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No one is surprised more often by the dynamic behavior of a program than

its author.

— Russ Blake, Optimizing Windows NT

Microsoft Corp. is the author of not only Windows 95 (“Chicago”) but

also virtually all materials regarding this operating system. Microsoft has

released a 300-page
“
Chicago ” Reviewer's Guide

,
almost monthly articles in

Microsoft Systems Journal, and several articles in Microsoft Developer Net-

work News. Microsoft Press, which recently started describing itself

in its ads as “The Knowledge Division of Microsoft,” has published a

47 5-page book, Inside Windows 95, by a former director of systems soft-

ware products at Microsoft, Adrian King.

Almost all other descriptions ofWindows 95 in the computer trade

press have been based heavily on such Microsoft-provided resources.

Moreover, we— like all non-Microsoft book publishers— are required

by Microsoft’s publisher relations program to include the following

notice:

This book is based on information on Windows 95 made public by Microsoft

as of 10/19/94. Since this information was made public before the release

of the product, we encourage you to visit your local bookstore at that time

for updated books on Windows 95.

If you have a modem or access to the Internet, you can always get up-to-

the-minute information on Windows 95 direct from Microsoft on WinNews:

On CompuServe: GO WINNEWS
On the Internet: ftp://ftp microsoft.com/PerOpSys/Win_News/Chicago

http://www. microsoft.com
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On AOL: keyword WINNEWS
On Prodigy: jumpword WINNEWS
On Genie: WINNEWS file area on Windows RTC

You can also subscribe to Microsoft’s WinNews electronic newsletter by

sending Internet email to enews@microsoft.nwnet.com and put the words

SUBSCRIBE WINNEWS in the text of the email.

Interestingly, the publisher’s note (September 16, 1994) to Microsoft

Press’s own Inside Windows 95 starts off with a somewhat different

disclaimer:

As we went to press, some aspects of Windows 95 were still under a general

nondisclosure agreement, but Microsoft had made public a great deal of information

about Windows 95. This book offers an interpretation of that information
,
and the

author’s conclusions are based on his exploration of Beta-1, [italics added]

Similarly, Unauthorized Windows 95 also offers an interpretation of the

information Microsoft provides on Windows 95, and the conclusions are

similarly based on my exploration of Chicago’s Beta-1 (May 1994). In

addition, I examined the commercially-released Windows for Work-

groups (WfW) 3.11, whose 3 2 -bit file access is said by Microsoft’s adver-

tisements to be “powered by 3 2 -bit technology from our ‘Chicago’

project,” and I examined Microsoft’s 3 2 -bit add-in to Windows 3.1,

Win32s, which bears a far closer resemblance to Windows 95 than repre-

sentatives for Microsoft claim (and apparently believe).

Microsoft representatives also claim, and no doubt sincerely believe,

that Windows 95 is “integrated,” is not based on MS-DOS, has been

rewritten from the ground up, and has a 3 2 -bit kernel. Microsoft seeks by

these statements to position Windows 95 head-to-head against the Apple

Macintosh (whose ease of use is widely perceived to stem from its “inte-

gration”) and to a far lesser extent against IBM’s OS/2 operating system,

the avid supporters of which make much ado about the fact that OS/2 is a

complete, “from the ground up” operating system, not a “thing on a

thing” like Windows.

But, just as an author is often surprised by the behavior of his or her

own program, likewise a company is often misinformed — and hence a

source of misinformation— as to the nature of its own products. This is

why educated car buyers generally pay more attention to Consumer Reports

than to the manufacturer’s advertising or the salesman’s pitch. Similarly,

you would no more want to learn about an operating system straight from

the horse’s mouth than you would expect to learn about a book by asking
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its author. An author is generally the last person you would ask for an

objective perspective on his or her work.

Not surprisingly then, many of Microsoft’s statements on Windows 95

have been ill-informed. This book shows that Windows 95 is no more

integrated than its predecessors, and does not represent a “complete

rewrite” of Windows.

However, although this book pokes several large holes in Microsoft’s

claims for Windows 95, 1 do not join the IBM OS/2 contingent nor the

equally small contingent marching behind Microsoft’s high-end Windows

NT. The OS/2 and NT enthusiasts (who sound remarkably alike) pounce

on any proof of architectural compromises in Windows 95 — such as the

continuing use of 16-bit code in the kernel, or the continuing reliance on

MS-DOS — as proof that Windows 95 isn’t a genuine operating system.

But Windows 95 is likely to be a shockingly successful operating system

precisely because of such compromises.

This book will show you that Windows 95 continues to rely on DOS,
that its Win32 kernel continues to rely on the Win 16 kernel, and that—
surprise! — this is okay. My goal is not to prove that Windows 95 contin-

ues to use DOS and therefore isn’t a genuine operating system. Instead,

my goal is to show that even though Windows 95 does use DOS, Win-

dows 95 (like Windows 3.x Enhanced mode before it) is not some “thing

on a thing,” but employs a reasonable, legitimate operating system archi-

tecture, the foundation of which is Intel’s Virtual-8086 (V86) mode.

One of my hopes is that this book will help overcome some common
prejudices as to what constitutes a proper operating system architecture.

Windows and DOS are by far the most successful operating systems in

the history of computing. That they don’t conform to certain principles

of operating system design might tell us that there is something wrong

with these principles. Most general-purpose computers on the planet are

running DOS and possibly Windows. Thus, like it or not, Windows and

DOS together define what operating systems actually look like in the

world today.

My goal in puncturing some of Microsoft’s claims about Windows 95

is not to find fault with Windows 95. By understanding that Windows 95

is not a complete rewrite, is still partially based on DOS, has 16-bit code

in its kernel, and so on, you will better understand how Windows 95

actually works.

In particular, I hope this book will help you see that the coolest new
features of Windows 95 have their roots in Windows 3.0 Enhanced mode,

first made available to paying customers on the fateful day ofMay 22,
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1990 (The Day the Software Industry Changed). Windows 95 should have

been predictable from a careful reading of the Windows 3.0 Device Driver

Kit’s description ofVMM services such as Hook_V86_Int_Chain, Set_

PM_Int_Vector, Allocate_V86_Call_Back, Install_V86_Break_Point, and

Call_Priority_VM_Event.

ThisVMM layer, which is a genuine operating system, and plug-in

add-ons to this operating system, called VxDs, have been around for five

years, yet only now is it likely that the typical Windows programmer will

encounter them. Unfortunately, I suspect that few Windows developers

could tell you much about the components of the Windows operating

system such as VMM, IFSMgr, VPICD, DOSMGR, VWIN32, or IOS.

Likewise, Windows programming books likewise say hardly anything

about this layer of Windows.

KERNEL32 GDI32
KERNEL USER GDI

COMMDLG OLE
DDE USER32 etc.

; ..

Sal®

VMM DOSMGR VWIN32
IFSMgr V86MMGR
VFAT VXDLDR VPICD

IOS etc.

Most books on Windows (even

Undocumented Windows) discuss

this layer of Windows.

Unauthorized Windows 95 discusses

this layer.

Although Windows is frequently referred to as an environment rather

than an operating system, a little-known part of Windows really and truly

is a full-blown operating system. This book covers this operating system

component of Windows.

Although Unauthorized Windows 95 is largely a book aboutVMM and

VxDs in Windows 95, it is not a book for device driver writers. Even

though I hope someone writing a device driver will find a lot of valuable

information here, my assumption throughout is that the reader has no

intention of writing device drivers. And although I discuss some important

undocumented functions— most notably undocumented Win32 APIs pro-

vided by KERNEL32.DLL, such as VxDCall and GetpWinl6Lock— my
intention is simply to give you a taste of how Windows 95 actually works.

Another thing I’ve tried to do in this book is to “integrate” (as

Microsoft would put it) minute technical details of Windows 95 with an

overview of Microsoft’s role in the PC software industry and the likely

impact of Windows 95 on the industry. I’ve never been interested in

details for their own sake. Examining the Windows code, in some cases
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down to the instruction level, is important only because this code is run-

ning on tens of millions of machines every day. I don’t think it would be

worth subjecting a less ubiquitous operating system, such as OS/2 or NT,
to the same scrutiny

Well, so much for what you can expect from Unauthorized Windows 95.

Now for my favorite part of the book, where I get to give thanks for all

the help I received.

First, there’s my editor, Trudy Neuhaus. For five years, Trudy edited

the back ofPC Magazine
,
where authors such as Douglas Boling, Ray

Duncan, Charles Petzold, and Jeff Prosise regularly appeared. Well-

known as the finest editor in the computer-writing business, Trudy joined

IDG Books as Senior Editor of its new Programmers Press division, and

is now Publishing Director of Programmers Press Professional. I was

incredibly fortunate to have Trudy as the editor for this book.

Richard Smith, president of Phar Lap Software, not only was tremen-

dously useful to talk with both about technical and business issues, but

also was very supportive.

Jim Finnegan, a contributing editor to Microsoft SystemsJournal (check

out his absolutely brilliant articles, cited in the “For Further Reading”

section at the end of this book) was the technical editor for this book.

Jim’s eagle eye and ready wit saved me from making a fool of myself in

numerous places.

Geoff Chappell is largely responsible for my understanding of the

inner workings ofVMM and 3 2 -bit file access. Paul Bonneau, Ron Burk,

Tim Farley, Bill Lewis, David Markun, Klaus Mueller, Thomas Olsen,

Walter Oney, Matt Pietrek, Brett Salter, Murray Sargent, Alex Shmidt,

Mike Spilo, and Kelly Zytaruk all helped me through phone conversa-

tions and over email.

Geoff, Klaus, Tom, Alex, and Kelly provided me with huge amounts

of material on VMM and VxDs, most of which unfortunately did not

make it into Unauthorized Windows 95. Doug Boling wrote a wonderful

second-generation version of the WINIO library, which also did not end

up in this book. I promise, guys, that all this stuff will get into print!

Nu-Mega Software makes the incredible Soft-ICE/Windows debug-

ger, which made this book possible.

My friend Chris Williams, Vice President and Publisher of IDG Pro-

grammers Press, came up with the title Unauthorized Windows 95
,
and

often seems to have understood the point of this book better than I did.

Amy Pedersen was aggressively marketing this book long before I had

written it. Thanks, Amy!
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Teresa Frazier and Susan Pink transformed my chaotic manuscript

into a readable, understandable book. I was very fortunate to have them

on the Unauthorized Windows 95 team.

Desktop publishing wizards Ronnie Bucci and Beth Roberts produced

the entire book, including the screen shots and diagrams, and made cor-

rections to corrections of corrections with good humor and accuracy.

Seth Maislin proofread the book, and Liz Cunningham compiled the

index, both in record time. Thanks for your sharp eyes!

Kate Tolini made reservations, tracked down books, arranged couri-

ers, and did all sorts of other essential things. By providing an emergency

supply of samosas and pakoras, Berta Hyken kept me from complete

spicy-food withdrawal.

Jon Erickson, my long-time editor, let me wriggle out of two months

worth ofmy “Undocumented Corner” column in Dr. Dobb's Journal, and

at the same time taught me Erickson’s Second Law of the Conservation

of Prose, thereby extending my life by the two articles I now owe him.

Larry Seltzer, Wendy Goldman Rohm, Stephen Manes, Paul

Andrews, and John Markoff sometimes called me up for some back-

ground to articles they were writing— and I always got far more out of

the conversation than they did.

Gene Landy of Shapiro, Israel, and Weiner (and author of the superb

Software Developer's and Marketer's Legal Companion), Richard De Bodo of

Irell and Manella, Dan Silver at the U.S. Federal Trade Commission, and

Stuart Taylor of The American Lawyer all helped me try to understand

U.S. antitrust and trade-practices law.

Ray Valdes, in addition to having taught me C programming in the

mid-1980s, is a great friend, and his totally brilliant pieces in Dr. Dobb's

Developer's Update are an inspiration.

Claudette Moore of the Moore Literary Agency put me together with

IDG Books. Back when I was a lowly engineer at Lotus, Claudette got

me started writing computer books.

My son, Matthew Jacob Schulman, had to put up with my absence for

almost two months while I finished this book. Matthew, I’m sorry, and I

promise I will never again be away for that long.

My wife, Amanda Susan Claiborne, during what was already a difficult

time, had to be a single mom for two months. Thanks for that, for

eleventh-hour revising of this preface, and for reminding me that there

are more important things in life than VxDs.

Occidental, CA
October 23, 1994
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The Inipaci of

“If someone thinks we’re not after Lotus and after WordPerfect and

after Borland, they’re confused. My job is to get a fair share of the soft-

ware applications market, and to me that’s 100 percent.”

— Mike Maples, senior vice president for applications, Microsoft

(quoted in Jane Morrissey, “Microsoft applications unit seeks

market dominance,” PC Week, November 18, 1991).

In typical Microsoft fashion — like a very late gangbuster— Windows 95 is coming.

When Microsoft chairman Bill Gates announced that the next version of Windows,

codenamed “Chicago,” would be about five months late, coming out probably in

April, 1995, instead of December, 1994, Microsoft’s stock immediately shot up

almost three points.

Bill Gates announces the product will be late and the stock goes up? Yes,

because Gates also declared that Chicago will be “more of a phenomenon than any

new piece of systems software we or anyone else has ever done” (New York Times,

July 23, 1994). That’s all Wall Street needed to hear. Microsoft’s Windows 3.0

announcement in May 1990 — sometimes called “the mother of all rollouts” —
changed the face of the PC software industry. Microsoft spent about $2 million on

the Windows 3.0 rollout; apparently it is planning a $40 million campaign for

Windows 95. This is nothing compared to the potential billion dollars in revenues

that Microsoft expects to make over a two-year period from Windows upgrades

alone (Paul Andrews, “The Winds of Chicago,” Marketing Computers, May 1994).

Windows 95 will have a tremendous impact on the PC software industry, and

almost certainly will be more of a phenomenon than any previous piece of systems

software. Yet the product’s significance, and its likely impact on the industry,

are somewhat different from what Microsoft portrays. Microsoft says that its

Windows 95 product is a brand-new operating system that completely replaces

MS-DOS and has been rewritten “from the ground up.” But the fact is Windows
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2 applications running under Windows 95 will still end up using MS-DOS. Windows

95 is based on the same architecture as Windows 3.x Enhanced mode, which has

been available since 1990 (we might as well call it Windows 90). From a technical

perspective, Windows 95 is not a revolutionary product. It’s just Windows 90+5.

Although the architecture of Windows 95 isn’t brand new, the product will have a

major impact on the PC software industry, similar to the impact Windows 3.0 had five

years ago. Unlike Windows 3.0, though, Windows 95 doesn’t need to be a revolution-

ary product. The industry’s experience with both OS/2 and Windows NT is that, when

offered an entirely new operating system, the overwhelming majority of PC users opt

instead for the old devil they know: the combination of MS-DOS and Windows. The

Windows 90 Enhanced mode architecture was a far more radical departure from the

old real-mode DOS operating system than most of us realized at the time. It is okay

for Windows 95 to keep it.

Microsoft also says that Windows 95 is “integrated.” This isn’t accurate either.

Windows 95 isn’t integrated; instead, it "just grew.” Windows 95 does have many

more features and capabilities than its predecessors, performing many tasks that until

now required applications and utilities produced by vendors other than Microsoft. But

there isn’t much genuine integration at a technical level. It could very well turn out that

the only integration we’ll see with Windows 95 will be Microsoft’s vertical integration,

that is, the company’s further expansion throughout the software industry.

In fact, this is occurring right now. The inclusion of more applications/utilities in

Windows 95, the increasing ties between Microsoft Windows and Microsoft Office,

the merger and acquisition fever that has taken hold of the PC software business,

the limited U.S. Department of Justice (DOJ) antitrust settlement with Microsoft —
these are all signs of a maturing industry; of the restructuring of an industry from

one that once had hundreds, if not thousands, of firms of all sizes, to one with a

small number of large firms.

The PC software industry is going through a shakeout and consolidation, similar

to what happened in previous technology-based industries. For example, in the early

1920s, there were 75 automobile manufacturers in the U.S. alone. Today, there are

a handful. Nothing makes the software industry immune from similar consolidation.

There is another aspect to this maturation of the PC software industry — the

movement from a technology-based industry into a consumer product-based indus-

try — and the very name Windows 95 suggests this product will play a leading

role. If a Windows program queries the GetVersion function in Windows 95, it will

get back 4.0 as the answer; a DOS program will get back the answer 7.0. Indeed,

Windows 95 is Windows 4.0 plus MS-DOS 7.0. But in its marketing, Microsoft has

decided to trade in the nerdy major. minor version-numbering scheme (version x.O

has always given the company trouble, anyway) for a new product-naming scheme

based on that used by automobile manufacturers and vineyards. Windows 95 isn’t



foremost a technology or an operating system; it’s a product. It is targeted not at

developers or end-users but at consumers.

What does Microsoft Windows 95 mean to you as a participant in the PC soft-

ware business?

If you are a software developer or entrepreneur, the brief answer is that

Windows 95 should make you nervous (unless you work for Microsoft, or have

invested in Microsoft stock, or both). At the very least, Windows 95 will change how

you sell software and what sort of software you develop.

Windows users (I mean, consumers) should welcome Windows 95 as a big

improvement over previous versions. But this is short-term; users too ought to

worry about the long-term effect of Microsoft’s growing dominance over the soft-

ware industry. Windows 95 is a big step towards Microsoft’s stated goal of supply-

ing 100 percent of your software needs. Even if, as the Department of Justice

(DOJ) apparently found, Microsoft is not in serious violation of the antitrust laws of

the U.S., and even if the company’s goal of owning 100 percent of the industry is

merely what every other company in a similar position would want, nonetheless

software developers and entrepreneurs ought to fully realize the special role that

Microsoft plays in the software industry: Microsoft is not only the supplier of your

operating system. It is also your competition.

me Ever-Expanding operating system
Microsoft not only makes the Windows and MS-DOS operating systems upon which

most of the world’s commercial software runs, it also makes applications such as

Microsoft Word, Excel, PowerPoint, Access, and Mail, which comprise the Microsoft

Office suite. These compete directly with non-Microsoft applications such as 1-2-3,

WordPerfect, Quattro Pro, and dBASE. The makers of these applications — compa-

nies such as Lotus, Novell, and Borland — worry whether Microsoft’s ownership of

the operating system (OS) gives its applications an advantage, and if so, whether

that advantage is unfair.

However, this is just one part of the problem. Even the Microsoft Windows and

MS-DOS operating systems themselves compete with the third-party applications

and utilities that require them. At least since the incorporation of several major

third-party utilities into MS-DOS 5.0 in June 1991, Microsoft has been putting fea-

tures that once were the turf of vendors other than Microsoft into its operating sys-

tems. Windows 95 is the clearest expression of this trend.

In other words, Microsoft competes with its own customers. The Independent

Software Vendors (ISVs) that make Windows applications and utilities are essential-

ly customers of Microsoft. They depend on Microsoft for the tools and information

necessary to write Windows software.
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4 Microsoft intends to greatly expand Windows at the expense of the ISVs it is

supposed to be assisting. Here are just a few of the features Microsoft is including

in Windows 95:

• Networking

• InfoCenter universal in-box (electronic mail, fax)

• Explorer (a vastly improved shell)

• WordPad (a full-featured word processor)

• Microsoft Paint (a full-featured paint program)

• Hyperterminal (a full-featured telecommunications package)

The operating system is growing and the application domain is shrinking.

Future operating systems will incorporate even more functionality that today we

associate with applications such as word processors and databases.

Now, Bill Gates will never present his vision using the late Nikita Khrushchev’s

approach of banging his shoe on the podium and announcing to assembled ISVs,

“We will bury you!” Instead, Gates will say, “look at all the work we are doing for

you.” In Microsoft’s eyes, the expansion of the operating system does not entail the

contraction of the application domain. Instead, by taking on more and more work,

Microsoft’s operating systems will let developers be innovative.

However, an impartial observer might instead interpret Microsoft’s approach

not so much as “look at all the work we are doing for you,” but instead as “look at

all the avenues we are closing for you.”

The relationship between applications and the operating system need not be a

zero-sum game, in which functionality taken on by one is necessarily lost to the

other. And there’s nothing particularly nefarious about Microsoft’s goals to have

Windows do more and more. I am sure that any one of us in Mr. Gates’s position

would similarly seek global domination, or at least total control of the software

industry. Even so, understanding Microsoft’s larger goals helps put Windows 95 in

context.

The president of one important software company, while reading about all

these new features in Microsoft’s
“
Chicago " Reviewer’s Guide, started to make a

list of the companies he expected to go out of business shortly after Windows 95

ships. Okay, that’s a bit melodramatic, but even staid Business Week states that

Windows 95

will do far more to shape the destiny of Microsoft and the computer

industry than anything the trustbusters [in the U.S. Justice Dept.] could

cook up....

If makers of other operating systems have only a glimmer of hope, other

software makers have next to none. With Chicago, Microsoft steps up

its effort to build in more features that used to be sold separately —



such as electronic-mail software. When Gates described Chicago’s fea- 5
tures to the Electronic Mail Assn., the mood was somber. “It was like a

wake,” says [Steven] Holdschild [director of developer relations] of

Lotus, which sells cc:Mail. “A lot of people believe that when Chicago

ships, the messaging industry as we know it is gone.”

— Amy Cortese, “Next Stop, Chicago,” Business Week
,

August 1, 1994.

In an InfoWorld article titled, “ISVs: Wake up,” (June 27, 1994), Windows 95

enthusiast Steve Gibson paints a similar picture of the impact Windows 95 will like-

ly have on some Independent Software Vendors (ISVs):

A system equipped with nothing more than Chicago can be used to per-

form really useful work right out of the box. Today I’m still using a trusty

old DOS version of cc:Mail Remote, a crusty old version of Procomm for

DOS, and Delrina Corp.’s excellent WinFax Pro software. None is

hooked together or has any hooks into the operating system.
Consequently, I’m forced to jump through hoops with these applications

to do what Chicago will do with far more ease from day one.

For the providers of yesterday’s solutions, this should be a loud wakeup
call. Product developers must begin taking Chicago seriously right now
to determine how to best leverage their opportunities in this new area of

Chicago. Those who don’t, face sure and certain extinction.”

Windows 95 is the loudest and clearest delivery of this wakeup call. The PC

software industry is quickly reducing itself to just three major players: Microsoft,

Novell, and Lotus. Back when Novell purchased WordPerfect, a writer for PC Week

took a look around and saw that ISVs were feeling trapped in the PC software busi-

ness and looking for escape routes:

Novell’s $1.5 billion deal brought into sharp reflief the trends that are

remaking the software industry — and forcing many ISVs to perform

death-defying feats of survival. Not only are the big players — Microsoft,

Novell, and Lotus — bigger than they used to be, they have come to

dominate the office productivity scene the way Ford, GM, and Chrysler

once dominated the auto industry.... The object lesson: The PC software

business is toast. “The business model from the past is unsustain-

able,” says Roger McNamee, a money manager who specializes in tech-

nology investments.

But take heart. Despite a continuing wave of consolidations, there are

alternatives to just selling out....

Have a word processor? Kill it. Instead of going up against the Big

Three, modify the product into a pop-up notepad for sending messages

on the Internet. Afraid of suites? Relax. Think of them as a platform for

a host of symbiotic products. Being kicked around on the desktop? Look

to the server. Utilities makers such as Symantec and McAffee
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6 Associates are — especially as Microsoft adds more and more function-

ality to the operating system.

— Bill Snyder, “The Great Escape,” PC Week, April 4, 1994.

The article goes on to note that Symantec’s “core utility business is being

undercut by the ever lengthening list of functions built into the OS.”

Now, it’s important to slightly qualify these fire-and-brimstone warnings of toast

and wakeup calls. Most of the functionality Microsoft is putting into Windows 95

isn’t built into the operating system. Bundled, yes. But built in or integrated? Not

really. Microsoft has outsourced much of the work on these extra features to third

parties. Many of Microsoft’s bundled utilities are not as full-featured as the sepa-

rate, commercially available products.

However, even if Windows 95 doesn’t do everything that available third-party

products can do, consider that most customers probably don’t want full-featured

products; something that does what they need and that comes ready to use with

their machine, will do just fine. So if you were the maker of a fax, email, Internet, or

communications package, even a stupendously good one, you would need to start

worrying — and I mean lose-sleep worrying — about the inclusion of these capabili-

ties in every copy of Windows 95.

Lessons irom History: MS-DOS 5.0 and 6.0
If the PC software business as we know it is toast, Microsoft started slicing the

bread (so to speak) back in June 1991, when it released MS-DOS 5.0. That version

of DOS included 386 memory management, somewhat similar to what Quarterdeck

and Qualitas had been selling as third-party add-ins to DOS, and a number of disk

utilities that Microsoft “licensed” from Central Point Software (now part of

Symantec). I put licensed in quotation marks because apparently all Central Point

received in exchange for its software was a license from Microsoft allowing use of

the DOS shell’s “look and feel” {Newsbytes, June 12, 1991).

As an interesting commentary on the need for competition in the operating sys-

tems market, Microsoft produced MS-DOS 5.0 largely because Digital Research’s

DR-DOS 5.0 had been released in August 1990 and was doing quite well. DR-DOS

5.0 was being sold through normal retail channels, which Microsoft had never tried

with MS-DOS. It is likely that, without competition from Digital Resarch, MS-DOS

would have continued to stagnate (it had been years since the awful DOS 4.0

release). On the other hand, the MS-DOS 5.0 feature set, including the bundled

memory manager and disk utilities, was borrowed wholesale from DR-DOS 5.0. So

perhaps it is the late Digital Research that we should blame (or thank) for the initial

expansion of the operating system.



7It’s interesting to examine the concerns expressed when MS-DOS 5.0 was

released regarding the effect it would have on companies making memory man-

agers, such as Quarterdeck. Let’s go back in time and see how the then-impending

DOS 5 looked. If you wonder why I’m dredging up this stuff, remember: Those who

do not remember history are doomed to repeat it. There are many close parallels

between the expected impact of Windows 95 and the known impact of MS-DOS 5.0.

Let’s see if we can learn something from history:

As you read through what’s new and great in DOS 5.0, you have to won-

der what happens to the third-party utility makers who have made mil-

lions filling the gaps in DOS — companies such as Qualitas (386-MAX),

Quarterdeck (QEMM-386), Symantec (The Norton Utilities), and Central

Point Software (PC Tools), and others. The short-term answer is that

they’ll be hurt, some worse than others, but the smart utility designers

have already upgraded their products to capitalize on the new features

of DOS 5.0. ... Symantec and Central Point may actually profit from the

emergence of DOS 5.O....

Makers of 386 memory managers will take a harder hit. DOS 5.0’s

EMM386.EXE memory manager won’t do everything 386MAX or QEMM-
386 will do, for example, swap out slow ROM for fast RAM to boost system

performance or automatically optimize your system’s configuration to take

advantage of upper memory, but the truth is that it does the two most

important things that these products do: load TSRs and drivers high and

emulate LIM 4.0 expanded memory with extended memory. If you buy any

386 memory manager right now, you’re paying good money just for incre-

mental features, but like the utilities makers, the memory management
vendors are currently enhancing their products to provide extra benefits.

— Jeff Prosise, “DOS 5: what’s in it for you?”, PC Magazine,

September 24, 1991.

Central Point has since been bought by Symantec. Meanwhile, Symantec lost

$11.5M in sales in 1993.

As for memory-management vendors such as Quarterdeck and Qualitas, there

were hopes that DOS 5 would help them by legitimizing the market for their prod-

ucts, as Paul Sherer noted at the time in PC Week :

Memory-management software vendors facing imminent competition

from Microsoft Corp.’s DOS 5.0 say they are confident that the new sys-

tem’s shortcomings will work to their advantage.

DOS 5.0 fails to duplicate the automatic ability of existing memory prod-

ucts to move device drivers and memory-resident programs into upper

memory and place them into optimal regions of memory, according to

beta testers and the DOS 5.0 manual.

Slated to be announced June 11, DOS 5.0 will perform these tasks

only on a manual basis. However, it will improve on existing memory
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8 managers by loading portions of the operating system into the 64-K-

byte High Memory Area just above 1M byte, the beta testers said.

Even though other vendors’ products currently don’t match this loading

capability of DOS 5.0, vendors say DOS 5.0’s capabilities will help

expand the market for memory managers. It will also encourage users

to piggyback DOS 5.0 with the existing programs.

“DOS 5.0 legitimizes what we have been doing all along," said Mary

Stanley, president of Qualitas Inc. in Bethesda, Md. More than a million

people use Qualitas’ memory-management technology, either through

386Max or OEM products, she said.

“Our biggest issue all along has been market education. Microsoft [will]

introduce people to this” technology, Stanley added....

Existing vendors claim that once users get a taste of DOS 5.0, they will

move to the more complete solutions offered by third parties.
\

— Paul M. Sherer, “DOS 5.0 shortcoming may help memory-
management vendors,” PC Week, May 20, 1991.

Contrary to the rosy predictions in 1991, Quarterdeck is seriously hurting

today. As another PC Week article (this one dated 1994) reports:

After three successive quarters of declining sales and mounting losses,

Quarterdeck Office Systems Inc. is undergoing drastic cost-cutting mea-

sures in hopes of returning to profitability.

The cuts — which so far have resulted in the layoff two weeks ago of 25
percent of its U.S. work force, or 55 employees — also prompted the

resignation of founder, President, and CEO Terry Myers.

Analysts said Quarterdeck is in a precarious position, given the erosion

of its flagship QEMM memory manager.

“That market has dried up a lot,” said Richard Davis, an analyst with

Louis Nicoud Associates in San Francisco. Davis said he is not con-

vinced that the company’s Internet strategy [a Mosaic front-end and

World-Wide Web server products] will be enough to turn it around.

Overseeing the turnaround efforts is industry veteran King Lee, who
joined Quarterdeck’s board August 1 and is serving as interim chief

operating officer. Lee pledged to get back to the basics and has already

closed several of the company’s offices, cutting $1 million from the

quarterly U.S. run rate....

Although Lee has had past success building, or rebuilding, utility compa-
nies such as Fifth Generation Systems Inc. and XTree Co. — both of

which were later sold — Quarterdeck officials claimed no sell-off is

planned.

— Jane Morrissey, “Quarterdeck CEO resigns over drastic

cost-cutting,” PC Week, August 29, 1994.



9It’s not Microsoft’s fault that Quarterdeck chose to spend several years work-

ing on its DESQview/X project. But at one time it looked like this was part of an

intelligent strategy for competing with Microsoft. Back in 1991, Forbes ran a story

on what it called Quarterdeck’s “buggy whip marketing”:

Quarterdeck Office Systems, a little ($48 million sales) firm in Santa

Monica, Calif., makes a living filling in gaps in the Microsoft product.

Why does Microsoft leave room for this tiny competitor? How does
Quarterdeck survive? The answers to these questions provide a case

study in how little firms compete with big ones....

Unfortunately for Quarterdeck, both DESQview and QEMM have been

eclipsed by a competing Microsoft product....

Obvious question: How is it that Quarterdeck is still able to sell its

products at all? How is it that the firm’s profit margin is a fat 23%? The

answer is that [Quarterdeck founder Gary] Pope’s programs work much
better than Windows 3.0 with the older version of application pro-

grams. Windows 3.0, in contrast, works best with the latest versions of

spreadsheets, word processors and other application programs, ver-

sions specifically made compatible with Windows.

Thus, Quarterdeck is selling to users who are beefing up older comput-

er systems rather than starting over with spanking new machines
and applications. Quarterdeck sells new, improved buggy whips while

the bigger firm busies itself with the much larger market for horseless

carriages....

Buggy whips are a nice niche for a while, but what do you do when the

last customer has traded in his horse for a car? Quarterdeck is looking

for other niches. Its next product, now in customer testing, allows PC
users to run application programs created for Unix workstations while

running MS-DOS programs in separate windows. Years hence, when
DOS is passe and new machines all run on some new operating sys-

tem, it’s quite possible that Quarterdeck will still be selling this prod-

uct. No doubt some entrepreneur out there is still selling replacement

parts for the Model T, and making a decent living at it.

— Julie Pitta, “Buggy whip marketing: tiny Quarterdeck sells

enhancements to giant Microsoft’s operating systems. How
does it survive?,” Forbes, November 25, 1991.

Let’s now turn the clock forward to September 1992, when news of the forth-

coming MS-DOS 6.0 (which would not be released until April 1993) was appearing

in the computer trade press:

Microsoft Corp. is once again using its operating system prowess to

march into territory held by other software developers. This time the

battleground is utilities.

The upcoming DOS 6.0, due later this year or in early 1993, is expected

to include anti-virus software, a more sophisticated backup program,
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to and a disk defragmenter for optimizing disk space and data compres-

sion, according to sources briefed on the upgrade.

These utilities are part and parcel of Microsoft’s Windows strategy as

well, sources said. All of this is part of a trend that began in June 1991
with the introduction of DOS 5.0, which is equipped with a built-in key-

stroke and macro editor, a DOS shell, a robust text editor, and backup

and recovery tools.

Given the utility horsepower of today’s — and tomorrow’s — operating

systems, many corporate sites are diminishing their reliance on third-

party products in an effort to reduce costs.

If the level of utilities functionality in DOS 6.0 comes within 15 percent

to 20 percent of that in third-party packages, “I’ll use DOS 6.0 as my
standard and make an exception for the handful of users who want full-

featured utilities," said Bill Ramage, a systems architect in the San
Francisco office of Bechtel Corp., an engineering and construction firm

with 6,000 PCs worldwide.

“Frankly, it’s free [in DOS 6.0],” Ramage said. “Also, I’d prefer to have

the tighter integration of utilities in the operating system.”

Ramage speaks from experience. Bechtel decided against standardizing

on Quarterdeck Office Systems Inc.’s QEMM memory-management pro-

gram last year simply because DOS 5.0 offered similar capabilities.

Microsoft officials, however, denied they are trying to overtake the utili-

ties market, claiming the company doesn’t want to be everything to

everybody.

“We’ll provide 80 percent [of utilities’ capabilities],” said Brad Chase,

general manager of MS-DOS for the Redmond, Wash., company. “There

will be an opportunity for utility vendors to add value as well.” ...

Companies like Stac Electronics and Qualitas Inc. have fared reason-

ably well with one principal utility, but many industry observers say that

times are about to change.

“Clearly, the one-trick ponies are at risk,” said Bernd Harzog, program

director of personal computing for Gartner Group Inc., a market-research

firm in Stamford, Conn. “System software will continue to include many
things that today we think of as applications, and people in business on

that fringe should be nimble ... and find new things to move upstream.”

— Paula Rooney and Paul M. Sherer, “DOS 6.0 threatens utility

developers; users, however stand to benefit,” PC Week,

September 14, 1992.

Sound familiar? True, Brad Chase’s desire for 80 percent of the market sounds

better than Mike Maples’s desire for 100 percent, but otherwise the concerns sur-

rounding the introduction of MS-DOS 6.0 — the OS is coming to include what for-

merly was application software, one-product companies are at risk, times are about

to change — sound like a dress rehearsal for Windows 95.



So, what did happen to these vendors after the release of MS-DOS 6.0 in April

1993? Well, we’ve already seen that Central Point was bought up by Symantec,

and that Symantec and Quarterdeck have been losing sales. As another example,

Stac Electronics laid off 40 people, or 20 percent of its work force, in May 1993.

Many of the concerns surrounding Windows 95 have already been played out in

MS-DOS 5.0 and 6.0. If these releases are any guide, there’s a slim possibility that

Windows 95 will “legitimize” the market for Windows email and fax software, for

example, and that the next version (Windows 96?) will deliver a fairly serious blow.

On the other hand, Microsoft appears to have learned a lot since the releases of

MS-DOS 5.0 and Windows 3.0. At least they got that x.O out of the product name.

So Microsoft might get it right the first time and cause serious damage to other

software companies (who, remember, are not only its competitors but also effec-

tively its customers for the operating system) as soon as Windows 95 is released.

What Belongs in me operating system?
Now, I’m not asking you to cry over the difficulties that will confront companies

such as Symantec and Delrina as their core functionality is bundled for free with

Windows 95. When Microsoft put disk compression into MS-DOS 6, leading to near-

ly immediate layoffs at Stac, the response of most developers (myself included)

was “Heck, disk compression belongs in the OS. Stac had a nice ride for a while.

Let them find another line of business.” Them’s the breaks.

Indeed, perhaps everything Microsoft is putting into Windows 95 and everything

Mr. Gates wants to see in a future version of Windows really does belong in the OS.

As word processors, databases, spreadsheets, and graphics packages all converge

toward the same basic well-defined set of standard features, perhaps this software

belongs in the OS either as bundled programs or as reusable components in the

form of dynamic link libraries (DLLs). Does the world really need so many different

word processors? How about C++ compilers? Telecommunications programs? Disk

repair utilities? If you’re an ISV, wouldn’t the world be a better place if the function-

ality of your product were provided free with every copy of Windows 95?

If an ISV makes an application or utility product that it thinks most PC users

should buy, then — almost by definition — it seems that product’s functionality

belongs as part of the OS. Just as a database should not include any duplicated

data, likewise the software base ideally should not include any duplicated code. For

any general-purpose application or utility that is widely used, it’s probably only a

matter of time before Microsoft considers putting that product or its functionality

where it “belongs”: in Windows. Windows supports general-purpose non-Microsoft

applications in the same way that a rope can be said to support someone who will

soon be hanged. Your product may be a Microsoft DLL just waiting to happen.
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12 But one reason behind this expansion of Windows has to do with an early aber-

ration of the PC software market. Microsoft’s operating systems started out supply-

ing users with the bare minimum necessary to use their PCs. A large third-party

industry formed to fill the many holes Microsoft left in DOS and later in Windows. All

sorts of programs, such as as shells, file managers, disk-repair programs, debug-

gers, and memory managers, that would on most other computers have simply

been part of the OS from day one were on the PC sold as separate products by

third-party vendors.

This aberration played a large part in the explosion of the PC market. As one

example, competition over who could produce the best disk-compression software

undoubtedly led to the production of better disk-compression software than would

have occurred if it had simply been bundled with the OS from day one. The flipside

is “you get what you pay for” — that if you don’t pay for something, you probably

won’t get much either. Software bundled with the OS is likely to suffer from compla-

cency. (Well, the software isn’t, but you know I mean.) The high quality and low

price of most PC software is largely due to the fact that it wasn’t bundled with the

operating system.

Thus, even if a piece of software “belongs” in the OS in some narrow technical

sense, the economics of how to produce the best software most efficiently leads to

a more complicated idea of where it belongs. The decision about whether a piece of

software should be integrated (or at least bundled) into the OS, or instead handled

by third-party vendors through the marketplace, is similar to a “make or buy?” deci-

sion. Just as “make or buy?” should not be answered according to some narrow

technical criteria, similarly you should not jump to the conclusion that, say, disk

compression, disk repair utilities, or even a command shell belongs in the OS.

For Microsoft, the question of whether something belongs in the OS is not an

entirely technical issue, but also a business decision. Windows is sold as a retail

product; Microsoft continuously needs major new features to display on the outside

of the box. In addition, as we’ll see later (in “Is Microsoft Office the Operating

System?”), Microsoft is not above adding features to DOS and Windows that will

make them into better platforms for the Microsoft Office applications suite.

So, for a variety of reasons, Microsoft now wants to bring a lot of extra func-

tionality into Windows. This is understandable. At least in a purely technical sense

(though, again, that’s only part of the story), most of the features that Microsoft is

putting into Windows 95 do belong there. But the incorporation of these features

into the OS is bound to have a major impact on the software industry. Windows 95

is indeed a wake-up call.

Commenting on the utilities bundled with MS-DOS 6.0, PC Magazine (September

14, 1993) noted that, “by adding these utilities, Microsoft has clouded the definition

of exactly what an operating system should be.” If Microsoft’s definition of the OS



was clouded at the time of the DOS 6 announcement, certainly by the time Windows 13
95 is released there will be few doubts: Microsoft not only has a near-monopoly on

the operating system but is also constantly expanding the definition of what belongs

in the operating system. Maybe it’s just 80 percent today, but ultimately Microsoft

wants 100 percent of the market.

Some commentators see this outward expansion and the Department of

Justice’s seeming refusal to touch it as a good thing. For example, Stewart Alsop

was quoted in the New York Times (July 18, 1994) as saying, “If you really care

about improving the personal computer, you want Microsoft to take over all the

pieces of the pie.”

There is a certain logic in this. For example, one reason the Apple Macintosh

was for so long much easier to use than a PC was that Apple had a closed architec-

ture and completely dominated the market, guaranteeing that almost everything

came from a single vendor. Monopoly has some clear benefits. In certain situa-

tions, such as public utilities, monopoly may be the only viable industry structure,

leading to a so-called natural monopoly.

Speaking of which, the superb biography Gates by Stephen Manes and Paul

Andrews (p. 202) quotes a 1981 statement by Microsoft chairman Bill Gates in which

he noted that volume and standards in PC software can lead to a natural monopoly:

Why do we need standards? ... It’s only through volume that you can

offer reasonable software at a low price. Standards increase the basic

machine you can sell into....

I really shouldn’t say this, but in some ways it leads, in an individual

product category, to a natural monopoly: where somebody properly doc-

uments, properly trains, properly promotes a particular package and

through momentum, user loyalty, reputation, sales force, and prices

builds a very strong position within that product.

Gates probably understood this connection between volume and quality earlier

than anyone else in the PC software industry (which industry, of course, he largely

defined in the first place). Still, it is worrisome to hear Gates speaking of monopoly

even back in 1981. If the PC operating system is a natural monopoly, if Microsoft

should take over all the pieces of an increasingly-valuable pie, remember that com-

panies in such favored positions generally are forced to make an important trade-

off: So-called natural monopolies are generally regulated, are prevented from

expanding their monopoly into new areas, and so on.

Microsoft already has MS-DOS installed on about 120 million PCs in the world

and Windows on about 50 million. Flaving reached a very favorable antitrust settle-

ment with the Department of Justice, Microsoft can move even more rapidly

towards its goal of becoming an unregulated, non-public utility providing total one-

stop shopping for all your software needs.

INDUSTRY
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me windows 95 Compatible Logo
It’s long been observed that Microsoft keeps raising the stakes for staying in the

software business. For example, a New York Times (December 14, 1992) article

that started off, “Can anyone besides the Microsoft Corporation make money in

software anymore?” (answer: yes, as long as you find a niche “in which Microsoft is

not a player”), went on to quote one financial analyst’s explanation for why he was

not currently recommending any software stocks:

User expectations for shrink-wrapped software are being reset very low

in terms of price and very high in terms of functionality.... The problem

is the marketing expense to get share of mind is so high, and Microsoft

keeps raising the ante.”

In Windows 95, Microsoft is quite literally raising the ante to stay in the

Windows application development game. In what might be the first tentative

steps towards a Nintendo-style certification program, Microsoft has published

new guidelines on what applications must do to qualify for the Windows 95

Compatible logo on their product and ads. As spelled out in an article on “How to

adapt an app for Chicago”
(
Microsoft Developer Network News, July 1994), the

requirements are quite strict. There are too many to quote in full here, but some

highlights follow:

• The application must be a Win32 executable.

• The program must run successfully on Windows NT 3.5 in addition to

Windows 95.

• If the program deals with files, it must have OLE 2.0 support.

• If the program deals with files, it must be mail enabled, supporting at least a

Send or Send Mail command on the File menu.

According to the manager of the Windows logo program at Microsoft, “we are

raising the stakes by saying not only do these products [with the Windows 95 logo]

work, but they create a valuable synergy with the operating system” (InfoWorld,

August 29, 1994, p. 27). The question is, valuable for whom? Most of the require-

ments seem to have more to do with Microsoft’s desires than with the potential

end-user’s. For example, although the Win32 application programming interface

(API) is nice, many programs simply get larger when ported to use 32-bit code. The

NT requirement seems like nothing more than an attempt to leverage Microsoft’s

control over the upcoming Windows 95 market to assist its lacklustre Windows NT

product. The OLE 2.0 requirement is odd, given that Microsoft itself hasn’t used

OLE for the Windows 95 shell (see Chapter 2).

Microsoft is simply raising the cost of developing Windows applications, and

not necessarily in ways that will benefit end-users.
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is iniicrosoit Office the operating svstem?
Besides the expansion of Windows to include functionality that once was the

domain of third-party applications, a similar trend is represented by the increas-

ing integration between Microsoft Office and Microsoft Windows. Most PCs today

come with not only MS-DOS and Windows but also Microsoft Office preinstalled

on the hard disk. Office was the top-selling software package in 1993, with rev-

enues just under $500 million, according to Dataquest; it outsold its closest

competitor, Lotus SmartSuite, by 4 to 1 in 1993. In turn, Microsoft estimates

that 50 percent of its revenue comes from Office
(
InformationWeek

,
June 27,

1994).

Microsoft Office seems more and more like part of Windows. Or is it the other

way around? The Windows 95 user interface appears to borrow heavily from that of

Microsoft Office:

The Justice Department may not have seen a connection between the

way Microsoft develops its operating systems and its applications, but

Windows users will see a clear connection once Chicago makes it to

market... .Many of the changes in the user interface that Microsoft is

pushing can already been seen in Office 6.0. ...

One example of the changes in the operating system that were taken

directly from Office is the use of the right mouse click as a property

inspector....

In the next version of windows, dialog boxes will resemble the tab-cen-

tric designs used in the Office suite.

— Randall C. Kennedy, “Like Office? You’ll Love Chicago!”,

Windows Sources, October 1994, pp. 23-24.

Windows 95 is not some nefarious Trojan horse for Microsoft Office. (One wild

rumor had it that Microsoft was deliberately delaying Windows 95 to let the

Windows apps division finish its next version of Office!) But in the past it has some-

times seemed as if Windows was just a platform for Microsoft Office.

Microsoft has even added features to DOS and Windows to make them into

better platforms for the Microsoft Office applications suite. For example, during the

Stac v. Microsoft trial, it came out that one of the main reasons Bill Gates urged

the MS-DOS group to include disk compression was that, without it, Microsoft

would have a harder time selling the disk-hungry Office suite. MS-DOS 6.0 needed

disk compression not only to compete with DR-DOS 6.0 (which included disk com-

pression) and not only to to have a nice starburst on the box saying “The easiest

way to double your hard disk,” but also to grease the skids (or at least the hard

disks) for Microsoft Office.

INDUSTRY
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16 As another example, Microsoft Windows much-hyped (but not necessarily very

practical) Object Linking and Embedding (OLE) feature always seems to show up earli-

er in the components of Microsoft Office than in any non-Microsoft applications. Brian

Livingston (More Windows 3.1 Secrets, p. 194) reports that Microsoft PowerPoint 2.0,

which was shipping to customers in June 1990, included support for OLE — six

months before OLE documentation was released to developers. On a broader scale,

OLE appears to have been designed largely for the convenience of Microsoft Office.

With the Office Developers Kit (ODK) and Visual Basic for Appliations (VBA),

Microsoft is encouraging developers to write Windows applications targeted specifi-

cally at Office. Of course, Lotus and Novell have similar programs to encourage

applications targeted specifically at their suites. But given Office’s market share —
particularly the fact that it comes bundled together with Windows on most new

PCs — Microsoft, unlike Lotus and Novell, has a good chance of convincing devel-

opers to view its suite as a major development platform.

Similar to the Windows 95 Compatible logo, Microsoft also has an Office

Compatible logo. Paul Bonner, who has written extensively on customizing

Windows, had some interesting observations about this:

If you’re living within a suite, and selecting applications and utilities

based on how well they work with that suite, you can’t even think of

Windows as your operating environment anymore. The suite is your

operating environment, meaning, among other things, that both you and

your applications have to live by the suite’s rules, not those of

Windows....

This year, Microsoft introduced the Office Compatible logo program. For

a fee of $1,000, third-party vendors gain the right to adopt the look and

feel of Office applications such as Word and Excel, including their tool-

bars and menu structures...

There’s only one catch: If your software application competes with any

application or tool Microsoft itself offers, you aren’t eligible to take part

in the Office Compatible program.

Maybe that’s not surprising. The Microsoft Office and Office Compatible

labels are, after all, the trademarked property of Microsoft Corp. The

Office Compatible program lets participants use all kinds of copyrighted

icons and toolbar designs, and all kinds of otherwise proprietary infor-

mation about Office. Microsoft shouldn’t have to extend those privileges

to competitors’ products, right?

Wrong. Microsoft Office is not just another application, and Office

Compatible programs are not simple add-ins. When Office compatibility

becomes a checklist item for buyers, determines the look and feel of

applications, and extends otherwise unavailable capabilities to them,

then Microsoft Office becomes an operating system unto itself, com-
plete with a proprietary application programming interface...



Once you begin to think of Microsoft Office as an operating system, the

Office Compatible program takes on a whole new light.... The non-com-

petition clause in the Office Compatibility contract ensures that the only

applications that will be available for use with Office will be those

Microsoft wants to have available. That means only applications that

complement Redmond’s core applications, not any that compete with

them....

Microsoft will undoubtedly convince scores of independent developers

and small software companies to produce Office Compatible applica-

tions, if only because of the marketing support it can offer.

— Paul Bonner, “Will the real operating system please stand

up?”, Computer Shopper, October 1994.

A friend of mine who is president of a medium-sized software company keeps

telling me, “Microsoft Office is now the operating system, and Visual Basic is its

API.” I think there’s a large element of truth to this: Microsoft really is intent on

grabbing a much larger share of the applications business, and Windows 95 is a

key part of this strategy, so it follows that customizing Office will be a growth indus-

try, in much the same way that customizing 1-2-3 and dBASE was once a major

form of software development. An interesting question, which we’ll take up later

(see “Windows 95: Dangers and Opportunities”), is whether a viable software

industry can be based on writing add-ins for Microsoft Office.

Microsoft and the Justice Department
Now, you may recall that Microsoft was under investigation for possible antitrust

violations, first by the U.S. Federal Trade Commission (FTC) and then, when the FTC

became hopelessly deadlocked, by the Antitrust Division of the U.S. Department of

Justice (DOJ). You might have expected the trustbusters to in some way address

Microsoft’s increasing hold over an increasingly important industry. Well, they did

address this: After what appears to have been a very thorough, aggressive, and

expensive four-year investigation, the trustbusters ended up telling Microsoft to

change a few minor practices. In essence, the U.S. government gave Microsoft the

green light.

On July 15, 1994, Microsoft signed a consent decree with the Antitrust Division

of the DOJ, ending a four-year government investigation into Microsoft’s trade prac-

tices. At the same time, Microsoft signed a nearly identical settlement with the

Directorate-General for Competition of the European Commission. The judgment

lasts for 6 V2 years in the United States, 4 V2 years in Europe.

Microsoft agreed to immediately abandon several arrangements for licensing the

MS-DOS and Windows operating systems to PC hardware vendors, and also agreed to
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18 halt some “unnecessarily restrictive" clauses in its non-disclosure agreements (NDAs)

for the Chicago beta test. The consent decree explicitly excludes Windows NT.

The consent decree was first viewed as a victory for the DOJ and Microsoft’s

competitors. The New York Times (July 17) carried a front-page headline, “Microsoft’s

Grip on Software Loosened by Antitrust Deal,” and crowed that “the pact could

reshape the world of computing.... The accord could undermine Microsoft’s near total

control of the market for operating systems.” The Boston Globe’s headline was equal-

ly enthusiastic: “Microsoft accord to create competition in US, Europe.”

Indeed, the consent decree sounds at first as if it should cramp Microsoft’s

style and lead to more competition in PC software. For years, Microsoft has provid-

ed PC hardware manufacturers (original equipment manufacturers, or OEMs) with

per-processor licenses to MS-DOS and Windows, in which the vendor pays

Microsoft based on the number of machines it think it will ship rather than the num-

ber of copies of DOS or Windows it actually uses. In 1993, such per-processor

agreements accounted for about 60 percent of MS-DOS OEM sales, and 43 percent

of Windows OEM sales.

According to the DOJ, “Microsoft’s per processor contracts penalize OEMs, dur-

ing the life of the contract, for installing a non-Microsoft operating system. OEMs

that have signed per processor contracts with Microsoft are deterred from using

competitive alternatives to Microsoft operating systems.” The consent decree put

an immediate stop to this practice, leading to the hope that non-Microsoft operating

systems would now have a shot at the desktop.

But the morning after, nearly everyone realized that, in fact, the DOJ’s abortion

of US v. Microsoft was a victory for Microsoft. Directly contradicting the previous

day’s headline, a New York Times (July 18) news analysis by John Markoff spoke of

“Microsoft’s Barely Limited Future”: “Rather than reining in the Microsoft

Corporation, the consent decree ... frees the company to define the computer

industry’s ground rules through the rest of the decade.”

In the first day of trading after the settlement, Wall Street made its statement

on the consent decree: Microsoft stock rose $1.87, to $50.50. Rick Sherlund, an

analyst for Goldman Sachs, stated that with the settlement, Microsoft “should dom-

inate the market for desktop software for the next 10 years.” Another frequently-

quoted analyst, Richard Shaffer, announced that “The operating system wars are

over — Microsoft is the winner.... Microsoft is the Standard Oil of its day.”

Windows 95 needs to be viewed in the context of Microsoft’s victory over the

DOJ: Windows 95 and its successors will be the primary mechanism through

which Microsoft exercises its control over the desktop and defines the industry’s

ground rules.

But how could a ban on an important Microsoft trade practice be viewed as

cementing Microsoft’s hold on the industry?



First, the change from per-processor to per-copy licensing probably comes sev- 19

eral years too late. Anne Bingaman acknowledges this: “I wish it were five years

ago. I know it’s late” (InfoWorld, August 15, 1994, p. 46). Despite some brave

words from IBM and Novell following the consent decree, it seems unlikely that the

change will lead to a larger presence for OS/2. For its part, Novell almost immedi-

ately followed the DOJ settlement by ditching Novell DOS 7; this was in any case a

smart move. As a spokesman for Compaq (which already offers OS/2 to its cus-

tomers) noted, “Windows is the standard — not much will change.”

More important, the consent decree doesn’t address the key questions about

Microsoft’s role in the PC software industry. Companies such as Lotus and Borland

that compete with Microsoft in the market for word processors, spreadsheets, and

other applications have long asserted that Microsoft leverages its control of

the operating system to unfairly benefit its applications — particularly Microsoft

Office — at the expense of non-Microsoft applications and suites.

Microsoft continues to deny that it monopolozies the PC software industry. Nor

has it admitted to any guilt by consenting to the court’s final judgment. The consent

is explicitly “without trial or adjudication of any issue of fact or law; and without this

Final Judgment constituting any evidence or admission by any party with respect to

any issue of fact or law.”

Nonetheless, the PC software industry has been treated to some enjoyable

denunciations of Microsoft trade practices from high government officials. After the

signing of the consent decree, U.S. Attorney General Janet Reno said, “Microsoft’s

unfair contracting practices have denied other U.S. companies a fair chance to com-

pete, deprived consumers of an effective choice among competing PC operating

systems, and slowed innovation.”

The Assistant Attorney General for Antitrust, Anne Bingaman, noted that

“Microsoft is an American success story but there is no excuse for any company to

try to cement its success through unlawful means, as Microsoft has done with its

contracting practices.”

“Microsoft has used its monopoly power, in effect, to levy a ‘tax’ on PC manufac-

turers who would otherwise like to offer an alternative system.” said Bingaman. “As a

result, the ability of rival operating systems to compete has been impeded, innovation

has been slowed and consumer choices have been limited.” According to a DOJ press

release, Bingaman noted that Microsoft has maintained the price of its operating sys-

tems even while the price of other components has fallen dramatically, and that since

1988, Microsoft’s share of the market has never dropped below 70 percent.

This is quite amazing: The chief U.S. trustbuster saying exactly what many in

the PC software industry have said for several years: that there’s a Microsoft “tax,”

and that Microsoft — despite the perception among consumers that its prices are

low— has in essence engaged in price gouging.

INDUSTRY
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20 But for all the pleasure many PC software developers might take in reading the

accusations in the abortive US v. Microsoft complaint, the fact remains that the

consent decree addresses only a narrow issue: OEM sales represent less than 25

percent of Microsoft revenue.

The complaint notes that “At least 50,000 applications now run on MS-DOS

and over 5,000 have been written to run on Windows. Microsoft sells a variety of its

own very successful and profitable applications.” But that is all it has to say about

applications!

The complaint also notes that “All versions of Windows released to date

require the presence of an underlying operating system, either MS-DOS or a close

substitute,” but says nothing about alleged tying arrangements between Windows

and MS-DOS (see Undocumented DOS, 2nd edition, pp. 3-18).

Similarly, the complaint mentions “critical information about the interfaces in the

operating system that connect with applications — information which the ISVs need

to write applications that run on the operating system." But the complaint doesn’t

address the charge that Microsoft unfairly withholds some of this critical information

to try to give its own developers exclusive use of undocumented interfaces.

Now, it’s not as if the DOJ was unaware of these issues. From my own meeting

with DOJ attorneys Sam Miller, Don Russell, and Larry Frankel, I know that they

were extremely interested in the issues surrounding undocumented interfaces. We

spoke for several hours about possible remedies, including what they referred to as

“mandatory interface disclosure.”

Similarly, a Civil Investigative Demand I received from the DOJ requested “All

correspondence, including electronic mail messages, to and from Microsoft

Corporation... that discusses or relates to competition in the development or sale

of personal computer operating systems or graphical user interfaces; the compati-

bility or incompatibility of any Microsoft product or any non-Microsoft product; or the

disclosure or non-disclosure of information relating to software interfaces.” I was

able to supply them with some fascinating email from Microsoft VP Brad Silverberg.

My favorite is Brad’s explanation from October 1993 of why he must keep on

expanding the Windows API: “Once Windows is frozen and no longer moving for-

ward, it can easily be cloned and thus be reduced to a commodity. Microsoft

doesn’t want to be in the BIOS business.”

The DOJ was well aware of, and quite interested in, the issues surrounding

Microsoft’s ownership of the vastly important DOS and Windows standards. Yet

none of this is addressed in the consent decree, which ends up looking similar to

what Microsoft probably could have received from the FTC a year earlier. Even Bill

Gates, who apparently denounced even the mildest FTC and DOJ questions as

“communistic” and “socialistic,” had to admit that the final settlement was no big

deal. After years of investigation, he says, “This is what they came up with.”



21Why did the DOJ settle for so little? How could they seemingly ignore the

entreaties of so many PC software vendors?

One theory is that the Clinton administration views Microsoft as a “national

treasure,” and put pressure on DOJ to leave Microsoft alone. The press made much

of a May 25 meeting between Bill Gates and Clinton’s chief economic advisor,

Robert Rubin. The date is significant because just one week later, Gates testified

under oath before the DOJ. According to one anonymous source, Gates pointed out

to Rubin that Microsoft is responsible for a substantial portion of U.S. software

exports (Information Week, June 27, 1994).

But it’s difficult to buy Clinton administration pressure as an explanation for

the DOJ’s limited settlement. Microsoft may be highly visible, but it simply isn’t that

important to the U.S. economy, at least when compared to companies such as IBM

or GM that make tangible goods. Although software is a crucial part of the world

economy, consider that even “giant” Microsoft has only about 15,000 employees.

Its quarterly sales are about $1.25 billion, compared to $13.3 billion for IBM and

even $2.5 billion for Apple.

What makes Microsoft different is that it has almost obscenely low costs. This

is very nice for Microsoft, but it’s hard to see what it does for the U.S. economy,

especially when 45 percent of Microsoft’s stock is owned by insiders. The DOJ could

have made a moderately plausible case to the American public that Microsoft, far

from being a “national treasure,” is simply a grossly profitable monopolist, with few

employees and few stockholders, that gives back little to the public.

Another explanation is that the DOJ feared a repeat of US v. IBM, which dragged

on for thirteen years, only to be dropped as “without foundation.” But while you

could easily imagine lawyers for the DOJ not wanting to stake their careers on a los-

ing battle, I wonder whether US v. IBM was such a complete washout, after all. Even

though the case was eventually dropped, for years it had a serious effect on IBM.

According to a recent book on the fall of IBM and the rise of its one-time suppli-

ers, Microsoft and Intel, it was the supposedly unsuccessful antitrust case that

caused IBM to unbundle software from hardware. This opened the way for an inde-

pendent software market, making room for software upstarts including a company

called Microsoft:

The 1969 suit has been expected for a long time, and IBM had already

begun to unbundle the pricing of its systems, making it easier for other

companies to sell comptible devices and software....

Many of IBM’s actions in the 1970s and 1980s, particularly its supine

attitude toward small suppliers of PC components and software, can be

explained as the reflexes ingrained by a decade in the courtroom’s

harsh glare....

INDUSTRY
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22 After a brief negotiation, [IBM] agreed that Gates would own the system

and that they would pay him on a royalty basis, instead of with a lump

sum. (Because of the still-pending antitrust action, IBM was wary of own-

ing operating system software for fear of suits from software writers.)

— Charles Ferguson and Charles Morris, Computer Wars: The

Fall of IBM and the Future of Global Technology, 1993,

pp. 10-11, 26.

In other words, Microsoft was a direct beneficiary of US v. IBM, and “the next

Microsoft” could have been a beneficiary of a US v. Microsoft case. Well, it’s too

late for that now.

Ultimately, I think that the DOJ didn’t push for more against Microsoft for the

simple reason that it felt it couldn’t win anything else. Responding to widespread

criticism of the settlement as a DOJ sell-out, Anne Bingaman protests, “folks, we

looked at every aspect of this. We brought the case that was there to bring.”

According to the DOJ, the Microsoft settlement was “everything we could have

hoped for in a fully litigated case, and possibly more.”

Unfortunately, this is probably true. Law, like politics, is an art of the possible.

Although the settlement gives Microsoft’s ever-expanding monopoly the green light,

it’s hard to see what the DOJ could have done differently. The DOJ’s job is to

enforce the antitrust laws, not to make industries more competitive — and the two

are not the same thing.

What all this means is that the Microsoft practices studied by the DOJ but not

covered in the settlement are either not illegal or (what is much the same thing) too

difficult to prove illegal.

Microsoft must be feeling emboldened by the limited scope of the consent

decree. The company should be able to go full-steam ahead with its plans to greatly

expand the operating system’s dimensions in Windows 95. Microsoft Office will

increasingly seem like an essential part of Windows.

Ulindonis 95: Dangers and opportunities
Given that the DOJ apparently saw little wrong in Microsoft’s role in the software

industry, the company’s hegemony is likely to last until some time in the next cen-

tury. Windows 95 will be the platform and Win32 will probably be the API, in the

same way that Windows 3.x was the platform and the API that defined the industry

in the first half of the 1990s. Or Microsoft will be the platform and Visual Basic for

Applications will be the API. Either way, Microsoft runs the show for at least the

next five years.

Microsoft’s goal is clear: Provide all general-purpose software for the desktop.

Microsoft’s strategy for attaining this goal is to keep moving functionality into



Windows and to keep pushing Microsoft Office as the “integrated” application layer

for Microsoft Windows.

How should the rest of us deal with the changes in the PC software industry?

It is probably stating the obvious, but there is little point in trying to compete

with Microsoft. Novell figured this out almost immediately after the DOJ settlement

and decided to drop products and projects such as Novell DOS 7, OpenDoc, and

AppWare that put it in direct competition with Microsoft.

Similarly, general-purpose applications and application suites look like a bad

area to be in. Particularly because of its bundling with Windows on many new

machines, Microsoft Office is rapidly becoming a quasi part of Windows itself. Even

Lotus probably has little chance in this area. Microsoft Office is everywhere and

everything.

So forget writing the next great word processor. After all, word processing is

not really an application; preparing legal documents or quarterly sales reports is. A

database is not really an application; the accounts payable/receivable system for a

dental office is. In some ways, then, it is natural for one company — it happens to

be Microsoft — to have a virtual monopoly on general-purpose horizontal-market

programs, and for these programs to move into the operating system.

Perhaps there is still some room in graphics and personal finance software.

Microsoft Money suffered a much-publicized defeat at the hands of Intuit’s Quicken

product, for example, and CorelDraw! is doing well.

What other PC software companies are doing well? Bill Gates, during a presen-

tation he gave in late 1993, rattled off a list of small software companies that he

felt represented the opportunities available to software vendors today:

Altamira Composer image editor financed by AutoDesk; acquired

recently by Microsoft

Caligar TrueSpace 3-D illustration/modeling software

EJ Bilingual EZ Japanese

Insoft Communique teleconferencing

ShapeWare Visio graphics software; Visio add-in for Microsoft Office

ReportSmith Client/server report writer; acquired by Borland

Watermark Providing image-enabled capabilities for Microsoft

Exchange; image server for NT

The best bet is to find areas where Microsoft doesn’t have a product and

where there is a chance of a several-year window of opportunity before it does have

a product. On the other hand, the only market I’ve ever heard that Microsoft didn’t

want to get into was pornographic screen savers and adult multimedia. As one com-

pany employee told me, “We looked carefully at adult software, and decided to

leave that money on the table.” It’s difficult to think of any other area where

Microsoft plans to leave money on the table.
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24 As noted earlier, one big hope is that so-called “downsizing” will expand the

market and produce new opportunities in the client/server market. Many in the

computer industry view downsizing and reengineering the corporation as a direct

product of advances in computing technology, and expect the PC industry to be a

direct beneficiary of this corporate change. (For example, see the book

Client/Server Strategies: A Survival Guide for Corporate Reengineers by Microsoft’s

director of enterprise-wide computing, David Vaskevitch.)

However, this might be extremely shortsighted. Reengineering the corporation

stems not only from the rapidly dropping cost of PCs but at least as much from the

long-term downturn in the U.S. economy. Downsizing is often just a euphemism for lay-

offs and budget cuts — probably not a good long-term foundation for growth in the PC

software industry. At any rate, it is far from obvious that replacing a mainframe with a

network of PCs really saves a company money: one report claims that buying and

installing a PC network accounts for less than ten percent of the system’s total cost.

How about the home market? There has been an increase in computer and soft-

ware purchases for the home. But unfortunately, the industry’s excitement over the

home market stems less from an actual rise in the number of families that have

decided to computerize their recipes, stamp collections, and checkbooks, and more

from wishful thinking and a desperate need for some fresh blood in the market.

But let’s suppose that the home market does take off. Is this really the holy

grail that the industry has sought? The profit margin on a home software product is

very low. As one Microsoft speaker put it in a talk about marketing multimedia

titles, the margin is so low that if you take a single tech-support call, your margin’s

gone. (His suggestion: Put phone numbers for every hardware vendor you can think

of in big letters on the package; put your own phone number in as small a font as

possible.) One can have tremendous successes in this area — look at the populari-

ty of Doom — but this doesn’t necessarily translate into profitability.

One last point about the home market: Microsoft is already there. As noted ear-

lier, Microsoft Home is shipping one title per week. The company expects to have

over thirty titles available (including the appropriately titled Microsoft Dangerous

Creatures) before the 1994 holiday shopping season.

Enough about the general state of the industry. What are the business dangers

and opportunities from Windows 95, and what is the proper response?

The dangers of Windows 95 should be fairly clear: The incorporation of many

features in Windows 95 will make some current third-party products (and the third

parties themselves) obsolete.

As for opportunities, it appears that Windows 95 will provide a large number of

small opportunities.

First, there’s the upgrade business. Many software vendors are expecting an

increase in sales when Windows 95 is released and they can come out with a



Windows 95 upgrade of their product. Microsoft’s delays in getting Windows 95 out

the door have cost not only Microsoft but also many other vendors, whose revenue

stream is stalled while customers wait for Windows 95 before purchasing any fur-

ther Windows software. When Windows 95 is released, there will be a large spurt of

pent-up demand.

Whether this will translate into profitability for anyone except Microsoft is less

clear. Recall Roger McNamee’s point quoted earlier that the upgrade business

seems based on the Milo Minderbinder business model: Sell at a loss, but make it

up on volume.

As always, another interesting area is plugging holes in the operating system.

Several computer journalists have been extremely enthusiastic about the opportuni-

ties Windows 95 will provide in this area. For example, Jesse Berst says “For devel-

opers, Chicago is a city of golden opportunity” (PC Week, August 29, 1994):

Even though the new interface will disappoint experienced users, it will

be a dream come true to utility vendors. It gives them dozens of oppor-

tunities for extensions, improvements, and mini-utilities.

As one example of these opportunities, Berst mentions the need for a font-

management utility. And in a later article (“Chicago’s a great place to build products

on,” PC Week, September 5, 1994), Berst writes that “Chicago’s biggest opportuni-

ty lies in computer telephony.”

Maybe it’s just me, but I don’t see how computer telephony has yet to emerge

from the “gee whiz, that’s cool” fad phrase. If this unproven area is truly Windows

95’s biggest basis on which to build products, the future is truly bleak.

As for utilities, Windows 95 certainly does present dozens of opportunities to

extend the shell, improve the registry, and so on. But these are likely short-term

opportunities (Microsoft will simply take over anything really vital in its next

release). And in any case, you can’t sustain a 1000- or even 50-person company on

$79.95 utilities and add-ins. (Perhaps a 10-person company, though.)

The Virtual Device Driver (VxD) interfaces discussed in this book provide numer-

ous ways to extend Windows 95. Perhaps some third-party vendor will see among

the hundreds of VxD functions the ingredients for an important, profitable Windows

extension that for some reason Microsoft won’t jump into for a few years. The DOS

extender business was like that: companies such as Phar Lap prospered because

Microsoft for a variety of reasons didn’t want to move MS-DOS into protected mode.

Steve Gibson provides an excellent example of the ways that existing utilities

vendors will need to adapt to Windows 95. Following the discussion quoted earlier

about how Chicago lets him “perform really useful work right out of the box,” and

how, “for the providers of yesterday’s solutions, this should be a loud wakeup call,"

Gibson notes,
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26 This doesn’t mean that opportunities for Chicago add-ons are gone.

There is a wide variety of ways to hook things into Chicago. But opportu-

nities have changed. Delrina, for example, recently announced a fax

mailbox and store-and-forward services. Executives there must know
that their sales of WinFax Pro will be impacted sharply by Chicago, so

Delrina is evolving into a fax service provider, tapping into the features

that every Chicago user will discover in their box.

— Steve Gibson, “ISVs: Wake up,” InfoWorld, June 27, 1994.

From a technical perspective, this sounds like exactly the right thing to do. My

only question is whether providing add-ins to Windows 95 is really a sound basis for

a company’s existence. In an article quoted earlier, PC Week said that if you make

a word processor, turn it into an Internet popup notepad. The article went on to

point to Q+E and Shapeware as perfect examples of companies that have success-

fully turned their standalone products into components.

Indeed, there is a lot of excitement about component building in the software

industry. Jon Udell has written some superb articles about this in Byte (“Visual

Basic Custom Controls Meet OLE,” March 1994, and “Componentware,” May

1994). As Udell points out, one of the most interesting things about this develop-

ment is that a true component industry came not from C++ or other object-oriented

languages but from Visual Basic, of all things. Similar to what 1-2-3 and dBASE did

in the 1980s, Visual Basic Custom Controls (VBXs) have spawned a subindustry of

component builders. A survey of “VBX Controls as Software Components” in PC

Techniques (October-November 1994) lists a number of companies who have made

VBXes their business, including Crescent Software, Desaware, FarPoint

Technologies, MicroHelp, and Sheridan.

This is indeed an exciting development. However, it’s not yet proven what

sort of business can be sustained on components, at least ones without license

fees. Equally important, recall that what Microsoft giveth, Microsoft can take

away. Because of deficiencies in the VBX architecture, Microsoft is promoting a

new interface, OLE custom controls (OCX), which is incompatible with the old VBX

interface. If VBX or OCX component building becomes a big business, don’t

expect Microsoft to stay out of it. Already, Visual Basic Professional Edition 3.0

includes a large number of third-party VBXs from Sheridan, Crescent, MicroHelp,

and others.

As noted earlier, there are also some fascinating opportunities for customizing

Microsoft Office, which effectively is the operating system for more and more users.

Roger McNamee’s Upside article on PC software economics spelled this out nicely:

Most software executives view Microsoft as the meanest shark in the

ocean. That is a mistake. Microsoft is no longer a shark. Microsoft is



the ocean itself, in which all the other fish must live.... If I were an appli-

cation software vendor, I would look upon Microsoft products as plat-

forms on which to build my business. I think back to the business that

Funk Software built on the 1-2-3 platform — or that the utilities vendors

built around MS-DOS — and recognize that it is only a matter of time

before entrepreneurs build businesses on top of Word, Excel and the

other Microsoft products.

— Roger McNamee, “Sobering Up,” Upside, March 1993.

Recall that this also was the advice provided by PC Week : “Afraid of suites?

Relax. Think of them as a platform for a host of symbiotic products.” The idea of

writing add-ins, macros, vertical-market products, and so on for application suites,

primarily Microsoft Office, dovetails nicely with the current enthusiasm in business

books for something called mass customization. (See, for example, William H.

Davidow and Michael S. Malone, The Virtual Corporation, pp. 40-42, which discuss-

es the ever-popular example of ASICs, application-specific integrated circuits.)

Again, however, it is not clear that viable companies can be built around the

customization of mass-market products. As McNamee points out, 1-2-3 did spawn

Funk Software. But the only large by-product of dBASE that I can think of is SBT,

makers of accounting modules written in dBASE. Did HyperCard on the Mac spawn

any big successes? It generated tons of software, but any major companies? Well,

Ross Perot’s EDS started off essentially in the customization business, so perhaps

there’s some hope.

Aside from these specifics, what larger lessons can be drawn from the past

few years of life under Windows?

First, accept the fact that Microsoft runs the show. I’ve seen developers make

business decisions, such as using Borland’s OWL rather than Microsoft’s MFC,

simply because they dislike Microsoft. Then there’s the company whose sole prod-

uct was a CASE tool for AppWare; or companies whose products are based entirely

around OpenDoc or OS/2. Unfortunately, this just doesn’t make sense. It’s okay to

resent Microsoft, I suppose, but don’t cut off your nose to spite your face.

Second, for the vast majority of us in the PC software business, it’s important

to realize that systems such as Windows 95 will be important and that systems

such as Windows NT won’t be. Evolutionary changes are much easier for the mar-

ket to accept. For a revolutionary upset to be accepted, it must be an order of mag-

nitude better than what it seeks to replace. Not 25 percent better or 33 percent

better, but at least 10 times better. Otherwise, change had better be gradual, like

Windows 95. Specifically, products such as NT and Daytona (NT 3.5), and perhaps

even Cairo, speak to too small a niche to be interesting. And even the NT sales

that do occur don’t lead anywhere: Right now I’m running on a network with an NT
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28 server, but no software is likely to ever be bought for that server. It sits in a closet

that no one touches for weeks at a time. This is not the sort of platform on which

to base your fortunes.

Third, if you’re choosing platforms for which to develop software, remember

that what ultimately matters is not technical excellence but market penetration. The

two rarely go hand-in-hand. This is not simply a matter of bowing to the foolish

whims of the market, however: Market penetration leads to standardization, and

standards have tangible benefits that are more important than the coolest technical

feature. Yes, Windows 95 still uses MS-DOS; no, it’s not a pure Win32 system; no,

it’s not particularly integrated; no, it hasn’t been rewritten from the ground up; and

yes, it is lacking some nice features found in Windows NT or OS/2. But none of

these compromises will hurt Windows 95’s chances for success and some will

actually help make Windows 95 a success. Windows 95 will be the standard desk-

top computing platform for the next five years, and that by itself is worth far more

than the coolest technology.



Chapter i

W
hen you turn on a PC running MS-DOS version 6, possibly with the

intention of running Windows 3.1, one of the first things you see on

the screen is the message “Starting MS-DOS...”.

When you turn on a PC running Windows 95, the message that greets

you is “Starting Windows...”.

This is a dramatic demonstration (well, as dramatic as a PC sign-on

message can get) of how Microsoft wants you to think of Windows.

Microsoft wants you to view Windows, not MS-DOS, as the operating

system: you turn on your PC, and it tells you you’re starting Windows.

One goal behind Windows 95 (“Chicago”) is to turn the PC into a

machine that no longer makes you wonder why you’re not using a

Macintosh (especially now that Apple’s prices have come down far

enough that the Mac competes in the same market as the PC). One of the

stated missions for Windows 95 is to create what Microsoft calls a “no

excuses” standard for PC hardware. Adrian King states hopefully in his

Inside Windows 95 (p. xxviii) that with Windows 95 “Apple Computer

won’t be able to run those Windows commercials any longer.” He’s refer-

ring, of course, to Apple’s TV commercials portraying Windows as diffi-

cult to set up and use. This ad campaign apparently had a big impact on

Microsoft, possibly even providing the impetus behind the so-called

“Plug and Play” effort.

Many reviewers have been impressed with how close Windows 95

comes to this goal of turning the PC into a high-volume, low-price

Windows appliance. In its August 1994 issue (p. 130), PC World stated:
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Starting a Chicago PC is like turning on a toaster: Just hit the button. Sure, you’ll still

see BIOS information and other machine-specific hieroglyphics scroll by, but far fewer

than under Windows 3.1. And then, instead of pausing at the nasty old C> prompt,

your PC will charge directly into Chicago’s Desktop. At the bottom left, your eyes are

immediately drawn to a button emblazoned with the Windows logo and the word Start.

I say drawn because an arrow attached to a text message — “Click here to begin” —
floats in from the right, gently bouncing off the Start button. This pervasive cuteness

gets stale in a hurry, but new users will never be left wondering what to do next.

Indeed, the ability to boot seemingly seamlessly into Windows is

impressive. So too, as Figure 1-1 shows, is the work that Microsoft has

obviously put into the Windows 95 user interface. However, having used

Windows 95 nearly full time since May 1994, 1 confess that I still envy

my seven-year-old son Matthew’s Macintosh Quadra 660 AV (a beautiful

machine that cost less than $2,000 U.S.). Windows 95 won’t turn the

proletarian PC into a yuppie Mac. But Windows 95 definitely will

improve the PC’s longevity, health, image, and reputation. And the sim-

ple matter of booting right into Windows when you turn on the machine

is obviously an important part of this effort to turn the PC into a com-

puting appliance or at least make it seem like one.
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Figure 1-1: As seen from the Chicago shell, the Chicago user interface is substantially

nicer than that in previous versions of Windows. Even old Windows applications, such as

Microsoft Word 2.0 (shown here), look better in Chicago.

Now, what does this ability to boot right into Windows tell us about

the architecture of Windows 95?
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Even though you could make a PC appear to boot right into earlier

versions ofWindows merely by putting the command WIN as the last

line ofAUTOEXEC.BAT, Windows 95 must be doing a lot more than

this. In fact, it appears that Windows is no longer stitched onto DOS with

a batch file, but rather that Windows has replaced DOS entirely. After all,

the machine doesn’t say “Starting MS-DOS...” any more; almost from the

moment it starts up, the machine now says “Starting Windows...”.

The old “Starting MS-DOS...” message is produced by a hidden MS-
DOS file called IO.SYS. IO.SYS and a second file called MSDOS.SYS
form the kernel of the real-mode MS-DOS operating system:

C : \>di r *
. sys /a : h

10 SYS 40,566 09-30-93 6:20a

MSDOS SYS 38,138 09-30-93 6:20a

As you see in the following annotated hex dump from the DOS
DEBUG utility, the startup record (or boot record

,
as it’s often referred to

in books on the DOS file and disk system) occupies the first sector of the

DOS bootable disk partition and contains code to load IO.SYS:

C : \ WI NDOWSSdebug

-L 100 2 0 1 ;;; load drive C: sector 1 into address 1 00

h

-d 100 300 ;;; now dump out address 1 00

h

7431:0100 EB 3C 90 4D 53 44 4F 53-35 2E 30 00 02 10 01 00 . < . MSD0S5 . 0

7431 : 02E0 61 64 79 0D 0A 00 49 4F-20 20 20 20 20 20 53 59 ady ... 10 SY

7431 : 02F0 53 4D 53 44 4F 53 20 20-20 53 59 53 00 00 55 AA SMSDOS SYS..U.

In Windows 95, the “Starting Windows...” message is produced by a

file called WINBOOT.SYS, a much larger file that plays a role in Win-

dows 95 similar to the one played by IO.SYS and MSDOS.SYS in earlier

versions ofMS-DOS:

C : \ > d i r *.sys / a :

h

WINB00T SYS 288,030 06-10-94 4:22a

And, sure enough, the startup/boot record in Windows 95 looks for

WINBOOT.SYS rather than for IO.SYS and MSDOS.SYS:

C : \Wi ndows>debug
-1 100 2 0 1

-d 100 300

77AB : 0100 EB 3C 90 4D 53 57 49 4E-34 2E 30 00 02 08 01 00 . < . MSWI N4 . 0

77AB : 02F0 00 57 49 4E 42 4F 4F 54-20 53 59 53 00 00 55 AA . W INB00T SYS..U.

Notice that not only has WINBOOT.SYS replaced the hidden kernel

files IO.SYS and MSDOS.SYS, but the OEM name (as Microsoft calls it)
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in the boot record has changed too, from “MSDOS5.0” to “MSWIN4.0”.

(See Undocumented DOS
,
2d ed., pp. 408-411, for a fuller discussion of the

boot record.)

These are just two examples of how, wherever you look in Chicago,

the name DOS has been crossed off and the name Windows written in.

This— along with the whole Windows 95 “look and feel” — has suitably

impressed the computer trade press, as seen in its reaction to Beta-1

(May 1994) of Chicago:

When you boot Chicago — without DOS, because it’s a complete operating system

in its own right — you see that you are dealing with a very different kind of Windows.

— Windows Magazine, July 1994, pp. 184-185.

Chicago bypasses DOS and runs completely in protected mode, although on startup

it can stop briefly in real mode to process the now-optional CONFIG.SYS and

AUTOEXEC.BAT for loading TSRs and old device drivers.

— PC/Computing, July 1994, p. 60.

First of all, there is no DOS hiding under Windows anymore. For the sake of compati-

bility with legacy applications, Chicago will read and respect CONFIG.SYS and

AUTOEXEC.BAT files, but it doesn’t require them.

— Steve Gibson, InfoWorld, July 4, 1994, p. 45.

Whereas previous versions of Windows merely hid real-mode DOS,
Windows 95 appears to abolish it. As the statements above indicate, in

Windows 95 you don’t need CONFIG.SYS or AUTOEXEC.BAT to

run Windows. Windows 95 can automatically load all the files necessary

to run Windows — not only WIN.COM, but also two DOS device dri-

vers, HIMEM.SYS and IFSHLP.SYS — without any instruction from

CONFIG.SYS or AUTOEXEC.BAT.
This is analogous to the introduction in MS-DOS 6.0 of the ability

to silently and automatically “preload” DoubleSpace disk compression.

All previous disk compression, such as Stacker, required assistance

(sometimes a lot of assistance) from DOS initialization files. Similarly,

until Windows 95, CONFIG.SYS and AUTOEXEC.BAT were needed

to get Windows up and running. And just as DOS 6.0’s undocumented

preload interface (over which Microsoft and Stac Electronics got into an

interesting court battle) made disk compression transparent, likewise

Windows 95 ’s ability to autoload HIMEM.SYS, IFSHLP.SYS, and

WIN.COM makes Windows transparent. You turn on the PC, and it

boots into Windows.
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Bypassing commaiid.com...

Ifyou have Windows 95, you can try out its ability to transparently boot

Windows, even ifyou normally use a CONFIG.SYS or AUTOEXEC
.BAT file, by pressing F5 for a moment when the machine starts. F5 initi-

ates a so-called “fail safe” mode, in which WINBOOT.SYS ignores CON-
FIG.SYS and AUTOEXEC.BAT, and loads HIMEM.SYS, IFSHLP.SYS,

and in some circumstances, SETVER.EXE and EMM386. EXE. WIN-
BOOT.SYS then loads WIN.COM which, in Windows 95 just as in previ-

ous versions of Windows, loads the Windows Virtual Machine Manager

(VMM) and Virtual Device Driver (VxD) layer, which in turn loads the

Windows graphical user interface.

Of all the files loaded by WINBOOT.SYS, one well-known file is

missing: the DOS command interpreter, COAlMAND.COM. Indeed,

WINBOOT.SYS only requires COMMAND.COM to process AUTO-
EXEC.BAT, so if you boot Windows 95 without an AUTOEXEC.BAT,
WINBOOT.SYS will directly load Windows — without a copy of the

DOS command interpreter sitting under it!

This feature is sufficiently important to make it worth confirming

with a simple experiment. On a machine running Windows 95, if there’s

an AUTOEXEC.BAT file, temporarily rename it to something like

AUTOEXEC.FOO. Whether or not there was one to begin with, create

a dummy AUTOEXEC.BAT file with just one line, such as “ECHO
Hello world!”, and then reboot the machine. It’s not strictly necessary for

this experiment, but it makes a more forceful demonstration ifyou also

temporarily rename the CONFIG.SYS file, if there is one, to something

like CONFIG.FOO.
Once Windows is up and running, open a DOS box and run Microsoft’s

MEM utility. See Figure 1-2. (Notice, by the way, that the C:\> prompt in

the DOS box has Windows with an initial cap, not WINDOWS. In addi-

tion to providing long filenames and directory names, the Windows 95 file

system also preserves case.)

There’s a lot going on here. First, if you’ve followed along and

removed or renamed CONFIG.SYS, observe that we’ve booted Windows

without providing any instructions on how to do so. WINBOOT.SYS
(whose name, interestingly— and significantly—MEM reports as

MSDOS) clearly took care of loading HIMEM.SYS, IFSHLP.SYS, and

SETVER.EXE. Next, we see that COAlMAND.COM was loaded into

memory before WIN (and before vmm32, which we’ll be discussing in
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detail in Chapter 2). There’s another copy of COAlMAND.COM loaded

after WIN: this is the copy in the DOS box from which we ran the MEM
utility. Finally, look at the amount of available memory: 592K.
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Figure 1-2: Running Microsoft’s MEM utility in a DOS box under Windows 95 shows

some of the DOS software used to boot Windows. There was an AUTOEXEC.BAT file in

this configuration, so COMMAND.COM was loaded to process it.

Now, start Windows 95 without an AUTOEXEC.BAT file: delete the

one-line AUTOEXEC.BAT file, boot with F5, or press F8 for “interactive

boot,” and answer Y to the question “Load Graphical User Interface?”.

When Windows 95 comes up, open a DOS box and runMEM /C again.

The results are shown in Figure 1-3.

Note carefully what happened. By deleting the one-line dummy
AUTOEXEC.BAT file, the first copy ofCOMMAND no longer appears:

MEM shows that MSDOS loaded HIMEM, IFSHLP, and SETVER, and

then started WIN, which loaded this vmm32 thing we’ll look at in Chap-

ter 2. Again, the copy ofCOMMAND loaded after WIN and vmm32
represents the DOS box from which we’ve run MEM /C. There’s now
60IK available DOS memory: another 9K of conventional memory.

So, eliminating AUTOEXEC.BAT gets rid ofCOALMAND.COM. But

there’s a problem with this little experiment: we had to open a DOS box and

load a copy ofCOALMAND.COM just to run MEM /C. It’s obviously con-

fusing to load COALMAND.COM in order to run a test that tries to prove
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that Windows doesn’t need COMMAND.COM. We could runMEM from

a PIF file and thereby eliminate the need for COMMAND.COM. But you

may suspect that the very act of opening an DOS box to run the test might

still have some other effect that distorts the results we’re seeing. It would be

a lot better to have a Windows program that examines DOS memory, so we
wouldn’t have to open a DOS box.
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Figure 1-3: lfAUTOEXEC.BAT is missing, Windows 95 can boot its graphical user inter-

face without loading an initial copy of COMMAND.COM.

The WINPSP program from Chapter 13 is perfect for this. The PSP
(Program Segment Prefix) is a real-mode DOS data structure; every run-

ning real-mode DOS program has a PSP, and the real-mode address of a

program’s PSP acts as its process identifier. At any given time in real-

mode DOS there’s a single current PSP, and DOS performs file I/O and

memory allocation in the context of this current PSP: each file handle is

stored in a Job File Table, a pointer to which is stored in the PSP, and

each DOS memory block is stamped with the PSP of its owner.

WINPSP is a protected-mode Windows program that prints out some

information about each PSP, such as its real-mode address and the name of

its owner (see the WINPSP.C source code in Chapter 1 3 for a fuller expla-

nation). Figure 1-4 shows output from WINPSP when Windows 95 has

been booted with a dummy AUTOEXEC.BAT file; COMAlAND.COM
is plainly visible.
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2151 28 0F WINPSP 1DD7 110
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Figure 1-4: WINPSP, a 16-bit Windows program, reveals the DOS Program Segment

Prefix (PSP) structures present in Windows 95. In this example, Windows 95 was booted

with an AUTOEXEC.BAT file, so COMMAND.COM is present in memory.

32-bit Multi
.
j
gjReeCeH G...

[feWINPSP

My Computer

Network

WINPSP

File Help

DOS PSPs (Fron MCB chain):
Real Nane Paras
1292 WIN 00C1
1361 umn32 01 4B
1 4BA KRNL386 8A46

Windows PSPs (Fron task list):
Real Prot Nane Task Size
2 02E 1 DC7 FREECELL 1DCE 120 WIN32
2 01C 1 F77 WINBEZMT 1 E7E 120 WIN32
2 00A 1F47 CLOCK 1F36 120 WIN32
1 FD6 1 2DF CAB32 2 06E 120 WIN32
1FC5 1 37F TIMER 1387 110
2627 1 45F MSGSRU32 1467 110
1 4BA 00AF KERNEL32 009F 100 WIN32
2 061 1 C57 WINPSP 1 C5F 110
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Figure 1-5: WINPSP again shows DOS PSPs on a Windows 95 system. This time, however,

there was no AUTOEXEC.BAT, so COMMAND.COM was not needed to start Windows.
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Figure 1-5 shows WINPSP output when there’s no AUTOEXEC.BAT;
COMMAND.COM is gone.

The Windows loader, WIN.COA4, has replaced the DOS command
interpreter, COALMAND.COM: whereas COATMASFD.COM was load-

ing in at address 05F7h, WIN is now loading in at the nearly identical

address 05F9h.

This is great!

...Bit Bypassing BBS, loo?

Windows 95 ’s capability to dispense with COAFMAND.COM has been

the source of much confusion. For example, one particularly ill-informed

writer claimed, before Windows 95 was even in beta, that:

If no real-mode DOS device drivers or TSRs have been loaded in CONFIG.SYS or

AUTOEXEC.BAT, Windows 4 should be able to remove itself entirely from real-mode

DOS, relying on the VMM/VxD operating system.

— Andrew Schulman, Dr. Dobb’s Journal, February 1994, p. 108.

Leaving aside the curiously inelegant phrase, “remove itself entirely

from,” and the way he hedged his bets with that word “should,” this writer

was obviously deeply confused. COATMAND.COM is not MS-DOS; it is

merely the DOS command interpreter. If there’s no AUTOEXEC.BAT
file, Windows 95 can dispense with COATMAND.COM, but this hardly

means that Windows 95 can dispense with real-mode DOS.
Even though it’s well known that COATMAND.COM and the C:\>

prompt are not synonymous with MS-DOS — you can replace them sim-

ply by naming some other program in the CONFIG.SYS SHELL= state-

ment— many people who do know the difference between AIS-DOS and

COATMAND.COM nonetheless persist in viewing Windows 95 ’s capabil-

ity to bypass COALMAND.COM as somehow synonymous with bypass-

ing the real-mode DOS code. For example, responding to a reader’s letter

that took exception to its July 1994 assertion that Windows 95 is “a com-

plete operating system in its own right,” Windows Magazine (October

1994, p. 20) offered the following substantiation for this assertion:

Here’s a test anyone with a Chicago beta system can perform: Rename your

AUTOEXEC.BAT and CONFIG.SYS to AUTOEXEC.OLD and CONFIG.OLD; then shut

down and restart Windows 95. It will boot back up — into Windows. You will see

no command prompt.... That looks to me like a full-up operating system, not an

“environment” that runs on top of such a system.
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Windows 95’s capability to boot right into Windows is certainly

impressive. But because the C:\> prompt isn’t part of the real-mode DOS
kernel, this impressive feat tells us nothing about Windows 95’s status as a

“full-up operating system.”

As a final example of this persistent confusion about Windows 95’s

relation to DOS, one reader of the draft manuscript for this book noted

that “Chicago ships with MS-DOS 7.0, which apparently gets executed

if the user has a CONFIG.SYS and/or an AUTOEXEC.BAT file

(meaning that the user needs support for non-Chicago, DOS-based

device drivers and TSRs).” Several hours of experimentation (and sev-

eral beers) later, we discovered that Windows 95 always uses MS-DOS
7.0, and that it is nothing more (but also nothing less) than the use of

COAlMAND.COM that is conditional upon the presence ofAUTO-
EXEC.BAT.

Windows 95’s capability to bypass COMMAND.COM must, in part

at least, be responsible for the popular notion that in the absence of any

real-mode TSRs or device drivers, Windows 95 can “push” real-mode

DOS off the machine. For example, on page 71 in his semi-official Inside

Windows 95
,
Adrian King (former director of systems software products

for Microsoft and a darned good writer) says:

Windows 95 is subtly different from Windows 3.1 during this initialization phase.

With Windows 3.1, it’s up to the user to enter the win command and start the initial-

ization of the Windows system. Windows 95 immediately gains control and switches

to protected mode to complete the initialization process after loading — no win com-

mand is needed. In either case, when Windows switches to protected mode, it

pushes the real mode code aside and takes control of the machine.

Other than the capability to skip COMAlAND.COM, it’s hard to

know what “pushes the real mode code aside” means. But evidently this is

also what computer journalists mean when they say (as we’ve seen earlier)

that “Chicago bypasses DOS and runs completely in protected mode” or

that “there is no DOS hiding under Windows anymore.”

Certainly it’s great not having Windows resting on top of COM-
MAND.COM. And booting Windows right out ofWINBOOT.SYS
(duh, that must be where the name comes from!) makes a big difference to

a user’s perception of their PC. But the idea that Windows 95 “pushes the

real mode code aside,” “bypasses DOS and runs completely in protected

mode,” or “should be able to remove itself entirely from real-mode DOS,”
has no foundation in any version of Chicago that has shipped to date and

is extremely unlikely to have any foundation in the final shipping Win-
dows 95 retail.
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As I stated earlier, COMAiAND.COM is not MS-DOS. It is merely

the MS-DOS user interface, the provider of the familiar but contemptible

C:\> prompt. Windows 95 makes it possible to run Windows without ever

seeing a C:\> prompt. Great!

But does this mean, as Adrian King puts it in Inside Windows 95

(p. 1 12), that in Windows 95 “ifyou run only Windows applications,

you’ll never execute any MS-DOS code” and that “Windows 95 finally

breaks all ties with the real mode MS-DOS code”? No, it doesn’t.

There are numerous ways to quickly see that Windows 95 neither

pushes real-mode DOS aside, nor bypasses DOS, nor runs completely in

protected mode, nor breaks all ties with the real-mode DOS code, nor

removes itself entirely from real-mode DOS (whatever that was supposed

to mean).

For example, as a quick test you can run the MicrosoftMEM utility

again, this time with the CD (debug) command-line option. The following

was generated on a pure Windows 95 system, without CONFIG.SYS or

AUTOEXEC.BAT. COAlMAND.COM wasn’t present either, because

MEM was run from a Windows PIF file:

Address Name Si ze Type

000000 000400 Interrupt Vector

000400 000100 ROM Communication Area

000500 000200 DOS Communication Area

000700 10 000360 System Data

CON System Device Driver

AUX System Device Dri ver

PRN System Device Dri ver

CLOCKS System Device Dri ver

A: - C: System Device Dri ver

C0M1 System Device Dri ver

LPT1 System Device Dri ver

LPT2 System Device Driver

LPT3 System Device Dri ver

CONFIGS System Device Dri ver

COM2 System Device Dri ver

COM3 System Device Driver

COM4 System Device Dri ver

000A60 MSDOS 0014E0 System Data

001F40 10 003F30 System Data

HIMEM 000480 DEV ICE=

XMSXXXX0 Instal 1 ed Devi ce Dri ver

IFSHLP 000FD0 DEV ICE=

I FS$HLP$ Installed Device Driver

SETVER 0002A0 DEV ICE=
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SETVERXX

000220

Installed Device Driver

000130

000CC0 FI LES=

000100 FCBS=

000200 BUFFERS=

0008F0 LASTDRI V E=

000BA0 STAC KS=

005E80 MSDOS 000040 System Program

005ED0 WIN 0000A0 Envi ronment

005F80 WIN 000B90 Program

006B20 vmm32 0000C0 Envi ronment

006BF0 vmm32 000400 Program

007000 MEM 0000B0 Envi ronment

0070C0 MEM 014550 Program

01B620 MSDOS 0839D0 -- Free --

651,264 bytes total conventional memory

651,264 bytes available to MS-DOS

622,384 largest executable program size

On this purest of pure Windows 95 systems (well, except for the fact

that in order to run MEM we’ve had to open a DOS box— but we’ll get

to that in a moment), MEM /D shows that not only has DOS not been

pushed off the machine, but it can’t even be said to be hanging on for

dear life:

• MEM (and this is the version of Microsoft’s MEM utility that comes

with Windows 95) refers to “IO” and “MSDOS”. WINBOOT.SYS
is the old IO.SYS and MSDOS.SYS pasted together with some new
code, a fancy ray-traced logo, and a new name. WINBOOT.SYS
contains the real-mode DOS INT 2 1 h handler. To a DOS program,

Windows 95 is MS-DOS 7.0 (both INT 2 1 h function 30h and func-

tion 3306h return 7).

• The usual DOS device drivers, such as CON, AUX, PRN, CLOCKS,
and so on, are present. Running any sort of hex-dump or strings-

dump utility on WINBOOT.SYS confirms that these device drivers

are built into WINBOOT.SYS, just as in previous versions of DOS
they were built into IO.SYS. There’s also a new built-in DOS device,

CONFIGS, which works with the Plug and Play configuration man-

ager (the CONFIGMG VxD).

• IFSHLP.SYS is a real-mode DOS device driver required by the

Windows 95 Installable File System Manager (IFSMgr) VxD, which

is the foundation for 3 2 -bit file access (32BFA), long filenames, and

Windows 95 ’s built-in networking support. Chapter 8 discusses

IFSHLP.SYS in detail.
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For now, just note that one of the most vital VxDs in Windows 95

absolutely depends on a real-mode DOS device driver: If IFSMgr cannot

find IFSHLP.SYS, it fails with the error message “The Microsoft Instal-

lable File System (IFSMgr) cannot find the helper driver. Please ensure

that IFSHLP.SYS has been installed.”

• The MEM /D display for FILES=, LASTDRIVE=, and so on indi-

cates that the traditional real-mode DOS data structures are present. A
little snooping around with DEBUG showed, for example, that the

DOS Current Directory Structure (CDS), whose size can be set with

the LASTDRTVFT command, was located in this test at 049E:0000.

And the real-mode DOS CDS was tracking the current directory. I

know this because while I was using a Windows application to browse

a folder on A: called “This is a long directory name on a floppy”, I

started a DOS box and used DEBUG to examine the CDS at

049E:0000. Sure enough, it reflected the current directory on A:

at the time the DOS box was started:

-d 49e : 0

049E : 0000 41 3A 5C 54 48 49 53 49~53 41 4C 00 00 00 00 00 A:\THISISAL

Of course, the real-mode DOS CDS doesn’t know how to handle long

directory (sorry, I mean folder) names, but at any rate the data structure is

still present and in reasonably good working order.

But runningMEM requires a DOS box; prehaps we’re seeing real-mode

because we’re running a DOS application. However, if you’ve ever run

Windows NT or OS/2, you know that you can have a DOS box, and the

DOS INT 2 lh programming interface, without having real-mode DOS.

So maybe what we’re seeing when we run MEM is just the illusion of

real-mode DOS. After all, if you run MEM from a DOS box in Windows

NT or OS/2, you’ll see this kind of stuff, too! For example, here’s

MEM/D output from Windows NT 3.1:

Address Name Si ze Type

000000 000400 Interrupt Vector

000400 000100 ROM Communication Area

000500 000200 DOS Communication Area

000700 10 000370 System Data

CON

AUX

PRN

CLOCKS

C0M1

LPT1

LPT2

System Device Driver

System Device Driver

System Device Driver

System Device Driver

System Device Driver

System Device Driver

System Device Driver
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LPT3 System Device Driver

COM2 System Device Driver

COM3 System Device Driver

COM4 System Device Driver

000A70 MSDOS 0015C0 System Data

002030 10 001C90 System Data

KBD 000C10 System Program

HIMEM 0004E0 DEVICE=

XMSXXXX0 Installed Device Dri

000200 FI LES=

000090 FCBS=

0000E0 LASTDR I V E=

0007D0 STAC KS=

003CD0 COMMAND 000950 Program

004630 MSDOS 000070 -- Free --

0046B0 COMMAND 0001.50 Envi ronment

004810 MEM 000170 Envi ronment

004990 MEM 017550 Program

01BEF0 MSDOS 0840F0 -- Free --

09FFF0 SYSTEM 028000 System Program

0C8000 MSDOS 000170 -- Free --

0C8180 MSCDEXNT 0001C0 Program

0C8350 REDIR 000A60 Program

0C8DC0 DOSX 008950 Program

0D1720 DOSX 000080 Data

0D17B0 MSDOS 00E830 -- Free --

0DFFF0 SYSTEM 008000 System Program

0E8000 10 003620 System Data

MOUSE 003610 System Program

0EB630 MSDOS 0049C0 -- Free --

655360 bytes total conventional memory

655360 bytes available to MS-DOS

636496 largest executable program size

1048576 bytes total contiguous extended memory

0 bytes available contiguous extended memory

925696 bytes available XMS memory

MS-DOS resident in High Memory Area

It sure looks as if, here too, real-mode MS-DOS is present. Yet we
know in the case of Windows NT that it’s not. So maybe the same thing is

true of Windows 95. Maybe Windows 95 is emulating DOS, just as NT
and OS/2 do.

In the course of this book, we’ll see that Windows 95 does emulate

DOS to a large extent. But we’ll also see that this emulation is neither

complete nor new. To the large but incomplete extent that Windows 95

emulates rather than relies on the real-mode DOS code, exactly the same

is true of Windows for Workgroups (WfW) 3.11 with 3 2 -bit file access.
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Even more significant than the strong similarities between Windows
95 and WfW 3.11 is the fact that the technology behind Windows 95’s

impressive (albeit partial) emulation of DOS goes all the way back to

Windows 3.0 Enhanced mode, introduced in 1990 (we might as well call

it Windows 90). Although 3 2 -bit file Access is the most visible manifesta-

tion of Windows’ capability to emulate DOS, the seeds for 3 2 -bit file

access and Windows 95 were sown in a well-documented but little-

known VMM service named Hook_V86_Int_Chain. This book will

spend a lot of time looking at Hook_V86_Int_Chain and spinning out

its implications. In 25 words or less, however, Hook_V86_Int_Chain is

the chief means by which Microsoft is turning MS-DOS into a 3 2 -bit

protected-mode operating system. And this has been going on, under

our noses, since the debut of Windows 90 — I mean, Windows 3.0

Enhanced mode.

Although Windows can emulate some DOS functions in protected

mode, we still need to see whether or not Windows 95 rests on real-mode

DOS. Let’s close the DOS box and return to the WINPSP program

shown earlier. This is a Winl6 program. If “Windows 95 bypasses DOS”
and “there is no DOS hiding under Windows anymore,” this ought to be

reflected in WINPSP’s output. But it’s not. I didn’t say anything about it

earlier, but when we used WINPSP to show that Windows 95 can run

without COAEMAND.COM, it also happened to show that all Windows

programs running under Windows 95 have real-mode DOS PSPs:

Wi ndows PSPs ( from task list):

Real Prot Name Task Si ze

1314 1FFF CAB32 2006 120 WIN32

12E1 12EF TIMER 12F7 110

1943 13CF MSGSRV32 13D7 110

1347 1 E57 GROWSTUB 1 E5F 110

07D7 00A7 KERNEL32 0097 100 WIN32

1379 2687 WINPSP 241F 110

It’s particularly revealing that both a Win32 program like the Win-

dows 95 Cabinet/Explorer (CAB32) and the Win32 kernel (KERNEL32)
should have real-mode DOS PSPs. Microsoft says, “Ifyou run only Win-

dows applications, you’ll never execute any MS-DOS code” — well, here

we’re running only Windows applications, but who do you think is creat-

ing those PSPs? We’ll see in Chapter 13 that DOS is creating them, and

that the Win 16 KERNEL is asking DOS to create them by calling an

undocumented DOS function, INT 2 1 h function 55h (Create PSP).

This finding, though surprising at first, actually follows logically from

other well-known aspects of the Windows 95 architecture:
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• Microsoft has said quite explicitly that the windowing and messaging

system in Windows 95, even for Win32 applications, uses the Win 16

USER module: “Most of the code in the 3 2 -bit User DLL is little

more than a layer that accepts 3 2 -bit API calls and hands them to its

16-bit counterpart for processing” (King, Inside Windows 95, p. 148).

All WM_XXX messages, even those intended for Win32 applications,

are first processed in the Win 16 USER module.

• The Win 16 USER messaging system in turn depends on a Win 16

KERNEL data structure called the Task Database (TDB). For exam-

ple, the TDB contains a pointer to the application message queue (see

Undocumented Windows
, pp. 379-385). Even the most cursory examina-

tion of Windows 95 shows that every process — including every

Win32 process — has un associated Win 16 TDB.

• The TDB, in turn, depends on the DOS PSP. In his book Windows

Internals (pp. 254-256), Matt Pietrek shows that the CreateTask func-

tion in the Win 16 KERNEL calls an internal BuildPDB function,

which in turn calls INT 2 lh function 55h. (PDB, meaning Process

Data Block, is another name for PSP.)

Put these three points together, and it makes perfect sense that Win-

dows 95 depends on the DOS INT 2 lh interface for PSP management if

for nothing else, and that this has nothing to do with whether or not you

run any DOS programs.

However, just because Windows 95 is making an INT 2 lh call does

not necessarily mean that Windows 95 is calling the real-mode DOS code.

You need to get used to the fact that in Windows, an INT 2 lh call— even

one coming from a real-mode DOS program, device driver, or TSR—
isn’t necessarily handled by the real-mode DOS code. Just because KER-
NEL’S task-creation routine calls INT 2 lh function 55h, it doesn’t

necessarily mean that KERNEL calls down to the real-mode DOS code.

There are two reasons why INT 2 lh ain’t necessarily real-mode DOS:

• Windows runs the real-mode DOS code in Virtual-8086 (V86) mode.

This is not a pedantic point. As seen in Chapter 9, V86 mode is hardly

at all like real mode. In fact, it more closely resembles 1MB protected

mode. The best way to wrap your mind around Windows’ relation-

ship to DOS is to keep telling yourself that Windows runs the real-

mode DOS code in protected mode. Chapter 10 explains this

admittedly bizarre notion in detail.

• Windows avoids sending most INT 2 lh calls down to the real-mode

DOS code (which, as just mentioned, Windows is effectively running
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in protected mode), because these calls — whether coming from a

DOS program running in a DOS box, or from some piece of DOS
software loaded before Windows, or from a Windows application—
are handled by VxDs. As noted earlier, the Hook_V86_Int_Chain ser-

vice provided by VMM, and used by VxDs, is the basis for 3 2 -bit

protected-mode emulation of the DOS interface. This book spends a

lot of time looking at the far-reaching implications of Hook_V86_
Int_Chain and of anotherVMM service, Set_PM_Int_Vector. These

services let a variety ofVxDs— the most important being IFSMgr—
keep most INT 2 lh calls away from the real-mode DOS code.

You’ll see throughout this book that the DOS PSP management ser-

vices, including functions 50h (Set PSP), 5 lh and 62h (Get PSP), and

55h (Create PSP), are not among those INT 2 lh services that the Win-
dows 95 VxDs currently emulate in protected mode. A third-party ven-

dor could write a VxD, usingVMM services that have been available and

documented since 1990, that does handle these calls entirely in protected

mode. It’s interesting to ponder whether such an imaginary PSP.VXD,
while further cutting Windows 95 off from the real-mode DOS code

base, would really qualitatively change the nature of Windows 95.

At any rate, every time you start up an application in Windows, be it a

DOS program, a Win 16 program, or even the newest Win32 application,

Windows asks DOS (in the case of Win32, via a complicated process dis-

cussed in detail in Chapter 13) to create a PSP.

I don’t see anything wrong with this reliance on DOS (incidentally,

PSP management is just one example of this reliance). But the very idea

that Windows 95 does rely on DOS is so different from what both

Microsoft and the trade press have been saying about Windows 95 that

you surely must doubt that it’s true.

Well, let’s see. Perhaps the WINPSP output shown a few moments

ago reflects some sort of DOS emulation layer. We’ve already seen that

the MEM utility, when run under Windows NT, produces results fairly

similar to those thatMEM produces when run under Windows 95. Yet

we know for a fact that Windows NT doesn’t rest atop DOS. So what

happens if we run WINPSP on Windows NT? Perhaps every process in

NT is trotted out with some sort of fake PSP, and the same thing is true

of Windows 95. Well, here is output from WINPSP running on a heavily

used Windows NT 3 . 1 server:

DOS PSPs (from MCB chain):

Real Name Paras

05B2 COMMAND 0095

067E KRNL386 9981
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Windows PSPs (from task list):

Real Prot Name

139F 0B57 WINPSP

1D95 03B7 WOWEXEC

Task Size

0B1F 220

03AF 220

Yes, a few Win 16 tasks in NT do have DOS PSPs. But meanwhile,

running Microsoft’s PSTAT utility from the Win32 NT SDK shows that

over thirty different processes are running, including CSRSS (Client

Server Runtime Subsystem, which services window and graphics

requests), LMSVCS (redirector), SFMSVC (File Server for Macintosh),

SFMPRINT (Print Server for Macintosh), MSGSVC (Messenger),

NETDDE, and RASMAN (Remote Access Connection Manager):

C : \WINNT>pstat
|

find "pid"

pi d 0 pri 0 (null

)

pi d 7 pri 8 (null)

pi d lc pri 11 SMSS.EXE

pi d 14 pri 13 CSRSS . EXE

pi d d pri 13 WINL0G0N.EXE

pid 46 pri 13 SCREG.EXE

pi d 41 pri 10 LSASS.EXE

pi d 3f pri 7 SP00LSS.EXE

pi d 2f pri 7 EVENTLOG.EXE

pi d 68 pri 7 LMSVCS . EXE

pi d 63 pri 7 NETDDE . EXE

pi d 5b pri 8 (null)

pi d 71 pri 7 CLIPSRV.EXE

pi d 6c pri 7 SFMSVC . EXE

pi d a5 pri 7 SFMPRINT. EXE

pi d a3 pri 8 (null)

pi d 97 pri 7 MSGSVC . EXE

pi d 93 pri 7 RASMAN . EXE

pi d 90 pri 7 ATSVC.EXE

pi d 8c pri 7 UPS. EXE

pi d c8 pri 7 RASSRV.EXE

pi d b5 pri 13 NDDEAGNT.EXE

pi d ad pri 13 PROGMAN.EXE

pi d ab pri 7 NTVDM.EXE

pi d e3 pri 7 PRINTMAN.EXE

pi d bl pri 24 0S2SRV.EXE

pi d 82 pri 8 0S2SS.EXE

pi d b7 pri 7 CMD.EXE

pi d cd pri 7 NTBACKUP.EXE

pi d 35 pri 7 WINFILE.EXE

pi d 105 pri 7 CMD.EXE

pi d d4 pri 7 PSTAT. EXE

None of these services showed up in WINPSP Well, why would

they? Why would Win32 services in the NT operating system require

real-mode DOS PSPs? Obviously, they don’t. Equally obvious, I hope,

Win32 processes in Windows 95 do require real-mode DOS PSPs.
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What we’re left with, then, is that Windows 95 can dispense with

COMMAND.COM, purveyor of the nasty C:\> prompt. This is terrific.

A Windows 95 machine can boot right into Windows without a CON-
FIG.SYS or AUTOEXEC.BAT. Fantastic! But is this what everyone

means when they say that Windows 95 “doesn’t require DOS”? It would

appear so.

We’ll soon see that WINBOOT.SYS contains the old real-mode DOS
code, and that Windows 95 calls down to this code quite frequently

(albeit in V86 mode which, you’ll recall, you need to keep telling yourself

is really protected mode). Now, the VxD layer in Windows 95 does handle

most INT 2 lh calls entirely in 3 2 -bit protected mode, without calling

DOS. This, too, deserves two and possibly even three cheers. But 32-bit

file access in WfW 3.11 did the same thing and met with considerably

less fanfire than Windows 95. In fact we’ll see in Chapter 8 that the trade

press generally complained that WfW 3.1 l’s “bypassing DOS” for 32BFA
was some sort of hug that caused all sorts of DOS compatibility problems.

So what could the “Windows 95 completely bypasses DOS” claim

possibly mean?

Perhaps it simply refers to thq packaging ofWindows 95. For example,

the Microsoft Windows “ Chicago" Reviewer's Guide (p. 275) says “Chicago will

be a complete, integrated protect-mode operating system that does not

require or use a separate version ofMS-DOS.” Note Microsoft doesn't say

that Chicago will not require or use DOS. Microsoft says Chicago won’t

require or use a separate version ofMS-DOS. Perhaps Microsoft is just

telling us that all the functionality formerly associated with MS-DOS will

now be brought out under the Windows brand name. If everything for-

merly thought to be part ofMS-DOS is by executive fiat now part of

Windows, then the “you’ll never execute any MS-DOS code” claim makes

sense, I suppose.

uihii Bother Helming Microsoft's Claims?

I hadn’t intended to spend so long here looking at DOS PSP usage in Win-

dows 95. This is just one part of the Windows 95 architecture. However, the

contrast between Windows 95 ’s true relationship with DOS and Microsoft’s

claims that Windows 95 bypasses DOS is representative of Microsoft’s more

general claims about Windows 95. For example, Microsoft also asserts that

the Win32 kernel, KERNEF32.DFF, “is completely independent of its
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16-bit ally. There is some communication from the 16-bit side to the 3 2 -bit

side, but the 3 2 -bit Kernel never calls across to the 16-bit side” (Inside Win-

dows 95
, p. 148). As with the assertions regarding Windows 95 ’s indepen-

dence from DOS, this one regarding KERNEL32’s independence from the

Win 16 kernel (KRNL386.EXE) is quite far from the truth.

The point here is not to poke holes in Microsoft’s claims for Windows

95. Few adults expect “truth in advertising,” even when this advertising is

packaged as technical documentation, architectural descriptions, or

industry white papers. It would be pointless to expect readers to wade

through a 500 page refutation of Microsoft’s marketing hype and its

reflection in the computer trade press.

Instead, by taking a good hard look at just a few of these claims, which

we’ll visit and revisit from several different angles throughout this book,

we’ll get a good idea of how Windows 95 works, and how it’s different

from and similar to previous versions ofWindows and MS-DOS.
An in-depth examination of a few selected aspects ofWindows 95 —

particularly the relationship ofWindows to DOS, and of the Win32 ker-

nel to the Win 16 kernel— will illuminate many aspects of the product,

such as Windows’ poorly-understood VMM/VxD layer, the Win32 API,

thunking, 3 2 -bit file access, executable loading, and memory-mapped files.

Ifwe ask just a few very specific (maybe even overly specific) hard ques-

tions about Windows 95, perhaps in the end some sort of architectural

overview will emerge. It might not be as ordered or coherent as Microsoft’s

architectural overview, but it might have the benefit of accuracy.

Those Ubiquitous Microsoft Diagrams

Such a focused examination is a good alternative to the usual look at

Microsoft-supplied architectural diagrams, which have an unfortunate

tendency to induce either sleep or a state known as MEGO (“my eyes

glazeth over”).

At the same time, I guess we’d better take a moment to look at two of

these diagrams. I’m sure you’ve already seen them or something like them

because they appear, more or less as stamped-out boilerplate, in nearly

every computer magazine article on Windows 95. However, it’s worth

actually examining and pondering these diagrams for a few moments

because the tendency of most people (certainly, my tendency) on encoun-

tering one of them in a magazine is to just let the soothing waves of tech-

nological bliss induced by those arrows and boxes wash over you. Such
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diagrams, in other words, are largely a “feel good” exercise, meant to

induce a feeling that the software has been designed— as opposed to what

is more likely, that the software “just grew.”

Figure 1-6 shows the first Microsoft diagram. This diagram seems to

be appearing everywhere, like some software-engineering form of kudzu.

(The same diagram appears verbatim in Windows Magazine, July 1994,

p. 187; with a prettier presentation but the same content in PC
Magazine

,
April 12, 1994, p. 193; and with a very pretty presentation but

the same content in PC World
,
August 1994, p. 134.)

Ring 3 (System VM)

Win32®
app

System services:

Kernel

graphics

window mgmt

Win 16

app

Win32®
app

Win32®
app

Win 16

app

Ring 3

(MS-DOS
VM)

Ring 3

(MS-DOS
VM)

Ring 0

Protect-mode file system
VFAT, CDFS, SCSI, Network

Virtual Machine Manager
Pager, Scheduler, DPMI server

Figure 26. Chicago's Integrated Architecture for Running MS-DOS-,

Winl6-, and Win32-based Applications.

Figure 1-6: Microsoft’s boilerplate diagram of the Windows 95 architecture.

Now, Microsoft’s own caption for this diagram is a little different from

the one I’ve supplied. One place this diagram appears is in the Microsoft

Windows “Chicago " Reviewer's Guide (May 1994), a compelling and well-

written 300-page document Microsoft has made publicly available (and,

quite deliberately, without any copyright notice, which means that in the

next six months we should see about 20 books published containing a

largely-recycled regurgitation of Microsoft’s Windows “ Chicago ” Reviewer's

Guide). There, Microsoft’s caption (p. 59) is “Chicago’s Integrated

Architecture for Running MS-DOS-, Winl6-, and Win32 -based

Applications.”

We’re going to have to come back to this “integrated” phrase, because

it’s a tremendously important part of the hype surrounding— sorry, I

mean technical documentation regarding— Windows 95.
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In the meantime, there’s one very noticeable feature of this diagram:

MS-DOS is missing. Now, the diagram does show two DOS boxes, but

I’m referring to MS-DOS itself, or, if you prefer, WINBOOT.SYS.
Where is it? I hope Microsoft (and those who recycle its artwork) isn’t

suggesting that WINBOOT isjust for booting Windows (200K is a lot

of bootstrap code), and that it somehow drops out of sight (or perhaps

is pushed aside) when Windows starts up. I hope the output from MEM
presented earlier showed that the real-mode WINBOOT.SYS code

(which Microsoft’s own MEM program persists in calling IO and MS-
DOS) is still in memory while Windows is running. So where’s WIN-
BOOT in the diagram? Similarly, where’s IFSHLP.SYS (which, as

noted earlier, is a real-mode DOS device driver that is required by the

IFSMgr)? These important V86-mode components are conveniently

absent from Microsoft’s architectural diagram.

Of course, a diagram is an abstraction. It cannot, and should not, show

every detail. A lot of other things are also missing from this diagram: at

Ring 0, there’s no mention of the crucial hardware-related VxDs such as

VPICD, VDMAD, VKD, VDD, VMD, and VTD (that’s Virtual Pro-

grammable Interrupt Control Device, Virtual Direct Memory Access

Device, Virtual Keyboard Device, Vrtual Display Device, Vrtual Mouse
Device, and Vrtual Timer Device). There’s no mention of the DOS-
MGR or SHELL or VWIN32 VxDs; VWIN32 in particular plays an

absolutely vital role in Windows 95. Nor does the diagram show that the

System VM rests atop 16-bit Windows device drivers (totally different

from VxDs), such as KEYBOARD, MOUSE, DISPLAY, or SYSTEM.
But obviously there’s only so much that can be crammed into a single

diagram without inducing more than the intended amount ofMEGO.
Still, I think the omission ofWINBOOT, aka MS-DOS, from this

diagram is significant. Not only does Microsoft intend to convince end

users that DOS is gone and that software on a Windows 95 PC has been

stamped out in one piece like an integrated circuit, but also to convince

developers of the same thing. Programmers are people too, and they

want to feel good about the operating system they develop for. So

Microsoft will let developers feel good by showing them lots of pretty

diagrams in which MS-DOS has been wished away.

The second boilerplate diagram is shown in Figure 1-7. It too appears

to have become industry standard in the computer trade press (see, for

instance, the verbatim copy in Windows Magazine, July 1994, p. 186) and

comes from the Chicago Reviewer's Guide.
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Figure 25. Relative Code Distribution in Chicago

Figure 1-7: Microsoft’s boilerplate diagram of 32-bit and 16-bit thunking in Windows 95.

Now, the key here is the bottom layer, showing a supposed one-way

flow from Kernel 16 to Kernel32 (the actual names are KRNL386.EXE
and KERNEL32.DLL). Chapter 13 shows that, in fact, communication

between the Win 16 and Win32 kernels is a two-way street, just as is

communication between the Win 16 and Win32 USER and GDI mod-

ules. And, as noted earlier, the reliance of KERNEL32 upon KRNL386
for some functionality in any case flows logically from USER32’s

reliance upon Win 16 USER.
The version of this diagram in InfoWorld (July 4, 1994, p. 46) goes

Microsoft one better, stating that “All kernel functions are on the 3 2 -bit

side, so all 16-bit calls are thunked up to 32 bits.” Microsoft has never

made such a claim, and even the quickest examination of the Win 1

6

KERNEL code (employing a debugger to glance at a few Win 16 KER-
NEL functions such as GlobalAJloc or LoadModule or LoadResource)

shows that it is not true.

Claiming integration

Now, why this great desire, not only by Microsoft but also by intelligent

and knowledgeable computer journalists, to believe that Windows 95 is a

brand-new operating system that doesn’t employ MS-DOS except per-

haps as a short-lived bootstrap loader?

Certainly, there’s nothing radically wrong with the Windows 95

architecture as it actually exists. Other chapters will make the point that,
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because V86 mode is really a form of protected mode, the employment

of DOS doesn’t undermine Windows 95 ’s status as a genuine operating

system. Similarly, there’s nothing wrong with KERNEL32’s reliance on

the Win 16 KERNEL for some functionality. Adrian King notes (.Inside

Windows 95
,
p. 148) that USER32’s use of Winl6 USER API is “a sen-

sible way of using tried and trusted code.” Well, the same basic point

applies to KERNEL 3 2 and the Win 16 KERNEL.
So if there’s nothing radically wrong with the Windows 95 architec-

ture, and if Microsoft has made fundamentally the right compromises and

tradeoffs, then why this false vision of Chicago as some sort of magic land

from which DOS has been banished and where 3 2 -bit kernel code never

employs 16-bit kernel code?

The answer, I think, lies in the persistent use of the nebulous term inte-

grated to describe Windows 95. Like some school board trying to wriggle

out of a court order, Microsoft keeps telling everyone that Chicago is

“integrated.” For example, Microsoft’s own caption for Figure 1-6 refers

to “Chicago’s Integrated Architecture.” Elsewhere (p. 275), the Reviewer's

Guide says, “Chicago will be a complete, integrated protect-mode operat-

ing system that does not require or use a separate version of MS-DOS”; it

also says (p. 54):

The first thing that users of Windows 3.1 and MS-DOS will see when they turn

their computer on (or perhaps won’t see) is the lack of an MS-DOS command
prompt from which they would need to invoke Windows. Chicago is a tightly inte-

grated operating system that features a preemptive multitasking kernel that boots

directly into the graphical user interface, yet provides full compatibility with the

MS-DOS operating system.

The word integrated is used so frequently to describe Windows 95

that you quickly stop thinking about what it could possibly mean, and

simply accept and repeat it. Integration is one of those grand words that

just feels good to repeat.

Apart from being yet another feel-good exercise (a frequent occurrence

among us supposedly rational engineering types in the software business),

what else is going on with this annoying “tightly integrated” drumbeat?

Actually, I think it’s pretty simple. The “tightly integrated” theme is

part of Microsoft’s response to the Mac. As noted at the beginning of this

chapter, a major goal of Chicago is to change the perception of Windows
and the PC. By claiming that Windows 95 is integrated — which I guess

means that Windows 95 is supposed to be a self-contained whole that

doesn’t require MS-DOS — Microsoft can give the impression that the

PC has been turned into a seamless Windows machine.
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We’ve seen that when you turn on a PC, Windows 95 does an excellent

job of taking you right into Windows. We’ve also seen that this doesn’t

constitute independence from the real-mode DOS code. Microsoft has

taken the code formerly known as MS-DOS, modified it to run HIMEM,
IFSHLP, and WIN (much as it was earlier modified to run DBLSPACE),
renamed it WINBOOT, and put it in the same package as Windows. This

is a perfectly reasonable implementation, but it’s not what I would call

seamless or integrated, and it certainly doesn’t push DOS out of the way.

The automatic loading of the graphical user interface in Windows 95

doesn’t need to be seamless or integrated, and it doesn’t need to push

DOS out of the way.

So why pretend otherwise? Because, if Microsoft admits that Windows
95 relies on MS-DOS 83, even in perfectly acceptable ways, then it’s a bit

harder to say with a straight face that the PC is a Windows “toaster” or

that after Windows 95 ships, “there will be no reason to buy an Apple

Macintosh,” as Bill Gates reportedly said in a memo {Computer Reseller

News
,
March 21, 1994).

There are additional reasons for Microsoft to claim that Windows 95

is an integrated, seamless, complete operating system. Far less important

in Microsoft’s eyes than the Apple Macintosh, I think, is OS/2. OS/2 is

not much of a threat to Microsoft, but it must be mildly annoying to have

the OS/2 contingent deride Windows-DOS as “a thing on a thing.”

Perhaps the tightly integrated theme is also a subtle way of beating

the drum for Microsoft Office. In addition to the usual spiel that any

applications-suite vendor would deliver regarding the benefits of integra-

tion, Microsoft has its own special theme here: the desirability of getting

all your software from one place, Microsoft.

The funny thing is, lack of software integration (depending, of course,

on what this term is really supposed to mean) was once thought to be a

good thing. Back then, this lack of software integration was called modular-

ity. In this sense Windows 95, like previous versions ofWindows Enhanced

mode, is not particularly integrated, and is actually fairly modular.

We’ll see in Chapter 13 that there are two layers in Windows that

know almost nothing about each other: the VMM/VxD layer down

below and the KERNEL/USER/GDI layer up above. The benefit of this

modularity is that it’s possible to run one layer without the other. The
negative side of this modularity, or lack of integration, is that the Win 16

KERNEL in particular has to frequently second-guess and fake-out the

VxD layer. For example, while IFSMgr maintains the current directory
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on a per-virtual machine (VM) basis, this does absolutely no good for the

multiple Win 16 and Win32 applications (each of which require their own
current directory) in the System VM. Windows 95 does little or nothing

to tie together these two parts of Windows.

On the other hand, Chapters 3 and 4 show that, long before Windows

95, there was already a surprising degree of integration between DOS
and Windows. The README.WRI file included with Windows 3.1 and

3.11 states that “Microsoft Windows and MS-DOS work together as an

integrated system.” There’s that “integrated” term again, but this time it

refers to the combination of DOS and Windows. If DOS-Windows was

integrated, and Windows 95 is integrated, what’s the difference?

In a letter to Dr. Dobb's Journal (January 1994, p. 10), responding to

an earlier article “Examining the Windows AARD Detection Code” (Dr.

Dobb's Journal, September 1993), Microsoft vice president Brad

Silverberg wrote:

Windows is tightly coupled to the underlying MS-DOS operating system. It relies on a

number of very precise behavioral characteristics of MS-DOS...

In private conversation, Brad several times used the word “seamless”

to describe how Windows and DOS work together. Chapters 3 and 4

show that this, and even the term “integrated” from the Windows
README.WRI, is a fairly accurate way of describing the relationship

between Windows 3.1 Enhanced mode and MS-DOS 5 and 6. Windows
was not just some arbitrary application that ran “on top of” MS-DOS.

But if Windows 3.1 and DOS 6 were “integrated,” “tightly coupled,”

and part almost of a single “seamless” product, then what’s Windows 95

bring to the DOS-Windows integration party? Merely that the two com-

ponents are now shipped in a single box?

uiiiidouis 95 and DOS

Well, enough snide remarks. We’ve seen that Windows 95 doesn’t bypass

DOS, push DOS aside, or remove itself entirely from DOS. How then

does Windows 95 relate to MS-DOS? What is the division of labor in

Windows 95 between Windows and DOS?
That, of course, depends on what you mean by “DOS.” If you just

mean the INT 2 1 h interface, then Windows 95 expands the role of DOS,
because long filenames in Windows 95 are based on an entire new suite

of INT 2 1 h calls, using function 7 1 h.
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However, the expanded role ofINT 2 1 h in Windows 95 tells us sur-

prisingly little about Windows 95 ’s relationship to MS-DOS because

INT 2 lh is just an interface: as noted earlier, for example, any VxD can

use the Hook_V86_Int_Chain or Set_PM_Int_VectVMM services to

provide its own 3 2 -bit protected-mode emulation ofINT 21h or any

other interrupt-based interface. This is how the IFSMgr VxD provides

3 2 -bit file access. In fact, this is also how Windows 95 provides the new
INT 2 lh function 7 lh calls: IFSMgr’s INT 2 lh handlers, installed with

Hook_V86_Int_Chain and Set_PM_Int_Vect, look for calls to function

7 lh and handle them entirely in protected mode.

Rather than focus on the INT 2 lh interface, then, it’s much more use-

ful to ask how Windows 95 relates to the real-mode MS-DOS code base.

But what does the phrase “the real-mode MS-DOS code base” mean?

Any real-mode code that Windows 95 does use never runs in real mode;

Windows 95 always uses — all together now! —- a 1MBform ofprotected

mode called vinual-8086 mode. What “the real-mode MS-DOS code base”

refers to is the actual code that for years has been part ofMS-DOS. For

example, if a program running under real-mode DOS calls INT 2 lh

function 62h to get the current PSP, there is a block of code somewhere

in MSDOS.SYS that handles this call.

So, what’s happened to that block of code in Windows 95? Is it part of

Windows 95? Is it ever used after Windows 95 initializes, while the

graphical user interface is running? Is it ever used in a “pure” Windows

95 system that has been booted without CONFIG.SYS, AUTOEXEC
.BAT, or COAIMAND.COM, and in which the user is running only

Windows applications? Is the DOS code ever used in a super “pure”

Windows 95 system in which the user is running only new Win32 appli-

cations? And if so, why? For which particular INT 2 lh functions do

Win 16 and Win32 applications depend on the real-mode DOS code?

To intelligently answer these questions, we first need to understand the

real-mode DOS code a little better. The second edition of Undocumented

DOS devoted a chapter to this code, particularly its INT 2 lh dispatch

function (see “Disassembling DOS,” pp. 265-341). The INTCHAIN pro-

gram included with Undocumented DOS is useful for locating DOS’s INT
2 lh dispatch function, even when it’s at the end of a long chain of other

INT 2 lh handlers. When you tell INTCHAIN to issue some INT 2 lh

call, the program traces through the execution of the INT 2 lh, and reports

back on all the different INT 2 lh handlers it encountered. For example,

the following INTCHAIN output was produced under MS-DOS 6.2; I

asked INTCHAIN to issue an INT 2 1 h function 62h (Get PSP) call:
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C : \UNDOCDOS>i ntchai n 21/6200

1DD3 : 16B4 SMARTDRV

105D : 0498 IFS$HLP$

0019 : 40F8 DOS

The last line of the INTCHAIN output most likely represents MS-
DOS’s INT 2 lh dispatch function. In this particular configuration, this

function appears to be at 0019:40F8. We can use DEBUG or any similar

debugger to examine the code at this address which, it turns out, is the

MS-DOS INT 2 lh dispatch function. I’ve added a few comments to the

DEBUG disassembly shown here:

C:\UNDOCDOS>debug

-u 1 9 : 4 0 f

8

0019 : 40F8 FA CLI

0019 : 40F9 80FC6C CMP A'H.ec ::: 6Ch is max DOS function in DOS 6

0019 : 40FC 77D2 JA 40D0 ; ; ; if more than 6Ch , error

0019 : 40FE 80FC33 CMP AH, 33

0019:4101 7218 JB 4 1 1

B

0019:4103 74A2 JZ 40A7

0019:4105 80FC64 CMP AH, 64

0019:4108 7711 JA 41 1

B

0019 : 410A 74B5 JZ 40C1

0019 : 410C 80FC51 CMP AH, 51 ::: Get PSP

0019 : 410F 74A4 JZ 40B5

0019:4111 80FC62 CMP AH, 62 ::: Get PSP

0019:4114 749F JZ 40B5

0019:4116 80FC50 CMP AH, 50 : ; ; Set PSP

0019:4119 748E JZ 40A9

We can readily see that the two DOS Get PSP functions (5 lh and

62 h) are both handled at 0019:40B5 in this configuration and that the Set

PSP function (50h) is handled at 001 9:40A9. Let’s look at the real-mode

DOS code for these functions:

-u 19 : 40a9
: : : 1 ook at 21/50 (Set PSP)

0019 : 40A9 IE PUSH DS

0019 : 40AA 2E CS:

0019 : 40AB 8E1EE73D MOV DS.C3DE7] : ; ;
get DOS DS out of DOS CS

0019 : 40AF 891E3003 MOV [0330], BX ; ; ;
put new PSP into DOS : [ 330 h

]

0019 : 40B3 IF POP DS

0019 : 40B4 CF IRET

-u 19 : 40b5 : : : 1 ook at 21/51,62 (Get PSP)

0019-.40B5 IE PUSH DS

0019 : 40B6 2E CS:

0019 : 40B7 8E1EE73D MOV DS , [3DE7] : ; ;
get DOS DS

0019 : 40BB 8B1E3003 MOV BX , [0330] return DOS : [ 330 h

]

in BX

0019 : 40BF IF POP DS

0019 : 40C0 CF IRET
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This is the code that’s executed whenever a program running in real-

mode DOS sets or gets the current PSP. We can see that the code is

quite simple: setting the PSP involves nothing more than ramming the

caller’s BX into a variable at offset 3 3 Oh in the DOS data segment, and

getting the PSP involves nothing more than returning the value of this

same variable. Offset 3 3 Oh in the DOS data segment happens to be off-

set lOh in the Swappable Data Area (SDA), a DOS data structure that all

versions of Windows Enhanced mode, including Windows 95, declare as

instance data (see Chapter 4).

Now, the question is whether this same code is also part of Windows

95, and more importantly, whether it plays any role in Windows 95

beyond that necessary for compatibility with real-mode DOS programs

and drivers.

Let’s first verify whether it’s in Windows 95 at all. The easiest way to

do this is to run INTCHAIN and DEBUG again, this time inside a

Windows 95 DOS box (yes, we’ll get rid of the DOS box in just a minute):

C : \UND0CD0S>i ntchai

00A6 : 0FAC DOS

0748 : 41E4 DOS

C : \UND0CD0S>debug

-u 748 : 41e4

0748 : 41 E4 FA

0748 : 41 E5 80FC73

0748 : 41 E8 77D2

0748 : 41 EA 80FC33

0748 : 41 ED 7218

0748 : 41 EF 74A2

0748 : 41 FI 80FC64

0748 : 41 F4 7711

0748 : 41 F6 74B5

0748 : 41 F8 80FC51

0748 : 41 FB 74A4

0748 : 41 FD 80FC50

0748:4200 7493

0748:4202 80FC62

0748:4205 74F4

i 21/6200

CLI

CMP AH, 73

JA 41BC

CMP AH, 33

JB 4207

JZ 4193

CMP AH, 64

JA 4207

JZ 41AD

CMP AH, 51

JZ 41A1

CMP AH, 50

JZ 4195

CMP AH, 62

JZ 41 FB

7 3 h is max DOS function in Windows 95

if more than 7 3 h ,
error

: ; Get PSP

: ;
Set PSP

: : Get PSP

::: JZ JZ 41A1

This is nearly identical to the MS-DOS 6.20 code, except that

Windows 95 supports INT 2 lh functions up to 73 h. Now let’s see what

the DOS Get/Set PSP functions look like in Windows 95:

-u 748:4195 ;;; look at 21/50 (Set PSP)

0748:4195 IE PUSH DS

0748:4196 2E CS:

0748:4197 8E1E273F MOV DS,[3F27] ;;; get DOS DS out of DOS CS
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0748 : 419B 891E3003

0748 : 419F IF

0748 : 41A0 CF

-u 748 : 41A1

0748 : 41A1 IE

0748 : 41A2 2E

0748 : 41A3 8E1E273F

0748 : 41A7 8B1E3003

0748 : 41AB IF

0748:4 1 AC CF

MOV [0330], BX ; : ;
put

POP DS

IRET

: ; : loo

PUSH DS

CS:

MOV DS,[3F27] : : :
get

MOV BX , [0330] : : : ret

POP DS

IRET

new PSP i nto DOS : [ 330 h

]

k at 21/51,62 (Get PSP)

DOS DS

urn DOS : [ 330 h ] in BX

Not surprisingly, this is nearly identical to the DOS 6.2 MSDOS.SYS
implementation. A little poking around with DEBUG shows that in

Windows 95 this DOS code is part of the WINBOOT.SYS file:

C : \wi ndows>debug \winboot.sys

-s 0100 ffff fa 80 fc 73 :

1E73 : E8C1 ;

-u 1 e73 : e8c

1

1E73 : E8C1 FA CLI

1 E73 : E8C2 80FC73 CMP AH, 73

1E73 : E8C5 77D2 JA E899

search in file for CLI / CMP AH, 73

DEBUG found it

1 E73 : E8DA 80FC50 CMP AH, 50

1E73 : E8DD 7493 JZ E872

-u le73 : e872

1 E73 : E87 2 IE

1E73: E873 2E

1E73: E874 8E1E273F

1E73 : E878 891E3003

1E73: E87C IF

1E73: E87D CF

handler for 21/50 (Set PSP)

PUSH DS

CS:

MOV DS.F3F27]

MOV [0330], BX

POP DS

IRET

We could look at the code for some more INT 2 lh functions, but this

should be sufficient to establish that the same real-mode DOS code that

previous versions of the operating system stored in MSDOS.SYS, Win-

dows 95 stores in WINBOOT.SYS.
So the real-mode DOS code is part ofWindows 95. I’ve run the above

tests from a DOS box inside Windows, so it’s obvious that this WTNTBOOT
code is used for more than just booting Windows and is not “pushed aside”

by Windows. The name WINBOOT is therefore somewhat misleading,

because it seems to suggest that the code’s only purpose is to boot Windows.

In fact, WINBOOT.SYS plays a much larger role in Windows 95. For

example, a Microsoft document on Plug and Play refers in passing to “the

real mode operating system kernel,” and this is a good way of describing

WINBOOT.SYS: it’s the real-mode portion of the Windows 95 kernel. It’s

odd that all mention of it should be so conspicuously absent from the

Microsoft documents and diagrams intended for a wider audience. How
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come WINBOOT.SYS doesn’t show up in Figure 1-6? You’d almost get

the impression that Microsoft is embarrassed about it. That isn’t a very nice

way to treat a piece of code that has earned Microsoft billions of dollars.

So we know that Windows doesn’t push WINBOOT aside; WIN-
BOOT is present for the duration. But even though WINBOOT sticks

around to handle certain DOS calls in certain circumstances, on the

other hand these tests were conducted from a DOS box, in which we
ran the real-mode DOS DEBUG program. Although what we’ve seen

already raises questions about the absence of WINBOOT.SYS from

Microsoft’s diagrams, it is perhaps still consistent with one theory, which

is that Windows 95 only uses the real-mode DOS code for compatibility

with DOS programs.

As pointed out earlier, there is no necessary connection, one way or

the other, between MS-DOS and the ability to run DOS programs.

MS-DOS might be necessary to support the needs of non-DOS (for

example, Win 16 and Win32) programs. On the other hand, you can

also have real-mode DOS programs running on an operating system

other than DOS, as long as that operating system emulates the INT
2 1 h interface. We’ll see in later chapters that, for many DOS func-

tions, both Windows 95 and WfW 3.11 are perfect examples of such

an operating system: with 3 2 -bit file access, even INT 2 1 h calls com-

ing from real-mode DOS software are in many cases handled in 3 2 -bit

protected mode. So the idea that DOS must hang around to support

the running of DOS programs is pretty ridiculous. However, the

assumed association between MS-DOS and DOS compatibility, while

fallacious, is so widely accepted that for the sake of argument we’d bet-

ter temporarily accept it.

Okay, then, here’s the question rephrased: To what extent is the real-

mode DOS code present and operational in Windows 95, when running

only Windows (Win 16 and Win32) applications and when Windows 95

has been booted without CONFIG.SYS or AUTOEXEC.BAT? There

are no DOS boxes, no special real-mode drivers or TSRs: Is the DOS
code still part of Windows 95? And, if so, what role does DOS play in a

“pure” Win32 system?

Take the code that was shown earlier, where WINBOOT (nee MS-
DOS) handles INT 2 lh function 50h: If this code is ever executed in a

pure Windows 95 system — if a debugger breakpoint on this code is ever

triggered — Windows 95 uses the real-mode DOS code and that’s that.

It turns out, even when only running Win32 applications in Win-

dows 95, this real-mode DOS code is executed. Using Nu-Mega’s superb
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Soft-ICE/Windows debugger (which Microsoft distributes with the

Windows 95 Device Driver Kit), I placed a breakpoint on the WIN-
BOOT Set PSP code:

: bpx &748 : 4195

Even when running only Win32 applications such as the Cabinet/

Explorer, WinBezMT, and Clock, this breakpoint was triggered so fre-

quently that I couldn’t actually do anything in Windows 95 until I changed

the breakpoint to only trigger every 50 times:

: bpx &748 : 4195 c=50

Even so, Soft-ICE/Windows still popped up so frequently I could

only stand to run this test for few minutes. Again, this was on a “pure”

Windows 95 system only running Win32 applications. I didn’t start a

DOS box, and I didn’t even start any Win 16 applications. There were no

real-mode device drivers or TSRs installed.

Ah, but I did run the Soft-ICE/Windows debugger, though. This

loads before Windows, and thus appears to Windows to be something

like a TSR. Since WINBOOT.SYS wants to jump directly into WIN
.COM, I used F8 to do an interactive boot, declined to load the graphical

user interface, and from the C:\> prompt loaded WINICE, which in

turn loads WIN.COM and the Windows GUI. Thus, this doesn’t look

like such a pure Win32 system after all. As with Werner Heisenberg’s

hypothetical “gamma-ray microscope,” the mere use of which changes

what’s under the microscope, it’s conceivable that the very presence of

Soft-ICE/Windows is somehow causing Windows 95 to pass INT 2 lh

calls down to the real-mode DOS code inside WINBOOT.SYS, and that

Windows 95 wouldn’t be calling this real-mode DOS code were the

debugger not present.

Well, this is certainly a plausible concern. Let’s use one more pro-

gram, then, to show up the Windows-DOS relationship. Here’s a review

of what we’ve done so far:

• We’ve used a DOS box to see that Windows 95 rests atop DOS, then

decided that the DOS box might be influencing the outcome;

• We’ve used a Win 16 application, only to decide that Windows 95

might simulate DOS the same way NT does;

• We’ve used a debugger and decided that the debugger acts as a DOS
TSR, the very presence of which might cause Windows to send down
to real-mode DOS calls that it otherwise would not send down.
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Having gone through all that, let’s turn to one final (at least for this

first chapter) demonstration of the Windows-DOS relationship in Win-

dows 95: WLOG212F is a Winl6 program that lets us see which INT
2 lh and 2Fh calls are generated on the Windows side of the fence, and

then see which ones pop up on the V86 side of the fence. By counting the

number of calls to each INT 2 lh and INT 2Fh function generated in

Windows and comparing this with the number of calls seen down in V86
mode, WLOG2 12F provides a good idea of which calls a given Windows
environment such as Windows 95 or WfW 3.11 passes down to V86
mode and which ones it emulates in protected mode. Figure 1-8 shows

WLOG2 12F running in Windows 95.

On the Windows side, WLOG2 12F installs its hooks with the DPMI
Set Protected Mode Interrupt Vector function (INT 3 lh function 0205h)

and with an undocumented Windows API called GetSetKernelDosProc

(see Chapter 13). Though it can see calls down in V86 mode, WLOG2 12F

contains no real-mode code and does not employ a DOS box. WLOG212F
creates its V86-mode hook with another DPMI function, Allocate Real

Mode Callback Address (INT 3 lh function 0303h), and installs it with Set

Real Mode Interrupt Vector (INT 3 lh function 0201h).

For example, in the following fragment ofWLOG212F output, an

INT 2 lh handler installed with GetSetKernelDosProc has encountered

15 calls to INT 2 lh function 0 (Exit). However, the V86 mode hook saw

no calls to this function (WLOG212F shows blank white space instead of

the number zero), so WLOG212F decides the call is emulated in pro-

tected mode, rather than passed down to V86 mode:

INT 2 1 h

:

Func Prot mode Kernel DOSProc V 86 mode

00h 15 Emulated

Reasonable enough. It turns out that the Win 16 KERNEL contains

an INT 2 lh handler which, among many other things, changes calls to

the obsolete function 0 into calls to the newer function 4Ch. This, too, is

reflected in the WLOG212F output:

INT 21 h

:

Func Prot mode Kernel DOSProc V 86 mode

4Ch 15 Passed down

Why did WLOG212F decide that function 4Ch is “Passed down”?

Because its V86 mode INT 2 lh handler saw at least as many calls to this

function as did its protected-mode INT 2 1 h handlers (which, in fact, saw

no such calls). Perhaps the WLOG2 12F output for the DOS Get Version

function will make this clearer:
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Figure 1-8: The WL0G212F program (running here alongside some Win32 applications

under Windows 95) counts INT 21h and (not seen here) INT 2Fh calls generated in

protected-mode Windows, and compares these with the number of calls sent down to

V86 mode. If a call is seen in protected mode but not in V86 mode, WLOG212F indi-

cates that the call is “Emulated.” On the other hand, if at least as many calls are seen

in V86 mode as were generated in protected mode, WLOG212F indicates the call is

“Passed down.”

INT 2 1 h

:

Func Prot mode Kernel DOSProc V 86 mode

30h 10 33 33 Passed down

Here, the KernelDosProc handler (see Chapter 13 for a fall explana-

tion of GetSetKernelDosProc) saw 33 DOS Get Version calls, and so did

the V86 mode INT 2 lh handler. Thus, at least in this situation, Win-

dows passes all calls to this function down to V86 mode. Simple, eh?

I’ll discuss the implementation ofWLOG2 12F a little later in this

chapter (and the WLOG2 12F.C source code is provided on the Unautho-

rized Windows 95 disk), but first let’s examine the output from WLOG2 12F

and see what it can tell us about the Windows-DOS relationship in Win-

dows 95. It’s important to note that, according to Microsoft, the behavior

revealed by WLOG2 12F never happens in Windows 95, or only happens

in the presence of special real-mode drivers for which there is no currently

available protected-mode replacement. According to King’s authorized

Inside Windows 95 (p. 79):

Windows applications on Windows 95 never use virtual 8086 mode. They execute in

protected mode all the way down to the bare hardware.
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We’re about to run some Windows applications in Windows 95, and

WLOG2 12F will show that theyfrequently use V86 mode. Ah, but the

categorical statement we just saw is qualified with a footnote (King, Inside

Windows 95, p. 79n):

This isn’t strictly true since Windows 95 still runs MS-DOS device drivers in virtual

8086 mode if there’s no protected mode driver available. But real mode drivers are

an endangered species.

This qualification doesn’t apply here, though, because the following

WLOG2 12F output was produced (in Windows 95 Beta-1 from May
1994) without CONFIG.SYS, AUTOEXEC.BAT, COMMAND.COM,
or a DOS box. Since Beta-1 didn’t ship with VxDs to support Microsoft’s

DoubleSpace disk compression— and thus the MS-DOS DBLSPACE
.BIN driver would fall into King’s “endangered species” list— it’s impor-

tant to add that this system wasn’t using disk compression either. On this

pure-as-the-driven-snow Windows 95 system, then, I ran Microsoft

Office 4.2, plus other parts of the Windows operating system, such as the

Explorer, and the WinBezMT and Clock Win32 applets, and, of course,

WLOG2 12F itself. Here’s part of the WLOG212F output:

Elapsed: 897 seconds

Calls: 15723

17 calls/second

INT 2 1 h

:

Func Prot mode Kernel DOSProc V 86 mode

00 h 15 Emul ated

0 E h 189 1147 1182 Passed down

1 9 h 228 1162 3526 Passed down

1 Ah 18 13410 Emul ated

ICh 1 Emul ated

2 5 h 32 20 Emul ated

2 Ah 7 330 5555 Passed down

2 C h 7 6313 11538 Passed down

2 Fh 7 5182 Emul ated

3 0 h 10 33 33 Passed down

3 2 h 7 7 Emul ated

3 5 h 12 10 Emul ated

3 6 h 2 6 Emul ated

Rather than bore you with the entire output from WLOG2 12F, it

makes more sense to look at just a few of the emulated calls, and then

focus on the calls labeled as “Passed down.” But you can already notice

that, in this test under Windows 95 (where, you’ll recall, Windows appli-

cations supposedly never use V86 mode unless some unusual real-mode

driver is loaded), the V86 mode INT2 1 handler is seeing some calls. In

the case of function 2Ch (Get Time), for instance, it’s seeing a ton of calls.
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In the almost 15 minutes that WLOG2 12F was running, its protected-

mode INT 2 lh handler saw almost 7,800 calls, its KernelDosProc handler

saw over 80,000 calls, and its V86 mode handler saw over 26,000 calls.

In this particular test, in other words, almost one-third of the INT 2 lh

calls from Windows applications ended up going down to V86 mode. In a

Windows 95 system such as this with no CONFIG.SYS, no AUTO-
EXEC.BAT, no real-mode DOS drivers (other than the ones that Win-

dows 95 requires and loads itself), no TSRs, no DOS box, no nuthin’

except Windows applications, this is not supposed to happen.

The only explanation I can think of is that WINBOOT.SYS itself

needs to be considered a real-mode driver (though you’ll recall its con-

spicuous absence from the Microsoft diagram), and that part of this dri-

ver (such as Get Time) qualifies as functionality for which “there’s no

protected mode driver available.” In other words, no one happens to have

written a VxD to replace the parts ofWINBOOT.SYS (such as the Get

Time function) that are still employed by Windows 95.

This would be a quite reasonable statement— the CURRDRIV.386
and INTVECT.386 examples in Chapter 8 demonstrate how the Hook_
V86_Int_Chain service provided byVMM makes it easy to write VxDs to

handle INT 2 lh functions in 3 2 -bit protected mode — but I’m pretty

sure it’s not what Microsoft or the trade press have in mind when they say

that Windows 95 doesn’t require DOS. For one thing, if this is all that

the hoopla surrounding Windows 95 ’s supposed liberation from DOS
really means, then the same statement could, and should, have been made

years ago, when Windows first acquired a VMM that provided a Hook_
V86 __Int_Chain service. The implementation of that function, and not

its apparently more extensive use in Windows 95, was the real watershed

in Windows’ relation with DOS. If Windows 95 is a genuine operating

system, then so was Windows 3.0 Enhanced mode, in which

Hook_V86_Int _Chain first appeared.

As noted earlier, ifWLOG2 12F sees calls to a function on the Win-
dows side but no calls to this function down in V86 mode, the program

decides that, as far as it can tell, the function has to be emulated. For

example, here’s what WLOG2 12F shows for the Open (3Dh), Close

(3 Eh), Read (3Fh), and Write (40h) file I/O calls in Windows 95:

Func Prot mode Kernel DOSProc V 86 mode

3Dh 698 Emul ated

3 E h 1320 Emu 1 ated

3 Fh 10816 Emul ated

4 0 h 1817 Emulated
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WLOG212F shows that Windows 95 handles these crucial INT 2 lh

functions entirely in protected mode. This is pretty amazing. Don’t let our

focus on the situations in which Windows 95 still calls down to DOS
detract in any way from the fact that, for many key DOS functions, it

doesn’t call down to DOS. In fact, the whole point ofmy harping on the

cases where Windows 95 still calls down to V86 mode DOS is to heighten

your appreciation for those cases where it doesn’t. By assessing Windows
95 ’s relation to DOS on a function-by-function basis, rather than by

uncritically parroting Microsoft’s claims that Windows 95 runs Windows
applications entirely in protected mode, my praise for Windows 95 will

actually carry some weight.

Whether Windows 95 emulates or passes down an INT 2 lh function

is not an exclusive either/or choice, of course. Sometimes WLOG2 12F’s

protected-mode handlers see more calls to a function than does its V86
mode handler, yet the V86 mode handler still sees some calls. In this case,

WLOG212F just displays the statistics without any commentary. A good

example is the DOS IOCTL (I/O Control) function:

Func Prot mode Kernel DOSProc V 86 mode

44 h 338 7112 23

IOCTL function 44h is really an umbrella for a large number of sub-

functions. I was sufficiently curious about Windows 95 ’s IOCTL han-

dling that I had WLOG2 12F break the function 44h results out by

subfunction:

Fur,c Prot mode Kernel DOSProc V 86 mode

00 h 338 347 Emulated

08 h 2255 Emulated

09 h 2255 COCVj

0 E h 2255 Emul ated

Function 4409h is the Check if Block Device is Remote request. We
can see that, once in a blue moon, Windows 95 passes this request down

to V86 mode. Now, DOS itself handles IOCTL calls by creating device-

driver request packets that it passes to the Strategy and Interrupt routine

of the appropriate real-mode DOS device driver. So it’s possible that the

3 2 -bit protected-mode code in Windows 95 for INT 2 lh function 44h is

doing the same thing. WLOG2 12F only spies on INT 2 lh and INT
2Fh, and won’t see any far calls that Windows 95 VxDs might be making

to DOS device drivers.

As noted earlier, this WLOG2 12F test was run in a Windows 95

configuration without a CONFIG.SYS and hence without any user-
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installed DOS device drivers. But of course there are still the DOS
device drivers that are built into WINBOOT.SYS (such as COM1,
COM2, LPT1, LPT2, CLOCKS, CONFIGS, and so on), there’s the

IFSSHLPS driver installed by IFSHLP.SYS, there’s HIMEM.SYS’s
XMSXXXXO driver, and there’s SETVER.EXE’s SETVERXX driver.

You’d expect that some IOCTL calls would have to be handled by pass-

ing them to the appropriate DOS device driver, even one built into

WINBOOT.SYS. Indeed, a debugger breakpoint, placed for example

on the common Strategy routine shared by the built-in DOS device

drivers, is triggered under Windows 95.

Finally, we come to the INT 2 lh functions for which WLOG2 12F’s

V86 hook sees at least as many calls as did its protected-mode hook.

WLOG2 12F labels these, functions as “Passed down.” I hope you’ve

already been convinced that, contrary to Microsoft’s claims, Windows
applications running under Windows 95 do use V86 mode, so we can

move on to the more interesting questions about when and why and under

what circumstances Windows applications in Windows 95 still use V86
mode. I’ve edited the WLOG212F output below, replacing the “Passed

down” string with the name of each function:

INT 2 1

h

;

Func Prot mode Kernel DOSProc V 86 mode

0 E h 189 1147 1182 Set Drive

1 9 h 228 1162 3526 Get Drive

2 A h 7 330 5555 Get Date

2Ch 7 6313 11538 Get Time

30 h 10 33 33 Get DOS Version

4 5 h 226 226 226 Dup File Plandle

4Ch 15 Exi t

50 h 3018 3787 Set PSP

51 h 1 1 1 Get PSP

5 5 h 15 15 15 Create PSP

5Ah 3 3 3 Create Temp File

6 5 h 2 2 2 Internati onal

DCh 3 3 Novell NetWare Get Station Num

Now, perhaps you feel that the only reason Windows 95 is passing these

calls down to V86 mode is because my V86 mode callback is installed. (The

Heisenberg effect rears its ugly head again!) But if this is the case, how
come Windows 95 is so darned selective about it? It doesn’t send my V86
mode callback any file I/O calls, for example. Surely ifWLOG2 12F’s V86
mode callback were responsible for these passed-down calls, then all INT
2 lh calls would show up as passed down.
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Just one little callback

You might worry that it’s a self-fulfilling prophecy for WLOG212F to use a

V86 mode callback INT 21h handler to test whether Windows programs in

Windows 95 ever use V86 mode.

Let’s consider how this callback is installed. The WLOG212F.C source

code on disk contains the following function:

INTRFUNC GetSetReal Intdnt intno. INTRFUNC new, INTRFUNC *pcallback,

RMODE_REGS **pregs)

{

INTRFUNC old;

if ((old = _dpmi_get_rmode_vect( intno) ) != 0)

{

RMODE_REGS *regs;

INTRFUNC callback;

if ( ! (regs = ( RMODE_REGS *) cal 1 oc(si zeof ( RMODE_REGS) , 1)))

return (INTRFUNC) 0;

if (! (callback = _dpmi_al 1 oc_rmode_call back(new, regs)))

{

f ree( regs )

;

return (INTRFUNC) 0;

}

_dpmi_set_rmode_vect( i ntno, call back)

;

*pcallback = callback;

*pregs = regs;

}

return old;

}

The _dpmi_xxx functions called by GetSetReallnt are simple C wrappers

around the equivalent INT 31h calls; in particular, _dpmi_alloc_rmode_call-

back is a wrapper around INT 31h function 0303h (Allocate Real Mode Call-

back Address). To assess what possible Heisenberg-like impact
WLOG212F could have on Windows 95’s relationship with DOS, we need to

understand this DPMI function.

The DPMI server in Windows 95, as in previous versions of Windows
Enhanced mode, is provided by VMM. Many of the DPMI INT 31h functions

are themselves mere wrappers around VMM functions. This means that,

under Windows, DPMI can be seen as a way to call certain VMM functions

that are otherwise directly callable only from a VxD.

DPMI function 0303h, which WLOG212F uses to create a protected-

mode handler for a V86 mode interrupt, is based on a VMM service called

Allocate_V86_CaiLBack. a V86 callback is a small piece of code (a very

small piece — one byte) that, when called in V86 mode, thunks up to 32-

bit protected mode. By allocating a V86 callback and then installing the

address of this callback as the V86 mode INT 21h handler, WLOG212F
forces all V86 mode INT 21h calls to thunk into VMM, which passes the

call to WLOG212F. In other words, the effect of WLOG212F is to take a call

that has already appeared in V86 mode, and ship it over to protected
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mode. There’s no way it can cause the call to appear in V86 mode in the

first place.

Even without WLOG212F, the INT 21h chain already contains some V86
callbacks. In particular, the IFS$HLP$ device uses a V86 callback to com-

municate with the IFSMgr VxD, and this callback is active even when no

DOS programs are running. Calling the GetOpenFileName common dialog

triggers the IFS$HLP$ V86 callback, for example.

As shown by the WINBP program in Chapter 8, literally hundreds of

these V86 call backs are active in any Windows system. These V86 call-

backs are constantly triggered, even on the purest Windows 95 system. If

Windows applications never execute any V86 mode code, why is the docu-

mented V86 callback facility used so heavily in Windows 95, even when
you’re only running Windows applications?

Here’s another interesting thing about DPMI function 0303h: in a sam-

ple program that shows how to use this function, the DPMI specification

(version 1.0, March 1991, p. 37) contains a comment that is both wrong

and enlightening; this comment gets to the root of the confusion surround-

ing INT 21h handling in Windows:

The following code. ..hooks the DOS Int 21h and returns an error for

the delete file function (AH=41h). Other calls are passed through to

DOS. This example demonstrates the techniques used to hook a real

mode interrupt. Note that since DOS calls are reflected from protected

mode to real mode, the following code will intercept all DOS calls from

both real mode and protected mode.

Note the blanket assertion here that “DOS calls are reflected from pro-

tected mode to real mode,” as if this were some by-definition inherent

property of protected-mode DOS calls. But every “Emulated” line output by

WL0G212F disproves this assertion. A DOS call generated in protected

mode is sent to V86 mode only if the DOS extender decides to send it to

V86 mode. More than this, in Windows even a DOS call generated in V86
mode (for example, by a program running in a DOS box) is sent back down
to V86 mode only if a VxD decides to send it back down to V86 mode.

Again, there is no inherent connection between INT 21h calls and MS-DOS.
Actually, this confused notion that “DOS calls are reflected from pro-

tected mode to real mode” can coexist peacefully with the opposite but

equally confused notion that in Windows 95, “if you run only Windows
applications, you’ll never execute any MS-DOS code.” Both ideas are

based on the same fundamental misunderstanding, which equates DOS
software with MS-DOS. According to. this notion, if there’s a DOS call it

must by definition be handled by MS-DOS, and conversely, if you don’t run

any DOS applications you’ll never execute any MS-DOS code.

The reality, meanwhile, is that (a) you can have DOS software that

doesn’t require DOS, and that (b) you can have non-DOS software that

does require DOS. An example of (a) is that 32-bit file access in WfW 3.11

and Windows 95 enables even real-mode DOS programs to bypass most of

the MS-DOS code. An example of (b) is that every Winl6 and Win32 appli-

cation in Windows 95 requires a real-mode DOS PSP; this has nothing to

do with whether any DOS applications are running.
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We can be quite confident that WLOG212F provides an accurate pic-

ture of the situations under which Windows applications in a pure Win-
dows 95 system use V86 mode. Here’s a summary of the INT 2 lh calls

that WLOG212F displays as “Passed down”:

• Getting and setting the current drive. Chapter 8 explains why the

number of function 19h calls in V86 mode is exactly twice the

number of function OEh calls in V86 mode, plus the number of

function 19h calls seen by KernelDosProc; CURRDRIV.386 in

Chapter 8 shows how a VxD can handle function 19h entirely in

3 2 -bit protected-mode.

• Getting the current date and time. Chapter 14 shows the path taken in

Windows 95 from the Win32 GetSysteniTime and GetLocalTime

API calls, down to the INT 2 lh Get Date/Time functions, down to

the CLOCKS device driver, and back up to the Virtual Timer Device

(VTD)’s 3 2 -bit protected-mode emulation of the ROM BIOS INT
lAh time functions.

• Getting, setting, and creating PSPs. Throughout this book, we’ll see

numerous places where both Win 16 and Win32 tasks in Windows 95

rely on the DOS PSP. Chapter 13 shows the path from the Win32

CreateProcess API, down to the BuildPDB routine in the Win 16

KERNEL, down to the DOS create-PSP code. Task-switching

between Windows applications usually involves getting and setting

the DOS current PSP.

• Atiscellaneous DOS functions for getting the DOS version number,

exiting back to the operating system, duplicating file handles, and so

on. When you Paste Link an object from one document into another,

for example, the STORAGE.DLL module of OLE calls DOS func-

tion 45h to duplicate the file handle.

Now, would it be possible for a VxD to handle each of these INT 2 lh

functions in 3 2 -bit protected mode and not pass the call down to DOS?
Yes, it would be possible for a VxD to do this; see CURRDRIV.386 and

INTVECT.386 in Chapter 8. So, Windows 95 currently passes a bunch

of INT 2 lh calls down to V86 mode DOS, but there seems to be no

inherent reason why it must do so. Perhaps even when Windows 95 is

commercially released, it won’t.
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Ulho s Afraid of MS-DOS?

An interesting question then is this: If all INT 2 lh calls were handled by

VxDs in protected mode, would this fundamentally change the nature of

Windows 95? In other words, would moving these dozen or so remaining

INT 2 lh calls over to protected mode turn Windows 95 into a genuine,

complete, integrated operating system?

I don’t think it would. For one thing, much of the VxD code that han-

dles INT 2 lh in 3 2 -bit protected mode still uses the real-mode DOS
data structures. My CURRDRIV.386, for example, manipulates the cur-

rent-drive variable in the DOS data segment. True, CURRDRIV manip-

ulates this variable entirely from protected mode, but it’s still a variable

located in DOS’s real-mode data segment. When Microsoft claims that

“if you run only Windows applications, you’ll never execute any MS-
DOS code” (Inside Windows 95

,
p. 112), notice that nothing is said about

peeking or poking any MS-DOS data.

Of course, with long file and directory names, many of the DOS data

structures such as the System File Table (SFT) and Current Directory

Structure (CDS) become less useful. The Swappable Data Area (SDA),

which the Windows 95 instance data manager doles out on a per-VM
basis, could be made a lot more useful were it further doled out within

the System VM on a per-task basis. But in any event we’ll see throughout

this book that Windows 95, even when using VxDs to handle DOS calls

in 3 2 -bit protected mode, must still quite frequently peek and poke the

real-mode DOS data.

Flowever, there’s a far more basic reason why providing VxD handlers

for the remaining dozen or so INT 2 lh functions that Windows 95 cur-

rently passes down to DOS wouldn’t turn Windows 95 into a genuine

operating system.

The reason, quite simply, is that Windows 95 is already a genuine

operating system, and that its reliance upon the real-mode MS-DOS
code does not change this. Windows 95 can he a genuine operating system,

and still use DOSfor some operations.

Since, as we’ve seen, Windows 95 does rely on DOS, it’s odd for

Microsoft to make total independence from DOS into some kind of cri-

teria for operating-system goodness. In its technical propaganda regard-

ing the Windows 95 architecture, I think Microsoft might be making a

big mistake by implicitly promoting the idea that an operating environ-

ment can’t be a complete, integrated operating system if it calls down to
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DOS for any reason other than compatibility with DOS applications and

drivers. Employing the real-mode DOS code does not diminish Windows 9Es

status as a genuine operating system.

These general statements are probably more surprising than anything

Fve said about this-or-that particular aspect of Windows 95. How can

independence from DOS not be all that important? How can it possibly

be okay that Windows 95 uses the DOS Create PSP each time you run a

Win32 application, and that task-switching even between two Win32
applications often involves a Set PSP call?

Of course it’s important and not okay that Microsoft is selling Windows

95 to the computer trade press and to programmers as an operating system

in which the real-mode DOS code is never executed on behalf ofWindows
applications. But leaving aside Microsoft’s apparent confusion regarding its

own product, how can Windows 95 possibly constitute a genuine operating

system when, as we’ve seen, it relies on the real-mode DOS code?

Here’s how: because Windows 95 runs this DOS code in V86 mode!

Recall that V86 mode is a form of protected mode. When Windows calls

down to DOS in V86 mode, Windows is in control and DOS is a sub-

servient assistant. The phrase “Windows calls down to DOS,” which

sounds so final (jeez, I sure hope my INT 2 lh call is okay down there!), is

hardly the end of the story. Once Windows 95 sends an INT 2 lh call

down to the real-mode DOS code, the call can bounce back numerous

times into 3 2 -bit protected mode.

For example, if the real-mode DOS code loaded before Windows
generates an INT instruction (to call a BIOS function, for instance), this

traps immediately into the VMM, because that’s what INT does in V86
mode. VMM can pass the INT to some VxD which handles it entirely in

protected mode. Chapter 14 provides a good example of this: the INT
2 lh function 2Ah (Get Date) and 2Ch (Get Time) calls that Windows

sends down to the real-mode DOS code are turned by this code into

INT lAh function 0 calls. All INTs in V86 mode trap into the VMM;
VMM hands the INT 1Ah call off to the Virtual Timer Device, which

handles the call in protected mode.

As another example of how Windows uses V86 mode to control the

execution of the real-mode DOS code, those V86 callbacks mentioned

earlier can be patched right on top of an existing piece of real-mode DOS
code, thereby forcing any execution of this code to trap into VMM. These

V86 callback patches are created with the Install_V86_Break_Point ser-

vice provided by VMM.
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Because of V86 mode, then, Windows — including Windows 95 —
doesn’t run “on top of” DOS; it essentially uses DOS as a driver. Win-

dows needs someone to implement INT 2 1 h functions 2Ah, 2Ch, 5 Oh,

55h, and so on. Perhaps one day a VxD will do this; in the meantime, a

real-mode driver called WINBOOT.SYS implements these calls.

uiiw 3.11: me neglected operating system

It’s important to realize that there’s nothing new in Windows 95 ’s rela-

tionship to MS-DOS. Windows 95 isn’t the first version of Windows

to employ the real-mode DOS code as little more than a driver that

implements some scattered INT 2 lh calls. Windows 95 is not even the

first version of Windows that deserves to be called a genuine operating

system.

As noted several times already, the fundamental transformation of

Windows occurs not in 1995 with Windows 95 but occurred already in

1990 with Windows 3.0 Enhanced mode— and perhaps even earlier, in

1988, with Windows/386 2.0.

Windows programmers who’ve spent most of their time with the

upper-level Windows API provided by KERNEL, USER, and GDI
would understandably doubt whether any version of Windows prior to

Windows 95 deserves to be called an operating system. But Windows 95

can only be plausibly considered a genuine operating system if you look

at its lower layer, particularlyVMM— and the same applies to earlier

versions of Windows. Windows 3.0 Enhanced mode, Windows 3.1

Enhanced mode, and WfW 3.11 all have fundamentally the same archi-

tecture as Windows 95. If there’s any logic in calling Windows 95 an

operating system (and there is, despite its use of real-mode DOS code),

then the VMM/VxD layer in Windows 3.x Enhanced mode is an operat-

ing system too. For years, only a handful ofVxD writers were aware of

this operating system and how it had basically replaced real-mode MS-
DOS. As Chapter 8 points out, we’ve had a 3 2 -bit protected-mode oper-

ating system sitting right under our noses for several years now, but

we’ve barely noticed it.

This 3 2 -bit protected-mode operating system became a lot more dif-

ficult to ignore when WfW 3.11 came out with 3 2 -bit file access

(32BFA). WfW 3.11 is surely one of the most under-appreciated soft-

ware products of all time. While Windows 95 clearly has many features
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(long filenames, threads, memory-mapped files, and so on) that aren’t

present in WfW 3.11 or that are only partially present in Windows
extensions such as Win32s, it’s also true that the architectures of Win-
dows 95 and WfW 3.11 are fundamentally the same.

