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INTRODUCTION

My goal in writing this book is a simple but an ambitious one: to

help you master the principles of programming the IBM personal com-

puter family From the time that the first IBM Personal Computer (known

to us as "the PC") was introduced in the fall of 1981, it was clear that it

was going to be a very important computer. Later, as PC sales zoomed

beyond the expectations of everyone, IBM included, and as the original

model was joined by a sibling or two, the PC became recognized as the

standard for serious desktop computers. From the original PC, a whole

family of computers— a family with many branches—has evolved. And

at the same time, the importance of the PC family has also grown.

The success and significance of the PC family has made the develop-

ment of programs for it very important. However, the fact that each mem-

ber of the family differs in its details and characteristics from its relatives

has also made the development of programs for the family increasingly

complex.

This book is about the knowledge, skills, and concepts that are

needed to create programs for the PC family— not just for one member

of the family, though we might perhaps cater to the peculiarities and

quirks of one member, but for the family as a whole, in a way that is uni-

versal enough that our programs should work not only on all the present

family members, but on future members as well.

I've written this book for anyone involved in the development of

programs for the PC family. It is for programmers, but not just for pro-

grammers. It is for anyone who is involved in or needs to understand the

technical details and working ideas that are the basis for PC program de-

velopment, including anyone who manages programmers, anyone who

plans or designs PC programs, and anyone who uses PC programs and

wants to understand the details behind them.

SOME COMMENTS ON PHILOSOPHY

One of the most important elements of this book is the discussion

of programming philosophy. You will find throughout this book expla-

nations of the ideas underlying IBM's design of the PC family, and of the

principles of sound PC programming, viewed from my own experience.
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If this book were to provide you with only facts—tabulations of

technical information— it would not serve you well. That's why I've in-

terwoven with the technical discussion an explanation of what the PC

family is all about, of the principles that tie the various family members

together, and of the techniques and methods that help us produce pro-

grams that can endure and prosper along with the PC family.

HOW TO USE THIS BOOK
This book is both a reading book and a reference book, and there

are at least two ways that you might approach it. You may wish to read

it, like any other book, from front to back, digging in where the discus-

sion is useful to you and quickly glancing through the material you don't

yet need. This approach provides a grand overview of the workings and

the ideas behind the workings of PC programs. You can also use this book

as a pure reference, dipping into specific chapters for specific informa-

tion. We've provided detailed tables of contents at the beginning of each

chapter and an extensive index to help you find what you need.

When you use this book as a random-access reference to the details

of PC programming, you'll find that much of the material is intricately in-

terrelated. To help cope with the interrelationships, you'll see that I have

repeated some details each time they came up where it was practical to

duplicate information, and have used a •" symbol to refer you to other

sections when it was not practical. I have also used the following self-

explanatory symbols to help you zone in on material that is specific to a

particular machine:

PC

XT

JR

PP

AT

lliiilil 'II
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The machine icons are displayed beside paragraphs and whole sections

that apply to a specific machine, while the initials are used to draw your

attention to machine-specific comments within a discussion that applies

to the family as a whole. I hope this system will enable you to more easily

zone in on the information you need for your programs.

OTHER RESOURCES
One book, of course, can't provide you with all the knowledge that

you might possibly need. I've made this book as rich and complete as I

reasonably can, but there will always be a need for other kinds of infor-

mation. Here are some of the places you might look for material to sup-

plement what you find here:

For detailed technical information about the PC family, the ultimate

source is IBM's series of Technical Reference manuals. There are specific

Technical Reference manuals for the original PC, for the XT, for the PCjr,

for the AT, and for other specific models. The majority of the program-

ming-related information in these manuals is essentially repeated, and

any one manual could serve as a reference for the entire family. You should

know a few things about these model-specific manuals: First, information

that is specific to one model is not differentiated from general informa-

tion for the whole PC family. To be sure of the differences, you should use

common sense, compare the different manuals, and consult this book.

Second, you should keep in mind that each new model of PC adds new

features. If you turn to the manual for a later PC model, you will find

information on a wide variety of features; if you turn to the manual for

an earlier model, you'll avoid being distracted by features that do not ap-

ply to all models in the family.

There is also an IBM Options Adapters Technical Reference manual

for the various options and adapters, such as different disk drives or dis-

play screens, used by the PC family. Technical information about this kind

of equipment is gathered into that one book, which is updated period-

ically (the updates are available by subscription). Much of the informa-

tion in this Technical Reference manual is not of use to programmers, but

you'll find some parts that may be.

IBM also publishes Technical Reference manuals for special exten-

sions to the PC, such as PC Network.

Perhaps the most important of the IBM Technical Reference man-

uals is the series for DOS. These manuals contain a wealth of detailed

technical information, which I have summarized in this book. If you find

that you need more specific details about the operation of DOS, you

should turn to this manual.
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Besides these IBM manuals, there is a host of other places to turn to

for supplemental information. For a somewhat broader perspective on

the IBM Personal Computer, one that is not focused on programming, see

my Inside the IBM Personal Computer, published by Robert J. Brady Com-
pany. For a similarly broader perspective on DOS, see Van Wolverton's

Running MS-DOS, published by Microsoft Press. For more details on the

peculiarities and the ins and outs of the PCjr, see my Exploring the PCjr,

also published by Microsoft Press.

Because this book covers the subject of PC programming in a broad

fashion, it can't provide you with more than a few key details about indi-

vidual programming languages. For any particular programming lan-

guage, and for the many specific compilers for those languages, you will

need more books than I could begin to list or recommend.

With these introductory remarks completed, it's time for us to plunge

into our task of mastering the principles of programming the PC family!
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The 8088's family tree. The 8088 is just one member of a closely re-

lated family of 16-bit microprocessors designed by Intel Corporation. The

founding member of this microprocessor family is the 8086. The 8088 dif-

fers from the 8086 in only one minor respect: Although the 8088 is a 16-bit

microprocessor, it uses an 8-bit data bus instead of the 16-bit bus that the

8086 uses, {m- The difference between 8-bit and 16-bit buses is discussed

on page 13.) Virtually anything that you read about the 8086 also applies

to the 8088; for programming purposes, consider them identical.

Although the 8088 microprocessor has long been the main brain for

the PC family, it isn't the only one available. Other Intel microprocessors

are being used to power some of the PC family's distant cousins. For ex-

ample, the 8086 is the brain of the Compaq Deskpro, a well-known por-

table PC-compatible computer. A pair of microprocessors known as the

80188 and 80186 (they're usually called the 188 and the 186), which are

more advanced versions of the original 8088 and 8086 microprocessors,

have been used in a variety of computers related to the IBM PC family,

such as the Tandy 2000 computer. These two microprocessors have more

computing power than their predecessors, but their chief asset is that

they combine, in one chip, both a microprocessor and many important

and necessary support operations—operations that are handled exter-

nally by older chips like the 8088 and the 8086. But in spite of their many

improvements, the 186 and 188 are still not the last word as far as the 8086

family is concerned.

The 80286 Microprocessor

The most advanced Intel microprocessor currently used in the IBM

personal computers is the 80286 (or 286). It is this chip that controls the

operation of the AT. The 80286 is a true 16-bit microprocessor that uses a

full 16-bit data bus and adds extra programming features to the 8086 de-

sign. Perhaps the 286's most important enhancements are its ability to

allow multitasking and virtual memory storage—two concepts that are

familiar to anyone experienced in mainframe computing.

Multitasking is the ability of a CPU to perform several tasks at a

time— such as printing a document or calculating a spreadsheet— by

quickly switching its attention among the controlling programs. A reg-

ular PC, which uses the 8088 microprocessor, can do a limited amount of

multitasking with the help of very sophisticated software, such as IBM's

Topview or Microsoft's Windows. But a true multitasking processor, like

the 286, performs task switching internally— with some help from the

operating system. Since the multitasking capabilities in the 286 are largely

a part of the hardware design, they are much faster and more reliable

than software-driven multitasking.

y
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Virtual memory allows a computer to act as if it has much more

memory than is physically present. Through an extremely sophisticated

software and hardware design, a program may be led to believe that it

has up to one gigabyte (one billion bytes) of memory at its disposal, even

though the hardware memory chips account for only a fraction of that

size. This deception is achieved through an elaborate memory addressing

scheme that involves storing some parts of a program on disk and some

parts in main memory. When particular instructions or program data are

needed that are not in physical memory, they are loaded from the disk.

The 286 and the operating system have the weighty task of figuring out

where the information is and where it must go so that the program runs

smoothly and efficiently, even though it is scattered throughout the com-

puter system.

Virtual storage has been used in mini- and mainframe computers

for a long time, but has only recently come of age in the microcomputer

world. Its introduction through the 286 in the AT should have a profound

effect on application programming since it allows us to write programs

whose sizes are, for all practical purposes, limited only by the physical

capacity of the disks.

The AT is often seen as just a faster, more powerful member of the

8086 family— able to run almost all the popular PC programs, including

the DOS operating systems and most DOS programs. However, both multi-

tasking and virtual memory storage change the operating characteristics

of the 286. When we use these features, the AT actually becomes a differ-

ent computer, requiring different programs and a different operating sys-

tem. This makes the AT the first of an entirely new generation of personal

computers, a generation apart from the original PC family.

With this in mind, it is best to leave the discussion of the AT's ad-

vanced capabilities to another book and focus in this one on the standard

PC capabilities. You will find that most of the programming techniques

discussed in this book focus on the 8088, with annotations on the 80286

where appropriate.

All members of the 8086 family are designed to work with addi-

tional processors. They also work with two special coprocessors: the 8087

math coprocessor and the 8089 I/O coprocessor. These optional chips can

be wired together to help reduce the workload of the main CPU. IBM pro-

vides the circuitry to support only the 8087 math coprocessor, so we'll

take a moment to discuss this chip in more detail.
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The 8087 Math Coprocessor

The 8088 can work only with integers, or whole numbers. "Real" or

floating-point numbers must be handled by special means. This is usually

done with subroutines, which carry out the floating-point operations ef-

fectively enough, but at great cost to efficiency and speed.

The 8087 math coprocessor performs floating-point calculations in

the neighborhood of 10 to 50 times faster than can be achieved with the

8088. In addition, it performs arithmetic with a much higher degree of

precision than is usually achieved with the 8088 (or even with most multi-

million-dollar mainframe computers). The 8087, besides doing simple

add/subtract/multiply/divide arithmetic, has the built-in ability to perform

trigonometric calculations (sine, cosine, tangent, etc.), which greariy sim-

plify some complex programming. Furthermore, it can work with num-

bers that come in different formats, including integer, floating-point, and

even decimal formats. Finally, it can do all this while the 8088 proceeds

with other work.

Every 8088-based PC model except the PCjr can accommodate the

8087, though it does require special software support. (Idl The AT uses

the 80287 math coprocessor, a variation of the 8087 that is tailored to

work with the 80286 microprocessor.) But though the 8087 greatly en-

hances the arithmetic performance of the IBM personal computers, rela-

tively little software takes advantage of it. This unfortunate situation is

due to a simple historical fact: Although provision for the use of the 8087

Data Type
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was designed into the original model of the PC (and into most other

models), IBM did not support the 8087—or even acknowledge its poten-

tial benefits— until the standards for PC hardware and software were

well established. This meant that a large percentage of the original hard-

ware and software developed for the PC family did not incorporate the

use of the 8087, depriving us all of some remarkable computing power.

Although 8087 chips and software have so far sold in only limited

numbers, we are beginning to see more programs, such as AshtonTate's

Framework, that not only take advantage of the 8087, but also detect its

presence and automatically use it or bypass it depending on the require-

ments of the program. Unfortunately, there are still only a handful of such

programs available.

Since the use of the math coprocessor in the PC family is rare, we
won't be covering the special problems of programming it in this book.

THE SUPPORT CHIPS

The microprocessor cannot control the entire computer without

some help—nor should it. By delegating certain control functions to

other chips, the CPU is free to attend to its own work. These support

chips may be responsible for such processes as controlling the flow of in-

formation throughout the internal circuitry, as the interrupt controller

and the DMA controller are, or for controlling the flow of information to

or from a particular device attached to the computer, such as a video dis-

play or disk drive. These so-called device controllers are often housed on
a separate board that is plugged into one of the PC's expansion slots.

Many of the support chips in the IBM PC are programmable, which

means they can be manipulated to perform specialized tasks. For the

most part, direct programming of these chips is not a good idea, but in

the discussion of each chip that follows, I will point out which are safe to

program and which aren't. Since this book does not cover direct hard-

ware control, you should look in the IBM Technical Reference manual for

details about programming individual chips.

The 8259 Interrupt Controller

The 8259 supervises the operation of interrupts. Interrupts are sig-

nals sent to the CPU by the hardware either to request attention or to

request that some action be taken. The 8259 intercepts the signals, deter-

mines their level of importance in relation to the other signals it is receiv-

ing, and issues an interrupt to the CPU based on this determination.

When the CPU receives the interrupt signal, it calls a specific program
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associated with that particular peripheral device. It is this program that

actually performs the required action, m- We discuss interrupts more

thoroughly in Chapters 2 and 3.

The 8259 can handle eight interrupt requests at a time, and can be

linked to other 8259s for higher capacity,d IBM has made use of this

expansion capability by hooking two of them together in the AT so it can

handle fifteen interrupts at a time.

Generally, we do not program the 8259, since any changes to it are

likely to interfere with the computer's basic operation. However, it is pos-

sible to reconfigure the priority levels of the interrupts at any time during

the execution of the main program. This means that the program can

change the order in which the requests are processed by the 8259 to

match its own needs.

Other names for the 8259 include the 8259A, the INTR and the PIC,

for programmable interrupt controller.

The 8237A DMA Controller

To avoid harassing the microprocessor, some parts of the computer

are able to transfer data to and from the computer's memory without

passing through the CPU. This operation is called direct memory access,

or DMA, and it is handled by a chip known as the 8237A, or DMA control-

ler. The main purpose of the DMA controller is to allow the disk drive to

read or write data without involving the microprocessor. Since disk I/O is

a relatively slow operation, DMA can speed up the computer's overall per-

formance quite a bit.

All members of the PC family, with the important exception of the

PCjr, use either the 8237A or its equivalent for direct memory access.

UH The lack of DMA is one reason why the PCjr is slower than its cous-

ins. Without a DMA controller to help out, the PCjr's 8088 has to take care

of disk operations whenever they occur, which is indirectly why we can-

not type on the Junior keyboard while the disk is in use.

The DMA controller contains four separate channels to carry data

back and forth from memory, and 344 bits of internal memory to store

the data that is in transit. Theoretically, it is possible for several DMA con-

trollers to be connected to one another and, in fact, EH the AT uses two

DMA controllers in its circuitry.

The 8284A Clock Generator

The clock generator supplies the multiphase clock signals that are

needed to drive the microprocessor and the peripherals. Its base fre-

quency is 14.3128 megahertz (MHz, or million cycles per second). The
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Other chips generally divide the base frequency by a constant to obtain

the frequency they need to accomplish their tasks. The standard PC fam-

ily's 8088 is driven at 4.77 MHz, one-third of the base frequency. The new
additions to the 8086 family can run faster. For example, the 8088-2, used

on some variations of the PC, can be run at a clock speed of 8 MHz, pro-

viding nearly twice the raw computing power of the 8088, and the 80286

runs at 6 MHz, providing roughly one and a half times the computing

power of the 8088. The internal bus and the 8253 programmable timer

(« discussed shortly) use a frequency of 1.193 MHz, running at a quarter

of the 8088 rate, and one-twelfth of the base rate.

The 8255 Programmable Peripheral hiterface

The 8255 is used to connect some of the computer's peripheral de-

vices to the bus. Information that is sent to or from devices such as the

speaker and the cassette travels through the I/O ports via this chip.

The 8255 is also called the 8255A-5 and the PPI (for programmable

peripheral interface). It is normally programmed by the system software,

so although possible, it is not necessary for us to program this chip.

The 8253 Programmable Timer

The 8253 ( EH the 8254A in the AT) is a multipurpose timer and

counter that can generate up to three accurate time delays under software

control. It gets its signal from the 8284A clock generator and is designed

to oscillate at a frequency of 1.190 MHz.
The 8253 is mainly used to generate sounds on the PC's internal

speaker, but is also used for other frequency-dependent functions, such as

cassette data I/O and timekeeping. •^ See Chapter 7's discussion of sound

for more information about this chip.

Other names for the 8253 include the 8253-5, the timer, and some-

times the clock. Keep in mind that "clock" also refers to the 8284 chip,

which generates the computer's 14.3-MHz heartbeat.

The 6845 CRT Controller

The 6845, also called the Motorola CRT chip, is generally located on

an expansion board known as the video display adapter. It has 19 internal

registers that are used to define and control a raster-scan CRT. Although

we can program this chip ourselves, it is wisest by far to leave it under the

control of the PC's BIOS. «" See Chapter 4 for more information on video

displays and video display adapters.
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The PD765 Diskette Controller

The PD765 supervises and controls the operation of the diskette

drive. It is more commonly called the FDC (floppy-disk controller) or the

NEC (Nippon Electric Company) controller. As with the 6845 CRT con-

troller, we should leave this chip under the BIOS's control.

LINKING THE PARTS: THE BUS

As we mentioned, the PC family of computers links all internal con-

trol circuitry together by a circuit design known as a bus. A bus is simply

a shared path on the main circuit board to which all the controlling parts

of the computer are attached. When data is passed from one component

to another it travels along this common path to reach its destination.

Every control chip and every byte of memory in the PC is connected

directly or indirectly to the bus. When a new component is plugged into

one of the expansion slots, it is actually plugged directly into the bus,

making it an equal parmer in the operation of the entire unit.

Any information that enters or leaves a computer system is tem-

porarily stored in at least one of several locations along the bus. Most of

the time data is placed in main memory, which in the PC family consists

of thousands of 8-bit memory cells. But some data may end up in a port

or register for a short time while it waits for the CPU to send it to its

proper location. Generally, ports and registers hold only one or two bytes

of information at a time and are usually used as stopover sites for data

that is being sent from one place to another, {w Ports and registers are

discussed in detail in Chapter 2.)

Whenever a memory cell or port is used as a storage site, its loca-

tion is marked by an address that uniquely identifies it. When data is

ready to be transferred, its destination address is first transmitted along

the address bus; the data follows along behind on the data bus. So the

bus carries more than just data. It carries power and control information,

such as timing signals (from the system clock) and interrupt signals, as

well as the addresses of the thousands of memory cells and the many de-

vices attached to the bus. To accommodate these four different functions,

the bus is divided into four parts: the power lines, the control bus, the

address bus, and the data bus. We're going to delve deeper into the ad-

dress and data buses because they conduct information in a way that

helps to explain some of the unique properties of the PC family.



Chapter 1 : Anatomy of the PC 13

The Address Bus

The address bus in the standard PC family uses 20 signal lines to

transmit the addresses of the memory cells and devices attached to the

bus. («" Memory addressing is discussed more fully on page 14 and in

Chapter 3.) Since there are two possible values (either 1 or 0) that can

travel along each of the 20 address lines, the standard PC computers are

able to specify 2-o addresses. This amounts to over a million possible ad-

dresses. Fil The AT uses 24 address lines, allowing it to specify 1^-* or

over 16 million addresses.

The Data Bus

The data bus works in conjunction with the address bus to carry

data throughout the computer. The PCs 8088-based system uses a data

bus that has 8 signal lines, each of which carries a single binary digit (bit).

This means that data is transmitted across the 8-line bus in 8-bit (1-byte)

units. W.\M The 80286 microprocessor of the AT uses a 16-bit data bus, and

therefore passes data in 16-bit (1-word) units.

The 8088, being a 16-bit microprocessor, can work with 16 bits of

data at a time, just like its relative the 80286. Although the 8088 can work

with 16-bit numbers internally, it passes data only 8 bits at a time when
working with the circuitry around it because of the size of its data bus.

This has led some people to comment that the 8088 is not a true 16-bit

microprocessor. Rest assured that it is, even though it is less powerful

than the 80286. The 16-bit data bus of the 80286 does help it move data

around more efficiently than the 8088, but the real difference in speed

ben\'een the 8088 and the AT comes from the AT's faster clock rate and its

more powerful internal organization.

There is an important practical reason why so many computers, in-

cluding the older members of the PC family, use the 8088 with its 8-bit

data bus, rather than the 8086 with its 16-bit bus. The reason is simple

economics. A host of 8-bit circuitry elements is available in large quan-

tities at low prices. When the PC was being designed, 16-bit circuitry was

more expensive and was less readily available. The use of the 8088, rather

than the 8086, was important not only to hold down the cost of the PC,

but also to avoid a shortage of parts. The price of l6-bit circuitry ele-

ments has decreased significantly since then, however, and it has become

economically feasible to use the more efficient 80286 with its 16-bit bus.

Furthermore, the 286 is able to use a mixture of 8-bit parts and 16-bit

parts, thereby maintaining compatibility within the PC family.
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THE MEMORY CHIPS

So far, we've discussed the CPU, the support chips, and the bus, but

we've only touched on memory. We've left our discussion of memory to

the end of this chapter because memory chips, unlike the other chips we
have discussed, don't control or direct the flow of information through a

computer system; they just store it until it is needed.

The number of memory chips that physically exist inside the com-

puter determines the amount of memory we can use for programs and

data. Although this may vary from one computer to another, a standard

PC usually comes with around 40K of read-only memory (ROM)—with

space for more—and from 128K to 256K of random-access memory
(RAM). Since only 256K of RAM can be accommodated on the system

board, it is possible to add memory cards of varying capacities via the PC's

expansion slots. But this is just the physical view of the standard PC's mem-
ory. To the computer, the memory chips are nothing more than a few thou-

sand 8-bit (1-byte) storage cells, each one with its own unique address.

Programmers must also think of memory in this way—not in

terms of how much physical memory there is, but in terms of how much
addressable memory there is. The 8088 can address up to I,024K, or ex-

actly 1,048,576 bytes of memory. In other words, that's the maximum
number of addresses, and therefore the maximum number of individual

bytes of information it can refer to. m- Memory addressing is discussed

in more detail on page 24.

Each byte is referred to by a 20-bit numeric address. In the 8088's

memory scheme, the addresses are 20 bits "wide" because they must

travel along the 20-bit address bus. We tend to use hex notation rather

than binary notation in determining memory locations, so we usually

translate this 20-bit address into its 5-hex-digit equivalent. This allows

address values to range from hex 00000 to hex FFFFF (0 to 1,048,576 in

decimal notation). «- If you have trouble understanding hex notation,

you might want to take a quick look at Appendix B.

When we discuss the PC's l,024K-byte addressable memory space,

we usually divide it into 16 blocks of 64K bytes each. We identify each

64K block by the first hex digit, or the high-order part, of all the memory
addresses in the block. For example, the first 64K of memory is the

block, with bytes at addresses 00000 through OFFFF; the last block of

memory is the F block, at addresses FOOOO through FFFFF.

For nearly all purposes, there is no functional boundary between

blocks. We refer to memory in these blocks partly for convenience, and

partly because the overall scheme for memory use in all the IBM personal

computers assigns different uses block by block.
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JRl

and also oddly quirky— so quirky, in fact, that there is little useful and

reliable information that we'll be able to tell you about it. The best way to

view the A block is as a provisional scratch pad that is used for brief in-

stants in advanced video modes.

The B block is used for the ordinary video memory in every model

except the PCjr. It is divided into two 32K halves, whose addresses begin

at BOOOO and B8000; for convenience, these areas are simply referred to as

BO and B8. The IBM Monochrome Adapter, the add-on circuit board that

drives the IBM Monochrome Monitor, uses 4K of memory located at the

beginning of the BO area (the area's remaining 28K is unused). The IBM

Color/Graphics Adapter, the add-on board that drives most other moni-

tors, uses 16K of memory located at the beginning of the B8 area (the re-

maining 16K is unused).

Although the other IBM PC models can have either or both of these

display adapters installed, the PCjr has the functional equivalent of the

Color/Graphics Adapter built into it and cannot accommodate a mono-

chrome adapter. The PCjr simulates the use of B8, but actually uses the

high end of RAM (the block for the entry-model PCjr and the 1 block

for the 128K enhanced model) to support the video data. Through some

special circuitry called a video gate array (VGA), the Junior manages to

simulate the PC's video functions exactly, and makes our programs think

it is using the B block, the standard location for PC video memory. The

result is that a PCjr acts like a PC that has a Color/Graphics Adapter in-

stalled. Fortunately, the PCjr goes to great lengths to disguise its dif-

ferences from the other members of the PC family. From a programming

point of view, this means we can ignore the Junior's peculiarities and

treat it just like a standard PC.

It is important to keep in mind that the use of the B block, and its

division into the BO half for monochrome use and the B8 half for color/

graphics use, is a universal standard for the PC family. All models of the

PC, including the PCjr, and all PC display adapters, including the En-

hanced and Professional Graphics Adapters, either use or appear to use

the standard B-block memory locations.

The C block is set aside for any additions that need to be made to

permanently installed ROM programs. IBM first used this area to hold the

ROM-BIOS routines for the fixed disk that comes with the XT model (and

that can be added to the PC model). They did not place the routines at the

beginning or end of the C block, as we might expect, but instead they

placed them in the middle, starting at C8. We can probably assume most

BIOS additions will also be placed in this general area, particularly those

that support new hardware extensions.
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The D and E blocks are set aside for ROM memory in software car-

tridges, which were introduced with the PCjr. Cartridge support can be

added to nearly any model of PC, but cartridges are rarely used except in

the Junior. Cartridge memory actually plugs into the beginning or middle

of either of these blocks, at DO, D8, EO, or E8. In the PCjr only, cartridges

can also plug into the next block, at either FO or F8.

Normally, the F block is used for permanently installed ROM pro-

grams. These include the ROM "cassette" BASIC, the ROM-BIOS, and the

test and diagnostic routines, m- See Chapter 3 for more details. >l;iThe F

block is used for a special purpose by the PCjr; plugging cartridges into the

F block overrides the conventional ROM-BIOS programs that are placed

there. «- There is more on cartridge use in the Junior in Chapter 3.

DESIGN PHILOSOPHY
Before we leap into the following chapters, we ought to discuss the

control philosophy behind the PC family. This will help you understand

what is (and what isn't) important or useful to you.

Part of the design philosophy of the IBM personal computer family

centers around a set of BIOS service routines ((•-see Chapters 8 through 13)

that provide essentially all the control functions and operations that IBM

considers necessary. The basic philosophy of the PC family is: Let the BIOS

do it; don't mess with direct control. In my judgment, this is a sound idea

that has several beneficial results. Using the BIOS routines encourages

good programming practices and it avoids some of the kludgy tricks that

have been the curse of many other computers. It also increases the

chances of our programs working on every member of the PC family. In

addition, it gives IBM more flexibility in making improvements and addi-

tions to the line of PC computers. However, it would be naive for me to

simply say to you, "Don't mess with direct control of the hardware." For

good reasons or bad, you may wish or may need to have your programs

work as directly with the computer hardware as possible, doing what is

colorfully called programming dotun to the bare metal.

When you consider directly controlling the hardware with your

programs, you should understand that the basic mechanism for doing

this lies in the use of ports (i*- discussed in Chapter 2). With the single

exception of sending output direcdy to the display screen (which is done

through the use of memory), all direct control of the PC's hardware is

done by sending data through hardware ports. With only a few excep-

tions, direct use of the ports to control the PC runs against IBM's design

philosophy, and again I would urge you to avoid doing it. The exceptions

to this rule involve those features that IBM did not provide BIOS control

for, specifically sound generation (i*- see Chapter 7).
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Generally speaking, the more each of us learns about program-

ming, the more we begin to realize the limitations of our pro-

gramming languages. High-level programming languages,

such as BASIC or C, are not designed to include every possible

function that we might need while programming—though admittedly,

some are better than others. At some point, we will want to go deeper

into our system and use some of the routines the languages themselves use;

or perhaps go even deeper and program at the hardware level.

Although some languages provide limited means to talk directly to

memory (as with PEEK and POKE in BASIC) or even to some of the chips

(as with Basic's INP and OUT statements), most programmers eventually

resort to assembly language, the basic language from which all other lan-

guages and operating systems are built. The 8088 assembly language, like

all other assembly languages, is composed of a set of symbolic instruc-

tion codes as shown in Figure 2-1. Inside the 8088, these codes and the

data that is associated with them are translated into a binary form, called

machine language, so that they can reside in memory and move through

the electronic circuitry to accomplish specific tasks.

The operations the 8088 instructions can perform break down into

just a few categories. They can do simple, four-function arithmetic on 8-

or 16-bit integers. They can move data around. They can, using only

slightly clumsy methods, manipulate individual bits. They can test values

and take logical action based on the results. And last but not least, they

can interact with the circuitry around them. The size of each instruction

varies from one byte to six bytes. By design, the most basic and often-

used instructions are the shortest.

Assembly-language programming may be carried out on one of two

levels: to create interface routines that will tie high-level programs to the

lower-level DOS and ROM-BIOS routines; or to create full-fledged assembly-

language programs that perform exotic tasks at the hardware level, per-

haps accomplishing a feat that is accomplished nowhere else. Either way,

in order to understand how to use assembly language, we must under-

stand how the 8088 processes information and how it works with the rest

of the computer. The focus of our discussion for the rest of this chapter

will be the way the 8088 and the computer's other parts communicate.
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Mnemonic Full Name Mnemonic Full Name

PUSH
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interaction with the world around it, the concept of an interrupt is useful

for other purposes as well. For example, the system BIOS or the operating

system can produce software interrupts to request and execute special

service programs. Interrupts will be quite important to us when pro-

gramming the PC family, so we'll devote a special section to them at the

end of this chapter.

The 8088 Data Formats

Numeric data. The 8088 is able to work with only four simple nu-

meric data formats, all of which are integer values. The formats are

founded on two building blocks: the 8-bit byte and the 16-bit (2-byte)

word. Both of these basic units are derived from the 16-bit processing ca-

pacity of the 8088 and its 8-bit data bus. The byte is the more fundamen-

tal unit, and when the 8088 addresses memory, bytes are the basic unit

addressed. In a single byte, the 8088 can work with unsigned positive

numbers ranging in value from through 255 (that is, 2^ possibilities). If

the number is a signed value, a byte can represent values ranging from

- 128 through + 127. («- see Figure 2-2.)

When we need integer values larger than one byte, the 8088 simply

uses two adjacent bytes and treats them as a single unit. The 2-byte word

is the most common format. A 2-byte word interpreted as an unsigned,

positive number can have a value ranging from through 65,535. As a

signed number, the value can range from - 32,768 through -l- 32,767.

Character data. Character data is stored in the standard ASCII for-

mat, with each character occupying one byte. The 8088 knows nothing

about ASCII characters and treats them as arbitrary bytes, with one par-

tial exception: The 8088's instruction set accommodates decimal addition

and subtraction performed on ASCII numeral characters. The actual

arithmetic is done in binary, but the combination of the AF flag (•" see

page 33) and a few special instructions makes it practical to work on

decimal characters and get decimal results.
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m- See Appendix C for more information on ASCII and the PC fam-

ily's extended ASCII character set.

HOW THE 8088 ADDRESSES MEMORY
The 8088 is a 16-bit microprocessor and cannot therefore work di-

rectly with numbers larger than 16 bits, the largest decimal value being

65,535 or 64K. Theoretically, this means that the 8088 should be able to ac-

cess only 64K memory addresses. But, as we learned in the previous chap-

ter, it can in fact access much more than that— 1,024K to be exact. This

is possible because of the 20-bit addressing scheme used with the 8088,

which expands the full range of memory locations that the 8088 can work

with from 2i6 (65,535) to 2^0 (1,048,576). But the 8088 is still limited by its

16-bit processing capacity. To access the 20-bit addresses, it must use an

addressing method that fits into the 16-bit format.

Expanding Memory with Segmented Addresses

The 8088 divides the addressable memory space into an arbitrary

number of segments, each containing no more than 64K bytes. Each seg-

ment begins at a location that is evenly divisible by 16 bytes, known as its

segment address or segment paragraph. To access individual bytes or

words, we use an additional address called an offset address that points

to an exact byte location within the 64K segment designated by the seg-

ment paragraph. Because offset addresses are always measured relative to

the beginning of a segment paragraph, they are also called relative ad-

dresses or relative offsets.

Addresses are created and manipulated by combining a 16-bit seg-

ment paragraph and a 16-bit relative offset. The segment paragraph is

treated as if it were shifted to the left by four bits. When added to the

relative offset, it yields a complete, 20-bit address, as we have shown in

Figure 2-3. Together, the two 16-bit words are usually called a segmented

address; they are also called a vector, particularly when referring to in-

terrupts (i*" see page 39 for more on interrupt vectors).

Segment paragraphs are written as 5-digit hex values and always

have a zero in the last place, such as FFE40 or B8120. The zero comes

from multiplying the original 16-bit, 4-digit hex number by 16. (We get

the same shifted effect when we multiply a decimal value by its base

number 10, as in 23 x 10 = 230.) The fact that the segment part of a seg-

mented address is shifted left by four bits (which is the same as if it were

multiplied by 16) is the reason why the segment part alone can only point
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Segment paragraph address

Figure 2-4. The offset address is always de-

termined relative to the segment paragraph

address. For this reason, there may be sev-

eral different segmented addresses for

exactly the same location in memory.

segment registers hold the starting addresses of certain segments in mem-

ory. Five pointer and index registers hold the offset addresses that are

used with the segment paragraphs to pinpoint data in memory. Finally,

there is one flag register containing nine 1-bit flags that are used to record

8088 status information and control 8088 operations. (*" see Figure 2-5.)

The Scratch-Pad Registers

When a computer is processing data, a great deal of the micro-

processor's time is spent fetching data back and forth from memory. This

access time can be greatly reduced by keeping frequently used operands

and results inside the 8088. Four 16-bit registers, usually called the

scratch-pad or data registers, are designed for this purpose.

The scratch-pad registers are known as AX, BX, CX, and DX. Each

of them can also be subdivided and separately addressed as two 8-bit

half-registers. The high-order half-registers are known as AH, BH, CH,

and DH and the low-order half-registers are known as AL, BL, CL, and

DL. Use of the full- and half-registers can be freely intermixed, as needed.

The scratch-pad registers are used mostly as convenient temporary

working areas, particularly for arithmetic operations. Addition and sub-

traction can be done in memory without using the registers, but the re-

gisters are faster.
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AX
BX
CX
DX

CS
DS
ss

ES

IP

SP

BP
SI

DT

Flags
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Back-Words Storage

While the PC's memory is addressed in units of individual 8-bit bytes,

many operations involve 16-bit words. In memory, a 16-bit word is stored in

any two adjacent 8-bit bytes. The least-significant byte of the word is stored in

the lower memory location and the most significant byte is stored in the higher

memory location. From some points of view, storing a word this way is the op-

posite of what we might expect. Due to the backward appearance of this stor-

age scheme, it is sometimes whimsically called "back-words" storage.

Higher

addresses

Word

Word
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The DS register locates the data segment, the area of memory
where the current data is stored.

The SS register locates the stack segment, a temporary workplace

that keeps track of the parameters and addresses currently in use

by the active program ('* see page 32 for more information about

stacks).

The fourth segment register, the ES register, points to an extra seg-

ment that is normally used to supplement the data segment so that more

than 64K of memory can be used to store data. It is also used for interseg-

ment data transfers.

It is common for the four segments to overlap or even be identical.

It is also common for only one part of a 64K segment to actually be used

for its intended purpose; for example, a program may require only 16K of

a 64K segment. Figure 2-6, below, illustrates how memory may actually

be allocated.
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All 8088 instructions that use memory have an implied use of the

appropriate segment register for the operation being performed. For ex-

ample, the MOV instruction, since it acts on data, uses the DS register.

The JMP instruction, which affects the flow of a program, automatically

uses the CS register. In most cases, we can, if we need to, override the

implied segment register with another. In assembly language, this can be

done with segment-override prefixes.

Understanding the segment registers and how they are used will

give you insight into the practical limits of memory use in a 16-bit system.

If your programs or data require blocks of memory larger than 64K, you

will need to apply this knowledge to manipulate the segment registers.

Here are a few hints.

If we leave the CS register alone, the maximum size of our programs

is the 64K limit of an offset address. The 8088 was designed to retain con-

trol of a program, so it is not easy to directly manipulate the CS register

and change the code-segment address if you need more memory. How-

ever, by using certain 8088 program-control instructions, such as far calls

and far jumps, it is possible to indirectly update the CS register. This is

how many programming languages allow programs to grow to any size.

(Interpreted BASIC and Microsoft C, Version 1 do not allow such expan-

sion; Pascal and Version 2 of C do.)

On the other hand, it is relatively easy to manipulate the DS register,

or to use the ES register, to allow us to use more than 64K of data. But

although, theoretically, this capability should allow for unlimited data

size, in practice, most programming languages can only work with 64K

of data in memory because of the way they're designed. For the most

part, this does not present problems, since most programs can get by

very comfortably within the 64K limit. Although the most sophisticated

programs make good use of large amounts of memory, few programs

need anywhere near 64K, and fewer still can use it.

NOTE: For interpreted BASIC, there are a few things worth noting

about the segment registers. The CS register actually points to the BASIC

interpreter. A BASIC program and its data are both considered data from

the 8088's point ofview and both use the DS register. For this reason, there

is a 64K limit to the combined size ofBASIC programs and their data.

BASIC'S DEF SEG Statement lets us do the equivalent ofsetting the DS

register for certain BASIC operations, such as PEEK and POKE, although it

always maintains BASIC'S original DS segment address. (PEEK and POKE
are used to specify the offset address within the data segment.) *" See

page 57 for how to access BASIC'S true DS value.
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The Offset Registers

Five offset registers are used to locate a precise byte or word within

a specific 64K segment. One register, called the instruction pointer (IP),

locates the current instruction in the code segment; two, called the stack

registers, are intimately tied to the stack, a place in memory where the

8088 keeps a record of the addresses and data it needs to remember for

later use {m- for more on stacks see page 32); and the remaining two regi-

sters, called the index registers, are used to point to the current operands

in the data segment.

The instruction pointer (IP), also called the program counter (PC),

provides the offset address within the code segment where the current

program is executing. It is used with the CS register to track the exact

location of the next instruction to be executed.

Programs do not have direct access to the IP register, but there are a

number of instructions, such as JMP and CALL, that change the IP setting

indirectly or save and restore the setting to and from the stack.

The stack pointer registers, called the stack pointer (SP) and the

base pointer (BP), provide offsets into the stack segment. The SP gives the

location of the current top of the stack and is analogous to the IP. The BP

is used to take a "snapshot" of a current top-of-the-stack location, so that

later on we will know exactly where in the stack certain information is

located. The BP is particularly important to assembly-language interface

routines. We'll see it used quite often in the assembly-language examples

that appear in Chapters 8 through 20.

The index registers, called the source index (SI) and the designation

index (DI), are commonly used with another register (AX, BX, CX, or DX)

or an instruction offset, which provides the relative offset to the begin-

ning of a data field within the data segment. The SI and DI registers then

provide relative offsets within the data field. They are used most often

when transferring lengthy strings of data between memory locations.

The string instructions that use the SI and DI registers transfer the string

data one byte or word at a time. Both SI and DI usually increment their

offset values automatically as each transfer occurs so that we don't have

to add 1 to them each time we want to move on to the next byte.

The Flag Register

The fourteenth and last 8088 register, called the flag register, is

really a collection of individual control bits called flags. The flags are

available in the form of a register so they can either be saved and restored

as a coordinated set or inspected as ordinary data. Normally, however,

the flags are set and tested as independent items— not as a set.
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The Stack

The stack is a built-in feature of the 8088. It provides programs with a

place to store and keep track of work in progress. The most important use of

the stack is to keep a record of where subroutines were invoked from and what

parameters were passed to them. The stack can also be used for temporary

working storage, though this is less fundamental and less common.

The stack gets its name from an analog)' to a spring-loaded stack of plates

in a cafeteria: New data is "pushed" onto the top of the stack and old data is

"popped" off. A stack always operates in last-in-first-out (LIFO) order. This

means that when the stack is used to keep track of where to return to a pro-

gram, the most recent calling program is returned to first. This way, a stack

mamtains the orderly workings of programs, subroutines, and interrupt han-

dlers, no matter how complex their operation.

A stack is used from the bottom (highest address) to the top (lowest ad-

dress) so that when data is pushed onto the top of the stack, it is stored at the

memory addresses just below the current top of the stack. The stack grows

downward, so that as data is added, the location of the top of the stack moves

to lower and lower addresses, decreasing the value of SP each time. This has

the advantage of making displacements into old stack contents positive. We
need to keep this in mmd when we access the stack— as is commonly done in

assembly-language interface routines.

1
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Any part of any program can create a new stack space at any time, but

this is not usually done. Normally when a program is run, a single stack is cre-

ated for it and that stack is used throughout the operation of the program—by
the program itself, by its subroutines, and by any DOS and BIOS services that

are invoked during program execution. When not running a program, DOS
uses its own private stack.

There is no simple way to estimate the size of stack that a program might

need, and the 8088's design does not provide any automatic way of detecting

when stack space is in short supply or exhausted. This can make programmers

nervous about the amount of space that should be set aside for a stack. It is

common for programming languages, including interpreter BASIC, to auto-

matically use a stack size of 512 bytes, unless another amount is requested.

You may safely assume that this size is ample, unless you have special reasons

to expect otherwise.

There are nine 1-bit flags in the 16-bit flag register, leaving seven bits

unused. The flags can be logically divided into two groups: six status

flags, which are set to record processor status information (usually indi-

cating what happened with a comparison or arithmetic), and three con-

trol flags, which direct some of the 8088 instructions. Be prepared to see

a variety of notations for the flags, including distinct names for whether

they are set (1) or clear (0). The terms used in Figures 2-7 and 2-8 are the

most common.

Addressing Memory Through Registers

We've seen that memory is always addressed by a combination of a

segment-paragraph value and a relative-offset value, and that the segment

part of an address always comes from one of the four segment registers.

Code Name Use

Indicates an arithmetic carry-out bit

Indicates arithmetic overflow

Indicates zero result, or equal comparison

Indicates negative result/comparison

Indicates even number of 1 bits

Indicates adjustment needed in binary-coded

decimal (BCD) arithmetic operations

Figure 2-7. The six status flags in the 8088's

flag register

CF
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Code Name Use

DF
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ADD AX,[123] Adds die value located at relative offset 123

to the value in AX

ADD AX,[BX + SI + 123] Indexed indirect addressing: Adds the value

located at the relative offset generated by

adding two registers and a number to the

value in AX

Rules for Using Registers

It is important to know that various rules apply to the use of regis-

ters, and it is essential to be aware of these rules when writing assembly-

language interface routines. The rules and conventions of usage vary by

circumstance and by programming language, so unfortunately, exact

guidelines are not always available, but here are some general rules that

will apply in most cases. (•' You will find additional guidance, and

working models to copy, in the examples m Chapters 8 through 20.)

Keep in mind, though, that the following rules are general, not absolute.

In an assembly-language interface routine, there are three general

ways to use registers: Some registers can be freely changed; some regis-

ters can be changed, but should be restored at the end of the routine; and

some registers should not be changed at all.

Generally, the scratch-pad registers (AX through DX) can be freely

changed, with no harm to the calling program. Keep in mmd that the AX

register is commonly used to return results, and that under some circum-

stances parameters are passed via these registers and discarded after use.

Particular rules apply to the four segment registers (CS, DS, SS, and

ES). The CS register should never be changed directly, although it may be

changed indirectly through far and near subroutine calls. The DS register

may be changed, but should usually be restored afterward. The origmal

SS register value should be preserved whenever changes are made to the

register. Normally, subroutines continue to use the stack that SS points

to, but if they create their own stack, they should restore the original

value of SS when they are through. Note that changing the SS value can

interfere with the use of the base pointer (BP) to access parameters. The

ES register can usually be changed at will.

The instruction pointer (IP/PC) should not be directly changed; as

with the CS register, indirect changes occur automatically and correctly.

The stack pomter (SP) may be changed, but normally, all changes to

the SP are made as the indirect result of using the stack. Cleanmg up the

stack (which implies resetting the SP) is an important part of the interface

conventions for using subroutines; die rules for this vary (*" see the ex-

amples in Chapters 8 through 20).
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The base pointer (BP) is usually changed to gain access to param-

eters, and often it should be restored.

The index registers (SI and DI) can be freely changed as needed.

In the flag register, the status flags can also be routinely changed.

Remember that some of the status flags are occasionally used to signal a

result, so their setting can be important. The CF and ZF flags are most

often used for this purpose. As for the control flags, the interrupt flag (IF)

should be left set (interrupts enabled); it is probably also wise to leave the

direction flag (DF) set; setting the trap flag (TF) is suicidal.

HOW THE 8088 USES PORTS

The 8088 communicates with and controls many parts of the com-

puter through the use of input and output (I/O) ports. The I/O ports are

doorways through which information passes as it travels to or from an

I/O device, such as a keyboard or a printer. Most of the support chips we
described in Chapter 1 use the I/O ports; in fact, each chip may use sev-

eral port addresses for different purposes.

Each port is identified by a 16-bit port number, which can range

from through 65,535. The CPU sends data or control information to a

particular port by specifying the port's number, and the port responds by

passing data or status information back to the CPU.

As when accessing memory, the CPU uses the data and address

buses as conduits for communication with the ports. To access a port,

first the CPU sends a signal on the control bus which notifies all I/O de-

vices that the address on the bus is that of a port, and then sends the port

address. The device with the matching port address responds.

The port number addresses a memory location that is part of the

I/O device but is not part of main memory. Special input/output instruc-

tions are used to signal a port access and send information back and

forth to the I/O devices. Some I/O devices, such as the video controllers,

also use the main memory addresses in addition to their I/O ports and

make the CPU think they are part of RAM memory. This is known as

memory-mapped I/O. Generally, memory-mapped devices are easier to

program because they allow us to use the more flexible memory instruc-

tions instead of the rather inflexible and limited input/output instructions

in the 8088 instruction set.

NOTE: The 8088 instruction set includes the IN and OUT instruc-

tions to read or write data to a port. BASIC includes the INP and OUT in-

structions to read or write data to ports in the same way, allowing us to

experiment with different ports using simple BASIC routines and then in-

corporate them into our programs without having to resort to assembly-

language programming.
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Family Differences in the Use of Ports

The uses of specific ports are determined by the hardware design-

ers. Programs that make use of these ports need to be aware of the port

numbers, as well as their use and meaning. Since the port assignments

differ slightly among the PC family members, we have included a list of

the standard ports, their numbers, and their uses in Figure 2-9. In many
cases, the uses are common to the whole PC family. However, you will

notice that the PCjr and AT have introduced a few changes to the port

number assignments.

'•" Before using these port addresses, read the descriptions of the

chips in Chapter 1. Chapter 7, which covers the use of the ports for sound

generation, shows how the ports can be used for some direct hardware

programming to control sound output.

Writing to certain ports can disrupt the operation of the computer,

but reading a port may also have an adverse effect. Don't assume that

simply reading a port will not interfere with the computer s operation, or

that what is safe on one PC model is safe for the entire family. For exam-

ple, the following program works perfectly well on most models of the

PC, but locks up a PCjr.

10 FOR I = 50 TO 75

20 IF ! = 64 THEN PRINT "What happens next'"

30 PRINT I , INP (I)

40 NEXT I

This program simply uses BASIC'S INP command to read data from a port

(INP stands for IN from a Port). It tries to read data from ports 50

through 75, a seemingly innocuous endeavor. However, this little pro-

gram locks up the PCjr when it reaches port number 64, although it

works quite smoothly on the other PCs. The reasons are buried in the

details of hardware design, and to be honest, I don't know them. How-
ever, this sort of curiosity is interesting to know about.

HOW THE 8088 USES INTERRUPTS
Whenever a hardware device or a program needs the assistance of

the CPU, it sends a signal or instruction called an interrupt to the micro-

processor, identifying the particular task it wants performed. When the

microprocessor receives the interrupt signal, it generally stops all other

activities and activates a subroutine stored in memory, called an inter-

rupt handler, that corresponds to that particular interrupt number. After

the interrupt handler has performed its task, the computer's activities con-

tinue from where they were when the interrupt occurred.
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There are three main categories of interrupts. First, there are inter-

rupts generated by the computer's circuitry in response to some event,

such as a key-press on the keyboard. These interrupts are managed by

the interrupt controller chip (the 8259), which prioritizes them in order of

importance before sending them on to the CPU to be acted on. Second,

there are interrupts that are generated by the CPU as a by-product of

some unusual program result, such as division by zero. And third, there

are interrupts deliberately generated by programs as a way of invoking

distant subroutines stored in either RAM or ROM. These interrupts, often

called software interrupts, are usually part of the ROM-BIOS and DOS ser-

vices, {ir- They are covered thoroughly in Chapters 8 through 18.) It is

possible to change software interrupt-handling routines or even write

new ones if our application requires it.

In addition to these interrupts, there is also one special type of inter-

rupt, called the non-maskable interrupt (NMI), that is used to demand
immediate attention from the CPU. It often signals an emergency, such as

a drop in voltage or a memory error. When an NMI is sent, it is given top

priority and the CPU acts on it before all other interrupts.

However an interrupt is generated, the originator of the interrupt

doesn't need to know the memory address of the required interrupt han-

dler; it only needs to know the number of the interrupt. The number

points to a table stored in the lowest memory locations, which contains

the segmented address of the interrupt-handling subroutine. The inter-

rupt handler's address is called its interrupt vector, and the table is called

the interrupt vector table. The vector table is normally supervised by the

BIOS and DOS. («- We'll discuss this more in Chapter 3.) When we create

new interrupt-handling subroutines, we either have them use an existing

interrupt number and vector, or we assign new ones.

Interrupts automatically save the current code segment (CS) and in-

struction pointer (IP) values on the stack, so the computer can return to

where it was working when the interrupt occurred. In addition, the inter-

rupt process saves the flag register on the stack and clears the interrupt

flag (IF), temporarily preventing further interrupts. Normally, an inter-

rupt-handling subroutine turns interrupts back on as soon as possible,

usually within the first few instructions. There is a special interrupt re-

turn instruction, IRET, which performs this function; it corresponds to

the RET instruction used with subroutine calls. IRET also restores the

flags, the CS, and the IP.
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It is quite common to link assembly-language subroutines to pro-

grams or even to programming languages so that we can gain access to

DOS and BIOS service routines or otherwise enhance a program's perfor-

mance. For such interface routines, especially those that call DOS or BIOS

services, it is necessary to be able to program in assembly language. But

for most purposes, these interfaces will consist of simple subroutine calls

and returns, or interrupt calls using the INT instruction. Only the most

advanced assembly-language programming involves the creation of inter-

rupt handlers and the use of the IRET instruction.
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It
takes software to make a computer go. And getting a computer

going and keeping it going is much easier if some of that software is

permanently built into the computer. That's what the ROM pro-

grams are all about. ROM stands for read-only memory—memory

that is permanently recorded in the circuitry of the PC's ROM chips and

that can't be changed, erased, or lost.

Our PCs come with a substantial amount of ROM that contains the

programs and data needed to start and operate the computer and its pe-

ripheral devices. The advantage of having a computer's fundamental pro-

grams stored in ROM is that they are right there— built into the com-

puter— and there is no need to load them into memory from disk the

way that DOS must be loaded. Because they are permanent, the ROM pro-

grams are very often the foundation upon which other programs (includ-

ing DOS) are built.

There are four elements to the ROM in IBM's PC family: the start-up

programs, which do the work of getting the computer started; the ROM-

BIOS—an acronym for Basic Input/Output System—which is a collec-

tion of machine-language routines that provide support services for the

continuing operation of the computer; the ROM-BASIC, which provides

the core of the BASIC programming language; and the ROM extensions,

which are programs that are added to the main ROM when certain op-

tional equipment is added to the computer. We'll be examining each of

these four major elements throughout the rest of this chapter.

The highest memory block is set aside to hold the ROM programs,

starting at segment paragraph hex FOOO. Different models of the PC fam-

ily use different amounts of this 64K space depending upon how complex

their needs are for ROM software. For example, the original PC model,

with its relatively simple hardware, used only 40K of the 64K F block for

the ROM programs, while both the PCjr and the AT, with their much

more complex hardware, use the full 64K space.

THE START-UP ROM
The first job the ROM programs have is to supervise the start-up of

the computer. Unlike other aspects of the ROM, the start-up routines have

little to do with programming the PC family— but it is still worthwhile to

understand what they do.

There are several tasks performed by the start-up routines. For ex-

ample, they run a quick reliability test of the computer (and the ROM
programs) to make sure everything is in working order; they initialize the

chips and the standard equipment attached to the computer; they set up
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the interrupt vector table; they check to see what optional equipment is

attached and, if a disk drive is attached, they often end by loading the

operating system from disk.

The reliability test, part of a process known as the Power On Self

Test (POST), is an important first step in making sure the computer is

ready. All of the POST routines are quite brief except for the memory

tests, which can be annoyingly lengthy when the computer contains a

large amount of memory.

The initialization process is slightly more complex. One routine sets

the default values for interrupt vectors. These default values either point

to the standard interrupt handlers located inside the ROM-BIOS, or they

point to do-nothing routines that our programs will later supply. Another

initialization routine determines what equipment is attached to the com-

puter, and then places a record of it at standard locations in low memory.

((•- We'll be discussing this equipment list in more detail later in the chap-

ter.) How this information is acquired varies from model to model— for

example, DBH in the PC it is taken mosriy from the settings of two banks of

switches located on the computer's system board; IQ in the PCjr, it is

mostly determined by a logical inspection and test (in effect, the initializa-

tion program shouts to each possible option, "Are you there?" and listens

for a response); Ei and in the AT, the information is read out of a special

nonvolatile memory area (which can be set by the diagnostic programs).

Whatever method is used, the status information is recorded and

stored in the same way for every model so that our programs can moni-

tor it. The initialization routines also check for new equipment and ex-

tensions to ROM. If they find any, they momentarily turn control over to

the ROM extensions so that they can initialize themselves. The mitializa-

tion routines then continue executing the remaining start-up routines

(more on this later).

The final part of the start-up procedure, after the POST tests, the

initialization process, and the incorporation of ROM extensions, is called

the boot-strap loader. It's a short routine that is used to load a program

from disk. In essence, the ROM boot loader attempts to read a record,

called a boot record, from a disk, and if successful, passes control of the

computer to the program stored in that record. The program in the disk's

boot record has the job of loading the rest of the disk program. Usually,

this program is a disk operating system such as DOS, but it could be a

self-contained and self-loading program, such as Microsoft's Flight Sim-

ulator. If the ROM boot loader cannot read a disk's boot record, it simply
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activates the built-in ROM "cassette" BASIC. (For non-IBM members of the

extended PC family, a non-boot error message is displayed instead.) As

soon as either of these two processes occurs, the system start-up proce-

dure is finished and the other programs are ready to take over.

NOTE: The ROM extensions can alter or prevent the booting pro-

cess. IJil As we will see toward the end of this chapter, this is most no-

ticeable in some ofthe PCjr's software cartridges.

THE ROM-BIOS

The ROM-BIOS is the part of ROM that is in active use all the time

the computer is at work. The role of the ROM-BIOS is to provide the fun-

damental services that are needed for the operation of the computer. For

the most part, the BIOS controls the computer's peripheral devices, such

as the display screen, keyboard, and disk drives. When we use the term

BIOS in its narrowest sense, we are referring to the device control pro-

grams—the programs that translate a simple command, such as read-

something-from-the-disk, into all the steps needed to actually perform

the command, including error detection and correction. In the broadest

sense, the BIOS not only refers to the routines that are needed to control

the PC's devices, but also to the routines that contain information or per-

form tasks that are fundamental to other aspects of the computer's oper-

ation, such as keeping track of the time of day.

Conceptually, the BIOS programs lie between our programs (includ-

ing DOS) and the hardware. In effect, this means that the BIOS works in

two directions in a two-sided process. One side receives requests from

programs to perform the standard BIOS input/output services. These ser-

vices are invoked by our programs with a combination of an interrupt

number (which indicates the subject of the service request, such as

printer services) and a service number (which indicates the specific ser-

vice to be performed). The other side of the BIOS communicates with the

computer's hardware devices (display screen, disk drives, etc.), using

whatever detailed command codes each device requires. This side of the

BIOS also handles any hardware interrupts that a device generates to get

attention. For example, whenever we press a key, the keyboard generates

an interrupt to let the BIOS know.

Of all the ROM software, the BIOS services are probably the most in-

teresting and useful to programmers— as a matter of fact, we have de-

voted five chapters to the BIOS services in Chapters 8 through 13. Since

we deal with them so thoroughly later on, we'll skip any specific discus-

sion of what the BIOS services do and instead focus on how the BIOS as a

whole keeps track of the computer's input and output processes.
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Interrupt Vectors

The IBM PC family, like all computers based on the Intel 8086 family

of microprocessors, is controlled largely through the use of interrupts,

which can be generated by hardware or software. The BIOS service rou-

tines are no exception; each one is assigned an interrupt number that we
must call when we want to use the service.

When an interrupt occurs, control of the computer is turned over to

an interrupt-handling subroutine that is often stored in the system's ROM
(a BIOS service routine is nothing more than an interrupt handler). The

interrupt handler is called by loading its segmented address into the regis-

ters that control program flow: the CS (code segment) register and the IP

(instruction pointer) register—together known as the CS:IP register pair.

The segmented addresses used to locate interrupt handlers are called in-

terrupt vectors.

The interrupt vectors are preset during the system start-up process

to point to the interrupt handlers in ROM. They are stored in a table in

RAM as a pair of words, with the relative-offset portion first, and the seg-

ment portion second (the 8088 stores them in backward order in mem-

ory; m- see page 27 for an explanation of the "back-words" storage for-

mat). The interrupt vectors can be changed to point to a new interrupt

handler simply by locating the vector and changing its value.

As a general rule, the PC family's interrupts can be divided into seven

categories: microprocessor, hardware, software, DOS, BASIC, address,

and general use.

The microprocessor interrupts, often called logical interrupts, are

designed into the microprocessor. Four of them (interrupts 0, 1, 3, and 4)

are generated by the microprocessor itself, and another (interrupt 2, the

non-maskable interrupt) is activated by a signal generated by one of the

external devices.

The hardware interrupts are built into the PC hardware. Eight of

these hardware interrupts are hard-wired into either the microprocessor

or the main system board and cannot be changed. All hardware inter-

rupts are supervised by the 8259A PIC chip. The reserved codes are 2, 8, 9,

and 11 through 15.

The software interrupts incorporated into the PC design are part of

the ROM-BIOS programs. The BIOS routines invoked by these interrupts

cannot themselves be changed, but the vectors that point to the routines

can be changed to point to different routines. The reserved codes are 5,

16 through 28, and 72.
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The Part DOS Plays

After the ROM boot-strap loader turns control over to a disk's boot

record, the boot record checks to see if DOS is stored on the disk by looking

for two hidden program files named IBMB10.COM and IBMDOS.COM.
If it finds them, it loads them into memory along with the DOS command
interpreter, COMMAND.COM. During this loading process, optional parts

of DOS, such as installable device drivers, may also be loaded.

The IBMBIO.COM file contains extensions to the ROM-BIOS. These

extensions may be changes or additions to the basic I/O operations and often

include corrections to the existing ROM-BIOS, new routines for new equip-

ment, or customized changes to the standard ROM-BIOS routines. Since they

are part of disk software, the lBMBIO.COM routines provide a convenient

way to modify the ROM-BIOS. All that is necessary, besides the new routine,

is that the interrupt vectors for the previous routines be changed to point to

the location in memory where the new routines are placed. Whenever any new

devices are added to the computer, their support programs can be included in

the IBMBIO.COM file or as installable device drivers, eliminating the need to

replace ROM chips. <• See Appendix A for more on device drivers.

We can think of the ROM-BIOS routines as the lowest-level system soft-

ware available to us, performing the most fundamental and yet primitive input

and output operations. The IBMBIO.COM routines, being extensions of the

ROM-BIOS, are essentially on the same low level, also providing basic func-

tions. By comparison, the IBMDOS.COM routines are more sophisticated,

and we can think of them as occupying the next level up, with our program-

ming languages on top.

The IBMDOS.COM file contains the DOS service routines. The DOS
services, like the BIOS services, can be called by our programs through a set of

The DOS interrupts are always available when DOS is in use. Many
programs and programming languages use the services provided by DOS
through the DOS interrupts to handle their basic operations, especially

disk I/O. The reserved codes are 32 through 255 (32 through 96 are used;

the others are set aside).

The BASIC interrupts are assigned by BASIC itself and are always

available when BASIC is in use. The reserved codes are 128 through 240.

The address interrupts are part of the interrupt vector table and are

used to store segmented addresses. There are no actual interrupts or in-

terrupt-handling subroutines associated with these interrupts. Three of

them are associated with three very important tables: the video initializa-

tion table, the disk base table, and the graphics characters table. These

tables contain parameters that the ROM-BIOS uses in start-up procedures

and for graphics character generation. The reserved codes are 29 through

31, 68, and 73 (JTil 68 and 73 are used in the PCjr only).
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interrupts whose vectors are placed in the interrupt vector table in low mem-

ory. One of the DOS interrupts, interrupt 33 (hex 21), is particularly important

because when invoked, it gives us access to a rather large group of secondary

routines, called DOS functions. The DOS functions provide us with more so-

phisticated and efficient control over the I/O operations than the BIOS routines

do, especially with regard to disk file operations. All of the standard disk pro-

cesses— formatting diskenes; reading and writing data; opening, closing, and

deleting files; performing directory searches— are included in the DOS func-

tions and provide the foundation for many of the higher-level DOS programs,

such as FORMAT, COPY, and DIR. Our programs can use the DOS services

when we need more control of I/O operations than our programming lan-

guages allow, and when we are reluctant to dig all the way down to the BIOS

level. The DOS services are a very important part of this book and we have de-

voted five chapters to them. Chapters 14 through 18.

The COMMAND.COM file is die third and most important part of

DOS, at least from a utilitarian standpoint. This file contains the routines that

interpret what we type in through the keyboard when we are in the DOS com-

mand mode. By comparing our input to a table of command names, the

COMMAND.COM program is able to differentiate between internal com-

mands that are part of the COMMAND.COM file, such as RENAME or

ERASE, and external commands such as the DOS utility programs (like

DEBUG) or one of our own programs. It acts on our input by executing the

required routines for internal commands or by searching for the requested

programs on disk and loading them into memory. The whole subject of the

COMMAND.COM file and how it works is intriguing and well worth inves-

tigating— as are the other DOS programs. 1 recommend you read the DOS
Technical Reference manual or Inside the IBM PC for additional information.

The general-use interrupts are established by our programs for

temporary use. The reserved codes are 96 through 103.

The interrupt vectors are stored at the lowest memory locations;

the very first location in memory contains the vector for interrupt num-

ber 0, and so on. Since each vector is two words in length, we find a partic-

ular interrupt s location in memory by multiplying its interrupt number

by 4. For example, the vector for interrupt 5, the print-screen service in-

terrupt, would be at byte offset 20 (5 x 4 = 20). You can examine the inter-

rupt vectors by translating this decimal number into hex notation and

using DEBUG (which only accepts hex values). For interrupt 5, location 20

translates into the hex address 14, and the following commands:

DEBUG

D 0000:0014 L 4

will show four bytes, in hex, like this:

54 FF 00 FO
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Converted to a segmented address and allowing for "back-words" stor-

age, we can see that the interrupt vector for the entry point in ROM of the

print-screen service routine (interrupt 5) is F000:FF54. The same DEBUG
instruction can be used to find any other interrupt vector just as easily.

Figure 3-1 is a listing of the main interrupts and their vector loca-

tions. These are the interrupts that programmers will probably find most

useful. •- Details are available for most of these interrupts in Chapters 8

through 18. Interrupts that are not mentioned in this list are, for the most

part, reserved for future development by IBM.

Changing Interrupt Vectors

The main programming interest in interrupt vectors is not to read

them but to change them so that they point to a new interrupt-handling

routine. To do this, we must write a routine that performs a different

function than the standard ROM-BIOS or DOS interrupts perform, store

the routine in RAM, and then assign a new address to an existing inter-

rupt in the table.

A vector can be changed byte by byte on an assembly-language

level, or by using a programming-language instruction like the POKE
statement in BASIC. In some cases, there may be a danger of an interrupt

occurring in the middle of a change to the vector. If you are not con-

cerned about this, you may as well use the POKE method. Otherwise,

there are two separate ways to change a vector while taking precautions

against its being used while we're in the middle of changing it.

In the first method, we'll change the vector by hand and suspend

interrupts while we're doing it, using the clear interrupt instruction (CLI).

CLI suspends all interrupts except for the non-maskable interrupt (NMI).

NMI is supposed to be used only to signal a truly urgent, the-machine's-

on-fire type of situation, but unfortunately it has come to be used for

some very ordinary situations as well, such as signaling keyboard action

on the PCjr. As a consequence, while masking interrupts with CLI gives

us reasonable insurance against being disrupted in the middle of chang-

ing an interrupt vector, it's not perfect.

I'll show you two examples of this first method—how to set an in-

terrupt vector with interrupts suspended. The first example sets the vec-

tor with two MOV instructions, which move the two words of the vector

into place:

X OR A X , ft X ; zero segment register

MOV E S , A X ; zero segment register

CLI ; suspend interrupts

MOV WORD PTR E5:36,XX ; move vector offset part

MOV WORD PTR ES:38,YY ; move vector segment part

ST I ; activate interrupts



Interrupt

Dec Hex Address Use

Interrupt

Dec Hex Address Use

0000 Generated by CPU when
division by zero is attempted

1 1 0004 Used to single-step through

programs (as with DEBUG)

2 2 0008 Non-maskable mterrupt;

in PCjr, NMI has some

special uses

3 3 OOOC Used to set break-pomts m
programs (as with DEBUG)

4 4 0010 Generated when arithmetic

result overflows

5 5 0014 Invokes print-screen service

routine in BIOS

8 8 0020 Generated by hardware

clock tick

9 9 0024 In most models, generated by

keyboard action; simulated on

PC|r for model compatibility

13 D 0034 Generated during CRT vertical

retrace, for video control

14 E 0038 Signals diskette attention

(e.g. to signal completion)

15 F 003C Used in printer control

16 10 0040 Invokes video displav services

in BIOS

17 11 0044 Invokes equipment-list service

m BIOS

18 12 0048 Invokes memory-size service

in BIOS

19 13 004C Invokes diskette services in BIOS

20 14 0050 Invokes communications

services in BIOS

21 15 0054 Invokes cassette tape services

in BIOS

22 16 0058 Invokes standard keyboard

services m BIOS

23 1

7

005C Invokes printer services in BIOS

24 18 0060 Activates ROM-BASIC language,

or override for it

25 19 0064 Invokes boot-strap start-up

routine in BIOS

26
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While this technique is straightforward, it runs a small risk of an

NMI coming between the two MOV instructions (admittedly a very small

risk). The risk can be reduced by combining the two moves into a single

repeated, or string, move instruction (MOVS). Using the string move in-

struction is much clumsier, because it requires a lot of register set-up.

We'll use it, though, to give you an example of an alternate way of coding

that yields the same result as the first example.

; first set up numerous registers for repeated move

XOR
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our data through the DS register. Getting around that problem calls for

some fancy footwork. Here is one way it can be done, using a real exam-

ple taken from my own Norton Utilities programs:

PUSH
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JR (

iiiiiiiiiiiiiiiMi— — lit

IJMIiHh-^-Hll

To display the data with BASIC, you can use the simple program that

is shown below, making the necessary substitutions for address.in.hex and

number.of.bytes:

10 DEF SEG =

20 FOR 1 = TO number .of .bytes. in. decimal - 1

VALUE = PEEK(&Haddre55.in.hex + I)

IF VALUE < ie THEN PRINT "0"; ' needed for leading zero

30

40

50 PRINT HEX$

GO NEXT 1

(VALUE)

I have listed the most useful addresses on the next few pages. All

addresses are given in hex.

410 (a 2-byte word). This word holds the equipment-list data that is

reported by the equipment-list service, interrupt 17 (hex 11). The format of

this word, shown in Figure 3-2, was established for the PC and XT; certain

parts may appear in a different format in later models, including the PCjr.

412 (one byte). This byte is used only on the PCjr to count the num-

ber of errors detected in the infrared keyboard link. Other models use

this byte only during initialization. An interesting byte, but it has no pro-

gramming significance for us.

413 (a 2-byte word). This word contains the usable memory size in

K. In the PCjr, it returns the amount of memory that remains after setting

aside memory for the display. In other models, this word has a slightly

different meaning: It represents the total memory size. Regardless of the

model, the use of this word has the same purpose: It tells you how much
memory there is to use. BIOS interrupt service 18 (hex 12) reports the value

in this word.

417 (two bytes of keyboard status bits). These bytes are actively

used to control the interpretation of keyboard actions by the ROM-BIOS

routines. Changing these bytes actually changes the meaning of key

strokes. You may freely change the first byte, at address 417, but it is not a

good idea to change the second byte.
( PTil A third byte, unique to the

PCjr, is located at 488). «- See pages 137 and 206 for the bit settings of

these two bytes.

419 (one byte). This byte is set aside in order to control alternate

keyboard input. It is intended for future use.

41A (a 2-byte word). This word points to the head of the BIOS key-

board buffer at 41E, where the key actions are stored until they are used.

41C (a 2-byte word). This word points to the tail of the buffer.

41E (32 bytes, used as sixteen 2-byte entries). The keyboard buffer is

used to hold up to sixteen keyboard actions until they are read via the
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440 (one byte). This byte holds the count down until the diskette

motor is shut off. The count is set to 37 (roughly 2 seconds) at the begin-

ning of each diskette operation. At each clock tick, the count is decre-

mented. The diskette motor is shut off when the count reaches zero.

441 (one byte). This byte indicates the diskette status, with each bit

representing a particular kind of error {m- see Figure 3-3). A bit value of 1

signals that the error occurred; a value of indicates no error occurred.

442 (seven bytes). These seven bytes hold diskette controller status

information.

Beginning at hex 449 is a 30-byte area that is used for video control.

The BIOS uses this area to keep track of critical video information. It is

safe for programs to inspect any of this data, but in most cases, it is risky

to modify it. Changing any of this data can interfere erratically with the

computer's operation—my own experiments have produced some won-

derfully bizarre results. The only bytes that appear to be both safe to

change and useful are the cursor-location fields. (•" For more on cursors,

see address 450H and page 92.)

