
UJ

Peter Norton's
Assembly Language Book
for the IBM PC

1 E

K

///'/ /9^
m ?P) y ' 7/
m. A

-nfl

^^^W
^H^^V AnS

J^^rzrr:

^ s
Peter Norton
John Socha

Digitized by the Internet Archive

in 2012

http://archive.org/details/peternortonsasseOOpete

Peter Norton's Assembly Language Book

for the IBM PC

Other Brady Books by Peter Norton

Inside the IBM PC, Revised and Enlarged
MS-DOS and PC-DOS User's Guide
PC-DOS: The Guide to High Performance Computing

Peter Norton's Assembly Language Book

for the IBM PC

Peter Norton

and

John Socha

A Brady Book
Published by Prentice Hall Press

New York, New York 10023

Copyright © 1986 by Brady Communications Company, Inc.

All rights reserved,

including the right of reproduction

in whole or in part in any form.

Portions of this work were previously published in a work entitled:

Assembly Language Safari On The IBM PC.

A Brady Book
Published by Prentice Hall Press

A Division of Simon & Schuster, Inc.

Gulf + Western Building

One Gulf + Western Plaza

New York, New York 10023

PRENTICE HALL PRESS is a trademark of Simon & Schuster, Inc.

Manufactured in the United States of America

23456789 10

Library of Congress Cataloging-in-Publication Data

Norton, Peter, 1943-

Peter Norton's Assembly Language book for

the IBM PC.

"A Brady book."

Includes index.

1. IBM Personal Computer—Programming.
2. Assembler language (Computer program language)

I. Socha, John, 1958- . II. Title.

III. Title: Assembly language book for the IBM PC.

QA76.8.I2594N66 1986 005.265 86-25363

ISBN 0-13-661901-0

Contents

Part I Machine Language 1

Chapter 1 Debug and Arithmetic 3

Hexadecimal Numbers 4

Debug 4

Hexarithmetic 6

Converting Hexadecimal to Decimal 7

Five-Digit Hex Numbers 11

Converting Decimal to Hex 12

Negative Numbers 14

Bits, Bytes, Words, and Binary Notation 16

Two's Complement—An Odd Sort of Negative Number 18

Summary 20

Chapter 2 8088 Arithmetic 21

Registers as Variables 22
Memory and the 8088 23
Addition, 8088 Style 26
Subtraction, 8088 Style 28
Negative Numbers in the 8088 29
Bytes in the 8088 29
Multiplication and Division, 8088 Style 31
Summary 34

Chapter 3 Printing Characters 35

INT—The Powerful Interrupt 36
A Graceful Exit—INT 20h 38
A Two-Line Program—Putting the Pieces Together 39
Entering Programs 40
MOVing Data into Registers 41
Writing a String of Characters 43
Summary 45

Chapter 4 Printing Binary Numbers 47

Rotations and the Carry Flag 48
Adding With the Carry Flag 49
Looping 50
Writing a Binary Number 53

vi Contents

Chapter 4 continued

The Proceed Command 54

Summary 55

Chapter 5 Printing in Hex 57

Compare and Status Bits 58

Printing a Single Hex Digit 61

Another Rotate Instruction 64

Logic and AND 65

Putting It All Together 67

Summary 67

Chapter 6 Reading Characters 69

Reading One Character 70

Reading a Single-Digit Hex Number 71

Reading a Two-Digit Hex Number 72

Summary 73

Chapter 7 Procedures—Cousins to Subroutines 75

Procedures 76
The Stack and Return Addresses 78
PUSHing and POPping 79
Reading Hex Numbers with More Ease 81

Summary 84

Part II Assembly Language 85

Chapter 8 Welcome to the Assembler 87

A Program Without Debug 88
Creating Source Files 91
Linking 92
Back in Debug 93
Comments 94
Labels 94
Summary 96

Peter Norton's Assembly Language Book vii

Chapter 9 Procedures and the Assembler 99

The Assembler's Procedures 100

The Hex-Output Procedures 103

The Beginnings of Modular Design 106

A Program Skeleton 107

Summary 107

Chapter 10 Printing in Decimal 109

Recalling the Conversion 110

Some Tricks 113

The Inner Workings 114

Summary 116

Chapter 11 Segments 117

Sectioning the 8088's Memory 118

Segment Pseudo-Ops 124

The ASSUME Pseudo-Op 126

Near and Far CALLs 127

More on the INT Instruction 129

Interrupt Vectors 131

Summary 132

Chapter 12 Course Corrections 133

Diskettes, Sectors, and Dskpatch 134

The Game Plan 136

Summary 138

Chapter 13 Modular Design 139

Separate Assembling 140

The Three Laws of Modular Design 144

Summary 147

Chapter 14 Dumping Memory 149

Addressing Modes 150

Adding Characters to the Dump 156

viii Contents

Chapter 14 continued

Dumping 256 Bytes of Memory 158

Summary 163

Chapter 15 Dumping a Disk Sector 165

Making Life Easier 166

Format of the Make File 167

Patching up Disp_sec 168

Reading a Sector 169

Summary 174

Chapter 16 Enhancing the Sector Display 175

Adding Graphics Characters 176

Adding Addresses to the Display 178

Adding Horizontal Lines 182

Adding Numbers to the Display 186

Summary 189

Part III The IBM PCs ROM BIOS 191

Chapter 17 The ROM BIOS Routines 193

VIDEO_IO, the ROM BIOS Routines 194

Moving the Cursor 199

Rewiring Variable Usage 201

Writing the Header 204
Summary 208

Chapter 18 The Ultimate WRITE_CHAR 209

A New WRITE_CHAR 210
Clearing to the End of a Line 212
Summary 215

Chapter 19 The Dispatcher 217

The Dispatcher 218
Reading Other Sectors 224
Philosophy of the Following Chapters 226

Peter Norton's Assembly Language Book ix

Chapter 20 A Programming Challenge 229

The Phantom Cursors 230

Simple Editing 232

Other Additions and Changes to Dskpatch 232

Chapter 21 The Phantom Cursors 235

The Phantom Cursors 236

Changing Character Attributes 241

Summary 243

Chapter 22 Simple Editing 245

Moving the Phantom Cursors 246

Simple Editing 249
Summary 253

Chapter 23 Hex and Decimal Input 255

Hex Input 256
Decimal Input 263
Summary 266

Chapter 24 Improved Keyboard Input 267

A New READ_STRING 268

Chapter 25 In Search of Bugs 275

Fixing DISPATCHER 276
Summary 278

Chapter 26 Writing Modified Sectors 279

Writing to the Disk 280
More Debugging Techniques 282
Building a Road Map 283
Tracking Down Bugs 285
Symdeb 287
Symbolic Debugging 287
Screen Swapping 288

Summary 290

X Contents

Chapter 27 The Other Half Sector 291

Scrolling by Half a Sector 292

Summary 295

Part IV Odds and Ends 297

Chapter 28 Relocation 299

Multiple Segments 300

Relocation 304

.COM versus .EXE Programs 307

Chapter 29 More on Segments and ASSUME 3 1

1

Segment Override 312

Another Look at ASSUME 314

Phase Errors 315

Closing Words 316

Appendix A Guide to the Disk 319

Chapter Examples 320

Advanced Version of Dskpatch 321

Appendix B Listing of Dskpatch 325

Descriptions of Procedures 326

Program Listings for the Dskpatch Procedures 332

Dskpatch Make File 332

CURSOR.ASM 333

DISK_IO.ASM 337

DISPATCH.ASM 341

DISP_SEC.ASM 344

DSKPATCH.ASM 350

EDITOR.ASM 352

KBD_IO.ASM 355
PHANTOM.ASM 365
VIDEO IO.ASM 372

Peter Norton's Assembly Language Book Xl

Appendix C Segment Load Order 381

Segment Load Order 382

Phase Errors 384

EXE2BIN File Cannot be Converted 386

Appendix D Common Error Messages 389

MASM 390

LINK 391

EXE2BIN 392

Appendix E Miscellaneous Tables 393

ASCII Character Codes 394

Extended Keyboard Codes 396
Table of Addressing Modes 397
INT lOh Functions 398
INT 21h Functions 401

Index 403

Trademarks

IBM, IBM PC, XT, and AT are registered trademarks of International Busi-

ness Machines Corporation.

COMPAQ is a registered trademark of Compaq Computer Corporation.

MS-DOS and Microsoft are registered trademarks of Microsoft Corporation.

SideKick and SuperKey are trademarks of Borland International.

ProKey is a trademark of Rosesoft.

Lotus and 1-2-3 are trademarks of Lotus Development Corporation.

Intel is a registered trademark of Intel Corporation.

Limits of Liability and Disclaimer of Warranty
The authors and publisher of this book have used their best efforts in pre-

paring this book and the programs contained in it. These efforts include the

development, research, and testing of the theories and programs to determine

their effectiveness. The authors and publisher make no warranty of any kind,

expressed or implied, with regard to these programs or the documentation

contained in this book. The authors and publisher shall not be liable in any
event for incidental or consequential damages in connection with, or arising

out of, the furnishing, performance, or use of these programs.

Introduction

By the time you finish reading this book, you'll know how to write full-

scale, assembly language programs: text editors, utilities, and so on. Along

the way, you'll learn many techniques that professional programmers use to

make their work simpler. These techniques, which include modular design

and step-wise refinement, will double or triple your programming speed, as

well as help you write more readable and reliable programs.

The technique of step-wise refinement, in particular, takes a lot of the work
out of writing complex programs. If you've ever had that sinking, where-do-I-

start feeling, you'll find that step-wise refinement gives you a simple and nat-

ural way to write programs. And it's also fun!

This book isn't all theory, though. We'll build a program, too. The program

is called Dskpatch (for Disk Patch), and you'll find it useful for several rea-

sons. First of all, you'll see step-wise refinement and modular design at work
in a real program, so you'll have an opportunity to see why these techniques

are so useful. Also, as you'll see shortly, Dskpatch is, in its own right, a gen-

eral-purpose, full-screen editor for disk sectors—one that you can continue to

use both in whole and in part long after you've finished with this book.

Why Assembly Language?

We'll assume that you've picked up this book because you are interested in

learning assembly language. But you may not be exactly certain why you'd

want to learn it.

One reason, perhaps the least obvious, is that assembly language programs
are at the heart of any IBM PC or compatible computer. In relation to all

other programming languages, assembly language is the lowest common de-

nominator. It takes you closer to the machine than higher-level languages do,

so learning assembly language also means learning to understand the 8088
microprocessor inside your computer. We'll teach you the instructions of the

8088 microprocessor, as do the authors of other introductory books, but we'll

go much farther and also cover advanced material that you'll find invaluable

when you start to write your own programs.

Once you understand the 8088 microprocessor inside your IBM PC, many
elements you'll see in other programs and in high-level languages will have
greater meaning for you. For example, you may have noticed that the largest

integer you can have in BASIC is 32767. Where did this number come from?

It's an odd number for an upper limit. But as you'll see later, the number
32767 is directly related to the way your IBM PC stores numbers.

Then, too, you may be interested in speed or size. As a rule, assembly lan-

guage programs are much faster than those written in any other language.

xiv Introduction

Typical assembly language programs are two to three times as fast as equiva-

lent C or Pascal programs, and they generally outpace interpreted BASIC pro-

grams by 15 times or more. Assembly language programs are also smaller.

The Dskpatch program we'll build in this book will be full-grown at about one

kilobyte. Compared with programs in general, that's small. A similar program

written in C or Pascal would be about ten times the size. For these reasons,

among others, the Lotus Development Corporation wrote 1-2-3 entirely in as-

sembly language.

Assembly language programs also provide you with full access to the fea-

tures in your computer. A number of programs, such as SideKick, ProKey,

and SuperKey, stay in memory after you run them. Such programs change the

way your machine works, and they use system features available only to as-

sembly language programs.

Dskpatch

In our work with assembly language, we'll look directly at disk sectors, dis-

playing characters and numbers stored there by DOS in hexadecimal nota-

tion. Dskpatch is a full-screen editor for disks, and it will allow us to change

these characters and numbers in a disk sector. Using Dskpatch you could, for

example, look at the sector where DOS stores the directory for a disk and you

could change file names or other information. Doing so is a good way to learn

how DOS stores information on a disk.

You'll get more out of Dskpatch than just one program, though. Dskpatch
contains about 50 subroutines. Many of these are general-purpose subroutines

you'll find useful when you write your own programs. Thus, not only is this

book an introduction to the 8088 and assembly language programming, it's

also a source of useful subroutines.

In addition, any full-screen editor needs to use features specific to the IBM
PC family of computers. Through the examples in this book, you'll also learn

how to write useful programs for IBM PCs, ATs, or compatible computers,

such as the COMPAQ.

Equipment Requirements

What equipment will you need to run the examples in this book? You'll

need an IBM PC or compatible with at least 128K of memory and one disk

drive. You'll also need version 2.00 or later of PC-DOS (or MS-DOS). And,

Peter Norton's Assembly Language Book XV

starting in Part II, you'll need either the IBM or the Microsoft Macro

Assembler.

Organization of This Book

This book is divided into three parts, each with a different emphasis.

Whether you know anything about microprocessors or not, and whether you

already know assembly language or not, you'll find sections that are of inter-

est to you.

Part I focuses on the 8088 microprocessor. Here, you'll learn the mysteries

of bits, bytes, and machine language. Each of the seven chapters contains a

wealth of real examples that use a program called Debug, which comes on

your DOS disk. Debug will allow us to look inside the famous 8088 micropro-

cessor nestled deep in your IBM PC as it runs DOS. Part I assumes only that

you have a rudimentary knowledge of BASIC and know how to work with

your computer.

Part II, Chapters 8 to 16, moves on to assembly language and how to write

programs in the assembler. The approach is gentle, and rather than cover all

the details of the assembler itself, we'll concentrate on a set of assembler com-

mands we need to write useful programs.

We'll use the assembler to rewrite some of the programs from Part I, and

then move on to begin creating Dskpatch. We'll build this* program slowly, so

you'll learn how to use step-wise refinement in building large programs. We'll

also cover techniques like modular design that help in writing clear programs.

As mentioned, these techniques will simplify programming by removing some
of the complexities normally associated with writing assembly language

programs.

In Part III, which includes Chapters 17 to 29, we'll concentrate on using

more advanced features found in IBM PCs. These features include moving the

cursor and clearing the screen.

In Part III we'll also discuss techniques for debugging larger assembly lan-

guage programs. Assembly language programs grow very quickly and can

easily be two or more pages long without doing very much (Dskpatch will be

longer). Even though we'll use these debugging techniques on programs

larger than a few pages, you'll find them useful with small programs, too.

Now, without further ado, let's jump into the 8088 and take a look at the

way it stores numbers.

Part I

Machine Language

1

DEBUQ AND ARITHMETIC

Hexadecimal Numbers 4

Debug 4
Hexarithmetic 6

Converting Hexadecimal to Decimal 7

Five^Digit Hex Numbers 1

1

Converting Decimal to Hex 12

Negative Numbers 14

Bits, Bytes, Words, and Binary Notation 16

Two's Complement—An Odd Sort of Negative

Number 18

Summary 20

4 Debug and Arithmetic

J-iet's begin our foray into assembly language by learning how computers

count. That may sound simple enough. After all, we count to 11 by starting at

one and counting up: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11.

But a computer doesn't count that way. Instead, it counts to five like this: 1,

10, 11, 100, 101. The numbers 10, 11, 100, and so on are binary numbers,

based a number system with only two digits, one and zero, instead of the ten

associated with our more familiar decimal numbers. Thus, the binary number

10 is equivalent to the decimal number we know as two.

We're interested in binary numbers because they are the form in which

numbers are used by the 8088 microprocessor inside your IBM PC. But while

computers thrive on binary numbers, those strings of ones and zeros can be

long and cumbersome to write out. The solution? Hexadecimal numbers—

a

far more compact way to write binary numbers. In this chapter, you'll learn

both ways to write numbers: hexadecimal and binary. And as you learn how
computers count, you'll also learn about how they store numbers—in bits,

bytes, and words.

If you already know about binary and hexadecimal numbers, bits, bytes,

and words, you can skip to the chapter summary.

Hexadecimal Numbers
Since hexadecimal numbers are easier to handle than binary numbers—at

least in terms of length—we'll begin with hexadecimal (hex for short), and use

DEBUG.COM, a program you'll find on your PC-DOS supplemental disk.

We'll be using Debug here and in later chapters to enter and run machine-

language programs one instruction at a time. Like BASIC, Debug provides a

nice, interactive environment. But unlike BASIC, it doesn't know decimal

numbers. To Debug, the number 10 is a hexadecimal number—not ten. And
since Debug only speaks in hexadecimal, you'll need to learn something about

hex numbers. But first, let's take a short side trip and find out a little about

Debug itself.

Debug
Why does this program carry the name Debug? Bugs, in the computer

world, are mistakes in a program. A working program has no bugs, while a

Peter Norton's Assembly Language Book 5

non-working or "limping" program has at least one bug. By using Debug to

run a program one instruction at a time, and watching how the program

works, we can find mistakes and correct them. This is known as debugging,

hence the name Debug.

According to computer folklore, the term debugging stems from the early

days of computing—in particular, a day on which the Mark I computer at Har-

vard failed. After a long search, the technicians found the source of their trou-

bles: a small moth caught between the contacts of a relay. The technicians

removed the moth and wrote a note in the log book about "debugging" the

Mark I.

Find Debug on your DOS supplemental disk and we'll get started. You
should also have a work disk handy, and you'll want to copy DEBUG.COM to

it. We'll make heavy use of Debug in Part I of this book.

Note: From here on, in interactive sessions like this one, the text

you type will be against a gray background to distinguish it from your

computer's responses. Type the text, press the Enter key, and you should

see a response similar to the ones we show in these sessions. You won't

always see exactly the same responses, because your computer probably

has a different amount of memory from the computer on which we wrote

this book. (We'll begin to encounter such differences in the next chapter.)

In addition, notice that we use uppercase letters in all examples. This is

only to avoid any confusion between the lowercase letter 1 (el) and the

number 1 (one). If you prefer, you can type all examples in lowercase

letters.

Now, with those few conventions noted, start Debug by typing its name af-

ter the DOS prompt (which is A> in this example):

The hyphen you see in response to your command is Debug's prompt symbol,

just as A> is a DOS prompt. It means Debug is waiting for a command.
To leave Debug and return to DOS, just type Q (for Quit) at the hyphen

prompt and press Enter. Try quitting now, if you like, and then return to

Debug:

6 Debug and Arithmetic

-fi

A>DEBUG

Now we can get down to learning about hex numbers.

Hexarithmetic

We'll use a Debug command called H. H is short for Hexarithmetic, and, as

its name suggests, it adds and subtracts two hex numbers. Let's see how H
works by starting with 2 + 3. We know that 2 + 3 = 5 for decimal numbers.

Is this true for hex numbers? Make sure you're still in Debug and, at the hy-

phen prompt, type the following screened text:

-H 3 5

DD05 DDD1

Debug prints both the sum (0005) and the difference (0001) of 3 and 2. The
Hexarithmetic command always calculates the sum and difference of two

numbers, as it did here. And so far, the results are the same for hex and deci-

mal numbers: 5 is the sum of 3 + 2 in decimal, and 1 is the difference (3 - 2).

But sometimes, you can encounter a few surprises.

Number A Number B

\ /
-H 3D5C 2A1Q

676C 134C

/ \
A + B A-B

Figure 1-1. The Hexarithmetic Command.

Peter Norton's Assembly Language Book 7

For example, what if we typed H 2 3, to add and subtract two and three,

instead of three and two? If we try it:

-h a 3

0005 FFFF

we get FFFF instead of - 1, for 2 - 3. Strange as it may look, however, FFFF
is a number. In fact, it is hex for - 1.

We'll come back to this rather unusual - 1 shortly. But first, let's explore

the realm of slightly larger numbers to see how an F can appear in a number.

To see what the Hexarithmetic command does with larger numbers, let's try

nine plus one, which would give us the decimal number 10:

-h q i

000A OOOfl

Nine plus one equals A? That's right: A is the hex number for ten. Now, what
if we try for an even larger number, such as 15:

-in
000F 00D3

If you try other numbers between ten and fifteen, you'll find 16 digits alto-

gether— through F (0 through 9 and A through F). The name hexadecimal

comes from hexa- (6), plus deca- (10) which, when combined, represent 16. The
digits through 9 are the same in both hexadecimal and decimal; the hexa-

decimal digits A through F are equal to the decimals 10 through 15.

Why does Debug speak in hexadecimal? Soon you'll see that we can write

256 different numbers with two hex digits. As you may already suspect, 256

also bears some relationship to the unit known as a byte, and the byte plays a

major role in computers and in this book. You'll find out more about bytes

near the end of this chapter, but for now we'll continue to concentrate on

learning hex, the only number system known to Debug, and hex math.

Converting Hexadecimal to Decimal
Thus far we've looked at single-digit hex numbers. Now, let's see how to

represent larger hex numbers, and how to convert these numbers to decimal

numbers.

Just as with decimal numbers, we build multiple-digit hex numbers by add-

8 Debug and Arithmetic

Decimal Hex digit

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 A
11 B
12 C
13 D
14 E

15 F

igure 1-2. Hexadecimal Digits.

ing more digits on the left. Suppose, for example, we add the number 1 to the

largest single-digit decimal number, 9. The result is a two-digit number, 10

(ten). What happens when we add 1 to the largest single-digit hex number, F?

We get ten again.

But wait, ten in hex is really 16, not ten. This could become rather confus-

ing. We need some way to tell these two tens apart, so from now on we'll place

the letter h after any hex number. Thus, we'll know that lOh is hexadecimal

16 and 10 is decimal ten.

Now we come to the question of how to convert numbers between hex and
decimal. We know that lOh is 16, but how do we convert a larger hex number,

such as D3h, to a decimal number without counting up to D3h from lOh? Or,

how do we convert the decimal number 173 to hex?

We can't rely on Debug for help, because Debug can't speak in decimal. In

Chapter 10, we'll write a program to convert a hex number into decimal nota-

Peter Norton's Assembly Language Book 9

tion so that our programs can talk to us in decimal. But right now, we'll have

to do these conversions by hand, so let's begin by returning to the familiar

world of decimal numbers.

What does the number 276 mean? In grade school, we learned that 276

means we have two hundreds, seven tens, and six ones. Or, more graphically:

3 * 1D0 = 200

? * 10 = 70

fa * 1 = fa

Well, that certainly helps us visualize the meanings of those digits. Can we
use the same graphic method with a hex number? Of course.

Consider the number D3h we mentioned earlier. D is the hexadecimal digit

13, and there are 16 hex digits, versus 10 for decimal, so D3h is thirteen six-

teens and three ones. Or, presented graphically:

D - 13 * Ifa = 20fl

3-3*1= 3

D3h = 511

For the decimal number 276, we multiplied the digits by 100, 10, and 1; for

the hex number D3, we multiplied the digits by 16 and 1. If we had four deci-

mal digits we'd multiply by 1000, 100, 10, and 1. Which four numbers would
we use with four hex digits?

For decimal, the numbers 1000, 100, 10, and 1 are all powers of 10:

10 3 = 1000

10 a = 100

10 1 = 10

10° = 1

We can use exactly the same method for hex digits, but with powers of 16,

instead of 10, so our four numbers are:

ifa
3 - ^oqfa

Ifa
5 = 25b

it 1 = it

ifa
D = i

Let's convert 3AC8h to decimal using the four numbers we just calculated:

Debug and Arithmetic

7 --> 7 * 16 = 112

C --> 12 * 1 = 12

7Ch = 124

3 --> 3 • 256 - 768

F --> 15 * 16 = 240

9 --> 9 • 1 =
9

3F9h - 1,017

A --> 10 • 4 096 = 40, 960

F --> 15 • 256 = 3,840

1 --> 1 * 16 = 16

c — > 12 • 1 = 12

AFlCh = 44,82:

3 —

>

3 * 65 536 = 196,608

B --> 11 • 4 096 = 45,056

8 --> 8 * 256 = 2,048

D --> 13 * 16 = 208

2 -->
?.

• 1 = 2

3B8D2h = 243,922

Figure 1-3. More Hexadecimal to Decimal Conversions.

Peter Norton's Assembly Language Book 1

1

- 3 * <DRb = lEEfiB

j - ID * 25b = ESbO

C - 15 * It = IRE

a - a * i = a

icah = iso^a

Now let's discover what happens when we add hex numbers that have more
than one digit. For this, we'll use Debug and the numbers 3A7h and lEDh:

-H 3A? 1ED

D5R< 01BA

So we see that 3A7h + lEDh = 594h. You can check the results by con-

verting these numbers to decimal and doing the addition (and subtraction, if

you wish) in decimal form; if you're more adventurous, do the calculations

directly in hex.

1 l l

3A7 F451 C

+ 92A + CB03 + D

CD1 1BF54 19

liii i l

BCD8 BCD8

+ FAE9 + 0509

1B7C1 C1E1

Figure 1-4. More Examples of Hexadecimal Addition.

Five-Digit Hex Numbers
So far, hex math is quite straightforward. What happens when we try add-

ing even larger hex numbers? Let's try a five-digit hex number:

H SC3F0 4BCb
* Error

12 Debug and Arithmetic

That's an unexpected response. Why does Debug say we have an error here?

The reason has to do with a unit of storage called the word. Debug's Hex-

arithmetic command works only with words, and words happen to be long

enough to hold four hex digits, no more.

We'll find out more about words in a few pages, but for now, remember that

you can work only with four hex digits. Thus, if you try to add two four-digit

hex numbers, such as COOOh and DOOOh (which should give you 19000h), you

get 9000h, instead:

-H CDOQ DDOO
ROOD FOOD

Debug keeps only the four rightmost digits of the answer.

Converting Decimal to Hex
So far we've only looked at the conversion from hex to decimal. Now we'll

learn how to convert decimal numbers to hex. As we mentioned earlier, in

Chapter 10 we'll create a program to write the 8088's numbers as decimal

numbers; in Chapter 23, we'll write another program to read decimal numbers
into the 8088. But, as with decimal-to-hex conversions, let's begin by learning

how to do the conversions by hand. Again, we'll start by recalling a bit of

grade-school math.

When we first learned division, we would divide 9 by 2 to get 4 with a re-

mainder of 1. We'll use the remainder to convert decimal numbers to hex.

Let's see what happens when we repeatedly divide a decimal number, in

this case 493, by 10:

493 /ID = 4R remainder 3

I

41 I 10 = < remainder R

I

4/10 = D remainder A

The digits of 493 appear as the remainder in reverse order—that is, starting

with the rightmost digit (3). We saw in the last section that all we needed for

our hex-to-decimal conversion was to replace powers of 10 with powers of 16.

Peter Norton's Assembly Language Book 13

1069 / 16 == 66

1

Remainder

Remainder

Remainder

13

66/16 = 4

1

4
""* in

4 / 16 =
r

1069 _
4 2 D h

, 109 / 16 == 3,569

1

Remainder

1
,569 / 16 = 223

1

Remainder

1
223 / 16 = 13

1

Remainder

1
13 / 16 Remainder 13

57, 109

1
D F 1 5 h

Figure 1-5. More Examples of Hexadecimal Conversions.

14 Debug and Arithmetic

For our decimal-to-hex conversion, can we divide by 16 instead of 10? Indeed,

that's our conversion method.

For example, let's find the hex number for 493. Dividing by 16, as shown

here:

r
30 / lb

1 / It

3D remainder 13 (Dh)

1 remainder 14 (Eh)

J

remainder 1 (Ih)
1

1 H

1 E D h

We find that lEDh is the hex equivalent of decimal 493. In other words, keep

dividing by 16, and form the final hex number from the remainders. That's all

there is to it.

Negative Numbers
If you recall, though, we still have an unanswered puzzle in the number

FFFFh. We said that FFFFh is actually - 1. Yet, if we convert FFFFh to deci-

mal, we get 65535. How can that be? Does it behave as a negative number?
Well, if we add FFFFh (alias - 1) to 5, the result should be 4, because 5-1

= 4. Is that what happens? Using Debug's H command to add 5 and FFFFh,
we find:

-H 5 FFFF
0004 000b

Debug seems to treat FFFFh as - 1. But FFFFh won't always behave as - 1 in

programs we'll write. To see why not, let's do this addition by hand.

When we add two decimal numbers, we often find ourselves carrying a one

to the next column, like this:

+ 5 a

15 3

Peter Norton's Assembly Language Book 15

The addition of two hex numbers isn't much different. Adding 3 to F gives

us 2, with a carry into the next column:

Now, watch what happens when we add 5 to FFFFh:

D D 5 h

+ F F F F h

1D0D< k

Since Fh + lh = lOh, the successive carries neatly move a 1 into the far left

position. And, if we ignore this 1, we have the correct answer for 5 — 1:

namely, 4. Strange as it seems, FFFFh behaves as - 1 when we ignore this

overflow. It's called an overflow because the number is now five digits long,

but Debug keeps only the first (rightmost) four digits.

Is this overflow an error, or is the answer correct? Well, yes and yes. We can

choose either answer. Don't the answers contradict each other? Not really,

because we can view these numbers in either of two ways.

Let's suppose we take FFFFh as equal to 65536. This is a positive number,

and it happens to be the largest number we can write with four hex digits. We
say that FFFFh is an unsigned number. It is unsigned because we've just de-

fined all four digit numbers as positive. Adding 5 to FFFFh gives us 10004h;

no other answer is correct. In the case of unsigned numbers, then, an overflow

is an error.

On the other hand, we can also treat FFFFh as a negative number, as

Debug did when we used the H command to add FFFFh to 5. FFFFh behaves

as - 1 as long as we ignore the overflow. In fact, the numbers 8000h through

FFFFh all behave nicely as negative numbers. For signed numbers, as here,

the overflow isn't an error.

The 8088 microprocessor can view numbers either as unsigned or signed;

the choice is yours. There are slightly different instructions for each, and we'll

explore these differences in later chapters as we begin to use numbers on the

8088. Right now, before you can learn to actually write the negative of, say,

3C8h, we need to unmask the bit and see how it fits into the scheme of bytes,

words, and hex.

16 DcHun and Arithmetic

Bits, Bytes, Words, and Binary Notation

It's time for us to dig deeper into the intricacies of your IBM PC—time to

learn about the arithmetic of the 8088: binary numbers. The 8088 micropro-

cessor, with all its power, is rather dumb. It knows only the two digits and 1,

so any number it uses must be formed from a long string of zeros and ones.

This is the binary (base 2) number system.

When Debug prints a number in hex, it uses a small program to convert it's

internal numbers from binary to hexadecimal. In Chapter 5, we'll build such a

program to write binary numbers in hex notation, but first we need to learn

more about binary numbers themselves.

Let's take the binary number 1011b (the b stands for binary). This number
is equal to the decimal 11, or Bh in hex. To see why, multiply the digits of

1011b by the number's base, 2:

Powers of 2:

So that:

5 3 = A

5 5 = i,

gi = g

5° = 1

1 * A = A

D * A =

1*5 = 5

1*1 = 1

1011b = 11 or Bh

Likewise, 1111b is Fh, or 15. And 1111b is the largest unsigned four-digit

binary number we can write, while 0000b is the smallest. Thus, with four

binary digits we can write 16 different numbers. There are exactly 16 hex
digits, so we can write one hex digit for every four binary digits.

A two-digit hex number, such as 4Ch, can be written as 0100 1100b. It's

composed of eight digits, which we separate into groups of four for easy read-

ing. Each one of these binary digits is known as a bit, so a number like 0100
1100b, or 4Ch, is eight bits long.

Very often, we find it convenient to number each of the bits in a long string,

with bit farthest to the right. The 1 in 10b then is bit number 1, and the

leftmost bit in 1011b is bit number 3. Numbering bits in this way makes it

easier for us to talk about any particular one, as we'll want to later on.

A group of eight binary digits is known as a byte, while a group of 16 binary

Peter Norton's Assembly Language Book 17

Binary

0000
0001

0010
0011

0100
0101

0110
0111
1000
1001

1010
1011

1100
1101

1110
1111

Figure 1-6. Binary, Hex, and Decimal for Through F.

digits, or two bytes, is a word. We'll use these terms frequently throughout

this book, because bits, bytes, and words are all fundamental to the 8088.

We can see now why hexadecimal notation is convenient; two hex digits fit

exactly into one byte (four bits per hex digit), and four digits fit exactly into

one word. We can't say the same for decimal numbers. If we try to use two
decimal digits for one byte, we can't write numbers larger than 99, so we lose

the values from 100 to 255—more than half the range of numbers a byte can

hold. And if we use three decimal digits, we must ignore more than half the

three-digit decimal numbers, because the numbers 256 through 999 can't be

contained in one byte.

Decimal Hexadecimal

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 A
11 B
12 C
13 D
14 E
15 F

18 Debug and Arithmetic

Sign

bit Bit

0100 1101 0001 1100
v—I—

'
s—I

—

' v—I

—

' v—I

—

'

4 D 1 A

I Word '

Figure 1-7. A Word is Made Out of Bits and Bytes.

Two's Complement—An Odd Sort of Negative

Number
Now we're ready to learn more about negative numbers. We said before that

the numbers 8000h through FFFFh all behave as negative numbers when we
ignore the overflow. There is an easy way to spot negative numbers when we
write them in binary:

ositive numbers:

QDDDh DDDD DDDD D00D DDDDb

7FFFh 0111 1111 1111 1111b

egative numbers:

ADDOh 10DD DDDD DDDD DDDDb

FFFFh 1111 1111 1111 1111b

Peter Norton's Assembly Language Book 19

In the binary forms for all the positive numbers, the first bit (bit 15) is always

0. For all negative numbers, this first bit is always 1. This difference is, in

fact, the way that the 8088 microprocessor knows when a number is negative:

It looks at bit 15, the sign bit. If we use instructions for unsigned numbers in

our programs, the 8088 will ignore the sign bit, and we will be free to use

signed numbers at our convenience.

These negative numbers are known as the Two's Complement of positive

numbers. Why complement? Because the conversion from a positive number,
such as 3C8h, to its two's-complement form is a two-step process, with the first

being the conversion of the number to its complement.

We won't need to negate numbers often, but we'll do the conversion here

just so you can see how the 8088 microprocessor negates numbers. The conver-

sion will seem a bit strange. You won't see why it works, but you will see that

it does work.

To find the two's-complement form (negative of) any number, first write the

number in binary, ignoring the sign. For example, 4Ch becomes 0000 0000
0100 1100b.

To negate this number, first reverse all the zeros and ones. This process of

reversing is called complementing, and taking the complement of 4Ch, we find

that:

DDDO 0000 0100 1100
becomes:

1111 1111 1011 0011

In the second step of the conversion, we add 1:

1111 1111 1011 0011
+ 1

1111 1111 1011 0100
-ACh = FFB4h

The answer, FFB4h, is the result we get if we use Debug's H command to

subtract 4Ch from Oh.

If you wish, you can add FFB4h to 4Ch by hand, to verify that the answer is

lOOOOh. And from our earlier discussion, you know that you should ignore this

leftmost 1 to get (4C + (-4C) = 0) when you do two's-complement addition.

20 IVbug and Arithmetic

Summary
This chapter has been a fairly steep climb into the world of hexadecimal and

binary numbers, and it may have required a fair amount of mental exercise.

Soon, in Chapter 3, we'll slow down to a gentler pace—once you've learned

enough to converse with Debug in hex. Now, let's take a breath of fresh air

and look back on where we've been and what we've found.

We started out by meeting Debug. In chapters to come, we'll become inti-

mate friends with Debug but, since it doesn't understand our familiar decimal

numbers, we've begun the friendship by learning a new numbering system,

hexadecimal notation.

In learning about hex numbers, you also learned how to convert decimal

numbers to hex, and hex numbers to decimal. We'll write a program to do

these translations later, but for now it's been necessary to learn the language

itself.

Once we'd covered the basics of hexadecimal notation, we were able to

wander off for a look at bits, bytes, words, and binary numbers—important

characters you'll encounter frequently as we continue to explore the world of

the 8088 and assembly language programming.

Finally, we moved on to learn about negative numbers in hex—the two's-

complement numbers. They led us to signed and unsigned numbers, where we
also witnessed overflows of two different types: one in which an overflow

leaves the correct answer (addition of two signed numbers), and one in which

the overflow leads to the wrong answer (addition of two unsigned numbers).

All this learning will pay off in later chapters, because we'll use our knowl-

edge of hex numbers to speak with Debug, and Debug will act as an inter-

preter between us and the 8088 microprocessor waiting inside your IBM PC.

In the next chapter, we'll use the knowledge we've gained so far to learn

about the 8088. We'll rely on Debug again, and use hex numbers, rather than

binary, to talk to the 8088. We'll learn about the microprocessor's registers

—

the places where it stores numbers—and, in Chapter 3, we'll be ready to write

a real program that will print a character on the screen. We'll also learn more
about how the 8088 does its math; by the time we reach Chapter 10, we'll be

able to write a program to convert binary numbers to decimal.

8808 ARITHMETIC

Registers as Variables 22

Memory and the 8088 23

Addition, 8088 Style 26
Subtraction, 8088 Style 28

Negative Numbers in the 8088 29
Bytes in the 8088 29
Multiplication and Division, 8088 Style 3

1

Summary 34

21

22 8088 Arithmetic

K.nowing something of Debug's hex arithmetic and the 8088's binary arith-

metic, we can begin to learn how the 8088 does its math. It uses internal com-

mands called instructions.

Registers as Variables

Debug, our guide and interpreter, knows much about the 8088 microproces-

sor inside the IBM PC. We'll use it to delve into the inner workings of the

8088, and begin by asking Debug to display what it can about small pieces of

memory called registers, in which we can store numbers. Registers are like

variables in BASIC, but they are not exactly the same. Unlike the BASIC
language, the 8088 microprocessor contains a fixed number of registers, and

these registers are not part of your IBM PC's memory.

We'll ask Debug to display the 8088's registers with the R, for Register,

command:

AX=D000 BX=0D00 CX=D00D DX=0DDD SP=FFEE BP=0D00 SI=D0DD DI=QDDD

DS=3?Sb ES=3?5b SS=375b CS=375b IP=01DD NV UP DI PL NZ NA P0 NC

375b:Q100 E4AS IN AL,flS

(You'll probably see different numbers in the second and third lines of your

display; those numbers reflect the amount of memory in a computer. You'll

continue to see such differences, and later we'll learn more about them.)

For now, Debug has certainly given us a lot of information. Let's concen-

trate on the first four registers, AX, BX, CX, and DX, all of which Debug tells

us are equal to 0000, both here and on your display. These registers are the

general-purpose registers. The other registers, SP, BP, SI, DI, DS, ES, SS, CS,

and IP, are special-purpose registers we'll deal with in later chapters.

The four-digit number following each register name is in hex notation. In

Chapter 1, we learned that one word is described exactly by four hex digits.

Here, you can see that each of the 13 registers in the 8088 is one word, or 16

bits, long. This is why computers based on the 8088 microprocessor are known
as 16-bit machines.

We mentioned that the registers are like BASIC variables. That means we
should be able to change them, and we can. Debug's R command does more
than display registers. Followed by the name of the register, the command

Peter Norton's Assembly Language Book 23

tells Debug that we wish to view the register, and then change it. For exam-

ple, we can change the AX register like this:

-R AX

AX 000D

:3A7

Let's look at the registers again to see if the AX register now contains 3A7h:

R

X=D3A? BX=DDDD CX=0DDD DX=0DD0 SP=FFEE BP = 00[]0 SI = 0QDD DI = DDDD
S=37S7 ES=375b SS=3?Sb CS=375b IP=D1DD NV UP DI PL NZ NA PO NC

?5b:DlD0 E4AS IN AL fl5

It does. Furthermore, we can put any hex number into any register with the

R command by specifying the register's name and entering the new number
after the colon, as we just did. From here on, we'll be using this command
whenever we need to place numbers into the 8088's registers.

You may recall seeing the number 3A7h in Chapter 1, where we used

Debug's Hexarithmetic command to add 3A7h and lEDh. Back then, Debug
did the work for us. This time, we'll use Debug merely as an interpreter so we
can work directly with the 8088. We'll give the 8088 instructions to add num-
bers from two registers: We'll place a number in the BX register and then

instruct the 8088 to add the number in BX to the number in AX and put the

answer back into AX. First, we need a number in the BX register. This time,

let's add 3A7h and 92Ah. Use the R command to store 92Ah into BX.

Memory and the 8088
The AX and BX registers should, respectively, contain 3A7h and 92Ah, as

we can verify with the R command:

AX=03A7 BX=0q5A CX=0D0D DX=DD0D SP=FFEE BP=DDDD SI=DQDQ DI=DDQD

DS=3?5b ES=375b SS=375b CS=3?5b IP=Q1DD NV UP DI PL NZ NA PO NC

375t:DlD0 E4A5 IN AL,A5

Now that we have our two numbers in the AX and BX registers, how do we
tell the 8088 to add BX to AX? We put some numbers into the computer's

memory.

24 188 Arithmetic

Your IBM PC probably has at least 128K of memory—far more than we'll

need to use here. We'll place two bytes of machine code into a corner of this

vast amount of memory. In this case, the machine code will be two binary

numbers that tell the 8088 to add the BX register to AX. Then, so we can

watch what happens, we'll execute this instruction with the help of Debug.

Now, where in memory should we place our two-byte instruction, and how
will we tell the 8088 where to find it? As it turns out, the 8088 chops memory
into 64K pieces known as segments. Most of the time, we'll be looking at mem-
ory within one of these segments without really knowing where the segment

starts. We can do this because of the way the 8088 labels memory.

All bytes in memory are labeled with numbers, starting with Oh and work-

ing up. But remember the four-digit limitation on hex numbers? That means

the highest number the 8088 can use is the hex equivalent of 65535, which

means the maximum number of labels it can use is 64K. Even so, we know
from experience that the 8088 can call on more than 64K of memory. How
does it do this? By being a little bit tricky: It uses two numbers, one for each

64K segment, and one for each byte, or offset, within the segment. Each seg-

ment begins at a multiple of 16 bytes, so by overlapping segments and offsets,

the 8088 effectively can label more than 64K of memory. In fact, this is pre-

cisely how the 8088 uses up to one million bytes of memory.

All the addresses (labels) we'll be using are offsets from the start of a seg-

ment. We'll write addresses as a segment number, followed by the offset

within the segment. For example, 3756:0100 will mean we are at an offset of

lOOh within segment 3756h.

Later, in Chapter 11, we'll learn more about segments and see more about

why we have such a high segment number. But for now, we'll simply trust

Debug to look after the segments for us, so that we can work within one seg-

ment without having to pay attention to segment numbers. And for the time

being, we'll refer to addresses only by their offsets. Each of these addresses

refers to one byte in the segment, and the addresses are sequential, so 101h is

the byte following lOOh in memory.
Written out, our two-byte instruction to add BX to AX looks like this: ADD

AX,BX. We'll place this instruction at locations lOOh and lOlh, in whatever

segment Debug starts to use. In referring to our ADD instruction, we'll say

that it's at location lOOh, since this is the location of the first byte of the

instruction.

Debug's command for examining and changing memory is called E, for

Enter. Use this command to enter the two bytes of the ADD instruction, as

follows:

25

Start of

segment
3756

3756:0100

3756:0101

*\

J

ADD AX,BX

Figure 2-1. Our Instruction Begins lOOh Bytes From the Start of the
Segment.

-E 100

375b:0100 E4.01

-E 101

375b:0101 A5.DA

The numbers Olh and D8h are the 8088's machine language for our ADD in-

struction at memory locations 3756:0100 and 3756:0101. The segment number
you see will probably be different, but that difference won't affect our pro-

gram. Likewise, Debug probably displayed a different two-digit number for

each of your E commands. These numbers (E4h and 85h in our example) are

the old numbers in memory at offset addresses lOOh and lOlh of the segment

26 8088 Arithmetic

Debug chose—that is, the numbers are data from previous programs left in

memory when you started Debug. (If you just started your computer, the num-

bers should be 00.)

Addition, 8088 Style

Now your register display should look something like this:

AX=D3A? BX=Qq?A CX=0DD0 DX=DD00 SP=FFEE BP=D000 SI=0D00 DI=0000

DS=3?5b ES=3?Sb SS=37Sb CS=3?5b IP=01D0 NV UP DI PL NZ NA PO NC

375b:DlD0 DIDfl ADD AX,BX

Our ADD instruction is neatly placed in memory, just where we want it to be.

We know this from reading the third line of the display. The first two num-

bers, 3756:0100, give us the address (lOOh) for the first number of our ADD
instruction. Next to this, we see the two bytes for ADD: 01D8. The byte equal

to Olh is at address lOOh, while D8h is at lOlh. Finally, since we entered our

instruction in machine language—numbers that have no meaning to us, but

which the 8088 will interpret as an add instruction—the message ADD
AX,BX confirms that we entered the instruction correctly.

Even though we've placed our ADD instruction in memory, we're not quite

ready to run it through the 8088 (execute it). First, we need to tell the 8088

where to find the instruction.

The 8088 finds segment and offset addresses in two special registers, CS and

IP, which you can see listed in the preceding register display. The segment

number is stored in the CS, or Code Segment, register, which we'll discuss

shortly. If you look at the register display, you can see that Debug has already

set the CS register for us (CS = 3756, in our example). The full starting ad-

dress of our instruction, however, is 3756:0100.

The second part of this address (the offset within segment 3756) is stored in

the IP (Instruction Pointer) register. The 8088 uses the offset in the IP register

to actually find our first instruction. We can tell it where to look by setting

the IP register to the address of our first instruction—IP = 0100.

But the IP register is already set to lOOh. We've been clever: Debug sets

IP to lOOh whenever you first start it. Knowing this, we've deliberately

chosen lOOh as the address of our first instruction and have thus elimi-

nated the need to set the IP register in a separate step. It's a good point to

keep in mind.

Peter Norton's Assembly Language Book 27

Now, with our instructions in place and the registers set correctly, we'll tell

Debug to execute our one instruction. We'll use Debug's T (for Trace) com-

mand, which executes one instruction at a time and then displays the regis-

ters. After each trace, the IP should point to the next instruction. In this case,

it will point to 102h. We haven't put an instruction at 102h, so in the last line

of the register display we'll just see an instruction left from some other

program.

Let's ask Debug to trace one instruction with the T command:

-T

AX=QCD1 BX=095A CX=0D0D DX=D0DD SP=FFEE BP=DDQD SI=0DD0 DI=DD0D
DS=37Sb ES=37Sb SS=375b CS=37Sb IP=D105 NV UP DI PL NZ AC PE NC

37Sb:0105 AC LODSB

That's it. The AX register now contains CDlh, which is the sum of 3A7h and
92Ah. And the IP register points to address 102h, so the last line of the regis-

ter display shows some instruction at memory location 102h, rather than
lOOh.

We mentioned earlier that the instruction pointer, together with the CS
register, always points to the next instruction for the 8088. If we typed T
again, we'd execute the next instruction, but don't do it just yet—your 8088
might head for limbo.

Instead, what if we want to execute our ADD instruction again, adding

92Ah to CDlh and storing the new answer in AX? For that we need to tell the

8088 where to find its next instruction, and want this to be our ADD instruc-

tion at OlOOh. Can we just change the IP register to OlOOh? Let's try it. Use
the R command to set IP to 100, and look at the register display:

AX=DCD1 BX=QqaA CX=DD0D DX=DD00 SP=FFEE BP=DDDD SI=00D0 DI=D0DD
DS=375b ES=375b SS=375b CS=375b IP=D1D0 NV UP DI PL NZ AC PE NC

375b:D100 ADD AX,BX

That's done it. Try the T command again and see if the AX register contains

15FBh. It does.

As you can see here, you should always check the IP register and the in-

struction at the bottom of an R display before using the T command. That
way, you'll be sure the 8088 executes the instruction you want it to.

Now, set the IP register to lOOh once again, make certain the registers con-

tain AX = 15FB, BX = 092A, and let's try subtraction.

2H

AX: 03A7 BX: 092A

rFiook ADD AX,BX
LODSB

Figure 2-2. Before Executing the ADD Instruction.

AX: 0CD1 BX: 092A

k
ADD AX,BX

D^> LODSB
Figure 2-3. After Executing the ADD Instruction.

Subtraction, 8088 Style

We're going to write an instruction to subtract BX from AX so that, after

two subtractions, we'll have 3A7h in AX: the point from which we started

before our two additions. You'll also see how we can save a little effort in

entering two bytes into memory.
When we entered the two bytes for our ADD instruction, we typed the E

command twice: once with OlOOh for the first address, and once with OlOlh for

the second address. The procedure worked, but as it turns out we can actually

enter the second byte without another E command if we separate it from the

first byte with a space. When you've finished entering bytes, pressing the

Peter Norton's Assembly Language Book 29

Enter key will exit from the Enter command. Try this method for our subtract

instruction:

-E 1D0

375t:D10D 01.29 D6.DS

The register display (remember to reset the IP register to lOOh) should now
show the instruction SUB AXfiX, which subtracts the BX register from the

AX register and leaves the result in AX. The order of AX and BX may seem
backward, but the instruction is like the BASIC statement AX = AX - BX
except that the 8088, unlike BASIC, always puts the answer into the first

variable (register).

Execute this instruction with the T command. AX should contain CD1.
Change IP to point back to this instruction, and execute it again (remember to

check the instruction at the bottom of the R display first). AX should now be

03A7.

Negative Numbers in the 8088
In the last chapter, we learned how the 8088 uses the two's-complement

form for negative numbers. Now, let's work directly with the SUB instruction

to calculate negative numbers. Let's put the 8088 to a little test, to see if we
get FFFFh for - 1. We'll subtract one from zero and, if we're right, the sub-

traction should place FFFFh (- 1) into AX. Set AX equal to zero and BX to

one, then trace through the instruction at address OlOOh. Just what we ex-

pected: AX = FFFFh.
While you have this subtraction instruction handy, you may wish to try

some different numbers to gain a better feel for two's-complement arithmetic.

For example, see what result you get for - 2.

Bytes in the 8088
All of our arithmetic thus far has been performed on words, hence the four

hex digits. Does the 8088 microprocessor know how to perform math with

bytes? Yes, it does.

Since one word is formed from two bytes, each general-purpose register can

be divided into two bytes, known as the high byte (the first two hex digits) and
the low byte (the second two hex digits). Each of these registers can be called

30 8088 Arithmetic

by its letter (A through D), followed by X for a word, H for the high byte, or L

for the low byte. For example, DL and DH are byte registers, and DX is a word

register. (This terminology can become somewhat confusing, however, be-

cause words stored in memory have their low byte first, and the high byte

second.)

0100 1101 0001 1100

4 D 1 A

t AX f

Figure 2-4. The AX Register Split into Two Byte Registers (AH and AL).

Let's test byte-sized math with an ADD instruction. Enter the two bytes OOh
and C4h, starting at location OlOOh. At the bottom of the register display,

you'll see the instruction ADD AH, AL, which will add the two bytes of the

AX register and place the result in the high byte, AH.
Next, load the AX register with 0102h. This places Olh in the AH register

and 02h in the AL register. Set the IP register to lOOh, execute the T com-

mand, and you'll find that AX now contains 0302. The result of Olh + 02h is

03h, and that value is in the AH register.

But suppose you hadn't meant to add Olh and 02h. Suppose you really

meant to add Olh and 03h. If the AX register already contained 0102, could

you change the AL register to 03h? No. You would have to change the AX
register to 0103h. Why? Because Debug only allows us to change entire word
registers. There isn't a way to change just the low or high part of a register

with Debug. But, as you saw in the last chapter, this isn't a problem. With
hex numbers, we can split a word into two bytes by breaking the four-digit

hex number in half. Thus, the word 0103h becomes the two bytes Olh and
03h.

To try this ADD instruction, load the AX register with 0103h. Your ADD

Peter Norton's Assembly Language Book 31

AH,AL instruction is still at memory location OlOOh, so reset the IP register

to lOOh and, with Olh and 03h now in the AH and AL registers, trace through

this instruction. This time, AX contains 0403h: 04h, the sum of Olh + 03h is

now in the AH register.

Multiplication and Division, 8088 Style

We've seen the 8088 add and subtract two numbers. Now we'll see that it

can also multiply and divide—clever processor. The multiply instruction is

called MUL, and the machine code to multiply AX and BX is F7h E3h. We'll

enter this into memory, but first a word about the MUL instruction.

Where does the MUL instruction store its answer? In the AX register? Not
quite; we have to be careful here. As you'll soon see, multiplying two 16-bit

numbers can give a 32-bit answer, so the MUL instruction stores its result

in two registers, DX and AX. The higher 16 bits are placed in the DX regis-

ter; the lower, into AX. We can also write this register combination as

DX:AX.
Let's get back to Debug and the 8088. Enter the multiply instruction, F7h

E3h, at location OlOOh, just as you did for the addition and subtraction in-

structions, and set AX = 7C4Bh and BX = lOOh. You'll see the instruction in

the register display as MUL BX, without any reference to the AX register. To
multiply words, as here, the 8088 always multiplies the register you name in

the instruction by the AX register, and stores the answer in the DX:AX pair of

registers.

Before we actually execute this MUL instruction, let's do the multiplication

by hand. How do we calculate lOOh * 7C4Bh? The three digits 100 have the

same effect in hex as in decimal, so to multiply by lOOh simply add two zeros

to the right of a hex number. Thus, lOOh * 7C4Bh = 7C4B00h. This result is

too long to fit into one word, so we'll split it into the two words 007Ch and
4B00h.

Use Debug to trace through the instruction. You'll see that DX contains

the word 007Ch, and AX contains the word 4B00h. In other words, the

8088 returned the result of the word-multiply instruction in the DX:AX
pair of registers. Since multiplying two words together can never be

longer than two words, but will often be longer than one word (as we just

saw), the word-multiply instruction always returns the result in the

DX:AX pair of registers.

And what about division? When we divide numbers, the 8088 keeps both

the result and the remainder of the division. Let's see how the 8088's division

32

DX AX
0000 I I7C4B

BX
0100

r^> MUL BX
LODSB

Figure 2-5. Before Executing the MUL Instruction.

DX AX BX
007C 4B00 0100

k MUL BX
En°I# LODSB
Figure 2-6. After Executing the MUL Instruction.

DX AX
007CI I4B12

BX
0100

DIV BX
LODSB

Figure 2-7. Before Executing the DIV Instruction.

DX AX BX
0012 7C4B 0100

i.
DIV BX

^m LODSB

Figure 2-8. After Executing the DIV instruction.

34 H088 Arithmetic

works. First, place the instruction F7h F3h at OlOOh (and lOlh). Like the

MUL instruction, DIV uses DX:AX without being told, so all we see is DIV
BX. Now, load the registers so that DX = 007Ch and AX = 4B12h; BX should

still contain OlOOh.

Again, we'll first calculate the results by hand: 7C4B12h / lOOh = 7C4Bh,

with 12h left over. When we execute our division instruction at OlOOh, we find

that AX = 7C4Bh, the result of our division, and DX = 0012h, which is the

remainder. (We'll put this remainder to very good use in Chapter 10, when we
write a program to convert decimal numbers to hex by using the remainders,

just as we did in Chapter 1.)

Summary
It's almost time for us to write a real program—one to print a character on

the screen. We've put in our time learning the basics. Let's take a look at the

ground we've covered, and then we'll be all set to push on.

We began this chapter by learning about registers and noticing their simi-

larity to variables in BASIC. Unlike BASIC, however, we saw that the 8088

has a small, fixed number of registers. We concentrated on the four general-

purpose registers, with a quick look at the CS and IP registers, which the 8088

uses to locate segment and offset addresses.

After learning how to change and read registers, we moved on to build some
single-instruction programs by entering the machine codes to add, subtract,

multiply, and divide two numbers with the AX and BX registers. In future

chapters we'll use much of what we learned here, but you won't need to re-

member the machine codes for each instruction.

We also learned how to tell Debug to execute, or trace through, a single

instruction. We'll come to rely heavily on Debug to trace through our pro-

grams. Of course, as our programs grow in size, this tracing will become both

more useful and more tedious. Later on we'll build on our experience and
learn how to execute more than one instruction with a single Debug
command.

Let's turn back to real programs and learn how to make a program that

speaks.

PRINTINQ CHARACTERS

INT—The Powerful Interrupt 36
A Graceful Exit—INT 20h 38
A TwO'Line Program—Putting the Pieces

Together 39
Entering Programs 40
MOVing Data into Registers 41

Writing a String of Characters 43

Summary 45

35

36 Printing Characters

N<ow we know enough to do something solid, so roll up your sleeves and flex

your fingers. We're going to begin by instructing DOS to send a character to

the screen, then we'll move on to even more interesting work. We'll build a

small program with more than one instruction, and from there, learn another

way to put data into registers—this time, from within a program. Now, let's

see if we can get DOS to speak.

INT—The Powerful Interrupt

To our four math instructions, ADD, SUB, MUL, and DIV, we'll add a new
instruction called INT (for Interrupt). INT is something like BASIC'S GOSUB
statement. We'll use the INT instruction to ask DOS to print a character, A,

on the screen for us.

Before we learn how INT works, let's run through an example. Start Debug
and place 200h into AX and 41h into DX. The INT instruction for DOS func-

tions is INT 21h—in machine code, CDh 21h. This is a two-byte instruction

like the DIV instruction in the last chapter. Put INT 21h in memory, starting

at location lOOh, and use the R command to confirm that the instruction reads

INT 21 (remember to set IP to lOOh if it isn't already there).

Now we're ready to execute this instruction, but we can't use the trace com-

mand here as we did in the last chapter. The trace command executes one

instruction at a time, but the INT instruction calls upon a large program in

DOS to do the actual work, much as BASIC programs can call a subroutine

with the GOSUB statement.

We don't want to execute each of the instructions in the entire DOS "sub-

routine" by tracing through it one instruction at a time. Instead, we want to

run our one-line program, but stop before executing the instruction at location

102h. We can do this with Debug's G (for Go) command, followed by the ad-

dress at which we want to stop:

-G IDS

ft

ftX=D2<l BX=DD0D CX=0DD0 DX=Q041 SP=FFEE BP=D0DD SI=D0DD DI=D0DD
DS=3R?0 ES=3q?D SS=3q?0 CS=3q?0 IP=D105 NV UP DI PL NZ Nft PO NC

3q?D:DlD2 ABE5 MOV SP,BP

DOS printed the character A, and then returned control to our small program.

Peter Norton's Assembly Language Book 37

(Remember, the instruction at 102h is just data left behind by another pro-

gram, so you'll probably see something different.)

Our small program here is, in a sense, two instructions long, the second

instruction being whatever is at location 102h. That is, it is something like

this:

INT 21

MOV SP,BP (Or whatever is on your computer)

We'll soon replace this random second instruction with one of our own. For

now, since it isn't anything we want to execute, we told Debug to run our

program, stop execution when it reached this second instruction, and display

the registers when it was done.

And how did DOS know to print the A? The 02h in the AH register told DOS
to print a character. Another number in AH would tell DOS to execute a dif-

ferent function. (We'll see others later, but if you're curious right now, you can

find a list of functions in your DOS Technical Manual.)

As for the character itself, DOS uses the number in the DL register as the

ASCII code for the character to print when we ask it to send a character to the

screen. We stored 41h, the ASCII code for an uppercase A.

In Appendix E, you'll find a chart of ASCII character codes for all the char-

acters your IBM PC can display. For your convenience, the numbers are in

both decimal and hex notation. But since Debug reads hex only, here is a good

chance for you to practice converting decimal numbers to hex. Pick a charac-

ter from the table and convert it to hex on your own. Then, verify your conver-

sion by typing your hex value into the DL register and running the INT
instruction again (remember to reset IP to lOOh).

You may have wondered what would have happened if you had tried the

trace command on the INT instruction. We'll pretend we had not executed the

G 102 command and, instead, trace a short distance through, to see what hap-

pens. If you try this yourself, don't go too far: You may find your IBM PC
doing something strange. After you've traced through a few steps, exit Debug
with the Q command. This will clean up any mess you've left behind.

-R

AX=0500 BX=D0DD CX = QDD0 DX =00a SP=FFEE BP=DD0D SI=00DD DI=D00D

DS=3H?0 ES=3R70 SS=3S70 CS = 3 C1?D IP=01Q0 NV UP DI PL NZ Nft P0 NC

3q?D:DlDQ CD51 INT 21

-T

38 Printing Characters

AX=0500 BX=DDQD CX=DODD DX=00<1 SP=FFEfl BP=OODO SI=DDDD DI=ODDO

DS=39?0 ES=3q?0 SS=3q?D CS=33?5 IP=0180 NV UP DI PL NZ NA PO NC

3375:0160 80FC4B CMP AH,<B

-T

AX=0500 BX=OODQ CX=0000 DX=00<L SP=FFEfl BP=DOOD SI=DODO DI=ODOD

DS=3q?D ES=3q?0 SS=3q?D CS=3375 IP=D163 NV UP DI NG NZ AC PE CY

3375:0163 7405 JZ OlflA

-T

AX=0500 BX=DD00 CX=0000 DX = 00U SP=FFEfl BP=0DQ0 SI=00D0 DI=0DDD

DS=3q?0 ES=3170 SS=3q7D CS=33?5 IP=0165 NV UP DI NG NZ AC PE CY

3375:0165 5E CS:

3375:016b FF5EAB0B JMP FAR [OBAB] CS:OBAB=OBFF
-Q

Notice that the first number of the address changed here, from 3970 to

3372. These last three instructions were part of DOS, and the program for

DOS is in another segment. In fact, there are many, many more instructions

that DOS executes before it prints a single character; even such an apparently

simple task is not as easy as it sounds. Now you can see why we used the G
command to run our program to location 102h. Otherwise, we'd have seen a

torrent of instructions from DOS. (If you're using a different version of DOS
than we used, the instructions you see when you try this may be different.)

A Graceful Exit—INT 20h
Remember that our INT instruction was 21h? If we changed the 21h to a

20h, we'd have INT 20h instead. INT 20h is another interrupt instruction, and

it tells DOS we want to exit our program, so that DOS can take full control

again. In our case, INT 20h will send control back to Debug, since we're exe-

cuting our programs from Debug, rather than from DOS.
Enter the instruction CDh 20h, starting at location lOOh, then try the fol-

lowing (remember to check the INT 20h instruction with the R command):

-G 105

Program terminated normally
-R

AX=0000 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS = 3<170 ES=3S70 SS=3S70 CS=3q?0 IP=0100 NV UP DI PL NZ NA PO NC

3R70:0100 CD50 INT 50

-G

Peter Norton's Assembly Language Book 39

Program terminated normally

AX=000D BX=0000 CX=00D0 DX=DD0D SP=FFEE BP=D0a0 SI=DDD0 DI=DDDD

ds=317o es=3170 SS=3170 CS=3170 IP=0100 NV UP DI PL NZ NA P0 NC

3170:D100 CD5D INT ED

The command G, with no number after it, executes the entire program (which

is just one instruction now, because INT 20 is an exit instruction), and then

returns to the start. IP has been reset to lOOh, where we started. The registers

in this example are only because we started Debug afresh.

We can use this INT 20h instruction at the end of a program to return con-

trol gracefully to DOS (or Debug), so let's put this instruction together with

INT 21h and build a two-line program.

A Two-Line Program—Putting the Pieces

Together
Starting at location lOOh, enter the two instructions INT 21h, INT 20h

(CDh 21h CDh 20h) one after the other. (From now on, we'll always start pro-

grams at location lOOh).

When we had only one instruction we could "list" that instruction with the

R command, but now we have two instructions. To see them, we have the U
(Unassemble) command, which acts like BASIC'S List command:

-0 100

3170:0100 CD51 INT 51

3170:0102 CD50 INT 50

3170:0104 D1flD4b0550Bfl ESC 01,[DI+054t,][DI+BA50]

3170:010A flDOO LEA AX,[BX+SI]

3170:010C 50 PUSH AX

3170:010D EA5A53 CALL 543A

3170:0110 ABE5 MOV SP,BP

3170:0115 03C41A ADD SP,+1A
3170:0115 5D POP BP

3170:011b C3 RET

3170:0117 55 PUSH BP

3170:0116 B3EC02 SUB SP,+05

3170:011B flBEC MOV BP,SP

3170:011D 653E0E0000 CMP BYTE PTR [000E],00

The first two instructions we recognize as the two instructions we just en-

tered. The other instructions are remnants left in memory. As our program
grows, we'll fill this display with more of our own code.

40 Printing Characters

Now, fill the AH register with 02h and the DL register with the number for

any character (just as you did earlier when you changed the AX and DX regis-

ters), then simply type the G command to see your character. For example, if

you place 41h into DL, you'll see:

-G

A

Program terminated normally

Try this a few times before we move on to other ways to set these registers.

Entering Programs
From here on, most of our programs will be more than one instruction long,

and to present these programs we'll use an unassemble display. Our last pro-

gram would thus appear like this:

3170:0100 CD51 INT 21

3170:0105 CD50 INT 50

So far, we've entered the instructions for our programs directly as numbers,

such as CDh, 21h. But that's a lot of work, and, as it turns out, there is a much
easier way to enter instructions.

In addition to the unassemble command, Debug includes an A (Assemble)

command, which allows us to enter the mnemonic, or human-readable, in-

structions directly. So rather than entering those cryptic numbers for our

short program, we can use the assemble command to enter the following:

-A 100

3170:0100 INT 21

3170:0105 INT 50

3170:0104

When you've finished assembling instructions, all you have to do is press the

Enter key, and the Debug prompt reappears.

Here, the A command told Debug that we wished to enter instructions in

mnemonic form, and the 100 in our command told Debug to start entering

instructions at location lOOh. Since Debug's assemble command makes enter-

ing programs much simpler, we'll use it from now on to enter instructions.

Peter Norton's Assembly Language Book 41

MOVing Data into Registers

Although we've relied on Debug quite a bit so far, we won't always run
programs with it. Normally, a program would set the AH and DL registers

itself before an INT 21h instruction. To do this, we'll learn about another in-

struction, MOV. Once we know enough about this instruction, we'll be able to

take our small program to print a character and make a real program—one

that we can execute directly from DOS.
Soon, we'll use the MOV instruction to load numbers into registers AH and

DL. But let's start learning about MOV by moving numbers between regis-

ters. Place 1234h into AX (12h into the AH register, and 34h in AL) and
ABCDh into DX (ABh in DH, and CDh in DL). Now, enter the following in-

struction with the A command:

3qbF:DlDD AAD4 MOV AH,DL

This instruction moves the number in DL into AH by putting a copy of it into

AH; AL is not affected. If you trace through this one line, you'll find that AX
= CD34h and DX = ABCDh. Only AH has changed. It now holds a copy of

the number in DL.

Like the BASIC statement LET AH = DL, a MOV instruction copies a

number from the second register to the first, and for this reason we write AH
before DL. Although there are some restrictions, which we'll find out about

later, we can use other forms of the MOV instruction to copy numbers be-

tween other pairs of registers. For example, reset IP and try this:

3qbF:0100 6SC3 MOV BX,AX

You've just moved words, rather than bytes, between registers. The MOV in-

struction always works between words and words, or bytes and bytes; never

between words and bytes. It makes sense, for how would you move a word into

a byte?

We originally set out to move a number into the AH and DL registers. Let's

do so now with another form of the MOV instruction:

3RbF:0100' B402 MOV AH, 02

This instruction moves 02h into the AH register without affecting the AL reg-

ister. The second byte of the instruction, 02h, is the number we wish to move.

Try moving a different number into AH: Change the second byte to another,

such as Clh, with the E 101 command.

42 Printing Characters

Now, let's put all the pieces of this chapter together and build a longer pro-

gram. This one will print an asterisk, *, all by itself, with no need for us to set

the registers (AH and DL). The program uses MOV instructions to set the AH
and DL registers before the INT 21h call to DOS:

3SbF:01DD B402 MOV AH, 05

3qtF:D105 B2?A MOV DL,EA

3qbF:DlD< CD21 INT il

39bF:010b CD5D INT 20

Enter the program and check it with the U command (U 100). Make sure IP

points to location lOOh, then try the G command to run the entire program.

You should see the * character appear on your screen:

-G

Program terminated normally

Now that we have a complete, self-contained program, let's write it to disk

as a .COM program, so we will be able to execute it directly from DOS. We can

run a .COM program from DOS simply by typing its name. Since our program

doesn't yet have a name, we need to give it one.

The Debug command N (for Name) gives a name to a file before we write it

to disk. Type:

-N HRITESTR.COM

to give the name WRITESTR.COM to our program. This command doesn't

write our file to the disk, though—it simply names the file.

Next, we must give Debug a byte count, telling it the number of bytes in our

program so it will know how much memory we want to write to our file. If you

refer to the unassemble listing of our program, you can see that each instruc-

tion is two bytes long (this won't always be true). We have four instructions,

so our program is 4 * 2 = 8 bytes long. (We could also put Debug's H command
to work, and use hexarithmetic to determine the number of bytes in our pro-

gram. Typing H 108 100, where 108 is the address of the instruction after INT
20, will produce 8.)

Once we have our byte count, we need somewhere to put it. Debug uses the

pair of registers BX:CX for the length of our file, so putting 8h into CX tells

Debug that our program is eight bytes long. Finally, since our file is only

eight bytes long, we also need to set BX to zero.

Peter Norton's Assembly Language Book 43

Once we've set the name and length of our program, we can then write it to

disk with Debug's W (for Write) command:

-w

Writing aOQfl bytes

We now have a program on our disk called WRITESTR.COM, so let's exit

Debug, with a Q, and look for it. Use the DOS Dir command to list the file:

A>DIR HRITESTR.COM

Volume in drive A has no label

Directory of A:\

WRITESTR COM A b-30-fl3 10:05a

1 File(s) 16435 bytes free

The directory listing tells us that WRITESTR.COM is on the disk and that

it's eight bytes long, just as it should be. To run the program, simply type

Writestr at the DOS prompt. You'll see a * appear on the display. Nothing to it.

Writing a String of Characters

As a final example for this chapter, we'll use INT 21h, with a different func-

tion number in the AH register, to write a whole string of characters. We'll

have to store our string of characters in memory and we'll have to tell DOS
where to find the string, so in the process, we'll also learn more about ad-

dresses and memory.
We've already seen that function number 02h for INT 21H prints one char-

acter on the screen. Another function, number 09h, prints an entire string,

and stops printing characters when it finds a $ symbol in the string. Let's put

a string into memory. We'll start at location 200h, so the string won't become
tangled with the code for our program. Enter the following numbers, using the

instruction E 200:

©

4fi b5 bC bC

bF EC ED 44

4F 53 ED bfl

b5 ?E b5 EE

E4

44 Printing Characters

The last number, 24h, is the ASCII code for a $ sign, and it tells DOS that this

is the end of our string of characters. You'll see what this string says in a

minute, when you run the program we'll enter now:

BUFiOlOQ B401 MOV AH,oq

3RbF:0105 BA0005 MOV DX,0500

3qtF:01D5 CDS1 INT 51

3qbF:01Q7 CD50 INT 50

200h is the address of the string we entered, and loading 200h into the DX
register tells DOS where to find the string of characters. Check your program

with the U command, then run it with a G command:

-G

Hello, DOS here.

Program terminated normally

Now that we've stored some characters in memory, it's time to meet another

Debug command, D (for Dump). The dump command dumps memory to the

screen somewhat like U lists instructions. Just as when you use the U com-

mand, simply place an address after D to tell Debug where to start the dump.

For example, type the command D 200 to see a dump of the string you just

entered:

-d eoo

3%F:D500 4fl b5 bC bC fcF 5C 50 <<-<F 53 50 bfi b5 75 b5 5E Hello, DOS here.

3qt,F:D510 54 5D C3 55 A3 EC 30 AB-EC C7 Ob 10 00 00 00 Efl $]C0.10.1G h

After each pair of address numbers (such as 396F:0200 in our example), we
see 16 hex bytes, followed by the 16 ASCII characters for these bytes. Thus, on

the first line you see most of the ASCII codes and characters you typed in. The
ending $ sign you typed is the first character on the second line; the remain-

der of that line is a miscellaneous assortment of characters.

Wherever you see a period (.) in the ASCII window, it represents either a

period or a special character, such as the Greek letter pi. Debug's D command
displays only 96 of the 256 characters in the IBM PC character set, so a period

is used for the remaining 160 characters.

We'll use the D command in the future to check numbers we enter for data,

whether those data are characters or ordinary numbers. (For more informa-

tion, refer to the Debug section in your DOS manual.)

Peter Norton's Assembly Language Book 45

Our string-writing program is complete, so we can write it to the disk. The
procedure is the same one we used to write WRITESTR.COM to disk, except

this time we have to set our program length to a value long enough to include

the string at 200h. Our program begins at line lOOh, and we can see from the

memory dump just performed that the first character (]) following the $ sign

that ends our string is at location 211h. Again, we can use the H command to

find the difference between these two numbers. Find 21 lh - lOOh and store

this value into the CX register, again setting BX to zero. Use the N command
to give the program a name (add the .COM extension to run the program di-

rectly from DOS), then use the W command to write the program and data to a

disk file.

That's it for writing characters to the screen—aside from one final note: You
may have noticed that DOS never sends the $ character. Quite so, because

DOS uses the $ sign to mark the end of a string of characters. That means we
can't use DOS to print a string with a $ in it, but in a later chapter, we'll see

how to print a string with a $ sign or any other special character.

Summary
Our preparations in the first two chapters brought us to the point where we

could work on a real program. In this chapter, we used our knowledge of hex
numbers, Debug, 8088 instructions, and memory to build short programs to

print a character and a string of characters on the screen. In the process we
also learned some new things.

First we learned about INT instructions—not in much detail, but enough
for us to write two short programs. In later chapters, we'll gain more knowl-

edge about interrupt instructions as we increase our understanding of the

8088 microprocessor tucked under the cover of your IBM PC.

Debug has, once again, been a useful and faithful guide. We've been relying

heavily on Debug to display the contents of registers and memory, and in this

chapter we used its abilities even more. Debug ran our short programs with

the G command.
We also learned about the INT 20 exit instruction, and the MOV instruction

for moving numbers into and between registers. The exit instruction (INT 20)

allowed us to build a complete program that we could write to the disk and
run directly from DOS without the help of Debug. And the MOV instruction

gave us the ability to set registers before an INT 21 (print) instruction, so we
could write a self-contained program to print one character.

Finally, we rounded out the chapter with the INT 21h function to print an

46 Printing Characters

entire string of characters. We'll use all these instructions heavily throughout

the rest of this book, but as you saw from using the Debug assemble and unas-

semble commands, you won't need to remember the machine codes for these

instructions.

Now we know enough to move on to printing binary numbers. In the next

chapter we'll build a short program to take one byte and print it on the screen

as a string of binary digits (zeros and ones).