This should come as no surprise, given that Microsoft’s ads (late

1993-early 1994) for WfW 3.11 bragged about how 32BFA was based on

“the 32-bit file system from our Chicago project.” WfW 3.11 includes

3 2 -bit file system VxDs such as IFSMgr, VCACHE, and VFAT, just as

Windows 95 does. In other words, a major chunk of Windows 95 went

on sale about a year and a half before the rest of the product. While

WfW 3.11 sales have been impressive (finally living down WfW 3.10’s

reputation as “Windows for Warehouses”), the trade press has said little

about the fact that we have a 3 2 -bit protected-mode operating system

living in our midst.

The inclusion of Windows 95 VxDs such as IFSMgr in WfW 3.11

was a double-edge sword, however. On the one hand (I mean, edge),

Microsoft made a large chunk of Windows 95 available to the public

long before the rest of Windows 95 was ready to ship. At the same time,

it’s not clear that the IFSMgr portion of Windows 95 was actually ready

to ship. In essence, WfW 3.11 contains pre-beta code from Windows 95.

It’s also worth noting that the only way to get any programmer’s docu-

mentation for the 32BFA layer in WfW 3.11 was to enlist in the Win-

dows 95 beta: IFSMgr is completely undocumented in WfW 3.11.

Chapter 1 1 shows that when 32BFA is enabled, WfW 3.11 is really a

3 2 -bit protected-mode version of MS-DOS. It’s particularly interesting

that 32BFA could be lifted out of Windows 95 and dropped into Win-

dows 3.x without fundamental changes to VMM. The services neces-

sary to host 32BFA were already part ofVMM and had been since

Windows 3.0.

Perhaps it sounds absurd that a product such as WfW 3.11, which

Microsoft apparently didn’t even deem worthy of more than a .01 version

number increase, could possibly have the same relation to MS-DOS as

Windows 95, for which Microsoft adopted a whole new version naming

scheme. However, by running WTOG212F under WfW 3.11, both with

and without 32BFA enabled (WIN /D:C turns off 32BFA), it’s fairly easy

to see that WfW 3.11 relates to MS-DOS in much the same way that

Windows 95 does.

Rather than present two more log files, I’ve consolidated the

WLOG212F results from WfW 3.11 and Windows 95 into Table 1-1.
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Table 1-1: INT 21h Function Handling in WfW 3.11 and Windows 95

Function

WfW 3.11

without 32BFA
WfW 3.11

with 32BFA Windows 95

OOh

ODh
OEh

llh

19h

lAh

ICh
25h

29h

2Ah

2Ch

2Fh

30h

32h

35h

36h

3Bh
3Ch

3Dh

3Eh

3Fh

40h

41h

42h

43h

44h

45h

47h
4Bh
4Ch
4Eh

4Fh

50h

51h
52h

55h

56h

57h

59h

5Ah

5Bh

5Ch
5Dh
60h

62h

65h

E

P

P

P

S

P

E

P

P

P

E

P

E

P

P

P

P

P

P

P

P

P

P

P

P

P

E

P

P

P

P

P

P

P

P

P

P

P

P

E

P

P

E

P

E

E

E

P

P

E

P

E

E

E

E

E

E

E

E

E

E

E

E

S

P

S

E

P

E

E

P

P

P

P

E

S

P

P

E

P

P

P

E

P

P

E

E

E

P

P

E

P

E

E

E

E

E

E

E

E

E

E

E

E

S

P

E

E

P

E

E

P

P

P

E

S

E

P

E

E

P
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68h

71h

DCh P

E

E

E

P

S

5 23 27
34 18 13
1 3 2

9 5 7

P = Passed down
E = Emulated

S = Sometimes passed down
- indicates no data

Earlier, I used WLOG2 12F mostly to show that Windows 95 passes

some INT 2 lh calls down to V86 mode DOS. Here, the key point is that

WfW 3.11 with 32BFA emulates many INT 2 lh functions in protected

mode, without passing them down to V86 mode DOS. As seen in Table

1-1, WfW 3.11 with 32BFA is almost identical to Windows 95. As far as

their relationship with MS-DOS is concerned, there seems to be little

difference between the two products.

This table makes it appear as if Windows 95 emulates a few more

INT 2 lh calls than WfW 3.11. However, this only reflects the different

INT 2 lh calls that happened to be seen by WFOG2 12F in each test. For

example, WfW 3.11 passed function ODh down to DOS, but in Windows
95 WFOG2 12F happened not to encounter any calls to function ODh.

We’ll see in Chapter 8 that if anything, Windows 95 is a little more tied to

DOS than was WfW 3.11.

There’s not much to say about the difference between WfW 3.11 with

and without 32BFA. Clearly, with 32BFA disabled (WIN /D:C), WfW
3.11 passes almost all INT 2 lh calls down to V86 mode. However, it does

emulate a few calls, such as function 4Bh (EXEC) and functions 25h and

35h (Set/Get Interrupt Vector). This apparent emulation is carried out by

the INT 2 lh handler in the Win 16 KERNEL; as Chapter 13 discusses,

KERNEL special cases a few INT 2 lh calls. For example, a function 4Bh

call from a Windows application is a request to WinExec another Win-

dows application; DOS doesn’t know how to execute Windows applica-

tions, so KERNEL handles this INT 2 lh function call, turning the

execute into a File Open, Read, Seek, and so on.

For the most part, Windows 95 and WfW 3.11 with 32BFA pass the

same INT 2 lh calls down to V86 mode DOS. These are mostly non-file

INT 2 lh calls such as get Date/Time, Get/Set PSP, and so on. While
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Microsoft publicly claims that Windows 95 never, ever passes INT 2 lh

calls down to V86 mode on behalf ofWindows applications, a confidential

Microsoft document (“Chicago File System Features— Tips & Issues,”

April 22, 1994) provided with Beta-1 says something very different:

On default all INT 21 interrupts, except file API INT 21s, are passed down to any

hooker present in the system.

This phrase “except file API INT 21s,” is consistent with what

WLOG2 12F showed: Windows 95, like WfW 3.11 before it, passes non-

file INT 2 lh calls down to V86 mode. By the colorful phrase “hooker,”

Microsoft means code that has hooked INT 2 lh. Since WINBOOT.SYS
itself is an INT 2 lh hooker, Microsoft here acknowledges what it seems

so anxious to deny in its more widely publicized statements: DOS func-

tions not related to file I/O are passed down to, and handled by, the real-

mode DOS code. Jeez, what’s so hard about saying that?

If I had to explain how Windows 95 relates to DOS in 25 words or

less, I’d say this: Windows 95 relates to DOS the same way that WfW 3.11

does. Windows 95 provides 32BFA. For non-file calls, it calls (in V86
mode) the real-mode DOS code in WINBOOT.SYS. Windows 95 is a

genuine operating system; so were WfW 3.11, Windows 3 . 1 Enhanced

mode, and Windows 3.0 Enhanced mode.
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Ilkmug

Chicago Boot

H
aving just seen in Chapter 1 how Windows 95 actually relates to real-

mode MS-DOS, it’s a good time to see how all the pieces of Windows
95 fit together.

Well, the word all is perhaps a trifle overambitious, since the Windows
95 setup deposits about a thousand files — at least that’s how many were

on my hard disk. But we can get a good idea of the various discrete com-

ponents that make up this “integrated” operating system by watching

what happens while Windows 95 boots up.

From ihihboot.svs io wm.com
In Chapter 1, I mentioned that the Windows 95 boot record looks for

WINBOOT.SYS, just as the older DOS boot record looked for IO.SYS

and MSDOS.SYS. Once WINBOOT.SYS is loaded, we can start watch-

ing the Windows 95 initialization process. An excellent tool for this is the

DOS version of Nu-Mega’s Soft-ICE debugger. Soft-ICE (the DOS ver-

sion, not the Windows version) provides a BOOT command that resets

the machine while retaining Soft-ICE in memory. You can install some

breakpoints and then BOOT; when your machine comes back up, you

then use Soft-ICE to trace through the early portions of initialization. As

one indication of its usefulness, this Soft-ICE BOOT command was used

by Stac Electronics to reverse engineer the undocumented preload inter-

face in MS-DOS 6.0. (Microsoft later claimed in court, under oath and

with a straight face, that this use of the Soft-ICE BOOT command con-

stituted “misappropriation of trade secrets”; unfortunately, the jury
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believed Microsoft, but fortunately the two companies have subsequently

settled out of court.)

To watch the early portion ofWindows 95 initialization, I set a break-

point on the DOS File Open function (BPINT 2 1 AH=3D), the Extended

Open/Create function (BPINT 21 API=6C), the Find First File function

(BPINT 2 1 AH=4E), and EXEC (BPINT 2 1 AH=4B). Since weVe already

seen that Windows 95 uses INT 2 lh while running, it should come as no

surprise that it uses INT 2 1 during its initialization. Each time one of the

INT 2 lh breakpoints was triggered, I examined the string pointed to by

the DS:DX register pair.

The DOS version of Soft-ICE loads as a device driver, so I needed a

CONFIG.SYS with the single line DEVICE=C:\SICE\S-ICE.EXE.
None of the other drivers seen in Figure 2-1 were mentioned in this

one-line CONFIG.SYS File.

Func File Comment

OPEN \ LOGO . SYS failed -- use logo inside WINB00T.

RENAME 10. SYS -> 10. DOS I watched INT 2 1 h AH= 5 6 too

RENAME IBMBIO.COM -> I BMB 10 . DOS

RENAME MSDOS.SYS -> MSD0S . DOS

RENAME IBMD0S.C0M -> I BMD0S . DOS

FIND \DRVSPACE.BIN fa i 1 ed no DriveSpace

OPEN C:\DBLSPACE.BIN failed -- no DblSpace either

EXEC C:\WINB00T.SYS

FIND C:\SYSTEM.DAT r eg i stry

OPEN C:\SYSTEM.DAT

OPEN C0NFIGS real -mode portion of Plug and Play

Configuration Manager; after open,

do I0CTL calls to C0NFIGS

OPEN \C0NFIG . SYS only one line, to load Soft-ICE

OPEN C:\SICE\S-ICE.EXE

EXEC C:\SICE\S-ICE.EXE

OPEN C:\WIND0WS\HIMEM.SYS this was *not* in CONFIG.SYS!

EXEC C:\WIND0WS\HIMEM.SYS

OPEN I FS$HLP$ fa i 1 ed

OPEN C:\WIND0WS\IFSHLP.SYS this was *not* in CONFIG.SYS!

EXEC C:\WIND0WS\IFSHLP.SYS

OPEN SETVERXX f-ai 1 ed

OPEN C:\WIND0WS\C0MMAND\SETVER.EXE this was *not* in CONFIG.SYS!

EXEC C:\WIND0WS\C0MMAND\SETVER.EXE

OPEN CON

OPEN AUX

OPEN PRN

OPEN \AUT0EXEC.BAT fai 1 ed no AUTOEXEC.BAT; so no

need to load C0MMAND.COM either!

FIND WIN.???

FIND C:\WIND0WS\WIN.???

OPEN C:\WIND0WS\WIN.C0M

EXEC C:\WIND0WS\WIN.C0M here we go!
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OPEN C:\WIND0WSWMM32.VXD failed -- it's in \wi ndows\system

OPEN C:\WIND0WS\SYSTEMWMM32.VXD

EXEC C:\WIND0WS\SYSTEMWMM32.VXD load VMM and VxDs

Figure 2-1: You can watch the early stage of Windows 95 initialization using Soft-ICE’s

BOOT command.

Figure 2-1 shows only the first stage of Windows 95 initialization.

We’ll be better able to follow the next stage with the INTRSPY interrupt-

logging program rather than with Soft-ICE (see the “From WIN.COM
to KRNL386.EXE” section). In the meantime, what’s happening during

this first period ofWindows 95 initialization?

As I’ve noted several times, WINBOOT.SYS serves the same function

in Windows 95 that IO.SYS and MSDOS.SYS served in earlier versions

ofMS-DOS, or that IBMBIO.COM and IBMDOS.COM served in PC-

DOS and DR-DOS. Figure 2-1 shows that, every time you start Windows

95, WINBOOT.SYS looks for these old DOS kernel files; if it finds them,

it renames them with a .DOS extension. This resurrects Windows 95 fol-

lowing an F4 boot using IO.SYS and MSDOS.SYS to run a previous ver-

sion of DOS.
Next, WINBOOT.SYS tries to preload a disk-compression driver

named either DRVSPACE.BIN (from MS-DOS 6.22) or DBLSPACE
.BIN (from MS-DOS 6.0). The phrase “preload” refers to the loading of

this driver before DOS processes CONFIG.SYS (and, in Windows 95,

before it processes the registry). DBLSPACE.BIN could be Microsoft’s

own DblSpace or a disk-compression driver such as Stacker that mas-

querades as DblSpace to get itself preloaded. The DOS preload interface

played a part in the Stac v. Microsoft case (for details, see Undocumented

DOS
,
2d ed., pp. 40-42, 269-270; Geoff Chappell, DOS Internals

, pp.

156-161; and “LA Law,” Dr. DohUs Journal, May 1994, pp. 137-139).

After attempting to load a disk-compression driver, WINBOOT.SYS
looks for user-definable configuration information. In previous versions of

DOS, this meant processing CONFIG.SYS. In Windows 95, the pre-

ferred place for configuration information is the registry. Figure 2-1 shows

that WINBOOT opens the file C:\SYSTEM.DAT— this is the central

registry file. What Figure 2-1 doesn’t show (because I was watching only a

few INT 2 lh functions) is that WINBOOT retrieves the registry’s path

name by calling INT 2Fh function 1 6 1 3h, which is implemented in

another part ofWINBOOT. The INT2FAPI.H header file included with

the Chicago Device Driver Kit (DDK) refers to INT 2Fh function 16h as

W386_Int_Multiplex, and has the following entry for subfunction 13h:
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//define W386_Get_SYSDAT_Path 0x13

/* 10. SYS service to return path to SYSTEM.DAT */

It’s interesting that Windows 95 would use the real-mode DOS code

in WINBOOT to implement a nominally WIN386 function (we’ll see

another example of this shortly), and that the DDK header file refers to

this, not as a WINBOOT.SYS service but as an IO.SYS service.

INT2FAPI.H refers to several other INT 2Fh function 16h IO.SYS

services that are new to Windows 95; for example, function 160Eh is the

“IO.SYS service for logo management.”

If you take a few minutes to ponder the otherwise unimportant description

of W386_Get_SYSDAT_Path from INT2FAPI.H, several points emerge:

• Programmers at Microsoft freely use the name IO.SYS when they refer

to code located in WINBOOT.SYS. Clearly, they don’t see much differ-

ence between WINBOOT.SYS and the old combination of IO.SYS and

MSDOS.SYS.

• Programmers at Microsoft think nothing of implementing Windows func-

tions (remember, INT 2Fh function 16h is W386_lnt_Multiplex) down in

real-mode IO.SYS.

• Programmers at Microsoft don’t see much difference between Windows

95 and the old Windows/386 product.

This last point requires some explanation. INT2FAPI.H makes constant

reference to Windows/386, a product that was released in 1987-88. The

first datestamp in INT2FAPI.H is “10-Mar-1989 RAL” (that’s Ralph Lipe,

now Microsoft’s chief architect for Windows 95); the file appears to have

been created for what at the time was called version 3.0 of Windows/386.

A little over a year later (May 1990), this Windows/386 3.0 became Win-

dows 3.0 Enhanced mode.

INT2FAPI.FI is just one of many DDK header files that reveal an

unbroken continuity, from Microsoft’s planned version 3.0 of Win-

dows/386 all the way to Windows 95. For example, the VPICD.FI header

file included with the DDK is dated “13-Apr-1988 RAL”, VMDA.FI is dated

“05-May-1988 AAR” (Aaron Reynolds), and the all-important VMM. INC is

dated “05-May 1988 RAL”. Good chunks of Windows 95 were first writ-

ten for the Windows/386 3.x project.

So what? Well, Microsoft claims that Windows 95 has an entirely new
architecture not based on any previous versions of Windows. For example:

Windows no longer can be likened to a fancy paint job on an old MS-DOS Yugo.

Because the entire operating system is freshly designed from the ground up,
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you now have killer features such as threads , memory-mapped files , and
asynch I/O.

— Dave Edson, “Seventeen Techniques for Preparing Your 16-bit

Applications for Chicago , " Microsoft Systems Journal,

February 1994, p. 20.

And, of course, the computer trade press — ya gotta believe! — happily

chimes in:

Chicago is an operating system with an entirely new architecture.

— PC Magazine, April 12, 1994, p. 184.

Chicago uses all-new code, written from the ground up.

— PC/Computing, March 1994, p. 126.

[Chicago is] an entirely rewritten 32-bit pre-emptive multitasking operating

system.

— InfoWorld, July 4, 1994, p. 45.

What’s the origin of this idea that Windows 95 is freshly designed from

the ground up, is written from the ground up, has an entirely new architec-

ture, has been entirely rewritten, and uses all-new code? It must be wishful

thinking, because not even the most casual glance at the code, nor even

the most cursory examination of the header files included with the Chicago

DDK — some of which are even older than INT2FAPI.H — bears out this

happy thought.

In truth, I’m not sure how much of a happy thought that really is. Do

you want to trust your program to an entirely rewritten-from-the-ground-up —
in other words, largely untested — version 1.0 operating system? I didn’t

think so.

It might seem perverse of me to scrutinize minor points in an obscure

DDK header file, especially in light of Microsoft’s many carefully worded

statements regarding the Windows 95 architecture. It’s unlikely that much
thought went into INT2FAPI.H. But that’s a major reason to examine this

obscure file! Just as people are more likely to tell the truth when they’re in

casual situations than when they carefully consider what they’re saying

(which was the basis for Freud’s brilliant Psychopathology of Everyday Life),

a corporate entity such as Microsoft is likely to reveal more in off-hand

header-file comments than in carefully orchestrated statements for the

press. An otherwise unimportant header file such as INT2FAPI.H can tell us

more about Windows 95 design and architecture than can a hundred

Microsoft press releases.

By looking over files haphazardly thrown on the Chicago DDK, we
learn that Windows 95 isn’t entirely rewritten from the ground up, but

rather is based on the Windows/386 3.0 project, which became Windows

3.0 Enhanced mode. And the VMM core of Windows 95 made its first

appearance, under the name Virtual DOS Machine Manager (VDMM), in

Windows/386 2.1:
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A program that runs in the 80386 ’s native 32-bit protected mode and oversees

a set of virtual machines is called a 386 control program, or virtual machine

monitor. Windows/386 is such a virtual machine monitor; it also provides com-

plete device virtualization for the PC’s disk controller, video adapter, keyboard,

mouse, timer chip, and 8259 programmable interrupt controllers.

— Ray Duncan, “Microsoft Windows/386: Creating a Virtual

Machine Environment," Microsoft Systems Journal,

September 1987, p. 5.

In Windows 95, the VMM manages threads as well as virtual machines,

but the Windows 95 VMM still has its roots in the Windows/386 VDMM.
Unfortunately, few programmers or journalists paid much attention to this

VDMM layer in Windows/386, or indeed to the VMM and VxD layer in Win-

dows 3.x. This is one reason why Windows 95 appears to be newer, and a

more radical break with the past, than it really is.

According to the biographical note in the back of his authorized, semi-

official Inside Windows 95, ex-Microsoft employee Adrian King “managed

the group that developed Windows/386, the product that pioneered the

use of software virtual machine technology in Microsoft operating sys-

tems." King’s work on Windows/386 gives him many insights into Win-

dows 95. For example, how many authors would know that Microsoft not

only uses V86 mode but also helped to design it? As King states on page

37, “Microsoft helped Intel design virtual 8086 mode and harnessed that

mode initially with the release of Windows/386 in 1987."

Another point King makes is that while Windows/386 provides some of

the background to DOS compatibility in Windows 95, “no code is repeated”

(p. 4n). A quick look at the WIN386.386 file (dated July 1, 1988) from Win-

dows/386 2.1 seems to bear this out. Although there are many conceptual

similarities between Windows/386 2.1 and Windows 95 — which is why

Duncan’s 1987 Microsoft Systems Journal article remains useful reading —
Microsoft nonetheless appears to have used Windows/386 2.1 as its “throw

one away” testbed for what would two years later become Windows 3.0

Enhanced mode and seven years later, Windows 95.

In particular, Microsoft appears to have engaged in a large rewrite cam-

paign between the Windows/386 2.1 release in 1987-88, and the release of

Windows 3.0 Enhanced Enhanced mode in 1990. For example, look at some
of the Windows VxD source files included with the DDK:

File Description
%

VPICD.INC “13-Apr-1988 RAL Rewrite”

VNETBIOS.ASM “25-Apr-1988 RAL Complete rewrite of network (used to be VND)”

VKD.ASM “29-Jul-1988 RAP Started complete rewrite”

So yes, parts of Windows 95 were completely rewritten — back

in 1988!
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From the Registry to Hills

Having discussed how WINBOOT locates the registry, a few words are in

order about the registry itself. Unlike CONFIG.SYS, AUTOEXEC.BAT,
SYSTEM.INI, and so on— all files that it seeks to replace— the registry

is not a readable plain ASCII file. Users can browse and edit the registry

with the REGEDIT application. Programs query and change the registry

with Windows API functions such as RegOpenKey, RegEnumKey, Reg-

QueryValue, RegCreateKey, and RegSetValue. VMM provides the actual

implementation of the registry-access functions; the Windows APIs call

VMM’s protected-mode API. DOS programs can access the registry with

VMM’s V86 API.

The registry is a hierarchical database of keys and values, holding

everything from Object Linking and Embedding (OLE) settings and File

Viewer associations to performance-monitoring statistics and dynamic

VxD information. For example, the following tree (produced by recursively

calling RegOpenKey, RegEnumKey, RegQueryValue, and RegCloseKey)

represents information (stored in EIKEY_LOCAL_AlACHINE\SOFT-
WAREXClasses) about Microsoft Word 6.0 documents:

Word . Document . 6=Mi crosoft Word 6.0 Document

shel 1

open

commands : \MSOFFICE\WINWORD\WINWORD.EXE /w

ddeexec=[Fi 1 eOpen( "%1" )]

print

commands : \MSOFFICE\WINWORD\WINWORD.EXE /w

ddeexec=[Fi 1 eOpen( "%1"
) ] [ Fi 1 ePri nt ( ) ] [ DocCl ose ( 2 ) ]

i fexec=[Fi 1 eOpen( "%1"
) ] [Fi 1 ePri nt .Background = 0][FileExit(2)]

C LS I D= {00020900 -0000- 0000-C000 -000000000046)

Insertabl

e

protocol

StdFi 1 e Ed i ti ng

verb

0 = E d i t

server=C: \MSOFFICE\WINWORD\WINWORD.EXE

To determine the incantation to print a Word 6.0 document, for

instance, a program could RegQueryValue these two keys:

Word . Document . 6 \ s hel 1 \pri nt\ command

Word . Document . 6\shel 1 \pri nt\ddeexec

The value of the first key can be passed to WinExec:

C:\MSOFFICE\WINWORD\WINWORD.EXE /w
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and the value of the second key is a DDE EXEC string:

[ Fi 1 eOpen
( "%1" )][FilePrint( ) ] [ DocCl ose ( 2 )

]

Notice that the program requires no hard-wired knowledge other

than the names of the keys.

Windows 95 itself uses the registry to store configuration informa-

tion, for example, regarding dynamic VxDs loaded by the I/O Supervisor:

[HKEY_LOCAL_MACHINE\System\CurrentControl SetAServi ces\Cl ass\fdc\0000]

" DevLoader "=" IOS"

" PortDri ver " = "HSFL0P
.
pdr

"

"Dri verDesc"="Standard Floppy Disk Controller"
"

I nt 13ToDrvSel Map" = hex: 00 , lc ,01 , 2d

Mercifully (I’ve somehow trashed SYSTEM.DAT more than once),

Windows 95 can run with a missing or corrupted registry, though it will

warn that “Registry services may be inoperative for this session.” You can

also use the F8 interactive boot to bypass the registry. Without a registry,

Windows 95 cannot support features such as OLE or Quick View (a

handy Explorer option that we’ll use later to examine some components

of Windows 95). Each time you shut down Windows 95, it writes known-

good registry files named SYSTEM.DAO and USER.DAO. But I still bet

some enterprising third-party vendor will come along with much-needed

registry repair tools.

Returning to Figure 2-1, we see that after opening the registry, Win-

dows 95 opens the CONFIGS device, which is part ofWINBOOT.SYS.
CONFIGS is the real-mode portion of the Plug and Play Configuration

Manager. The protected-mode portion lives in a VxD called CON-
FIGMG (it will probably be a while before Microsoft starts using long

filenames for core executable files). The CONFIGMG VxD communi-

cates with the real-mode CONFIGS device via the DOS IOCTL func-

tion; CONFIGMG passes CONPIGS a V86 callback (see the upcoming

sidebar “Pushing aside real-mode drivers?”) so that CONFIGS can call

up to CONFIGMG. In some ways, CONFIGS can be viewed as an

extension of the DOS 6.0 multi-boot feature.

Aside from the point that the Plug and Play Configuration Manager

even has a real-mode component, it’s also worth noting that CONFIGS
provides a new interface that lets DOS device drivers and TSRs query

configuration information. As described in a Microsoft document,

“Plug and Play Device Driver Interface for Windows 3.1 and MS-DOS”
(October 5, 1993) — Microsoft and Intel provide a Plug and Play add-in

(DWCFGMG.SYS) for non-Windows 95 systems — the interface uses
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INT 2Fh function 1684h, with the value 34h in BX. It just so happens

that INT 2Fh function 1684h is normally called to retrieve the entry

point to a VxD whose ID is given in the BX register; 34h is the VxD ID
for CONFIGMG. Once again we see a Windows interface implemented

down in the real-mode DOS portion of Windows 95.

Next, if there is a CONFIG.SYS file, WINBOOT processes it. I did

need a CONFIG.SYS here to load Soft-ICE, but not to load HIMEM,
IFSHLP, or SETVER. WINBOOT.SYS loaded these automatically, in

much the same way that MS-DOS 6.x (and as we’ve seen, WINBOOT
.SYS, too) would automatically load DBLSPACE.BIN or DRVSPACE
.BIN. An important difference is that disk-compression drivers need to be

loaded before processing CONFIG.SYS; the XAIS and IFSHLP drivers

required to run Windows can be loaded after CONFIG.SYS.
There’s nothing particularly sophisticated about WINBOOT’s ability

to find and load file drivers such as HIMEM and IFSHLP. In his discus-

sion of system startup in the brilliant book DOS Internals
,
Geoff Chappell

said that DOS 6.0’s provisions for loading DBLSPACE.BIN, despite

Microsoft’s claims of providing integrated (there’s that word again!) disk

compression, “has the appearance of a hack” (p. 156). Much the same is

true ofWINBOOT’s ability to bootstrap Windows. If you don’t look too

hard, the ability to load Windows without any configuration files looks

quite integrated; however, it involves nothing more than some trivial

code (find and execute HIMEM.SYS, IFSHLP.SYS, and WIN.COM)
hacked into SYSINIT.

Like previous versions of Windows, Windows 95 requires HIMEM
.SYS or some other extended-memory (XMS) driver, the V86MMGR
(V86 Memory Manager) VxD supplies its own XMS services once Win-

dows is up and running. V86AlMGR’s XMS server replaces the one that

must be present before Windows starts.

mim&m

real-mode driuers?—
The relationship between V86MMGR and a real-mode XMS server such as

HIMEM may help shed some light on another one of Microsoft’s confusing

claims regarding Windows 95 — that its VxDs “take over” from, and possi-

bly even “push aside,” any equivalent real-mode drivers.

v .
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Adrian King’s explanation of this “take over” idea is quite reasonable:

The file system design in Windows 95 allows a protected mode port driver to take

control of a real mode driver and bypass it while the system is running in pro-

tected mode— Windows 95 can classify the real mode driver as a ‘safe’ driver.

Safe means, essentially, that the protected mode driver can offer functionality

identical to the real mode driver’s. In such a case, the protected mode driver will

simply carry out all the I/O operations and never call the real mode driver.

— King, Inside Windows 95, p. 307.

This makes a lot of sense: Many VxDS do provide functionality that

replaces what’s provided by some real-mode driver (for example, CDFS
replaces MSCDEX, and VCACHE replaces SmartDrive). The file IOS.INI con-

tains a list of so-called “safe” real-mode drivers from which a VxD can take

over. Here, “take over” simply means never calling — that is, ignoring the

presence of— the real-mode driver.

However, Microsoft' has at times suggested that Windows 95 will liter-

ally unload the safe real-mode driver and reclaim its memory. Ralph Lipe

discussed this possibility in his presentation on the Windows 95 architec-

ture at Microsoft’s Win32 Professional Developers Conference in 1993.

I’ve also heard the specific claim that the CDFS (CD-ROM file system) VxD

will unload MSCDEX from memory. Certainly, this is the image conjured up

by the more general claims that Windows “pushes the real mode code

aside” ( Inside Windows 95, p. 71). Ignoring something is not normally

equated with pushing it aside.

Presumably Jon Udell of Byte magazine heard the same line I did:

When protected-mode components like the VFAT (Virtual FAT) and CD-ROM file

systems, network redirectors, and 32-bit DoubleSpace driver load, they can, in

many cases, unload their corresponding real-mode components from memory.

DOS will then be history....”

— “Chicago: An Ambitious Compromise,
”
Byte, March 1994, p. 22.

HIMEM.SYS isn’t an I/O driver, but a look at V86MMGR’s interaction

with HIMEM can help clear up a lot of the confusion about Windows 95
pushing aside real-mode drivers.

Although V86MMGR replaces HIMEM or another real-mode XMS server

with its own 32-bit protected-mode XMS server, V86MMGR doesn’t “push”

the real-mode XMS server off the machine. It doesn’t unload HIMEM,
reclaim its memory, or anything like that. How could it? Some code that

loaded after HIMEM but before V86.MMGR might have called INT 2Fh func-

tion 4310h (Get XMS Entry Point) and might be hanging on to a function

pointer that it thinks is the address of the XMS server. If V86MMGR were

somehow to unload HIMEM from memory, the system would most likely

hang the intermediate program that called this stale function pointer.

V86MMGR can’t unload HIMEM. Instead, as shown in Chapters 8 and

11, V86MMGR uses the VMM lnstall_V86 _Break_Point service to patch

the real-mode XMS driver. If anyone calls the real-mode XMS server, they

will immediately encounter a V86 breakpoint that jumps them into

V86MMGR.
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That V86MMGR will install a V86 breakpoint over HIMEM is a good

illustration not only of the fact that Windows 95 doesn’t push real-mode

code aside but also of the equally important fact that Windows 95 (like pre-

vious versions of Enhanced mode) will run this real-mode code in V86
mode and alter it in various ways.

It’s difficult to see how Windows 95 could possibly unload any non-

trivial real-mode driver or TSR from memory. Another good example is

MSCDEX (Microsoft CD-ROM Extensions); it's fairly well-known that

MSCDEX patches MS-DOS (see Undocumented DOS , 2d ed., p. 463).

Unloading MSCDEX would require backing out these patches. This is why

the excellent MARK/RELEASE utilities by Kim Kokkonen never quite worked

100% of the time with MSCDEX.
If you think about it, for Windows 95 to truly unload real-mode drivers

and TSRs from memory, it would have to include very sophisticated ver-

sions of MARK/RELEASE. Unloading drivers and TSRs is not just a matter

of unhooking some interrupt vectors. An examination of Kim Kokkonen’s

comments to MARK.PAS and RELEASE.PAS shows that over the years it

has become more and more complicated to safely unload this stuff.

I suppose it’s possible that Windows 95 could in time incorporate a

facility to release certain specific drivers or TSRs, such as MSCDEX, about

which it had intimate knowledge. However, there’s no general technique for

undoing all the nasty hooks and patches that drivers and TSRs might have

inserted into the real-mode DOS code.

The only reason the question of unloading drivers and TSRs comes up

is that Windows 95 (specifically, as we’ll see in a few minutes, the

WIN.COM component of Windows 95) intends for you never to exit Windows

and return to MS-DOS. When you shut down Windows 95, you can choose

between shutting down the machine, restarting Windows 95, or logging off

the network; exiting back to the C:\> prompt is not an option. (This is

another way that Windows 95 creates the impression of being seamlessly

integrated with the machine, as though it were without any intervening real-

mode DOS code.) Since Windows 95 never exits back to DOS, it obviously

needn’t worry about undoing whatever changes it makes to DOS — such

as, hypothetically, unloading redundant real-mode drivers.

But wait a minute! As you might know, for those few DOS programs that

won’t run in a V86 mode DOS box, Windows 95 offers a Single Application

Mode check box in the DOS box properties. In Single Application Mode,

Windows 95 saves away its current context, puts the machine into real (not

V86!) mode, and runs a DOS command prompt. This is very much like exit-

ing Windows back to DOS or like running a DOS box in Windows 3.* Stan-

dard mode. VxDs are unloaded, which is why long filename support

disappears in Single Application Mode — IFSMgr isn’t running. Windows 95
even issues the INT 2Fh function 1606h Windows Exit broadcast, so that

software loaded before Windows 95 thinks — pretty much correctly — that

Windows is exiting (see Chapter 3). When you exit from Single Application

Mode back to Windows, Windows 95 reinitializes, reloads VxDs, issues the

function 1605h Windows Startup broadcast, and so on.
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Given that Windows 95 really can exit back to DOS, albeit via this odd

Single Application Mode, it’s hard to see how Windows 95 could possibly

unload TSRs and device drivers. Windows 95 would just have to reload

them again whenever a user wanted Single Application Mode.

In short, not only does Windows 95 not currently push real-mode code

aside, it’s unlikely that it ever could. It’s much more likely that for those

real-mode drivers whose functionality is provided by a VxD and is not

required during Windows initialization (MSCDEX is a good example), the

phrase “push the real-mode code aside" means little more than that the

Windows 95 Setup program could remove any mention of them from CON-

FIG.SYS and AUTOEXEC.BAT.

How did this humble feature get transubstantiated into the glorious idea

that Windows 95 would literally unload the “safe" device drivers and TSRs
and reclaim their memory? I think this happened because it’s natural —
even for programmers .and the computer trade press — to hear what you

want to hear.

For example, a Microsoft VP once told me that Windows 95 would

"shove DOS off the machine,” and from the context of our conversation I

was sure at the time that he meant Windows 95 would literally unload DOS
from memory and load itself at the memory location previously occupied by

DOS and by real-mode drivers. That’s what I wanted to believe, anyway. In

retrospect, I bet he just meant something trivial such as that the Windows

95 setup program removes DEVICE= lines from CONFIG.SYS, or that WIN-

BOOT.SYS replaces 10.SYS and MSDOS.SYS. Or maybe this VP really

believed that Windows 95 can plow real-mode code off a running machine,

because this is what one of his programmers told him. The programmer,

meanwhile, just meant that the Windows 95 setup program removes....

Perhaps Microsoft’s incorrect descriptions of the Windows 95 architec-

ture are due to nothing more than a wishful-thinking variant of the game of

“telephone."

From irsHLP.svs to uim.com
After HIMEM.SYS, WINBOOT loads IFSHLP.SYS. As noted in the

“...But Bypassing DOS, Too?” section of Chapter 1, the real-mode code

in IFSHLP is a key part of Windows 95 ’s installable file system; IFSMgr
won’t load if it can’t locate the IFS$HFP$ driver. IFSMgr calls IFSHLP
using the DOS IOCTL function, and passes IFSHLP a pointer to a V86
callback that IFSHLP can later use to communicate with IFSMgr. (See

“The Role of IFSHLP.SYS and V86 Callbacks” in Chapter 8.)

WINBOOT.SYS next loads SETVER.EXE (which changes the DOS
version number on a per-application basis — sick!) and, under certain cir-

cumstances, Microsoft’s expanded memory manager, EA1M386.EXE.
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Note that the Y86MMGR VxD not only provides XMS services but is

also an EMM.
Next in Figure 2-1, WINBOOT.SYS looks for an AUTOEXEC.BAT

file. WINBOOT.SYS loads the DOS command shell (COAEMAND.COM)
to process AUTOEXEC.BAT. However, as shown earlier, if there’s no

AUTOEXEC.BAT, there’s no need to load COAEMAND.COM, and

WTNBOOT will proceed direcdy to load WTN.COM. This, of course, is

the tight integration we’ve all been hearing so much about. Well, it’s nice

and everything, but it’s about as integrated as the Boston public school sys-

tem before court-ordered busing.

Bypassing COAEMAND.COM definitely saves some memory, but I

don’t see any significant architectural difference between WTNBOOT
.SYS’s direct loading ofWIN.COM, and putting WIN as the last line of

AUTOEXEC.BAT. Now, it is a huge difference that end-users don’t have

to go into AUTOEXEC.BAT (a scary process for many people) and add

a WIN command. But this usability enhancement, however important,

doesn’t constitute a fundamental change in the Windows architecture. In

whatever way Windows gets loaded, DOS is still sitting underneath it. It’s

just a matter of whether COATMAND.COM sits down there too.

Incidentally, to autoload WIN.COM, WINBOOT.SYS must know its

location. Although WTN.COM is usually found in C:\WTNDOWS, this

location is not hard-wired (excuse me, I mean “integrated”) into WTN-
BOOT.SYS. It comes from the registry (HKEY_LOCAL_ATACHTNE
\Sofware\AEcrosoftYWmdows\Current VersionXSystem Root).

So, yes, autoloading WIN.COM is a great feature: just don’t say it

involves changing the Windows architecture. I think some sort of “Tech-

nology Ruiz” prejudice makes it difficult for many of us in the computer

industry to believe that a major usability enhancement can come about

without an underlying fundamental change to the software. Well, it can.

But why autoload WTN.COM? As is well known, WIN.COM is not

Windows. It is a small (less than 2OK) program whose job is to load

Windows (see Matt Pietrek, Windows Internals, pp. 3-8). WRy doesn’t

WTNBOOT.SYS just load Windows directly? WTy bother with WIN
.COM at all?

We’ll see in a moment that, in Windows 95, WTN.COM loads the file

VMM32.VXD. In Windows 3.x Enhanced mode, WYN.COM loaded

WTN386.EXE and, in Standard mode, DOSX.EXE. Chapters 5 through

7 show that executables such as DOSX.EXE, WTN386.EXE, and even

VATM32.EXE (if you rename it with an .EXE extension) can be run

directly from the C:\> prompt. So it seems that WYNBOOT.SYS should
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be able to directly load VMM32.VXD, and bypass WIN.COM just as it

usually bypasses COMMAND.COM.
The file now called VMM32.VXD was called DOS386.EXE in early

pre-beta versions of Windows 95. There was a DOS=ENHANCED
switch in CONFIG.SYS (such as DOS=HIGH,UMB,ENHANCED)
that IO.SYS (as it was still called back then) would interpret as a request

to directly load DOS386.EXE. Notice that ENHANCED was a refer-

ence, not to Windows, but to DOS! Apparently at one time there was

some consideration at Microsoft of having Standard and Enhanced

modes ofMS-DOS. Standard mode would, presumably, be a real-mode

version ofMS-DOS, and Enhanced mode would be a V86-mode version,

running under DOS386.EXE. Chapter 6 shows how to easily build your

own copy of this Enhanced mode ofMS-DOS, in the privacy and com-

fort of your own home.

Thus, some thought did go into bypassing WIN.COM. But WIN.COM
plays an important role in Windows 95; namely, it prevents you from exiting

back to DOS. When you shut down Windows 95, it is WTN.COM that dis-

plays the message, “You can now safely turn off the computer. Ifyou want to

restart your computer, press Ctrl-Alt-Del.” As well see in Chapter 7, ifyou

run VMM32 without WIN.COM, you can exit back to DOS. Clearly, such

an ability interferes with the image Microsoft wants to build of a seamless,

integrated Windows PC.

From uim.com lo krih.386.ehe

The tail end of Figure 2-1 shows that WIN.COM runs VMM32.VXD.
This contains, well see, the very heart and soul of the Windows operating

system (and I do mean operating system, not operating environment).

While the BOOT command in Soft-ICE gave us a ringside seat to the

early stages of the Windows 95 boot process, it can be somewhat tedious

to interact with the debugger every time Windows 95 triggers a Soft-ICE

breakpoint. All we really need is a list of the files that Windows 95 looks

for, opens, or executes; such a list is best generated using a non-interac-

tive debugger.

David Maxey’s INTRSPY (Interrupt Spy) utility from Undocumented

DOS (2d ed., pp. 229-263) is perfect for this. INTRSPY can be loaded in

AUTOEXEC.BAT. Actually, Eve just realized that you don’t need

AUTOEXEC.BAT (and hence COMMAND.COM) to run TSRs such
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as INTRSPY, because Windows 95 processes any INSTALL= commands
in CONFIG.SYS. But since we already know that the effect ofAUTO-
EXEC.BAT is fairly minimal (aside from creating a global COMMAND
.COM visible in all VMs), we should be okay.

The CMDSPY script compiler can be given a script that tells INTR-
SPY to log calls to the DOS File Find, Open, and EXEC functions. For

instance, to watch the DOS File Open function (INT 2 1 h function 3Dh),

which expects an ASCII filename in DS:DX and which returns either a

file handle (if the carry flag is clear) or an error code (carry set) in AX, an

INTRSPY script might look like this:

intercept 21

h

function 3Dh

on_entry

output "OPEN " (ds:dx->byte,asciiz,64)

on_exit if (cflag == 1)

sameline " [FAIL " ax "]"

Figure 2-2 shows the next stage of the Windows 95 boot process,

overlapped slightly with the bottom of Figure 2-1. In addition to File

Find, Open, and EXEC functions, the INTRSPY script also logged calls

to Extended Open/Create (function 6Ch, shown as XOPEN in Figure

2-2), to File Create, and to the new long filename (LFN) variants of all

these functions. However, as long as INTRSPY is a DOS TSR, it will

never see these LFN DOS calls.

EXEC C:\WINDOWS\WIN.COM

OPEN C:\WIND0WS\vmm32.vxd [FAIL 2]

OPEN C:\WIND0WS\system\vmm32.vxd

EXEC C:\WIND0WS\system\vmm32.vxd

OPEN Q EMM386 $ [FAIL 2]

OPEN 386MAX $ $ [FAIL 2]

OPEN SMARTAAR [FAIL 2]

OPEN C:\SYSTEM.DAT

OPEN $ DebugDD [FAIL 2]

OPEN NDISHLPS [FAIL 2]

OPEN C:\WINDOWS\SYSTEM.INI

CREAT C:\WINDOWS\WNBOOTNG.STS

FIND C:\WIND0WS\SYSTEMWMM32\*. VXD [FAIL 18]

OPEN C:\WINDOWS\system\nwl ink. 386

OPEN C : \WINDOWS\system\wsi px . 386

OPEN C : \WI N DOWS \system\v net sup . 386

OPEN I FSSHLPS

OPEN C:\WIND0WS\system\ndis.386

OPEN I FS$HLP$

OPEN C:\WINDOWS\system\ndi s 2s up. 386

OPEN NDISHLPS [FAIL 2]

OPEN C:\WIND0WS\system\msodisup.386

OPEN C:\WINDOWS\system\vnetbi os .386
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OPEN C:\WIND0WS\system\wsock.386

OPEN CONFIGS

OPEN C : \WINDOWS\system\vserver . 386

OPEN I FS $ H L P $

OPEN C:\WINDOWS\system\vredi r.386

OPEN c:\andrew\vxd.386

OPEN C:\WIND0WS\system\dva.386

OPEN C:\WIND0WS\system\vpmtd.386

OPEN I FS $ H L P $

OPEN SMARTAAR [FAIL 2]

OPEN C:\WINDOWS\system\ISAPNP.vxd

OPEN C:\WINDOWS\system\MMDEVLDR.vxd

OPEN C:\WINDOWS\systein\MSSB16.vxd

OPEN C:\WINDOWS\systemWJOYD.vxd

OPEN SCSIMGRS [FAIL 2]

OPEN C:\WINDOWS\IOS.INI

XOPEN C:\WINDOWS\IOS.LOG

FIND C : \WINDOWS\system\IOSUBSYS\*. vxd

OPEN C:\WINDOWS\system\IOSUBSYS\apix.vxd

OPEN C:\WINDOWS\systeui\IOSUBSYS\cdfs.vxd

OPEN C:\WINDOWS\system\IOSUBSYS\cdtsd.vxd

OPEN C:\WINDOWS\system\IOSUBSYS\cdvsd.vxd

OPEN C:\WINDOWS\system\IOSUBSYS\disktsd.vxd

OPEN C:\WINDOWS\system\IOSUBSYS\diskvsd.vxd

OPEN C:\WINDOWS\system\IOSUBSYS\scsilhlp.vxd

OPEN C:\WINDOWS\systetn\IOSUBSYS\voltrack.vxd

OPEN C:\WINDOWS\system\IOSUBSYS\rmm.pdr

XOPEN C:\WINDOWS\NDISLOG.TXT

OPEN C:\WIND0WS\system\eel6.386

OPEN C:\WINDOWS\system\netbeui .386

OPEN C:\WINDOWS\WINSTART.BAT [FAIL 2] ;;; look on path for WINSTART.BAT

OPEN C:\WINDOWS\systetn\LPTENUM.vxd

OPEN C:\WINDOWS\system\UNICODE.BIN

OPEN I F S $ H L P $

EXEC C : \ WINDOWS\system\krnl 386.exe

Figure 2-2: Using INTRSPY, we see the middle stage of Windows 95’s initialization.

Although I edited the INTRSPY output in one place — instead of

showing all the lines where Windows 95 looks for a WINSTART.BAT
file in each subdirectory in my PATH, I’ve shown only one such line,

and added a comment — Figure 2-2 is otherwise all that INTRSPY
saw of the Windows 95 boot process. Even if you’re only vaguely

familiar with the architecture of Windows, you probably suspect that

there must be a lot more to Windows 95 than what’s shown in Figure

2-2. Where’s the Windows 95 Explorer? Where’s GDI? What about

the Win32 kernel?

Yes, there’s a ton of INT 2 lh file activity missing from the INTRSPY
log in Figure 2-2, and no, INTRSPY is not broken. INTRSPY hasn’t

missed anything seen by real-mode DOS.
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Oh, of course: 3 2 -bit file access! Once 32BFA is up and running,

Windows 95 won’t be sending file I/O calls down to DOS. Consequently,

INTRSPY (which, again, is a real-mode DOS TSR) won’t see these calls

either. INTRSPY gets the same truncated view ifyou use it to watch

WfW 3.11 with 32BFA. There’s a way (at least in Beta-1) to make Win-
dows 95 load without 32BFA, and I’ll use this loophole later so that

INTRSPY can watch Windows 95 boot all the way up. In the meantime,

Figure 2-2 has enough material to last us for a while.

The top of Figure 2-2 overlaps slightly with the bottom of Figure 2-1.

WINBOOT has run WIN.COM, which turns around to look for and

run VMM32.VXD. As noted earlier, VMM32.VXD is the equivalent in

Windows 95 ofWIN386.EXE in Windows 3.x Enhanced mode. How-
ever, this might not tell you much. It’s amazing how little attention has

been paid, until Windows 95, to this crucial lower half of Windows.

Despite its filename extension, VMM32.VXD is not a single Virtual

Device Driver (VxD) but a collection of VxDs. Like WIN386.EXE,
VMM32.VXD uses the W3 executable file format. The Unauthorized

Windows 95 disk comes with a program, W3ALAP, that you can use to

examine these W3 files.

W3MAP, I have to admit, is a boring-looking character-mode DOS
program. What we really need is a VxD “Quick View” DLL for the

Windows 95 Explorer. But that’s a different project, for a different book.

In the meantime, W3MAP’s heart is in the right place, even if its user

interface could be better. If you give W3MAP the name of a W3 file, it

spits out a list of the VxDs that comprise that file. For example:

C : \UNAUTHW>w3map \wi ndows\systefn\vmm32 . vxd

W3 00010000

VMM 00011000

VDD 00058000

VFLATD 00063000

ENABLE 00065000

VSHARE 0006d000

VWIN32 00071000

VFBACKUP 0007C000

VCOMM 00080000

COMBUFF 00089000

VCD 0008C000

IFSMGR 00091000

IOS 000b0000

SPOOLER 000be000

VFAT 000C5000

VCACHE 000d 1 000
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The Windows 95 setup program builds VMM32.VXD out of loose

VxDs, so the file might differ from one machine to another. But VMM32
.VXD generally incorporates about 45 VxDs. The hex number next to

each VxD name is the offset within the file where that VxD can be found.

However, the first item shown, W3, isn’t a VxD, but rather the W3 file-

format map for the rest of the file. Everything before it (here, lOOOOh

bytes) is a real-mode DOS program— the program that WIN.COM
runs— whose job is to switch to 3 2 -bit protected mode and start the

process of loading the VxDs in the rest of the file. DOS doesn’t know how
to load VxDs; this DOS program at the head ofVMM32.VXD includes

the VxD bootstrap loader.

Starting with the Virtual Machine Manager (VMM) at offset 1 1 OOOh

in the file, everything else is a VxD. Well, it’s not quite accurate to call

VMM a VxD, since it really manages all the VxDs in the system. But in

terms of its file format, VMM looks like just another VxD. All VxDs, and

VMM, use the 3 2 -bit Linear Executable (LE) file format. If you dump
out one of the locations displayed by W3MAP, you’ll see an LE header:

C : \UNAUTHW>dump -offset 0x11000 \windows\system\vmm32. vxd

00011000
|

4C 45 00 00 00 00 00 00 02 00 04 00 00 00 00 00
|

LE

00011010
|

00 80 02 00 40 00 00 00 04 00 00 00 66 05 00 00
|

. . . f...

Well, this isn’t terribly interesting. You can get a better idea of what’s

in VMM32.VXD — or in any other file that uses the W3 format, such as

WIN386.EXE from Windows 3 .v Enhanced mode — if you use

W3MAP’s -VERBOSE option.

inside me uirtuai Machine Manager

When pointed at VMM32.VXD, W3MAP -VERBOSE spits out almost

2,000 lines of information about the VxDs in the file and the functions

they provide. I’m not going to bore you by displaying the full output

(which would occupy about fifty pages of this book and which you can

easily produce yourself using W3MAP), so let’s just look at VMM.
As Adrian King notes (Inside Windows 95, p. 67), “The Virtual Machine

Manager is the heart of the Windows 95 operating system. It includes

software to implement all the basic system primitives for task scheduling,

virtual memory operations, program loading and termination, and inter-

task communication.” The bit about program loading isn’t quite true

(VMM knows nothing about either the Win 16 or Win32 executable file
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formats), but otherwise this is a good description. VMM is the heart of

Windows 95. It also was the heart of Windows 93 (WfW 3.11), Windows

92 (3.1 Enhanced mode), and Windows 90 (3.0 Enhanced mode), but

we’ll get into that in a moment.

In addition to the various services it provides, VMM also holds the

primary interrupt, fault, and exception handlers in the system. For exam-

ple, all hardware interrupts from the timer, keyboard, mouse, COM
ports, and so on first go to VMM, which generally hands them off to the

Virtual Programmable Interrupt Controller (PIC) Device (VPICD) VxD.

Likewise, general-protection (GP) faults and virtual-memory page faults

first go to VMM, which either deals with them itself or doles them out to

interested VxDs.

So what’s VMM look like? Figure 2-3 shows a small portion of the

verbose W3MAP output:

Module name: VMM

VMM_DDB @ 0001 : 0000dc28

Real-mode Init @ 0004:00000566

Device # 0001

Virtual Machine Manager

Version 4.00

Init order: 00000000 (Earliest -- same as VMM)

DDB_Control_Proc @ 000013de

DDB_V86_AP I_P roc @ 00001a 1

1

DDB PM AP I_P r oc @ 00001all

DDB_Servi ce_Tabl e @ 0000d 644 (179 services)

010000 @ 00001 a 08

010001 @ 00000e46

010002 @ 00000e4d

010003 @ 00000e54

010004 @ 00000e5b

010005 @ 00000e64

010006 @ 0000312c

010007 @ 00003133

010008 @ 0000313c

010009 @ 00000704

01000a @ 0000078c

01000b @ 0000098c

01000c @ 000009de

01000d @ 00000a90

01000e @ 00001a 58

0 1 0 0 0 f @ 00001a b8

Get_VMM_Versi on

Get_Cur_VM_Handl

e

Test_Cur_VM_Handl

e

Get_Sys_VM_Handl

e

Test_Sys_VM_Handl

e

Val i d a t e_V M_H a n d 1

e

Get_VMM_Reenter_Count

Be g i n_Reentrant_Executi on

End_Reentrant_Executi on

Instal l_V86_Break_Poi nt

Remove_V86_Break_Poi nt

A1 1 oca te_V86_Ca 1 l_Back

A1 1 ocate_PM_Cal l_Back

Cal l_When_VM_Returns

Schedul e_Gl obal_Event

Schedul e_VM_Event

Figure 2-3: A small portion of VMM, as displayed by the W3MAP utility.

In addition to providing a V86 and PM programming interface (acces-

sible to DOS and Windows applications via INT 2Fh function 1684h),
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we see here thatVMM provides 1 79h (3 7 7) services to other VxDs. I’ve

listed just the first few here.

You can examine VMM’s code for these services if you have a Win-

dows disassembler (such as my Windows Source product from V Com-
munications) or a debugger such as Soft-ICE/Windows from Nu-Mega
Technologies (which is what I’ve used in most cases for this book). For

example, the code for the first fewVMM services named is not particu-

larly exciting, but looking at this code is a good way to get acquainted

withVMM and 3 2 -bit protected-mode code in general:

Get_VMM_Versi on

0028 : C0002A08 B800040000

0028 : C0002A0D 33C9

0028 : C0002A0F F8

0028 : C0002A10 C3

MOV EAX , 00000400

XOR ECX , ECX

CLC

RET

In Figure 2-3, W3MAP said that, inVMM on disk, Get_VMM_Version

was located at lA08h. Soft-ICE shows the function at 28:C0002A08h.

Thus, VMM loaded at address 28:C0001000. While a full address such as

0028:C0002A08h requires 48 bits (two bytes for the segment, which is

called a selector in protected mode, and four bytes for the offset), 3 2 -bit

code usually needs to worry about only the 3 2 -bit offset. (See the discussion

of thunking in Chapter 14 for an interesting example in which Win32 code

has to manipulate full 48-bit addresses.) Selector 28h, which is the code seg-

ment forVMM and all VxDs, and selector 3 Oh, which is the data segment,

both have a base address of 0 and a limit (last valid offset) of OFFFFFFFFh.

That’s a 4GB address space. VxDs can use a 3 2 -bit offset to manipulate any-

thing within this address space.

This otherwise-boring Get_VMM_Version service helps introduce

the 3 2 -bit register set. Instead of the 16-bit AX and CX registers most

PC programmers are familiar with, this code is manipulating 3 2 -bit reg-

isters called EAX and ECX. EAX, EBX, ECX, and so on are the native

registers of the 386 and later microprocessors.

Most of the benefits of 3 2 -bit code involve using these 3 2 -bit regis-

ters. For example, to store a 3 2 -bit number, 16-bit code would have to

employ a pair of registers such as DX:AX:

mov dx, 1234h

mov ax, 5678h

In contrast, 3 2 -bit code could store the same quantity in the single

EAX register:

mov eax, 12345678h
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This not only uses one instruction instead of two, but because it uses

only one register, it leaves open more possibilities for future register use.

That’s because 3 2 -bit code can generally keep more frequently-used val-

ues in registers than can 16-bit code, which must then keep the values in

slower memory:

mov [ 1 0 2 h ] , 1 234

h

mov [ 1 0 0 h ] , 567 8h

Of course, if a program doesn’t manipulate any 3 2 -bit quantities, it’s

unlikely to see any benefits from moving to 3 2 -bit code. In fact, there’s a

downside to 3 2 -bit code. Notice in Get_VMM_Version that to return the

version number (here, 0400h for Windows 4.00; hmm, shouldn’t that be

05Fh for Windows 95?) in EAX, the code uses 3 2 -bit numbers. Instead of

the three bytes B 8 00 04 that 16-bit code would use for MOV AX, 0400h

VMM employs the five bytes B 8 00 04 00 00 for MOV EAX, 0400h.

The downside to 3 2 -bit code, then, is that it tends to be fatter. This

shouldn’t be at all surprising, unless you believe in free lunches and the

tooth fairy. That 3 2 -bit code is fatter than 16-bit code is a major reason

why Windows 95 — which Microsoft decided needed to “run great” in

4MB of memory— is not a 100% 3 2 -bit system. According to Adrian

King, “a conversion to 3 2 -bit code would have increased the memory
requirement [for Windows 95] by close to 40 percent” (Inside Windows

95
,
p. 150).

Even though we got a fair amount of mileage out of it, Get_VMM_
Version is a pretty boring function. Here’s the code for the nextVMM
service whose name W3MAP displayed in Figure 2-3:

Get_Cur_VM_Handl e

0028 : C0001 E46 8B1DE40601C0 MOV EBX , [C00106E4]

0028 : C0001 E4C C3 RET

I noted earlier that VxDs can manipulate anything in a 4GB address

space, and VMM’s offhand manipulation of [C00106E4] is a good exam-

ple. It’s obvious from the code that in this particular configuration, the

four bytes (DWORD) at C00106E4h hold the handle of the current

Virtual Machine (VM), which Get_Cur_VM_Handle returns in the EBX
register. In VxD code, EBX generally holds a VM handle.

To call Get_Cur_VM_Handle, a VxD writer just includes the VMM
.INC header file and uses the macro VAlMcall Get_Cur_VM_Handle.

When the VxD source code is assembled, this turns into an INT 2Oh

followed by the DWORD OlOOOlh:
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;;; VMMcall 6et_Cur_VM_Handl

e

int 20 h

dd 0 1 000 1

h

You can see in the W3MAP output in Figure 2-3 thatVMM has VxD
ID #1 and that Get_Cur_VM_Handle is function 1; hence the magic

number lOOOlh. Windows uses INT 2Oh for VxD dynamic linking.

VMM contains an INT 2 Oh handler; whenever it encounters an INT
2 Oh, it looks at the magic DWORD following the instruction, uses this

to locate the 3 2 -bit address of the function, and replaces the INT 2 Oh

DD with a 3 2 -bit CALL to the function:

INT 20 h DD 010001h

call [ C000 1 E46 h

]

Actually, I lied. That’s whatVMM in Windows 3.x would do with calls

to Get_Cur_VM_Handle. Things are a little different in Windows 95. For

a selected set of heavily used small functions such as Get_Cur_VM_Handle

and Get_Cur_Thread_Handle (discussed a little later in this chapter),

VMM’s dynamic linker replaces the INT 2Oh DD not with a CALL to the

function, but with the actual inline contents of the function:

INT 20h DD 010001h

mov ebx, [C00106E4h]

Clearly, the DWORD at C00106E4h is the currentVM handle:

: dd c00 1 06e4

0030 : C00106E4 C51200E8

Here, the currentVM handle is C5 1200E8h. By itself, this number

isn’t very interesting. However, a VM handle is a 3 2 -bit pointer to a VM
Control Block (VMCB), so C5 1200E8h must be the VMCB of the cur-

rently running VM. Let’s see what a VMCB looks like:

: dd c51200e8

0030 : C51200E8 00008802 C5000000 C0EE6F70 00000002 po

0030 : C51200F8 62634D56 000E47B2 00000000 00000008 VMcb.G

0030:05120108 C0FDC898 00000005 00000000 C45200E8 R.

0030:05120118 C5121A04 00000000 00000000 C0FCEABC

The first few fields in the VMCB are documented in the VMM.H and

VMM.INC header files that come with the Windows DDK:

struct cb_s {

ULONG CB_VM_Status ;
/* VM status flags */

ULONG CB_Hi gh_Li near; /* Address of VM mapped high */

ULONG C B_C 1 i en t_Po inter;

ULONG CB_VMI D

;
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UL0N6 CB_Si gnature

;

Ifyou treat this C structure as a template and lay it over the hex dump
just shown, you’ll see that these fields have the following values for this VM:

Field

CB_VM_Status

CB_High_Linear

CB_Client„Pointer

CB_VMID

CB_Signature

Value

00008802h

C5000000h

C0EE6F70h

00000002h

62634D56h (‘VMcb’)

CB_VM_Status holds up to 32 flags that indicate the status of the vir-

tual machine, such as whether it’s running in the background or in exclu-

sive mode, whether there’s a protected-mode program running in the

VM (and if so, whether it’s a 3 2 -bit program), whether the VM is cur-

rently blocked on a semaphore or has released its time slice, and so on.

CB_High_Linear (such as C5000000h in this case) is particularly use-

ful to anyone interested in communicating from one VM to another: it’s

the base of a VM’s address space, whether or not that VM is currently

running. For example, if a program in another VM wanted to access

something at real-mode address 00A6:0330 in this VM, it could do so

with the address C5000000h + A60h + 0330h = C5000D90h.

The first four fields in the Windows 95 VMCB are identical to the

Windows 3.x VMCB. A new field is the ‘VMcb’ signature at offset lOh.

This was introduced in Windows 95 as part ofVMM/VxD parameter

validation. A service that expected to be passed a VM handle in EBX, for

example, could do a CMP [EBX+10], 62634D56h.

While the VMCB has changed quite a bit in Windows 95 from its

format in Windows 3 . 1 (see Kelly Zytaruk, “The Windows 3 . 1 Virtual

Machine Control Block,” Dr. Dobb's Journal, January 1994 and February

1994), and while this is just one of many changes in VMM, fundamen-

tally the Windows 95 VMM is an improved rather than a rewritten ver-

sion of the Windows 3.1 VMM.
Indeed, Microsoft Systems Journal's first article on Chicago (January

1994, p. 15) noted that “Many aspects of Chicago are similar to what you

already know from Windows 3.1, especially regarding virtual machines.”

This is a far more accurate picture of Windows 95 than, say, the claim

that “the entire operating system is freshly designed from the ground

up;” which is what Microsoft SystemsJournal printed the month after.
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(See the sidebar, “A complete rewrite?” which was presented earlier in

this chapter).

Unfortunately, however, the fact is that very few Windows program-

mers actually do know about virtual machines in Windows 3.1. Look in

the index of several Windows programming books, and the chances are

slim that you’ll find any mention of virtual machines, VMM, VxDs, or

V86 mode. Even in supposedly “heavy metal” books such as the one I

coauthored, Undocumented Windows
,
the treatment of these “V” subjects is

pathetic. To find out about these topics, you had to turn to books targeted

specifically at device-driver writers. Unfortunately, by taking crucial infor-

mation about the core of the Windows 3.x operating system and packag-

ing it as information on how to write device drivers (yawn!), Microsoft

effectively excluded the vast majority ofWindows programmers.

Inside Windows 95 (p. 129) observes that “The Virtual Machine Manager

is the single most important operating system component in Windows 95.”

Now, the interesting thing about this statement is that the same thing

could have been said about the VMM in Windows 3.x Enhanced mode.

This makes the general neglect of this subject prior to Windows 95 all the

more puzzling. We all had a 3 2 -bit protected-mode operating system right

in front of our faces and never noticed it!

At the same time, VMM in Windows 95 is substantially larger than

VMM in Windows 3.1. We saw in Figure 2-3 that Windows 95’s VMM
provides 377 services; the one in Windows 3.1 provides only 241 services.

So, in one very superficial sense, Windows 95’s VMM is almost one-third

new. Here are some of the newVMM services in Windows 95:

0 1 0 0 f 9 @ 00001848

0 1 0 0 fa @ 00007 3f

4

0100fb @ 0000 1 b4c

0 1 0 0 f c @ 00001clc

0 1 00f d @ 00002650

0 1 00f e @ 0000265c

0100f f @ 00002710

010100 @ 00002733

010101 @ 00000d20

010102 @ 00006c65

010103 @ 00006f 50

010104 @ 00007f la

010105 @ 00008023

010106 @ 00002754

010107 @ 00007 f40

010108 @ 00000e85

010109 @ 00000e8c

01010a @ 00000e93

_GetThreadTi me SI i cePri ori ty

_SetTh readT i meSl i cePri ori ty

Schedul e_Thread_Event

Cancel_Thread_Event

Set_Thread_Time_Out

Set_Async_Ti me_0ut

_A1 1 ocateThreadDataSl ot

_FreeThreadDataSl ot

_CreateMutex

_DestroyMutex

_GetMutexOwner

Cal l_When_Thread_Swi tched

VMMCreateThread

VMMStartThread

VMMTermi nateThread

Get_Cur._Thread_Handl e

Test_Cur_Thread_Handl

e

Get_Sys_Thread_Handl e
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You probably aren’t shocked to see that many of the newVMM func-

tions relate to threads and to synchronization objects such as mutexes

(mutual exclusion). The Win32 thread and synchronization APIs in Win-
dows 95 are based on this VMM functionality. Let’s look at the code for

two tiny thread-related VMM services:

Get_Cur_Thread_Handl e

0028: C0001E85 8B3D700601C0 MOV EDI , [C0010670]

0028 : C0001E8B C3 RET

Get_Sys_Thread_Handl

e

0028 : C0001 E93 8B3D740601C0 MOV EDI , [C0010674]

0028 : C0001 EA0 C3 RET

Just as VxDs generally use EBX to hold a VM handle, in Windows 95

they generally use EDI to hold a thread handle. We can see that in this

configuration, VMM stores the current thread handle at C00010670h

and the system thread handle in the DWORD that follows it. Here, the

current thread happened to be the system thread:

0030:00010670 C4520298 C4520298

A thread handle is a 3 2 -bit pointer to a Thread Control Block (THCB).

We can use the debugger to display a THCB:

: dd c4 520298

0030:04520298 00000000

0030 : C45202A8 C000D18C

0030 : C45202B8 000070E8

0030:04520208 01000000

0030 : C45202D8 00000000

C0010C2C

C45200E8

00000000

00000000

C0FD0D4C

C0010C2C

012F0001

00A70117

00000000

C000D18C

42434854

000011F6

0000002A

00100005

80001000

•P

THCB

'k

L

Other than the THCB signature at offset OCh, it’s a little hard to see

what’s going on here. However, the VMM.H file that comes with the

DDK has a C structure for the THCB:

struct tcb__s 1

ULONG TCB_F1 ags

;

/*

ULONG TCB_Reservedl

;

/*

ULONG TCB_Reserved2

;

/*

ULONG TCB_Si gnature

;

ULONG TCB_C1 i entPtr

;

/*

ULONG TCB_VMHandl e

;

/*

USHORT TCB_Th read I d

;

/*

USHORT TCB^PMLockOri gSS

;

/*

ULONG T C B_PMLockOri gESP

;

ULONG TCB_PM Loc kO r
i g E I P

;

/*

ULONG TCB_PMLockStackCount

;

USHORT T C B_PM Loc kO r
i gCS

;

USHORT TCB_PMPSPSel ector

;

ULONG TCB_ThreadType; /*

Thread status flags */

Used internally by VMM */

Used internally by VMM */

Client registers of thread */

VM that thread is part of */

Unique Thread ID */

Original SS : ESP before lock stack */

Original C S : E I P before lock stack */

dword passed to VMMCreateThread */
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USHORT TCB_padl

;

/* reusable: for dword align */

UCHAR TCB_pad2

;

/* reusabl e ; for dword align */

UCHAR TCB_extErrLocus

;

/* extended error Locus */

USHORT TCB_extErr

;

/* extended error Code */

UCHAR TCB_extErrActi on

;

/* " " Action */

UCHAR TCB_extErrCl ass

;

/* "
" Class */

ULONG TCB_extErrPtr

;

/* " pointer */

There are a few interesting things here — note, for example, that

THCBs are backlinked to VMCBs — but there’s one item that really

jumps out:

USHORT TCB_PMPSPSel ector

;

Now, I ask you: How can anyone claim that Win32 applications

don’t use MS-DOS when, in the documented thread structure, there’s a

field that holds a PSP? We saw in Chapter 1 that Win32 tasks have

PSPs. We saw that this flowed logically from USER32’s dependence on

the Win 16 USER module. But, given Microsoft’s frequent claims that

“Windows 95 finally breaks all ties with the real-mode MS-DOS code,”

it’s something of a shock to see the primary DOS data structure, the

PSP, explicitly mentioned in the middle of one of the key Win32 data

structures, the thread.

But let’s see if it’s really a real-mode DOS PSP that each thread is

connected to. Laying the VMM.H C structure over the hex dump, we see

that, for this particular thread (which, you’ll recall, is the system thread),

TCB_PMPSPSelector is 00A7h. The name says “PM” and “selector,” so

it must be a protected-mode selector to a PSP. Let’s look at 00A7 in a

debugger:

: db a 7 :

0

00A7 : 0000 CD 20 00 9F 00 9A F0 FE -ID F0 82 0C 3C FD F2 0C <. .

00A7 : 0010 35 FD 74 01 93 12 D5 17 -07 01 01 00 02 03 FF FF 5 . t

00A7 : 0020 FF FF FF FF FF FF FF FF -FF FF FF FF B7 00 24 02 $

00A7 : 0030 CB 18 80 00 00 00 FC 29 -FF FF FF FF 00 00 00 00 )

Those first two bytes, CD 20, are a dead giveaway: it’s a PSP. But just

to be sure, let’s see if it has an environment segment at offset 2Ch. Here,

the WORD at 2Ch is 00B7h:

: d b7 :

0

00B7 : 0000 4D54 3D50 3A43 575C 4E49 4F44 5357 5400 TMP=C: \WI NDOWS .

T

00B7 : 0010 4D45 3D50 3A43 575C 4E49 4F44 5357 5000 EMP=C : \WIND0WS .

P

00B7 : 0020 4F52 504D 3D54 7024 6724 5000 5441 3D48 ROM PT= $ p $ g . PATH=
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Looks like an environment segment, all right. This is getting good.

How about the parent PSP at offset 16h? Hmm, the WORD at offset

16h is 17D5h, which somehow looks like a real-mode paragraph address,

not a protected-mode selector. In Soft-ICE, putting an & before an

address specifies a real-mode address:

: db & 1 7 d 5

:

1

17D5 : 0000 [CD__20J 80 9F 00 9A F0 FE-1D F0 41 01 5C 17 A1 10 .

17D5 : 0010 62 14 74 01 93 12 5C 17-01 01 01 00 02 FF FF FF b.

17D5 : 0020 FF FF FF FF FF FF FF FF- FF FF FF FF C8 17 F2 01

. A. \

.

Sure enough, another PSP. It’s a little strange that the system thread’s

PSP holds the protected-mode selector of its environment and the real-

mode segment of its parent, but otherwise it’s a PSP.

Yes, but is it in conventional memory? Were this structure located in

extended memory, it wouldn’t matter if it looked like a PSP — DOS
wouldn’t be able to touch it, so it would be a protected-mode structure

with the mere form of PSP. To be a genuine DOS data structure, it must

be located in conventional memory. To see if this PSP is located in con-

ventional memory, we can use the debugger to examine the Local

Descriptor Table (LDT) entry for selector 00A7h:

: 1 dt a7

00A7 Da t a 1 6 Base=00018BB0 Li m=000000FF DPL=3 P RW

The address 18BB0h is definitely in conventional memory. Let’s just

double check that this is a PSP:

: d & 1 8b b :

0

18BB : 0000 [CD~20| 00 9F 00 9A F0 FE-1D F0 82 0C 3C FD F2 0C

18BB : 0010 35 FD 74 01 93 12 D5 17-07 01 01 00 02 03 FF FF

18BB : 0020 FF FF FF FF FF FF FF FF- FF FF FF FF B7 00 24 02

This structure at real-mode address 18BB:0 looks pretty similar to the

structure we dumped out at protected-mode address 00A7:0000. It had

better look similar, because it’s the exact same structure! Because selector

A7h has a base address of 18BB0h, protected-mode address 00A7:0000

and real-mode address 18BB:0000 point to same block of memory. And

this block of memory is a DOS PSP. We’ll look at these thread PSPs in

Chapter 13 (in the “Win32 and the PSP” section). Note, though, that

each thread does not have its own PSP. Instead, a PSP goes with a Win-

dows task, and a task can have more than one thread.

Rather than try to figure out what’s what in the THCB from a raw hex

dump, we can use the Soft-ICE THREAD command:
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: thread C4520298

Ring0TCB ID Context Ring3TCB Process TaskDB PDB SZ Owner

C4520298 0001 C0FD3B7C 8117B314 8117B23C 0097 00A7 32 VM 01

CS:EIP=05FB:000001F8 SS : ESP=0CCB : 00000226 DS=0000 ES=FFFF FS=0000 GS=0000

EAX=C 0 FD 1 60 7 EBX=00010018 ECX=00020004 EDX=00000004

ESI =00000080 EDI =00000090 EBP=00000000 ECOD E=C0000004

TLS Offset 00CC = 00000000 VPICD

TLS Offset 00D0 = 00000000 SHELL

TLS Offset 00D4 = C0FD8E48 VMCPD

TLS Offset 00D8 = C0FD1834 VWIN32

TLS Offset 00DC = C0FD1204 PAGESWAP

The Soft-ICE output indicates that C4520298h is the Ring 0 THCB
for use by VxDs. A Win32 application that called GetCurrentThreadld

would get back a different handle: the one Soft-ICE identifies as the Ring

3 THCB. (See the CHGDIR.C Win32 program in Chapter 13 for an

odd use of GetCurrentThreadld.)

The TLS referred to by Soft-ICE means Thread Local Storage. We
can see that some VxDs such as VPICD, SHELL, and so on, store vari-

ables on a per-thread basis. As instance data is to VMs (see Chapters 3

and 4), TLS is to threads.

We were looking at new functions provided byVMM in Windows 95.

Besides thread and synchronization services, another interesting set of

newVMM services provides the ability to undo some of the olderVMM
services. Lor example, VxDs have always been able to hook I/O ports (or,

“call this function whenever someone does an IN or OUT to this I/O

port”), using VMM’s Install_IO__Handler and Install_A4ult_IO_Handlers

services. Similarly, VxDs could hook the V86 interrupt chain, hook V86
faults, and even hook device services. (In other words, a VxD can inter-

cept all calls to anyVMM VxD or service such as Get_Cur_VM_Handle,

either to spy on or modify the service.)

But there was never a provision for removing these handlers. With

Windows 95 there must be such a provision, because dynamic VxDs can

be unloaded and reloaded due, for example, to Plug and Play events. So

VMM in Windows 95 provides new removal functions such as:

010116 @ 00001161

010117 @ 000010C5

010118 @ 00000bee

010119 @ 00001520

01011a @ 00001527

01011b @ 00001 52e

01011c @ 0000004c

Remove_IO_Handl er

Remove_Mul t_I0_Handl ers

Unhook_V86_Int_Chai

n

Unhook_V86_Faul

t

Unhook_PM_Faul

t

Unhook_VMM_Faul

t

Unhook_Devi ce_Servi ce

But, wait, there’s more! Most of the new Win32 memory management
functionality in Windows 95, such as memory-mapped file I/O (which in
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essence can make a data file into a Windows virtual-memory swap file;

see the discussion of memory-mapped files in Chapter 14), is based on a

set of new services provided by VMM:

0 1 0 1 1 d @ 000001f

0

0101 le @ 00001890

01011f @ 00001bc7

010120 @ 00001b20

010121 @ 00001 b99

010122 @ 00001 bee

010123 @ 00000584

010124 @ 0000034b

010125 @ 000005C0

010126 @ 00000334

010127 @ 0000745c

010128 @ 00001770

MMReserve

MMCommi

t

MMDecommi t

MMRegi sterPager

MMQueryPagerlnfo

MMDeregi sterPager

MMCreateContext

MMDestroyContext

MMAttach

MM FI ush

MMCopy

MMCommi tPhys

All registry access goes through a set of newVMM functions; the

Windows registry APIs are just wrappers around calls to VMM:

010148 @ 00005066

010149 @ 0000506b

01014a @ 00005057

01014b @ 00005070

01014c @ 00005075

0 1 0 14d @ 00005084

0 1 0 1 4e @ 000050b3

RegOpenKey

RegCl oseKey

RegCreateKey

Reg De 1 eteKey

RegEnumKey

RegQueryVal ue

RegSetVal ue

Then, there’s new scheduler stuff:

010160 @ 00008bb2

010161 @ 00008blc

010162 @ 00008784

010163 @ 0000864a

010164 @ 000086a

b

010165 @ 000086e8

Time_Sl i ce_Sys_VM_Idl

e

Time_Sl i ce_Sl eep

Boost_Wi th_Decay

Set_Inversi on_Pri

Reset_Inversi on_Pri

Release Inversion Pri

And on, and on.... But with all this newVMM functionality, it’s impor-

tant not to lose sight of the fact that Windows 95’s VMM is simply the

next iteration of the same VMM that appeared in WfW 3 . 1 1 ,
in Windows

3.1 Enhanced mode, and in Windows 3.0 Enhanced mode. It’s quite sig-

nificant that in WfW 3.11, Microsoft could take an early pre-beta version

of 3 2 -bit file access from the Windows 95 project and drop it in with an

essentially unchanged copy of the Windows 3.1 VMM. The functionality

provided by the earlierVMM provided a solid foundation on which to

build Windows 95.
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ukds: isrs of me 1990s

We’ve just looked at VMM. Remember that about 40 other VxDs are

also part ofVMM32.VXD. The [386Enh] section of SYSTEM.INI uses

asterisks to indicate VxDs that are built into VMM32.VXD (such as

device=*vpicd and device=*v86mmgr). These VxDs include the Windows
hardware virtualization layer, which provides 3 2 -bit protected-mode

emulation of most standard PC and BIOS functionality. Here are just a

few examples:

VxD Description

VPICD Virtual Programmable Interrupt Controller (PIC) Device

VDMAD Virtual Direct Memory Access (DMA) Device

VKD Virtual Keyboard Device

VDD Virtual Display Device

VMD Virtual Mouse Device

VTD Virtual Timer Device

IOS I/O Supervisor (formerly BLOCKDEV and Virtual Hard Disk Device)

The Windows file system also lives inside VMM32.VXD; for example:

VxD Description

IFSMgr Installable File System (IFS) Manager

VCACHE Virtual Cache

VFAT Virtual DOS File Allocation Table (FAT) system

VSHARE VxD replacement for SHARE.EXE

Let’s look at just one of these examples in more detail. Here’s a small

part of the verbose output W3MAP shows for IFSMgr in VMM32.VXD:

Module name: IFSMgr

I FSMg r_DDB @ 0001 : 00002bf

c

Real-mode Init @ 0004:00000000

Device # 0040

32-bit file access Installable File System (IFS) Manager

Version 3.00

Init order: A0011000

DDB_Control_Proc @ 000000cc

DDB_V86_API_Proc @ 00001ca7

DDB_Servi ce_Tabl e @ 00002a60 (67 services)

400000 @ 0000031a

400001 @ 00000321

400002 @ 00000367

400003 @ 00000395

400004 @ 000003f

a

400005 @ 000003f

a

I FSMg r_Ge t_V e r s i on

I FSMg r_Reg i s ter Mount

I FSMg r_Reg i sterNet

I FSMg r_Reg i s ter Mai 1 SI ot

I FSMg r_Atta ch

I FSMg r_Det a c h
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400006 @ 00001 9e4

400007 @ 0000ef 7

c

400008 @ 0000a f 30

400009 @ 00000401

40000a @ 00001628

40000b @ 0000del8

. . . etc . ...

40005f @ 000099b8

400060 @ 00003fdc

400061 @ 000 1 20ec

400062 @ 000003c4

400063 @ 00007 2 c8

400064 @ 00000429

400065 @ 00007464

400066 @ 000099bc

IFSMgr_Get_NetTime

I FSMg r_Get_DOST i me

I F S M g r_S etupConnecti on

I FSMg r_De refConnect i on

I FSMgr_ServerDOSCal 1

I FSMgr_Compl eteAsync

I FSMg r_FSDAtt a chS FT

I FSMgr_GetT i meZoneBi as

I FSMg r_P N P E ven

t

I FSMg r_Reg i sterCFSD

IFSMgr_Wi n32MapExtendedFlandl eToSFT

I FSMg r_DbgSet F i 1 eFIandl eLimi t

I FSMg r_W i n 32Ma pS FTTo Ex t e n d ed FI a n d 1 e

I FSMg r_FSDGetCur rent Dri ve

Given that IFSMgr itself has been publicly available since the intro-

duction ofWfW 3.11 in late 1993, it’s rather shocking that the program-

mer’s documentation for this vital interface is available only as part of the

Chicago beta: Why should a developer sign a Chicago beta NDA to learn

about the file system of a released product? Furthermore, as of this writ-

ing, the documentation in the Chicago DDK is limited to two rather

incomplete header files, IFSMGR.INC and IFS.H. And other parts of

3 2 -bile file access, such as VFAT (which is also part of the released WfW
3.11 product) appear to not be documented at all.

Even though the IFSMgr header files included with the Windows 95

DDK are rather bare-bones, they can still provide us with important infor-

mation about the relationship ofWindows 95 to MS-DOS. IFSMGR.INC
has the same references to the SFT (the real-mode DOS System File Table)

that we see in the W3MAP output. There’s also an interesting reference to

IFSMgr_ServerDOSCall, which emulates the odd undocumented INT 2 lh

function 5D00h (see Undocumented DOS, 2d ed., p. 295, 723).

We could spend ages looking at each of the VxDs in VMM32.VXD.
Besides the ones already mentioned, the following VxDs are also quite

important:

VxD Description

VWIN32

VCOND

VXDLDR

CONFIGMG

DOSMGR

V86MMGR

SHELL

VxD to support Win32 applications in Windows 95

Virtual CON Device; used for Win32 Console applications

Dynamic VxD loader/unloader; used in Plug and Play

Plug and Play Configuration Manager

Windows DOS extender; provides protected-mode INT 21h

V86 Memory Manager; provides XMS, EMS, DOS extender

translation

VxD to access Windows API; includes “Appy Time”
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Well, that’s enough about VMM32.VXD for right now. It was a long

time ago, but you may dimly recollect that we were walking through the

Windows boot process and had encountered these two lines in Figure 2-2:

OPEN C:\WIND0WS\system\vmm32.vxd

EXEC C:\WIND0WS\system\vmm32.vxd

Throughout Figure 2-2, we can see Windows 95 (which at this point in

the boot process is just a collection ofVxDs) look for various real-mode

DOS device drivers, most of which I didn’t have installed:

OPEN QEMM386$ [FAIL 2] Quarterdeck QEMM/386

OPEN 386MAX $ $ [FAIL 2] Qualitas 386Max

OPEN SMARTAAR [FAIL 2] SmartDri ve

OPEN $DebugDD [FAIL 2] WDEB386.EXE (Windows kernel

OPEN NDISHLP! [FAIL 2] NDI SHLP . SYS (for NDIS 2.0)

OPEN I FS$HLP$ '
I FSHLP . SYS

OPEN CONFIG! CONFIG! in WINBOOT.SYS

OPEN SCSIMGR! [FAIL 2]

Windows 95 isn’t trying to locate these real-mode DOS device drivers so

it can push them aside. Instead, Windows 95 is trying to locate these real-

mode drivers so that, when it finds one of these drivers, a VxD will com-

municate with it via DOS IOCTL (INT 2 lh function 44h) calls, hand it

a V86 callback, and so on.

Throughout Figure 2-2, we also see Windows 95 loading a wide vari-

ety of additional VxDs (with .386 or .VXD extensions) that aren’t located

inside VMM32.VXD. In this particular configuration, for example, SYS-

TEM.INI contained device= directives to load the 3 2 -bit protected-mode

networking software:

OPEN C : \WINDOWS\system\vserver . 386

OPEN C: \WINDOWS\system\vredi r .386

OPEN C : \ W I NDOWS\system\ vnetbi os . 386

OPEN C : \WINDOWS\system\nwl i n k . 3 8 6

OPEN C:\WINDOWS\system\wsi px.386

OPEN C:\WIND0WS\system\wsock.386

OPEN C : \WINDOWS\system\vnetsup . 386

OPEN C:\WINDOWS\system\netbeui .386

OPEN C:\WIND0WS\system\ndis.386

OPEN C: \WINDOWS\system\ndi s 2s up. 386

OPEN C: \WINDOWS\system\msodi sup. 386

OPEN C:\WIND0WS\system\eel6.386

Server for peer-to-peer access

Network redirector

Virtual NetBIOS (INT 5Ch, etc.)

Microsoft NetWare-compatible protocol

Windows Sockets for Novell IPX

Windows Sockets

"Win386 Virtual Net Support"

NetBIOS Extended User Interface

NDIS 3.0

Map between NDIS 2.0 and 3.0

"ODI support mapper for ODI MLID"

Intel EtherExpress 16 (NDIS 3.0)

The EE 16. 3 86 VxD at the bottom of this list is what does actual

“work”: talking to the network adapter card. As is typical in networking

software, a packet of data must negotiate many layers before it is sent

over the wire to another machine.
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Microsoft’s Windows for Workgroups 3.11 Resource Kit contains

reasonable descriptions for many of these files and for how they all fit

together. Adrian King’s Inside Windows 95 has a complete chapter on Win-

dows 95 networking (pp. 341-380). After leaving Microsoft, King was in

charge of development at Artisoft, makers of the famous LANtastic peer-

to-peer network, so this stuff is right up his alley.

Returning once again to Figure 2-2: all these .386 and .VXD files use

the 3 2 -bit Linear Executable (LE) file format (the LX format used by

OS/2 2 .x 3 2 -bit applications is a variant of the LE format). The
LEDUMP utility from the Unauthorized Windows 95 disk displays the

contents of these VxDs. For example, NDIS.386 contains the 32-bit

protected-mode implementation of version 3.0 of Microsoft’s Network

Device Interface Standard (NDIS):

C : \ U N AUTHW> 1 edump \wi ndows\system\ndi s . 386

DDB_V86_API_Proc @ 00004512

DDB_PM_API_Proc @ 00004512

DDB_Servi ce_Tabl e @ 00000eb0 (57 services)

280000 @ 00000920

280001 @ 00000cc5

280002 @ 00000cf

9

280003 @ 00000cd9

280004 @ 00000ced

Ndi sGetVersi on

Ndi sAl 1 ocateSpi nLock

Ndi sFreeSpi nLock

Ndi sAcqui reSpi nLock

Ndi s Re 1 easeSpi nLock

28002d @ 00000d50

28002e @ 00000d55

28002f @ 00003d5a

280030 @ 00003d5f

Ndi sSend

Ndi sT ransferData

Ndi s Reset

Ndi sRequest

280039 @ 00000d5a

28003a @ 00000d5f

28003b @ 00003d7

8

28003c @ 00003d 7

d

Ndi sCompl eteSend

Ndi sCompl eteTransferData

Ndi sCompl eteReset

Ndi sCompl eteRequest

In addition to showing Windows 95 in the process of loading those

VxDs that are explicitly requested with device= statements in SYSTEM.
INI, Figure 2-2 also shows the Windows 95 I/O Supervisor (IOS) dynam-

ically loading VxDs from the IOSUBSYS subdirectory. These include the

RMM, voltrack, and DiskTSD VxDs. RMM is the Real Mode Mapper,

which makes a real-mode disk driver look as though it were a protected-

mode FastDisk driver. In Windows 95, 3 2 -bit file access requires 3 2 -bit

disk access, so ifyou actually have a real-mode disk driver (DBLSPACE
.BIN will be the best example until Microsoft ships a DblSpace VxD for

Windows 95), RMM makes it appear as though it were a VxD. The

voltrack VxD takes care ofvolume tracking for drives with removable



Unauthorized Windows 95

media, such as floppy disks or tape backup. DiskTSD is a type specific

driver responsible for mapping logical requests to physical disk requests.

Toward the bottom of Figure 2-2, we can see that Windows 95 looks

for a batch file called WINSTART.BAT. As noted earlier, I edited the fig-

ure at this point, because INTRSPY showed Windows 95 searching for

this file in every subdirectory on the PATH. I don’t have a WIN-
START.BAT, so the search was unsuccessful. When this batch file exists,

though, Windows 95 uses it to run DOS software (generally TSRs) in the

System VM. There’s a brief discussion ofWINSTART.BAT at the end of

Chapter 6. Note that it is not some vague entity “Windows 95” that

looks for WINSTART.BAT, but specifically the DOSMGR VxD within

VMM32.VXD.
At the very end of Figure 2-2, we see that Windows 95 executes

KRNL386.EXE. This is the Win 16 kernel, which we’ll look at in a few

moments. Again, note that it’s not some vague “Windows 95” that loads

KRNL386.EXE: the SHELL VxD within YrMM32.VXD is what loads

KRNL386.EXE. SHELL will load any file called KRNL386.EXE; we’ll

see in Chapter 6 that this is quite significant.

While we’ve spent a lot of time looking at the VMM and VxD layer

ofWindows 95, our examination has obviously been superficial: not a

grand tour of Chicago, but a hurried and harried look at a few of its

underground passages, plumbing, and sewers. However, hopefully it has

at least given you the flavor— or perhaps the smell — of the Windows
95 operating system.

Notice that even though we haven’t looked at the Win 16 or Win32
kernels yet, I’m already referring to the operating system. That’s because

VMM is the Windows operating system. It will probably require the

remainder of this book to convince you of this. In the meantime, try to

remember two things as you read along: first, that the VMM is what

makes it possible for Microsoft to call Windows 95 a complete operating

system, and second, that the VMM was also in the Windows 3.x operating

system. Therefore, to the extent that Windows 95 is a complete operating

system, the same thing can be said ofWfW 3.11, Windows 3 . 1 Enhanced

mode, and even Windows 3.0 Enhanced mode.

Now, ifVMM is the operating system, what are these VxDs we’ve

seen such as IFSMgr, DOSMGR, VPICD, and so on? There is very

general agreement that VxDs play an enormous role in Windows 95. For

example, Microsoft’s “Chicago” Reviewer’s Guide says:

Most computer system functionality and support is handled by VxDs in Chicago

rather than by real-mode code or BIOS routines, (p. 84)
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Chicago’s networking components are built as Windows VxDs. (p. 132)

Virtual device drivers are an integral part of the Chicago operating system and have

a more important role than in Windows 3.1, as many operating system components

are implemented as VxDs. (p. 85)

Indeed, to a large extent VxDs need to be considered alongside VMM
as part of the Windows operating system. In another sense, though,

VxDs are user-installable extensions to the Windows operating system.

As noted earlier, Microsoft implemented 3 2 -bit file access in WfW 3.11

by dropping some VxDs on top of a basically unchanged VMM. This

means that some enterprising third-party vendor could have done the

same thing, at least in principle.

In other words, then, VxDs are an integral (sorry, I mean “integrated”)

part of the operating system that can be supplied by anyone with a copy of

the Windows Device Driver Kit.

Hmm, VxDs are user-suppliable parts of the operating system. This

kind of carte blanche for anyone and their brother to dive in and hack the

operating system might remind you of something: the DOS memory-

resident program (TSR) craze in the 1980s. Yes, VxDs are to Windows
as TSRs were to DOS.

And again, this is true not only in Windows 95, but also in Windows

3.x. Consider just two VMM services: Call_Priority_VM_Event and

Hook_V86_Int_Chain. Call_Priority_VM_Event is the whole basis for

inter-VM communications in Windows. As the Microsoft KnowledgeBase

puts it, “Call_Priority_VM_Event is one of the most valuable virtual device

(VxD) calls available.” Hook_V86_Int_Chain is the whole basis for bypass-

ing DOS. These two services first became available in Windows 3.0, and

they remain in Windows 95 essentially unchanged (Windows 95 adds a

CallJPriority__Thread_Event service). There’s a tremendous amount of

power— having nothing to do with devices or device drivers— provided

by just these two services, and they are only directly callable from a VxD.

(And they don’t take American Express.)

Seen from this perspective, the names Virtual Device Driver and

Device Driver Kit are unfortunate. They automatically turn off most

Windows programmers, who quite sensibly feel that device-driver writ-

ing is an area they would rather stay away from. More appropriate names

would have been “TSRs for Windows” or “Please Hack Our Operating

System.” As it is, the names VxD and DDK alienate many programmers

who would otherwise jump at this stuff. For example, Matt Pietrek— the

ultimate operating-system hacker if there ever was one — had the follow-

ing to say about VxDs in Microsoft SystemsJournal (August 1994, p. 30):



Unauthorized Windows 95

These days some developers are in the habit of saying things like “Chicago is all

VxDS.” But while VxDs play a big role in Chicago, Chicago is not implemented

entirely in VxDs. If your programs stay within the Win32 API, most of the system

code your programs use will be primarily in Ring 3 system DLLs. Unless you have a

special need for things like interrupt handlers, you don’t have to write a VxD to run

under Chicago. I think large-scale Chicago applications comprised of mostly VxD

code will be a rarity rather than the norm.

Admittedly, very few Windows programmers will be using VxDs to

write hardware interrupt handlers or to drive devices. But a short time

spent with the DDK should convince you that there’s a ton of docu-

mented functionality available to VxDs that is otherwise difficult or

impossible to get to under Windows. Whenever a programmer says that

something is “impossible” in Windows, I suspect the correct reply will be

“No it isn’t. Write a VxD.” Just as TSRs allowed DOS programmers to do

the otherwise-impossible in the 1980s, VxDs are going to let Windows

programmers go anywhere and do anything in what’s left of the 1990s.

Whether this is ultimately a good thing or a bad thing (remember “TSR
RAM cram”?; remember “load me last”?) is of course another question.

From KRIIL386.EKE to CDB32.EXE

At the tail end of Figure 2-2, we saw Windows 95 (or to be more precise,

the SHELL VxD) execute the Win 16 kernel, KRNL386.EXE. The
Win 16 kernel is obviously a vital part ofWindows 95, but I’m not going

to say much about it here, because Matt Pietrek— yes, the same one with

whom I was disagreeing about VxDs a moment ago — does a superb job

discussing the Win 16 kernel in his book Windows Internals. (Matt’s cover-

age of the kernel is so thorough that the book almost ought to be called

Kernel Internals.) Chapter 1 of Matt’s book (“The Big Bang: Starting Up
and Shutting Down Windows,” pp. 1-78) covers KRNL386’s initialization

in great detail.

KRNL386.EXE provides Win 16 KERNEL API functions such as (to

choose a few at random) GlobalAlloc, LoadLibrary, LoadResource, Find-

Atom, and SetSelectorBase. KRNL386 uses the 16-bit Segmented Exe-

cutable or New Executable (NE) file format. In contrast to the situation

with the W3 and LE file formats used for VxDs, there are many utilities

that know about the NE file format, so there are plenty of tools you can

use to examine KRNL386.EXE. For example, Borland C++ comes with

TDUMP, various versions of Microsoft C have provided EXEHDR, and
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my own Windows Source product comes with EXEDUMP. (It’s a good

thing that Windows 95 has long filenames: the 8.3 name space is starting

to get so crowded that it’s hard to find reasonable, unique names for utili-

ties that dump out executable headers.)

You can also use the Windows 95 shell to look at KRNL386.EXE or

any Win 16 executable: just right-click on the executable, and then select

Quick View from the pop-up menu. (Well see in the following “Exploring

the Explorer” section that this right-click menu facility works off the Win-

dows 95 registry and is extensible.) Figure 2-4 shows some of the APIs

exported from KRNL386.EXE. Not all these APIs are documented; the

book Undocumented Windows
,
which I coauthored, was largely about those

functions exported from KRNL386.EXE in Windows 3.x that weren’t

mentioned in the Windows programmer’s reference or header files.

[To edit.

$BSlarl| SSLMy Computet) ^M*-dos_6 (.

Krnl386.exe - Quick View

Entry Table Index Name
0 Microsoft Windows Kernel Interface Version 4 00

103 NETBIOSCALL
108 SWITCH STACKTO
213 K213
418 G E T PR IVAT E PR 0 FI LE S E CT 1 0 N

69 FINDATOM
17 GLOBALFP.EE

210 K2l0
226 REGSETVALUEEX
230 GLOBALS MART PAGE LOCK
211 K211

1 FATALEXIT
222 REG DELETEVALUE
163 GLOBALLRUOLDEST
1 93 0040H
168 DIRECTRESALLOC
102 D0S3CALL
347 ISBADHUGEWRITEPTR
52 FREE PR OCIN STANCE

176 FREESELECTOR
178 WINFLAGS
53 CALLPR OCINSTANCE

132 GETWINFLAGS
421 SET FI LEAT TRIBUTES
318 FATALEXITHOOK

t\Hrnl386 ex...
’

[
5:17 PM

Figure 2-4: Chicago Explorer’s Quick View of KRNL386.EXE, showing a few of the more

than 200 APIs exported by the Winl6 kernel.

Well, we’ve reached the end of the Windows 95 boot process shown

back in Figure 2-2. As I pointed out earlier, Figure 2-2 provides a woe-

fully incomplete picture of the Windows 95 boot process, because once

3 2 -bit file access kicks in, Windows not only bypasses DOS for most file

I/O calls but also bypasses the INTRSPY utility (which is a DOS TSR
that loads before Windows).
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To see everything that happens after the SHELL VxD executes the

Winl6 kernel, we need to disable 32-bit file access. There’s a WIN /D:C

command-line option in WfW 3.11 to disable 32BLA, but this has no

equivalent in Windows 95. You’re not supposed to run Windows 95

without 32BLA. However, I found quite by accident that, in Beta-1 at any

rate, if the I/O Supervisor can’t find an IOSUBSYS subdirectory, it dis-

ables 3 2 -bit disk access in a way that also disables 3 2 -bit file access.

If 32BLA is disabled, INTRSPY sees the entire Windows 95 boot

sequence. Lor example, compare the following with the bottom of

Ligure 2-2:

OPEN C:\WINDOWS\WINSTART.BAT [FAIL 2] ;; look along path for WINSTART.BAT

OPEN C:\WINDOWS\system\LPTENUM.vxd

OPEN C:\WINDOWS\system\UNICODE.BIN

OPEN I FS $ H L P $

OPEN C:\WINDOWS\system\IOSUBSYS\hsflop.pdr [FAIL 3]

OPEN C:\WINDOWS\system\IOSUBSYS\esdi_506.pdr [FAIL 3]

OPEN C:\WINDOWS\system\IOSUBSYS\scsiport.pdr [FAIL 3]

OPEN C:\WINDOWS\system\VFD.VXD

OPEN C : \WINDOWS\system\krnl 386 . exe

OPEN C:\WINDOWS\USER.DAT

OPEN C:\WINDOWS\USER.DAT

XOPEN C:\WINDOWS\IOS.LOG

OPEN C:\WIND0WS\system\KERNEL32.DLL

EXEC C:\WIND0WS\system\krnl386.exe

OPEN C:\WIND0WS\system\KERNEL32.DLL

OPEN C:\WIND0WS\SYSTEM\KRNL386.EXE

In particular, note the references to KERNEL32.DLL, which is the

Win32 kernel. These references didn’t show up in Ligure 2-2. Clearly,

the call to open the KERNEL32.DLL file wasn’t sent down to DOS, and

consequently wasn’t seen by INTRSPY.
The full INTRSPY log is far too long (about 500 lines of OPENs and

LINDs) to show in its entirety, so we’ll just look at the highlights here.

As we just saw, KERNEL32.DLL is loaded. INTRSPY doesn’t tell us

who loaded KERNEL32.DLL, though. This is an interesting point

because of something that Adrian King says in Inside Windows 95 (p. 147):

“the 16-bit Kernel module will load the VWIN32 VxD the first time

there’s a call to any 3 2 -bit API. VWIN32 loads the three DLLs and

returns to the 16-bit Kernel, which then calls the KERNEL32 DLL ini-

tialization function. Once this call is complete, the Win32 subsystem is

ready for use.”

Given that the SHELL VxD loads the Win 16 kernel, it’s quite reason-

able that the VWIN32 VxD would load the Win32 kernel. And, in fact, it

is VWIN32.VXD that loads KERNEL32.DLL. But the statement by

King that I’ve just quoted has the following footnote:
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Given that the Windows 95 shell is a 32-bit application, the loading and initialization

of the Win32 subsystem will actually occur during the system startup phase.

This implies that if the Windows 95 shell were a 16-bit application,

the Win32 subsystem wouldn’t load until you ran a Win32 application.

It’s easy to make the Windows 95 shell a 16-bit application; all you

have to do is change the SHELL=CAB 3 2 .EXE or SHELL=CAB32.EXE
/NE line in the [boot] section of SYSTEM.INI. For example, Windows
is still largely a Solitaire-playing engine, and you can make Windows 95

reflect this fact by temporarily making SOL.EXE (which is a Win 16

application) the shell:

[boot]

shel 1 =s o 1 . exe

; ; ; shell =cab32 . exe

This produces a version of Windows 95 with which you can do noth-

ing but Solitaire. But does it produce a pure Win 16 version of Windows
95? No, of course it doesn’t. Given that KRNL386.EXE thunks up to

KERNEL32.DLL for some operations, it’s hard to see how loading

KERNEL32 would await the coming of a Win32 shell that (given the

ease of changing the shell= statement) might never arrive.

At any rate, the VWIN32 VxD has loaded KERNEL32.DLL. This

DLL of course provides the Win32 kernel API, functions generally defined

in the WINBASE.H header file such as Create Fhread, MapViewOfFile,

CreateFile, and so on. As noted earlier, in many cases these Win32 APIs

rely on VMM or the VW IN 3 2 VxD.

Win32 executables such as KERNEL32.DLL use the Portable Exe-

cutable (PE) file format. This is a vast improvement over Microsoft’s pre-

vious executable-file formats.

Unfortunately, the Windows 95 shell currently doesn’t have a Quick

View DLL that displays PE files, but there are some character-mode

utilities available. The Unauthorized Windows 95 disk comes with a

W32DUMP utility that displays the imports (APIs used) and exports

(APIs provided) of a Win32 PE file. Phar Lap’s TNT product, which

supports the Win32 API under 3 2 -bit protected-mode MS-DOS, comes

with a ALAPEXE utility. And Microsoft C++ comes with DUMPBIN, a

Win32 Console application that not only displays the imports and

exports of a Win32 executable but also provides a /DISASM option.

Here’s a small fragment ofKERNEL32.DLL, as displayed by

DUMPBIN; note that I’ve just shown the Win32 kernel APIs whose

names start with Create:
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C : \MSVC32S\BIN>dumpbi n /exports \windows\system\kernel32.dll

3A 39 CreateConsol eScreenBuffer (0002a8b7

3B 3A CreateDi rectoryA (00012afb)

3C 3B CreateDi rectoryExA (00012b2d)

3D 3C CreateDi rectoryExW (000303c7)

3E 3D CreateDi rectoryW (000303be)

3F 3E CreateEventA (00012198)

40 3F CreateEventW (000303d0)

41 40 CreateFileA ( 00012bf 0

)

42 41 CreateFi 1 eMappi ngA (00012240)

43 42 CreateFi 1 eMappi ngW (000303e2)

44 43 CreateFi 1 eW (000303eb)

45 44 CreateKernel Thread (000116c7)

46 45 CreateMai 1 si otA (00011ebd)

47 46 CreateMai 1 si otW (000303d0)

48 47 CreateMutexA (00012137)

49 48 CreateMutexW
,
(000303c7)

4A 49 CreateNamedPi peA (000303f4)

4B 4A CreateNamedPi peW ( 000303f 4

)

4C 4B CreatePipe ( 0001 ldcl

)

4D 4C CreateProcessA (0001230e)

4E 4D CreateProcessW (000303fd)

4F 4E CreateRemoteThread (000303eb)

50 4F CreateSemaphoreA ( 000 1 2 1 f 5

)

51 50 CreateSemaphoreW (000303d0)

52 51 CreateTape Parti ti on ( 000303d0)

53 52 CreateThread (0001169d)

54 53 CreateTool hei p32Snapshot (00032b81

)

That last line is a good excuse for me to point out that KERNEL 3 2

provides a set ofWin32 ToolHelp functions to enumerate Win32 pro-

cesses, threads, heaps, and modules. These functions, such as Toolhelp32-

ReadProcessMemory, Process32First, Process 3 2Next, Thread32-First,

Thread32Next, and so on, are documented in Microsoft’s TLHELP32.H
header file.

Naturally, not all functions exported from KERNEL32.DLL are doc-

umented (at least in the current SDK). The following are some that I use

or discuss in other parts of this book:

127 127 GetProcAddressl6 (0001 14eb

)

160 15F GetpWi nl6Lock (0001cd32)

1B0 1AF LoadLi braryl6 (00021d52)

1F4 1F3 QT_Thunk (00001247)

2A5 2A4 VxDCal 1 0 ( 00001f 0c

)

2B8 2B7 Wi n32Handl eToDosFi 1 ehlandl e (00023d94)

VxDCallO is particularly powerful. As shown in Chapter 14 (WIN32-
PSPC), VxDCallO allows Win32 applications to call a set ofWin32 services

provided by VxDs such as VWIN32, VMM, and VCOND. Two of the ser-

vices provided by VWTN32 give Win32 applications an easy way to make
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DOS and DPMI calls. This is important because Win32 applications nor-

mally cannot use direct INT instructions in Windows 95.

After KERNEL32.DLL loads, the next interesting thing that INTR-
SPY shows is Windows 95 loading Win 16 device drivers (these Win 16

drivers should not be confused with 3 2 -bit VxDs):

XOPEN C:\WINDOWS\SYSTEM\system.drv

XOPEN C:\WINDOWS\SYSTEM\keyboard.drv

XOPEN C:\WINDOWS\SYSTEM\mouse.drv

XOPEN C:\WINDOWS\MOUSE.INI

XOPEN C:\WINDOWS\systein.ini

XOPEN C:\WINDOWS\SYSTEM\frainebuf.drv

XOPEN C:\WINDOWS\SYSTEM\DIBENG.DLL

XOPEN C:\WINDOWS\SYSTEM\sound.drv

XOPEN C:\WINDOWS\SYSTEM\comtn.drv

KRNL386.EXE uses run-time dynamic linking to load these Win 16

drivers (see InitFwdRef in Windows Internals, pp. 47-50).

It’s curious that these Win 16 drivers don’t appear in Microsoft’s archi-

tectural diagrams for Windows 95, because they play a crucial role in the

Windows messaging system. Much has been written about desynchro-

nized input queues in Windows 95 (Matt Pietrek has a good discussion in

“Investigating the Hybrid Windowing and Messaging Architecture of

Chicago,” Microsoft Systems Journal, September 1994) and how this differs

from messaging in Windows 3.x, but it’s also important to note that many
aspects of the Windows 3.x message system remain relatively unchanged

in Windows 95. In particular, Win 16 drivers such as MOUSE.DRV,
KEYBOARD.DRV, and SYSTEM.DRV are still involved in the process

of turning hardware interrupts into WM_XXX messages.

Windows messages like WM_LBUTTONDOWN and WM_KEY-
DOWN start life as hardware interrupts, of course. Hardware interrupts

are handled by the VPICD (the Virtual PIC Device) VxD, and other VxDs
such as VMD (Virtual Mouse Device), VKD (Virtual Keyboard Device), or

VTD (Virtual Timer Device) call the VPICD_Set_Int _Request service to

simulate the hardware interrupt into an appropriate VM.
If the simulated interrupt goes to the System VM, where Win 16 and

Win32 applications run, it is picked up by a 16-bit Windows device

driver such as MOUSE.DRV, KEYBOARD.DRV, or SYSTEM.DRV
(which handles the timer). If one of these 16-bit device drivers hooks a

hardware interrupt, it might think it’s partying with the hardware, but in

fact it’s just receiving one ofVPICD ’s simulated interrupts. (On the other

hand, some of these drivers, like MOUSE.DRV, do talk directly to the

appropriate VxD.)
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Figure 2-5: Chicago Explorer’s Quick View of USER.EXE, showing a few of the more

than 400 APIs exported by the Winl6 windowing and user interface module.
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Figure 2-6: Chicago Explorer’s Quick View of GDI.EXE, showing a few of the almost 400
APIs exported by the Winl6 Graphical Device Interface module.

The device driver’s interrupt handler is responsible for invoking a func-

tion in USER which, in turn, puts a message on the System Message
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Queue. KEYBOARD.DRY’S INT 9 handler calls the Keybd_Event routine

in USER (Undocumented Windows
, pp. 467-469). SYSTEM.DRV’s TNT 8

handler invokes any callback routines installed with CreateSystemTimer

( Undocumented Windows, pp. 602-607); the SetTimer API provided by

USER is based on a callback that USER installs with CreateSystemTimer.

In other words, all hardware events seen even by Win32 applications

come from Win 16 drivers such as MOUSE and KEYBOARD.
At this point, the INTRSPY log shows Windows 95 loading a huge

number of DLLs. These include GDI.EXE, GDI32.DLL, USER.EXE,
and USER32.DLL. Figures 2-5 and 2-6 show a few of the many APIs

provided by USER.EXE and GDI.EXE. We’re not going to plow

through all these DLLs; it would take far too long and it’s not clear we’d

learn anything substantially different from what we already know about

Windows 95, anyway. Huge amounts of Windows functionality is pro-

vided via DLLs, and in Windows 95 this includes Win32 DLLs. There’s

not a whole lot else to say.

Exploring me Explorer

Finally, we come to the most visible part ofWindows 95. The shell, which is

also sometimes called the Explorer or the Cabinet, is shown in Figure 2-7.
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Figure 2-7: The default Chicago shell provided by CAB32.EXE (a Win32 application).
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The Windows 95 shell is a Win32 application, CAB32.EXE:

XOPEN C:\WIND0WS\CAB32.EXE

XOPEN C:\WIND0WS\SYSTEM\SHELL32.DLL

XOPEN C:\WIND0WS\SYSTEM\shelll6.dll

XOPEN C:\WINDOWS\icocache.dat

XOPEN C:\WINDOWS\SYSTEM\DIBENG.DLL

XOPEN C:\WINDOWS\fonts\coure.fon

XOPEN C:\WINDOWS\cabinet.ini

FIND C :

*

FIND C:\WIND0WS

FIND C:\Windows\Desktop

FIND C:\Windows\Desktop\*.*

; ... Explorer loading lots of stuff here ...

XOPEN C:\WINDOWS\SYSTEM\LINKINFO.DLL

XOPEN C:\Wi ndows\ Programs \ Exp 1 orer . 1 nk

XOPEN C:\Windows\Desktop\Windows 95b. Ink

XOPEN C:\Wi ndows\Programs\Ms-dospr . Ink

FIND C:\Windows\Recent\*.

*

XOPEN C:\Wi ndows\Recent\Rel notes .Ink

But the Windows 95 shell isn’t exactly part of Windows 95. It’s

ridiculously easy to change SHELL=CAB32.EXE in SYSTEM.INI to

SHELL=WINFILE.EXE or SHELL=PROGMAN.EXE or even (as we
saw earlier) SHELL=SOL.EXE. At the same time, the highly attractive

shell is clearly one of Windows 95 ’s major selling points. Another possi-

ble sign that major advances (and the Windows 95 shell is a major

advance for the Windows user interface) don’t always require a funda-

mentally new architecture. CAB 3 2 is just an application.

Or is it? Running

DUMPBIN /IMPORTS \WIND0WS\CAB32.DLL

shows that it appears to use a large number of undocumented Win32
APIs from SHELL32.DLL. (Or at least, they’re undocumented at the

time of this writing.) For example, here are a few APIs that CAB 3 2

imports from SHELL32:

16 Reg i sterShel 1 Hook

1C5 FSNoti fy_Handl eEvents

4C7 SHRegi sterDragDrop

1C2 FSNoti fy_Regi ster

154 S H F i ndComputer

153 SHFindFiles

Running DUMPBIN /EXPORTS on \WINDOWS\SYSTEM\
SHELL32.DLL turns up these, plus many other functions. While a few

of these do appear in SHELL.H (for example, SHFileOperation and

ShellExecuteEx), the majority appear to be undocumented. Running



Chapter 2: Watching Chicago Boot

DUMPBIN /IMPORTS \ W I N DOWS \ S Y ST EM \ SHELL32.DLL

shows that, in turn, SHELL32 seems to use undocumented functionality

from KERNEL32, such as MapLS, QT_Thunk, and ThunkConnect32.

But of course SHELL32 is part of the operating system, so these are

internal interfaces. Well, perhaps CAB 3 2 is part of the operating system

too. (“It’s Integrated!”) Instead of using public interfaces, CAB 3 2 relies

on some intimate knowledge of Windows 95. Hmm, perhaps saying that

something relies on undocumented features and insider knowledge is just

another way of saying that it’s integrated?

One thing is conspicuously absent from the DUMPBIN /IMPORTS
lists for CAB 3 2 and SEIELL32: Object Linking and Embedding (OLE)!

Perhaps this will change before the commercial release of Windows 95

but— at least in Beta-1 — the Windows 95 shell doesn’t use OLE. This

is in sharp contrast to some statements made in the press, such as that

“Chicago’s shell uses OLE 2.0 extensively” (Ray Valdes, Dr. Dobb's Devel-

oper's Update
,
March 1994, p. 6).

Microsoft appears to have been careful not to say this. In an extremely

useful article on “Extending the Chicago Shell” (Microsoft Developer Net-

work News
,
July 1994, pp. 10-11), Kyle Marsh says merely that the shell is

similar to OLE:

The design of Chicago’s shell extensions is based on the Compound Object Model in

Object Linking and Embedding (OLE) version 2.0. The shell accesses objects via

interfaces, and applications implement those interfaces as shell extension dynamic

link libraries (DLLs), which are similar to the In-Proc Server DLLs in OLE 2.0.

I don’t know how significant this is, but besides apparently avoiding

anything but the most abstract, conceptual use of OLE 2.0 in the Win-

dows 95 shell, Microsoft seems somewhat down on OLE in general. In

Inside Windows 95, Adrian King comes right out and says that “Right now,

adding full OLE support to an application is an extremely complex engi-

neering project” and “OLE is leading edge technology. Using it now is

expensive but could also give you a competitive edge in the Windows 95

applications market” (p. 220). In an interview in the back of the book,

Paul Maritz says, “There’s a tremendous amount of heat and light about

‘things object’ at the moment— most of which has nothing to do with

the average end user. This is truly an industry-induced storm here, where

we’re just talking to each other” (p. 42 1).

While OLE 2.0 itself may amount to nothing more than a very expen-

sive way for the PC software industry to talk to itself, the OLE-like

extensions in the Windows 95 shell look like just the ticket. When I used
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the shell to get a Quick View ofKRNL386.EXE and other Win 16 exe-

cutables earlier, I didn’t mention that there’s nothing particularly built-in

about this facility. The ability to handle right-click events and add new
“verbs” to the shell’s popup menu all works off settings in the registry.

Once Windows 95 ships, most of the utilities for this book could be

redone as Windows 95 shell extensions.
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The UIihdoihs-DOS

Connection

A
ccording to Microsoft’s “Chicago Questions and Answers” white paper

(January 1994), Windows 95 “will be a complete, integrated protect-

mode operating system that does not require or use a separate version of

MS-DOS.” Although this, of course, is wonderful news, the technology

behind Windows 95 (“Chicago”) is actually not all that new:

• Windows 95 ’s much-heralded preemptive multitasking of threads

is based on improvements to the old preemptive Virtual Machine

(VM) multitasker in the Windows 3.x Enhanced mode Virtual

Machine Manager (VMM). At the same time, exposing the pre-

emptive multitasker programming interface to mere-mortal appli-

cation developers— thus lifting it out of its VxD confines— is a

major step forward.

• Windows 95’s 3 2 -bit file access is based on that provided much
earlier in Windows for Workgroups (WfW) 3.1 1. To the founda-

tion laid by WfW, and on top of the venerable DOS FAT file sys-

tem, Windows 95 adds long file and directory names.

• Windows 95’s ability to run Win32 applications is based on

improvements to the old Win32s add-in to Windows 3.1.

In many ways, then, Windows 95 simply improves on — and makes

users and programmers more aware of — features and capabilities that

Windows has had for quite some time (in the case of preemptive multi-

tasking, going all the way back to Windows/386 2.0 in 1988).



Unauthorized Windows 95

That Windows 95 is a “complete” operating system that “does not

require or use a separate version ofMS-DOS” and yet isn’t radically differ-

ent from previous versions ofWindows suggests that perhaps these earlier

versions ofWindows were also close to being complete operating systems.

It also suggests that the connection between these operating systems and

MS-DOS was different from what was commonly thought at the time.

Before Windows 95, Windows was frequently described not as an oper-

ating system but as an operating environment. After all, Windows 3.x ran

“on top of” DOS; you started Windows by typing WIN at the DOS C:\>

prompt or by putting WIN as the last line ofyour AUTOEXEC.BAT file.

In many ways Windows seemed to be just another DOS application.

Somewhere between Windows 3.0 and 3.1, Microsoft changed the

description on the Windows packaging from “graphical environment” to

“operating system.” But now that it wants to promote Windows 95,

Microsoft has suddenly discovered that the previous version of Windows
wasn’t a genuine operating system after all because it ran on top of DOS.
A peek under the hood shows that, in fact, “operating system” was

quite an accurate way to describe Windows 3.x Enhanced mode. Cer-

tainly, if Windows 95 is to be considered a full-blown operating system,

then so must Windows 3.x Enhanced mode, because they are not intrin-

sically different.

In fact, from MS-DOS 5.0 on, Microsoft maintained that Windows
3.x was not just some random program that ran on top of DOS, but

rather part of a single integrated system with MS-DOS. For example, in

a section on “Running Windows with an Operating System Other Than
MS-DOS,” the README.WRI file included with Windows 3.1 states:

Microsoft Windows and MS-DOS work together as an integrated system. They were

designed together and extensively tested together on a wide variety of computers

and hardware configurations. Running Windows version 3.1 on an operating system

other than MS-DOS could cause unexpected results or poor performance.

The README.WRI file included with WfW 3.11 adds an explicit

note that running Windows with something other than MS-DOS “is not

supported by Microsoft.” Presumably, “not supported” means that run-

ning Windows with another operating system, such as Novell DOS 7 or

IBM OS/2, might (in the words of a warning message in a different

Microsoft product) “void valuable warranty protection provided by

Microsoft on this product.”

To fairly assess Microsoft’s claims for Windows 95 as a complete oper-

ating system, presumably in contrast to Windows 3.xs dependence on
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MS-DOS, you first need to understand the relationship between Win-
dows 3.x and DOS: What was this “integrated system” that Microsoft

was talking about?

This chapter and the next examine an INT 2Fh interface that is just

one of the many ways DOS and Windows 3.x work together as an inte-

grated system. To explore the DOS-Windows connection, this chapter

presents a program called FAKEWIN, which examines how DOS (and

DOS-based software such as TSRs and device drivers) reacts when Win-

dows starts up. Using FAKEWIN, IT1 establish that MS-DOS 5.0 and 6.0

knew about Windows, and that even before Windows 95, Windows was

more than just another pretty face. The next chapter examines the output

from FAKEWIN in more detail. Other connections between DOS and

Windows, such as Windows’s extensive use of undocumented DOS func-

tions and data structures, are discussed in Chapter 1 of Undocumented

DOS (2d ed.) and need not concern us here.

The FAKEWIN program reveals that, even before Windows 95,

Windows (particularly Enhanced mode) and DOS were integrated to

such an extent that Windows was not just another application that ran on

top of DOS. Thanks to the VMM inside WIN386.EXE, it was a true

operating system that used real-mode DOS as an assistant. As Geoff

Chappell, author of the book DOS Internals
,
puts it, “DOS and its device

drivers, TSRs, etc. form a subsystem of 16-bit drivers for Windows.” The
most you can say is that, in Windows 95, this real-mode subsystem plays

a smaller role than it did in Windows 3 . 1 and WfW 3.11.

Windows mi 2fh Broadcasts

FAKEWIN, as its name implies, is a DOS program that pretends to be

Windows. How does it do this?

When Windows starts up and exits, it issues four separate INT 2Fh

broadcasts, called Startup, Startup Complete, Begin Exit, and Exit. DOS
device drivers and TSRs loaded before Windows can hook INT 2Fh to

receive these notifications of Windows startup and termination. In

response to the Startup broadcast (INT 2Fh function 1605h), a device

driver or TSR can request that Windows load a Virtual Device Driver

(VxD) or allocate instance data (you’ll see what this is in a few moments).

FAKEWIN pretends to be Windows by issuing the same INT 2Fh

broadcasts that Windows would issue. Individual Windows VxDs can also
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issue broadcasts (INT 2Fh function 1607h), thus allowing them to commu-

nicate with software loaded before Windows; FAKEWIN emulates one of

these calls, too— namely, the call normally issued by the DOSMGR VxD
inside WIN386.EXE. Finally, FAKEWIN emulates a TSR Identify broad-

cast (INT 2Fh function 160Bh) issued by the Windows USER module;

TSRs can use this broadcast to request that Windows load a Windows exe-

cutable, a dynamic link library (DLL), or a device driver.

These INT 2Fh broadcasts are documented in Microsoft’s Device

Driver Adaptation Guide
,
included with the Windows Device Driver Kit

(DDK), and in an article by David Long on “TSR Support in Microsoft

Windows Version 3.1” on the Microsoft Developer Network (MSDN)
CD-ROM. But there are two serious problems with this documentation.

First, notice that DOS software developers are expected to look in the

Windows DDK, of all places, to find what is basically a DOS interface.

It’s true that these INT 2Fh calls are issued by Windows, but that doesn’t

make them part of the Windows API. The Windows INT 2Fh broad-

casts are useful only to software loaded before Windows, that is, to DOS
software. As you’ll see, typical users of the INT 2Fh function 1605h

interface include the DOSKEY, SMARTDRV, and EMM386 utilities

included with MS-DOS. For better or worse, DOS programmers in the

1990s — even ones who resolutely “don’t do Windows” — are going to

have to become familiar with the Windows DDK. Windows is the oper-

ating system now; DOS is just its real-mode 16-bit assistant.

Second, like 99% of the Windows programming documentation,

Microsoft’s documentation for the INT 2Fh broadcasts explains the

interface itself, but not how it’s used in the real world. In this case,

Microsoft doesn’t discuss which DOS device drivers and TSRs respond to

Windows startup by hooking the INT 2Fh calls. If discussing DOSKEY,
SMARTDRV, and EMM386 sounds too implementation-dependent,

note that the Windows INT 2Fh broadcasts are hooked not only by an

assortment of DOS device drivers and TSRs but more importantly by

MS-DOS itself(version 5.0 and later).

Let me repeat that: MS-DOS 5.0 and later hook the Windows INT
2Fh broadcast. In other words, MS-DOS knows about Windows. DOS
behaves differently when Windows Enhanced mode is running. Windows
3.v is not just any random DOS application, but (pretty much as

Microsoft once claimed, before it was pushing Windows 95) part of an

integrated system with MS-DOS.
Using the FAKEWIN program, you’ll see exactly what Windows and

MS-DOS have to say to each other. FAKEWIN prints any information
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returned by DOS software that handles the Windows Startup (INT 2Fh

function 1605h) broadcast. DOS software that hooks this call can com-

municate with Windows in the following (fairly unrelated) ways:

• A DOS device driver or TSR can tell Windows not to load (for exam-

ple, if the software is incompatible with Windows). Employing this

part of the function 1605h interface is not recommended.

• A DOS device driver or TSR can ask Windows to load a VxD, possibly

a VxD embedded in the same file as the driver or TSR. (Similarly,

DOS programs can use INT 2Fh function 160Bh to ask Windows to

load Windows executables, DLLs, and 1 6-bit Windows drivers; as with

VxDs, these can be embedded in the same file as the DOS program.)

• A DOS device driver or TSR can declare some number of bytes at some

segment:offset address as instance data. Windows normally treats mem-
ory allocated before it started (for example, code and data belonging to

DOS or to a TSR) as global memory: a single copy of the memory is

mapped (rather than copied) into each virtual machine (VM). However,

this is inappropriate for any DOS data that must be separate in each

DOS box. For example, the history buffer belonging to a command-line

editor such as DOSKEY— if loaded before Windows rather than in a

DOS box— must be maintained on a per-VM basis; otherwise, com-

mands typed in one DOS box would leak across to other DOS boxes (a

probably unintentional form of interprocess communications). Declar-

ing the history buffer as instance data tells Windows to make a separate

copy of the buffer for each VM, while keeping the rest of the TSR as

global data, a single copy of which is mapped into each VM. Mapping

aliases a block of memory to a given reserved linear address. (See Klaus

Mueller, “Think Globally, Act Locally: Inside the Windows Instance

Data Manager,” Dr. DobFsJournal, April 1994.)

• A DOS device driver or TSR can give Windows the address of a func-

tion call to turn Virtual 8086 (V86) mode off and on. Expanded memory
managers such as EMM386, QEMM, and 386MAX put the machine

into V86 mode— a form of protected mode (see Chapter 9)— in order

to emulate the EMS interface and to backfill empty Upper Memory
Block (UMB) addresses. Meanwhile, Windows wants to switch the

machine from real mode to protected mode. It can’t do this if the mem-
ory manager already has the machine in protected mode, so the Windows

startup broadcast allows 386 memory managers to tell Windows how it

can turn them offwhen it starts up and back on again when it exits. If
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DOS software has allocated memory (EMS, XMS, or UMBs), the mem-
ory manager can hand off control of this memory to Windows, using an

undocumented interface known as Global EMM Import.

The Windows initialization broadcast is shown in Figure 3-1. This

broadcast is similar to the Task Switcher Identify Instance Data function

(INT 2Fh function 4B05h) documented in Microsoft’s MS-DOS Program-

mer’s Reference. Both broadcasts expect the same startup info structure;

DOSKEY for example uses a single block of code to handle both calls.

Called wi th

:

AX = 1605h

CX = 0 if okay to start Windows; nonzero if not okay

DX = flags (bit 0 clear if Enhanced mode; set if Standard mode)

DI = Windows major/minor version number (high/low)

ES:BX -> 0:0, or previous W i n 3 8 6_S t a r t u p_ Inf o_Strue

DS : S I -> 0:0, or (if nonzero) indicates that the V 86 enable/disable callback

al ready exi sts

INT 2 Fh

Return

:

CX = 0 if okay to start Windows; nonzero if not okay

Wi n386_Startup_Info_Struct -> SIS_Next_Dev_Ptr = previous ES:BX

ES : BX -> W i n 3 8 6_S t a r t u p_ Inf o_S true (see below)

DS : S I -> 0:0, or V86 enable/disable callback

typedef struct {

void far *IIS_Ptr; // segment : of fset of instance data

WORD 1 1 S_S i z e ; // number of bytes

} Instance_Item_Struc

;

typedef struct _W INFO (

WORD S I S_V e r s i on

;

struct _W INFO far *SIS_Next_Dev_Ptr ; // next startup info struct

DWORD S I S_V i rt_Dev_Fi 1 e_Ptr ; // name of VxD to load

DWORD SIS_Reference_Data ; // ref data for VxD

Instance_Item_Struc far *SIS_Instance_Data_Ptr

;

} Wi n386_Startup_Info_Struc

;

Figure 3-1: If a DOS device driver or a TSR loaded before Windows hooks the Windows
initialization broadcast (INT 2Fh function 1605h), it can request that Windows load a

VxD or allocate instance data.

DOS software that hooks the Windows startup broadcast is responsi-

ble for maintaining a linked list of Windows startup info structures.

Before setting ES:BX to the address of its own Win386_Startup_Info_

Struc, a program hooking this broadcast must first pass it (unchanged) to

the previously installed INT 2Fh handler (see TSRLDR.ASM in Chap-

ter 4 for an example).
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As shown in Figure 3-1, software that uses this broadcast to return a

pointer to a Win386_Startup_Info_Struc must set the SIS_Next_Dev_Ptr

field in the structure to the address of xht previous Win386_Startup_Info_

Struct, which is returned from the previous handler.

FAKEWIN walks this linked list, printing each structure. For exam-

ple, FAKEWIN reveals that if you happen to be running the Qualitas

386MAX memory manager and then start Windows (or FAKEWIN),
386A4AX responds to the INT 2Fh function 1605h with the following:

Wi n386_Startup_Info_Struc at 0255:01E2 ( 386MAX $ $

)

VxD name: C:\386MAX\386MAX.VxD (Reference data: 0053DA1E)

Instance_Item_Struc at C00 1 : 042

E

C001 : 0183 0001

V86 Enable/Disable function: 036E : 03D4 ( 386MAX $ $

)

Global EMM Import @ 00BD9 EACh (version 1.11)

Here, 386MAX is doing several things. First, it’s telling Windows to load

a virtual device driver called 386MAX.VXD. Second, it’s declaring one byte

of instance data at COO 1:0 183. And third, it’s giving Windows the address of

a 386MAX function to turn V86 mode off and on. 386MAX also supports

the Global EMM Import specification, and FAKEWIN prints the address

and version of the EMM import structure. (See Taku Okazaki, “The Win-

dows Global EMM Import Interface,” Dr. Dobb’sJournal, August 1994.)

instance Data

I noted earlier that the DOSKEY command-line editor declares its his-

tory buffer as instance data and that FAKEWIN lets you see how
DOSKEY communicates this information to Windows. Here’s what I

was referring to:

Wi n386_Startup_Info_Struc at 2996 : 024B (DOSKEY)

Instance_Item_Struc at 2996 : 025D (DOSKEY)

2996:0000 0288 (DOSKEY)

2996 : 0F23 0200 (DOSKEY)

FAKEWIN has a -DUMP option that prints the current contents of

an instance data block in hex and ASCII. Using this option confirms that

DOSKEY’s history buffer is instance data:

2996 : 0F23 0200 (DOSKEY)

2996 : 0 F23
|

45 00 63 3A 5C 65 70 73 5C 65 70 73 69 6C 6F 6E
|

E . c : \eps\epsi 1 on

2996 : 0F33
j

2E 65 78 65 20 24 2A 00 70 00 66 61 6B 65 77 69
j

.exe $*.p.fakewi

2996.-0F43
|

6E 20 2D 64 75 6D 70 20 3E 20 74 6D 70 2E 74 6D
j

n -dump > tmp.tm

2996:0F53
|

70 00 72 6C 6E 6B 00 66 61 6B 65 77 69 6E 20 3E
j

p. rl nk. fakewin >
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If you had two DOS boxes open under Windows and you used

DEBUG or some other real-mode debugger in each DOS box to display

the DOSKEY history buffer, you’d see (as shown here) that each DOS
box has its own separate history buffer, even though only a single copy of

DOSKEY was loaded before Windows.

-d 2996 : 0f 23

2996 : 0F20 45 00 63 3A 5C-65 70 73 5C 65 70 73 69

2996 : 0F30 6C 6F 6E 2E 65 78 65 20-24 2A 00 67 72 65 70 20

2996 : 0F40 44 4F 53 4B 45 59 20 66-61 6B 65 77 69 6E 2E 74

E . c : \eps\epsi

lon.exe $*.grep

DOSKEY fakewin.t

-d 2996 : 0f 23

2996 : 0F20 45 00 63 3A 5C-65 70 73 5C 65 70 73 69

2996 : 0F30 6C 6F 6E 2E 65 78 65 20-24 2A 00 64 69 72 00 64

2996 : 0F40 69 72 00 6D 65 6D 00 6D-65 6D 00 6D 65 6D 00 67

E. c:\eps\epsi

lon.exe $*.di r.d

i r .mem. mem. mem.

g

That’s the general idea behind instance data: it takes a single piece of

data and multiplexes it among multiple clients. Knowing the differences

between local, global, and instance data is also helpful when trying to

understand instance data. These differences are shown in Figure 3-2. I’ll

be discussing instant data in more detail in the “DOS Instance Data and

the SDA” section in Chapter 4.

Global Data

Global data is seen by

all. Each VM sees the

same data that was

loaded before Windows.

Any change made to this

data by one VM will be

mapped to all other VMs.

Local Data

DOS

Local data is allocated

separately in each VM.

The data in one VM has

no relation to the data

at the same address in

another VM.

Instance Data

Instance data is loaded

before Windows and

then copied (or

instanced) to the same

address in each VM.

However, after the data

is copied to each VM,

changes made to data in

one VM are not seen by

the other VM.

Figure 3-2: The differences between global, local, and instance data.
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Embedded uxds

In the following sample output from FAKEWIN, the SmartDrive disk

cache and DoubleSpace disk compression are asking Windows to load

VxDs (DriveSpace in MS-DOS 6.22 does the same thing):

Wi n386_Startup_Info_Struc at 2AF4:12EF (SMARTDRV)

VxD name: C:\DOS\SMARTDRV.EXE (Reference data: 2AF41301)

No instance data

Wi n386_Startup_Info_Struc at 1551 : 3F10 (DBLSYSHS)

VxD name: H:\DBLSPACE.BIN (Reference data: 15513F32)

No instance data

But SMARTDRVEXE and DBLSPACE.BIN don’t look like names of

Windows VxDs— they’re DOS files, right?

As mentioned earlier, DOS programs can have embedded Windows
executables. Here, SMARTDRVEXE and DBLSPACE.BIN both have

embedded VxDs. (DRVSPACE.BIN in MS-DOS 6.22 has one, too.)

Actually, it’s not quite accurate to describe these as DOS programs with

embedded Windows executables. They’re really Windows executables

that, like every Windows executable, have an embedded DOS program.

Usually that DOS program is a small stub that prints a message like

“This program requires Microsoft Windows.” However, it’s just as easy

to make the embedded DOS program do something useful. In the case of

SMARTDRVEXE and DBLSPACE.BIN, the embedded DOS program

is part of the DOS system software.

We can use the VXDSHOW utility from the Unauthorized Windows

95 disk to the VxDs embedded in these DOS utilities. While we’re at

it, we can also look at another DOS utility with an embedded VxD,

EMM386.EXE. Figure 3-3 shows the result.

C : \UNAUTHW>vxdshow h:\dblspace.bin

Module name: DSVXD

Description: "Win386 DSVXD Device (Version 1.0)"

DSVXD_DDB @ 00000 1 d0

Start @ 0000:00000000

Device # 003b

Version 3.00

Init order: 80000000 (Undefined)

DDB_Control_Proc @ 00000000

DDB_V86_API_Proc @ 00000057

C : \UNAUTHW>vxdshow c : \dos\smartdrv . exe

Module name: SDVXD

Description: "Win386 SDVXD Device (Version 2.0)"
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SDVXD_DDB @ 00000060

Start @ 0000:00000000

Version 3.00

Init order: 80000000 (Undefined)

DDB_Control_Proc @ 00000000

C : \UNAUTHW>vxdshow c : \dos\emm386 . exe

Module name: LoadHi

Description: "Win386 LoadHi Device (Version 1.0)"

LoadHi_DDB @ 000012e4

Start @ 0003:00000000

Device # 001c

Version 1.00

Init order: 00000000 (Earliest -- same as VMM)

DDB_Control_Proc @ 000005a0

DDB_Servi ce_Tabl e @ 0000 1 2e0

1 C0000 @ 000007 9d LoadHi Get Version

Figure 3-3: Running VxDSHOW with DBLSPACE.BIN, SMARTDRV.EXE, and EMM386.EXE
reveals the surprise VxD inside.

It so happens that these particular VxDs aren’t especially important in

Windows 95. For example, the SDVxD embedded in SMARTDRV.EXE
does little more than allow Windows to do a SHELL_SYSMODAL_
Message in the event of a serious disk error. However, even if SmartDrv

is loaded in Windows 95, Windows basically ignores it because its role is

taken over by the VCACHE VxD. SMARTDRV.EXE is listed in the

“safe driver” list, IOS.INI, which the Windows 95 I/O Supervisor

(IOS.386) consults to see which real-mode DOS drivers can be ignored.

Now, if SmartDrv is no longer needed in Windows 95, why bother

learning how SmartDrv communicated its needs to earlier versions of

Windows? Because the very fact that SmartDrv and other DOS utilities

could communicate their needs to Windows is significant: it’s one more sign

that Windows 3.x didn’t blithely run “on top of” DOS, but instead partici-

pated in a dialog with DOS and with DOS utilities like SmartDrv. This

point is in turn important because it helps establish that Windows 95 ’s

bundling ofDOS and Windows in a single package is less of a radical

departure from previous DOS-Windows relations than you might other-

wise think. IfWindows 95 represents the marriage ofDOS and Windows,

the fact remains that the two have already been living together for many
years. It’s a big step— but not that big a step.
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FAHEUim caueats

Although FAKEWIN helps reveal the true relationship between Windows
and DOS, the program is somewhat invasive because it might interfere

with other programs that use the Windows INT 2Fh broadcasts to main-

tain an internal IN_WINDOWS flag. MS-DOS itself is one such pro-

gram. For example, while Windows Enhanced mode is running, MS-DOS
keeps track of which virtual machine (VM) owns which open file. We’ll

see in Chapter 4 (see Listing 4-2) that, ifDOS thinks Windows is run-

ning, DOS can make calls into what it thinks is the DOSMGR VxD.

Unfortunately, while FAKEWIN is running, MS-DOS thinks that Win-

dows Enhanced mode is running. There’s no way to know how every

DOS device driver and TSR will react to FAKEWIN’s phony notification

that Windows has started. Thus, it’s difficult to answer the following ques-

tion: “How can I use ENT 2Fh functions 1605h and 1606h and be sure

I’m not messing up DOS?”
It’s worth quoting at length from Geoff Chappell’s answer to this

question, from the Undocumented Corner area in the Dr Dobb's Journal

forum (DDJFORUM) on CompuServe:

#: 65821 S3/Undocumented Corner

16-M ay-94 01:39:01

Sb: #65697-#SmartDrive API

Fm: Geoff Chappell 100043,564

To: Ralph E Griffin 70323,1440 (X)

It’s perfectly OK for non-Windows programs to issue int 2Fh functions 1605h and

1606h and pretend to be Windows starting up and closing down — if they don’t do

anything with external consequences between the two calls.

The situation is less clear if external consequences are involved. Software may,

quite reasonably, reconfigure itself for operation under Windows. This software does

not know that you are only pretending to be Windows. You could argue that perhaps

such software should not make any changes that could have harmful side-effects if

in fact the signals were not coming from Windows— in other words, that the soft-

ware should not assume int 2Fh function 1605h comes from Windows.

Maybe that would be a fair point, but you’ve been pre-empted by Microsoft, who

designed DOS 5 in such a way that the machine ID (word at D0S:033E) is handled

differently the moment the DOS kernel sees the int 2Fh function. I am unconvinced

that this is a good idea on DOS’s part; it may have unwelcome consequences for file

sharing in cases where a file consulted by Windows (before DOSMGR is initialised) is

already open when Windows is started. This is an unlikely case in the real world

where Windows is usually run from the top-level command prompt (its likelihood is,

however, sufficiently large that even the designers of IFSMGR, with its many small
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bugs and incompatibilities that seem to have been overlooked, did not miss the

need to guard against conflicts arising if the 16-bit file system already has files open

when the 32-bit file system is installed).

My personal view is that we have (more or less) a No-Go theorem on file access

between a non-Windows app’s int 2Fh functions 1605h and 1606h — and this is

deduced from a reaction that we know about. If you were planning to issue these int

2Fh functions yourself in a general environment, you would also have to contend

with reactions that we can’t predict.

Now, you might think that FAKEWIN doesn’t “do anything with

external consequences between the two calls” to functions 1605h and

1606h. However, notice in Listing 3-1 that FAKEWIN calls printf after

calling win_init_notify (1605h) and before calling win_term_notify

(1606h). If FAKEWIN’s output is redirected to a file (which happened

countless times while I was writing this chapter), there’s a genuine

potential problem.

On the other hand, the Microsoft Systems Journal has recommended

that programs other than Windows issue Windows INT 2Fh broadcasts,

both to detect Windows 3.0 (Microsoft Systems Journal, May-June 1992)

and to reconfigure the SmartDrive 4.0 disk cache (Microsofi Systems Jour-

nal, September 1992). It’s difficult to tell if this is our assurance that the

technique of issuing phony Windows INT 2Fh broadcasts is really okay,

or if it just never occurred to Microsoft that faking the Windows broad-

cast might have unexpected effects on programs (including DOS itself)

that hook the broadcast.

Besides telling software that Windows has started when it actually

hasn’t, there’s another potential danger associated with FAKEWIN: It

might tell software that Windows has exited when in fact it’s still run-

ning. This is exactly what would happen if you ran FAKEWIN inside a

Windows DOS box. FAKEWIN.C uses the is_win function from ISWIN
.C to detect whether Windows is running. (ISWIN.C isn’t shown here,

hut is included on the Unauthorized Windows 95 disk.) FAKEWIN will

refuse to run under Windows; you must first exit back to DOS. (In Win-
dows 95, where you normally can’t exit from Windows back to DOS,
you can run FAKEWIN in Single Application Mode.)

Finally, FAKEWIN shows only a few aspects of the DOS-Windows
connection. For example, function 1605h isn’t the only mechanism for

declaring instance data. SYSTEM.INI has a LOCALTSRS= statement

that turns entire TSRs into instance data items, and a LOCAL= state-

ment that does the same for DOS device drivers. (SYSTEM.INI comes

preloaded with local=CON and localtsrs=DOSEDIT,CED.) And the

Windows VMM provides an _AddInstanceItem service that VxDs can
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directly use to declare instance data. In fact, all the other instance data

methods eventually turn into _AddInstanceItem calls, so ifyou wanted a

complete picture of instance data, you’d have to hook _AddInstanceItem.

inside FAKEUim

In spite of the issues discussed in the previous section, the FAKEWIN pro-

gram helps show how Windows 3.v interacted with software loaded before

it. The salient point about FAKEWIN is that it helps you understand the

Windows 3.V-DOS connection— and unless you understand that, it’s diffi-

cult to appreciate the changes that are occurring in Windows 95.

The C source code for FAKEWIN is shown in Listing 3-1. This mod-

ule must be linked with several others (TEST1684.C, FAKEVXD.C, and

FAKETSR.C in Chapter 4, and with ISWIN.C, DUMP.C, and MARC
on the Unauthorized Windows 95 disk) to create FAKEWIN.EXE.

Listing 3-1: FAKEWIN.

C

/*

FAKEWIN.

C

Andrew Schulman, 1994

bcc fakewin.c fakevxd.c faketsr.c dump.c iswin.c map.c

bcc - DT EST_1 684 -- also need testl684.c

Using INT 2 Fh broadcasts, FAKEWIN pretends to be Windows. It

simulates Windows initializing and terminating in order to find

out how DOS and various device drivers and TSRs want to affect

Windows startup. For each Wi n386_Startup_Info_Struc ,
FAKEWIN

prints out the name of any Windows virtual device driver (VxD)

that has been asked to be loaded, plus the addresses and sizes

of any instance data items.

Opt i ons

:

-WIN30 fakes Windows 3.0

-VERS xxx fakes version xxx (such as -VERS 400 for 4.0)

-STANDARD fakes Standard mode (default: Enhanced mode)

-DUMP does hex dump of instanced data areas

*/

//include <stdlib.h>

//include <stdio.h>

//include <string.h>

//include <dos.h>

//include <io.h>

//i ncl ude <fcntl . h>

typedef unsigned char BYTE;
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typedef unsigned shont WORD;

typedef unsigned long DWORD;

typedef void fan *FP;

//pragma pack ( 1

)

typedef struct {

FP I IS_Ptr

;

WORD I IS_Si ze

;

} Instance_Item_Struc;

// the Task Switcher Identify Instance Data (2F/4B05)

// function uses the same structure

typedef struct _W INFO {

WORD S I S_Ve r s i on ; // should be 3

struct _W INFO far *SIS_Next_Dev_Ptr

;

DWORD S I S_V i rt_Dev_Fi 1 e_Ptr

;

DWORD SIS_Reference_Data

;

Instance_Item_Struc far *SIS_Instance_Data_Ptr

;

} Wi n386_Startup_Info_Struc , far *FPWININFO;

//pragma packO

static FPWININFO fpinfo;

static void (far *switch_func)(void)

;

//define ENHANCE D_M ODE 0

//define STANDARD_MODE 1

//define WIN30 0x0300

//define WIN31 0X030A

extern void fake_dosmgr_callouts(void) ; // in FAKEVXD.C

extern void t s r_i den t i fy ( void) ; // in FAKETSR.C

extern void dump( unsi gned char far *fp, unsigned bytes,

char *mask, unsigned long addr, int width); // in DUMP .

C

extern int is_win(int *pmaj, int *pmin, int *pmode); // in ISWIN.C

extern char *fi nd_owner( DWORD lin_addr); // in MAP.C

//define MK_LIN(fp) ((((DWORD) FP_SEG( f p ) ) « 4) + FP_0FF( f p )

)

char *owner(FP fp)

{

static char buf [32]

;

char *s = fi nd_owner(MK_LIN(fp) )

;

if (s) spnintf(buf, "(%s)", s);

el se buf [0] = ' \0
'

;

return buf;

WORD wi n_i ni t_noti fy( WORD vers, WORD mode)
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{

WORD retval

;

WORD hand! e r_d s

;

_asm push si

_asm push di

_asm push ds

_asm xor bx, bx

_asm mov es, bx

_asm mov cx, bx

_asm mov dx, mode

_asm mov di , vers

_asm xor si , si

_asm mov ds , si

_asm mov ax, 1 60 5

h

_asm int 2fh

_asm mov retval , cx

_asm mov handl er_ds , ds

_asm pop ds

_asm cmp cx, 0

_asm jne no_init

i n i t

:

_asm mov word ptr fpinfo+2, es

_asm mov word ptr fpinfo, bx

_asm mov bx, hand! er_ds

_asm mov word ptr swi tch_func+2 , bx

_asm mov word ptr switch_func, si

done

:

_asm pop di

_asm pop si

return retval ;

no_i nit

:

goto done;

1

void win_term_notify(WORD mode)

{

_asm mov dx, mode

_asm mov ax, 1606h

asm int 2fh

voi d wi n_ini t_compl ete_noti fy ( voi d

)

{

_asm mov ax, 1608h

_asm int 2 f

h

voi d wi n_begi n_exi t_noti fy ( void)

{

_asm mov ax, 1609h

asm int 2 f

h

static int do_hex_dump = 0;
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void pri nt_startup_info( FPWININFO winfo)

{

Instance_Item_Struc far *inst;

if (wi n f
o

- > S I S_V e r s i on >= 3) // try to be forward compatible

{

printf
(

"\nWi n386_Startup_Info_Struc at %Fp %s\n",

winfo, owner (wi nfo) )

;

if (winfo->SIS_Virt_Dev_File_Ptr != 0)

{

printfCVxD name: l Fs ", wi nfo->SIS_Vi rt_Dev_Fi 1 e_Ptr )

;

pri ntf( "( Reference data: %081 X ) \n " , wi nfo->SIS_Reference_Data

)

}

if ( ( i nst = wi nfo->SIS_Instance_Data_Ptr ) != 0)

{

pri ntf
(

" Instance_Item_Struc at %Fp %s\n",

inst, owner( inst) )

;

while (inst-)II S_Pt r

)

{

pri ntf
("

' %Fp %04X %s\n",

i nst -> I IS_Ptr , i nst-> 1 1 S_Si ze

,

owner( i n s
t

- > 1 1 S_P t r ) )

:

if (do_hex_dump)

dump( ( unsigned char far *) i n s
t
- > I IS_Ptr

,

(unsigned) inst->IIS_Size, "i Fp",

(unsigned long) i nst->I IS_Ptr , 16);

i nst++;

}

el se

printfCNo instance data\n");

// recursively walk chain of startup info blocks

if (wi nfo->SIS_Next_Dev_Ptr != 0)

pri nt_startup_i nf o ( ( FPWININFO) wi nfo->SIS_Next_Dev_Ptr )

;

}

el se

printf("%Fp not a valid W i n 3 8 6 startup info structure! \n" , winfo);

//pragma pack ( 1

)

typedef struct (

DWORD addr

;

BYTE ma j , min;

} EMM_I M PO RT

;

//pragma packO

void check_emm_import( void)

{

static EMM_I MPORT emm_import;

int emm = open
(

" EMMXXXX0" , 0_RDWR
|

0_B I N A RY )

;

if (emm == -1) emm = open( "$MMXXXX0" , 0_RDWR
|

0_B I NARY )

;

if (emm == -1) emm = open( "EMMQXXX0" , 0_RDWR
j

0_B I NARY )

;

if (emm == -1) return; // no EMM

emm_import.addr = 1; // set first byte to 1

emm_import.maj = emm_import.min = 0;
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//define IOCTLREAD 2

if (ioctl (emm, IOCTLREAD, &emm_i mport , sizeof (emm_import) ) != 0)

pri ntf
(

"G1 obal EMM Import @ %081 X h (version %d.%02d)\n",

emm_i mport. addr, emm_i mport. ma j , emm_i mport. min)

;

cl ose( emm)

;

void faiKconst char *s, ...) { puts ( s ) ; exit(l); }

static char *usage_msg =

"usage: fakewin [-standard] [ - w i n 3 0 |

-vers xxxx] [-dump]";

void usage(void) { fail ( u s a g e_m s g ) ; }

main(int argc, char *argv[])

{

WORD mode = ENHANCE D_M ODE; // default

WORD vers = WIN31; // default

char *s

;

int dummy;

i n t i ;

f puts
(

"FAKEWIN 1.0 -- Simulate Windows Initial i z a t i o n \
n

" , stderr);

fputs
(
"Di spl ays instance data, VxD startup, DOSMGR interfaced", stderr);

fputsCFrom \"Unauthorized Windows\" (IDG Books, 1994 ) \n " , stderr);

fputs( "Copyright (c) Andrew Schulman 1994. All rights reserved\n\n" , stderr);

for (i = l; i < a r g c ; i++)

if ( (argvEi ][0] == '-')
||

(argv[i ][0] == 7'))

{

s = strupr(argv[i ] ) + 1

;

if (strcmp(s , "STANDARD") == 0) mode = S T A N D A R D_M ODE

;

else if (strcmp(s, "WIN30") == 0) vers = WIN30;

else if (strcmp(s, "VERS") == 0) sscanf ( a rgv[++i ] ,
"%0 4X", &vers);

else if (strcmp(s, "DUMP") == 0) do_hex_dump++;

else usageO;

el se

usage( )

;

if ( i s_win(&dummy , &dummy, &dummy))

fai 1

(

"A1 ready running under Windows\n"

"Exit back to DOS before running FAKEWIN");

pri n t f
(

"FAKEWIN pretending to be Windows %u.%02u Is mode\n\n",

( vers >> 8) , ( vers & 0xFF)

,

(mode == ENHANC ED_M0DE ) ? "Enhanced" : "Standard");

// tell DOS/whoever that Windows is starting up

if ( wi n_i ni t_noti fy ( vers ,
mode) == 0)

{

// start recursive walk of info chain

if (fpinfo == 0)

pri ntf ("No Windows startup i n f o \
n

” )

;

el se
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pri nt_startup_i nfo(fpinfo)

;

if (swi tch_func)

{

printf
(

"\nV86 Enable/Disable function: %Fp %s\n",

swi tch_func , owner ( swi tch_func) )

:

check_emm_import( )

;

else // someone refused the 2F/1605 call (CX != 0)

fail ("Not allowed to start Windows");

// do device callouts -- VxD init order defined in VMM. INC

fake_dosmgr_cal 1 outs ( )

;

// do TSR identify call (2F/160B)

tsr_i denti fy( )

;

// tell DOS/whoever that Windows is done initializing

wi n_i ni t_compl ete_noti fy ( )

;

#i fdef T E ST_1 684

{

extern void tes t_l 684 ( void ) ; // in TEST1684.C

tes t_l 684 ( )

;

}

#endi

f

// tell DOS/whoever that Windows is beginning termination

wi n_begi n_exi t_noti fy ( )

;

// tell DOS/whoever that Windows is terminating

wi n_term_noti fy(mode)

;

return 0;

}

After reading any command-line options, the main routine in FAKE-
WIN.C calls win_mit_notify to generate the INT 2Fh function 1605h

broadcast, which is normally made by the real-mode portion of WIN386.
EXE. The win_init_notify function saves the addresses of the returned

startup info structure and V86 enable/disable functions. Assuming that

no one has refused the Windows startup broadcast by setting CX to a

nonzero value, FAKEWIN then calls print_startup_info, which (not

surprisingly) prints the startup info structure. If there’s a Next pointer in

the structure (winfo->SIS_Next_Dev_Ptr != 0), print_startup_info recur-

sively calls itself. In this way, the function displays the linked list of

startup info structures.

Displaying the startup info involves little more than some calls to

printf. For the name of the startup info’s owner (such as 386MAX$$,
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DOSKEY, SMARTDRV, and DBLSYSHS in the examples given earlier),

print_startup_info calls the owner function, which is provided by MAP.C
(MAP.C isn’t shown here, but is included on the disk).

If the -DUMP option has been specified on the command line, print_

startup_info calls the hex dump function provided by DUMP.C, which,

again, is included on the disk.

After displaying the startup info, FAKEWIN prints the V86 enable/

disable function, if a 386 memory manager has supplied one, and calls

check_emm_import to see if the memory manager provides a Global

EMM Import structure (see Chapter 4).

Next, FAKEWIN calls the fake_dosmgr_callouts function in FAKE-
VXD.C and the tsr_identify function in FAKETSR.C. Chapter 4 discusses

these functions.

Finally, because FAKEWIN has pretended to everyone that Windows
is starting, FAKEWIN must now pretend several more things: that Win-

dows has finished initializing (INT 2Fh function 1608h), that it is start-

ing to exit (function 1609h), and that it is finally going to exit for good

(function 1606h).





Chapter 4

A Marriage Mare

in Rerriodr

T
he previous chapter introduced the FAKEWIN program and discussed

in general terms some aspects of the DOS-Windows connection, such

as instance data and embedded VxDs. In this chapter, we’ll take a closer

look at FAKEWIN’s output and focus on some of the ways that DOS and

Windows work together.

Figure 4-1 shows the complete sample output from FAKEWIN. This

output happened to be produced when running in the DOS 7.0 compo-

nent of Chicago, with a large number of TSRs loaded. Obviously, your

mileage may vary: in a different configuration FAKEWIN would produce

different results. Nonetheless Figure 4-1 shows how some common DOS
utilities, and DOS itself, react to the news that Windows is starting up.

FAKEWIN pretending to be Windows 3.10 Enhanced mode

Wi n386_Startup_Info_Struc at 08F4 : 125F (SMARTDRV)

VxD name: C:\WINDOWS\SMARTDRV.EXE (Reference data: 08F41271)

No instance data

Wi n386_Startup_Info_Struc at 08C5 : 0107 (TSRLDR)

VxD name: C:\UNAUTHW\PIPE\PIPE.386 (Reference data: 00000000)

No instance data

Wi n386_Startup_Info_Struc at 085 E : 000A (COUNTDOS)

Instance_Item„Struc at 085 E : 00 1 C (COUNTDOS)

08 5 E : 00DD 0404 (COUNTDOS)

Wi n386_Startup__Info_Struc at E9F7 : 024B (DOSKEY)

Instance_Item_Struc at E9 F7 : 02 5 D (DOSKEY)

E9F7 : 0000 0288 (DOSKEY)

E9F7 : 0F23 0200 (DOSKEY)

Wi n386„Startup_Info_$truc at 0329 : 01 EE ( 386MAX $ $

)
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VxD name: C:\386MAX\386MAX.VxD (Reference data: 00BCE3C8)

Instance_Item_Struc at C00 1 : 0440

C001 : 0183 0001

Wi n386_Startup_Info_Struc at C0FD: 3F10 (DBLSYSH$)

VxD name: H:\DBLSPACE.BIN (Reference data: C0FD3F32)

No instance data

W i n 3 8 6__S t a r t u p_ Inf o__Strue at F F F F : 1 D0 F (HMA)

Instance_Item_Struc at FFFF : 1D25 (HMA)

0050:0000 0001

0050:0004 0001

0050 : 000E 0014

0050:0030 0004

0070:0012 0004 (10)

0070:0266 0001 (10)

E833 : 0000 0948 ( DBLSYSHS

)

E808 : 0010 0002 (DBLSYSHS)

Wi n386_Startup_Info_Struc at 00A0:0EE1 (DOS)

Instance_Item_Struc at 00A0:0EF7 (DOS)

00A0 : 0022 0002 (DOS)

00A0 : 0032 0004 (DOS)

00A0 : 01 F9 0106 (DOS)

00A0 : 0300 0001 (DOS)

00A0 : 0EBF 0022 (DOS)

00A0 : 0089 0001 (DOS)

00A0 : 008C 0002 (DOS)

00A0 : 0086 0001 (DOS)

00A0 : 12B8 0001 (DOS)

00A0 : 12B9 0001 (DOS)

V 86 Enable/Disable function: 0329 : 03D4 ( 386MAX $ $

)

Global EMM Import @ phys 00BD9EACh (version 1.11)

DOSMGR instance interface ON

Segment of DOS drivers: 0005

Patch table: 00A0 : 0 F47

DOS version 5.00

05EC (SAVEDS)

05EA ( SAVEBX

)

0321 (INDOS)

033E (USE R_ ID)

0315 (CRITPATCH)

008C (UMB_HEAD)

Current Directory Structure = 88 bytes

No DOS data structures instanced via DOSMGR API

TSR_Info_Struc at 085E : 0026 (PSP 084Eh) (COUNTDOS)

TSR_WI NEXEC SW_SH0WN0ACT I V ATE

"C:\UNAUTHW\FAKEWIN\COUNTDOS.EXE /085E:00DD"

T S R_I D_B lock: "Sample TSR / Windows App"

TSR_Data_Bl ock : 085E : 00DD

Figure 4-1: Running FAKEWIN with a large number of TSRs loaded further illustrates the

DOS-Windows connection: Some utilities are making requests of Windows, and we see

DOS itself communicating with Windows.
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Let’s see what we have in Figure 4- 1 . To start with, the first Windows
startup info structure in the chain belongs to SMARTDRV.EXE, the

DOS portion of which, as noted in Chapter 3, asks Windows to load its

VxD portion.

Next, something called TSRLDR asks Windows to load PIPE.386 (a

DOS-Windows communication pipe written by Thomas Olsen). TSR-
LDR.ASM, which you can see in Listing 4-1, is a small DOS program

illustrating how DOS software can hook function 1605h to request Win-

dows load to a VxD.

Listing 4-1: TSRLDR.ASM

; TSRLDR.ASM

; by Thomas Olsen

; masm tsrldr

; link tsrldr

; exe2bin tsrldr.exe tsrldr.com

CODE segment para public 'CODE'

assume c s : COD

E

org 100h

EntryPoi nt

:

jmp Setup

3,0
?

?

?

?

0

0

0

PATH=

'

vxdName db ’ C : \UNAUTHW\PI PE .
386

' ,

0

db 128 dup ( 0

)

Int2fHandler proc far

public Int2fHandler

cmp ax, 1 60 5 h

je i 2f

jmp dword ptr cs : ol d I nt 2fOf fset

i 2f

:

; first call previous INT 2 Fh , before returning our info!

pushf

old I nt2fOf fset dw ?

ol dInt2fSegment dw ?

Wi n386_Startup_Info_Begi n label byte

SIS_Version db

SIS_Next_Dev_Ptr_Offset dw

SIS_Next_Dev_Ptr_Segment dw

S I S_V i rt_Dev_Fi 1 e_Ptr_Offset dw

SIS_Vi rt_Dev_Fi 1 e_Ptr_Segment dw

SIS_Reference_Data dd

SIS_Instance_Data_Ptr_Offset dw

SIS_Instance_Data_Ptr_Segment dw

Win386_Startup_Info_End label byte

db
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call dword ptr cs : ol d I nt2fOf f set

; now we have pointer to previous handler's info struct

mov cs : SIS_Next_Dev_Ptr_Segment ,
es

mov cs : SIS_Next_Dev_Ptr_Off set , bx

mov cs : SIS_Vi rt_Dev_Fi 1 e_Ptr_Segment , cs

mov cs : S I S_V i rt_Dev_Fi 1 e_Ptr_0f f set , offset vxdName

mov bx, cs

mov es, bx

mov bx, offset Wi n386_Startup_Info_Begi

n

i ret

Int2fHandler endp

Setup proc near

public Setup

mov bx, ds

mov es, bx

mov bx, es:[2Ch]

mov ah, 49

h

mov es, bx

int 21 h ; Free environment

push cs

pop ds

mov ax , 352 Fh

int 21

h

mov cs : ol dInt2fSegment , es

mov cs : ol d I nt2fOf f set , bx

mov ax , 252 Fh

lea dx, Int2fHandler

int 2 1 h ; Hook INT 2Fh

mov dx, offset Setup

mov cl ,4

shr dx.cl

inc dx

mov ah ,
3 1

h

int 21

h

Setup endp

CODE ends

end EntryPoint

By the way, in the event of an error in your function 1605h handling,

the real-mode portion ofWIN386 uses some rather poorly chosen error

messages. If a TSR tells Windows to load a file that isn’t actually a VxD
(for example, an interoffice memo that for some reason you’ve renamed

PIPE. 3 86), you get the message: “A device file that is specified in the

SYSTEM.INI file is damaged. It may be needed to run Windows.”
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The whole point of function 1605h is that the VxD hasn’t been speci-

fied in SYSTEM.INI. Without a program like FAKEWIN, a system

administrator might have a hard time tracking down the cause of this

error message! Likewise, if the TSR has specified a VxD that can’t be

found at all, Windows displays this message:

Cannot find a device file that may be needed to run Windows.

Make sure that the PATH line in your AUTOEXEC.BAT file points to

the directory that contains the file and that it exists on your

hard disk. If the file does not exist, try running Setup to

install it or remove any references to it from your SYSTEM.INI

file.

C:\MISTAKE\PIPE.386

Press a key to continue

Again, the reference to SYSTEM.INI is less than helpful, as is the advice

about the PATH. If PIPE. 386 is actually in C:\PIPE, and C:\PIPE is on

the PATH, Windows still can’t find it.

DOS instance Data and the sda

As you continue examining Figure 4-1, you’ll notice two Windows
startup info structures created not by a TSR or DOS device driver but by

MS-DOS itself. The first structure, located in the high memory area

(HMA), with instance data items at addresses such as 0050:0000 and

0070:0012, belongs to the IO component ofWINBOOT.SYS in Win-

dows 95 (equivalent to IO.SYS in earlier versions of DOS). The second

structure, with instance data items in segment OOAOh, belongs to the

MSDOS component ofWINBOOT.SYS (equivalent to MSDOS.SYS in

earlier versions).

Of the variables typically included by DOS in its function 1605h

instance data list, Geoff Chappell has noted, “Almost all the kernel vari-

ables that are instanced by Windows are related to console operation.

Most notably, the buffer at DOS:01F9h serves DOS function 3Fh as the

system equivalent to the buffer an application supplies when using DOS
function OAh to read from a console device.” In the second Win386_

Startup_Info_Struct in Figure 4-1, you can also see DOS telling Win-

dows about this 106-byte buffer at 00A0:01F9.

Many DOS internal variables and structures that you know Windows

must instance don’t show up in DOS’s instance data list. (A good example is

DOS’s Current Directory Structure (CDS), since different DOS boxes can
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have different drive mappings.) That’s because, as noted in Chapter 3,

function 1605h is just one of several techniques for allocating instance data.

The IO and MSDOS instance items that do show up in Figure 4-1 are

mostly the ones that DOS knows Windows can’t figure out for itself

using undocumented DOS calls. The DOSMGR VxD relies heavily on

undocumented DOS calls to find key DOS internal variables and struc-

tures that must be instanced; it then passes the addresses and sizes of

these structures to the VMM _AddInstanceItem service. A key example is

the Swappable Data Area (SDA) in DOS. DOSMGR can call the undoc-

umented INT 2 lh function 5D06h (Get SDA), which returns the address

of a key region in DOS that must be swapped out and restored by a task

switcher. The function also returns the number of SDA bytes that a task

switcher must swap if the InDOS flag is set, and the number of SDA
bytes that it must always swap, whether InDOS is set or not.

Instance data is in many ways just an extension of the SDA. The SDA
unfortunately doesn’t include the full DOS “state.” And it can’t include

areas belonging to third-party TSRs. Thus, there needs to be some way to

declare areas outside the SDA that must also be swapped. Instance data is

basically a technique for supplementing the SDA. In fact, just as DOS
function 5D06h returns both the Swap_In_DOS and Swap_Always sizes of

the SDA, likewise the InstDataStruc used by _AddInstanceItem has an

InstType field with the values INDOS_Field and ALWAYS_Field. VMM
currently happens to ignore these particular instance data types, but in any

case there’s a clear connection between the DOS SDA and Windows

instance data (which is hardly surprising since the same Microsoft pro-

grammer, Aaron Reynolds, is probably responsible for both pieces of code).

Figure 4-2 provides the code example, and Figure 4-3 illustrates how the

DOSMGR VxD instances the DOS SDA.

; First, call DOS 21/5D06 to get SDA in D S : S

I

05DBB mov [ebp.Cl ient_AX] ,5D06h

05DC1 mov eax,21h

05DC6 VMMCall Exec_Int

; Now, form linear address to SDA

05DCC movzx eax, [ebp.Cl i ent_DS

]

05DD0 shl eax,

4

05DD3 movzx ebx, [ebp.Cl i e n t_S I

]

05DD7 add eax, ebx ; eax = (DS << 4) + SI

; Save away SDA- rel a ted variables

05DD9 movzx edx, [ebp.Cl ient_DX] ; SWAP_ALWAYS

05DDD movzx ecx, [ebp.Cl ien t_C X ] ; SWAP_IN_DOS

05DE1 mov DOS_SDA,eax

05DE6 mov dword ptr SWAP_ALWAYS,edx
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05DEC mov dword ptr SWAP_IN_DOS,ecx

; Later on, instance swap-always part

; ESI points to an InstDataStruc

060FB mov edi , dword ptr D0S_SDA

06101 mov ecx, dword ptr SWAP_A LWAY

S

06107 mov dword ptr [esi . InstLi nAddr] , edi ; D0S_S DA

0610A mov dword ptr [esi . InstSi ze] , ecx ; SWAP_A LWAY S

0610D mov dword ptr [esi . InstType]
, A LWAYS_Field

06114 push 0

06116 push esi

06117 VMMCall _AddInstanceItem

; Instance swap-InDOS part

06133 mov edi, dword ptr D0S_S DA

06139 add edi, dword ptr SWAP_A LWAY

S

0613F mov ecx, dword ptr SWAP_IN_DOS

06145 sub ecx, dword ptr SWAP_A LWAY

S

0614B mov dword ptr [esi . InstLi nAddr] , edi ; SDA+ALWAYS

0614E mov dword ptr [esi . InstSi ze] ,ecx ; I N_D0S - A LWA

06151 mov dword ptr [esi . InstType] , INDOS_Field

06158 push 0

0615A push esi

0615B VMMCal] _AddInstanceItem

Figure 4-2: This code example shows how the DOSMGR VxD instances the SDA. There’s

a clear connection between the DOS SDA and Windows instance data.

SYSTEM VM #1

WIN 1 6 WIN 1 6 WIN32 1
3SP PSF

4+' A
Kernel

SYSTEM VM #2

SDA DOS

Figure 4-3. DOSMGR instances the SDA in each VM. Thus, each VM gets its own

instance of DOS variables such as the current PSP. This process becomes more

complicated when one of the multiple tasks in the System VM is executed and the

Winl6 Kernel asks DOS to create a PSP for that task. (See Chapters 12 and 13.)
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Once DOSMGR has instanced the SDA, wheneverVMM switches

from one virtual machine to another, it switches SDAs too, even though

MS-DOS started out with only one SDA. Through the miracle of

instancing, Windows effectively gives DOS multiple SDAs. This is a

good example of how DOS and Windows work together to form a single

multitasking operating system. DOS is frequently described as if it were

inhospitable to multitasking, but the SDA shows that DOS does make

some accommodation for multitasking.

Earlier I noted that the SDA unfortunately does not hold the entire

DOS state. This is an important point, because some programmers fol-

lowed the advice in Undocumented DOS about using the SDA to write

TSRs, and then found that certain key DOS variables aren’t included in

the SDA. A good example is UMBHEAD, which holds the location of

the first Upper Memory Block (UMB). Interestingly, this shows up in

Figure 4-1 at 00A0:008C. That is, UMBHEAD, which isn’t in the SDA,

is one of the variables that DOS declares as instance data.

This is no accident. As noted earlier, the instance data lists returned

from INT 2Fh function 1605h are a kind of supplement to the SDA. This

suggests a possible technique for those DOS programmers who still want

to write TSRs using the SDA technique. Although the SDA doesn’t con-

tain the entire DOS state, it seems like it should be possible for TSRs to

use the function 1605h instance data lists as a guide to what data —
besides the SDA— the TSRs must save and restore. The idea is that what

is important to Windows is probably important to any swappable TSR.

Unfortunately, this excellent idea has two problems, both of which

I’ve already alluded to. First, it isn’t clear how safe it is for programs

other than Windows to issue the 1605h broadcast. Second, the instance

data lists returned from 1605h are far from complete. Although it cer-

tainly would be better to swap these regions than not to swap them, there

are still many swap-susceptible areas that would be missed. As one exam-

ple, consider the local=CON statement in SYSTEM.INI; ANSI.SYS

doesn’t hook the function 1605h broadcast.

wnai mas nninii20.386?

The FAKEWIN utility by default pretends to be Windows 3.1 Enhanced
mode. However, a -WIN30 switch can be used to turn it into a phony Win-

dows 3.0. When FAKEWIN -WIN30 is run on top of DOS 5.0 and later, DOS
asks Windows to load the WINA20.386 VxD:
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C : \UNAUTHW\FAKEWIN>f akewi n -win30

Wi n386_Startup_Info_Struc at 0116: 0FE2

VxD name: C:\wina20.386 (Reference data: 00000000)

Remember WINA20.386? Perhaps you still have it sitting in the root

directory of your hard disk. WINA20.386 isn’t required for Windows 3.1

(this is why it doesn’t show up in Figure 4-1). DOS wants it to be loaded

only when it’s told that Windows 3.0 is starting up. DOS wanted it in the

root directory because this made it easier for DOS to tell Windows 3.0

what to load. The SWITCHES=/W setting in CONFIG.SYS disabled this use

of function 1605h: you had to explicitly put WINA20.386 in the Windows
SYSTEM.INI file, but you were free to move WINA20.386 out of the root

directory.

WINA20.386 is interesting as another example of how MS-DOS is “Win-

dows aware”: Windows isn’t just another program that happens to run on

top of MS-DOS. If you disassemble MS-DOS 5 or 6, you’ll see where

MSDOS.SYS handles the INT 2Fh function 1605h broadcast and, among
everything else FAKEWIN reveals, tells Windows 3.0 to load WINA20.386.

