memory after we’ve returned to
DOS. First we display an author message. Then we call
GET_NUM_FLOPPIES to set NUM_FLOPPIES to the number of floppy disk
drives attached to your computer. Next we read and set the INT 13h vector with
the INT 21h functions 35h and 25h that read and set interrupt vectors.

Note that we put both initialization routines at the very end of Disklite. As it
turns out, both these procedures are used only once, when we first load Disklite
into memory, so we don’t need to keep them in memory after we load Disklite.
This is exactly why we've put them at the end. The DOS function call INT 27h
called Terminate but Stay Resident exits our program and keeps most of the
program in memory. This function call takes an offset in DX to the first byte we
don’t want to keep in memory. So by setting DX so it points to INIT_VECTORS,
we tell DOS to keep all of Disklite in memory except for INIT_VECTORS and
GET_NUM_FLOPPIES. You could place as much initialization code here as
you want without it consuming any memory after Disklite’s been installed; this
1s a very handy feature.

330 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Enter the following program into DISKLITE.ASM. Then assemble, link, and
convert it into a .COM program (by typing EXE2BIN DISKLITE DIS-
KLITE.COM). After you run this program, an inverse X: (where X can be any
drive letter) will appear on the very right side of the first line whenever you
access a disk drive. To test it, run CHKDSK on any drive.

Listing 32-1. DISKLITE.ASM Program.

Disklite creates an on-screen version of the disk light that is
usually on disk drives. The difference, however, is that this light
will only be on as long as it takes to read or write to the disk. 1In
other words, it does not stay on while the disk spins without any
activity.

This program intercepts the INT 13h

the drive letter in the upper-right
restores this section of the screen

for the ROM BIOS's diskette routine.

vector, which is the entry point
On entry, Disklite displays

corner of the screen, and

on exit.

0 %t eh el e el el el et e e e
B = s S AT colae s wo Sl

Here is the DISKLITE's entry point.
routine which is at the very end so
after we've used it.

the initialization ;
it out of memory 5
)

It jumps to
we can throw

ODE_SEG

(7 90 BB =0 o0

SEGMENT

ASSUME CS:CODE_SEG, DS:CODE_SEG

ORG 100h ;Reserve for DOS Program Segment Prefix
BEGIN: JMP INIT_VECTORS
RUTHOR_STRING DB "Installed Disklite, by John Socha"

DB 0Dh, OAL, 'S$!

ROM_DISKETTE_INT DD ?
DISPLAY_BASE DW 2
OLD_DISPLAY_CHARS DB 4 DUP (?)
DISPLAY_CHARS DB ‘R', ?0h, ':!', 70h
NUM_FLOPPIES DB ? ;Number of floppy drives

UPPER_LEFT EQU (80 - 2) * 2 ;0ffset to drive light

This procedure intercepts calls to the ROM BIOS's diskette I/0
vector, and it does several things:

1. Checks to see if the screen is in an 80 column text mode
SO we can write to the screen. Disklite won't write any
characters to the screen if it's not in an 80 column mode.

2. Displays the disk drive letter, "A:" for example, in the
upper-right corner of the screen.

w6 W wo s et wE s Wt el we s we v

3. Calls the old ROM BIOS routine to do the actual work.

4. Restores the two characters in the upper-right corner of the
screen.

INTERCEPT_DISKETTE_INT PROC FAR

Assume CS:CODE_SEG, DS:Nothing

PUSHF ;Save the old flags

PUSH RX

PUSH SI

PUSH DI

PUSH DS

DISKLITE, a RAM-Resident Program 337

PUSH BiS)

CALL GET_DISPLAY_BASE ;Calculates the screen's display base
CALL SAVE_SCREEN ;Save two chars in upper right
CALL DISPLAY_DRIVE_LETTER ;Display the drive letter

POP ES

POP DS

POP DI

POP SI

POP AX

POPF ;Restore the old flags

PUSHF ;Simulate an INT call

CALL ROM_DISKETTE_INT ; to the old ROM BIOS routine
PUSHF ;Save the returned flags

PUSH AX

PUSH SI

PUSH DI

PUSH DS

PUSH EiS

LEA SI,OLD_DISPLAY_CHARS ;Point to the old screen image
CALL WRITE_TO_SCREEN ;Restore two chars in upper right
POP ES

POP DS

POP DI

POP SI

POP AX

POPF ;Recover the returned flags
RET = ;Leave the status flags intact

INTERCEPT_DISKETTE_INT ENDP

This procedure calculates the segment address for the display adapter
that we're using.

Destroys: AX

ET_DISPLAY_BASE PROC NEAR
Assume CS:CODE_SEG, DS:Nothing
INT 11h ;Get the current equipment flag
AND AX,30h ;Isolate the display flags
CHP AX,30h ;Is this a monochrome display?
MOV AX,0BA&0CH ;Set for a color graphics adapter
JNE DONE_GET_BASE ;Color graphics, base already set
MOV AX,0BOOCK ;Set for monochrome display

DONE_GET_BASE:
MOV DISPLAY_BASE, AX ;Save this display base
RET

GET_DISPLAY_BASE ENDP

This procedure saves the two characters in the upper right corner of
the screen so that we can restore them later.

Ulws vo us e wo we

Destroys: AX, SI, DI, DS, ES

AVE_SCREEN PROC NEAR
Assume CS:CODE_SEG, DS:Nothing
Mov SI,UPPER_LEFT ;Read chars from the screen
LEA DI,OLD_DISPLAY_CHARS ;Write chars to local memory
MOV AX,DISPLAY_BASE ;Get segment address of screen
MOV DS, AX
MoV AX,CS ;Point to the local data
MOV ES,AX
CLD ;Set for auto-increment
MOVSW ;Move two characters
MOVSW
RET

SAVE_SCREEN ENDP

332 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Listing 32-1. continued

: This procedure displays the drive letter in the upper-right corner of ;
; the screen. .

Destroys: AX, SI
DISPLAY_DRIVE_LETTER PROC NEAR
Assume CS:CODE_SEG, DS:Nothing
MOV AL,DL ;Get the drive number
CMP AL, 80h ;Is this a hard disk drive?
JB DISPLAY_LETTER ;No, then continue
SUB AL, 80h ;Convert to hard disk number
ADD ARL,NUM_FLOPPIES ;Convert to correct disk number
DISPLAY_LETTER:
ADD AL, 'A" ;Convert this into a drive letter
LEA SI,DISPLAY_CHARS ;Point to new char image
MOV CS:[S1I1,AL ;Save this character
CALL WRITE_TO_SCREEN
RET

DISPLAY_DRIVE_LETTER ENDP

This procedure writes two characters in the upper-right corner of the

; sScreen. ;
; On entry: GSESIT Screen image for two characters 5
; Destroys: RX, SI, DI, DS, ES 3
WRITE_TO_SCREEN PROC NEAR

Assume CS:CODE_SEG, DS:Nothing

MOV DI,UPPER_LEFT ;Write chars to the screen

MOV AX,DISPLAY_BASE ;Get segment address of screen

Mov ES,AX

MOV RX,CS ;Point to the local data

MoV DS, AX

CLD ;:Set for auto-increment

MOVSW ;Move two characters

MOVSW

RET
WRITE_TO_SCREEN ENDP
; This procedure daisy-chains Disklite onto the diskette I/0 vector 3
; SO that we can monitor the disk activity. S
INIT_VECTORS PROC NEAR

Assume CS:CODE_SEG, DS:CODE_SEG

LEA DX,AUTHOR_STRING ;Print out the author notice

MOV AH,9 ;Display this string

INT 2lh

G GET_NUM_FLOPPIES ;See how many floppy drives installed

MOV AH,3Sh ;Ask for an interrupt vector

MOV AL,13h ;Get the vector for INT 13h

INT 2lh ;Put vector in ES:BX

MOV Word Ptr ROM_DISKETTE_INT,BX

MOV Word Ptr ROM_DISKETTE_INT(Z2],ES

MOV AH,2Sh ;Ask to set an interrupt vector

MOV AL,13h ;Set the INT 13h vector to DS:DX

MOV DX,0ffset INTERCEPT_DISKETTE_INT

INT 2lh ;Set INT 13h to point to onr procedure

MOV DX,0ffset INIT_VECTORS ;End of resident portion

INT 27h ;Terminate but stay resident

INIT_VECTORS ENDP

336 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

B y now you've seen many examples of assembly language programs.
Throughout this book, we've constantly emphasized programming, rather than
the details of the 8088 microprocessor inside your IBM Personal Computer. As
aresult, you haven'’t seen all the 8088 instructions, nor all the assembler direc-
tives. But most assembly language programs can be written with what you've
learned here and no more. Your best approach to learning more about writing
assembly language programs is to take the programs in this book and modify
them.

If you think of a better way to write any part of Dskpatch, by all means do so.
This is how we first learned to write programs. Back then the programs were in
BASIC, but the idea still holds. We found programs written in BASIC, and
began to learn about the language itself by rewriting bits and pieces of those
programs. You can do the same with Dskpatch.

After you've tried some of these examples, you’ll be ready to write your own
programs. Don’t start from scratch here, either; that’s rather difficult for your
first time out. To begin with, use the programs in this book as a framework.
Don’t build a completely new structure or technique (your equivalent of modu-
lar design) until you feel comfortable with writing assembly language pro-
grams.

If you really become enthralled by assembly language, you'll also need a
more complete book for use as a reference to the 8088 instruction set. What fol-
lows is a list of books we've read and liked that you’ll find useful as references
or further reading. This list is by no means complete, as the books listed here
are only ones we've read. Also, some of these references are older than you
might expect since we learned assembly language programming several years
ago (more than we’d like to admit).

80x86 Reference Books

The following three books are good programmers’ references:

iAPX 88 Book. Intel, 1981. This is the definitive sourcebook and a very good
reference.

IAPX 286 Programmer’s Reference Manual. Intel, 1984. The definitive
sourcebook for the 80286 microprocessor.

Rector, Russel, and Alexy, George, The 8086 Book. Osborne/McGraw-Hill,
1980. This is another good reference, but rather thick and dense.

Closing Words and Bibliography 337

The next three books were all written for the IBM PC. Much of the informa-
tion in each of these is generic; only the examples in the latter part of these
books are specific to the IBM PC. We recommend that you look at all three
books in a bookstore to see which one you find most interesting:

Scanlon, Leo J. IBM PC & XT Assembly Language: A Guide for Program-
mers, Enhanced and Enlarged. Brady Communication Co., 1985. This book
is easy reading. It’s a complete introduction to 8088 assembly language,
but it’s not very useful as a reference. If you're still feeling somewhat
shaky about assembly language, this might be a good book for you. Other-
wise, look at Morse’s book.

Willen, David C., and Krantz, Jeffrey [. 8088 Assembler Language Program-
ming: The IBM PC. Howard W. Sams & Co., 1983. This is another good sec-
ond book on the 8088 microprocessor, written for the IBM PC.

Bradley, David J. Assembly Language Programming for the IBM Personal
Computer. Prentice-Hall, 1984. The author helped design the IBM PC, and
he’s included many examples for the IBM PC. These examples aren’t com-
plete, but they may give you ideas of programs to work on. He also talks
more about advanced subjects, such as the 8087 numeric processor, than do
the authors of the preceding two books.

The next recommendation is neither a reference book, nor an introduction for
the IBM PC. It’s an introduction to the 8088 microprocessor, written by a mem-
ber of the design team at Intel:

Morse, Stephen P. The 8086/8088 Primer. Hayden, 1982. This is a delightful
book. As one of the designers at Intel, Morse provides many insights into
the design of the 8088 and also talks about some of the design flaws and
bugs in the 8088. While not very good as a reference, this book is complete,
and it’s very readable and informative.

DOS and ROM BIOS Programming

The references in this section are useful to anyone programming the IBM PC.

Norton, Peter. Programmer’s Guide to the IBM PC, Microsoft Press, 1985.
Includes a complete reference to all DOS and BIOS functions, descriptions
of important memory locations, a summary of 8086 instructions, and a host
of other useful (or at least interesting) information.

Duncan, Ray. Advanced MS-DOS. Microsoft Press, 1986. Covers almost eve-
rything you’ll want to know about using the DOS services in your pro-

338 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

grams. It also includes a number of sample programs. A nice companion to
Peter’s Programmer’s Guide.

RAM-Resident Programs

There aren’t many good references for people who want to write RAM-resi-
dent programs since much of the material hasn’t been published in a single
place. But there are two good sources for information:

The MS-DOS Encyclopedia, edited by Ray Duncan. Microsoft Press, 1988.
This book has a wealth of information. It has a nice article that covers
many of the aspects of writing RAM-resident programs.

PC Magazine, published by Ziff-Davis, New York, N.Y. often prints informa-
tion on RAM-resident programs, as well as example programs. A subscrip-
tion to this magazine will provide you with many good assembly language
programs.

Software Design

We have a few favorite books when it comes to software design. The books we
recommend are a bit out of the ordinary, enjoyable, and well worth the read.

Brooks, Frederick P., Jr. The Mythical Man-Month: Essays on Software
Engineering. Addison-Wesley, 1982. Everyone connected with a software
project should read this book, especially your manager. A classic.

Normal, Donald A. The Psychology of Everyday Things. Basic Books, 1988.
This book provides a lot of useful insight into what does and doesn’t create
problems with programs that interact with people.

Heckel, Paul. The Elements of Friendly Software Design. Warner Books,
1984.

340 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

The companion disk to this book contains most of the Dskpatch examples
you've seen in the preceding chapters, as well as an advanced version of the pro-
gram that includes many improvements. The files are in two groups: the chap-
ter examples and the advanced Dskpatch program. This appendix will explain
what’s on the disk and why.

Chapter Examples

All the chapter examples are from Chapters 9 through 27, 30, and 32. The
examples in earlier chapters are short enough that you can type them in
quickly. But starting in Chapter 9, we began to build Dskpatch, which, by the
end of this book, had grown to nine different files.

In any one chapter, only a few of these nine files changed. Since they do
evolve throughout each chapter, however, there wasn’t enough room on the
disk to store each version of each example. So you will find the examples on the
disk, as they stand after each chapter. Thus, if we modify a program several
times in, say, Chapter 19, the disk contains the final version.

The table in the following guide shows when each file changes. It also shows
the name of the disk file for that chapter. If you want to make sure you're still
on course or don’t feel like typing in the changes for some chapter, just look at
this table to find the names of the new files. Then you can either check your
work or copy the file(s) to your disk.

Here’s the complete list of all the files on the companion disk (not including
the advanced version of Dskpatch):

VIDEO_9.ASM VIDEO_16.ASM DISP_S19.ASM KBD_IOcZ4.ASM
VIDEO_10.ASM DISK_I16.ASM KBD_IO19.ASM DISPATZS5.ASM
VIDEO_13.ASM DSKPAT1l?.ASM DISK_I19.ASM DISPATZGL.ASM
TESTL13.ASH DISP_SL1?.ASM DISP_S21.ASM DISK_IZ2G.ASM
DISP_SL4.ASM CURSORL?.ASM PHANTOZ21.ASM PHANTOZ?.ASM
CURSOR14.ASM VIDEO_17.ASM VIDEO_Z1.ASM DSKPAT30.ASM
VIDEO_14.ASM DISK_I1?.ASM DISPATZZ2.ASM KBD_IO30.ASM
DISP_S15.ASM DISP_S18.ASM EDITORZ2.ASM CURSOR30.ASM
DISK_TI15.ASM CURSOR18.ASM PHANTOZ2Z.ASM VIDEO_30.ASM
DISP_SL&6.ASM VIDEO_18.ARSM KBD_IOZ23.ASM CLIB.ASM

DSKPAT1L9.ASM DISPATLA9.ASM TESTZ3.ASM DISKLITE.ASHM

Advanced Version of Dskpatch

As we said, the disk contains more than just the examples in this book. We
didn’t really finish Dskpatch by the end of Chapter 27, and there are many

- IO T

Guide to the Disk 3471

things we should have put into Dskpatch to make it a usable program. The disk
contains an almost-finished version. Here’s a quick overview of what you’ll find
there.

As it stands (in this book), Dskpatch can only read the next or previous sec-
tor. Thus, if you wanted to read sector 576, you'd have to push the F4 key 575
times. That’s too much work. And what if you wanted to look at sectors within a
file? Right now, you'd have to look at the directory sector and figure out where
to look for the sectors of that file. Again, not much fun. The disk version of
Dskpatch can read either absolute sectors, just as the book version can, or it can
read sectors within a file. In its advanced form, Dskpatch is a very usable pro-
gram.

The advanced version of Dskpatch has too many changes to describe in detail
here, so we’ll take just a quick look at the new functions we added to the disk
version. You’'ll find many of the changes by exploring Dskpatch and making
your own changes.

The advanced Dskpatch still has nine files, all of which you’ll find on the
disk:

DSKPATCH.ASM DISPATCH.ASM DISP_SEC.ASM KBD_TIO.ASM
CURSOR.ASH EDITOR.ASM PHANTOM.ASHM VIDEO_IO.ASM
DISK_IO.ASHM DSKPATCH.COM

You’ll also find an assembled and linked .COM version ready to run, so you can
try out the new version without assembling it.

When you do, you’ll be able to tell that there are several improvements just
by looking at the screen display. The advanced Dskpatch now uses eight func-
tion keys. That’s more than you can remember, if you don’t use Dskpatch very
often, so the advanced Dskpatch has a “key line” at the bottom of the display.
Here’s a description of the function keys:

E2 we’ve seen in this book. Press the Shift key and F2 to write a sector
back to the disk.

F3,F4 We already know about F2 and F3, because we used them in this
book. F2 reads the previous sector, and F3 reads the next sector.

F5 changes the disk-drive number or letter. Just press F5 and enter a
letter, such as A (without a colon, :), or enter a drive number, such
as 0. When you press the Enter key, Dskpatch will change drives
and read a sector from the new disk drive. You may want to change
Dskpatch so that it doesn’t read a new sector when you change
drives. We just set it up so that it’s very difficult to write a sector to
the wrong disk.

Fé6 changes the sector number. Just press F6 and type a sector number,
in decimal. Dskpatch will read that sector.