PRINTINQ BINARY
NUMBERS

Rotations and the Carry Flag 48
Adding With the Carry Flag 49
Looping 50
Writing a Binary Number 53

The Proceed Command 54
Summary 55

47

48 Printing Binary Numbers

In this chapter we'll build a program to write binary numbers to the screen

as strings of zeros and ones. We have most of the knowledge we need, and our

work here will help solidify ideas we've already covered. We'll also add a few

instructions to those we know, including another version of ADD and some
instructions to help us repeat parts of our program. Let's begin by learning

something completely new.

Rotations and the Carry Flag

In Chapter 2, when we first encountered hex arithmetic, we found that add-

ing 1 to FFFFh should give lOOOOh, but doesn't. Only the four hex digits to

the right fit into one word; the 1 doesn't fit. We also found that this 1 is an
overflow and that it is not lost. Where does it go? It is put into something
called a flag—in this case, the Carry Flag, or CF. Flags contain one-bit num-
bers, so they can hold either a zero or a one. If we need to carry a one into the

fifth hex digit, it goes into the carry flag.

Let's go back to our ADD instruction of Chapter 3 (ADD AX,BX). Put FFFFh
into AX and 1 into BX, then trace through the ADD instruction. At the end of

the second line of Debug's R display, you'll see eight pairs of letters. The last of

these, which can read either NC or CY, is the carry flag. Right now, because

your add instruction resulted in an overflow of 1, you'll see that the carry status

reads CY (Carry). The carry bit is now 1 or, as we'll say, it's set.

Just to confirm that we've stored a seventeenth bit here (it would be the

ninth bit for a byte addition), add one to the zero in AX by resetting IP to lOOh
and tracing through the add instruction again. The carry flag is affected by
each add instruction, and this time there shouldn't be any overflow, so the

carry should be reset. And, indeed, the carry does become zero, as indicated by
the NC, which stands for No Carry, in the R display.

(We'll learn about the other status flags later, but if you're curious, you can
find information about them right now under Debug's R command in your
DOS manual.)

Let's review the task of printing a binary number, to see how the carry

information could be useful. We print only one character at a time, and want
to pick off the bits of our number, one by one, from left to right. For example,
the first character we would want to print in the number 1000 0000b would be

the one. If we could move this entire byte left one place, dropping the one into

the carry flag and adding a to the right side, then repeat the process for each
succeeding digit, the carry flag would pick off our binary digits. And we can do

Peter Nortoiv's Assembly Language Book 49

just this with a new instruction called RCL {Rotate Carry Left).

To see how it works, enter the short program:

3qflS:0100 D0D3 RCL BL,1

This instruction rotates the byte in BL to the left by one bit (hence the ,1), and
it does so through the carry flag. The instruction is called rotate, because RCL
moves the leftmost bit into the carry flag, while moving the bit currently in

the carry flag into the rightmost bit position (0). In the process, all the other

bits are moved, or rotated, to the left. After enough rotations (17 for a word,

nine for a byte) the bits are moved back into their original positions, and you
get back the original number.

Place B7h in the BX register, then trace through this rotate instruction

several times. Converting your results to binary, you'll see the following:

Carry BL register
1 1 1 D 1 1 1 B?h We start here

1 0110 1110 tEh

11011101 DDh

1 10111010 BAh

10110111 B7h After q rotations

In the first rotation, bit 7 of BL moves into the carry flag, the bit in the carry

flag moves into bit of BL, and all the other bits move left one position. Suc-

ceeding moves continue rotating the bits to the left until, after nine rotations,

the original number is back in the BL register.

We're getting closer to building our program to write binary numbers to the

screen, but we still need a few other pieces. Let's see how we can convert the

bit in the carry flag into the character or 1.

Adding With the Carry Flag

The normal ADD instruction, for example, ADD AX,BX, simply adds two

numbers. Another instruction, ADC {Add with Carry) adds three numbers:

the two, as before, plus one bit from the carry flag. If you look in your ASCII
table, you'll discover that 30h is the character and 31h is the character 1. So,

adding the carry flag to 30h gives the character when the carry is clear, and
1 when the carry is set. Thus, ifDL = and the carry flag is set (1), executing:

ADC DL,30

50

CF BL

110 110

Figure 4-1. The RCL BL.l Instruction.

adds DL (0) to 30h CO') and to lh (the carry) to give 31h CI'). And, with one

instruction we've converted the carry to a character we can print.

At this point, rather than run through an example of ADC, let's wait for our

complete program. Once we've built our program, we'll execute its instruc-

tions one at a time, in a procedure called single-stepping, and through this,

we'll see both how the ADC instruction works and how it fits nicely into our

program. But first we need one more instruction, which we'll use to repeat our

RCL, ADC, and INT 21h (print) instructions eight times: once for each bit in a

byte.

Looping

As mentioned, the RCL instruction isn't limited to rotating bytes; it can also

rotate entire words. We'll use this ability to demonstrate the LOOP instruc-

tion. LOOP is something like a FOR-NEXT loop in BASIC, but it's not as

general. As with BASIC'S FOR-NEXT loop, however, we need to tell LOOP
how many times to run through a loop. We do this by placing our repeat count

in register CX. Each time through the loop, the 8088 subtracts one from CX,
and, when CX becomes zero, LOOP ends the loop.

Why the CX register? The C in CX stands for Count. We can use this regis-

ter as a general-purpose register, but, as you'll see in the next chapter, the CX
register is used with other instructions when we wish to repeat operations.

Here's a simple program that rotates the BX register left eight times, mov-

ing BL into BH (but not the reverse, since we rotate through the carry flag):

Peter Norton's Assembly Language Book 51

3%F:D100 BBCSA3

39bF:0103 BROADO

3qt.F:010fc D1D3

SlbFrOlOfl E2FC

3%F:010A CD2Q

MOV BX,A3CS
MOV CX,Q0Qfl

RCL BX,1

LOOP 010b

INT 50

Our loop starts at 106h (RCL BX,1) and ends with the LOOP instruction. The
number following LOOP (106h) is the address of the RCL instruction. When
we run the program, LOOP subtracts one from CX, then jumps to address

106h if CX is not zero. The instruction RCL BX,1 (rotate carry left, one place)

is executed eight times here, because CX is set to eight before the loop.

0106:

LOOP 0106

Decrement
CX

Continue

when CX

INT 20

Figure 4-2. The LOOP Instruction.

You may have noticed that, unlike the FOR-NEXT loop in BASIC, the

LOOP instruction is at the end of our loop (where we'd put the NEXT state-

ment in BASIC). And the start of the loop, the RCL instruction at 106h, has

no special instruction like FOR has in BASIC. If you know a language like

Pascal, you can see that the LOOP instruction is somewhat akin to the RE-
PEAT-UNTIL pair of instructions, where the REPEAT instruction just labels

the start of the block of instructions to loop through.

There are different ways you could execute our small program. If you simply

52 Printing Binary Number*

type G, you won't see any change in the register display, because Debug saves

all the registers before it starts carrying out a G command. Then, if it en-

counters an INT 20 instruction (as it will in our program), it restores all the

registers. Try G. You'll see that IP has been reset to lOOh (where you started),

and that the other registers don't look any different, either.

If you have the patience, you can trace through this program instead. Tak-

ing it one step at a time, you can watch the registers change at each step:

AX=0000 BX=D000 CX=00D0 DX=000Q SP=FFEE BP=DD00 SI=Q0D0 DI=0DDD
DS=DCDE ES=DCDE SS=DCDE CS=0CDE IP=0100 NV UP DI PL NZ NA P0 NC

0CDE:DLD0 BBC5A3 MOV BX,A3C5
-T

AX=0D00 BX=A3C5 CX=D0D0 DX=D0DD SP=FFEE BP=00D0 SI=0u00 DI=0u00
DS=0CDE ES=DCDE SS=DCDE CS=0CDE IP=01Q3 NV UP DI PL NZ NA PO NC

DCDE:0103 BqOflOD MOV CX,000fl

-T

AX=D00Q BX=A3C5 CX=000fl DX=D0D0 SP=FFEE BP=00DD SI=D0DD DI=0000
DS=0CDE ES=DCDE SS=DCDE CS=DCDE IP=DlDb NV UP DI PL NZ NA PO NC

DCDE:010b D1D3 RCL BX,1

-T

AX=0DDD BX=4?flA CX=000fl DX=DD00 SP=FFEE BP=0DDD SI=0D0D DI=0DD0
DS=DCDE ES=DCDE SS=DCDE CS=DCDE IP=01Dfl OV UP DI PL NZ NA PO CY

0CDE:010fl E5FC LOOP 010b

-T

AX=DDDD BX=<?flA CX=0DQ? DX=DD00 SP=FFEE BP=DD0D SI=D0D0 DI=D0D0
DS=0CDE ES=0CDE SS=0CDE CS=DCDE IP=DlQb OV UP DI PL NZ NA PO CY

0CDE:D10b D1D3 RCL BX,1

AX=D0D0 BX=C551 CX=DDD1 DX=00DD SP=FFEE BP=D000 SI=DD00 DI=D000
DS=DCDE ES=0CDE SS=0CDE CS=0CDE IP=01Dfl NV UP DI PL NZ NA PO CY

0CDE.-010A E5FC LOOP DlOb

-T

AX=0DDD BX=C551 CX=0QDD DX=DDDD SP=FFEE BP=D0DD SI=D0D0 DI=0D00
DS=0CDE ES=DCDE SS=DCDE CS=DCDE IP=D1DA NV UP DI PL NZ NA PO CY

DCDE:01DA CD5D INT 50

Alternatively, you can type G 10A to execute the program up to, but not in-

cluding, the INT 20 instruction at lOAh; then the registers will show the re-

sult of the program.

Peter Norton's Assembly Language Book 53

If you try this, you'll see CX = and either BX = C551 or BX = C5D1,
depending on the value of the carry flag before you ran the program. The C5
our program's MOV instruction put into BL at the start is now in the BH
register, but BL doesn't contain A3, because we rotated BX through the carry.

Later, we'll see other ways of rotating without going through the carry. Let's

get back to our goal of printing a number in binary notation.

Writing a Binary Number
We've seen how to strip off binary digits one at a time, and convert them to

ASCII characters. If we add an INT 21h instruction to print our digits, our

program will be done. Here's the program; the first instruction sets AH to 02

for the INT 21h function call (recall, 02 tells DOS to print the character in the

DL register):

3965:0100 B402 MOV AH, 02

3985:010? B90800 MOV cx,oooa
3985:0105 B500 MOV DL,00
3965:010? D0D3 RCL BL,1

3965:0109 60D530 ADC DL,30

3965:010C CD51 INT 51

3985:010E EZF5 LOOP 0105

3985:0110 CD50 INT 50

We've seen how all the pieces work, and put them together now. Use rotate BL
(with the instruction RCL BL,1) to pick off the bits of a number, pick a

number you want printed in binary, load it into the BL register, then run this

program with a G command. After the INT 20h instruction, the G command
restores the registers to the values they had before, so BL still contains the

number you see printed in binary.

The ADC DL,30 instruction in our program converts the carry flag to a zero

or a one character. The instruction MOV DL,0 sets DL to zero first, then the

ADC instruction adds 30h to DL, and then finally adds the carry. Since 30h is

the ASCII code for a 0, the result of ADC DL,30 is the code for when the

carry is clear (NC) or 1 if the carry is set (CY).

If you want to see what happens when you run this program, trace through

it. Keep in mind that you'll need to be a bit careful in single-stepping through

it with the T command. It contains an INT 21h instruction and, as you saw
when we first encountered INT 2In, DOS does a great deal of work for that

one instruction. That's why you can't use T on the INT 21.

54 Printing Binary Numbers

You can, however, trace through all the other instructions in this pro-

gram except the final INT 20, which won't concern you until the very end.

During your tracing, each time you loop through and reach the INT 21h
instruction, type G 10E. Your G command, followed by an address, will tell

Debug to continue running the program, but to stop when IP becomes the

address (10E) you entered. That is, Debug will execute the INT 21h instruc-

tion without your tracing through it, but stops before executing the LOOP
instruction at 10E, so you can return to tracing through the program. (The

number you type after G is known as a breakpoint in the DOS manual;

breakpoints are very useful when you're trying to understand the inner

workings of programs.)

Finally, terminate the program when you reach the INT 20h instruction by

typing the G command by itself.

The Proceed Command
Whether or not you tried out the instructions to trace through our program,

you've seen that an instruction like G 10E allows us to trace over an INT
instruction that starts at, say, lOCh. But that means each time we want to

trace over an INT instruction, we need to find the address of the instruction

immediately following the INT instruction.

As it turns out, there is a Debug command that makes tracing through INT
instructions much simpler. The P (for Proceed) command does all the work for

us. To see, trace through the program, but this time, when you reach the INT
21h instruction, type P, rather than G 10E, as described before.

We'll make heavy use of the P command in the rest of this book, because it's

a very nice way to trace over commands like INT, which call on large pro-

grams, such as the routines inside DOS. Before going on, though, we should

mention one thing about the P command—it wasn't documented in the DOS
manuals for versions of DOS before 3.00. This lack of documentation may
have been an oversight or, more likely, because Microsoft didn't have time to

test the P command completely before delivering version 2.00 of DOS. What-
ever the reason, if you have a version of DOS before 3.00, you should be aware
that the P command may not work all the time—although we've never had
any problems using it.

That's about all we'll do for printing binary numbers as strings of zeros and
ones, but here's a simple exercise for you to practice on: See if you can modify

this program to print a b at the end of our binary number (Hint: The ASCII
code for b is 62h).

Peter Norton's Assembly Language Book 55

Summary
In this chapter, we had a chance to catch our breath a bit after our hard

work on new concepts in Chapters 1 through 3. So where nave we been, and
what have we seen?

We had our first encounter with flags, and had a look at the carry flag,

which was of special interest here, because it made our job of printing a binary

number quite simple. It did so as soon as we learned about the rotate instruc-

tion RCL, which rotates a byte or word to the left, one bit at a time.

Once we learned about the carry flag and rotating bytes and words, we
tucked a new version of the add instruction, ADC, under our belts and were

almost ready to build our program to print a number in binary notation.

This is where the LOOP instruction entered the scene. By loading the CX
register with a loop count, we could keep the 8088 executing a loop of instruc-

tions a number of times. We set CX to 8, to execute a loop eight times.

That's all we needed to write our program. We'll use these tools again in the

following chapters. In the next chapter we'll print a binary number in hexa-

decimal notation, just as Debug does, so by the time we finish Chapter 5, we'll

have a better idea of how Debug translates numbers from binary to hex. Then,

we'll move on to the other end of Debug: reading the numbers typed in hex

and converting them to the 8088's binary notation.

PRINTINQ IN HEX

Compare and Status Bits 58
Printing a Single Hex Digit 61

Another Rotate Instruction 64
Logic and AND 65

Putting It All Together 67

Summary 67

57

58 Printing in Hex

o,ur program in Chapter 4 was fairly straightforward. We were lucky, be-

cause the carry flag made it easy to print a binary number as a string of and
1 characters. Now we'll move on to printing numbers in hex notation. Here,

our work will be a bit less direct, and we'll begin to repeat ourselves in our

programs, writing the same sequence of instructions more than once. But that

type of repetition won't last forever: In Chapter 7, we'll learn about proce-

dures, or subroutines, that eliminate the need to write more than one copy of a

group of instructions. First, let's learn some more useful instructions and see

how to print numbers in hex.

Compare and Status Bits

In the last chapter, we learned something about status flags and examined
the carry flag, which is represented as either CY or NC in Debug's R display.

The other flags, which are equally useful, keep track of the status for the last

arithmetic operation. There are eight flags altogether, and we'll learn about

them as they are needed.

Recall that CY means the carry flag is 1, or set, whereas NC means the

carry flag is 0. In all flags 1 means true and means false. For example, if you
did a SUB instruction with a result of 0, the flag known as the Zero Flag

would be set to 1—true—and you would see it in the R display as ZR (Zero).

Otherwise, the zero flag would be reset to —NZ (Not Zero).

Let's look at an example that tests the zero flag. We'll use the SUB instruc-

tion to subtract two numbers. If the two numbers are equal, the result will be

zero, and the zero flag will appear as ZR on your display. Enter the following

subtract instruction:

3qbF:010D ?qDA SUB RX,BX

Now, trace through the instruction with a few different numbers, watching for

ZR or NZ to appear in the zero flag. If you place the same number (F5h in the

following example) into both the AX and BX registers, you'll see the zero flag

set after one subtract instruction, and cleared after another:

Peter Norton's Assembly Language Book 59

AX=00FS BX=00FS CX=0DD0 DX=DQDD SP=FFEE

DS=QCDE ES=DCDE SS=0CDE CS=DCDE IP=D10D
0CDE:0100 5RDfl

-T

SUB AX, BX

AX=DD0D BX=DDF5 CX=DDDD DX=D0DD SP=FFEE

DS=0CDE ES=0CDE SS=0CDE CS=DCDE IP=01D5
0CDE:0105 3F AAS

-R IP

IP 0102

:100

-R

AX=000D BX=00F5 CX=DQ0D DX=DDDD SP=FFEE

DS=0CDE ES=0CDE SS=DCDE CS=DCDE IP=01DD
0CDE:010D 59DA

-T

SUB AX, BX

AX=FF0B BX=00F5 CX=0D0D DX=DDD0 SP=FFEE

DS=0CDE ES=0CDE SS=DCDE CS=DCDE IP=D105

0CDE:0102 3F AAS

iP=QDDD SI=DDDD DI=DD0D
NV UP DI PL NZ NA PO NC

!P=D0DD SI=D0DQ DI=D00D
NV UP DI PL ZR NA PE NC

iP=DD0D SI=DDDD DI=DDDD
NV UP DI PL ZR NA PE NC

BP=DD0D SI=DDDD DI=0DDD
NV UP DI NG NZ AC PO CY

If we subtract one from zero, the result is FFFFh, which, as we saw in Chap-
ter 1, is - 1 in two's-complement form. Can we tell from the R display whether

a number is positive or negative? Yes, another flag, called the Sign Flag,

changes between NG (Negative) and PL (Plus), and is set to 1 when a number
is a negative two's-complement number.

And another new flag we'll be interested in is the Overflow Flag, which
changes between OV (Overflow) when the flag is 1 and NV (No Overflow)

when the flag is 0. The overflow flag is set if the sign bit changes when it

shouldn't. For example, if we add two positive numbers, such as 7000h and
6000h, we get a negative number, DOOOh, or - 12288. This is an error because

the result overflows the word. The result should be positive, but isn't, so the

8088 sets the overflow flag. (Remember, if we were dealing with unsigned

numbers, this wouldn't be an error, in which case we would ignore the over-

flow flag.)

Try several different numbers to see if you can set and reset each of these

flags, trying them out until you're comfortable with them. For the overflow,

subtract a large negative number from a large positive number— for example,

7000h - 8000h, since 8000h is a negative number equal to - 32768 in two's-

complement form.

Now we're ready to look at a set of instructions called the conditionaljump
instructions. They allow us to check status flags more conveniently than

60 Printing in Hex

we've been able to so far. The instruction JZ (Jump if Zero) jumps to a new
address if the last arithmetic result was zero. Thus, if we follow a SUB in-

struction with, say, JZ 15A, a result of zero for the subtraction would cause

the 8088 to jump to, and start executing, statements at address 15Ah, rather

than at the next instruction.

The JZ instruction tests the zero flag, and, if it's set (ZR), does a jump just

like a jump with the BASIC statement IF A = THEN 100. The opposite of

JZ is JNZ (Jump if Not Zero). Let's look at a simple example that uses JNZ
and subtracts one from a number until the result is zero:

aqtFroioo acoi SUB AL,D1

3qbF:0102 ?5FC JNZ 0100

3qbF:01CK CD20 INT B0

Put a number like three in AL, so you'll go through the loop a few times,

then trace through this program, one instruction at a time, to see how
conditional branches work. We put the INT 20h instruction at the end so

typing G by accident won't drop off the end of our program: It's a good
defensive practice.

You may have noticed that using SUB to compare two numbers, as we just

did, has the potentially undesirable side effect of changing the first number.
Another instruction, CMP (Compare) allows us to do the subtraction without

storing the result anywhere and without changing the first number. The re-

sult is used only to set the flags, so we can use one of the many conditional

jump instructions after a compare. To see what happens, set both AX and BX
to the same number, F5h, and trace through this instruction:

IP=0000 SI=0D00 DI=0000
NV OP DI PL ZR NA PE NC

The zero flag is now set (ZR), but F5h remains in both registers.

Let's use CMP to print a single hex digit. We'll create a set of instructions

that use flags to alter the flow of our program, as LOOP did in the last chapter,

in a manner similar to BASIC'S IF-THEN statement. This new set of instruc-

tions will use the flags to test for such conditions as less than, greater than, and

-A 100

0CDE:0100 CMP AX BX

0CDE:010?
-T

AX=00F5 BX=00F5 CX=0000 DX=0000 SP=FFEE

DS=0CDE ES=0CDE SS=0CDE CS=0CDE IP=D102

0CDE:0105 3F AAS

Peter Norton's Assembly Language Book 61

so on. We won't have to worry about which flags are set when the first number
is less than the second; the instructions know which flags to look at.

Printing a Single Hex Digit

Let's start by putting a small number (between and Fh) into the BL regis-

ter. Since any number between and Fh is equivalent to one hex digit, we can

convert our choice to a single ASCII character and then print it. Let's look at

the steps we need to take to do the conversion.

The ASCII characters through 9 have the values 30h through 39h; the

characters A through F, however, have the values 41h through 46h. Herein

lies a problem: These two groups of ASCII characters are separated by seven

characters. As a result, the conversion to ASCII will be different for the two
groups of numbers (0 through 9 and Ah through Fh), so we must handle each

group differently. A BASIC program to do this two-part conversion looks like

this:

100 IF BL < &HDA

THEN BL = BL + &H30

ELSE BL = BL + &H3?

(Notice that we wrote OAh for the number A, rather than AH, so we wouldn't

confuse the number Ah with the register AH. We'll often place a zero before

hex numbers in situations like this, that could be confusing. In fact, since it

never hurts to place a zero before a hex number, it's a good idea to place a zero

before all hex numbers.)

Our BASIC conversion program is fairly simple. Unfortunately, the 8088's

machine language doesn't include an ELSE statement; it's far more primitive

than BASIC is, so we'll need to be somewhat clever. Here's another BASIC
program, this time one that mimics the method we'll use for our machine-

language program:

100 BL = BL + &H30

110 IF BL >= &H3A

THEN BL = BL + &H7

You can convince yourself that this program works by trying it with some
choice examples. The numbers 0, 9, Ah, and Fh are particularly good because

62 Printing in Hex

Character ASCII Code (Hex)

/ 2F

30
1 31

2 32

3 33

4 34

5 35
6 36
7 37
8 38

9 39

3A
>

3B
< 3C
= 3D
> 3E
9 3F

@ 40
A 41

B 42

C 43

D 44

E 45
F 46

G 47

Figure 5-1. Partial ASCII Table Showing the Characters Used by Hex
Digits.

Peter Norton's Assembly Language Book 63

these four numbers cover all the boundary conditions—areas where we often

run into problems.

Here, and Fh are, respectively, the smallest and largest single-digit hex
numbers, so by using and Fh, we check the bottom and top of our range. The
numbers 9 and OAh, although next to each other, require two different conver-

sion schemes in our program. By using 9 and OAh, we confirm that we've cho-

sen the correct place to switch between these two conversion schemes.

The machine-language version of this program contains a few more steps,

but it's essentially the same as the BASIC version. It uses the CMP instruc-

tion, as well as a conditional jump instruction called JL {Jump ifLess Than).

Here's the program to take a single-digit hex number in the BL register and
print it in hex:

5:0100 B405 MOV AH, 05

5:0102 flflDA MOV DL,BL
5:0104 aoczao ADD DL,3D
5:010? A0FA3A CMP DL,3A

5:010A 7C03 JL 010F

5:010C 60C507 ADD DL,07

5:010F CD51 INT El

5:0111 CD50 INT 50

The CMP instruction, as we saw before, subtracts two numbers (DL - 3Ah) to

set the flags, but it doesn't change DL. So if DL is less than 3Ah, the JL 10F
instruction skips to the INT 21h instruction at lOFh. Place a single-digit hex
number in BL and trace through this example to get a better feeling for CMP
and our algorithm to convert hex to ASCII. Remember to use either the G
command with a breakpoint or the P command when you run the INT
instructions.

0107 CMP DL,3A

010A JL 010F

01 0C ADD DL,07

01 OF INT 21

Jump if

DL<3Ah

Figure 5-2. The JL Instruction.

64 Printing in Hex

Another Rotate Instruction

Our program works for any single-digit hex number, but if we wish to print

a two-digit hex number, we need a few more steps. We need to isolate each

digit (four bits, which are often called a nibble) of this two-digit hex number.

In this section, we'll see that we can easily isolate the first, or higher, four

bits, and in the next section, we'll encounter a concept known as a logical

operation, which we'll use to isolate the lower four bits—the second of our two

hex digits.

To begin, recall that the RCL instruction rotates a byte or a word to the left,

through the carry flag. In the last chapter we used the instruction RCL BL,1,

in which the one told the 8088 to rotate BL by one bit. We can rotate by more
than one bit if we want, but we can't simply write the instruction RCL BL,2.

(Note: Although RCL BL,2 isn't a legal 8088 instruction, it works just fine

with the 80286 processor found in IBM ATs. But since the older IBM PCs are

more common than ATs, it's best to write your programs for the lowest com-

mon denominator — the older 8088.) For rotations by more than one bit, we
must place a rotate count in the CL register.

The CL register is used here in much the same way as the CX register is

used by the LOOP instruction to determine the number of times to repeat a

loop. Use CL for the number of times to rotate a byte or word, rather than the

CX register, because it makes no sense to rotate more than 16 times; thus the

eight-bit CL register is more than large enough to hold our maximum shift

count.

How does all this tie in with printing a two-digit hex number? Our plan now
is to rotate the byte in DL four bits to the right. To do so, we'll use a slightly

different rotate instruction called SHR (Shift Right). Using SHR, we will be

able to move the upper four bits of our number to the rightmost nibble (four

bits).

DL CF

110 110

Figure 5-3. The SHR DL,1 Instruction.

We also want the upper four bits ofDL set to zero, so that the entire register

becomes equal to the byte we are shifting into the right nibble. If we were to

Peter Norton's Assembly Language Book 65

enter SHR DL,1, our instruction would move the byte in DL one bit to the

right, and at the same time, it would move bit into the carry flag, while

shifting a zero into bit 7 (the highest, or leftmost, bit in DL). If we do that

three more times, we'll have just what we want: The upper four bits will end

up shifted down into the lower four bits, while the upper four bits will all have

had zeroes shifted into them. We can do all that shifting in one instruction,

using the CL register as the shift count. By setting CL to four before the in-

struction SHR DL,CL, we will ensure that DL becomes equal to the upper hex

digit.

Let's see how this works. Place 4 into CL and 5Dh into DL, then enter and
trace through the following SHR instruction:

3165:0100 D5EA SHR DL,CL

DL should now be 05h, which is the first digit in the number 5Dh, and we can

now print this digit with a program like the one we used earlier. Thus, putting

together the pieces we have so far, we can build the following program to take

a number in the BL register and print the first hex digit:

3965:0100 B402 MOV AH, 05

3985:0102 66DA MOV DL,BL
3965:0104 B104 MOV CL,04

3965:010b D?EA SHR DL,CL

3965:0106 60C530 ADD DL,30

3965:010B 80FA3A CMP DL,3A

3965:010E 7C03 JL 0113

3965:0110 60C207 ADD DL,07

3965:0113 CDE1 INT SI

3965:0115 CD20 INT 20

Logic and AND
Now that we can print the first of the two digits in a hex number, let's see

how we can isolate and print the second digit. Here, we'll learn how to clear

the upper four bits of our original (not shifted) number to zero, leaving DL
equal to the lower four bits. It's simple: Set the upper four bits to zero with an

instruction called AND. The AND instruction is one of the logical instruc-

tions—those that have their roots in formal logic. Let's see how AND works.

In formal logic, we can say, "A is true, if B and C are both true." But if

either B or C is false, then A must also be false. If we take this statement,

substitute one for true and zero for false, then look at the various combina-

66 Printing in Hc\

tions of A, B, and C, we can create what is known as a truth table. Here's the

truth table for ANDing two bits together:

AND F T

F F F

T F T

AND 1

D D

1 1

Down the left and across the top are the values for the two bits. The results for

the AND are in the table, so you see that AND 1 gives 0.

The AND instruction works on bytes and words by ANDing together the

bits of each byte or word that are in the same position. For example, the state-

ment AND BL,CL successively ANDs bits of BL and CL, bits 1, bits 2, and so

on, and places the result in BL. Let's make this clearer with an example in

binary:

10 11 1 D 1

AND D 1 1 1 110

Furthermore, by ANDing OFh to any number, we can set the upper four bits to

zero:

111 10 11
AND 0000 1111

Let's put this logic into a short program that takes the number in BL, iso-

lates the lower hex digit by ANDing OFh to the upper four bits, and then

prints the result as a character. We saw most of the details of this program
when we printed the upper hex digit; the only new detail is the AND
instruction.

3=165:0100 B405 MOV AH, 05

3965:0105 66DA MOV DL,BL
3965:0104 80E50F AND DL,0F
3965:0107 80C530 ADD DL,30
3965:010A 60FA3A CMP DL,3A
3965:010D 7C03 JL 0115
396S:010F 60C50? ADD DL,07
3965:0115 CD51 INT 51

3965:0114 CD50 INT 50

Try this with some two-digit hex numbers in BL before we move on to put

Peter Norton's Assembly Language Book 67

the pieces together to print both digits. You should see the rightmost hex digit

of your number in BL on the screen.

Putting It All Together
There really isn't much to change when we put all the pieces together. We

need only change the address of the second JL instruction we used to print the

second hex digit. Here is the complete program:

3965:0100 B<05 MOV AH, 05

3965:0105 66DA MOV DL,BL
3165:0104 B10A MOV CL,04

3965:010fc. D5EA SHR DL,CL
3965:0108 80C530 ADD DL,30

3965:010B 60FA3A CMP DL,3A

3965:010E 7C03 JL 0113

3985:0110 80C507 ADD DL,07

3965:0113 CD51 INT 51

3165:0115 86DA MOV DL,BL
3965:011? 60E50F AND DL,0F

3985:011A B0C530 ADD DL,30

3985:011D 60FA3A CMP DL,3A
3965:0150 7C03 JL 0155

3965:0122 60C207 ADD DL,07

3965:0155 CD51 INT 51

3965:0157 CD20 INT 50

Once you've entered this program, you'll have to type U 100, followed by U,

to see the entire unassembled listing. Note that we've repeated one set of five

instructions: the instructions at 108h through 113h, and llAh through 125h.

In Chapter 7 we'll see how to write this sequence of instructions just once by

using an instruction similar to BASIC'S GOSUB statement.

Summary
In this chapter, we learned more about how Debug translates numbers from

the 8088's binary format to a hex format we can read. What did we add to our

growing store of knowledge?

First, we learned about some of the two-letter flags we see on the right side

of the register (R) display. These status bits give us a great deal of information

about our last arithmetic operation. By looking at the zero flag, for example,

68 Printing in Hex

we could tell whether the result of the last operation was zero. We also found

we could compare two numbers with a CMP instruction.

Next, we learned how to print a single-digit hex number. And, armed with

this information, we went on to learn about the SHR instruction, which ena-

bled us to move the upper digit of a two-digit hex number into the lower four

bits of BL. That done, we could print the digit, just as we've done before.

Finally, we found that the AND instruction allowed us to isolate the lower

hex digit from the upper. And, putting all these pieces together, we wrote a

program to print a two-digit hex number.

We could have continued on to print a four-digit hex number, but at this

point, we'd find ourselves repeating instructions. Before we try to print a four-

digit hex number, we'll learn about procedures in Chapter 7. Then, we'll know
enough to write a procedure to do the job. By then we'll also be ready to learn

about the assembler—a program that will do much of our work for us. But
now, let's move on to reading hex numbers.

READINQ CHARACTERS

Reading One Character 70

Reading a Single^Digit Hex Number 71

Reading a TwoDigit Hex Number 72

Summary 73

69

70 I

Nolow that we know how to print a byte in hex notation, we're going to re-

verse the process by reading two characters—hex digits—from the keyboard
and converting them into a single byte.

Reading One Character

The DOS INT 21h function call we've been using has an input function,

number 1, that reads a character from the keyboard. When we learned about

function calls in Chapter 4, we saw that the function number must be placed

in the AH register before an INT 21h call. Let's try function 1 for INT 21h.

Enter INT 21h at location OlOOh:

3qbF:DlDD CD21 INT 21

Then, place Olh into AH and type either G 102 or P to run this one instruc-

tion. Nothing happens? It doesn't seem to—all you'll see is the blinking cur-

sor. But actually, DOS has paused and is waiting until you press a key (don't

do so yet). Once you press a key, DOS will place the ASCII code for that char-

acter into the AL register. We'll use this instruction later, to read the charac-

ters of a hex number, but right now, let's see what happens when we press a

key like PI.

Try pressing the Fl key. DOS will return a in AL, and you'll also see a

semicolon (;) appear just after Debug's hyphen prompt.

This is what happened. Fl is one of a set of special keys with extended codes,

which DOS treats differently from the keys representing normal ASCII char-

acters. (You'll find a table listing these extended codes in Appendix E, as well

as at the end of your BASIC manual.) For each of these special keys, DOS
sends two characters, one right after the other. The first character returned is

always zero, indicating that the next character is the scan code for a special

key.

To read both characters, we'd need to execute INT 21h twice. But in our

example, we read only the first character, the zero, and left the scan code in

DOS. When Debug finished with the G 102 (or P) command, it began to read

Peter Norton's Assembly Language Book 71

characters, and the first character it read was the scan code left behind from
the Fl key: namely, 59, which is the ASCII code for a semicolon.

Later, when we develop our Dskpatch program, we'll begin to use these ex-

tended codes to bring the cursor and function keys to life. Until then, we'll just

work with the normal ASCII characters.

Reading a Single-Digit Hex Number
Let's reverse the conversion used in Chapter 5, when we transformed a sin-

gle-digit hex number to the ASCII code for one of the characters in through

9 or A through F. To convert one character, such as C or D, from a hex charac-

ter to a byte, we must subtract either 30h (for through 9) or 37h (for A
through F). Here is a simple program that will read one ASCII character and
convert it to a byte:

3qfl5:01D0 B401 MOV AH,D1

3qAS:0102 CD51 INT 51

3^65:0104 5C30 SUB AL,30
3965:010^ 3C0R CMP AL,Dq

3qfl5:01Dfl 7EQ5 JLE D1DC

3qfl5:DlDA 2C07 SUB AL,D?

3qflS:Q10C CD20 INT 5D

Most of these instructions should be familiar now, but there is one new one,

JLE (Jump ifLess than or Equal to). In our program, this instruction jumps if

AL is less than or equal to 9h.

To see the conversion from hex character to ASCII, you need to see the AL
register just before the INT 20h is executed. Since Debug restores the regis-

ters when it executes the INT 20h, you'll need to set a breakpoint, as you did

in Chapter 4. Here, type G IOC, and you'll see that AL will contain the hex

number converted from a character.

Try typing some characters, such as k or a lowercase d, that are not hex

digits, to see what happens. You'll notice that this program works correctly

only when the input is one of the digits through 9 or the uppercase letters A
through F. We'll correct this minor failing in the next chapter, when we learn

about subroutines, or procedures. Until then, we'll be temporarily sloppy and
ignore error conditions: We'll have to type correct characters for our program
to work properly.

72 Read

Reading a Two*Digit Hex Number
Reading two hex digits isn't much more complicated than reading one, but

it does require many more instructions. We'll begin by reading the first digit,

then we'll place its hex value in the DL register and multiply it by 16. To

perform this multiplication, we'll shift the DL register left four bits, placing a

hex zero (four zero bits) to the right of the digit we just read. The instruction

SHL DL,CL, with CL set to four does the trick by inserting zeros at the right.

In fact, the SHL (Shift Left) instruction is known as an arithmetic shift, be-

cause it has the same affect as an arithmetic multiplication by two, four,

eight, and so on, depending on the number (such as one, two, or three) in CL.

DL

110 110

Fi^ ii. DL.1 Instruction.

Finally, with the first digit shifted over, we'll add the second hex digit to the

number in DL (the first digit * 16). You can see and work through all these

details in this program:

3qflS:0100 B401 MOV AH, 01

3^65:0105 CD51 INT 51

3qfl5:01CK flflC5 MOV DL,AL

3965:010b A0EA30 SUB DL,30
3965:0109 flOFAOl CMP DL,01
3Rfl5:010C ?E03 JLE 0111

3Rfl5:010E flOEAO? SOB DL,07
3RfiS:01U B104 MOV CL,0<
3905:0113 DEE? SHL DL,CL
3SA5:011S CD51 INT 51

3965:011? 5C30 SOB AL,30
3105:0111 3coq CMP AL,01
3RA5:011B ?Eoa JLE 011F
3RA5:011D ?C07 SUB AL,07

39fi5:011F 00C5 ADD DL,AL
3165:0151 CD50 INT 50

Now that we've got a working program, it's a good idea to check the bound-

ary conditions to confirm that it's working properly. For these boundary con-

ditions, use the numbers 00, 09, 0A, OF, 90, A0, F0, and some other number,

Peter Norton's Assembly Language Book 73

such as 3C. Use a breakpoint to run the program without executing the INT
20h instruction. (Make sure you use uppercase letters for your hex input.)

Summary
We've finally had a chance to practice what we learned in previous chapters

without being flooded with new information. Using a new INT 21 function

(number 1) to read characters, we developed a program to read a two-digit hex

number. Along the way, we emphasized the need to test programs with all the

boundary conditions.

Now we're ready to wrap up Part I by learning about procedures in the

8088.

PROCEDURES—COUSINS
TO SUBROUTINES

Procedures 76

The Stack and Return Addresses 78

PUSHing and POPping 79

Reading Hex Numbers with More Ease 81

Summary 84

75

76 Procedui ' routine:

In the next chapter, we'll meet MASM, the macro assembler, and begin to

use assembly, or assembler, language. But before we leave Debug, we'll look at

one last set of examples, and learn about subroutines and a special place to

store numbers called the stack.

Procedures

A procedure is a list of instructions that we can execute from many different

places in a program, rather than having to repeat the same list of instructions

at each place they're needed. In BASIC such lists are called subroutines, but

we'll call them procedures for reasons that will become clear later.

We move to and from procedures just as we do in BASIC. We call a proce-

dure with one instruction, CALL, which is just like BASIC'S GOSUB. And we
return from the procedure with a RET instruction, which is just like BASIC'S
RETURN.

Here's a simple BASIC program we'll soon rewrite in machine language.

This program calls a subroutine ten times, each time printing one character,

starting with A and ending with J:

10 A = &EK1

50 FOR I = 1 TO 10

30 GOSDB 1000

40 NEXT I

50 END
1000 PRINT CHR$(A)

;

1100 A = A + 1

1500 RETURN

The subroutine, following a common practice in BASIC programs, begins at

line 1000 to leave room for us to add more instructions to the main program
without affecting our subroutine. We'll do the same with our machine-lan-

guage procedure by putting it at 200h, far away from our main program at

lOOh. We'll also replace GOSUB 1000 with the instruction CALL 200h, which
calls the procedure at memory location 200h. The CALL sets IP to 200h, and
the 8088 starts executing the instructions at 200h.

The FOR-NEXT loop of the BASIC program, as we saw in Chapter 4, can be

Peter Norton's Assembly Language Book 77

written as a LOOP instruction. The other pieces of the main program should

be familiar.

3965:0100 B541 MOV DL,41
3965:0105 B90A00 MOV CX,000A
3965:0105 EflFflOO CALL 0500

3905:0106 E5FB LOOP 0105

3965:010A CD50 INT 20

The first instruction places 41h (ASCII for A) into the DL register, because

the INT 21h instruction prints the character given by the ASCII code in DL.

The INT 21h instruction itself is located some distance away, in the procedure

at location 200h. Here's the procedure you should enter at 200h:

3965:0500 B405 MOV AH, 05

3965:0505 CD51 INT 51

3965:0504 FEC5 INC DL

3965:050b C3 RET

There are two new and two old instructions here. Recall that the 02h in AH
tells DOS to print the character in DL when we execute the INT 21h instruc-

tion. INC DL, the first of our two new instructions, increments the DL regis-

ter. That is, it adds one to DL. The other new instruction, RET, returns to the

first (LOOP) instruction following the CALL in our main program.

Type G to see the output of this program, then single-step through it to see

how it works (remember to use either a breakpoint or the P command to run

the INT 21 instruction).

0105: CALL 0200

\

,-* 0108: LOOP 0105

0200: MOV AH,02
0202: INT 21

0204: INC DL

0206: RET

Figure 7-1. The CALL and RET Instructions.

78 Procedure*—Cousins to Subroutines

The Stack and Return Addresses

The CALL instruction in our program needs to save the return address

somewhere so the 8088 will know where to resume executing instructions

when it sees the RET instruction. For the storage place itself, we have a por-

tion of memory known as the stack. And for tracking what's on the stack,

there are two registers that we can see on the R display: the SP {Stack Pointer)

register, which points to the top of the stack, and the SS (Stack Segment),

which holds the segment number.

In operation, a stack for the 8088 is just like a stack of trays in a cafeteria,

where placing a tray on the top covers the trays underneath. The last tray on

the stack is the first to come off, so another name for a stack is LIFO, for Last

In, First Out. This order, LIFO, is precisely what we need for retrieving return

addresses after we make nested CALLs like this one:

3RbF:0100 EflFDDD CALL

39bF:0200 EflFDOO CALL
39LF:0203 C3 BET

3%F:0300 EflFDOO CALL
3RbF:0303 C3 RET

3RbF:0<0D C3 RET

Here, the instruction at lOOh calls one at 200h, which calls one at 300h,

which calls one at 400h, where we finally see a return (RET) instruction. This

RET returns to the instruction following the previous CALL instruction, at

300h, so the 8088 resumes executing instructions at 303h. But there it en-

counters a RET instruction at 303h, which pulls the next oldest address (203h)

off the stack. So the 8088 resumes executing instructions at 203h, and so on.

Each RET pops the topmost return address off the stack, so each RET follows

the same path backward as the CALLs did forward.

Try entering a program like the preceding one. Use multiple calls, and trace

through the program to see how the calls and returns work. Although the

process may not seem very interesting right now, there are other uses for this

stack, and a good understanding of how it works will come in handy. (In a

later chapter, we'll go looking for the stack in memory.)

Peter Norton's Assembly Language Book 79

Address Stack

0098:

0100: 0203

0102: 0103

0104: •

•

•

Figure 7-2. The Stack Just Before Executing the CALL 400 Instruction.

PUSHing and POPping
The stack is a useful place to store words of data for a while, provided we're

careful to restore the stack before a RET instruction. We've seen that a CALL
instruction pushes the return address (one word) onto the top of the stack,

while a RET instruction pops this word off the top of the stack, loads it into

the IP register, and exposes the word that was lying underneath it. We can do

much the same thing with the instructions PUSH and POP, which allow us to

push and pop words. When might we want to do this?

80 routin<

Address Stack

0098: 0303

0100: 0203

0102: 0103

0104: •

•

•

Figure 7-3. The Stack Just After Executing the CALL 400 Instruction.

It's often convenient to save the values of registers at the beginning of a

procedure and restore them at the end, just before the RET instruction. Then
we're free to use these registers in any way we like within the procedure, as

long as we restore their values at the end.

Programs are built from many levels of procedures, with each level calling

the procedures at the next level down. By saving registers at the beginning of

a procedure and restoring them at the end, we remove unwanted interactions

between procedures at different levels, and this makes our job of program-

ming much easier. You'll see more about saving and restoring registers in

Chapter 13, when we talk about modular design. But right now, here's an

example (don't enter it) to use to save and restore CX and DX:

Peter Norton's Assembly Language Book 81

3qt,F:0500 51 PDSH CX

3<1E,F:0501 55 PUSH DX

3qbF:0505 B^OflOO MOV CX,000A
3qt,F:0505 EflFflDO CALL 03D0
3RbF:050fi FEC5 INC DL

3qfcF:DE0A E5F9 LOOP 0505

3qbF:DEDC 5A POP DX

3qtF:GEDD 5R POP CX

3%F:050E C3 RET

Notice that the POPs are in reverse order from the PUSHes, because a POP
removes the word placed most recently on the stack, and the old value ofDX is

on top of the old CX.
Saving and restoring CX and DX allows us to change these registers in the

procedure that begins at 200h, but without changing the values used by any
procedure that calls this one. And once we've saved CX and DX, we can use

these registers to hold local variables—variables we can use within this proce-

dure without affecting the values used by the calling program.

We'll use such local variables to simplify our programming tasks. As long as

we're careful to restore the original values, we won't have to worry about our

procedures changing any of the registers used by the calling program. This

will become clearer in the next example, which is a procedure to read a hex
number. Unlike the program in Chapter 6, our program now will allow only

valid characters such as A, but not K.

Reading Hex Numbers with More Ease

We want to create a procedure that keeps reading characters until it re-

ceives one it can convert to a hex number between and Fh. We don't want to

display any invalid characters, so we'll sift our input by using a new INT 21h
function, number 8, that reads a character but doesn't let it pass on to the

screen. That way we can echo (display) characters only if they are valid.

Place 8h into the AH register and run through this instruction, typing an A
just after you type G 102:

3905:0100 CD51 INT 51

The ASCII code for A (41h) is now in the AL register, but the A didn't appear

on the screen.

Using this function, our program can read characters without echoing them
until it reads a valid hex digit (0 through 9 or A through F), which it will then

82 Procedures

—

Cousins to Subroutines

echo. Here is the procedure to do this and to convert the hex character to a hex
number:

3965:0800 58 PUSH DX

3965:0801 B<08 NOV AH, 06

3965:0803 CD81 INT 81

3965:0805 3C30 CMP AL,30

3965:080? ?8FA JB 0803
3965:0809 3C4t CMP AL,<b

3965:080B 77Fb JA 0803

3965:080D 3C39 CMP AL,39

3965:080F 770A JA 081B

3965:0811 B<08 MOV AH, 08

3965:0813 66C8 MOV DUAL
3965:0815 CD81 INT 81

3965:0817 8C30 SDB AL,30
3965:0819 5A POP DX

3965:081A C3 RET

3965:081B 3C<1 CMP AL,<1

3965.-081D 78E4 JB 0803

3965:081F B<08 MOV AH, 08

3965:0881 66C8 MOV DUAL
3965:0883 CD81 INT 81

3965:0885 8C37 SOB AL,37

3965:088? 5A POP DX

3965:0886 C3 RET

The procedure reads a character in AL (with the INT 21h at 203h) and
checks to see if it's valid with the CMPs and conditional jumps. If the charac-

ter just read is not a valid character, the conditional jump instructions send

the 8088 back to location 203, where the INT 21h reads another character.

(JA is Jump ifAbove, and JB is Jump ifBelow; both treat the two numbers as

unsigned numbers, whereas the JL instruction we used earlier treated both as

signed numbers.)

By line 21 lh, we know that we have a valid digit between and 9, so we
subtract the code for the character and return the result in the AL register,

remembering to pop the DX register, which we saved at the beginning of the

procedure. The process for hex digits A through F is much the same. Notice

that we have two RET instructions in this procedure; we could have had more,

or we could have had just one.

Here is a very simple program to test the procedure:

3965:0100 E6FD00 CALL 0800
3965:0103 CD80 INT 80

As you've done before, use either the G command, with a breakpoint, or use

Peter Norton's Assembly Language Book 83

the P command. You want to execute the CALL 200h instruction without exe-

cuting the INT 20h instruction, so you can see the registers just before the

program terminates and the registers are restored.

You'll see the cursor at the left side of the screen, waiting patiently for a

character. Type k, which isn't a valid character. Nothing should happen. Now,
type any of the uppercase hex characters. You should see the character's hex
value in AL and the character itself echoed on the screen. Test this procedure

with the boundary conditions: 'V (the character before zero), 0, 9, ':' (the char-

acter just after 9), and so on.

Now that we have this procedure, the program to read a two-digit hex
number, with error handling, is fairly straightforward:

3185:0100 EfiFDOO CALL 0500

3985:0103 88C5 MOV DL,AL
3985:0105 B10< MOV CL,04

3985:0107 D5E5 SHL DL,CL
3985:0109 E8F400 CALL 0500

3985:010C 00C5 ADD DL,AL

3985:010E B405 MOV AH, 05

3985:0110 CD51 INT 51

3985:0112 CD50 INT 50

You can run this program from DOS, since it reads in a two-digit hex number
and then displays the ASCII character that corresponds to the number you
typed in.

Aside from the procedure, our main program is much simpler than the ver-

sion we wrote in the last chapter, and we haven't duplicated the instructions

to read characters. We did add error handling, though, and even if it did com-

plicate our procedure, it also ensures that the program now accepts only valid

input.

Here we can also see the reason for saving the DX register in the procedure.

The main program stores the hex number in DL, so we don't want our proce-

dure at 200h to change DL. On the other hand, the procedure at 200h must
use DL itself to echo characters. So, by using the instruction PUSH DX at the

beginning of the procedure, and POP DX at the end, we save ourselves from

problems.

From now on, to avoid complicated interactions between procedures, we'll

be very strict about saving any registers used by a procedure.

84 Procedures—Cousins to Subroutine;

Summary
Our programming is becoming more sophisticated. We've learned about pro-

cedures that allow us to reuse the same set of instructions without rewriting

them each time. We've also discovered the stack and seen that a CALL stores

a return address on the top of the stack, while a RET instruction returns to

the address on the top of the stack.

We saw how to use the stack for more than just saving return addresses. We
used the stack to store the values of registers (with a PUSH instruction) so we
could use them in a procedure. By restoring the registers (with a POP instruc-

tion) at the end of each procedure, we avoided unwanted interactions between

procedures. By always saving and restoring registers in procedures that we
write, we can CALL other procedures without worrying about which registers

are used within the other procedure.

And finally, armed with this knowledge, we moved on to build a better pro-

gram to read hex numbers—this time, with error checking. The program we
built here is similar to one we'll use in later chapters, when we begin to de-

velop the Dskpatch program.

Now we're ready to move on to Part II, where we'll learn how to use the

assembler. In the next chapter, we'll see how to use the assembler to convert a

program to machine language. We'll also see that there won't be any reason to

leave room between procedures, as we did in this chapter, when we put our

procedure way up at location 200h.

Part II

Assembly Language

8

WELCOME TO THE
ASSEMBLER

A Program Without Debug 88
Creating Source Files 91

Linking 92

Back in Debug 93

Comments 94
Labels 94
Summary 96

87

88 Welcome to the Assembler

Weell, at long last we're ready to meet the assembler, a DOS program that

will make our programming much simpler. From now on, we'll write mne-
monic, human-readable instructions directly, using the assembler to turn our

programs into machine code.

Of necessity, this chapter and the next will be somewhat heavy with details

on the assembler, but learning these details will be well worth the effort. Once
we know how to use the assembler, we'll get back on course in learning how to

write assembly language programs. Meanwhile, let's jump right in.

A Program Without Debug
Up to this point, we've just typed DEBUG, and then typed in our program

instructions. Now we're about to leave Debug behind, and to write programs
without it, and we'll have to use either an editor or a word processor to create

text, or human-readable, files containing our assembly language instructions.

We begin by creating a source file—the name for the text version of an as-

sembly language program. We'll create a source file now, for the program we
built and named Writestr back in Chapter 3. To refresh your memory, here is

our Debug version:

3SbF:010D B<D5 MOV AH,0?
3RbF:D105 B2bl MOV DL,ZA
3qbF:D104 CD51 INT 51

3qt.F:DlDb CD50 INT 50

Use your editor to enter the following lines of code into a file named
WRITESTR.ASM (the extension .ASM means this is an assembler source file).

Here, as with Debug, lowercase works just as well as uppercase, but we'll con-

tinue to use uppercase letters to avoid confusion between the number 1 (one)

and the lowercase letter 1 (el):

C0DE_SEG SEGMENT
MOV AH,?h
MOV DL,2Ah
INT eih
INT ZOh

C0DE_SEG ENDS
END

Peter Norton's Assembly Language Book 89

This is the same program we created in Chapter 3, but it contains a few nec-

essary changes and additions. Ignoring for now the three new lines in our

source file, notice that there is an h after each hex number. This h tells the

assembler that the numbers are in hexadecimal. Unlike Debug, which assumes

all numbers are in hexadecimal, the assembler assumes that all numbers are

decimal. We tell it otherwise by placing an h after any hexadecimal number.

NOTE: Here's a warning before we move on: The assembler can become
confused by numbers, such as ACh, that look like a name or an instruc-

tion. To avoid this, always type a zero before a hex number that begins

with a letter. For example, type OCh

—

not ACh.

Watch what happens when we assemble a program with ACh, rather than

OACh. Here's the program:

CODE SEG SEGMENT
MOV DL,ACh
INT 5Dh

CODE SEG ENDS

END

Here's the output:

A>MASM TEST;

Microsoft (R) Macro Assembler Version 4.00

Copyright (C) Microsoft Corp ISfil, 1903, 1984, ISflS. All rights reserved.

TEST.ASM(5) : error S: Symbol not defined AC

51070 Bytes symbol space free

Warning Errors

1 Severe Errors

Definitely not encouraging. But changing the ACh to OACh will satisfy the

assembler.

Also notice the spacing of the commands in our assembler program. We
used tabs to align everything neatly and make the source text more readable.

Compare the program you entered with this version:

90 Welcome to the Assembler

C0DE_SEG SEGMENT
MOV AH,2h

MOV DL,2Ah

INT ?lh

INT 20h

CODE_SEG ENDS
END

A bit of a mess; the assembler doesn't care, but we do.

This is a label

i

MOV DL,ACh

This is a number

,
i

MOV DL,0ACh

The tells MASM
that this is a number

Figure 8-1. Put a zero before hexadecimal numbers starting with a letter,

otherwise the assembler will treat the number as a name.

Now let's return to the three new lines in our source file. The three new

Peter Norton's Assembly Language Book 91

lines are all pseudo-ops, or pseudo-operations. They're called pseudo-ops be-

cause, rather than generate instructions, they just supply information to the

assembler. The END pseudo-op marks the end of the source file, so the assem-

bler knows that it's done when it sees an END. Later on, we'll see that END is

useful in other ways, too. But right now, let's put aside any further discussion

of it or the other two pseudo-ops and see how to use the assembler.

Creating Source Files

Even though you've entered the lines of WRITESTR.ASM, there's one more
consideration before we move on to actually assemble our program. The as-

sembler can use source files that contain standard ASCII characters only. If

you are using a word processor, bear in mind that not all word processors

write disk files using only the standard ASCII characters. WordStar is one

such culprit; Microsoft Word is another. For both these word processors, use

the non-document, or unformatted, mode when you save your files.

Before you try assembling WRITESTR.ASM, make sure it's still ASCII.

From DOS, type:

A>TYPE WRITESTR. ASM

You should see the same text you entered, as you entered it. If you see strange

characters in your program, you may have to use a different editor or word
processor to enter programs. You'll also need a blank line after the END state-

ment in your file.

Now, let's begin to assemble Writestr (be sure to type the semicolon).

A>MASM WRITESTR;

The IBM Personal Computer Assembler

Version 1.D0 (C) Copyright IBM Corp IRfll

Warning Severe

Errors Errors
D D

We're not done yet. At this point, the assembler has produced a file called

WRITESTR.OBJ, which you'll now find on your disk. This is an intermediate

file, called an object file. It contains our machine language program, along

92 Welcome to the Assembler

with a lot of bookkeeping information used by another DOS program called

the Linker.

Linking

Right now, we want the linker to take our .OBJ file and create an .EXE
version of it. Copy LINK.EXE from your DOS disk to the disk containing your

source file and the assembler. Then, link WRITESTR.OBJ by typing:

A>LINK WRITESTR;

IBM Personal Computer Linker
Version 1.10 (C)Copyright IBM Corp 116?

Warning: No STACK segment

There was 1 error detected.

A>

One error? Not really; the linker counts its warning as an error, but in this

case it's really just what we want. (In some versions of MS-DOS, the Linker

doesn't report this warning as an error.) Even though the linker warns us that

there is no stack segment, we don't need one right now. After we learn how to

add more of the trappings, we'll see why we might want a stack segment.

Now we have our .EXE file, but this still isn't the last step. We have one

more step—to create a .COM version, which is just what we created with

Debug. Again, you'll see later why we need all these steps. For now, let's cre-

ate a .COM version of Writestr.

For our final step, we need the program EXE2BIN.EXE from the DOS sup-

plemental disk. Exe2bin, as its name implies, converts an .EXE file to a

.COM, or binary (bin) file. There's a difference between .EXE and .COM files,

but we won't see it until much later, so for now let's just create the .COM file.

Type:

A>EXE5BIN WRITESTR WRITESTR.COM

A>

The response didn't tell us very much. To see whether Exe2bin worked, let's

list all the Writestr files we've created so far:

Peter Norton's Assembly Language Book 93

•DIR WRITESTR.*

Volume in drive A has no label

Directory of A:\

WRITESTR ASM 7fl 7-55-83 5:DDp
WRITESTR OBJ <£> 7-55-83 7:D5p
WRITESTR EXE t<D 7-55-83 7:CKp
WRITESTR COM a 7-55-83 7:DLp

7 File(s) 53555 bytes free

This is quite a number of files, including WRITESTR.COM. Type writestr to

run the .COM version and verify that your program functions properly (recall

that it should print an asterisk on your screen). The exact sizes DOS reports

for the first three files may vary a bit.

The results may seem a little anticlimactic, since we are seemingly back

where we were in Chapter 3, but we aren't: We've gained a great deal. It will

all become much clearer when we deal with calls again. Notice that we never

once had to worry about where our program was put in memory, as we did

about IP in Debug. The addresses were all taken care of for us.

Very soon you'll come to appreciate this feature of the assembler: It will

make programming much easier. For example, recall that in the last chapter

we wasted space by having our main program at lOOh and the procedure we
called at 200h. We'll see that using the assembler allows us to place the proce-

dure immediately after the main program without any gap. But first, let's see

how our program looks to Debug.

Back in Debug
Let's read our .COM file into Debug and unassemble it to see how Debug

reconstructs our program from the machine code of WRITESTR.COM:

A>DEBUG WRITESTR.COM
-U

3R7F:0100 B405 MOV AH,D5

3S7F:01D5 B55A MOV DL,5A

3S7F:01tK CD51 INT 51

3R7F:010b CD50 INT 50

94 Welcome to the Assembler

Exactly what we had in Chapter 3. This is all Debug sees in

WRITESTR.COM. The END and our additional instructions about seg-

ments—CODE_SEG SEGMENT and CODE_SEG ENDS—didn't make it

through at all. What happened to them?
These instructions don't appear in the final machine language version of

the program because they are pseudo-ops, and pseudo-ops are for bookkeeping

only. The assembler takes care of a lot of bookkeeping at the cost of some
extra lines. We'll make good use of pseudo-ops to simplify our job, and we'll

see how they affect our program, when we take a closer look at segments in

Chapter 11.

Comments
Since we are no longer operating directly with Debug, we're free to add more

to our program that the assembler sees but won't pass on to the 8088. Perhaps

the most important such additions we can make are comments, which are in-

valuable in making a program clear. In assembly language programs, we place

comments after a semicolon, which works like a single quotation mark (') in

BASIC. The assembler ignores anything on the line after a semicolon, so we can

add anything we want. If we add comments to our brief program:

;Select DOS function 2, character output
;Load the ASCII code for '*' to be printed
;Print it with INT 51h

;And exit to DOS

we see quite an improvement—we can understand this program without hav-

ing to think back and remember what each line means.

Labels

To round off this chapter, let's look at another bookkeeping feature of the

assembler that makes programming smoother: labels.

Until now, when we wanted to jump from one part of a program to another

with one of the jump commands, we had to know the specific address we were

jumping to. In everyday programming, inserting new instructions forces us to

C0DE_SEG SEGMENT
MOV AH,?h

MOV DL,2Ah
INT Bin

INT EOh

CODE.SEG ENDS

END

Peter Norton's Assembly Language Book 95

change the addresses in jump instructions. The assembler takes care of this

problem with labels—names we give to the addresses of any instructions or

memory locations. A label takes the place of an address. As soon as the assem-

bler sees a label, it replaces the label with the correct address before sending

it on to the 8088.

DIGIT1: 0111 MOV CL

0113 SHL DL.1

Figure 8-2. The Assembler Substitutes Addresses for Labels.

Labels can be up to 31 characters long and can contain letters, numbers,

and any of the following symbols: a question mark (?), a period (.), an at sym-
bol (@), an underline (_), or a dollar sign ($). They can't start with a digit (0

through 9), and a period can be used only as the first character.

As a practical example, let's take a look at our program from Chapter 6 that

reads a two-digit hex number. It contains two jumps, JLE 0111 and JLE 01 IF.

Here's the old version:

3qfl5:010D B401 MOV AH, 01

3RA5:0105 CD51 INT 51

3qfl5:01CK AAC5 MOV DL,AL

3RAS:010b A0EA30 SUB DL,30

3965:0109 A0FA09 CMP DL,oq

39AS:010C 7E03 JLE 0111

39A5:010E A0EA07 SUB DL,07

3=165:0111 B104 MOV CL,0<

3105:0113 D5E5 SHL DL,CL

39A5:0115 CD51 INT 51

39AS:0117 5C30 SUB AL,30

39A5:0119 3C09 CMP al,09

39A5:011B 7E05 JLE 011F

39A5:011D 5C07 SUB AL,07

39A5:011F 00C5 ADD DL,AL

39A5:0151 CD50 INT 50

96 Welcome to the Assembler

It's certainly not obvious what this program does, and if it's not fresh in your
mind, you may have to work a little to understand the program again. Let's

add labels and comments to clarify its function:

C0DE_SEG SEGMENT
ASSUME CS:C0DE_SEG
MOV AH, Lh

INT 51h
MOV DL,AL
SUB DL,30h

CMP DL,1h

JLE DIGIT1

SUB DL,?h

DIGIT1:

MOV CL,<h

SHL DL,CL
INT Elh

SUB AL,30h
CMP AL,%
JLE DIGIT?
SUB AL,?h

DIGITS:
ADD DL,AL
INT 20h

C0DE_SEG ENDS

;(To be explained in chapter 11)

;Select DOS function 1, character input

;Read a character, and return ASCII code in AL

;Move ASCII code into DL

;Subtract 3Dh to convert digit to D - 1

;Was it a digit between D and 9?

;Yes, we have the first digit (four bits)
;No, subtract 7h to convert letter A - F

;Prepare to iultiply by lb

;
Multiply by shifting, becomes upper four bits
;Get next character
;Repeat conversion
;Is it a digit - q?

;Yes, so we have the second digit
;No, subtract ?h

;ADD second digit
;And exit

The labels here, DIGIT1 and DIGIT2, are of a type known as NEAR labels,

because a colon (:) appears after the labels when they're defined. The term
NEAR has to do with segments, which we'll talk about in Chapter 11, along

with the SEGMENT, ENDS, and ASSUME pseudo-ops. Here, if you assem-

bled the preceding program and then unassembled it with Debug, you'd see

DIGIT1 replaced by Olllh and DIGIT2 replaced by OllFh.

Summary
This has been quite a chapter. It's as if we've stepped into a new world, and,

in a sense, we have. The assembler's much simpler to work with than Debug
was, so we can now begin to write real programs, because the assembler does

much of the bookkeeping for us.

What have we learned here? We began by learning how to create a source

file and then go through the steps of assembling, linking, and converting it

from an .OBJ file to an .EXE, and then a .COM file, using a simple program
from Chapter 3. The assembly language program we created contained a few

Peter Norton's Assembly Language Book 97

pseudo-ops, which we've never seen before, but they'll become familiar, once

we've become more comfortable using the assembler. In fact, we'll place SEG-
MENT, ENDS, and END pseudo-ops in all our programs from now on, since

we need them, even though we won't really see the reason why until Chapter

11.

Next, we learned about comments. You may have wondered how we could

survive without comments. We won't from now on. Comments add so much to

the readability of programs that we won't skimp on them.

Finally came labels, to make our programs even more readable. We'll use

all these ideas and methods throughout the rest of this book. Let's move on to

the next chapter and see how the assembler makes procedures easier to use.

PROCEDURES AND THE
ASSEMBLER

The Assemblers Procedures 100

The Hex'Output Procedures 103

The Beginnings of Modular Design 106

A Program Skeleton 107

Summary 107

99

100 Procedures and the Assembler

Nolow that we've met the assembler, let's become a little more comfortable

with writing assembly language programs. In this chapter, we'll return to the

subject of procedures. You'll see how we can write procedures much more eas-

ily with the help of our hard-working assembler. Then, we'll move on to build

some useful procedures, which we'll use when we begin to develop our

Dskpatch program a few chapters from now.

We'll begin with two procedures to print a byte in hexadecimal. Along the

way, we'll meet several more pseudo-ops. But, like SEGMENT, END, and
ENDS in the last chapter, we'll leave them pretty much undefined until Chap-
ter 11, where we'll learn more about segments.

The Assembler's Procedures

When we first learned about procedures, we left a large gap between the

main program and its procedures, so that we'd have room for changes without

having to worry about our main program overlapping a procedure. But now
we have the assembler, and since it does all the work of assigning addresses to

instructions, we no longer need to leave a gap between procedures. With the

assembler, each time we make a change, we can just assemble the program
again.

In Chapter 7, we built a small program with one CALL. The program did

nothing more than print the letters A through J, and it looked like this:

3965:0100 B5<1 MOV DL,<1
3965:0102 B90A00 MOV CX,000A
3965:0105 E6F600 CALL 0500
3965:0106 E5FB LOOP 0105

3965:010A CD50 INT 50

3965:0500 B<05 MOV AH, 05

3965:0505 CD51 INT 51

3965:0504 FEC5 INC DL

3965:050b C3 RET

Let's turn this into a program for the assembler. It will be hard to read

without labels and comments, so we'll add those embellishments to make our

program far more readable:

Peter Norton's Assembly Language Book 101

Listing q-1. The Program PRINTftJ.ASM

;Make this a .COM file (to be explained)

;Start with the character A

;Print ID characters, starting with A

;Print character, and move to next one
;Continue for 10 characters
;Return to DOS

C0DE_SEG SEGMENT
ASSUME CS:C0DE_SEG
ORG IDOh

PRINT_A_J PROC NEA

MOV DL,'A'

MOV CX,1D
PRINT_L00P:

CALL WRITE_CHAR
LOOP PRINT_L00P
INT 2Dh

PRINT_A_J ENDP

WRITE_CHAR PROC NEA

MOV AH, 5

INT Slh

INC DL

RET

WRITE_CHAR ENDP

C0DE_SEG ENDS

END PRINT_A_J

;Set function code for character output
;Print the character already in DL

;Move to the next char in the alphabet
;Return from this procedure

There are four new pseudo-ops here: ASSUME, ORG, PROC, and ENDP. AS-
SUME is related to segments, and ORG is related to the way DOS loads pro-

grams; we'll find out more about them in Chapter 11.

PROC and ENDP are pseudo-ops for defining procedures. As you can see,

both the main program and the procedure at 200h are surrounded by match-
ing pairs of the pseudo-ops PROC and ENDP, which, themselves, are enclosed

in the pseudo-ops SEGMENT and ENDS (End Segment).

PROC defines the beginning of a procedure; ENDP defines the end. The
label in front of each is the name we give to the procedure they define. Thus,

in the main procedure, PRINT_A_J, we can replace our CALL 200 instruc-

tion with the more readable CALL WRITE_CHAR. Just insert the name of

the procedure, and the assembler assigns the addresses.

The NEAR and FAR pseudo-ops (more on FAR later) provide information to

the assembler about our use of segments. The assembler uses this information

whenever it assembles a CALL instruction since there are two types of CALL
and RET instructions: near and far. A far CALL, which we won't use here,

calls a procedure that is contained in another segment. A near CALL, on the

other hand, calls a procedure contained in the same segment.

In this book, we'll be dealing with programs that fit in a single 64K seg-

ment, so all of our procedures will be NEAR procedures. NEAR informs the

102 Procedures .«nJ the Assembler

assembler the procedure is in the same segment as any procedure that calls it.

When the assembler sees CALL WRITE_CHAR, it will know from the NEAR,
in WRITE_CHAR PROC NEAR, that WRITE_CHAR is in the same segment
as PRINT_A_J.
The assembler needs this segment information because there are two ver-

sion of the CALL and RET instructions—one for when we don't change seg-

ments, and one for when we do. Here it is obvious that our two procedures are

in the same segment, because we placed both procedures between one pair of

segment-defining pseudo-ops: SEGMENT and ENDS. Later on, as we break

our program into pieces that we put in several different source files, the uses

of NEAR and FAR will become more important.

Finally, since we have two procedures, we need to tell the assembler which
to use as the main procedure—where the 8088 should start executing our pro-

gram. The END pseudo-op takes care of this detail. By writing END PRINT_
A_J, we've told the assembler that PRINT_A_J is the main procedure. Later

in our work, we'll see that the main procedure can be anywhere. Right now,

however, we are dealing with COM files, and we'll need to place the main
procedure first in our source file.

You're ready to go, so if you haven't done so yet, enter the program into a

file called PRINTAJ.ASM and generate the .COM version, using the same
steps you did in the last chapter:

HASH PRINTAJ;

LINK PRINTAJ;

EXE5BIN PRINTAJ PRINTAJ.COM

Then give Printaj a try. (Make sure you've run Exe2bin before you run

Printaj. Otherwise, you'll end up running the .EXE version of Printaj, which

undoubtedly won't produce the results you expect.)

When you're satisfied, use Debug to unassemble our program and see how
the assembler fits the two procedures together. Recall that we can read a par-

ticular file into Debug by typing its name as part of the command line. For

example, we can type DEBUG PRINTAJ.COM, and when we do, we see:

3965:0100 B5<1 MOV DL,U
3965:0105 B90A00 MOV CX,000A
3965:0105 E60400 CALL 010C
3965:0106 E5FB LOOP 0105

3965:010A CD50 INT 50

3965:010C B<05 MOV AH, 05

3965:010E CD51 INT 51

3965:0110 FEC5 INC DL

3965:0115 C3 RET

Peter Norton's Assembly Language Book 103

Our program is nice and snug, with no gap between the two procedures.

0100 MOV DL.41

0102 MOV CX,0A
0105 CALL 01 0C
0108 LOOP 0105

01 0A INT 20

01 OC MOV AH,02

010E INT 21

0110 INC DL
0112 RET

Figure 9-1. MASM Assembles Separate Procedures Without a Gap.

The Hex-Output Procedures

We've seen hex-output procedures twice before: Once in Chapter 5, where
we learned how to print a number in hex, and again in Chapter 7, where we
saw how to simplify the program, using a procedure to print one hex digit.

Now we're going to add yet another procedure to print one character. Why?
Well, let's just call it foresight.

By using a central procedure to write a character to the screen, we can

change the way this procedure writes characters without affecting the rest of

the program. We will change it several times.

Enter the following program into the file VIDEO_IO.ASM:

104 Procedures and the Assembler

Listing q-E. The New File VIDEO_IO.ASM

CODE SEG SEGMENT
ASSUME CSrCODE SEG

ORG lOOh

TEST WRITE HEX PROC NEA

MOV DL,3Fh

CALL WRITE HEX

INT ?0h

TEST WRITE HEX ENDP

;Test with 3Fh

;Return to DOS

PUBLIC WRITE_HEX

This procedure converts the byte in the DL register to hex and writes
the two hex digits at the current cursor position.

DL Byte to be converted to hex.

Uses: WRITE HEX DIGIT

WRITE HEX PROC NEAR

PUSH CX

PUSH DX

MOV DH,DL
MOV CX,4

SHR DL,CL
CALL WRITE HEX DIGIT
MOV DL,DH

AND DL.QFh
CALL WRITE HEX DIGIT
POP DX

POP CX

RET

WRITE HEX ENDP

;Entry point
;Save registers used in this procedure

;Hake a copy of byte

;Get the upper nibble in DL

;Display first hex digit

;Get lower nibble into DL

;Reiove the upper nibble

;Display second hex digit

PUBLIC WRITE_HEX_DIGIT

This procedure converts the lower 4 bits of DL to a hex digit and

writes it to the screen.

DL Lower 4 bits contain number to be printed in hex.

Uses: WRITE CHAR

WRITE HEX DIGIT PROC N

PUSH DX

CMP DL,10
JAE HEX LETTER
ADD DL,"0"

JMP Short WRITE DIGIT
HEX LETTER:

;Save registers used

;Is this nibble <1D?

;No, convert to a letter

;Yes, convert to a digit

;Now write this character

Peter Norton's Assembly Language Book 105

Listing R-5. continued

ADD DL,"A"-10
WRITE_DIGIT:

CALL WRITE_CHAR
POP DX

RET

WRITE_HEX_DIGIT ENDP

;Convert to hex letter

;Display the letter on the screen
;Restore old value of AX

PUBLIC WRITE_CHAR

This procedure prints a character on the screen using the DOS
function call.

DL Byte to print on screen.

WRITE CHAR PROC NEAR

POSH AX

MOV AH,?

INT 31h

POP AX

RET

WRITE_CHAR ENDP

CODE_SEG ENDS

END TEST WRITE HEX

;Call for character output
;Output character in DL register
;Restore old value in AX

;And return

The DOS function to print characters treats some characters specially. For
example, using the DOS function to output 07 results in a beep, without print-

ing the character for 07, which is a small diamond. We'll see a new version of

WRITE_CHAR in Part III, where we'll learn about the ROM BIOS routines

inside your IBM PC. For now, though, we'll just use the DOS function to print

characters.

The new pseudo-op PUBLIC is here for future use: We'll use it in Chapter

13, when we learn about modular design. PUBLIC simply tells the assembler

to generate some more information for the linker. The linker allows us to

bring separate pieces of our program, assembled from different source files,

together into one program. And PUBLIC informs the assembler that the pro-

cedure named after the PUBLIC pseudo-op should be made public, or avail-

able to procedures in other files.

Right now, Video_io contains the three procedures to write a byte as a hex

number, and a short main program to test these procedures. We'll be adding

many procedures to the file as we develop Dskpatch, and by the end of this

book, VIDEO_IO.ASM will be filled with many general-purpose procedures.