The specific details of WINA20.386 need not concern us here (it fixed a

bug in Windows 3.0); the important thing is that DOS knows about Win-

dows, enough to load VxDs that patch it. The fact that DOS’s WINA20.386
patches Windows must have been what prompted a Microsoft Knowledge-

Base article on WINA20.386 to oddly claim that “VxDs could be called

‘structured’ patches for Windows.”

DOS's inJIK3E Flag

The FAKEWIN output doesn’t show what is perhaps the best example

of DOS-Windows integration: When DOS 5.0 and later see the func-

tion 1605h broadcast, it not only returns the DOS instance data list

(and, if Windows 3.0 is starting up, requests that it load WINA20.386),

but also uses the 1605h broadcast from Enhanced mode as a signal to

turn on an IN_WIN3E flag inside DOS. Function 1606h is the signal to

turn this flag off.

As discussed in more detail in Undocumented DOS (2d ed.), MS-DOS 5

and 6 don’t care one way or the other about Windows Standard mode. But

while Windows Enhanced mode (or some program, like FAKEWIN, that

also issues the Windows INT 2Fh broadcasts) is running, MS-DOS wants

to behave as though a network were running. Ifyou think about it, multiple

DOS boxes in Enhanced mode are very much like multiple machines on a

network. When Enhanced mode is running, the file I/O code in DOS tests

file owners using both the DOS PSP and the virtual machine ID. As you’ll
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see shortly, the DOSMGR VxD patches this VM ID number right into

DOS, which then copies it into every open-file entry.

This doesn’t matter very much in Windows 95 or in WfW 3.11 with

3 2 -bit file access enabled because these versions of Windows can do file

I/O without consulting DOS. But the point remains that, even when

Windows did use DOS for file I/O, it was a DOS that knew about— and

contained special provision for— Windows.

IO.SYS also tests the IN_WIN3E flag, and if Windows Enhanced

mode is running, IO.SYS will, under certain circumstances, call the

DOSMGR VxD. VxDs can provide APIs to DOS and Windows applica-

tions; calling INT 2Fh function 1684h retrieves an API entry point for

the VxD whose ID (such as 15h for DOSMGR) is given in BX.

As usual, the Windows DDK documents this INT 2Fh mechanism,

but not the actual APIs provided by DOSMGR and the other VxDs built

into Windows.

These VxD APIs are available even to software that, like DOS, was

loaded before Windows. Yes, MS-DOS really does contain calls to INT
2Fh function 1684h. If compiled with the TEST_1684 switch, FAKE-
WIN lets you test this DOS behavior by calling test_1684 (shown in

Listing 4-2) to hook INT 2Fh and then shelling out to a DOS prompt.

Listing 4-2: TEST1684.C

/*

TEST1684 .

C

Just a quick hack to test DOS interaction with FAKEWIN

Andrew Schulman, 1994

*/

//include <stdlib.h>

//include <stdio.h>

//include <dos.h>

typedef unsigned short WORD;

typedef struct {

//ifdef TURBOC

WORD bp.di ,si ,ds,es,dx,cx,bx,ax;

//el se

WORD es,ds,di ,si ,bp,sp,bx,dx,cx,ax; /* same as PUSHA */

//endi f

WORD ip, cs, flags;

} REG_PARAMS

;

static WORD vxd_calls = 0;

static WORD vxd = 0;

static void far *requ = (void far *) 0;
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static void (interrupt far *old_2f)();

void interrupt far i nt2f ( REG_PARAMS r)

{

if (r.ax == 0x1684)

{

vxd_cal 1 s++;

requ = MK_FP( r . cs , r .
i p)

;

vxd = r.bx;

}

_chai n_i ntr(ol d_2f )

;

}

void tes t_l 684 ( void)

{

void interrupt far i n t 2f ( REG_PARAMS r);

o 1 d_2 f = _dos_getvect(0x2F)

;

_dos_setvect(0x2f , i n 1 2 f ) ;

// should be hooking INT 24 h , and so on

system(getenv( "COMSPEC" ) )

;

_dos_setvect(0x2F, old_2f);

if (vxd_calls)

{

printf
(

"\nRecei ved %d calls to 2F/1684 (Get VxD API ) \n " , vxd_ca 11s);

pri ntf( "Request VxD #%04X h from % F p \
n

" , vxd, requ);

1

The DOS prompt provided by FAKEWIN lets you see for yourself

that DOS calls DOSMGR. To try this out, access the floppy drive as

shown in Figure 4-4. This triggers DOS’s drive-swapping logic. As you

can see when you exit back to FAKEWIN, the program reports that INT
2Fh function 1684h was indeed called. This, incidentally, is a good exam-

ple of why issuing phony Windows INT 2Fh broadcasts is a risky propo-

sition. As seen in the disassembly at the bottom of Figure 4-4, DOS calls

any nonzero function pointer returned from the INT 2Fh function

1684h call.

Microsoft(R) MS - DOS ( R ) Version 5.00

(C)Copyright Microsoft Corp 1981-1991.

C:\UNAUTHW>dir b:foo.*

Insert diskette for drive B: and press any key when ready

Volume in drive B is FAKEWIN

Volume Serial Number is 3239-1303

Di rectory of B :

\

File not found

328,192 bytes free

C:\UNAUTHW>dir a:foo.*
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Insert diskette for drive A: and press any key when ready

Volume in drive A is FAKEW I

N

Volume Serial Number is 3239-1303

Di rectory of A:

\

File not found

328,192 bytes free

C : \UNAUTHW>exi

t

Received 2 calls to 2F/1684 (Get VxD API)

Request VxD #001 5h from 0070 : 08E1

C : \UNAUTHW>debug

-u 7 0 : 8d 1 8f

6

0070 : 08D1 57 PUSH DI

0070 : 08D2 06 PUSH ES

0070 : 08D3 53 PUSH BX

0070 : 08D4 50 PUSH AX

0070 : 08D5 33FF XOR Dl'.DI

0070 : 08D7 8EC7 MOV ES , DI

0070 : 08D9 BB1500 MOV BX , 0015

0070 : 08DC B88416 MOV AX, 1684

0070 : 08DF CD2F INT 2F

0070 : 08E1 8CC0 MOV AX , ES

0070 : 08E3 0BC7 OR AX , DI

0070 : 08E5 740B JZ 08F2

0070 : 08E7 0E PUSH CS

0070 : 08E8 B8F208 MOV AX.08F2

0070 : 08EB 50 PUSH AX

0070 : 08EC 06 PUSH ES

0070 : 08ED 57 PUSH DI

0070 : 08EE B80100 MOV AX, 0001

0070 : 08F1 CB RETF

0070 : 08F2 58 POP AX

0070 : 08F3 5B POP BX

0070 : 08F4 07 POP ES

0070 : 08F5 5F POP DI

0070 : 08F6 CB RETF

push return address

push DOSMGR API address

SetFocus call

call DOSMGR API

this is return address

Figure 4-4: FAKEWIN output for TEST_1684 and DEBUG disassembly show that DOS
calls DOSMGR.

Before displaying the “Insert diskette for drive x:” message seen in

Figure 4-4, IO.SYS (or the IO component ofWINBOOT.SYS) first

checks the internal IN_WIN3E flag. If Windows Enhanced Mode is

running, the DOS code at the bottom of Figure 4-4 calls a DOSMGR
API to set the VM focus to ensure that the user sees the message, even if

the DOS box was running invisibly in the background.

While at first it might be strange to see DOS calling Windows, this is

just another example of how the old “Windows runs on top of DOS”
description wasn’t very accurate, even for the configuration of Windows
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Enhanced mode with DOS 5 or 6. You’ll see in Chapters 9 and 10 that in

this configuration, DOS doesn’t even run in real mode. And in Chapter 8

we’ll use V86 breakpoints to show that DOS in fact makes frequent calls

to Windows VxDs. In some ways, it would be just as accurate to say that

DOS runs on top of Windows!

U86 Diode

Returning again to the FAKEWIN output in Figure 4-1, you can see that

a 386 memory manager (in this case, 386MAX) has provided Windows
(rather, FAKEWIN, which 386MAX thinks is Windows!) with a pointer

to a V86 Enable/Disable function:

V86 Enable/Disable function: 0329:0304 ( 386MAX $ $

)

Whenever you’re running an expanded memory manager such as

386MAX, QEA1M, or EMM386, your machine is in V86 mode rather

than in real mode. V86 mode is actually a 1MB form of protected mode,

controlled by a V86 monitor (also called a VMM), that can run real-

mode software. Just as Windows Enhanced mode has VMM to control

V86 DOS boxes, likewise 386 expanded memory managers are really

VMMs that run a single V86 DOS box. (VMM is a generic Intel term for

a V86 control program.) Because 386 expanded memory managers are so

widely used, real mode is finally dying out. (I’m referring here to Intel

80x86 real mode; Windows 3.0 Real mode died out long ago.) If you run

the PE program in Chapter 9 from your normal DOS prompt, the

chances are good that it will report that the machine’s protect-enable

(PE) bit is set. It might look like real mode, but you’re really in V86
mode, which, to make the point again, is really a form of protected mode.

Unfortunately, Enhanced mode won’t start up when anotherVMM has

the machine in V86 mode. (It could, if Microsoft had somehow made

WIN386 comply with the Virtual Control Program Interface [VCPI]

standard. In Standard mode, Windows 3.1 does comply with VCPI, but

then Standard mode and Enhanced mode are different animals.) Windows

wants to be king of the heap. Thus, the 386 memory manager must either

switch V86 mode off itselfwhen Windows starts or pass WIN386 a V86
enable/disable function pointer. The real-mode portion ofWIN386 (or

in Windows 95, ofWMM32) calls the function to switch V86 mode off

before jumping into protected mode.
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Global emm import

There’s just one problem with the scheme in which 386 memory man-

agers allow themselves to be switched off by Windows. If any memory
has been allocated from the memory manager, it suddenly becomes inac-

cessible when Windows starts. In particular, if any DOS device drivers or

TSRs are loaded into upper memory blocks (UMBs), they would sud-

denly become invisible. This would probably result in a system crash.

Thus, 386 memory managers need a way to hand off control of their

page tables to Windows. This is the purpose of the Global EMM Import

mentioned in Figure 4-1:

Global EMM Import @ phys 00BD9£ACh (version 1.11)

The term global refers to the fact that the EMM is present before Win-

dows has started. Global EMM Import (also called V86MMGR Paging

Import) is an undocumented interface, though Microsoft briefly alludes

to it in the DDK documentation for the _AddFreePhysPage and

V86MMGR_GetPgStatus, and makes a document available to some

memory-manager vendors. According to this document:

Windows/386 supports importing the current EMM handle state from a 386 LIMula-

tor [that is, an emulator for the Lotus-Intel-Microsoft expanded memory specification]

which is operating when Windows/386 is loaded. This allows the current set of EMM
users to continue to operate using their previously allocated EMM handles. There is

also provision for importation of Upper Memory Blocks and xMS handle information

from a currently operating xMS driver. NOTE that there is only one source for the

import. Even though the states of two different drivers are involved (xMS and EMM),

the import does not have to be separated because there is only one body of code

which is doing paging, not two. The import is basically just importing a “paging

state” from the currently running paging driver.

The IOCTL DOS call that the V86MMGR device makes to obtain the pointer to the

import information data structure is made with interrupts enabled. After this call it

is quite possible that a current EMM/xMS user will “wake up” and change the EMM
mapping, and/or manipulate one of the EMM or xMS handles. For this reason the

contents of the import information data structure cannot be set at the time of the

IOCTL because the state that it describes (of the EMS and xMS drivers) is subject

to change before Windows/386 gets to the point of transition into protected mode.

For this reason the “trigger” for setting the import information data structure con-

tent is not the IOCTL call used to obtain its address, but rather it is the Virtual

Mode Disable call.

When WIN386 is running, all EMM activity is LOCAL to the current VM, not GLOBAL.

A global EMM user may have to modify his behavior to cope with this situation. In

particular any mapping calls and context save calls operate relative to the currently

running VM and have no meaning in other VMs. A global EMM user who ALLOCATES
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a handle while WIN386 is up will very likely malfunction because that handle will be

LOCAL to the VM it is allocated in. For this reason Global EMM users need to ALLO-

CATE ALL their handles with the correct size at initialization.

The check_emm_import function in FAKEWIN (see Listing 3-1) sim-

ulates only the most superficial part of the EMM Import; it does this by

opening the EMMXXXXO device and issuing an I/O control (IOCTL)

read. Reading the structure would require calling the V86 switch_func to

turn the memory manager off and on, and calling IN F 15h function 87h

(Block Move) to copy the structure to conventional memory. (For sample

code and a full explanation of Global EMM Import, see the article by

Taku Okazaki cited in the “For Further Reading” section.)

The flOSMGR Broadcast dpi

Next up in Figure 4-1, you can see that FAKEWIN produced a block of

output relating to an interface provided by the DOSMGR VxD. Just as

Windows has its INT 2Fh function 1605h startup broadcast, VxDs can

have their own individual INT 2Fh function 1607h broadcasts. This is an

interface that VxDs use to call software loaded before Windows, and it

should not be confused with the INT 2Fh function 1684h interface that

DOS and Windows programs use to call into VxDs.

As usual, the mechanics are shown in the DDK— the VxD calls INT
2Fh with AX set to 1607h, BX set to a VxD ID (such as 15h for DOS-
MGR), and other registers used as the particular VxD sees fit— but

nothing is said about the actual broadcast interfaces provided in Win-

dows. This is a serious omission because some of these VxD broadcast

APIs, such as the one WSHELL provides to WinOldAp, are important.

As shown in Listing 4-3, FAKEWIN emulates part of the DOSMGR
broadcast API to see whether any software loaded before Windows

hooks the INT 2Fh AX set to 1607h BX=15h call to communicate with

DOSMGR. The FAKEWIN output back in Figure 4-1 shows that, not

surprisingly, MS-DOS itself hooks this call. DOS uses the interface to

provide DOSMGR with the addresses of several DOS variables, not for

instance data this time but for patching. Most importantly, DOS gives

DOSMGR the address of the USER_ID variable in DOS (located in

Figure 4-1 at 00A0:033E), so that DOSMGR can patch in the VM ID.

As noted earlier, DOS uses this VM ID for file I/O.

The DOSMGR broadcast API is described in an unpublished

Microsoft document, “API to Identify MS-DOS Instance Data.” Even
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without this document, it’s fairly easy to figure out the interface by disas-

sembling both sides of the conversation: the function 1607h calls in

DOSMGR, and the function 1607h hook in MS-DOS.

Listing 4-3: FAKEVXD.C

/*

FAKEVXD.C

Fake DOSMGR VxD callout used with FAKEWIN.C

Andrew Schulman

For more details, see Chappell, DOS Internals, pp. 118-122;

and Schulman et al .

,

Undocumented DOS (2d ed., pp. 24-30).

*/

//include <stdlib.h>

//include <stdio.h>
\

typedef unsigned short WORD;

//define V X D_CA L LOUT ( vxd_i d ) \

{ \

_asm { mov bx, vxd_id } ; \

_asm { mov ax, 1 607 h ; } ; \

_asm { int 2 f h ; } ; \

//define DOSMGR_CAL LOUT ( func) \

{ \

_asm { mov cx, func } ; \

V X D_C A L LOUT ( 0x15 ) ; \

//define NUM_PATCH 6

// names from Microsoft document "API to Identify MS-DOS Instance Data"

char *patch_str[] =
{

"SAVEDS", " SAVEBX " , "INDOS", "USER_ID", "CRITPATCH", "UMB_HEAD"

,

void fake_dosmgr_cal louts (void)

{

WORD w, w2, w3;

WORD far *patchtab;

WORD far *patch;

i nt i ;

D 0 S M G R_C A L L 0 U T ( 0 ) ; // query instance processing

_asm mov w, cx

if (w ! = 0)

{

_asm mov w, dx

_asm mov word ptr patchtab+2, es

_asm mov word ptr patchtab, bx
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printf
(

"\nDOSMGR instance interface 0 N \
n

" )

;

if ( w !
= 0

)

pri ntf
(

"Segment of DOS drivers: % 0 4 X \
n

" , w);

printf
(

"Patch table: %Fp\n", patchtab);

pri ntf
(

" DOS version %u.%02u\n",

(patchtab[0] & 0xFF), (patchtab[0] >> 8));

for (i=0, patch = &patchtab[l]
: i < N UM_PAT C H ; i++, patch++)

printfC %04 X ( %s ) \n " , *patch, patch_str[i ] )

;

// probably not safe to try D0SMGR_CA L LOUT ( 1 ) , except

// perhaps if immediately followed by D0SMGR_CA L LOUT ( 2

)

^define W E I RD_MAG I C__l 0xB97C

^define W E I RD_MAG I C_2 0xA2AB

_asm mov dx, 1

D 0 S M G R_CALLOUT (3) ; // get size of DOS data structure

_asm mov w, ax

_asm mov w2, cx

_asm mov w3, dx

if ( (w != WEI RD_MAG I C_1 ) && (w3 != WEI RD_MAG I C_2 )

)

pri ntf
(

"DOSMGR callout 3 failed: signature wrong! \n" ) ; // AX : DX

el se

pri ntf
(

"Current Directory Structure = %u bytes\n", w2); // CX

D 0 S M G R_CALLOUT (4) ; // determine instanced data structures

_asm mov w, ax

_asm mov w2, bx

_asm mov w3, dx

if ( (w3 == 0) ||
(w2 == 0))

printfC'No DOS data structures instanced via DOSMGR API \n " )

;

else if ((w != WEI RD_MAGIC_1 ) && (w3 != WE I RD_MAG I C_2 )

)

pri ntf
(

"DOSMGR callout 4 failed: signature w r o n g ! \
n

" ) ; // AX : DX

else

pri ntf
(

"DOS

if (w2 & 1)

if (w2 & 2)

if ( w2 & 4)

if (w2 & 8)

data structure

pri ntf
(

"

pri ntf
(

"

pri ntf
(

"

pri ntf
(

"

; instanced: %04X\n", w2)

CDS\n" )

;

SFT\n " )

;

Devi ce chai n\n" )

:

SDA\n" )

;

el se

printf("\nNo DOSMGR instance i nterfaceXn" )

;

j

The DOSMGR interface seems to have been designed so that DOS-
MGR would require less hard-wired knowledge about DOS internals; its

broadcast API could ask the underlying DOS to provide it with the nec-

essary information. However, the interface is incomplete and doesn’t
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really decouple DOS and Windows. In fact, since the interface is unpub-

lished, it serves only as one more piece of insider trading between DOS
and Windows. In any case, the interface is another illustration of how
MS-DOS and Windows form a single unit.

Interestingly, although DR DOS 6.0 didn’t support the DOSMGR
API (FAKEWIN prints “No DOSMGR instance interface”), Novell

DOS 7.0 does at least provide the DOSMGR patch table.

ISR identify Function

At the end of Figure 4-1, FAKEWIN detects something called a TSR_
Info_Struc, belonging to COUNTDOS. FAKEWIN detected this struc-

ture by faking a call to INT 2Fh AX=160Bh, the Windows TSR Identify

function. Listing 4-4 shows the FAKETSR.C module.

Listing 4-4: FAKETSR.C

/*

FAKETSR.C

Andrew Schulman

Refer to the David Long article on the Microsoft Developer Network

( MSDN ) CD for 2F/160B doc.

*/

#i ncl ude < s td 1 i b . h

>

//include <stdio.h>

//include <dos.h>

typedef unsigned char BYTE;

typedef unsigned short WORD;

typedef unsigned long DWORD;

typedef void far *FP;

//pragma pack ( 1

)

typedef struct {

WORD size;

BYTE str[l]

;

} TSR_ID_B1 ock_Struc

;

typedef struct _T S R I N FO {

struct _T S R I N F 0 far *TSR_Next

;

WORD TSR_PSP_Segment

;

WORD T S R_A P I_V e r_ I D ;
/* 0x100 */

WORD TSR_Exec_Fl ags

;

WORD TSR_Exec_Cmd_Show

;

char far *TSR_Exec_Cmd

;
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DWORD TSR_Reserved

;

TSR_ID_B1 ock_Struc far *TSR_ID_B1 ock;

FP T S R_Da t a_B lock;

} TSR_Info_Struc

;

//pragma packO

// TSR_Exec_Fl ag equates

//define TSR_WI NEXEC 1

//define TS R_L0AD L I B RARY 2

//define T S R_0 PENDRIVER 4

// TSR_Exec_Cmd_Show equates

//define SW_HIDE 0

//define SW_SH0WN0RMAL 1

//define SW_SH0WM I N I M I Z E D 2

//define SW_SHOWMAX I M I Z ED 3

//define SW_SH0WN0ACT I VATE 4

//define SW_SH0W 5

//define SW_MINIMIZE 6

//define SW_SH0WM I N NOACT I V E 7

//define SW_SH0WNA 8

//define SW_RESTORE 9

char *sw_str[SW_RESTORE+l ] =
{

"SW_HIDE" , " SW_SH0WN0RMAL " , " SW_SH0WM I N I M I Z E
D

" , "SW_SHOWMAXIMIZED"

,

"SW_SHOWNOACTIVATE" , "SW_SH0W", "SW_MINIMIZE" , "SW_SH0WMI NNOACTIVE"

,

"SW_SH0WNA" , "SW_RESTORE"

// in FAKEWIN .

C

extern char *owner(FP fp);

void pri nt_tsr_i nfo(TSR_Info_Struc far *tsr_info)

{

if ( t s r_i n f o - >TS R_A P I_V e r_I D < 0x100)

printf("%Fp not a valid TSR structure ! \n" , tsr_info);

pri ntf (
" \nTSR_Info_Struc at 7oFp (PSP %04Xh ) %s\n",

tsr_info, tsr_i nfo->TSR_PSP_Segment ,
owner(tsr_i nfo) )

;

if (tsr_info->TSR_Exec_Cmd)

{

switch (tsr_i nfo->TSR_Exec_Fl ags

)

{

case TSR_WI NEXEC

:

pri ntf
(

"TSR_WI NEXEC ");

// Exec_Cmd_Show only used for TSR__WI NEXEC

if (tsr_i nfo->TSR_Exec_Cmd_Show <= SW_RESTORE)

pri ntf( "%s ", sw_str[tsr_i nfo->TSR_Exec_Cmd_Show] )

;

el se

pri ntf
(

"TSR_Exec_Cmd_Show: %04X h ",

tsr_i nfo-)TSR_Exec_Cmd_Show)

;

break

;

case T S R_L0AD LIBRARY
:

pri ntf
(

" TSR_L0AD L I BRARY "); break;

case T S R_0 PENDRIVER: pri ntf
(

"TSR_OPENDRI VER "); break;

default: pri ntf
(

"TSR_Exec_Fl ags %04X h ",
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tsr_i nfo->TSR_Exec_Fl ags ) ; break

;

}

printf
(

"\n\"%Fs\"\n" , tsr_i nfo->TSR_Exec_Cmd )

;

}

if ( t s r_i n f o - >TS R_I D_B lock)

pri ntf( "TS R_ I D_B lock: \"%Fs\"\n" , tsr_i n f o - > T S R_ I D_B1 ock->str )

;

if ( t s r_i n f o - >TS R_Da t a_B 1 ock)

printf
(

"TSR_Data_Bl ock: %Fp\n", tsr_i n f o - >TS R_Da t a_B 1 ock)

;

void tsr_identify(void)

{

TSR_Info_Struc far *tsr_info;

_asm push di

_asm xor cx, cx

_asm mov es , cx

_asm mov di , cx

_asm mov ax, 160bh

_asm int 2 Fh

_asm mov word ptr tsr_info+2, es

_asm mov word ptr tsr_info, di

_asm pop di

if (tsr_info != 0)

{

do {

pri nt_tsr_i nfo(tsr_i nfo)

;

tsr_info = tsr_i nfo->TSR_Next

;

} whi 1 e (tsr_i nfo != 0)

;

}

Just as DOS programs can hook function 1605h to ask Windows to

load a VxD, they can also use hook 160Bh to ask the Windows USER
module to load a Windows executable, a dynamic link library (DLL), or a

Winl6 driver. USER issues this call during InitApp (see Matt Pietrek,

Windows Internals, pp. 279-281); depending on the request, USER calls

the WinExec, LoadLibrary, or OpenDriver API function.

TSR Identify is documented in David Long’s article “TSR Support in

Microsoft Windows Version 3.1” on the Microsoft Developer Network

(MSDN) CD-ROM. This documentation is accompanied by a sample

program called COUNTDOS. The results of COUNTDOS’s function

160Bh hook can be seen in the FAKEWIN output in Figure 4-1. Accord-

ing to the Microsoft documentation, function 160Bh is also used by fax

software and the Windows network popup utility.

COUNTDOS is an interesting example in its own right of DOS-
Windows interaction. COUNTDOS.EXE is a Windows executable, with

an embedded DOS program that loads before Windows. The DOS pro-

gram hooks INT 2 lh and keeps a log of all DOS calls; it optionally can
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require the user to verify file deletes. As seen at the end of Figure 4-1, the

DOS portion of COUNTDOS.EXE hooks function 160Bh, so that

when Windows starts, USER performs the following:

WinExec( "C:\UNAUTHW\FAKEWI N\C0UNTD0S.EXE /085E : 00DD" , SW_SH0WN0ACTI VATE )

:

The Windows portion ofCOUNTDOS uses DPMI calls to talk to its

DOS portion, which is loaded before Windows. Somewhat like the

V86TEST program in Chapter 10, COUNTDOS displays the number

of INT 2 lh calls; this information is quite useful for seeing the extent to

which Windows has or has not cut itself off from real-mode DOS.
It’s instructive to run Microsoft’s COUNTDOS example, with and

without 3 2 -bit file access enabled. Figure 4-5 shows COUNTDOS in

WfW 3.11, with 32-bit file access disabled (WIN /D:C). With COUNT-
DOS loaded, I started Microsoft Office, ran Microsoft Word, and did a

few other things. Note the calls to DOS functions 3Dh (File Open), 3Eh
(File Close), 3Fh (File Read), and 40h (File Write): Windows uses DOS
for file I/O.

Hcfreshi Reset! Settings Help

Wk
V .

228 Select disk

Get Current Disk

Set DTA Address
Get Drive Data

Get date

Get time

Get DOS version

Change Current Directory

Create File with Handle

Open File with Handle

Close File with Handle

Read File or Device

Write File or Device

Delete File

Move file pointer

Get/Set File Attributes

IOCTL
Duplicate File Handle
Get Current Directory

Terminate with Ret Code
Find First File

Set PSP Segment
Get PSP Segment
Create PSP
Get/Set Date/Time File

Get Extended Error Info

Create New File

Lock/Unlock File Region

456

210

121

22%2185

328

279
2146 21%
177

11%
131

1065 10%

210
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293

140

Figure 4-5: Running COUNTDOS without enabling 32-bit file access reveals Windows'

reliance on DOS.

Next, I restarted WfW 3.11 with 3 2 -bit file access, and performed

roughly the same set of operations as in Figure 4-5. Figure 4-6 shows

how this looked to COUNTDOS. Notice that, while there are still



Unauthorized Windows 95

plenty of DOS calls, there are none to the standard File Open, Close,

Read, and Write calls, and just a few to calls such as IOCTL and Get/Set

File Date/Time.

Figure 4-6: Running COUNTDOS with 32-bit file access reveals how WfW 3.11 could

bypass DOS for most operations.

Finally, I tried COUNTDOS in Windows 95. 1 put INSTALL=
COUNTDOS.EXE in CONFIG.SYS so that I wouldn’t need an AUTO-
EXEC.BAT fde. When Windows 95 came up, I reset the COUNTDOS
statistics so it wouldn’t show the DOS calls that occurred while Windows
was booting up. (I did the same reset with the WfW 3.11 tests, too.) If

Windows 95 does not rely on DOS, COUNTDOS shouldn’t show any

DOS calls. As Figure 4-7 shows, the results are impressive (very few INT
2 lh calls are being sent down to DOS), but they’re not that impressive.

Especially because, aside from COUNTDOS itself, I was running only

Win32 applications here: the Windows 95 shell, the Win32 version of

Clock, and WinBezMT. COUNTDOS shows that even Win32 applica-

tions in Windows 95 still use real-mode DOS for some operations, such as

getting the date and time and creating and setting PSPs.

Figure 4-7 is practically an icon for this book. Here we see a number

of Win32 applications running (WinBezMT has a few bezier threads

going), and popped up in front of them is a little program — from

Microsoft, no less— reminding us that DOS is not dead.
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Control Panel Printers Foil
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Figure 4-7: COUNTDOS running in Windows 95 shows that even Win32 applications

still need DOS for some operations, such as getting the date and time, and creating and

setting PSPs.

There’s one final interesting point about COUNTDOS. This

Microsoft sample program has a cute Confirm Deletes option. When
selected, COUNTDOS’s INT 2 lh handler looks for function 41h (File

Delete) calls, and tells the Windows part of the program to pop up a dia-

log box asking you to confirm that you really want to delete the specified

file. This works nicely in Windows 3.1, and is a good example of how a

DOS program and a Windows program (embedded in a single executable

file) can work together.

When 3 2 -bit file access is enabled in WfW 3.11 or Windows 95, how-

ever, the COUNTDOS Confirm Deletes option has no effect. It’s obvi-

ous why: When 3 2 -bit file access is enabled, COUNTDOS won’t see any

function 41 h (File Delete) calls because they are all being handled by

Windows VxDs in 3 2 -bit protected mode. COUNTDOS has no oppor-

tunity to confirm deletes because, as far as it can tell, there aren’t any!

This is a good example of how bypassing DOS, which sounds so good,

can have serious negative side effects. A legal DOS-Windows program—
in fact, one intended to teach programmers how to use Microsoft’s

operating-system interfaces — has been broken by 3 2 -bit file access.

Well, there’s no such thing as a free lunch. But it would be nice if

Microsoft from time to time told us the price of the meal.





Chapter 5

The Two Faces

44|||hat will happen to the MS-DOS product line?” This was a question

Wposed in Microsoft’s “Chicago Questions and Answers” white paper

(January, 1994). The answer seems to suggest a radical overhaul for this

nearly ancient real-mode operating system:

Microsoft will continue to enhance MS-DOS as long as customers require it. Future

versions will be derived from the protected-mode technology developed in the

Chicago project.

What does this mean? How can future versions of DOS be derived

from protected-mode software? Will this protected-mode DOS still be

recognizable as DOS? Is a protected-mode MS-DOS (or a version of

DOS “derived” from protected-mode technology, whatever that means)

even possible?

In this chapter, you’ll see that this protected-mode DOS already exists

(and in essence has existed for years) as part of Windows.

me inner core oi uiinflouis

Ifyou asked a typical Windows programmer to list the core components of

Windows, chances are the programmer would ratde off“KERNEL, USER,
and GDI.” These are the names of the Windows dynamic link libraries

(DLLs) that contain the bulk of the Windows APIs used to write Windows

applications. Windows APIs such as GlobalAlloc, CreateWindow, and

TextOut live inside these DLLs.

These DLLs are important, but they don’t constitute the core of

Windows. As you’ll see in the course of this chapter, the visible GUT por-
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of Windows — the part that nearly everyone thinks of as Windows

itself— is little more than an application that happens to run on top of

the actual Windows operating system.

This Windows operating system doesn’t reside in KERNEL, USER,
or GDI. Instead, it’s found largely in a file called WIN386.EXE or, in

Windows 95, VMM32.VXD. At one point, Microsoft called this file

DOS386.EXE, which indicates that it’s difficult to say whether this pro-

gram is part of Windows or part of DOS. By the end of this chapter, you

might come to view WIN386.EXE as part of a future version of DOS —
or perhaps as an Enhanced mode ofMS-DOS — that more or less was

accidentally shipped with Windows for several years.

To start Windows, you run the program WIN.COM which, as Chap-

ter 2 showed, in turn launches another program:

• In Standard mode (WIN /S), WIN.COM runs WSWAP.EXE, which

runs DOSX.EXE, which in turn runs either KRNL286.EXE (on

80286 processors) or KRNL386.EXE (on 80386 and later processors).

• In Enhanced mode (WIN /3), WIN.COM runs WTN386.EXE, which

is a collection of VxDs. The WSHELL VxD inside WIN386 runs

KRNL386.EXE.

• In Windows 95, WIN.COM runs VMM32.VXD (a collection ofVxDs),

whose WSHELL VxD runs the Win 16 kernel, KRNL386.EXE.

So what sort of programs are DOSX, WIN386, and VMM32? How do

they relate to the more visible aspects of Windows? In this chapter and

the two that follow it, we’ll run DOSX, WIN386, and VMM32 in an

unusual way to see what these programs do for Windows.

DOS EKtenders and the Future of DOS

Although this book focuses on WIN386.EXE and VMM32.VXD, the

easiest way to understand these two programs is to look first at DOSX
.EXE, which is the basis for Windows 3.x 286 Standard mode. (Standard

mode disappeared in Windows for Workgroups 3.11, just as Windows
real mode disappeared in Windows 3.1.)

WIN /S looks for DOSX.EXE and WSWAP.EXE and then executes

WSWAP.EXE. WSWAP and another executable, DSWAP, are just the

task-switching code from DOSSHELL.EXE, the DOS 5 task switcher. In

turn, DOSSHELL.EXE was the Windows 3.0 Standard mode task
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switcher; it was basically lifted out “as a lump and plopped into the DOS
5.0 product” (Ray Duncan, “Programming Considerations for MS-DOS
5.0,” PC Magazine

,
November 12, 1991). WSWAP runs DOSX, and

DSWAP runs other DOS programs.

DOSX.EXE, as its name implies, is a DOS extender. This means that

DOSX provides a protected-mode DOS interface: Thanks to DOSX,
protected-mode Windows applications running in Standard mode can

make DOS INT 2 lh calls to access files, allocate memory, set interrupt

vectors, and so on, even though we normally think of DOS as a real-mode

operating system. This is illustrated in Figure 5-1. In Enhanced mode, the

Windows DOS extender resides in the DOSMGR VxD located inside

WIN-386.EXE; when 32-bit file access is enabled in WfW 3.11 and

Windows 95, the IFSMGR.386 VxD should probably be considered part

of the DOS extender, too.

Extended Memory

Conventional Memory

Stub Program

Protected Mode

Real or V86 Mode

Note: The dashed arrow indicates that the DOS
extender passes only some INT 2 1 h calls down to

real mode; some are handled in protected mode.

Figure 5-1: A DOS extender lets protected-mode applications (such as Windows programs)

make INT 21h calls, even though MS-DOS is not a protected-mode operating system. The

DOS extender often (but not always) does this by translating the protected-mode INT 21h

call into real-mode terms, and then reissuing (or reflecting) it in real or V86 mode.

What does a DOS extender do? As an example, consider a program that

calls DOS function 3Dh to open a file, passing a far pointer to the filename

in the DS:DX registers. In a real-mode program, DS:DX is a real-mode

pointer, which DOS can readily understand. But if a protected-mode pro-

gram, such as a Windows application, calls INT 2 lh function 3Dh (either
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directly or via a Windows API function such as OpenFile or DOS3Call),

the far pointer in DS:DX will naturally enough be a protected-mode

pointer: DS holds a selector, not a paragraph address. Furthermore, this

selector will most likely have a base address located in extended memory,

above 1MB.

The file-open code in real-mode DOS cannot correctly interpret

protected-mode pointers, nor can it see extended memory. If a Windows
application or other protected-mode program passed DOS a protected-

mode filename pointer, DOS would just get it wrong.

This is where a DOS extender such as DOSX.EXE comes in. A DOS
extender hooks INT 2 1 h in protected mode and provides protected-

mode equivalents for all the familiar DOS functions. A DOS extender’s

implementation of function 3Dh, naturally, would expect a protected-

mode pointer in DS:DX and would do whatever is necessary to open the

file and return a DOS file handle to the protected-mode application. In

essence, the DOS extender makes it appear as though DOS were a

protected-mode operating system.

The DOS extender can implement its protected-mode INT 2 lh func-

tions any way it chooses. It can translate the call to something that makes

sense in real mode and reflect this translated call to DOS, or (and this is

a crucial point that is often overlooked) it can service the call entirely in

protected mode
,
without calling down to DOS.

As an example of this second option to bypass DOS, consider the

DOS memory allocation function (INT 2 1 h function 48h). Protected-

mode programs calling this function (or calling something such as malloc

in C or the new operator in C++ that in turn eventually relies on function

48h) will naturally want to have DOS (or whatever is providing the

protected-mode INT 2 lh interface) return them a protected-mode selec-

tor to a block of memory. To provide a true DOS protected-mode inter-

face, the function would have to keep the old DOS “semantics”: the

returned selector would have to be immediately usable in a far pointer,

without requiring any sort of new “lock” function:

unsi gned short para , sel

;

char far *fp;

// ...

_asm mov ah, 48h

_asm mov bx, [para]

_asm int 21

h

_asm jc error

_asm mov [sel ] , ax

fp = MK_FP( sel , 0);

*fp = 'x':

: Allocate Memory function

: number of paragraphs

: call DOS

: save away selector

// create far pointer from selector

// use it
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The DOS extender could implement function 48h by passing the call

down to real-mode DOS and then translating the real-mode paragraph

address returned by DOS into a protected-mode selector. But the

protected-mode caller almost never wants a protected-mode selector

pointing to conventional memory below 1MB. The protected-mode pro-

gram wants to get at the vast stretches of extended memory above the

1MB DOS boundary; this after all is the key reason to move to protected

mode in the first place. Thus, a DOS extender that gives protected-mode

applications a DOS memory allocation function would not pass this call

down to DOS; it would service the call entirely in protected mode so that

the function became a DOS interface to extended memory.

Now, if a DOS extender did this all across the board, for every INT
2 lh function, you’d have an entirely new protected-mode operating sys-

tem, albeit with the familiar INT 2 lh interface. This would constitute a

full-blown protected-mode DOS. In fact, a DOS extender doesn’t neces-

sarily require any underlying copy of DOS, except perhaps as a conve-

nient bootstrap loader.

The DOS extender could even extend the INT 2 lh interfaces to 32

bits (for example, function 48h would expect the number of paragraphs in

the 3 2 -bit EBX register rather than in the 16-bit BX register, and func-

tion 3Dh would take a filename in EDX). It could also provide new INT
2 lh services (to support long filenames, for instance) that real-mode

DOS doesn’t supply. This, in essence, in what Microsoft is doing to DOS
in Windows 95.

Notice that, even if the DOS extender doesn’t carry out the “do it all

in protected mode” policy— that is, even if the DOS extender does con-

tinue to pass some calls down to real-mode DOS — this doesn’t really

change the essence of the DOS extender as a protected-mode operating

system. The decision about whether or not the protected-mode INT 2 lh

is passed down to real-mode DOS is made entirely by the DOS extender.

DOS is in a subordinate position, doing only what the DOS extender

doesn’t feel like doing itself. Instead of viewing the DOS extender as

something that “runs on top of DOS,” it’s more accurate to view DOS as

little more than a 16-bit real-mode driver for use by the DOS extender.

This is particularly true when the DOS extender runs DOS in V86
mode because, as you’ll see in Chapters 9 and 10, the DOS extender can

then exercise control over what happens inside DOS and inside DOS
device drivers and TSRs. This means that the V86 DOS extender can

provide INT 2 1 h to real-mode programs, too. The DOS code called by
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these real-mode programs would then effectively run in protected mode.

But I’m getting ahead of myself a little.

With this background on the possibilities of DOS extender technol-

ogy, and a suggestion of the future of the DOS interface, let’s go back in

time to look at the history behind DOSX.EXE.
The DOS extender in Windows Standard mode was based on one that

Microsoft used earlier in its CodeView debugger; this DOS extender in

turn was based on the SST debugger written by Murray Sargent. Gates
,

the excellent biography of Bill Gates by Stephen Manes and Paul

Andrews, has a good description of how Murray Sargent and David

Weise used Murray’s DOS extender to port Windows to protected mode;

much of this work lives on in DOSX.EXE:

In 1988 the Windows group had become a skeleton crew once Mad Dog [Steve]

Ballmer began dragging people out the door to work on OS/2. Version 2 of Windows

had been a death march of its own, but the Windows gang was still plugging away.

Slowly but surely, a collection of Windows apps was beginning to turn up. Still, exactly

what the next version of Windows should be, or even if it should be, remained unclear.

Then in June David Weise, one of the Smart Guys from the Dynamical Systems

Research acquisition, ran into an old friend..., Murray Sargent, “a world-renowned

laser jock who happens to like to grope around computers.” A physics professor

from the University of Arizona, Sargent was up for the summer to adapt Microsoft’s

CodeView debugger to a kludge known as “DOS extension” that allowed specially

written programs to use extended memory on 286 and 386 machines. He had

recently added Windows support and a DOS extender to his own debugger, a pro-

gram called SST that happened to be Weise’s personal favorite.

In Weise’s view, the three big problems with Windows were “memory, memory, mem-
ory.” You were always bumping up against the memory limits one way or another,

and it compromised every aspect of the program....

So Weise brought Sargent back to his office, fired up the new debugger, and starting

with line one began stepping through Windows to make it run under protected mode,

thereby accessing extended memory. “We’re not gonna ask anybody, and then if

we’re done and they shoot it down, they shoot it down.” Weise began working on it

at home, then moved it to the office for three months of night and weekend work.

The good news: “It turned out Steve Wood who I’d inherited the kernel from had

structured the whole thing to wanna be” in protected mode....

“There are all these little gotchas throughout [the process of bringing up Windows

in protected mode], but basically you just work through the gotchas one at a time,

you just close your eyes, and you just charge ahead. You don’t think of the prob-

lems, or you’re not gonna do it.... Piece by piece, it’s coming. Okay, here comes
the keyboard drivers, here come the display drivers, here comes GDI — Oh, oh,

look, here’s USER!

“Without that debugger running in protected mode with the DOS extender I could not

have done it.”
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A few weeks before a scheduled design review with the whole staff, including Bill

[Gates], Weise let Ballmer know how close he was to getting Windows to run in pro-

tected mode. “This is interesting,” Ballmer said.

Weise upped the ante at a group retreat in the basement of the nondecadent La

Quinta mote! in Kirkland. Product manager Russ Werner had been given his mission

for Windows 3 by none other than Bill Gates: “Just make it great.” What, Werner

kept asking his troops, would make it great? An interface that could be custom-

configured by the user, said some. A cleaner look, said another. “Using protected

mode,” said David Weise.

“How would that help?" Werner asked.

Without revealing how far along he was already, Weise rattled off a couple of dozen

reasons. Werner told him to go ahead and give it a try.

The night before the design review, Weise told Ballmer to meet him in his office the

next morning at eight. Weise stayed up until 3:00 AM getting the Windows desktop

programs to run in protected mode and left the machine on when he walked out the

door. When he came in to work a few minutes late, his machine had crashed. He

knew who had to have done it. He ran down to Ballmer’s office and asked, “Did you

see it?”

“Yes,” Ballmer told him. “Where do we go from here?”

“Steve, it’s totally up to you.”

“Let’s go for it,” Ballmer said.

Going into the meeting, Weise was ecstatic. “It’s like [George] Gamow,” he recalled,

referring to the Russian-born physicist who had developed theories of stellar evolu-

tion. “His girlfriend says ‘What are you thinking?’ and he goes, ‘I’m the only person

in the world right now who knows how the sunshine works.’”

And what Weise was about to reveal might well be some sunshine in the middle of

the [OS/2] Presentation Manager gloom. In a fashion, he was about to vindicate

Steve Ballmer’s pledge of 1985: Write your app for Windows and you’ll be able to

run it in protected mode without any trouble at all.

Others gave their presentations, and then Weise dropped his bombshell. Everything

that had been discussed suddenly changed.... A little side bet against IBM might

well be in order. “Okay, let’s do it,” Gates said.

Ballmer turned to Bill, “What do we tell IBM?”

A smile spread across the face of Bill Gates. “That’s your problem, Steve.”

And a problem it was. IBM had seen Windows as an intermediate step between DOS
and PM, and not much of one at that. Now, by overcoming the inbuilt limitations of

DOS, Windows was positioning itself to undercut OS/2 and Presentation Manager.

The only thing it was missing was ship dates.

— Stephen Manes and Paul Andrews, Gates, 1993, pp. 380-382.
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dosh: a General-Purpose

DOS Entender and dpdii server

That DOSX.EXE in Windows Standard mode is based on earlier debug-

ger technology indicates either that Windows is a debugger in disguise or

that DOSX is not very Windows-specific.

Indeed, DOSX is a quite general-purpose piece of software. Besides

its role as a DOS extender, this small (32,000 bytes) program is also a

DPMI server (or DPMI host). DPMI stands for DOS Protected Mode
Interface; DOSX supports DPMI version 0.9. Despite the name, DPMI
isn’t the same thing as a protected-mode INT 2 lh interface; that is,

DPMI isn’t the same thing as a DOS extender. Instead, DPMI is a set of

INT 2Fh and INT 3 lh services you can use to write a DOS extender

that’s compatible with Windows or 386 memory managers such as

QEMM or 386MAX.
For example, one of the services provided by DPMI servers such as

DOSX.EXE is INT 2Fh function 1687h, documented in the DPMI
specification (available from Intel) as “Obtain Real-to-Protected Mode
Switch Entry Point.” When a real-mode program calls this service,

DPMI returns a far pointer to a DPMI function which, when called,

switches the calling program into protected mode.

Listing 5-1 (USEDPMI.C) is a very simple example of how a real-

mode DOS program can use DPMI to switch itself into protected mode.

If DPMI isn’t available, USEDPMI fails with the message “This program

requires DPMI,” but if DPMI is available (for example, when running

under 386MAX or QEMM), the program prints “Greetings from pro-

tected mode!” and then exits. The key is the dpmi_init function, which

first calls INT 2Fh function 1687h to obtain the DPMI switch_proc and

then calls the switch_proc.

The DPMI specification states that DPMI clients must exit using INT
2 lh function 4Ch. Rather than rely on the C run-time library’s exit proce-

dure, USEDPMI calls a _dos_exit function. But since it’s bypassing the C
run-time exit, USEDPMI explicitly calls the flushall function to clean up

file I/O. Otherwise, redirected output won’t get written out properly.

Listing 5-1: USEDPMI.C

/*

USEDPMI.C -- very simple DPMI client
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bcc usedpmi .

c

Andrew Schulman 1994

This program *MUST* be compiled in small model because, once in

protected mode, it calls printf from the real -mode C run-time

library. In the large model, the C run-time would use far

pointers, but USEDPMI ' s segment registers are going to change

out from under it when it switches to protected mode.

*/

//include <stdlib.h>

//include <stdio.h>

//include <dos.h>

void _dos_exi t( i nt retval)

{

_asm mov ah, 04c

h

_asm mov al , byte ptr retval

asm i nt 21

h

void faiKconst char *s) { puts ( s ) ; exit(l); }

// Call the DPMI "Obtain Real to Protected Mode Switch Entry

// Point" function (INT 2Fh AX=1687h)

i nt dpmi_i ni t( voi d

)

{

void (far *swi tch_proc) ( )

;

unsigned hostdata_seg , hostdata_para , dpmi_f 1 ags

;

_asm push si

_asm push di

_asm mov ax, 1 687 h /* test for DPMI presence */

_asm i nt 2 Fh

_asm and ax, ax

_asm jz got_dpmi /* if (AX == 0) DPMI is present */

_asm jmp no_dpmi

got_dpmi

:

_asm mov dpmi_f 1 ags , bx

_asm mov hostdata_para , si /* paras for DPMI host private data */

_asm mov word ptr switch_proc, di

_asm mov word ptr swi tch_proc+2 , es

_asm pop di

_asm pop si

if (_dos_al 1 ocmem(hostdata_para , &hostdata_seg) != 0)

fail ("can’t allocate memory");

d pmi _f 1 ags &= ~1; /* this is a 16-bit protected-mode program */

/* enter protected mode */

_asm mov ax, hostdata_seg

_asm mov es , ax

_asm mov ax ,
dpmi_fl ags

(*swi tch_proc) ( )

;

/* I don't think we're in Kansas anymore, Toto! */

return 1;
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no_dpmi

:

_asm pop di

_asm pop si

return 0;

void print_regs( void)

{

unsigned short ds_reg, cs_reg;

_asm mov cs_reg, cs

_asm mov ds_reg, ds

pri ntf( "CS=%04Xh DS=%04Xh\n", cs_reg, d s_r eg )

;

main(int argc, char *argv[])

{

pri nt_regs( )

;

if (! dpmi_i ni t( ) ) // switch into protected mode, via DPMI

fail ("This program requires DPMI");

pri nt_regs ( )

;

pri ntf
(

"Greeti ngs from protected mode!\n");

// to exit from protected mode, must use 21/4C!

// and since bypassing C exit cleanup, must do flushall ourselves

f 1 ushal 1 ( )

;

_dos_exi t ( 0 )

;

}

Notice that, once in protected mode, USEDPMI calls the printf func-

tion from the C run-time library to display the “Greetings from protected

mode!” message. But USEDPMI starts off as a real-mode program, and is

linked with a real-mode C run-time library. Using the real-mode C run-

time library in protected mode requires that this real-mode code be “pro-

tected-mode clean”; this in turn requires that USEDPMI be compiled in

small model, for reasons that should be fairly evident from looking at the

program’s output when run under a DPMI server:

CS=215Ah DS=22C9h

CS=02E7h DS=027Fh

Greetings from protected mode!

The DPMI server changed USEDPMI’s segment registers right out

from under it! The DPMI server has given USEDPMI protected-mode

selectors that have the same linear base address as USEDPMI’s previous

real-mode segment registers.

Besides requiring small model, there’s another, even more fundamen-

tal assumption implicit in USEDPMI’s cavalier use in protected mode
of a real-mode printf function: USEDPMI is assuming not only the

presence of a DPMI server but also the presence of a DOS extender
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providing protected-mode INT 2 lh services. The real-mode printf that

USEDPMI calls in protected mode will almost certainly result in an INT
2 lh DOS call eventually, so someone had better be providing INT 2 lh in

protected mode.

DPMI servers do almost always come with DOS extenders, but the

DPMI specification says nothing one way or the other about this. Thus,

you shouldn’t assume that you have protected-mode INT 2 lh services

just because you have DPMI services. The DPMI server in OS/2, a vir-

tual device driver called VDPX.SYS, has a DPMI_DOS_API setting that

can control whether or not it should provide protected-mode INT 2 lh.

It’s not clear why you would ever want DPMI_DOS_API turned off, but

if it is, USEDPMI (along with many other programs that assume that

DPMI servers always provide DOS extender services) will behave

improperly.

At any rate, DPMI and protected-mode INT 2 lh are logically sepa-

rate services. As I said just before Listing 5-1, one of the things you can

do with DPMI is write a DOS extender. You can see how helpful the

DPMI switch-to-protected-mode service would be to someone writing a

DOS extender. A DOS extender starts out in real (or V86) mode and

switches the machine into protected mode to run protected-mode pro-

grams under DOS. The DPMI server takes care of a lot of the messy

work for the DOS extender, and makes it easier to write portable DOS
extenders that can run in environments such as Windows, OS/2, and

under 386 memory managers like QEMM and 386MAX.
Once running in protected mode, a DPMI client can call DPMI INT

3 lh services, such as function 0 to allocate protected-mode selectors,

function 050 lh to allocate memory, function 0600h to lock down an area

of pageable memory, or function 0205h to install protected-mode inter-

rupt handlers. This last function is quite important to DOS extenders,

which need to hook protected-mode INT 2 lh to provide services to

their clients.

To clarify, there are three levels of software here:

• The DPMI server provides INT 2Fh and INT 3 lh DPMI services.

• The DPMI client calls INT 2Fh and INT 3 lh DPMI services; in

many cases, this DPMI client is a DOS extender that provides pro-

tected-mode INT 2 lh services. On the other hand, some DPMI clients

(like USEDPMI) just assume that a DOS extender is also present.

• The DOS-extended application calls protected-mode INT 2 lh pro-

vided by the DOS extender. It can also call DPMI services.
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In the case ofDOSX.EXE, the DOS extender (a DPMI client) hap-

pens to reside in the same program as the DPMI server. As we know,

DOSX.EXE runs KRNL286.EXE or KRNL386.EXE. In other words,

KRNL286 and KRNL386 are DOS-extended programs. True, these are

also Windows DLLs, containing the Windows KERNEL API, but these

two files also contain real-mode initialization portions that call INT 2Fh

function 1687h to switch into protected mode (see the description of the

BootStrap routine in Chapter 1 ofMatt Pietrek’s book Windows Internals).

DPMI was initially intended to help implement portable, compatible

DOS extenders. According to Ray Duncan, “It’s highly unlikely that you

will ever need to call DPMI functions directly in a program of your own”

(Extending DOS
,
2d ed.). However, DPMI has turned out to be useful not

only to the handful of DOS extender vendors but also to developers of

more typical programs, such as Windows applications, when the normal

API doesn’t provide everything these applications need. For example,

many Windows applications call DPMI function 0300h (Simulate Real-

Mode Interrupt; see WV86TEST.C in Chapter 12 for an example).

According to Duncan’s excellent chapter on DPMI in the book

Extending DOS (2d ed.), Microsoft’s original intent for DPMI was that

the specification would include protected-mode INT 2 1 h; as the name

DOS Protected Mode Interface still suggests, INT 2 lh in protected

mode was originally intended as a key part of the DPMI:

I will never forget how startled I was when I encountered the DOS Protected-Mode

Interface (DPMI) in its primordial form for the first time. I was sitting in a Microsoft

OS/2 2.0 ISV seminar in the Fall of 1989, with my mind only about half-engaged

during an uninspiring session about OS/2 2.0’s Multiple Virtual DOS Machines

(MVDMs), when the speaker mentioned in passing that OS/2 2.0 would support a

new interface for the execution of DOS Extender applications. This casual remark

focused my mind remarkably....

After the speaker finished, I went up to him and asked for more information, explain-

ing that his mystery interface was about to have a severe impact on a book project

near and dear to my heart. In a couple of hours, the Microsoftie returned with a thick

document entitled “DOS Protected Mode Interface Specification, Revision Pre-

release 0.04” still warm from the Xerox machine and generously garnished with

“CONFIDENTIAL” warning messages. I suspect I made a most amusing spectacle, as

I flipped through the pages with my eyes bulging out and my jaw dropping to the

floor. The document I had been handed was nothing less than the functional specifi-

cation of a protected-mode version of DOS!

In retrospect, the fact that Microsoft was cooking up something like DPMI should

have been obvious. Every computer journalist in America, not to mention thousands

of beta testers, was well aware that the as-yet-unannounced Windows 3.0 was
somehow able to take advantage of extended memory by executing applications in

protected mode, even though it ran on top of DOS and used the DOS file system....
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But I never saw a word of speculation in print on how this was accomplished, and I

must confess that for my own part, I never gave it a second thought....

Microsoft originally defined the DPMI in two layers: a set of low-level functions for

interrupt management, mode switching, and extended memory management; and a

higher-level interface that provided access to MS-DOS, ROM BIOS, and mouse driver

functionality via protected-mode execution of Int 21H, Int 10H, Int 33H, and so on.

The higher-level DPMI functions were implemented, of course, in terms of the low-

level DPMI functions and the extant real-mode DOS and ROM BIOS interface....

When details of Microsoft’s DPMI began to leak out to the general community of

MS-DOS developers, the rumors provoked more than a few hard feelings and harsh

words for two very good reasons. First, the vendors of other DOS Extenders sus-

pected that Microsoft, having realized that OS/2 was not going to replace DOS any

time soon, had decided to barge into the market niche they had established so

painfully and elbow them out through the sheer weight of its development resources

and marketing power. Second, Microsoft had designed the DPMI with total disregard

for compatibility with the existing industry standard for DOS-based protected-mode

software — the Virtual Control Program Interface (VCPI)

For a few months, it appeared that the fledgling DOS Extender market was going to

fragment in two mutually-exclusive directions, resulting in additional headaches for

software developers, hassles for end-users, and juicy fees for lawyers. Luckily,

cooler heads prevailed. Microsoft turned control of the DPMI specification over to an

industry committee with open membership, and the previous backers of the XVCPI

[Extended VCPI] effort decided to join forces behind the DPMI. Intel, with its under-

standable enthusiasm for anything which might sell more 80386 chips, was instru-

mental in bringing about this reconciliation, and also took on the responsibility of

publishing and distributing the DPMI Specification.

As part of this process of accommodation, Microsoft agreed to the deletion of the por-

tions of the DPMI which cross into DOS Extender territory, specifically, direct support of

the DOS and ROM BIOS interrupts in protected mode. Consequently, DPMI version 0.9,

the first public version of the specification which was released by the DPMI Committee

in May 1990, defines only the “low-level” or “building block” functions.... Naturally, the

higher-level or DOS Extender interface of Windows 3 still exists, but it has receded

back into the twilight zone of semi-support and semi-documentation. The only Microsoft

documentation on the Windows 3 DOS Extender is a five-page technical note, entitled

“Windows Int 21H and NetBIOS Support for DPMI,” that is mainly remarkable for what

it doesn '

t

say.
”

— Ray Duncan, Extending DOS, 2d ed., 1992, pp. 433-438.

Indeed, the INT 21h interfaces provided by DOSX in Standard mode
and by DOSMGR and IFSMGR in Enhanced mode are practically

undocumented, though from Duncan’s account it appears that this— at

least in part— is an accommodation Microsoft made to DOS extender

vendors such as Phar Lap, Rational Systems, and Ergo.

Microsoft has an internal document (“MS-DOS API Extensions for

DPMI Hosts,” October 31, 1990) that devotes about 30 pages to the

Windows 3.0 DOS extenders. Microsoft’s five-page note that Duncan
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mentions appears to have been boiled down from this more extensive

document. For example, the 1990 document discusses the 3 2 -bit DOS
extender provided by DOSMGR. The DOS file read and write calls

(INT 2 lh functions 3Fh and 40h) have the count register (ECX)

extended to 32 bits, allowing 3 2 -bit programs to perform DOS file I/O

of more than 64K at a time.

Although DPMI itself is hardly undocumented (the DPMI specifica-

tion is readily available at no charge from Intel and has been reprinted in

countless books), Microsoft barely documents the presence of DPMI
(version 0.9) within Windows. The Windows 3.1 SDK contains a total

of four pages on both the DOS extender and DPMI (“Windows Applica-

tions with MS-DOS Functions,” Programmer's Reference, Volume 1:

Overview, Chapter 20). This scant chapter lists a mere seven DPMI func-

tions that Microsoft approves for use by Windows applications. On the

other hand, the same document also claims that Windows supports ver-

sion 1.0 of DPMI. Windows 3 .v Standard and Enhanced modes, as well

as Windows 95, actually support DPMI 0.9.

RUNDOSH
I’ve stated that the DOSX.EXE portion ofWindows Standard mode is a

general-purpose DPMI server and DOS extender. But how general pur-

pose is it really? After all, DOSX might have started out as code belonging

to a debugger, but now it’s part of Windows and doesn’t seem like some-

thing you could just tear out ofWindows to use for other purposes.

Indeed, DOSX will run only KRNL286.EXE or KRNL386.EXE, no

matter what you specify on its command line. If DOSX can’t find either

of these files, it fails with the message “Cannot find files needed to run

Windows in standard mode.” Worse, DOSX grabs the largest available

block ofXMS memory and (when exiting because it can’t find KRNL286
or KRNL386) neglects to deallocate this XMS memory. So when you try

to rerun DOSX with KRNL286.EXE or KRNL386.EXE, DOSX fails

with a “Cannot start Windows in Standard Mode” message and you have

to reboot to get back the XMS memory. This doesn’t seem very general

purpose at all. DOSX sounds hopelessly attached to the files KRNL286
.EXE and KRNL386.EXE.

Although DOSX can run only KRNL286.EXE or KRNL386.EXE,
on the other hand it will run any file with one of those names! If some

other file calling itself KRNL2 86 were to request DPMI services, use
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DPMI to switch itself into protected mode, and issue INT 2 lh calls in

protected mode, DOSX would run it, just as it runs the KRNL286.EXE
and KRNL386.EXE files that happen to come with Windows. For exam-

ple, Figure 5-2 shows the USEDPMI example from Listing 5-1, running

under DOSX.

C: \WINDOWS\SYSTEM>copy \unauthw\usedpmi .exe

C : \WI NDOWS\SYSTEM>usedpmi

This program requires DPMI

C:\WINDOWS\SYSTEM>ren krnl386.exe krnl386.sav

C : \WINDOWS\SYSTEM>ren usedpmi.exe krnl386.exe

C : \WINDOWS\SYSTEM>dosx

CS=215Ah DS=22C9h

CS=02E7h DS=027Fh

Greetings from protected mode!

C:\WINDOWS\SYSTEM>ren k r n 1 386 . s a v krnl 386.exe

Figure 5-2: Renaming USEDPMI.EXE to KRNL386.EXE and executing it using DOSX
demonstrates that DOSX is a general-purpose DPMI server and DOS extender.

See? DOSX.EXE really is something that (if it didn’t constitute copy-

right infringement!) you could just tear out ofWindows to use for other

purposes.

The example given in Figure 5-2 relies on three assumptions:

• First, this example works only on a 386 or later machine. On 286

machines, you would have to change USEDPMI.EXE ’s name to

KRNL286.EXE, since DOSX will want to run that program rather

than KRNL386.EXE.

• Second, the original “This program requires DPMI” message will not

occur if you’re running under a memory manager that already pro-

vides DPMI, such as QEMM (with QDPMI) or 386MAX. If you are,

you don’t need DOSX to run USEDPMI. However, this is still a good

example of the point that the small DOSX.EXE file is a general-

purpose DPMI server and DOS extender. There’s also some interest-

ing history behind the capability ofDOSX to run under a 386 mem-
ory manager, but unfortunately there isn’t time to go into it here; for

the juicy details, see Geoff Chappell’s DOS Internals (pp. 559-569).

• Third, this example assumes you’re not already running Windows. You

can start DOSX only outside Windows. Ifyou try running DOSX
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from within Windows Enhanced mode, you’ll get the interesting mes-

sage “Cannot start Windows in Standard mode. You are using an

expanded memory manager which is not compatible with Microsoft

Windows 3.1, or which is configured incorrectly. Try removing or

reconfiguring your memory manager, or using the copy of

EMM386.EXE supplied with Microsoft Windows 3.1.” DOSX thinks

that Windows Enhanced mode is a 386 memory manager like

EMM386. Well, in many ways it is.

Since it’s a pain to rename files as shown in Figure 5-2, I’ve written a

small DOS batch file to take care of this. This batch file, called RUN-
DOSX, is shown in Listing 5-2. It runs any program named on its com-

mand line under DOSX by temporarily renaming the program to

KRNL286.EXE. (If a file named KRNL386.EXE is not present, DOSX
will run a file named KRNL286.EXE both on 286 and 386 or later

processors.)

Listing 5-2: RUNDOSX.BAT

@echo off

rem RUNDOSX.BAT

rem Requires modification to redirect output

i f (%1 )==(
)
goto usage

if exist krnl 286.exe ren krnl 286.exe k r n 1 286 . zzz

if exist krnl386.exe ren krnl386.exe krn!386.zzz

if not exist 1 1 goto no_exe

if exist dosx.exe goto have_dosx

copy \windows\system\dosx.exe >nul

if not exist dosx.exe goto no_dosx

: ha ve_dosx

copy %ol krnl 286.exe >nul

dosx krnl 286 %2 %3 %A lb 16 11 %8 19

del krnl286.exe

if exist krnl386.zzz ren krn!386.zzz krnl386.exe

if exist krnl 286 .zzz ren krnl286.zzz krnl286.exe

goto end

: usage

echo RUNDOSX runs a DPMI client (a real -mode DOS program that uses DPMI to

echo switch into protected mode) under the Windows Standard mode DOS extender

echo (DOSX.EXE). by temporarily renaming the DPMI client to KRNL286.EXE.

echo DPMI clients can be created with the DPMISH library,

echo

.

echo Usage: rundosx [name of DPMI client] [args...]

goto end

: no_exe

echo Can't find %l
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goto end

: no_dosx

echo Can’t find \WINDOWS\SYSTEM\DOSX.EXE

: end

echo.

Although you can launch any program (even COMMAND.COM)
with RUNDOSX, it makes most sense to launch DPMI clients that rely

on the Windows DOS extender, such as USEDPMI:

C : \UNAUTHW>rundosx usedpmi.exe

CS=215Ah DS=22C9h

CS=02E7h DS=027Fh

Greetings from protected mode!

Incidentally, RUNDOSX \C( XVIMAND.COM doesn’t work like you

might want it to work. Sure, it gives you a C:\> prompt with DOSX
loaded in memory (which effectively turns DOSX into a TSR). And sure,

you can run a DPMI client from this C:\> prompt:

C : \UNAUTHW>rundosx \command . com

C : \UNAUTHW>us ed pm

i

CS=lB6Ah DS=lCC7h

CS=02E7h DS=0 27 Fh

Greetings from protected mode!

C:\UNAUTHW>exit

But unfortunately, you can run a DPMI client from this C:\> prompt

only once:

C:\UNAUTHW>rundosx \command.com

C : \UNAUTHW>usedpmi

C S= 1 B 6 Ah DS=lCC7h

CS=02E7h DS=027 Fh

Greetings from protected mode!

C : \UNAUTHW>usedpmi

CS=lB6Ah DS=lCC7h

This program requires DPMI

Huh?! This is one place where DOSX isn’t so general purpose after all.

DOSX assumes there is only one DPMI client per DOSX session. After

switching a program into protected mode, DOSX unhooks itself from

real-mode INT 2Fh. The next program to call INT 2Fh function 1687h

will believe that DPMI is not present, unless some other DPMI server

such as QEMM or 386MAX also happens to be running; in this case the

DPMI client will get that DPMI server instead of the one in DOSX.
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This, by the way, is why DOS programs running under Windows

Standard mode cannot use the Windows DPMI server or DOS extender;

only Windows programs can. After DOSX sees KRNL286.EXE or

KRNL386.EXE switch into protected mode, it unhooks itself from INT
2Fh, so no other program can call DPMI to switch into protected mode.

Windows applications can use DPMI INT 3 lh functions, and the INT
2Fh functions that DPMI supports in protected mode, because these pro-

grams start off in protected mode; they don’t have to call the DPMI
switch procedure.

To run multiple programs under DOSX, then, just use RUNDOSX
each time.

using the DPMI Shell Lihrarv

USEDPMI showed the basics of writing a DPMI client. The DPMI Shell

(DPMISH) library on the Unauthorized Windows 95 disk is a big improve-

ment. For example, Listing 5-3 (USEDPMI2.C) shows USEDPMI
rewritten to use DPMISH.

Listing 5-3: USEDPMI2.C

/*

USEDPMI2.C -- very simple DPMI client

bcc usedpmi2.c dpmish.c ctrl_c.asm

Andrew Schulman, 1994

*/

//i ncl tide <s td 1 i b . h>

//include <stdio.h>

//include <dos.h>

//include "dpmish.h"

void fail (const char *s , ...) { puts(s); _dos_exi t( 1 ) ; }

void print_regs(void)

{

unsigned short ds_reg, c s_r eg

;

_asm mov cs_reg, cs

_asm mov ds_reg, ds

pri ntf
(

"CS=%04Xh DS=%04Xh\n", cs_reg, d s_r eg )

;

int real_mai n( i nt argc, char *argv[])

{

pri nt_regs( )

;

return 0;

int pmode_mai n( i nt argc, char *argv[])
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{

pri nt_regs( )

;

pri ntf
(

"Greeti ngs from protected mode!\n");

}

As you can see, a DPMISH program includes DPMISH.H and pro-

vides two functions, real_main and pmode_main. DPMISH calls the pro-

gram’s real_main function in real (or V86) mode. If real_main returns 0,

DPMISH switches to protected mode and calls the program’s pmode
_main function. DPMISH takes care of everything else for you.

MENILOOP

USEDPMI and USEDPMI2 are unexciting programs. For a more

dramatic example of what a DOS extender is good for, consider MEM-
LOOP.C in Listing 5-4. MEMLOOP calls the DOS memory allocation

function (INT 2 lh function 48h) in a loop, via the _dos_allocmem func-

tion provided by C compilers for DOS, allocating memory until it (mem-

ory, not the program) is exhausted. MEMLOOP uses _fmemset to touch

each byte in each allocated block, both to show that this really is immedi-

ately usable memory (no lock or copy function required) and to make the

results more realistic on systems that provide virtual memory. Each time

_dos_allocmem fails, MEMLOOP chops its allocation request in half in

an attempt to soak up every last drop of memory. When there’s really no

more memory left, MEMLOOP prints the total amount allocated and

exits, leaving DOS to free all the memory.

If compiled for DPMI (#ifdef DPMI_APP), MEMLOOPC includes

real_main and pmode_main. Otherwise, it uses plain old main.

Listing 5-4: MEMLOOP.

C

/*

MEMLOOP.

C

Hew much memory can be allocated through DOS (INT 21 h AH=48h )

?

Can be compiled for real mode or protected mode (DPMI),

real mode: bcc memloop.c

prot mode: bcc -2 - DD PM I_AP P memloop.c dpmish.c ctrl_c.asm

On machine with 12 megabytes:

Real mode: 536 Kb

DPMI app, under 386MAX 10764 Kb (18916 Kb with DPMI swap file)

DPMI app, under DOSX 10894 Kb (18916 Kb with 386MAX DPMI swap file)

DPMI app, under WIN386 38096 Kb (without permanent swap file)

*/

#i ncl ude < s t d 1 i b . h

>

//include <stdio.h>

//include <string.h>
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//include <dos.h>

#i fdef D PM I_A P

P

//include "dpmish.h" // includes _dos_al 1 ocmem redefinition

//endi f

void mem_loop(void)

{

unsigned long kb = 0;

unsigned blocks = 0;

unsigned blocksize = 2048;

unsigned kbytes = 32;

unsi gned segsel

;

while (kbytes)

{

while (_dos_al 1 ocmem( bl ocksi ze , &segsel )
== 0) // INT 21 h AH=48h

{

// touch every byte!

_fmemset(MK_FP(segsel , 0), '

x
'

,

blocksize * 16);

kb += kbytes

;

bl ocks++;

printf
(
"%04Xh\t%d\t%l u\t\t\r" , segsel, blocks, kb);

//i fdef DPMI _A P

P

if (ctrl _c_h it)

fail ("\nCtrl -C detected");

//endi f

1

blocksize >>= 1;

kbytes >>= 1;

1

pri ntf
(

"\nAl 1 ocated %lu Kb in %u blocks\n", kb, blocks);

}

#i fdef DPMI _A P

P

void faiKconst char *s, ...) { puts(s); _dos_exit(l) ; }

int real _m a i n ( i n t argc, char *argv[])

{

return 0; // okay to switch to protected mode

int pmode_mai n ( i nt argc, char *argv[])

//el se

i nt main(

)

//endi f

{

mem_l oop( )

;

return 0;

If we build MEMLOOP as a real-mode program, it not surprisingly

allocates some amount of memory less than 640K, even on a machine

with, say, 12MB of memory:
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C : \UNAUTHW>bcc memloop.c

C : \UNAUTHW>meml oop

Allocated 536 Kb in 17 blocks

Here’s what happens ifwe rebuild MEMLOOP as a DPMI program

and run it under DOSX.EXE on the same 12MB machine:

C : \UNAUTHW>bcc - DD PM I_AP P - 1 . . \dpmi sh memloop.c . . \dpmi sh\dpmi sh .

c

. . \dpmi sh\ctrl_c .asm

C : \UNAUTHW>rundosx memloop.exe

Allocated 10894 Kb

Amazing! Simply by using DOSX.EXE, the DPMI version ofMEM-
LOOP allocated 10MB of memory, even though the almost identical

non-DPMI version allocates less than 640K on the same system. Yet, all

we did was type RUNDOSX MEMLOOP.EXE from the DOS command
prompt, without having to switch to a new operating system. This DOS
extender stuff is pretty great, eh?

Well, DOS extender technology is the foundation for Windows 3.x

and for Windows 95. It was because Windows l.x and 2.x were missing

this technology— just a tiny program like DOSX.EXE— that they

could get so little memory, and consequently were so worthless and per-

formed so relatively poorly in the marketplace. This little DOSX.EXE
program is worth a heck of a lot! I hope Murray Sargent and David

Weise got a lot of stock.

RUNDOSX MEMLOOP.EXE dramatically illustrates what DPMI is

and what a DOS extender is. It demonstrates that DPMI lets a real-mode

program jump into protected mode with a simple function call, and that a

DOS extender lets this program continue to use familiar DOS calls while

in protected mode but to do things (like allocate 10MB of immediately

usable memory) that aren’t possible under plain-vanilla DOS.
RUNDOSX MEMLOOP.EXE also shows that there are really two

parts to Windows, and that those two parts are semi-independent of each

other. The lower-level part includes the DPMI server and DOS extender;

the upper-level part includes Windows DLLs such as KRNL286 and

KRNL386, USER, and GDI. MEMLOOP could just as well be the

KRNL286.EXE or KRNL386.EXE files from Windows. And KRNL286
and KRNL386 could, presumably, run under some DPMI server and

DOS extender other than DOSX; you’ll meet one such DOS extender in

the next chapter when we discuss Windows Enhanced mode.

The two parts of Windows are only semi-independent because, as is

well known, the upper part of Windows is not a pure DPMI client.

Matt Pietrek discusses this in his book Windows Internals :
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The low level KERNEL routines are not shy about considering the LDT [Local

Descriptor Table] to be their own little playpen.... Why does KERNEL bypass DPMI?

Wasn’t DPMI created to prevent this kind of mucking with sensitive system

resources? The answer is yes. However, there often comes a point where proper

code and performance clash head to head. The KERNEL developers built and test-

ed a version of KERNEL that allocated each and every selector from DPMI. The

developers saw enough of a performance hit with this KERNEL that they felt hack-

ing the code to access the LDT directly was worth it. The code is compatible with

DOSX and WIN386, in that it still allows other programs to allocate selectors from

the DPMI server. Unfortunately, this version of KERNEL creates a hidden assump-

tion about the way the DPMI host manages the LDT. If another DPMI host wishes to

replace WIN386 or DOSX, it must organize the LDT in the same manner. However,

the DPMI specification doesn’t tell a DPMI host to manage the LDT in a particular

manner, which creates ambiguity between the written and real DPMI specifications.

— Matt Pietrek, Windows Internals, 1993, p. 90.

As IBM discovered while working on its OS/2 for Windows product,

KRNL386.EXE requires some serious patching to make it run under

OS/2’s DPMI server. On the other hand, an engineer at Qualitas says

that company uses KRNL386 .EXE internally as the test program for

the DPMI server in its 386A/LAX memory manager, and adds that

Qualitas had more problems with Borland’s DPMI software than it had

with KRNL386! Although there are no VxDs in this setup, running

KRNL-386.EXE under 386MAX without benefit of one of the

Windows DOS extenders does work well enough to run Solitaire. Well,

heck, that’s what we all use Windows for anyhow.
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Protegied-Mode DOS:

n
ow that the experiments with DOSX in the previous chapter have pro-

vided a solid grounding in DPMI and DOS extender technology, we
can take a close look at WIN386.EXE. As noted in the previous chapter,

WIN386 is a collection of VxDs. The key component of WIN386 is the

Virtual Machine Manager (VMM), VxD ID #1, which is the true core of

the Windows operating system. The file VMM32.VXD serves the same

purpose in Windows 95 that WIN386.EXE does in Windows 3.x.

It’s common to read statements asserting that “WIN386.EXE is the

DPMI server.” This is sort of like claiming that “KERNEL is the

GlobalAlloc function.” Although VMM does contain the DPMI server,

this is just one small part ofVMM. And VMM in turn is just one (albeit

the most fundamental) part of WIN386 (in 3.x Enhanced mode) and

VMM32.VxD (in Windows 95). VMM has many other responsibilities,

such as preemptive multitasking of virtual machines and threads, inter-

rupt handling, and memory management. DPMI is a layer on top of this

and appears to be little more than a way for “normal” (that is, non-VxD)

applications to call some VMM services.

In Enhanced mode, the Windows DOS extender resides in the DOS-
MGR VxD, also located inside WIN386.EXE; when 3 2 -bit file access is

enabled in WfW 3.11 and Windows 95, the IFSMGR.386 VxD should

probably be considered part of the DOS extender, too.

Writing in Windows Tech Journal (March 1992), David Thielen, then a

Microsoft employee, noted:
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Win386 isn’t really even part of Windows. It’s a preemptive multitasking kernel that

controls multiple virtual machines. Once Win386 has initialized itself, it loads Win-

dows in the system VM (the main virtual machine that always exists). However, it

could just as easily load COMMAND.COM instead, resulting in a multitasking DOS.

(No, I won’t tell you how to do this.)

Well, after Chapter 5’s discussion of how to make DOSX.EXE load

something other than the Windows kernel, it should be fairly apparent

how to do the same thing with WIN386.EXE. Just as DOSX.EXE insists

on running KRNL286.EXE or KRNL386.EXE, WIN386.EXE (actually,

the SHELL VxD within WIN386) insists on running KRNL386.EXE.
But just as with DOSX, WIN386 will run any file called KRNL386.EXE:
even COAEVlAND.COM, if you rename it! For testing out the DPMI
server and DOS extender in WIN386, we can construct the same sort of

batch file we used for DOSX.
However, there’s one difference: in addition to WIN386.EXE and a

file named KRNL386.EXE, we also need a SYSTEM.INI file and (in

some cases) a virtual display driver. SYSTEM.INI usually requires only

an [Enh386] section, listing VxDs to be loaded. Our first version will just

list the VxDs that come built into WIN386.EXE. Listing 6-1 shows

GOWIN386.INI, which our batch file will copy over to SYSTEM.INI.

Listing 6-1: G0WIN386.INI

:
gowin386.ini -- minimal system.ini for gowin386.bat

[386Enh]

di spl ay=*vddvga

devi ce=*vpi cd

devi ce=*i nt 13

devi ce=*wdctrl

mouse=*vmd

network=*dosnet ,*vnetbi os

ebi os=*ebi os

keyboard=*vkd

devi ce=*vtd

devi ce=*reboot

devi ce=*vdmad

devi ce=*vsd

devi ce=*v86mmgr

devi ce=*pageswap

devi ce=*dosmgr

devi ce=*vmpol

1

devi ce=*wshel

1

devi ce=*bl ockdev

devi ce=*pagef i 1

e

devi ce=*vfd

devi ce=*pari ty

devi ce=*bi osxl at

devi ce=*vcd
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devi ce=*vmcpd

devi ce=*combuff

devi ce=*cdpscsi

By examining Listing 6-1, you can already see one way Enhanced

mode is different from Standard mode: it not only provides a DOS
extender and DPMI server but also a VxD loader. Depending on your

configuration, you might need to add other lines to SYSTEM.INI, such

as SystemROMBreakPoint=false if you’re running with QEMM. Or,

you might need to add additional device= lines for other VxDs you need

to use or want to experiment with. Listing 6-2 shows a simple DOS
batch file called GOWIN386.BAT, which runs any program under

WIN386.EXE.

Listing 6-2: G0WIN386.BAT

@echo off

rem G0WIN386.BAT

i f (X 1 )==( )
goto usage

if exist krnl386.exe ren krnl386.exe krn!386.zzz

if not exist XI goto no_exe

if exist win386.exe goto have_win386

copy \windows\system\win386.exe >n u

1

if not exist win386.exe goto no_win386

: have_wi n386

if exist system.ini goto have_sysini

if not exist gowin386.ini goto no_sysini copy gowin386.ini system.ini > n u

1

: have_sysi ni

cl s

echo Loadi ng wi n 386 °%l . .

.

copy X 1 krnl 386.exe > n u

1

wi n 386 X2 X3 X4 X5 X6 17 X8 19

del krnl386.exe

if exist krnl 386 . zzz ren k r n 1 386 . zzz krnl 386.exe

goto end

: usage

echo G0WIN386 runs a DPMI client (a real -mode DOS program that uses DPMI to

echo switch into protected mode) under the Windows Enhanced mode WIN386.EXE,

echo by temporarily renaming the DPMI client to KRNL386.EXE.

echo DPMI clients can be created with the DPMISH library,

echo

.

echo Usage: gowin386 [name of DPMI client]

goto end

: no_exe

echo Can't find XI

goto end

: no_sysi ni
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echo This program requires G0WIN386.INI

goto end

: no_wi n386

echo Can’t find WIN386.EXE

: end

echo

.

First, let’s try USEDPMI (from Chapter 5) to see if GOWIN386
works. The results aren’t really very exciting, but they do show that

GOWIN386 works about the same as RUNDOSX:

C : \UNAUTHW>gowi n386 usedpmi .exe

CS=246 Eh DS=2 5C B

h

CS=0097h DS=008Fh

Greetings from protected mode!
\

Now let’s try MEMLOOP (again, from Chapter 5). If you’ll recall,

under DOSX, MEMLOOP on my 12MB machine could allocate 10MB
of memory via the DOS INT 2 lh function 48h interface. This is about

what you’d hope for on a machine with 12MB of memory, but it seemed

pretty impressive because we’re normally limited to less than 640K
under DOS.

However, the results of running MEMLOOP on the same 12MB
machine under WIN386 are quite different from what we saw under

DOSX. At first, it looks like the program isn’t working, because it grinds

away with the hard-disk drive light on for several seconds. Then it

announces:

C : \UNAUTHW>gowi n386 memloop.exe

Allocated 38096 Kb

Your mileage may vary depending on how much free disk space you

have, how much physical memory you have (four times physical memory
is the maximum virtual memory W1N386 will allocate), and whether

there’s a permanent swap file visible when running GOWIN386 (for

example, ifyou copy the Windows SPART.PAR pointer file into the

directory from which you run GOWIN386).
But in this configuration, we’ve allocated 37MB of memory: Welcome

to the world of virtual memory!

Remeber that this is an unchanged binary copy ofMEMLOOP
.EXE, and that MEMLOOP is allocating memory not via some special

Windows API but by using the venerable DOS memory allocation

function. So this is not only virtual memory, but virtual memory with

a DOS interface.
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In a world where relatively minor improvements are often touted as

revolutionary advances, virtual memory with a DOS interface is a

refreshing change. Here’s something fairly new and exciting, masquerad-

ing as something old and boring. The phrase “underpromise, overde-

liver” comes to mind. Of course, this isn’t Microsoft’s usual approach to

packaging. It would have been more typical for Microsoft to have pack-

aged what are fundamentally V86-mode DOS services as Windows
(WIN386.EXE), then realized that these services should be part of DOS
(witness the name DOS386.EXE in pre-beta versions of Chicago), and

then finally reconsidered the issue and settled on the uninteresting name

VMM32.VXD.
At any rate, WIN386, DOS 3 86, or VMM32 — whatever you want

to call it (we’ll see later in this chapter that Microsoft once called it

MSDPMI, too) — is really a V86-mode version ofMS-DOS that sup-

ports virtual memory, device virtualization, and a host of other features,

some of which (like 3 2 -bit disk and file access) even provide better

performance. Figure 6-1 shows that the lower level of Windows is really

an enhanced mode ofMS-DOS; once we’ve typed GOWIN386 \COM-
MAND.COM on the command line, we enter a world that looks exactly

like a V86-mode version ofMS-DOS, complete with DPMI services

and a whole host of VxDs. In fact, this is the multitasking DOS that the

Windows Tech Journal article quoted earlier was talking about. True, we

have only one virtual machine here, but you could write a VxD that let

the user launch additional VMs and switch between them. Note that in

contrast to the situation with DOSX, we can run more than one DPMI
application from the C:\> prompt under WIN386.

C : \UNAUTHW>gowi n 386 \command . com

C:\UNAUTHW>usedpmi

C S=7 1 4 E h DS=7 2 AB

h

CS=0097h DS=008Fh

Greetings from protected mode!

C : \UNAUTHW>usedpmi

2

CS=714Eh DS=72C7h

CS=0097h DS=008Fh

Greetings from protected mode!

C : \UNAUTHW>meml oop

Allocated 38096 Kb

C : \ U N AUTHW) . . \vxdl i s t \ vxd 1 i st
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Name Vers ID DDB Control V86 API PM API #Srvc

VMM 3.11 0001 h 80011A88 8000AE14 242

VPICD 3.10 0003h 8001CB78 8001BAE4 8001C2A0 8001C2A0 21

VTD 3.10 000 5 h 800225C0 80021B52 80021AE7 80021AE7 8

PageFi 1

e

2.00 002 1 h 800366DC 80036080 800365A7 7

PageSwap 2.10 0 0 0 7 h 8002D1EC 8002C894 7

PARITY 1.00 0008h 80036AF4 80036A4C 0

Reboot 2.00 0009 h 80023274 800226B8 800229E1 0

EBIOS 1.00 00 1 2 h 8001F7E0 8001F770 2

VDD 2.00 0 0 0 A h 8001A75C 80014058 80017FDB 14

VSD 2.00 000Bh 80025238 800250C4 2

VCD 3.10 000 E h 80037D80 8003722D 80037275 9

VMD 3.00 000C h 8001E514 8001E2D0 8001E45D 8001E45D 3

VKD 2.00 000Dh 800216B4 8001FD90 800202C6 15

BLOCKDEV 3.10 00 1 0 h 80036038 80035D80 7

INT13 3.11 0020h 8001D700 8001D458 5

VFD 2.00 00 1 B h 800369E0 80036890 0

VMCPD 1.02 0011 h 80038258 800380BC 3

BIOSXLAT 1.00 00 1 3 h 80036F48 80036B88 0

VNETBIOS 3.00 0 0 1 4 h 8001F62C 8001E748 4

DOSMGR 1.00 00 1 5 h 80031034 8002ECF7 8002EB3B* 12

VMPOLL 3.10 00 18h 80031848 800315FB 3

DSVXD 3.00 003Bh 80013FF8 80013E28 80013E7F 0

COMBUFF 1.00 80038650 800382A8 0

VDMAD 2.00 0004h 80024D48 800233F8 24

V86MMGR 1.00 0006 h 8002C840 8002AED7 21

SHELL 3.00 00 1 7 h 80035B50 80034466 80032E50 6

Figure 6-1: Running COMMAND.COM under WIN386.EXE switches you into V86 mode,

complete with virtual memory, DPMI services, VxD services, and so on.

What good is this V86-mode version of DOS?
Well, even though it looks like you’re in real-mode MS-DOS, you’re

actually in V86 mode now: DPMI is resident, you’ve got a resident DOS
extender that supports both 16- and 3 2 -bit programs, and you’ve got vir-

tual memory and a whole assortment of VxDs— you just don’t have any

of the GUI Windows feeling. From this perspective, the Windows GUI
(KERNEL, USER, GDI, and so on) is just another program like MEM-
LOOP or USEDPMI.

Running GOWIN386 \COMMAND.COM isn’t much different

from a Windows DOS box; after all, you can run DPMI clients and DOS
extended applications in a Windows DOS box, too. But this DOS box is

not particularly tied to Windows. WIN386 is quite separate from the rest

of Windows, and as we’ve seen, it feels much more like part of DOS. At

one point in the Chicago beta, WIN386 was renamed DOS386; that was

a more accurate name than WIN386.
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uinai mode is HBHL386 loaded in?

We’ve seen that WIN386.EXE will load KRNL386.EXE — any file we call

KRNL386.EXE. WIN386 successfully loads USEDPMI, USEDPMI2, and

MEMLOOP when these masquerade as KRNL386. We know that these are

normal real-mode DOS executables that use DPMI to switch themselves

into protected mode. But hold on a minute! We also know that WIN386.EXE
consists mostly of VxDs, which run in 32-bit protected mode (look at the

addresses VXDLIST spits out in Figure 6-1). If WIN386 is already running in

32-bit protected mode, how do the programs named KRNL386.EXE manage
to start up in real mode?

The answer is that they don’t: They start up in V86 mode. Recall that

V86 mode is a simulated real mode controlled by what Intel’s documenta-

tion calls a VMM. WIN386 does put the machine into 32-bit protected

mode. But when it starts the first Windows virtual machine (VM) — the Sys-

tem VM — it switches the VM to V86 mode to start KRNL386.EXE. WIN386
runs KRNL386 in the System VM. KRNL386 (whether the one that comes
with Windows or one of our DPMISH pretenders) uses the function pointer

returned from INT 2Fh function 1687h to switch into 16-bit protected

mode. Function 1687h is handled by VMM, which contains the Enhanced

mode DPMI server.

Any DOS boxes the user starts in Windows become additional VMs that

can be used to run real-mode DOS software, DPMI clients, and/or DOS-

extended applications. This isn’t very different from what happens in the

System VM: KRNL386.EXE is just like a DPMI client that the user might

start in a DOS box. Furthermore, you can run real-mode software in the Sys-

tem VM by listing it in WINSTART.BAT. There’s a lot of symmetry between

DOS boxes and the System VM.

For what it’s worth, Windows 3.0 was different. DPMISH calls INT 2Fh

function 1686h to see if it’s already running in protected mode. If so,

DPMISH doesn’t call dpmijnit. That’s because, in Windows 3.0,

KRNL386.EXE expected WIN386.EXE to have already put the System VM
into protected mode; KRNL286.EXE also expected to be launched in pro-

tected mode by D0SX.EXE. This means that, if you took a real-mode pro-

gram like COMMAND.COM, renamed it KRNL386.EXE, and ran it under the

Windows 3.0 version of WIN386, WIN386 would try to run COMMAND.COM
in protected mode. Not a pretty sight.

DPMIIIIFO

RUNDOSX is a cute example, but GOWIN386 \COMMAND.COM is

the genuine article: an Enhanced mode ofMS-DOS. But what exactly are
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the differences between DOSX and WIN386? One clear difference is the

size of the fdes:

DOSX . EXE 32682 11-01-93 3:11a

WIN386.EXE 577557 11-01-93 3:11a

What does WIN386 do that DOSX doesn’t that would account for an

extra 540,000 bytes of code? We already know that WIN386, unlike

DOSX, supports more than one DPMI client, provides virtual memory,

and loads VxDs. The VxDs listed in Figure 6-1 account for most of

WIN386.EXE’s bulk.

To get a more systematic look at the differences between WIN386
and DOSX, you can use the sample program DPMIINFO, shown in

Listing 6-3. This small program (which again uses the DPMISH library)

calls INT 3 lh function 0400h to retrieve information about the installed

DPMI server, such as whether it supports 3 2 -bit programs and whether it

reflects interrupts to real mode or V86 mode.

Listing 6-3: DPMIINFO.

C

/*

DPMIINFO. C -- display information about DPMI server

Andrew Schulman, 1994

*/

//include <stdlib.h>

//include <stdio.h>

//include <dos.h>

//include "dpmish.h"

void faiKconst char *s, ...) { puts ( s )

;

exit(l); }

unsigned _dpmi_fl ags(void)

{

_asm mov ax, 0400

h

_asm int 31

h

_asm mov ax, bx

// retval in AX

unsigned _dpmi_version(void)

{

_asm mov ax, 0400h

_asm int 3 1

h

// retval in AX

unsigned long _dpmi_mem( voi d

)

unsigned long but [ 12] , far *fp = buf;
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_asm push di

_asm mov ax, 0500h

_asm 1 es di , fp

_asm int 31

h

_asm pop di

return but [ 0 ]

;

static unsigned dpmi _32_f 1 a g
= -1;

int real _m a i n( i nt argc, char *argv[])

{

// Should only get this flag from real / V86 mode, so call in

// real_main, but let DPMISH tell us if DPMI is really present

// before actually using the flag.

_asm push si

_asm push di

_asm mov ax, 1 687

h

_asm int 2 Fh

_asm pop di

_asm pop si

_asm mov dpmi_32_fl ag , bx

return 0;

int pmode_main(int argc, char *argv[])

{

unsigned flags = _dpmi_fl ags ( )

;

unsigned vers = _dpmi_version( )

;

unsigned char maj = vers >> 8;

unsigned char min = vers & 0xFF;

if ((maj == 0) && (min == 0x90)) min = 90; // silly Std mode bug

pri ntf( "DPMI version %d.X02d\n", maj, min);

pri ntf( "%s programs supported\n"

,

(flags & 1) ? "32-bit" : "Only 16-bit");

pri ntf( "%d-based DPMI host\n",

(flags & 1) ? 386 : 286);

pri ntf( " Interrupts reflected to i s mode\n",

(flags & 2) ? "real" : "V86");

printfC'Xs virtual memory\n",

(flags & 4) ? "Supports" : "No");

printfC'Xlu bytes available in largest block\n",

_dpmi _mem( ) )

;

Figure 6-2 shows DPMIINFO output for both DOSX and WIN386.
As you can see, both DPMI servers support DPMI version 0.90. But

WIN386 is far more capable than DOSX: It supports 3 2 -bit programs,

reflects interrupts to V86 mode rather than to real mode (see Chapters 9

and 10 for the, like, totally awesome significance of this), and supports

virtual memory.
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C : \UNAUTHW>rundosx dpmi info.exe

DPMI version 0.90

Only 16-bit programs supported

286-based DPMI host

Interrupts reflected to real mode

No virtual memory

11104192 bytes available in largest block

C : \UNAUTHW>gowi n386 dpmi info.exe

DPMI version 0.90

32-bit programs supported

386-based DPMI host

Interrupts reflected to V 86 mode

Supports virtual memory

43909120 bytes available in largest block

C : \UNAUTHW>dpmi i nf

o

DPMI version 0.90

32-bit programs supported

386-based DPMI host

Interrupts reflected to V 86 mode Supports virtual memory

21508096 bytes available in largest block

Figure 6-2: Running DPMIINFO under DOSX, WIN386, and QEMM highlights the differ-

ences between these environments.

Notice that, in addition to RUNDOSX and GOWIN386, Figure 6-2

also shows DPMIINFO run straight from the DOS command prompt.

QEMM 7.03 was loaded for this test; as you can see, the DPMI server in

QEMM looks much like the one in WIN386. It even (via the DPMI.SWP
file) supports virtual memory, which happened to be set to 10MB:

DEV ICE=C : \QEMM\QDPMI . SYS SWAP FI LE=DPMI . SWP SWAPS I Z E=1 0240

QEMM also includes a DOS extender from Ergo Computing.

386MAX supports similar features (and also implements DPMI 1.0).

UIIII386 realm, really is

a memory manager

The fact that 386 memory managers support many of the same features

as WIN386 can be turned around to point out that WIN386, in many ways,

resembles a 386 memory manager that you can start up from the DOS
command prompt. The V86MMGR (V86 memory manager) VxD inside
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WIN386 provides its own Expanded Memory Specification (EMS) and

Extended Memory Specification (XMS) drivers — even if you already had an

EMS provider before starting WIN386, and even though an XMS driver is

required before starting WIN386.

You can see this if you run a diagnostics program such as Quarter-

deck’s Manifest, once before running WIN386 and again from inside

WIN386. In one configuration, running HIMEM.SYS 3.09 and EMM386.EXE
4.44, you get the results shown in this table:

Before WIN386 inside WIN386

With EMM386 OFF:

EMS version None 4.00

XMS version 3.00 2.00

XMS driver 3.09 2.05

With EMM386 ON:

EMS version 4.00 4.00

VCPI version 1.00 None

XMS/EMS sharing Yes No

Microsoft seems confused on this point, because a KnowledgeBase

article, “XMS Version Information in MS-DOS Window Incorrect” (Q83455,

September 1992), maintains that the behavior we’ve just seen is some
sort of error:

The application retrieves the version number of the XMS driver in enhanced

mode Windows, not the version number of the "real " XMS driver (which was
present before Windows startup).

But this is the way it should work. The V86MMGR VxD inside WIN386
really is a V86 memory manager; it really does supplant preexisting XMS
and EMM drivers. As far as applications running under Windows are con-

cerned, V86MMGR is the “real” memory manager. For example, even if an

XMS 3.0 server is present before Windows started, once Windows is run-

ning you can use only XMS 2.0 functions.

The fact that V86MMGR takes over EMS and XMS from any memory
managers loaded before it has important implications for software loaded

before Windows. Chapter 3 discussed the Global EMM Import specification

for memory managers, but V86MMGR’s assumption of all EMS and XMS
responsibilities also has serious implications for run-of-the-mill DOS TSRs

that use EMS or XMS and that expect to continue working while WIN386 is

running. V86MMGR is the “real” EMS and XMS memory manager, not only

for programs running under Windows but even for TSRs loaded before Win-

dows. This is just one of the many remarkable effects that Windows has on

software loaded before it. As Chapters 9 and 10 will show, Windows can

be said to rest on top of DOS only in the sense that an elephant might be

said to ride on top of a mouse.
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Microsoft does get this right on the MSDN CD-ROM. David Long’s excel-

lent article on “TSR Support in Microsoft Windows Version 3.1" has a

lengthy appendix, “How to Be a Good EMS/XMS Client,” that provides guid-

ance for global (that is, loaded before Windows) TSRs and device drivers

that use EMS or XMS. For example:

Be aware of XMS version number anomalies. The WIN386 XMS version number
is 2.00. If the running XMS driver at WIN386 startup time is an XMS version 3.0

driver
,
the XMS version number will change across the startup and exit bound-

aries. The WIN386 XMS driver really is a 2.00 driver. Any XMS 3.0 calls made
while WIN386 is running will fail.

Okay, now that we’ve got that straight...

Given that 386 memory managers provide a similar environment to

WIN386 (and vice-versa), what’s the big fuss about running GOWIN386
\COMMAND.COM? How can this be viewed as some kind of sneak

preview for the future of DOS when it doesn’t appear substantially differ-

ent from what’s provided by commonly available third-party managers?

As you’ve seen, if the 386MAX or QEMM DPMI server is loaded, you

can run USEDPMI, USEDPMI2, and MEMLOOP, just as you can from

within GOWIN386 \COMMAND.COM. Indeed, these memory man-

agers do change the operating system in a far more dramatic way than

many programmers realize. (See the article by Ralf Brown cited in the

“For Further Reading” section at the back of this book.)

However, there’s one crucial thing these memory managers don’t pro-

vide: VxDs. It’s not apparent now, but as you’ll see during the course of

this book, the VxDs shown in Figure 6-1, particularly VMM, constitute a

complete new operating system. Memory managers don’t have VxDs,

though Helix Software’s Cloaking API provides something somewhat

analogous. Cloaking is a method for moving BIOS and DOS system soft-

ware into protected mode. For example, Helix provides protected-mode

versions of the system BIOS and video BIOS, the Microsoft CD-ROM
Extensions (MSCDEX), the Eogitech mouse driver, a disk/CD-ROM
cache, and a RAM driver. This cloaked protected-mode software can run

under Helix’s NetRoom memory manager or, using Helix’s generic

Cloaking driver, under any 386 memory manager. Another API for mov-
ing DOS system software into protected mode is Novell’s DOS Protected

Mode Services (DPMS), used in Novell DOS 7 for Stacker disk compres-

sion, NWCACHE, DEEWATCH, and the Personal NetWare server.

But whereas APIs such as Cloaking and DPMS are (so far) being used

only to move selected system services into protected mode, with VxDs
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Microsoft is much closer to moving the entire PC/BIOS/DOS substrate

into protected mode. However, it’s important to realize that, even in

Windows 95, Microsoft has a long way to go before it can truthfully

claim that the entire core of standard PC system services has been moved

into protected mode. Besides, it’s not entirely clear that having 100%

new protected-mode code is even desirable as an ultimate goal. MS-DOS
has its share of known problems, but at least they are known problems.

And as we’ll see in Chapter 9, Windows is in any case able to run the old

real-mode DOS code in a fairly controlled V86 environment.

If I seem to be waffling here — maintaining that VxDs are exciting

because they will eventually give us a fully protected-mode PC architec-

ture, but that Microsoft is a long way from this goal, and that it’s not nec-

essarily even a totally desirable goal, and that even short of that not-

necessarily-desirable goal Windows is still able to fundamentally alter the

underlying PC architecture — well, that’s because things are in flux right

now. The important thing now is to realize the direction in which VxDs
are moving the PC architecture.

MSDPMI
Yanking WIN 3 8 6.EXE out of Windows and using it to run COM-
MAND.COM provides an excellent picture of the future of DOS and

helps explain what Microsoft means when it says that future versions of

DOS will be derived from protected-mode technology. In fact, this

GOWIN386 \COMMAND.COM thing we’ve cobbled together is

nearly identical to something that Microsoft itself did a few years ago,

called MSDPMI.
Never heard ofMSDPMI? Well, try running Windows from within

GOWIN386 \COMMAND.COM:

C : \UNAUTHW>gowi n 386 \ command . com

C : \UNAUTHW>wi

n

The MS-DOS Protected Mode Interface (MSDPMI) is running on this

computer. You cannot start Windows when it is running. To quit

the MSDPMI, type exit and then press Enter.

MSDPMI was a short-lived Microsoft DPMI server and DOS extender

from the early days of the Microsoft C/C++ 7.0 (MSC7) beta test. Basically,

it was WIN386.EXE, renamed MSDPMI.EXE and slightly altered to run

COATVtAND.COM instead ofKRNL386.EXE. Microsoft intended this

to host MSC7, which required DPMI and a DOS extender. Many beta
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sites protested at the inanity of having to load over 500K of system soft-

ware just to run a compiler, so Microsoft junked MSDPMI and instead

bundled a copy of 386MAX from Qualitas with each copy ofMSC7.
It’s rather odd to see the retail WIN.COM (both in Windows 3.1 and

Windows 95) referring to this beta software that never shipped. How-
ever, the documentation for the MSC7 run-time library made frequent

reference to “the Microsoft DOS extender,” so perhaps Microsoft really

did plan to release MSDPMI as a product.

In a way, Microsoft did release MSDPMI: That’s what Windows is!

Indeed, there might be little reason for Microsoft to put out this technol-

ogy under the boring name MS-DOS, when it can— and already has —
put out the same thing under the more exciting name Windows. Either

way, it’s the same software, though perhaps Microsoft can earn more

money by packaging this technology under the Windows moniker than

by describing it as a new version of DOS.
How does WIN decide that GOWIN386 \COMMAND.COM is

actually MSDPMI? Disassembly of the WIN.CNF file used to build

WIN.COM reveals the following code:

4534:2002 db 'The MS-DOS Protected Mode Interface (MSDPMI) is

running on this computer. You cannot start Windows

when it is runni ng
.

' , 0

4534 : 341C B8 1683 mov a x . 1 683 h

4534 : 341

F

33 DB xor bx , bx

4534:3421 CD 2F i nt 2 Fh : Get current virtual machine ID

4534:3423 8D 16 1FDF 1 ea dx,cs : [lFDFh] ;
'You are already running Win..

4534:3427 83 FB 01 cmp bx , 1 ; System VM

4534 : 342A 75 2D jne short loc_ret__365

4534 : 342C 8D 16 2002 1 ea dx , cs : [ 2002 h

]

: 'The MS-DOS Protected Mode...'

4534:3430 EB 27 jmp short loc_ret__365

WIN calls INT 2Fh function 1683h (documented in the Windows
DDK), a service provided byVMM that returns the currentVM ID in

BX. (Note, by the way, how close this non-DPMI function number is to

function 1687h, which is used by DPMI. VMM doesn’t distinguish

between DPMI and non-DPMI INT 2Fh functions, which suggests that

DPMI might be little more than a specification-after-the-fact codifica-

tion of what already existed in VMM, similar to the way the XMS specifi-

cation emerged from the HIMEM.SYS implementation.) If function

1683h returns nonzero in BX, WIN knows that Windows is already run-

ning and that, if the function returns with BX=1, WIN is being run from

the System VM. WIN decides that this means MSDPMI is running.
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As shown in Figure 6-3, I’ve incorporated this same test into

ISWIN.C, which is available on the Unauthorized Windows 95 disk.

define SYSTEMJ/M 1

#//...

unsigned short vm;

/* call 2F/1683 to see if DOS app running in System VM; if so,

this must be some hacked version of Windows like MSDPMI,

or we must be running inside WINSTART.BAT */

_asm mov ax, 1 683

h

_asm int 2fh

_asm mov vm, bx

if (vm == SYSTEMJ/M)

pri ntf
(

"Running DOS app in System VM:
"

"Must be WINSTART.BAT or hacked Wi ndows ! \n" )

;

el se

pri ntf
(

" VM #%u\n", vm);

Figure 6-3: ISWIN.C, a DOS program that tests for the presence of Windows, also

includes tests for MSDPMI.

Running ISWIN under GOWIN386 \COMMAND.COM prints the

following message:

C : \UNAUTHW>gowi n 386 \command . com

C:\UNAUTHWMswin

Running Windows 3.10 (or higher) Enhanced mode

Running DOS app in System VM: Must be WINSTART.BAT or hacked Windows!

Note the reference to “hacked Windows”: That’s certainly what we

have here! But also notice that ISWIN, unlike WIN, refers to WIN-
START.BAT. After starting the System VM and before starting the

Windows kernel, Windows Enhanced mode (specifically, the DOSMGR
VxD) looks along the path for WINSTART.BAT. This is an optional

ordinary DOS batch file that you can create to run DOS software in the

System VM. WINSTART.BAT is typically used to load TSRs that are

needed by Windows applications; rather than loading the TSR globally

before Windows, which would occupy memory in every VM, WIN-
START.BAT allows the TSR to be loaded solely in the System VM.

If you’re perverse enough to run WIN from WINSTART.BAT under

GOWTN386 \COMMAND.COM, WIN will think you’ve got MSDPMI:

C : \UNAUTHW>type winstart.bat

echo %0

wi n

i swi n
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C : \UNAUTHW>gowi n 386 \ command . com

C : \UNAUTHW>echo C:\UNAUTHW\EXPERM\WINSTART

C:\UNAUTHW\WINSTART

C : \UNAUTHW>wi

n

The MS-DOS Protected Mode Interface (MSDPMI) is running on this

computer. You cannot start Windows when it is running. To quit

the MSDPMI, type exit and then press Enter.

Type Exit and press Enter to quit this MS-DOS prompt and

return to Windows.

Press ALT+TAB to switch to Windows or another application

C : \UNAUTHW>i swi

n

Running Windows 3.11 (or higher) Enhanced mode

Running DOS app in System VM: Must be WINSTART.BAT or hacked Windows!

Running WIN from WINSTART.BAT produces this MSDPMI mes-

sage only if you’ve run WIN386.EXE without first running WIN. Ifyou

start Windows the normal way with WIN.COM, the second instance of

WIN (the one launched from WINSTART.BAT) detects the first instance

by calling INT 2Fh function 160Ah and issues a more sensible “You are

already running Enhanced mode Windows” message.

But in a way, WIN is correct even when it confuses WINSTART.BAT
and MSDPMI. After all, if you put COMMAND.COM in WINSTART
and never type exit, you’ve essentially got MSDPMI, which in turn is the

same thing as renaming COAlMAND.COM to KRNL386.EXE. These

are all just different ways of having Windows Enhanced mode (the low-

level WIN386 operating system), but without Windows. In truth, what

we have here is V86 DOS. It just sounds better to call it Windows.

Using WIN386 as GOWIN386 or MSDPMI, or running COM-
A1AND.COM from WINSTART.BAT is no more than an experiment;

this would be no way to deliver protected-mode DOS to customers. But

using WIN386 as MSDPMI does emphasize how separate WIN386 is

from the rest of Windows. All the functionality you see in MSDPMI—
V86 mode, device virtualization, virtual memory, DPMI services, a 16-

and 32-bit DOS extender, and so on — belongs in DOS. WIN386 really

is part ofMS-DOS, except that right now it ships with Windows, and

Microsoft has decided for sound marketing and packaging reasons to call

it Windows 95.
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Where Do 32BFA mid

LFD Come Foom?

T
aking WIN386.EXE from Windows Enhanced mode and using it to run

a copy of COMMAND.COM (masquerading under the name
KRNL386.EXE) creates a new Enhanced mode of MS-DOS. But this

may not be completely clear from the experiment in the previous chapter.

After all, most of the special functionality available under GOWIN386 is

also available to anyone who uses a 386 memory manager. The point

should perhaps be made again that these 386 memory managers represent

more of a departure from standard DOS than most programmers seem to

realize. But still, providing DPMI, protected-mode INT 21h, and even a

DOS INT 21h interface to virtual memory is fairly common these days

and doesn’t seem to justify characterizing Windows’ DOS box as the

future of DOS. Other than providing its own (possibly less capable) ver-

sion of XMS, this setup doesn’t seem to do much for regular DOS pro-

grams.

In this chapter, we’ll be experimenting with a WIN386 configuration

that in some ways isn’t significantly different from the configuration we

tried in the previous chapter but whose departure from plain-vanilla DOS
is much more apparent.

This time we’ll take the 3 2 -bit file access (32BFA) functionality from

WfW 3.11 and use it to further enhance DOS. We’ll use GOWIN386
.BAT again, but now we’ll copy the WIN386.EXE from WfW 3.11

instead of from Windows 3.1, change the SYSTEM.INI file slightly to

replace BLOCKDEV with IOS.386, and add several additional VxDs:

;;; devi ce=*BLOCKDEV

devi ce=ios .386

devi ce=i fsmgr . 386



Unauthorized Windows 95

devi ce=vfat . 386

devi ce=vcache . 386

device=vxdldr.386

device=vshare.386

These are the new VxDs:

• IOS.386 : I/O Supervisor, an enhanced version of Windows 3.1’s

BLOCKDEV, which in turn was an enhanced version of the Windows

3.0 Virtual Hard Disk (VHD) VxD.

• IFSMGR. 386\ Installable File System (IFS) Manager.

• VFAT.386 : Virtual FAT File System (oddly, VFAT.386 contains the

description string “Win386 HPFS Driver (Prototype)”; HPFS nor-

mally refers to the OS/2 High Performance File System).

• VCACHE.386: Virtual File Cache (replaces SMARTDRV.EXE).

• VXDLDR.386: VxD Loader (for dynamic loading and unloading of

run-time VxDs, such as the real-mode mapper, RMM.D32).

• VSRIARE.386: Virtual SHARE (replaces SHARE.EXE).

These VxDs must be copied over from the same WfW 3.11 directory

as WIN386.EXE. (These VxDs won’t load under the 3.1 version of

WIN386.EXE; ifyou try, you’ll get the message “A device file specified

in the SYSTEM.INI file is corrupted.”)

You also need to copy over the real-mode mapper, RMM.D32, and a

copy of SPART.PAR, which contains a pointer to the permanent swap file.

Finally, 32BFA requires a DOS device driver, IFSHLP.SYS, which is

included with WfW 3.11; your CONFIG.SYS will need a line such as:

devi ce=c: \wfw311\i fshl p.sys

Note that if the IFSMgr (Installable File System Manager) VxD can’t

find IFSHLP (device name IFS$HLP$), it silently disables 32BFA. Why
is there no error message? IFSMGR. 3 86 does contain code to pass the

message “The Microsoft Installable File System Manager (IFSMGR)
cannot find the helper driver. Please' ensure that IFSHLP.SYS has been

installed.” to VMM’s Fatal_Error_Handler service. Unfortunately, IFS-

MGR has a bug and gets confused by an intervening call to a different

VMM service; rather than do a fatal exit, IFSMGR ends up with a null

function pointer to IFSHLP. Fortunately, however, the VFAT VxD also

tests for IFSHLP.SYS — and this time does it properly, telling WIN386
that it can’t load (though no message is produced).
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With IFSHLP.SYS installed, with WfW 3.1 l’s WIN386.EXE, VxDs,

and RMM.D32, and with the modified SYSTEM.INI, run GOWIN386
\COAEMAND.COM. The environment this command produces looks

just like GOWIN386 based on Windows 3.1, and for the most part it is

the same. But those extra VxDs we added have a significant impact: Until

you exit from GOWIN386, they effectively replace key parts of real-mode

MS-DOS with 3 2 -bit protected-mode code.

How can you tell? Well, for one thing, your hard disk should seem

significantly faster than it did before. But that proves nothing: maybe this

VCACHE.386 is simply an aggressive disk cache like SAEARTDRV.EXE,
or maybe you already had SAEARTDRV loaded.

No, the best way to understand what this 3 2 -bit file access is all about

is to see how file access under WIN386 translates into file I/O calls that

are seen by real-mode MS-DOS.
Let’s back up a moment then and see how Windows and DOS interact

when 32BFA is turned off. Exit from GOWIN386 back to the real-mode

DOS prompt. (You can tell the difference because WIN386 flickers the

screen in a gross way when it exits.) From the DOS prompt, load a utility

that logs INT 2 lh file I/O calls. For example, I used the INTRSPY utility

from Undocumented DOS
,
along with the INTRSPY script FOPEN.SCR:

C : \UNDOCDOS>i ntrspy

C : \UNDOCDOS>cmdspy compile fopen

This logs all calls to the following INT 2 lh functions:

• OFh (Open File with FCB)

• 3Ch (Create File)

• 3Dh (Open File)

• 4Bh (EXEC)

• 4Eh (Find First File)

• 6Ch (Extended Open/Create)

Next, start GOWIN386 with 32BFA disabled. You can do this either

by running the GOWIN386 configuration based on Windows 3.1 or by

temporarily disabling 32BFA in the WfW 3.11 configuration. You can

disable 32BFA either by putting the statement 32BitFileAccess=E'ALSE

in SYSTEM.INI or by running WIN /D:C. (Similarly, you can turn off

3 2 -bit disk access with 32BitDiskAccess=FALSE or with WIN /D:F.)

We’re not using WIN.COM here, so the /D:C switch needs to be passed
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directly to WIN386.EXE. Do this with GOWIN386 by putting the

/D:C switch after the name of the program to run:

C : \UNAUTHW>gowi n386 \command . com / D :

C

(Yes, I know this is stupid, because WIN386.EXE, not COMMAND
.COM, uses the /D:C switch. But this is just a toy batch file and doesn’t

merit more work.)

Next, from within the GOWIN386 DOS prompt, flush the INTR-
SPY buffer so you don’t see the files that WIN386.EXE opened during

startup:

C:\UNAUTHW>cmdspy flush

Finally, do something to generate a lot of file open activity, such as:

C : \UNAUTHW>copy con foo.bar

This is foo.bar
A
Z

C : \UNAUTHW>copy con foo.bat

type foo.bar

foo
A
Z

C : \UNAUTHW>foo

Let this silly recursive batch file run for a few seconds, and then press

Ctrl-C. Next, generate an INTRSPY report:

C: \UNAUTHW>cmdspy report

XOPEN con

FIND con

XOPEN CON

XOPEN foo.bar

XOPEN foo.bar

XOPEN con

FIND con

XOPEN CON

XOPEN foo.bat

XOPEN foo.bat

FIND foo.???

FIND C:\UNAUTHW\FOO.BAT

OPEN C:\UNAUTHW\FOO.BAT

XOPEN foo.bar

OPEN C:\UNAUTHW\FOO.BAT

FIND foo.???

FIND C:\UNAUTHW\FOO.BAT

OPEN C:\UNAUTHW\FOO.BAT

XOPEN foo.bar

OPEN C:\UNAUTHW\FOO.BAT

Recall that we loaded INTRSPY before starting Windows, so INTR-
SPY is seeing whatever calls Windows sends down to DOS. INT 2 1 h file
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access in the DOS box is being serviced by real-mode DOS. But what
did you expect: that Windows would somehow handle INT 2 Ih fde

access without calling down to DOS?
Well, crazy as that might seem, that’s exactly what happens when

32BFA is enabled. Exit from GOWIN386 back to real-mode DOS, then

start up GOWIN386 again, but this time get rid of whatever you did to

disable 32BFA. For example, restart GOWIN386 \COA4AlAND.COM,
but this time without the /D:C switch. Then flush the INTRSPY buffer,

repeat the FOO.BAR/FOO.BAT test, and generate an INTRSPY report:

C : \UNAUTHW>exi

t

C : \UNAUTHW>gowi n386 \ command . com

C:\UNAUTHW>cmdspy flush

C : \UNAUTHW>copy con foo.bar

t • • •

C : \UNAUTHW>f oo

: ... let the batch file run for a few seconds, like before ...

C : \UNAUTHW>cmdspy report

XOPEN con

FIND con

XOPEN CON

XOPEN con

FIND con

XOPEN CON

EXEC C:\UNAUTHW\CMDSPY.EXE report

Holy Toledo! All INTRSPY could see were the file opens from the

COPY CON commands and from CMDSPY REPORT If INTRSPY
didn’t see them, DOS (which of course is loaded before INTRSPY) cer-

tainly didn’t see them. None of that FOO.BAR/FOO.BAT activity went

down to DOS! It was all handled in 3 2 -bit protected-mode VxD-land.

That’s right, even though this isn’t significantly different from the

version of GOWIN386 created with Windows 3.1, we’ve got something

very close to a 3 2 -bit protected-mode operating system here.

It would be nice to have a test for 32BFA that was less empirical than

seeing if INT 2 lh calls make it down to real-mode DOS. Testing for the

presence of IFSMGR, VFAT, and VCACHE (perhaps using their V86
APIs, accessible via INT 2Fh function 1684h) sounds like it would be a

good idea, but turning off 32BFA does not prevent these VxDs from

loading. Thus, although the absence of these VxDs would tell you that

32BFA is definitely disabled, the presence of these VxDs doesn’t guaran-

tee that 32BFA is enabled.

Aside from using a program like INTRSPY, how else can you tell that

the 32BFA VxDs replace much ofMS-DOS? Well, you can use the

TEST21 program from Chapter 8. In the following output from TEST21,
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we see that File Open (function 3Dh), File Close (3 Eh), and File Read

(3Fh) were handled without calling DOS. The minus sign (-) at the end of

three of the lines indicates that fewer calls were received than generated.

This in turn means (as TEST2 1 notes in its last line of output) that “Some

INT 2 lh are handled without calling DOS!” This test is explained in more

detail in Chapter 8.

C:\UNAUTHW>test21

Generated 301 calls

21/25 1 called

21/3D 100 called

21/3E 100 called

21/3F 100 called

Received 1 calls

1 received

0 received

0 received

0 received

Some INT 2 1 h are handled without calling DOS!
\

By adding a few VxDs to our GOWIN386 setup, then, we get a brand

new 3 2 -bit protected-mode DOS. And we didn’t need any Windows
GUI components: this GOWIN386 trick is accomplished entirely with

VxDs. (Well, okay, we also needed the IFSHLRSYS DOS device driver.)

It’s amazing that Microsoft released 32BFA as a minor upgrade (WfW
3.11) because it represents a far more significant change than many of the

features for which Microsoft has seen fit to increment the DOS major

version number (such as DOS=FIIGH in DOS 5.0 and DoubleSpace in

DOS 6.0). This is the first unmistakable sign of DOS’s evolution into a

3 2 -bit protected-mode operating system. It’s another rare case in which

Microsoft has underpromised and overdelivered.

Onward to windows 05: urn
We’ve seen a gradual evolution of functionality from DOSX in Chapter 5

to WIN386 in Chapter 6 to WIN386 with 3 2 -bit file access earlier in

this chapter. Our final stop is VMM32.VXD, which is the operating sys-

tem in Windows 95 (just as WIN386.EXE is the operating system in

Windows 3.x). Let’s first take a look inside VMM32.VXD using the

W3MAP utility on the Unauthorized Windows 95 disk. The results are

shown in Figure 7-1.

C : \UNAUTHW>w3map \wi ndows\system\vmm32 . vxd

W3 00010000

VMM 00011000

VDD 00058000

VFLATD 00063000

ENABLE 00065000
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VSHARE 0006d000

VWIN32 00071000

VFBACKUP 0007C000

VCOMM 00080000

COMBUFF 00089000

VCD 0008C000

I FSMGR 00091000

IOS 000b0000

SPOOLER 000be000

VFAT 000C5000

VCACHE 000d 1 000

VCOND 000d4000

VCDFSD 000dd000

I NT 1

3

000e2000

VXDLDR 000e5000

VDEF 000ec000

DYNAPAGE 000ef 000

CONFIGMG 000f4000

EBIOS 00104000

VMD 00109000

DOSNET 001 0d000

VPICD 00111000

VTD 00 1 1 C000

REBOOT 00124000

VDMAD 00129000

VSD 00132000

V86MMGR 00134000

PAGESWAP 0014b000

DOSMGR 0014f 000

VMPOLL 00163000

SHELL 0016b000

PARITY 0017a000

BIOSXLAT 0017d000

VMCPD 00182000

VTDAPI 00185000

PERF 0018a000

VMOUSE 0018f 000

VPD 00197000

VKD 0019C000

VPOWERD 001a8000

Figure 7-1: This W3MAP utility displays information about Virtual Device Drivers inside

a W3 file. Using this utility to examine VMM32.VXD reveals that VMM32 is an anthology

of over 40 VxDS.

Some of these VxDs are new to Windows 95. For example, VWIN32
provides services to Win32 applications, and VCOND is the Virtual

CON Device.

W3MAP has several command-line options that can provide more

information about individual VxDs built into an executable that uses

Microsoft’s W3 file format, such as VMM32.VXD or WIN386.EXE.
Figure 7-2 shows one example, taken more or less at random.
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C : \UNAUTHW\W3MAP>w3map -vxd vxdldr \wi ndows\system\vmm32 . vxd

Module name: VXDLDR

V X D LD R_DDB @ 00000068

Real -mode Init @ 0000:00000000

Device # 0027

Dynamic VxD Loader

Version 3.00

Init order: 16000000

DDB_Control_Proc @ 00000000

DDB_V86_API_Proc @ 000021c9

DDB_PM_API_Proc @ 000021c9

D D B_S e r v i c e_Table @ 0000002c (0f services)

270000 @ 000000 Id

270001 @ 00000000

270002 @ 000000bl

270003 @ 000000b7

270004 @ 00001137

270005 @ 00000024

270006 @ 0000219c

270007 @ 00002220

270008 @ 00002860

270009 @ 000028b0

27000a @ 000028e0

27000b @ 00002910

27000c @ 000029f

0

27000d @ 00002ad0

27 000e @ 00002b90

VXDLDR_Get_Versi on

V X D LDR_Loa d De v i ce

VXDLDR_Unl oadDevi ce

VXDLDR_Dev Ini t Succeeded

V X D L D R_D e vlnitFail ed

V X D L D R_G e t D e v i ce Li st

V X D LD R_U n 1 oadMe

P E L D R_LoadModul

e

P E L D R_G e t M o d u 1 eHandl

e

P E L D R_G e t M o d u 1 eUsage

P E LD R_Get En t ry Po i nt

PELDR_GetProcAddress

P E LD R_Add Expo r tT a b 1

e

PELDR_RemoveExportTabl

e

PELDR FreeModule

Figure 7-2: To get more information on a particular VxD in a W3 file, use W3MAP’s -VXD

option as shown here. To get detailed information on all the VxDs in a file, use the

-VERBOSE option.

The VXDLDR_LoadDevice and VXDLDR_UnloadDevice services

are used as part of Windows 3 2 -bit disk access. In addition, according to

a Microsoft document, “the Plug and Play architecture is dependent on

dynamically loadable VxDs. When the system starts, it determines what

devices are present, then uses the VxD loader to load VxDs for those

devices.” From the W3MAP output, we can see that VXDLDR also pro-

vides a set ofPELDR services that allow VxDs to dynamically link to

Win32 Portable Executable (PE) fdes.

Just as with the earlier environments, we can take VMM32.VXD and

run it without the Windows GUI. In fact, this is precisely the setup I

used for months during the early part of the Chicago test period. The
pre-beta version of Chicago from late 1993 wouldn’t run on my machine,

but it did appear to get pretty far along in its initialization. This perhaps

meant that the lower VMM/VxD layer of Windows might be able to run,

even though the upper graphical layer didn’t. Being able to test the
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VMM and VxD components of Chicago seemed better than nothing, so I

renamed KRNL386.EXE to KRNL386.SAV and then copied COM-
MAND.COM to KRNL386.EXE. With COMMAND.COM passing

itself off as KRNL386.EXE, I could type WIN, and DOS386 (as the

VMMVxD portion of Chicago was then called) would run COM-
MAND.COM. This gave me a V86 version of DOS 7 that worked

I exactly as you would expect from our earlier GOWIN386 experiments.

But Windows 95 looks so seamless, so integrated! How could the

VMM/VxD portion of Windows 95 be ripped out and used to run some-

thing other than the GUI portion of Windows 95?

To the casual user of Windows 95, Windows appears to boot as soon

as you turn on the machine. Instead of the “Starting MS-DOS...” mes-

sage that MS-DOS 5 and 6 display when booting, the same point in the

Windows 95 boot sequence displays a “Starting Windows...” message.

This small change has a subtle but important effect. It makes the average

user feel as if Windows has replaced MS-DOS and that there is no

longer anything sitting between Windows and the machine itself.

Yes, when you turn on a Windows 95 machine, it says “Starting Win-

dows...,” but as we saw in Chapter 1, it’s still more or less the same old

real-mode DOS code that’s running at this point. This portion of Win-

dows 95 is really just MS-DOS 90: MS-DOS in drag, as it were. Chicago’s

seemingly seamless loading of Windows is pretty seamy, really.

Whether autoloaded by WINBOOT.SYS or by COMMAND.COM,
or started in the old-fashioned way by typing WIN at the C:\> prompt,

WIN.COM will spawn VMM32.VXD, just as WIN.COM in Windows

3.x would spawn DOSX or WIN386. There’s no magic here. None, that

is, except the magic of repackaging. By taking something that has always

been considered part ofMS-DOS — the real-mode code located in

IO.SYS and MSDOS.SYS — and repositioning it under the more excit-

ing, less generic, less technoid brand name Windows (and Windows 95,

at that), Microsoft has cleverly capitalized on what has for years been an

unclear division of labor between DOS and Windows. Where exactly did

DOS end and Windows begin? Microsoft is now taking all its PC system

software and calling it Windows. New Package! Same Great Taste!

Although Windows 95 at least superficially appears seamless, and

although Microsoft now appears to regard real-mode DOS as part of

Windows (as best illustrated, again, by the “Starting Windows...” mes-

sage that Windows 95 displays when you’re starting what would up

until now have been called MS-DOS), the fact remains that Windows 95
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consists of several separate, semi-independent pieces that fit together in

roughly the same way that the pieces of Windows have always fit

together.

This means that, even in Windows 95, it’s possible to take the

VMM/VxD layer from Windows 95 and use it to create a small, self-

contained V86 mode version of DOS. If it’s okay for Microsoft to declare

pieces of real-mode MS-DOS as part of Windows, then surely it makes

as much sense for us to say certain pieces of Windows are really a part of

DOS. Recall from the preceding chapter this statement from a former

employee of Microsoft: “Win386 isn’t really even part of Windows.” The
same is true ofVMM32.VXD. So let’s use VMM32.VXD to create a ver-

sion of DOS that supports 3 2 -bit file access and long filenames.

On my hardware, the Chicago setup created a directory tree contain-

ing over 1,000 files. In this Land of a Thousand Files, I wanted to find

the minimal set of Chicago files for a non-GUI DOS386/VMM32 setup.

At the time of DOS386, it turned out that I needed only about 50 files to

get something working. With VMM3 2, even fewer files are needed.

Although a full-blown Windows 95 setup is a lot more useful than the

minimal setup I’m describing here, going through the exercise of locating

the minimum number of files needed to provide 3 2 -bit file access, long

filenames, or some other Windows 95 feature is quite instructive because

you get a real sense of what constitutes the core of Windows 95.

Here’s what it takes to create a small, self-contained VMM32 setup:

• VMM32 requires DOS 7.0 or higher. Running VMM32 on DOS 5 or

6 generates the message “Cannot run Windows with the installed ver-

sion ofMS-DOS. Upgrade MS-DOS to a version that is at least 7.0.”

Trying to fake this with SETVER VMM32.VXD 7.0 doesn’t appear

to work.

• Just as with WfW 3.11, you must have DEVICE=IFSHLP.SYS in

CONFIG.SYS. But when running Windows 95 (even the scaled-

down VMM32.VXD hack we’re putting together here), make sure

you use the version of IFSHLRSYS that comes with Windows 95.

The WfW 3.11 version doesn’t know about the new INT 2 lh Long

Filename (LFN) functions.

• The registry file SYSTEM.DAT should be in the root directory. If

VMM32 can’t find SYSTEM.DAT, it still runs, but it displays the

warning “Registry File was not found. Registry7 services may be inop-

erative for this session.”
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• You need VMM32.VXD, of course. The Windows 95 setup program

builds this file by packing together all the VxDs (including one called

VMM32.VXD) needed for your particular configuration into a single

file (also called VMM32.VXD). This omnibus file is generally about

1700K, considerably larger than WIN386.EXE, and contains among
other things a VMM that provides many more services than the VMM
in WIN386. (See Chapter 2.)

• You need a program to play the part of KRNL386.EXE, such as

COMMAND.COM.

You’ll encounter a few other requirements as you work through the rest

of this chapter, but this is enough to get you started.

I created a VMM32 subdirectory and copied two files into it:

C:\>md vmm32

C:\>cd vmm32

C : \VMM32>copy \wi ndows\system\vmm32 . vxd vmm32.exe

C : \VMM32>copy \ comma nd . com krnl386.exe

C : \VMM32>vmm32

With just these two files, typing the command VMM32 worked, at

least in the sense that I got a DOS prompt from which I could run

DPMI programs. There were no loose VxDs (setup bound all the ones

required for this configuration into VMM32.VXD). There wasn’t even a

SYSTEM.INI file.

Oops, my genuine Chicago directory was still on the path, and so

VMM32 picked up its SYSTEM.INI from there. This pulled in who
knows what. It turned out that VMM32 really did want a SYSTEM.INI
file after all.

However, there is a way to make this minimal setup work- Run

VMM32 in fail-safe mode. This is a useful feature that lets you boot Win-

dows 95 even if your configuration files are hopelessly screwed up. You

can trigger fail-safe mode by pressing F5 when your machine boots; you

can also enable fail-safe mode by running WIN /D:M. WIN.COM
passes the /D:M switch to VMM32, so you can just run VMM32 /D:M.

This works! With just VMM32.VXD (renamed to VMM32.EXE so I

could start it from the DOS command line) and COMMAND.COM
masquerading as KRNL386.EXE, I could run the lower layer of Win-

dows 95. No GUI, no .INI files, no nuthin’ except VMM32 and COM-
MAND.COM. In this hacked Windows 95 environment, I could run the

usual DPMI test programs:
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C : \VMM32>vmm32 / D :

M

C : \VMM32>dpmi test

C S=2 1 AAh DS=237Bh

CS=0097h DS=008Fh

CS base=00021AA0 1 i mi t=0000FFFF

DS base=000237B0 1 i mi t=0000 FFFF

C : \VMM32>dpmi i nfo

DPMI version 0.90

32-bit programs supported

386-based DPMI host

Interrupts reflected to V86 mode

Supports virtual memory

4014080 kbytes available in largest block

Again, this isn’t a particularly useful configuration compared to full-

blown Windows 95, but you can learn a lot about Windows 95 by experi-

menting with this and other scaled-down versions.

For example, I was quite surprised to discover that when I was finished

running these VMM32 experiments I could exit back to real-mode DOS.
The capability to exit from Windows back to DOS seems like an obvious

and uninteresting feature. However, when you start Windows 95 in the

normal way, typing WIN rather than VMM32, exiting Windows doesn’t

return you to the DOS prompt from whence you came. Instead, your

choices are to restart Windows, shut off the machine, or press Ctrl-Alt-

Del. Starting VMM32 lets us exit back to the real-mode DOS component

of Windows 95, so it must be WIN.COM that normally prevents this.

Given that some Windows 95 VxDs might rely on the supposed

impossibility of ever exiting back to DOS — perhaps some VxD patches

DOS and, starting in Windows 95, doesn’t bother to put back the origi-

nal patched code when Windows exits — you might think that this exit-

prevention would have been a bit more tightly integrated into Windows.

On the other hand, perhaps the presence of Single Application Mode in

Windows 95 means that all VxDs must be ready to properly restore clob-

bered data anyway. But if that’s the case, there’s no good technical reason

for WIN.COM in Windows 95 to prevent you from exiting back to

DOS. It’s just Microsoft trying to make Windows 95 appear to be “at

one” with the PC.

To make it a bit easier to test this minimal VMM32 environment, I

cobbled together another batch file, RUNVMM32, shown in Listing 7-1.

Listing 7-1: RUNVMM32.BAT

@echo off

rem runvmm32.bat

set path=\dos ; \bi n ; \eps ; \borl a n d c \ b i

n
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i f (%1 )==(
)
goto usage

if exist virnn32.exe goto have_vmm32

copy \wi ndows\system\vmm32 . vxd vmm32.exe >nul

if not exist vmni32.exe goto cant_get

: have_vmm32

copy %ol krnl 386.exe >nul

vmm32 %2 %2 %A %b

cl s

echo Back in DOS

goto done

: cant_get

echo Can't find \WIND0WS\SYSTEM\VMM32 .VXD

goto done

: usage

echo usage: RUN VMM32 [program] [args to VMM32]

: done

echo

.

For example, to create the minimal VMM32 environment I’ve been

describing, just type:

C : \VMM32>runvmm32 \command . com / D :

M

This grinds away on your hard disk for a few seconds, and then you’re

presented with a C:\> prompt, from which you can run a variety of pro-

grams that would not otherwise be supported under DOS. We already

saw that DPMITEST and DPMIINFO do the right thing in this envi-

ronment. Another good test is the MEMLOOP program:

C : \VMM32>meml oop

Allocated 8178 Kb in 257 blocks

Hmm, this doesn’t look very good at all! Recall from Chapter 6 that

MEMLOOP, running under WIN386.EXE from WfW 3.11, could allo-

cate 37MB on this same machine. Why only 8MB with the presumably

more advanced VMM32 from Windows 95?

Actually, this looks like a feature (and a sensible one, at that) of fail-

safe mode, in which VMM32 will use a paging file (386SPART.PAR)

located on the first hard disk, but it won’t grow the paging file beyond its

current size.

So let’s stop using fail-safe mode. We’ll need a SYSTEM.INI file to

do this. Figure 7-3 shows the SYSTEM.INI file I threw together.

[ 386 En h

]

Pa g i n g Fi 1 e=H : \ 386S PART . PAR

Mi nPagi n g Fi 1 eSi ze=4075

32 B i tDi skAccess=on
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3 2 B i t F i 1 eAccess=on

Overl appedIO=on

Vi rtual HD I RQ=t r ue

Fi 1 eSysChange=off

maxbps=512

mouse=*vinouse

ebi os=*ebi os

di spl ay=*vdd

keyboard=*vkd

devi ce=vfd . vxd

devi ce=c : \una lit hw\ gene ri c\vxd . 386

devi ce=*i n t 1

3

devi ce=*vpi cd

devi ce=*reboot

devi ce=*vdmad

devi ce=*vsd

devi ce=*v86mmgr

devi ce=*pageswap

devi ce=*dosmgr

devi ce=*vmpol

1

devi ce=*pari ty

devi ce=*bi osxl at

devi ce=*vcd

devi ce=*vmcpd

devi ce=*coinbiiff

devi ce=*enabl

e

devi ce=*vshare

devi ce=*vwi n 32

devi ce=*vfbackup

devi ce=*vcomm

devi ce=*i fsmgr

devi ce=*i os

devi ce=*spool er

devi ce=*vfat

devi ce=*vcache

devi ce=*vcond

devi ce=*vcdf sd

devi ce=*vxdl dr

devi ce=*vdef

devi ce=*dynapage

devi ce=*vtd

devi ce=*shel

1

devi ce=*vtdapi

devi ce=*perf

devi ce=*vpd

devi ce=*vpowerd

Figure 7-3: A SYSTEM.INI file customized for testing a minimal VMM32 environment.

In addition to the VxDs embedded in VMM32.VXD, I’m also loading

two loose VxDs here: VFD.VXD, because VBACKUP said it wanted it,

and VXD. 3 86, which is my generic VxD that will come in handy when
experimenting with VMM32. Note that the SYSTEM.INI also explicitly

points to the paging file.
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With this SYSTEM.INI file, the amount of memory allocated by

MEMLOOP is determined by the available disk space on the drive with

the paging file. Unfortunately, I no longer had as much space available as

when I ran the test with WfW 3.11, but you can still see that MEM-
LOOP, on my 12MB machine, is definitely using virtual memory from

the paging file:

C : \VMM32>mem1 oop

Allocated 16866 Kb in 528 blocks

As shown in Figure 7-4, running the VXDLIST program from the

Unauthorized Windows 95 disk revealed that 43 VxDs comprised this

minimal configuration. Incidentally, under VMM32, VXDLIST uses a

newVMM service (VMM_GetDDBList) to find the root of the VxD
chain; it also could have used the VXDLDR_GetDeviceList service

whose name appeared in the W3MAP -VXD VXDLDR output shown

back in Figure 7-2.

VXDLIST version 1.20

Displays Windows Enhanced mode Virtual Device Driver (VxD) Chain

Copyright (c) 1994 Andrew Schulman. All rights reserved.

Using VMM function # 1 0 1 3

F

Name Vers ID DDB Control V86 API PM API #Srvc

VMM 4.00 000 1 h C000EC28 C00023DE C0002A11 C0002A1

1

377 ! 39

VCACHE 3.01 048B h C0032F6C C0032A8D C0032ED9 C0032ED9 15

VPOWERD 4.00 0026h C0035CAC C0035984 C0265B6C C0265B6C 14

VPICD 3.10 0003h C001A9F8 C0019480 C001A064 C001A064 22

VTD 4.00 0005h C0033FE4 C0033DC6 C0262114 C0262114 9

VXDLDR 3.00 0027 h C00336C0 C0033658 C0261289 C0261289 15

CONFIGMG 4.00 0033h C0036038 C0035D48 C02663CC C02663CC 81

VCDFSD 3.00 0 04 1 h C0033534 C0033428 5

IOS 3.10 0 0 1 0 h C00298F0 C0027E74 C0257EA4 C0256710 17

PAGEFILE 4.00 002 1 h C0033C6C C0033BE8 C0262068 10

PAGESWAP 2.10 0007 h C001E958 C001E854 10

PARITY 1.00 0008h C001EF0C C001EE4C 0

REBOOT 2.00 0009h C001B3AC C001B27C C0233B50 0 ! 2

EBIOS 1.00 00 1 2 h C0011B50 C0011B28 2

VDD 2.00 000 Ah C0016658 C0011BA0 C0014944 C0014944 20

VSD 2.00 000Bh C001D4F4 C001D32C 4

VCD 3.10 000 Eh C001F360 C001F014 C023D3E9 11

VMOUSE 4.00 000Ch C00118C8 C00112F8 C022F204 C022F204 10

VKD 2.10 0 0 0 D h C0018350 C00172D8 C02334B0 21

ENABLE 0.128 0037 h C001FDE8 C001FACF C023E298 C023E241 10

VPD 3.00 000 Fh C00357C0 C0034FA0 C003521A 0

I NT 1

3

3.10 0020h C0018F9C C00188F6 5

VFD 2.00 00 1 B h C001883C C00186D4 0

VMCPD 1.02 001 1 h C001F7C8 C001F428 8

BIOSXLAT 1.00 0 0 1 3 h C001EFAC C001EF64 0

DOSMGR 4.00 0 0 1 5 h C001EB60 C001E9B4 C023C5A8 16
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VSHARE 1.00 0483 h C0020244 C002011

F

C00200F4 C00200F4 1

VMPOLL 4.00 00 18h C001EDE0 C001ECD4 4

DSVXD 3.00 003Bh C0010F1C C0010D4C C0010DA3 0

VXD 2.00 28C0 h C0011280 C0010F7C C0010FA6 C0010FA6* 0

COMBUFF 1.00 C001F9A8 C001F830 0

VWIN32 1.02 002Ah C0022670 C00216C8 C023FD78 21 !! 65

VCOMM 1.00 002Bh C0023180 C0022ED0 C0243350 C0243350 35 !! 27

VCOND 1.00 0038h C003315C C0033118 C025B4D8 C025B5E2 2 ! 52

VTDAPI 4.00 0442 h C0034EAC C0034E83 C0265330 0

VDMAD 2.00 0004h C001D08C C001B5CC 28

V86MMGR 1.00 0006h C001E6CC C001DAAF 25

SPOOLER 1.00 002Ch C0029CF8 C0029C10 18

VFAT 3.00 0486 h C003285C C0030CDC 0

VDEF 3.00 C0033B98 C0033964 0

IFSMGR 3.00 0040 h C0025EB0 C0023380 C0246B33 103

VFBACKUP 4.00 0036h C0022E60 C002281A C0022847 C0022848 5

SHELL 4.00 00 1 7 h C0034A70 C003476E C02624E5 C02624E5 26

Figure 7-4: VXDLIST displays the VxDS currently in memory. Here, VXDLIST displays the

43 VxDs that make up a minimal VMM32 environment.

If you look back at the VXDLIST output in the preceding chapter

(Figure 6-1), you’ll see that, in contrast to Figure 7-4, Windows 3.1

(which doesn’t provide 3 2 -bit file access) used only about half as many
VxDs as Chicago. We saw at the beginning of this chapter that WfW
3.11 3 2 -bit file access requires about five additional VxDs. Although

these are rough figures — a lot depends on your individual configuration,

including whether you’re on a network and which graphics accelerator

card you use — it seems clear that Windows 95 relies far more heavily on

VxDs than earlier versions of Windows did.

In the VXDLIST output in Figure 7-4, those numbers on the right

(following the exclamation marks) indicate the number of special services

a given VxD provides for Win32 applications; many advanced Win32

API functions available in Windows 95, but not in Win32s, are imple-

mented using these VxD Win32 services. For example, the CreateThread

API provided by KERNEL32 is based on the VMMCreateThread func-

tion; KERNEL32 calls this VMM function via one of the Win32 services

provided by VWIN32. The undocumented VXDCallO function in KER-
NEL32, which is used later in this book, lets Win32 applications call

these VxD-provided Win32 services.

Well, we see that Windows 95 has tons of VxDs, and it makes sense

that these would help implement many of the new features of Windows

95, but so far we haven’t really seen any Windows 95 behavior that differs

from WfW 3.11 with 32BFA. In the next section we’ll look at an aspect

of Windows 95 that’s a real departure from previous versions of Win-
dows: long fdenames.
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Long Filename support in Ulindouis 95

Since its inception, MS-DOS has been plagued by the so-called 8.3 file-

name convention. Instead of sensible filenames such as “3rd quarter

1994 report from Cleveland” or “Piano Concerto No. 20 in D minor,”

users have to create and remember names such as CLEV3Q94.WKS
and PI20DMIN.SCR. In Windows 95, you can have long filenames and

directory names (up to 255 characters), with a maximum path length of

260 characters. The following is output from the DIR command in

Windows 95:

3RDQUART 36,517 09-13-94 8:43p 3rd quarter 1994 report from Cleveland

PIANOCON 201 126,455 09-13-94 8 : 44 p Piano Concerto No. 20 in D minor

Every long filename in Windows 95 has a unique short alias automati-

cally generated by the operating system. In the DIR output, 3RDQUART
is the alias for “3rd quarter 1994 report from Cleveland”. Windows 95 is

case-preserving (though case-insensitive), so essentially all files and direc-

tories created under Windows 95 have two forms. For example,

copy too. bar foobarsk.doc

would create both a standard FOOBARSK.DOC directory entry and,

even though FOOBARSK.DOC fits within the standard 8.3 filename

confines, a second, case-preserving foobarsk.doc entry.

Of course, Microsoft had to implement these long filenames in a way

that didn’t break existing applications. Also, media written under Windows

95 must still be usable under older versions of DOS and Windows.

Fet’s say a DOS program calls INT 2 lh function 47h to get the cur-

rent directory. According to Microsoft’s DOS 6.0 Programmer's Reference
,
a

program calling this function needs a buffer of at least 64 bytes, which is

large enough to contain the largest possible path. The program now finds

itself running under Windows 95, where a single directory name, not to

mention the entire path, can be larger than 64 bytes. What happens?

The program gets the short form, of course. Otherwise, Windows 95

would break every DOS program that had obeyed the rules and allocat-

ed as few as 64 bytes in which to receive the current directory string.

This means that developers don’t have to worry about long filenames

breaking old programs.

However, many programs will need to work with the full filenames.

Getting the long filename instead of the short alias requires a new set of
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functions. Windows programs will use Win32 API functions such as Get-

CurrentDirectory and CreateFile. A DOS program will be able to use a

new set of subfunctions under INT 2 lh function 7 lh, where the subfunc-

tion in AL is the same as the old DOS AH function number. For example,

because the old DOS Get Current Directory function is INT 2 lh function

47h, the new one that knows about long pathnames is INT 2 lh function

7147h; although the other registers are identical to the old call, the buffers

pointed to by DS: SI must be large enough to receive the maximum-

allowed path. As you’ll see in the LFN.C example later in this chapter,

programs can call the new Get Volume Information function (INT 2 lh

function 71A0h) to get the length of the maximum-allowed path.

Long fdenames aren’t supported in the real-mode WINBOOT.SYS
portion of Windows 95, 'which runs before VMM32.VXD. This means

that real-mode programs such as TSRs and device drivers can’t call the

new long filename APIs if they run at system startup. Similarly, the few

programs run in so-called Single Application Mode also won’t be able to

call the long filename APIs. To determine if the new APIs are available, a

program can use INT 2 lh function 71A0h.

If these new DOS INT 2 lh functions aren’t available in real-mode

DOS 7, who provides them? A VxD, of course: IFSMgr. Since long file-

names aren’t provided in the real-mode portion of DOS 7, and since they

don’t require any Win 16 or Win32 code, we can look at them from our

cobbled-together VMM32 environment.

But there’s a slight problem. Trying to create a long filename in the

tiny VMM32 environment doesn’t yield the expected results:

C : \VMM32>copy data.l "3rd quarter 1994 report from Cleveland"

1 file(s) copied

C : \VMM32>copy data. 2 "Piano Concerto No. 20 in D minor"

1 file(s) copied

C : \VMM32>di

r

3RD QUAR 2,481 09-13-94 9:0Tlp

PIANO CO 20 2,526 09-13-94 9:01p

Not only that, but it also just doesn’t feel as though 3 2 -bit file access

is enabled: the disk is too slow. If LFN support is clearly absent, it makes

sense that 3 2 -bit file access would be absent as well, since both are pro-

vided by IFSMgr. Yet, in the VXDLIST output shown earlier, IFSMgr
is clearly loaded, as are the other main components of 3 2 -bit file and

disk access:
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Name Vers ID DDB Control V86 API PM API #S rvc

IFSMGR 3.00 0040h C0025EB0 C0023380 C0246B33 103

VCACHE 3.01 048B h C0032F6C C0032A8D C0032ED9 C0032ED9 15

VFAT 3.00 0486 h C003285C C0030CDC 0

VSHARE 1.00 0483 h C0020244 C002011F C00200F4 C00200F4 1

IOS 3.10 0 0 1 0 h C00298F0 C0027E74 C0257EA4 C0256710 17

INT13 3.10 0020 h C0018F9C C00188F6 5

What gives? We must be missing one or more files — probably

VxDs — that VMM32 needs to enable 32BFA and LFN support. To see

what VMM32 apparently wants in order to enable 32BFA and LFN, we
can take David Maxey’s INTRSPY utility from Undocumented DOS, load

the utility before starting the RUNVMM32 batch file, and have INTR-
SPY log all File Open, Find First, and EXEC calls. After starting and

exiting VMM32, INTRSPY produced the report (which Fve trimmed a

little) shown in Figure 7-5.

EXEC C:\VMM32WMM32.EXE

OPEN Q EMM386 $ [FAIL 2]

OPEN 386MAX$$ [FAIL 2]

XOPEN C:\WIND0WS\EMM386.EXE

OPEN SMARTAAR [FAIL 2]

OPEN C:\SYSTEM.DAT

OPEN C:\VMM32WMM32.EXE

OPEN $DebugDD [FAIL 2]

OPEN NDISHLPS [FAIL 2]

OPEN C:\VMM32\SYSTEM.INI

FIND [FAIL 3]

OPEN H:\DBLSPACE.BIN

OPEN c:\vmm32\vfd.vxd

OPEN EMMXXXX0

OPEN SMARTAAR [FAIL 2]

OPEN I FS$HLP$

OPEN CONFIG!

OPEN SCSIMGRS [FAIL 2]

OPEN C:\VMM32\I0S.INI [FAIL 2]

OPEN C:\VMM32\I0S.INI [FAIL 2]

OPEN C:\VMM32\I0S.INI [FAIL 2]

FIND C:\VMM32\I0SUBSYS\*. vxd [FAIL 3]

OPEN C:\VMM32\I0SUBSYS\rmm.pdr [FAIL 3]

OPEN C:\VMM32\WINSTART.BAT [FAIL 2]

OPEN \dos\WINSTART.BAT [FAIL 2]

OPEN \bin\WINSTART.BAT [FAIL 2]

OPEN C:\VMM32\UNIC0DE.BIN [FAIL 2]

OPEN I FS$HLP$

OPEN C:\VMM32WFD.VXD

OPEN C:\VMM32\KRNL386.EXE

OPEN C:\VMM32\USER.DAT

OPEN C:\VMM32\USER.DAT

OPEN C:\VMM32\KERNEL32.DLL [FAIL 2]

OPEN C:\VMM32\KERNEL32.DLL [FAIL 2]
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OPEN \dos\KERNEL32.DLL [FAIL 2]

OPEN \bin\KERNEL32.DLL

EXEC C:\VMM32\KRNL386. EXE

OPEN C:\VMM32\KRNL386. EXE

OPEN C:\VMM32\KRNL386. EXE

OPEN C:\C0MMAND.C0M

OPEN C:\SYSTEM.DAT

XOPEN C:\SYSTEM.

OPEN C:\VMM32\RUNVMM32 .BAT

Figure 7-5: INTRSPY lists the files requested by a minimal VMM32 environment.

There’s a bunch of interesting stuff in Figure 7-5: We can see

Windows looking for various DOS device drivers such as QEMM386$,
386MAX$$, SMARTAAR, SDebugDD, NDISHLP$, EMMXXXXO,
IFS$HLP$, CONFIG$, and SCSIMGRS; we can see Windows looking

along the path for a WINSTART.BAT file; and so on. But the key lines

that command attention are:

OPEN C:\VMM32\I0S.INI [FAIL 2]

FIND C:\VMM32\I0SUBSYS\*. vxd [FAIL 3]

OPEN C:\VMM32\I0SUBSYS\rmm.pdr [FAIL 3]

For 32BFA and LFN support, VMM32 must require IOS.INI (the safe

driver list used by the I/O Supervisor, IOS.VXD), and/or an IOSUBSYS
subdirectory, and/or the real-mode mapper, RMM.PDR.

Our next move is clear: Create a WMM32\IOSUBSYS subdirectory

and copy the contents of Windows 95 ’s \WINDOWS\SYSTEM\
IOSUBSYS subdirectory into it. (Significantly, IOSUBSYS can contain

a DBLSPACE VxD, but we’ll get into that later.) It probably wouldn’t

hurt to copy over IOS.INI, too.

With the IOSUBSYS directory in place, restart VMM32. If you run

VXDLIST again, you’ll see that three new VxDs have shown up; IOS
dynamically loads these VxDs with the VXDLDRJLoadDevice service:

Name Vers ID DDB

DiskTSD 3.10 C0FD23CC

vol track 3.10 0090 h C0FD54D8

RMM 3.10 C0FD6224

Control V 86 API PM API #Srvc

C0FD21A8 0

C0FD5000 0

C0FD5850 0

DISKTSD is a fixed-disk type-specific driver, VOLTRACK.VXD is a

volume tracker, and RMM.PDR is a real-mode mapper. There are almost

a dozen layers to the Windows file/disk architecture. I know I can never

keep all this file/disk driver stuff straight. If you have as much trouble as I

do remembering what the heck port drivers and miniport drivers are, see

“The eleven kinds of windows disk/file drivers.”
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The eleven hinds nl Windows

dlsh/tiie drivers

The following glossary of Windows file/disk driver terminology is a handy
cheat sheet that I’ve cribbed almost word-for-word from a Microsoft docu-

ment on “Layered Block Device Drivers.” As you’ll see, the word layered is

a mild understatement for this veritable tower of drivers.

• File system driver (FSD): Manages the high-level I/O requests from

applications. The FSD processes requests from applications and initi-

ates low-level I/O requests through the I/O supervisor. VFAT is an FSD;

FSDs are installable file system drivers, and are managed by IFSMgr.

There are also FSD extensions such as the DBLSPACE VxD.

• I/O supervisor (IOS): Provides various services to FSDs and other dri-

vers in the system. The IOS registers drivers, routes and queues I/O

requests, sends asynchronous notifications to the drivers as needed,

and provides services that drivers can use to allocate memory and com-

plete I/O requests. The IOS also provides BlockDev services to support

compatibility with BlockDev clients.

• Volume tracker : Works with a group of devices that share removability

rules. The volume tracker ensures that the correct media is in the

device and detects and reports improper media removal or insertion.

• Type-specific driver (TSD): Works with all devices of a specific type, such

as all CD-ROM devices. The TSD validates incoming I/O requests, con-

verts logical requests to physical requests, and notifies the requestor

when the request is complete. The TSD can also initiate logical error

recovery as needed for certain types of devices, principally disks.

• SCSI’izer: Works with all SCSI devices of a given type, such as all SCSI

disks. The SCSI’izer constructs SCSI Command Descriptor Blocks

(CDBs) for a specific class and carries out device-level error recovery

and logging.

• Vendor-supplied driver (VSD): Intercepts and processes I/O requests for

a given block device. The VSD gives a vendor an efficient way to either

incorporate enhancements into an existing layered block device driver

or extend the capabilities of the driver to new but similar hardware.

• SCSI port driver (SCSI manager): Manages the interaction between the

SCSI’izer and a Windows NT SCSI miniport driver. The SCSI port driver

initializes the miniport driver, converts the I/O request format, and car-

ries out all interactions with the miniport driver.

• NT SCSI miniport driver (MPD): Works with a specific set of SCSI

adapters. The miniport driver detects and initializes the adapter, han-

dles interrupts, transmits I/O requests to the device, and carries out

adapter-level error recovery and logging.
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• Port driver (PDR): Works with a specific adapter, usually proprietary. For

example, there are port drivers for IDE/ESDi and NEC floppy drivers. A

port driver provides the same functionality as a combination of SCSI

manager and miniport driver. The port driver detects and initializes the

adapter, handles interrupts, transmits I/O requests to the device, and

carries out adapter-level error recovery and logging.

• Real-mode mapper (RMM): Provides the interface between a file system

and a DOS real-mode driver such as DBLSPACE.BIN, making the

real-mode driver appear to upper levels as though it were a protected-

mode driver.

• Real-mode driver. An existing DOS device driver, such as DBLSPACE
.BIN, that Windows executes in V86 mode.

All these layers of pprt drivers and miniport drivers make my head hurt.

One of the foundations of user-interface design is psychologist George

Miller’s “seven plus or minus two" rule (that is, the average human mind

can retain between five and nine things in short-term memory). Surely this

rule applies to programming interfaces too.

With DISKTSD, VOLTRACK, and RMM loaded, we now have

32BFA and LFN support. Why is that? These are all part of 3 2 -bit disk

access (32BDA), and we’re talking about 3 2 -bit file access here. However,

32BFA requires 32BDA, or something that looksjust like it. That’s the role

of the real-mode mapper.

My hard disk is compressed with DblSpace. (This, combined with the

fact that I’m using 3 2 -bit file access, in a beta version no less, shows that I

like to live, or at least compute, on the edge. I have lost a frightening

amount of work in the course of this book.) Without a DblSpace VxD
(discussed in a moment), all disk access must go through the 16-bit real-

mode DblSpace driver. True, this driver will in turn access the DblSpace

Compressed Volume File (CVF) on the host drive, and those accesses will

be 32-bit. But in the absence of a DblSpace VxD, calling the real-mode

DblSpace driver is unavoidable. But as just noted, 32BFA requires

32BDA. The real-mode mapper, then, will make a 16-bit real-mode

compression driver such as DblSpace look to 32BFA as though it were a

3 2 -bit protected-mode driver.

Indeed, it’s RMM that did the trick here. With a IOSUBSYS direc-

tory containing only the single RMM.PDR file, we still get 32BFA and

LFN support.

To demonstrate 32BFA, we can use the V86TEST program from

Chapter 10. Loading V86TEST before VMM32, we can use it to see
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how many INT 2 lh calls VMM32 is sending down to DOS. By running

V86TEST -QUERY before and after performing an operation and then

subtracting the before statistics from the after statistics, we can measure

the DOS “cost” of the operation.

Before creating the IOSUBSYS directory, one test (searching for the

string “foobish” in the 321OK comprising Ralf Brown’s Interrupt List)

under VMM32 took 19 seconds and generated 367 INT 2 1 h calls (73 of

them to Read function 3Fh). Immediately running the test again (to try

to measure any caching) took 14 seconds.

By comparison, the same test in plain-vanilla real-mode DOS used the

same number of INT 2 lh calls but required only 1 1 seconds each time.

Clearly, without something like 3 2 -bit file access, a V86 mode DOS like

VMM32 can hurt rather than help performance.

After creating the IOSUBSYS directory and restarting VMM3 2 under

A786TEST, the same test took 13 seconds and generated only 218 INT
2 lh calls, none of them to the Read function. Immediately running the

test again took only 4 seconds. Yes, the first test still took longer than in

plain old DOS, but we picked up the benefits of 32BFA in the second

test. Notice that the combined times for the two tests under 32BFA (13 +

4=17 seconds) are shorter than the combined times for plain DOS (11 +

11=22 seconds), though not spectacularly so.

Because 32BFA required two passes through the data before it demon-

strated any benefits, it can appear as though 32BFA is nothing more than a

cache. CertainlyVCACHE is a crucial part of 32BFA. Perhaps we would

do just as well using SmartDrv? This subject is taken up in more detail in

Chapter 8, in the sidebar titled,“32BFA versus disk cache performance.”

For now, I’ll just note that, contrary to what is often claimed, size is

important (cache size, that is). A lot depends on the cache size you specify

for SmartDrv. Whereas VCACHE grows and shrinks as needed, the

maximum SmartDrv cache size is fixed once you start it. If the cache size

isn’t sufficient for your data “working set,” SmartDrv will do little good.

In this example, a 2048K SmartDrv cache provided little benefit in read-

ing 321OK of data: combined time for the two passes was 12 + 11=23

seconds. By comparison, a 4096K cache cut the time down to 11+6=17
seconds. Note that this is similar to the time taken by 32BFA.

At any rate, we definitely do have 32BFA now. As noted earlier, 32BFA

and LFN support go hand-in-hand in Windows 95; both are provided by

IFSMgr. To ensure that we now also have LFN support, we should repeat

the experiment that failed earlier:
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C: \VMM32>copy data.l "3rd quarter 1994 report from Cleveland"

1 file(s) copied

C : \VMM32>copy data. 2 "Piano Concerto No. 20 in D minor"

1 file(s) copied

C : \VMM32>di

r

3RDQUART 36,517 09-13-94 8:43p 3rd quarter 1994 report from Cleveland

PIANOCON 201 126,455 09-13-94 8:44p Piano Concerto No. 20 in D minor

You can also have long directory names. Figure 7-6 shows some

examples; I’ve deleted uninteresting portions of the DIR output.

C : \ VMM32>md "this is a long directory name"

C:\VMM32>dir / a :

d

IOSUBSYS <DIR> 06-13-94 4:25p IOSUBSYS

THISIS-l <DIR> 06-13-94 1 0 : 49p this is a long directory name

C:\VMM32>cd "this is a long directory name"

C:\VMM32\THIS IS A LONG DIRECTORY NAME>ver > "a long filename with a. big exten-

si on"

C:\VMM32\THIS IS A LONG DIRECTORY N AM E>d i

r

Directory of C:\VMM32\THIS IS A LONG DIRECTORY NAME

ALONGFIL BIG 30 06-13-94 10:50p "a long filename with a. big extension

C:\VMM32\THIS IS A LONG DIRECTORY N AM E>d i r *."big extension"

ALONGFIL BIG 30 06-13-94 10:50p "a long filename with a. big extension

Figure 7-6: Directory listings will look very different once users start creating long file-

names and directory names.

Notice that file extensions are no longer limited to three characters:

A file extension consists of anything following the final dot in a filename.

Notice too that you can do wildcard searches on these large extensions

(DIR *.“big extension”).

All this is an important step up from WIN386, even from WIN386
with 32BFA. 32BFAin WfW 3.11 provided a 32-bit protected-mode

implementation of the INT 2 Ih file I/O API but didn’t change the API
itself, at least not in such a visible way. On the other hand, you could

argue that, in bypassing the DOS INT 2 1 h chain as we saw in the

TEST21 example, WfW 3.11 did change the DOS API. In any case,

Windows 95 is obviously providing a new DOS API, yet this API isn’t

available in real-mode DOS 7. To underline the point one last time: you



Chapter 7: Where Do 32BFA andLFN Come From

?

get this new DOS API only ifVxDs are loaded. That is an excellent illustra-

tion of the point that VxDs represent the future ofDOS (albeit repack-

aged under the name Windows).

As an example of how to test for the presence of this new DOS API,

LFN.C, shown in Listing 7-2, is a real-mode DOS program that calls

INT 2 1 h function 71A0h (Get Volume Information) and displays some

information about the file system.

Listing 7-2: LFN.C

/* LFN.C -- test presence of long filename functions */

#i ncl ude <stdl i b. h>

//include <stdio.h>

#i ncl ude <string.h>

#i ncl ude <dos.h>

#def i ne GET_VOLUME_IN FORMATION 0x71A0

//define 0LD_GET_V0LUME_I NFORMATION 0x4302

//define FS_CAS E_S ENS I T I VE 1

//define FS_C AS E_I S_P RES E RV E D 2

//define FS_UNICODE_ON_DISK 4

//define FS_LFN_APIS 0x4000

//define FS_V0 LUM E_C0M P RESS ED 0x8000

int GetVol umeInformation(char far *RootName,

char far ^Buffer, unsigned BufSize,

unsigned *pFlags, unsigned *pMaxFi 1 ename ,
unsigned *pMaxPath)

{

unsigned rbx, rex, rdx;

_asm {

push ds

push di

1 es di , dword ptr Buffer

Ids dx, dword ptr RootName

mov cx, BufSize

mov ax, G ET_V0 LUM E_I NFORMATION

int 2 1

h

pop di

pop ds

jc no_71A0

mov rbx, bx

mov rex, cx

mov rdx, dx

}

*pFlags = rbx;

*pMaxFi 1 ename = rex;

*pMaxPath = rdx;

return 0;

no_71A0

:

_asm xor ah, ah
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// error code in AL

main(int argc, char *argv[])

{

char *RootName = (argc < 2) ? "C:\\" : a rgv [ 1 ]

;

char Buffer [128]

;

char *name;

unsigned Flags, MaxFilename, MaxPath;

int ret;

if ((ret = GetVol umelnformati on ( RootName

,

Buffer, sizeof(Buffer)

,

&Flags, & M a x F i 1 ename , &MaxPa th ) ) !
= 0)

{

pri ntf( " %s -- No long filename (LFN) support\n", RootName);

pri ntf( "error code: %d ( %02Xh ) \n " , ret, ret);

return 1;

pri ntf( "%s -- Long filename (LFN) support\n", RootName);

pri ntf
(
"File system name: \"%s\"\n", Buffer);

pri ntf( "MaxFi 1 ename : %d\n", MaxFilename);

pri ntf
(

"MaxPath : %d\n", MaxPath);

#d e f i ne PRI NT_F LAG ( f 1 , si, s2) \

pri ntf
(

"%s\n" , (Flags & ( f 1 ) ) ? (si) : (s2))

PRI NT_F LAG ( F S_C A S E_S ENSITIVE,

"Searches are case sensitive",

"Searches are NOT case sensitive");

PRI NT_FLAG( FS_CASE_IS_P RESERVED,

"Preserves case in directory entries",

"Does NOT preserve case in directory entries");

PRI NT_F LAG ( FS_LFN_AP I S

,

"Supports DOS long filename functions",

"Does NOT support DOS long filename functions");

PRI NT_F LAG ( F S_V 0 LUM E_C0M P RES S E D

,

"Volume is compressed",

"Volume is NOT compressed");

PRI NT_F LAG ( F S_U N I COD E_0 N_D I S K

,

"Uses Unicode characters in file and directory names",

"Does NOT use Unicode for file/directory names");

return 0;

Figure 7-7 is the output from LFN, under real-mode DOS 7 and then

in our minimal VMM32 setup. The “Uses Unicode” message is correct:

Windows 95 stores file and directory names using two-byte characters.

C : \ UNAUTHW) 1 fn

C: -- No long filename (LFN) support
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C : \VMM32>runvmm32 \command . com

C : \VMM32>1 fn

C:\ -- Long filename (LFN) support

Fi 1 e system name : " FAT"

MaxFilename: 255

MaxPath: 260

Searches are NOT case sensitive

Preserves case in directory entries

Supports DOS long filename functions

Volume is compressed

Uses Unicode characters in file and directory names

C:\VMM32>ren lfn.exe "Long Filename Test Program.exe

C:\VMM32>"Long Filename Test Program"

m -- Long filename (LFN) support

File system name: "FAT"

MaxFilename: 255

MaxPath: 260

Searches are NOT case sensitive

Preserves case in directory entries

Supports DOS long filename functions

Volume is compressed

Uses Unicode characters in file and directory names

Figure 7-7: LFN reports that the maximum filename length is 255 characters, and that

the maximum total path length is 260 characters.

Probably the most interesting thing in Figure 7-7 is its use of a long

filename for an executable. It seemed appropriate that LFN.EXE should

have a long filename, so I gave it the name “Long Filename Test Pro-

gram.exe”. This could be successfully launched from the VMM32 DOS
prompt. However, there was one small problem (this is beta software,

after all). Notice in Figure 7-7 that, when the program was executed

using its long filename, the program received a command-line argument

consisting of the final character of the long executable name.

Long filenames are a great addition to DOS, Windows, or whatever

you want to call it. They are provided not by some amorphous mass

called Windows 95, but specifically by the IFSMgr VxD in Windows. A
version of IFSMgr without LFN support also existed in WfW 3 . 1 1 . It

seems clear that, from a purely technical standpoint, WfW 3.11 could

have provided LFN support too. In one way LFN support is an enor-

mous change, but in other ways it’s just a logical use of the VxD capabili-

ties that have resided in Windows for years.
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The Dhispace VxD saga

I noted a few moments ago that on machines running DblSpace or some

other disk-compression software such as Stacker, 32BFA requires RMM
to make the 16-bit real-mode compression software appear as though it

were a 3 2 -bit protected-mode disk driver.

Another solution, however, is to put disk compression into a genuine

3 2 -bit protected-mode driver.

The Chicago pre-beta release from late 1993, distributed at Microsoft’s

Professional Developer’s Conference in Anaheim, CA, came with VxDs
for both DblSpace (DBLSPACE. 3 86) and for the Microsoft Real-Time

Compression Interface (MRCI32.386), which is the compression/decom-

pression engine used by DblSpace and by other Microsoft utilities, such

as BACKUP.
Neither DBLSPACE. 3 86 nor MRCI32.386 appeared in the next

major release of Chicago (the May 1994 beta), undoubtedly because in

February 1994, a jury in federal district court in Los Angeles turned in

its verdict in the Stac v. Microsoft case, finding that Microsoft’s DblSpace

infringed two disk-compression patents owned by Stac (US Patent No.

5,016,009, Doug Whiting et ah, “Data Compression Apparatus and

Method,” May 14, 1991; US Patent No. 4,701,745, John Waterworth

(Ferranti pic), “Data Compression System,” October 20, 1987). The jury

awarded Stac $120 million in damages.

Microsoft won a second part of the case, with $13.6 million damages,

in which Microsoft argued that Stac’s reverse engineering and use of the

undocumented preload interface in MS-DOS 6 constituted a trade-

secrets violation (see “LA Law,” Dr. Dobb's Journal, May 1994).

On June 8, 1994, Federal District Judge Edward Rafeedie issued a

permanent injunction that ordered Microsoft (and Vertisoft, whose

DoubleDisk Microsoft licensed to create DblSpace) to “recall, erase or

have destroyed,” worldwide, all copies ofMS-DOS 6.0, MS-DOS 6.2,

Microsoft’s Flash File System, Microsoft’s Windows NT Remote Access

Server, Vertisoft ’s DoubleDisk Gold, and “Any Microsoft product that

contains the DoubleSpace compression technology contained in the com-

mercial version ofMS-DOS 6.” Although not issued until June, an oral

ruling had been issued several weeks earlier. So by the time Microsoft was

ready to ship the May 1994 Chicago beta, it was clear that the judge was

likely to issue an injunction against Microsoft’s disk compression.

A few weeks after the injunction, there was an interesting twist. On
June 21, Microsoft and Stac reached an out-of-court settlement, agreeing
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to drop all damages, payments, and appeals. Microsoft agreed to pay

Stac $1 million per month for 43 months and to buy $39.9 million in Stac

stock (representing about a 15% stake in the company). The two compa-

nies signed a patent cross-licensing agreement, so Microsoft is now free

to use DblSpace, which the jury had found incorporated technology

covered by Stac’s patents. Stac, conversely, is now free to use the undocu-

mented preload interface. Although Microsoft has licensed Stac’s patents,

not its products, there’s always the possibility that future Microsoft

operating systems might borrow something from Stac’s superior disk-

compression technology.