449 (one byte). A value of through 10 or 13 through 15 in this byte

specifies the current video mode (•" see Figure 3-4). This is the same

video-mode coding used in the BIOS video services. {<*' See Chapter 9 for

more on these services, and page 73 for general information concerning

video modes.)

Our BASIC programs can read this byte to learn the video mode
with these instructions:

DEF SEG = ' set DS register to

VIDEO. MODE = PEEK(4H449) ' look at location hex 449

m- See page 78 for a special discussion on modes 4 and 5 in BASIC.

Bit

7 6 5 4 3 2 10 Meaning

X Diskette timed out: failed to respond in time

X Seek to track failed

X Diskette controller chip failed

. X . . . . Cyclical redundancy check (CRC): error in data

. . X . . . DMA diskette error

. . . X . . Sector not found: diskette damaged or not formatted

.... X . Address mark on diskette not found

X Invalid diskette command requested

Figure 3-3. The coding of the diskette-status

byte at hex 441
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Code Meaning Code Meaning

40-column text, no color

1 40-column text, 16-color

2 80-column text, no color

3 80-column text, 16-color

4 Medium-resolution graphics, 4-color

5 Medium-resolution graphics, no color

(4 shades of grey)

6 High-resolution graphics, 2-color

7 Monochrome adapter mode

8 Low-resolution graphics, 1 6-color (not on

standard Color/Graphics Adapter)

10

13

14

15

Medium-resolution graphics, 16-color

(not on standard Color/Graphics Adapter)

High-resolution graphics, 4-color (not on

standard Color/Graphics Adapter)

Medium-resolution graphics, 16-color

(not on standard Color/Graphics Adapter)

High-resolution graphics, 16-coior (not on

standard Color/Graphics Adapter)

Special-high resolution graphics, 4-color

(not on standard Color/Graphics Adapter)

Figure 3-4. The coding of the video-mode

byte at hex 449

44A (a 2-byte word). This word holds the screen width in text col-

umns. Column widths are stored in the hex equivalent of 20, 40, or 80

columns (video mode 8, low-resolution graphics, has a text width of 20).

44C (a 2-byte word). The screen regeneration length. This is the

number of bytes used for the screen page, which varies by mode.

44E (a 2-byte word). The screen location offset. This is the starting

offset address into video display memory of the current display page. In

effect, this address indicates which visual page is in use by giving the off-

set to that page.

450 (eight 2-byte words). These words give the cursor locations for

eight separate visual pages, beginning with page 0. The first byte of each

word gives the column (0 through 19, 39, or 79) and the second byte gives

the row (0 through 24). The location of the cursor can be controlled by

modifying this information. For programming languages that do not pro-

vide built-in cursor control, this can be a handy way to control the cursor

without creating an assembly-language interface to the BIOS routines.

When changing the data in this byte, note that the change does not

go into effect immediately, but waits until the next screen output. To

demonstrate this, start DEBUG, and enter this command:

F 0:450 L 2 8 8

The cursor jumps to row 8, column 8 after you press return. Needless to

say, this isn't a good programming technique—but it's one you might

find worth knowing about.
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460 (a 2-byte word). These two bytes hold the size of the cursor

based on the range of cursor scan hnes. The first byte gives the ending

scan line, the second byte the starting scan line. Unlike the cursor-location

fields, changing these values will not automatically change the cursor.

462 (one byte). This byte holds the current display page number.

463 (a 2-byte word). This word stores the port address of the 6845

video controller chip. Normally, it is set to hex 3D4.

465 (one byte). This byte contains the CRT mode setting.

466 (one byte). This byte contains the color-palette mask bit setting.

m- For more on palettes see page 76.

467 (five bytes). These bytes are used for cassette tape control.

46C (four bytes stored as two 2-byte words but treated as one

4-byte number). This area is used as a master clock count, which is incre-

mented once for each clock tick. It is treated as if it began counting from

at midnight. When the count reaches the equivalent of 24 hours, it is re-

set to and the byte at hex 470 is set. DOS or BASIC calculates the current

time by calculating from this value and sets the time by putting the ap-

propriate count in this field. This value is reported or set by BIOS inter-

rupt 26 (hex lA).

470 (one byte). This byte indicates that a clock roll-over has oc-

curred. When the clock count passes midnight (and is reset to 0), this

byte is set to 1, which means that the date should be incremented. The

value is set by the clock-tick routine to indicate midnight has passed. It is

reset to whenever the clock is read using interrupt 26 (hex lA). This

automatic reset is based on the assumption that any program that reads

the clock will increment the date when it reads this signal.

NOTE: This byte is set to 1 at midnight and is not incremented.

There is no indication iftwo midnights pass before the clock is read.

471 (one byte). This byte is used to indicate a break keyboard ac-

tion within the BIOS. If bit 7 is 1, the break-key combination was pressed.

472 (a 2-byte word). These bytes are used to signal that a keyboard

reboot is in progress. Whenever the system is rebooted from the key-

board with the Ctrl-Alt-Del key combination, this word is set to hex 1234

while the boot is in progress. This item is a real curiosity.

473 (one byte). Reserved for IBM. This byte is set to hex 24 when a

stock dividend is declared.
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474 (four bytes). This area is used only in the PCjr for special dis-

kette control.

478 (eight bytes, in two 4-byte fields). These bytes are used only in

the PCjr to control time-out signals for the parallel printer and the serial

port (or serial printer).

485 (one byte). This byte holds the character that will be repeated if

a typematic repeat-key action takes effect. It is unique to the PCjr.

486 (one byte). This byte is used in timing the initial delay before

repeat-key action begins. It is unique to the PCjr.

487 (one byte). This byte is used to hold the current Fn function

code. It is unique to the PCjr.

488 (one byte). This byte is a third keyboard status byte that only

applies to the PCjr's keyboard. (The other two keyboard status bytes at

locations hex 417 and 418 are used in all other models, including the

PCjr.) •- The bit settings for this byte are listed on page 137.

500 (one byte). This byte is used by DOS and BASIC to control the

print-screen operation. There are three possible hex values stored in this

location:

00 Indicates OK status

01 Indicates a print-screen operation is currently in progress

FF Indicates that an error occurred during a print-screen

504 (one byte). This byte is used by DOS when a single-diskette sys-

tem, such as an XT or a PCjr, mimics a rwo-diskette system. The value

indicates whether the one real drive is acting as drive A or drive B. These

values are used:

00 Acting as drive A

01 Acting as drive B

510 (a 2-byte word). This area is used by BASIC to hold the default

data segment (DS) value. This is BASIC'S default data segment pointer.

BASIC allows us to set our own data segment value with the DEF

SEG = value statement. (The offset into the segment is specified by the

PEEK or POKE functions.) We can also reset the data segment to its de-

fault setting by using the DEF SEG statement without = value. Although

BASIC does not give us a simple way to find the default value stored in

this location, we can get it by using this little routine:

DEF SEG =

DATA. SEGMENT = PEEK(iH511 • 2S6 + PEEK(&H510)

NOTE: BASIC administers its oivn internal data based on the de-

fault data segment value. Attempting to change it is likely to sabotage

Basic's operation.
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512 (four bytes). This area is used by BASIC as an interrupt vector

that points to BASIC'S clock-tick interrupt service routine.

NOTE: In order to perform better, BASIC runs the system clock at

four times the standard rate, so BASIC must replace the BIOS clock inter-

rupt routine with its own. The standard BIOS interrupt routine is in-

voked by BASIC at the normal rate; that is, once for every four fast ticks.

m- There's more about this on page 149.

516 (four bytes). This area is used by BASIC as an interrupt vector

that points to BASIC'S break-key handling routine.

51A (four bytes). This area is used by BASIC as an interrupt vector

that points to BASIC'S diskette error handling routine.

The Intra-Application Communications Area

Although the BIOS control information comprises the largest and

most important part of the 400-block area, the intra-application com-

munications area, or ICA, is also located there. The ICA is a 16-byte re-

served area from locations 4F0 through 4FF that is used to store data that

can be shared by several different programs. It is particularly useful for

programs that are executed as separate DOS programs but have to leave

information for other parts of the program set. The ICA is not used exten-

sively. Among the few programs that are known to use it are some ver-

sions of IBM's Asynchronous Communications, Lifetree's Volkswriter,

and my TimeMark.

Since any number of programs may store data in the ICA, it may
contain information from several programs. This may mean that some

data will be overwritten. If your programs make use of the ICA, I recom-

mend that you include a check-sum and also a signature so that you can

identify that the data in the ICA is yours and that it has not been changed

by another program.

WARNING: The ICA is definitely located in the 16 bytes from 4F0

through 4FF. A typographic error in some editions of the IBM Technical

Reference manual places it at 500 through SFF. This is incorrect.

The ROM Version and Machine ID Markers

Since the BIOS programs are fixed in memory, they can't be easily

changed when additions or corrections are needed. This means that ROM
programs must be tested very carefully before they are frozen onto mem-
ory chips. Although there is a good chance for serious errors to exist in a

system's ROM programs, IBM has a fine track record; so far, only small

and relatively unimportant errors have been found in the PC family's ROM
programs, and all of them have been corrected in the new machines.
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The different versions of ROM software could present a small chal-

lenge to programmers who discover that the differences affect the operat-

ing characteristics of their programs. But an even greater challenge for

programmers is that some family members (the PCjr and the AT in partic-

ular) use a slightly different set of ROM-BIOS routines than those that

come with the standard IBM PC.

To ensure that our programs are working with the appropriate

ROM programs and the right computer, IBM has supplied us with two

identifying markers that are permanently available at the end of memory
in the system ROM. One marker identifies the ROM release date, which

can be used to identify the BIOS version, and the other gives the machine

model. These markers are always present in IBM's own machines and

we'll also find them supplied by the manufacturers of a few of the mem-
bers of the extended PC family.

The ROM release date can be found in an 8-byte storage area from

F000:FFF5 to FOOO:FFFC (two bytes before the machine ID byte). It con-

sists of ASCII characters in the common American date format; for exam-

ple, 06/01/83 stands for June 1, 1983. This release marker is a common
feature of the IBM personal computers, but is only present in a few IBM

compatibles. For example, the Compaq computers do not have it, but the

Panasonic Senior Parmer does.

The only use of dates in the release marker is to identify the differ-

ent versions of ROM (i*" see Figure 3-5). I suggest that it be used only

when you have found a problem that requires your programs to work

differendy with different ROM releases. (Programs will more likely need

to identify the machine ID byte to respond to the unique features of dif-

ferent models.)

Release Marker
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You can look at the release date with DEBUG, using the following

commands:

DEBUG

D F000:FFF5 L 8

Or you can let your program look at the bytes using this technique:

10 DEF SEG = &HF0O0

20 FOR I = TO 7

30 PRINT CHR$(PEEK(4HFFF5 + I));

40 NEXT

50 END

Here's an example of what you may encounter: I have three PCs and

each came with a different ROM. One has the 04/24/81 version, another

the 10/19/81 version, and the last the 10/27/82 version.

BIOS upgrades are available under some circumstances; for exam-

ple, the PC expansion unit that brings a PC up to XT specifications comes

with the 10/27/82 upgrade. Occasionally, the BIOS upgrade is available sep-

arately as well.

The machine ID is a byte located at F000:FFFE. Figure 3-6 lists the

published ID values for five IBM PC models. We can probably expect this

pattern to continue in future models.

Beware that there are some inconsistencies in the way machine IDs

are assigned. FE was the value announced originally as the identifier for

the XT and later for the Portable PC, yet many XTs actually have the PC

signature FF. In general, we can't count on these signature assignments to

be rock-solid; IBM has definitely waffled a bit about some of them, both

in what it published the signatures as and in what they have actually

been. I believe, though, that there is a simple rule that we can follow in

interpreting the machine signatures. Where the differences between the

models are significant enough to require that a program be able to un-

equivocally identifv' the machine, then the signatures are rock-solid and
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ID

Dec Hex Machine

45 2D Compaq (PC-equivalent)

154 9A Compaq-Plus (XT-equivalent)

Figure 3-7. Unofficial machine IDs for two
Compaq models

as advertised; cases in point: the PCjr and the AT, which each have their

own special characteristics. But when the variations between machine

models are minor, such as between the original PC, the standard PC, the

PC-2 (which accepts 256K of memory on its system board), the XT, and

the Portable PC, then signatures may vary. For all practical purposes, we
can consider both the FF and the FE signatures as identifying one ma-

chine: the more-or-less standard PC.

It is possible that IBM-compatible computers can be identified in the

same way, but I do not know of any reliable published information. My
own programs identify two signatures for the first two Compaq comput-

ers, but you should not consider them official.

You can explore the machine ID byte with DEBUG, using the follow-

ing commands:

DEBUG

D FOOO:FFFE L 1 ' displays one byte at specifiedlocation

A program can inspect this byte using techniques such as this:

10 DEF SEG = &HFOOO ' defines segment FOOO in DX register

20 IF PEEKi&HFFFE) = 253 THEN PRINT "I should be a Junior"

30 IF PEEKi&HFFFE) = 254 THEN PRINT "I should be an XT"

40 IF PEEK(&HFFFE) = 255 THEN PRINT "I should be a PC"

50 IF PEEK(4HFFFE) = 252 THEN PRINT "I should be an AT"

eC END

THE ROM-BASIC

Now we move on to the third element of ROM: the ROM-BASIC. The
ROM-BASIC acts in two ways. First, it provides the core of the BASIC lan-

guage, which includes most of the commands and the underlying founda-

tion, such as memory management, that BASIC uses. The disk versions of

BASIC, which we see in the program files BAS1C.COM and BAS1CA.COM,

are essentially supplements to the ROM-BASIC, and they rely on the ROM-
BASIC to get much of their work done. The second role of the ROM-BASIC

is to provide what IBM calls "cassette" BASIC—the BASIC that is activated

when we start-up our computers without a disk.
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Whenever we use any of the interpreted BASICS, such as cassette

BASIC, the PCjr s cartridge BASIC, or either of the disk BASICS (BASIC or

BASICA), the ROM-BASIC programs are also used—ahhough there's noth-

ing to make us aware of it. On the other hand, compiled BASIC programs

don't make use of the ROM-BASIC.

This ROM-BASIC is unique to IBM's own PC family. None of the

members of the extended PC family, such as the Compaq computers, has

a ROM-BASIC; instead, the equivalent parts of BASIC are included in their

disk-based BASIC programs.

THE ROM EXTENSIONS

The fourth element of the ROM has more to do with the PC's design

than the actual contents of its memory. The PC was designed to allow for

two kinds of extensions to the built-in software in ROM: one for perma-

nent extensions to the ROM-BIOS software, and the other for extensions

provided by removable software cartridges. Special areas of memory are

set aside for each.

Permanent ROM-BIOS extensions are programs that operate like

the built-in ROM-BIOS, but add features not supported by the basic ROM-
BIOS. Usually, these are support programs for new peripheral devices.

The best example of this kind of ROM extension is the ROM-BIOS support

for the IBM fixed disk, which was introduced with the XT. Another is

found in the Enhanced Graphics Adapter. Since the original ROM-BIOS

could not anticipate providing support programs for future hardware,

ROM extensions are obviously a necessary and helpful addition.

Two memory areas are to be used for the permanent ROM-BIOS ex-

tensions. One is the unused part of the F block of memory, which, unfor-

tunately, can vary from model to model. On most models, the 24K area

from segment paragraph FOOO to F600 is available (the non-IBM hard-disk

ROM-BIOS for one of my PCs plugs into paragraph F400). The other mem-
ory area for ROM extensions is the C block of memory, from segment

paragraph COOO through CFFF. The IBM XT hard-disk ROM-BIOS plugs

into this area, at segment paragraph C800, and the IBM Enhanced Graph-

ics Adapter plugs in at paragraph COOO. Although the permanent ROM
extensions provided by IBM have predictable locations, there is always

some potential for conflict between BIOS extensions provided by other

manufacturers.

Normally, the permanent ROM extensions are semipermanendy in-

stalled in a computer, either plugged in as part of an expansion board or

plugged into an available ROM socket in the computer's system board.
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Software cartridges, on the other hand, are intended to be freely

plugged in and removed. Generally, cartridges are used in the same way

as diskettes: to load temporary programs for a specific purpose. A large

128K area of memory, filling the entire D and E blocks of memory, is set

aside for software cartridges to use.

Both kinds of ROM extensions are integrated into the rest of ROM
during the start-up process. To find the ROM extensions, the standard

ROM starts at the COOO block and examines every 2K block for the sig-

nature (hex 55 AA) that identifies the ROM extensions. When the identify-

ing signatures are found, the start-up routine passes control temporarily

to the ROM extension so that the extension can do whatever it needs to

do to merge itself into the operation of the computer. At this point, the

ROM extension can do anything it pleases, including seize complete con-

trol of the computer. Some software cartridges do exactly that. However,

a more normal thing for an extension to do is to simply test any equip-

ment that it supervises (for example, a hard-disk ROM-BIOS extension

might fire the hard disk and metaphorically shake hands through the low-

memory data areas with the rest of the BIOS, so that each BIOS section

knows who its working partners are). Once any initialization is done, a

ROM extension customarily returns control to the main BIOS, which then

finishes the business of starting up the computer.

The Software Cartridges

Since we can't paint a complete picture of ROM extensions without

discussing software cartridges, we'll devote a short section to providing

just the bare essentials about them. You'll find more detailed information

in Exploring the IBM PCjr and in IBM's Technical Reference manual.

ROM software cartridges contain prerecorded programs, stored in

ROM chips, which can be plugged into any PC model that will accommo-

date them (such as the PCjr). Each software cartridge can contain as little

as 2K bytes or as much as 64K bytes, depending on the hardware design.

A cartridge can make itself appear in any one of six memory loca-

tions—the actual location it chooses is written into the cartridge pro-

gram. In segment-paragraph notation, the six possible locations are DOOO,

D800, EOOO, £800, FOOO, and F800. The four addresses in the D and E mem-
ory blocks are conventional cartridge locations. The two addresses in the F

block are ROM-BIOS override addresses, which may allow a cartridge to

temporarily replace the computer's built-in ROM-BIOS.

There is a standard cartridge header format, which the ROM-BIOS

uses to identify cartridges in memory and determine their contents. The

information stored in the header also indirectly identifies the type of car-

tridge that is plugged in and what it will be used for.
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The Cartridge Header

Each cartridge begins with the standard ROM extension 2-byte sig-

nature, hex 55 AA, followed by a 1-byte length code. The length is given

in cartridges and other ROM extensions in units of 512 bytes, or V2K. For

example, an 8K game cartridge has a length code of 16, while a 32K BASIC

language cartridge has a length code of 64.

Following the length code are three bytes that are set aside for a

single cartridge initialization instruction. The three bytes allowed for this

field are enough to contain any instruction of three bytes or less; nor-

mally they contain either a 1-byte FAR RETurn instruction or a 3-byte

JMP instruction. The instruction here controls what initialization— if

any—is done for the cartridge. With a BASIC program cartridge (a car-

tridge containing a program written in BASIC that must therefore be used

with the BASIC language cartridge), these three bytes contain a special

code: the standard FAR RETurn instruction (hex CB), followed by the re-

versed signature (hex AA 55). To avoid being confused with a BASIC pro-

gram cartridge, any other type of cartridge must have something other

than hex AA 55 in the last two bytes of this field.

Following the initialization field, beginning at the seventh byte of

the cartridge, is a DOS table of contents that identifies any DOS command
programs that may be on the cartridge. If there are such programs on the

cartridge, they effectively become additions to the internal commands,

such as DIR, COPY, and TIME at DOS's disposal. If there are no such pro-

grams, the cartridge should have an empty table of contents (explained in

a moment), rather than no table of contents. The format of the DOS table

of contents is a series of command-name entries, followed by a zero byte,

which identifies the end of the table. An empty table of contents simply

has the zero byte.

The command-name entries each consist of three fields: a 1-byte

field recording the length of the name; a field containing the same num-

ber of bytes for the command name, in ASCII capital-letter characters;

and a 3-byte jump-instruction field, which jumps to the program that

carries out the command.

WARNING: Some IBMTechnical Reference manuals incorrectly

identify the last command-name field as a 2-byte offset word; it is in fact

a 3-byte jump instruction.

Following the cartridge header are the actual contents of the car-

tridge—usually machine-language programs. If the cartridge is a BASIC

program cartridge, then the contents are a tokenized BASIC program,

stored in the same format as that used for storing BASIC programs on

disk. Keep in mind that the first byte of a tokenized BASIC program iden-

tifies it as either normal (hex FF) or protected (hex FE).
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To many people, the video display is the computer. Programs are

often judged by their display quality and visual design alone. In

this chapter, we'll see what kinds of displays the IBM PC family

uses and how they are produced. More importantly, we'll

learn how to manipulate the video displays to get the effects we want.

THE DISPLAY ADAPTERS
To produce the video display, most members of the PC family (in-

cluding the PC, the XT, and the AT) require a display adapter— a special

circuit board that is normally plugged into one of the computer's expan-

sion slots. Display adapters were designed into the PCjr, and models such

as the Portable PC and the Compaq also come with display adapters,

though, in their case, we can change the adapters.

The display adapter connects the computer to the display monitor

through a chip called the CRT controller. The adapter also has a set of pro-

grammable I/O ports, a ROM character generator, and RAM memory to

hold the display information.

There are several kinds of display adapters, but they are all modeled

after the two adapters originally released by IBM for the PC: the Color/

Graphics Adapter and the Monochrome Adapter. We'll mosdy be discuss-

ing these two adapters, with additional remarks on others.

Video displays are produced by two fundamentally different modes,

called text mode and graphics mode by IBM. Text mode displays only

characters, though many of these characters are suitable for producing

simple line drawings («r see Appendix C for more on characters). Graph-

ics mode is mainly used to produce complex drawings but can produce

text characters in a variety of shapes and sizes equally well.

The Color/Graphics Adapter can operate in both text and graphics

modes to produce both drawings and characters in several formats and

colors. It is designed to work with all kinds of displays, from standard

TVs to high-resolution color monitors.

By contrast, the Monochrome Adapter can operate only in text

mode, using a stored set of ASCII alphanumeric and graphics characters

and displaying them in only one color. Designed for serious business ap-

plications, the Monochrome Adapter only works with the IBM Mono-
chrome Monitor (or its equivalent), which is a special, high-resolution

display monitor. (•" See page 72 for more on monitors.) Many business

and professional users prefer a monochrome display to a color/graphics

display because it is easier to read. But in choosing monochrome, they

sacrifice graphics and color, two valuable assets for any display.

To overcome these limitations, some hardware manufacturers have

come up with variations of the IBM Monochrome Adapter, such as the
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popular Hercules display adapter, which successfully combines the graph-

ics (but not the color) capabilities of the Color/Graphics Adapter with the

higher-quality text display of the Monochrome Adapter, and adds unique

features of its own. The resulting graphics quality is even better than the

Color/Graphics Adapter can produce. The IBM Enhanced Graphics Adap-

ter can create graphics on the monochrome screen in a similar way.

Roughly two-thirds of all PCs are equipped with the standard Mono-

chrome Adapter and therefore have no graphics or color capability. While

there are real advantages to using color and graphics, most PCs get along

nicely without either. When you are planning computer applications, keep

in mind that most computers and most PCs display text only.

The best way to understand the PC's display capabilities is to cover

the features of the original Color/Graphics Adapter, noting where the

Monochrome Adapter differs (mostly small details). We'll also point out

where extensions to the Color/Graphics Adapter have been made in the

Enhanced Graphics Adapter and in the PCjr.

Memory and the Display Adapters

The display memory is physically located with the other display cir-

cuitry on the adapter card. However, it is logically (to the CPU) a part of

the computer's main memory address space. A full 128K of the memory

address space is set aside for display use in the A and B memory blocks, at

hex addresses AOOOO through BFFFF, but the two original display adapters

use only two small parts of this memory area. The Monochrome Adapter

provides 4K of display memory located at hex paragraph address BOOO.

The original Color/Graphics Adapter provides 16K of display memory lo-

cated at address B800. The remaining space, particularly the 64K block

from AOOO up to BOOO, is set aside for advanced display use; for example,

by the Enhanced Graphics Adapter.

The PCjr strays from the family tradition by using low address loca-

tions in mam memory for its display memory. However, special circuitry

in the PCjr closely mimics the conventional Color/Graphics Adapter. This

circuitry, called the video gate array (VGA), makes it appear as though the

PCjr's display memory is located at the Color/Graphics Adapter's B800

address. References to the B800 area are rerouted by the VGA's circuitry

to whatever location is actually in use as display memory. The PCjr can

use any part of the first 128K of RAM for video memory; the VGA keeps

track of the actual location. For all practical programming purposes, the

PCjr should be treated as a PC equipped with a Color/Graphics Adapter,

which uses the display memory address beginning at B800.
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Creating the Screen Image

The Monochrome and Color/Graphics Adapters store display infor-

mation in memory-mapped display, so called because each address in the

display memory corresponds to a specific location on the screen (•' see

Figure 4-1). The display circuitry repeatedly reads information from mem-
ory and places it on the screen. The information can be changed as fast

as the computer can write new information from our programs into

memory. The CRT controller is the link between the display memory and

the display monitor, translating the stream of bits it receives from mem-
ory into bursts of light at particular locations on the screen.

These dots or dashes of light are generally called pixels and they are

produced by an electron beam striking the phosphorescent surface of the

CRT. The electron beam is produced by an electron gun that scans the

screen line by line. As the gun moves across and down the screen in a

fixed path called a raster scan, the CRT controller generates a video con-

trol signal that turns the beam on and off, matching the pattern of the

bits in memory.

The video circuitry refreshes the screen 60 times a second making

the changing images appear clear and steady. At the end of each screen

refresh cycle, the electron beam must move from the bottom right corner

to the top left corner of the screen to begin a new cycle. This movement

Figure 4-1. The memory-mapped display
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is called the vertical retrace. During the retrace, the beam is blanked and

information cannot be written to the screen.

The vertical retrace period (1.25 milliseconds) is important to the

programmer for one main reason, which requires some explanation. The
special dual-ported design of the display adapter's memory gives the CPU
and the CRT controller equal access to the display memory. This allows

the CPU and the CRT controller to access video memory at the same time.

If the CPU happens to access a memory byte while the CRT controller is

writing to the screen, a "snow" effect may briefly appear on the screen.

However, if we instruct the CPU to access memory only during the ver-

tical retrace, when the CRT controller is not accessing memory, then snow

can be eliminated. For systems using the Color/Graphics Adapter, our

programs can poll a status bit, called the vertical sync signal, in one of

the adapter's I/O ports (location hex 3DA). This bit is set on at the begin-

ning of a retrace and then set off at the end. During this 1.25-millisecond

pause, we can have our programs write as much data as possible to the

video display memory. At the end of the retrace, the CRT controller can

write this data to the screen without snow. This technique is useful for

any application that requires a rapid succession of clear images.

THE VIDEO DISPLAY FORMATS
Originally, there were eight video formats, or modes, defined for

the IBM personal computers. Another seven or more have been added.

The video modes define the display characteristics, including the amount
of text that can be displayed, the resolution or detail of the graphics, and

the display colors. The Color/Graphics Adapter accommodates several

different format options in both text and graphics modes. The Mono-
chrome Adapter offers only a single, one-color text format. Both the PCjr

and the Enhanced Graphics Adaptor (EGA) support a variety of old and

new formats.

Each of the fifteen modes we'll be discussing is identified by a num-
ber from through 16 («- see Figure 4-2). Modes through 3 are the text

modes and modes 4 through 6 are the graphics modes for the Color/

Graphics Adapter. Mode 7 is a monochrome text mode that can be used

only with the IBM Monochrome Adapter (or its equivalent). Modes 8

through 10 were introduced with the PCjr (which also uses modes through

6) and cannot be used with the standard IBM display adapters. Modes 13

through 16 apply to the EGA (which also uses modes through 7).

Color may be used in any display mode except the one provided for

the Monochrome Adapter (mode 7). Through the modes available with
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Monitors

The type of display screen, or monitor, that might be used has an impor-

tant effect on program design. Many monitors cannot produce color or graph-

ics, and some produce such a poor quality image that we can only use the

40-column text display format. There are many kinds of monitor that can be

used with the PC family of computers. The two major categories are the

monochrome monitor and the color monitor, which can be broken down
into four basic types.

Direct-drive monochrome monitors. Tliese monitors are designed to dis-

play high-resolution text and character graphics, but no pixel graphics. The
direct-drive monochrome monitors only work with the Monochrome Adapter.

Graphics screens that will display on any other type of monitor will not show
at all on the direct-drive monitor unless a special interface is used, such as the

Hercules adapter card.

Monochrome composite monitors. These monitors are among the most

widely used and least expensive monitors available. They are connected to the

composite video output on the Color/Graphics Adapter and provide a fairly

clear one-color image (usually green or amber). The Compaq portable and the

IBM Portable PC use this type of monitor. A monochrome composite monitor

can display graphics but not colors. Some monochrome monitors provide lim-

ited "color" support, with shades of intensity replacing the colors. However,

most of them produce an illegible and sometimes invisible display when we
give them a color signal. Don't confuse the composite monitor with the direct-

drive monochrome monitor. The composite monochrome monitor uses the

Color/Graphics Adapter, whereas the direct-drive monochrome monitor uses

the Monochrome Adapter.

Composite color monitors and TV sets. Composite displays are produced

by a single combined signal that travels through the composite video output on

the Color/Graphics Adapter. The composite monitor produces color and

graphics but has limitations: An 80-column display is often unreadable; only

certain color combinations work well; and graphics resolution is low in qual-

ity, so graphics must be kept simple by using low-resolution graphics modes.

Although the standard television set (color or black-and-white) is techni-

cally a composite monitor, it usually produces an even lower-quality image

than the dedicated composite monitor. Text displays must be in 40-column

or even 20-column mode to ensure that the display is readable. TVs are con-

nected to the composite video output of the Color/Graphics Adapter or its

equivalent (in the case of the PCjr, there is a special TV output), but the com-

posite signal must be converted by an RF adapter before going into the TV.

RGB color monitors. The RGB monitors are considered the best of both

worlds. They combine the high-quality text display of the monochrome moni-

tors with high-resolution graphics and color. RGB stands for red-green-blue

and RGB monitors are so named because they use separate wires for each of

the color signals (unlike the composite monitors, which use only one wire).

These wires are connected to the RGB output of the Color/Graphics Adapter

or its equivalent. A top-quality RGB monitor can produce the clearest, most

legible images, second only to the IBM Monochrome Monitor. The image and

color quality is usually much better than that available through any screen that

connects to the composite video output.

4
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left to right in each line. The number of rows a monitor can display is

determined by the hardware and the video signals, which we have little

or no control over; a standard PC display always has 25 text rows and 200

graphics rows. So to change the screen's resolution, we have to change

the number of pixels on each line.

The PC graphics modes have three resolutions—low, medium, and

high—with 160, 320, and 640 pixels on each line, ffil Low resolution

(160 X 200 pixels) was introduced with the PCjr and is not available with ei-

ther the original Color/Graphics Adapter or the Enhanced Graphics Adap-

ter. Since text characters can also be displayed in the graphics modes, the

medium and high graphics resolutions each have an equivalent text size

(* see Figure 4-3).

A narrow character that fits in an 80-column-by-25-line format uses

640 X 200 pixel resolution, and a broader character that fills a 40-column-

by-25-line format uses a 320 x 200 pixel resolution. (The 80 x 25 character

display of the Monochrome Adapter shows clearer text because its char-

acters are built from a higher pixel resolution—720 X 350.)

You will notice that low-resolution graphics have their own unique

20-column text format, which has no equivalent in the standard text

modes. H:l Text width 20, along with the low-resolution mode, was in-

troduced with the PCjr and neither format exists in the other adapters.

Video Mode Control

Video modes are controlled by the ROM-BIOS through interrupt 16

(hex 10), service 0. (
•" See Chapter 9.) BASIC gives us full control over the

video modes through the SCREEN statement, but refers to them in its

own way, using different mode numbers than the ROM-BIOS routines. We
can also control some of the video modes through DOS. But at the com-

mand level, DOS insists on a text mode and there are no DOS commands
that switch to any of the graphics modes, as we can see in Figure 4-4.

Resolution Pixels Characters

Low
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all the colors, from through 15. When we use an eight-color mode, we
get colors through 7; that is, all the colors without bright intensity.

With a four-color mode, we get a selection of four colors from the list of

sixteen. This four-color selection is called a palette. In a two-color mode,

we get colors and 7—black and ordinary white.

So far we've described the basic 16-color palette of the standard PC,

which is built of the three RGB colors and the intensity setting (1). We
might call this basic color scheme IRGB. A 64-color palette has been

added to the PC family, but is only available with the combination of the

Enhanced Graphics Adapter and Enhanced Color Display—the EGA/ECD
combination. This 64-color palette is built out of the standard three col-

ors (red, green, and blue), but each color has two independent signals: a

brighter one and a dimmer one. The notation for the 64-color palette is

RrGgBb, where the capital letters stand for the dimmer colors. Note that

we're not talking about two intensity levels but about two separate color

signals, which allow for a total of four intensities of each of the three col-

ors. For the reds, the four intensities would be Rr (most intense), R., .r, and

.. (no red). All possible combinations of RrGgBb work out to 64 colors.

Intensity

Red
Green
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We won't be discussing the 64-color palette of the EGA/ECD combo in

any detail because it's quite rare and specialized and doesn't really fit into

the mainstream of the PC family. ( If we really wanted to treat all the exotic,

non-mainstream elements of the PC family, we would fill a wonderful book

several times the size of this one.) Another even more specialized adapter

and display combination, the IBM Professional Graphics Adapter and Dis-

play has a palette of 256 colors and remarkably high resolution; but it is

even farther removed from the PC mainstream, so we won't be discussing

it, either. Instead, we'll go back to a more detailed discussion of the stan-

dard color palettes.

There are several things to keep in mind when choosing colors. The

four color elements (IRGB) all actively produce light. The more elements in

use, the brighter the color will be, but also the more washed out it will

seem. To the eye, the pure single colors (red, green, and blue) are more

visually intense than either the mixed colors (cyan, magenta, and yellow)

or the so-called "intense" (brightened) versions of the pure colors. Here

are three other factors that should be considered when choosing colors:

Some color display screens do not respond to the intensity bit.

This deficiency makes color 8 the same as color 0, color 9 the

same as color 1, and so on.

When a composite monochrome display screen is used with a

color/graphics adapter, colors other than black (0) and white (7)

may produce illegible information.

Finally, programs that are run on a PC or XT with the IBM Mono-

chrome Adapter must take into account the unusual way the

monochrome display treats color (i*" see page 81).

In considering color, check the discussions in each of the remaining

sections. There are important color-related items in each section.

Color-Suppressed Modes

In an effort to make the graphics modes compatible with a wide

range of monitors, both color and monochrome, IBM included a few

modes that do not produce color, called color-suppressed modes. There

are three color-suppressed modes: modes 0, 2, and 5. In these modes,

colors are converted into shades of grey, or whatever color the screen

phosphor produces. There are four even shades in mode 5, and a variety

of shades in modes and 2. Color is suppressed in the display adapter's

composite output but not in its RGB output. This inconsistency is the re-

sult of an unavoidable technical limitation.
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NOTE: For each color-suppressed mode, there is a corresponding

color mode, so modes and I correspond to 40-column text, modes 2

and 3 to 80-column text, and modes 4 and 5 to medium-resolution

graphics. The fact that modes 4 and 5 reverse the pattern ofmodes and
1 and modes 1 and 3, where the color-suppressed mode comes first, has

lead to a complication in BASIC. The burst parameter of the BASIC

SCREEN statement controls color. The meaning of this parameter is re-

versed for modes 4 and 5, so that the statement SCREEN,! activates color

in the text modes (0, 1, 2, and 3) but suppresses color in the graphics

modes (4 and 5). This inconsistency may have been a programming error

at first, but it is now part of the official definition of the SCREEN state-

ment. Figure 4-6 shows the proper SCREEN statement syntax for modes
through 5.

Color in Text and Graphics Modes

We need to be aware of the differences in the use of color between

text and graphics modes, particularly the apparent inconsistencies in the

way text colors are handled. In text mode, we have completely indepen-

dent control over the color of each character position: We can freely use

the full sixteen-color palette in the foreground and the eight-color palette

in the background. In graphics mode, we have complete control over the

color of each pixel and over the color of any graphics drawing operations

(as provided by BASIC, for example).

In theory, the graphics modes should give us richer use of color over

the entire screen. However, when we write text in a graphics mode, we
do not have control over the background color: It is always set to the

Mode Color Suppressed Color Active

SCREEN 0,0:WIDTH 40

1 SCREEN 0,1

2 SCREEN 0,0:WIDTH 80

3 SCREEN 0,1:WIDTH 80

4 SCREEN 1,0

5 SCREEN 1,1

Figure 4-6. The color burst parameters of

modes through 5. Notice that modes
through 3 and modes 4 through 5 follow

different patterns
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universal background color that is in effect. {«~ See the discussion of pal-

ette value under the four-color modes, page 83.) This means that even

though the graphics modes provide more control of color in principle,

they actually provide less control of color when we are displaying text.

This is an inherent characteristic of the text-writing services in the graph-

ics modes. (•' See Chapter 9.)

Setting Color in Text Modes

In the text modes, each character position on the display screen is

controlled by two adjacent bytes in memory (•- see page 52 for more

about the location of these bytes in memory). The first byte contains the

ASCII code for the character that will be displayed. (•" See Appendix C
for a chart of characters.) The second byte controls how the character

will appear, specifying its colors and so forth. This second byte is called

the character attribute.

Before we go any further, we need to explain a couple of terms that

may present some confusion. In IBM PC display terminology, the terms

color and attribute are used interchangeably. Although there are precise

technical meanings to these two terms, which are distinct but closely re-

lated, you'll often find the two terms used imprecisely to mean roughly

the same thing. To avoid confusion, think of both words as slightly vague

terms that refer both to the way things appear on the screen and to the

data coding in memory that controls the character's appearance.

There are three components to the text character attribute: the

foreground color (the color of the character itself), the background color

(the color of the area not covered by the character), and the character

blink component. The foreground color can be any of the sixteen colors

in the full PC range. The background color can be one of only eight col-

ors: color numbers through 7 (the basic colors without bright intensity).

Each character position on the screen has its own attribute control,

independent of all other screen characters. The eight bits in the attribute

byte act independently to control one element of the display attribute.

•" The bit settings are shown in Figure 4-Z The default attribute used by

DOS and BASIC is hex 07, normal white (7) on black (0), without blinking.
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Bit

7 6 5 4 3 2 10 Use

JR

1
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one at a time in quick succession. There are also more special effects

available for text-mode characters. For one thing, there is a wider choice

of colors. And for another, text modes can blink characters, while graph-

ics modes have no blinking capability at all.

Setting Attributes in the Monochrome Mode

The monochrome mode (mode 7) used by the IBM Monochrome
Adapter has a limited selection of display variations that are the equiv-

alent of color. The same general coding scheme is used to set the display

attributes for monochrome characters as is used for text-mode characters

in graphics modes through 3.

The blinking and intensity bits are used in the monochrome mode.

However, only four foreground and background "color" combinations

produce distinct results:

Normal white-on-black, produced by selecting white (foreground

bits 111) on black (background bits 000), or hex 07.

Underlined characters, produced by setting the attribute byte to

hex 01, which selects blue (foreground bits 001) on black (back-

ground bits 000).

Reverse video, or black (foreground bits 000) on white (back-

ground bits ill), produced with hex 70.

Invisible characters, created using black (foreground bits 000) on

black (background bits 000), or hex 00.

All other color combinations show the same as normal white-on-black,

hex 07 Other color combinations that might seem logical, such as invisi-

ble white-on-white or a reverse video/underlined combination, do not ex-

ist in monochrome mode; only the four results mentioned exist. Note

that the blinking and intensity attribute bits are independent of these four

"color" combinations.

Setting Color in Graphics Modes

So far, we've seen how to set color (and the monochrome equiv-

alent of color) in the text modes. Setting color in the graphics modes is

quite different. In the graphics modes (modes 4 through 6 and 8 through

10), each pixel on the screen has a color associated with it. The color is set

the same way attributes are set in text mode, but there are important dif-

ferences. First, graphics pixels cannot blink. Second, since each pixel is a

discrete dot of color, there is no foreground and background—each pixel
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is simply one color or another. When text is written in graphics mode,

one color is used for the pixels that make up the "background" and any

of the colors can be used for the pixels that make up the characters.

NOTE: The use ofgraphics mode in BASICgives us the impression

that there is a background color for graphics. But this is simply a conve-

nient convention that BASIC adopts: Any pixels that aren't explicitly set

to some "foreground" color are given the "background" color. The ROM-
BIOS video services (m- Chapter 9) also make use of this background-

color convention.

For each graphics mode, there are predefined color choices, known
as palettes. The standard palettes can be changed in the PCjr or the EGA,

but not in the original Color/Graphics Adapter. Once the palette colors

for any graphics mode are set, each pixel color can be selected from the

available colors by setting the color value of the bits assigned to each

pixel. In a two-color mode, there is one bit for each pixel and the pixel's

color value is given as or 1. In a four-color mode, there are two bits with

the color values of through 3. In a sixteen-color mode, there are four

bits and color values of through 15. The color values used to define a

pixel are not necessarily the same as the numbers (0 through 15) used to

identify the actual colors that appear on the screen.

In two-color mode 6, there is only one standard palette, shown in

Figure 4-8. In four-color modes 4 and 5, there are two standard palettes:

palette 0, shown in Figure 4-9, and palette 1, shown in Figure 4-10. Two
things should be noted about these palettes. First, palette value can be

changed from black (color 0) to any color. Second, palette value is the

"background" color and palette value 3 is the "foreground" color when
writing text characters. In four-color mode 10 there is one standard pal-

ette, which is the same as palette 1. In sixteen-color modes 8, 9, 13, and 14,

there is one standard palette. This palette matches the palette values

through 15 to the actual color numbers, as you might expect. Remember,

color modes 8 and 9 are only available with the PCjr, and 13 and 14 are

only available with the EGA.

Bit Value Color

Black

1 1 White

Figure 4-8. The standard palette for the

two-color graphics mode (mode 6)
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We should be aware that for the video modes that have their display

memory in the B block (color/graphics modes through 6 and mono-
chrome mode 7), we can have our programs safely tinker with the display

memory. This is true even for the PCjr, which only appears to use the B

block for modes through 6. IBM didn't want our programs to directly

touch the display memory at first, but since most worthwhile programs

do, IBM is now resigned to it and fully intends to support it in all present

and future display adapters. But IBM is drawing the line with these modes.

For new enhanced modes, such as the PCjr's modes 8 through 10 and the

EGA's modes 13 through 16, IBM is making the display memory as hands-

off as possible. In the case of the EGA, the display memory is theoretically

located in the A block but can't actually be found at that address by our

programs. We'd be fools to try to break through this barrier.

The use and coding of the video display memory varies according

to which of video modes through 10 is being used. (Recall that modes
through 6 apply to the original IBM Color/Graphics Adapter and mode 7

to the IBM Monochrome Adapter. Modes 8 through 10 were introduced

with the PCjr model, which also uses modes through 6; these modes
cannot be used with the standard IBM Color/Graphics Adapter or any of

its equivalents. Modes II through 16 apply only to the EGA.)

In modes through 6 and also 8, the display map occupies 16K

bytes; in modes 9 and 10, the display map fills 32K. In the Monochrome
Adapter's mode 7, it uses only 4K bytes. The text-mode displays of both

the monochrome and graphics display adapters use less memory than do

the graphics-mode displays because only two bytes are needed to store

one character (• more about this on page 87). Consequently, an 80- by

25-character text display requires only 4,000 bytes. A graphics display, as

we can see in Figure 4-11, may require anywhere from 16K bytes to 32K

bytes, depending on the number of colors we use. In the two-color graph-

ics modes, a pixel uses one bit. In the four- and sixteen-color modes, each

pixel requires from two to four bits in order to store the larger color values.

This means that a 320 X 200 sixteen-color bit-mapped display requires a

full 32K (two pixels per byte).

Since a typical text display occupies 4,000 bytes (only 2,000 bytes in

40-column mode), there is some space left over in the Color/Graphics

Adapter's 16K display memory. We can use this space for more text by

dividing it into display pages.
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Monochrome Adapter's character generator uses a 9-by-14 pixel block

format. The larger format is one of the factors that makes the Mono-
chrome Adapter's display output easier to read.

The standard ASCII characters (CHR$(1) through CHR$(127)) repre-

sent only half of the ASCII characters that we can use in the text modes.

We also have 128 graphics characters available through the same charac-

ter generator (CHR$(128) through CHR${255)). Over half of them can be

used to make simple line drawings. « A complete list of both the stan-

dard ASCII characters and the graphics characters provided by IBM is

given in Appendbc C.

The graphics modes can also display characters, but they are pro-

duced quite differently. The graphics modes can only store information

bit-by-bit and characters are no exception: They must be drawn one bit at

a time. The big advantage to a bit-mapped display as far as characters are

concerned is that you can design your own characters. In the original

IBM Color/Graphics Adapter, the table for the second 128 characters is lo-

cated in RAM and can therefore be modified. Having modified the table,

we can directly access and display a custom set of characters instead of

the standard IBM set. With the PCjr, all 256 characters are in RAM, so all

of them can be modified.

Mapping Characters in Text Modes

In text modes, the memory map begins with the top left corner of

the screen, using two bytes per screen position. The memory bytes for

succeeding characters immediately follow in the order we would read

them—from left to right and from top to bottom.

Modes and 1 are text modes with a screen format of 40 columns

by 25 rows. Each row occupies 40 x 2 = 80 bytes. A screen occupies only

2K bytes in modes and 1, which means the 16K memory can accommo-

date eight display pages. If the rows are numbered through 24 and the

columns numbered through 39, then the offset to any screen character

in the first display page is given by the BASIC formula:

CHARACTER. OFFSET = (ROW. NUMBER • 80) + ( COLUMN . NUMBER • 2)

Since the attribute byte for any character is in the memory location next

to the ASCII character value, we can locate it by simply adding 1 to the

character offset.

Modes 2, 3, and 7 are also text modes with 80 columns in each row

instead of 40. The byte layout is the same, but each row requires twice as
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many bytes, or 80 x 2 = 160 bytes. Consequently, the 80-by-25 screen for-

mat uses 4K bytes and the 16K memory can accommodate four display

pages. The offset to any screen location in the first display page is given

by the BASIC formula:

CHARACTER. OFFSET = (ROW. NUMBER • 160) + (COLUMN . NUMBER • 2)

When using the Color/Graphics Adapter, the beginning of each text

display page traditionally starts at an even K boundary. Since each screen

page in the text modes actually uses only 2,000 or 4,000 bytes, there are

some unused bytes following each page: either 48 or 96 bytes depending

on the size of the page. So, to locate any screen position on any page in

text mode, use this general formula:

LOCATION = (SEGMENT. PARAGRAPH • 16) + (PAGE. NUMBER PAGE. SIZE)

+ (ROW. NUMBER * ROW. WIDTH • 2) + (COLUMN . NUMBER • 2) + WHICH

where:

LOCATION is the 20-bit address of the screen information.

SEGMENT.PARAGRAPH is die location of the video display memory

(for example, hex BOOO or B800).

PAGE.NUMBER is in the range through 3 or through 7.

PAGE.SIZE is 2K or 4K.

ROW.NUMBER is from through 24.

ROW.WIDTH is 40 or 80.

COLUMN.NUMBER is from through 39 or through 79.

WHICH is for the display character or 1 for the display attribute.

Mapping Pixels in Graphics Modes

When we use a graphics mode, pixels are stored as a series of bits,

with a one-to-one correlation between the bits in memory and the pixels

on the screen. We generally use one of three schemes to map out the dis-

play memory in graphics modes.

The original Color/Graphics Adapter organizes the display into 200

hnes, numbered through 199. The number of pixels in each line varies

with the mode we use. Modes 4, 5, and 9 are medium resolution, with

320 pixels in each line. Modes 6 and 10 are high resolution, with 640 in

each line. Mode 8, which was introduced in the PCjr and is not available

for use with the standard IBM Color/Graphics Adapter, is low resolution,

with 160 pixels in each line. The pixel columns for low-, medium-, and

high-resolution graphics modes are numbered through 159, 329, or 639.
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The storage for the rows is divided into "banks" of lines that oc-

cupy contiguous memory locations. For modes 4, 5, 6, and 8, there are

two banks, the first bank holding the memory for the even-numbered

lines 0, 2, 4 . . . through 198, and the second holding the memory for the

odd-numbered lines 1, 3, 5... through 199. Modes 9 and 10 have four

banks, with similarly staggered lines:

1st bank 0, 4, 8, 12... 196

2nd bank 1, 5, 9, 13... 197

3rd bank 2, 6, 10, 14... 198

4th bank 3, 7, 11, 15... 199

These banks of lines are similar to text-mode display pages in two

respects: The lines within each bank run one right after another without

any gap in memory, and each bank begins on an even K boundary, leav-

ing some unused bytes at the end of each bank. However, unlike the dis-

play pages, all banks of lines are actively used by the display screen. Each

bank is 8K in size, so the offsets to the beginning of the banks are 0, 8K,

16K, and 24K.

As we can see in Figure 4-13, the amount of memory used to sup-

port each pixel varies by mode. Mode 6 uses one bit, which can select

from two colors; modes 4, 5, and 10 use two bits, selecting from four

colors; and modes 8 and 9 use four bits, selecting from sixteen colors.

Except for mode 10, which is treated specially, the bits needed for

each pixel in each row are taken in consecutive order from memory. For

example, in mode 6, which uses one bit per pixel, the eight bits in the first

byte of the display memory control the first eight pixels on the screen.

Mode
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The first (high-order) bit controls the first pixel, and so forth. In mode 4,

with two bits per pixel, the eight bits of each byte control four pixels. In

mode 8, with four bits per pixel, each byte controls two pixels, m- All

three bit formats are shown in Figure 4-14.

In mode 10, bit-mapping is different (•"see Figure 4-15). Like modes

4 and 5, mode 10 requires two bits for each pixel, but unlike modes 4 and

5, the pixel information is not stored adjacent within one byte. Instead, it

is stored in corresponding bits from two adjacent bytes. The bit from the

first byte is the higher-order bit. When it is combined with the corre-

sponding bit in the second byte, the two bits produce a color number

from through 3.

In modes 4, 5, 6, and 8, each line of pixels uses 80 bytes; in modes 9

and 10, each line uses 160 bytes.

CONTROLLING THE VIDEO DISPLAY

In general, control of the display screen, like most other computer

operations, can be done in four ways:

By using the programming-language services (for example,

BASIC'S SCREEN statement).

By using the DOS services (m- see Chapters 16 and 17).

By using the ROM-BIOS video services (
• see Chapter 9).

By direct manipulation of the hardware, via memory or ports.

The video services that are available through programming lan-

guages, DOS, and the ROM-BIOS automatically place screen output data

Bit
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1st Byte

7 6 5 4 3 2 10
2nd Byte

7 6 5 4 3 2 10 Pixel

X

. X

. . X . . . .

. . . X . . .

. . . . X . .

X .

.... X
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About the Cursor

A blinking cursor is a feature of the text modes that is used to indicate the

active location on the display screen. The cursor is actually a group of scan

lines that fill the entire width of the character box. The size of the character-

box varies with the display adapter; the Monochrome Adapter uses a 9-pLxels-

wide-by-14-scan-lmes-high format, and the Color/Graphics Adapter uses an 8-

pixels-by-8-scan-lines format. (The extra scan lines in the monochrome mode
allow for a more detailed character drawing, as you'll see in Appendix C).

The default cursor format uses every scan line, but it may be changed to

display any number of lines within its small range. For example, we can set the

cursor to start and stop on any set of scan lines and even to wrap around from

a lower scan line to a higher one. This allows us to make a one-part cursor lo-

cated anywhere in the character box, or a two-part cursor located at the top

and bottom of the character box. (• See page 174 for a discussion of the char-

acter box and the relationship of the scan lines to the characters.)

Since the blinking cursor used in text modes is a hardware-created fea-

ture, software has only limited control over it. We can change its format and

we can change its location on the screen in a number of ways. To read or

change the location of the cursor we can use some of the ROM-BIOS services

(« see Chapter 11) or we can read or write directly to memory (tm- see the dis-

cussion of location hex 450 on page 55). Likewise, we can read and change the

cursor format by using the ROM-BIOS services or we can read the format di-

rectly by inspecting memory (•^ see the discussion of location hex 460 on

page 56). Most programming languages also offer these services.

If we ever want to bypass this hardware-controlled blinking cursor (and

many of us do), we can use the reverse-video display attribute (hex 70) when-

ever the real cursor is located. This will produce a block cursor that doesn't

blink. Another way to do this is to use the ASCII block characters, either

CHR$(219) or CHR$(254).

So far, we've been talking about the text-mode cursor. In the graphics

modes, there is no displayed cursor, but a logical cursor location is recorded

that tells us the active screen location. As in the text modes, to find out the cur-

sor's location, we can either use the ROM-BIOS services or read the location

byte (hex 450) directly.

To create a cursor in graphics modes, many programs, including BASIC,

simulate the block cursor by using a distinctive background color at the cursor

location or by using the ASCII block characters.

up; second, the program can't run in the background simultaneously

with other programs; and third, the display information can't be "win-

dowed"; that is, it can't be moved or adjusted in size.

Programmers are faced with a conflict here: Direct output to the

screen has the benefit of speed and power, while using BIOS or higher-

level services for screen output has the benefit of more flexibility for
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adapting to windowing systems, new display adapters, etc. The solution

that I adopted for my own programs was to use both techniques, activat-

ing one or the other as needed.

Direct Hardware Control

Much of the information that we've provided in this chapter, partic-

ularly the information on the internal mapping of the display memory, is

meant to help you write video information directly into the display mem-
ory. But remember, there is a risk in any kind of direct programming,

and you'll find that it is both safer and easier to use the highest available

means to control the video display. Lower means, particularly direct ma-

nipulation, can be very disruptive. There are only a few instances when

direct control is safe and reliable. Wherever possible, I will point out

these circumstances.

Monochrome Adapter I/O Ports

The Monochrome Adapter uses four I/O ports: the CRT control and

status ports and the 6845 CRT controller registers.

The CRT control port (hex 3B8). We can set three of this port's eight

bits: the high-resolution, video, and blink bits. The high-resolution bit

must always be on to use the Monochrome Adapter. The video and blink

settings turn the video display and the character blink on and off. Send-

ing the value hex 29 to this port will set the three bits to their normal

setting, {'m- See Figure 4-16.)

The CRT status port (hex 3BA). This port stores the state of the

horizontal sync signal in bit and the video bit stream to the display in

bit 3. Although we can read these two bits, neither one is particularly

useful. The other bits are not used.

Bit

7 6 5 4 3 2 10 Use

...XX

. . X . .

. X . . .

x . . . .

c x

High-resolution mode: must be set to 1

Not used

= disable video signal; 1 = enable video signal

Not used

= blinking function off; 1 = blinking function on

Not used

Figure 4-16. The coding for the CRT
control port
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The 6845 CRT controller (hex 3B4 and 3B5). There are 18 program-

mable internal registers in the 6845. They specify such things as the tim-

ing of the vertical and horizontal sync signals, the number of display

lines, and the number of characters per line. Only four registers are safe

to use: registers (hex) OA, OB, OE, and OF. Registers OA and OB determine

the lines on which the cursor starts and ends, and registers OE and OF

determine the screen position of the cursor, with a value ranging from

to 1,999. Both functions are also available through interrupt 16 (hex 10) in

the ROM-BIOS services. Don't mess around with the other values; they

can be disruptive. (For example, you can damage a monochrome display

if you program the 6845 video controller incorrectly.) If you want to

know more about them, refer to the IBM PC Technical Reference manual.

Color/Graphics Adapter I/O Ports

In order to accommodate the graphics functions, the Color/Graph-

ics Adapter has more I/O ports than the Monochrome Adapter. We will

list the most important aspects of each of the seven ports.

The mode select register (hex 3D8). We set this byte to change from

one display mode to another. (" See Figure 4-17.)

The color select register (hex 3D9). We set this byte to change the

screen border colors for the text modes and the background and fore-

ground colors for the graphics modes, (i*" See Figure 4-18.)

Bit

7 6 5 4 3 2 10 Use

. X

X .

. X

X .

\ X

= select 40 x 25 text mode; 1 = select 80 x 25 text mode

= select text mode; 1 = select 320 x 200 graphics mode

= select color mode; 1 = select b/w mode

= disable video signal; 1 = enable video signal

1 = 640 X 200 b/w graphics

= blinking function off; 1 = blinking function on

N(it used

Figure 4-1 7. The coding for the mode
select register
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Bit

7 6 5 4 3 2 10 Use

X

X .

. . . . X . .

. . . X . . .

. . X . . . .

. X

X

Selects blue foreground, background, or border

Selects green foreground, background, or border

Selects red foreground, background, or border

Selects intensity setting

Selects alternate, intensified palette

= palette 0; 1 = palette 1

Not used

Figure 4-18. The coding for the color

select register

The status register (hex 3DA). This register stores useful informa-

tion for those of us who prefer a flicker/snow- free screen update. When
bit is set to 1, we can access the buffer memory without disturbing the

display. When bit 3, the vertical sync, is set to 1, the raster is in vertical

retrace and we can update the screen. This register also has two light-pen

status signals, i^m- See Figure 4-19.)

The light-pen latch ports (hex 3DB and 3DC). Writing to either of

these ports clears or sets a toggle switch that is connected to the 6845's

light-pen input.

The 6845 video controller (hex 3D0 and 3D1). The controller func-

tions the same way with the Color/Graphics Adapter as it does with the

Monochrome Adapter.

Control of the video display is complicated, and has been made

much more complicated by the steady stream of additions to the list of PC

display features. Whatever you decide to do, it is a very good idea to test

your understanding of any part of video control by experimenting with it

before you incorporate it into your programming efforts.

Bit

7 6 5 4 3 2 10 Use

1 = memory access can occur without display interference

1 = light-pen trigger set

= light pen on; I = light pen off

1 = raster is in vertical retrace

Not used

X .

X . .

. . . . X . . .

X X X X . . . .

Figure 4-19. The coding of the status register
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COMPATIBILITY CONSIDERATIONS
For our programs to be compatible with all the IBM personal com-

puter models, we need to keep several things in mind. First, a standard

PC model cannot create graphics displays if it is equipped only with the

Monochrome Adapter. In addition, graphics modes 8 through 10 cannot

be used with the original or the enhanced version of the Color/Graphics

Adapter; they are part of the PCjr color enhancements. Likewise, modes
13 through 16 belong to the EGA. These restrictions also apply to any re-

mapping of the color palettes, as this capability is also linked to the PCjr

and the EGA. It is also important to remember that the Monochrome
Adapter for the PC and XT models treats the text-mode color attributes in

a special way (m- as discussed on page 79).

It's a good idea for a program to adapt its use of color, or the choice

between the text and graphics mode, to accommodate either the IBM

Monochrome Monitor or a composite monochrome monitor, which

usually doesn't show color well. Keep in mind that composite mono-
chrome monitors may often be used with PCs, especially when the pri-

mary work is with text—such as word processing or accounting. There

are many PCs equipped this way and it is wise for our programs to ac-

commodate them.

In order to accommodate these systems, our programs should find

out the video mode and act accordingly. For programs that are already

using an assembly-language interface to the BIOS, the preferred way to do

this is to use BIOS video service 15 {w see Chapter 9). For other pro-

grams, service 15 is a stumbling block. The problem can be circumvented

by reading memory location 0000:0449, where the video mode is stored

(« see page 54). We can read this location in BASIC like this:

DEF SEG =

VIDEO. MODE = PEEK (iH4'19)

Video mode 7 identifies the use of the IBM Monochrome Monitor. There

is no automatic way to identify the use of a composite monochrome dis-

play; however, if a knowledgeable user of such a display uses the DOS
MODE command to suppress color, our programs can detect it in a video

mode of or 2.

When we wish to consider the working compatibility of our pro-

grams with the IBM personal computers and the different kinds of dis-

play screens, we can lay out several compatibility criteria to consider.

These criteria are not completely consistent with each other, reflecting

the internal inconsistency in the design of the IBM personal computer



Chapter 4: Video Basics . 97

and the variety of display formats that can be used. Still, there are overall

guidelines for compatibility, which we'll outline here.

First, text-only display output increases compatibility There are

many PCs equipped with Monochrome Adapters, which cannot show

graphic output. If you are weighing a text-versus-graphics decision in the

design of a program, there are two factors to consider, one for the use of

a text-only display and one against. On the one hand, as many programs

have dramatically demonstrated, it is possible to create very effective

drawings using just standard IBM text characters, [m- See Appendix C for

more information on the effective use of text characters for drawing.) On
the other hand, it is more and more common for computers to include

graphics capability. For example, both the PCjr and the IBM Portable PC,

as well as the Compaq model, come with built-in graphics capability. So,

in the future, text-only output will probably lose its importance and we'll

be able to design graphics directly into our programs without worrying

about compatibility.

Second, the less our programs depend on color, the wider the range

of computers with which they will be compatible. This does not mean

that we need to avoid color for compatibility; it simply means that for

maximum compatibility, our programs should use color as an enhance-

ment, not as an essential ingredient. If programs can get along without

color, then they will be compatible with computers that use monochrome

displays, including PCs with Monochrome Adapters, as well as Compaq
and IBM Portable PC computers with their built-in monochrome displays.

Third, if possible, our programs should be able to work in either 40-

or 80-column width when they are in text mode so as to accommodate

the use of TV sets or display screens. Forty-column width increases legi-

bility but reduces the amount of information that can be displayed. When
there is not much display information, we might consider forcing the use

of 40-column width, but overall, it is best to have our programs adapt to

the existing width or to ask the programs user which width to show.

Remember that the 40-column width doesn't work on a PC with a Mono-
chrome Adapter.

In considering these guidelines in the light of the particulars of your

own programs, you must weigh the advantage of broad compatibility

against the convenience and simplicity of writing programs for a nar-

rower range of displays. My own experience and judgment tell me that

far too often programmers err by opting for a narrower range of dis-

plays, thereby gravely reducing the variety of computers their programs

can be used on. Be forewarned.
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Most computer systems have some way to store information

permanently, whether it is on cassette tapes, floppy disks,

or hard disks. These storage devices come in various sizes

and capacities but operate in basically the same way:

They magnetically encode information on their surfaces in patterns deter-

mined by the device itself and by the software that controls the device.

When the PC family was introduced in 1981, it used one main type

of storage device: the standard SlA-inch floppy disk, which was double-

density, single-sided, and soft-sectored, and stored only 160K bytes. Since

then, IBM has increased the diskette's storage capacity and has added 10-

and 20-megabyte hard disks to some of their PC systems. In the future,

we can expect to see continued advances in disk technology by IBM and

others, including higher-capacity hard disks and 3!/2-inch mini-diskettes.

Although the type of storage device is important, as programmers,

it is the way stored information is laid out and managed that concerns us.

In this chapter, we will focus on how information is organized and stored

on floppy disks, since they are the most common storage medium for the

PC family. Although we will primarily be discussing floppy disks, we will

really be painting a portrait that represents all disk-type storage devices.

The information provided in this chapter applies equally well to RAM
disks— that is, the simulation of disk storage in memory— as it does to

conventional diskettes, hard disks, disk cartridges, and mini-diskettes.

THE DISK'S PHYSICAL STRUCTURE
The disk drives and operating system of the computer establish the

capacity of the disks used, but a disk's structure is essentially the same,

regardless of the setup. Data is always recorded on the disk surface in a

series of concentric circles, called tracks. Each track is further divided

into segments, called sectors. («• See Figure 5-1.) The amount of data that

can be stored on each side of a disk depends on the number of tracks (its

density) and the size of its sectors. The disk density may vary consider-

ably from drive to drive: The standard double-density drives can record

40 tracks of data, while the new quad-density drives can record 80 tracks.

For the PC's standard 5 !/4-inch diskettes, the location of each track

and the number of usable sides are set by the hardware characteristics of

the disks and disk drives, and as such, they are fixed and unchangeable.
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Figure 5-1 . The disk s physical structure

However, the location, size, and number of the sectors within a track are

under software control. This is why the PC's diskettes are known as soft-

sectored. The characteristics of a diskette's sectors (their size, and the

number per track) are set when each track is formatted. Disk formatting

can be done either by the operating system or by the ROM-BIOS format

service. In most of this chapter, we will discuss the DOS formats. How-
ever, we can easily create unusual formats and make them part of a work-

able copy-protection scheme by using the ROM-BIOS diskette services

(iw see service 5 on page 192).

The 5 !/4-inch diskettes supported by the standard PC BIOS may have

sectors that are 128, 256, 512, or 1,024 bytes in size. DOS, from versions

1.00 through 3.1, has consistently used sectors of 512 bytes, and it is quite

possible that this will continue. However, any program which depends

upon or makes use of the 512-byte DOS sectors should allow for future

changes in sector size, particularly for larger sectors.

A diskette, of course, has two sides, and the sectors and tracks can

be placed on one or both sides. Hard-disk systems can have one or more

disks (called platters) in them, so they may contain more than two sides.

§: For example, the 10-megabyte hard disk introduced with the XT has

two platters and it uses all four sides of those platters.
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DOS DISK FORMATS
In the early versions of DOS used by IBM, a limited number of disk

formats could be used, even though the disk drives themselves could read

and write many formats. Beginning with DOS 2.00 and continuing with

all subsequent versions, DOS has been equipped with only a few standard

formatting options but allows virtually any physical disk format to be

integrated. (The logical format, as we'll see, is more tightly constrained

to a standard set by DOS.) This integration is possible because DOS pro-

vides us with the necessary tools to write an installable device driver—

a

machine-language routine that can configure our disk drive to read or

write different formats, or allow us to hook up a non-IBM disk drive to our

system (•" see Appendix A for more on installable device drivers).

Because there are many potential disk formats, we cannot possibly

consider all of them. We will examine seven common disk formats, in-

cluding four regular 5 !/4-inch diskette formats, one special 5 !/4-inch dis-

kette format, one 3V2-inch mini-diskette format, and one hard-disk format.

Together, these seven common formats should serve as examples to pro-

vide you with enough guidance to work with any disk type.

Standard DOS Formats

We'll begin with the four most common PC formats, those used as

standard formats by IBM for 5Mt-inch diskettes. The four formats are de-

rived from the number of sides and the number of sectors on each track:

single- or double-sided and eight or nine sectors («' see Figure 5-2).

The reason why there are four standard formats is quite simple: IBM

has to make sure that all versions of DOS support all earlier PC models.

The first PCs came equipped with single-sided diskette drives. Later, IBM

introduced double-sided drives and discontinued using single-sided drives.

Now, although relatively few PCs have single-sided drives, the single-sided

formats are supported by all versions of DOS for compatibility with the

early machines.

In the earliest releases of DOS, only eight 512-byte sectors were

placed on each track, even though up to ten sectors of that size could be

squeezed in successfully. Later, nine 512-byte sectors were accepted as

safe and reliable, and the nine-sector format became the standard. Once
again, the other formats were preserved to maintain compatibility.

The format expansions are tied to the history and development of

DOS. The original DOS version 1.00 supported only what I call the S-8

format. The next release, 1.10, added D-8. Version 2.00 added the two

nine-sector formats, S-9 and D-9. No new formats were added with DOS
2.10, but DOS 3.0 added the quad-density format that we'll discuss shortly.
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Our Notation
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^J[|^^^^3^g|j

AT ^^^^n^al

cousin of the PC family. The DG-1 uses SVi-inch mini-diskettes rather than

the standard 5 !/4-inch diskettes, but the logical structure of their formats

is the same. Although the mini-diskette drives are quad-density, their

disks can be formatted not only in the QD-9 format but also in the other

four formats, S-8, S-9, D-8, and D-9. Quad-density drives can also be at-

tached to regular PCs as nonstandard equipment, using a DOS device

driver (•• see Appendix A for more on device drivers). Many people be-

lieve that this format will become widely used, so it's of real interest to us.

The high-capacity QD-15 format used by the AT follows the same

basic structure we've discussed: 80 tracks per side and standard 512-byte

sectors. The special characteristic of QD-15 is that each side of every track

holds fifteen sectors, instead of eight or nine. Fitting that many sectors

onto a track is only possible because the AT uses special high-capacity

diskettes, which have a different magnetic coating than ordinary dis-

kettes. Only these special diskettes—which look the same as the regular

5y4-inch diskettes—and the special high-capacity diskette drives can ac-

cept the QD-15 format.

The Hard-Disk Format

High-capacity hard-disk systems, such as the XT's 10-megabyte hard

disk or the AT's 20-megabyte hard disk, present some special problems

and opportunities.

There are two aspects to any disk: its physical format and its logical

format. The physical format of a disk determines the sector size in bytes,

the number of sectors per track (per cylinder for hard disks), the number

of tracks (cylinders), and the number of sides. The logical format deter-

mines the way the information on the disk will be organized and where

different types of information will be placed.

When we format a floppy disk with DOS or any other operating

system, we set both the physical and the logical format of the diskette and

we're unaware of any distinction between them. Unlike a diskette, the

physical format of a hard disk is already established when it comes to

us— it's set by the manufacturer. («- See Figure 5-4.) What is not present

in the factory-set physical format is the logical structure of the disk,

which we have to establish before the operating system can use it. This is

done in two stages. First, we must divide the hard disk into logical parti-

tions to house the data and programs for each operating system we use.

(We can use several operating systems with our hard-disk system; « see

page 110.) Then we must define the organization of the partitions so that

each individual operating system can locate the information within its

partition. It is this process of "organizing the disk" that is usually called

formatting.
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Our Notation Sides Sectors Cylinders Nominal Size (megabytes)

XT 4 17 306 10

AT 4 17 615 20

Figure 5-4. The physical formats of the XT
andAT hard disks

THE DISK'S LOGICAL STRUCTURE
Regardless of what disk we use, DOS disks are all logically format-

ted in the same way: The disk's sides, tracks, and sectors are identified

numerically using the same notation, and certain sectors are always re-

served for special programs and indexes that DOS uses to manage disk

operations. Before we find out how DOS organizes space on a disk, we
need to briefly cover the conventional notation used by DOS and the BIOS

to locate information.

As we have seen from earlier discussions, our 5 V4-inch diskette for-

mats have 40 tracks, numbered from (the outside track) through 39 (the

inside track, closest to the center). Other disk formats can have more
tracks. For example, the tracks on quad-density diskettes are numbered

through 79, O] the XT's hard-disk cylinders are numbered through

305, EH and the AT's hard-disk cylinders are numbered through 614.