The procedure TEST_WRITE_HEX that we've included does just what it

106 Procedures and the Assembler

says: It's here to test WRITE_HEX, which, in turn, uses WRITE_HEX_
DIGIT and WRITE_CHAR. As soon as we've verified that these three proce-

dures are all correct, we'll remove TEST_WRITE_HEX from VIDEO_
IO.ASM.
Create the .COM version of Video_io, and use Debug to thoroughly test

WRITE_HEX. Change the 3Fh at memory location lOlh to each of the bound-

ary conditions we tried in Chapter 5, then use G to run TEST_WRITE_HEX.
We'll use many simple test programs to test new procedures we've written.

In this way, we can build a program piece by piece, rather than try to build

and debug it all at once. This incremental method is much faster and easier,

since we can confine bugs to just the new code.

The Beginnings of Modular Design

Notice that, ahead of each procedure in Video_io, we've included a block of

comments briefly describing the function of each procedure. More impor-

tantly, these comments tell which registers the procedure uses to pass infor-

mation back and forth, as well as what other procedures it uses. As one

feature of our modular approach, the comment block allows us to use any pro-

cedure by looking at the description. There's no need to relearn how the proce-

dure does its work. This also makes it fairly easy to rewrite one procedure

without having to rewrite any of the procedures that call it.

We've also used PUSH and POP instructions to save and restore any regis-

ters we use within each procedure. We'll do this for every procedure we write,

except for our test procedures. This approach, too, is part of the modular style

we'll be using.

Recall that we save and restore any register used so that we never have to

worry about complex interactions between procedures trying to fight over the

small number of registers in the 8088. Each procedure is free to use as many
registers as it likes, provided it restores them before the RET instruction. It's

a small price to pay for the added simplicity. In addition, without saving and
restoring registers, the task of rewriting procedures would be mind-rending.

You'd be sure to lose much hair in the process.

We also try to use many small procedures, instead of one large one. This,

too, makes our programming task simpler, although we'll sometimes be forced

to write longer procedures when the design becomes particularly convoluted.

These ideas and methods will all be borne out more fully in the chapters to

come. In the next chapter, for example, we'll add another procedure to Video_

Peter Norton's Assembly Language Book 107

io: a procedure to take a word in the DX register and print the number in

decimal on the screen.

A Program Skeleton

As we've seen in this and the preceding chapter, the assembler imposes a

certain amount of overhead on any programs that we write. In other words,

we need to write a few pseudo-ops that tell the assembler the basics. For fu-

ture reference, here is the absolute minimum you'll need for programs you
write:

C0DE_SEG SEGMENT
ASSUME CS:CODE_SEG
ORG LOOh

Some_procedure PROC NEAR

INT 50h

Some_procedure ENDP

C0DE_SEG ENDS

END Some_procedure

We'll add some new pseudo-ops to this program skeleton in later chapters,

but you can use it, as shown here, as the starting point for new programs you
write. Or, even better, you can use some of the programs and procedures from

this book as your starting point.

Summary
We're really making progress now. In this chapter, we learned how to write

procedures in assembly language. From now on we'll use procedures all the

time, and by using small procedures, we'll make our programs more
manageable.

We saw that a procedure begins with a PROC definition and ends with an

ENDP pseudo-op. We rewrote PRINT_A_J to test our new knowledge of pro-

cedures, then went on to rewrite our program to write a hex number—this

time with an extra procedure. Now that procedures are so easy to work with,

108 Procedures and the Assembler

there's little reason not to break our programs into more procedures. In fact,

we've seen that there are many reasons for using many small procedures.

At the end of this chapter we talked briefly about modular design, a philos-

ophy that will save us a great deal of time and effort. Our modular programs
will be easier to write, easier to read, and easier for someone else to modify

than programs created with the well-worn technique of spaghetti logic: pro-

grams written with very long procedures and many interactions.

We're now ready to build another useful procedure. Then, in Chapter 11,

we'll learn about segments. And from there, we'll move on to developing

larger programs, where we'll really start to use the techniques of modular
design.

10

PRINTINQ IN DECIMAL

Recalling the Conversion 110

Some Tricks 113

The Inner Workings 114

Summary 116

109

110 Printing in Decimal

Wee've been promising that we'd write a procedure to take a word and print

it in decimal notation. WRITE_DECIMAL uses some new tricks—ways to

save a byte here, a few microseconds there. Perhaps such tricks will hardly

seem to be worth the effort. But if you memorize them, you'll find that you can

use them to shorten and speed up programs. Through our tricks, we'll also

learn about two new types of logical operations to add to the AND instruction

we covered in Chapter 5. First, let's review the process for converting a word

to decimal digits.

Recalling the Conversion

Division is the key to converting a word to decimal digits. Recall that the

DIV instruction calculates both the integer answer and its remainder. So, cal-

culating 12345/10 yields 1234 as the integer answer, and 5 as the remainder.

In this example, 5 is simply the rightmost digit. And if we divide by 10 again,

DX
12345

Stack

Figure 10-1. PUSHing the Digits onto the Stack Reverses Their Order.

Peter Norton's Assembly Language Book 111

we'll get the next digit to the left. Repeated division by 10 strips off the digits

from right to left, each time putting them in the remainder.

Of course, the digits come out in reverse order, but in assembly language

programming, we have a fix for that. Remember the stack? It's just like a

stack of lunch trays: The first one to come off the top is the last tray that was
set down. Ifwe substitute digits for trays, and place the digits one on top of the

other as they come out of the remainder, we'll have it. We can pull out the

digits in correct order.

The top digit is the first digit in our number, and the other digits are under-

neath it. So, if we push the remainders as we calculate them, and print them
as we pop them off the stack, the digits will be in the correct order.

The following program is the complete procedure to print a number in deci-

mal notation. As we mentioned, there are a few tricks hiding in this proce-

dure. We'll get to them soon enough, but let's try WRITE_DECIMAL to see if

it works before we worry about how it works.

Place WRITE_DECIMAL into VIDEO_IO.ASM, along with the procedures

for writing a byte in hex. Make sure you place WRITE_DECIMAL after

TEST_WRITE_HEX, which we'll be replacing with TEST_WRITE_DECI-
MAL. To save some work, WRITE_DECIMAL uses WRITE_HEX_DIGIT to

convert one nibble (four bits) into a digit.

Listing 1D-1. Add to VIDE0_I0.ASM

PUBLIC WRITE_DECIMAL

This procedure writes a lb-bit, unsigned number in decimal notation.

DX N : lb-bit, unsigned number.

Uses: WRITE HEX DIGIT

WRITE_DECIMAL PROC NEAR

PUSH AX

PUSH CX

PUSH DX

PUSH SI

MOV AX DX

MOV SI ID

XOR CX CX

XOR DX DX

DIV SI

PUSH DX

INC CX

OR AX AX

;Save registers used here

;Will divide by ID using SI

;Count of digits placed on stack

;Set upper word of N to D

[Calculate N/1D and (N mod ID)

;Push one digit onto the stack

;0ne more digit

;N = D yet?

112 Printing in Decimal

Listing 10-1. continued

JNE N0N_ZER0 ;Nope, continue
KRITE_DIGIT_L00P:

POP DX ;Get the digits in reverse order
CALL WRITE_HEX_DIGIT
LOOP WRITE_DIGIT_LOOP

END_DECIMAL:
POP SI

POP DX

POP CX

POP AX

RET

HRITE_DECIMAL ENDP

Notice that we've included a new register, the SI (Source Index), register.

Later we'll see why it's been given that name, and we'll meet its brother, the

DI, or Destination Index, register. Both registers have special uses, but they

can also be used as if they were general-purpose registers. Since WRITE_
DECIMAL needs four general-purpose registers, we used SI, even though we
could have used BX, simply to show that SI (and DI) can serve as general-

purpose registers if need be.

Before we try out our new procedure, we need to make two other changes to

VIDEO_IO.ASM. First, we must remove the procedure TEST_WRITE_HEX,
and insert this test procedure in its place:

Listing 10-?. Replace TEST_WRITE_HEX in VIDEO_IO.ASM with This
Procedure

TEST_WRITE_DECIMAL PROC NEAR

MOV DX/lZa^S
CALL WRITE_DECIMAL
INT 50h ;Return to DOS

TEST_WRITE_DECIMAL ENDP

This procedure tests WRITE_DECIMAL with the number 12345 (which the

assembler converts to the word 3039h).

Second, we need to change the END statement at the end of VIDEO_
IO.ASM to read END TEST_WRITE_DECIMAL, because TEST_WRITE_
DECIMAL is now our main procedure.

Make these changes and give VIDEO_IO a whirl. Convert it to its .COM
version and see if it works. If it doesn't, check your source file for errors. If

you're adventurous, try to find your bug with Debug. After all, that's what
Debug is for.

Peter Norton's Assembly Language Book 113

Some Tricks

Hiding in WRITE_DECIMAL are two tricks of the trade garnered from the

people who wrote the ROM BIOS procedures we'll meet in Chapter 17. The
first is an efficient instruction to set a register to zero. It's not much more
efficient than MOV AX,0, and perhaps it's not worth the effort, but it's the

sort of trick you'll find people using, so here it is. The instruction:

XOR AX, AX

sets the AX register to zero. How? To understand that, we need to learn about

the logical operation called an Exclusive OR, hence the name XOR.
The exclusive OR is similar to an OR (which we'll see next), but the result of

XORing two trues:

XOR 1

1

1

is true if only one bit is true, not if both are true. Thus, if we exclusive OR a

number to itself, we get zero:

10 11 10 1

XOR 10 11 10 1

0000 0000

That's the trick. We won't find other uses for the XOR instruction in this book,

but we thought you'd find it interesting.

As a short aside, you'll also find many people using another quick trick to

set a register to zero. Rather than using the XOR instruction, we could have

used:

SOB AX, AX

to set the AX register to zero.

Now for the other trick. It's just about as devious as our XOR scheme to

clear a register, and it uses a cousin to the exclusive OR—the OR function.

We want to check the AX register to see if it's zero. To do this, we could use

the instruction CMP AX,0. But no, we'd rather use a trick: It's more fun, and a

little more efficient, too. So, we write OR AX,AX and follow this instruction

114 Printing in Decimal

with a JNE (Jump if Not Equal) conditional jump. (We could also have used
JNZ^Jump if Not Zero.)

The OR instruction, like any of the math instructions, sets the flags, includ-

ing the zero flag. Like AND, OR is a logical concept. But here, a result is true

if one OR the other bit is true:

OR 1

1

1 1

If we take a number and OR it to itself, we get the original number back
again:

10 11 10 1

OR 10 11 10 1

10 11 10 1

The OR instruction is also useful for setting just one bit in a byte. For exam-
ple, we can set bit 3 in the number we just used:

10 11 10 1

OR 0000 1000
10 11 110 1

We'll have more tricks to play before we're through in this book, but these

two are the only ones that are entirely for fun.

The Inner Workings
To see how WRITE_DECIMAL performs its task, study the listing; we won't

cover more details here. We do need to point out a few more things.

First, the CX register is used to count how many digits we've pushed onto

the stack, so that we know how many to remove. The CX register is a particu-

larly convenient choice, because we can build a loop with the LOOP instruc-

tion and use the CX register to store the repeat count. Our choice makes the

digit-output loop (WRITE_DIGIT_LOOP) almost trivial, because the LOOP
instruction uses the CX register directly. We'll use CX very often when we
have to store a count.

Next, be careful to check the boundary conditions here. The boundary condi-

Peter Norton's Assembly Language Book 115

tion at isn't a problem, as you can check. The other boundary condition is

65535, or FFFFh, which you can check easily with Debug. Just load VIDEO_
IO.COM into Debug by typingDEBUG VIDE0_I0.COM and change the 12345

(3039h) at lOlh to 65535 (FFFFh). (WRITE_DECIMAL works with unsigned

numbers. See if you can write a version to write signed numbers).

You may have noticed a sticky point here, having to do with the 8088, not our

program. Debug works mostly with bytes (at least the E command does) but we
want to change a word. We must be careful, since the 8088 stores the bytes in a

different order. Here is an unassemble for the MOV instruction:

39flS:0100 BA3q30 DX,3D3q

You can tell from the BA3930 part of this display that the byte at lOlh is 39h,

and the one at 102h is 30h (BA is the MOV instruction). The two bytes are the

two bytes of 3039h, but seemingly in reverse order. Confusing? Actually, the

order is logical, after a short explanation.

A word consists of two parts, the lower byte and the upper byte. The lower

byte is the least significant byte (39h in 3039h), while the upper byte is the

other part (30h). It makes sense, then, to place the lower byte at the lower

address in memory. (Some computers actually reverse these two bytes, and

this can be a bit confusing if you're using several different computers.)

Try different numbers for the word starting at lOlh, and you'll see how this

storage works. Use TEST_WRITE_DECIMAL to see if you got it right, or

unassemble the first instruction.

MOV DX.3039

0102

0101

0100

301

39"

BA

3039h

MOV instruction

Figure 10-2. The 8088 Stores Numbers With the Lower Byte First in

Memory.

116 Printing in Decimal

Summary
We added a few new instructions to our repertoire here, as well as a few

tricks for fun. We also learned about two other registers, SI and DI, that we
can use as general-purpose registers. They also have other uses, which we'll

see in later chapters.

We learned about the XOR and OR logical instructions, which allow us to

work between individual bits in two bytes or words. And in our WRITE_DEC-
IMAL procedure, we used the XOR AX,AX instruction as a tricky way to set

the AX register to zero. We used OR AX,AX as a devious way to write the

equivalent of CMP AX,0 to test the AX register and see if it is zero.

Finally, we learned about how the 8088 stores a word in memory by check-

ing the boundary conditions of our new procedure, WRITE_DECIMAL.
Here, at the end of this chapter, we now have another general-purpose pro-

cedure, WRITE_DECIMAL, that we'll be able to use in the future for our own
programs.

Take a breather now. We've got a few different chapters scheduled next.

Chapter 11 covers segments in detail. Segments are perhaps the most compli-

cated part of the 8088 microprocessor, so the chapter may prove to be rather

heavy going. Even so, though, we need to cover the topic for following

chapters.

After that, we'll make a slight course correction and get back on track by

learning about what we want to do with our program Dskpatch. We'll do a bit

of probing on disks, and learn about sectors, tracks, and other such things.

From there, we can plot a simple course for preliminary versions of

Dskpatch. En route, you'll get a chance to see how to develop large programs.

Programmers don't write an entire program, then debug it. They write sec-

tions and try each section before they move on—programming is much less

work that way. We've used this approach to a limited extent by writing and

testing WRITE_HEX and WRITE_DECIMAL, for which the test programs

were very simple. The test programs from here on will be more complex, but

more interesting, too.

11

SEQMENTS

Sectioning the 8088's Memory 118

Segment Pseudo-Ops 124

The ASSUME Pseudo-Op 126

Near and Far CALLs 127

More on the INT Instruction 129

Interrupt Vectors 131

Summary 132

117

118 Segments

In the preceding chapters, we've encountered several pseudo-ops that deal

with segments. Now the time has come to look at segments themselves, and at

how the 8088 manages to address a full megabyte (1,048,576 bytes) of memory.
From this, we'll begin to understand why segments need their own pseudo-ops

in the assembler, and in later chapters we'll begin to use different segments

(thus far, we've used only one). Then, in Chapter 13, when we learn about mod-
ular design, we'll see how to group segments together into a .COM file.

Let's start at the 8088 level by learning how it constructs the 20-bit ad-

dresses needed for a full megabyte of memory.

Sectioning the 8088's Memory
Segments are about the only part of the 8088 we haven't covered yet, and

they are, perhaps, the most confusing part of this microprocessor to most peo-

ple. In fact, segments are what we call a kludge in this business: computerese

for a makeshift fix to a problem.

The problem, in this case, is being able to address more than 64K of mem-
ory—the limit with one word, since 65535 is the largest number a single word
can hold. Intel, designers of the 8088, used segments and segment registers to

"fix" this problem, and in the process made the 8088 more confusing.

So far, we haven't concerned ourselves with this problem. We've been using

the IP register to hold the address of the next instruction for the 8088 to exe-

cute ever since we met Debug in Chapter 2. Back then, you may recall that we
said the address is actually formed from both the CS register and the IP regis-

ter. But we never really said how. Now, let's find out.

Although the complete address is formed from two registers, the 8088

doesn't form a two-word number for the address. If you were to take CS:IP as a

32-bit number (two 16-bit numbers side by side), the 8088 would be able to

address about four billion bytes—far more than the one million bytes it can

actually address. The 8088's method is slightly more complicated: The CS reg-

ister provides the starting address for the code segment, where a segment is

64K of memory. Here's how it works.

As you can see in Figure 11-1, the 8088 divides memory into many overlap-

ping segments, with a new segment starting every 16 bytes. The first segment

(segment 0) starts at memory location 0; the second (segment 1) starts at lOh

(16); the third starts at 20h (32), and so on.

The actual address is just CS * 16 + IP. For example, if the CS register

contains 3FA8 and IP contains DO 17, the absolute address is:

119

\A

0001:0000

0000:0000

65535

16

SEOVeJT

0001:FFFF

t

65551

0000:FFFF

Figure 11-1. Overlapping Segments Start Every 16 Bytes, and Are 65536
Bytes Long.

CS * It : D D 1 1

IP :

1111
1 1 D 1

1 D 1 D

D D D D

1 D Q D

D 1

D D D D

Dill
111

We multiplied by 16 just by shifting CS left four bits, and injecting zeros at

the right.

Now, this may seem like a strange way to address more than 64K of mem-
ory, and it is—but it works. Soon, we'll begin to see how well it really works.

120 Segments

1 1 1 1 1 1 1 1 1

+ 1 1 1 1 1 1 1

Segment (CS)

Offset (IP)

01001 1001010100101 1 1

Figure 11-2. Thr Absolute Address ofC&IP is CS 16 -I- IP.

The 8088 actually has four segment registers: CS (Code Segment), DS (Data

Segment), SS (Stack Segment), and ES (Extra Segment). The CS register

we've been looking at is used by the 8088 for the segment where the next

instruction is stored. In much the same way, DS is the segment where the

8088 looks for data, and SS is where the 8088 places the stack.

Before we go on, let's look at a short program, quite different from any we've

seen before, that uses two different segments. Enter this program into the file

TEST_SEG.ASM:

Listing 11-1. The Program TEST_SEG.ASM

C0DE_SEG SEGMENT
ASSUME CS:C0DE_SEG

TEST_SEGMENT PR0C NEAR

MOV AH,<Ch
INT Slh

TEST_SEGMENT ENDP
C0DE_SEG ENDS

STACK_SEGMENT SEGMENT STACK

DB 10 D0P ("Stack ")

STACK SEGMENT ENDS

;Ask for the exit-to-dos function
;Return to DOS

;Three spaces after Stack

END TEST_SEGMENT

Then assemble and link Test_seg, but don't generate a .COM file for it. The
result will be TEST_SEG.EXE, which is slightly different from a .COM file.

Note: We have to use a different method for exiting from .EXE files. For

.COM files, INT 20h works perfectly well, but it doesn't work at all for

.EXE files because the organization of segments is very different, as we'll

see in this chapter; more on this difference later.

Peter Norton's Assembly Language Book 121

When we used Debug on a .COM file, Debug sets all the segment registers

to the same number, with the program starting at an offset of lOOh from the

start of this segment. The first 256 bytes (lOOh) are used to store various

pieces of information which we really aren't that interested in, but we'll take

a peek at part of this area in a little bit.

Now, try loading TEST_SEG.EXE into Debug, to see what happens with

segments in an .EXE file:

A>DEBUG TEST_SEG.EXE
-R

AX=000D BX=DDDD CX=00fl0 DX=DD0D SP=0050 BP=DDDD SI=0D0D DI=0DDD
Ds=3qa5 Es=3qs5 ss=3qqb cs=3qq5 ip=oddg nv up di pl nz na po nc

3995:0000 CD50 INT 2D

The values of the SS and CS registers are different from those for DS and ES.

In our program, we defined two segments. The STACK_SEGMENT is

where we place the stack (hence, the word STACK after the word SEG-
MENT). We defined the stack to be 80 bytes long: The instruction DB 10 DUP
("Stack ") tells the assembler to convert the string in quotation marks to

bytes, and to repeat the string ten times in memory. DB (Define Byte) tells the

assembler we are defining bytes of memory. Here, we're initializing the stack

with ten repetitions of the ASCII code for Stack and three spaces. The code for

this is 53 74 61 63 6B 20 20 20, so if we look at the stack segment, we should

see these numbers repeated ten times. Ask Debug to dump this area of mem-
ory with the following command, which tells Debug to dump memory starting

at offset within the Stack Segment (SS:0):

-D SS:0

3qqb:0D0D 53 74 bl b3 bB 50 2D 50-53 74 bl b3 bB 50 50 50

3qqt:0010 53 74 bl b3 bB 50 5D 5D-53 74 bl b3 bB 5D 5D 50

3qqb:0D50 53 74 bl b3 bB 5D 5D 5D-53 74 bl b3 bB 50 50 50

3qqb:0030 53 74 bl b3 bB 50 50 50-53 74 bl b3 bB 50 50 50

3qqb:0D4D 53 74 bl b3 bB 5D 5D 50-53 74 bl b3 bB 50 00 00

3qqb:0050 DO 00 00 0D 00 DD 0D 00-00 00 DO 00 00 DO DO DO

Stack Stack
Stack Stack
Stack Stack

Stack Stack
Stack Stack ..

The address for the top of the stack is given by SS:SP. SP is the Stack Pointer,

like IP and CS for code, and is an offset within the current Stack Segment.

Actually, "top-of-stack" is a misnomer, because the stack grows from high

122 egmenti

3985:0000

3995:0000

3996:0000

DATA SEGMENT

CODE SEGMENT

STACK SEGMENT

Figure 11-3. Memory Layout for TEST_SEG.EXE.

memory toward low memory. Thus, the top of the stack is really at the bottom

of the stack in memory, and new entries to the stack are placed progressively

lower in memory. Here, SP is 50h, which is 80 decimal, because we defined a

stack area 80 bytes long. We haven't placed anything on the stack as yet, so

top-of-stack is still at the top of the memory we set aside for the stack: 50h.

Now that you know how to find the stack, you may wish to watch how it

changes for the programs in previous chapters. Here, though, let's continue

with the example already in Debug.

Notice that the Stack Segment (SS) is segment number 3996 (this will prob-

ably be different for you), while our Code Segment (CS) is at segment 3995

—

Peter Norton's Assembly Language Book 123

one less than SS, or just 16 bytes lower in memory. That means if we do an
unassemble starting at CS:0, we'll see our program (the INT 20h instruction)

followed by 14 bytes equal to zero (the INT 20h takes two bytes), and then

we'll see the bytes from the stack segment. We'll also see the data for Stack,

followed by three spaces, unassembled:

-0 CS:D

aqqs.-oooo CD50 INT 50

3^5:0005 0000 ADD [BX+SIJ,AL
3qqs:ooo4 0000 ADD [BX+SI],AL
3qq5 :000b 0000 ADD [BX+SILAL
3qq5:oooa 0000 ADD [BX+SI],AL
3qq5:000A 0000 ADD [BX+SI],AL
3qqs:oooc 0000 ADD [BX+SI],AL
3qq5:000E 0000 ADD [BX+SI],AL
3qqs:ooio 53 PUSH BX

3qqs:oon 74tl JZ 0074

3qqS:0013 b3 DB b3

3qq5:0014 bB DB bB

3qqs:oois 5020 AND [BX+SI],AH
3qqs:ooi? 505374 AND [BP+DI+74],DL
3qq5:001A tl DB bl

3qq5:001B b3 DB b3

3qqs:ooic bB DB bB

3qq5:001D 5050 AND [BX+SI],AH

3qq5:001F 505374 AND [BP+DI+74],DL

Just as we expected, the number 53h—the ASCII code for S, the first letter in

our stack area—is at offset lOh (16) within our Code Segment.

In looking at the register display, you may have noticed that the ES and DS
registers contain 3985h, lOh less than the beginning of the program at seg-

ment 3995h. Multiplying by 16 to get the number of bytes, we can see that

there are lOOh (or 256) bytes before our program starts. This is the same area

placed at the beginning of a .COM file.

Among other things, this 256 byte scratch area at the start of programs

contains the characters we type after the name of our program. For example:

A>DEBUG TEST_SEG.EXE And now for some characters we'll see in the memory dump

-D DS:fl0

3qflS:00fi0 3q 50 41 bE b4 50 bE bF-77 50 bb bF 75 50 73 bF q And now for so

3qfl5:00q0 bD b5 50 b3 bfl bl 75 bl-b3 74 b5 75 73 50 77 b5 me characters we

3qfl5:00A0 57 bC bC 50 73 b5 b5 50-bq bE 50 74 bfl b5 50 bD '11 see in the m

3qfl5:00B0 b5 bD bF 75 ?q 50 b4 75-bD 70 0D 50 bD b5 bD bF emory dump, memo

3qfl5:00C0 75 7q 50 b4 75 bD 70 0D-00 00 00 00 00 00 00 00 ry dump

124 Segments

The first byte tells us we typed 39h (or 57) characters, including the first space

after TEST_SEG.EXE. We won't use this information in this book, but it

helps show why you might want such a large scratch area.

Note: The "scratch area" is actually called a PSP (Program Segment
Prefix) and contains information for use by DOS. In other words, you
should not assume that you can make use of this area.

The scratch area also contains information that DOS uses when we exit

from a program, with either the INT 20h or the INT 21h, function 4Ch, in-

structions. But for reasons that are not at all clear, the INT 20h instruction

expects the CS register to point to the start of this scratch area, which it does

for a .COM program, but not for a .EXE program. This is an historical ques-

tion. And, in fact, the exit function (INT 21h, function 4Ch) was added to DOS
with the introduction of version 2.00.

The code for .COM files must always start at an offset of lOOh in the code

segment to leave room for this 256-byte scratch area at the start. This is un-

like the .EXE file, which had its code start at IP = 0000, because the code

segment started lOOh bytes after the beginning of the area in memory.
Recall that, in our .COM files in Chapter 10, we had to explicitly place an

ORG lOOh pseudo-op at the beginning of our programs to set aside lOOh bytes.

The ORG lOOh pseudo-op sets the origin of our code to lOOh. That's all it does,

but we'll continue to use the ORG lOOh in our files, because we'll be using

.COM programs in the rest of the book.

We presented an .EXE file here just so you could learn about segments.

Later on, you'll learn more about them, but we'll use .COM files from now on,

because they are smaller and load into memory more quickly. You'll see the

reasons for this when we reach the last chapter, but now let's move on. Let's

learn about the pseudo-ops for segments.

Segment PseudoOps
We have several pseudo-ops to cover here: SEGMENT, ENDS, ASSUME,

and the NEAR and FAR from the PROC pseudo-op. We also need to take a

closer look at the CALL and RET instructions. When we've covered all this

ground, we'll learn more about the INT instruction and see how it is similar to

125

Memory layout for

.COM program

CS, DS, ES, SS

100h

SP

256 byte data

area

Program, data

and stack

Memory layout for

.EXE program

DS,ES
256 byte data

area

CS:IP
Program

Data segment

SS

SP -

Stack area

-

Figure 11-4. .COM vs .EXE Programs.

a CALL instruction. But let's take these all in order, beginning with SEG-
MENT and ENDS.
The SEGMENT and ENDS pseudo-ops are much like the PROC and ENDP

pseudo-ops we encountered in Chapter 9. We define a segment by surrounding

part of the source file with a SEGMENT/ENDS pair, just as we defined a pro-

cedure with a PROC/ENDP pair. The name before the SEGMENT pseudo-op

is a label.

We'll use this label in Chapter 13, when we divide our source file into many
different source files and two segments; a data segment and a code segment.

With two segments, we can easily separate the variables in memory from our

program. There will be more on memory variables, too, in Chapter 13, and

we'll also add more pieces to the SEGMENT pseudo-op. There are myriad de-

126 Segment!

tails, though, and we won't spend much time on them. You can find the infor-

mation in your assembler manual if you need it.

The ASSUME Pseudo-Op
The ASSUME pseudo-op is slightly trickier than SEGMENT. It provides

the assembler with information about segments and how we want to use the

segment registers. To understand ASSUME, we need to understand how the

assembler keeps track of labels and variable names.

Every time you create a label, such as a procedure (like WRITE_CHAR
PROC NEAR) or a memory variable, the assembler remembers several pieces

of information along with the name: the type (procedure, byte, word, and so

on), the address of the name, and the segment in which it is defined. This last

piece of information is where ASSUME becomes involved.

The assembler doesn't automatically assume that all the procedures of a

program are in the same segment. In many cases, such as for large programs
like Lotus 1-2-3, they aren't. Such programs actually use a number of differ-

ent code segments. So in the interest of generality, we need to provide infor-

mation to the assembler in the form of ASSUME statements, which tell the

assembler which segments the segment registers are pointing to.

For example, let's look at the ASSUME statement we used in previous

chapters:

ASSUME CS:CODE_SEG

This ASSUME statement tells the assembler that the CS register is pointing

to the code segment we named CODE_SEG. Without this information, the

assembler will throw up its hands whenever we try to use a label (as in CALL
WRITE_CHAR), saying that it doesn't know which segment we're currently

in with the message No or unreachable CS.

Since the CS register is always pointing to the code that we're executing, it

may seem a bit odd that the assembler complains when we have no ASSUME
statement. As a matter of fact, we wouldn't need the ASSUME pseudo-op, if it

weren't for something called segment overrides.

The 8088 normally reads data (as in MOV AL,SOME_VARIABLE) from

the data segment (DS). But it can also read information from any other seg-

ment, such as the code segment (CS), by using a segment override. And this is

why the assembler needs the ASSUME pseudo-op: so that it knows which seg-

ment register to use when you read or write memory.

Peter Norton's Assembly Language Book 127

Don't worry if you didn't quite understand this explanation of the ASSUME
pseudo-op. We'll be making minimal use of it until we reach Chapter 29.

There, we'll learn more about both the ASSUME pseudo-op and segment over-

rides, when we look at multiple-segment programs.

The rest of the information in this chapter is purely for your interest, since

we won't be making use of it in this book. You can skip the next two sections

and read them later if you find the going tough or you're anxious to get back

to programming.

Near and Far CALLs
Let's step back for a minute and take a closer look at the CALL instructions

we used in previous chapters. Specifically, let's look at the short program in

Chapter 7, where we first learned about the CALL instruction. Back then, we
wrote a very short program that looked like this (without the procedure at

200h):

3^85:0100 B541 MOV DL,41

3Sfi5:0105 BROAOO MOV CX,000A
3985:0105 EflFflOO CALL 0500

3HflS:010fl E2FB LOOP 01D5

3qfl5:010A CD50 INT 50

You can see by looking at the machine code on the left that the CALL instruc-

tion occupies only three bytes (E8F800). The first byte (E8h) is the CALL in-

struction, and the second two bytes form an -offset. The 8088 calculates the

address of the routine we're calling by adding this offset of 00F8h (remember
that the 8088 stores the lower byte of a word in memory before the high byte,

so we have to reverse the bytes) to the address of the next instruction (108h in

our program). In this case, then, we have F8h + 108h = 200h. Just what we
expected.

The fact that this instruction uses a single word for the offset means that

CALLs are limited to a single segment, which is 64K bytes long. So how is it

that we can write a program like Lotus 1-2-3 that is larger than 64K? We do it

by using FAR, rather than NEAR, calls.

NEAR CALLs, as we've seen, are limited to a single segment. In other

words, they change the IP register without affecting the CS register. And for

this reason they're sometimes known as intrasegment CALLs.

But we can also have FAR CALLs that change both the CS and IP registers.

128 Segment*

Such CALLs are often known as intersegment CALLs because they call proce-

dures in other segments.

Going along with these two versions of the CALL instruction are two ver-

sions of the RET instruction.

The NEAR CALL, as we saw in Chapter 7, pushes a single word onto the

stack for its return address. And the corresponding RET instruction pops this

word off the stack and into the IP register.

In the case of FAR CALLs and RETs, a word is not sufficient, because we're

dealing with another segment. In other words, we need to save a two-word
return address on the stack: one word for the instruction pointer (IP) and the

other for the code segment (CS). The FAR RET, then, pops two words off the

stack—one for the CS register, and the other for IP.

Now we come to a sticky issue. How does the assembler know which of these

two CALLs and RETs to use? When should it use the FAR CALL, and when
should it use the NEAR CALL? This is where the NEAR and FAR pseudo-ops

take command.
By way of example, look at the following program:

PROC.ONE PROC FAR

RET

PR0CJ3NE ENDP

PR0C_TW0 PROC NEAR

CALL PR0C_0NE

RET

PR0C_TW0 ENDP

When the assembler sees the CALL PROC_ONE instruction, it hunts in its

table for the definition of PROC_ONE, which, in this case, is PROC_ONE
PROC FAR. This definition tells whether the procedure is a near or far

procedure.

In the case of a NEAR procedure, the assembler generates a NEAR CALL.
And conversely, it generates a FAR CALL if the procedure you're calling was
defined as a FAR procedure. In other words, the assembler uses the definition

of the procedure that you're calling to determine the type of CALL instruction

that's needed.

For the RET instruction, on the other hand, the assembler looks at the defi-

129

PROCTWO PROC NEAR
CALL PROC ONE <#-

RET
PROCTWO ENDP t

PROC ONE PROC FAR

RET
PROC_ONE ENDP

Figure 11-5. The Assembler Produces a FAR CALL.

PROC ONE PROC FAR

f
J

RET <
PROC ONE ENDP

Figure 11-6. The Assembler Produces a FAR RET.

nition of the procedure that contains the RET instruction. In our program, the

RET instruction for PROC_ONE will be a FAR RET, because PROC_ONE is

declared to be a FAR procedure. Likewise, the RET in PROC_TWO is a

NEAR RET.

More on the INT Instruction

The INT instruction is much like a CALL instruction, but with a minor

difference. The name INT comes from the word interrupt. An interrupt is an

external signal that causes the 8088 to execute a procedure and then return to

130

what it was doing before it received the interrupt. An INT instruction doesn't

interrupt the 8088, but it's treated as if it did.

When the 8088 receives an interrupt, it needs to store more information on

the stack than just the two words for the return address. It has to store the

values of the status flags—the carry flag, the zero flag, and so on. These val-

ues are stored in one word known as the Flag Register, and the 8088 pushes

this information onto the stack before the return address. Here's why we need

to save the status flags.

Your IBM PC regularly responds to a number of different interrupts. The
8088 inside your IBM PC receives an interrupt from the clock 18.2 times ev-

ery second, for example. Each of these interrupts causes the 8088 to stop what
it's doing and execute a procedure to count the clock pulses.

Now, envision such an interrupt occurring between these two program
instructions:

CMP ah, a

JNE N0T_2

Let's assume AH = 2, so the zero flag will be set after the CMP instruction,

which means that the JNE instruction will not branch to NOT_2.
Now, imagine that the clock interrupts the 8088 between these two instruc-

tions. That means the 8088 runs off to carry out the interrupt procedure

before it checks the zero flag (with the JNE instruction). If the 8088 didn't

save and restore the flag registers, the JNE instruction would use flags set by

the interrupt procedure, not from our CMP instruction. To prevent such disas-

ters, the 8088 always saves and restores the flag register for interrupts. An
interrupt saves the flags, and an IRET (Interrupt Return) instruction restores

the flags at the end of the interrupt procedure.

The same is true for an INT instruction. Thus, after executing the

instruction:

the 8088's stack will look like this:

Top of stack - Old IP (return address part I)

Old CS (return address part II)

Old Flag Register

(The stack grows into lower memory, so the top-of-stack is below the Old Flag

Register).

Peter Norton's Assembly Language Book 131

When we place an INT instruction in a program, however, the interrupt is

no surprise. Why, then, do we want to save the flags? Isn't saving the flags

useful only when we have an external interrupt that comes at an unpredict-

able time? As it turns out, the answer is no. There is a very good reason for

saving and restoring the flags for INT instructions. In fact, without this fea-

ture, Debug wouldn't be possible.

Debug uses a special flag in the flag register called the Trap Flag. This flag

puts the 8088 into a special mode known as single-step mode, which Debug
uses to trace through programs one instruction at a time. When the trap flag

is set, the 8088 issues an INT 1 after it executes any instruction.

The INT 1 also clears the trap flag, so the 8088 won't be in single-step mode
while we're inside Debug's INT 1 procedure. But since INT 1 saved the flags to

the stack, issuing an IRET to return to the program we're debugging restores

the trap flag. Then, we'll receive another INT 1 interrupt after the next in-

struction in our program. This is just one example of when it's useful to save

the flag registers. But, as we'll see next, this restore-flag feature isn't always

appropriate.

Some interrupt procedures bypass the restoration of the flag registers. For

example, the INT 21h procedure in DOS sometimes changes the flag registers

by short-circuiting the normal return process. Many of the INT 21h proce-

dures that read or write disk information return with the carry flag set if

there was an error of some sort (such as no disk in the drive).

Interrupt Vectors

Where do these interrupt instructions get the addresses for procedures?

Each interrupt instruction has an interrupt number, such as the 2In in INT
21h. The 8088 finds addresses for interrupt procedures in a table of interrupt

vectors, which is located at the very bottom of memory. For example, the two-

word address for the INT 21h procedure is at 0000:0084. We get this address

by multiplying the interrupt number by 4 (4 * 21h = 84h), since we need four

bytes, two words, for each vector, or procedure address.

These vectors are exceedingly useful for adding features to DOS, because

they enable us to intercept calls to interrupt procedures by changing the ad-

dresses in the vector table. We won't do that in this book, though. Such tricks

are too advanced for us just now.

All these ideas and methods should become clearer as we see more exam-

ples. Most of this book from here on will be filled with examples, so there will

be plenty to study. If you've been feeling a bit overwhelmed by new informa-

I 32 Segment!

tion, rest easy. We'll take a short breather in the next chapter, and get our-

selves reoriented and back on course.

Summary
As we said, this chapter contained a lot of information. We won't use it all,

but we did need to learn more about segments. Chapter 13 will bring us to

modular design, and we'll use some aspects of segments to make our job

easier.

We began this chapter by learning how the 8088 divides memory into seg-

ments. To understand segments in more detail, we built an .EXE program
with two different segments. We won't use .EXE programs in this book, but an

.EXE program demonstrated the idea of segments nicely here.

We also found that the lOOh (256 byte) scratch area at the start of our pro-

grams contains a copy of what we typed on the command line. Again, we won't

use this knowledge in this book, but it helps us see why DOS sets aside such a

large chunk of memory for the purpose.

And, we finally got around to learning about the SEGMENT, ENDS, AS-

SUME, NEAR, and FAR pseudo-ops. These are all pseudo-ops that help us

work with segments. In this book, we'll barely use the power of these pseudo-

ops, because our .COM programs will use only one segment. But for program-

mers who write huge programs in assembly language, these pseudo-ops are

invaluable. If you're interested, you'll find the details in your macro assem-

bler manual.

At the very end of this chapter we learned more about the roots of our help-

ful INT instruction. Now, we're just about ready to slow down and learn how
to write larger and more useful assembly language programs.

12

COURSE CORRECTIONS

Diskettes, Sectors, and Dskpatch 134

The Game Plan 136

Summary 138

133

134

Wee've been poking our noses into a lot of new and interesting places, and
you may, at times, have wondered whether we've been wandering about some-

what aimlessly. We haven't been, of course. We're now familiar enough with

our new surroundings to fix our sights and plot a course for the rest of this

book. And that's what we'll do in this chapter: We'll take a close look at a

design for our Dskpatch program. Then we'll spend the rest of this book devel-

oping Dskpatch, much as you will later develop programs of your own.

We won't present the finished version of Dskpatch all at once; that isn't the

way we wrote it. Instead, we'll present short test programs to check each stage

of our program as we write it. To do this, we need to know where we want to

go. Hence, our course correction here.

Since Dskpatch will deal with information on disks, that's where we'll

begin.

Diskettes, Sectors, and Dskpatch
The information on your floppy disks is divided into sectors, with each sector

holding 512 bytes of information. A double-sided disk formatted with DOS 2.0

or above has a total of 720 sectors, or 720 * 512 = 368,640 bytes. If we could

look directly at these sectors, we could examine the directory directly, or we
could look at the files on the disk. We can't—not by ourselves—but Dskpatch

will. Let's use Debug to learn more about sectors and get an idea of how we'll

display a sector with Dskpatch.

Debug has a command, L (Load), to read sectors from disk into memory,
where we can look at the data. As an example, let's look at the directory that

starts at sector 5 on a double-sided disk. Load sector 5 from the disk in drive A
(that's drive to Debug) by using the L command like this:

-L 1DD 5 1

As you can see in Figure 12-1, this command loads sectors into memory, start-

ing with sector 5 and continuing through one sector at an offset of 100 within

the data segment. To display sector 5, we can use a Dump command:

-D 100

3qbF:0100 49 45 4D 45 49 4F EO 50-43 4F 4D 57 00 00 00 00 IBMBI0 COM 1

aibFiono oo oo oo oo oo oo oo to-ta ot 05 00 00 15 00 00 h

39bF:0150 49 42 4D 44 4F 53 50 50-43 4F 4D 5? 00 00 00 00 IBMDOS COM'

135

Address to load Sector number
segment at. to read

\ /
-L 100 5 1

Disk to read Number of

from (drive A: = 0) sectors to read

Figure 12-1. DEBUG's Load Command.

3RbF:0130 00 00 00 0D 00 00 00 b0-bA 0b 0? 00 00 43 00 00 "h C.
3qbF:0140 43 AT Ad Ad 41 4E AA 50-43 AY Ad 50 00 00 00 00 COMMAND COM
3qbF:0150 00 00 00 00 00 00 00 b0-bA 0b Ifl 00 00 AS 00 0D h E..

3%F:01b0 41 53 53 45 Ad 42 4C 45-55 50 50 Ofl 00 00 00 00 ASSEMBLER
3qbF:0170 00 00 00 00 0D 00 33 RC-B0 Ofc 00 00 00 00 00 00 3.0

-D

3qtF:01fl0 4b 57 50 50 50 50 50 50-43 4F 4D 50 00 00 00 00 FW COM

39bF:0190 00 00 00 00 00 00 00 00-bF 05 5A 00 flO AF 00 00 o. *../..

31bF:01A0 4b 57 50 50 50 5D 50 50-4F 5b 4C 50 00 00 00 00 FW OVL
39bF:01B0 00 00 00 00 00 00 00 00-75 05 5b 00 fll 05 00 00 r.V

3SbF:01C0 4b 57 50 50 50 50 50 50-53 57 50 50 00 00 00 00 FW SWP

3qbF:01D0 00 00 00 00 00 00 RB AA-FF 0b 57 00 00 Cfl 00 00 W..H..

3RbF:01E0 43 4F 4E 4b 49 47 50 50-44 41 54 50 00 00 DO 00 CONFIG DAT

3qbF:01F0 00 00 00 00 00 00 ID A5-A1 0b AR 00 00 5A DO 00 ! (..

We'll use a format much like this for Dskpatch, but with many improve-

ments. Dskpatch will be the equivalent of a full-screen editor for disk sectors.

We'll be able to display sectors on the screen and move the cursor about the

sector display, changing numbers or characters as we want. We'll also be able

to write this altered sector back to the disk, and this is why we call it Disk

Patch—or rather Dskpatch, since we can't have more than eight characters in

the name.

Dskpatch is the motivation for the procedures we write. It is by no means an

136 Course Corrections

end in itself. In using Dskpatch as an example for this book, we'll also manage
to present many procedures that you'll find useful when you attempt to write

your own programs. That means you'll find many general-purpose procedures

for display output, display manipulation, keyboard input, and more.

Let's take a closer look at some improvements we'll make to Debug's sec-

tor dump. The display from Debug only shows the "printable" characters

—

96 out of the 256 different characters that an IBM PC can display. Why is

that? Because MS-DOS, PC-DOS's cousin, runs on many different com-
puters. Some of these computers display only 96 characters, so Microsoft (the

author of Debug) chose to write one version of Debug that would work on all

machines.

Dskpatch is for IBM Personal Computers and near cousins, so we can dis-

play all 256 different characters; to do so will require a bit of work. Using the

DOS function 2 for character output, we can display almost all characters, but

DOS gives special meaning to some, such as 7, which rings the bell. There are

characters for special codes like 7, and in Part III we'll see how to display

them.

We'll also make heavy use of the function keys so that, for example, we can

display the next sector just by pressing the F2 key. And we'll be able to

change any byte by moving the cursor to that byte and typing in a new
number. It will be just like using a word processor, where we can change char-

acters very easily. More of these details will appear as we slowly build

Dskpatch. (Figure 12-2 shows what its normal display will look like—a vast

improvement over the display from Debug.)

The Game Plan

In Chapter 13, we'll learn how to break our program into many different

source files. Then, we'll begin serious work on Dskpatch in Chapter 14. At the

end, we'll have nine source files for Dskpatch that have to be linked together.

And even if you don't enter and run all these programs now, they'll be here

when you're ready for them, or when you want to borrow some of the general-

purpose procedures. In any case, you'll get a better idea of how to write long

programs as you read through the following chapters.

We've already created several useful procedures, such as WRITE_HEX to

write a byte as a two-digit hex number and WRITE_DECIMAL to write a

number in decimal. Now, we'll write some programs to display a block of

memory in much the same way Debug's D command does. We'll start by dis-

playing 16 bytes of memory, one line of Debug's display, and then work

Peter Norton's Assembly Language Book 137

Disk A Sector B

88 81 82 83 84 85 86 87 88 89 Bfi 8B BC BD 8E 8F B123456789ABCDEF

Be 3121 98 49*42 4D 28 28*33 2E 31 88*82 82 81 88 QtElBH 3.1 BBS

18 82 78 88 D8 82 FD 82 88 89 88 82 88 88 88 88 88 Bp Atffl o B

28 88 88 88 C4 5C 88 33 ED B8 CB B7 8E D8 33 C9 8A

TjyfleiA if e." |38 D2 79 8E 89 IE IE 88 8C 86 28 88 88 16 22 88 Bl

48 82 8E C5 8E D5 BC 88 7C 51 FC IE 36 C5 36 78 88 BAffiH1 !Q"A6|6x

58 BF 23 7C B9 BB 88 F3 A4 IF 88 BE 2C BB A8 18 BB itlflj <nVe/), at

68 A2 27 88 BF 78 BB B8 23 7C AB 91 AB Al 16 88 Dl 6'
n x illfcgf. f

*05$ 5 a | 4SfQ5J{

Js0j|* E< s uba|[§

78 EB 48 E8 88 88 E8 86 88 BB 88 85 53 BB 81 E8 AB

88 88 5F BE 73 81 B9 BB 88 98 F3 A6 75 62 83 C7 15

98 Bl BB 98 98 F3 A6 75 57 26 8B 47 1C 99 8B BE BB |4EE< s uUaYG>-b"ifl4

fiB B8 83 CI 48 F7 Fl 88 3E 71 81 68 75 B2 BB 14 96 •LH=±5>q9
,

uB|llu

B8 Al 11 BB Bl 84 D3 E8 E8 3B BB FF 36 IE BB C4 IE H |^3S; 6a -a

C8 6F Bl E8 39 BB E8 64 88 2B FB 76 BD E8 26 88 52 0059 5d +=vr58 Jt

D8 F7 26 BB 88 83 D8 5A EB E9 CD 11 B9 82 88 D3 E8 =8<J t^Z6e=^8 i«

E8 88 E4 83 74 84 FE C4 8A CC 5B 58 FF 2E 6F 81 BE SZftM-e&tX .o@J

F8 89 81 EB 55 98 81 86 IE 88 11 2E 28 eB C3 Al 18 eQSUEQU 4. [H

Press function key, or enter character or hex byte:

Figure 12-2. Example of Dskpatch's Display.

toward displaying 16 lines of 16 bytes each (half a sector). A full sector won't

fit on the display at one time with the format we've chosen, so Dskpatch in-

cludes procedures for scrolling through a sector using the ROM BIOS—not

DOS—interrupts. That will come much later, though, after we've built a full-

screen display of half a sector.

Once we can dump 256 bytes from memory, we'll build another procedure to

read a sector from the disk into our area of memory. We'll dump half a sector

on the screen, and we'll be able to use Debug to alter our program, so we can

dump different sectors. At that point, we'll have a functional, but not very

attractive display, so making it pretty comes next.

With a bit more work and some more procedures, we'll rebuild the half-

sector display to be much more pleasing aesthetically. It still won't be a full-

screen display, so it will just scroll past like Debug's dump did. But the full-

screen display will come next, and through it, we'll learn about the ROM
BIOS routines that allow us to control the display, move the cursor . . . that

sort of thing. Then, we'll be ready to learn how to use more ROM BIOS rou-

tines to print all 256 different characters.

Next will come the keyboard input and command procedures that will let us

138 Course Corrections

start interacting with Dskpatch. About that time we'll also need another

course correction.

Summary
We've seen enough of the future here. You should have a better idea of

where we're headed, so let's move on to the next chapter, where we'll lay the

groundwork for modular design and learn how to split a program into many
different source files. Then, in Chapter 14, we'll write some test procedures to

display sections of memory.

13

MODULAR DESIQN

Separate Assembling 140

The Three Laws of Modular Design 144

Summary 147

139

140

Wi,ithout modular design, Dskpatch wouldn't have been much fun to write.

Using a modular design greatly eases the task of writing any but the smallest

program. We'll use this chapter to set some ground rules for modular design,

and we'll follow those rules throughout the rest of this book. Let's begin by
learning how to separate a large program into many different source files.

Separate Assembling
In Chapter 10, we added the procedure WRITE_DECIMAL to VIDEO_

IO.ASM, and we also added a short test procedure called TEST_WRITE_
DECIMAL. Let's take this test procedure out of VIDEO_IO.ASM and put it in

a file of its own, called TEST.ASM. Then, we'll assemble these two files sepa-

rately and link them together into one program. Here is the TEST.ASM file:

Listing 13-1. The File TEST. ASM

C0DE_SEG SEGMENT PDBLIC
ASSUME CS:C0DE_SEG
ORG lOOh

EXTRN WRITE_DECIMAL:NEAR

TEST_WRITE_DECIMAL PROC NEAR
MOV DX, 15345
CALL WRITE_DECIMAL
INT 20h ;Return to DOS

TEST_WRITE_DECIMAL ENDP

C0DE_SEG ENDS

END TEST_HRITE_DECIMAL

We've seen most of this source file before, but some of it is new, so let's begin

at the top and work our way down. First, the word PUBLIC now appears after

SEGMENT. This tells the assembler we want this segment (CODE_SEG)
combined into one segment along with all other segments that have the same
name—the code segment, in this case. The assembler just passes this informa-

tion on to the linker, which, as its name implies, links different files. The
linker does the work of stitching the different pieces of each segment together.

141

CODE SEG DATA SEG

CODE SEGSEGMBJT
PUBUC
(from file 1)

OODE SEGSEGMBMT
PUBLIC
(from file 2)

DATA SEGSEGMENT
PUBLIC

(from file 1)

DATA SEGSEGMENT
PUBLIC
(from file 2)

Figure 13-1. LINK Stitches Together Segments From Different Files.

Our file now contains the EXTRN pseudo-op. The statement EXTRN-
WRITE_DECIMAL:NEAR tells the assembler two things: that WRITE_
DECIMAL is in another, external, file, and that it's defined as a NEAR proce-

dure in that file, so it should be in the same segment. The assembler thus

generates a NEAR CALL for this procedure; it would generate a FAR CALL if

we had placed a FAR after WRITE_DECIMAL.

EXTRN WRITE_DECIMAL:NEAR
TEST WRITE DECIMAL *

????
CALL WRJI^B^iMAL^/ LINK provides

the address

Figure 13-2. LINK Assigns the Addresses for External Names.

142 Modular Design

These are about the only changes we need for separate source files until we
begin to store data in memory. At that point, we'll introduce another segment
for data. Now, let's modify VIDEO_IO.ASM, and then assemble and link

these two files.

Remove the procedure TEST_WRITE_DECIMAL from VIDEO_IO.ASM.
We've placed this in TEST.ASM, so we don't need it in Video_io. Then, re-

move the ORG lOOh statement from Video_io. We moved this, too, to

TEST.ASM, which now has the first procedure in our program. As we saw in

Chapter 11, the ORG lOOh statement is needed to save 256 bytes for the

scratch area at the beginning of our program—that is, before TEST_WRITE_
DECIMAL in the source file TEST.ASM.

Next, we have to put the word PUBLIC after SEGMENT, like this:

CODE.SEG SEGMENT PUBLIC

so the linker will know that it should combine this segment with the same
segment in TEST.ASM.

Finally, change END TEST_WRITE_DECIMAL at the end of VIDEO_
10.ASM to just END. Once again, we moved the main procedure to

TEST.ASM. The procedures in VIDEO_IO.ASM are now external procedures,

nothing more. That is, they have no function by themselves; they must be

linked to procedures that call them from other files. We don't need a name
after the END pseudo-op in VIDEO_IO.ASM, because our main program is

now in TEST.ASM.
When you've finished making these changes, your VIDEO_IO.ASM source

file should look something like this:

CODE_SEG SEGMENT PUBLIC
ASSUME CS:CODE_SEG

PUBLIC WRITE HEX DIGIT

WRITE_HEX_DIGIT ENDP

PUBLIC WRITE HEX

WRITE HEX ENDP

Peter Norton's Assembly Language Book 143

PUBLIC WRITE_CHAR

WRITE_CHAR ENDP

PUBLIC WRITE_DECIMAL

HRITE_DECIMAL ENDP

C0DE_SEG ENDS

END

with an ASSUME at the the start.

Assemble these two files just as you assembled Video_io before. TEST.ASM
knows all it needs to know about VIDEO_IO.ASM through the EXTRN state-

ment. The rest will come when we link the two files.

You should now have the files TEST.OBJ and VIDEO_IO.OBJ. Use the fol-

lowing command to link these two files into one program named TEST.EXE:

A>LINK TEST VIDE0_I0;

LINK stitches the procedures of these two files together to create one file con-

taining the entire program. It uses the first file name we entered as the name
for the resulting .EXE file, so we now have TEST.EXE.

Finally, create a .COM file, just as you did before, by typing EXE2BIN
TEST TEST.COM. That's it, we created one program from two source files.

The final .COM program is identical to the version we created from the single

file VIDEO_IO.ASM, when it contained the main procedure TEST_WRITE_
DECIMAL.

We'll make heavy use of separate source files from here on, and their value

will become clearer as the procedures stack up. In the next chapter, we'll write

a test program to dump sections of memory in hex. We'll usually write a sim-

ple test version of a procedure before we write the complete version. Doing so

will allow us to see how to write a good final version, as well as saving much
effort and mental turmoil in the process.

There are several other useful ways to save effort. We call them the Three

Laws of Modular Design.

144 i
I

The Three Laws of Modular Design
These laws are summarized in Table 13-1. They aren't really laws, they're

suggestions. But we'll use them throughout this book. Define your own laws if

you like, but either way, stick to the same ones all the time. Your job will be

much easier if you're consistent.

Table 13*1. The Three Laws of Modular Design

1. Save and restore all registers, unless the procedure returns a value in

that register.

2. Be consistent about which registers you use to pass information. For ex-

ample:
* DL, DX—Send byte and word values.
* AL, AX—Return byte and word values.
* BX:AX—Return double-word values.
* DS:DX—Send and return addresses.
* CX—Repeat counts and other counts.
* CF—Set when there is an error; an error code should be returned in

one of the registers, such as AL or AX.

3. Define all external interactions in the comment header:
* Information needed on entry.
* Information returned (registers changed).
* Procedures called.

* Variables used (read, written, and so on).

There's an obvious parallel between modular design in programming and

modular design in engineering. An electrical engineer, for example, can build

a very complicated piece of equipment from boxes that perform different func-

tions, without knowing how each box works. But if each box uses different

voltages and different connections, the lack of consistency creates a major

headache for the poor engineer, who must somehow provide a different volt-

age for each box and create special connections between boxes. Not much fun,

but fortunately for the engineer, there are standards providing for only a

small number of standard voltages. So, perhaps only four different voltages

need to be provided, instead of a different voltage for each box.

Modular design and standard interfaces are just as important in assembly-

language programs, and that's why we'll lay down the laws (so to speak), and

use those laws from here on. As you'll see by the end of this book, these rules

will make our task much simpler. Let's take a look at these laws in detail.

Peter Norton's Assembly Language Book 145

Save and restore all registers, unless the procedure returns a value in

that register. There aren't that many registers in the 8088. By saving reg-

isters at the start of a procedure, we free them for use within that procedure.

But we must be careful to restore them at the end of the procedure. You'll see

us doing this in all our procedures, with PUSH instructions appearing first in

each procedure, and POPs at the end.

The only exception is for procedures that must return some information to

the calling procedure. For example, a procedure that reads a character from

the keyboard must somehow return the character. We won't save any regis-

ters that we use to return information.

Short procedures also help the register-shortage problem. At times, we'll

write a procedure that's used only once. Not only does this help with the

shortage of registers, it also makes the program easier to write and, often,

easier to read. We'll see more of this as we write procedures for Dskpatch.

Be consistent about which registers you use to pass information.

Our job becomes simpler if we set standards for exchanging information be-

tween procedures. We'll use one register for sending information, and one for

receiving information. We'll also need to send addresses for long pieces of

data, and for this we'll use the pair of registers DS:DX, so that our data can be

anywhere in memory. You'll learn more about this when we introduce a new
segment for data and begin to make use of the DS register.

We reserve the CX register for repeat counts. We'll soon write a procedure

to write one character several times, so that we can write ten spaces by calling

this procedure (WRITE_CHAR_N_TIMES) with CX set to 10. We'll use the

CX register whenever we have a repeat count or when we want to return some
count, such as the number of characters read from the keyboard (we'll do this

when we write a procedure named READ_STRING).
Finally, we'll set the Carry Flag (CF) whenever there is an error, and we'll

clear it whenever there isn't an error. Not all procedures use the carry flags.

For example, WRITE_CHAR always works, so there's no reason to return an

error report. But a procedure that writes to the disk can encounter many er-

rors (no disk, write-protection, and so on). In this case, we'll use a register to

return an error code. There's no standard here, because DOS uses different

registers for different functions. Its fault, not ours.

Define all external interactions in the comment header. There's no

need to learn how a procedure works if all we want to do is use it, and this is

why we place a detailed comment header before each procedure. This header

146 Modular Design

contains all the information we need to know. It tells us what to place in each
register before calling the procedure, and it tells what information the proce-

dure returns. Most procedures use registers for their variables, but some of

the procedures we'll soon see use variables in memory. The comment header
should say which of these memory variables are read and which are changed.

And lastly, each header should list other procedures called. Here is an exam-
ple of a full-blown header with much of this information:

This is an example of a full-blown header. This part would normally
be a brief description of what this procedure does. For example,
this procedure will write the message "Sector " on the first line.

DS:DX Address of the message "Sector "

Calls: G0T0_XY, WRITE_STRING (procedures called)
Reads: STAT(JS_LINE_NO (memory variables read only)
Writes: DOHHY (memory variables altered)

Whenever we want to use any procedure we've written, we can just glance

at this comment header to learn how to use it. There will be no need to delve

into the inner workings of the procedure to find out what it does.

These laws make assembly language programming easier, and we'll be cer-

tain to abide by them, but not necessarily on the first try—we often won't. The
first version of a procedure or program is a test case. Frequently, we don't

know exactly how to write the program we have in mind, so on these "rough

drafts," we'll write the program without concern for the laws of modular de-

sign. We'll just plow through and get something that works. Then we can

backtrack and do a good job by rewriting each procedure to conform to these

laws.

Programming is a process that goes by leaps and bounds. Throughout this

book we'll show much of the stuttering that went into writing Dskpatch, but

we certainly can't show it all. There isn't room enough to contain all the ver-

sions we wrote before we settled on the final version. Our first tries often bore

very little resemblance to the final versions you'll see, so when you write pro-

grams, don't worry about getting everything right the first time. Be prepared

to rewrite each procedure as you learn more about what you really want.

In the next chapter, we'll build a simple test program to print a block of

memory. It won't be the final version; we'll go through others before we're

satisfied, and even then, there will be other changes we'd like to make. The
moral is: A program is never done . . . but we must stop somewhere.

Peter Norton's Assembly Language Book 147

Summary
This has been a chapter for you to remember and use in the future. We

began by learning how to separate a program into a number of different

source files that we can assemble independently, then stitch together with the

linker. We used the PUBLIC and EXTRN pseudo-ops to inform the linker that

there are connections between different source files. PUBLIC says that other

source files can CALL the procedures named after PUBLICs, while EXTRN
tells the assembler that the procedure we want to use is in another file.

We also used PUBLIC after the SEGMENT definition so that the linker will

stitch together segments of the same name that are in different source files.

Then we moved on to the Three Laws of Modular Design. These rules are

meant to make your programming job simpler, so use them when you write

your own programs, just as you'll see us use them in this book. You'll find it

easier to write, debug, and read programs if they conform to these Three

Laws.

14

DUMPING? MEMORY
Addressing Modes 150

Adding Characters to the Dump 156

Dumping 256 Bytes of Memory 158

Summary 163

149

150 Dumping Memory

Xrom here on, we'll concentrate on building Dskpatch in much the same way
we originally wrote it. Some of the instructions in procedures to come may be

unfamiliar; we'll explain each briefly as we come across them, but for detailed

information, you'll need a book that covers all of the instructions in detail.

Rather than cover all the 8088 instructions, we'll concentrate on new con-

cepts, such as the different modes of addressing memory, which we'll cover in

this chapter. In Part III, we'll move even farther away from the details of

instructions and begin to see information specific to the IBM Personal Com-
puter and its near cousins.

Now, let's learn about addressing modes by writing a short test program to

dump 16 bytes of memory in hex notation. To begin, we need to learn how to

use memory as variables.

Addressing Modes
We've seen two addressing modes; they're known as the register and imme-

diate addressing modes. The first one we learned about was the register mode,

which uses registers as variables. For example, the instruction:

AX,BX

uses the two registers AX and BX as variables.

Then, we moved on to the immediate addressing mode, in which we moved a

number directly into a register, as in the example:

AX, 2

This moves the byte or word of memory immediately following the instruction

into a register. In this sense, the MOV instruction in our example is one byte

long, with two more bytes for the data (0002):

BUFiDlOO Bfl02D0

The instruction is B8h, and the two bytes of data (02h and OOh) follow this

(remember that the 8088 stores the low byte, 02h, first in memory).

Now, we'll learn how to use memory as a variable. The immediate mode

Peter Norton's Assembly Language Book 151

allows us to read the piece of fixed memory immediately following that one

instruction, but it doesn't allow us to change memory. For this, we'll need

other addressing modes.

Let's begin with an example. The following program rea^s 16 bytes of mem-
ory, one byte at a time, and displays each byte in hex notation, with a single

space between each of the 16 hex numbers. Enter the program into the file

DISP_SEC.ASM and assemble it. Later, we'll want to change VIDEO_
IO.ASM slightly, but first, let's take care of DISP_SEC.ASM:

Listing K-l. The New File DISP_SEC.ASM

CGROUP GROUP C0DE_SEG, DATA_SEG
ASSUME CSrCGROUP, DS:CGR0UP

;Group two segments together

CODE SEG SEGMENT
lODh

PUBLIC

EXTRN
EXTRN

WRITE_HEX:NEAR
WRITE CHAR:NEAR

This is a simple test program to dump It bytes of memory as hex

numbers, all on one line.

DISP.LINE PROC NEAR

XOR BX,BX ;Set BX to D

MOV CX,lb ;Dump It bytes

HEX_L00P:
MOV DL,SECTOR[BX] ;Get 1 byte

CALL WRITE_HEX ;Dump this byte in hex

MOV DL, •
' ;Write a space between numbers

CALL WRITE_CHAR

INC BX

LOOP HEXJLOOP
INT 20h ;Return to DOS

DISP_LINE ENDP

C0DE_SEG ENDS

DATA_SEG SEGMENT PUBLIC

PUBLIC SECTOR

SECTOR DB lOh, llh, 12h, 13h, Kh, 15h, 1th, 17h ;Test pattern

DB Iflh, IHh, lAh, IBh, ICh, IDh, lEh, IFh

DATA SEG ENDS

152 Dumping Memory

Notice that we've put the data segment (DATA_SEG) after the code seg-

ment (CODE_SEG). We've put it at the end of the file so the linker will load

the data in memory at the end of our program.

We've also added a few new tricks to this program, and for this reason we
need to make some small changes to VIDEO_IO.ASM. First, remove the AS-
SUME statement in Video_io and place the following two lines at the begin-

ning of VIDEO_IO.ASM:

CGROUP GROUP C0DE_SEG ;Group two segments together
ASSUME CS:CGR0UP

We'll place these two lines at the beginning of each file from now on, with one

slight variation. We'll write:

CGROUP GROUP C0DE_SEG, DATA_SEG ;Group two segments together
ASSUME CS:CGR0UP, DSrCGROUP

(with DATA_SEG) whenever we have both a code segment and a data seg-

ment in the file.

The ASSUME here replaces the old ASSUME, and we'll see later what
these two statements actually do. But now, let's try our new program to see

how it works. Assemble both Disp_sec and Video_io.

We're ready to link DISP_SEC.OBJ and VIDEO_IO.OBJ and run the re-

sult through Exe2bin, so first use LINK to create an .EXE file named DISP_
SEC.EXE. The first file name in the LINK command must be the name of the

file that contains the main procedure (Disp_sec in this case), and a semicolon

must appear at the end of the list of files, so type:

A>LINK DISP_SEC VIDE0_I0;

Linking will always be the same, with more names before the semicolon

when we have more files, but the main procedure must always be in the first

file listed.

Now, convert the .EXE file to a .COM file by typing:

A>EXE5BIN DISP_SEC DISP_SEC.COM

In general, the two preceding steps for the files filel, file2, and so on, look

like this:

Peter Norton's Assembly Language Book 153

LINK filel file? file3 .

EXEEBIN filel filel.COM

Now, run the .COM file. Make sure you've run Exe2bin before you run
Disp_sec. Otherwise, you'll end up running the .EXE version of Disp_sec, and
who knows what will happen. At worst, you'll have to turn your computer off,

wait about a minute, and then turn it on again to reset it.

If you don't see:

10 11 15 13 IA 15 lb 17 Ifl iq 1A IB 1C ID IE IF

when you run the program, go back and check carefully for a mistake.

Now, let's see how Disp_sec works. The instruction:

MOV DL,SECT0R[BX: ;Get 1 byte

uses a new addressing mode known as Indirect Memory Addressing—address-

ing memory through the Base register with offset, or more simply, Base Rela-

tive. Let's see what this really means.

0431 + BX

MOV DUSECTOREBXJ

0434
0433
0432

SECTOR: 0431

0013
0012
0011

0010

Figure 14-1. Translation of SECTOR[BX].

Looking at Disp_sec, you'll see that the label SECTOR is in a segment

named DATA_SEG. This is a new segment used for memory variables. Any
time we want to store and read data in memory, we'll set aside some space in

this segment. We'll get back to memory variables in just a minute, but first

let's learn a little more about segments.

The ASSUME DS:CGROUP tells the assembler where to find memory vari-

154 Dumping Memor>

ables. You might have guessed we'd want ASSUME DS:DATA_SEG. Not
quite, because we want to build a .COM file, we must build only one segment.

Yet, it's convenient to work with two: one for the code, and one for the data.

This is where the GROUP pseudo-op enters the scene. GROUP groups differ-

ent segments into what is effectively one segment, with the name we give

before the GROUP pseudo-op. So the statement:

CGRODP GROUP C0DE_SEG, DATA_SEG

merges the two segments CODE_SEG and DATA_SEG into a single 64K seg-

ment with the name CGROUP. The inner workings of groups are a bit more
complicated than this, but we don't need to know any more details. If you
want the details, you'll find them in your macro assembler manual. Be
warned, however: They are a bit difficult to read.

It's time to get back to our base-relative addressing mode. The two lines:

SECTOR DB lOh, llh, 12h, 13h, Uh, ISh, 1th, l?h ;Test pattern
DB Iflh, ISh, lAh, IBh, ICh, IDh, lEh, IFh

set aside 16 bytes of memory in the data segment starting at SECTOR, which

the assembler converts to an address. DB, you may recall, stands for Define

Byte; the numbers after each DB are initial values. So, when we first start

DISP_SEC.COM, the memory starting at SECTOR will contain lOh, llh,

12h, and so on. If we wrote:

MOV DL, SECTOR

the instruction would move the first byte (lOh) into the DL register. This is

known as direct memory addressing. But we didn't write that. Instead, we
placed [BX] after SECTOR. This may look suspiciously like an index into an

array, like the BASIC statement:

K = L(1D)

which moves the 10th element of L into K.

In fact, our MOV instruction is much the same. The BX register contains an

offset in memory from SECTOR. So if BX is 0, the MOV DL,SECTOR[BX]
moves the first byte (lOh here) into DL. If BX is OAh, this MOV instruction

moves the eleventh byte (lAh—remember, we started at 0) into DL.

Peter Norton's Assembly Language Book 155

CS,DS OGROUP

CODESEG

DATA SEG

Figure 14-2. Groups Treat Multiple Sectors as a Single Segment.

On the other hand, the instruction MOV DX,SECTOR[BX] would move the

sixth word into DX, since an offset of 10 bytes is the same as 5 words, and the

first word is at offset zero. (For enthusiasts: This last MOV instruction is not

legal, because SECTOR is a byte label, whereas DX is a word register. We
would have to write MOV DX,Word Ptr SECTOR[BX] to tell the assembler

that we really want to use SECTOR as a word label in this instruction.)

156 Dumping Memory

There are many other addressing modes; some we'll encounter later, but

most we won't. All the addressing modes are summarized in Table 14-1.

Table 14-1. Addressing Modes

Addressing Mode Form.it of Address Segment Register Used

Register register (such as AX) None

Immediate data (such as 12345)

Memory Addressing Modes

None

Register Indirect [BX]
[BP]

[DI]

[SI]

DS
ss
DS
DS

Base Relative* labeKBX]
label[BP]

DS
SS

Direct Indexed* labellDI]

labellSI]

DS
DS

Base Indexed* label[BX + SI]

labeKBX + DI]

label [BP + SI]

labellBP + DI]

DS
DS
SS
ss

String Commands:
(MOVSW, LODSB, and so on)

Read from DS:SI
Write to ES:DI

* Label[...] can be replaced by [disp+...], where disp is a displacement.

Thus, we could write [10 + BX] and the address would be 10 + BX.

Adding Characters to the Dump
We're almost through the procedure for a dump display similar to Debug's.

So far we've dumped the hex numbers for one line; in the next step we'll add

the character display following the hex display. It's not very involved, so with-

out further delay, here's the new version of DISP_LINE (in DISP_SEC.ASM),
with a second loop added to display the characters:

Peter Norton's Assembly Language Book 157

Listing IAS . Changes to DISP_LINE in DISP_SEC.ASM

DISP_LINE PROC NEAR
XOR BX,BX
MOV CX,lt>

HEX_L00P:

MOV DL,SECTOR[BX]
CRLL WRITE.HEX
MOV DL, ' '

CALL HRITE_CHAR
INC BX

LOOP HEX_LOOP

MOV DL, '
'

CALL WRITE_CHAR
MOV CX,lfe

XOR BX,BX

ASCII_L00P:
MOV DL,SECTOR[BX]
CALL WRITE_CHAR
INC BX

LOOP ASCII_LOOP

INT 20h

DISP.LINE ENDP

;Set BX to D

;Dump lb bytes

;Get 1 byte
;Dump this byte in hex

;Write a space between numbers

Add another space before characters

:Set BX back to D

Return to DOS

Assemble this, link it to Video_io, run it through Exe2bin, and try it. Just the

display we wanted. (See Figure 14-3.)

A>disp_sec

IB 11 12 13 14 15 16 17 18 19 1A IB 1C ID IE IF HI !M§.!t !•-«»*¥

A>

Figure 14-3. DISP_LINE's Output.

Try changing the data to include a ODh or a OAh. You'll see a rather strange

display. Here's why: OAh and ODh are the characters for the line-feed and
carriage-return characters. DOS interprets these as commands to move the

cursor, but we'd like to see them as just ordinary characters for this part of the

display. To do this, we'll have to change WRITE_CHAR to print all charac-

ters, without applying any special meaning. We'll do that in Part III, but for

now, let's rewrite WRITE_CHAR slightly so that it prints a period in place of

the low characters (between and lFh).

158 Dumping Memory

A>disp_$ec

18 11 12 13 14 15 16 17 18 19 1A IB 1C ID IE IF

A>

Figure 14-4. Modified Version of DISI» LINK.

Replace the WRITE_CHAR in VIDEO_IO.ASM with this new procedure:

Listing 14-3. A New WRITE_CHAR in VIDEO_IO.ASM

PUBLIC WRITE CHAR

This procedure prints a character on the screen using the DOS

function call WRITE CHAR replaces the characters through IFr. with ;

a period.

DL byte to print on screen.

WRITE CHAR PROC NEAR

POSH AX

POSH DX

CMP DL,35

JAE IS PRINTABLE
HOV DL, '

.

'

IS PRINTABLE:
MOV AH,

2

INT 51h

POP DX

POP AX

RET

WRITE CHAR ENDP

;Is character before a space?
;No, then print as is

;Yes, replace with a period

;Call for character output
;0utput character in DL register
;Restore old value in AX and DX

Try this new procedure with Disp_sec, and change the data to various charac-

ters to check the boundary conditions.

Dumping 256 Bytes of Memory
Now we've managed to dump one line, or 16 bytes, of memory. The next

step is to dump 256 bytes of memory. This happens to be exactly half the

number of bytes in a sector, so we're working toward building a display of

half a sector. We still have many more improvements to make; this is just a

test version.

We'll need two new procedures here, and a modified version of DISP_LINE.
The new procedures are DISP_HALF_SECTOR, which will soon evolve into a

finished procedure to display half a sector, and SEND_CRLF, which just

sends the cursor to the beginning of the next line (CRLF stands for Carriage

Peter Norton's Assembly Language Book 159

Return-Line Feed, the pair of characters that move the cursor to the next

line).

SEND_CRLF is very simple, so let's start with it. Place the following proce-

dure into a file called CURSOR.ASM:

Listing IA-A. The New File CURSOR.ASM

CR EQU 13 ;Carriage return
LF EQD 10 ;Line feed

CGRODP GROUP C0DE_SEG
ASSUME CS:CGR0UP

CODE.SEG SEGMENT PUBLIC

PUBLIC SEND CRLF

This routine just sends a carriage return-line feed pair to the

display, using the DOS routines so that scrolling will be handled

correctly.