As a sneak preview for 3 2 -bit protected-mode disk-compression soft-

ware, I thought it would be useful to take the DBLSPACE. 3 86 and

MRCI32.386 VxDs from the December pre-beta release and drop them

into the VMM 3 2 setup:

copy \ol dchi c\dbl space . 386 iosubsys

copy \ol dchi c\mrci 32 . 386

After adding the lines:

D E V I C E=C : \VMM32\I0SUBSYS\DBLSPACE . 386

DEVICE=C : \ VMM3 2 \ M RC 1 3 2 . 386

to SYSTEM.INI and restarting VMM3 2, the VXDLIST program shows

that, indeed, the VxDs are loaded:

Name Vers ID DDB Control V86 API PM API #Srvc

MRCI32 3.10 0042h C0FD16D4 C0FD167C 5

DBLSPACE 3.10 C001AC30 C00186D0 0

Now, what effect does this have? Unfortunately, these VxDs don’t

appear to be drop-in replacements for the real-mode DblSpace and MRCI
code. Performance is not greatly improved when these VxDs are loaded,

and the real-mode code doesn’t appear to be bypassed. For instance, by

running the INTCHAIN utility (included on the Unauthorized Windows 95

disk), we can see that both the DblSpace and MRCI Get Version functions

are handled by the real-mode code:

C : \VMM32>i ntchai n 2f /4a 11/0

Tracing INT 2F AX=4A11

109 instructions

1D77 : 0F27 WINICE

1892 : 0EF2 DOSKEY

12EA : 01C8 COMMAND

12E9 : 0154 COMMAND

FFFF : F94F HMA
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0385:0017 DBLSYSHS

0313 : 006C XMSXXXX0

0215:0808 IFS$HLP$

01 F6 : 002D D:

03BC : 41A3 DBLSYSHS

01 F6 : 0028 D:

03BC : 1478 DBLSYSH$

C : \VMM32)i ntchai n 2 f / 4 a 1 2 / 0

/

4d

5

2 / 4349

Tracing INT 2F AX=4A12

74 instructions

1D77 : 0F27 WINICE

1892 : 0EF2 DOSKEY

12EA: 01C8 COMMAND

12E9 : 0154 COMMAND

FFFF: F94F HMA

0385:0017 DBLSYSH$

Among the data returned by the MRCI Get Version function is a

callable far function pointer to the MRCI server. MRCI clients call this

entry point with requests to compress and decompress blocks of in-

memory data. (DblSpace takes care of moving data to and from the disk,

and MRCI does the actual compression/decompression of the data.)

Normally the server entry point will have some address such as

03 8 5:00 IE. However, when MRCI32 is loaded, it changes this to an

odd-looking address such as FBA1:2632. Furthermore, disassembling

this address reveals that it starts off with an illegal instruction, ARPL,
which causes a GP fault if issued from V86 mode. This ATPL instruc-

tion represents a V86 callback. When a DOS program executes the illegal

instruction, this causes a trap into VMM, which can then see where the

fault came from (in this case FBA1:2632) and use that address to locate a

piece ofVxD code intended to handle this fault. VxDs such as MRCI32
allocate these odd V86 callbacks by using (naturally enough) the AJlo-

cate_V86_Call_Back routine supplied by VMM. Here, MRCI32 is obvi-

ously intercepting all calls to the MRCI server.

For its part, the DBFSPACE VxD appears to interact closely with

VCACHE, presumably with the intention of caching compressed rather

than uncompressed file data. This would nearly double the effective size

of the cache.

What all this means is that we’re definitely going to be seeing disk-

compression VxDs in Windows 95, even though the May 1994 beta

couldn’t provide any such support because of the then-impending injunc-

tion against DblSpace and even though the drivers in the December 1993

pre-beta appeared to have fairly limited goals.
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Four steps Toward DOS nirvana

Probably the most significant feature we’ve seen here is the support for

long filenames and directory names in Windows 95. This new DOS
interface, provided by a VxD and implemented in 3 2 -bit protected mode,

shows the next step in the evolution of DOS. This new DOS interface is

available only when running under VxDs; real-mode DOS doesn’t

include code to support long filenames.

How did we reach this point where new DOS interfaces are being

made available only via 3 2 -bit protected mode? Quite gradually. In the

past few chapters, we’ve seen slow but steady movement, all under the

guise of Windows, towards a protected-mode DOS:

• DOSX (like any DPMI server or DOS extender) showed that

protected-mode services can be retrofitted onto DOS.

• WIN386 provided all the basic functionality for a V86 DOS, includ-

ingVMM and VxD services with which more interesting functionality

can be produced.

• 32BFA took advantage ofVMM and VxD services to reimplement file

access, which is the most important part of DOS in 3 2 -bit protected

mode. (We didn’t get into this much, but in Windows 3.1, 3 2 -bit disk

access did the same thing for a key part of the ROM BIOS.)

• VMM 3 2 adds newVMM and VxD services, and creates an entirely

new DOS interface that isn’t available under real-mode DOS.

It seems likely that all future additions to the foundations of DOS and

Windows will be made with VxDs; it’s hard to imagine any substantial

additions to the real-mode DOS code base. Does this mean that “DOS is

dead,” as so many trade publications have announced? Not quite. While

the real-mode DOS code is unlikely to see much, if any, improvement,

the DOS INT 2 lh interface seems alive and kicking. We’ll see in later

chapters that even the newest Win32 application, under the covers,

makes massive use of the INT 2 lh interface.

In other words, DOS isn’t dead, nor does it need to die. As our experi-

ments with WIN386 and VMM32 have shown, DOS has basically turned

into a 3 2 -bit protected-mode operating system, organized around a VMM
and consisting ofVxDs. In the next few chapters we’ll see that these VxDs

continue to call down to the real-mode DOS code quite frequently. How-

ever, we’ll see also that VxDs are on top and that the real-mode DOS code

is playing a subservient role.
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Chapter 8

The Case of the Gradually

IlSAPPEARIHG DOS

M
icrosoft has been claiming — and the computer trade press has been

dutifully repeating — that Windows 95 is a brand-new operating sys-

tem that does not require MS-DOS. But if the truth be known, Windows
95 continues to use real-mode DOS. Frankly, there’s nothing wrong with

Windows 95 ’s employment of DOS; the problem is Microsoft’s unwill-

ingness to admit it.

More important, however, is the fact that although Windows 95

bypasses DOS for most operations, the same thing is true of 3 2 -bit file

access (32BFA) in Windows for Workgroups (WfW) 3.11. In fact, WfW
bypasses DOS to a greater extent than Windows 95 does. As we’ll see, this

is a flaw in WfW.
Perhaps most important, though, is that Windows 95 ’s ability to bypass

real-mode code has been part of Windows 3.x Enhanced mode from its

very beginnings in 1990. Indeed, this ability goes back further still, to

Windows/386 2 .v, which Microsoft introduced in 1988.

With Windows 95, then, Microsoft is doing nothing more (or less)

than making particularly extensive use ofwhat is by now a nearly ancient

Windows feature: the capability to take services normally handled in 16-

bit real mode by DOS, device drivers, TSRs, or the BIOS and instead

handle them in 3 2 -bit protected mode. The fact is, even Windows 3.x

Enhanced mode was a genuine 3 2 -bit protected-mode operating system:

• When Windows Enhanced mode is running, MS-DOS is no longer

the operating system. DOS is only an assistant to Windows. This is

true in Windows 3.x; it hasn’t changed in Windows 95.
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• The operating system is actually the Windows Virtual Machine Man-

ager (VMM), assisted by the Windows Virtual Device Drivers (VxDs).

This has been true since the introduction of Windows 3.0 in 1990.

• Under Windows, INT 2 lh— and in fact all interrupts — are serviced

first (and sometimes, only) in 3 2 -bit protected mode. For example,

there isn’t much sense in calling _dos_getvect (0x21) to see where

INT 2 1 h is handled. Before (and sometimes instead of) routing inter-

rupts through the low-memory Interrupt Vector Table (IVT), Win-

dows first (and sometimes only) uses an entirely different 80x86 data

structure, the protected-mode Interrupt Descriptor Table (IDT).

• INT 2 lh calls aren’t necessarily serviced by DOS. DOS gets to service

INT 2 lh only if Windows lets it. More and more, as we’ll see, Win-

dows doesn't let it: Since 1990, real-mode DOS has been slowly but

surely disappearing.

The TEST21 and TEST2F16 programs in this chapter provide con-

vincing proof for these outrageous-sounding claims. These programs

show that DOS calls don’t necessarily go to DOS but are instead some-

times handled within Windows. They also show that this gradual replace-

ment of real-mode DOS by Windows has been going on right under our

noses for at least five years, since the introduction of Enhanced mode in

Windows 3.0. And finally, these programs show that this process has not

been completed even in Windows 95, and has actually taken a small but

necessary step backward from WfW 3.11.

In other words, Windows 95 is the “new” protected-mode operating

system we’ve had all along.

Bypassing DOS

TEST21.C, shown in Listing 8-1, is a real-mode DOS program that

installs an INT 2 lh handler and then issues some INT 2 lh calls. The
INT 2 lh handler should see the program’s own INT 2 lh calls. Even if

some memory-resident DOS program (TSR) hooks INT 2 1 h, TEST21’s

own INT 2 lh handler will have been installed more recently and should

see the program’s own INT 2 lh calls first. But, as you’ll see in a minute,

TEST21’s behavior is sometimes not what you’d expect. And, although

TEST2 1 is a boring-looking DOS program, you’ll see that it can reveal

quite a bit about the workings of the newest versions of Windows.
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Listing 8-1: TEST21.C

/*

TEST21.C -- See if INT 21 h calls are reflected to V86 mode
Andrew Schulman, 1994

bcc -2 -P- test21.c

bcc -2 -P- -DTESTFI LE="test" test21.c

test21

tes t21 -mysetvect

tes t2 1 > tmp.tmp
*/

//i ncl tide <s td 1 i b . h

>

//include <stdio.h>

//include <string.h>

//include <time.h>

//include <dos.h>

//i ncl ude <fcnt 1 . h>

typedef unsigned short WORD;

typedef unsigned long DWORD;

//pragma pack ( 1

)

typedef struct {

//ifdef TURBOC

WORD bp,di ,si , ds , es , dx , cx , bx , ax

;

//el se

WORD es,ds,di ,si , bp , sp , bx , dx , cx , ax ;
/* same as PUSHA */

//endi f

WORD ip.cs, flags;

} REG_PARAMS

;

static void interrupt far i nt2 1 ( REG_PARAMS r);

static void interrupt far Ctrl _c ( REG_PARAMS r);

static void interrupt far cri t_err ( REG_PARAMS r);

static int failed = 0;

typedef void (interrupt far *INTPR0C)();

static INTPROC old_21 = (INTPROC) 0;

static void (*setv ) ( unsi gned intno, INTPROC proc) = „dos_setvect;

static INTPROC (*getv ) ( unsi gned intno) = _dos_getvect;

static DWORD total _ca 1 1 ed = 0;

static DWORD cal 1 ed [ 0x1 00 ]
= {01;

static DWORD total_recei ved = 0;

static DWORD recei ved[0xl00] = {0};

void fail (const char *s) {
puts(s); exit(l); }

void my_setvect(unsigned intno, INTPROC proc)

INTPROC far *ivt = (INTPROC far *) 0L;
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i vt [ i ntno] = proc;

}

INTPROC my_getvect(unsi gned intno)

{

INTPROC far *ivt = (INTPROC far *) 0L;

return i vt [ i ntno]

;

m a i n ( i n t argc, char *argv[])

{

char ^filename = a rgv [0]

;

time_t tl, t 2

;

WORD num_iter = 100;

WORD i;

use_my_setvect = 0;

recei ved_l ess = 0, recei ved_more = 0;

(i=l; i<argc; i++)

if (argv[i ][0] ==
||

a rgv [ i ] [0] == 7')

{

char *s = strupr(&argv[i ][1] )

;

if ( ( strncmp( s , "MYSETVECT" , 2)) == 0)

{

use_my_setvect++;

setv = my_setvect;

getv = my_getvect;

pri ntf
(

"Usi ng my_setvect\n" )

;

}

el se

fail ("usage: tes t2 1 [-mysetvect] [ n um_i ter] [filename]")

}

el se i f (atoi ( a r g v [ i ] )

)

num_iter = atoi (argv[i ])

;

el se

fi 1 ename = a r g v [ i ]

;

time ( &tl )

;

/* hook INT INT 21 h , and prepare to restore upon Ctrl - C ,
Crit Err */

old_21 = (*getv) (0x21 )

;

(*setv)(0x23, Ctrl _c )

;

(*setv ) (0x24 , crit_err);

(*setv) (0x21 , i n 1 2 1 )

;

/* issue INT 2 1 h calls */

for (
i =0 ; i<num_iter; i++)

{

#i fdef TESTFILE

^include TESTFILE

#el se

unsigned n;

char buf;

int f;

i nt

i nt

for

// we don't care if these calls succeed or fail
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_dos_open(fi 1 ename, 0_RDWR, &f); cal 1 ed[0x3d]++; // or 0x6c

_dos_read(f, &buf, 1, &n); cal 1 ed[0x3f ]++;

_dos_cl ose(f ) ; cal 1 ed[0x3e]++ :

_dos_open(filename, 0_RDWR , &f); called [ 0x3d ]++ ; // or 0x6c

_dos_write(f , &buf, 1, &n ) ; cal 1 ed[0x40]++;

buf = '
.

'

;

^define STDOUT 1

_dos_write(STDOUT, &buf, 1, &n); called [ 0x40 ]++

;

_dos_cl ose( f ) ;
cal 1 ed[0x3e]++;

total _ca 1 led += 7

;

#endi

f

if (failed)

{

( *setv ) ( 0x21 , o 1 d_2 1 )

;

fail
(

"\nCri tical error!");

1

// See if anyone is playing the old SideKick trick

if (my_getvect(0x21 )
!= i n 1 2 1

)

fai 1

(

"\nSomeone grabbed my INT 21h
!

" )

;

/* unhook INT 2 1 h : don't forget to include this call too

(unless if using my_setvect rather than _dos_setvect ) !
*/

(*setv) (0x21 , old_21);

if (! use_my_setvect) { cal 1 ed[0x25]++; total _ca 1 1 ed++ ; }

// INT 23 h and 24h automatically restored on exit

t i me ( &t2 )

;

/* display results */

printf
(

"\nXl u seconds el apsed\n\n" , t2 - 1 1 )

;

pri ntf( "Generated %lu cal 1 s\tRecei ved %lu ca 1 1 s \n "

,

total _ca lied, total_recei ved )

;

for (
i =0 ; i <0x100; i++)

if (call ed[i
] ||

recei ved[i ]

)

{

pri ntf
(

" 21/%02X\t%l u cal 1 ed\t%l u recei ved\t\t"

,

i , cal 1 ed[i ] ,
recei ved [ i ] )

;

if ( recei ved[i ] < call ed[i ]

)

{

recei ved_l ess++; p r i n t f
( " -

" )

;

}

else if ( recei ved[i ] > cal 1 ed[i ]

)

{

recei ved_more++; pri ntf
( "+"

)

;

1

pri ntf
(

"\n" )

;

1

pri ntf
(

"\n" )

;

if ( recei ved_l ess

)

printfC'Some INT 21 h are handled without calling DOS ! \ n " )

;

if (recei ved_more)

printfC'Some extra INT 2 1 h calls are occurri ng ! \n" )

;

if (! ( recei ved_l ess ||
recei ved_more)

)
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printfCINT 21 h appears to be handled in the normal way\n");

return 0;

void interrupt far i nt21 ( REG_PARAMS r)

{

total_recei ved++;

recei ved[r . ax >> 8]++;

_chai n_i n t r ( o 1 d_21 )

;

void interrupt far ctrl_c( REG_PARAMS r)

{

(*setv) (0x21 , ol d_21 )

;

fail
(

"Ctrl -C detected
!

" )

;

}

\

void interrupt far cri t_err ( REG_PARAMS r)

{

fai 1 ed++;

r.ax = 3; // fail the operation

1

The code for TEST2 1 is fairly straightforward. The main function

calls the _dos_setvect C library function (or, if -MYSETVECT is speci-

fied on the command line, the my_setvect function discussed later in this

chapter) to install a handler for INT 2 lh. This handler, at the very bot-

tom ofTEST2 l.C, has the highly original name of int2 1. Each time

int2 1 is called, it uses the incoming DOS function number in AH to

index into an array of counters. After incrementing the appropriate

counter, int2 1 uses the _chain_intr function to pass the interrupt to the

previously installed handler, whose address was retrieved earlier when

TEST2 1 called _dos_getvect or my_getvect.

After installing the int2 1 handler (and hooking Ctrl-C and Critical

Error to unhook INT 2 lh if the program terminates unexpectedly),

TEST2 1 then runs a loop issuing some DOS calls. Notice the #ifdef

TESTFILE. Later, we’ll define TESTFILE on the compiler command
line so we can use TEST2 1 as a generic test rig. By default, however,

each time through the loop TEST2 1 opens a file, reads a byte, closes the

fde, opens the file again, writes a byte, writes . (a period) to stdout (which

can be redirected to a disk file with a command such as TEST2 1 >

FOO.BAR), and closes the file. For each DOS call, TEST21 increments

a counter.

Ifyou don’t specify a different filename on the command line, the file

that TEST2 1 reads each time through the loop happens to be the pro-

gram itself, that is, TEST2 l.EXE. (TEST2 1 learns its own filename from
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the C expression argv[0].) At least for an initial test, we don’t care what

TEST2 1 reads or even if it succeeds— we just want to generate some

IN I 2 lh calls and see them show up at TEST2 1 ’s own INT 2 lh handler.

After the DOS-call loop is complete, TEST2 1 unhooks its int2 1 han-

dler by restoring the previous handler and then displays the test results.

For each possible INT 2 lh function number 0 through FFh, TEST2

1

sees how many calls to that function were issued and how many calls its

INT 2 lh handler received. Obviously, these two numbers should match.

When TEST2 1 is running under plain-vanilla DOS, the numbers do

match. Given how the program is structured, this is hardly surprising.

Figure 8-1 shows the rather boring results.

C : \UNAUTHW>test21

21 seconds elapsed

Generated 701 calls Received 701 calls

21/25 1 called 1 received

21/3D 200 called 200 received

21/3E 200 called 200 received

21/3F 100 called 100 received

21/40 200 called 200 received

INT 2 1

h

appears to be handled in the normal way

Figure 8-1: When TEST21 runs under a plain-vanilla DOS configuration, DOS receives all

the INT 21h calls made by the program.

Aside from the “INT 2 lh appears to be handled in the normal way”

message, indicating that— of course — DOS INT 2 lh handlers handle

INT 2 lh calls, the only marginally interesting item in Figure 8-1 is the

“2 1 seconds elapsed” output.

The time will differ from one configuration to the next. Ifyou

redirect TEST2 1 ’s output to a file, the time goes up quite a bit (in the

configuration I used here, to 29 seconds), because DOS must write each

period to a file on disk rather than to the screen.

If you run TEST2 1 under a disk cache such as Microsoft’s SmartDrv,

the elapsed time drops radically (not surprising given that TEST2 1 does

unbuffered reads and writes of only one byte at a time). In this same con-

figuration, running TEST2 1 under SmartDrv cut the time to about 4

seconds, (or 5 seconds when redirecting TEST2 1’s output to a disk file).

The test in Figure 8-1 was run on a compressed DoubleSpace drive. If

run instead on a non-DoubleSpace drive without a disk cache, the elapsed

time again drops dramatically, as shown in Table 8-1.
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Table 8-1: Elapsed time (in seconds) for TEST21

DblSoace drive Host fnon-DblSoace) drive

TEST21

No cache 21 7

Cache 4 < 1

TEST21 > FOO.BAR

No cache 29 10

Cache 5 1

Now let’s take TEST2 1 and run it in a DOS box under WfW 3.11,

with 3 2 -bit file access (32BFA) enabled. To enable 32BFA, Microsoft

makes you tunnel through a series of several dialog boxes: run Control

Panel, select the 386 Enhanced icon, select Virtual Memory (yes, Virtual

Memory, even though it’s unclear what this has to do with 3 2 -bit file

access, as opposed to disk access), select Change, and then check the

Use 3 2 -Bit File Access box. You must restart Windows for 32BFA to

take effect.

Figure 8-2 shows the results from running TEST2 1 under 32BFA.

These results are quite surprising, especially since we only checked one

box buried in an obscure Control Panel dialog box.

C : \UNAUTHW>test21

0 seconds elapsed

Generated 701 calls

21/25 1 called

21/3D 200 called

21/3E 200 called

21/3F 100 called

21/40 200 called

Received 101 calls

1 received

0 received

0 received

0 received

100 received

Some INT 2 1 h are handled without calling DOS!

Figure 8-2: When TEST21 runs under WfW 3.11 with 32BFA enabled, most of the

INT 21h calls generated by the program bypass DOS.

First, note that TEST2 1 took less than one second to run. I didn’t have

SmartDrv (or any other disk cache) loaded here. If I had, the results would

have been the same anyway, because 32BFA supplies its own built-in,

dynamically sized file cache (the VCACHE VxD). On a DblSpace drive,

TEST2 1 runs faster with 32BFA but without SmartDrv than it does with

SmartDrv but without 32BFA. (Yes, I know that’s a mouthful. See the

“32BFA versus disk cache performance” sidebar later in this chapter.)
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Second, notice the “Some INT 21h are handled without calling

DOS!” message. Even if you assumed that 32BFA means that Windows
somehow “bypasses” DOS (whatever that means), these results are still

pretty amazing: TEST2 1’s INT 2 Ih handler doesn’t see most of the pro-

gram’s own INT 2 lh file I/O calls!

One important note: If you’ve run TEST2 1 from a floppy disk, your

results will look like Figure 8-1 rather than Figure 8-2. This indicates

that WfW 3.11 does not provide 32BFA for floppies. We’ll see later that

this has been corrected in Windows 95.

The minus sign (-) indicates that TEST2 1 saw fewer calls than it

expected from a given DOS function. TEST2
1
puts up a plus sign (+) if

it sees more INT 2 lh calls than it expected, which, believe it or not, can

also happen.

TEST2 1 did see its own call to INT 2 lh function 25h (Set Interrupt

Vector), which unhooked the INT 2 lh handler. But while TEST21
issued 200 calls to INT 2 lh function 3Dh (File Open), its INT 2 lh han-

dler saw zero calls to that function. Ditto for function 3Eh (File Close)

and function 3Fh (File Read).

TEST21 issued 200 calls to function 40h (File Write), but it saw only

100 calls to that function. Ifyou redirect TEST2 1’s output to a file (for

example, TEST21 > FOO.BAR), TEST21 no longer sees any calls to

function 40h either. Empirically, 32BFA must send function 40h writes to

the screen down the INT 2 lh chain, but it must intercept and block

writes to disk files.

But given that the int2 1 function in Listing 8-1 is the most recently

installed INT 2 lh handler, this interception ofINT 2 lh calls seems

impossible. In Listing 8-1 there is practically nothing coming between

the call to _dos_setvect (or my_setvect) and the call to dos_open. How
could someone have slipped another INT 2 1 h handler in there ahead of

TEST2 1?! Furthermore, ifTEST2 1 isn’t going to see this INT 2 lh call,

how is DOS (which is installed much earlier in the INT 2 lh chain) ever

going to see it?

The answer to the second question is that DOS isn't going to see these

INT 2 lh calls. Using the V86TEST program from Chapter 10, I’ve con-

firmed that the INT 2 lh calls issued by TEST2 1, when running under

WfW 3.11 with 32BFA, really and truly are not sent down to any soft-

ware that is loaded before Windows, including DOS itself. While

TEST21 was running, V86TEST saw the following INT 2 lh calls:

INT 2 1 h calls:

02: 8 08: 7 0B: 2433 19: 2 1A: 11 25: 10 29: 4
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2A: 3 2C : 3 30: 1 35: 5 38: 1 3E: 15 40: 121 44: 2

48: 2 49: 1 4A: 1 4B: 1 4C: 1 4D: 1 5D: 2 71: 2

Without getting into the other INT 2 lh calls seen by V86TEST, we

can see that this matches pretty well with what TEST2 1 itself shows: No
calls to function 3Fh were detected, but over 100 calls to function 40h

were. IfTEST2 1’s output is redirected to a file, the V86TEST log of

function 40h calls also drops, just as you’d expect:

02: 18 08: 13 0B

:

2915 19: 3 1A: 11 25: 10 29: 4

2A

:

3 2C

:

3 30: 1 35: 5 38: 1 3E

:

15 40: 3 44: 1

48: 2 49: 1 4A

:

1 4B : 1 4C

:

1 4D

:

1 5D

:

2 71: 3

So 32BFA somehow does keep most file I/O DOS calls away from

DOS and, in WfW, away from even the most recently installed INT 2 lh

hooker in a DOS box. Well, this is pretty much what Microsoft says

32BFA does, so it shouldn’t come as much of a surprise.

But consider the mechanism involved: TEST21 has hooked INT 2 lh

just before issuing these INT 2 lh calls. Yet Windows has somehow grabbed

INT 2 lh away from TEST2 1 . You might think that perhaps Windows is

playing the same trick for which SideKick was notorious in the bad old

days of DOS TSRs: SideKick would hook the timer interrupt and ensure

upon each timer tick that its other interrupt handlers were still in place.

However, TEST2 1 checks for this possibility by verifying each time

through its DOS-call loop that my_getvect(0x2 1) = int2 1. The only

time I’ve seen TEST2 1 display its “Someone grabbed my INT 2 lh!”

message was while running within an EMACS process buffer in the

Epsilon text editor.

Clearly, 32BFA does not hook INT 2 lh in any simple-minded way.

Indeed, Microsoft’s excellent WfW 3.11 Resource Kit (pp. 1-20) notes

that 32BFA works “by intercepting the MS-DOS Int 21H services in

protected mode.” TEST21 shows that this is true: 32BFA is somehow
intercepting (as opposed to merely hooking) INT 2 lh.

I keep saying “somehow.” You might be wondering, How does Win-

dows intercept INT 2 lh? I’m going to explain this in more detail in the

“Interrupts 101: The IDT versus the IVT” section at the end of this

chapter, but the basic idea is that Windows uses the protected-mode

Interrupt Descriptor Table (IDT) to intercept interrupts coming from

real-mode programs running in V86 mode. As the IDTMAP program on

the Unauthorized Windows 95 disk helps show, these interrupts go to the

Windows VMM and to other VxDs.

This is true not only of INT 2 lh but of all interrupts coming from

V86 mode. Nor is this just a feature of 32BFA. Windows in 386
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Enhanced mode has always intercepted all interrupts coming from V86
mode, because that is how V86 mode works. All V86 environments

behave the same way: When a DOS user is running a 386 memory man-
ager such as EMM386, QEMM, 386MAX, or NetRoom, interrupts are

handled first in protected mode, before DOS or any DOS TSRs or device

drivers ever see them.

Yet, if you run TEST2 1 with a 386 memory manager but without

32BFA, TEST2 1 claims that
UINT 2 lh appears to be handled in the nor-

mal way.” If 386 memory managers behave essentially the same as 32BFA,

why doesn’t TEST2 1 reveal this?

The answer is simple: When a 386 memory manager (or Windows
Enhanced mode without 32BFA) intercepts an INT from V86 mode, it

sends (or reflects) this call back down to V86 mode. What makes 32BFA
different is that it often doesn’t bother to do this: It handles many INT
2 lh calls entirely in protected mode, without reflecting the call down to

V86 mode. The calls that TEST2 1 does see when running under Win-
dows are simply those thatVMM or other VxDs have chosen to reflect.

In the case of 32BFA, the key VxD is the Installable File System Manager,

IFSMgr. Later in this chapter, we’ll examine some of the IFSMgr code

that produces the behavior we’re seeing with TEST2 1

.

The important point is that in 386 Enhanced mode, V86 interrupts

under Windows have always passed through the IDT. In Enhanced mode,

the DOS Get Interrupt Vector function (_dos_getvect, INT 2 lh function

35h) has never correctly determined who will first see an interrupt; VMM
and other VxDs have always seen the interrupt first. Figure 8-3 shows that

they have complete discretion over how to handle the interrupt. They

might very well decide not to pass the interrupt down to real-mode pro-

grams. Back in Figure 8-2, for example, they did pass down the _dos_

setvect (function 25h) call and the _dos_write (function 40h) calls involv-

ing stdout, but they didn’t pass down any I/O calls involving disk files.

Putting it in the strongest terms, what Figure 8-2 shows is that Win-

dows is the operating system and DOS is a subservient subsystem that

Windows can use to handle whatever calls it doesn’t feel like bothering

with. And although the TEST2 1 results are admittedly unusual, this

behavior is implicit both in Intel’s documentation for V86 mode and in

Microsoft’s documentation for VxDs. In particular, see the Windows

Device Driver Kit (DDK) documentation for the Hook_V86_Int_Chain

service.

Like Mr. Jourdain in Moliere’s play Le Bourgeois gentilhomme, who one

day is delighted to discover that he’s been speaking prose all his life, it has

taken 32BFA to make us realize that we’ve had a 3 2 -bit protected-mode
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operating system, called the Windows VMM, sitting right in front of us

all along. 32BFA makes it impossible to continue ignoring this “new” old

operating system.

File/Disk

VxDs
(VFAT, IOS

,

etc.)

Figure 8-3: Depending on the function, a software interrupt can take several paths. If 32-

BFA handles the call in protected mode, it follows the path from the program calling INT

21h to the protected mode IDT, VMM, ISFMgr, and back to the program. If the call is

reflected to DOS, however, the path continues through the VxD chain to the real-mode IVT,

then down the DOS interrupt chain. The real-mode IFSFILP driver can send the call back to

IFSMgr. Once inside MS-DOS, if there’s another interrupt, the path repeats recursively.

All the same, it can be surprising to discover how few people have

checked the appropriate box in the Control Panel to enable 32BFA. And
as we’ll see later, 32BFA can cause such problems. But even with these

problems, when you consider the PC industry’s complaints about MS-
DOS and how much it’s supposedly holding back Windows, it is odd that

most power users and developers tend to ignore what is essentially a 32-

bit protected-mode version of DOS.
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32BFA versus disk

cache periurmance

It’s not clear why more users and developers didn’t jump up and down
about 32BFA in WfW 3.11. Certainly 32BFA has some problems. The
biggest one is that if Windows crashes, you lose all the data in 32BFA’s

file cache. But that’s the same risk taken by anyone using a write-behind

disk cache. (In fact, 32BFA can be safer than SmartDrv, because there’s

no write-behind cache in WfW 3.11.)

Another possible explanation is that the performance benefits of 32BFA
are somewhat confusing. A Byte (February 1994) review of WfW 3.11 by

Jon Udell noted the following performance characteristics of 32BFA:

The results can be impressive. An Advanced Logic Research Flyer 32LCT
4DX2/66 with an IDE controller more than doubled its sequential file I/O through-

put using the VFAT/VCACHE combo
,
while bettering its random file I/O throughput

by about a third. But,
on an Everex Step 486DX2/50 with an Adaptec AHA-1 742

controller and an IBM PS/2 Model 90 XP 486 with an IBM SCSI-2 controller, the

story was quite different. Here, random file I/O throughput improved by 73 percent

and 83 percent, respectively. These marks were close to (for the Everex) or better

than (for the PS/2) those posted by Windows NT on the same two machines. But

in both cases, 32-bit file access hurt sequential file I/O performance. The PS/2
lost a fifth of its 16-bit throughput; the Everex lost a fourth. This degradation made
application load times noticeably slower on the two SCSI machines.

How does 32BFA differ from a disk cache? I’ve received reports saying

things like “Surprisingly, with a reasonably sized SmartDrv cache (which is

otherwise disabled by default by WFW), 16-bit mode is faster for most oper-

ations.” In my admittedly limited testing with SmartDrv 5.0 on about half a

dozen machines, TEST21 doesn’t confirm these reports. For example, in a

DOS box under WfW 3.11, on both a compressed DbISpace drive and its

non-DbISpace host drive, I ran TEST21 3000 > FOO.BAR on a 436SL with

an IDE hard-disk controller and collected the following results:

Configuration Host drive* DblSnace drive*

32BFA, no SmartDrv 5 8

SmartDrv, no 32BFA 15 171

No 32BFA, no SmartDrv 251 800

* Elapsed time in seconds

In addition to SmartDrv, I also tried Helix Software’s protected-mode

CacheClk. Although it was certainly faster than SmartDrv, it too did not

even approach the 32BFA times. In this test, 32BFA is a clear winner over

a disk cache, not to mention over raw DOS, on both DbISpace drives and

non-DbISpace drives.
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Of course, TEST21 is somewhat contrived. 1 also tried a more realistic

example using grep to search for a non-present string (“foobish”) in 3210K
of data from Ralf Brown’s interrupt list (\UNDOCDOS\INTRLIST\INTER-

RUP.*). 1 performed the search twice so that a cache would optimize the

second search if the data were already in memory. In the results listed

here, 1 and 2 indicate the first and second searches. 1 performed the

searches both on a compressed DbISpace drive and on its non-DbISpace

host drive.

Configuration Host drive* DblSnace drive*

(A) Real-mode DOS, no cache

Search 1 15.4 16.9

Search 2 15.4 16.8

(B) 32BFA, no disk cache

Search 1 12.6 17.5

Search 2 10.1 10.4

(C) CACHECLK 3400

Search 1 16.0 16.7

Search 2 10.1 13.0

(D) CACHECLK 3287

Search 1 16.1 16.9

Search 2 16.0 13.0

(E) CACHECLK 1800

Search 1 16.1 16.8

Search 2 16.1 13.0

(F) CACHECLK 1750

Search 1 16.1 16.8

Search 2 16.0 16.8

* Elapsed time in seconds.

These results give a better picture of one 32BFA benefit: It dynamically

resizes its file cache, based on available memory and the user’s needs. In

test B, 32BFA was able to optimize search 2 on both the DbISpace and

non-DbISpace drives without any end-user fine-tuning of the cache size.

Notice also that, whereas search 1 took a good deal longer on the DbI-

Space drive, in search 2 32BFA largely erased the usual performance hit

from DbISpace: The data came out of the 32BFA file cache, so DbISpace

basically dropped out of the picture. At the same time, also note that

32BFA made search 1 take slightly longer on the DbISpace drive.

In test C, I used Helix Software’s CACHECLK with CACHESIZE=3400.
Since DIR reported 3210K of data, it isn’t surprising that the disk cache

could optimize search 2 on both the DbISpace and non-DbISpace drives.

Note that CACHECLK turned in the same time as 32BFA for search 2 on

the non-DbISpace drive. On the other hand, 32BFA appears to solidly out-

perform disk caches (even a good one like CACHECLK) on DbISpace drives.
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Next, in test D, since DIR reported 3,287,421 bytes of data, I naively

set CACHESIZE=3287. As you can see, for the non-DbISpace drive this

cache size was too small: search 2 took as long as search 1. This points to

a major benefit of 32BFA over disk caches: Whereas a disk cache will be
worthless if its size is even slightly smaller than the user’s file I/O "working

set,” 32BFA adapts itself to the user’s file I/O patterns.

But why, with an apparently insufficient cache size for the non-DbISpace
drive in test D, was CACHECLK still able to shave 3.7 seconds off search 2
on the DbISpace drive? Because CACHECLK was caching the compressed
data, which fit into the same 3287K cache in which the noncompressed
data wouldn’t go.

Test C showed that CACHESIZE=3400 was sufficient for the noncom-
pressed data, and DIR /CH reported a 2.0:1.0 compression ratio. Nonethe-

less, when I tried CACHESIZE=1700, it was too small to have any effect on
search 2. Tests E and F reflect a binary search that I did to find the proper

cache size for the compressed data; it turned out that CACHESIZE=1750
was too small and that CACHESIZE=1800 was sufficient. By playing around

with cache sizes in this way, you can see that the true compression ratio

must be about 1.8: 1.0 (3400/1800).

Anyway, the point is that 32BFA seems to eliminate the need to manu-
ally fine-tune cache sizes. Besides, 32BFA provides nonperformance bene-

fits. For example, long filename (LFN) support in Windows 95 is really a

by-product of IFSMgr’s capability to bypass the old DOS file system code.

At the same time, 32BFA’s performance resembles the performance of

a fancy cache. The cache aspect of 32BFA is managed by a VxD called

VCACHE. Although VCACHE (like all the other 32BFA components, including

IFSMgr and VFAT) is undocumented in WfW 3.11, both IFSMgr and VCACHE
are supposed to be documented in Microsoft’s Device Driver Kit (DDK) for

Windows 95. This might provide some interesting opportunities for third-

party developers to improve on VCACHE, in the same way that they

improved on SmartDrv.

Gelling and setting me current orlue

As an alternative to the open/read/close/open/write/close sequence

of INT 2 1 h calls we’ve been using, TEST21’s DOS-call loop can

instead include a file designated on the compiler’s command line with

-DTESTFILE =“filename” (see Listing 8-1). This allows TEST21 to be

used as a rig for other INT 2 lh tests.

As just one example, which we’ll examine in considerable detail, the

little test in Listing 8-2 is a standard piece ofDOS code to get the

LASTDRJVE= setting. It does this by calling INT 2 lh function 19h
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to get the current drive and by passing this value to function OEh (Set

Current Drive), which also happens to return the value of LASTDRIVE
(see Undocumented DOS

,
2d ed., pp. 68-69).

Listing 8-2: TEST_1

/* T E ST_ 1 for TEST 2 1 . C

:

21/19 (Get Current Drive) and 21/0E (Set Current Drive) */

_asm mov ah. 1 9

h

_asm int 21

h

_asm mov dl , al

_asm mov ah, 0 Eh

_asm int 21

h

/* LASTDRIVE now in AL */

call ed[0xl9]++;

cal 1 ed[0x0e]++;

total _ca 1 led += 2

;

If you recompile TEST21 with -DTESTFILE=“test_l” and run the

new TEST2 1 under 32BFA, you don’t get the “Some INT 2 lh are han-

dled without calling DOS!” message. Windows doesn’t bypass DOS for

these Get/Set current-drive calls. Yet the results are distinctly odd, as you

can see in Figure 8-4.

Generated 201 calls

21/0E 100 called

21/19 100 called

21/25 1 called

Received 301 calls

100 received

200 received +

1 received

Some extra INT 21 h calls are occurring!

Figure 8-4: In this example from WfW 3.11 with 32BFA, DOS has received more calls

than TEST21 generated.

Someone, somehow, is generating extra calls to function 19h. But

who? How? Why? This provides us with a good excuse to sneak a peak at

the code in the Installable File System Manager VxD, IFSMgr. We’ll see

that even when Windows does let DOS do its thing, it keeps DOS on a

short leash.

During its device initialization, IFSMgr uses VMM services to install

handlers for all INT 2 lh calls that occur in either V86 or protected mode
(PM). Figure 8-5 shows a fragment of the IFSMgr initialization code.

;;; Install V 86 INT 21 h handler

0CFA0 mov eax,21h

0CFA5 mov esi , offset V86_INT21_PR0C
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0CFAA VMMcall Hook_v86_Int_Chai

n

;;; Get previous PM INT 21 h handler

0CFB0 mov eax,21h

0CFB5 VMMcall Get_PM_Int_Vector

0CFBB mov dword ptr PREV_INT21_PM_VECT_SEG,ecx

0CFC1 mov dword ptr PREV_INT21_PM_VECT_0FS,edx

;;; Install new PM INT 21 h handler

0CFC7 mov esi, offset PM_I NT2 1_P ROC

0CFCC VMMcall A1 1 ocate_PM_Cal l_Back

0CFD2 movzx edx.ax

0CFD5 mov ecx.eax

0CFD7 shr ecx,10h

0CFDA mov eax,21h

0CFDF VMMcall Set_PM_Int_Vector

Figure 8-5: IFSMgr code for installing V86 and protected mode INT 21h handlers.

The V86_INT2 l_PROC and PM_INT2 l_PROC routines in IFS-

Mgr are nearly identical. Simplifying slightly, the IFSMgr V86 and PM
INT 2 lh handlers take the DOS function number from the caller’s AH
register (which is available to VxDs inside a Client Register Structure

pointed to by the EBP register) and, as shown in Figure 8-6, use it to

index into a table of IFSMgr handlers that provide preliminary handling

of the INT 2 lh functions.

01947 movzx ecx.byte ptr [ebp.Cl ient_AH]

01950 cmp cl , 6Dh ; ; in Wi ndows 95

,

7 2 h functions

01953 j a e short elsewhere

01955 call dword ptr INT21_TAB[ecx*4] ; ; ; tabl e @ I FSMg r+1 7 00

h

0195C jnc short elsewhere2

0195E retn

el sewhere

:

Figure 8-6: This fragment shows the start of the IFSMgr INT 21h handler.

The table called INT21_TAB in Figure 8-6 is quite important for

understanding how IFSMgr handles INT 2 lh. In one WfW 3.11 config-

uration, this table happened to be at linear address 800A5600h (which is

IFS-Mgr+1700h); I used the PROTTAB program from the Unauthorized

Windows 95 disk to dump this table, filtering out all the default entries.

The resulting output, sorted by address, gives a good initial picture of the

INT 2 lh calls that IFSMgr takes some interest in. In Figure 8-7, I’ve

rearranged the output slightly to point out IFSMgr functions that handle

multiple DOS functions. (For example, the function at IFSMgr+lAFFh
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handles INT 2 1 h functions ICh, 32h, 36h, and 47h, all of which expect a

drive number in the DL register.)

C:\UNAUTHW>prottab 800a5600 6d 4 i n 1 2 1 800a589c I FSMg r=800a 3f 00
|

sort

; Table at 800A5600h

; Filter all out entries = 800A589C h

; I FSMg r

=

=800A3F00

800A58A0 i nt21_004D I FSMg r+1 9A0

800A58D0 i nt21_004B I FSMgr+19D0

800A58E4 i n 1 2 1_005 F I FSMgr+19E4

800A5948 i nt21_005E I FSMgr+lA48

800A5958 i nt21_001

A

I FSMgr+lA58

800A5976 i nt21_000E I FSMg r+1 A7 6

800A59D4 i n 1 2 1_0044 I FSMg r+1 AD4

800A59FB i nt21_001F I FSMg r+1 A F

B

800A59FF i nt21_001C I FSMgr+lAFF 1C 32 36 47

800A5A25 i n 1 2 1_0 04 F I FSMg r+1 B 2 5

800A5A7E i n t 2 1_0045 I FSMg r+1 B7 E 45 46

800A5A8C i nt21_003E I FSMg r+1 B8C 3E-40 42 57 5C

800A5AD1 i nt21_0011 I FSMg r+1 B D

1

11-13 17

800A5B5C i nt21_006C I F SMg r+1 C 5C

800A5B63 i n t 2 1_0039 I FSMg r+1 C 63 39-3D 41 43 4E

800A5D04 i nt21_005D I FSMg r+1 E04

800A5E60 i nt21_000D I FSMgr+1 F60

800A5E80 i nt21_000B I FSMgr+1 F80

Figure 8-7: This IFSMgr INT 21h handler table from WfW 3.11 is a good indication of the

INT 21h calls IFSMgr is interested in.

Figure 8-7 hardly presents a complete picture of IFSMgr’s INT 2 1 h

handling, but it’s a good first approximation of the DOS calls that WfW
3.11 can handle in 3 2 -bit protected mode.

Now, we were wondering why TEST_1 makes 100 calls each to INT
2 1 h functions OEh and 19h and yet receives 100 additional calls to func-

tion 19h. From inspecting Figure 8-7, it seems that IFSMgr doesn’t do

anything special with function 19h; it has a default handler that PROT-
TAB has filtered out. However, there is a handler for function OEh,

located at IFSMgr+lA76h. Figure 8-8 shows what we find when we dis-

assemble the code at that address. *

i 21_000 E proc near ;;; Set Current Drive

01A76 test dword ptr [ebx . CB_VM_Sta tus ] . VMSTAT_PM_EX EC

01A7C jnz short i 2 1 0 e_d one

i 210e_v86:

0 1 A7 E sub eax.eax

01A80 mov esi ,offset32 I21_0E_CALL_WHEN_RET

01A85 VMMcall Cal l_When_VM_Returns

01A8B i 2 1 0e_done

:

01A8B stc ;; carry set -- pass to next handler
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01A8C retn

i 2 1_000 E endp

Figure 8-8: A disassembly of IFSMgr’s !NT 21h function OEh (Set Current Drive) handler.

In the code in Figure 8-8, IFSMgr is checking whether the function

OEh call came from protected mode (for example, from a Windows appli-

cation). If it did (the VMSTAT_PM_EXEC bit is set in the current

virtual machine’s status flags), IFSMgr doesn’t do anything special: it sets

the carry flag, indicating that the call should be passed to the next pro-

tected-mode INT 2 Ih handler. If the function OEh call came from V86
mode, IFSMgr also passes the call along to the next handler— and,

eventually, all the way down to DOS — but first it calls a VMM service,

Call_When_VM_Returns, passing it the address of another function

in IFSMgr.

Call_When_VM_Returns, as its name implies, installs a handler that

VMM calls when the current virtual machine (VM) returns from an

interrupt handler. This service, documented in the DDK, forces an IRET
to return not to the instruction after the INT but to VMM. Even though

TEST2 1 seems to indicate that function OEh “appears to be handled in

the normal way” (TEST2 1 sees all its own calls to function OEh), the

IFSMgr code shows that something odd is nonetheless happening. IFS-

Mgr will intercept function OEh after passing it down to DOS and to

DOS programs such as TEST2 1 . This is known as a post-reflection hook.

This brings up an important point. Although TEST21’s “Some INT
2 lh are handled without calling DOS” message is reliable, the example

of function OEh shows that the “INT 2 lh appears to be handled in nor-

mal way” message means little more than that: To TEST21, INT 2 1h

handling appears normal. DOS is still possibly being subjected to

strange VxD practices like post-reflection hooks. That IFSMgr uses a

post-reflection hook to handle function OEh — that IFSMgr even can

intercept in such a way— is a good indication that the Windows-DOS
relationship is not at all the simple, straightforward “Windows runs on

top of DOS” situation that many users and developers seem to expect.

So what does IFSMgr do when it receives control after DOS has

returned from handling INT 2 lh function OEh? You can see what it does

by examining Figure 8-9, which shows the callback function that IFSMgr

installed with Call_When_VM_Returns.

I 21_0E_CALL_WHEN_RET proc

01A8D Pus h_C 1 i ent_State

near
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01A9C VMMcall Beg i n_Nest_V86_Exec

01AA2 mov byte ptr [ebp.Cl ient_AH] ,19h : ;
Get Current Dri ve

01AA6 mov eax,21h

01AAB VMMcall Exec_Int ; ;
issue INT 21 h AH=19h

01AB1 mov d 1 .byte ptr [ebp.Cl ient_AX] ; : AL = current drive

01AB4 mov ecx.dword ptr D E V I C E_CB_AREA ;
;
per-VM data

01ABA mov byte ptr [ebx+0Ah] [ecx] . d

1

: ; save new current dri ve

01ABE VMMcall End_Nest_Exec

01AC4 Pop_Cl i ent_State

01AD3 retn

121._0E_CALL_WHEN_RET endp

Figure 8-9: IFSMgr’s Call_When_VM_Returns handler for INT 21h function OEh.

We were wondering why TEST_1 receives extra calls to INT 2 lh

function 19h. Well, Figure 8-9 shows exactly why. After a V86 mode
application calls function OEh to set the current drive, and after DOS
handles the call, IFSMgr gets control, issues a function 19h to get the

current drive, and stores this value in a data structure it keeps on a per-

VM basis in the VM Control Block (VMCB; VxDs use the VMM_
Allocate_Device_CB_Area service to allocate memory in the VMCB).

To issue the INT 2 lh function 19h, IFSMgr uses the standard set of

VMM services shown in Figure 8-9: Begin_Nest_V86_Exec, Exec_Int,

and so on. The phrases I’ve been using in this chapter such as “Windows

calls down to DOS” and “Windows reflects the interrupt to V86 mode”

are really just nebulous-sounding descriptions for this sequence of calls

involving Begin_Nest_V86_Exec and Exec_Int.

In fact, when running under Windows Enhanced mode with or with-

out 32BFA, any and all INT 2 lh calls seen by TEST2 l’s INT 2 lh han-

dler— in fact, any and all interrupts seen by any real-mode program’s

interrupt handler— got there only because VMM or some VxD called

Begin_Nest_V86_Exec and Exec_Int. Notice that this means there is no

necessary correlation between the INT 2 lh calls issued under Windows
and those seen by DOS.

Incidentally, IFSMgr should have been able to use a single service,

Exec_VxD_Int, instead of the longer sequence of calls just shown. Unfor-

tunately, though, Exec_VxD_Int is nearly unusable due to a bug in

another service, Begin_Nest_Exec. (Geoff Chappell has discovered the

simple coding error underlying this persistent bug and has posted a cor-

rection called NESTFIX.ASM in the CompuServe WINSDK forum.)

Okay, so we see that whenever a V86 mode program calls INT 2 lh

function OEh, IFSMgr follows it with a Begin_Nest_V86_Exec and

Exec_Int of INT 2 lh function 19h. We can also see that IFSMgr takes
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the value returned from function 19h and stores it in its DEVICE_CB_
AREA+OAh.

But why? If IFSMgr wants to store the current drive on a per-VM
basis (which is sensible enough), why can’t it just take the intended new
current-directory value the user passes in DL to function OEh? Instead of

the i2 1_000E function shown, with its roundabout scheduling of another

function to be called later on, it seems as if IFSMgr could have simply

performed the following:

wrong_i 21_000E proc near

mov d 1 .byte ptr [ebp . Cl i ent_DL]

mov ecx.dword ptr DEV ICE_CB_AREA

mov byte ptr [ebx+0Ah] [ecx] ,dl

stc

retn

wrong_i 21_000E endp

What’s wrong with this picture?

What’s wrong is that there’s no guarantee that the value the user

passed to function OEh is valid! Unfortunately, function OEh doesn’t have

an error return (instead, it rather irrelevantly returns LASTDRIVE in

AL). Thus, the only way to tell if a call to function OEh succeeded is to

call function 19h. And that is precisely what IFSMgr is doing.

Why doesn’t IFSMgr do this when a VM is running in protected mode
(VMSTAT_PM_EXEC)? Without any special protected-mode handling

for function OEh, VMM automatically sends the call to the V86 interrupt

hook chain. Thus, IFSMgr sees the function OEh call a second time, and

at that time it can call function 19h and save the current-drive value.

In other words, for every PM call to function OEh, there’s an addi-

tional V86 mode call to function 19h. The WLOG212F program on the

Unauthorized Windows 95 disk confirms this. As we saw in Chapter 1,

WLOG2 12F is a protected-mode Windows application that hooks INT
2 lh in three places: twice in protected mode and once (using DPMI call-

backs) in V86 mode. WLOG212F can then compare the interrupts

issued in protected mode with those seen down to V86 mode. After run-

ning several Windows applications, WLOG212F reported the following

results for INT 2 lh functions OEh and 19h:

Func Kernel DOSProc (Prot mode) V86 mode

0 E h 688 688 Passed down

1 9 h 674 1362 Passed down

WLOG212F detected 1362 V86 calls to function 19h. But only 674 of

these calls were issued in protected mode. Where did the extra function

: DL = new current drive

:
per-VM data

; save new current drive

; carry set -- pass to next handler
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19h calls come from? Well, 1362 - 674 = 688, which is the number of

protected-mode calls to function OEh. Just as you’d expect from the IFS-

Mgr code, there’s an extra V86 call to function 19h for every PM call to

function OEh.

The point that emerges from this close look at function OEh is this:

Even for a simple INT 2 lh call that Windows passes down to DOS, it’s

really Windows’ VMM/VxD layer that is in control. The IFSMgr VxD
saw the call before DOS, and it saw the call again when DOS was fin-

ished with it. The only reason DOS saw the call at all was that IFSMgr
let it see the call. IFSMgr can even take one INT 2 lh call (function OEh)

and generate another (function 19h). To make the point one more time,

there is no necessary correlation between the INT 2 lh calls issued under

Windows— even by DOS programs such as TEST2 1 — and the INT
2 lh calls that eventually wend their way down to real-mode DOS.

It’s also important to realize that the calls that are passed down to

DOS depend on what VxDs happen to be loaded. Although IFSMgr
comes built-in to WfW 3.11 and Windows 95, the capability to write

VxDs that bypass DOS is a standard part of the VMM programming

interface and is documented in the DDK.
Take function 19h, for example. As noted in Undocumented DOS (2d

ed., p. 69), real-mode DOS’s implementation of this function is trivial.

It just moves the contents of DOS’s CURR_DRIV variable, located at

offset 3 3 6h in the DOS data segment (offset 16h in the Swappable Data

Area [SDA]), into the AL register:

-u fdc9:4c64

FDC9 : 4C64 A03603 MOV AL , [0336] ; D0S_DS : 0336 = CURR_DRIV

FDC9 : 4C67 C3 RET

Thus, a VxD that handles this function entirely in 3 2 -bit protected

mode is a piece of cake. CURRDRIV.ASM, shown in Listing 8-3, is a

VxD that does just this. We’ve talked a lot about how VxDs have

become the operating system and how they can handle DOS calls in

protected mode, so it would be useful to examine one small VxD to see

how all this works.

Listing 8-3: CURRDRIV.ASM

comment 1

CURRDRIV.ASM

Sample VxD that handles one INT 2 1 h function entirely in protected mode

INT 2 1 h Function 1 9 h (Get Current Drive)

masm5 -p -w2 currdriv.asm
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1 i n k 3 8 6 currdriv.obj,currdriv.386,,,currdriv.clef

addhdr currdri v . 386

put device=\unauthw\currdri v\currdri v .386 into system.ini [ 386 En h

]

currdri v .def:

LIBRARY CURRDRI

V

DESCRIPTION ’ I NT 21h Function 19h Handler'

EXETYPE DEV386

SEGMENTS

_LTEXT PRELOAD NONDISCARDABLE

_LDATA PRELOAD NONDISCARDABLE

_I T EXT CLASS ’ ICODE ' DISCARDABLE

_I DATA CLASS 'ICODE' DISCARDABLE

_TEXT CLASS ' PCODE ’ NONDISCARDABLE

_DATA CLASS 'PCODE' NONDISCARDABLE

EXPORTS CURRDRI V_DDB @1

l

. 386

p

INCLUDE VMM. INC

INCLUDE V86MMGR. INC

;;; This will become CURRDRI V_DDB

Decl a r e_V i r t ua 1 _De v i ce CURRDRIV, 1, 0, \

Control_Proc , \

Undefined_Device_ID, \

Undefi ned_ Ini t_0rder , , ,\

VxD_DATA_SEG

;;; need to add in linear DOS data segment

Lin_CurDrv dd 0336 h

VxD DATA ENDS

V x D_C0 D E_S EG

Beg i nProc Int21V86

movzx eax, [ebp.Clien t_A H

]

cmp al , 1 9

h

je short Do_GetCurDrv

stc ; keep looking for someone to

ret

Do_GetCurDrv

:

mov eax, [Li n_C u r D r v

]

; ; add eax, [ebx.CB_High_Linear]

mov al , byte ptr [eax]

mov byte ptr [ebp.Cl ient_AL] , al

cl c ; done ,
I've handl ed this

ret

EndProc I nt2 1 V86
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V x D_CO D E_E N DS

V x D_LOCKE D_C 0 D E_ S E G

BeginProc Control_Proc

Control _D i s p a t c h Devi c e_ I n i t , Do_Devi ce_Ini

t

cl c

ret

EndProc Control_Proc

V xD_LOCKE D_C 0 D E_ENDS

VxD_ICODE_SEG

BeginProc Do_Devi ce_Ini

t

Pus h_C 1 i ent_State

VMMcall Beg i n_Nest_V86_Exec

mov [ebp . Cl i ent_AH] ; 52 h ; get SysVars

mov eax, 21

h

VMMcall Exec_Int

movzx eax, [ebp . Cl i ent_ES] ; but just use DOS data seg

s h 1 eax, 4

add Lin_CurDrv, eax ; add linear DOS

VMMcall End_Nest_Exec

Pop_Cl i ent_State

mov eax, 2 1

h

mov esi, offset32 I n t 2 1 V86

VMMcall H o o k_V 8 6_ I n t_C h a i

n

ret

EndProc Do_Devi c e_ Ini

t

VxD_I COD E_EN DS

V X D_R EA L_I N I T_S EG

real_init proc near

xor ax, ax

xor bx, bx

xor si , si

xor edx, edx

ret

real_init endp

V X D_RE A L_I N I T_E N DS

END

Like all VxDs, CURRDRIV.ASM has a Declare_Virtual_Device state-

ment, which will eventually become the VxD’s Device Descriptor Block

(DDB). This includes a pointer to CURRDRIV’s Control_Proc routine.

VMM calls each Control_Proc in each VxD for a variety of events, such

as the creation or termination of a VM or thread.
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The only event CURRDRIV cares about is Device_Init. CURR-
DRIV’s Do_Device_Init routine first uses the standard Begin_Nest_

V86_Exec/Exec_Int block of code to issue an INT 2 lh function 52h call

in V86 mode. This DOS function returns with ES:BX pointing to the

undocumented DOS SysVars structure (the List of Lists). However,

CURRDRIV ignores BX and uses ES as the DOS data segment. It shifts

ES left by 4 to form a linear address and adds it onto CURRDRIV’s
Lin_CurDrv variable, which is predefined as 0336h. Lin_CurDrv now
contains the linear address of DOS’s current-drive variable.

Once Lin_CurDrv is properly set up, CURRDRIV uses VMM’s
Hook_V86_Int_Chain service to install the Int21V86 routine as a handler

for INT 2 lh. At this point, CURRDRIV is dormant until an INT 2 lh

call comes in. Note that CURRDRIV’s INT 21h handler will be called

not only for INT 2 lh calls coming from V86 mode but also for any

Exec_Int 2 lh calls made by VxDs in a nested V86 Exec block, such as

that shown back in Figure 8-9.

The Int21V86 routine uses [ebp.Client_AH] to see which INT 2 lh

function is being called. For any DOS function other than 19h, CURR-
DRIV sets the carry flag. This is a signal to VMM to pass the call to the

next VxD in the V86 hook chain.

When an INT 2 lh function 19h call comes in, CURRDRIV jumps to

the Do_GetCurDrv routine. This reads the current drive out of

Lin_CurDrv, moves it into the caller’s AL register (ebp.Client_AL), and

returns with the carry flag clear. This is a signal to VMM that the inter-

rupt has been serviced and should neither be passed on to any other VxD
(such as IFSMgr) in the V86 hook chain nor passed down to the DOS
interrupt chain in V86 mode. (It’s crucial to understand the difference

between these two chains: the first is maintained by the Hook_V86_Int_

Chain service and consists of 3 2 -bit protected-mode VxD code, and the

second chain is the familiar one from DOS programming.)

That’s it: INT 2 lh function 19h is now being handled entirely in 3 2 -bit

protected mode, bypassing DOS and any other VxDs that might have

been interested in seeing calls to this function. After using the DDK tools

to build CURRDRIV.386 (see the instructions at the top of Listing 8-3)

and putting device=currdriv.386 in the [386Enh] section of your SYS-

TEM.INI, you can run the TEST_1 version ofTEST21 again to see that,

indeed, CURRDRIV is bypassing DOS:

Generated 201 calls Received 101 calls

21/0E 100 called 100 received
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21/19 100 called 0 received

21/25 1 called 1 received

Some INT 2 1 h are handled without calling DOS!

Note the change from Figure 8-4: Instead of getting the message

“Some extra INT 2 lh calls are occurring!” we now get the message

“Some INT 2 lh are handled without calling DOS!” — all because of the

simple code in CURRDRIV.ASM.
CURRDRIVASM doesn’t use any features of 32BFA. The VMM

services it uses, especially Hook_V86_Int_Chain, have all been around

since 1990. Yet CURRDRIV is doing basically the same thing as 32BFA,

although on a much smaller scale. All the resources necessary to make

DOS disappear have been quietly sitting in VMM, just waiting to be used.
%

windows 95: still Bypassing DOS,

nut supporting isrs

So far, we’ve used TEST2 1 only to experiment with 32BFA in WfW
3.11. Now we need to run TEST21 under Chicago, which of course also

supports 32BFA. Figure 8-10 shows the results of that test.

0 seconds elapsed

Generated 701 calls

21/25 1 called

21/3D 200 called

21/3E 200 called

21/3F 100 called

21/40 200 called

Received 701 calls

1 received

200 received

200 received

100 received

200 received

INT 2 1 h appears to be handled in the normal way

Figure 8-10: Running TEST21 under Chicago.

What?! The “INT 2 lh appears to be handled in the normal way”

message in Figure 8-10 is unexpected under Windows 95, given that

32BFA in WfW 3.11 (which Microsoft’s own advertisements said was

“powered by 3 2 -bit technology from our ‘Chicago’ project”) triggers

TEST21’s “Some INT 2 1 h are handled without calling DOS!” message.

Furthermore, the V86TEST program from Chapter 10, which loads

before Windows, shows that when running TEST2 1 (or any other
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program that hooks INT 2 lh) in a DOS box, Windows is sending these

calls down to DOS or at least to global (that is, loaded before Windows)
DOS programs such as V86TEST. While running TEST21 locally (that

is, in a DOS box), V86TEST detected the following INT 2 1 h calls:

02: 42 08: 5 0B

:

1846 19: 3 1A: 1 25: 12 29: 4 2A : 3

2C

:

3 30: 1 35: 5 38: 1 3D: 200 3E

:

215 3F

:

100

40: 203 44: 1 48: 2 49: 1 4A

:

1 4B

:

1 4C

:

1 4D : 1 5D : 2

Note that the calls to functions 3Dh-40h (File Open, Close, Read,

and Write) match up reasonably well with the calls made by TEST2 1

.

Recall from earlier in this chapter that in 32BFA under WfW 3.11,

V86TEST only saw TEST2 l’s function 40h writes to stdout.

At least in terms of its apparent reliance on DOS, these TEST2

1

results make Windows 95 appear to be a step backward from WfW 3.11!

Hold on a moment: Although TEST2 l’s INT 2 lh did see all the pro-

gram’s INT 21h calls, the “0 seconds elapsed” message in Figure 8-10

calls into question whether MS-DOS itself really could have seen these

calls, no matter what TEST2 1 and V86TEST seem to indicate. Back in

Figure 8-1, TEST21 on the same machine took 21 seconds without

32BFA. IfTEST2 1 takes roughly the same amount of time— which was

no time at all— under Chicago as it did under WfW 3.11 with 32BFA,

it’s a good indication that the “INT 2 lh appears to be handled in the

normal way” message is in some way misleading.

Also, if you install the CURRDRIV VxD from Listing 8-3 under

Windows 95 and then run the TEST_1 version ofTEST21 (Listing 8-2),

you’ll see the “Some INT 2 1 h are handled without calling DOS!” mes-

sage that CURRDRIV has successfully trapped and emulated INT 2 lh

function 19h, just as under WfW 3.11. Clearly there’s nothing wrong

with the fundamental Hook_V86_Int_Chain mechanism for emulating

INT calls in 3 2 -bit protected mode, so there must just be something dif-

ferent about Windows 95 ’s implementation of 32BFA.

We need the TEST21 -MYSETVECT option to see Windows 95’s

true colors. With -MYSETVECT, TEST21 will get and set its interrupt

vectors not with INT 2 lh functions 25h and 35h (_dos_ setvect and _dos_

getvect) but instead with my_setvect and my_getvect, two functions that

directly poke and peek the low-memory IVT. (See Listing 8-1 and the

“Interrupts 101: IDT versus the IVT” section later in this chapter.)

Guess what? As Figure 8-11 shows, running TEST2 1 -MYSETVECT
under Chicago produces the same “Some INT 2 lh are handled without

calling DOS!” results as running TEST2 1 under WfW 3.11 32BFA.
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C:\THIS IS A LONG WINDOWS 95 DIRECTORY N AM E> t e s 1 2 1 -mysetvect > test21.log

C:\THIS IS A LONG WINDOWS 95 DIRECTORY NAME>type test21.log

Using my_setvect

1 seconds elapsed

Generated 700 calls Recei ved 0 calls

21/3D 200 cal 1 ed 0 recei ved

21/3E 200 cal 1 ed 0 recei ved

21/3F 100 cal 1 ed 0 recei ved

21/40 200 called 0 recei ved

Some INT 21 h are handled without calling DOS!

Figure 8-11: Running TEST21 -MYSETVECT under Chicago produces these results.

Once again, V86TEST confirms that these INT 2 1 h function 3Dh-

40h calls are not sent down to DOS:

02: 12 08: 11 0B

:

2608 19: 3 1A: 1 25: 8 29: 4 2A

:

3

2C

:

3 30: 1 35: 4 38: 1 3E

:

15

40: 3 44: 1 48: 2 49: 1 4A

:

1 4B : 1 4C : 1 4D : 1 5D

:

2

Why did using my_setvect rather than _dos_setvect to install

TEST2 1 ’s INT 2 lh handler make such a difference?

Empirically, the Chicago version of IFSMgr must be hooking INT
2 lh function 25h (Set Interrupt Vector) and using it to set some sort of

flag, indicating that DOS calls must be sent down the INT 2 lh chain for

a given VM.
Indeed, using the PROTTAB program to generate an IFSMgr table

for Chicago, similar to the one for WfW 3.11 back in Figure 8-7, shows

that the IFSMgr INT 2 lh table in Chicago does contain a handler for

function 25h. Without boring you with the entire new table, here are the

differences between the Chicago and WfW 3.11 IFSMgr INT 2 lh tables:

• Four FCB-related functions are handled in WfW but not in Windows
95: 1 1 h, 12h, 13h, and 17h.

• Five functions are handled in Windows 95 but not in WfW: IBh, 25h,

60h, 69h, and 71h. Function IBh gets allocation information for the

current drive. Function 60h is the undocumented TRUENAME
function (see Undocumented DOS

,
2d ed., pp. 148-151, 428-430).

Function 69h is an undocumented call to get and set the disk serial

number. Function 7 lh is new; it provides long filename (LFN) sup-

port in Windows 95. For example, since function 60h is TRUE-
NAME, function 7160h is the LFN version.
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Anyway, we’re interested in function 25h. Just as we’d expect from

the different results we got from running TEST2 1 and TEST2

1

-MYSETVECT, inspection of the IFSMgr code for function 25h shows

that if the caller is setting the INT 2 lh vector, the handler for function

25h sets or clears a flag in IFSMgr’s DEVICE_CB_AREA. As noted ear-

lier, the DEVICE_CB_AREA is part of the VMCB, so there is a separate

flag for each VM.
IFSMgr’s INT 2 lh handlers in Windows 95 are somewhat different

from the ones in WfW 3.11 (see Figure 8-6). For one thing, the INT 2 lh

handlers in Windows 95 check the flag that function 25h sets. If the flag

is set, indicating that the VM has hooked INT 2 lh, IFSMgr passes down
the INT 2 lh call.

This is evidently Microsoft’s response to widespread complaints about

the failure of 32BFA in WfW 3.11 to pass down INT 2 lh. For example,

the same bypass-DOS 32BFA behavior we saw in TEST21 broke Stacker

disk compression in WfW 3.11! According to PC Week (“Stacker clashes

with WFW’s file access; Stac working on fix,” March 7, 1994), “VCache

blocks certain DOS calls to the Stacker driver.” It’s not clear why VCache
is singled out as the culprit— it’s IFSMgr, not VCache, that handles

INT 2 1 h -— but the phrase “blocks certain DOS calls” certainly has a

familiar ring to it from the output shown by TEST2 1 and V86TEST
under WfW 3.11.

Microsoft has a dilemma here: 32BFA entails bypassing MS-DOS,
but bypassing DOS means that key DOS utilities such as Stacker won’t

see the stream of INT 2 1 h calls that they expect. Were TEST21 a gen-

uinely useful program that did more than simply log INT 2 lh calls and

whose functionality actually depended on seeing INT 2 lh calls, we

wouldn’t be so sanguine about its capability to detect the presence

of 32BFA in WfW 3.11. We would instead say that Windows had

broken TEST2 1

.

The trade press likes to beat up on Microsoft for what seems like its

failure to move more rapidly away from real-mode DOS. Yet when Win-

dows does take giant steps away from real-mode DOS, as in 32BFA, the

trade press again beats up on Microsoft, or the vendor of the broken

DOS utility, or both— only this time, they view such movement away

from DOS compatibility as a bug! What everyone wants, apparently, is

DOS compatibility but not DOS.
Well, that’s reasonable enough. Sort of. Microsoft must bypass DOS

yet support DOS programs (such as Stacker) that need to see DOS calls.
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We’ll see later that 3 2 -bit disk access (32BDA, also known as FastDisk),

introduced in Windows 3.10, had a clean solution to a similar problem.

In Windows 95, 32BFA uses a not-so-clean solution. Note how easy it

was for TEST21 -MYSETVECT to trick Windows 95 into thinking that

we hadn’t hooked INT 2 lh. Although the my_setvect code might seem

contrived, it’s not uncommon for DOS programs to directly manipulate

the low-memory IVT rather than call functions 25h and 35h. As only one

example, Windows itself does this.

As I write this, Chicago is still in beta. It’s possible that Microsoft will

correct the my_setvect loophole by the time of Windows 95 ’s commercial

release. If so, the time elapsed while running TEST2 1 will be the only

indication of 32BFA, and TEST21 -MYSETVECT will falsely declare

that “INT 2 lh appears to be handled in the normal way.”

Frankly, TEST2 1 should make this false declaration. TEST2 1 demon-

strates 32BFA so nicely under WfW 3.11 only because of a flaw in 32BFA.

This flaw remains in Windows 95 but is not as big. Apart from the elapsed

time to perform file I/O, 32BFA is supposed to be “transparent” (that is,

invisible to applications), yet we’ve detected the presence of 32BFA with

TEST2 1, a perfectly “legal” DOS program that doesn’t use any undocu-

mented or underhanded tricks.

intuect: Another sample

uhd mi 2ih Hooker

As another example of how easy it is to defeat IFSMgr’s test that a VM is

hooking INT 2 lh, consider a VxD that grabs function 25h calls before

IFSMgr gets to see them. In addition to beating the -MYSETVECT
horse just a little more thoroughly, a VxD that hooks function 25h (and

35h too, while we’re at it) is even more important as an additional

demonstration of how VxDs can handle DOS in protected mode.

The CURRDREV VxD (Listing 8-3) showed how easy it is, at least

for simple INT 2 lh calls, to bypass DOS. INTVECT.ASM in Listing

8-4 is another VxD like this.

INTVECT.ASM hooks INT 2 lh functions 25h (Set Interrupt Vector)

and 35h (Get Interrupt Vector), handling these two calls entirely in

3 2 -bit protected mode. INTVECT basically uses the my_setvect and

my_getvect code from Listing 8-1, translated into 3 2 -bit assembler.
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Listing 8-4: INTVECT.ASM

comment I

INTVECT.ASM

Sample VxD that handles two INT 2 1 h functions entirely in protected mode

INT 21 h function 2 5 h : Set Interrupt Vector

INT 2 1 h function 35h: Get Interrupt Vector

(Same basic instructions, .def file as CURRDRIV . ASM)

%

. 386p

INCLUDE VMM. INC

INCLUDE V86MMGR. INC

IFSMgr_Init_Order EQU 0A0011000h ;; found by running VXDSHOW IFSMGR.386

;;; this will become I NTV ECT_DDB

Decl a r e_V i rtual_Devi ce INTVECT, 1, 0, \

Control_Proc , \

Undefined_Device_ID, \

I FSMgr_Ini t_Order+10000H , , ,\

VxD_C0DE SEG

Beg i nProc Int21 V86

movzx eax, [ebp.Cl ient_AH]

cmp al , 2 5

h

je short Do_SetVect

cmp al , 3 5

h

J'e short Do_GetVect

stc ;; chain to previous handler

ret

Do_SetVect:

movzx eax, [ebp.Cl ient_AL] ; ; i nterrupt number

movzx edx, [ebp.Cl ient_DS] ; ;
get i nterrupt handler

shl edx, 16 ; ; from caller's DS : DX

mov dx, [ebp.Cl ient_DX]

mov ecx, [ e b x . C B_H i g h_ L i near]

mov dword ptr [ecx + (eax * 4)], edx ; ; shove i nto IVT[eax]

cl c ; ;
done -- don ’ t chain

!

ret

Do_GetVect:

movzx eax, [ebp.Cl i en t_A L

]

; ; i nterrupt number

mov ecx, [ebx . CB_Hi gh_Li near]

mov edx, dword ptr [ecx + (eax * 4)] ;; get handler from IVT[eax]

mov [ebp.Cl ien t_B X ] , dx ; ;
put i nto caller's ES : BX

shr edx, 16

mov [ebp.Cl i ent_ES] ,
dx

cl c ; ; done -- don't chain!

ret

EndProc I n 1 2 1 V86
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VxD_CODE_ENDS

V x D_LOCKE D_C 0 D E_S E G

BeginProc Control_Proc

Control_Di spatch Devi ce_I nit, Do_Devi ce_Ini

t

cl c

ret

EndProc Control_Proc

VxD_LOCKED_CODE_ENDS

VxD_ICODE_SEG

BeginProc Do_Devi c e_ Ini

t

mov eax, 2 1

h

mov esi, offset32 I nt21 V86

VHMcall Hook_V86_Int_Cha'i

n

ret

EndProc Do_De v i ce_I nit

V x D_ I C 0 D E_ ENDS

V X D_REA L_I N I T_S EG

real_init proc near

xor ax, ax

xor bx, bx

xor si
,

si

xor edx, edx

ret

real_init endp

V X D_REA L_ INI T_ENDS

END

As with the earlier CURRDRIV example (to which INTVECT has a

more than passing resemblance), INTVECT’s Do_Device_Init routine

uses the VMM Hook_V86_Int_Chain service to install Int21V86 as a

handler for V86 INT 21h. Unlike CURRDRIV, though, INTVECT has

to worry about its order in the V86 INT 2 lh hook chain. We know that

IFSMgr in Windows 95 hooks function 25h; that’s the reason I’ve chosen

this example. For reasons that will soon become clear, I want INTVECT
to see (and deal with) function 25h before IFSMgr gets a chance to. A
VxD’s location in the V86 INT 2 lh hook chain depends on when the

VxD called Hook_V86_Int_Chain. This in turn depends in part on the

VxD’s initialization order, so I’ve given CURRDRIV an initialization

order slightly higher than IFSMgr ’s. Many aspects of 32BFA depend

on VxD initialization order. Gosh, this VxD programming is just like



Chapter 8: The Case ofthe Gradually Disappearing DOS

working with TSRs, except that VxD writers get to play “load me last”

games instead of requiring that users do so.

When INTVECT receives a call to function 25h, it jumps to the

Do_SetVect routine. This routine takes the interrupt number from

[ebp.Client_AL] and the new handler from [ebp.Client_DS] and

[ebp.Client_DX]. INTVECT is going to shove the new handler right

into the low-memory IVT, just as the my_setvect function back in Listing

8-1 did. VxDs have a 4GB flat address space representing the entire

machine, and the current VM’s address space is mapped in at linear

address 0, so INTVECT could access the IVT with an expression as sim-

ple as DWORD PTR [intno * 4]. However, the current VM’s address

space is also available via the [ebx.CB_High_Linear] field in the VMCB,
and INTVECT adds this in.

In the event of a function 35h call, INTVECT goes to Do_GetVect,

which pulls the handler address out of the IVT and returns it in

[ebp .Client_ES] and [ebp.Client_BX]. This is similar to the my_getvect

code in TEST2 1 .C.

After building and installing INTVECT. 3 86, it’s time to see if it works.

Recall that TEST2 1 has always seen its own call to function 25h. With

INTVECT. 3 86 installed, you can run TEST2 1 and— voila! — TEST2

1

no longer sees function 25h calls. See how easy it is to bypass DOS?
As a more interesting test, install INTVECT 3 86 in Windows 95’s

SYSTEM.INI and run TEST21 again, this time without the

-MYSETVECT switch. Now TEST2 1 outputs its “Some INT 2 lh

are handled without calling DOS!” message, indicating the presence

of 32BFA.

What’s happening is that INTVECT grabbed function 25h ahead of

IFSMgr, serviced the function by poking the IVT, and cleared the carry

flag so thatVMM wouldn’t pass the call to anyone else. This capability of

VxD V86 INT handlers to bypass not only DOS and TSRs but also

other VxDs is powerful but distressing. It shows that VxDs play the same

role in Windows that TSRs played in DOS: You have the same kind of

power but also the same kind of confusing interactions that should be

fully expected when thousands of third-party developers have been given

free reign to hack the operating system.

VxDs become a true part of the Windows operating system. This is

both a blessing and a curse. The blessing is that at the VxD layer, Win-

dows is a relatively open system. The curse is that at the VxD layer

Windows is a relatively open system! A crucial system component such

as IFSMgr can make certain assumptions (such as that local INT 2 lh
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hookers can be detected by hooking INT 2 1 h function 25h), and some

third-party VxD such as INTVECT can come along and, in a perfectly

legal fashion (according to the laws laid down in the Windows DDK),
undermine its assumptions.

Thus, bypassing DOS isn’t really all that difficult. We did it for two

key (albeit simple) DOS functions in about 100 lines of code. But we’ve

also interfered with IFSMgr’s rather simple-minded test for local INT
2 lh hookers. Bypassing DOS might be easy, but supporting other soft-

ware (including other VxDs) that expects to see a stream of INT 2 lh calls

is a difficult and — given the thousands of developers writing VxDs —
unbounded problem.

Global and Local hit 2in Hookers

Far more important than the my_setvect loophole, IFSMgr’s function

25h handler can’t do anything about programs such as Stacker that hook

INT 2 lh before Windows starts. IFSMgr detects the presence of an INT
2 1 h hooker solely by monitoring calls to function 25h. Because IFSMgr

begins its monitoring long after programs such as Stacker have called

function 25h, it concludes that INT 2 lh need not be passed down.

Indeed, this policy is deliberate. A Microsoft white paper by Russ

Arun, “Chicago File System Features — Tips & Issues” (April 22, 1994)

contains the following explanation:

On default all INT 21 interrupts, except file API INT 21s, are passed down to any

hooker present in the system. The file API INT 21s are just passed to VM (local)

hookers, but not to global (AUTOEXEC.BAT) type hookers. This is done because there

are new file APIs (new INT 21s) that support long file names for delete, rename and

so on that an older hooker won’t understand anyway. Furthermore not all file API

calls are INT 21 calls. Specifically server calls and swapper calls to the file system

are not INT 21 calls.

Although this statement explains much of the behavior we’ve seen in

Windows 95 with TEST21, it raises more questions than it answers (it

also raises some eyebrows regarding the “global hooker,” “local hooker,”

and “older hooker” phrases, but we won’t get into that):

• “On default all INT 21 h interrupts
,
exceptfile API INT 21s

,
are passed

down to any hooker present in the system.” Since MS-DOS itself (WIN-
BOOT.SYS) is an INT 2 lh hooker, doesn’t this mean that all DOS
functions not related to file I/O are passed down to and handled

by DOS? Doesn’t this contradict Microsoft’s frequent claims that
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Windows 95 doesn’t require DOS? (Indeed, to anticipate the point of

Chapter 10, the V86TEST output shown earlier certainly seems to

confirm that Windows does use DOS for a wide variety of INT 2 lh

calls, including functions 2Ah and 2Ch to get the date and time.)

• “The file APIINT 21s arejust passed to VM (local) hookers
,
but not to

global (AUTOEXEC.BAT) type hookers.” Isn’t it precisely global hookers

such as Stacker that would most need to see file-related INT 2 lh calls?

Why the special treatment for these so-called local hookers?

• “This is done because there are new file APIs (new INT 21s) that support

longfile namesfor delete
,
rename and so on that an older hooker won H

understand anyway. ” But if that’s true for global hookers, isn’t it equally

true for local hookers? Why are global hookers presumed to be older?

• “Furthermore not allfile API calls are INT 21 calls. Specifically server calls

and swapper calls to the file system are not INT 21 calls.” This refers to the

fact that some VxDs in Windows 95, such as the DynaPage replace-

ment for PageFile, make direct calls to IFSMgr. But as Geoff Chappell

has noted, “if there are non-trivial DOS hookers in global memory,

they will be as [expletive deleted] about not seeing VxDs’ file activity as

they would be about not seeing int 2 lh.” How would a global INT 2 lh

hooker know or care about a file I/O call originated from within Win-

dows? To a global INT 2 lh hooker, all of Windows, and all programs

running under Windows look like one big DOS program.

These major questions aside, we can at least see that Windows 95

intends to support global INT 2 lh hookers for non-file calls and local

INT 2 lh hookers for all calls. IFSMgr uses function 25h to check for

local INT 2 lh hookers. Microsoft doesn’t intend to send file-related calls

to global INT 2 lh hookers.

But wait a minute! Although V86TEST didn’t see file calls from

TEST2 1 -MYSETVECT, it did see all file calls from TEST2 1 (that is,

without the -MYSETVECT option). Yet V86TEST is a global INT 2 lh

hooker, loaded before Windows, to which, so says Microsoft, file INT
2 lh’s won’t— and shouldn’t! — be delivered. So why did V86TEST see

file I/O calls from TEST2 1 ?

Because TEST2 1, like any reasonable hooker, chains to the previous

handler (see Listing 8-1). Any calls sent to TEST21 will eventually

be sent to V86TEST as well. Thus, when IFSMgr lets a local hooker

like TEST21 see a call, global hookers such as V86TEST will also see

it. This means that, although Windows 95 doesn’t intend to send file
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INT 21h calls to global hookers, this will nonetheless happen if there are

any local hookers. It would be simple to write a DOS TSR that does

nothing but hook INT 2 lh and chain to the previous handler. Running

this TSR in each VM would force Windows 95 to deliver all INT 2 lh,

including file calls, to global hookers.

The Role of ifshlp.svs and U86 callbacks

But there’s a remaining mystery here: Although running a local hooker

such as TEST21 entails the delivery of INT 2 lh calls to global hookers

such as V86TEST, and although MS-DOS itself clearly qualifies as a

global INT 2 lh hooker, nonetheless Windows 95 can V let MS-DOS see

file-related INT 2 1 h calls. Allowing DOS to handle these calls would not

only cause tremendous confusion, but also wipe out all the performance

improvements from 32BFA.

The TEST21 “0 seconds elapsed” message back in Figure 8-10 shows

that, indeed, Windows 95 doesn't let these calls go all the way down to

DOS. Yet, the V86TEST TSR sees these calls, and (as you can see from

V86TEST.C in Chapter 10) this reasonable hooker chains these calls to

the previous handler. How can TSRs such as V86TEST see file INT 2 lh

calls and chain them on to the previous handler— and yet MS-DOS
itself doesn’t see them?

IFSHLRSYS, a DOS device driver supplied both with Windows 95

and with WfW 3.11, is the answer. 32BFA requires IFSHLRSYS, and will

not load without it. If it fails to find IFSHLP (whose device name is

IFS$HLP$) IFSMgr displays the message: “The Microsoft Installable

File System Manager (IFSMgr) cannot find the helper driver. Please

ensure that IFSHLP.SYS has been installed.”

Running the INTCHAIN program from Undocumented DOS (2d ed.,

pp. 302-308) shows that IFSHLP sits between A1S-DOS (including

the DblSpace driver) on the one side and TSRs such as V86TEST on

the other:

C : \UND0CD0S>i ntchai n 21/3000

Tracing INT 21 AX=3000

242 instructions

Skipped over 1 INT

2032 : 09B1 V86TEST

020E : 04A8 IFS$HLP$
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01 EF : 0023 D:

0A29 : 1956 DBLSYSHS

00A0 : 0FAC DOS

FE9E : 4249 HMA

Now, what does IFSHLP do when it receives a DOS call that’s been

passed on from a hooker such as TEST2 1 or V86TEST? Knowing from

INTCHAIN that IFSHLP’s INT 2 lh handler in this configuration hap-

pens to be located at real-mode address 0215:04A8, we can use a debug-

ger such as Soft-ICEAVindows to place a breakpoint on this address.

The next time someone generates an INT 2 lh call that for whatever rea-

son is sent down to the V86 interrupt chain, the breakpoint on IFSHLP
is triggered, and we can trace through the code.

I generated the log in Figure 8-12 by continally pressing F8 (trace) in

Soft-ICE, using WLOG to save the results to a file, running the file

through the VXDNAME utility from the Unauthorized Windows 95 disk,

and then adding comments. This trace of about 100 instructions is a

remarkable example of how Windows VxDs insinuate themselves into

DOS, and of how even the lowliest DOS call— one which Windows

reflects down to DOS — ain’t what it used to be.

0215 : 04A8 CMP AH ,72 :: : inside IFSHLP INT 21 h handler

0215 : 04AB JAE 04EB :: : in this particular case, AH = 0Bh

0215 : 04AD TEST BYTE PTR CS : [0035] , 02

0215 : 04B3 JZ 04D5 (NO JUMP)

0215 : 04B5 TEST BYTE PTR CS: [0035] . 0C

0215 : 04BB JZ 04D5 (JUMP)

0215 : 04D5 PUSH AX

0215:0406 PUSH BX

0215 : 04D7 MOV BL.AH

0215 : 04D9 MOV BH ,00

0215 : 04DB MOV AL , CS :
[BX+042A] ;; ; table of INT 2 1 h handlers

0215 : 04E0 MOV AH, 00 :: : AX = 2 B

h

0215 : 04E2 POP BX

0215 : 04E3 ADD AX.04FC

0215 : 04E6 CALL AX :

:

; call handler (04FCh + 2Bh = 0527h)

0215:0527 TEST BYTE PTR CS: [0035] ,02 : ; ;
handler for 0B,0D,0E,71

0215 : 052D JNZ 0531 (JUMP)

0215:0531 RET

0215 : 04E8 JAE 04F0 (JUMP)

0215 : 04F0 POP AX

0215 : 04F1 PUSH BX

0215 : 04F2 MOV BL.AH :: ;
put INT 2 1 h func number in BX

0215 : 04F4 SUB BH , BH

0215 : 04F6 JMP FAR CS : [0012] :: ;
jump to V 86 cal 1 back

FBCA: 23A2 ARPL [BX+SI+6E] , BP :: : V86 callback at FBCA : 23A2



Unauthorized Windows 95

VMM+240 SUB ESP ,+04 ;; IDT INT 06h handler (illegal opcode)

VMM+243 PUSHAD

VMM+244 MOV ESI, 00000018 ;;
-KCDII

szco
\

—

1

VMM+249 JMP VMM+2B0

VMM+2B0 CLD » * VMM generic INT handler

VMM+2B1 MOV EBP, ESP

VMM+2B3 MOV DI ,0030

VMM+2B7 TEST BYTE PTR [EBP .Cl i e n t_E FLAGS+2] ,02

VMM+2BB JZ VMM+320 (NO JUMP)

VMM+2BD MOV DS.DI

VMM+2BF MOV EBX , [VMM+F6E4] ;; current VM handle

VMM+2C5 MOV ES.DI

VMM+2C7 MOV EDI , [VMM+F670] ;; current thread handle

VMM+2CD XCHG ESP , [EDI +48 ] ;; switch stacks

VMM+2D0 PUSH VMM+2E0 ;; return address (see below)

VMM+2D5 JMP [ESI+VMM+E410] ;; goto INT 06h handler

VMM+928 STI
\

INT 6: invalid opcode

VMM+929 MOVZX EAX , WORD PTR [EBP. Client._CS] ;;; FBCAh

VMM+92D MOV ECX.EAX

VMM+92F MOV EDX, [EBP. Cl ient_EIP] ;;; 23A2h

VMM+932 SHL EAX, 04

VMM+935 ADD EAX, EDX ;; FBCA0h + 23A2 h = FE042h

VMM+937 CMP EAX , 000FE042 ;; all V86 callbacks — FE042h

VMM+93C JNZ VMM+952 (NO JUMP)

VMM+93E SUB ECX , 0000FB04 ;; FBCAh - FB04h (base) = 0C6h

VMM+944 MOV EDX , [C41DB0 04+8* ECX] ;; table of V86 CB ref data

VMM+94B JMP [C41DB000+8*ECX] ;; goto handler for this V 86 CB

I FSMg r+4 B0 CALL [Simul ate_Pop]

I FSMgr+4B6 CALL [Simul a t e_I ret

]

I FSMg r+4 BC MOVZX ECX, WORD PTR [EBP. Cl ient_BX] ;;; IFSHLP put func in BX

I FSMgr+4C0 MOV [EBP. Cl ient_BX] ,AX

I FSMgr+4C4 CMP CL, 72

I FSMg r+4C7 JAE I FSMg r-+4 E 1 (NO JUMP)

I FSMgr+4C9 MOV EDX, 00000002

I FSMg r+4C E MOV ESI , FFFFFFFF

I FSMg r+4 D3 MOV EAX, 00000021

I FSMg r+4 D8 CALL [ I FSMgr+C78+4*ECX] ;;; call handler for INT 2 1 h func

I FSMgr+F6C TEST DWORD PTR [EBX], 00000020 ;;; inside 21/0B handler

I FSMgr+F72 JNZ I FSMgr+FB6 (NO JUMP)

I FSMgr+F74 TEST EDX, 00000001

I FSMg r+F7 A JNZ I FSMgr+FB6 '

(NO JUMP)

I FSMg r+F7 C MOV EAX , [ I FSMgr+39D8]

I FSMgr+F81 MOVZX EAX, WORD PTR [EAX+10]

I FSMgr+F85 SHL EAX, 04

I FSMg r+F88 MOVZX EDX, WORD PTR [EAX+36]

I FSMgr+F8C SHL EDX, 04

I FSMgr+F8F MOVZX EAX, WORD PTR [EAX+34]

I FSMgr+F93 LEA EDX , [EAX+EDX]

I FSMg r+F96 MOVZX EDX, BYTE PTR [EDX]

I FSMg r+F99 MOV EDI , [ I FSMgr+2EB0]

I FSMgr+F9F ADD EDI , [EBX+04]

I FSMgr+FA2 TEST BYTE PTR [EDX+EDI+2E] ,04
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I FSMgr+FA7 JZ I FSMgr+FB6 (JUMP)

I FSMgr+FB6 STC

I FSMgr+FB7 RET

IFSMgr+4DF JB I FSMgr+507 (JUMP)

I FSMgr+507 MOV EDX , [ I FSMg r+2 E B0

]

::: 2174 -- IFSHLP table
I FSMgr+500 MOV CX , [EDX+01CE] : : : 0 1 F6 h -- prev INT 21

h

I FSMgr+514 MO V Z > EDX , [EDX+01CC] ::: 0023h

I FSMgr+51B CALL [Bui 1 d_Int_Stack_ Frame]
; ; ; not shown

I FSMgr+521 RET

VMM+2E0 MOV EBX , [VMM+F6E4] ; ; ; back in VMM, at pushed ret addr

VMM+2E6 MOV EDI , [ VMM+F670]

VMM+2EC CLI

VMM+2ED XOR EAX.EAX

VMM+2EF CMP EAX
, [ VMM+DC88]

VMM+2F5 JNZ VMM+304 (NO JUMP)

VMM+2F7 TEST BYTE PTR [EBX], 20

VMM+2FA JNZ VMM+358 (NO JUMP)

VMM+2FC XCHG ESP , [EDI +48

]

VMM+2FF POPAD

VMM+300 ADD ESP, +04

VMM+303 IRETD

01 F6 : 0023 JMP 03BC : 1956

03BC : 1956 PUSHF

03BC : 1957 STI

Figure 8-12: This output from Soft-ICE demonstrates that IFSHLP can send INT 21h
calls back to IFSMgr.

Without trying to understand every line in Figure 8-12, here’s the

basic idea: In the first block of code, for example, IFSHLP.SYS is exam-

ining a call to INT 2 lh function OBh (Get Keyboard Status). As we have

seen in some of the sample output from V86TEST, when COMMAND
.COM is running in a Windows DOS box, it calls function OBh often.

IFSHLP uses the INT 2 lh function number (OBh in this case) as an

index into a table of bytes, located in Figure 8-12 at 02 15:042A. For INT
2 lh function n, table [n] + 4FCh is the address of a small piece of code

that tells IFSHLP how to handle the INT 2 lh function. It’s helpful to

dump out this table and sort it by address:

C : \UNAUTHW>f tab 215:42a 72 i 21 1
|

sort
|

massage

tablefn] + 4FC INT 2 1 h function n

4FC 5F

510 5E

520 00-0A, 0C, 0 F
- 3 D , 41, 43, 45, 46, 48-56, 58 - 5 B

,

5D ,
60-67, 69-70

0B , 0D , 0E , 71

44

527

532
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550 47

570 3E , 3F , 40, 42, 57, 5C, 68

As you can see, IFSHLP uses the code at offset 5 2Oh to deal with

most INT 2 lh functions:

-u 215:520

0215:0520 58 POP AX

0215:0521 58 POP AX

0215:0522 2EFF2EEC04 JMP FAR CS : [04EC]

-dd 215 : 4ec

0215 : 04EC 01 F6 : 0023

In the INTCHAIN output shown earlier, 01F6:0023 belonged to a

block device driver controlled by DblSpace, which was loaded before

IFSHLP. In other words, for the majority ofINT 2 1 h function calls that

for whatever reason find their way to IFSHLP, IFSHLP simply chains

the call to the previous INT 2 lh handler. The call eventually makes its

way to the real-mode DOS code.

The remaining INT 2 lh functions (OB, OD, OE, 3E, 3F, 40, 42, 44, 47,

52, 57, 5C, 5E, 5F, 68, and 71) are possible candidates for IFSHLP to

send to IFSMgr.

In our case, IFSHLP sends the function OBh call to IFSMgr. How
IFSHLP, which is 16-bit real-mode code (running in V86 mode), calls

IFSMgr, which is 3 2 -bit protected-mode code, is pretty interesting and

merits the following extremely long digression on V86 callbacks and

breakpoints.

At the end of the first block of code in Figure 8-12, there’s a JMP FAR
CS:[0012], which takes us to the odd-looking address FBCA:23A2. This

is an odd address because it’s in the ROM BIOS; why would IFSHLP be

jumping into the ROM BIOS? Furthermore, on most machines, the

address IFSHLP jumps to is not only in the ROM BIOS — it’s in the

middle of the ROM copyright message!

C : \UNAUTHW)debug

-d f bca : 23a

2

FBCA : 23A0 63

FBCA : 23B0 2E 00 FF

FBCA : 23C0 43 20 43

FBCA : 23D0 6C 74 72

68 6E 6F 6C 6F-67

FF FF FF FF FF- FF

6F 72 70 6F 72-61

61 4C 69 74 65-20

69 65 73 20 4C 74 64

FF FF E9 3B 20 4E 45

74 69 6F 6E 0D 0A 55

56 65 72 73 61 00 00

chnologies Ltd

: NE

C Corporati on . .

U

1 traLi te Versa .

.

What the...? Well, ifyou look at the Soft-ICE trace in Figure 8-12,

you’ll see that the data at FBCA:23A2 can, like all data, be interpreted (or

misinterpreted) as code:

FBCA : 23A2 63686E ARPL [BX+SI+6E] , BP
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It so happens that the letter c, ASCII code 63h, corresponds to an

ARPL instruction. It’s not necessary to get into what this instruction is

supposed to do. The important thing is that this instruction in illegal in

V86 mode.

So what happens when a program running in a DOS box under

Windows executes this illegal instruction? Windows must display a dia-

log box saying “The application has committed a heinous crime and by

the will of the people will be terminated,” right?

No. Illegal instructions, GP faults, page faults, and the like, aren’t nec-

essarily crimes against humanity. They are merely triggers for interrupts.

In our case, executing the illegal ‘c’/ARPL/63h instruction generates an

INT 6, which is the illegal opcode fault. If someone has hooked INT 6

and chooses to interpret the fault as a crime, then they can certainly put

up a frightening-looking dialog and proceed to annihilate the DOS box

(perhaps using a VMM service called — I’m not making this up —
NukeJVM). But another, more sanguine INT 6 hooker might take a

more relaxed view of the matter.

In the code in Figure 8-12, the INT 6 handler lives in VMM, which

as you know by now, is 3 2 -bit protec....

Notice what’s just happened. Recall that there was some question

about how IFSHLP, which is 16-bit real-mode code (running in V86

mode), could manage to hoist itself into 3 2 -bit protected mode in order

to call IFSMgr. Well, IFSHLP just did it. Merely by executing an illegal

instruction, IFSHLP has switched itself out of 16-bit V86 mode into 32-

bit protected mode.

Pretty clever, eh? So clever, in fact, that a number of top program-

mers at Microsoft, including Phil Barrett, Ralph Lipe (RAL), and Aaron

Reynolds (AAR), managed to secure a patent on it:

U.S. Patent 4,974,159

Control transferring method for multitasking computer system - writing virtual machine

break point instruction into executable code of selected disk operating system (DOS)

routines.

Patent Assignee: MICROSOFT CORP

Author (Inventor): HARGROVE R R; BARRETT P R; LIPE R A; REYNOLDS A R;

WILSON M D

The method provides for the insertion of a virtual machine break point (VMBP) instruc-

tion into the DOS code at a point where DOS will be executing in such a state, referred

to a Break Point Locations (BPL). When the VMBP instruction is executed, the 80386

transfers control from the DOS to Virtual machine control (VMM). When the VMM
receives control, it determines that the transfer was caused by the execution of a VMBP

instruction. The VMM is then free to start another task or perform other functions with-

out corrupting the DOS data structures. A VMM that modifies a DOS is referred to a vir-

tual DOS monitor machine (VDMM).
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Pref., the VDMM uses a copy of the contents of a selected routine where a break

point is to be stored to locate the selected routine within DOS. Alternatively, the

VDMM could load from a file the BPL addresses for a particular version of DOS under

which the application programs are to execute. Alternatively, the BPL addresses could

be hard coded into the VDMM.

ADVANTAGE - Avoids inefficiency caused by calls of indefinite duration.

Cleverness is not by itself a valid basis for securing a patent, however.

Another criteria is originality. Microsoft’s use of an illegal instruction to

make the hyperspace jump from 16-bit real mode to 3 2 -bit protected

mode is remarkably similar to a well-known technique dating back over

twenty years to IBM’s VM operating system, which used an illegal

instruction as a supervisor call. A nonexistent instruction, often referred

to as DIAGNOSE, forced an exception within a virtual machine so that

the exception could be caught by the VM kernel and interpreted as a

service request. Sound familiar? (For more information on the history

of this great hack, see the letters to the editor in Windows/DOS

Developer’s Journal, July 1993, pp. 99-100).

At any rate, this ARPL trick is one of the underpinnings of Windows,

including Windows 95. VxDs such as IFSMgr can call a VMM service,

Allocate_V86_Call_Back, passing in ESI the address of a 3 2 -bit

protected-mode callback procedure (such as offset 4B0h in IFSMgr).

AIlocate_V86 _Call_Back returns with EAX holding a V86 mode seg-

mentioffset address, such as FBCA:23A2. This address points to the

ARPL instruction. The VxD can then pass the segment:offset address

to any V86 mode clients, such as IFSHLP, that might want to call in to

the VxD. The ARPL is what Microsoft sometimes (not quite accurately)

calls a thunk
,
in this case a thunk from 16-bit V86 mode to 3 2 -bit

protected mode.

In the IFSHLP/IFSMgr example, IFSMgr during its initialization

called Allocate_V86_Call_Back, passing it the address IFSMgr+4B0h.

Allocate_V86_Call_Back returned the address FBCA:23A2. IFSMgr then

passed this address to IFSFILP. IFSHLP now knows that FBCA:23A2 is a

stand-in or thunk for IFSMgr+4B0h.

That phrase “passed this address to IFSHLP” is rather vague. How
does IFSMgr pass the V86 callback’s address to IFSHLP? By using an

important but unfortunately undocumented backdoor IOCTL interface.

Geoff Chappell (as usual!) has written a thorough description of this inter-

face for WfW 3.11. Geoff’s document needs to be brought up to date for

Windows 95 and published in full, but in the meantime here’s a portion

that explains how IFSMgr passes the V86 callback address to IFSHLP:
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INT 21 - I FSHLP . SYS - GET API ENTRY POINT

AX = 440 2 h

BX = file handle for device "IFS$HLP$"

CX = 0008h

DS:DX -> buffer for entry point record

Return: CF clear if successful

AX = number of bytes actually read (should be 0008h) CF set on error
AX = error code

Format of entry point record on return:

Offset Size Description

00 h DWORD E F7 037 34h

04 h DWORD address of entry point

Note: This structure can be obtained by an IOCTL READ, IOCTL WRITE or a normal

READ. In the IOCTL cases, the first dword of buffer must be 3734E970h on entry.

Call IFSHLP entry point with:

STACK: WORD function number ( 0000h - 000Ch

)

Some functions have an additional DWORD argument

pushed before the mandatory WORD argument.

Return: STACK unchanged

si ,di , bp , d s preserved

bx corrupt

// ... IFSHLP function 00 h ...

Call IFSHLP function 0 1 h with:

STACK: DWORD address of trap

WORD 000 1 h (function "Set Trap")

Return: dx:ax = 0000:0000 success

0000:0001 failure (trap already set)

bx,cx,es corrupt

Notes

:

The trap routine supplied by the IOCTL caller will receive control when interrupts

08h, 1 7 h , 2 1 h , 2Ah and 2 Fh occur in circumstances that IFSHLP considers interesting.

Ints 21 h and 2 Fh are hooked trivially (a simple far jump to the previous handler

replaces the first five bytes of the full handler) when IFSHLP. SYS is installed.

This call non-tri vi al i ses those handlers by restoring the first five bytes.

Ints 08h, 1 7 h and 2 Ah are hooked when this IOCTL call is made.

Int 08h is not hooked if the byte at offset 1 1 h in the table given by IOCTL

function 00 h has bit 0 set.

When the trap routine is called, all registers are as they would be had the routine

got control directly, except for bx, whose original value is on the stack, underneath

the interrupt return ddress: a default trap would therefore be to POP BX then IRET.

At least, that's the general principle (there are some exceptions, but this is

complicated enough already). This list is not meant to suggest that IFSHLP traps
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all conditions of the type given, just that if the trap is called with a particular

value in register BX, then the reason is described as follows:

bx < 0069

h

0 0 7 6 h <= bx < 0 0 A6

h

0 0 A6 h <= bx < 00 B7

h

bx = 00C 7 h

bx = 00C9 h

bx = 00C Ah or 00CBh

bx = 00CCh

bx = 00CDh

bx = 00CEh

bx = 00D2h

correspond! ng int 2 1 h function

int 2 Fh function 1 1 h subfunction bx - 0076h

int 2 Fh function 1 1 h subfunction bx - 0026h

int 2 Fh function 1 6 h subfunction != 80

h

int 2Ah function 84

h

or int 2 Fh function 1 680

h

various int 08h conditions not yet studied

various int 1 7 h conditions not yet studied

int 2 Fh function 02h or function B Fh

int 2 Fh function 1606h

int 2 Fh function 05h subfunction != 00

h

One further consequence of this function is to adjust the word a 0040:0010 to

indicate the presence of four parallel ports. This does not seem to be undone (is

this word instanced beforelOCTL function 01 h is ever called?).

Notice in particular that the function at IFSMgr+4B0, an ARPL
thunk which IFSMgr passes down to IFSHLP using function 1 (Set Trap)

of this IOCTL interface, is not just for INT 2 lh.

Besides IFSHLP/IFSMgr communications, there are many more situa-

tions in which Windows uses these ARPL thunk V86 callback thingies.

For example, consider INT 2Fh function 1684h (Get Device Entry Point

Address), which returns a far function pointer that DOS or Windows

applications can call to communicate with a VxD. In the section titled

“DOS’s IN_WIN3E Flag” in Chapter 4, we saw that MS-DOS in certain

situations uses function 1684h to call into DOSMGR. You might have

wondered how 16-bit code manages to leap from V86 mode to 3 2 -bit pro-

tected mode, merely by calling the pointer returned by function 1684h.

The answer, you won’t be surprised to hear, is ARPL. This is nicely

illustrated (at least I think so) with a little program called VXD86API,
which locates all V86-mode VxD APIs by calling INT 2Fh function

1684h in a loop for every possible VxD ID (0 through OFFFFh). If func-

tion 1684h (via a GetDeviceAPI routine) returns nonzero, VXD86API
prints the VxD ID, the segment:offset address of the VxD’s V86 entry

point, the same address expressed in linear form (segment « 4 + offset),

and finally the first byte at the entry-point address. Listing 8-5 shows

VXD86API.C, which is a plain DOS real-mode program.

Listing 8-5: VXD86API.C

/* VXD86API.C */

//include <stdlib.h>

//include <stdio.h>
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//include <dos.h>

typedef unsigned char BYTE;

typedef unsigned short WORD;

typedef unsigned long DWORD;

typedef DWORD (far *FUNCPTR) ( voi d )

;

// call the Windows "Get Device Entry Point Address" function

// Interrupt 2 Fh Function 1 684

h

FUNCPTR GetDevi ceAPI (WORD vxdjd)

{

_asm {

push di

push es

xor di

,

di

mov es

,

di

mov ax

,

1 684 h

mov bx

,

vxd_i

d

i nt 2 f h

mov ax

,

di

mov dx. es

pop es

pop di

// return value in DX : AX

int IsEnhancedMode(void)

{

_asm {

mov ax, 1 600

h

int 2fh

test al , 7 f

h

jz no

1

return 1;

no: return 0;

void fai 1 (const char *s, ...) 1
puts(s); exit(l); }

int mai n(

)

{

WORD i

;

FUNCPTR fp;

if ( ! IsEnhancedMode( )

)

fail ("This program requires Windows Enhanced mode");

puts
(

" V86 VxD APIs:");

putsC'VxD V86 entry Linear Byte");

puts(" ");

// for each possible device id, see if there’s an API

for (i=0; i<0xffff; i++)
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if (fp = GetDevi ceAPI ( i )

)

pri ntf
(

"%04Xh %Fp %01 X %02X\n"

,

1, // VxD ID

fp, // V86 entry point

((DWORD) FP_SEG(fp)«4)+FP_0FF(fp) , // linear addr

*( (BYTE far *) fp)); // byte (ARPL)

return 0;

VXD86API looks only for V86 VxD APIs; it could easily be modified

to use the DPMISH library and look for PM VxD APIs as well. If func-

tion 1684h is called from protected mode rather than V86 mode, it

returns a protected-mode selector: offset address that a Win 16 or

protected-mode DOS application in Ring 3 can call to communicate with

the VxD in Ring 0. The returned address points to an INT 3 Oh instruc-

tion. Whereas ARPL is a V86 callback, INT 3Oh is a protected-mode

callback. In Windows 3.0, protected-mode callbacks instead involved the

HLT instruction. It’s sort of amusing that fundamental mode-switching

code in Windows pretended to be halting the processor because Microsoft

once used a mode-switching technique— described by Gordon Letwin in

U.S. Patent 4,825,358 (“Method and Operating System for Executing

Programs in a Multi-Mode Microprocessor,” April 25, 1989)— that did

shut down the processor.

The output from our simple VXD86API program looks rather boring

at first glance. Ifyou stare at it long enough, however it’s quite interest-

ing. Well, I suppose that’s true of anything, but you really can learn a lot

about Windows 95 by pondering the output from VXD86API:

Vi rtual -8086 (V86) VxD APIs:

VxD V 86 entry Li near Byte

000 1 h FBE9 : 21B2 FE042 63

0003h FBEA: 21A2 FE042 63

0005h FBEB : 2192 FE042 63

000 Ah FBEC : 2182 FE042 63

000Ch FBED : 2172 FE042 63

00 1 0 h FBEE : 2162 FE042 63

00 1 5 h FBEF: 2152 FE042 63

00 1 7 h FBF0 : 2142 FE042 63

0026h FBF1 : 2132 FE042 63

0027 h FBF2 : 2122 FE042 63

002 Bh FBF3 : 2112 FE042 63

0 033 h FBF4 : 2102 FE042 63

0037 h FBF5 : 20F2 FE042 63

0038h FBF6 : 20E2 FE042 63

0 03 B h FBF7 : 20D2 FE042 63

0040 h FBF8: 20C2 FE042 63

0202h FBF9 : 20B2 FE042 63

0483 h FBFA: 20A2 FE042 63
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048B h FBFB : 2092 FE042 63

2200h FBFC : 2082 FE042 63

28C 0 h FBFD : 2072 FE042 63

28C 2 h FBFE : 2062 FE042 63

296 Eh FBFF : 2052 FE042 63

In this example, over 20 different VxDs provide some form of API to

real-mode software running in V86 mode under Windows 95. For

instance, VxD 0015h is DOSMGR; Chapter 4 showed that MS-DOS
sometimes calls the DOSMGR API. VxD 002 7h is VXDLDR; real-mode

DOS programs can call the VXDLDR API to dynamically load and

unload VxDs (function 1 calls VXDLDR__LoadDevice, and function 2

calls VXDLDR_UnloadDevice). VxD 000 Ih is the VMM, and its V86
API provides real-mode DOS programs with access to the Windows 95

registry (function OlOOh is RegOpenKey, 0102h is RegCloseKey, 0105h

is RegQueryValue, 0106h is RegEnumKey, and so on). In other words,

one INT 2Fh function 1684h call can open up vast new worlds of services

to DOS programs running under Windows.

More directly relevant to the topic ofV86 callbacks and how IFSHLP
calls into IFSMgr (which you may dimly recall was the original point

here), is the fact that all the V86 VxD APIs point to an ARPL instruction

(63h) and that all have the same linear address (FE042h). It looks like

every V86 VxD API is the same!

We’ll see in a few moments how VMM, when given a single ARPL
located at a single linear address, figures out which VxD API the caller

wanted. For now, just remember that every single V86 callback points to

the same byte 63h, merely represented in different ways (FBE9:2 1B2 is the

same real-mode address as FBEA:21A2, and as FBEB:2192, and so on).

Generally, this single byte 63h is located in the copyright message in the

system ROM. During initialization, VMM finds the ‘c’/ARPL/63h using

an otherwise pointless-soundingVMM service called Locate_Byte_In_

ROM. Why in ROM? Because that way, VMM knows there’s no danger of

someone accidentally or maliciously changing the byte to something other

than 63h. This won’t work ifyou’re using a 386 memory manager that

remaps ROM BIOS memory, however, so Windows provides a System-

ROMBreakPoint=off setting. If SystemROMBreakPoint= off, all V86 call-

backs will still point to a single byte 63h, but it will be located in potentially

alterable low memory (specifically, in the Global V86 Data Area, visible at

all times in all virtual machines) rather than in ROM.
So far, we’ve seen some situations in which one of these crazy ARPL

addresses can be passed to an application that has asked for it. However,

Windows also uses the ARPL scheme for one more situation. Suppose that
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an existing piece of real-mode code must be intercepted byVMM or a

VxD. If the code starts off with an INT instruction or something else that’s

readily trappable in V86 mode, everything’s cool. But there are situations

in which Windows might want to intercept some code that doesn’t use any

of the instructions that are normally trappable in V86 mode.

You can probably see what’s coming: VMM has the capability to take

an arbitrary address in V86 mode, save away the byte at that address, and

replace it with a new byte that will allow all calls to this address to be

intercepted byVMM or a VxD. The new byte is an ARPL. The Install_

V86_Break_Point service takes a V86 mode address on which to place

the ARPL, and the 3 2 -bit protected-mode address of a VxD routine to

callback whenever the breakpoint is triggered.

Programmers newly exploring the underside of Windows are often

confused about V86 breakpoints, thinking they must have something to

do with debugging or error handling. Despite the term breakpoint, V86
breakpoints have nothing to do with debugging or error handling.

Instead, like V86 and PM callbacks, they play an important role in the

normal everyday operation of Windows, allowing execution of real-mode

code to trigger calls into 3 2 -bit protected-mode code. The DDK docu-

mentation for Install_V86_Break_Point provides a good example: “For

example, the XMS driver in the virtual V86MMGR device inserts a

breakpoint in the real-mode XMS driver during device initialization.

Thereafter, all calls to the real-mode XMS driver are intercepted by the

virtual XMS driver.” (We’ll look into this XMS example a little more in a

few moments.)

As already noted, all V86 callbacks in Windows point to the same

ARPL byte in memory. A debugger breakpoint placed on this byte will be

triggered constantly. Significantly, even in a pure Win32 Windows 95

system, with no DOS or Win 16 applications running, the V86 callback is

used so heavily that even a Soft-ICE BPX C=50 (break every 50 hits)

placed on the ARPL location is triggered so frequently that you can’t

accomplish any work in Windows. *

These ARPL V86 breakpoints are at the very foundation of Windows,

even on a pure Win32 Windows 95 version. But if you don’t believe me,

here’s an experiment you can try: Set SystemROMBreakPoint=off in

SYSTEM.INI, restart Windows 95, figure out where in low memory
Windows has located the crucial ‘c’/ARPL/63h byte (you can run the

WINBP program discussed next to find it), close down everything that’s

not a Win32 application, use Soft-ICE to change the byte to something
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other than ‘c’/ARPL/63h, and see Windows immediately blow up. Yes,

even the purest Win32 Windows 95 system depends on V86 breakpoints.

(And yes, you ’re much better off with SystemROMBreakPoint=on.)

Now, don’t all you OS/2 fans out there start snickering about how
ridiculous Windows is because it’s built using illegal instructions. OS/2

2.x uses the same scheme, and you can look it up:

VDM breakpoints are used by the 8086 emulation component to control execution

flow when in v86 mode. The ARPL instruction is inserted into the VDM's interrupt

vector table and interrupt stack frame when VDM breakpoints are set. Execution of

the ARPL instruction in v86 mode causes a general protection fault [actually, an ille-

gal opcode fault], and the system ultimately vectors to the 8086 emulation compo-

nent. VDM breakpoints are used to transition from v86 mode in a VDM to the MVDM
kernel running in kernel mode.

— Harvey Deitel and Michael Kogan, The Design of OS/2, p. 297.

The word ultimately in the quote is quite appropriate. Much like the

path from one topic to the next in this book, the path from an ARPL
instruction to the appropriate 3 2 -bit callback is anything but direct. For

example, when a DOS application calls an entry point returned from

INT 2Fh function 1684h, it executes the ARPL, which causes an INT 6,

which lands in VMM, which passes the call off to the appropriate VxD
V86 API handler. Those readers who played the Milton-Bradley game

Mousetrap! in their youths or who have examined the cartoons of Rube

Goldberg will be well equipped to understand this flow of control.

Let’s see how all this helps us understand what’s going on when

IFSHLP calls into IFSMgr back (way back) in Figure 8-12. There is a

single-instruction transition from the ARPL at FBCA:23A2 to the INT
06h illegal-opcode handler at VMM+240h. VMM must now figure out

that it’s dealing with a V86 callback and not with a genuine illegal

opcode. It does this by taking the address at which the fault occurred

(Client_CS « 4 + Client_EIP) and comparing this with (in this case) the

number FE042h. Any illegal-opcode fault coming from this address is

deemed a V86 callback.

NowVMM must figure out which 3 2 -bit protected-mode callback

goes with this V86 callback. This at first glance seems impossible, as

we’ve just seen, all V86 callbacks point to the same byte. Only the super-

ficial segmentioffset form of their address differs. However, this superfi-

cial segmentroffset form is sufficient. In Figure 8-12, we can see VMM
take the faulting Client_CS (FBCAh in this example) and subtract a num-

ber (here, FB04h) that is the base segment for all V86 callbacks. VMM
patches this number into its own code (see the SUB ECX, 0FB04h at
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VMM+93E in Figure 8-12) during initialization, after it’s figured out

where the V86 callback’s ARPL will be located. It also patches in the

linear address of the callback (see the CMP EAX, 0FE042 at VMM+937
in Figure 8-12).

In the IFSHLP/IFSMgr example in Figure 8-12, the superficial

address of the ARPF was FBCA:23A2. VMM verifies that FBCAh « 4 +

23A2h = FE042h, and then it subtracts FB04h from FBCAh, leaving

0C6h. This is the number of the V86 callback. VMM next uses this

number to index into a table ofV86 callbacks. In Figure 8-12, this table

is located at C41DB000h. Each entry is eight bytes: four bytes for the

address of the V86 callback and four bytes for optional reference data

thatVMM will pass to the callback.

VMM+929 MOVZX EAX . WORD PTR [EBP. Cl

VMM+92D MOV ECX , EAX

VMM+92F MOV EDX , [EBP . Cl i ent_E IP]

VMM+932 SHL EAX , 04

VMM+935 ADD EAX , EDX

VMM+937 CMP EAX , 000FE042

VMM+93C JNZ VMM+952

VMM+93E SUB ECX , 0000FB04

VMM+944 MOV EDX , [C41DB0 04+8* ECX]

VMM+94B JMP [C41DB000+8*ECX]

ent_CS] FBCAh

;;; 23A2h

;;; FBCA0 h + 23A2h = FE042h

all V 86 callbacks == FE042h

(NO JUMP)

;;; FBCAh - FB04 h (base) = 0C6h

; ; ; tabl e of V 86 CB ref data

;;; goto handler for this V 86 CB

We can examine this table with the PROTDUMP utility from the

Unauthorized Windows 95 disk:

C:\UNAUTHW\PROTDUMP>protdump

C41DB000

C41DB010

C41DB020

C41DB030

C41DB040

C41DB050

C41DB060

C41DB070

C022C708 C4520298

C0003268 0010B210

C0004184 0000005E

C0226A1C 00000208

C0228CE8 0010B210

C0229798 00000000

C022973C 00000000

C00699AC C006A774

c41db000

C0003244

C02200B8

C0227BBF

C0227348

C0229764

C022973C

C00026FC

C00699A8

-dword

0010B210

0010B210

00000208

00000208

00000000

00000000

00000000

C006A774

For example, Callback 0 is handled at C022C708h; the handler is

passed the reference data C4520298h. Given the callback number and the

V86 address of the first callback, we could figure out the V86 address cor-

responding to any other callback. However, this is sufficiently tedious—
and Windows breakpoints are sufficiently important— that it’s worth

having a dedicated program to dump out the callback tables.

WINBP.C in Fisting 8-6 is a protected-mode DOS program that

shows all V86 breakpoints, V86 callbacks, and PM callbacks. WINBP is

able to figure out both the size of the breakpoint table (this corresponds

to the MaxBPs= SYSTEM.INI setting, immortalized by Brian Livingston
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in his January 24, 1994 InfoWorld column, “Correct most Windows insta-

bility with just a single command”) and its location given nothing more

than one V86 callback and one PM callback, which WINBP can easily

get by calling INT 2Fh function 1684h for any arbitrary VxD known to

provide both a V86 and PM API.

Listing 8-6: WINBP.C

/*

WINBP.C -- Display Windows Breakpoints

Andrew Schulman, 1994

*/

#i ncl ude < s t d 1 i b . h>

//include <stdio.h>

//include <ctype.h>

//include <dos.h>

//include "dpmish.h"

//include "prot.h"

typedef void far *FP;

FP GetVxDAPI ( WORD vxd_id);

DWORD GetGDTSel ectorBase( WORD seg);

DWORD GetGDTSel ectorLimi t(W0RD seg);

//define PUT(s) { fputs ( s , stderr); fputs("\n", stderr); }

void fa i 1 ( const char *s, ...) { PUT(s); _dos_exi t( 1 ) ; }

static DWORD v86bp_lin, pmbp_base, bp_tab_lin;

static WORD pmbp_size, max_bps;

static int win_ver = 0;

//pragma pack ( 1

)

typedef struct { // V86/PM callback/breakpoint

union {

struct {

DWORD callback, refdata;

} CALLBACK;

struct {

DWORD brk_addr;

union {

struct { // better packing in Windows 95

WORD bp_num;

BYTE replaced;

} WIN4

;

struct {

BYTE replaced;

WORD bp_num;

} W I N 3 ;

} REPLBP

;
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BYTE ff;

} V86

;

} u;

// extra DWORD in debug?

} CB;

^define ARPL 0x63

^define INT30 0x30CD

int real _m a i n ( i n t argc, char *argv[])

{

FP v86_api

;

BYTE far *fp;

PUT
(

"WINBP -- Examine Windows Breakpoints and Callbacks");

PUT
(

"Copyri ght (c) 1994 Andrew Schulman. All rights reserved.");

PUTC'From \"Unauthori zed WindowsV (IDG Books, 1994 ) \n " )

;

\

if (! (v86_api = GetVxDAPI ( 5 ) ) ) // get any V86 callback

fail ("This program requires Windows Enhanced mode");

fp = (BYTE far *) v86_api

;

if (*fp ! = ARPL)

fa i 1

(

"Somethi ng wrong! 2F/1684/5 V 86 should return ptr to ARPL")

v86bp_lin = MK_LIN( v86_a pi )

;

printf("V86 breakpoints @ %081 Xh ('", v86bp_l in);

while ( ispri nt(*fp) ) { putchar(*fp) ; fp++; }

pri ntf
( "

' )\n" )

;

_asm mov ax, 1600h

_asm int 2fh

_asm mov byte ptr win_ver+l, al

return 0;

int pmode_mai n( i nt argc, char *argv[l)

{

CB far *cb_tab, far *cb;

FP pm_api

;

DWORD api_cb_addr;

WORD a va i 1 _bps

;

WORD v86_seg, v86_ofs, pm_seg, pm_ofs;

WORD f i r s t_v86_bp_s eg , f i rst_v86_bp_ofs

;

WORD 1 a s t_v86_bp_s eg , 1 ast_v86_bp_ofs

;

int verbose = 0;

i nt i

;

char *s = argv[l]

;

if ((argc > 1) &&

( ( s [0] == '-'
) ||

( s [0] == 7' )) &&

( (s[l] == ’V’)
j| (s[l] == 'V')))

verbose++;

if ( ! ( pm_api = GetVxDAPI (5) )

)

// get any PM callback
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fail ("This program requires Windows Enhanced mode");

if (*((W0RD far *) pm_a pi) != INT30)

fa i 1

(

"Something wrong! 2F/1684/5 PM should return ptr to INT 3 0
h

" )

;

pm._seg = FP_SEG(pm_api )

;

pmbp_base = GetGDTSelectorBase(pm_seg)

;

printfC'PM breakpoints @ %081 Xh\n"
,
pmbp_base);

pmbp_size = GetGDTSelectorFimit(pm_seg) + 1;

max_bps = (pmbp_size >> 1) - 0x100;

pri ntf
(

"MaxBPs = %u (%04Xh)\n"
, max_bps, max_bps);

1 ast_v86_bp_seg = v86bp_lin >> 4;

1 ast_v86_bp_ofs = v86bp_lin & 0x0 F

;

f i rst_v86_bp_seg = (v86bp_lin >> 4) - max_bps;

f i rst_v86_bp_ofs = v86bp_lin - ((DWORD) f i rst_v86_bp_seg << 4);

pri ntf
(

" Fi rst V 86 BP = %04X :%04X\n" , f i rst_v86_bp_seg , f i rst_v86_bp_of s )

;

printfC'Fast V 86 BP = %04X :%04X\n"
, 1 ast_v86_bp_seg , 1 ast_v86_bp_ofs )

;

bp_tab_lin = pmbp_base - (max_bps << 3);

if (bp_tab_lin & 0xFFF) // not on page boundary!

fail ( (bp_tab_lin & 0xFFF) == (max_bps * 4) ?

"books like Debug Windows has larger BPs?" :

"Can't get BP table address!");

printfC'BP table @ %081Xh\n", bp_t a b_l in);

i f ( ! verbose)

fail("\nRun WINBP -VERBOSE to list all breakpoints and callbacks");

cb_tab = (CB far *) map_l inear(bp_tab_l in ,
max_bps * sizeof(CB) )

;

if (! cb_tab) fail
(

"Couldn't map callback table!");

pri ntf
(

"\nV86 Breakpoi nts : \ n" )

;

printfC'BP # V 86 addr Repl CB # Callback Ref Data \n " )

;

pri ntf ( " \
n

" )

;

for (i=0, cb=cb_tab; i<max_bps; i++, cb++)

{

if (cb->u.V86.ff == 0xff)

{

WORD bp_num;

BYTE replaced;

if (cb-)u. V86.brk_addr > 0xl010FFEFF) // only V86 mode mem

continue; // skip bogus entries

if (win_ver < 4)

{

bp_num = cb->u. V86.REPLBP.WIN3. bp_n um

;

replaced = cb->u. V86. REPLBP.WIN3. replaced;

el se

{

bp_num = cb->u.V86. REPLBP.WIN4. bp_num;

replaced = cb->u. V86. REPLBP.WIN4. replaced;
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pri ntf
(

"%04X %081 X %02X %04X

i

,

cb->u . V86 . brk_addr

,

repl aced

,

bp_num)

;

if (bp_num <= max_bps)

pri ntf
(

"%081 X %081X".

cb_tab [ bp_num] . u . CALLBACK, cal 1 back

,

cb_tab[bp_num] . u . CALLBACK. refdata )

;

pri ntf
(
"\n" )

;

#i fdef SAN I TY_C HECK

{

BYTE far *fp = (BYTE far *) map_l i near(cb->u . V86 . brk_addr , 1)

if (! fp) fail
(

"Couldn't map breakpoint");

if (*fp ! = ARPL)

pri ntf
(

"Someth i ng wrong ! ! \n" )

;

f ree_mapped^l inear(fp);

1

#endi

f

1

if (Ctrl _c_h it)

goto done;

/* locate V86 , PM API 2f / 1684 callbacks */

api_cb_addr =

cb_tab[( ( FP_OFF(pm_api ) << 2) - 0x800) » 3] . u . CALLBACK . callback;

pri ntf
(

"\nV86 and PM cal 1 backs : \n" )

;

pri ntf
(
"BP # Callback Ref Data V86 PM \n " )

;

pri ntf ( "
\
n

" )

;

v86_seg = f i rst_v86_bp_seg

;

v86_ofs = f i rst_v86_bp_ofs

;

pm_ofs = 0x200;

for (i=0, cb=cb_tab;

i <max_bps

;

i++, cb++, v86_seg++, v86_ofs -= 0x10, pm_ofs += 2)

{

if (cb->u.V86.ff ! = 0xff)

{

if (cb->u. CALLBACK. cal Iback == 0)

continue; // skip blanks

pri ntf
(

"%04X %081 X %081 X %04X : %04X %04X:%04X",

i

,

cb->u. CALLBACK. cal Iback,

cb->u . CALLBACK. refdata

,

v86_seg, v86_ofs,

pm_seg, pm_ofs);

if (cb->u. CALLBACK. cal 1 back == api_cb_addr)

{

DWORD far *fp = (DWORD far *)

map_l i near(cb->u .CALLBACK. ref data , si zeof (DWORD) )

;
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if (! fp) fail ("Couldn't map API callback addr");

printfC' -> %081X", *fp); // show actual API callback addr

f ree_mapped_l i near(fp)

;

}

pri ntf
(

"\n" )

;

if (Ctrl _c_h i t

)

goto done;

done

:

f ree_mapped_l i near(cb_tab)

;

return 0;

}

// call the Windows "Get Device Entry Point Address" function

// Interrupt 2 Fh Function 1 684

h

FP GetVxDAPI (WORD vxd_id)

{

_asm {

push di

push es

xor di

,

di

mov es, di

mov ax

,

1 684 h

mov bx, vxd_i

d

i nt 2 f h

mov ax

,

di

mov dx

,

es

pop es

pop di

// return value in DX : AX

#pragma pack ( 1

)

typedef struct {

WORD rpl : 2;

WORD ti : 1;

WORD index : 13;

} SELECTOR;

typedef struct {

WORD 1 i mi t_l o ,
base_lo;

BYTE base_hi, rtsjo, 1 i mi t rts_h i ,
base_xhi

;

} DESCRIPTOR;

// Global Descriptor Table (GDT) register

typedef struct { WORD limit; DWORD base; } GDTR;



Unauthorized Windows 95

DESCRIPTOR far *get_gdt( WORD *pl i mi t )

;

void sgdt ( GDTR far *pgdtr);

static DWORD get_des c_ba se (DESCRIPTOR far *desc);

static DWORD get_desc_l i mi t( DESCRI PTOR far *desc);

DWORD GetGDTSel ectorBase( WORD seg)

{

SELECTOR sel = *( (SELECTOR *) &seg )

;

DWORD base;

if (sel .ti == 0) // GDT

WORD gd t_l i mi t

;

DESCRIPTOR far *gdt = get_gdt(&gdt_l i mi t)

;

if ((seg & ~8) > gd t_l i mi t

)

fail ("Invalid GDT selector");

base = get_des c_ba se (&gdt[sel . index] )

;

f ree_mapped_l inear(gdt)

;

}

else // LDT : oh what the heck, get it for them

base = GetSel ectorBase(seg)

;

return base;

DWORD GetGDTSelectorLimit(WORD seg)

{

SELECTOR sel = *( (SELECTOR *) &seg )

;

DWORD 1 i mi t

;

if (sel .ti == 0) // GDT

WORD gd t_l i mi t

;

DESCRIPTOR far *gdt = get_gd t ( &gdt_l i mi t)

;

if ( (seg & ~8) > gdt_l imit)

fail
(

"Invalid GDT selector");

limit = get_desc_l i mi t ( &gdt [sel . index] )

;

f ree_mapped_l inear(gdt)

;

}

else // LDT: oh what the heck, get it for them

limit = GetSel ectorLimit(seg)

;

return limit;

// when done, free with free_mapped_l inear

DESCRIPTOR far *get_gdt( WORD * p 1 imit)

{

DESCRIPTOR far *gdt;

GDTR gdtr;

WORD sel

;

/* get the linear base address and size (limit) of the Global

Descriptor Table (GDT), using the Intel SGDT instruction */

sgdt ( &gdt r )

;

gdt = (DESCRIPTOR far *) map_l inear(gdtr.base, gdtr. limit + 1)

if (! gdt) fail ("Couldn’t map GDT!");

* p 1 imit = gdtr. limit;

return gdt;
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void sgdt(GDTR far *pgdtr)

{

_asn les bx, pgdtr

_asm sgdt fword ptr es:[bx]

DWORD get_desc_base( DESCRI PTOR far *desc)

{

return ((DWORD) desc->base_xhi << 24L) +

((DWORD) desc->base_hi << 16L) + desc->base_l o

;

DWORD get_desc_l imit(DESCRIPTOR far *desc)

{

DWORD limit = ((DWORD) ( des c
- > 1 i mi trts_hi & 0X0F) << 16L) +

(DWORD) desc->l imi t_l o

;

if (desc-)l imitrt s_h i & 0x80) // page granularity

1 i mi t *= 4096

;

return limit;

I wish I had time to explain exactly how WINBP works, such as how it

calculates the MaxBPs= value and how it relates V86 breakpoints to V86
callbacks, but this would take many pages. Well okay, let me just give you

the formula used to calculate MaxBPs:

pm_api = GetVxDAPI ( 5 )

;

pm_seg = F P_S EG
(
pm_api )

;

pmbp_size = GetGDTSel ectorLimit(pm_s e g ) + 1;

max_bps = (pmbp_size / 2) - 0x100;

// get any PM callback

// get its segment (3Bh)

// get segment size

// get MaxBPs=

Calling INT 2Fh function 1684h (GetVxDAPI) in protected mode
will return a PM callback. All we’re interested in is the segment. All PM
callbacks come out of the same segment, and the size of this segment is

directly related to the MaxBPs value. It would be nice to get the size of

this segment with the GetSelectorLimit Windows API (or its DPMI
equivalent, INT 3 Ih function 8). However, these work only with the

Local Descriptor Table (LDT), and this segment’s selector is in the

Global Descriptor Table (GDT), so WINBP.C supplies its own Get-

GDTSelectorLimit and GetGDTSelectorBase routines (WINBP uses

the non-privileged SGDT instruction to access the GDT). Each PM
callback is two bytes (an INT 3 Oh instruction is CDh 3 Oh), so WINBP
divides the segment size by two. It then subtracts 0x100, because VMM
always reserves that amount (see Chapell, DOS Internals

, p. 71).

If you run WINBP, it spits out a few statistics:

V 86 breakpoints @ 000 FE042h ('chnologies Ltd.')

PM breakpoints @ C41DC0800h
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MaxBPs = 768 (0300h)

First V86 BP = FB04 : 3002

Last V86 BP = FE04 : 0002

BP table @ C41DB000h

It’s also useful to run WINBP when SystemROMBreakPoint=off:

V86 breakpoints @ 0001 D6C0h (
'

c
'

)

PM breakpoints @ C41DC800h

MaxBPs = 768 (0300h)

First V86 BP = 1A6C : 3000

Last V86 BP = 1D6C : 0000

BP table @ C41DB000h

If you run WINBP -VERBOSE, it prints out all V86 breakpoints and

all V86 and PM callbacks. It's useful to run the output through the

VXDNAME utility so that instead of addresses such as C00735ACh, you

can deal with addresses such as IFSMgr+4B0h. For example:

V 86 Brea

BP //

kpoi nts

:

V86 addr Repl CB # Cal 1 back Ref Data

02F1 000C0525 90 00CA SHELL. 10+01C C0500003

02F2 0001D73A 90 00C2 V86MMGR. 9+000 00000000

02F3 0001D731 90 00C1 V86MMGR. 3+131A 00000000

02F4 0001D72D FF 00C0 V86MMGR. 3+2777 00000000

02F5 0001D733 90 00BF V86MMGR.3+12F5 00000000

02F6 0001D72B 90 00BE V86MMGR. 3+12E0 00000000

02F7 0001D729 90 00BD V86MMGR.3+12C4 00000000

02F8 00000953 90 00A5 VKD.2+3B8 00000A17

02F9 0001DAFC 90 00A4 VMOUSE. 2+1154 00000000

02FA 0001DAF5 90 00A3 VMOUSE. 2+1 1 2 E 00000000

02FB 0001DADD 90 00A0 VDD+21B6 00000000

02FC 0001DAD6 90 009F VDD+2114 00000000

02FF 0001D6DC 00 008F VMOUSE. 2+118 00000000

V86 and PM callbacks:

BP # Cal 1 back Ref Data V 86 PM

0000 VMM. 9+264 C4520298 FB04 : 3002 003B : 0200

0001 VMM+2244 0010B210 FB05 : 2FF2 003B : 0202

0002 VMM+2268 0010B210 FB06 : 2FE2 003B : 0204

0003 VMM . 2+0B8 0010B210 FB07 : 2FD2 003B : 0206

> • • •

00C6 I FSMgr+4B0 00000007 FBCA : 23A2 003B : 038C

» • • •

00E5 VMM+32E4 VMM+DC44 FBE9 : 21B2 003B : 03CA > VMM+1A11

00E6 VMM+32E4 VPICD+1938 FBEA: 21A2 003B : 03CC > VPICD+F88

00E7 VMM+32E4 VTD+33C FBEB : 2192 003B : 03CE > VTD. 3+000

00E8 VMM+32E4 VDD+4AD4 FBEC : 2182 003B : 03D0 > VDD+2DA4

00E9 VMM+32E4 VM0USE+5EC FBED : 2172 003B : 03D2 > VMOUSE. 2+78C

00EA VMM+32E4 I0S+1A98 FBEE : 2162 003B : 03D4 > IOS. 2+1864

00EB VMM+32E4 D0SMGR+1C8 FBEF : 2152 003B : 03D6 > DOSMGR. 12+000

00EC VMM+32E4 SHELL+9E8 FBF0 : 2142 003B : 03D8 > SHELL. 2+0C5
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00ED VMM+32E4 VPOWERD+344 FBF1 : 2132 003B : 03DA -> VPOWERD. 2+000

00EE VMM+32E4 VXD LDR+084 FBF2 : 2122 003B : 03DC -> VXDLDR.3+1C9

00EF VMM+32E4 VC0MM+2CC FBF3 : 2112 003B : 03DE -> VCOMM . 2+1A8

00F0 VMM+32E4 CONFIGMG+30C FBF4 : 2102 003B : 03E0 -> CONFIGMG. 3+000

00F1 VMM+32E4 ENABLE+39C FBF5 : 20F2 003B : 03E2 -> ENABLE. 2+2C4

00F2 VMM+32E4 VCOND+060 FBF6 : 20E2 003B : 03E4 -> VCOND. 2+000

00F3 VMM+32E4 DSVXD+1EC FBF7 : 20D2 003B : 03E6 -> DSVXD+057

00F4 VMM+32E4 I FSMgr+2C18 FBF8 : 20C2 003B : 03E8 -> I FSMgr . 2+1CA7

00F5 VMM+32E4 WINICE+24F28 FBF9 : 20B2 003B : 03EA -> WI N ICE+7AC

00F6 VMM+32E4 VSHARE+3FC FBFA : 20A2 003B : 03EC -> VSHARE+290

00F7 VMM+32E4 VCACHE+5DC FBFB : 2092 003B : 03EE -> VCACHE+52D

00F8 VMM+32E4 VFINTD+25C FBFC : 2082 003B : 03F0 -> VFI NTD+022

00F9 VMM+32E4 VXD+320 FBFD : 2072 003B : 03F2 -> VXD+02A

00FA VMM+32E4 CR3+050 FBFE : 2062 003B : 03F4 -> CR3+002

00FB VMM+32E4 PSVXD+8DC FBFF : 2052 003B : 03F6 -> PSVXD+0E3

00FC VMM+32E4 VTD+340 FC00 : 2042 003B : 03F8 -> VTD. 3+000

The first section shows V86 breakpoints. For example, recall the

earlier quotation from the DDK documentation about how the V86-

MMGR VxD uses a V86 breakpoint to take over XMS. Now that we

have WINBP, it’s easy to see how this works. First, use a debugger to call

INT 2Fh function 43 lOh (Get XMS Driver Address) and walk the XMS
handler chain (see Chappell, DOS Internals

, pp. 505-512, for a good

explanation of this little-known aspect of XMS):

C : \>symdeb

-a

7C0D:0100 mov ax, 4310

7C0D : 0103 int 2f

7C0D : 0105

P

AX=4310 BX=0000 CX=0000 DX=0000 SP=82E2 B P= 0 0 0 0 S I =0000 D I =0000

DS=7C0D ES=7C0D SS=7C0D C S=7 C 0 D IP=0103 NV UP El PL NZ NA PO NC

7C0D : 0103 CD2F INT 2F

P

AX=4310 BX=00CF C X =0 0 0 0 DX=0000 SP=82E2 B P= 0 0 0 0 S I =0000 D I =0000

DS=7 C0D ES=0313 SS=7 C0D C S=7 C 0 D IP=0105 NV UP El PL NZ NA PO NC

7C0D : 0105 0000 ADD [BX+SI ] , AL DS : 0 0C F=0 0

-u es:bx

0313 : 00CF EA45006F1D JMP 1D6F : 0045

-u 1 d 6 f : 4 5

1D6F : 0045 EB03 JMP 004A

1D6F : 0047 90 NOP

1D6F : 0048 90 NOP

1D6F : 0049 90 NOP

1D6F : 004A 63 DB 63

There’s ARPL (which SYMDEB outputs as DB 63) at 1D6F:004A.

lD6F0h + 4Ah = lD73Ah. Sure enough, WINBP can tell us about this

V86 breakpoint at linear address lD73Ah:
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C: \ UNAUTHW\WINBP>wi nbp -verbose
|

grep 1D73A

02F2 0001D73A 90 00C2 C0239EBC 00000000

C: \UNAUTHW\WINBP>wi nbp -verbose
|

grep 1D73A
|

vxdname

02F2 0001D73A 90 00C2 V86MMGR. 9+000 00000000

What all this means is that there’s a V86 breakpoint on lD73Ah (we

knew that!) corresponding to V86 callback 90h, that ARPL replaced

the byte C2h, and that C0239EBCh (or offset 0 in segment 9 of V86-

MMGR) is the XMS handler.

Now we can put a breakpoint (a debugger breakpoint, I mean) on

C0239EBCh, do something that uses XMS, and see if the breakpoint is

triggered. I ran the DOS MEM utility, which among other things reports

the amount of available XMS memory. Sure enough, the breakpoint in

V86MMGR was triggered, and I could see a variety ofXMS calls coming

into V86MMGR.
For example, there was a call to XMS function 6 (Local Disable A20),

followed by one to XMS function 5 (Local Enable A20). On receipt of

these XMS calls, V86MMGR turned around and called the VMM_
MMGR_Toggle_HMA service. Actually, these two calls have nothing in

particular to do with the DOS MEM utility; for reasons we don’t have

time to get into here (but see Chappell, DOS Internals
, pp. 207-209),

DOS calls these functions whenever it loads an executable. These calls,

from deep inside the DOS kernel, end up being serviced in 3 2 -bit

protected mode by _MMGR_Toggle_HMA.
MEM itself called XMS function 8 (Query Free Extended Memory).

To service this call, V86MMGR in turn called PageSwap_Get_Version,

PageSwap_Test_IO_Valid, and _PageGetAllocInfo. Once again
,
DOS ends

up calling Windows.

Next, let’s look at the V86 and PM callbacks section of the WINBP
output. Much earlier in this long digression on V86 callbacks, the

VXD86API program revealed the presence of some V86 VxD APIs:

000 1 h FBE9 : 21B2 FE042 63 ; ; ; VMM

00 1 5h FBEF : 2152 FE042 63 ::: DOSMGR

0027 h FBF2 : 2122 FE042 63 VXDLDR

We know that addresses such as FBE9:21B2 don’t contain the actual

code that services the V86 VxD API request. Instead, there’s nothing at

these addresses but ARPLs. (In fact, as we saw, it’s all the same ARPL at

the same linear address.) So where is the actual code that provides

VMM’s or DOSMGR’s or VXDLDR’s V86 API? Just search through

WINBP’s output for an address such as FBE9:21B2 or FBEF:2152, and

you’ll find the location where the 3 2 -bit protected-mode code resides:
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00E5 VMM+32E4 VMM+DC44 FBE9 : 21B2 003B : 03CA - > VMM+1A1

1

00EB VMM+32E4 D0SMGR+1C8 FBEF: 2152 003B-.03D6 - > DOSMGR. 12+000

00EE VMM+32E4 VXDLDR+084 FBF2 : 2122 003B : 03DC -
> VXDLDR. 3+1C9

Let’s look briefly at DOSMGR. In Chapter 4, we saw that DOS in

certain situations will call function 1 (Set Focus) of DOSMGR’s V86
API. Examining the code at DOSMGR. 12+0 (here located at

C023DAD0h), we see DOSMGR taking the function number specified

in AX, and using it to index into a table of function pointers:

:u C023dad0

0028 : C023DAD0 MOVZX

0028 : C023DAD4 CMP

0028 : C023DAD9 JAE

0028 : C023DADB CALL

0028:C023DAE2 RET

EAX . WORD PTR [ EBP . Cl i ent_AX]

EAX ,06

C023DAE3

[C02C380C+4*EAX]

We can use the PROTDUMP utility to examine this table; the CMP
EAX,06 tells us that DOSMGR’s V86 API supports six functions:

C : \UNAUTHW\PROTDUMP>protdump c02c380c -dword

C02C380C
|

C023DAEE C023DAFD C023DB07 C023DB24

C02C381C
|

C023DB3D C023DB42

The code that DOS sometimes calls for function 1 is quite simple; it

basically just calls the VMM System_Control service with AX=0Fh:

:u c023dafd

0028 : C023DAFD CALL C023B524

0028 : C023DB02 AND BYTE PTR [EBP+2CLFE

0028 : C023DB06 RET

:u C023b524

0028 : C023B524 MOV EAX . 0000000F

0028 : C023B529 XOR EDX, EDX

0028 : C023B52B XOR ESI . ESI

0028 : C023B52D INT 20 VXDCall System_Control

System_Control sends a control message to every VxD in the system.

Message OFh is Set_Device_Focus. IfEDX is zero (as it is here), all VxDs

receive the focus. Incidentally, there’s a nearly identical function, INT
2Fh function 168Bh, that uses System_Control Set_Device_Focus to set

the input focus to a specified VM. David Long discusses this function in

detail in an excellent article, “TSR Support in Microsoft Windows Ver-

sion 3.1,” on the MSDN CD-ROM. According to Long, “This service

has some inherent risks” when setting the focus to a windowed DOS box

because the keyboard and execution focus are set to the specified VM,
but (because the DOS box is windowed) the display and mouse focus are

set to the System VM. Long’s article includes “some rainy-day experi-

ments you can perform with SetFocus in the privacy of your own home.”



Unauthorized Windows 95

At any rate, MS-DOS’s call to DOSMGR, made via an ARPL instruc-

tion, ends up calling System_Control Set_Device_Focus. Repeating the

point made in Chapter 4, the fact that DOS can call Windows is an excel-

lent example of how the old “Windows runs on top of DOS” description

was never very useful.

Popping back to our IFSHLP example, after this long but necessary

digression about Windows breakpoints and callbacks, let’s see what

WINBP can tell us about that ARPL located at FBCA:23A2 way back in

Figure 8-12:

; from trace in Figure 8-12

FBCA: 23A2 ARPL [BX+SI+6E] , BP ;;; V86 callback at FBCA : 23A2

; from WINBP
|

VXDNAME

00C6 I FSMgr+4B0 00000007 FBCA: 23A2 003B : 038C

Sure enough, WINBP tells us that when IFSHLP executes the

ARPL at FBCA:23A2, it will call into IFSMgr+4B0, just as we saw in

Figure 8-12. Ta-da!

Now that IFSHLP has passed the INT 2 lh function OBh call up to

IFSMgr, IFSMgr deals with the upward-reflected INT 2 1 h call in what-

ever way it sees fit. In some cases, IFSMgr will absorb the call in 3 2 -bit

protected mode. In other cases, IFSMgr will want to reflect the call back

down to the DOS interrupt chain in V86 mode. Of course, it does no

good to send it back down to the head of the INT 2 lh chain, because

then IFSHLP will see it again. IFSMgr needs to send the call to the

INT 2 lh handler that was installed before IFSHLP. In Figure 8-12, you

can see IFSMgr getting ready to do this by passing the previous handler’s

segment:offset address to the Build_Int_Stack_Frame service. IFSMgr

knows the address of the INT 2 lh handler installed before IFSHLP
because IFSHLP keeps this address in a table; it gives IFSMgr a pointer

to this table.

IFSMgr now returns to VMM, which eventually does an IRETD. But

instead of returning to whatever V86 code originally issued the INT 2 lh

that got us started on this whole mess, the IRETD instead “returns” to

the address that IFSMgr passed to Build_Int_Stack_Frame. This takes us

to the INT 2 lh handler installed before IFSHLP. Even when an INT 2 lh

call is sent down to DOS (as happens with the DOS box’s frequent calls to

function OBh), the call often bops back into VxD-land for some handling.

To make a ridiculously long story short, one role for IFSHLP.SYS is

to prevent certain reflected INT 2 lh file calls from reaching DOS. As

Geoff Chappell has put it:
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Int 21h etc. can be reflected into the VM, knowing that IFSHLP is there to wrest con-

trol back to ring 0 before it reaches the nasty, ugly, old DOS kernel. IFSHLP is the

cut-off: everything that hooks int 21h after it gets supported, everything that hooked
before IFSHLP gets replaced.

IFSHLP.SYS wears several other hats, including keeping simulated

INTs (see the “Replacing Real-Mode Code: It’s Not New” section later in

this chapter) from reaching DOS. IFSHLP.SYS also hooks several other

interrupts besides INT 21h, including INT 08h, 17h, 2Ah, and 2Fh.

Figure 8-13 presents a schematic view of the path taken by a V86 INT
2 lh call in Chicago.

INT 2 1 h in DOS program

-> VMM

-> V 86 hook int chain

-> ... (other VxD INT 2 1 h hooks, like VMPoll and SHELL) ...

-> IFSMgr

if (VM hooked INT 21h via 21/25)*

-> local INT 2 1 h hookers (such as TEST21)

-> global INT 21 h hookers (such as V86TEST)

-> IFSHLP.SYS

-> (via ARPL) VMM

-> IFSMgr

if (file function that IFSMgr emulates)

emulate it

el se

pass to V 86 handler underneath IFSHLP

*This is the test IFSMgr uses, but it probably ought to instead be:

if (INT 2 1 h vector != original IFSHLP.SYS INT 2 1 h vector)

Figure 8-13: The path of a V86 INT 21h call in Chicago.

One important point: The TEST2 1 results back in Figure 8-10

showed that even with INT 2 lh calls reflected to INT 2 lh hookers,

32BFA is still significantly faster than letting DOS handle the file I/O. In

addition, whereas TEST21 -MYSETVECT 3000 > FOO.BAR took 12

seconds in one test under Chicago, TEST21 3000 > FOO.BAR (without

-MYSETVECT) took only 3 seconds longer. I was quite surprised by

this, and I asked Geoff Chappell what he made of the fact that reflected

INT 2 lh calls, blocked and rerouted by IFSHLP, were nearly as fast as

absorbed INT 2 lh calls. Here’s his explanation:

Well, yes, I expect it to run nearly as fast. The reflection of interrupts into VMs is not

likely to be a serious delay in the overall context of DOS operations. 32BFA picks up

its performance gain by replacing the DOS kernel, which as we know executes large

tracts of code in critical sections and, worse, sees to its device driver calls one at a

time, always waiting for completion. True, write-behind disk caches help out with this

last matter by making it seem like the device driver has completed quickly — but
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this works only for write operations, which are relatively infrequent compared to

reads (for which waiting is inescapable).

By now, you no doubt feel that Windows 95 ’s solution to the “support

DOS TSRs without calling DOS” problem is far from ideal. Why all this

complexity? It’s interesting to contrast how Microsoft handled the equiv-

alent problem in 3 2 -bit disk access (32BDA).

Just as 32BFA bypasses DOS for file-related ENT 2 lh calls, 32BDA
bypasses the BIOS for INT 13h direct disk access. And, just as with

32BFA, Windows must somehow try to support INT 13h hookers and yet

still keep INT 13h calls away from the BIOS. But, in contrast to INT 2 lh

and the situation with 32BFA, there is a simple solution for INT 13h: The
I/O Supervisor (IOS) VxD, previously known as BLOCKDEV, uses an

undocumented call, INT 2Fh function 13h, which manipulates the INT
13h chain underneath IO.SYS’s handler. This function is described in

great detail in Geoff Chappell, DOS Internals, pp. 57-95 (also see the

DDK documentation for the Intl3_Hooking_BIOS_Int and Intl3_

Unhooking_BIOS_Int services, which IOS/BLOCKDEV calls when

manipulating the INT 13h chain). Figure 8-14 shows the route taken by

an INT 13h call under 32BDA.

INT 1 3 h in DOS program

-> VMM

-> VFD (Virtual Floppy Device sees if it's INT 1 3 h for a floppy)

-> BLOCKDEV/ IOS

-> any INT 1 3 h hook in DOS -> ...

-> Handler installed with INT 2 Fh function 13h

-> BLOCKDEV/ IOS

Figure 8-14: The path of an INT 13h with 32-bit disk access.

Incidentally, this form of INT 13h handling means that if we wanted

to write a TEST13 program to show off 32BDA, similar to TEST2

1

for 32BFA, we couldn’t just hook INT 1 3 h. We would have to use INT
2Fh function 1 3 h. Unfortunately, MS-DOS does not instance (see

Chapter 4 on instance data) the INT 13h hook function pointer it

keeps at 0070:00B4, and so calling INT 2Fh function 13h under Win-
dows makes it blow up. Once again, I asked Geoff Chappell about this.

Here’s his response:

Yes, it is as simple as having Windows instance the pointers in 10.SYS. Really, I

think I0/MSD0S should do this via 2F/1605.... If you want to write a VxD to support

2F/13 being used by a VM to install local code as an int 13h handler under 10.SYS,

then you must either know/determine the addresses of the relevant pointers (see
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I0S.386 for an example of how to test the assumptions about 0070:00B0/0106
and 0070:00B4) or hook 2F/13 in the V86 int chain (and then confront the compli-

cated problem of emulating the interface as if it had been local all along). I claim

that doing all this is Windows’ responsibility, precisely because a program using

2F/13 in a VM cannot arrange on its own for the interface to be usable.

Especially since Windows 95 sports a supposedly new version of DOS
(WINBOOT.SYS), it’s a shame that INT 2Fh function 13h can’t be

safely called within a Windows DOS box and that there is no equivalent

INT 2Fh function 2 lh interface to manipulate the INT 2 lh chain. In the

absence of such a function, IFSHLP.SYS acts as sort of a DOS equivalent

to INT 2Fh function 13h. Here’s Geoff Chappell again:

IFSHLP’s only possible claim to existence is to terminate the int 21h chain in virtual

machines. 32BDA aims to replace the BIOS’s int 13h handling, much as 32BFA
aims to replace DOS’s int 21h. The end of the int 13h chain, that is, just before it

whizzes off to the BIOS, can be located easily, albeit through an undocumented inter-

face (int 2Fh function 13h). There is no obvious way to find the end of the int 21h

chain, that is, just before it reaches the DOS kernel. This is the only sensible role for

IFSHLP.

Some Microsoft developer offering silly excuses for WfW 3.11 claimed that the

choice was to reflect always or to reflect never— and that Microsoft was indeed

attending to concerns by offering the choice to enable/disable 32BFA.

Instead, when they get the interrupt in ring 0, they should look at the V86 int vector:

if it hasn’t been hooked away from IFSHLP, then sure, it would only hit performance

to reflect, but if someone has hooked it, then they can reflect into the VM and sup-

port the old software for the price of a slight hit. Instead, they’ve presented troubled

users with a stark choice between their old driver/TSR or the wonderful new 32BFA.

I wouldn’t put it past some people in Microsoft to have thought that the presumably

short-lived WfW 3.11 could not only keep the market interested while Chicago was

being developed but could also accelerate the death of these awkward DOS dri-

vers/TSRs and thereby give the Chicago developers less to worry about. You know

something, I think they’ve very nearly gotten away with it, too.

Certainly, Microsoft does want to move developers away from TSRs

and towards VxDs. For applications that need to track file access in Win-

dows 95, IFSMgr provides a new FileHook API, which can only be called

(directly, at any rate) from a VxD.

In truth, 32BFA in WfW 3.11 appears more and more to be a pre-beta

test for Windows 95. Microsoft’s ads for WfW 3.11 said that the product

was “powered by 32-bit technology from our ‘Chicago’ project.” Given

that Chicago was not even in alpha testing at the time, this should have

produced at least some concern about the state of the 32BFA code in

WfW 3.1 1, as should the description string “Win386 HPFS Driver (Pro-

totype)” in the WfW 3.11 commercial release of VFAT.386. Prototype?!
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Now, putting pre-alpha Chicago 32BFA code into WfW 3.11 was a

great way to get millions of users banging on the Chicago code. But it’s

not clear that these users should have had to pay for Microsoft’s proto-

type code, especially when the standard Microsoft response to any com-

plaints about 32BFA in WfW 3.11 was that the user should disable it. As

one Microsoft representative put it in the WINSDK forum on Com-
puServe, 32BFA is “a nice feature, IMHO [in my humble opinion], but it

is kind of a case of ‘if it interferes with your life, disable it.’” This was

Microsoft’s major shipping version ofWindows at the time. In fact, as I

write this, WfW 3.11 with its prototype version of 32BFA is still

Microsoft’s major shipping version of Windows.

32BFA and networks, cd-rom. and Floppies

You may by now, have a nagging feeling about the TEST2 1 results we’ve

spent so long poring over. Although we’ve run TEST2 1 in a number of

environments— plain-vanilla DOS, DOS with a disk cache, WfW 3.11

with 32BFA, and Windows 95 — all of our file access has involved a hard

disk. Earlier, we did compare 32BFA on a DblSpace and non-DblSpace

(host) drive, but we haven’t said anything about other media, such as

floppy disks, CD-ROM, RAM disks, and most important of all, networks.

First, 3 2 -bit network file access bypasses DOS in the same way that

32-bit disk file access bypasses DOS. Under WfW 3.11, the message

“Some INT 2 lh are handled without calling DOS!” is produced both by

TEST2 1 running on a network server that’s running Windows NT
Advanced Server and by TEST2 1 running via peer-to-peer access on

another WfW 3.11 machine.

Should this come as any surprise? On the most prevalent networks for

the PC, NetWare 2 .v and 3.x, workstations run the NetWare shell,

NETX, which hooks INT 2 lh and largely replaces large chunks of DOS
(see Undocumented DOS

,
2d ed., pp. .195-205). You would expect network

file access to bypass DOS.
But the NETX approach of hooking INT 2 lh ahead of DOS, while

typical in the sense that NetWare is the dominant PC network, isn’t typical

when you look at the whole range ofPC networking software, including

NetWare 4.x. Rather than hooking INT 2 lh, workstation shells for DOS
are supposed to use the undocumented but well-known Network Redirec-

tor interface (see Undocumented DOS
,
2d ed., pp. 494-540, 769-783).
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The redirector operates underneath DOS: programs make INT 2 lh

file I/O calls to MS-DOS, and if the call is intended for a network drive,

DOS generates an INT 2Fh function 1 lh. Redirectors hook INT 2Fh,

look for calls to function 1 lh, and handle various subfunctions, such as

1 108h (Read from Remote File), 1 109h (Write to Remote File), 111 Bh
(Find First Remote File), and 1 1 ICh (Find Next Remote File). The redi-

rector generally sends this request over the network to another machine,

waits for the response, and returns from the INT 2Fh. DOS then passes

the information back to whoever made the original INT 2 lh call.

So, with 32BFA on network drives, we might have expected to see

INT 2 lh calls passed down to DOS, with network 32BFA possibly imple-

mented at the INT 2Fh function 1 lh level. Well, TEST21 shows that’s

not how it works, at least for network drives.

Microsoft’s CD-ROM Extensions (MSCDEX) also use the redirector

interface, and ifMSCDEX is loaded before WfW 3.11, IFSMgr passes

down all INT 2 lh calls (except attempted function 40h writes) involving

the CD-ROM drive. The INT 2Fh function 1 lh calls that DOS gener-

ates when it receives an INT 2 lh for a CD-ROM drive (or any redirector

drive, for that matter) are also passed down.

Curiously, in 32BFA under WfW 3.11 (but not in Windows 95), hard

disks are marked as network redirector drives. IFSHLRSYS has an INT
2Fh handler and can ship redirector calls over to IFSMgr, which also has

an INT 2Fh handler. This should all change in Windows 95, which has a

CD-ROM VxD driver that is supposed to replace MSCDEX by provid-

ing 3 2 -bit protected-mode CD-ROM access. (Actually, you can get that

today without Windows 95 by using the Cloaked version ofMSCDEX
that comes with Flelix Software’s Multimedia Cloaking product.

Returning to 32BFA on a true network drive (as opposed to CD-
ROM drives, which MSCDEX pretends are network drives), it’s impor-

tant to understand that applications still use INT 2 lh calls. Windows and

Win32 applications — both in Windows 3.x and in Windows 95 — use

the INT 2 lh interface either directly with an INT 2 lh or a DOS 3 Call or

indirectly with a Windows API function that in turn uses DOS (such as

the CommDlg functions GetOpenFileName and GetSaveFileName).

Anticipating somewhat the WV86TEST and WSPY2
1
programs dis-

cussed in Chapters 12 and 13, note that Windows applications accessing

files, including files on the network, think they’re calling DOS. For exam-

ple, while using WinWord to access a file on another machine, WISPY
logged a vast number ofINT 2 lh calls, including the following:
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<WI NWORD) (51)

<WINW0RD> ( 2 f

)

<WI NWORD) (la)

(WINWORD) (50)

(WINWORD) (4e)

(WINWORD) (3d)

GET PSP

GET DTA

SET DTA 4CCF : 79DA

SET PSP 00a

7

FIND FIRST WT_NEUHAUS\TRUDY\MSS\ANDREW\DIRTYWIN\JUNK.DOC

OPEN E:\MSS\ANDREW\DIRTYWIN\JUNK.DOC

Similarly, MS Mail uses INT 21h to access post-office files on the

server (which here happened to be running Windows NT):

(MSMAIL) (3d) OPEN \\progpressl\WGPO\nme\gal .nme

(MSMAIL) (3d) OPEN \\progpressl\WGPO\nme\admi n . nme

(MAILSPL) (3d) OPEN Wprogpressl\WGPO\gI b\master
.
gl

b

However, the WLOG212F program from the Unauthorized Windows

95 disk shows that calls to functions such as 3Dh and 4Eh are handled

inside Windows and aren't sent down to DOS. Functions 1Ah and 2Fh
\

for getting and setting the Disk Transfer Address (DTA) are also handled

inside Windows. But, WLOG212F does show that functions 50h and

5 lh for getting and setting the current PSP are passed down to DOS.
Since IFSMgr isn’t sending network file INT 2 lh calls down to DOS,

it’s not surprising that almost no INT 2Fh function 1 lh redirector calls

are generated, either.

So who handles 32BFA over the network? INT 2 lh calls that target

network drives go to IFSMgr, as do all INT 2 lh calls. IFSMgr, as its

name implies, isn’t tied to hard-disk access: it is an Installable File System

(IFS) Manager. Interestingly, the old network redirector interface was

once called IFS too, so IFSMGR is really the successor to the network

redirector, except that now all file-system access, including seemingly

built-in access like that involving hard disks, requires an installable

file-system driver.

VFAT, the VxD that handles 32BFA to hard disks using the old DOS
File Allocation Table (FAT) file system, is just one driver that plugs into

IFSMgr. There are others, including VREDIR, which is the Virtual

Redirector device, and VSERVER, which acts as a peer server, managing

file I/O requests from other machines on the network.

How about 32BFA and floppy disks? In WfW 3.11, 32BFA isn’t sup-

ported for floppies. IfTEST2 1 is run off a floppy disk, it takes seemingly

forever to run. But it eventually finishes and produces the message: “INT
2 lh appears to be handled in the normal way.”

Windows 95 does support 32BFA for floppies. Running TEST21 off a

floppy under Windows 95 takes about half the time as under WfW 3.11,

and TEST21 -MYSETVECT produces the same “Some INT 2 1 h are

handled without calling DOS!” message as seen when running TEST21
on a hard disk.
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Replacing Real-Mode code: it’s not new
The two sample VxDs in this chapter, CURRDRIV (Listing 8-3) and

INTVECT (Listing 8-4), which handle certain DOS calls entirely in

3 2 -bit protected mode and which induce TEST2 1 to output “Some INT
2 Ih are handled without calling DOS!”, could have been written and run

under Windows 3.0 Enhanced mode. VMM and any VxD — whether

one supplied by Microsoft or written by a third-party developer— have

always had full discretion over whether interrupts should be reflected to

V86 mode {hack to V86 mode in the case of INTs originating there) or

consumed in 3 2 -bit protected mode.

So why do WfW 3.11 and Windows 95 seem so new and different

from previous versions of Windows? Largely because 32BFA finally

makes extensive use of this capability to consume or absorb interrupts

rather than pass them down to V86 mode. The capability is nothing new;

what’s new is nothing more (but also nothing less) than the extent to

which WfW 3.11 and Windows 95 employ it.

The point has been made several times that 32BFA’s ability to bypass

DOS isn’t based on any new technology; it represents nothing more (but

also nothing less) than the exploitation of a long-hidden capability. Still,

you might wonder why so little fuss was made about Windows’ capabil-

ity to bypass the DOS interrupt chain. Surely we would have heard

about this!

Well, actually, it was fairly well-known that Windows would some-

times refuse to let DOS software see an interrupt. But instead of being

viewed as the first sign that Windows was becoming a genuine operating

system, this behavior was viewed as ... a bug! Every now and then, some-

one with a DOS TSR would complain about some of the INT 2Fh func-

tion 16h services provided by Windows— namely, how come their DOS
TSR didn’t see them?

For example, when I was at Phar Lap Software in March 1990, some

of us sent Microsoft a list of bugs and problems we ran into while bring-

ing up 286 1 DOS-Extender under Windows 3.0 enhanced mode. Bug #4

on this list was:

Windows hooks interrupt 2Fh through the IDT rather than through the real mode

interrupt vector. This means that INT 2Fh must be called through an INT instruction

and not by simulating an INT instruction with a PUSHF followed by a far call. This

bug also breaks trace packages which monitor INT calls like the INTRSPY utility

found in Undocumented DOS.
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In a way, this “bug,” when applied to INT 2 1 h file I/O calls, is called

32BFA. Vendors frequently claim that what users call bugs are actually

features. In this case, the claim would have been somewhat accurate!

Whether or not it’s a bug (as we’ve seen with IFSHLP.SYS, Windows

can bypass DOS and still reflect interrupts to TSRs that need to see

them), this INT 2Fh behavior did reflect an inherent feature of Win-

dows Enhanced mode. It was our first glimpse at how Windows could

pull away from its DOS moorings.

But the bug report nonetheless raises an interesting point: In V86
mode, since interrupts are hooked via the IDT, an INT instruction can

behave quite differently from a PUSFIF followed by a far CALL. For a

variety of reasons, DOS software sometimes uses the PUSHF/CALLF
combination instead of INT, and many DOS programmers are accus-

tomed to thinking of an INT as nothing more than a fancy way of doing

a PUSHF/CALLF. But in V86 mode, where the INT instruction vectors

through the IDT, this equivalence no longer holds: the processor doesn’t

know that your PUSHF/CALLF is really an INT in disguise.

Furthermore, if the INT handler installed in the IDT doesn’t reflect

interrupts back to V86 mode, the two methods of calling the interrupt

can get different results!

As an example, consider one of the Windows INT 2Fh services that

we at Phar Lap were complaining about. Function 1600h indicates

whether Windows Enhanced mode is running. A return value of 0 or

80h in AL indicates that Enhanced mode isn’t running; any other return

value indicates the Windows version number. For example, Windows 95

(also known as Windows 4.0) returns AX=0004h.

To demonstrate, TEST1600.C (Listing 8-7) calls INT 2Fh function

1600h, both with an INT and with the C expression (*intfunc)(), where

intfunc is declared with the _interrupt keyword, so the compiler automat-

ically generates the PUSHF/CALLF (unfortunately, it forgets to also

generate the CLI instruction, which I’ve added by hand). TEST1600 also

uses the once-popular int86 function, because some compiler run-time

libraries in the past implemented this with a PUSHF/CALLF.

Listing 8-7: TEST1600.C

/*

TEST1600 . C -- Show that under Windows, PUSHF/CALLF != INT

Andrew Schulman, 1994

bcc testl600.c



Chapter 8: The Case ofthe Gradually DisappearingDOS

//include <stdlib.h>

//include <stdio.h>

//include <dos.h>

mai n(

)

{

union REGS r;

void (interrupt far *int2f ) ( void) ; // will do pushf

unsigned char retval
, ret va 1 2

;

_a$m mov ax, 1 600h

_asm int 2fh

_asm mov retval , al

p r i n t f
(

"Via INT, 2F/1600 returns %02Xh\n", retval);

// sometimes i n 1 8 6 ( ) is implemented with a far call!

r.x.ax = 0x1600;

int86(0x2f, &r, & r )

;

pri ntf
(
"Via i n 1 8 6 , 2F/1600 returns %02Xh\n", r.h.al);

i n 1 2 f = (void (interrupt far *)(void)) _dos_getvect( 0x2f )

;

_asm mov ax, 1 600

h

_asm cl i // Borland forgets this for ( *i ntfunc ) (

)

(*int2f)(); // equivalent to pushf, far call

_asm mov retval 2 , al

printfCVia CALL, 2F/1600 returns %02Xh\n", ret v a 12);

pri ntf
(

" \nPUSHF/FAR CALL %s INT\n"

,

( ret v a 1 2 == retval) ? "same as" : "different from");

return 0;

This is a straightforward, if slightly contrived-looking, program. If

Windows Enhanced mode isn’t running, the three different ways of call-

ing INT 2Fh function 1600h all produce the same result: AL=0, indicat-

ing that, indeed, Windows Enhanced mode is not running.

When Windows Enhanced mode is running, you would hope that all

three methods of calling the function would reflect this fact. But that’s

not what happens:

C : \UNAUTHW>testl600

Via INT, 2F/1600 returns 03h

Via int86, 2F/1600 returns 03

h

Via CALL, 2F/1600 returns 00h

PUSHF/FAR CALL different from INT

When the Get Enhanced Mode Windows Installed State function is

called with PUSHF/CALLF, the return value is 0, indicating that Win-

dows isn’t present! What’s happening is that, although every interrupt

goes into VMM, CALLF does not. VMM contains the handler for these
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Windows INT 2Fh services. VMM never sees the CALLF and never ser-

vices the request, so it appears as if Windows is not present. Windows
relies on the V86 IDT mechanism to handle its INT 2Fh calls.

It might seem contrived to simulate an interrupt with (*intfunc)()

instead of just using a genuine interrupt. However, there are sound rea-

sons why DOS software sometimes simulates interrupts. After all, Win-

dows itself provides a Simulate_Int service; to implement this service

in V86 mode, Windows basically grabs function pointers right out of

the WT.
For an example of why DOS software sometimes simulates interrupts,

look at the INTCFIAIN utility in Undocumented DOS (2d ed., Chapter 6).

INTCHAIN uses single-step debugging mode to trace through and dis-

play interrupt chains. The code contains the comment, “single-step

doesn’t go through INT, so turn the INT into a PUSHF and far CALL”
(p. 305). Not so fast! This can produce misleading results when running

under Windows because INT vectors through the IDT and PUSHF/
CALLF does not. (Perhaps even more misleading, though, is the real-

mode INTCHAIN program’s failure to show the interrupt’s trip through

3 2 -bit protected mode.)

Debuggers commonly use simulated INTs to achieve the effect of

tracing through an INT instruction. Under Windows Enhanced mode,

however, this can produce incorrect results. Using DEBUG to trace

through a call to INT 2Fh function 1600h, for example, produces

AX=1600h instead of something like AX=0B03h (Windows 3.1 1) or

AX=0004h (Windows 4.0):

C : \UNAUTHW>debug

;;; Assemble an INT 2 Fh function 1 600 h call

-a

77B1 : 0100 mov ax, 1600

77B1 : 0103 int 2f

77 B1 : 0105

: : : Step

-P

(proceed )

AX=1 600 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 S I = 0 0 0 0 D I =0000

DS=7 7 B

1

ES=77B1 SS=77B1 C S=7 7 B

1

I P=0 103 NV UP El PL NZ NA PO NC

77B1 : 0103

-P

CD2F INT' 2F

AX=0004 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 S I =0000 D I =0000

DS=7 7 B

1

ES=77B1 SS=7 7 B

1

CS=77B1 I P=0 105 NV UP El PL NZ NA PO NC
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;;; Correct result came back: AX=0004

;;; Now reset instruction pointer, and *TRACE* instead of step

-rip

IP 0105

: 0100

-t

AX= 1600 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000

DS=7 7 B 1 E S=7 7 B 1 SS=77B1 CS=77B1 IP=0103 NV UP El PL NZ NA PO NC

77B1 : 0103 CD2F INT 2F

-t

Don't need to see any more here, so go to other side of INT 2 Fh

-g 7 7 b 1 : 0105

AX = 1 600 BX=0000 C X =0 0 0 0 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000

DS=77B1 E S=7 7 B 1 SS=77B1 CS=77B1 IP=0105 NV UP El PL NZ NA PO NC

77B1 : 0105 CD21 INT 21

::: Yikes! Came back with wrong answer: AX=1600 instead of AX=0004,

even though all we did was T instead of P in DEBUG!