342 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

F7

F8

F10

changes Dskpatch to file mode. Just enter the file name and
Dskpatch will read a sector from that file. From then on, F3 (Previ-
ous Sector) and F4 (Next Sector) read sectors from within that file.
F5 ends file mode and switches back to absolute-sector mode.

asks for an offset within a file. This is just like F4 (Sector) except
that it reads sectors within a file. If you enter an offset of 3,
Dskpatch will read the fourth sector in your file.

exits from Dskpatch. If you accidentally press this key, you’ll find
yourself back in DOS, and you’ll lose any changes you’ve made to
the last sector. You may want to change Dskpatch so that it asks if
you really want to leave Dskpatch.

A number of other changes aren’t as obvious as those we just mentioned. For
example, Dskpatch now scrolls the screen one line at a time. So, if you move the
cursor to the bottom line of the display and press the Cursor-Down key,
Dskpatch will scroll the display by one line, putting a new line at the bottom.

In addition, some of the other keys on the keyboard also work now:

Home moves the phantom cursor to the top of the half-sector display and
scrolls the display so you see the first half-sector.

End moves the phantom cursor to the bottom right of the half-sector display
and scrolls the display so you see the second half-sector.

PgUp scrolls the half-sector display by four lines. This is a nice feature when
you want to move part way through the sector display. If you press PgUp
four times, you’ll see the last half sector.

PgDn scrolls the half-sector display by four lines in the opposite direction
from PgUp.

If you like, you can modify the advanced Dskpatch to better suit your own
needs. That’s why the disk has all the source files for the advanced Dskpatch:
So you can modify Dskpatch any way you like and learn from a complete exam-
ple. For instance, you might spruce up the error-checking capabilities. As it
stands, if pressing F4 causes you to fall off the end of a disk or file, Dskpatch
doesn’t reset the sector to the last sector on the disk or file. If you feel ambitious,
see if you can modify Dskpatch so it catches and corrects such errors.

Or, you may want to speed up screen updates. To do this you’d have to rewrite
some of the procedures, such as WRITE_CHAR and WRITE_ATTRIBUTE_N_
TIMES, to write directly to screen memory. Now, they use the very slow ROM
BIOS routines. If you’re really ambitious, try to write your own character-out-

put routines that send characters to the screen very quickly.
Good luck.

Guide to the Disk 343

WSVO0E 0ddIA WSV 0£HOSHND WSV 0£01 a8 WSV 0ELVINSd 0g
b zm<.8“:.z<=m 1 ; i Lz
WSV 921 JSId WSV 92LvdSId 92
3
WSV $2LVdSId sz
WSV'#201 a8X 144
WSV £21S3L WSV €201 ag) €2
3

WSV 2Z0LNVHd | WSV 72401104 WSV 22LvdSIa 44
zm<:ﬂo@o~> WSV 120LNVHd WSV 128 dsIa 12
WSV 611 MS1d WSV'6101" a8 | WSV 6I7dSId [WSY 61LVdSIA | WSV 61LVANSA 61
WSV 81 03ddIA WSV 8140S¥ND WSV 81~ dSId 81
WSV LIITNSIA | WSV LI OddIA WSY LIHOSHND WSV LIS~ dSId WSV LILVdNSd L
WSV 911~ MSId zm<.£ﬂ0mc_> WSV 9IS~ dsI1a 9l
WSV STI™NMSId WSV SIS~ dsId sl
WSV v1-0ddIA WSV ¥I90S4ND WSV ¥IS™dS1d vl
WSV E1LSAL WSV €£1-03dIA £l
WSV 01~ 04dIA ot

WSV'6~0ddIA 6

1531 ormista O O3AIA WOLNVHd YOLIAF HOSUNO o1-agd 23S dsIa HOLVJSIA HOLVJNSA E,”E.z
121dey)

344 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Disk A

0
18
20
30
48
50
60
70
8a
99
fa
Ba
ca
D
E@
Fe

Sector @

86 81 62 63 @4 85 66 @7 68 69 OR @B 6C 6D BE OF

8123456789ABCDEF

98 49 42 4D 20 50 4

E 43 49 06 62 62 081 0@

82 70 6@ D@ 62 FD 62 06 @9 00 02 00 00 06 00 60
00 00 66 60 00 00 06 06 6@ 0@ FA 33 Cé 8E DA BC
F@ 7B FB B8 C@ @7 8E D8 BE 5B 8@ 96 FC AC @A CA
74 @B 56 B4 OE BB @7 06 CD 1@ SE EB F@ 32 E4 CD
16 B4 @F CD 18 32 E4 CD 16 CD 19 @D @A 6D 6A @D
8A @D 6R 6D 6A 8D @A 6D 6A OD BA 26 26 20 20 54
68 63 73 28 64 69 73 6B 28 69 73 28 6E 6F 74 20
62 6F 6F 74 61 62 6C 65 BE BA BE BA 28 43 66 20
79 6F 75 28 77 69 73 68 28 74 6F 28 6D 61 6B 65
28 69 74 28 62 6F 6F 74 61 62 6C 65 2C 8D BA 72
75 6E 28 74 68 65 20 44 4F 53 28 78 72 6F 67 72
61 6D 28 53 39 53 28 61 66 74 65 72 28 74 68 65
8D 6A 20 26 26 26 26 73 79 73 74 65 6D 20 68 61
73 28 62 65 65 6E 28 6C 6F 61 64 65 64 8D BA @D
73 85172 74 26 61

8A 58 6C 85181 73 639 28189 6E

" EIBM PNCI 883
& ¥8os
gy
=(f; LAH gL
fjvbw =>‘o‘§5
=14=02E=)={J
orioziofiooro B

his disk is not
bootableB4E If
you Wish to make
it bootable, J&r
un the DOS progr
an SYS after the
systen ha

s been loadedJZ}
BPlease insert a

Press function key, or enter character or hex byte:

| [tSave KePrev. Elext [JErive Eectorffile Riifsetle JLExit

Figure A-1. The Advanced Version of Dskpatch

APPENDIX B
LISTING OF DSKPATCH

Description of Procedures 345
Program Listings for Dskpatch Procedures 351
DSKPATCH Make File 351
DSKPATCH Linkinfo File 351
CURSOR.ASM 352
DISK_10.ASM 355
DISPATCH.ASM 357
DISP_SEC.ASM 359
DSKPATCH.ASM 364

| EDITOR.ASM 365

| KBD_10.ASM 367

PHANTOM.ASM 373

VIDEO_IO.ASM 377

345

346 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Descriptions of Procedures

This appendix contains the final version of Dskpatch. If you’re writing your
own programs, you'll find many general-purpose procedures in this appendix
that will help you on your way. We’ve included short descriptions of each proce-
dure to help you find such procedures.

CURSOR.ASM
CLEAR_SCREEN Like the BASIC CLS command; clears the text screen.

CLEAR_TO_END_OF_LINE Clears all the characters from the cursor

position to the end of the current line.

CURSOR_RIGHT Moves the cursor one character position to the right,
without writing a space over the old character.

GOTO_XY Very much like the BASIC LOCATE command; moves the
cursor on the screen.

SEND_CRLF Sends a carriage-return/line-feed pair of characters to the
screen. This procedure simply moves the cursor to the start of the next line.

UPDATE_REAL_CURSOR Moves the real cursor to the location of the

virtual cursor.

UPDATE_VIRTUAL_CURSOR Moves the virtual cursor to the position

of the real cursor.

DISK_IO.ASM

NEXT_SECTOR Adds one to the current sector number, then reads that
sector into memory and rewrites the Dskpatch screen.

PREVIOUS_SECTOR Reads the previous sector. That is, the procedure
subtracts one from the old sector number (CURRENT_SECTOR_NO) and
reads the new sector into the memory variable SECTOR. It also rewrites the
screen display.

Listing of DSKPATCH 347

READ_SECTOR Reads one sector (512 bytes) from the disk into the mem-
ory buffer, SECTOR.

WRITE_SECTOR Writes one sector (512 bytes) from the memory buffer,
SECTOR, to the disk.

DISPATCH.ASM

DISPATCHER The central dispatcher, reads characters from the key-
board and then calls on other procedures to do all the work of Dskpatch. Add
any new commands to DISPATCH_TABLE in this file.

DISP_SEC.ASM

DISP_HALF_SECTOR Does the work of displaying all the hex and ASCII

characters that appear in the half-sector display by calling DISP_LINE 16
times.

DISP_LINE Displays just one line of the half-sector display.
DISP_HALF_SECTOR calls this procedure 16 times to display all 16 lines of
the half-sector display.

INIT_SEC_DISP Initializes the half-sector display you see in Dskpatch.
This procedure redraws the half-sector display, along with the boundaries and
top hex numbers, but does not write the header or the editor prompt.

WRITE_HEADER Writes the header at the top of the screen you see in
Dskpatch. There, the procedure displays the disk-drive number and the
number of the sector you see in the half-sector display.

WRITE_PROMPT_LINE Writes a string at the prompt line, then clears
the rest of the line to remove any characters from the old prompt.

WRITE_TOP_HEX_NUMBERS Writes the line of hex numbers across

the top of the half-sector display. The procedure is not useful for much else.

DSKPATCH.ASM

DISK_PATCH The (very short) main program of Dskpatch.
DISK_PATCH simply calls a number of other procedures, which do all the

work. It also includes many of the definitions for the variables that are used
throughout Dskpatch.

348 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

EDITOR.ASM

EDIT_BYTE Edits a byte in the half-sector display by changing one byte
both in memory (SECTOR) and on the screen. Dskpatch uses this procedure to
change bytes in a sector.

WRITE_TO_MEMORY Called upon by EDIT_BYTE to change a single
byte in SECTOR. This procedure changes the byte pointed to by the phantom
cursor.

KBD_IO.ASM

BACK_SPACE Used by the READ_STRING procedure to delete one char-
acter, both from the screen and from the keyboard buffer, whenever you press
the Backspace key.

CONVERT_HEX_DIGIT Converts a single ASCII character into its
hexadecimal equivalent. For example, the procedure converts the letter A into
the hex number 0OAH. Note: CONVERT_HEX_DIGIT works only with upper-
case letters.

HEX_TO_BYTE Converts a two-character string of characters from a
hexadecimal string, such as A5, into a single byte with that hex value.
HEX_TO_BYTE expects the two characters to be digits or uppercase letters.

READ_BYTE Uses READ_STRING to read a string of characters. This
procedure returns the special function key, a single character, or a hex byte if
you typed a two-digit hex number.

READ_DECIMAL Reads an unsigned decimal number from the key-
board, using READ_STRING to read the characters. READ_DECIMAL can
read numbers from 0 to 65535.

READ_KEY Reads a single key from the keyboard and returns 0 through
255 for ordinary characters, and 100h plus the scan code for special keys.

READ_STRING Reads a DOS-style string of characters from the key-
board. This procedure also reads special function keys, whereas the DOS
READ_STRING function does not.

e e

Listing of DSKPATCH 349

STRING_TO_UPPER A general-purpose procedure, converts a DOS-
style string to all uppercase letters.

PHANTOM.ASM

ERASE_PHANTOM Removes the two phantom cursors from the screen
by returning the character attribute to normal (7) for all characters under the
phantom cursors.

MOV_TO_ASCIHI_POSITION Moves the real cursor to the start of the
phantom cursor in the ASCII window of the half-sector display.

MOV_TO_HEX_POSITION Moves the real cursor to the start of the

phantom cursor in the hex window of the half-sector display.

PHANTOM_DOWN Moves the phantom cursor down and scrolls the
screen if you try to move past the sixteenth line of the half-sector display.

PHANTOM_LEFT Moves the phantom cursor left one entry but not past
the left side of the half-sector display.

PHANTOM_RIGHT Moves the phantom cursor right one entry but not
past the right side of the half-sector display.

PHANTOM_UP Moves the phantom cursor up one line in the half-sector
display, or scrolls the display if you try to move the cursor off the top.

RESTORE_REAL_CURSOR Moves the cursor back to the position rec-
orded by SAVE_REAL_CURSOR.

SAVE_REAL_CURSOR Saves the position of the real cursor in two vari-
ables. Call this procedure before you move the real cursor if you want to restore
its position when you’ve finished making changes to the screen.

SCROLL_DOWN Rather than scrolling the half-sector display, displays
the first half of the sector. You'll find a more advanced version of
SCROLL_DOWN on the disk available with this book. The advanced version
scrolls the half-sector display by just one line.

SCROLL_UP Called by PHANTOM_DOWN when you try to move the
phantom cursor off the bottom of the half-sector display. The version in this
book doesn’t actually scroll the screen: It writes the second half of the sector. On
the disk, more advanced versions of SCROLL_UP and SCROLL_DOWN scroll
the display by one line, instead of 16.

350 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

WRITE_LPHANTOM Draws the phantom cursors in the half-sector dis-
play: one in the hex window and one in the ASCII window. This procedure sim-
ply changes the character attributes to 70H to use black characters on a white
background.

VIDEO_IO.ASM

Contains most of the general-purpose procedures you’ll want to use in your
own programs.

INIT_WRITE_CHAR Call this procedure before you call any of the other
procedures in this file. It initializes the data used by the routines that write
directly to screen memory.

WRITE_ATTRIBUTE_N_TIMES A handy procedure you can use to
change the attributes for a group of N characters. WRITE_PHANTOM uses
this procedure to draw the phantom cursors, and ERASE_PHANTOM uses it to
remove the phantom cursors.

WRITE_CHAR Writes a character to the screen. Since it uses the ROM
BIOS routines, this procedure doesn’t attach special meaning to any charac-
ters. So, a carriage-return character will appear on the screen as a musical note
(the character for 0DH). Call SEND_CRLF if you want to move the cursor to
the start of the next line.

WRITE_CHAR_N_TIMES Writes N copies of one character to the screen.
This procedure is useful for drawing lines of characters, such as the ones used
in patterns.

WRITE_DECIMAL Writes a word to the screen as an unsigned decimal
number in the range 0 to 65535.

WRITE_HEX Takes a one-byte number and writes it on the screen as a
two-digit hex number.

WRITE_HEX_DIGIT Writes a single-digit hex number on the screen.
This procedure converts a 4-bit nibble into the ASCII character and writes it to
the screen.

WRITE_PATTERN Draws boxes around the half-sector display, as
defined by a pattern. You can use WRITE_PATTERN to draw arbitrary pat-
terns of characters on the screen.

Listing of DSKPATCH 3571

WRITE_STRING A very useful, general-purpose procedure with which
you can write a string of characters to the screen. The last character in your
string must be a zero byte.

Program Listings for Dskpatch Procedures
DSKPATCH Make File

Here is the makefile that you can use with Microsoft’s Make utility to build
Dskpatch automatically.

DSKPATCH.OBJ:

MASM
DISK_IO.OBJ:
MASHM
DISP_SEC.OBJ:
MASM
VIDEO_IO.OBJ:
MASHM
CURSOR.OBJ:
MASHM
DISPATCH.OBJ:
MASM
KBD_IO.OBJ:
MASM
PHANTOM.OBJ:
MASM
EDITOR.OBJ:
MASM

DSKPATCH.EXE:

LINK

DSKPATCH.ASNM

DSKPATCH;
DISK_IO.ASH
DISK_IO;
DISP_SEC.ASM
DISP_SEC;
VIDEO_IO.ASM
VIDEO_IO;
CURSOR.ASM
CURSOR;
DISPATCH.ASH
DISPATCH;
KBD_IO.ASH
KBD_I0;
PHANTOM.ASH
PHANTOM;
EDITOR.ASH
EDITOR;

DSKPATCH.OBJ DISK_IO.OBJ DISP_SEC.OBJ VIDEO_IO.OBJ CURSOR.OBJ \
DISPATCH.OBJ KBD_IO.0BJ PHANTOM.OBJ EDITOR.OBJ
@ LINKINFO

DSKPATCH Linkinfo File

And here is the linkinfo file:

DSKPATCH DISK_IO DISP_SEC VIDEO_IO CURSOR +
DISPATCH KBD_IO PHANTOM EDITOR

DSKPATCH

DSKPATCH /MAP;

352 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

CURSOR.ASM

CR EQU 13 ;Carriage return
LF EQU 10 ;Line feed
.MODEL SMALL
.CODE
PUBLIC CLEAR_SCREEN
; This procedure clears the entire screen.
CLEAR_SCREEN PROC
PUSH AX
PUSH BX
PUSH CX
PUSH DX
XOR AL,AL ;Blank entire window
XOR CX,CX ;Upper left corner is at (0,0)
MOV DH,24 ;Bottom line of screen is line 24
MOV 101G, 5] ;Right side is at column 7?9
MOV BH,7? ;Use normal attribute for blanks
MOV AH, b ;Call for SCROLL-UP function
INT 10h ;Clear the window
POP DX
POP CX
POP BX
POP AX
RET

CLEAR_SCREEN ENDP

PUBLIC GOTO_XY

.DATA

EXTRN SCREEN_PTR:WORD ;Pointer to character under cursor

EXTRN SCREEN_X:BYTE, SCREEN_Y:BYTE
.CODE
B e esesseeees sosessesssesesse s e s ;
; This procedure moves the cursor '
; On entry: DH Row (Y) H
H DL Column (X) ’
GOTO_XY PROC

PUSH RX

PUSH BX

Mov BH,D ;Display page O

MOV AH, 2 ;Call for SET CURSOR POSITION

INT 10h

Mov AL,DH ;Get the row number

MOV BL,80 ;Multiply by 80 chars per line

MUL BL sAX = Gow, & Jal

ADD AL,DL ;Add column

ADC AH,D ;AX = row * 80 + column

SHL AX,1 ;Convert to a byte offset

MoV SCREEN_PTR, AX ;Save the cursor offset

MOV SCREEN_X,DL ;Save the cursor position

MOV SCREEN_Y, DH

POP BX

POP AX

RET
GOTO_XY ENDP

PUBLIC CURSOR_RIGHT
.DATA

EXTRN SCREEN_PTR:WORD ;Pointer to character under cursor
EXTRN SCREEN_X:BYTE, SCREEN_Y:BYTE

Listing of DSKPATCH 353

.CODE

This procedure moves the cursor one position to the right or to the
next line if the cursor was at the end of a line.

C

Uses: SEND_CRLF

Writes: SCREEN_PTR, SCREEN_X, SCREEN_Y

URSOR_RIGHT PROC
INC SCREEN_PTR ;Move to next character position (word)
INC SCREEN_PTR
INC SCREEN_X ;Move to next column
CHMP SCREEN_X, 79 ;Make sure column <= 78§
JBE OK
CALL SEND_CRLF ;Go to next line

OK:
RET

CURSOR_RIGHT ENDP

PUBLIC UPDATE_REAL_CURSOR

; This procedure moves the real cursor to the current virtual cursor
; position. You'll want to call it just before you wait for keyboard

input.