SEND CRLF PROC
PUSH AX

PUSH DX

MOV AH,

2

MOV DL,CR

INT eih

MOV DL,LF

INT 51h

POP DX

POP AX

RET

SEND_CRLF ENDP

CODE SEG ENDS

NEAR

This procedure sends a Carriage Return and Line Feed pair, using the DOS
function 2 to send characters. The statement:

CR EQU 13 ;Carriage return

uses the EQU pseudo-op to define the name CR to be equal to 13. So the in-

struction MOV DL,CR is equivalent to MOV DL,13. As shown in Figure 14-5,

the assembler substitutes 13 whenever it sees CR. Likewise, it substitutes 10

whenever it sees LF.

160 Dumping Memory

CR EQU 13

MOV DL,ptf
13

Figure 14-.">. The EQU Pseudo-Op I^ts Us U9e Names in Place of Numbers.

The file Disp_sec now needs much work. Here's the new version of DISP_
SEC.ASM. From here on, additions to our programs will be shown against i

gray background; text you should delete will be printed in blue:

Listing IAS. The New Version of DISP_SEC.ASM

CGROUP GROUP CODE_SEG, DATA_SEG ;Group two segnents together
ASSUME CS:CGROUP, DS:CGROUP

CODE.SEG SEGMENT PUBLIC
ORG lOOh

PUBLIC DISP_HALF_SECTOR
EXTRN SEND CRLF:NEAR

This procedure displays half a sector (E5b bytes)

Uses: DISP.LINE, SEND_CRLF

DISP HALF SECTOR PROC

XOR DX,DX
MOV CX,lfc

HALF SECTOR:
CALL DISP LINE
CALL SEND CRLF

ADD DX,lb
LOOP HALF SECTOR
INT 50h

DISP_HALF_SECTOR ENDP

PUBLIC DISP LINE

EXTRN WRITE HEX:NEAR
EXTRN WRITE CHAR:NEAR

NEAR

;Start at beginning of SECTOR

;Display lb lines

Peter Norton's Assembly Language Book 161

Listing 14-5. continued

This procedure displays one line of data, or It. bytes, first in hex,

then in ASCII.

DS:DX Offset into sector, in bytes.

Uses: WRITE_CHAR, WRITE_HEX
Reads: SECTOR

;0ffset is more useful in BX

;Dump lb bytes

;Save the offset for ASCII_L00P

;Get 1 byte

;Dump this byte in hex

;Write a space between numbers

POSH BX

POSH CX

POSH DX

MOV BX,DX

MOV CX,lt
POSH BX

HEX_L00P:
MOV DL,SECTOR[BX]

CALL WRITE_HEX
MOV DL,' •

CALL WRITE_CHAR
INC BX

LOOP HEX_LOOP

MOV DL, '
'

CALL WRITE_CHAR
MOV CX,lt

POP BX

XOR BX,BX

ASCII_LOOP:
MOV DL,SECTOR[BX]

CALL HRITE_CHAR

INC BX

LOOP ASCII_LOOP

POP DX

POP CX

POP BX

RET

INT ?0h

DISP_LINE ENDP

CODE_SEG ENDS

DATA_SEG SEGMENT PUBLI

;Add another space before characters

;Get back offset into SECTOR

PUBLIC SECTOR

SECTOR DB lOh, llh, 12h, 13h, Kh, 15h, Ibh, 17h ;Test pattern

DB Iflh, 1%, lAh, IBh, ICh, IDh, lEh, IFh

162 Dumping Memory

Listing l<-5. continued

SECTOR DB lb DUP(lOh)

DB lb DUP(llh)

DB lb DUP(l?h)

DB lb DUP(13h)

DB lb DUP(Uh)
DB lb DUP(lSh)

DB lb DUP(lbh)

DB lb D0P(17h)

DB lb DOP(lflh)

DB lb DDP(iqh)

DB lb DUP(lfth)

DB lb DUP(lBh)

DB lb DDP(lCh)

DB lb DOP(lDh)

DB lb DOP(lEh)

DD lb DOP(lFh)

DATA_SEG ENDS

END DISP_HALF_SECTOR

The changes are all fairly straightforward. In DISP_LINE, we've added a

PUSH BX and POP BX around the HEX_LOOP, because we want to reuse

the initial offset in ASCII_LOOP. We've also added PUSH and POP instruc-

tions to save and restore all the registers we use within DISP_LINE. Actu-

ally, DISP_LINE is almost done; the only changes we have left are aesthetic,

A>disp_sec

18 IB 18 IB 18 IB 18 IB IB IB 18 IB 18 18 18 18

11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11

12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12

13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13

14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14

15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17

18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18

19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19

1A 1A 1A 1A 1A 1A 1A 1A 1A 1A 1A 1A 1A 1A 1A 1A

IB IB IB IB IB IB IB IB IB IB IB IB IB IB IB IB

1C 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C

ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID

IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE IE

IF IF IF IF IF IF IF IF IF IF IF IF IF IF IF IF

A>

Figure 14-6. Output From Disp_sec.

Peter Norton's Assembly Language Book 163

to add spaces and graphics characters so we'll have an attractive display;

those will come later.

When you link the files, remember that we now have three files: Disp_sec,

Video_io, and Cursor. Disp_sec must be first in this list. After you run the

.EXE version through Exe2bin, you'll see a display like the one in Figure

14-6.

We'll have more files before we're done, but now, let's move on to the next

chapter, where we'll read a sector directly from the disk before we dump half a

sector.

Summary
We know more about the different memory modes for addressing memory

and registers in the 8088 microprocessor. We learned about indirect memory
addressing, which we first used to read 16 bytes of memory.
We also used indirect memory addressing in several programs we wrote in

this chapter, starting with our program to print 16 hex numbers on the

screen. These 16 numbers came from an area in memory labeled SECTOR,
which we expanded a bit later so we could display a memory dump for 256

bytes—half a sector.

And, at last, we've begun to see dumps of the screen, as they appear on your

display, rather than as they are set in type. We'll use these screen dumps to

more advantage in the following chapters.

15

DUMPINQ A DISK SECTOR

Making Life Easier 166

Format of the Make File 167

Patching up Disp_sec 168

Reading a Sector 169

Summary 174

165

[66 Dumping .1 Dial

Nolow that we have a program that dumps 256 bytes of memory, we can add
some procedures to read a sector from the disk and place it in memory starting

at SECTOR. Then, our dump procedures will dump the first half of this disk

sector.

Making Life Easier

With the three source files we had in the last chapter, life becomes some-

what complicated. Did we change all three of the files we were working on, or

just two? You probably assembled all three, rather than check to see if you
made any changes since the last assemble.

But assembling all of our source files when we've only changed one of them
is rather slow, and will become even slower as Dskpatch grows in size. What
we'd really like to do is assemble only the files that we've changed.

Fortunately, if you are using one of the more recent Macro Assembler pack-

ages from Microsoft (or you have their C compiler), there is a way you can do

just that. They include a program called Make that does exactly what we
want. To use it, we create a file (we'll call it Dskpatch) that tells Make how to

do its work, then just type:

A>HAKE DSKPATCH

Make then assembles only the files you've changed.

The file you create (Dskpatch) tells Make which files depend on which
other files. Every time you change a file, DOS updates the modify time for

this file (you can see this in the DIR display). Make simply looks at both the

.ASM and .OBJ versions of a file. If the .ASM version has a more recent

modify time than the .OBJ version, Make knows that it needs to assemble

that file again.

That's all there is to it, but there is one caveat we need to point out: Make
will work correctly only if you're diligent about setting DOS' date and time

each time you start your computer. Without this information, Make won't al-

ways know when you've made changes to a file.

Peter Norton's Assembly Language Book 167

Format of the Make File

The format for our file, Dskpatch, that we'll use with Make is fairly simple:

Listing 15-1. The Make File DSKPRTCH

disp_sec.ob] : disp_sec.ast
masm disp_sec;

video_io.obj : video_io.asc

masm video_io;

cursor. obj: cursor. asm

masm cursor;

disp_sec.com: disp_sec.obj video_io.obj cursor. obj

link disp_sec video_io cursor;

exe^bin disp_sec disp_sec.com

Each entry has a file name on the left (before the colon) and one or more file

names on the right. If any of the files on the right (such as DISP_SEC.ASM in

the first line) are more recent than the first file (DISP_SEC.OBJ), Make will

execute all the indented commands that appear on the following lines. (Note:

You must indent the command lines with a tab, not with spaces.)

If your assembler has the Make program, enter these lines into the file

Dskpatch (without an extension) and make a small change to DISP_
SEC.ASM. Then type:

A>MAKE DSKPATCH

and you'll see something like the following:

Microsoft (R) Macro Assembler Version 4.0D

Copyright (C) Microsoft Corp IRfll, 1RA3, ISfl^, m&S. All rights reserved.

40104 Bytes symbol space free

D Warning Errors

Severe Errors

link disp_sec video_io cursor;

Microsoft (R) 000b Object Linker Version 3.05

[68 Dumping a Dial

Copyright (C) Microsoft Corp 1983, 1964, 1965. All rights reserved.

Warning: no stack segment
exe^bin disp_sec disp_sec.asa

Make has done the minimum amount of work necessary to rebuild our

program.

If you don't have a recent version of the Microsoft Macro Assembler that

includes Make, you'll find this program worth the price of an upgrade. And
you'll get a nice replacement for Debug, too. It's called Symdeb (Symbolic

Debugger), and we'll take a look at it later. Now, on with Dskpatch.

Patching up Disp_sec

Disp_sec, as we left it, included a version of DISP_HALF_SECTOR, which
we used as a test procedure, and the main procedure. Now, we'll change

DISP_HALF_SECTOR to an ordinary procedure so we can call it from a pro-

cedure we'll name Disk_io. Our test procedure will be in Disk_io, along with

a test version of the procedure to read a disk sector.

First, let's modify Disp_sec to make it a file of procedures, just as we did

with Video_io. Change the END DISP_HALF_SECTOR to just END, since

our main procedure will now be in Disk_io. Then remove the ORG lOOh state-

ment from CODE_SEG, again because we moved this to a different file.

Since we plan to read a sector into memory starting at SECTOR, there is no

need for us to supply test data. We can replace all the 16 DB statements after

SECTOR with one line:

SECTOR DB 6195 DOP (D)

which reserves 8192 bytes for storing a sector.

But recall our earlier statement that sectors are 512 bytes long. So why do

we need such a large storage area? It turns out that some hard disks (300

megabyte, for example) use very large sector sizes. These large sector sizes are

by no means common, but we still want to be certain that we don't read in a

sector that is too large to fit into the memory we've reserved for SECTOR. So,

in the interest of safety, we've reserved 8192 bytes for SECTOR. In the rest of

this book, with the exception of SECTOR, which we'll cover soon, we'll assume
that sectors are only 512 bytes long.

Peter Norton's Assembly Language Book 169

Now what we need is a new version of DISP_HALF_SECTOR. The old ver-

sion is nothing more than a test procedure that we used to test DISP_LINE.
In the new version, we'll want to supply an offset into the sector so that we can

display 256 bytes, starting anywhere in the sector. Among other things, this

means we could dump the first half, the last half, or the middle 256 bytes.

Once again, we'll supply this offset in DX. Here is the new—and final—ver-

sion of DISP_HALF_SECTOR in Disp_sec:

Listing 15-2. The Final Version of DISP_HALF_SECTOR
in DISP SEC. ASM

PUBLIC
EXTRN

DISP_HALF_

SEND_CRLF
.SECTOR

NEAR

i
This

; Uses:

procedure displays half a sector (5SL> bytes)

DS:DX Offset into sector, in bytes — should be mult iple of lb

DISP_LINE SEND_CRLF

DISP_HALF_SECTOR PROC NEAR

XOR DX,DX
PUSH CX

PUSH DX

MOV CX,lfc ;Display It lines

HALF_SECTOR:
CALL DISP_LINE

CALL SEND_CRLF
ADD DX,lt

LOOP HALF_SECTOR

POP DX

POP CX

RET

INT 2Dh

DISP_HALF_SECTOR ENDP

Let's move on now to our procedure to read a sector.

Reading a Sector

In this first version of READ_SECTOR we'll deliberately ignore errors,

such as having no disk in the disk drive. This is not good practice, but this

isn't the final version of READ_SECTOR. We won't be able to cover error

handling in this book, but you will find error-handling procedures in the ver-

sion of Dskpatch on the disk that is available for this book. For now, though,

170 Dumping >i IVk Sector

we just want to read a sector from the disk. Here is the test version of the file

DISK_IO.ASM:

Listing 15-3. The New File DISK_IO.ASM

CGROUP GROUP CODE.SEG, DATA_SEG
ASSUME CS:CGR0UP, DS:CGROUP

5 SEGMENT PUBLIC
ORG LOOh

EXTRN DISP HALF SECTOR:NEAR

This procedure reads the first sector on disk A and duips the first
half of this sector.

READ.SECTOR PROC NEAR

MOV AL,0 ;Disk drive A (nuaber 0)

MOV CX,1 ;Read only 1 sector
MOV DX,0 ;Read sector number
LEA BX, SECTOR ;Where to store this sector
INT 5Sh ;Read the sector
POPF ;Discard flags put on stack by DOS
XOR DX,DX ;Set offset to within SECTOR
CALL DISP_HALF_SECTOR ;Duap the first half

INT ZOh ;Return to DOS

READ_SECTOR ENDP

CODE_SEG ENDS

DATA_SEG SEGMENT PUBLIC
EXTRN SECTOR: BYTE

DATA_SEG ENDS

END READ_SECTOR

There are three new instructions in this procedure. The first:

LEA BX, SECTOR

moves the address, or offset, of SECTOR (from the start of CGROUP) into the

BX register; LEA stands for Load Effective Address. After this LEA instruc-

tion, DS:BX contains the full address of SECTOR, and DOS uses this address

for the second new instruction, the INT 25h call, as we'll see after a few more
words about SECTOR. (Actually, LEA loads the offset into the BX register

without setting the DS register; we have to ensure that DS is pointing to the

correct segment.)

Peter Norton's Assembly Language Book 171

SECTOR isn't in the same source file as READ_SECTOR. It's over in DISP_
SEC.ASM. How do we tell the assembler where it is? We use the EXTRN
pseudo-op:

DATA_SEG SEGMENT PUBLIC
EXTRN SECTOR:BYTE

DATA SEG ENDS

0000:

t

0381:

OGROUP

CODE_SEG

DATA_SEG

SECTOR:

J=EA-£X3ECT6r + MOV BX,0381

Figure 15-1. LEA Loads the Effective Address.

172 Dumping .1 Disk Sector

This set of instructions tells the assembler that SECTOR is defined in the

DATA_SEG, which is in another source file, and that SECTOR is a variable

of bytes (rather than words). We'll be using such EXTRNs often in following

chapters; it's the way we use the same variables in a number of source files.

We just need to be careful that we define our variables in only one place.

DATA_SEG SEGMENT PUBLIC

EXTRN SECTORBYTE
DATA SEG ENDS

A byte variable.

LINK will provide

the address.

Figure 15-2. The EXTRN Pseudo-Op.

Let's return to the INT 25h instruction. INT 25h is a special function call to

DOS for reading sectors from a disk. When DOS receives a call from INT 25h,

it uses the information in the registers as follows:

AL Drive number (0 = A, 1 = B, and so on)

CX Number of sectors to read at one time

DX Number of the first sector to read (the first sector is 0)

DS:BX Transfer address: where to write the sectors read

The number in the AL register determines the drive from which DOS will

read sectors. If AL = 0, DOS reads from drive A.

DOS can read more than one sector with a single call, and it reads the

number of sectors given by CX. Here, we set CX to one so DOS will read just

one sector of 512 bytes.

We set DX to zero, so DOS will read the very first sector on the disk. You

Peter Norton's Assembly Language Book 173

can change this number if you want to read a different sector; later on, we
will.

DS:BX is the full address for the area in memory where we want DOS to

store the sector(s) it reads. In this case, we've set DS:BX to the address of

SECTOR, so that we can call DISP_HALF_SECTOR to dump the first half of

the first sector read from the disk in drive A.

Finally, you'll notice a POPF instruction immediately following the INT
21h. As we mentioned before, the 8088 has a register called the status register

that contains the various flags, like the zero and carry flags. POPF is a special

POP instruction that pops a word into the status register. Why do we need

this POPF instruction?

The INT 25h instruction pushes first the status registers, then the return

address onto the stack. When DOS returns from this INT 25h, it leaves the

status register on the stack. DOS does this so that it can set the carry flag on

return if there was a disk error, such as trying to read from drive A: with no

disk in the drive. We won't be checking for errors in this book, but we have to

remove the status register from the stack—hence the POPF instruction.

(Note: INT 25h, along with INT 24h which writes a disk sector, are the only

DOS routines that leave the status register on the stack.)

Now you can assemble DISKJO.ASM, and reassemble DISP_SEC.ASM.
Then, link the four files Disk_io, Disp_sec, Video_io, and Cursor, with Disk_
io listed first. Or, if you have Make, add these two lines to your Dskpatch file:

disk_io.obj : disk_io.asm

masm disk_io;

and change the last three lines to:

disk_io.com: disk_io.obj disp_sec.obj video_io.obj cursor. obj

link disk_io disp_sec video_io cursor;

exe5bin disk_io disk_io.com

After you create your .COM version of Disk_io, you should see a display some-

thing like Figure 15-3.

We'll come back later to add more to Disk_io, we have enough for now. In

the next chapter, we'll build a nicer sector display by adding some graphics

characters to the display, and then adding a few more pieces of information.

174 Dumping a Disk Sector

A>disk_io

EB 21 98 49 42 4D 28 28 33 2E 31 88 82 82 81 88 5!eIBM 3.1
82 78 88 D8 82 FD 82 88 89 88 82 88 88 88 88 88 .p.M
88 88 88 C4 5C 88 33 ED B8 C8 87 8E D8 33 C9 8A ...-N.3AL.Xf3f.
D2 79 BE 89 IE IE 88 8C 86 28 88 88 16 22 88 Bl ¥y.e...i. .$.".
82 8E C5 8E D5 BC 88 7C 51 PC IE 36 C5 36 78 88 .SfA'r1 . !Q".6f6x.
BF 23 7C B9 8B 88 F3 A4 IF 88 8E 2C 88 A8 18 88 ,ll|. .il.i.,.4..
A2 27 88 BF 78 88 B8 23 7C AB 91 AB Al 16 88 Dl I'.iX.lllfclfcf ..*
E8 48 E8 88 88 E8 86 88 BB 88 85 53 B8 81 E8 AB tlSg.Sl.i. .S|.5$
88 5F BE 73 81 B9 BB 88 98 F3 A6 75 62 83 C7 15 . Ig.l.. E<*ubaj[.

Bl BB 98 98 F3 A6 75 57 26 8B 47 1C 99 8B BE BB |7eeS*uW*iG.8i .

.

B8 B3 CI 48 F7 Fl 88 3E 71 81 68 75 82 BB 14 96 .
.iH=+5>q. 'u.l.fl

Al 11 88 Bl 84 D3 E8 E8 3B 88 FF 36 IE 88 C4 IE (..|.Ml;. 6..-.
6F 81 E8 39 BB E8 64 BB 2B F8 76 8D E8 26 88 52 o.59.5d.+=v.5«.R
F7 26 8B 88 83 D8 5A EB E9 CD 11 B9 82 BB D3 E8 =«. . .fZie-j. . U
88 E4 83 74 84 FE C4 8A CC 5B 58 FF 2E 6F 81 BE QZ.i.i-eftX .o.J

89 81 EB 55 98 81 86 IE 88 11 2E 28 88 C3 Al 18 e.6UE [i

.

A>

Figure 15-& Screen Dump from DISK_IO.COM.

Summary
Now that we have four different source files, Dskpatch is becoming some-

what more involved. In this chapter, we looked at the program Make, which
helps make life simpler by assembling only the files we've changed.

We also wrote a new procedure, DISK_IO. It's in a different source file from
SECTOR, so we used an EXTRN definition in DISK_IO.ASM to tell the as-

sembler about SECTOR, and let it know that SECTOR is a byte variable.

We also learned about the LEA (Load Effective Address) instruction, which
we used to load the address of SECTOR into the BX register.

DISK_IO uses a new INT number, INT 25h, to read sectors from a disk to

memory. We used INT 25h to read one sector into our memory variable, SEC-
TOR, so we could dump it on the screen with DISP_HALF_SECTOR.
We also learned about the POPF instruction to pop a word off the stack and

into the status register. We used this instruction to remove the flags which
DOS didn't remove from the stack when it returned from INT 25h.

Our half-sector display isn't very attractive yet, in the next chapter we'll

use some of the graphics characters available on the IBM PC to make it more
aesthetically pleasing.

16

ENHANCINQ THE SECTOR
DISPLAY

Adding Graphics Characters 176

Adding Addresses to the Display 178

Adding Horizontal Lines 182

Adding Numbers to the Display 186

Summary 189

175

176 Enhancing the Sector Display

Wee've come to the last chapter in Part II. Everything we've done so far has

been applicable to MS-DOS and the 8088 (or the 8086 and other relatives of

the 8088). In Part III, we'll begin to write procedures specific to the IBM Per-

sonal Computer and its close cousins.

But before we move on, we'll use this chapter to add several more proce-

dures to Video_io. We'll also modify DISP_LINE in Disp_sec. All our modifi-

cations and additions will be to the display. Most of them will be to improve

the appearance of the display, but one will add new information: It will add
numbers on the left that act like the addresses in Debug's dump. Let's begin

with graphics.

Adding Graphics Characters

The IBM Personal Computer has a number of line-drawing characters we
can use to draw boxes around various parts of our dump display. We'll draw
one box around the hex dump, and another around the ASCII dump. This

change requires very little thought, just work.

Enter the following definitions near the top of the file DISP_SEC.ASM, be-

tween the ASSUME pseudo-op and the first SEGMENT pseudo-op, leaving

one or two blank lines before and after these definitions:

Listing lfc-1. Add to the Top of DISP_SEC.ASM

; Graphics characters for border of sector.

VERTICAL BAR EQO OBAh

HORIZONTAL BAR EQD OCDh

UPPER LEFT EQO DC9h

DPPER RIGHT EQO OBBh
LOWER LEFT EQO OCOh

LOWER RIGHT EQO DBCh

TOP T BAR EQO OCBh

BOTTOM T BAR EQO DCAh

TOP TICK EQO ODlh
B0TT0«_TICK EQO OCFh

These are the definitions for the graphics characters. Notice that we put a zero

before each hex number so the assembler will know these are numbers, rather

than labels.

Peter Norton's Assembly Language Book 177

We could just as easily have written hex numbers instead of these defini-

tions in our procedure, but the definitions make the procedure easier to under-

stand. For example, compare the following two instructions:

MOV DL,VERTICAL_BAR
MOV DL,0BAh

Most people find the first instruction clearer.

Now, here is the new DISP_LINE procedure to separate the different parts

of the display with the VERTICAL_BAR character, number 186 (OBAh). As
before, additions are shown against a gray background:

Listing Ib-fi. Changes to DISP_LINE in DISP_SEC.fiSM

DISP_LINE PROC NEAR

PUSH BX

PUSH CX

PUSH DX

MOV BX,DX ;0ffset is more useful in BX

;Write separator
MOV DL, '

'

CALL WRITE_CHAR
MOV DL,VERTICAL_BAR ;Draw left side of box

CALL WRITE_CHAR
MOV DL, '

CALL HRITE_CHAR
;Now write out lb bytes

MOV CX,lt ;Dump lb bytes

PUSH BX ;Save the offset for ASCII_L00P

HEX_L00P:
MOV DL,SECTOR[BX] ;Get 1 byte

CALL WRITE_HEX ;Dump this byte in hex

MOV DL, '
' ;Write a space between numbers

CALL WRITE_CHAR

INC BX

LOOP HEX_L00P

MOV DL,VERTICAL_BAR ;Write separator

CALL WRITE_CHAR

MOV DL,

CALL WRITE_CHAR

MOV CX,lfc

POP BX ;Get back offset into SECTOR

ASCII_L00P:
MOV DL,SECTOR[BX]

CALL WRITE_CHAR

INC BX

LOOP ASCII_L00P

178 Enhancing the Sector Display

isting Ib-Z. continued

nov DL, '

CALL WRITE_CHAR
MOV DL, VERTICAL.

CALL WRITE_CHAR

POP DX

POP CX

POP BX

BET

DISP_LINE ENDP

Assemble this new version of Disp_sec and link your four files (remember to

place Disk_io first in the list of files following the LINK command). You'll see

nice double bars separating the display into two parts, as you can see in Fig-

ure 16-1.

Adding Addresses to the Display

Now let's try something a bit more challenging: Let's add the hex addresses

down the left side of the display. These numbers will be the offset from the

A>disk_io

EB 21 98 49 42 4D 28 28 33 2E 31 88 82 82 81 88 6!EIBM 3.1

82 78 88 D8 82 FD 82 88 89 88 82 88 88 88 88 88 •P-
1

-
1

88 88 88 C4 5C 88 33 ED B8 C8 87 8E D8 33 C9 8A ...-vyii».xf3f.
D2 79 BE 89 IE IE 88 8C 86 28 88 88 16 22 88 Bl jy.e...!. .e.".|

82 8E CS 8E D5 BC 88 7C 51 FC IE 36 CS 36 78 88 .XfXiJ.IP.fcffac.

BF 23 7C B9 8B 88 F3 A4 IF 88 BE 2C 88 A8 18 88 il!|..ll.i.,.i..

A2 27 88 BF 78 88 B8 23 7C AB 91 AB Al 16 88 Dl l'.1 X.lllfeftf..T
EB 48 E8 88 88 E8 86 88 BB 88 85 53 B8 81 E8 AB t05S.5a.|..S \.\\

. <>s.i..E<'uba|.88 5F BE 73 81 B9 BB 88 98 F3 A6 75 62 83 C7 15

Bl BB 98 98 F3 A6 75 57 26 8B 47 1C 99 8B BE BB |.EE< ! uW4iG.Bi..

BB 83 CI 48 F7 Fl 88 3E 71 81 68 75 82 BB 14 96 ..LH=+S>q.
,

u.|.u

Al 11 88 Bl 84 D3 E8 E8 3B BB FF 36 IE BB C4 IE (..!.»;. 6..-.

6F Bl E8 39 88 E8 64 88 2B F8 76 BD E8 26 88 52 o.59.5d.+Ev.5«.R

F7 26 8B 88 83 D8 5A EB E9 CD 11 B9 B2 88 D3 E8 si...4z«e-.l..k
88 E4 83 74 84 FE C4 8A CC 5B 58 FF 2E 6F 81 BE SZ.t.i-eflX .o.J

89 81 EB 55 98 81 86 IE 88 11 2E 28 88 C3 Al 18 a.aui r i.

a:

Figure 16-1. Adding Vertical Bar s.

Peter Norton's Assembly Language Book 179

beginning of the sector, so the first number will be 00, the next 10, then 20,

and so on.

The process is fairly simple, since we already have the procedure WRITE_
HEX for writing a number in hex. But we do have a problem in dealing with a

sector 512 bytes long: WRITE_HEX prints only two-digit hex numbers,

whereas we need three hex digits for numbers greater than 255.

Here's the solution. Since our numbers will be between zero and 511 (Oh to

IFFh), the first digit will either be a space, if the number (such as BCh) is

below lOOh, or it will be a one. So, if the number is larger than 255, we'll

simply print a one, followed by the hex number for the lower byte. Otherwise,

we'll print a space first. These are the additions to DISP_LINE that will print

this leading three-digit hex number:

Listing lt-3. Additions to DISP_LINE in DISP_SEC.ftSM

;0ffset is more useful in BX

;Write offset in hex

;Is the first digit a 1?

;No, white space already in DL

;Yes, then place '1' into DL for output

;Copy lower byte into DL for hex output

;Write separator

;Draw left side of box

You can see the result in Figure 16-2.

We're getting closer to our full display. But on the screen, our display is not

quite centered. We need to move it to the right by about three spaces. Let's

make this one last change, then we'll have our finished version of DISP_
LINE.
We could make the change by calling WRITE_CHAR three times with a

space character, but we won't. Instead, we'll add another procedure, called

WRITE_CHAR_N_TIMES, to Video_io. As its name implies, this procedure

DISP.LINE PROC NEAR

PUSH BX

PUSH CX

PUSH DX

MOV BX,DX

MOV DL, '

CMP BX,lDDh

JB WRITE_0NE
MOV DL, »1'

WRITE_0NE:
CALL WRITE_CHAR

MOV DL,BL
CALL HRITE_HEX

MOV DL, '
'

CALL WRITE_CHAR

MOV DL,VERTICAL_BAR

180 Enhancing the Sector Display

A>disk io

ee EB 21 98 49 42 4D 28 28 33 2E 31 88 82 82 81 88 i!ElBM 3.1

IB 82 78 88 D8 82 FD 82 88 89 88 82 88 88 88 88 88 •P-
1 -'

28 88 88 88 C4 5C 88 33 ED B8 C8 87 8E D8 33 C9 8A .. .-V.3^1 L.«+3f.

38 D2 79 BE 89 IE IE 88 8C 86 28 88 88 16 22 88 Bl gf.l...t. .I.
H
.|

48 82 8E CS 8E D5 BC 88 7C 51 FC IE 36 C5 36 78 88 .H^rS .!Q».6-|-6x.

58 BF 23 7C B9 BB 88 F3 A4 IF 88 BE 2C 88 AB 18 BB Ilf..il.t.,.4..
68 A2 27 BB BF 78 88 B8 23 7C AB 91 AB Al 16 88 Dl '.^.illWi.T

«e5Q.5a.|..SS.5)S

. <>sJ..E<*uka|.

78 E8 48 E8 88 BB E8 86 88 BB 88 85 53 BB 81 E8 AB

88 BB 5F BE 73 Bl B9 BB 88 98 F3 A6 75 62 83 C7 15

98 Bl BB 98 98 F3 A6 75 57 26 8B 47 1C 99 8B 8E BB I.EE^uWaVG.bV..
A8 88 83 CI 48 F7 Fl 88 3E 71 81 68 75 82 BB 14 96 ..-L«s±5>q.

,

u.i.u

B8 Al 11 88 Bl 84 D3 E8 E8 3B 88 FF 36 IE BB C4 IE $..|.45;. 6..-.

C8 6F 81 E8 39 88 E8 64 88 2B F8 76 8D E8 26 88 52 o.99.Sd.+=v.SI.R

D8 F7 26 BB 88 83 D8 5A EB E9 CD 11 B9 82 88 D3 E8 ««...+zse».f..U
E8 88 E4 83 74 84 FE C4 8A CC 5B 58 FF 2E 6F 81 BE <JI.t.l-€&[X .o.J

FB 89 81 EB 55 98 81 86 IE 88 11 2E 28 B8 C3 Al 18 c.JUe M.

A>

Figure l(i-2. Adding Numbers on the I ,eft.

writes one character N times. That is, we place the number N into the CX
register and the character code into DL, and we call WRITE_CHAR_N_
TIMES to write N copies of the character whose ASCII code we placed in DL.

Thus, we'll be able to write three spaces by placing 3 into CX and 20h (the

ASCII code for a space) into DL.

Here's the procedure to add to VIDEO_IO.ASM:

Listing 1L.-4. Add this Procedure to VIDEO_IO.ASM

PUBLIC WRITE CHAR N TIMES

This proced are writes more than one copy of a character

DL Character code
CX Number of times to write the character

Uses: WRITE_CHAR

HRITE_CHAR_N_TIMES PROC NEAR

PUSH CX

NJTIMES:
CALL WRITE_CHAR
LOOP N_TIMES

POP CX

RET

WRITE CHAR N TIMES ENDP

Peter Norton's Assembly Language Book 181

You can see how simple this procedure is, since we already have WRITE_
CHAR. If you're wondering why we bothered to write a procedure for some-

thing so simple, it's because our program Dskpatch is much clearer when we
call WRITE_CHAR_N_TIMES, rather than write a short loop to print multi-

ple copies of a character. Besides, we'll find use for this procedure several

times again.

Here are the changes to DISP_LINE to add three spaces on the left of our

display. Make the changes to DISP_SEC.ASM:

PUBLIC DISP_LINE
EXTRN WRITE_HEX:NEAR
EXTRN WRITE_CHAR:NEAR
EXTRN WRITE CHAR N_TIMES:NEAR

This procedure displays one line of data, or lb bytes, first in hex,

then in ASCII.

; DS:DX Offset into sector, in bytes

Uses: WRITE_CHAR, HRITE_HEX, WRITE_CHAR_N_TIMES

Reads: SECTOR

DISP LINE PROC NEAR

PUSH BX

PUSH cx

PUSH DX

MOV BX,DX

MOV DL,

MOV CX,3

CALL WRITE CHAR N TIMES

CMP BX,100h

JB WRITE ONE

MOV DL, '1'

WRITE ONE:

;0ffset is more useful in BX

;Write 3 spaces before line

;Write offset in hex

;Is the first digit a 1?

;No, white space already in DL

;Yes, then place '1' into DL for output

We made changes in three places. First, we had to add an EXTRN statement

for WRITE_CHAR_N_TIMES, because the procedure is in Video_io, and not

in this file. We also changed the comment block, to show that we use this new
procedure. Our third change, the two lines that use WRITE_CHAR_N_
TIMES, is quite straightforward and needs no explanation.

Try this new version of our program to see how the display is now centered.

Next we'll move on to add more features to our display—the top and bottom

lines of our boxes.

182 Enhancing the Sector Display

Adding Horizontal Lines

Adding horizontal lines to our display is not quite as simple as it sounds,

because we have a few special cases to think about. We have the ends, where
the lines must go around corners, and we also have T-shaped junctions at the

top and bottom of the division between the hex and ASCII windows.

We could write a long list of instructions (with WRITE_CHAR_N_TIMES)
to create our horizontal lines, but we won't. We have a shorter way. We'll

introduce another procedure, called WRITE_PATTERN, which will write a

pattern on the screen. Then, all we'll need is a small area of memory to hold a

description of each pattern. Using this new procedure, we can also easily add

tick marks to subdivide the hex window, as you'll see when we finish this

section.

WRITE_PATTERN uses two entirely new instructions, LODSB and CLD.
We'll describe them after we see more about WRITE_PATTERN and how we
describe a pattern. Right now, enter this procedure into the file VIDEO_
IO.ASM:

Listing lfc-5. Add This Procedure to VIDEO_IO.ASM

PUBLIC WRITE.PATTERN

This procedure writes a line to the screen , based on data in the

form

DB (character, number of times to write character) ,

Where (xl means that x can be repeated any number of times

DS:DX Address of above data statement

Uses: WRITE_CHAR_N_TIMES

WRITE PATTERN PROC NEA

PUSH AX

PUSH CX

PUSH DX

PUSH SI

PUSHF

CLD

MOV SI,DX

PATTERN LOOP:

LODSB
OR AL,AL

JZ END PATTERN
MOV DL,AL
LODSB
MOV CL,AL

XOR CH,CH

;Save the direction flag

;Set direction flag for increment

;Move offset into SI register for LODSB

;Get character data into AL

;Is it the end of data (Oh)?

;Yes, return

;No, set up to write character N times

;Get the repeat count into AL

;And put in CX for WRITE_CHAR_N_TIMES
;Zero upper byte of CX

Peter Norton's Assembly Language Book 183

Listing It--5. continued

CALL WRITE_CHAR_N_TIMES
JMP PATTERN_L00P

END_PATTERN:
POPF
POP SI

POP DX

POP CX

POP AX

RET

WRITE_PATTERN ENDP

Restore direction i^^g

Before we see how this procedure works, let's see how to write data for pat-

terns. We'll place the data for the top-line pattern into the file Disp_sec,

which is where we'll use it. To this end, we'll add another procedure, called

INIT_SEC_DISP, to initialize the sector display by writing the half-sector

display, then we'll modify READ_SECTOR to call our INIT_SEC_DISP
procedure.

First, place the following data just after SECTOR (in DISP_SEC.ASM), in-

side the data segment:

Listing it-t. Additions to DISP_SEC.ASM

TOP_LINE_PATTERN LABEL BYTE

DB 1 ,1

DB UPPER_LEFT,1

DB H0RIZ0NTAL_BAR 15

DB T0P_TICK,1
DB H0RIZ0NTAL_BAR 11

DB T0P_TICK,1

DB H0RIZ0NTAL_BAR 11

DB T0P_TICK,1

DB H0RIZ0NTAL_BAR 12

DB T0P_T_BAR,1

DB H0RIZ0NTAL_BAR 18

DB UPPER_RIGHT,1

DB D

B0TT0M_LINE..PATTERN LABEL BYTE

DB 1
t~l

DB L0WER_LEFT,1

DB H0RIZ0NTAL_BAR 15

DB B0TT0M_TICK,1

DB H0RIZ0NTAL_BAR 11

DB B0TT0M_TICK,1

DB H0RIZ0NTAL_BAR 11

DB B0TT0M_TICK,1

DB H0RIZ0NTAL_BAR 15

184 Enhancing the Sector Display

Listing Ib-L-. continued

DB B0TT0N_T_BAR,1
DB HORIZONTAL_BAR,lfi

DB L0WER_RIGHT,1
DB

Each DB statement contains part of the data for one line. The first byte is

the character to print; the second byte tells WRITE_PATTERN how many
times to repeat that character. For example, we start the top line with seven

blank spaces, followed by one upper-left corner character, followed by twelve

horizontal-bar characters, and so on. The last DB is a solitary hex zero, which

marks the end of the pattern.

Let's continue our modifications and see the result before we discuss the

inner workings of WRITE_PATTERN. Here is the test version of INIT_SEC_
DISP. This procedure writes the top-line pattern, the half-sector display, and
finally the bottom-line pattern. Place it in the file DISP_SEC.ASM, just

before DISP_HALF_SECTOR:

Listing lb-7. Add This Procedure to DISP_SEC.ASM

PUBLIC INIT_SEC_DISP
EXTRN WRITE_PATTERN:NEAR, SEND.CRLF: NEAR

This procedure initializes the half-sector display.

OSes: WRITE_PATTERN, SEND_CRLF, DISP_HALF_SECTOR
Reads: TOP LINE PATTERN, BOTTOM_LINE_PATTERN

;Start at the beginning of the sector

INIT SEC DISP PROC NEAR

POSH DX

LEA DX,TOP_LINE PATTERN

CALL WRITE PATTERN

CALL SEND CRLF
XOR DX,DX

CALL DISP HALF SECTOR

LEA DX,BOTTOM_LINE_PATTERN
CALL WRITE PATTERN

POP DX

RET

INIT SEC DISP ENDP

We used the LEA instruction to load an address into the DX register, thus

WRITE_PATTERN knows where to find the pattern data.

Finally, we need to make a small change to READ_SECTOR in the file

DISK_IO.ASM, to call INIT_SECTOR_DISP, rather than WRITE_HALF_

Peter Norton's Assembly Lan^ua^e Book 185

SECTOR_DISP, so that a full box will be drawn around our half-sector

display:

Listing Ib-fl. Changes to READ_SECTOR in DISK_IO.ftSM

EXTRN INIT SEC DISP:NEAR

; This procedure reads the first sector on disk A and dumps the first

; half of this sector.

READ_SECTOR PROC NEAR

MOV AL,D ;Disk drive A (number D)

MOV CX,1 ;Read only 1 sector
MOV DX,D ;Read sector number D

LEA BX, SECTOR ;Where to store this sector
INT 2Sh ;Read the sector
POPF ;Discard flags put on stack by DOS

XOR DX,DX ;Set offset to within SECTOR
CALL INIT_SEC_DISP ;Dump the first half

INT 50h ;Return to DOS

READ_SECTOR ENDP

That's all we need to write the top and bottom lines for our sector display.

Assemble and link all these files (remember to assemble the three files we
changed), run the result through Exe2bin, and give it a try. Figure 16-3 shows

the output we now have.

Let's see how WRITE_PATTERN works. As mentioned, it uses two new
instructions. LODSB stands for Load String Byte, and it is one of the string

instructions: specially designed instructions that work with strings of charac-

ters. That's not quite what we're doing here, but the 8088 doesn't care

whether we're dealing with a string of characters or just numbers, so LODSB
suits our purposes just fine.

LODSB moves (loads) a single byte into the AL register from the memory
location given by DS:SI, a register pair we haven't used before. All the seg-

ment registers in our .COM file are set to the beginning of our one segment,

CGROUP, so DS is already set for our segment. And before the LODSB in-

struction, we moved the offset into the SI register with the instruction MOV
SI,DX.

The LODSB instruction is somewhat like the MOV instruction, but more

powerful. With one LODSB instruction, the 8088 moves one byte into the AL
register and then either increments or decrements the SI register. Increment-

ing the SI register points to the following byte in memory; decrementing the

register points to the previous byte in memory.

186 Enhancing tin. Sector Display

A>disk io

88
1 — I I I —

i

EB 21 98 49 42 4D 28 28 33 2E 31 68 82 62 61 86 itElBtl 3.1

18 82 78 88 D8 62 FD 82 88 89 88 82 88 88 88 88 88 • P-M
28 88 88 88 C4 5C 88 33 ED B8 CB 87 8E D8 33 C9 8A . . .-S.3^ »-.«^3 r .

38 D2 79 BE 89 IE IE 88 8C 86 28 88 88 16 22 88 Bl *.!...!. .e.".|

48 82 8E CS 8E D5 BC 88 7C 51 FC IE 36 C5 36 78 88 .A}8r".!Q".6f6x.
58 BF 23 7C B9 BB BB F3 A4 IF 88 BE 2C 88 AB 18 BB ill|..il.t.,.i..
68 A2 27 BB BF 78 BB B8 23 7C AB 91 AB Al 16 BB Dl l

f
.1 x.lllfekf..ii

78 EB 48 E8 88 88 E8 86 BB BB 88 85 53 BB Bl E8 AB i09g.ii.i..Si.8|S

. Js.J..E< ! ubal.88 BB 5F BE 73 Bl B9 BB 88 9B F3 A6 75 62 83 C7 15

98 Bl BB 98 98 F3 A6 75 57 26 8B 47 1C 99 8B BE BB |.EE< s uwavG.di.

.

A8 BB 83 CI 48 F7 Fl 8B 3E 71 Bl 68 75 82 BB 14 96 ..-L«s±Q>q.
,

u.l.u
B8 Al 11 BB Bl 84 D3 E8 E8 3B 88 FF 36 IE BB C4 IE L.|.l«5;. 6..-.

C8 6F 81 E8 39 88 E8 64 88 2B FB 76 BD E8 26 BB 52 o.89.5d.+=v.5«.R

D8 F7 26 BB 88 83 D8 5A EB E9 CD 11 B9 B2 BB D3 EB =«...+zae».j..U
EB 8B E4 83 74 B4 FE C4 8A CC 5B 58 FF 2E 6F Bl BE C,I.t.i-ef[X .oJ
F8 89 Bl EB 55 98 Bl 86 IE 88 11 2E 28 B8 C3 Al 18

1 1 1

e.SUE [i.

A>

Figure IB-.}. The Display with Closed Boxes.

The former (incrementing) is exactly what we want to do. We want to go

through the pattern, one byte at a time, starting at the beginning, and that is

what our LODSB instruction does, because we used the other new instruction,

CLD {Clear Direction Flag) to clear the direction flag. If we had set the direc-

tion flag, the LODSB instruction would decrement the SI register, instead.

We'll use the LODSB instruction in a few other places in Dskpatch, always

with the direction flag cleared, to increment.

Aside from LODSB and CLD, notice that we also used the PUSHF and
POPF instructions to save and restore the flag register. We did this just in

case we later decide to use the direction flag in a procedure that calls WRITE_
PATTERN.

Adding Numbers to the Display

We're almost through with Part II of this book now. We'll create one more
procedure, then we'll move on to Part III, and bigger and better things.

Right now, notice that our display lacks a row of numbers across the top.

Such numbers—00 01 02 03 and so forth—would allow us to sight down the

columns to find the address for any byte. So, let's write a procedure to print

Peter Norton's Assembly Language Book 187

this row of numbers. Add this procedure, WRITE_TOP_HEX_NUMBERS, to

DISP_SEC.ASM, just after INIT_SEC_DISP:

Listing lt-q. ftdd This Procedure to DISP_SEC.ASM

EXTRN WRITE_CHAR_N_TIMES:NEAR, WRITE_HEX : NEAR, WRITE.CHAR : NEAR

EXTRN WRITE_HEX_DIGIT:NEAR, SEND_CRLF: NEAR

This procedure writes the index numbers (D through F) at the top of

the half-sector display.

Uses: WRITE_CHAR_N_TIMES, WRITE_HEX, WRITE_CHAR
WRITE_HEX_DIGIT, SEND_CRLF

WRITE_TOP_HEX_NOMBERS PROC NEAR

POSH CX

POSH DX

MOV DL,' ;Write 1 spaces for left side
MOV cx,q

CALL HRITE_CHAR_N_TIMES
XOR DH,DH ;Start with D

HEX_NUMBER_L00P:
MOV DL,DH

CALL HRITE.HEX
MOV DL,' '

CALL WRITE_CHAR

INC DH

CMP DH,10h ;Done yet?

JB HEX_N0MBER_L00P

MOV DL, '
' ;Write hex numbers over ASCII window

MOV CX,5

CALL WRITE_CHAR_N_TIMES

XOR DL,DL

HEX_DIGIT_L00P:
CALL WRITE_HEX_DIGIT

INC DL

CMP DL,lDh

JB HEX_DIGIT_L00P

CALL SEND_CRLF

POP DX

POP CX

RET

WRITE TOP_HEX_NUMBERS ENDP

Modify INIT_SEC_DISP (also in DISP_SEC.ASM) as follows, so it calls

WRITE_TOP_HEX_NUMBERS before it writes the rest of the half-sector

display:

188 Enhancing the Sector Display

Listing lb-ID. Changes to INIT_SEC_DISP in DISP_SEC.ASM

WRITE_PATTERN, SEND_CRLF, DISP_HALF_SECTOR
WRITE_TOP_HEX_NUHBERS
TOP_LINE_PATTERN, BOTTOM_LINE_PATTERN

INIT_SEC DISP PROC

PUSH DX

CALL WRITE TOP HEX NUMBERS
LEA DX,TOP_LINE_PATTERN
CALL WRITE PATTERN

CALL SEND CRLF

XOR DX,DX

CALL DISP HALF SECTOR
LEA DX,BOTTOM_LINE_PATTERN
CALL WRITE PATTERN

POP DX

RET

NIT SEC DISP ENDP

;Start at the beginning of the sector

Now we have a complete half-sector display, as you can see in Figure 16-4.

There are still some differences between this display and the final version.

We'll change WRITE_CHAR so it will print all 256 characters the IBM PC

A>disk io

CB

DB

E8

F8

A>

81 82 83 84 85 86 87 88 89 8A BB 8C BD BE 8F B123456789ABCDEF

1 1 1

EB 21 98 49 42 4D 28 28 33 2E 31 88 82 82 81 88 5!eIBM 3.1

62 78 68 DB 82 FD 82 88 89 88 82 88 88 88 88 88 P.*."
88 88 88 C4 5C 88 33 ED B8 CB 87 8E D8 33 C9 8A ...-\.30iL.^3r ,

D2 79 BE 89 IE IE 88 8C 86 28 BB 88 16 22 B8 Bl fy.e...i. .e.".|

B2 8E C5 8E D5 BC 88 7C 51 FC IE 36 C5 36 78 88 .Sf«[J.:Q, .6f6x.

BF 23 7C B9 8B 88 F3 A4 IF 88 BE 2C BB AB 18 BB it! \. .Sl.l.j .a. .

A2 27 BB BF 78 88 B8 23 7C AB 91 AB Al 16 88 Dl 6*.
1 x. 1 t:^J.. T

EB 48 E8 88 BB E8 86 BB BB BB 85 53 BB 81 E8 AB (flS.!t.i..S|.l4
. Js.{..E<*ubaJ.88 5F BE 73 81 B9 BB BB 98 F3 A6 75 62 83 C7 15

Bl 8B 98 98 F3 A6 75 57 26 8B 47 1C 99 8B BE BB |.EE< s uU4i6.ttf..

88 B3 CI 48 F7 Fl 88 3E 71 81 68 75 82 BB 14 96 ..•Lfl=+Q>q.'u.l.U

Al 11 88 Bl 84 D3 E8 E8 3B 88 FF 36 IE 88 C4 IE I..|.Mi;. 6..-.

6F 81 E8 39 88 E8 64 88 2B FB 76 BD E8 26 88 52 o.89.Sd.+=v.S&.R

F7 26 8B 88 B3 D8 5A EB E9 CD 11 B9 82 88 D3 EB *i...#«e-.|..»«

88 E4 83 74 84 FE C4 8A CC 5B 58 FF 2E 6F 81 BE Sl.t.i-e&lX .o.J

89 81 EB 55 98 81 86 IE BB 11 2E 28 88 C3 Al 18 e.SUE (-i.

Figure 16-4. A Complete Half Sector Display.

Peter Norton's Assembly Language Book 189

can display, and then we'll clear the screen and center this display vertically,

using the ROM BIOS routines inside the IBM Personal Computer. We'll do

that next.

Summary
We've done a lot of building on our Dskpatch program, adding new proce-

dures, changing old ones, and moving from one source file to another. From
now on, if you find yourself losing track of what you're doing, refer to the

complete listing of Dskpatch in Appendix B. The listing there is the final ver-

sion, but you'll probably see enough resemblances to help you along.

Most of our changes in this chapter didn't rely on tricks, just hard work. But

we did learn two new instructions: LODSB and CLD. LODSB is one of the

string instructions that allow us to use one instruction to do the work of sev-

eral. We used LODSB in WRITE_PATTERN to read consecutive bytes from

the pattern table, always loading a new byte into the AL register. CLD clears

the direction flag, which sets the direction for increment. Each following

LODSB instruction loads the next byte from memory.

In the next part of this book we'll learn about the IBM PC's ROM BIOS
routines. They will save us a lot of time.

Part III

The IBM PC's ROM BIOS

17

THE ROM BIOS ROUTINES

VIDEO_IO, the ROM BIOS Routines 194

Moving the Cursor 199

Rewiring Variable Usage 201

Writing the Header 204
Summary 208

193

194 rhe ROM BIOS Routines

I nside your IBM Personal Computer are some computer chips, or ICs [Inte-

grated Circuits), known as ROMs (Read-Only Memory). One of these ROMs
contains a number of routines, very much like procedures, that provide all the

basic routines for doing input and output to several different parts of your

IBM PC. Because this ROM provides routines for performing input and output

at a very low level, it is frequently referred to as the BIOS, for Basic Input

Output System. DOS uses the ROM BIOS for such activities as sending char-

acters to the screen and reading and writing to the disk, and we're free to use

the ROM BIOS routines in our programs.

We'll concentrate on the BIOS routines we need for Dskpatch. Among them
is a set for video display, which includes a number of functions we couldn't

otherwise reach without working directly with the hardware—a very difficult

job.

VIDEO_IO, the ROM BIOS Routines

We refer to the elements of the ROM BIOS as routines in order to distin-

guish them from procedures. We use procedures with a CALL instruction,

whereas we call routines with INT instructions, not CALLs. We'll use an INT
lOh instruction, for example, to call the video I/O routines, just as we used an

INT 21h instruction to call routines in DOS.
Specifically, INT lOh calls the routine VIDEO_IO in the ROM BIOS. Other

numbers call other routines, but we won't see any of them; VIDEO_IO pro-

vides all the functions we need outside of DOS. (Just for your information,

however, DOS calls one of the other ROM BIOS routines when we ask for a

sector from the disk.)

In this chapter, we'll use ROM BIOS routines to add two new procedures to

Dskpatch: one to clear the screen, and the other to move the cursor to any

screen location we choose. Both are very useful functions, but neither is avail-

able directly through DOS. Hence, we'll use the ROM BIOS routines to do the

job. Later, we'll see even more interesting things we can do with these ROM
routines, but let's begin by using INT lOh to clear the screen before we display

our half sector.

The INT lOh instruction is our entry to a number of different functions.

Recall that, when we used the DOS INT 21h instruction, we selected a partic-

ular function by placing its function number in the AH register. We select a

VIDEO_IO function in just the same way: by placing the appropriate function

Peter Norton's Assembly Language Book J 95

number in the AH register (a full list of these functions is given in Table

17-1).

Table 17-1. INT lOh Functions

(AH) = Set the display mode. The AL register contains the

mode number.

TEXT MODES

(AL) =

(AL) =

(AL) =

(AL) =

(AL) =

=

= 1

= 2
= 3
--1

40 by 25, black and white mode
40 by 25, color

80 by 25, black and white
80 by 25, color

80 by 25, monochrome display adapter

GRAPHICS MODE

(AL) = 4 320 by 200, color

(AL) = 5 320 by 200, black and white
(AL) = 6 640 by 200, black and white

(AH) = 1 Set the cursor size.

(CH) Starting scan line of the cursor. The top line

is on both the monochrome and color

graphics displays, while the bottom line is 7

for the color graphics adapter and 13 for the

monochrome adapter. Valid range: to 31.

(CL) Last scan line of the cursor.

The power-on setting for the color graphics adapter is

CH = 6 and CL = 7. For the monochrome display: CH = 11

andCL = 12.

(AH) = 2 Set the cursor position.

(DH,DL) Row, column of new cursor position; the

upper left corner is (0,0).

196 I'hc ROM BIOS Routim-

Table 17-1. continued

(AH) = 2 (BH) Page number. This is the number of the
display page. The color-graphics adapter has
room for several display pages, but most
programs use page 0.

(AH) = 3 Read the cursor position.

(BH) Page number
On exit (DH,DL) Row, column of cursor

(CH,CL) Cursor size

(AH) = 4 Read light pen position (see Tech. Ref. Man.).

(AH) = 5 Select active display page.

(AL) New page number (from to 7 for modes
and 1; from to 3 for modes 2 and 3)

(AH) = 6 Scroll up.

(AL) Number of lines to blank at the bottom of

the window. Normal scrolling blanks one
line. Set to zero to blank entire window.

(CH,CL) Row, column of upper, left corner of window
(DH,DL) Row, column of lower, right corner of

window
(BH) Display attribute to use for blank lines

(AH) = 7 Scroll down.

Same as scroll up (function 6), but lines are left blank at

the top of the window instead of the bottom

(AH) = 8 Read attribute and character under the cursor.

(BH) Display page (text modes only)

Peter Norton's Assembly Language Book 197

Table 17-1. continued

(AH) = 8 (AL) Character read
(AH) Attribute of character read (text modes only)

(AH) = 9 Write attribute and character under the cursor.

(BH) Display page (text modes only)

(CX) Number of times to write character and
attribute of screen

(AL) Character to write

(BL) Attribute to write

(AH) = 10 Write character under cursor (with normal attribute).

(BH) Display page
(CX) Number of times to write character

(AL) Character to write

(AH) = 11 to 13 Various graphics functions. (See Tech. Ref. Man. for

the details)

(AH) = 14 Write teletype. Write one character to the screen and
move the cursor to the next position.

(AL) Character to write

(BL) Color of character (graphics mode only)

(BH) Display page (text mode)

(AH) = 15 Return current video state.

(AL) Display mode currently set

(AH) Number of characters per line

(BH) Active display pages

We'll use the INT lOh function number 6, SCROLL ACTIVE PAGE UP, to

clear the screen. We don't actually want to scroll the screen, but this function

198 I Ik ROM BIOS Routines

also doubles as a clear-screen function. Here is the procedure; enter it into the

file CURSOR.ASM:

Listing 1?-1. Add This Procedure to CURSOR.ASM

PUBLIC CLEAR SCREEN

This procedure clears the entire screen.

CLEAR SCREEN PROC

PUSH AX

PUSH BX

PUSH CX

PUSH DX

XOR AL,AL

XOR CX,CX
MOV DH,2<

MOV DL,?q
MOV BH,7

MOV AH,b

INT LOh

POP DX

POP CX

POP BX

POP AX

RET

CLEAR SCREEN ENDP

NEAR

;Blank entire window

;Upper left corner is at (0,0)
;Botton line of screen is line c?<

;Right side is at colunn ?R

;Use normal attribute for blanks
;Call for SCROLL-UP function

;Clear the window

It appears that INT lOh function number 6 needs quite a lot of information,

even though all we want to do is clear the display. This function is rather

powerful: It can actually clear any rectangular part of the screen

—

window—
as it's called. We have to set the window to the entire screen by setting the

first and last lines to and 24, and setting the columns to and 79. The rou-

tines we are using here can also clear the screen to all white (for use with

black characters), or all black (for use with white characters). We want the

latter, and that is what is specfied with the instruction MOV BH,7. Then, too,

setting AL to 0, the number of lines to scroll, tells this routine to clear the

window, rather than to scroll it.

Now we need to modify our test procedure, READ_SECTOR, to call CLEAR_
SCREEN just before it starts to write the sector display. We didn't place this

CALL in LNIT_SEC_DISP, because we'll want to use INIT_SEC_DISP to re-

write just the half-sector display, without affecting the rest of the screen.

To modify READ_SECTOR, add an EXTRN declaration for CLEAR_
SCREEN and insert the CALL to CLEAR_SCREEN. Make the following

changes in the file DISK_IO.ASM:

Peter Norton's Assembly Language Book 199

Listing 17-5. Changes to READ_SECTOR in DISK_IO.ASM

INIT_SEC_DISP:NEAR, CLEAR_SCREEN : NEAR

This procedure reads the first sector on disk A and dumps the first
half of this sector.

READ SECTOR PROC NEAR

MOV AL,D

MOV CX,1

MOV DX,D

LEA BX, SECTOR

INT ?5h

POPF

XOR DX,DX

CALL CLEAR SCREEN

CALL INIT SEC DISP

INT 50h

READ SECTOR ENDP

Disk drive A (number D)

Read only 1 sector
Read sector number D

Where to store this sector
Read the sector
Discard flags put on stack by DOS

Set offset to D within SECTOR

Dump the first half

Return to DOS

Just before you run the new version of Disk_io, note where the cursor is lo-

cated. Then, run Disk_io. The screen will clear, and Disk_io will start writing

the half sector display wherever the cursor happened to be before you ran the

program—probably at the bottom of the screen.

Even though we cleared the screen, we didn't mention anything about mov-

ing the cursor back to the top. In BASIC, the CLS command clears the screen

in two steps: It clears the screen, then it moves the cursor to the top of the

screen. Our procedure doesn't do that; we'll have to move the cursor ourselves.

Moving the Cursor

The INT lOh function number 2 sets the cursor position in much the same
way BASIC'S LOCATE statement does. We can use GOTO_XY to move the

cursor anywhere on the screen (such as to the top after a clear), but we won't.

Enter this procedure into the file CURSOR.ASM:

Listing 17-3. Add This Procedure to CURSOR. ASM

PUBLIC G0T0_XY

This procedure moves the cursor

DH Row (Y)

DL Column (X)

200 I In ROM BIOS Routines

Lsting 17-3 . ((intin

GOTO XY PROC
PUSH AX

POSH BX

MOV BH,0

MOV AH,?

INT lOh

POP BX

POP AX

RET

GOTO XY ENDP

;Display page D

;Call for SET CURSOR POSITION

We'll use GOTO_XY in a revised version of INIT_SEC_DISP, to move the

cursor to the second line just before we write the half-sector display. Here are

the modifications to INIT_SEC_DISP in DISP_SEC.ASM:

Listing 17-4. Changes to INIT_SEC_DISP in DISP_SEC.ASM

PUBLIC INIT_SEC_DISP
EXTRN WRITE_PATTERN:NEAR, SEND_CRLF: NEAR

EXTRN G0T0_XY:NEAR

This procedure initializes the half-sector display.

Uses: WRITE_PATTERN, SEND_CRLF, DISP_HALF_SECTOR
WRITE_TOP_HEX_NUMBERS, G0T0_XY

Reads: TOP_LINE_PATTERN, BOTTOM_LINE_PATTERN

INIT_SEC_DISP PROC NEAR

PUSH DX

XOR DL,DL ;Move cursor into position at beginning
MOV DH,2 ;of 3rd line

CALL G0T0_XY
CALL WRITE_TOP_HEX_NUMBERS
LEA DX,TOP_LINE_PATTERN

If you try it now, you'll see that the half-sector display is nicely centered.

As you can see now, it's easy to work with the screen when we have the

ROM BIOS routines. In the next chapter, we'll use another routine in the

ROM BIOS to improve WRITE_CHAR, so that it will write any character to

the screen. But before we continue let's make some other changes to our pro-

gram, then finish up with a procedure called WRITE_HEADER, which will

write a status line at the top of the screen, to show the current disk drive and

sector number.

Peter Norton's Assembly Language Book 201

Rewiring Variable Usage
We have much that we need to revamp before we create WRITE_HEADER.

As they are now, many of our procedures have numbers hard-wired into them;

READ_SECTOR, for example, reads sector on drive A. We want to place the

disk drive and sector numbers into memory variables, so more than one proce-

dure can read them.

We'll need to change these procedures so they'll use memory variables, but

let's begin by putting all memory variables into one file, DSKPATCH.ASM, to

make our work simpler. Dskpatch.asm will be the first file in our program
Dskpatch, so the memory variables will be easy to find there. Here is

DSKPATCH.ASM, complete with a long list of memory variables:

Listing 17-5. The New File DSKPATCH. RSM

CGROUP GROUP C0DE_SEG, DATA_SEG

ASSUME CS:CGR0UP, DS:CGR0UP

C0DE_SEG SEGMENT PUBLIC

ORG IDOh

EXTRN CLEAR_SCREEN : NEAR , READ_SECTOR : NEAR

EXTRN INIT_SEC_DISP:NEAR

DISK_PATCH PROC NEAR

CALL CLEAR_SCREEN
CALL READ_SECTOR
CALL INIT_SEC_DISP
INT ?0h

DISK_PATCH ENDP

C0DE_SEG ENDS

DATA_SEG SEGMENT PUBLIC

PUBLIC SECT0R_0FFSET

; SECT0R_0FFSET is the offset of the half ;

; sector display into the full sector. It must ;

; be a multiple of lfc>, and not greater than 25b ;

SECTOR.OFFSET DH D

PUBLIC CURRENT_SECT0R_N0, DISK_DRIVE_NO

CURRENT_SECTOR_NO DW Q ;
Initially sector

DISK_DRIVE_NO DB D ;Initially Drive A:

PUBLIC LINES_BEFORE_SECTOR, HEADER_LINE_NO

202 [Tie ROM BIOS Routines

Listing 17-5. continued

PUBLIC HEADER_PART_1, HEADER_PART_2

; LINES_BEFORE_SECTOR is the nuiber of lines

; at the top of the screen before the half

; sector display.

LINES BEFORE SECTOR DB 2

HEADER LINE NO DB

HEADER PART 1 DB •Disk ,0

HEADER_PART_2 DB 1 Sector ,Q

PDBLIC SECTOR

The entire sector (up to 6192 bytes) is

stored in this part of Be«ory.

SECTOR DB fllSZ DUP (0)

DATA_SEG ENDS

END DISK.PATCH

The main procedure, DISK_PATCH, calls three other procedures. We've seen

them all before; soon we'll rewrite both READ_SECTOR and INIT_SEC_
DISP to use the variables just placed into the data segment.

Before we can use Dskpatch, we need to modify Disp_sec, to replace the defi-

nition of SECTOR with an EXTRN. We also need to alter Disk_io, to change

READ_SECTOR into an ordinary procedure we can call from Dskpatch.

Let's take SECTOR first. Since we've placed it in DSKPATCH.ASM as a

memory variable, we need to change the definition of SECTOR in Disp_sec to

an EXTRN declaration. Make these changes in DISP_SEC.ASM:

Listing 17-t. Changes to DISP_SEC.ASM

DATA_SEG SEGMENT PUBLIC

EXTRN SECTOR: BYTE

PUBLIC SECTOR

SECTOR DB

TOP_LINE_PATTERN LABEL BYTE

DB ' ',?

DB UPPER LEFT,1

Peter Norton's Assembly Language Book 203

Let's rewrite the file DISK_IO.ASM so that it contains only procedures, and
READ_SECTOR uses memory variables (not hard-wired numbers) for the

sector and disk-drive numbers. Here is the new version of DISK_IO.ASM:

Listing 17-7. Changes to DISK_IO.ASM

CGROOP GROUP C0DE_SEG, DATA_SEG
ASSUME CS:CGROUP, DS:CGROUP

CODE SEG SEGMENT PUBLIC

PUBLIC READ.SECTOR
GMENT PUB!

CTOR:BYTE
SK_DRIVE_t

RRENT_SEC:

DS

IT SEC DISPrNEAR, CLEAR SCREEN:NEAR

DATA SEG SEGMENT PUBLIC
EXTRN SECTOR:BYTE
EXTRN DISK DRIVE N0:BYTE

EXTRN CURRENT SECTOR N0:W0RD

DATA SEG ENDS

This procedure reads one sector (515 bytes) into SECTOR.

Reads: CURRENT_SECTOR_NO, DISK_DRIVE_NO
Writes: SECTOR

READ..SECTOR PROC NEAR

PUSH AX

PUSH BX

PUSH CX

PUSH DX

MOV AL,DISK_DRIVE_NO
MOV CX,1

MOV DX,CURRENT_SECTOR_NO
LEA BX, SECTOR

INT 55h

POPF

XOR DX,DX

CALL CLEAR_SCREEN
CALL INIT_SEC_DISP
INT ?0h

POP DX

POP CX

POP BX

POP AX

RET

READ..SE(:tor ENDP

CODE..SEG ENDS

DATA .SEG SEGMENT PUBLIC

EXTRN SECTOR: BYTE

DATA _SE ENDS

sector
or num aer

;Drive number
;Read only 1 £

;Logical sectc

;Where to store this sector
;Read the sector
;Discard flags put on stack by DOS

;Set offset to within SECTOR

;Dump the first half

END

204 The ROM BIOS Routines

This new version of Disk_io uses the memory variables DISK_DRIVE_NO
and CURRENT_SECTOR_NO as the disk drive and sector numbers for the

sector to read. Since these variables are already defined in DSKPATCH.ASM,
we won't have to change Disk_io when we start reading different sectors from
other disk drives.

If you're using the Make program to rebuild DSKPATCH.COM, you'll need

to make some additions to your Make file named Dskpatch:

Listing l?-fl. The New Version of DSKPATCH

dskpatch. obj : dskpatch. asi

nasi dskpatch;

disk_io.obj: disk_io.asi
oasn disk_io;

disp_sec.obj : disp_sec.as«
nasn disp_sec;

video_io.obj : video_io.asB
nasn video_io;

cursor. obj: cursor. asa

masni cursor;

dskpatch. cob: dskpatch. obj disk_io.obj disp_sec.obj video_io.obj cursor. obj

link dskpatch disk_io disp_sec video_io cursor;
exec?bin dskpatch dskpatch. cob

If you're not using Make, be sure to reassemble all three files changed

(Dskpatch, Disk_io, and Disp_sec), and to link all five files, with Dskpatch

listed first:

LINK DSKPATCH DISK.IO DISP_SEC VIDEO_IO CURSOR;
EXE5BIN DSKPATCH DSKPATCH.COM

We've made quite a few changes, so test Dskpatch and make sure it works

correctly before you move on.

Writing the Header
Now that we've converted the hard-wired numbers into direct references to

memory variables, we can write the procedure WRITE_HEADER to write a

Peter Norton's Assembly Language Book 205

status line, or header, at the top of the screen. Our header will look like this:

Disk A Sector D

WRITE_HEADER will use WRITE_DECIMAL to write the current sector

number in decimal. It will also write two strings of characters, Disk and Sec-

tor (each followed by a blank space), and a disk letter, such as A. We'll place

the procedure in the file VIDEO_IO.ASM.
To begin, since we'll have a reference to the data segment (DATA_SEG),

change the first line (the GROUP statement) in VIDEO_IO.ASM to read:

CGROUP GROUP C0DE_SEG, DATA_SEG

Place the following procedure in VIDEO_IO.ASM:

Listing 17-R. Add This Procedure to VIDE0_I0.ASM

PUBLIC WRITE_HEADER
DATA_SEG SEGMENT PUBLIC

EXTRN HEADER_LINE_NO:BYTE
EXTRN HEADER_PART_1:BYTE
EXTRN HEADER_PART_?:BYTE
EXTRN DISK_DRIVE_NO:BYTE
EXTRN CURRENT_SECTOR_NO:WORD

DATA_SEG ENDS
EXTRN GOTO XY:NEAR

This p rocedure writes the header witl1 disk- drive and sector number.

Uses: GOTO XY WRITE STRING, WRITE CHAR, WRITE DECIMAL
Reads: HEADER .INE ..NO HEADER PART 1 , HEADER_PART_5

DISK_DRIVE_ SO, CURRENT..SECTOR_N0

WRITE HEADER PROC NEAR

PUSH DX

XOR DL,DL
MOV DH,HEADER_LINE_NO
CALL GOTO XY

LEA DX, HEADER PART 1

CALL WRITE STRING
MOV DL,DISK_DRIVE_NO
ADD DL, 'A'

CALL WRITE CHAR
LEA DX, HEADER PART 5

CALL WRITE STRING
MOV DX,CURRENT_SECTOR_NO

;Move cursor to header line number

Print drives A, B,

206 The ROM BIOS Routines

Listing 17-9. continued

CALL WRITE_DECIHAL
POP DX

RET

WRITE HEADER ENDP

The procedure WRITE_STRING doesn't exist yet. As you can see, we plan to

use it to write a string of characters to the screen. The two strings, HEADER_
PART_1 and HEADER_PART_2, are already defined in DSKPATCH.ASM.
WRITE_STRING will use DS:DX as the address for the string.

We've chosen to supply our own string-output procedure so that our strings

can contain any character, including the $, which we couldn't print with the

DOS function 9. Where DOS uses a $ to mark the end of a string, we'll use a

hex 0. Here is the procedure. Enter it into VIDEO_IO.ASM:

Listing 17-1D. Add This Procedure to VIDE0_I0.ASM

PUBLIC WRITE.STRING

This procedure writes a string of characters to the screen. The

string must end with DB D

DS:DX Address of the string

Dses: WRITE_CHAR

HRITE_STRING PROC NEAR

PUSH AX

POSH DX

POSH SI

POSHF

CLD

MOV SI,DX

STRING_L00P:
LODSB
OR AL,AL

JZ END_OF_STRING
MOV DL,AL
CALL WRITE.CHAR
JMP STRING_L00P

END_OF_STRING:
POPF

POP SI

POP DX

POP AX

RET

WRITE_STRING ENDP

;Save direction flag

;Set direction for increment (forward)

;Place address into SI for LODSB

;Get a character into the AL register
;Have we found the D yet?

;Yes, we are done with the string

;No, write character

;Restore direction flag

Peter Norton's Assembly Language Book 207

As it stands now, WRITE_STRING will write characters with ASCII codes

below 32 (the space character) as a period (.), because we don't have a version

of WRITE_CHAR that will write any character. We'll take care of that detail

in the next chapter.

After all our work in this chapter, let's put the icing on the cake. Change
DISK_PATCH in DSKPATCH.ASM to include the CALL to WRITE_
HEADER.

Listing 17-11. Changes to DISK_PATCH in DSKPATCH.ASM

EXTRN CLEAR_SCREEN:NEAR, READ_SECTOR : NEAR

EXTRN INIT_SEC_DISP:NEAR, WRITE_HEADER :NEAR

DISK_PATCH PROC NEAR

CALL CLEAR_SCREEN
CALL HRITE_HEADER
CALL READ_SECTOR
CALL INIT_SEC_DISP
INT 50h

DISK.PATCH ENDP

Dskpatch should now produce a display like the one in Figure 17-1.

Disk A Sector B

BB Bl B2 83 84 85 86 87 88 89 8A 8B 8C BD BE BF B123456789ABCDEF

88 EB 21 98 49 42 4D 28 28 33 2E 31 88 82 82 81 BB 6!eIBM 3.1

18 82 78 88 D8 82 FD 82 88 89 88 82 88 88 88 88 88 • P.*.
1

28 88 88 88 C4 5C 88 33 ED B8 C8 87 8E D8 33 C9 BA ...-\.3^L.84>3f.

38 D2 79 BE 89 IE IE 88 8C 86 28 88 88 16 22 BB Bl ty.e...i. .e.".|

48 82 8E C5 8E D5 BC 88 7C 51 FC IE 36 C5 36 78 BB .8fHH'.:Q».6f6x.
58 BF 23 7C B9 BB 88 F3 A4 IF 88 8E 2C BB A8 18 88 -|l!j|. .in. I.i .4.

.

68 A2 27 88 BF 78 88 B8 23 7C AB 91 AB Ai 16 88 Dl

EB 48 E8 88 88 E8 86 BB BB 88 85 53 BB Bl E8 AB

6'.
1 x. 1 »!^i..f

?B i0SC..Sa.j..Si.SJ£

. 's.|..li1ikl|.88 88 5F BE 73 81 B9 8B 88 98 F3 A6 75 62 83 C7 15

98 Bl 8B 98 98 F3 A6 75 57 26 8B 47 1C 99 8B BE BB |.EE< s uU&YG.b"i..

A8 BB 83 CI 48 F7 Fl 88 3E 71 81 68 75 82 BB 14 96 ..LHs±g>q.
,

u.l.u

B8 Al 11 88 Bl 84 D3 E8 E8 3B 88 FF 36 IE 88 C4 IE i.J.iss;. 6..-.

C8 6F 81 E8 39 88 E8 64 88 2B FB 76 BD E8 26 88 52 o.89.Sd.+iv.S*.R

D8 F7 26 BB 88 83 D8 5A EB E9 CD 11 B9 B2 B8 D3 EB «*...^«e-.|..i«

E6 88 E4 83 74 84 FE C4 8A CC 5B 58 FF 2E 6F 81 BE SZ.t.i-e|}[X .o.J

F8 89 81 EB 55 98 81 86 IE 88 11 2E 28 88 C3 Al 18 e.SUi [i.

A>

Figure 17-1. Dskpatch with the Header at the Top.

208 I lie ROM BIOS Routines

Summary
At last, we've met the ROM BIOS routines inside our IBM PCs, and already

used two of these routines to help us toward our goal of a full Dskpatch

program.

First we learned about INT lOh, function number 6, which we used to clear

the screen. We also saw (though very briefly) that this function has more uses

than we'll take advantage of in this book. For example, you may eventually

find it helpful for scrolling portions of the screen—in Dskpatch or in your own
programs.

We then used function 2 of INT lOh to move the cursor to the third line on

the screen (line number 2), where we started writing our sector dump.
To make our programs easier to work with, we also rewrote several proce-

dures so they would use memory variables, rather than hard-wired numbers.

Now, we'll be able to read other sectors and change the way our program
works in other ways, just by changing a few central numbers in

DSKPATCH.ASM.
Finally, we wrote the procedures WRITE_HEADER and WRITE_STRING,

so we could write a header at the top of the screen. As mentioned, we'll write

an improved version of WRITE_CHAR in the next chapter, replacing the dots

in the ASCII window of our display with graphics characters. And thanks to

modular design, we'll do this without changing any of the procedures that use

WRITE CHAR.