Also
,
we noted earlier that some compiler run-time libraries imple-

ment the int86 function using a simulated INT. This is because the inter-

rupt number for the Intel INT instruction must be included as part of

the instruction itself; for example, INT AX is not a valid instruction.

Thus, functions that take the interrupt number as a parameter (such as

int86) must either use self-modifying code to smack the interrupt number

into the instruction or use PUSHF/CALLF to simulate the INT. Today,

most versions of int86 use self-modifying code. Perhaps the vendors

discovered the hard way that, under Windows, PUSHF/CALLF != INT.

How does 32BFA cope with DOS programs that use PUSHF/CALLF
to make file I/O calls? Again, IFSHLP.SYS comes to the rescue: It is sit-

ting in the appropriate place to deliver these calls to IFSMgr.

Another Old Enampie: IEST1600

The V86TEST program in Chapter 10 has an INT 2Fh handler. While

Windows is running, V86TEST calls INT 2Fh function 1683h (Get

Current Virtual Machine ID) — from inside the INT 2Fh handler! Eve

seen commercial code that does the same thing, blithely calling Windows

INT 2Fh function 16h services from inside an INT 2Fh handler, appar-

ently without any awareness that this is a bizarre thing to do. How come

this doesn’t cause an endless loop?
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Because, if Windows is running, the INT 2Fh vectors through the

IDT to VMM, and for most INT 2Fh function 16h requests, VMM
immediately services the request and doesn’t bother to reflect the call

back down to a caller such as V86TEST. The program’s INT 2Fh han-

dler never sees its own call to function 1683h.

To demonstrate this long-standing Windows behavior, TEST2F16.C
(Listing 8-8) both generates and intercepts INT 2Fh function 16h calls,

similar to what TEST2 1 does with INT 2 lh calls.

Listing 8-8: TEST2F16.C

/*

TEST2F16.C -- Show that Windows doesn't reflect INT 2 Fh func 1 6

h

to V86 mode

Andrew Schulman, 1994

bcc -2 -P- test2f 16 .

c

*/

#i ncl tide <stdl ib. h>

//include <stdio.h>

//include <dos.h>

typedef unsigned short WORD;

typedef unsigned long DWORD;

//pragma pack(l)

typedef struct {

//ifdef TURBOC

WORD bp.di ,si , ds , es , dx , cx , bx , ax

;

//else

WORD es.ds.di ,si ,bp,sp,bx,dx,cx,ax; /* same as PUSHA */

//end i f

WORD ip, cs, flags;

} REG_PARAMS

;

void interrupt far i n 1 2 f ( REG_PARAMS r);

void (interrupt far *old_2F)();

static DWORD i nt2fl6_cal 1 s [0x100] = {0};

static DWORD tot a 1 _i nt2f 1 6_ca 1 1 s = 0;

static DWORD i n 1 2 f_c alls = 0;

static DWORD i nt2fl20 0_c alls = 0;

void faiKconst char *s)
{

puts C s ) ; exit(l); }

main(int argc, char *argv[])

{

DWORD i;

DWORD num_iter = (argc < 2) ? 100 : atol ( argv[l] )

;

/* hook INT INT 2 Fh */
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o 1 d_2 F = _dos_getvect( 0x2 F )

;

_dos_setvect(0x2f
, i n 1 2 f )

;

/* issue lots of 2F/168x calls */

for (
i =0 ; i <n um_i ter; i++)

{

_asm mov ax, 1200h // sanity check

_asm int 2fh

_asm mov ax, 1 680

h

_asm int 2fh

_asm mov ax, 1681

h

_asm int 2fh

_asm mov ax, 1 682

h

_asm int 2 f

h

_asm mov ax, 1 683

h

_asm int 2 f

h

}

/* unhook INT 2 Fh */

_dos_setvect(0x2F, old_2F);

/* sanity check */

if ( i nt2fl20 0_c alls < num_iter)

fai 1

(

"Somethi ng wrong? Not seeing 2F/12 calls!");

/* display results */

pri ntf
(

"TEST2F16 issued %lu calls to 2F/1200\n", num_iter);

pri ntf
(

"TEST2F16 issued %lu calls each to 2F/1680-2F/1683\n"

,

num_i ter)

;

pri ntf
(

"TEST2F16 detected %lu INT 2 Fh calls\n", i n 1 2 f_c alls);

if ( tot a 1 _i nt2f16_ca 1 Is)

pri ntf
(

"TEST2F16 detected the following 2F/16 cal 1 s : \n" )

;

for (
i =0 ;

i <0x100; i++)

if ( i n 1 2 f 1 6_c a 1 1 s [ i ]

)

pri ntf
(

" % 0 2 1 X :%1 u\t" , i, i n 1 2 f 1 6_c a 1 1 s [ i ] )

;

pri ntf
(

"\n" )

;

el se

pri ntf
(

"TEST2F16 detected 0 calls to INT 2 Fh function 1 6 h ! \
n

" )

;

if ( tot a 1 _i n t2f 1 6_ca 1 1 s < num_iter)

pri ntf
(

"\nINT 2 Fh function 1 6 h isn't reflected to V86 m o d e ! \
n

" )

;

return 0;

void interrupt far i nt2f ( REG_PARAMS r)

(

i nt2f_cal 1 s++;

if (r.ax == 0x1200)

i nt2f 1200_cal 1 s++;

if ((r.ax >> 8) == 0x16)

{

total _i nt2f 16_cal 1 s++;
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i nt2f 1 6_ca 1 1 s[r. ax & 0xff]++;

}

_c h a i n_i ntr(ol d_2F)

;

}

TEST2F16 issues the following Windows INT 2Fh calls, which are

documented in the Windows DDK:

1680h Release Current VM Time-Slice

1681 h Begin Critical Section

1 682 h End Critical Section

1 683 h Get Current Virtual Machine ID

When run under Windows Enhanced mode (any version, including

Windows 3.0 from 1990), TEST2F16 doesn’t see these calls:

TEST2F16 issued 100 calls to 2F/1200

TEST2F16 issued 100 calls each to 2F/1680-2F/1683

TEST2F16 detected 100 INT 2Fh calls

TEST2F16 detected 0 calls to INT 2 Fh function 1 6 h

!

INT 2 Fh function 1 6 h isn't reflected to V86 mode!

That “INT 2Fh function 16h isn’t reflected to V86 mode!” message

shows thatVMM handles the Windows INT 2Fh services and, seeing no

need to let anyone else see them, returns from its Hook_V86_Int_Chain

handler with carry clear. Microsoft didn’t anticipate that some DOS TSRs
might want to see these calls, even if Windows is expected to service them.

A major problem with many INT-based services is that the interface is

“overloaded”: aside from handling interrupts to service requests, a lot of

DOS software also handles interrupts to discover when some event has

occurred. It’s difficult to implement new, more efficient servicing for

interrupts and yet continue to let other programs receive the events they

expect to see.

This “INT 2Fh function 16h isn’t reflected to V86 mode!” message

was really just an early indication that, even when we’re running real-

mode DOS programs under Windows, things are not what they seem.

We’re not in Kansas anymore. So where are we? We’re in V86 mode.

interrupts 101: idt versos the mi
“Everything you know is wrong.”

— Firesign Theatre

At a number of places in this chapter, I’ve mentioned without really

explaining that interrupts in V86 vector through a data structure called
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the IDT rather than through the low-memory IVT. Given the unusual

things we’ve seen, such as Windows somehow invisibly grabbing control

ofINT 2 lh away from the most recently loaded INT 2 lh handler, I’d

like to explain this in more detail. Some of this will seem like old, familiar

material to seasoned DOS programmers, but please bear with me. You

need to understand this stuff. Here goes:

Most operating systems use some form of interrupt or trap to provide

services to applications. MS-DOS provides its programming interface via

software interrupts, primarily INT 2 lh. For example, when a DOS appli-

cation opens a file, it either directly or indirectly executes code such as

the following:

mov ah, 3Dh

mov al , 0

Ids dx, dword ptr

int 21

h

name

3Dh = Open File function number

read-only access

filename to open goes in DX : DS

call DOS!

When a Windows program opens a file, the program itself probably

doesn’t contain code like this, but it will call some Windows API function

that calls some function that eventually calls code like this. This is true

even of Win32 applications running in Windows 95 or Win32s.

Now, the “call DOS!” comment next to the INT 2 lh instruction ain’t

necessarily so. One of the points of this chapter has been that an INT 2 lh

doesn’t necessarily mean “call DOS!” More and more, it really means “call

some VxD!” But let’s return for a moment to the old days of real mode.

Not V86 mode, but genuine real mode.

In real mode, an INT instruction consults an Interrupt Vector Table

(IVT) located at address 0 in the first 400h bytes of memory. This table

has lOOh entries, one entry for each interrupt (INT 0 through INT FFh).

Each entry can contain a four-byte far pointer to a piece of code that

handles an interrupt. In real mode, the INT instruction pulls the far

pointer out of the IVT and calls it:

; code for INT n

pushf

cl i

xor ax, ax

mov es, ax

mov bx, _n

shl bx, 2

call far ptr es : [bx]

;
push flags

;
don't forget to turn off interrupts!

; es = 0

; bx = intnum * 4

;
call [0000 : i ntnum*4]

This level of indirection — INT n calls the function pointer at

IVT[n] — is what makes this instruction so useful for operating system

services. Applications can call the operating system without knowing its

location in memory; all they need is a magic number like 2 lh or 2Fh.
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Furthermore, this level of indirection makes it easy for third-party

software to extend the operating system. They merely change IVT
entries to point to their own code. Consider the MS-DOS Set Interrupt

Vector function (INT 2 lh function 25h): As we saw earlier in the my_
setvect function in Listing 8-1 and in Do_SetVect in Listing 8-4, estab-

lishing the function pointer fp as the new handler for INT n involves

little more than setting IVT[n] = fp. Likewise, Get Interrupt Vector

(INT 2 lh function 35h), which returns the current handler for INT n,

need only return IVT[n] (see my_getvect in Listing 8-1 and Do„GetVect

in Listing 8-4).

Using these together lets programs create entire chains of interrupt

handlers:

previ ous_handl er = get_vector(n )

;

set_vector(n , my_handl er)

;

my_handl er

:

// do something with interrupt

if (previ ous_handl er != 0)

call previ ous_handl er

These interrupt chains let third-party software easily extend the oper-

ating system and are largely responsible for the longevity ofMS-DOS.
Undocumented DOS (2d ed., Chapter 6) includes a program called

INTVECT that displays the IVT. Here’s some output from INTVECT
when it’s run under WfW 3.11:

C : \UND0CD0S\CHAP6>i ntvect

INT 00 h 2315 : 094E INTVECT

INT 01 h 0070 : 026D 10 i ret -- NOP f uncti on

INT 02 h 120A : 0016 DBLSYSH$

INT 03 h 0070 : 026D 10 i ret -- NOP functi on

INT 04 h 0070 : 026D 10 i ret -- NOP functi on

INT 0 5 h E000 : 27C4

INT 06 h F000 : B6DD

INT 0 7 h F000 : B6DD

INT 08 h 1C55 : 0000 wi n386

INT 09 h 1208:0028 DBLSYSHS jmp 1 208 : 002C

INT 0 A h 1208 : 003A DBLSYSHS jmp 1208-: 004C

• • • etc. • • •

INT 21 h 020E : 0498 I FS$HLP$

INT 2 2 h 1 E 1 1 : 0 2 0 B COMMAND

INT 23 h 1 El 1 : 0168 COMMAND

INT 24 h 1 E 1 1 : 0 1 73 COMMAND

INT 2 5 h 00A0 : 0FB6 DOS

INT 2 6 h 01 EF : 0037 D: jmp 03A4 : 1 B60

INT 2 7 h 00A0 : 0FCA DOS

INT 28h 00A0 : 1069 DOS iret -- NOP function

INT 2 9 h 0070 : 026E 10
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INT 2 Ah 020E : 059C I FSSHLPS

INT 2 B h 00A0 : 1069 DOS i ret -- NOP functi on

INT 2Ch 00A0 : 1069 DOS i ret -- NOP functi on

INT 2 D h 00A0 : 1069 DOS i ret -- NOP functi on

INT 2 E h 12D1 : 015D COMMAND

INT 2 Fh 1B8E : 0424 wi n

and so on ...

Unfortunately, the INTVECT output under Windows can be decep-

tive. INTVECT would have you believe, for example, that INT 2Fh is

handled by the WIN program at 1B8E:0424 and that the primary han-

dler for INT 2 1 h is the IFS$HLP$ device driver at 020E:0498.

The TEST21 and TEST2F16 results in this chapter have shown that

this can't be true. If the TEST21 and TEST2F16 handlers don’t see cer-

tain calls, the WIN and IFS$HLP$ handlers loaded earlier certainly

won’t. After all, interrupts are handled on a last-in/first-out basis. All

INTVECT under Windows shows is where an interrupt would go, if

VMM or a VxD decides to reflect it to V86 mode. Well, in Undocumented

DOS
,
I did warn in a vague sort ofway that “a more sophisticated version”

ofINTVECT would be needed to deal with Windows Enhanced mode.

Now, by this I didn’t mean putting a Windows interface on INT-
VECT. Sometimes vendors try to make old DOS utilities and diagnos-

tics packages “Windows aware” by putting fancy user interfaces on

them, and so there are a number of nice-looking Windows diagnostics

tools that dutifully display the real-mode interrupt vector table. Unfor-

tunately, displaying this old real-mode structure inside a Windows list

box is not what it takes to be truly Windows aware. As with INTVECT,
the results are largely meaningless because the real-mode interrupt vec-

tor table, no matter how nicely displayed, doesn’t show where the inter-

rupts are really going.

In Windows, INT n is no longer just a fancy way of calling the func-

tion located at IVT[n]. All INTs in V86 mode are instead vectored

through a completely different data structure called the Interrupt Descrip-

tor Table (IDT). The Intel microprocessor defines the format of the IDT;

an operating system such as Windows is responsible for setting up the

structure and telling the processor its address. A crummy-looking charac-

ter-mode program that displays the IDT, such as the crummy-looking

IDTMAP program on the disk, is more of a Windows program than a

nice-looking GUI diagnostics program that continues to display the IVT.

The IDT is similar in structure to the Local Descriptor Table (LDT)

and Global Descriptor Table (GDT). The IDT can be located anywhere

in memory. An Intel-based protected-mode operating system such as
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Windows sets the IDT’s address with the LIDT instruction; the IDT’s

address can be retrieved with the SIDT instruction. SIDT isn’t privi-

leged, so any program can get the address of the IDT. The nonprivileged

SIDT instruction is used in the IDTMAP program, which prints the

IDT under Windows (or under any other operating system that provides

DPMI services).

By the way, that last parenthetical point is actually quite important:

386 memory managers such as QEMM, 386MAX, or NetRoom are

really 3 2 -bit protected-mode operating systems. When a user is running

one of the memory managers, INT 2 lh is handled first in protected

mode, just as with Windows Enhanced mode.

This isn’t usually apparent because these memory managers generally

pass the calls down to DOS. But they don’t have to. For example, con-

sider the Cloaking API provided by Helix Software, which works both

with its own NetRoom memory manager and with others such as

QEMM and 386MAX. Similar to VxDs in Windows, Cloaking is an

interface for writing 3 2 -bit protected-mode PC system software: DOS
software continues to make the usual INT calls, and these are trapped, as

always, by the 386 memory manager. But instead of blindly sending the

call back down to V86 mode, Cloaking allows the call to be handled in

3 2 -bit protected mode. Helix has worked with Award Software to create a

Cloaked BIOS, has licensed Microsoft’s CD-ROM Extensions to create a

Cloaked MSCDEX, has written a Cloaked version of Logitech’s mouse

driver, and so on.

So, the capability to bypass real-mode code is really a feature ofV86
mode rather than of Windows Enhanced mode, and is potentially avail-

able with any 386 memory manager. Well, what is Windows Enhanced

mode anyway but a sophisticated 386 memory manager?

Returning to the IDT, each entry in the IDT is an eight-byte gate

descriptor containing the selector:offset address of an interrupt handler,

plus some flags indicating the gate type. The IDT can contain Trap

Gates, Task Gates, or Interrupt Gates. There are also Call Gates, but

these don’t go into the IDT. (And no, the IDT can’t contain Bill Gates.

Not even the Antitrust Division of the U.S. Department ofJustice was

able to do that.)

In Windows, the most prevalent gates are 3 2 -bit Interrupt Gates.

Windows also uses 1 6-bit Trap Gates to trap interrupts generated by pro-

tected-mode programs, such as Windows applications. Windows doesn’t

use many of the more esoteric features of the IDT such as Task Gates, to

which the Intel 386 programmer’s manual devotes so much attention. In
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fact, most operating systems use only a handful of these fancy transistor-

consuming features (which is something that RISC advocates are only

too happy to point out). Because Windows relies so heavily on the IDT,

the Intel documentation is an essential supplement to the Windows pro-

gramming documentation. Just don’t get too caught up in all the various

bells and whistles that Intel provides.

WTen the processor sees an INT n in V86 mode or protected mode, it

consults the gate at IDT[n] and calls the address contained there. Thus,

an innocent-looking INT 2 lh or INT 2Fh in a DOS program or even—
and this is quite amazing and important— in DOS software loaded before

Windows won’t call the real-mode procedure whose address is located at

IVT[21h] or IVT[2Fh]. Instead, it calls the 32-bit protected-mode Ring 0

code located at IDT[21h] or IDT[2Fh]. These are 48-bit far pointers: 16

bits for the protected-mode selector and 32 bits for the offset. Hence, as

you can see ifyou run the IDTMAP program, this 3 2 -bit PM code will be

located at some weird-looking address inVMM such as 0028:80006FAA

or 002 8:8000701A. This is not your father’s Oldsmobile!

Like the IVT, the IDT can contain up to 256 (lOOh) entries, one for

each interrupt (0 through FFh). In Windows, however, the IDT contains

only 60h entries, for INT 0 through 5Fh. An INT 60h or higher— such

as INT 67h for expanded memory services (EMS) — causes a GP fault,

which reappears right back at the IDT as an INT ODh, with an error

code containing the original faulting INT number.

You read right: Every EMS call under Windows causes a GP fault.

You might be accustomed to thinking of GP faults as nothing more than

what Microsoft once called UAEs, but GP faults and other types of faults

(such as INT 6 for Invalid Opcodes) aren’t just for errors. Windows uses

GP faults and Invalid Opcode faults as some of its most basic mechanisms

for accomplishing real work.

Windows has separate IDTs for V86 and protected modes. In many

cases the corresponding V86-mode and protected-mode entries in each

LDT point to the same interrupt handler inside VMM. In other cases, the

corresponding entries point to different handlers. For example, Windows

handles protected-mode INT 2 lh differently from V86-mode INT 2 lh.

What does VMM do with these interrupts? In some cases, it handles

them itself. DPMI INT 3 lh services are an important example: The

DPMI server is located right inside VMM, so any INT 3 lh calls from

protected-mode applications are also serviced directly by VMM. Simi-

larly, many of the Windows INT 2Fh services are provided by VMM.
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In other cases, however, VMM doesn’t handle the interrupts itself;

instead it passes them along to any VxDs that have asked for them by

calling Hook_V86_Int_Chain. Similarly, VMM passes faults along to any

VxD that has requested them by calling a VMM function such as Hook_
VMM_Fault or Hook_V86_Fault.

The key point is that the IDT gives VMM control over what goes on

in Windows by routing all key interrupts and faults into VMM. The
VMM then handles these events, or dispatches them to one or more

VxDs for further processing, or both.

So does Windows totally ignore the low-memory IVT? Not at all.

Windows uses the IVT to provide interrupt reflection which, as we saw, is

the capability for a protected-mode interrupt handler to issue an inter-

rupt in V86 mode: The machine switches to V86 mode and the interrupt

vectors through the IVT to the chain of real-mode (at least they think

they’re in real mode) interrupt handlers.

Windows uses interrupt reflection to handle some interrupts coming

from V86 mode: the interrupt goes first to 3 2 -bit protected mode, but is

then reflected back into V86 mode. The DOS extender in Windows also

uses interrupt reflection, for example, to handle some INT 2 lh calls

coming from protected-mode applications. When a Windows application

makes an INT 2 lh call, the DOS extender can get help from DOS in

servicing the call. The key words in the previous two sentences are some

and cam as we’ve seen in this chapter, Windows VxDs have no obligation

to reflect INT 2 lh calls down to DOS. On the other hand, Windows will

no doubt continue to reflect some calls to DOS until Microsoft (or some

enterprising third-party vendor) decides to rewrite all ofMS-DOS and

the BIOS as a VxD.

We’ve seen how INT n vectors through a gate at IDT[n], but what

function do these gates serve? Gates provide protection for transferring

control among code segments executing at different privilege levels. For

example, because an interrupt in V86 mode goes through the IDT and

can thus use an Interrupt Gate, a user-level program such as a DOS
TSR, which knows nothing about Windows, can call privileged code

inside VMM.
In other words, Interrupt Gates are what make VMM the operating

system. Because interrupts go through an IDT Interrupt Gate to VMM,
DOS isn’t the operating system any more. VMM is. Again, real-mode

DOS receives an INT 2 lh call only ifVMM or a VxD makes a conscious

effort to send DOS the call. Taking this one step further, since VxDs can
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askVMM to call them upon receipt of an interrupt, the Windows operat-

ing system is actually the combination ofVMM and VxDs. And this has

been true ever since VMM was introduced in Windows 3.0 Enhanced

mode! Innovations such as Windows for Workgroups (WfW) 3.1 l’s 32-

bit file access, and Windows 95 are really just (a lot) more of the same.

The underpinning of the new Windows 95 technology dates back to the

very beginnings of Windows Enhanced mode. Windows 95 is the not-so-

new 32-bit protected-mode version of DOS. We’ve had it all along but

we just didn’t notice.





Chapter 9

I

n earlier chapters I claimed that Windows — not just Windows 95, but

also Windows 3.x Enhanced mode — is a genuine 3 2 -bit protected-

mode operating system that uses real-mode DOS as a mere assistant. In

Chapter 4 I even maintained that, rather than Windows running on top

of DOS, in many ways DOS runs on top of Windows.

This claim might have been hard to swallow. After all, when you get

right down to it, Windows starts up from a DOS C:\> prompt or

AUTOEXEC.BAT file or, at best, from the real-mode DOS code that

calls itself WINBOOT.SYS in Windows 95. Real-mode DOS is still

there. Windows starts up from it. That’s all there is to it, right?

Not quite. In fact, you’ll see that Windows runs DOS in Virtual-8086

(V86) mode. I don’t just mean that the DOS programs you start in a DOS
box use V86 mode. I mean that, once Windows starts up, software that

was loaded before it — DOS device drivers, TSRs, and even DOS itself

— runs in V86 mode. As you’ll see, this in turn means that Windows can

control DOS.

“II ming on a Thing ?

Partisans of larger operating systems such as OS/2, Windows NT, and

UNIX frequently consider the combination ofWindows and MS-DOS as

amounting to something less than a genuine operating system. After all,

they reason, Windows wasn’t designed from the ground up, and

it isn’t a self-contained whole. For several years, in fact, Microsoft itself

referred to Windows as an operating environment rather than as a
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complete operating system. As WordPerfect once put it in its ads for the

now-moribund OS/2 version of its product, Windows is just “a thing on

a thing.”

Although the advocates of OS/2, Windows NT, and UNIX often

deride Windows for depending on DOS, at the same time they all agree

that these operating systems must be able to run old DOS programs. And
they all agree that these operating systems can control real-mode DOS
programs inside a Virtual DOS Machine (VDM), or DOS box. The
VDM protects the rest of the system from any low-level crimes (such as

writing directly to memory or banging on I/O ports) that the DOS pro-

gram might want to commit.

So how can old real-mode code do all the grungy stuff that real-mode

code likes to do — such as direct screen writes and port I/O — when it’s

under another program’s control? Well, it can do these things because

on Intel 80386 and later microprocessors, V86 mode allows a protected-

mode operating system to simulate one or more 1MB real-mode 8086

machines. These simulated machines can be multitasked, paged to disk

(under some circumstances), and prevented from interfering with other

applications or with the operating system. As shown in Figure 9-1, oper-

ating systems that run DOS programs in V86 mode can intercept the

DOS programs’ memory accesses, interrupts, I/O port access, and so on.

The operating systems can then simulate, refuse, or ignore the actions of

the DOS programs, or they can allow them to take place, as they see fit.

Confidence in this VDM scheme based on V86 mode is so high

that IBM has even claimed that its OS/2 2.x provides a “better DOS
than DOS.”

Of course, Windows 3.v also provides a V86 environment for DOS
programs, using a scheme similar to that used by OS/2 and by Intel-

based versions of Windows NT or UNIX. But there is one fundamental

difference between the VDM schemes used by Windows and by these

other operating systems. The OS/2, Windows NT, and UNIX operating

systems take the INT 2 lh or INT 2Fh calls coming from a DOS pro-

gram and turn them into calls to the operating system’s own API (see

Undocumented DOS
,
2d ed., Chapter 4). These operating systems can’t

pass an INT 2 lh call onto DOS because DOS isn’t there.

In contrast, when a DOS program running under Windows makes a

DOS call, DOS is still running and can therefore handle INT 2 lh or INT
2Fh calls. In addition, some Windows API calls from protected mode can

get turned into real-mode INT 2 1 h calls. Thus, although running a real-

mode program in a DOS box under OS/2, NT, or UNIX is nice and
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protected, Windows itself runs under DOS so its whole foundation is

shaky, right?

IDT

ARPL

INT

sm.

Virtual Machine Manager (VMM)

Reflect INT

Fault

> VxDS

Page

not-present

.

M PAGE
IVT TSS No
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Virtual Machine (VM)
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Figure 9-1: In real-mode, all interrupts vector through the IVT, I/O is sent directly to the

ports, and all memory reads and writes directly access MOVs memory. When running in

V86 mode, under VMM, all these common actions take a different path: Ail interrupts

and illegal instructions (such as ARPL, used for V86 breakpoints) trap into VMM; all I/Os

from V86 mode consult the I/O permission bitmap (IPOB); and, all memory access con-

sults the page table (actually the cached page-access entries).

Before we jump to any conclusions, let’s step back a minute and ask a

question that might sound naive at first: Is an operating environment that

sits on top of DOS, such as Windows, really all that different from a

DOS box? In other words, is there a fundamental difference between the

way Windows or OS/2 or NT or UNIX handles programs running in a

DOS box and the way Windows handles software (including DOS itself)

that was loaded before it?

Surprisingly, the answer is no — there’s no fundamental difference

between a DOS box and an operating environment that sits on top of

DOS. (Chapter 4 did discuss one difference, having to do with instance

data.) When Windows runs on top of DOS, it has the same options for

controlling DOS that OS/2, Windows NT, and UNIX have for controlling

DOS programs running in a VDM. That’s right: the “thing on a thing”

turns out to be fundamentally the same as the “better DOS than DOS”!
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Running DOS in Protected mode
Running an operating system on top of DOS isn’t much different from

running DOS in a VDM within the operating system. To see why this is

so, we need to examine how Windows relates to software loaded before it;

that is, we need to look at how Windows relates to TSRs and DOS
device drivers, to DOS itself, and to the ROM BIOS. The FAKEWIN
program in Chapters 3 and 4 showed some of the interaction between

Windows and DOS. But there’s another aspect to this that FAKEWIN
didn’t reveal: exactly how Windows calls down to DOS.

Although Windows applications run in protected mode, DOS is a real-

mode operating system. DOS doesn’t know anything about protected-

mode selectors and it can’t access extended memory. For Windows to call

down to DOS, therefore, Windows must switch back to real mode, right?

And this is the ultimate source of Windows’s instability, right?

No. Recall our friend the DOS box. When OS/2, Windows NT,
UNIX, or Windows run real-mode software in a DOS box, the software

is not run in real mode; it’s run in V86 mode. Similarly, when Windows
Enhanced Mode calls down to software that was loaded before it, such as

DOS, it does so not in real mode but in V86 mode.

Let me repeat that: Windows calls down to DOS in V86 tnode. Please

don’t dismiss this point as mere semantic hairsplitting or as the remark of

a pedant. (A pedant is someone who, when you refer to the State of

Massachusetts, tells you that Massachusetts is actually a Commonwealth.)

It’s important to note the difference between the two statements “Win-

dows switches to real mode to call down to DOS” and “Windows calls

DOS in V86 mode,” because there’s an enormous difference between real

mode and V86 mode.

When real-mode software — such as a DOS program or (more rele-

vant here) MS-DOS itself— runs in V86 mode, it “thinks” it’s running in

real mode. Flowever, as described in the Intel documentation, V86 mode
“operates similarly to protected mode.” Note that Intel doesn't say that

V86 mode operates similarly to real mode. Intel says that V86 mode
operates similarly to protected mode.

V86 mode is an amazing thing, really: a form of protected mode that

runs real-mode software. V86 mode is similar to real mode in one sense

only: both modes use the same mechanism for accessing memory
addresses. For example, when a DOS program refers to ES:[BX], V86
mode and real mode use the same formula— they take the value in ES,
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multiply it by 16, and add the value of BX— to find the location in mem-
ory that the DOS program wants to access. The similarity between V86
mode and real mode ends there.

Here are some of the differences between V86 mode and real mode:

• In V86 mode, the resulting (ES*16)+BX address isn’t necessarily a

physical address, as it would be in real mode. Instead, it’s a linear

address that the processor uses as an index into a page table. The page

table in turn contains what might be a physical address that equals the

(ES*16)+BX linear address (linear == physical), or a physical address

that differs from the linear address (linear != physical), or even an

indication that the associated data is not currently present in memory
and has to be swapped in from disk. Thus, parts of the DOS box

might be located anywhere in memory— or not in memory at all. If

the DOS box accesses memory whose page-table entry is marked “not

present,” the processor automatically calls a protected-mode page-

fault handler, which can swap the memory in from disk.

• If a DOS program running in V86 mode issues an INT instruction

(for example, an INT 2 lh to call DOS), the INT isn’t vectored

through the low-memory interrupt vector table as it would be in real

mode. Instead, the INT vectors through the Interrupt Descriptor

Table (IDT), just as it would if the INT instruction were contained in

a protected-mode program. In Windows, all interrupts coming from

V86 mode are first handled in 3 2 -bit protected mode.

• If real-mode software running in V86 mode issues an IN or OUT
instruction (for example, if the ROM BIOS needs to access an I/O

port), the processor first looks up the port number in the I/O Permis-

sion Bitmap (IOPB). This bitmap can tell the processor to make the

I/O illegal, thereby causing a trap into the protected-mode operating

system.

• If the protected-mode operating system so chooses, it can specify that

certain instructions (such as CLI, STI, PUSHF, POPF, and IRET)

will trap into the operating system. These instructions manipulate the

interrupt flag (IF). CLI and STI clear and set IF; in the course of

pushing or popping the entire flags register, PUSHF, POPF, and

IRET affect IF, too. All other things being equal — which, we’ll see

later, they often aren’t— it’s a bad idea for protected-mode operating

systems to let a V86 process turn off the processor’s actual IF, because

doing so disables interrupts for all processes. The operating system
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can instead choose to let real-mode software manipulate only a virtual

IF. For example, CLI would clear the virtual IF, disabling interrupts

only for the current process. The operating system maintains this

virtual IF by telling the processor that instructions that affect IF are,

in effect, illegal. Thus, an innocent-looking CLI or IRET inside

MS-DOS might cause a jump to somewhere deep inside Windows.

• Some instructions are always illegal in V86 mode and automatically

cause an exception, which can be caught and handled in 3 2 -bit

protected mode. A good example is ARPL. As already discussed in

Chapter 8, Windows relies heavily on the ARPL instruction to con-

trol the execution of programs running in V86 mode.

In all these cases, re^l-mode code running in V86 mode might cause a

trap, fault, or exception (the differences between traps, faults, and excep-

tions really don’t matter right at this moment).

The Virtual Machine monitor (llMM)

So where do these traps, faults, and exceptions go ? They are intercepted

and handled by a privileged 3 2 -bit protected-mode program that is some-

times called a V86 monitor or a virtual machine monitor (VMM). All

hardware interrupts go to the VMM, too. According to Intel’s 80386

System Software Writer's Guide

,

It is convenient to package the code that responds specially to V86 exceptions in a

procedure (or collection of procedures) called a virtual machine monitor (VMM). A

VMM simulates the 8086 instructions that the 80386 will not execute in V86 mode.

As noted in previous chapters, the key component ofWIN386.EXE in

Windows Enhanced mode and ofVMM32.VXD in Windows 95 is called

VMM. (Back in 1988, in Windows/386 2.x, it was called VDMM or Vir-

tual DOS Machine Manager.) According to the Virtual Device Adaptation

Guide included with Microsoft’s Windows Device Driver Kit (DDK):

The VMM is a 32-bit protected-mode operating system. Its primary responsibility is

to create, run, monitor, and terminate virtual machines. The VMM provides services

that manage memory, tasks, interrupts, and protection faults. The VMM works with

virtual devices — 32-bit protected-mode dynamic-link libraries — to allow the virtual

devices to intercept interrupts and faults in order to control the access an applica-

tion has to hardware devices and installed software.

The term VMM originated in work performed at IBM’s Scientific

Research Center in Cambridge, MA, in the late 1960s and early 1970s;
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this research was written up in several key articles on the Virtual Machine
concept in the IBM SystemsJournal in the 1970s and culminated in IBM’s

VM/370 operating system, announced in 1972. Whether directly or indi-

rectly, the Windows operating system is heavily based on this work.

The VMM is an operating system that runs virtual machines (VMs).

In the case of VM/370, the VMM (known as Control Program or CP)
runs on top of IBM’s System/370 and creates and manages virtual 370s.

In each virtual 370, VM/370 can run another operating system, including

even another copy ofVM/370. This other operating system thinks it’s

running on bare 370 hardware, even though it’s actually running in a

VM. In fact, there should be no way (apart from timing) to determine

whether it’s running in a VM or on the bare hardware.

Under this scheme, users can run applications for dissimilar operating

systems at the same time. The VMs are relatively isolated from each

other: An application running in one VM can’t accidentally trash an

application running in another VM. But this scheme can still offer some

interesting options for inter-VM communications.

A major benefit of the VM scheme to the developer of the operating

system is that the operating system is logically separated into two parts:

The VMM handles multitasking and provides services required by oper-

ating systems, and these operating systems in turn provide services to

applications. This is quite similar to the microkernel concept used in oper-

ating systems such as Mach and Windows NT, in which many of the tasks

typically associated with the operating system are pushed off onto user-

level subsystems.

In a VMM-based operating system, applications call into the operat-

ing system in the normal way (such as a SVC or INT instruction). The

operating system call itself can trap into the VMM, or it can continue to

go to the operating system (now running essentially as a user-level appli-

cation under the VMM). The operating system, in the course of carrying

out the request, will generate instructions that trap into the VMM.
For the sake of robustness, it’s important that every sensitive instruc-

tion (that is, every instruction that affects or examines the VM’s state)

also be a privileged instruction (that is, it should cause a trap into the

VMM). At the same time, for the sake of performance, it’s equally

important that as few instructions as possible do trap. This sets a VMM
apart from a CPU emulator (such as the Insignia Soft PC software used

in Windows NT to run 80x86 software on non-Intel hardware). In gen-

eral, the virtual machine should be quite close to the underlying
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machine, if performance is to be acceptable. The VMM creates the illu-

sion of multiple copies of the underlying machine.

Because some instructions trap into the VMM, running in a VM
should be slower than running on the bare hardware. However, there is

sometimes a “virtual machine performance anomaly,” in which software

runs faster in the VM than on the bare hardware because device virtual-

ization allows caching, reordering of requests, and so on that might be

more efficient than the actual device. An excellent example is 3 2 -bit disk

access in Windows.

Speaking of device virtualization, this idea (and the need for virtual

device drivers) also comes out of IBM’s research on virtual machine oper-

ating systems in the late 1960s and early 1970s. To create the illusion that

each VM is a complete,' separate machine, each VM must think it has its

own disk, display, printer, and so on. Rather than build this into the

VMM itself, a virtual device driver is written to manage each device. The
driver can arbitrate requests from multiple VMs, refuse requests, pass

them directly through to the device, or simulate them completely.

In Windows, VMM is the operating system. In Chapters 6 and 7 you

saw that the Windows kernel, KRNL386.EXE, is essentially an applica-

tion for which you could substitute any other application that happened

to have the same name (COPY \COMMAND.COM KRNL386.EXE).

Of course, the Windows kernel is, in its own right, almost an operating

system. But it runs under VMM, just as operating systems like CMS or

MVS can run under VM/370.

It should be clear from Chapters 6 and 7 that you could potentially

run different operating environments under VMM. Or that, potentially,

you could run multiple copies ofKRNL386.EXE, each in its own VM.
Windows won’t let you do this, but there’s no inherent reason why not. In

fact, if you typed WIN from a DOS box within Windows 3.0, you would

get another copy of Windows (running in real mode) in that VM. This

undoubtedly confused many users, so starting in Windows 3.1, WIN
.COM checks to see if Windows is already running. In any case, VMM
could host multiple operating environments in somewhat the same way

that the Windows NT microkernel can host multiple subsystems.

I noted earlier that VM/370 was even able to run another copy of

VM/370 in a VM. A number of operating system textbooks note that

such “recursive” VMs could be exploited for debugging, testing new ver-

sions of VM/370, collecting experimental data about program behavior,

and so on. VMM, however, is not recursive. For one thing, although it
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contains a DPMI server, VMM is not a DPMI client. This is one reason

why the VMM/VxD portion of Windows can’t run under OS/2 (and, as

noted in Chapter 5, even the higher-level KRNL386 portion must be

heavily patched to make it run under OS/2).

This background on the VMM concept might suggest something

about how Windows interacts with software loaded before it, such as

MS-DOS. AVMM is an operating system for running other operating

systems. MS-DOS is an operating system (and, aside from the implica-

tions of its enormous customer base and the huge number of applications

written for it, not a very complex one at that). VMM can run MS-DOS.
VMM does run MS-DOS!

At first it seems that Windows, perched atop a real-mode operating

system like MS-DOS, is built on shaky ground. But, as noted countless

times already, when Windows (VMM, specifically) calls down to DOS, it

does so in V86 mode. And, as also noted, the Windows VMM has the

option to make a wide variety of real-mode activities generate V86 excep-

tions, which VMM and VxDs can catch and handle in any way they see

fit. In essence, therefore, VMM runs all software that was loaded before

it in protected mode. For performance or other reasons, it doesn’t always

take full advantage of this protection, but it’s there.

The key point to understand is that when VMM runs on top of DOS,
VMM is running DOS and not the other way around. Although Win-

dows loads after DOS and (with the important exceptions noted in Chap-

ters 3 and 4) looks to DOS like just another application, VMM is the boss

when Enhanced mode is running. Real-mode DOS is under the control

of Windows.

Yet another way to put this is that Windows runs DOS itself in a DOS
box

,
just as though DOS were some application that the user started

under Windows. When a DOS TSR issues an INT 2 lh call, the call goes

to VMM
,
which decides what to do with it. WTen a DOS device driver

issues an IN or OUT instruction, VMM or a VxD can catch the I/O and

do whatever is appropriate.

The claim that Windows can run DOS in protected mode sounds so

outlandish that we need to write a test program to see if it’s true. We’ll

do just that in the next chapter. This real-mode DOS memory-resident

program, called V86TEST, will load before Windows and hook INT 2 lh

and INT 2Fh. Each time V86TEST is invoked, it will check to see if the

processor is in V86 mode.
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U86 mode and me PE Bit

But how can a program determine whether the processor is in V86
mode? The Set_V86_Exec_Mode and Set_PM_Exec_Mode services pro-

vided byVMM set and clear V86 mode by manipulating bit 17 (the VM
flag) of the EFLAGS register. VMM checks for V86 mode by testing bit

17. EFLAGS is the 3 2 -bit flags register, of which the 16-bit FLAGS reg-

ister known to most PC programmers is just a truncated view.

Since the VM flag is located at bit 17, it’s out of reach from 16-bit

code. And even by using 3 2 -bit code in a 16-bit program, you still can’t

get to bit 17 because the PUSHF instruction is hard-wired to clear the

VM flag before pushing it on the stack. This is shown in the pseudocode

for PUSHF provided in Rakesh Agarwal’s excellent 80x86 Architecture

and Programming:

/* == Push [ E ] F LAGS image. == */

if (os == 32)

{ eflg = EFLAGS;

/* Clear VM and RF flags before pushing onto stack */

efl g < 1 7 > = 0;

eflg<16> = 0;

pus h4 ( ef 1 g)

;

1

else /* os == 16 : push low-order WORD of EFLAGS */

push2(EFLAGS<15:0>)

;

In a moment, we’ll get into why Intel hides the VM flag from applica-

tions. The point right now is that you can't read the VM flag.

Now, the Intel 80286 and later microprocessors do have a Machine

Status Word (MSW), which in turn contains a Protect Enable (PE) bit.

When the machine is in protected mode or V86 mode, the PE bit is set.

So you can query V86 mode by reading the PE bit. This is another indi-

cation that V86 mode is actually a form of protected mode.

On the 80386 and later microprocessors, the MSW expands to become

the DWORD CRO register. PE is the bottom bit (bit 0) of both MSW
and CRO. Since V86 mode isn’t present on the 286, you’d think that CRO
would provide the best way to check PE:

mov eax, cr0

and eax, 1

//PE bit in EAX

However, if you try to execute this code in V86 mode under Windows, it

won’t produce the desired results. The MOV instruction leaves the EAX
register unchanged!
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The fact thatMOV CRO “doesn’t work” under Windows actually pro-

vides a good example of how V86 mode is different from real mode and

of how Windows uses V86 mode to control real-mode software.

MOV CRO is privileged in V86 mode. According to the Intel docu-

mentation, this instruction (along with the other Move to/from Special

Register instructions) causes a general protection (GP) fault if it’s

attempted in V86 mode. The GP fault is INT ODh; VMM installs a han-

dler for this fault by placing a function pointer in the IDT.

Why does MOV CRO cause a GP fault? For that matter, why does Intel

deliberately hide the VM flag? Recall the point made earlier in the discus-

sion of IBM’s VM/370: There should be no way (apart from timing) for

nonprivileged software to determine whether it’s in a VM or on bare hard-

ware. For this reason, MOV CRO should cause a GP fault; the VMM
should decide if the caller is allowed to see whether or not it’s in a VM.

This is just what happens: If real-mode software running in V86 mode
tries to execute this MOV EAX, CRO instruction, the instruction causes an

exception that is caught by VMM. The machine suddenly switches from

user-level (Ring 3) V86 mode to privileged (Ring 0) 3 2 -bit protected

mode. VMM handles the offending code in any way it likes. It just so hap-

pens thatVMM handles the MOV EAX, CRO by skipping past the

instruction without doing anything else. That’s right, VMM just ignores it!

The GP fault (INT ODh) handler in VMM first examines the faulting

instruction located at the V86 mode program’s instruction pointer

(CS:EIP). It does this by consulting a Client Register Structure (CRS)

pointed to by the EBP register:

movzx esi
,

[ebp.Cl ient_CS]

shl esi , 4

add esi, [ebp.Cl i ent_E IP]

mov cx, [esi]

movzx edi , cl

jmp dword ptr ds : [ 0 P C 0 D E_TABLE] [edi *4]

handler

The MOV EAX, CRO instruction encodes as the three bytes OF 20

CO. VMM has a single handler for all instructions OF 20 through OF 23,

which includes moves to and from the control and debug registers (CR2,

CR3, DRO, and so on). Here’s the handler:

add [ebp.Cl i en t_E IP], 3

ret

That’s it! VMM just bumps the client’s instruction pointer (EIP) past

the offending instruction and does nothing more. This explains why

esi = (CS « 4) + IP

cx = *esi

cl = opcode

jump to opcode
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MOV EAX, CRO in a DOS program running under Windows leaves

EAX unchanged.

More importantly, seeing the actual VMM code also provides an

example of how VMM (and any VxD) can exercise control over real-

mode software, including DOS. VMM’s capability to change the Client

EIP value in the CRS shows the wide discretion VMM has over the

behavior of anything running in V86 mode. This includes software

loaded before Windows as well as software running under it. (You’ll see in

a moment that the before/under distinction is rather meaningless.)

Clearly, MOV CRO isn’t going to help read the PE bit. Now, VMM
and VxDs are privileged-level code, so they could read the CRO register

and handle a faultingMOV EAX, CRO instruction by moving CRO into

Client_EAX:

mov eax, cr0

mo v [ebp.Cl ient_EAX] , eax

add [ebp.Cl i en t_E IP] . 3

ret

AlthoughVMM doesn’t behave this way, we could easily write a VxD
that did, providing transparent support for the Move to/from Special

Register instructions. However, we’re just interested in reading the PE
bit, which, as noted earlier, is also available as part of the MSW. SMSW
(Store MSW), the Intel instruction to read the MSW, is not privileged.

Yes, it does seem odd that SMSW isn’t privileged when MOV CRO is;

but the important Store Global Descriptor Table (SGDT), Store Inter-

rupt Descriptor Table (SIDT), Store Local Descriptor Table (SLDT),

and Store Task Register (STR) instructions aren’t privileged, either.

Given what was said earlier about the need for VMs to appear identical to

bare machines, it is clearly a flaw that the SMSW instruction lets us read

the PE bit.

This flaw (which Intel probably cannot eliminate) does make it easy to

see if you’re in V86 mode. Assuming your compiler provides inline

assembly language and allows 286-style instructions such as SMSW (use

the Borland -2 switch or the Microsoft -G2 switch), the following simple

function retrieves the current value of the PE bit:

int pe(void)

{

_asm smsw ax

_asm and ax, 1

// retval in AX

do what cl i ent wants

get result into client's EAX

now skip past client's instruction
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If this function is incorporated in a protected-mode program (such as

a Windows application), it naturally returns 1 to indicate that the PE bit

is on. As you’d expect, PE is always on in a protected-mode program.

Conversely, if this function is incorporated in a real-mode DOS pro-

gram, you’d expect it to always return 0 to indicate that the PE bit is off.

After all, PE is always off in a real-mode program, right?

Not! That’s the whole point about V86 mode. Even when you’re run-

ning a real-mode program, if you’re running it in a V86-mode environ-

ment, the PE bit will be on. You really are in protected mode; it just

dresses down to look like real mode. For example, ifyou compile PE.C as

shown in Listing 9-1 and run it under a 386 memory manager (such as

EMM386, QEMM, or 386MAX) or in a DOS box under Windows, OS/2,

or Windows NT, PE displays the message “PE (protect enable) bit SET.”

Listing 9-1: PE G

/*

bcc -2 pe.c

cl -G2 pe.c

*/

#i include <stdio.h>

int get__pe (void)

{

_asm smsw ax

_asm and ax, 1

// return value in AX

mai n(

)

{

i nt pe = get_pe( )

;

printfC'PE (protect enable) bit %s\n", pe? "SET" : "NOT set");

return pe;

}

That’s right. When you’re running one of these memory managers,

what looks like an ordinary real-mode DOS prompt is in fact running in

V86 mode, under the control of a VMM provided by the 386 memory

manager. The fact that the PE bit is set indicates that you’re in protected

mode: You have a real-mode program, but each execution of an INT
instruction vectors through the IDT, each execution of an IN or OUT
instruction must consult the IOPB, and so on. Welcome to V86 mode, in

which nothing is quite what it seems, and upon which Microsoft builds

Windows Enhanced mode and Windows 95.
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Now, what would happen if DOS itself contained this code to test the

PE bit? Although it’s easy to accept the fact that the PE bit will be set in

software running under Windows in a DOS box, it’s not so easy to

believe that it will also be set in software that was loaded before Windows.

Can Windows really control software loaded before it? In the next chap-

ter you’ll see that it can.
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n the previous chapter, I stated that Windows uses V86 mode not only

to run software in a DOS box but also to run software — including

DOS itself— that the user loaded before starting Windows. The impli-

cations of this statement are far-reaching. You saw in the last chapter that

V86 mode is really a form of protected mode. Therefore, if Windows
really does call down to DOS in V86 mode rather than in real mode,

Windows can potentially control DOS in the same way that it can con-

trol protected-mode Windows programs or programs running in a DOS
box.

The tiny PE program in the previous chapter (Listing 9-1) showed

how to use the processor’s PE bit to test for V86 mode. Now, to ensure

that the test for V86 mode is invoked whenever Windows calls down to

DOS, you just have to put this test for V86 mode inside some code that

loads before Windows.

This chapter presents a memory-resident program, V86TEST, that

performs this test. V86TEST can readily prove that Windows calls down

to DOS in V86 mode rather than in real mode, and therefore that

Windows can control DOS.

D86IEST

V86TEST isn’t a TSR; it’s a wrapper program that hooks INT 2 1 h and

INT 2Fh and then spawns whatever program is named on its command

line. Generally, you would run V86TEST WIN so that V86TEST
spawns Windows. When Windows calls down to DOS, it will also call
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V86TEST. V86TEST’s interrupt handlers chain all calls onto the previ-

ous handler, but first they call a check_state function to keep statistics

about how many times they’ve been called, how many times the PE bit

was set, and so on. When Windows exits, V86TEST unhooks its inter-

rupt handlers and displays the statistics.

V86TEST also provides a little INT 2Fh API so you can display the

statistics with V86TEST -QUERY while Windows is still running, or

with a Windows version of V86TEST. A -VERBOSE switch provides a

function-by-function census of which INT 2 lh and INT 2Fh calls were

made. The next chapter discusses this census of DOS calls in detail and

uses a Windows version ofV86TEST that calls down to the resident

DOS version.

Figure 10-1 provides. a pseudocode summary of how V86TEST works.

main:

process command-line

if (-QUERY or -CLEAR)

invoke already-installed copy of V86TEST, and exit

if already running under Windows or already in V 86 mode

fa i 1

hook INT 21 h -> i n 1 2 1 function

hook INT 2 Fh -> i n 1 2 f function

spawn command (usually Windows)

unhook INT 21h and INT 2Fh

display results

i n 1 2 1

:

call check_state

chain to previous INT 21

h

i n 1 2 f

:

look for Windows startup/exit broadcasts, to set Windows "state"

look for function FFh, to return statistics

call check_state

chain to previous INT 2 Fh

check_state

:

increment number of calls for current Windows state

if PE bit is set

increment number of V 86 calls for current Windows state

if Windows running

see which VM we're running in

see what current IOPL is

increment int 21 h and int 2 Fh statistics

Figure 10-1: V86TEST operation.
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V86TEST keeps separate counters for five different Windows states:

Windows State

Before Windows started

During Windows init

While Windows running

During Windows exit

After Windows exited

Description

Haven’t yet received INT 2Fh AX=1605h

Received INT 2Fh AX=1605h (Win Init Notify)

Received INT 2Fh AX=1608h (Win Init Complete)

Received INT 2Fh AX=1609h (Win Exit Begin)

Received INT 2Fh AX=1606h (Win Exit Notify)

V86TEST knows which state Windows is in because its INT 2Fh han-

dler looks for the function 1 6h broadcasts from Windows Enhanced

mode. For more information on these broadcasts, see the FAKEWIN
program in Chapters 3 and 4. (Incidentally, FAKEWIN and V86TEST
are dance partners, and Eve used “V86TEST FAKEWIN” to test both

programs.)

The While Windows running state is what we’ll focus on to deter-

mine how Windows calls down to DOS. This is the period after Win-

dows has issued a Win Init Complete broadcast and before it has issued

Win Exit Begin: during this time, Windows is truly up and running.

When V86TEST receives the Win Init Complete and Win Exit Begin

broadcasts, it calls the C time function. This helps V86TEST determine

how long Windows was running.

Although the operation ofA786TEST is quite simple — it points INT
2 1 h and INT 2Fh at interrupt handlers that maintain statistics, spawns a

command, unhooks INT 2 1 h and INT 2Fh, and displays the statistics —
the code is a little more complicated than that. Listing 10-1 shows the

source code for V86TEST.

Listing 10-1: V86TEST.C

/*

V86TEST. C -- take over INT 21 h and INT 2 Fh .
count calls in V86 mode

Andrew Schulman, 1994

Some of the complexity here is artificial, so that V86TEST could be

tested with programs other than Windows, such as FAKEWIN.

bcc -2 -P- v86test.c

*/

(/include <stdlib.h>

(/include <stddef.h>

(/include <stdio.h>

(/include <string.h>

(/include <ctype.h>
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//include <process.h>

//include <time.h>

//include <dos.h>

typedef unsigned short WORD;

typedef unsigned long DWORD;

//define VM_MAX 8

//define VM_0THER VM_MAX

//define G ET_STATS 0xFFFF

//define SIGNATURE "V86TEST"

//define VXD_MAX 0x100

//define VXD_0THER VXD_MAX

//if 0

struct {

WORD vxd_id;

DWORD num_cal 1 s

;

} VXDCALLS

;

VXDCALLS vxdcal 1 s [100] = {0};

int num_vxds = 0;

//endi f

//pragma pack ( 1

)

typedef struct {

//ifdef TURBOC

WORD bp.di , si ,ds ,es ,dx,cx,bx,ax;

//el se

WORD es ,ds ,di ,si ,bp,sp,bx,dx ( cx,ax; /* same as PUSHA */

//endi f

WORD ip,cs,flags;

} REG_PARAMS

;

void interrupt far l nt 2 1 ( REG_PARAMS r);

void interrupt far i n 1 2 f ( REG_PARAMS r);

void (interrupt far *old)();

void (interrupt far *old_2F)

//define W I N_I N I T_N0T I F

Y

//define W I N_I N INCOMPLETE

//define W I N_EX I T_B EG I

N

//define W I N_EX I T_N0T I FY

typedef enum {

N0_WIN

,

W I N_I N I T_B EG I N

,

WIN_INIT_DONE

,

WIN_FINI__BEGIN

,

WIN_FINI_DONE,

NUM_STATES } STATE;

0x1605

0x1608

0x1609

0x1606

// got W I N_I N I T_N0T I FY

// got W I N_I N INCOMPLETE

// got W I N_EX I T_B EG I

N

// got W I N_EX IT_N0TI FY
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static char *state_str[NUM_STATES] =
{

Before Wi ndows started"

,

Du r i ng Wi ndows init"

,

// got W I N_J N IT..NOTIFY

While Wi ndows runni ng"

,

// got WIN..INIT..COMPLETE

Duri ng Wi ndows exit"

,

// got WIN..EXIT..BEGIN

After Wi ndows exi ted"

,

// got WIN..EXIT..NOTIFY

typedef struct {

char si gnature[8]

;

DWORD cal 1 s [ NUM_STATES] , v86_cal 1 s[NUM_STATES]

;

DWORD i opl _coun t [4 ]

;

DWORD vm[VM_MAX+l]

;

DWORD i nt21 [0x100]

;

DWORD i n 1 2 f [ 0x100] , i nt2f 16 [ 0x100] , i nt2f 1607 [ VXD_0THER+1 ]

;

time_t start, end;

} STATS;

static STATE state = N0_WIN;

stati c STATS *stats

;

static STATS far *fpstats;

static int not_verbose = 1;

static int not_f i 1 ter = 1;

static int v86_okay = 0;

char *usage = "usage: v86test [-okv86] [-filter
|

-verbose]"
" [-query

j

-clear
|

win] <args...>";

//define PUT(s) { fputs ( s . stderr); fputs("\n", stderr); }

//define FAIL(s) { PUT(s); exit(l); }

int win3e(void) // is Windows Enhanced mode running?

int maj = 0;

_asm mov ax, 1600h

_asm int 2fh

_asm mov byte ptr maj , al

return (maj && (maj != 0x80));

int pe(void) // is processor Protect Enable bit set?

{

_asm smsw ax

_asm and ax, 1

// retval in AX

1

int iopl(void) // get I/O Privilege Level from flags

{

_asm pushf

_asm pop ax

_asm shr ax, 12
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_asm and ax, 3

// retval in AX

i nt

{

vrm'd(void) // Get Windows Virtual Machine ID. If Windows Enh mode

// is running, V86TEST will never see this 2f / 1 683 call

// And if we tried calling it with PUSHF/CALLF rather

// than with INT, it would get the wrong results!

_asm mov ax, 1683h

_asm i nt 2fh

_asm mov ax, bx

// retval in AX

void di spl ay_resul ts ( STATS far *f p2

)

I

STATS *fp;

DWORD elapsed;

time_t start, end;

i nt i

;

if ( ! (fp = mal 1 oc(si zeof(STATS) ) )

)

FAI L(
" Insuff i ci ent memory");

// copy over so stats don't change while reading them

_fmemcpy(fp, fp2, sizeof (STATS) )

;

printf
(

"\n" )

;

for ( i=N0_WIN ; i <NUM_STATES ; i++)

printf
(

"%s : \ t%l u INT 21/2F calls, %lu in V 86 mode\n",

state_str[i] , f p - >ca 1 1 s[i ] , f p - > v 8 6_c a 1 1 s [ i ] )

;

printf
(

"\nWhi 1 e Windows runni ng : \n" )

;

if (fp-)end) end = fp->end; else time(&end);

if (fp-)start) start = fp->start; else ti me ( &sta rt )

;

if ((elapsed = end - start) != 0)

{

pri ntf
(

"Wi ndows active for %lu secondsXn", elapsed);

printf("%lu INT 21/2F cal 1 s/second\n "

,

fp->cal 1 s [ W I N_I N I T_D0N E ] / elapsed);

for (i=0; i <4 ; i++)

if ( f
p

- > i o p 1 _c o u n t [ i ]

)

printf("IOPL=%d — %lu callsXn", i, fp->i opl _c o u n t [ i ] )

;

for (
i =0 ; i<VM_MAX; i++)

if ( fp->vm[ i ]

)

printf ("VM #%d - %1 u callsXn", i, fp->vm[i ] )

;

if ( f
p

- > vm [ VM_0TH E R ]

)

pri ntf ("VM > #Xd - %lu callsXn", VM_MAX, f p - > vm [ VM_0THER] )

;

// put before verbose check: always show 2f / 16 calls

pri ntf
(

" \n I NT 2Fh AH=16h calls seen by V86TEST : \n" )

;
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for (
i = 0 ; i <0x100 ; i++)

if ( f
p

- > 1 nt2f 1 6 [ i ]

)

pri ntf
(

"%02X : %lu\t", i, fp->i nt2f 16[i ] )

;

pri ntf
(

"\n" )

;

if (not_verbose)

return

;

// get following by running V86TEST -VERBOSE

pri ntf
(

"\nINT 21h cal 1 s : \n" )

;

for (
i =0 ; i <0x100 ; i++)

if (fp->int21[i ]

)

pri ntf
(

"%02X : %lu\t", i, fp->int21[i ] )

;

pri ntf
(

"\n\nINT 2Fh cal 1 s : \n" )

;

for (
i =0 ; i <0x100

;
i++)

if ( f
p

- > i n 1 2 f [ i ]

)

pri ntf
(

"%02X : % 1 u \
t

" , i, f
p

- > i n t 2 f [ i ] )

;

pri ntf
(

"\n\nINT 2Fh AX=1607h cal 1 s : \n" )

;

for (
i =0 ; i < V X D_MAX ; i++)

if ( fp->i nt2f1607 [i ]

)

pri ntf
(

"%02X : %1 u\t" , i, f p->i nt2f 1607Ei ] )

;

if ( f
p
- > i nt2f 1607 [ VXD_0THER]

)

pri ntf
(

" VxD>#%04X : %lu\n", VXD_MAX, fp->i n t 2 f 1 60 7 [ V X D_0TH E R ] )

;

pri ntf
(

"\n\n" )

;

free(fp)

;

STATS far *get_stats ( voi d ) // call resident copy of V86TEST

{

STATS far *fp;

_asm mov ax, GET_STATS

_asm int 2fh

_asm mov word ptr fp+2, es

_asm mov word ptr fp, bx

return (_fstrcmp(fp->signature, SIGNATURE) == 0) ? fp : 0;

1

m a i n ( i n t argc, char *argv[])

{

int i ;

PUTCV86TEST - Test effect of Windows on software loaded before it");

PUTC'From \"Unauthori zed WindowsX" (IDG Books, 1994)");

PUT
(

"Copyri ght (c) 1994 Andrew Schulman. All rights reserved . \n" )

;

/* look for command-line switches */

while (argv[l] [0] == ’-')

{

STATS far *fp;

switch (toupper(argv[l][l] )

)

case '

F
' : // filter
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not_filter = 0;

break

;

case 'O' : // okv86

v86_okay = 1

;

break;

case 'V' : // verbose

not_verbose = 0;

break;

case ’
Q

' : // query

if ( ! (fp = get_stats( ) )

)

FAI L( "Can ' t get V86TEST statistics");

di spl ay_resul ts(fp)

;

exi t ( 0 )

;

case 'C' : // clear

if ( ! (fp = get_stats( ) )

)

FAI L( "Can ' t clear V86TEST statistics");

_fmemset(&fp->cal 1 s , 0,

si zeof ('STATS )
- off setof( STATS , calls));

exi t ( 0 )

;

defaul t

:

FAIL(usage)

;

}

argv++; argc-;

if (argc < 2) FAIL(usage)

;

if (win3e()) FAI L( "A1 ready running under Windows Enhanced mode\n"

"Exit Windows and try again");

if (! v86_okay)

if (peO) FAI L( "A1 ready in V86 mode - test would be pointless\n"

"Remove 386 memory manager from CONFIG.SYS and reboot")

if ((stats = callocd, si zeof (STATS) ) )
== 0)

FAI L(
" Insuffi ci ent memory");

fpstats = (STATS far *) stats;

strcpy(stats->si gnature , SIGNATURE)

;

/* hook INT 21 h and INT 2Fh */

old = _dos_get vect ( 0x2 1 )

;

_dos_setvect(0x21 , i n 1 2 1 ) ;

old_2F = _dos_get vect ( 0x2 F )

;

_dos_setvect(0x2f
. i n 1 2 f )

;

/* run command */

spawnvp( P_WAIT
, a rgv [ 1 ] , &a rg v [ 1 ] )

;

/* unhook INT 21 h , 2Fh */

_dos_setvect(0x2F, o 1 d_2 F )

;

_dos_setvect(0x21 , old);

d i spl ay_results( fpstats)

;

return 0;
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void check_state( i nt intno, int ah, int al
, int bx)

{

stats->cal 1 s[state]++;

if (peO)
stats ->v86_cal 1 s [state ]++;

if (state == W I N_I N I T_D0N E

)

{

/* The following is a little confusing. V86TEST is normally able

to make Windows INT 2 Fh calls (such as vmidO) from inside an

INT 2 Fh handler, without causing an endless loop, because VMM

gets these INT 2 Fh calls and doesn't reflect them back to V86

mode. Thus, V86TEST mode's INT 2 Fh handler never sees

calls such as 2F/1680 and 2F/1683. However, it's useful to

test V86TEST with programs other than Windows, such as FAKEWIN.

In this case, the 2F/168x calls would wind up right back at

V86TEST, causing an endless loop if called from inside the

INT 2 F h handler. So if genuine Windows VMM isn't running (as

determined by the 2F/1680 call), V86TEST doesn’t call 2F/1683.

2F/1680 is called just once; logging is turned off for that one

call to prevent an endless loop if something other than Windows

VMM is running. */

int cur_vm;

static int logging = 1;

static int is_win = 0xff;

if (logging == 0) return;

else if (is_win == 0xff) // one-time init

{

logging = 0;

i s_wi n = wi n3e( )

;

logging = 1;

1

cur_vm = (is_win) ? vmidO : 0;

stats->vm[ ( cur_vm < VM_MAX) ? cur_vm ; VM_0THER]++;

// only collect this while Windows running!!

stats ->i opl_count [ i opl ( )]++;

if (intno == 0x21)

stats->i n t 2 1 [ah]++;

else if (intno == 0x2 f

)

{

stats ->i nt2f [ah]++;

if (ah == 0x16)
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stats ->i nt 2f 1 6 [ a 1 ]++;

if (al == 7) // 2f / 1607 / 18 is most popular ( VMPOLL)

stats->int2f!607[(bx < 0x100) ? bx : VXD_0THER]++;

void interrupt far i n 1 2 1 ( REG_PARAMS r)

{

check_state( 0x21 , r.ax >> 8, r.ax & 0xff, r.bx);

_c h a i n_i ntr(old)

;

void interrupt far i nt2f ( REG_PARAMS r)

{

switch (r.ax)

{

case WI N_I N I T_N0T I FY : state = W I N_I N I T_B EG I N

;

break

;

case W I N_I N I T_C0MP LETE : state = W I N_I N I T_D0 N E

;

time(&stats->start)

;

break;

case WIN_EXIT_BEGIN ; state = W I N_F I N I_B EG I N

;

time(&stats->end)

;

break;

case W I N_EX I T_N0T I FY : state = W I N_F I N I_D0 N E

;

break

;

case GET_STAT S : r.es = FP_S EG ( f pstats )

;

r .bx = FP_0FF (fpstats)

;

break;

}

// -FILTER option ignores 2f /1607/18 (VMPOLL)

if ( not_f i Iter
||

(r.ax != 0x1607 && r.bx != 0x18))

check_state(0x2f , r.ax >> 8, r.ax & 0xff, r.bx);

_chain_intr(old_2F)

;

Since the goal ofV86TEST is to demonstrate that Windows calls

DOS in V86 mode, it doesn’t make sense to run V86TEST if the

machine is already in V86 mode. All interrupt calls would be in V86
mode anyway, whether or not you ran Windows, so V86TEST would

reveal little about the Windows-DOS interface.

Therefore, V86TEST checks the PE bit at startup. If the PE bit is

already set (probably because you’re running under a 386 memory man-

ager such as EMM386, QEMM, or 386MAX), V86TEST displays an

error message and exits. Except when handling the -VERBOSE and

-CLEAR command-line options discussed in the next chapter, V86TEST
also fails with an error message if you’re already running under Windows.

An interesting alternative might be for V86TEST to force the machine

from V86 mode to real mode and then spawn Windows, but this is more
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complicated than it sounds (see the “Switching from V86 mode to real

mode” sidebar).

Because the next chapter uses V86TEST for a somewhat different

purpose than detecting the mode in which Windows calls down to DOS,
V86TEST also provides an -OKV86 switch that forces the program to

run even if the processor is already in V86 mode.

If the machine is in V86 mode when V86TEST starts up and if the user

hasn’t specified -0KV86, the program fails with this error message:

Already in V86 mode -- test would be pointless

Remove 386 memory manager from CONFIG.SYS and reboot

An interesting alternative would be for V86TEST to force the machine

out of V86 mode and back to real mode before spawning Windows. Mem-
ory managers such as EMM386 and QEMM generally provide an OFF com-

mand-line option to disable the memory manager, so it seems like

V86TEST should be able to call some function in the memory manager to

deactivate the memory manager and return to real mode. Indeed, Windows

itself must call such a function when it starts up. Windows Enhanced mode

can’t switch to protected mode if the machine is already in protected mode

(that is, V86 mode). As seen in FAKEWIN in Chapters 3 and 4, the INT 2Fh

function 1605h broadcast allows an installed memory manager to give Win-

dows the address of a V86 switch function.

Like FAKEWIN, V86TEST could pretend to be Windows and issue an INT

2Fh function 1605h to get the address of the switch function. It could then

call this function to switch from V86 mode back to real mode before

spawning Windows. If the memory manager has already been turned OFF,

or if the switch function has already been called to disable V86 mode, the

memory manager should return NULL for the switch function address.

However, the V86 switch function that memory managers return via INT

2Fh function 1605h isn’t exactly like EMM386 OFF or QEMM OFF. Whereas

those command-line options fail if the memory manager is currently provid-

ing UMBs (Upper Memory Blocks) or EMS, the V86 switch function just

does what it’s told and disables V86 mode. What this means, unfortu-

nately, is that some key device driver or TSR that has been loaded high will

suddenly become invisible — and this is likely to result in a crash.

What does Windows itself do in this situation? As shown in Chapters 3

and 4, the V86MMGR VxD in Windows uses a Global EMM Import interface

to take over the memory manager’s page tables. Rather than get into the

Global EMM Import business, it makes more sense for V86TEST — which,

after all, is just a test program — to simply fail if it detects that the

machine is already in V86 mode.
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As noted earlier, V86TEST keeps statistics that indicate how many

calls it has seen and how many of these calls occurred in V86 mode

rather than in real mode. Figure 10-2 shows some sample output from

V86TEST; to increase the number of DOS calls, I temporarily disabled

32-bit file access. (Actually, the /D:C switch to disable 32-bit file access

was unnecessary here, since redirecting Windows’ stdout to a file will do

that anyhow.)

C:\>v86test / D : C > v86test.log

C : \ > ty pe v86test.log

Before Windows started: 109 INT 21/2F calls, 0 in V86 mode

During Windows init: 5216 INT 21/2F calls, 354 in V86 mode

While Windows running: 174712 INT 21/2F calls, 174712 in V86 mode

During Windows exit: 13 INT 21/2F calls, 10 in V 86 mode

After Windows exited: 12 INT 21/2F calls, 0 in V86 mode

While Windows running:

Windows active for 256 seconds

682 INT 21/2F calls/second

1 0 P L= 0 -- 2929 calls

1 0 P L=3 -- 171783 calls

VM #1 -- 135326 calls

VM #2 -- 39386 calls

INT 2 F h AH= 1 6 h calls seen by V86TEST

:

00: 2 05: 1 06: 1 07: 125887 08: 1 09: 1 0A: 2 0B: 2 8A: 1

Figure 10-2: Sample output from V86TEST, a program that shows Windows calls DOS
in V86 mode.

The third line of the output in Figure 10-2 tells us that every one of

the 174,712 INT 2 lh and INT 2Fh calls made while Windows was run-

ning occurred in V86 mode. No DOS calls occurred in V86 mode either

before Windows started or after Windows completed its exit procedure.

It’s apparent from this figure that the switch from real mode to V86 mode

occurs sometime during Windows init and that the switch back to real

mode occurs sometime during Windows exit. Well, that’s sensible enough.

While Windows is running, V86TEST, in addition to testing the PE
bit, also checks the processor flags to get the I/O privilege level (IOPL)

and calls INT 2Fh function 1683h (Get Current Virtual Machine ID) to

get the current Virtual Machine ID number (VMID).

You might be asking, nay, demanding: How can V86TEST make

an INT 2Fh call from inside an INT 2Fh handler? This is an excellent

question, and the answer gets to very heart of how Windows exercises

control over programs running in V86 mode. Stay tuned for the

exciting explanation.
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But first, to understand the next part of the V86TEST output in

Figure 10-2 (the two lines showing numbers for IOPL=0 and IOPL=3),

we need to take what will at first appear to be a detour to look at the I/O

Privilege Level on the Intel 80386 and later microprocessors. It’s not a

pretty sight, but here goes.

iopl and me interrupt Flay

The Intel 80x86 architecture has a dizzying array of protection and privi-

lege mechanisms. Books on the subject typically bombard the reader with

terms like Requestor Privilege Level (RPL), Descriptor Privilege Level

(DPL), Current Privilege Level (CPL), and I/O Privilege Level (IOPL).

One of the most intelligent books on microprocessors, after the obliga-

tory section on Intel 80386 privilege levels, presents a section titled “Is

All This Worthwhile?” The authors observe,

The previous section is virtually incomprehensible. You probably have to read it sev-

eral times to understand it, and it is still easy to get the DPLs, CPLs, and RPLs hope-

lessly mixed up. No other commonly used microprocessors have anything like this

protection complexity, and we can legitimately raise the question of whether these

features are useful and worthwhile (the Intel position) or represent design gone

berserk (the position of many others).

— Robert B.K. Dewar and Matthew Smosna, Microprocessors: A

Programmer’s View
, pp. 95-96.

I’m not going to bore you with yet another discussion of the baroque

privilege-level mechanism on Intel’s 80386, 80486, and Pentium micro-

processors. If you want, you can read about this in the Intel manuals (or

in many widely available books that have been cribbed from the Intel

manuals) or in some of the few genuinely good books on the subject,

which I’ve listed in “For Further Reading.”

But we do need to look at one aspect of this mess: the IOPL. To sim-

plify matters somewhat (which I must do to avoid dragging in a discus-

sion of the CPL), the IOPL determines which instructions a program

running in V86 mode can execute. If the I/O Privilege Level is less than 3

(such as IOPL=0), programs running in a DOS box cannot execute the

following instructions:

Instruction Description

Push flags

Pop flags

PUSHF

POPF
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INT n Software interrupt

IRET Interrupt return

CLI Clear interrupt flag (disable interrupts)

STI Set interrupt flag (enable interrupts)

You might wonder what these six instructions have to do with each

other or with an I/O privilege level. Furthermore, since these instruc-

tions are all commonly used in real-mode software, you might wonder

what possible use there could be in a V86 mode configuration that runs

real-mode software but doesn't allow execution of these instructions.

To deal with these points in reverse order (popping the stack, as it

were), let’s first dismiss any “cannot execute” concerns you might have.

Whenever discussions of the Intel processors say that something “can’t

happen,” it just means that an exception is generated. In the case of these

can’t-execute instructions, all that happens is that a General Protection

(GP) fault is triggered. In other words, if a real-mode program running

in V86 mode with IOPL=0 generates, say, an INT 2 1 h to call MS-DOS,
this triggers a GP fault.

A GP fault?! That doesn’t sound very good. GP faults are what make

Windows display its ominous-looking “Unrecoverable Application Error!

Do Not Pass Go! Do Not Collect $200!” message boxes. How is generat-

ing a GP fault any different from saying that the instruction can’t execute?

Relax: don’t get your knickers in a twist over GP faults. The GP fault

is really just an INT ODh. The protected-mode operating system (such as

VMM in Windows) will have an INT ODh handler that will catch this

GP fault and do with it what it wants. VMM could terminate the offend-

ing application, ignore the instruction, emulate the instruction, whatever.

So a real-mode program running in a Windows DOS box with IOPL=0
that generates, say, an INT 2 lh to call MS-DOS will trap into VMM’s
GP fault handler.

This GP fault handler doesn’t necessarily display an error message

and terminate the application. In fact, Windows’ GP fault handlers

almost never respond this way to GP faults. That’s because GP faults,

along with Invalid Opcode exceptions, are a normal and crucial part of

the underlying system architecture of Windows, and VMM’s GP fault

handler silently deals with many GP faults per second.

Let’s return to what the six illegal instructions — PUSHF, POPF,

INT n, IRET, CLI, and STI — have to do with each other. Why are

these instructions different from all other instructions? Because they all

affect the Interrupt Flag (IF). CLI and STI of course clear and set IF, but
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so can POPF and IRET in the course of popping the top of the stack into

the flags register. The PUSHF and INT (which does an implicit

PUSHF) instructions don’t directly affect the flags register, but they are

symmetrical to POPF and IRET. (That’s not quite the real reason for

their inclusion, but the real reason won’t make sense for a few moments.)

Okay, then what’s so important about IF that Intel would go to all this

trouble? As already noted at the end of Chapter 9, all other things being

equal, it’s a bad idea for protected-mode operating systems to let a V86
process turn off the processor’s actual IF, because doing so disables inter-

rupts for all processes. If a program running in a DOS box could freely

execute CLI or use POPF or IRET to disable interrupts, it could disable

interrupts for every other program too, including Windows applications

and other DOS boxes.

This would not be good. So Intel gives protected-mode operating

systems the option of trapping these instructions. If IOPL<3 (such as

IOPL=0), then every time a DOS program— or a program loaded

before Windows, such as DOS itself— generates one of these instruc-

tions, VMM could take over. VMM could maintain a “virtual” IF for

each VM. (Interestingly, the Pentium processor has some undocumented

V86 extensions that provide a Virtual IF in hardware.) The processor

needs to trap PUSHF and INT, even though these don’t affect the IF, so

that a V86 monitor like VMM can maintain this virtual IF. (This is the

real reason I alluded to a moment ago.)

This is a good example of how V86 mode lets a protected-mode oper-

ating system have its way with real-mode software. But why is IOPL<3

just an option? Why would you ever want to give some crummy DOS
program the freedom to turn off interrupts for everyone else? Because, if

every PUSHF, POPF, INT, IRET, CLI, and STI caused a GP fault that

VMM had to handle, performance would probably stink (see CLISTI.C

in Listing 10-4). When IOPL=3, these instructions don’t fault; they exe-

cute just as they would in real mode.

Actually, that’s not quite true. The Intel manual says that “If the IOPL
is less than 3, INT n instructions are intercepted by the virtual-8086

monitor,” which seems to imply that if IOPL isn’t less than 3, then INT n

instructions aren’t intercepted by the V86 monitor. In fact, they are. As

Intel explains elsewhere in the manual, all INT instructions from V86
mode, regardless of IOPL, are vectored through the protected-mode

Interrupt Descriptor Table (IDT). So, whatever the IOPL, all INT 2 lh,

INT 2Fh, and so on from DOS programs— and, once again, from pro-

grams loaded before Windows, including DOS itself— will be handled



Unauthorized Windows 95

initially (and sometimes exclusively) by VMM or a VxD. This is an

important point, and I’ll return to it many times.

At any rate, if IOPL=3, none of the instructions that affect IF will

generate a fault. A DOS program running in V86 mode with IOPL=3

will actually turn off the machine’s IF if it executes a CLI. Thus, IOPL=0
gives you a more robust operating system under which DOS programs

may take a hefty performance hit, and IOPL=3 gives you a less-robust

operating system with better performance. Again, Intel’s Pentium proces-

sor has some currently undocumented V86 extensions that, sometime in

the future, might make this robustness versus performance tradeoff

unnecessary.

What does Windows do about this robustness versus performance

dilemma? The output from V86TEST (Figure 10-2) shows what it does:

1 0 P L=0 -- 2929 calls

1 0 P L=3 -- 171783 calls

Although occasionally IOPL=0,the vast majority of the time IOPL=3.

This has tremendous implications for Windows’s performance and

robustness. A setting of IOPL=3 means that CLI/STI, PUSHF/POPF,
and IRET will not trap into the Windows VMM. This results in far bet-

ter performance than a setting of IOPL=0 (which causes each such

instruction to trap into VMM); it also means that DOS software can

freely manipulate the interrupt flag.

Geoff Chappell has suggested a nice demonstration that illustrates

both this point and the point that Windows provides preemptive multi-

tasking of VMs. Inside a Windows DOS box, run DEBUG and assemble

a tight loop that enables interrupts:

C : \>debug

-a

7713:0100 sti

7713:0101 jmp 100 ; or jmp 101

7713:0103

-g

This is a dynamic halt : the processor is executing instructions, but

you can’t do anything in the DOS box. Pressing Ctrl-C or Ctrl-Break

has no effect. If you were in DOS, you’d have no choice but to reboot the

machine.

However, this is a Windows DOS box, so you can run other programs

in the background and switch to other programs. You can even make the

DOS box windowed or full screen, cut data from the hung DOS box into
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the Clipboard, and so on. These virtual machines are better than genuine

machines! You can press Ctrl-Alt-Del to do a “local reboot” of the DOS
box and then start another DOS box. This capability to throw away a

hung DOS machine and get another one makes Windows (or any pre-

emptive multitasking environment) great for software development.

Now, use DEBUG to assemble a tight loop that disables interrupts:

C : \>debug

-a

7713:0100 cl

i

7713:0101 jmp 100 ; or jmp 101

7713:0103

-g

Once again, the DOS box is hung: Ctrl-C and other keys have no

effect. But this time, because we’ve used CLI (clear interrupt flag) rather

than STI (set interrupt flag) and because Windows almost always uses

IOPL=3, the programs running in the background halt; you can’t switch

to other programs and you can’t even press Ctrl-Alt-Del (well, you can

press Ctrl-Alt-Del all you want, but nothing will happen). There’s noth-

ing to do but power the machine off and on again. (By the way, don’t try

this experiment with 3 2 -bit file access enabled because you could lose any

file data held in memory by the VCACHE VxD.)

This shows that any DOS program can turn off interrupts for all of

Windows. Although this is a massive security breach, you can also see

that it isn’t an inherent property of running protected-mode Windows on

top of real-mode DOS. Instead, setting the IOPL level involves a tradeoff

that all operating systems must consider: Robustness versus performance.

V86TEST shows, however, that Windows occasionally sets IOPL=0.

Why? The answer appears in a book on the design of OS/2. It shouldn’t

be surprising that OS/2 provides clues about the inner workings of

Windows Enhanced mode, since Microsoft largely designed OS/2 2.0

before its divorce from IBM. It turns out that, just like Windows, OS/2’s

Virtual DOS Machines (VDMs) use IOPL=3 most of the time but do

every now and then need IOPL=0:

IOPL is set to 0 for a single VDM only when that VDM needs to have the interrupt

flag virtualized. For example, when some VDD [an OS/2 virtual device driver] needs

to simulate an interrupt into a VDM, it must be able to detect when the VDM can

be interrupted. Therefore, IOPL is decreased to less than 3, so that the interrupt

flag can be virtualized for a VDM, and the system can detect when the interrupts

are enabled in that VDM. IOPL is increased back to 3 when the simulated interrupt

is delivered to the VDM.

— H.M. Deitel and M.S. Kogan, The Design of OS/2, p. 296.
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This sounds like a description of the VDHArmSTIHook service in

OS/2, which allows OS/2 virtual device drivers to install (“arm” in IBM-

speak) a handler that receives control when interrupts are enabled (STI)

in a DOS box. The equivalent function in Windows is Call_When_VM_
Ints_Enabled. Sure enough, inspection of the code in VMM shows that

Call_When_VM_Ints_Enabled sets IOPL=0. And the Windows VPICD
device, which simulates hardware interrupts into VMs, uses Call_When_

VM_Ints_Enabled, just as you’d gather from the description of OS/2.

When V86TEST detects IOPL=0, it’s generally because VPICD wants

to simulate a hardware interrupt (usually a timer tick) into a VM.
Despite the similarity here between OS/2 and Windows (which really

is remarkable when you consider the bad blood between Microsoft and

IBM’s PSP division, which markets OS/2), there is an interesting differ-

ence. According to Deitel and Kogan:

To make sure that a DOS application does not disable interrupts and go into a spin

loop and hang the system, OS/2 uses a watchdog timer. A watchdog timer is set

with a duration interval; as long as the timer is primed before that interval expires,

the timer does not interrupt. If the watchdog timer interrupts, the system terminates

the DOS application. Therefore, setting IOPL to 3 allows the system to achieve maxi-

mum performance, and using the watchdog timer prevents DOS applications from

taking down the system or disrupting protected-mode applications.

— The Design of OS/2, p. 296.

Even here, though, the difference between OS/2 and Windows turns

out not to be very large. The “watchdog timer” that OS/2 uses is avail-

able only on PS/2 and EISA machines, which provide an extra timer that

can trigger a nonmaskable interrupt (NMI) if interrupts have been dis-

abled for too long. On machines with the watchdog timer, OS/2 responds

to the CLI loop with an error message and allows you to terminate the

VDM. On standard ISA machines missing this nice feature, however, a

CLI loop in a DOS box hangs OS/2, exactly as happens under Windows.

So much for “Crash Protection.”

Executing a CLI loop in a DOS box under Windows NT, however,

will not hang the machine. NT runs DOS programs with IOPL=0, and

every single CLI will trap into a part ofNT called NTVDM; NTVDM
can maintain a virtual interrupt flag for each VDM. With IOPL=0, every

PUSHF, POPF, INT, IRET, and STI will also trap into NTVDM, so the

downside is that performance isn’t very good.

Note that there’s nothing inherent in NT’s status as a full-blown

operating system that prevents DOS applications from hanging the

machine: NT has just chosen to run DOS applications with IOPL=0.
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Similarly, there’s nothing inherent in Windows’s status as a seeming

extension to real-mode DOS —by now, the extension is wagging the

operating system— that makes it vulnerable to DOS applications. Win-
dows has simply chosen (most of the time) to run DOS applications with

IOPL=3. These are just examples of engineering decisions and tradeoffs;

there’s no magic.

With all this talk of the interrupt flag, I neglected to answer one ques-

tion: What does the interrupt flag have to do with the I/O privilege level?

In V86 mode, IOPL has very little to do with I/O per se. In protected

mode, IOPL (together with the I/O permission bitmap) determines

whether an application can issue the Intel I/O instructions — IN, INS,

OUT, and OUTS — without generating a GP fault. But in V86 mode,

the four I/O instructions consult the I/O permission bitmap regardless of

the IOPL, and IOPL is reused for interrupt-flag management. IOPL just

has different meanings in protected mode and V86 mode, and the name

in V86 mode doesn’t make a whole lot of sense.

Speaking of protected mode, it’s worth repeating the earlier STI and

CLI loop tests that used DEBUG in V86 mode, but this time using a

small protected-mode Windows application. Listing 10-2 does just that.

Listing 10-2: CLITEST.C (Windows version)

/* bcc -WS cl i test . c */

//include "wi ndows .

h"

int PASCAL Wi nMai n ( HANDLE hlnstance, HANDLE hPrevInstance

.

LPSTR 1 pszCmdLi ne, int nCmdShow)

{

(/define YN (MB_YESN0
|

MB_I CONQU EST I ON

)

if (MessageBox(0 ,
"Would you like a STI loop?", "CLITEST", YN) == IDYES)

{

for ( ; ;

)

_asm sti

1

if (MessageBox( 0 ,
"How about a CLI loop?", "CLITEST", YN) == IDYES)

{

for ( ; ;

)

_asm cl

i

return 0;

}

When you run CLITEST, the STI loop behaves pretty much like the

V86 mode DOS version: the machine seems hung, but you can do a local

reboot (Ctrl-Alt-Del) to terminate the CLITEST application. Rather

than terminating the System VM, just the application is terminated. On



Unauthorized Windows 95

the other hand, while CLITEST is running, you can’t switch to other

Win 16 applications because CLITEST isn’t reading the message queue.

Unfortunately, in the May 1 994 Chicago beta, the STI loop in CLITEST
seemed to prevent all Win32 threads (such as those belonging to Clock

and WinBezMT) from running, and Windows 95 ’s “Close Hung Applica-

tion” feature seemed confused because CLITEST doesn’t have a window.

What’s more interesting is that this Windows CLITEST behaves the

same way in its CLI loop! Recall that when a DOS program went into a

CLI loop, the machine was truly locked up. But you can just use Ctrl-Alt-

Del to terminate the Windows program and go on to something else.

So what magical qualities do Windows applications have that DOS
applications don’t have? None, actually. The difference is that we tried the

CLI loop from a real-mode program (DEBUG) running in V86 mode;

the Windows program, on the other hand, was running in protected

mode. It’s not a Windows versus DOS difference, but a protected mode
versus V86 mode difference. So, in Listing 10-3, let’s use the DPMISH
library on the Unauthorized Windows 95 disk to try a protected-mode DOS
version of CLITEST.

Listing 10-3: CLITEST2.C (DPMI version)

/* bcc clitest2.c dpmish.c ctrl_c.asm */

//include <stdio.h>

//include "dpmish.h"

void fai 1 (const char *s, ...) { puts ( s ) ; _dos_exi t( 1 ) ; }

int realjnai n ( i nt argc, char *argv[]) { return 0; }

int pmode_main(int argc, char *argv[])

{

if (argc < 2)

{

puts
(

"STI loop");

for ( ; ;

)

asm sti

el se

puts
(

"CLI loop");

for ( ; ;

)

_asm cl

i

Sure enough, with the protected-mode DOS version of the CLI loop,

you can still do a local reboot to throw away the application without

resetting the machine. This demonstrates the symmetry between the Sys-

tem VM and DOS boxes: protected-mode DOS programs behave much
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like Windows applications. Actually, in this case the DOS program is a

little better than a Win 16 program. Since the DOS program doesn’t have

to poll the message queue, it doesn’t hold up other programs, Clock con-

tinues to run, you can switch away to other programs, and so on.

Okay, so a CLI loop from a protected-mode DOS or Windows pro-

gram won’t hang the machine. But why not?

For one thing, the REBOOT VxD in Windows, which installs a han-

dler for the Ctrl-Alt-Del hot key and manages the local-reboot facility,

contains code that, on receipt of a Ctrl-Alt-Del from a protected-mode

program, checks to see if the interrupt flag is disabled; if it is, it enables it!

But the more fundamental reason is that, under protected mode in

Windows, IOPL=0. (You can see this if you call the iopl function in List-

ing 10-1 from a Windows application; see Listing 10-4.) This means that

CLI and STI instructions from protected-mode DOS and Windows pro-

grams always generate a GP fault that is handled by VMM.
So what does VMM do when its GP fault handler is called on

account of a CLI? When IOPL=0 (either in protected mode or in V86

mode), a CLI instruction will wind up invoking the following piece of

code in VMM:

C L I_H AN D L E R

:

inc [ebp.Cl i en t_E IP]

and byte ptr [ebp.Cl i en t_F LAGS+1 ] ,
0 FDh

retn

This code skips past the 1-byte CLI instruction, clears the interrupt

flags in a virtualized copy of the flags register, and then returns. The STI

handler is a bit more complicated because it has to work with the Call_

When_VM_Ints_Enabled service mentioned earlier:

ST I_H AN D L E R

:

inc [ebp.Cl i en t_E IP]

bts [ebp.Cl i en t_Fl ags] , 9 ;; bit to carry, reset

jnc ENABLE D_I NTS :: if went from disabled to enabled

retn

ENAB LED_I NTS

:

See if anyone is waiting for VM_Ints_Enabl ed

:

;;; If so, schedule their Cal 1 When routine to get called.

;;; (There’s a good bit of code here.)

But even STI_HANDLER looks so simple that you must be wonder-

ing whyVMM doesn’t just provide interrupt-flag virtualization all the

time. Unfortunately, whenever a GP fault occurs, VMM has to execute a

lot of code before it can do something useful (in this case, calling CLI_

HANDLER or STI_HANDLER). This isn’t something you want
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happening a lot. Even by avoiding IOPL=0 most of the time in V86

mode, Windows still suffers from far too many internal GP faults.

Without looking at all the VMM GP fault handling code, it’s still easy

to see that interrupt-flag virtualization comes at a very high price. The
DPMI 1.0 specification warns that in protected mode, the CLI and STI

instructions “should be assumed to be very slow.” An earlier version of

the specification specifically mentioned that virtualized CLI and STI can

take 300 clocks each! The Intel 80x86 manuals say CLI and STI take 3-5

clocks each. It’s easy to determine whether IOPL=0 (whether in pro-

tected or V86 mode) really does take such a terrible toll, by seeing how
many seconds it takes to execute a large number of CLIs and STIs in

protected mode (where under Windows IOPL=0). In protected mode
IOPL=0 so a protected-mode test program gives us an idea how V86
must behave when IOPL=0.

CLISTI in Listing 10-4 is a DPMI program that executes a CLI/STI

loop first in V86 or real mode and then switches to protected mode to

run the CLI/STI loop again. It prints out the elapsed time in each mode.

Listing 10-4: CLISTI.

C

/* cl i sti . c */

//include <stdlib.h>

//include <stdio.h>

//include <time.h>

//include "dpmish.h"

void fail (const char *s, ...) { puts ( s ) ; _dos_exi t( 1 ) ; }

//define ITER 1000000L

int pe(void) // is processor Protect Enable bit set?

{

_asm smsw ax

_asm and ax. 1

// retval in AX

1

int iopl(void) // get I/O Privilege Level from flags

{

_asm pushf

_asm pop ax

_asm shr ax, 12

_asm and ax, 3

// retval in AX

}

int c p 1 (void) // get pmode Ring X from bottom two bits of CS
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_asm mov ax, cs

_asm and ax, 3

// ret v a 1 in AX

void cl i sti_l oop( i nt pmode)

{

time_t tl, t 2

;

unsi gned 1 ong i

;

pri ntf
(

" \n%s mode ", pmode? "Prot"
: pe() ? "V86" : "Real");

printf
(

" I0PL=%d" , ioplO);
if (pmode) printfC' CPL=Xd", cplO);

p r i n t f (
" \ n " )

;

t i me ( &t 1 )

;

for (
i =0 ; i < I T E R ; i++)

_asm cl

i

_asm sti

1

time ( &t2 )

;

pri ntf
(
"%1 u CLI/STI in %lu seconds\n", ITER, 1

2
- 1 1 )

;

i nt real _m a i n ( i n t argc, char *argv[]) { cl i sti _1 oop ( 0 ) ; return 0; }

i nt pmode_main( i nt argc, char *argv[]) { cl i sti_l oop ( 1 ) ; return 0; }

Here are the results from running CLISTI in various modes on one

machine:

In real -mode MS-DOS;

Real mode I0PL=3

In a WfW 3.11 DOS box;

V86 mode I0PL=3

Prot mode 1 0 P L=0 CPL=3

1000000 CLI/STI in 1 second

1000000 CLI/STI in 1 second

1000000 CLI/STI in 70 second

In a Windows 3.0 DOS box:

V86 mode I OP L=3 1000000 CLI/STI in 1 second

Prot mode 1 0 P L=0 CPL=1 1000000 CLI/STI in 24 second

With CLI/STI taking about seventy times longer in Windows 3.1

with IOPL=0 than with IOPL=3, the DPMI specification’s estimate of

about 300 clocks sounds just about right for the VMM implementation.

Interestingly, the Windows 3.0 implementation was a good bit faster in

this area. Although the CLI and STI handlers themselves don’t do much
(well, the STI handler does do a fair amount for Call_When_VM_Ints_

Enabled), just getting in and out ofVMM is quite expensive.

It’s important to remember that this is not a distinction between V86
mode and protected mode per se. Whether CLI and STI cause these
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expensive GP faults or not has to do entirely with the IOPL. When
IOPL=0 in a DOS box, any CLI or STI— even one located inside DOS
or the BIOS — will execute the VMM code shown earlier. Judging from

Figure 10-2, IOPL=0 about ten times per second, probably when VPICD
wants to send hardware interrupts such as timer ticks into the VM.

I ought to confess now that the absolute value of IOPL isn’t really

what matters. What the processor cares about is whether IOPL is less

than CPL; for example, if IOPL<CPL, a CLI or STI will generate a GP
fault. CPL is what is sometimes called the privilege “ring,” as in Ring 0

or Ring 3. V86 mode is effectively always in Ring 3, so any IOPL<3 will

turn PUSHF, POPF, INT, IRET, CLI, and STI into a GP fault. Still,

IOPL=0 and IOPL=3 are convenient shorthand.

In protected mode, the CPL is determined from the bottom two bits

of the CS register (see the cpl function in Listing 10-4). In Windows 3.0,

protected-mode programs ran in Ring (CPL) 1; in Windows 3.1 and

higher, they run in Ring 3. In both cases, IOPL=0, so CLI, STI, IN,

INS, OUT, and OUTS all cause GP faults from Windows applications

and from protected-mode DOS applications running under Windows.

InVMM and VxDs, there is a single flat 4GB code segment whose

value is 002 8h. Although the value itself is not that important, and may
change, note that the bottom two bits of 002 8h are clear: VMM and VxDs
run in Ring 0, so when they issue a CLI, STI, IN, OUT, INT, IRET, or

whatever, no GP fault occurs. VMM and VxDs can do whatever they

want. VMM and VxDs are in charge of virtualization and can’t themselves

be virtualized; this makes VxDs perfect for low-level Windows systems

programming, but it also makes life difficult for environments such as

OS/2 that want to run Windows as a subtask. The Windows virtualizer

can’t itself easily be virtualized. Windows is not a recursive VMM.
One last point about IOPL. In the iopl function in Listings 10-1 and

10-4, note that the first instruction is a PUSHF: the function pushes the

flags on the stack so it can extract the IOPL bits. There’s one problem

here: in V86 mode, if IOPL=0 then PUSHF causes a GP fault, which the

operating system can handle any way it likes. It’s conceivable that an

operating system’s PUSHF handler could change the IOPL bits in the

emulated flags register so that it appeared as if IOPL=3; the V86-mode
program would have no way of knowing.

Thus, if the iopl function comes back with IOPL=0, you know that

IOPL=0, but if it comes back with anything else, you can’t be sure: per-

haps IOPL=0 and the operating system has emulated PUSHF in a way
that makes it appear as ifIOPL=3. It’s a weird world, this V86 mode,
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when you can’t even completely trust a PUSHF to do what it appears to

do. There are really only two ways to find out what PUSHF is doing:

generate a lot of CLIs and STIs and see how long they take (as in Listing

10-4) or examine the operating system’s PUSHF handler. Well, let’s see

what the PUSHF handler in VMM looks like:

PUSHF HANDLER:

test byte ptr [ ebx . CB_VM

jnz STD_OPCODE_HANDLER

inc [ebp.Cl i en t_E IP]

mov cx,2

test edi ,20000h

jz short AD J UST_STAC

K

mov cx,4

AD J U ST_STAC K

:

Status], VMStat_PM_Exec_Bit ;;

; ; this for V 86 mode only

; ; skip past PUSHF

; ; assume 16-bi t PUSHF

;; has 32-bit override ( 66

h

;; 32-bit PUSHF

prot mode?

?

sub word ptr [ebp . Cl i ent_SP] , cx

movzx esi, word ptr [ebp.Cl i en t_SS

]

shl esi ,4

add esi.dword ptr [ebp.Cl ien t_ESP]

MUC K_W I TH_F LAGS

:

mov ecx, [ebp.Cl i en t_E F LAGS

]

and ecx , UFFFCFFFFh ;; clear VM/V86 bit and Resume flag

test edi ,20000h ;; 32-bit override ( 66 h ) ?

jnz short PUSHF32

PUSHF16

:

mov [esi ] ,cx ; ; 16-bit PUSHF

retn

PUSHF32

:

mov [esi], ecx ;; 32-bit PUSHF

retn

Windows doesn’t mess with the IOPL bits, so (at least in the current

implementation) PUSHF can be relied on by the iopl function. On the

other hand, you can see thatVMM does clear out the VM and RF bits;

this matches what the processor itself does with a PUSHF from V86
mode (see the Chapter 9 section on “V86 Mode and the PE Bit”).

You might recall that this discussion of IOPL, the interrupt flag,

instructions that trap or don’t trap into VMM, and so on was inspired by

two lines of output from V86TEST. If we’re to get anywhere before sun-

down, we’d better move on to the next two lines ofV86TEST output.

Running DOS in a Uirtuai Machine

Chapter 9 claimed that Windows runs DOS itself in a DOS box and

promised that V86TEST would prove this. Well, the VMID statistics

from Figure 10-2 provide the proof:
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While Windows running:

VM #1 -- 135326 calls

VM #2 -- 39386 calls

174712 calls, 174712 in V86 mode

In other words, every DOS call made while Windows is running occurs

in the context ofa specific VM, just as if DOS had been started from inside a

DOS box.

If no DOS boxes are opened, V86TEST shows all DOS calls coming

from VM #1; this is the System VM in which Windows applications run.

The System VM, which is used to run Windows applications, is really

just another DOS box, running a DPMI client called KRNL386.EXE.
DOS boxes (and hidden VMs such as that created by the VSERVER
VxD for peer-to-peer networking) start with VM #2

.

While running V86TEST to produce the output shown in Figure

10-2, 1 opened a DOS box, searched through my entire hard disk (“grep

-di foo .c”), and then closed the DOS box. All other DOS calls came

from Windows applications, such as WinWord, Clock, Control Panel,

and Program Manager.

The fact that every DOS call made while Windows is running occurs

in the context of a specific VM shows that Chapter 9 was correct: Run-

ning Windows on top of DOS isn’t much different from running pro-

grams inside a DOS box. The before/under distinction is almost

meaningless, and the “better DOS than DOS” turns out to be essentially

the same as the “thing on a thing.” So much for marketing slogans.

But why hedge this statement with the words almost and essentially?

Because there’s one crucial difference between software loaded before Win-

dows starts (which, as we’ve just seen, Windows will run in the context of a

specific VM) and software loaded in a DOS box after Windows starts.

What we’ve been referring to as “software loaded before Windows” is what

Microsoft calls Global V86 Code (see the Windows 3.1 DDK reference for

the Install _V86_Break_Point service). Generally, memory allocated before

Windows starts is called Global V86 Memory. The term global is what sets

software loaded before Windows apart from software running in a VM. As

Microsoft explains in the DDK documentation for _TestGlobalV86Mem:

Global V86 memory has addresses that are valid and identical in all virtual

machines. Local memory has addresses that are only valid in one virtual machine.

Instanced memory has addresses that are valid in all virtual machines, but the con-

tent of the memory varies with each virtual machine.

Therefore, the before versus under distinction is actually a global ver-

sus local versus instance distinction. Any shakiness in the foundation of
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Windows has little to do with DOS being a real-mode operating system.

That’s because, as we’ve seen, Windows can control DOS by running it

in V86 mode, which is really a form of protected mode. Instead, any pos-

sible instability stems from the fact that software loaded before Windows,

unless it’s specifically declared as instance data, is global
;
that is, it is visi-

ble in all VMs. Changes made to global data in one VM will leak across

to all other VMs. This isn’t true for software started from a DOS box;

such software is local. See the “Instance Data” section in Chapter 3 for a

discussion of the global-data problem and its instance-data solution.

Simulating versus Reflecting interrupts

Besides showing thatVMM runs DOS in a VM, there’s something else

interesting about the VM detection code in V86TEST. V86TEST is

loaded before Windows; yet, to get the VMID, the vmid function in List-

ing 10-1 calls a service provided by Windows, INT 2Fh function 1683h.

I’ve already noted that V86 mode causes many real-mode instructions to

transparently trap into VMM. By calling INT 2Fh function 1683h,

V86TEST is deliberately trapping into VMM. You already saw in Chapter

4 (TEST1684.C) that DOS itself on occasion traps into Windows by

issuing a INT 2Fh function 1684h and calling the returned API pointer.

Trap is the correct term here. Observe in Listing 10-1 that

V86TEST.C calls INT 2Fh function 1683h— from inside its own INT
2Fh handler! Why doesn’t the INT 2Fh call go to V86TEST’s own INT
2Fh handler, which calls INT 2Fh, which calls INT 2Fh, which...?

Why doesn’t this result in an endless loop? Because if Windows

Enhanced mode is running, V86TEST never sees its own calls to this

function. Likewise for most other Windows INT 2Fh AH=16h calls.

Recall from Figure 10-2 that, while V86TEST lists the INT 2Fh func-

tion 16h calls it received, no calls to function 1683h are shown:

INT 2 Fh AH=16h calls seen by V86TEST:

00: 2 05: 1 06: 1 07: 125887 08: 1 09: 1 0A: 2 0B: 2 8A: 1

(Yes, the most noticeable thing here is the huge number of calls to INT
2Fh function 1607h. We’ll get to those in the next chapter.)

As with all system calls in V86 mode, the INT 2Fh made by V86-

TEST’s vmid function goes through the protected-mode Interrupt

Descriptor Table (IDT; see Chapter 12) and is handled initially by VMM.
The difference here is that Windows never sends the INT 2Fh back to
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V86 mode. The call is handled entirely in VMM/VxD-land. The fact that

VMM and VxDs can absorb (or consume, which is the term Microsoft

uses, or simulate, which is the term Intel uses) INT calls in this way is

important. Carried to its logical conclusion, VMM and VxDs could

absorb/consume/simulate all INT calls, without ever calling down to DOS.
Guess what? If Windows 95 actually did that, Microsoft could claim

that Windows no longer requires DOS and have it mean something other

than that the Windows 95 product will bundle DOS and Windows in the

same box. VMM and VxDs could potentially handle all INT calls in

32-bit protected mode, without reflecting them to V86 mode. This capa-

bility is already present in the 3 2 -bit file access provided by WfW 3.11.

This capability has been present in Windows from the moment it started

hooking interrupts via the protected-mode IDT.

The point is that there’s no hard line between a Windows resting on

DOS and a Windows that doesn’t require DOS. As shown in Figure

10-3, this seemingly far-reaching architectural decision is actually made

piecemeal, on a function-by-function basis. The choice about whether to

consume a particular call in 3 2 -bit protected mode or to reflect it down to

V86 mode is a choice that Windows Enhanced mode has been making for

years. Consume or reflect a particular INT 2 lh call: That’s what the issue

of Windows running on DOS comes down to.

Furthermore, we saw in the previous section that even when Windows
does reflect a call down to DOS, it does so in V86 mode. This means that

Windows can exercise control over what DOS does in the same way that it

can exercise control over Windows applications.

The underlying technology for the Windows 95 operating system is

old hat. Windows has had the consume-or-reflect capability since 1988,

when Microsoft introduced WIN386.EXE and VxDs in Windows/386

2.x. (See the article by Ray Duncan cited in “For Further Reading” for an

idea of the similarities between Windows/386 on the one hand and

Enhanced mode, WfW 3.11, and Windows 95 on the other.) Similarly,

the consume-or-reflect capability7 was all laid out years ago in the Intel

manuals; we’re only now really starting to take advantage of this capability

on the bulk of 80x86 machines. Intel talks about simulating system calls;

this is the same as what we’ve called consuming or absorbing a system call:

Many 8086 operating systems use an INT n instruction for a system call.... The VMM
can handle the 8086 system call in one of two ways: it can simulate the call by mak-

ing an equivalent call on the 80386 operating system, or it can reflect the call to a

copy of the 8086 operating system loaded into the V86 task’s address space.

To simulate an 8086 system call, the VMM must decode the call, transform the call

and the parameters to 80386 operating system equivalents, and call the 80386 oper-
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ating system. When the 80386 operating system returns to the VMM, the VMM
must transform the results into the format expected by the V86 task, advance the

V86 task’s saved EIP, and return to the V86 task with an IRET instruction.

— 80386 System Software Writer’s Guide, 1987.

Figure 10-3: Windows handles DOS calls on a function-by-function basis. Depending on

the VxDs installed, some DOS calls are handled in protected mode, and some are sent

down to DOS in V86 mode. Note that this has no relation to the mode of the program

that issued the original INT 21h calls. An INT 21h from a DOS app running in V86 mode
(thick arrow) might be serviced entirely in Windows, whereas a different INT 21h from a

protected-mode Winl6 or Win32 program (thin arrow) might be sent down to DOS.

Recall from Chapter 9 that a VMM runs an operating system in a

VM. That’s all that’s happening in Windows, except that the operating

system (DOS) happened to have been started before VMM. Windows,

Windows applications, and DOS applications all think they’re calling

DOS. But every INT system call goes to VMM, which distributes the

INT to VxDs. VxDs can pass the system call down to DOS by calling

VMM’s Begin_ Exec_V86_Mode and Exec_Int services, but increasingly

they don’t. Instead, many system calls are processed entirely in 3 2 -bit

protected mode by VxDs such as IFSMgr, with the results passed back

to the calling application, just as Intel described back in 1987.
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Windows Enhanced mode has always been able to choose between

simulating or reflecting a DOS call. Hence, Windows 95’s capability to

handle operating system calls, without bothering to call down to DOS
(even a DOS that Windows runs in V86 mode), isn’t a radical departure

from past versions of Windows.

Although the operating system in Windows 95 does incorporate

numerous important improvements, this supposedly “new” operating

system merely takes many of the features of Windows Enhanced mode
to their logical conclusion. This is particularly true when you consider

WfW 3.11. Here, Microsoft could take 3 2 -bit file access from Windows
95 and graft it onto an otherwise-unchanged Windows 3.1 Enhanced

mode base. With 3 2 -bit file access enabled, Windows avoids much of its

interaction with DOS. Yet this was possible without adopting any of the

other features of Windows 95! This is a good indication that Windows
95 does not relate to DOS in a quantitatively different way from previ-

ous versions of Windows. By the way, this is a good thing (unless you

like novelty just for the sake of novelty).

Options tor Controlling DOS

In this chapter, I’ve repeatedly asserted that, by the mere fact that it runs

DOS in V86 mode, Windows can control DOS. However, except for

showing what happens to CLI and STI instructions that DOS might issue

on the rare occasions (about ten times per second) when IOPL=0, I’ve said

little about how Windows exercises this control. Basically, whereas in real

mode certain instructions are handled by the processor, in protected mode
these same instructions are handled by VMM. VMM can do what it wants

with these instructions. Here are some of the ways VMM can gain con trol

from DOS running in V86 mode:

• Just as in protected mode, all interrupt calls from V86 mode are vec-

tored through the IDT. The IDT entry can contain an interrupt gate

that points to Ring 0 code in VMM. The interrupt handler in VMM
can absorb or reflect the interrupt, as it sees fit. The real-mode inter-

rupt vector table at address 0 is consulted only for interrupt reflection.

This reflection, as noted for the example of INT 2Fh function 1683h,

is entirely optional.

• All I/O access (IN, OUT, INS, and OUTS) consults the I/O Permis-

sion Bitmap (IOPB, not to be confused with IOPL). If the specified
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port is being trapped, the IN/OUT triggers a GP fault (INT ODh).

The GP fault handler inVMM determines that an IN/OUT has

attempted to access a hooked port and calls handlers that VxDs have

installed with the Install_IO_Handler service. The I/O handler

can simulate the IN/OUT, refuse it, ignore it, ask the user about it,

and so on.

• As you saw earlier, when IOPL=0 in V86 mode, all execution of the

instructions PUSHF/POPF, INT/IRET, and CLI/STI causes a GP
fault that is caught by VMM. Note that if IOPL=0, any interrupt will

appear at VMM’s door as an INT ODh rather than as an INT n.

VMM’s INT ODh handler must decode the faulting opcode and pass

control to the appropriate opcode handler. In this chapter we looked

at VMM’s handlers for CLI, STI, and PUSHF.

• Any 4K page of V86 memory can be marked “not present,” so that

reading or writing the page causes a page fault (INT OEh) that is

handled by VMM. VxDs can hook this event with the Hook_V86_
Page service provided by VMM.

• Many instructions are illegal in V86 mode; executing one of these

instructions generates an Invalid Opcode exception (INT 6) or a GP
fault (INT ODh) thatVMM catches. VMM can handle the exception

any way it wants. For example, Chapter 9 showed howVMM deals

with the GP fault generated when a program in V86 mode issues a

MOV to/from a special register such as CRO: by manipulating Client,

EIP, it effectively makes the instruction NOP. (Actually, ifVMM
wanted to, it could even patch the MOV instruction in memory to

make it NOP, thus preventing further exceptions.) As another exam-

ple, the ARPL instruction generates an INT 6 fault into VMM; Win-

dows deliberately uses this illegal instruction to implement V86

breakpoints. (I put the cart before the horse and spent a lot of time

talking about ARPL back in Chapter 8.)

Notice that, in each of these cases, VMM grabs control from DOS
software because an interrupt, an exception, a fault, or a trap has occur-

red. Programmers are accustomed to viewing software interrupts as a

way to call the operating system, and if you’ve done any Motorola

680x0 systems programming, the term trap should hold no terrors for

you. But programmers typically view exceptions and faults as signs of a

buggy program. How could these possibly help give Windows control

over DOS?
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You have to look at exceptions and faults in a new way. Rather than

viewing them as something bad, erroneous, or unintended, you can

instead view them as providing an opportunity forVMM and VxDs to

take control. They’re really just another form of interrupt thatVMM and

VxDs can hook.

VMM and VxDs can hook almost anything and everything happening

down in DOS; to get an idea of their flexibility in this respect, look at the

DDK documentation for some of the services provided by VMM. Each

of the following services installs a handler for an event:

A1 1 o c a t e_V 8 6_C a 1 l_Back

Cal l_When_Idl

e

Cal l_When_VM_Ints_Enabl ed

Cal l_When_VM_Returns

Hook_Devi ce_V86_API

Hook_V86_Faul

t

H o o k_ V 8 6_ I n t_C h a i

n

Hook_V86_Page

Instal l_I0_Handl er

Instal l_Mul t_I0_Handl ers

Instal l_V86_Break_Poi nt

Set_V86_Int_Vector

This range of options is quite a contrast to plain-vanilla DOS, which

merely provides a function to set an interrupt vector (INT 2 lh function

25h). On the other hand, if Windows used all these options all the time,

performance would suffer. For example, as you saw in the earlier discus-

sion, Windows makes sparing use of IOPL=0.

This chapter has emphasized that the capability of Windows to run on

top of real-mode DOS doesn’t diminish its status as a genuine protected-

mode operating system. Because Windows runs DOS in V86 mode,

inside a VM, it can control DOS. For performance reasons, Windows
doesn’t exercise all the control available to it, but the capability is there.
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Who Deeds DOS?

T
he previous chapter showed that when Windows calls down to DOS, it

does so in V86 mode, thereby using DOS as a subservient subsystem.

This chapter explains why Windows needs to call down to DOS in the

first place. Why, and when, does Windows use — and just as important,

not use — DOS? The V86TEST program introduced in the preceding

chapter will help us answer this question.

Using the V86TEST -VERBOSE option, we’ll see that Windows
bypasses most DOS services and that there isn’t a qualitative difference

in this respect between Windows 95 and previous versions of Windows.

In a way, this isn’t surprising: for years nearly all commercial DOS appli-

cations bypassed DOS — refusing, for example, to use its supposed ser-

vices for screen output and keyboard input. From its very beginnings,

Windows, like most DOS applications, has avoided this aspect of DOS;
it also long ago provided its own memory-management services to

replace the rudimentary ones DOS provides.

But almost all DOS and Windows applications have relied on DOS for

at least one thing: file I/O. With 3 2 -bit file access (32BFA), Windows

avoids even this.

So what are we left with? Windows still consistently relies on a few

DOS calls, even with 32BFA, even in Windows 95. Thus, statements such

as “In Chicago, once VMM32.VXD is up and running, calls to MS-DOS
functions are handled entirely in VMM32 with all new 3 2 -bit code”

(Microsoft Systems Journal, August 1994, p. 29) are not quite true.

Here’s why First, the “all new 3 2 -bit code” that Microsoft SystemsJournal

refers to isn’t all new— essentially the same code appeared in WfW 3.11.

Second, DOS functions aren’t handled “entirely” in 3 2 -bit protected
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mode; we’ll see that some are still passed down to real-mode DOS. As

V86TEST will show, these include the DOS functions that get and set

the current PSP, the date and time, and the default drive. Windows 95

relies on DOS to maintain certain data structures, such as the Current

Directory Structure (CDS) and System File Table (SFT). We’ll also see

that Windows calls down to DOS when it has nothing better to do, that

is, when it’s idle. Of course, we know from the preceding chapter that

even when Windows does issue these DOS calls, it does so in V86 mode.

All in all, as Chapter 10 noted, there isn’t a qualitative difference between

a Windows that calls down to DOS and one that doesn’t.

It’s important that I clarify what I mean by “DOS calls.” If you were

to look through the code for the Windows kernel or for an application

like Word for Windows, you would see many INT 2 lh calls. To read and

write files, Word uses INT 2 lh functions 3Fh and 40h. To launch pro-

grams, the Windows kernel uses INT 2 lh function 4Bh. But these aren’t

necessarily DOS calls. If the INT 2 lh call is handled somewhere in Win-

dows, it merely has the convenient and recognizableform of a DOS call.

This applies even to INT 2 lh calls issued by DOS programs running

under Windows. If real-mode DOS doesn’t see it, it’s not a DOS call for

the purposes of this discussion.

Conversely, even if something doesn’t look at first like a DOS call, it

might still be one. For example, the Win32 API provides functions such

as CopyFile, CreateFile, GetFileSize, LockFile, MoveFile, and ReadFile.

When a Win32 application calls one of these services, if real-mode DOS
eventually “sees” an equivalent INT 2 1 h call, we’ll consider this a DOS
call. What matters is whether the copy of DOS (possibly called WIN-
BOOT.SYS) loaded before Windows receives the call. Later, we’ll look at

a concrete example in which the GetSystemTime and GetLocalTime

functions in Windows 95 end up calling the MS-DOS INT 2 1 h func-

tions 2Ah and 2Ch to get the date and time.

uihal Does U86TEST Actually Show?
Recall that the purpose of the V86TEST program is to show that Win-
dows calls down to DOS in V86 mode. However, the reason that running

DOS in V86 mode matters in the first place is that this gives Windows
control over DOS. For example, in V86 mode all interrupts vector to the

VMM via the IDT, so that even INTs coming from software loaded
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before Windows are handled first (and sometimes, only) in 3 2 -bit

protected mode.

But V86TEST doesn’t literally show that all INTs under Windows
are handled first in 3 2 -bit protected mode. We simply infer this from

what V86TEST does show, which is that Windows runs DOS in V86
mode rather than in real mode. Chapter 10 mentioned that V86TEST
never sees its own calls to INT 2Fh function 1683h because these are

handled entirely in VMM. These calls that V86TEST doesn't see are the

best examples of how interrupts coming from software loaded before

Windows are handled first in 3 2 -bit protected mode.

All V86TEST will ever see are the INT 2 lh and INT 2Fh calls that

Windows happens to reflect down to DOS. Thus, while one goal of

V86TEST was to demonstrate thatVMM runs DOS in V86 mode,

and therefore thatVMM intercepts and monitors INTs coming from

MS-DOS, in one sense the program demonstrates only the opposite

point: VMM and VxDs still happen to send some INTs back to V86
mode, even though they don’t have to. Well, that’s a useful piece of infor-

mation too, and we’ll squeeze whatever we can out of it in this chapter

and the next.

In a way, we didn’t need V86TEST to establish that Windows uses

V86 mode to call down to DOS. The DPMI specification contains a

function (INT 3 lh function 0400h) that returns information about the

current DPMI implementation. This information includes a flag indicat-

ing whether interrupts are reflected in real mode or in V86 mode. Call-

ing this DPMI function under Windows Enhanced mode returns the

V86 mode flag (see Listing 6-3 and Figure 6-2). But this possibly could

just refer to how Windows handles DOS boxes; we still need V86TEST
to load before Windows and establish that the Windows-to-DOS relation-

ship is nearly the same as the Windows-to-DOS-box relationship.

It’s important to realize that V86TEST stands in for real-mode DOS:

IfV86TEST sees a call, it passes the call down the interrupt chain to

DOS. And ifV86TEST doesn’t see a call, DOS won’t either, except per-

haps through some non-interrupt-based backdoor interface (such as the

IOCTL interface IFSPILPSYS uses to communicate with the IFSMgr

VxD). Thus, V86TEST should tell us what calls will be seen by DOS.

Remember that V86TEST is trapping only INT 2 lh and INT 2Fh; if

it intercepted additional interrupts, such as INT 13h BIOS disk services,

INT 15h system services, or the INT 28h idle broadcast, V86TEST
would pick up even more calls made by Windows to software that’s
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loaded before it. (For a brief discussion of interrupts other than INT 2 lh

and INT 2Fh, see the “What About BIOS Calls?” section at the end of

this chapter.)

uiindouis at wom?
Back in Figure 10-1, Windows ran for a little over four minutes, yet it

made over 170,000 calls to INT 2 lh and INT 2Fh:

While Windows running: 174712 INT 21/2F calls, 174712 in V86 mode

Windows active for 256 seconds

682 INT 21/2F calls/second

The most noticeable feature of the V86TEST output in Chapter 10 is

probably the huge number of calls that Windows makes to software

loaded before it. The following two lines from Figure 10-1 show that

almost three-quarters (125887 / 174712 = 72%) of the calls detected by

V86TEST were VxD callouts (INT 2Fh function 1607h):

INT 2 Fh AH= 1 6 h calls seen by V86TEST

:

00: 2 05: 1 06: 1 07: 125887 08: 1 09: 1 0A: 2 0B: 2 8A: 1

And, as shown in the last line of Figure 11-1, almost all callouts (or

broadcasts as we referred to them in earlier chapters) in turn came from a

single VxD, VMPoll, which is responsible for idle detection, of all things.

It looks like Windows spends most of its time spinning its wheels!

Besides the VxD callout, the other INT 2Fh function 16h calls seen

by V86TEST include the four Windows initialization and termination

broadcasts discussed in the preceding chapter; functions 1600h and

160Ah, which check if Windows is running; function 160Bh, which is

the Windows Identify TSR callout discussed in Chapter 4; and function

168Ah, which is the DPMI Get Vendor-Specific API call (if someone

asks for a vendor-specific API using any vendor name other than

“MS-DOS”, VMM passes this call down to V86 mode).

If you run V86TEST with the -VERBOSE switch, the program dis-

plays a census of all INT 2 lh and INT 2Fh calls, broken out by AH
function number. (This is similar to the census of INT 2 lh calls pro-

vided by the COUNTDOS program discussed in Chapter 4, though

COUNT-DOS has a better user interface than V86TEST.) To demon-
strate this V86TEST option, I ran V86TEST -VERBOSE with WfW
3.11, using WIN /D:C to temporarily disable 32BFA. For about four

minutes, I ran Clock and used WinWord to search through four large
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documents; no DOS box was started. This test produced the results

shown in Figure 11-1.

C:\>v86test -verbose / D : C > v86test.log

C:\>type v86test.log

Before Windows started

During Windows init:

While Windows running:

During Windows exit:

After Windows exited

91 INT 21/2F calls, 0 in V86 mode

5214 INT 21/2F calls, 352 in V86 mode

400183 INT 21/2F calls, 400183 in V86 mode

13 INT 21/2F calls, 10 in V86 mode

12 INT 21/2F calls, 0 in V86 mode

While Windows running:

Windows active for 275 seconds

1455 INT 21/2F calls/second

1 0 P L=0 -- 4384 calls

1 0 P L=3 -- 395799 calls

VM #1 -- 400183 calls

INT 2Fh AH= 1 6 h calls seen by V86TEST:

00 2 05 1 06: 1 07: 391147 08: 1 09: 1 0A

:

2 0B

:

2 8A

:

INT 2 1

h

ca' Is:

06 153 09 1 0C

:

2 0D

:

256 0E

:

288 19: 81 1A: 409

1C 1 25 12 29: 4 2A

:

492 2C

:

2760 2F

:

9 30: 22 32: 2 33:

34 5 35 12 3B

:

26 3C

:

6 3D: 344 3E

:

245 3F

:

1906 40: 3449

41 6 42 1530 43: 29 44: 282 47: 86 48: 8 4A

:

3 4B

:

3

4C 7 4D 3 4E

:

85 4F

:

316 50: 440 51: 4 52: 10 55: 4 57: 125

58 7 59 3 5B

:

1 5D

:

1 5E

:

1 5F: 3 62: 99 65: 3

6C 1 DC 5

INT 2 F

h

cal Is:

CO
<s> 1 11 774 13: 4 16: 391158 43: 7 46: 1 4A

:

7 7A: 2 FE:

INT 2 F

h

AX== 1 607 h ca 11s:

06 1 0C 2 10: 2 14: 1 15: 5 18: 391133 21: 2 VxD>#0100: 1

Figure 11-1: Taking a census of INT 21h and 2Fh calls from Windows; no DOS box is

running.

Notice that although Windows made plenty of calls to INT 2 lh

functions 40h (Write File), 2Ch (Get Time), and 42h (Move File

Pointer), the overwhelming majority of its calls were to INT 2Fh func-

tion 1607h, with BX=18h. Function 1607h is documented in the DDK
as Device Call Out. VxDs can issue this call to communicate with soft-

ware loaded before Windows; since V86TEST is loaded before Win-

dows and has caught these calls, we can see that this works. The BX
register holds the ID number of the VxD issuing the broadcast. The
VMM.INC fde included with the Windows DDK lists many VxD IDs;

it turns out that 18h is VMPoll.
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According to VMPOLL.INC (also included with the DDK), this VxD
issues the INT 2Fh function 1607h callout when Windows has nothing

better to do:

; Int 2 Fh call-out API when system is idle

; AX = 1 607 h

; BX = VMPol 1 _De v i ce_ID

; CX = VMPol 1 _C a 1 l_Out_Sys_Idl

e

; If TSR or device driver wants to "eat" the idle call, they should

; set AX = 0 and not chain to other Int 2 Fh hooks. Otherwise, chain.

VMPol 1 _Ca 1 l_Out_Sys_Idl e EQU 0 ; CX = 0

TSRs or device drivers can hook this call to receive notification that

Windows is idle and perhaps use this opportunity to do some background

processing. VMPoll takes the function that makes this callout and regis-

ters it with the VMM Call_When_Idle service:

DO 2F 1607 18:

00246 Pus h_C1 i ent_State

00255 VMMcall Beg i n_Nest_V86_Exec set up VM for V 86 mode call

0025B mov word ptr [ebp.Clien t_ EAX] , 1607h

00261 mov word ptr [ebp.Cl ien t_E B X ] , 1 8

h

;; VMPol 1 _Dev i ce_I

D

00267 mov word ptr [ebp.Cl i en t_EC X ] ,

0

; ;
VMPol 1 _Ca 1 l_Out_Sys_Idl e

0026D mov eax,2Fh

00272 VMMcall Exec_Int ; ; uses Si mul ate_Int

00278 movzx ecx.word ptr [ebp.Cl i en t_EAX] : ; "eat" idle call?

0027C VMMcall End_Nest_Exec

00282 Pop_Cl i ent_State

00291 jecxz short IDLE_EATEN

00293 stc ;; VMM will call next idle callback

00294 retn

00295 I DLE_EATEN

:

00295 clc VMM won't call other idle cal 1 backs

00296 retn

D0_D E V I C E_I NIT

:

01103

» » • • •

mov esi, offset DO_2F_1607_18

01108 VMMcall Call __When_I die

When it decides that the system is idle, VMM calls the functions in

its call-when-idle list, such as the function installed by VMPoll, and the

function the PageSwap VxD installs to asynchronously write changed

virtual-memory pages to disk (_PageOutDirtyPages). VMM decides the

system is idle based on calls it receives to INT 2Fh function 1689h

(Windows KERNEL idle). As Matt Pietrek explains in Chapter 6 of

Windows Internals
,
the idle loop in the KERNEL scheduler calls INT

2Fh function 1689h, thus setting off the chain of events that eventually
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results in a VMPoll callout. KERNEL also calls INT 28h, the DOS idle

broadcast and, as one would expect, software loaded before Windows sees

about as many INT 28h calls as VMPoll calls (see Figure 11-9 later in

this chapter).

As seen in the disassembly of VMPoll, the VxD makes this broadcast

using the Begin_Nest_V86_Exec and Exec_Int services provided by

VMM. Exec_Int in turn uses the Simulate_Int call, which consults the

low-memory Interrupt Vector Table (TVT) — assuming no VxD inter-

cepts the interrupt first via Hook_V86_Int_Chain. This is how Windows
makes all its calls down to DOS. Thus, although V86TEST set out to

show the possibility forVMM interrupt interception via the IDT, what it

really shows is VMM interrupt reflection via the IVT.

Oddly, even though the test in Figure 11-1 seemed to be exercising

Windows (the Clock was running, and WinWord was asked to crank

through four large documents), VMPoll generated over 1000 idle broad-

casts per second! These V86TEST results make it seem as if Windows
spends most of its time twiddling its thumbs. But that’s not true: Some-

times people use Windows to play Solitaire.

On a more serious note, these figures probably do make some sense.

During the same period, even though Windows appeared to be furiously

busy, Microsoft’s power-management driver, POWER.EXE, reported

that the CPU was idle more than 25% of the time.

Now let’s run the test again, this time opening a DOS box. There’s no

need to actually do anything in the DOS box (which is a good thing, since

it’s difficult to do anything in the DOS box when its output is redirected

to V86TEST.LOG). Figure 11-2 shows the result.

C:\>v86test -verbose / D : C > v86test.log

C : \ > ty pe v86test.log

Before Windows started: 91 INT 21/2F calls, 0 in V 86 mode

During Windows init: 5214 INT 21/2F calls, 352 in V86 mode

While Windows running: 207174 INT 21/2F calls, 207174 in V 86 mode

During Windows exit: 13 INT 21/2F calls, 10 in V86 mode

After Windows exited: 12 INT 21/2F calls, 0 in V 86 mode

While Windows running:

Windows active for 187 seconds

1107 INT 21/2F calls/second

1 0 P L=0 -- 2403 calls

1 0 P L=3 -- 204771 calls

VM #1 -- 197551 calls

VM #2 -- 9623 calls

INT 2 F h AH=16h calls seen by V86TEST

:
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00 2 05 1 06 1 07: 190292 08: 1 09: 1 0A

:

2 0B

:

2 8A

:

1

INT 2 1 h cal Is:

02 93 06 153 09 1 0B

:

9424 0C

:

3 0D

:

256 0E

:

289 19: 84 1A: 102

1C 1 25 18 29 8 2A

:

430 2C

:

1742 2F: 9 30: 23 32: 2 33: 6

34 5 35 12 38 2 3B

:

20 3C

:

6 3D: 365 3E

:

268 3F

:

1907 40: 3454

41 6 42 1515 43: 28 44: 319 47: 92 48: 13 49: 1 4A

:

6 4B

:

4

4C 7 4D 3 4E 93 4F

:

1 50: 355 51: 7 52: 10 55: 4 57: 139

58 9 59 3 5B 1 5D

:

3 5E

:

1 5F

:

3 62: 48 63: 1 65: 4

6C 1 71 1 DC 5

INT 2 F

h

cal Is:

08 1 11 799 12 6 13: 4 16: 190303 43: 9 46: 1 48: 1 4A

:

7

55 1 7A 2 B7 2 FE: 2

INT 2 F

h

AX == 1 6 0 7 h calls:

06 1 0C 2 10 2 14: 1 15: 5 18: 190278 21: 2 V xD>#0 100

:

1

Figure 11-2: A census of INT 21h and 2Fh calls from Windows, with one DOS box running.

Notice that there now are a large number of calls to INT 2 lh function

OBh (Check Keyboard Status). Furthermore, this number roughly corre-

sponds to the number of calls in VM #2. COAlMAND.COM uses func-

tion OBh to poll the keyboard; V86TEST shows that Windows passes

these calls down to DOS. One way that VMPoll detects idle VMs is to

hook INT 2 lh and look for calls to function OBh. VMPoll and other VxDs
will see the function OBh call long before V86TEST or DOS sees it.

Since these idle broadcasts occur so much more frequently than any

other interrupt call, V86TEST provides a -FILTER option to ignore

them. The calls still occur at the same tremendous rate, but at least they

don’t clutter the V86TEST results. As for actually eliminating the calls,

I’ve used WINICE to assemble NOPs over the Exec_Int 2Fh call from

VMPoll (see VMPoll+272h in the code fragment shown earlier) and com-

mented-out the device=*vmpoll statement in SYSTEM.INI, both without

ill effect. Although power management on a laptop could rely on the

VMPoll callout as a signal to issue a HLT to power-down the processor,

in practice the VMPoll callout seems to go to waste. For example,

Microsoft’s POWER.EXE doesn’t know about the VMPoll broadcast, and

instead looks for idle calls such as INT 28h and INT 2Fh function 1680h.

One way of turning off these VMPoll callouts definitely can have a

deleterious effect on the health of Windows. If you use a standard

PeekMessage loop in your Win 16 application (as many Windows pro-

gramming books recommend if you need to do background processing),

you’ll prevent KERNEL from issuing its INT 2Fh function 1689h call:
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for ( ; ;

)

while ( PeekMessage(&msg , NULL, NULL, NULL, PM_REM0 V E )

)

Trans! a teMes sage (&msg)

;

Di spatchMessage(&msg)

;

In Windows Internals
,
Matt Pietrek shows that PeekMessage prevents

the Windows scheduler from falling into its idle loop. The scheduler’s

idle loop is responsible for both the KERNEL idle call and INT 28h so

PeekMessage prevents KERNEL from issuing these idle calls.

But who cares? Several discussions of this subject (see “For Further

Reading”) have noted that PeekMessage can disable power management

on battery-powered laptops. Although Microsoft’s POWER.EXE doesn’t

know about VMPoll broadcasts, the interesting POWER.ASM code

included with the MS-DOS OEM Adaptation Kit (OAK) does hook INT
28h as one part of idle detection. Also, some TSRs rely on INT 28h calls

(see Undocumented DOS, 2d ed., pp. 564-565).

But there’s another issue here that’s more important than power man-

agement or TSR friendliness. As noted, VMM receives the INT 2Fh

function 1689h calls and uses them as a trigger to walk the Call_When_

Idle list. Consequently, whenever a Windows application is in a Peek-

Message loop, thereby preventing the KERNEL scheduler from issuing

the INT 2Fh function 1689h “heartbeat,” all VMM Call_When_Idle

processing is suspended. In one standard configuration, four VxDs had

established Call_When_Idle handlers: IFSMGR, VMPoll, PageSwap, and

VTD. As noted earlier, for example, PageSwap uses its idle handler to do a

_PageOutDirtyPages operation. This useful background processing will

never occur while a Win 16 application is in a PeekMessage loop.

We’ve seen that a lot of the interaction that Windows has with software

loaded before it involves little more than a “not much going on” callout

made by the VMPoll VxD. How about those other VxD callouts shown in the

last line of Figures 11-1 and 11-2?
/'.'•A p mm j§| jit I A aTtN-aW

.
.

•'

INT 2 F h AX=1607h calls:

06: 1 0C : 2 10: 2 14: 1 15: 5 18: 190278 21: 2 VxD>#0100: 1

In Windows 95, V86TEST sees a slightly different set of VxD callouts:

INT 2 F h AX=1607h calls:

06: 1 0D : 1 10: 1 14: 1 15: 3 18: 156133 21: 1 40: 1
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These calls that VxDs make to software loaded before Windows are

important to understanding DOS-Windows interaction.

Besides, examining these VxD callouts provides a good opportunity to

look over the Windows source code provided with the DDK. Although the

DDK doesn’t provide source for such core components as VMM, IFSMGR,

DOSMGR, VFAT, VPICD, or V86MMGR, it does provide source code for the

virtual display (VDD), keyboard (VKD), and mouse (VMD) devices and for

VxDs such as PageFile, PageSwap, INT13, and VDMAD. Even the vast

majority of Windows programmers who have no intention of writing a

replacement VDD or VKD (or, indeed, of ever writing any VxD) would benefit

from studying this code. There’s no better way to get a feel for how the

Windows operating system operates.

First, what are these other VxDs (besides VMPoll) whose callouts

V86TEST detected? Let’s match up the VxD ID numbers shown by

V86TEST with the names of these VxDs provided in the DDK:

VxD ID Name

0006h V86MMGR — V86 Memory Manager

OOOCh VMD — Virtual Mouse Device

OOODh VKD — Virtual Keyboard Device

OOlOh BLOCKDEV in 3.1; IOS (I/O Supervisor) in

WfW 3.11 and Windows 95

0014h VNETBIOS — Virtual NetBIOS Device

0015h DOSMGR — DOS Manager

0018h VMPoll — Idle detection

0021h PageFile — Demand Paging File

0040h IFSMGR (Installable File System Manager) in

Windows 95

>100h IFSMGR in WfW 3.11 (0484h)

Additional VxDs besides these probably also issue INT 2Fh function

1607h, but these are the ones detected by running V86TEST in fairly stan-

dard WfW 3.11 and Chicago configurations.

We just covered VMPoll, and Chapters 3 and 4 discussed the DOSMGR
caliout API. Let’s take a quick look at the other callouts detected by

V86TEST.

The V86MMGR callout is named V86CallOut_LclA20forGlblHMA in the

V86MMGR.INC file included with the DDK. What this long name means is

that the state of the A20 address line should be local to each VM even if

the High Memory Area (HMA) is global (that is, shared by all VMs). This is

distinct from (but possibly related to) the odd XMS calls for local and global

A20 enable and disable. If any software loaded before Windows responds to

this call, it has the same effect as if a VxD called the V86MMGR_SetLo-
calA20 service, which is documented in the DDK:
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When there is a global HMA user, the A20 state associated with the

HMA is also global. Changing A20 in a virtual machine changes it in

all virtual machines simultaneously. Some global A20 users (such as

MS-DOS 5.0) desire that the A20 state be local even though the HMA
is global.

If DOS=HIGH (as determined by calling INT 21h function 3306h),
DOSMGR in Windows 3.1 and later will automatically call V86MMGR_
SetLocalA20.

The VMD (Virtual Mouse Device) has two callouts that are defined in

VMD.INC as VMD_CO_API_TestJnst and VMD_CO_API_Get_Call_Back.
Although these descriptions aren’t terribly helpful, the DDK also comes
with the source code to VMD; the source file, INT33.ASM, shows exactly

what these callouts do. A comment in the Get_Mouse_lnstance routine in

INT33.ASM notes that the Testjnst callout allows a DOS mouse device dri-

ver to declare its own instance data (using the INT 2Fh function 1605h
interface described in Chapter 3), rather than have VMD instance the entire

mouse driver. The Int33_lnit routine in INT33.ASM issues the Get_Call_

Back callout to give a DOS mouse driver the chance to provide mouse sup-

port in a windowed DOS box.

The VKD (Virtual Keyboard Device) callout seen in Chicago isn’t cur-

rently documented, but a brief examination of MS-DOS 7.0 shows that WIN-

BOOT.SYS looks for this callout and returns a pointer to a keyboard buffer

in ES:DI.

The BLOCKDEV VxD was introduced in Windows 3.1 as a replace-

ment for the VHD (Virtual Hard Disk Device) and was in turn replaced in

WfW 3.11 and Windows 95 by IOS (the I/O Supervisor). The BLOCKDEV
callouts, which are also used by IOS, are described in the DDK docu-

mentation and in Chapter 2 of Geoff Chappell’s DOS Internals (pp. 76-

77). BlockDev_API_Hw_Detect_Start informs DOS TSRs and device

drivers that a FastDisk device such as WDCTRL is performing hardware

detection (the TSR or driver could use this as an opportunity to disable

a write-behind cache, for example); BlockDev_API_Hw_Detect_End indi-

cates that hardware detection has been completed.

More interesting than these text descriptions, though, is the source

code included with the DDK. Although the DDK doesn’t include the BLOCK-

DEV source, it does provide the source for the WDCTRL FastDisk device,

which uses BLOCKDEV services and which issues the BLOCKDEV callout.

The WDCtrl_Real_Mode_lnit routine in WDRMINIT.ASM attempts to detect

the presence of a standard AT-type Western Digital hard-disk controller by

monitoring changes to the cylinder register after various reads. A comment

to this routine reads:

; Now do Tots of party stuff to make sure cache programs flush or at least

;
don't try to lazy-write any data while we do this test. To make sure

; of this we will do the following:

: Broadcast the BlockDev hardware detection API Int 2Fh
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; Do an Int 13h read of sector 0 on both drives

; Do a DOS disk reset on drives C-Z (may flush)

; Set the InDOS flag

(The word “party” seems to be standard Microsoft lingo for any low-level

activity.)

Although there is scant documentation for the VNETBIOS VxD, once

again the DDK provides source code, and this clearly makes up for any

lack of documentation. A comment in VNETBIOS.ASM says “This virtual

device serves two purposes: It buffers asynchronous network requests and

translates netbios calls for protected mode apps.” VNETBIOS.ASM issues

the VxD callout to “request information about network extensions.” A Net-

BIOS driver can return the address in ES:DI of an “extended NETBIOS

table,” which tells VNETBIOS how to handle each NetBIOS INT 2Ah or INT

5Ch call.

When reading VNETBIOS.ASM, it’s particularly interesting to see how it

uses V86 breakpoints to handle the post routine for NoWait NetBIOS calls.

There is also an (apparently otherwise undocumented) NoWaitNetlO=true

setting, which converts all NetBIOS commands to NoWait. As with all the

DDK source code, the change log at the top of the file (almost always by

RAL, Ralph Lipe) also makes interesting reading:

; 25- Apr- 1988 RAL Complete rewrite of network (used to be VND)

27 -Oct- 1988 RAL Updated to use new Get_Cri t_Secti on_Status

; 06 - No v
- 1 988 RAL Redesigned to use remap instead of buffering

;
09 -Ma r

- 1989 RAL Real mode stub to not load if no redirector

;
05 - Ap r

- 1989 RAL This sucker actually works!

;
07 -Apr- 1989 RAL Added Int 2 Fh API to get extended NETBIOS table

; 04-May- 1989 RAL Works with 32-bit Bui 1 d_Int_Stack_Frame

;
24 -May - 1989 RAL Test for NETBIOS instead of redir when loading

; 12- Jun- 1989 RAL Fixed horrible page fault of doom bug

; 01 - Sep - 1989 RAL Make POSTS go to the RIGHT VMM!

; 08-Oct - 1989 RAL Fixed horrible InDOS assumption bug

; 29-0ct-1989 RAL Finished exit cancel code and documentation

; 04 - Dec - 1989 RAL Fixed critical section bug for non-hooked NCBs

Next up in the V86TEST log of VxD callouts is PAGEFILE, which man-

ages the virtual-memory swap file (in Windows 95, there is another page-

file device, called DYNAPAGE). Once again, the DDK includes source code

for this VxD.

; No other PageFile is loaded. Get Bimbo info about cache lock pointer,

mov ax, (W386_Int_Multiplex SHL 8) OR W386_Devi ce_Broadcast

mov bx, PageFile_Device_ID

xor cx, cx

int 2 Fh

or ax, ax ; if ax not 0, then...

jnz SHORT PF_RI_No_Bimbo
; ...Bimbo did not respond

; Bimbo responded to i n 1 2 F h - pointer to cache lock byte is in es:di.

mov dx, es

shl edx, 16

mov dx, di
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jmp SHORT PageFi le_RI_Exi

t

PF_RI_No_Bimbo:

; Bimbo not around, get SmartDrv info about cache lock pointer

The PageFile_RealJnit routine in PAGEFILE.ASM tries to make an IOCTL

call to SmartDrv to retrieve a pointer to a disk cache lock pointer. However,

in case SmartDrv isn’t loaded, PAGEFILE makes the VxD callout to allow a

disk cache other than SmartDrv to return a cache lock pointer in ES:DI. (By

the way, it seems that “Bimbo” is Microsoft’s name for any non-SmartDrv

disk cache. This is mildly amusing in a nerdy kind of way, since for years

the general industry name for SmartDrv has been DumbDrv.

In WfW 3.11, V86TEST sees two PAGEFILE callouts because the VMPoll

VxD (which, as noted earlier, does a _PageOutDirtyPages operation when
the system is idle) also tries to retrieve a disk cache lock pointer.

Finally, we come to the callout issued by IFSMGR, the Installable File

System manager, which is the foundation for 32BFA and long filenames.

Although IFSMGR played a key role in WfW 3.11, it is documented only in

Chicago, and even there only with an incomplete (at least at the time of

this writing) IFSMGR. INC file. Even without proper documentation or source

code for IFSMGR, a disassembly of IFSMGR shows that its VxD callout

retrieves the size of the DOS Current Directory Structure (CDS); this is

immediately obvious from the numbers 51h in DOS 3 and 58h in DOS 4

and later:

0C0AC Pus h_Cl ient_State

0C0BB VMMcall Beg i n_Nest_V86_Exec

0C1A6

0C1AC

0C1B2

0C1B8

0C1BE

0C1C3

0C1C9

0C1CF

0C1D1

0C1D7

0C1O9

0C1DD

0C1DF

0C1DF

0C1E0

0C1E6

0C1E7

0C1EC

0C1EF

0C1F1

0C1F4

0C1F4

mov word ptr [ebp.Cl i ent_AX] , 1607h

mov word ptr [ebp.Cl ient_BX] ,484h ;; 40h in Windows 95

mov word ptr [ebp.Cl ient_CX] ,3

mov word ptr [ebp.Cl ient_DX] ,1

mov eax,2Fh

VMMcall Exec_Int

cmp word ptr [ebp.Cl ient_AX] ,0B97Ch ;; DOSMGR magic

jne short N0_API_RESP0NSE

cmp word ptr [ebp.Cl ient_DX] ,0A2ABh ;; DOSMGR magic

jne short N0_API_RESP0N$E

movzx ecx.word ptr [ebp.Cl ient_CX]

jmp short GOT_CDS_SIZE

NO API„RE$PONSE:

push ebx

VMMcall Ge t__Ma ch i ne_Jnfo

pop ebx

mov ecx,58h

cmp ah,

3

ja short GOT_CDS_SIZE

sub ecx,7

GOT_CDS_SIZE:

mov dword ptr CDS„SIZE,ecx

;; returns DOS major version in AH

; ; 58h = CDS si ze i n DOS 4+

; ; DOS versi on > 3??

;; 58h-7=51h * CDS size in DOS 3

0C262 VMMcall End__Nest_Exec

0C268 Pop_Cl ient„State
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What makes this otherwise pedestrian code interesting is that, even in

Windows 95, IFSMGR cares about a DOS internal structure like the CDS.

This makes perfect sense (and in any case IFSMGR. INC mentions a differ-

ent service which “Updates the CDSs in all the VMs” when a new volume

appears in the system), but it isn’t what you’d expect after hearing the

claim “Windows no longer uses DOS.”

me Top windows in 2in cans

Now that we’ve examined the VxD callouts that Windows makes to soft-

ware loaded before it, let’s focus on the DOS INT 2 lh calls that Win-

dows sends down to software loaded before it.

Back in Figure 11-1, V86TEST provided a census ofINT 2 1 h calls

made by Windows while I ran Clock and used WinWord to search

through four large documents (1.7MB of data, containing the text for

DOS Internals). Figure 11-2 showed the same thing, except that I also

opened a DOS box. In both cases, 32BFA was disabled (in a few moments,

we’ll repeat the same test, with 32BFA enabled). In Figure 11-3, I’ve taken

the INT 2 lh census from Figures 11-1 and 11-2 and compared them

using a diffutility. The similarities between the two tests give us some

confidence that the results aren’t random; the differences hopefully show

the impact of running a DOS box.

< 06: 153 09: 1 0C

:

2 0D

:

256 0E

:

288 19: 81 1A: 409

> 02: 93 06: 153 09: 1 0B

:

9424 0C

:

3 0D

:

256 0E

:

289 19: 84 1A: 102

< 1C: 1 25: 12 29: 4 2A

:

492 2C

:

2760 2F

:

9 30: 22 32: 2 33: 6

> 1C: 1 25: 18 29: 8 2A

:

430 2C

:

1742 2F

:

9 30: 23 32: 2 33: 6

< 34: 5 35: 12 3B

:

26 3C

:

6 3D: 344 3E

:

245 3F

:

1906 40: 3449

> 34: 5 35: 12 38: 2 3B

:

20 3C

:

6 3D: 365 3E

:

268 3F

:

1907 40: 3454

< 41: 6 42: 1530 43: 29 44: 282 47: 86 48: 8 4A

:

3 4B

:

3

> 41: 6 42: 1515 43: 28 44: 319 47: .92 48: 13 49: 1 4A

:

6 4B

:

4

< 4C

:

7 4D

:

3 4E

:

85 4F

:

316 50: 440 51: 4 52: 10 55: 4 57: 125

> 4C

:

7 4D

:

3 4E

:

93 4F

:

1 50: 355 51: 7 52: 10 55: 4 57: 139

< 58: 7 59: 3 5B

:

1 5D

:

1 5E

:

1 5F

:

3 62: 99 65: 3

> 58: 9 59: 3 5B

:

1 5D

:

3 5E

:

1 5F: 3 62: 48 63: 1 65: 4

< 6C

:

1 DC: 5 < mearis no DOS box

> 6C

:

1 71: 1 DC: 5 > mearis wi th a DOS box

Figure 11-3: Comparing the results of the INT 21h tests presented earlier.
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In Figure 1 1-4, I’ve sorted these INT 2 lh calls, starting with the most
frequent, to show the top DOS calls made by Windows in this standard

non-network configuration when 32BFA is disabled. Where opening a

DOS box seems to make a significant difference, Fve noted this.

40h Write File or Device

2Ch Get Time

3 Fh Read File

4 2 h Move File Pointer (lseek)

2 Ah Get Date

50 h Set PSP Task switch: Fewer with DOS box

1 Ah Set DTA Fewer with DOS box

3 Dh Open File

44 h I/O Control (IOCTL) More with DOS box

4 Fh Find Next File Almost none with DOS box???

0 E h Set Default Drive

3 E h Close File

0 Dh Reset Drive

0 6 h Di rect Consol e I/O

5 7 h Get File Date and Time

6 2 h Get PSP Task switch: Fewer with DOS box

0 2 h Display Character Used for DOS box only

4 E h Find First File

47 h Get Current Directory

1 9 h Get Default Drive

43 h Get/Set File Attributes

3 B h Change Current Directory

3 0 h Get DOS Version

Figure 11-4: The top Windows INT 21h calls without 32BFA.

What does all this mean? To answer that question, let’s first look at

the functions in which opening a DOS box clearly doesn’t make a signifi-

cant difference:

• Without 32BFA, Windows uses DOS for file I/O. Naturally!

• Without 32BFA, Windows uses DOS to Get and Set the current drive

and directory.

• Windows (particularly the Windows Clock application, or applet
,
as

Microsoft refers to little applications) uses DOS to get the current

date and time. Windows asks DOS what day it is, almost as frequently

as it asks DOS for the time: whenever Clock receives a WM_TIMER
message, it calls INT 2 1 h functions 2Ah and 2Ch. (This is also true

for the Win32 version of Clock, but it calls the DOS functions in a

more roundabout fashion; we’ll get to this later on.)

Opening a DOS box affects only a few DOS functions. This is an

important point, because you sometimes hear assertions that Windows
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relies on DOS in order to run DOS programs. Figures 11-3 and 11-4

show that running DOS programs has little to do with the Windows-

DOS relationship. Windows relies on DOS for certain services required

by both DOS programs and Windows applications. Conversely, if Win-

dows can bypass DOS while providing services to Windows applications,

it can do the same thing for DOS programs: just because a real-mode

DOS program running in V86 mode makes an INT 2 lh doesn’t mean

that Windows has to pass that INT 2 lh call down to real-mode DOS
running in V86 mode. When we discuss 32BFA in more detail, we’ll see

that, in protected mode, Windows can service many INT 2 1 h calls com-

ing from DOS programs.

The few differences that do occur when a DOS box is opened (see

Figure 11-4) mostly turn out to reveal things about the Windows-DOS
relationship in general, rather than about DOS boxes in particular:

• When a DOS box is open, Windows passes the Check Keyboard Sta-

tus call (INT 2 1 h function OBh) down to DOS. But this doesn’t mean

that Windows absorbs function OBh when it comes from a Windows
application! The fact is, no normal Windows application calls function

OBh; this is the only reason it didn’t show up in Figure 11-1. COM-
MAND.COM calls function OBh to poll the keyboard; this is why it

showed up in Figure 11-2. If a Windows application happened to call

function OBh, Windows would pass the call down to DOS, just as it

does when a DOS program such as COALMAND.COM calls this

function. (Yes, I’ve tried this.) A DOS program could similarly bypass

the DOS input services, and many do. Windows is a fairly typical

DOS program in this regard.

Windows applications don’t call INT 2 1 h function OBh because they

get keyboard input via the Windows keyboard driver, whose INT 9

handler calls the Keybd_Event function in USER, which in turn

places keystrokes in the Windows hardware event queue, eventually to

end up at a Windows application’s WndProc as a message like

WMJKEYDOWN, WM KEYUP, or WM_CHAR. (See the descrip-

tion of Keybd_Event and the System Message Queue in Undocumented

Windows
,
Chapter 6.) This is a good example of how, from the very

beginning, Windows has bypassed many DOS “services” (if you want

to call them that).

• The same story applies to function 02h (Display Character). If a Win-
dows application used this call, Windows would pass the call down to

DOS, just as occurs when COAIMAND.COM uses this call in a DOS
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box. Windows applications use a different mechanism— the Windows
Graphics Device Interface (GDI)— for displaying output; they have

bypassed DOS’s feeble assistance ever since Windows 1.0. A DOS pro-

gram could similarly bypass the DOS output services, and many do.

With INT 2 lh functions 50h (Set PSP) and 62h (Get PSP), it’s first of

all quite significant that Windows makes these calls, whether or not a

DOS box is running. The Windows kernel uses the DOS Program

Segment Prefix (PSP) to task switch between Windows applications

(though, as noted in Chapter 5 of Undocumented Windows
,
KERNEL

postpones making the Set PSP call until the Windows application has

made an INT 2 lh call). In Figures 11-1 and 11-2, the kernel was

switching between WinWord and Clock. Win32 applications, even in

Windows 95, have DOS PSPs (see the WINPSP program in Chapter

13). Examples like the PSP show that Windows 95 requires DOS —
and bypasses DOS — to just about the same extent as did previous

versions of Windows. Microsoft has simply chosen for the first time to

make a big deal about a capability that Windows has had ever since

Windows 3.0 Enhanced mode..

Oddly, starting a DOS box in Figure 11-2 caused fewer Set and Get

PSP calls than we saw in Figure 1 1-1, in which we performed the same

operations but without starting a DOS box. This is surprising at first:

you’d expect more PSP calls, since the DOS box is an additional task.

However, KERNEL uses DOS PSPs for switching between tasks in

the System VM, that is, for Win 16 and Win32 applications. A DOS
box is a separate VM, and VMM task switching is different than ker-

nel task switching. When VMM switches between VMs, PSPs must

also get switched, but to do this VMM uses instance data. (The “DOS
Instance Data and the SDA” section in Chapter 4 noted that Windows

instances the DOS Swappable Data Area [SDA]; which includes

DOS’s current-PSP variable.)

Okay, so VMM uses a different mechanism for keeping PSPs straight

from what KERNEL uses. But why does DOS seefewer Get and Set

PSP calls when we start a DOS box? Simply because, with the extra

VM, the System VM wasn’t scheduled as often, so the sub-scheduler

within KERNEL didn’t have to switch between WinWord and Clock

as often.

When a DOS box is running, DOS also sees fewer calls to function

1Ah, Set Disk Transfer Address (DTA), for the same reason that it
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sees fewer Get and Set PSP calls. The KERNEL sub-scheduler has to

switch DTAs when it switches PSPs. On the other hand, the VMM
scheduler relies on instance data to keep DTAs, like PSPs, in sync

with VMs. When multiple VMs are running, the System VM natu-

rally doesn’t run as often, so the KERNEL sub-scheduler doesn’t kick

in as often either. The one significant difference between the DTA
and PSP calls is that with 32BFA, Windows handles Set DTA without

calling down to DOS. In contrast, as we’ll see, Windows (even with

32BFA and even in Windows 95) still passes Get and Set PSP calls

down to DOS.

• In comparing Figure 11-2 to Figure 1 1-1, we can see that Windows
seems to send more I/O Control (IOCTL; INT 2 lh function 44h)

calls down to DOS when a DOS box is running. However, this is just

a testing “artifact”; I unintentionally allowed Windows to run for a lit-

tle longer in Figure 11-2 than in Figure 11-1. More careful examina-

tion shows that Windows passes the same IOCTL calls down to DOS,
whether they come from a Windows application or a DOS applica-

tion. Without 32BFA, the two major IOCTL calls Windows sends

down to DOS are 4408h (Does Device Use Removeable Media?) and

4409h (Is Drive Remote?).

• The only truly surprising result in comparing Figures 11-1 and 11-2 is

that with the DOS box running in Figure 11-2, Windows sent almost

no Find Next File (function 4Fh) calls down to DOS, whereas there

were over 300 when performing roughly the same operation without a

DOS box! Fortunately, there’s a simple explanation: when I brought

WinWord up the second time, the fall pathnames of the four files I

wanted to open (Parts 1 -4 ofDOS Internals) were already showing in

the File menu, left over from the first test. Rather than use the File

Open dialog again, I just selected the four files straight from the

menu. It all makes sense. Whew! I was worried there for a minute.

Bouncing Bach into Windows

One last point before we move on to see the effect of 32BFA: Remember
that, even when Windows does call down to DOS, it does so in V86
mode. This means that even these INT 2 lh calls that are sent down to

DOS aren’t at all like the good old INT 2 lh calls you’re used to:
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• Before the call shows up at the DOS interrupt chain, the call will

already have been preprocessed by any VxDs that have used VMM’s
Hook_V86_Int_Chain service (see Chapter 8).

• When the call returns, it will be postprocessed by any VxDs that have

used VMM’s Call_When_VM_Returns service.

• Any further interrupts made inside DOS or a TSR or a device driver

will vector through the IDT to VMM, which will send the interrupt

on to any VxDs that have called Hook_V86_Int_Chain.

• One or more Windows VxDs might have placed V86 breakpoints on

the code. As discussed in Chapter 8, VMM’s Install_V86JBreak_Point

service patches a specified segment: offset address with an ARPL
instruction, which causes a GP fault into VMM, which then calls a

handler associated with the V86 breakpoint. VxDs can use this service

to control real-mode code in whatever way they want.

• IfDOS makes a device-driver call, the device driver’s Strategy and

Interrupt routines might have been V86 breakpointed. For example, in

WfW 3.11 RMM.D32, the real-mode mapper VxD that provides a

3 2 -bit disk access (32BDA) interface on non-FastDisk devices places a

V86 breakpoint on the Strategy routine for every built-in device driver.

• If DOS or a TSR or a device driver performs an IN or OUT to an

I/O port, you might once again bop into VMM- and VxD-land. VxDs
can hook I/O port access, using the Install_IO_Handler and Install_

Mult_IO_PIandlers services provided by VMM.
• Windows installs some handlers in the DOS interrupt chain; these

handlers can use various backdoor protocols to pass calls back up to

Windows. For example, we saw in Chapter 8 (in “The Role of

IFSHLP.SYS and V86 callbacks”section) that IFSHLP.SYS uses a

V86 callback to pass some DOS calls up to the IFSMGR VxD.

Thus, while you’re in the middle of some INT 2 1 h call that Windows

has passed down to DOS, you’re likely to bounce back several times into

Windows VMM- and VxD-land before the call returns.

To take just one example, we’ve seen that Windows passed INT 2 lh

function 19h (Get Default Drive) down to DOS; we’ll soon see that

32BFA doesn’t change this behavior. But following the DOS INT 2 lh

chain with a utility such as INTCHAIN (provide on the disk) shows

that even once “inside” DOS, the call can bounce back into Windows

multiple times.
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C : \UNAUTHW>i ntchai n -a20off 21/1900 > tmp.tmp

C : \ U NAUTHW) ty pe tmp.tmp

049E : 0498 I FS$HLP$ :: IFSHLP doesn't send 21/19 to IFSMGR

01EF: 0023 D:

0594:1956 SETVERXX

00A0 : 0FAC DOS :: low-memory stub checks A20

020E : 00C9 XMSXXXX0 I forced A20 off, so DOS calls XMS

0314:1338 $ MM X X X X 0 :: disabled EMMXXXX0

3053:0045 wi n386

3053 : 004A w i n 3 8 6 ARPL :: V86 breakpoint -> V86MMGR XMS handler

00A0 : 10BE DOS

FE9E : 4249 FIMA DOS INT 21

h

handler in HMA

2900 : 000A wi n 386 ; ; INT 2 Ah AH=82h ->

FE9E : 433B FIMA

2900:0094 wi n 386 -> V86 BP -> DOSMGR V86 API -> Begi n_Cr i

t

FE9E : 5356 FIMA

0070:0166 10 ARPL RMM.D32 V86 breakpoint on 10 Strategy

FCA1 : 1632 ARPL ; ; VMM V86 breakpoi nt

FE9E : 897C FIMA

0070:0171 10 ARPL V86 breakpoint (on CON Interrupt routine??)

FFFF : 0040 FIMA

Here, I forced A20 off before calling function 19h in order to demon-

strate one of these V86 breakpoints. MS-DOS’s INT 21h handler checks

whether DOS=HIGH but A20 is off; in this situation, DOS calls XMS
function 5 (Local Enable A20). This code lives inside MS-DOS (see

Undocumented DOS
,
2d ed., Figure 6-6), so if you get here, it certainly

seems like you’re “in DOS.” However, as noted in Chapter 8, the

V86MMGR VxD provides its own XMS services, regardless of the XMS
server you had loaded under DOS, and it uses Install_V86_Break_Point to

patch the XMS function whose address is returned by INT 2Fh function

43 lOh. Thus, when MS-DOS’s INT 2 lh handler calls the XMS function,

it winds up executing 3 2 -bit protected-mode code inside V86MMGR.
Windows called down to DOS to handle this trivial function 19h call,

but DOS called back into Windows several times. This is one reason why
the distinction between DOS and Windows seems so fluid and why the

“Does Windows call down to DOS?” question can seem so meaningless.

Even when Windows does call down-to DOS, it’s a DOS over which

Windows has pretty tight control.

All the same, it’s easier to see the true Windows-DOS relationship

when Windows bypasses DOS than when Windows calls down to DOS
and then DOS bops back into Windows several times. So let’s now look

at 32BFA, where according to Microsoft, Windows bypasses DOS.
V86TEST helps us substantiate this claim, while also pointing to the

places where Windows still relies on DOS (albeit, as we’ve just seen, a

heavily V86-breakpointed DOS).
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me Effect of 32-mi File access

I took several false steps before I came up with a reasonable way to use

V86TEST to show off 32BFA. First, I repeated the test in Figures 11-1

and 11-2, but this time without the /D:C command-line switch that dis-

ables 32BFA:

C : \UNAUTHW\V86TEST>v86test -verbose win > v86test.log

However, I found that the V86TEST results were nearly identical to

those produced when using the /D:C switch!

No, 32BFA is not a crock. Instead, redirecting Windows’ stdout turns

off 32BFA, so that leaving off the /D:C had no effect.

Since I wouldn’t be able to start V86TEST before Windows and redi-

rect stdout, and I was too lazy to change V86TEST to write out a log

file, I next tried running V86TEST -QUERY from within a DOS box.

Sure enough, there were significant differences between WIN /D:C and

Windows with 32BFA. But the difference was that 32BFA generated more

DOS calls than WIN /D:C!

It turns out that the system goes idle more often with 32BFA, and

VMPoll thus issues more VxD broadcasts. So I ran the test again using

V86TEST -FILTER, and this time got some reasonable-looking results.

Under WfW 3.11 with and without 32BFA, I used WinWord to open

and save a 340K document, and ran V86TEST -QUERY from a DOS
box, redirecting its output to a file. I used a disutility to compare the

V86TEST results with and without 32BFA; the results are shown in

Figure 11-6, to which I’ve added a large number of comments.

< v86test -filter win / D : C (no 32BFA)

> v86test -filter win (32BFA)

< During Windows init: 5203 INT 21/2F calls, 344 i

> During Windows init: 5198 INT 21/2F calls, 339 i

< While Windows running: 25574 INT 21/2F calls, 25574 in V86 mode

> While Windows running: 17146 INT 21/2F calls, 17146 in V 86 mode

Once filter out VMPoll, a third fewer calls in 32BFA:

25574 - 17146 = 8428 (8428 / 25574 = 32%)

< Windows active for 101 seconds

> Windows active for 77 seconds

Same operation took 101 - 77 = 24 seconds less with 32BFA (24/101 = 23%)

< means no DOS box

> means with a DOS box

n V 86 mode

n V 86 mode

< 253 INT 21/2F calls/second
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> 222 INT 21/2F calls/second

If VMPoll were counted, 32BFA would show more 21/2F per second

< VM #1 -- 4007 calls

> VM #1 -- 438 calls

Aside from VMPoll, almost no DOS calls from System VM with 32BFA!

Mould be good to know what those few remaining calls are. Unfortunately , in the INT

21h census below, they are combined with DOS calls from the DOS box (VM #2). How-

ever, most DOS box calls are to 21/OB. See WV86TEST in Chapter 12 for a census that

doesn't include DOS box.

< VM #2 -- 21569 calls

> VM #2 -- 16708 calls

With 32BFA. a lot fewer DOS calls from DOS box too: whatever 32BFA can do for

Windows appl i cati ons , it

INT 2 F h AH= 1 6 h calls see

< 00: 2 05: 1 08: 1

> 00: 2 05: 1 08: 1

INT 2 1 h calls:

< 02: 149 06: 154 08: 55

> 02: 151 06: 150 08: 57

can do for DOS boxes.

by V86TEST

:

0A 2 0B : 2 8A

:

1

0A 2 0B : 2 8A

:

1

09: 1 0B : 21159 0C : 2

09: 1 0B : 16359 0C : 2

0D : 255 0E: 289 19: 87

0D : 257 0E : 289 19: 87

Figure 11-3 demonstrated that 21/OB (Check Keyboard Status) is used by the DOS box

only. With 32BFA, almost all calls from the DOS box (VM 1/2) were 21/0B:

16708 - 16359 = only 349 other DOS calls from DOS box under 32BFA.

< 1A: 79 25: 17 29: 16 2A: 15 2C: 17 2F: 9 30: 24 32: 2 33: 4 34: 5

> 1A: 19 25: 17 29: 16 2A: 15 2C: 17 2F: 9 30: 24 32: 2 33: 4 34: 5

With 32BFA, a lot fewer calls to 21/1A (Set DTA).

< 35: 14 38: 3 3B: 18 3C: 4 3D: 307 3E: 221 3F: 1614 40: 3480 41: 3

> 35: 14 38: 3 3B: 1 3C: 1 3D: 110 3E: 90 3F: 266 40: 3416

With 32BFA, a lot fewer calls to:

21/3B (Change Current Directory)

21/3D (Open File)

21/3E (Close File)

21/3F (Read File)

In 32BFA, most 21/40 (Write File) appear to be passed through.

But wait a minute: the numbers don't add up:

16359 (21/0B) + 3416 (21/40) = 19775 calls to these two functions alone.

Yet summary above says only 17146 calls under 32BFA.

There's a simple explanation:

I generated this log under an older version of V86TEST that didn't "freeze" the

stats before printing them out.

So almost all these 21/40 calls reflect V86TEST's own printf to stdout. In 32BFA,
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writes to stdout are passed down to DOS. But wait again: V86TEST output was redi-
rected to a file. No, I lied: it wasn't! I captured V86TEST output in an Epsilon
process buffer. So it was a write to stdout, which 32BFA passed down. He'll confirm
later that in 32BFA, most 21/40 are not passed down.

< 42: 1238 43: 19 44: 244 45: 1 47: 86 48: 13 49: 2 4A: 7 4B: 5

> 42: 226 43: 1 44: 35 45: 1 47: 9 48: 13 49: 2 4A: 7 4B: 5

With 32BFA, a lot fewer calls to:

21/42 (LSEEK)

21/43 (Get/Set File Attributes)

21/44 (IOCTL)

21/47 (Get Current Directory)

< 4E : 70 4F : 23 50: 197 51: 7 52: 10 55: 3 56: 2 57: 114 58: 8 59: 2

> 4E : 9 4F : 1 50: 196 51: 7 52: 10 55: 3 57: 1 58: 8 59: 2

With 32BFA, a lot fewer calls to:

21 /4F (Find First File)

21/4F (Find Next File)

21/57 (Get/Set File Date/Time)

< 5B : 3 5D

:

5 5E

:

1 5F

:

3 62: 48 63: 1 65: 4 6C

:

2 71: 4 DC: 5

> 5D : 5 5E

:

1 5F : 3 62: 48 63: 1 65: 4 6C

:

1 71: 4 DC: 5

INT 2 F

h

< 08: 1

calls

11: 692 12: 11 13: 4 16: 9 43: 8 46: 1 48: 2 4A

:

6

> 08: 1 11: 392 12: 11 13: 4 16: 9 43: 8 46: 1 48: 2 4A

:

6

With 32BFA, a lot fewer calls to 2F/11 (Network Redirector)

< 55: 1 7A : 2 AE: 3 B7: 2 FE: 2 FF: 1

> 55: 1 7A : 2 AE: 3 B7: 2 FE: 2 FF: 1

The call to 2F/FF is V86TEST's call to V86TFST stats from resident copy.

Figure 11-6: Running V86TEST in WfW 3.11, with and without 32BFA.

Figure 1 1-6 is a dramatic demonstration of how Windows and DOS
truly relate under 32BFA. It provides most of the answers to this chapter’s

question; Why does Windows need DOS?

• Aside from VMPoll broadcasts (and the INT 28h idle calls that we

know go along with them), the most frequent DOS call for which

Windows uses DOS is function OBh (Check Keyboard Status). This

call is used only to poll the keyboard in a DOS box.

• Aside from function OBh, a fairly I/O-intensive operation (opening

and saving a document with WinWord) generated only a few hundred

DOS calls. Without 32BFA, the same operation generates several

thousand DOS calls.
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• Aside from function 40h Write File calls to stdout (which would only

occur in a DOS box), almost all DOS file I/O calls are handled in

3 2 -bit protected mode without calling down to DOS. Figure 11-7

shows some INT 2 1 h calls that 32BFA generally absorbs; this list is

not complete and just reflects what we’ve seen using V86TEST.

• Even with 32BFA, a scattering of INT 2 lh calls are still sent down

to DOS. These are shown in Figure 11-8; compare this with Figure

11-4, which showed the top INT 2 lh calls without 32BFA.

1 Ah Set DTA

3 B h Change Current Directory

3Ch Create File

3 D h Open File

3 E h Close File

3 F h Read File

40 h Write File

41 h Delete File

4 2 h LSEEK

43 h Get/Set File Attributes

44 h IOCTL

47 h Get Current Directory

4 E h Find First File

4 F h Find Next File

57 h Set/Set File Date/Time

7 1 h Long Filename functions

Figure 11-7: Some major INT 21h calls that 32BFA handles in protected mode, without

calling DOS.

0 B h Check Keyboard Status

0 D h Reset Drive

0 E h Set Default Dri ve

1 9 h Get Default Dri ve

2Ah Get Date

2Ch Get Time

50 h Set PSP

5 1 h , 6 2 h Get PSP

5 2 h Get SysVars ( undoc)

5 5 h Create PSP

Figure 11-8: The top INT 21h calls that 32BFA sends down to DOS.

Now, there’s nothing particularly magical about 32BFA: it’s just a col-

lection of VxDs such as IFSMGR.386, VCACHE.386, VSHARE, and

VFAT.386. In WfW 3.11, Microsoft was able to plop these VxDs on top

of an essentially unchanged VMM. These VxDs could have been written

by an enterprising third-party developer. All the capabilities for bypassing
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DOS have been present all along in VMM, most notably in its Hook__

V86_Int_Chain and Set_PM_Int_Vector services. 32BFA just makes

more extensive use of these services. The entire Windows-DOS rela-

tionship is quite fluid, and really comes down to how the VMMservices

are employed. This is just another way of saying thatVMM is the

operating system.

uinai anoit bios calls?