UPDATE_REAL_CURSOR PROC

PUSH DX
MOV DL,SCREEN_X ;Get position of the virtual cursor
MoV DH,SCREEN_Y
CALL GOTO_XY ;Move real cursor to this position
POP DX
RET

UPDATE_REAL_CURSOR ENDP

PUBLIC UPDATE_VIRTUAL_CURSOR

This procedure updates the position of our virtual cursor to agree H
with the position of the real cursor. 5

UPDATE_VIRTUAL_CURSOR PROC

PUSH AX

PUSH BX

PUSH CX

PUSH DX

MOV AH,3 ;Ask for the cursor position

XOR BH, BH ;0n page 0O

INT 10h ;Get cursor position into DH, DL
CALL GOTO_XY ;Move virtual cursor to this position
POP DX

POP CX

POP BX

POP AX

RET

UPDATE_VIRTUAL_CURSOR ENDP

PUBLIC CLEAR_TO_END_OF_LINE

B *
This procedure clears the line from the current cursor position to B

+
+
; the end of that line.
» - - L4
CLEAR_TO_END_OF_LINE PROC
PUSH AX
PUSH BX
PUSH CX
PUSH DX
MOV DL,SCREEN_X
MOV DH,SCREEN_Y
MoV AH,& ;Set up to clear to end of line
XOR AL,AL ;Clear window

MOV CH,DH ;All on same line

Listing of DSKPATCH 355

DISK_1I0.ASM

.MODEL SMALL

.DATA
EXTRN SECTOR:BYTE
EXTRN DISK_DRIVE_NO:BYTE
EXTRN CURRENT_SECTOR_NO:WORD
.CODE
PUBLIC PREVIOUS_SECTOR
EXTRN INIT_SEC_DISP:PROC, WRITE_HEADER:PROC
EXTRN WRITE_PROMPT_LINE:PROC
.DATA
EXTRN CURRENT_SECTOR_NO:WORD, EDITOR_PROMPT:BYTE
.CODE

This procedure reads the previous sector, if possible.

; Uses: WRITE_HEADER, READ_SECTOR, INIT_SEC_DISP

’
WRITE_PROMPT_LINE ’
Reads: CURRENT_SECTOR_NO, EDITOR_PROMPT g
Writes: CURRENT_SECTOR_NO ;
’ ’
PREVIOUS_SECTOR PROC
PUSH AX
PUSH DX
MOV AX,CURRENT_SECTOR_NO ;Get current sector number
OR AX,AX ;Don't decrement if already O
Jz DONT_DECREMENT_SECTOR
DEC AX
MOV CURRENT_SECTOR_NO,AX ;Save new sector number
CALL WRITE_BEADER
CALL READ_SECTOR
CALL INIT_SEC_DISP ;Display new sector
LEA DX,EDITOR_PROMPT

CALL WRITE_PROMPT_LINE
DONT_DECREMENT_SECTOR:

POP DX
POP AX
RET
PREVIOQUS_SECTOR ENDP

PUBLIC NEXT_SECTOR
EXTRN INIT_SEC_DISP:PROC, WRITE_HEADER:PROC
EXTRN WRITE_PROMPT_LINE:PROC
-DATA
EXTRN CURRENT_SECTOR_NO:WORD, EDITOR_PROMPT:BYTE
.CODE

Reads the next sector.

H)
3 ;
; Uses: WRITE_HEADER, READ_SECTOR, INIT_SEC_DISP)
5 WRITE_PROMPT_LINE ;
; Reads: CURRENT_SECTOR_NO, EDITOR_PROMPT H
; Writes: CURRENT_SECTOR_NO H
) - e B
NEXT_SECTOR PROC

PUSH AX

PUSH DX

MOV AX,CURRENT_SECTOR_NO

INC AX ;Move to next sector

MOV CURRENT_SECTOR_NO, AX

CALL WRITE_BEADER

CALL READ_SECTOR

CALL INIT_SEC_DISP ;Display new sector

356 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

DISK_IO.ASM continued

LERA DX,EDITOR_PROMPT
CALL WRITE_PROMPT_LINE
POP DX
POP AX
RET

NEXT_SECTOR ENDP

PUBLIC READ_SECTOR

This procedure reads one sector (512 bytes) into SECTOR.

(2)00 G0 90 90 G0 o5

Reads: CURRENT_SECTOR_NO, DISK_DRIVE_NO
Writes: SECTOR
EAD_SECTOR PROC
PUSH AX
PUSH BX
PUSH CX
PUSH DX
MoV AL,DISK_DRIVE_NO ;Drive number
MoV CX,1 ;Read only 1 sector
Mov DX,CURRENT_SECTOR_NO ;Logical sector number
LEA BX,SECTOR ;Where to store this sector
INT 25h ;Read the sector
POPF ;Discard flags put on stack by DOS
POP DX
POP CX
POP BX
POP AX
RET
READ_SECTOR ENDP

PUBLIC WRITE_SECTOR

This procedure writes the sector back to the disk.

W

Reads: DISK_DRIVE_NO, CURRENT_SECTOR_NO, SECTOR
RITE_SECTOR PROC

PUSH AX

PUSH BX

PUSH CX

PUSH DX

Mov AL,DISK_DRIVE_NO ;Drive number

MOV CX,1 ;Hrite 1 sector

Mov DX,CURRENT_SECTOR_NO ;Logical sector

LEA BX,SECTOR

INT 2th ;Write the sector to disk

POPF ;Discard the flag information

POP DX

POP CX

POP BX

POP AX

RET

WRITE_SECTOR ENDP

END

S —

E—

Listing of DSKPATCH 357

DISPATCH.ASM

.MODEL SMALL

.CODE
EXTRN NEXT_SECTOR:PRQC yIn DISK_IO.ASH
EXTRN PREVIOUS_SECTOR:PROC ;In DISK_IO.ASH
EXTRN PHANTOM_UP:PROC, PHANTOM_DOWN:PROC ;In PHANTOM.ASH
EXTRN PHANTOM_LEFT:PROC, PHANTOM_RIGHT:PROC
EXTRN WRITE_SECTOR:PROC yIn DISK_IO.ASH
.DATA

This table contains the legal extended ASCII keys and the addresses
of the procedures that should be called when each key is pressed.

The format of the table is

’
)
’
’
’
’
5 DW OFFSET PHANTOM_UP
D

DB e ;Extended code for cursor up

ISPATCH_TRBLE LABEL BYTE

DB 61 yF3

DW OFFSET _TEXT:PREVIOUS_SECTOR

DB 62 P4

DW OFFSET _TEXT:NEXT_SECTOR

DB 72 ,Cursor up

DW OFFSET _TEXT:PHANTOM_UP

DB 80 ;Cursor down

DW OFFSET _TEXT:PHANTOM_DOWN

DB 75 ;Cursor left

DW OFFSET _TEXT:PHANTOM_LEFT

DB 7 yCursor right

DW OFFSET _TEXT:PHANTOM_RIGHT

DB 85 ;Shift Fe

DW OFFSET _TEXT:WRITE_SECTOR

DB 8] ;End of the table
.CODE

PUBLIC DISPATCHER

EXTRN READ_BYTE:PROC, EDIT_BYTE:PROC

EXTRN WRITE_PROMPT_LINE:PROC
.DATA

EXTRN EDITOR_PROMPT:BYTE

.CODE
This is the central dispatcher. During normal editing and viewing,
this procedure reads characters from the keyboard and, if the char
is a command key (such as a cursor key), DISPATCHER calls the
procedures that do the actual work. This dispatching is done for
special keys listed in the table DISPATCH_TARBLE, where the procedure
addresses are stored just after the key names.

; If the character is not a special key, then it should be placed
; directly into the sector buffer--this is the editing mode.
D

Uses: READ_BYTE, EDIT_BYTE, WRITE_PROMPT_LINE

Reads: EDITOR_PROMPT

ISPATCHER PROC
PUSH AX
PUSH BX
PUSH DX

DISPATCH_LOOP:
CALL REARD_BYTE ;Read character into AX
OR AH, RH +AX = -1 if no character read, 1
; for an extended code.

Js NO_CHARS_READ ;No character read, try again
JNZ SPECIAL_KEY ;Read extended code

MOV DL, AL

Listing of DSKPATCH 359

DISP_SEC.ASM

.MODEL SMALL

; Graphics characters for border of sector. 3

VERTICARL_BAR EQU O0BAh

HORIZONTAL_BAR EQU 0CDh
UPPER_LEFT EQU 0cSh
UPPER_RIGHT EQU OBBh
LOWER_LEFT EQU 0cah
LOWER_RIGHT EQU OBCh
TOP_T_BAR EQU OCBh
BOTTOM_T_BAR EQU DCAh
TOP_TICK EQU OD1h
BOTTOM_TICK EQU OCFh
.DATA
TOP_LINE_PATTERN LABEL BYTE
DB o,
DB UPPER_LEFT, 1
DB HORIZONTAL_BAR, 12
DB TOP_TICK,1
DB HORIZONTAL_BAR, 11
DB TOP_TICK,1
DB HORIZONTAL_BAR, 11
DB TOP_TICK,1
DB HORIZONTAL_BAR,12
DB TOP_T_BAR,1
DB HORIZONTAL_BAR,18
DB UPPER_RIGHT,1
DB o
BOTTOM_LINE_PATTERN LABEL BYTE
DB oL
DB LOWER_LEFT, 1
DB HORIZONTAL_BAR,12
DB BOTTOM_TICK, 1
DB HORIZONTAL_BAR,11
DB BOTTOM_TICK,1
DB HORIZONTAL_BAR,11
DB BOTTOM_TICK,1
DB HORIZONTAL_BAR, 12
DB BOTTOM_T_BAR, 1
DB HORIZONTAL_BAR,18
DB LOWER_RIGHT,1
DB o
.DATA?

EXTRN SECTOR:BYTE

.CODE
PUBLIC INIT_SEC_DISP
EXTRN WRITE_PATTERN:PROC, SEND_CRLF:PROC
EXTRN GOTO_XY:PROC, WRITE_PHANTOM:PROC
.DATA
EXTRN LINES_BEFORE_SECTOR:BYTE
EXTRN SECTOR_OFFSET:WORD

.CODE

This procedure initializes the half-sector display.

Uses: WRITE_PRTTERN, SEND_CRLF, DISP_HALF_SECTOR
WRITE_TOP_HEX_NUMBERS, GOTO_XY, WRITE_PHANTOM

360 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

DISP_SEC.ASM continued

; Reads: TOP_LINE_PATTERN, BOTTOM_LINE_PATTERN 5
5 LINES_BEFORE_SECTOR g
; Writes: SECTOR_OFFSET 5
INIT_SEC_DISP PROC

PUSH DX

XOR DL,DL ;Move cursor into position

MOV DH,LINES_BEFORE_SECTOR

CALL GOTO_XY
CALL WRITE_TOP_HEX_NUMBERS

LEA DX,TOP_LINE_PATTERN

CALL WRITE_PATTERN

CALL SEND_CRLF

XOR DX,DX ;Start at the beginning of the sector
MoV SECTOR_OFFSET, DX ;Set sector offset to O
CALL DISP_HALF_SECTOR

LEA DX,BOTTOM_LINE_PATTERN

CALL WRITE_PATTERN

CALL WRITE_PHANTOM ;Display the phantom cursor
POP DX

RET

INIT_SEC_DISP ENDP

PUBLIC WRITE_HEADER

.DATA
EXTRN HEADER_LINE_NO:BYTE
EXTRN HEADER_PART_1:BYTE
EXTRN HEADER_PART_2:BYTE
EXTRN DISK_DRIVE_NO:BYTE
EXTRN CURRENT_SECTOR_NO:WORD
.CODE

EXTRN WRITE_STRING:PROC, WRITE_DECIMAL:PROC
EXTRN GOTO_XY:PROC, CLEAR_TO_END_OF_LINE:PROC

This procedure writes the header with disk-drive and sector number.

"’ ’
5 H
* "
; Uses: GOTO_XY, WRITE_STRING, WRITE_CHAR, WRITE_DECIMAL 5
K CLEAR_TO_END_OF_LINE H
; Reads: HEADER_LINE_NO, HEADER_PART_1, HEADER_PART_Z2
3 DISK_DRIVE_NO, CURRENT_SECTOR_NO ;
1 == TT T T
WRITE_HEADER PROC

PUSH DX

XOR DL,DL sMove cursor to header line number

Mov DH,HEADER_LINE_NO

CALL GOTO_XY

IAEA DX,HEADER_PART_1

CALL WRITE_STRING

MOV DL,DISK_DRIVE_NO

ADD DL, 'A? ;Print drives A, B,...

CALL WRITE_CHAR

LERA DX,HEADER_PART_Z2

CALL WRITE_STRING

MOV DX,CURRENT_SECTOR_NO

CALL WRITE_DECIMAL

CALL CLEAR_TO_END_OF_LINE ;Clear rest of sector number

POP DX

RET

WRITE_HEADER ENDP

EXTRN WRITE_CHAR_N_TIMES:PROC, WRITE_HEX:PROC, WRITE_CHAR:PROC
EXTRN WRITE_HEX_DIGIT:PROC, SEND_CRLF:PROC

This procedure writes the index numbers (0 through F) at the top of
the half-sector display.

Uses: WRITE_CHAR_N_TIMES, WRITE_HEX, WRITE_CHAR

Listing of DSKPATCH 361

H WRITE_HEX_DIGIT, SEND_CRLF H

PUSH CX

PUSH DX

MOV DL,"' ! ;Write 9 spaces for left side

MOV CX,9

CALL WRITE_CHAR_N_TIMES

XOR DH,DH ;Start with O
HEX_NUMBER_LOOP:

Mov DL,DH

CALL WRITE_HEX

MOV ISR

CALL WRITE_CHAR

INC DH

CMP DH,30h ;Done yet?

JB HEX_NUMBER_LOOP

MOV DL ;Write hex numbers over ASCII window

MOV cx,¢e

CALL WRITE_CHRR_N_TIMES

XOR DL,DL

HEX_DIGIT_LOOP:
CALL WRITE_HEX_DIGIT

INC DL

CMP DL, 10h

JB HEX_DIGIT_LOOP
CALL SEND_CRLF

POP DX

POP CX

RET

WRITE_TOP_HEX_NUMBERS ENDP

PUBLIC DISP_HALF_SECTOR
EXTRN SEND_CRLF:PROC

This procedure displays half a sector (256 bytes)

. H
; On entry: DS:DX Offset into sector, in bytes —-- should be :
3 multiple of 16. 8
B H
; Uses: DISP_LINE, SEND_CRLF ;
’ e e e e e e T T e e e - ===3
DISP_HALF_SECTOR PROC

PUSH CX

PUSH DX

MOV CX,16 ;Display 16 lines

HALF_SECTOR:
CALL DISP_LINE
CALL SEND_CRLF

ADD DX, 16
LOOP HALF_SECTOR
POP DX
POP (09,6
RET
DISP_HALF_SECTOR ENDP

PUBLIC DISP_LINE

EXTRN WRITE_HEX:PROC

EXTRN WRITE_CHAR:PROC

EXTRN WRITE_CHAR_N_TIMES:PROC
This procedure displays one line of data, or 1b bytes, first in hex,
then in ASCII.

On entry: DS :DX Offset into sector, in bytes.

Uses: WRITE_CHAR, WRITE_HEX, WRITE_CHAR_N_TIMES
Reads: SECTOR

@t we s wt me me e e v

362 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

DISP_SEC.ASM continued

DISP_LINE PROC
PUSH BX
PUSH CX
PUSH DX
MOV BX,DX ;0ffset is more useful in BX
MOV DL,' !
(e} CX,3 ;Write 3 spaces before line
CALL WRITE_CHAR_N_TIMES
;Arite offset in hex
CMP BX,100h ;Is the first digit a 1?
JB WRITE_ONE ;sNo, write space already in DL
Mov DL,'1l! ;Yes, then place 'l' into DL for output
WRITE_ONE:
CARLL WRITE_CHAR
Mov DL,BL ;Copy lower byte into DL for hex output
CALL WRITE_HEX
;Hrite separator
MOV B,
CALL WRITE_CHAR
MOV DL,VERTICAL_BAR ;Drav left side of box
CALL WRITE_CHAR
MOV DL, U 0
GRS WRITE_CHAR
;Now write out 16 bytes
MoV CX,1l6 ;Dump 16 bytes
PUSH BX ;Save the offset for ASCII_LOOP
BHEX_LOOP:
MOV DL,SECTOR([BX] ;Get 1 byte
CALL WRITE_HEX ;Dump this byte in hex
MOV DI S ;Write a space between numbers
CALL WRITE_CHAR
INC BX
LOOP HEX_LOOP
MOV DL,VERTICAL_BAR ;W¥rite separator
CALL WRITE_CHAR
MOV DEZAUR ;Rdd another space before characters
CALL WRITE_CHAR
MOV CX,1b
POP BX ;Get back offset into SECTOR
ASCII_LOOP:
MOV DL,SECTOR{BX]
CALL WRITE_CHAR
INC BX
LOOP ASCII_LOOP
MOV DL,"' ! ;Draw right side of box
CRABL WRITE_CHAR
MoV DL,VERTICAL_BAR
CABE WRITE_CHAR
POP DX
POP CX
POP BX
RET
DISP_LINE ENDP

PUBLIC WRITE_PROMPT_LINE
EXTRN CLERR_TO_END_OF_LINE:PROC, WRITE_STRING:PROC
EXTRN GOTO_XY:PROC
.DRTA
EXTRN PROMPT_LINE_NO:BYTE
-CODE
; This procedure writes the prompt line to the screen and clears the H
; end of the line. ;

364 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

DSKPATCH.ASM

DOSSEG
-MODEL SMALL

-STACK
.DATA

PUBLIC SECTOR_OFFSET

SECTOR_OFFSET 1is the offset of the half-
sector display into the full sector. It must
be a multiple of 1, and not greater than 25%&

ECTOR_OFFSET DW o

PUBLIC CURRENT_SECTOR_NO, DISK_DRIVE_NO
CURRENT_SECTOR_NO DW 0] s;Initially sector O
DISK_DRIVE_KNO DB v} ;Initially Drive A:

PUBLIC LINES_BEFORE_SECTOR, HEADER_LINE_NO
PUBLIC HEADER_PART_1, HEADER_PART_2

LINES_BEFORE_SECTOR is the number of lines
at the top of the screen before the half-
sector display.