18

THE ULTIMATE
WRITE CHAR

A New WRITE_CHAR 210
Clearing to the End of a Line 212
Summary 215

209

210 el Itimate WRIT!

Wee made good use of the ROM BIOS routines in the last chapter to clear the

screen and move the cursor. But there are many more uses for the ROM BIOS,
and we'll see some of them in this chapter.

Using DOS alone, we haven't been able to display all 256 of the characters

that the IBM PC is capable of displaying. So, in this chapter, we'll present a

new version of WRITE_CHAR that displays any character, thanks to another

VIDEO_IO function.

Then, we'll add another useful procedure, called CLEAR_TO_END_OF_
LINE, that clears the line from the cursor to the right edge of the screen.

We'll put this to use in WRITE_HEADER, so that it will clear the rest of

the line.

Suppose we go from sector number 10 (two digits) to sector number 9. A zero

would be left over from the 10 after we call WRITE_HEADER with the sector

set to 9. CLEAR_TO_END_OF_LINE will clear this zero, as well as any-

thing else on the remainder of the line.

A New WRITE_CHAR
The ROM BIOS function 9 for INT lOh writes a character and its attribute

at the current cursor position. The attribute controls such features as under-

lining, blinking, and color (see the description of the different color codes in

your BASIC manual under COLOR). We'll use only two attributes for

Dskpatch: attribute 7, which is the normal attribute, and attribute 70h, which

is a foreground color of zero and background of 7 and produces inverse video

(black characters on a white background). We can set the attributes individu-

ally for each character, and we'll do this later to create a block cursor in in-

verse video—known as a phantom cursor. For now, though, we'll just use the

normal attribute when we write a character.

INT lOh, function 9 writes the character and attribute at the current cursor

position. Unlike DOS, it doesn't advance the cursor to the next character posi-

tion unless it writes more than one copy of the character. We'll use this fact

later, in a different procedure, but now we only want one copy of each charac-

ter, so we'll move the cursor ourselves.

Here is the new version of WRITE_CHAR, which writes a character and

then moves the cursor right one character. Enter it into the file VIDEO_
IO.ASM:

Peter Norton's Assembly Language Book 211

Listing lfl-1. Changes to WRITE_CHAR in VIDEO_IO.ASM

PUBLIC WRITE_CHAR

EXTRN C0RSOR_RIGHT:NEAR

This procedure outputs a character to the screen using the ROM BIOS

routines, so characters such as the backspace are treated as

any other character and are displayed.

This procedure must do a bit of work to update the cursor position.

DL Byte to print on screen

Uses: CDRSOR_RIGHT

WRITE CHAR PROC NEAR

PUSH AX

POSH BX

PUSH CX

PUSH DX

MOV AH,q

MOV BH,D

MOV CX,1
MOV AL,DL

MOV BL,7
INT lOh

CALL CURSOR RIGHT

POP DX

POP CX

POP BX

POP AX

RET

WRITE CHAR ENDP

;Call for output of character/attribute
;Set to display page

;Write only one character
;Character to write

;Normal attribute
;Write character and attribute
;Now move to next cursor position

In reading through this procedure, you may have wondered why we included

the instruction MOV BH,0. If you have a graphics display adapter, your

adapter has four text pages in normal text mode. We'll only use the first page,

page 0; hence, the instruction.

As for the cursor, WRITE_CHAR uses the procedure CURSOR_RIGHT to

move the cursor right one character position or to the beginning of the next

line if the movement would take the cursor past column 79. Place the follow-

ing procedure into CURSOR.ASM:

Listing lfl-2. Add This Procedure to CURSOR.ASM

PUBLIC CURS0R_RIGHT

This procedure moves the cursor one position to the right or to the

next line if the cursor was at the end of a line.

212 I hr Ultimate WK1 If CHAR

Listing lfl-5 continued

CURSOR. RIGHT
PUSH

PUSH

PUSH

PUSH

PROC

AX

BX

CX

DX

NEAR

MOV AH,

3

;Read the current cursor position
MOV BH,0 ;On page

INT lOh ;Read cursor position
MOV AH,? ;Set new cursor position
INC DL ;Set column to next position
CMP DL,?q ;Make surj column <= ?S

JBE OK

CALL SEND.CRLF ;Go to next line

JMP DONE

OK: INT lOh

DONE: POP

POP

POP

POP

RET

DX

CX

BX

AX

CURSOR. RIGHT ENDP

CURSOR_RIGHT uses two new INT lOh functions. Function 3 reads the

position of the cursor, and function 2 changes the cursor position. The proce-

dure first uses function 3 to find the cursor position, which is returned in two

bytes, the column number in DL, and the line number in DH. Then, CUR-
SOR_RIGHT increments the column number (in DL) and moves the cursor. If

DL was at the last column (79), the procedure sends a carriage-return/line-

feed pair to move the cursor to the next line. We don't need this column 79

check in Dskpatch, but including it makes CURSOR_RIGHT a general-pur-

pose procedure you can use in any of your own programs.

With these changes, Dskpatch should now display all 256 characters as

shown in Figure 18.1.

You can verify that it does by searching for a byte with a value less than

20h and seeing whether some strange character has replaced the period that

value formerly produced in the ASCII window.

Now let's do something perhaps even more interesting: let's write a proce-

dure to clear a line from the cursor position to the end.

Clearing to the End of a Line

In the last chapter, we used INT lOh, function 6, to clear the screen in the

CLEAR_SCREEN procedure. At that time, we mentioned that function 6

Peter Norton's Assembly Language Book 213

Disk A Sector 8

A>

88 81 82 83 84 85 86 87 88 89 8A BB 8C BD 8E 8F B123456789ABCDEF

88
iii

EB 21 98 49 42 4D 28 28 33 2E 31 88 82 82 81 88 5!eIBM 3.1 BOS

18 82 78 88 D8 82 FD 82 88 89 88 82 88 88 88 88 88 Bp Ifl'B o B

28 88 88 88 C4 5C 88 33 ED B8 CB 87 8E D8 33 C9 8A

¥yfieAA it e." |38 D2 79 8E 89 IE IE 88 8C 86 28 88 88 16 22 88 Bl

48 82 8E C5 8E D5 BC 88 7C 51 FC IE 36 C5 36 78 88 BtifA'fJ :Q'A6f6x

58 BF 23 7C B9 8B 88 F3 A4 IF 88 BE 2C 88 A8 18 88 -,»!{]* inVefl, at

68 A2 27 88 BF 78 88 B8 23 7C AB 91 AB Al 16 BB Dl 6' -,x itlfcttf. f
78 EB 48 E8 88 88 E8 86 88 BB 88 85 53 B8 81 E8 AB

JsQfld E< s uba||§88 88 5F BE 73 81 B9 8B 88 98 F3 A6 75 62 83 C7 15

98 Bl BB 98 98 F3 A6 75 57 26 8B 47 1C 99 8B 8E BB |4EE< fiuU&YG>-biM

A8 88 83 CI 48 F7 Fl 88 3E 71 81 68 75 82 BB 14 96 •iHs+s>qe
%

uflfna

B8 Al 11 88 Bl 84 D3 E8 E8 3B BB FF 36 IE 68 C4 IE H |*155; 61 -A

C8 6F 81 E8 39 BB E8 64 88 2B F8 76 BD E8 26 BB 52 o@59 U +=vJ-5l R

D8 F7 26 8B 88 83 D8 5A EB E9 CD 11 B9 82 BB D3 EB s«* ffZS0=4J]6 l«

E8 88 E4 83 74 84 FE C4 8A CC 5B 58 FF 2E 6F 81 BE QEft*i-c|}[X .o@J

F8 89 81 EB 55 98 81 86 IE 88 11 2E 28 BB C3 Al 18
1 i|i 1

eQSUEQtA 4. i-it
1

Figure 18-1. Dskpatch with the New WRITE_CHAR.

could be used to clear any rectangular window. That capability applies even if

a window is only one line high and less than one line long, so we can use

function 6 to clear part of a line—to the end of the line.

The left side of the window, in this case, is the column number of the cursor,

which we get with a function 3 call (also used by CURSOR_RIGHT). The
right side of the window is always at column 79. You can see the details in

CLEAR_TO_END_OF_LINE; place the procedure in CURSOR.ASM:

Listing lfl-3. Add This Procedure to CURSOR.ASM

PUBLIC CLEAR_TO_END_OF_LINE

This procedure clears the line from the current cursor position to
the end of that line.

CLEftR_TO_END_OF_LINE

POSH AX

PUSH

PUSH

PUSH

MOV

XOR

INT

BX

CX

DX

AH,3

BH,BH

IDh

;Read current cursor position

; on page D

;Now have (X,Y) in DL, DH

214 The Ultimate WRIII

Listing Lfl-3. continued

MOV AH,b

XOR AL,AL

MOV CH,DH
MOV CL,DL
MOV DL,?q
MOV BH,7

INT lOh

POP DX

POP CX

POP BX

POP AX

RET

;Set up to clear to end of line

;Clear window

; All on same line

;Start at the cursor position
;And stop at the end of the line

;Use normal attribute

CLEAR_TO_END_OF_LINE ENDP

We'll use this procedure in WRITE_HEADER, to clear the rest of the line

when we start reading other sectors (we'll do that very soon). There isn't any
way for you to see CLEAR_TO_END_OF_LINE work with WRITE_
HEADER until we add the procedures that allow us to read a different sector

and update the display, but let's revise WRITE_HEADER now, just to get it

out of the way. Make the following changes to WRITE_HEADER in VIDEO_
IO.ASM, to call CLEAR_TO_END_OF_LINE at the end of the procedure:

Listing lfl-4. Changes to WRITE_HEADER in VIDEO_IO.ASM

PUBLIC WRITE HEADER

DATA SEG SEGMENT PUBLIC
EXTRN HEADER LINE N0:BYTE

EXTRN HEADER PART 1:BYTE

EXTRN HEADER PART S:BYTE

EXTRN DISK DRIVE N0:BYTE

EXTRN CURRENT SECTOR N0:W0RD

DATA SEG ENDS

EXTRN G0T0_XY:NEAR, CLEAR_TO_END_OF_LINE : NEAR

This procedure writes the header with disk-drive and sector number.

Uses: G0T0_XY, WRITE_STRING, WRITE_CHAR, WRITE_DECIMAL
CLEAR_TO_END_OF_LINE

Reads: HEADER_LINE_NO, HEADER_PART_1, HEADER_PART_2
DISK_DRIVE_NO, CURRENT_SECTOR_NO

WRITE HEADER PROC NEAR

PUSH DX

XOR DL,DL
MOV DH, HEADER LINE NO

CALL GOTO XY

LEA DX,HEADER_PART_1

;Move cursor to header line number

Peter Norton's Assembly Language Book 215

Listing Ifl--A . continued

CRLL HRITE_STRING
MOV DL,DISK_DRIVE_NO
ADD DL, 'A' ;Print drives

CALL WRITE_CHAR

LEA DX,HEADER_PART_2

CALL WRITE_STRING
MOV DX,CURRENT_SECTOR_NO
CALL WRITE_DECIMAL
CALL CLEAR_TO_END_OF_LINE ;Clear rest o

POP DX

RET

WRiTE.HEADER ENDP

This revision marks both the final version of WRITE_HEADER and the

completion of the file CURSOR.ASM. We are still missing several important

parts of Dskpatch, though. In the next chapter, we'll continue on and add the

central dispatcher for keyboard commands, we'll be able to press Fl and F2 to

read other sectors on the disk.

Summary
This chapter has been relatively easy, without much in the way of new in-

formation or tricks. We did learn how to use INT lOh, function number 9, in

the ROM BIOS to write any character to the screen.

In the process, we also saw how to read the cursor position with INT lOh

function 3, so we could move the cursor right one position after we wrote a

character. The reason: INT lOh function 9 doesn't move the cursor after it

writes just one character, unless it writes more than one copy of the character.

Finally, we put INT lOh function 6 to work clearing part of just one line.

In the next chapter, we'll get down to business again as we build the central

dispatcher.

19

THE DISPATCHER

The Dispatcher 218
Reading Other Sectors 224
Philosophy of the Following Chapters 226

217

218 The Dispatcher

In any language it's nice to have a well-written program that does some-

thing, but to really bring a program to life we need to make it interactive. It's

human nature to say, "If I do this, you do that," so we'll use this chapter to add

some interactivity to Dskpatch. We'll write a simple keyboard-input proce-

dure and a central dispatcher. The dispatcher's job will be to call the correct

procedure for each key pushed. For example, when we press the Fl key to read

and display the previous sector, the dispatcher will call a procedure called

PREVIOUS_SECTOR. To do this, we'll be making many changes to

Dskpatch. We'll start by creating DISPATCHER, the central dispatcher, and
some other procedures for display formatting. Next, we'll add two new proce-

dures, PREVIOUS_SECTOR and NEXT_SECTOR, which we'll call through

DISPATCHER.

The Dispatcher

The Dispatcher will be the central control for Dskpatch, so all keyboard

input and editing will be done through it. DISPATCHER'S job will be to read

characters and call other procedures to do the work. You'll soon see how the

dispatcher does its work, but first let's see how it fits into Dskpatch.

DISPATCHER will have its own prompt line, just under the half-sector dis-

play where the cursor waits for keyboard input. You won't be able to enter hex

numbers in our first version of the keyboard-input procedure, but later on you

will. Here are our first modifications to DSKPATCH.ASM; these add the data

for a prompt line:

Listing 1S-1. Additions to DATA_SEG in DSKPATCH. ASM

HEADER_LINE_NO DB

HEADER_PART_1 DB 'Disk ',0

HEADER_PART_2 DB ' Sector ',0

PUBLIC PR0MPT_LINE_N0, EDIT0R_PR0MPT
PR0MPT_LINE_N0 DB 21

EDIT0R_PR0MPT DB 'Press function key, or enter'

DB ' character or hex byte: ',0

We'll add more prompts later to take care of such matters as inputting a

new sector number, so we'll make our job simpler by using a common proce-

dure, WRITE_PROMPT_LINE, to write each prompt line. Each procedure

Peter Norton's Assembly Language Book 219

that uses WRITE_PROMPT_LINE will supply it with the address of the

prompt (here, the address of EDITOR_PROMPT), and then write the prompt

on line 21 (because PROMPT_LINE_NO is 21). For example, this new ver-

sion of DISK_PATCH (in DSKPATCH.ASM) uses WRITE_PROMPT_LINE
just before it calls DISPATCHER:

Listing 1R-2. Additions to DISK_PATCH in DSKPATCH.ASM

EXTRN CLEAR_SCREEN:NEAR, READ_SECTOR

:

NEAR

EXTRN INIT_SEC_DISP:NEAR, HRITE_HEADER : NEAR

EXTRN WRITE_PROMPT_LINE:NEAR, DISPATCHER :NEAR

DISK.PATCH PROC NEAR

CALL CLEAR_SCREEN
CALL HRITE_HEADER
CALL READ_SECTOR
CALL INIT_SEC_DISP
LEA DX,EDITOR_PROMPT
CALL WRITE_PROMPT_LINE
CALL DISPATCHER
INT 20h

DISK.PATCH ENDP

The dispatcher itself is a fairly simple program, but we do use some new
tricks in it. The following listing is our first version of the file

DISPATCH.ASM:

Listing 1R-3. The New File DISPATCH.ASM.

CGROUP GROUP C0DE_SEG, DATA_SEG
ASSUME CS:CGR0UP, DS:CGROUP

SEGMENT PUBLIC

PUBLIC DISPATCHER
EXTRN READ BYTE:NEAR

This is the central dispatcher. During normal editing and viewing,

this procedure reads characters from the keyboard and, if the char
is a command key (such as a cursor key), DISPATCHER calls the

procedures that do the actual work. This dispatching is done for

special keys listed in the table DISPATCH_TABLE, where the procedure
addresses are stored just after the key names.

If the character is not a special key, then it should be placed
directly into the sector buffer— this is the editing mode.

Uses: READ BYTE

220 The Dispatcher

Listing 1R-3. continued

DISPATCHER PROC NEAR

PUSH AX

PUSH BX

DISPATCH_LOOP:
CALL READ.BYTE ;Read character into AX

OR AH, AH ;AX = if no character read,

; for an extended code.

JZ DISPATCH_LOOP ;No character read, try again
JS SPECIAL_KEY ;Read extended code

; do nothing v ith the character for now

JBP DISPATCH.LOOP ;Read another character
SPECIAL_KEY:

CMP AL,bfl ;F10—exit?
JE END.DISPATCH ;Yes, leave

;Use BX to look through table
LEA BX,DISPATCH_TABLE

SPECIAL_L00P:
CHP BYTE PTR [BX],0 ;End of table?
JE NOT_IN_TABLE ;Yes, key was not in the table
CHP AL,[BX] ;Is it this table entry?
JE DISPATCH ;Yes, then dispatch
ADD BX,3 ;No, try next entry

JMP SPECIAL_LOOP ;Check next table entry

DISPATCH:
INC BX ;Point to address of procedure
CALL WORD PTR [BX] ;Call procedure
JHP DISPATCH_LOOP ;Wait for another key

NOT_IN_TABLE: ;Do nothing, just read next ch;

JHP DISPATCH_LOOP

END.DISPATCH:
POP BX

POP AX

RET

DISPATCHER ENDP

CODE_SEG ENDS

DATA_SEG SEGMENT PUBLIC

CODE_SEG SEGMENT PUBLIC
EXTRN NEXT_SECTOR:NEAR
EXTRN PREVIOUS_SECTOR:NEAR

CODE_SEG ENDS

;ln DISK_IO.ASM
;In DISK.IO.ASM

Peter Norton's Assembly Language Book 221

Listing 1R-3. continued

Th ls table contains the legal ex tended ASCII keys and the addresses

Of the procedures that should be called when each key is pressed. ;

The format of the table is

DB 75 ;Extended code Eor cursor up

DW OFFSET :GRO0P: PHANTOM, JP

DISPATCH TABLE LABEL BYTE

DB 59 ;Fi

DW OFFSET CGROUP: PREVIOUS SECTOR

DB to ;F2

DW OFFSET CGROUP: NEXT SECTOR

DB D ;End of the table

DATA_SEG ENDS

END

DISPATCHJTABLE holds the extended ASCII codes for the Fl and F2
keys. Each code is followed by the address of the procedure DISPATCHER
should call when it reads that particular extended code. For example, when
READ_BYTE, which is called by DISPATCHER, reads an Fl key (extended

code 59), DISPATCHER calls the procedure PREVIOUS_SECTOR.
The addresses of the procedures we want DISPATCHER to call are in the

dispatch table, so we used a new pseudo-op, OFFSET, to obtain them. The line

DW OFFSET CGROUP:PREVIOUS_SECTOR

for example, tells the assembler to use the offset of our PREVIOUS_SECTOR
procedure. This offset is calculated relative to the start of our group CGROUP,
and it is why we need the CGROUP: in front of the procedure name. Had we
not put CGROUP there, the assembler would calculate the address of PREVI-
OUS_SECTOR from the start of the code segment, and that might not be

what we want. (As it turns out here, this CGROUP isn't absolutely necessary,

because the code segment is loaded first in our program. Still, in the interest

of clarity, we'll write OFFSET CGROUP: anyway.)

Notice that DISPATCHJTABLE contains both byte and word data. This

raises a few considerations. In the past, we've always dealt with tables of one

type or the other: either all words, or all bytes. But here, we have both, so we
have to tell the assembler which type of data to expect when we use a CMP or

CALL instruction. In the case of an instruction written like this:

CMP [BX],D

222 The Dispatcher

the assembler doesn't know whether we want to compare words or bytes. But
by writing the instruction like this:

CMP BYTE PTR [BX],0

we tell the assembler that BX points to a byte, and that we want a byte com-

pare. Similarly, the instruction CMP WORD PTR [BX],0 would compare
words. On the other hand, an instruction like CMP AL,[BX] doesn't cause any
problems, because AL is a byte register, and the assembler knows without

being told that we want a byte compare.

Then, too, remember that a CALL instruction can be either a NEAR or a

FAR CALL. A NEAR CALL needs one word for the address, while the FAR
CALL needs two. Here, the instruction:

CALL WORD PTR [BX]

tells the assembler, with WORD PTR, that [BX] points to one word, so it

should generate a short CALL and use the word pointed to by [BX] as the

address, that being the address we stored in DISPATCH_TABLE. (For a FAR
CALL, which uses a two-word address, we would use the instruction CALL
DWORD PTR [BX]. DWORD stands for Double Word, or two words.)

As you'll see in Chapter 22, we can easily add more key commands to

Dskpatch simply by adding more procedures and placing new entries in DIS-

PATCH_TABLE. Right now, however, we still need to add four procedures

before we can test this new version of Dskpatch. We're missing READ_BYTE,
WRITE_PROMPT_LINE, PREVIOUS_SECTOR, and NEXT_SECTOR.
READ_BYTE is a procedure to read characters and extended ASCII codes

from the keyboard. The final version will be able to read special keys (such as

the function and cursor keys), ASCII characters, and two-digit hex numbers.

At this point, we'll write a simple version of READ_BYTE—to read either a

character or a special key. Here is the first version of KBD_IO.ASM, which is

the file in which we'll store all our procedures to read from the keyboard:

Listing 1R-4 . The New File KBD_IO.ASM

CGROUP GROUP C0DE_SEG
ASSUME CSrCGROUP, DSrCGROUP

C0DE_SEG SEGMENT PUBLIC
PUBLIC READ BYTE

Peter Norton's Assembly Language Book 223

Listing 11- A . continued

This procedure reads a single ASCII character. This is just

a test version of READ_BYTE.

Returns byte in AL Character code (unless AH = D)

AH 1 if read ASCII char
-1 if read a special key

READ BYTE PROC NEAR

MOV AH,?

INT Elh

OR AL,AL

JZ EXTENDED CODE

NOT EXTENDED:
MOV AH,1

DONE READING:

RET

EXTENDED CODE:

INT Sih

MOV AH,QFFh

JMP DONE READING

READ_BYTE ENDP

CODE SEG ENDS

;Read character without echo

; and place into AL

;Is it an extended code?

;Yes

;Signal normal ASCII character

;Read the extended code

;Signal extended code

We'll add WRITE PROMPT LINE to VIDEO IO.ASM as follows:

Listing iq-5. Add This Procedure to VIDEO_IO.RSM

PUBLIC WRITE_PROMPT_LINE
EXTRN CLEAR_TO_END_OF_LINE:NEAR
EXTRN G0T0_XY:NEAR

DATA_SEG SEGMENT PUBLIC
EXTRN PROMPT_LINE_NO:BYTE

DATA_SEG ENDS

This procedure writes the prompt line to the screen and clears the

end of the line.

DS:DX Address of the prompt-line message

Uses:

Reads:

WRITE_STRING, CLEAR_TO_END_OF_LINE, G0T0_XY
PROMPT LINE NO

224 'he Dispatcher

Listing IR- 5 . continued

WRITE PROMPT LINE PROC NEAR

PUSH DX

XOR DL,DL
MOV DH,PROMPT_LINE_NO
CALL GOTO XY

POP DX

CALL WRITE STRING

CALL CLEAR TO END OF LINE

RET

WRITE PROMPT LINE ENDP

;Write the prompt line and

; move the cursor there

There really isn't much to this procedure. It moves the cursor to the beginning

of the prompt line, which we set (in DSKPATCH.ASM) to line 21. Then, it

writes the prompt line and clears the rest of the line. The cursor is at the end

of the prompt when WRITE_PROMPT_LINE is done, and the rest of the line

is cleared by CLEAR_TO_END_OF_LINE.

Reading Other Sectors

Finally, we need the two procedures PREVIOUS_SECTOR and NEXT_
SECTOR, to read and redisplay the previous and next disk sectors. Add these

two procedures to DISK_IO.ASM:

Listing IR-t. Add These Procedures to DISK_IO.ASM

PUBLIC PREVIOUS_SECTOR
EXTRN INIT_SEC_DISP:NEAR, WRITE_HEADER

:

NEAR

EXTRN WRITE_PROMPT_LINE:NEAR
DATA_SEG SEGMENT PUBLIC

EXTRN CURRENT_SECTOR_NO:WORD, EDIT0R_PR0MPT: BYTE

DATA_SEG ENDS

This p -ocedure reads the previous sector, if possible.

Uses: WRITE HEADER, READ SECTOR, INIT_SEC_DISP
WRITE_PROMPT_LINE ;

Reads: CURRENT_SECTOR_NO, EDIT0R_PR0MPT
Writes CURRENT_SECT0R_N0 ;

PREVI0US_SECT0R PROC NEAR
PUSH AX

PUSH DX

MOV AX,CURRENT_SECTOR_NO ;Get current sector number
OR AX, AX ;Don't decrement if already D

Peter Norton's Assembly Language Book 225

Listing IR-b. continued

JZ DONT DECREMENT SECTOR

DEC AX

MOV CURRENT_SECTOR_NO,AX
CALL WRITE HEADER

CALL READ SECTOR

CALL INIT SEC DISP

LEA DX,EDITOR_PROMPT
CALL WRITE PROMPT LINE

DONT DECREMENT SECTOR:

POP DX

POP AX

RET

PREVIOUS SECTOR ENDP

;Save new sector number

;Display new sector

PUBLIC NEXT_SECTOR
EXTRN INIT_SEC_DISP:NEAR, WRITE_HEADER : NEAR

EXTRN WRITE_PROMPT_LINE:NEAR
DATA.SEG SEGMENT PUBLIC

EXTRN CURRENT_SECTOR_NO:WORD, EDIT0R_PR0MPT: BYTE

DATA_SEG ENDS

Reads the next sector.

Reads:

Writes:

WRITE_HEADER, READ_SECTOR, INIT_SEC_DISP
WRITE_PROMPT_LINE
CURRENT_SECTOR_NO, EDITOR_PROMPT
CURRENT SECTOR NO

NEXT_SECTOR
PUSH

PUSH

MOV

INC

MOV

CALL

CALL
CALL

LEA

CALL

POP

POP

RET

NEXT_SECTOR

PROC NEAR

AX

DX

AX,CURRENT_SECTOR_NO
AX

CURRENT_SECTOR_NO,AX
WRITE_HEADER
READ_SECTOR
INIT_SEC_DISP
DX,EDITOR_PROMPT
WRITE_PROMPT_LINE
DX

AX

ENDP

;Move to next sector

;Display new sector

Now, you're ready to assembly all the files we created or changed:

Dskpatch, Video_io, Kbd_io, Dispatch, and Disk_io. When you link the

Dskpatch files, remember there are now seven of them: Dskpatch, Disp_sec,

Disk_io, Video_io, Kbd_io, Dispatch, and Cursor.

If you are using Make, here are the additions you need to make to the file

226 The Dispatcher

Dskpatch (the backslash at the end of the fourth line from the bottom tells

Make we're continuing the list of files onto the next line):

Listing 1R-7 . Changes to the DSKPATCH Make File

cursor. obj: cursor. asm

masm cursor;

dispatch. obj : dispatch. asm

masm dispatch;

kbd_io.obj: kbd_io.asm
masm kbd_io;

dskpatch.com: dskpatch. obj disk_io.obj disp_sec.obj video_io.obj cursor. obj \

dispatch. obj kbd_io.obj
link dskpatch disk_io disp_sec video_io cursor dispatch kbd_io;
exeZbin dskpatch dskpatch.com

If you do not have Make, you may wish to write the following short batch

file to link and create your .COM file:

LINK DSKPATCH DISK_IO DISP.SEC VIDEO_IO CURSOR DISPATCH KBD_IO;
EXE5BIN DSKPATCH DSKPATCH.COM

As we add more files, you'll only need to change this batch file, rather than

type this long link list each time you rebuild the .COM program.

This version of Dskpatch has three active keys: Fl reads and displays the

previous sector, stopping at sector 0; F2 reads the next sector; F10 exits from

Dskpatch. Give these keys a try. Your display should now look something like

Figure 19-1.

Philosophy of the Following Chapters

We covered far more ground than usual in this chapter, and in that respect

you've had a taste of the philosophy we'll be following in Chapters 20 through

27. From now on, we'll move along at a fairly rapid pace, so that we can get

through more examples of how to write large programs. You'll also find more
procedures that you can use in your own programs.

These chapters are here for you to learn from, hence the rather high density

of new procedures. But in the final two chapters of the book, we'll come back

to learning new subjects, so hang on, or (if you wish) skip the remaining chap-

Peter Norton's Assembly Language Book 227

Disk A Sector 8

88 81 82 83 84 85 86 87 88 89 Bft BB 8C 8D BE BF 8123456789ftBCDEF

68
1 1 i

EB 21 98 49 42 4D 28 28 33 2E 31 BB 82 82 81 88 6!eIBM 3.1 BBS

18 82 78 BB D8 82 FD 82 88 89 BB 82 88 88 BB 88 88 6p Jfl*8 o B

28 88 BB 88 C4 5C 88 33 ED B8 CB 87 8E D8 33 C9 Bft

Try/JeAA it e." |38 D2 79 BE 89 IE IE 88 8C B6 28 88 88 16 22 88 Bl

48 82 8E C5 8E D5 BC 88 7C 51 FC IE 36 C5 36 78 88 BA+Af1 !Q"A6f6x

58 BF 23 7C B9 8B 88 F3 ft4 IF 88 BE 2C 88 ftB 18 BB •,i:j|4 <«»$!), at

68 ft2 27 B8 BF 78 88 B8 23 7C ftB 91 ftB Al 16 88 Dl 6' ,x iilfrtf-T
78 E8 48 E8 88 BB E8 86 88 BB 88 85 53 BB 81 E8 ftB ccsg Sa | tsM
88 88 5F BE 73 81 B9 8B 88 98 F3 A6 75 62 83 C7 15 Js&0<f E< 9 uba|[§

98 Bl BB 98 98 F3 ft6 75 57 26 8B 47 1C 99 8B BE BB |^EE< s
uWaiG«-8TJJ<J

ft8 88 83 CI 48 F7 Fl 88 3E 71 81 68 75 82 BB 14 96 t-Lris+s^'uBina

B8 ftl 11 88 Bl 84 D3 E8 E8 3B 88 FF 36 IE BB C4 IE H |«l8fi; 6A -a

CB 6F 81 E8 39 88 E8 64 88 2B F8 76 8D E8 26 88 52 oQ59 U +=v«a R

D8 F7 26 8B 88 83 D8 5ft EB E9 CD 11 B9 B2 B8 D3 EB *a* ffzsMlB k
E8 88 E4 83 74 84 FE C4 8ft CC 5B 58 FF 2E 6F 81 BE 5Eft*i-4fIX .oQJ

F8 89 81 EB 55 98 81 86 IE 88 11 2E 28 88 C3 Al 18
1 iii I

eQSUEStA i. |-it

Press function key, op enter character or hex byte:

Figure 19-1. Dskpatch with the Prompt Line.

ters on Dskpatch until you're ready to write your own programs. When you're

ready to come back again, you'll find many useful tidbits for programming.
Of course, if you're champing at the bit and eager to write your own proce-

dures, read the next chapter. There, you'll find a number of hints, and we'll

give you a chance to write the procedures in following chapters by giving you
enough details to forge ahead.

From Chapter 21 on, we'll present many different procedures and let you
discover how they work. Why? There are two reasons, both related to setting

you on your feet and on your way to assembly language programming. First,

we want you to have a library of procedures you can use in your own pro-

grams; to use them comfortably, you need to exercise your own skills. Second,

by presenting this large programming example, we want to show you not only

how to write a large program, but to give you a feel for it as well.

So take the rest of this book in the way that suits you best. Chapter 20 is for

those of you eager to write your own programs. In Chapter 21, we'll return to

Dskpatch and build the procedures to write and move what we call a phantom
cursor: a reverse-video cursor for the hex and ASCII displays.

20

A PROQRAMMINQ
CHALLENQE

The Phantom Cursors 230
Simple Editing 232
Other Additions and Changes to Dskpatch 232

229

230 A Programming Challenge

Xhis book contains six more chapters of procedures. If you want to try navi-

gating on your own, read this chapter. We'll chart a course for you here, and
plot your way through Chapters 21 and 22. Then you can try to write the

procedures in each chapter before you read it. If you don't wish to try writing

pieces of Dskpatch just yet, skip this chapter for now. It's very brief and leaves

many details to your imagination.

If you decide to read through this chapter, here's a suggestion on how to

proceed: Read one section and then try to make your own corresponding

changes to Dskpatch. When you feel you've made enough progress, read the

chapter with the same name as the section title. After you've read the corre-

sponding chapter, then you can go on to read the next section.

Note: You may want to make a copy of all your files before you start

making changes. Then when you get to Chapter 21, you'll have the

choice of following along with the changes, or using your own version.

The Phantom Cursors

In Chapter 21 we'll place two phantom cursors on the screen: one in the hex

window, and one in the ASCII window. A phantom cursor is similar to a nor-

mal cursor, but it doesn't blink and the background turns white, with the

characters black, as you can see in Figure 20-1.

The phantom cursor in the hex window is four characters wide, the one in

the ASCII window is only one character wide.

How do we create a phantom cursor? Each character on the screen has an

attribute byte. This byte tells your IBM PC how to display each character. An
attribute code of 7h displays a normal character, while 70h displays a charac-

ter in inverse video. The latter is exactly what we want for the phantom cur-

sor, so the question is: How can we change the attribute of our characters to

70h?

INT lOh function 9 writes both a character and an attribute to the screen,

and INT lOh function 8 reads the character code at the current cursor posi-

Peter Norton's Assembly Language Book 231

Disk A Sector B

BB Bl B2 B3 84 B5 86 87 88 89 8A BB BC 8D BE BF 8123456789ABCDEF

88 3121 98 49*42 4D 28 28*33 2E 31 88*82 82 81 88 S'eIBM 3.1 BBS

18 82 78 88 DB 82 FD B2 88 89 BB 82 88 88 88 88 88 Bp *Bz
fl o B

28 88 88 88 C4 SC 88 33 ED B8 CB 87 8E D8 33 C9 BA

TryJJeAA ! e_" |38 D2 79 BE 89 IE IE 88 8C 86 28 88 88 16 22 88 Bl

48 82 8E CS 8E D5 BC 88 7C 51 FC IE 36 C5 36 78 88 BJSfSfJi IQB A6f6x

58 BF 23 7C B9 8B BB F3 A4 IF 88 BE 2C BB A8 18 88 -,«!{|4 iRTeJJ, at

68 A2 27 BB BF 78 BB B8 23 7C AB 91 AB Al 16 88 Dl 6' ^illfctty. t
78 E8 4B E8 88 BB E8 86 BB BB 88 85 53 B8 Bl E8 AB

J s0{1<? E< a uba|}§88 BB 5F BE 73 81 B9 BB B8 98 F3 A6 75 62 83 C7 15

98 Bl 8B 9B 98 F3 A6 75 57 26 8B 47 1C 99 8B BE 8B |*ee< suU*iG«-8iM

A8 88 83 CI 48 F7 Fl 88 3E 71 81 68 75 82 BB 14 96 fJ-Hs+S>q9
,

uB|Hu

B8 Al 11 88 Bl 84 D3 E8 E8 3B 88 FF 36 IE 88 C4 IE H |*1«; 6* -i
|

0059 3d +ivf5i RC8 6F 81 E8 39 88 E8 64 BB 2B F8 76 8D E8 26 88 52

DB F7 26 BB BB 83 D8 5A EB E9 CD 11 B9 82 88 D3 E8 s«<f f+Z56H{|fl k
E8 88 E4 83 74 84 FE C4 8A CC 5B 58 FF 2E 6F 81 BE QZlUi-iflX .oQJ

F8 89 81 EB 55 98 81 86 IE BB 11 2E 28 88 C3 Al 18
1 !

1

e05UE0tA 4. (-it

Press function key, or enter character or hex byte:

Figure 20-1. A Display with Phantom Cursors.

tion. We can create a phantom cursor in the hex window with the following

steps:

• Save the position of the real cursor (use INT lOh function 3 to read the

cursor position and save this in variables).

• Move the real cursor to the start of the phantom cursor in the hex
window.

• For the next four characters, read the character code (function 8) and
write both the character and its attribute (setting the attribute to 70h).

• Finally, restore the old cursor position.

We write a phantom cursor in the ASCII window in much the same way.
Once you have a working phantom cursor in the hex window, you can add the

extra code for the ASCII window.
Keep in mind that your first try is only temporary. Once you have a work-

ing program with phantom cursors, you can go back and rewrite your changes,
so you have a number of small procedures to do the work. Look at the proce-

dures in Chapter 21 when you're done, to see one way of doing this.

232 \ Programming Challenge

Simple Editing

Once we have our phantom cursors, we'll want to move them around on the

screen. We have to pay attention here to boundary conditions, in order to keep

the phantom cursors inside each of the two windows. We also want our two
phantom cursors to move together, since they represent the hex and ASCII
representations of the same thing.

How can we move each phantom cursor? Each of the four cursor keys on the

keypad sends out a special function number: 72 for cursor up, 80 for cursor

down, 75 for cursor left, and 77 for cursor right. These are the numbers we
need to add to DISPATCH_TABLE, along with the addresses of the four pro-

cedures to move the phantom cursors in each of these four directions.

To actually move each phantom cursor, erase it, then change its two coordi-

nates and write it again. If you've been careful about how you wrote the phan-

tom cursors, the four procedures to move them should be fairly simple.

Whenever you type a character on the keyboard, Dskpatch should read this

character and replace the byte under the phantom cursor with the character

just read. Here are the steps for simple editing:

• Read a character from the keyboard.

• Change the hex number in the hex window and the character in the

ASCII window to match the character just read.

• Change the byte in the sector buffer, SECTOR.

Here's a simple hint: You don't have to make many changes to add editing.

Dispatch requires little more than calling a new procedure (we've called it

EDIT_BYTE) that does most of the work. EDIT_BYTE is responsible for

changing both the screen and SECTOR.

Other Additions and Changes to Dskpatch
From Chapter 23 through Chapter 27, the changes start to become some-

what trickier and more involved. If you're still interested in writing your own
version, consider this: What more would you like to see Dskpatch do than it

does right now? We've used the following ideas in the remaining chapters.

We want a new version of READ_BYTE that will read either one character

or a two-digit hex number and wait for us to press the Enter key before it

returns a character to Dispatch. This part of our "wish list" isn't as simple as

Peter Norton's Assembly Language Book 233

it sounds, and we'll spend two chapters (Chapters 23 and 24) working on this

problem.

In Chapter 25, we'll go bug hunting, then in Chapter 26 we'll learn how to

write modified sectors back to the disk using the DOS INT 26h function,

which is analogous to the INT 25h that we used to read a sector from the disk.

(In Chapter 26, we won't check for read errors, but you'll find such checks in

the disk version of Dskpatch that is available with this book.)

Finally, in Chapter 27, we'll make some changes to Dskpatch so we can see

the other half of our sector display. These changes won't allow us to scroll

through the sector display as freely as we'd like but, again, those changes are

on the disk version of Dskpatch.

21

THE PHANTOM CURSORS

The Phantom Cursors 236
Changing Character Attributes 241

Summary 243

235

236 I lit- Phantom Cursors

In this chapter we'll build the procedures to write and erase a phantom cur-

sor in the hex window, and another in the ASCII window. A phantom cursor is

so called because it's not the PC's hardware cursor; it's a shadow . . . albeit a

rather unusual shadow, since it inverts the character, turning the background

to white and the character to black. In the hex window, we have the room to

make this cursor four characters wide so it will be easy to read. In the ASCII
window, our phantom cursor will be just one character wide, because there is

no room between characters.

We have a lot of procedures and code to cover here, so we'll describe these

procedures only briefly.

The Phantom Cursors

INIT_SEC_DISP is the only procedure we have that changes the sector dis-

play. A new display appears when we start Dskpatch, and each time we read a

new sector. Since our phantom cursors will be in the sector display, we'll begin

our work here by placing a call to WRITE_PHANTOM in INIT_SEC_DISP.
That way, we'll write the phantom cursors every time we write a new sector

display.

Here is the revised—and final—version of INIT_SEC_DISP in DISP_
SEC.ASM:

Listing Bl-1. Changes to INIT_SEC_DISP in DISP_SEC.ASM

PUBLIC INIT_SEC_DISP
EXTRN HRITE_PATTERN:NEftR, SEND_CRLF: NEAR

EXTRN G0T0_XY:NEAR, WRITE_PHANTOM : NEAR

DATA_SEG SEGMENT PUBLIC
EXTRN LINES_BEFORE_SECTOR:BYTE
EXTRN SECT0R_0FFSET:W0RD

DATA SEG ENDS

This procedure initializes the half-sector display.

Uses: WRITE_PATTERN, SEND_CRLF, DISP_HALF_SECTOR
WRITE_TOP_HEX_NUMBERS, G0T0_XY, KRITE_PHANTOH

Reads: TOP_LINE_PATTERN, BOTTOM_LINE_PATTERN
LINES_BEFORE_SECTOR

Writes: SECTOR OFFSET

Peter Norton's Assembly Language Book 237

Listing 51--1 . continued

INIT_SEC_DISP PROC NEAR

PUSH DX

XOR DL,DL

MOV DH,LINES_BEFORE_SECTOR
CALL GOTO_XY

CALL WRITE_TOP_HEX_NUMBERS

LEA DX,TOP_LINE_PATTERN

CALL WRITE_PATTERN
CALL SEND_CRLF
XOR DX,DX
MOV SECTOR_OFFSET,DX
CALL DISP_HALF_SECTOR
LEA DX,BOTTOM_LINE_PATTERN
CALL WRITE_PATTERN
CALL WRITE_PHANTOM
POP DX

RET

INIT_SEC_DISP ENDP

;Move cursor into position

; Start at the beginning of the sector

;Set sector offset to

;Write the phantom cursor

Notice that we've also updated INIT_SEC_DISP to use and initialize vari-

ables. It now sets SECTOR_OFFSET to zero to display the first half of a

sector.

Let's move on to WRITE_PHANTOM itself. This will take quite a bit of

work. Altogether, we have to write six procedures, including WRITE_PHAN-
TOM. The idea is fairly simple, though. First, we move the real cursor to the

position of the phantom cursor in the hex window and change the attribute of

the next four characters to inverse video (attribute 70h). This creates a block

of white, four characters wide, with the hex number in black. Then we do the

same in the ASCII window, but for a single character. Finally, we move the

real cursor back to where it was when we started. All the procedures for the

phantom cursors will be in PHANTOM.ASM, with the exception of WRITE_
ATTRIBUTE_N_TIMES, the procedure that will set the attribute of

characters.

Enter the following procedures into the file PHANTOM.ASM:

Listing 51-5. The New File PHANTOM. ASM

CGROUP GROUP C0DE_SEG, DATA_SEG
ASSUME CSrCGROUP, DS:CGR0UP

CODE SEG SEGMENT PUBLIC

PUBLIC
EXTRN

M0V_T0_HEX_P0SITI0N
GOTO XY:NEAR

238 The Phantom Cursors

Listing PI-?, continued

DATA_SEG SEGMENT PUBLIC

EXTRN LINES_BEFORE_SECTOR:BYTE
DATA_SEG ENDS

This procedure moves the real cursor to the position of the phanton

cursor in the hex window.

Uses:

Reads:

GOTO_XY
LINES BEF0RE_SECT0R, PHANTOM CURSOR X, PHANTOM CURSOR Y

MOV TO HEX POSITION

PUSH AX

PUSH CX

PUSH DX

MOV DH,LINES_BEFORE_SECTOR
ADD DH,5

ADD DH,PHANTOM_CURSOR_Y
MOV DL,fl

MOV CL,3

MOV AL,PHANTOM_CURSOR_X
MUL CL

ADD DL.AL

CALL GOTO.XY
POP DX

POP CX

POP AX

RET

;Find row of phantom (0,0)

;Plus row of hex and horizontal bar

;DH = row of phantom cursor
;Indent on left side

;Each column uses 3 characters, so

; we must multiply CURS0R_X by 3

;And add to the indent, to get columr

; for phantom cursor

MOV TO HEX POSITION ENDP

PUBLIC MOV_TO_ASCII_POSITION
EXTRN G0T0_XY:NEAR

DATA_SEG SEGMENT PUBLIC
EXTRN LINES_BEFORE_SECTOR:BYTE

DATA_SEG ENDS

This procedure moves the real cursor to the beginning of the phanton

cursor in the ASCII window.

uses:

Reads:

G0T0_XY
LINES_BEFORE_SECTOR, PHANTOM_CURSOR_X, PHANTOM_CURSOR_Y

MOV TO ASCII POSITION
PUSH AX

PUSH DX

MOV DH,LINES_BEFORE_SECTOR
ADD DH,2
ADD DH,PHANTOM_CURSOR_Y
MOV DL,5R
ADD DL,PHANTOM_CURSOR_X
CALL G0T0_XY
POP DX

;Find row of phantom (0,0)

;Plus row of hex and horizontal bar

;DH = row of phantom cursor

;Indent on left side

;Add CURS0R_X to get X position

; for phantom cursor

Peter Norton's Assembly Language Book 239

Listing 21-2. continued

POP AX

RET

H0V_T0_ASCII_P0SITI0N ENDP

PUBLIC SAVE_REAL_CURSOR

This procedure saves the position of the real cursor in the two

variables REAL_CURSOR_X and REAL_CURSOR_Y.

Writes: REAL_CURSOR_X, REAL_CURSOR_Y

SAVE REAL CURSOR

POSH AX

PUSH BX

POSH CX

POSH DX

MOV AH,

3

XOR BH,BH

INT 10h

MOV REAL_CURSOR_Y,DL
MOV REAL_CURSOR_X,DH
POP DX

POP CX

POP BX

POP AX

RET

;Read cursor position

; on page D

;And return in DL,DH

;Save position

SAVE REAL CURSOR

PUBLIC RESTORE_REAL_CURSOR
EXTRN GOTO XY:NEAR

This procedure restores the real cursor to its old position, saved in

REAL_CURSOR_X and REAL_CURSOR_Y.

Uses:

Reads:

GOTO_XY
REAL CURSOR X, REAL CURSOR Y

RESTORE_REAL_CURSOR PROC 1

PUSH DX

MOV DL,REAL_CURSOR_Y
MOV DH,REAL_CURSOR_X
CALL GOTO_XY
POP DX

RET

RESTORE REAL CURSOR ENDP

PUBLIC WRITE_PHANTOM
EXTRN WRITE ATTRIBUTE N TIMES:NEAR

240 ' he Phantom Cursors

Listing El-?, continued

This procedure uses CURS0R_X and CURS0R_Y, through H0V_T0_..., as the

coordinates for the phantom cursor. WRITE_PHANTOM writes this

phantom cursor.

Uses: WRITE_ATTRIBUTE_N_TIHES, SAVE_REAL_CURSOR
RESTORE_REAL_CURSOR, H0V_T0_HEX_P0SITI0N
MOV TO ASCII POSITION

WRITE PHANTOM PROC NEAR

PUSH CX

PUSH DX

CALL SAVE REAL CURSOR
CALL MOV TO HEX POSITION
MOV CX,<

MOV DL,?0h
CALL WRITE ATTRIBUTE N TIMES

CALL MOV TO ASCII POSITION
MOV CX,1

CALL WRITE ATTRIBUTE N TIMES
CALL RESTORE REAL CURSOR
POP DX

POP CX

RET

WRITE_PHANTOM ENDP

PUBLIC ERASE PHANTOM

EXTRN WRITE ATTRIBUTE N TIMES

;Coord. of cursor in hex window
Make phantos cursor four chars wide

;Coord. of cursor in ASCII window

;Cursor is one character wide here

This procedure erases the phantos cursor, just the opposite of

WRITE_PHANTOM.

Uses: WRITE_ATTRIBUTE_N_TIMES, SAVE_REAL_CURSOR
RESTORE_REAL_CURSOR, MOV_TO_HEX_POSITION
MOV TO ASCII POSITION

ERASE.PHANTOM PROC

PUSH CX

PUSH DX

CALL SAVE REAL CURSOR
CALL MOV TO HEX POSITION
MOV CX,4

MOV DL,7
CALL WRITE ATTRIBUTE N TIMES

CALL MOV TO ASCII POSITION
MOV CX,1
CALL WRITE ATTRIBUTE N TIMES
CALL RESTORE REAL CURSOR
POP DX

POP CX

RET

;Coord. of cursor in hex window

;Change back to white on black

Peter Norton's Assembly Language Book 241

Listing El-?, continued

ERASE_PHANTOM ENDP

C0DE_SEG ENDS

DATA_SEG SEGMENT PUBLIC

REAL_CURSOR_X DB D

REAL_CURSOR_Y DB D

PUBLIC PHANTOM_CURSOR_X, PHANTOM_CURSOR_Y

PHANTOM_CURSOR_X DB D

PHANTOM_CURSOR_Y DB D

DATA SEG ENDS

WRITE_PHANTOM and ERASE_PHANTOM are much the same. In fact,

the only difference is in the attribute used: WRITE_PHANTOM sets the at-

tribute to 70h for inverse video, while ERASE_PHANTOM sets to attribute

back to the normal attribute (7).

Both of these procedures save the old position of the real cursor with

SAVE_REAL_CURSOR, which uses the INT lOh function number 3 to read

the position of the cursor and then saves this position in the two bytes REAL_
CURSOR_X and REAL_CURSOR_Y.

After saving the real cursor position, both WRITE_PHANTOM and
ERASE_PHANTOM then call MOV_TO_HEX_POSITION, which moves
the cursor to the start of the phantom cursor in the hex window. Next,

WRITE_ATTRIBUTE_N_TIMES writes the inverse-video attribute for four

characters, starting at the cursor and moving to the right. This writes the

phantom cursor in the hex window. In much the same way, WRITE_PHAN-
TOM then writes a phantom cursor one character wide in the ASCII window.

Finally, RESTORE_REAL_CURSOR restores the position of the real cursor

to the position it was in before the call to WRITE_PHANTOM.
The only procedure we have left unwritten is WRITE_ATTRIBUTE_N_

TIMES, so let's take care of it now.

Changing Character Attributes

We're going to use WRITE_ATTRIBUTE_N_TIMES to do three things.

First, it will read the character under the cursor position. We'll do this be-

cause the INT lOh function we use to set a character's attribute, function

242 I he Phantom Cursors

number 9, writes both the character and the attribute under the cursor. Thus,

WRITE_ATTRIBUTE_N_TIMES will change the attribute by writing the

new attribute along with the character just read. Finally, the procedure will

move the cursor right to the next character position, so we can repeat the

whole process N times. You can see the details in the procedure itself; place

WRITE ATTRIBUTE N TIMES in the file VIDEO IO.ASM:

Listing El-3. Add This Procedure to VIDEO_IO.ASM

PUBLIC
EXTRN

WRITE_ATTRIBUTE_N_TIHES
CURSOR_RIGHT:NEAR

This procedure sets the attribute for

current cursor position.

N characters, starting at the ;

CX

DL

Number of characters to set attribute
New attribute for characters

for

Uses CURSOR.RIGHT

WRITE_ATTRIBUTE_N_TIMES PROC NEAR

PUSH AX

PUSH BX

PUSH CX

PUSH DX

MOV BL,DL
XOR BH,BH
MOV DX,CX
MOV CX,1

_L00P:
MOV AH.fi

INT IDh

MOV AH,

9

INT IDh

CALL CURSOR_RIGHT
DEC DX

JNZ ATTR.LOOP
POP DX

POP CX

POP BX

POP AX

RET

;Set attribute to new attribute
;Set display page to D

;CX is used by the BIOS routines

;Set attribute for one character

;Read character under cursor

;Write attribute/character

Set attribute for N characters:
;No, continue

WRITE_ATTRIBUTE_N_TIMES ENDP

This is both the first and final version ofWRITE_ATTRIBUTE_N_TIMES.
With it, we've also created the final version of VIDEO_IO.ASM, so you won't

need to change or assemble it again.

Peter Norton's Assembly Language Book 243

Disk A Sector 8

68 81 82 83 84 85 86 87 88 89 8A BB BC 8D BE 8F 6123456789ABCDEF

17121 9B 49*42 4D 28 28*33 2E 31 Bb'b2 82 81 88 QtElBM 3.1 BBS

82 78 88 D8 82 FD 82 88 89 88 82 88 88 88 BB 88 Bp Jfl*fl o B

88 88 BB C4 5C 88 33 ED B8 CB 87 8E D8 33 C9 8A -Sfl3^«-.A+3||

ffufleA* it e." 1D2 79 BE 89 IE IE 88 8C 86 28 88 88 16 22 88 Bl

82 8E CS 8E D5 BC 88 7C 51 FC IE 36 C5 36 78 88 BtifKr9 !Q"A6f6x

BF 23 7C B9 8B 88 F3 A4 IF 88 BE 2C 88 AB 18 BB -,i:{|4 invefl. at

A2 27 BB BF 78 BB B8 23 7C AB 91 AB Al 16 88 Dl 6' lX ill^i- j
E8 48 E8 88 88 E8 86 8B BB 88 85 53 B8 81 E8 AB «05Q 5a | *S!©5*

JsOflrf E< s uba|[§BB 5F BE 73 81 B9 BB BB 98 F3 A6 75 62 83 C7 15

Bl 8B 98 98 F3 A6 75 57 26 8B 47 1C 99 8B BE BB |*EE< s
uUa'iG<-tfifM

88 83 CI 48 F7 Fl 88 3E 71 81 68 75 82 BB 14 96 fJ-Hs±Q>q0
1

uB|llu

Al 11 88 Bl 84 D3 E8 E8 3B BB FF 36 IE 88 C4 IE H 1*155; 6A -a

6F 81 E8 39 88 E8 64 88 2B FB 76 BD E8 26 88 52 0059 5d +=vf5« R

F7 26 8B 88 83 D8 5A EB E9 CD 11 B9 62 BB D3 EB *a* ltZ«M|8 U
88 E4 83 74 84 FE C4 8A CC 5B 58 FF 2E 6F 81 BE SIft*i-e|}[X .0&1

89 81 EB 55 98 81 86 IE 88 11 2E 28 88 C3 Al 18
i i i

e@SUE@tA 4. |-it

Press function key, or enter character or hex byte:

Figure 21-1. Screen Display with Phantom Cursors.

Summary
We now have eight files to link, with the main procedure still in Dskpatch.

Of these, we've changed two files, Disp_sec and Video_io, and created one,

Phantom. If you're using Make or the short batch file we suggested in Chapter

20, remember to add your new file, Phantom, to the list.

When you run Dskpatch now, you'll see it write the sector display, just as

before, but Dskpatch will also write in the two phantom cursors. (See Figure

21-1.) Notice that the real cursor is back where it should be at the very end.

In the next chapter, we'll add procedures to move our newly formed phan-

tom cursors, and we'll add a simple editing procedure to allow us to change the

byte under the phantom cursor.

22

SIMPLE EDITINQ

Moving the Phantom Cursors 246
Simple Editing 249
Summary 253

245

246 Simple Editing

Wee've almost reached the point at which we can begin to edit our sector

display—change numbers in our half sector display. We'll soon add simple

versions of the procedures for editing bytes in our display, but before we do,

we need some way to move the phantom cursors to different bytes within the

half sector display. This task turns out to be fairly simple, now that we have
the two procedures ERASE_PHANTOM and WRITE_PHANTOM.

Moving the Phantom Cursors

Moving the phantom cursors in any direction depends on three basic steps:

Erasing the phantom cursor at its current position; changing the cursor posi-

tion by changing one of the variables, PHANTOM_CURSOR_X or PHAN-
TOM_CURSOR_Y; and using WRITE_PHANTOM to write the phantom
cursor at this new position. In the process, however, we must be careful not to

let the cursor move outside the window, which is 16 bytes wide and 16 bytes

high.

To move the phantom cursors, we'll need four new procedures, one for each

of the arrow keys on the keyboard. DISPATCHER needs no changes, because

all the information on procedures and extended codes is in the table DIS-

PATCHJTABLE. We just need to add the extended ASCII codes and ad-

dresses of the procedures for each of the arrow keys. Here are the additions to

DISPATCH.ASM that will bring the cursor keys to life:

Listing BE-1. Changes to DISPATCH.ASM

DATA_SEG SEGMENT PUBLIC
C0DE_SEG SEGMENT PUBLIC

EXTRN NEXT_SECTOR:NEAR ;In DISK_IO.ASM
EXTRN PREVIODS_SECTOR:NEAR ;In DISK_IO.ASM
EXTRN PHANTOM_UP:NEAR, PHANT0M_D0HN: NEAR ;In PHANTOM. ASM

EXTRN PHANT0M_LEFT:NEAR, PHANTOM_RIGHT: NEAR
C0DE_SEG ENDS

This table contains the legal extended ASCII keys and the addresses
of tt e procedures that should be called when each key is pressed.

The format of the table is

DB 75 ;Extended code [op- cursor up

DW OFFSET :grocp:phantom_ DP

Peter Norton's Assembly Language Book 247

Listing E2--1. continued

DISPATCHJTABLE LABEL BYTE

DB sq ;F1

DW OFFSET CGROUP PREVIOUS_SECTOR

DB hO ;F2

DW OFFSET CGROUP NEXT_SECTOR

DB 7E ;Cursor up

DW OFFSET CGROUP PHANTOM_UP

DB flD ;Cursor down

DW OFFSET CGROUP PHANTOM_DOWN

DB 75 ;Cursor left

DW OFFSET CGROUP PHANTOM_LEFT

DB 77 ;Cursor right

DW OFFSET CGROUP PHANTOM_RIGHT

DB ;End of the table

DATA_SEC ENDS

As you can see, it's simple to add commands to Dskpatch: We merely place the

procedure names in DISPATCH_TABLE and write the procedures.

Speaking of writing procedures, the procedures PHANTOM_UP, PHAN-
TOM_DOWN, and so on are fairly simple. They're also quite similar to one

another, differing only in the boundary conditions used for each. We've al-

ready described how they work; see if you can write them yourself, in the file

PHANTOM.ASM, before you read on.

Here are our versions of the procedures to move the phantom cursors:

Listing 5S-2. Add These Procedures to PHANTOM.ASM

These four procedures move the phantom cursors.

Uses: ERASE_PHANTOM, WRITE_PHANTOH
Reads: PHANTOM_CURSOR_X, PHANTOM_CURSOR_Y
Writes: PHANTOM CURSOR X, PHANTOM CURSOR Y

PUBLIC PHANTOM_UP
PHANTOM UP PROC NEAR

CALL ERASE PHANTOM

DEC PHANTOM CURSOR Y

JNS WASNT AT TOP

MOV PHANTOM_CURSOR_Y,0
WASNT AT TOP:

CALL WRITE PHANTOM

RET

PHANTOM UP ENDP

;Erase at current position
;Move cursor up one line

;Was not at the top, write cursor
;Was at the top, so put back there

;Write the phantom at new position

PUBLIC PHANTOM DOWN

248 Simple Editing

Listing 55- 5 . continued

PHANTOM_DOWN PROC NEAR

CALL ERASE_PHANTOM
INC PHANTOM_CURSOR_Y
cup PHANTOH_CURSOR_Y lb

JB WASNT_AT_BOTTOM
MOV PHANTOH_CURSOR_Y Lb

WASNT_AT_BOTTOM :

CALL WRITE_PHANTOH
RET

PHANTOM.DOWN ENDP

PUBLIC PHANTOM_LEFT
PHANTOM_LEFT PROC NEAR

CALL ERASE.PHANTOH
DEC PHANTOH_CURSOR_X
JNS WASNT_AT_LEFT
NOV PHANTOM_CURSOR_X D

WASNT_AT_LEFT:

CALL WRITE.PHANTOH
RET

PHANTOM_LEFT ENDP

PUBLIC PHANTOM_RIGHT
PHANTOM.RIGHT PROC NEAR

CALL ERASE_PHANTOM
INC PHANTOM_CURSOR_X
CMP PHANTOM_CDRSOR_X Lb

JB HASNT_AT_RIGHT
MOV PHANTOM_CURSOR_X IS

WASNT_AT_RIGHT:

CALL WRITE_PHANTOM
RET

PHANTOM_RIGHT ENDP

;Erase at current position
;Hove cursor down one line

;Was it at the bottom?

;No, so write phantom
;Was at botton, so put back there

;Write the phantoi cursor

;Erase at current position
;Move cursor left one coluin
;Was not at the left side, write cursor
;Was at left, so put back there

;Write the phantom cursor

;Erase at current position

;Hove cursor right one column

;Was it already at the right side:

;Was at right, so put back there

;Write the phantom cursor

PHANTOM_LEFT and PHANTOM_RIGHT are the final versions, but we'll

have to change PHANTOM_UP and PHANTOM_DOWN when we begin to

scroll the display.

As Dskpatch stands now, we can see only the first half of a sector. In Chap-

ter 27, we'll make some additions and changes to Dskpatch so we can scroll

the display to see other parts of the sector. At that time, we'll change both

PHANTOM_UP and PHANTOM_DOWN to scroll the screen when we try to

move the cursor beyond the top or bottom of the screen. For example, when
the cursor is at the bottom of the half-sector display, pushing the cursor-down

key again should scroll the display up one line, adding another line at the

bottom, so that we see the next 16 bytes. Scrclling is rather messy, however,

so we'll keep these procedures until almost last. Through Chapter 26, we'll

Peter Norton's Assembly Language Book 249

develop the editing and keyboard-input sections of Dskpatch by using only the

first half sector.

Test Dskpatch now to see if you can move the phantom cursors around on

the screen. They should move together, and they should stay within their own
windows. Now, we'll go on to add editing, so we can change bytes on our

display.

Simple Editing

We already have a simple keyboard-input procedure, READ_BYTE, which

reads just one character from the keyboard without waiting for you to press

the Enter key. We'll use this old, test version ofREAD_BYTE to develop edit-

ing. Then, in the next chapter, we'll write a more sophisticated version of the

procedure that will wait until we press either the Enter key or a special key,

such as a function or cursor key.

Our editing procedure will be called EDIT_BYTE, and it will change one

byte both on the screen and in memory (SECTOR). EDIT_BYTE will take the

character in the DL register, write it to the memory location within SECTOR
that is currently pointed to by the phantom cursor, and then change the

display.

DISPATCHER already has a nice niche where we can place a CALL to

EDIT_BYTE. Here is the new version of DISPATCHER in DISPATCH.ASM,
with the CALL to EDIT_BYTE and the changes to go along with it:

Listing 22-3. Changes to DISPATCHER in DISPATCH. RSM

PUBLIC DISPATCHER
EXTRN READ_BYTE:NEAR, EDIT_BYTE : NEAR

This is the central dispatcher. During normal editing and viewing, ;

this procedure reads characters from the keyboard and, if the character
is a command key (such as a cursor key), DISPATCHER calls the

procedures that do the actual work. This dispatching is done for

special keys listed in the table DISPATCHJIABLE, where the procedure
addresses are stored just after the key names.

If the character is not a special key, then it should be placed
directly into the sector buffer— this is the editing mode.

Uses: READ_BYTE, EDIT_BYTE

250 Simple Editing

Listing EE- 3 . continued

DISPATCHER PROC NEAR

PUSH AX

PUSH BX

PUSH DX

DISPATCH_L00P:
CALL READ.BYTE
OR AH, AH

JZ DISPATCH.LOOP
JS SPECIAL_KEY

; do nothing w ith the character for n

MOV DL,AL
CALL EDIT.BYTE
JMP DISPATCH_LOOP

SPECIAL_KEY:

CMP AL,bfl

JE END_DISPATCH

LEA BX,DISPATCH_TABLE
SPECIAL_LOOP:

CMP BYTE PTR [BX],D

JE NOT_IN_TABLE
CMP AL,[BX]
JE DISPATCH
ADD BX,3

JMP SPECIAL_LOOP
DISPATCH:

INC BX

CALL WORD PTR [BX]

JMP DISPATCH_LOOP
NOT_IN_TABLE:

JMP DISPATCH_LOOP

END_DISPATCH:
POP DX

POP BX

POP AX

RET

DISPATCHER ENDP

Read character into AL

AH = if no character read, -1

for an extended code.

No character read, try again
Read extended code

;Was norial character, edit byte

;Read another character

;
FID—exit?
Yes, leave

Use BX to look through table

;End of table?

;Yes, key was not in the table

;Is it this table entry?
;Yes, then dispatch
;No, try next entry

;Check next table entry

;Point to address of procedure
;Call procedure
;Wait for another key

;Do nothing, just read next character

The EDIT_BYTE procedure itself does a lot of work, almost entirely by call-

ing other procedures, and this is one feature of modular design. With modular
design, we can often write rather complex procedures simply by giving a list of

CALLs to other procedures that do the work. Many of the procedures in

EDIT_BYTE work with a character in the DL register, but this is already set

when we call EDIT_BYTE, so the only instruction other than a CALL (or

PUSH, POP) is the LEA instruction to set the address of the prompt for

Peter Norton's Assembly Language Book 251

WRITE_PROMPT_LINE. Most of the procedure calls in EDIT_BYTE are for

updating the display when we edit a byte. You'll see the other details of

EDIT_BYTE when we come to the procedure listing in a moment.
Since EDIT_BYTE changes the byte on screen, we need another procedure,

WRITE_TO_MEMORY, to change the byte in SECTOR. WRITE_TO_MEM-
ORY uses the coordinates in PHANTOM_CURSOR_X and PHANTOM_
CURSOR_Y to calculate the offset into SECTOR of the phantom cursor, then

it writes the character (byte) in the DL register to the correct byte within

SECTOR.
Here is the new file, EDITOR.ASM, which contains the final versions of

both EDIT_BYTE and WRITE_TO_MEMORY:

Listing E2-<. The New File EDITOR.ASM

CGROUP GROUP C0DE_SEG, DATA_SEG
ASSUME CS:CGROUP, DS:CGR0UP

C0DE_SEG SEGMENT PUBLIC

DATA SEG SEGMENT PUBLIC
EXTRN SECTOR: BYTE

EXTRN SECTOR 0FFSET:W0RD
EXTRN PHANTOM CURSOR X:BYTE
EXTRN PHANTOM CURSOR Y:BYTE

DATA SEG ENDS

; This procedure writes one byte to SECTOR , at the memory location ;

; pointed to by the phantom cursor.

; DL Byte to write to SECTOR

; The offset is calcula ted by

OFFSET = SECTORJDFFSET + (lb * PHANTOM _CURS0R_ t) + PHANT0M_CURS0R_X
;

; Reads: PHANTOM _CURS0R_X PHANTOM :ursor Y , SECTOR_0FFSET ;

; Writes: SECTOR

WRITE TO MEMORY PROC NEA

POSH AX

PUSH BX

PUSH CX

MOV BX,SECT0R_0FFSET
MOV AL,PHANTOM_CURSOR_Y
XOR AH, AH

MOV CL,<

SHL AX,CL

ADD BX,AX
MOV AL,PHANTOM_CURSOR_X

;Multiply PHANTOM_CURSOR_Y by lb

;BX = SECT0R_0FFSET + (lb * Y)

252 Simple Editing

Listing E2-4 . continued

XOR AH, AH

ADD BX,AX ;That's the address!
MOV SECTOR[BX),DL ;Now, store the byte

POP CX

POP BX

POP AX

RET

WRITE TO MEMORY

PUBLIC EDIT_BYTE
EXTRN SAVE_REAL_CURSOR:NEAR, RESTORE_REAL_CURSOR : NEAR
EXTRN MOV_TO_HEX_POSITION:HEAR, MOV_TO_ASCII_POSITION : NEAR

EXTRN WRITE_PHANTOH:NEAR, WRITE_PROMPT_LINE : NEAR

EXTRN C0RSOR_RIGHT:NEAR, WRITE_HEX : NEAR, WRITE_CHAR : NEAR

DATA_SEG SEGMENT PUBLIC
EXTRN EDITOR_PROHPT:BYTE

DATA SEG ENDS

This procedure changes a byte in lenory and on the screen.

DL Byte to write into SECTOR, and change on screen

Uses: SAVE_REAL_C0RSOR, RESTORE_REAL_CURSOR
MOV_TO_HEX_POSITION, MOV_TO_ASCII_POSITION
WRITE_PHANTOM, WRITE_PROMPT_LINE, C0RSOR_RIGHT
WRITE.HEX, WRITE.CHAR, WRITE_TO_MEMORY
EDITOR PROMPT

EDIT_BYTE PROC NEAR

PUSH DX

CALL SAVE_REAL_CURSOR
CALL MOV_TO_HEX_POSITION
CALL CURSOR_RIGHT
CALL HRITE.HEX
CALL MOV_TO_ASCII_POSITION
CALL WRITE.CHAR
CALL RESTORE_REAL_CURS0R
CALL WRITE_PHANTOM
CALL WRITE_TO_MEMORY
LEA DX,EDITOR_PROMPT
CALL WRITE_PROMPT_LINE
POP DX

RET
EDIT_BYTE ENDP

CODE_SEG ENDS

;Move to the hex number in the

; hex window
;Hrite the new number

;Move to the char, in the ASCII wii

;Write the new character
;Move cursor back where it belongs
;Rewrite the phantom cursor
;Save this new byte in SECTOR

[lOV

Peter Norton's Assembly Language Book 253

Summary
Dskpatch now consists of nine files: Dskpatch, Dispatch, Disp_sec, Disk_io,

Video_io, Kbd_io, Phantom, Cursor, and Editor. In this chapter, we changed

Dispatch and added Editor. None of these files is very long, so none takes very

long to assemble. Furthermore, we can make changes fairly quickly by editing

just one of these files, reassembling it, and then linking all the files together

again.

In terms of our current version of Dskpatch, push any key and you'll see a

change in the number and character under the phantom cursor. Our editing

works, but it's not very safe as yet, since we can change a byte by hitting any
key. We need to build in some type of safeguard, such as pressing Enter to

change a byte, so we don't make an accidental change by leaning on the key-

board unintentionally.

In addition, the current version of READ_BYTE doesn't allow us to enter a

hex number to change a byte. In Chapter 24, we'll rewrite READ_BYTE, both

so we'll have to push the Enter key before it will accept a new character, and
to allow us to enter a two-digit hex number. First, we need to write a hex
input procedure; in the next chapter, we'll write input procedures for both hex
and decimal.

23

HEX AND DECIMAL INPUT

Hex Input 256
Decimal Input 263
Summary 266

255

256 Hex <»nJ Decimal Input

Wee'll encounter two new procedures for keyboard input in this chapter: one

procedure for reading a byte by reading either a two-digit hex number or a

single character, and another for reading a word by reading the characters of

a decimal number. These will be our hex and decimal input procedures.

Both procedures are sufficiently tricky that we need to use a test program
with them before we even consider linking them into Dskpatch. We'll be

working with READ_BYTE, and a test procedure will be particularly im-

portant here, because this procedure will (temporarily) lose its ability to

read special function keys. Since Dskpatch relies on the function keys, we
won't be able to use our new READ_BYTE with Dskpatch. We'll also find

out why we can't read special function keys with the READ_BYTE devel-

oped here, and in the next chapter we'll modify the file to make our function-

key problems go away.

Hex Input

Let's begin by rewriting READ_BYTE. In the last chapter, READ_BYTE
would read either an ordinary character or a special function key, and return

one byte to Dispatch. Dispatch then called the Editor if READ_BYTE read an

ordinary character, and EDIT_BYTE modified the byte pointed to by the

phantom cursor. Otherwise, Dispatch looked for special function keys in DIS-

PATCH^ABLE to see if the byte was there; if so, Dispatch called the proce-

dure named in the table.

But, as mentioned in the last chapter, the old version of READ_BYTE
makes it much too easy to change a byte by accident. If you unintentionally

hit any key on the keyboard (other than special keys), EDIT_BYTE will

change the byte under the phantom cursor. All of us are sometimes clumsy,

and such an inadvertent change in a sector can lead to disaster.

We'll change READ_BYTE so that, henceforth, it won't return the char-

acter we type until we press the Enter key. We'll provide this feature by

using the DOS INT 21h function OAh to read a string of characters. DOS
only returns this string when we press Enter, so we get our anti-clumsy fix.

But along the way, we lose special function keys, for reasons you'll see later.

To see exactly how our changes affect READ_BYTE, we need to write a test

program to test READ_BYTE in isolation. That way, if anything strange hap-

pens, we'll know it's READ_BYTE and not some other part of Dskpatch. Our
job of writing a test procedure will be simpler if we use a few procedures from

Peter Norton's Assembly Language Book 257

Kbd_io, Video_io, and Cursor to print information on the progress of READ_
BYTE. We'll use such procedures as WRITE_HEX and WRITE_DECIMAL to

print the character code returned and the number of characters read. The de-

tails are here, in TEST.ASM:

Listing 23-1. The Test Program TEST.ASM

CGROUP GROUP CODE.SEG, DATA_SEG

ASSDME CS:CGRO0P, DS:CGR0UP

C0DE_SEG SEGMENT PUBLIC
ORG lOQh

EXTRN WRITE_HEX:NEAR, HRITE_DECIMAL: NEAR

EXTRN WRITE_STRING:NEAR, SEND_CRLF:NEAR
EXTRN READ BYTE: NEAR

TEST PROC

LEA

CALL
CALL

CALL

NEAR

DX,ENTER_PROMPT
WRITE_STRING
READ_BITE
SEND_CRLF

LEA DX,CHARACTER_PROMPT
CALL WRITE_STRING
MOV DL,AL

CALL WRITE_HEX
CALL SEND_CRLF
LEA DX,CHARACTERS_READ_PROMPT
CALL WRITE_STRING
MOV DL,AH
XOR DH,DH

CALL WRITE_DECIMAL
CALL SEND_CRLF
INT 20h

TEST ENDP

C0DE_SEG ENDS

DATA_SEG SEGMENT PUBLIC
ENTER, PROMPT DB 'Enter characters: ',D

CHARACTER_PR0MPT DB 'Character code: ' ,0

CHARACTERS_READ.PROMPT DB 'Number of characters read: ' ,0

; and now dummy variables
PUBLIC HEADER_LINE_NO, DISK_DRIVE_NO, HEADER_PART_1

,

HEADER_PART_5
PUBLIC PROMPT_LINE_NO, CURRENT_SECTOR_NO

HEADER _LINE_N0 DB D

DISK_DRIVE_NO DB D

HEADER _PART_1 DB D

HEADER _PART_5 DB D

258 Hex and Decimal Input

Listing 53-1. continued

PROMPT_LINE_NO DB

C(JRRENT_SECTOR_NO DB D

DATA SEG ENDS

Try linking this with your current versions of Kbd_io, Video_io, and Cur-

sor (place Test first in the LINK list). If you press any special function key,

Test will tell you it read 255 characters. Why? We placed the - 1 from AH
into DL and set the upper byte of DX to zero, leaving DX set to 255 (FFh), not
- 1 (FFFFh).