With all this talk about the relationship between Windows and MS-
DOS, it’s natural to wonder how Windows relates to the ROM BIOS.

HOOKINT.C in Listing 11-1 is a simple program that reports on any

program’s usage of the BIOS software interrupts. I also included the

DOS INT 25h and 26h disk read and write calls and the INT 28h idle

call; it’s easy to add additional entries to HOOKINT.

Listing 11-1: HOOKINT.C

/*

HOOKINT.C

bcc hookint.c

hookint [program name]

hookint -win [program name]

Creates HOOKINT.LOG

*/

//i ncl tide <s td 1 i b . h

>

//include <stdio.h>

//include <string.h>

//include <process.h>

//include <dos.h>

//include < b i os . h

>

typedef unsigned short WORD;

typedef unsigned long DWORD;

//pragma pack(l)

typedef struct {

//ifdef TURBOC

WORD bp.di , si ,ds,es,dx,cx,bx,ax;

//else

WORD es ,ds ,di ,si ,bp,sp,bx.dx,cx,ax; /* same as PUSHA */

//end i f

WORD ip, cs, flags;

} REG_PARAMS

;

typedef void (interrupt far *FUNCPTR) ( REG_PA RAMS )

;
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typedef struct {

FUNCPTR old, new;

DWORD count, *func;

int intno, has_func;

char *str;

} I NT_DATA

;

extern INT_DATA i n t_d a t a C ]

;

int check_wi ndows = 0, in_windows = 0;

int i nt_ndx[0xl00] = {0} ;

//define I NT_HAN D L E R ( rax
,
intno) { \

I NT_DATA *pid = & i n t_d a t a [ i n t_n dx[intno]] ; \

if (in_wi ndows
|| (! check_wi ndows ) ) { \

if (pid->has_func) \

pid->func[rax >> 8]++; \

pi d->count++; \

} \

_c h a i n_i ntr(pid-)old) ; \

void interrupt far

void interrupt far

void interrupt far

void interrupt far

void interrupt far

void interrupt far

void interrupt far

void interrupt far

void interrupt far

void interrupt far

void interrupt far

void interrupt far

void interrupt far

i ntl0( REG_PARAMS r)

i ntll ( REG_PARAMS r)

i ntl2 ( REG_PARAMS r)

i n t 1 3 ( REG_PARAMS r)

i ntl4( REG_PARAMS r)

i ntl5( REG_PARAMS r)

i ntl6( REG_PARAMS r)

i ntl7 ( REG_PARAMS r)

i n t 1 A ( REG_PARAMS r)

i nt25( REG_PARAMS r)

i nt26 ( REG_PARAMS r)

i nt28( RE6_PARAMS r)

i nt33( REG_PARAMS r)

I NT_HANDLER(

r

INT_HANDLER(

r

I NT_HANDLER(

r

I NT_HANDLER(

r

I NT_HANDLER(

r

I NT_H AN D L E R (

r

I NT_HAN D L E R (

r

INT_HANDLER(

r

INT_HANDLER(

r

I NT_H AN D L E R (

r

I NT_H AN D L E R (

r

I NT_HANDLER(

r

I NT_H AN D L E R (

r

ax, 0x10); )

ax, 0x11); )

ax, 0x12); )

ax, 0x13); }

ax, 0x14); )

ax, 0x15); }

ax, 0x16); }

ax, 0x17); )

ax,0xlA); )

ax, 0x25); }

ax, 0x26); }

ax, 0x28); )

ax, 0x33); }

DATA i nt_data[] =
{

ol d

,

new, count

0, i n 1 1 0

,

0, 0,

0, i ntll

,

0. 0,

0, i n 1 1 2

,

0. 0,

0, i ntl3

,

0. 0,

0, i nt 14

,

0. 0,

0, i nt 1 5

,

0, 0,

0, i n 1 1 6

,

0, 0,

0, i n 1 1 7 , 0, 0,

0, i ntlA, 0, 0,

0, i nt25

,

0, 0.

0, i n 1 26

,

0, 0,

0, i nt28, 0, 0,

0, i nt33

,

0, 0,

func, intno, has

0x10, 1,

0x11, 0,

0x12, 0,

0x13, 1,

0x14, 1,

0x15, 1,

0x16,' 1,

0x17, 1,

0xlA , 1,

0x25, 0,

0x26, 0,

0x28, 0,

0x33, 1,

func, str

"Video",

"Equipment List"

"Memory Size",

"Disk",

"Serial",

"System Services

"Keyboard"

,

"Pri nter"

,

"Time",

"DOS Disk Read",

"DOS Disk Write"

"Idle",

"Mouse",

//define NUM_I NT ( si zeof ( i nt_data ) / si zeof( I NT_DATA )

)

FUNCPTR GetSet Int ( i nt intno, FUNCPTR new)
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{

FUNCPTR old = _dos_getvect( i ntno)

;

_dos_setvect( i ntno , new);

return old;

FUNCPTR prev_2f = (FUNCPTR) 0;

//define WI N_I N INCOMPLETE 0x1608

//define W I N_EX I T_B EG I N 0x1609

void interrupt far i nt2f ( REG_PARAMS r)

{

if (r.ax =» W

I

N_I

N

I T_C0M P

L

ET

E

)

i n_wi ndows++;

else if (r.ax == W

I

N_EX I T_B EG I N

)

i n_wi ndows--

;

_chai n_i ntr(prev_2f )

;

void fai 1 (const char *s) { puts ( s ) ; exit(l); }

main(int argc, char *argv[])

{

int i
, j

;

I NT_DATA *pi nt

;

FILE *f;

if ( strncmp(strupr( argv[l] ) , "-WIN", 3) == 0)

{

check_wi ndows++;

argv++; argc--;

}

/* set up func counters */

for (i=0, pi nt=i nt_data ; i < N UM_ INT; i++, pint++)

if (pint-)ha s_f u n c

)

if ((pint-)func = (DWORD *) cal 1 oc( 0x100 , si zeof (DWORD) ) )
== 0)

fai 1

(

" Insuffi ci ent memory" )

;

/* initialize int_ndx */

for (i-0, pi nt=i nt_data ; i <NUM_I NT
; i++, pint++)

int_ndx[pi n t - > i ntno] = i;

/* i nstal 1 handlers */

for (
i =0

,
pi nt=i nt_data ; i <NUM_I NT ; i++, pint++)

pi nt->ol d = 6etSetInt(pint->intno, pint->new);

if (check_windows)

prev_2f = GetSetInt(0x2f , i n 1 2 f )

;

/* run the command */

if (argc < 2)

system(getenv( "COMSPEC" ) )

;

el se

spawnvp( P_WAIT , argv[l], &a rgv [ 1 ] )

:
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/* restore previous handlers */

if (check_wi ndows

)

(void) GetSetInt(0x2f
,
prev_2f);

for (
i =0

,
pi nt=i nt_data ; i <NUM_I NT

; i++, pint++)

(void) GetSetInt(pint->intno, pint->old);

/* open log file to display results */

if (f = fopen( "HOOKINT. LOG" , "w "))

pri ntf
(

"Creati ng HOOKINT. L0G\n" )

;

el se

f = stdout;

/* show command 1 i ne */

for ( i = 1 ;
i < a r g c ;

i++)

fprintf(f, "% s ", argv[i]);

fprintf (f ,

" \
n

" )

;

if ( check_wi ndows

)

fpri ntf ( f , "While Windows runni ng : \n" )

;

/* show grand totals for each INT */

for (i=0, pi nt=i nt_data ; i < N U M_ INT; i++, pint++)

if (pint-)count)

fprintf (f, "INT %02Xh\t\t%-81 u\t\t%s\n"

,

pint->intno, pint->count, pint->str);

f pri ntf ( f ,"\n")

;

/* if INT has functions, show individual function counts */

for (i=0, pi nt=int_data ; i < N U M_ INT; i++, pint++)

if (pint->has_func && pint->count)

{

for (j=0; j < 0 x 1 0 0 ;
j++)

if (pi nt->func [ j ]

)

fprintf (f
,

"%02X/%02X : % 1 u \
t

"

,

pint->intno, j, pi nt->f unc [ j ] )

;

fpri ntf (f
,

"\n" )

;

fcl ose ( f )

;

return 0;

1

If you run HOOKINT without any command-line parameters, it

spawns a command shell; when you exit from the shell, HOOKINT
reports the usage of the hooked interrupts. Rather than send its output to

stdout, which would then have to be redirected to a file with the possibly

disruptive results we saw earlier in V86TEST, HOOKINT instead writes

out a file, HOOKINT.LOG.
You can also specify a program for HOOKINT to run, such as WIN

or WIN /D:C. Finally, an optional -WIN command-line switch tells

HOOKINT to only track interrupts while Windows is running (or at least

in between calls to INT 2Fh functions 1608h and 1609h). Figure 11-9
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shows a typical HOOKINT.LOG file after using WfW 3.11 for a while.

In this configuration, 3 2 -bit disk access (32BDA) was enabled; I ran a

large number ofWindows applications (including WinWord, Solitaire,

the Win32 version of FreeCell, Control Panel, Print Manager, and File

Manager), but I didn’t open a DOS box. I didn’t use the HOOKINT
-WIN switch, so this log includes calls Windows made during initializa-

tion and termination.

INT 1 0 h 160 Vi deo

INT 1 1

h

6 Equipment List

INT 1 2 h 1 Memory Size

INT 1 3 h 2501 Disk

INT 1 5 h 28173 System Services

INT 1 6 h 195 Keyboard

INT 1 Ah 12 Time

INT 2 5

h

4 DOS Disk Read

INT 28h 499260 Idle

INT 33

h

3 Mouse

10/00 7 10/01: 1 10/0E : 100 10/0F : 4

10/12 10 1 0 / 1 A

:

1 10/6F : 2 10/F0: 4

10/F3 12

13/02 2307 13/03: 191 13/08: 3

15/53 17968 15/87: 2050 15/90: 4067 15/91

16/01 98 16/11: 97

1 A/00 9 1A/02: 1 1A/03 : 1 1A/05 : 1

33/00 3

10/10: 4

10/ FI : 6

10 / 11 : 6

10/F2 : 3

2 15/Cl: 1

Figure 11-9: Sample HOOKINT results generated under WfW 3.11.

There are a few noticeable features in Figure 11-9. First, there are

many INT 28h idle calls; this matches what we saw earlier in the VMPoll

broadcasts. The “Reschedule” function in KRNL386 makes these INT
28h calls.

Second, there are a hefty number ofINT 15h calls, but these don’t

necessarily come from Windows. INT 15h function 53h belongs to the

Advanced Power Management (APM) specification; I had Microsoft’s

POWER.EXE loaded here. Functions 90h and 91h are the BIOS Device

Busy and Device Post operating system hooks. The BIOS calls these

functions, and an operating system such as Windows can intercept them;

the IOS VxD can use INT 15h function 90h as a signal to call the

Enable_VM_Ints service. INT 15h function 87h is the Copy Extended

Memory service; Windows uses this during initialization.

Other calls, such as INT lOh video, INT 16h keyboard, and INT 33h

mouse services, are called far less often than is typical in a full-screen

DOS application (which, in a way, is what Windows is). In one completely



Unauthorized Windows 95

unscientific comparison, I ran a full-screen DOS program (the Borland

C++ integrated development environment) very briefly under HOOK-
INT— certainly for a much shorter period than I had run Windows—
and there were almost 200,000 calls each to INT 16h functions 1 lh and

12h to poll the keyboard, over 1 1,000 calls to INT 33h to get the mouse

status, and over 1000 calls to INT lOh function 2 to set the cursor posi-

tion. This is quite different from what happens in Windows.

Third, and last, we come to INT 13h disk reads and writes. Here

there’s actually something important to say. Starting in Windows 3.10,

Microsoft provided 3 2 -bit disk access (32BDA), often referred to as Fast-

Disk. This is frequently confused with 3 2 -bit file access, but is quite sepa-

rate: 32BFA handles DOS file I/O calls in 3 2 -bit protected mode,

whereas 32BDA handles INT 13h disk reads and writes in 3 2 -bit pro-

tected mode.

So how can we summarize Windows’ relation to the BIOS? First,

Windows applications have long bypassed the BIOS services for video,

keyboard, printing, and so on; as noted earlier, the Windows API pro-

vides its own services. Of course, the occasional Windows program does

uses BIOS services; a good example is Microsoft’s CodeView debugger.

The source code for the Windows DISPLAY driver included with the

DDK (DDK\286\DISPLAY\8PLANEW7VGA\SRCWGA.ASM)
contains the following note:

; why would a windows app do a INT 1 0 h you ask? CodeView does so we need

: to trap INT 1 0

h

Second, examining the source code included with the DDK shows

that Windows device drivers such as DISPLAY and KEYBOARD (these

are Winl6 DRV files, not to be confused with 32-bit VxDs) make occa-

sional use of BIOS calls, for example, INT lOh and INT 16h.

And third, an examination of the VxD source code included with the

DDK shows that a number ofVxDs hook the BIOS interrupts in V86
and protected mode. The VDD (Virtual Display Device) hooks INT
lOh; the IOS (I/O Supervisor; called BLOCKDEVin Windows 3.1)

hooks INT 1 3 h; VKD (Virtual Keyboard Device) hooks INT 16h; VPD
(Virtual Printer Device) hooks INT 17h; VTD (Virtual Timer Device)

hooks INT lAh; and VMD (Virtual Mouse Device) hooks INT 33h.

For example, VKD uses Hook_V86_Int_Chain to hook INT 16h in

V86 mode. VKD will thus see INT 16h before any real-mode software

does. VKD also uses Call_When_VM_Returns to install a “post-reflection

hook” that will be called when the real-mode BIOS attempts to IRET
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back to what it thinks is its caller. Why does VKD hook INT 16h? The
INT 16h handler in VKD.ASM explains why:

; DESCRIPTION: This software interrupt handler will convert blocking

: int 16s into polling int 16s. If no key is ready then

: the current VMs time slice will be given up.

» * > • . •

Pus h_Cl i ent_State

VMMcall Beg i n_Nest_Exec ; Nest execution level

mov dh, [ebp.Cl ient_AH]

i nc dh ; Polling int 16 (0 - 1

)

; extended polling ( 1 0 h - 1 1 h

)

I16_Pol 1 _Loop

:

mov [ebp.Cl ient_AH] , dh

mov eax, 1 6

h

VMMcall Exec_Int

TestMem [ebp.Cl ient_Fl ags] , ZF_Mask ; Q: Key ready?

jz SHORT I16_Key_Ready
;

Y: Done

VMMCall Rel ease_Time_Sl ice

jmp 1 1 6_Po 1 1 _Loop

I16_Key_Ready

:

VMMcall Fnd_Nest_Exec ; Pop off execution level

Pop_Cl i ent_State

stc : Reflect blocking int 16 now

ret

As another example, VDDINT.ASM attempts to emulate (rather than

reflect) a number of INT lOh video calls, including functions 2 and 3 (get

and set cursor position), functions 6 and 7 (scroll up and down), function

9 (write character and attribute at cursor position), and function OEh
(write TTY). It’s well worth reading this code (DDK\386\VDDVGA\
VDDINT.ASA1) to see how Windows VxDs can take over not only from

DOS but also from the BIOS. For example:

: Emulate this Get Cursor Position call, if possible

VII 0GetCu rs

:

call VDD_Int_Can_Emul ate

jnz VII 0_Ref 1 ect

movzx ecx, [ebp.Cl i en t_BH

]

B EG I N_T ouc h_l s t_Meg

mov ax, WORD PTR DS:[460h]

mov [ebp.Cl ient_CX] , ax

mov ax, WORD PTR DS : [450h+ecx*2]

END_Touch_lst_Meg

mov [ebp.Cl i en t_DX ] , ax

jmp V 1 10Exi tEmYes

;Q: can emulate INT 10?

; N:

; ECX = output page

:
get top & bottom lines of cursor

: Client CH.CL = cursor type

:
get row/column

: Client DH , D L = cursor posn

: Call emulated, exit

As a final example, VFD.ASM hooks INT 13h:
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; This Device hooks INT 13
’ s and checks for the high bit to be clear in the

; drive specification (DL). If the bit is clear, then Beg i n_Cri ti cal_Secti on

; is called and timer port trapping is disabled. When the bios INT 13 handler

; IRET's, then timer port trapping is reenabled and End_Cri ti cal_Secti on

; is called. INT 13
' s that do have the high bit of DL set are simply

;
reflected so that VHD can handle them.

; Also if the INT 13 is a format command (AL=5), then VDMAD is called to

; disable DMA channel #3. This is done, because the BIOS programmes the

; DMA channel for a large random DMA transfer that never occurs (the

; disk controller never actually performs DMA during a format track operation)

; By ignoring this random programming of the DMA channel, VDMAD is able to

; work with allocating a smaller (more realistic) DMA buffer.

What this all means is that even BIOS interrupts coming from DOS
applications and from DOS software loaded before Windows will be han-

dled in 3 2 -bit protected mode by some VxD. In most cases the VxD does

some preprocessing, reflects the interrupt to V86 mode, and then possi-

bly does some postprocessing (via Call_When_VM_Returns).

In other words, Microsoft is effectively moving large parts of the

BIOS into 3 2 -bit protected mode VxDs. In fact, this movement has been

going on for some time, probably with little realization outside the rela-

tively small circle ofVxD writers. For example, the VDD code to emu-

late rather than reflect some INT 1 Oh calls appears to have been written

in 1988, presumably for the Windows/386 1.x project. The more things

change, the more they stay the same.
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T
he V86TEST program used in the previous chapter helped illustrate the

situations under which Windows does and does not need DOS. In this

chapter we’re going to further explore the Windows-DOS relationship by

enhancing V86TEST in several ways.

• Using V86TEST requires either redirecting Windows’ output

to a file, which silently disables 32BFA, or running V86TEST
-QUERY, which pollutes the V86TEST results with INT 2 lh

calls coming from the DOS box. It’s true that Windows doesn’t

treat DOS boxes in a substantially different way than does the

System VM in which Windows applications run, but DOS pro-

grams do tend to make calls — such as function OBh to poll the

keyboard — that Windows applications don’t. These calls clutter

up the V86TEST results.

The first issue — having to redirect V86TEST’s output to a

file — could be easily addressed by changing V86TEST to write

out a log file, as I did with the HOOKINT program back in

Listing 10-1.

The second issue — having to open a DOS box in order to run

V86TEST -QUERY— has a solution which, in a book ostensi-

bly about Windows programming, should be obvious: write a

Windows version ofV86TEST (WV86TEST). This isn’t really

a matter of putting a graphical user interface on V86TEST.

Instead, WV86TEST increases the accuracy of V86TEST’s

INT 2 lh log.
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• V86TEST lumps together DOS calls coming from Windows applica-

tions, from DOS applications running under Windows, and from

Windows itself. Every time we run V86TEST, we see the entire his-

tory of DOS calls, including those that Windows made during its ini-

tialization.

Although this problem could be partially fixed by making V86TEST
collect only INT 2 lh statistics during the period that Windows is

truly up and running— V86TEST.C (Listing 10-1) could check if

(state == WIN_INIT_DONE) before logging INT 2 lh calls—
WV86TEST has a better solution: a Show Changes menu item that

will let us focus on the DOS calls made by particular Win 16 and

Win32 applications.

• Recall my complaint from the preceding chapter that, by definition,

V86TEST knows nothing about INT 2 lh calls that are not passed

down to DOS. Just because V86TEST doesn’t see some INT 2 lh

call, it doesn’t mean that Windows emulates this call in 3 2 -bit pro-

tected mode. It’s equally possible that no one is making the INT 2 lh

call in the first place. V86TEST can’t tell the difference between calls

that Windows emulates and calls that no one makes.

To solve this last problem, the next two chapters will use WSPY2 1, a

Windows program that hooks INT 2 lh and displays the DOS calls that a

Windows application thinks it’s making or that some DLL is making on

the application’s behalf. Using WSPY21, we’ll examine the DOS activity

generated by some common Windows applications.

This chapter presents the code for WV86TEST and shows some

sample sessions with the program. The next two chapters will then spend

a lot of time looking at the Clock applet in both Windows 3 . 1 and Win-

dows 95. Comparing the output generated by WSPY2 1 with that gener-

ated by WV86TEST will give us a much better idea of the DOS calls

that Windows handles— and does not handle — in protected mode.

The next two chapters also take several lengthy side trips to examine

some fascinating sights in Windows 95, including memory-mapped files,

thunking between 16- and 3 2 -bit code, and demand-paged virtual mem-
ory. These side trips are all inspired by some odd-looking results dis-

played by WV86TEST and WSPY2 1

.



Chapter 12: Exploring with WV86TEST

Breaking mi Ties with DOS?

WV86TEST, as shown in Figure 12-1, is a Windows application that

communicates with the DOS version ofV86TEST (see Listing 10-1)

loaded before Windows.

Refresh

136* » U86 node
;/second
s

152
v' Show Changes

Auto-Refresh
I OPL

INT 21 n calls:
2ft: 67M 2C : 674 50: 19 55: 1

Dosprmpt

Unauthorised

Windows 35

i
332 AMClock 10/11/94TEST

Figure 12-1: WV86TEST, running under Windows 95 alongside the Win32 clock, shows

the INT 21h calls from Clock that Windows 95 sends down to V86-mode DOS.

For example, after starting WV86TEST under Windows 95 and

selecting the Show Changes and Refresh options, I used the WordPad

application that comes with Windows 95 to read in a 78K WinWord

.DOC file and save it out as a plain-ASCII .TXT file. WV86TFST
shows how this looked to real-mode DOS:

141 seconds elapsed

542 calls, 542 in V 86 mode

3 INT 21/2F calls/second

1 0 P L=3 -- 542 calls

VM #1 -- 542 calls

INT 21 h calls:

0E: 138 2A : 25 2C: 16 30: 6 45: 2 50: 348 55: 1 57: 4 5A: 1

INT 2 Fh calls:

11 : 1
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Notice that there are no calls to the INT 2 lh functions that open,

close, read, or write files. At the same time, there are plenty of calls to

INT 2 lh functions OEh, 2Ah, 2Ch, and 5 Oh.

In another test, I started Calc, Microsoft’s calculator applet, did a few

calculations, browsed Calc’s on-line help (this starts the WinHelp pro-

gram), exited Calc, and did a WV86TEST Refresh. Here’s how the

slightly more than two minutes of CALC.EXE and WINHELP.EXE
activity looked to DOS under Windows 95, as logged by V86TEST and

reported by WV86TEST:

138 seconds elapsed

200 calls, 200 i n V86 mode

1 INT 21/2F calls/second

1 0 P L=3 -- 200 calls

VM #1 -- 200 calls

INT 2 1 h calls:

0E : 44 2A : 3 2C: 14 30: 2 4C: 2 50: 129 55: 2

INT 2 F h calls:

11: 4

I happened to still have my CURRDRIV.386 from Chapter 7 loaded

here, so function 19h (Get Current Drive) calls that normally would have

been sent down to DOS were instead consumed by the VxD in 3 2 -bit

protected mode. Even so, this isn’t much DOS activity to show for run-

ning two Windows applications. DOS has seen two PSPs created with

undocumented function 55h (Create PSP), lots of function 50h (Set PSP)

activity, two programs exiting with function 4Ch, and so on. But there’s

no file I/O, aside perhaps from four network redirector calls (INT 2Fh

function llh).

Windows 95 is evidently bypassing DOS for most services. But there’s

nothing brand new or Windows 95-specific about this. WfW 3.11, with

32BFA enabled, shows just as little DOS activity for roughly the same

level of Calc and WinHelp activity:

185 seconds elapsed

59 calls, 59 i n V86 mode

0 INT 21/2F calls/second

1 0 P L=3 -- 59 calls

VM #1 -- 59 calls

INT 21 h calls:

2A : 2 2C : 2 30: 2 4C: 2 50: 43 55: 2 59: 2

INT 2 F h calls:

11: 4
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Not only is Windows 95’s capability to bypass DOS nothing new, but

in this admittedly unscientific test, WfW 3.11 bypassed DOS to a greater

extent than Windows 95. Note that, even though the WfW test ran for a

little longer than the Windows 95 test, there were somewhat fewer Set

PSP calls than in Windows 95 and no function OEh (Set Disk) calls.

But which DOS calls— regardless ofwhether DOS or Windows even-

tually handles them— are Calc and WinHelp generating in the first place?

RunningWfW 3.11 without 32BFA provides one way to see the DOS
activity that 32BFA evidently absorbs. Here’s the same Calc/WinHelp test,

this time under WfW 3.11 with 32BFA disabled (WIN /D:C):

223 seconds elapsed

INT 2 1 h calls:

1A: 7 2A : 3 2C: 3 30: 2 3B: 3 3D: 20 3E: 13 3F: 165 42: 131

43: 8 44: 21 47: 10 4C: 2 4E: 7 50: 39 55: 2 57: 12 59: 3

INT 2 Fh calls:

11: 42

Here we see the DOS file I/O calls — such as function 3Dh to open

files, 3Eh to close them, 3Fh to read from a file, and 42h to move the file

pointer— that Calc and WinHelp must still be making when 32BFA is

enabled, but that DOS won’t see because IFSMgr has usurped its role.

Table 12-1 presents the three sets ofWV86TEST results for Calc.

Table 12-1: WV86TEST results for Calc/WinHelp

WfW with WfW without

Function Windows 95 32BFA 32BFA

OEh 44 — —

lAh — — 7

2Ah 3 1 3

2Ch 14 1 3

30h 2 2 2

3Bh — — 3

3Dh — — 20

3Eh — — 13

3Fh — — 165

42h — — 131

43h — — 8

44h — — 21

47h — — 10

4Ch 2 2 2
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4Eh — — 7

50h 129 35 39

55h 2 2 2

57h — — 12

59h — 2 3

All three environments pass function 55h (Create PSP) and function

4Ch (Exit Program) down to DOS. Windows 95 is generating a lot of

calls to function OEh (Set Disk) and to function 2Ch (Get Time). And of

the three environments, Windows 95 appears to be making the heaviest

use of function 50h to set the current PSP
This is all very strange in light of Microsoft’s claims regarding Win-

dows 95 ’s relationship to MS-DOS. For example:

Chicago is a 32-bit operating system. Windows no longer can be likened to a fancy

paint job on an old MS-DOS Yugo. Because the entire operating system is freshly

designed from the ground up, you now have killer features such as threads, memory-

mapped files, and asynch I/O.

— Dave Edson, “Seventeen Techniques for Preparing Your 16-bit

Applications for Chicago,” Microsoft Systems Journal,

February 1994, p. 15.

One of the cardinal rules of marketing is to push what you have to sell

today rather than what you’ll have tomorrow. Given that this statement

was written at least a year before the general availability of Windows 95,

it’s odd to see Microsoft not only selling what it won’t have until tomor-

row but positively trashing (unless you think the Yugo is a good car) what

it has for sale today. Yes, we have no bananas!

The key assertion here is that Windows 95 is “freshly designed from

the ground up.” In fact, Windows 95 is built on the foundation of the

VMM code written by Ralph Lipe, Aaron Reynolds, and others in early

1988. For example, the VPICD.H header file included with the DDK is

dated “13-Apr-1988 RAL,” VMDA.H is dated “05-May- 1988 ARR,”

and the all-important VMM.INC is dated “05-May 1988 RAL.” The
core code in Windows 95 ’s VMM is anything but fresh. But this is a

good thing, because the devil you know is preferable to the devil you

don’t know.

However, we shouldn’t make too big a deal out of this “freshly

designed” claim from February 1994. The article carries a prominent

disclaimer that “The information presented here is based on an early

prerelease of Chicago. Anything and everything is subject to change.”

Furthermore, one of the C files included with the article contains a truly

wonderful 20-line disclaimer:
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Consult your physician before using this program. Batteries not included. May
cause drowsiness. Not available in all states.... Keep this and all software out of

the reach of children. Parental guidance suggested. The buyer assumes all risks

associated with using this product. [Actually, that one is very close to the true

state of affairs in software.] In case of irritation, flush eyes with cold water and
consult your physician. Not insured by the Federal Deposit Insurance Corporation....

PLEASE NOTE: Some quantum physics theories suggest that when the consumer
is not directly observing this product, it may cease to exist or will exist only in a

vague and undetermined state.

Well, we’ve been warned. Let’s then turn to another Microsoft Systems

Journal article that isn’t so hedged with warnings:

The big difference in Chicago’s relationship with MS-DOS from that of Windows 3.1

is that if you only run Windows-based applications, you’ll never execute any MS-DOS
code.

— Adrian King, “Windows, the Next Generation: An Advance Look at the

Architecture of Chicago,” Microsoft Systems Journal, January 1994, p. 18.

In the Calc/WinHelp test, we’re only running Windows-based appli-

cations (this was why we needed WV86TEST in the first place), yet

Table 12-1 shows that Windows 95 is quite clearly still calling down to

DOS to roughly the same extent that WfW 3.11 did.

At this point, you might be very concerned about what are sometimes

called (as we’ll get into later) “Heisenberg” effects. WV86TEST talks to

V86TEST, which is a real-mode DOS program. Microsoft SystemsJournal

quite specifically said “ifyou only run Windows-based applications, you’ll

never execute any MS-DOS code.” Perhaps V86TEST, although it loads

before Windows, violates this condition. More generally, perhaps the

DOS activity that these programs reveal wouldn’t occur in the first place

if these programs weren’t running.

I address these concerns in detail in Chapter 14, where we’ll see con-

clusively that Windows 95 calls down to DOS to the same extent whether

or not V86TEST is loaded. For now, though, let me show the “steady

state” when only WV86TEST and V86TEST are running so that I can

try to assure you that WV86TEST has little effect on the Windows-

DOS relationship:

1 seconds elapsed

2 calls, 2 in V86 mode

2 INT 21/2F calls/second

1 0 P L=3 -- 2 calls

VM #1 -- 2 calls

INT 2 1 h calls:

2A : 1 2C : 1
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These two DOS calls, which get the date and time, appear whenever

you select Refresh from the WV86TEST menu. The display_results

function in WV86TEST.C later in this chapter (Listing 12-2) calls the C
time function, which in turn calls INT 2 lh functions 2Ah and 2Ch. These

two calls need to be subtracted from any WV86TEST results. But in the

Calc/WinElelp test, this still leaves us (both in WfW 3.11 and in Win-

dows 95) with calls to Create PSP, Set PSP, DOS exit, and a few others.

So what’s the “big difference in Chicago’s relationship with MS-
DOS”? Adrian King’s Microsoft Systems Journal article cited previously

does address this issue:

As successive versions of Windows have appeared, each has supported more and

more of the MS-DOS INT-based software services, and Windows-based applications

have had an ever-lessening need to switch in and out of virtual-86 mode to execute

MS-DOS code. The big exception to this (until Windows for Workgroups version 3.11)

was the support for the file system services.

This is certainly an accurate history of Windows’ relationship with

MS-DOS. But in the next sentence, the article says:

Chicago finally breaks all ties with the real-mode MS-DOS code and, with few excep-

tions, even existing 16-bit Windows-based applications will follow a protected-mode

path through the new File Management Subsystem to the disk and back.

WV86TEST shows that this sentence is almost exactly wrong:

• The mere fact that Windows 95 sends Set PSP calls involving Win-

dows applications down to MS-DOS indicates that Windows 95 hasn’t

broken all ties with real-mode DOS. I don’t see any good reason why
Windows 95 should break all ties with real-mode DOS, but Microsoft

ought to stop claiming that it has.

• The “new File Management Subsystem” isn’t new. IFSMgr, VFAT,

VCACHE, and so on in Windows 95 are largely the same as IFSMgr,

VFAT, VCACHE, and so on in WfW 3.11. This should come as no

surprise, since Microsoft’s ads for WfW 3.11 explicitly said that its

3 2 -bit file access came from Chicago: “Using the 3 2 -bit file system

from our Chicago project, Windows for Workgroups performs 50%
faster on disk-intensive tasks” (Microsoft advertisement, InfoWorld

,

January 10, 1994, p. 55).

Now, 32BFA in Windows 95 should be an improvement over that in

WfW 3.11. After all, the flip-side to Microsoft’s boast that WfW 3.11

in January 1994 included 3 2 -bit code from Windows 95 (a product

that wouldn’t be ready for at least another year) is that WfW 3.11
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contained pre-beta code. And, as a result of the way it used the WfW
3.11 commercial release as a widespread test for its pre-beta code,

Microsoft has improved 32BFA in Windows 95.

But some of these improvements entail the re-knotting of some ties to

DOS that were too hastily broken in WfW 3.11: Windows 95 is a lit-

tle more tied to DOS than was WfW 3.11. For example, recall from

Chapter 8 (the “Global and Local INT 2 1 h Hookers” section) that

WfW 3.11 wouldn’t reflect file INT 2 Ih calls to local hookers, but

that Windows 95 will.

• Having just told us that “Chicago finally breaks all ties with the real-

mode MS-DOS code,” it’s hard to know what to make of the next

phrase: “with few exceptions, even existing 16-bit Windows-based

applications will follow a protected-mode path.” Perhaps I’m looking

too carefully at some hastily chosen wording, but there is a direct con-

tradiction between “all” and “with few exceptions, even.” Either Win-

dows 95 breaks all ties with the real-mode MS-DOS code or it

doesn’t. WV86TEST has already shown us that it doesn’t.

The extent of Windows 95 ’s separation from real-mode DOS is

already quite impressive, and Microsoft doesn’t need to exaggerate it.

Nor, having already advertised that WfW 3.11 contained a significant

chunk of the Windows 95 project, should Microsoft now turn around

and claim that Windows 95 ’s relationship to DOS marks a significant

departure from WfW 3.11. Besides, the experience ofWfW 3.11

shows that breaking too many ties with real-mode DOS can produce

compatibility problems.

Perhaps all Microsoft SystemsJournal was trying to say was that Win-

dows 95 keeps some ties to DOS for the sake of old DOS and Win 16

software, but DOS is gone if the user runs only Win32 applications.

The phrase, “with few exceptions, even existing 16-bit Windows-based

applications will follow a protected-mode path” seems to imply that with-

out exception Win32 applications will never leave the 3 2 -bit protected-

mode path.

However, we’ll see shortly (in “The Windows 95 Explorer and DOS”
section) that this isn’t really true, either. Although Win32 applications can

bypass DOS to a greater extent than Win 16 applications can, the ties are

still there. Win32 applications rely on essentially the same small but sig-

nificant core of real-mode DOS calls that Win 16 applications require.

There’s absolutely nothing wrong with this reliance on a code base that
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has proven itself on something like 100 million machines, and Microsoft

should stop pandering to operating-system purists by claiming that real-

mode DOS is gone.

uiinuiom and DOS

In Figure 12-2,1 used WinWord to open and save a large document in

WfW 3.11, both with and without 32BFA. I then saved WV86TEST’s
output to a file and compared the results with diff. Unfortunately, I

neglected to use V86TEST -FILTER, so those pesky VMPoll broadcasts

discussed in Chapter 1 1 (in the “Windows at Work?” section) show up in

the results. However, since we’re focusing on INT 2 lh calls here, it does-

n’t really matter.

< win / D : C (32BFA disabled)

> win (32BFA enabled) < means without 32BFA

> means with 32BFA
< 62 seconds elapsed

> 42 seconds elapsed

< 41076 calls, 41076 in V 86 mode

> 47318 calls, 47318 in V 86 mode

< 662 INT 21/2F calls/second

> 1126 INT 21/2F calls/second

< 1 0 P L=0 -- 339 calls

> 1 0 P L=0 -- 403 calls

< 1 0 P L=3 -- 40737 calls

> 1 0 P L=3 -- 46915 calls

< VM #1 -- 41076 calls

> VM #1 -- 47318 calls

INT 2 1 h calls:

< 1A: 28 2A

:

14 2C

:

16 30: 1 3B

:

8 3C: 3 3D: 28 3E

:

25 3F

:

708

> 2A

:

13 2C

:

15 30: 1

< 40: 60 41: 2 42: 596 43: 5 44: 42 45: 1 47: 13

> 45: 1 47: 3

< 4E

:

28 50: 150 55: 1 56: 2 57: 14 59: 1 5B

:

2 62: 41 DC: 1

> 50: 150 55: 1 57: 1 59: 1 62: 41 DC: 1

INT 2 Fh calls:

< 11: 80 16: 39206

> 16: 47090
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INT 2 F h AH= 1 6 h calls:

< 07: 39206

> 07: 47090

INT 2 Fh AX= 1 607 h calls:

< 18: 39206

> 18: 47090

Figure 12-2: WinWord File Open/Save, with and without 32BFA.

In Figure 12-2, notice that the same operation took twenty seconds

less with 32BFA enabled:

< 62 seconds elapsed

> 42 seconds elapsed

This 32 percent (20 out of 62) performance improvement is consistent

with InfoWorld’s findings (August 1994, 1994, p. 66) in an extensive review

of peer-to-peer network operating systems: With 3 2 -bit file (32BFA) and

disk (32BDA) access enabled, InfoWorld saw an improvement of between

30 and 33 percent over WfW 3.11 without 3 2 -bit access. With 32BFA and

32BDA enabled, WfW 3.11 gave better performance than any other peer-

to-peer network tested, including Artisoft’s LANtastic. (Novell’s Personal

NetWare came in dead last, taking 2:29 hours to complete a task that

WfW 3.11 completed in 1:48 without 3 2 -bit access and 1:23 with

3 2 -bit access; LANtastic took 1:43.)

Figure 12-2 indicates that Windows generated more calls to V86 mode
with 32BFA enabled, but this is entirely due to the VMPoll VxD broad-

casts. With 32BFA, the system evidently goes idle more often. Notice that

all calls came from VM #1, indicating that no DOS box was open.

I won’t say much about the IOPL=0 counts shown by WV86TEST,
since this topic was discussed in Chapter 10 (in the “IOPL and the

Interrupt Flag” section). As mentioned there, VMM employs IOPL=0 in

V86 mode as part of the Call_When_VM_Ints_Enabled service. This

VMM service is used primarily by VPICD to simulate hardware interrupts,

such as the timer tick, into a VM. To behave like a genuine hardware PIC

and to make VMs look like genuine machines, VPICD must not send an

interrupt to a VM that has disabled interrupts. It’s easy for VPICD to tell

when a VM has disabled interrupts (just check [ebp.Client_FLAGS]), but

how can it gain control when the VM decides to reenable interrupts? With

Call_When_VM_Ints_Enabled, naturally. By setting IOPL=0, this service

causes the CLI instruction to generate a GP fault. When VMM catches

this GP fault, it calls VPICD ’s handler and resets IOPL=3.
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By comparing the INT 2 lh calls logged with and without 32BFA, we

can draw up a list of some INT 2 lh calls that can bypass DOS when

32BFA is enabled:

Function

Number Function

lAh Set Disk Transfer Address (DTA)

3Bh Set Current Directory

3Ch Create File

3Dh Open File

3Eh Close File

3Fh Read File

40h Write File

41h Delete File

42h Move File Pointer (Lseek)

43h Get/Set File Attributes

44h IOCTL

4Eh Find First File

56h Rename File

57h Get/Set File Date/Time

5Bh Create New File

Notice that these are merely calls for which Windows can bypass

DOS. The absence of a call from the 32BFA portion of Figure 12-2 is

no proof that 32BFA always bypasses DOS for that call. For example, if

WinWord here had been reading and/or writing to a floppy disk, under

WfW 3.11 — which, unlike Windows 95, does not provide 32BFA for

floppies — WV86TEST would have shown Windows passing many of

the INT 2 lh file I/O calls down to DOS.
As another example, consider INT 2 lh function 44h (IOCTL).

Although some IOCTL calls such as 4408h (Does Device Use Remov-

able Media?) and 4409h (Is Drive Remote?) can be handled by 32BFA, it

seems obvious that there must be some driver-specific I/O control calls

that Windows passes down to DOS device drivers.

In other words, WV86TEST’s output by itself means little.

WV86TEST needs to be used in conjunction with some other program,

such as WSPY2 1, that indicates which INT 2 lh calls have been gener-

ated on the Windows side of the fence.

Returning to Figure 12-2, we can see that the following INT 2 lh calls

are at least sometimes passed down to DOS, even with 32BFA:
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Function

Number Function

2Ah Get Date

2Ch Get Time

30h Get DOS Version

45h Duplicate File Handle

47h Get Current Directory

50h Set PSP

55h Create PSP

59h Get Extended Error Information

62h Get PSP

DCh Novell NetWare: Get Connection Number

Figure 12-2 makes an extremely misleading suggestion about the

handling of network redirector (INT 2Fh function 1 lh) calls. Note that

WV86TEST shows 80 such calls without 32BFA and no calls with

32BFA. This seems to suggest that 32BFA doesn’t pass network redirec-

tor calls down to V86 mode. But this is false. Instead, in this particular

test, when 32BFA was enabled, no INT 2Fh function 1 lh calls were

generated in the first place. DOS itself usually issues these calls; when
32BFA bypasses DOS, the network redirector calls are also bypassed.

But when 32BFA can’t bypass DOS (for example, if you’re using a

CD-ROM drive managed by MSCDEX under WfW 3.11), Windows
will see the network redirector calls generated by MS-DOS and pass

them back down to V86 mode.

The windows 95 Explorer and DOS

Calc, WinHelp, WordPad, and WinWord are all 16-bit Windows (Win 16)

applications. Because Microsoft seems to imply that Win32 applications

really and truly break all ties to the real-mode MS-DOS code, I also used

WV86TEST with the excellent Find File feature of the Windows 95

Explorer, which is a Win32 application (CAB32.EXE). I shut down every

other program except WV86TEST. The Soft-ICE/Windows (WINICE)
TASK command confirmed that nothing was running besides WV86-
TEST and the standard tasks that are always present in Windows 95:

: task

TaskName SS : S P StackTop StackBot StackLow TaskDB hQueue Events

BATMETER 0000:0000 00737000 00740000 IEEE 1EFF 0000
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CAB32 * 0000:0000 00756000 00760000 1296 207F 0000

TIMER 1307 : 1 F88 00B2 201C 201C 132F 12EF 0000

MSGSRV32 13EF: 327E 00E2 3314 3078 140F 16AF 0000

WV86TEST 27EF : 40F8 222E 4198 360A 0A87 1E6F 0000

KERNEL32 012F: 1218 0004FD50 0005FD4F 009F 16AF 0000

Of these, BATMETER, CAB32, and KERNEL 3 2 are Win32 tasks,

and MSGSRV32 and TIMER are hidden (windowless) Win 16 tasks that

Windows 95 loads automatically. MSGSRV32 is described in the file

MSGSRV32.EXE as the “Windows 32-bit VxD Message Server” and

“Microsoft Windows DOS386 WShell Server.” TIMER comes from

MMTASK.TSK (“Multimedia background task support module”).

With V86TEST and WV86TEST loaded, I used the Explorer’s file

finder (located on the Tools menu) to locate the *.C files on my hard disk

that contain the string “foo”.

There are 20 such files on my hard disk; to find them, the Explorer

must look through about 500 directories and read 840 .C files. WV86-
TEST showed how this furious level of activity looked to the real-mode

DOS component of Windows 95:

136 seconds elapsed

36 calls, 36 in V 86 node

0 INT 21/2F calls/second

1 0 P L=3 -- 36 calls

VM #1 -- 36 calls

INT 2 1 h calls:

1A: 2 2A : 3 2C: 3 44: 24 4E: 1 50: 1

INT 2 Fh calls:

11 : 2

Before we get upset that a Win32 application under Windows 95 is

still calling the ostensibly defunct real-mode DOS code (“Em not dead

yet!”), let’s first take a moment to note that, in fact, the results shown by

WV86TEST are excellent: for a massively disk-intensive operation, real-

mode DOS saw almost nothing. This is quite amazing.

Still, despite Microsoft’s propaganda, we can see that Chicago (at least

in this beta release) continues to use DOS to get the date and time, to

manipulate the PSP, and so on.

But there’s something interesting here: When the search is completed,

if you keep the file finder open on the desktop, do a WV86TEST
refresh, and then perform the search again, WV86TEST sees almost no

DOS activity:

INT 2 1 h calls:

2A : 2 2C : 2 50: 1
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Wow! And remember that one pair of function 2Ah and 2Ch calls

belongs to WV86TEST. Thus, once Explorer had loaded the file finder,

it took only three calls to real-mode DOS to look through 500 directo-

ries and open 840 files; all the other calls detected by WV86TEST must

have occurred when Explorer was loading the file finder.

Furthermore, it turns out that the function 2Ah and 2Ch calls have

nothing to do with finding files. Ifyou turn on the CAJB32 Show Clock

option, when CAB32’s TrayClockWClass window receives a

WM_TIMER message (which occurs once a minute), CAB 3 2 calls Get-

LocalTime. As we’ll see in Chapter 13 when we examine the Win32 ver-

sion of Clock, GetLocalTime generates function 2Ah and 2Ch calls that

are sent down to real-mode DOS.
What’s left, then, is a single function 50h (Set PSP) call while the

Explorer plowed through the *.C files on my hard disk.

This is just one single measly DOS call, but trying to uphold

Microsoft’s “you’ll never execute any MS-DOS code” claim in the face of

this call is like saying someone is “just a little bit pregnant.” In Windows

95, you will execute some real-mode MS-DOS code even ifyou stick to

Win32 applications.

rsrs and other DOS Data in windows 95

Set PSP is about as close to DOS as you can get. As I probably should

have explained earlier, the Program Segment Prefix (PSP) is a DOS data

structure whose handle serves as the DOS process ID (PID). The PSP
itself is a lOOh-byte structure (12Oh bytes in Windows 95) containing

per-application “state” such as the open file handle table and environ-

ment segment. Most file I/O operations in DOS must be performed in

the context of a particular PSP. MS-DOS has only one current PSP at

any given time; programs change it by calling INT 2 Ih function 50h. For

example, a DOS TSR that pops up while another program is running

must call function 50h to change DOS’s PSP before performing any file

I/O (see Undocumented DOS
,
2d ed., pp. 560-561).

It’s significant that each Win32 application running in Windows 95

has not only a process ID, one or more thread IDs, and a surrogate

Win 16 task ID but also a PSP. This is a genuine DOS PSP located in

conventional memory (though offset 2Ch does contain a protected-mode

selector to the environment segment).
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You can see this ifyou run the WINPSP program from Chapter 13

under Windows 95. There’s something a little unusual about that one

function 50h (Set PSP) call that V86TEST detected, though. To skip

ahead a bit, even though V86TEST sees this call being sent down to

real-mode DOS, the WSPY2
1
program, which hooks INT 2 lh on the

Windows side of the fence, doesn’t see anyone generating this call! Fig-

ure 12-3 shows what WSPY21 saw from CAB32, in its entirety, during

the two minutes it was grinding through my hard disk.

Computet.

Shyt Down.

My Computet

Dosprmpt

Files or Folders.

Network

Neighborhood

My Briefcase

File Edit View Options Help

Name & Location
j
Date Modified

Of type:

Advanced

All Files and Folders

Containing text: jfoo

file Help

<CAB32>
<CAB32>
<CAB32>
<CAB32>
<CAB32>
<CAB32>
<CAB32>
<CAB32>
<CAB32>
/'PrtD'JON

*(71)
(1ft)

(71)
*(71)
(44)
(44)
(44)
(42)
(42)

LFN ( 4E ) Find First
Set DTA O0A7 : 0080
LFN (3B) ChDir ‘\*

LFN ( A1 ) Find Close

C:\WINDOWS\cabinet.ini

IOCTL (09)
IOCTL (08)
IOCTL ( 0E

)

Lseek2 732
LseekO 732
Read 732 (02DCh),
Close 732 (02DCh)

Is Dro Remote? 3 (03h)
Is Dru Remoueable? 3 (03h)
Get Log Dru Map 3 (03h)
00000009
00000000

0 ( 0000h)

Interrupt Sp...| ^ Find: Files named co.

Figure 12-3: WSPY21 shows the INT 21h calls from the Chicago shell that are passed

through the Winl6 KERNEL.

WSPY2 1 sees INT 2 lh calls generated only in a Windows executable

or by a Windows DLL on behalf of a Win 16 or Win32 executable. If a

VxD generates an INT 2 lh on behalf of a Win 16 or Win32 executable,

WSPY2 1 won’t see it. This is what happened with the function 50h (Set

PSP) call.

The DOSMGR VxD is generating the Set PSP call on CAB32’s

behalf. Some background information is required to understand why.

Windows Enhanced mode has always given each VM its own separate

instance data copy of the DOS Swappable Data Area (SDA), which

among other things contains DOS’s current PSP variable. (See “DOS
Instance Data and the SDA” in Chapter 4.) Thus, even though real-mode

DOS is a single-tasking operating system with the notion of only a single
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current PSP, the miracle of instance data gives each VM its own version

of the current PSP
However, multiple Windows applications, each with their own PSP,

all run within the single System VM, and thus all share the single

instance data copy of the DOS current PSP variable in the SDA. The sin-

gle current PSP variable in the System VM is multiplexed among all

Win 16 and Win32 tasks. Instance data works only on a per-VM basis and

so provides no assistance to the multitasking that goes on within the Sys-

tem VM. This is typical of the separation between Windows’ upper API

layer and its lower VxD layer.

In Windows 95, the DOSMGR VxD’s handler for protected-mode

INT 2 Ih calls does something new: If a protected-mode program is call-

ing INT 2 lh from the System VM, DOSMGR checks if the caller has a

different PSP from the previous caller. If it does, DOSMGR takes what-

ever INT 2 lh call the Windows application wanted to make and tem-

porarily turns it into a function 5Oh Set PSP call! When this returns,

DOSMGR switches back to the original INT 2 lh call and lets it go

through. In this way, DOSMGR ensures that the INT 2 lh call is lined up

with the correct PSP. The code is fairly interesting:

CALL [Si mul ate_I ret]

MOVZX EAX, BYTE PTR [ EBP . Cl i ent_AH]

CMP EAX, +71 ; max INT 2 1 h function number

JA Too_Hi gh

MOVZX EDX , [XI at_Scri pt_Type+EAX]

MOV EDX , [ X 1 a t_Sc r
i
pt_Tab+4*EDX]

CMP E B X , [ Sy s_VM__H a nd 1 e ] ; INT 2 1 h coming from System VM?

JNZ Do_Xl at ; No: nothing special for prot-mode apps in DOS box

XOR ECX.ECX

CALL [Begi n_Cri ti cal _Sect i on]

PUSH EAX

PUSH ECX

PUSH EDX

MOVZX ECX, WORD PTR [Prev_PSP]

JECXZ PSP_0kay ; first time through: don't have to swi tch

MOV EDX , [Ptr_Thi s_PSP]

MOV DX , [EDX]

CMP CX.DX : same PSP as last ti me?

JZ PS P_0 kay

;;; Previous PM INT 2 1 h caller in System VM (Win app) had

different PSP. So have to switch PSPs.

Swi tch_PSPs

:

MOV EAX, 00005000 : Set PSP (21/50)

XCHG EAX, [EBP. Cl ient_AX] ;
temp change call into 21/50

XCHG EDX , [EBP . Cl i ent_BX] ;
put new PSP into BX

CALL Nes ted_V86_I NT2 1 ;
call DOS! (see below)
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XCHG EDX , [EBP . Cl i ent_BX] ; get back original EBX

MOV [ P re v_PS P ] , DX ; for next tine

MOV [EBP . Cl i ent_E AX ] , EAX ; restore original 21/XX

PSP_0kay

:

9 at this point, PSP is

» • • •

CALL [ V86MMG R_X 1 a t_A PI]

9 • • •

JMP [End_Cri ti cal _Sect i on]

Do_Xl at:

JMP [ V86MMG R_X 1 a t_A PI]

T oo_H i g h

:

MOV EDX . C02C0F70

JMP C022016D

Nested_V86_JNT21:

PUSH m > X

CALL [Begi n_Nest_V86_Exec]

MOV EAX ,00000021

CALL [Exec_Int]

CALL [End_Nest_Exec]

POP m > X

RET

In Windows 3.x, the KRNL386 Win 16 DLL had to do something

similar to keep INT 2 lh calls from Win 16 applications from accidentally

misusing the PSP of other Win 16 applications. KERNEL has its own
protected-mode INT 2 1 h handler, which issues a NoHookDOSCall of

function 5Oh during the first INT 2 lh call following a task switch (see

Undocumented Windows, pp. 346-347). Why doesn’t KERNEL just switch

PSPs whenever it switches tasks? Matt Pietrek has a good explanation in

Windows Internals (p. 422):

RescheduleQ now turns to the task of waking up the incoming task.... Note however

that INT 21h function 50h is not invoked to switch what DOS thinks is the current

PSP.... Since Windows relies so heavily on the PSP and DOS for file I/O [this was
written before WfW 3.11], you might think that it would call DOS to change the cur-

rent PSP each time a task switch happens. As it turns out, KERNEL delays switching

the PSP until it absolutely has to, such as during a file I/O operation. Switching the

PSP requires a transition to DOS, a relatively slow process. If the only reason for a

particular task switch is to deal with an intertask SendMessageQ, it would get expen-

sive. Thus, KERNEL holds out switching the current PSP until it’s unavoidable. This

causes problems on occasion, as the current PSP in DOS may not match the current

TDB in Windows.

So this mechanism has been in place for years as part of KERNEL.
Why then does Windows 95 include PSP tracking in DOSMGR instead

of just continuing to use the KERNEL code? Because Win32 programs

in Windows 95 don’t go through KERNEL’S INT 2 lh handler. Win32
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applications can’t issue direct INT 2 lh calls and must instead ask the

VWXN32 VxD to issue INT 2 lh for them (see “Win32 File Handles and

Thunking” and the WIN32PSP.C example in Chapter 14). Thus the PSP
tracking must be located in a VxD.

This PSP-tracking code inside DOSMGR probably explains why
WV86TEST sees Windows 95 making heavier use than WfW 3.11 of

the Set PSP call. On the other hand, it’s important to realize that DOS-
MGR does not switch PSPs for every single INT 2 lh call. It does this

only for those INT 2 lh calls that will be sent down to real-mode DOS.
That is not a deliberate decision that DOSMGR makes, however. By the

time DOSMGR sees an INT 2 lh call, that call will be sent down to real-

mode DOS. The reason for this is simple: IFSMgr hooks the V86 INT
2 lh hook chain after DOSMGR, and therefore sees INT 2 lh calls before

DOSMGR. When IFSMgr decides to handle a call in protected mode, its

INT 2 lh handler clears the carry flag (CLC) before returning to VMM.
As explained in the DDK documentation for Hook_V86_Int_Chain,

when a VxD’s V86 interrupt hook clears the carry flag, VMM won’t pass

the interrupt to any other VxDs:

If the hook procedure services the interrupt, it must clear the carry flag to prevent

the system from passing the interrupt to the next hook procedure.

Thus, when IFSMgr decides to handle a call in protected mode, it not

only keeps the call away from real-mode DOS but also keeps the call

away from any VxDs that installed INT 2 lh handlers before IFSMgr did.

In fact, 32BFA’s consumption of INT 2 lh calls in protected mode and its

failure to reflect INT 2 lh calls to real-mode DOS are really just inciden-

tal by-products of IFSMgr’s decision not to pass these INT 2 1 h calls onto

previously loaded VxDs, such as DOSMGR and VMM, that would

reflect the call to real-mode DOS.
Because IFSMgr will have already picked off all INT 2 lh calls that it

intends to service in protected mode, DOSMGR will only do its Set PSP

switcheroo for those INT 2 lh calls that are going down to DOS. In this

case, IFSMgr’s blockage ofINT 2 lh calls from other VxDs works out

well. In other cases, it has produced unintended consequences.

For example, DOSMGR’s INT 2 lh hook also tracks DOS file I/O

calls to support the FileSysChange feature in Windows. If FileSys-

Change=ON in SYSTEM.INI, DOSMGR broadcasts notifications of file

and directory creation, deletion, and so on to the Windows File Manager,

or to any other program that has called the FileCdr function (see Undocu-

mented Windows
,
Chapter 4, and WM_FILESYSCHANGE in Chapter 6).
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But there’s one problem: If 32BFA is enabled, the FileSysChange=ON set-

ting has no effect because IFSMgr doesn’t pass the relevant INT 2 lh calls

along to the VxDs (such as DOSMGR) that called FIook_V86_Int_Chain

before it. The order ofVxDs in the V86 interrupt hook chain can make an

enormous difference. (It’s just like the load-order dependency of DOS
TSRs in the early 1980s.) IFSMgr’s preemption of FileSysChange is just

one of the unintended effects of 32BFA. And 32BFA in turn really is just a

side-effect of the ability Hook_V86_Int_Chain functions have to refuse

previously-loaded VxDs the right to see interrupts.

But back to the topic of PSPs. Windows 95 has additional mecha-

nisms for manipulating the PSP. Since DOS’s implementation of the Get

and Set PSP functions are so simple (see Undocumented DOS
,
2d ed., pp.

287-288), and since it’s easy to manipulate DOS variables from a VxD
(see CURRDRIV.386 in Chapter 8), it isn’t surprising thatVMM in

Windows 95 provides a Get_Set_Real_DOS_PSP service:

Input

:

AX = PSP (if setting)

ECX = 0 (Get PSP), 1 (Set PSP)

EBX = VM handle

VMMcall Get_Set_Real_DOS_PSP

Output

:

(EDX destroyed)

AX = PSP (if getting)

Although undocumented, this service is heavily used by the VWIN32
VxD. VWIN32 calls VMM’s Call_When_Task_Switched service, passing

it the address of a function. WheneverVMM switches tasks, it then calls

this VWIN32 function, which switches PSPs:

CAL L_W H E N_TA S K_S W I T C H E D_ P R 0 C : ;; VWIN32+936

xor ecx, ecx

VMMcall Get_Sys_VM_Handl e ;; loader turns into mov ebx, [SysVMHandl e]

!

VMMcall Get_Set_Real_DOS_PSP

mov [esi+56h], ax

mov ax, word ptr [ edx+56 h

]

mov ecx, 1

VMMcall Ge t_Sy s_VM_H a n d 1 e ;; loader turns into mov ebx, [SysVMHandl e]

!

VMMcall Get_Set_Real_DOS_PSP

» • • •

VMMcall ContextSwi tch ;; loads CR3 (Page Directory Base register)

Get_Set_Real_DOS_PSP doesn’t directly manipulate DOS’s current-

PSP variable, which is located at offset lOh in the SDA. Instead, it

manipulates the VM’s instance data copy of the SDA. When the VM is

next switched in, VMM’s page-fault handler copies this instance data—
including the current-PSP variable — into low DOS memory. When
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Windows 95 swaps contexts, it must keep DOS informed. The DOS
SDA was designed for just this sort of thing: building a multitasking

operating system on top of a thin layer of single-tasking DOS. As

explained in the “DOS Instance Data and the SDA” section of Chapter 4,

the DOS SDA and Windows instance data go hand-in-hand.

With Get_Set_Real_DOS_PSP, VMM is supplying 3 2 -bit protected-

mode code to indirectly manipulate DOS data. Such manipulation of

real-mode DOS data from 3 2 -bit VxD code is a frequent occurrence in

Windows 95. For example, during initialization, the Windows 95 IFS-

Mgr creates protected-mode pointers to several key DOS internal data

structures, including the SDA and SysVars (also known as the “List of

Lists”). It is worth examining this grungy undocumented DOS code:

;;; fragment of Windows 95 IFSMgr initialization

;;; Use INT 21 h func 34 h (Get I n DOS flag) to get linear address

; ; ; of DOS SDA. LIN_SDA used all over IFSMgr!

50436

5043A

mov byte ptr [ebp.Clien t_A H ] , 3 4

h

mov eax,21h

5043F VMMcall Exec_Int ;; Call INT 21h func 24h (Get InDOS Flag)

50445 movzx ecx,word ptr [ebp.Cl ient_ES]

50449 movzx eax,word ptr [ebp.Clien t_B X

]

5044D dec eax ; ;
InDOS ptr - 1 = SDA ptr

!

5044E shl ecx,4 ;; ECX = InDOS seg << 4 = linear addr DOS data

50451 add eax.ecx ;; linear addr = (seg << 4) + ofs

50453 mov LIN_SDA,eax ;; linear SDA (at IFSMgr 39 D8h

)

Now add linear addr DOS data onto some hard-wired offsets

(See Undocumented DOS, 2d ed., pp. 730-733)

Note that SDA is at DOS+320

h

50458 add dword ptr CURR_SFT_PTR,ecx ; ( 39 DC h = 5 9 E h

)

SDA+27E

5045E add dword ptr SHARE_N ET_PSP_PTR , ecx ; ( 3 9 E0 h = 33Ch) SDA+1C

50464 add dword ptr FFIRST_SEARCH_ATTR_PTR,ecx ; (39E4 = 5 6 B h

)

SDA+24B

i

;;; Get pointer to DOS SysVars ("List of Lists") using

;;; undocumented INT 21 h function 5 2

h

5046A mov byte ptr [ebp.Clien t_A H ] , 5 2

h

5046E mov eax,21h

50473 VMMcall Exec_Int

50479 movzx ecx, word ptr [ebp.Cl ient_ES]

5047D movzx eax, word ptr [ebp.Cl ient_BX]

50481 shl ecx,

4

50484 add eax.ecx ;; linear addr = (seg << 4) + ofs

50486 mov LI N_S Y S V A RS , eax

;;; Get pointer to DOS's counter for number of System FCBs

5048B movzx ecx, word ptr [eax+lAh] ;; SYSVARS+lAh = FCB table seg

5048F cmp cx,0FFFFh

50493 je short N0_FCB_TAB

50495 movzx eax, word ptr [eax+lCh] ;; SYSVARS+lCh = FCB table ofs

50499 shl eax,

4
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5049C add eax.ecx ;; EAX = linear addr DOS System FOB table

5049E movzx eax,word ptr [eax+4] ;; FOB table +4 = # files

504A2 mov D0S_FC B_C0U NT , eax

IFSMgr is using the VMM Exec_Int service to issue an INT 2 Ih

function 34h, which returns a pointer to the InDOS flag. This function,

crucial for TSR programming, was undocumented until DOS 5.0. Here,

IFSMgr is not especially interested in the InDOS flag. Instead, it’s rely-

ing on the fact that the InDOS flag is located at offset 1 in the SDA. This

is an undocumented way to use a documented function (Get InDOS
Pointer) to access the SDA, rather than to use the undocumented func-

tion 5D06 (Get SDA), which was designed for this purpose. As seen in

the preceding code, IFSMgr gets a real-mode pointer to the InDOS flag,

backs up one byte, and then, using the standard formula (linear address =

(segment * 16) + offset), converts this into a flat, linear, 3 2 -bit, protected-

mode pointer to the SDA.

IFSMgr also takes the segment that function 34h returns in ES, multi-

plies this by 16, and adds the resulting linear address onto a number of

variables. These variables already contain hard-wired offsets into the

DOS data segment. For example, IFSMgr relies on the fact that

SHARE_NET_PSP is at offset 33Ch in the DOS data segment and

doesn’t care that this is offset ICh in the SDA (which starts at offset 3 2 Oh

in the DOS data segment). Because the InDOS flag is located in the

DOS data segment, adding the linear address onto these hard-wired off-

sets produces protected-mode pointers to yet more DOS internal data.

Next, IFSMgr gets a linear pointer to both the SysVars internal DOS
data structure and to DOS’s count of System FCBs.

Having set up LIN_SDA and the other 3 2 -bit protected-mode point-

ers to the real-mode DOS data, IFSMgr is now ready to access the DOS
data segment whenever it feels like it. These variables are used constantly

throughout IFSMgr.

It’s easy to see this with the WINICE debugger. WTNICE lets you set

breakpoints on code execution (using the BPX command), interrupts

(BPINT command), I/O port access (BPIO command), and Windows
WM_XXX message traffic (BMSG command). It also lets you set a break-

point that will be triggered just after a memory location or range of mem-
ory locations is read or written to (BPM and BPR commands). WINICE
uses the 386 debug registers, so these data breakpoints don’t slow down
the system (much).

In Windows 95 on my machine, INT 2 lh function 34h returns

00A0:032 1, so the SDA is located at 00A0:0320, and IFSMgr’s LIN_SDA
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variable therefore has the value (OOAOh * lOh) + (32 lh - 1) = AOOh + 320h
= D20h. To set a breakpoint on any access to the first 2Oh bytes of the

SDA, I used the following WINICE command:

BPR D20 D40 RW

This breakpoint is hit constantly in Windows 95, even when running

only Win32 applications such as the Explorer and not running any DOS
boxes or Win 16 tasks (other than the built-in TIMER and MSGSRV32
Win 16 tasks, that is). For example:

Break Due to BPR #0030 : 00000D22 #0030 : 00000D28 RW C=01

:? ecx

00000D20

: u C025B09C

0028 : C025B09C MOV BYTE PTR [ECX+03] ,00

0028 : C025B0A0 MOV WORD PTR [ECX+04] ,0000

0028: C025B0A6 MOV BYTE PTR [ ECX+07 ] , 00

0028 : C025B0AA MOV BYTE PTR [ECX+06] ,00

0028 : C025B0AE MOVSX EAX . WORD PTR [EAX+1A]

A few instructions before the breakpoint was hit, IFSMgr had loaded

ECX with DWORD PTR [LIN_SDA]. Ifyou consult a listing of the

SDA’s contents (such as Undocumented DOS
,
2d ed., pp. 730-733), you’ll

see that SDA offset lAh in the last line of the WINICE disassembly

holds the value ofAX on a call to INT 2 lh, and that offsets 3, 4, 6, and 7

in the previous lines all hold DOS error information. In its capacity as

protected-mode DOS, IFSMgr is setting these values to 0 to indicate that

no error has occurred:

SDA+3 BYTE Locus of last error

SDA+4 WORD Extended error code of last error

SDA+6 BYTE Suggested action for last error

SDA+7 BYTE Class of last error

Elsewhere in IFSMgr there is code to fill these SDA values with error

information:

:u c025b07c

0028 : C025B07C MOV WORD PTR [ECX+04], 00EA ; extended error

0028 : C025B082 MOV BYTE PTR [ECX+03], 03 : locus

0028 : C025B086 MOV BYTE PTR [ECX+07], 02 : class

0028 : C025B08A MOV BYTE PTR [ECX+06], 01 ; suggested action

As another example, IFSMgr also uses LIN_SDA to set and clear the

InDOS flag:

::: I FSMg r+5 E0

0028 : C007363C MOV EAX. [C0076A34] ;; LIN_SDA
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0028 : C0073641 INC BYTE PTR [EAX+01] ;; I n D0S++

: ; ; I FSMgr+7F0

0028 : C007384C MOV EAX , [C0076A34] LI N_SDA

0028 : C0073851 SUB BYTE PTR [EAX+01] ,01
: ; ; I n DOS - -

0028 : C0073855 ADC BYTE PTR [EAX+01], 00

Well, Microsoft said “you’ll never execute any MS-DOS code” in

Windows 95; it didn’t say anything about never touching any DOS data.

We’ve just seen that you’ll do that too.

CAB 3
2

’s single Set PSP call revealed that even Win32 applications in

Windows 95 end up partying with DOS. Nonetheless, I hope that you’re

impressed with CAB 3 2 ’s capability to scrounge through my entire hard

disk while sending only a single INT 2 lh call down to real-mode DOS.
Once again, it’s also important to see that this capability isn’t new.

CAB 3 2 won’t run under WfW 3.11, but File Manager has a somewhat

similar File Search feature. It won’t search for the string “foo” but it will

find all 840 C files among the 500 directories on my hard disk. When I

did this under WfW 3.11 with 32BFA enabled, WV86TEST logged the

following results:

35 seconds elapsed

INT 21 h calls:

2A : 2 2C : 2 50:2

By performing the same operation under WfW 3.11 without 32BFA
(WIN /D:C), we can see which DOS calls 32BFA must be handling

entirely in protected mode. Not surprisingly, File Search consists mostly

of calls to functions lAh (Set Disk Transfer Area [DTA]), 4Eh (Find

First), and 4Fh (Find Next):

55 seconds elapsed

11: 1 1A: 1317 2A: 2 2C: 2 3F: 5 42: 4 47: 1

4E : 988 4F: 12590 50:2

The difference between 35 and 55 seconds, with and without 32BFA,

shows that 32BFA can make it practical to frequently use a feature such as

File Search. Even with a 2MB SmartDrv installed but no 32BFA, the

same operation took 43 seconds (your mileage will vary). Handling all

those DOS calls in protected mode improves performance enormously.

Still, this isn’t a fair comparison with CAB 3 2 under Windows 95,

since File Manager won’t search for strings in files. However, WinWord
has a Find File feature that can be used in WfW 3.11 to find all C files

with the string “foo”, just as I did with CAB 3 2 under Windows 95.
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Here’s how this looked to WV86TEST:

141 seconds

INT 21 h calls:

2A : 857 2C: 857 50: 1 57: 160

See? There’s nothing special about Windows 95 ’s capability to bypass

DOS for most operations. That’s just standard fare when you have VxDs
handling INT 2 lh calls. True, a lot of WinWord’s Get date/time calls to

functions 2Ah and 2Ch and Get file date/time/attributes calls to function

57h are being sent down to real-mode DOS. But this is still remarkably

little contact with DOS; as usual, we can see just how remarkably little by

performing the same operation under WfW 3.11 without 32BFA (WIN/
D:C):

208 seconds elapsed

INT

1A:

2 1 h calls:

14427 2A

:

858 2C : 858 3D: 1689 3E : 1689 3F : 2013

40: 10 42: 4221 44: 6402 47: 160 4E : 2123 4F : 12304

50: 1 57: 1849

With 32BFA enabled, almost all of these thousands ofINT 2 lh calls

bypassed real-mode DOS, thereby reducing the running time by 32 per-

cent (208 - 141 = 67 /208 = 32).

To finish up this experiment, we can now take these Win 16 applica-

tions and run them under Windows 95. Frankly, the results are positively

bizarre, and I hope they are just an aberration of the beta version of

Chicago I’m using.

Recall that WinFile’s File Search took 35 seconds to locate all the C
files on my hard disk and used only a few calls to functions 2Ah, 2Ch, and

50h. In contrast, here’s what happened when I did same thing with Win-

File under Chicago:

60 seconds elapsed

INT 21 h calls:

2A : 2 2C : 2 4F: 12591 50: 4

Weird! We saw that 32BFA in WfW 3.11 could handle function 4Fh

in protected mode. Why is Chicago passing all those Find Next (function

4Fh) calls down to real-mode DOS? Whatever the reason, the end result

is that the elapsed time is nearly identical to that for WfW 3.11 without

32BFA.

Using WinWord’s file finder produces similar results in Chicago.

Although locating all the C files with the string “foo” took 141 seconds in
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WfW 3.11 with 32BFA (and 136 seconds when using CAB 3 2 in

Chicago), the time needed to perform this same WinWord operation

under Chicago was almost as bad as under WfW 3.11 without 32BFA :

180 seconds elapsed

1A: 12306 2A : 860 2C: 860 4F: 12306 50: 9 57: 160

There’s definitely something very odd in how this beta version of

Chicago (May 1994) handles functions lAh (Set DTA) and 4Fh (Find

Next). Nor is this confined to Win 16 applications. Using V86TEST
-VERBOSE -QUERY, I checked on how DIR V.C /S behaves under

Chicago. On my hard disk, it took 66 seconds and sent 39,323 function

4Fh calls down to DOS. In contrast, the same operation under WfW
3.11 with 32BFA took only 38 seconds and sent no function 4Fh calls

down to DOS.
Even with our earlier knowledge that Windows 95 passes some INT

2 lh calls down to DOS, there’s something wrong here. Certainly, func-

tion 4Fh is an odd call because the DTA is an implicit parameter and

because until Windows 95 there wasn’t a Find Close function. (In Win-

dows 95, it’s INT 2 lh function 71Alh.) But 32BFAin WfW 3.11 man-

aged to avoid passing function 4Fh calls down to DOS. In Windows 95,

passing all these calls down to DOS significantly hurts performance.

Win32 FindMie is mi 2ih Function mfd
No doubt this Find Next performance problem will be fixed by the time

you read this. But it still raises an interesting question: Why didn’t we see

this same performance problem when digging through the hard disk from

a Win32 application? Recall that CAB 3 2 performed the same operation

(find *.C with “foo”) in 136 seconds with no Find Next calls sent down to

real-mode DOS; it took 16-bit WinWord running under Windows 95

180 seconds with a whopping 12,306 real-mode Find Next calls and an

equal number of Set DTA calls.

That’s the magic of 3 2 -bit code, right? Not! The performance differ-

ence here has little or nothing to do with the bit orientation of the appli-

cation. It has to do with the API.

The CAB 3 2 file finder’s main loop calls the FindFirstFileA, Find-

NextFileA, and FindClose Win32 API functions; the trailing// indicates

that these functions work with ASCII (that is, non-Unicode) strings:



Chapter 12: Exploring with WV86TEST

^define MAX_PATH 260

typedef struct _WIN32_FIND_DATAA {

DWORD dwFi 1 eAttri butes

;

FILETIME ftCreationTime, ftLastAccessTime
, ftLastWri teTi me

;

DWORD n F i 1 eSi zeHi gh , n F i 1 eSizeLow;

DWORD dwReservedO, dwReservedl;

CFIAR cFi 1 eName[MAX_PATH] , cAl ternateFi 1 eName [14]

;

} W I N 3 2__F I N D_DATAA , *PWIN32_FIND_DATAA, *LPWIN32_FIND_DATAA;

HANDLE WINAPI Fi ndFi rstFi 1 eA( LPCSTR 1 pFi 1 eName

,

LPW I N32_FI ND_DATAA 1 pFi ndFi 1 eData )

;

BOOL WINAPI FindNextFi 1 e A ( HANDLE hFindFile,

LPW I N32_F I ND_DATAA 1 pFi ndFi 1 eData )

;

BOOL WINAPI Fi ndCl ose( HANDLE hFindFile);

If you use a debugger such as Soft-ICE/Windows to place a break-

point on FindNextFileA, you can confirm that the file finder is constantly

hitting this function. (Actually, CAB 3 2 is calling the SHELL32 DEL,
which in turn is calling the FindNextFileA function in KERNEL32.)

If you peer inside FindNextFileA, you’ll see that it consists of some

parameter validation and a jump to an internal FindNextFileA function:

KERNEL321 FindNextFi 1 eA

; ... parameter validation ...

0137 : BFF82CE9 JMP BFF93D23 ; nonvalidation FindNextFileA

:u bf f93d23

0137 : BFF93D23 PUSH EBP

0137 : BFF93D24 MOV EBP , ESP

0137 : BFF93D26 PUSH EBX

0137 : BFF93D27 PUSH ESI

0137 : BFF93D28 PUSH EDI

0137 : BFF93D29 MOV EAX . 0000714F ; 7 1 4 Fh sound familiar?

0137 : BFF93D2E MOV EBX
,
[EBP+08]

0137 : BFF93D31 MOV EDI . [ EBP+0C]

0137 : BFF93D34 XOR ESI , ESI

0137 : BFF93D36 CALL BFF71E5F ;
where the action is

0137 : BFF93D3B JB BFF93D4D ; on error (not shown)

0137 : BFF93D3D MOV EAX , 00000001

0137 : BFF93D42 POP EDI

0137 : BFF93D43 POP ESI

0137 : BFF93D44 POP EBX

0137 : BFF93D45

0137 : BFF93D46

LEAVE

RET 08

Now, obviously the function at BFF71E5Fh must do all the actual

work of FindNextFileA. But this function is nothing more than

: u bf f 7 1 e 5

f

0137 : BFF71E5F PUSH ECX

0137 : BFF71 E60 PUSH EAX

0137 : BFF71E61 PUSH 002A0010
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0137 : BFF71E66 CALL KERNEL32 ! VxDCal 1

0

0137 : BFF71E6B RET

I don’t want to jump the gun on this VxDCallO 2A0010h code, which is

quite important and will be discussed in detail in Chapter 14. However,

if you look back at the code for FindNextFileA, you’ll notice that just

before it calls this VxDCall 2A0010h function, FindNextFileA does a

MOV EAX, 714Fh. This number ought to ring a bell.

As noted in Chapter 7, Windows 95 provides INT 2 lh long filename

(LFN) functions. These new functions use AH=71h, with AL equal to the

old short-filename INT 2 lh function number, if there is one. For exam-

ple, INT 2 lh function 39h is Create Directory, so INT 2 lh function

7 1 39h is the new LFN Create Directory function. Likewise, function

4Fh is Find Next File, so.714Fh (the number we see KERNEL3 2!Find-

NextFileA moving into AX) is the LFN Find Next File function.

There are also some entirely new functions, such as 71Alh (Find

Close) and 71A6h (Get File Info By Handle), and documented equiva-

lents (function 7160h, Get Full Path, and Get Short Path) for a previ-

ously undocumented DOS function (function 60h, TRUENAME). For a

good description of the INT 2 lh function 7 1 h interface, see Walter

Oney, “Unconstrained Filenames on the PC! Introducing Chicago’s Pro-

tected Mode Fat File System” (Microsoft Systems Journal, August 1994).

On learning of INT 2 1 h function 7 1 h, most programmers assume

that these must be DOS wrappers that Microsoft retrofitted around the

Win32 API functions. Microsoft’s MSDOS.DOC says that the INT 2 lh

functions “match the operations provided by the Win32 file management

functions.” It’s probably a small point, but the relationship between INT
2 1 h function 7 1 h and the Win32 API file-management functions works

the other way around: The Win32 functions are wrappers around INT
2 1 h function 7 1 h.

We saw a moment ago that FindNextFileA is nothing more than some

parameter validation, some error-handling code, and a VxDCallO

2A0010h with AX=714Fh. We’ll see in Chapter 14 that VxDCallO

2A0010h, via a long, circuitous route, eventually ends up at the following

code in the VWIN32 VxD:

C025250B MOV [ EDX+1C] , EAX ; ; ICh = Cl i ent_EAX

» • • •

C0252515 MOV EAX, 00000021

C025251A CALL [Exec_PM_Int]

As you might have guessed, VMM’s Exec_PM_Int service simulates

a protected-mode INT 2 1 h. Thus, FindNextFileA is actually a protected-

mode INT 2 1 h function 714Fh call.
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I hope I’ve explained that well enough that you can now see why
CAB32’s file finder doesn’t go down to the real-mode DOS Find Next

code: Even though the Win32 file-management APIs are just fancy wrap-

pers around INT 2 Ih calls, real-mode DOS — even DOS 7 in Windows
95 — doesn't know how to handle function 7lh.

When CAB32 and SHELL32 call FindNextFileA, and FindNextFileA

calls VxDCallO, and VxDCallO eventually calls some code in VWIN32
that calls Exec_PM_Int in VMM, VMM sends an INT 2 lh to the

protected-mode INT 2 lh chain and, if no one there fully handles the

call, to the V86 INT 2 lh hook chain. The IFSMgr VxD installs INT 2 lh

handlers on both these chains and will see the function 7 lh call. IFSMgr
is the provider of the LFN services in Windows 95 and handles function

7 lh in protected mode. It wouldn’t do IFSMgr any good to pass function

7 lh down to the real-mode DOS code, which doesn’t know anything

about long filenames.

The Win32 file-management APIs, then, are just wrappers around

IFSMgr services. To access these IFSMgr services, the KERNEL32 DLL
in Windows 95 issues (or, rather, uses VxDCallO to ask VWIN32 and

VMM to issue) INT 2 lh function 7 lh calls. These might be new DOS
functions, but they aren’t handled by real-mode DOS. IFSMgr not only

provides DOS file I/O in protected mode, but also extends the DOS
interface with new services.

This explains why neither DOS nor WV86TEST saw CAB 3
2

’s INT
2 lh calls: IFSMgr is a protected-mode extension to DOS that takes care

of these calls.

We can also now understand why WSPY2 1 doesn’t see CAB32 issuing

INT 2 lh function 714Fh on the Windows side of the fence: CAB 3 2 calls

KERNEL32, which uses VxDCallO to issue the INT 2 lh. To see these

calls, WSPY2 1 would need to hook VxDCallO. Although this would

make an interesting project (an exercise left for you to do in your abun-

dant spare time), it’s a lot easier to use the Soft-ICE/Windows debugger

to place a breakpoint on VxDCallO.

However, VxDCallO isn’t just for making INT 2 lh calls. As Chapter 14

explains, 2A0010h is just one service that VxDs provide to Win32 applica-

tions. A breakpoint on VxDCallO will see all sorts of other Win32 service

calls (for example, 2A002Eh, 2A0030h, 1001 lh, and 1001 3h) that we’re

not interested in right now.

A better solution is to put a breakpoint on the VWIN32 code shown

earlier:
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C025250B MOV [EDX+1C] , EAX ;; good place for breakpoint

> • • •

C0252515 MOV EAX, 00000021

C025251A CALL [Exec_PM_Int]

A debugger breakpoint placed here will see all sorts of INT 2 lh activ-

ity that’s hidden both from WSPY2 1 (because the INT 2 lh has been

issued from a VxD, below WSPY2 1, albeit on behalf of a Win32 applica-

tion running at more or less the same level as WSPY2 1) and from

WV86TEST (because the call isn’t sent down to real-mode DOS but is

instead consumed in IFSMgr, which we might as well realize is pro-

tected-mode DOS).

For example, while the Explorer file finder is looking for C files con-

taining the string “foo”, here are some of the INT 2 lh calls that show up

at C025250Bh in VWIN32. As shown in the table, you can trace back-

wards to see where these INT 2 lh calls are coming from.

INT 21h Function

3Eh (Close File)

3Fh (Read File)

714Eh (LFN Find First File)

714Fh (LFN Find Next File)

716Ch (LFN Create/Open File)

71Alh (Find Close)

71A7h (DOS Time To File Time)

Called from KERNEL323

CloseHandle, Jclose

_hread

FindFirstFileA

FindNextFileA

Jopen

FindClose

DosDateTimeToFileTime

I’m a little surprised that when Explorer locates a C file, it doesn’t use

memory-mapped file I/O to look for the string Too” (see Chapter 14).

It’s also helpful to put a breakpoint on IFSMgr’s handler for INT 2 lh

function 7 1 h because this lets us check not only Win32 programs but also

any Win 16 or DOS programs that are using the new LFN functions.

In the “Getting and Setting the Current Drive” section in Chapter 8,

I showed how to examine the INT 2 lh function tables in the WfW 3.11

version of IFSMgr. The same examination can be done on the Windows
95 version:

0028 : C0073E9C MOVZX ECX , BYTE PTR [EBP+1D]

0028 : C0073EA0 CMP CL. 72

» • • •

0028 : C0073ECF CALL [C0073CD4+4*ECX

]

C : \UNAUTHW\PROTTAB>prottab c0073cd4 72 4 i 21

C0257E3F i 21 004F
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» • * «

C0258164 i 21_0071

To track all function 7 lh calls, then, we could put a breakpoint on
C0258164h. But the best place to put the breakpoint is a few instructions

later, right after the following instruction, where the function 7 lh han-

dler is examining the subfunction number in the client’s AL register:

C025816B MOVZX EAX , BYTE PTR [EBP+1C] ;; Cl i ent_AL

Interestingly, IFSMgr turns all 2H7\xx calls into 2\/xx calls, with the

LFN bit enabled:

C025817A MOVZX EDI , AL

» * • •

C025818B MOV [EBP. Cl ient_AH] ,AL
: 21/71XX/BL = 21/XXBL

C025818E MOV AH , [EBP . Cl i ent_BL]

C0258191 MOV [EBP. Cl ient_AL] ,AH

C0258194 MOV CL , AL

» • • •

C0258197 OR ECX, 40000000 : turn on LFN bit

C02581B8 CMP EDI , 000000A0

C02581BE JB 1 ow_func

i_func:

C02581C0 CALL [C0257EC3+4*EDI

]

: table for func >= A0h

C02581C7 JMP done

func:

C02581C9 MOVZX EDI , CL

C02581CC CALL [C0073CD4+4*EDI

]

; back through table again

C02581D3 RET
-

Thus, IFSMgr will turn a function 714Fh call from CAB 3 2 into a

function 4Fh call with the LFN bit set. IFSMgr’s function 4Fh handler

checks this bit. If this bit is set, IFSMgr handles the call in protected

mode, and — in the current implementation— if the bit isn’t set, IFS-

Mgr sends the call down to real-mode DOS.
As noted earlier, a breakpoint on IFSMgr’s function 7 lh handler lets

us see who, besides Win32 applications, is calling the new LFN func-

tions. For example, the Win 16 _lopen function in KERNEL does the

following:

KERNEL! _1 open

:

0117: 000093E9 MOV AX.716C

0117 : 000093EC PUSHF

0117 : 000093 ED PUSH CS

0117: 000093EE CALL 7F38

The function at 01 1 7:7F3 8 that _lopen is calling is the basis for the

old Dos3Call API:
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:u dos3call

KERNEL ! D0S3CALL

0117 : 000081C3 PUSHF

0117: 000081C4 PUSH CS

0117: 000081C5 CALL 7F38

0117: 000081C8 RETF

When we examine the WSPY2 1 code later in this chapter, we’ll see

that the program not only hooks INT 2 1 h in protected mode but also uses

an undocumented function, GetSetKernelDOSProc (see Undocu-mented

Windows
, pp. 271-273), to hook this internal function used by Dos3Call.

Thus, WSPY2 1 will see LFN INT 2 lh calls that come from Win 16

KERNEL functions such as _lopen.

However, some of the Win 16 function 7 1 h calls seen by the break-

point at IFSMgr’s handler still aren’t visible to WSPY21. For example:
\

KERNEL! FINDNEXTFI LE

0127:00003276 MOV CX ,0000

0127:00003279 JMP 33D4

KERNEL! FI NDFI RSTFI LE

0127:00003270 MOV CX , 0010

0127 : 0000327 F JMP 33D4

These are Win 16 thunks to the Win32 file-management API and are

used, for example, by the Win 16 common dialogs (COMMDLG). Chap-

ter 14 discusses these Win 16 thunks in detail, but to finish our investiga-

tion of Find Next in Windows 95, we need to sneak a brief look here.

As we see, the Win 16 versions of FindNextFile and FindFirstFile just

move a magic number into CX and then jump to 01 27:3 3 D4. When
examining the code starting at 0127:3 3D4, there’s a chunk that Soft-

ICE/Windows doesn’t unassemble properly:

7E21F7BF

0127 : 000033EC 37

0127 : 000033ED 0100

0127 : 000033E6 66EA JMP BFF7 : 217E

AAA

ADD [BX+SILAX

This 66 EA is 3 2 -bit code on the Win 16 side of a thunk; EAh is the

opcode for JMP, and 66h is an override that turns it into a 48-bit far jump.

Executing this one instruction thunks up from the Win 1 6 KERNEL to

Win32 KERNEL32:

0127 : 000033E6 66EA7E21 F7BF3701 JMP 0137 : BFF7217E

0137 : BFF7217E IE

0137 : BFF7217F 57

PUSH

PUSH

DS

EDI

;
Use CX to index into table, etc.

0137 : BFF91 18A E88F12FEFF CALL KERNEL32 ! MapSLFi x
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0137 : BFF9118F 50 PUSH EAX

0137 : BFF91 190 FF731A PUSH DWORD PTR [ EBX+1A]

0137 : BFF91193 E88B2B0000 CALL BFF93D23

9 • • •

0137 : BFF91 1A1 E89B12FEFF CALL KERNEL32 ! UnMapSLFi xArray

That function BFF93D23h is the workhorse here. You might recall

that earlier we saw that FindNextFileA consisted of

KERNEL32 ! Fi ndNextFi 1 eA

; ... parameter val idati on ...

0137 : BFF82CE9 JMP BFF93D23

Thus, KERNELIFindNextFile thunks up to KERNEL3 2!FindNextFileA,

which, as we saw, in turn does an INT 2 lh function 714Fh via VxDCallO.

So, Explorer’s FindNextFileA calls don’t end up at real-mode DOS
because FindNextFileA calls function 714Fh, not function 4Fh. It’s not

clear why IFSMgr in Windows 95 is currently passing function 4Fh
down to real-mode DOS, but at any rate if a DOS or Win 16 program

called function 714Fh, either directly or via the FindNextFile thunk in

KERNEL, this wouldn’t turn into a real-mode DOS call.

There are several reasons why DOS or Win 16 applications might use

the LFN functions. One reason is to access files and directories with

long names. Another reason is that the new function 7 1 h calls are often

cleaner than their predecessors. For example, calling the LFN find

first/next functions no longer requires getting and setting the DTA. As

we saw earlier, IFSMgr internally accesses the DTA, along with all the

other real-mode DOS data structures that it accesses, but at least this

DTA usage is no longer in your face.

Performance is another reason to consider using the LFN functions.

I hope the poor performance we’ve seen with INT 2 lh function 4Fh is

just a pre-release aberration, but in general the LFN functions are attrac-

tive because they can't be passed down to real-mode DOS. (Unless some

third-party vendor decides to do an LFN TSR for DOS 7.)

To measure the performance of an LFN Find First/Next, in contrast

to an old-style Find First/Next, I’ve written a small DOS program that

can be compiled to use either the new or old functions. MYDIR.C (List-

ing 12-1) simply walks the entire disk with Find First/Next calls. If com-

piled with -DLFN, the program (which is then called LFNDIR) uses

functions 714Eh, 714Fh, and 71Alh. If compiled without the -DLFN
option, the program (which is then called DOSDIR) uses the C run-time

functions _dosJfmdfirst and _dos_fmdnext, which in turn generally call

functions lAh (Set DTA), 2Fh (Get DTA), 4Eh (Find First), and 4Fh

(Find Next).
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Listing 12-1: MYDIR.C

/*

MYDIR.C

bcc -edosdir.exe mydir.c

bcc - DLFN -elfndir.exe mydir.c

*/

#i ncl ude <s td 1 i b . h>

//include <stdio.h>

//include <string.h>

//include <ctype.h>

//include <io.h>

#i ncl ude <f cntl . h>

//include <share.h>

//include <dos.h>

//include <time.h>

typedef unsigned char BYTE;

typedef unsigned short WORD;

typedef unsigned long DWORD;

typedef unsigned short HANDLE;

typedef int BOOL;

//ifdef LFN

//define MAX_PATH 260

typedef struct {

DWORD dwLowDateTime , dwHighDateTime;

} FILETIME;

// changed some field names so can use WIN32_FIND_DATA instead of find_t,

// without ifdef LFN all over the place

typedef struct {

DWORD attrib;

FILETIME ftCreationTime, ftLastAccessTime, ftLastWri teTime

;

DWORD n Fi 1 eSi zeHi gh , n Fi 1 eSi zeLow

;

DWORD dwReservedO, dwReservedl;

BYTE name[MAX_PATH] , cAl ternateFi 1 eName[ 14]

;

} W I N32_F I ND_DAT A

;

//define DATET I ME_D0S 1

HANDLE FindFi rstFi 1 e(char far *Name, WIN32_FIND_DATA far ^Result,

WORD Attributes, WORD DateTimeFormat)

{

HANDLE Handle;

WORD Conversi onCode ; // not used

_asm {

push si

push di

push ds

mov ax, 714Eh // Find First File
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mov cx. Attri butes // file attributes

Ids dx, dword ptr Name

1 es di

,

dword ptr Result

mov si

,

DateTimeFormat // format for returned date and time

i nt 2 1 h

pop ds

pop di

pop si

jc error

mov [Handle], ax // search handle for Find Next, Close

mov [Conversi onCode] , cx // UNICODE to OEM/ANSI conversion ok?

return Handle;

error:

return 0;

BOOL Pi ndNextFi 1 e ( HANDLE Handle, W I N32_F I ND_DATA far *Result,

WORD DateTimeFormat)

{

WORD Conversi onCode ; // not used

_asm {

push si

push di

push ds

mov ax, 714Fh // Find Next File

mov bx. Handle // search handle from Find First

1 es di , dword ptr Result

mov si, DateTimeFormat // format for returned date and time

int 2 1

h

pop ds

pop di

pop si

jc error

mov [Conversi onCode] , cx // UNICODE to OEM/ANSI conversion ok?

}

return 1;

error;

return 0;

BOOL Fi ndCl ose( HANDLE Handle)

{

_asm {

mov ax, 7 1 A1 h // Find Close

mov bx, Handle // search handle from Find First

int 2 1

h

jc error

1

return 1;

error

:

return 0;

#endi

f
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//i fdef LFN

//define FIN D_DAT

A

//el se

//define FIN D_DAT

A

//endi f

W I N32_F I N D_DAT A

struct find t

void fail (const char *s) { puts ( s ) ; exit(l); }

void do_f i 1 ename( i nt dirpos, const char *dir, FIN D_DATA *pinfo);

void do_di rectory/ i nt dirpos, const char *s);

static char di rname[2048] = {0};

static unsigned long ffirst = 0, fnext = 0;

//define PRINT_IT 0 // can turn on to print filenames

main(int argc, char *argv[])

{

clock_t cl, c2;

cl = cl ock( )

;

do_di rectory (0 , (argc < 2) ? "C:" : a rg v [ 1 ] )

;

c2 = cl ock( )

;

pri ntf
(

"Fi nd Fi rst calls:

printfC'Find Next calls:

pri ntf
(

"Cl ocks

:

printf( "Cal 1 s/Cl ock:

return 0;

void do_di rectory ( i nt dirpos, const char *s)

{

struct fin d_t info;

i nt prev_dirpos;

char *s2 = (char *) mal 1 oc ( 2048 )

;

if (! s 2 ) fail ("Insufficient memory");

if ( (prev_di rpos = dirpos) == 0)

strcpy(di rname , s);

el se

(

strcat(di rname, "\\");

s treat ( di rname , s);

}

dirpos = strl en(di rname)

;

strcpy(s2, dirname);

strcat(s2, "\\*.*");

//define ATTRIB (_A_N0RMAL I _A_SUBDIR I _A_RD0NLY

)

%lu\n", ffirst);

%lu\n", fnext);

%lu\n", c2 - cl);

%lu\n", (ffirst + fnext) / (c2 - cl))
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#i fdef LFN

{

HANDLE h;

FIN D_DAT A info;

f f i rst++;

if ((h = Fi ndFi rstFi 1 e( s2 , &info, ATTRIB, DATET I ME_D0S ) )
== 0)

return

;

do_f i 1 ename(di rpos , dirname, & i n f o )

;

while ( Fi ndNextFi 1 e( h , &info, DATET I ME_D0S )

)

{

fnext++;

do_fi 1 ename(di rpos , dirname, &info);

}

FindClose(h)

;

}

#el se

ff i rst++;

if (_dos_findfi rst(s2, ATTRIB, &i nfo) != 0)

return

;

do_.fi 1 ename(di rpos , dirname, & i n f o )

;

while (_dos_findnext(&info) == 0)

{

fnext++;

do_f i 1 ename(di rpos , dirname, &i nfo )

;

}

#endi

f

di rname[prev_di rpos] = ' \0
'

;

f ree( s2 )

;

void do_fi 1 enamel i nt dirpos, const char *dir, FIN D_DAT A *pinfo)

{

if (pinfo-)attri b & FA_D I REC

)

{

if (pi nfo->name[0] != '
.

'

)

do_di rectory(di rpos
,

pi nfo->name)

;

}

else if ( PRINT_IT)

pri ntf
(

"%s\\%s\n" , dir, pi nfo->name)

;

}

I used DOSDIR and LFNDIR to test all the standard environments.

(The functions used by LFNDIR are available only in Windows 95.) In

all cases, the program logged 494 Find First Calls (I didn’t create any new
subdirectories while running the tests) and between 1 1,3 1 1 and 1 1,3 19

Find Next calls (I must have created a few new files during the test). For

each environment, I ran the programs twice to include any cache effect.

Table 12-2 summarizes the results of this test. The Clocks column

shows the time (in standard 5 5 millisecond clocks) for each run, plus the

combined time for the two runs.
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Table 12-2: Walking a Directory Structure

Configuration Clocks Calls/Clock Seconds

Real-mode MS-DOS 659+654=1313 17 72

SmartDrv 548+513=1061 21 58

WfW 3.11 32BFA 538+82=620 36 34

Chicago DOSDIR 953+409=1362 17 74

Chicago LFNDIR 699+216=915 24 50

Just to be compulsive, I used V86TEST to see what real-mode DOS
activity LFNDIR was generating in Windows 95. There was almost no

such activity, showing once again that even real-mode DOS programs

don’t necessarily require real-mode DOS:

VM #2 -- 121 calls

INT 2 1 h calls:

19: 5 1A: 2 25: 16 29: 6 2A: 1 2C: 1 30: 2 35: 8 38: 2

3E : 30 40: 10 44: 3 48: 4 49: 2 4A: 2 4B: 2 4C: 2 4D: 2

In contrast, DOSDIR hits DOS plenty of times under Windows 95:

VM #2 -- 48879 calls

INT 2 1 h cal Is:

19: 5 1A: 24628 25: 16 29: 6 2A

:

1 2C

:

1 2F

:

12313 30: 2

35: 8 38: 2 3E

:

30 40: 10 44: 3 48: 4 49: 2 4A : 2 4B

:

2

4C

:

2 4D

:

2 4F

:

11819

Since DOSDIR and LFNDIR are essentially the same program, the

difference between 74 seconds for DOSDIR and 50 seconds for

LFNDIR gives some idea of the true cost of a real-mode DOS call. Or
perhaps this is just Microsoft’s subtle way of getting programmers to use

Win32 or the new DOS LFN services.

At the same time, WfW 3.11 comes out as the clear winner here:

DOSDIR ran significantly faster under WfW’s 32BFA than even

LFNDIR did under Chicago’s. Of course, it’s important to remember

that Chicago is still in beta and that the final Windows 95 may well per-

form better than this.

Still, even this beta aberration tells us something: The idea that Win-

dows 95 “breaks all ties with the real-mode MS-DOS code” is almost

meaningless, because breaking ties with MS-DOS is done on a case-by-

case, function-by-function basis. If one day the very last INT 2 lh call that

used to be shipped down to real-mode DOS is finally handled by a pro-

tected-mode VxD, would that constitute a qualitative transformation in



Chapter 12: Exploring with WV86TEST

Windows? No. The real transformation took place years ago, when Ralph

Lipe, Aaron Reynolds, and others were writingVMM and giving it func-

tions such as Hook_V86_Int_Chain. Everything you need to know about

Windows’ relationship to DOS, you can learn by reading and re-reading

that one sentence quoted earlier from the DDK documentation for

Hook_V86_Int_Chain: “If the hook procedure [such as IFSMgr’s INT
2 lh handler] services the interrupt, it must clear the carry flag to prevent

the system from passing the interrupt to the next hook procedure.”

The mutest code

Having spent some time examining WV86TEST’s output, we should

now look at how the program produces this output. Listing 12-2 shows

the source code for WV86TEST, which uses the WINIO library (pro-

vided on the disk). WINIO lets Windows applications use C stdio func-

tions such as printf and provides functions such as winio_setmenufunc

and wmhandler_set, which make it easy to create menus and handle mes-

sages. To retrieve statistics from the resident DOS version ofV86TEST,

WV86TEST uses the real_int86x and map_real functions from the

PROT library (also on the disk).

WV86TEST has a .DEF file containing the following statement:

STUB 'v86test.exe'

This binds the DOS and Windows versions together in a single exe-

cutable. There’s a lot more that could be accomplished with this: V86-

TEST could hook INT 2Fh function 160Bh (TSR Identify) and tell

Windows to automatically start WV86TEST; this is what the GOUNT-
DOS program discussed in Chapter 3 does. Conversely, ifWV86TEST
finds that V86TEST isn’t resident (the get_stats function fails), WV86-
TEST could use the Windows API functions ExitWindows(EW_

RESTARTWINDOWS) and ExitWindowsExec to give the user the

option of restarting Windows under V86TEST. These exercises are left

for you to pursue in your free time.

Listing 12-2: WV86TEST.C

/*

WV86TEST.C -- take over INT 21h and INT 2 Fh , count calls in V86 mode

winiobc wv86test prot

Uses wv86test.def with STUB ’\unauthw\v86test\v86test.exe’

*/

#i ncl ude <s td 1 i b . h>
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#i ncl tide

//i ncl ude

#i ncl ude

// i ncl ude

//i ncl ude

#i ncl ude

#i ncl ude

//i ncl ude

//i ncl ude

//i ncl ude

<stddef . h>

<stri ng . h>

<ctype . h>

<process . h>

<ti me . h>

<dos . h>

"wi ndows .

h"

"wi ni o . h"

"wmhandl r .

h"

"prot.h"

typedef unsigned short WORD;

typedef unsigned long DWORD;

//define VM_MAX 8

//define VM_0THER VM_MAX

//define G ET_STAT S 0X0FFFF '

//define SIGNATURE " V86TEST"

//define VXD_MAX 0x100

//define V X D_0TH E R VXD_MAX

typedef enum {

N0_WIN

,

W I N_I N I T_B E G I N

,

W I N_I N IT_D0NE

,

W I N_F I N I_B E G I N

,

WIN_FINI_DONE,

NUM_STATES

} STATE;

// got W I N_I N I T_N0T I FY

// got WI N_I N INCOMPLETE

// got W I N_E X I T_B EG I

N

// got WIN_EXIT_N0TIFY

static char *state_str [ N UM_STAT ES ] =
{

"Before Wi ndows started"

,

"Duri ng Wi ndows init"

,

// got WIN._ I N I T_.NOTIFY

"While Wi ndows runni ng"

,

// got WIN._ I N I T_.COMPLETE

"During Wi ndows exit"

,

// got WIN._ E X I T_.BEGIN

"After Wi ndows exi ted"

,

// got WIN..EXIT..NOTIFY

//pragma pack ( 1

)

typedef struct {

char si gnature[8]

;

DWORD cal 1 s [ NUM_STATES] , v86_cal 1 s[NUF1_STATES]

;

DWORD i opl_count[4]

;

DWORD vm[VM_MAX+l ]

;

DWORD i nt2 1 [0x100 ]

;

DWORD i nt2f [0x100 ] , i nt2f16 [0x100] , i nt2f 1 60 7 [ V X D_0TH E R+l

]

time_t start, end;

} STATS;

static STATE state = N0_WIN;

static BOOL di spl ay_changes = 0;

static BOOL do_auto_ref resh = 0;
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static UINT htimer = 0;

static STATS far *fp;

static STATS *stats;

static HMENU gmenu;

void di spl ay_resul ts ( STATS far *fp2)

{

STATS *fp = stats;

STATS *delta;

DWORD elapsed;

i nt i

;

if (displ ay_changes)

{

if (! (delta = mal loc(sizeof(STATS) ) )

)

fail
(

" Insuffi ci ent memory" )

;

// Show changes: first copy the new stats over to delta

_fmemcpy(del ta , fp2, si zeof ( STATS ) )

;

// Then subtract the previous stats to get changes

ti me(&del ta->end )

;

elapsed = delta->end - fp->end;

del t
a

- >ca 1 1 s[WIN_INIT_DONE] -= fp->cal 1 s[WIN_INIT_DONE]

;

del t
a

- > v86_ca 1 1 s[WIN_INIT_DONE] -= fp->v86_cal 1 s[WIN_INIT_DONE]

;

pri ntf( "%1 u seconds elapsed\n", elapsed);

pri ntf( "%1 u calls, %lu in V86 mode\n",

del ta - >ca 1 1 s[WIN_INIT_DONE] , del ta -> v86_ca 1 1 s [WI N_I N IT_D0NE] )

;

if (elapsed)

printf( "%1 u INT 21/2F cal 1 s/second\n"

,

del ta->cal 1 s[WIN_INIT_DONE] / elapsed);

for (
i =0 ;

i <4 ; i++)

{

del ta->iopl_count[i ]
— fp->i opl_count[i ]

;

delta->vm[i] -= fp->vm[ i ]

;

}

del ta ->vm[ VM_0THER] -= f p
- > vm [ VM_0TH E R ]

;

for (
i =0 ;

i <0x100; i++)

{

del ta->int21[i ]
-= f p - > i n 1 2 1 [ i ]

;

del t a - > i n 1 2 f [ i ]
-= fp->int2f [i]

;

del ta->int2fl6[i ]
-= f p - > i nt2f 1 6 [ i ]

;

}

for (
i =0 ;

i <=VXD_MAX ; i++) // get VXD_0THER too

del ta ->i nt2f 1607 [i ] — fp->i nt2f 1607 [i ]

;

fp = delta; // have di spl ay_resul ts work on delta

el se

{

_fmemcpy(fp, fp2, sizeof(STATS) )

;

for (i=N0_WIN; i < N U M STATES ; i++)
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printf
(
"%s : \t%l u INT 21/2F calls, XI u in V86 mode\n",

state_str[i ] , f p- >ca 1 1 s[i ] , fp->v86_cal 1 s[i ] )

;

printf
(

"\nWhi 1 e Windows runni ng : \n" )

;

time(&fp->end)

;

if (! fp->start) ti me ( &fp->sta rt )

;

if ((elapsed = fp->end - fp->start) != 0)

{

printf
(

"Wi ndows active for Xlu seconds\n", elapsed);

printf("Xlu INT 21/2F cal 1 s/second\n"

,

fp->cal 1 s [ W I N_ INI T_ DONE] / elapsed);

}

for (
i =0 ; i <4 ; i++)

if ( f
p- >i o p 1 _c o u n t [ i ]

)

pri ntf( " I0PL=%d -- Xlu call s\n" , i, fp->i opl_count[i ] )

;

for (
i =0 ; i <VM_MAX ; i++)

if ( fp->vm[ i ]

)

pri ntf
(

" VM #%d -- Xlu calls\n", i, fp->vm[ i ] )

;

if ( fp->vm[VM_OTHER]

)

pri ntf
(

"VM > #Xd -- Xlu calls\n", VM_MAX, f p- >vm[ VM_0THER] )

;

^define P R I NT_C A L LS ( s , fp) { \

DWORD *p ; \

printf
(

"\nXs : \n" , ( s ) ) ; \

for (
i =0 ,

p=fp; i <0x100 ; i++, p++) \

if (*p) \

pri ntf
(

"X02X : Xlu\t", i, *p); \

PRI NT_C A L LS
(

" INT 21h calls", fp->int21);

PRI NT_CALLS
(

"\nINT 2Fh calls", fp->int2f);

PRI NT_CALLS( " \n I NT 2Fh AH=16h calls", fp->i nt2f 16)

;

PRI NT_C A L LS
(

"\nINT 2Fh AX=1607h calls", fp->i nt2f1607 )

;

if ( f p->i nt2f 1607 [ VXD_0THER]

)

pri ntf
(

" VxD>#%04X : Xlu\n", VXD_MAX, f p->i nt2f 1607 [ VXD_0THER]

)

pri ntf
(

"\n\n" )

;

_fmemcpy( stats , fp2, sizeof(STATS) )

;

time(&stats->end)

;

if (displ ay_changes ) free (delta);

STATS far *get_stats(void) // call resident copy of V86TEST

(

union REGS r;

struct SREGS s;

STATS far *fp;

r.x.ax = GET_STATS;
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memset(&s, 0, sizeof(s) )

;

real_int86x(0x2f , &r, &r, &s); // real_int86x in PROT.C

if (s.es == 0)

return 0;

fp = MK_FP(s.es, r.x.bx)

;

if ((fp = map_real(fp, si zeof (STATS) ) )
== 0) // map_real in PROT.C

return 0;

return (_fstrcmp(fp->signature, SIGNATURE) == 0) ? fp : 0;

void free_stats(HWND hwnd) { f ree_mapped_l i near ( fp) ; }

/**********************************************************************/

/* MENU HANDLERS (see MK_MENU in main) */

void refresh(HWND hwnd, int wID)

{

w i n i o_cl ear( hwnd )

;

di spl ay_resu 1 ts( fp)

;

void cl ea r ( HWND hwnd, int wID) { _fmemset(fp, 0, si zeof ( STATS) ) ; )

void show_changes(HWND hwnd, int wID)

{

CheckMenuItem( gmenu , 3, di spl ay_changes ? MF_UNCHECKED : MF_CHECKED)

;

di spl ay_changes =
! di spl ay_changes

;

ref resh( hwnd , wID);

long on_time(HWND hwnd, unsigned message, WORD wParam, LONG IParam)

{

wi n i o_c 1 ear (hwnd)

;

dispiay_results(fp)

;

void auto_ref resh(HWND hwnd, int wID)

{

if (do_auto_refresh) // on, turn off

{

do_auto_ref resh = 0;

Ki 1 1 Ti me r ( hwnd ,
htimer);

CheckMenuItem(gmenu, 4, MF_UNCHECKED)

;

}

else // off, turn on

{

do_auto_ref resh = 1

;

wmhandl er_set( hwnd ,
WM_T I MER ,

on_time);

if ( ! (htimer = SetTimer(hwnd, 1, 5000, NULL))) // every 5 seconds

fa i 1

(

"Can ' t create timer" )

;

CheckMenuItem(gmenu , 4, MF_CHECKED);

)
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main(int argc, char *argv[])

{

HWND hwnd;

i nt i

;

// only one instance: should put INT handler in DLL

if ( hPrevInst)

fai 1

(

"WV86TEST already running");

hwnd = wi ni o_current( )

;

gmenu = CreateMenu( ) ; // global

//define MK_MENU(id, str, func) { \

AppendMenu(gmenu, MF_STRING
|

M F_ENABLED ,
id, str); \

wi ni o_setmenufunc( hwnd
,

id, func); \

1

MK_MENU(1, "^Refresh", refresh);

MK_M ENU ( 2 , "&C1 ear" , clear);

MK_MENU(3, "&Show Changes", show_changes )

;

MK_MENU(4, "&Auto-Refresh" , auto_ref resh )

;

InsertMenu(wi ni o_hmenumai n( hwnd ) , 1

,

M F_ST R I N G
|

MF_P0PUP
|

M F_BY POS I T I ON
,
gmenu, "&Test");

DrawMenuBar( hwnd )

;

if ( ! (fp = get_stats( ) )

)

{

// Instead of failing, could do Exi tWi ndowsExec of

// V86TEST and then Exi tWi ndows ( EW_RESTARTW I N DOWS )

.

fail ("Can't get V86TEST statistics");

}

wi ni o_oncl ose( hwnd
,

f ree_stats )

;

if (! (stats = malloc(sizeof(STATS) ) )

)

fai 1

(

"Insuffi ci ent memory" )

;

display_results(fp)

;

return 0;

In WV86TEST.C, main (WINIO lets Windows programs use a

standard main function rather than the odd WinMain proposed by the

Windows SDK) installs some menu handlers, using a MK_MENU
macro that calls AppendMenu and winio_setmenufunc. For example,

MK_MENU(1, “&Refresh”, refresh) means that, when a user selects

Refresh from the WV86TEST menu, WINIO’s WM_COMMAND
handler will call a function named refresh.

As noted earlier, WV86TEST gets a protected-mode pointer to the

V86TEST statistics via the real_int86x and map_real functions from the

PROT library on the disk. These functions in turn rely on DPMI INT
3 lh function 0300h (Simulate Real-Mode Interrupt) and on the Windows
API functions AllocSelector, SetSelectorBase, and SetSelectorLimit.
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WV86TEST uses winio_onclose to install a handler that, just before the

program exits, frees up the selector used for the mapped-in statistics.

The workhorse ofWV86TEST is display_results, which is called

from each of the menu-handling functions. This normally just copies the

mapped-in statistics to a local buffer and displays the statistics using

WINIO’s printf function. WV86TEST first copies the statistics, rather

than work off the mapped-in “live” ones belonging to V86TEST, so that

the statistics don’t change out from under the program if more DOS calls

are generated in the middle of display_results.

If the user selects the Show Changes menu item, WV86TEST sets the

display_changes variable. If this variable is set, the display_results function

copies the statistics to a “delta” buffer, from which it subtracts the previ-

ously-refreshed statistics, and then it proceeds to display this delta buffer.

The Auto Refresh menu item installs a timer, using the Windows Set-

Timer function. Every five seconds (assuming no one has reprogrammed

the timer), the timer goes off, and the WMHANDLER module of

WINIO calls WV86TEST’s on_time function, which WV86TEST
installed with wmhandler_set. The on_time function simply calls winio_

clear and display_results, thereby refreshing the WV86TEST display

every five seconds.

uiindouis 95 and rrotected-mode DOS

Here’s what we’ve learned so far:

• In Windows 95, non-file INT 2 lh calls from Win32, Win 16, and

DOS applications are sent down to real-mode DOS. Windows 95

doesn’t break “all ties with the real-mode MS-DOS code.”

• Windows 95 also doesn’t break all (or even many) ties with the real-

mode DOS data. Windows 95 relies heavily on real-mode DOS data

structures such as the SDA, PSP, and DTA. However, IFSMgr does

access this data directly from protected mode.

• Windows 95 relies heavily on INT 2 lh calls, though usually these

calls are serviced by IFSMgr in 3 2 -bit protected mode. Although it

isn’t true that Windows 95 “breaks all ties with the real-mode MS-

DOS code,” it is true that protected-mode MS-DOS is here to stay. In

Windows 95, you’re running a protected-mode version ofMS-DOS
that uses the real-mode DOS code and data as a subservient assistant.
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• To the large extent that Windows 95 is not dependent on real-mode

DOS, though, the same is true ofWfW 3.1 1. If anything, WfW is less

dependent on DOS than is Windows 95. WfW’s hostility to real-

mode DOS caused problems in some areas, so Windows 95 backs off

a bit from this aggressive stance.

• Programs that use the Win32 API or the DOS LFN services can

bypass DOS to a significantly greater extent than programs that stick

to the old DOS APIs. In addition to the Win32 file-management

API’s bypassing of real-mode DOS code (but not, as we saw, of INT
2 lh services), we’ll also see in “Executable Loading and Memory-
Mapped Files” in Chapter 14 that Win32 applications can bypass both

the real-mode DOS code and protected-mode INT 2 lh by using

memory-mapped files: But even Win32 programs continue to implic-

itly use real-mode DOS data structures such as the SDA, PSP, and

DTA.

• Win 16 programs and DLLs that avoided direct use of INT 2 lh or

Dos3Call and instead used Windows API functions such as _lopen or

higher-level services such as the GetOpenFileName and GetSaveFile-

Name common dialogs will end up using the new LFN services.

Notice that while we’re discussing Windows-DOS relations in gen-

eral, the subject of how Win32 applications relate to DOS keeps coming

up. This in turn takes us into the subject ofhow the Win32 and Win 16

components of Windows 95, particularly the Win32 and Win 16 kernels

(KERNEL32.DLL and KRNL386.EXE, respectively), relate to each

other. This subject is discussed in detail in the next two chapters.
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Thukr! Kerh£l32

Calls KRI1L386

T
he WV86TEST program in the previous chapter was a big improvement

(if I do say so myself) over the plain real-mode DOS-based V86TEST
from Chapter 10. WV86TEST provides some real insights into how
Windows and Win32 applications interact with real-mode DOS.

However, as I pointed out earlier, WV86TEST by itself doesn’t tell

you much about those INT 2 lh calls that are absorbed inside protected-

mode Windows rather than passed down to real-mode DOS. The prob-

lem is that WV86TEST doesn’t know anything about which INT 2 lh

calls protected-mode Windows applications and DLLs are generating in

the first place.

This chapter presents WSPY21, a Windows program that hooks INT
2 lh inside protected-mode Windows rather than down in V86 mode

DOS. For example, Figure 13-1 shows WSPY21 logging some INT 2 lh

calls made by the Windows 95 Explorer (which here happens to launch a

Windows application with a long filename, contained in a folder with a

long directory name).

Because WSPY21 hooks INT 2 lh on the Windows side of the fence,

the program can display the DOS calls that a Windows application makes,

or which a DLL is making on the application’s behalf. In contrast,

V86TEST and WV86TEST were oblivious to any INT 2 lh calls that

Windows didn’t send down to real-mode DOS, and had no idea which

part of Windows an INT 2 lh call was coming from.

For example, since 32-bit file access in WfW 3.11 and Windows 95

absorbs most INT 21h file calls, V86TEST and WV86TEST wouldn’t

see any of the following randomly selected calls logged by WSPY21:
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<WI NWORD) (4E

)

Fi nd

<WI NWORD) (4E) Fi nd

<WI NWORD) (3D) Open

< W I NWORD) (3D) Open

<W I NWORD) (3D) Open

<W I NWORD) (3D) Open

< P ROGMAN > ( 3B

)

ChDi

< P ROGMAN > (3D) Open

< P ROGMAN > (3D) Open

< P ROGMAN > (3D) Open

<PR0GMAN> *(4B) Exec

<MSOFFICE> (3D)

<MSO F F I C E> (43)

<MSO FF I C E> (43)

<MSO F F I C E> (43)

<MSO F F I C E> (43)

<MSO FF I C E> (43)

<MSO F F I C E> (3D)

<MSOFFICE> (3D)

<MSO F F I C E> (3D)

<MSO F F I C E> (3D)

<MSOFFICE> (3D)

<MSO F F I C E> (3D)

<MSMAIL>

<MSMAI L>

<MAI LSPL>

<MAI LSPL>

<MAI LSPL>

<MSOFFICE>

<MSOFFICE>

<MSOFFICE>

<MSOFFI CE> (

< EXC E L> (4E:

< EXC E L> (3D!

< EXC E L> (4E:

< EXC E L> (3D!

First ' \\PROGPRESSl\EDIT\IDGREPOR\PP_MTM\*.txt

'

First ' \\PR0GPRESS1\EDIT\ I NTERNET\DUMMIES\*.txt'

'C:\WINDOWS\SYSTEM\COMPOBJ.DLL'

'C:\WIND0WS\SYSTEM\0LE2. DLL'

'C:\WINDOWS\SYSTEM\STORAGE.DLL'

'C:\WIND0WS\SYSTEM\0LE2DISP.DLL'
' \MSOFFICE

'

'C:\WIND0WS\SYSTEM\CTL3DV2.DLL'

'C:\WINDOWS\SYSTEM\MSFFILE.DLL'

'C:\WINDOWS\SYSTEM\SDM.DLL'

'C:\MSOFFICE\MSOFFICE.EXE'

Open 'C:\WINDOWS\MSOFFICE.INr

Get/Set File Attr 'C:\WINWORD\WINWORD.EXE'

Get/Set File Attr 'C:\EXCEL\EXCEL.EXE'

Get/Set File Attr 'C:\POWERPNT\POWERPNT.EXE'

Get/Set File Attr 'C:\ACCESS\msaccess.exe'

Get/Set File Attr 'C:\WINDOWS\MSMAIL.EXE'

Open 'C:\WI-NDOWS\SYSTEM\AB.DLL'

Open 'C:\WINDOWS\SYSTEM\FRAMEWRK.DLL'

Open 'C:\WINDOWS\SYSTEM\DEMILAYR.DLL'

Open 'C:\WINDOWS\SYSTEM\MAILMGR.DLL'

Open 'C:\WINDOWS\SYSTEM\STORE.DLL'

Open 'C:\WINDOWS\SYSTEM\OLECLI.DLL'

Open 'C:\WINDOWS\WGPOMGR.DLL'

Open 'C:\WINDOWS\SYSTEM\VFORMS.DLL'

Find First 'C:\WINDOWS\MSMAIL.INI'

Open 'C:\WINDOWS\SYSTEM\MSSFS.DLL'

Open 'C:\WINDOWS\SYSTEM\PABNSP.DLL'

(3D) Open 'C:\WINDOWS\SYSTEM\TOOLHELP.DLL'

(3D) Open 'C:\WINWORD\WWINTL.DLL'

(3D) Open 'C:\WINDOWS\SYSTEM\OLE2.DLL'

(3D) Open 'C:\WIND0WS\SYSTEM\0LE2NLS.DLL'

(3D)

(3D)

*(4E:

(3d:

(3d:

Find First '

{ 00020841 -0000-0000-C000-000000000046

Open 'C:\WINDOWS\SYSTEM\256_1024.DRV

'

Find First 'WPROGPRESSl\EDIT\FOOBISH.XLS'

Open 'C:\WINDOWS\SYSTEM\NETAPI.DLL'

Using WSPY21, this chapter and the next will examine the INT 2 lh

activity (which, as we’ve learned and probably all know by heart, isn’t

necessarily the same as real-mode DOS activity) generated by some com-

mon Windows applications. We’ll pay particular attention to the way that

Win32 software in Windows 95 interacts with real-mode DOS.
As will be explained when we examine WSPY21.C toward the end of

this chapter, WSPY21 sees INT 2 1 h calls coming through the 16-bit

Windows kernel (KRNL386.EXE). This means that WSPY21 will not

see INT 2 1 h calls that Win32 applications and DLLs make via the

VxDCallO mechanism discussed in the “Win32 FindNextFile is INT 2 1 h

Function 714Fh” section in Chapter 12.

However, WSPY21’s oversight is a blessing in disguise. As we’ll see in

a moment, WSPY21 nonetheless still detects some INT 2 1 h calls origi-

nating in Win32 applications and DLLs. That WSPY21 sees these calls
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means that they don’t involve VxDCallO and instead must be passing

through 16-bit KRNL386’s INT 2 1h handler. Following up this other-

wise unimportant factoid will lead us to an important conclusion about

the Windows 95 architecture: namely, that the Win32 kernel (KER-
NEL32) calls down to the Win 16 kernel (KRNL386), even though

Microsoft quite strenuously claims that it doesn’t. We’ll examine this

false claim in detail in this chapter, and look into some of the thinking

that’s possibly behind it.

<CAB32> *(4B) Exec 'C:\Unauthorized Windows 95\Windows Bina
<CAB32> (50) Set PSP 175 ( 00AFh)
<CAB32> (44) IOCTL (09) Is Dro Renote? 3 (03h)
<CAB32> (44) IOCTL (08) Is Dru Renooeable? 3 (03h)
<CAB32> (44) IOCTL (0E) Get Log Dru Map 3 (03h)
<CAB32> (3F ) Read 614 (0266h), 64 (0040h)
<CAB32> (42) LseekO 614 00000090
<CAB32> ( 3F ) Read 614 (0266h), 64 (0040h)
<CAB32> ( 3F ) Read 614 (0266h), 45 (002Dh)
<CAB32> *(55) (Undoc) Create PSP 7503 ( 1D4Fh) , 256 (0100h)
<CAB32> ( 1 A ) Set DT A 00AF:0080
<CAB32> (71) LFN (3B) ChDir 1 \Unauthorized Windows 95\Wind
<Q.AB.32>- (50).Set^ J

Pkunzip

Windows I nterrupt S p. . . -C3 Unauthorized Windo. 12:57 PMtlorei - Windows B

MS ElWindows Interrupt Spy: INT 21 h

My Computer

bin32

c ' mmi
£ile £dit $ew Joels

j

Ai! Folders

Jeip

Contents of Windows Binaries'

1 Andrew -*•

Q Bin

Cj Dev

Q Dos

Pi Mouse

S O Msoffice

S Q SbIS —
Cj in 1

3CLI-STI Test Program

3 Interrupt Server for FWORD

3 Protected Mode Interrupt Vectors

3Window Walker

3Windows Date-Time Test

3 Windows allocation of DOS meimory

3 Windows INT 21 h and 2Fh Logger
WSS. .......

Figure 13-1: WSPY21 is a Windows program that watches INT 21h calls from other

Windows programs. Here, WSPY21 is watching the Windows 95 Explorer start a

Windows program with a long filename. The complete string passed to EXEC was

“C:\Unauthorized Windows 95\Windows BinariesXWindow Walker”.

WSPY21 not only sees many protected-mode INT 2 lh calls that

V86TEST never sees, but also provides a substantially different view of

how Windows applications interact with DOS. Whereas V86TEST and

WV86TEST merely accumulate running totals of the number of calls to

each INT 2 1 h function, WSPY21 displays each specific INT 2 1 h with

the name of its caller. V86TEST might show that a whole mess of func-

tion 50h (Set PSP) calls are being generated, for example, but WSPY21
would show that these calls tend to occur just before and after a task

switch. (It might be helpful for some future version of WSPY21 to use

the ToolHelp NotifyRegister API to display task switches and other

events.) For example:
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<WI NWORD) (42)

<WI NWORD) ( 3F)

<PR0GMAN> *(59)

<PR0GMAN> (50)

<PR0GMAN> (1A)

< P ROGMAN > (3B)

< P ROGMAN) *(19)

< P ROGMAN > *(47)

< N ETDD E> (50)

< N ETDD E> (2A)

< N ETDD E> (2C)

< N ETDD E> (2A)

<WI NWORD) (50)

< W I NWORD) (20

Lseek0 17 000004f

0

Read 17 (0011h), 1168 (0490h)

Get Extended Error Info

Set PSP 6039 (17970

Set DTA 1797:0080

ChDir ^WINDOWS'

Get Disk

Get Curr Di r 3 ( 03 h

)

Set PSP 4495 (118Fh)

Get Date

Get Time

Get Date

Set PSP 10351 ( 286 Fh

)

Get Time

Following up such admittedly unpromising-looking output will teach us

a lot about Windows 95 internals. For example, the following line displayed

by WSPY2 1 is remarkable and will command our attention for many pages:

<CAB32> *(55) (Undoc) Create PSP 7503 ( 1D4FO, 256 (0100O

Why is a Win32 application— nay, the Win32 application (CAB 3 2 is

the Windows 95 Explorer) — generating a DOS Create PSP call? And,

for that matter, a DOS call that will be sent all the way down to real-

mode DOS (as we saw in the preceding chapter)? Examination of this

single line ofWSPY2 1 output will cast a bright light on the larger rela-

tionship between the Win32 and Win 16 kernels in Windows 95.

Likewise, understanding the following innocuous-looking line of

WSPY2 1 output will require a lot of digging:

<W INHELP) (3F) Read 750 (02EEh) , 25958 (6566h)

Flow and why is WinHelp— an old-style Win 16 executable, no less —
reading with a file handle such as 750 instead of with a normal one like 6

or 17 or 42? In the “Win32 File Handles and Thunking” section of Chap-

ter 14, we’ll dig into this seemingly obscure point to turn up answers to

much larger questions about the internal architecture ofWindows 95.

Even though WSPY21 watches protected-mode INT 2 1 h activity,

we’re going to use it to spy not only on the Windows-DOS relationship

in Windows 95 but also on the Win32-Win 16 relationship.

Launching a uiinm flpp frum the Explorer

In the preceding chapter, we started the Win 16 Calc applet from the

Windows 95 Explorer, did a few calculations (an amusing one is 3.11
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minus 3.10, which yields the answer 0— incidentally, this bug has per-

sisted since Windows 3.0, and lives on in all implementations, including

Windows NT), clicked on Help, browsed Help a little, closed Help, and

then closed Calc. WV86TEST, from its worm’s-eye perspective, saw all

this as a series of a little under 200 calls to real-mode DOS:

138 seconds elapsed

INT 2 1 h calls:

0E : 44 2A : 3 2C: 14 30: 2 4C: 2 50: 129 55: 2

For the same set of operations, WSPY2 1 in Windows 95 logged over

500 ENT 2 lh calls. Most of the ENT 2 lh activity came from WENHELP.
When I took the WSPY2 1 log, removed some of the detail (such as the

number of bytes read and the file offset sought), sorted it, and used a

throw-awayAWK program to count the number of identical lines, the top

ENT 2 lh calls (with the number of calls shown on the left) were as follows:

43 <WINHELP> *(50) Set PSP 175 (00AFh)

42 <WI NHELP) *(50) Set PSP 7391 ( lCDFh)

40 <WI NHELP) *(3F) Read 689

31 <WI NHELP) *(42) Lseek0 5

29 <W INHELP) *(42) Lseek0 689

28 <WI NHELP) *(3F) Read 5

23 <WI NHELP) *(42) Lseek0 6

22 <WI NHELP) *(3F) Read 6

18 <CALC> *(50) Set PSP 175 ( 00AFh

)

16 <C A LC > *(50) Set PSP 7567 ( 1 D8 F h

)

13 <CALC> * ( 3 F ) Read 686

11 <C A LC) *(42) Lseek0 686

Most of these calls were overlooked by WV86TEST, for the simple

reason that Windows didn’t send them down to DOS in the first place.

Here are some fragments from the WSPY2 1 output:

<CAB32> *(4B ) Exec ’C:\WINDOWS\calc.exe’

<CAB32> (50) Set PSP 167 (00A7h)

<CAB32> *(55) (Undoc) Create PSP 7503 ( 104Fh), 256 ( 0 1 00 h

)

CCAB32) (1A) Set DTA 00A7 : 0080

<CAB32> (71) LFN (3B) ChDir ’\WIND0WS’

<CAB32> (50) Set PSP 167 (00A7h)

<CAB32> *(71) LFN (4E) Find First 'C:\WINDOWS\WIN.INI'

<CAB32> *(71) LFN (Al) Find Close

, • • •

<CALC> (30) Get DOS Vers

<CALC> *(25) Set Vect 2 (02h)

<C A LC > *(25) Set Vect 117 (75h)

<CA LC) *(25) Set Vect 62 (3Eh)

<CA LC) (50) Set PSP 167 (00A7h)
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<CA LC) *(4B) Exec ’ C

:

: \W I NDOWS\W I NHELP .EXE'

9 • • •

<CALC> *(55) (Undoc) Create PSP 7263 ( 1 C 5 Fh )

,

256 ( 0 1 00 h

)

CCALO (1A) Set DTA 1D4F : 0080

<CA LC) (55) (Undoc) Create PSP 7263 ( 1 C 5 Fh )

,

256 ( 0 1 00 h

)

<C A LC) (50) Set PSP 167 ( 00A7 h

)

<CA LC) *(71) LFN (4E:) Find First 'C:\WINDOWS\WIN. INI'

CCALO *(71) LFN (Ai:) Find Close

9 • • •

CCALO (50) Set PSP 7503 ( 1 D4 Fh

)

<W INHELP) (30) Get DOS Vers

<WI NHELP) (50) Set PSP 167 (00A7h)

<WI NHELP) (42) Lseek0 750 000219d0

<WINHELP> ( 3F) Read 750 ( 02 E Eh ) , 25958 (6566h)

<W I N H E LP> (3F) Read 750 ( 02 E Eh ) , 1120 (0460h)

t • • •

<W INHELP) (1A) Set DTA 1C5F : 0080

t • • • '

<WI NHELP) (71) LFN (60 Open/Create ' C : \ W I N DOWS \ H E L P \ C A LC . HLP

’

9 • • •

<W INHELP) (71) LFN (60 Open/Create 'C:\WINDOWS\CALC.ANN'

<WINHELP> (59) Get Extended Error Info

9 • • •

<WI NHELP) (71) LFN (60 Open/Create ’C:\WINDOWS\HELP\CALC.GID'

9 • • •

<W INHELP) (2F) Get DTA

<WI NHELP) (1A) Set DTA 1B07 : 353E

<WI NHELP) (4E) Find First ’C:\WINDOWS\HELP\CALC.CNT'

<WINHELP> (1A) Set DTA 1C5F : 0080

9 • • •

<WI NHELP) (71) LFN (60 Open/Create 'C:\WINDOWS\SYSTEM\conimctrl.dll'

9 • • •

<WI NHELP) (50) Set PSP 7263 (lC5Fh)

<WI NHELP) (42) Lseek0 5 00005619

<WI NHELP) ( 3F) Read 5 (0005h), 9 (00090

<W INHELP) (42) Lseek0 5 00005622

<W INHELP) (3F ) Read 5 (00050, 14 (000EO

; ... etc . ...

<W INHELP) (00) Exit

<W INHELP) (50) Set PSP 167 (00A7O

<WI NHELP) (3E) Close 750 (02EEO

<C A LC) (00) Exit

<CALC> (50) Set PSP 167 (00A7h)

<C A LC > ( 3E ) Close 747 ( 02 EBh

)

Before we get into the specifics of this output— in particular, why a

Win32 application such as CAB32 is calling the INT 2 1 h EXEC func-

tion, creating a real-mode DOS PSP, setting the current PSP and DTA,
and generally cavorting about like a cheap DOS program — it’s impor-

tant to first understand a few general points about the output that

WSPY21 produces.

The first point is that the name that WSPY2 1 shows for each INT
2 lh call, such as CAB32, CALC, or WINHELP, is the module name
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belonging to the current task at the time of the INT 2 lh call. WSPY2

1

extracts the name from offset 0F2h in the current Task Data Block (TDB;
see Undocumented Windows

,
Chapter 5). WSPY21.C uses code somewhat

like the following:

pri ntf ( "<%8Fs>"
, MK_FP(GetCurrentTask( ) , 0xf2), 8);

But when WSPY2 1 calls GetCurrentTask, why doesn’t this just get

back WSPY2 1 ’s own task handle? Because it is WSPY2 1 ’s INT 2 lh han-

dlers that call GetCurrentTask. When WSPY21’s interrupt handlers are

running, WSPY2 1 is not necessarily the current task. Like some Win-
dows API callbacks, interrupt handlers run in the context of whatever

task was current at the time of the interrupt. Since WSPY2 1 makes few

INT 2 lh calls, this will usually be some task other than WSPY2 1.

During initialization, WSPY2 1 uses GetCurrentTask to get its own
task ID; the interrupt handlers will filter out any INT 2 lh calls coming

from WSPY2 1 itself. WSPY2 1 usually only calls INT 2 lh when you save

the WSPY2 1 log out to a file. To digress slightly, you won’t see any code

for this in WSPY21.C (shown in this chapter), because WINIO automat-

ically gives all WINIO programs a File/Save Buffer... menu item. The
WINIO code to support this menu item uses the GetSaveFileName

common dialog, and then saves out the WINIO buffer to disk with the

_lcreat, _lwrite, and _lclose APIs. The _lcreat call turns into an INT 2 lh

function 716Ch, so WSPY2 1 (or any other WINIO program) can save

files with long names in Windows 95, even though this was never a con-

sideration in the design ofWINIO. This wouldn’t work ifWINIO had

employed direct INT 2 lh calls or the C run-time library instead of the

_lxxxx APIs (which, incidentally— how’s this for a second-level digres-

sion? — were once undocumented; see the section on “Undocumented

File I/O Functions” in the first [1988] edition of Charles Petzold’s classic

Programming Windows).

See? It pays to use the Windows APIs, even once-undocumented

ones. However, while WINIO applications can write out a long filename

in Windows 95, like other old Win 16 applications they cannot read a

long filename back in— darn confusing for the user!

Popping back to the task names displayed by WSPY2 1, all Win32

applications have a Winl6 TDB surrogate, so WSPY21’s technique for

getting task names also works for Win32 applications, whether running

in Windows 3.v with Win32s or in Windows 95. In a moment, we’ll see

why all Win32 applications come to have a Win 16 TDB in the first place;

the reason is significant.
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When WSPY2 1 shows a task’s module name such as CAB 3 2 or

CALC associated with an INT 2 lh call, it usually means not that the

application itself called INT 2 lh but that some dynamic link library

(DLL) called INT 2 lh on the current task’s behalf. DLLs aren’t tasks

(though, interestingly, the KERNEL32 DLL in Windows 95 does have

an associated KERNEL32 task). When an application calls a Windows

API, the DLL providing that API does not temporarily become the cur-

rent task (as it might in a client/server operating system). Instead, the

current task just “steps around to the other side of the counter” (as Gor-

don Letwin nicely explains this point in his Inside OS/2

)

and runs the API

code in the DLL.
One final general point about WSPY21’s output: as we’ll see when we

examine WSPY21.C toward the end of this chapter, WSPY21 has two

INT 2 lh handlers. One is installed with the DPMI Set Protected Mode
Interrupt Vector function (INT 3 lh function 0205h), and the other is

installed with an undocumented Windows API, GetSetKernelDosProc

(Undocumented Windows
, pp. 188, 271-273). The DPMI call lets WSPY21

stick a protected-mode INT 2 lh handler before the one in the Win 16

KERNEL; GetSetKernelDosProc lets WSPY2 1 insert another handler

after KERNEL’S, but before the first VxD-based protected-mode INT
2 lh handler.

All this will be explained in the usual gory detail toward the end of the

chapter. For now, all that matters is that an asterisk (*) in WSPY2 Is out-

put means that the INT 2 lh call was first seen at the spot called Kernel-

DosProc, where KERNEL is about to hand INT 2 lh off to the VxD
protected-mode INT 2 lh chain. A blank indicates the call was first seen

earlier (or higher, depending on how you look at it) in KERNEL’S INT
2 lh handler. If the INT 2 lh handler saw a call, WSPY2 1 doesn’t bother

showing it again at KernelDosProc unless you specify the WSPY2

1

-SHOWALL switch.

Later, -SHOWALL will let us see that some INT 2 1 h functions in

Windows bypass real-mode DOS — and for years and years have

bypassed real-mode DOS — because KERNEL (rather than a VxD such

as IFSMgr) consumes them. The best example is INT 2 lh function 4Bh
(EXEC). Neither real-mode DOS nor even a Windows VxD would know
what to do with the EXEC of a Win 16 executable, and so KERNEL’S
INT 2 1 h handler deals with this call (decomposing it, naturally, into

other DOS calls, such as File Open; see “Win32 File Handles and

Thunking” in Chapter 14).
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C0B32: KERHEL32 US6S the Ulinl6 KERHEL

The WSPY2 1 log shown in the preceding section started out in CAB32,

the Windows 95 Explorer/Cabinet. The log shows that when I clicked on

the Calc icon, Explorer (or a DLL acting on its behalf) called function

4Bh to start CALC.EXE, called function 55h to give it a PSP, and so on.

We know from WV86TEST that Windows will handle the function 4Bh

exec call itself (for the reason just given at the end of the preceding sec-

tion). On the other hand, we also know from WV86TEST that Windows

will send the function 55h Create PSP call down to DOS.
Calc is a Win 16 application. What happens when we use a Win32

application such as CAB 3 2 to run another Win32 application? Although

Win32 applications such as CAB32 do not use INT 2 lh function 4Bh to

run other Win32 applications, WSPY21 will see a Create PSP call when-

ever you launch a Win32 application. This, as Fve said, is significant;

we’ll soon see why.

The following WSPY2 1 log shows some of the INT 2 lh activity gen-

erated when I launched Clock, WinBezMT, and FreeCell from the Win-

dows 95 Explorer, let them run for a while, and then closed them. I also

used Find File and Control Panel, which are built into the Explorer.

<CAB32> *(50) Set PSP 167 (00A7h)

CCAB32) (55) (Undoc) Create PSP 7431 (lD07h), 256 (0100h)

<CAB32> *(1A) Set DTA 00A7 : 0080

<CAB32> *(71) LFN (3B) ChDir ' \WI NDOWS

’

CCAB32) *(50) Set PSP 4719 (126Fh)

<C LOCK) *(50) Set PSP 167 (00A7h)

<C LOCK) *(42) Lseek0 730 0000038a

<CL0CK> * ( 3 F ) Read 730 ( 0 2 DA h ) , 217 (00D9h)

i • • •

<CAB32> *(50) Set PSP 167 ( 00A7h

)

<CAB32> (55) (Undoc) Create PSP 7343 (ICAFh), 256 ( 0 1 00 h

)

< C AB3 2 > *(71) LFN (3B) ChDir ’ \W I NDOWS

'

<CAB32> *(55) (Undoc) Create PSP 7343 (ICAFh), 256 ( 0 1 00 h

)

<CAB32> *(50) Set PSP 4719 (126Fh)

<W I NBEZMT) *(50) Set PSP 167 (00A7h)

<WI NBEZMT) *(42) Lseek0 570 00000631

<WI NBEZMT) * ( 3 F ) Read 570 (023Ah), 1863 (0747h)

<C LOCK) *(50) Set PSP 167 (00A7h)

<C LOCK) *(42) Lseek0 730 000079e0

<C LOCK) * ( 3 F ) Read 730 (02 DAh ) ,
12205 ( 2 FADh

)

» • • •

<CAB32> *(50) Set PSP 167 (00A7h)

<CAB32> (55) (Undoc) Create PSP 7207 (lC27h), 256 ( 0 1 00 h

)

<CAB32> *(71) LFN (3B) ChDir ’ \wi n32app\f reecel
1

’
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<CAB32> *(55) (Undoc) Create PSP 7207 (lC27h), 256 (0100h)

<CAB32> *(50) Set PSP 4719 (126Fh)

< FRE EC E L L> *(50) Set PSP 167 (00A7h)

< FRE EC E L L> *(42) Lseek0 570 00000631

< FREEC E LL> *(3F) Read 570 (023Ah), 1863 (0747h)

<FREECELL> *(50) Set PSP 7207 (lC27h)

» • • •

< FRE EC E L L> *(50) Set PSP 7207 (lC27h)

<CAB32> *(44) IOCTL (09) Is Drv Remote? 3 (03h)

<CAB32> *(44) IOCTL (08) Is Drv Removeable? 3 ( 03 h

)

<CAB32> *(44) IOCTL (0E) Get Log Drv Map 3 (03h)

» • • •

<CAB32> *(50) Set PSP 10415 (28AFh)

<KERNEL32> *(50) Set PSP 10415 ( 28AFh

)

<KERNEL32> *(00) Exit

<KERNEL32> *(50) Set PSP 167 (00A7h)

<CAB32> *(50) Set PSP 167 (00A7h)

<CAB32> *(42) Lseek0 538 00052280

<CAB32> *(3F) Read 538 ( 0 2 1 A h ) , 4941 ( 134Dh)

<CAB32> * ( 3 F ) Read 538 (021Ah), 368 (0170h)

<CAB32> *(50) Set PSP 4719 (126Fh)

<RUNDLL32> *(50) Set PSP 167 ( 00A7 h

)

<RUNDLL32> *(42) Lseek0 570 00000631

< RU N D L L3 2 > *(3F) Read 570 ( 023Ah ) , 1863 (0747h)

<RUNDLL32> *(71) LFN (3B) ChDir ^WINDOWS'

<RUNDLL32> * ( 2 F

)

Get DTA

< RU N D L L32 > *( 1A) Set DTA 0BE7 : 856C

< RUND LL32> *(4E) Fi nd First ’C:\WININST0. 400\*.

<RUNDLL32> *( 1A) Set DTA 00A7 : 0080

< RUN D L L3 2 > * ( 2 F

)

Get DTA

<RUNDLL32> *( 1A) Set DTA 0BE7 : 856C

< RUN D L L3 2 > *(4E

)

Fi nd First 'C:\WININST0. 400\*.

<RUNDLL32> *( 1A) Set DTA 00A7 : 0080

<RUNDLL32> *(50) Set PSP 167 ( 00A7 h

)

< RU N D L L32 > *(42) Lseek0 619 00029200

< RU N D L L3 2 > *(3F) Read 619 ( 0 2 6 B h ) , 256 (0100h)

< RU N D L L32 > *(50) Set PSP 11463 ( 2CC7 h

)

<KERNEL32> *(50) Set PSP 11463 ( 2CC7 h

)

<KERNEL32> *(00) Exi t

<KERNEL32> *(50) Set PSP 167 ( 00A7 h

)

<CAB32> *(50) Set PSP 167 (00A7h)

<CAB32> (55) (Undoc) Create PSP 11591 (2D47h), 256 (0100h)

<CAB32> *(71) LFN (3B) ChDir ' \WI NDOWS

’

<CAB32> *(55) (Undoc) Create PSP 11591 (2D47h), 256 (0100h)

<CAB32> *(50) Set PSP 4719 (126Fh)

<RUNDLL32> *(50) Set PSP 167 (00A7h)

<RUNDLL32> *(42) Lseek0 570 00000631

< RU N D L L32 > *(3F) Read 570 (023Ah), 1863 (0747h)

This contains only fragments — mostly the “edges” where Windows
95 switched from one task to another— from the almost 1000-line log

file I generated while running this group of Win32 applications under
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Windows 95. Although it would be boring to show the entire WSPY2

1

log, it’s useful to take a look at the most frequent calls, and also to single

out the Create PSP calls:

130 <CAB32> *(50) Set PSP 167 (00A7h)

129 <CAB32> *(50) Set PSP 4719 (126Fh)

32 <RUNDLL32> *(50) Set PSP 167 ( 00A7h

)

28 <CAB32> *(44) IOCTL (0E) Get Log Drv Map 3 ( 03 h

)

28 <CAB32> *(44) IOCTL (09) Is Drv Remote? 3 (03h)

28 <CAB32> *(44) IOCTL (08) Is Drv Removeable? 3 ( 03 h

)

23 <RUNDLL32> *(3F) Read 619

22 < RUN D L L3 2> *(50) Set PSP 11463 (2CC7h)

22 <RUNDLL32> *(42) Lseek0 619

19 <CAB32> *(3F) Read 675

12 <CAB32> * ( 3 F ) Read 707

> • • •

1 <CAB32> (55) (Undoc) Create PSP 7343 ( ICAFh ) , 256 (0100h)

1 < C A B 3 2 > (55) (Undoc) Create PSP 7207 (lC27h), 256 (0100h)

1 <CAB32> (55) (Undoc) Create PSP 11591 (2D47h), 256 (0100h)

1 <CAB32> (55) (Undoc) Create PSP 11575 (2D37h), 256 (0100h)

1 <CAB32> (55) (Undoc) Create PSP 10415 ( 28AFh ) , 256 (0100h)

1 <CAB32> (55) (Undoc) Create PSP 7431 (lD07h), 256 (0100h)

Now, calls such as Read and Lseek are absorbed in IFSMgr; they look

like DOS calls, and they smell like DOS calls, but they ain’t real-mode

DOS calls. A big chunk of DOS now resides as 3 2 -bit protected-mode

code in VxD-land. On the other hand, this big chunk of protected-mode

DOS converses frequently with an assistant— known as real-mode MS-
DOS — left behind in 16-bit V86 mode.

The WV86TEST program from Chapter 12 lets us listen in on these

conversations between Windows and DOS. While running the same

batch of Win32 applications under Windows 95, WV86TEST logged

the following INT 2 lh calls that Windows made to its real-mode DOS
assistant:

179 seconds elapsed

INT 21 h calls:

2A : 1542 2C: 1542 30: 7 44: 22 4C: 3 50: 449 51: 1

55: 3 65: 2 EA: 1

Actually, this isn’t exactly the same test as the one I performed with

WSPY2 1. Although I opened the Explorer’s Control Panel, I didn’t click

any of the Control Panel icons. As we’ll see in a few moments, clicking a

Control Panel icon ends up loading a Win 16 DLL; I wanted to see the

real-mode DOS calls coming from as pure a Win32 environment as pos-

sible (although WV86TEST, a Win 16 program, was still running).

Microsoft and the trade press both speak of Windows 95 as though there
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were a qualitative difference between a configuration running a mixture

of Win32, Win 16, and DOS applications and one running only Win32
applications. Throughout this chapter, I’ll try to make the point that this

distinction doesn’t exist.

While I’ve been stressing the issue of whether an INT 2 lh call is

processed by a VxD or by the real-mode DOS code, this book’s technical

reviewer (Microsoft SystemsJournal contributing editor Jim Finnegan)

notes that there’s an additional point to be made here:

What seems more important here, regardless of whether an INT 21h actually makes
it to DOS or not, is that the Win32 API calls are turning into INTs in the first place! I

care less about who processes the INTs (DOS or a VxD); the fact that Chicago at its

core is still very interrupt based, rather than procedure based, is a hell of a point.

You might remember that one of Microsoft’s original selling points for OS/2 was that

it left behind that ol’ interrupt based foundation. Guess we’ll never get there...

Apart from the sheer spectacle of pure Win32 applications stooping to

make INT 2 lh calls— some of which we know from WV86TEST will

be passed all the way down to real-mode DOS (albeit a real-mode DOS
that Windows is controlling in V86 mode) — there are some interesting

specifics worth following up in the output from WSPY2 1.

For example, every now and then we see KERNEL32 issue a

sequence of three DOS calls:

<KERNEL32> *(50) Set PSP 10415 ( 28AFh

)

<KERNEL32> *(00) Exit

<KERNEL32> *(50) Set PSP 167 (00A7h)

First, how can KERNEL32 perform an exit via INT 2 lh function 0,

and then keep going to do a Set PSP call? KERNEL32 seems to say “I’m

outa here!” and then stick around to talk with DOS some more.

Second, why is KERNEL32 — the most fundamental and ostensibly

the purest Win32 module — mucking with the PSP and calling an

ancient DOS function?

Third, isn’t KERNEL32 a Win32 DLL? How did it become a task?

DLLs aren’t tasks; when a task calls an API located in a DLL, the code

for that API runs in the context of the calling task. We’ll see later (in the

“Win32 and the PSP” section) that 0A7h is KERNEL32’s PSP But how
did the very foundation of Windows 95 ’s brand spankin’ new Win32 API
acquire a clunker of a DOS data structure like a PSP?

If you’ve ever done any TSR programming, answering the first ques-

tion will probably be easy. KERNEL32’s task keeps running after making

a DOS Exit call for the simple reason that it wasn’t KERNEL32 that

exited. Yes, KERNEL32 called the DOS exit function, but just before
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that it called Set PSP, passing in the PSP (28AFh in this example) belong-

ing to some other task. The DOS Exit call works off the current PSP;

because of the Set PSP call, this is not necessarily the caller’s PSP
In other words, KERNEL 3 2 has forced some other task to exit. This is

a fairly standard technique in TSR programming. When a user asks to

uninstall a TSR, the non-resident portion of the TSR can switch to the

PSP of the resident portion and then exit. When one task foists an exit on

some other task like this, DOS frees the memory allocations and closes

the open file handles belonging to that other task (see Undocumented

DOS
,
2d ed., p. 603, based on material supplied for the first edition by

Tim Paterson).

To put it yet another way, when a Win32 application such as

RUNDLL32 exits, KERNEL32 cleans up after the application using, in

part, this Set PSP/Exit/Set PSP sequence.

This answers the other questions too. This clean-up operation runs as

a separate thread. KERNEL 3 2.DEE has acquired a task handle and a

PSP because these are required to own a thread. The Win-ICE debugger

shows that KERNEL 3 2 has several threads:

:thread kernel 32

Ri ng0TCB ID Context Ri ng3TCB Process laskDB PDB SZ Owner

C0FDE188 0005 C0FD98C0 81106804 81104250 0097 00A7 32 KERNEL32

C0FDBCDC 0003 C0FD98C0 81105FC0 81104250 0097 00A7 32 KERNEL32

C0FD12CC 0002 C0FD98C0 8110 5 2 A8 81104250 0097 00A7 32 KERNEL32

C4520298 0001 C0FD98C0 81104328 81104250 0097 00A7 32 VM 01

But who issues the Set PSP/Exit/Set PSP sequence of calls? WSPY2

1

sees it, so we know that KERNEL32 isn’t using VxDCallO here. Some

hunting around with Win-ICE reveals that these calls are coming from

the Win 16 KERNEL (KRNL386) via an internal version of the undocu-

mented NoHookDOSCall API.

Wait a minute, though. If KERNEL32 is the current task, how did

the Win 16 KERNEL get into the act? This isn’t supposed to happen. As

we’ll see later, Microsoft claims that “The KERNEL32 module is com-

pletely independent of its 16-bit version. There is some communication

from the 16-bit to the 3 2 -bit side, but the 3 2 -bit KERNEL never calls

across to the 16-bit side” (Microsoft Systems Journal, May 1994).

Backtracing in the debugger from the point of the Set PSP/Exit/Set

PSP NoHookDOSCalls in the Win 16 KERNEL shows that KERNEL32
extracts the far 16-bit selector:offset address of this Win 16 KERNEL
code from a table of DWORDs, and then passes the address to KER-

NEL32’s QT_Thunk routine. We’ll examine QT_Thunk and this table a



Unauthorized Windows 95

little later (in the “From Explorer to Create PSP in Six Easy Steps” sec-

tion). For now, it suffices to say that KERNEL 3 2 is thunking down not

only to a Win 16 KERNEL routine but also to a Win 16 KERNEL rou-

tine that calls INT 2 lh functions.

And, just to send more chills down the spines of operating system

purists, these INT 2 lh functions 0 and 5Oh are sent down to the real-

mode DOS code. The DOSMGR VxD handles Set PSP calls from pro-

tected mode by calling the VMM _SelectorMapFlat service to convert

the protected-mode PSP to a real-mode paragraph address, which it then

passes down to DOS via Begin_Nest_V86_Exec and an Exec_Int 2 1 h.

And DOSMGR handles a protected-mode call to function 0 (which is

considered obsolete), by turning this into a new-style function 4Ch exit,

which it again passes down to DOS via Begin_Nest_V86_Exec and

Exec_Int 2 lh. Yes, KERNEL32 really does employ the real-mode MS-
DOS code.

Another interesting facet of the WSPY2 1 log is that we sometimes see

two Create PSP calls sandwich an LFN ChDir call:

<CAB32> (55) (Undoc) Create PSP 7343 (ICAFh), 256 (0100h)

<CAB32> *(71) LFN (3B) ChDir ' \WI NDOWS

'

<CAB32> *(55) (Undoc) Create PSP 7343 (ICAFh), 256 (0100h)

There’s actually only one Create PSP call here. WSPY2 1 sees the call

first in its INT 2 lh handler and then in its KernelDosProc (marked with

an asterisk). But unless you use the -SHOWALL command-line option

(which wasn’t used here), WSPY2 1 is supposed to filter out a call at Ker-

nelDosProc that matches one just shown at the higher-up INT 2 lh han-

dler. Why didn’t that happen here? Because the second call didn’t

immediately follow on the heels of the first call; WSPY2 1 has no way of

knowing they represent the same call.

Somehow, a call to LFN ChDir snuck in after the Create PSP reached

the Win 16 KERNEL’S INT 2 lh handler, but before it arrived at Kernel-

DosProc’s doorstep. But how? Very simple: KERNEL’S INT 2 1 h handler

insinuated the call to LFN ChDir. Why? Because just after a task switch,

KERNEL’S INT 2 lh handler often must manufacture extra INT 2 lh

calls not only to set the current directory (ChDir) but also to set the cur-

rent drive, PSP, or DTA.
The scheduler in the Win 16 KERNEL is responsible for ensuring the

consistency of each task’s DOS “state.” Let’s say the scheduler lets a

Win 16 or Win32 task run for a while, and then switches to a second task

that calls the GetOpenFileName common dialog, which in turn changes
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the current directory and uses Find First File and Find Next File to enu-

merate the *.TXT files in that directory. Because of the find first/next,

this second task has undoubtedly changed the current PSP and DTA as

well as the current directory. Perhaps it’s switched the current drive too.

When KERNEL eventually switches back to the first task, what happens

when the first task makes an INT 2 lh call? KERNEL must ensure that

the second task’s DOS operations have no effect on the first task. This

might require restoration of the first task’s current drive, directory, PSP,

and DTA.
Note thatVMM doesn’t help with any of this; as far as it’s concerned,

the System VM is one big task. This is an indication that the descrip-

tions of Windows 95 as an “integrated” operating system mean very lit-

tle: the lower half of Windows knows almost nothing about what goes

on in the upper half. In Windows 95, VMM schedules threads as well as

VMs, but things like the current drive and directory aren’t maintained

on a per-thread basis. Thus, the Win 16 KERNEL must take the single

System VM current drive, directory, PSP, DTA, and so on that VMM’s
instance data mechanism provides (these DOS variables are contained in

the instanced SDA and CDS) and share it among all Win 16 and Win32

tasks. This is a crucial role for the Win 16 KERNEL, even on a pure

Win32 system.

A final question about the WSPY2 1 log: What the heck is this

RUNDLL32 thing?

< RU N D L L3 2 > *(2F) Get DTA

< RU N D L L3 2 > MIA) Set DTA 0BE7 : 856C

<RUNDLL32> M4E) Find First ’ C : \WI NINST0 . 400\*. INF

'

I didn’t start any program called RUNDLL32. But I did click some

icons in the Windows 95 Control Panel, and that triggered RUNDLL32.
The Control Panel icons represent Control Panel applications, which

reside in Win 16 DLLs with the extension .CPL (see the Windows 3.1

Programmer's Reference, Volume 1 : Overview
,
Chapter 15). The Control

Panel is built into the Windows 95 Cabinet/Explorer, which is a Win32

executable. The Win32 Control Panel uses RUNDLL32 to load Win 16

.CPL files. As in many other areas, Windows here takes a fairly Byzantine

approach. However, it’s worth briefly examining what happens when you

click a Control Panel icon such as New Device, which launches the New
Device Installation Wizard.

First, CAB32 launches RUNDLL32.EXE (which, like CAB32, is a

Win32 executable), with a lengthy “command line from hell”:
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C:\WIND0WS\RUNDLL32.EXE shel 1 32 , C on t ro 1 _Run D L L \

C:\WINDOWS\SYSTEM\SYSDM.CPL, -602, New device

RUNDLL32 takes the first part of the command tail and passes the

“shell32” string to the Win32 LoadLibrary API. It gets back a handle to

SHELL32.DLL and passes this, along with the next part of the com-

mand tail (the “Control_RunDLL” string), to GetProcAddress, thereby

dynamically linking to the Control_RunDLL routine in SHELL32.
DLL. Armed with a function pointer to this routine, RUNDLL32 calls

the routine, passing it the remainder of the command line. Notice that

RUNDLL32 has taken two strings from its command line and trans-

formed them into a callable function pointer; isn’t run-time dynamic

linking amazing?

With the portion of the command line it’s been given, Control_Run-

DLL takes the next string, “C:\WINDOWS\SYSTEM\SYSDM.CPL”,
and passes it to an undocumented function in KERNEL32 called Load-

Library 16. As you might infer from the name, LoadLibrary16 is a Win32

API that loads Win 16 DLLs. How it does this is quite interesting:

KERNE L32 ! Load Li bra ry 16

0137 : BFF91D52 MOV CL , 36

0137 : BFF91D54 JMP BFF91D60

Later (in “From Explorer to Create PSP in Six Easy Steps”), we’ll see

that BFF91D60h is a generic routine that uses the value in CL as an

index into a table ofDWORDs such as 011F66CEh, 011F0B5Bh, and

01 lFOOEBh. You probably won’t be too surprised to hear that 01 lFh

happens in this configuration to be one of the Win 16 KERNEL’S code

segments, and that entry 36h in the table ofDWORDs is 01 lFOOEBh,

01 1F:00EB just happening to be the address of the Win 16 LoadLibrary

API. In other words, the Win32 LoadLibrary 16 API retrieves the 16-bit

far selector:offset address of the Win 16 LoadLibrary API. This address is

then passed to a KERNEL32 function called QT_Thunk (discussed in

detail in a moment), which lets 3 2 -bit code call down to 16-bit code.

Hmm, I thought KERNEL32 was supposed to never thunk down to the

Win 16 KERNEL.
When KERNEL32!LoadLibrary16 thunks down to KERNEL!Load-

Library, it gets back a handle to the Win 16 DLL, SYSDM.CPL. Con-

trol_RunDLL takes this handle and a string, “CplApplet” (CplApplet is

the main entry point for all Control Panel applications), and passes them

to another undocumented KERNEL32 API, GetProcAddress 16. The
implementation of this API is similar to that of LoadLibrary 16, except

there’s a MOV CL,34 instead of a MOV CL, 36.
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GetProcAddressl6 calls down to GetProcAddress in the Win 16 KER-
NEL, again using QT_Thunk, and returns a 16-bit far selector:offset

pointer to the Win 16 function. In our current example, Control_Run-

DLL gets back a 16-bit far selectorioffset pointer to the CplApplet rou-

tine in SYSDM.
Listing 13-1 is a throwaway Console program that demonstrates how

Win32 applications can use LoadLibraryl6 and GetProcAddress 16:

Listing 13-1: DYNLINK32.C

/*

DYNLINK32 . C -- Win32 Console app

Illustrates Win32 run-time dynlink to W i n 1

6

*/

//i ncl ude < s td 1 i b. h>

//include <stdio.h>

//define W I N32_LEAN_AND_MEAN

//include "windows.
h"

HINSTANCE (WINAPI *LoadLi bra ry 16 ) ( LPCSTR 1 pLi bFi 1 eName )

;

FARPROC (WINAPI *GetProcAddressl6 ) (HINSTANCE hModule, LPCSTR IpProcName);

void fai 1 (const char *s) {
puts ( s ) : exit(l): }

main(int argc, char *argv[])

{

HINSTANCE mod;

FARPROC fp;

DWORD arg , retval ;

if (argc < 3)

fail ("usage: dynlnk32 [module name] [function name]");

//define GET_PROC(mod ,
func) \

GetProcAddress (GetModul eHandl e(mod ) ,
(func)

)

//define GET(func, str) \

if ( ! (func = G ET_P ROC
( "KERNEL32" , str))) \

fai 1

( "Cannot link to " str);

GET( Load Library 16. " Load Li braryl6" )

;

GET ( GetProcAddressl6 ,
" GetProcAddress 16"

)

;

if ( ! (mod = LoadLi braryl6(argv[l] ) )

)

fail (" Load Li bra ry 16 failed");

pri ntf( "LoadLi bra ry 16 ( \"%s\" )
==> 0x%08X\n", argv[l], mod);

if (! (fp = GetProcAddress 16 (mod , a rgv [2] ) )

)

fail ("GetProcAddress 16 failed")

;

pri ntf
( "GetProcAddressl6( 0x%08X , \"%s\") ==> 0x%08X\n",

mod, a rgv [2 ] , fp);

// major cop-out: I should show how to call Q T—T hunk!
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You can try out Win32-to-Winl6 dynamic linking by typing a module

name and function name on the program’s command line. For example:

C : \ UN AUTHW>dy n 1 nk32 kernel getsel ectorbase

LoadLi braryl6( "kernel " )
==> 0x000001 2

F

GetProcAddressl6(0x0000012F, "getsel ectorbase" )
==> 0X01174BE0

C : \UNAUTHW>dynl nk32 sysdm cplapplet

LoadLi braryl6( "sysdm" )
==> 0x00002236

GetProcAddressl6(0x00002236, "cplapplet") ==> 0x226 F029C

It’s all well and good for SHELL32!Control_RunDLL, a Win32

function, to own a selector:offset function pointer to SYSDM!CplApplet,

a Win 16 function. (“That’s nice, dear.”) But by itself, SHELL32’s pos-

session of a far 16-bit function pointer to SYSDM is like a telephone

number without a telephone, or an address without a mode of transporta-

tion. How’s a Win32 DLL like SHELL32 going to call down to a Win 16

DLL like SYSDM? Gee, somehow this question reminds me of a foolish

pop song about an “uptown girl” (Win32) and a “downtown boy”

(Win 16), but perhaps I’m just being fanciful.

How are these two going to get together? It’s fairly simple, really.

SHELL32!Control_RunDLL can call SYSDMICplApplet in the same

way that KERNEL32!LoadLibraryl6 called KERNELILoadLibrary or

that KERNEL32!GetProcAddressl6 called KERNEL!GetProcAddress:

via QT_Thunk (whose workings we’ll examine in detail a little later). In

Windows 95, thunks are what make the world go around.

In addition to telling us how the Win32 Control Panel calls the Cpl-

Applet routine in Win 16 .CPL files, the very existence of the LoadLi-

braryl6 and GetProcAddressl6 functions in KERNEL32 is significant.

Here we have KERNEL32 APIs (which, although undocumented, are

heavily used by the rest of the system), whose entire purpose is to thunk

down to their Win 16 KERNEL equivalents.

In fact, KERNEL32’s capability to thunk down to KERNEL is the

basis for all other 32/16 thunking in Windows 95, such as communication

between USER32 and USER and between GDI32 and GDI, because ini-

tialization of these thunks requires LoadLibraryl6 and GetProcAddress-

16. A debugger breakpoint placed on these routines during Windows 95

initialization reveals the following thunk-related dynamic links:

During initialization:

LoadLi braryl6 GDI . EXE

GetProcAddressl6

:

GdiThkConnecti onDataLS

FT_Gdi FThkThkConnectionData

FdThkConnectionDataSL
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IcmThkConnecti onDataSL

LoadLi braryl6 USER. EXE

GetProcAddressl6

:

UsrThkConnecti onDataLS

MsgThkConnecti onDataLS

FT_Us rFThklhkConnecti on Data

FT_UsrF2ThkThkConnecti on Data

Us r32ThkConnecti onDataSL

Start Clock:

Load Li bra ry 16 COMMDLG.DLL

GetProcAddressl6 DlgThkConnecti onDataLS

Start Font Manager:

LoadLi bra ry 1 6 SYSTHUNK.DLL

GetProcAddressl6 FT_LzFThkThkConnecti on Data

Examine File Properties:

LoadLi braryl6 VER.DLL

GetProcAddressl6 FT_VerFThkThkConnecti on Data

Besides LoadLibraryl6 and GetProcAddressl6, other KERNEL32
APIs based on the Win 16 KERNEL include FreeLibraryl6, GlobalAl-

locl6, and GlobalLockl6. In addition, the KERNEL 3 2 thunk table men-

tioned earlier contains pointers to many Win 16 KERNEL (KRNL386)
routines whose names don’t appear in the Windows 95 binaries. To see

how extensively these KERNEL32->KRNL386 thunks are used, you can

place a debugger breakpoint on the code where KERNEL32 has a thunk

number in the CL register and is about to index into the thunk table:

0137 : BFFB7C44 XOR ECX.ECX

0137 : BFFB7C46 MOV CL. [EBP-04] ; thunk number

0137 : BFFB7C49 MOV EDX , [000304 64+4* EC X] ; thunk tabl e

0137 : BFFB7C50 MOV EAX , BFF71247 ;
offset32 QT_Thunk

0137 : BFFB7C55 JMP

EAX

A breakpoint placed on this code is hit almost twenty times when

starting up a Win32 application such as Clock and about an equal num-

ber of times when exiting the Win32 application. Mileage may vary

depending on the Win32 application, of course, but for what it’s worth,

the following indicates the KERNEL32->KRNL386 activity generated

by starting and exiting the Win32 Clock:

31, 32, 2E , 36, 34, 3E (x3), IE (x6), 1C (x5).

Clock appears on display

IF,

Clock now running (no K32 - >K1 6 thunks while running)

Close Clock

IB (x3) , 2F , 3D (x3) , 33 (x2), 29 (x2), 30

Of these, thunk 3 Oh is the Set PSP/Exit cleanup routine mentioned pre-

viously, 36h is LoadLibraryl6, and 34h is GetProcAddressl6.
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I’ve been emphasizing these cases where KERNEL32 thunks down to

KRNL386 mostly because Microsoft has claimed such thunks don’t exist.

There are also plenty of important cases where KRNL386 thunks up to

KERNEL32, just as Microsoft says. For example, in the preceding chap-

ter (in the section titled “Win32 FindNextFile is INT 2 lh Function

714Fh”) we saw that the FindNextFile API in KERNEL thunks up to

FindNextFileA in KERNEL32.
That’s enough poring over this one WSPY2 1 log. It’s clear that

WSPY2 1 can alert us to some important places in Chicago that we prob-

ably wouldn’t otherwise have seen. An operating system purist might say

that WSPY2 1 reveals some of the seamy sides of Chicago. I wouldn’t

agree that WSPY2 1 reveals anything particularly seamy or distasteful

about Chicago, but certainly the program does show seams
:
places where

Win32 is stitched onto Win 16 and where Win 16 is stitched onto real-

mode DOS.
What have we learned so far?

• The Windows 95 Explorer, a Win32 application, uses INT 2 lh func-

tion 4Bh (EXEC) to launch Win 16 applications. This call is not

passed down to real-mode DOS, but (like all calls seen by WSPY21) it

does involve the Win 16 KERNEL. This is significant because Win32
applications in Windows 95 are not supposed to employ the Win 16

KERNEL at all.

• Win32 applications in Windows 95 rely on a variety of INT 2 lh calls.

WSPY2 1 doesn’t see most of these calls because they’re made using

VxDCallO. However, the calls that WSPY2 1 does see are significant

because they show that even a pure Win32 Windows 95 environment

relies on the Win 16 kernel. It is significant that some of these calls are

sent all the way down to real-mode DOS because it shows that even a

pure Win32 Windows 95 environment relies on real-mode DOS
(which Windows is running in V86 mode, however).

• The Windows 95 Explorer, a Win32 application, uses INT 2 lh func-

tion 55h (Create PSP) not only to support Win 16 applications but

also to support Win32 applications. We’ll see that this call, too,

involves the Win 16 KERNEL. We’ve already seen from WV86TEST
that the call is sent all the way down to DOS. Thus, every running

Win32 application in Windows 95, like every running Win 16 applica-

tion, has a real-mode DOS PSP, created down in the bowels of real-

mode DOS by function 55h.
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Win32 and the PSP

By using a Winl6 program, WINPSP.C, it’s easy to see that every Win32
task in Windows 95 has a genuine real-mode DOS PSP. This program is

based on, but fairly different from, the version of WINPSP that appeared in

Undocumented DOS (2d ed., pp. 151-155). Figure 13-12 shows WINPSP
under Windows 95, when running Explorer, Clock, WinBezMT, and three

Control Panel windows (System, Telephony, and the New Device Installa-

tion Wizard), which show up as RUNDLL32.

MBIP- ea<fedv "£3sBI
Eesiet Window

Date/Time

Keyboatd Modems

•ifiWINDOWSP
iittilWfrtfciiWnimiiViii

1 ; WINDOWSP H5IB
Bte Mete. ^!§
DOS PSPs; (from MCB chain)

:

Real Name Paras
j

05CE WIN 00C1
1 -I

069D umm32 01 2C
07D7 krnl386 9829

Windows PSPs (from task list)

:

s
: !

Neal Prot Name Task Size
|j

1966 3037 RUNDLL32 303E 120 WIN32 j- j

1954 2177 RUNDLL32 217E 120 WIN32
| |18DC 2237 RUNDLL32 223E 120 WIN32

18CA 1B57 CLOCK 1B0E 120 WIN32
1466 1E67 WINBEZMT 1E6E 120 WIN32
1454 1FF7 C0B32 1FFE 120 WIN32
H2E1 1357 TIMER 135F 110
07D7 0007 KERNEL32 0097 100 WIN32
1943 1437 MSGSRU32 1 43F 110 '

1999 2DFF WINPSP 2E07 110 !

i

pfeLL----ill

Figure 13-2: The WINPSP program shows that every task in Windows 95,

including every Win32 task, comes with a real-mode DOS Program Segment

Prefix (PSP).