On a double-sided diskette, the two sides are numbered and 1 (the

two recording heads of a double-sided disk drive are also numbered

and 1). The one side of a single-sided diskette is referred to as side num-
ber 0. Efl The XT's hard disk has four sides (and four recording heads)

numbered through 3.

The sectors on floppy disks are numbered 1 through 8 or 9. V.iM On
the XT's hard disk, they are numbered 1 through 17. Note that sector

numbers begin with 1, while track and side numbers begin with 0.

The BIOS locates the sectors on a disk by a three-dimensional coor-

dinate composed of a track number (also referred to as the cylinder num-
ber), a side number (also called the head number), and a sector number.

DOS, on the other hand, locates information by sector number, and num-
bers the sectors sequentially from outside to inside. (•" See Figure 5-5.)

The sequence begins with the first sector on the disk: sector 1 of side

and track 0, followed by the remaining sectors on the same side and

track. For double-sided diskettes, the ninth sector of side and track is

followed by the first sector of side 1 and track 0. The order proceeds

through all sectors of one side and track location, then through the next

side, at the same track location (so all sides at one track location come
before the next track location).
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BIOS notation:

side 0,

track 10,

sector 2

DOS notation:

sector 163

Figure S-5. The ROM-BIOS and DOS sector

notation

We can refer to particular sectors either by their three-dimensional

coordinates or by their sequential order. All ROM-BIOS operations use the

three-dimensional coordinates to locate a sector. All DOS operations and

tools such as DEBUG use the DOS sequential notation, m- See page 250 for

how to convert DOS notation to ROM-BIOS notation and vice versa.

HOW DOS ORGANIZES THE DISK

As we've already seen, when we instruct DOS to format our dis-

kettes, it divides each of the 40 tracks into either eight or nine 512-byte

sectors. In terms of raw storage capacity, this amounts to 368,640 bytes of

data space on our standard D-9 diskettes. But not all of that space can be

used to store data; a certain amount is used to store system control infor-

mation and indexes that DOS uses to find the location and relationship

between individual sectors. So, in addition to dividing the disk into sec-

tors, DOS performs several other operations when it formats our disks.
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Diskette Space Allocation

The formatting process divides the sectors on a disk into four sec-

tions, for four different uses. The sections, in the order they are stored,

are the boot record, the file allocation table (FAT), the directory, and the

data space •" see Figure 5-7 overleaf). The size of each section varies

between formats, but the structure and the order of the sections don't

vary. Hard disks, such as the 10-megabyte hard disk on the XT, follow the

same basic layout, though hard disks that can be partitioned present extra

complications because the partition sizes directly affect the size of each

section. '• See page 110 for a discussion of hard-disk partitions.

The boot record is always a single sector located at sector I of track

0, side 0. The boot record contains, among other things, a short program

to start the process of loading the operating system from a diskette that

has the operating system on it. All diskettes have the boot record on them

even if they don't have the operating system. Aside from the start-up pro-

gram, the exact contents of the boot record vary from format to format.

The file allocation table, or FAT, follows the boot record, usually

starting at sector 2 of track 0, side 0. The FAT contains the official record

of the disk's format and maps out the location of the sectors used by the

disk files. DOS uses the FAT to keep a record of the data-space usage.

Each entry in the table contains a specific code to indicate what space is

being used, what space is available, and what space is unusable (due to

defects on the disk). Because the FAT is used to control the entire usable

data storage area of a disk, two identical copies of it are stored in case

one is damaged. Both copies of the FAT may occupy as many sectors as

needed: 2 or 4 on floppy disks, 14 on the QD-15 diskettes, up to 16 on the

XT's hard disk, and up to 82 on the AT's hard disk. On all types of hard

disk, the FAT size varies with the size of the partition.



Track 0, side

Track 0, side 1

Figure 5-7. The four logical sections

ofa diskette
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The file directory is the next item on the disk. It is used as a table of

contents, identifying each file on the disk with a directory entry that con-

tains several pieces of information, including the file's name and size. One
part of the entry is a number that points to the first group of sectors used

by the file (this number is also the first entry for this file in the FAT). The
size of the directory varies with the disk format. It occupies four sectors

on single-sided diskettes and seven on double-sided diskettes. On hard

disks, the directory, like the FAT, varies with the size of the partition.

The data space, which occupies the bulk of the diskette (from the

directory through the last sector), is used to store data, while the other

three sections are used to support the data space. Sectors in the data

space are allocated to files on an as-needed basis, in units known as dus-

ters. The size of a cluster varies by format. On single-sided diskettes, the

clusters are one sector long and on double-sided diskettes, they are a pair

of adjacent sectors. Diskettes with a higher capacity may have clusters

containing several sectors. EH For example, the AT's 20-megabyte hard

disk uses a cluster size of four sectors, CO and the XT's 10-megabyte

hard disk uses up to eight sectors per cluster.

Hard-Disk Space Allocation

For hard-disk systems, the amount of space that DOS allocates to

the FAT, directory, and data space varies depending upon the size of the

partition given to DOS. The boot record occupies one sector regardless of

the partition size, so we won't bother to mention it any further.

To get an idea of how DOS allocates space in a partition, we will

examine three different partition sizes. Our example focuses on the XT's

10-megabyte hard disk, which has 512 bytes per sector, 17 sectors per cyl-

inder per side, 4 sides (heads) per cylinder, and 306 cylinders per disk.

The table in Figure 5-8 shows the specific space allocations for three

DOS partition sizes: 305 cylinders (an entire XT-style disk), 100 cylinders,

and 5 cylmders. In general, these figures can be interpolated to determine

the space allocations for other partition sizes.

THE LOGICAL STRUCTURE IN DETAIL

Now it's time to delve a little more deeply into each of the four sec-

tions of a disk: the boot record, the directory, the data space, and the file

allocation table.

XT
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Partitioning a Hard Disk

Every operating system has its own peculiar way of formatting and man-

aging disk storage space, which is incompatible with other operating systems.

Although DOS is, by far, the dominant operating system for the PC family, it is

not the only one that is used and, in the years to come, it is quite possible that

DOS may be superseded by new operating systems, such as XENIX.

Since different operating systems may need to use the same disk, a scheme

has been worked out to partition or divide a hard disk into logical sections so

that several operating systems can each have their share of it. A partition is ac-

tually a set of contiguous cylinders, the size of which is determined by the user

and laid out by the operating system. A hard disk must be partitioned before

an operating system can use it. After it is partitioned, the separate partitions

must be formatted using the formatting procedures of the controlling operat-

ing systems. Normally, an operating system uses only one partition. However,

occasionally some vendors will partition their hard disks into the equivalent of

separate disk drives, with DOS using each partition. Fortunately, this is an ex-

ception rather than a rule.

The DOS program FDISK is used to create the partitions and to mark one

of them as the DOS partition. We can specify whether we want the DOS parti-

tion to comprise all or only part of the disk. The operating system is able to

adapt to whatever size disk partition it is assigned. If we do not expect to use

another operating system, we might as well partition the entire disk for DOS.

We can change the size and number of partitions any time we want.

However, changing the partition destroys any existing partition contents, so

when adjusting the size or number of partitions, we should first off-load any

data that needs to be saved, repartition the disk, and then reload the data.

Formatting the Partition

A hard disk has two levels of logical structure. On one level, we have the

division of the disk into partitions, a phenomenon that is common to all oper-

ating systems. On another level, we have the specific format and location of the

information that is stored in each partition, which is different for every operat-

ing system. Once a DOS partition has been established with FDISK, that parti-

tion must be formatted with the DOS FORMAT command to establish the

logical structure that DOS needs to operate.

Just as a DOS disk has a boot record containing both a start-up program

and some general information about the disk in its first sector (•" see page 107

for details), the first sector of a partitionable disk has a master boot record

containing both a master start-up program and a record of how the disk is par-

titioned. This partitioning information includes how many partitions there are

(there is often only one), the size and location of each partition, the partition

type, and which partition is active, as well as other information. The master

start-up program is a short program that finds out which partition is active

and then passes control to the start-up, or boot, program for that partition.
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- Partition 1

- Partition 2

So far, these general remarks apply to any disk that can be partitioned to

work with several operating systems. To illustrate the mechanics of partition-

ing, we will use the XT's 10-megabyte hard disk as an example.

The master boot record for the XT's hard disk contains a partition table

with room for up to four partitions. Each partition is marked in the table to

indicate whether or not it is the currently active partition, and has an ID byte

to identify the operating system that governs it (hex 01 identifies DOS).

The location and size of the partition are stored in the table in the master

boot record in two equivalent ways. The first way gives the starting and ending

location of the partition using the cylinder (or track), head (or side), and sector

numbers of the first and last sectors in the partition. The second way gives the

sector number of the first sector in the partition relative to the first sector on

the disk, followed by the total number of sectors in the partition.

Each partition occupies a contiguous set of cylinders that begins at the

first sector of the first cylinder in the set and ends on the last sector of the last

cylinder. One minor exception to this occurs in the partition that uses the very

first cylinder on the disk. On this cylinder, the partition begins at the second

sector because the first sector is occupied by the disk's master boot record.
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For all disk formats except S-8 and D-8 you will find some key pa-

rameters in the boot record, beginning with the fourth byte («" see Fig-

ure 5-9). These parameters are part of the BIOS parameter block used by

DOS to control any disk-type device. The rest of the boot program is lo-

cated in the first three bytes (bytes 0, 1, and 2) and continues in the bytes

following the BIOS parameter block. At the end of the boot records for

DOS-2 versions and beyond, there is a 2-byte signature, hex 55 AA.

The Directory

Disk directories are used to hold most of the basic information

about the files stored on the disk, including the file's name, its size, the

starting FAT entry, the time and date it was created, and a few special file

attributes (•' see Figure 5-10). The only information that the directory

does not contain is the exact location of the individual clusters that make
up a file; these are stored in the file allocation table.

There is one directory entry for each file on the disk, including entries

for the subdirectory files and for the disk's volume ID label. Each of the

entries is 32 bytes long, so one sector in the directory can hold 16 entries.

Single-sided diskettes with four directory sectors can hold 64 entries. Dou-

ble-sided diskettes with seven sectors can hold 112 directory entries. Sub-

directories are treated like files and there is no limit to the number of

subdirectory entries they can hold. (•" For more on subdirectories, see

page 115.) Each 32-byte entry in the directory is divided into eight fields.

Offset
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Field
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Subdirectories

There are two types of directories: root directories and subdirectories.

The contents and use of each type are essentially the same—both store the

names and locations of files on the disk— but their characteristics are differ-

ent. The root directory (we've just been calling it the directory) has a fixed size

and is stored in a fixed location on the disk. A subdirectory is an addition to

the root directory, has no fixed size, and can be stored an>'where on the disk.

Any disk used with DOS 2.00 or later may use subdirectories.

A subdirectory is stored in the disk's data space, just like any other file.

The field format and contents of a subdirectory are identical to those of the

root directory, except that a subdirector\' is not limited in size. Like an ordi-

nary file, a subdirectory can grow without bounds as long as there is disk

space available. Subdirectories can be created and used with any type of disk.

However, since subdirectories take up precious data space, they are primarily

intended for use with high-capacity hard disks; their use with diskettes is gen-

erally avoided.

Subdirectories are always attached to a parent directory, which can be

either the root directory or another subdirectory, and can branch from several

other levels of directories, forming a tree structure.

Root Directory

Programs

subdirectory

Word-processing data

subdirectory

Accounting data

subdirectory

Letters

subdirectory

Reports

subdirectory

Current year

subdirectory

Prior year

subdirectory

The parent directory has one entry for each of its subdirectories, which

is like every other file entry, except that the attribute byte marks the entry as a

subdirectory and the file-size field is set to zero. The actual size of the subdirec-

tory IS found by tracing its allocation chain through the FAT.

When subdirectories are created, two special entries are placed in them,

with "." and ". ." as filenames. These act like entries for further subdirectories,

but "." actually refers to the present subdirectory itself and ".." refers to its par-

ent directory. The starting cluster number in each of these directory entries

gives the location of the subdirectory or its parent. When the starting cluster

number is zero, it means that the parent of this directory is the root directory.

If a file is reduced in size, DOS can generally be counted on to release any

unused space. However, in the case of subdirectories, clusters of space that are

no longer used (because the directory entries that once occupied that space

are now erased) will not be released until the entire subdirectory is destroyed.
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information can be recovered, with suitably sophisticated methods, pro-

vided that the directory entry has not been reused for another file. Be

forewarned that whenever a new directory entry is needed, DOS uses the

first available entry, quickly recycling an erased file's old entries and mak-

ing recovery impossible.

The third code that might be found in the filename byte is the

period character, hex 2E, which is used to specify a subdirectory (
•" see

page 115). If the second byte is also hex 2E, we know that we are looking

at the parent directory entry of the current subdirectory, in which case

the starting cluster field (field 7) contains the cluster number of the par-

ent directory.

Field 2: The Filename Extension

Directly following the filename is the standard filename extension,

stored in ASCII format. It is three bytes long and, like the filename, it is

padded with blanks if it is less than the full three-character length. While

a filename must have at least one ordinary character in it, the extension

can be all blanks. Generally, the same rules apply to the filename exten-

sion as apply to the filename.

NOTE: When the directory contains a volume ID label entry, the

filename and extension fields are treated as one combined field of eleven

bytes. In this case, embedded blanks are permitted. Normally, lowercase

letters are not used in labels, but they can be.

Field 3: The File Attribute

The third field of the directory entry is one byte long, each bit of

which is used to categorize the directory entry. The bits of the attribute

byte are individually coded as bits through 7, as shown in Figure 5-11.

Bit

7 6 5 4 3 2 10
Value

Dec Hex Meaning

. . 1

. 1

1 .

1
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Bit 0, the highest-order bit, marks a file as read-only. In this state,

the file is protected from being changed or deleted by any DOS operation.

We should point out that the DOS-1 versions ignore this attribute, so

while it can provide a worthwhile protection of data, it is not foolproof.

Bits 1 and 2 mark files as either hidden or system files. Files marked

as hidden or system or both cannot be seen by ordinary DOS operations,

such as the DIR command. Our programs can gain access to such files by

setting these attribute bits in the file control block, or FCB (•- see page

288). The two DOS files lBMBIO.COM and IBMDOS.COM (which may also

appear under the names lO.SYS and MSDOS.SYS) are both hidden and sys-

tem files. There is no particular significance to the system attribute; it

exists to perpetuate a feature of CP/M and has absolutely nothing to do

with DOS.

Bit 3 marks a directory entry as a label, meaning that the entry

holds the disk's volume ID label. A label entry is only properly recognized

in the root directory, and it only uses a few of the eight fields available in

the entry The label itself is stored in the filename and extension fields,

which are treated as one unified field for this purpose. The size and start-

ing cluster fields are not used, but the date and time fields are.

Bit 4, the subdirectory attribute, is used to identify directory entries

which, in turn, identify subdirectories. Since subdirectories are stored on

disk like ordinary data files, they need a supporting directory entry. All

the directory fields are used for these entries, except for the file-size field,

which is zero. The actual size of a subdirectory is found simply by fol-

lowing its space allocation chain in the FAT.

Bit 5, the archive attribute, was created to assist in making backup

copies of the many files than can be stored on a hard disk. This bit is off

on all files that haven't changed since they were last backed up; the bit is

normally on for all diskette files. The archive attribute serves no particu-

larly useful purpose for diskettes.

Field 4: Reserved

This 10-byte area is set aside for possible future uses. All 10 bytes

are normally set to hex 00.

Field 5: The Time

Field 5 contains a 2-byte value that marks the time that the file was

created or last changed. It is used in conjunction with the date field and

the two together can be treated as a single 4-byte unsigned integer. This

4-byte integer can be compared with those in other directory entries for
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greater-than, less-than, or equal values. The time, by itself, is treated as

an unsigned word integer that is built out of the hour, minutes, and sec-

onds using this formula:

Time = Hour x 2048 + Minutes x 32 + Seconds ^ 2

The hour is based on a 24-hour clock, with a value ranging from

through 23. Since the 2-byte word used to store the time is one bit too

short to store all the seconds, they are stored in units of 2 seconds from

through 29; a value of 5, for example, would represent 10 seconds. The

time of 11:32:10 would be stored as the value 23557.

Field 6: The Date

Field 6 contains a 2-byte value that marks the date the file was cre-

ated or last changed. It is used in conjunction with the time field and the

two together can be treated as a single 4-byte unsigned integer that can

be compared with those in other directory entries for greater-than, less-

than, or equal values. The date, by itself, is treated as an unsigned word

integer that is built out of the year, month, and day using this formula:

Date = (Year - 1980) x 512 + Month x 32 + Day

You will notice that this formula compresses the year by subtracting

1980 from it. Thus, the year 1984 will be calculated as a value of 4. Using

this formula, a date such as December 12, 1984 will be stored by the for-

mula as 2828:

( 1984 - 1980) X 5 12 + 12 X 32 -I- 12 = 2828

Although this scheme allows for years up to 2108, the highest year

supported by DOS is 2099.

Field 7: The Starting Cluster Number

The seventh field is a 2-byte value that gives the starting cluster

number for the file s data space. It acts as the entry point into the file s

space allocation chain in the FAT. For files with no space allocated and

for volume-label entries, the starting cluster number is zero, rather than

the hex FFF value used in the FAT to indicate the end-of-file.

Field 8: The File Size

The last field of a directory entry gives the size of the file in bytes. It

is coded as a 4-byte unsigned integer, which allows file sizes to grow very

large—much larger in fact than the capacity of our disks.

As far as DOS knows, the size indicated by this field is the true size

of a file. However, sometimes this stored value may be larger than the
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actual file size. For example, some ASCII text files created by word pro-

cessors mark the true end-of-file with the Ctrl-Z character (CHR$(26),

hex lA). For these files, the file-size attribute may report a larger number,

such as the next multiple of 128 bytes. This is a common occurrence in

most text-editor programs, which read and write data in large blocks

rather than one byte at a time. It is important to point out that when DOS

is reading a file for us, it reports the end of the file when it comes to either

the end of the file size or the end of the FAT space allocation chain (de-

noted by hex FFF)—whichever comes first.

The Data Space

All data files and subdirectories (which act much like data files) are

stored in the space that occupies the last and largest part of each disk.

Space is given to files on an as-needed basis, one cluster at a time.

(Remember, a cluster is one or more consecutive sectors; the number of

sectors per cluster is a fixed characteristic of each disk format.) As a file

is being created, or when an existing file is extended, the file's allocated

space grows. When more space is needed, a cluster is allocated to the file.

In DOS versions 1 and 2, the first available cluster is always allocated to

the file. Later versions of DOS select clusters by more complicated rules

that we won't go into.

Under many circumstances, a file is stored in one contiguous block

of space. However, a file may be broken into several noncontiguous

blocks, especially when information is added to an existing file, or when

a new file is stored in the space left by an erased file. It's not unusual for

one file's data to be scattered throughout the disk.

This sort of file fragmentation slows access to the file's data to some

degree. Also, it is much harder to "unerase" a file that we have uninten-

tionally erased if it is fragmented, simply because we have to do a lot

more searching for the individual sectors that make up the file's data

space. But fragmentation has no other effect. In general, programs do not

need to be concerned about where on a disk their data is stored. But if

you want to know whether a file is fragmented, there are two simple

ways to find out. You can use the /V option of the CHKDSK command to

test for file fragmentation, or you can use a program such as the Norton

Utilities to see a graphic map of the location of each file on your disk.

If your diskette files are fragmented, you can clean them up by

copying them to a newly formatted, empty diskette. Naturally, the file

can become fragmented again if there is a lot of update activity on the

disk. On a hard disk, you can do little to eliminate fragmentation. Don't

worry too much about it. We've mentioned it so that you'll understand it,

but in practice, a fragmented file is harmless.
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Whether you ever look at your fragmented files or not, it will help if

you understand how DOS uses the file allocation table (FAT) to allocate

disk space, and how the FAT forms a space allocation chain to connect all

of the clusters that make up a file.

The File Allocation Table

The file allocation table holds a record that shows how the disk

space is utilized. We will make a distinction between how the FAT is or-

ganized, which is relatively simple and straightforward, and how it is

stored on disk, which is more convoluted.

As we've mentioned, standard disk formats store two copies of the

FAT, although there can be more than two copies, or even only one copy.

Each copy of the FAT occupies one sector on eight-sector diskettes and

two sectors on nine-sector diskettes. With the high-capacity diskette for-

mat that we called QD-15, the FAT uses seven sectors.

For most disk formats, DOS writes two copies of the FAT just in case

one of them is damaged or unreadable, but I'm not aware what other use

is made of this redundancy. The CHKDSK program, which tests for most

errors that can occur in the FAT and directory, does not even notice if the

two FATs are different.

There are two FAT formats: a 12-bit format and a 16-bit format. The
12-bit FAT format is the more common and the more complicated of the

two. The 16-bit FAT is used only with disks that exceed the capacity of a

12-bit FAT, such as the AT's 20-megabyte hard disk. We'll discuss the stan-

dard 12-bit FAT first, and then explain how the 16-bit FAT differs.

The FAT is organized as a table of up to 4,086 numbers ranging

from through 4,095 (hex through FFF), with an entry for each cluster

in the data space. The number in each entry indicates the status and use

of the cluster that corresponds to the FAT entry. Notice that the range of

numbers kept in the FAT table is defined so that it does not exceed three

hex digits. This is a key element in how the 12-bit FAT is stored, as we will

see shortly.

If the FAT entry is 0, it indicates that the cluster is free and available

for use. If the FAT entry is 4,087 (hex FF7) and this FAT entry is not part of

any space allocation chain, then the cluster is marked as unusable due to

a formatting error; this is also called bad-track marking.

NOTE: It's worth pausing here to note that there is nothing un-

usual or alarming about having "bad tracks" marked on a disk, particu-

larly a hard disk. In fact, it is quite common for a hard disk to have a few

bad patches on it. For example, the hard disk in the AT that I used to
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write this book has three small bad-track areas. The disk formatting pro-

cedure notices bad tracks and marks them as such in the FAT, as we've

just discussed. Later, the bad-track marking tells DOS that these areas

should be bypassed. Bad tracks are also common on floppy disks; with a

floppy, unlike a hard disk, we have the option of throwing it away and

only using perfect disks.

The clusters are numbered sequentially from 2 to a number that is

one greater than the total number of clusters on the disk (« see Figure

5-12). A 12-bit FAT entry containing any number between 2 and 4,080 (hex

02 and FFO) indicates that the corresponding cluster is used by a file. A
FAT value of 4,095 (hex FFF) indicates that the corresponding cluster con-

tains the last part of the file's data. The values 4,088 through 4,094 (hex FF8

through FFE) may be similarly used, but in my experience, they aren't.

With all of this in mind, we can see that the FAT entries form a space

allocation chain; the file's directory entry contains the starting cluster

number (•^ see page 118) and the FAT entries indicate further clusters used

by the file and the end of the file (i*' see Figure 5-13). When a file is erased,

all the FAT entries for its space allocation chain are marked as available

(set to 0); but the actual file data in the data space is not changed and

most of the information in the file's directory entry is maintained.

Although the FAT is organized as a fairly simple table of numeric

values, it is stored in a rather convoluted form in order to make the table

as compact as possible. To do this, it makes use of some tricks of the

8088 's data format, specifically "back-words" storage. For the FAT, sim-

plicity is sacrificed for efficiency.

The range of cluster numbers is defined so that FAT entries are 4,095

(hex FFF) or less. This makes it possible to store each 3-hex-digit entry in

12 bits, or Wz bytes. The FAT entries are organized in pairs, where each pair
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FAT Entry

Value

Dec Hex Meaning

From directory entry;

"

beginning of file's

space allocation chain

253
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AT

A 16-bit FAT works just the same as a 12-bit one, except it's simpler.

The entries in a 16-bit FAT are obviously four bits larger, which allows for

a wider range of cluster numbers. Since sixteen bits are exactly two

bytes, or one word, a 16-bit FAT doesn't need the convoluted storage ar-

rangement used with a 12-bit FAT. Instead, a 16-bit FAT is a straightfor-

ward table of word values, one stored right after another.

The special values for a 16-bit FAT (for such things as bad-track

marking) are a logical extension of those used for 12-bit FATs; they just

have a high-order hex F added on. For example, the end-of-file value is hex

FFFF (instead of FFF) and the bad-cluster value is hex FFF7 (instead of FF7).

As we have said, the actual data clusters are numbered from 2,

while each FAT begins with entries and 1. These first two FAT entries, in

both 12- and 16-bit formats, are not used to indicate the status of the clus-

ters; instead, they are set aside, so that the very first byte of the FAT can

be used as an ID byte, indicating the format of the disk. However, you

should not assume that these IDs uniquely identify formats: They don't

necessarily. If we considered every disk format in use, we'd find quite a

few duplications. Beware.

Our programs can learn the format of a disk by reading and in-

specting the FAT ID byte. However, the official way of finding out the

format is to use DOS function 27 (hex IB), m- For more information about

this function, see page 282.

Special Notes on the FAT

Normally, our programs do not look at or change a disk's FAT; the

FAT is left completely under the supervision of DOS. The only exceptions

are programs that perform space allocation functions not supported by

DOS; for example, programs that recover erased files, such as the Un-

Erase program in my Norton Utilities program set.

Format ID Bvte

D-8
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It is important to note that a FAT can be logically damaged; for ex-

ample, an allocation chain can be circular, referring back to a previous

link in the chain; or two chains can converge on one cluster; or a cluster

can be orphaned, meaning that it is marked as in use even though it is not

part of any valid allocation chain. Also, an end-of-file marker (hex FFF or

FFFF) may be missing. The DOS programs CHKDSK and RECOVER are

designed to detect and repair most of these problems, as well as can rea-

sonably be done.

«- For special notes on the interaction of the space allocation chain

in the FAT and DOS s record of a file's size, see page 118.

COMMENTS
Although this chapter has included detailed information for the di-

rect use of the disk itself, including the boot record, the FAT, and the

directories, it is not a good idea to use it direcdy unless you have a com-

pelling reason. In fact, except where completely unavoidable, as in a

copy-protection program, it is unwise to incorporate any knowledge of

the disk format into your programs. On the whole, the best thing to do is

to consider the standard hierarchy of operations and use the highest level

of services that can satisfy your needs:

First choice: Language services (the facilities provided by your

programming language, such as BASIC'S OPEN and CLOSE state-

ments).

Second choice: DOS services (described in Chapters 15 and 16).

Third choice: ROM-BIOS disk services (described in Chapter 10).

Last choice: Direct control (for example, direct programming of

the floppy-disk controller (FDC) through commands issued via

ports).

Most disk operations for the PC family can be accomplished quite

nicely with the services that your programming language provides. How-

ever, there are two obvious circumstances that may call for more exotic

methods. One, which we've already mentioned, is when your program-

ming involves the control of a disk on the same level as the control that

DOS exercises. This would be called for if you were writing a program

similar to DOS's CHKDSK, or to my Norton Utilities. The other circum-

stance involves copy protection. All copy-protection schemes, in one way

or another, involve some variety of unconventional diskette I/O. This usu-

ally leads to the use of the ROM-BIOS services, but it may lead to the ex-

treme measure of directly programming the floppy-disk controller.
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Copy Protection^

There is a variety of commercially available copy-protection schemes,
including a quite unsophisticated one that is part of my software set, Access
Tools for the IBM/PC. However, you may want to devise your own scheme.

There are dozens of ways to approach copy protection. Perhaps the most
common methods involve reformatting the sectors in certain tracks on the disk
by usmg the ROM-BIOS format routines. Since DOS cannot read sectors that
do not conform to its specific formats, the DOS COPY program is unable to

copy a disk that has an occasional odd sector size interspersed with normal
sectors. Naturally, this DOS limitation has mspired a number of companies to
produce copy programs that can read and copy sectors of any size, so it is not
a particularly effective method of copy protection.

On a more advanced level, diere are two special things that are worth
noting about copy protection. First, some of the most exotic and unbreakable
protection schemes have been based on the discovery of undocumented abil-

ities hidden in the floppy-disk controller (FDC). Second, some protection
schemes are intentionally or unintentionally dependent upon the particular

characteristics of different diskette drives. Or they may be dependent upon the
details of the software control of the drive, which can differ within the PC fam-
ily. For example, the PCjr drive control software works in a very different way
from that of the PC and XT. The AT s software is also different. So a copy-
protected program may function on one model of computer but fail to func-
tion on another model, even though the copy protection has not been tam-
pered with. If you use a copy-protection scheme, you should keep diis in mind.

There is no particular additional guidance that 1 can give you here, ex-
cept to remind you that variety and ingenuity are the keys to successful copy
protection.
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This chapter is mainly about the standard IBM PC keyboard, al-

though we have scattered a few comments about the slightly

different PCjr and AT keyboards throughout the text. We avoid

a thorough discussion of the specialty models of the IBM PC,

such as the 3270 PC, the AT, and the PCjr, as well as some non-IBM mem-
bers of the extended PC family, because they have keyboards that do not

exactly match the standard PC keyboard. In most cases, these nonstan-

dard keyboards are either enhanced or scaled-down versions of the PC

standard. For example, IBM moved a few keys around on the AT and

added one new key and some fancier hardware, but fortunately they

didn't change the operating characteristics much. The PCjr has fewer keys

than the standard PC keyboard, yet it, too, manages a convincing simula-

tion of the standard keyboard. Fortunately, this practice of matching or

simulating the regular PC keyboard seems to be standard among the ex-

tended PC family members, making the slight differences between them

of little concern to programmers.

The first part of this chapter explains how the keyboard interacts

with the computer on a hardware and software level. In the second part,

we'll see how the ROM-BIOS treats keyboard information and makes it

available to our programs. •" If you plan to play around with keyboard

control, I urge you to consider the recommendations on page 139 first,

and not apply the information in this chapter to your programs unless

there is a particular reason to do so. One example of an appropriate use

for the information here is to create a program that modifies the opera-

tion of the keyboard, such as the popular and highly regarded ProKey

keyboard-enhancer program, m- If you have any such application in mind,

take a look at the ROM-BIOS keyboard services in Chapter II.

THE KEYBOARD OPERATION
The PC keyboard contains the 8048 keyboard controller, which per-

forms a variety of jobs, all of which help cut down on system overhead.

The main duty of the 8048 is to watch the keys and report to the ROM-
BIOS whenever a key has been pressed or released. If any key remains

pressed for longer than a half second, the 8048 sends out a repeat action

at specific intervals. The 8048 controller also has limited diagnostic and

error-checking capabilities, and has a buffer that can store 20 key actions

should the main computer be unable to accept them (this rarely hap-

pens). 1:11 The AT model uses a different keyboard-controller chip, the

8042, but it performs essentially the same functions as the 8048.



Chapter 6: Keyboard Basics . 129

Keyboard-Enhancer Programs ^^
Thanks to the flexible software design of the PC, it's possible to create

programs that manipulate the keyboard. There are many programs of this type

available, but the best known and most popular is probably ProKey.

Keyboard-enhancer programs monitor the data that comes in from the

keyboard and change it in any way we want. Typically, these programs are fed

instructions, called keyboard macros, that tell them what keystrokes to look

for and what changes to make. The change might involve suppressing a key-

stroke (acting as if it never happened), replacing one keystroke with another,

or replacing one keystroke with a long series of keystrokes. The most common
use of keyboard macros is to abbreviate phrases we commonly type; for exam-

ple, we might instruct ProKey to convert a key combination, such as Alt-S, into

the salutation we use in our correspondence, such as Sincerely yours. We can

also use keyboard macros to abbreviate program commands so that a three-

or four-keystroke command can be condensed to a single keystroke.

Keyboard enhancers work by combining the powers of two special facili-

ties—one that's part of DOS and one that's part of the PC's ROM-BIOS. The

DOS facilit}' allows the enhancer program to remain resident in the computer's

memory, quiedy monitoring the operation of the computer while the ordinary

control of the computer is turned over to a conventional program, such as a

word processor. The ROM-BIOS facility makes it possible for programs to

divert the stream of keyboard information so that it can be inspected and ?

changed before it is passed on to a program. A program like ProKey uses the

DOS "resident program" facility to stay active in memory while other pro-

grams are run; then it uses the ROM-BIOS keyboard-monitoring facility to

preview keyboard data and change it as needed.

Every time we press or release one of the keys on the PC keyboard,

the keyboard circuits generate a 1-byte number, called a scan code, that

uniquely identifies the keystroke. The keyboard produces a different scan

code for each key press and key release. Whenever we press a key, the

scan-code byte contains a number ranging from 1 through 83 (on a stan-

dard PC keyboard). When we release the same key, the keyboard gener-

ates a scan code 128 (hex 80) higher than the key-press scan code, by

setting bit 7 of the scan-code byte to 1. For example, when we press the

letter Z, the keyboard generates a scan code of 44; when we release it, the

keyboard generates a scan code of 172 (44-1-128). m- The keyboard dia-

gram in Figure 6-1 shows the standard keyboard keys and their associated

scan codes.
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the Ctrl key and a c we generate the Ctrl-C or "break" signal. These are

both examples of different shift states. We can change the shift state

while we type by pressing the Shift key, the Alt key, or the Ctrl key. When
one of these keys is pressed and not released, the ROM-BIOS recognizes

that all subsequent key actions will be influenced by that shift state.

The Shift and Toggle Keys

In addition to the normal Shift key, the Ctrl key, and the Alt key,

there are two toggle keys that also affect the keyboard's shifting mecha-

nism: the Caps Lock key and the Num Lock key. When Caps Lock is

activated, it reverses the meaning of the Shift key for the alphabet keys,

but not for the rest of the keys. The Num Lock key switches between

numbers and cursor-control functions on the numeric keypad.

The shift-key or toggle-key status information is kept by the ROM-
BIOS in low-memory locations (hex 417 and 418), where we can use or

change it. When we press a shift key or a toggle key, the ROM-BIOS sets a

specific bit in one of these two bytes. As soon as the ROM-BIOS receives

the release scan code of a shift key, it switches the status bit back to its

original shift state.

Whenever the ROM-BIOS receives a scan code for an ordinary key-

stroke, such as the letter 2 or a right arrow key, it first checks the shift

state, then translates the key mto the appropriate 2-byte code. {<*' We'll

discuss the status bytes in more detail on page 136.)

The Combination Keys

While the ROM-BIOS routine is translating scan codes, it constantly

checks for certain shift-key combinations; specifically, the Ctrl-Alt-Del,

Shift-PrtSc, Ctrl-Num Lock, and Ctrl-Break combinations. These four

command-like key actions cause the ROM-BIOS to act immediately and
perform a specific task, rather than buffering the characters.

Ctrl-Alt-Del causes the computer to reboot, or reload the com-
mand program. Ctrl-Alt-Del is probably used more often than any other

key combination. It works dependably as long as the keyboard interrupt

service is working. If the interrupt service is not working, there are two
possible reasons: Either the keyboard interrupt vector (in memory loca-

tions hex 36 through 39) has been changed or a clear interrupt instruc-

tion (CLI), which disables interrupts, has been performed without an
accompanying start mterrupt instruction (STI). In either of these cases,

the only recourse you have is to turn the power off, wait a few seconds,

and then turn it on again; the power-on program resets all interrupt vec-

tors and services.
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NOTE: Some programs may leave the interrupts disabled by mis-

take. This is not possible on the PCjr since the keyboard interrupt is a

non-maskable interrupt (NMl).

Shift-PrtSc writes the screen contents to the standard printer de-

vice. The operation is done on a primitive BIOS level through interrupt 5.

To redirect the printer output to different devices (which is not a normal

thing to do), you must change the PrtSc interrupt vector to point to a

new subroutine. The GRAPHICS.COM routine in DOS 2.00 and subsequent

versions circumvents the PrtSc operation by first checking the video mode
that is in effect. If it turns out to be a graphics mode, a routine takes over

and sends the screen output, pixel-by-pixel, to an IBM-compatible graph-

ics printer (if it's attached). Otherwise, the conventional print-screen op-

eration is called and the information is sent out character-by-character.

Ctrl-Num Lock suspends operation of the program until another

keystroke occurs.

Ctrl-Break causes the computer to issue a "break" signal by gener-

ating an interrupt 27. If our programs have established a new interrupt 27

handler, they can intercept the break interrupt and act on it (or ignore it)

according to the requirements of the program. If our programs don't

change the interrupt routine, DOS will use its default routine, and shut

down the program.

These are the only key combinations that are specially meaningful

to the ROM-BIOS. When an invalid combination is reported from the key-

board, the ROM-BIOS simply ignores it and moves on to work on the next

sensible key action.

There are two more things about the PC keyboard that we need to

discuss before passing on to the details of keyboard coding: repeat key

action and duplicated keys.

Repeat Key Action

The PC keyboard features automatic repeat key action, a process

called typematic by IBM. The circuitry inside the PC keyboard watches

how long each key is pressed, and if a key is held down more than half a

second, it automatically generates repeat key actions ten times per sec-

ond. The typematic action is reported as successive key-press scan codes,

without the intervening key-release codes. This makes it possible for a

clever interrupt 9 handler to distinguish between actual key presses and

typematic action. However, the ROM-BIOS does not always distinguish

between the two. The ROM-BIOS keyboard-handling routine treats each

automatic repeat key action as though the key had actually been pressed,

and interprets the key accordingly. For example, if we press and hold the
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A key long enough for the keyboard to begin generating successive key-

press signals, then the ROM-BIOS will create a series of As to be passed on

to whatever program is reading keyboard data. On the other hand, if we

press and hold a shift key— as we often do—the ROM-BIOS will recog-

nize the first shift-press signal and put us in the shifted state. But it will

ignore the subsequent shift-press signals generated by the auto-repeat

mechanism until it gets a shift-release signal. All this boils down to the

simple fact that the ROM-BIOS treats repeat key actions in a sensible way,

acting on them or ignoring them as needed.

Duplicated Keys

Another thing that we should be aware of is that there are duplicate

keys on the keyboard. There are, for example, two asterisks: one on the

upper row, above the 8 key, and one on the right, on the PrtSc key. There

are also duplicate periods, pluses, minuses, and digits (0 through 9), and

two seemingly identical Shift keys.

The ROM-BIOS, quite sensibly, translates these duplicate keys into

the same character codes; for example, either asterisk key gets us the as-

terisk character, CHR$(42). The ROM-BIOS also lets our programs tell the

difference between them, in case it matters. The duplicated character

keys retain their scan codes in the high-order byte; our programs need

only check the scan code m this byte to see which key was pressed. As

for the two Shift keys, each one sets a different bit in the shift-status byte

(location hex 417). If we want our programs to know which Shift key was

pressed, we need to look at the appropriate bit value. ( •-See the discus-

sion of location hex 417 on pages 52 and 136.)

Generally, it is best for programs to ignore the distinction between

duplicate keys, although some of the most sophisticated programs make

use of this information for special purposes. Notable among them are

Microsoft's Flight Simulator and Ashton-Tate's Framework.

Entering ASCII Codes Directly

We should mention that the PC keyboard, in conjunction with the

ROM-BIOS, provides us with an alternate way to enter nearly any ASCII

character code. This is done by holding down the Alt key and then enter-

ing the decimal ASCII character code from the numeric keypad on the

right side of the keyboard. This method allows any of the ASCII codes to

be entered, from CHR$(1) through CHR$(255). The only ASCII code that

can't be keyed in direcdy is CHR$(0), because it is reserved to signal

non-ASCII characters, such as cursor-control and function keys. •'In the

next section we'll discuss this in more detail.
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KEYBOARD DATA FORMAT
Once a keyboard action has been translated, it is stored as a pair of

bytes in the ROM-BIOS buffer. We call the low-order byte the main byte

and the high-order byte the auxiliary byte.

The ASCII Keys

When the main byte is an ASCII character value from CHR${1) to

CHR$(255), we know either that one of the standard keyboard characters

was pressed, or that an extended ASCII character was entered using the

Alt-number method mentioned above, (f*" See Appendix C for the com-

plete ASCII character set.) For these ASCII characters, the auxiliary byte

contains the keyboard scan code of the pressed key. Under ordinary cir-

cumstances, this scan code has no use (the BASIC INKEY$ function does

not report the auxiliary byte). However, the auxiliary byte can be used to

distinguish between duplicate keyboard characters with different scan

codes. When ASCII characters have been entered "artificially" by the Alt-

number method, the scan code in the auxiliary byte is zero.

The Special Keys

When the main byte is zero (CHR$(0)), it means that a special key is

being reported. The special keys include function keys, shifted function

keys, cursor-control keys such as Home and End, and many of the Ctrl

and Alt key combinations. When any of these keys are pressed by them-

selves or in combination with other keys, the auxiliary byte contains a

single value that represents the key press. This makes it possible for us to

define our own special key codes, without interfering with the extended

ASCII characters (CHR$(128) through CHR$(255)). All of the 97 special

key values are arranged in Figure 6-2 in a rough mixture of logical and

numerical order.

NOTE: Since a value ofzero in the main byte signals a special key,

the zero ASCII character, CHR$(0), can't be reported. As defined by IBM,

CHR$(0) can be entered on the keyboard as Alt-2. This key combination

is reported as special-key value 3 (main byte = 0, auxiliary byte = 3).

Our programs are supposed to interpret an auxiliary-byte value of 3 as

CHR$(0), but no programming language or program in my experience

bothers to make this interpretation.
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The codes for the complete set of characters and special keys are

generated by the ROM-BIOS, but different programming languages vary

in the way they handle the codes. BASIC, for example, takes a mixed ap-

proach to the special keys. When we use ordinary input statements,

BASIC hands over the regular ASCII characters to the BIOS and filters out

any special keys. Some of these keys can be acted on with the ON KEY
statement, but we can use the BASIC INKEYS function to get directly to

the ROM-BIOS coding for keyboard characters and find out immediately

what special key was pressed. If the INKEYS function returns a 1-byte

string, it is reporting an ordinary or extended ASCII keyboard character.

If INKEYS returns a 2-byte string, the first byte in the string is the ROM-
BIOS's main byte and will always be CHRS(O); the second byte is the aux-

iliary byte and will indicate which special key was pressed.

KEYBOARD CONTROL
The keyboard operation and keyboard data collection that is super-

vised by the ROM-BIOS makes use of a data area in low memory, from

hex 417 through 472, as well as locations hex 412 and 488. Our programs

can make use of these locations to check the keyboard status or to mod-

ify the keyboard operation. Now we'll discuss the locations that are use-

ful for our programs to read and the locations that are safe to change.

The Status Bytes

We'll begin with the two standard keyboard status bytes, at loca-

tions hex 417 (shown in Figure 6-3) and 418 (shown in Figure 6-4). These

status bytes are coded with individually meaningful bits that indicate

which shift keys and toggle keys are active. All the standard models of

the PC family have these two bytes. WTl Currently, the only individual

difference between the models is bit 2 of byte 2. This bit, called the click

bit, is unique to the PCjr. The other aspects of the bit format are common
to all standard PC models.

The Insert State

The ROM-BIOS keeps track of the insert state in bit 7 of byte 1. Every

program that I know of ignores this bit and keeps its own record of

whether the insert state is on or off, so although it is possible, it is not a

standard practice to use the ROM-BIOS insert-status bit in our programs.
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Bit

7 6 5 4 3 2 10 Meaning

Insert state: 1 = active; = inactive

Caps Lock: 1 = active; = inactive

Num Lock: 1 = active; = inactive

Scroll Lock: 1 = active; = inactive

Alt shift: 1 = active (Alt depressed); = inactive

Ctrl shift: 1 = active (Ctrl depressed); = inactive

Normal shift: 1 = active (left Shift depressed); = inactive

Normal shift: 1 = active (right Shift depressed); = inactive

X
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Ctrl-Num Lock. When the BIOS detects the Ctrl-Num Lock combina-

tion, it goes into a state known as keyboard hold by setting bit 3 in status

byte 1. During keyboard hold, the BIOS program waits until a printable

key is pressed; it doesn't return control of the computer to whatever pro-

gram is running until this happens. This feature is used to suspend the

operation of the computer.

During keyboard hold, all interrupts are handled normally. For ex-

ample, if the disk drive generated an interrupt (signaling the completion

of a disk operation), the disk interrupt handler would receive the inter-

rupt and process it normally. But, when the interrupt handler finished

working, it would pass control back to whatever was happening when
the interrupt took place—which would be that endless do-nothing loop

inside the keyboard BIOS. So, during the keyboard hold, the computer

can respond to external interrupts but programs are normally com-

pletely suspended. The keyboard BIOS continues to handle interrupts that

signal key actions, and when it detects a normal keystroke (for example,

the Spacebar or a function key, but not just a shift key), it ends the key-

board hold, finally returning control to whatever program was running

and letting it continue.

The keyboard-hold state is of no practical use to us in program-

ming, except that it provides a standard way for users of our programs to

suspend the program's operation.

Be aware that the keyboard-hold state is not "bullet-proof." It is

possible for a program to continue working through the keyboard hold

by acting on an external interrupt, such as the clock-tick interrupt. If a

program really wanted to avoid being put on hold, it could set up an

interrupt handler that would work through the hold state, or it could

simply turn the hold state off whenever it was turned on.

The Toggle-Key State

Notice that bits 4 through 7 in each byte refer to the same keys. In

the first byte, the bits show the current state of the toggle keys; in the sec-

ond byte, they show whether the corresponding toggle key is depressed.

You may read the status of any of these bits to your heart's content,

but few, if any, are likely to be useful to your programs. With the partial

exception of controlling the Caps-Lock state, I don't think it's wise to

change any of the shift-state bits (bits 4 through 6 of byte 1). And it is

potentially very disruptive to change any of the key-is-pressed bits (bits

through 3 of byte 1; bits 4 through 7 of byte 2).
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HOW THE PCjr IS DIFFERENT
The PCjr is designed to mimic, as closely as possible, the operation

of the original 83-key PC. But as we can see in Figure 6-6, the Junior's

native keyboard has only 62 keys, which means that it does not exactly

match the PC keyboard. Resolving this problem has resulted in some

clever keyboard fakery.

The PCjr has 61 keys in common with the PC, plus one new key, the

Fn (function) key. Each of the 22 missing keys is mimicked in one way or

another by various key combinations on the PCjr keyboard. However, it's

not quite as easy as it sounds because the PCjr equivalents of PC keyboard

actions are not particularly straightforward ( •'see Figure 6-7).

The PCjr also has five special key combinations that are unique to it

and have no equivalent in the PC. These are listed in Figure 6-8. The fifth

one, Shift-Fn-Esc, is rarely mentioned in the Junior's documentation.

PCjr Keyboard Operation

The PC keyboard stages of operation that we outlined on page 128

are followed closely by the PCjr. However, since the Junior's keyboard is

different, an entirely new (but familiar) layer of operations has been

added up front.

Each PCjr key action, like the PC key actions, causes an interrupt,

but it's a special one: interrupt 2, the non-maskable interrupt (NMI). This

in turn calls interrupt hex 48, which translates the 62-key scan codes into

their corresponding 83-key scan codes. The interrupt hex 48 routine also

generates an interrupt 9 (simulating a PC keyboard interrupt) and every-

thing follows from there, as close to the PC standard as is possible, with

the ROM-BIOS translating the PC action codes into their end meanings.

Esc 1

1 2



PC Key PCjr Equivalent

Fl through FIO

PrtSc

» (on PrtSc key)

Ctrl-PrtSc (echo)

Num Lock

Ctrl-Num Lock (pause)

Scroll Lock

Break

Home

Ctrl-Home

PgUp

Ctrl-PgUp

5 (on numeric keypad)

End

Ctrl-End

PgDn

Ctrl-PgDn

- (on numeric keypad)

-I- (on numeric keypad)

Fn key, followed by 1 through

Alt-[

Alt-/

Alt-]

Alt-'

Fn-P

Alt-, (not the same as Shift-8 asterisk)

Fn-E

Alt-Fn-N

Fn-Q

Fn-S

Fn-B

Fn-Up arrow

Ctrl-Fn-Up arrow

Fn-Left arrow

Ctrl-Fn-Up arrow

No replacement

Fn-Down arrow

Ctrl-Fn-Down arrow

Fn-Right arrow

Ctrl-Fn-Right arrow

Fn-Hyphen

Fn- =

Figure 6-7. The PCjr key equivalents

ofthe 22 missing PC keys

Key Combination Use

Ctrl-Alt-Left arrow

Ctrl-Alt-Right arrow

Ctrl-Alt-Caps Lock

Ctri-Alt-lns

Shift-Fn-Esc

Shifts display screen left

Shifts display screen right

Turns keyboard clicking on and off

Invokes diagnostics programs

Makes digit keys act as function keys

Figure 6-8. Special key combinations

unique to the PCjr
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Bit

7 6 5 4 3 2 10 Meaning

Function flag

Signals break-key action (Fn-B)

Function pending: Fn depressed

Function lock: makes numeric keys function keys

Controls typematic repeat-key action: = enable; 1 = disable

Controls full- or half-speed repeat-key action: = half speed,

1 = full speed

Controls longer delay before starting repeat action:

= enable, 1 = disable

Signals that repeat key is due to be generated

X . .

X .

. X

Figure 6-9. The coding of the PCjr keyboard

status byte at location hex 488

The reason why all this up-front processing is necessary is because

the Junior's keyboard has no 8048 microprocessor to help it out. The PC

keyboard is smart enough to be able to store several key actions, which

makes it practical to temporarily mask off the keyboard-action interrupt

whenever other parts of the computer need attention. The PCjr doesn't

have this ability, so its keyboard-action interrupt is more urgent and su-

persedes all other interrupts.

One of the biggest differences between the Junior and its more pow-

erful relatives is that the ROM-BIOS manages the operation of both the

keyboard and the disk drive. A conflict arises because the ROM-BIOS

favors the disk drive, since the disks have no direct memory access. Con-

sequendy, if the disk drive is in operation, the entire system is masked and

keyboard input can't take place (asynchronous communications through

the serial port can't take place, either).

The PCjr Keyboard Status Byte

The PCjr has a third keyboard status byte in addition to the two stan-

dard status bytes mentioned earlier. It is located at memory address hex

488. This byte is peculiar to the operation of the PCjr's 62-key keyboard.

The meaning of the individual bits in the status byte are shown in

Figure 6-9. Generally, you will gain nothing by reading or changing these

bits, but you should know that we can suppress the typematic (the re-

peat-key operation) by setting bit 3 to 1. Additionally, we can double the

time-repeat or begin-repeating mechanisms by setting bits 2 and 1 to 1. If
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you want to experiment and suppress key repetition on a PCjr, you can

insert your DOS utilities disk and try entering these commands (this will

only work on a PCjr):

DEBUG

F 0:488 L 1 08

PCjr Programming Recommendations

The Junior keyboard is designed to emulate a full PC keyboard, and

it is clearly intended to be replaced or augmented by other keyboard-like

devices, such as a mouse or a full keyboard. This design makes it particu-

larly shortsighted to integrate the peculiarities of the PCjr keyboard into

our programs.

However, for one exception, I would recommend that your pro-

grams take the peculiarities of the Junior keyboard into account: when
you are selecting which special keys to use in a program. Many programs

created for the original PC had their key use (especially function-key use)

fine-tuned to the full PC keyboard. With the emergence of the PCjr key-

board, it is wise to rethink key selection because the two keyboards are

so different. You might decide to choose the best use for either the Junior

or the PC, to compromise between the two, or to adjust the program's

operation to the machine it is working on. (•" See page 59 for how to

find the machine ID.) The choice you make depends on the scope and the

potential market of your program.

HOW THE AT IS DIFFERENT
The AT's keyboard also differs from the standard PC keyboard. In

contrast with the PCjr keyboard, the differences in the AT keyboard that

are visible to the user and to our programs are very slight. However, as

far as the hardware and BIOS are concerned, the AT keyboard is similar

to the PCjr keyboard in that it does not actually function like the PC key-

board, but rather is made to simulate it. Since the internal differences in

the AT keyboard are essentially invisible to our programs, we won't need

to cover them in much detail.

The AT keyboard layout is almost the same as that of the original

PC keyboard, with a few keys repositioned and one key added. The re-

positioning of some of the keys doesn't call for any changes in the way we
program for keyboard use or in our selection of keys to use, but it is

worth noting that one key that is used very heavily for program control,

the Esc key, has been moved to an entirely new location, from the top left

area to the top right area—a real nuisance for anyone who has to use

both the PC and the AT keyboards.
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The one new key on the AT keyboard is the Sys Req key. This key

has no use within the operation of any program. Instead, it was created

to activate switching between programming system tasks when the AT is

working in a multitasking mode and using the special capabilities of the

AT's 286 microprocessor. This is a hands-off key for our PC programs.

The hardware link between the AT and the AT keyboard is two-way,

so that the keyboard can send information to the AT and the AT can send

commands back to the keyboard, including commands to set the key-

board indicator lights. It would be very foolish of us to fiddle with these

keyboard-control commands.

It is worth noting that French, German, Spanish, Italian, and British

variations on the American-oriented AT keyboard were introduced at the

same time as the AT itself.

Second-guessing IBM's future moves is a very risky business, but it is

my opinion that the AT keyboard layout (and its international variations)

will become and remain the new standard for all future PC-family prod-

ucts introduced by IBM. Whether or not this happens isn't of much im-

portance to us here, though, because from a programming point of view,

the AT keyboard is not truly different from the PC keyboard (unlike the

PCjr keyboard, which does have some truly practical differences).
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All standard members of the PC family are able to create simple

sounds using the computer's programmable timer chip (the

8253-5) and the computer's built-in speaker. Hil The PCjr also

has extended sound capabilities that include a special sound-

generating chip, additional sound sources, and additional sound outputs.

Since these features are unique to the PCjr, we'll save a brief discussion of

them for the last part of the chapter and devote the first part to the sound

features that are universal to the PC family.

To understand how to make sounds on our computers, we need to

know some of the basic principles of sound, which we'll outline here.

THE PHYSICS OF SOUND
Sounds are simply regular pulses or vibrations in air pressure.

Sound is produced when air particles are set into motion by a vibrating

source. When the vibrating source pushes out, it compresses the air parti-

cles around it. As it pulls in, the pressure release pulls the particles apart.

A vibration composed of both the pressing and the pulling actions causes

air particles to bump into each other. This motion begins a chain reac-

tion that carries the vibration through the air away from the original

source. Such a motion is called a sound wave.

The speaker in the IBM PCs is made to vibrate by the electrical im-

pulses sent to it by the computer. Since computers normally deal with

binary numbers, the voltages they produce are either high or low. Every

transition from one voltage state to another either pushes the speaker

cone out or relaxes it. A sound is produced when the voltage to the

speaker goes from low to high to low again, causing the speaker to move

out, then in. This single vibration, consisting of a pulse out and a pulse

in, is called a cycle and is measured in hertz (a hertz is simply one cycle

per second). Through the PC speaker, a single cycle of sound is heard as a

click. A continuous sound is produced when a number of cycles per sec-

ond are sent to the speaker. As the cycles per second increase, the clicks

blend together and become a tone of a certain frequency. For example, if

we pulse the speaker in and out 523 times a second (that is, at a rate of

523 hertz), we hear the musical note known as middle C.

The average person can hear sounds ranging from 20 to 20,000

hertz. The IBM PC can generate sounds through its speaker at frequencies

that could theoretically range from about 18 to over a million hertz, far

beyond the range of human hearing. To give this frequency range some

perspective, compare it to an average human voice, which has a range of

only 125 to 1,000 hertz.
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sound frequency. The other method is to use the PC's built-in program-

mable timer chip (the 8253-5) to pulse the speaker at a precise frequency.

Using the timer chip is a more popular method for two reasons: Because

the speaker pulses are controlled by the timer chip instead of a program,

the CPU is free to devote its time to the other demands of the computer

system; and the timer chip is not dependent on the working speed of the

CPU (which is faster for the AT and slower for the PCjr).

Both the program method and the timer method can be used to-

gether or separately to create a variety of simple and complex sounds.

We'll explain timer-chip sound control and direct speaker control more

thoroughly in the next few pages, and then move on to describe some of

the enhancements the PCjr has brought to the PC family.

Timer-Chip Sound Control

The 8253-5 programmable timer is the heart of the standard PC

models' sound-making abilities— but it is also the heart of the system's

real time clock. Although we'll be concentrating mainly on its use as a

sound generator, the 8253-5 is called a timer chip because its primary

function is to keep time— in much the same way as a metronome keeps

time for a musician.

Here is how it works. The 8253 gets a signal from the computer's

main clock (the 8284A) that oscillates at a frequency of 1,193,180 times a

second, or 1.193 megahertz (MHz). The timer is programmed to produce

a clock interrupt (interrupt 8) once every 65,536 main clock cycles, or

about 18.2 times a second. This clock interrupt is usually called a clock

tick. The ROM-BIOS keeps track of the clock ticks, calculates the time of

day by incrementing its clock counter at each tick, and also issues its

own interrupt, called a clock-tick interrupt (interrupt 28).

The ROM-BIOS clock-tick interrupt is often used by programs to

keep time, although some programs bypass this interrupt and work

directly with the timer chip. For example, BASIC uses the timer chip di-

rectly to count the duration of a sound, which is measured in clock ticks.

However, since the standard rate of 18.2 ticks per second is often not fast

enough to provide the precision that some kinds of music demand, BASIC

reprograms the timer to tick four times faster, which causes interrupt 8

(the clock tick) to occur 72.8 times per second instead of 18.2. When
BASIC counts against the quadruple rate, it is able to more accurately re-

produce the proper tempo of a piece of music.
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NOTE: BASIC quadruples the clock rate during the execution of

the MUSIC command. It avoids interfering ivith the BIOS clock-tick inter-

rupt number 28, ivhich is vital to many other system functions, by reset-

ting the vector for interrupt 8 to point to a routine that then signals the

ROM-BIOS on every fourth tick. On the fourth tick, the interrupt handler

momentarily turns control over to the BIOS , enabling it to increment its

counter and issue an interrupt 28 on schedule, after which it returns

control to BASIC.

Programming the Timer Chip

Creating sounds with the timer chip involves two basic steps: First,

we must program the timer to generate a frequency, then we must direct

the output of the timer to the speaker. These two steps can be performed

separately. A sound is emitted when both steps have been performed, and

the sound stops when either of the two steps is ended.

The timer can be programmed to produce pulses at whatever fre-

quency we want, but since it does not keep track of how long the sound

continues, the sound will continue forever unless it is turned off. There-

fore, our programs must choose when to end a sound through some sort

of timing instruction.

We program the timer to generate sounds in the same way BASIC

programs it to generate clock ticks: by giving it a number. On command,

the timer counts the system clock pulses (which are oscillating at 1.193

MHz) until the total matches our number. Then it outputs a pulse (in-

stead of an interrupt) and begins counting again from zero. In effect, the

timer "divides" our number into the clock frequency to produce an out-

put frequency. The result is that the timer sends out a series of pulses that

produce a sound of a certain frequency when we turn on the speaker.

Our controlling count and the resulting frequency are in a re-

ciprocal relationship, as shown by these formulas:

Count = 1,193,180 -^ Frequency

Frequency = 1,193,180 ^ Count

From these formulas, we see that a low-frequency (low-pitched) sound is

produced by a high count and that a high-frequency (high-pitched) sound

is produced by a low count. A count of 100 would produce a high pitch of

roughly 11,931 cycles per second, and a count of 10,000 would produce a

low pitch of about 119 cycles per second.

We can produce just about any frequency, within the limitations of

16-bit arithmetic. The lowest frequency is 18.2 hertz (with a divisor of

65,535, hex FFFF) and the highest is 1.193 megahertz (with a divisor of 1).
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BASIC holds this to a practical range of 37 to 32,767 hertz. The program be-

low demonstrates that the actual frequency range of the internal speaker

is even less than BASIC provides.

Once we have calculated the count that we need for the frequency

we want, we send it to the 8253 timer registers. This is done with three

port outputs. The first port output notifies the timer that the count is

coming by sending the value 182 (hex B6) to port 67 (hex 43). The next

two outputs send the low- and high-order bytes of the count, a 16-bit un-

signed word, to port 66 (hex 42)—the low-order byte followed by the

high-order byte. This BASIC program illustrates the process:

10 COUNT = 1193280! / 3000

20 LD. COUNT =CDUNT MOD 256

30 HI .COUNT = COUNT \ 256

40 OUT 67, 182

50 OUT 66, LO. COUNT

60 OUT 66, HI .COUNT

" 3000 is our frequency

' calculate low-order byte value

' calculate high-order byte value

' get timer ready

' load low-order byte

load high-order byte

Activating the Speaker

After we have programmed the timer, we still need to activate the

speaker circuitry in order to use the signal that the timer is generating. As

with most other parts of the PC, the speaker is manipulated by sending

certain values to a specific port, a process that is illustrated in Figure 7-2.

The speaker is supervised by the programmable peripheral interface (PPI)

chip and uses port 97 (hex 61). Only two of the ports eight bits are used

by the speaker: the low-order bits numbered and 1. The other bits are

used for other purposes, so it is important that we don't disturb them

while working with the speaker.
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The lowest bit, bit 0, controls a timer signal used to drive the speaker.

The second bit, bit 1, controls the pulsing of the speaker. Both bits must

be turned on (set to 1) to make the speaker respond to the timer. We can

turn them on without disturbing the non-speaker bits with an operation

like this:

70 OLD. PORT = INP (97)

80 NEW. PORT = (OLD. PORT OR &H03)

90 OUT 97, NEW. PORT

' assign value of port 97 to old.port

' set bits and 1 to on
" turn speai<er on

Direct Speaker Control

The timer controls the speaker by sending periodic signals that

pulse the speaker in and out. We can do the same thing with a program

that sends in or out signals directly to the speaker. We do this by setting

bit of port 97 (hex 61) to zero to turn the speaker on, and then alter-

nately setting bit 1 on and off, which pulses the speaker. When we use

this method, the timing of the program determines the frequency of the

sound— the faster the program executes, the higher the pitch. This BASIC

program demonstrates how it's done (the example assumes that port 97

(hex 61) has a value of 76):

10 X = INP (97) AND 4HFC

20 OUT 97, X

30 OUT 97, X + 2

40 GOTO 20

' change port value, turn off last 2 bits

' pull speaker in

' push speaker out

The two actions in lines 20 and 30 pulse the speaker in and out. Each one

is a half-cycle, and the two together produce one complete sound cycle.

This example runs as fast as BASIC can process it, producing as high

a note as possible. If we needed more range in our application, we would

probably use a faster language and insert deliberate delays equal to half

the frequency cycle time between each complete cycle (half the cycle

time, because each ON or OFF operation is a half cycle). Whatever lan-

guage we use, we have to include a duration count to end the sound. To

produce different sounds at a particular frequency, such as clicking or

buzzing sounds, we just vary the delays between pulses.

Despite all these wonderful possibilities, generating sounds through

the speaker by direct program action is not a good way to make sounds.

It has three big disadvantages over the use of the timer:

A program requires the constant attention of the CPU, so the

computer has a hard time getting any other work done.

The frequency is at the mercy of the speed of the computer; that

is, the same program would make a lower or higher sound on a

slower or faster model.
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The clock-tick interrupts interfere with the smoothness of the

sound, making a warble. The only way to avoid this is to suspend

the clock tick by disabling the interrupts—and that disrupts the

computer's sense of time.

As far as I know, there is only one advantage to making sounds

using the direct method over the timer method: With the proper control

over the program delays, it is possible to make a rich polyphonic sound.

Be forewarned, though, that this requires some very clever and tedious

programming and, all in all, it may not be worth the trouble.

SPEAKER VOLUME AND SOUND QUALITY
There is no volume control of any kind in the computer's internal

speaker. However, the computer's speaker— like all speakers—varies in

how well it responds to different frequencies, and some frequencies may

sound louder than others. In the case of a crude speaker like that found

on most PCs, the loudness of the sound varies widely with the frequency.

You can use the following program to test this— it may help you choose

the best sound pitch for your purpose:

' plays each sound separately

' use all frequencies to 32000 Hz
" display frequency

' produce sound with duration of 5

' increment frequency by '/lo

You should also be aware that the speakers in the various PC mod-

els may not sound alike, partly because the materials of each system

housing resonate differently as speaker enclosures. For example, the tim-

bre of the PCjr is quite different from that of the Portable PC and from the

PC and XT models. Be prepared for these variations in sound.

SOUND AND THE PCjr

J—|[l The PCjr has the standard programmable timer chip and a built-in

JRI—Hf' llj
speai^er^ just [jke the rest of the family, but it also has other sources of

sounds and other outputs for the sound signals.

The best-known source of sound in the Junior is the Tl SN76496A

sound-generator chip, an addition that is great for special effects in

games and educational applications. But the Junior also has two lesser-

known sound sources: the cassette tape input and the audio line (line

B30) of the I/O channel connector. The selection among these four sound

10
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frequency count is a 16-bit number divided into the 1.193 megahertz bus

clock frequency. For the TI sound chip, the count is a 10-bit number di-

vided into Vii of the system clock frequency (3.579 MHz), which turns

out to be 111,860 Hz.

The only limitation of the 10-bit controlling number is that it re-

duces the number of frequencies we can choose from by a factor of 32.

For example, if we use a count of 100, the TI sound chip produces a fre-

quency of 1118.6 Hz, and the next divisor, 101, gives us 1107.5 Hz; we can't

get any of the frequencies in between. By contrast, the timer chip would

give us 32 frequencies in that same range. In practice, this limitation is

only a problem for the most musically demanding sounds, such as three-

part chords—they may sound off-key.

Attenuation

Each voice in the TI sound chip has an independent sound-level

control, which is calculated in terms of decibels of attenuation, or soften-

ing. There are four bits used to control the volume. These bits, labeled AO

through A3, can be set independently or added together to produce six-

teen volume levels, as shown in Figure 7-4. When a bit is set on, the sound

is attenuated (reduced) by a specific amount: either 2, 4, 8, or 16 decibels.

When all four bits are set on, the sound is turned completely off. When
all four bits are set off, the sound is at its fullest volume. Although the

sound levels can be calculated, it is easier to choose the sound we want

by experimentation.

The Noise Generator

There are two modes for the noise operation, besides the four fre-

quency selections. One, called periodic noise, produces a steady sound;

the other, called white noise, produces a hissing sound. These two modes

are controlled by a bit known as the FB bit. When FB is 0, the periodic

noise is generated; when FB is 1, the white noise is produced.

A A A A
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NfFO NFl Noise Frequency
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All programming of the TI sound chip is done by writing out to

port 192 (hex CO). Don't read this port: If you do, you will lock up the

machine. This byte contains the ID bit (identifying it as the command
byte), three register bits (RO through R2), and some data bits. The com-

mand byte may be used to load the frequency, attenuation, or noise con-

trol bits, along with the register bits. The data bit formats will vary de-

pending on their purpose. In the case of the pure voice frequency counts,

this first byte is followed by a second byte that contains an ID bit, along

with the six remaining frequency bits that couldn't fit into the first byte.

By deliberate design, the TI sound chip will accept the second byte over

and over again, without the first command byte preceding each one. This

allows for quick frequency changes without the program overhead that

would be necessary to load both bytes. Figures 7-7 through 7-10 show the

bit formats for the various byte settings.

NOTE: Before you attempt to program the TI chip, you should be

aware of an irritating difference in the design approaches of Texas

Instruments and Intel. They don't use the same bit order notation. As a

result, in the PCjr Technical Reference manual, you will find the sound-

chip bits referred to in the opposite order from the notation usually used

in the manual {and used by us in this book). For example, what would

otherwise be referred to as bit 7 of a byte, you find called bit MSB (for

most significant bit). Ifyou use the reference manual, follow the MSB/LSB

notation and ignore the bit numbering—and then grumble about the

inconsiderate switch ofnotation.

It should be pretty obvious from this overview that programming

the TI sound chip is annoyingly complex. Whenever I've tried it, I've been

reduced to counting bits on my fingers and toes. A further drawback is

that programs using the sound chip can only be fully utilized on the PCjr

and will not make music on the other members of the PC family— defi-

nitely something to keep in mind before you go through all the trouble of

learning to program the sound chip!

Sound Output in the PCjr

There are two sound destinations for the PCjr's sound signals: the

internal speaker, and the external paths. The external paths are three of

the sockets on the back of the PCjr: the A-audio output (which is usually

connected to a hi-fi system), the D-direct driving output (which can be

connected to an RGB monitor, where the sound signal is usually ignored),

and the T-television output (which can be connected to a TV set through

an RF modulator).



Bit

7 6 5 4 3 2 10 Use

1 . Identifies first byte (command byte)

RO Rl R2 . . . . Registernumber in TI chip (0, 2, or 4)

F6 F7 F8 F9 4 of 10 bits in frequency count

Figure 7-7. The bit setting for the first byte of

a frequency count

Bit

5 4 3 2 10 Use

. Identifies second byte (completing count)

X Unused, ignored; we can set to or 1

FO Fl F2 F3 F4 F5 6 of 10 bits in frequency count

Figure 7-8. The bit setting for the second

byte ofa frequency count

Bit

7 6 5 4 3 2 10 Use

1 ...... . Identifies first byte (command byte)

RO Rl R3 . . Register number in Tl chip (1, 3,5, or?)

AO Al A2 A3 4 attenuation bits

Figure 7-9. The coding of the attenuation

bits in the first byte ofa frequency count

Bit

7 6 5 4 3 2 10 Use

Identifies first byte (command byte)110.... Register number in Tl chip (6)

X . . . Unused, ignored; we can set to or 1

FB . . 1 for white noise, for periodic

NFO NFl 2 noise frequency control bits

Figure 7-10. The coding of the noise control

bits in the first byte ofa frequency count
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The PCjr's internal speaker, like all other PC internal speakers, can

only get its sound signals from the timer. The external paths get their

sound from any of the four sources that generate sound. It's important to

note that the sounds made by the TI sound chip cannot be directed to the

computer's internal speaker. This is because the internal speaker is driven

in a way that is completely incompatible with the rich capabilities of the

TI sound chip—a shame, but that's the way it is.

If you study the PCjr Technical Reference manual for material re-

lated to this, you may notice that bit 4 of port 97 can be used to control

the internal speaker. Setting this bit to 1 will disable the speaker, but

don't do it! For one thing, there are other ways to control the speaker, as

we have seen in the previous section. But more importantly, this bit has a

radically different use in the other PC models: When this bit is set, the use

of memory is disabled, which shuts down the computer quite thoroughly.
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One secret of successful programming for the PC family lies in

the effective use of the software that is built right into the

machine: the ROM-BIOS services. Conceptually, the ROM-
BIOS services are sandwiched between the hardware and the

high-level languages (including the operating system). They work di-

rectly with the computer's hardware and peripheral devices, performing

some of the system's most fundamental tasks, such as reading and writ-

ing individual bytes of data to the display screen or disk. Programming-

language services and DOS services are often built from these basic func-

tions and enhanced to make a particular process more efficient. We can

enhance our programs in the same way by plugging them directly into the

ROM-BIOS, thereby gaining access to an extremely powerful set of tools

and using our computers in the way that IBM intended them to be used.