We won't be so careless when we actually use READ_BYTE in Dskpatch.

This is a test program, and as long as we know what to expect, we can test

READ_BYTE and all its boundary conditions. Before we move on to rewrite

READ_BYTE, however, we need to account for one feature of TEST.ASM that

you may have noticed: its variable definitions.

The bulk of the instructions in TEST.ASM are for formatting—making the

display look nice. The variable definitions at the end of Test are included only

to satisfy the linker. When we link Test with Kbd_io, Video_io, and Cursor,

the linker searches for a number of variables used by Kbd_io, Video_io, and

Cursor. We defined the variables in Dskpatch, but since we aren't linking in

Dskpatch, we need to redefine these variables in TEST.ASM. We won't actu-

ally use the variables, because we don't call any procedures in Video_io and
Cursor that require them. But we need these variables anyway, to satisfy the

linker there won't be any loose ends.

Let's move on to rewriting READ_BYTE to accept a string of characters.

Not only will this save us from our clumsiness when we use Dskpatch, it will

also allow us to use the Backspace key to delete characters if we change our

mind about what we want to type in—another nice feature since it's easy to

make mistakes. READ_BYTE will use the procedure READ_STRING to read

a string of characters.

READ_STRING is very simple, almost trivial, but we've placed it in a sepa-

rate procedure so we can rewrite it in the next chapter to read special function

keys without having to press the Enter key. To save time, we'll also add three

other procedures that READ_BYTE uses: STRING_TO_UPPER, CON-
VERT_HEX_DIGIT, and HEX_TO_BYTE.
STRING_TO_UPPER and HEX_TO_BYTE both work on strings.

STRING_TO_UPPER converts all the lowercase letters in a string to upper-

case. That means you can type either f3 or F3 for the hex number F3h. By

Peter Norton's Assembly Language Book 259

allowing hex numbers to be typed in either lower- or uppercase letters, we add

user-friendliness to Dskpatch.

HEX_TO_BYTE takes the string read by DOS, after we call STRING_
TO_UPPER, and converts the two-digit hex string to a single-byte number.

HEX_TO_BYTE makes use of CONVERT_HEX_DIGIT to convert each hex

digit to a four-bit number.

How do we ensure that DOS won't read more than two hex digits? The DOS
function OAh reads an entire string of characters into an area of memory de-

fined like this:

CHAR_NUM_LIMIT DB D

NUM_CHARS_READ DB D

STRING DB 60 DUP (0)

The first byte ensures we don't read too many characters. CHAR_NUM_
LIMIT tells DOS how many characters, at most, to read. If we set this to three,

DOS will read up to two characters, plus the carriage-return character (DOS
always counts the carriage return). Any characters we type after that will be

discarded—thrown away—and for each extra character, DOS will beep to let

us know we've passed the limit. When we press the Enter key, DOS sets the

second byte, NUM_CHARS_READ, to the number of characters it actually

read, not including the carriage return.

STRING_TO_UPPER, READ_BYTE, and STRING_TO_UPPER all use

NUM_CHARS_READ. For example, READ_BYTE checks NUM_CHARS_
READ to find out whether you typed a single character or a two-digit hex
number. If NUM_CHARS_READ was set to one, READ_BYTE returns a

single character in the AL register. If NUM_CHARS_READ was set to two,

READ_BYTE uses HEX_TO_BYTE to convert the two-digit hex string to a

byte.

Without further ado, here is the new file KBD_IO.ASM, with all four new
procedures:

Listing B3-S. The New Version of KBD_IO.ASM

CGROUP GROUP C0DE_SEG, DATA_SEG
ASSUME CS:CGR0UP, DS:CGR0UP

C0DE_SEG SEGMENT PUBLIC

PUBLIC STRING_T0 UPPER

260 Hex and Decimal Input

Listing 23-2. continued

This procedure converts the string, using the DOS format for strings,

to all uppercase letters.

DS:DX Address of string buffer

STRING TO UPPER

PUSH AX

PUSH BX

PUSH CX

MOV BX,DX

INC BX

MOV CL,[BX]

XOR CH,CH

UPPER LOOP:

INC BX

MOV AL,[BX]
CMP AL,'a«

JB NOT LOWER

CMP AL, <z<

JA NOT LOWER

ADD AL, 'A'-'a'

MOV [BX],AL
NOT LOWER:

LOOP UPPER LOOP

POP CX

POP BX

POP AX

BET

STRING TO UPPER EN

;Point to character count
;Character count in and byte of buffer
;Clear upper byte of count

;Point to next character in buffer

;See if it is a lowercase letter
;Nope

;Convert to uppercase letter

This procedure converts a character from ASCII (hex) to a nibble (<

bits).

AL Character to convert
Returns: AL Nibble

CF Set for error, cleared otherwise

CONVERT HEX DIGIT
CMP

JB

CMP

JA

SUB

CLC

RET

AL, 'D'

BAD_DIGIT
AL,'R'

TRY_HEX
AL,'Q'

;Is it a legal digit?

;Nope

;Not sure yet

;Might be hex digit

;Is decimal digit, convert to nibble

;Clear the carry, no error

CMP

JB

CMP

AL, 'A'

BAD_DIGIT
AL, 'F'

Not sure yet

Not hex

Not sure yet

Listing £3-2. continued

Peter Norton's Assembly Language Book 261

JA BAD DIGIT

SOB AL, "A'-IO

CLC

RET

BAD DIGIT:

STC

RET

CONVERT_HEX_ DIGIT ENDP

PUBLIC HEX TO BYTE

;Not hex

;Is hex, convert to nibble

;Clear the carry, no error

;Set the carry, error

This procedure converts the two characters at DS:DX from hex to one

byte.

DS:DX Address of two characters for hex number
Returns:

AL Byte

CF Set for error, clear if no error

Uses: CONVERT HEX DIGIT

HEX TO BYTE PROC NEAR

PUSH BX

PUSH CX

MOV BX,DX
MOV AL,[BX]
CALL CONVERT HEX DIGIT
JC BAD HEX

MOV CX,4

SHL AL,CL
MOV AH,AL
INC BX

MOV AL,[BX]
CALL CONVERT HEX DIGIT
JC BAD HEX

OR AL,AH
CLC

DONE HEX:

POP CX

POP BX

RET

BAD HEX:

STC

JMP DONE HEX

HEX TO BYTE ENDP

;Put address in BX for indirect addr

;Get first digit

Bad hex digit if carry set
Now multiply by lb

[Retain a copy
;Get second digit

;Bad hex digit if carry set
;Combine two nibbles

;Clear carry for no error

;Set carry for error

This is a simple version of READ_STRING.

DS:DX Address of string area

262 Hex and Decimal Input

Listing 53-E. continued

READ STRING PROC

PUSH AX

MOV AH,0Ah

INT ilh

POP AX

RET

READ STRING ENDP

;Call for buffered keyboard input
;Call DOS function for buffered input

PUBLIC READ.BYTE

This procedure reads either a single ASCII character or a two-digit
hex number. This is just a test version of READ_BYTE.

Returns byte in AL Character code (unless AH = 0)

AH 1 if read ASCII char
if no characters read

-1 if read a special key

Uses: HEX_TO_BYTE, STRING_TO_UPPER, READ_STRING
Reads: KEYBOARD_INPUT, etc.

Writes: KEYBOARD.INPUT, etc.

READ_BYTE
PUSH

MOV

LEA

CALL
CMP

JE

JB

CALL
LEA

CALL

JC

MOV

D0NE_READ:

POP

RET

NO_CHARACTERS:
XOR

JMP

ASCII_INPUT:
MOV

MOV

JMP

READ_BYTE

PROC NEAR

DX

CHAR_NUM_LIMIT,3
DX,KEYBOARD_INPUT
READ_STRING
NUM_CHARS_READ,1
ASCII_INPUT
NO_CHARACTERS
STRING_TO_UPPER
DX, CHARS
HEX_T0_BYTE
N0_CHARACTERS
AH,1

DX

AH, AH

DONE READ

AL, CHARS

AH,1

DONE_READ
ENDP

;Allow only two characters (plus Enter)

;See how many characters
;Just one, treat as ASCII character
;Only Enter key hit

;No, convert string to uppercase
;Address of string to convert
;Convert string from hex to byte

;Error, so return 'no characters read'

;Signal read one character

;Set to 'no characters read 1

;Load character read

;Signal read one character

CODE SEG ENDS

DATA_SEG SEGMENT PUBLIC
KEYBOARD_INPUT LABEL BYTE

Peter Norton's Assembly Language Book 263

Listing 53-2. continued

CHAR_NUM_LIMIT DB D ;Length of input buffer

NUM_CHARS_READ DB D ;Number of characters read

CHARS DB flD DUP (D) ;A buffer for keyboard input

DATA_SEG ENDS

END

Reassemble Kbd_io and link the four files Test, Kbd_io, Video_io, and Cur-

sor to try this version of READ_BYTE.
At this point, we have two problems with READ_BYTE. Remember the

special function keys? We can't read them with DOS function OAh. It just

doesn't work. Try pressing a function key when you run Test. DOS doesn't

return two bytes, with the first set to zero as you might expect.

We have no way to read extended codes with DOS' buffered input, using

function OAh. We used this function so we could use the Backspace key to

delete characters before we press the Enter key. But now, since we can't read

special function keys, we have to write our own READ_STRING procedure.

We'll have to replace function OAh to ensure we can press a special function

key without pressing Enter.

The other problem with DOS' function OAh for keyboard input has to do

with the line-feed character. Press Control-Enter (line feed) after you type one

character, and then try the Backspace key. You'll find that you're on the next

line, with no way to return to the one above. Our new version of Kbd_io in the

next chapter will treat the line-feed character (Control-Enter) as an ordinary

character; then, pressing line feed won't move the cursor to the next line.

But before we move on to fix the problems with READ_BYTE and READ_
STRING, let's write a procedure to read an unsigned decimal number. We
won't use the procedure in this book, but the version of Dskpatch on the com-

panion disk does use it so that we can, for example, ask Dskpatch to display

sector number 567.

Decimal Input

Recall that the largest unsigned decimal number we can put into a single

word is 65536. When we use READ_STRING to read a string of decimal dig-

its, we'll tell DOS to read no more than six characters (five digits and a car-

riage return at the end). Of course, that means READ_DECIMAL will still be

able to read numbers from 65536 to 99999, even though these numbers don't

264 Hex and Decimal Input

fit into one word. We'll have to keep watch for such numbers and return an

error code if READ_DECIMAL tries to read a number larger than 65535, or if

it tries to read a character that is not between zero and nine.

To convert our string of up to five digits into a word, use multiplication as

we did in Chapter 1: take the first (leftmost) digit, multiply it by ten, tack on

the second digit, multiply it by ten, and so on. Using this method, we could, for

example, write 49856 as:

<U0* q*10 3 + fl*10 a S*10 L + t*10°

or, as we'll do the calculation:

10* (10*(10*(10*< + cl) +6) +5) *b

Of course, we must watch for errors as we do these multiplications and re-

turn with the carry flag set whenever an error occurs. How do we know when
we try to read a number larger than 65535? With larger numbers, the last

MUL will overflow into the DX register. The CF flag is set when DX is not

zero after a word MUL, so we can use a JC {Jump if Carry set) instruction to

handle an error. Here is READ_DECIMAL, which also checks each digit for

an error (a digit that is not between and 9). Place this procedure in the file

KBD_IO.ASM:

Listing 53-3. Add This Procedure to KBD_IO.ASM

PDBLIC READ DECIMAL

This procedure takes the output buffer of READ STRING and converts
the string of decimal digits to a word. ;

AX Word converted from decinal ;

CF Set if error, clear if no error ;

Uses: READ_STRING ;

Reads: KEYBOARD INPOT, etc. ;

Writes: KEYBOARD_INPDT, etc. ;

DECIMAL PROC NEAR

POSH BX

POSH CX

POSH DX

MOV CHAR_NOM_LIMIT,b
LEA DX, KEYBOARD INPOT
CALL READ STRING
MOV CL,NOM_CHARS_READ

;Max number is 5 digits ([,5535)

;Get number of characters read

Peter Norton's Assembly Language Book 265

Lsting 23-3 continued

XOR CH,CH

CMP CL,0

JLE BAD_DECIMAL_DIGIT

XOR AX, AX

XOR BX,BX

CONVERT_DIGIT:
MOV DX,10

MDL DX

JC BAD_DECIMAL_DIGIT
MOV DL,CHARS[BX]

SUB DL, '0'

JS BAD_DECIMAL_DIGIT

CMP DL,R

JA BAD_DECIMAL_DIGIT
ADD AX,DX

INC BX

LOOP CONVERT_DIGIT

DONE_DECIMAL:
POP DX

POP CX

POP BX

RET

BAD_DECIMAL_DIGIT:
STC

JMP DONE_DECIMAL
READ_DECIMAL ENDP

;Set upper byte of count to D

;Return error if no characters read

;No chars read, signal error

;Start with number set to

;Start at beginning of string

;Multiply number by 10

Multiply AX by ID

;CF set if MUL overflowed one word

;Get the next digit

;And convert to a nibble (< bits)

;Bad digit if < D

;Is this a bad digit?

;Yes

;No, so add it to number

;Point to next character
;Get the next digit

;Set carry to signal error

To make certain it works properly, we need to test this procedure with all

the boundary conditions. Here is a simple test program for READ_DECIMAL
that uses much the same approach we used to test READ_BYTE:

Listing £3-4. Changes to TEST. ASM

CGROUP GROUP C0DE_SEG, DATA_SEG
ASSUME CS:CGR0UP, DS:CGR0UP

C0DE_SEG SEGMENT PUBLIC

ORG 1DDH

EXTRN WRITE_HEX:NEAR, WRITE_DECIMAL: NEAR

EXTRN WRITE_STRING:NEAR, SEND_CRLF:NEAR

EXTRN READ_DECIMAL:NEAR

PROC NEAR

LEA DX,ENTER_PROMPT
CALL WRITE_STRING
CALL READ_DECIMAL
JC

266 Hex and Decimal Input

isting 23-4

CALL

continued

SEND_CRLF
LEA DX,NUHBER_READ_PROHPT
CALL WRITE_STRING

ERROR:

HOV

CALL

CALL

DX,AX

WRITE_DECIMAL
SEND_CRLF

INT

TEST ENDP

C0DE_SEG

?0h

ENDS

ENTER_PROMPT DB 'Enter deciaal number: ' ,0

NUMBER_READ_PROMPT DB 'Nuaber read: ' ,0

; and now dummy variables
PUBLIC HEADER..LINE. 10, DISK_DRIVE_NO, HEADER_PART_1

,

HEADER_PART_2
PUBLIC PROMPT..LINE..10, CURRENT_SECTOR_NO

HEADER_LINE_NO DB

DISK_DRIVE_NO DB D

HEADER_PART_1 DB

HEADER_PART_2 DB D

PR0MPT_LINE_N0 DB

CURRENT_SECTOR_NO DB

DATA_SEG ENDS

Again, we need to link four files: Test (the preceding file), Kbd_io, Video_io,

and Cursor. Try the boundary conditions, using both valid digits and invalid

ones (such as A, which is not a valid decimal digit), and with such numbers as

0, 65535, and 65536.

Summary
We'll return to the two simple test procedures later on, when we discuss

ways you can write your own programs. Then, we'll see how you can use a

slightly more advanced version of TEST.ASM to write a program that will

convert numbers between hex and decimal.

But now, we're ready to move on to the next chapter, where we'll write im-

proved versions of READ_BYTE and READ_STRING.

24

IMPROVED KEYBOARD
INPUT

A New READ STRING 268

267

268 Improved Keyboard Input

Wee mentioned we would present the development of Dskpatch just as we
first wrote it—including bugs and clumsily designed procedures, some of

which you've already seen. In this chapter, we'll write a new version of

READ_BYTE, and it will place a subtle bug into Dskpatch. In the next chap-

ter, we'll find a can of RAID to exorcise this small bug, but see if you can find

it yourself first. (Hint: Carefully check all the boundary conditions for

READ_BYTE when it's attached to Dskpatch.)

A New READ_STRING
Our modular-design philosophy calls for short procedures, therefore no sin-

gle procedure is too difficult to understand. The new version of READ_
STRING will be an example of a clumsy procedure: much too long. It should be

rewritten with more procedures, but we'll leave this rewrite to you. This book

is quickly drawing to an end, and we still have a few more procedures left to

write before Dskpatch is a useful program. Right now, we can still edit only

the first half of any sector, and we can't write this sector back to the disk yet.

In this chapter, we'll give READ_STRING a new procedure, BACK_
SPACE, to emulate the function of the Backspace key found in the DOS func-

tion OAh. When we push the Backspace key, BACK_SPACE will erase the

last character typed, from both the screen and the string in memory.
On screen, BACK_SPACE will erase the character by moving the cursor

left one character, writing a space over it, and then moving right one charac-

ter again. This sequence will perform the same backspace deletion provided

by DOS.
In the buffer, BACK_SPACE will erase a character by changing the buffer

pointer, DS:SI + BX, so it points to the next lower byte in memory. In other

words, BACK_SPACE will simply decrement BX: (BX = BX - 1). The charac-

ter will still be in the buffer, but our program won't see it. Why not? READ_
STRING tells us how many characters it's read. If we try to read more than this

number from the buffer, we'll see characters we erased. Otherwise, we won't.

We have to be careful not to erase any characters when the buffer is empty.

Remember that oar string-data area looked something like this:

CHAR_NUM_LIMIT DB

NUM_CHARS_READ DB D

STRING DB 00 DUP (D)

Peter Norton's Assembly Language Book 269

The string buffer starts at the second byte of this data area, or at an offset of 2

from the start. So, BACK_SPACE won't erase a character ifBX is set to 2, the

start of the string buffer, because the buffer is empty when BX equals 2.

Here is BACK_SPACE; place it into KBD_IO.ASM:

Listing 24-1. Add This Procedure to KBD_IO.ASM

PUBLIC BACKSPACE
EXTRN WRITE_CHAR:NEAR

This procedure deletes characters, one at a time, from the buffer and

the screen when the buffer is not empty. BACK_SPACE simply returns
when the buffer is empty.

DS:SI+BX Most recent character still in buffer

Uses: WRITE CHAR

BACK SPACE PROC NE

POSH AX

POSH DX

CMP BX,5

JE END BS

DEC BX

MOV AH,

5

MOV DL,BS
INT 51h
MOV DL,£0h
CALL WRITE CHAR
MOV DL,BS
INT 21h

END BS: POP DX

POP AX

RET

BACKSPACE ENDP

;Delete one character

Is buffer empty?

Yes, read the next character
Remove one character from buffer
Remove character from screen

;Write space there

;Back up again

Let's move on to the new version of READ_STRING. It will be a large

mouthful; the listing you'll see is for only one procedure. By far the longest

procedure we've written, READ_STRING is, as we said, too large. That's be-

cause it's complicated by so many possible conditions.

Why does READ_STRING do so many things? We added a few more fea-

tures. If you press the Escape key, READ_STRING will clear the string buffer

and remove all the characters from the screen. DOS also erases all the charac-

ters in the string buffer when you press Escape, but it doesn't erase any char-

acters from the screen. Instead, it simply writes a backslash (\) character at

the end of the line and moves to the next line. Our version ofREAD_STRING
will be more versatile than the DOS READ STRING function.

270 Improved Keyboard Input

READ_STRING uses three special keys: the Backspace, Escape, and Enter

keys. We could write the ASCII codes for each of these keys in READ_
STRING whenever we need them, but instead we'll add a few definitions to

the beginning of KBD_IO.ASM to make READ_STRING more readable.

Here are the definitions:

Listing Z4-2. Additions to KBD_I0.ASM

CGROUP GROUP C0DE_SEG, DATA_SEG
ASSUME CS:CGR0UP, DS:CGR0DP

BS EQO a

CR EQU 13

ESC EQU 2?

;Backspace character
;Carriage-return character
;Escape character

CODE SEG SEGMENT PUBLIC

Here is READ_STRING. Although it's rather long, you can see from the

listing that it's not very complicated—just long. Replace the old version of

READ STRING in KBD IO.ASM with this new version:

Listing 54-3. The New READ_STRING in KBD_I0.ASM

PUBLIC READ_STRING
EXTRN WRITE_CHAR:NEAR

This procedure performs a function very similar to the DOS OAh

function. But this function will return a special character if a

function or keypad key is pressed— no return for these keys. And

ESC will erase the input and start over again.

DS:DX Address for keyboard buffer. The first byte must

contain the maximum number of characters to read (plus
;

one for the return). And the second byte will be used
;

by this procedure to return the number of characters

actually read. ;

No characters read
-1 One special character read

otherwise number actually read (not including ;

Enter key) ;

Uses: BACK_SPACE, WRITE_CHAR ;

Listing 24-3. continued

Peter Norton's Assembly Language Book 271

READ_STRING PROC NEAR

PUSH AX

POSH BX

POSH SI

MOV 51, Dl

START.OVER:
MOV BX,?

MOV AH,?

INT Blh

OR AL,AL

JZ EXTENDED
NOT_EXTENDED:

CMP AL,CR

JE END_INP0T
CMP AL,BS
JNE NOT_BS

CALL BACKSPACE
CMP BL,B

JE START_OVER
JMP SHORT READ_NEXT_CHAR

N0T_BS: CMP AL,ESC
JE PURGE_BOFFER
CMP BL,[SI]

JA B0FFER_F0LL
MOV [SI+BX],AL
INC BX

POSH DX

MOV DL,AL

CALL WRITE_CHAR
POP DX

READ_NEXT_CHAR
MOV AH,?

INT Blh

OR AL,AL

JNE NOT_EXTENDED
MOV AH,?

INT 21h

;Ose SI for index register and

;BX for offset to beginning of buffer
;Call for input with no checking

; for CTRL-BREAK and no echo
;Is character extended ASCII?

;Yes, read the extended character
;Extnd char is error unless buf empty

;Is this a carriage return?

;Yes, we are done with input

;Is it a backspace character?
;Nope

;Yes, delete character
;Is buffer empty?
;Yes, can now read extended ASCII again

;No, continue reading normal characters
;Is it an ESC— purge buffer?
;Yes, then purge the buffer
;Check to see if buffer is full

;Buffer is full

;Else save char in buffer
;Point to next free character in buffer

;Echo character to screen

;An extended ASCII char is not valid

; when the buffer is not empty
;Char is valid

;Throw out the extended character

Signal an error condition by sending a beep
character to the display: chr$(7).

SIGNAL_ERROR:

POSH DX

MOV DL,7

MOV AH, 5

INT Blh

POP DX

JMP SHORT READ NEXT CHAR

Sound the bell by writing chr$(?)

;Now read next character

272 Improved Keyboard Input

Listing c"<-3. continued

Empty the string buffer and erase all the

characters displayed on the screen.

PURGE BUFFER:

PUSH CX

MOV CL,[SI]
XOR CH,CH

PURGE LOOP:

CALL BACK SPACE
LOOP PURGE LOOP

POP CX

JMP START OVER

;Backspace over maximum number of

; characters in buffer. BACKSPACE
; will keep the cursor from moving too

; far back

;Can now read extended ASCII characters
; since the buffer is empty

The buffer was full, so can't read another
character. Send a beep to alert user of
buffer-full condition.

BUFFER_FULL:
JMP SHORT SIGNAL_ERROR ;If buffer full, just beep

Read the extended ASCII code and place this

in the buffer as the only character, then
return -1 as the number of characters read.

:

MOV AH,

7

INT 21h

MOV [SI+5],1L
MOV BL,0FFh
JHP SHORT END STRING

;Read an extended ASCII code

;Place just this char in buffer
;Num chars read = -1 for special

Save the count of the number of characters
read and return.

END INPUT:

SUB BL,5
END STRING:

MOV [SI+1],BL
POP SI

POP BX

POP AX

RET

READ STRING ENDP

;Done with input

;Count of characters read

;Return number of chars read

Stepping through the procedure, we can see that READ_STRING first

Peter Norton's Assembly Language Book 273

checks to see if we pressed a special function key. It allows us to do so only

when the string is empty. For example, if we press the Fl key after we press

the a key, READ_STRING will ignore the Fl key and beep to tell us we
pressed a special key at the wrong time. We can, however, press Escape, then

Fl, because the Escape key causes READ_STRING to clear the string buffer.

If READ_STRING reads a carriage-return character, it places the number
of characters it read into the second byte of the string area and returns. Our
new version of READ_BYTE looks at this byte to see how many characters

READ_STRING actually read.

Next, READ_STRING checks to see if we typed a backspace character. If so,

it CALLs BACK_SPACE to erase one character. If the string buffer becomes

empty (BX becomes equal to 2, the start of the string buffer), then READ_
STRING goes back to the start, where it can read a special key. Otherwise, it

just reads the next character.

Finally, READ_STRING checks for the ESC character. BACK_SPACE
erases characters only when there are characters in the buffer, so we can clear

the string buffer by calling the BACK_SPACE procedure CHAR_NUM_
LIMIT times, because READ_STRING can never read more than CHAR_
NUM_LIMIT characters. Any other character is stored in the string buffer

and echoed to the screen with WRITE_CHAR. Unless, that is, the buffer is

full.

In the last chapter, we changed READ_BYTE in such a way that it couldn't

read special function keys. We need only add a few lines here to allow READ_
BYTE to work with our new version of READ_STRING, which can read spe-

cial function keys. Here are the changes to make to READ_BYTE in KBD_
IO.ASM:

Listing 24-4 . Changes to RERD_BYTE in KBD_IO.ASM

PUBLIC READ BYTE

; This procedure reads a single ASCII character of a hex number.

; Returns byte in AL Character code (unless AH = D)

AH 1 if read ASCII char or hex

D if no characters read
-1 if read a special key

number

; Uses: HEX TO .BYTE, STRING_TO_UPPER, READ_STRING

; Reads: KEYBOARD_INPUT, etc.

READ BYTE PROC NEAR

PUSH DX

274 Improved K vhoard Input

Listing EA-A continued

MOV CHAR_NUM_LIMIT,3
LEA DX,KEYBOARD_INPDT
CALL READ_STRING
CMP NUM_CHARS_READ,1
JE ASCII.INPUT
JB NO_CHARACTERS
CMP BYTE PTR NUM_CHARS_R ea:

JE SPECIAL.KEY
CALL STRING_TO_UPPER
LEA DX,CHARS
CALL HEX_TO_BYTE
JC NO_CHARACTERS
MOV AH,1

DONE_READ:
POP DX

RET

NO_CHARACTERS:
XOR AH, AH

JMP DONE_READ
ASCII_INPDT:

MOV AL, CHARS
MOV AH,1

JMP DONE_READ
SPECIAL_KEY:

MOV AL,CHARS[0]
MOV AH,DFFh
JMP DONE READ

READ_BYTE ENDP

;Allow only two characters (plus Enter)

;See how many characters
;Just one, treat as ASCII character
;Only Enter key hit

OFFh ;Special function key?
;Yes

;No, convert string to uppercase
;Address of string to convert
;Convert string from hex to byte

;Error, so return 'no characters read

;Signal read one character

;Set to 'no characters read'

;Load character read

;Signal read one character

; Return the scan code

;Signal special key with -1

Dskpatch, with the new versions of READ_BYTE and READ_STRING,
should be much nicer to use. But there is a bug here, as we said. To try to find

it, run Dskpatch and try all the boundary conditions for READ_BYTE and
HEX TO BYTE.

25

IN SEARCH OF BUQS

Fixing DISPATCHER 276
Summary 278

275

276 In Search of Bugs

If you try the new version of Dskpatch with ag, which isn't a hex number,
you'll notice that Dskpatch doesn't do anything when you press the Enter key.

Since the string ag isn't a hex number, there is nothing wrong with Dskpatch

ignoring it, but the program should, at least, erase it from the screen.

This error is the sort we can find only by thoroughly checking the boundary
conditions of a program. Not just the pieces, but the entire program. The bug
here isn't the fault of READ_BYTE, even though it appeared when we re-

wrote that procedure. Rather, the problem is in the way we wrote DIS-

PATCHER and EDIT_BYTE.
EDIT_BYTE is designed so it calls WRITE_PROMPT_LINE to rewrite the

editor prompt line and clear the rest of the line. This will remove any charac-

ter we typed. But if we type a string like ag, READ_BYTE reports that it read

a string of zero length, and DISPATCH doesn't call EDIT_BYTE. What's the

solution?

Fixing DISPATCHER
There are actually two ways to solve this problem. The best solution would

be to rewrite Dskpatch to be more modular, and to redesign DISPATCHER.
We won't do that. Remember: Programs are never complete, but we have to

stop somewhere. Instead, we'll add a fix to DISPATCHER so it will rewrite

the prompt line whenever READ_BYTE reads a string of zero length.

Here are the modifications to DISPATCHER (in DISPATCH.ASM) to fix

the bug:

Listing BS-1. Changes to DISPATCHER in DISPATCH.ASM

PUBLIC DISPATCHER
EXTRN READ_BYTE:NEAR, EDIT_BYTE : NEAR

EXTRN WRITE_PROMPT_LINE:NEAR
DRTR_SEG SEGMENT PUBLIC

EXTRN EDITOR_PROMPT:BYTE
DRTR_SEG ENDS

This is the central dispatcher. During normal editing and viewing, ;

this procedure reads characters from the keyboard and, if the character;

is a command key (such as a cursor key), DISPATCHER calls the ;

procedures that do the actual work. This dispatching is done for ;

special keys listed in the table DISPRTCH_TRBLE, where the procedure ;

addresses are stored just after the key names. ;

Peter Norton's Assembly Language Book 277

Listing 55-1. continued

If the character is not a special key, then it should be placed

directly into the sector buffer—this is the editing mode.

Uses:

Reads:

READ_BYTE, EDIT_BYTE, WRITE_PROMPT_LINE
EDITOR PROMPT

DISPATCHER PROC NEAR

POSH AX

POSH BX

POSH DX

DISPATCH_L00P:
CALL READ_BYTE
OR AH, AH

JZ NO_CHARS_READ
JS SPECIAL_KEY
MOV DL,AL

CALL EDIT.BYTE
JMP DISPATCH_LOOP

SPECIAL_KEY:
CMP AL,bfl

JE END_DISPATCH

LEA BX,DISPATCH_T
SPECIAL_L00P:

CMP BYTE PTR [BX]

JE NOT_IN_TABLE
CMP AL,[BX]

JE DISPATCH
ADD BX,3

JMP SPECIAL_L00P

DISPATCH:

INC BX

CALL WORD PTR [BX]

JMP DISPATCH_LOOP

NOT_IN_TABLE:
JMP DISPATCH_LOOP

;Read character into AX

;AX = if no character read, -1

; for an extended code.

;No character read, try again
;Read extended code

;Has normal character, edit byte

;Read another character

;FID—exit?
;Yes, leave

;0se BX to look through table

;End of table?

;Yes, key was not in the table
;Is it this table entry?

;Yes, then dispatch
;No, try next entry
;Check next table entry

;Point to address of procedure
;Call procedure
;Wait for another key

;Do nothing, just read next character

NO_CHARS_READ:

LEA DX,EDITOR_PROMPT
CALL WRITE_PROMPT_LINE ;Erase any invalid characters typed
JMP DISPATCH_L00P ;Try again

END_DISPATCH:
POP

POP

POP

RET

DISPATCHER

278 In Search of Bugs

This bug fix doesn't create any great problems, but it does make DIS-

PATCHER slightly less elegant. Elegance is a virtue to strive for. Elegance

and clarity often go hand in hand, and our rules of modular design are aimed
at increasing elegance.

Summary
DISPATCHER is elegant because it's such a simple solution to a problem.

Rather than using many comparisons for each special character we might

type, we built a table we can search. Doing so made DISPATCHER simpler,

and hence more reliable, than a program containing different instructions for

each possible condition that might arise. By adding our small fix, we compli-

cated DISPATCHER—not by much in this case, but some bugs might require

us to really complicate a procedure.

If you find yourself adding fixes that make a procedure too complicated,

rewrite whichever procedures you must to remove this complexity. And al-

ways check the boundary conditions both before and after you add a procedure

to your main program. You'll save yourself a lot of debugging effort if you do.

We can't overemphasize the importance of testing procedures with bound-

ary conditions and of following the rules of modular design. Both techniques

lead to better and more reliable programs. In the next chapter, we'll look at

another method for debugging programs.

26

WRITINQ MODIFIED
SECTORS

Writing to the Disk 280
More Debugging Techniques 282
Building a Road Map 283
Tracking Down Bugs 285
Symdeb 287

Symbolic Debugging 287
Screen Swapping 288

Summary 290

279

280 Writing Modified Sectors

Wee almost have a usable Dskpatch program. In this chapter, we'll build the

procedure to write a modified sector back to disk, and in the next chapter,

we'll write a procedure to show the second half of a sector. Dskpatch won't be

finished then, as we said, programs never are; but the scope of our coverage in

this book will be complete. You'll find many extras in the version of Dskpatch
on the disk available to complement this book.

Writing to the Disk

Writing a modified sector back to the disk can be disastrous if it's not done

intentionally. All of Dskpatch's functions thus far depend on the function keys

Fl, F2, and F10, and on the cursor keys. But any of these keys could be

pressed quite by accident. Fortunately, the same doesn't hold true for the

shifted function keys, so we'll use the shifted F5 key for writing a disk sector.

This will prevent us from writing a sector back to disk unless we really want
to.

Make the following changes to DISPATCH.ASM, to add WRITE_SECTOR
to the table:

Listing Bt-1. Changes to DISPATCH.ASM

DATA SEG SEGMENT PUBLIC
EXTRN NEXT SECTOR:NEAR ;In DISK.IO.ASM
EXTRN PREVIOUS SECTOR:NEAR ;In DISK_IO.ASM
EXTRN PHANTOM UP:NEAR, PHANTOM D0WN:NEAR ;In PHANTOM. ASM

EXTRN PHANTOM_LEFT:NEAR, PHANTOM_RIGHT : NEAR

EXTRN WRITE_SECTOR:NEAR ;In DISK.IO.ASM

This table contains the legal extended ASCII keys and the addresses ;

of the procedures that should be called when each key is pressed. ;

The format of the table is

DB 75 ;Extended code or cursor up ;

DH OFFSET CGR0UP:PHANT0M_ JP

DISPATCH TABLE LABEL BYTE

DB 59 Fl

DH OFFSET CGROUP:PREVIOUS SECTOR
DB to F5

DW OFFSET CGROUP:NEXT SECTOR

DB 72 Cursor up

DW OFFSET CGR0UP:PHANT0M UP

DB ao Cursor down

Peter Norton's Assembly Language Book 281

Listing 2t-l. continued

DW

DB

DW

OFFSET CGRO0P:PHANTOM_DOWN
75

OFFSET CGROUP:PHANTOM_LEFT
DB 7?

DW OFFSET CGROUP:PHANTOM_RIGHT
DB aa

DW OFFSET CGROUP:WRITE_SECTOR
DB D

J ENDS

-.Cursor left

;Cursor right

;Shift FS

;End of the table

WRITE_SECTOR itself is almost identical to READ_SECTOR. The only

change is that we wish to write, rather than read, a sector. Whereas the INT
25h asks DOS to read one sector, its companion function, INT 26h, asks DOS
to write a sector to the disk. Here is WRITE_SECTOR; place it into DISK_
IO.ASM:

Listing Efc-2. Add This Procedure to DISK_IO.ASM

POBLIC WRITE_SECTOR

This procedure writes the sector back to the disk.

Reads: DISK_DRIVE_NO, C0RRENT_SECTOR_NO, SECTOR

WRITE_SECTOR PROC NEAR

POSH AX

PUSH BX

POSH CX

POSH DX

MOV AL,DISK _DRIVE..NO ;Drive number
MOV CX,1 ;Write 1 sector
MOV DX,CURRENT_SECTOR_NO ; Logical sector
LEA BX, SECTOR
INT ?bh ;Write the sect

POPF -.Discard the fl

POP DX

POP CX

POP BX

POP AX

RET

WRITE_SECTOR ENDP

Now, reassemble both Dispatch and Disk_io, but don't try Dskpatch's write

function just yet. Find an old disk you don't care much about and put it in

drive A, with your program disk in some other drive, such as B. Run Dskpatch

282 Writing Modified Sectors

from drive B (or whatever drive you choose), so that Dskpatch reads the first

sector from your scratch disk in drive A. Before you go on, make sure this is a

scratch disk you have no qualms about if it's destroyed.

Change one byte in your sector display and make a note of the one you
changed. Then, press the shifted F5 key. You'll see the red drive light come
on: You've just written a modified sector back to drive A.

Next, press F2 to read the next sector (sector 1), then Fl to read the previ-

ous sector (your original sector, number 0). You should see the modified sector

back again. Restore this sector and write it back to Drive A to restore the

integrity of your scratch disk.

More Debugging Techniques
What would happen if we had made a small error in our program?

Dskpatch is sufficiently large that we'd expect to have problems using

Debug to find the bug. Besides, Dskpatch is composed of nine different files

we must link to form DSKPATCH.COM. How do we find any one procedure

in this large program without tracing slowly through much of the program?
As you'll see in this chapter, there are two ways to find procedures: by using

a road map we can get from LINK, or by using Microsoft's SYMDEB in place

of DEBUG.
When we originally wrote Dskpatch, something went wrong when we added

WRITE_SECTOR; pressing the Shift-F5 key caused our machine to hang. But
we couldn't find anything wrong with WRITE_SECTOR and the only other

changes were to DISPATCH_TABLE. Everything appeared to be correct.

Finally, we traced the bug to a faulty definition in the dispatcher. The bug
turned out to be an error in the DISPATCH_TABLE entry for WRITE_SEC-
TOR. Somehow, we had typed a DW rather than a DB in the table, so

WRITE_SECTOR's address was stored one byte higher in memory than it

should have been. You can see the bug shown in italics here:

DISPATCH_TABLE LABEL BYTE

DB 77 ;Cursor right

DW OFFSET CGROCP:PHANTOM_BIGHT
Dff 83 ; Shift F5

DW OFFSET CGRODP:WRITE_SECTOE
DB D ;End of the table

DATA SEG ENDS

Peter Norton's Assembly Language Book 283

As an exercise in debugging, make this change to your file DIS-

PATCH.ASM, then follow the directions in the next section.

Building a Road Map
Let's learn how to use LINK to build a map of Dskpatch. This map will help

us find procedures and variables in memory.
The LINK command we've used so far has grown to be fairly long:

LINK DSKPATCH DISK.IO DISP_SEC VIDE0_I0 CURSOR DISPATCH KBD_I0 PHANTOM EDITOR;

and we'll want to add even more to it. Does that mean we'll have to keep

typing file after file after file? No, there is a much easier way. LINK allows us

to supply an automatic response file containing all the information. With such

a file, which we'll call linkinfo, we can simply type:

LINK (aLINKINFO

and LINK will read all of its information from this file.

With the file names that we've used so far, linkinfo looks like this:

DSKPATCH DISK_I0 DISP_SEC VIDE0_I0 CURSOR +

DISPATCH KBD_I0 PHANTOM EDITOR

The plus (+) at the end of the first line tells LINK to continue reading file

names from the next line.

We can also add some more information that tells LINK to create a map of

the procedures and variables in our program to this simple linkinfo file. Here
is the entire linkinfo file:

DSKPATCH DISK_I0 DISP_SEC VIDE0_I0 CURSOR +

DISPATCH KBD_I0 PHANTOM EDITOR
DSKPATCH
DSKPATCH /MAP;

The last two lines are new parameters. The first, dskpatch, tells LINK we
want the .EXE file to be named DSKPATCH.EXE; the second new line tells

LINK to create a listing file called DSKPATCH.MAP—to create our road

map. The Imap switch tells LINK to provide a list of all the procedures and
variables we've declared to be public.

Create the map file by relinking Dskpatch with this linkinfo response file.

284 Writing Modified Sectors

The map file produced by the linker is about 120 lines long. That's a bit too

long for us to reproduce in its entirety, so we'll reproduce the parts that are of

particular interest. Here is our partial listing of the map file,

DSKPATCH.MAP:

Warning: no stack segnent

Start Stop Length Na«e

DDODDH 007E5H 007EbH C0DE_SEG
D07F0H 0291FH 09130H DATA SEG

Class

Origin Group
0000:0 CGROUP

Address Publics by Naie

0000:0b77
0000:04flF

0000:04D1
0000:07F2
0000:04B1
0000:07F4
0000:04F0
0000:01F3

BACKSPACE
CLEAR_SCREEN
CLEAR_T0_END_0F_LINE
C0RRENT_SECTOR_HO
CDRSOR_RIGHT
DISK_DRIVE_NO
DISPATCHER
DISP HALF SECTOR

0000:0370
0000:03DB
0000:0bFE
0000:0440
00D0:013A
0000:0456

WRITE_HEX_DIGIT
WRITE.PATTERN
MRITE_PHANT0H
WRITE_PR0HPT_LINE
WRITE_SECT0R
WRITE STRING

Address Publics by Value

0000:0120
0000:D13A
0000:0154
0000:0174
0000:0190
0000:01F3

READ.SECTOR
WRITE_SECT0R
PREVIODS.SECTOR
NEXT.SECTOR
INIT_SEC_DISP
DISP_HALF_SECTOR

0000:0?F5
0000:07Fb
0000:07F7
0000:07FD
0000:0fl0E

0000:0fl0F

LINES_BEFORE_SECTOR
HEADER_LINE_N0
HEADER_PART_1
HEADER_PART_5
PR0MPT_LINE_N0
EDITOR PROMPT

Peter Norton's Assembly Language Book 285

00QQ:0A4< SECTOR

0000:5915 PHANTOM_CURSOR_X
0000:5913 PHANTOM_CCRSOR_Y

Program entry point at 0000:0100

There are three main parts to this load map (so called because it tells us

where our procedures are loaded in memory). The first shows a list of seg-

ments in our program. Dskpatch has just two segments, CODE_SEG and

DATA_SEG, which are grouped together, so you'll see these two segments in

the list.

The next part of the load map shows our public procedures and variables,

listed in alphabetic order. LINK lists only those procedures and variables

you've declared to be PUBLIC—visible to the outside world. If you're debug-

ging a long program, you may want to declare all procedures and variables to

be public, just so you can find them in this map.

The final section of the map lists all the procedures and memory variables

again, but this time in the order they appear in memory.
Both of these lists include the memory address for each PUBLIC procedure

or variable. If you check this list, you'll find that our procedure DISPATCHER
starts at address 4F0h. We'll use this address now, to track down the bug in

Dskpatch.

Tracking Down Bugs
If you were to try running the version of Dskpatch with the bug in it, you'd

find that everything works, with the exception of Shift-F5, which on our ma-
chine caused Dskpatch to hang. You probably don't want to try Shift-F5;

there's no telling what it will do on your machine.

Since everything worked (and works now) except for Shift-F5, our first guess

when we wrote the program was that we had introduced a bug into WRITE_
SECTOR. To find this bug, we could start debugging Dskpatch by tracing

through WRITE_SECTOR. Instead, we'll take a somewhat different tack.

We know that DISPATCHER works correctly, because everything else (the

cursor keys, Fl, F2, and F10) all work correctly. That means DISPATCHER is

a good starting point to search for the bug in Dskpatch.

If you look at the program listing for DISPATCHER (in Chapter 25), you'll

see that the instruction

CALL WORD PTR [BX]

286 Writing Modified Sectors

is the heart of DISPATCHER, because it calls all the other routines. In partic-

ular, this CALL instruction will call WRITE_SECTOR when we press Shift-

F5. Let's start our search here.

We'll use Debug to start Dskpatch with a breakpoint set on this instruction.

Of course, that means we need the address of this instruction, and we can find

that by unassembling DISPATCHER, which starts at 4F0h. After a U 4F0,

followed by another U command, you should see the CALL command:

ZCU.-0S1? EBF2 JMP D50B

5CK:05iq 43 INC BX

5CU:051A FF17 CALL [BX]

2CK:051C EBDS JMP CKF3

Now that we know the CALL instruction is at location 51Ah, we can set a

breakpoint at this address, then single-step into and through WRITE_
SECTOR.

First, use the command G 51A to execute Dskpatch up to this instruction.

You'll see Dskpatch start up, then wait for you to type a command. Press

Shift-F5, since this is the command that is causing problems. You'll see the

following:

-G S1A

AX=FFSfi BX=2flA3 CX=2A50 DX=0A0F SP=FFFb BP=<iqA SI=03CC DI=0001
DS =2CU BS-3CM SS =2CU CS =aCK IP = D51A NV DP DI PL NZ NA PE NC

5CU:D51A FF1? CALL [BX] DS:2flA3=3A00

At this point the BX register is pointing to a word that should contain the

address of WRITE_SECTOR. Let's see if it does:

-D 2flA3 L 5

2C14:2flA0 00 3A . :

In other words, we're trying to CALL a procedure located at 3A00h (remember
the lower byte is displayed first). But if we look at our memory map, we can

see that WRITE SECTOR should be at 13Ah. In fact, we can also tell from

Peter Norton's Assembly Language Book 287

this load map that we don't have any procedures at 3A00h. The address is

totally wrong!

In our original bug-hunting, once we discovered that this address was
wrong, it didn't take us very long to find the error. We knew that DIS-

PATCHER and the table were basically sound, because all the other keys

worked, so we took a closer look at the data for Shift-F5 and found the DW
where we should have had a DB. Having a road map makes debugging much
simpler. Now let's take a look at Symdeb.

Symdeb
Symdeb (Symbolic Debugging) is a program that Microsoft includes with

version 3.00 and above of its macro assembler package. As you'll see in this

section, Symdeb is so useful that, if you don't have it, you may well want to

consider upgrading your macro assembler.

Since both Debug and Symdeb were written by Microsoft, Symdeb shares

most, if not all, of Debug's commands. It also includes a number of very useful

commands you won't find in Debug, and it includes some other features that

are worth their weight in gold. We'll use two of these new features in this

chapter: symbolic debugging and screen swapping.

Symbolic Debugging

Symbolic debugging, which gives Symdeb its name, lets us see procedure

and variable names, rather than addresses, in our Unassemble (U) listings.

For example, if we use Debug to unassemble the first line in Dskpatch, we

5CK:D100 EA6C03 CALL Q4AF

With Symdeb, on the other hand, we see the following:

3^5:0100 EfiflC03 CALL CLEAR SCREEN

Which of these is easier to read? We rest our case.

288 Writing Modified Sectors

Screen Swapping

The second new feature, screen swapping, is handy for debugging Dskpatch.

Dskpatch jumps around the screen, writing in different places. In the last sec-

tion, where we used Debug, Debug started writing to this screen and we even-

tually lost the Dskpatch screen.

Symdeb, however, maintains two separate screens: one for Dskpatch and
one for itself. Whenever Dskpatch is active, we see its screen; whenever
Symdeb is active, we see its screen. We'll get a clearer idea of screen swapping

as we run through the following examples.

Before we can use Symdeb's symbolic debugging feature, we need to create a

symbol file with a program called Mapsym. Mapsym takes the .MAP file we
created earlier in this chapter and turns it into a symbol file:

A>MAPSYM DSKPATCH
Microsoft (R) Symbol File Generator Version 4.00

Copyright (C) Microsoft Corp 1964, IRAS. All rights reserved.

Program entry point at 0000:0100

In this case, Mapsym has created a symbol file called DSKPATCH.SYM.
We then start Symdeb with both the symbol file and the .COM file:

A>SYMDEB /S DSKPATCH. SYM DSKPATCH.COM
Microsoft (R) Symbolic Debug Utility Version 4.00

Copyright (C) Microsoft Corp 1904, 1985. All rights reserved.

Processor is [flOflb]

The AS switch in our command tells Symdeb to use its screen-swapping fea-

ture. It doesn't use this feature by default, because screen swapping can make
Symdeb noticeably slower.

Before we run through a repetition of our previous debugging session, let's

take a quick look at the start of Dskpatch:

-u

330E 0100 EAAC03 CALL CLEAR_SCREEN
330E 0103 EAF405 CALL WRITE_HEADER
33DE 010b EA1700 CALL READ_SECTOR
330E oioq EAA400 CALL INIT_SEC_DISP
330E 010C ADlbOFOA LEA DX,[EDITOR_PROMPT]

Peter Norton's Assembly Language Book 289

330E:0110 EA5D03 CALL WRITE_PROMPT_LINE
330E:D113 EADAD3 CALL DISPATCHER

330E:011b CD50 INT 50

You can see how nicely Symdeb displays all the names, rather than the

addresses.

When we last unassembled DISPATCHER to find the address of the CALL
WORD PTR [BX] instruction, we first had to look in the map file to find the

address of the procedure, then type U 4F0 to unassemble it. With Symdeb, life

is much simpler: We can simply type U DISPATCHER to unassemble our

procedure.

-0 DISPATCHER
CGROUP:DISPATCHER:
330E:D<FD 50 POSH AX

330E:04F1 53 PUSH BX

330E:04F5 55 PUSH DX

330E:04F3 EA0401 CALL READ_BYTE
330E:0<Fb 0AE4 OR AH, AH

330E:04Ffl ?<5b JZ DISPATCHER+30 (0550)
330E:04FA 700? JS DISPATCHER+13 (0503)

After two more U commands, we find our CALL instruction:

330E:05U 83C303 ADD BX,+03
330E:051? EBF5 JMP DISPATCHER+1B (050B)
330E:051R 43 INC BX

330E:051A FF17 CALL [BX]

330E:051C EBD5 JMP DISPATCHER+03 (04F3)

Type G 51A, as before, and follow that with Shift-F5. If you have Symdeb,
you'll see Dskpatch draw its screen. Then, you'll return to Symdeb after you
push Shift-F5. This time, though, you won't see the Dskpatch screen, because

Symdeb will swap screens. To flip back to the Dskpatch screen, press the back-

slash (\) key and press Enter. Once the Dskpatch screen comes up, pressing

any other key will return you to Symdeb's screen again.

There is one subtle point you may have noticed about Symdeb as we've used

it here. If we look at the unassembly listings, we see instructions like this:

330E:051C EBD5 JMP DISPATCHER+D3 (04F3)

290 Writing Modified Sectors

rather than this:

33DE:D51C EBD5 JMP DISPATCH_L00P

Why didn't Symdeb use the label DISPATCH_LOOP? We didn't define the

labels in this procedure to be PUBLIC. If we went back and wrote PUBLIC
declarations for all the labels in DISPATCHER, we'd see these labels in the

unassembly listing. (If you do this, remember to rebuild the symbol file with

Mapsym).

Summary
That ends our discussion of debugging techniques. We have only three chap-

ters left in the book. In the next chapter, we'll add the procedures to scroll the

screen between the two half sectors. Then, in the final two chapters, we'll

learn more about the differences between .COM and .EXE files, and take a

last look at the ASSUME statement and segment overrides.

By the way: Don't forget to fix the bug we placed in DISPATCH_TABLE.

27

THE OTHER HALF SECTOR

Scrolling by Half a Sector 292
Summary 295

291

292 The Other Half Sector

Ideally, Dskpatch should behave like a word processor when you try to move
the cursor below the bottom of the half-sector display: The display should

move up one line, with a new line appearing at the bottom. The version of

Dskpatch on the disk available with this book does just that, but we won't get

quite so sophisticated here. In this chapter, we'll add skeletal versions of the

two procedures, SCROLL_UP and SCROLL_DOWN, that scroll the screen.

In the disk version of Dskpatch, SCROLL_UP and SCROLL_DOWN can

scroll by any number of lines from one to sixteen (there are sixteen lines in

our half-sector display). The versions of SCROLL_UP and SCROLL_DOWN
that we'll add to Dskpatch here scroll by full half sectors, so we'll see either

the first or second half of the sector.

Scrolling by Half a Sector

Our old versions of PHANTOM_UP and PHANTOM_DOWN restore the

cursor to the top or bottom of the half-sector display whenever we try to move
the cursor off the top or bottom of the display. We'll change PHANTOM_UP
and PHANTOM_DOWN so that we call either SCROLL_UP or SCROLL_
DOWN when the cursor moves off the top or bottom of the display. These two
new procedures will scroll the display and place the cursor at its new position.

Here are the modified versions ofPHANTOM_UP and PHANTOM_DOWN
(in PHANTOM.ASM):

Listing E7-1. Changes to PHANTOM.ASM

PHANTOMJJP PROC NEAR
CALL ERASE_PHANTOM
DEC PHANT0M_CURSOR_Y
JNS WASNT_AT_TOP
MOV PHANTOM_CURSOR_Y,0
CALL SCR0LL_D0WN

WASNT_AT_TOP:

CALL WRITE_PHANTOM
RET

PHANTOM_UP ENDP

PHANTOM_DOHN PROC NEAR
CALL ERASE_PHANTOM

;Erase at current position
;Move cursor up one line
;Was not at the top, write cursor

:k there
;Was at the top, scroll

;Write the phantom at new position

;Erase at current position

Peter Norton's Assembly Language Book 293

Listing 27-1. continued

INC

CMP

JB

MOV

CALL
WASNT_AT_BOTTOM:

CALL ,WRITE_PHANTOM
RET

PHANT0M_D0WN ENDP

PHANTOM_CURSOR_Y
PHANTOM_CURSOR_Y,lb
WASNT_AT_B0TT0M
PHANT0M_CURS0R_Y,15
SCROLL UP

;Move cursor up one line

;Was it at the bottom?
;No, so write phantom
;Was at bottom, so put back there
;Was at bottom, scroll

;Write the phantom cursor

Don't forget to change the comment header for PHANTOM_UP and PHAN-
TOM_DOWN, to mention that these procedures now use SCROLL_UP and
SCROLL_DOWN:

Listing 27-2. Changes to PHANTOM. ASM

These four procedures move the phantom cursors.

Uses:

Reads:

Writes:

ERASE_PHANTOM, WRITE_PHANTOM
SCROLL.DOWN, SCROLLJJP
PHANTOM_CURSOR_X, PHANTOM_CURSOR_Y
PHANTOM CURSOR X, PHANTOM CURSOR Y

SCROLL_UP and SCROLL_DOWN are both fairly simple procedures,

since they switch the display to the other half sector. For example, if we're

looking at the first half sector, and PHANTOM_DOWN calls SCROLL_UP,
we'll see the second half sector. SCROLL_UP changes SECTOR_OFFSET to

256, the start of the second half sector, moves the cursor to the start of the

sector display, writes the half sector display for the second half, and finally

writes the phantom cursor at the top of this display.

You can see all the details for both SCROLL_UP and SCROLL_DOWN in

the following listing. Add it to PHANTOM.ASM.

Listing 27-3. Add These Procedures to PHANTOM.ASM

EXTRN DISP_HALF_SECTOR:NEAR, G0T0_XY:NEAR
DATA_SEG SEGMENT PUBLIC

EXTRN SECT0R_0FFSET:W0RD
EXTRN LINES_BEFORE_SECTOR:BYTE

DATA SEG ENDS

294 The Other Half Sector

Listing 27-3. continued

These two procedures move between the two half-sector displays.

Uses: WRITE.PHANTOM, DISP_HALF_SECTOR, ERASE_PHANTOM, G0T0_XY

SAVE_REAL_CDRSOR, RESTORE_REAL_CURSOR

Reads: LINES_BEFORE_SECTOR
Writes: SECT0R_0FFSET, PHANTOM_CURSOR_Y

SCROLL_0P PROC NEAR

PUSH DX

CALL ERASE_PHANTOM
CALL SAVE_REAL_CURSOR
XOR DL,DL
MOV DH,LINES_BEFORE_SECTOR

ADD DH,2

CALL GOTO_XY

MOV DX,2Sb
MOV SECTOR_OFFSET,DX
CALL DISP_HALF_SECTOR
CALL RESTORE_REAL_CURSOR
MOV PHANTOM_CURSOR_Y,0
CALL HRITE.PHANTOM
POP DX

RET

SCROLLJJP ENDP

SCROLL_DOHN PROC NEAR

PUSH DX

CALL ERASE_PHANTOM
CALL SAVE_REAL_CURSOR
XOR DL,DL
MOV DH,LINES_BEFORE_SECTOR
ADD DH,2

CALL GOTO.XY
XOR DX,DX
MOV SECTOR_OFFSET,DX
CALL DISP_HALF_SECTOR
CALL RESTORE_REAL_CURSOR
MOV PHANT0M_CURS0R_Y,1S
CALL MRITE_PHANTOM
POP DX

RET

SCROLL.DOWN ENDP

-.Remove the phantom cursor

;Save the real cursor position

;Set cursor for half-sector display

;Display the second half sector

;Restore the real cursor position

;Cursor at top of second half sector

;Restore the phantom cursor

;Remove the phantom cursor
;Save the real cursor position

;Set cursor for half-sector display

;Display the first half sector

;Restore the real cursor position
;Cursor at bottom of first half sector
;Restore the phantom cursor

SCROLL_UP and SCROLL_DOWN both work nicely, although there is

one minor problem with them as Dskpatch stands now. Start Dskpatch and
leave the cursor at the top of the screen. Press the cursor-up key, and you'll

see Dskpatch rewrite the first half-sector display. Why? We didn't check for

Peter Norton's Assembly Language Book 295

this boundary condition. Dskpatch rewrites the screen whenever you try to

move the cursor off the top or bottom of the half-sector display.

Here's a challenge for you: Modify Dskpatch so that it checks for two bound-

ary conditions. If the phantom cursor is at the top of the first half-sector dis-

play and you press the cursor-up key, Dskpatch should do nothing. If you're at

the bottom of the second half-sector display and press the cursor-down key,

again Dskpatch should do nothing.

Summary
This ends our work on Dskpatch in this book. Our intent was to use

Dskpatch as a "live" example of the evolution of an assembly language pro-

gram, at the same time providing you with a usable program, and a set of

procedures you'll find helpful in your own programming. But the Dskpatch

you've developed here isn't as finished as it could be. You'll find more features

in the disk version of Dskpatch available with this book. And you may find

yourself changing that disk version, for "a program is never done . . . but there

comes a time when it has to be shipped to users."

We'll wrap up this book with a change of pace. In the next two chapters

we'll move on to two advanced subjects: relocation and more about segments.

Part IV

Odds and Ends

28

RELOCATION

Multiple Segments 300
Relocation 304
.COM versus .EXE Programs 307

299

300 Relocation

o,'ne subject that always seems to be shrouded in mystery is the difference

between .EXE and .COM files and the meaning of relocatable programs. As

part of our change of pace in these final two chapters, let's look at relocation

and see how you can build programs larger than 64K—not that you'd necessa-

rily want to, although many people do.

Multiple Segments

As soon as we start to build programs that use more than 64K of memory
we find ourselves running into problems with .COM files. Why? That's what
we're here to find out.

First of all, any program must be built from one or more segments, each no

more than 64K long. But many programs extend their use of memory by using

several different segments; for example, a code segment for the program, a

data segment for the data, and a stack segment for the stack and temporary

data. If each of these three segments were fully used, we'd fill 3 * 64K = 192K
of memory. That's how we gain access to more memory, and that's where the

difference between .COM and .EXE programs comes in: .EXE programs are

designed specifically for this kind of job.

All our programs in this book have been .COM files, with either one seg-

ment or one group. Remember that the GROUP pseudo-op simply combines
several different segments into a single unit that acts like one segment. If we
wanted to use more than one segment to span more than 64K of memory, we'd

have to do some more work. Let's look at an example.

Our program for printing a string of characters in Chapter 3 will serve nice-

ly. That example, written with groups in assembly language, looks like this:

CGROUP GROUP CODE.SEG, DATA_SEG
ASSUME CS:CGR0UP, DS:CGR0UP

ORG
WRITE..STRING

MOV

MOV

INT

INT

WRITE..STRING

SEGMENT PUBLIC
lOOh

PROC FAR

AH,

9

;Call for string output
DX, OFFSET CGROUP:STRING ;Load address of string
51h ;Write string
5Dh ;Return to DOS
ENDP

Peter Norton's Assembly Language Book 301

DATA_SEG SEGMENT PUBLIC
STRING DB "Hello, DOS here.$"

DATA SEG ENDS

WRITE STRING

The two segments CODE_SEG and DATA_SEG are placed into a single 64K
group, CGROUP, so OFFSET CGROUP:STRING gives the offset of STRING
from the beginning of the group CGROUP.
When DOS loads a .COM program into memory, it sets all four segment

registers (CS, DS, ES, and SS) to the start of CGROUP, therefore DS:OFFSET
CGROUP:STRING is the full address of STRING. What if we had two differ-

ent segments and no group? We wouldn't have a limit of 64K for two seg-

ments: it would be 128K. How would we set the segment registers to point to

their respective segments? By using an .EXE program, which allows us to use

several segments, all starting at different addresses.

DOS allows us to set the segment registers for an .EXE program with the

help of some assembler instructions. These assignments aren't as simple as

they might seem, but we'll come back to that. First, let's rebuild WRITE_
STRING as an .EXE program.

We must have at least two segments for any .EXE program: the code seg-

ment and the stack segment. These two segments are special cases for DOS.
DOS sets the four registers—CS, SS, IP, and SP—when it loads an .EXE pro-

gram into memory. DOS sets the CS:IP register to point to the first instruc-

tion whose address appears after the END pseudo-op. In an .EXE program,

this first instruction can be anywhere, whereas in a .COM program, this in-

struction must be the first instruction in the code segment.

Similarly, SS:IP points to the end of stack region defined with the SEG-
MENT STACK pseudo-op. For example, the following version of WRITE_
STRING contains a stack that is 80 bytes long, thus IP will be set to 80—the
end of this stack region within the stack segment. Here is the program:

ASSUME CS:C0DE_SEG, DS:DATA_SEG, SS:STACK_SEG

Segment address for DATA_SEG
Set up DS register for DATA_SEG
Call for string output
Load address of string

C0DE_SEG SEGMENT PUBLIC

WRITE_STRING PROC FAR

MOV AX,DATA_SEG
MOV DS,AX

MOV AH,S

MOV DX, OFFSET STRING

302 Relocation

PUSH ES

XOR AX, AX

POSH AX

RET

WRITE_STRING ENDP

CODE_SEG ENDS

DATA_SEG SEGMENT PUBLIC

STRING DB "Hello, DOS here.S"

DATA_SEG ENDS

STACK.SEG SEGMENT STACK

DB 10 DUP ('STACK ')

STACK_SEG ENDS

END WRITE_STRING

;Write string

;Save return address for long RET belov

;There is an INT 20h inst. at ES:0

;Return to DOS

'STACK' followed by three spaces

This program will be ready to run after you link it, but first erase

WRITESTR.COM. If you have two versions of a file, one with the extension

.COM and one with the extension .EXE, DOS will execute the .COM file.

There are a number of differences between this .EXE file and our original

.COM file. In place of the INT 20h instruction to return to DOS, we now have

several cryptic instructions, beginning with PUSH ES. The two PUSH in-

structions push a long return address, ES:0, onto the stack. This is the address

of the first byte in the 256 byte data area DOS puts into memory before our

program, and the first instruction in this data area is an INT 20h instruction.

The CS register must point to the start of this data area when we execute

the INT 20h instruction. This was the case in our .COM program, right from

the start. But our .EXE program begins with the CS register set to the start of

the code segment, not the the data area. By doing a FAR RET to ES:0, we set

CS to the start of the data area and, as you can see, ES:0 holds the INT 20h
instruction:

A>DEBUG HRITESTR.EXE
-U ES:0
3qAF:DDDD CDEO

3RAF:DDD2 DObOOD
INT

ADD

50

[BX+SI+0D],AH

Peter Norton's Assembly Language Book 303

The GROUP pseudo-op is missing, because we now have three different seg-

ments that are not confined to a total area of 64K or less. Each of these three

segments is independent, and each of the segment registers (CS, DS, and SS)

points to a different segment. Both CS and SS are set by DOS, as we can see

with the help of Debug:

A>DEBUG WRITESTR.EXE

AX=0000 BX=0000 CX=D1D0 DX=0D00 SP=DD5G BP=D0DD SI=DDDD DI=0DDD
DS=39AF ES=3qAF SS=3qC3 CS=3qBF IP=DDDD NV UP DI PL NZ NA PO NC

3qBF:0D00 BflC13q MOV AX,3HC1

DS and ES point to a segment lower in memory than either CS or SS. As
you saw in Chapter 11, both DS and ES point to the data area, 256 bytes long,

placed by DOS before our program. In .COM program, we reserved this area

with an ORG lOOh statement. For .EXE files, we don't need to do the same,

because the code and data segments are in different parts of memory. The
data segment is elsewhere, but DS isn't pointing to DATA_SEG. This is the

reason for the first instruction in WRITE_STRING. The MOV AX,DATA_
SEG instruction moves the segment number of DATA_SEG into the AX reg-

ister. If we look at our program in memory:

-0

3qBF:000D BflC13q MOV Ax,3qci

39BF:0003 BEDS MOV DS,AX

3SBF:000S B^OS MOV AH, OR

39BF:000? BADODD MOV DX,0000

3qBF:000A CD51 INT 51

39BF:000C Ob POSH ES

39BF:000D 33C0 XOR AX, AX

39BF:000F 50 PUSH AX

3RBF:0010 CB RETF

3qBF:0011 0000 ADD [BX+SI],AL

we see that this MOV instruction has been translated into MOV AX,39C1,
where 39C1 is the segment number of for DATA_SEG. We needed two MOV
instructions to move this number into the DS register, because we can't move
a number directly into any segment register. (See the chart of addressing

modes in Appendix E.)

Where did the 39C1 come from? Surely, neither the assembler nor the

linker knew ahead of time where DOS would load this program; only DOS can

304 Relocation

know that. In fact, it is DOS that sets this number to 39C1, and the process of

calculating such numbers is known as relocation. DOS makes relocation calcu-

lations for .EXE programs, but not for .COM programs. It is for this reason

that .COM programs load into memory more quickly. They are also more com-

pact, because they don't contain the special information DOS uses to make
relocation calculations.

Out of curiosity, let's see what happens if we try to convert our .EXE pro-

gram into a .COM program using Exe2bin:

A>EXE2BIN WRITESTR WRITESTR.COM

File cannot be converted

A>

Exe2bin knows that it can't create a .COM program from our file, but it

doesn't tell us why. It leaves us to figure that out for ourselves. Let's take a

look at the problem

DOS loads a .COM program directly into memory after it creates the 256

byte header. If we want different segments, as in WRITE_STRING, and want

to create a .COM file, we have to do any relocation ourselves, with instruc-

tions in our program. It's not very difficult, and we'll show you how it's done,

so you can get a better insight into the way DOS relocates programs. If you

ever need to write a large .COM program that needs to use more than 64K of

memory, you'll find this technique useful.

Relocation

Our goal is to set the DS register to the beginning of DATA_SEG, and the

SS register to the beginning of STACK_SEGMENT. We can do this with a bit

of trickery. First, we need to ensure that our three segments are loaded into

memory in the correct order:

Code segment
Data segment
Stack segment

Fortunately, we've already taken care of this. The linker loads these three

segments in the order in which they appear in our file. A word of warning
though: When you use the following technique in a .COM file to set segment
registers, make sure you know the order in which LINK will load your

segments.

Peter Norton's Assembly Language Book 305

How do we calculate the value for DS? Let's begin by looking at three labels

we've placed into various segments in the following listing. Those labels are

END_OF_CODE_SEG, END_OF_DATA_SEG, and END_OF_STACK_
SEG. They aren't exactly where you might have expected them to be. Why
not? Well, when we define a segment like:

C0DE_SEG SEGMENT PDBLIC

we don't really tell the linker how to stitch together various segments. So, it

starts each new segment on a paragraph boundary—at a hex address that

ends with a zero, such as 32C40h. Because the Linker skips to the next para-

graph boundary to start each segment, there will very often be a short, blank

area between segments. By placing the label END_OF_CODE_SEG at the

beginning of DATA_SEG, we include this blank area. If we had put END_
OF_CODE_SEG at the end of CODE_SEG, we wouldn't include the blank

area between segments. (Look at the unassemble listing of our program on

page 307. You'll see a blank area filled with zeros that is 15 bytes long.)

As for the value of the DS register, DATA_SEG starts at 39AF.0130, or

39C2:0000. The instruction OFFSET CODE_SEG:END_OF_CODE_SEG
will return 130h, which is the number of bytes used by CODE_SEG. Divide

this number by 16 to get the number we need to add to DS so that DS points to

DATA_SEG. We use the same technique to set SS.

Here's the listing for our program, including the relocation instructions

needed for a .COM file:

ASSUME CS:C0DE_SEG, DS:DATA_SEG, SS:STACK_SEG

C0DE_SEG SEGMENT PUBLIC
ORG IQOh ;Reserve data area for .COM program

WRITE.STRING PROC FAR

MOV AX, OFFSET CODE.SEG :END_0F_C0DE_SEG

MOV CL,< ;Calculate number of paragraphs
SHR AX,CL ; (lb bytes) used by the code segment
MOV BX,CS

ADD AX,BX ;Add CS to this

MOV DS,AX ;Set the DS register to DATA_SEG

MOV BX, OFFSET DATA_SEG:END_OF_DATA_SEG

SHR BX,CL ;Calculate paras used by data segment

ADD AX,BX ;Add to value used for data segment

MOV SS,AX ;Set the SS register for STACK_SEG

MOV AX, OFFSET STACK_SEG:END_OF_STACK_SEG

MOV SP,AX ;Set SP to end of stack area

306 Relocation

MOV AH,H

MOV DX, OFFSET STRING

INT 31h

PUSH ES

XOR AX, AX

POSH AX

RET

WRITE_STRING ENDP

CODE.SEG ENDS

;Call for string output

;Load address of string

;Write string

;Save return address for long RET belo*

;There is an INT EOh inst. at ES:D

;Return to DOS

DATA_SEG SEGMENT PUBLIC

END_OF_CODE_SEG LABEL BYTE

STRING DB "Hello, DOS here.S"

DATA SEG ENDS

STACK_SEG SEGMENT PUBLIC

END_OF_DATA_SEG LABEL BYTE

DB ID DUP ('STACK •)

END_OF_STACK_SEG LABEL BYTE

STACK SEG ENDS

STACK 1 followed by three spaces

END WRITE_STRING

You can see the results of all this work in the following Debug session:

A>DEBUG WRIT!

MOV

-U

3RAF:0100 BA3001 AX, 0130

3qAF:D103 B10< MOV CL,04
3HAF:0105 D3Efl SHR AX,CL
3qAF:DlD? flCCB MOV BX,CS
3qAF:D10q D3C3 ADD AX,BX
SSAFcOlOB flEDfl MOV DS,AX
3qAF:DlDD BB5000 MOV BX,0020
3SAF:0110 D3EB SHR BX,CL
3qAF:011? D3C3 ADD AX,BX
3qAF:Q114 flEDD MOV SS,AX
3SAF:Qllt BA5000 MOV AX, 0050
SRAFrOliq ABED MOV SP,AX
3RAF:011B B401 MOV AH,oq
3RAF:0UD
-U

3qAF:012D

BADDOO MOV DX,0000

CD51 INT 21

3HAF:0152 Ob PUSH ES

3qAF:DlE3 33C0 XOR AX, AX

3qAF:D155 50 PUSH AX

3«1AF:01Sfe CB RETF

Peter Norton's Assembly Language Book 307

3qAF:D12? DDDO ADD [BX+SI],AL
3qAF:01£q 0000 ADD [BX+SILAL
3qAF:D15B 0000 ADD [BX+SI],AL
3qAF:DlED 0000 ADD [BX+SI],AL
39AF:D15F 0D4flb5 ADD [BX+SI+tS],CL
3SAF:0135 bC DB bC

3qAF:Q133 bC DB bC

3qAF:013< bF DB bF

3qAF:0135 5C50 SUB AL,50
3qAF:D13? << INC SP

3qAF:013fl 4F DEC DI

3qAF:013q 53 POSH BX

3qAF:013A 50bflbS AND [BX+SI+bS],CH
3qAF:013D 75bS JB 01A4

3qAF:D13F 5E CS:

3qAF:014D 5400 AND AL,00

-G 150

AX=0q5D BX=0005 CX =0004 DX =0000 SP=0050 BP=0000 SI=00D0 DI=0000
DS=3qC5 ES=3qAF ss =3qc4 CS-=3qAF IP=0150 NV UP DI PL NZ NA PO NC

3qAF:Q150 CD51 INT 51

By doing the relocation for more than one segment ourselves, we've in-

creased the amount of memory the .COM program can use. Most people never

have need of such tricks, but knowing how relocation works helps us under-

stand how DOS does the relocation with .EXE files.

.COM versus .EXE Programs
We'll finish this chapter by summarizing the difference between .COM and

.EXE files.

A .COM program stored on disk is essentially a memory image of the pro-

gram. Because of this, a .COM program is restricted to a single segment, un-

less it does its own relocation, as we did in this chapter.

An .EXE program, on the other hand, lets DOS take care of the relocation.

This delegating makes it very easy for .EXE programs to use multiple seg-

ments. For this reason, most large programs are .EXE rather than .COM
programs.

For our final look at .COM versus .EXE programs, let's take a closer look at

how DOS loads and starts both of them. This should make the differences be-

tween these types of program clearer and more concrete. We'll begin with

.COM programs.

When DOS loads a .COM program into memory, it follows these steps:

308 Relocation

• First, DOS creates the program segment prefix (PSP), which is the 256

byte scratch area we saw in Chapter 11. Among other things, this PSP
contains the command line typed.

• DOS next copies the entire .COM file from the disk into memory, imme-
diately after the 256 byte PSP.

• DOS then sets all four segment registers (CS, DS, ES, and SS) to the

start of the PSP.

• Finally, DOS sets the IP register to lOOh (which is the start of the .COM
program) and sets the SP register to the end of the segment—usually

FFFE, which is the last word in the segment.

In contrast, the steps involved in loading an .EXE file are somewhat more
involved, because DOS does the relocation. Where does DOS finds the infor-

mation it needs to do the relocation?

As it turns out, every .EXE file has a header that's stored at the start of the

file. This header, or relocation table, is always at least 512 bytes long, and
contains all the information DOS needs to do the relocation. With recent re-

leases of its macro assembler, Microsoft has included a program called EX-
EMOD we can use to look at some of the information in this header:

A>EXEMOD WRITESTR
Microsoft (R) EXE File Header Utility Version 4.00

Copyright (C) Microsoft Corp 19A5. All rights reserved.

HRITESTR (hex) (dec)

.EXE size (bytes) SHD E>5t

Minimum load size (bytes) qo U<
Overlay number
Initial CS:IP 0000 :0000

Initial SS:SP 0004 :005D ao
Minimum allocation (para)

Maximum allocation (para) FFFF bSS35
Header size (para) 50 35

Relocation table offset IE 30

Relocation entries 1 1

At the bottom of this table, you can see that we have a single relocation entry

for our program WRITESTR. Anytime we make a reference to a segment ad-

dress, as we did with MOV AX,DATA_SEG, LINK will add a relocation entry

Peter Norton's Assembly Language Book 309

to the table. The segment address isn't known until DOS loads our program
into memory, so we must let DOS supply the segment number.
There are also some other interesting pieces of information in the table; for

example, the initial CS:IP and SS:SP values. These pairs tell us the initial

values for IP and SP. The table also tells DOS how much memory our program
needs before it can run: the Minimum load size.