S es e e e
.t @t ws s v

LINES_BEFORE_SECTOR DB c
HEADER_LINE_NO DB 0]
HEADER_PART_1 DB 'Disk ',0
HEADER_PART_Z DB ! Sector ',0
PUBLIC PROMPT_LINE_NO, EDITOR_PROMPT
PROMPT_LINE_NO DB 2l
EDITOR_PROMPT DB ‘Press function key, or enter!'
DB ' character or hex byte: ',0
.DATA?

PUBLIC SECTOR

The entire sector (up to 8182 bytes) is
stored in this part of memory.

v we we v

SECTOR DB 8192 DUP (?)
-CODE

EXTRN CLEAR_SCREEN:PROC, READ_SECTOR:PROC
EXTRN INIT_SEC_DISP:PROC, WRITE_HEADER:PROC
EXTRN WRITE_PROMPT_LINE:PROC, DISPATCHER:PROC
EXTRN INIT_WRITE_CHAR:PROC

DISK_PATCH PROC
MOV AX,DGROUP ;Put data segment into AX
MOV DS, AX ;Set DS to point to data
CGRLT INIT_WRITE_CHAR
GALL CLEAR_SCREEN
CALL WRITE_HEADER
CALL READ_SECTOR
CALL INIT_SEC_DISP
LEA DX,EDITOR_PROMPT
CALL WRITE_PROMPT_LINE
CALL DISPATCHER
MOV AH,4Ch ;Return to DOS
INT 2lh
DISK_PATCH ENDP

END DISK_PATCH

Listing of DSKPATCH 365

EDITOR.ASM

.MODEL SMALL

.CODE
.DATA
EXTRN SECTOR:BYTE
EXTRN SECTOR_OFFSET:WORD
EXTRN PHANTOM_CURSOR_X:BYTE
EXTRN PHANTOM_CURSOR_Y:BYTE
.CODE

This procedure writes one byte to SECTOR, at the memory location
pointed to by the phantom cursor.

On entry: DL Byte to write to SECTOR

The offset is calculated by 8
OFFSET = SECTOR_OFFSET + (1t * PHANTOM_CURSOR_Y) + PHANTOM_CURSOR_X ;

Reads: PHANTOM_CURSOR_X, PHANTOM_CURSOR_Y, SECTOR_OFFSET

Writes: SECTOR

RITE_TO_MEMORY PROC
PUSH AX
PUSH BX
PUSH CX
MOV BX,SECTOR_OFFSET
MOV AL,PHANTOM_CURSOR_Y
XOR RH, RH
MOV CL,4 ;Multiply PHANTOM_CURSOR_Y by 1&
SHL AX,CL
ADD BX,RX ;BX = SECTOR_OFFSET + (1l * Y)
MOV AL,PHANTOM_CURSOR_X
XOR AH,RH
ADD BX,AX ;That's the address!
MOV SECTORI[BX1,DL ;Now, store the byte
POP CX
POP BX
POP AX
RET

WRITE_TO_MEMORY ENDP

PUBLIC EDIT_BYTE

EXTRN SAVE_REAL_CURSOR:PROC, RESTORE_REAL_CURSOR:PROC
EXTRN MOV_TO_HEX_POSITION:PROC, MOV_TO_ASCII_POSITION:PROC
EXTRN WRITE_PHANTOM:PROC, WRITE_PROMPT_LINE:PROC

EXTRN CURSOR_RIGHT:PROC, WRITE_HEX:PROC, WRITE_CHAR:PROC

EXTRN EDITOR_PROMPT:BYTE

; ’
’ »
8 DL Byte to write into SECTOR, and change on screen
; ’
; Uses: SAVE_REAL_CURSOR, RESTORE_REAL_CURSOR h
3 MOV_TO_HEX_POSITION, MOV_TO_ASCII_POSITION H
5 WRITE_PHANTOM, WRITE_PROMPT_LINE, CURSOR_RIGHT
3 WRITE_HEX, WRITE_CHAR, WRITE_TO_MEMORY
; Reads: EDITOR_PROMPT)
; - - - e - *
EDIT_BYTE PROC

PUSH DX

CALL SAVE_REAL_CURSOR

CALL MOV_TO_HEX_POSITION ;Move to the hex number in the

CALL CURSOR_RIGHT ; hex window
CALL WRITE_HEX ;Write the new number

KBD_1O.ASM

.MODEL SMALL
BS EQU
CR EQU
ESCAPE EQU
.DATA

KEYBOARD_INPUT
CHAR_NUM_LIMIT
NUM_CHARS_READ
CHARS

.CODE

PUBLIC

8

13

27

LABEL BYTE
DB 0
DB 0

DB 80 DUP (0)

STRING_TO_UPPER

; This procedure converts the string,
; to all uppercase letters.
H
B

DS:DX

'
STRING_TO_UPPER

PUSH
PUSH
PUSH
MOV
INC
MOV
XOR
UPPER_LOOP:
INC
MOV
CMP
JB
CHMP
JA
ADD
MOV
NOT_LOWER:
LOOP
POP
POP
POP
RET
STRING_TO_UPPER

Listing of DSKPATCH

;Backspace character

;Carriage-return character
;Escape character

;Length of input buffer

;Number of characters read

A buffer for keyboard input

using the DOS format for strings,

Rddress of string buffer

AX

BX

CX
BX,DX
BX
CL,[BX]
CH,CH

BX

AL, [BX]
AL,'a!
NOT_LOWER
AL,'z!
NOT_LOWER
ALIIA'_Ia'
[BX],AL

UPPER_LOOP
CX
BX
AX

ENDP

yPoint to character count
;Character count in 2nd byte of buffer

;Clear upper byte of count

;Point to next character in buffer

;See if it is a lowercase letter

;Nope

;Convert to uppercase letter

This procedure converts a character from ASCII (hex) to a nibble

bits).

H
; Returns:
C

ONVERT_HEX_DIG

cMP
JB

CMP
JA

SUB
CLC
RET

TRY_HEX:
CMP

no error

AL Character to convert

AL Nibble

DF Set for error, cleared otherwise

IT PROC

AL,'0! ;Is it a legal digit?

BAD_DIGIT ;Nope

AL,'9! ;Not sure yet

TRY_HEX ;Might be hex digit

AL,'0" ;Is decimal digit, convert
siGlieair StheSca LY,

AL,'A! ;Not sure yet

to nibble

367

368 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

KBD_IO.ASM continued

JB BRD_DIGIT sNot hex
CMP AL,'F! ;Not sure yet
JA BAD_DIGIT ;Not hex
SUB AL,'A'-10 ;Is hex, convert to nibble
CLC ;Clear the carry, no error
RET
BAD_DIGIT:
STC ;Set the carry, error
RET
CONVERT_HEX_DIGIT ENDP

PUBLIC HEX_TO_BYTE

This procedure converts the two characters at DS:DX from hex to one

; byte. :
5 DS:DX Address of two characters for hex number ;
; Returns: 3
g AL Byte 3
3 CF Set for error, clear if no error ;
HEX_TO_BYTE PROC

PUSH BX

PUSH CX

MOV BX,DX ;Put address in BX for indirect addr

MOV AL, [BX] ;Get first digit

CALL CONVERT_HEX_DIGIT

Jc BAD_HEX ;Bad hex digit if carry set

MOV CX,4 ;Now multiply by 16

SHL AL,CL

Mov AH,AL ;Retain a copy

INC BX ;Get second digit

MOV AL, [BX]

CALL CONVERT_HEX_DIGIT

Jc BAD_HEX ;Bad hex digit if carry set

OR AL, RH ;Combine two nibbles

CLC ;Clear carry for no error
DONE_HEX:

POP CX

POP BX

RET
BAD_HEX:

SE ;Set carry for error

JMP DONE_HEX
HEX_TO_BYTE ENDP

PUBLIC READ_STRING
EXTRN WRITE_CHAR:PROC
EXTRN UPDATE_REAL_CURSOR: PROC

This procedure performs a function very similar to the DOS ORh
function. But this function will return a special character if a
function or keyboard key is pressed--no return for these keys. And
ESC will erase the input and start over again.

DS:DX Address for keyboard buffer. The first byte must
contain the maximum number of characters to read (plus
one for the return). And the second byte will be used
by this procedure to return the number of characters
actually read.

0 No characters read

=1 One special character read

otherwise number actually read (not including
Enter key)

USesE BACK_SPACE, WRITE_CHAR, READ_KEY, UPDATE_REAL_CURSOR

EAD_STRING PROC

BX) et wo e wt 90 we wt o wo uo ws b Wl wh ws e W we

PUSH AX

PUSH BX

PUSH SI

Mov ST, DX
START_OVER:

GALL UPDATE_REAL_CURSOR

Mov BX,2

CALL READ_KEY

OR AH,AH

JINZ EXTENDED
STRING_NOT_EXTENDED:

CcMP AL,CR

JE END_INPUT

cHP AL,BS

JNE NOT_BS

CALL BACK_SPACE

CcHMP BL,2

JE START_OVER

JMP SHORT READ_NEXT_CHAR
NOT_BS: CHMP AL,ESCAPE

JE PURGE_BUFFER

CcHP BL,[SI)

JA BUFFER_FULL

nov [SI+BX1,AL

INC BX

PUSH DX

nov DL, AL

CALL WRITE_CHAR

POP DX
READ_NEXT_CHAR:

CALL UPDATE_REAL_CURSOR

CALL READ_KEY

OR AH,AH

Nz, STRING_NOT_EXTENDED

Listing of DSKPATCH 369

;Use SI for index register and

yMove to position of virtual cursor

;BX for offset to beginning of buffer
;Read one key from the keyboard

;Is character extended ASCII?

;Yes, then process it.

;Extnd char is error unless buf empty
sIs this a carriage return?

;Yes, we are done with input

;Is it a backspace character?

;Nope

;Yes, delete character

;Is buffer empty?

;Yes, can now read extended ASCII again
;No, continue reading normal characters
;Is it an ESC--purge buffer?

;Yes, then purge the buffer

;Check to see if buffer is full

;Buffer is full

;Else save char in buffer

;Point to next free character in buffer

;Echo character to screen

;Move real cursor to virtual cursor

;An extended ASCII char is not valid
; when the buffer is not empty
;Char is valid

character to the display: chr$(7).

Signal an error condition by sending a beep 5

Uwe we wo ws

IGNAL_ERROR:
PUSH
MOV
MOV
INT
POP
JMP

DX

DL,?

AH,2

2lh

DX

SHORT READ_NEXT_CHAR

;Sound the bell by writing chr$(7?)

;Now read next character

N es we we we

URGE_BUFFER:
PUSH
MoV
XOR
PURGE_LOOP:
CALL
LOOP
POP
JNP

Empty the string buffer and erase all
characters displayed on the screen.

the

[09.¢
CL,([SI]
CH,CH

BACK_SPACE
PURGE_LOOP
cX

START_OVER

;Backspace over maximum number of

; characters in buffer. BACK_SPACE
; will keep the cursor from moving too
; far back

;Can now read extended ASCII characters
; since the buffer is empty

character.

The buffer was full,

so can't read another
Send a beep to alert user of
buffer-full condition.

BUFFER_FULL:
JNP

SHORT SIGNAL_ERROR

;If buffer full, just beep

370 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

KBD_IO.ASM continued

Read the extended ASCII code and place this
in the buffer as the only character, then
return -1 as the number of characters read.

s we wo ws wo

;
.
’
;
’
5
E

XTENDED: ;Read an extended ASCII code
MOV (SI+2],AL ;Place just this char in buffer
MOV BL,0FFh ;Nupr chars read = -1 for special
JMP SHORT END_STRING

Save the count of the number of characters
read and return.

TETRIR T
" 00 vo ws

END_INPUT: ;Done with input
SUB BL,2 ;Count of characters read
END_STRING:
MOV (SI+1],BL ;Return number of chars read
POP ST
POP BX
POP aX
RET
READ_STRING ENDP

PUBLIC BACK_SPACE
EXTRN WRITE_CHAR:PROC

This procedure deletes characters, one at a time, from the buffer and
the screen when the buffer is not empty. BACK_SPACE simply returns
when the buffer is empty.

DS:SI+BX Most recent character still in buffer
Uses: WRITE_CHAR
ACK_SPACE PROC ;Delete one character
PUSH AX
PUSH DX
CMP BX,2 ;Is buffer empty?
JE END_BS ;Yes, read the next character
DEC BX ;Remove one character from buffer
MOV AH, 2 ;Remove character from screen
MOV DL,BS
INT 2lh
MOV DL,20h ;Write space there
CALL WRITE_CHAR
MOV DL,BS ;Back up again
INT 2lh
END_BS: POP DX
POP RX
RET
BACK_SPACE ENDP

PUBLIC READ_BYTE

This procedure reads either a single ASCII character or a two-digit
hex number. This is just a test version of READ_BYTE.

Returns byte in AL Character code (unless AH
AH 0 if read ASCII char
L if read a special key
-1 if no characters read

0)

Uses: HEX_TO_BYTE, STRING_TO_UPPER, READ_STRING
Reads: KEYBOARD_INPUT, etc.
Writes: KEYBOARD_INPUT, etc.

P I LR LR T
o4 9 e e T el e et e U ws e s

Listing of DSKPATCH 371

READ_BYTE PROC
PUSH DX
MOV CHAR_NUM_LIMIT,3 ;Allow only two characters (plus Enter)
LEA DX ,KEYBOARD_INPUT
CALL READ_STRING
CMP NUM_CHARS_READ,1 ;See how many characters
JE ASCII_INPUT ;Just one, treat as ASCII character
JB NO_CHARACTERS ;0nly Enter key hit
CMP BYTE PTR NUM_CHARS_READ,OFFh ;Special function key?
JE SPECIAL_KEY ;Yes
CALL STRING_TO_UPPER ;No, convert string to uppercase
LEA DX,CHARS ;Address of string to convert
CALL HEX_TO_BYTE ;Convert string from hex to byte
Jc NO_CHARACTERS ;Error, so return 'no characters read!
XOR AH,RH ;Signal read one byte
DONE_READ:
POP DX
RET
NO_CHARACTERS:
XOR AH, AH ;Set to 'no characters read!
NOT AH ;Return -1 in AH
JMP DONE_READ
ASCII_INPUT:
MOV AL,CHARS ;Load character read
XOR AH,AH ;Signal read one byte
JMP DONE_READ
SPECIAL_KEY:
MOV AL,CHARSI[O] ;Return the scan code
MOV AH,1 ;Signal special key with 1
JMP DONE_READ
READ_BYTE ENDP

PUBLIC READ_KEY

This procedure reads one key from the keyboard.

Returns: AL Character code (unless ARH = 1)
AH 0 if read ASCII char
1L if read a special key
READ_KEY PROC
XOR AH,AH ;Ask for keyboard read function
INT 1Eh ;Read character/scan code from keyboard
OR AL,AL ;Is it an extended code?
Jz EXTENDED_CODE ;Yes
NOT_EXTENDED :
XOR AH,AH ;Return just the ASCII code
DONE_READING:
RET
EXTENDED_CODE:
MOV AL, RH ;Put scan code into AL
MOV AH, 1 ;Signal extended code
JMP DONE_READING
READ_KEY ENDP

PUBLIC READ_DECIMAL

the string of decimal digits to a word.

’

AX Hord converted from decimal H

CF Set if error, clear if no error H

Uses: READ_STRING :
Reads: KEYBOARD_INPUT, etc.)
Writes: KEYBOARD_INPUT, etc. H

Ews wo we wo wo e o we wo wo o

EAD_DECIMAL PROC

Listing of DSKPATCH 373

PHANTOM.ASM

.MODEL SMALL

.DATA

REAL_CURSOR_X DB 0

REAL_CURSOR_Y DB 0

PUBLIC PHANTOM_CURSOR_X, PHANTOM_CURSOR_Y

PHANTOM_CURSOR_X DB 0

PHANTOM_CURSOR_Y DB 0

.CODE

These four procedures move the phantom cursors.

’
’
’
Uses: ERASE_PHANTOM, WRITE_PHANTOM 5
SCROLL_DOWN, SCROLL_UP ’
Reads: PHANTOM_CURSOR_X, PHANTOM_CURSOR_Y H
Writes: PHANTOM_CURSOR_X, PHANTOM_CURSOR_Y
o et - o e L e e e 5
PUBLIC PHANTOM_UP
PHANTOM_UP PROC
CALL ERASE_PHANTOM ;Erase at current position
DEC PHANTOM_CURSOR_Y ;Move cursor up one line
JNS WASNT_AT_TOP ;Was not at the top, write cursor
CALL SCROLL_DOWN ;Has at the top, scroll
WASNT_AT_TOP:
CALL WRITE_PHANTOM ;Hrite the phantom at new position
RET
PHANTOM_UP ENDP
PUBLIC PHANTOM_DOWN
PHANTOM_DOWN PROC
CALL ERASE_PHANTOM ;Erase at current position
INC PHANTOM_CURSOR_Y ;Move cursor down one line
CMP PHANTOM_CURSOR_Y, 16 ;Has it at the bottom?
JB WASNT_AT_BOTTOM ;NO, so write phantom
CALL SCROLL_UP ;Has at bottom, so put back there
WASNT_AT_BOTTOM:
CALL WRITE_PHANTOM ;Write the phantom cursor
RET
PHANTOM_DOWN ENDP
PUBLIC PHANTOM_LEFT
PHANTOM_LEFT PROC
CALL ERASE_PHANTOM 1Erase at current position
DEC PHANTOM_CURSOR_X ;Move cursor left one column
JNS WASNT_AT_LEFT ;Has not at the left side, write cursor
MOV PHANTOM_CURSOR_X,0 ;Has at left, so put back there
WASNT_AT_LEFT:
CALL WRITE_PHANTOM ;Write the phantom cursor
RET
PHANTOM_LEFT ENDP
PUBLIC PHANTOM_RIGHT
PHANTOM_RIGHT PROC
CALL ERASE_PHANTOM ;Erase at current position
INC PHANTOM_CURSOR_X ;Move cursor right one column
CMP PHANTOM_CURSOR_X, 16 ;Has it already at the right side?
JB WASNT_AT_RIGHT
MOV PHANTOM_CURSOR_X, 1S ;Was at right, so put back there
WASNT_AT_RIGHT:
CALL WRITE_PHANTOM yWrite the phantom cursor
RET

PHANTOM_RIGHT

ENDP

374 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

PHANTOM.ASM continued

PUBLIC MOV_TO_HEX_POSITION
EXTRN GOTO_XY:PROC

EXTRN LINES_BEFORE_SECTOR:BYTE

This procedure moves the real cursor to the position of the phantom

’ ’
; cursor in the hex window. 0
; Uses: GOTO_XY h
; Reads: LINES_BEFORE_SECTOR, PHANTOM_CURSOR_X, PHANTOM_CURSOR_Y ;
’ ’
MOV_TO_HEX_POSITION PROC

PUSH AX

PUSH CX

PUSH DX

MOV DH,LINES_BEFORE_SECTOR ;Find row of phantom (0,0)

ADD DH,¢ ;Plus row of hex and horizontal bar

ADD DH,PHANTOM_CURSOR_Y ;DH = row of phantom cursor

MOV DL,8 ;Indent on left side

MOV CcL,3 ;Each column uses 3 characters, so

MOV AL,PHANTOM_CURSOR_X ; we must multiply CURSOR_X by 3

MUL CL

ADD DL,AL ;And add to the indent, to get column

CALL GOTO_XY ; for phantom cursor

POP DX

POP CcX

POP AX

RET
MOV_TO_HEX_POSITION ENDP

PUBLIC MOV_TO_ASCII_POSITION
EXTRN GOTO_XY:PROC

EXTRN LINES_BEFORE_SECTOR:BYTE

This procedure moves the real cursor to the beginning of the phantom
cursor in the ASCII window.