As you can see, each Win32 task has a corresponding real-mode DOS
PSP. While the PSP structure itself doesn’t appear to be heavily used in Win-

dows 95, its address is heavily used as the source for a DOS process ID.

In the WSPY21 logs shown earlier, you probably noticed lots of calls

that set the current PSP to OA7h, set the current DTA to 00A7:0080, and

so on. Many but not all of these calls came from CAB32. From WINPSP’s

display of the Windows PSP chain, we can see that protected-mode selec-

tor 0A7h corresponds to real-mode address 07D7:0000, and that this

PSP belongs to KERNEL32. If you look back at the DOS PSP chain in Fig-

ure 13-2, you can see that 07D7h belongs, as far as real-mode DOS is

concerned, to a DOS application called KRNL386, which has allocated

9829 paragraphs (over 600K).
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WINPSP.C, as shown in Listing 13-2, is a Winl6 application that uses

the WINIO library:

Listing 13-2: WINPSP.C

/*

WINPSP.C

Andrew Schulman, 1993 (Undocumented DOS, 2d ed., pp. 151-155)

Revised 1994 (Unauthorized Windows)

*/

//include <stdlib.h>

//include <stdio.h>

//include <string.h>

//include <dos.h>

//include "windows.
h"

//include "prot.h"

//include "toolhelp.h"

//ifdef cplusplus

extern "C" BOOL FAR PASCAL IsWi nOl dApTaskC HANDLE hTask);

//el se

extern BOOL FAR PASCAL IsWinOl dApTa s k ( HANDLE hTask);

//endi f

//define MAP(ptr, bytes) map_real ( (
ptr ) , (bytes))

//define FREE_MAP (ptr) f ree_mapped_l inear(ptr)

//define GET_REAL
(
ptr )

get_real_addr(ptr

)

//pragma pack(l)

typedef struct {

BYTE type;

WORD owner, size;

BYTE unused[3], name [83;

} MCB

;

//pragma packO

WORD get_fi rst_mcb(void)

{

RMODE_CALL r;

memset(&r, 0, sizeof(r) )

;

r.eax « 0x5200;

if (dpmi_rmode_intr(0x21 , 0, 0, &r))

{

// Extract seg of first MCB from SysVars. Note that this is

// at sys va rs [
- 2] . You can't call map_real() on sysvars, and

// then back up 2! You must map in sysvars-2 to begin with.

WORD far *tmp - (WORD far *) MAP ( MK_FP( r.es , (WORD) r.ebx-2), 2);

WORD firstjncb = *tmp;

FREE_MAP( tmp)

;

return first_mcb;

1

el se
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return 0

void d i spl ay_dos_psp( WORD psp_seg, BYTE far *psp, MCB far *mcb)

{

printf (

"%04X\t ”, psp_seg);

if (_osmajor >= 4)

{

char buf [9]

;

_fmemcpy(buf , mcb->name, 8);

buf E8] - ' \0
’

;

if (*buf
)

pri ntf
(

"\t%-8s" , buf);

else printf
(

”\t\t” )

;

printf (

"\t%04X\n" , mcb->size)

;

}

void di spl ay_wi n_psp( WORD prot_psp, char *szModule, WORD hTask)

{

BYTE far *psp = (BYTE far *) MK_FP(prot_psp, 0);

WORD real_psp = GetSelectorBase(prot_psp) >> 4;

WORD flags;

pri ntf
(
"%04X\t%04X\t%-8s\t%04X\t%lX\t"

,

real_psp, prot_psp, szModule, hTask,

GetSelectorLimit(prot_psp) + 1);

// WinOidAp flag in Windows PSP

flags = *( (WORD far *) &ps p [0x48 ] )

;

if ( IsWinOldApTask(hTask) && (! (flags & 1))) /* insanity check */

fa i 1

(

" IsWinOl dApTask flag weirdness!");

if (flags & 1) pri ntf
(
"DOS ");

// Win32 flag in TDB

flags - *( (WORD far *) MK_FP(hTask, 0x16));

if (flags & 0x10) printf
(

"WIN32" )

;

pri ntf
(

"\n" )

;

// void faiKchar *s) {
pri ntf ( "%s\n" , s); exit(l); }

mai n(

)

TASKENTRY te

;

BYTE far *maybeja$p;

MCB far *mcb;

WORD mcb_seg, mapped;

BOOL ok;

pri ntf
(

"DOS PSPs (from MCB chain);\n");

printf ( "Real \t UName \tParas\n");

// walk DOS MCB chain, looking for PSPs
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if (! (mcb_seg = get_fi rst_mcb( ) )

)

fail ("Can't get MCB chain!");

for ( ; ;

)

{

mcb = (MCB far *) MAP(MK_FP(mcb_seg, 0), si zeof (MCB) )

;

maybe_psp = (BYTE far *) MAP(MK_FP(mcb_seg +1, 0), 512);

// does it look like a PSP?

{

if ((mcb_seg + 1) ff= mcb->owner) // regular DOS app PSP

di spl ay_dos_psp(mcb_seg + 1, maybe_psp, mcb);

}

FREE_MAP(maybe_psp)

;

i f (mcb-)type *#=
'

Z
'

)

break; // end of list

mcb_seg = mcb_seg + mcb->size + 1; // walk list

FREE_MAP(mcb)

;

}

FREE_MAP(mcb) ; // free last one

if ((mapped = get_mapped( ) ) !
= 0)

printf( "ERROR! %u mapped selectors remaining!\n" , mapped);

printf
(

"\nWindows PSPs (from task 1 ist) : \n" )

;

printf( "Real \tProt\tName UTaskUSi ze\n" ) ;

// now walk Windows task list, and extract PSPs

te.dwSize = sizeof(te)

;

ok = TaskFi rst(&te)

;

while (ok)

{

BYTE far *tdb = (BYTE far *) MK_FP( te . hTask , 0);

WORD prot_psp = *( (WORD far *) &tdb[0x60]);

/•^really a PSP? */

if (*( (WORD far *) MK_FP(prot_psp, 0)) »» 0x20CD)

display_win_psp(prot_psp, te.szModule, te. hTask);

ok = TaskNext(&te)

;

1

return 0;

1

WINPSP first walks the DOS MCB chain, looking for PSPs. WINPSP
employs fairly standard MCB-walking code, except that WINPSP is a pro-

tected-mode Windows program and therefore needs to map real-mode

addresses into its address space. It does this using the map_real function

from the PROT library on disk (also see Undocumented DOS, 2d ed., pp.

131-138). For each PSP encountered, WINPSP calls a routine named dis-

play_dos_ps.

Next, WINPSP uses ToolHelp to walk the Windows task list. For each

task, WINPSP extracts a protected-mode selector to the PSP from offset

60h in the task database (TDB), sees if it
!

s really a PSP by checking that

the first two bytes are CDh 20h, and calls the display_win_psp routine.

This in turn calls GetSelectorBase to compute a real-mode paragraph
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.

for the PSP (all PSPs must be located in conventional memory,
and therefore must have valid return values from GetSelectorBase). The
module name associated with the PSP comes from information that Tool-

Help supplies about the task. Finally, display_win_psp checks two flags in

the TDB: the WinOldAp (“DOS”) flag and the Win32 flag.

As Windows takes on more of the responsibilities once performed b

real-mode DOS, more “DOS programs” will in fact be Windows progr

that look something like WINPSP. Welcome once again to

world of protected-mode DOS programming!

uino s calling mi 2in?

We know from the preceding chapter that Win32 applications in Win-

dows 95 rely far more on INT 2 lh than Microsoft would suggest happens

even with Win 16 applications. But does CAB32.EXE really contain INT
2 lh instructions? No, it doesn’t. So how then is the launching of a Win 16

application from the Explorer turning into a function 4Bh EXEC? And

how does the launching of any application, whether Win 16 or Win32, end

up creating a real-mode DOS data structure like the PSP?

Significantly, these very DOS-like events do not occur through the

VxDCallO 2A0010h 2 lh mechanism discussed in the preceding chapter.

If someone in Win32-land were issuing an INT 2 lh function 4Bh or 55h

via VxDCallO, WSPY21 wouldn’t see it. As noted earlier, WSPY21 hooks

INT 2 lh at the Win 16 KERNEL level.

But wait a minute! IfWSPY2 1 hooks INT 2 lh at the Win 16 KER-
NEL level, and ifWSPY21 is detecting INT 2 lh calls occurring while a

Win32 application is the current task, this means that KERNEL 3 2 must

call over (or “thunk down” in Microsoft parlance) to KRNL386. Yet, as

we’ve seen, Microsoft claims that KERNEL32 never thunks down to

KRNL386.
There’s more, though. Both when CAB 3 2 starts CALC, and when

CALC starts WINHELP, we saw that the parent task uses function 55h

to create a PSP for the child task. It’s natural enough to expect this call

when CALC uses WinExec to start WINHELP, since Matt Pietrek has

shown in his indispensable Windows Internals (pp. 229-256) that:

WinExec -> INT 21 h function 4B00h -> LoadModule -> LMCheckHeader ->

Open Appl Env -> CreateTask -> BuildPDB -> INT 21 h function 55h

But in the case of CAB32, where are these Create PSP calls coming

from? Pietrek is talking about the Win 16 version of WinExec here.
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WSPY21 is seeing CAB32 call INT 21h function 55h even when CAB32
launches a Win32 application such as Clock or WinBezMT. How the

heck (and why?) is CAB 3 2 issuing a function 55h call? Again, it can’t be

using VxDCallO, or WSPY2 1 wouldn’t be seeing it in the first place.

Well, the answer is staring us right in the face. Pietrek shows that the

internal CreateTask function in KRNL386 calls another internal func-

tion, BuildPDB (PDB, which stands for Process Data Block, is another

name for PSP), which in turn calls function 55h.

Of course! (Sound of one hand clapping.) Some KERNEL32 code

must be calling CreateTask in KRNL386! Later on, we’ll see how KER-
NEL 3 2 is doing this.

We already know that all Win32 applications have corresponding

Winl6 TDBs (WSPY21 relies on this to display a name such as CAB32).

And, even if we didn’t already know this, it would be easy enough to

stumble upon when running any Windows diagnostic tool that displays

Win 16 tasks, using the ToolHelp TaskFirst and TaskNext APIs or the

task-walking methods described throughout Undocumented Windows. For

example, Matt Pietrek’s WTNWALK includes a TaskWalk function

(iUndocumented Windows
, pp. 646-647); note that this uses the old Win 16

ToolHelp APIs, and not the new ToolHelp32 API:

void TaskWal k(void)

{

TASKENTRY te

:

BOOL ok;

// using printf from WINIO library

pri ntf
(

"Task 1 i st : \n" )

;

pri ntf ( "NAME HTASK HMOD HINST PARENUn");

te.dwSi ze = si zeof (te)

;

ok = TaskFi rs t ( &te )

;

while ( ok )

{

pri ntf ("r 8s %04X %04X %04X %s\n",

te.szModule, te.hTask, te.hModule, te.hlnst,

Get Mod u 1 eNameFromHandl e(te. hTaskParent) )

;

// GetModul eNameFromHandl e uses Mod u 1 e Fi ndHandl e , TaskFi ndHandl

e

ok = TaskNext(&te)

;

}

}

Running CAB32, Clock, WinBezMT, and the Win32 version of Free-

Cell, but no Win 16 applications except for WinWalk itself, this code pro-

duces the following output in Windows 95:

Task list:

NAME HTASK HMOD HINST PARENT
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FREECELL 1B9E 1E06 1B9E

WINBEZMT 1CA6 1CFE 1CA6

CLOCK 1E26 1E3E 1E26

BATMETER 1 FIE 1 F06 1 FI E

CAB32 1276 125E 1276

TIMER 130F 132F 12E6 MSGSRV32

MSGSRV32 13EF 13FF 13CE KERNEL32

KERNEL32 0097 010F 0097

WINWALK 1B87 1B67 1C66 CAB32

The code just walks the Win 16 task list. It knows nothing about Win-
dows 95 or about Win32 processes, yet it sees the name of each Win32
process. Thus, each Win32 process in Windows 95 has a corresponding

Win 16 TDB. (Windows Internals
,
p. 226, notes that a lOh flag in the

WORD at offset 16h in the TDB indicates a Win32 task. WINPSP.C
shown earlier relies on this, as does the WALKWIN.C program we’ll

examine a little later.)

On the other hand, it’s also important to note that the Win 16 TDB for

a Win32 task differs somewhat from one that a Win 16 task has (which, in

turn, differs somewhat from the Windows 3.x TDB format; see the fol-

lowing section, “Where’s the Windows 95 Current Directory?”). For

example, the parent task handle at offset 2 2h is 0 in a Win32 TDB (notice

that WINWALK was unable to locate any Win32 task’s parent).

There’s another key difference between Win32 and Win 16 tasks:

Although a Win32 task’s TDB has a protected-mode selector to the PSP
at offset 60h, just like the TDB for a Win 16 task, the actual PSP (as

opposed to its selector) is not located at offset 2 1 Oh in the TDB, the way

it is for Win 16 tasks in Windows 95. (In Windows 3.x
,
this embedded

PSP was located at offset lOOh in the TDB.) Because a Win 16 task’s

TDB includes (and acts as an extension to) a real-mode DOS PSP, the

entire TDB must be located in conventional memory. Again, Pietrek

shows this in Windows Internals (p. 254):

// Allocate the TDB below 1Mb, so that it can be accessed by DOS

// for file I/O

TDB = G1 obal DosAl 1 oc(tdb_al 1 oc_size)

In contrast, here are typical TDB and PSP values for both a Win32

task and a Win 16 task running under Windows 95:

TDB PSP
Sel Base Size Sel Base Size

Winl6 1BDF 00030E00 320 1AB7 00031010* 110

Win32 1BC6 800E0B20 210 1B1F 00031120 120

* Win16 PSP base = Win16 TDB base + 210h
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Although the Win32 task’s TDB is not allocated in conventional

memory, its associated PSP still is. This is significant. If you place a

breakpoint on the GlobalDosAlloc routine in the Win 16 KERNEL and

start up a Win32 application under Windows 95, the breakpoint is hit.

Each Win32 task’s PSP is allocated with the Win 16 GlobalDosAlloc API.

Thus, Windows 95 ’s Win32 kernel really does call down not only to real-

mode DOS but also to the Win 16 kernel.

In the Win32 API, you launch applications with CreateProcess. You

can also use a Win32 version of the older WinExec call; this in turn calls

an internal version of CreateProcess. When you consider that each

Win32 process has a Win 16 TDB, it seems plain that CreateProcess

must somehow be calling down to CreateTask in KRNL386 not only for

Win 16 applications but even for Win32 applications.

We’ll see later that the CreateProcess API in KERNEL32 does create

a TDB by calling the internal CreateTask function in KRNL386. This

makes perfect sense. It is surprising only because Microsoft claims that

such things don’t take place in Chicago. But really, how else would each

Win32 process wind up with a Win 16 TDB (albeit one that as we’ve seen

differs a little from the TDB that Win 16 tasks get and from the TDB in

Windows 3.x)?

Where's the windows 95

current Directory?

Windows 95 makes another important change to the TDB layout for

both Win32 and Win 16 tasks.

In Windows 3.x, the TDB maintains the current drive and directory

in a 68-byte buffer at offset 66h, and there’s an embedded PSP at offset

lOOh (see Undocumented Windows
, pp. 366-368).

In Windows 95, however, the current drive number continues to reside

in the byte at offset 66h in the TDB but the current directory has been

moved to offset lOOh. As we’ve seen, the PSP, which formerly resided at

offset lOOh, has been moved out either to offset 2 lOh (for Win 16 tasks) or

into an entirely separate conventional-memory segment (for Win32 tasks).

This movement of the current directory from the 67-byte buffer at

offset 67h (remember, the byte at 66h is the current drive) to the 272

(1 lOh) bytes at offset lOOh has to do with long directory and file names,

as you probably guessed.
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The Win 16 KERNEL must maintain the current drive and directory

on a per-task basis. This is just another example of the problem, noted in

Chapter 12 (in the “PSPs and Other DOS Data in Windows 95” section),

that the upper and lower layers of Windows are remarkably separate

from each other. As far as IFSMgr is concerned, there is one current

directory per virtual machine (VM); DOSMGR likewise instances DOS’s

current-drive variable on a per-VM basis. But the System VM runs mul-

tiple tasks, each of which can have its own current drive and directory.

VxDs don’t really know anything about what happens inside the Sys-

tem VM; all the different Win 16 and Win32 applications look like one

big application, called KRNL386.EXE. As we saw in Chapters 6 and 7,

this separation between the upper and lower layers of Windows means,

potentially at least, that the VMM/VxD layer can run something other

than the Windows graphical user interface and, conversely, that the Win-
dows GUI can run on something other than Microsoft’s VMM/VxD
layer. Loosely coupled systems are generally preferable to tightly coupled

“integrated” ones.

However, the benefits to such modularity may be outweighed by the

duplication of effort it entails. The kernel in the System VM often has to

fake out the lower levels of Windows, making them believe there is only a

single application running— one that just likes to switch the current

PSP, DTA, drive, and directory a lot!

In time, the upper and lower levels of Windows should become more

tightly integrated. VxDs will come to know more about Windows tasks

and will be used for mainstream Windows programming. The Appy Time

and run-time dynamic linking services— such as _SHELL_CallAtAppy-

Time, _SHELL_LoadLibrary, _SPIELL_GetProcAddress, and_SHELL_
CallDll— provided by the SHELL VxD in Windows 95 are an important

step in this direction. During so-called AppyTime (application time), a

VxD can make Windows API calls. The VWIN32 VxD in Windows 95

also appears to be a step toward greater integration between Windows

applications and Windows VxDs.

In Windows 95, VxDs do know about threads as well as about VMs,

and as we saw back in Chapter 1 ,
VxDs can use Thread Local Storage

(TLS). But the current drive and directory aren’t appropriate to maintain

on a per-thread basis. Therefore, the single current directory that IFSMgr

provides to the System VM, and the DOS current-drive variable instanced

by DOSMGR, must be multiplexed at the kernel level rather than at the

VxD level among all Win 16 and Win32 tasks. When there’s a task switch,

KERNEL might have to switch the current drive and directory too. Thus,

it makes sense to keep each task’s current drive and directory in its TDB.
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So far, all this remains unchanged in Windows 95. Win32 tasks in part

need Win 16-style TDBs to store their current drive and directory. The
difference in Windows 95, however, is that long filenames and directory

names make it impossible to continue using the current-directory buffer

at offset 67h in the TDB. Windows 95 keeps the task’s possibly longer

current directory at the location where Windows 3.x keeps a PSP. The
current-drive byte is still kept at offset 66h.

Why do TDBs for Win 16 tasks need the extra current directory space

too? Because Win 16 applications can call the INT 2 lh function 7 lh

LFN functions. In addition, the Win 16 kernel (KRNL386) contains

functions such as SetCurrentDirectory and GetCurrentDirectory, which

thunk up to the equivalent functions in KERNEL32 (which then just

turn around and call INT 2 lh functions such as 19h and 7147h for

GetCurrentDirectory and OEh and 713Bh for SetCurrentDirectory).

As noted earlier, the Win 16 common dialogs in Windows 95 can

sometimes call these LFN functions on behalf of a Win 16 application

without the application knowing it. (Users will just see that they can save

out long filenames and directory names.) This only applies to out-bound

(Set) calls. Silently replacing an application’s old in-bound (Get) call with

a new one that potentially returns more data (a longer file or directory

name) could overrun its buffers.

The point here is that even Win32 tasks store their current drive and

directory in a Win 16 TDB. This can be easily demonstrated with a small

Win32 Console application, CHGDIR.C, shown in Listing 13-3.

Listing 13-2: CHGDIR.C

// CHGDIR.C -- Win32 Console app

// Shows that Win32 tasks keep current drv/dir in W i n 1 6 TDB

//include <stdlib.h>

//include <stdio.h>

//define W I N32_LEAN_AND_MEAN

//include "windows.h"

DWORD (WINAPI *VxDCal 1 ) (DWORD srvc, DWORD eax, DWORD ecx);

//define GET_PROC(mod , func) GetProcAddress(GetModuleHandle(nod) , (func))

//define VWIN32_.INT21_CALL 0x2A0010

//define VWI N32_I NT31_CALL 0X2A0029

//define DosCalKeax, ecx) VxDCal 1 (VWI N32_I NT21_CALL , (eax), (ecx))

//define DPMICal 1 (eax , ecx) VxDCal 1 ( VWI N32_I NT31_CALL
,

(eax), (ecx))

char curdi r[MAX_PATH] , buf [MAX_PATH] , buf upr [MAX_PATH]

;

void faiKconst char *s) { puts(s); exit(l); }
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mai n (

)

{

HANDLE id;

BYTE *tdb_drv, *tdb_curdir, *tdb_base;

WORD tdb, psp;

// Thread Id == Ring 3 THCB (Thread Control Block)

id = GetCurrentThreadId( )

;

pri ntf( "Thread ID: %081 Xh\n"
, id);

// W i n 1 6 TDB is at offset ICh in Ring 3 THCB

// I'm a little surprised it's so easy to get at this!

tdb = *( (WORD *) (((BYTE *) id) + 0xlc) )

;

printf
(

"TDB: %04Xh\n", tdb);

// Use run-time dynamic linking to turn strings

// into callable function pointers

if ( ( VxDCal 1 = G ET_P ROC
(

"KERNEL32" , " VxDCal 1
0"

) )

)

{

// Get linear base address for TDB by calling

// DPMI INT 3 1 h function 6 (Get Selector Base).

// Even though we're a 32-bit app, we get the 16-bit

// DPMI services, since we're calling DPMI indirectly.

_asm mov bx, tdb

DPMICall (0x0006, 0);

_asm mov word ptr tdb_base+2, cx

_asm mov word ptr tdb_base, dx

pri ntf( "TDB base: %081Xh\n", tdb_base);

// Call DOS INT 21h function 62h (Get PSP)

DosCall (0x6200, 0);

_asm mov psp, bx

pri ntf( "PSP: %04Xh\n\n", psp);

// Sanity check: is TDB[60h] == PSP?

if ( * ( (WORD *) (tdb_base + 0x60)) != psp)

fail
(

"TDB and PSP don’t match!");

// Current drv at offset 66 h in TDB, curr dir at offset 100h

// SetCurrentDi rectory changes these.

// Note: Current drv/dir on per-task basis, not per-thread.

tdb_curdir = tdb_base + 0x100;

tdb_drv = tdb_base + 0x66;

else

printfC'Warning: Can't access VxDCal 1 0\n\n" )

;

for ( ; ;

)

{

if (GetCurrentDi rectory (MAX_PATH , curdir) == 0)

pri ntf
(

"i nval i d>" )

;

el se

pri ntf
(

" [%s ] ", curdir);

gets(buf )

;

if ( (buf [0] == ' \0 ’

) | |

(buf [0] == ' \n ' )

)
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continue

;

strcpy(bufupr , but);

strupr(bufupr)

;

/*N0TE! CHGDIR.C and CHGDIR.EXE on disk have a bug: instead of sizeof

(cmd)-l, they just have size of (cmd). Need to recompile CHGDIR,

putting in -1, for this program to work.*/

//define MATCH(cmd) ( strncmp( buf upr , (cmd), sizeof (cmd)-l) == 0)

if (MATCH( "EXIT" )

)

break

;

else if ( MATCH
(

"CD "))

{

if (! SetCurrentDi rectoryUbuf [3] )

)

pri ntf
(

"CD fai 1 ed\n" )

:

else if (tdb_curdir)

{

pri ntf
(

"TDB+66h : %02Xh\n", *tdb_drv);

pri ntf
(

"TDB+100h :
\

' % s
\

' \
n

" , tdb_curdir);

else if (MATCHC'MD "))

{

if (! CreateDi rectory(&buf [3] , 0))

pri ntf
(

"MD fai 1 ed\n" )

;

el se

WinExec(buf, SW_N0 RM A L )

;

1

pri ntf
(

"done\n" )

;

return 0;

As you can see, CHGDIR consists of little more than a loop that lets

the user type in a few commands: MD (make directory), CD (change

directory), EXIT, or a command that will be passed through to WinExec.

There’s a prompt that prints (within square brackets) the current drive

and directory returned by the GetCurrentDirectory Win32 API.

Before entering the loop, though, the program does a few odd-looking

things that you probably don’t expect to see in a Win32 program.

For example, CHGDIR calls the GetCurrentThreadld Win32 API

and interprets the returned thread ID as a Ring 3 Thread Control Block

(THCB). At least in the beta version of Chicago this book is based on,

the WORD at offset ICh in the Ring 3 THCB is the Winl6 TDB. (Of

course, any or all of this might change in the final released version of

Chicago.) The Win32 application can dereference its own thread ID (a

3 2 -bit near pointer such as 810FE91Ch) and retrieve a selector to its

TDB without any problem. Notice that because CHGDIR is a 3 2 -bit

program, it doesn’t need far pointers to access this external data:

WORD tdb = *( (WORD *) (((BYTE *) GetCurrentThreadId( ) ) + 0x10);
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A selector to its own TDB won’t do a Win32 application much good,

however. CHGDIR needs the 3 2 -bit linear address of its own TDB. In a

Win32 program, this 3 2 -bit linear address (such as 800E0A80h) can be

used as a near pointer, assuming that the linear address is mapped into

your address space. The GetSelectorBase function from the Win 16 API
is not supported in the Win32 API, so we’ll have to use something else.

DPMI provides a function (INT 3 lh function 6, Get Segment Base

Address) that, given a selector, returns its linear base address:

BYTE *tdb_drv, *tdb_curdir, *tdb_base;

_asm mov bx, tdb

DPMICal 1 (0x0006 , 0); // Get Selector Base

_asm mov word ptr tdb_base+2, cx

_asm mov word ptr tdb_base, dx

DPMICall is just a wrapper around the undocumented VxDCall ser-

vice provided by KERNEL32 (see “Win32 File Handles and Thunking”

in Chapter 14). CHGDIR uses GetProcAddress to get a function pointer

to VxDCall (whose actual name in KERNEL 3 2 is VxDCallO):

// Use run-time dynamic linking to turn strings

// into callable function pointers

//define GET_PROC(mod , func) GetProcAddress(GetModuleHandle(mod) , ( f unc )

)

//define VWI N32_I NT31_CALL 0x2A0029

//define DPMICal 1 (eax, ecx) VxDCall ( VW I N32_I NT3 1_CA L L , (eax), (ecx)

)

DWORD (WINAPI *VxDCal 1 ) ( DWORD srvc, DWORD eax, DWORD ecx);

VxDCall = G ET_P ROC
(

"KERNEL32" , "VxDCallO");

After using DPMICall, CHGDIR should have a readily usable 3 2 -bit

flat pointer to its own TDB. Just to make sure, CHGDIR calls INT 2 lh

function 62h (again with VxDCall, this time using Win32 service

2A0010h) to get the PSP, and compares the returned selector with the

WORD at offset 60h in what, we hope, is the TDB. As explained earlier,

offset 60h in the TDB holds a protected-mode selector to the task’s PSP.

This is true for Win32 as well as Win 16 tasks:

WORD psp;

DosCall (0x6200. 0); // Get Current PSP

_asm mov psp, bx

assert(*( (WORD *) (tdb_base + 0x60)) == psp);

Finally, just before entering its read-eval-print loop, CHGDIR creates

pointers to offset lOOh in the TDB, where the current directory is stored,

and to offset 66h, where the current drive is stored:

tdb_curdir = tdb_base + 0x100;

tdb_drv = tdb_base + 0x66;
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Inside the loop, whenever the user does a CD (SetCurrentDirectory),

CHGDIR prints the contents ofTDB+66h and TDB+lOOh:

SetCurrentDi rectory (&buf[ 3] )

;

pri ntf
(

"TDB+66h : %02Xh\n", *tdb_drv);

pri ntf
(

"TDB+100h : \'%s\'\n", tdb_curdir);

Here’s some sample output from CHGDIR:

Thread ID: 810FF300h

TDB : 1 CA6 h

TDB base: 800E0CA0h

PSP: ICEFh

[C:\UNAUTFIW\TEST] md This is a long directory name

EC : \UNAUTHW\TEST] cd This is a long directory name

TDB+66h : 82h

TDB+100h: * \UNAUTHW\TEST\Thi s is a long directory name'

EC : \UNAUTHW\TEST\Thi s is a long directory name] md This is another long \

directory name

[C:\UNAUTHW\TEST\This is a long directory name] cd This is another long \

directory name

TDB+66h : 82h

TDB+1 00 h :
' \UNAUTHW\TEST\Thi s is a long directory name\This is another \

long directory name'

EC : \UNAUTHW\TEST\Thi s is a long directory name\This is another long \

directory name] cd \

TDB+66h : 82h

TDB+100h :
'
\

'

EC:\] cd unauthw\test

TDB+66h : 82h

TDB-t-1 00h :
' \unauthw\test

'

EC: \unauthw\test] cd h:\

TDB+66 h : 87h

TDB+100h : 'V

[h:\] cd c:

TDB+66h : 82h

TDB+100h :
'
\

*

Indeed, TDB+66h holds the current drive (in the form described in

the earlier discussion of the internal KERNEL SaveState function), and

TDB+lOOh holds the current directory.

Note that the SetCurrentDirectory and GetCurrentDirectory APIs

manipulate not only the directory but also the drive. There isn’t a sepa-

rate SetDrive or SetVolume function in the Win32 API. If you want to

change drives, you call SetCurrentDirectory. (Note the CD H: and CD



Chapter 13: Thunk! KERNEL32 Calls KRNL386

C: in the preceding CHGDIR output; this is not legal in Windows 95 ’s

COAlMAND.COM, by the way.) SetCurrentDirectory also supports

\\servername\sharename (UNC) disk designators.

The absence of a separate change-drive function does have one

unusual effect, which can be seen at the end of the CHGDIR output: if

you’re at C:\unauthw\test (note that the names are case-insensitive but

case-preserving), and call SetCurrentDirectory (H:), and then SetCur-

rentDirectory (C:), you’ll wind up not at C:\unauthw\test but at C:\.

From this one example, Windows 95 appears to have no built-in notion

of multiple current directories on different drives. MS-DOS in contrast

gives each drive its own current directory, maintained in the internal

Current Directory Structure (CDS; see Undocumented DOS
,
2d ed., pp.

163-167,443-449).

To see how CHGDIR looks to real-mode DOS, I ran the program

with V86TEST. A wide variety of INT 2 lh calls appeared. To try to

understand all these INT 2 lh calls showing up at V86TEST, I wrote a

Win32 Console application, NOTHING.EXE, which consisted of

nothing but

mainO { return 0; }

I then ran that under V86TEST and compared the V86TEST output

from CHGDIR with the V86TEST output from NOTHING. CHG-
DIR is responsible for only three different INT 2 1 h calls:

06 : 43550 40 : 140 62 : 1

The large number of calls to function 06h (Console I/O) represent

time CHGDIR spends inside the C gets function, waiting for input.

(Hmm, why the spin cycle? Why not block the VM until some input is

ready?) The Microsoft C 3 2 -bit run-time library implements gets with a

call to ReadFile. Reading from the console generates a VxDCall to the

VCOND (Virtual CON Device) VxD. The actual function 06h call is

generated in V86 mode by CONAGENT.EXE which, in turn, is

launched by VMM32 when you start a Win32 Console application.

The function 40h (Write) calls come from CHGDIR’s printfs to std-

out. And the function 62h (Set PSP) call is CHGDIR’s VxDCall-

(0x2A0010, 0x6200, 0).

Without dwelling on the fact that a Win32 application (albeit a char-

acter-mode one) uses real-mode DOS for input (remember, Windows 95

supposedly does away with real-mode DOS), the important point here is

that V86TEST— and therefore real-mode DOS — didn’t see any calls
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to get or set the current directory or the current drive. Although these

Win32 APIs might have more involvement with the Win 16 kernel than

Microsoft cares to acknowledge, we can at least see that they aren’t call-

ing down to real-mode DOS, even though internally they use INT 2 lh

function 7 lh.

What does WSPY2 1 think of this Win32 Console application? If a

Win32 Console application calls FreeConsole to detach from the current

console (usually a DOS box) and calls AllocConsole to create a separate

one (in Windows 95, these consoles are just VMs), WSPY21 will see the

Win32 application call INT 2 lh function 4Bh to start

CONAGENT.EXE. But in the case of CHGDIR, WSPY2 1 sees nothing

special. In fact, WSPY2 1 displays the same results for CEIGDIR as for

NOTHING:

<W I NO LDAP> *(50)

<W I NO LDAP) (55)

<W I NO LDAP) *( 1A)

<W I NO LDAP> *(71)

< W I NO LDA P> *(50)

<KERNEL32> *(50)

<KERNEL32> *(00)

<KERNEL32> *(50)

Set PSP 167 ( 00 A7 h

)

(Undoc) Create PSP 7407 ( ICEFh )

,

Set DTA 1E57 : 0080

LFN ( 3B ) ChDir '\WIND0WS'

Set PSP 7767 (lE57h)

Set PSP 7407 (ICEFh)

Ex i t

Set PSP 167 ( 00 A7 h

)

256 ( 0 1 00 h

)

Note that the PSP created by WINOLDAP (here, ICEFh) matches

the PSP that CHGDIR displays when it starts up.

But why do Win32 processes need Win 16 TDBs in the first place?

For one thing, Win32 applications require Win 16 TDBs to work with

the existing Win 16 messaging system in USER. A lot of attention has

been paid to the fact that Windows 3 .x has a single input queue shared by

all tasks — so a task that doesn’t yield will lock out every other task—
and to the solution in Windows 95 of giving each thread its own input

queue. Microsoft refers to this as input desynchronization. However, one

point hasn’t been stressed enough: the Windows messaging system still

resides in Win 16-land.

Matt Pietrek has pointed this out in Microsoft Syste?ns Journal (“Inves-

tigating the Hybrid Windowing and Messaging Architecture of

Chicago,” September 1994, p. 17):

Even though the window procedure for a 32-bit program window is written in 32-bit

code, existing 16-bit applications ... expect any window, regardless of whether it’s 16

or 32 bits, to act just like it would in Windows 3.x. Consider something like window

subclassing.... If Chicago were to store a 32-bit linear address in the WND structure,

things would quickly go up in smoke. To prevent such problem scenarios, Chicago

goes to great lengths to make all windows behave as if they were 16-bit windows.
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One of the lengths to which Windows 95 goes to make Win32 win-

dows behave like Win 16 windows is to give every Win32 task a Win 16

TDB with a Win 16 task queue.

Furthermore, every Win32 WndProc has a corresponding Win 16

WndProc. As far as the USER windowing system is concerned, all win-

dows are 16-bit, with 16-bit WndProcs and 16-bit message queues. You

can easily see this with any Win 16 program that walks the window list.

For example, WALKWIN.C in Listing 13-4 is a simple WINIO applica-

tion that uses the GetWindow API to walk the window list:

Listing 13-4: WALKWIN.C

// WALKWIN.C

//include <stdlib.h>

//include <string.h>

//include <dos.h>

//include "windows.h"

//include "toolhelp.h"

//include "winio.h"

void pri nt_hwnd(HWND hwnd, int level)

{

char ta s kname [ 9 ]

;

char wndproc_owner[9]

;

GLOBALENTRY *pge;

HANDLE htask, htaskq;

void far *wndproc;

char *wndtext, *classname;

i nt f 1 a g32 , i

;

if (! (wndtext = (char *) mal 1 oc( 128) )

)

fai 1
( "Insuffi ci ent memory" )

;

if (! (classname = (char *) mal 1 oc( 128) )

)

fail ("Insufficient memory")

;

// get information about this window

htask = GetWindowTask(hwnd)

;

GetWi ndowText( hwnd ,
wndtext, 128):

wndproc = GetCl assLong( hwnd ,
GCL_WNDPROC)

;

GetCl assName( hwnd ,
classname, 128);

f 1 ag32 = *
( (WORD far *) MK_FP ( htask, 0x16)) & 0x10;

htaskq = *
( (WORD far *) MK_FP ( htask , 0x20));

_fmemcpy(taskname, M K_ F P ( h t a s k ,
0xF2), 8):

taskname[8] = ' \0
'

;

// use Tool Hel p to get module name of WndProc owner

wndproc_owner[01 = ' \
0

'

:

if (

!

(pge = (GLOBALENTRY *) mal 1 oc(si zeof( GLOBALENTRY )))

)

fail ("Insufficient memory"):

pge->dwSize = sizeof (GLOBALENTRY)

;

if (Global EntryHandle(pge, FP_SEG( wndproc ) )

)
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MODULEENTRY *pme;

if ( ! (pme = (MODULEENTRY *) mal 1 oc( si zeof (MODULEENTRY )))

)

fail
(

" Insuffi ci ent memory" )

;

pme->dwSize = si zeof (MODULEENTRY )

;

if (ModuleFindHandle(pme, pge->hOwner )

)

strcpy (wndproc_owner
,
pme->szModul e)

;

free(pme)

;

}

free(pge)

;

// print information:

// W Task hWnd hTask TaskQ WndProc (owner) Wnd Class Wnd Text

// for example:

// 32 CAB32 0188h 1276h 207Fh 079F : 3E66 (USER) 'Static' "&Named:"

for ( i=0 ; i <1 evel ; i++)

printfC "):

pri ntf
(

"%s %s %04Xh %04Xh %04Xh %Fp (%s) \
’ %s\

' ",

fl a g32 ? "32"
:

"16",

taskname, hwnd, htask, htaskq,

wndproc, wndproc_owner , classname);

if (wndtext && *wndtext)

printf("\"%s\"" , wndtext):

pri ntf
(

"\n" )

;

f ree( cl assname)

;

f ree(wndtext)

;

void walkwin(HWND hwnd, int level) // recursive depth-first walk

{

if (hwnd == 0)

return

;

hwnd = GetWindow( hwnd , GW__HWNDFI RST )

;

while (hwnd)

{

print_hwnd(hwnd, level);

wal kwin(GetWindow(hwnd, GW_CH I LD ) ,
level +1 )

;

hwnd = GetWi ndow( hwnd , GW_HWN DN EXT )

;

main(int argc, char *argv[])

{

wi ni o_setpai nt( hMainWnd, FALSE);

pri ntf
(

"%s\n"

,

"W Task hWnd hTask TaskQ WndProc (owner) Wnd Class Wnd Text");

wal kwi n ( G e t W i ndow(GetDesktopWindow( ) , GW_CH I LD ) , 0);

wini o_setpai nt( hMai nWnd , TRUE)

;

return 0;

}

This Win 16 program can easily find the window handle, the TDB (from

which it can extract the task name and message queue address), WndProc,

class name, and window tide not only of other Win 16 applications but also
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of each running Win32 application. Here’s a small portion of output from

WALKWTN while I was running the Clock, WinBezMT, and FreeCell

Win32 applications (along with WALKWIN itself):

32 CAB32 00D0h 1276h 207 Fh 167 F : 0022 (KERNEL) ' tool ti ps_cl ass32

’

32 CAB32 00C4h 1276h 207Fh 167F : 0022 (KERNEL) ' tool ti ps_cl ass32

'

32 CAB32 0 0 B4 h 1276h 207 Fh 167F : 0114 (KERNEL) ' Shel l_TrayWnd

'

32 CAB32 00B8h 1276h 207 Fh 079F : 3E61 (USER) ’Button’

32 CAB32 00BC h 1 27 6 h 207 Fh 167 F : 01AE ( KERNEL) 'TrayNoti fyWnd

'

32 CAB32 00C0h 1 27 6h 207 Fh 167F : 01C4 (KERNEL) 'TrayCl ockWCl ass

’

32 CAB32 00C8h 1 2 7 6 h 207 Fh 167F : 01DA ( KERNEL) ’ MSTaskSwWCl ass’

32 CAB32 00CCh 1 27 6 h 207 Fh 167F : 007A (KERNEL) ' SysTabControl 32

'

16 MSGSRV32 0 088 h 1 3 E F h 1 67 7 h 0797 : 06A2 (USER) ’#32768'

16 MSGSRV32 0 084 h 1 3 E F h 1 67 7 h 0777:0005 (USER) ’#32771'

16 WALKWIN 0 5 D0 h 2787 h 27 2 Fh 2847 : 2B1B (WALKWIN)
'

wi ni o_wcmai
n '

"WALKWIN

16 WINOLDAP 04 5C h 1 E07 h lCFFh 1227:0069 ( COMMCTRL) ' tool ti ps_c lass

'

16 WINOLDAP 04 5 0 h 1 E07 h lCFFh 1 EB7 : 0B07 (WINOLDAP) ’tty’ "COMMAND"

*

32 FREECELL 0 1 28h 1 B46 h lBIFh 167F : 05FA (KERNEL)
'

FreeWCl ass
'

"FreeCell

Game #5755"

32 WINBEZMT 0 1 4C h lA56h 1 B4 Fh 167F: 0702 (KERNEL)
'

winbezmt' "32 -bit

Mu 1 ti -Threaded Wi nBez"

32 WINBEZMT 0150h lA56h 1 B4 Fh 07E7 : 0000 (USER) 'MDIC1 ient

’

32 WINBEZMT

"Thread Window 1

0228h
it

lA56h 1 B4 Fh 167F: 0718 (KERNEL) ' ThreadCl ass

32 WINBEZMT

"Thread Window 2

0 2 24 h

»i

1 A5 6 h 1 B4 F h 167F : 0718 (KERNEL) 'ThreadCl ass

» • • •

32 CAB32 0 1 5C

h

1 2 7 6 h 207 Fh 079F

:

3E70 (USER) ’#32770’ "Find: All

32 CAB32 0 184 h 1276h 207 Fh 079F : 3E70 (USER) ’#32770’ "Name & Location"

32 CAB32 0 1 88h 1276h 207Fh 079F : 3E66 (USER) ’Static’ "&Named:"

32 CLOCK 0 1 2 0 h ICAEh lC6Fh 167F : 04F2 (KERNEL) 'Clock' "Clock"

32 BATMETER 00D8h 1 F9 Eh 1 FA7 h 1 67 F : 02 F8 (KERNEL) ’ BatteryMeter_Mai
n

'

"Battery Meter"

32 BATMETER 00DCh 1 F9 Eh 1 FA7 h 079F : 3E61 (USER) 'Button' "Power Status"

32 CAB32 00 D4 h 1 2 7 6 h 207 Fh 167 F : 016C (KERNEL) ' ProxyTarget

'

32 CAB32 00 B0 h 1 2 7 6 h 207 Fh 167 F : 016C (KERNEL) ' ProxyTarget

'

32 CAB32 0 0 A0 h 1 2 7 6 h 207 Fh 17D7 : 503E (DDEML) ’ DMGFrame

’

32 CAB32 009C h 1 2 7 6 h 207 Fh 17D7 : 5104 (DDEML) ’ DMGC1 ass’

32 CAB32 0 1 1 0 h 1276h 207 Fh 17D7 : 52EA ( DDEML) ’ DMGHol di ngCl ass’

32 CAB32 0094 h 1276h 207 Fh 167F : 00FE (KERNEL) ' OTT i merCl ass’

16 MSGSRV32 0090h 1 3 E Fh 1 677 h 13D7 : 0458 (MSGSRV32) 'Windows 32-bit VxD

Message Server'

16 TIMER 008Ch 130Fh 1 2C Fh 1377:0332 (MMSYSTEM) '#42'

32 CAB32 0098h 1276h 207 Fh 167F : 012A (KERNEL) 'Progman' "Program Manager

32 CAB32 00 A4 h 1276h 207 Fh 167F:0156 (KERNEL) ' SH E L LD L L_Def V i ew

'

32 CAB32 00A8h 1276h 207 Fh 167 F : 004E (KERNEL) ’ SysLi stVi ew32

'

32 CAB32 00 AC h 1276h 207 Fh 167 F : 0064 (KERNEL) ’ SysHeader32

'

WALKWIN uses the Win32 flag at offset 16h in the TDB to deter-

mine whether the window belongs to a Win 16 or Win32 application.

Apart from that flag (shown as 16 or 32 at the beginning of each line) and
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your knowledge of which applications are Win 16 or Win32, there would

be no way of knowing an application’s “bitness” from looking at the other

items WALKWIN displays. And that is the whole point here: As far as

the Windows 95 windowing system is concerned, Win32 applications

look much like Win 16 applications, down to their use ofKERNEL
structures such as the TDB and task message queue.

To make it 100 percent clear that all windows belonging to Win32

applications really do have Win 16 WndProcs, WALKWIN uses the

ToolHelp API to retrieve the name of the owner of the segment in which

each WndProc resides. As you can see from the WALKWIN output, the

WndProcs for the built-in Win32 window classes such as Button, MDI-
Client, and Static are located in the Win 16 USER module, and the

WndProcs for the Win32 application-specific windows belong to the

Win 16 KERNEL.
Win32 applications such as CAB32, WinBezMT, Clock, and FreeCell

are all calling the Win32 version of RegisterClass from USER32.DLL,
and all install 3 2 -bit WndProcs. But WM_XXX messages in Windows 95

always go to 16-bit WndProcs. These 16-bit WndProcs thunk up to the

3 2 -bit WndProcs installed by Win32 applications. (This message-thunk

mechanism is explained in the September 1994 Microsoft SystemsJournal

article by Matt Pietrek.) Similarly, USER32 APIs such as GetMessage

thunk down to their Win 16 counterparts in USER.
This all looks fairly similar to the scheme used in Win32s. In Win-

dows 95, if you trace through a message thunk, from the arrival of a

WM_XXX message at a Win 16 WndProc proxy to the delivery of the

message to the Win32 WndProc, you’ll encounter a call to function in

KERNEL32 named W32S_BackTo32. For what it’s worth, a function

with the same name appears in the Win32s W32SKRNL.DLL module.

Running WALKWIN with some Win32 applications under Win32s, fur-

thermore, reveals the same basic approach we saw in Windows 95: In the

case of the built-in window classes, Win 16 WndProc proxies belong to

USER; the Win 16 proxies for application-specific Win32 WndProcs

belong to WIN32S 16. For example:

32 WINBEZMT 256Ch lD67h 1 D2 Fh 1 F07 : 0042 (WIN32S16) ’winbezmt' "32-bit

Mu 1 ti -Threaded WinBez"

32 WINBEZMT 25C0h lD67h 1 D2 Fh 06FF : 1062 (USER) 'MDIClient'

32 CLOCK 2468h lDFFh 1 DD7 h 1 F07 : 002C (WIN32S16) ’Clock’ "Clock - 9/9/94"

32 FREECELL lED8h 125Fh 1167h 074F : 0429 (USER) ’#32770' "About FreeCell"

32 FREECELL 22E0h 125Fh 1167h 074F : 2313 (USER) 'Static' "Memory:"

32 FREECELL 2328h 125Fh 1167h 074F : 2313 (USER) 'Static' "8.048 KB Free"
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32 FREECELL 2370h 1 2 5 Fh 1 1 67 h 074F : 2313 (USER) ' Stati
c

'

"System Resources:"

32 FREECELL 23B8h 1 2 5 F h 1 1 67 h 074F : 2313 (USER) ' Stati
c

'

"85% Free"

32 FREECELL 2400h 1 2 5 F h 1 1 67 h 074F : 1A12 (USER) ' Button

'

"OK"

32 FREECELL lE98h 1 2 5 Fh 1 1 67 h 1 F07 : 0016 (iWIN32S16) ' FreeWCl ass

'

" FreeCel

1

Game #7260"

Despite important changes such as input desynchronization, the mes-

saging system in Windows 95 remains resolutely 16-bit, much as it was

in Windows 3.x. The scheme for supporting Win32 messages looks much
as it does in Win32s. Win32 applications participate in Windows 95 mes-

saging by virtue of their Win 16 proxies.

Now, the Win 16 USER messaging system is totally dependent on

Win 16 KERNEL data structures, especially the task message queue. As

Undocumented Windows (p. 380) notes, it is sometimes hard to decide

where USER ends and KERNEL begins:

Because messages are really posted to a task, not a window, it makes sense that

the Task Queue itself is a KERNEL rather than a USER data structure. On the other

hand, many routines inside USER have intimate knowledge of the Task Queue struc-

ture; these include ReplyMessage(), InSendMessageQ, GetMessageTime(), GetMes-

sagePosQ, and PostQuitMessage()....

Actually, it is difficult to decide whether the Task Queue is a KERNEL or a USER data

structure. Really, it’s shared between the two modules, and in fact provides most

of the glue between KERNEL and USER. The GetTaskQueueO and SetTaskQueueQ

functions are in KERNEL, but the Task Queue itself is created by the InitAppQ function

in USER.

Put together these two facts— Win32 message support depends on

Win 16 message support, and Win 16 message support depends on Win 16

KERNEL data structures— and it is clear that Win32 support in Win-

dows 95 must rest on the Win 16 KERNEL. The idea that USER32
thunks down to USER but that KERNEL32 doesn’t thunk down to

KRNL386 is absurd. Indeed, in a Windows 95 system running only

Win32 applications, a data-access breakpoint (BPR in Soft-ICE/Win-

dows) placed on the TDBs and task queues will be triggered all the time.

Well, so what? Win32 applications need Win 16 TDBs for compatibil-

ity with the Windows messaging system. And in any event, Windows 95

needs the Win 16 kernel to run Win 16 applications. What’s wrong if

KERNEL32 sometimes uses the code that already exists in KRNL386?
There’s nothing at all wrong with it, except that Microsoft claims that,

unlike USER32 which almost always thunks down to Winl6 USER, and

GDI32 which frequently thunks down to Win 16 GDI, supposedly KER-
NEL32 never thunks down to KRNL386:
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Most of the code in USER32 is little more than a layer that accepts 32-bit API calls

and hands them off to its 16-bit counterpart for processing.... [This is] a sensible way

of using tried and trusted code — after all, the 16-bit API implementations have to be

there for compatibility. GDI32 offers come significant performance improvements.

Consequently, the 32-bit GDI handles a lot of API calls directly.

The KERNEL32 module is completely independent of its 16-bit version. There is some
communication from the 16-bit to the 32-bit side, but the 32-bit KERNEL never calls

across to the 16-bit side. This is as you’d expect, since most of the code (for exam-

ple, memory allocation and thread management) is quite different.

— Adrian King, “Memory Management, the Win32 Subsystem, and Internal

Synchronization in Chicago," Microsoft Systems Journal, May 1994, p. 58.

The statements that KERNEL32 is “completely independent” of the

16-bit KRNL386 and that “the 3 2 -bit KERNEL never calls across to the

16-bit side” are simply untrue, as we’ll soon see. And, as with the similar

“never” statements regarding Windows and MS-DOS quoted in the pre-

ceding chapter— such as “if you only run Windows-based applications,

you’ll never execute any MS-DOS code” — what comes to mind are a

few lines from Gilbert and Sullivan’s HMS Pinafore. The ship’s captain

sings that he never, ever swears, and the chorus questions whether this is

really true:

Chorus: What, never?

Captain: No, never.

Chorus: What, never?

Captain: Well, hardly ever.

Unfortunately, the computer trade press often performs as a quite dif-

ferent kind of chorus: When Microsoft mentions some Windows 95

compromise, such as Winl6Lock (see “Win 16 Everywhere” in Chapter

14), the press gets all bent out of shape. However, if Microsoft tells the

press something it wants to hear, such as that some piece of 16-bit code is

gone, there seems to be little attempt made to verify whether this is true.

The PC trade press sometimes seems like a chorus of parrots with

inverted priorities.

Instead of beating Microsoft up over necessary compromises such as

Winl6Lock, and then turning around and wholeheartedly believing the

company when it says that real-mode DOS is gone or that the Win32 ker-

nel doesn’t rely on the Win 16 kernel, it would be better to neither second-

guess Microsoft’s architectural compromises, nor believe the company

when it claims that it has eliminated such necessary compromises.

The computer trade press has dutifully repeated Microsoft’s claims

regarding the Win32 kernel’s supposed total independence of the Win 16



Chapter 13: Thunk! KERNEL32 Calls KRNL386

kernel. As one example, Windows Magazine
,
in “A Revealing Look at

the Architecture” (July 1994, p. 186), presents a diagram purporting to

show that thunks in Chicago go USER 3 2-> 1 6, GDI 3 2 <->16, but

KERNEL 3 2 <-16, and asserts that “All Chicago kernel components

(task management, memory paging, file systems) are implemented using

3 2 -bit protected mode.”

No one who tried to independently verify Microsoft’s statements

could possibly say this. Even without disassembling the code, readily

available debugging tools such as Soft-ICE/Windows and WinScope

show, for example, that Windows 95 task management requires both

16-bit protected-mode code and some real-mode code. Once you see

that every Win32 process has a Win 16 task database and real-mode

DOS PSP, everything else falls into place. KERNEL swings both ways

(32<-> 1 6): Certainly KRNL386 calls up to KERNEL32, but KERNEL-
32 calls down to KRNL386 as well (as we already saw with the LoadLi-

braryl6 and GetProcAddressl6 calls, and as we’ll soon see in more

detail). There’s no good reason it shouldn’t. Later, we’ll look at the not-

so-good reasons for claiming it doesn’t.

King’s point about using the “tried and trusted code” in USER is an

important one. This point is valid even if you don’t believe that all the bugs

have been shaken out of this code. (I once had an opportunity to glance at

the USER source code and was frankly appalled.) As Matt Pietrek puts it:

USER.EXE is what’s sometimes referred to as ‘legacy code.’ It’s been modified, tin-

kered with, and otherwise tweaked for more than half a decade...there are, no doubt,

peculiarities within USER.EXE that applications have come to rely on as normal

behavior. It’s likely that no one person can fully keep a working model of USER and

all its assumptions and quirks in his or her head. If USER’S code were ported to com-

pletely 32-bit code, existing applications would break.

— Matt Pietrek, “Investigating the Hybrid Windowing and Messaging

Architecture of Chicago,’’ Microsoft Systems Journal, September 1994,

pp. 15-16.

In other words, the devil you know is generally preferable to the sup-

posed angel you’ve never met. The USER code has been banged on for

years by millions of users out in the real world. This (and not the suppos-

edly independent oversight of an easily confused, cajoled, and hood-

winked trade press) is the highest scrutiny of all. It’s unlikely that any of

the supposedly “genuine” operating systems favored by the operating sys-

tem purists and pundits could survive such mass-market pounding.

But there’s one thing I don’t get: If the point applies to USER, then

why not to KERNEL too? Adrian King says that the supposed indepen-

dence ofKERNEL32 from the Win 16 KERNEL “is as you’d expect,” but
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I don’t see this at all. We already know that Win 16 USER handles WM_
XXX messages for Win32 applications, and it is well known that the

USER messaging system is heavily dependent on KERNEL task manage-

ment. (See the earlier quote regarding the task queue from Undocumented

Windows
,
p. 380, and see Windows Internals, Chapter 7.) Since Windows

95 uses Win 16 for WM_XXX message handling, it is to be expected that

Win32 would need the Win 16 KERNEL at least to give each Win32

process a USER-compatible task queue and TDB. Given that USER32
APIs such as GetMessage thunk down to their Win 16 USER equivalents,

and given that message queue management continues to be the responsi-

bility ofWin 16 USER, it logically follows that Win32 KERNEL32 must

use some services from the Win 16 KERNEL.
\

From Explorer to Create PSP

in Six Easy Steps

It’s okay ifyou didn’t quite follow my logic just now, because the fact is

that Windows 95’s KERNEL32 does use services from the Win 16 kernel.

Recall the following important line ofWSPY21 output, which

appears whenever CAB 3 2 launches an application, even another Win32
application:

<CAB32> *(55) (Undoc) Create PSP 7503 (lD4Fh) , 256 (0100h)

How do you get from clicking an application’s icon in the Explorer to

generating an INT 2 lh function 55h that is sent down to real-mode

DOS? Interestingly, the path goes right through the Winl6 kernel:

• When you select an application to run from the Explorer, CAB 3 2 calls

the ShellExecuteEx API in SHELL32. This API in turn calls the

Win32 version of WinExec in KERNEL32. Win32 applications are

supposed to use CreateProcess rather than WinExec, so WinExec is

now just a compatibility layer around CreateProcess.

• Tracing through CreateProcess (actually, CreateProcessA), we eventu-

ally get to the following block of code:

0137 : BFF91A67 MOV CL. 31

0137 : BFF91A69 PUSH EBP

0137 : BFF91A6A MOV EBP, ESP

0137 : BFF91A6C PUSH ECX

: thunk #
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0137 : BFF91A6D SUB ESP.+3C

0137 : BFF91A70 PUSH WORD PTR [ E B P+08

]

: 0A7h

0137 : BFF91A74 PUSH DWORD PTR [EBP+0C]
: 810 FD9A4h

0137 : BFF91A77 PUSH WORD PTR [ EBP+10]
: 1 E9 7 h

0137 : BFF91A7B CALL [BFF9181A]
; B FFB7 C44h

0137 : BFF91A81

0137 : BFF91A84

MOVZX

LEAVE

EAX.AX

0137 : BFF91A85 RET 000C

Tracing into the CALL [BFF9181A], we get to the following

(incidentally, some

thunk compiler):

of this code looks like output from Microsoft’s

0137 : BFFB7C44 OdOX ECX.ECX

0137 : BFFB7C46 MOV CL, [EBP-04]
; 3 1 h thunk#

0137 : BFFB7C49 MOV EDX , [0 003 0464+4* ECX] ; 0117653Fh (see below)

0137 : BFFB7C50 MOV EAX , BFF71247

0137 : BFFB7C55 JMP m > X

Notice that the code is using 3 lh in CL as an index into a table of

DWORDs. We’ll look at this table more closely in a few minutes.

Right now, what matters is that slot 3 lh in the table contains the

value 01 17653 Fh and that the code has moved this value into the

EDX register.

Next, we jump to BFF71247h, which, it turns out, is the routine

QT_Thunk in KERNEL32:

KERNEL32 ! QT_Thunk

0137 : BFF71247 TEST BYTE PTR FS : [0000001C] .01

0137 : BFF7124F JE BFF71320

0137 : BFF71255 POP DWORD PTR [EBP - 24

]

0137 : BFF71258 PUSH DWORD PTR [BFFB7CD8]

0137 : BFF7125E PUSH EDX : : Wi

0137 : BFF712B4 RETF

W i n 1 6 addr to call

When QT_Thunk issues the RETF, we suddenly are no longer in

KERNEL32. Instead, QT_Ehunk “returns” to the (phony) return

address that was pushed on the stack. Note the PUSH EDX near the

top of QT_Thunk; recall that EDX holds the value 01 17653Fh

extracted from slot 3 lh in the table ofDWORDs at 30464h. Execut-

ing the RETF at the end of QT_Thunk takes us to the segment:offset

address in EDX that was pushed on the stack:

0117: 0000653F PUSH

0117:00006540 MOV

0117:00006542 PUSH

0117:00006545 PUSH

0117:00006549 PUSH

BP

BP ,
SP

WORD PTR [BP+0C]

DWORD PTR [BP+08]

WORD PTR [BP+06]
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Segment 01 17h belongs to the Win 16 kernel. Thus, through the mir-

acle of QT_Thunk and that table at 30464h, KERNEL32 has called

down to some code in the Win 16 kernel. (Well, not quite a miracle:

QT_Thunk jumps to a piece of 16-bit code by pushing its full 48-bit

address on the stack and then “returning” to it.)

* Ifwe trace through this KERNEL code, we eventually arrive at the

call to INT 2 lh function 55h:

011F : 000041 1 E MOV

0 1 1 F : 00004121 MOV

011 F : 00004124 MOV

01 1 F -.00004126 INT

DX , [BP+08]

SI , [BP+06]

AH, 55

21

So where in KERNEL are we? Recall our earlier discussion, based on

Matt Pietrek’s Windows Internals
,
about the internal CreateTask function in

KRNL386,which calls BuildPDB, which calls INT 2 lh function 55h.

We’re somewhere in CreateTask; KERNEL32 thunk #3 lh provides a way

for Win32 code such as CreateProcess to call KERNEL’S 16-bit Create-

Task function.

Those innocent-lookingMOV AH,55h and INT 2 lh instructions are

hardly the end of the trip. The trip has barely begun, in fact. Since KER-
NEL has called INT 2 lh in protected mode, the call will go to the pro-

tected-mode INT 2 lh chain. KERNEL’S own INT 2 lh handler is

typically at the front of this chain. KERNEL passes the call down to what

we’ve called KernelDosProc, which is the previous owner of the INT 2 1 h

vector, usually a VxD. If no one on the protected-mode INT 2 1 h chain

absorbs the function 55h call (and it is likely no one will), the INT 2 lh is

sent to the V86 INT 2 lh hook chain (where VxDs such as IFSMgr and

DOSMGR will see it) and thence to the actual V86 interrupt chain, where

various device drivers and TSRs will get a peek at the INT 2 lh before

DOS sees it and creates a PSP.

The outgoing part of the trip looks like this:

Click on icon in CAB32 ->

SHELL32! Shel 1 ExecuteEx ->

KERNEL32 ! Wi nExec ->

internal KERNEL32 ! CreateProcess ->

thunk #31 h ->

KERNEL321QT_T hunk ->

internal KRNL386 ! CreateTask ->

internal BuildPDB ->

INT 2 1 h function 5 5 h ->

PM INT 2 1 h chain (KERNEL -> KernelDosProc -> etc.) ->

V86 INT 21 h hook chain (IFSMgr -> DOSMGR -> etc.) ->

V86 mode INT 21h chain ( V86TEST -> IFSHLP.SYS -> etc.) ->

real -mode DOS
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That provides a quick answer to the question posed earlier about how
clicking an application’s icon in the Explorer can produce a Create PSP
call down in real-mode DOS. The return value from INT 2 Ih function

55h must now travel all the way back to CreateTask, and eventually Cre-

ateTask must return to its KERNEL 3 2 caller.

We’ve just looked at one thunk, #31, through which KERNEL 3

2

causes KRNL386 to issue (among other things) a call to INT 2 lh func-

tion 55h. It’s worth looking at some of the other routines in the thunk

table located at offset 30464 in the System VM. We can dump out the

whole table with the PROTDUMP utility:

C : \UNAUTHW\PROTDUMP>p rot dump

C4430464

C4430474

C4430484

C4430494

C44304A4

C44304B4

C44304C4

C44304D4

C44304E4

C44304F4

C4430504

C4430514

C4430524

C4430534

C4430544

C4430554

: ... don

011F66CE

0127258B

01170105

01270525

011775FD

011F0B5B

0127253B

01177544

01270233

011775D6

011F04CD 011F041D

011F0387

011F02BD

01170144

01170119

01270533

011760A7

011F045B

011F03AD

01170175

011700B8

011F4062

0117 607 B

01176553 0117653F

01176432 011F0018

01170189

01271430

0117022C

01271D73

t know quite where

#1 30464 -dword 0x100

011F4396 01272364

01272527 01272513

011765AB 011703D0

0127017F 01270155

0117764B 01177624

011F0317 011F048D

011F0355 011F03DF

011F023D 011700F1

01170158 011700D4

011F01EF 011F0074

0117470C 01176580

0117605A 0117604B

01176568 01174956

011F00EB 0117019D

01170218 01271331

01271CE6 01271D95

tabl e ends . .

.

Every one of these sixty or so en tries represents a thunk from KER-
NEL32 down to KRNL386: you know, the stuff that supposedly never

happens. Not every thunk in this table is necessarily still used in Win-

dows 95; some of it could be just scaffolding that will be removed or

ignored when the commercial release of Windows 95 is ready. To figure

out what some of these KERNEL 3 2 -> KRNL386 thunks do, and

whether there are any more that are useful or important besides the few

we’ve stumbled across already (LoadLibraryl6, GetProcAddressl6, and

the CreateTask thunk we just examined), it’s sometimes easier to look for

code in KERNEL 3 2 that employs the thunk, rather than at the

KRNL386 code whose address appears in the preceding table. Huh?

Well, here’s what I mean:

KERNEL32 ! Fi ndAtomA

0137 : BFF825E9 PUSH EDI

param validation stuff

0137 : BFF91D4E MOV CL. 06

0137 : BFF91D50 JMP BFF91D60
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KERNE L32! LoadL i bra ry 16

0137 : BFF91D52 MOV CL , 36

0137 : BFF91D54 JMP BFF91D60

KERNEL32 ! Del eteAtom

0137 : BFF91D7F MOV CL , 05

0137 : BFF91D81 JMP BFF91D9D

KERNEL32 ! G1 obal Freel6

0137 : BFF91D8B MOV CL, 23

0137 : BFF91D8D JMP BFF91D9D

KERNEL32 ! 61 obal Del eteAtom

0137 : BFF91D97 MOV CL, 11

0137 : BFF91D99 JMP BFF91D9D

KERNEL32 ! Ini tAtomTabl

e

0137 : BFF91DE6 MOV CL, 03

0137 : BFF91DE8 JMP B FF9 1 Dec

This all makes sense. For example, LoadLibraryl6 is thunk #36; entry

#36 in the table is at 30464+36*4 = 3053Ch, which points to 01 1F:00EB.

This is the address of the LoadLibrary API in Win 16 KERNEL. Simi-

larly, FindAtomA is thunk #6; entry #6 in the table points to 0127:2527.

This is the address of a routine in KERNEL that calls FindAtom.

In short, there are all sorts of circumstances in which KERNEL32
calls down to KRNL386. The table we’ve examined provides KER-
NEL! 2 with the 16-bit selector:offset address for various routines in

KRNL386; KERNEL32 uses QT_Thunk to call the routines. It’s diffi-

cult to believe that anyone would deny that KERNEL32 thunks down to

KRNL386. We’ve just seen that there’s a fairly elaborate mechanism

whose sole purpose is to do just that.

A similar mechanism allows Win 16 code in KRNL386 to thunk up to

the Win32 code in KERNEL32. For example, I noted earlier (in the

“Where’s the Windows 95 Current Directory?” section) that KRNL386
contains functions such as SetCurrentDirectory and GetCurrentDirec-

tory that thunk up to the equivalent functions in KERNEL32.
Now, there’s absolutely nothing wrong ifKERNEL32 needs to call

down to the Win 16 KERNEL. Microsoft surely knows that KERNEL32
does thunk down to the Win 16 KERNEL and that, if nothing else, this fol-

lows logically from the combination of USER32’s dependence on Win 16

USER and Win 16 USER’s dependence on the Win 16 KERNEL. So why
the big claims that KERNEL32 doesn’t need the Win 16 KERNEL?

One reason, I think, is psychological. Microsoft is known for being a

tremendously innovative marketing organization that is fantastically good
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at exploiting whatever opportunities come along. But not many in the

software industry think of the company as particularly innovative techni-

cally. Microsoft has an inferiority complex about its most successful oper-

ating systems, MS-DOS and Windows. For years, the company has been

trying to show that it, too, can build what might in some circles be called

a “real man’s” operating system, and what others might simply dismiss as

a case of “second system syndrome.” Perverse though it may sound, Bill

Gates keeps trying to act like Steve Jobs.

Microsoft has produced wonderfully successful operating systems

which have become the de facto standards for mass-market desktop com-

puting (and the UNIX community, with its boutique-sized installed base,

talks of “open systems”!), but this isn’t good enough. From Bill Gates on

down, Microsoft wants everyone to think that its products not only domi-

nate the desktop but also meet some artificial purist criteria for operating

system goodness.

Hence at least some of the exaggerated claims regarding Windows
95 ’s independence from the old, wildly successful, “tried and trusted,”

DOS and Windows code base. And hence, too, Microsoft’s doth-protest-

too-much assertions that “Chicago is not Win32s!” (referring to a much-

despised but perfectly workable add-on that allows Windows 3. lx to run

some Win32 executables; see Chapter 14). While Microsoft keeps trying

to assert that it has produced “new technology,” I feel a lot safer knowing

that it hasn’t.

But aside from purely psychological motivation, there are also some

firmly practical issues here. For one thing, much of the misinformation

surrounding the Windows 95 architecture comes from Microsoft’s nat-

ural desire (discussed in detail in Chapter 1) to portray Windows 95 as

integrated, and therefore as a no-excuses alternative to the highly inte-

grated, appliance-like Apple Macintosh.

Another reason, probably less important, has to do with Microsoft’s

strange relationship with the computer trade press. The same trade press

that won’t attempt to independently verify Microsoft’s claims also likes to

deride Microsoft over relatively silly issues. In the case of Windows 95,

all the partisans of operating system purity have been complaining that

Windows 95 isn’t sufficiently like Windows NT.

The following quotations aren’t perfect examples, because their

author is a superb journalist whose articles frequently hit the nail on the

head, but they are somewhat representative of the heat that Microsoft

takes simply because Chicago isn’t NT:
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Chicago’s Winl6 support is a potential Achilles heel....

If you use Chicago to run Win32 applications only, it will more closely approximate an

‘NT lite’....

Chicago, when running a mixture of DOS and Winl6 applications, will behave much
like Windows 3.x with a few improvements....

Even at its best, though, Chicago is not the pure 32-bit operating system that NT is.

Instead, it is a 16- to 32-bit hybrid. At the December conference in which Microsoft

distributed its second preliminary developer kits, programmers who hadn’t yet worked

with NT were, in general, more impressed with Chicago than those already familiar

with NT.

— Jon Udell, “Chicago: An Ambitious Compromise,” Byte, March 1994, p. 23.

Notice that, while obviously critical of Microsoft’s quite sensible plans

not to model Windows 95 after the lacklustre NT boutique operating

system, Udell’s article appears to fully accept Microsoft’s distinction

between a Windows 95 running only Win32 applications and one also

running a mixture of DOS and Win 16 applications. The suggestion is

that there is a qualitative difference between these two environments.

In another article (“The Fix Is In for Chicago,” Byte, September 1994,

p. 193), Udell states that “Chicago systems running Win32 applications

should prove much more stable than Chicago or Windows 3 jx systems

running mostly DOS and Win 16 applications.” Although it’s likely that

he’s referring here primarily to Windows 95 ’s capability to give each

Win32 application its own private address space, I think it’s important to

realize that a Windows 95 system, at least as presently constructed, is

never purely running Win32 applications. For one thing, MSGSRV32, a

Win 16 task, is always running. If you take a Windows 95 machine run-

ning only Win32 applications and then start a Win 16 application, there

isn’t much of a qualitative change that takes place.

As one example, below I listed all the loaded modules on a Windows
95 system running nothing except the Explorer. I’ve dropped font files

(which are modules) from the following list, which was produced with the

MOD command in WinICE:

:mod

hMod PEHeader Module Name .EXE File Name

010F KERNEL C:\WIND0WS\SYSTEM\KRNL386.EXE

024F WSSYS c : \ws_chi \wssys . drv

0297 SYSTEM C : \ W I NDOWS\SYSTEM\ system. drv

0167 KEYBOARD C:\WINDOWS\SYSTEM\keyboard.drv

0257 MOUSE C:\WINDOWS\SYSTEM\mouse.drv

029F DISPLAY C:\WINDOWS\SYSTEM\vga.drv

02FF SOUND C:\WINDOWS\SYSTEM\sound.drv

038F COMM C:\WINDOWS\SYSTEM\comm.drv

03EF GDI C:\WINDOWS\SYSTEM\gdi.exe
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075F

17E7

13FF

13A7

132F

13AF

1317

123F

206F

1E77

1DE7

018E 013F: BFF70080

06D6 013F : 810F8564

06DE 013F : 810F8820

071 E 013F : 810F8A8C

1686 013F : 810F8D3C

131 E 013F : 810F9A80

12AE 013F : 810FA55C

12F6 013F : 810FA878

1296 013F : 810FAB18

125E 013F : 810FAF08

1256 013F : 810FB8F8

124E 013F : 810FBB34

1 F5E 013F : 810FC71C

1 F06 013F : 810FD264

1 F0E 013F : 810FD60C

USER

DDEML

MSGSRV32

MMSYSTEM

TIMER

POWER

SHELL

COMMCTRL

SHELL16

WIN87EM

COMMDLG

KERNEL32

GDI32

ADVAPI32

ICM32

USER32

WINMM

MPR

MSPWL32

NETLIB32

CAB32

C0MCTL32

SHELL32

LINKINFO

BATMETER

CRTDLL

C:\WINDOWS\SYSTEM\user.exe

C:\WINDOWS\SYSTEM\DDEML.DLL

C:\WIND0WS\SYSTEM\MSGSRV32.EXE

C:\WINDOWS\SYSTEM\mmsystem.dll

C:\WINDOWS\SYSTEM\mmtask.tsk

C:\WINDOWS\SYSTEM\power.drv

C:\WINDOWS\SYSTEM\SHELL.DLL

C:\WINDOWS\SYSTEM\commctrl .dll

C:\WIND0WS\SYSTEM\shelll6.dll

C:\WIND0WS\SYSTEM\WIN87EM.DLL

C:\WINDOWS\SYSTEM\COMMDLG.DLL

C:\WINDOWS\SYSTEM\KERNEL32.DLL

C:\WIND0WS\SYSTEM\GDI32.DLL

C:\WIND0WS\SYSTEM\ADVAPI32.DLL

C:\WIND0WS\SYSTEM\ICM32.DLL

C:\WIND0WS\SYSTEM\USER32.DLL

C:\WINDOWS\SYSTEM\WINMM.DLL

C:\WINDOWS\SYSTEM\MPR.DLL

C:\WIND0WS\SYSTEM\MSPWL32.DLL

C:\WIND0WS\SYSTEM\NETLIB32.DLL

C:\WIND0WS\CAB32.EXE

C:\WIND0WS\C0MCTL32.DLL

C:\WINDOWS\SHELL32.DLL

C:\WINDOWS\SYSTEM\LINKINFO.DLL

C:\WINDOWS\BATMETER.EXE

C:\WINDOWS\SYSTEM\CRTDLL.DLL

So this is our Windows 95 “steady state,” at least in the current imple-

mentation. Notice the large number of modules for which the PEHeader

field is blank; these are Win 16 DLLs.

Next, I started three Win32 applications: Clock, WinBezMT, and the

Win32 version of LreeCell. The following additional Win32 modules

showed up:

27CE 013F : 81103908 CLOCK

27D6 013F : 81104164 C0MDLG32

26C6 013F : 811043E0 WINBEZMT

232E 013F : 81 100294 MSNET32

1C3E 013F : 811052D8 FREECELL

0BCE 013F: 81105D04 CARDS

27DE 013F: 81105F40 SHELL32

C:\WIND0WS\CL0CK.EXE

C:\WIND0WS\SYSTEM\C0MDLG32.DLL

C:\WINDOWS\WINBEZMT.EXE

C:\WIND0WS\SYSTEM\MSNET32.DLL

C:\WIN32APP\FREECELL\FREECELL.EXE

C:\WIN32APP\FREECELL\CARDS.DLL

C:\WIND0WS\SYSTEM\SHELL32.DLL

Next, I started WSPY21, which is a Win 16 application. No additional

modules showed up other than WSPY21 itself:

276F WSPY21 C:\UNAUTHW\BINW\WSPY21.EXE

No new Win 16 modules were required to run this program. Linally, I

started the WinScope debugger. This loaded three WinScope modules

and dragged in three Win 16 DLLs— WIN87EM, TOOLHELP, and

COMMDLG— that didn’t show up when we were running only Win32

applications:
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1EBF WINSCOPE C : \ws_chi \wi nscope.exe

1E77 WSCD C:\ws_chi\WSCD.DLL

1E57 WSMISC C:\ws_chi\WSMISC.DLL

1E2F WIN87EM C:\WIND0WS\SYSTEM\WIN87EM.DLL

1E4F TOOLHELP C:\WINDOWS\SYSTEM\TOOLHELP.DLL

0A8F COMMDLG C:\WINDOWS\SYSTEM\COMMDLG.DLL

I was particularly concerned to see the effect of loading WinScope

because another test I did for 3 2 -bit purity employed this debugger.

While running the standard set of Win32 applications already listed

countless times in this chapter— Clock, Explorer, FreeCell, and Win-

BezMT— and no Win 16 applications besides WinScope itself, I had

WinScope hook callsfrom all DLLs to all APIs in the Win 16 KERNEL
DLL. After two or three minutes of this, I sorted the WinScope log and

had an AWK program count the number of calls to each Win 16 KER-
NEL function:

14367 total calls to KERNEL

02422 G1 obal Uni ock 02278 G1 obal Lock

01263 1 st rl en 01167 Local A1 1 oc

01091 Local Free 00823 GetCurrentTask

00747 PrestoChangoSel ector 00424 GetExpWi nVer

00371 Local Uni ock 00371 Local Lock

00294 IsBadReadPtr 00250 Wai tEvent

00250 PostEvent 00250 GetExePtr

00247 hmemcpy 00241 Fi ndAtom

00198 G1 obal A1 1 oc 00188 G1 obal Free

00155 01 d Y i el d 00144 LockResource

00141 LoadResource 00141 Fi ndResource

00132 1 strcpyn 00126 GetAtomName

00108 IsBadHugeReadPtr 00081 FreeResource

00078 Local Si ze 00056 1 strcpy

00052 G1 obal ReAl 1 oc 00050 GetAppCompatFl ags

00046 AddAtom 00040 IsBadStri ngPtr

00037 IsBadCodePtr 00032 NoHookDOSCal

1

The significance of this list is that no Win 16 applications other than

WinScope itself were running, yet in just two or three minutes there

were over 14,000 calls to the Win 16 KERNEL API. Assuming that Win-

Scope isn’t skewing the results too badly (which we’ll get into in a

moment), this would show that the whole notion of a pure Windows 95

system that runs only Win32 applications is fairly meaningless.

It was easy to confirm that the vast majority of these calls occur whether

a Win 16 application such as WinScope is loaded or not. I used WinICE
(which runs outside Windows) to put breakpoints on some of the Win 16

KERNEL functions that WinScope detected in the semi-pure Win32 con-

figuration. I then unloaded WinScope, so no Win 16 applications were
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running. I couldn’t get rid of the TIMER and MSGSRV32 Win 16 tasks,

but these are built into Windows 95. Therefore, this is probably as pure a

Win32 setup as one could hope for, at least in the current implementation

ofWindows 95. Here’s what the configuration looked like:

: t a s k

TaskName SS : SP StackTop StackBot StackLow TaskDB hQueue Events

WINBEZMT * 0000:0000 00737000 00740000 26E6 26C7 0000

CLOCK 0000:0000 00737000 00740000 279E 2777 0000

BATMETER 0000 : 0000 00737000 00740000 1 FI E 1EF7 0000

CAB32 0000 : 0000 00756000 00760000 1276 207F 0000

TIMER 12E7 : 1F88 00B2 201C 201C 130F 12CF 0000

MSGSRV32 13CF: 327E 00E2 3314 30C0 13EF 1677 0000

KERNEL32 012F: 1218 000348B0 000448AF 0097 1677 0000

: thread

Ri ng0TCB ID Context Ri ng3TCB Process TaskDB PDB SZ Owner

C0FE55F0 0014 C0FD48E8 810FFC6C 810FF188 26E6 26DF 32 WINBEZMT

C0FE53A0 0013 C0FD48E8 810FFA2C 81 0F FI 88 26E6 26DF 32 WINBEZMT

C0FE5150 0012 C0FD48E8 810FF7EC 810FF188 26E6 26DF 32 WINBEZMT

C0FD5194 0011 C0FD48E8 810FF52C 810FF188 26E6 26DF 32 * WINBEZMT

C0FD3E30 0010 C0FE02F4 810FE7D8 810FE438 279E 27A7 32 CLOCK

C0FDD140 000D C0FDCB9C 810FD960 810FB30C 1276 126F 32 CAB32

C0FDDD74 000C C0FE011C 810FD024 810FCC74 1 FI E 1F2F 32 * BATMETER

C0FDF9F4 0008 C0FDCB9C 810FC224 810FB30C 1276 126F 32 CAB32

C0FDE21C 0007 C0FDCB9C 810FB6B8 810FB30C 1276 126F 32 * CAB32

C0FDC8B4 0006 C0FE8B1C 810FA26C 810F9F18 130F 1307 16 * TIMER

C0FDBE74 0005 C0FE8B1C 810F9820 810F726C 0097 00AF 32 KERNEL32

C0FDBAC8 0004 C0FE8B1C 810F95E0 810F928C 13EF 13E7 16 * MSGSRV32

C0FD916C 0003 C0FE8B1C 810F8FDC 810F726C 0097 00AF 32 KERNEL32

C0FD0E14 0002 C0FE8B1C 810F82C4 810F726C 0097 00AF 32 KERNEL32

C4520298 0001 C0FE8B1C 810F7344 810F726C 0097 00AF 32 VM 01

C0FE57F4 0018 C0FDCB9C 81 1002B0 810FB30C 1276 126F 32 CAB32

C0FD53D8 0016 C0FDCB9C 811000E4 810FB30C 1276 126F 32 CAB32

In this configuration— no 1 6-bit tasks or threads running other than

TIMER and MSGSRV32 — I put breakpoints on some of the Win 16

KERNEL calls that WinScope had detected.

It turned out that WinScope had skewed the results a bit. For exam-

ple, many (though by no means all) of the calls to GetCurrentTask simply

disappeared when WinScope wasn’t running. These calls came from

ToolHelp, which was present only because WinScope required it.

However, the vast majority of the Win 16 KERNEL calls logged by

WinScope did continue to occur when no Win 16 application was run-

ning. Here are a few examples:

• All those calls to PrestoChangoSelector (see Undocumented Windows
,

pp. 39-40, 343-346) occur whether or not any Winl6 applications are

loaded. PrestoChangoSelector can turn a code selector into a data

selector or vice versa. It is used to implement self-modifying code or
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executable data. The DISPLAY driver’s BITBLT module calls

PrestoChangoSelector to compile bitblts on the fly. (See the sample

source code in the Windows DDK, such as \DISPLAY\4PLANE\
BITBLTXBITBLT.ASM.)

• GetExePtr is called from FindResource and LoadResource, which are

called from LoadString, which in turn is called via QT_Thunk from

USER32!LoadStringA. (Which begat...) LoadString appears to be

called constantly in Windows 95, perhaps to produce those clever

bouncing “Hint:” items at the bottom of the screen. At any rate, there

are constant calls to the Win 16 GetExePtr function, which, given

almost any kind of global handle, will find the module handle with

which it’s associated. (See Pietrek, Windows Internals, pp. 474-476:

“GetExePtr() is one ofmy favorite undocumented functions.”)

• The 32 NoHookDosCalls all come from the InquireSystem function

in SYSTEM.DRV (see Undocumented Windows, pp. 339-340, 608-609).

This in turn is called by the GetDriveType API in KERNEL.

We could go on and on, examining each Win 1 6 KERNEL call that

appears in a “Win32 applications only” Windows 95 environment, but

you get the idea: Even in the purest case, there are tons of calls to the

Win 16 KERNEL. This is perfectly logical, given that the Win 16 ver-

sions of GDI and USER both call down to KERNEL.
More and more, it seems that Microsoft’s claim that the 3 2 -bit KER-

NEL never calls across to the 16-bit KERNEL is not only false, but pos-

sibly even meaningless. Think about it for a second: Even if you accepted

Microsoft’s claim (which we know to be false) that KERNEL32 never

directly calls across to KRNL386, Microsoft has said that USER32 calls

USER and that GDI32 calls GDI. It’s obvious from inspection with a

tool such as Microsoft’s EXEHDR or the EXE Quick View in the Win-

dows 95 Explorer that USER and GDI both call KERNEL. For example,

they rely heavily on the GlobalLock, GlobalUnlock, LocalAlloc, and

LocalFree memory-management services. Thus, even when running only

Win32 tasks, the Win 16 KERNEL is in constant use because USER32
and GDI32 call USER and GDI, which in turn rely on KERNEL.

So, even if KERNEL32 didn’t directly thunk down to the Winl6
KERNEL, or even if you wanted to dismiss as unimportant the cases in

which it does, the Win 16 KERNEL remains a crucial part of Windows

95, even ifyou run only Win32 applications.

By claiming that even though USER32->USER and GDI32->GDI, at

least KERNEL32 !-> KRNL386, Microsoft is obviously trying to win
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over operating system cognoscenti (“armchair OS designers,” as Udell

refers to them) who believe there is something inherently preferable

about a pure 3 2 -bit operating system.

Surely developers at Microsoft know that there’s nothing inherently

preferable about a brand-new operating system that doesn’t rely on the

“tried-and-trusted” (though far from bug-free) DOS or Win 16 code

base. And surely Microsoft knows that many of the claims made about

Windows 95 — that it eliminates real-mode DOS, that the Win32 kernel

doesn’t rely on the Win 16 kernel, that running only Win32 applications

presents a qualitatively different configuration from one running a mix-

ture of DOS, Win 16, and Win32 applications— are simply untrue.

But perhaps Microsoft can brush all this off: “Oh, that didn’t quite

make it into Windows 95; we’ll take care of it in Windows 96.” Indeed,

with each version of Windows, Microsoft can remove, and has removed,

more and more dependence on real-mode DOS. Microsoft can start on

the same path away from dependence on Win 16 code.

So if one day the last drop of 16-bit or real-mode code is gone from

Windows (“hey, we finally got around to creating PSPs in protected

mode and storing them in extended memory”), is that some kind of

important transformation? No. The real transformation occurred with

Windows 3.0 Enhanced mode in May 1990.

And, although important, the crucial aspect of this transformation in

1990 wasn’t the technical change of basing Windows on a protected-mode

DOS extender. Recall that a similar important technical change took place

in 1987-88 with Windows/386 2 .v (which forms the basis for much of

VMM), without transforming the PC desktop. Far more important than

the new technology in Windows 3 .x was the fact that Windows sales took

off in 1990. On the other hand, this explosion in sales would never have

happened had Windows not incorporated a protected-mode DOS exten-

der that finally provided sufficient memory to make Windows useful.

With massive sales, all things become possible. There’s an interesting

parallel here to the ongoing historians’ debate over the Industrial Revolu-

tion: Was it a “wave of gadgets,” or was it more importantly an explosion

in sales, consumption, population, and market size?

When Udell says “programmers who hadn’t yet worked with NT
were, in general, more impressed with Chicago than those already

familiar with NT,” I have to wonder what these programmers already

familiar with NT are thinking about. What is impressive about Win-

dows is not this or that technical feature, but its installed base. If

you want technical excellence, I’m sure you can do a lot better than
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Windows. If you want to develop applications that will potentially be

used by millions of people, Windows is the way to go. In other words, a

massive installed base will get you through times of unimpressive tech-

nology better than impressive technology will get you through a small

installed base.

Windows 95 will outsell NT by at least an order of magnitude.

Microsoft knows that this is what matters most about Windows 95. The
coolest features matter little without the massive presence on the desktop

required to make developing for the operating system worthwhile. As the

StarKist commercial puts it, “We don’t want tuna with good taste; we

want tuna that tastes good.”

Windows 95 ’s reliance on DOS and on Win 16 code is not an “Achilles

heel.” Instead, eliminating real-mode and Win 16 code would be a Pyrrhic

victory. Windows would attain 3 2 -bit nirvana and lose a large number of

customers. The movie Field ofDreams has it all wrong: You can build it but

they won’t necessarily come.

The WSPY21 code

This long tirade of mine, you may dimly recall, was inspired by a few scant

lines ofWSPY2 1 output. I had originally intended WSPY2 1 to illuminate

the DOS-Windows relationship, but it turned out to be at least as useful

in shedding light on the possibly more important (and by now certainly

more interesting) question of the Win32-Win 16 relationship. As we’ll

see, WSPY2 1 also clarifies some otherwise-confusing features of the

protected-mode INT 2 1 h handler that lives inside the Win 16 KERNEL.
So let’s look at the code that produced those few lines of output that

we’ve pored over for so long. Figure 13-3 shows a calling tree for

WSPY21.

mai n

INI T_REQU BU F

GetCurrentTask

get_vect

set_vect (install IntHandler)

_dpmi_set_pmode_vect (INT 31 h AX=0205h)

_dpmi_get_pmode_vect (INT 31 h AX=0204h)

GetSetKernel DosProc (install IntHandler2)

di spl ay_i nts

wi ni o_openwi ndows

wmhandl er_yi el d (GetMessage, etc.)

read data
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IS_REQUEST

BEGIN_CRIT_SEC

_fmemcpy, _fstrncpy

E N D_C R I T_S E C

S ET_N EXT

di spl ay_dos_i nt

pri ntf

IntHandl er

GetCurrentTask

wri te_data

BUFFER_FULL

BEGI N_CRIT_SEC

_fmemcpy, _fstrncpy

GetTaskName

verr

sel_size (GetSelectorLimit)

MAY B E_C0 P

Y

verr

s e 1 _s i ze

S ET_N EXT

END_CRIT_SEC

PostMessage

_chai n_i ntr

IntHandl er2

GetCurrentTask

S AM E_C A L L

write_data (see above)

_chai n_i ntr

Figure 13-3: Calling tree for WSPY21.

As the calling tree suggests, the program consists of three semi-inde-

pendent pieces:

• The main function installs the interrupt handlers and calls

display_ints, which calls read_data to retrieve items from a circular

buffer. (WSPY2 1 is a WINIO application, and so starts off in main

rather than in WinMain.) If not spying on INT 2 lh (you can specify

an alternate interrupt on the WSPY2 1 command line; INT 3 lh for

DPMI is particularly interesting) or on encountering an unknown

INT 2 lh call, WSPY21 produces a plain register dump.

• IntHandler is the primary INT 2 lh hook. For each INT 2 lh call

IntHandler sees, it calls write_data to place a packet of information

about the call in the same circular buffer from which display_ints

reads. This information includes the name of the current task at the

time of the INT 2 lh; the interrupt handler in WSPY2 1 runs as part

of this other task. (As explained earlier, this is why GetCurrentTask
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doesn’t get WSPY2 l’s own task handle.) IntHandler posts a WM_
NULL message to WSPY2 l’s window, so that wmhandler_yield

(which calls GetMessage) will return and display_ints can display the

next INT 2 lh call. IntHandler chains the interrupt to the previous

handler, which is generally KERNEL’S INT 2 lh handler.

• IntHandler2 is almost the same as IntHandler, except it installs with

GetSetKernelDosProc and therefore sees INT 2 lh at a slightly lower

level than IntHandler. IntHandler2 uses a SAME_CALL macro to

determine whether IntHandler has already seen(referring to a much-

despised but perfectly-workable add-on that allows Windows 3.1v to

run some Win32 executables) a call and therefore that it need not be

displayed again (unless you run WSPY21 -SHOWALL; see below).

Listing 13-5 shows the code for WSPY21. This code is based loosely on

the WISPY (I Spy for Windows) program from Undocumented Windows

(pp. 180-188). A major difference is that WISPY used only GetSetKernel-

DosProc to install a single INT 2 lh handler, but WSPY2 1 installs two

INT 2 lh handlers. WISPY therefore missed all calls, such as function 4Bh

(EXEC), that are absorbed in KERNEL’S INT 2 lh handler, but WSPY2

1

sees these calls. The very fact that KERNEL can absorb or change some

protected-mode INT 2 lh is significant; we’ll get to that soon.

Listing 13-5: WSPY21.C

/*

WSPY21.C

Andrew Schulman, 1994

Based loosely on WISPY. C from Undocumented Windows

*/

//include <stdlib.h>

//include <dos.h>

//include <string.h>

//include "windows.
h"

//include "wmhandlr.h"

//include "winio.h"

//pragma pack(l)

typedef struct {

//ifdef BORLANDC

WORD bp,di , si ,ds ,es ,dx,cx,bx,ax;

//el se

WORD es,ds,di .si , bp , sp , bx , dx , cx , ax

;

//endi f

WORD ip. cs, flags;

} R EG_P A RAMS

;

/* same as PUSHA */
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II This gives us about 550 entries in the buffer

// Unfortunately, there are still frequent buffer overflows

//define BUF_SIZE (0xFFFF / si zeof( REQUEST)

)

//define MAX_STR 40

//define MAX_REQU (BUF_SIZE-1)

typedef struct {

REG_PARAMS r;

char taskname[9] , char dsdx[MAX_STR]
, dssi [ MAX_STR]

;

int type, flag;

} REQUEST, FAR * LPREQUEST

;

//define REQU_FREE '

f
' I* request block not in use */

//define REQU_USE ’

u
'

/* in use */

//define B EG I N_C R I T_S EC ( ) _asm cl i

//define END_CRIT_SEC ( ) _asm sti

//define S ET_N EXT ( ) { if ( next==MAX_REQU ) next=0; else next++; }

//define I S_REQU EST ( buf ) ( buf [next] . type != REQU_FREE)

//define B U F F E R_FULL(buf) I S_REQUEST( buf

)

//ifndef MK_FP

//define MK_FP( a , b) ((void far *) ( ( ( DWORD) ( a ) « 16)
|

(b) )

)

//end i f

//define INT21

//define KERNELDOSPROC

//define C0PY_DSDX 1

//define C0PY_DSSI 2

//define CHECK_AL 3

//define FI RST_FUNC 0x3b

//define LAST_FUNC 0xa0

// Instructions for W RT_REQU EST on how to handle each INT 2 1 h function

static char copy f 1 a g s [ 1 + LAST_FUNC - FIRST_FUNC] =
{

/*3b*/ C0PY_DSDX
,
C0PY_DSDX, C0PY_DSDX, 0, 0, 0, 0, 0,

/*43*/ C0PY_DSDX , 0, 0, 0, 0, 0, 0, 0,

/*4b*/ CO P Y_DS D X , 0, 0,

/*4e*/ CO P Y_D S DX , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

/*5a*/ CO PY__DSDX ,
C0PY_DSDX, 0, 0, 0, 0,

/*60*/ CO PY_DSS 1 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

/*6c*/ CO P Y_DSS 1 , 0, 0, 0, 0,

/*71*/ C H EC K_A L , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

/*80*/ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

/*90*/ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0. 0, 0,

/*a0*/ CO P Y_DS DX

,

static REQUEST far *requ;

static i nt show_al 1=0;
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static DWORD calls = 0, lost = 0, already = 0, mine = 0;

//define sel_si ze( sel ) (GetSelectorLimit(sel )+l)

WORD verr(W0RD short sel)

{ _asm {

mov ax, 1

verr word ptr sel

je short okay

dec ax

1

okay:

;

}

char far *GetTaskName(HANDLE hTask)

{

stati c char none [ 2 ]
= "

"

;

if (verr(hTask) && (sel _s ize(hTask) > ( 0xf 2+8 ) )

)

return (char far *) MK_FP(hTask, 0xf2);

el se

return none;

int WRT_REQUEST( REQUEST far *buf, REG_PARAMS far *pr,

HANDLE task, int flag)

{

static int next = 0;

unsigned char ah;

void far *fp;

if ( B U F F E R_FULL(buf)

)

return 0;

B EG I N_C R I T_S EC ( )

;

_fstrncpy(&buf [next] .taskname, GetTaskName(task) , 8);

buf [next] . taskname[8] = ’ \0
'

;

_fmemcpy(&buf [next] . r ,
pr, sizeof ( REG_PARAMS) )

:

buf [next] .type = REQU_USE;

#if 1

//define MAY B E_C0 P Y ( str , rl, r 2 ) { \

_fmemset(str , 0, MAX_STR): \

if (verr(rl) && (sel _s i ze ( r 1 ) > r 2 ) ) \

_fmemcpy ( str , MK_FP(rl, r 2 ) , \

min(MAX_STR-l , sel_size(rl)-r2) ) ; \

//el se

// IsBadStringPtr works by causing GP faults which KRNL386 catches

// But this seems to cause unexpected page faults in Win32s!

//define MAYBE_COPY(str, rl, r 2 ) { \

_fmemset( str , 0, MAX_STR); \

fp = MK_FP(rl, r2) : \

if (! IsBadStringPtr(fp, 256)) \

_fstrncpy ( str , fp, mi n(_fstrl en(fp) , MAX_STR- 1 ) ) : \

//end i f
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ah = pr->ax >> 8;

if (ah >= FI RST_FUNC && ah <= LAST_FUNC

)

{

ah -= FIRST_ F U N C

;

top

:

if (copyfl ags[ah] == C0PY_DSDX)

MAYBE_COPY(&buf [next] .dsdx, pr->ds, pr->dx) //;

else if (copyfl ags[ah] == C0PY_DSSI)

MAYBE_COPY ( &buf [next] .dssi
,
pr->ds, pr->si) //;

else if (copyfl ags[ah] == CHECK_AL)

{

ah =
( pr->ax & 0xff) - FI RST_FUNC

;

if (copyfl ags[ah] != CHECK_AL)

goto top;

buf [next] .flag = fl ag

;

S ET_N EXT ( )

;

END_CRIT_SEC ( )

;

PostMessage( hMainWnd, WM_NULL , 0, 0); // just to keep moving!

return 1;

int RD_REQU EST ( REQUEST far *buf, REG_PARAMS *pr, LPSTR ptaskname,

LPSTR lpdsdx, LPSTR lpdssi, int far *pflag)
(

l

static int next = 0;

if ( ! I S_REQU EST ( buf)

)

return 0;

B EG I N_C R I T_S EC ( )

;

_fmemcpy(pr, &buf [next] . r , si zeof ( REG_PARAMS) )

;

_fmemcpy(ptaskname, &buf[next] .taskname, 9);

_fstrncpy(
1
pdsdx, &buf [next] .dsdx, MAX_STR);

_f s t rncpy (lpdssi
,
&buf [next] .dssi , MAX_STR);

*pf 1 ag = buf [next] .flag;

buf [next] . type = REQU_FREE;

END_CRIT_SEC ( )

;

S ET_N EXT ( )

;

return 1;

REQUEST far *INIT_REQUBUF( voi d

)

{

LPREQUEST buf, p;

i nt i

;

if ( ! (buf =

(LPREQUEST) Global Lock(GlobalAll oc ( GMEM_F I X ED
|

GM EM_Z E RO I N I T

,

BU F_S I Z E * si zeof ( REQUEST) ) ) )

)

return 0;

for (
i =BUF_SIZE

,
p=buf; i--; p++)

p->type = REQU_FREE;

return buf;
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FARPROC (FAR PASCAL *GetSetKernel DosProc ) ( FARPROC DosProc) = 0;

typedef void (_interrupt _far * I NTRFUNC ) ( )

;

INTRFUNC _dpmi_get_pmode_vect( i nt intno)

{

INTRFUNC i v

;

_asm {

mov ax, 0204h

mov bl
,
byte ptr i ntno

i nt 31

h

jc error

mov word ptr iv+2, cx

mov word ptr iv, dx

}

return iv;

error

:

return (INTRFUNC) 0;

void _dpmi_set_pmode_vect( i nt intno, INTRFUNC iv)

{ _asm {

mov ax, 0205h

mov bl
,
byte ptr i ntno

mov cx, word ptr iv+2

mov dx, word ptr iv

i nt 31

h

}

// _asm jc error

^define get_vect( intno) _dpmi_get_pmode_vect( i ntno)

i nt set_vect(WORD intno, INTRFUNC handler)

{

// Don't use INT 2 1 h function 2 5 h (Set Interrupt Vector), because

// KERNEL’S INT 2 1 h handler prevents setting INT lBh, ICh, 2 1 h , 24

h

// So use DPMI instead. Flowever, could also use undoc NoHookDOSCal 1

// which bypasses most of KERNEL'S special INT 21 h handling.

_dpmi_set_pmode_vect( i ntno, handler);

return (_dpmi_get_pmode_vect( i ntno) == handler);

void interrupt _far IntHandl er( REG_PARAMS r);

void interrupt _far IntHandl er2( REG_PARAMS r);

static HANDLE wspy21_task;

static i nt intno = 0x21; // INT 2 1 h default

static INTRFUNC old = 0;

static FARPROC o 1 d_d os = (FARPROC) 0;

void on_cl ose( HWND hwnd)

i nt i

;
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winio_warn(FALSE, "WSPY21",
" % 0 8 1 u\ti ntercepted\n"

"%081 u\tal ready seen in first handler\n"

"%081 u\tabsorbed in first handler\n"

"%081 u\tl ost through buffer overruns\n"

"%081u\twere my own calls\n",

calls, already, (intno == 0x21) ? calls - already : 0,

lost, mine);

if (! set_vect( intno, old))

winio_warn(FALSE, "WSPY21",

"Couldn't restore Int %02Xh", intno);

if ((intno == 0x21) && old_dos)

Get Set Kernel DosProc(ol d_dos )

;

}

void di spl ay_i nt( REG_PARAMS *pr)

pri ntf
(

"AX=%04x BX=%04x CX=%04x DX=%04x DS=%04x SI=%04x DI=%04x
"

"CS : I P=%04x : %04xh"

,

pr-)ax, pr->bx, pr->cx, pr->dx,

pr->ds, pr-)si
,

p
r

- > d i ,
pr->cs, p

r
- >

i p )

;

//define PRI NT_STR( s

)

#defi ne PRI NT_2_STR( si
,

s2)

//define PRINT_STR_WORD(s , w)

//define P R I NT_2_W0 RD ( s , wl, w2)

//define PRI NT_ST R_B Y T E ( s , b)

//define P R I NT_STR_FP ( s , fp)

pri ntf
(

"%s" , ( s )

)

pri ntf
(

"%s \
’ %s\

,

(si), (s2)

)

pri ntf
(

"%s %u (%04Xh
)

" , (s), (w), ( w)

)

pri ntf
(
"%s %u (%04Xh) , %u ( %04Xh

)

" , \

(s), (wl), (wl), ( w2 ) , (w2 )

)

pri ntf
(

"%s %u (%02Xh) " , (s), (b), ( b )

)

pri ntf ("Xs %Fp", (s), (fp))

//ifdef SH0W_I0CTL

void pri nt_i octl ( REG_PARAMS *pr)

int al = pr->ax & 0xFF;

int bl = pr->bx & 0xFF;

pri ntf
(

" IOCTL ( %02X )
", al);

swi tch (al ) {

case 0x08: PRINT_STR_BYTE( " Is Drv Removeable?", bl ) ; break;

case 0x09: PRI NT_STR_BYTE ("Is Drv Remote?", bl ) ; break;

case 0x0E: PRINT_STR_BYTE( "Get Log Drv Map", bl ) ; break;

// ... boring list of IOCTL functions ...

}

//end i f

void di spl ay_dos_i nt( REG_PARAMS *pr, char *dsdx, char *dssi)

{

int ah;

top: // IDoBel i evelUsedAGoToStatement

ah = pr->ax >> 8;

pri ntf
(

" ( %02 X )
", ah);

switch (ah) // ICantBel i evelUsedASwi tchStatement
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#i fdef

#el se

#endi

f

P R I NT_ST R
(

"Exit" ) ; break;

PRINT_STR_BYTE( "Set Disk", pr->dx & 0xFF); break;

P R I NT_STR
(

"Get Disk"); break;

PRI NT_STR_FP( "Set DTA" , MK_FP( pr->ds
,
pr->dx) ) ; break;

PRINT_STR_BYTE( "Set Vect", pr->ax & 0xFF); break;

PRI NT_STR
(

"Get Date"); break;

PRI NT_ST R
(

"Get Time"); break;

PRI NT_STR( "Get DTA"); break;

PRI NT_STR( "Get DOS Vers"); break;

PRI NT_STR_B YTE
(

"Get DPB"
,
pr->dx & 0xFF); break;

PRI NT_STR_BYTE
(

"Get Vect", pr->ax & 0xFF); break;

PRI NT_STR_BYTE (

"Get Disk Space", pr->dx & 0xFF); break;

PRI NT_2_ST R
(

"ChDi r"
, dsdx); break;

PRI NT_2_ST R
(

"Create" , dsdx); break;

PRI NT_2_ST R
(

"Open" , dsdx); break;

P R I NT_S T R_W 0 R D
(

"Cl ose"
,
pr->bx); break;

P R I N T._2_W 0 R D ( "Read"
,
pr->bx, pr->cx); break;

P R I NT_2_W 0 R D
(

"Wri te"
,
pr->bx, pr->cx); break;

PRI NT_2_ST R
(

"Delete", dsdx); break;

pri ntf
(

" LseekXd %u %04xX04x",

pr->ax & 0xFF, pr->bx, pr->cx, pr->dx);

break

;

PRI NT_2_STR( "Get/Set File Attr", dsdx); break;

pri nt_i octl (pr ) ; break;

PRINT_2_W0RD( " IOCTL"
,
pr-)ax & 0xFF, pr->bx); break;

PRI NT_STR_BYTE( "Get Curr Dir", pr->dx & 0xff); break;

PRI NT_2_ST R
(

" Exec" , dsdx); break;

PRINT_STR_BYTE( " Exit"
,
pr->ax & 0xff); break;

PRI NT_2_ST R
(

"Fi nd First", dsdx); break;

PRI NT_STR( "Find Next"); break;

PRI NT_STR_WORD( "Set PSP", pr->bx); break;

case 0x62: PRI NT_STR( "Get PSP"); break;

PRI NT_2_W0 RD
(

" (Undoc) Create PSP", pr->dx, p r - > s i ) ; break;

P R I NT_S T R_W 0 R D
(

"Get/Set File Date/Time", p
r
- >bx ) ; break;

PRI NT_ST R
(

"Get Extended Error Info"); break;

PRI NT_2_STR( "Create Temp File"

PRI NT_2_STR( "Create New File",

PRI NT_2_ST R
(

"True name" , dssi )

;

PRINT_STR_BYTE( " Internati onal " ,
pr->ax & 0xFF); break;

PRINT_STR_WORD( "Commi t"
,

p
r

- >bx ) ; break;

PRI NT_2_STR( "Open/Create" , dssi); break;

// for 2 1 / 7 1 X X
, do what IFSMgr does: mark as an LFN function

// and then turn into 21 /XX

.

case 0x71: pri ntf
(

" LFN "); pr->ax <<= 8; goto top;

case 0xA0: PRI NT_2_STR( "Get Volume Info", dsdx); break;

case 0xAl: PRI NT_STR( "Find Close"); break;

default: displ ay_i nt(pr )

;

case 0x00

case 0x0E

case 0x19

case 0xlA

case 0x25

case 0x2A

case 0x2C

case 0x2F

case 0x30

case 0x32

case 0x35

case 0x36

case 0x3B

case 0x3 C

case 0x3D

case 0x3 E

case 0x3 F

case 0x40

case 0x41

case 0x42

case 0x43:

H 0W_ IOCTL

case 0x44:

case 0x44:

case 0x47

case 0x4b

case 0x4c

case 0x4e

case 0x4f

case 0x50

case 0x51

case 0x55

case 0x57

case 0x59

case 0x5A

case 0x5B

case 0x60

case 0x65

case 0x68

case 0x6C

dsdx); break;

dsdx); break;

break;

pr->ax & 0xFF)

void d i s p 1 a y_i n t s ( v o i d

)
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REG_PARAMS r;

stati c char modname[16]

;

static char dsdx[MAX_STR]

;

static char dssi [MAX_STR]

;

int flag;

// This loop looks for, extracts, and displays messages queued

// up by the interrupt handler. The only way we know to

// terminate the function is that the window closes

while (wi nio_openwindows( )

)

{

wmhandl er_yi el d ( )

;

while ( RD_REQUEST( requ , &r, &modname, &dsdx, & d s s i ,
&f 1 ag )

)

{

printf("<%s> %oC" , modname, flag);

if (intno == 0x21)

display_dos_int(&r, dsdx, dssi);

else // Could do formatted display of other INT like DPMI

di spl ay_i nt ( &r )

;

pri ntf
(

"\n" )

;

1

}

main(int argc, char *argv[])

{

char buf [ 128] , num[8];

if ( hPrevInst)

fail
(

" So r ry , only one WSPY21 at a time");

wi ni o_setbufsi ze( hMainWnd, (WORD) 32768, TRUE);

if ( ! (requ = INI T_REQUBU F ( ) )

)

fail
(

"INI T_REQUBU F fail!");

wi ni o_about( "WSPY21" )

;

wi ni o_oncl ose( hMainWnd, (DESTROY_FUNC) on_close);

wspy21_task = GetCurrentTask( )

;

if (argc < 2)

intno = 0x21;

el se

int i ;

for ( i = 1 ;
i < a r g c ; i++)

if (argvfi ] [ 0 ]
== ' -

'

)

{

if (strncmp(strupr(&argv[i ][1] ) ,
"SHOWALL", 4) == 0)

show_al 1++;

el se

fail ("usage: wspy21 [ - showa 11] [intno]");

el se

sscanf (argv[i ] ,
"IV, & i n t n o )

;

old = get_vect( i ntno)

;
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if (! set_vect( i ntno
,

(INTRFUNC) IntHandl er)

)

fail
(

"SetVect failed!");

^define GET_PROC(mod , func) \

GetProcAddress ( GetModul eHandl e(mod)
,

(func)

)

if ( ( i ntno == 0x21) && (GetSetKernel DosProc =

GET_PR0C( "KERNEL" , "GETSETKERNELDOSPROC" ) )

)

old_dos = GetSetKernel DosProc( ( FARPROC ) IntHandl er2)

;

sprintf(buf, "Windows Interrupt Spy: INT %02Xh", intno);

wi ni o_s e 1 1 i 1 1 e ( hMai nWnd , buf )

;

di spl ay_i nts ( )

;

return 0;

static REG_PARAMS prev_r = {0}

static int was_prev =0;

// CS : I P can be di fferent

^define SAM E_CA L L ( r 1 , r2) \

( ( ( rl ) ->es ==
( r 2

)
- >es ) &&

((rl)->di ==
( r 2

)
- > d i ) &&

( ( r 1
)
- >bx == ( r 2

)
- >bx ) &&

( ( r 1
) ->cx ==

( r 2
)
- >cx ) &&

( ( rl ) ->ds == ( r 2
)
- >ds ) && \

(

(

rl ) ->si ==
( r 2 ) ->si ) && \

( ( rl ) ->dx == ( r 2
) ->dx) && \

( ( rl )
- > a x ==

( r 2
)
- > a x )

)

void interrupt _far IntHandl er( REG_PARAMS r)

{

HANDLE task = GetCurrentTask( )

;

if (! s h ow_a 11) { prev_r = r; was_prev = 1; }

if (task != wspy21_task) /* don't show my own i nts */

{

if ( ! WRT_REQU EST ( requ , &r, task, INT21)

)

lost++; /* buffer overflow */

cal 1 s++;

el se

mi ne++;

_c h a i n_i ntr( ol d )

;

void _interrupt _far IntHandl er2( REG_PARAMS r)

{

HANDLE task = GetCurrentTask( )

;

if ((! show_all) && was_prev-- && SAM E_C A L L ( & r , &pre v_r )

)

{

al ready++;

goto done; /* saw this already in IntHandl er */

if (task == wspy21_task) /* don't show my own i nts */



V

Chapter 13: Thunk! KERNEL32 Calls KRNL386

mi ne++;

goto done;

if ( ! WRT_REQUEST ( requ , &r, task, KERNELDOSPROC )

)

lost++; /* buffer overflow */

cal 1 s++;

done

:

_chai n_i ntr( ( INTRFUNC) ol d_dos )

;

}

The most important point about WSPY2 1 is that, unlike V86TEST,
it sees INT 2 lh calls generated in protected mode by Windows applica-

tions in the System VM. WSPY2 1 won’t see INT 2 lh calls made from

DOS boxes, nor will it see any that are first generated somewhere in

VxD-land and then sent down to V86 mode. (For this, see the WLOG-
212F program discussed in Chapter 1.)

To install a handler for INT 2 lh calls issued in protected mode, a pro-

gram running under a DOS extender such as Windows would normally

call the same DOS function that a real-mode program would call to hook

INT 2 lh in real mode: Set Interrupt Vector (INT 2 lh function 25h).

The purpose of a DOS extender is to provide a familiar INT 2 lh inter-

face to protected-mode functionality and to make DOS seem to be a

protected-mode operating system. (Although perhaps seem is no longer

really the right word here; see the sidebar titled “The DOS extender:

Still a great pretender?”)

The DOS extender:

Still a great pretender?

Imagine for a moment that you don’t know anything about protected-mode

INT 21h or DOS extenders. When you open a document in WinWord, open a

spreadsheet in Excel, or do something similar in any protected-mode Win-

dows application, either the application itself or a DLL it calls generates

the equivalent of an INT 21h File Open call — in protected mode. Yet MS-

DOS, as we all know, is a real-mode operating system. How then is pro-

tected-mode INT 21h handled?

The naive conception among a surprising number of Windows and DOS
programmers is that since the request involves an INT 21h, Windows

must therefore service the request “by calling down to DOS." As a random
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example of this widespread misconception, one programmer asserted

(
Windows/DOS Developer's Journal, April 1994) that a certain technique

for watching DOS file I/O calls “is possible because all file opening is

done through the real-mode DOS INT 21h services.”

I hope it is clear from examples such as TEST21 in Chapter 8 that this

ain’t necessarily so, even for interrupts coming from real-mode DOS pro-

grams in V86 mode. Thus, there is certainly no reason why it should be

true for protected-mode Windows programs. If Windows has complete dis-

cretion over how to handle interrupts coming from real-mode DOS programs

that know nothing about Windows or protected mode, imagine what it can

do with interrupts — even supposed DOS interrupts such as INT 21h or INT

2Fh — coming from applications that were designed for protected mode
and that know about Windows.

To request OFFFEh pararaphs of memory, a Windows application could

issue the following request:

_asm mov ah, 48h ; DOS function 48h: Allocate Memory

_asm mov bx, OFFFEh ; OFFFEh * 16 = 1,048,544 bytes

_asm int 2 1 h ; "DOS call" (but not necessarily call DOS!)

_asm jc alloc_error ; carry flag set indicates error

_asm mov segment, ax ; save away address of allocated memory

» • • •

al loc_error:

Winl6 applications are supposed to allocate memory not by calling INT

21h function 48h but with a Windows API function such as GlobalAlloc or

LocalAlloc. Humor me for a moment. The preceding code can be placed

inside a Winl6 application. What’s more, when placed inside a Winl6
application, this code succeeds in allocating OFFFEh paragraphs

(1,048,554 bytes) of memory.

What’s so strange about that? Well, if you think back to the days of

real-mode DOS, you might recall that requesting a large number of para-

graphs such as OFFFEh or OFFFFh was guaranteed to fail. Calling INT 21h
function 48h with BX set to such an “impossibly high” number was the

standard technique to determine the size of the largest block that could be

allocated. Even if there were megabytes of free memory in the machine,

real-mode DOS could only allocate substantially less than a megabyte of

so-called conventional memory.

But INT 21h function 48h doesn’t behave this way when called by a

Winl6 application. To demonstrate, Listing 13-6 shows DOSMEM.C, a tiny

Windows program that calls the DOS Allocate Memory function.

Listing 13-6: DOSMEM.C

/*

DOSMEM.C

bcc -W dosmem.c
*/

^include <stdlib.h>
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^Include <stdio.h>

#include "windows.h"

#defi ne MK_FP(seg,ofs) ((void far *)(((DW0RD)(seg) « 16)
|

(of s ) )

)

int PASCAL Wi nHai n ( HANDLE hlnstance, HANDLE hPrevInstance,

LPSTR IpszCmdLine, int nCmdShow)

{

char buf [80]

;

DWORD huge *fp, huge *fp2;

DWORD 1 iniit, size, i

;

WORD segment, avail

;

/* call DOS Allocate Memory function */

_asm mov ah, 48h

_asm mov bx, 0 FFFEh

_asm int 21

h

_asm jc alloc_error

_asm mov segment, ax

fp - (DWORD huge *) MK_FP(segment, 0);

/* ask Windows how big it is: limit = last valid byte offset */

limit = GetSelectorLimit(segment)

;

/* touch every byte of the allocated block */

size - (limit+1) / sizeof (DWORD)

;

for (i=0, fp2*fp; i < size; i++, fp2++)

sprintf(buf, "Allocated %lu bytes at %Fp", limit + 1, fp);

MessageBox(0, buf, "DOSMEM", MB_0K)

;

/* don't free block until user clicks OK */

_asm mov ah, 49h

_.asm mov es, segment

_asm int 21

h

_asm jc free_error

return 0;

free_error

:

MessageBox(0, "Error: couldn't free block!", "DOSMEM", MB_0K);

return 1;

al 1 oc_error

:

_asm mov avail , bx

spri ntf(buf , "Only %04Xh paragraphs available", avail);

MessageBox(0 , buf, "DOSMEM", MB_0K);

return 1;

1

Figure 13-4 shows that DOSMEM can allocate nearly a megabyte of

memory via a single call to INT 21h function 48h. DOSMEM only deallo-

cates the memory (via protected-mode function 49h) when you click OK. As

a result, running multiple copies of DOSMEM allocates multiple megabytes

of memory at one time.



Unauthorized Windows 95

Figure 13-4: You can allocate megabytes of memory via INT 21h function 48h.

These results show that there is something very different about INT

21h in protected-mode Windows. We already know from our examination

of the V86 INT 21h chain in previous chapters that this DOS interface

undergoes radical changes under Windows. The changes are even more

extreme when INT 21h is issued from protected mode. In this example,

function 48h manages to not only allocate over one million bytes

in one go, but also return a protected-mode selector to the newly allo-

cated block.

But why is this such a far cry from the naive "Windows handles INT

21h by calling down to DOS" conception that many programmers con-

tinue to have? Because INT 21h function 48h in real-mode DOS can’t

allocate this much memory, much less in a single call. Nor does it return

protected-mode selectors. Nor can it allocate extended memory above

one megabyte, which is what we’ve done in Figure 13-4 because more

than a megabyte has been allocated and at least some of it must be

extended memory. The Windows DOS extender can’t pass this call down

to DOS. No amount of protected-mode-to-real-mode translation will make
DOS allocate megabytes of readily accessible extended memory.

I say “readily accessible" extended memory because DOS programs

can allocate tons of memory via the XMS and EMS interfaces. However,

look at the block of code in DOSMEM.C following the comment “touch

every byte of the allocated block.” DOSMEM can immediately use the mem-
ory (*fp2). A program couldn’t do this with memory allocated via XMS or

EMS; those interfaces require that the memory first be mapped in with a
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function such as Move Extended Memory Block (XMS function OBh) or Map
Extended Memory Page (EMS function 44h). You can see in Listing 13-6

that DOSMEM doesn’t do anything like this; it just uses the memory.
If a Windows program does want to allocate DOS conventional memory

and get back a real-mode segment address, it cannot do so using INT 21h
function 48h. Instead, it must use a special function, such as GlobalDOSAI-

loc in the Windows API or Allocate DOS Memory Block in DPMI (INT 31h
function OlOOh).

This somewhat unusual behavior of INT 21h function 48h in protected

mode is a good example of what the term DOS extender means. A DOS
extender is an environment that, like Windows, provides INT 21h services

in protected mode. Function 25h sets a protected-mode interrupt vector,

function 48h allocates extended memory and returns a protected-mode

selector, and so on.

Usually, the DOS extender concept (if one can call it that) is further

explained by saying that a DOS extender makes it appear as though MS-
DOS were a protected-mode operating system, in other words, that the

DOS extender is the author of a fiction or the creator of an illusion.

For example, consider INT 21h function 3Fh (Read File). In real mode,

this function expects that the DS:DX register pair will point to a buffer into

which DOS will place data read from a specified file; the DS:DX pointer is a

real-mode address, and the buffer is located in conventional memory. But

under a protected-mode DOS extender, DS:DX must be a protected-mode

address and the buffer can be located in extended memory. In general, a

DOS extender would implement the protected-mode version of function 3Fh

by allocating a conventional-memory buffer, switching to real (or V86)

mode, and reissuing the function 3Fh call with DS:DX pointing to the con-

ventional-memory buffer. When DOS returned, the DOS extender would

copy the data from the conventional-memory buffer to the original extended-

memory buffer specified by the application.

This scenario, in which the DOS extender translates protected-mode

INT 21h requests into real-mode terms, reissues the INT 21h in real or V86

mode, and then translates any return value, is the foundation for the “Win-

dows must call down to DOS” misconception. Certainly, DOS extenders

such as Windows generally do handle many INT 21h functions in the way

just described. The DOS extender makes real-mode DOS think it has a

plain old real-mode caller, yet it also makes protected-mode programs think

that DOS is a protected-mode operating system. In other words, the DOS
extender is a deceiver.

But what about the examples of function 25h and 48h? As we’ve seen,

to provide a reasonable protected-mode implementation for these func-

tions, the DOS extender can’t pass the call down to DOS. The DOS exten-

der must handle these calls by itself, entirely in protected mode, because

no amount of deception will convince real-mode DOS to set protected-mode

interrupt vectors or allocate extended memory.

Here, there is no deception on the DOS extender’s part. If it handles an

INT 21h call entirely in protected mode, without calling real-mode DOS,
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then the DOS extender acts as a true protected-mode operating system —
at least for that function.

If over time a DOS extender such as Windows comes to handle more

and more INT 21h functionality in protected mode without calling DOS,

then over time the DOS extender becomes less of a DOS extender and

more of a full-blown protected-mode operating system that happens to pro-

vide a familiar INT 21h interface. But notice how gradually this transforma-

tion can occur: with every release of the DOS extender, the authors can

take a few more functions, stop passing them down to DOS, and instead

implement them in protected mode. There is a smooth transition from the

illusion of protected-mode DOS to an actual protected-mode DOS.

Hmm, sounds a lot like what’s been happening over the years in

Windows.

Since real-mode programs hook real-mode interrupt vectors with

function 25 h, it makes sense for the DOS extender to provide a pro-

tected-mode INT 2 1 h function 25h that hooks protected-mode interrupt

vectors. Windows does provide this protected-mode function 25h. Yet,

WSPY2 1 hooks INT 2 lh not with DOS INT 2 lh function 25h but with

DPMI INT 3 lh function 0205h (Set Protected-Mode Interrupt Vector).

Don’t be thrown by the presence of the phrase Protected-Mode in the

DPMI function’s name and its absence in the DOS function’s name.

When called from a protected-mode application under Windows, the

DOS function sets the protected-mode interrupt vector, just as the

DPMI function does.

So why use the DPMI function? Because the Win 16 KERNEL con-

tains a protected-mode INT 2 lh handler that provides special handling

for several DOS functions, one of which is function 25h. As we’ll soon see,

KERNEL ignores any attempt to hook certain interrupts; one of these

interrupts is INT 2 lh! Thus, a Windows application can't use INT 2 lh

AX=2 125h to hook INT 2 lh. The solution is to use the DPMI function.

HERIIEL'S IHT 21D

Handler and KernemosProc

In addition to the INT 2 lh hook installed via DPMI, WSPY2 1 has a

second hook installed via GetSetKernelDosProc that I’ve mentioned

several times. Why the two hooks? Having figured out that you must

hook INT 2 lh via DPMI rather than via INT 2 lh, why bother with
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GetSetKernelDosProc? Because many Windows programs and DLLs
issue DOS calls without issuing an INT 21h, and the second hook
installed with GetSetKernelDosProc will see these other calls.

Take, for example, the Dos3Call API (please!). The Windows SDK
suggests that ifyou must make DOS calls, you should do so using

Dos3Call. Dos3Call is not a wrapper around an INT 2 Ih call; it does not

generate an actual INT 2 Ih that would be seen by WSPY2 l’s INT 2 Ih

handler. Instead, as we saw in the preceding chapter (in the section titled

“Win32 FindNextFile is INT 2 1 h Function 714Fh”), Dos3Call is a wrap-

per around KERNEL’S own INT 2 lh handler (that is, around the code to

which WSPY2 l’s IntHandler will most likely chain):

KERNEL ! D0S3CALL

0117:00008103 PUSHF push flags to simulate interrupt

0117:00008104 PUSH CS ;

;

phony far call: / FARCALLTRANS

0117:00008105 CALL 7F38 ;; call KERNEL INT 21 h handler

0117:00008108 RETF

There are also many places where KERNEL calls this INT 2 lh han

dler directly, without going through Dos3Call. An example of this was

also shown in the preceding chapter, in the code for _lopen:

KERNEL!J open

:

0117 : 000093E9 MOV AX, 7160 : ; LFN Open/Create

0117 : 000093EC PUSHF

0117 : 000093ED PUSH CS

0117 : 000093EE CALL 7F38 ;; call KERNEL INT 21h handler

An undocumented function, NoHookDosCall (see Undocumented

Windows
, pp. 339-340 for a not entirely accurate description), provides

another way that Windows can generate a DOS call without an INT 2 lh.

WSPY21’s IntHandler2, installed with GetSetKernelDosProc, will see

these NoHookDosCalls too.

But what does no hook mean? Why would a part of Windows use

NoHookDosCall rather than Dos3Call? And, if a handler installed with

GetSetKernelDosProc will see these non-INT 2 lh DOS calls such as

Dos3Call and NoHookDosCall, why does WSPY21 even need the

higher-level INT 2 lh hook? Why not just use GetSetKernelDosProc?

I noted earlier that WSPY2 1 is based on the WISPY program from

Undocumented Windows
,
but that WSPY2 1 installs two INT 2 lh handlers,

whereas WISPY installed only a single INT 2 lh handler, using GetSet

KernelDosProc. As a result, WISPY never saw some important INT 2 lh

calls, such as function 4Bh (EXEC). This is important, not so you under-

stand how WSPY2 1 works and why WISPY didn’t (you could survive quite



Unauthorized Windows 95

nicely without understanding that, thank you), but because this WISPY
problem and its WSPY2 1 solution illuminate some important aspects of

Windows. In addition, hooking INT 2 lh from a Windows applications

appears to be a perennial topic, at least in the pages of one programmer’s

magazine (see Paul Bonneau’s Windows Q&A column in Windows/DOS

Developer’sJournal, April 1994, June 1994, September 1994).

Even before the advent of Windows protected mode in version 3.0,

KERNEL’S INT 2 lh handler handled some DOS calls from Windows
applications without passing them down to DOS. A prime example is

function 4Bh (EXEC):

< P ROGMAN) (4B) Exec 'write.exe'

DOS doesn’t know how to start Windows executables (NE files) such

as WRITE.EXE, so KERNEL can’t pass function 4Bh down to DOS.
When issued by a Windows application or DLL (such as by the WinExec
function in KERNEL), KERNEL turns function 4Bh into a LoadMod-
ule call (see Windows Internals

, pp. 229-231). Even for the WinExec of a

real-mode DOS program, KERNEL still can’t pass function 4Bh down to

real-mode DOS, because DOS unfortunately doesn’t know how to start a

Windows DOS box.

If you use function 4Bh in real-mode to try to run a Windows pro-

gram, you usually just get a message to the effect that “This program

must be run under Microsoft Windows.” DOS runs the real-mode stub

in the NE file, which can do what it wants (even launch Windows) but

which generally just prints this message and exits. In Windows 95, you

can (finally!) launch Windows applications from the DOS box, but this

involves hooking INT 2 lh function 4Bh, seeing whether you’ve tried to

start a Win 16 or Win 16 executable, and if you have, keeping the function

4Bh call away from real-mode and turning it into a WinExec. So real-

mode DOS really doesn’t know how to launch Windows applications.

(This means that Windows itself requires a bootstrap stub-loader to start

up from DOS; see Pietrek, Windows Internals, pp. 10-13.)

Furthermore, INT 2 1 h function 4Bh in Windows can even launch

.PIF files:

< P ROGMAN > (4B) Exec ’C:\WINDOWS\EDIT.PIF'

A moment’s reflection should convince you that there’s no way that

Windows can pass this call down to real-mode DOS; DOS doesn’t how
how to launch .PIF files.

As another example, KERNEL absorbs most INT 2 1 h function OEh
(Set Drive) and 19h (Get Drive) calls from Windows applications. The
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reason is simple: Each Windows application has its own current

drive/directory, stored in the Task Database (TDB) associated with its

PSP (see “Where’s the Windows 95 Current Directory” earlier in this

chapter). You can have one Windows application parked at C:\FOO and

another application (or another instance of the same application) at

D:\BAR. Each VM in Windows also has its own current drive/directory,

but this involves instance data (see Chapter 4) and, as noted earlier in this

chapter, is no help to the multiple applications within the System VM.
The System VM has a single instance of the DOS Current Directory

Structure (CDS). Since KERNEL multiplexes this single CDS among
multiple Windows applications, it must handle DOS Set Drive and Get

Drive calls from Windows applications by manipulating the TDB.
KERNEL’S special handling of some INT 2 lh calls also explains why

WSPY2 1 wasn’t able to hook INT 2 lh using DOS Set Interrupt Vector

(INT 2 lh function 25h). As mentioned earlier, KERNEL rejects whole-

sale any attempt to use DOS function 25h to change four interrupt vec-

tors. These are INT lBh (Ctrl-Break), ICh (Timer), 2 lh (DOS), and

24h (Critical Error). Notice that INT 2 lh is included. This means that a

Windows application cannot use INT 2 lh function 25h to hook INT 2 lh.

KERNEL also provides special handling for several interrupts that

are held in the TDB on a per-task basis (see Undocumented Windows,

pp. 365-366):

Interrupt Description

INT 0

INT 2

INT 4

INT 6

INT 7

INT 3Eh

INT 75h

Divide by zero

Nonmaskable interrupt (NMI)

Interrupt on overflow (INTO)

Invalid opcode

Coprocessor not available

Used by floating-point emulators

Coprocessor error

WSPY2 1 has a -SHOWALL option that shows some of the absorp-

tion of INT 2 lh calls inside KERNEL. The -SHOWALL option tells

WSPY2 1 ’s KernelDosProc handler not to filter out calls that have

already been reported by the higher-level INT 2 lh handler. By reporting

all calls seen at the INT 2 lh handler and all calls seen at the Kernel-

DosProc handler (which WSPY21 marks with an asterisk), the

-SHOWALL option makes it moderately easy to spot the calls that were

absorbed by KERNEL. For example:
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<SH> (19) Get Disk

<SH> (47) Get Curr Di r 3 ( 0 3 h

<SH> *( 1A) Set DTA 2E07

:

: 0080

<SH> *(47) Get Curr Di r 3 ( 03h

Here, KERNEL’S INT 2 lh handler saw an INT 2 lh function 19h

(Get Disk) call, and that’s the last anyone saw of it. KERNEL handled it.

Next, after KERNEL’S INT 2 lh handler saw a function 47h (Get Cur-

rent Directory) call, it generated a function lAh (Set DTA) call before

sending the function 47h call down to KernelDosProc. KERNEL not

only absorbs some INT 2 lh but may also inject some extra INT 2 lh calls

after a task switch to guarantee that the newly switched-in task has the

correct DTA, PSP, drive, and directory (as we saw much earlier in this

chapter):

<SH> *(47) Get Curr Dir 8 (08h)

<C LOCK) (71) LFN (4E) Find First 'C:\WINDOWS\clock.ini
’

<C LOCK) *( 1A) Set DTA 00AF : 0080

<C LOCK) *(0E) Set Disk 2 (02h)

<C LOCK) *(71) LFN (3B) ChDir ' \BORLANDC\BIN

'

<C LOC K> *(71) LFN (4E) Find First ’C:\WINDOWS\clock.ini’

Immediately after a task switch from SH to CLOCK, KERNEL’S
INT 2 lh received a call to function 714Eh (LFN Find First). Before

passing this call down to KernelDosProc, KERNEL had to inject calls to

functions lAh (Set DTA), OEh (Set Disk), and 713Bh (LFN Change

Directory).

So you can see that KERNEL will absorb some INT 2 lh calls (occa-

sionally generating other calls in their place), and keep these calls away,

from not only the real-mode DOS code, but also from any VxDs that have

hooked INT 2 lh in protected mode. To see these calls that KERNEL
absorbs, you need an INT 2 lh handler that sits in front of KERNEL’S.

Again, I can’t expect readers to care much about the vicissitudes of

WISPY and WSPY21. But the question of how to see INT 2 1 h calls

before KERNEL absorbs them is illuminating because it shows that even

before Windows 95, even before 3 2 Tit file access in WfW 3.11, even

before the introduction of protected mode in version 3.0, even — to

make a long story short— way back in the days of version 2 .x, Windows
was already starting to do a number on the INT 2 lh interface.

Okay, so WSPY2 1 has seen an INT 2 lh call and passed it to KER-
NEL; KERNEL has performed any special processing of the INT 2 1 h

and will now pass the call (if it’s not one of the INT 2 lh calls that KER-
NEL absorbs) down to real-mode DOS. Well, not quite. Actually, not at

all. (Just wanted to see if you were paying attention.) KERNEL will pass
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the DOS call down to the previously installed protected-mode INT 2 lh

handler, which in turn can chain the interrupt to the previous handler or

not, as it sees fit.

KERNEL’S INT 2 lh handler chains to the previous INT 2 lh handler

using an undocumented KERNEL function called NoHookDOSCall.
(Finally, we got back to NoHookDosCall!) To bypass the special treat-

ment that KERNEL gives some DOS calls, some other parts of KER-
NEL, and some DLLs such as SYSTEM.DRV, use NoHookDosCall.
For example, a sequence of three IOCTL calls show up frequently in

WSPY21 logs; these calls come from SYSTEM.DRV’s InquireSystem

function (see Undocumented Windows
,
p. 609), which is in turn called by

the GetDriveType API in KERNEL:

< CA B 3 2 > *(44) IOCTL (09) Is Drv Remote? 3 (03h)

<CAB32> *(44) IOCTL (08) Is Drv Removeable? 3 (03h)

<CAB32> *(44) IOCTL (0E) Set Log Drv Map 3 (03h)

Such use of NoHookDosCall won’t be seen by a Windows program

that hooks only INT 2 lh. Well, the name of the function is NoHook-
DosCall.

NoHookDOSCall doesn’t bypass all of KERNEL’S special handling. It

still must check for the function OEh and 19h Get/Set Current Drive

calls, for example. However, NoHookDOSCall is fairly simple and

quickly chains to the previous proteced-mode INT 2 1 handler, which

KERNEL saved away at startup in offset lAh of one of its code segments:

0117: 0000814B CALL FAR CS:[001A]

So who owned INT 2 lh in protected mode before KERNEL started?

Probably some VxD. (SHELL VxD is generally the last statically-loaded

VxD, and it loads KERNEL.) But let’s see where the INT 2 lh call goes

when NoHookDosCall chains to the previous handler:

:dd 117:1a

003B : 0396

: u 3b : 396

003B : 00000396 INT 30

Each protected-mode INT 2 lh in Windows, if not absorbed in KER-
NEL, will in turn generate an INT 3 Oh! That INT 3 Oh is all there is to

KernelDosProc (well, not quite, but we’ll get to that in a moment when

we discuss the GetSetKernelDosProc function).

Using a utility such as IDTMAP from the Unauthorized Windows 95

disk, you can see that about ten other protected-mode interrupts also lead
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via Trap Gates to this same selector 003 Bh. (Incidentally, a Trap Gate is

the same as an Interrupt Gate, except it leaves interrupts enabled; if

you’re interested in the significance of this, see the Windows DDK docu-

mentation for Set_PM_Int_Type.)

C : \UNAUTHW\ I DTMAP>i dtmap
|

find "003B:"

0010 INTR 0028 : C0003DF4 (3) TRAP16 003B : 00000342 (3) PMCB

0013 INTR 0028 : C0003E0C (3) TRAP16 003B : 00000324 (3) PMCB

0015 INTR 0028 : C0003E1C (3) TRAP16 0038:00000326 (3) PMCB

001C INTR 0028 : C0003E54 (3) TRAP16 003B : 00000328 (3) PMCB

0021 INTR 0028 : C0003E7C (3) TRAP16 003B : 00000396 (3) PMCB

0025 INTR 0028 : C0003E9C (3) TRAP16 003B : 00000390 (3) PMCB

0026 INTR 0028 : C0003EA4 (3) TRAP16 003B : 00000392 (3) PMCB

002F INTR 0028 : C0003EEC (3) TRAP16 003B : 00000388 (3) PMCB

0031 INTR 0028 : C0003EFC (3) TRAP16 003B : 00000210 (3) PMCB

0033 INTR 0028 : C0003F0C (3) TRAP16 003B : 00000320 (3) PMCB

Each of these protected-mode interrupts generates an INT 3 Oh. In

fact, segment 03Bh in its entirety contains nothing but INT 3 Oh instruc-

tions. As explained briefly in the discussion of the WINBP program in

Chapter 8, INT 3 Oh is a protected-mode (PM) callback to make the tran-

sition from Ring 3 protected mode to Ring 0 3 2 -bit protected mode.

VxDs hook protected-mode interrupts by passing the address of a 3 2 -bit

Ring 0 handler to VMM’s Allocate_PM_Callback service and then passing

the callback address returned from that service to Set_PM_Int_Vector.

In Windows 3.0, you wouldn’t have seen INT 3 Oh. Instead, this seg-

ment was filled with HLT instructions. That’s right: every protected-

mode INT 2 lh in turn generated a HLT. This at first sounds strange:

every INT 2 lh would halt the processor? But the Intel manual page for

HLT notes that in protected mode HLT is a privileged instruction that

causes a GP fault if the current protection level isn’t 0. In Windows 3.0,

protected-mode applications ran at Ring 1, so the HLT wouldn’t shut

down the processor; it would cause a GP fault.

So every INT 2 lh from a Windows application would generate a GP
fault? This doesn’t sound much better than shutting down the processor.

However, consider that the ominous Tsounding GP fault is really just

another interrupt (INT ODh), which can be caught byVMM or a VxD.

Thus, by executing a HLT, a protected-mode application under Windows
3.0 would end up transitioning (what an awful word) from Ring 1 to Ring

0. By pointing a protected-mode interrupt vector at a HLT instruction,

the caller (a Windows application that has called INT 2 1 h, for example)

would “haltingly” (you may groan now) make the transition to Ring 0.

That Windows 3.1 and later uses INT 3 Oh in the same situation for

which Windows 3.0 used HLT tells us that there’s something interesting
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going on here. This use ofHLT instructions in protected mode sounds a

lot like the use ofARPL instructions in V86 mode, which was discussed

in Chapter 8. In fact, these two schemes are similar. ARPL is used for

V86 callbacks and breakpoints. Windows 3.0 used HLT for PM callbacks;

Windows 3.1 and later uses INT 3 Oh for PM callbacks. As the WINICE
manual notes, “The change to INT 3 Oh not only improves performance,

but slightly simplifies a very complicated GP handler.”

So where does the INT 3 Oh go? We can see by running IDTMAP 30:

0030 INTR 0028 : C0001A2C (3) same

This address (28:C0001A2C) is located in the Windows VMM. Thus,

INT 3 Oh is another example of what Microsoft sometimes (not quite

accurately) calls a thunk. By executing an INT 3 Oh, a user-level (Ring 3)

protected-mode program miraculously jumps into VMM, which is privi-

leged (Ring 0) 3 2 -bit protected mode. VMM’s INT 3 Oh handler will use

the address from which the INT 3 Oh came (such as 3B:396) to locate the

handler for this PM callback (that is, the address originally passed to

Allocate_PM_Callback). This is quite similar to VMM’s use ofARPL in

V86 callbacks.

VMM will call the most recently installed protected-mode INT 2 lh

handler. In Windows 95, this will generally be IFSMgr. If IFSMgr isn’t

interested in the INT 2 lh call, it will jump to the previous handler in the

chain, which is generally DOSMGR. DOSMGR is the Windows DOS
extender. It handles most protected-mode INT 2 lh calls using small

“scripts” that it passes to the V86MMGR_Xlat_API service. In most

cases, V86MMGR reflects the call down to V86 mode using Begin_

Nest_V86_Exec and Exec_Int 2 lh. (This process is described in some

detail in Undocumented DOS
,
2d ed., pp. 122-128.)

When it’s said that V86MMGR reflects the INT 2 lh call down to

V86 mode using Begin_Nest_V86_Exec and Exec_Int 2 lh, one crucial

point must be made: This isn’t quite true! Exec_Int will send (or reflect)

the call to the V86 interrupt hook chain, which consists of 3 2 -bit pro-

tected-mode code installed by VxDs using the Hook_V86_Int_Chain

service. Windows will reflect the call to V86 mode only if no VxD
absorbs it. Furthermore, even if the INT 2 lh call is reflected down to

V86 mode, we know from previous chapters that Windows is using real-

mode DOS just as a helper and that calls made by DOS in V86 mode fre-

quently bounce back into VMM- and VxD-land (due to implanted V86

breakpoints, for example).
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As noted earlier, KernelDosProc is nothing more than an INT 3 Oh—
except if a program such as WSPY2 1 has come along and replaced Kernel-

DosProc with its own routine. The address of the previous INT 2 lh han-

dler can be manipulated by Windows applications using yet another

undocumented function, GetSetKernelDosProc. Undocumented Windows

(pp. 188, 271-273) discusses this function, but unfortunately fails to explain

that GetSetKernelDosProc manipulates nothing more than the previous

INT 2 lh handler to which KERNEL’S INT 2 lh handler chains and that,

by using GetSetKernelDosProc, an INT 2 lh handler is essentially pre-

tending to be the INT 2 lh handler that was installed before KERNEL:

::: code for GetSetKernel DosProc

mov ax, [bp+6] : take DWORD param

xchg ax

,

[001A] ; exchange with DWORD at 0117 : 00 1

A

mov dx, [bp+8]

xchg dx, [001C]

GetSetKernelDosProc thus lets you insert an INT 2 lh hook below

KERNEL but above any VxDs that have hooked INT 2 lh. It is similar

to the INT 2Fh function 13h interface discussed in Chapter 8, where it

was said that it would be nice to have a similar INT 2Fh function 2 lh

interface, the role of which is currently played by IFSHLP. GetSetKernel-

DosProc sort of plays this role for protected-mode INT 2 lh.

We can see that the name KernelDosProc is confusing, in that the

handler is not located in KERNEL. It is simply the handler to which

KERNEL’S INT 2 lh handler will chain (via NoHookDosCall).

To see as many protected-mode INT 2 lh as possible, WSPY21 uses

GetSetKernelDosProc. When WSPY2 1 is running, KERNEL will pass

the INT 2 lh calls it doesn’t absorb to WSPY2 1, which will in turn pass

them to the PM callback. At the same time, WSPY2 1 also hooks INT
2 lh (using DPMI rather than DOS, for reasons explained earlier), so

WSPY2 1 will also see the INT 2 lh before KERNEL does. WSPY2 1 thus

acts as a sandwich surrounding KERNEL’S INT 2 1 h handler.

Aside from examining KERNEL’S INT 2 lh in order to show that,

from its very beginnings, Windows has had to bypass certain DOS func-

tions, this chapter has mostly examined the Win32 kernel’s relationships

with the Win 16 kernel and with DOS. This chapter discussed some

Win32 kernel issues such as thunking and Winl6Lock, but didn’t go into

much detail. The next chapter, which you will be relieved to hear is the

final chapter of this book, goes into a variety of Win32 kernel topics,

including thunking, memory-mapped file I/O, the undocumented VxD-
Call API, and Win32 services, in more detail.



Chapter 14

Clock: Mixiho 32-Bit

ood 16-Bii Code

I

n this final chapter, we’ll focus almost entirely on one tiny, otherwise

insignificant program that comes with Windows: the Clock. Because

Microsoft produces it in both Win 16 and Win32 flavors, and because both

flavors run under both Windows 3.x and Windows 95, the Clock applet is

handy for exploring various aspects of the Winl6/Win32
relationship such as larger file handles and WIN32S:

Version of Clock Windows 3.1x Windows 95

Winl6

Win32

16/16: 32BFA

32/16: Win32s;

CALL FWORD PTR

16/32: WIN32 file

handles

32/32: Memory-mapped
EXE loading; Winl6Lock

We’ll start with one last look at the question of how Windows applica-

tions both call down to and bypass MS-DOS. We’ll end with a discussion

of a wide variety of items involved in the mixing of Win32 and Win 16

code: CALL FWORD PTR, QT_Thunk, Win32 services, Winl6Lock,

_EnterSysLevel, the similarity between Win32s and Windows 95, and

more.

16/16: The imoi6 Cioch under will) 3.ii

Under WfW 3.11 with 32BFA, I started the Clock applet that comes with

Windows, let it run for a little while, and closed it. With the Show

Changes option enabled, WV86TEST showed the following DOS calls,

logged by the resident DOS version ofV86TEST loaded before Windows:
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139 seconds elapsed

INT 2 1 h calls:

2A : 402 2C : 2201 4C: 1 50: 15 55: 2

This gives us a nice, concise list of some key INT 2 lh calls that are

typically sent down to MS-DOS, even when 3 2 -bit file access (32BFA) is

enabled:

• Functions 2Ah and 2Ch get the date and time. Whenever the Win 16

version of Clock receives a WM_TIMER message, it calls INT 2 lh

functions 2Ah and 2Ch. WV86TEST shows that these calls are

passed down to DOS. There are more calls to function 2Ch than to

2Ah here because the Win 16 version of Clock issues a large number

of calls to function 2Ch when it starts up. If you do a WV86TEST
Show Changes and Refresh while Clock is already running, there will

be exactly as many calls to function 2Ah as to function 2Ch; generally

the number is about three times the number of elapsed seconds.

• Function 4Ch terminates the current DOS program; the standard

Windows startup code calls this function after WinMain returns. Yes,

Windows applications exit by calling the DOS exit function! This is

documented in Microsoft’s Windows 3.1 SDK (Programmer's Reference,

Volume 1: Overview
,
Chapter 22: “Windows Application Startup”).

• Functions 50h sets the current PSP; function 55h creates a PSP.

When Windows task-switches between Windows applications, it usu-

ally ends up switching the DOS PSP too.

Ever get the sense that Windows applications are little more than

fancy-looking protected-mode DOS applications? Clock’s employment of

DOS functions to get the date and time, the Windows startup code’s exit

via function 4Ch, and Windows’ reliance on the PSP seem to confirm

that impression.

Notice, though, that every time you start Clock, it has to find out

whether you prefer an analog or a digital watch; if you prefer a digital

display, Clock needs to know your preferred font. To get this informa-

tion, Clock reads in CLOCK.INI. This in turn involves not only INT
2 lh calls to open, write, and close CLOCK.INI but also Find First and

Get and Set DTA calls. As shown by WV86TEST, DOS doesn’t see any

of this file I/O. Even when I changed the Clock settings from analog to

digital, browsed the Font list, selected a new font, and exited (which saves

the changed settings in CLOCK.INI), the results logged by V86TEST
and displayed by WV86TEST weren’t terribly different:
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56 seconds elapsed

INT 2 1 h calls:

2A : 139 2C : 788 4C: 1 50: 63 55: 1 62: 23

For all the extra work of selecting a new font and writing out the

changed CLOCK.INI settings, all DOS saw were some extra Get PSP
calls (function 62 h).

Of course, this is the 32BFA effect, whereby most DOS calls are

never sent down to DOS. In contrast to the seven different INT 2 Ih calls

that WV86TEST displayed for Clock, here’s just a little bit of what

WSPY2 1 saw:

< PROGMAN) *(4B) Exec ’C:\WFW311\CL0CK.EXE'

<PR0GMAN> (50) Set PSP 183 (00B7h)

< P ROGMAN) (3D) Open 'C:\WFW311\CL0CK.EXE’

<C LOCK) *(25) Set Vect 0 ( 00 h

)

<C LOC K> *(2F) Get DTA

<CL0CK> (50) Set PSP 4287 ( 1 0 B Fh

)

<C LOC K> (1A) Set DTA 10BF : 0080

» • • •

<C LOC K> *(4E) Find First 'C:\WFW311\WIN.INI

'

<C LOC K> (3D) Open 'C:\WFW311\CL0CK. INI

'

<C LOC K> (44) IOCTL (09) Is Drv Remote? 3 ( 03 h

)

<C LOC K> (44) IOCTL (08) Is Drv Removeable? 3 ( 03

h

< C LOC K> (44) IOCTL ( 0E ) Get Log Drv Map 3 (03h)

< C LOC K> (57) Get/Set File Date/Time 5 ( 0005 h

)

<C LOC K> (42) Lseek2 5 00000000h

<C LOC K> (42) Lseek0 5 00000000h

<C LOC K> (3F) Read 5 (0005h), 89 (0059h)

<C LOCK) ( 3E

)

Close 5 ( 000 5 h

)

» • • •

<C LOC K> *(2C) Get Time

< C L0 C K > (50) Set PSP 4287 ( 1 0B Fh )

<C LOC K> (20 Get Time

<C LOCK) *(2A) Get Date

: ... plenty of 2A, 2C ...

<C LOCK) *(2F) Get DTA

<C LOCK) (1A) Set DTA 10BF : 0080

<C LOCK) (3D) Open 'C:\WFW311\SYSTEM\TIMES.TTF'

< C LOC K> (3F) Read 5 (0005h), 28 (001Ch)

; ... browsi ng fonts here . .

.

< C LOC K> (3D) Open 'C:\WFW311\CL0CK.INI'

< C LOC K> (57) Get/Set File Date/Time 5 ( 0005 h

)

< C LOC K> (40) Write 5 ( 000 5 h ) , 87 ( 0057 h

)

<C LOC K> (40) Write 5 (0005h), 0 (0000h)

<C LOC K> (3E) Close 5 (0005h)

By contrasting this fragment of the WSPY2 1 log with the

WV86TEST log, we can see that a whole series of DOS functions

including lAh (Set DTA), 2Fh (Get DTA), 3Dh (Open Pile), 3Eh
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(Close), 3Fh (Read), 42h (Lseek), and 44h (IOCTL) — were generated

by CLOCK but never sent down to DOS.
On the one hand, Windows applications seem like DOS programs in

that they employ the DOS interface far more heavily than most Windows

programmers seem to realize. Even in Windows 95, they require the real-

mode DOS code. (Recall the Microsoft document quoted in Chapter 8:

“On default all INT 2 1 interrupts, except file API INT 21s, are passed

down to any hooker present in the system.”)

On the other hand, Windows applications also require real-mode

DOS far less than it would at first appear. When you see an INT 2 lh or a

DOS 3 Call in an application, you can no longer assume that this is really

a DOS call. It might just be a convenient way of calling into a VxD.

Well, if you’ve made it.this far through this book, the fact that Win-

dows both employs and bypasses MS-DOS is getting to be old news. So

let’s turn to the Win32 version of Clock that comes with Windows 95.

Both the similarities with and the differences from the Win 16 version are

striking.

32/16: The windows 95 Cioch under Win32s

We can take the Win32 Clock applet from Windows 95 and run it under

WfW 3.11 using Win32s. It’s true that it doesn’t work perfectly (only the

digital watch face works), but the mere fact that this Win32 program

from Windows 95 runs at all under Windows 3.1 shows that Win32s was

perhaps a bigger deal — and Windows 95 perhaps something less of a

radical change — than we have been led to believe.

Here’s what WV86TEST shows for the Win32 Clock under WfW
3.11 with Win32s:

177 seconds elapsed

INT 2 1 h calls:

2A : 1482 2C: 1482 30: 2 4C: 1 50 f 146 51: 58 55: 2 62: 6

INT 2 F h calls:

11 : 2

Note that there are as many calls to get the date (function 2Ah) as the

time (function 2Ch). The Win32 version of Clock, whether running

under Win32s or Windows 95, generates about 8 pairs (1482 / 177) of

Get Date/Time calls per second. Considering that even an old 386SX/20
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can execute about two million instructions per second, executing even a

several-thousand instruction sequence, eight times a second, at worst

constitutes perhaps a 1 percent overhead. On the other hand, this is just

one operation: Accumulate enough similar tiny bits of overhead, and

Windows might have a serious performance problem.

Anyway, WV86TEST shows that the Win32 version of Clock made

pretty much the same set of DOS calls that we’re used to seeing from the

Win 16 version of Clock. But in contrast, here’s a small sample of the

INT 2 lh calls that WSPY2 1 logged during the same period:

<WI NFI LE> *(4B) Exec 'C:\WINDOWS\CLOCK.EXE'

<WI NFI LE> (50) Set PSP 175 ( 0 0 A F h )

f • • •

<W I N FI LE> (3D) Open 'C:\WFW311\SYSTEM\W32SYS.DLL'

» • • •

<WINFI LE> (3D) Open 'C:\WFW311\SYSTEM\WIN32S\WIN32S.EXE'

<W I N F I LE> (3D) Open 'C:\WFW311\SYSTEM\WIN32S16.DLL'

<WINFI LE> (3D) Open 'C:\WFW311\SYSTEM\DDEML. DLL’

<WINFI LE> (3D) Open 'C:\WFW311\SYSTEM\0LECLI.DLL'

<W I N F I L E> (3D) Open 'C:\WFW311\SYSTEM\0LESVR.DLL'

<WI NFI LE> *(47) Get Curr Dir 3 (03h)

<W32SXXXX> (50) Set PSP 175 ( 00AFh

)

<W32SXXXX> (42) Lseek0 10 0001da00

<W32SXXXX> ( 3F) Read 10 (000Ah), 2687 ( 0A7 Fh

)

» • • •

<W32SXXXX> *( 3D) Open 'C:\WFW311\SYSTEM\win32s\w32skrnl .dll

'

» • • •

<W32SXXXX> * ( 3 D ) Open 'C:\WINDOWS\CLOCK.EXE'

9 • • •

<W32SXXXX> *(3D) Open

<W32SXXXX> *( 3D) Open

<W32SXXXX> *(3D) Open

<W32SXXXX> *(3D) Open

<W32SXXXX> *(3D) Open

<W32SXXXX> *(3D) Open

<W32SXXXX> (3D) Open

'C:\WFW311\SYSTEM\win32s\comdlg32.dll

'

'C:\WFW311\SYSTEM\win32s\KERNEL32.dll

'

'C:\WFW311\SYSTEM\win32s\USER32.dll

'

’C:\WFW311\SYSTEM\win32s\GDI32.dll
'

'C:\WFW311\SYSTEM\win32s\NTDLL.dll

'

'C:\WFW311\SYSTEM\win32s\SHELL32.dll

’

'C:\WFW311\SYSTEM\USER.EXE'

<W32SXXXX> (3F) Read 6 (0006h), 6755 (lA63h)

<C LOCK) *(2F) Get DTA

<C LOCK) (50) Set PSP 6799 ( lA8Fh

)

<C LOCK) (2F) Get DTA

<C LOCK) *( 1A) Set DTA 31C7 : 8B8E

CCLOCK) *(4E) Find First ’C:\WFW311\WIN. INI

<C LOCK) *(1A) Set DTA 1A8F : 0080

<CL0CK> (3D) Open 'C:\WFW311\CL0CK. INI

'

9 • • •

<CL0CK> *(2A) Get Date

<CL0CK> (50) Set PSP 6799 ( 1 A8 Fh

)

<C LOCK) ( 2A) Get Date

<C LOC K> *(2C) Get Time
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<CLOCK> ( 2A) Get Date

<C LOCK) *(2C) Get Time

» • • •

To run a Win32 application, Windows 3.1a; must load the Win32s

subsystem. This process is described in my Microsoft Systems Journal

(April 1993) article on Win32s (see especially the “How Does It Work?”

section on pp. 24-29) and in Matt Pietrek’s Windows Internals (pp. 244,

292-293).

Briefly, here’s how Win32s loads: Whenever you select a program to

run under Windows 3.x (for example, by clicking an icon in Program

Manager), whatever shell you’re using calls the WinExec API function,

which in turn calls LoadModule. LoadModule has an error return code

indicating that the specified module was a Win32 Portable Executable

(PE) file rather than a Win 16 New Executable (NE) file. When WinExec

sees this error return, it calls a function in KRNL386.EXE that’s called

ExecPE. Yes, Windows 3.1 had built-in knowledge of Win32 PE executa-

bles; Win32s was not tacked on later as an afterthought.

This is an important point because if Win32s was in some way “inte-

grated” into Windows 3.1, then suddenly Windows 95 looks a lot less

like a brand-new version of Windows and a lot more like a vastly-

improved version of Win32s. When someone makes this point, the pro-

grammers working on Windows 95 at Microsoft protest that “Chicago is

not Win32s!” This was a frequent refrain at the December 1993 Win32

developer’s conference at Disneyland, for example. They assert that in

contrast to Win32s, Windows 95 is integrated, seamless, and all sorts of

other good things.

But Microsoft doth protest too much. When Win32s first came out in

late 1992, the company whistled a different tune: “Win32s and Windows
3.1 system-code are tightly coupled. Win32s is a true system extension to

the Windows 3.1 operating system code” (Microsoft KnowledgeBase

article, “Coordination Between Windows 3.1 and Win32s,” 1992). It’s a

stretch to call a small hook in WinExec “tightly coupled,” but this is the

same stretch that Microsoft makes with each new system software release.

The new software is always “integrated,” “seamless,” and “tightly cou-

pled,” and its predecessor suddenly turns out not to have been.

Perhaps we will one day be hearing how Windows 2000 is truly inte-

grated and how Windows 95 wasn’t. I predict that at the December 1998

developer’s conference (which I further predict will be held at the Coney

Island Cyclone at Astroland Amusement Park; see Microsoft Systems Jour-

nal,]v\y 1994), Microsoft developers will tell the assembled 20,000 ISVs
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(all writing Microsoft Office add-ins in Visual Basic), “Windows 2000 is

not Windows 95!”

Returning to reality, and to the WSPY2 1 log, ExecPE loads

W32SYS.DLL (a Winl6 DLL), which in turn loads WIN32S.EXE. This

is a tiny Win 16 executable, which acts as the proxy for a PE file in the 16-

bit world. Another Winl6 DLL, WIN32S16.DLL, contains the 16-bit

side of the Win32s kernel. In addition to code that can load PE files into

memory under Windows 3.1, resolve their fixups, and so on, WIN32S 16

also contains the 16-bit side of the code that allows Win32 APIs to be

implemented on top of the existing Windows 3.1 16-bit DLLs. WIN-
32816 loads W32SKRNL.DLL, which is a Win32 DLL.

With the fundamental 16/3 2 -bit communication portion of Win32s
loaded, WIN32S 16 can now proceed to load the Win32 executable (here,

CLOCK.EXE) and any Win32 API DLLs it uses (here, COMDLG32,
KERNEL32, USER32, GDI32, NTDLL, and SHELL32). For example,

KERNEL32.DLL contains the GetSystemTime and GetLocalTime

Win32 API services that Clock will need to call when it receives a WM_
TIMER message.

Now, the WV86TEST log shows that DOS sees almost none of this

furious activity involved in bootstrapping the entire Win32s subsystem.

The combination of 32BFA and Win32s turns WfW 3.11 into something

that begins to look like a genuine 3 2 -bit protected-mode operating sys-

tem, much like Windows 95. Indeed, as will be discussed in detail at the

end of this chapter, Windows 95 looks a lot like a Win32s “done right”; it

certainly isn’t the “NT Lite” that some in the computer trade press have

wishfully thought.

Now, WV86TEST sees INT 2 lh function 2Ah and 2Ch calls from

the Win32 version of Clock. Remember that this is the CLOCK.EXE
that comes with Windows 95. It is unlikely that this executable contains

direct INT 2 lh calls. Actually, it’s more than unlikely; it’s impossible:

putting an _asm int 2 lh in a Win32 executable causes a GP fault under

both Win32s and Windows 95. So how does WV86TEST see INT 2 lh

function 2Ah and 2Ch calls coming from Clock?

As just noted, Clock’s WM_TIMER handler calls the GetSystemTime

and GetLocalTime Win32 API functions, which are exported from

KERNEL32.DLL. If you use the Win-ICE BMSG (breakpoint on mes-

sage) command to set a watch WM_TIMER messages going to Clock

and, when the breakpoint is hit, trace (F8) through the code, you eventu-

ally get to this block of code in KERNEL32:
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MOV AH , 2Ah

CALL 80BDC3 E4h

> • • •

MOV AH , 2Ch

CALL 80BDC3 E4h

The numbers being moved into the AH register, 2Ah and 2Ch, should

look familiar: These are the numbers of the INT 2 lh Get Date and Get

Time functions. It’s a safe bet that the function at 80BDC3E4h does INT
2 lh calls on behalf of Win32 applications. Jumping through several more

levels of code, you get to a 3 2 -bit instruction in W32SKRNL.DLL:

2197 : 80B927B3 FF1DF4D0B980 CALL FWORD PTR [80B9D0F4]

The odd-looking FWORD PTR refers to afar pointer. In 32-bit code,

a far pointer is 48 bits, in the form 16:32 (16 bits for the selector and 32

bits for the offset). FWORD PTR indicates that the processor will use a

48-bit address (16-bit selector and 3 2 -bit offset). As we’ll see later, Win-

dows 95 uses the same instruction when 3 2 -bit code has to call down to

16-bit code. Windows NT uses the same mechanism as part of itsWOW
(Windows on Windows) subsystem for running Win 16 applications. For

an excellent discussion, see Jim Finnegan’s article onWOW in the June

1994 Microsoft Systems Journal
,
especially the sidebar on CAFF FWORD

PTR (pp. 34-35).

In our current example, the CALF FWORD PTR instruction will

interpret the six bytes at 80B9D0F4h as a 16:32 address to call:

: dw 80b9d0f

4

2197 : 80B9D0F4 02C5 0000 1137 ...

In other words, executing CALL FWORD PTR [80B9D0F4h] will

generate a far call to 1 137:00000205. In this configuration, selector

1 1 3 7h contains 16-bit code, belonging to WIN32S16:

: 1 dt 1137

1137 Code 1 6 Base=80B3A620 Lim=0000057F DPL=3 P RE

:heap 1137

Han./Sel Address Length Owner Type Seg/Rsrc

1136 80B3A620 00000580 WIN32S16 Code 03

Thus, when the 3 2 -bit part of Win32s executes the CALL FWORD
PTR instruction, it calls into the 16-bit part. If you use a debugger to

trace through the single CALL FWORD PTR instruction in

W32SKRNL, you suddenly find yourself looking at 16-bit code in

WIN32 SI 6. The code at 1 137:02C5 generates an honest-to-goodness

INT 2 lh on behalf of its 3 2 -bit caller.
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Thunking: Mixing 16- and 32-hlt

code wiiii call fword pth

CALL FWORD PTR (opcodes FFh lDh) is Win32s’s way of letting 32-bit code

call down to 16-bit code. Microsoft somewhat incorrectly uses the term

thunk to describe this mixing of 32- and 16-bit code.

You can use FWORD.C (Listing 14-1) and INTSERV.C (Listing 14-2) to

experiment with these 32-to-16 thunks. FWORD is a simple Win32 program

that does little more than make a CALL FWORD PTR to the address you

specify on the program’s command line, using whatever values you specify

for EAX, EBX, ECX, and EDX.

Listing 14-1: FWORD.C

// FWORD.C - Win32 app

// cl fworcLc

//include <stdlib.h>

//include <stdio.h>

//include "windows.
h"

void fail (const char *s) {
puts ( s ) ; exit(l); }

//pragma pack ( 1

)

typedef struct {

unsigned long of s

:

unsigned short seg;

} fword;

int PASCAL Wi nMai n ( HANDLE hlnstance, HANDLE hPrevInstance

,

LPSTR lpCmdLine, int nCmdShow)

{

// Microsoft C startup per MSJ, May 1991, pp. 135-6

//define argc argc

//define argv argv

extern int argc;

extern char ** argv;

char buf [803

;

fword addr;

unsigned reax, rebx, recx, redx;

int i

;

sscanf ( a rgv [13 ,
"M4X:%081X" , &addr.seg, &addr.ofs);

sscanf ( argv[2] ,
"%081 X/%081 X/%081 X/%081 X"

,

&reax, &rebx, &recx, &redx);

sprintf (buf ,
"Calling %04X:%081X %081 X/%081 X/%081 X/%081 X"

,
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addr.seg, addr.ofs, reax, rebx, recx, redx);

MessageBox(0, buf, " FWORD" , MB_QK)

;

// Any pointers would need to be translated, of course,

// Could translate e.g. via thunked calls to DPMI (INT 3 1 h )

.

// generate a lot so it's easy to see in WSPY21

for (
i — 0 ; i <100 ; i++) {

_asm {

mov eax, reax

mov ebx, rebx

mov ecx, recx

mov edx, redx

call fword ptr [addr]

mov reax, eax

mov rebx, ebx

mov recx, ecx

mov redx, edx

}

1

sprintf (buf , "Returned %081 X/%081 X/%081 X/%081

X

H

,

reax, rebx, recx, redx);

MessageBox(0, buf, "FWORD", MB_0K)

;

return 0;

1

INTSERV.C (Listing 14-2) is a Winl6 program that includes three func-

tions that issue interrupts: INT 21h (DOS), INT 2Fh (multiplex interrupt for

assorted services), and INT 31h (DPMI). INTSERV displays the addresses

of the three functions so that you can specify one of them on FWORD’s
command line.

Listing 14-2: INTSERV.C

// INTSERV.C - W i n 1 6 app

// bcc -W -3 -B intserv.c

//include <stdlib.h>

//include <stdio.h>

//include <dos.h>

//define NOGDI

//include "windows.
h”

static char dummy; // just something to take seg of

// yuk! static vars: only one caller at a time

//define SERV ER( cal 1 s , intno) ( \

static char stack[1024] ; \

static unsigned stack_seg; \

static unsigned prev_seg; \

static unsigned long prev_ofs; \
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static unsigned prev_ds; \

_asm { \

push ax; \

push bx ; \

mov ax, ds; \

mov bx, seg dummy; \

mov ds, bx; \

mov stack_seg, bx; \

mov prev_ds, ax; \

pop bx; \

pop ax; \

mov prev_seg, ss; \

mov dword ptr prev_ofs, esp; \

mov ss, stack_seg; \

mov sp, offset stack; \

add sp, 512; \

} \

c a 1 1 s ++ ; \

_asm { \

int intno; \

mov ss, prev_seg; \

mov esp, dword ptr prev_ofs; \

mov ds, prev_ds; \

db 6 6 h ; \

retf; \

1 \

}

unsigned long cal 1 s2 1 = 0, cal 1 s 2 F = 0, cal 1 s31 = 0;

void server21(void) { SERVER! call s21 , 0x21); }

void server2F(void) { SERVER(cal 1 s 2 F , 0x2F); }

void server31( void) { SERVER! ca 1 1 s31 , 0x31); )

int PASCAL WinMai n ( HANDLE hlnstance, HANDLE hprev21Instance,

LPSTR IpszCmdLine, int nCmdShow)

{

char buf [ 120]

;

int len;

len * sprintf (buf , "INT 21h server @ % F p \
n

" , (void far *) server21);

len += sprintf(buf+len, "INT 2Fh server @ %Fp\n", (void far *)

server2F)

;

len += sprintf (buf+1 en , "INT 3 1 h server @ %Fp", (void far *) server31);

MessageBox!0, buf, ” INTSERV" , MB_0K)

;

// servers are active until click MBJ3K above

len » spri ntf (buf , "%lu calls to INT 21 h server\n", call s21 )

;

len += spri ntf (buf+1 en , "%lu calls to INT 2Fh server\n", cal 1 s 2 F )

;

len += sprintf (buf+1 en ,

n
%] u calls to INT 31 h server", ca 11 s31 )

;

MessageBox(0, buf, "INTSERV", MB_0K)

;

return 0;
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|
INTSERV

| DU MS-DOS P...
l
ljiFVQRP

My Corfiputer

\U|yfiUTH(ifSB I H32 > fword 1 d4f : 8 i79 6268/8. '3 '8

' UNfiUTHiil
:

-B I N32>fword 1 c!4f : 8178 S288>0/8>3

'••Urtf8JTHj)KBiM3g>

FWORD

Shortcut to

VSStest

Figure 14-1 shows one example of how the 32-bit FWORD and 16-bit

INTSERV programs work together. INTSERV displays a message box indicat-

ing that its INT 21h server is at 1D4F:0170, INT 2Fh at 1D4F:01AE, and

INT 31h at 1D4F:01EC. I wanted the FWORD Win32 program to get its PSP

via INT 21h function 62h (Get PSP), so I ran the following command:

FWORD 1D4F : 0170 6200/0/0/0

FWORD generates 100 calls so that it’s easy to spot in WSPY21’s log.

Sure enough, WSPY21 shows the FWORD program making Get PSP calls.

Finally, FWORD displayed the returned EAX, EBX, ECX, and EDX registers,

with EBX=01EB7h. FWORD’s PSP is lEB7h.

Hie rteip

|<FW0RD> (62) Get PSP
<FW0RD> *(62) Get PSP
|<FW0RD> *(62) Get PSP
|<FW0RD> (62) Get PSP
<FW0RD> *(62) Get PSP
<FW0RD> (62) Get PSP
|<FW0RD> *(62) Get PSP
|<FW0RD> (62) Get PSP
<FW0RD> *(62) Get PSP
|<FW0RD> (62) Get PSP
<FU0RD> *(62) Get PSP
|<FW0RD> (62) Get PSP
<FU0RD> *(62) Get PSP
<FW0RD> (62) Get PSP
<FW0RD> *(62) Get PSP
|<FW0RD> (62) Get PSP
<FW0RD> *(62) Get PSP
|<FW0RD> (62) Get PSP
<FW0RD> *(62) Get PSP
|<FW0RD> (62) Get PSP
<'FUflBJnii_.it/A2V. not PSP

Returned 0Q0062007GQG01 E B7/00000000/0001XI000

•. CTHl
rn a

mmswv
INT 21 h reiver @ 1 D4F 01 70

INT 2Fb server @ 1 D4F 01AE

INT 31hsew$ 1D4F;01EC '
-1^—

L

, MM
me I

.

j |
j

»

~
iffi FWORD

Figure 14-1. The 32-bit FWORD and 16-bit INTSERV programs demonstrate

thunking in Win32s and Windows 95.

FWORD and INTSERV work in both Win32s and Windows 95. As you can

see from Listings 14-1 and 14-2, there isn’t much code involved. The only

complexity is in INTSERV, which temporarily switches to a 16-bit stack to

service the request from a 32-bit caller such as FWORD. On entry, INTSERV

must save away the caller’s 32-bit stack pointer, and it must restore the

caller’s stack pointer before returning. Because of the way I happened to

implement this in INTSERV. C, the code is nonreentrant, supporting only

one caller at a time. On the other hand, the interrupts to which INTSERV

provides a gateway are themselves non-reentrant, so in a way all I did in

INTSERV is create my own InDOS flag.