That last point is worth emphasizing. IBM has gone to considerable

lengths to create a clean and well-defined method for directing the oper-

ation of the computer through the ROM-BIOS services. As each new PC

model is designed, IBM (and any other computer maker who is faithfully

extending the PC family) makes sure its ROM-BIOS services are thoroughly

compatible with those of the other members of the family. As long as we
control our computers through the ROM-BIOS, whether directly or in-

directly, we are safe from any compatibility problems. If we bypass the

ROM-BIOS and program directly to the hardware, we are not only asking

for trouble, but we are also severely limiting the range and viability of

our programs.

In the next five chapters, we will discuss the BIOS service routines.

Fortunately, the routines fall naturally into groups that are derived from

the hardware devices they support, so the video services, disk services,

and keyboard services can all be reviewed separately. But before we take

a closer look at the individual services, we need to find out how we can

incorporate them into our programs. This chapter sets the stage by ex-

plaining what goes into writing an interface routine, the bridge between

our programming language and the ROM-BIOS services. First, a word on

how the ROM-BIOS operates.

THE BIOS PHILOSOPHY
All ROM-BIOS services are invoked by interrupts. The interrupt in-

structions point to a particular location in the interrupt vector table in

low memory that contains an interrupt vector: the address of the service

routine stored in ROM. This design makes it possible for any program to

request a service without knowing the specific memory location of the

ROM-BIOS service routine. It also allows the services to be moved around.
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expanded, or adapted without affecting the programs that use the ser-

vices. Although IBM has tried to maintain the absolute memory location

of some parts of the ROM-BIOS, we would be foolish to use these ad-

dresses since there is always a chance they may be changed in the future.

The standard, preferred, and most reliable way to invoke a ROM-BIOS

service is to use its interrupt rather than its absolute location.

The ROM-BIOS services could be supervised by one master inter-

rupt, but instead they are divided into subject categories, each category

having its own controlling interrupt. The primary benefit of this design is

that it allows each interrupt handler to be replaced with a minimum
amount of disruption. For example, if a hardware manufacturer created

a radically different video display, printer, or anything else that required a

completely new BIOS program to operate it, the manufacturer could pro-

vide us with a new BIOS program along with the hardware. The new BIOS

program might be stored in RAM rather than ROM and it would replace

just that one part of IBM's ROM-BIOS that was used with the old hard-

ware. By making the ROM-BIOS modular, IBM has made it easier to im-

prove and extend the capabilities of our computers.

THE ROM-BIOS SERVICES INTERRUPTS

There are twelve ROM-BIOS interrupts in all, falling into five groups:

Six of the twelve interrupts serve specific peripheral devices; two report

on the computers equipment; one works with the time/date clock; one

performs the print-screen operation; and finally, two interrupts wrench

the computer into another state altogether, activating ROM-BASIC and the

system start-up routine. As we'll see, most of the interrupts are tied to a

group of subservices that actually do the work. For example, the video

services interrupt 16 (hex 10) has sixteen subservices that do everything

from setting the video mode to changing the size of the cursor. We call a

subservice by invoking its governing interrupt and specifying the subser-

vice number in register AH. •" This process is explained in the example

at the end of this chapter.

BIOS-SERVICE OPERATING CHARACTERISTICS

The ROM-BIOS services use some common calling conventions that

provide consistency in the use of registers, flags, the stack, and memory.

We'll outline the characteristics of these operating conventions, begin-

ning with the segment registers.
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Interrupt

Dec Hex Use

Peripheral Devices Services

16 10

19

20

21

22

23

13

14

15

16

17

Equipment Status Services

17 11

18 12

Time/Date Service

26 lA

Print-Screen Service

5 5

Special Services

24 18

25 19

Video-display services (see Chapter 9)

Diskette services (see Chapter 10)

Communications services (see Chapter 12)

Cassette-tape services (see Chapter 12)

Standard keyboard services (see Chapter 11)

Printer services (see Chapter 12)

Equipment-list service (see Chapter 12)

Memory-size service (see Chapter 1 2)

Time and date services (see Chapter 12)

Print-screen service (see Chapter 12)

Activate ROM-BASIC language (see Chapter 12)

Activate bootstrap start-up routine (see Chapter 12)

Figure 8-1. The twelve ROM-BIOS services

The code segment register (CS) is automatically reserved, loaded, and

restored as part of the interrupt process. Consequently, we don't have to

worry about our program's CS. The DS and ES registers are preserved by

the ROM-BIOS service routines, except in the few cases where they are

explicitly used. The stack segment register (SS) is left unchanged, and the

ROM-BIOS services depend upon us to provide a working stack. (Every-

thing depends upon a working stack!)

The stack requirements of the ROM-BIOS services are not spelled

out and they can vary considerably, particularly since some services in-

voke other services. (One of the flaws of the IBM personal computers,

and all computers based on the Intel 8088, is the very fuzzy specification

of stack usage and stack boundaries.) Generally, most programs ought to

be working with a much larger stack than the ROM-BIOS services need.
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In connection with the segment registers, the program counter (PC

or IP) is preserved by the same mechanism that preserves the code seg-

ment. In effect, the stack pointer (SP) is preserved because all the ROM-
BIOS services leave the stack clean, POPping off anything that was PUSHed

on during the service-routine execution.

As usual, the general-purpose registers, AX through DX, are consid-

ered fair game. The standard rule is not to expect any contents of these

registers to be maintained when you pass control to another routine, and

that applies to the ROM-BIOS services as well. If you closely inspect the

coding of the services in the IBM Technical Reference manual, you will

find that one or more registers are left undisturbed in one service or an-

other, but you would be foolish to try to take advantage of this. As a

general rule, when a simple result is returned from a subroutine, it is left

in the AX register; this applies to both the ROM-BIOS and to all program-

ming languages. We'll see how often this really happens when we cover

the ROM-BIOS services in detail.

The index registers (SI and DI) may be changed, just like the AX
through DX registers.

The various flags in the flag register are routinely changed as a by-

product of the instruction steps in the ROM-BIOS routines. You should

not expect any of them to be preserved. In a few instances, the carry flag

(CF) or the zero flag (ZF) are used to signal the overall success or failure

of a requested operation.

The details that we have been poring over are important but rather

tedious, and there is little reason for you to pay much attention to them.

If your programs follow the general interface rules given in the next sec-

tion, and if they follow the specific requirements of your programming

language (•^ covered in Chapters 19 and 20), you may not need to be con-

cerned with them at all.

NOTE: If you set out to use the ROM-BIOS services in your pro-

grams, you'll naturally be concerned about the possible conflicts be-

tween the services and the operating conventions that your language

follows. Put your mind at ease. You will find that you do not have to

take any extraordinary precautions to protect your programming lan-

guage from the ROM-BIOS, or vice versa.
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CREATING AN ASSEMBLY-LANGUAGE INTERFACE

In order to make direct use of the ROM-BIOS services from our pro-

grams, we need to create an assembly-language interface routine to link

our programming language to the ROM-BIOS. When we say "interface

routine," we are referring to conventional program-development subrou-

tines—subroutines that are assembled into object modules (.OBJ files) and

then linked into working programs (.EXE or .COM files in DOS). «- For

more on this subject, see Chapter 19.

Working with assembly language can seem a fearsome task if you

are not already comfortable with it. While there are plenty of good rea-

sons to be intimidated by assembly language— after all, it is the most

difficult and demanding kind of programming— it's really not that diffi-

cult to create an assembly-language interface routine. As I have often re-

lated, when I first needed to create an interface routine for the Norton

Utility programs that I was writing in Pascal, I had absolutely no prior

experience with either the IBM Assembler or the 8088 machine and as-

sembly language. Even though I started out cold, I had my first working

and tested interface done in 45 minutes flat. I mention this not to brag,

but to emphasize that it's just not as hard as many people think.

To create your own interfaces, you will need to have an assembler

that is compatible with the DOS standards for object files. The one I use is

the IBM Macro Assembler, but there are others available. Do not, how-

ever, plan to use the justly famous "cheap assembler" CHASM, by David

Whitman. CHASM and some other assemblers are set up to produce only

complete assembly-language programs rather than modules that can be

linked to other programs, such as the interface routines that we are inter-

ested in. All the examples we give here are for the IBM Macro Assembler.

NOTE: BASIC can work with machine-language subroutines put

directly into memory. In interpreted BASIC they are CALLed and in com-

piled BASIC they are CALLed absolute. Preparing the sort of assembler

subroutine that will work with BASIC can be done as easily with DEBUG 's

A-assemble command as it can with an ordinary assembler.

The Basic Form of an Interface Routine

The exact form an interface routine must take varies with its even-

tual use. An assembly-language interface is a handshaker between our

programming language and a ROM-BIOS service, so it has to be tailored

to meet the needs of both ends. It matters which programming language

is being used; it matters which ROM-BIOS service is being invoked; and it

matters whether any data is being passed in one direction or the other.
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However, the general outline of an assembly-language interface is basi-

cally the same, no matter what we are doing.

One of the best ways to understand how an assembly-language in-

terface is coded is to view it as five nested parts, which are outlined here:

Level 1: General assembler overhead

Level 2: Subroutine assembler overhead

Level 3: Entry code

Level 4: Get parameter data from caller

Level 5: Invoke ROM-BIOS service

Level 4: Pass back results to caller

Level 3: Exit code

Level 2: Finishing up subroutine assembler overhead

Level 1: Fmishing up general assembler overhead

In this outline, levels 1 and 2 are needed to tell the assembler what's

going on, but they don't produce any working instructions. Levels 3

through 5 produce the actual machine-language instructions.

We'll dig our way down through each of these levels to show you

the rules and explain what's going on. Don't forget that the specific re-

quirements of an interface routine change for different circumstances.

We'll point out the few design elements that are universal to all routines.

Level 1: General Assembler Overhead

Here is an outline of a typical level-1 section of an interface routine,

with the lines numbered for reference:

1-1 INTERFACE SEGMENT 'CODE'
1-2 ASSUME CS: INTERFACE

; levels 2 through 5 appear here

1-3 INTERFACE ENDS
1-4 END

In line 1-1, INTERFACE is an arbitrary name we have given this as-

sembly routine; SEGMENT is essential and is used to define an assembly

routine; CODE is a category that may vary by language (we'll see another

example shortly).

Line 1-2 is not always needed, and assembler experts will recognize

it as a piece of illegal fakery. Quite simply, the ASSUME instruction allows

us to do some if-then type programming without getting into trouble;

we'll make use of it in later chapters.

Line 1-3 ends the segment started in line 1-1, and line 1-4 ends the

whole assembly routine.
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The format conventions we have shown here are taken from
IBM/Microsoft Pascal (m- which we'll cover in Chapter 20). For an exam-

ple of something different, C needs these two lines in place of line 1-1:

PGRDUP GROUP PRDG

INTERFACE SEGMENT BYTE PUBLIC 'PRDG'

Level 2: Subroutine Assembler Overhead

Next, let's look at an outline of a typical level 2, the assembler over-

head for a subroutine (called a procedure in assembler parlance). Here is

some typical level-2 coding:

2-1 PUBLIC MEMSI2E

2-2 MEMSIZE PROC FAR

; levels 3 through 5 appear here

2-3 MEMSIZE ENDP

Line 2-1 instructs the assembler to make the name of our procedure,

MEMSIZE, public information, which means that the link program can

then connect it to its users.

Lines 2-2 and 2-3 bracket our procedure, which has arbitrarily been

named MEMSIZE. PROC and ENDP are mandatory and surround any pro-

cedure, with PROC defining the beginning of the procedure and ENDP
signaling the end of it. FAR tells the assembler that the procedure is lo-

cated outside of the current segment. We could have used either FAR or

NEAR in this position. If we had used NEAR, it would have indicated the

procedure was located inside the current segment instead of outside. FAR
calls are the most common, but some languages do (C) or can (Pascal)

use NEAR calls. Except for FAR or NEAR, what you see here is universal

for all languages and all purposes.

Level 3: Entry Code

Level 3 begins the actual working instructions. It takes care of the

housekeeping overhead that is needed for a subroutine to work cooper-

atively with the language that called it. Here is an example:

3-1
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own BP, which we preserve in line 3-1 by PUSHing it onto the stack and

restore in line 3-3 by POPping it off.

In line 3-2, we get our own stack frame reference by grabbing the

current stack pointer (SP) and moving it to the BP. From that point on, no

matter what gets pushed onto the stack, we'll have kept track of where

our caller's parameters are on the stack. If we needed to preserve any

other registers for our caller, they would be PUSHed to the stack immedi-

ately following line 3-2, and POPped, in reverse order, just before line 3-3.

Normally this would not be necessary.

Line 3-4 is used to pass control back to our caller; the assembler

translates our terse RET into a NEAR or FAR return, depending upon

whether our PROC was declared NEAR or FAR. The in line 3-4 is clean-

up work that we usually have to do to remove any caller's parameters

from the stack. If there were no parameters or if the conventions of the

programming language have the caller clean parameters off the stack, as

C does ('•' see pages 20-29), then this value will be zero. If there were pa-

rameters and the programming language doesn't clean up the stack, we
have to know how big to make this value so as to remove every param-

eter. The value must be increased by 2 for every 1- or 2-byte parameter

(byte, word, or offset address), and by 4 for each 4-byte parameter (seg-

mented address) that was passed to the procedure. As long as we can iden-

tify the nature of our parameters (they are sure to be one of these four

types), we'll be OK.

Level 4: Get Parameter Data from Caller

Level 4 deals with the parameters by passing them from the caller to

the ROM-BIOS, and with the results by passing them from the ROM-BIOS

to the caller. The caller's parameters are on the stack, either in the form

of data or addresses («' see Chapter 20 for help with this). The registers,

mostly AX through DX, are used for ROM-BIOS input and output. The

trick here—and it can be tricky— is to use the correct stack offsets to

find the parameters. We'll sneak up on this problem in stages.

First, we get to the parameters on the stack by addressing relative to

the BP frame reference that we snatched earlier. Here's a typical layout:

Location
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The return address at BP + 2 is four bytes for a FAR procedure, as

we've shown it, but only two bytes for a NEAR procedure. If yours is a

NEAR procedure, all the subsequent offsets should be 2 less than shown

here. Most languages PUSH their parameters onto the stack in the order

they are written. This means that the last parameter is the one closest to

the top of the stack, at BP + 6. However, Lattice/Microsoft C uses the re-

verse order, so that the closest parameter is the first one written in the

calling program.

Parameters normally take up two or four bytes on the stack, though

two bytes is the most common. Our example here has the locations

BP + 6, + 8, and + 10 two bytes apart. If any of these parameters were four

bytes in size, we would adjust the subsequent references accordingly.

If data was placed on the stack, then we can get it immediately by

addressing it like this: [BP + 6]. If an address was placed on the stack, two

steps are needed: First, get the address, and second, get the data. Here is

a level-4 example showing both data ([BP+6]) and address ([BP + 8]) re-

trieval:

4-1
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Line 5-1 selects the interrupt subservice. Typically, there are several

subservices numbered from on up. They are always selected with a

code in the AH register.

Line 5-2 generates the interrupt that requests the service; in this ex-

ample, it's interrupt 16 (hex 10), the video-services interrupt.

This five-step process outlines the basic principles of nearly all as-

pects of an assembly-language interface. In the following chapters, we'll

see how this design is used in specific examples.
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In
this chapter, we will discuss each of the video or screen-control

services provided by the ROM-BIOS. We have devoted most of the

chapter to detailed descriptions of each video service. Beginning on

page 185, we have included some programming hints and an assem-

bly-language routine that makes use of some of the video services. •- For

a more general discussion of video-display characteristics in the PC fam-

ily, see Chapter 4. For information on the low-memory locations used by

the ROM-BIOS for video status information, turn to page 54.

ACCESSING THE BIOS VIDEO SERVICES

The ROM-BIOS video services are all requested by generating inter-

rupt 16 (hex 10). There are sixteen principle services and one AT service

available under this interrupt {<« see Figure 9-1). Like all other ROM-BIOS

services, the video services are numbered from and are selected by plac-

ing the service number in the AH register. The services often need addi-

tional parameters from the caller, which are placed in BX, CX, or DX,

depending on the specifications of the service routine. We'll cover the

purpose and placement of the parameters under each service description.

Service

Dec Hex Description
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Service 0: Set Video Mode

Service is used to select from the fourteen video modes shown in

Figure 9-2. «• For details of the video modes, see page 71.

You may recall from our discussion in Chapter 4 that modes

through 6 apply to the standard Color/Graphics Adapter; mode 7 applies

to the Monochrome Adapter; modes 8 through 10 were introduced with

the PCjr; and modes 13 through 15 were added for the Enhanced Graph-

ics Adapter, which also supports all other modes except modes 8 and 9.

Something else you may want to keep in mind if you are working

with the black-and-white or color-suppressed modes (modes 0, 2, and 5)

is that they only suppress color on the composite output and not on the

RGB output of a display adapter.

Normally, the ROM-BIOS clears the screen memory buffer when the

mode is set, even if it is set to the same mode again and again. In fact,

setting the same mode repeatedly can be an easy and effective way to

clear the screen. However, it is not an ideal clear-screen operation for the

Compaq PC-compatibles, as they show a noticeable delay when this tech-

nique is used.

Mode
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I*" See Chapter 4, page 72 for more on video modes. See page 54,

memory location hex 449, for more on how a record of the mode is

stored in memory. See service 15 (hex F) to find out how to read the cur-

rent video mode.

Service 1: Set Cursor Size

Service 1 controls the form and size of the blinking cursor that ap-

pears in the text modes. The standard IBM cursor normally appears as

one or two blinking scan lines at the bottom of a character display posi-

tion. We can change the default cursor size by redefining the number of

lines that are displayed.

The Color/Graphics Adapter can display a cursor that has eight scan

lines, numbered from at the top to 7 at the bottom. The Monochrome
Adapter and the EGA can display a cursor that has fourteen scan lines,

also numbered from the top, from through 13. We set the cursor size by

specifying the starting and ending scan lines. (These are the same as the

start and stop parameters of BASIC'S LOCATE statement.) The start line

number is loaded into the CH register and the stop line number into the

CL register. The default cursor setting is CH = 6, CL = 7 for the Color/

Graphics Adapter, and CH = 12, CL = 13 for the Monochrome Adapter.

If the start line is less than the stop line, a normal one-part cursor

appears. If the start line is greater than the stop line, the cursor will wrap

around and produce a two-part cursor.

You will notice that the valid line numbers occupy only three of the

bits (bits through 2) placed in these registers. If bit 5 of CH is set on

with a value of 32 (hex 20), the cursor will disappear. When a graphics

mode is set, bit 5 is automatically set on to keep the cursor mechanism

from interfering with the graphics display. This is one of two techniques

that we can use to remove the cursor in the text modes. The other tech-

nique is to actually move it off the screen, say to row 26, column 1. Since

there is no true cursor in the graphics modes, any cursor that we see is

simulated with the solid-block character, CHR$(223), or with a change of

background attributes.

Service Number Parameters

AH = 1 CH = starting scan line of cursor

CL = ending scan line of cursor

Figure 9-3. The registers used to set the

cursor size using service 1
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Service Number Parameters

AH = 2 DH = row number

DL = column number

BH = page number (set to in graphics modes)

figure 9-4. The registers used to set the

cursor position using service 2

m- For more on cursors, see page 92. See service 3 for the reverse

operation: Read cursor position.

Service 2: Set Cursor Position

Service 2 sets the position of the cursor using row and column co-

ordinates. In text modes, there can be multiple display pages, each one

having an independendy recorded cursor position. Even though the

graphics modes do not have a visible cursor, they keep track of the logical

cursor position in the same way as the text modes. This logical cursor

position is used to supervise character I/O.

The cursor position is specified by placing a row number in register

DH, a column number in DL, and a page number in BH. The numbering

for the rows and columns begins with coordinates 0,0 in the top left cor-

ner. The graphics modes also use the character row and column coordi-

nates to identify the cursor location, rather than the pixel coordinates. The
page number is the conventional display page number used by BASIC:

pages through 7 in 40-column modes and pages through 3 in 80-

column modes. The page number must be set to in the graphics modes.

•^ See Figure 9-4 for a summary of register settings. See page 85 for

more on display pages. See page 86 for more on text display formats. See

service 3 for the reverse operation: Read cursor position.

Service 3: Read Cursor Position

Service 3 is the opposite of services 1 and 2. When we specify the

page number in BH, the ROM-BIOS reports the cursor size by returning

the starting scan line in CH and the ending scan Hne in CL. It reports the

cursor position by returning the row in DH and the column in DL. As with

service 2, the page must be specified as in the graphics modes.

•" See Figure 9-5 for a summary of register settings. See page 85 for

more on display pages. See page 86 for more on text display formats.
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Service Number Parameters

AH = 3 BH = page number (set to in graphics modes)

DH = row number

DL = column number

CH = starting scan line of cursor

CL = ending scan line of cursor

Figure 9-5. The registers used to read the

cursor position using service 3

Service Number Parameters

AH = 4 DH = character row number

DL = character column number

CH = pixel line number (0 through 199)

BX = pLxel column number

Figure 9-6. The registers used to read the

light-pen position using service 4

Service 4: Read Light-Pen Position

Service 4 reports the light-pen status, specifically whether or not it

has been triggered, and where it is on the screen if it has been triggered.

Register AH is set to indicate triggering: If AH is 1, the light pen has

been triggered; if AH is 0, it has not been triggered. The light pen's pixel

location on the screen is sensed by the hardware, and the ROM-BIOS re-

ports it to us translated into two forms: the character position (row in

DH, column in DL), and the pixel location (raster line in CH, column/dot

in BX). Since the pixel column location can be larger than 255, it is re-

ported in a full-word register. All other values are handled as bytes.

Service 5: Set Active Display Page

Service 5 sets the active display page for text modes through 3. We
specify the page number in register AL. In the 40-column modes, we may
choose from pages through 7, and in the 80-column modes, from pages

through 3. Page is used by default. Page is located at the beginning
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Service Number Parameters

AH = 5 AL = new display page number (0-3 for modes 2

and 3,0-7 for modes and 1

)

Figure 9-7. The registers used to set the

active display page using service 5

of display memory, with each subsequent page following either 2K bytes

(in 40-column modes) or 4K bytes (in 80-column modes) behind. The

higher page numbers are in higher memory locations.

I*' See page 85 for more on display pages.

Service 6: Scroll Window Up

Service 6 and companion service 7 are used to define a rectangular

text-window area on the screen and to scroll its contents up or down one

or more lines. To accomplish the scrolling effect, blank lines are inserted

at the bottom of the window area with service 6 (at the top with service

7) and the top lines of the window (the bottom lines with service 7) are

scrolled off and disappear.

The number of lines to be scrolled is specified in AL. If AL is 0, the

entire window is blanked (the same thing would happen if we scrolled

more lines than the window size allowed). The location or size of the

wmdow is specified in the CX and DX registers: CH is the top row, and

DH is the bottom row; CL is the left column, and DL is the right column.

The display attribute for the new blank lines inserted by the two services

is taken from BH. Figure 9-8 shows a summary of the register settings for

both services 6 and 7:

Service Number Parameters

AH = 6 AL = number of lines to scroll

CH = row number of upper left corner

CL = column number of upper left corner

DH = row number of lower left corner

DL = column number of upper left corner

BH = display attribute for blank lines

Figure 9-8. The registers used to set the win-

dow size for scrolling using services 6 and 7
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Window scrolling is normally a two-stage process: When a new line

is ready to be written in the window, service 6 (or service 7) is used to

scroll the current window contents. Then the new information is written

to the new line using the cursor-positioning and character-writing ser-

vices. The following example demonstrates this window action.

DEBUG

A

INT 10

[Return]

R flX

0603

R CX

050A

R DX

1020

D L 180

G = 100 102

invoke DEBUG from DOS utilities

ask to assemble instructions

create interrupt hex 10 instruction

finish assembling

ask to see and change contents of AX
specify service 6 (scroll up), using 3-line window

ask to see and change contents of CX
specify top left corner: row 5, column 10

ask to see and change contents of DX
specify bottom right corner: row 16, column 32

fill screen with nonsense

execute INT 10, then stop

•" See Chapter 8 for more on assembly-language routines. See the

IBM DOS reference manual for more on DEBUG.

Service 7: Scroll Window Down

Service 7 is, as we've already mentioned, the mirror image of service

6. The primary difference between the two services is the scrolling ac-

tion. In service 7, the new blank lines appear at the top of the window

and the old lines disappear at the bottom. The opposite scrolling action

takes place in service 6. i*" See the description under service 6 for the

parameter settings.

Service 8: Read Character and Attribute

Service 8 is used to read characters "off the screen," that is, directly

out of the display memory. This service is unusually spiffy because it

works in both text and graphics modes.

In graphics modes, the same character drawing tables that are used

to write characters are also used to recognize them by a pattern match-

ing operation. Even if we create our own character set in graphics mode,

this service will be able to recognize them. In text mode, of course, the

ASCII character codes are directly available in the display memory.
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Service Number Parameters

AH = 8 BH = active display page (not needed in graphics

modes)

AL = ASCII character read from cursor location

AH = attribute of text character

Figure 9-9. The registers used to read a text

character and attribute using service 8

Service 8 returns the ASCII character code of the character read from

the screen in AL. In graphics mode, if the character does not match any

standard ASCII code, it is reported as hex 00. In the text modes, the service

also returns the text color attributes in AH. The text-mode display page

must be specified in BH. The display-page setting is not needed in the

graphics modes.

(•" See page 79 for more on text characters and attribute bytes. See

page 86 for more on text- and graphics-mode characters. See Appendix C

for more on ASCII characters.

Service 9: Write Character and Attribute

Service 9 writes one or more copies of a single character and its color

attribute. The character is specified in AL, and the text-mode attribute or

graphics-mode color is specified in BL. The number of times the charac-

ter is to be written (one or more times) is placed in CX.

For the text modes, the display page must be specified in BH; it

need not be given for the graphics modes.

The character and its color attributes are written as many times as

requested, starting at the current cursor location. Although the cursor is

not moved, duplicate characters are written at subsequent screen loca-

tions. In text mode, the duplicated characters will successfully wrap

around from line to line, which increases the usefulness of this service. In

graphics mode, the characters will not wrap around.

Service 9 is quite useful both for writing mdividual characters and

for replicating a character. The repeat operation is most often used to

rapidly lay out blanks or other repeated characters, such as the horizon-

tal lines that are part of box drawings (•" see Appendbc C). When you

wish to make a single copy of the character, be sure to set the count in

CX to L If it's set to 0, the number of repetitions will run away.

Service 9 has an advantage over the similar service 14, in that we

can control the color attributes. However, its one disadvantage is that the

cursor is not automatically advanced.
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Service Number Parameters

AH = 9 AL = ASCII character to write to screen

BL = character attribute to write to screen

BH = active display page (not needed in graphics

modes)

CX = number of times to write character and
attribute

Figure 9-10. The registers used to ivrite a

text character and attribute using service 9

In graphics mode, the color specified in BL is the foreground

color—the color of the pixels that make up the character drawing. If bit

7 is 1 (with the value of 128 or hex 80), then the color bits in BL are com-

bined with the current pixel color bits with an exclusive-or (XOR) opera-

tion. This is a convenient way to ensure that the resulting color is differ-

ent from what was there before— a near-guarantee of legibility. If bit 7 of

BL is 0, then the color in BL simply replaces the existing pixel colors. The

same feature also applies to the character and pixel writing services, ser-

vices 10 and 12.

•* See page 79 for more on display attributes in text modes. See

page 81 for more on color attributes in graphics modes.

Service 10 (hex A): Write Character

Service 10 is the same as service 9 (write character and attribute to

cursor location) with one exception: Service 9 allows us to change the

existing screen color attribute in text mode while service 10 does not.

Service Number Parameters

AH = 10 AL = ASCII character to write to screen

BL = color attribute for graphics modes

BH = active display page

CX = number of times to write character

Figure 9-11. The registers used to write a

character using service 10
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However, in the graphics mode, the color still needs to be specified in BL,

making the description of this service as only a character-writing service

partly incorrect. The same graphics color rules apply as with services 9

and 12: The color can be used directly, or XORed with the existing color.

^ See service 9 for an explanation.)

<m- See page 79 for more on display attributes in text modes. See

page 8 1 for more on color attributes in graphics modes.

Service 11 (hex B): Set Color Palette

Service 11 is used to select one of the two medium-resolution graph-

ics palettes. To use this service, we load BH with the palette color ID and

BL with a color value. (•" See page 82 for more on color palettes.)

One variation of this service applies to the text modes; all others

apply only to the graphics modes. In the text modes, if BH is 0, then BL

specifies the color of the border around the text area— a color selected

from the full 16-color palette. In any graphics mode, if BH is 0, then BL

specifies the default color of the background and of the border area as

well. The border area is merged with any part of the working screen area

that is set to the background color. The BL value can be selected from the

full 16-color palette.

On the other hand, if BH is 1, then BL selects the palette being used.

For the Color/Graphics Adapter, this applies only to mode 4 (medium-

resolution, four-color graphics). For more advanced display adapters, in-

cluding the PCjr's, it can apply to other modes as well. In this discussion,

we will cover just the standard four-color palettes that are provided by

Service Number Parameters

AH = 1

1

BH = palette color ID (0 or 1 m 320 x 200 graphics)

BL = color or palette value to be used with color ID

Figure 9-12. The registers used to set the

color palette using service 11
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mode 4: palettes and 1. The palette number is selected with BL. Palette

has these four colors:

0: Current background color

1: Green (2)

2: Red (4)

3: Brown (6)

Palette 1 has these four colors:

0: Current background color

1: Cyan (3)

2: Magenta (5)

3: White (7)

Service 12 (hex C): Write Pixel Dot

Service 12 writes an individual pixel. Since the cursor position used

in services 9, 10, and 14 applies only to characters, this service requires a

raster line and column/pixel specification. As usual, the locations are

numbered from 0,0 starting at the top left corner of the screen.

The row number, which requires only one byte, is specified in DL.

The column number, requiring more than a byte, is specified in CX. The

color is given in AL, with the option of direct color or XORed color (i^ see

service 9 for an explanation).

« See page 88 for more on pixels in graphics modes.

Service 13 (hex D): Read Pixel Dot

Service 13 is the reverse of service 12: It reads the pixel contents

rather than writing them. A pixel has only a single color attribute, which

is exactly the information that is returned through service 13. (The read-

character service 8 returns both a color and an ASCII character code.)

The row is specified in DL, not DX (« see the note in service 12), and the

column in CX. The pixel color code is returned in AL. All high-order bits

are set to 0, as you would expect.

Service Number Parameters

AH =12 AL = pixel color code (0-15)

DL = row number of pbcel

CX = column number of pbcel

Figure 9-13. The registers used to tvrite a

pixel using service 12
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Service Number Parameters

AH =13 AL = pixel color code (0-15)

DL = row number of pixel

CX = column number of pixel

Figure 9-14. The registers used to read a

pixel using service 13

Service 14 (hex E): Write Character as TTY
Service 14 is the workhorse service of conventional character out-

put. It writes individual characters to the screen in what is known as tele-

type (TTY) mode. This makes the screen act as the simplest and crudest

form of printer—exactly what is needed for routine text output. As such,

it has no regard for such niceties as color, blinking characters, or control

over the cursor location.

When this service is used, the character is written at the current

cursor location and the cursor is advanced one position, wrapping to

new hnes or scrolling the screen as needed. The character to be written is

specified in AL.

In text mode, the current screen attributes are maintained from one

character to the next. In graphics mode, the foreground color must be

specified each time in the BL register.

There are four characters that service 14 reacts to according to their

ASCII meamng: CHR$(7)— beep, CHR$(8)— backspace, CHR$(10)— line

feed, and CHR$(13)—carriage return. All other characters are simply

displayed normally.

The primary advantage of this service over service 9 is that the cur-

sor is automatically moved; the advantage of service 9 is that we can con-

trol the color attribute. Now, if we could only combine the two. . .

.

Service Number Parameters

AH = 14 AL = ASCII character to write

BL = foreground color of character (in graphics

modes only)

BH = active display page (not needed in graphics

modes)

Figure 9-15. The registers used to tvrtte a

character as TTY using service 14
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Service Number Parameters

AH = 15 AL = current display mode

AH = number of characters per line

BH = active display page (0 in graphics modes)

Figure 9-16. The registers used to read the

video mode using service 15

Service 15 (hex F): Get Current Video Mode

Service 15 returns the current video mode and two other useful

pieces of information: the screen width in characters (80, 40, or 20) and

the display page number.

The video mode, as explained under service 0, is returned in AL. The

screen width is returned in AH in number of characters per line (low-

resolution graphics mode will be correctly reported as 20 characters wide).

The display page will be returned in BH. The page number must be set to

in graphics mode. Figure 9-16 summarizes the register settings.

m- See page 72 for more on video modes. See page 54, memory loca-

tion hex 449, for more on how a record of the mode is kept.

Service 19 (hex 13): Write Character String

Service 19, available only with the AT, allows us to write a string of

characters to the display screen. Through the four subservices that make

up this service, we can specify the character attributes individually or as

a group. We can also move the cursor to the end of the string or leave it in

place, depending on which subservice we choose.

The subservice number is placed in AL; the pointer to the string in

ES:BP; the length of the string in CX; the starting position where the

string is to be written in DX; and the display page number in BH.

Subservices and 1 write a string of characters to the screen using

the attribute specified in register BL. With subservice 0, the cursor is not

moved from the location specified in register DX; with subservice 1, the

cursor is moved to the location following the last character in the string.

Subservices 2 and 3 write a string of characters and attributes to

the screen, writing first the character and then the attribute. With subser-

vice 2, the cursor is not moved from the location specified in register DX;

with subservice 3, the cursor is moved to the location following the last

character in the string.
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COMMENTS AND EXAMPLE
In cruising through the ROM-BIOS video services, we've shown how

they work individually. With that information in mind, the next question

usually is: Given a choice between using the ROM-BIOS services directly

or using higher-level services such as the DOS services or the services built

into your programmmg language, which is best? The general advice that

we always give is to use the highest-level services that will accomplish what

you want to do. In this case, there is no specific reason for you to avoid

using the ROM-BIOS video services—you can't do any great harm by using

them. But in the next chapter on the diskette services, we'll argue the case

the other way, advising you to avoid using the ROM-BIOS diskette services

since there is more risk associated with them.

The video capabilities of the PC models are remarkable, and the

ROM-BIOS services give us the full use of them. The DOS services, as you'll

see in Chapters 14 through 18, are rather weak and provide only the sim-

plest sort of character services. Likewise, many programming languages

(for example, Pascal and C) only provide a dressed-up version of the DOS
services and nothing more. So, if you need to use the PC's fancy screen

capabilities and if you aren't using a language such as BASIC that provides

the services you need, you should be using the ROM-BIOS services. Getting

control of the display screen is one of the very best reasons for using the

ROM-BIOS services.

Using the ROM-BIOS services directly usually calls for an assembly-

language interface, so we'll give you an example of how one can be set up.

For our example, we'll set up a module in a format that would be called by

Pascal. We'll make the module switch to mode 1 (40-column text in color)

and set the background color to blue.

Here is our assembly module («' see Chapter 8, page 164, for general

notes on the format):

MODULE

BLUE40

set

SEGMENT
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; set background color
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We're now going to cover the diskette services provided by

the ROM-BIOS. •• To understand the logical structure of

the contents of a diskette, see Chapter 5, particularly

pages 106 through 124. For information about the higher-

level diskette services provided by DOS, see Chapters 15 through 18.

Generally speaking, diskette operations are best left to the disk op-

erating system. If you decide to use any of the ROM-BIOS diskette ser-

vices, I recommend that you first read the section entitled "Comments
and Examples" on page 199 of this chapter.

THE STANDARD ROM-BIOS DISKETTE SERVICES

Since a diskette drive can do only a few simple things, there are only

six standard BIOS diskette services common to all PC models. EH The
AT, having introduced a more complicated disk drive, has added several

new services to the ROM-BIOS. We will discuss these additions separately,

beginning on page 194.

All ROM-BIOS diskette services are invoked with interrupt 19 (hex 13)

and selected by loading the service number into the AH register. The six

standard services, shown in Figure 10-1, are numbered from through 5,

as is customary.

The diskette services operate under the supervision of the disk base

table, which is a set of over a dozen diskette control parameters stored in

ROM that specify such things as the sector size, the step-rate time, and the

head-settle time. For most programmers, the disk base table is an invisi-

ble part of the diskette services. However, occasionally some of its pa-

rameters may need to be changed for special purposes. For this reason

we included a brief description of it toward the end of this chapter

IfT- see page 196).

Service Description
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NOTE: While the ROM-BIOS diskette services for the PCjr are iden-

tical to those for the other IBM personal computer models, the perfor-

mance of the PCjr's diskette drives is radically different. This is primarily

because the Junior's diskette controller does not use direct memory ad-

dressing (DMA), which alloivs data to be transferred directly betiveen

diskette and memory. Instead, the ROM-BIOS softivare does the transfer

work, which ties up the computing poiver of the PCjr during diskette

operations, making the timing and performance of the diskette services

distinctly different from that of the other models. Among other things,

this means that some copy-protection schemes designed on the other

models will not operate successfully on the junior.

Service 0: Reset Diskette System

Service is used to reset the diskette controller and drive. This ser-

vice does not affect any diskette currently loaded into the computer's

drives. Instead, a reset through service forces the ROM-BIOS diskette sup-

port routines to start from scratch for the next diskette operation by re-

calibrating the diskette drive's read/write head— an operation that posi-

tions the head on a certain track. In our programs this reset service is

normally used after an error in any other drive operation.

Service 1: Get Diskette Status

Service 1 reports the diskette status in the eight bits of register AL.

The status is preserved after each diskette operation including the read,

write, verify, and format operations described below. By preserving the

diskette status, it is possible for an error-handling or error-reporting rou-

tine to be completely independent of the routines that operate the dis-

kette. This can be very useful. Under the right circumstances, we can rely

on DOS or our programming language to drive the diskette (a wise

choice; •'see "Comments and Examples" on page 199), and at the same

time have our program find out and report the intimate details of what

went wrong. (•'See Figure 10-2 for details of the status byte.

Service 2: Read Diskette Sectors

Service 2 reads one or more diskette sectors into memory. If we

want to read more than one sector, every sector must be on the same

track and on the same side. This is largely because the ROM-BIOS doesn't

know how many sectors there might be on a track, so it can't know when

to switch from one side or track to another. Usually, this service is used
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Bit

7 6 5 4 3 2
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The data area should be big enough to accommodate as much as is

read; keep in mind that while normal DOS sectors are 512 bytes, sectors

can be as large as 1,024 bytes (•- see the format service that follows).

When this service reads more than one sector, it lays the sectors out in

memory one right after another.

CF contains the error status of the operation. The result of the oper-

ation is actually reported through a combination of the carry flag (CF)

and the AH register. If CF is 0, it means there was no error and AH will

also be 0. If CF is 1, it means there was an error and AH will contain the

status bits detailed under service 1, the status service.

When using service 2, or any other active diskette service, remem-

ber that the diskette drive motor takes some time to reach a working

speed and that none of these services waits for it to happen. Although my
own experience with the ROM-BIOS diskette services suggests that this is

rarely a problem, IBM recommends that any program using these services

try three times before assuming an error is real and that it use the reset

service between tries. The logic of the suggested operation is as follows,

partly expressed in BASIC:

10 ERROR. COUNT =

20 WHILE ERROR. COUNT < 3

30 ' do read/wnte/verify/format operation

40 ' error checking here: if no error goto 90

50 ERROR. COUNT = ERROR. COUNT + 1

60 do reset operation

70 WEND

80 'act on error

90 ' carry on after success

•^ Be sure to see the section on page 197 for the effect of the disk

base table on the reset operation.

Service 3: Write Diskette Sectors

Service 3 writes one or more sectors to a diskette—the reverse of

service 2. All the registers, details, and comments given for service 2 ap-

ply to service 3. («" Also see Figure 10-3.)The diskette sectors must be

formatted before they can be written to.

Service 4: Verify Diskette Sectors

Service 4 "verifies" the contents of one or more diskette sectors. This

operation is not what many people think it is: No comparison is made

between the data on the diskette and the data in memory. The verifica-

tion performed by this service simply checks that the sectors can be

found and read and that the cyclical redundancy check (CRC) is correct.
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Parameters Status Results

DL = drive number If CF = 0, then no error and AH =

DH = number of sides or heads If CF = 1, then error and AH contains

per disk service 1 status bits

CH = track number

CL = sector number

AL = number of sectors to be

read

ES:BX = address of buffer

Figure 10-3. The registers used for control

information by the read, write, verify, and

format services

The CRC acts as a sophisticated parity check for the data in each sector

and will detect any errors, such as lost or scrambled bits, very reliably.

We most often use the verify service to check the results of a write

operation after using service 3, but we can verify any part of a diskette at

any time. However, many people regard verification as an unnecessary

operation because the diskette drives are so reliable and because ordinary

error reporting works so well. DOS doesn't even verify a write operation

unless we ask it to with the VERIFY ON command.

The verify service operates just like the read and write services and

uses the same registers. The only difference between them is that the ver-

ify operation does not use any memory area and therefore does not use

the register pair ES:BX.

Service 5: Format Diskette Track

Service 5 formats one track on one side of a diskette. The format

service operates very much like the read and write services except that

the sector number held in register CL is not used. All other parameters

shown in Figure 10-3 are passed and returned in the registers.

Since formatting is done one full track at a time, we cannot format

individual sectors. However, we can specify individual characteristics for

each sector on a track.

Every sector on a track has four descriptive bytes associated with it

that are located in the data area pointed to by the register pair ES:BX.

They become the address marks that are later used to identify individual

sectors during the read, write, and verify operations. These four address
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N Sector Size (bytes) Sector Size (K)
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Using Service 5 for Copy-Protection

Tracks can be formatted in all sorts of screwy ways, but most oper-

ating systems can only read certain formats. Consequently, most copy-

protection schemes are based on an unconventional format that prevents

an operating system from successfully reading and copying data. We can

choose from several different copy-protection methods:

We can rearrange the order of the sectors, which alters the access

time in a way that the copy-protection scheme can detect.

We can squeeze more sectors onto a track (ten is about the out-

side limit for 512-byte sectors).

We can simply leave out a sector number.

We can add a sector with an oddball number (for example, we
can make R = 22).

We can specify one or more sectors to be an unconventional size.

We can record the wrong C and H values.

Any of these techniques can be used either for copy protection or for

changing the operating characteristics of the diskette. Depending on

what options are used, a conventionally formatted diskette may have its

unusual characteristics completely hidden from DOS in such a way that a

copy-protection mechanism is transparent to ordinary detection.

THE AT FIXED-DISK SERVICES

The AT uses disk drives that are different enough from the drives

used in the other models that several new BIOS diskette services were

added. They are designed to support the high-capacity diskettes and the

variety of fixed disks that the AT can use. We'll outline the new services

here, but we won't go into any great detail for the same reason we have

passed lightly over many other model-dependent features: Our main con-

cern in this book is to explore the general principles and programming

practices that apply to the entire PC family, not to the peculiarities of one

model or another.

Service 8: Get Current Drive Parameters

Service 8 returns disk-drive parameters. DL reports the number of

disk drives (from to 2); DH reports the maximum head-side number;

CH returns the maximum cylinder/track number; and CL returns the

highest sector number.
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Service 9: Initialize Fixed-Disk Parameter Tables

Service 9 is used to set the disk base tables for two hard-disk drives.

The interrupt vectors for interrupts 65 (hex 41) and 70 (hex 46) are used

to provide the table addresses. This service would be used only to install

a "foreign" disk drive.

Service 10 and 11 (hex A and B): Read and Write Long

Service 10 reads, and service 11 writes, "long" sectors on 20-megabyte

fixed disks. A long sector includes an ECC, a 4-byte error code that pro-

vides high-level error checking and error correction of the sector's data.

Service 12 (hex C): Seek to CyUnder

Service 12 performs a seek operation that positions the disk read/

write heads over a particular cylinder on the hard disk. Register DL pro-

vides the drive ID, DH the head number, and CH the cylinder number.

Service 13 (hex D): Alternate Disk Reset

Service 13 performs an alternate drive-reset operation for the fbced-

disk drives. The drive is specified in register DL. This service operates the

same way as diskette service 0.

Service 16 (hex 10): Test for Drive Ready

Service 16 tests to see if the fixed-disk drive is ready. The drive is

specified in register DL and the status is returned in register AH.

Service 17 (hex 11): Recalibrate Drive

Service 17 recalibrates individual fixed-disk drives. The drive is spec-

ified in register DL and the status is returned in register AH.

Service 20 (hex 14): Controller Diagnostics

Service 20 invokes an internal diagnostic routine in the AT's disk

controller. The status of the controller is returned in register AH.

Service 21 (hex 15): Get Disk Type

Service 21 is used to inquire about the type of disk drive installed.

Given the drive ID in register DL, it returns in register AH one of four

disk-type indicators: If AH is 0, it means there is no drive present; if AH is

1, it indicates the presence of a diskette drive that cannot sense when the

disk has been changed (typical of most disk drives); if AH is 2, it indicates
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the presence of a diskette drive that can sense a change of disks (drives

hke the AT's high-capacity diskette drives); finally, if AH is 3, it means that

a fixed-disk drive is installed. When the drive type is 3, the register pair

CX:DX acts as a 4-byte integer that gives the total number of disk sectors

on the drive.

Service 22 (hex 16): Change of Disk Status

Service 22 is used to inquire about a change of disks for drives that

can sense when a disk has been changed, like the AT's high-capacity

drives. Register AH is set to to indicate no disk change and to 6 to indi-

cate a change of disk. Register DL returns the number of the drive that

had a disk change.

The change-of-disk sensing in services 21 and 22 is very useful to

programs that need to know if a disk has been changed. For certain crit-

ical disk operations, such as reading a file allocation table (FAT), it helps

to know if the disk has been changed or not. If it has been changed, then

any disk data held in memory may have to be discarded and reread.

When a disk drive can't report a diskette change, the program usually

has to assume that it might have been changed and react accordingly, at a

cost to program efficiency. If we are designing programs that control a

disk drive, it is clearly useful and more efficient for them to be able to

check this sort of information.

Service 23 (hex 17): Set Disk Type

Service 23 is used to set the diskette and drive combination for the

AT. If AL is 0, there is no drive; if AL is 1, it indicates a regular diskette in a

regular drive; if AL is 3, it indicates a high-capacity diskette in a high-

capacity drive. This service is used with the format service (service 5) to

set the disk type to be formatted.

THE DISK BASE TABLE
The overall operation of the diskette drive is controlled by a set of

parameters called the disk base table. Although a default version of the

disk base table is stored in ROM at the now-standard address of

F000:EFC7, we can create a new table. The new table can be put into

effect by placing it in ordinary memory and then changing the disk base

table interrupt vector to point to it. The vector for interrupt 30 (hex IE) is

reserved to point to the new table. Every release of DOS since the very

first 1.00 version has created its own disk base table rather than using the

one in the ROM.
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Offset Use

Specify byte 1: step-rate time, head-unload time

1 Specify byte 2: head-load time, DMA mode

2 Wait time until motor turned off

3 Bytes per sector: 0=128; 1 =256; 2 = 512; 3 = 1,024

4 Last sector number

5 Gap length between sectors for read/write operations

6 Data length when sector length not specified

7 Gap length between sectors for formatting operations

8 Data value stored in formatted sectors

9 Head-settle time

A Motor start-up time

Figure 10-5. The use of the eleven bytes in

the disk base table

The disk base table is composed of the eleven bytes shown in Figure

10-5. We'll go over them byte by byte and compare the values used by

DOS 2.10 with the default tables in the original version of the PC. Most of

the information stored in the disk base table is of little use to us unless we

plan to write a new disk base table to override the one used by DOS.

Bytes and 1 are referred to as the specify bytes. They are part of

the command strings sent to the floppy-disk controller (FDC), which is

also known as the NEC (Nippon Electric Company) controller. The first

four bits of the first byte are the step-rate time, or SRT, which is the time

the ROM-BIOS allows for the diskette drive to move from track to track.

The default value is 8 milliseconds for each track. DOS 2.10 reduces this to

6 milliseconds, which speeds up the drive performance. There is also a

mode setting for DMA in the first byte because the PCjr does not have

DMA for disk data transfer. As a result, the DMA mode bit is not set in the

PCjr's default disk base table. Oddly enough, in the disk base set up by

DOS 2.10, this bit is set to indicate that DMA is present. (It's a mystery to

me why this doesn't cause any problems on the Junior.)

Byte 2, at offset 2, specifies how long the diskette motor is to be left

running after each operation. The motor is left on in case the diskette is

needed again. The value is in units of clock ticks (roughly 18 ticks per

second). All versions of the table have this set to 37 (hex 25)—meaning

that the motor stays on for roughly 2 seconds.
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Byte 3, at offset 3, gives the sector length code—the same N code

that is used in the format operation («- see page 193 under service 5).

This is normally set to 2, representing the customary sector length of 512

bytes. In any read, write, or verify operation, the length code in the disk

base must be set to the proper value, especially when working with sec-

tors of unconventional length.

Byte 4, at offset 4, gives the record number of the last sector on the

track. This value is 8 in the ROM's default table and 9 in DOS 2.10's table.

Byte 5, at offset 5, specifies the gap size between sectors, which is

used when reading or writing data. In effect, it tells the ROM-BIOS how
long to wait before looking for the next sector's address marking, so it

can avoid looking at nonsense on the diskette. In each standard disk base,

the gap size is set to 42 (hex 2A).

Byte 6, at offset 6, is called the data transfer length (DTL) and is set

to 255 (hex FF). This byte sets the maximum data length when the sector

length is not specified.

Byte 7, at offset 7, sets the size of the gap between sectors when a

track is formatted. Naturally, it is bigger than the search gap at offset 5.

The normal value for this is 80 (hex 50).

Byte 8, at offset 8, provides the data value that will be stored in each

byte of the sectors when a track is formatted. The standard value is hex

F6, the division symbol. We can change it to anything we want, if we can

think of a good reason to do so.

Byte 9, at offset 9, sets the head-settle time, which is how long the

system waits for vibration to end after seeking to a new track. The de-

fault time for the head to settle is 25 (hex 19) milliseconds, but DOS 2.10

reduces it to 15 (hex F) milliseconds.

Byte 10, the final byte of the disk base at offset 10, sets the amount

of time allowed for the diskette-drive motor to get up to speed and is

measured in Vs seconds. The default value is 4, or Vi second; DOS 2.10

changes this to 2, or Va second.

It's fun to tinker with the disk base values; there are enough of them

to give us an opportunity for all sorts of excitement and mischief. The
following program illustrates how to change the data value stored in a

sector when it is formatted. We'll change it from hex F6 to hex AA just to

show how it's done:

10 DEF SEG

20 OFFSET = PEEK ( 1 20 + )+25e«PEEK( 120 + 1)
" disk base vector's offset

30 SEGMENT = PEEK ( 1 20+2 ) +256«PEEK ( 120 + 3) ' disk base vector's segment

40 DEF SEG = SEGMENT
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BO "

if the segment is in high memory then it's in ROM and can't be changed

eO IF SEGMENT >= &HFOOO THEN PRINT "ROM disk base in use."

70 FORMAT. DATA = PEEK ( OFFSET + 8) ' get old data

80 PRINT "Format sets data to " HEX$ ( FORMAT. DATA)

90 POKE OFFSET+8, iHAA ' change data value to hex AA

COMMENTS AND EXAMPLES
In the last chapter, where we covered the video ROM-BIOS services

for the display screen, I was able to recommend that you make direct use

of the ROM-BIOS services whenever you wished. But m the case of the

diskette ROM-BIOS services, things are different.

For the diskette operations that a program would normally want per-

formed, the manipulation and supervision of diskettes should be left to

DOS and performed either through the conventional file services of a pro-

gramming language or through the DOS services {^ see Chapters 14

through 18). There are many reasons for this. The main reason is that it is

far easier to let DOS do the work. The DOS facilities take care of almost

every basic diskette function from interpreting the diskette format to re-

directing data with the ASSIGN (drive) command. Most of the time it just

isn't necessary to go any deeper into the system software. However, there

are times when we want to work with the diskette contents in an abso-

lute and precise way, usually for copy protection. This is when we should

use the ROM-BIOS services.

For our example, we'll use Pascal to write a couple of subroutines

that will read and write absolute diskette sectors. We start by defining

how we want the interface to look from the Pascal side, which the follow-

ing program will illustrate. If you are not familiar with Pascal and don't

want to decipher this routine, you can pass over it and still get full benefit

from studying the assembly-language interface example that follows it.

PROGRAM DISKETTE_INTERFACE;

{this defines our segment read/write area: }

TYPE

SEGMENT_TYPE = ARRAY [0..511] OF BYTE;

VAR

SEGMENT.DATA : SEGMENT_TYPE

;

{this defines the assembly read/write routines: }

FUNCTION SEGREAD (

VAR S

D

C

H

R

SEGMENT_TYPE; {data area}

I NTEGER ;
{drive number}

INTEGER; {track number}

INTEGER; {head number}

INTEGER ) {segment number}

BYTE; {status code returned as a byte}
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EXTERNAL;
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SEOREAD

MOV

MOV

MOV

MOV

INT

MOV

POP

RET

ENDP

DH,tBP+08]

CL,[BP+OG]

ftL.I

AH, 2

19

AL.AH

BP

10

;
get side number

;
get sector number

; ask for 1 sector

; ask for read service

; request diskette service

; put status where expected

; 10 is size of parameters on stack

this IS the write service (only service number di ffers )

SEGl<iRITE PROC FAR

PUSH BP

MOV BP.SP

PUSH DS

POP ES

MOV BX,[BP+14]

MOV DL,[BP+12]

MOV CH,[BP+10]

MOV DH,[BP+081

MOV CL,tBP+061

MOV AL,1

MOV AH,

3

INT 19

MOV AL.AH

POP BP

RET 10

SEGWRITE ENDP

INTERFACE ENDS

END

move DS . .

.

... to ES

get data offset

get drive number

get track number

get side number

get sector number

ask for 1 sector

ask for write service

request diskette service

put status where expected

; 10 is size of parameters on stack
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Although the ROM-BIOS services for the keyboard are not as

numerous or as comphcated as those for the display screen

(Chapter 9) and for the diskette drive (Chapter 10), the ROM-
BIOS keyboard services are important enough to warrant our

covering them in their own chapter. All other ROM-BIOS services are

gathered together in Chapter 12.

ACCESSING THE KEYBOARD SERVICES

The keyboard services are invoked with interrupt 22 (hex 16). There

are three services, numbered through 2. As with all other ROM-BIOS

services, the keyboard services are selected in register AH.

Service 0: Read Next Keyboard Character

Service reports the next keyboard input character. If a character is

ready in the ROM-BIOS keyboard buffer, it is reported immediately. If not,

the service waits until one is ready. As described on page 134, each key-

board character is reported as a pair of bytes, which we call the main

and auxiliary bytes. The main byte, returned in AL, is either for special

characters (such as the function keys) or else an ASCII code for ordinary

ASCII characters. The auxiliary byte, returned in AH, is either the charac-

ter ID for special characters or the standard PC-keyboard scan code for

ASCII characters.

If no character is waiting in the keyboard buffer when service is

called, the service waits until there is one, which essentially freezes the

program. The service we'll discuss next allows a program to test for key-

board input without the risk of suspending program execution.

Contrary to what some versions of the IBM Technical Reference

manual suggest, services and 1 apply to both ordinary ASCII characters

and special characters, such as function keys.

Service Description

Read next keyboard character

1 Report whether character ready

2 Get shift status

Figure 11-1. The three ROM-BIOS
keyboard services
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Service 1: Report Whether Character Ready

Service 1 reports whether a keyboard input character is ready. This

is a sneak-preview or look-ahead operation: Even though the character is

reported, it remains in the keyboard input buffer of the ROM-BIOS until it

is removed by service 0. The zero flag (ZF) is used as the signal: 1 indi-

cates no input is ready; indicates a character is ready Take care to not

be confused by the apparent reversal of the flag numbers— 1 means no

and means yes, in this instance. When there is a character (ZF = 0), it is

reported in AL and AH, just as it is with service 0.

This service is particularly useful for two commonly performed pro-

gram operations. One is test-and-go, where a program checks for keyboard

action but needs to continue running if there is none. Usually, this is done

to allow an ongoing process to be interrupted by a keystroke. The other

common operation is clearing the keyboard buffer. Generally, it's nice for

programs to allow users to type ahead, entering commands in advance,

however, in some operations (for example, at safety-check points, such as

"OK to end?") this can be unwise. In these circumstances, our programs

need to be able to flush the keyboard buffer, clearing it of any input. The

keyboard buffer is flushed by using services and 1, as this program out-

line demonstrates:

1
' call service 1, to test whether the character is ready

20 WHILE ZF =

30 ' call service 0, to remove character

40 ' call service 1, to test for another character

50 WEND

Contrary to what some technical reference manuals suggest, ser-

vices and 1 apply to both ordinary ASCII characters and special charac-

ters, such as function keys.

Service 2: Get Shift Status

Service 2 reports the shift status in register AL. The shift status is

taken bit by bit from the first keyboard status byte, which is kept at mem-

ory location hex 417. •- Figure 11-2 on the next page describes the set-

tings of each bit. («• See pages 137 and 142 for information about the

other keyboard status bytes, at hex 418 and hex 488.)

Generally, service 2 and the status bit information are not particu-

larly useful. If you are planning to do some fancy keyboard programming,

however, they can come in handy. You'll frequently see them used in pro-

grams that do unconventional things, such as differentiating between the

left and right Shift keys.
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Bit

7 6 5 4 3 2 10 Meaning

X



Chapter 1 1 : ROM-BIOS Keyboard Services 207

Among the new things this buffer-flusher routine will illustrate is

the use of labels and branching. When we discussed the generalities of

assembly-language interface routines in Chapter 8, we mentioned that an

ASSUME CS statement is necessary in some circumstances, and you will

see one in action here.

Whenever we use ASSUME CS, we are actually misinforming the as-

sembler about the contents of the CS register, since CS will not necessarily

be pointing to where we say it is. This little act of deception is completely

harmless, as long as all the branching instructions (such as JZ in our ex-

ample) are short jumps. This is because a short jump takes place relative

to the current program location, which is indicated by the combination

CS:IP. To perform a short jump, the assembler generates an address rela-

tive to IP, not to CS, and therefore doesn't really need to know anything

about CS. In effect, what we are doing is telling the assembler to ASSUME
something about the CS register only because the assembler is too thick-

headed to realize that it doesn't need to know it. Here is our example:

; KBCLEAR, a routine to clear the keyboard buffer

INTERFACE SEGMENT 'CODE'

PUBLIC KBCLEAR

ASSUME CS: INTERFACE

; first test for data

KBCLEAR
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In
this chapter, we'll be covering all the ROM-BIOS services that are

either not important enough or not complex enough to be treated

in their own chapters: RS-232 serial communications services, cas-

sette tape services, AT extensions, and printer services. We'll also

cover some services that are odd enough to be considered miscellaneous,

even in a chapter of miscellany.

RS-232 SERIAL COMMUNICATIONS SERVICES

This section discusses the RS-232 asynchronous serial communica-

tions port services in the ROM-BIOS. Before we begin describing the ROM-
BIOS services in detail, there are a few important things to know about the

serial communications port, particularly in the terminology department.

We assume you have a basic understanding of data communications, but

if you discover that you don't understand the following information, turn

to one of the many specialty books on communications for some back-

ground information.

Many words are used to describe the RS-232 data path in and out of

the computer. One of the most common is port. However, this use of the

word port is completely different from our previous use of the word.

Throughout most of this book, we have used port to refer to the address-

able paths used by the 8088 microprocessor to talk to other parts of the

computer within the confines of the computers circuitry. All references

to port numbers, the BASIC statements INP and OUT, and the assembly-

language operations IN and OUT refer to these addressable ports. The
RS-232 asynchronous serial communications port differs because it is a

general-purpose I/O path, which can be used to interconnect many kinds

of information-processing equipment outside the computer. Typically, the

serial ports in the PC are used primarily for telecommunications (mean-

ing a telephone connection through a modem) and also to send data to a

serial-type printer.

The serial communications services are invoked with interrupt 20

(hex 14). There are four services common to all IBM models. They're num-
bered through 3 and selected through register AH. (•- See Figure 12-1.)

The original design of the IBM personal computers allowed up to

seven serial ports to be added, although it is rare for a computer to use

more than one or two. No matter how many serial ports there are, the se-

rial port number is specified in the DX register. A single serial port adapter

is indicated by a zero in DX.
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Service Description

Initialize serial port parameters

1 Send out one character

2 Receive one character

3 Get serial port status

Figure 12-1. The four RS-232 serial

port services available through interrupt 20

(hex 14)

Service 0: Initialize Serial Port Parameters

Service sets the various RS-232 parameters and initializes the serial

port. It sets four parameters: the baud rate, the parity-, the number of stop

bits, and the character size (also called the word length). The parameters

are combined into one 8-bit code, which is placed in the AL register in the

order shown in Figure 12-2. The bit settings for each code are shown in

Figure 12-3. When the service is finished, the communication status is re-

ported in AX, just as it is for service 3 (^^ see service 3 for the details).

NOTE: Though it is painfully slow, 300 baud used to be the most

commonly used baud rate for personal computers using modems. A rate

of 1,200 baud is now the most common, particularly for serious applica-

tions that require faster transmission, though we're likely to see a shift

toivard 2,400 baud. >l:l The PCjr has a maximum baud rate of 4,800. If

we try to set it to 9,600 baud, it will still transmit at only 4,800 baud.

Bit

7 6 5 4 3 2 10 Use

XXX Baud-rate code

...XX... Parity code

X . . Stop-bit code

XX Character-size code

Figure 12-2. The bit order of the serial port

parameters returned in register AL by

service
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Service 2: Receive One Character

Service 2 receives one character from the communications line spec-

ified in DX and returns it in the AL register. The service waits for a char-

acter or any signal that indicates the completion of the service, such as a

time-out. AH reports the success or failure of the service in bit 7, as ex-

plained in the discussion of service 1. Again, consider the advice under

service 1 for error handling and see service 3 for the error codes.

Service 3: Get Serial Port Status

Service 3 returns the complete serial port status in the AX register.

Each of the 16 bits individually reports a possible problem. The status bits

are divided into two groups: AH reports the line status (which is also

reported when errors occur with services 1 and 2) and AL reports the

modem status, when applicable. Figure 12-4 contains the bit codings of

the status bits. You will notice that some codes report errors, while oth-

ers simply report a condition.

NOTE: There is one special thing ivorth rioting about the time-out

error (AH, bit 7). The earliest version of the ROM-BIOS for the original PC

had a programming error that caused a serial-port time-out to be re-

ported as a transfer-shift-register-empty/break-detect-error combination

(bits 01010000 rather than 10000000). This has been corrected on all sub-

sequent versions of the ROM-BIOS, but it has caused many communica-

tions programs to treat these error codes skeptically. You may wish to

keep this in mind. « See page 59 for details on identifying the ROM-BIOS

version dates and machine ID codes.

Bit

7 6 5 4 3 2 10 Meaning (when set to 1)

Bit

7 6 5 4 3 2 10 Meaning (when set to 1)

AH Register (line status)

1
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CASSETTE TAPE SERVICES

The cassette tape services are used when working with the cassette

tape connection, which is a part of some PC models, such as the original

PC and the PCjr, but is not part of the XT, the Portable PC, the AT, the

3270-PC, and some other PC family members. So the cassette port is

largely an orphaned feature—something that was created with the orig-

inal PC on the assumption that there might be some demand for it. There

wasn't, and it has remained almost totally unused.

The intended purpose of the cassette port was to allow data and

programs, particularly BASIC programs, to be recorded on standard au-

dio cassette tapes, as is done with many inexpensive diskless home com-

puters. I have never encountered a PC program on tape for sale. In fact,

about the only use of the cassette port that I am aware of is the homespun

and jerry-rigged use of this port as a poor-man's serial port. Nevertheless,

IBM does support the use of the cassette port, both through the ROM-
BIOS services discussed here and through BASIC, which gives us the abil-

ity to read and write either data or BASIC programs on tape.

Keep in mind that any use of the cassette tape port brings with it

certain inherent problems. First of all, not all PC models have this port.

Secondly, few PCs are equipped with the proper cable connections neces-

sary to work with a cassette tape recorder. And third, the use of a cas-

sette tape recorder involves considerably more manual intervention than

you might expect. For example, rewinding a tape cannot be done under

program control.

The cassette services are invoked with interrupt 21 (hex 15). There

are four services, numbered through 3. As always, the service is spec-

ified in register AH. («' See Figure 12-5.)

Service Description

Turn on cassette motor

1 Turn off cassette motor

2 Read data blocks

3 Write data blocks

Figure 12-5. The four ROM-BIOS
cassette services invoked through

interrupt 21 (hex 15)
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Service 0: Turn On Cassette Motor

Service turns on the cassette motor, which is not an automatic

operation of the ROM-BIOS services as it is with the diskette services. Any
program using this service should be prepared for a slight delay while

waiting for the motor to start.

Service 1: Turn Off Cassette Motor

Service 1 turns off the cassette motor, also not an automatic opera-

tion of the ROM-BIOS services as it is with the diskette services.

Service 2: Read Data Blocks

Service 2 reads one or more cassette data blocks. Cassette data is

transferred in standard-sized 256-byte blocks, just as diskette data nor-

mally uses a standard 512-byte sector. The number of bytes to be read

is placed in the CX register. Although data is placed on tape in 256-byte

blocks, any number of bytes can be read or written. Consequently, the

number of bytes placed in the CX register need not be a multiple of 256.

The register pair ES:BX is used as a pointer to the memory area where the

data is to be placed.

After the service is completed, DX contains the actual number of

bytes read, ES:BX points to the byte immediately after the last byte trans-

ferred, and the carry flag (CF) is set to or 1 to report the success or fail-

ure of the operation. On failure, AH is set to report the nature of the

error using the code shown in Figure 12-6.

Service 3: Write Data Blocks

Service 3 writes one or more cassette data blocks of 256 bytes each

(•• see service 2). As with service 2, the CX register gives the count of

bytes requested and ES:BX points to the data area in memory. If the

amount of data being written is not a multiple of 256 bytes, the last data

block is padded out to full size.

Code Meaning

1 Cyclical redundancy check (CRC) error

2 Lost data transitions: bit signals scrambled

3 No data found on tape

Figure 12-6. The error code in registerAH if

CF reports a failure to read the data blocks;

returned by service 2
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AT

After the service is completed, CX should be decremented to zero

and ES:BX should point just past the last memory byte that was written.

Curiously, there are no error signals provided for this service, essen-

tially because a cassette tape recorder is not able to inform our computer

of any difficulties. This forces the ROM-BIOS to write data in blind faith

that all is well. Needless to say, it would be a good idea to read back any

data written, just to check it.

EXTENDED SERVICES FOR THE AT

Several new BIOS services, listed below, were introduced with the

AT to support the AT's extended memory and some of its more advanced

features. They are called through interrupt 21 (hex 15) just like the cas-

sette I/O services, with the service number (ranging from hex 80 through

91) placed in the AH register. We will not go into detail about these ser-

vices in this chapter, •* but suggest you see Chapter 13 and the BIOS list-

ing in the AT Technical Reference manual for more information.

Service (hex) Description

80



Chapter 12: Miscellaneous Services
'

217

PRINTER SERVICES

The ROM-BIOS printer services support printer output. In the stan-

dard PC world, these services apply stricdy to the parallel printer adapter.

On some PC models, however, printer output can be automatically re-

routed to a serial port. The PCjr's ROM-BIOS provides this feature.

The ROM-BIOS printer services are invoked with interrupt 23 (hex

17). There are three services, numbered through 2, requested through

the AH register. (•" See Figure 12-8.) The general PC-family design allows

more than one printer to be installed, so a printer number should be spec-

ified in register DX for all these services. Printer number is automat-

ically used by the print-screen service («• see page 218).

Service 0: Send One Byte to Printer

Service sends one byte to the printer, placing the byte that is to be

printed in AL. When the service is completed, AH is then set to report

the printer status («• see service 2), which can be used to determine the

success or failure of the operation, m- See the special notes on printer

time-out under service 2.

Service 1: Initialize Printer

Service 1 initializes the printer. To do this, the service simply sends

two control codes (hex 08 and OC) to the printer control port (normally

port 762, hex 2FA). As with the other two services, the printer status is

reported in AH.

Service 2: Get Printer Status

Service 2 reports the printer status in the AH register. The individ-

ual bit codes are shown in Figure 12-9.

Service Description

Send one byte to printer

1 Initialize printer

2 Get printer status

Figure 12-8. The three ROM-BIOS
printer services invoked through interrupt

21 (hex 17)
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Bit

7 6 5 4 3 2 10 Meaning (when set to 1)

Printer not busy (0 = busy)

Acknowledgment from printer

Out-of-paper signal

Printer selected

I/O error

Not used

Not used

Time-out

Figure 12-9. The printer status bits reported

in the AH register by service 2

The printer time-out has caused some difficulty in the IBM personal

computers. Any I/O driver needs to set a time limit for a response from

the device being controlled. Ideally, this time limit should not be exces-

sively long, so that an unresponsive device can be reported in a timely

manner. Unfortunately, there is a normal printer operation that can take

a surprisingly long time: a page eject (or a skip to the top of the next

page from near the top of the current page). The time allowed varies from

version to version of the ROM-BIOS. Treat a time-out signal with care.

OTHER SERVICES

We now come to the grab bag of all other ROM-BIOS services: some

services that IBM intended for us to use and some—most notably a ser-

vice that sends a carriage-return/line-feed character combination to the

Interrupt

Dec Hex
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display screen—that IBM didn't intend for us to use (I don't recommend

it either). In this section, we'll cover the six interrupts shown in Figure

12-10, one by one.

Interrupt 5: Print-Screen Service

Interrupt 5 activates the print-screen service. It is used by the key-

board support routines in response to the Shift-PrtSc combination. Any

other program that wishes to perform a print-screen operation may

safely and conveniently do so by generating interrupt 5. The print-screen

subroutine was specifically made to be interrupt-driven so that we could

incorporate the service into our own programs.