Because DOS uses this relocation table to supply absolute addresses for

such locations as segment addresses, there are a few extra steps it takes when
loading a program into memory. Here are the steps DOS follows in loading an
.EXE program:

• DOS creates the program-segment prefix (PSP), just as it does for a

.COM program.

• Second, DOS checks the .EXE header to find where the header ends and

the program starts. It then loads the rest of the program into memory
after the PSP.

• Next, using the header information, DOS finds and patches all the refer-

ences in the program that need to be relocated, such as references to

segment addresses.

• DOS then sets the ES and DS registers so they point to the start of the

PSP. If your program has its own data segment, your program needs to

change DS and/or ES so they point to your data segment.

• Finally, DOS sets the CS register to the start of the code segment, with

IP set from the information in the .EXE header. Similarly, it sets SS:SP
according to the information in the .EXE header. In the case illustrated,

the header states that SS:SP will be placed at 0004:0050. That means
DOS will set SP to 0050, and set SS so that it is four paragraphs higher

in memory than the end of the PSP.

29

MORE ON SEQMENTS AND
ASSUME

Segment Override 312
Another Look at ASSUME 3 14
Phase Errors 315
Closing Words 316

311

312 More on Segment* and ASSUME

In this, our final chapter, we'll take another look at the ASSUME statement

and see how it relates to our use of segments. Along the way, we'll learn about

a feature called segment overrides, which we touched on very briefly. We'll see

that segment overrides go hand in hand with the ASSUME statement.

Segment Override

So far we've always read and written data located in the data segment.

We've been dealing with a single segment in this book (through the use of

groups), so we've had no reason to read or write data in other segments.

But, as we've seen, .EXE programs contain multiple segments, and even

.COM programs can contain or use multiple segments. A classic example is

writing directly to the screen: Many commercial programs write to the screen

by moving the data directly into screen memory and completely bypassing the

ROM BIOS routines in the interest of speed. Screen memory on the IBM PC is

located at segment B800h for a color/graphics adapter and at segment BOOOh
for monochrome display adapters. To write directly to the screen means we'd

want to write in different segments.

In this section, we'll write a short program showing how we can write to two

different segments, using the DS and ES registers to point to the two seg-

ments. In fact, many programs that write directly to screen memory do use

the ES register to point to screen memory.
Here is our program. It's very short, and you can see that it has two data

segments, along with one variable in each data segment:

DATA_SEG
DS_VAR
DATA SEG

SEGMENT PDBLIC
DW 1

ENDS

EXTRA_SEG
ES_VAR
EXTRA SEG

SEGMENT PUBLIC
DW 2

ENDS

STACK_SEG
DE

STACK SEG

SEGMENT STACK
10 DOP ('STACK '

)

ENDS
;'STACK' followed by three spaces

C0DE_SEG SEGMENT PDBLIC

Peter Norton's Assembly Language Book 313

TEST

ASSUME CS:CODE_SEG,

PROC FftR

PDSH ES

XOR AX, AX

POSH AX

MOV AX,DATA_SEG
MOV DS,AX
MOV AX,EXTRA_SEG
MOV ES,AX

MOV AX,DS_VAR
MOV BX,ES:ES_VAR

TEST

CODE SEG

DS:DATA_SEG, ES :EXTRA_SEG, SS:STACK SEG

;Save return address for long RET t

;There is an INT 20h inst. at ES:D

:Segment address for DATA_SEG
Set up DS register for DATA_SEG

;
Segment address for EXTRA_SEG
Set up ES register for EXTRA_SEG

Read a variable from data segment
Read a variable from extra segment

ENDP

ENDS

ilOH

Return to DOS

END TEST

We'll use this program to learn about both the ASSUME pseudo-op and seg-

ment overrides.

Notice we've put both data segments and the stack segment before our code

segment, and that we've also put the ASSUME pseudo-op after all the seg-

ment declarations. As we'll see in this section, this arrangement is a direct

result of using two data segments.

Let's take a look at the two MOV instructions in this program:

MOV

MOV

AX,DS_VAR
BX,ES:ES_VAR

The ES: in front of the second instruction tells the 8088 to use the ES, rather

than the DS, register for this operation (to read the data from our extra seg-

ment). Every instruction has a default segment register it uses when it refers

to data. But, as we've done with the ES register here, we can also tell the 8088

we want to use some other segment register for data.

Here's how it works: The 8088 has four special instructions, one for each of

the four segment registers. These instructions are the segment-override in-

structions, and they tell the 8088 to use a specific segment register, rather

than the default, when the following instruction tries to read or write

memory.

314 More on Segments and ASSUME

For example, our instruction MOV AX,ES:ES_VAR is actually encoded as

two instructions. You'll see the following if you unassemble our test program:

5CF<:D0U 5fc ES:

5CF<:D015 8B1E00D0 MOV BX,[D0DD]

This shows that the assembler translated our instruction into a segment-over-

ride instruction, followed by the MOV instruction. Now the MOV instruction

will read its data from the ES, rather than the DS, segment.

If you trace through this program, you'll see that the first MOV instruction

sets AX equal to 1 (DS_VAR) and the second MOV sets BX equal to 2 (ES_
VAR). In other words: We've read data from two different segments.

Another Look at ASSUME
Let's take a look at what happens when we remove the ES: from our pro-

gram. Change the line:

MOV BX,ES:ES_VAR

so it reads:

MOV BX,ES_VAB

We're no longer telling the assembler we want to use the ES register when we
read from memory, so it should go back to using the default segment (DS),

right? Wrong.

Use Debug to look at the result of this change. You'll see that we still have

the ES: segment override in front of our MOV instruction. How could the as-

sembler possibly have known that our variable is in the extra, rather than the

data, segment? By using the information we gave it in the ASSUME
pseudo-op.

Our ASSUME statement tells the assembler that the DS register points to

the segment DATA_SEG, while ES points to EXTRA_SEG. Each time we
write an instruction that uses a memory variable, the assembler searches for

a declaration of this variable to see which segment it's declared in. Then, it

searches through the ASSUME list to find out which segment register is

pointing to this segment. The assembler uses this segment register when it

generates the instruction.

Peter Norton's Assembly Language Book 315

In the case of our MOV BX,ES_VAR instruction, the assembler noticed

ES_VAR was in the segment called EXTRA_SEG, and that the ES register

was pointing to that segment, so it generated an ES: segment-override in-

struction on its own. If we were to move ES_VAR into STACK_SEG, the as-

sembler would generate an SS: segment-override instruction. The assembler

automatically generates any segment-override instructions we need, pro-

vided, of course, that our ASSUME pseudo-ops reflect the actual contents of

the segment registers.

Phase Errors

Sometimes you'll find that the assembler displays a cryptic error message,

such as Phase error between passes. This message can mean a number of

things, but we'll look at one particular case to help you understand it.

Basically, the assembler makes a number of passes through a program as it

generates the machine language version of it. Sometimes, as we'll see here,

the program changes size between passes.

Using our sample program again, move the two data segments (DATA_
SEG and EXTRA_SEG) so they appear after your code SEGMENT. The as-

sembler will now assemble the main program before it even looks at the data

segments. As a result, it will generate a normal MOV instruction for MOV
BX,ES_VAR, because it doesn't realize that this variable is in another

segment.

Next, the assembler will assemble the two data segments. At this point, it

will store the information that ES_VAR is in the segment EXTRA_SEG. On
its next pass through this program, the assembler will notice it now needs

room for a segment-override instruction. Since it didn't reserve room for this

instruction the first time through, the assembler issues the error message:

Phase error between passes.

This is why we placed all our data segments before the code segment: So the

assembler would know which segments contained which variables. What isn't

so obvious, though, is why we placed the ASSUME statement in CODE_SEG,
rather than at the top of this file.

We also receive a phase-error message if we place our ASSUME first thing

in the file. For some reason (not clear to us), we have to declare the segments

before the ASSUME pseudo-op, if we're going to have any implicit segment

overrides. The safest approach, then, is to declare all data before the code seg-

ment and to place the ASSUME pseudo-op in the code segment.

316 • i ' gments and A^

Closing Words
By now you've seen many examples of assembly-language programs.

Throughout this book, we've constantly emphasized programming, rather

than the details of the 8088 microprocessor inside your IBM Personal Com-

puter. As a result, you haven't seen all the 8088 instructions, nor the assem-

bler pseudo-ops. But most assembly language programs can be written with

what you've learned here, and no more. Your best approach to learning more

about writing assembly language programs is to take the programs in this

book and modify them.

If you think of a better way to write any part of Dskpatch, by all means do

so. This is how we first learned to write programs. Back then the programs

were in BASIC, but the idea still holds. We found programs written in BASIC,

and began to learn about the language itself by rewriting bits and pieces of

those programs. You can do the same with Dskpatch.

After you've tried some of these examples, you'll be ready to write your own
programs. Don't start from scratch here, either; that's rather difficult for your

first time out. To begin with, use the programs in this book as a framework.

Don't build a completely new structure or technique (your equivalent of modu-

lar design) until you feel comfortable with writing assembly language

programs.

If you really become enthralled by assembly language, you'll also need a

more complete book for use as a reference to the 8088 instruction set. Here is a

list of good reference books available at the time we wrote this book. This list

is by no means complete, and the books listed here are only the ones we've

read.

The following two books are good programmers' references:

iAPX 88 Book, Intel, 1981. This is the definitive source book, and a very

good reference.

Rector, Russel, and Alexy, George, The 8086 Book, Osborne/McGraw-Hill,
1980. This is another good reference, but rather thick and dense.

The next three books were all written for the IBM PC. Much of the informa-

tion in each of these is generic; only the examples in the latter part of these

books are specific to the IBM PC. We recommend that you look at all three

books in a bookstore to see which one you find most interesting:

Scanlon, Leo J., IBM PC & XT Assembly Language: A Guide for Program-
mers, Enhanced and Enlarged, Brady Communication Co., 1985. This book

Peter Norton's Assembly Language Book 317

is easy reading. It's a complete introduction to 8088 assembly language. If

you're still feeling somewhat shaky about assembly language, this might be
a good book for you. Otherwise, look at Morse's book.

Willen, David C, and Krantz, Jeffrey I., 8088 Assembler Language Pro-
gramming: The IBM PC, Howard W. Sams & Co., 1983. This is another
good second book on the 8088 microprocessor, written for the IBM PC.

Bradley, David J., Assembly Language Programming for the IBM Personal
Computer, Prentice-Hall, 1984. The author helped design the IBM PC, and
he's included many examples for the IBM PC. These examples aren't com-
plete, but they may give you ideas of programs to work on. He also talks

about more advanced subjects, such as the 8087 numeric processor, than do
the authors of the preceding two books.

The next recommendation is neither a reference book, nor an introduction

for the IBM PC. It's an introduction to the 8088 microprocessor, written by a

member of the design team at Intel:

Morse, Stephen P., The 8086/8088 Primer, Hayden, 1982. This is a delight-

ful book. As one of the designers at Intel, Morse provides many insights into

the design of the 8088 and also talks about some of the design flaws and
bugs in the 8088. While not very good as a reference, this book is complete,

and it's very readable and informative.

Finally, the last book is a reference that's useful to anyone programming
the IBM PC. We like to think of it as a compendium of everything a program-

mer might need to know about the IBM PC and 8086 microprocessor family.

Norton, Peter, Programmer's Guide to the IBM PC, Microsoft Press, 1985.

Includes a complete reference to all DOS and BIOS functions, descriptions

of important memory locations, a summary of 8086 instructions, and a host

of other useful (or at least interesting) information.

APPENDIX A
QUIDE TO THE DISK

Chapter Examples 320
Advanced Version of Dskpatch 321

319

320 Guide to the Disk

JL he companion disk to this book contains most of the Dskpatch examples

you've seen in the preceding chapters, as well as an advanced version of the

program that includes a lot of improvements. The files are in two groups: the

chapter examples and the advanced Dskpatch program. This appendix will

explain what's on the disk, and why.

Chapter Examples
All the chapter examples are from Chapters 9 through 27. The examples in

earlier chapters are short enough so you can type them in quickly. But start-

ing in Chapter 9, we began to build Dskpatch, which, by the end of this book,

had grown to nine different files.

In any one chapter, only a few of these nine files changed. Since they do

evolve throughout each chapter, however, there wasn't enough room on the

disk to store each version of each example. You will find the examples on the

disk, as they stand after each chapter. Thus, if we modify a program several

times in, say, Chapter 19, the disk contains the final version.

The table on page 324 shows when each file changes. It also shows the name
of the disk file for that chapter. If you want to make sure you're still on course,

or you don't feel like typing in the changes for some chapter, just look at this

table to find the names of the new files. Then you can either check your work
or copy the file(s) to your disk.

Here's the complete list of all the files on the companion disk (not including

the advanced version of Dskpatch):

VIDEOJI.ASH
DISP_SU.ASH
DISK_I1S.ASH
DSKPAT17.ASH
DISK.I17.ASH
DISPATiq.ASH
DISP_S21.ASH
EDITORS. ASH

KBD_I02<.ASH
PHANTOM?. ASH

VIDEO_10.ASH
CORSORU.ASH
DISP_Slb.ASH
DISP_S17.ASH
CCRSORlfl.ASH

KBD.IOiq.ASH
PHANT021.ASH
PHANTOM. ASH

DISPAT25.ASH

VIDE0_13.ASH
VIDEO_U.ASH
VIDEO_Lb.ASH
C0RSOR17.ASH
VIDEO_lfl.ASH

VIDEO_iq.ASH
VIDEO_?L.ASH
KBD_I023.ASH
DISPATZb.ASH

TESTIS. ASH

DISP.SIS.ASH
DISK.Ilb.ASH
VIDE0_17.ASH
DSKPAT1R.ASH
DISK_I19.ASH
DISPAT2E.ASH
TEST23.ASH
DISK IZb.ASH

Peter Norton's Assembly Language Book 321

Advanced Version of Dskpatch
The disk contains more than just the examples in this book. We didn't really

finish Dskpatch by the end of Chapter 27, and there are many things we
should have put into Dskpatch to make it a usable program. The disk contains

an almost-finished version. Here's a quick overview of what you'll find there.

As it stands in this book, Dskpatch can only read the next or previous sec-

tor. Thus, if you wanted to read sector 576, you'd have to push the F2 key 575

times. That's too much work. What if you wanted to look at sectors within a

file? Right now, you'd have to look at the directory sector and figure out where
to look for the sectors of that file. Again, not much fun. The disk version of

Dskpatch can read either absolute sectors, just as the book version can, or it

can read sectors within a file. In its advanced form, Dskpatch is a very usable

program.

The advanced version of Dskpatch has too many changes to describe in detail

here, so let's look at the new functions we added to the disk version. You'll find

many of the changes by exploring Dskpatch and making your own changes.

The advanced Dskpatch still has nine files, all of which you'll find on the

disk:

DSKPATCH. ASM DISPATCH. ASM DISP_SECASM KBD_I0.ASM
CURSOR. ASM EDITOR. ASM PHANTOM. ASM VIDE0_I0.ASM
DISK.IO.ASM DSKPATCH.COM

You'll also find an assembled and linked .COM version ready to run, so you

can try out the new version without assembling it.

When you do, you'll be able to tell that there are several improvements just

by looking at the screen display. The advanced Dskpatch now uses eight func-

tion keys. That's more than you can remember, if you don't use Dskpatch very

often, so the advanced Dskpatch has a "key line" at the bottom of the display.

Here's a description of the function keys:

Fl, F2 were used in this book. Fl reads the previous sector, and F2 reads

the next sector.

F3 changes the disk-drive number or letter. Just press F3 and enter a

letter, such as A (without a colon, :), or enter a drive number, such

as 0. When you press the Enter key, Dskpatch will change drives

and read a sector from the new disk drive. You may want to

change Dskpatch so that it doesn't read a new sector when you
change drives. We set it up so that it's very difficult to write a

sector to the wrong disk.

322 Guide to the Disk

F4 changes the sector number. Just press F4 and type a sector

number, in decimal. Dskpatch will read that sector.

F5 is in this book. Press the Shift key and F5 to write a sector back to

the disk.

F6 changes Dskpatch to file mode. Just enter the file name and
Dskpatch will read a sector from that file. From then on, Fl (Pre-

vious Sector) and F2 (Next Sector) read sectors from within that

file. F3 ends file mode and switches back to absolute-sector mode.

F7 asks for an offset within a file. This is just like F4 (Sector) except

that it reads sectors within a file. If you enter an offset of 3,

Dskpatch will read the fourth sector in your file.

F10 exits from Dskpatch. If you accidentally press this key, you'll find

yourself back in DOS, and you'll lose any changes you've made to

the last sector. You may want to change Dskpatch so that it asks

if you really want to leave Dskpatch.

A number of other changes aren't as obvious as those just mentioned. For

example, Dskpatch now scrolls the screen one line at a time. If you move the

cursor to the bottom line of the display and press the Cursor-Down key,

Dskpatch will scroll the display by one line, putting a new line at the bottom.

In addition, some of the other keys on the keyboard also work now:

Home moves the phantom cursor to the top of the half-sector display and
scrolls the display so you see the first half-sector.

End moves the phantom cursor to the bottom right of the half-sector display

and scrolls the display so you see the second half-sector.

PgUp scrolls the half-sector display by four lines. This is a nice feature

when you want to move partway through the sector display. If you press

PgUp four times, you'll see the last half sector.

PgDn scrolls the half-sector display by four lines in the opposite direction

from PgUp.

If you like, you can modify the advanced Dskpatch to better suit your own
needs. That's why the disk has all the source files for the advanced Dskpatch:

So you can modify Dskpatch any way you like and learn from a complete ex-

Peter Norton's Assembly Language Book 323

ample. For instance, you might spruce up the error-checking capabilities. As
it stands, if pressing F2 causes you to fall off the end of a disk or file, Dskpatch

doesn't reset the sector to the last sector on the disk or file. If you feel ambi-

tious, see if you can modify Dskpatch so it catches and corrects such errors.

Or, you may want to speed up screen updates. To do this you'd have to re-

write some of the procedures, such as WRITE_CHAR and WRITE_ATTRI-
BUTE_N_TIMES, to write directly to screen memory. Now, they use the very

slow ROM BIOS routines. If you're really ambitious, try to write your own
character-output routines that send characters to the screen very quickly.

Good luck.

Disk A Sector B

88 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D BE BF 8123456789ABCDEF

88 l!l21 58 49*42 4D 28 28*33 2E 31 88*82 82 81 88 QfElBfl 3.1 BBS
IB 82 78 88 D8 82 FD 82 88 89 88 82 88 88 88 88 88 8p JIB'S o B
28 88 88 88 C4 5C 88 33 ED B8 C8 87 8E D8 33 C9 8A

TryJTeAA ! g." 138 D2 79 BE 89 IE IE 88 8C 86 28 88 88 16 22 88 Bl

48 82 8E C5 8E D5 BC 88 7C 51 FC IE 36 C5 36 78 88 BHfrif* iQ"AM-6x
58 BF 23 7C B9 BB 88 F3 A4 IF 88 BE 2C 88 AB 18 88 -|8!{|£ InVefl, at

88 A2 27 88 BF 78 88 B8 23 7C AB 91 AB Al 16 88 Dl 6' lX TtlJ^i. j
78 EB 48 E8 88 88 E8 86 88 BB 88 85 53 B8 81 E8 AB «B55 Sa | «S|BS%

J s0{j<J E< ! uba|§88 88 5F BE 73 81 B9 BB 88 98 F3 A6 75 62 83 C7 15

98 Bl BB 98 98 F3 A6 75 57 26 8B 47 1C 99 8B 8E BB I^EE< s uwaiG«-b"ijw

A8 B8 83 CI 48 F7 Fl 88 3E 71 81 68 75 82 BB 14 96 •J-Hs±5>q@
,

ufliNu

B8 Al 11 BB Bl 84 D3 E8 E8 3B 88 FF 36 IE BB C4 IE H I^ss; 6a -a

C8 6F 81 E8 39 88 E8 64 88 2B FB 76 8D E8 26 BB 52 oQ59 U +=vHft R

D8 F7 26 8B 88 83 D8 5A EB E9 CD 11 B9 82 BB D3 EB *M tJZSOHJlB U
E8 88 E4 83 74 84 FE C4 8A CC 5B 58 FF 2E 6F 81 BE QZ»t*i-e|}[X .o@J

F8 89 81 EB 55 98 81 86 IE 88 11 2E 28 BB C3 Al 18 eQSUEQti i. j-it

Press function key, or enter character or hex byte:

lMI 2l!EM 3I-HIT-1 4jj£3£Q 5iMWl 6lHf mum eHH s|J

Figure A-l. The Advanced Version of Dskpatch

324 Guide to the Disk

s ?

l_
£ 3

1
g p

1 E

z 7 - s 7

o 3 9 £ 9 !
1

~
g

•
-.

'

M
H
3 1a

i
z

L
B

1
=:

o 5
<

?

^ I
J

?

3

7

9 !

g
a r : =

i
c :

> =
>

-

5
^ -

> > 5
3

s =

i
! ! i

z 1 1
<
X

E s £

aL !
Q

j
Q

i

s
! !

S 9
3
5 1

5
i

a ! !

o2
Q
X.

2

7 := 7 _

!UJ < < < £
- -- x '-

a. 00
*

D r.

a
t.

a s \- i

X
3

7
5 3

< -*- £ P
<

-
a

-
f.

9 ^

7 ?~
< s

<

£ X. j:

\ I

8 -2

1 E a> 3 1 * 1 5
CJ z

APPENDIX B

LISTINQ OF DSKPATCH

Descriptions of Procedures 326
Program Listings for the Dskpatch Procedures 332
DSKPATCH Make File 332
CURSOR.ASM 333
DISK_IO.ASM 337
DISPATCH.ASM 341

DISP_SEC.ASM 344
DSKPATCH.ASM 350
EDITOR.ASM 352

KBD_IO.ASM 355
PHANTOM.ASM 365
VIDEO IO.ASM 372

325

326 Listing of DSKPATCH

1 his appendix contains the final version of Dskpatch. If you're writing your

own programs, you'll find many general-purpose procedures in this appendix

to help you on your way. We've included short descriptions of each procedure.

Descriptions of Procedures

CURSOR.ASM
CLEAR_SCREEN Like the BASIC CLS command; clears the text

screen.

CLEAR_TO_END_OF_LINE Clears all the characters from the

cursor position to the end of the current line.

CURSOR_RIGHT Moves the cursor one character position to the

right, without writing a space over the old character.

GOTO_XY Very much like the BASIC LOCATE command; moves the

cursor on the screen.

SEND_CRLF Sends a carriage-return/line-feed pair of characters to the

screen. This procedure simply moves the cursor to the start of the next line.

DISK_IO.ASM
NEXT_SECTOR Adds one to the current sector number, then reads

that sector into memory and rewrites the Dskpatch screen.

PREVIOUS_SECTOR Reads the previous sector. The procedure sub-

tracts one from the old sector number (CURRENT_SECTOR_NO) and reads

the new sector into the memory variable SECTOR. It also rewrites the screen

display.

READ_SECTOR Reads one sector (512 bytes) from the disk into the

memory buffer, SECTOR.

Peter Norton's Assembly Language Book 327

WRITE_SECTOR Writes one sector (512 bytes) from the memory
buffer, SECTOR, to the disk.

DISPATCH.ASM
DISPATCHER The central dispatcher, reads characters from the key-

board and then calls on other procedures to do all the work of Dskpatch. Add
any new commands to DISPATCHJTABLE in this file.

DISP_SEC.ASM
DISP_HALF_SECTOR Does the work of displaying all the hex and

ASCII characters that appear in the half-sector display by calling DISP_
LINE 16 times.

DISP_LINE Displays one line of the half-sector display. DISP_HALF_
SECTOR calls this procedure 16 times to display all 16 lines of the half-sector

display.

INIT_SEC_DISP Initializes the half-sector display you see in

Dskpatch. This procedure redraws the half-sector display, along with the

boundaries and top hex numbers, but does not write the header or the editor

prompt.

WRlTE_TOP_HEX_NUMBERS Writes the line of hex numbers
across the top of the half-sector display. The procedure is not useful for much
else.

DSKPATCH.ASM
DISK_PATCH The (very short) main program of Dskpatch. DISK_

PATCH simply calls a number of other procedures, which do all the work. It

also includes many of the definitions for the variables used throughout

Dskpatch.

328 Listing of DSKPATCH

EDITOR.ASM
EDIT_BYTE Edits a byte in the half-sector display by changing one

byte both in memory (SECTOR) and on the screen. Dskpatch uses this proce-

dure to change bytes in a sector.

WRITE_TO_MEMORY Called upon by EDIT_BYTE to change a

single byte in SECTOR. This procedure changes the byte pointed to by the

phantom cursor.

KBD_IO.ASM
BACK_SPACE Used by the READ_STRING procedure to delete one

character, both from the screen and from the keyboard buffer, whenever you

press the Backspace key.

CONVERT_HEX_DIGIT Converts a single ASCII character into its

hexadecimal equivalent. For example, the procedure converts the letter A into

the hex number OAH. NOTE: CONVERT_HEX_DIGIT works only with up-

percase letters.

HEX_TO_BYTE Converts a two-character string of characters from a

hexadecimal string, such as A5, into a single byte with that hex value. HEX_
TO_BYTE expects the two characters to be digits or uppercase letters.

READ_BYTE Uses READ_STRING to read a string of characters. This

procedure returns the special function key, a single character, or a hex byte if

you typed a two-digit hex number.

READ_DECIMAL Reads an an unsigned decimal number from the

keyboard, using READ_STRING to read the characters. READ_DECIMAL
can read numbers from to 65535.

READ_STRING Reads a DOS-style string of characters from the key-

board. This procedure also reads special function keys; the DOS READ_
STRING function does not.

Peter Norton's Assembly Language Book 329

STRING_TO_UPPER A general-purpose procedure, converts a DOS-
style string to all uppercase letters.

PHANTOM.ASM
ERASE_PHANTOM Removes the two phantom cursors from the

screen by returning the character attribute to normal (7) for all characters

under the phantom cursors.

MOV_TO_ASCII_POSITION Moves the real cursor to the start of

the phantom cursor in the ASCII window of the half-sector display.

MOV_TO_HEX_POSITION Moves the real cursor to the start of

the phantom cursor in the hex window of the half-sector display.

PHANTOM_DOWN Moves the phantom cursor down and scrolls the

screen if you try to move past the sixteenth line of the half-sector display.

PHANTOM_LEFT Moves the phantom cursor left one entry, but not

past the left side of the half-sector display.

PHANTOM_RIGHT Moves the phantom cursor right one entry, but

not past the right side of the half-sector display.

PHANTOM_UP Moves the phantom cursor up one line in the half-sec-

tor display, or scrolls the display if you try to move the cursor off the top.

RESTORE_REAL_CURSOR Moves the cursor back to the position

recorded by SAVE_REAL_CURSOR.

SAVE_REAL_CURSOR Saves the position of the real cursor in two

variables. Call this procedure before you move the real cursor if you want to

restore its position when you've finished making changes to the screen.

SCROLL_DOWN Displays the first half of the sector. You'll find a

more advanced version of SCROLL_DOWN on the disk available with this

book. The advanced version scrolls the half-sector display by just one line.

330 Listing of DSKPATCH

SCROLL_UP Called by PHANTOM_DOWN when you try to move the

phantom cursor off the bottom of the half-sector display. The version in this

book doesn't actually scroll the screen: It writes the second half of the sector.

On the disk, more advanced versions of SCROLL_UP and SCROLL_DOWN
scroll the display by one line, instead of 16.

WRITE_PHANTOM Draws the phantom cursors in the half-sector

display: one in the hex window, and one in the ASCII window. This procedure

simply changes the character attributes to 70H, to use black characters on a

white background.

VIDEO_IO.ASM

Contains most of the general-purpose procedures you'll want to use in your

own programs.

WRITE_ATTRIBUTE_N_TIMES A handy procedure you can use

to change the attributes for a group of N characters. WRITE_PHANTOM
uses this procedure to draw the phantom cursors, and ERASE_PHANTOM
uses it to remove the phantom cursors.

WRITE_CHAR Writes a character to the screen. Since it uses the

ROM BIOS routines, this procedure doesn't attach special meaning to any
characters. A carriage-return character will appear on the screen as a musical

note (the character for ODH). Call SEND_CRLF if you want to move the cur-

sor to the start of the next line.

WRITE_CHAR_N_TIMES Writes N copies of one character to the

screen. This procedure is useful for drawing lines of characters, such as the

ones used in patterns.

WRITE_DECIMAL Writes a word to the screen as an unsigned deci-

mal number in the range to 65535.

WRITE_HEADER Writes the header at the top of the screen you see

in Dskpatch. There, the procedure displays the disk-drive number and the

number of the sector you see in the half-sector display.

Peter Norton's Assembly Language Book 331

WRITE_HEX Takes a one-byte number and writes it on the screen as a

two-digit hex number.

WRITE_HEX_DIGIT Writes a single-digit hex number on the

screen. This procedure converts a four-bit nibble into the ASCII character and
writes it to the screen.

WRITE_PATTERN Draws boxes around the half-sector display, as

defined by a pattern. Use WRITE_PATTERN to draw arbitrary patterns of

characters on the screen.

WRITE_STRING A very useful, general-purpose procedure with

which you can write a string of characters to the screen. The last character in

your string must be a zero byte.

WRITE_PROMPT_LINE Writes a string at the prompt line, then

clears the rest of the line to remove any characters from the old prompt.

332 Listing of DSKPATCH

Program Listings for Dskpatch Procedures

DSKPATCH Make File

Here is the Make file that you can use with Microsoft's Make utility to build

Dskpatch automatically.

DSKPATCH. OBJ: DSKPATCH. ASM

HASH DSKPATCH;

DISK_I0.0BJ: DISK_IO.ASM
HASH DISK_I0;

DISP.SEC.OBJ: DISP_SEC. ASM

MASM DISP.SEC;

VIDE0_IO.OBJ: VIDEO_IO.ASM
MASM VIDE0_I0;

CURSOR. OBJ: CURSOR. ASM

MASM CURSOR;

DISPATCH. OBJ: DISPATCH. ASM

MASM DISPATCH;

KBD_I0.0BJ: KBD_I0.ASM
MASM KBD_I0;

PHANTOM. OBJ: PHANTOM. ASM

MASM PHANTOM;

EDITOR. OBJ: EDITOR. ASM

MASM EDITOR;

DSKPATCH.COM: DSKPATCH. OBJ DISK_IO.OBJ DISP_SEC.OBJ VIDEO_IO.OBJ CURSOR. OBJ \

DISPATCH. OBJ KBD_IO.OBJ PHANTOM. OBJ EDITOR. OBJ
LINK dLINKINFO
EXE5BIN DSKPATCH DSKPATCH.COM

CURSOR.ASM

Peter Norton's Assembly Language Book 333

EQU

EQU

/Carriage return

;Line feed

CGROUP GROUP C00E_SEG

ASSUME CS:CGROUP, DS:CGROUP

SEGMENT PUBLIC

PUBLIC SEND CRLF

This routine just sends a carriage-return/line-feed pair to the

display, using the DOS routines so that scrolling will be handled

correctly.

SEND CRLF PROC

PUSH AX

PUSH DX

MOV AH,

2

MOV DL.CR

INT 21h

MOV DL,LF

INT 21h

POP DX

POP AX

RET

SEND CRLF ENDP

NEAR

PUBLIC CLEAR SCREEN

; This procedure clears the entire screen.

CLEAR SCREEN PROC

PUSH AX

PUSH BX

PUSH CX

PUSH DX

XOR AL,AL

XOR CX,CX

;Blank entire window

;Upper left corner is at (0,0)

334 Listing of DSKPATCH

CURSOR. ASM continued

MOV DH,24

MOV DL.79

MOV BH.7

MOV AH,

6

INT 10h

POP DX

POP CX

POP BX

POP AX

RET

CLEAR SCREEN ENDP

;Bottom line of screen is line 24

;
Right side is at column 79

;Use normal attribute for blanks

;Call for SCROLLJJP function

; Clear the window

PUBLIC GOTOXY

; This procedure moves the cursor

OH Row (Y)

DL Column (X)

GOTO XY PROC

PUSH AX

PUSH BX

MOV BH,0

MOV AH,

2

INT 10h

POP BX

POP AX

RET

GOTO XY

;Di splay page

:Call for SET CURSOR POSITION

PUBLIC CURSOR RIGHT

This procedure moves the cursor one position to the right or to the

next line if the cursor was at the end of a line.

; Uses:

CURSOR. ASM continued

Peter Norton's Assembly Language Book 335

CURSOR _RIGHT PROC N

PUSH AX

PUSH BX

PUSH CX

PUSH DX

MOV AH,

3

MOV BH,0

INT 10h

MOV AH,

2

INC DL

CMP DL,79

JBE OK

CALL SEND_CRLF

JMP DONE

OK: INT 10h

DONE: POP DX

POP CX

POP BX

POP AX

RET

CURSOR RIGHT ENDP

NEAR

;Read the current cursor position

;On page

;Read cursor position

;Set new cursor position

;Set column to next position

;Make sure column <= 79

;Go to next line

PUBLIC CLEAR TO END OF LINE

This procedure clears the line from the current cursor position to

the end of that line.

CLEAR TO END OF LINE

PUSH AX

PUSH BX

PUSH CX

PUSH DX

MOV AH,

3

XOR BH,BH

INT 10h

MOV AH, 6

XOR AL,AL

MOV CH.DH

PROC NEAR

;Read current cursor position

; on page

;Now have (X,Y) in DL, DH

;Set up to clear to end of lir

; CI ear window

;AU on same line

336 Listing of DSKPATCH

CURSOR. ASM continued

MOV CL,Dl

MOV DL.79

MOV BH,7

INT 10h

POP DX

POP CX

POP BX

POP AX

RET

CIEARTOEND OFLINE

COOESEG ENDS

;Start at the cursor position

;And stop at the end of the line

;Use normal attribute

END

Peter Norton's Assembly Language Book 337

DISK IO.ASM

CGROUP GROUP CODE_SEG, DATA_SEG

ASSUME CS: CGROUP, DS: CGROUP

CODE SEG SEGMENT PUBLIC

PUBLIC READ_SECTOR

DATA_SEG SEGMENT PUBLIC

EXTRN SECTOR:BYTE

EXTRN DISK_DRIVE_NO:BYTE

EXTRN CURRENT_SECTOR_NO:WORD

DATA SEG ENDS

; This procedure reads one sector (512 bytes) into SECTOR.

; Reads: CURRENT_SECTOR_NO, Dl

; Writes: SECTOR

READSECTOR PROC NEAR

PUSH AX

PUSH BX

PUSH CX

PUSH DX

MOV AL,DISK_DRIVE_NO

MOV CX.1

MOV DX.CURRENTSECTORNO

LEA BX, SECTOR

INT 25h

POPF

POP DX

POP CX

POP BX

POP AX

RET

READ SECTOR ENDP

;Drive number

;Read only 1 sector

/Logical sector number

;Where to store this sector

;Read the sector

.•Discard flags put on stack by DOS

338 Listing of DSKPATCH

DISK_IO.ASM continued)

PUBLIC WRITE SECTOR

; This procedure writes the sector back to the disk.

; Reads: DISK_DRI VE_NO, CURRENT_SECTOR_NO, SECTOR

WRITESECTOR PROC NEAR

PUSH AX

PUSH BX

PUSH CX

PUSH DX

MOV AL.DISKDRIVENO

MOV CX,1

MOV DX,CURRENT_SECTOR_NO

LEA BX, SECTOR

INT 26h

POPF

POP DX

POP CX

POP BX

POP AX

RET

WRITE SECTOR ENDP

;Drive number

;Write 1 sector

.-Logical sector

;Write the sector to disk

/Discard the flag information

PUBLIC PREVIOUS_SECTOR

EXTRN INIT_SEC_DISP:NEAR, WRITE_HEADER:NEAR

EXTRN WRITE_PROMPT_LINE:NEAR

DATASEG SEGMENT PUBLIC

EXTRN CURRENT_SECTOR_NO:WORD, EDITOR_PROMPT:BYTE

DATA_SEG ENDS

; This procedure reads the previous sector, if possible.

; Uses: WRITE_HEADER, READ_SECTOR, INIT_SEC_DISP

WRITE_PROMPT_LINE

; Reads: CURRENT_SECTOR_NO, EDITOR_PROMPT

; Writes: CURRENT SECTOR NO

DISK_IO.ASM continued)

Peter Norton's Assembly Language Book 339

PREVIOUS_SECTOR

PUSH

PUSH

MOV

OR

JZ

DEC

HOV

CALL

CALL

CALL

LEA

CALL

DONT_DECREMENT_SECTOR

:

POP DX

POP AX

RET

PREVIOUS SECTOR

AX

DX

AX,CURRENT_SECTOR_NO

AX,AX

DONT_DECREMENT_SECTOR

AX

CURRENT_SECTOR_NO,AX

URITE_HEADER

READSECTOR

INITSECDISP

DX,EDITOR_PROMPT

WRITE PROMPT LINE

ENDP

;Get current sector number

; Don't decrement if already

;Save new sector number

;Di splay new sector

PUBLIC NEXT_SECTOR

EXTRN INI T_SEC_DISP: NEAR, WRITE_HEADER:NEAR

EXTRN WRITE_PROMPT_LINE:NEAR

j SEGMENT PUBLIC

EXTRN CURRENT_SECTOR_NO:WORD, EDITOR_PROMPT:BYTE

j ENDS

; Reads the next sector.

Reads:

Writes:

WRITE_HEADER, READSECTOR, INIT_SEC_DISP

WRITE_PROMPT_LINE

CURRENT_SECTOR_NO, EDITOR_PROMPT

CURRENT SECTOR NO

NEXTSECTOR

PUSH

PUSH

MOV

PROC NEAR

AX

DX

AX, CURRENT SECTOR NO

340 Listing of DSKPATCH

DISK_IO.ASM continued)

;Move to next sector

;Di splay new sector

INC AX

MOV CURRENT_SECTOR_NO,AX

CALL URITE_HEADER

CALL READSECTOR

CALL INITSECDISP

LEA DX.EDITORPROMPT

CALL WRITE_PROMPT_LINE

POP OX

POP AX

RET

NEXTSECTOR ENDP

COOESEG ENDS

END

Peter Norton's Assembly Language Book 341

DISPATCH.ASM

CGROUP GROUP CODE_SEG, DATA_SEG

ASSUME CS: CGROUP. DS: CGROUP

C00E_SEG SEGMENT PUBLIC

PUBLIC DISPATCHER

EXTRN READ_BYTE:NEAR, EDIT_BYTE:NEAR

EXTRN WRITE PROMPT LINE:NEAR

DATA SEG SEGMENT PUBLIC

EXTRN EDITOR PROMPT: BYTE

DATA SEG ENDS

; This is the central dispatcher. During normal editing and viewing,

; this procedure reads .characters from the keyboard. and if the char

; is a command key (such as a cursor key), DISPATCHER calls the

; procedures that do trie actual work. This dispatching is done for

; special keys listed in the table DISPATCH_TABLE, where the procedure

; addresses are stored just after the key names.

; If the character is not a special key, then it should be placed

; directly into the sector buffer-- this is the editing mode.

; Uses: READ_BYTE, EDI

; Reads: EDITOR_PROMPT

DISPATCHER PROC NEAR

PUSH AX

PUSH BX

PUSH DX

DISPATCH LOOP:

CALL READ BYTE

OR AH, AH

JZ NO CHARS READ

JS SPECIAL KEY

MOV DL,AL

CALL EDITBYTE

JMP DISPATCH LOOP

:Read character into AX

;AH = if no character read, -1

; for an extended code.

;No character read, try again

;Read extended code

;Was normal character, edit byte

;Read another character

342 Listing of DSKPATCH

DISPATCH. ASM continued

SPECIALJCEY:

CMP AL.68

JE END_DISPATCH

LEA BX,DISPATCH_TABLE

SPECIALJ.0OP:

CMP BYTE PTR [BX],0

JE NOT_IN_TABLE

CMP AL,[BX]

JE DISPATCH

ADD BX,3

JMP SPECIALLOOP

DISPATCH:

INC BX

CALL WORD PTR [BX]

JMP DISPATCHLOOP

NOT_IN_TABLE:

JMP DISPATCH_LOOP

NO_CHARS_READ:

LEA DX,EDITOR_PROMPT

CALL URITE_PROMPT_LINE

JMP DISPATCH_LOOP

ENDDISPATCH:

POP DX

POP BX

POP AX

RET

DISPATCHER ENDP

COOE_SEG ENDS

;F10--exit?

;Yes, leave

;Use BX to look through table

;End of table?

;Yes, key was not in the table

;Is it this table entry?

;Yes, then dispatch

;No, try next entry

:Check next table entry

;Point to ackdress of procedure

;Call procedure

;Uait for another key

;Do nothing, just read next character

;Erase any invalid characters typed

;Try again

DATA SEG SEGMENT PUBLIC

Peter Norton's Assembly Language Book 343

DISPATCH. ASM continued

C00E_SEG SEGMENT PUBLIC

EXTRN NEXT_SECTOR:NEAR ;In DISKJO.ASM

EXTRN PREVIOUS_SECTOR:NEAR ;In DISKJO.ASM

EXTRN PHANTOM_UP:NEAR, PHANTOM_DOWN:NEAR ;In PHANTOM. ASM

EXTRN PHANTOM_LEFT:NEAR, PHANTOM_RIGHT:NEAR

EXTRN URITE_SECTOR:NEAR ;In DISKJO.ASM

COOE_SEG ENDS

; This table contains the legal extended ASCII keys and the addresses

; of the procedures that should be called when each key is pressed.

;
The format of the table is

; DB 72 ; Extended code for cursor up

DW OFFSET CGROUP:PHANTOM_UP

DISPATCH_TABLE LABEL BYTE

DB 59 ;F1

DW OFFSET CGROUP:PREVIOUS_SECTOR

DB 60 ;F2

DW OFFSET CGROUP:NEXT_SECTOR

DB 72 ; Cursor up

DW OFFSET CGROUP:PHANTOM_UP

DB 80 ; Cursor down

DW OFFSET CGROUP:PHANTOM_DOWN

DB 75 ; Cursor left

DW OFFSET CGROUP: PHANTOMJ.E FT

DB 77 ; Cursor right

DW OFFSET CGROUP:PHANTOM_RIGHT

DB 88 ;Shift F5

DW OFFSET CGROUP:WRITE_SECTOR

DB ;End of the table

DATA SEG ENDS

END

344 Listing of DSKPATCH

DISP SEC.ASM

CGROUP GROUP COOE_SEG, DATASEG

ASSUME CS: CGROUP, DS: CGROUP

;Group two segments together

Graphics characters for border of sector.

VERTICAL_BAR

HORIZONTAL_BAR

UPPER_LEFT

UPPER_RIGHT

LOUERJ.EFT

LOUERRIGHT

TOP_T_BAR

BOTTOMTBAR

TOP_TICK

BOTTOM TICK

EQU OBAh

EQU OCDh

EQU 0C9h

EQU OBBh

EQU 0C8h

EQU OBCh

EQU OCBh

EQU OCAh

EQU 00 1h

EQU OCFh

COOESEG SEGMENT PUBLIC

PUBLIC INIT SEC DISP

EXTRN URITE_PATTERN:NEAR, SEND_CRLF :NEAR

EXTRN GOTO_XY:NEAR, URITE_PHANTOM:NEAR

DATASEG SEGMENT PUBLIC

EXTRN LINES BEFORE SECTOR:BYTE

EXTRN SECTOR OFFSET :WORD

DATA SEG ENDS

This procedure initializes the half -sector display.

Uses:

Writes:

WRITEPATTERN, SEND_CRLF, DISP_HALF_SECTOR

URITE_TOP_HEX_NUMBERS, GOTO_XY, URITE_PHANTOM

TOP_LINE_PATTERN, BOTTOMLINEPATTERN

LINES_BEFORE_SECTOR

SECTOR OFFSET

INIT_SEC_DISP

PUSH

PROC

DX

Peter Norton's Assembly Language Book 345

DISP SEC. ASM continued

XOR DL.DL ;Move cursor into position

MOV DH,LINES_BEFORE_SECTOR

CALL GOTO_XY

CALL WR I TE_TOP_HEX_NUMBERS

LEA DX,TOP_LINE_PATTERN

CALL WRITE_PATTERN

CALL SEND_CRLF

XOR DX.DX ;Start at the beginning of

MOV SECTOROFFSET.DX ;Set sector offset to

CALL DISP_HALF_SECTOR

LEA DX, BOTTOM_L I NEPATTERN

CALL WRITE_PATTERN

CALL URITE_PHANTOM ; Write the phantom cursor

POP DX

RET

INITSECDISP ENDP

EXTRN WRITE_CHAR_N_TIMES:NEAR, WRITE_HEX:NEAR, WRITE_CHAR:NEAR

EXTRN WRITE HEX DIGIT:NEAR, SEND CRLF:NEAR

This procedure writes the index numbers (0 through F) at the top

the half-sector display.

of

WRITECHARNTIMES, WRITE_HEX, WRITE_CHAR

WRITE HEX DIGIT. SEND CRLF

WRITE_TOP_HEX_NUMBERS PROC

PUSH CX

NEAR

PUSH DX

MOV DL,' '

MOV CX,9

CALL WRITE CHAR N TIMES

XOR DH.DH

HEX NUMBER LOOP

MOV DL,DH

CALL WRITE HEX

MOV DL,' '

CALL WRITE CHAR

;Write 9 spaces for left side

:Start with

346 Listing of DSKPATCH

DISP SEC. ASM continued

INC DH

CMP DH,10h

JB HEX_NUMBER_LOOP

MOV DL,' '

MOV CX.2

CALL URITECHARNTIMES

XOR DL.DL

HEX_DIGIT_LOOP

CALL WR1TEHEXDIGIT

INC DL

CMP DL,10h

JB HEXDIGITLOOP

CALL SEND_CRLF

POP DX

POP CX

RET

WRITE_TOP_HEX_NUMBERS ENOP

;Done yet?

;Write hex numbers over ASCII window

PUBLIC DISP_HALF_SECTOR

EXTRN SEND CRLF:NEAR

; This procedure displays half a sector (256 bytes) ;

; DS:DX Offset into sector, in bytes- -should be multiple of 16 ;

: Uses: DISP LINE. SEND CRLF

DISP_HALF_SECTOR PROC NEAR

PUSH CX

PUSH DX

MOV CX.16

HALF_SECTOR:

CALL DISP_LINE

CALL SEND_CRLF

ADD DX.16

LOOP HALF_SECTOR

POP DX

.-Display 16 lines

Peter Norton's Assembly Language Book 347

DISP_SEC.ASM continued

POP CX

RET

DISP HALF SECTOR ENDP

PUBLIC DISPJ.INE

EXTRN WRITE_HEX:NEAR

EXTRN WRITE_CHAR:NEAR

EXTRN WRITE CHAR N TIMES:NEAR

; This procedure displays one line of data, or 16 bytes, first in hex, ;

; then in ASCII.

; DS:DX Offset into sector, in bytes ;

; Uses: WRITE_CHAR, WRITE_HEX, WRITE_CHAR_N_TIMES

; Reads: SECTOR

DISP_LINE PROC NEAR

PUSH BX

PUSH CX

PUSH DX

MOV BX.DX

MOV DL,' '

MOV CX,3

CALL WRITE_CHAR_N_TIMES

CMP BX,100h

JB WRITE_ONE

MOV DL,'1'

WRITEJDNE:

CALL URITE_CHAR

MOV DL,BL

CALL URITE_HEX

MOV DL,» •

CALL URITE_CHAR

MOV DL,VERTICAL_BAR

;Offset is more useful in BX

; Write 3 spaces before line

;Write offset in hex

;Is the first digit a 1?

;No, white space already in DL

;Yes, then place '1' into DL for output

;Copy lower byte into DL for hex output

;Urite separator

;Draw left side of box

348 Listing of DSKPATCH

DISP SEC. ASM continued

CALL URITECHAR

MOV DL,' '

CALL WRITE_CHAR

MOV CX,16

PUSH BX

HEXLOOP:

MOV DL, SECTOR [BX]

CALL URITEHEX

MOV DL,' '

CALL URITE_CHAR

INC BX

LOOP HEXJ.OOP

MOV DL.VERTICALBAR

CALL URITECHAR

MOV DL,' '

CALL WRITE_CHAR

MOV CX.16

POP BX

ASCI I LOOP:

MOV DL, SECTOR [BX]

CALL URITE_CHAR

INC BX

LOOP ASCII_LOOP

MOV DL,'

CALL WRITE_CHAR

MOV DL,VERTICAL_BAR

CALL URITE_CHAR

POP DX

POP CX

POP BX

RET

DISPJ.INE ENDP

CODE SEG ENDS

;Now write out 16 bytes

;Dump 16 bytes

;Save the offset for ASCIILOOP

;Get one byte

;Dump this byte in hex

;Urite a space between numbers

;Urite separator

;Add another space before characters

;Get back offset into SECTOR

;Draw right side of box

Peter Norton's Assembly Language Book 349

DISP_SEC.ASM continued

DATA_SEG SEGMENT PUBLIC

EXTRN SECTOR:BYTE

TOP_LINE_PATTERN LABEL BYTE

DB ' 'J
DB UPPER_LEFT,1

DB HORIZONTAL_BAR, 12

DB TOP_TICK,1

DB HORIZONTAL_BAR, 11

DB T0P_T1CK,1

DB HORIZONTAL_BAR
l
11

DB T0P_TICK,1

DB HORIZONTALBAR 12

DB TOP_T_BAR,1

DB HORIZONTAL_BAR 18

DB UPPER_RIGHT,1

DB

BOTTOMJ.INE PATTERN LABEL BYTE

DB ' 'J
DB LOUER_LEFT,1

DB HORIZONTAL_BAR 12

DB BOTTOM_TICK,1

DB HORIZONTALBAR 11

DB BOTTOMTICKJ

DB HORIZONTAL_BAR rH

DB BOTTOMTICKJ

DB HORIZ0NTAL_BAR ,12

DB BOTTOM_T_BAR,1

DB HORIZONTAL_BAR ,18

DB LOWER_RIGHT,1

DB

DATA SEG ENDS

END

350 Listing of DSKPATCH

DSKPATCH.ASM

CGROUP GROUP CODESEG, DATASEG

ASSUME CS:CGROUP, DS:CGROUP

CODESEG SEGMENT PUBLIC

ORG 100h

EXTRN CLEAR_SCREEN:NEAR, READ_SECTOR:NEAR

EXTRN I N I T_SEC_D I SP : NEAR , UR I TE_HEADER : NEAR

EXTRN WRITE_PROMPT_LINE:NEAR, DISPATCHER: NEAR

DISK_PATCH PROC NEAR

CALL CLEAR_SCREEN

CALL WRITE_HEADER

CALL READSECTOR

CALL INITSECDISP

LEA DX.EDITORPROMPT

CALL WRITE_PROMPT_LINE

CALL DISPATCHER

INT 20h

DISK_PATCH ENDP

CODE SEG ENDS

DATA_SEG SEGMENT PUBLIC

PUBLIC SECTOR OFFSET

; SECTOR_OFFSET is the offset of the half

; sector display into the full sector. It must ;

; be a multiple of 16, and not greater than 256 ;

SECTOR_OFFSET DW

PUBLIC CURRENT_SECTOR_NO, DISK_DRIVE_NO

CURRENT_SECTOR_NO DW ; Initially sector

DISK_DRIVE_NO DB ; Ini

t

ial ly Drive A:

PUBLIC LINES BEFORE SECTOR. HEADER LINE NO

Peter Norton's Assembly Language Book 351

DSKPATCH.ASM continued

PUBLIC HEADER_PART_1 , HEADER_PART_2

; LINES_BEFORE_SECTOR is the number of lines

; at the top of the screen before the half- ;

; sector display. ;

LINES_BEFORE_SECTOR DB 2

HEADER_LINE_NO DB

HEADERPART1 DB 'Disk ',0

HEADER_PART_2 DB ' Sector ',0

PUBLIC PROMPT LI NE_NO, EDITOR_PROMPT

PR0MPT_LINE_N0 DB 21

EDITORPROMPT DB 'Press function key, or enter'

DB ' character or hex byte: ',0

PUBLIC SECTOR

i
' '

' i

; The entire sector (up to 8192 bytes) is ;

; stored in this part of memory. ;

SECTOR DB 8192 DUP (0)

DATA_SEG ENDS

END DISK PATCH

352 Listing of DSKPATCH

EDITOR.ASM

CGROUP GROUP CODE_SEG, DATASEG

ASSUME CS:CGROUP. DS:CGROUP

CODE SEG SEGMENT PUBLIC

DATA_SEG SEGMENT PUBLIC

EXTRN SECTOR:BYTE

EXTRN SECTOR_OFFSET:WORD

EXTRN PHANTOM_CURSOR_X:BYTE

EXTRN PHANTOM_CURS0R_Y:BYTE

DATA SEG ENDS

; This procedure writes one byte to SECTOR, at the memory location ;

; pointed to by the phantom cursor. ;

» #

DL Byte to write to SECTOR

; The offset is calculated by
;

; OFFSET = SECTORJDFFSET + (16 * PHANTOM_CURSOR_Y) PHANTOM_CURSOR_X ;

; Reads: PHANTOMCURSORX, PHANTOM_CURSOR_Y, SECTOROFFSET

; Writes: SECTOR

URITEJTOMEMORY PROC NEAR

'

PUSH AX

PUSH BX

PUSH CX

MOV BX,SECTOR_OFFSET

MOV AL,PHANTOM_CURSOR_Y

XOR AH,AH

MOV CL,4 ;Mult iply PHANTOM_CURSOR_Y by 16

SHL AX.CL

ADO BX,AX ;BX = SECTOR_OFFSET + (16 * Y)

MOV AL,PHANTOM_CURSOR_X

XOR AH, AH

ADD BX.AX ;That s the address!

MOV SECTOR [BX],DL ;Now, store the byte

Peter Norton's Assembly Language Book 353

EDITOR. ASM continued

POP

POP

POP

RET

WRITE TO MEMORY ENDP

PUBLIC EDITBYTE

EXTRN SAVE_REAL_CURSOR:NEAR, RESTORE_REAL_CURSOR:NEAR

EXTRN MOV_TO_HEX_POSITION:NEAR, MOVTOASCI I_POSITION:NEAR

EXTRN WRITE_PHANTOM:NEAR, WRITE_PROMPT_LINE:NEAR

EXTRN CURSOR_RIGHT:NEAR, WRITE_HEX:NEAR, WRITE_CHAR:NEAR

DATA_SEG SEGMENT PUBLIC

EXTRN EDITOR_PROMPT:BYTE

DATA_SEG ENDS

; This procedure changes a byte in memory and on the screen.

DL Byte to write into SECTOR, and change on screen

Reads:

SAVE_REAL_CURSOR , RESTORE_REAL_CURSOR

MOV_TO_HEX_POSITION, MOV_TO_ASCI I_POSITION

WRITE_PHANTOM, WRITE_PROMPT_LINE, CURSOR_RIGHT

WRITEHEX, WRITECHAR, WRITETOMEMORY

EDITOR PROMPT

EDIT_BYTE PROC NEAR

PUSH DX

CALL SAVEREALCURSOR

CALL MOV_TO_HEX_POSITION

CALL CURSOR_RIGHT

CALL WRITE_HEX

CALL MOV_TO_ASC IMPOSITION

CALL WRITE_CHAR

CALL RESTORE_REAL_CURSOR

CALL WRITE_PHANTOM

CALL WRITETOMEMORY

LEA DX.EDITORPROMPT

;Move to the hex number in the

; hex window

;Write the new number

;Move to the char, in the ASCII window

;Write the new character

;Move cursor back where it belongs

.•Rewrite the phantom cursor

;Save this new byte in SECTOR

354 Listing of DSKPATCH

EDITOR. ASM continued

CALL WRITE_PROMPT_LINE

POP DX

RET

EDIT_BYTE ENDP

COOE_SEG ENDS

END

KBD IO.ASM

CGROUP GROUP CO0E_SEG, DATA_SEG

ASSUME CS: CGROUP, DS: CGROUP

Peter Norton's Assembly Language Book 355

BS EQU 8

CR EQU 13

ESC EQU 27

;Backspace character

.-Carriage- return character

/Escape character

CODE_SEG SEGMENT PUBLIC

PUBLIC STRING TO UPPER

; This procedure converts the string, using the DOS format for strings, ;

; to all uppercase letters. ;

DS:DX Address of string buffer

STRING_TO_UPPER PRC

PUSH AX

PUSH BX

PUSH CX

MOV BX.DX

INC BX

MOV CL,[BX]

XOR CH.CH

UPPERLOOP:

INC BX

MOV AL, [BX]

CMP AL,'a'

JB NOTLOUER

CMP AL.'z'

JA NOTJ.OWER

ADO AL.'A'-'a 1

MOV [BX],AL

NOTJ.OWER:

LOOP UPPER_LOOP

POP CX

NEAR

;Point to character count

.•Character count in 2nd byte of buffer

; CI ear upper byte of count

; Point to next character in buffer

;See if it is a lowercase letter

;Nope

; Convert to uppercase letter

356 Listing of DSKPATCH

KBD_IO.ASM continued

POP BX

POP AX

RET

STRING TO UPPER ENDP

; This procedure converts a character from ASCII (hex) to a nibble (4 ;

; bits).

; AL Character to convert
;

; Returns: AL Nibble

CF Set for error, cleared otherwise

CONVERT_HEX_DIGIT PI

CMP AL.'O'

JB BAD_DIGIT

CMP AL, '9'

JA TRY_HEX

SU8 AL.'O'

CLC

RET

TRYHEX:

CMP AL, 'A'

JB BAD_DIGIT

CMP AL.'F'

JA BADDIGIT

SUB AL,'A'-10

CLC

RET

BAD_DIGIT:

STC

RET

CONVERT_HEX_ DIGIT E

;Is it a legal digit?

;Nope

;Not sure yet

;Might be hex digit

;Is decimal digit, convert to nibble

;Clear the carry, no error

;Not sure yet

;Not hex

;Not sure yet

;Not hex

;Is hex, convert to nibble

;Clear the carry, no error

;Set the carry, error

ENDP

Peter Norton's Assembly Language Book 357

KBD_IO.ASM continued

PUBLIC HEX TO BYTE

; This procedure converts the two characters at DS:DX from hex to one

; byte.

; DS:DX Address of two characters for hex number

; Returns:

AL Byte

CF Set for error, clear if no error

; Uses: CONVERT HEX DIGIT

HEX_TO_BYTE PROC NEAR

PUSH BX

PUSH CX

MOV BX.DX

MOV AL,[BX]

CALL CONVERT_HEX_DIGIT

JC BAD_HEX

MOV CX.4

SHL AL,CL

MOV AH.AL

INC BX

MOV AL,[BX]

CALL CONVERTHEXJHGIT

JC BADHEX

OR AL,AH

CLC

DONE_HEX:

POP CX

POP BX

RET

BAD_HEX:

STC

JMP DONE_HEX

HEXTOBYTE ENDP

;Put address in BX for indirect addr

;Get first digit

;Bad hex digit if carry set

;Now multiply by 16

; Retain a copy

;Get second digit

;Bad hex digit if carry set

;Combine two nibbles

;Clear carry for no error

;Set carry for error

358 Listing of DSKPATCH

KBD 10. ASM continued

PUBLIC

EXTRN

READ_STRING

WRITE CHAR: NEAR

This procedure performs a function very similar to the DOS OAh

function. But this function will return a special character if a

function or keypad key is pressed- -no return for these keys. And

ESC will erase the input and start over again.

DS:DX Address for keyboard buffer. The first byte must

contain the maximum number of characters to read (plus

one for the return). And the second byte will be used

by this procedure to return the number of characters

actually read.

No characters read

-1 One special character read

otherwise number actually read (not including

Enter key)

BACK SPACE, WRITE CHARUses:

READSTRING PROC NE

PUSH AX

PUSH BX

PUSH SI

MOV SI.DX

START_OVER:

MOV BX,2

MOV AH,

7

INT 21h

OR AL.AL

JZ EXTENDED

NOTEXTENDED:

CMP AL.CR

JE ENDJNPUT

CMP AL,BS

JNE NOT_BS

CALL BACKSPACE

CMP BL,2

JE START OVER

;Use SI for index register and

;BX for offset to beginning of buffer

;Call for input with no checking

; for CTRL -BREAK and no echo

;Is character extended ASCII?

;Yes, read the extended character

;Entnd char is error unless buf empty

;Is this a carriage return?

;Yes, we are done with input

;Is it a backspace character

;Nope

;Yes, delete character

;Is buffer empty?

;Yes, can now read extended ASCII again

KBD_IO.RSM continued

Peter Norton's Assembly Language Book 359

JMP SHORT READ NEXT CHAR

NOT BS: CMP AL.ESC

JE PURGE BUFFER

CMP BL.CSI]

JA BUFFER FULL

MOV [SI+BX],AL

INC BX

PUSH DX

MOV DL,AL

CALL WRITE CHAR

POP DX

READ NEXT CHAR

MOV AH,

7

INT 21h

OR AL.AL

JNE NOT EXTENDED

MOV AH,

7

INT 21h

;No, continue reading normal characters

;Is it an ESC- -purge buffer?

;Yes, then purge the buffer

;Check to see if buffer is full

; Buffer is full

;Else save char in buffer

;Point to next free character in buffer

.•Echo character to screen

;An extended ASCII char is not valid

; when the buffer is not empty

;Char is valid

;Throw out the extended character

Signal an error condition by sending a beep

character to the display: chr$(7).

SIGNAL ERROR:

PUSH DX

MOV DL,7

MOV AH,

2

INT 21h

POP DX

JMP SHORT READ NEXT CHAR

;Sound the bell by writing chr$(7)

;Now read next character

; Empty the string buffer and erase all the

; characters displayed on the screen.

PURGE_BUFFER:

PUSH ex

360 Listing of DSKPATCH

KBD 10. ASM continued

MOV CL f [SI]

XOR CH.CH

PURGE LOOP:

CALL BACK SPACE

LOOP PURGE LOOP

POP CX

JMP START OVER

; Backspace over maximum number of

; characters in buffer. BACKSPACE

; will keep the cursor from moving too

; far back

;Can now read extended ASCII characters

; since the buffer is empty

; The buffer was full, so can't read another

; character. Send a beep to alert user of

; buffer-full condition.

BUFFERFULL:

JMP SHORT SIGNAL ERROR ;If buffer full, just beep

Read the extended ASCII code and place this

in the buffer as the only character, then

return -1 as the number of characters read.

EXTENDED:

MOV AH,

7

INT 21h

MOV [SI*2],AL

MOV BL.OFFh

JMP SHORT END STRING

;Read an extended ASCII code

Place just this char in buffer

Nunt chars read = -1 for special

; Save the count of the number of characters

; read and return.

ENDJNPUT:

SUB BL,2

END_STRING:

MOV [SM],BL

POP SI

POP BX

;Done with input

; Count of characters read

.-Return number of chars read

Peter Norton's Assembly Language Book 361

KBD_IO.ASM continued

POP AX

RET

READ STRING ENDP

PUBLIC READ BYTE

; This procedure reads either a single ASCII character or a two-di

; hex number. This is just a test version of READ BYTE.

git

; Returns byte in AL Character code (unless AH = 0)

AH 1 if read ASCII char

; if no characters read

;
-1 if read a special key

; Uses: HEX_TO_BYTE, STRING_TO_UPPER,

; Reads: KEYBOARDJNPUT, etc.

; Writes: KEYBOARD INPUT, etc.

READ STRING

READBYTE
PUSH

MOV

LEA

CALL

CMP

JE

JB

CMP

JE

CALL

LEA

CALL

JC

MOV

DONEREAD:

POP

RET

NOCHARACTERS:

XOR

PROC NEAR
DX

CHAR_NUM_LIMIT,3

DX, KEYBOARDJNPUT

READ_STRING

NUM_CHARS_READ,1

ASCIIJNPUT

NO_CHARACTERS

BYTE PTR NUM_CHARS_READ,

SPECIAL_KEY

STRINGJOUPPER

DX, CHARS

HEX_TO_BYTE

NO_CHARACTERS

AH.1

AH, AH

;Allow only two characters (plus Enter)

;See how many characters

;Just one, treat as ASCII character

;Only Enter key hit

OFFh ,-Special function key?

;Yes

;No, convert string to uppercase

;Address of string to convert

; Convert string from hex to byte

;Error, so return 'no characters read 1

; Signal read one character

;Set to 'no characters read'

362 Listing of DSKPATCH

KBD_IO.ASM continued

JMP DONEREAD

ASCII INPUT:

MOV AL, CHARS

MOV AH,1

JMP DONE READ

SPECIAL KEY:

MOV AL,CHARS[0]

MOV AH.OFFh

JMP DONEREAD

READ BYTE ENDP

:Load character read

;Signal read one character

;Return the scan code

;Signal special key with -1

PUBLIC READ DECIMAL

; This procedure takes the output buffer of READSTRING and converts

; the string of decimal digits to a word.

; AX Word converted from decimal

; CF Set if error, clear if no error

; Uses: READSTRING

;
Reads: KEYBOARDINPUT, etc.

; Writes: KEYBOARD INPUT, etc.

READ_DECIMAL PROC NEAR

PUSH BX

PUSH CX

PUSH DX

MOV CHAR_NUM_LIMIT,6

LEA DX,KEYBOARD_INPUT

CALL READ_STRING

MOV CL,NUM_CHARS_READ

XOR CH,CH

CMP CL,0

JLE BAD_DECIMAL_DIGIT

XOR AX, AX

XOR BX,BX

CONVERT_DIGIT:

MOV DX,10

;Max number is 5 digits (65535)

;Get number of characters read

;Set upper byte of count to

;Return error if no characters read

;No chars read, signal error

;Start with number set to

;Start at beginning of string

.•Multiply number by 10

KBD 10. ASM continued

Peter Norton's Assembly Language Book 363

MUL DX

JC BAD_DECIMAL_DIGIT

MOV DL, CHARS [BX]

SUB DL, '0'

JS BAD_DECIMAL_DIGIT

CMP DL,9

JA BAD_DECIMAL_DIGIT

ADD AX, OX

INC BX

LOOP CONVERT_DIGIT

DONE_DECIMAL:

POP DX

POP CX

POP BX

RET

BAD_DECIMAL_DIGIT:

STC

JMP DONE_DECIMAL

READ_DEC1MAL ENDP

PUBLIC BACKSPACE

EXTRN WRITE CHAR: NEAR

/Multiply AX by 10

;CF set if MUL overflowed one word

;Get the next digit

;And convert to a nibble (4 bits)

;Bad digit if <

;Is this a bad digit?

;Yes

;No, so add it to number

; Point to next character

;Get the next digit

;Set carry to signal error

This procedure deletes characters, one at a time, from the buffer and

the screen when the buffer is not empty. BACK_SPACE simply returns

when the buffer is empty.

DS:SI+BX Most recent character still in buffer

Uses: WRITE CHAR

BACK SPACE PROC

PUSH AX

PUSH DX

CMP BX,2

JE END BS

DEC BX

MOV AH,

2

NEAR

;Is buffer empty?

;Yes, read the next character

; Remove one character from buffer

;Remove character from screen

364 Listing of DSKPATCH

KBD_IO.ASM continued

MOV DL.BS

INT 21h

MOV DL,20h

CALL WRITE_CHAR

MOV DL.BS

INT 21h

END_BS: POP DX

POP AX

RET

BACKSPACE ENDP

CODE SEG ENDS

;Write space there

;8ack up again

DATA_SEG SEGMENT PUBLIC

KEYBOARDINPUT LABEL BYTE

CHARNUMJ.IMIT DB

NUM_CHARS_READ DB

CHARS DB 80 DUP

DATASEG ENDS

.-Length of input buffer

; Number of characters read

;A buffer for keyboard input

END

Peter Norton's Assembly Language Book 365

PHANTOM.ASM

CGROUP GROUP CODE_SEG, DATA_SEG

ASSUME CS: CGROUP, DS: CGROUP

COOE_SEG SEGMENT PUBLIC

PUBLIC MOV TO HEX POSITION

EXTRN GOTO XY:NEAR

DATA SEG SEGMENT PUBLIC

EXTRN LINES BEFORE SECTOR:BYTE

DATA SEG ENDS

; This procedure moves the real cursor to the position of the phantom

; cursor in the hex window.

Uses:

Reads:

GOTOXY

LINES_BEFORE_SECTOR, PHANTOMCURSORX, PHANTOMCURSORJT ;

MOV TO HEX POSITION

PUSH AX

PUSH CX

PUSH DX

MOV DH,LINES_BEFORE_SECTOR

ADD DH,2

ADD DH,PHANTOM_CURSOR_Y

MOV DL,8

MOV CL.3

MOV AL,PHANTOM_CURSOR_X

MUL CL

ADD DL,AL

CALL GOTOXY

POP DX

POP CX

POP AX

RET

MOVTO HEX POSITION ENDP

;Find row of phantom (0,0)

;Plus row of hex and horizontal bar

;DH = row of phantom cursor

; Indent on left side

;Each column uses 3 characters, so

; we must multiply CURSORX by 3

;And add to the indent, to get column

; for phantom cursor

PUBLIC MOV_TO_ASC IMPOSITION

EXTRN GOTO_XY:NEAR

DATA SEG SEGMENT PUBLIC

366 Listing of DSKPATCH

PHANTOM. ASM continued

EXTRN LINES_BEFORE_SECTOR:BYTE

DATA SEG ENDS

; This procedure moves the real cursor to the beginning of the phantom

; cursor in the ASCII window.

; Uses: GOTOXY

; Reads: LINES BEFORE SECTOR, PHANTOM CURSOR X, PHANTOM CURSOR Y

MOV_TO_ASC IMPOSITION PROC NEAR

PUSH AX

PUSH DX

MOV DH,LINES_BEFORE_SEC

ADD DH,2

ADD DH,PHANTOM_CURSOR_Y

MOV DL.59

ADD DL,PHANTOM_CURSOR_X

CALL GOTO XY

POP DX

POP AX

RET

MOV TO ASCII POSITION ENDP

;Plus row of hex and horizontal bar

;DH = row of phantom cursor

; Indent on left side

;Add CURSORX to get X position

; for phantom cursor

PUBLIC SAVE REAL CURSOR

; This procedure saves the position of the real cursor in the two

; variables REAL_CURSOR_X and REAL_CURSOR_Y.

REAL CURSOR X, REAL CURSOR Y

SAVE_REAL_CURSOR PROC NEAR

PUSH AX

PUSH BX

PUSH CX

PUSH DX

MOV AH,

3

;Read cursor position

XOR BH,BH ; on page

INT 10h ;And return in DL.DH

MOV REAL_CURSOR_Y,DL ;Save position

MOV REAL CURSOR X,DH

PHANTOM. ASM continued

Peter Norton's Assembly Language Book 367

POP

POP

POP

POP

RET

SAVE REAL CURSOR

PUBLIC RESTORE_REAL_CURSOR

EXTRN GOTO XY:NEAR

This procedure restores the real cursor to its old position, saved in

REAL CURSOR X and REAL CURSOR Y.

; Uses: GOTO XY

; Reads: REAL_CURSOR_X, REAL_CURSOR_Y

RESTORE REAL CURSOR PROC NEAR

PUSH DX

MOV DL,REAL_CURSOR_Y

MOV DH,REAL_CURSOR_X

CALL GOTO XY

POP DX

RET

RESTORE REAL CURSOR ENDP

PUBLIC URITE_PHANTOM

EXTRN WRITE ATTRIBUTE N TIMES:NEAR

; This procedure uses CURSOR_X and CURSORJT, through MOV_TO_...,

; coordinates for the phantom cursor. WRITE_PHANTOM writes this

; phantom cursor.

as the

; Uses: URITE_ATTRIBUTE_N_TIMES, SAVE_REAL_CURSOR

RESTORE_REAL_CURSOR, MOV_TO_HEX_POSITION

MOV TO ASCII POSITION

WRITE_PHANTOM PROC

PUSH CX

PUSH DX

NEAR

368 Listing of DSKPATCH

PHANTOM. ASM continued

CALL SAVE_REAL_CURSOR

CALL MOV_TO_HEX_POSITION

MOV CX.4

MOV DL,70h

CALL URITE_ATTRIBUTE_N_TIMES

CALL MOV_TO_ASC 1
1
_POS I T I ON

MOV CX.1

CALL WRITE_ATTRIBUTE_N_TIMES

CALL RESTORE_REAL_CURSOR

POP DX

POP CX

RET

WRITEPHANTOM ENDP

PUBLIC ERASE_PHANTOM

EXTRN WRITE ATTRIBUTE N TIMES

; Coord, of cursor in hex window

;Make phantom cursor four chars wide

;Coord. of cursor in ASCII window

;Cursor is one character wide here

This procedure erases the phantom cursor, just the opposite of

WRITE PHANTOM.

Uses: WRITE_ATTRIBUTE_N_TIMES, SAVEREALCURSOR

RESTOREREALCURSOR, MOVTOHEXPOSITION

MOV TO ASCII POSITION

ERASE_PHANTOM PROC NEAR

PUSH CX

PUSH DX

CALL

CALL

SAVE REAL CURSOR

MOV_TO_HEX_POSITION

MOV CX.4

MOV 0L,7

CALL WR I TE_ATTR I BUTE_N_T I MES

CALL MOVTOASC IMPOSITION

MOV CX.1

CALL WRITE_ATTRIBUTE_N_TIMES

CALL RESTORE_REAL_CURSOR

POP DX

POP CX

;Coord. of cursor in hex window

; Change back to white on black

Peter Norton's Assembly Language Book 369

PHANTOM. ASM continued

RET

ERASE PHANTOM ENDP

; These four procedures move the phantom cursors.