Everything interesting in INTSERV.C is located inside the SERVER
macro. For example, the function that handles INT 21h calls from Win32
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applications is nothing more than SERVER(calls21, 0x21). This expands to

the following assembly language code:

push

push

mov

mov

mov

mov

mov

pop

pop

mov

mov

mov

mov

add

i nc

int

mov

mov

mov

db

retf

Note that 16-bit INTVECT must save away and restore the full 48 bits of

the 32-bit caller’s stack pointer (SS:ESP rather than SS:SP) and must return

to its 32-bit caller with a 48-bit (16:32) far return. Aside from these stack-

related issues, calling 16-bit code from 32-bit code is a cinch. Actually, it

might be even more of a cinch because Jim Finnegan, this book’s technical

editor, reminded me that "According to Intel, you don’t have to do any of

this stack fooling. If you futz with the DS B-bit, and your stack is top down in

a <64K segment, you should be golden.” The B-bit specifies the size of the

stack pointer — the 32-bit ESP register or the 16-bit SP register — to be

used for implicit stack references. (See the useful chapter on “Mixing 16-Bit

and 32-Bit Code” in Intel’s i486 Microprocessor Programmer’s Reference

Manual.)

Although Win32s (and as we’ll soon see, Windows 95) uses CALL

FWORD PTR to let Win32 applications make INT 21h calls, this isn’t the

only thunking mechanism available. In the 16-bit code just shown, notice

the DB 66h RETF, which makes a 48-bit far return to a 32-bit caller. Now,

by jiggling addresses on the stack, it’s possible for a piece of code to use

RETF to return to some piece of code from which it was never called in the

first place. Thus, the capability to return from 16-bit code to 32-bit code is

also a form of thunking. Skipping ahead a bit, KERNEL32 in Windows 95

uses RETF in its QT_Thunk routine, which is called by Win32 functions in

USER32 and GDI32 that are implemented by thunking down to the old

Winl6 Windows DLLs. And, though Microsoft denies that KERNEL32 ever

thunks down to the 16-bit kernel, KERNEL32 uses QT_Thunk too.

save caller’s AX and BX

; ; ; save caller's DS

;;; SEG DUMMY is INTVECT’s DS

; ; ; set up our DS

;;; get back caller's AX and BX

;;; save away caller's 48-bit stack ptr

ax

bx

ax, ds

bx, seg dummy

ds , bx

stack„seg, bx

prev_ds, ax

bx

ax

prev_seg, ss

dword ptr prev_ofs, esp

ss, stack_seg ;;; set up new stack ptr

sp, offset stack

sp, 512

dword ptr cal 1 s 2 1 ;;; increment counter

21h ; ; ; do it!

ss, prev_seg

esp, dword ptr prev_of$ ;;; restore caller's 48-bit stack ptr

ds, prev_ds ;;; restore caller's DS

66h

; : : 66 RETF: do 48-bit far return
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In Windows 95, Winl6 DLLs such as KRNL386.EXE use yet another

thunking mechanism, 48-bit far jumps (DB 66h JMP FAR), to make Win32

calls. This is described in the “Win32 File Handles and Thunking” section

later in this chapter.

Microsoft’s original intent was that applications in Win32s, NT, and Win-

dows 95 wouldn’t be allowed to mix 16- and 32-bit code. Period. After much
screaming by developers who had Winl6 code that was difficult or impossi-

ble to port to Win32 but that needed to be used in Win32 applications,

Microsoft relaxed its principles about the purity of 32-bit code and published

some thunking APIs. Unfortunately, there are three different thunking APIs:

• Universal Thunk (UT) in Win32s. See Walter Oney, “Mix 16-bit and 32-bit

Code in Your Applications with the Win32s Universal Thunk,” Microsoft

Systems Journal (November 1993).

• Generic Thunk in NT. See James Finnegan, “Test Drive Win32 from 16-

bit Code Using the' Windows NT WOW Layer and Generic Thunk,”

Microsoft Systems Journal (June 1994).

• Thunk Compiler in Windows 95. See THUNKME.TXT in the Windows 95
SDK. The thunk compiler, THUNK.EXE, accepts thunk scripts that con-

tain C-style function prototypes, much as you would use with a Remote

Procedure Call (RPC) compiler. The thunk compiler outputs an .ASM file

to include on the 16-bit and 32-bit side of the call. What Microsoft

persists in wrongly calling thunks are much more like a form of non-

networked RPC.

With all these different thunking APIs, it might be easier to build your

own portable thunks using the native Intel instructions, such as CALL
FWORD PTR, JMP FAR, and RETF.

We saw earlier that the Win32s implementation of GetLocalTime uses

thunks to call down to Win 16 code which, in turn, makes an INT 2 lh call

to DOS’s Get Date and Get Time functions. What a kludge, right? It’s a

good thing Windows 95 is a full-blown protected-mode operating system

that doesn’t require DOS to get the date and time, right? Well, let’s see...

32/32: me windows 95 cioch

Having run the Win 16 and Win32 versions of Clock under WfW 3.11,

let’s next take the Win32 version of Clock and run it under Windows 95.

(Yes, later on we’ll run the Win 16 version of Clock under Windows 95.)

While Clock was running, WV86TEST logged the following DOS calls:

50 seconds elapsed

INT 2 1 h calls:

2A: 451 2C : 451 4C: 1 50: 23 55: 1
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There are the function 2Ah and 2Ch calls again. Naturally, WSPY21
shows Clock making many more DOS calls, including some of the new
long filename functions (INT 2 Ih function 7 lh):

<C LOCK) *(71) LFN (4E) Find First 'C:\WINDOWS\clock.ini'

< C LOCK) *(71) LFN (Al) Find Close

<CL0CK> *(71) LFN (60) Truename 'C:\WINDOWS\CLOCK.EXE'

But there’s something much more interesting about the WSPY2 1 log

for the Win32 version of Clock under Windows 95: no function 2Ah (Get

Date) or 2Ch (Get Time) calls show up!

We’ve just seen that WV86TEST with Windows 95 sees function

2Ah and 2Ch calls while Clock is running. How can DOS see these calls

when the higher-level INT 2 lh hook in WSPY2 1 doesn’t? Where are

these calls coming from?

As noted earlier, whenever the Win32 version of Clock receives a

WM_TIMER message, it calls the GetLocalTime Win32 API function

in KERNEL32.DLL. (Incidentally, that phrase, “the Win32 version of

Clock receives a WM_TIMER message,” hides a frightening amount of

complexity; Chapter 13 briefly discusses how Win32 programs receive

WM_XXX messages in Windows 95.)

In Win-ICE, you can set a breakpoint (BMSG) for WM_TIMER in

Clock’s window. When this breakpoint is triggered, you can trace

through the code by pressing F8. After a bunch of code (including a call

to KERNEL32!W32S_BackTo32, which sounds like a leftover from

Win32s), you eventually reach Clock’s call to GetLocalTime. Tracing

through the code for that function in KERNEL32.DLL, you finally get

to the following bit of code, which seems strangely reminiscent of the

Win32s implementation of GetLocalTime:

0137 : BFF71186 MOV AH . 2A

0137 : BFF71188 CALL BFF71E5F

» • • •

0137 : BFF7119C MOV AH , 2C

0137 : BFF7119E CALL BFF71E5F

The function at BFF71E5Fh in KERNEL32 must do INT 2 lh calls

for Win32 applications. Examining this function in Win-ICE, we see:

:u bf f 7 1 e5f

0137 : BFF71E5F PUSH ECX

0137 : BFF71E60 PUSH m > X

0137 : BFF71E61 PUSH 002A0010

0137 : BFF71E66 CALL KERNEL32 ! VxDCal 1

0

0137 : BFF71E6B RET
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We know from Chapter 13 that VxDCallO 2A0010h makes INT 2 lh

calls on behalf of Win32 applications, but we didn’t peer inside the code

to see how it works. Let’s do that now:

:u vxdcall®

KERNEL32 ! VxDCal 1

0

0137 : BFF71 F10 POP DWORD PTR [ESP]

0137 : BFF71F13 CALL FWORD PTR CS : [BFFB5004]

There’s that CALL FWORD PTR again! Microsoft doth protest too

much that “Chicago is not Win32s!” Although there are important dif-

ferences between Windows 95 and Win32s (and although the Chicago

team at Microsoft may not have reused much of the code written by the

Win32s group at Microsoft Israel, that being the “not invented here” way

that things often work inside Microsoft), there are nonetheless a lot of

similarities between the two environments.

Remember that CALL FWORD PTR uses a 16:32 (48-bit) address.

Examining the six bytes at BFFB5004, we see:

:dw bffb5004

0137 : BFFB5004 03B6 0000 003B

Thus, the VxDCall function in KERNEL32 is little more than a fancy

way of calling the code at 003B:03B6. This in turn is:

003B : 000003B6 INT 30

Huh? After all that tracing, seeing this INT 3 Oh is sort of like being

told that the answer to Life, the Universe, and Everything is 42. What
good is it to turn an INT 2 lh into an INT 3 Oh? What’s an INT 3 Oh,

anyhow?

Recall from Chapter 8 that INT 3 Oh is a protected-mode (PM) call-

back. VxDs generate these PM callbacks with the Allocate_PM_Call_

Back service, which is provided byVMM and documented in the Win-

dows DDK. The INT 3 Oh is basically a thunk that lets user-level pro-

tected-mode applications in Ring 3 jump to VMM and VxD code in Ring

0. Executing the INT 3 Oh takes you to VMM’s PM callback handler

which, based on the offset within segment 003Bh from which the INT
3 Oh came (such as 03B6h in this example), will jump to the appropriate

PM callback.

Figure 14-2 shows what we have so far: VxDCallO is an undocumented

function exported by KERNEL32.DLL. VxDCallO expects a VxD Win32
service number (such as 2A0010h), and any values for EAX and ECX on

the stack (see the WIN32PSP.C sample program later in this chapter).



Chapter 14: Mixing 32-Bit and 16-Bit Code

2A0010h indicates VxD ID #002Ah, Win32 service #001 Oh. The PM call-

back in VMM decodes such Win32 service requests. VxD 2Ah is

VWIN32, and the PM callback in VMM will call its Win32 service #10.

Clock WM_TIMER handler

KERNEL32!GetLocalTime

mov ah, 2Ah
call BFF7I E5Fh

• •

mov ah, 2Ch
call BFF7 1 E5Fh

W

int 30h

VMM

PM callback for 003B:03B6

KERNEL32 DosCall Function

push ecx

push eax

push 2A00 1 Oh

call kernel32!VxDCall0

KERNEL32!VxDCallO

mov eax, [esp+4]

pop dword ptr [esp]

call fword ptr cs: [BFFB5004h]

Figure 14-2: How the Win32 clock gets the date and time, part 1. Upon receiving a

WM_TIMER message, the Clock calls the Win32 GetLocalTime function, which does a

VxDCallO 2A0010h, with AH=2Ah and 2Ch. VxDCallO eventually leads to the execution

of protected-mode callback, which traps into VMM. See Figure 14-3 for part 2.

VWIN32’s Win32 service #10h issues INT 2 lh on behalf of Win32

applications by calling Exec_PM_Int, a VMM service new to Windows 95,

with the parameter 2 lh. Figure 14-3 shows the next part of the diagram.

Exec_PM_Int in turn is a wrapper around four other VMM calls:

Set_PM_Exec_Mode

Beg i n_Use_Locked_PM_Stack

Exec_Int

End_Nest_Exec

And Exec_Int in turn is equivalent to Simulate_Int followed by

ResumeJExec.

Basically, then, calling Exec_PM_Int sends a simulated interrupt to the

protected-mode interrupt chain. Thus, the whole VxDCallO 2A0010h
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mechanism is fairly similar to the FWORD/INTVECT code I cobbled

together back in Listings 14-1 and 14-2.

VMM

PM callback for 003B:03B6

, ,
-

;

Decode Win32 service call

v\VWIN32 2A00 1 Oh

HI 11 % mmmmm.
Exec PM INT 21 h

:

Figure 14-3: How the Win32 clock gets the date and time, part 2. The protected-mode

callback executed at the bottom of Figure 14-2 is responsible for decoding Win32 ser-

vice requests. Service 2A0010h is provided by the VWIN32 VxD, and uses the Exec_

PMJNT service in VMM to make INT 21h calls on behalf of Win32 programs. See

Figure 14-4 for part 3.

If no protected-mode interrupt handler absorbs the call, it winds up at

VMM’s default protected-mode handler, which reflects the call to the

V86 interrupt hook chain (that is, the chain ofVxD interrupt handlers

established with the Hook_V86_Int_Chain service). If no VxD (such as

IFSMgr) absorbs the simulated V86 interrupt, VMM’s default V86-mode
handler sends it down to the actual V86 interrupt chain (that is, the chain

of real-mode interrupt handlers that Windows runs in V86 mode). It is

crucial to understand the difference between the V86 interrupt chain

(real-mode interrupt handlers, including DOS, device drivers, and TSRs)

and what I’m calling the V86 interrupt hook chain (protected-mode han-

dlers installed by VxDs).

If no VxD absorbs the INT 2 lh that VWIN32 simulated using Exec_

PM_Int, the INT 2 lh is sent down to DOS, and V86TEST sees the call,

even though WSPY2 1 doesn’t. (WSPY2 1 doesn’t see the call because it

didn’t start out life as INT 2 1 h, Dos3Call, or NoHookDosCall, which is

basically what WSPY2 1 traps.)

Figure 14-4 shows the next portion of the complicated path taken

when a Win32 program asks for the date and time.
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VMM!Exec_PM_lnt 2 1 h

¥
VMM Set_PM_Exec_Mode

Simulatejnt

Resume_Exec

End_Nest_Exec

Protected Mode Interrupt Chain

IFSMgr DOSMGR 1^.
Rest of

|
chain \

V86 Interrupt Hook Chain

IFSMgr DOSMGR Rest of

chain

V86 Interrupt Chain

V86TEST IFSHLP Rest of

chain

T
DOS

j

Figure 14-4: How the Win32 clock gets the date and time, part 3. The Exec_PM_int ser-

vice in VMM sends the simulated INT 21h function 2Ah and 2Ch calls to the protected-

mode interrupt chain. If no protected-mode INT 21h handler services the calls, they are

next sent to the VxD INT 21h hook chain. If no handler here services the calls either,

they are sent to the V86 interrupt chain, and eventually to MS-DOS. See Figure 14-5 for

the exciting conclusion, revealing what happens to the calls inside DOS.

Figures 14-2 through 14-5 certainly reveal a mechanism that is far

more complicated and interesting than a plain INT 21h, but the result is

still that DOS sees an INT 2 lh function 2Ah or 2Ch call — just as

shown by the WV86TEST output that got us started on this subject in

the first place.

Does windows 95 Really call Down to DOS?

flod What Does it do When it Gets There?

By now, you must have a few nagging doubts and worries about whether

Windows 95 really and truly calls down to MS-DOS to implement

Win32 API functions such as GetLocalTime.
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First, just because V86TEST has seen Windows issuing calls to INT
2 1 h functions 2Ah and 2Ch, does this really mean that DOS sees these

calls too? It’s true that V86TEST chains all calls to the previous interrupt

handler (see V86TEST.C in Chapter 10). But we know from previous

chapters that IFSHLP.SYS sits between V86TEST and DOS, and that

one of IFSHLP’s main responsibilities is to divert DOS calls away from

DOS and toward IFSMgr (see “The Role of IFSHLP.SYS and V86 Call-

backs” in Chapter 8). So perhaps V86TEST sees the calls but DOS
doesn’t. I’ll address this issue in a moment.

Second, there’s what we might call the Heisenberg worry. As part of

the explanation for his uncertainty relations (for example, that you can’t

determine simultaneously, for a given degree of certainty, both the posi-

tion and the momentum of a subatomic particle), Werner Heisenberg

came up with a “thought experiment” involving an imaginary gamma-ray

microscope. Using Heisenberg’s microscope, the very act of observing a

particle diverts it from the position or momentum it would have had in

its unobserved state. And the finer the resolution of the microscope, the

more the act of observation perturbs its subject.

There’s a nice analogy (but nothing more than that) to computing:

When you use one piece of software to examine another piece of software

with which it interacts, you must be careful not to build a Heisenberg

microscope that changes the behavior of what you’re trying to observe.

Now, is V86TEST a Heisenberg microscope? Does the mere act of

loading V86TEST before Windows perhaps change the way that Win-
dows interacts with DOS? Does the presence ofV86TEST cause Win-
dows to send INT 2 lh calls such as functions 2Ah and 2Ch down to

DOS? IfV86TEST were not present, would Windows still do this?

These questions are important because Microsoft has asserted for the

longest time that Chicago would completely bypass DOS unless there

was an INT 2 1 h hooker (presumably other than DOS itself) on the sys-

tem. The presence of even a single TSR that hooks INT 2 lh would then

presumably cause Chicago to send all DOS calls down to the INT 2 1 h

chain. So perhaps V86TEST is that TSR and perhaps, without

V86TEST, Windows would be behaving quite differently.

There are several ways to address all these concerns. First, though it

does contradict other Microsoft statements intended for the goyim (that’s

“for public consumption” in Yiddish), Microsoft has explicitly stated that

Windows will pass down all non-file I/O INT 2 lh calls. Once more,

recall the Microsoft document titled “Chicago File System Features,”

quoted in Chapter 8: “On default all INT 21 interrupts, except file API
INT 21s, are passed down to any hooker present in the system.”
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In this book, I could have perhaps just quoted this sentence a few

more times— each time reminding you that DOS itself is an INT 2 lh

hooker— and not bothered with any experiments. With this one sen-

tence, Microsoft says that Windows 95 — including Win32 applications

running under Windows 95 — calls down to DOS for non-file services,

such as getting and setting the date and time. But the document’s descrip-

tion ofWindows interaction with INT 2 lh hookers doesn’t really hit you

(at least, it didn’t hit me) until you’ve performed the experiments and seen

what the document is getting at. This sentence is such a glaring contra-

diction with Microsoft’s “Windows 95 doesn’t require DOS” propaganda

that most readers probably focus on the “except file API INT 21s” part

and gloss over the broader statement being made about INT 2 lh in gen-

eral. For all the talk of Windows 95 not requiring DOS, what Windows
95 actually does in relation to DOS is precisely what WfW 3.11 does:

provide 3 2 -bit file access.

At any rate, Microsoft’s statement is consistent with our finding that

Windows 95, like Win32s, implements certain Win32 API functions by

calling (albeit in a highly baroque and circuitous style) down to the real-

mode MS-DOS code (which Windows runs in V86 mode).

Second, by comparing output from WV86TEST and WSPY2 1, we’ve

seen that many DOS calls are not passed down, even when V86TEST is

loaded. Again, this is consistent with the Microsoft document on the

Chicago file system: “The file API INT 21s are just passed to VM (local)

hookers, but not to global (AUTOEXEC.BAT) type hookers.” V86-

TEST is a global INT 2 lh hooker. We’ve seen that, indeed, Windows

does not pass it any file INT 2 lh calls. It seems a fair presumption, then,

that the few calls that are passed down would still be passed down even if

V86TEST weren’t loaded.

Third, by running without V86TEST and putting a debugger break-

point on the real-mode DOS code, we can confirm that the INT 2 lh

calls seen by V86TEST, such as functions 2Ah and 2Ch, really really are

sent down to DOS, even when V86TEST isn’t running. It’s worth look-

ing at this not only to prove that V86TEST is not a Heisenberg micro-

scope (were you really all that worried?) but also because it helps make a

critical point about Windows-DOS interaction. Here goes.

I started Chicago without V86TEST and from a DOS box ran the

INTCHAIN program (see the Unauthorized Windows 95 disk), using it to

locate DOS’s INT 2 lh handler. Starting from when INTCHAIN issues

the INT instruction given on its command line (such as “21/2AOO” for

INT 2 lh function 2Ah), until the interrupt returns to the line of code
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after the INT instruction, INTCHAIN single-steps through the inter-

rupt chain, displaying key addresses such as when the segment changes or

when another INT is encountered. I’ve added comments to the following

output from INTCHAIN:

C : \UNAUTHW>i ntchai n 21/2a00 ;; do INT 21 h func 2 Ah (Get Date)

Tracing INT 21 AX=2A00

494 instructions

Skipped over’ 5 INT

0337 : 04A8 I FS $ H L P $

01EF: 0023 D:

0498:1956 DBLSYSHS

00A0 : 0FAC DOS

FE9E : 4249 HMA

FE9E : 4339 HMA INT 2 Ah AX=82‘00h

FE9E : 5354 HMA INT 2Ah AX=8002h

0070:0166 10

F E9 E : 897 9 HMA

0070 : 00EE 10

FFFF : 0040 HMA

FFFF : 08DA HMA INT 1 Ah AX=0000h

FE9E : 8985 HMA

FE9E : 5383 HMA INT 2 Ah AX=8 1 0 2 h

I FSHLP . SYS

DBLSPACE.BIN

low-memory stub for DOS in HMA (D0S=HIGH)

DOS's INT 2 1 h handler in HMA

End critical sections 0-7

Begin critical section 2

Device driver generic Strategy routine

CL0CK$ Interrupt routine in here

CL0CK$ calls 1 A/00 (Get System Time)

End critical section 2

We’ll examine this DOS -> CLOCKS -> INT lAh chain in more

detail momentarily. Right now, we need only one piece of information:

FE9E:4249 is the location of DOS’s INT 2 1 h handler. We can use Win-

ICE to set a breakpoint on this V86-mode address (BPX &FE9E:4249).

Sure enough, the breakpoint is triggered, showing that Windows really

does call down to DOS. This answers the first question, about whether

IFSHLP perhaps ships all INT 2 lh calls to IFSMgr— it doesn’t. Well,

why would it? IFSMgr handles only about forty different INT 2 lh func-

tions. In the absence of other VxDs that handle INT 2 lh, such as my
CURRDRIV.386 and INTVECT.386 from Chapter 8, the remaining

sixty or so less frequendy used and less expensive INT 2 lh functions must

be sent down to DOS; the Win-ICE breakpoint on DOS’s INT 2 lh han-

dler shows that they are.

So we now know that Windows 95 really does call down to DOS,
even in the absence of an INT 2 lh hooker such as V86TEST. We could

leave it at that, treating DOS as a monolithic black box. But rather than

rest content with a vague statement like “Windows calls down to DOS,”
let’s peer inside (“drill down” seems to be the current Microsoft lingo)

DOS’s INT 2 lh handler. By seeing what happens inside DOS during an
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INT 2 lh function 2Ah call from Windows, we’ll see why it’s so impor-

tant to remember that Windows runs DOS in V86 mode rather than in

real mode, and why this is like taking the real-mode DOS code and run-

ning it in protected mode.

If you trace through DOS’s INT 2 lh handler, you eventually hit

something that looks like this:

FE9E : 000042F1 MOV BL.AH

FE9E : 000042F3 SHL BX.l BX = 2 * INT 2 1

h

func number

9 9 9 • • •

FE9E : 00004354 MOV BX ,CS: [BX+3FE1] index into table

FE9E : 00004359 XCHG BX , SS : [05EA]

FE9E : 0000435E MOV DS , SS : [05EC]

FE9E : 00004363 CALL SS : [05EA] ; ; call handler for INT 2 1 h func

This crucial bit ofDOS code is explained in excruciating detail in the

“Disassembling DOS” chapter of Undocumented DOS (2d ed., pp. 291 -

297). Briefly, the BX register holds the INT 2 lh AH function number

(such as 2Ah) multiplied by two. This number is used to index into a

table, here located at offset 3FElh in the DOS code segment. This table

holds near function pointers to DOS’s handlers for each INT 2 lh func-

tion. The preceding code retrieves and calls this function pointer. With a

utility such as FTAB (the real-mode version of PROTTAB), you can

dump out this table and locate the handlers for the INT 2 lh Get/Set

Date/Time functions:

C:\UNAUTHW>ftab fe9e:3fel 73 i 21 2 ;; show 73h words at FE9E : 3FE1

FE9E : 48B8 i 21._2A ; ; Get Date

FE9E : 48D5 i 21__2B : ; Set Date

FE9E : 48F5 121._2C ; ; Get Time

FE9 E : 4906 121._2D ; ; Set Time

Now we can put a breakpoint on the INT 2 lh function 2Ah handler

at FE9E:48B8 and go back to running Clock. If the breakpoint is hit, it

means that Windows 95 calls down to DOS. Here’s some of the Win-

ICE trace, which I saved to a file, ran through the VXDNAME utility,

and then decorated with my usual Talmudic commentary:

Break Due to BPX &FE9E : 000048B8 C=01

FE9E : 000048B8 PUSH SS hit DOS code that does 21/2A

FE9E : 000048B9 POP DS

;;; Prepare device-driver request packet. Devi ce-dri ver function 4 (Read).

;;; Buffer points to a 6-byte CL0CK$ transfer record

FE9E : 00008980 CALL FAR SS:[0378] ;;; DOS calls CLOCKS dev driver
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0070 : 000000EE CALL 01AF ::: this is CLOCKS Interrupt routi ne

» • • •

0070 : 000001BF JMP FAR CS : [013A] ;;; go to HMA (D0S=HIGH)

FFFF : 00000040 PUSHA

» • • •

FFFF : 000008D8 SUB AH, AH ;;; CLOCKS calls INT 1 Ah fn 0 (Get Sys Time)

FFFF : 000008DA INT 1A

Thus, Windows 95 is calling DOS. In turn, DOS’s handler for func-

tion 2Ah is calling the Interrupt routine for the CLOCKS device driver.

This in turn (assuming you haven’t supplied a new CLOCKS driver) gets

the current date and time for DOS by calling ROM BIOS INT lAh

function 0 (Get System Time).

Why doesn’t CLOCKS just consult the BIOS data area, which

includes a tick counter at 46Ch (0040:006C) and a midnight flag—
unfortunately for those who leave their machines running for days at a

time, this really is a flag and not a counter! — at 470h (0040:0070)? The
source code for CLOCKS included in Microsoft’s DOS 5.0 OEM Adap-

tation Kit (OAK) has the following comment:

: 11/26/91 NSM Ml 0 1 : We lose date sometimes under windows. To fix this

; do Int la's to get tick count instead of looking at 40:

; 6c h and if we get rollover, then go & update date

: and time from CMOS.

This is from PTIME.ASM, which is the source for the power-management

version ofCLOCKS in POWER.EXE. But the standard version of

CLOCKS, in MSCHAR.ASM, also calls the ROM BIOS INT lAh to get

the time, presumably for the same reason.

Well, at least CLOCKS thinks it’s calling the ROM BIOS. In fact,

because we’re running in V86 mode under Windows, all interrupts vec-

tor through the IDT (see Chapter 9). The IDT entry for INT lAh

points to VMM. Thus, when the DOS CLOCKS device driver calls INT
lAh, it’s actually calling into VMM. Windows might have called down to

DOS in V86 mode to handle the INT 2 lh function 2Ah, but DOS (with-

out knowing it) is going to call right back into Windows to handle the

INT 1Ah function 0. If you press F8 (trace) to drill down through the

INT lAh instruction in Soft-ICE, you can see a dramatic demonstration

of this. From the INT lAh inside DOS’s CLOCKS device driver, you

suddenly switch into 3 2 -bit protected mode and wind up at the next

instruction inside VMM:

FFFF : 000008DA INT 1A ;;; VMM hooks INT lAh via IDT

;;; INT takes us from V86 mode DOS right to 32-bit protected mode VMM!

0028: VMM+2E44 CALL VMM+000 ;;; return addr is VMM+2E49
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When it receives this INT lAh call from DOS, VMM does some
generic interrupt-handling setup, and then walks the V86 interrupt

hook chain:

0028 : VMM+000 CLD

0028: VMM+001 PUSHAD

0028 : VMM+002 MOV EAX , [ESP+20]

0028: VMM+006 SUB EAX , VMM+2D79

0028 : VMM+00B SHR EAX, 03

0028 : VMM+00E MOV EBP, ESP

0028 : VMM+010 MOV BX , 0030

0028 : VMM+014 MOV DS.BX

0028 : VMM+016 MOV ES.BX

0028 : VMM+018 MOV EDI , [ VMM+F670]

0028 : VMM+01

E

XCHG ESP , [EDI +48

]

0028 : VMM+021 MOV EBX , [VMM+F6E4]

0028 : VMM+027 STI

0028 : VMM+028 PUSH VMM+2E0

0028 : VMM+02D JMP [ VMM+D228+4*EAX]

0028 : C0FCE1BC CALL VTD+1C0

; in VMM generic INT handler

; return address (2E49h)

; sub base of INT handlers

; (addr-base)/8 = intno ( 1 Ah

)

; make Client Register Struct

;
get VMM data seg

; EDI = current thread handle

; switch to thread’s stack

; EBX = current VM handle

; re-enable interrupts

;
push return address (see below)

;
go to V86 INT 1 Ah hook chain

; V86 int hook chain

VxDs install themselves on the V86 int hook chain by calling, natu-

rally enough, Hook_V86_Int_Chain. During Windows initialization, the

Virtual Timer Device (VTD) calls Hook_V86_Int_Chain with EAX=lAh
and ESI=VTD+lCOh. So now thatVMM has received a V86-mode INT
lAh, it’s going to call the routine at VTD+1 COh:

0028 : VMM+02D JMP [VMM+D228+4*EAX] ;;; go to V86 INT lAh hook chain

0028 : C0FCE1BC CALL VTD+1C0 ;;; V86 int hook chain

Thus, an INT lAh function 0 call, from deep inside DOS’s CLOCKS
device driver, ends up at the Windows Virtual Timer Device’s 3 2 -bit pro-

tected-mode handler for INT lAh:

0028 : VTD+1C0

0028 : VTD+1C4

0028 : VTD+1C8

0028: VTD+1CC

0028 : VTD+1CE

0028 : VTD+1 E2

0028 : VTD+1 E7

0028 : VTD+1 EB

0028 : VTD+1 EE

0028 : VTD+1F2

0028 : VTD+1 F6

0028 : VTD+1 F7

CMP BYTE PTR [EBP Cl i ent__AH] , 10

JB VTD+1C8 INT 1 Ah func < 1 0 h ? Yes

.

CMP BYTE PTR [EBP Cl i ent__AH] ,01

JA VTD+1F8 ::: INT 1 Ah f unc > 1? No.

JB VTD+1E2 ::: INT 1 Ah func < 1? Yes

.

MOV EAX, [VTD+3A4] ::: handler for INT 1 Ah func 0

MOV [EBP ,C1 ient_DX] ,AX : : : ret CX: D X = t i cks sin ce midnight

SHR EAX, 10

MOV [EBP . Cl ient_CX] . AX

MOV BYTE PTR [EBP Cl i ent__A L ] ,00 f t t mi dn ight fl ag = 0

CLC ::: handled it - - don't chai n

RET

The Windows 95 version ofVTD handles the INT lAh call entirely

in 3 2 -bit protected mode by loading the client register structure from a

variable (VTD+3A4h) that holds the current time in clock ticks since

midnight.
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How does VTD maintain this tick counter? The variable is set by

VTD’s handler for INT 1Ah function 1 (Set Time), which is called from

DOS functions 2Bh (Set Date) and 2Dh (Set Time). But VTD can’t rely

on these functions to keep the tick counter updated, because they are

called only when the user changes the date or time (with the Control

Panel, for example).

As mentioned earlier, the BIOS data area includes a tick counter at

46Ch (0040:0Q6C) and a midnight flag at 470h (0040:0070). You might

think that VTD could maintain its own tick counter and midnight flag by

reading the BIOS data area. But VTD reads these values only once, dur-

ing initialization. In fact, the relation between VTD and the BIOS works

the other way around: While Windows is running, VTD is responsible

for keeping the BIOS data area updated (via its V86 INT ICh hook).

So where does VTD’s tick counter and midnight flag come from?

During initialization, VTD calls the Virtual Programmable Interrupt

Controller (PIC) Device’s VPICD_Virtualize_IRQ service to register a

HW_Int_Proc handler for IRQ 0. Interrupt request 0 is the timer hard-

ware interrupt, usually associated with INT 8. VPICD relocates the

IRQs to INT 50h through 5Fh (see the FAULTHKS program on the

Unauthorized Windows 95 disk), so under Windows an actual timer hard-

ware interrupt will come in as an INT 50h. About 18.2 times a second,

VPICD receives one of these timer interrupts.

Among many other things, VPICD will call VTD’s Hw_Int_Proc.

The Hw_Int_Proc increments VTD’s tick counter, sets the midnight flag

(VTD maintains a midnight flag rather than a counter), and so on. One
of its other responsibilities is to call the VMM Update_System_Clock

service, which in turn can trigger a preemptive task switch if a VM or

thread has used up its time slice.

Thus, VTD not only handles the INT lAh call from CLOCKS
entirely in protected mode but (in conjunction with VPICD) also man-

ages the timer hardware interrupt. This is just one example of a more

general point: VxDs now play much the same role that the ROM BIOS
once did. (See the HOOKINT program in the “What about BIOS
Calls?” section in Chapter 11.)

It’s only a slight exaggeration to say that VxDs are now the ROM
BIOS! And just as IBM’s BIOS source listings were the foundation for a

phenomenon variously described as the PC revolution, the formation of

the PC industry standard architecture, or the commoditization of the PC,

it’s possible that similar accurate, complete listings for the entire VMM
and VxD subsystem could be the foundation for a new industry standard
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architecture. I would argue that VxDs already constitute a de facto indus-

try standard architecture. Unfortunately, this de facto architecture is not

widely understood.

Wider understanding ofVMM and VxDs could pave the way for radi-

cal improvements in the PC architecture. One possibility is to completely

replace the BIOS with 3 2 -bit protected-mode VxDs, and then put the

entire VMM/VxD layer in ROM so that it is present from the moment
you boot your machine. Now, that would be an integrated Windows PC.

The tangible benefits of such an arrangement, however, are less clear.

At any rate, we’ve seen that even when Windows does send calls down

to real-mode DOS, these calls can bop back into VxD-land. Here, Win-

dows has reflected all function 2Ah and 2Ch calls down to DOS. As Fig-

ure 14-5 shows, DOS calls CLOCKS, and CLOCKS calls INT lAh

function 0, which is handled entirely inside VTD.

I

; V V

l
CLOCK$

INT IAh

VMM

VTD

Figure 14-5: How the Win32 clock gets the date and time, part 4. Although Windows

sends INT 21h function 2Ah and 2Ch calls down to DOS, when the DOS CLOCK$ device

driver turns around to make an INT lAh call, this call traps back into Windows. The VMM
sends the INT lAh call to the Virtual Timer Device (VTD).

Figure 14-5 answers the questions that began this section: “Does Win-

dows 95 Really Call Down to DOS? And What Does It Do When It Gets

There?” Yes, Windows 95 really calls down to DOS. But it’s a significantly-



Unauthorized Windows 95

altered DOS that Windows is running in V86 mode. When Windows calls

down to DOS, DOS may (unknowingly) call back into Windows.

What happens when VTD returns from its INT lAh function 0 han-

dler? VTD was called from VMM, and so it returns to VMM. VMM
checks the carry flag, which VTD cleared to signify thatVMM doesn’t

pass the INT lAh call along to any other handlers:

0028 : C0FCE1C1 MOV EAX , 0000001A ; ; ; back in V 86 int chain

0028 : C0FCE1C6 MOV EBX , [VMM+F6E4] ::: EBX = cur VM handle

0028 : C0FCE1CC JB VMM+1424 ;;; JB=JC. Carry clear, so INT handled

0028 : C0FCE1D2 RET » t t al ready

.

Done

!

The DDK documentation for Hook_V86_Int_Chain notes that “If

the hook procedure services the interrupt, it must clear the carry flag to

prevent the system from passing the interrupt to the next hook proce-

dure.” This bland remark has tremendous implications. By clearing the

carry flag, a VxD’s V86 interrupt hook keeps not only other VxDs but

also any real-mode INT lAh handler from seeing the interrupt!

Let me repeat: Any real-mode INT 1Ah handler will never see this

INT lAh call. That is the flip side (and possibly downside) to the point

that VTD handles the call entirely in protected mode.

Entirely means that your DOS TSR, expecting for whatever reason to

see INT lAh function 0 calls, won’t. It also means that a lot of diagnos-

tics tools for DOS (such as Quarterdeck’s Manifest, to select one example

at random) are hopelessly out-of-date. If you run one of these tools, it

will tell you where INT lAh is handled:

INT 1A: System Timer F000.-FE6E System ROM

But this is totally wrong. When DOS calls INT 1Ah, the call goes to

VMM, which passes it to VTD, which returns to VMM, which (as we’ll

see in a second) issues an IRETD to return to DOS. The call never goes

to F000:FE6E. Tools such as Manifest (or the INTVECT program on

the Unauthorized Windows 95 disk, for that matter) get this F000:FE6E

address by calling INT 2 lh function 25h or by directly inspecting the

low-memory IVT. But those are no longer good techniques to find where

interrupts are handled. In fact, they haven’t been since May 1990, when
Microsoft introduced Windows 3.0 Enhanced mode. Since then, VxDs
have silently but surely taken over the role of the System ROM.

If you find this hard to believe, try some experiments with the

HOOKINT program from Chapter 11. For example, in plain-vanilla

DOS, you can load HOOKINT and then issue the DATE and TIME
commands provided by DOS. If you change the date and time,
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HOOKINT will show about twenty calls to INT lAh function 0. Now
perform the same operation under Windows Enhanced mode — even

Windows 3.0 Enhanced mode from 1990. HOOKINT won’t see any

INT lAh calls. The ROM BIOS won’t either. Where were they handled?

In VTD, of course.

Once VTD has handled the INT lAh call and returned to VMM,
VMM gets ready to return to whatever called INT 1Ah in the first place

(in this case, the DOS CLOCKS device):

0028 : VMM+2E0 MOV

0028 : VMM+2E6 MOV

0028: VMM+2EC CLI

0028 : VMM+2ED X o yo

0028 : VMM+2EF CMP

0028 : VMM+2F5 JNZ

0028 : VMM+2F7 TEST

0028 : VMM+2FA JNZ

0028 : VMM+2FC XCHG

0028 : VMM+2FF POPAD

0028 : VMM+300 ADD

0028 : VMM+303 IRETD

FFFF : 08DC TEST

EBX , [VMM+F6E4] ;;;

EDI , [VMM+F670] ;;;

EAX, EAX

EAX , [VMM+DC88] :::

VMM+304
; ; ;

BYTE PTR [EBX] , 20 ;;;

VMM+358
; ; ;

ESP , [ ED 1+48] ;;;

ESP ,+04

9 9 9

BYTE PTR [0008], 80 ;;;

get cur VM handle

get cur thread handle

disable interrupts

Any pending events?

No.

VM status & PM_Exec?

No. VM in V 86 mode,

switch stacks back

return to V86 mode

back in CLOCKS after INT lAh

These two lines are particularly important:

0028:VMM+2EF CMP EAX , [ VMM+DC88] ;;; Any pending events?

0028 : VMM+2F5 JNZ VMM+304 ;;; No.

Just before returning to its caller (in this case, DOS’s CLOCKS device,

which unknowingly calledVMM by issuing an INT 1Ah in V86 mode),

VMM always checks if there are any pending events. These events should

not be confused with the events that Windows applications receive in the

form ofWM_XXX messages, nor with the events that VxDs receive in

the form of System Control messages. Events are functions that VxDs ask

VMM to call when it’s safe forVMM to do so. It’s safe to do so right at

the spot of code just before VMM returns to whicheverVM called it.

As long as there are pending events, VMM services them before returning

to the VM.
Notice that the events thatVMM processes before returning to the

VM bear no relationship to whatever the VM was doing when it called

VMM. For example, the VPICD_Set_Int_Request service, which reflects

hardware interrupts into VMs, does so using Schedule_Global_Event and

Schedule_VM_Event. Every time you press a key, or there’s a timer tick,

or something comes in from a serial port, chances are that the VxD that

owns the hardware will call VPICD_Set_Int_Request, which in turn will

schedule an event.



Unauthorized Windows 95

Thus, a tremendous amount can happen in this event-processing loop,

and it’s a mistake to think thatVMM will return simple-mindedly to the

same VM that called it. In the case of CLOCKS and INT 1Ah, VMM
might have many events to service, and many highways to walk down,

involving manyVM or thread switches, before returning to CLOCKS
from the INT lAh. Any call to VMM— even an unwitting call such as

an INT, or a GP fault caused by accessing a hooked I/O port, or a page

fault caused by virtual memory— is a potential place forVMM to switch

to anotherVM (or in Windows 95, to another thread). It may be a long

time before VMM returns to the instruction following that innocent-

looking INT lAh.

me magic oi

CalLPrlorltiijtiLEueiii

Events reveal a crucial fact about Windows: VMM is a nonreentrant operat-

ing system. Because VMM is nonreentrant, VxDs that are called asynchro-

nously (for example, because of a hardware interrupt) can use only a small

subset of VMM services. However, among these few always-callable, reen-

trant services are Schedule_Global_Event, Schedule_VM_Event, and Sched-

ule_Thread_Event. A VxD that is called asynchronously but that needs to

call some nonreentrant VMM service, can schedule an event; that event

can, when it occurs, call the service. Just before returning to the calling

VM, VMM calls each function in the event list. These functions in turn can

call any VMM function (including, possibly, Schedule_XXX_Event, so that

VMM can stay in its service-event loop for some time before returning to

the VM).

The DDK’s documentation on events suggests that they are useful only

in interrupt service routines. But events play a role in Windows that isn’t

limited to hardware interrupt handling. This becomes clear if you carefully

read the DDK documentation for the Call_Pnority_VM_Event service:

The Call_Priority_VM_Event service either calls the callback procedure

immediately or schedules a priority event for the specified virtual machine.

This service schedules the event if the virtual device is processing a hard-

ware interrupt that interrupted the VMM
,
or the current virtual machine is

not the specified virtual machine
,
or the Flags parameter specifies the

PEF_A!ways_Sched value. In all other cases , the service calls the callback

procedure and returns without scheduling an event.

Notice the situations under which Call_PriorityJ/M_Event will schedule

(rather than immediately call) an event: not only if the VxD is processing a
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hardware interrupt but also if the current VM is not the specified target VM.
In other words, A VxD can be called in the context of one VM, and schedule

an arbitary piece of code to be called in the context of some other VM. This

forms the whole basis for inter-VM communications in Windows. In addition

to Call_Priority_VM_Event and Schedule_VM_Event in Windows 3.x, Win-

dows 95 adds Schedule_Thread_Event.

Events, particularly the Call_Priority_VM_Event service provided

by VMM, can be used in many situations that require interprocess

communications:

• VNETBIOS: The NetBIOS INT 5Ch interface includes an option to issue

“no wait” network commands. For example, rather than wait for comple-

tion when you send a packet of data over the network, NetBIOS can

return to you immediately. You can then poll a completion byte in the

NCB, but it’s often preferable to install a post routine. NetBIOS will call

your post routine when the command completes. Meanwhile, you can

go off and do other things. A server that uses NetBIOS could handle

multiple clients in this way, for example. VNETBIOS has to make this

work in the multitasking Windows environment, where the VM in which

the no-wait NetBIOS call was issued might no longer be the current VM
when the command completes and it’s time to call the post routine.

The solution? VNETBIOS uses Call_Priority_VM_Event to schedule an

event to be called in the context of the original VM in which the no-wait

command was issued. This event in turn calls the post routine. (VNET-

BIOS goes away with NDIS 3.0, but the implementation of NetBIOS

post routines are still a good example of Call_Priority_VM_Event.)

• Many programmers have wondered about the strange-looking INT 2Fh

function 1685h (Switch VMs and Callback) service that Windows pro-

vides. To use this function, you specify a target VM ID in BX and a far

V86 procedure in ES:DI. (You can specify that interrupts be enabled in

the VM, or that the VM not be in a critical section.) When the target VM
is next scheduled, VMM calls your procedure. DOS programs running

under Windows can use this as a quick-and-dirty way to make remote

procedure calls into other VMs. Unfortunately, the function is not sup-

ported from protected mode, and it can’t be used to call protected-

mode code either. You also can’t pass any parameters to the called

function! But these are arbitrary limitations because INT 2Fh function

1685h is nothing more than a CalLPriority_VM_Event of a procedure.

When the target VM is next scheduled, and has whatever VM state you

specified, the procedure performs a nested-V86 exec (Begin_Nest_

V86_Exec, BuildJnt_Stack_Frame, ResumeJExec, End__Nest_Exec) of

the function you specified in ES:DI.

• A better Switch VMs and Callback function could readily be built. For an

excellent example, see Thomas Olsen’s PIPE VxD in “Making Windows

and DOS Programs Talk,” Windows/DOS Developer’s Journal
,
May

1992. Olsen’s pipe uses Call_Priority_VM_Event.
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• The SHELL VxD gives DOS applications programmatic access to the

Windows Clipboard, via INT 2Fh function 17h. For example, function

1701h is equivalent to the OpenClipboard Windows API call, function

1703h is equivalent to SetClipboardData, and function 1705h is equiv-

alent to GetClipboardData. How does SHELL arrange for you to effec-

tively make remote Windows API calls from the DOS box? With

CalLPriority_VM_Event, naturally. SHELL schedules an event that uses

SHELL_Event, when the System VM is running, to pass the Clipboard

requests onto WIN0A386 (WinOldAp), which acts as a kind of Clipboard

RPC server.

• In Windows 95, the SHELL VxD provides an extensive set of so-called

“Appy Time" services (the name is supposed to be a play on applica-

tion and happy) that allow other VxDS to make Windows API calls.

These VxDs can then pass these Windows API services along to DOS
applications. For example, when you type the name of a Windows exe-

cutable in a DOS box under Windows 95, instead of the old "This pro-

gram requires Microsoft Windows” message ("But I am running!”),

Windows 95 will run the Windows application — what a concept!

Although this is the way Windows should have behaved years ago, how
does Windows 95 turn a DOS program’s INT 21h function 4Bh (EXEC)

into a WinExec? Simple: a function is scheduled with _SHELL_CallAtAp-

pyTime. SHELL calls this function at ’appy time, when it is safe for it to

make Windows API calls, that is, when the System VM is the current

VM. At ’appy time, the function uses other services, such as

_SHELL_PostMessage, _SHELL_ShellExecute, _SHELL_CallDII,

_SHELL_LoadLibrary, and _SHELL_GetProcAddress, to load whatever

Windows executable the user requested (and, optionally, to wait for it

to complete). So how does _SHELL_CallAtAppyTime arrange for the

’appy time function to get called when the System VM is ready? By

using the VMM service Call_Restricted_Event, which in its current

implementation is identical to Call_Priority_VM_Event.

• Long before Microsoft woke up to the idea that typing the name of a

Windows application in the DOS prompt might possibly mean that the

user wanted to run the Windows application, several third-parties had

developed Windows extensions that would turn a DOS box EXEC of a

Windows application into a System VM call to WinExec. The best known

of these extensions (well, I would say that, since I worked, albeit briefly,

on this product) is probably Phar' Lap’s FrontRunner. Phar Lap gets a

DOS box’s INT 21h function 4Bh of a Windows application turned into a

System VM WinExec with CalLPriority_VM_Event.

This is all very interesting, but what, aside from the name, does
CaH_Priority_VM_Event have to do with the event-processing loop men-

tioned in connection with VMM’s return to CLOCKS? Simply this: If a VxD
(acting possibly on the direct behalf of an application that has called a

function such as Switch VMs and Callback) specified a target VM that dif-
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fers from the current VM, CalLPriority_VM„Event must schedule (rather

than immediately call) a VM event. This event will be processed the next

time VMM is about to return to the target VM, possibly in connection with

some entirely different operation. Windows really is a multitasking operat-

ing system and has been since Windows 3.0, when these interfaces were

introduced.

Win32 File Handles and Thunking

We’ve already used WSPY2 1 to examine three of the four possible mix-

tures of executable and environment: 16/16 (the Win 16 Clock under

WfW 3.1 1), 32/16 (the Win32 Clock under WfW 3.11, with Win32s),

and 32/32 (the Win32 Clock under Chicago). Running the Win 16 Clock

under Chicago (16/32) will complete the matrix.

When using WSPY2 1 to examine the Win 16 Clock in Windows 95,

one thing immediately jumps out from the WSPY2 1 log. Check out the

file handles that are being passed to the DOS Read and Lseek functions:

<CAB32> *(4B) Exec 'C:\wfw311\clock . exe

'

f • • •

<CAB32> (3F) Read 574 (023Eh), 64 (0040h)

<CAB32> (42) Lseek0 574 00000400

<CAB32> (3F) Read 574 (023Eh), 64 ( 0040 h

)

<CAB32> (3F) Read 574 (023Eh), 277 ( 0 1 1 5 h

)

<CAB32> (42) Lseek0 574 000005a0

<CAB32> ( 3F) Read 574 (023Eh), 13888 (3640h)

9 • • •

<CAB32> (50) Set PSP 4831 ( 1 2 D F h

)

<CL0CK> (50) Set PSP 175 ( 00AFh

)

< C LOC K> (42) Lseek0 574 00003f30

<CL0CK> ( 3F) Read 574 (023Eh), 240 ( 00 F0 h

)

< C LOC K> (50) Set PSP 2735 ( 0AAFh

)

9 • • •

<C LOC K> (3E

)

Close 574 (023Eh)

What sort of file handle is 574? Although this could conceivably be a

valid DOS file handle, it’s difficult to produce such a large handle except

under contrived circumstances. (FILETEST.ASM, which appears later in

this chapter, is a good example of such a contrivance.) In real-mode DOS,

file handles are indices into a per-task data structure called the Job File

Table (JFT; see Undocumented DOS
,
2d ed., pp. 472-474). Each task’s PSP

contains (at offset 34h) a far pointer to the task’s JFT. The JFT’s size is

indicated by the WORD at offset 32h in the PSP. A valid DOS file handle

of 574 would require a JFT with at least 575 entries (numbered 0 to 574).
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Although such a swollen JFT can be created with INT 2 lh function

67h (Set Handle Count) or by juggling pointers in the PSP (Undocumented

DOS
,
2d ed., pp. 485-488), none of the PSPs displayed by WSPY2 1 have

such an enlarged JFT. The next section provides a demonstration of this,

as well as a brief example of Toolhelp32 and some more Win32 back-door

programming with VxDCall.

Reading me PSP from Win32

TH32.C in Listing 14-3 is a simple Win32 Console (character-mode)

application that uses the Process 3 2 First and Process32Next APIs from

Microsoft’s Toolhelp32 API (TLHELP32.H) to enumerate all Win32

processes. For each process, TH32 shows the address of the PSP and the

size of the JFT. TH32.C unfortunately didn’t make it onto the Unautho-

rized Windows 95 disk. The program is short enough that hopefully you

won’t mind having to type it in.

Listing 14-3: TH32.C

/*

TH32.C

Win32 app uses Tool he! p32 and VxDCall to locate Win32 PSPs and JFTs

Sorry, this did *N0T* make it onto the Unauthorized Windows 95 disk!

from Schulman, Unauthorized Windows, 1994

*/

//include <stdlib.h>

//include <stdio.h>

//define W I N32_LEAN_AND_MEAN

//include "windows.h"

//include "tlhelp32.h"

void faiKconst char *s) {
puts ( s ) ; exit(l); }

mainO

{

PR0CESSENTRY32 pe32;

M0DULEENTRY32 me32;

BOOL ok, ok2

;

HANDLE snap;

char *name;

DWORD (WINAPI *VxDCal 1 0 ) ( DWORD srvc, DWORD eax, DWORD ecx);

HANDLE k32 = GetModul eHandl e( "KERNE L32"
)

;

//define GET(func) func = GetProcAddress ( k32 , //func)

GET ( VxDCal 10);
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//define VWIN32_INT31_CALL 0x2A0029

//define DPMICal 1 (eax, ecx) VxDCal 1 0 ( VWI N32_I NT31_CALL
, (eax), (ecx)

)

if ( ! (snap = CreateTool hel p32Snapshot(TH32CS_SNAPALL, 0)))
fail ("Can't create Tool hel p32 snapshot");

pri ntf
(

"Process Module Parent PSP (//Files) //Threads\n" )

;

printfC \
n »).

// walk process list

pe32.dwSize = si zeof (pe32)

;

for (ok=Process32First(snap, &pe32 ) ; ok; ok=Process32Next( snap , &pe32 )

)

{

// PSP is currently at offset 28h in Process

WORD psp = *
( (WORD *) (pe32.th32ProcessID + 0x28));

DWORD psp_base, jft;

WORD max;

_asm mov bx, psp

DPMICal 1 ( 0x0006 , 0);

_asm mov word ptr psp_base+2, cx

_asm mov word ptr psp_base, dx

max = *((W0RD *) (psp_base + 0x32));

jft = *((DW0RD *) (psp_base + 0x34));

// Walk module list, looking for this one

name = "

"

;

me32.dwSize = si zeof (me32)

;

for (ok2=Modul e32Fi rst(snap, &me32 ) ; ok2;

ok2=Module32Next(snap, &me32 )

)

if (me32 . th32Modul elD == pe32.th32ModuleID)

{

if (! (name = me32 . szModul e)

)

name = me32.szExePath;

break;

1

pri ntf
(

"%081 X %081 X %081 X %04X ( %d ) \t%d\t%s\n "

,

pe32 .th32ProcessID,

pe32.th32Modul elD,

pe32 . th32Pa rent Process ID

,

,
(DWORD) psp, (DWORD) max,

pe32.cntThreads,

name)

;

CloseHandle(snap)

;

For each process, Toolhelp32 fills in a PROCESSENTRY32 structure

containing the process handle, the handle of its parent, its module han-

dle, and so on. There are similar Toolhelp32 functions to enumerate all

threads and modules and to walk Win32 memory heaps. Because Win32

programs are preemptively multitasked in Windows 95, the system could
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change out from under a program while it was walking these lists; for this

reason, a CreateToolhelp3 2 Snapshot function must be called before

other Toolhelp32 functions.

The PROCESSENTRY32 structure isn’t Windows 95’s internal

process structure. Instead, it’s a sanitized structure that contains a copy of

the aspects of the internal process structure that Microsoft thinks are

okay for you to know about. Unfortunately, the structure doesn’t include

the PSP that goes along with the process. However, the process handle

returned in the PROCESSENTRY32 structure can be used as a 3 2 -bit

flat pointer to Windows 95’s actual internal process structure, and in

Beta-1 at any rate, this structure contained at offset 28h a protected-

mode selector to the process’s PSP.

This protected-mode PSP selector isn’t immediately usable to a

Win32 program such as TH32. To access the PSP, TH32 needs the PSP’s

3 2 -bit linear address. Given a selector, the base address can be retrieved

with DPMI INT 3 lh function 6 (Get Selector Base Address). Win32
programs can’t directly call DPMI. But the VWIN32 VxD provides a

Win32 service (2A0029h) that makes DPMI INT 3 lh calls. Win32 pro-

grams can access these Win32 services by calling the VxDCallO API

exported by KERNEL32. This API isn’t mentioned in the Chicago

header files or libraries, but the GetProcAddress API makes it easy to

dynamically link to VxDCallO at run-time.

Having dynamically linked to VxDCallO, TH32 can use this function

to call Win32 service 2A0029h, which it in turn uses to call DPMI func-

tion 6. TH32 takes the PSP selector from offset 28h in the process struc-

ture, and passes this selector to DPMI function 6; DPMI returns the base

address of the PSP. With this base address, TH32 can proceed to exam-

ine the PSP to determine the size of its JFT (which, you might recall, was

the purpose of this exercise).

Because TH32 is a 3 2 -bit flat-model program, it can immediately use

the PSP’s base address as a near pointer. A Win32 process can use a near

pointer to access any memory in a 4GB address space, as long as the

memory is mapped into the address space of the process. A far pointer is

neither necessary nor, in most cases, even allowed.

The size of the JFT is kept in the WORD at offset 32h in the PSP.

A pointer to the JFT is kept in the DWORD at offset 34h. Once it has

the base address of a PSP, finding the size of that PSP’s JFT is simply a

matter of:

WORD jft_size = *
( (WORD *) (psp_base + 0x32));
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Figure 14-6 shows output from TH32. Notice that none of the

Win32 processes have DOS JFTs large enough to accommodate file han-

dles such as 574. The largest JFT, belonging to process 81100268h (PSP
00A7h), has room for only 128 DOS file handles.

Win32 app’s PSP (prof mode). 1047b
PSP base addles QU0266AQh
PSP length: 0120b bvttt

JFT <5 266AQ018h (20 tiles}
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Figure 14-6: TH32 and WIN32PSP are Win32 programs that show the PSP and JFT asso-

ciated with Win32 processes. (TH32 is a character-mode Win32 Console application.)

Besides the TH32 program, Figure 14-6 also shows two instances of

the WIN32PSP program, the code for which appears in Listing 14-4.

This is a Win32 program that accesses its own PSP. In addition to Win32

service 2A0029h for calling DPMI, WIN32PSP also uses Win32 service

2A0010h for calling DOS (or at least for making INT 2 lh calls — which,

as we know, isn’t the same thing as calling DOS). Although WIN32PSP,

unlike TH32, is provided on the Unauthorized Windows 95 disk, the ver-

sion included on the disk is wrong: It mistakenly uses the EDX return

value from DPMI function 6 rather than CX:DX, and it neglects to dis-

play the JFT’s size which, again, was the ostensible purpose behind these

programs.

Listing 14-4: WIN32PSP.C

/*

WI N32PSP , C

Win32 app accesses its own real-mode DOS PSP

Using VxDCa 1 1 0 to make INT 21 h (DOS) and INT 31 h (DPMI) calls
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from Schulman, Unauthorized Windows, 1994

*/

//include <stdlib.h>

//include <stdio.h>

//define W I N32_LEAN_AND_MEAN

//include "windows.
h"

//define MSG(s) MessageBox(0 , s, "WIN32PSP" ,
MB_0K)

void faiKconst char *s) { MSG(s); exit(l); }

DWORD (WINAPI *VxDCal 1 ) ( DWORD srvc, DWORD eax, DWORD ecx);

//define GET_PR0C ( mod , func) GetProcAddress(GetModuleHandle(mod) , (func))

DWORD 1 si (WORD sel

)

{

if ( ! sel ) return 0;

_asm Isl eax, sel

// retval in EAX

1

int PASCAL WinMain(HANDLE hlnstance, HANDLE hPrevInstance

,

LPSTR 1 pszCmd Li ne ,
int nCmdShow)

{

char buf [512]

;

MEMORY_BAS I CONFORMATION info;

WORD psp, *pmax;

DWORD base, *p j ft

;

int len;

// init

if ( ! (VxDCall = GET_PROC( "KERNEL32" , "VxDCall0”)))

fail("Cannot link to VxDCall");

//define VWI N32_I NT21_CALL

//define VW I N32_I NT3 1_C A L

L

//define DosCalKeax, ecx)

//define DPMICal 1 (eax, ecx)

0x2A0010

0X2A0029

VxDCall ( VWIN32_INT21_CALL, (eax), (ecx))

VxDCall (VWIN32_INT31_CALL, (eax), (ecx))

// Call DOS INT 21h function 62h (Get PSP)

DosCal 1 (0x6200, 0);

_asm mov psp, bx

// returns protected-mode selector to- PSP

len = sprintf(buf, "Win32 app's PSP (prot mode): %04Xh\n", psp);

// Pass prot-mode PSP to DPMI INT 3 1 h function 6 (Get Sel Base)

_asm mov bx, psp

DPMICal 1 ( 0x0006 , 0);

//if 1

// we're really a 16-bit DPMI client!!

_asm mov word ptr base+2, cx

_asm mov word ptr base, dx

//el se

// this is wrong on the disk!!

_asm mov base, edx
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#endi

f

Ten += sprintf(buf+len, "PSP base address: %081Xh\n", base);

// Pass prot-mode PSP to LSL (Load Selector Limit) instruction
len += spri ntf ( buf+1 en , "PSP length: %04Xh bytes\n\ Isl(psp) + 1);

// Win32 app PSP is 120h bytes, not 100h!

// Locate JFT, //files: this isn't in WIN32PSP.C version on disk
pmax = (WORD *) (base + 0x32);

p j ft = (DWORD *) (base + 0x34);

len += sprintf(buf+len, "JFT @ %081 Xh (%u files)\n",

*pj ft , (DWORD) *pmax);

MSG(buf);

return 0;

}

WIN32PSP and TH32 are more interesting for their source code

than for their output. Although the Toolhelp32 API has some limitations

(see Matt Pietrek, “Investigating the Hybrid Windowing and Messaging

Architecture of Chicago,” Microsoft Systems Journal, September 1994, pp.

28-29), it’s an improvement over Microsoft’s earlier intention to provide

no Toolhelp support for Win32 applications in Chicago.

The VxDCallO function provided by KERNEL3 2 is a valuable API.

There doesn’t appear to be documentation for any Win32 services that

are provided by VxDs and made accessible to Win32 applications by

VxDCallO, but some of the services are easy to figure out.

The VXDLIST program included on the Unauthorized Windows 95

disk shows the number ofWin32 services provided by each VxD and sets

these off from the “normal” VxD services with an exclamation mark:

C:\UNAUTHW\B I N>vxdl 1st
|

find "!"

VMM 4.00 0001 h C000EC28 C00023DE C0002A11 C0002A1 1* 377 i 39

REBOOT 2.00 0009h C0074D94 C0074C64 C0259750* 0 ! 2

VWIN32 1.02 00 2 Ah C0063234 C006228C C0239FB0* 21 ! 65

VCOMM 1.00 002 B h C0063D44 C0063A94 C023D588 C023D588* 35 ! 27

VCOND 1.00 0038h C0073B10 C0073ACC C0252C3C* C0252D46* 2 ! 52

VXDLIST’s output shows there are about 175 Win32 services. To see

more details on these services, run VXDLIST -VERBOSE.) Some of

these, like the 2A0010h and 2A0029h services used by TH32 and

WIN32 PSP, are themselves gateways for other functionality (in this case,

the entire DOS INT 2 lh and DPMI INT 3 Ih interfaces). Over time,

these Win32 services will probably become well-known in the Windows

95 developer community, just as happened with undocumented functions

in the DOS developer community in the 1980s.
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Osins Win32 File Handies

So, CAB 3 2 and CLOCK have default-sized JFTs with only twenty

entries. They nonetheless successfully called the INT 2 lh Read and

Lseek functions with a file handle of 574. How did they do this?

To answer this question, we need to understand what the low-level

Lseek and Read calls displayed earlier by WSPY2 1 represent in terms of

higher-level Windows operations.

Win 16 CLOCK.EXE doesn’t contain the actual INT 2 1 h Read and

Lseek calls we see at the end of the WSPY2 1 log. Instead, Clock is call-

ing Windows API functions that, in turn, are generating the INT 2 lh

calls. The Lseek to offset 3 F3Oh (16176), followed by a Read of FOh

bytes, matches a resource item in CLOCK.EXE itself, as revealed by

Borland’s TDUMP utility:

;;; Excerpt from WSPY21 output

<CL0CK> (42) Lseek0 574 00003f30

<C LOCK) (3F) Read 574 (023Eh), 240 (00F0h)

;;; Excerpt from TDUMP of \WFW311\CL0CK.EXE

type: DATA

Identifier: CLOCK

offset: 03 F30h length: 00 F0h

Given that OFOh (240) is evenly divisible by 60, which in turn is the

number of positions assumed by the hands in Clock’s analog clock face,

it’s likely that Clock’s user-defined resource stores precomputed sine or

cosine values. At any rate, the File Lseek/Read operation seen by

WSPY21 is the low-level reflection of resource manipulation by Clock.

Clock is calling KERNEL APIs such as FindResource and Load-

Resource, and these APIs eventually translate into the INT 2 lh calls

seen by WSPY2 1. Resource loading is one of the major ways that Win-
dows applications interact (although indirectly) with DOS. By loading

resources, Clock is reading from its own executable file. File handle 574

thus corresponds to CLOCK.EXE itself.

WSPY2 1 also showed that after launching CLOCK.EXE, but before

Clock became the current task, the Chicago Cabinet (CAB 3 2) also read

from this same file. Launching an executable involves reading at least

some of the executable file into memory; what CAB 3 2 might view as a

high-level WinExec looks to WSPY21 like low-level INT 2 lh calls. Sure

enough, we can match CAB 3
2

’s INT 2 lh calls with the format of

CLOCK.EXE, as revealed by TDUMP. For example, what WSPY2

1
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sees as just another Lseek/Read operation, TDUMP reveals is CAB32
reading in CLOCK.EXE’s gangload area:

::: Excerpt from WSPY21 output after EXEC CLOCK . EXE

<CAB32> (42) Lseek0 574 000005a0

<CAB32> (3F) Read 574 (023Eh), 13888 (3640h)

Excerpt from TDUMP C LOCK .EXE

Start of Gangload Area 05A0h

Length of Gangload Area 3640h

Instead of reading an executable file’s segments one at a time, a gang-

load area allows multiple segments to be ganged up and read in one

gulp. There’s a good explanation of the gangload area (which the Win-
dows 3.1 SDK documentation calls the fast-load area) in Matt Pietrek’s

Windows Internals (pp. 243, 248). Matt shows that an internal LoadExe-

Header function in the Win 16 KERNEL uses the _hread function to

bring in the gangload area.

CAB 3 2 doesn’t get directly involved in such low-level details as read-

ing the gangload area. What to WSPY2 1 looks like an INT 2 lh

Lseek/Read of this part of the file is for CAB 3 2 just a tiny part (of which

it knows nothing) in a much larger, higher-level operation: starting an

application from the Run menu item on the shell’s Start button.

Whenever you use the Windows 95 shell to run a program, CAB 3 2

calls the ShellExecuteEx API in SHELL32.DLL. This API in turn

(among many other things) calls the Win32 WinExec API in KERNEL-
32.DLL. KERNEL32!WinExec, having figured out that it’s been asked

to run a Win 16 executable, thunks down (via QT_Thunk, with CL=26h)

to the Win 16 WinExec API in KRNL386.EXE. Again we see that

Microsoft’s claim that KERNEL 3 2 never thunks down to KRNL386 isn’t

true and doesn’t even make much sense: For one thing, how else would

the Win32 WinExec be able to launch Win 16 executables?

At this point, we can pick up the story from Pietrek’s Windows Inter-

nals (pp. 229-231): The Win 16 version ofWinExec issues an INT 2 lh

function 4Bh (EXEC), just like the one seen at the top of the WSPY2

1

log. KRNL386’s handler for INT 2 lh function 4Bh calls LoadModule,

which calls an internal function named LoadExeHeader, which among

many other things uses _hread to load the gangload area.

So, the INT 2 lh calls seen by WSPY2 1 represent the Windows 95

Shell loading CLOCK.EXE, which in turn is loading resources. The big

file handle, 574, represents the open file CLOCK.EXE. This file handle

exceeds the size of the shell’s JFT, so something other than DOS will
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have to deal with INT 2 lh calls that the Win 16 APIs such as LoadMod-

ule and LoadResource make with this big file handle.

So what might that something be? The IFSMGR.INC file included

with the Chicago beta DDK briefly describes a service called IFSMgr_

Win32MapExtendedHandleToSFT that sounds like it might have some-

thing to do with these big file handles. The VCOND (Virtual CON
Device) uses this IFSMgr service when you run a Win32 Console (char-

acter-mode) application and redirect its stdout or stdin:

;** IFSMgr_Win32MapExtendedHandleToSFT - map an extended handle to a SFT

; This service allocates a free SFT and maps an extended handle to this

; SFT. It returns the index to the SFT back to the caller. This api is

; for the purpose of redirection for Win32 apps when they spawn DOS apps.

; The SFT and the extended 'handl e track one another from this point on.

;
This service MUST be called in the context of the DOS VM the SFT is

;
going to be in.

Another function that sounds relevant is Win32HandleToDosFile-

Handle, which is exported by KERNEL32.DLL. This API isn’t men-

tioned in WINBASE.H, but it’s easy enough to access in the same way

that TH32.C and WIN32PSP.C accessed VxDCallO: with the run-time

dynamic linking API, GetProcAddress. Listing 14-5, W32HAND.C,
shows a small Win32 Console program that calls this API in a loop over a

reasonable number of possible Win32 file handles, trying to see if any of

them correspond to DOS file handles.

Listing 14-5: W32HAND.C

// w32hand.c

//include <stdlib.h>

//include <stdio.h>

//define W I N 3 2_ LEA N_A N D_M E A N

//include "windows.
h"

void faiKconst char *s) { puts(s); exit(l); }

unsigned short (WINAPI *Wi n32Handl eToDosFi 1 eHandl e) (HANDLE h);

HANDLE (WINAPI *DosFi 1 eHandl eToWi n32Handl e) (unsi gned short h);

//define GET_PROC(mod , func) GetProcAddress(GetModuleHandle(mod) , ( f unc )

)

main(int argc, char *argv[])

{

unsigned short fu;

int fh;

if ( ! ( Wi n32Handl eToDosFi 1 eHandl e = GET_PR0C( "KERNEL32"

,

"Wi n32Handl eToDosFi 1 eHandl e" ))

)
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fail ("Cannot link to Wi n32Handl eToDosFi 1 eHandl e"
)

;

printf
(

"Win32\t\tD0S\n"
" \t\t— \n" )

;

for ( f h=0 ; fh<0xl00; fh++)

if (fu = Wi n32Handl eToDosFi 1 eHandl e(fh)

)

pri ntf
(

"%0u ( %0Xh ) \t%0u (%08Xh)\n"
, fh, fh, fu, fu);

return 0;

}

Ifyou run W32HAND and redirect its output and its (unused) input,

sure enough the program outputs something that looks like the big file

handles that have shown up in the WSPY2 1 log:

C : \UNAUTHW\BI N32>w32hand > w32hand.log < tmp.tmp

C:\UNAUTHW\BIN32) type w32hand.log

Win32 DOS

2 ( 2 h ) 713 ( 000002C9h

)

3 (3h) 714 ( 0000020a h

)

It appears, then, that the big file handles seen by WSPY21 are some

sort of dummy, or placeholder, DOS equivalent to a Win32 file handle.

When Windows 95 launches a Win 16 application, it must do so using a

Win32 file handle. This shows up at WSPY21 as a big DOS file handle.

But how was a Win32 file handle created for a Win 16 application in

the first place? Let’s return to the Win 16 version of WinExec to which

the Win32 version of WinExec thunks when presented with a Win 16

executable. WinExec, as also mentioned, calls INT 2 lh function 4Bh,

which the Win 16 kernel’s INT 2 lh handler turns into a call to the Load-

Module API.

Matt Pietrek can again be our tour guide, at least for part of the trip.

As shown in Windows Internals (p. 241), LoadModule relies on a number

of internal helper functions, a small number of which are shown in the

following chopped-down calling tree:

LoadModul

e

LMA1 readyLoaded -- if module is not already present...

LMLoadExeFi 1

e

My Open F i 1

e

LoadExeHeader -- loads NE header

_hread -- load gangload (discussed earlier)

After determining with LMAlreadyLoaded that a specified module

isn’t already loaded (in our example, that you’re not already running an

instance of Clock), LoadModule calls the internal LMLoadExeFile rou-

tine. Matt shows that this uses another internal routine, MyOpenFile, to
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open the executable file for a Win 16 program such as CLOCK.EXE.
MyOpenFile is a wrapper around the documented OpenFile API.

Windows Internals describes Windows 3.1. Things are slightly different

when loading Win 16 programs under Windows 95. (We’ll see in the next

section that they’re totally different when loading Win32 programs

under Windows 95.) Instead of calling the OpenFile API, MyOpenFile

instead calls the following simple-looking routine:

0127:00003368 MOV CX.00B0

0127 : 0000336B JMP 33D4

Although it’s part of the Win 16 kernel, the code at 01 27:3 3D4 con-

tains 3 2 -bit code and a 48-bit farJMP (opcode 66h EAh):

0127 : 000033D4 MOV

0127 : 000033D7 MOV

0127 : 000033D9 MOVZX

0127 : 000033DD MOV

0127 : 000033E6 JMP

AX.013F

ES.AX

ECX.CX

EDX , ES : [ ECX+BFF90FF8]

0137 : BFF7217E

use CX (B0h) as index

48-bit far jump

As soon as a task executes the 48 -bit far jump, it leaves the Win 16 ker-

nel and enters the Win32 kernel. Yes, it’s another thunk! Earlier in this

chapter (“Thunking: Mixing 16- and 3 2 -bit code with CALL FWORD
PTR”), we saw KERNEL32 use CALL FWORD PTR to thunk down to

KRNL386; now we see KRNL386 using 48-bit jumps to thunk up to

KFRNEL32. As you can see, the value in CX (here, BOh) is used as an

index into a table ofDWORDs that selects the specific KERNEL32 rou-

tine to which KRNL386 wants to thunk.

Eventually, the KERNEL32 code that is called by MyOpenFile in

KRNL386 does something that should look familiar from the “32/32:

The Windows 95 Clock” section earlier in this chapter:

0137 : BFF711DD MOV EAX , 0000716C ;;; AX=716Ch ( LFN Open/Create File)

0137 : BFF711E2 CALL BFF71E5F t t do INT 2 1 h via VWIN32 2A0010

0137 : BFF71E5F PUSH ECX

0137 : BFF71E60 PUSH EAX

0137 : BFF71E61 PUSH 002A0010 cal 1 VWIN32 servi ce #10h

0137 : BFF71E66 CALL BFF71F0C VxDCall routine

VxDCall : expects Win32 svc# on stack

0137 : BFF71F0C MOV EAX , [ESP+04]

0137 : BFF71F10 POP DWORD PTR [ESP]

0137 : BFF71F13 CALL FWORD PTR CS [BFFB5004] ;;; thunk down to callback

003B : 000003B6 INT 30 > » PM callback

0028 : C0001A2C SUB ESP ,+04
f t Now in VMM PM callback handler

KERNFL32 is using the VxDCallO API to call Win32 service

#2A0010h, which is provided by the VWTN32 VxD. As we saw earlier,
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this service issues INT 2 lh calls on behalf ofWin32 code. In this case,

KERNEL3 2 wants to call INT 2 lh function 716Ch, which is the long

filename (LFN) Extended Open/Create function. As seen earlier in Fig-

ures 14-3 and 14-4, VWIN32’s Win32 service 2A0010h uses the Exec_

PM_Int service provided by VMM, which in turn uses the SetJPMJExec
Mode, Begin_Use_Locked_PM_Stack, and Exec_Int services.

So, CAB32 has effectively thunked down to KRNL386, which has

thunked up to KERNEL32, which has thunked down to a PM callback,

which has taken us to Ring 0, where the fun just starts. Perhaps the fol-

lowing calling tree will make the code path a little clearer. Because the

tree kept sliding off the right hand edge of the page, I restarted the tree

on the left hand side whenever I encountered a major level-change

(thunk):

CAB32

SHE LL32 ! She! 1 ExecuteEx

KERNEL32 ! WinExec

QTJThunk #26

KERNEL! WinExec

WinExec

INT 21 h function 4Bh

LoadModul

e

LMLoadExeFi 1

e

MyOpenFi 1

e

KERNEL32 thunk #B0h

48-bit far jmp to KERNEL32

KERNEL32 thunk routine #B0h

VxDCal 1 2 A00 1 0 h EAX=716Ch (LFN Extended Open/Create File)

cal 1 PM cal 1 back ( INT 30h)

VMM INT 30h handler

jmp Win32 service callback handler

jmp Win32 svc 2A00 1 0h

VMM Exec_PM_Int 21

h

Set_PM_Exec_Mode

Beg i n_Use_Locked_PM_Stack

Exec_Int

Simul ate_Int

Resume_Exec

... eventually get to IFSMgr INT 2 1 h handler

End_Nest_Exec

This seems like a convoluted way to make a protected-mode INT 2 lh

call. But eventually IFSMgr does open the executable file CLOCK.EXE,

and a big file handle works its way back up to LoadModule. In addition

to using the file handle to read the executable header, gangload area, and
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so on, LoadModule also puts the handle into a cache. Later on, Load-

Resource and other APIs that access the in-memory module will call an

internal routine called GetCachedFileHandle {Windows Internals, p. 233)

that, given a module handle, tries to return the corresponding cached file

handle.

We were wondering how the Win 16 version of Clock can successfully

call the DOS Read and Lseek functions with a file handle such as 574

that exceeds the size of its JFT. Now that we know that these large file

handles come from IFSMgr, we next need to look inside IFSMgr to see

what happens when an API such as LoadResource makes a DOS call such

as Lseek or Read on one of these handles.

One thing that’s clear from even a quick glance at IFSMgr is that 200h

is the cut-off point Microsoft has chosen between DOS file handles and

extended file handles. Throughout IFSMgr (including the version

released with WfW 3.11), there are numerous comparisons of file han-

dles with 200h, subtractions of 200h from file handles, and so on. The
32BFA code assumes all file handles >= 200h refer to a separate IFSMgr

file table. This can be seen in the following fragment from a Soff-

ICE/Windows trace through an INT 2 lh function 3Fh read on an

extended file handle:

I FSMgr2+7A60 MOV ESI , [EBP+0C] 9 9 fhandl

e

I FSMgr2+7A63 CMP ESI, 00000200 9 9 a normal file handle?

I FSMgr2+7A69 MOV ECX , [ EBP+08]

I FSMgr2+7A6C JL I FSMg r 2+7 A80 (NO JUMP)

; ; ; From here on , I FSMg r deal i ng with fhandl

e

>= 200 h

I FSMgr2+7A6E MOV [ECX+06] . S

I

9 9 fhandl

e

9 • • •

I FSMgr2+661 MOVZX EAX . WORD PTR [EDX+06] ;; fhandl

e

I FSMgr2+665 SUB EAX, 00000200 9 9 minus 200

h

I FSMgr2+66A JB IFSMgr2+6AE (NC) JUMP)

I FSMgr2+66C MOV EBX.EAX

I FSMgr2+66E SHR EBX.08 9 9 find which table it’s in

I FSMgr2+671 MOV EBX , [ I FSMg r+3B 18+4* EBX] ; ; tabl e of tabl es

I FSMgr2+678 OR EBX, EBX

I FSMgr2+67A JZ I FSMg r 2+6AE (NO JUMP)

I FSMgr2+67C XOR AH, AH *

I FSMg r 2+67 E LEA EBX , [EBX+8*EAX] 9 9 each entry 8 bytes

IFSMgr2+681 MOV EAX, [EBX]

This test for 200h is frighteningly easy to break. Geoff Chappell exam-

ined this in WfW 3.11, where IFSMGR assumes that all handles

>= 200h must have been created through ServerDOSCall. Chappell wrote

a short test program (shown in Listing 14-6) that uses Dup (DOS function

45h) to create more than 200h file handles. This program is contrived,

perhaps, but it’s legal and uses only documented DOS functionality. The
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program works fine in DOS, but under 32BFA (WfW 3.11 or Chicago) it

outputs the message “Invalid handle error while reading file with handle

>= 0200h.” (Unfortunately, this program too failed to make its way onto

the Unauthorized Windows 95 disk in time.)

Listing 14-6: FILETEST.ASM

comment $

FILETEST.ASM

Geoff Chappell (geoffc@cix.compulink.co.uk)

8 March 1994

Assemble, link and use EXEHDR to set maxalloc to the minimum:

ML FILETEST.ASM

LINK FILETEST;

EXEHDR /MAX : 0 FILETEST . EXE

$

.MODEL SMALL, FARSTACK

.STACK 0 1 00 h

.DATA

conf i

g

db "c:\confi g . sys"

buffer db ?

no_probl em db 0Dh , 0Ah

,

"Just to confirm everything worked OK",

0 Dh , 0Ah ,

"$"

somethi ng_wrong db 0Dh , 0Ah

,

"This shouldn't happen. Something's gone ",

"wrong with the test rig.", 0Dh, 0Ah, "$"

somethi ng_very_wrong db 0Dh ,
0Ah

,

"Invalid handle error while reading file ",

"with handle >= 0200h.", 0Dh, 0Ah, "$"

.CODE

.STARTUP

; Use DOS function 67 h to increase this program's file handle count to

;
more than 0200h.

mov bx,0400h

mov ah , 67 h

i nt 2 1 h

jc no_i ncrease

; Open a file. CONFIG.SYS in the root directory of drive C is taken as

; a convenient hard- wired name.

mov dx, OFFSET config

mov ax,3D00h

i nt 2 1 h

J'c no_open

mov bx,ax

;
Duplicate the file handl

e

0200h times. This is just so that we can

;
eventually end up with a handle >= 0200h.

mov cx , 0200h
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mov a h , 4 5 h

int 21 h

jc no_dup

loop @b

; Try reading, but using the last handle. The test could be varied to

; open a new file and read -- just as long as the handle >= 0200h.

cmp ax , 0200h

jbe not_enough

mov bx,ax

mov dx, OFFSET buffer

mov cx,0001h

mov ah,3Fh

int 2 1

h

j n c ok
\

cmp ax
,
0006h

jz inval id_handl

e

no_i ncrease:

no_open

:

no_dup:

not_enough

:

mov dx, OFFSET somethi ng_wrong

mov a h , 09 h

int 2 1

h

jmp done

i nval i d_handl e

:

mov dx, OFFSET somethi ng_very_wrong

mov ah , 09 h

int 2 1

h

jmp done

ok:

mov dx, OFFSET no_problem

mov ah , 09 h

int 2 1

h

done

:

.EXIT 00h

END

Ifyou run this program outside Windows, or under Windows 3.1,

you’ll get the OK message (“Just to confirm everything worked OK”).

But if drive C: is a 32BFA drive, you’ll get the following message:

Invalid handle error while reading file with handle >= 0200h

This error occurs not only in the betas of Chicago (which would be

entirely understandable), but also in the shipping commercial product,

WfW 3.11.
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Realm Bypassing DOS: Execuiahle Loading

and meiorv-mapped Files

Apart from the use of Win32 file handles, which ensures that DOS is

bypassed for all file I/O required for loading an executable file or its

resources, Win 16 programs and DLLs otherwise appear to load fairly

normally under Windows 95.

Not so with Win32 executables. Win32 programs and DLLs use the

Portable Executable (PE) file format. When Windows 95 loads a Win32

executable into a process’s address space, it uses a memory-mappedfile.

Unlike a lot of what we’ve seen in other parts of this book, memory-

mapped files aren’t just a wrapper around a layer around a series of indi-

rections to an INT 2 Ih call. Memory-mapped files really and truly bypass

DOS.

A memory-mapped file, as its name suggests, is a file that’s mapped

into memory. Okay, so that’s not a particularly helpful explanation. But

the essential point about a memory-mapped file is that you access the file

using, not read and write and lseek calls, but instead memory stores and

loads (what a BASIC programmer would call peeks and pokes). To a pro-

gram, a memory-mapped file looks like an array.

To try to make this simple but unfamiliar idea more concrete, Listing

14-7 shows a small Win32 Console program, MAPFILE.C. This pro-

gram merely prints out the contents of whatever file you name on its

command line.

Listing 14-7: MAPFILE.C

// mapfile.c -- Win32 Console app

#i ncl ude <stdl i b. h>

#i ncl ude <stdio.h>

#i ncl ude "windows.
h"

void fai 1 (const char *s) {
puts(s); exit(l); }

main(int argc, char *argv[])

{

DWORD size;

unsigned char *p, *p2;

HANDLE f, f 2

;

i nt i

;

// Open file:
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// Yes, in Win32 you open files with CreateFi 1 e(0PE N_EXISTING)

.

if ( ( f = CreateFi 1 e( argv[l] , GEN ER I C_READ

,

FILE_SHARE_READ, NULL, 0PEN_EX I ST I NG

,

FI LE_ATTRIBUTE_NORMAL , NULL)) == I N V A L I D_H AN D L E_V A LU E

)

fai 1

(

"CreateFi 1 e failed");

size = Get Fi 1 eSi ze( f , NULL);

// Get handle to read-only memory-mapped file

if ( ( f2 = CreateFi 1 eMappi ng(f, NULL, PAGE_READONLY

,

0, size, NULL)) == NULL)

fai 1

(

"CreateFi 1 eMappi ng fai led");

// Map in entire file, get pointer

if ( ( p = MapVi ewOf Fi 1 e ( f 2 , FI LE_MAP_READ , 0, 0, 0)) == NULL)

fai 1

(

"MapVi ewOf Fi 1 e failed");

// file I/O (drive light on, etc.) happens in here!

for (i=0, p2=p ; i < s i z e ; n'++, p2++)

putchar(*p2)

;

CloseHandle(f2)

;

Cl oseHandl e(f)

;

Although three Win32 API calls — CreateFile, CreateFileMapping,

and MapViewOfFile — occupy the bulk ofMAPFILE.C, and although a

chapter on memory-mapped files in a standard book on Win32 program-

ming would naturally focus on these three calls, I instead want to draw

your attention to the fact that MAPFILE.C is extremely curious-looking

for a program that’s supposed to display the contents of a file: There are

no read calls!

Yet I assure you that the program does display the contents of a file

named on its command line. How does it display the contents if it doesn’t

read them in? Here’s how:

for (i=0, p2=p ; i < s i z e ; i++, p2++)

putchar(*p2)

;

Dereferencing the p2 pointer (*p2) reads in the file. Instead of an

explicit file read, we have a pointer dereference. That’s the essence of

memory-mapped files.

Now, you might suspect this is some sort of parlor trick because p2

starts life equal to p, and in MAPFILE.C p is returned from the

MapViewOfFile API call. Without knowing anything more about this

Win32 function, it would seem obvious that it reads an entire file into

memory, and returns a pointer to the first byte of the in-memory buffer.

This would be a futile parlor trick, but this is not how MapViewOfFile

works. When MapViewOfFile returns, no file I/O has yet occurred. In

MAPFILE.C, all file I/O occurs within the expression *p2.
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How does this work? How does Windows 95 “know” to read in part

of a file the first time that a Win32 program reads or writes to a certain

pointer? It knows to do this for exactly the same reason that demand-

paged virtual memory in Windows knows to read memory in from a swap

memory.

Let’s say a program has a pointer, p, to a block of memory that’s been

swapped out to a virtual-memory paging file. When the program reads or

writes to this memory (*p or p[i]), a Page Not Present fault occurs. A vir-

tual-memory operating system such as Windows installs a handler for the

Page Not Present fault (which on Intel microprocessors is just an INT
OEh). When one of these faults occurs, because a program has tried to

access (“demand”) memory that the operating system has paged out to

disk, the operating system reads the memory back in from disk, very

likely swapping something else out to make room for it, and then restarts

the instruction that caused the fault.

Memory-mapped files work the same way. The memory-mapped file

is just a demand-paged virtual-memory swap file. Instead of restricting

you to a single swap file selected by the operating system, such as

WIN386.SWP, the CreateFileMapping and MapViewOfFile functions

let you use any files you want as virtual-memory swap files.

IfMAPFILE used array indexing rather than pointers, the expression

*p2 would instead be p[i], and the underlying 3 2 -bit assembly language

would look something like this:

: : : c = p [ i ]

0137 : 0040124C MOV m > X 1 “O

0137 : 0040124F MOV m
c~o X 1^

0137:00401252 MOV AL, [EAX+ECX] ;;; where fault will occur

0137:00401255 AND EAX , 000000FF ;;; one-byte character

Notice thatMOV AL, [EAX+ECX] has now become an interface to

read a byte at offset ECX (i) from a file/array in EAX (p). SimilarlyMOV
[EAX+ECX], AL would write to the file (ifMAPFILE hadn’t opened and

mapped the file with read-only flags).

But how does this really work? I’ve said that Windows 95 uses mem-

ory-mapped files to load Win32 executables. When CAB 3 2 loads the

Win32 version of CLOCK, somehow parts ofCLOCK are read in from

the disk using expressions such as *p and p[i]. How do these translate into

the file I/O that must still be occurring somewhere?

As noted earlier, reading or writing to a not-present memory page

causes an INT OEh fault. To see where this fault is handled in Windows

95, 1 ran the FAULTHKS program from the Unauthorized Windows 95
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disk. FAULTHKS is just a wrapper around the Get_Fault_Hook_Addrs

service provided by VMM; FAULTHKS.C uses the generic VxD (also

provided on the disk) to call this VMM service.

C : \UNAUTHW\BI N>f aul thks

INT V86 PM VMM

0E C00077B0 C00077B0 C00077B0

The handler for INT OEh is the same for V86 mode, protected mode,

and VMM —- no matter what mode the machine is in when INT OEh
occurs, the fault will always go to the same handler at C00077B0. A brief

examination of this handler shows that the first thing it does is read the

processor’s CR2 register. As explained in countless books on the Intel

architecture, CR2 is the page fault address register: It holds the linear

address that most recently caused an INT OEh fault.

Now, ifyou trace through an INT OEh that has been caused by access

to a memory-mapped fde in Windows 95, you’ll find something interest-

ing: From deep inside VMM’s page-not-present handler, we suddenly call

into KERNEL32.DLL.
You wouldn’t normally expect something so at the core of the operat-

ing system as the page-not-present handler to call up into a high-level

DLL such as KERNEL32. But this is precisely how memory-mapped

files work: Since memory-mapped files are really just user-selectable

virtual-memory swap files, there must be a memory manager for this

swap file. This memory manager is part ofKERNEL32.DLL, which

supplies the Win32 memory-mapped file API. VMM calls up into KER-
NEL32 because KERNEL32 is the installed memory-mapped file man-

ager. KERNEL 3 2 installs its memory-mapped file manager via aVMM
service, _PagerRegister. KERNEL32 can’t directly call this VMM func-

tion, butVMM provides a Win32 service, 10003h, that calls _Pager

Register on behalf of a Win32 caller. This is one of several Win32
memory-management services thatVMM provides:

Win32 service: table! @ VMM+ED20

00010000h (0) @ VMM 1 0+1 C8 h

0001000th (3) @ VMM6+1 1 88h

000 1 0002 h (5) @ VMM6+1 1 9 Dh

00010003h (3) @ VMM5+165Ch

00010004h (1) @ VMM5+1 67 1

h

00010005h (2) @ VMM5+1 686h

000 1 0006 h (1) @ VMM7+000h

0001 0007 h (0) @ VMM7+0 1 5 h

0001 0008h (1) @ VMM7+02 Ah

00010009h (4) @ VMM7+03Fh

(39 services)

_PageReserve

_PageCommi

t

_PageDecommi

t

_Pa ge r Reg i ster

_PagerQuery

_PagerDeregi ster

_ContextCreate

_ContextDestroy

_PageAttach

_PageFl ush
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Thus, memory-mapped files differ from normal demand-paged virtual

memory in that there’s an installable memory manager. If you’ve been

following operating system developments in the past ten years, you’ll

probably recognize that this notion of an installable memory manager fits

nicely with the microkernel concept pioneered in the Mach operating sys-

tem, in which many formerly privileged operating system features are

offloaded to user-installable application software. Indeed, the _PagerReg-

ister interface in the Windows 95 VMM is similar to what is called Exter-

nal Memory Management in Mach and OSF/1. Tvo excellent books on

this subject (both of which are useful background to understanding mem-
ory-mapped files in Windows 95) are the Open Software Foundation’s

Design ofthe OSF/1 Operating System and Programming under Mach by

Boykin, Kirschen, Langerman, and LoVerso.

The designer ofMach, Richard Rashid, is now head ofMicrosoft

Research within Nathan Myhrvold’s much-publicized Advanced Technol-

ogy Group (ATG) at Microsoft (Business Week
,
March 2 1 and June 27,

1994). It’s also worth noting that this microkernel idea of offloading oper-

ating system services onto applications is only superficially at odds with

the company’s strategy of pulling the general-purpose application domain

into the operating system. Having a modular (that is, non-integrated)

architecture makes it easier to keep expanding the operating system in the

way Microsoft finds so important.

So, when a not-present portion of a memory-mapped file is accessed,

VMM’s INT OEh handler calls the pager registered by KERNEL32. KER-
NELS 2 calls VWIN32, which in turn calls a function named IFSMgr_

RingO_FileIO. As seen in Figure 14-7, IFSMgr then does its usual 32BFA

thing, such as calling the VFAT VxD. VFAT calls the I/O Supervisor (IOS),

which calls either a FastDisk VxD or the real-mode mapper (RMM).

Notice that Figure 14-7 makes no mention of DOS. When Windows

95 loads a Win32 executable such as CLOCK.EXE, DOS quite literally

doesn’t enter the picture. Memory-mapped files are a perfect example of

what bypassing DOS really looks like. However, this is in sharp contrast

with how most ofWindows 95 currently looks.

roini6 EBerwunere: me saga oi U)iMi6iocn

One of Microsoft’s developer-marketing slogans is “Win32 Everywhere”:

Microsoft wants to promote the idea that the Win32 API is your safest bet

for a portable API that will eventually run on every possible computing
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platform. When you look at the internals ofWindows 95, though, one

wonders whether an equally appropriate slogan might not be “Win 16

Everywhere”: almost every place you look in Windows 95, you see Win 16

code. There are perfectly good reasons for Windows 95 ’s reliance on 16-

bit code; what’s unreasonable are Microsoft’s denials that Windows 95

relies on 16-bit code to the full extent that it does. This is particularly

clear ifyou look at the infamous issue of Winl6Lock.

p = memory mapped file view

*p or p[i]

INT OEh (page not present fault)

VMM INT OEh fault hook

I KERNEL32 pager

VWIN32

IFSMgr_RingO_FilelO

VFAT yV-yT I®

II® ' I
ios

Disk Driver

Figure 14-7: Dereferencing a pointer in a mdmory-mapped file can end up producing

actual disk I/O by a Windows VxD.

In this chapter, I’ve loaded the Win 16 Clock under Windows 3.1 and

Windows 95, and loaded the Win32 Clock under Win32s and Windows
95. There’s one final thing I’d like to do with the Win32 Clock: make it

stop for a moment. No, Clock’s ticking isn’t giving me a pounding

headache. I want to stop the Win32 Clock as a way to gain some under-

standing of Winl6Lock.
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First some background, though. To begin, Winl6Lock is now called

Winl6Mutex. In one of his many enjoyable snide remarks about

Microsoft, Adrian King (_Inside Windows 95
,
p. 152) talks about “the awe-

some power of marketing. Winl6Mutex used to be Winl6Lock. After

the early technical debates about Windows 95 multitasking effectiveness,

the marketing group decided that Winl6Mutex had fewer negative con-

notations than Winl6Lock, and the name was changed.”

So what is Winl6Mutex nee Winl6Lock? Mutex means mutual exclu-

sion: it’s something that allows a resource only one user at a time. In Win-
dows 95, a lock/mutex is needed around the code for the Win 16 API

(primarily the USER and GDI modules but others too, including, as we’ll

see, even the Win 16 KERNEL). The Win 16 APIs were never designed

to be reentrant, that is, to have multiple callers at the same time. This is

probably why Windows 3.v never allowed the Windows GUI to be run in

more than one VM at a time: VMs are preemptively multitasked, and the

Win 16 DLLs wouldn’t be prepared for multiple callers.

In Windows 95, threads, as well as VMs, are preemptively multi-

tasked, and threads are free to make Windows API calls. Only Win32

threads are preemptively multitasked, and the Win32 API has presum-

ably been written with reentrancy in mind. However, as we know, many

Win32 API calls just thunk down to their Win 16 equivalent. Thus, two

threads would be able to inhabit the Win 16 DLLs at the same time, if

some special provision weren’t made to prevent this from happening.

Adrian King’s Inside Windows 95 (pp. 149-155) has an excellent discus-

sion of the trade-offs involved here, such as why rewriting the entire

Win 16 code to be reentrant wasn’t an option. Microsoft’s solution was to

come up with what is essentially the Win 16 equivalent of the InDOS

flag. This is known as Winl6Lock, or Winl6Mutex. All Win32 APIs that

touch Win 16 must first obtain the Winl6Mutex; when they are finished,

they release it. Because the crucial USER32 and GDI32 APIs rely on

Win 16, a task holding onto the Winl6Lock can easily prevent Win32

tasks from running.

Winl6Lock sparked a huge debate that went beyond the Chicago

development team at Microsoft. As King notes (p. 149), “During late

1993, this topic became by far the most popular topic of debate in the

Windows 95 CompuServe forums and at the various developer events

organized by Microsoft.”

Now, a lot of this debate was silly, and one has to agree with King’s

conclusion that Microsoft made the best trade-off possible. Much of the
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supposed debate was really nothing more than potshots from the NT and

OS/2 contingents. Still, there remains a crucial issue here.

The general perception among developers appears to be that Win 16-

Mutex is a potential hazard only ifyou run Win 16 applications. Of course,

everyone will be running Win 16 applications for a while, so in a way this

is irrelevant. But let’s think ahead to when Win32 applications start com-

ing out in full force (that is, when they start showing up on the shelf at

Egghead Software for $79.95). Does Winl6Mutex cease to be a potential

problem ifyou run only Win32 applications?

A number of experts say yes. For instance, my friend Matt Pietrek (PC

Magazine
,
September 27, 1994, p. 307) writes that “...the sooner you move

your application to 32 bits, the better. If a system doesn’t have any 16-bit

programs running, the Winl6Mutex can’t be a source of trouble....” And
further, “None of the KERNEL 3 2 functions become blocked by the

Winl6Mutex.” Likewise, Adrian King (Inside Windows 95
, p. 155) suggests

that if there are no Win 16 applications, there is no problem: “Both the

shell and the print spooler are 3 2 -bit applications, so the most commonly
used components will avoid the problem altogether.” And: “The possible

drawbacks to this solution [Winl6Mutex] when the user runs a mix of 16-

bit and 3 2 -bit applications are another incentive for application developers

to concentrate their efforts on Win32 applications” (p. 155).

But we’ve seen elsewhere in this book that a Windows 95 system (at

least Chicago Beta-1) always has two running Win 16 tasks, TIMER and

MSGSRV32. More importantly, it’s not at all clear to me that the

Winl6Lock wouldn’t still be a potential problem, even if no Win 16 tasks

were running. King writes (p. 153) that “A Win32 thread that does not

thunk to the Win 16 subsystem never blocks on Winl6Mutex.” But given

that the most heavily used Win32 APIs in USER32 all thunk down to

USER, and that many heavily used Win32 APIs in GDI32 also thunk

down to GDI, King could be referring only to computation-intensive

threads that don’t make any Win32 API calls. Well, you’d fully hope and

expect such threads wouldn’t be blocked by Winl6Lock.

However, most Win32 threads will have to grab and release the

Winl6Lock. Now as I understand it, the idea that Winl6Lock “can’t be a

source of trouble” in the absence of any Win 16 tasks (a condition that

isn’t met by current versions of Chicago) is simply based on the idea that

the APIs can be trusted to be good citizens. For example: “The USER
and GDI code will execute quickly and release the Winl6Mutex. No 32-

bit thread will ever hold and hog the Winl6Mutex for any significant

period of time” (Microsoft Systems Journal, September 1994, p. 23).
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That this seems to be wishful thinking is shown by a small Win32
program, W16LOCK (Listing 14-8), which we’ll use to make the Win32

Clock stop for as long as we want, based on a count specified on its com-

mand line. (Unfortunately, this program too didn’t make it onto the

Unauthorized Windows 95 disk.)

Listing 14-8: W16L0CK.C

// wl61ock.c

^include <stdlib.h>

^define W I N32_LEAN_AND_MEAN

#i include "windows.
h"

^define MSG(s) MessageBox(0, s, "W16L0CK", MB_0K)

void fail (const char *s) { MSG(s); exit(l); }

void ( W I NAP I *GetpWi n 1 6 Loc k ) ( DWORD *pWi n 1 6 Loc k )

;

void (WINAPI *_EnterSysLevel )( DWORD lock);

void (WINAPI *_LeaveSysLevel ) (DWORD lock);

int PASCAL Wi nMai n ( HAND LE hlnstance, HANDLE hPrevInstance

,

LPSTR 1 pszCmdLi ne , int nCmdShow)

{

// Microsoft C code per MSJ, May 1991, pp. 135-6

^define argc argc

^define argv argv

extern int argc;

extern char ** argv;

DWORD Winl6Lock = 0;

int iter = (argc < 2) ? 10000 : atoi (argvEl] )

;

i nt i

;

^define GET ( mod ,
func) { \

if (! (func = GetProcAddress(GetModuleHandle(mod) , #func))) \

fail ("Can't link to " mod "!" #func); \

GET
(

" KERNEL32" ,
GetpWi nl6Lock)

;

GET
( "KERNEL32" ,

_EnterSys Level )

;

GET
(

"KERNEL32" ,
_LeaveSysLevel )

;

GetpWi nl6Lock(&Winl6Lock)

;

if (Winl6Lock == 0)

fail
(

"GetpWi nl6Lock didn't work");

_EnterSys Level ( Wi n 16 Lock )

;

for (i=0; i < i t e r ; i++)

(void) GetVersi on ( ) ; // or any call that doesn't thunk to W i n 1

6

_LeaveSys Level (Winl6Lock);

return 0;
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W16LOCK uses the undocumented GetpWinl6Lock function

exported from KERNEL32 to get the address of what still appears to be

called Winl6Lock. It grabs Winl6Lock the same way all the thunking

APIs do: by calling _EnterSysLevel. It releases the lock with JLeaveSys-

Level. Notice that Winl6Lock isn’t a genuine mutex; it’s one of several

syslevels. W16LOCK uses run-time dynamic linking to access the Getp-

Winl6Lock, _EnterSysLevel, and _LeaveSysLevel APIs.

After grabbing the Winl6Lock, W16LOCK (which, let me remind

you, is a Win32 program) goes into a loop, calling the Win32 GetVersion

API for as many times as you specified on the command line (or 10,000

times if you didn’t specify anything).

I selected GetVersion because it doesn’t thunk down to Win 16. Any
Win32 API that also doesn’t thunk down to Win 16 would do just as well

for the purposes of the W16LOCK program. Note, however, that some

KERNEL32 APIs do thunk down to KRNL386, so it’s wrong to assume

that “Functions in KERNEL32 can be called by 3 2 -bit threads without

fear of blocking on the Winl6Mutex, since KERNEL32 doesn’t thunk

down to KRNL386 at any point” (Microsoft Systems Journal, September

1994, p. 23). We’ve already seen in previous chapters that KERNEL32
certainly can thunk down to KRNL386.

During W16LOCK’s loop, Clock— and other Win32 applications

that use USER or GDI— is frozen out ofWin 16. The Clock stops. If

you’re running WinBezMT, the bezier curves stop curving. When
W16LOCK completes the loop and calls _LeaveSysLevel, everything

perks up again.

Why did Clock stop? What functions is it calling that depend on

Winl6Lock?

Actually, it’s the ubiquitous QT_Thunk routine that calls _Enter-

SysLevel(Winl6Lock). We examined QT_Thunk in Chapter 13 (see the

“From Explorer to Create PSP in Six Easy Steps” section), though at that

time I didn’t mention _EnterSysLevel or Winl6Lock.

So which Win32 APIs use QT_Thunk? Well, almost every routine in

USER32 and GDI32 does. And we’ve seen in earlier chapters that a

whole set of KERNEL32 functions do, too. I put a debugger breakpoint

on QT_Thunk while starting the Win32 Clock, and found, for example,

that the KERNEL32 GetProfileString, GetPrivateProfileString, and

GetSystemDirectory APIs all call QT_Thunk, and hence potentially wait

on Winl6Lock. Importantly, calls to load 16-bit modules do too; these

could take a while to execute, potentially blocking the system.
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Now, just because something calls _EnterSysLevel(Winl6Lock)
doesn’t mean that the current thread will block. Usually the caller will

acquire the lock and return immediately. By tracing through JEnter-
SysLevel, however, you can follow the path taken when a thread must be
blocked until some other thread releases the lock:

QT_Thunk

_EnterSysLevel+0A EDX=Wi n 1 6 Loc k

_VxDCal 1 0 2A001 Dh

VWIN32+lAlh

VMM Wai t_Senaphore EAX=C0FD10E0

There are many early exits along this path. So will a thread ever really

block on Winl6Mutex in a pure Win32 system? Again, it’s hard to say

what a pure Win32 system means, but I suppose a Windows 95 system

booted in fail-safe mode and running only the Explorer is as pure as you
can get. In this configuration, I put a breakpoint on the following code in

_EnterSysLevel:

0137 : BFF71B9B 52 PUSH EDX

0137 : BFF71B9C 51 PUSH ECX

0137 : BFF71B9D 52 PUSH EDX

0137 : BFF71B9E 681D002A00 PUSH 002A001D

0137 : BFF71BA3 E864030000 CALL KERNEL32 ! VxDC a 1 1 0

Was this ever hit because of Winl6Lock? (Note that there are other

locks passed to _EnterSysLevel.) Yes, it was. In fact, even when I was just

dragging windows around in the Explorer, this code was hit constantly.

Likewise when running WinBezMT.
But this still doesn’t mean the thread will block. It all comes down to

the Wait_Semaphore call in VMM, which is called by VWIN32 service

2A001Dh. At bottom, Winl6Lock is a VMM semaphore. In many cases,

Wait_Semaphore too can bail out early. But a breakpoint placed on the

portion of Wait_Semaphore where a thread must truly wait is triggered

pretty often, even when running only Win32 applications.

There’s an interesting twist to Winl6Lock. Recall that, in addition to

Win32 thunks that travel down to Win 16, there are also plenty ofWin 16

thunks that travel up to Win32. Whenever some Win 16 code thunks up

to Win32 (K32Thkl632Prolog), Winl6Lock can be decremented. When
it returns to Win 16-land (K32Thkl632Epilog), Winl6Lock must be

incremented.

I’m convinced that the engineers at Microsoft made the right trade-offs

in arriving at Winl6Lock. Windows 95 is not NT. If customers and devel-

opers want NT, they’ll get NT. But it’s disturbing that Microsoft asserts

that Winl6Lock can’t possibly be a problem in a pure Win32 system
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when there’s no such thing as a pure Windows 95 Win32 system (nor does

there need to be), and more importantly, when it seems obvious that

Winl6Lock will continue to be an issue for as long as the Win32 APIs

thunk down to Win 16.

We’ve seen that Microsoft is using Winl6Lock as a not-so-subtle

way of getting ISVs to switch their applications over to the Win32 API.

(Win 16-Lock is “another incentive for application developers to concen-

trate their efforts on Win32 applications.”) This has been picked up by

the trade press. (“The sooner you move your application to 32 bits, the

better”.)

This is rich in irony. The reason why Winl6Lock exists in the first

place is that Microsoft, quite correctly, did not want to do a fully 3 2 -bit

rewrite of the core Windows DLLs. And one of the main reasons for this is

that 32-bit code is fatter than 16-bit code. As Adrian King (p. 150) puts it,

Rewriting the entire Kernel, User, and GDI subsystems as 32-bit code would have

dramatically increased the memory required for the system’s working set. The User

and GDI modules alone require a working set of about 800K [a footnote adds, “Out

of a planned total working set of about 3 MB for the product — similar to that of

Windows 3.1"]. Measurements indicated that a conversion to 32-bit code would

have increased the memory requirements by close to 40 percent, which would have

raised the working set requirements for User and GDI to well over a megabyte. Given

the goal of running Windows 95 well on a 4-MB system, this increase in memory
consumption wasn’t acceptable.

Now, 3 2 -bit code has tremendous benefits for programs that actually

need to manipulate 3 2 -bit quantities, but uncontrolled, profligate use of

32 bits will lead to bloated code. I don’t know if this is a completely fair

comparison, but the Win32 version of the FreeCell game that shipped

with Win32s is 49,188 bytes, while the Win 16 version that shipped with

Beta-1 of Chicago is only 33,184 bytes. The Win32 Clock that ships with

Chicago is 38,400 bytes, the Win 16 version that ships with Windows 3.1

is only 16,416 bytes. I wrote a tiny Windows app that called MessageBox

to display the string “hello world!” The Win 16 executable was 3,668

bytes; the Win32 version was 9,216 bytes. Well, these comparisons are not

quite fair, but notice King’s figure of a 40 percent weight gain in

Microsoft’s own code. IfWindows would swell up by 40 percent by

switching to pure 3 2 -bit code, then your application would too. If there’s

no compelling performance gain from going to 32 bits, then the increase

in code size makes it a Bad Idea.

Microsoft knows that 16-bit code is often necessary. Keeping 16-bit

code at the core of the Windows API is sufficiently important that

Microsoft has introduced Winl6Lock. It’s a shame, then, that Microsoft
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then tries to use this very same Winl6Lock as a motivational technique

to artifically force developers to switch to 3 2 -bit code.

Microsoft’s other motivational technique to move everyone over to

3 2 -bit code, whether or not this makes sense for a given program, is to

deny the Windows 95 Compatible logo to any program that doesn’t use

the Win32 API.

There’s a definite pattern here: Windows 95 makes a number of very

sensible compromises, such as keeping a lot of Win 16 code in the API

and avoiding the use of OLE in the shell (see Chapter 2). At the same

time, Microsoft says that other companies should not make these same

compromises, and even denies that it has made them. Microsoft’s general

approach is “Do as I say, not as I do.” Developers might be much better

off if they did as Microsoft does, and not as it says.
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Epilog

Everywhere Vov UIrht to Be

I

had been racking my brain for several days over how to conclude this

book, when I was presented with a nearly perfect theme in the form of

an article in the Wall St. Journal (October 14, 1994):

Microsoft To Buy Intuit In Stock Pact

Microsoft Corp., moving to capture one of the last key markets it has failed to domi-

nate, reached an agreement to buy finance software specialist Intuit Inc. in a stock

transaction valued at about $1.5 billion. The acquisition, approved by Intuit’s board

yesterday, would be the most expensive software acquisition, dramatizing an

increasing pace of consolidation in a once free-wheeling industry.

In the “Industry Update” section that begins this book, I presented a

gloomy picture of the future of PC software development: increasing

consolidation of the software business, steadily growing domination by

Microsoft, and the eventual withering away of the shrink-wrap software

market into two- or three-person shops using Visual Basic for Applica-

tions to produce add-ins to Microsoft Office.

One of the few bright spots in the midst of this gloom was Intuit,

makers of the popular Quicken financial software package. Intuit was one

of the few companies that had succeeded against Microsoft — Quicken

reportedly has 6 million active users, in contrast to perhaps 500,000 for

Microsoft Money— and personal-finance software seemed to be an area

where companies other than Microsoft could make a real impact.

But now, says the Wall St. Journal
,
“the PC software industry will lose

one of its striking role models. For years, many in the industry looked to

Intuit Chairman Scott Cook as a shining example that a small company

could prosper in a market dominated by a few big players.”
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In a way, Intuit and Scott Cook are still positive examples. As Lawrence

Fisher put it in the New York Times (October 16, 1994), Goliath didn’t beat

David: “Goliath dropped his weapons and picked up his checkbook.” Cook
started Quicken, a simple check-writing program; today he stands to

acquire about $330 million in Microsoft stock.

This is a nice personal success story that shows someone other than

Microsoft can still make money in the PC software industry. Unfortunately,

though, the louder messages are negative ones: Microsoft has moved into

yet another territory; there’s one fewer competitor; fewer and fewer compa-

nies are in control of software. There’s nothing particularly evil about

Microsoft’s goal of total control over general-purpose PC software— and

the U.S. Justice Department’s settlement with Microsoft seems to indicate

that Microsoft broke few antitrust laws to get to its current position— but

a Microsoft monopoly, like every other monopoly, will ultimately produce

price-gouging and a glacial pace of genuine innovation.

not in me Applications Business

Now, what could Microsoft want— and want so badly to pay $1.5 billion

in stock— with a program that helps people balance their checkbooks?

Why would Microsoft pay far more for Intuit than it paid for the excellent

FoxPro database?

To understand this, you first have to understand that Microsoft is not

simply taking over one application domain after another. Microsoft is tak-

ing over applications and putting them into the operating system. This is an

important distinction. In many ways, Microsoft is not really in the appli-

cations business. True, applications now account for 63 percent of

Microsoft revenues, in contrast to only 42 percent in 1989 (Economist,

September 17, 1994). But this is not necessarily a healthy trend from the

company’s perspective, because applications have a much narrower profit

margin than operating systems.

The Windows operating system is Microsoft’s core business, and this

core must be continually redefined, enlarged, or both. The difficult trick

here is for Microsoft to maintain a near monopoly on a ubiquitous stan-

dard. (Intel has not succeeded at this; it now has serious competition from

AMD.) As Microsoft VP Brad Silverberg told me in October 1993, “Once

Windows is frozen and no longer moving forward, it can easily be cloned

and thus be reduced to a commodity. Microsoft doesn’t want to be in the

BIOS business.”
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To keep the operating system constantly changing, Microsoft enlarges

it with what were once applications. Microsoft doesn’t want to be in the

“BIOS business” (in other words, the business of making readily clonable

systems software), but it also doesn’t really want to be in the applications

business. Even its applications suite, Microsoft Office, looks more and

more like part of the operating system. Microsoft Office is becoming a

platform', it is systems software.

Microsoft may make most of its revenues from applications, but it is

still fundamentally a systems software firm. So Microsoft isn’t in the BIOS
business, and it isn’t in applications business. Its business is something in

between: systems software that, like a combination of kudzu and the Ener-

gizer Bunny, just keeps growing and growing and growing...

That Windows 95 is a major step in this expansion of the operating

system is noticeable even to those outside the industry. For example:

Many products developed by smaller companies are now being subsumed into

Microsoft’s operating system dominance.... A look at an early version of the succes-

sor to Windows, Chicago, reveals built-in hooks to what could be a Microsoft on-line

service. Later in 1994 [mid-1995, it now seems], Microsoft will have the ability to

ship several million copies a month of a front end to potential online subscribers.

America Online can’t even think of numbers like that. It will have to move upstream,

offering online content rather than just a connection service.

— Andrew Kessler, “The monolith: Like the ominous black slab in ‘2001:

A Space Odyssey,’ Microsoft Corp. continues to expand its software line,

leaving few vendors in its wake,” Forbes, March 14, 1994

So where does the acquisition of Quicken fit into all this? To pay $1.5

billion in stock, the company must have far bigger ambitions than simply

selling a lot of personal-finance software. Indeed, the New York Times

observed that Microsoft VP Mike Maples “notably avoided calling Quicken

an application.” No, Microsoft has more systematic goals for this software.

What could a check-writing program have to do with systems soft-

ware? The New York Times had a good explanation:

The deal only makes sense when viewed in the broader context of the emerging mar-

ket for online commerce. Quicken users can already pay bills electronically, and there

is a Quicken Visa card that delivers an electronic monthly statement via disk or

modem.

While Intuit has lacked the clout to forge many links with major banks, Microsoft has

the muscle to make Quicken the defacto standard for home banking services, via PC

and modem today, interactive TV and cable systems tomorrow. Investment and insur-

ance services would be natural extensions.

Microsoft hopes that Intuit will launch it into the world of online

banking. Cook will become executive VP of Electronic Commerce at
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Microsoft. Notice the title: VP of Electronic Commerce at Microsoft. Is

there a Microsoft Visa card in your future?

not utsionaries, nut opportunists

Online banking is just one new area that Microsoft is exploring. Cable

TV, telephony, on-line services: we’ve heard it all. But it’s important not

to confuse Microsoft’s daydreams with reality. Microsoft puts its eggs into

many baskets. Only a few of these eggs hatch. For example, with all of

Microsoft’s talk of cable TV and telephony services, most of its cable and

telephone deals were much smaller than it wanted. It’s not clear what

Microsoft brings to the “digital convergence” party other than a talent

for alienating its potential dance partners.

There have been some prominent Microsoft failures, including OS/2

1 .x, LAN Manager and, I would have to say, Windows NT. Microsoft is

not a company with vision: it’s a company with supreme opportunism (in

the best sense of the word). Adrian King makes this point nicely in his

Inside Windows 95 {p. xxii) when he talks about the “seven-year overnight

success of Windows.” King says that Gates and Ballmer “would probably

try to convince you it was planned that way. Don’t believe it.”

As an example of how Microsoft’s supposed planning actually works,

it’s interesting to look at part of the story behind Microsoft’s purchase of

Intuit. Newsweek reporter Mike Meyer sat in on two “BillG meetings,”

first with the Microsoft Baseball team— the meeting ends with

Microsoft discussing the purchase of a leading sports magazine — and

then with the Microsoft Money group. Gates beats up on the Money
group because they’re losing badly to Intuit’s Quicken. And,

Then comes a strange moment, the sort of thing that happens often at Microsoft,

which seemingly within moments turns disaster into salvation. Talk has turned to

broader trends in banking. Where’s it going, what’s in it for us. Banks are dinosaurs,

says Gates. We can “bypass” them. [The Microsoft Money product manager] is

unhappy with an alliance involving a big bank-card company. “Too slow.” Instead he

proposes a deal with a small — and more easily controllable — check-clearing outfit.

“Why don’t we buy them?" Gates asks, thinking bigger. It occurs to him that people

banking from home will cut checks using Microsoft’s software. Microsoft can then

push all those transactions through its new affiliate, taking a fee on every one.

Abruptly, Gates sheds his disappointment with Money. He’s caught up in a vision of

the “transformation of the world financial system.” It’s a “pot of gold,” he declares,

pounding the conference table with his fists, triumphant and hungry and wired. “Get

me into that and goddam, we’ll make so much money!”
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Here is Microsoft in action. In just three hours, it laid plans to buy at least two compa-
nies, ditched an alliance with a major financial institution, opted for another and made
major moves into “two incredible new worlds,” as Gates put it— home banking and
sports entertainment. Another company might take months to accomplish as much.

— Michael Meyer, “Culture Club," Newsweek, July 11, 1994

This small episode speaks volumes about how Microsoft operates, and

why it seems so much better than its competitors. The company has a

tremendous capacity for snatching victory out of the jaws of defeat.

Anyone trying to survive in the software busines should recognize

that Microsoft now dominates the industry and will likely do so into the

early 2 1st century. Don’t bother trying to fight this domination, but

realize that Microsoft doesn’t know any more of what the future holds

than you or I do. As Stephen Manes and Paul Andrews put it in their

superb biography, Gates
,
the “Microsoft Everywhere” strategy looks

almost as though the company “were” placing a bet on every number on

the digital roulette wheel.”

Gates and Microsoft can afford to play the game this way because of

the funding supplied by its MS-DOS cash cow. We, on the other hand,

have to be more selective. We can’t pay attention to everything that

Microsoft tells us is important, such as NT, OLE, ODBC, TAPI, MAPI,

WOSA, NDIS, MFC, VBA, and OCX (to name just a few). Not all of

these will turn out to be important. As Manes and Andrews go on to say

about Microsoft’s saturation bet-placing, “To stockplayers who preferred

to view Microsoft as a monolith able to enforce its will in the market-

place, a surprising number of these bets seemed to return small change.”

At the same time, Microsoft is the reality of the PC software industry.

Windows 95 will further dramatize its role. Therefore, developers need

to understand Microsoft’s systems inside and out. Ifyou study even a

speck of code in Windows, you’re examining how tens of millions of

computers work. This is not the same as studying every new interface

that Microsoft claims is important. Again, Microsoft doesn’t know what is

going to be important and what isn’t. But ifyou have a firm grasp ofhow

Microsoft’s systems work— as opposed to how Microsoft says they work

(or perhaps even how most Microsoft employees think their own prod-

ucts work) — you’ll be well equipped to understand Windows 95, Win-

dows 96, Windows 97, and whatever else Microsoft sends our way.
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The Unauthorized Windows 95 disk includes about sixty programs, several

reusable function libraries, and about 20,000 lines of source code. Most

of the programs are character mode, using the DOS Protected Mode
Interface (DPMI), the Win32 Console API, or real-mode DOS.
When you run the setup batch file, it creates the directory

C:\UNAUTHW with these subdirectories:

BIN DOS programs, protected-mode DOS programs, and VxDS

BINW 16-bit Windows programs

BIN32 Win32 (including Console) programs

LIB Libraries for Borland C++ 3.0

INCLUDE C header files

SOURCE C and assembly language source code

If your copy of Unauthorized Windows 95 came without a disk, see the

disk offer in the back of the book.

File uienini Programs

Different versions of some of the file viewing utilities are also provided

with the Windows Source disassembly toolkit from V Communications

(800-648-8266, FAX 408-296-4224). If you have Windows Source, be

careful not to overwrite the versions included with that product with the

versions included on the Unauthorized Windows 95 disk.
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EXEDUMP displays information about 1 6-bit Windows (Winl6) exe-

cutables (EXEs, DLLs, DRVs, and so on), also known as New Executable

(NE) files or Segmented Executable files. It shows the entry table

(exports), relocation table (imports), segment table, NE header, module-

reference table, and CodeView (R) information, if present. For example,

you can use EXEDUMP to examine the core Win 16 DLLs (KRNL386
.EXE, USER.EXE, and GDI.EXE), Win 16 programs (SOL.EXE, WIN-
WORD.EXE, TASKMAN.EXE, and so on), and 16-bit Windows device

drivers (SYSTEM.DRV, KEYBOARD.DRV, and so on).

• To display information about a Win 16 NE executable:

Command: EXEDUMP [options] exe_file

Example: exedump \windows\system\krnl386.exe
\

• To generate a listing of exports from an executable:

Command: EXEDUMP -EXPORTS exe_file

Example: for %f in (\windows\system\*.*) do exedump -exports %f

• To display only the executable file type (MZ, NE, LE, W3, LX, or

PE): -MAGIC

• To display only the description string: -DESC

• To show relocation information (imports): -RELOC

• To show blank or mangled CodeView symbols, which are normally

suppressed: -CVBLANKS

Note: The EXEDUMP help screen mentions a nonexistent

-NORELOC switch. NORELOC (suppress relocation information) is

the default for the version ofEXEDUMP on the Unauthorized Windows

95 disk. Ifyou want relocation information, use the -RELOC option.

Source code is provided in EXEDUMP.C and NE.H.

W32DUMP displays information about a Win32 Portable Executable

(PE) file. This information includes a list of the functions exported and

imported by the executable. You can use W32DUMP to examine files

such as the core Win32 DLLs (KERNEL32.DLL, USER32.DLL, and

GDI32.DLL), the Windows 95 Shell/Explorer/Cabinet (CXB32.EXE), or

other Win32 programs (such as WINBEZMT.EXE). You can also use

W32DUMP to examine files from Windows NT (such as NTDLL.DLL)
and Win32s.
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• To display information about a Win32 PE file:

Command: W32DUMP file_name

Example: w32dump \win32\bin\ntdll.dll

• To show relocation information: -RELOC

Source code is provided on disk in W32DUMPC. This requires NT-
IMAGE.H from Microsoft’s Win32 SDK.

RESDUMP displays information about resources in a Windows .RES
file, Win 16 executable (EXE, DLL, DRV, and so on), or Win32 exe-

cutable. Detailed information is provided for dialog boxes, controls,

menus, string tables, accelerator tables, and version resources.

• To display resources in a Windows .RES or executable:

Command: RESDUMP [options] res_or_exe_file

Example: resdump \windows\winfile.exe

To display resources only of a given type:

Command: RESDUMP -TYPE [type] res_or_exe_file

Examples: resdump -type menu \windows\cab32.exe

resdump -type menu -type dialog -hex \foo\bar.exe

Types: CURSOR
MENU
FONTDIR
RCDATA
ICONDIR

BITMAP
DIALOG
FONT
ERRORTAB
NAMETAB

ICON
STRINGTAB
ACCEL
CURSDIR
VERSION

• To also display (x,y) locations for dialog items: -VERBOSE

• To also dump bytes (hex) for each resource: -HEX

• For Windows 1.0 programs: -WIN10

• To disable ANSI to OEM conversion (Japan): -DBCS

Source code is provided on disk in RESDUMP.C and RESDMP32.C.

W3MAP displays information about the Virtual Machine Manager

(VMM) and Virtual Device Drivers (VxDs) in a Windows 3.x Enhanced

mode or 4.x WIN3 86-style (W3) file. You can use W3MAP to examine

WIN386.EXE, VMM32.VXD, or various short-lived Microsoft W3 files

such as DOS386.EXE and MSDPMI.EXE.
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• To display a list of all VxDs in the WIN386 file:

Command: W3MAP win386_file

Example: w3map \windows\system\vmm32.vxd

• To display information on an individual VxD in the WIN386 file:

Command: W3MAP -VXD vxd_name win386_file

Example: w3map -vxd ifsmgr \windows\system\vmm32.vxd

• To display detailed information on each VxD in the WIN386 file:

Command: W3xWAP -VERBOSE win386_file

Example: w3map -verbose \windows\system\win386.exe

Source code is provided on disk in W3MAP.C and LE2.C. This requires

EXE386.H, which is copyrighted by Microsoft and unfortunately diffi-

cult to get.

LEDUMP displays information about a Windows 3.x Enhanced mode or

4.jr Virtual Device Driver (VxD), in a Linear Executable (LE) file. This

includes DOS programs (such as EMM386.EXE, SMARTDRV.EXE,
and DBLSPACE.BIN) with embedded VxDs.

• To display information about a VxD:

Command: LEDUMP vxd_file

Examples: ledump \win3 1 \system\vtdapi. 3 86

ledump \windows\system\iosubsys\rmm.pdr

ledump \dos\emm386.exe

Source code is provided on disk in LEDUMPC and LE2.C. This

requires EXE386.H, which is copyrighted by Microsoft and unfortu-

nately difficult to get.

DUMPFILE is a generic hex-dump program for displaying the contents

of files. You can specify the starting offset and the number of bytes to

dump. You can also use DUMPFILE to display readable strings in a file.

(The program will show both the string and its file offset.)

• To display a portion of a file:

Command: dumpfile file_name -offset start_ofs -bytes num_bytes

Example: dumpfile \foo\bar.baz -offset Oxl 10 -bytes 0x80

• To display readable strings in a file (you can optionally specify the min-

imum string length, and also specify Unicode two-byte characters):
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Command: dumpfile file_name -strings [string_length] [-uni]

Examples: dumpfile \winword\wwintl.dll -strings

dumpfile \foo\bar.baz -strings 12 -uni

Using the -REL (relative) option in combination with -OFFSET
start_ofs tells DUMPFILE to display start_ofs as 0.

Meion Viewing Programs

PROTDUMP is a protected-mode memory hex-dump program. It can

display memory giving a 3 2 -bit linear address, a real-mode segment:offset

address, a protected-mode selector:offset address, or a physical address.

You can specify that the memory is located in another virtual machine

(VM). The memory can be displayed as an array of bytes (default), words,

dwords, or far pointers, and you can adjust the width of die display.

PROTDUMP also has an option to display all VMs and, in Windows 95,

all threads.

• To examine memory at a 3 2 -bit linear address:

Command: PROTDUMP linear_addr num_bytes

Example: protdump 80001000 128

• To display all VMs (and, in Windows, threads):

Command: PROTDUMP -VM
Note: This option requires the generic VxD; put

device=\unauthw\bin\vxd.386 in SYSTEM.INI [386Enh]

• To examine a real-mode address in another virtual machine:

Command: PROTDUMP #vm segment:offset num_bytes

Example: protdump #1 00A0:0330 2 -word

• To examine part of the MS-DOS data segment in another VM:
Command: PROTDUMP #vm DOS:offset num_bytes

Example: protdump #1 DOS:0330 2 -word

• To examine a real-mode address in all VMs (instance data):

Command: PROTDUMP -all segment:offset num_bytes

Example: protdump -all DOS:0330 2 -word
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• To examine a protected-mode address in another VM:
Command: PROTDUMP -PROT #vm selectorioffset numjbytes

Example: protdump -prot #1 01 1F:0 2048

Note: This option requires the generic VxD; put

device=\unauthw\bin\vxd.386 in SYSTEM.INI [386Enh]

• To examine physical memory (uses DPMI physical to linear

translation): -PHYS

• To treat a linear address as a pointer to a linear address (can be

repeated): -PTR

• To treat a linear address as the beginning of a VMM linked list: -LIST

• To change the offset PROTDUMP uses for the LDT within a VM
Control Block (1 14h in Windows 3.1): -LDT new_offset

• To dump words, dwords, or far pointers: -WORD, -DWORD, -FP

• To change the width (in bytes) of the hex dump (default: 16): -n

Example: protdump -4 80001234 128

Source code is provided on disk in PROTDUMPC, GDT.C, and

VMWALK.C.

PROTTAB is a protected-mode program that displays tables from a

given 3 2 -bit linear address. It is particularly useful for examiningVMM
data structures (once you know their addresses). You can display tables of

bytes, words, and dwords, specify an optional filter to suppress an unin-

teresting default entry in a table, and specify an optional name associated

with a base address.

• To display a table at a linear address:

Command: PROTTAB lin_addr num size [prefix] [filter] [name=base]

Example: prottab c41db000 28 4 foo 0 VMM=C0001000

This example dumps out a table of 28h dwords (size: 4) located at

C41DB000h. The entries are named foo_l, foo_2, and so on. All entries

equal to 0 are suppressed. The value of each entry is displayed as “VMM+”,
relative to the address COOOlOOOh (VMM+1234, VMM+5678, and so on).

Source code is provided on disk as PROTTAB.C.

DUMP is a generic real-mode memory-dumping program.

• To hex-dump a block of real-mode memory:

Command: DUMP segment:offset num_bytes

Example: dump 1234:5678 128
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FTAB displays real-mode tables of bytes, words, or dwords.

• To display a table at a real-mode address:

Command: FTAB segment-.offset num_func [prefix] [size]

Example: ftab fdc8:3f73 2fint2fl2 2

This example dumps out a table of 2Fh words (size: 2) from real-mode

address FDC8:3F73; the entries will be named int2fl2_0, int2 fl 2_1 ,
and

so on.

Programs to Examine uiindoois and

Protected-Hlode Strictures

WINBP is a protected-mode DOS program that displays V86 break-

points, V86 callbacks, and protected-mode callbacks in Windows 3.x

Enhanced mode and in Windows 95. By default, WINBP displays only a

few pieces of information, such as the current MaxBPs= setting and the

location of the breakpoint table. To generate a list of all breakpoints and

callbacks, run WINBP -VERBOSE.

• To find the 3 2 -bit protected-mode handler for a V86 callback:

Command: WINBP -VERBOSE I find “v86_callback_addr”

Example: winbp -verbose I find “FF0D:0A12”

Source code is provided on disk in WINBP.C.

VXDLIST is a protected-mode DOS program that display the Virtual

Device Driver (VxD) chain in Windows 3.x Enhanced mode and in Win-

dows 95. By default, VXDLIST provides only one line of information for

each VxD in the chain. Ifyou run VXDLIST -VERBOSE, the program

will generate a large amount of information for each VxD, such as a list

of all the services it provides. In Windows 95, VXDLIST will show

Win32 service tables. Rather than show the entire VxD chain, you can

specify a particular VxD to examine.

• To display all services provided by all loaded VxDs:

Example: VXDLIST -VERBOSE

• To display all services provided by a single VxD:

Command: VXDLIST -VERBOSE vxd_name OR #hex_id

Example: vxdlist -verbose DOSMGR
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• To determine if a particular VxD is loaded:

Command: vxdlist vxd_name OR #hex_id

Example: vxdlist NDIS
Example: vxdlist #2 8

The VxD name is case-sensitive. The return value from VXDLIST can

be tested with the IF ERRORLEVEL statement in a DOS batch file.

Source code is provided on disk in VXDLIST.C and VXDCHAIN.C.
There is a bug in the version on disk: Service names are output

improperly for service 0 in each VxD: instead of DOSMGR_GetVersion
or SHELL_GetVersion, the name comes out as “DOSMGR_~” or

“SHELL_~”. To correct this, all the entries in something like

\UNAUTHW\INCLUDE\VXDFUNC.H should be replaced with

“-GetVersion”.

IDTMAP displays the V86 and protected-mode Interrupt Descriptor

Table (IDT). By default, is displays both IDTs in their entirety. You can

instead specify one or more interrupt numbers on the command line.

Since IDTs are a per-VM structure, running a protected-mode DOS pro-

gram like IDTMAP doesn’t necessarily tell you how interrupts are han-

dled in the System VM; see PMINTVEC (which is a Windows program)

on disk.

• To see where INT 2 lh, INT 2Fh, and INT 3 lh are handled in a VM:
Example: id tmap 21 2f 3

1

Source code is provided on disk in IDTMAP.C.

WINPSP is a 16-bit Windows program that displays the real-mode

DOS Program Segment Prefix (PSP) structure belonging to each run-

ning Win 16 and Win32 task. To use the program, just run it; its output

can be saved to a file. Source code is provided on disk in WINPSP.C.

WALKWIN is a 1 6-bit Windows program that displays information

about each WND (window) structure in Windows 3.x and Windows 95.

WALKWIN is particularly useful for seeing how Windows 95 uses the

Win 16 USER and KERNEL modules to support windowing and mes-

saging for Win32 applications. Source code is provided on disk in

WALKWIN.C.
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Programs lo Examine the

uiindouis-DOS Relationship

FAKEWIN is a DOS program that pretends to be Windows by issuing the

same ENT 2Fh function 16h broadcasts that Windows issues during its ini-

tialization. FAKEWIN displays the requests made by real-mode DOS pro-

grams and by DOS itselfwhen starting up. These include requests to load

VxDs and declare instance data.

• To display Windows initialization requests from DOS:
Command: FAKEWIN

• To pretend to be Standard mode rather than Enhanced mode:

-STANDARD
• To pretend to be Windows 3.0 instead of 3.1: -WIN30

• To pretend to be some other version of Windows: -VERS xxxx

• To display a hex dump of requested instance-data areas: -DUMP

Source code is provided on disk in FAKEWIN.C, FAKEVXD.C,
FAKETSR.C, FAKEEMM.C, and TEST1684.C.

TEST21 is a DOS program that hooks INT 2 lh and then issues some
INT 2 lh calls. If the program’s INT 2 lh handler doesn’t see the pro-

gram’s own calls to INT 2 lh, someone is bypassing DOS for these calls.

For testing Windows 95, use the -MYSETVECT option. Three similar

programs are TEST21X, TEST1600, and TEST2F16.

V86TEST is a DOS program that hooks INT 2 lh and INT 2Fh and

then runs the program specified on its command line. Generally, this

program will be Windows (WIN). V86TEST’s interrupt handlers will

keep count of the number ofINT 2 lh and INT 2Fh calls made by Win-
dows, whether the calls were made in real mode or V86 mode, what vir-

tual machine they came from, and so on. When Windows exits,

V86TEST will display the statistics. You can display the statistics from a

DOS box, before Windows has exited, with -QUERY.

• To run Windows under V86TEST:

Command: V86TEST Windows_path Windows_options

Example: v86test win /D:C



Unauthorized Windows 95

• To query the V86TEST statistics while Windows is running:

Example: v86test -verbose -query

Note: Alternatively, you can use a Windows program, WV86TEST.

• To ignore all VMPoll broadcasts: -FILTER

• To run V86TEST if the machine is already in V86mode: -OKV86

WV86TEST is a Windows front-end to V86TEST. It provides sev-

eral menu options:

• Refresh: Calls down to V86TEST for the latest statistics, and displays

them.

• Clear: Zeros out the V86TEST statistics.

• Show Changes: When 'enabled, a Refresh will show only the changes

to the statistics since the previous Refresh: the old statistics are sub-

tracted from the new statistics.

• Auto Refresh: When enabled, WV86TEST will automatically refresh

the statistics every five seconds. This can be used in combination with

Show Changes.

• File Save: Save the statistics out to a log file.

Source code is provided on disk in V86TEST.C and WV86TEST.C.

HOOKINT is a DOS program that hooks a number of BIOS interrupts

(such as INT lOh for video services and INT 16h for the keyboard) and

then spawns the program named on its command line. (If no program is

named on the command line, HOOKINT runs COMMAND.COM or

whatever command shell is named in the COMSPEC environment vari-

able.) When the spawned program exits (or when you EXIT from the

command shell), HOOKINT displays statistics on the number and types

of interrupts generated. This is useful for examining how Windows inter-

acts with the BIOS.

• To run Windows under HOOKINT, and have HOOKINT log calls

only after Windows initialization and before Windows termination:

Example: hookint -win win

Source code is provided on disk in HOOKINT.C.

WL0G212F is a Windows program that hooks INT 2 lh and INT 2Fh,

in protected mode and (using a DPMI V86 callback) in V86 mode. By
comparing the interrupts seen in protected mode with those seen in V86
mode, WLOG212F can determine which calls are sent down to DOS
and which bypass DOS. WLOG212F has several menu items:
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• Refresh: Updates the WLOG2 12F display.

• Clear: Zeros out WLOG2 12F statistics.

• Auto Refresh: Automatically updates every five seconds.

• File Save: Saves the WLOG2 12F statistics out to a log file.

Source code is provided on disk in WLOG2 12F.C.

WSPY21 hooks INT 2 lh in protected mode and displays a line of

information about each INT 2 lh call. You can specify an interrupt num-
ber on the command line to watch a different interrupt, such as INT 2Fh
or INT 3 lh. The text mentions a -SHOWALL option; this does not

appear in the version ofWSPY21 on the disk. Source code is provided on
disk in WSPY2 1 .C.

corrections

Unfortunately, while the disk was being duplicated, we discovered three

bugs, which for some odd reason are all in Win32 programs:

• MAPFILE. This program includes an INT 3 breakpoint instruction

left over from a debugging session. If you run MAPFILE without a

debugger, Windows 95 will terminate the program. Remove the _asm

int 3 toward the end ofMAPFILE, recompile, and the program will

work fine.

• CHGDIR. The expression sizeof(cmd) was used to get the length of a

string, when sizeof(cmd)-l should have been used. Consequently,

CF1GDIR does not recognize the CD orMD commands that are this

program’s whole reason for being. Change sizeof(cmd) to sizeof(cmd)-l
,

recompile, and the program will be fine.

• WIN32 PSP. This program gets the wrong base address for its PSP

because it mistakenly uses the EDX return value from DPMI function

6 instead of the CX:DX return value. In WIN32PSP.C, remove the

line jism mov base
,
edx and substitute for it the following two lines:

_asm mov word ptr base+2, cx

_asm mov word ptr base, dx

Then recompile the program.
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Libraries

DPMI Shell DPMISH.C, DPMISH.H, and CTRL_C.ASM provide a

simple interface for writing small-model protected-mode DOS programs

that can run under Windows 3.x Enhanced mode, Windows 95, or any

other DOS Protected Mode Interface (DPMI) provider.

To use DPMISH, a program provides at least two functions, real_

main and prot_main. In real mode (or V86 mode), DPMISH will call the

program’s real_main function. If this function returns 0, DPMISH will

switch to protected mode and call the program’s pmode_main function.

Once in protected mode, the program can use the Windows DOS exten-

der or make DPMI calls.

The PROTDUMP, WINBP, VXDLIST, and IDTMAP programs all

use DPMISH, and you can refer to the source code of these programs for

examples of how to use DPMISH. Also see Undocumented DOS
,
2d ed.,

Chapter 3.

Protected-Mode Functions PROT.C and PROT.H provide func-

tions such as map_linear and map_real for working with protected-mode

memory and functions such as real_int86x for generating real-mode (or

V86-mode) interrupts from protected mode. PROT can be used both by

16-bit Windows programs and by protected-mode DOS programs (such

as DPMISH). For protected-mode DOS programs, PROT also provides

DPMI equivalents to Windows API functions such as AllocSelector, Set-

SelectorBase, GetSelectorBase, andGlobalDosAlloc.

An alternate library is contained in PROTMODE.C and PROT-
MODE.H, which provide lower-level protected-mode functions such as

get_gdt (get a far pointer to the Global Descriptor Table), get_ldt (get a far

pointer to the Local Descriptor Table), get_pagedir and get_pagetab (get far

pointers to the Page Directory and to Page Tables). See PAGEWALK.C on

disk for examples ofhow to use these PROTMODE functions. Note that

PAGEWALK requires a VxD, CR3.386, which unfortunately is not pro-

vided on the disk. However, this VxD appeared in the October 1 992

Microsoft SystemsJournal and is also available on the Microsoft Developer

Network (MSDN) CD-ROM. The PROTMODE library and PAGE-
WALK program are discussed in “Exploring Demand-Paged Virtual Mem-
ory in Windows Enhanced Mode, ” Microsoft SystemsJournal, December

1992, and are also available on the MSDN CD-ROM.
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WINIO is a library of functions that lets you write Windows programs
with stdio functions such as printf. It is similar to, but more flexible than,

the QuickWin library provided by Microsoft and the EasyWin library

provided by Borland. WINIO programs can include menus and message

handlers, can create multiple windows, and so on. The 16-bit Windows
programs provided on the disk (such as WSPY21, WLOG212F, and

WV86TEST) all use WINIO, so you can use the source files for these

programs as examples ofWINIO programming. WINIO is described in

detail in Undocumented Windows
, pp. 671-682.

Generic VxD VXD. 3 86 is the generic VxD that provides Windows pro-

grams and DOS programs running under Windows with access toVMM
and VxD functions. For a detailed description, see “Call VxD Functions

and VMM Services Easily Using Our Generic VxD,” Microsoft Systems

Journal
,
February 1993, and Undocumented DOS, 2d ed., pp. 155-167.

VXDCALLS.C and VXDCALLS.H provide a C interface to the

generic VxD. VxDCall is the most important function provided by VXD-
CALLS. This function is used in the VMWALK.C, VXDTEST.C,
VXDCHAIN.C, and FAULTHKS.C source files, which you can consult

as examples of how to use the generic VxD.
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AUTOEXEC.BAT, 3-11, 27, 31, 35-36, 61, 96,

136, 293

bypassing COMMAND.COM and,

bypassing DOS and, 9-11, 19
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500-557

Close File (INT 21h function 3 Eh), 36, 182, 217,

235,236
CMDSPY, 63

CodeView, 144, 368
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248, 270, 346, 354, 361

GetLocalTime, 41, 340, 385

GetMessage, 456, 460
GetOpenFileName, 275, 430

GetProcAddress, 432, 433, 434, 435, 449

Get PSP (INT 21h fiinction 62h), 17, 27, 355-356,
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2 1 h functions

function 02 h (Display Character), 354
function OBh (Get Keyboard Status), 247, 248,

270, 346, 354, 361

function ODh, 46, 47, 248
function OEh, 38, 223-234, 228-230, 248, 375,
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343, 353, 376, 378, 385
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* 182,195,217,235,236,375
function 3Eh (Close File), 36, 182, 217, 235, 236
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function 4Eh (Find First File), 179, 195

function 6Ch (Extended Open/Create), 63, 179
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374,446, 490-491,492
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236,248,340,343,362
function 42h (Move File Pointer), 248, 343, 382
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226, 248
function 48h (Allocate Memory Block), 484, 486,

487
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355-356, 374-376, 378, 383-387, 389, 390,

419, 422,428, 429, 435
function 5 lh (Get PSP Address), 17, 38, 276
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248
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374, 376, 420, 422, 425, 427, 430, 436, 441,
442,460-472

function 57h (Get/Set File Date/Time), 248
function 60h, 236, 248
function 62h (Get PSP), 17, 27, 355-356, 383,

449
function 7 lh, 26-27, 194, 236, 248, 398,

400-401,446
function 714Fh, 396-409, 418, 436, 489

INT 28h functions, 341, 345, 346, 347, 361, 363,
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INT 2Fh functions, 33, 37, 97-101, 105, 155,
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32BFA and, 181,275
IFSHLP.SYS and, 255, 272-273
network redirectors and, 275
replacing real-mode code and, 278-281
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TEST2F16.C and, 281-291
V86TEST and, 307, 308, 309, 317, 342-347
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function 1 lh, 275, 374, 383

function 13h, 272-273
function 16h, 51, 52, 277, 281, 333

function 1600h, 278-281, 342

function 1605h, 97, 98-101, 105-106, 112, 118,
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function 1606h, 59, 105-106, 113, 123

function 1607h, 98, 129-130, 342, 343, 344
function 1608h, 113, 366
function 1609h, 113, 366

function 160Ah, 176, 342

function 160Bh, 98, 99, 342, 409
function 161 3h, 51

function 1683h, 174, 281, 317, 333, 336, 341

function 1684h, 57, 67, 124, 125-126, 181, 255,
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function 1687h, 146, 150, 155

function 1689h, 344-347

function 4B05h, 100

function 4310h, 267, 358
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517-518
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Interrupt Gates, 288, 290-291, 494
IntHandler, 473-474
INTRSPY (Interrupt Spy), 51, 62-65, 82

32BFA and, 179, 180-181

bypassing, 85

KRNL386 and, 86, 89,91
long filename support and, 195-196
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INTVECT, 277, 286-287
INTVECT.386, 36, 41, 241, 238-242
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IFSHLP.SYS and, 60, 250
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IOPL (I/O Privilege Level), 319-331, 336
IOS (I/O Supervisor), 78, 81, 104, 177-178,
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IO.SYS, 3-4, 12, 49, 51-52, 60, 62
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VMM32 and, 185
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V86TEST and, 344-347, 355-356
WV86TEST and, 388-389, 401
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192, 384, 399, 402-403, 424, 426-441

KernelDosProc, 34, 36, 491, 430, 492, 496
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Kokkonen, Kim, 59
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167
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419-496
DOSX and, 150, 152-153, 154
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L

LANtastic, 81,381
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LDT (Local Descriptor Table), 75, 265, 287-288,
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LEDUMP, 81
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LFN.C, 194, 201-203
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LFNDIR, 407, 408
LFN.EXE, 203
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Lipe, Ralph, 249-250
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LoadLibrary, 84, 432, 435, 463-464
LoadModule, 23, 490
LoadResource, 23, 84, 470
LoadString, 470
LOCAL=, 106

LocalAlloc, 484
LOCALTSRS=, 106

Locate_Byte_In_ROM, 255

LockFile, 340
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MAPEXE, 87

MAPFILE, 545-547
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map_real, 414
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Marsh, Kyle, 93

Maxey, David, 62, 195
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VMM32 and, 189, 191

WIN386.EXE and, 164

Microsoft Office, 35, 135

MOUSE, 22, 91

MOUSE.DRV, 89

MoveFile, 340

Move File Pointer (INT 2 lh function 42 h), 248,
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MRCI Get Version, 205-206
MSCDEX (Microsoft CD-ROM Extensions), 59,
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98, 134, 172,269
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MSDOS.SYS, 3-4, 12, 30, 51, 60
MSDPMI (Microsoft DPMI Server), 161, 173-176

MSGSRV32, 466, 469, 384
MS Mail, 276
MSW (Machine Status Word), 302, 304
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Multimedia Cloaking, 275

MYDIR.C, 403, 404-^07
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NDIS (Network Device Interface Standard), 81

NetRoom, 172, 288

NetWare, 172,274

Network Redirector Interface, 274-275

NETX (NetWare shell), 274
NMIs (nonmaskable interrupts), 324

NoHookDOSCall, 388, 429, 470, 489, 493

Novell, 96, 172

NTVDM, 324
Nuke_VM, 249
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OAK (MS-DOS OEM Adaptation Kit), 347
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OpenFile (API), 142

Open File (INT 2 lh function 3Dh), 36, 63,

141-142, 179, 182, 195, 217, 235, 236, 375
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PE (Protect Enable) bits, 302-308, 316

PeekMessage, 346, 347

Petzold, Charles, 423

Phar Lap Software, 87, 151, 277

Pietrek, Matt, 16, 83, 84, 89, 159-160, 344, 347,

388,441,452
PIF files, 11-12,490
PIPE.386, 117, 118-119

Plug and Play, 1, 12, 30, 184

Configuration Manager (CONEIGMG), 56-57,

79

removal functions and, 76

PM_INT2 l_PROC, 225

pmode_main, 157

POPF, 297, 319-322, 324, 330, 337

POWER.EXE, 345, 347, 367

PrestoChangoSelector, 469-470
PROCESSENTRY32, 534-535
Program Manager, 332

PROTDUMP, 258, 269, 463

PROTTAB, 225, 236
PSP (Program Segment Prefix), 7-8, 27-30, 41, 43,

324
bypassing DOS and, 15, 16-20

Create PSP (INT 2 1 h function 55h), 15, 16, 17,

38, 44, 374, 376, 420, 422, 425, 427, 430, 436,

441, 442, 460-472
FAKEWINand, 123-124, 136

Get PSP (INT 2 lh function 62h), 17, 27, 340,
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Set PSP (INT 21h function 50h), 27, 28-31, 38,

44, 276, 340, 355-356, 374-376, 378,

383-387, 389, 390, 419, 422, 428, 429, 435
thread structures and, 74-75

WV86TEST and, 385-396
PUSHF, 278-281, 297, 302, 319-322, 324,

330-331, 337

Q

QEMM, 99, 146, 149, 155, 288
DPMI and, 170, 172

V86TEST and, 317

WIN386.EXE and, 163

QTThunk, 93, 429-430, 432, 433, 461-462, 464,

470, 497, 554
Qualitas, 101, 174

Quick View, 56, 85, 90, 94

R

RASMAN (Remote Access Connection Manager),

18

Rational Systems, 151

ReadFile (API), 340

Read File (INT 2 lh function 3Fh), 36, 152, 182,

199, 217-218, 235, 236, 248, 340, 487
README.WRI, 26, 96
real_main, 157

RegCloseKey, 55

RegCreateKey, 55

REGEDIT, 55

RegEnumKey, 55

RegisterClass, 456
RegisterShellHook, 92

RegOpenKey, 55

RegQueryValue, 55-56

RegSetKey, 55

Reynolds, Aaron, 249-250
RMM (Real Mode Mapper), 81, 198

RMM.D32, 178, 179, 357

RMM.PDR, 196, 198

RJPL (Requestor Privilege Level), 319

RUNDLL32.EXE, 431-432

RUNDOSX.BAT, 152-156, 164, 167-168, 170

RUNVMM32, 196

RUNVMM32.BAT, 188-189, 196
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Sargent, Murray, 144

SaveState, 450
Schedule_Thread_Event, 72

SCSI port driver (SCSI manager), 197

SDA (Swappable Data Area), 29, 42, 119-123, 230,

355, 386-387, 390-391, 392, 393

Set_Async_Time_Out, 72

SetCurrentDirectory, 446, 450

Set_Device_Focus, 269

Set Disk Transfer Address (INT 2 lh function 1 Ah),

355-356, 492

SetFocus, 269
Set Interrupt Vector (INT 2 lh function 25h), 46,

47, 217, 219, 235-242, 282, 338, 483, 487-488,

491

Set_PM_Exex_Mode, 302

Set_PM_Int_Vector, 17, 27, 363, 494
Set PSP (INT 21h function 50h), 27, 28-31, 38, 44,

276, 355-356, 374-376, 378, 383-387, 389, 390,

419, 422,428,429, 435
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Set_Thread_Time_Out, 72
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SetTimer, 91

Set_V86_Exec_Mode, 302

SETVER.EXE, 5-6, 38, 60
SetVolume, 450
SFMPRINT (Print Server for Macintosh), 18

SFMSVC (File Server for Macintosh), 18

SFT (System File Table), 42, 79, 340
SGDT (Store Global Descriptor Table), 304
SHARE_NET_PSP, 392

SHELL, 22, 76, 79, 82, 84, 86-87, 92

SHELL32.DLL, 92-93, 399, 432, 434, 460
SHELL_SYSMODAL_MESSAGE, 104

SideKick, 218
SIDT (Store Interrupt Descriptor Table), 288, 304
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Simulate_Int, 280, 345

Single Application Mode, 59-60, 106, 194

SIS_Next_Dev_Ptr, 101

SLDT (Store Local Descriptor Table), 304
SMARTDRV.EXE, 98, 103-104, 106, 113, 117,

178-179

bypassing DOS and, 214, 216-217

long filename support and, 199

Soft-ICE/Windows debugger, 32, 49-51, 57, 62,

256-257, 459
IFSHLP.SYS and, 245-249
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THREAD command, 75-76

Solitaire, 87, 160, 345

SPART.PAR, 164, 178
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Stacker, 4, 51, 237

STI (set interrupt flag), 320-328, 330, 331, 336-337

STI_HANDLER, 327

STORAGE.DLL, 41

Swap_Always, 120

Swap_In_DOS, 120

SYSDM.CPL, 432-434
SYSINIT, 57

System_Control, 269
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SYSTEM.DRV, 89, 91, 470, 493

SYSTEM.INI, 80, 92, 106, 122, 163, 346

32BFA and, 177, 179
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[boot] section of, 87

bypassing DOS and, 233-234
damaged, 118-1 19

DblSpace and, 205

INTVECT.386 and, 241

VMM32 and, 187, 189-191

WIN386.EXE and, 162

System Message, 90

SystemROM BreakPoint=, 163, 255, 256-257, 266

SysVars, 233, 391
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470-471

TASK, 383
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449,452-457, 460, 491

TDUMP, 84-85

terminology, file/disk driver, 197-198
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TIMER, 384, 469
TLHELP32.H, 88

TLS (Thread Local Storage), 76
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Toolhelp32ReadProcessMemory, 88

ToolHelpNotdfyRegister, 419-421
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FAKEWIN and, 97-100, 105, 115-123, 132-137
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IFSHLP.SYS and, 244, 272

INT 2 1 h function 34h and, 392

INT 28h calls and, 347

INTRSPY and, 62-65

INTVECT and, 241

long filename support and, 194

TEST21 and, 234-238

V86TEST and, 342, 344, 357

WIN386.EXE and, 171-172

WINSTART.BAT and, 175
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UMBs (Upper Memory Blocks), 99, 100, 122, 128,
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Unix, 293-296

USEDPMI, 146-149, 153, 156-157, 164, 172

USEDPMI2.C, 156-157, 172

USER, 16, 23, 25, 44, 90-91, 134, 140-141, 354,

452, 459, 460
KERNEL32 and, 434
WndProc and, 453, 456
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V86MMGR (V86 Memory Manager), 57-61, 79,

128-129, 170-171, 256, 267-268, 358

V86MMGR_GetPgStatus, 128-129

V86MMGR_Xlat_API, 495

V86TEST, 135, 198-199, 217-218, 234-237,

243-245, 281, 301, 307-319, 339-366. See also

WV86TEST
CHGDIR and, 451-452

INT 2Fh function 1683h and, 333

IOPL and, 322-324, 331-332

pseudocode summary, 308

V86TEST.C, 244, 309-316, 372

V86TEST.LOG, 345-346
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VDHArmSTIHook, 324

VDK.ASM, 369

VDM (Virtual DOS Machine), 294, 296, 324
VDMAD (Virtual Direct Memory Access Device),

22, 78
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VDPX.SYS, 149

VFAT (Virtual DOS FAT system), 45, 78, 79, 178,

181,273-274,276, 378

VFD.ASM, 369-370

Virtual Hard Disk Device. See IOS
(I/O Supervisor)

VKD (Virtual Keyboard Device), 22, 78, 89, 368,

369

VMCBs (VM Control Block), 70-71, 74
VMD (Virtual Mouse Device), 22, 78, 89, 368

VMM (Virtual Machine Manager),

basic description of, 66-77, 298-302

VMM32, 5-6, 140, 165, 182-192

DblSpace and, 205

long filename support and, 194-203

setup, elements of, 186-187

subdirectory, 187

VMM32.VXD, 61-62, 65-66, 78-80, 82, 140, 161,

182-192, 194, 339

VMM_AddInstanceItem, 120

VMMCreateThread, 72, 192

VMM_GetDDB List, 191

VMM.H, 70, 73-74
VMM.INC, 70, 343, 376

VMM_MMGR_Toggle_HMA, 268
VMPoll, 343-347, 361, 366, 380, 381

VMPOLL.INC, 343-344
VMM_SelectorMapFlat, 430
VMSTAT_PM_EXEC, 227

VOLTRACK, 81-82, 196, 198

VPD (Virtual Printer Device), 368

VPICD (Virtual Programmable
Interrupt Control Device), 22, 67, 78, 82, 89, 324,

376, 381

VPICD_Set_Int_Request, 89
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VWIN32, 22, 79, 86-89, 183, 192, 390, 400
VXD86API, 252-255

VXDLDR, 79, 184, 191, 196
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VXDLDR_UnloadLoadDevice, 184

VXDLIST, 191-192,205
VXDNAME, 245, 266
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W16LOCK.C, 553-554
W32S_BackTo32, 456
W32HAND.C, 538-539
W3 86_Get_SYSDAT_Path, 52-53

W386_Int_Mulitiplex, 51-52

W3MAP, 65-70, 78-79, 182-184

WALKWIN, 443 453-456
WALKWIN.C, 443, 453-454
WfW (Windows for Workgroups) 3.11, 31, 95, 96,

135-136, 416. See also 32BFA(32-bit file access)

bypassing DOS and, 14, 19

DOSX and, 141

Get/Set current-drive calls and, 225-226, 230
IFSHLP.SYS and, 250, 273-274
IFSMgr and, 79

INT 2 lh function handling in, summary of, 46
INT 2 lh tables, and Chicago tables, difference

between, 236-237

INTRSPY and, 65

INTVECT and, 286-287

as a neglected operating system, 44-48
Resource Kit, 8
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WV86TEST and, 377, 379
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WIN, 3, 5-6, 9, 25, 366-367, 375

Winl6Lock, 497, 550-556. See also Winl6Mutex.
Win 1 6Mutex, see Win 1 6Lock.

WIN32PSP.C, 533
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the inner core of window and, 140-142
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WIN386.EXE, 61, 65-66, 97-98, 112, 161-180,
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VMM32 and, 183, 187
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WinBezMT, 32, 35, 136, 425, 442, 456, 467, 468
WINBOOT.SYS, 3-5, 10, 12, 19, 22, 25, 30-32,

36, 38,43,48-54, 57,65, 119,293

IFSHEP.SYS and, 60-62

long filename support and, 194

VMM32 and, 185

WINBP, 258-270, 494
WINBP.C, 258-265

WIN.CNF, 174

WIN.COM, 4-5, 9, 32, 49-54, 60-66, 174, 176,
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32BFA and, 179-180

the inner core of window and, 140

VMM32 and, 185, 187, 188
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version 2.x, 471, 492

version 3.0, 44, 48, 77, 96, 106, 123, 210, 492,

494-495
version 3.1, 1, 26, 48, 72, 77, 137, 152, 154, 178,

179, 181, 192, 300, 494-495

version 3.x, 44, 61, 65, 71, 72, 82, 89, 95-97, 104,

107, 140, 152, 161, 182, 209, 275, 293,

294-295, 388, 444, 452, 457, 466
Windows NT, 13-14, 17-18, 32, 274, 293-296,

324, 465-466, 471,472
WinExec, 441, 460, 490
WinHelp, 374-378, 383, 421, 422, 441

WINHELP.EXE, 374
WINICE, 32, 346, 392, 393, 466-468
WINIO, 409, 414-415, 423, 438, 453, 473
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WINPSP, 7-9, 15, 17-18, 355, 385, 437-443
WinScope, 459, 467, 468, 469
WINSTART.BAT, 64, 82, 175-176, 196
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WISPY, 275-276, 489, 490
WLOG212F, 33-41, 45-48, 229-230, 276
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WM_COMMAND
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WM_KEYUP, 354
WM_LBUTTONDOWN, 89
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WM_TIMER, 353, 385, 403, 498, 511
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WndProc, 453, 455, 456
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354, 355, 361, 373, 380-385
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WordPerfect, 294
WRITE.EXE, 490
Write File (INT 2 1 h function 40h), 36, 152,

217-219, 235, 236, 248, 340, 343, 362

WSHELL, 129, 140

WSPY21, 372, 386, 399-400, 402 ,m 417-496, 499,

501, 517, 529, 538-539
calling tree for, 472-473

WSWAP.EXE, 140-141

WV86TEST, 371-416, 417, 419, 421, 425,

427-428, 436
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The Programmer's Shop catalog is

dedicated to bringing you the widest

selection of Windows-based tools for

the lowest prices anywhere. From

Visual Programming to Process Management tools,

we've combed the marketplace to find the technologies you

want most. Our experienced technical reps are ready to

answer your question before you buy. And we always

guarantee your satisfaction.

Inside the back cover of this book from IDG Books, you'll find

a copy of "Smash Hits for Programmers," the latest in our

CD Select series. Smash Hits lets you try out software products

on CD before you buy them. And the included MegaGuide

gives you product and pricing information on over 2,500

tools, and features full flexible search capabilites. MegaGuide

on CD-ROM is also available independently. It's updated

quarterly and a one-year subscription is only $29.95.

Call and order yours today!
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Pathway Access from Wollongong sets the standard in

state-of-the-art TCP/IP apphcations for desktop and mobile

computing. Pathway Access includes a full suite of feature

rich terminal emulations, drag & drop FTP, electronic

mail, including an Internet news reader, remote access via

Slip & PPP, and network printing capabilities.

List $350

Item # W045 001

PS Price $299
rFROM

WOLIDNGONG

Prices subject to change. Callfor current pricing.

CALL 1800 421

VERSIONS/VSTM

VERSIONSAB™ is the most

advanced and easy-to-use

version control product

available for Visual Basic™.

It features complete integra-

tion with Visual Basic 3.0,

with support for multi-direc-

tory projects, “smart” sug-

gestions of which files are

required to be checked in

or out, side-by-side or top-

and-bottom visual diffing, fully

customizable version history and project reporting,

context-sensitive help, and e-mail.

List $99

Item# SI 02 002 PS Price $59
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Always get the very best products...For the
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The Object Master C++ programming

environment offers tools for reducing

I j | f development time.

• Project window for organization

J 1 h • Browser window facilitates fast and

easy navigation through code

, List $249 Item # A442 001

• Class Tree window provides a graphical,

hierarchical view of projects

• Powerful, scriptable Source Code editor

Object Master works seamlessly with all

major compilation systems, and supports

C and C++.

PS Price $235

Prodea - Custom Solutions

From Shrink-Wrapped

Software
Develop business applications that automate everyday tasks without program-

ming. ProdeaSynergy works with popular Windows applications and features

variable passing and complex logic for advanced process automation.
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OS/2

Get the most from your PC with NCW OS/2 v3.0
OS/2® v3, the reliable 32-bit operating system, makes computing easier with features like the

quick installation and customizable desktop. A separate BonusPak product, shipped with

OS/2 v3, provides productivity programs and information highway access.

OS/2 v3 releases the power of your computer, even in low memory (4MB) systems.

OS/2 Version 3.0 &/i" disk) List $1 29 Item # 1003 004 PS Price $7 1

OS/2 Version 3.0 (CD) List $1 29 Item # 1003 004 PS Price $7

1

OS/2 LAN CLIENT Version 3.0 (CD) List $1 79 Item # 1003 004 PS Price $98
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very best price...And shop with confidence.

You already have an issue of MegaGuide on CD-ROM

!

MegaGuide™ is the comprehensive quarterly software buy- updates. Order your subscription

today and save!

item # MGOO 001

Special introductory price!

Only $9.95 per quarterly issue.

Save 25% with an annual

subscription for only $29.95.

ing guide for technical and business professionals. One

issue is on the “Smash Hits” CD-ROM in this book.

• Your guide to over 2,500 hard-to-find products

• Easy to use - just point and click to find the information

you need

• Powerful - with full-text search and structured queries

To keep up to date, make sure you get your quarterly

Chart FX 2.0
The most powerful and easy to use charting library (DLL and VBX).

Configurable end user interface (ToolBar, Rotation, StatusBar, Fonts

support, others) built-in. Royalty free.

List $399

Item # S439 001 PS Price $349
Library for Windows *

ProtoGen+ Client/Server Suite
Turn your compiler into a xbase and Client/Server development system. ProtoGen+

Client/Server Suite is an integrated best-of-breed toolset in an open architecture that includes

database access, forms building, report writing, application management and quality code gen-

eration in C, MFC, OWL, and Pascal. The suite includes ProtoGen+, WinControl Custom

Controls, SQL View Visual Database Access (16 Q+E data drivers included, writes to ODBC),

DataTable Spreadsheet Control with DataTable Lens Object, and

Report Writer Visual Coder with Crystal Report Writer Pro.

List $995 „ . . ^ PROTOVfrvr
Item # P13! 007 PS Price $879

* Prices subject to change. Callfor currentpricing.
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POWERSOFT

Develop Windows Client/Server

Applications Right Out of the Box!

PowerBuilder Desktop brings you the most powerful graphical

development environment anywhere - plus WATCOM™ SQL built right in!

Tap next-generation object-oriented

technology with a single package!

PowerBuilder’s advanced object-oriented

technology lets you create advanced appli-

cations without specialized programming

knowledge. But for all its ease of use, you

still get the powerful features you want in a

database development environment: true

multi-level inheritance, class libraries,

encapsulation, polymorphism, object

reusability, and more. Plus you get the

WATCOM SQL relational database built-in -

so you have everything you need to create

applications right out of the box.

Develop faster - and with graphical

ease. PowerBuilder’s advanced graphical

development interface makes your life easi-

er every step of the way. Create Multiple

Document Interface (MDI) apps with mini-

mal coding. Arrange your toolbar however

you hke - even add Powersoft companion

products:

• PowerBuilder Application Library

• PowerBuilder

Developer

Toolkit

• PowerBuilder

Library for

Netware

Operating System

• PowerBuilder

Library for Lotus

Notes

PowerBuilder Desktop’spowerful

Data Window control automatically

formats data returnedfrom the data-

base query in a wide variety ofstyles

for use in Windows application.
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PowerBuilder

Pen Library
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PowerBuilder Desktop provides

developers with afull complement

ofstandard window controls

(command buttons
,
drop-down

list boxes, etc.) in an easy-to-use,

point-and-click environment.

Manage applications visually.

PowerBuilder’s Application Design

Repository -

the first GUI

data attribute

repository of

its kind - lets

you define,

store, and

share head-

ings, labels,

display

masks, vali-

dation rules,

and edit

styles! Get a quick, graphical, hierarchical

overview of your entire application with the

Apphcation Navigator, from where you can

use the appropriate Apphcation Painter to

modify particular objects.

Provide simple, powerful reporting

and querying for end-users.

Create query objects with the Query

Painter, and then store them as data

sources for a variety of reports.

Create freeform, tabular, multi-con-

trol break, cross-tab, grid, multi-col-

umn and label reports. Generate 2-D

and 3-D pie, bar, column, line, scat-

ter, and area charts.

Get everything you need to

develop and deploy. PowerBuilder

Desktop comes complete with WAT-

COM SQL - a powerful 32-bit rela-

tional database that lets you get up

and running without having to find a

separate back-end server database.

And when you’re ready to deploy your

applications, you get an intuitive interface

for building your EXEs and DLLs - plus a

FREE Deployment Kit when you register

your product with Powersoft Corporation,

for distributing applications and runtime

databases to others.

$s# .f

PowerBuilder Desktop includes

WATCOM SQL, a high-performance

relational database engine.

Your Price

$224
Your Price

$365

$219

$219

$399

System Requirements: 386-based PC or higher, 8MB RAM, DOS
3.3 or above, Windows 3.1, 16 MB free disk space, VGA color

monitor or higher.

PowerBuilder Desktop

Companion Products:

FUNCKY Library for

PowerBuilder

PowerBuilder Library for

Netware Operating System

PowerBuilder Library for

Lotus Notes

PowerBuilder Pen Library

Prices subject to change. Callfor current pricing.
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Send me my free Windows 95 newsletter.

Mail in the attached card and we'll

send you Andrew Schulman's

Windows 95 newsletter at product

launch at no charge. Get the

up-to-date, important news on the

biggest product of 1995.

Also Introducing

DETOUR
(See other side of card for details)

Andrew Schulman's special Windows 95 newsletter: FREE!

And please send me a copy of Detour ($22.99 USA/$32.99 Canada)

If ordering Detour CA residents add applicable sales tax:

IN and MA residents add 5% sales tax:

IL residents add 6.25% sales tax:

Rl residents add 7% sales tax:

Shipping and handling*:

Total

*For Detour orders ONLY, Shipping and Handling is $3.00 for U.S. UPS ground orders; $4.00 for Canada and inter-

national orders; and $10.00 for international air mail. For rush shipping, please call (800) 762-2974.

SHIP TO:

Name:

Company:

Address:

City/State/Zip:

e-mail address:

IDG
BOOKS

Payment:

Check to IDG Books (U.S. funds only)

Visa Mastercard American Express

Card#: Exp.: Signature



New from Programmers Press

Introducing. .

.

DETOUR

$22.99 USA/$32.99 Canada

6x9, hardcover, 350 pp.

ISBN: 1-56884-307-0

The information superhighway will

soon allow six billion people to

exchange information from anywhere in

the world. Find out when it’s coming, in

what form, and what it can do for you.

Michael Sullivan-Trainor cuts through

the hype to provide tangible, up-to-date

information on the information super-

highway, making sense of technology

jargon and special interest viewpoints.

(see other side for order form)

NO POSTAGE
NECESSARY
IF MAILED
IN THE

UNITED STATES

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 2605 SAN MATEO, CALIFORNIA

IDG Books Worldwide
155 Bovet Road
San Mateo, CA 94402-9833
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COMPUTER
BOOK SHELVING

CATEGORY:

Windows/

Programming

$29.99 USA
$39.99 Canada

£28.99 UK
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uAndrew Schulman does not follow the Microsoft party line. Instead, he shows you how Windows 95
really works. You’ll build better applications by understanding what’s inside the Windows black box.”
— Richard Smith, President, Phar Lap Software

Windows 95 will

affect you. This

exclusive view

reveals the new
Windows
operating

system as only

Andrew Schulman can.

An entire industry is poised,

trying to gauge the impact

of Microsoft Windows 95.

Unauthorized Windows 95 is the first critical

and realistic look at what "Chicago" means for

the computer software industry and for

Windows programmers. You'll understand this

new product and how it affects the way you

develop software.

A special Industry Update takes the tempera-

ture of this new product and prepares you for

the effects of Windows 95. Get the scoop on

what's in Windows 95 and how it will affect the

PC industry.

Andrew Schulman's

clarity of vision and his

much-praised investiga-

tive methods have

earned him the respect

of the Windows
-

development community.

, fie has written for

Newsweek
,
PC Week

,

Microsoft Systems Journal

,

and

writes the "Undocumented Corner"

column for Dr. Dobb’s Journal

Your Exclusive Tour Inside Windows 95
Answers These Tough Questions:

• Has Windows 95 been written from the ground up?

• Does Windows 95 push DOS aside?

• Is Windows 95 a completely integrated operating system?

• Is the 32-bit kernel completely independent of the

16-bit kernel?

• Is DOS dead?

• Is Windows 95 just WIN32S?

• Is Windows 95 radically different from Windows 3.11 ?

• Why do VxDs make Windows a genuine operating system?

• Why is V86 Mode a form of protected mode?

The "Programmers Press" logo is a trademark and the "IDG Books" logo is a registered

trademark of International Data Group.
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