)

’

’ e

; Reads: LINES_BEFORE_SECTOR, PHANTOM_CURSOR_X, PHANTOM_CURSOR_Y
M

Uses: GOTO_XY
OV_TO_ASCII_POSITION PROC
PUSH AX
PUSH DX
MOV DH,LINES_BEFORE_SECTOR ;Find row of phantom (0,0)
ADD DH,2 sPlus row of hex and horizontal bar
ADD DH,PHANTOM_CURSOR_Y ;DH = row of phantom cursor
Mov DL, 59 ;Indent on left side
ADD DL,PHANTOM_CURSOR_X ;Add CURSOR_X to get X position
CALL GOTO_XY- ; for phantom cursor
POP DX
POP AX
RET

MOV_TO_ASCII_POSITION ENDP

PUBLIC SAVE_REAL_CURSOR

; This procedure saves the position of the real cursor in the two
; variables REAL_CURSOR_X and REAL_CURSOR_Y.

Writes: REAL_CURSOR_X, REAL_CURSOR_Y
y T T T === e T R T i e e P e —— »
SAVE_REAL_CURSOR PROC
PUSH RX
PUSH BX

PUSH CX

Listing of DSKPATCH 375

PUSH DX
Mov RH,3 ;Read cursor position
XOR BH, BH ; on page O
INT 10h ;And return in DL,DH
Mov REAL_CURSOR_Y,DL ;Save position
MOV REAL_CURSOR_X,DH
POP DX
POP ©%
POP BX
POP RX
RET
SAVE_REAL_CURSOR ENDP

PUBLIC RESTORE_REAL_CURSOR
EXTRN GOTO_XY:PROC

This procedure restores the real cursor to its old position, saved in
REAL_CURSOR_X and REAL_CURSOR_Y.

Uses: GOTO_XY
Reads: REAL_CURSOR_X, REAL_CURSOR_Y
RESTORE_REARL_CURSOR PROC
PUSH DX
MOV DL,REAL_CURSOR_Y
MOV DH,REAL_CURSOR_X
CALL GOTO_XY
POP DX
RET
RESTORE_REAL_CURSOR ENDP

PUBLIC WRITE_PHANTOM
EXTRN WRITE_ATTRIBUTE_N_TIMES:PROC

; coordinates for the phantom cursor. WRITE_PHANTOM writes this ;
; Uses: WRITE_ATTRIBUTE_N_TIMES, SAVE_REAL_CURSOR H
3 RESTORE_REARL_CURSOR, MOV_TO_HEX_POSITION 5
3 MOV_TO_ASCII_POSITION ;
. T T T T T T T T R T e P T ’
WRITE_PHANTOM PROC

PUSH ()¢

PUSH DX

CALL SAVE_REAL_CURSOR

CALL MOV_TO_HEX_POSITION ;Coord. of cursor in hex window

MOV CX, 4 ;Make phantom cursor four chars wide

MOV DL,70h

CALL WRITE_ATTRIBUTE_N_TIMES

CALL MOV_TO_ASCII_POSITION ,Coord. of cursor in ASCII window

MOV CX,1 ;Cursor is one character wide here

CALL WRITE_ATTRIBUTE_N_TIMES
CALL RESTORE_REAL_CURSOR

POP DX
POP CX
RET

WRITE_PHANTOM ENDP

PUBLIC ERASE_PHANTOM
EXTRN WRITE_ATTRIBUTE_N_TIMES:PROC

This procedure erases the phantom cursor, just the opposite of
WRITE_PHANTOM.

Uses: WRITE_ATTRIBUTE_N_TIMES, SAVE_REAL_CURSOR
RESTORE_REARL_CURSOR, MOV_TO_HEX_POSITION
MOV_TO_ASCII_POSITION

RASE_PHANTOM PROC
PUSH CX
PUSH DX

(5210 00 S0 G0 000

376 Peter Norton's Assembly Language Book for the IBM PC, Revised & Expanded

PHANTOM.ASM continued

CALL SAVE_REAL_CURSOR

CALL MOV_TO_HEX_POSITION ;Coord. of cursor in hex window
MOV CX,4 ;Change back to white on black
MOV DL,?

CALL WRITE_ATTRIBUTE_N_TIMES
CALL MOV_TO_ASCII_POSITION

MOV CX,1

CALL WRITE_ATTRIBUTE_N_TIMES
CALL RESTORE_REAL_CURSOR

POP DX

POP CX

RET

ERASE_PHANTOM ENDP

EXTRN DISP_HALF_SECTOR:PROC, GOTO_XY:PROC
-DATA

EXTRN SECTOR_OFFSET:WORD

EXTRN LINES_BEFORE_SECTOR:BYTE
.CODE

These two procedures move between the two half-sector displays.

; Uses: WRITE_PHANTOM, DISP_HALF_SECTOR, ERASE_PHANTOM, GOTO_XY ;
5 SAVE_REAL_CURSOR, RESTORE_REAL_CURSOR 6
; Reads: LINES_BEFORE_SECTOR ’
; Writes: SECTOR_OFFSET, PHANTOM_CURSOR_Y H
SCROLL_UP PROC
PUSH DX
CALL ERASE_PHANTOM ;Remove the phantom cursor
CALL SAVE_REAL_CURSOR ;Save the real cursor position
XOR DL,DL ;Set cursor for half-sector display
MOV DH,LINES_BEFORE_SECTOR
ADD DH, 2
CALL GOTO_XY
MOV DX, 256 ;Display the second half sector
MOV SECTOR_OFFSET, DX
CALL DISP_HRALF_SECTOR
CALL RESTORE_REAL_CURSOR ;Restore the real cursor position
MOV PHANTOM_CURSOR_Y, O ;Cursor at top of second half sector
CALL WRITE_PHANTOM ;Restore the phantom cursor
POP DX
RET
SCROLL_UP ENDP
SCROLL_DOWN PROC
PUSH DX
CALL ERASE_PHANTOM ;Remove the phantom cursor
CALL SAVE_REAL_CURSOR ;Save the real cursor position
XOR DL,DL ;Set cursor for half-sector display
MOV DH,LINES_BEFORE_SECTOR
ADD DH,2
CALL GOTO_XY
XOR DX, DX ;Display the first half sector
MOV SECTOR_OFFSET, DX
CALL DISP_HALF_SECTOR
CALL RESTORE_REAL_CURSOR ;Restore the real cursor position
MOV PHANTOM_CURSOR_Y, 15 ;Cursor at bottom of first half sector
CALL WRITE_PHANTOM ;Restore the phantom cursor
POP DX
RET
SCROLL_DOWN ENDP

END

VIDEO_IO.ASM

.MODEL SMALL

.DATA
PUBLIC
PUBLIC
SCREEN_SEG
SCREEN_PTR
SCREEN_X
SCREEN_Y

.CODE

PUBLIC

Listing of DSKPATCH 377

;Segment of the screen buffer
;0ffset into screen memory of cursor
;Position of the screen cursor

SCREEN_PTR
SCREEN_X, SCREEN_Y
DW 0B800OhK

DW 0

DB 0

DB 0

WRITE_STRING

This procedure writes a string of characters to the screen. The
string must end with

DB 0

of the string ;

W

;Set direction for increment (forward)
;Place address into SI for LODSB

;Get a character into the AL register

;Yes, we are done with the string

On entry: DS:DX Address
Uses: WRITE_CHAR
RITE_STRING PROC
PUSH AX
PUSH DX
PUSH SiL
PUSHF ;Save direction flag
CLD
MOV SI,DX
STRING_LOOP:
LODSB
OR AL,AL ;Have we found the 0 yet?
Jz END_OF_STRING
MOV DL, AL sNo, write character
CALL WRITE_CHAR
JHP STRING_LOOP
END_OF_STRING:
POPF iRestore direction flag
POP ISHIl
POP DX
POP AX
REST
WRITE_STRING ENDP
PUBLIC WRITE_HEX

On entry:

This procedure converts the byte in the DL register to hex and writes
the two hex digits at the current cursor position.

DL Byte to convert to hex.

WRITE_HEX_DIGIT

o ws vt or e ws s
[=]
14/]
(0]
1]
o

RITE_HEX
PUSH
PUSH
MOV
MOV
SHR
CALL
MOV
AND
CALL
POP
POP
RET
WRITE_HEX

PROC

cX

DX

DH,DL

CX,4

DL,CL
WRITE_HEX_DIGIT
DL,DH

DL,OFh
WRITE_HEX_DIGIT
DX

cX

ENDP

Entry point
;Save registers used in this procedure

;Make a copy of byte
;Get the upper nibble in DL

;Display first hex digit
;Get lower nibble into DL
;Remove the upper nibble
;Display second hex digit

378 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

VIDEO_IO.ASM continued

PUBLIC WRITE_HEX_DIGIT

, ’
;s This procedure converts the lower 4 bits of DL to a hex digit and 3
; writes it to the screen. B
* »
; On entry: DL Lower 4 bits contain number to be printed 8
g in hex. 3
’ ’
; Uses: WRITE_CHAR B
’ ’
WRITE_HEX_DIGIT PROC

PUSH DX ;Save registers used

CMP DL, 10 ;Is this nibble <10?

JAE HEX_LETTER ;No, convert to a letter

ADD DL, 0" ;Yes, convert to a digit

JMP Short WRITE_DIGIT ;Now write this character
HEX_LETTER:

ADD DL, "A"-10 ;Convert to hex letter
WRITE_DIGIT:

CiiLiL WRITE_CHAR ;Display the letter on the screen

POP DX ;Restore old value of DX

RET
WRITE_HEX_DIGIT ENDP

PUBLIC INIT_WRITE_CHAR

You need to call this procedure before you call WRITE_CHARR since

;s WRITE_CHAR uses information set by this procedure. H
; Writes: SCREEN_SEG H
INIT_WRITE_CHAR PROC

PUSH AX

PUSH BX

MoV BX,0B80O0K ;Set for color graphics display

INT 1lh ;Get equipment information

AND AL,30h ;Keep just the video display type

CMP AL,30h ;Is this a monochrome display adapter?

JNE SET_BASE ;No, it's color, so use B80O

MOV BX,DB&0O0OMK ;Yes, it's monochrome, so use BOOO
SET_BASE:

MOV SCREEN_SEG,BX ;Save the screen segment

POP BX

POP AX

RET
INIT_WRITE_CHAR ENDP

PUBLIC WRITE_CHAR

EXTRN CURSOR_RIGHT:PROC
This procedure outputs a character to the screen by writing directly
into screen memory, sSo that characters such as the backspace are
treated as any other characters and are displayed.

This procedure must do a bit of work to update the cursor position.

On entry: DL Byte to print on screen.
Uses: CURSOR_RIGHT
Reads: SCREEN_SEG, SCREEN_PTR
WRITE_CHAR PROC

PUSH AX

PUSH BX

PUSH DX

PUSH ES

MOV AX,SCREEN_SEG ;Get segment for screen memory

MOV
MOV

MOV
MOV
CALL

POP
POP
POP
POP
RET
WRITE_CHAR

PUBLIC

ES,AX
BX,SCREEN_PTR

DH,7?

ES:[BX],DX
CURSOR_RIGHT

ENDP

WRITE_DECIMAL

Listing of DSKPATCH 379

yPoint ES tO screen memory
yPointer to character in screen memory

sUse the normal attribute
;WNrite character/attribute to screen
;Now move to next cursor position

This procedure writes a 1l6-bit,

unsigned number in decimal notation.

; On entry: DX N 16-bit, unsigned number.
; Uses: WRITE_HEX_DIGIT 5
WRITE_DECIMAL PROC

PUSH AX ;Save registers used here

PUSH CX

PUSH DX

PUSH SI

MOV AX,DX

MOV SI,10 ;Will divide by 10 using SI

XOR CX,CX ;Count of digits placed on stack
NON_ZERO:

XOR DX, DX ;Set upper word of N to O

DIV SI ;Calculate N/10 and (N mod 10)

PUSH DX ;Push one digit onto the stack

INC CX ;One more digit added

OR AX,RX N =0 yet?

JNE NON_ZERO ;Nope, continue
WRITE_DIGIT_LOOP:

POP DX ;Get the digits in reverse order

CALL WRITE_HEX_DIGIT

LOOP WRITE_DIGIT_LOOP
END_DECIMAL:

POP Sil;

POP DX

POP CX

POP AX

RET

WRITE_DECIMAL ENDP

PUBLIC

WRITE_CHAR_N_TIMES

This procedure writes more than one copy of a character

H
H H
’ ’
; On entry: DL Character code H
3 CX Number of times to write the character '
H H
; Uses: WRITE_CHAR H
e e R T B S s o — H
WRITE_CHAR_N_TIMES PROC

PUSH @X
N_TIMES:

CALL WRITE_CHAR

LOOP N_TIMES

POP CX

RET
WRITE_CHAR_N_TIMES ENDP

PUBLIC WRITE_ATTRIBUTE_N_TIMES

EXTRN

CURSOR_RIGHT:PROC

380 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

VIDEO_IO.ASM continued

This procedure sets the attribute for N characters, starting at the
current cursor position.

; ,
5)
5 V
’ »
1 cX Number of characters to set attribute for H
B DL New attribute for characters ;
’ ,
; Uses: CURSOR_RIGHT ;
; Reads: SCREEN_SEG, SCREEN_PTR ;
’ r
WRITE_ATTRIBUTE_N_TIMES PROC

PUSH ARX

PUSH CX

PUSH DI

PUSH BS

MOV RX,SCREEN_SEG ;Set ES to point to screen segment

MOV ES,RX

MOV DI,SCREEN_PTR ;Character under cursor

INC DI ;Point to the attribute under cursor

MOV AL,DL ;Put attribute into AL
ARTTR_LOOP:

STOSB ;Save one attribute

INC DI ;Move to next attribute

INC SCREEN_X ;Move to next column

LOOP ATTR_LOOP ;WNrite N attributes

DEC DI ;Point to start of next character

MOV SCREEN_PTR, DI ;Remember where we are

POP ES

POP DI

POP CX

POP RX

RET

WRITE_ATTRIBUTE_N_TIMES ENDP

PUBLIC WRITE_PATTERN

This procedure writes a line to the screen, based on data in the
form

DB {character, number of times to write character}, O ;
Where {(x} means that x can be repeated any number of times H

W

On entry: DS:DX Rddress of the pattern to draw
Uses: WRITE_CHARR_N_TIMES
RITE_PATTERN PROC
PUSH RX
PUSH CX
PUSH DX
PUSH SI
PUSHF ;Save the direction flag
CLD ;Set direction flag for increment
MOV SI,DX ;Move offset into SI register for LODSB
PATTERN_LOOP:
LODSB ;Get character data into AL
OR AL,AL ;Is it the end of data (Oh)?
Jz END_PATTERN ;Yes, return
MOV DL, AL ;No, set up to write character N times
LODSB ;Get the repeat count into AL
MOV CL,AL ;And put in CX for WRITE_CHAR_N_TIMES
XOR CH,CH ;Zero upper byte of CX

CALL WRITE_CHAR_N_TIMES
JNP PATTERN_LOOP

384 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

This appendix lists many common error messages you may encounter as you
use MASM, LINK, and EXE2BIN. If you don’t find an error message listed
here, check your macro assembler or your DOS manual.

The error messages are in three groups: one for MASM, one for LINK, and
one for EXE2BIN. Within each section, error messages are listed alphabeti-
cally.

MASM

Block nesting error: You'll probably see this error message along with either
an Open procedures or an Open segments message. See the following descrip-
tions for these two error messages.

End of file, no END directive: This means you’re either missing the END
statement at the end of your file, or you need to add a blank line after the
existing END statement. The Microsoft versions of the macro assembler expect
to find a blank line at the very end of the file. If you don’t have at least one
blank line after END, MASM won’t read the END statement.

Open procedures: This error message means that either you’re missing a
PROC or an ENDP statement, or that the names aren’t the same on one
PROC/ENDP pair. Make sure every PROC has a matching ENDP statement,
and check the procedure name in both the PROC and the ENDP statements to
make sure they match.

Open segments: This error message should only appear when you’re using the
full segment definitions. It means either that you're missing a SEGMENT or
an ENDS statement, or that the names aren’t the same on one SEG-
MENT/ENDS pair. Make sure every SEGMENT has a matching ENDS state-
ment, and check the segment name in both the SEGMENT and ENDS
statements to make sure they match.

Symbol not defined: There are three things you should look for if you see this
error message:

1. You may have misspelled a name. Check the line you see in the error
display to make certain you’ve typed the name correctly.