; Uses: ERASE_PHANTOM, WRITE_PHANTOM

SCROLL_DOUN, SCROLLJJP

; Reads: PHANTOM_CURS0R_X, PHANTOM_CURSOR_Y

; Writes: PHANTOM CURSOR X, PHANTOM CURSOR Y

PUBLIC PHANTOM_UP

PHANTOMUP PROC NEAR

CALL ERASE_PHANTOM

DEC PHANTOMCURSORJY

JNS WASNT_AT_TOP

CALL SCROLL_DOWN

WASNTATTOP:

CALL WRITE_PHANTOM

RET

PHANTOMJJP ENDP

PUBLIC PHANTOM_DOWN

PHANTOMOOWN PROC NEAR

CALL ERASE_PHANTOM

INC PHANTOMCURSORJf

CMP PHANTOM_CURSOR_Y,16

JB WASNTATBOTTOM

CALL SCROLLJJP

WASNTATBOTTOM

CALL WRITE_PHANTOM

RET

PHANTOMDOWN ENDP

;Erase at current position

;Move cursor up one line

;Was not at the top, write cursor

;Was at the top, scroll

; Write the phantom at new position

;Erase at current position

;Move cursor up one line

;Was; it at the bottom?

;No, so write phantom

;Was at bottom, scroll

;Write the phantom cursor

PUBLIC PHANTOMJ.EFT

PHANTOMLEFT PROC NEAR

CALL ERASEPHANTOM

DEC PHANTOM CURSOR X

; Erase at current position

;Move cursor left one column

370 Listing of DSKPATCH

PHANTOM. ASM continued

JNS UASNT_AT_LEFT

MOV PHANTOM_CURSOR_X

UASNTATJ.EFT:

CALL WRITE_PHANTOM

RET

PHANTOMJ.EFT ENDP

PUBLIC PHANTOM_RIGHT

PHANTOMRIGHT PROC NEAR

CALL ERASE_PHANTOM

INC PHANTOMCURSORX

CMP PHANTOM_CURSOR_X 16

JB WASNT_AT_RIGHT

MOV PHANTOMCURSORX 15

WASNT_AT_RIGHT:

CALL WRITEPHANTOM

RET

PHANTOM RIGHT ENDP

;Was not at the left side, write cursor

;Uas at left, so put back there

;Urite the phantom cursor

;Erase at cursor position

;Move cursor right one column

;Uas it already at the right side?

;Uas at right, so put back there

;Write the phantom cursor

DATA SEG

EXTRN

EXTRN

DATA SEG

DISP_HALF_SECTOR:NEAR, GOTO_XY:NEAR

SEGMENT PUBLIC

SECTOR_OFFSET:WORD

LINES_BEFORE_SECTOR:BYTE

ENDS

These two procedures move tvfueen the two half-sector displays.

Uses: WRITE_PHANTOM, DISP_HALF_SECTOR, ERASEPHANTOM, GOTO_XY

SAVE_REAL_CURSOR , RESTORE_REAL_CURSOR

Reads: LINES_BEFORE_SECTOR

Writes: SECTOR OFFSET, PHANTOM CURSOR Y

SCROLLJJP PROC NEAR

PUSH DX

CALL ERASE_PHANTOM .-Remove the phantom cursor

CALL SAVE_REAL_CURSOR ;Save the real cursor position

XOR DL,DL ;Set cursor for half-sector display

MOV DH, LINES BEFORE SECTOR

Peter Norton's Assembly Language Book 371

PHANTOM. ASM continued

ADD DH,2

CALL GOTO_XY

MOV DX,256

MOV SECTOR_OFFSET,DX

CALL DISP_HALF_SECTOR

CALL RESTORE_REAL_CURSOR

MOV PHANTOM_CURSOR_Y,0

CALL WRITE_PHANTOM

POP DX

RET

SCROLLJJP ENDP

SCROLL_DOUN PROC NEAR

PUSH DX

CALL ERASE_PHANTOM

CALL SAVE_REAL_CURSOR

XOR DL.DL

MOV DH,LINES_BEFORE_SECTOR

ADD DH,2

CALL GOTO_XY

XOR DX.DX

MOV SECTOR_OFFSET,DX

CALL DISP_HALF_SECTOR

CALL RESTORE_REAL_CURSOR

MOV PHANTOM_CURSOR_Y,15

CALL WRITE_PHANTOM

POP DX

RET

SCROLL_DOUN ENDP

COOE_SEG ENDS

DATASEG SEGMENT PUBLIC

REAL_CURSOR_X DB

REALCURSOR Y DB

;Display the second half sector

; Restore the real cursor position

;Cursor at top of second half sector

;Restore the phantom cursor

; Remove the phantom cursor

;Save the real cursor position

;Set cursor for half-sector display

;Display the first half sector

.-Restore the real cursor position

;Cursor at bottom of first half sector

; Restore the phantom cursor

PUBLIC PHANTOM_CURSOR_X, PHANTOM_CURSOR_Y

PHANTOM_CURSOR_X DB

PHANTOMCURSORY DB

DATA SEG ENDS

END

372 Listing of DSKPATCH

VIDEO_IO.ASM

CGROUP GROUP CODE_SEG, DATA_SEG

ASSUME CSrCGROUP, DS:CGROUP

COOE_SEG SEGMENT PUBLIC

ORG 100h

PUBLIC WRITE HEX

; This procedure converts the byte in the DL register to hex and writes
;

; the two hex digits at the current cursor position. ;

DL Byte to be converted to hex

Uses: WRITE HEX DIGIT

WRITE HEX PROC NEAR

PUSH CX

PUSH DX

MOV DH.DL

MOV CX,4

SHR DL,CL

CALL WRITE HEX DIGIT

MOV DL,DH

AND DL.OFh

CALL WRITE HEX DIGIT

POP DX

POP CX

RET

WRITE HEX ENDP

;Entry point

;Save registers used in this procedure

;Make a copy of byte

;Get the upper nibble in DL

.-Display first hex digit

;Get lower nibble into DL

; Remove the upper nibble

;Di splay second hex digit

PUBLIC WRITE HEX DIGIT

; This procedure converts the lower 4 bits of DL to a hex digit and

; writes it to the screen.

; DL Lower 4 bits contain number to be printed in hex

; Uses: WRITE CHAR

VIDEO_IO.ASM continued

Peter Norton's Assembly Language Book 373

URITE_HEX_DIGIT PROC NEAR

PUSH DX

CMP DL,10

JAE HEXLETTER

ADD DL,"0"

JMP Short WRITE_DIGIT

HEXJ.ETTER:

ADD DL,"A"-10

WRITE_DIGIT:

CALL WRITE CHAR

POP DX

RET

WRITE_HEX_DIGIT ENDP

PUBLIC WRITE_CHAR

EXTRN CURSOR RIGHT: NEAR

;Save registers used

;Is this nibble <10?

;No, convert to a letter

;Yes, convert to a digit

;Now write this character

; Convert to hex letter

^Display the letter on the screen
;Restore old value of AX

This procedure outputs a character to the screen using the ROM BIOS

routines, so that characters such as the backspace are treated as

any other character and are displayed.

This procedure must do a bit of work to update the cursor position.

DL Byte to print on screen

CURSOR RIGHT

WRITE CHAR PROC NEAR

PUSH AX

PUSH BX

PUSH CX

PUSH DX

MOV AH,

9

MOV BH,0

MOV CX,1

MOV AL.DL

MOV BL.7

INT 10h

CALL CURSOR RIGHT

;Call for output of character/attribute

;Set to display page

;Write only one character

.•Character to write

; Norma I attribute

;Write character and attribute

;Now move to next cursor position

374 Listing of Dskpatch

VIDEO 10. ASM continued

POP DX

POP CX

POP BX

POP AX

RET

WRITE CHAR ENI

PUBLIC WRITE DECIMAL

; This procedure writes a 16-bit, unsigned number in decimal notation. ;

; DX N : 16-bit, unsigned number
;

; Uses: WRITE HEX DIGIT

WRITE_DECIMAL PROC NEAR

PUSH AX

PUSH CX

PUSH DX

PUSH SI

MOV AX.DX

MOV SI, 10

XOR CX.CX

NONZERO:

XOR DX.DX

DIV SI

PUSH DX

INC CX

OR AX, AX

JNE NONZERO

WRITE_DIGIT_LOOP:

POP DX

CALL WRITE_HEX_DIGIT

LOOP WRITE_DIGIT_LOOP

END_DEC1MAL:

POP SI

POP DX

POP CX

POP AX

Save registers used here

;Will divide by 10 using SI

;Count of digits placed on stack

;Set upper word of N to

^Calculate N/10 and (N mod 10)

;Push one digit onto the stack

;One more digit added

;N = yet?

;Nope, continue

;Get the digits in reverse order

Peter Norton's Assembly Language Book 375

VIDEO 10. ASM continued

RET

WRITE DECIMAL ENDP

PUBLIC WRITE_CHAR_N_TIMES

This procedure writes more than one copy of a character

DL Character code

CX Number of times to write the character

; Uses: WRITE CHAR

WRITE_CHAR_N_TIMES PROC NEAR

PUSH CX

NJNMES:

CALL WRITE_CHAR

LOOP N_TIMES

POP CX

RET

WRITE CHAR N TIMES ENDP

PUBLIC WRITE PATTERN

This procedure writes a line to the screen, based on data in the

form

DB {character, number of times to write character},

Where O} means that x can be repeated any number of times

DS:DX Address of above data statement

Uses: WRITE CHAR N TIMES

WRITE_PATTERN PROC NEAR

PUSH AX

PUSH CX

PUSH DX

376 Listing of DSKPATCH

VIDEO_IO.ASM continued

PUSH SI

PUSHF

CLD

MOV SI.DX

PATTERNLOOP:

LOOSB

OR AL,AL

JZ END_PATTERN

MOV DL,AL

LOOSB

MOV CL,AL

XOR CH.CH

CALL URITECHARNTIMES

JMP PATTERNLOOP

ENDPATTERN:

POPF

POP SI

POP DX

POP CX

POP AX

RET

WRITE_PATTERN ENDP

Save the direction flag

;Set direction flag for increment

;Move offset into SI register for LODSB

;Get character data into AL

;Is it the end of data (Oh)?

;Yes, return

;No, set up to write character N times

;Get the repeat count into AL

;And put in CX for URITE_CHAR_N_TIMES

;2ero upper byte of CX

Restore direction flag

PUBLIC WRITEHEADER

DATA_SEG SEGMENT PUBLIC

EXTRN HEADER_LINE_NO:BYTE

EXTRN HEADER_PART_1:BYTE

EXTRN HEADER_PART_2:BYTE

EXTRN DISK_DRIVE_NO:BYTE

EXTRN CURRENT_SECTOR_NO:WORD

DATASEG ENDS

EXTRN GOTO_XY:NEAR, CLEAR_TO_END_OF_LINE:NEAR

; This procedure writes the header with disk-drive and sector number.

Reads:

GOTO_XY, WRITE_STRING, URITE_CHAR. WR I TE_DECIMAL

CLEAR_TO_END_OF_LINE

HEADER_LINE_NO, HEADER_PART_1 , HEADER_PART_2

DISK DRIVE NO, CURRENT SECTOR NO

VIDEO_IO.ASM continued

Peter Norton's Assembly Language Book 377

WRITE_HEADER PROC NEAR

PUSH DX

XOR DL.DL

HOV DH,HEADER_LINE_NO

CALL GOTO_XY

LEA DX,HEADER_PART_1

CALL WRITE_STRING

HOV DL,DISK_DRIVE_NO

ADD DL,'A'

CALL WRITE_CHAR

LEA DX,HEADER_PART_2

CALL WRITE_STRING

MOV DX,CURRENT_SECTOR_NO

CALL WRITE_DECIMAL

CALL CLEAR_TO_END_OF_LINE

POP DX

RET

WRITE HEADER ENDP

;Move cursor to header line number

;Print drives A. B.

: Clear rest of sector number

PUBLIC WRITE STRING

; This procedure writes a string of characters to the screen. The

; string must end with DB

DS:DX Address of the string

Uses: WRITE CHAR

WRITE STRING PROC

PUSH AX

PUSH DX

PUSH SI

PUSHF

CLD

HOV SI,D

STRING LOOP:

LODSB

OR AL,A

NEAR

;Save direction flag

;Set direction for increment (forward)

;Place address into SI for LODSB

;Get a character into the AL register

;Have we found the yet?

378 Listing of DSKPATCH

VIDEO_IO.ASM continued

JZ END_OF_STRING

MOV DL.AL

CALL URITE CHAR

JMP STRING LOOP

END OF STRING:

POPF

POP SI

POP DX

POP AX

RET

WRITE STRING ENDP

;Yes, we are done with the string

;No, write character

;Restore direction flag

PUBLIC UR1TE_PR0MPT_LINE
EXTRN CLEAR_TO_END_OF_LINE:NEAR

EXTRN GOTOXYrNEAR

DATA_SEG SEGMENT PUBLIC

EXTRN PROMPT_LINE_NO:BYTE

DATA SEG ENDS

; This procedure writes the prompt line to the screen and clears the

; end of the line.

DS:DX Address of the prompt- line message

; Uses:

; Reads:

WRITESTRING, CLEAR_TO_END_OF_LINE, GOTOXY

PROMPT LINE NO

WRITE_PROMPT_LINE

PUSH DX

XOR

HOV

CALL

POP

PROC NEAR

DL.DL

DH,PROMPT_LINE_NO

GOTO_XY

DX

CALL URITE_STRING

CALL CLEAR TO END OF LINE

RET

URITE PROMPT LINE

;Urite the prompt line and

; move the cursor there

PUBLIC WRITE_ATTRIBUTE_N_TIMES

EXTRN CURSOR RIGHT: NEAR

Peter Norton's Assembly Language Book 379

VIDEO_IO.ASM continued

; This procedure sets the attribute for N characters, starting at the

; current cursor position.

; CX Number of characters to set attribute for

; DL New attribute for characters

; Uses: CURSOR_RIGHT

WRITE_ATTRIBUTE _N_TIMES

PUSH AX

PUSH BX

PUSH CX

PUSH DX

MOV BL,DL

XOR BH.BH

MOV DX.CX

MOV CX,1

ATTRLOOP:

MOV AH,

8

INT 10h

MOV AH,

9

INT 10h

CALL CURSOR_RIGHT

DEC DX

JNZ ATTR_LOOP

POP DX

POP CX

POP BX

POP AX

RET

WRITE_ATTRIBUTE _N_TIMES ENDP

CODE SEG ENDS

PROC NEAR

;Set attribute to new attribute

;Set display page to

;CX is used by the BIOS routines

;Set attribute for one character

;Read character under cursor

;Write attribute/character

;Set attribute for N characters?

;No, continue

END

APPENDIX C

SEQMENT LOAD ORDER

Segment Load Order 382
Phase Errors 384
EXE2BIN File Cannot be Converted 386

381

382 Segment Load Order

A he IBM Macro Assembler (version 1.0 and 2.0) loads segments in an order

different from that used by all the more recent versions of the Microsoft Macro
Assembler. In this appendix, we'll look at the question of segment load order,

and see how knowledge of this order can be useful when EXE2BIN gives you

the error message File cannot be converted.

Segment Load Order
All of the examples after Chapter 13 use two segments, CODE_SEG and

DATA_SEG. The IBM versions of the assembler tell LINK to load these seg-

ments into memory in alphabetic order. So, when we wrote:

CGRO0P GROUP C0DE_SEG, DATA_SEG
ASSUME_CS:CGROUP, DS:CGR0UP

DATA_SEG SEGMENT PUBLIC

DATA_SEG ENDS

C0DE_SEG SEGMENT PUBLIC
C0DE_SEG ENDS

END

The IBM versions of the Macro Assembler tell LINK to load DATA_SEG into

memory after loading CODE_SEG. Let's turn this code fragment into a real

program, so that we can look at the load map.
Here's our new version. It doesn't do much, but it's enough for us to see how

LINK loads the segments into memory.

CGROUP GROUP C0DE_SEG, DATA_SEG
ASSUME CS:CGR0UP, DS:CGR0UP

DATA_SEG
DB

DATA_SEG

SEGMENT PUBLIC

ENDS

C0DE_SEG
ORG

MAIN: INT

C0DE_SEG

SEGMENT PUBLIC
lOOh

ZOh

ENDS

Peter Norton's Assembly Language Book 383

Type in this file, name it SEGTEST.ASM, and then assemble and link it to

create a load map:

A>LINK SEGTEST,SEGTEST,SEGTEST/MAP;

If you've got an IBM version of the assembler, you'll see this load map:

Warning: no stack segment

Start Stop Length Name Class

D0D00H Q0101H 00105H C0DE_SEG
D011DH D011DH D0D01H DATA SEG

Origin Group
DDDD:D CGROOP

Address Publics by Name

Address Publics by Value

Program entry point at D000:D1DD

LINK loaded CODE_SEG into memory before DATA_SEG. This is exactly

the order we want. In fact, CODE_SEG must be the first segment in memory,

so our program will begin at lOOh from the start of the group.

On the other hand, your map may have had these two segments in reverse

order. That's a sign that you have a Microsoft version of the assembler. If you

do, you'll see the following load map, instead:

Warning: no stack segment

Start Stop Length Name

GDODOH 00Q0DH 00001H DATA_SEG
0DD10H 001UH 00102H C0DE_SEG

Origin Group

0000:0 CGROUP

Address Publics by Name

Address Publics by Value

Program entry point at 000D:0110

384 Segment Load Order

Nothing's right in this load map. DATA_SEG appears in memory before

CODE_SEG, and that means the ORG lOOh statement gives us an offset from

the end of DATA_SEG, rather than from the start of the group.

The last line in this map shows that the starting address of our program is

now HOh. But it has to be at 100H for a .COM file. So, what will happen if we
try to create a .COM file from this?

Run EXE2BIN and you'll see the following:

A>EXE2BIN SEGTEST SEGTEST.COM

File cannot be converted
A>

That's not a very useful error message—it doesn't give us a clue about why it

can't convert our program. But that's where the load map comes in handy. By
looking at the load map, we can see that LINK loaded our segments into mem-
ory in the wrong order. Then we just have to figure out how to fix the problem.

We've been careful in this book to make sure that all the programs will run

with both the Microsoft and IBM versions of the assembler. This is the reason

we've placed the data segment after the code segment in all of our source files.

If, in your work with assembly language programs, you either create or en-

counter programs in which the data segments appear at the top of the file, use

the IA switch available with the Microsoft versions of MASM. The IA option

tells MASM you want segments loaded in alphabetical order. To try out this

option, reassemble our sample test program, SEGTEST.ASM, with the follow-

ing command:

A>MASM SEGTEST/A;

Link this file again and create a new load map. You should now see the two

segments in alphabetic order, with CODE_SEG first in the file.

Phase Errors

We've been very careful that the examples run with all versions of the

Macro Assembler—IBM and Microsoft—by placing the data segment at the

end of our files. But this is not a good idea in many cases. In this section we'll

look at the problems, and at better ways to organize your segments.

Let's look at a concrete example:

CODE..SEG SEGMENT PUBLIC
ASSUME CS:CODE_SEG, ES:DATA_SEG

BB6II PROC NEAR
MOV AX,DATA_SEG
MOV ES,AX
MOV AL, VARIABLE
MOV AH,4Ch

INT aih

BEGII ENDP

CODE. SEG ENDS

DATft. SEG SEGMENT PUBLIC
VARIABLE DB D

DATA. SEG ENDS

Peter Norton's Assembly Language Book 385

Get the segment number
Set ES so it points to our data
Read ""variable 1

' into AL
Exit to DOS

We've placed the data segment at the end of this program to ensure that

DATA_SEG will be loaded into memory after CODE_SEG. But the assembler

generates a phase error message when we try to assemble it:

A>MASM TEST;

Microsoft (R) Macro Assembler Version 4. DO

Copyright (C) Microsoft Corp ISfll, 1RS3, m&A, 1RA5. All rights reserved.

TEST.ASM(IO) : error t: Phase error between passes

5103b Bytes symbol space free

D Warning Errors
1 Severe Errors

What does phase error mean?
It turns out that the Macro Assembler makes several passes through a file

as it assembles it. On the first pass, it collects information it needs, such as

the type and segments of variables. In the interest of efficiency, the assembler

also starts to assemble the program on the first past; here is where we run

into problems.

MASM assembles the instruction MOV AL,VARIABLE before it knows
what segment contains VARIABLE, so it assembles the MOV instruction as if

we don't need a segment override (which is ES: in this case). On the second

pass, however, MASM notices that it needs to add a segment override since

VARIABLE is in the segment pointed to by the ES register. Unfortunately,

386 Segment Load Order

MASM didn't reserve room for this override instruction during the first pass

(or phase), so it generates a phase error message.

We need to declare all variables before we use them in a file. If we do this,

and we're using the Microsoft Macro Assembler, the data segment will be first

in memory, which usually isn't a problem with .EXE files where we're most
likely to use multiple segments.

If, on the other hand, you want the code segment to be loaded into memory
first, there is a simple solution: Simply place a dummy segment before your

data segment. You can see the details in the following example.

C0DE_SEG SEGMENT PDBLIC ;Load C0DE_SEG first

CODE.SEG ENDS

DATA.SEG SEGMENT PDBLIC
VARIABLE DB

DATA_SEG ENDS

CODE.SEG SEGMENT PDBLIC
ASSUME CS:CODE_SEG, ES:DATA_SEG

BEGIN PROC NEAR

NOV AX,DATA_SEG ;Get the segient number
MOV ES,AX ;Set ES so it points to our data
NOV AL, VARIABLE ;Read "variable" into AL

MOV AH,<Ch ;Exit to DOS

INT Slh

BEGIN ENDP

CODE.SEG ENDS

EXE2BIN File Cannot be Converted

If you have problems with EXE2BIN, first check the load map to make sure

that CODE_SEG is the first segment. Also, make certain you only have two

segments listed. It's possible to have several different versions of the same
segment listed. For example:

0D00DH 001D3H D01D4H CODE_SEG

0011DH 0D1D5H DDDObH DATA_SEG

0D1EDH DD1D1H D0102H C0DE_SEG

Peter Norton's Assembly Language Book 387

In this case, CODE_SEG is fragmented. If you see more than one piece of a

single segment in the load map, it means you've got problems, and they could

stem from several possible sources.

• You may not have a PUBLIC pseudo-op after all of your segment
definitions.

• You may have slightly different SEGMENT definitions in your source

files. Check all your source files and verify that all the SEGMENT defi-

nitions are identical.

• One of your source files may be missing a GROUP statement or the

GROUP statement may not be correct. Check all of the group statements

carefully to make sure they're the same.

• If the GROUP statements are in order, check the ASSUME statements

to make sure they read:

ASSUME CS:CGR0UP, DS:CGR0UP

• You've defined a STACK segment. .COM programs don't need a STACK
segment, and, in fact, you must not define one.

• The entry point is not at lOOh. This may be because you didn't place the

starting procedure's name after the END pseudo-op in the main source

file, or that you've linked the files in the wrong order. The main proce-

dure must be in the first file named in the LINK list.

You'll also find more information on error messages and what they may mean
in Appendix D.

APPENDIX D
COMMON ERROR MESSAQES

MASM 390
LINK 391

EXE2BIN 392

389

390 Common Error Mes

A his appendix lists many of the more common error messages you may en-

counter as you use MASM, LINK, and EXE2BIN. If you don't find an error

message listed here, check either your macro assembler or your DOS manual.

The error messages are in three groups: one for MASM, one for LINK, and
one for EXE2BIN. Within each section, you'll find the error messages listed

alphabetically.

MASM
Block nesting error You'll probably see this error message along with

either an Open procedures or an Open segments message. See the following

descriptions for these two error messages.

End of file, no END directive You're either missing the END state-

ment at the end of your file, or you need to add a blank line after the existing

END statement. The Microsoft versions of the macro assembler expect to find

a blank line at the very end of the file. If you don't have at least one blank line

after END, MASM won't read the END statement.

Must be declared in pass 1 This error message usually appears in con-

nection with a GROUP statement. It means you haven't defined one of the

segments you listed in the GROUP statement. For example, if you have the

line CGROUP GROUP CODE_SEG, DATA_SEG, but you never defined a

segment called DATA_SEG, you'll probably see this message. Verify that

you've declared all the segments listed in the GROUP statement.

No or unreachable CS MASM needs to see an ASSUME statement in

order to know how to assemble some instructions, such as branch or CALL
instructions. This error message means MASM either couldn't find an AS-

SUME statement or the ASSUME it found had an error in it. Check your

source file to make sure you have an ASSUME statement in it, and that the

statement is correct.

Open procedures This means that either you're missing a PROC or an

ENDP statement, or that the names aren't the same on one PROC/ENDP pair.

Make sure every PROC has a matching ENDP statement, and check the pro-

Peter Norton's Assembly Language Book 391

cedure name in both the PROC and the ENDP statements to make sure they
match.

Open segments You're missing a SEGMENT or tm ENDS statement, or

the names aren't the same on one SEGMENT/ENDS pair. Make sure every

SEGMENT has a matching ENDS statement, and check the procedure name
in both the SEGMENT and ENDS statements to make sure they match.

Symbol not defined There are three things you should look for if you see

this error message:

1. You may have misspelled a name. Check the line you see in the error

display to make certain you've typed the name correctly.

2. You may have misspelled the name when you first declared a PROC or

a variable. Check the spelling of the names you see in the faulty line

against the names in the PROC or variable declarations.

3. You may be missing an EXTRN declaration, or the name in the EXTRN
may be misspelled.

LINK
Fixup offset exceeds field width This is a tricky one, and it's often the

hardest bug to swat. This message usually means you've declared some proce-

dure as a FAR procedure, but later declared that same procedure as a NEAR
procedure in an EXTRN declaration.

It can also mean that a group has grown larger than the the 64K limit for

groups. You can check for such errors by looking at the size field in the map
file.

This message can also appear when your segment has become fragmented.

In such cases, the two fragments may be more than 64K apart, which means
that CALLs must be FAR CALLs to work. You'll find more information on

fragmented segments in Appendix C.

If that doesn't seem to be the problem, you'll have to search deeper. Read
Appendix C carefully, then create a load map of your program. You may find a

hint in this load map. For example, check the order of the segments. You may
find they are out of order.

Symbol defined more than once This means you've probably defined

the same procedure or variable in two source files. Make sure you've defined

392 Common Error Messages

each name in only one source file, then use EXTRNs in other places where you

need to use the same procedure or variable.

Unresolved externals When you see this message, either a PUBLIC is

missing from the file in which you declared the procedure or variable, or you

misspelled the name in an EXTRN declaration in some other source file.

Warning: no stack segment This isn't really an error message, it's sim-

ply a warning. You'll see this warning message for the examples in this book,

because we're creating .COM files, and .COM files don't use a separate seg-

ment for the stack. See Chapter 28 for a sample program that doesn't cause

LINK to display this warning.

EXE2BIN
File cannot be converted This is probably the only error message you'll

see from EXE2BIN, and it's not a very helpful one. Most of the time it can

mean one of three things:

1. Your segments are in the wrong order, thus you have a segment in

memory before CODE_SEG. Check the load map to see if this is your
problem. For more information, read Appendix C.

2. Your main program is not the first file you listed in your LINK list. It

must be, so try relinking to make sure this isn't the problem. Again, you
can often spot this type of problem by looking at the load map.

3. Your main program does not have an ORG lOOh as the first statement
after the CODE_SEG SEGMENT PUBLIC declaration. Also, make
sure the END statement in your main source file includes the label of

the instruction at which you want to start—for example, END
DSKPATCH.

If these suggestions don't help, check Appendix C for more information.

APPENDIX E

MISCELLANEOUS TABLES

ASCII Character Codes 394
Extended Keyboard Codes 396
Table of Addressing Modes 397
INT lOh Functions 398
INT 21h Functions 401

393

394 Miscellaneous Tables

Table E-l. ASCII Character Codes

Dec Hex Ch ir Dec Hex Char Dec Hex Char Dec Hex Char

8 8 43 2B + 86 56 U 129 81 1

1 1 9 44 2C 87 57 U 138 82 f

2 2 1) 45 2D - 88 58 X 131 83 a

3 3 * 46 2E 89 59 Y 132 84 a

4 4 47 2F / 98 SA Z 133 85 1

5 5 i 48 38 8 91 5B [134 86 I

6 6 i 49 31 1 92 5C \ 135 87 9

7 7 58 32 2 93 5D] 136 88 1

8 8 1! 51 33 3 94 5E
A

137 89 1

9 9 52 34 4 95 5F 138 8A e

IB A
1! 53 35 5 96 68

1

139 8B Y

11 B 1 54 36 6 97 61 a 148 RC t

12 C t 55 37 7 98 62 141 8D i

13 S Jr 56 38 8 99 63 c 142 8E A

14 E j1 57 39 9 188 64 i 143 8F 1

15 r > 58 3A 181 65 e 144 98 i

16 8 59 3B ; 182 66 f 145 91 t

17 11 < 68 3C < 183 67 9 146 92 1

18 12 t 61 3D = 184 68 h 147 93 6

19 13 ! 62 3E > 185 69 i 148 94 1

28 14 1 63 3F 7 186 6A j 149 95 1

21 15 § 64 48 9 187 6B k 158 96 1

22 16 65 41 A 188 6C 1 151 97 1

23 17 t 66 42 B 189 6D ii 152 98 1
24 18 t 67 43 C 118 6E l 153 99

25 19 1 68 44 D 111 6F 154 9A u

26 1A 69 45 E 112 78 P 155 9B e

27 IB 78 46 F 113 71 1 156 9C £

28 1C 71 47 G 114 72 r 157 9D ¥

29 ID • 72 48 H 115 73 s 158 9E S

38 IE i 73 49 I 116 74 t 159 9F 1

31 IF i 74 4A J 117 75 1 168 A8 1

32 28 75 4B X 118 76 V 161 Al i

33 21 1 76 4C L 119 77 w 162 A2 6

34 22 77 4D M 128 78 X 163 A3 u

35 23 1 78 4E H 121 79 y 164 A4 n

36 24 $ 79 4F 122 7A z 165 A5 N

37 25 a 88 58 P 123 7B { 166 A6 t

38 26 8 81 51 1 124 7C
1

1 167 A7 S

39 27 82 52 X 125 7D } 168 A8 i

48 28 (83 53 S 126 7E
"

169 A9 r

41 29) 84 54 T 127 7F A 178 AA n

42 2A 85 55 U 128 88 s 171 AB %

Peter Norton's Assembly Language Book 395

Table E-l. continued

Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char

172 AC V
i 193 CI i 214 D6

|
235 EB I

173 AD i 194 C2

I

215 D7 1 236 EC •

174 AE «' 195 C3 216 D8
f

237 ED f

175 AF i 196 C4 217 D9 J 238 EE i

176 B8 197 C5 }
218 DA

t

239 EF n

177 Bl 198 C6 I
219 DB 248 F8 =

178 12 199 C7 I 228 DC 241 Fl ±

179 B3 288 C8 1 221 DD
[

242 F2 >

188 B4 281 C9
I

222 DE
J

243 F3 <

181 B5 282 CA 223 DF 244 F4

i182 B6] 283 CB

I

224 E8 (245 F5

183 B7 ,i 284 CC 225 El P 246 F6 T

184 B8 285 CD 226 E2 r 247 F7 S

185 B9 286 CE 227 E3 i 248 F8
•

186 BA
I

287 CF 228 E4 i 249 F9

187 BB ' 288

289

D8 229 E5 r 258 FA

188 BC Dl 238 E6 V 251 FB J

189 BD D

218 D2 231 E7 1 252 FC

198 BE 1 211 D3 232 E8 I 253 FD I

191 BF
l 212 D4 233 E9 e 254 FE 1

192 CB L 213 D5 234 EA Q 255 FF

396 Miscellaneous Tables

M..any of the keys on the keyboard (such as the function keys) return a two-

character code when you read the keys through DOS: A decimal followed by

a scan code. The following table shows the scan codes for all the keys that

have no equivalent ASCII code.

Table E>2. Extended Keyboard Codes

15 Shift Tab
16-25 Alt keys for Q, W, E, R, T, Y, U, I, O,
30-38 Alt keys for A, S, D, F, G, H, J, K. L

44-50 Alt keys for Z, X, C, V, B, N, M
59-68 Fl through F10

71 Home
72 Cursor Up
73 PgUp
75 Cursor Left

77 Cursor Right

79 End

80 Cursor Down
81 PgDn
82 Ins

83 Del

84-93 Shift Fl through F10

94-103 Control Fl through F10

104-113 Alt Fl through F10

114 Control PrtSc

115 Control Left Cursor

116 Control Right Cursor

117 Control End
118 Control PgDn
119 Control Home
120-131 Control Alt for 1, 2, 3, 4, 5, 6, 7, 8, 9,

132 Control PgUp
0, -, =

Peter Norton's Assembly Language Book 397

Table E-3. The Addressing Modes

Addressing Mode Format of Address Segment Register Used

Register register (such as AX) None

Immediate data (such as 12345)

Memory Addressing Modes

None

Register Indirect [BX]
[BP]

[DI]

[SI]

DS
SS
DS
DS

Base Relative* label[BX]

label[BP]

DS
SS

Direct Indexed* label[DI]

label[SI]

DS
DS

Base Indexed* label[BX + SI]

label[BX + DI]

label [BP + SI]

label[BP + DI]

DS
DS
SS
SS

String Commands:
(MOVSW, LODSB, and so on)

Read from DS:SI
Write to ES:DI

* Label[...] can be replaced by [disp + ...], where disp is a displacement.

Thus, we could write [10 + BX] and the address would be 10 + BX.

398 Miscellaneous Tables

Table E>4. INT lOh Functions

(AH) = Set the display mode. The AL registers contain the

mode number.
TEXT MODES

(AL) = 40 by 25, black and white mode
(AL)=1 40 by 25, color

(AL) = 2 80 by 25, black and white

(AL) = 3 80 by 25, color

(AL) = 7 80 by 25, monochrome display adapter

GRAPHICS MODE
(AL) = 4 320 by 200, color

(AL) = 5 320 by 200, black and white

(AL) = 6 640 by 200, black and white

(AH) = 1 Set the cursor size.

(CH) Starting scan line of the cursor. The top line is

on both the monochrome and color graphics

displays, while the bottom line is 7 for the col-

or graphics adapter and 13 for the mono-
chrome adapter. Valid range: to 31.

(CD Last scan line of the cursor.

The power-on setting for the color graphics adapter is

CH = 6 and CL = 7. For the monochrome display: CH=11
and CL=12.

(AH) = 2 Set the cursor position.

(DH,DL) Row, column of new cursor position; the up-

per, left corner is (0,0).

(BH) Page number. This is the number of the dis-

play page. The color-graphics adapter has
room for several display pages, but most pro-

grams use page 0.

(AH) = 3 Read the cursor position.

(BH) Page number
On exit (DH,DL) Row, column of cursor

(CH,CL) Cursor size

Peter Norton's Assembly Language Book 399

Table E-4. (continued)

(AH) = 4 Read light pen position (See Tech. Ref. Man.)

(AH) = 5 Select active display page.
(AL) New page number (from to 7 for modes

and 1; from to 3 for modes 2 and 3)

(AH) = 6 Scroll up.
(AL) Number of lines to blank at the bottom of the

window. Normal scrolling blanks one line. Set

to zero to blank entire window.

(CH,CL) Row, column of upper, left corner of window
(DH,DL) Row, column of lower, right corner of window
(BH) Display attribute to use for blank lines

(AH) = 7 Scroll down.

Same as scroll up (function 6), but lines are left blank at

the top of the window instead of the bottom

(AH) = 8 Read attribute and character under the cursor.

(BH) Display page (text modes only)

(AL) Character read

(AH) Attribute of character read (text modes only)

(AH) = 9 Write attribute and character under the cursor.

(BH) Display page (text modes only)

(CX) Number of times to write character and attri-

bute on screen

(AL) Character to write

(BL) Attribute to write

(AH) = 10 Write character under cursor (with normal attribute).

(BH) Display page
(CX) Number of times to write character

(AL) Character to write

(AH) = 11 to 13 Various graphics functions. (See Tech. Ref. Man. for

the details.)

400 Miscellaneous Tables

Table E-4. (continued)

(AH) = 14 Write teletype. Write one character to the screen and
move the cursor to the next position.

(AL) Character to write

(BL) Color of character (graphics mode only)

(BH) Display page (text mode)

(AH) = 15 Return current video state.

(AL) Display mode currently set

(AH) Number of characters per line

(BH) Active display pages

Peter Norton's Assembly Language Book 401

This table contains the INT 21h functions used in this book. For a more
complete list, you should buy the IBM DOS Technical Reference manual.

Table E>5. INT 21h Functions

(AH) = 1 Keyboard input. This function waits for you to type a char-

acter on the keyboard. It echoes the character to the screen,

and returns the ASCII code in the AL register. For extended
keyboard codes, this function returns two characters: an ASCII
followed by the scan code (see Table E-2).

(AL) Character read from the keyboard.

(AH) = 2 Display output. Displays one character on the screen. Sev-

eral characters have special meaning to this function:

7 Beep: Send a one-second tone to the speaker.

8 Backspace: move the cursor left one character posi-

tion.

9 Tab: Move to the next tab stop. Tab stops are set to

every 8 characters.

OAh Line feed: Move to the next line.

ODh Carriage return: Move to the start of the current

line.

(DL) Character to display on the screen.

(AH) = 8 Keyboard input without echo. Reads a character from the

keyboard, but doesn't display the character on the screen.

(AL) Character read from keyboard.

(AH) = 9 Display string. Displays the string pointed to by the DS:DX
pair of registers. You must mark the end of the string with the

$ character. •

DS:DX Points to the string to display.

(AH) = OAh Read string. Reads a string from the keyboard. See Chapter

23 for more details.

402 Miscellaneous Tabli

Table E-5. (continued)

(AH) = 4Ch Exit to DOS. Returns to DOS, like INT 20h, but it works
for both COM and .EXE programs. The INT 20h function used
in this book only works for .COM programs.

(AL) Return code. Normally set to 0, but you can set it to

any other number and use the DOS batch com-
mands IF and ERRORLEVEL to detect errors.

INDEX

A, Debug's assemble command, 40

ADC, 49

ADD, 24, 25
Adding one, INC, 77

Addition with carry, 49

Addition, hexarithmetic command, 6

Addresses, 24

CALL and segments, 127

CS:IP pair, 118

effective and LEA, 171

interrupt instruction, vectors, 131

labels, 96
locations in memory, 23

map files, 288
modes, 150, 397

base indexed, 156

base relative, 153, 156

direct mode, 156

direct indexed, 156

immediate, 156

indirect memory, 153

register, 156

register indirect, 156

table, 397
OFFSET pseudo-op, 221
PUBLIC, 290
RET and segments, 127

segment override, 312

segments, 120
AL register, the LODSB instruction, 185

AND instruction, 66
Area in front of programs, scratch, 123, 124

Arithmetic shift, SHL, 72

ASCII, codes, 37, 394
ASCII, extended, 396
Asm, '.asm' source file, 88

Assemble in Debug, 40
Assembler

automatic, 166
comments, 94
labels, 94
output, object file, 89
passes, 315
phase errors, 315
pseudo-op, 91

ASSUME, 126

Assembler pseudo-op (continued)

BYTE, 222
DB, 121

DUP, 121

END, 91, 301
ENDP and PROC, 101

ENDS and SEGMENT, 125

EQU, 159

EXTRN, 141

FAR and NEAR, 101, 128
GROUP, 154

NEAR and FAR, 101, 128

OFFSET, 221

PROC and ENDP, 101

PTR, 155

PUBLIC, 105, 140

SEGMENT and ENDS, 101, 125

WORD, 222
segment load order, 382
segment override, 312

Assignment, EQU pseudo-op, 159

Assignment, the MOV instruction, 41

ASSUME pseudo-op, 126, 313

groups, 153

segment overrides, 126

Attributes, inverse and normal, 210

WRITE_ATTRIBUTE_N_TIMES, 241

writing characters and, 210

Automatic assembly, 166

Automatic response, LINK, 283

AX, general purpose register, 22

B

B, binary numbers, 16

BACK_SPACE, 268

Base 16, hex, 8

Base 2, binary, 16

Base relative addressing mode, 153

BASIC CLS command, 199

Basic input output system, ROM BIOS, 194

Binary numbers, 16

converting to decimal, 110

group of four bits, Nibble, 64

BIOS, Basic input output system in ROM,
194
functions in VIDEO_IO ROM, 194

403

404 Index

BIOS (continued)

INT lOh function 2, set cursor position,

195

INT lOh function 3, read cursor

position, 196, 212, 215
INT lOh function 6, scroll page up, 196,

213, 215, 230
INT lOh function 9, write

char./attribute, 197, 210, 215

Bits, 19

group of four, Nibble, 64
setting with OR, 114

Block nesting error, 390
Boundary conditions, 63, 72

Boundary conditions, printing a number in

hex, 63
Breakpoint for Debugs G, 54
BS, back space constant, 270
Bugs, finding, 282, 285
BX, general purpose register, 22

Byte, 16

BYTE pseudo-op, 222
BYTE PTR, 222
Byte registers, changing in Debug, 30
Bytes and words, mixing, 222

CALL instruction, 76, 102

NEAR and FAR, 128

segments, 127

the stack, 78
Carry Flag, 48
Central dispatcher, 218
CF, the Carry Flag, 48

errors, 145

CGROUP, group name, 154

Changing memory in Debug, 24, 28

Changing registers in Debug, R, 22

Character attributes, WRITE_
ATTRIBUTE_N_TIMES, 241

Character codes, 394

extended, 396
reading a string, 269
reading with READ_BYTE, 222
writing attributes and, 210
writing strings of, 206

Characters, 70
CL, count register and rotates, 64, 72

CLD instruction, 186
Clear direction flag, CLD, 186

Clearing registers with XOR, 113

Clearing the screen, 199

BASIC CLS, 199

Clearing windows, 198

CLEAR_SCREEN, 198
CLEAR_TO_END_OF_LINE, 213
Clock interrupt, 130

CLS, the BASIC command, 199
CMP, compare instruction, 60
comparing to with OR, 113

Code segment, 27

Code Segment register, CS, 118

COM, 'com' files, 92
creating 'com' files, 152

groups and 'com' files, 154

Command file, LINK, 283
Command line, L8S

Comment header, 146

Comments and modular design, 106

Comments, the, 94
Common error messages, 390
Compare with OR, 113

Computerese, kludge, 118

Conditional jump instructions, 59
JA, 82
JB, 82

JL. 63

JLE, 71

JNZ, 60

JZ. 60
Constants, CR, BS, and ESC, 270
Constants, EQU pseudo-op, 159

Converting binary to decimal numbers, 110

Converting Decimal to Hex, 12

Converting Hex to Decimal, 9

Converting negative numbers to two's

complement, 19

CONVERT_HEX_DIGIT, 259
CR, carriage return constant, 270
CR, carriage return or enter, 159

CRLF, carriage return/line feed, 158, 159

CS, code segment, 27

CURRENT_SECTOR_NO, 202, 205
Cursor movement, INT lOh function 2, 195,

199-201

Cursor position, read, 211
Cursor, moving the, 199

Cursor, moving to right, 211
Cursor.asm, 159, 198, 199, 204, 211, 213
CURSOR_RIGHT, 211

CX, general purpose register, 22

CX, the count register, 145

CY, the carry flag, 48

Peter Norton's Assembly Language Book 405

D
D, Debug's dump command, 44

Data segment, 120
multiple, 312
segment for variables, 153

Data types, mixing, 222

Data
ASSUME pseudo-op, 313

DISPATCH_TABLE, 220, 282

immediate addressing mode, 150

segment override, 312

DB, define byte, 129

Debug, 136

G command, breakpoints, 54

how tracing works, 36-38

load command, L, 134

starting and leaving, 5

trace command, 27, 36
Debugging, 5

PUBLIC, 140

symbolic, 287

techniques, 282, 285

Decimal numbers, converting from binary,

110

Decimal, converting Hex to, 9

Decimal, converting to Hex, 12

Define byte, DB pseudo-op, 121

Define with EQU pseudo-op, 159
Deleting characters, BACK_SPACE, 268
Designers of the 8088, Intel, 317
Destination Index register, 112

DI register, 112

Direct addressing mode, 156

Direction flag, 186

Directories, diskette, 134

Disk directories, 134

Disk sectors, 134

reading sectors with INT 25h, 173

reading with READ_SECTOR, 184

writing, 281

writing modified sectors with F5, 280
DISK_DRIVE_NO, 202, 203
Disk_io.asm, 173, 184, 198, 203, 224, 281

DISK_PATCH, 202, 207, 219
Dispatch.asm, 219, 246, 249, 276, 280
Dispatcher, 218, 219, 249, 276
DISPATCHJTABLE, 220, 282
Display header, 205
Display registers, 22
Display, INIT_SEC_DISP, 184
Display, using ROM BIOS with, 194

DISP_HALF_SECTOR, 158, 168
DISP_LINE, 156, 162, 176, 177, 179, 181
Disp_sec.asm, 151, 156, 160, 167, 176, 177,

179, 181, 184, 187, 200, 202, 236
DIV, 33
Dividing memory into segments, 24
Division, 33
remainder, 14

Documentation, comment header, 146
DOS function 25h, reading sectors, 173
DOS functions, 401
DS, data segment, 120

Dskpatch.asm, 201, 207
Dumping memory with Debug's D, 44
DUP, the assembler pseudo-op, 121

Duplicate, the assembler DUP pseudo-op,

121

DX, general purpose register, 22

E, Debug's enter command, 24, 28

Echoing characters, 81

Editing memory, EDIT_BYTE, 250
Editor.asm, 251

EDITOR_PROMPT, 219

EDIT_BYTE, 250
Effective address, LEA, 171

End of file, no END directive, 390
End of lines, clear to, 212
END pseudo-op, 91, 301

.EXE files and, 301

use in separate source files, 142

Endless, see Loop
End-of-string marker, 206

ENDP pseudo-op, procedures, 101, 125

Enter, Debug's enter command, 24, 28

Entering programs, 40

EQU pseudo-op, 159

Equate, the EQU pseudo-op, 159

ERASE_PHANTOM, 241

Erasing characters, BACK_SPACE, 268

Error messages
EXE2BIN, 386
MASM, 390
phase errors, 385
possible causes, 390

Errors, debugging to remove, 5

Errors, the carry flag, 145

ES, extra segment, 120

ES, segment override, 120, 312

ESC, escape constant, 270

406 Index

Exclusive OR, 113

EXE, '.exe' and 'com' files, 120, 121

EXE, '.exe' files, 92
Exe2bin, 92

file cannot be converted, 386
Execute, 26
Execution, single-step, 26
Exit dskpatch—F10, 226
Exit, the INT 20H instruction, 38
Extended keyboard codes, 70, 396
External, EXTRN pseudo-op, 141

Extra segment, 120

EXTRN pseudo-op, 141

linking files together, 143

Function keys, 70
Fl—read previous sector, 226
F2—read next sector, 226
F5—write modified sectors, 280
F10—exit dskpatch, 226

Function numbers for ROM BIOS VIDEO_
IO, 194

function 2, set cursor position, 195
function 3, read cursor position, 196, 212,

215
function 6, scroll page up, 196, 213, 215,

230
function 9, write char./attr., 197, 210, 215

G

F1-F10, special function key input, 70

Fl—read previous sector, 226
F2—read next sector, 226
F5—write modified sectors, 280

F10—exit dskpatch, 226

Far CALL, 127

FAR pseudo-op, 128

Far RET, 128
File cannot be converted, 386
File directories, 134

File, make format, 167

Files, names in Debug, 42

Files, writing in Debug, 43

Finding procedures in memory, 285
Fixup offset exceeds field width, 391

Flags

carry, 48
direction flag, 186

IRET and, 130

overflow, 59
POPF instruction, 173

register, 130

saving and restoring, 186

INT instruction and, 130

sign, 59
zero, 58

Floppy disks, 134

directories, 134

sectors, 134

reading with INT 25h, 172

reading with READ_SECTOR, 184

writing, 281

FOR-NEXT, the LOOP instruction, 50

Fragmented segments, 387, 391

G, Debug's go command, 36, 38
breakpoints, 54

see also Proceed trace, 54
General purpose registers, 22

Go, see G, 36
GOSUB, 76
CALL instruction, 76

procedures, 101

see also INT, 36
GOTO_XY, 199

Graphics characters, 394
GROUP pseudo-op, 154

H, hexarithmetic, 6

hexadecimal numbers, 9

H, for hexadecimal numbers in the

assembler, 89
Header at top of screen, 205
HEADER_LINE_NO, 202
HEADER_PART_1, 202
HEADER_PART_2, 202
Hexadecimal, 7

converting Decimal to, 12

converting to Decimal, 9

numbers in the assembler, 89

origins, 7

printing in, 66
reading a single digit, 71

Hexarithmetic, 6

HEX_TO_BYTE, 259
Humans, 40
Hyphen, Debug's prompt, 6

Peter Norton's Assembly Language Book 407

IF-THEN, conditional jumps, 59, 60

CMP instruction, 60

status flags, 59, 60
Immediate mode, 156

INC instruction, 36, 77

Incrementing, INC, 77

Index registers, SI and DI, 112

Indirect memory addressing mode, 153

INIT_SEC_DISP, 184, 198, 200, 236
Instruction addresses, CS:IP, 118

Instruction pointer, 26, 27

IP register, 118

Instructions, machine language, 24

LEA, 171

LODSB, 185

segment override, 312
INT instruction, 36, 130

INT 1, single-step interrupt, 131

INT lOh functions, 194, 398
function 2, set cursor position, 195
function 3, read cursor position, 196,

212, 215
function 6, scroll page up, 196, 213,

215, 230
function 9, write char./attr., 197, 210,

215
INT lOh, Video_io in ROM BIOS, 194
INT 20H, 38
INT 21H, 36
INT 21h functions, 401

function 1, read character, 70-71, 73
function 8, reading characters without

echo, 81

function 9, write string, 43
INT 25h, DOS function to read disk

sectors, 170
tracing with the P command, 54

Intel, 317
Interrupt vectors, 131

Interrupt, stack after an, 130

Interrupt, the clock, 130
Interrupt, the INT instruction, 129
Interrupts, return from, 131
Intersegment CALL, 127

Intersegment RET, 128
Intrasegment CALL, 127
Intrasegment RET, 128
Inverse video, 210
IP register, 118

IP, instruction pointer, 26, 27
IRET, return from interrupt, 130

JA, jump if above, 82
JB, jump if below, 82
JL, jump if less than, 63
JLE, jump if less than or equal, 71
JNZ, jump if not zero, 60
JZ, jump if zero, 60

K
Kbd_io.asm, 222, 259, 264, 269, 270, 273
Keyboard codes, extended, 396
Keyboard input without echo, 81
Keyboard input, INT 21h function 1, 401
Keys, function codes, 70
Kludge, a make-shift fix, 118

L, Debug's load command, 134
Labels, 94

addresses, 24

segments, and ASSUME, 126
symdeb and, 287

Large programs, 140
debugging, 282

Laws, the three of modular design, 144

LEA instruction, 170
Leaving dskpatch - F10, 226
LET, the MOV instruction, 41

LF, line feed, 158
LIFO, last in first out, 78

the stack, 78

Limbo, 27

Line, writing prompt, 223

Lines, clear to end of, 212
LINES_BEFORE_SECTOR, 202

LINK, 92

automatic response, 283

map files and, 283
/map switch, 283
PUBLIC pseudo-ops, 105

segment load order, 161, 382

Linkinfo, LINK response file, 283

Linking, 92
separate files, 143

together files, 152

408 Index

Listing a program, Debug's U, 39
Load map, 285
Load order of segments, 161, 382
LOad String Byte, LODSB instruction, 185

Loading a byte with LODSB, 185

Loading sectors, Debug's L, 134

Local variables, 81

LOCATE, cursor movement, 199
Locations in memory, addresses, 24

LODSB instruction, 185

Logical instructions, AND, 65

Logical operations, the XOR, 113

Long CALL, 127

Long RET, 127

LOOP, 50
Loop, see Endless

M
Machine Code, 24

Machine language, 24, 26
Make, 166

Make file, format, 167

Makefile, new version, 225
Makeshift fix, kludge, 118

Map files, creating, 283, 288
Mapsym, creating map files, 288
MASM
ASSUME pseudo-op, 315
error messages, 390
phase errors, 315, 385
segment load order, 382
segment override, 312

Memory, 24

addressing instructions with CS:IP, 118

addressing modes, 150, 397

ASSUME pseudo-op, 126, 315
base relative addressing, 153, 156

data segment, 152

DB pseudo-op, 121

direct addressing, 156

dividing into segments, 24

editing with EDIT_BYTE, 250
how words are stored, 115

indirect memory addressing, 153

labels for, 24

map, 283
offset, 24

order of segments in, 382
PUBLIC and, 290
ROM chip, 194

segment overrides, 126

Memory (continued)

segment registers, 120
segmenting, 118

stack in, 123

Symdeb and, 287
writing to with WRITE_TO_MEMORY,
251

Memory variables, 201

CURRENT_SECTOR_NO, 204
DB pseudo-op, 121

DISK_DRIVE_NO, 203
DISPATCH_TABLE, 220, 282
EDITOR_PROMPT, 219
PHANTOM_CURSOR_X, 238
PHANTOM_CURSOR_Y, 238
PROMPT_LINE_NO, 218, 219
REAL_CURSOR_X, 239
REAL_CURSOR_Y, 239
SECTOR, 160

Microsoft and Debug, 136

Microsoft, Symdeb, 287
Minimum program, 107

Mixing different data types, 222
Mixing words and bytes, 222
Mnemonic, 40
Modified sectors, writing with F5, 280
Modular design, 144

comment blocks, 145

Monochrome display, ROM BIOS functions,

198

MOV, 41

MOV, its cousin LODSB, 185

Move, the MOV instruction, 41

Moving the cursor, CURSOR_RIGHT, 211

Moving the cursor, GOTO_XY, 199

MOV_TO_ASCII_POSITION, 240
MOV_TO_HEX_POSITION, 240
MS-DOS and Debug, 136

MUL, 31

Multiple segments, 312
grouped together, 154

Multiplication, 31

by shifting, SHL, 72

Multiplying two words, 31

Must be declared in pass 1, 390

N
N, Debug's name command, 42

Names in Debug, 42
Names in Symdeb, 287

NC, the carry flag, 48

Peter Norton's Assembly Language Book 409

Near CALL, 128

Near labels, 96
NEAR pseudo-op, 101, 128

Near RET, 128

Negative numbers, 18, 29

sign bit, 18

sign flag, 59

New programs, starting point, 107

Next instruction, 27

Next sector, F2, 226

NEXT_SECTOR, 224

NG, sign flag, 59
Nibble, 64
No or unreachable CS, 390
Normal attribute, 210

Numbers, converting binary to decimal, 110

Numbers, overflow flag, 59
Numbers, sign flag, 59

NV, overflow flag, 59

NZ, zero flag, 58

o
OBJ, '.obj' files, 91

Object file, assembler output, 91

OFFSET pseudo-op, 221
Offset within segment, 24
Open procedures, 390
Open segments, 391

OR instruction, 113

CMP a number with 0, 113

setting bits, 113

Order of segments, 382
ORG lOOh and the scratch area, 124

OV, overflow flag, 59
Overflow flag, 59
Overflow, the Carry Flag, 48
Overrides, segment, 136, 312

P, the proceed trace command, 54

Passes, assembler, 315
phase errors, 315, 385

Passing information, standards, 145

Patterns, WRITE_PATTERN, 182
PC-DOS and Debug, 136
Phantom.asm, 237, 247, 292, 293
PHANTOM_CURSOR_X, 238
PHANTOM_DOWN, 247
PHANTOM_LEFT, 248
PHANTOM_RIGHT, 248

PHANTOM_UP, 247
Phase errors, 385
meaning of, 315

PL, sign flag, 59
POP and PUSH to save and restore

registers, 145

Pop off the stack, 79
POPF instruction, 173, 186
POS, reading cursor position, 212
Position, read cursor, 212
Positive numbers, overflow flag, 59
Positive numbers, sign flag, 59
Previous sector, Fl, 226
PREVIOUS_SECTOR, 224
PRINT, INT 21H function 9, 43
Printaj.asm, 102

Printing in hexadecimal, 66
PRINT_A_J, 101

PROC pseudo-op, procedures, 101

Procedure addresses, OFFSET pseudo-op,

221
Procedures, 76
BACK_SPACE, 268
CLEAR_SCREEN, 198

CLEAR_TO_END_OF_LINE, 213

CONVERT_HEX_DIGIT, 259

CURSOR_RIGHT, 211

DISK_PATCH, 207, 219
DISPATCHER, 218, 249, 276
EDIT_BYTE, 250
ERASE_PHANTOM, 241

external, 141

finding in memory, 285

HEX_TO_BYTE, 259
INIT_SEC_DISP, 236
local variables, 81

make 'em short, 145
MOV_TO_ASCII_POSITION, 240
MOV_TO_HEX_POSITION, 240

NEXT_SECTOR, 224
PHANTOM_DOWN, 247

PHANTOM_LEFT, 248
PHANTOM_RIGHT, 248

PHANTOM_UP, 247
PREVIOUS_SECTOR, 224

PROC and ENDP, 101

READ_BYTE, 223, 259, 273

READ_DECIMAL, 263

READ_STRING, 258, 270

RESTORE_REAL_CURSOR, 239

SAVE_REAL_CURSOR, 239

saving and restoring registers, 80, 145

SCROLL_DOWN, 293

410 Index

Procedures (continued)

SCROLL_UP, 293

STRING_TO_UPPER, 259
Symdeb and, 287

TEST, 257, 266
WRITE.ATTRIBUTE_N_TIMES, 241

WRITE_CHAR, 210
WRITE_HEADER, 205, 214
WRITE_PHANTOM, 237

WRITE_PROMPT_LINE, 223
WRITE_SECTOR, 281

WRITE_STRING, 207
WRITE_TO_MEMORY, 251

Proceed, the P trace command, 54

Program text, source file, 88
Program trace, the P command, 54

Programs, skeletal, 107

Prompt line, writing, 224
PROMPT_LINE_NO, 218, 219

Pseudo-ops, 94

assembler commands, 91

ASSUME, 126

BYTE, 222

DB, 121

DUP, 121

END, 91, 301

ENDP and PROC, 101

ENDS and SEGMENT, 125

EQU, 159

EXTRN, 141

FAR and NEAR, 101, 128

GROUP, 154

NEAR and FAR, 101, 128

OFFSET, 221

PROC and ENDP, 101

PTR, 155

PUBLIC, 105, 140

SEGMENT and ENDS, 101, 125

WORD, 222

PSP, Program Segment Prefix, 124

PTR pseudo-op, 155

PUBLIC pseudo-op, 105, 140

map files and, 283

Symdeb and, 287

PUSH and POP to save and restore

registers, 145

Push onto stack, 79

PUSHF instruction, 186

Q
Quitting dskpatch—F10, 226

R

R, Debug's register command, 22
changing byte registers, 30

RCL, 49
Read cursor position, 212
Read next sector, F2, 226
Read only memory chip, ROM, 194

Read previous sector, Pi, 226
Reading a string of characters, 269
Reading characters

INT 21h function 1, 70-71, 73

READ_BYTE, 223
strings of characters, 185

without echo, 81

Reading disk sectors, DOS function 25h, 172

Reading hexadecimal digits, 71

Reading memory, LODSB, 185

Reading sectors

Debug's L, 135

DOS function 25h, 172

PREVIOUS_SECTOR and NEXT_
SECTOR, 224
READ_SECTOR, 184

READ_BYTE, 223, 259, 273
READ_DECIMAL, 263

testing, 265
READ_SECTOR, 169, 184, 202
READ_STRING, 258, 270
REAL_CURSOR_X, 239
REAL_CURSOR_Y, 239
Registers, 22

ASSUME and segment, 126

changing bytes with Debug's R, 30
changing tbem in Debug, 22

CS, 118

display with Debug's R, 22

flag, 130

general purpose, 22

IP, 118

modes, 150

base indexed, 156

base relative, 153, 156

direct mode, 156

direct indexed, 156

immediate, 156

indirect memory, 153

register, 156

register indirect, 156
saving and restoring, 145

segment, 120

ASSUME, 314
overrides, 126

SI and DI registers, 112

Peter Norton's Assembly Language Book 411

Registers (continued)

special purpose, 22

usage, 145

REM, comment statements, 94
Remainder, 14, 31, 33

Removing errors, debugging, 5

Repeat count, the LOOP instruction, 50
RESTORE_REAL_CURSOR, 239
Restoring flags, POPF, 186
Restoring registers from the stack, 79

RET instruction, 77, 102

NEAR and FAR, 128
segments, 127

the stack, 78

Return address, the stack, 78

Return from interrupt, IRET, 130
RETURN, the RET instruction, 76
Reverse video, 210

Road map, map files, 283

ROM, read only memory chip, 194
ROM BIOS functions in VIDEO_IO, 194
INT lOh function 2, set cursor position,

195

INT lOh function 3, read cursor position,

196, 212, 215
INT lOh function 6, scroll page up, 196,

213, 215,

INT lOh function 9, write char./attribute,

197, 210, 215
Rotate instruction, 49
Rotate through carry, 49
Rotates, SHR, 64
Rotates, the count register, 64
Routines, in ROM BIOS, 194

s

SAVE_REAL_CURSOR, 239
Saving a file to disk from Debug, 43
Saving and restoring registers, 106, 145
Saving flags with INT instruction, 130, 131
Saving registers on the stack, 78
Saving the flags, PUSHF, 186
Scan code, 70
Scratch area in front of programs, 123, 124
Screen functions, 398

see also ROM BIOS
Screen swapping, 288
Symdeb, 288

Screen, clearing the, 199
Screen, using ROM BIOS with, 194
Scrolling the sector display, 292
Scrolling, SCROLL_UP and SCROLL_
DOWN, 293

SECTOR, 151, 160, 201, 202
Sector display, INIT_SEC_DISP, 184
Sector display, scrolling the, 292
Sectors, disk, 130

editing with EDIT_BYTE, 250
Fl previous sector, 226
F2 next sector, 226
F5 key to write modified, 280
previous and next with Fl and F2, 226
reading, 134

Debug's L, 134
DOS INT 25h function, 172

PREVIOUS_SECTOR and NEXT_
SECTOR, 224
READ_SECTOR, 184

writing disk, 281
SECTOR_OFFSET, 201
SEG, segment override, 313
Segment offset, 24

Segment overrides, 126

ASSUME and, 126
instruction, 312
phase errors, 385

SEGMENT pseudo-op, 126
Segment registers, 120
ASSUME pseudo-op, 126
CS, 118

Segments, 24
ASSUME pseudo-op, 126
CALL and RET, 127

ENDS and SEGMENT, 101, 125

FAR, 127

fragmented, 387, 391
GROUP pseudo-op, 154
labeling, 24

load order, 151, 152

multiple, 312
NEAR, 96, 127

PUBLIC pseudo-op, 140
SEGMENT and ENDS pseudo-op, 101,

125

SEND_CRLF, 158
Separate source files, 140

linking, 141, 152
modular design, 144

Setting bits with OR, 113

Shift, SHL, 72

SHL, shift left instruction, 72

Short CALL, 127

Short RET, 127

SI register, 112

Sign bit, 18, 59
Signed numbers, 15

412 Index

Single-step execution, 27
breakpoints, 54
trap flag and, 131

Skeletal program, 107

Software interrupt, INT instruction, 129

Source file, 91

Cursor.asm, 159, 198, 204, 211, 213
Disk_io.asm, 170, 184, 198, 203, 224, 281

Dispatch.asm, 159, 167, 171, 173, 219,

246, 249, 276, 280
Disp_sec.asm, 176, 177, 179, 181, 184,

187, 200, 202, 236
Dskpatch.asm, 201, 207, 219
editor.asm, 251

kbd_io.asm, 222, 254, 264, 269, 270, 273
phantom.asm, 237, 247, 292, 293

separate, 140

Test.asm, 140, 257
Test_seg.asm, 120

Video_io.asm, 142, 151, 180. 182, 205,

206, 223, 242
Source Index register, 112

SP, stack pointer, 78

Special function keys

keyboard input, 70

reading with READ_BYTE, 223
table, 396

Special purpose registers, 22

SS, stack segment, 78, 120

SS:IP, 301

SS:SP, top of stack, 122

Stack, 78, 301

after an INT instruction, 130

LIFO, 78

pointer, 78
pop off the, 79

push onto, 79

saving and restoring registers, 80
saving flags on the, 130

segment, 78
top of stack, 122

Standards, 144

Starting point for new programs, 107

Status flags, 58

CMP instruction, 60
direction flag, 186

JA, 82
JB, 82

JL, 63
JLE, 71

JZ, 60
OR instruction, 113

overflow, 59

Status flags (continued)

saving and restoring, 186
sign, 59

Status register, POPF, 173
see also status flags

String instructions, LODSB, 185
Strings, reading, 269
Strings, writing with WRITE_STRING, 207
STRING_TO_UPPER, 259
SUB, 29
Subroutines, 76

see also procedures

Subtraction, 28
CMP instruction, 60

Swapping, Symdeb and screen, 288
Switch

LINK and /map, 283
Symdeb's /S, 288

Symbol defined more than once, 391
Symbol files,

Symbol not defined, 391
Symbolic debugging, 287
Symbols and PUBLIC, 290
Symdeb, 287

screen swapping, 288

T, Debug's trace command, 27

Tables

characters, 394
ROM BIOS functions for VIDEO_IO, 194

addressing modes, 397
extended keyboard codes, 396
INT lOh functions, 398
INT 21h functions, 401

Temporary storage, the stack, 78

TEST, 257, 266

Test.asm, 257
Testing limits, boundary conditions, 63, 72

Testing READ_BYTE with TEST, 257

Testing READ_DECIMAL, 265
Test_seg.asm, 120

TEST_WRITE_DECIMAL, 112, 140

TEST_WRITE_HEX, 104

Text, source file, 88
The three laws of modular design, 144

Top of stack, 122

Trace, 27

Tracing with the P command, 54

Tracking down bugs, 285

Trap flag, single stepping, 131

Truth table, AND, 66

Two screens, Symdeb's screen swapping, 288

Peter Norton's Assembly Language Book 413

Two's complement, negative numbers, 18,

29

overflow flag, 59
sign flag, 59

u
U Debug's Unassemble, 39
Unassemble, 39
Unresolved externals, 392

Unsigned numbers, 15

JA and JB, 82

overflow flag, 59

V
Variable usage, 146
Variables and symdeb, 287
Variables

addressing modes, 150
BOTTOM_LINE_PATTERN,
CURRENT_SECTOR_NO, 202, 205
data segment, 152

DB pseudo-op, 121

DW pseudo-op,

DISK_DRIVE_NO, 202, 203
DISPATCHJTABLE, 220, 282

EDITOR_PROMPT, 219
HEADER_LINE_NO, 202
HEADER_PART_1, 202
HEADER_PART_2, 202
labels, 94
LINES_BEFORE_SECTOR, 202
memory, 201

PHANTOM_CURSOR_X, 238
PHANTOM_CURSOR_Y, 238
PROMPT_LINE_NO, 218, 219
REAL_CURSOR_X, 239
REAL_CURSOR_Y, 239
registers as, 22

SECTOR, 151, 160, 201, 202
SECTOR_OFFSET, 201
segment overrides, 126

TOP_LINE_PATTERN,
Vectors, interrupt, 131

Video-io INT lOh functions, 194, 398
2, set cursor position, 195

3, read cursor position, 196

6, scroll page up, 196

9, write char./attribute, 197
Video_io.asm, 103, 142, 151, 180, 182, 205,

206, 210, 214, 223, 242

W
W, Debug's write command, 43
Warning messages, possible sources, 390
Warning: no stack segment, 392
Windows, clearing, 198
Word, 16

Word multiply, 31

WORD pseudo-op, 222
WORD PTR, 222
Words and bytes, mixing, 222
Words, how they're stored in memory, 115
Writestr.asm, 88
WRITE_ATTRIBUTE_N_TIMES, 241
WRITE_CHAR, 101, 102, 143, 157, 210
WRITE_CHAR_N_TIMES, 180
WRITE_DECIMAL, 111, 143

WRITE_HEADER, 205, 214
WRITE_HEX, 104
WRITE_HEX_DIGIT, 104, 142

WRITE_PATTERN, 182

WRITE_PHANTOM, 236
WRITE_PROMPT_LINE, 223
WRITE_SECTOR, 281
WRITE_STRING, 207
WRITE_TOP_HEX_NUMBERS, 187

WRITE_TO_MEMORY, 251

Writing a file in Debug, 43

Writing a string, 43
Writing attributes, WRITE_ATTRIBUTE_
NJTIMES, 242

Writing characters and attributes, 210
Writing disk sectors, 281
Writing modified sectors, F5 key, 280
Writing strings of characters, 206

Writing to memory, WRITE_TO_
MEMORY, 251

X
XOR instruction, 113

clearing registers, 113

Zero flag, 58

JNZ, 60
JZ, 60

ZR, zero flag, 58

About the Authors

Peter Norton is well-known in the personal computing arena for both his writ-

ing and programming. Starting in the earliest days of the IBM Personal Com-
puter, he began writing about the IBM/PC, helping other people understand how
these wonderful machines work. He has written a half a dozen books on the PC
family, including the best-selling Inside the IBM/PC, his columns appear in each

issue ofPC and PC Week magazines. His set of programs called The Norton Utili-

ties has helped many PC users rescue lost data and explore the inner workings of

their computers. Peter grew up in Seattle, Washington, attended Reed College in

Portland, Oregon; he now lives in Santa Monica, California with his wife.

John Socha is better known for his public-domain utilities than by his name.

In the early days of the IBM PC, he wrote a column for the now defunct magazine

Softalk, where he published such programs as ScreenSave (the first screen

blanker), KbdBuffer (extends the keyboard buffer), and Whereis (finds files on a

hard disk). After the demise of Softalk, John concentrated on finishing his PhD
in Physics and writing a commercial program called The Norton Commander.
John grew up in the woods of Wisconsin, earned a BS degree in Electrical Engi-

neering from the University of Wisconsin, and a PhD in Applied Physics from

Cornell University; he now lives in southern California.

Norton'shere and
BRADY'S got him.

1. An inside look at how
Disk Operation Systems
work as only Peter Norton
can give. A how-to-book
for beginners and experi-
enced users alike. Practi-

cal and simply written, this

book has all you'll need to

understand the operating
system of your microcom-
puter as well as practical
advice about what to buy
and what to use. $17.95

(0-89303-645-5)

PC-DOS

2. Peter Norton has updated and
expanded his bestseller to include
every model of the IBM microcom-
puter family. Beginning with a review
of the fundamentals, the book then
moves on to discover new ways to
master the important facets of using
your microcomputer to its fullest

potential. $21.95

(0-89303-583-1)

3. The most comprehen-
sive guide available from
America's most respected
authority, Peter Norton,
PC-DOS tells you every-
thing you need to know to

use your operating system
to customize your PC. $18.95

(0-89303-752-4)

Now at your book or computer store.

Or order today 201-767-5937
| Prentice Hall Press

c/o Simon & Schuster

I

Mall Order Department
Route 59 at Brook Hill Drive

• West Nyack. NY 10994
I the numbers of the titles you want belowI"ard *.

Signature

Address
City

Zip

-~l

Merchandise Total

sales tax for your state

7% postage + handling'

I d is my check or money order

1 (0-89303-645-5)

Total, check enclosed

2(0-89303-583-1) 3 (0-89303-752-4)

BRADY Knows
Proalamming

Assembly
language
Routines^ <h.MM pc

Creatine Utilities

i"i "*ni^-nri

i
JJ JII114
j j u ajjdii
jj o aaaa
jj uaaaan
JJ BiBHa

1

assembly language utilities Ir

the tnotl popular utilities ,uch at DBUG
SCAN CLOCK UNOELETE ONEKET
PCALC calculator and notepad and five

ofhef a 121 95 (Disk available*

iDiak availablai

- 'j-

through i

using the IBM Macro Assembler With com
piete coverage of BIOS and a library ot ovei

30 macros tor taster programming $21 95

—

m 1' iije^Ca

£3
Ml!Iff

——
1 OMm m IBM

— «*c — 1
-1

7 Me*e s a compendium of many of the 8 The title might say
most useful but often neglected advanced find a guide that begins with the lunda
programming concepts A tutorial in format mentals of BASIC graphics and takes you
that uses BASIC for examples it covers through truly sophisticated 3-0 assembly
techniques such as linked data structures routines Includes block graphics creating

I dynamic storage a graphics editor directly programming
1 for 25 sub- IBM s color graphics adapter and muchallocation Includes li

routines *2i 95 (Otsk available

ng.i
.mat more S21 9?

Now at your book or computer store QOrO—aRO^ —rOaflO <
Or order toll-free today \J\J\J U*_*T V/VtCU

In New Jersey

800-624-0024

BRADY COMMUNICATIONS COMPANY, INC.

I
co Prentice Hall

P.O. Box 512. W. Nyack, NY 10994

' Circle the numbers of the titles you want below

I

(Payment must be enclosed; or, use your charge
card) Add $1 50 for postage and handling

Exp date

Signature

Name

I

Enclosed is check for $
MasterCard " VISA

or charge to
City State Zp

1 (0-89303-473-8)

5 (0-89303-787-7)

2 (0-89303-409-6)

6 (0-89303-484-3)
3 (0-89303-584-X)
7(0-89303-481-9)

4 (0-89303-587-4)

8 (0-89303-476-2)

mmmmmmmmmmmmmmnmmnMnmmmm

Peter Norton's

Assembly Language Book
for the IBM PC
ARE YOU HUNGRY TO LEARN ASSEMBLY LANGUAGE
BUT FEAR THAT ITS BEYOND YOUR GRASP?

Do you want more control over your PC? More power?
More raw speed—five times, even ten times the speed of your

existing programs 9

Then speak to your IBM PC in the language it knows best . . .

ASSEMBLY LANGUAGE
AND LEARN IT FROM THE PC'S MASTER PROGRAMMER . . .

PETER NORTON

Assembly language is the most direct way you can control each
and every aspect of your machine, and Peter Norton's Assembly
Language Book for the IBM PC is the easiest way to learn

assembly language.

You'll learn the instructions of the Intel 8088 microprocessor,

the very heart of the IBM PC. And, once you understand the 8088,

many elements you see in other programs and in high-level

languages will have greater meaning for you. Not only that, you II

learn how to write full-scale assembly language programs: text

editors, utilities, and more!

You can use this book with an IBM PC, XT, AT, or compatible,

a minimum of 128K and one disk drive, PC or MS-DOS version 2.0

or higher, and the IBM or Microsoft Macro assembler.

Peter Norton, of Peter Norton Computing, is the designer and
author of the now-legendary Norton Utilities (as well as numerous
Brady Books including Inside the IBM PC and PC DOS: Introduction

to High Performance Computing).

John Socha, also of Peter Norton Computing, is the designer

and author of The Norton Commander, the latest product from

Peter Norton Computing.

Front cover photo ? Douglas Kirkland/Sygma

A Brady Book
Published by Prentice Hall Press -New York

'21898"66190
ISBN Q-13-bbnOl-D