The print-screen service will maintain the current cursor position

on the screen and successfully print any printable characters from the

screen in either the text or graphics mode. It makes use of the standard

video services (those that waltz the cursor around the screen and read

characters from the screen buffer), and also makes use of the standard

printer services.

This service directs all of its output to printer number 0, the default

printer. There are no input or output registers for this service. However,

a status code is available at low-memory location hex 500 («- see page

57). If the byte at that location has a value of 255 (hex FF), then a previous

print-screen operation was not completed successfully. A value of indi-

cates there was no error and the print-screen operation is ready to go. A
value of 1 indicates that a print-screen is currently in progress; any re-

quest for a second one will be ignored.

Interrupt 17 (hex 11): Equipment-List Service

Interrupt 17 returns a basic report of the equipment installed in the

computer. It is exactly the same as the information stored at low-memory

location hex 410 {m- see Chapter 3, page 52). The report is coded as

shown in Figure 12-11, in the bits of a 16-bit word, which is placed in regis-

ter AX. m- See interrupt 18 for a complementary service.

The equipment information is gathered on an accurate-as-possible

basis and may not be exactly correct. Different methods are used for ac-

quiring the information in the various models.

The equipment list is assembled only once at power-up time and is

then left in memory. This means that we can change the equipment list
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Bit

FEDCBA98 76543210 Meaning

X \ Number of printers installed

. . X Serial printer: 1 = installed (PCjr only; not PC or XT)

... X Game adapter: 1 = installed (always true for PCjr)

....XXX Number of RS-232 serial ports

X DMA chip: = installed (1 = not installed in ordinary PCjrs)

XX +1= number of diskette drives: = 1 drive (see bit 0)

XX ... . Initial video mode: 10 = 80-column color, 11 =monochrome
( PC or XT); 1 = 40-column (PCjr)

XX . . System board RAM: 11 =64K (normal for all models)

X . Not used (set to 0)

X 1 if any diskettes (if so, see bits 7 and 6)

Figure 12-11. The bit coditig for the

equipment list reported in registerAX
and invoked by interrupt 17 (hex 11)

under software control. For example, we could take some equipment off-

line so that it is not used. However, modifying the equipment list is risky

business— don't bet on its success. •' See interrupt 25, page 221, for com-
ments on how to tamper with the equipment list and get reliable results.

The format of the equipment list was defined for the original PC

model. As a result, some parts of the list are curiously mismatched to

other models. Bit 13 (the serial-printer bit) is unused and undefined for all

IBM models before the PCjr. Elil On the Junior, this bit is set whenever

the power-up routines in the ROM-BIOS find no parallel-printer option in-

stalled and find anything reasonable plugged into the serial port.

Interrupt 18 (hex 12): Memory-Size Service

Interrupt 18 invokes the service that reports the available memory
size in kilobytes. It is exacdy the same as the information stored at low-

memory location hex 413 (• see page 52). The value is reported in AX.
•" See interrupt 17 for a complementary service.

In the standard models of the PC, this value is taken from the setting

of the physical switches inside the system unit. These switches are sup-

posed to reflect the actual memory installed, although under some cir-

cumstances they are set to less memory than is actually present.
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In the PCjr, the memory size is determined by software exploration

during power up. The Junior adjusts the reported memory size by 16K to

set aside memory for the display screen. When a program uses video

modes 9 and 10, the display screen uses 32K, which reduces the usable

memory. However, this is not reflected in the ROM-BIOS record of avail-

able memory reported by this interrupt service. The use of video modes 9

and 10 is a transitory phenomenon that only takes place within the opera-

tion of a program, and is not an ongoing state. So, there is very little

reason for the ROM-BIOS to change its record of memory size when these

modes are used.

Interrupt 24 (hex 18): BASIC Loader Service

Interrupt 24 is normally used to activate ROM-BASIC. It is made
available as an interrupt service primarily to allow the default BASIC to be

overridden. !: This is the technique used by the PCjr to load the BASIC

cartridge as the default power-on BASIC instead of loading the computer's

built-in ROM "cassette" BASIC.

Any program that wishes to do so may activate BASIC (or whatever

has replaced it) by generating interrupt 24. This can be done to inten-

tionally bring up BASIC, or, alternatively, to abruptly dead-end a program.

m- However, see the next interrupt, number 25, for a better way to dead-

end a program.

Interrupt 25 (hex 19): Bootstrap Loader Service

Interrupt 25 activates the standard bootstrap routine for the com-

puter, which produces a similar result to powering on and nearly the

same net result as the Ctrl-Alt-Del key combination. However, this boot-

strap interrupt bypasses both the lengthy memory check of the power-on

routines and the reset operations of Ctrl-Alt-Del.

There are two uses that I know of for this interrupt service. One is

to immediately shut down, or dead-end, the operation of the computer.

This can be done by a program when it encounters a situation that it

finds intolerable, such as an apparent violation of copy protection. Many
copy-protected programs end a program in exactly this way when they

detect some hanky-panky.

The other use for this operation is to reboot the computer without

going through the reset and restart operations, which would, for exam-

ple, recalculate the memory size and equipment list reported by inter-

rupts 17 and 18. This interrupt is particularly useful for any program that

modifies either of these two items. The reasoning is simple: If we wish to
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change the equipment list or the memory size (for example, to set aside

some memory for a RAM-disk), we cannot reliably count on all pro-

grams— including DOS—to check the actual memory or equipment

specifications each time they are used. But a program could set aside

some memory, change the memory specification, and then use this inter-

rupt to reboot the system. When that is done and DOS is activated, DOS
would take its own record of the available memory from the value set by

our program. Neither DOS nor any civilized DOS program would be

aware of, or interfere with, the memory area that was set aside.

To give you a brief example, here's a fragment of assembler code

that will change the BIOS s record of the memory size and then use inter-

rupt 25 to reboot the computer:

MOV AX,40H ; get BIOS data segment of hex 40...

MOV ES.AX ;... into ES segment register

MOV WORD PTR ES:19,256 ; set memory to 256K

INT 25 ; reboot system

Interrupt 26 (hex lA): Time-of-Day Services

Interrupt 26 provides the time-of-day services. Unlike any of the

other interrupts covered in this section, but like all other ROM-BIOS ser-

vices, more than a single service can be activated by this interrupt. The

two normal services, numbered and 1, are specified, as usual, in register

AH. ('•'See Figure 12-12.)

The ROM-BIOS maintains a time-of-day clock that is based on a

count of system-clock ticks since midnight. The system clock "ticks" by

generating interrupt 8 at specific intervals. On each clock tick, the ROM-

BIOS interrupt-8 service routine increments the clock count by 1. When

Service Description Register Settings

Read current clock count CX = high-order part of clock count

DX = low-order part of clock count

AL = if timer has not passed

24-hour period

AL <> if timer is counting new day

1 Set current clock count CX = high-order part of clock count

DX = low-order part of clock count

Figure 12-12. The two ROM-BIOS time-

of-day services invoked by interrupt 26,

and their register settings
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the clock count passes 24 hours' worth of ticks, the count is reset to

and a record is made of the fact that midnight has been passed. This rec-

ord is not in the form of a count, so there is no way to detect if two

midnights have passed.

The clock ticks at a rate that is almost exactly 1,193,180 H-64K, or

roughly 18.2 times a second. The count is kept as a 4-byte integer at low-

memory location hex 46C. The midnight count value, used to compare

against the rising clock count, is 1,573,040 (hex 1800B0) and is stored at lo-

cation hex 470 ( «r see page 56). When DOS needs to know the time, it

reads the clock count through the time-of-day service and calculates the

time from this raw count. If it sees that the timer has been reset, it also in-

crements the date.

We can calculate the current time of day from the clock count using

these BASIC formulas:

HOUR = CLOCK \ G5543 (hex 10007)

REMAINDER = CLOCK MOD 65543

MINUTES = REMAINDER \ 1092 (hex 444)

REMAINDER = REMAINDER MOD 1092

SECONDS = REMAINDER \ 18.21 ' for precision; otherwise use 18

REMAINDER = REMAINDER MOD 18.21

HUNDREDTHS = CINT( REMAINDER • 100
)

In reverse, we can calculate a nearly correct clock count from the time,

by this formula:

COUNT = (HOUR • 65543.33) + (MINUTES • 1092.38)

+ (SECONDS • 18.21) + (HUNDREDTHS • .182)

I
As we will see shordy, the BIOS enhancements that come with the AT

include time-of-day and date services that perform some of these tasks

automatically.

Service 0: Read Current Clock Count

Service returns the current clock count in two registers: the high-

order portion in CX and the low-order portion in DX. AL is if midnight

has not passed since the last clock value was read or set, and AL is 1 if

midnight has passed. The midnight signal is always reset when the clock

is read. It is the responsibility of any program using this service to use the

midnight signal to keep track of date changes. DOS programs normally

should not use this service directly. If they do, they must undertake the

tedious chore of calculating and setting a new date.

NOTE: / think it curious that version 2.00 ofDOS did not consis-

tently update the date on the midnight signal. The next version of DOS,

2.10, and all other versions ofDOS, do.
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Service 1: Set Current Clock Count

Service 1 sets the clock count in location hex 46C. The value is

taken from the CX:DX register pair. The midnight signal is reset when-

ever the count reaches the 24-hour mark.

The AT Time-of-Day Services

Services 2 through 6, also invoked through interrupt 26, were intro-

duced in the AT version of the BIOS. Services 2, 3, and 4 read and set the

real time clock, providing both time-of-day and date information, and

services 5 and 6 set an alarm to interrupt up to 24 hours from the present

time. •- For more information on these services, see page 239 or the BIOS

listing in the AT Technical Reference manual.
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This chapter presents a summary of the ROM-BIOS service rou-

tines discussed in Chapters 8 through 12 to provide you with a

quick reference guide. Once you understand the ROM-BIOS ser-

vices, these tables should provide you with all the program-

ming information you need.

SHORT SUMMARY
In this section, we briefly list all the ROM-BIOS services, so that they

can be seen together, at a glance.

Subject
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Subject
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Service

Interrupt

(hex)

Register

Input Output Description

Print bcreen U_i AH = 05 Send screen contents to

printer. Status and result

byte at low-memor>'

address hex 500
(0050:0000)

Video Seri'tces

Set video mode 10 AH = 00

AL = video mode
Video modes in AL:
00:40x25text, 16grey

01:40x25text, 16 8 color

02: 80 X 25 text, 16 grey

03: 80x25 text, 16/8 color

04: 320 X 200 graphics,

4 color

05: 320x200 graphics,

4 grey

06: 640 X 200 graphics,

b/w

07: 80 X 25 text, b/w

08: 160 X 200 graphics,

16 color

09: 320 X 200 graphics,

16 color

OA: 640 X 200 graphics,

4 color

Set cursor size 10 AH = 01

CH = starting scan line

CL = ending scan line

Color/Graphics Adapter uses

lines 0—7
Monochrome Adapter uses

lines 0-13

Set cursor position 10 AH = 02 none

BH = display page number

DH = row

DL = column

Read cursor position 10 AH = 03 CH = starting scan line

BH = display page number CL = endmg scan line

DH = row

DL = column

Read light-pen position 10 AH = 04 AH = pen trigger signal

BX = pLxel column

CH = pLxel row

DH = character row

DL = character column

Set active display page 10 AH = 05

AL = page number
continued)

Figure 13-2. A complete summary of the

ROM-BIOS services
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Interrupt
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Interrupt
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Interrupt
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Interrupt
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Interrupt
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Service

Interrupt

(hex) Input

Register

Output Description

Keyboard Services (continueJ)

in 16

Turn off typematic

AH = 03

AL = 04

PTil
Click off
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Chapters 15 through 18 are going to focus on the program sup-

port services provided by DOS. The last chapter in the series,

Chapter 18, is a summary of the technical details of each ser-

vice. In this chapter, we will introduce some of the main con-

cerns a programmer often faces when working with the DOS services.

We use the term DOS services to define the entire set of operations

that DOS provides for our programs, but you will not find this term used

in the DOS manual. In DOS's own terminology, these services are divided

into two categories: DOS interrupts and DOS function calls. As far as I

know, this separation was not based on any design decision, but rather

emerged from a desire to achieve a reasonable degree of compatibility

with DOS's predecessor, the CP/M operating system.

DOS interrupts are invoked by individual interrupt codes with the

INT instruction. DOS function calls, on the other hand, are invoked in

much the same way as the ROM-BIOS services: through one umbrella in-

terrupt, interrupt 33 (hex 21). As with the ROM-BIOS services, the individ-

ual functions are selected through the AH register.

From the standpoint of both programming and design, the func-

tion-call mechanism is actually more efficient than a group of individual

interrupts. Its main benefit is that it allows an unlimited number of new
services to be added, since every service is called through a single inter-

rupt. All the services introduced with the DOS-2 versions are additions to

the function calls and not to the interrupts. Most of the services that were

introduced with DOS-3 versions are also function calls, although there is

one new interrupt.

THE PROS AND CONS OF USING THE DOS SERVICES

The question of whether or not to use the DOS services arises natu-

rally during the design and development of sophisticated programs. My
general advice, echoed throughout this book, is for you to use the highest

available services that will accomplish what you need. This means that,

whenever possible, you should use the built-in services of your program-

ming language first, resorting only when necessary to the direct use of

the DOS services or the ROM-BIOS services, and resorting only in extreme

circumstances to direct programming of the computer's hardware.

In practical terms, either a program can be written entirely within

the confines of the programming language's facilities or nearly all of its

I/O work must be done outside of the programming language, at a lower

level. When a lower level of programming is needed, I feel that, with very

few exceptions, the DOS services are best suited for disk operations. When



Chapter 14: DOS Basics
' 243

working with the keyboard or other I/O devices, either the DOS routines or

the ROM-BIOS routines will be adequate, depending on the application. But

for low-level video-display programming, the situation is more complex.

Satisfactory screen output almost always seems to call for the ROM-BIOS

services and direct-hardware programming, even though m some cases it

may be best to leave it in the hands of DOS. We'll see why in a moment.

DOS: A Disk-Service Cornucopia

When we inspect the full range of tools and services that are placed

in our hands by programming languages, by DOS, by the ROM-BIOS, and

by the computer's hardware, it becomes quite clear that the richest con-

centration of disk-oriented services exists at the DOS level. This almost

goes without saying since DOS, as a disk operating system, is inherently

strongest in its support of disk operations.

As detailed in Chapters 16 and 17, the majority of services that DOS

will perform for us are direcdy connected to the manipulation of disk

files. Even some of the nominally program-controlled services, such as

loading and executing another program (function 75 (hex 4B)), involve

disk file operations. From this perspective, DOS is not so much a disk op-

erating system as it is a system of disk services designed for use by our pro-

grams. When we are developing programs for the IBM personal computer

family, it is a good idea to approach DOS from exactly this point of view:

Think of DOS as a cornucopia of disk operations placed at our service.

DOS and Video: A Difficult Match

It has become a PC programming convention for most sophisticated

programs to perform their screen output at a low level. Often, all display

output is done at the very lowest level, with output placed directly into

the display's memory area. Other operations, such as cursor movement,

are usually done at the next highest level through the ROM-BIOS services.

In the beginning, this was necessary because DOS did not provide

adequate video services. But starting with version 2.00, it became possi-

ble to perform most of the needed screen work through the DOS services

enhanced with the ANSI driver program, also known as ANSI.SYS («" see

Appendix A for more details). This program uses a set of commands that,

when translated, will perform just about anything the screen is capable of

doing. However, the ANSI driver services can be somewhat clumsy to

work with because they not only require that our programs run under a
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DOS-2 version but also that DOS be configured to include the ANSI driver.

My experience is that many novice computer users are thoroughly con-

fused by the procedures necessary to incorporate the ANSI driver, and

this factor alone argues strongly against using any DOS facility that re-

quires this driver.

If faced only with this factor, we could easily conclude that we should

avoid using the DOS video services altogether, but it's not quite that sim-

ple. Many of the more sophisticated operating-system environments that

are appearing, particularly windowing systems, expect the programs run-

ning under them to use officially available operating-system services and

not work directly with the hardware. With these environments in mind,

there is a strong argument to be made for the strict use of the DOS services

whenever possible.

In trying to decide what is wisest to do, a great deal depends on the

probable lifetime of your programs and the range of machines they might

be used on. For a PC-specific game program with an expected life of a

few months (common for games) you have little reason to worry about

these things. The situation is completely different for a generalized busi-

ness or professional application, which should be usable for many years

and in many environments. Make your choice and place your bets.

DOS VERSION DIFFERENCES

DOS version 3.10 represents the sbcth official release of DOS. Even

though there have been both improvements and bug-fixes in every re-

lease, the driving force behind each release has been hardware, and a

hardware change has usually involved a disk-drive change.

Version Date Hardware Change

1 .00 8/04/8

1

Original PC model (single-sided drive)

1.10 5/07/82 Double-sided diskette drive

2.00 3/08/83 XT model (hard-disk drive)

2. 10 10/20/83 PC|r and Portable PC models (half-high drives)

3.00 8/14/84 AT model (high-capacity diskette drive)

3.10 3/07/85 Networking (network disk drive)

Figure 14-1. The six DOS releases and the

associated changes to hardware



Chapter 14: DOS Basics
'

245

In all but versions 2.10 and 3.10, changes to DOS involved significant

modifications to disk support (including new disk-storage formats). The

main change to 2.10 was a relatively minor one, but disk-related: The dis-

kette control head settle time was adjusted to allow for differences in the

performance of the half-high drives used in the PCjr and Portable PC. Ver-

sion 2.10 also corrected a few of the known bugs in 2.00. Version 3.10

incorporated networking functions that were designed for version 3.00,

but were not ready when 3.00 was released. Here is a simple summary of

the main differences between versions:

Version 1.00 supported the single-sided, eight-sector diskette for-

mat. All the basic DOS services were included in this release.

Version 1.10 added support for double-sided diskettes. The DOS ser-

vices remained the same.

Version 2.00 added support for nine-sector diskettes (both single-

and double-sided) and for the fixed hard disk. The DOS services were en-

hanced extensively in this version {m- see Chapter 17). Cartridge support

was also added in 2.00, although this was not known until the release of

the PCjr.

Version 2.10 added neither new disk formats nor new DOS services;

it did, however, adjust its disk operation timing to benefit the PCjr and

the Portable.

Version 3.00 added the high-capacity diskette and additional hard-

disk formats. It also laid the groundwork for network disks.

Version 3.10 added network disks, which include a file-sharing ca-

pability.

NOTE: Each version of DOS is upwardly compatible with prior

versions, except in some very detailed respects (these sorts of details al-

ways seem to be unavoidable).

With each release of DOS, there has been a question among soft-

ware developers about which version of DOS to target, because use of the

larger diskette formats and the extended DOS services precludes the use

of earlier DOS versions. This has been a messy situation and has led to

some difficult decisions for program developers in the past. DOS-2 ver-

sions have been the usual choice for quite some time. Sales of all PC mod-

els have been accelerating, so the number of people using DOS-1 versions

is becoming an increasingly smaller proportion of the PC community.

This makes it relatively painless for us to target our programs on DOS-2

versions and take full advantage of the DOS-2 extended services. Even

with the appearance of DOS-3 versions, DOS-2 remains the best choice for

the time being—but who can say for how long?
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DISK FORMAT CONSIDERATIONS

Besides deciding which DOS services or which version of DOS our

programs should use, we also need to consider which diskette format we
will use to deliver our programs. The convention has been for PC pro-

grams to be delivered on diskettes with the single-sided eight-sector for-

mat, since this format is the lowest common denominator of all DOS
formats and can be used by any DOS version. Although the universal

nature of the single-sided eight-sector format is useful, there is not much
reason for it anymore. For one thing, single-sided drives are now all but

extinct on PCs, the double-sided formats having taken their place long

ago. And for another, any programs that require DOS-2 can use the nine-

sector format; in fact, that is the format that DOS 2.00 and 2.10 themselves

use. To accommodate the last of the DOS-1 owners, you may want to use

the double-sided eight-sector format, but you should be able to use the

double-sided nine-sector format without guilt or regret.

A program can, in an imperfect way, detect which version of DOS it

is running under, using DOS function call 48 (hex 30). Unless you can be

sure of your audience, you should include this safeguard in your pro-

grams and always check to make sure the correct DOS version is in-

stalled. •" See Chapter 17 for more details.

COMMENTS
In general, technical information about DOS is scarce; there are a

great many details that IBM and Microsoft seem to keep the world in the

dark about. Unfortunately, there is not much you and I can do about this

dearth of information, except try to pass on what we've discovered and

point out the gaps wherever they occur. We will attempt to do that in the

following chapters.

NOTE: The official source ofinformation about the DOS services

is the DOS Technical Reference manual, which was introduced with ver-

sion 2.10. For the previous versions of DOS, the equivalent information is

found in the main DOS manual.
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In
this chapter we'll be covering the DOS services that are invoked

with their own individual interrupts, {m- See Chapters 16 and 17 for

information about the DOS function calls, which are selected by a

function number under one umbrella interrupt.) There are nine in-

terrupt services in all, which are listed below in Figure 15-1. Five of them,

interrupts 32, 37 through 39, and 47 (hex 20, 25 through 27, and 2E), are

true DOS interrupt services, each one having a specifically defined task as-

sociated with it. The other interrupts have more general uses. Perhaps the

most important one is interrupt 33 (hex 21), which is used to invoke DOS
function calls (« discussed in Chapters 16 and 17). The three remaining

interrupts, 34 through 36 (hex 22 through 24), are used to hold segmented

addresses. Our programs set these addresses (preferably using DOS func-

tion call 37) to point to special routines. Then, when the appropriate cir-

cumstances arise, DOS invokes the routines located at these addresses

through these three address interrupts («" see page 255).

NOTE: Official IBM DOS doctrine disapproves of programmers

using the DOS interrupt services. Consequently, IBM supplies alternate

function calls through interrupt 33 (hex 21). Since there is always the

possibility that new releases of DOS will not support the use of these

"disapproved" interrupt services, it is wise to avoid using them and to

rely mostly on the DOS function calls for special services.

Interrupt

Dec Hex
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THE FIVE MAIN DOS INTERRUPTS
Of the nine DOS interrupts, five are true interrupts, meaning that

they have built-in interrupt-handling programs associated with them,
each of which performs a particular task.

Interrupt 32 (hex 20): Program Terminate

Interrupt 31 is used to exit from a program and pass control back to

DOS. It is identical to DOS function call (•- see page 271). These services

can be used interchangeably with any version of DOS to end a program.
Interrupt il does not automatically close files when it terminates a

program, so you should always use DOS function 16 or 62 to close all

changed files before exiting. If a file that has been changed is not for-

mally closed, its new length will not be recorded in the file directory

A program can set three operational addresses through DOS inter-

rupts 34, 35, and 36, as we will see shortly. As part of the clean-up opera-

tions performed by DOS for interrupt 32, these addresses are reset to the

values they had before the program was executed. Resetting these ad-

dresses is essential if the program that invoked interrupt 32 was executed

as the "child" of another program. It serves to protect the "parent" pro-

gram from using routines intended for the "child." {^^ See DOS function

75 (hex 4B) m Chapter 17.)

NOTE: When DOS executes a program, it constructs a program
segment prefix (PSP) at a zero offset address in the code segment pointed

to by the CS register. The PSP contains control information that, among
other things, tells DOS where to go when a program is terminated.

(m- We discuss the PSP in detail at the end of this chapter.) DOS depends
on the CS register to point to the PSP when the interrupt 32 terminate

service is invoked. If the CS register has been changed, it tvill interfere

with the operation of this service.

WARNING: Ifcontrol is passed to a subroutine by a FAR call, the

CS register will be changed. Such subroutines should not use interrupt 32

to end program operation.

Interrupts 37 and 38 (hex 25 and 26):

Absolute Disk Read and Write

Interrupt 37 and its companion, interrupt 38, are used to read and
write specific disk sectors. They are the only DOS services that ignore the

logical structure of a disk and work only with individual sectors, paying
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no attention to the files, file directory, or FAT. All other DOS services

work within the context of a disk's logical structure.

Interrupts 37 and 38 are similar to the corresponding ROM-BIOS

disk services, except that the sectors are located by a different numbering

method. With the ROM-BIOS services, the sectors are selected by their

three-dimensional coordinate locations (track/cylinder, side/head, and

sector), whereas with interrupts 37 and 38, the sectors are selected by

their sequential sector numbers, {m- DOS's sector-numbering system is

discussed on page 105.)

The BASIC formula that converts the three-dimensional coordinates

used by the ROM-BIOS to the sequential sector numbers used by DOS is as

follows:

DOS. SECTOR. NUMBER = (BIOS. SECTOR - 1) + BIDS. SIDE
• SECTORS. PER. SIDE + BIOS. TRACK • SECTORS . PER . S IDE

• SIDES. PER. DISK

And here are the formulas for converting sequential sector numbers to

three-dimensional coordinates:

BIOS. SECTOR = 1 + DOS. SECTOR. NUMBER MOD SECTORS . PER . S IDE

BIDS. SIDE = (DOS. SECTOR. NUMBER \ SECTORS . PER . S IDE

)

MOD SIDES. PER. DISK

BIOS. TRACK = DOS. SECTOR. NUMBER \ ( SECTORS . PER . S IDE

• SIDES. PER. DISK)

NOTE: For double-sided nine-sector diskettes, the PC's most com-

mon disk format, the value of SECTORS.PER.SIDE is 9 and the value of

SIDES.PER.DISK is 2. Also note that sides and tracks are numbered differ-

ently in the ROM-BIOS numbering system: The sides and tracks are num-
bered from 0, but the sectors are numbered from 1.

To select a block of sectors, the necessary parameters are all loaded

into separate registers. The number of sectors is specified in the CX regis-

ter, the starting sector number is specified in DX, and the memory ad-

dress for data transfer is specified in DS:BX. The disk drive is selected by

placing a number in the AL register: Drive A is and drive B is 1.

Although the ROM-BIOS services work with true physical drives, the

DOS services work with logical drives. DOS assumes that every computer

has at least two logical drives. If there is no physical drive B, DOS will

simulate it by using the one physical drive as either A or B, whichever one

is needed. We can then remap these logical drives using DOS's ASSIGN

command.
The results of interrupt services 37 and 38 are reported in a combi-

nation of the carry flag (CF) and the AL and AH registers. If there is no

error, CF is 0. If there is an error (CF = 1), AL and AH contain the error
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Normally, interrupt handlers and other service routines leave the

stack clean when they exit, returning it to its original size and contents.

DOS interrupts 37 and 38 deliberately do not clean up the stack. Instead,

they finish and return to the program with one word left on the stack.

This word holds the contents of the flag register, showing how the flags

were set when the program invoked the service. This is purportedly done

to preserve the program's flag status before the service was used, since

interrupts 37 and 38 use the flags for their return codes. I think this is a

silly precaution, since any program that needs to preserve the flags can

do what programs normally do when they need something saved: PUSH
them onto the stack themselves. Any program that uses interrupts 37 and

38 should POP the two extra flag status bytes off the stack after this ser-

vice returns. They can either be placed in the flag register with a POPF

command (which should be done after testing CF for an error) or be dis-

carded by using the POP command to move them to some extraneous

location, such as the DX register.

Interrupt 39 (hex 27): Terminate-but-Stay-Resident

Interrupt 39 invokes one of the most interesting of all the services

provided by DOS. In fact, it's so interesting and important that we have

used it in the assembly-language example at the end of the chapter.

Like interrupt 32, interrupt 39 ends a program, but it does not erase

it from memory. Instead, it leaves a specified portion of the program in

memory (the program stays resident), and DOS's record of the first usable

part of memory is changed to the paragraph address immediately follow-

ing the resident program. The information that is made resident using

interrupt 39 becomes an extension of DOS and will not be overwritten by

other programs. In keeping with IBM's consistent effort to move away
from using DOS interrupts, a DOS function call, function 49 (hex 31), also

performs this service {m- see page 302).

Interrupt 39 (or its function-call equivalent) is used by a number of

sophisticated programs that act as loadable enhancements to DOS. One
of the best-known of these programs is ProKey, a keyboard enhancer.

Programs typically use this service to establish a new interrupt-handling

routine meant to stay in effect indefinitely. Most often, these interrupt-

handling routines replace existing interrupt handlers in order to change

or extend their operation. But the resident item is not limited to interrupt

handlers and program instructions; it could just as easily be data. For

example, the same programming technique could be used to load status

information into a common area that various programs would share, al-

lowing them to communicate indirectly with each other.
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Normally, a program that uses this technique will want to leave

only part of itself resident, discarding, for example, the initialization

code. So the program must have the portion that will stay resident at the

beginning and must specify in the DX register the offset within the code

segment of the first byte beyond the resident portion. («- See the pro-

gram example on page 267.)

Anything left resident by this service normally remains resident as

long as DOS is also resident. It is not unusual for several different pro-

grams to leave part of themselves resident. Since programs that use this

technique are usually sophisticated and complicated, it is also not un-

usual for them to interfere with each other. To operate such a group of

resident programs successfully, they must sometimes be loaded in a par-

ticular order and the order may have to be discovered experimentally (an

unfair trick to play on an unsuspecting user). If you write a program

using this technique, you should take great care to ensure that it is civi-

lized in its behavior.

As with interrupt 32, the ordinary terminate service, DOS resets the

address vectors for interrupts 34 through 36 (hex 22 through 24) when it

performs this terminate-but-stay-resident service. This means that this

service cannot be used to create resident interrupt handlers for the ad-

dress interrupts. Although this may seem to be a limitation, it is actually

fairly reasonable; the address interrupts are not meant to be used glob-

ally; they are only meant to be used by individual programs (•' see the

DOS address interrupts section that follows for further discussion).

NOTE: When an EXE-type program is link edited, it may be

marked to be loaded into the highest available memory location rather

than the lowest, as is conventional. Such programs cannot use interrupt

39, since it is designed only for loiv-memory residency, m- See page 342

for more on link editing and EXE-type programs.

Interrupt 47 (hex 2F): Print Spool Control

NOTE: Most of the material in this chapter applies to all versions

of DOS; hoivever, interrupt 47 is only available with DOS version 3.00

and later versions.

A new DOS interrupt, interrupt 47 (hex 2F), was introduced with

DOS version 3.00 to give our programs access to the powerful and useful

features of the DOS print spooler. This interrupt is the standard way to

communicate with any print spooler installed in DOS, whether it is the

standard spooler provided with the DOS PRINT command or a nonstan-

dard print spooler.
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Six separate functions make up the print spooler control services

that are available through interrupt 47. These functions, coded through

5, are invoked by first placing a function code in register AL and then

issuing interrupt 47 (hex 2F).

Function code reports whether or not the print spooler is in-

stalled. The return code is passed back in register AL. A value of 255 (hex

FF) indicates that the print spooler is installed and can presumably be

used. A value of indicates that the spooler is not currently installed, but

that it can be installed; a value of 1 indicates that the spooler is not in-

stalled and cannot be installed.

These last two return codes may seem rather curious until we ex-

amine them closely. A returned value of seems to be a message from the

print spooler that says, "I'm not here." We might respond, "If you're not

there, how are you replying?" The answer is that a reply of happens

automatically when there is no interrupt handler installed to deal with

our request. A returned value of 1 seems to say, "I'm here, but you can't

use me." Strange as it may seem, that's exactly what is going on. A return

code of 1 means we're not allowed to install the print spooler because

interrupt 47 is being used for some other purpose by some other inter-

rupt handler. This is a fascinating bit of business to contemplate.

Function code 1 is used to submit a file to the print spooler for

printing. To tell the spooler what is to be printed, we set the register pair

DS:DX to point to a 5-byte area called a submit packet. The first byte of

the submit packet is a level code (which I know nothing about). The re-

maining four bytes of the submit packet are the segmented address of an

ASCIIZ string (i«" see page 298) that defines the path name of the file to be

printed. The path name must be a single file. The global filename charac-

ters * and .' are not allowed.

When a file is submitted using this function, it is added to the end

of the queue, or list, of files to be printed. The files are printed in turn

and are dropped from the queue when they've been printed.

Function code 2 cancels individual files that are queued for print-

ing. The register pair DS:DX points to the ASCIIZ string that defines

which file is to be removed from the queue. In this case, the global file-

name characters * and ? may be used. Note that DS:DX in function 2,

unlike in function 1, points directly to the filename string, rather than

pointing to a submit packet that points to the string.

Function code 3 cancels all files queued for printing. For both func-

tions 2 and 3, if the file currently being printed is canceled, DOS stops

printing the file and prints a short message to that effect.

Function code 4 gives programs access to the print queue so they

can inspect it. The queue is frozen when this function is requested, so
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that we don't have to worry about the list changing while we inspect

it. Issuing any other interrupt 47 function call will unfreeze the queue.

Function 4 returns a pointer in the register pair DS:SI that points to a list

of the filenames queued for printing. The entries in the list are strings

with a fixed length of 64 bytes. The end of the list is indicated by an entry

that begins with a zero byte.

The queue freeze imposed by function 4 doesn't need to halt the

printing operation because it isn't necessary But, it will suspend the re-

moval from the queue of a file that is finished printing.

Function code 5 is essentially a null function that does nothing but

unfreeze the queue of filenames frozen by function 4. (The other four

functions can do this, too.)

THE THREE DOS ADDRESS INTERRUPTS

DOS uses three interrupts, 34 through 36 (hex 22 through 24), to

handle three exceptional circumstances: the end of a program; a "break"

keyboard action (Ctrl-Break or Ctrl-C on the standard PC keyboard;

Fn-B on the PCjr), and any "critical error" (usually a disk error of some

kind). Our programs can affect the action taken in each of these three

circumstances by changing the corresponding interrupt vector to point

to any operation we choose. This is why we call these interrupts the ad-

dress interrupts.

DOS maintains a default address setting for each of these interrupts,

which is preserved at the beginning of a program's operation and re-

stored after the program is finished. This allows our programs to freely

change these vectors according to their needs without disturbing the op-

eration of subsequent programs or the operation of DOS itself.

It is also possible for our programs to change the preserved default

settings, which would then make a semipermanent change in DOS's oper-

ation. The default settings are saved in the program's program segment

prefix (•^ see page 260). Modifying the value in the PSP automatically

changes the default setting that is restored when the program ends.

It's a normal and accepted practice for a program to change the inter-

rupt addresses during its own operation; it's not normal for a program to

change the default setting that will be in effect after the program ends.

Interrupt 34 (hex 22): Terminate Address

The address associated with interrupt 34 specifies where control of

the computer will be passed when the program ends. This address is also

copied into the program's PSP.
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Normally, this service is used to pass control back to DOS's com-
mand interpreter, COMMAND.COM, when a program ends. Although

the other two interrupt vectors covered in this section may be freely

changed by our programs to point to new routines, this vector is not

used that way. How it is used is best explained through an example.

A program— let's call it Progl—may request that DOS set up and

run another program—which we'll call Prog2. When Progl ends, DOS
returns control to wherever interrupt 34's vector indicates. Consequently,

if the default setting of this interrupt is in effect, it returns control to DOS
and not back to Progl. This may be what Progl wants, but if Progl

wishes to continue operation after Prog2 is finished, Progl must change

this terminate-address interrupt vector to point to a location within

Progl, before it runs Progl. Later, Progl must reset this interrupt vector

so that Progl can end normally and pass control back to DOS.

Unlike the other address interrupts, this interrupt is never actually

generated. Instead, the interrupt vector is used as a place to store a seg-

mented address. Interrupts 19 through 31, 68, and 73 (hex ID through IF,

44, and 49) are similarly used to store addresses (•" see page 46).

This is exotic stuff. Don't mess with it if you don't understand it. If

you are qualified to use this feature, then you probably understand it bet-

ter than I can explain it.

Interrupt 35 (hex 23): Break Address

The address associated with interrupt 35 points to the interrupt-

handling routine that will be invoked whenever DOS responds to a break-

key action. The break key is generated on a standard PC keyboard by

Ctrl-Break, and on any keyboard by Ctrl-C (a fact that is not widely

advertised).

DOS is a bit quirky about when it will respond to a break-key ac-

tion. In standard operation, DOS only acts on a break during certain key-

board and screen functions. However, the BREAK ON command allows

DOS versions 1.00 and higher to act on a break at any opportunity.

DOS's default response to the break interrupt is to terminate the

program or batch command file that is being executed. If our programs

set up their own break interrupt handler, they can have DOS take any

action they wish, no matter how extensive or complex. Through this in-

terrupt, our programs can invoke any DOS services and they need not

return control to DOS (though they should, to avoid stack growth).

The two most common actions are to completely ignore the break-

key action or to use it as a signal to break out of a repeated operation.
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Several DOS programs illustrate this second use. For example, the rudi-

mentary Edlin text-editing program uses the break key to signal the end

of the I (insert lines) subcommand. If you want a program to ignore the

break key, use an interrupt handler that returns control to the active pro-

gram. When using the break key to signal the end of a repeated opera-

tion, the interrupt handler should set a data signal switch, which the nor-

mal part of the program will inspect and act on, and then return control.

There are two ways an interrupt handler for this interrupt can re-

turn control. The normal method, for any interrupt handler, is to use the

IRET (interrupt return) instruction. There is another method peculiar to

this interrupt that gives the interrupt handler the option of telling DOS

either to carry on or to end the program (the same way the default DOS

interrupt handler terminates programs on a break-key action). To use this

method, the interrupt handler sets the CF (carry flag) and ends with a

FAR RET instruction; if CF is 1, it signals that DOS is to abort the program

and if CF is 0, it signals that the program is to continue.

NOTE: Programs can simulate a break-key action by generating

this interrupt.

Interrupt 36 (hex 24): Critical-Error Handler Address

The address associated with interrupt 36 points to the interrupt-

handling routine that is invoked whenever DOS detects a "critical error"

—

an emergency situation that prevents it continuing. Typically, the critical

error is a disk error but other errors are also reported, as we'll see.

When an error handler is invoked, several sources of information

about the error itself, and about the state of things before the error oc-

curred, are available. These sources include the register pair BP:SI, the

stack, the AH register, and the DI register. We will cover them one-by-one

because the whole business is quite complicated.

If we are operating under DOS version 2.00 or higher, the register

pair BP:SI is set to point to a device header control block. Our error han-

dler can inspect this control block to learn more about the device (disk

drive, printer, etc.) that experienced the error. (See the DOS Technical

Reference manual for more about the device header.)

The stack contains the complete register set of the program that is-

sued the DOS function call that ended in the critical error. This informa-

tion may be quite useful to an error handler that is intimately integrated

with the active program. Assuming that our error handler is going to
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BP Offset Stack Contents

BP that we pushed

2 IP:CS of DOS service invoking this handler

6 Flags of DOS service invoking this handler

8 AX of program invoking DOS service

10 BX of program invoking DOS service

12 CX of program invoking DOS service

14 DX of program invoking DOS service

16 SI of program invoking DOS service

18 DI of program invoking DOS service

20 BP of program invoking DOS service

22 DS of program invoking DOS service

24 ES of program invoking DOS service

26 IP:CS of program invoking DOS service

30 Flags of program invoking DOS service

Figure 15-4. The stack contents ofa

program that issued the DOS function call

that ended in a critical error

gain access to the stack by traditional means, we can locate the stack

with an offset address from the BP using these two instructions:

PUSH BP

MOV BP.SP

which first saves the old BP (base pointer) and then sets the BP equal to

the SP (stack pointer). •" For more discussion about these instructions,

see page 166 (the section entitled "Level 3: Entry Code"). Having done

this, we'll find the stack contents shown in Figure 15-4.

The nature of a critical error is signaled primarily through a combi-

nation of the high-order bit of the AH register and the low-order byte of

the DI register (a curious choice, for sure). If the high-order bit of AH is

(AH<128), then the error is related to a disk operation; but if the same bit

is 1 (AH>127), then the error may be something other than a disk error, as

we shall see shortly. When the error is a disk device error (AH<128),

register AL gives the drive ID number (0 is drive A, 1 is B, etc.). Bits

through 2 of AH indicate further information about the error, as shown

in Figure 15-5.



Chapter 15: DOS Interrupts
'

1S3

Bit

2 10 Value Meaning

. .



260 PROGRAMMER'S GUIDE TO THE IBM PC

AL DOS Action

Ignore the error and press onward

1 Retry the operation (we may have fixed the problem)

2 Kill the program (DOS issues interrupt 35 (hex 23), in effect

generating a break-key action)

Figure 15-7. The values that can be loaded

into the AL register to tell DOS what to do

following an error-handler routine

codes relayed in the low-order byte of DI to define the exact problem (the

high-order byte should be ignored). The DI error-code values shown in

Figure 15-6 are essentially the same as those reported in AL for interrupts

37 and 38 (hex 26 and 27).

Depending on the circumstances, an error handler may need to use

some of the DOS function-call services to report what's going on to the

program's user. The simple keyboard and display services, function num-
bers through 12 (hex through C), may be used, but the services with

higher function numbers, which mostly involve disk and other device op-

erations, should not be used. Using the higher-numbered services while

in the middle of an error handler for a previous operation will make a

muddle of things that DOS is unlikely to recover from.

Normally, an error-handler routine will return to DOS after it has

done whatever it chooses to do. DOS can then take three courses of ac-

tion: It can ignore the error, try the operation again, or terminate the

program. We tell DOS which course we want it to take by loading one of

the values shown in Figure 15-7 into the AL register.

NOTE: Since the set-up process required before generating this in-

terrupt is rather complex, it is not appropriate for our programs to simu-

late a critical error by generating an interrupt 36.

THE PROGRAM SEGMENT PREFIX (PSP)

When DOS loads a program, it first sets aside a section of memory
for the program called the program segment, or code segment. Then it

constructs a control block called the program segment prefix, or PSP, in

the first 256 (hex 100) bytes. Usually, the program is loaded directly after

the PSP at the hex 100 offset.

The PSP contains a hodgepodge of information that DOS uses to

help run the program. It is part of every DOS program, regardless of the

language the program is written in. However, for programming purposes.
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the information stored in the PSP is more relevant to programs written in

assembly language than programs written in high-level languages. This is

because with high-level languages, the language is normally in charge of

the program's working environment, memory usage, and file control

—

all the things that the PSP is concerned with. Therefore, we are normally

only interested in and able to make good use of the PSP if our program is

assembly-language based (although any program that can find out the

setting of the CS register can use it to gain access to the PSP; m- more on

this on page 266).

Before we describe the different elements of the PSP, we need to

look at the relationship between the PSP and the program it supports.

The PSP is always located at offset within the code segment. Even

though the program location is typically located directly after the PSP at

offset hex 100, its location may vary depending on the program com-

mand format we use. Regardless of its location, as soon as the program

receives control, certain registers are set to point to the PSP. For a simple

.COM-format program, all the segment registers are set to point to the

beginning of the PSP and the program begins at offset hex 100. For a

more complex .EXE-format program, which uses the DOS LINK opera-

tion, only the DS and ES registers are set to point to the PSP. The LINK

program passes the settings for the CS, IP, SS, and SP registers and conse-

quently may set the program's starting location in CS:IP to a location

other than offset hex 100.

Wherever the program is located, the essential relationship between

the program and its PSP remains the same. The important point is that

at the beginning of a program's execution, we have access to the PSP

through one of the segment registers. This means that even if the segment

registers are changed in the course of a program's execution, a pointer to

the PSP can be captured in the program's early stages, allowing us to main-

tain access to the PSP throughout the program's execution.

The best way to explain how the PSP and the program work to-

gether is to jump right into the PSP's internal structure. We will reveal the

purpose and potential use of each element as we explam it.

The Internal Structure of the PSP

As you will soon discover, the PSP contains a rather confusing mbc-

ture of items, (m- See Figure 15-8.) The background and history of DOS

pull it in different directions—backward to the earlier CP/M system and

forward to UNIX-type operating environments. As a result, the PSP con-

tains elements that serve different purposes and are oriented to different

programming methods. Don't be confused by any of this— it's just the



262 PROGRAMMER'S GUIDE TO THE IBM PC



Chapter 15: DOS Interrupts
'

263

by 16 gives the total bytes that DOS considers usable. The DOS command
CHKDSK reports the same amount. Keep in mind that the amount of

memory reported in this field may not be the actual physical size of mem-

ory; for example, many RAM disks use the memory in high locations and

reset DOS s record of where usable memory ends. Any program that

needs to make use of all available memory should use this memory in-

dicator to find out how much memory it can use, instead of the similar

BIOS interrupt service 18.

The conventional DOS working environment dedicates all available

memory to each separately running program. In windowing or multi-

tasking environments, where individual programs must share memory

with other programs, a program can take what it needs and return the

rest through the use of DOS function 74 (hex 4A), the SETBLOCK func-

tion. This function satisfies the DOS conventions for memory usage, but

it may not work ideally with some windowing systems; such systems can

use field 4 as another indicator of available memory.

Field 4 is more than it seems. Superficially, it is a long call to the

DOS function dispatcher, which could be (but really shouldn't be) used to

invoke DOS functions. But what this field is really good for is to indirecdy

determine whether our programs have less than 64K to work in. As a call,

this instruction contains the address of the DOS function dispatcher rou-

tine; as a long call, it contains the address in segmented format. By a

process too bizarre and complicated to explain, the segmented address is

set so that it serves two purposes: Not only does it point to the DOS func-

tion dispatcher, but the offset part also indicates how much of the code

segment we can use (up to hex FFFO, 16 bytes short of 64K). The offset

part of the address, the part we are interested in, is located at offset 6

within the PSP, following the instruction's op-code at offset 5.

The upshot of this is that if DOS has less than 64K to give our pro-

grams, we can use this field to learn how many bytes are available—

a

technique that should work with most or all windowing and multitask-

ing systems. If DOS can give us more than 64K, we can learn how much

more by looking at field 2, the paragraph address limit. However, as we
said earlier, this field may not give us an accurate answer in some win-

dowing or multitasking environments.

Fields 5, 6, and 7 contain the default segmented addresses for the

three address interrupts that we discussed earlier in this chapter. The de-

fault addresses are preserved at the beginning of a program's operation

and restored when the program ends. You may recall that this allows our

programs to use different service vectors while the program is running

without disturbing the operation of subsequent programs or of DOS it-

self. If we do not provide new vectors, DOS uses the default setting stored
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in the PSP to point to the default service routine. If we tamper with the

addresses stored in these fields, we can change the default values (and

their associated service routines) that are restored when the program ends,

thereby making a semipermanent change in DOS's operation. Under nor-

mal circumstances, there is no good reason for us to change or even to

read these settings.

Field 9 contains a segment address that points to the environment

strings supported by DOS 2.00 and later versions. The environment be-

gins at offset from this address.

NOTE: To avoid confusion about terminology, we use the word

"environment" in this context to refer to the set of strings {defined in a

moment) that DOS uses to communicate certain kinds of information

between programs. Elsewhere in this book we've used the word "en-

vironment" to loosely refer to the operating conventions under which a

program works.

This DOS environment is a collection of ASCIIZ strings—that is,

strings of ASCII characters with CHR$(0) marking their ends—that can

define various kinds of information. The end of each environment setting

is marked by a zero-length string (CHR$(0)) where we would expect to

find the first byte of the next string. If an environment setting begins with

CHR$(0), then there are no strings in it.

By convention, each individual environment string is in the form

NAME = value, where NAME is capitalized and of any reasonable length

and value can be just about anything. DOS sets an environment for the

command processor, which is then passed to every program it invokes.

Normally, this environment will contain at least the name COMSPEC

(used by DOS to find the COMMAND.COM file on disk), and may also

contain such names as PATH or SWITCHAR. The DOS command SET can

be used to add, change, or delete strings in the environment.

Field 11 contains two instructions that will invoke a DOS function

(interrupt 33, hex 21) and return to the caller (RETF or FAR return). This

is another kludge that allows us to invoke DOS functions semi-indirectly

To use this feature, we set up everything necessary to invoke a DOS func-

tion (selecting the function in AH, etc.) and then, instead of bravely per-

forming an interrupt 1>2> (a 1-byte instruction), we do a far call to offset

hex 50 in the PSP (a 5-byte instruction).

You might expect that this feature is another flash from the past, a

bit of CP/M compatibility, but actually it was introduced with DOS 2.00

and will not work with previous versions of DOS. So we can take this as

an indication that this approach to invoking DOS services, as clumsy as it

appears, looks to the future, not the past.
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Fields 13, 14, 15, and 16 support old-fashioned file processing, using

file control blocks, or FCBs. FCBs may be used for file I/O with any

version of DOS, but their use is discouraged with DOS 2.00 and later ver-

sions, where more modern file I/O is available through the use of file han-

dles. •- See page 288 for more on file control blocks, and page 298 for

more on file handles.

This area of the PSP was set up as it is to make life easier for pro-

grams that receive one or two filenames as parameters. The basic idea,

and a nice one I think, is to let DOS construct the necessary FCBs out of

the first two program parameters (the parameters given on the command

line, following the program name). If a program needs either or both

FCBs, it can open and use them without having to decode the command

parameters and construct the FCBs itself.

If you use this feature of the PSP, there are some complications that

you should be aware of. First, the two FCBs overlap where they are

placed. If your program needs only the first, fine; but if it needs the sec-

ond one as well, one or both of them should be moved elsewhere before

they are used. Also, you should be aware that these FCBs can involve FCB

extensions, a fact that is overlooked in most DOS documentation for the

PSP. I have called attention to the fact by documenting the location of the

implied FCB extensions in Figure 15-8.

Keep in mind that the use of FCBs is considered somewhat obsolete,

but if you want to use them, this information should help.

Fields 17 and 18 give our programs access to the parameters entered

on the command line. Field 17 gives the entire length of the parameter

string (which could be as short as or as long as 127), and field 18 gives

the contents.

Here are some peculiarities about the string that is passed: It does

not contain the name of the program that was invoked. Instead, it begins

with the character that immediately follows the program name, which is

usually a blank. Separators, such as blanks or commas, are not stripped

out or compressed. If we use the command line, we have to be prepared

to scan through it, recognizing standard separators. Starting with DOS

2.00, the command line is tampered with in a particular way: Any re-

direction parameters (such as < INPUT or >OUTPUT) are extracted by

DOS and the parameter line is reconstructed as if these items were not

there. As a result of these two operations on the command string, a pro-

gram cannot find out if its standard I/O is being redirected, nor can it find

out its own name.

NOTE: Fields 17and 18 overlap with field 19 in the PSP, so get your

parameters ivhile you can— the next field could wipe them out.
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Field 19 is the DOS default disk transfer area (DTA). It is a default

buffer area of 128 bytes starting at PSP offset hex 80 and is established just

in case we use a DOS service that calls for a DTA and haven't yet set up

our own buffer area. •" See Chapters 16 and 17 for descriptions of the

services that use or manipulate the DTA.

In considering the PSP as a whole, note that DOS makes use of sev-

eral areas in the first 92 bytes of the 256-byte PSP (fields 1 through 13,

offsets hex through 5B). If we want to tamper with any of the PSP, we
should restrict ourselves to fields 14 through 19 (offsets hex 5C through

FF). The program example that follows illustrates how the first part of the

PSP can be left intact while the second part is reclaimed and used by a

resident program.

AN EXAMPLE
For this chapter's interface example, we will create a program that

uses the terminate-but-stay-resident DOS interrupt. Most of our assembly-

language examples are set up as interfaces between a high-level language

and ROM-BIOS or DOS service routines. This example is quite different: It

is a stand-alone assembly-language program that uses interrupt 39 to leave

part of itself resident.

Since we'll be seeing some things we haven't seen before in this book,

a few notes are in order. As we just learned in the previous section, when a

program is loaded to be run, DOS constructs a PSP in front of it with a

length of 256 (hex 100) bytes; the loaded program follows immediately.

The CS register is set to point to the PSP, which makes it easy for a pro-

gram to access the information in the PSP. Also, all programs know what

the IP offset to their starting point is: It's always hex 100. We make use of

this knowledge when we use CS to calculate the offset of the resident por-

tion in our program in the line that reads:

RESIDENT_DFFSET EQU START_RESIDENT - BEGINNING + 100H

Generally, it is a waste of 256 bytes of memory for a resident pro-

gram to leave the PSP in place, yet DOS needs the PSP to complete the

termination process. Two things can be done to avoid wasting all this

space. First, if the resident program needs to use a data area when it is

reactivated as an interrupt handler it can use the PSP area, because DOS

no longer needs the PSP once program termination is complete. Second,

the program can relocate its resident portion over the part of the PSP that

DOS does not need during termination. In our example, we will illus-

trate how this is done by overriding all but the first 92 (hex 5C) bytes

of the PSP. It is completely safe to do this, but overriding more may inter-

fere with DOS.
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If you experiment with this operation and then use the DOS func-

tion CHKDSK to test how much memory has been consumed, you'll find

that DOS generally gobbles up at least another 16 bytes for housekeeping

overhead; for very small requests it may gobble up a few hundred more.

Comments in the following example will explain some additional

points of interest.

; illustrate interrupt 39 (hex27): t ermi na

t

e-bu t - 5 tay-res i dent

PROGRAM SEGMENT PARA PUBLIC 'CODE'

ASSUME CS:PROGRAM

TBSR PROC

BEGINNING:

; to start, we skip to the initialization code

JMP INITIALIZE

START.RESIDENT:

; here would appear whatever we wanted to leave resident

END.RESIDENT:

RESIDENT_LENGTH EQU END.RESIDENT -

RESIDENT_DFFSET EQU START_RES IDENT

PSP_AMDUNT EQU 92 ; the PSP portion we keep

; the initiaii/ation code follows; discarded when we terminate-but-stay-resident:

INITIALIZE:

; here would be any initialization code needed for whatever our purpose is:

; next is the code that will move the resident portion down over most of the PSP:

START_RES1DENT
- BEGINNING + 100H

PUSH
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In
this chapter, we are going to discuss the functions that are univer-

sal to all versions of DOS. In DOS terminology, the old (or universal)

services covered in this chapter are called the "traditional func-

tions." The new services, introduced with DOS 2.00 and covered in

Chapter 17, are called the "extended functions."

SUMMARY OF THE UNIVERSAL FUNCTIONS
All of the DOS function calls are invoked by interrupt 33 (hex 21).

Individual functions are selected by placing the function number in the

AH register.

The traditional DOS function calls are organized into the logical

groups shown in Figure 16-1. In an effort to make this figure as clear as

possible, I have organized and described these function calls in a slightly

different manner than the DOS Technical Reference manual. Figure 16-2

lists the individual function calls.

Before we get into the details of these functions, I should warn you

that some aspects of the design and organization of a few of these func-

tions, particularly numbers 1 through 12, are screwball—to put it mildly.

They are this way for historical reasons. Many of the details of DOS, and

especially the details of the DOS function calls, were designed to closely

mimic the services provided by CP/M. This was an important and deliber-

ate choice, made to make it much easier for 8-bit CP/M software to be

converted to the 16-bit IBM PC and DOS. Although the creation of DOS
provided a timely opportunity to break with and clean up the mistakes of

the past, the opportunity was not taken (unfortunate, but wise, in my
opinion). The clean (or cleaner) redesign of the DOS services was really

started during the development of version 2.00 and realized in the ex-

tended functions (>•- see Chapter 17).

Function

Dec Hex Group
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DOS versions 2.00 and higher provide an enhanced terminate ser-

vice through function 76 (hex 4C), which leaves a return code (an error

code) in register AL when a program ends. Batch-processing files can act

on the return codes using the DOS subcommand ERRORLEVEL. Use func-

tion 76 instead of function if you wish to record any errors that occur

when a program ends (•" see page 317).

Like DOS interrupt 32, this function does not close files automat-

ically when the program ends. To ensure that the proper length of a

changed file is recorded in the file directory, use the close-file functions 16

or 62 before calling this function. Also, it is up to the program to make

sure the PSP address is in the CS register before exiting. (As you may re-

call from our discussion in Chapter 15, the PSP contains the terminate

address that tells DOS where to go when a program is terminated.)

Function 1: Keyboard Input with Echo

Function 1 waits for character input from the standard input device

and returns it in the AL register when available. It should be compared

with the other keyboard function calls, particularly functions 6, 7, and 8.

Here is how function 1 works: Key actions that result in an ASCII

character are returned as one byte in AL and immediately reported by

this service. The 97 special key actions that result in something other than

an ASCII character (•^ see page 134) generate two bytes, which are passed

to us through two consecutive calls to this service.

The standard way to use this service is to test for a in AL. If AL is

not 0, we have an ASCII character. If AL is 0, we have a special character

(which should be recorded), and this function should be repeated imme-

diately to get the pseudo-scan code that represents the special key action

(•^ see page 135 for a list of the actions, codes, and their meanings). As

with all the DOS keyboard input services, the scan code for ASCII charac-

ters is not available, even though the ROM-BIOS services make it available

in what we call the auxiliary byte (•" see page 134).

The various DOS keyboard service functions are distinguished pri-

marily by three criteria: whether they wait for input, or report no input

when none is available; whether they echo input onto the display screen;

and whether the standard break-key operation is active for that service.

(Recall that standard DOS operation calls for DOS to act on a break-key

action— Ctrl-Break or Ctrl-C—only during a limited number of opera-

tions. However, beginning with version 2.00, DOS introduced the BREAK

ON command, which gives DOS authority to act on the break key under

any circumstances.) Function 1 performs all three of these operations: It

waits for input, echoes input to the screen, and if it detects a break-key

operation, it executes interrupt 35, the break address interrupt.
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NOTE: For DOS versions 2.00 and higher, this "keyboard" service

is actually connected to the DOS standard input device. This is the key-

board by default, but it can be redirected to other input devices.

«• If you wish to avoid waiting when input is not ready, but wish to

use this service, see hinction 11, which also reports whether or not input

is ready. See functions 8 and 12 for variations on this service.

Function 2: Display Output

Function 2 writes a single ASCII character to the display screen (or,

for DOS 2.00 and later, to the standard output device, which can be re-

directed from the display screen). The character is placed in DL.

In general, this service acts on the ASCII control characters, such as

backspace or carriage return. In the case of the backspace character, the

display screen cursor is moved backward to the beginning of the current

line. Contrary to the information given in the DOS Technical Reference

manual (and in all DOS manuals since the very first), a blank character

(hex 20) is not written after the cursor is moved, which would effectively

erase any previous character. Instead, any information that has been

backspaced over remains intact.

Function 3: Serial Input

Function 3 inputs one character into AL from the standard auxil-

iary device, which is normally known as AUX: or COMl:. By the magic of

the DOS MODE command, we can change the setting to receive input

from other devices, such as COM2:. Normally, the source of this input is

the first RS-232 serial port.

NOTE: This service waits for input. It does not report status infor-

mation about the tnany miseries that a serial port can suffer. Ifyou ivant

to know the status of the serial port, use the ROM-BIOS serial services

(^ see page 210).

Function 4: Serial Output

Function 4 outputs one character from register DL to the standard

auxiliary device. • See the remarks under function 3.

Function 5: Printer Output

Function 5 outputs one byte from DL to the standard prmter device,

which is normally known as PRN: or LPTl: (but, with the DOS MODE
command, can be other devices). In the absence of any DOS redirection,

the standard printer is always the first parallel adapter, even if a serial

port is used for printer output.
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Function 6: Direct Keyboard/Display I/O

Function 6 is a complex and screwball service that combines the op-

erations of keyboard input and display output into one untidy package.

As with everything else in DOS 2.00 and later, the I/O is not connected

to the keyboard and display, but rather to the standard input and output

devices (which default to the keyboard and display).

Here is how this service works: The AL register is used for input

and the DL register for output. If DL is 255 (hex FF), then AL is ready to

accept an input character. The zero flag (ZF) signals whether input is

ready. If ZF is 1, no input is ready; if ZF is 0, an input byte is placed in AL.

If DL is not 255, then it is assumed to contain a legitimate output character,

which, on request, is sent out to the standard output device through DL.

Function 6 does not wait for keyboard input, it does not echo input

to the display screen, and the break-key operation is not active. (••^ See

function 1 for an explanation.)

m- Compare this service with functions 1, 7, and 8. See fimction 12

for a variation of this service.

Function 7: Direct Keyboard Input Without Echo

Function 7 waits for character input from the standard input device

and returns it in the AL register when available. It does not echo input to

the display screen and it does not use the break-key operation.

Function 7 works the same way as function 1: ASCII character key

actions are returned as single bytes in AL and are immediately reported

by this service. The 97 special key actions that result in something other

than an ASCII character {m^ see page 134) generate two bytes, which are

passed to us through two consecutive calls to this service.

The standard way to use this service is to test for a in AL. If AL is

not 0, we have an ASCII character. If AL is 0, we have a special character.

This character should be recorded and then the function should be re-

peated at once to get the pseudo-scan code that represents the special key

action {m- see page 135 for a list of the actions, the codes, and their mean-

ings). As with all the DOS keyboard input services, the scan code for ASCII

characters is not available, even though the ROM-BIOS services make it

available in what we call the auxiliary byte (•- see page 134).

•- Compare this service with functions 1, 6, and 8. If you want to

use this service but avoid waiting when input is not ready, see function 11,

which reports whether or not input is ready. See function 12 for a varia-

tion of this service.
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Function 8: Keyboard Input Without Echo

Function 8 waits for input, does not echo, and breaks on a break-

key action. It is identical to function 1, except it does not echo the input

to the display screen (or standard output device).

" See the discussion under function 1 for a description of this func-

tion. Compare this service with functions 1, 6, and 7. If you want to use

this service but avoid waiting when input is not ready, see function 11,

which reports whether or not input is ready. See function 12 for a varia-

tion of this service.

Function 9: Display String

Function 9 sends a string of characters to the display screen or to

the standard output device (which defaults to the display screen). The
register pair DS:DX provides the address of the string. A $ character,

CHR$(36), is used to mark the end of the string.

NOTE: For bad historical reasons, this function is referred to as

"print string" in the DOS literature. We ivould be better off thinking of it

as "display string, " as it is called here.

While this service can be tremendously more convenient than the

byte-by-byte display services (functions 2 and 6), it is flawed by the use of

a real, displayable character, $, as its string delimiter. This is not a recent

mistake; its another by-product of CP/M compatibility. Unless you know
there is absolutely no possibility of ever outputting a dollar sign, you

should avoid this service.

Incidentally, the extended DOS functions («• see Chapter 17) use

CHR$(0) as a string delimiter. This practice follows the convention set by

the UNIX operating system and the C programming language.

Function 10 (hex A): Buffered Keyboard Liput

Function 10 is a wonderful service that puts the power of the DOS
editing keys to work in our programs. The service gets a complete string

of input, which is presented to our programs whole, rather than charac-

ter by character. Assuming that the input is actually from live keyboard

action and is not redirected elsewhere, the full use of the DOS editing

keys is available to the person who is typing the input string. When the

Return key is pressed (or a carriage return, CHR$(13), is encountered in

the input file), the input operation is complete and the entire string is

presented to our program.
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There are many advantages to using this service, particularly when
our programs need complete, coherent strings of keyboard input, rather

than byte-by-byte input. The rwo foremost benefits are that we are

spared the effort of writing detailed input-handling code, and our pro-

grams' users are given a familiar set of input editing tools: the DOS edit-

ing conventions.

To use this service, we must provide DOS with an input buffer area,

where the input string will be built. The register pair DS:DX points to this

buffer. We inform DOS of the working size of the buffer in the buffer's

first byte; this is the number of bytes that DOS can use for input. The
second byte of the buffer is used for DOS to report the actual number of

bytes that were input. DOS places the input string, which consists entirely

of ASCII characters, beginning at the third byte in the buffer. The end of

the input string is signaled by the carriage-return character, CHR$(13).

The carriage return is placed in the buffer so there must be room for it,

but it is not included in the character count that DOS returns to us in the

second byte.

By these rules, the longest buffer we can give DOS is 255 working
' bytes, and the longest string that DOS can return to us is one less than the

working length. Since the first two bytes of the buffer are used for status

information, the actual working size of the buffer is two bytes less than

the buffer's overall size. This may explain some of the mysteries of the

input conventions in both DOS and BASIC.

If input continues beyond what DOS can place in the buffer (which

is one byte short of its working length), then DOS will discard any further

input, beeping all the while, until a carriage return is encountered.

You can test some elements of this function by counting the input

that the DOS command interpreter will accept. Simple experiments will

reveal that the command interpreter uses a working buffer size of 128

bytes (the total length is 130 bytes). DOS will complain about any input

other than a carriage return beyond the 127th byte.

•" See function 12 for a variation of this service.

Function 11 (hex B): Check Keyboard Input Status

Function 11 reports whether input is ready from the keyboard (or

standard input device). It is particularly useful in connection with the

non-waiting keyboard input services, functions 1, 7, and 8. An input-

ready signal is reported when AL is set to 255 (hex FF). But if no input

is ready, AL is set to 0.

The standard break-key operation is active for this service (•" see

the discussion under function 1 for an explanation).
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Function 12 (hex C): Clear Keyboard and Do Function

Function 12 clears the keyboard buffer in RAM and then invokes

one of five DOS services: function 1, 6, 7, 8, or A. The AL register is used

to select which of these functions will be performed after the keyboard

buffer is flushed. With the keyboard buffer clear of extraneous charac-

ters, this function forces the system to wait for new input before it acts

on the invoked function.

Note that since function 6 is supported, the follow-up service need

not be keyboard mput: It may be display output.

Function 13 (hex D): Reset Disk

Function 13 resets the disk and flushes all file buffers. It doesn't auto-

matically close files when the program ends. To ensure that the proper

length of a changed file is recorded in the file directory, use the close-file

functions 16 or 62 before calling this function.

Contrary to what earlier DOS manuals indicate, this service doesn't

change the default drive back to A (or make any other such change), not

even with the versions of DOS that make this claim.

Function 14 (hex E): Select Current Drive

Function 14 selects the current default drive and reports the number

of drives installed. The drive is selected in DL, with indicating drive A,

1 drive B, and so on. The number of drives is reported in AL. Once DOS
knows the number of drives installed, any number can be used for the

default drive number, from to one less than the total number reported.

There are a few things to keep in mind when using this service. First,

there are never any gaps in the drive IDs used by DOS; they are consecu-

tively numbered. Second, if there is only one physical disk drive, DOS will

simulate a second drive, drive number 1 (drive B). And third, the drive ID

letter is found by adding the drive number to the character A, CHR$(65).

In the unusual case that there are more than 26 drives, some rather pecu-

liar drive "letters" can result.

Function 25 (hex 19) reports the current drive number, and func-

tions 14 and 15 can be combined to learn the number of drives without

disturbing the current default drive setting. This is done m assembly lan-

guage like this:

; report current drive

; function call

; copy current drive number

; set current drive

; function call

MOV
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At this point, AL will contain the number of drives, without any change

to the current drive. To convert the number to the highest drive letter, we
can add this instruction:

ADD AL,'A'-1

Function 15 (hex F): Open File

Function 15 opens a file in the traditional DOS manner, by using a

file control block (FCB). The FCB is a group of 128 logical records within

a file. It contains a set of information supplied by our program about the

open file that DOS uses to locate the file and the file s data (•" see page

288 for FCB details). Our programs point to the FCB using the register

pair DS:DX. DOS will attempt to open the file given the specifications in

the FCB. The result is reported with AL set to 255 (hex FF) for failure to

open the file and AL set to for success. Remember, a file must exist in

order to be opened («• see function 22 for a create-file service). Normally,

this function would be used when opening an input file and function 22

would be used when opening an output file.

On a successful open, several fields in the FCB are set by DOS. If we

specify the default drive through function 14, DOS will fill in the actual

drive used. (This is done with an unconventional drive ID number. In this

case, drive A is indicated by 1, rather than as in most drive operations.)

DOS also fills in the file's date and time, and sets the current block to 0.

Something unusual happens with the FCB record-size field, which

indicates the record size we wish to use in reading and writing the file.

Normally, we supply this field after the file is opened. However, on open-

ing the file, DOS will set this field to a default record size of 128 (hex 80)

bytes. We can either use this record size or change it, depending on our

application. Many text-editing programs use the 128-byte record-size for

efficient I/O operations. Ironically, DOS's editor, Edlin, does not. ^^ See

page 291 for more on the record-size field.

Function 16 (hex 10): Close File

Function 16 closes a file when given a pointer to the FCB in the regis-

ter pair DS:DX. If the operation is successful, AL is set to 0; if the opera-

tion fails, AL is set to 255 (hex FF).

A file must be closed after any operation to update the file directory.

DOS makes an intelligent attempt to detect that we are closing the same

file on the same disk that we opened by comparing the drive specifier in

the file directory with that in the open FCB. This offers some protection

against the scrambling of diskette information that can occur when a

user changes diskettes and writes to the new disk before the old file has

been closed.



Chapter 1 6; Universal DOS Functions 279

Function 17 (hex 11): Search for First Matching File

Function 17 begins the operation of searching for multiple files that

match a file specification. The register pair DS:DX points to the FCB con-

taining the filename to be searched for. The intended use of this service is

to handle filenames that include the global characters ? and *. This ser-

vice begins the process and the next service, function 18, continues the

search for subsequent files.

AL signals failure (255, hex FF) or success (0). If this service is suc-

cessful, DOS will enter the filename in the FCB s filename field, making

the file ready to open. The FCB will also contain information necessary

to continue the search with the find-next service, function 18.

WARNING: The information needed by the find-next service tvill

be destroyed by any operations on the file using this FCB. If you want to

search for several files and also do I/O on them, you must save the search

information that is in the FCB.

If the FCB has an FCB extension (^ see page 289), then we can name

the attributes of the file that we wish to search for. There is a particular

logic that is followed for this attribute search. If we specify any combina-

tion of the hidden, system, or directory attribute bits, the search will

match normal files and also any files with those attributes. If we specify

the volume-label attribute, this function will only search for a directory

entry with that attribute. With DOS versions prior to 2.00, neither the di-

rectory nor the volume- label attributes can be used in the file search op-

eration. The archive and read-only attributes cannot be used as search

criteria in any DOS release.

This is a good service to use, even when we do not intend for our

programs to operate on more than one file. Even if the first matching file

is the only one that will be worked on, by using this service before open-

ing a file, we give our programs the flexibility to accept global filenames.

Here is the BASIC logic used to search and operate on various files:

10 ' invoke function 17: find first filename

20 WHILE FILE FOUND

30 SAVE FCB FOR FIND-NEXT

40 ' do whatever needs to be done to save FCB field

50 RESTORE FCB FOR FIND-NEXT

60 '
i nvok e f unc 1 1 on 18: find next filename

70 WEND
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Function 18 (hex 12): Search for Next Matching File

Function 18 finds the next of a series of files, following the set-up

preparation performed by function 17. •• See function 17 for details of

the set-up operation and return codes, and for a special warning.