2. Youmay have misspelled the name when you first declared a PROC or
a variable. Check the spelling of the names you see in the faulty line
against the names in the PROC or variable declarations.

3. You may be missing an EXTRN declaration, or the name in the
EXTRN may be misspelled.

Common Error Messages 385

LINK

Fixup offset exceeds field width: This is a tricky one, and it’s often the hardest
bug to swat. This message usually means you’ve declared some procedure as

a FAR procedure, but later declared that same procedure as a NEAR proce-
dure in an EXTRN declaration.

It can also mean that your program has grown larger than the 64K limit for
small programs. You can check for such errors by looking at the size field in
the map file.

You should only see this message if you're using full segment definitions.
This message can also appear when a segment has become fragmented. In
such cases, the two fragments may be more than 64K apart, which means
that CALLs must be FAR CALLs to work.

If that doesn’t seem to be the problem, you’ll have to search deeper. You may
find a hint in the map file. For example, check the order of the segments. You
may find they are out of order.

Symbol defined more than once: This message means you’ve probably defined
the same procedure or variable in two source files. Make sure you’ve defined
each name in only one source file, then use EXTRNSs in other places where
you need to use the same procedure or variable.

Unresolved externals: When you see this message, either a PUBLIC is miss-
ing from the file in which you declared the procedure or variable, or you mis-
spelled the name in an EXTRN declaration and the CALLs in some other
source file.

This error can also be caused by forgetting to link in a file. You may need to
add the new file to your Make file or to the batch file you're using.

Warning: no stack segment: This isn’t really an error message, it’s simply a
warning. You'll always see this message when creating .COM files. Ignore it
in such cases.

EXE2BIN

You probably won’t use EXE2BIN very often since you’ll need it only when
you're creating .COM programs. But when you do use it, there is probably only
one error message you’ll see:

File cannot be converted: This is not a very helpful message. Most of the time
it can mean one of three things:

388 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Dec Hex Char

O O ol ol el el e
VO UTd WK - @WOo =3O U W == D

NN NN
W=D

NN
oy U i

N NN
WO o=

W W
[l]

w W
w N

34

—
—_—O®OWMMMOOTUD OO0V seWNE-,D

PR N ol o o e e e e
—_— MM OO W IO U oW

Im e A VTS WCOAOADRIOKHE» 0 esadD

- > S P b= =] O

X wr ™~ “e N >

Table D-1. ASCII Character Codes

Dec Hex Char

43
44
45
46
47
48
49
5@
51
52
53
54
SS
56
5?7
58
59
60
61
62
63
64
65
66
67
68
69
70
3!
72
73
74
75
7
7”7
8
79
e
81
82
83
84
85

2B
2C
2D
2L
2F
3o
K}
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F
40
41
42
43
44
45
46
47
48
49
4A
4B
4C

+

1 -

WOV &aWN-=® N -

C N WO VO EXE IRy T OWMEMOODD WV I A - -

Dec Hex Char

86
87
88
89
98
91
92
98
94
35
96
9?7
98
99
160
161
162
163
164
185
166
187
168
189
116
111
112
113
114
115
116
117
118
119
128
121
122
123
124
125
126
127
128

56
5?7
58
59
SA
SB
SC
SD
SE
SF
6
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
79
n
2
73
4
75
76
"7
8
79
A
7B
7C
70
7
7F
88

Pt S NC X EC

-

IwWeeAmNE X £ECE A+ ™00 3B — X' ™»O A0 0w

w D

Dec Hex Char

129 81
138 82 ¢
131 83 i
132 84 i
133 85 i
134 86 i
135 187 i l%
136 88 ¢
137 189 © ¢
138 8 &
139 88 i
148 8¢ 1
141 8 i
142 B8E &
143 8F A
144 99 ¢
145 91 2
146 92 #
147 93 &
148 94 &
149 95 &
158 9% &
159 97 &
152 98 §
153 99 @
154 94 U
155 9B ¢
156 9C £
157 9D ¥
158 9t R
159 9F f
168 AB &
161 A1
162 A2 &
163 A3 &
164 A4 @
165 AS N
166 A6 ¢
167 A7 ¢
168 A8 ¢
169 A9 -
178 AR -
171 AB %

Table D-1. ASCII Character Codes continued

Dec Hex Char

172
173
174
175
176
177
178
179
188
181
182
183
184
185
186
187
188
189
198
191
192

AC
AD
AE
RF
B8
B1
B2
B3
B4
BS
B6
B7
B8
B9
BA
BB
BC
BD
BE
BF

c8

%
i
]
;

L

Dec Hex Char

193
194
195
196
197
198
199
288
281
282
283
284
285
286
287
288
289
218
211
212
213

1
C2
c3
C4
¢S
Cé
c?
8
¢9
CA
CB
cC
cb
CE
CF
D8
1)1
D2
D3
D4
DS

i

—— |

(]

o e | o

Dec

214
215
216
217
218
219
228
221
222
223
224
225
226
227
228
229
238
23
232
233
234

Hex Char

D6
D?
D8
D9
DA
DB
DC
DD
DE
DF
8
E1
E2
E3
E4
ES
Eb
E7
E8
E9
ER

Miscellaneous Tables

- e

DDA A ME IV R RN

Dec Hex Char

235
236
237
238
239
248
241
242
243
244
245
246
247
248
249
258
251
252
253
254
255

EB
EC
ED
EE
EF
8
Fi
F2
F3
F4
FS
F6
F?
F8
F9
FA
FB
FC
FD
FE
FF

O N e Sy ANV I DA B O

-m e wa, .

389

Miscellaneous Tables 3917

Many of the keys on the keyboard (such as the function keys) return a two-
character code when you read the keys through DOS: A decimal 0 followed by a
scan code. The following table shows the scan codes for all the keys that have no
equivalent ASCII code.

Table D-3. Extended Keyboard Codes

15 Shift Tab

16-25 AltkeysforQ, W,E, R, T,Y,U,L[,O,P
30-38 Alt keysfor A, S, D, L
44-50 Alt keys for Z, X, C
59-68 F1 through F10

71 Home

w2 Cursor Up
73 PgUp

75 Cursor Left
77 Cursor Right
79 End

80 Cursor Down
81 PgDn

82 Ins

83 Del

84-93 Shift F1 through F10

94-103 Control F1 through F10
104-113 Alt F1 through F10

114 Control PrtSc

115 Control Left Cursor
116 Control Right Cursor
117 Control End

118 Control PgDn

119 Control Home

120-131 Control Altfor1,2,3,4,5,6,7,8,9,0, -, =
132 Control PgUp

(AH)=0

(AH)=1

(AH)=2

Miscellaneous Tables 393

Table D-5. INT 10h Functions

Set the display mode. The AL registers contains the mode

number.

(AL)=0
(AL)=1
(AL)=2
(AL)=3
(AL)=17

(AL)=4
(AL)=5
(AL)=6

TEXT MODES

40 by 25, black and white mode

40 by 25, color

80 by 25, black and white

80 by 25, color

80 by 25, monochrome display adapter

GRAPHICS MODE

320 by 200, color
320 by 200, black and white
640 by 200, black and white

Set the cursor size.

(CH)

(CL)

Starting scan line of the cursor. The top line is 0
on both the monochrome and color graphics
displays, while the bottom line is 7 for the color
graphics adapter and 13 for the monochrome
adapter. Valid range: 0 to 31.

Last scan line of the cursor.

The power-on setting for the color graphics adapter is CH=6
and CL="17. For the monochrome display: CH=11 and

CL=12.

Set the cursor position.

(DH,DL)

(BH)

Row, column of new cursor position; the upper,
left corner is (0,0).

Page number. This is the number of the display
page. The color-graphics adapter has room for
several display pages, but most programs use
page 0.

394 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Table D-5. INT 10h Functions continued

(AH)=3
(AH)=4
(AH)=5
(AH)=6
(AH)=7
(AH)=8
(AH)=9

Read the cursor position.

(BH) Page number
On exit (DH,DL) Row, column of cursor
(CH,CL) Cursor size

Read light pen position (see Tech. Ref. Man.).

Select active display page.
(AL) New page number (from 0 to 7 for modes 0 and
1; from O to 3 for modes 2 and 3)

Scroll up.

(AL) Number of lines to blank at the bottom of the
window. Normal scrolling blanks one line. Set
to zero to blank entire window.

(CH,CL) Row, column of upper, left corner of window

(DH,DL) Row, column of lower, right corner of window

(BH) Display attribute to use for blank lines

Scroll down.

Same as scroll up (function 6), but lines are left blank at the
top of the window instead of the bottom

Read attribute and character under the cursor.

(BH) Display page (text modes only)
(AL) Character read
(AH) Attribute of character read (text modes only)

Write attribute and character under the cursor.

(BH) Display page (text modes only)

(CX) Number of times to write character and
attribute on screen

(AL) Character to write

(BL) Attribute to write

396 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

This table contains the INT 16h functions used in this book to read characters
from the keyboard.

(AH)=0

(AH)=1

(AH)=2

Table D-6. INT 16h Functions

Keyboard read. This function waits for you to type a
character on the keyboard. It returns the ASCII code in AL
and the scan code in AH. For extended keys, AL will be set to
0. See Table D-2 for a list of scan codes for such keys.

(AL) ASCII code of the key you press (0 for special
keys).
(AH) Scan code for the key you pressed.

Keyboard status. This function checks to see if there are
any keys waiting to be read.

ZF 0, if a character is waiting

1, if there are no characters waiting.
(AL) ASCII code of character waiting to be read.
(AH) Scan code of character waiting to be read.

Shift status. This function returns a byte with the state of
the various shift keys:

(AL) Status of the shift keys:
716 5 #1392 1
1. Inserton
.1 CapsLockon
. 1. . . . NumLockon
. 1. . . Scroll Lock on
. 1. . Altkeydown

. 1 . Left shift down
. 1 Right shift down

e ——— e —

Miscellaneous Tables 397

This table contains the INT 21h functions used in this book. For a more com-
plete list, you should buy the IBM DOS Technical Reference manual.

(AH)=1

(AH)=2

(AH)=8

(AH)=9

(AH)=0Ah

Table D-7. INT 21h Functions

Keyboard input. This function waits for you to type a
character on the keyboard. It echos the character to the
screen, and returns the ASCII code in the AL register. For
extended keyboard codes, this function returns two
characters: an ASCII O followed by the scan code (see Table
D-2).

(AL) Character read from the keyboard.

Display output. Displays one character on the screen.
Several characters have special meaning to this function:

7 Beep: Send a one-second tone to the speaker.

8 Backspace: move the cursor left one character
position.

9 Tab: Move to the next tab stop. Tab stops are
set to every 8 characters.

0Ah Line feed: Move to the next line.

0Dh Carriage return: Move to the start of the
current line.

(DL) Character to display on the screen.

Keyboard input without echo. Reads a character from the
keyboard, but doesn’t display the character on the screen.

(AL) Character read from keyboard.

Display string. Displays the string pointed to by the DS:DX
pair of registers. You must mark the end of the string with
the $ character.

DS:DX Points to the string to display.

Read string. Reads a strings from the keyboard. See
Chapter 23 for more details.

e

Miscellaneous Tables 399

The following two interrupts are DOS calls for reading and writing disk sec-
tors.

Table D-8. Sector Read/Write Functions

INT 25h—Read Disk Sector

On entry:
(AL) Drive number (0=A, 1=B, and so on)
(CX) Number of sectors to read at one time
(DX) Number of the first sector to read (the first sector is 0)
DS:BX Transfer address: where to write the sectors read

INT 26h—Write Disk Sector

On entry:
(AL) Drive number (0=A, 1=B, and so on)
(CX) Number of sectors to write at one time
(DX) Number of the first sector to write (the first sector is 0)
DS:BX Transfer address: start of the data we want to write to

the disk.
Information Returned by INT 25h, INT 26h

Both INT 25h and INT 26h return the following information in the AX regis-
ter. They also leave the flags on the stack, so you’ll want to use a POP or POPF
to remove this word from the stack (see Chapter 15 for an example).

Returns:

Carry Flag Set if there was an error, in which case the error
information will be in AX.

(AL) DOS error code

(AH) Contains one of the following:
80h The drive did not respond
40h The Seek operation failed
08h Bad CRC when we read the disk
04h Could not find the sector we asked for
03h Tried to write to a write-protected disk
02h Some other error

Destroys

AX, BX, CX, DX, SI, DI, BP

80286/80386 microprocessors, 4

A, Debug’s assemble command, 40
ADC, 50
ADD, 24
Add, text to is against grey, 152
Adding one, INC, 75
Addition with carry, 50
Addition, hexarithmetic command, 6
Addresses
CALL and segments, 120
CS:IP pair, 112
effective and LEA, 163
interrupt instruction vectors, 124, 326
labels, 93
locations in memory, 24
map files, 269
memory, 24
modes, 142, 148, 392
base indexed, 148
base relative, 144, 147
direct mode, 148
direct indexed, 148
immediate, 148
indirect memory, 144, 148
register, 148
register indirect, 148
table, 148, 392
OFFSET directive, 212
PUBLIC directive, 100, 315
RET and segments, 120
segment override, 297
segments, 112, 114, 288
AL register
the LODSB instruction, 178
the STOSB instruction, 306
AND instruction, 64
Area in front of programs, PSP, 118
Arithmetic shift, SHL, 63, 71
ASCII characters, 37
ASCII codes, 388
ASCII, extended, 391
Asm, “.asm” source file, 86
Assemble in Debug, 40
Assembler
automatic, 158
comments, 91
directives, 88, 91
ASSUME, 288, 298
BYTE, 213
.CODE, 118, 135, 288
.DATA, 144
.DATA?, 167
DB, 147, 167
DOSSEG, 118
DUP (?), 167
END, 88
ENDP and PROC, 97, 316
ENDS and SEGMENT, 288
EQU, 152

INDEX

401

EXTRN, 134
FAR and NEAR, 120
.MODEL, 312
NEAR and FAR, 120
OFFSET, 212
ORG, 289
PUBLIC, 100, 315
PROC and ENDP, 97, 316
PTR, 148, 213
.STACK, 116
SEGMENT, 288
USES, 316
WORD, 213
labels, 92
output, object file, 89
segment override, 297
segment, full definitions, 288
Assembly language procedures for C, 312
Assignment, EQU directive, 152
Assignment, the MOV instruction, 41
ASSUME directive, 288, 298
Attributes, character
color table, 202
in memory, 302
inverse and normal, 202
WRITE_ATTRIBUTE_N_TIMES, 230, 305
writing, 305
writing characters and, 203
Automatic assembly, 158
Automatic response, LINK, 269
AX, general purpose register, 22

B, binary numbers, 15
BACK_SPACE, 255
Base 16, hex, 7
Base 2, binary, 15
Base Relative addressing mode, 144, 147
BASIC CLS command, 191
Basic input output system, ROM BIOS, 186
Binary files, EXE2BIN, 291
Binary numbers, 15
converting to decimal, 104
group of four bits, Nibble, 62
BIOS, Basic input output system in ROM, 186
INT 10h VIDEO_IO functions, 187, 393
function 2, set cursor position, 191
function 3, read cursor position, 204
function 6, scroll page up, 190, 393
function 9, write char./attribute, 203
INT 11h, equipment flags, 301
INT 13h, disk I/O services, 326
INT 16h, keyboard services, 214, 396
Bits, 17
group of four, Nibble, 62
setting with OR, 108
Block nesting error, 384
Blue text, 152
Borland Turbo Debugger, 275
Boundary conditions, 62, 72

402 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Boundary conditions, printing a number in hex,
62

BP register, 318

Breakpoint for Debug’s G, 53

BS, back space constant, 256

Bugs, finding, 271

Bugs, finding in large programs, 267
BX, general purpose register, 22
Byte, 17

BYTE directive, 213

BYTE PTR, 213

Byte registers, changing in Debug, 29
Bytes and words, mixing, 213

C and assembly language, 312
C parameters, 316, 320
C procedure names, 315
C procedures
CLEAR_SCREEN, 313
GOTO_XY, 320
READ_KEY, 322
WRITE_STRING, 316
C register usage, 314
C return values, 322
C variable names, 315
CALL instruction, 74
NEAR and FAR, 120, 134
segments, 120
the stack, 76
Carry Flag, 48
Central dispatcher, 210, 237, 262
CF, the Carry Flag, 48
error reporting with, 139
CGA screen memory, 300
Changing memory in Debug, 24, 28
Changing registers in Debug, R, 23
Character attributes in memory, 302
Character attributes,
\%RITE_ATTRIBUTE_N_TIMES, 230,
305
Character codes, 388
extended, 391
reading a string, 256
reading with INT 16h, 214, 396
reading with READ_BYTE, 214, 247, 258
special codes, 70
writing attributes and, 203
writing strings of, 197
CL, count register and rotates, 63, 71
CLD instruction, 179
Clear direction flag, CLD, 179 .
Clearing registers with XOR, 106
Clearing the screen, 190
BASIC CLS, 191
from C, 313
Clearing windows, 190
CLEAR_SCREEN, 190
CLEAR_SCREEN for C, 313
CLEAR_TO_END_OF_LINE, 206, 307
CLIB.ASM, 313
Clock interrupt, 122
CLS, the BASIC command, 191
CMP, compare instruction, 60
comparing to 0 with OR, 107
Code segment, 26, 114, 288
_TEXT, 116

register, CS, 112
CodeView, 273
screen swapping, 273
Color codes, 202, 390
Color graphics adapters, memory, 300
Color Table, 202
COM, “.com” files, 90, 118
creating “.com” files, 144
EXE2BIN, 291
and ASSUME, 288, 298
and ORG, 289
and segments, 288
Command file, LINK, 269
Command line, 117
Comment header, 139
Comments and modular design, 101
Comments, the ;, 91
Common error messages, 384
COMPAQ DOS 3.31, 165
Compare with OR, 107
Computerese, kludge, 112
Conditional jump instructions, 59
JA, Jump if Above, 80
JB, Jump if Below, 80
JL, Jump if Less than, 62
JLE, Jump if Less or Equal, 71
JNZ, Jump if Not Zero, 59
JZ, Jump if Zero, 59
Constants, CR, BS, and ESCAPE, 256
Constants, EQU directive, 152
Converting binary to decimal numbers, 104
Converting Decimal to Hex, 12
Converting Hex to Decimal, 8
Converting negative numbers to two’s
complement, 18
CONVERT_HEX_DIGIT, 245
CR, carriage return constant, 256
CR, carriage return or enter, 151
CRLF, carriage return/line feed, 151
CS, code segment, 26, 112, 288
CSRLIN, reading cursor position, 204
CURRENT_SECTOR_NO, 193
Cursor
movement, INT 10h function 2, 187, 191, 393
position, read, 204
moving from C, 320
moving the, 191
moving to right, 204
virtual, 304, 307
Cursor.asm, 151, 190, 204
CURSOR_RIGHT, 204, 306
CX, general purpose register, 22
CX, the count register, 138
CY, the carry flag, 48

D, Debug’s dump command, 43
.DATA directive, 144
.DATA? directive, 167
Data segment, 114, 288
and groups, 146
for memory variables, 144
multiple, 296
Data types, mixing, 213
Data
ASSUME directive, 288, 298
DISPATCH_TABLE, 211, 266

immediate addressing mode, 142

segment override, 297
DB, define byte, 147, 167
Debug, 5

and MS-DOS, 130

G command, breakpoints, 53

how tracing works, 123

load command, L, 128

starting and leaving, 6

trace command, 26
Debugger

CodeView, 273

Debug, 5

Turbo, 275
Debugging, 5

PUBLIC, 100, 315

source level, 272

symbolic, 272, 276

techniques, 267, 271
Decimal numbers, converting from binary, 104
Decimal, converting Hex to, 8
Decimal, converting to Hex, 12
Define byte, DB directive, 147, 167
Define with EQU directive, 152
Deleting characters, BACK_SPACE, 255
Designers of the 8088, Intel, 112
Destination Index register, 106
DI register, 106
Direct addressing mode, 147
Direction flag, 179
Directives, 88

assembler commands, 88

ASSUME, 288, 298

BYTE, 213

.DATA, 144

.DATA?, 167

DUP (?), 167

DOSSEG, 118

END 88

ENDS, 288

full SEGMENT, 288

.MODEL, 122, 312

OFFSET, 212

ORG, 289

PROC and ENDP, 97, 134, 316

PTR, 213

PUBLIC, 100, 315

SMALL, 122

.STACK, 116

USES, 316

WORD, 213
Directories, diskette, 129
Directory, start on a disk, 128
Disk directories, 129
Disk sectors, 128

reading sectors with INT 25h, 164, 399

reading with READ_SECTOR, 178

writing, 267, 399

writing modified sectors with F2, 266
Disk size table, 128
Diskette, INT 13h, 326
Disklite, 330
Disks, number of floppy, 329
DISK_DRIVE_NO, 193
Disk_io.asm, 162, 177, 191, 215, 267
DISK_PATCH, 193, 197, 211, 301

Index 403

Dispatch.asm, 211, 234, 262, 266
Dispatcher, 210, 237, 262
DISPATCH_TABLE, 211, 266
Display header, 196
Display memory, 300
Display registers, 22
Display, INIT_SEC_DISP, 177, 226
Display, using ROM BIOS with, 190
DISP_HALF_SECTOR, 153, 162
DISP_LINE, 143, 150, 154, 171
Disp_sec.asm, 143, 150, 162, 170, 192, 214, 226
DIV, 33
Dividing memory into segments, 23
Division, 33

remainder, 12
Documentation, comment header, 139
DOS 4.0, 165
DOS function 25h, reading sectors, 164, 399
DOS functions, 397-9
DOS, exit to, 114
DOSSEG and groups, 146
DS, data segment, 114
Dskpatch.asm, 193, 197, 211, 301
Dumping memory with Debug’s D, 43
DUP (?) directive, 167
DX, general purpose register, 22

E, Debug’s enter command, 24, 28
Echoing characters, 79
Editing memory, EDIT_BYTE, 239
Editor.asm, 238
EDITOR_PROMPT, 210
EDIT_BYTE, 239
Effective address, LEA, 163
EGA screen memory, 300
END directive, 88
End of file, no END directive, 384
End of lines, clear to, 206
END, use in separate source files, 136
End-of-string marker, 197
Endless, see Loop
ENDP directive, procedures 97, 316
Enter, Debug’s enter command, 24, 28
Entering programs, 39
EQU directive, 152
Equate, the EQU directive, 152
Equipment flags, 301
ERASE_PHANTOM, 229
Erasing characters, BACK_SPACE, 255
Error messages

EXE2BIN, 385

LINK, 385

MASM, 384

possible causes, 384
Errors, debugging to remove, 5
Errors, the carry flag, 139
ES, extra segment, 114
ES, segment override, 297
ESCAPE constant, 256
Exclusive OR, 107
EXE programs, relocation, 289
EXE programs, the stack, 117
EXE to COM, EXE2BIN, 291
EXE, “.exe” and “.com” files, 118
EXE, “.exe” files, 90
Exe2bin, 90, 291

404 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Execute, 26
Execution, single-step, 26
Exit dskpatch—F10, 217
Exit to DOS, INT 21h, function 4Ch, 114
Exit, the INT 20h instruction, 38
Extended keyboard codes, 70, 391
External, EXTRN directive, 134
Extra segment, 114
EXTRN directive, 134

linking files together, 136

F1-F10, special function key input, 70
F2—key to write modified sectors, 266
F3—read previous sector, 217
F4—read next sector, 217
F10—exit dskpatch, 217

Far CALL, 120

FAR directive, 120

Far RET, 120

Fast screen writing
GOTO_XY, 306
INIT_-WRITE_CHAR, 301

File cannot be converted, 385

File directories, 129

File, make format, 159

Files, names in Debug, 42

Files, writing in Debug, 42

Finding procedures in memory, 271

Fixup offset exceeds field width, 385

Flag register, 122
carry, 48
direction flag, 179
INT instruction and, 122
IRET, 123
overflow, 59
POPF instruction, 165
sign, 59
saving and restoring, 78, 179
zero, 58

Floppy disks
directories, 129
number of, 329
sectors, 128

reading with INT 25h, 164, 399
reading with READ_SECTOR, 178
writing, 267, 399

FOR-NEXT, the LOOP instruction, 51

Fragmented segments, 385

Full segment definitions, 288

Function keys
character codes, 70
F2—key to write modified sectors, 266
F3—read previous sector, 217
F4—read next sector, 217
F10—exit dskpatch, 217

Function numbers for ROM BIOS VIDEO_IO,

187,393
function 2, set cursor position, 191
function 3, read cursor position, 204
function 6, scroll page up, 190, 393
function 9, write char./attribute, 203
Function return values, 322

G, Debug’s go command, 36, 38
breakpoints, 53
see also Proceed trace, 54

General purpose registers, 22
GET_NUM_FLOPPIES, 329
Go, see G, 36
GOSUB
CALL instruction, 74
procedures, 74
see also INT, 36
GOTO_XY, 191, 306
for C, 320
Graphics characters, 388
Gray text, 5, 152
Groups, 146

H, hexarithmetic, 6
hexadecimal numbers, 8
H, for hexadecimal numbers in the assembler,

Hard disks, reading sectors, 165, 399
Header at top of screen, 196
HEADER _LINE_NO, 193
HEADER_PART_1, 193
HEADER_PART_2, 193
Hercules display memory, 300
Hexadecimal, 7
converting Decimal to, 12
converting to Decimal, 8
numbers in the assembler, 87
origins, 7
printing in, 66
reading a single digit, 71
Hexarithmetic, 6
HEX_TO_BYTE, 246
High-level languages, 315
.MODEL, 312
Humans, 40
Hyphen, Debug’s prompt, 6

IF-THEN, conditional jumps, 59
CMP instruction, 60
status flags, 60
Immediate mode, 142
INC instruction, 75
Incrementing, INC, 75
Index registers, SI and DI, 106
Indirect memory addressing mode, 144
INIT_SEC_DISP, 177, 180, 191, 226
INIT_WRITE_CHAR, 301
Installed equipment, 301
Installing RAM-resident programs, 329
Instruction addresses, CS:1P, 112
Instruction Pointer, 26
IP register, 112
Instructions, machine language, 23
LEA, 163
LODSB, 178
segment override, 297
STOSB, 306
INT instruction, 36, 122
INT 1, single-step interrupt, 123
INT 10h functions, 187, 393
function 2, set cursor position, 191
function 3, read cursor position, 204
function 6, scroll page up, 190, 393
function 9, write char./attribute, 203
INT 13h diskette functions, 326
INT 16h keyboard services, 214, 396

Index 405

INT 20h, 38 Light, disk, 330
INT 21h, 36, 397 Limbo, 26
function 1, read character, 70 Line, writing prompt, 214
function 8, reading characters without echo, Lines, clear to end of, 206
79 LINES_BEFORE_SECTOR, 193
function 9, write string, 43 LINK, 89
function 25h, reading INT vectors, 329 automatic response, 269
function 35h, setting INT vectors, 329 map files and, 269
function 4Ch, exit to DOS, 114 /map switch, 269
INT 25h, read disk sector, 164, 399 PUBLIC directives, 100, 315
INT 26h, write disk sector, 267, 399 load order, 144
INT 27h, terminate but stay resident, 329 Linkinfo, LINK response file, 269
simulating, 327 Linking, 89
tracing with the P command, 54 separate files, 136, 144
Intel, 112 together files, 144
Intercepting interrupt vectors, 326 Listing a program, Debug’s U, 39
Interrupts Load map, 269
clock, 122 Load order, Link, 144
INT instruction, 122 LOad String Byte, LODSB instruction, 178
return from, 123 Loading a byte with LODSB, 178
stack after an, 123 Loading sectors, Debug’s L, 128
stack size, 329 Local variables , 79, 101
vectors, 124 LOCATE, cursor movement, 191
intercepting, 326 Locations in memory, addresses, 24
reading and setting, 329 LODSB instruction, 178
Intersegment CALL, 120 Logical instructions, AND, 64
Intersegment RET, 120 Logical operations, the XOR, 107
Intrasegment CALL, 120 Long CALL, 120
Intrasegment RET, 120 Long RET, 120
Inverse video, 202 LOOP, 51
IP register, 26, 112 Loop, see endless
IP, instruction pointer, 112
IRET, return from interrupt, 123 i Ol 2R
JA, jump if above, 80 b
JB, jump if below, 80 Make, 158
JL, jump if less than, 62 Make file, format, 159
JLE,J.ump if less than or equal, 71 Make-shift fix, kludge, 112
JNZ, jump if not zero, 59 Makefile, new version, 216
JZ, jump 1if zero, 59 Map files, creating, 269
: MASM
Kbd_io.asm, 214, 245, 255 ASSUME directive, 288, 298
Keyboard codes, extended, 391 error messages, 384
Keyboard functions, 396 segment load order, 144
Keyboard input without echo, 79 segment override, 297
Keyboard input, INT 21h function 1, 70 Memory, 24
Keyboard, reading, 214 addressing instructions with CS:IP, 112
Keyboard, reading from C, 322 addressing modes, 142, 392
Keys, function codes, 70 ASSUME directive, 288, 298
Kludge, a make-shift fix, 112 base relative addressing, 144, 147
CodeView and, 273
L, Debug’s load command, 128 data segment, 114, 144
Labels, 92 DB directive, 147, 167
addresses, 24 direct addressing, 147
CodeView and, 273 dividing into segments, 23
Turbo Debugger and, 276 editing with EDIT_BYTE, 239
Large hard disks, 165 groups, 146
Large programs, 134, 144 how words are stored, 108
debugging, 267 indirect memory addressing, 144
Laws, the three of modular design, 137 locations, 24
LEA instruction, 163 labels for, 24
Leaving dskpatch—F10, 217 map, 269
LET, the MOV instruction, 41 models, 134
LF, line feed, 151 .MODEL, 122, 312
LIFO, last in first out, 76 offset, 24, 212

the stack, 76 order of segments, 144

406 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

ROM chip, 186
screen and attributes, 300-2
segment overrides, 297
segment registers, 114
segmenting, 112
the stack in, 116
Turbo Debugger and, 276
writing to with WRITE_TO_MEMORY, 238
Memory variables, 192
.DATA?, 167
CURRENT_SECTOR_NO, 193
DISK_DRIVE_NO, 193
DISPATCH_TABLE, 211, 266
EDITOR_PROMPT, 210
PHANTOM_CURSOR_X, 227
PHANTOM_CURSOR_Y, 227
PROMPT_LINE_NO, 210
REAL_CURSOR_X, 227
REAL_CURSOR_Y, 227
SCREEN_PTR, 305
SCREEN_SEQG, 303
SCREEN_X and SCREEN_Y, 305
SECTOR; 153
Microsoft and Debug, 130
Microsoft CodeView, 273
Minimum program, 101
Mixing different data types, 213
Mixing words and bytes, 213
Mnemonic, 40
Modified sectors, writing with F2, 266
.MODEL directive, 122, 134
high-level languages and, 312
PUBLIC and, 315
Modular design, 137
comment blocks, 101
Monochrome display memory, 300
ROM BIOS functions, 187
MOV, 40
its cousin LODSB, 178
its cousin STOSB, 306
Move, the MOV instruction, 40
Moving the cursor
CURSOR_RIGHT, 204, 306
GOTO_XY, 191, 306, 320
INT 10h function 2, 187, 191, 393
MOV_TO_ASCII_POSITION, 228
MOV_TO_HEX_POSITION, 227
MS-DOS and Debug, 130
MUL, 30
Multiple segments, 296
Multiplication, 30
by shifting, SHL, 71
Multiplying two words, 33

N, Debug’s name command, 42
Names and CodeView, 273
Names and Turbo Debugger, 276
Names in C, 315

Names in Debug, 42

NC, the carry flag, 48

NEAR and FAR procedures, 134
Near CALL, 120

NEAR directive, 120

NEAR labels, 93

Near RET, 120

Negative numbers, 18, 28

sign flag, 59

the sign bit, 18
New programs, starting point, 101
Next instruction, 26
Next sector, F4, 217
NEXT_SECTOR, 215
NG, sign flag, 59
Nibble, a group of four bits, 62
Normal attribute, 202
Numbers, converting binary to decimal, 104
Numbers, overflow flag, 59
Numbers, sign flag, 59
NV, overflow flag, 59
NZ, zero flag, 58

OBJ, “.obj” files, 90
Object file, assembler output, 89
OFFSET directive, 212
Offset within segment, 24, 212
Open procedures, 384
Oﬁen segments, 384
OR instruction, 107
CMP a number with 0, 107
seting bits, 108
Order of segments, 144
ORG directive, 289
OV, overflow flag, 59
Overflow flag, 59
the Carry Flag, 48
Override, segment, 297

P, the proceed trace command, 54
Parameters and BP, 318
Parameters and C, 316, 320
Passing information, standards, 138
Passing parameters and BP, 318
Patterns, WRITE_PATTERN, 175
PC-DOS and Debug, 130
Phantom.asm, 227, 235, 282
PHANTOM_CURSOR_Y, 227
PHANTOM_DOWN, 235, 282
PHANTOM_LEFT, 235
PHANTOM_RIGHT, 236
PHANTOM_UP, 235, 282
PL, sign flag, 59
POP and PUSH to save and restore registers,
138
Pop off the stack, 78
POPEF instruction, 165, 179
POS, reading cursor position, 204
Position, read cursor, 204
Positive numbers, overflow flag, 59
Positive numbers, sign flag, 59
Preserving registers in C, 314
Previous sector, F3, 217
PREVIOUS_SECTOR, 215
PRINT, INT 21h function 9, 43
Printaj.asm, 97
Printing in hexadecimal, 66
PRINT_A_J, 96
PROC and parameters, 316, 320
PROC directive, 97,134,316
Procedures, 74
addresses, OFFSET directive, 212
CodeView and, 273

external, 134
finding in memory, 271
load order, 144
local variables, 79
make ’em short, 138
.MODEL, 122, 312
names in C, 315
NEAR and FAR, 134
parameters, 316, 320
PROC and ENDP, 97, 316
return values, 322
saving and restoring registers, 78, 138
Turbo Debugger and, 276
Procedures, source
BACK_SPACE, 255
CLEAR_SCREEN, 190
CLEAR_SCREEN for C, 313
CLEAR_TO_END.OF_LINE, 206, 307
CONVERT_HEX_DIGIT, 245
CURSOR_RIGHT, 204, 306
DISK_PATCH, 211, 301
DISPATCHER, 211, 237, 262
EDIT_BYTE, 239
ERASE_PHANTOM, 229
GET_NUM_FLOPPIES, 329
GOTO-XY, 306
GOTO.XY for C, 320
HEX_TO_BYTE, 246
INIT_SEC_DISP, 177, 226
INIT_-WRITE_CHAR, 301
MOV_TO_ASCIIL_POSITION, 228
MOV_TO_HEX_POSITION, 227
NEXT_SECTOR, 215
PHANTOM_DOWN, 235, 282
PHANTOM_LEFT, 235
PHANTOM_RIGHT, 236
PHANTOM_UP, 235, 282
PREVIOUS_SECTOR, 215
READ_BYTE, 214, 247, 258
READ_DECIMAL, 249
READ_KEY, 247
READ_KEY for C, 322
READ_STRING, 246, 256, 309
RESTORE_REAL_CURSOR, 228
SAVE_REAL_CURSOR, 228
SCROLL_DOWN, 284
SCROLL_UP, 283
SEND_CRLF, 308
STRING_TO_UPPER, 245
TEST, 243, 250
UPDATE_REAL_CURSOR, 308
UPDATE_VIRTUAL_CURSOR, 308
WRITE_ATTRIBUTE_N_TIMES, 230, 305
WRITE_CHAR, 203, 304
WRITE_HEADER, 196, 206
WRITE_PHANTOM, 229
WRITE_PROMPT_LINE, 214
WRITE_SECTOR, 267
WRITE_STRING, 197
WRITE_STRING for C, 316
WRITE_TO_MEMORY, 238
Proceed, the P trace command, 54
Program header, PSP, 117
Program Segment Prefix, 117
Program text, source file, 86
Program trace, the P command, 54

Index 407

Programs, Disklite, 330
Programs, RAM-resident, 326
Programs, skeletal, 101
Prompt line, writing, 214
PROMPT_LINE_NO, 210
Pseudo-ops, see directives, 88
PSP in front of programs, 118
PSP, Program Segment Prefix, 117
PTR directive, 148, 213
PUBLIC directive, 100