Function 19 (hex 13): Delete File

Function 19 deletes files that match the FCB pointed to by the regis-

ter pair DS:DX. AL is if the operation is a success and all matching file

directory entries have been deleted. AL is 255 (hex FF) if the operation is a

failure, meaning that there were no matching directory entries.

•- See page 288 for details on the FCB.

Function 20 (hex 14): Read Sequential File Record

Function 20 is used to read the next sequential record in a file. Be-

fore calling this function, we must use the DS:DX pair to point to the file's

FCB. The sequential record number is taken from the values in the cur-

rent block and current record fields of the FCB. Then the file is read, and

on a successful or partially successful operation, the data is placed in the

current disk transfer area (•* see function 26).

DOS increments the FCB record address fields after each read to ex-

pedite the sequential read of the file. We can change the address fields

ourselves if we want to skip around in the file, but this is not wise in

sequential files; it is best to use the random I/O functions, ii and 34, if we

need random access to a file's records. (••' See page 291 for a discussion

of the curious difference in the accounting methods of sequential and

random record numbers.)

AL is used to report the results of the read. Complete success is sig-

naled when AL is 0; if AL is 1, it signals an end-of-file, indicating that no

data was read; if AL is 2, it signals that data could have been read, but the

DTA (disk transfer area) did not have sufficient space for a full record;

and if AL is 3, it signals an end-of-file with a partial record read (the rec-

ord is padded with zero bytes).

Function 21 (hex 15): Write Sequential File Record

Function 21 writes a sequential record and is the companion to the

previous service, function 20. Registers DS:DX point to the FCB, where

the record address is stored. After reading the address, DOS takes the

data from the DTA (•" see function 26) and writes it to the disk.

After the service is finished, AL contains a return code: AL = re-

ports success; AL = I reports disk full; AL = 2 reports not enough space in

the disk transfer segment to write the record. Note that DOS's internal
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disk transfer segment must have enough room to accommodate the rec-

ords in our disk transfer area.

It's important to note that data is logically written by this service,

but not necessarily physically written. DOS will buffer output data until it

has a complete disk sector to write— at which time it will write it. Until

a file is closed, there may be data in DOS's buffer that our programs con-

sider written, but which has not yet been transferred to disk. This can be

a problem if a program is terminated abnormally.

Function 22 (hex 16): Create File

Function 22 finds or creates a directory entry for a file. The service

first searches the directory for a matching filename and if none is found,

it searches for an empty entry Then, when given an FCB pointer in

DS:DX, the file is opened. Normally, this function is used to open an out-

put file and function 15 is used to open an input file.

If AL is 0, it indicates a successful operation. If AL is 255 (hex FF), it

signals failure, usually due to a lack of directory space. When a file is

opened with this function, its length is set to 0. If we write new informa-

tion to an existing file and then follow this function with function 16,

which closes the file, then the old contents of the file will be lost. This

would not happen if we opened the file using function 15, which sets the

FCB file-size field to match the file size found in the directory.

Function 23 (hex 17): Rename File

Function 23 renames files in a modified FCB pointed to by DS:DX.

For the rename operation, the FCB is specially handled. Although the

drive and original filename are located in their usual positions, the new

filename is placed at offset 16 in the FCB, beginning in the field normally

set aside for the file size (i*- see page 291).

AL = signals complete success, and AL = 255 (hex FF) signals either

no files were found to rename, or the new filename is already in use.

If the new filename contains global characters, such as * or ?, they

are interpreted to mean ditto-from-old-name and the characters in the

original name that correspond to the positions of the global characters

are not changed.

Function 24 (hex 18): Used Internally by DOS

Function 24 and functions 29 through 32 are used by DOS for its own

internal purposes. Although there is limited information about these ser-

vices available, it is unwise to use this information or spread it around.

Any DOS function that is not publicly advertised as an available service

cannot be relied upon to be usable in future revisions of DOS.
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Function 25 (hex 19): Report Current Drive

Function 25 reports the current drive in AL, using the standard nu-

meric code of drive A = 0, drive B = 1, etc. «' See function 14 for an exam-

ple of how this function may be used in assembly language.

Function 26 (hex lA): Set Disk Transfer Area

Function 26 sets the disk transfer area that will be used by DOS for

file I/O. The location of the DTA is specified by the register pair DS:DX.

There is a default DTA of 128 bytes available in the PSP at offset hex 80.

Function 27 (hex IB): Get FAT Information, Current Drive

Function 27 returns key information about the disk in the current

drive. Function 28 performs the identical service for any drive. Function

54, covered in the next chapter, performs a nearly identical service.

The following information is returned through this function call:

AL contains the number of sectors per allocation unit (1 sector for single-

sided diskettes, 2 for double-sided). CX contains the size in bytes of the

disk sectors (512 bytes for all standard PC formats). DX contains the total

number of allocation units (clusters) on the disk. And DS:BX points to a

byte in DOS's work area containing the FAT ID («" see page 120 for details

on the FAT). Prior to DOS version 2.00, the DS:BX register pair pointed to

the complete disk FAT (which could be guaranteed to be in memory, com-

plete), whose first byte would be the ID byte. In later DOS versions, the

FAT is not necessarily present all in one place, so it's safest to assume that

DS:BX only points to the single ID byte.

Beware of one dangerous possibility: This function sets DS:BX to

point to the FAT ID byte, which is not located in the data segment area.

This means that our current use of the data segment register (DS) will be

reset by this function. Normally, this disrupts the operation of our pro-

grams, which rely on the DS register setting to remain stable. To avoid

such a problem, it's best to preserve and restore the DS value around this

service. Here is an example of how it might be done:

; save the DS address

; ask for this function

; invoke the DOS function call

; grab the FAT ID byte

; replace the DS address

This little problem is an example of how easy it is to make short-

sighted mistakes in program design. If this function used the extra seg-

ment (ES) register instead of DS, then there would not be a pitfall for our

programs to stumble into.

PUSH
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Function 28 (hex IC): Get FAT Information, Any Drive

Function 28 works in the same way as function 27 except that it will

report on any drive, not just the current drive. Before calling this service,

set DL to the special drive ID number, where = the current drive,

1 = drive A, 2 = drive B, etc. (Notice that we do not use the conventional

drive numbering method, which specifies drive A as and drive B as 1.)

Function 33 (hex 21): Read Random File Record

Function 33 reads one record from a random location in a file. After

locating the FCB of the file through DS:DX, we must specify the random

record we want to read by setting the random record field in the FCB.

After setting the record field, data is then read into the current DTA.

AL IS set with the same codes as it is for a sequential read: AL =

indicates a successful read; AL = 1 indicates end-of-file, with no more data

available; AL = 2 means there is insufficient space in the disk transfer seg-

ment; and AL = 3 is an end-of-file, with a partial data record available.

NOTE: Ourprogram must continually set the random record field

to correspond to every random record we read. By contrast, DOS auto-

matically increments the sequential fields, setting them to match the next

record in line. Because of this, it is often more convenient to combine the

two processes by following a random read with sequential reads.

m- Contrast this function with function 39, which can read more

than one random record, or with function 20, which reads sequential rec-

ords. See function 36 for more on setting the random record field.

Function 34 (hex 22): Write Random File Record

Function 34 writes one record to a random location in a file. After

the register pair DS:DX points to the FCB for the file, our program must

set the random record field in the FCB to correspond to the random rec-

ord we want written. After the random record field is set, data is written

from the current DTA.

AL is set with the same codes as it is for a sequential write: indi-

cates a successful write; 1 means the disk is full; 2 indicates insufficient

space in the disk transfer segment.

NOTE: Ourprogram must continually set the random recordfeld

to correspond to every random record we write. By contrast, DOS auto-

matically increments the sequential fields, setting them to match the next

record in line. Because of this, it is often more convenient to combine the

two processes by following a random write with sequential writes.
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•" Contrast this function with function 40, which can write more

than one random record, or with function 21, which writes sequential

records. See function 36 for more on setting the random record field.

Function 35 (hex 23): Get File Size

Function 35 reports the size of a file in terms of the number of rec-

ords in the file. DS:DX points to the FCB of the file we want to know
about. Before calling the function, the FCB should be left unopened and

the record-size field in the FCB filled in. If we set the record size to 1, the

file size will be reported in bytes, which is most likely what we will want.

If the operation is successful, AL is and the file size is inserted into

the FCB. If the file is not found, AL is 255 (hex FF).

Function 36 (hex 24): Set Random Record Field

Function 36 sets the random record field to correspond to the cur-

rent sequential block and record fields in the FCB. This facilitates switch-

ing from sequential to random I/O. The DS:DX registers point to the FCB

of an open file.

Function 37 (hex 25): Set Interrupt Vector

Function 37 is used to set an interrupt vector. The register pair

DS:DX contains the vector address of an mterrupt-handling subroutine

and AL contains the interrupt number. The 4-byte interrupt vector is

placed in the vector table and is called when the interrupt number is re-

quested through the INT instruction.

While any program that knows enough to create interrupt vectors

could set them itself, this service relieves us of some of the trickery neces-

sary to set an interrupt vector safely. For vectors that point to interrupt

handlers instead of pointing to tables, the segment portion would nor-

mally be our current code segment (CS), which must be transferred to DS.

Again, note the poor choice of DS rather than ES, which tampers with

our program users' access to data.

•^ To examine the contents of the interrupt vector, see function 53

(hex 35) in the next chapter.

Function 38 (hex 26): Create Program Segment

Function 38 is used to create a new program segment to prepare a

separately loaded subprogram, or overlay, for execution. DX is used to

provide the segment paragraph for the new program. The current pro-

gram's program segment prefix (PSP) is copied to the first 256 (hex 100)
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bytes of the new segment area, creating a new PSP. This new PSP is up-

dated with new memory and interrupt vector information. After this ser-

vice sets up the PSP, we can use conventional DOS input services to read a

COM-type program file into the area immediately following the PSP. With

advanced versions of DOS (2.00 and later), the whole process of setting up

and using overlays is much easier.

<«- See the next chapter, particularly function 75. For an explana-

tion of the program segment prefix (PSP), see page 260.

Function 39 (hex 27): Read Random File Records

Unlike function 33, function 39 reads one or more records, starting

at a random file location. DS:DX points to the FCB for the file to be read

and the random record number is then taken from this FCB. CX contains

the number of records desired, which should be more than 0.

The return codes are the same as they are for function 33: AL =

means the read was successful; AL = 1 indicates end-of-file, with no more

data (if the records were read, the last record is complete); AL = 2 indicates

disk transfer segment problems (often a wrap-around of the segment offset

past hex FFFF, which is not allowed); and AL = 3 indicates the end-of-file,

where the last record read is incomplete and padded with zeros.

No matter what the result, CX is set to the number of records read,

including any partial record, and the random record field in the FCB is set

to the next random record.

m- Contrast this with function 33, which reads only one record.

Function 40 (hex 28): Write Random File Records

Unlike function 34, function 40 writes one or more records, starting

at a random file location. DS:DX points to the FCB for the file to be writ-

ten and the random record number is then taken from this FCB. CX con-

tains the number of records desired and in this case, CX can be 0. When
CX is 0, it is used as a signal to DOS to adjust the file's length to the posi-

tion of the specified random record. This makes it easier for our pro-

grams to manage random files: If we have logically deleted records at the

end of a file, this service allows our programs to truncate the file at that

point by setting the file's length in CX, thereby freeing disk space.

The return codes are the same as they are for function 34: AL =

indicates a successful write and AL = 1 means there is no more disk space

available. No matter what the result, CX is always set to the number of

records written.

m- Contrast this function with fiinction 34, which writes only one

random record.
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Function 41 (hex 29): Parse Filename

Function 41 parses a command line for a filename with the form

DRIVE:FILENAME.EXT. If a filename is found, it creates an FCB. Func-

tion 41 is particularly usefijl for processing the filename parameters pre-

sented to a program when it is invoked. The parsing parameters are care-

fiilly designed to make it convenient for a program to set up a default

drive, a filename, and an extension, which can be overridden in a com-

mand specification. This forms the foundation for some commonly expe-

rienced program behavior.

The register pair DS:SI points to the string where the filespec string

is located. The register pair ES:DI points to the memory location to be

filled with an unopened FCB. Bits through 3 of AL control how the file-

name will be parsed.

If bit is 1, the function scans past the separators (for example,

leading blank spaces) to find the filespec. If bit is 0, the scan operation is

not performed and the filespec is expected to be in the first byte location

of the command line.

If bit 1 is 1, then the drive byte in the FCB will only be set if it is

specified in the filespec being scanned. This allows the FCB to have its

own default drive (which can be overridden), rather than using the DOS
default drive.

If bit 2 is 1, the filename in the FCB will be changed only if a valid

filename is found in the filespec. This allows our programs to set up a de-

fault filename, which can be overridden by the command input.

If bit 3 is 1, the filename extension in the FCB will be changed only if

a valid filename is found in the filespec.

When the parsing is done, the conventional punctuation preceding,

inside, and ending a filespec is recognized. If the global character * is

encountered, it is translated into the more elaborate ? format.

As usual, AL reports the results: AL = signals success with a single

filename; AL = 1 signals success with global characters (* or ?), which

alerts us to the need for find-first-find-next processing (see functions 17

and 18); AL = 255 (hex FF) signals failure (which generally means some

problem in the filespec).

To facilitate repeated processing, DS:SI (just SI, really) will be up-

dated to point past the parsed input. If the parse was unsuccessful, the

second byte of the FCB (ES:DI + 1) will be blank.

As an old-style universal DOS service, this function cannot handle

path names, which limits—but doesn't eliminate— its usefulness to us.
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Function 42 (hex 2A): Get Date

Function 42 reports DOS's record of the current date. The date is

reported in CX and DX. DH contains the month number (1 through 12);

DL contains the day of the month (1 through 28, 29, 30, or 31, as appropri-

ate); and CX contains the year (1980 through 2099).

The day of the week is reported by this service by returning a value

from through 6 in register AL, which signifies Sunday through Satur-

day. This day-of-the-week feature is something of an orphan. It has been

present in DOS since release 1.10, but it was not even mentioned until DOS
version 2.00. In both the 2.00 and 2.10 manuals, it is incorrectly described

as a part of the get-time function and not as part of the get-date function.

Starting with DOS 3.0, the manual tells it as it is. •- Turn to the example

on page 292 to see how this service can be used.

Function 43 (hex 2B): Set Date

Function 43 sets DOS's record of the current date, in the same form

as the date is reported in function 42. The date is set in CX and DX. DH
contains the month number (1 through 12); DL contains the day of the

month (I through 28, 29, 30, or 31, as appropriate); CX contains the year

(1980 through 2099); and AL contains the day of the week (0 through 6).

•" See function 42 for further explanation. Turn to the example on
page 292 to see how this service can be used.

Function 44 (hex 2C): Get Time

Function 44 reports the time of day. The time is calculated from the

ROM-BIOS clock-tick count (•- see page 222). DOS responds to the ROM-
BIOS's midnight-passed signal and updates the date every 24 hours.

The tick count is converted into a meaningful time and placed in

registers CX and DX. CH contains the hour (0 through 23, on a 24-hour

clock); CL contains the minutes (0 through 59); DH contains the seconds

(0 through 59); and DL contains hundredths of seconds (0 through 99).

The actual rate of the clock tick is approximately .054 second, so

the time cannot be reported accurately to hundredths of seconds and no
event can be timed finer than to roughly Vio second. Nevertheless, I have

confirmed that the algorithm used by DOS to calculate the hundredths

does produce an even distribution of all 100 values. Because of this, it is

reasonable to use the hundredths value in the seed for a pseudo-random

number generator.
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Contrary to what appears in the DOS Technical Reference manual,

the day of the week is not reported by this get-time function. Instead, it is

reported by function 42, the get-date function, as common sense would

expect.

Function 45 (hex 2D): Set Time

Function 45 sets the time of day. The time is specified in registers

CX and DX. CH contains the hour (0 through 23, on a 24-hour clock); CL

contains the minutes (0 through 59); DH contains the seconds (0 through

59); DL contains hundredths of seconds (0 through 99).

Function 46 (hex 2E): Set Disk Write Verification

Function 46 controls verification of disk write operations. When
verification is on, each disk write will be followed by a verify read. This

does not compare the written data, but instead checks the CRC, the com-

plex parity check of proper data recording.

When using this service, DL must be set to 0, which suggests that

there are some unadvertised variations on this function. AL is set to or

1, which turns verification off or on.

With DOS versions 2.00 and higher, extended function 84 (hex 54)

can be used to report the current setting of the verification switch (« see

page 319).

THE FILE CONTROL BLOCK
For the old, traditional DOS function calls, work with disk files cen-

ters around the DOS file control block (FCB), a 44-byte area that contains

descriptive information about the files we are using. As we can see from

many of the function calls, we not only have access to the FCB, we also

have nearly complete control over it. We'll find that the new DOS func-

tion calls introduced with version 2.00 («" and covered in Chapter 17),

keep most of the control information about a file (or other device) hidden

from us. Instead, we'll work only with a simple file identification number,

called a file handle—and DOS will do all the rest. But we'll save the dis-

cussion of file handles until the next chapter. Here we'll cover the format

and use of the FCB.

There are two main parts to the FCB: the FCB itself, which is a 37-

byte area, and the extended FCB, which is a quasi-optional 7-byte prefix

to the FCB. The larger part of the FCB stores control information about

the files, including the filename and drive specification, as well as record

sizes and numbers. The 7-byte extension indicates that the file has special

file attributes. («- See page 116 for more on file attributes.)
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The situation with the FCB extension is more than a little peculiar.

The extension is only used when we are working with files that have un-

conventional attributes, such as hidden or system files. Supposedly, the

extension is only needed under those circumstances and if we are not

using the special tiles, we do not need to reserve the 7-byte storage space.

Ha! In practice, it is all but mandatory to set aside space for the FCB

extension because the presence of the extension is signaled by the value

255 (hex FF) in its first byte. To make matters worse, if we're not using

the FCB extension we have to make sure that it is marked as not being

used—which means that the 7-byte memory area is in use, busy telling

DOS that it isn't needed. This is the sort of clumsy design that drives re-

sponsible programmers wild, and makes everyone, including the DOS de-

signers, long for the cleaner setup of the extended functions discussed in

Chapter 17

The FCB is addressed from the beginning of the main part, and all

fields within the FCB are referred to in terms of their offset from this ad-

dress. This places the FCB extension at a negative offset of -7 We'll fol-

low DOS conventions and describe the various fields in these terms.

Offset

(dec)
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The fields shown in Figure 16-3 that are set and controlled by DOS
should not be changed by our programs. The other fields should be set by

us: The ones marked Us-1 should be set before the file is opened for use;

those marked Us-2 should be set before the file is read from or written to.

We will discuss the use and coding of the parts of the FCB in the order

they appear in the table.

Offsets -7 and —6. The extension active signal must be set to 255

(hex FF) if we are using the FCB extension, or to any other value if we are

not. The DOS literature indicates that the 5-byte field following it should

be set to zero, though it may not matter.

Offset -1. The file-attribute field must be set to the special attri-

butes of the file being opened. This is not needed for ordinary files, which

have an attribute of 0. The attributes that must be specified are the hid-

den, system, and directory attributes. The label attribute is irrelevant,

and the attribute specification is not needed to access a read-only file.

m- See page 118 for more on attribute coding.

Offset 0. The special drive number in the byte at offset is used to

indicate which drive we wish to work with. This is not the same as the

standard drive ID number, in which indicates drive A, 1 indicates drive

B, etc. Instead, this drive number is set up in a more flexible format,

where 1 indicates drive A, 2 drive B, and so forth. The added flexibility

comes from the use of to indicate the current default drive, whatever

that might be. Before a file is opened, we can specify the drive we want,

or indicate the default drive with a 0. When the file is opened, DOS will

change the to the specific drive number, which we can then inspect

using function 25 (hex 19). When working with this field, take care not to

get the special drive values confused with the more conventional drive

numbers, which are one less than the numbers used here.

Offsets 1 and 9. The two fields at byte offsets 1 and 9 give the file-

name and extension. Following the standard DOS conventions, these

fields are left-justified and padded on the right with blanks (CHR$(32),

hex 20). Also following DOS convention, either upper- or lowercase let-

ters may be used. If the filename is a device name that DOS recognizes,

such as CON:, AUX:, COMl:, COM2:, LPTl:, LPT2:, PRN:, or NUL:, DOS
will use that device rather than a disk file.

NOTE: This is a reasonably good place to point out that the FCB

mechanism has no provision for working with path names. Whenever

we use FCBs, they always apply to the current directory in any drive.

«" For flexible use of paths and subdirectories, see the new, extended

functions in Chapter 17.
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Offsets 12 and 32. For sequential file operations, the current block

and current record fields are used to keep track of the location in the file.

The use of these fields is typically rather odd. Instead of using one inte-

grated record number, the record number is divided mto a high and low

portion, referred to as the block and record numbers. Just to make things

screwier, blocks consist of 128 records instead of the 256 records that a

1-byte record number would allow. This is why I described the record

number as a "signed" byte in Figure 16-3. h actually is not signed, since

negative values are not allowed; this is simply a warning that the allowed

values range from through 127, and not through 255.

The first record of a file is record of block 0. This format is de-

signed to allow quick calculation of the location of each sequential rec-

ord. With this record-locating system, DOS actually performs sequential

file operations as a variation on random file operations. We set these two

fields before the first sequential file operation, whether read or write.

DOS automatically increments the field with each subsequent operation.

We can skip around in a sequential file by modifying the fields— a tactic

that is dandy for an input file, and dicey for an output file.

Offset 14. The record-size field, beginning at byte offset 14, gives

the size in bytes of the logical records of the file. When our programs ask

DOS to read or write a record, the logical size of the record is the number

of bytes transferred between DOS's disk buffers and our program's data

area. This value has nothing to do with the file as seen by DOS or with

the file stored on disk; it indicates how this program wishes to view the

file at this time.

The same file data can be worked on under a variety of record sizes.

Unless a file is actually built of fixed-length records, we normally treat the

file as though it has a record length of one byte in order to conserve

space. It is customary for some of the common text-editing programs to

use a record size of 128 bytes for ASCII files. This reduces the number of

DOS function calls that are needed to work with the file to less than a

hundredth of what they would be with a declared record size of one byte.

Naturally, there is a small price to pay for this trick: The file size re-

corded by DOS can be too high by as much as 127 bytes, and these pro-

grams must do a little extra footwork to keep the data straight. When a

file is opened through function 15, DOS sets the record size to 128 bytes

by default. If we want another size, such as 1 for single-byte operations,

we must change it after the file is opened.

Offset 16. The file-size field at byte offset 16 indicates the file size in

bytes. The value is taken from the file's directory entry and is placed in the

FCB when DOS opens a file. For an output file, this field is changed by

DOS as the file grows. When the file is closed, the value is placed in the



292 PROGRAMMER'S GUIDE TO THE IBM PC

file's directory entry. Changing this field can give us some last-minute

control over the size of an output file, but be careful when doing this. If

we attempt to read a subdirectory as a file (which requires the use of the

FCB extension to indicate a directory's file attribute), this field will be

when the file is opened because a subdirectory's directory entry indicates

a zero length. To read the subdirectory successfully, we need to set this

field to some arbitrarily high value. And here's something else to keep in

mind: When using the rename operation (function 23), the new filename

will be placed at offset 16, exactly where the file-size field is located.

Offset 20. The file's date is coded m a 2-byte field m the same form

as the file directory entries, using the MM/DD/YY format. This field is set

by DOS when the file is opened, with information taken from the file di-

rectory. (•" See page 118 for more on date coding.)

Offset 33. The random record field is used during direct or random

read and write operations, just as the current record and block numbers

are used during sequential operations. This field is in the form of a 4-

byte, 32-bit integer, which can easily be broken down into bytes or words.

Records are numbered from 0, which makes it easy to calculate the file

offset to any record by multiplying the random record number by the

record size. We must set this field before any random file operation. DOS
leaves it undisturbed.

AN EXAMPLE
For our assembly-language example in this section, I've chosen

something rather interesting and foxy. It's a routine that I developed for

use within my own Norton Utility programs, so you'll be seeing some

actual production code, modified only to enhance the comments.

The purpose of this routine is to calculate the day of the week for

any day within DOS's working range, which is stated to be from Tuesday,

January 1, 1980, through Thursday, December 31, 2099. Occasionally, it's

valuable for a program to be able to report the day of the week, either for

the current date, or for any other date that may be in question. For exam-

ple, DOS keeps track of the date and time each file was last changed.

Since we often use this information to find out when we last worked with a

file, it can be handy to know the day of the week as well. In fact, the day

of the week is often more immediately meaningful than the actual date.
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Although there are several interesting and clever algorithms pub-
lished for calculating the day of the week, the actual work of writing a

day-of-the-week program is usually rather tedious. It seems we rarely

have these published algorithms on hand when we need them, and if we
do they are often expressed in a language that is unsuitable for our pur-

poses. Beginning with release 2.00, DOS mcorporated a day-of-the-week
calculation, which can spare us the chore of writing our own. DOS's pro-

gram is only available to us in a form that reports the current day of the

week, but that is no obstacle: We can temporarily change DOS's date to

the date we're interested in and then have DOS report the day of the

week. That is what the following assembly-language routine does for us.

Besides being slightly foxy, this routine is interesting because it illus-

trates the use of three DOS function calls operating together to produce
one result. It also nicely illustrates the minor intricacies involved in saving

and restoring things on the stack. As we will see here, stack use occasion-

ally has to be carefully orchestrated so that different values don't get m
the way of each other.

This particular subroutine, named WEEKDAY, is set up in the form
needed for use with the Lattice/Microsoft C compiler. The routine is

called with three integer variables, which give the month, day, and year
we are interested in. The routine returns the day of the week in the form
of an integer in the range of through 6 (signifying Sunday through Sat-

urday). This conforms nicely to the C language convention for arrays,

providing an index to an array of strings that give the names of the days.

Therefore, we could use this subroutine in this way:

DAY_NAMES (WEEKDAY (MONTH , DAY , YEAR
) )

It is important to note that this routine works blindly with the date,

checking neither for a valid date nor for the range of dates accepted by
DOS. Also, note that this routine requires DOS version 2.00 or higher.

Here is our subroutine:

PGROUP GROUP PROG

PUBLIC WEEKDAY
PROG SEGMENT BYTE PUBLIC 'PROG'

ASSUME CS:WEEKDAYS
WEEKDAY PROC NEAR
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Strategy: get and save old date

set new date

get date, which reports day of week

reset old date

PUSH BP

MDV BP,SP

MOV
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Having focused on the DOS interrupts in the last chapter, in

this chapter we'll discuss the DOS functions that are new to

the advanced versions of DOS, version 2.00 and beyond. Ac-

cording to DOS terminology, the "old" or "universal" ser-

vices covered in Chapter 16 are the traditional functions, and the "new"

services covered in this chapter are the extended functions.

The extended functions of DOS 2.10 are identical to those of DOS

2.00. DOS version 3.00 introduced some changes to a few of the existing

functions and also added six new functions. In this chapter, you will find

each DOS-2 function described in detail, with the DOS 3.00 enhance-

ments described wherever they occur. The new DOS 3.00 extended func-

tions are described in detail at the end of the chapter.

«- See Chapter 15 for the DOS interrupts, which are the services

and related items that are not categorized as function calls. Then see

Chapter 16 for the traditional DOS function calls that can be used with

any release of DOS.

DOS-2 ENHANCEMENTS
With almost every DOS upgrade, there are changes in the way DOS

operates and in the number of services it provides to programmers. The

introduction of DOS 2.00 brought about the most dramatic changes: It

added 33 new services to the existing 42; it changed the way we access

file information as a result of these new services; and it made it possible

to adapt DOS to work with almost any hardware device through the use

of programs called installable device drivers. Before discussing the ex-

tended functions in detail, we'll briefly cover how some of these enhance-

ments affect our programming practices.

Enhancements to the Extended DOS Functions

Many of the extended services introduced with DOS 2.00 and DOS

3.00 have three important new features that direcriy affect the way we use

the services. First, most of the functions return a set of standard error

codes in the AX register. Second, all of the functions that use string input

require a special string format known as the ASCIIZ format— a string

followed by a byte of zeros. And third, many of these extended DOS func-

tions use a 16-bit number called a file handle, instead of an FCB, to keep

track of the files and I/O devices that a program communicates with.

We'll discuss each of these enhancements in turn on the next few pages.
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The Standard Error Codes

Many of the new extended DOS functions return a standard set of

binary error codes, called return codes, when the service has finished op-

erating. These are listed in Figure 17-1. Generally, the return codes signal

that a service has failed for some reason. They can be used by our pro-

grams to determine the nature of the problem and the appropriate action

that should be taken.

The standard return codes are reported in the AX register (though

a single half-register could be used, since all the codes have values that

are well under 255). The carry flag (CF) is used to signal an error— at

least that's what it's for in theory; I have discovered by experimenting

with these services that you cannot depend on CF to signal conditions

that you or I might think call for an error signal. Fortunately, the stan-

dard return codes are reliable and you can count on the values shown in

Figure 17-1 to be used whenever a function returns an error. Whether or

not you can expect to use the CF flag as a signal is another matter. I

would advise that you either test the function experimentally to see what

happens with the CF flag, or else completely ignore the flag and just test

for the specific codes that might occur in the AX register. In the descrip-

tions of the functions that supply return codes, you'll find a short list of

the codes that are most likely to be returned by a function error.

NOTE: DOS 3.00 offers not only the standard error codes, but also

more extensive error codes through function 89. • See page 320.

Error Code
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The ASCUZ String

Whenever any of the extended functions require variable length

strings, such as a path name, we use a format knowTi as an ASCIIZ string.

An ASCIIZ string consists of a series of conventional ASCII characters fol-

lowed by a zero byte, which marks the end of the string. A typical path-

name string may have a form something like this:

ft:\DIRECTDRY1\DIRECTDRY2\FILENAME.EXT(BYTE DF ZEROS)

The drive specifier is optional and either the forward slash or backslash

are accepted as path separators.

The ASCIIZ string format is commonly used by both the UNIX oper-

ating system and the C programming language; it is just one of many
new elements with a C UNIX flavor introduced with the DOS-2 %'ersions.

File Handles

The new extended functions of DOS deal with files in a more inter-

nal way than the traditional DOS services. The traditional ser\'ices make
use of a file control block (FCB), which we have access to and nearly com-

plete control over. The extended services keep most of the control infor-

mation about a file (or device) quite private and hidden from us.

In the traditional ser\ices, we indicate which file we are working

with by pointing DOS to an FCB. We use the same services to perform rou-

tine file management tasks, such as locating the file, pointing to the file's

data, and determining the file size. In contrast, in the extended services

we work with a file handle, which is nothing more than a simple 16-bit

number returned through the AX register. This number identifies the file

or device we are working with and automatically performs most of the

routine file management operations.

DOS maintains complete control over the file handles, and issues the

handle numbers to us whenever we create or open a file. There are five

standard handles, numbered through 4, which are automatically avail-

able to ever)- program {m- see Figure 17-2). Other handles, with higher

handle numbers, are issued by DOS as they are needed.

The traditional functions allow- up to 99 files (and file FCBs) to be

open at the same time using the FILES command in DOS (d 255 are

allowed in the AT). However, the extended functions, operating under

DOS-2 versions, issue a maximum of 20 file handles to any one program,

thereby Umiting the number of files that a program can actually open.

On request, DOS 3.00 provides more handles, but defaults to the DOS-2

limit of 20 files. This limitation in the extended functions is hkely to af-

fect only highly complex programs that require a large number of open

files at one time.
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Handle Use Default Setting

Standard input (normally keyboard input) CON
1 Standard output (normally screen output) CON
2 Standard error output (always to the screen) CON
3 Standard auxiliary device (AUX: device) AUX:

4 Standard printer (LPTl : or PRN: device! PRN:

Figure 1 7-2. The five standard handles

available to every file

Installable Device Drivers

Two additional features that were introduced with DOS 2.00 also

deserve some attention: the installable device drivers, and specifically, the

ANSI driver (usually called ANSl.SYS), a device driver that comes standard

with many adaptations of DOS.

The DOS device drivers are programs that we create to link hard-

ware devices to our computer system without rewriting the BIOS. A de-

vice driver may be a routine that supports the addition of new hardware,

such as a joystick or a mouse, or it may be a routine that modifies the

operation of standard hardware so that it can perform tasks that are not

available through the DOS services. (The ANSI driver is an example of the

latter t\'pe; it lets us modif\' screen output or keyboard input without

using the BIOS service routines.) Since the device drivers are created as a

part of DOS, our programs need not reach down to the BIOS or the hard-

ware level to accommodate new devices, an important feature for pro-

grams that operate in windowing or multitasking environments.

The device drivers are not directly related to the extended DOS func-

tions, so we will save a more detailed discussion of them for Appendix A.

Keep in mind that by placing the discussion of device drivers at the end of

the book, I in no way mean to diminish their importance. All program-

mers who are concerned with the range and longevit)^ of their programs

should at least be familiar with the use and operation of device drivers.

•" See Appendix A.

SUMMARY OF THE EXTENDED DOS FUNCTIONS
All the extended DOS function calls are invoked through interrupt

number 35 (hex 21). The individual functions are selected by placing the

function number in the AH register. Any program that uses the extended

functions should test the DOS version number first to make sure the func-

tions are available. Extended function 48 (hex 30) provides this service.
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Function

Dec Hex Group

47-56
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Function
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Function 49 (hex 31): KEEP—Advanced
Terminate-but-Stay-Resident

Function 49 is the advanced version of the universal DOS interrupt

39 terminate-but-stay-resident service. In addition to ending a program,

function 49 allows the terminating program to report a return code,

which is placed in the AL register and can be tested with the ERROR-

LEVEL feature of DOS batch processing.

Any program that ends this way must tell DOS how much of itself

to keep in memory and how much to throw away. This is done by passing a

segment-paragraph value in DX that specifies the memory paragraph just

beyond the end of the resident portion. This controls how much of the

program's initial memory allotment is to be kept and how much is to be

released.

A program can request additional memory by using the memory-

allocation services, functions 72 through 75. Any memory that is allo-

cated by these services is not released by the value specified in DX. DX
only keeps track of the memory that DOS allocated when the program

was first loaded, an allocation that is not under the program's control.

Generally, we're skating on thin ice if we freely allocate memory in a res-

ident program—but with care, it can be done.

Function 51 (hex 33): Get/Set Ctrl-Break

Function 51 either reports on or controls the state of Ctrl-Break

processing. You'll recall that DOS acts on Ctrl-Break only under a limited

and quirky set of circumstances {m- see page 256). One of the nice im-

provements that began with DOS version 2.00 is that Ctrl-Break checking

can be extended to take place during any DOS operation. For compatibil-

ity with DOS-1 versions, this extended Ctrl-Break checking must be op-

tional. It can be controlled three ways: through the BREAK command,

through the CONFIG.SYS initialization file, and through this DOS func-

tion, which lets any program do Ctrl-Break checking.

If AL is set to 0, then we can request the current break state, which

is reported in DL: DL = means the break check is off; DL= 1 means it is

on (extra checking is in effect). If AL is set to 1, then we can set the break

state using the same coding in DL: DL = disables the break check; and

DL = 1 enables the break check.
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Function 53 (hex 35): Get Interrupt Vector

Function 53 returns the interrupt vector for the interrupt number

specified in register AL. The vector is returned in the register pair ES:BX.

There are several uses for this service. The most obvious is to pre-

serve the current interrupt vector before changing it with function 37

(hex 25), so that it can be restored later. Another use is simply to check

the current vector setting; for example, we may use this function to see

if the default vector setting has been changed. One particularly useful

application is to find out the setting of the interrupt vectors that point to

tables rather than interrupt-handling subroutines. With the vector setting

in hand, it is a simple matter to access the table information.

Function 54 (hex 36): Get Disk Free Space

Function 54 provides a host of interesting and useful information

about the space status of a disk—much more than just the free space that

the name of the service implies. Before calling this service, we select the

drive that we are interested in with the DL register: DL = indicates the

default drive; DL = 1 indicates drive A; DL = 2 indicates drive B; etc. Notice

the difference between this notation and the more conventional = drive

A notation. Like all DOS services, and unlike the ROM-BIOS services,

these are logical drives, not physical drives.

If there is an error—for example, an invalid drive— it is reported

with hex FFFF in the AX register. Otherwise, AX contains sectors-per-

allocation unit (cluster), CX contains bytes per sector, BX contains num-

ber of available clusters, and DX contains total number of clusters.

From these numbers we can calculate a lot of interesting things

about the disk. For example, we can use these formulas to calculate the

following:

CX * AX ' bytes-per-allocation unit (cluster)

CX • AX • BX ' total number ot free bytes

CX»AX»DX ' total storage space

(BX • 100) / DX ' percentage of free space

If S were the size of a file in bytes, then we could calculate the number of

occupied sectors in this way:

(S + CX • AX - 1 ) / (CX • AX)

Similar formulas would give us the number of allocation units and the

amount and proportion of space that is allocated to a file but not used

(the "slack space").
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Function 56 (hex 38): Get Country-Dependent Information

Function 56 provides an interesting service that allows programs to

automatically adjust to different international currency and time format

conventions by using a table of country-specific information supplied by

DOS. The DOS-2 version of this service reports a very small set of country

information. The DOS-3 extension reports the information for any coun-

try code in the DOS table.

Register AL must be set to to get the standard country informa-

tion. For DOS 3.00 or later versions, register AL can be set to a predefined

country code. (The country code is the same 3-digit code used in the

telephone system.) To access more than 255 country codes, AL can be set

to 255 (hex FF) and the country code can be put into register BX. If the

requested country code is invalid, DOS sets the carry flag (CF) and places

an error code in AX. Otherwise, BX contains the country code and the

32-byte area is filled in with the country-specific information shown in

Figures 17-5 and 17-6. The register pair DS:DX points to the beginning of

the 32-byte area.

Programs operating under DOS-2 versions can use only the stan-

dard set of country-specific information coded into DOS, by setting AL to

0. Programs operating under DOS-3 versions can request the standard in-

formation for any country whose code exists in the table (AL = code), or

they can simply go exploring for valid codes. If you want to explore the

codes, you can write a fairly simple program that tests all possible coun-

try codes and displays the valid ones.

The 32-byte information area is coded somewhat differently for

DOS-2 versions than it is for DOS-3 and later versions. Although the cod-

ing may appear to be similar, the two formats are not compatible.

Field Offset Size (bytes) Description

1
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Field Offset Size (bytes) Description

2 Date and time code

5 Currency symbol string (ASCIIZ format)

2 Thousands separator string (ASCllZ format)

2 Decimal separator string (ASCllZ format)

2 Date separator string (ASCllZ format)

2 Time separator string (ASCllZ format)

1 Currency symbol location: 1 = before;

= after)

1 Currency decimal places

1 Time format: 1 = 24-hour clock; 0=12 hour

4 Upper/lowercase map call address

2 List separator string (ASCIIZ format)

8 Reserved

Figure 17-6. The country-dependent

information provided by DOS-3 versions

through function 56 (hex 38) when
AL = country code

Field 1 (both formats) holds an integer word whose value specifies

the display format for the time and date. There are three predefined val-

ues for this word and three corresponding date and time formats (•' see

Figure 17-7). Others might be added in the fiature.

In the DOS-2 format, the next three fields hold three ASCIIZ strings,

consisting of two bytes each: one data byte followed by the standard zero

byte that ends all ASCIIZ strings.

Field 2 holds the first string, which gives the currency symbol (this

is a dollar sign ($) for the United States).

Value Use Time Date

1

2
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Field 3 holds the second string, which gives the symbol used to punc-

tuate the thousands mark in numbers (in the US, this is a comma, as in the

number 12,345; other countries use a period or a blank).

Field 4 holds the third string, which gives the decimal point symbol

(in the US, this is a period as in 3.00; other countries use a comma).

The remaining 24 bytes of the 32-byte information area are unused

in the DOS-2 format.

The DOS-3 format begins with the same integer word that indicates

the date and time format in DOS-2. Following that are the same three

ASCIIZ strings that define the symbols for currency, thousands, and deci-

mals—with one important difference: The currency-symbol ASCIIZ

string in field 2 is allotted five bytes, allowing the currency symbol to be

as short as a single symbol (for example, a dollar or yen sign) or as long as a

four-letter abbreviation (for example, one of the currency strings used by

DOS 3.00 is DKR, which stands for Danish kroner).

Fields 5 and 6 are also two bytes in length. The first gives the punc-

tuation used in dates (for example, - as in 7-4-1985); the second gives the

symbol used to punctuate time (for example, : as in 12:34).

Field 7 is a single byte that is used to indicate where the currency

symbol should be placed on output. A zero places the symbol after the

amount (10 DKR); a one places the symbol before the amount ($10.00).

Field 8 contains a 1-byte integer that specifies how many decimal

places are used in the currency. For example, the value would be 2 for US

currency (dollars and cents) and for Italian currency (lire).

Field 9 is a 1-byte field that is bit-coded to specify a time format.

Only the first bit (bit 0) is currently used; if the bit is 0, a 12-hour clock

is used, and if it is 1, a 24-hour clock is used.

Field 10 holds a 4-byte segmented address of a subroutine that is

used to determine the usage of upper- and lowercase letters.

Field 11 contains a 2-byte ASCIIZ string that gives the symbol used

to separate items in a list, such as the commas in the list A, B, C, and D.

Field 12 holds the remaining eight bytes of the 32-byte area, which

are reserved for future use.

Function 57 (hex 39): MKDIR—Make Directory

Function 57 creates a subdirectory, just as the DOS command MKDIR
does. To invoke this service, we input an ASCIIZ string containing the

path name of the new directory, followed by a zero byte to delimit the

string. The register pair DS:DX points to the address of the ASCIIZ string.

Errors are reported through AX in the standard format for extended com-

mands (« see page 297). The possible error codes are 3 (path not found)

and 5 (access denied).
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Function 58 (hex 3A): RMDIR—Remove Directory

Function 58 removes (deletes) a subdirectory, just as the DOS com-

mand RMDIR does. To invoke this service, we input an ASCIIZ string

containing the path name of the directory we want to remove, followed

by a zero byte to delimit the ASCIIZ string. The register pair DS:DX

points to the address of the ASCIIZ string. Errors are reported through

AX in the standard format for extended commands (•' see page 297).

The possible error codes are 3 (path not found) and 5 (access denied).

DOS will not remove either the current directory or any directory

that has files or subdirectories in it. In these cases code 5 (access denied) is

signaled—or so says the DOS documentation. Common sense says that

attempting to remove the current directory ought to result in the more

specific error code 16 (attempt to remove current directory).

Function 59 (hex 3B): CHDIR—Change Current Directory

Function 59 changes the current directory, just as the DOS com-

mand CHDIR does. To invoke this service, we input an ASCIIZ string con-

taining the path name of the new directory, followed by a zero byte to

delimit the ASCIIZ string. DS:DX contains the address for the input

string. Errors are reported through AX in the standard format for ex-

tended commands (•'see page 297). The one possible error code is 3 (path

not found).

Function 60 (hex 3C): CREAT—Create File

Function 60 opens an existing file or creates a new one, which is the

standard find-or-create operation for output files. It closely parallels func-

tion 22 (
•" discussed on page 281).

To invoke this service, we provide an ASCIIZ string that contains the

path name and filename, followed by a zero byte to delimit the string.

The register pair DS:DX points to the address of the ASCIIZ string. CX, or

really CL, contains the file attribute. (« See page 116 for more on file

attributes and attribute bit settings.) The file handle is returned in AX.

This function opens any new or old file for read/write access, but

assumes we are writing to an output file, and sets the length of any exist-

ing file to zero.

Possible return codes are 3 (path not found), 4 (no handle available),

and 5 (access denied). Code 5 can indicate either that there is no room for

a new directory entry or that the existing file is marked read-only and

can't be opened for output. Since the AX register is used to return either

the file handle or the return code, we can and must rely on the CF flag to

indicate an error (
«" see page 297 for an explanation).
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Function 61 (hex 3D): Open File

Function 61 is the most general-purpose way to open a file. We pro-

vide the path name and filename in the form of an ASCIIZ string, fol-

lowed by a zero byte. As with all other file I/O functions, DS:DX points to

this string. We also indicate how we want to use the file by placing a

mode code in register AL. The eight bits of AL are divided into the four

fields shown in Figure 17-8.

The open mode for DOS-2 versions is simple: Only the access bits

(AAA in Figure 17-8) are used and all other bits are set to zero. The three

access-code settings are defined in Figure 17-9.

DOS 3.00 uses the inheritance and sharing codes as well as the access

code. DOS-3 codes are more complicated, because they must take into

account the problems of file sharing (a feature introduced with DOS 3.00).

Bit 7, the inheritance bit, indicates whether or not "child processes"

(programs run as semi-independent subprograms under this program)

will inherit the use of this file. If bit 7 is 0, the child processes will have the

use of the file. If bit 7 is 1, the file is private to this program and child

processes will not have automatic access to it. (But, like any other pro-

gram, they could request the program themselves, on a shared basis.)

Bits 4 through 6, the sharing-mode bits (SSS in Figure 17-8), define

what will happen when an attempt is made to reopen the same file more

than once. There are five sharing modes: compatibility mode (SSS = 000),

deny read/write mode (SSS = 001), deny write mode (SSS = 010), deny read

mode (SSS = 011), and deny none mode (SSS = 100). The sharing mode is

rather complex and is best left to the DOS Technical Reference manual

for an explanation.

Bit 3, marked as reserved in Figure 17-8, should be set to 0.

Notice that we do not specify either the file attribute or the record

size. This service will find any existing file, including a hidden one, and

sets the record size to one byte, by default.

Bit

7 6 5 4 3 2 10 Use

1 Inheritance flag (DOS-3)

.SSS.... Sharing mode (DOS-3)

. . . . R . . . Reserved for future use (DOS-3)

AAA Access code (DOS-2 and DOS-3)

Figure 17-8. The codes placed in register AL
to specify the open mode for function 61
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Bit

2 10 Use

Read (only) access

Write (only) access

10 Read or write access

Figure 17-9. The function 61 access-code

settings in register At

The possible return codes are 2 (file not found), 4 (file not found), 5

(access denied), and 12 (invalid access code). Since the same register (AX)

is used to return either the file handle or the return code, we can and

must rely on the CF flag to indicate an error. (« See page 297 for an

explanation.)

Function 62 (hex 3E): Close File Handle

Function 62 closes a file and flushes all file buffers associated with

the file handle given in the BX register. BX should contain the file handle

that was returned by the last open-file operation. The one possible error

code is 6 (invalid handle).

Function 63 (hex 3F): Read from File or Device

Function 63 reads the file or device (which acts like a file) associated

with the file handle given in BX. The CX register specifies the number of

bytes to read. DS:DX points to the buffer address where the data that is

read will be placed. After the function is performed, AX contains the ac-

tual number of bytes read. If this value is zero, it means the program has

tried to read from the end of a file.

The possible error codes are 5 (access denied) and 6 (invalid han-

dle). Since the same register (AX) is used to return either the number of

bytes that were read or the return code, we can and must rely on the CF

flag to indicate an error (•• see page 297 for an explanation).

Function 64 (hex 40): Write to File or Device

Function 64 writes to the file or device with the file handle given in

BX. CX specifies the number of bytes to be written and DS:DX points to

the address of the data bytes. After the function is completed, AX con-

tains the actual number of bytes written.
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There are two ways to detect errors. One way is through a true

error code signaled by CF. If CF signals an error, the possible error codes

returned in AX are 5 (access denied) and 6 (invalid handle). If no overt

error is detected but the function still ended in an error, it could mean

there was not enough disk space to write the entire file. To test for this,

see if fewer bytes are written (in AX) than were requested (in CX).

Function 65 (hex 41): Delete File

Function 65 deletes the directory entry of a file. The file is specified

by an ASCllZ string, with the path name and filename followed by a ter-

minating zero byte. The register pair DS:DX points to the string.

Read-only files cannot be deleted by this function. To delete a read-

only file, the file's attribute must be changed to using function 67 (hex

43). The global filename characters ? and * may not be used.

The error codes that may be returned in AX are 2 (file not found)

and 5 (access denied).

Function 66 (hex 42): Move File Pointer

Function 66 is used to change the logical read/write position in a

file. To invoke this service, we load BX with a file handle and then specify

the new pointer location by loading the pointer's starting location in AL

and the number of bytes we want to move it in register pair CX:DX. The

byte offset in CX:DX is a 32-bit unsigned long integer. CX is the high-

order part of the offset (which is 0, unless the offset amount is over

65,535) and DX is the low-order part.

The starting location specified in AL is called a "method code," and

there are three options. If AL = 0, the offset is taken from the beginning

of the file and the pointer is moved CX:DX bytes from that point; if AL = I,

the offset is taken from the current location; if AL = 2, the offset is taken

from the current end-of-file. In this last case, we usually set the offset in

CX:DX to to find out the current size of the file. If we set the offset to

and ask for method 0, we'll return to the beginning of the file.

After the function has been performed, the register pair DX:AX

contains the current file pointer as an offset in bytes from the beginning

of the file. The pointer is returned as a 32-bit long integer, with the high-

order part in DX and the low-order part in AX. Note the curious choice

of the register pair.

Possible error codes are 1 (invalid function number, which refers to

the method code subfunction) and 6 (invalid handle). Since the same reg-

ister (AX) is used to return either part of the new location or the return

code, we can and must rely on the CF flag to indicate an error (i** see

page 297).
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Function 67 (hex 43): CHMOD—Get/Set FUe Attributes

Function 67 gets or sets the attributes of a file (•- see page 116 for

details about file attributes). DS:DX points to an ASCIIZ string, which

provides the filespec of the file in question (the global filename characters

? and * may not be used). A setting of AL = will return the attribute

values found in CX; AL = 1 will set the attribute values found in CX. In

both cases, the values are actually taken from the CL register.

The possible error codes in AX are 2 (file not found), 3 (path not

found), and 5 (access denied).

Function 68 (hex 44): lOCTL—I/O Control for Devices

Function 68 performs a number of input/output control operations,

mostly for devices, which are all gathered together into one rumpled

package. («- See Figure 17-10.) AL selects one of ten subfunctions, num-
bered through 8 and 11. (Subfunctions 8 and 11 apply to DOS-3 ver-

sions.) BX returns the file handle.

Subfunctions and 1. These subfunctions get and set device infor-

mation that is formatted in DX by a complicated set of bit coding. Bit 7 is

set to 1 for devices and to for disk files. For devices, bits through 5 are

listed as shown in Figure 17-11. For disk files, bits through 5 provide the

disk-drive number: A value of represents drive A, a value of 1 represents

drive B, and so on.

Code Description

Get device information (returned in DX)

1 Set device information (from DX, DH part must be 0)

2 Read (see notes)

3 Write (see notes)

4 Read from drive (see notes)

5 Write to drive (see notes)

6 Get input status (see notes)

7 Get output status (see notes)

8 If device is removable; DOS-3 versions only (see notes)

11 Change sharing entry; DOS-3 versions only (see notes)

Figure 17-10. The ten I/O control operations

provided by function 68 through the AL
register
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Bit

FEDCBA98 76543
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same disk always being there. A removable device is indicated with

AX = 0, a fixed disk is indicated with AX = 1, and an invalid device code is

indicated with AX = 15 (hex F).

Subfunction 11 (hex B). This subfunction only applies to DOS-3 and

later versions, and is used to control the attempts that are made to resolve

file-sharing conflicts. Problems in sharmg a file can be very transitory,

since some programs use files only briefly DOS can try more than once to

gain access to a shared file before reporting a conflict, in the hope that,

in the mean time, the access blockage has gone away. This subfunction

sets the number of times that DOS will retry, which we specify in register

DX, and the time interval between tries (in some unspecified unit), which

we indicate with a count value in register CX.

Function 69 (hex 45): DUP—Duplicate File Handle

Function 69 duplicates an open file handle and returns a new han-

dle number that refers to the same file or device. All actions performed

with one handle will be automatically reflected in the other handle—the

new handle does not act independently in any way See function 70 for a

related service.

The BX register contains the old file handle and AX returns the new

file handle. The possible error codes are 4 (no handle available) and 6

(invalid handle).

So far, I haven't figured out a way to use this function, but I'm sure

there must be one. These things aren't created as jokes.

Function 70 (hex 46): CDUP—Force Handle DupHcation

Function 70, similar to function 69, duplicates a file handle. How-

ever, in this case, we provide an existing second handle (one that has pre-

sumably been used for some other purpose), instead of havmg DOS create

a new handle. If the second handle refers to an open file, the file is closed

before any action occurs. Once this function is invoked, all actions that

are performed with one handle are automatically reflected in the other

handle, so the new handle does not act independently in any way.

The BX register contains the old file handle and CX contains the

second handle. When the operation is complete, the file handle in CX will

refer to the same device or file as BX. The only possible error code is 6

(invalid handle).



314 PROGRAMMER'S GUIDE TO THE IBM PC

Although this service seems rather peculiar, it does have some clear

uses. For example, a program can redirect any of the standard i/O de-

vices {m- see page 312 for a list and description) by using the following

method. Let's suppose that the program wishes to dynamically redirect

printer output to a file. First, the file is opened, which returns a handle in

BX. Then this handle can be duplicated onto the standard printer handle

by loading handle number 4 into CX. After this, any standard printer

output will actually go to the file that was opened. To restore the normal

direction of the printer but maintain the handle for later use, we need to

save the normal printer handle by duplicating it onto another handle be-

fore we copy the new file handle onto the printer handle. If you followed

that, consider yourself qualified to try it. •- See function 75 (hex 4B) for

one use of this technique.

Function 71 (hex 47): Get Current Directory

Function 71 reports the current directory in the form of an ASCIIZ

string. We specify the drive number in DL (0 = default, 1 = drive A,

2 = drive B). The register pair DS:SI points to a data area that contains the

full path name, which can be up to 64 bytes long. DOS returns the full

path name of the current directory for the specified drive, including the

root directory. The path name is always followed by a zero byte— the

ASCIIZ string delimiter.

Although this function returns the entire path name, the name does

not include either the drive ID (as in A:) or the start-from-the-root back-

slash (as in A: \). By these rules, if the current directory is the root direc-

tory (a common occurrence in diskettes), then the current directory will

be reported as nothing— a null string. If you want an intelligible display

of the current directory, you may prefix the information returned by this

function with the drive-and-root indicators (as in A:\). The only possible

error code is 15 (invalid drive specification).

Function 72 (hex 48): Allocate Memory

Function 72 dynamically allocates memory. We request the number

of paragraphs (16-byte units) we want allocated in BX. On return, AX
points to the segment paragraph of the allocated memory block.

The possible error codes are 7 (memory control blocks destroyed)

and 8 (insufficient memory). If the function fails to allocate memory, the

BX registers will return the size of the largest available block.
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Function 73 (hex 49): Free Allocated Memory

Function 73 returns memory to DOS that was allocated by function

72. The ES register points to the segment address of the block that is

being returned. This is the same value that function 72 (hex 48) returns

in register AX.

The possible error codes are 7 (memory control blocks destroyed)

and 9 (invalid memory block address).

Function 74 (hex 4A): SETBLOCK— Modify
Allocated Memory Block

Function 74 is used to increase or decrease the size of a block of

memory that was allocated by function 72. Register ES points to the seg-

ment address of the block that will be changed. Register BX contains the

new size of the block in paragraphs (units of 16 bytes).

If a request for increased space cannot be fulfilled, then BX returns

the size of the largest available block of memory (in paragraphs).

The possible return codes are 7 (memory control blocks destroyed),

8 (insufficient memory), and 9 (invalid memory block address).

Function 75 (hex 4B): EXEC—Load/Execute Program

The EXEC function allows a program to load a subprogram into

memory and, optionally, execute the subprogram. The register pair

DS:DX points to an ASCIIZ string with the path name and filename of the

file to be loaded. The register pair ES:BX points to a parameter block that

contains the control information for the load operation. AL specifies

whether the subprogram is to be executed after it is loaded.

If AL is 0, the subprogram is loaded, a program segment prefix (PSP)

is created, and the program is executed. At this time, control passes to

the subprogram, and only returns to the program when the subprogram

ends. If AL is 3, the subprogram is loaded, no PSP is created, and the pro-

gram is not automatically executed, although we can jump to it. The
AL = 3 variation is normally used to load a program overlay. It is also a

simple and effective way to load data into memory.

When AL is 0, the block pointed to by ES:BX is fourteen bytes long

and contains the information shown in Figure 17-12 on the following

page. When AL is 3, the block pointed to by ES:BX is four bytes long and

contains the information shown in Figure 17-13.
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Offset Size (bytes) Description
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would end the execution of the secondary command interpreter. At that

point, our original program would be back in control. This facility opens

up vast and complicated possibilities.

WARNING: The load-and-execute function clobbers most of the

registers, including the stack registers, SS and SP. These should be pre-

served before and restored after this function. Obviously, the stack can't

be used for this. One ugly ivay to deal ivith this problem is to store the

stack registers inside the program code. If this is done, the first feiv in-

structions executed after a return from this service will be devoted to

restoring needed registers. These instructions can move immediate-to-

register type instructions, whose immediate values tvere stored in them

just before this service was invoked. This kind of programming tech-

nique (modifying program instructions directly) is considered abhorrent

to True Believers ofgood programming. But we never promised that you

wouldn't get your hands dirty.

The possible return codes from this function are 1 (invalid function

number), 2 (file not found), 5 (access denied), 8 (insufficient memory), 10

(invalid environment), and 11 (invalid format).

Function 76 (hex 4C): Terminate Process

Function 76 ends a program and passes back a return code. If the

program was invoked as a subprogram, the return code can be found

through function 77. If the program was invoked as a DOS command,

then the return code can be tested in a batch file using the DOS ERROR-

LEVEL option. The return code is reported in register AL.

When this function is performed, DOS automatically closes any files

that were opened with function 61 (hex 3D)—and presumably with func-

tion 60, as well.

Function 77 (hex 4D): Get Return Code of Subprogram

Function 77 goes and gets the return code of a subprogram that

was invoked with function 76 and that has ended. There are two parts to

the information returned. AL reports the return code issued by the pro-

gram. AH reports how the program ended and has four possible results:

AH = indicates a normal voluntary end; AH = 1 indicates termination by

DOS due to a Ctrl-Break; AH = 2 indicates termination by DOS due to a

critical device error; and AH = 3 indicates a voluntary end using the ter-

minate-but-stay-resident function 49 (hex 31).
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Function 78 (hex 4E): FIND FIRST— Start FUe Search

Function 78 searches for the first matching file or files that match a

filespec. We set DS:DX to point to an ASCIIZ string that gives the path

name and filename we want to search for. The filename may contain the

global filename characters ? and *. The CX register (CL, really) gives the

file-attribute specification that will be used to search for the file. If a file is

found, DOS formats 43 bytes of information about it in the current disk

transfer area (DTA). («" See Figure 17-14.)

The ASCIIZ string at the end of the information area stores the file-

name in its conventional notation, including a period between filename

and extension. If the extension is blank, the period does not appear.

This service is similar to the traditional DOS function 17 (hex 11).

The use of the file attributes in this search function are the same as they

are in function 17 («' see page 278).

The attribute search follows a particular logic. If we specify any

combination of the hidden, system, or directory attribute bits, the search

will match normal files and also any files with those attributes. If we
specify the volume-label attribute, the search will only match a directory

entry with that attribute. The archive and read-only bits do not apply to

the search operations. The directory, volume-label, archive, and read-

only attributes do not apply to versions of DOS before 2.00.

The error codes normally returned in AX are 2 (file not found) and

18 (no more files to be found). CF is not set to signal the error.

Offset Size (bytes) Description
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Function 79 (hex 4F): Continue File Search

Function 79 continues the file search that was begun by function 78.

It relies on the information formatted at the beginning of the DTA, which

should not be disturbed.

The one normal error code is 18 (no more files to be found). For this

code, CF is not set to the error signal.

•" See also function 78.

Function 84 (hex 54): Get Verify State

Function 84 tells us the current state of the verify switch, which

controls whether or not the disk write operations are verified. AL = indi-

cates that they will not be verified; AL = 1 indicates that they will be.

Function 46 (hex 2E) sets the verification switch (•^ see page 288).

This function brings up an annoying inconsistency in DOS services:

While some get/set service pairs are integrated into one function (like the

following function 87), others are split into two separate functions, like

function 84 and function 46.

Function 86 (hex 56): Rename File

Like the standard DOS RENAME command, function 86 changes

the name of a file. But, it can also move a file's directory entry from one

directory to another. The file itself is not moved, just the directory entry,

which means the new and old directory paths must be on the same drive.

This is a truly fabulous and useful feature, and it is rather disappointing

that it's not a part of the RENAME command.

The function needs two inputs: the filespecs for both the old and

the new filenames. These can be full-blown filespecs, with drive and path

components. The specified or implied drives must be the same, so that

the new directory entry will be on the same drive as the file. The global

filename characters * and ? cannot be used, since this function works on

single files only.

As usual, both filespecs are supplied in the form of ASCIIZ strings,

with a zero byte marking the end. The register pair DS:DX points to the

old name string and ES:DI points to the new string.

The possible error codes are 3 (path not found), 5 (access denied),

and 17 (path not found).

Function 87 (hex 57): Get/Set File Date and Time

Function 87 gets or sets a file's date and time. Recall that each file is

marked with the date and time it was created or last changed. AL is used

to select the operation: AL = gets the time, and AL = 1 sets the time.
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The file is selected by placing the file handle in BX, which means

that this service applies only to files that have been opened using the ex-

tended DOS functions covered in this chapter. Note, therefore, that set-

ting a file's time stamp with this service will only take effect if the file is

successfully closed.

The date and time are placed in registers CX and DX in the same for-

mat as they are stored in the disk directory entries, though in a slightly dif-

ferent order. In this function, the time is placed in CX and the date in DX.

Contrary to what the DOS documentation says, the time and date

information is placed in its conventional format, with the high-order

parts in CH or DH and the low-order parts in CL and DL.

The date and time can be built or broken down using the following

formulas:

CX = HOUR 2048 + MINUTE • 32 + SECOND / 2

DX = (YEAR - 1980) • 512 + MONTH • 32 + DAY

The possible error codes for this service are 1 (invalid function

number—based on the subfunction selected in AL, not the main func-

tion number) and 6 (invalid handle).

DOS 3.00 ADDITIONS

So far in this chapter, we've discussed the new DOS functions that

were introduced with DOS 2.00. DOS 3.00 brought enhancements to a few

of the DOS-2 functions and brought five new functions to the extended

function family.

Function 89 (hex 59): Get Extended Error Code

Function 89 is used after an error has occurred. It provides detailed

information about the errors that occur under these circumstances: in-

side a critical-error interrupt handler; after a DOS function call invoked

with the standard interrupt 33 (hex 21) has reported an error by setting

the carry flag (CF); and after the old-style FCB file operations that report a

return code of 255 (hex FF). It will not work with DOS functions that do

not report errors in CF, even though they may have ended in an error.

This service is called in the standard way, by placing function code

89 (hex 59) in register AH. To allow for the inevitable changes that occur

in this sort of function, we must also specify a version code in the BX
register. For DOS 3.00, we set this code to 0.

Four separate information signals are returned on completion of

this service: AX contains the extended error code; BH indicates the class

of error; BL gives the code of any suggested action that our program

should take; and CH gives a locus code, which attempts to show where

the error occurred.
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The error codes reported in AX are organized into three groups:

Codes 1 through 18 are used for function-call errors (interrupt 33 func-

tions), codes 19 through 33 are used for critical-error handler errors

(from interrupt 36), and codes 32 through 83 are used for errors that are

new to DOS-3 services. A code of indicates that there is no error for this

service to report on.

m- Figure 17-15 lists the extended error codes, Figure 17-16 lists the

error classes, Figure 17-17 lists the action codes, and Figure 17-18 lists the

locus codes.

Code



Code Meaning Code Meaning

1 Out of resource: no more of whatever we
asked for

2 Temporary situation: try again later

3 Authorization: we aren't allowed;

someone else might be

4 Internal error in DOS: not our fault

5 Hardware failure

6 System software error: other DOS
problems

7 Application software error: it's our fault

8 Item requested not found

9 Bad format (e.g. unrecognizable disk)

10 Item locked

1

1

Media error (e.g. disk reports CRC error)

12 Already exits

13 Error class is unknown

Figure 17-16. The error classes returned in

register BH following execution offunction

89 (hex 59)

Code Meaning Code Meaning

1 Try again now

2 Try again later, after waiting

3 Ask the user to fix it (e.g. change the disk);

see also code 7

4 Shut down the program, but OK to clean

up (close files etc.)

5 Shut down immediately: don't try to

clean up

6 Ignore the error: it doesn't matter

7 Retry after user action; see also code 3

Figure 17-17. The suggested action codes

returned in register BL following execution

offunction 89 (hex 59)

Code Meaning Code Meaning

1 Unknown: sorry

2 Block device error (e.g. disk drive)

3 Reserved

4 Serial device error (e.g. printer)

5 Memory error

Figure 17-18. The locus codes returned in

register CH following execution offunction

89 (hex 59)
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Function 90 (hex 5A): Create Temporary File

Function 90 creates a file for temporary use, presumably, taking

care of the chore of finding a filename that does not conflict with any

existing file. We provide two parameters: the file attribute, placed in the

CX register, and the path name of the directory where the file will be

created. If we don't want to specify a particular path, we can give DOS a

null string, which tells it to use the current directory of the current drive.

The path name must be an ASCIIZ string and is pointed to by the

register pair DS:DX. The path-name string must be ready to have the file-

name of the created file appended to it: This means that the string must

end with the backslash character that is used to punctuate directory

paths (if we give an explicit path string). We must also add 12 bytes to

allow enough room for DOS to add a filename to the string.

On return, if there is an error in this operation, the carry flag (CF)

will be set and the error code will be in AX. Also, the filename will be

appended to the path string we provided.

This service is called "create temporary file" only to suggest its in-

tended purpose. Actually, there is nothing temporary about the file that is

created since DOS does not automatically delete it; our programs must

look after that chore.

Function 91 (hex 5B): Create New File

Function 91 is similar to function 60 (hex 3C), which is (inac-

curately) called the create-file function. Function 60 is actually designed

to find a file, and to create one if the requested file does not exist. By

contrast, function 91 is a pure create-file function and will fail if the file

already exists.

As with function 60, the CX register is set to the file attribute and

DSiDX points to the address of the path name and filename (which is

stored as an ASCIIZ string). On return, CF signals errors and AX returns

the error codes.

There are many circumstances when a program will use a standard

filename, intending to reuse a file with that name if it exists or to create

a file with that name if it doesn't exist. This is the sort of situation that

function 60 is best suited for. However, there are other circumstances

when a program may not wish to disturb existing files, but only to open

a file that does not already exist. This is the sort of situation function 91 is

best suited for.
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Function 92 (hex 5C): Lock/Unlock File Access

Function 92 is used to lock certain parts of a file so that it can be

shared by several programs without one program interfering with the op-

erations of another. If one program locks one part of a file, it can use or

change that part of the file while it is locked, safe in the knowledge that

no other program will be able to use that part while it remains locked. As

you may have guessed, file locking is used only in conjunction with file-

sharing operations.

There are six parameters that determine what portion of a file will

be locked. AL indicates whether we are locking (AL = 0) or unlocking

(AL = 1) a portion of a file. BX gives the file handle. CX and DX together

are treated as a 4-byte long integer that specifies the byte offset into the

file of the locked portion. SI and DI also form a 4-byte long integer that

specifies the length of the locked portion. The first register in each of

these register pairs (CX or SI) gives the high-order part of the integer.

We are not allowed to unlock file portions piecemeal, or in combi-

nation; an unlock request should exactly match a previous lock request.

We are warned that locks should be removed before closing a file; con-

trary to what we might hope, closing a file will not necessarily clean up

the locks that remain in our file.

Function 98 (hex 62): Get PSP Address

Function 98 gets the address of the program segment prefix and re-

turns it in BX as a segment paragraph address.

In the conventional world of DOS, programs place their PSP in the

first 256 bytes of the code segment. This means that the paragraph ad-

dress of the PSP is the same as the code segment (CS) register contents.

However, as personal computers and DOS become more complex, it may
not always be this simple. For example, in the protected mode of the

80286 microprocessor in the AT, the segment registers are treated in an

exotic new way. This service exists to provide (we can hope) a permanent

and reliable way to touch the segment registers in the future.
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This chapter is a summary of the DOS service routines and is de-

signed to be used as a quick reference guide. For details about

the specific operation of each service and some comments about

their operation, see Chapters 15 through 17. Once you under-

stand the DOS services, these tables should provide you with all the pro-

gramming information that you will need.

SHORT SUMMARY
Nme DOS interrupts are called by their interrupt numbers. Five of

these interrupts are listed in Figure 18-1. The four mterrupts not shown in

the table are used for specialized purposes: Interrupt 33 (hex 21) is the

function-call interrupt that is used to invoke one of the 80 DOS functions;

and interrupts 34 through 36 are address interrupts that are used to point

to special subroutines, m- See Chapter 15 for more information.

The DOS universal functions, shown on the next page in Figure 18-2,

are called through interrupt H (hex 21); the function number is placed in

the AH register. The universal functions can be used with any version of

DOS. i*" See Chapter 16 for more information.

The new, extended DOS function calls can only be used with DOS
versions 2.00 or higher. They are called through interrupt 35 (hex 21) and

the function number is placed in the AH register. «- See Chapter 17 for

more information. Figure 18-3 lists all the new DOS functions, including

those that were introduced with DOS version 3.00. (These functions can-

not be used with earlier versions.)
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AS we've stated throughout this book, the wisest approach to

programming the PC family is to write nearly all of our pro-

grams in a high-level language (such as BASIC, Pascal, or C)

and when necessary use the DOS or BIOS services for whatever

the high-level languages don't provide. On occasion, we may also want to

create our own assembly-language routines to perform specialized tasks

not available from our programming language or the system services.

When creating programs within the confines of a single program-

ming language, we really don't need to know anything more about a lan-

guage than what we can find in the manuals that come with it. However,

if we need to break out of the bounds of a single language to access some

of the system routines, or perhaps to tie into a program that's written in a

different language, we'll need to dig deeper into the technical aspects of

both DOS and the programming languages—of DOS to learn how to link

programs together; and of the programming languages to find out the re-

quirements for the program interfaces that allow the different languages

to communicate with each other.

This chapter presents some overall considerations that apply to the

advanced use of most programming languages; that is, to building pro-

gram interfaces and linking programs with the DOS LINK utility. The fol-

lowing chapter. Chapter 20, covers five specific types of programming

language and the language translators that make them come alive. In that

chapter, we will point out some of the technical characteristics of the five

languages that must be considered whenever we are connecting them to

assembly-language subroutines.