C and, 315

map files and, 269
PUSH and POP to save and restore registers,

138

Push onto stack, 78
PUSHEF instruction, 179

Quitting dskpatch—F10, 217

R, Debug’s register command, 22
changing byte registers, 29
changing registers, 22

RAM-resident programs, 326

RCL, 49

Read cursor position, 204

Read next sector, F4, 217

Read only memory chip, ROM, 186

Read previous sector, F3, 217

Read sector, 399

Reading a string of characters, 256

Reading characters
INT 21h function 1, 70
READ_BYTE, 214, 247, 258
strings of characters, 256
without echo, 79

Reading disk sectors, DOS function 25h, 164,

399

Reading from the keyboard, 214
Reading hexadecimal digits, 71
Reading INT vectors, 329
Reading memory, LODSB, 178
Reading sectors

Debug’s L, 128

DOS function 25h, 164, 399

PREVIOUS_SECTOR and NEXT_SECTOR,

215

READ_SECTOR, 178
READ_BYTE, 214, 247, 258
READ_DECIMAL, 249

testing, 250
READ_KEY, 247
READ_KEY for C, 322
READ_SECTOR, 162, 178, 194
READ_STRING, 245, 256, 309
REAL_CURSOR_X, 227
REAL_CURSOR_Y, 227
Registers, 22

ASSUME and segment, 288, 298

BP, 318

changing bytes with Debug’s R, 29

changing them in Debug, 23

CS, 112

display with Debug’s R, 22

flag, 123

general purpose, 22

RSN

408 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

modes
base indexed, 148
base relative, 144, 147
direct mode, 148
direct indexed, 148
immediate, 148
indirect memory, 148
register, 142
register indirect, 148
saving and restoring, 78, 138
segment, 114
ASSUME, 288, 298
overrides, 297
special purpose, 22
SI and DI registers, 106
usage, 139
inC, 314
Relocation, 289
REM, comment statements, 91
Remainder, 12, 33
Removing errors, debugging, 5
Repeat count, the LOOP instruction, 51
Resident programs, 326
Response file, LINK, 269
RESTORE_REAL_CURSOR, 228
Restoring flags, POPF, 179
Restoring registers from the stack, 78
Restoring registersin C, 314
RET instruction, 74
NEAR and FAR, 134
segments, 120
the stack, 76
Return address, the stack, 76
Return from interrupt, IRET, 123
Return values in C, 322
RETURN, the RET instruction, 74
Reverse video, 202
Road map, map files. 269
ROM, read only memory chip, 186
ROM BIOS functions
INT 10h VIDEO_IO functions, 187, 393
INT 13h disk functions, 326
INT 16h keyboard services, 214, 396
Rotate instruction, 49
Rotate through carry, 49
Rotates, SHL, 63
Rotates, the count register, 63
Routines, in ROM BIOS, 186

SAVE_REAL_CURSOR, 228
Saving a file to disk from Debug, 42
Saving and restoring registers, 78, 101, 138
Saving flags with INT instruction, 122
Saving registers in C, 314
Saving registers on the stack, 78
Saving the flags, PUSHF, 179
Scan code, 70

INT 16h, 214, 396
Scratch area, PSP, 117
Screen functions, 393

see also ROM BIOS
Screen memory, 300

organization, 302
Screen swapping

CodeView, 273

Turbo Debugger, 276

Screen writing, fast with GOTO_XY, 306
Screen writing, fast with WRITE_CHAR, 304
Screen, clearing from C, 313
Screen, clearing the, 190
Screen, using ROM BIOS with, 190
Screened text, 152
SCREEN_PTR, 305
SCREEN_SEG, 303
SCREEN_X and SCREEN_Y, 305
Scrolling the sector display, 283
Scrolling, SCROLL_UP and SCROLL_-DOWN,
283
SECTOR, 143, 153, 194
Sector display, INIT_SEC_DISP, 177, 226
Sector display, scrolling the, 283
Sectors per disk, 128
Sectors, disk, 128
editing with EDIT_BYTE, 239
F2 key to write modified, 266
previous and next with F3 and F4, 217
reading, 399
Debug’s L. 128
DOS INT 25h function, 164, 399
PREVIOUS_SECTOR and
NEXT_SECTOR, 215
READ_SECTOR, 178
writing disk, 267, 399
SECTOR_OFFSET, 193
SEG, segment override, 297
SEGMENT directive, full, 288
Segment directives
.CODE, 118, 135, 288
.DATA, 144
.STACK, 116
Segment load order, DOSSEG directive, 118
Segment offset, 24
Segment overrides
ASSUME, 297
instruction, 297
Segment registers, 114
CS! M2
DS, 114
Segments, 23, 112
.COM programs and, 288
ASSUME, 288. 298
CALL and RET, 120
.CODE, 118, 135, 288
.DATA, 144
.DATA?, 167
fragmented, 385
full definitions, 288
groups, 146
labeling, 24
multiple, 296
NEAR, 93
NEAR and FAR, 120
screen, 300
STACK, 116
_TEXT code, 116
SEND_CRLF, 151, 308
Separate files, 134
ink, 89
linking, 136
modular design, 137
Setting bits with OR, 108
Setting INT vectors, 329

Shift, SHL, 63

SHL, shift left instruction, 63

Short CALL, 120

Short RET, 120

SI register, 106

Sign bit, 18

Sign flag, 59

Signed numbers, 15

Simulating INT, 327

Single-step execution, 26
breakpoints, 53
trap flag and, 123

Size, disks, 128

Skeletal program, 101

SMALL memory model, 122
.MODEL directive, 134

Software interrupt, INT instruction, 122

Source file, 86
Cursor.asm, 151, 190, 204
Disk_io.asm, 162, 177, 191, 215, 267
Dispatch.asm, 211, 234, 262, 266

Disp_sec.asm, 143, 150, 162, 170, 192, 214,

226
Dskpatch.asm, 193, 211, 301
Editor.asm, 238
Kbd_io.asm, 214, 245, 255
Phantom.asm, 227, 235, 282
separate, 134
Test.asm, 134, 243, 250
Test_seg.asm, 114

Video_io.asm, 136, 151, 174, 197, 203, 230,

301
Source Index register, 106
Source level debugging, 272, 276
SP, stack pointer, 76, 116
Special function keys
keyboard input, 70
reading with READ_BYTE, 214, 247, 258
table, 391
Sgecial Kurpose registers, 22
SS, stack segment, 76, 114
SS:SP, top of stack, 116
Stack, 76
after an INT instruction, 123
BP and, 318
.EXE programs and, 117
groups and, 146
LIFO, 76
pointer, SP, 76, 116
pop off the, 78
push onto, 78
saving and restoring registers, 78
saving flags on the, 122
segment, 76, 114
top of stack, 116
.STACK directive, 116
size, interrupts, 329
Standards, 138
Starting point for new programs, 101
Status flags, 58, 122
CMP instruction, 60
direction flag, 179
JA, 80
JB, 80
JL, 62
JLE, 71

Index

JNZ, 59

JZ, 59

OR instruction, 107

overflow, 59

saving and restoring, 179

sign, 59
Status register, POPF, 165

see also, status flags
STore String Byte, STOSB instruction, 306
Storing memory, STOSB, 306
STOSB instruction, 306
String instructions

LODSB, 178

STOSB, 306
String, reading a, 256
Strings, writing from C, 316
Strings, writing with WRITE_STRING, 197
STRING_TO_UPPER, 245
SUB, 28
Subroutines, or procedures, 74
Subtraction, 28

the CMP instruction, 60
Swapping screens

CodeView, 273

Turbo Debugger, 276
Switch, LINK and /map, 269
Symbol defined more than once, 385
Symbol not defined, 384
Symbolic debugging, 272, 276

T, Debug’s trace command, 26
Tables
characters, 388
ROM BIOS functions for VIDEO_IO, 187,
addressing modes, 392
color codes, 202, 390
disk size, 128
extended keyboard codes, 391
INT 10h functions, 187, 393
INT 16h functions, 214, 396
INT 21h functions, 397
sector functions, 399
Temporary storage, the stack, 76, 116
Terminate but stay resident, 329
TEST, 243, 250
Test.asm, 243, 250
Testing limits, boundary conditions, 62, 72
Testing READ_BYTE with TEST, 243
Testing READ_DECIMAL 250
Test_seg.asm, 114
TEST_-WRITE_DECIMAL, 106, 134
TEST_WRITE_HEX, 98
Text to add, 152
Text to delete, 152
Text, source file, 86
The three laws of modular design, 137
Top of stack, 116
Trace, 26
Tracing with the P command, 54
Tracking down bugs, 271
Trap flag, single stepping, 123
Truth table, AND, 65
TSR Programs, 326
Turbo Assembler, 276, 313
Turbo Debugger, 275
screen swapping, 276

409

393

410 Peter Norton’s Assembly Language Book for the IBM PC, Revised & Expanded

Two screens
CodeView's screen swapping, 273
Turbo Debugger’s screen swapping, 276

Two’s complement, negative numbers, 18, 28

overflow flag, 59
sign flag, 59

U, Debug’s Unassemble, 39
Unassemble, 39
Uninitialized variables, DATA?, 167
Unresolved externals, 385
Unsigned numbers, 14

JA and JB, 80

overflow flag, 59
UPDATE_REAL_CURSOR, 308
UPDATE_VIRTUAL_CURSOR, 308

Variable names in C, 315
Variable usage, 139
Variables and CodeView, 273
Variables and Turbo Debugger, 276
Variables
addressing modes, 142
data segment, 144
DB, DW directives, 147, 167
labels, 92
memory, 192
registers as, 22
segment overrides, 297
uninitialized with .DATA?, 167
Variables, Dskpatch
BOTTOM_LINE_PATTERN, 176
CURRENT_SECTOR_NO, 193
DISK_DRIVE_NO, 193
DISPATCH_TABLE, 211, 266
EDITOR_PROMPT, 210
HEADER_LINE_NO, 193
HEADER_PART_1, 193
HEADER_PART_2, 193
LINES_BEFORE_SECTOR, 193
PHANTOM_CURSOR_X, 227
PHANTOM_CURSOR_Y, 227
PROMPT_LINE_NO, 210
REAL_CURSOR_X, 227
REAL_CURSOR_Y, 227
SECTOR, 143, 153, 194
SECTOR_OFFSET, 193
SCREEN_PTR, 305
SCREEN_SEG, 303
SCREEN_X and SCREEN_Y, 305
TOP_LINE_PATTERN, 176
Vectors, interrupt, 124
intercepting, 326
reading and setting, 329
VGA screen memory, 300

VIDEO_IO ROM BIOS functions 187, 393

Video_io.asm, 98, 136, 151, 174, 197, 203, 230,
301

Virtual cursor, 304, 307

W, Debug’s write command, 42

Warning messages, possible sources, 384

Warning:no stack segment, 385

Windows, clearing, 190

Word, 17

WORD directive, 213

Word multiply, 33

WORD PTR, 213

Words and bytes, mixing, 213

Words, how they’re stored in memory, 108

Write sector, 399

Writestr.asm, 86

WRITE_ATTRIBUTE_N_TIMES, 230, 305

WRITE_CHAR, 96, 100, 136, 151, 203, 304

WRITE_CHAR _N_TIMES, 174

WRITE_DECIMAL, 105, 136

WRITE_HEADER, 196, 206

WRITE_HEX, 98

WRITE_HEX_DIGIT, 99, 136

WRITE_PATTERN, 175

WRITE_PHANTOM, 229

WRITE_PROMPT_LINE, 214

WRITE_SECTOR, 267

WRITE_STRING, 197

WRITE_STRING for C, 316

WRITE_TOP_HEX_NUMBERS, 179

WRITE_TO_MEMORY, 238

Writing a file in Debug, 42

Writing a string, 43

Writing attributes,
gVRITE_ATTRIBUTE_N_TIMES, 230,

05

Writing characters and attributes, 203

Writing disk sectors, 267, 399

Writing memory, STOSB, 306

Writing modified sectors, F2 key, 266

Writing strings of characters, 197

Writing to memory, WRITE_TO_MEMORY, 238

XOR instruction, 106
clearing registers, 106

Zero flag, 58
JNZ, 59
JZ,59

ZR, zero flag, 58

_TEXT code segment, 116

About the Authors

Peter Norton is well-known in the personal computing arena for both his writ-
ing and programming. Starting in the earliest days of the IBM Personal Com-
puter, he began writing about the IBM/PC, helping other people understand how
these wonderful machines work. He has written a half a dozen books on the PC
family, including the best-selling Inside the IBM/PC and The Peter Norton Pro-
grammer’s Guide. His set of programs called The Norton Utilities has helped
many PC users rescue lost data and explore the inner workings of their computers.
Peter grew up in Seattle, Washington, attended Reed College in Portland, Oregon;
he now lives in Santa Monica, California with his wife and two children. He
always wears his sleeves rolled up.

John Socha is better known for his public-domain utilities than by his name. In
the early days of the IBM PC, he wrote a column for the now defunct magazine
Softalk, where he published such programs as ScreenSave (the first screen
blanker), KbdBuffer (extends the keyboard buffer), and Whereis (finds files on a
hard disk). After the demise of Softalk, John concentrated on finishing his PhD in
Physics and writing a commercial program called The Norton Commander. John
grew up in Wisconsin, earned a BS degree in Electrical Engineering from the Uni-
versity of Wisconsin, an MS and a PhD in Applied Physics from Cornell Univer-
sity, and now lives in southern California. He always wears his WalkMan.

B |

It is important that you register your purchase of any Simon & Schuster software
package. By completing and returning your Owner Registration Card, you become
eligible for:

CUSTOMER SUPPORT PLAN

e Software support directly from S & S.

 Diskette replacement when applicable.

e Purchase of future product upgrades at special prices.
 Subscriptions to Hint Books and newsletters where applicable.

Software Support Options
S & S will provide support to registered owners under the following programs:

30-day Startup Service - For the first 30 days after you purchase an S & S Software
package, we will answer questions by telephone through our Technical Support Depart-
ment. There is no additional charge for this service, but you must have registered your
copy of the S & S Software package by sending the Owner Registration Card, or by
calling S & S to register your purchase. During the 30-day Startup period, we will
respond to your first call without having already received your Owner Registration
Card.

Extended Support Service - Registered owners may purchase S & S Extended Support
Service. This service provides up to three hours of telephone support from the S & S
Technical Support Department for a period of one year. Extended Support costs $60, is
renewable, and may be paid for when calling for support by Visa, Mastercard, Ameri-
can Express, or in advance by check.

Single-call Support Service - After the 30-day startup period, registered owners may
obtain telephone support from the S & S Technical Support Department for $60 per
hour, $10 minimum per call. These calls must be charged to an approved credit card.
The customer must have card information available at the beginning of the call.

Mail-in Support Service - Registered owners may write to us with questions. We will
respond in writing. There is no additional charge for this service.

Werealize that our software packages are put to a wide variety of uses, however, we can
only answer questions about the software package itself. You are required to have
minimal experience using the hardware and operating system required to run our
software packages. While we will do our best to answer your questions about the
product, we must charge an extra $60 per hour fee for extensive consulting on problems
not directly related to our products.

Before Calling Customer Support

Before calling our Technical Support Department, please make sure you have followed
the steps in the “Pre-call Checklist” below.

Pre-call Checklist

1.

If you are having difficulty understanding the program, have you read and per-
formed the suggestions listed in the manual?

If you are not sure how to operate the program, have you used the help system
(where available) to find the answer?

If there seems to be a problem in the software, can you reproduce the problem by
following your steps again?

If the program displayed an error message, please write down the exact message.

You should be familiar with the hardware configuration you are using. We may
need to know the brand/model of your computer, printer, the total amount of
memory available, what video adaptor(s) you have in the system, the operating
system version, etc.

When you call our Technical Support Department, please be at your computer or be
prepared to repeat the sequence of steps leading up to the problem.

If applicable, please have your Visa, MasterCard, or American Express number and
expiration date ready.

Our technical support number is (212) 373-7770. It is staffed on working days
during normal business hours, 9:00 am to 5:00 pm, Eastern time.

Services and Prices

The above services and prices are subject to change without prior notice.

e —

The Winn Rosch
Hardware Bible

“Enhancing a computer is a matter of fitting connectors
together and, at most, operating a screwdriver—almost any-
one can do it, and that includes you.”

—From the Introduction

PC journalist Winn Rosch walks you safely through the hardware
jungle ... from processors to ports, from displays to storage. More
than a guided tour, The Hardware Bible is hands-on all the way.
Whether you want to just get along with your current system, or
you're ready to enhance, upgrade, or even build a new machine.

« Covers the IBM PC, PC compatibles and IBM PS/2 hardware.

» Explains PC design and technology—you’ll save time and money
by making the right decisions up front.

 Spells out the standards for settings, adjustments, and compati-
bilities

 Offers you step-by-step install procedures with worry-free

Instructions.

ISBN 0-13-160979-3
$29.95

Look for this and other Brady titles at your

local book or computer store. To

" 3 order directly call 1 (800) 624-0023,

in New Jersey 1 (800) 624-0024
Visa/MC accepted

IBM / Programming

Peter Norton’s best-selling introduction to
assembly language programming.

Assembly language lets you write the fastest, most compact code to take
direct control over your PC hardware. When speed and size are at a
premium, assembly language programming outstrips even the most
advanced high-level languages.

Peter Norton's Assembly Language Book for the IBM PC, Revised and
Expanded quickly dispels the notion that assembly language programming
is difficult or tedious. It brings you to the heart of your computers micro-
processor and makes the beauty and logic of efficient assembly language
code immediately accessible.

Following the book you will:

= build a full-scale program—a screen editor for disk sectors

= |learn the techniques and procedures for writing clear, professional-
level code

= work with about 50 general-purpose subroutines—ones that you will be
able to use time and again when you write your own programs.

You can use this book with a PC with 256K, one disk drive, and DOS Version 2.0 or
higher. You will also need an assembler: Microsoft's MASM (Version 5.0 or later), the
Turbo Assembler from Borland, or OPTASM from SLR Systems.

The easiest and most enjoyable way to learn assembly language is with
the master programmer himself—Peter Norton.

The i’eter Norfon Foundation Series

e —— e — A —

Brady Books ® Distributed by Prentice Hall Trade ® New York

Cover photo by Douglas Kirkland/Sygma
ASSEMBLY LANG (s

NO13bkays537
+329.95

v 6

ISBN 0-13-bbk2453-7