PROGRAM INTERFACES

A program interface is a layer of assembly-language code that makes

it possible for a program written in a high-level language to communi-

cate with an assembly-language subroutine. There are two key parts to a

program interface: the control interface and the data interface.

The control interface handles the business of calling and returnmg;

that is, of passing control of the computer from one module to another

and back again without anything going amiss. The control interface, by

the way, can be tricky to program. It is remarkably simple if you know

how to do it right, and can create incredible messes if you get even minor

details wrong.

The data interface allows the two sides of an interface to touch and

correcriy understand common data. Doing this successfully involves an

understanding of how each side of the interface finds and works with

data, and an understanding of how data is formatted so that each side
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can interpret it in the same way. We'll be covering these topics in more

detail in the next chapter.

Designing program interfaces is only one part of the program link-

ing process. All three program elements— the calling program, the called

subroutine, and the interface—must accomplish the following in order

to work together successfully:

The program must be able to find its way to the subroutine. In the

8088-based system of the standard PC family, a subroutine can be called

in one of two ways: through an interrupt or through a CALL instruction.

As we already know, the DOS and BIOS services are called through inter-

rupts using the INT instruction, and the addresses of the service routines

are implicit in the interrupt number. Most ordinary assembly-language

programs and subroutines are called by the CALL instruction from our

programming language. The addresses are associated with the program

or subroutine names and established during the linking process {'*' read

on for more about linking).

There are two kinds of CALL instruction: the NEAR CALL and the

FAR CALL. The NEAR CALL locates a subroutine within the current 64K

code segment (CS) and does not require the CS register to be changed. By

contrast, the FAR CALL locates a subroutine outside of the current CS

using a complete segmented address in the CALL instruction (which

changes the CS setting). Some languages use both instructions and some

use only one.

The subroutine must know what to do when finished. Most often a

subroutine will return to the calling program using either a NEAR or FAR

RETurn instruction, but there are other options— for example, we may

want to terminate the program and return to DOS from the subroutine.

The subroutine s RET instruction does more than just return to the caller;

it also cleans the stack, as we will soon see.

The subroutine must know what supporting framework it is get-

ting from the caller. This supporting framework involves such things as

how the segment registers are set and whether there is a stack that can be

used. In general, the segment registers are just as they should be: CS has

the right code segment; DS points to the location of the calling program's

data; and SS and SP are set up with the caller's stack.

The called subroutine can usually continue to use the caller's stack

but there is no practical way to know how much working space is avail-

able. If its needs are reasonable— say, less than 64 bytes—the caller's

stack space should be adequate. However, if it should need more, the sub-

routine should set up its own data space in memory.
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If the program needs to pass information (parameters) to the sub-

routine, both the program and the subroutine must know how many

parameters there are, where they should be placed, and whether or not

they need to be changed and passed back. Most commonly, programs

and subroutines work with a fixed number of parameters, ahhough there

are ways to handle a variable number of parameters in some languages.

The parameters are always passed through the stack, either direcdy or

indirectly. The direct method passes the actual value of the parameter

through the stack; the indirect method passes the value s address through

the stack. In either case, the called program absolutely must know which

method is being used.

Which parameter-passing method is used depends primarily on the

language; some languages cannot place values on the stack, only ad-

dresses. With those languages that can handle both addresses and values,

we have a lot more freedom to decide which method to use, and the

method we use determines how the parameters are dealt with as they are

passed from one program to another. For example, if we want to protect

the caller s parameters from being changed by the called subroutine, we'll

want to pass the original value on the stack to make sure we maintain a

copy of it. But if we want the caller s parameters to be changed by the

called subroutine, we must send the address of the original value via the

stack so that the subroutine will change the parameter's value by modify-

ing what is stored at the specified address.

Parameter passing is the most complicated part of an interface rou-

tine, made even more complicated by the different ways programming

languages deal with data and stack information. Because of its complex-

ity and variability from one language to another, this is the main issue

we'll discuss in our language comparisons in the next chapter.

The subroutine must preserve certain information. Although the

requirements may vary in different situations, there are a few ground rules

governing what information should be preserved, and what can and can-

not be done when calling a subroutine. We've included some useful tips

here,'*- but you will find a few more in Chapter 3, particularly on page 39.

Interrupts can be suspended, although it is usually not a good idea,

except briefly when segment registers are changed; they must be turned

back on before returning, (i** See page 48.)

If any segment register is modified, the original setting should be

preserved on the stack. Another important register to preserve, under

most circumstances, is the base pointer (BP) register, since it is often used

to keep track of the parameters' location on the stack. By convention, a
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calling program does not expect its working register values to be pre-

served, so all the working registers, AX, BX, CX, DX, Dl, and SI can be

changed freely, as can all the flags. The caller's stack has to be preserved,

although just how that's done is part of the clean-up process.

The stack must be cleaned up after the subroutine is finished. There

are four things that might be cluttermg up the stack when a subroutine is

finished: some parameters; the return address from the CALL instruction;

register values saved from before the CALL; and finally, some working

storage from the subroutine.

Three of these leftovers are not a problem: Subroutines are expected

to remove their own working storage from the stack; saved registers are

removed by POP instructions; and the return address is removed by the

RET instruction. It's the parameters that usually complicate the clean-up

process, because the method of removal varies in different languages.

Some languages expect the subroutine to remove the parameters by spec-

ifying in the RET instruction the number of bytes to remove from the stack.

Other languages expect the caller to remove them. We'll point out these

differences as we discuss the languages in detail in Chapter 20.

With all of these program design elements in mind, let's step back a

bit farther and see how the whole process works—from creating a pro-

gram or subroutine, to combining it with others.

COMBINING PROGRAM MODULES
In this section, we're going to cover the general rules for putting

pieces of a program together or for combining program modules. We'll

be using a standard DOS programming procedure that applies to all of

the programming languages used as examples in the next chapter (except

for interpreted BASIC, which always seems to be a special case). First, let's

review the steps that are involved in creating a working program.

Step 1: Writing the Source Code

To begin with, we have to write our program using the commands

and syntax of our programming language. This form of the program is

known as the source code. For programming languages that use the stan-

dard DOS conventions, the source code must be in the form of an ASCII

text file (•- see Appendix C, page 410). Interpreted BASIC does not nor-

mally use the ASCII text file format for its source files, but it can. (To cre-

ate ASCII text files with the BASIC interpreter, we use the A option of the

SAVE command.)

By convention, source-code files have a filename extension that re-

flects the name of the programming language used, such as BAS or C.
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Step 2: Translating the Source Code

On command, source files are given to our language translators,

called compilers for anything other than assembly language, or as-

semblers for assembly language. (Again, interpreter BASIC is a special

case that we are not considering here.) The translator (compiler or as-

sembler) converts the source code into machine-language instructions;

but, it doesn't convert it into a form that is ready to be executed. Instead,

compilers and assemblers put their results into a form known as object

code. The object-code format is designed with a particular purpose in

mind: to combine separate object modules into a single larger program.

Object-code files, by convention, have a filename extension of OBJ.

Step 3: Linking Programs

The next basic step is to link the programs together. The linker, or

link-editor program, known as LINK in DOS, performs two main tasks: It

combines separate object modules (as needed), making all the necessary

connections between them; and it converts the modules from an object-

code format to a loadable program in the .EXE format.

The actual combining, or linking, of program modules to create an

.EXE file is the most important apect of this discussion. We'll take it up

again later in this chapter, after we've covered two other steps that are

involved in preparing programs.

So far, we've mentioned the three principal steps of program prepa-

ration: writing the program to produce source code; compiling or assem-

bling the program to produce object code; and linking the program to

produce a loadable program. There are two other related steps in the pro-

cess: converting the .EXE format created by the LINK program to the

.COM format; and using object libraries to store a number of modules.

Step 4: Converting File Formats

Programs that are stored on disk in the .EXE file format are not

completely ready to go to work. When they are loaded from disk into

memory, DOS performs a few last-minute operations to prepare the pro-

gram for execution. These operations do such things as tell the program

where it is located in memory, calculate its size, and set up a stack for it

to use. But if the operating conventions of a program are sufficiently sim-

ple, and if the start-up stages of a program are sufficiently savvy, this

loading preparation can be done in advance by converting the file to a

.COM file format.
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A .COM file is an exact image of the program as it will appear in the

computer's memory. While DOS must do a good deal of work to prepare

an .EXE-format program, it only has to do two things for a .COM-format

program: It creates the program segment prefix (i«- see page 260); and it

sets the segment registers.

We use the DOS program EXE2BIN to convert an .EXE file to a

.COM file format. Not all programs can be converted to the .COM format.

For those programs that qualify, we can freely convert them or leave

them in the .EXE format. Either form is hanctionally the same, but the

.COM format is more compact and loads slightly faster.

We usually have no choice about whether or not an .EXE file can be

converted. It all depends upon the conventions established by the pro-

gramming language. Most of the high-level programming languages

need the extra support that the .EXE format provides and therefore can-

not be converted. (See the IBM DOS Technical Reference manual for a list

of the .EXE support operations.) For programs that are created purely in

assembly language, we are in complete control and can choose either for-

mat. For compiled BASIC and Pascal programs, and for programs in

many other compiled languages, the .EXE format is mandatory. Programs

written in the C programming language (using the Lattice/Microsoft C

compiler), which is sometimes described as being between assembly lan-

guage and a full high-level language, can go either way.

We can very simply and safely find out if a program can be con-

verted from .EXE format to .COM format just by trying to do it. If it

works, it works. If EXE2BIN or LOCATE says it can't be done, however, it

can't be done.

Step 5: Creating Object-Code Libraries

Most high-level programming languages make use of dozens of pre-

pared subroutines that support the operation of our programs. Naturally,

these subroutines are in the translated, object-code form. However, it is

very inconvenient to have dozens of these object files lying about on our

disks. It is also inconvenient to have to determine for ourselves which

ones need to be combined with our own program's object files. To solve

this problem there are object libraries, which are collections of object

code gathered together into one file. By convention, libraries have the file-

name extension LIB.

Most high-level programming languages come with a ready-to-use

library of standard supporting subroutines. Occasionally, a compiler will

have several libraries that provide different versions of standard routines.

For example, they may come with floating-point routines that may or

may not make use of the 8087 math coprocessor.
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The DOS linker is able to search through a library to find and use

the subroutines that it needs in order to complete a program. Without

this library mechanism, we would be faced with the annoying task of

telling the linker which object files were needed. If we left any out, the

link-editing would fail; if we included any that weren't actually needed,

our program would become unnecessarily large. The use of a library en-

ables us to avoid these problems.

Object libraries are mostly used to support compilers in a way that

is completely out of our hands. We don't create or modify the libraries

and we don't even directly select what will be used in a library. Instead,

we select files from a library indirectly by using particular features of our

programming language, or directly by using the LIB program.

NOTE: The LIB program is not part of every version of DOS, al-

though it should be. The IBM versions of DOS from 1.00 through 3.1 do

not include LIB. LIB is included in some non-IBM versions of DOS, and it

accompanies some (but not all) compilers and assemblers. Getting your

hands on a working copy of LIB is a catch-as-catch-can proposition.

If you have a copy of LIB, you can use it for three main purposes:

simply to explore the contents of existing libraries (which can be a very

illuminating experience); to selectively replace modules in existing librar-

ies if you want to change or improve the library that comes with a pro-

gramming language; or to create your own libraries.

The documentation for LIB in the DOS manual will fully explain its

operation, but just to give you a taste of the ways LIB can be used, we

have included a few examples to try out. To create a new library named

TESTLIB, enter this command:

LIB TESTLIB;

To list the contents of an existing library, directing the listing to the

printer LPTl: (or to any file, or to the screen), enter:

LIB TESTLIB, LPT1;

To add the module X.OBJ to a library, enter:

LIB TESTLIB+X;

To replace an existing module with a new version, enter:

LIB TESTLIB-X+X;

With later versions of LIB, type - +X instead of -X+X. To extract a

module for disassembly or other separate use, enter:

LIB TESTLIB'X;
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Our programs are usually composed of a number of subroutines.

Whether or not you are likely to benefit from the services of the LIB pro-

gram depends upon one basic decision that you make about the way you

organize these subroutines. If you prefer to combine the source code for

your subroutines into one source file, which means they will all be com-

piled together, then you have little need for LIB. On the other hand, if you

prefer to compile your subroutines separately, which produces separate

object files, then LIB performs exactly the job you need done: It gathers

together and organizes your object files. I personally have no recommen-

dation for either style of operation; I have used both of them in my PC

programming and found each one practical and effective. It's mainly a

matter of preference—though your choice may have some consequences

if you program in Pascal {m- see page 369).

USING THE DOS LINK PROGRAM
We're now ready to return to our discussion of combining program

modules and using the LINK program. The documentation for LINK in

the IBM DOS Technical Reference manual fully explains its operation, in-

cluding the complexity of its control switches. Here, we'll summarize the

most common and useful operations, particularly where they pertain to

the programming languages discussed in the following chapter.

Just to give you some background information, the LINK program

takes four parameters, which might be written like this:

LINK 1,2,3,4;

The first parameter, 1, stands for an explicit list of object modules (such

as PROGl -I- PROG2 + PROG3); 2 stands for the name of the finished pro-

gram; 3 stands for where the linker's display output should be sent (such

as to the printer or display screen); and 4 stands for an explicit list of

libraries, if they are used (such as BASCOM -l- MYLIB).

Linking a Single Program

Now for some practical examples. To start with, let's consider a

completely self-contained program, such as the BEEP program shown on

page 355. To link it, we simply type:

LINK BEEP-,

Linking a single program such as this simply creates an .EXE file.
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Linking a Program to the Compiler Library

Next, let's consider what is surely the most common linking cir-

cumstance. Say we've compiled a program in a high-level language, such

as compiled BASIC and we need to link it with its standard library. In this

simple case, we're not using any interfaces or other modules that we've

created. Our program's name is X and the compiler library's name is

BASCOM.LIB. This is how we would write the LINK command:

LINK X,,BASCOM;

Usually, a compiler generates an object module that goes to the li-

brary to find anything else that is needed. In the case of Lattice/Microsoft

C («- which we cover on page 377), there is a standard start-up routine

called a prefix module that must be linked ahead of our program. Sup-

posing that the prefix module is named C, our program is named X, and

the library is named MC, we would link them this way:

LINK C+X,X, ,MC

Note two new items in this example. First, we explicitly asked the

linker to combine two object files, C.OBJ and X.OBJ (which is the pro-

gram we compiled). Second, we explicitly gave a name to the finished

.EXE program, naming it X. We have to give it this name or the linker will

use the name of the first object module, which is C. If we allow that to

happen, all of our programs will end up with the same name, C, rather

than their individual names (in this case, X). We can give the finished

program any name we wish, including a name completely unrelated to

any of the object-module names. In this example, however, we did the

normal thing, which is to give our finished program X.EXE the same

name as our object file X.OBJ.

Combining Programs

Now we're ready to illustrate how to combine program modules

with the linker. First, let's consider a situation in which we have made use

of a private object library to hold either our assembly-language interfaces,

or our separately compiled subroutines, or both. Here is how we would

link such a library using Pascal. The program is named X and our library

is named OURLIB:

LINK X, .PflSCftL + OURLIB

Next, let's consider the case where we have not created an object-

module library. Instead, we simply want to combine two object files: one

from our high-level language compiler and one from the assembler for
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interfaces to DOS and the BIOS. Here is how we would link such a pro-

gram. In this example, the language is Pascal, the program is named X,

and the assembly-language interface is named INTFACE:

LINK X+INTFACE, .PASCAL

There are, of course, endless variations on how program modules

can be combined. However, these basic examples should provide you

with the necessary core of information. Armed with the general informa-

tion in this chapter, you should be ready to proceed to the next, and

learn something about how the programming languages work.
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In
the last chapter, we briefly discussed the general principles of

building program modules and linking them using the DOS Link

program. In this chapter, we're going to discuss the programming

languages we use to build the program modules, particularly those

aspects of the languages that we need to be concerned with if we plan to

link the modules to assembly-language subroutines.

The title of this chapter implies that we are going to discuss pro-

gramming languages in general, but that's really not the case. It's all very

well to discuss any topic in the abstract, but when we actually want to

get anything done, we have to get down to specifics. If we want to create

computer programs, we have to work with a specific programming lan-

guage—and a programming language is much more specific than many
people are led to believe.

First of all, there is no such thing as a generic programming lan-

guage. We can only create working programs with a compiler or inter-

preter for a programming language that is designed for a particular ma-

chine. Although academic experts on computers would like to pretend

otherwise, the practical truth is that the general definitions of program-

ming languages lack many of the essential features that we need to create

real programs that work on real computers. So, when a compiler or an

interpreter is created for a particular programming language, such as

BASIC, to run on a particular computer, such as the PC, the fundamental

language is altered and extended to provide the things that are really

needed. The alterations are often quite significant, and in every case, they

create a programming language that is related to but is truly distinct

from all other programming languages traveling under the same name.

This discussion is meant to set the stage for the simple announce-

ment that this chapter does not and could not possibly cover every PC

programming language that exists now or that might be created in the

future. Since each compiler, in effect, creates its own unique programming

language, using this chapter to cover the general aspects of the main lan-

guages would not serve our needs. We must select just a few languages,

since we can't cover them all. I have chosen to discuss four popular and

representative languages: assembly language, BASIC, Pascal, and C. Then,

within these categories, I have selected five specific versions or implemen-

tations of these languages: IBM Macro Assembler, IBM interpreted BASIC,

IBM compiled BASIC, IBM Pascal, and Lattice/Microsoft C.

My decision to choose these particular languages is guided by the

past and the future. Past experience has shown me which language ver-

sions have the most widespread use in the PC family. Concern about the



Chapter 20: Programming Languages
'

351

potential for interfacing new work and new compilers has led me to be-

lieve it is unwise to use programming languages that are not compatible

with the standard DOS link editor. Unfortunately, a great many compilers

and assemblers either don't produce Imkable object code (for example,

the admirable "cheap assembler" CHASM, Borland's Turbo Pascal, and

Logitech's Modula-2), or use an object format that is not compatible with

the DOS linker (for example, the Digital Research family of languages,

and Computer Innovation's C-86). Personally, I am quite conservative

about the matter of linking and object-code compatibility, and I fear that

in straying away from the de facto standard established by DOS, we run a

serious risk of encountering problems in the future, as the PC family of

computers evolves.

LANGUAGE SPECIFICS

The five programming languages that I have chosen are really fam-

ilies in themselves. There are various versions of each one, and in most

cases they are available from several sources. Fortunately, the differences

between the versions are minor—minor enough that we don't need to

think of them as separate languages in the same sense that BASIC and

Pascal are separate languages.

Assembly language. Our discussion of assembly languages will be

based on IBM's version 1.00 Macro Assembler, created by Microsoft. A
number of other versions are available from Microsoft, from IBM, and

from other computer manufacturers who have licensed the use of Micro-

soft's basic assembler. These versions vary only in their most sophisti-

cated elements, which need not concern us here.

Interpreted BASIC. The interpreted BASIC that we'll cover in this

chapter has taken on a thousand faces and minor variations. To IBM PC

users, the version we'll discuss is known simply as BASIC or BASICA, and

is further defined by version names such as CI. 10, Jl.OO, and A2.10, among

others. Outside the IBM world, it may be known as BASIC, Microsoft

BASIC, or GW-BASIC. We're not concerned with the differences here; we're

concerned with the common elements.

Compiled BASIC. For our discussion of compiled BASIC, we'll be

guided by version 1.00 of the IBM BASIC Compiler. The principles we dis-

cuss will also apply to other specialized Microsoft BASIC compilers, such

as Business BASIC.

Pascal. For Pascal, we'll use IBM's version 1.00 as a basis. The details

we discuss will apply equally well to IBM's version 2.00 and to various

Microsoft versions.
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The C language. For our discussion of C, we will be using the Lat-

tice/Microsoft C compiler version 1.04, created by Lattice. There are

other closely related versions available from Microsoft, Lattice, and Life-

boat, which all share the characteristics that we will be covering. This

compiler, by the way, should not be confused with the Microsoft C com-

piler (version 3 and above) that was created after the Lattice/Microsoft C
version was released.

ASSEMBLY LANGUAGE
There are two fundamental types of assembly-language program:

the assembly-language subroutine, which is called by other programs that

may be written in a high-level language; and the freestanding assembly-

language program. Subroutines depend largely upon the calling program

to provide their structure and support, while the freestanding assembly-

language programs must provide their own structure and support, and

must cope with all the fundamental operating issues that stand-alone

programs face. Assembler subroutines are relatively easy to construct,

while assembler programs can be quite complicated. Subroutines have

more immediate appeal to those of us who need to build interface rou-

tines between our high-level language and some of the system's BIOS or

DOS services, while stand-alone programs are usually tackled by pro-

grammers who must accomplish something that neither their conven-

tional programming language nor the system services provide.

In this brief discussion of assembly language, we'll be showing you

some techniques that will help you figure out the high-level language in-

terface conventions for your assembly-language subroutines. We'll also

lead you through the process of creating a stand-alone assembler pro-

gram. However, we will not even try to teach you how to use assembly

language—that is far too large and complex a subject. If you are not

particularly proficient at assembly language, one way to learn about it is

to study some of the readily available sources of assembly-language cod-

ing. One dandy source is the assembler code pubHshed by computer

manufacturers, such as the BIOS listings that are part of IBM's Technical

Reference manuals. Another source, available with most compilers, is the

assembler-like listing that the compiler can be asked to produce. This is

useful both for learning how the compiler handles particular coding

problems (which you can control by selecting appropriate statements in

the high-level language), and also for learning the subroutine interface

conventions the compiler uses. A related, but less useful way to learn

about assembly language is to load an existing program using the DOS
DEBUG program, and then use DEBUG's U-unassemble command to snoop

through sections of the program. (The section that follows shows how to
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perform a related operation for snooping inside program libraries.) Each

of these methods can help you learn different programming techniques

and tricks. In fact, these are the methods I used to learn nearly everything

that I know about assembly-language programming for the PC family.

Logical Organization

The elements of an assembly-language subroutine are easy to under-

stand if they are laid out in the order they occur. As you may recall, the

logical organization was fully explained in Chapter 8 (page 164), where

we described an interface routine as five nested parts:

Level 1: General assembler overhead

Level 2: Subroutine assembler overhead

Level 3: Entry code

Level 4: Get parameter data from caller

Level 5: Invoke the ROM-BIOS or DOS service

Level 4: Pass results back to caller

Level 3: Exit code

Level 2: Finishing up subroutine assembler overhead

Level 1: Finishing up general assembler overhead

This basic organization is one that can be followed for most inter-

face routines written for system services, or for conventional assembly

language subroutines, but the actual coding will vary with every pro-

gramming language.

The standard tool for creating assembler subroutines in the PC fam-

ily is the Microsoft Macro Assembler, named MASM, which is available

in different versions from a variety of sources. For example, the IBM Per-

sonal Computer was introduced with a version numbered LOO, which in-

cluded both a small assembler (without macro capability) and a macro

assembler. Except for advanced assembly-language work— far over our

heads here—any version of the assembler will work for our purposes.

Learning About Interface Conventions

Once you have your assembly language in hand, you'll need to ex-

amine the assembly-language conventions and interface customs that ap-

ply to your programming language. Your assembly-language interface

will have to know how to gain access to the parameters passed by the

calling program, how to interpret the data format, and how to send the

parameters back—among other things. If there is not adequate informa-

tion of this sort in the language documentation, there are some rather

simple ways to pry it out of the language itself.
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To learn the conventions for both a caUing and a called program

—

that is, to see both sides of the program call interface—you can study the

compiler's assembler-style listing, as we mentioned earlier. You can also

study the innards of the assembly-language subroutines provided with the

language compiler, which may provide a somewhat different perspective

from what can be learned by studying a compiler's listing. This technique

not only gives you the details of the interface conventions for assembly-

language routines but also gives you specific programming examples that

may serve as models.

The first thing we must do is select an appropriate subroutine. The
subroutines that are most accessible for study are often those that are

part of the library that accompanies our compiler. Usually, it is easiest to

simply choose a compiler feature that we're interested in, such as I/O,

screen control, or arithmetic, and then figure out which subroutines are

invoked for that feature.

Next, we have to look at the names of the library modules (which

might not be the names of the subroutines inside those modules). We can

do this by using the LIB program («" discussed in Chapter 19) to list the

contents of the library. Let's assume there's a library named LANG.LIB on

file. We can direct the library listing to another file named LISTING with

the following DOS instruction (we could also direct it to the screen or

printer):

LIB LANG, LISTING;

Looking over the library listing, we find the subroutine we're inter-

ested in and the name of the module that it's a part of; let's say it's named
XMOD. Next, we ask LIB to separate XMOD out of the library, so we can

work with it:

LIB LANG'XMOD;

The * operator tells LIB to create a copy of the module as a separate ob-

ject file; in this case, the file will be named XMOD.OBJ.

At this point, we could try to snoop around inside XMOD.OBJ, but

this file contains extraneous link-editor information that would only get

in our way. Instead, we're going to turn XMOD.OBJ into a set of pure ma-

chine instructions using two steps. First we link it, to convert it into an

.EXE program file:

LINK XMOD;

This gives us a file named XMOD.EXE. (Ignore any no-stack error mes-

sage that the linker gives you.) Then, to get rid of the .EXE-file overhead,

we convert XMOD.EXE into a .COM file like this:

EXE2BIN XMOD.EXE XMOD. COM
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At this point, we have a file named XMOD.COM, which should con-

sist of nothing but pure machine-language instructions, with all overhead

removed. Now we are ready to use DEBUG to convert the instructions

into a readable assembler format. First, we note the size of XMOD.COM,
and then we fire up DEBUG, telling it to load XMOD.COM:

DEBUG XM0D.COM

Then we tell DEBUG to convert XMOD into a readable form with the

U-unassemble command, like this:

U 100 L XXX

(The XXX IS the length of the file in hex.)

All these steps may seem overly elaborate and cumbersome, but

once you have learned them, they can be performed quickly and easily,

and they will give you an inside look at how your own programming lan-

guage uses assembly-language interface routines.

The next section will repeat the key steps of this exercise as we
demonstrate the mechanics of creating a small but complete assembly-

language program.

Writing and Linking Assembler Programs

To illustrate the process involved in writing and linking an as-

sembler program, we will create an incredibly simple and yet useful pro-

gram that sounds a tone on the computer's speaker. To do this on any PC

family computer or any DOS computer, we just output the bell character,

CHR${7), to the screen. In this example, we'll do this by using DOS ser-

vice 2, which is invoked with interrupt 33. Then we'll end the program

and return program control to DOS using interrupt 32. Follow this exam-

ple and you'll learn quite a bit about creating self-contained assembly-

language programs. Here is the source code for this little program:

; DOS generic beep program

BEEPSEG SEGMENT BYTE PUBLIC 'PROG'

ASSUME CS:BEEPSEG

BEEP
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As you see, the program is only four instructions long, filling only

eight bytes. We can assemble the program with this step:

MASM BEEP;

The MASM command creates an object file that is ready for linking. In

this case, we'll link the program without subroutines, libraries, or other

object files, like this:

LINK BEEP;

The linker program usually expects to find a stack segment in the

programs it links, but our very simple program doesn't have one—a key

characteristic that makes it possible to convert it into a .COM file, as we
shall soon see. The linker will complain, but we can ignore its complaint.

Linking will give us an executable program called BEEP.EXE. It is

very common to write assembly-language programs in such a way that

they can be converted into the more compact .COM format. We convert

this simple program using the DOS command EXE2B1N, as in:

EXE2BIN BEEP.EXE BEEP.COM

Now we have a finished beeper program, that can be used on any com-

puter that runs DOS.

It is worthwhile to pause and note what happens to the size of our

program when it gets transformed from an idea to an executable .COM

file. The source code for this program is approximately 378 bytes (de-

pending upon the use of spaces in the comments, etc.). When we assem-

ble it, we discover that just 8 bytes of working machine-language instruc-

tions are created. However, the object file, which includes some standard

linker information as overhead, is 54 bytes—much smaller than our

source file, but much larger than the 8 bytes of actual instruction. After

linking, the 54-byte object file swells to a 520-byte .EXE file. This is be-

cause the .EXE format contains a prefix that describes how programs are

to be loaded, and this prefix is created in 512-byte records— in this case,

it's 512 bytes of overhead, followed by our 8 bytes of instructions. Con-

verting the program to .COM format eliminates the 512 bytes of overhead

and we end up with a .COM file that's just 8 bytes of pure machine code.

INTERPRETED AND COMPILED BASIC

To be candid and blunt, let me admit right away that I can't give you

everything you need here. Working with BASIC and interfacing to BASIC

are very, very complicated subjects—complex enough to fill several

books just by themselves. Frankly, interfacing with BASIC is a particularly

messy area, made even messier by the number of BASIC versions used
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with the different models of the extended PC family. Even within the IBM-

made trunk of this family tree, there are more versions of BASIC than we
have fingers or toes for counting them.

In this discussion, we will focus on the issues that relate to interfac-

ing BASIC programs with external routines. The two items that we will

concentrate on are BASIC'S data formats (which are relevant to external

routines because they need to be able to exchange data with BASIC) and
the interface conventions that specify how BASIC and assembly language

talk to each other.

BASIC Data Formats

BASIC uses four data formats: integers, variable-length strings, and
floating-point numbers in long and short form, known in BASIC termi-

nology as single-precision and double-precision numbers. BASIC variables

can be explicitly given one of these four format types by appending an
identifying suffix to the variable name: % for mteger, ! for smgle preci-

sion (short floating point), # for double precision (long floatmg point),

and $ for string. Numeric constants can be similarly classified. Implicit

typing can be controlled with the DEF statement and defaults to single

precision. For reference, here are some simple examples:

A% Integer variable

A! Single-precision variable

A# Double-precision variable

A$ String variable

1% Integer constant

1

!

Single-precision constant

1 # Double-precision constant

" 1

"

String constant

IMPORTANT NOTE: While the three numeric data formats are the

same for both mterpreted BASIC and compiled BASIC, string formats are

different for compiled BASIC.

Integer Data Formats

The integer format is the standard 16-bit signed 2-byte word univer-

sally used by the PC family. The range of values is from -32,768 through

to +32,767. « See page 23 for a general discussion of this data format.

BASIC does not accommodate the standard variation on this format: un-

signed 16-bit integers with a range of values from through 65,535. Since

the unsigned integer format is fundamental to memory addressing and
address calculation in the PC, some care must be used when handling
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addresses. It is customary to use BASIC'S signed integer format to store

unsigned integer addresses; in fact, this is the preferred way to pass ad-

dresses to assembler interfaces. However, care must be exercised when
displaying or calculating unsigned addresses that are stored in the signed

integer format. To avoid miscalculation, it is wisest to perform address

calculations in double precision, using the long floating-point format.

If you are using the BASIC integer format to hold and pass unsigned

word addresses, there are some interesting points to keep in mind. In

theory, a BASIC integer cannot accept any number over its range limit

of 32,767; for example, we cannot assign a decimal integer a constant of

50,000 or a floating-point variable with an equivalent value. However, the

hex constant format can be used to assign values from through 65,535

(or &:H0 through &HFFFF in BASIC'S hex constant notation). This means

that BASIC does not allow 1% =50,000, but it does allow the equivalent in

hex: 1% = &HC350. Also, BASIC provides the hex display function HEX$,

making it easy for us to convert decimal values to their hexadecimal equiv-

alents. These two features make it reasonably convenient to work with

addresses in hex notation.

You can safely convert address values from integer to floating-point

format, to perform simple arithmetic operations, by using this method:

IF U < THEN D# = IX + 65536* ELSE D# = IX

where 1% is an integer and D# is its equivalent in double precision. To

convert address values from double precision to integer, we would use

this method:

IF D# > 32767 THEN IX = D# - 65536 ELSE IX = D#

The BASIC function VARPTR directly provides the offset addresses

of integer variables. (•^ As we'll see shortly, it also provides them for

floating-point variables; for string values, VARPTR is an indirect connec-

tion to the address of the variable values.) VARPTR gives us the offset ad-

dress within BASIC'S default data segment, which can then be used to

PEEK or POKE at the variable's value. We can demonstrate this with the

following example:

IX = 999 ' or any other value

I .POINTER = VARPTR
(
IX)

JX = PEEK (I. POINTER) • 256 + PEEK (I. POINTER + 1)

PRINT IX, JX

This process of using VARPTR to capture the offset address of a

variable has little practical value, but it demonstrates how to find and use

addresses. Examples like this one are designed to build your confidence
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and help you understand the use of memory addresses in BASIC—both of

which are important, as you'll realize when you start creating assembly-

language interfaces.

Floating-Point Data Formats

Floating-point values, both single precision and double precision,

are stored in a common format that is peculiar to BASIC. Not only is

BASIC'S floating-point format different than that used by most other pro-

gramming languages for the PC, it is also incompatible with the formats

used by the 8087 and 80287 math coprocessors.

To help you make use of the BASIC floating-point data format, we'll

describe its key elements. But be forewarned that the subject of floating-

point formats is a complex one. The following discussion assumes that

you have a strong general understanding of how computers store and use

floating-point numbers.

In BASIC, the single- and double-precision data formats differ only

in the number of mantissa digits. The rest of the formats, including the

range of the mantissa, is the same. Single-precision data occupies four

bytes and double-precision data occupies eight bytes. The mantissa is

stored in the first three (or seven) bytes, with the least-significant bytes

first (following the custom of the PC's microprocessor). The exponent is

stored last, occupying the last byte. We could outline the four or eight

bytes like this:

M7 M6 M5 M4 M3 M2 Ml E

The exponent (E) is stored as a power of 2, biased 128. This means that

an exponent of would be stored as 128 (hex 80) and an exponent of -3

would be stored as 125 (hex 7D).

The mantissa is stored as a normalized binary fraction, with the

first, or high-order, bit implied. The high-order bit of the high-order byte

(byte Ml), is used to store the sign: for positive values, and 1 for nega-

tive values. The sign bit occupies the place that belongs to (but isn't used

by) the implied high-order mantissa bit.

The program on the next page shows how to decode a floating-

point number. This example illustrates the above discussion and ought to

help you understand the format if you are having trouble.
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100 INPUT "Enter any value ", SINGLE

110 ADDRESS = VARPTR (SINGLE)

120 PRINT "The hex bytes are "

130 FDR I = TO 3

140 H = PEEK (ADDRESS + I

)

150 IF H < 16 THEN PRINT "0";

160 PRINT HEX$ (H) ;" "

;

170 NEXT

180 PRINT

190 E# = PEEK (ADDRESS + 3)

200 M1# = PEEK (ADDRESS + 2)

210 M2# = PEEK (ADDRESS + 1

)

220 M3# = PEEK (ADDRESS + 0)

230 EXPONENT* = E# - 128

240 SIGN = M1# / 128

250 M1# = 128 + M1# MOD 128

260 MANTISSA* = M1# / 256 + M2# / (256 • 256)

+ M3# / (256 256 • 256)

270 VALUE* = MANTISSA* • 2 " EXPONENT*

280 IF SIGN THEN VALUE* = - VALUE*

290 PRINT "This decoded value is "; VALUE*

300 PRINT

310 GOTO 100

Note that lines 190 through 220 isolate the four bytes with the single-

precision format, using variable names that correspond to the notation

we used to represent the mantissa bytes. We stated earlier that the expo-

nent is stored in a biased format; line 230 removes the bias, giving us an

exponent ranging from - 128 to + 127. Lines 240 and 250 take care of the

high-order bit of the most-significant mantissa byte: 240 records the bit

setting as the sign, and line 250 puts the implied 1-bit into place. Then,

line 260 puts the three mantissa bytes together into a single value, which

has its decimal point (or binary point, if you will) just before the first bit

place. Line 270 then factors in the exponent value, line 280 applies the sign,

and— voila!—we've successfully decoded the value of BASICS floating-

point format.

With the floating-point formats done, we can now take a look at

how BASIC stores strings.

String Data Formats in Interpreted BASIC

String values are stored in two parts: a string descriptor that holds

the length and offset location of the string; and the string value itself,

which is a series of ASCII characters.
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The string descriptor is three bytes long. The first byte contains the

string length, which limits the maximum size of a string to 255 bytes.

The next two bytes provide the data-segment offset to the actual string

value. The actual string value has no special format; it is simply stored as

a series of bytes at the indicated address.

When the VARPTR function is applied to a string, it returns the off-

set location of the string descriptor. From the string descriptor, we can

get the offset address of the string itself. The following program demon-
strates the process of finding and decoding this information:

100 INPUT "Enter any string " , OUR . STR I NG$

110 DESCRIPTOR. ADDRESS = VARPTR ( OUR . STR INGJ

)

120 PRINT "The string pointer is at hex ";

130 PRINT HEX$ (DESCR I PTOR . ADDRESS

)

140 STRING. LENGTH = PEEK (DESCR I PTOR . ADDRESS

)

150 PRINT "The length of the string is";

leO PRINT STRING. LENGTH

170 STRING. ADDRESS = PEEK (DESCRI PTOR . ADDRESS + 1)

+ 25G • PEEK (DESCRIPTOR. ADDRESS + 2)

180 PRINT "The string value is at hex ";

190 PRINT HEX$ ( STR ING. ADDRESS

)

200 PRINT "The string value is ";

210 FOR I = TO STRING. LENGTH - 1

220 PRINT CHR$ (PEEK (I + STRING. ADDRESS ))

;

230 NEXT I

240 PRINT : PRINT

250 GOTO 100

String Data Formats in Compiled BASIC

The format for string data is quite different for compiled BASIC.

While there is no difference in the type of string data allowed, there is a

difference in the amount of string data allowed. In interpreted BASIC, the

length of the string is recorded as an unsigned 1-byte integer, which al-

lows a length of to 255 characters. In compiled BASIC, the length is re-

corded as a signed 2-byte integer, which allows a length of to 32,767

characters (the possible negative values are ignored).

As in interpreted BASIC, strings in compiled BASIC are accessed in-

directly through a string descriptor. The memory address associated

with the variable name— the address given by VARPTR (NAMES)

—

points to the string descriptor rather than to the string itself. The string

descriptor consists of two fields containing the string length and the data-

segment offset of the actual string value. The only difference between

compiled and interpreted BASIC is that the length field is two bytes for

compiled BASIC and only one byte for interpreted BASIC.
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We can examine compiled strings with the following program. To

belabor what should be obvious, note that the details of this program are

peculiar to compiled BASIC and so cannot be tested with interpreted

BASIC. This program differs from the interpreted BASIC program given in

the previous section only in line 140 (where we pick up the string length)

and in line 170 (in the PEEK offsets used to pick up the string location).

100 INPUT "Enter any string "
, DUR . STR I NG$

110 DESCRIPTOR. ADDRESS = VftRPTR ( OUR . STR ING$
)

120 PRINT "The string pointer is at hex ";

130 PRINT HEX$ (DESCR IPTOR . ADDRESS)

110 STRING. LENGTH = PEEK ( DESCRIPTOR . ADDRESS

)

+ 256 PEEK (DESCRIPTOR. ADDRESS + 1)

150 PRINT "The length of the string is";

leO PRINT STRING. LENGTH

170 STRING. ADDRESS = PEEK ( DESCR I PTOR . ADDRESS + 2)

+ 256 • PEEK (DESCRIPTOR. ADDRESS + 3)

180 PRINT "The string value is at hex ";

190 PRINT HEX$ ( STRING. ADDRESS)

200 PRINT "The string value is "

;

210 FOR I = TO STRING. LENGTH - 1

220 PRINT CHR$ (PEEK (I + STRING. ADDRESS) )

;

230 NEXT I

240 PRINT : PRINT

250 GOTO 100

Interpreted BASIC Assembler Interfaces

In this section, we'll be covering the interface rules that apply to

assembly-language interfaces called from interpreted BASIC programs.

We will discuss only CALLed subroutines, not USR functions. In my opin-

ion, USR functions involve annoying and unnecessary complications, and

inherently possess special problems that may vary enormously between

IBM and non-IBM members of the extended PC family. In general, I do not

advise the use of USR functions.

Interpreted BASIC makes use of a standard interface convention that

fits nicely into the customary pattern for assembly-language connections.

Here is the essence of BASIC'S interface convention:

All parameters are passed by placing their offset addresses on the

stack, a format known as call-by-name. This means that assembly-

language subroutines can both access and change the values of

parameters; it also means that addresses and not values appear

on the stack, so accessing the values requires several steps.

Parameters are passed in the order they are written, as they are in

most other languages (except C; •" see page 377). This means that
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the first parameter is closer to the bottom of the stack and the last

parameter is closer to the top.

Subroutines are invoked by a FAR CALL and must therefore finish

with a FAR RETurn instruction.

The subroutine is responsible for removing parameters from the

stack, as in most other languages (except C; •' see page 377). This

means, among other things, that the subroutine must be passed a

fixed number of parameters, which is known in advance.

The AX register is not used to return values or error codes, unlike

many other languages. Any information passed back by the sub-

routine must be passed by a change of the parameter data.

BASIC sets up and maintains the segment, code, and stack regis-

ters. The other registers may be changed as needed.

We'll describe details of an assembly-language interface routine in

terms of the five logical levels that we discussed earlier in this chapter and

in Chapter 8 (i*" see page 165). Levels 1 and 2, the assembler overhead,

can be coded like this:

MY_SEG
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PUSH BP

MOV BP.SP

; levels 4 and 5 appear here

POP BP

RET XXX

All four of these instructions are standard and should be the same for all

assembly-language interfaces. The one changeable item, shown as XXX
in this example, represents the number of parameter bytes to be popped

off the stack. The value of XXX must be twice the number of parameters

that were passed when BASIC CALLed the subroutine because each pa-

rameter causes two bytes to be pushed onto the stack. So, for example, if

three parameters were passed we would replace XXX with 6 to clean the

stack; if there were no parameters, then we'd use a zero. Incidentally, the

RET instruction used in this example is assembled into a FAR RETurn in-

struction based on the PROC FAR command that appeared at the begin-

ning of the routine.

The next level, level 4, concerns accessing and changing the param-

eters. As we discussed on page 167, the address of the last parameter will

be on the stack at the location referred to as [BP-i-6], the parameter be-

fore that at [BP + 8], and so on.

By way of illustration, let's assume there are three parameters, all

integers, and that we want to load them into the AX, BX, and CX registers

(for whatever reason). Here is the level 4 code that would get those pa-

rameters:

MOV S I , t BP + 1 1 ; get address of first parameter

MOV AX, [SI] ;
get first value

MOV S I , [ BP+8

)

; get address of second parameter

MOV B X , [ S I ] ;
get second value

MOV S I , [ BP+G ] ; get address of third parameter

MOV CX.tSI) ; get third value

Note that we get the parameter values in two steps: First we get the ad-

dress (which we park in the SI register, just because it's a convenient place

to put it), and then we use the address to get the value (which we put

where we actually want it).

That illustrates just the first half of level 4; the second half concerns

moving values back to the BASIC program by storing them in the param-

eters. We do this by getting the parameter address (again), and using that

address to store the new value. For example, let's assume that we have

calculated a new value and have it in the DX register. We wish to pass it

back to BASIC as a new value for the first parameter. We can do it using

two simple instructions.
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MOV S I
, [ BP +

1 ]
;
get address of first parameter (again)

MOV [ 5 1 ] ,
D

X

; pass value back, from DX

To provide a complete example, here is an assembly-language sub-

routine that passes back the values of the SS and SP registers, a technique

that makes it possible for a BASIC program to mvestigate its own stack.

Normally, there would be no good reason to do that, but we might want
to play with it for the simple reason that it can be very educational. The
subroutine assumes that it is called with two integer parameters; it places

the current stack segment (SS) and stack pointer (SP) values into these pa-

rameters. Here is our routine:

STACKINFO SEGMENT

ASSUME CS:STACKINFO
GETSTACK PROC FAR

PUSH BP

MOV BP.SP

MOV Sl,[BP+8]

MOV CSM.SS
MOV SI,[BP+6]

MDV tsn.sp
POP BP

RET 4

GETSTACK ENDP

STACKINFO ENDS

END

Compiled BASIC Assembler Imerfaces

Anyone who has worked extensively with BASIC for the PC family is

no doubt familiar with the sometimes maddening differences and incom-

patibilities between compiled and interpreted BASIC. Here we'll note only

the significant difference that applies to assembly-language interfacing,

and then work through an example.

In interpreted BASIC, the normal way of working with assembly-

language interfaces is to stuff them into some memory location (one of

the most annoying and error-prone programming chores in BASIC), set a

variable to the memory offset address of the interface, then CALL the vari-

able name.

By contrast, compiled BASIC gives us two primary methods for work-
ing with assembly-language interfaces—one that closely matches the in-

terpreted BASIC method, and one that follows the standard conventions

for compiled languages.
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The first method closely follows the interpreted BASIC method in

substance, although the form differs. To illustrate, we'll let LOCATION%
stand for the BASIC variable name that has been set to the memory offset

location of the assembly-language interface, and we'll let PARAMETERS
stand for any parameters passed to the interface. With that setup, in in-

terpreted BASIC we would invoke the interface like this:

CALL LOCATION-/! (PARAMETERS)

In compiled BASIC, the format used to invoke the interface would be quite

different, although the net result is exacdy the same. It is done like this:

CALL ABSOLUTE ( PARAMETERS

,

LOCATIONX)

One critical difference in the compiled BASIC version is that the variable

LOCATION% must be an integer. In interpreted BASIC, any numeric vari-

able is acceptable.

Some of the mechanics of this CALL ABSOLUTE operation are worth

discussing. In compiled BASIC, all calls are actually conventional calls to

external routines that are linked to the compiled programs. This is the

standard mechanism that is used by all compiled languages. Compiled

BASIC actually simulates the equivalent of interpreted BASIC'S CALL LOCA-

TION% through a library subroutine named ABSOLUTE. In other words,

ABSOLUTE is not part of the BASIC language, in the sense that ON ERROR
or CHAIN are parts of the BASIC language. Instead, ABSOLUTE is simply

the name of an external subroutine residing in BASIC'S linking library.

The subroutine ABSOLUTE performs a simple operation: It uses its pa-

rameters (including the LOCATION% parameter) to simulate the CALL
LOCATION% operation that interpreted BASIC performs.

Before we continue on to the other method of invoking assembly-

language interfaces in compiled BASIC, we should comment on the prob-

lems involved in placing an assembly-language interface into memory.

The mechanisms used to place these interfaces into memory are the same

for both interpreted and compiled BASIC: It is usually done either with

the BLOAD statement to load the interface from a file, or by POKEing it

into memory, byte-by-byte. Although the mechanisms are the same for

both compiled and interpreted BASIC, the problems of finding an appro-

priate memory location can be quite different, depending on circum-

stances and programming techniques. You will note that so far I have

successfully ducked treating this topic, and I will continue to do so here.

This particular subject is a messy one and really a specialty area for

books on BASIC.
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The other method for using assembly-language interfaces in com-
piled BASIC is the standard method used by all normal DOS programming
languages. Modules, such as assembly-language interfaces, are separately

prepared and are stored either in the form of distinct object files (with a

filename extension of .OBJ) or inside an object-file library (with a file-

name extension of .LIB). In either case, separate modules, such as com-
piled BASIC programs and assembled assembly-language interfaces, are

combined by the LINK program as we described in the previous chapter.

We're going to look at how this interface routine is used from both
sides—from the BASIC side and from the assembly-language side. From
the BASIC side, an assembly-language interface is invoked like this:

CALL NAME (PARAMETERS)

The PARAMETERS are the same as those used in the previous method or

in interpreted BASIC. The NAME is the same name that appears in the

assembly-language interface and identifies the desired routine.

The steps followed by the compiled BASIC code in calling a sub-

routine are the same as those followed by interpreted BASIC; the same
interface rules apply to how the stack is used, how parameters are placed

on the stack, and how the call is made (a FAR CALL, requiring a FAR
RETurn). Because of this, we will use the routine from the previous sec-

tion about interpreted BASIC (the one that passes back the current stack-

segment and stack-pointer settings) and point out the differences:

STACKINFO SEGMENT
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The one new requirement to link this sort of assembly-language in-

terface to a compiled BASIC program is that the name of the subroutine

must be made "public"; that is, it must be declared as an official name for

use by the assembler. This is done in the third line of this routine, which

reads PUBLIC GETSTACK. This is the one difference between this routine

and the one on page 365. (Actually, the PUBLIC statement would do no

harm in the previous routine but it would serve no purpose, since inter-

preted BASIC does not use it.)

To show the use of this sort of assembly-language interface, here is a

compilable BASIC program that uses it and displays the results:

100 ' demonstrate the use of linked interfaces

110 '

120 IX =

130 JX =

140 CALL GETSTACK (
IX, JX)

150 PRINT "In the midst of a program"

1G0 PRINT " the stack segment is "-.HEXIIIX)

170 PRINT " the stack pointer is ";HEX$(JX)

180 GDSUB 200

190 GOTO 270

200 ' our go-sub subroutine

210 '

220 CALL GETSTACK (IX.JX)

230 PRINT "In the GO-SUB subroutine"

240 PRINT " the stack segment is ";HEX$(IX)

250 PRINT " the stack pointer is "-.HEXSIJX)

260 RETURN

270 END

There are several things worth noting in this program. When we

call the assembly-language subroutine (in lines 140 and 220), we call it by

its name, GETSTACK, which is the name that appears in the PUBLIC state-

ment of the assembly-language code. The names must agree for the link-

ing process to work. (On the other hand, the name of the segment in the

assembly-language program, STACKINFO, is arbitrary and does not mat-

ter, as long as it is used consistently inside of the assembly.) Also note that

both the calling BASIC program and the called assembly-language pro-

gram should agree on the number of parameters being used. The RET 4

statement, which is the last working instruction in the assembly, pops

four bytes of parameters off the stack, which corresponds to two param-

eters with two bytes per parameter. (A sophisticated and tricky assembly-

language routine can accept a variable number of parameters, but the

methods are too advanced for us to do justice to here.)
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This particular sample program reports on the state of the stack

twice (as encountered inside the assembly-language routine): once in the

linear flow of statements, and once in a GOSUB routine. The difference

between the two stack-pointer values allows us to discover how the use of

GOSUBs affects BASIC'S stack. Run this example to learn the answer.

Here are the steps necessary to prepare and combine compiled

BASIC programs and assembly-language interfaces, using the preceding

programs as an example. First, assuming that we have our assembly-

language source code in a file named GETSTACK.ASM, we would assem-

ble it with this command:

MASM GETSTACK;

This would result in the creation of an object file named GETSTACK.OBJ.

Next, assuming that we have our BASIC source code in a file named

TEST.BAS—which must be an ASCII file, not a tokenized BASIC file—we
would compile it with this command:

BASCOM TEST;

This would result in the creation of an object file named TEST.OBJ. Next,

we would link the two together with this command:

LINK TEST+GETSTACK

This would result in the creation of a program file named TEST.EXE.

PASCAL

In this section, we'll discuss the IBM PC Pascal compiler and its ge-

neric cousin, Microsoft Pascal. When we discuss Pascal data formats, we

will generally indicate which items are peculiar to these compilers and

which are standard Pascal. If you are using any version of these com-

pilers, the information we give here will apply in detail; otherwise, you

should be able to use the discussion here as a basis for determining the

specifics of your particular compiler.

You should be aware that there are a few significant differences be-

tween version 1 and version 2 of the IBM PC Pascal compiler. We will note

them when discussing data formats.

Pascal Data Formats

There are three familiar data formats used by Pascal: integer, float-

ing point (known as REAL in Pascal terminology), and string. There is

also a specialty type known as set. Within the types, there are quite a few

variations, particularly within the integer type.
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Integer Data Formats

We'll begin with the integer type, in all its variations. Integers are

stored as binary numbers and placed in memory with the least-significant

byte first. Integers can be one, two, or four bytes long, either signed or

unsigned. Of the six formats that this description suggests, five are actu-

ally used (4-byte unsigned is not), and several of the formats do double

duty from Pascal's point of view.

Single-byte integers are available in signed and unsigned forms. The

signed form has a range of - 128 through + 127, and is called SINT (ap-

parently for short integer) in Pascal; the unsigned form has the range of

through 255 and is called BYTE. Neither SINT nor BYTE are a part of

standard Pascal, and since they are not discussed very much in the com-

piler's documentation, it's easy to overlook them.

Two-byte integers are also available in signed and unsigned forms.

The signed form has a range of -32,768 through +32,767 and is called

INTEGER; it is a standard Pascal format. The unsigned form has the

range of through 65,535 and is called WORD; it is not a standard Pascal

format. The INTEGER format is, of course, the most universal one for

programming languages in the PC family; for example, it exactly matches

the format used by BASIC. The unsigned 16-bit WORD format also has its

own special importance. All address facilities in Pascal, such as ADR and

ADS, are based on the WORD format, (m- See further notes about ad-

dresses in Pascal on page 375) Pascal's WORD format is the same as the

standard unsigned 16-bit integers used in the PC family and the same as

the UNSIGNED INT format used in C.

Four-byte integers are available only in signed format and only in

versions of the compiler numbered 2.0 and later. This format has the

range of -2,147,483,647 through +2,147,483,647 and is called INTEGER4.

(Note that there should be—and probably is—one additional negative

value, although there isn't one the way the compiler defines this format. If

you think that you need it, you're probably in trouble anyway.) This 32-bit

integer format is not a part of standard Pascal nor is it used by many
other PC languages. However, it is a part of C, where it is called LONG
INT (•- see page 378). The INTEGER4 format is not fully integrated with

the other Pascal integer formats; in many circumstances where any other

integer format can be used, INTEGER4 cannot.
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The standard Pascal language provides for a generalization of the

integer in a data type known as an enumeration data type. For all prac-

tical purposes, each enumeration data type consists of unsigned integers,

from up, that have been given new names. The actual data format for

all enumeration data types consists of unsigned integers in either 1-byte

(BYTE) or 2-byte (WORD) format, depending upon whether the number
of values will fit into a byte. BOOLEAN, the most common specialty type,

is simply a predeclared, two-value enumeration type. As such, it occupies

one byte and takes on the values of or 1 only.

String Data Formats

Standard Pascal has a character type called CHAR, which consists

of a single ASCII character stored in a single byte. Depending upon our

viewpoint, we can consider the CHAR data type either as a special case of

the BYTE type or as an element of the string data types. However, Pascal

treats CHAR as its own distinct format.

There are two string formats: One, a part of standard Pascal, is

called STRING and holds fixed-length strings of ASCII characters; the

other, an extension to Pascal, is called LSTRING and holds variable-

length strings of characters. The majority of Pascal compilers have added

variable-length strings to the standard language, but they have done it in

several different ways. We will be covering the format used by the IBM/

Microsoft compilers.

Fixed-length strings are simply stored as a string of bytes, with no
special delimitation or format. Note that if S is a fixed-length string, then

in Pascal notation, the first character of that string is S[l]. The address of

a fixed-length string is the same as the address of its first character.

Variable-length strings are stored as a string of character bytes, pre-

ceded by a 1-byte length code in the form of an unsigned integer (a BYTE,

in the notation of this compiler); therefore, variable-length strings can

range from through 255 characters. For a variable-length string, as for a

fixed-length one, S[l] is the first character of the string and S[0] refers to

the byte that holds the strmg's current length. The address of a variable-

length string is the address of its length byte (S[0]), rather than of its first

data byte (S[l]).

NOTE: The length ofany string must be declared in Pascal. For a

fixed-length string, the length matches the number of bytes m the string;

variable-length strings use one additional byte.
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The SET Data Format

The SET type is a specialty item for Pascal, something not shared

with most other languages. Sets must be based on an enumeration data

type, and the enumeration type must have no more than 256 elements.

The data format for sets assigns one distinct bit for each element in the

underlying enumeration data type. If the element in the enumeration type

is in the set, then the corresponding bit is set to 1. The size of set data

depends upon how many bits are needed; that is, on how many elements

are in the enumeration data type. However, unlike what you might ex-

pect, set data is sized in 2-byte units, so a set of eight elements occupies

two bytes, rather than the single byte that it could be stored in. The mini-

mum size of set data is two bytes (used for sets with from one to sixteen

elements); the maximum is 32 bytes (used for sets based on an enumera-

tion data type of from 241 through 256 elements).

The bits in set data are assigned from left to right and the bit coding

corresponds to the order of the elements declared in the enumeration

data type. For example, the first element in the enumeration type corre-

sponds to the high-order bit of the first byte (in hex, 80); the next element

in the enumeration type is the next bit (in hex, 40), and so on. Unused

bits—which round the size of the data to two bytes, or 16 bits—are set

to 0, as you might expect.

Floating-Point Data Formats

Floating-point data formats, called REAL in Pascal terminology,

present some interesting complications. There are three formats that we

must consider. The first format applies to version 1 of the compiler and it

exactly matches the format used by BASIC for single-precision numbers;

for this discussion only, we'll call this format old-real. The other two for-

mats apply to version 2 (and later versions) of the compiler; these formats

correspond to a standard form also used by the 8087 math coprocessor.

These two formats are known, in the terminology of this Pascal compiler,

as REAL4 and REALS; for this discussion, we'll call them new-real.

NOTE: There is no good, uniform way to convert data between

the old-real format used by the old compiler and the new-real formats

used by the new compiler.

We'll first discuss the old-real format briefly, so we can compare it

with the other two formats. •- For more detailed coverage, see the dis-

cussion of BASIC'S single-precision format on page 357 since the two for-

mats are the same. We assume you are familiar with both floating-point

arithmetic and the general data formats used to store them; we will be
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covering the particulars of these floating-point data formats, not the basic

principles of floating-point numbers.

The old-real format is stored in four bytes, which we can summa-
rize like this:

M3 M2 Ml E

where the M bytes are the mantissa, stored with the least-significant

bytes first. The high-order bit. Ml, contains the sign of the value (1 indi-

cates negative); in place of the sign bit is an implied high-order mantissa

bit. The E byte contains the binary exponent in excess-128 form (that is,

E-128 gives us the true exponent). The mantissa is treated as a fraction;

that is, the "decimal" point (binary point, really) is to the left of the im-

plied high-order bit.

The new-real formats differ in all essential details from the old-real.

Between themselves, they follow the same design and only differ in the

number of bits given to each part.

Each format consists of three fields: a sign, an exponent, and a man-

tissa. They are stored in that order, with the least significant bits first. In

other words, the high-order bit of the last, or rightmost, byte contains the

sign, followed by the high-order bit of the exponent, and so forth. Fol-

lowing this pattern, the least-significant bits of the mantissa will be found

in the first, or leftmost, byte.

The sign field, for both formats, is one bit, with 1 indicating nega-

tive numbers and positive numbers.

The exponent field is in the form of an excess-notation integer. In

the case of REAL4, the exponent fills eight bits and is in excess-127 form

(that is, subtracting 127 from the apparent exponent value will give the

true exponent value). In the case of REALS, the exponent occupies 11 bits

and is in excess-1,023 form. Therefore, the range of exponents for REAL4
is from -127 through +128, and for REALS is from -1,023 through

-1-1,024. Note, by way of comparison, that the old-real format (which is

also used by BASIC) is in excess-128 form, instead of 127 as we see here.

The new-real formats give slightly more dynamic range for very large

numbers, while the old-real format gives more dynamic range to very

small numbers. Note that, unlike BASIC'S single- and double-precision

formats, REAL4 and REALS differ in the dynamic range of their expo-

nents as well as in the precision of the mantissa.

The mantissa field is in the form of a binary fraction, with the high-

order 1-bit implied (as it is with the old-real format and with BASIC). The
logical decimal (or binary) point is located to the right of the implied

high-order bit of the mantissa. For REAL4, there are 23 mantissa bits

(plus the implied high-order bit), and for REALS, there are 52 mantissa

bits (plus the implied bit).
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The parts of REAL4 add up to 32 bits, or four bytes; those of REALS

add up to 64 bits, or eight bytes. Note, however, that unlike old-real and

the BASIC formats, the parts of REAL4 and REALS do not fit neatly into

bytes. Here is a crude diagram of these two formats:

REAL4 REALS

M3M2E2M1SE1 M7 M6 M5 M4 M3 M2 E2M1 SEl

The mantissa bytes, M2 through M7, are pure mantissa bits. The other

bytes contain a mixture of fields and parts. The bytes labeled SEl in both

formats contain the sign bit and the first seven bits of the exponent, like

this:

Bit

76543210 Description

S Sign bit

. E E E E E E E High-order exponent bits

The bytes labeled E2M1 contain the remainder of the exponent bits (one

bit for REAL4, four bits for REALS), and the first seven or four bits of the

mantissa, like this:

REAL4
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Pascal Assembler Interfaces

Here we will cover important details needed for using parameters

in Pascal. We will borrow from the Pascal-specific example shown on
page 198, stripped down to its key components:

1 INTERFACE SEGMENT 'CODE'

2
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If, when we define a subroutine, we specify a parameter as VAR or

VARS, we are instructing Pascal to place the address of that parameter on

the stack. (From the point of view of Pascal, using VAR or VARS is giving

a subroutine permission to change the value of a variable; in practice, it

means we're giving the subroutine the address of a variable.) If we specify

VAR, then the address is passed as a data-segment offset, a single 2-byte

word. If we specify VARS, then the address is passed as a fully segmented

address, with segment-paragraph and relative-offset portions, occupying

two 2-byte words. The difference is of considerable importance because it

affects the number of parameter bytes to be removed from the stack in a

RETurn statement.

On the other hand, if we do not specify VAR, Pascal will defend the

parameter value from being permanently modified by the subroutine.

This can be done in two ways, and it matters greatly which is used. If the

value is of the right type and can be placed on the stack (integers, for

example), then the value itself is placed on the stack; otherwise, a safe

copy of the value is made in memory and the address of the copy is

placed on the stack. The difference is very important for two reasons:

one is that the called routine will access the parameter differently, either

getting the value off the stack or getting the value through an address on

the stack; the other is that getting the value through an address on the

stack is much less efficient for the calling program.

When setting up an assembly-language interface routine, it is im-

portant to know which parameter method is in effect. You may find out

by using the same simple method that I have used: taking the available

information and using common sense to figure out what you think is

happening for any given set of parameters. Or you might run tests, either

by running a couple of trial programs or by inspecting the compiler's

pseudo-assembler listing of the code it generates.

If you are uncertain, you can force all parameters to be passed

through simple addresses by declaring them as VAR. Using VAR uni-

formly has the advantage of producing a simple, consistent pattern of pa-

rameter handling. In fact, about the only advantage of not using VAR for

simple variables is that VARS can save two machine-language instruc-

tions, a very minor benefit.

A subroutine can return a value if it is declared as a FUNCTION in

Pascal. If the subroutine returns a sufficiently simple value, then the call-

ing Pascal routine expects the return value to be placed in the AX regis-

ter. Otherwise, the value is returned by storing it in memory at an offset

address that is placed on the stack following the function's parameters.



Chapter 20: Programming Languages • 377

In effect, Pascal creates one additional VAR-type parameter for the func-

tion subroutine, and the subroutine's function value is then returned into

that parameter.

To show how parameters are obtained through the stack, let's

create an example. Suppose an assembly-language interface routine is de-

clared in Pascal like this:

PROCEDURE EXAMPLE (I : INTEGER; VAR J : INTEGER);

EXTERNAL;

The assembly-language subroutine would find that the first parameter, I,

was on the stack at an offset of [BP + 8]. To put that value into the AX
register, we would code this instruction in assembly language:

MOV AX, [BP+8]

On the other hand, the second parameter, J, has its address placed on the

stack at an offset of [BP + 6], since it's the next parameter. So to put that

value into the AX register takes two steps: one to get the address from the

stack, and the other to get the value of J, like this:

MOV BX,tBP+6]

MOV AX.CBX)

Modifying the value of J would reverse that process:

MOV BX,[BP+6]

MOV tBXl.AX

The value of I can't be modified by our subroutine, since we don't know
where I is: we only know that a copy of its value was placed on the stack.

These principles, together with intelligence and some research into

the particulars of your situation, should provide you with all you need to

successfully create assembly-language interfaces for use with Pascal.

THE C LANGUAGE
Our discussion of C will center around version 1.04 of the Lattice/

Microsoft C compiler and the other related compilers (some of which are

available under the Lattice and Lifeboat names). As with our discussions

of other languages, the specific information that we give here is based on

this particular compiler, but also applies, in varying degrees, to other ver-

sions and to completely different compilers.

It is worth pausing to note that the Lattice/Microsoft C compiler

uses what is called the small memory model, which means that a pro-

gram's code and data are restricted to segments no larger than 64K each.
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By contrast, the medium memory model uses segmented code addresses

(which allows program code to grow to any size, while leaving data re-

stricted to 64K), and the large memory model uses segmented addresses

for both code and data (which allows both to grow to any size). The

compiled BASIC and Pascal discussed earlier both use the medium model

(although Pascal makes limited use of segmented addresses for data, so it

has some aspects of the large model). Later versions of the Lattice C com-

piler (a close relative of the compiler we are discussing) can use any of the

three memory models, at our option. The availability of three memory
models in one compiler gready complicates the discussion of interfaces (a

complication that we will avoid here). Instead, we will concentrate on the

small model.

The use of the small model limits the size of program code and

data, but it is the most efficient format. We'll see the effects of the small

model in the data address format, •'mentioned on page 379, in subroutine

entry and exit, and in parameter access, ^^ mentioned on page 382.

C Data Formats

There are three main classes of data for C: integer, floating point,

and string. For the Lattice/Microsoft C compiler, there are four distinct

integer formats and two floating-point formats.

Integer Data Formats

We'll begin with the four integer formats: CHAR, INT, UNSIGNED,

and LONG. The CHAR format occupies one byte and is treated as an un-

signed integer whose values can range from through 255. The INT for-

mat occupies a 2-byte word and is treated as a signed value, so it can

range from -32,768 through +32,767. The UNSIGNED format (also

known as UNSIGNED INT in more formal C terminology) occupies a 2-

byte word. It is treated as an unsigned value and can range from

through 65,535. The LONG format occupies four bytes and is treated as a

signed value, so it can range from -2,147,483,648 through +2,147,483,547.

WTiile these four integer formats seem to be fairly straightforward,

there are several things worth discussing about them. First, we should

note that the general definition of the C language allows for LONG and

SHORT, and signed and UNSIGNED versions of most of the fundamental

data types. With this compiler, SHORT INT is a 2-byte signed value (the

same as INT), and there is neither an UNSIGNED version of the 4-byte

LONG, nor a signed version of the 1-byte CHAR. Address values appear in

the form of offsets to the data segment. As you would expect, they are

stored in the 16-bit UNSIGNED INT format.
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The C language, in general, is a little fuzzy about the relationship

between characters and numbers, and particularly about the similarities

and differences between CHAR and INT. For this compiler, CHARs are

stricdy numbers occupying one byte, with a range m value of to 255.

However, CHARs can also be expressed in character form. For example,

the character constant Q translates into the numeric value 81; but if we
were to write 81 in a C program, it would be considered a type INT and

not a 1-byte CHAR—unless we did something to force it into CHAR for-

mat. Because C does not make a firm distinction between characters and

numbers (unlike Pascal), we are able to convert values between integer

formats (such as INT or UNSIGNED) and character formats (CHAR, or

elements of strings).

String Data Formats

Strings are handled in C in a way that reflects the ambiguous treat-

ment of characters as either characters or numbers. In C, a character

string is an array of CHARs followed by a zero character, which marks

the string's end. Using a zero character to end a string means that strings

can have any length, since there isn't an explicit length indicator (as there

is in Pascal or BASIC) that could set a limit to the maximum size. But be-

cause there is no length indicator, the string must be scanned from begin-

ning to end to find the length of a string. And since the string ends in a

zero character, the zero character, CHR$(0) in BASIC'S notation, cannot

be part of a string— hardly a loss at all. Using a zero character to end a

string also means that there is no distinction in form between fixed- and

variable-length strings.

The C compiler takes on the task of adding the ending zero byte to

any string that we show as a literal value; we don't have to put it there.

For example, if we write abc in a program, the C compiler creates a 4-

byte string which consists of the three bytes we wrote, followed by the

zero byte. Be aware that, although the C compiler will add the zero byte

to any string constant and the standard C string-handling subroutines

will take care of the zero byte as needed, the zero byte doesn't appear by

magic. If we write any string-handling programs of our own— a com-

mon thing to do—we need to take this byte into account, looking for it

and creating it as needed.

Floating-Point Data Formats

There are two floating-point formats used by this compiler: FLOAT
and LONG FLOAT (or DOUBLE). The FLOAT format is four bytes long; the

LONG FLOAT format is eight bytes long. They follow the standard format
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used by the 8087 and 80287 math coprocessors and by many program-

ming languages. In this discussion, we'll just outline the two formats.

They are described in greater detail on page 373 under the names REAL4

and REALS.

The two floating-point formats are easiest to understand if we view

them as a string of bits (32 bits for FLOAT, 64 bits for LONG FLOAT),

stored "back-words," with the most-significant bits in the last bytes.

We'll describe the floating-point formats in bit order, starting with the

most-significant bit.

The first, most-significant bit is a sign bit: for positive, 1 for nega-

tive. The next group of bits (eight for FLOAT, eleven for LONG FLOAT)

specify the binary exponent in excess notation: excess 127 for FLOAT, ex-

cess 1,023 for LONG FLOAT. If we take the unsigned binary integer of the

exponent bits and subtract the excess value (127 or 1,023), we obtain the

true exponent value. The remaining bits (23 or 52) are the mantissa, or

fractional portion. An implied high-order 1-bit belongs before the rest of

the mantissa bits. The decimal point (binary point, really) belongs be-

tween the implied high-order bit and the remaining mantissa bits. «" On
page 374, there is a table showing the layout of the sign, exponent, and

mantissa bits in the four or eight bytes of these two formats.

C Assembler Interfaces

The general rules for the five-level approach to interface program-

ming apply to our C compiler, just as they do to the other compilers

we've discussed. To demonstrate the basic structure of an interface rou-

tine that will be used with the C compiler, we'll borrow a program from

a previous chapter and strip it down to show just the key elements. The

original program, listed on page 293, was designed to calculate the day of

the week by using the DOS date and time services.

1
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Line 1 is needed to help coordinate the assembly-language interface

with the linking conventions used by the C compiler. In line 2, the name
PROG and the classification 'CODE', in single quotes, are also needed to

satisfy the linking conventions.

In line 3, the name of any routine, such as WEEKDAY, must be de-

clared PUBLIC in order for the linker to connect it to the routines that use

it. In line 4 the ASSUME is necessary to assemble this NEAR procedure,

even if we are not doing any program address references. In line 5, the

PROCedure must be declared NEAR because this particular C compiler

makes near-type calls to external routines. This feature is unlike most

other languages, and it is the first of three important departures that this

C compiler makes from the most common interface rules.

Lines 6, 7, 9, and 10 represent the standard entry and exit code,

which maintains the stack.

You will note that in line 10 there is no value following the RET in-

struction. Subroutine parameters are placed on the stack by the caller

and may be removed from the stack by either the called subroutine or the

caller (after the subroutine returns control). As we have seen, most pro-

gramming languages have the called subroutine perform this task; we
specify the number of parameter bytes to be removed in the RET instruc-

tion. However, this C compiler has the calling subroutine remove param-

eters from the stack, so our RET has no number following it. This is the

second of three ways that C departs from conventional interface rules.

You should note that C also allows a subroutine to be called with a

variable number of parameters; this is a standard part of the C language

and is needed, for example, by the often-used PRINTF routine. A called

routine can determine how many parameters were pushed onto the stack

by checking the stack pointers and BP values.

Lines 11 through 13 are the standard items used to finish an inter-

face routine.

Parameter Passing in C

Parameters are placed on the stack directly or indirectly. Our C
compiler places parameters on the stack in reverse order from the way
they are written, so that the first parameter is pushed onto the stack last

and is thus nearest; that is, it has the least offset from the BP register. This

is opposite from the convention used by most languages, and it s the last

of the three unusual things about C interfaces.

As we've discussed elsewhere, parameters can be passed either by

placing their value on the stack or by placing their address on the stack.
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Unless we instruct it otherwise, our C compiler will attempt to place the

value on the stack, rather than the address. This statement may be

slightly deceptive because C considers many things to be addresses that

we might not. For example, if we have a string variable named S, C con-

siders the value of the name S to be an address of a string—not a string.

If S is a string variable and I an integer variable, calling a subroutine with

this instruction:

SUBR (S,I)

will cause the values of both S and I to be placed on the stack; the value of

I is an integer, but the value of S is an address (of a string value).

In C, we can force an address to be passed as a parameter by prefix-

ing the variable name with &, like this:

SUBR (S,4I)

which would pass the address of the variable I. In this example, the sub-

routine SUBR would receive two addresses, each pointing to a value. If

we'd made the mistake of writing SUBR (&S,&:I), we'd be passing the ad-

dress of the address of a string—probably not something we'd want to do.

Newcomers to C can easily be confused by parameter passing. In

my experience, it is one of the greatest sources of mistakes in the use of

assembly-language interfaces with C. Use common sense and test your

routines thoroughly to make sure that what is actually happening with

interface parameters is what you think is happening.

For comparison with Pascal, using & in C before a subroutine pa-

rameter is equivalent to declaring the parameter VAR in Pascal: It causes

an address to be passed on the stack and not a value.

Parameters are accessed from the stack and parameter values are

modified in the customary way, through parameter addresses placed on

the stack. The main peculiarity we need to discuss regarding C-specific

interfaces is that the stack offsets will be different than those we usually

encounter. Since subroutines are accessed with a NEAR call instead of a

FAR call, the closest parameter on the stack will be at offset [BP-i-4] in-

stead of the more customary [BP + 6]; also, as we've mentioned before,

the closest parameter will be the last one written, rather than the first one.

To provide a concrete example of accessing and modifying param-

eters, let's consider a subroutine that is called with two integers like this:

SUBR (41, J)
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and whose job is to place the value from the second parameter into the

first one, making the subroutine the equivalent of the assignment state-

ment I = J. The working code to do this would be as follows:

MOV AX,CBP+61 ;
get J value

MDV BX,(BP+4] ;
get I address

MOV [BXl.AX ;
put J value into 1

In C, all subroutines normally return an integer value, even when a

return value isn't meaningful to us. The value can be used or ignored by

the caller. (Again, C is peculiar in this regard—most other languages

make a clear distinction between subroutines that do or do not return a

value.) Following the usual convention, C expects this return value in the

AX register. If we have a value to return, we place it in AX; if not, and we

wish to be meticulous, we might want to set AX to zero before we return,

to ensure that we return a consistent, non-accidental value.

A PARTING COMMENT
Although this has been a brief analysis of a very small number of

programming languages, we hope it has helped put their features in per-

spective. To compare the merits of every language used in the PC family

would be ideal, but impossible in a book of this nature. However, you

may find that the criteria we used to compare our five languages can help

guide you in examining other languages.
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Two features that were introduced with the DOS-2 versions call

for special discussion: the subject of installable device drivers

in general, and the ANSI driver (also called ANSI.SYS) in partic-

ular. These subjects are related by their common introduction

in DOS version 2.00 and by the fact that the ANSI driver is itself an in-

stallable device driver, but they are radically different topics from our

programming perspective. We'll begin by looking at the device drivers in

general and then move on to discuss the ANSI driver in more detail.

GENERAL OVERVIEW
DOS has the built-in capability to work with most common com-

puter devices, such as ordinary disk drives, communications lines, print-

ers, and, of course, the keyboard and display screen. However, many
other kinds of devices can be attached to our computers. All these attach-

ments generally require is some additional software support—called de-

vice drivers—that connect them to DOS and to DOS programs.

Since the release of version 2.00, DOS has been able to incorporate

into its own operations any device driver that follows a standard set of

integration rules. The device driver program is read from disk and inte-

grated into DOS during DOS's start-up process. A disk file named CON-
FIG.SYS tells DOS when there is a device driver to be loaded. The name
and file location of the device driver are identified by the command line

DEVICE = filespec in the CONFIG.SYS file. For each such command, DOS
locates the program file, loads it into memory, and goes through the se-

ries of steps necessary to welcome the device driver into the DOS fold.

Typically, a device driver supports a new kind of device in an old

kind of way. For example, a device driver that supports a disk drive

whose detailed control commands are new to DOS but whose overall fea-

tures are similar to other kinds of disk drives, will most likely follow the

program format laid down by its more common predecessors. Likewise,

a device driver that supports the addition of a mouse or joystick may
treat them as keyboard-like devices.

On the other hand, device drivers can perform functions that have

little or nothing to do with the addition of new hardware devices to the

computer; witness the ANSI device driver, which we'll be discussing in

the following section. The ANSI device driver doesn't add new hardware

to the computer; instead, it modifies the operation of the computer's stan-

dard hardware (the keyboard and the display screen).

All the technical details of writing a device driver really belong in a

book specializing in DOS systems programming, but we can give you the

main points here.



Appendix A: Installable Device Drivers 387

The device driver file itself has a nearly standard program format

with some driver-specific identifying information added. There are two

kinds of device drivers: those for character devices, which, like the key-

board, display screen, printer, or communications port, work with a se-

rial stream of characters, and those for block devices, which, like a disk

drive, read and write random blocks of data identified by some form of

block address. Character devices are identified by their own names (sim-

ilar to the names LPTl: or COMl:) and can be treated like files. Block de-

vices are identified by a drive letter that DOS assigns and that are identical

to the drive ID letters A, B, C, etc.

The device-driver program file must provide DOS with several entry-

point addresses where the driver will be invoked for various purposes: for

initialization, for servicing command requests, and for performing strat-

egy work. The driver program must be prepared to handle a standard set

of commands that DOS calls on all drivers to perform, and to report the

device status to DOS.

Writing a device driver is akin to writing the BIOS programs that

are at the heart of DOS and at the heart of the computer's built-in ROM-

BIOS. It is among the most sophisticated and intricate programming that

is ever undertaken.

THE ANSI DRIVER

One example of an installable device driver that comes as an op-

tional part of DOS is the ANSI driver, a program that greatly enhances the

handling of keyboard input and screen output. For our IBM versions of

DOS, the ANSI driver is only active when we deliberately introduce it

into DOS through the CONFIG.SYS file that DOS loads during the start-up

operation. The specific command in the CONFIG.SYS file that is used to

activate the ANSI driver is:

DEVICE = ANSI .SYS

It is worth noting that while the ANSI driver is an optional part of

the IBM versions of DOS, the driver is an integral part of the DOS used on

some computers that are similar to (but not fully compatible with) the

IBM PC family. For example, both the Texas Instruments Professional

computer (commonly called the TI Pro) and the NEC Advanced Personal

Computer III (the NEC APC-III) automatically include the ANSI driver in

their DOS-2 versions.

The ANSI driver monitors both the screen output and the keyboard

input that pass through the standard DOS screen and keyboard services.

(It's important to note that any keyboard or screen data that bypasses

DOS is never seen or processed by the ANSI driver.)
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In monitoring the screen output, the ANSI driver looks for special

codes that identify commands for the driver. The driver takes note of

anything it recognizes as a command and then removes it, so that the

special command codes do not appear on the display screen. In effect,

this aspect of the driver acts as a two-way switch: It inspects output that

is headed for the display screen and passes on anything that is not a

driver command, while passing anything that is a driver command into

its command-processing part.

Commands for the ANSI driver are identified by a special 2-byte

code: The first byte is the "escape" character, hex IB or CHR$(27), and

the second is the left-bracket character [, hex 5B or CHR$(91). Following

these identifying bytes are the command parameters and finally the com-

mand code itself. The command parameters are either numbers (in the

form of ASCII numeric characters interpreted as decimal digits) or strings

of ASCII characters enclosed in quotes, like this: "a string parameter". If

there is more than one parameter, they are separated by semicolons. The

command code itself, which completes the ANSI driver command, is al-

ways a single alphabetic character. The case of the command letter mat-

ters; for example, lowercase h is one command and uppercase H is an

entirely different one.

To show you what these commands look like, here are two exam-

ples, one simple and one complex (the asterisk stands for the escape char-

acter, hex IB):

• tic

*[G5;32-,66-,"Re-mappedB"p

The ANSI driver recognizes a large number of commands, but they

all fall into two broad categories: screen control commands and key-

board translation commands. Let's look at screen control first.

ANSI Screen Control

Although the BIOS services for the PC let us move the cursor any-

where on the screen and do other things that give us full-screen control,

the standard DOS services do not. In fact, the DOS screen output services

are completely oriented to TTY (or teletype) output—output that only

encompasses the sort of things that can be done with a printer. This, of

course, ignores the richer potential of a display screen. It's the lack of full-

screen output in DOS that forces most programs to bypass the DOS ser-

vices and use lower-level services, such as the BIOS services.
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The screen control commands of the ANSI driver remedy this situa-

tion by providing a set of full-screen commands that can be used to do

nearly anything that the display screen is capable of doing. The com-

mands include moving the cursor, clearing the screen, setting the display

attributes (color, underscore, blinking, etc.), and changing the mode

from text to graphics and vice versa. As a further level of sophistication,

there are commands that can save the current cursor location, so that the

cursor can be moved to display information and then returned to its orig-

inal position.

ANSI Keyboard Control

The other type of command accepted by the ANSI driver is a key-

board translation command. When one of these commands is given to

the driver, the driver monitors keyboard input and replaces one key char-

acter with another single character or even a whole string of characters.

This allows the ANSI driver to act as a crude but effective substitute for

popular keyboard-enhancer programs, such as ProKey (
•- see page 129).

Note that these two types of ANSI driver commands are very differ-

ent in their purpose and use, but they are both passed to the driver the

same way—through a stream of screen output characters.

The Pros and Cons of the ANSI Driver

As I see it, there are two main ways to look at ANSI driver com-

mands: from the perspective of the user, who can use the ANSI driver to

perform a few beneficial tricks, and from the perspective of the program-

mer, who can use it as an aid to program development. This is a pro-

grammer's book, but let me comment briefly on some common user's

tricks with the ANSI driver.

As far as I know, users most often regard the ANSI driver as a poor

man's ProKey and as a DOS command-prompt enhancer. By using the

keyboard translation commands, as we mentioned earlier, it is possible to

roughly simulate the ProKey program. Usually the keyboard commands

are activated by placing them in a text file and sending them to the screen

(and therefore to the ANSI driver) with the TYPE command. By embed-

ding ANSI driver commands into the prompt string, it is possible to

launch the DOS command prompt into the fourth dimension. Such a

fancy prompt might move the cursor to the top of the screen, display the

date and time in reverse video, and then return the cursor to its regular

position, or—to get really fancy—even clear the screen and then paint a

complete menu display. The possibilities are endless (and also a little silly,

in my opinion).
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From a programmer's point of view, the ANSI driver looks quite dif-

ferent. Use of the driver presents a programmer with two main benefits,

both of which can be quite important. For programmers who do not

have the skills and tools necessary to build assembly-language interfaces

into the BIOS services, the ANSI driver makes the most crucial BIOS-type

services available to any programming language. Furthermore, it can be

a great benefit to programmers who want to write programs that are not

tied to the PC family, but instead will work on any DOS computer using

the ANSI driver.

Despite these apparent advantages, I generally believe that the use

of the ANSI driver commands in our programs is not a good idea. For one

thing, it requires that the ANSI driver be installed in any computer that

our programs are used on, which adds considerably to the instructions

that we have to prepare to accompany the programs. It is difficult enough

trying to explain the setup and use of our programs to both novices and

experts, without adding extra layers of complexity, such as the explana-

tion of how to install the ANSI driver.

A further argument against the use of the ANSI driver is that it is not

available under all circumstances. For example, IBM's windowing system,

Topview, does not support the features of the ANSI driver, so programs

that require the driver cannot be used with Topview. This may well turn

out to be true with other windowing environments as well.

But most important of all is the fact that, compared to other meth-

ods that are available, the ANSI driver is pathetically slow in generating

full-screen output. You can get a direct comparison of the relative speed

of the ANSI driver, the PC BIOS services, and direct-to-memory screen

output by playing with the NU program that's in version 3 of my Norton

Utilities set. The NU program contains three screen drivers that use these

three output methods. If you try them all, you'll quickly see how much

slower the ANSI driver is. Unless there is very little screen output to be

displayed, the ANSI driver is just too slow to be satisfactory.
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Hexadecimal numbers crop up in computer work for the sim-

ple reason that everything a computer does is based on bi-

nary numbers, and hexadecimal notation is a convenient

way to represent binary numbers.

Hexadecimal numbers are built on a base of 16, just as ordinary

decimal numbers are built on a base of 10; the difference is that hex num-

bers are written with sixteen symbols while decimal numbers are written

with ten (0 through 9). (From here on, we'll use the terms "hexadecimal"

and "hex" interchangeably.) In hex notation, the ten symbols through 9

are used to represent the ten values zero through nine, and the remain-

ing six values, eleven through fifteen, are represented by the symbols A
through F (•- see Figure B-1).

The hex digits A through F are usually written with capital letters,

but you may also see them with the lowercase letters a through f; the

meaning is the same.

Hex numbers are built out of hex digits the same way that decimal

numbers are built. For example, when we write the decimal number 123,

we mean:

1 times 100 (10 times 10)

-I- 2 times 10

+ 3 times 1

If we use the symbols 123 as a hex number, we mean:

1 times 256 ( 16 times 16)

+ 2 times 16

+ 3 times 1

There does not seem to be a standard way to write hex numbers

and you may find them expressed differently in different places. BASIC

uses the prefix 8cH to identify hex numbers and this notation is some-

times used elsewhere, as well. Occasionally the prefix # or 16# is used.

Hex
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but more often a hex number is simply followed by an H. However, the

most common way to express hex numbers, especially in reference infor-

mation, is without any special notation at all. You are expected to under-

stand from the context when a number is written in decimal notation

and when it is written in hex. When you see a number in any technical

reference information that seems to be a decimal number, check care-

fully: It may actually be in hex. In this book we have usually identified

hex numbers by adding hex in front of them.

When you need to work with hex numbers, you can use BASIC as

an aid {m- see page 398) or you can work with them by hand. Whichever

method you choose, you may find the conversion and arithmetic tables

located toward the end of this appendix helpful. But before we get to the

tables, we'll first explain why hex numbers and binary numbers are so

compatible. Then we'll describe one of the most common uses of hex

numbers in programming: segmented addressing.

BITS AND HEXADECIMAL
Hex numbers are primarily used as shorthand for the binary num-

bers that our computers work with. Every hex digit represents four bits

of binary information (• see Figure B-2). In the binary (base 2) number-

ing system, a 4 -bit number can have sixteen different combinations, so

the only way to represent each of the 4-bit binary numbers with a single

digit is to use a base-16 numbering system, which is why hex arithmetic is

used with our computers. (« See Figure B-3.)

Hex Bits Hex Bits Hex Bits Hex Bits

0000 4 0100 8 1000 C 1100
1 0001 5 0101 9 1001 D 1101
2 0010 6 0110 A 1010 E 1110
3 0011 7 0111 B 1011 F 1111

figure B-2. The bit patterns for each of the

sixteen hex digits



394 PROGRAMMER'S GUIDE TO THE IBM PC

Value

Bit Word Byte Dec Hex

1 1

1 1 1 .

2 1 1 . .

3 1 1 . . .

4 1 1

5 1 1

6 1 1

7 1 1

8 1

9 1

10 1

11 .... 1

12 ... 1

13 . . 1

14 .1

15 1

Figure B-3. The hexadecimal and decimal

equivalents ofeach bit in a byte and each bit

in a 2-byte word

When you're using 2-byte words, remember the reverse, or "back-

words," order in which they are stored in memory. «• See Chapter 3,

page 27.

SEGMENTED ADDRESSES AND
HEXADECIMAL NOTATION

One of the most common uses of hex numbers is for memory ad-

dressing. You may recall from Chapters 2 and 3 that a complete address

is 20 bits, or 5 hex digits, wide. Since the PC's 8088 microprocessor can

work only with 16-bit numbers, addresses are broken down into two 16-

bit words, called the segment paragraph and the relative offset. The two

parts are written together as 1234:ABCD. The segment part is always

written first, and both parts are given in hex.

1
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The segment part of an address is treated as if it were multiplied by

16, which is the same as if it had an extra hex written after it. The two
parts, added together, yield the actual 20-bit address that they represent.

For example, the segmented address 1234:ABCD converts into a complete

address like this:

12 3 4 (note the zero added on the right)

+ ABCD
1 C F OD

If you need to calculate the actual address that a segmented address refers

to, follow this formula. •The addition tables on page 399 may also help.

NOTE: Be aware that the same actual address can be represented

by many distinctly different segmented addresses.

There is no one best way to break down an actual address into its

segmented format. One simple way is to take the first digit of the actual

address followed by three zeros as the segment-paragraph part, and the

remaining four digits as the relative part. Following this rule, the address

above, ICFOD, would be separated out as 1000:CF0D. IBM's listing for the

ROM-BIOS in the Technical Reference manual follows this convention, so

that all the relative addresses that appear there have the (unshown) seg-

ment-paragraph part of FOOO.

When you are working with real segmented addresses, the segment-

paragraph part will represent the actual contents of one of the segment
registers and could point to nearly anywhere in memory. The relative off-

sets vary with usage. Code offsets, which indicate program locations,

usually begin with hex 100, since 256 (hex 100) bytes are set aside before

every program for its program segment prefix. Data offsets, used for

data, usually start from 0. Stack offsets are usually large numbers, since

the stack works backward from within the stack segment.

To see a live example of the sort of segmented address that is in use

when a program is executed, run the DOS DEBUG program. When
DEBUG begins, it will give you a command prompt of -. When you enter

the single-letter command D, DEBUG will display part of memory; the ad-

dresses that are shown on the left are the way segmented addresses typ-

ically appear.

DECIMAL-HEXADECIMAL CONVERSION
The tables on the next page show the decimal equivalent of each

hex digit in the first five digit positions, which covers the complete ad-

dress-space arithmetic used in the PC. As we'll demonstrate, these tables

can be used to convert between hexadecimal and decimal numbers.



Hex
First Position

Dec Hex Dec Hex
Second Position

Dec Hex Dec
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Here is how these tables can be used to convert a hex number to a

decimal number. We'll use the hex number A1B2 as an example. Look up

each hex digit in the table corresponding to its position and then add the

decimal values, like this:

2 in the first position is 2

B in the second position is 176

1 in the third position is 256

A in the fourth position is 40,960

The total is 41,394

To convert a decimal number to hex using these tables, the process

is as simple to do, but it's slighdy more complicated to describe. Once

again, things will be clearer if we work through an example. We'll use

the decimal number 1,492.

Work from the table for the fifth position over to the table for the

first. In the fifth-position table, find the biggest hex digit with a value that

isn't greater than 1,492, write down the hex digit, subtract its decimal

value from 1,492, and continue to the next table with the new value (that

is, the difference after subtracting). Go from table to table until the num-

ber remaining is 0. The process is shown in Figure B-5. The result is 005D4,

or 5D4 without the leading zeros.

Position
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USING BASIC FOR HEX ARITHMETIC
One easy way to manipulate hex numbers is to let BASIC do the

work. To do this, activate the BASIC interpreter and enter any operations

you want to perform using the command mode (without line numbers).

To display the decimal equivalent of a hex number, such as hex

1234, you can simply do this:

PRINT 4H1234

Be sure to prefix any hex number with &H, so that BASIC knows it is a

hex number. To get the best display of decimal numbers, particularly

large numbers, use the PRINT USING format, like this:

PRINT USING "###,###,###"; JHiaSI

To display the hex equivalent of a decimal number, such as 1,234,

you can simply do this:

PRINT HEX$( 1234
)

The examples so far have only used decimal and hex constants. We
can just as easily have BASIC perform some arithmetic and show the re-

sult in decimal or hexadecimal. Here are two examples:

PRINT USING "###,###,###"; 4H1000 - iH3fl2 + 16 • 3

PRINT HEX$(1776 - 1492 + 4H100)

Using variables to hold calculated results can save us from having to

rekey an expression or a complicated number. Variables that hold hex

numbers should always be written as double-precision variables (with a

# at the end of the variable name) so that we get the maximum accuracy.

For example:

X# = 1776 - 1492 + &H100

PRINT USING "###,###,###"; X#, 2 • X#, 3 • X#



Appendix B: Hexadecimal Arithmetic 399

HEX ADDITION
To add hex numbers, we work digit-by-digit, just as we do with dec-

imal numbers. To make it easier, use Figure B-6, which calculates the sum

of any two hex digits. To use this table, find the row for one hex digit and

the column for the other. The hex number located at the row/column inter-

section is the sum of the two digits.
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HEX MULTIPLICATION

To multiply hex numbers, we work digit-by-digit, just as we do with

decimal numbers. To make it easier, use Figure B-7, which calculates the

product of any two hex digits. To use the table, find the row for one hex

digit and the column for the other. The hex number located at the row/

column intersection is the product of the two digits.
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There are 256 distinct characters used by the IBM personal com-

puter family. They have numeric byte codes with values rang-

ing from through 255. Often these characters are referred to

by their numeric value using the BASIC notation CHR$(0)

through CHR$(255). The first 128 characters, CHR$(0) through CHR$(127)

are the true, standard ASCII characters. The last 128 characters, CHR$(128)

through CHR$(255) are special characters that make up an extended

ASCII character set.

Generally, computers treat the true ASCII characters in a similar

way, although there is some variety in the way the first 32 characters are

used. (•" See page 407 for a discussion of these characters.) The com-

puter manufacturer decides how to use the 128 special characters.

Fortunately, all models of the IBM personal computers use the same

extended ASCII character set. Computers that closely mimic the IBM per-

sonal computers use this set as well, but other computers often have their

own special characters. This is important to consider when converting

programs from other computers, or when writing PC programs that you

plan to convert for use on other computers.

THE STANDARD AND EXTENDED CHARACTER SET

Here is a BASIC program that will display all 256 characters along

with their numeric codes in both decimal and hexadecimal notation. The

characters are also listed in Figure C-1, on page 404.

1000 ' display all the PC characters

1010 '

1020 MONOCHROME = 1

1030 IF MONOCHROME THEN WW = 80 : HH = tHBOOO

ELSE WW = 40 : HH = 4HB800

1040 GOSUB 2000 ' initialize DS register

1050 FOR I = TO 255 ' for all character codes

1060 GOSUB 3000 ' display the information

1070 NEXT 1

1080 PRINT "Done."

1090 GOSUB eooo

1095 SYSTEM

1999 '

2000 ' initialize

2010 '

2020 DEF SEG = HH ' set up DS register for poke

2030 KEY OFF : CLS ' set up the screen

2040 WIDTH WW : COLOR 14,1 ,1

2050 FOR I = 1 TO 25 : PRINT : NEXT I

2080 PRINT " Demonstrating all characters"



Appendix C: About Characters 403

2070

2080

2099

3000

3010

3020

3030

3040

3050

3060

3070

3080

3090

3100

3997

3998

3999

4000

4007

4008

4009

4010

4012

4013

4026

4032

4255

4997

4998

4999

5000

5010

5020

5030

5040

5050

5060

5070

5080

5999

6000

6010

6020

6030

6040

6050

6060

6070

6080

6090

GOSUB 5000

RETURN
I

' display character information

PRINT USING " ### "-,1;

IF I < 16 THEN PRINT "O";

PRINT HEX$(I) ;" ";

POKE WW • 2 • 23 + 34, I

GOSUB 4000

IF ( I MOD 16) < 15 THEN RETURN

GOSUB 6000

IF I < 255 THEN GOSUB 5000

RETURN

' character comments

periodic subheading

' insert the character

' print any comments
' pause after each 16 characters

I
=

I
=

I
=

I
=

I
=

NT

TURN

THEN PRINT "shows blank";

7 THEN PRINT "beep (bell)";

8 THEN PRINT "backspace";

9 THEN PRINT "tab";

10 THEN PRINT "line feed";

12 THEN PRINT "page eject";

13 THEN PRINT "carriage return";

26 THEN PRINT "end text file";

32 THEN PRINT "true blank space";

255 THEN PRINT "shows blank";
" finish the line

' periodic subheading

COLOR 15

PRINT

PRINT

PRINT "Decimal - Hex - Char

PRINT

COLOR 14

RETURN

' pause
f

IF INKEY$ <> "" THEN GOTO 6020

PRINT

COLOR 2

PRINT "Press any key to continue.

COLOR 14

IF INKEY$ = "" THEN GOTO 6070

PRINT

RETURN

Comments"
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There are a few things to note about this program and the characters

that it shows:

The program is designed to automatically adjust itself to a mono-
chrome or color/graphics adapter based on the value shown in line 1020;

use 1 (as shown) for a monochrome adapter; change the 1 to for a

^.
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color/graphics adapter or its equivalent. Depending on the value in line

1020, the program makes two adjustments: one that changes where dis-

play information is POKEd into the screen memory, and another that

changes the screen width to either 40 or 80 columns. For a color/graphics

adapter, 40-column mode is generally used for greater clarity.

The POKE statement in line 3050 is what causes the characters to be

displayed. This extra step is necessary because a few characters cannot

be displayed by the ordinary PRINT statement. •" See page 407, "The

First Thirty-Two ASCII Characters," for an explanation.

Each of the 256 distinct characters has its own unique appearance

except for the two characters CHR$(0) and CHR$(255), which appear the

same as the blank-space character, CHR$(32). («" See Figure C-1.)

The Character Format

All characters that appear on the display screen are composed of

dots drawn within a grid called a character box. There are two standard

grids, one for the Monochrome Adapter (and its equivalents) and one for

the Color/Graphics Adapter (and its equivalents). In either case, charac-

ters are created by filling (or lighting) the appropriate dots in the grid.

(a) (b)

Figure C-2. The dot-matrix pattern

produced by (a) the Color/Graphics Adapter

and (b) the Monochrome Adapter
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The Color/Graphics Adapter uses an 8- by 8-dot character box; the

Monochrome Adapter uses a 9- by I4-dot box, which allows a more re-

fined character drawing. Most non-IBM members of the PC family use

only the color/graphics format, as does IBM's PCjr. A notable exception is

the Compaq PC-compatible computers, which successfully merge both

formats into the same display.

Dot-matrix printers, such as the IBM Compact printer, also draw

characters with a grid of dots. However, each model of printer may have

its own particular way of drawing characters that may not exactly match

the screen characters dot-for-dot. On the other hand, a graphics screen

dump to a graphics printer should match the screen dot-for-dot.

To see how characters appear, the three dot matrices in Figure C-3

illustrate a Y, a y, and a semicolon, using the 8-by-8 character box.

There are several rules that apply to the character drawings. For

ordinary characters, the two right-hand columns are left unused to pro-

vide separation between characters. These two columns are used only by

characters that are supposed to fill the entire character box, such as the

solid block character, CHR$(219). The top two rows are used for ascen-

ders (the part of a character that is above the ordinary character height).

The ascender space is used for capital letters and for such lowercase let-

ters as b, d, and k. The bottom row is used for descenders (the part of a

character that drops below the line), as in the lowercase letters g and y.

These general guidelines are occasionally compromised for the best over-

all effect. For example, the semicolon, our third example in Figure C-3, is

shifted up one row from what we might expect so that it does not use the

descender row.

DDHHDDaa
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Bit Value

7 6 5 4 3 2 10 (hex)

110 110 CC

110 110 CC

110 110 CC

11110 78

110 30

110 30

11110 78

00000000 00

Figure C-4. The coding of the eight

character bytes for the Y character

In graphics display modes 4 through 6 and 8 through 10 (screen
modes 1 through 6 in BASIC), we can create our own character drawing
tables using the above guidelines. The character drawing tables are coded
with eight bytes for each character—one byte for each row in the draw-
ing. The eight bits of each byte indicate which dots in the row are to be
shown. For example, the Y character is coded in hex as CC CC CC 78 30

30 78 00. The individual bits in each byte are shown in Figure C-4 (look
closely and you'll see the Y pattern again).

The First Thirty-Two ASCII Characters

The first 32 ASCII characters, CHR$(0) through CHR$(31), have two
important uses that just happen to conflict with each other. On the one
hand, these characters have standard ASCII meanings; they are used for

both printer control (for example, CHR$(12) is the form-feed character)

and for communications control. On the other hand, IBM also uses them
for some of the most interesting and useful display characters, such as

the card-suite characters (hearts, diamonds, clubs, and spades), CHR$(3)
through CHR$(6).

Generally, all computer devices, includmg the printer and the dis-

play screen, act on the ASCII meaning of the characters instead of show-
ing the character's picture. A simple way to demonstrate this is with the
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beep/bell character, CHR$(7), which has a dot for a picture. If we write

this character to the screen in BASIC, like this:

PRINT CHR$(7)

the PC's speaker will beep. But if we put the character directly onto the

screen by POKEing it into the screen buffer, like this:

DEF SEG = 4HB800 : POKE 0, 7

the character's picture will appear. We can always make characters ap-

pear on the screen by POKEing them into the screen buffer. However,

POKEing should be avoided whenever possible, since it makes our pro-

grams harder to adapt to changes. It is always a better programming

practice to display information on the screen using ordinary methods,

such as the PRINT statement in BASIC.

Most of the first 32 characters can be written to the screen, but the

display characters may vary, depending upon which language is used.

Figure C-5 shows some of these differences. The characters not shown,

CHR$(0) through CHR$(6), and CHR$(14) through CHR$(27), can always

be written to the screen with predictable results.
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The Box Drawing Characters

Among the most useful of the special extended ASCII characters are

the characters that are designed for drawing single- and double-lined

boxes. These characters have the codes CHR$(179) through CHR$(218).

Since they are difficult to combine properly, you may find the informa-

tion in Figure C-6 helpful.

~l
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CHR$(176)
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There is just a handful of formatting characters that are widely used

in ordinary text files. They were originally developed as commands to

tell a printer how to format a printed page and how to recognize when

the end of the file was reached. Now their use extends to all output de-

vices. We'll discuss each of the main formatting characters in turn.

CHR$(26) is used to mark the true end of a text file. This character

may come before the end of the file indicated by the file size in the direc-

tory entry. This is because many text-processing programs typically read

and write files, not byte by byte, but in larger chunks— 128 bytes at a

time. When they transfer data at this rate, DOS sees only the end of the

128-byte block, and does not recognize the actual end of the file delimited

by the CHR$(26) character.

CHR$(13) and CHR$(10) normally divide a text file into lines by

marking the end of each line with a carriage return (CHR$(13)) and a line

feed (CHR$(10)), usually in that order. Many text-processing programs

have difficulty with lines over 255 characters in length and some are lim-

ited to 80 character lines.

A carriage return may be used by itself. Unfortimately, this can be

interpreted as either of two things: the end of a line with a line feed that is

implied and automatically provided by some printers, or a return to the

beginning of the current print line, which causes the entire line to be

overprinted. (The backspace character, CHR$(8), is also sometimes used

to make a printer overstrike a character.)

CHR$(4), the tab character, is sometimes used to represent one or

more spaces, up to the next tab-set location. Unfortunately, as yet, there

is no universal convention on tab settings, which makes the use of the tab

character uncertain. However, one of the most common tab settings is

every eight spaces.

CHR$(12), the form feed or page eject, is another format character.

This character is interpreted as a command to a printer that tells it to

skip to the top of the next page.

There are also other formatting characters available, such as the

vertical tab, CHR$(11), but they are not generally in widespread use with

personal computers.

It is possible to avoid many difficulties by having programs create

text data with simple formats. The simplest formats allow lines no longer

than 255 characters and use only the carriage return (CHR$(13)), line feed

(CHR$(10)), and end-of-file (CHR$(26)) formatting characters. Most pro-

gramming languages, including BASIC and Pascal, automatically generate
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these formatting characters when creating text data. Normally, they also

process the characters so we only have to deal with text formatting when
we have bypassed our language's usual data control.

Many programs, such as compilers and assemblers, expect to read

text data that has the ordinary, plain format that we have been discuss-

ing. Often these programs cannot work with the more complex data for-

mats that are created by some word processors.

Word-Processor Text Formats

Word-processing programs have special needs for formatting text

data. The files that these programs create are rarely simple and typically

have many exotic additions to the simplest ASCII format. Generally, each

word processor has its own unique formatting rules; luckily there are

some common features.

Many of the special format codes used by word processors are cre-

ated by using an extended ASCII code that is 128 greater than a normal

ASCII code. This is equivalent to setting the high-order bit of an other-

wise ordinary byte. For example, a "soft" carriage return, CHR$(141), is

coded by adding 128 to an ordinary carriage return, CHR$(13). Soft car-

riage returns are often used to indicate a tentative end-of-line, which can

be changed when a paragraph is reformatted. On the other hand, an

ordinary carriage return, CHR$(13), may be used to mark the end of a

paragraph that isn't changed by reformatting. This kind of coding in

word-processing text can cause some programs to treat an entire para-

graph as one single line.

"Soft" hyphens, CHR$(173), which are 128 higher than ordinary

hyphens, CHR$(45), are sometimes used to indicate where a word may
be split into syllables at the end of a line. Ordinary "hard" hyphens,

CHR$(45), are treated as regular characters and they cannot be used or

removed by the word-processing program in the same way as soft hy-

phens can be.

Even ordinary alphabetic text may have 128 added to its character

code. This may be done by some programs to mark the last letter in a

word. For example, a lowercase a is CHR$(97); but when it appears at the

end of a word, such as America, it may be stored as CHR$(225), since 225

is the sum of 97 + 128.

Programs that are intended to work with a variety of text and

word-processing data should be prepared, as much as possible, to cope

with the variety of coding that these examples suggest.
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Access codes, 308, 309

Address interrupts

automatic reset hy DOS, 249, 253

break address interrupt, 256-57

critical-error handler, 257-58

default settings of, 255, 263

terminate address interrupt, 255-56

use of, 255

Alt key. See Keyboard

ANSI driver, 387-90

ANSl.SYS, 242-43

keyboard control with, 389

pros and cons of use, 389-90

screen control with, 388-89

ASCII characters

box drawing characters, 409

character display format, 87, 405-7

character set, 402-4

CHR$(0), 133, 134

control characters, 407—8

direct entry of, 133

graph and block characters, 410

interpretation of, 134

text-file formatting, 410-12

in TTY mode, 183

ASCIIZ strings, 264, 298

Assembly language. See also Interface

routines

addressing notation in, 34, 168

ASSUME, use of, 165, 207

CALL FAR and NEAR, 166

CHASM, 164

8088 instruction set, 20-22 (see also

Assembly language (continued)

IN/OUT, 210

LIB, use of to list programs, 354

MASM, 164, 353, 356

PSP, use of, 261

source code listings of, 352-53

types of, 164, 35 1-52

writing and linking example, 355

AT
extended services through INT 21,

216, 237-38

keyboard differences, 143-44

ROM-BIOS diskette services, 194-96,

234-35

disk controller diagnostics, 195

fixed disk status, 195-96

get parameters, 194

position cylinder, 195

read/write long, 195

recalibrate drive, 195

reset disk, 195

set disk base tables, 195

test for drive ready, 195

ROM-BIOS time of day services, 224,

239-40

ROM-BIOS video services, 184, 231-32

AX register

general discussion of, 27

use with BIOS services, 163

B
Back-words storage, 28, 121

Bad-track marking, 121

Base pointer (BP) register, 31, 166

413
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BASIC. See also Compiled BASIC,

Interpreted BASIC

assembly language, use with, 164

break-key handling in, 58

changing video modes in, 75

clock-tick interrupt, 58

data segment value in, 30, 57

DEFSEG, 30, 57

diskette error handling in, 58

hex arithmetic in, 398

INKEYS, 134, 136

INP/OUT, 37, 210

LOCATE statement, 174

ROM-BASIC, 221, 239

SCREEN statement, 74, 75, 78

BASICA. See also Interpreted BASIC

BIOS (Basic Input/Output System)

assembly-language interface to, 164—69

cassette tape services, 236

diskette services, 188-96, lii-i5

equipment list service, 232

general discussion of, 44, 160

interrupts, 161, 162

keyboard handling {see also Keyboard)

buffer, 52, 130

duplicate keys, 133

key commands, 131-32

keyboard interrupt (INT 9), 130

repeat keys, treatment of, 132—33

scan code translation, 130, 134-36

shift state, 131

keyboard services, 238—39

location in memory of, 16

memory service, 232

miscellaneous AT services, 237-38

parameter calling conventions, 161-63

reboot computer, 239

serial port services, 235—36

services, summary of, 226—40

switch to ROM-BASIC, 239

time of day services, 239-40

video services, 229—32

Bit-mapped display, 87

Bit-order notation, 27, 156-57

Boot record, 112-13

Bootstrap loader service, 221, 239

Box drawing characters, 179

BP (base pomter) register, 31, 166

Break key

break address interrupt, 256

Ctrl-Break, 132, 256

Ctrl-C, 131-32, 256

DOS control of, 257, 272

interrupts, 132, 256

simulation of, 257

status of, 56

technique used to ignore, 257

Bus

address bus, 12-13

control bus, 12

data bus, 12

8-bit versus 16-bit bus, 13

expansion slots in, 12

power lines in, 12

BX register

general discussion of, 27

use with BIOS services, 163

C language, 352

assembler interfaces, 380—81

data formats

floating-point, 379-80

integer, 378-79

string, 379

general discussion of, 352, 377

memory model size, 377—78

parameter passing in, 381-83

Cartridge

memory location for, 17

software cartridges, 63

header format, 63-65

Cassette tape

extended services for AT, 216

general discussion of, 56

read/write data, 215—16, 236

ROM-BIOS services for, 214-16, 236

turn on/off motor, 215, 236

use in PC family, 214

Character handling

BIOS services

read character/attribute from

screen, 178

write character/ attribute to

screen, 179
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Character handling (continued)

write character only to screen, 180

write character string (AT), 184

write repeating characters, 179

write in TTY mode, 183

box drawing characters, 179

display attributes, 79

graphics character table, 87

Clear screen, 173

Clock

BASIC clock tick, 58

count, 56

location of, 56, 223

midnight rollover, 56, 223

read current count, 223

set current count, 224

system clock tick, 56, 222-23

Clusters

cluster status on disk

number available, 303

sectors per cluster, 303

total number, 303

location of, in FAT, 122

numbering of, 121

starting cluster, 118

Code segment. See CS register

Color/graphics adapter. See also Video

character generator, 86

default cursor size, 174

general discussion of, 68

mapping text mode characters on, 88

memory location of, 16, 69

.COM f^les

converting .EXE files, 342

with PSP pointers, 261

relative size of, 356

Combining program modules, 341-47

COMMAND.COM file, 46

Compiled BASIC, 351

assembler interfaces with, 365—69

data formats

floating-point, 359-60

integer, 357-59

string, 361-62

.LIB or .OBJ files, 367

passing parameters in, 367—68

steps to compile, 369

subroutine CALL in, 366

CONFIG.SYS, 386

Coprocessors, 7-9

Copy protection

general discussion of, 124-25

using BIOS services, 199, 221

using track format service, 193—94

Country-dependent information

under DOS-2, 304-6, 335

under DOS-3, 304-5, 335

CRC. See Cyclical redundancy check

Critical-error handling

DOS address interrupt for, 257-60

error codes, 259—60

CS register

changing code segment address, 30

during interrupt process, 162

general discussion of, 28

in BASIC, 30

with BIOS services, 162

as pointer to PSP, 249

Ctrl-Alt-Del, 56, 131, 221

Ctrl-Break

get/set with DOS function, 302, 329

Cursor, 55, 92, 174-75

CX register

general discussion of, 27

use with BIOS services, 163

Cyclical redundancy check (CRC), 191

in cassette tape I/O, 215

in disk write verification, 288

D
Data segment. See DS register

DEFSEG, 30, 57

Destination index (DI), 31, 163

Device header control block, 260

Device I/O control, 311-13, 335

Direct memory access. See DMA
Directory

DOS services

change current directory, 307

create subdirectory, 306

get current directory, 314

remove subdirectory, 307

summary, 334

Disk base table

components of, 197-98
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Disk base table (continued)

creating new table, 196, 197-98

default version, location, 196

general definition, 188, 196

interrupt vector for, 196

Disk drives

determine ID letter of, 277

determine number of, 277-78

DOS services

report current drive, 282

select current drive, 277

how DOS sees them, 277

indicator m PSP, 290

Disk I/O

BIOS services

get error status, 189, 190

reset diskette system, 189

summary of, 188-207, 233-35

DOS services

determine space available, 303

reset disk/flush buffers, 277

summary of, 269, 295, 330-31

write verification status, 288, 319

error codes, 251

technique to free disk space, 285

Disk transfer area (DTA), 266, 282, 300

Diskettes

AT (see AT ROM-BIOS diskette

services)

bad-track marking, 121

BIOS services

format track, 192-93

read sectors, 189-91, 199-200

recalibration, 53, 195

reset, 189, 195

verify sectors, 191-92

write sectors, 191, 199-200

changing format markers, 198—99

DOS services {see Disk I/O,

File I/O)

get FAT information, 283

error status, 54, 189, 190

formats

IBM history of, 102-3

quad-density, 103—4

standard DOS, 102-3

physical structure

density, 100

Diskettes (continued)

index hole, 193

sectors, 100 (see also Sectors)

soft-sectored, 101

tracks, 100, 105, 192-93

programming recommendations, 124,

199

sectors

BIOS location notation, 106, 107

DOS location notation, 106, 107

length in disk base table, 198

number of, 105

size of, 101

space allocation

bootrecord, 110, 112-13

data space. 111, 119-20

file allocation table (FAT), 107-8,

110, 120-24

file directory, 109, 111, 113, 119

Display resolution, 73-74. See also Video

DMA (direct memory access)

DMA controller, 10

lack of, in PCjr, 10

linking in AT, 10

mode setting in disk base table, 197

DOS
command line parameters, 265

commands
ASSIGN, 250

BREAK ON, 256, 272, 302

CHKDSK, 119, 120, 124, 263

ERRORLEVEL, 272, 302

EXE2B1N, 343

FDISK, 110

FILES, 298

LINK, 342, 345-47

MKDIR, 306

MODE, 75, 96

SET (environment), 264

disk formats, 102-3

enhancements, DOS-3

extended error codes, 320-22

extended functions, 320—24

printer control, 253—55

environment settings, 264

files

COMMAND.COM, 46

IBMBIO.COM, 46
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DOS (continued)

IBMDOS.COM, 46

interrupts

address interrupts, 248, 255-60

print spool control (DOS-3), 253—55

program terminate, 249

sector read/write, 249—52

summary of, 325—35

terminate-but-stay-resident, 252-53

umbrella interrupt (INT 33), 242

services

DOS mterrupts {see page 247)

new DOS-2, DOS-3 functions

[see pages 295, 328)

pros and cons of use, 241—43

universal DOS-1 functions (see pages

269, 271)

versions, 244-45

compatibility of, 102, 245

diskette formats of, 102-3, 246

get version number service

DOS-1, 300

DOS-2, 300-1, 335

DS register

changing data segment address, 30

DEFSEG, useof,30,57

durmg BIOS service, 162

general discussion of, 29

use of, in BASIC, 30, 57

DTA (disk transfer area), 266, 282, 300

DX register

general discussion of, 27

use in BIOS services, 163

8088

accessing memory, 22

data formats, 23

character, 23

numeric, 23

general discussion of, 2-6, 22

instruction set, 20—22

interrupts, use of, 22—23

memory addressing, 24-25

ports, use of, 22

registers, 25-36

80286, 6-7

8253 programmable timer

advantages of, 151

BASIC'S use of, 148-49

frequency source of, 148

oscillating frequency of, 11

in PCjr, 153

programming of, 149

registers in, 150

sound production with, 148

8253-5. See 8253 programmable timer

8255 PPI (programmable peripheral

interface), 11

8284A clock generator, 10-11

base frequency of, 11

End-of-file marker, 118-19

in text files, 411

Enhanced Graphics Adapter, 69, 71,

74, 76-77

display pages in, 86

memory location of, 15, 84

modes in, 73, 82

remapping palettes in, 83

Equipment list

BIOS service for, 219-20, 232

bit coding of, 53, 220

general discussion of, 52-53

Erased files

notation for in directory entry, 114

notation for in FAT, 121

recovery of, 123

Error codes

DOS critical-error handler, 259-60

returned by DOS-2 services, 297,

317 329

usmg DOS ERRORLEVEL, 302

returned by DOS-3 services, 320-22

extended error codes and classes,

321-22

ES register

during BIOS service, 162

general discussion of, 29

.EXE format programs, 342-43

converting to .COM format, 343

LINK edited, 253, 345

pointers to PSP, 261

relative size of, 356

EXEC-load execute program

DOS-2 service, 315-17, 329
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EXEC-load execute program (continued)

effect on stack, 317

example of use, 316

Extended DOS functions. See pages

295, 301

Extra segment register. See ES register

FAT (file allocation table)

bad-track marking in, 121

cluster allotment in, 120

damaged, 124, 259

decoding FAT value, 122

DOS services, 28, 123

get FAT information, 282-83

erased files

markers in, 121

recovery of, 123

ID byte in, 123, 282

number of copies on disk, 120

organization on disk, 120

read-only status, 117

16-bit format, 123

storage of data in, 123

space allocation chain, 121

12-bit format, 120

storage of data in, 121

FCB (file control block). See also

File I/O

allowable open files, 298

closing files through, 278

extension, 279, 288-90

field descriptions, 289

file size in bytes, 291

general discussion of, 288—89

location and structure, 289

opening files through, 278

read/write random record(s), 283—84,

285, 292

programming hint, 283

read/write sequential record, 280-81

record size reported in, 278, 291

set random record field, 284

support in PSP, 265

FDC (floppy-disk controller), 12

File allocation table. See FAT
File attributes. See also File directory

in directory, 116—19

DOS services

get/set attribute, 311

search for, 279, 318

in FCB, 289

File control block. See FCB
File directory

date of file update, 118

formula for calculation, 118

disk volume ID field, 116-17

end-of-file marker in, 118

entry, size of, 113

erased file marker, 114, 121

file attributes, 116-17

archive, 117

disk label, 117

hidden file, 117

subdirectory, 117

system file, 117

file size field, 118

filename extension field, 116

filename field, 114

purpose of, 113

starting cluster number, 118

subdirectories, 113, 115-17

time of file update, 117-18

formula for calculation, 118

unused entry marker, 114

File fragmentation, 119-20

File handles

allowable open files, 298

definition of, 298

DOS-2 services

duplicate file handle, 313

force handle duplication, 313-14

FILES command, 298

standard handles, 298

File I/O

DOS-1 services using FCB
close file, 278

create file, 281

delete file, 280

get file size in records, 284

match file name, 279-80

open file, 278

parse filename, 286
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File I/O (continued)

read/write random record(s),

283-84, 285

read/write sequential record, 280—81

rename file, 281

DOS-2 services using file handles

close file handle, 309

create output file, 307

delete file, 310

get/set file attributes, 311

input/output control operations,

311-13

move file pointer, 310

open file, 308-9

read/write file or device, 309-10

DOS-3 services

create new file, 323

create temporary file, 32i

lock/unlock file access, 324

summary, 331, 333

File sharing in DOS-3

inheritance codes, 308

resolvmg conflicts, 313

sharing modes, 308

Filename, 114, 116, See also File directory

DOS services

continue file search, 280, 319

parsing, 286

rename file, 319

start search, 279, 318

m FCB, 290

Filename extension, 116. See also

File directory

Fixed disk. See Hard disk

Flag registers

control flags, 33-34

status flags, 33

AF flag, use of, 23

CF flag, use of, 36, 163, 297

ZF flag, use of, 163

Floppy-disk controller (FDC), 12

Foreign country symbols and delimiters,

304-6, 335

Global characters, 279, 281

Graphics characters, 87, 402-10. See also

Video, ASCII

H
Hard disk

formats, 104

logical, 105

physical, 104

organization {see also Diskettes)

master boot record, 107

space allocation, 111—12

partitions, 106-7

planers, 101

sectors, number of, 105

tracks, number of, 105

Hercules display adapter, 69

Hexadecimal numbers, 392-400

in BASIC, 398

decimal/hexadecimal conversion,

395-97

hex addition, 399

hex multiplication, 400

and segmented notation, 394-95

I

IBM BASIC compiler. See Compiled

BASIC

IBM Pascal version 1.00. See Pascal

IBMBIO.COM file, 46, 112, 117

IBMDOS.COM file, 46, 112, 117

ICA (intra-applications communications

area), 58

Index registers. See also Offset registers

designation index (Dl) register, 31, 163

source index (SI) register, 31, 163

Infrared keyboard, PCjr

error detector, 52

Inheritance codes, 308

Installable device driver, 102, 299, 386-90

Instruction pointer (IP)

general discussion of, 31

use in BIOS services, 163

INT. See Assembly Language

Interface routines

components of, 164-69, 338-39
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Interface routines (continued)

examples

diskette service, 199-200

weekday (for use with C),

293-94

general discussion of, 164

general form, 164—69

assembler overhead, 165

entry code, 166-67

get parameter data, 167

invoke DOS or BIOS service, 168

subroutme overhead, 166

logical organization, 353

requirements of, 339-41

Interpreted BASIC, 351

accessing parameters, 364-65

assembler interfaces, 362-65

data formats

floating-point, 359-60

integer, 357-59

string, 360-61

passing parameters, 362-63

Interrupt vectors, 24, 39, 45

changing/setting value using DOS,

50, 284

changing values of, 45, 48, 50—51

get vector with DOS-2, 303, 335

set interrupt vector with DOS-l, 335

technique for preserving, 303

vector table, 39, 47, 160

Interrupts

address, 46, 249, 255-60, 262-63

BASIC, 46

BIOS, 160-63. See pages 171, 187,

203, 209

IBM design philosophy, 160-61

calling instructions

INT, 40

IRET, 39-40

CPU, 39, 45

DOS, 46, 248-60, 326

general discussion of, 22-23, 37, 49

hardware, 39, 45

how they work with stack, 39

interrupt handlers, 37

non-maskable (NMI), 39, 48, 132

software, 39, 45, 160

Intra-applications communication area

(ICA), 58

I/O Ports. See Ports

lO.SYS. See IBMB10.COM
IP (instruction pointer). See Instruction

pointer

K
KEEP, 302, 329

Keyboard, 128-44, 203-8

AT, 143-44

BIOS interpretation of keys, 52, 130-32

BIOS services, 238-39

get shift status, 205-6

read character, 204

report character ready, 205, 207

break key, 56, 131-32, 256-57, 272

buffer

character present in, 204

flushing technique, 205, 277

memory location of, 52, 130

controller chip, 128

data format, 134-36

ASCII codes, 133-34

auxiliary byte, 134, 204

CHR$(0), use of, 133-34

cursor keys, 134-35

function keys, 134-35

INKEYS, use of, 134, 136

main byte, 134, 204

numeric keys, 134-35

DOS services

advantages of, 206

buffered input, 275-76, 329

check input status, 276, 329

clear buffer, 277, 329

direct input without echo, 274, 329

direct keyboard/display I/O, 274, 329

input without echo, 275, 329

keyboard input with echo, 272, 329

keyboard action interrupts (see also

BIOS)

disabled, 131

general discussion of, 139-40

in PCjr, 132

keyboard layout, 130
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Keyboard (continued)

PCjr, 140-43

programming example, 207

programming hints, 206

scan codes

general discussion of, 129

standard codes, 130

storage of, 134

translation of, 130-33

shift states

Alt key, 131, 133

Ctrl-Ait-Del, 131

Ctrl-Break, 132

Ctrl key, 131

Ctrl-Num-Lock, 137

get shift status, 205

Shift key, 131

Shift-PrtSc, 132

status bytes, 52, 136-39

Caps Lock, 137

hold state, 137-38

insert state, 136

in PCjr, 57, 142-43

toggle keys, 131, 138

type-ahead capability, 205

typematic, 132

Keyboard enhancers, 129, 252

Lattice/Microsoft C. See also C language

parameter placement on stack, 168

LIB program, 343-45

Light pen, 176

LINK program

combining programs, 342, 346-47

Imkmg .EXE files, 253, 342-45

linking to library, 346

linking one program, 345

parameters used by, 345

Low-memory control information, 51—58

M
Machine ID, 59-60

Macro Assembler 1.00. See Assembly

Language

Memory
addressable memory, amount of, 14,

220-21

amount usable by DOS, 262

BIOS location in, 16

cartridge, use in, 17

color/graphics display, 16, 69, 84

display memory in PCjr, 84

DOS-2 services

allocate memory in paragraphs, 314

free allocated memory, 315

modify allocated memory block, 315

memory-mapped display, 70, 87-90

monochrome display, 16, 69, 84

ROM-BIOS services

AT extensions, 228, 238

usable memory, 220-21

64K blocks, 14

block, 15

A block, 15

B block, 16

C block, 16

D block, 17

E block, 17

F block, 17

size, actual, 52

20-bit addresses, 14

virtual, 7

Memory addressing

back-words storage, 28

interrupt vectors, 24 {see also

Interrupt vectors)

offset address, 24

through registers, 33-35

segment address, 24

segmented addresses, 24

notation, 25

in video display, 70, 87-90 {see also

Video)

Memory-mapped display, 70, 87—90

Memory services

in BIOS, 220-21, 232

in DOS, 314-15, 335

Monitors

color quality, 80

color suppression in, 77—78

composite, 72
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Monitors (continued)

direct drive monochrome, 72

RGB, 72

Monochrome Display Adapter

character generator for, 87

default cursor size, 174

general discussion of, 68-69

I/O ports in, 93-94

mapping characters in text mode,

87-88

memory location of, 16, 69

memory requirements of, 84-85

monochrome mode

color equivalent in, 81

setting attributes in, 81

setting of, 71, 73, 173

programming hints, 90-91, 96-97

testing for presence of, 96, 184

MS-DOS.SYS. See IBMDOS.COM
Multitaskmg

direct video output m multitasking

environment, 91

general discussion of, 6—7

N
NEC controller, 12

New DOS functions. See pages 295, 328

Non-maskable interrupt (NMI), 39, 48,

132

o
Object code

creating libraries, 343-45

general discussion of, 342

Offset address, 24

Offset registers

base pointer (BP), 31, 166

BIOS services, use in, 163

designation index (Dl), 31, 163

instruction pointer (IP), 31

rules for use of, 35

source index (SI), 31, 163

stack pointer (SP), 31, 163

Parameter passing

in BASIC, 362-63

in C, 377-83

in interface routines, 340

in Pascal, 375-77

Pascal

assembler interfaces, 200,

375-77

data formats, 369-75

floating-point, 372-74

integer, 370-71

SET, 372

string, 371

general discussion of, 351, 369

PCjr

baud rate width, 211

cassette tape services, 214-16

DMA, lack of, 10, 189

keyboard

key equivalents, 140—41

NMI, use of, 141

operation of, 140-42

programming recommendations,

143

special key combinations, 141

status information, 57

memory size, 221

serial printer width, 220

sound, 152-58 {see also Sound)

video

character table, 87

color control, 80

display memory, 84, 221

display pages, 86

display resolution, 74

remapping color palettes, 83

text width, 74

video gate array, 16, 69

Pixels

BIOS services

write/read pixel, 182, 231

effect on display resolution, 73-74

general discussion of, 70

mapping pixels in graphics mode,

88-90
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Ports

accessing through BASIC, 36

INP/OUT, 37

cassette tape I/O, 214-16

family differences between, 37-38

general discussion of, 22, 36, 210

memory-mapped I/O, 36

serial (RS-232), 210-13

video I/O, 71, 93-95

Print screen

BIOS service for, 217-18, 229

interrupt, 49

Shift-PrtSc key, 47, 132

status of, 57

Printer services

BIOS services, 239

get printer status, 217—18

initialize printer, 217

output one byte, 217

DOS-3 services, 253-55

print screen, 57, 132, 218-19

printer time-out, 218

serial printer, in PCjr, 220

Professional Graphics Adapter, 15, 77

Program interface. See Interface routines

Program overlay, 284-85

Program segment prefix. See PSP

Program termination

DOS services

get return code of subprogram, 317

program terminate, 249, 271-72

terminate-but-stay-resident, 252—53,

302

terminate handler address, 255—56

terminate with error code, 317, 329

effect on DOS, 249

leave-resident-program example,

266-67

PSP, role in, 249

techniques for, 221, 239, 249, 262,

271-72

Programming

diskenes, 124

IBM design philosophy, 160

interface routines, 164—71

Programming languages, 349—83

ProKey, 129, 252

PSP

access through segment registers, 261

address interrupt settings, 255

CS register, role of, 249, 266

DOS services

create new PSP (DOS-1), 284-85

get PSP address (DOS-3), 324, 329

location of, 249

program termination with, 262

structure of, 261—65

use of, 249, 260-66

R
Raster scan, 70

Reboot system, 56, 131, 221, 239

Registers

flag, 33—34, 36 {see also Flag registers)

half, 26

offset, 31 {see also Offset registers)

rules for use, 35-36

scratch pad, 26-28 (see also Scratch

pad registers)

segment, 28-30 {see also Segment

registers)

use of, 25—36

Relative offset, 24

Repeat key action, 132

Resident programs, 252—53, 266—67

Return codes. See Error codes

ROM
BASIC, 61, 221, 239

cassette, 62

components, 42

extensions, 62

release date, 59

start-up programs, 42-44

bootstrap loader, 43

initialization, 43

power on self test (POST), 43

reliability test, 43

ROM-BIOS. See BIOS

Scan codes

general discussion of, 129
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Scan codes (continued)

keyboard action interrupt, 130

standard codes, 130

storage of, 134

translation of, 130-31

Scratch pad registers, 26-28, 35. See also

AX, BX, CX, and DX registers

Screen control functions

BIOS, 173-84, 229-32

DOS, 329, 273, 275

Sectors. See also Diskettes

BIOS location notation, 105, 250

bytes per, 303

DOS location notation, 105, 250

DOS services

read, 189-91

verify, 191-92

write, 191, 249-52

identification marker, 193

Segment paragraph, 24

Segment registers, 28-30, 35. See also

CS, DS, ES, and SS registers

Segmented notation, 25

hexadecimal numbers in, 394-95

Serial communications

BIOS services

error status report, 212—13, 236

receive one character, 213, 236

send one character, 212, 236

set port parameters, 211-12, 235

DOS services,

serial input/output, 273

ports, use of in PC, 210

Sharing codes, 308

SI (source index), 31, 163

6845 CRT controller, 11, 70

port address, 56, 94-95

setting display page, 85

SN76496A. See TI sound chip

Sound

activating speaker, 150—51

computer production of, 147—52

8253 timer chip, 148-50

frequency range in BASIC, 150

musical note frequencies, 147

physics of, 146-47

speaker control, 150-52

cassette tape interface, 152-53

Sound (continued)

8253 timer, use of, 153

I/O channel, 153

in PCjr, 152-58

sound output, 156-58

sound sources, 152-53

TI sound chip, 153-58

Source code

filename extension of, 341

translating to object code, 342

writing it, 341

Source index (SI), 31, 163

SP register. See Stack pointer register

Space allocation chain, 121-22

Speaker. See also Sound

activation of, 150—51

control of, 147, 151-52

frequency range of, 146—47

in PCjr, 157-58

PPI chip involvement, 147, 150-51

quality of, 152

timer chip involvement, 148

SS (stack segment) register

during interrupt process, 162

use of, 29

Stack

accessing address on, 168

accessing data on, 168

in BASIC, 365, 367-68

BP (base pointer) register, 31, 166

cleaning up, 167, 200, 252, 341

contents after critical error, 258

effect of EXEC service on, 317

frame reference, getting, 167

how to locate, 258

parameters

placement of, 167—68

preservation of, 340

removal of, 167, 200, 252

requirements of ROM-BIOS services,

162

stack pointer (SP) register, 31, 167

stack segment (SS) register, 29 {see also

Segment registers)

Stack pointer (SP) register

general description of, 31

use with BIOS services, 163

Stack segment register. See SS register
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Step-rate time. See Disk base table

Subdirectory

DOS-2 services

create, 306, 334

remove, 307, 334

file attribute marker in directory

entry, 116-17

root directory of, 115

size of, 115

tree structure of, 115

System board

bus, 12-13

contents of, 2

AT, 5

PC, 3

PCjr, 4

XT, 3

8087 math coprocessor, 8-9

8237A DMA controller, 10 {see also DMA)
8253 programmable timer, 11, 148-50,

153 ( see also 8253 pro-

grammable timer)

8255 programmable peripheral

interface, 11

8259 interrupt controller, 9-10

changing interrupt levels, 10

hnking, in AT, 10

8284A clock generator, 104

microprocessor, 2-7

8088, 2-6 (see a/so 8088)

80286, 6-7

PD765 diskette controller, 12

6845 CRT controller, 11, 56

System reset, 56, 131, 221, 239

Terminate-but-stay-resident

DOS-1 version, 252-53

DOS-2 version, 302, 329

example of, 266-67

Terminate program. See Program

termination

Text files

creating ASCII files in BASIC, 341

end-of-file marker, 119

formatting conventions

ordinary, 410

Text files (continued)

word processor, 412

TI sound chip (SN76496A), 152-57

attenuation, 154

control of

attenuation, 157

frequency, 156

noise control, 157

parameter, 155

noise generator, 154-55

tone generator, 153-54

Time and date services

day-of-week program example, 292-94

DOS-1 services, 287-88

DOS-2 services, 319-20, 334-35

stored in FCB during file I/O, 292

Time of day

in AT, 224, 239-40

BIOS Services, 222-24, 239

calculation of, 223

during file update, 117-18

Timer. See 8253 programmable timer

Toggle keys. See also Keyboard

Caps Lock, 131, 137

Num Lock, 131, 137-38

status of, 52, 131, 136-38

Tracks. See also Diskettes

addressing, 192

index hole, 193

individual formatting of, 192

number of, 105

TTY (teletype) mode, 183

Typematic, 132

u
Universal DOS functions. See page 269

V
Vertical retrace, 71

Vertical sync signal, 71, 95

VGA (video gate array), 16, 69

Video

ANSI.SYS to control, 242-43

BIOS services, 173-86

example of, 185—86

interface routines and, 185
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Video (continued)

read character attribute, 178-79

set color, 81-83

write character attribute, 179-80

write/read pixels, 182

color

background, 79-80

in BASIC, 78

changing pixel, 180

components of, 75—77

foreground, 79-80

intensity of, 76—77

quality in monitors, 72, 80

suppression of, 77—78

in text modes, 78-81

color palettes

bit settmgs of mask, 56

general discussion of, 82, 181

remapping in PCjr, 83

16-color palettes, 76

64-color palettes, 76

256-color palettes, 77

compatibility considerations, 96-97

control through DOS, 242-43

current mode status, 54-55, 173, 184

cursor

BIOS services, 174-75, 183

default size, 174

simulated, 92, 174

size, 55, 92

direct hardware control, 91-95

display memory, 69, 84-85, 87-91

display pages

current page status, 55

cursor locations, 55

general discussion of, 85

in graphics mode, 86

page location in memory, 55

screen size status, 55

scroll window, 177—78

set active page, 85, 176

in text mode, 85-86

display resolution, 73—74

graphics modes

in BASIC, 82

bit-mapped display in, 87

character generation in, 86—87

display pages in, 86, 178

mapping pixels in, 88—91

memory requirements of, 84—85

types of, 71, 73

Video (continued)

programming hints, 90-91, 185

raster scan, 70

screen width status, 55

services, summary of, 229-32

6845 CRT controller, 11, 56, 70

text modes

advantages of, 80

blink control in, 79

changing modes in DOS, 74-75

character attributes, 79

color control in, 79-80

display page in, 85-86

mapping characters in, 87-88

memory requirements of, 84

monochrome (mode 7), 71, 73,

81,84

read character/attribute, 178

setting attributes in, 79-81

types of, 71, 73-74

write character, 179—80

Video gate array (VGA), 16, 69

Video modes. See also Video

color-suppressed modes, 77-78

current status, 54-55, 173, 184

general discussion of, 71-73

graphics modes, 73, 81-84, 86-91,

178-80, 182

memory requirements of, 84-85

mode settings, 55, 73, 173

monochrome mode, 68, 71—73, 81,

84-85

set mode, 173

text modes, 71, 73-75, 79-80, 84-88,

179-80

Video services

BIOS services, 173-84, 229-32

DOS functions

display string, 275, 329

write character to screen, 273, 329

Virtual memory, 7, 216, 238

w
Windowing systems, 6

direct video programming in, 91

importance of installable device

drivers, 299

test for usable bytes in segment, 263

test for usable memory, 263

use of operating system in, 244







PETER NORTON
Peter Norton was raised in Seattle, Washington, and educated at

Reed College in Portland, Oregon. Before discovering microcomputers,

he spent a dozen years working on mainframes and minicomputers for

companies including Boeing and the Jet Propulsion Laboratories. After

the debut of the IBM PC, Peter was among the first to buy one. Now rec-

ognized as a prmcipal authority on IBM personal computer technology,

Peter is the author of Inside the IBM PC and creator of the best-selling

Norton Utilities programs. He is also a popular featured columnist for

both PC and PC Week magazines.





The manuscript for this book was prepared on an IBM Personal

Computer. Submitted to Microsoft Press in electronic form, the text

files were processed and fortnatted using Microsoft Word.

Cover design by Ted Mader and Associates.

Cover photo by Tom Collicott.

Technical illustrations by Rick van Genderen.

Text composition in Sabon, with program listings in HP Monospace.

Typesetting by Microsoft Press, using the CCI system and the

Mergentbaler Linotron 202 digital phototypesetter.

Cover art separated by Color Masters, Phoenix, Arizona.

Printed on 12 pt. Carolina by Strine Printing Company, York,

Pennsylvania. Text stock, 60 lb. Glatfelter Offset, supplied by

Carpenter/Offutt. Book printed and bound by Fairfield Graphics,

Fairfield, Pennsylvania.





OTHER TITLES FROM MICROSOFT PRESS

THE IBM ENVIRONMENT
Running MS-DOS The Microsoft Guide to Getting the Most Out of the

Standard Operating System for the IBM PC and 50 Other Personal Computers,

Van Wolverton, ISBN 0-914845-07-1, $19.95

Exploring the IBM PCjr Home Computer Peter Norton,

ISBN 0-914845-02-0, $18.25

Discovering the IBM PCjr Home Computer Peter Norton,

ISBN 0-914845-01-2, $15.95

Managing Your Business with Multiplan How to Use Microsoft's

Award-Winning Electronic Spreadsheet on Your IBM PC, Ruth K. Witkin,

ISBN 0-914845-06-3, $17.95

Getting Started with Microsoft WORD A Step-by-Step Guide to Word
Processmg, Janet Rampa, ISBN 0-914845-13-6, $16.95

Word Processing Power with Microsoft Word Professional Writing on

Your IBM PC, Peter Rinearson, ISBN 0-914845-05-5, $16.95

GENERAL
Silicon Valley Guide to Financial Success in Software Daniel Remer, Paul Remer,

and Robert Dunaway, ISBN 0-914845-09-8, $19.95

Online A Guide to America's Leading Information Services, Steve Lambert,

ISBN 0-914845-35-7, $19.95

Learning Commodore 64 Logo Together An Activity Book for Creative Parents,

Teachers, and Kids, Kenneth R Goldberg, ISBN 0-914845-24-1, $14.95

Out of the Inner Circle A Hacker's Guide to Computer Security,

"The Cracker" (Bill Landreth), ISBN 0-914845-36-5, $9.95 softcover,

ISBN 0-914845-45-4, $19.95 hardcover

A Much, Much Better World Eldon Dedini, ISBN 0-914845-50-0, $6.95

AVAILABLE WHEREVER FINE BOOKS ARE SOLD

or write: Marketing Department

Microsoft Press

10700 Northup Way
Box 97200
Bellevue, WA 98009









q-^-'^'^



PETE T

PROGRAMMERS GUIDE

TOTHE IBMPC
.' Finally... the ultimate programmer's reference guide for

the entire family of IBM personal computers:

^a IBM PC XT AT IBM Portable PCjr

If you're an intermediate or advanced programmer, you
know the value of developing programs for one IBM ma-

i chine that W\\\ port to the others, even any future IBM
machines. Peter Norton, acknowledged IBM authority and
creator of the best-selling Norton Utilities, now gives you

} the information you need to do just this. In The Peter

< Norton Programmer's Guide to the IBM PC, you'll find a

gold mine of insights, techniques, technical data, and quick

reference charts, and you'll take a look at the architectural

similarities and differences among IBM's five personal

computers. Equipped with this invaluable information,

you'll be better able to create simple, clean, and portable

. professional and business programs.

•'> Here's just a sampling of what's covered:

Disk Basics Sound Generation BIOS Basics

ROM-BIOS Video and Diskette Services

>...•." v*^^ DOS Interrupts DOS Functions (including

^i-'-iS: version 3.0) Linking Programs Installable

Device Drivers Tips on creating interface

routines for use with assembly language, Pascal,

BASIC, and C

Peter Norton is widely recognized as a leading authority on
IBM personal computers. He is the author of the popular

Inside the IBM PC and a featured columnist in PC magazine
and PC Week.


